P
O
L
Y
M
E
R
H
F O U R T H
A
N
D
B
O
O
K
E D I T I O N
Editors
J.
B R A N D R U P ,
E.
H .
I M M E R G U T ,
a n d
E.
A .
Associate Editors
A . A B E D .
R.
B L O C H
A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto
G R U L K E
This book is printed on acid-free paper. @ Copyright © 1999 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM. Library of Congress Cataloging-in-Puhlication Data: Polymer Handbook / Editors: J. Brandrup, E. H. Immergut, and E. A. Grulke; Associate Editors, A. Abe, D. R. Bloch. - 4th ed. p. cm. "A Wiley-Interscience Publication." Includes index. ISBN 0-471-16628-6 (cloth : alk. paper) 1. Polymers—Tables. 2. Polymerization—Tables. I. Brandrup, J. II. Immergut, E. H. III. Grulke, Eric A. QD388.P65 1999 547.7-dc21 98-37261 Printed in the United States of America. 10 9 8 7 6 5 4 3 2
Contributors Abe, A. Tokyo Institute of Polytechnics, Atsugi, Japan Allegra, G. Dipartimento di Chimica del Politecnico, Milano, Italy Andreeva, L. N. Institute of High Molecular Weight Compounds, Russian Academy of Sciences, St. Petersburg, Russian Federation Andrews, R, J. Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky, USA Bai, F. The Maurice Morton Institute of Polymer Science, Univeristy of Akron, Akron, USA Bareiss, R. E. Editorial Office, Macromolecular Chemistry and Physics, Mainz, FR Germany Barrales-Rienda, J. M. Instituto de Ciencia y Tecnologia de Polfmeros, Madrid, Spain Bello, A. Instituto de Ciencia y Tecnologia de Polfmeros, Madrid, Spain Bello, P. Instituto de Ciencia y Tecnologia de Polfmeros, Madrid, Spain Bloch, D. R. Lakeshore Research, Racine, Wisconsin, USA Brandrup, J. Wiesbaden, FR Germany Calhoun, B. H. The Maurice Morton Institute of Polymers Science, University of Akron, Akron USA Casassa, E. F. Department of Chemistry, Carneagfe-Mellon University, Pittsburgh, Pennsylvania, USA Cheng, S. Z. D. The Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio, USA Chiu, F.-C. The Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio, USA Cho, J. Polymer Science and Engineering Department, Dankook University, Seoul, South Korea Collins, E. A. Avon Lake, Ohio, USA Daniels, C. A. The Geon Company, Avon Lake, Ohio, USA DeLassus, P. T. The Dow Chemical Company, Freeport, Texas, USA Dixon, K. W. Akzo Nobel Chemicals, Inc., Dobbs Ferry, New York, USA
Elias, H.-G. Michigan Molecular Institute, Midland, Michigan, USA Fink, G. Max-Planck-Institut fur Kohlenforschung, Miilheim an der Ruhr, FR Germany Fink, H.-P. Fraunhofer Institut fiir angewandte Polymerforschung, TeltowSeehof, FR Germany Fouassier, J. P. Laboratoire de Photochimie Generate, Ecole Nationale Superieure de Chimie, Mulhouse, France Fu, Q. The Maurice Morton Institute and Department of Polymer Science, University of Akron, Akron, Ohio, USA Furuta, I. Japan Synthetic Rubber Company Ltd., Yokkaichi, Mie, Japan Ganster, J. Fraunhofer Institute for Applied Polymer Research, TeltowSeehof, Germany Greenley, R. Z. Monsanto Corporation (retired), St. Louis, Missouri, USA Grulke, E. A. Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA Goh, S. H. Department of Chemistry, National University of Singapore, Singapore Guzman G. M. Instituto de Ciencia y Tecnologfa de Polfmeros, Madrid, Spain Hill, D. J. T. Department of Chemistry, University of Queensland, St. Lucia, Australia Hiltner, A. Department of Macromolecular Science, School of Engineering Case Western University, Cleveland, Ohio, USA Inomata, K. Department of Polymer Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan Iwama, M. Japan Synthetic Rubber Company Ltd., Yokkaichi, Mie, Japan Jenkins, A. D. School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, Sussex, UK Jenkins, J. School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, Sussex, UK
Johnson, M. Chemistry/Physics Library, University of Kentucky, Lexington, Kentucky, USA Kamachi, M. Department of Applied Physics and Chemistry, Fukui University of Technology, Gakuen, Fukui, Japan Kerbow, D. L. DuPont Fluoroproducts, Wilmington, Delaware, USA Kimura, S.-L Japan Synthetic Rubber Company Ltd., Yokkaichi, Mie, Japan Korte, S. Zentrale Ferschung, Bayer AG, Leverkunsen, FR Germany Krause, S. Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York, USA Kurata, M. Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan Lechner, M. D. Physikalische Chemie, Universitat Osnabriick, Osnabriick, FR Germany Leonard, J. Department de Chimie and CERSIM, Universite Laval, Quebec, Canada Li, F. The Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio, USA
Muck, K.-F. Ticona GmbH, Kelsterbach, FR Germany Nagai, S. Plastics Technical Association, Osaka, Japan Nordmeier, E. Physikalische Chemie, Universitat Osnabriick, Osnabriick FR Germany Ogo, Y. Research Institute for Solvothermal Technology, Hayashi, Takamatsu, Kagawa, Japan Orwoll, R. A. College of William and Mary, Williamsburg, Virginia, USA Pauly, S. Fachlaboratorium fur Permeationspriifung, Wiesbaden, FR Germany Peebles, L. H., Jr. Chemistry Division, Naval Research Laboratory, Washington, DC, USA Perera, M. C. S. Magnetic Resonance Facility, School of Science, Griffith University, Nathan, Australia Porzio, W. Instituto di Chimica delle Macromolecole del C.N.R., Milano, Italy Pyda, M. Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
Liggat, J. Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, Scotland
Quirk, R. P. The Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio, USA
Lindemann, M. Greenville, South Carolina, USA Luft, G. Institut fur Chemische Technologie, Technische Hochschule, Darmstadt, FR Germany
Riande, E. Instituto de Ciencia y Tecnologia de Polimeros, Madrid, Spain
Magill, J. H. School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA McKenna, T. F. Centre Nationale de Ia Recherche Scientifique, Laboratoire de Chimie et Procedes de Polymerisation/Departement Genie des Procedes, Villeurbanne, France Mehta, R. H. Dupont Nylon, Chattanooga, Tennessee, USA Mettle, S. V. Dipartimento di Chimica del Politecnico, Milano, Italy Metanomski, W. V. Chemical Abstracts Service, Columbus, Ohio, USA Michielsen, S. School of Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA Miller, R. L. Michigan Molecular Institute, Midland, Michigan, USA Morita, Y. Japan Atomic Energy Research Institute, Takasaki, Gunma-ken, Japan
Richter, W. J. Max-Planck-Institut fur Kohlenforschung, Miilheim an der Ruhr, FR Germany Rothe, M. University of UIm, UIm, FR Germany Rule, M. Coca Cola Company, Atlanta, Georgia, USA Salort, J. F. Madrid, Spain Salom, C. Escuela Tecnica Superior de Ingenieros Aeronauticos, Universidad Politecnica, Madrid, Spain Sanchez, I. C. Chemical Engineering Department, University of Texas at Austin, Austin, Texas, USA Santos, A. M. Faculdade de Engenharia Quimica de Lorena - FAENQUIL, Lorena, Sao Paulo, Brazil Schoff, C. K. PPG Industries, Allison Park, Pennsylvania, USA Schuld, N. Institut fur Physikalische Chemie, Universitat Mainz, Mainz, FR Germany
Seferis, J. C. Chemical Engineering Department, University of Washington, Seattle, Washington, USA Seguchi, T. Japan Atomic Energy Research Institute, Takasaki, Gunma-ken, Japan
Wagener, K. B. Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida, USA Whiteman, N. F. The Dow Chemical Company, Freeport, Texas, USA
Schrader, D. The Dow Chemical Company, Midland, Michigan, USA
Witenhafer, D. E. Dublin, Ohio, USA
Sperati, C. A. Chemical Engineering Department, Ohio University, Athens, Ohio, USA
Wolf, B. A. Institut fur Physikalische Chemie, Universitat Mainz, Mainz, FR Germany
Steinmeier, D. G. Physikalische Chemie, Universitat Osnabriick, Osnabruck, FR Germany
Wu, S. E. I. DuPont de Nemours, Central Research and Development Department, Experimental Station, Wilmington, Delaware
Tsunashima, Y. Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
Wunderlich, B. Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
Tsvetkov, N. V. Institute of High Molecular Weight Compounds, Russian Academy of Science, St. Petersburg, Russian Federation
Wunderlich, W. ROHM GmbH, Darmstadt, FR Germany
Tsvetkov, V. N. Institute of High Molecular Weight Compounds, Russian Academy of Science, St. Petersburg, Russian Federation
Yamada, B. Department of Applied Chemistry, Faculty of Technology, Osaka City University, Sumiyoshi, Osaka, Japan
Ueda, A. Osaka Municipal Technical Research Institute, Morinomiya, Joto-ku, Osaka, Japan
Zhu, L. The Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio, USA
Preface The purpose of the Polymer Handbook is to bring together the data and constants needed in theoretical and experimental polymer research. All polymer researchers have experienced the frustration of searching for data in the everexpanding polymer literature and know the difficulties involved in trying to locate a particular constant that is buried in a long journal article. The contributors to this Handbook have taken on the arduous task of searching the literature and compiling the data and constants that polymer chemists, polymer physicists, and polymer engineers are likely to need. The 520 and odd tables in this Handbook are divided into eight sections. The first lists the IUPAC nomenclature rules for polymers and the International System of Units. Although several naming conventions exist in the technical literature, IUPAC names permit a consistent listing of all polymers. Section II contains data and constants needed for polymer synthesis, kinetic mechanisms, and thermodynamic studies of polymerization and depolymerization reactions. Sections III and IV contain physical constants of monomers, solvents, and oligomers. Section V lists the physical constants of many important commercial polymers. Section VI and VII cover the solid state properties of polymers and the properties of polymer solutions. Section VIII of the Handbook lists the commonly used abbreviations or acronyms for polymers and Chemical Abstract Registry Numbers, and gives suggestions for electronic data searching for polymer information. This section should also be consulted in the few cases where contributors have not used IUPAC nomenclature. As in the previous editions, the Polymer Handbook concentrates on synthetic polymers, poly(saccharides) and derivatives, and oligomers. Few data on biopolymers are included. Spectroscopic data as well as data needed by engineers and designers, such as mechanical and rheological data, are minimized, since many excellent compilations exist elsewhere. Only fundamental constants and parameters that refer to the polymer molecule, that describe the solid state of polymer molecules, or that describe polymer solutions, were compiled. Constants that depend on processing conditions or on sample history were not emphasized, as they can be found in existing plastics handbooks and encyclopedias.
A critical evaluation of the values published in the literature was not attempted, since such a task would have required an inordinate amount of time and a sizable staff. Therefore, the users of this Handbook should consult the original literature for details when in doubt about the validity of any data. (The authors of the individual tables were nevertheless requested to eliminate obviously erroneous data from otherwise complete compilations.) The Fourth Edition revisions have focused on data generated in the ten years since the publication of the Third Edition. Therefore, a completely revised Polymer Handbook has been prepared. We have added new tables and incorporated a large amount of new data into existing tables. As a result, the Fourth Edition contains approximately twenty-five percent more data, and the number of pages has increased from about 1850 in the Third Edition to about 2250. We hope that this new edition will be as useful to the polymer research community as the three earlier editions and that many of the Polymer Handbook's previous users will also obtain the Fourth Edition for their laboratory and library. The publisher plans a CD-ROM for the Polymer Handbook in the near future. We would be grateful if our contributors and users send us any new data they accumulate in the course of their research, and any errors, misprints, omissions and other flaws. We will pass on such data to the publisher, for the polymer database, and for future editions of this Handbook. We would like to thank all of the contributors to the Polymer Handbook for their help and continued patience. The staff at John Wiley, especially Carla Fjerstad, Shirley Thomas, and Jacqueline Kroschwitz, have provided excellent help and support in getting all the work done. We hope that the outstanding efforts of all these people will find due appreciation among the users of this Handbook. July, 1998
J. Brandrup E. H. Immergut E. A. Grulke A. Abe D. R. Bloch
Contents
Contributors .............................................................................................................................
v
Preface ....................................................................................................................................
ix
I.
Nomenclature Rules – Units
Nomenclature ...............................................................................................................................................
I/1
A. Introduction ........................................................................................................................
I/1
B. IUPAC Recommendations .................................................................................................. 1. Source-based Nomenclature .................................................................................. 1.1 Homopolymers ........................................................................................ 1.2 Copolymers ............................................................................................. 1.3 Nonlinear Macromolecules and Macromolecular Assemblies ................ 2. Structure-based Nomenclature ............................................................................... 2.1 Regular Single-strand Organic Polymers ............................................... 2.2 Regular Double-strand Organic Polymers .............................................. 2.3 Regular Single-strand Inorganic and Coordination Polymers ................. 2.4 Regular Quasi-single-strand Coordination Polymers .............................. 2.5 Irregular Single-strand Organic Polymers ...............................................
I/1 I/2 I/2 I/2 I/3 I/3 I/3 I/6 I/6 I/7 I/7
C. Use of Common and Semisystematic Names .....................................................................
I/8
D. Chemical Abstracts (CA) Index Names ...............................................................................
I/8
E. Polymer Class Names ........................................................................................................
I/11
F. References .........................................................................................................................
I/12
Units .............................................................................................................................................................
I/13
A. Introduction ........................................................................................................................
I/13
B. International Units ..............................................................................................................
I/13
C. SI-prefixes ..........................................................................................................................
I/14
D. Conversion Factors ............................................................................................................
I/14
E. Conversion Table for SI vs. English-american Units ...........................................................
I/17
II.
Polymerization and Depolymerization
Decomposition Rates of Organic Free Radical Initiators ............................................................................
II/1
A. Introduction ........................................................................................................................
II/1
B. Tables of Decomposition Rates of Organic Free Radical Initiators ..................................... Table 1. Azonitriles ............................................................................................................... Table 2. Miscellaneous Azo-derivatives ................................................................................
II/2 II/2 II/9
This page has been reformatted by Knovel to provide easier navigation.
xi
xii
Contents Table 3. Table 4. Table 5. Table 6. Table 7.
Alkyl Peroxides ....................................................................................................... Acyl Peroxides ........................................................................................................ Hydroperoxides and Ketone Peroxides .................................................................. Peresters and Peroxycarbonates ............................................................................ Miscellaneous Initiators ...........................................................................................
II/23 II/29 II/43 II/48 II/67
C. Notes ..................................................................................................................................
II/69
D. References .........................................................................................................................
II/70
Propagation and Termination Constants in Free Radical Polymerization ..................................................
II/77
A. Introduction ........................................................................................................................
II/77
B. Tables of Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13.
Propagation and Termination Constants ............................................................. Dienes ..................................................................................................................... Olefins ..................................................................................................................... Acrylic Derivatives ................................................................................................... Methacrylic Derivatives ........................................................................................... Itaconic Derivatives ................................................................................................. Fumaric Derivatives ................................................................................................ Vinyl Halides ........................................................................................................... Vinyl Esters ............................................................................................................. Vinyl Ethers ............................................................................................................. Styrene Derivatives ................................................................................................. Vinyl Heteroaromatics ............................................................................................. Aldehydes ............................................................................................................... Others .....................................................................................................................
II/79 II/79 II/79 II/80 II/82 II/85 II/87 II/87 II/87 II/88 II/88 II/90 II/90 II/90
C. References .........................................................................................................................
II/91
Transfer Constants to Monomers, Polymers, Catalysts and Initiators, Solvents and Additives, and Sulfur Compounds in Free Radical Polymerization ...........................................................................
II/97
A. Introduction ........................................................................................................................
II/97
B. Tables of Transfer Constants ............................................................................................. Table 1. Transfer Constants to Monomers ........................................................................... Table 2. Transfer Constants to Polymers ............................................................................. Table 3. Transfer Constants to Catalysts and Initiators ........................................................ Table 4. Transfer Constants to Solvents and Additives ........................................................ Table 5. Transfer Constants to Sulfur Compounds ...............................................................
II/98 II/98 II/103 II/106 II/110 II/150
C. Remarks .............................................................................................................................
II/157
D. References .........................................................................................................................
II/159
Photopolymerization Reactions ...................................................................................................................
II/169
A. Introduction ........................................................................................................................
II/169
B. Tables ................................................................................................................................ Table 1. Rate Constants of Cleavage, Electron Transfer and Monomer Quenching in Radical Photoinitiators ............................................................................................ Annex to Table 1. Photoinitiator Compound Chemistries ......................................
II/170
This page has been reformatted by Knovel to provide easier navigation.
II/170 II/173
Contents Table 2. Bimolecular Rate Constants for the Reaction of Phosphonyl Radicals with Various Monomers in Cyclohexane at Room Temperature .................................... Table 3. Bimolecular Rate Constants for the Reaction of Various Radicals with Various Olefinic Monomers at Room Temperature ................................................. Table 4. Bimolecular Rate Constants for the Reaction of Ph2P = O and Ph2P = S with Various Monomers .................................................................................................. Table 5. Electron Transfer Reaction of Radicals with Diphenyliodonium Salts .................... Table 6. Electron Transfer Rate Constants (ke) between Photosensitizers and Cationic Photoinitiators and Quenching Rate Constants (kq) for Cyclohexene Oxide in Methanol (M) and Acetonitrile (AN) .......................................................... Table 7. Excitation Transfer Rate Constants (kT) for Thioxanthones and Photoinitiators ......................................................................................................... Annex to Table 7. Compound Chemistries ............................................................ Table 8. Triplet State Lifetimes (τT) of the Sensitizer (TXI) in Different Media, and Rate Constant (kT) of the Interaction between TXI and TPMK ............................... Table 9. Some Values of the Triplet State Energy Levels of Photoinitiators and Monomers ............................................................................................................... Table 10. Values of τ0T, τT, and kba in Solution ........................................................................ Table 11. Rate Constant of Interaction of Ketones and Light Stabilizers in Solution .............. Annex to Table 11 ...................................................................................................
xiii II/176 II/176 II/176 II/176
II/177 II/178 II/178 II/179 II/179 II/179 II/179 II/179
C. References .........................................................................................................................
II/180
Free Radical Copolymerization Reactivity Ratios .......................................................................................
II/181
A. Introduction ........................................................................................................................
II/181
B. Tables ................................................................................................................................ Table 1. Copolymer Reactivity Ratios ................................................................................... Acenaphthalene to Fumarate, bis(3-chloro-2-butyl) ................................................ Fumarate, di-(2-chloroethyl) to N-N-divinylaniline ................................................... N-vinylimidazole to Styrene, p-2-(2-hydroxypropyl)- ............................................... Styrene, p-4-methoxyphenyl ketone to Vinylbenzoate, p-, sodium ......................... Vinylbenzoic acid, p- to Xanthate, S-methacryloyl O-ethyl ..................................... Table 2. Listing of Quick Basic (Microsoft) Program for Calculating Reactivity Ratios .........
II/182 II/182 II/182 II/212 II/241 II/268 II/285 II/288
C. References .........................................................................................................................
II/290
Q and e Values for Free Radical Copolymerizations of Vinyl Monomers and Telogens ...........................
II/309
A. Introduction ........................................................................................................................
II/309
B. Q and e Table 1. Table 2. Table 3. Table 4.
Values for Free Radical Copolymerizations .......................................................... Monomers ............................................................................................................... Telogens ................................................................................................................. Monomers Arranged by Q Values ........................................................................... Monomers Arranged by e Values ...........................................................................
II/310 II/310 II/314 II/314 II/317
C. References .........................................................................................................................
II/319
Patterns of Reactivity (U,V) Parameters for the Prediction of Monomer Reactivity Ratios and Transfer Constants in Radical Polymerization ...................................................................................
II/321
A. Introduction ........................................................................................................................
II/321
This page has been reformatted by Knovel to provide easier navigation.
xiv
Contents B. Example .............................................................................................................................
II/322
C. Transfer Constants .............................................................................................................
II/322
D. Tables of Parameters ......................................................................................................... Table 1. Monomers ............................................................................................................... Table 2. Transfer Agent ........................................................................................................
II/323 II/323 II/326
E. References .........................................................................................................................
II/327
Copolymerization Parameters of Metallocene-catalyzed Copolymerizations ............................................
II/329
A. Introduction ........................................................................................................................
II/329
B. A Brief Theoretical Outline of Copolymerization Reactions ................................................. 1. First-order Markov Model ........................................................................................ 2. Second-order Markov Model ...................................................................................
II/329 II/330 II/330
C. Calculation of the Copolymerization Parameters ................................................................ 1. First-order Markov Model ........................................................................................ 1.1. Copolymerization Parameters Deduced from the Mayo-lewis Equation .................................................................................................. 1.2. Determination of Copolymerization Parameters from the Sequence Distribution (Triad Distribution) .............................................. 2. Second-order Markov Model ................................................................................... 3. Example ..................................................................................................................
II/331 II/331
D. Table of Copolymerization Parameters ...............................................................................
II/333
E. List of Catalysts/Cocatalysts Used .....................................................................................
II/336
F. References .........................................................................................................................
II/336
Rates of Polymerization and Depolymerization, Average Molecular Weights, and Molecular Weight Distribution of Polymers .........................................................................................................
II/339
A. Introduction ........................................................................................................................
II/339
B. Reference Tables for the Calculation of Rates of Polymerization, Average Molecular Weights, and Molecular Weight Distributions of Polymers for Various Types of Polymerization .................................................................................................................... Table 1. Addition Polymerization with Termination ............................................................... Table 2. Addition Polymerization - "Living" Polymers with Partial Deactivation .................... Table 3. Linear Condensation Polymerization without Ring Formation ................................ Table 4. Equilibrium Polymerization ...................................................................................... Table 5. Nonlinear Polymerization Systems ......................................................................... Table 6. Degradation of Polymers - May Be Accompanied by Crosslinking ......................... Table 7. Influence of Reactor Conditions and Design on the Molecular Weight Distribution ..............................................................................................................
II/340 II/341 II/344 II/346 II/347 II/348 II/350
C. Some Distribution Functions and Their Properties .............................................................. 1. Normal Distribution Function (Gaussian Distribution) ............................................. 2. Logarithmic Normal Distribution Function ............................................................... 3. Generalized Exponential Distribution ...................................................................... 4. Poisson Distribution ................................................................................................
II/352 II/353 II/353 II/354 II/354
This page has been reformatted by Knovel to provide easier navigation.
II/331 II/331 II/332 II/332
II/352
Contents
xv
D. Molecular Weight Distribution in Condensation Polymers: the Stockmayer Distribution Function ...........................................................................................................
II/354
E. References .........................................................................................................................
II/356
Heats and Entropies of Polymerization, Ceiling Temperatures, Equilibrium Monomer Concentrations, and Polymerizability of Heterocyclic Compounds ...................................................
II/363
A. Heats of Polymerization ...................................................................................................... Table 1. Monomers Giving Polymers Containing Carbon Atoms Only in the Main Chain ....................................................................................................................... 1.1 With Acyclic Carbons Only in the Main Chain ........................................
II/365
1.1.1 Dienes ..............................................................................................
II/365
1.1.2 Monomers Giving Polymers with or without Aliphatic Side Chains That Contain Only C, H ........................................................
II/365
1.1.3 Monomers Giving Polymers with Aliphatic Side Chains That Contain Heteroatoms .......................................................................
II/368
1.1.4 Monomers Giving Polymers with Aromatic Side Chains That Contain Only C, H ............................................................................
II/371
1.1.5 Monomers Giving Polymers with Aromatic Side Chains and That Contain Heteroatoms ............................................................... 1.2 With Aromatic or Cyclic Carbons in the Main Chain ............................... Table 2. Monomers Giving Polymers Containing Heteroatoms in the Main Chain ............... 2.1 Monomers Giving Polymers Containing O in the Main Chain, Bonded to Carbon Only ..........................................................................
II/365 II/365
II/371 II/372 II/373 II/373
2.1.1 Ethers and Acetals ...........................................................................
II/373
2.1.2 Cyclic Esters ..................................................................................... 2.2 Monomers Giving Polymers Containing O in the Main Chain, Bonded to Other Heteroatoms (S, Si, P) ................................................ 2.3 Monomers Giving Polymers Containing S in the Main Chain, Bonded in the Chain to Carbon Only ...................................................... 2.4 Monomers Giving Polymers Containing N in the Main Chain, Bonded in the Chain to Carbon Only ...................................................... 2.5 Monomers Giving Polymers Containing N in the Main Chain, Bonded to Other Heteroatoms (P) .......................................................... 2.6 Other Monomers Giving Polymers Not Listed Above ............................. Table 3. Copolymers .............................................................................................................
II/376 II/377 II/378 II/378 II/379 II/379 II/380
B. Entropies of Polymerization ................................................................................................ Table 4. Monomers Giving Polymers Containing Main Chain Carbon Only ......................... 4.1 Main Chain Acyclic Carbon Only ............................................................
II/381 II/382 II/382
4.1.1 Dienes ..............................................................................................
II/382
4.1.2 Monomers Giving Polymers without or with Aliphatic Side Chains That Contain Only C, H ........................................................
II/382
4.1.3 Monomers Giving Polymers with Aliphatic Side Chains That Contain Heteroatoms .......................................................................
II/384
This page has been reformatted by Knovel to provide easier navigation.
xvi
Contents 4.1.4 Monomers Giving Polymers with Aromatic Side Chains That Contain Only C, H ............................................................................
II/385
4.1.5 Monomers Giving Polymers with Aromatic Side Chains That Contain Heteroatoms .......................................................................
II/385
4.1.6 Other Monomers Giving Polymers Not Listed Above ...................... 4.2 With Aromatic or Cyclic Carbons in the Main Chain ............................... Table 5. Monomers Giving Polymers Containing Heteroatoms in the Main Chain ............... 5.1 Monomers Giving Polymers Containing O in the Main Chain, Bonded to Carbon Only ..........................................................................
II/386 II/386 II/387
5.1.1 Ethers and Acetals ...........................................................................
II/387
5.1.2 Cyclic Esters ..................................................................................... 5.2 Monomers Giving Polymers Containing O in the Main Chain, Bonded to Other Heteroatoms (S, Si, P) ................................................ 5.3 Monomers Giving Polymers Containing N in the Main Chain, Bonded in the Chain to Carbon Only ...................................................... 5.4 Other Monomers Giving Polymers Not Listed Above ............................. Table 6. Copolymers .............................................................................................................
II/390
C. Ceiling Temperatures and Equilibrium Monomer Concentrations ....................................... 1. Equilibria Involving Pure Liquid Monomers ............................................................. Table 7. Monomers Giving Polymers Containing Main Chain Acyclic Carbon Only ............................................................................................ Table 8. Monomers Giving Polymers Containing Heteroatoms in the Main Chain ...................................................................................................... 8.1
II/391 II/391 II/392 II/392 II/393 II/394 II/394 II/395
Monomers Giving Polymers Containing O in the Main Chain, Bonded to Carbon Only ....................................................................
II/395
Monomers Giving Polymers Containing O in the Main Chain, Bonded to Other Heteroatoms (S, P, Si) .........................................
II/396
Monomers Giving Polymers Containing S in the Main Chain, Bonded in the Chain to Carbon Only ...............................................
II/396
Monomers Giving Polymers Containing N in the Main Chain, Bonded in the Chain to Carbon Only ...............................................
II/397
8.5 Other Monomers Giving Polymers Not Listed Above ...................... Equilibria Involving Gaseous Monomers ................................................................. Equilibria Involving Monomers in Solution .............................................................. Table 9. Monomers Giving Polymers Containing Main Chain Carbon Only .........
II/397 II/397 II/398 II/398
8.2 8.3 8.4
2. 3.
II/387
9.1
Monomers Giving Polymers Containing Main Chain Acyclic Carbon Only .....................................................................................
II/398
9.2
Monomers Giving Polymers Containing Main Chain Cyclic Carbon .............................................................................................. Table 10. Monomers Giving Polymers Containing Heteroatoms in the Main Chain ......................................................................................................
II/399
10.1 Monomers Giving Polymers Containing O in the Main Chain, Bonded to Carbon Only ....................................................................
II/399
This page has been reformatted by Knovel to provide easier navigation.
II/399
Contents
xvii
10.2 Monomers Giving Polymers Containing O in the Main Chain, Bonded to Other Heteroatoms (Si, P) ..............................................
II/400
10.3 Monomers Giving Polymers Containing S in the Main Chain, Bonded in the Chain to Carbon Only ...............................................
II/400
10.4 Monomers Giving Polymers Containing N in the Main Chain, Bonded in the Chain to Carbon Only ............................................... Table 11. Copolymers .............................................................................................
II/400 II/401
11.1 1:1 Copolymers ................................................................................
II/401
11.2 General Copolymers ........................................................................
II/401
D. Polymerizability of 5-, 6-, and 7-membered Heterocyclic Ring Compounds ........................ Table 12. 5-membered Ring Compounds ............................................................................... Table 13. 6-membered Ring Compounds ............................................................................... Table 14. 7-membered Ring Compounds ............................................................................... Table 15. Comparison of Polymerizability (+ or -)of Unsubstituted 5-, 6- and 7-membered Ring Compounds ...............................................................................
II/401 II/402 II/403 II/404
E. Notes ..................................................................................................................................
II/406
F. References .........................................................................................................................
II/407
Activation Energies of Propagation and Termination in Free Radical Polymerization ...............................
II/415
A. Introduction ........................................................................................................................
II/415
B. Tables ................................................................................................................................ Table 1. Dienes ..................................................................................................................... Table 2. Olefins ..................................................................................................................... Table 3. Acrylic Derivatives ................................................................................................... Table 4. Methacrylic Derivatives ........................................................................................... Table 5. Vinyl Halogens ........................................................................................................ Table 6. Vinyl Ethers and Vinyl Esters .................................................................................. Table 7. Styrene and Derivatives .......................................................................................... Table 8. Vinyl Heteroaromatics ............................................................................................. Table 9. Miscellaneous Compounds .....................................................................................
II/416 II/416 II/416 II/417 II/418 II/420 II/421 II/421 II/422 II/423
C. References .........................................................................................................................
II/424
Activation Volumes of Polymerization Reactions ........................................................................................
II/429
A. Introduction ........................................................................................................................
II/429
3
II/405
B. Activation Volumes (sm /mol) of Some Polymerization Reactions ......................................
II/432
C. Activation Volumes of Initiator Decomposition ....................................................................
II/435
D. Activation Volumes of Chain Propagation ...........................................................................
II/435
E. Activation Volumes of Chain Termination ...........................................................................
II/436
F. Activation Volumes of Chain Transfer Reactions ................................................................
II/436
G. Influence of Pressure on Copolymerization ........................................................................ Table 1. Copolymerization Parameters ................................................................................. Table 2. Reactivity Ratios of Terpolymerization .................................................................... Table 3. Activation Volumes ................................................................................................. Table 4. Q, e Values .............................................................................................................
II/437 II/437 II/438 II/439 II/440
This page has been reformatted by Knovel to provide easier navigation.
xviii
Contents H. References .........................................................................................................................
II/440
Activation Enthalpies and Entropies of Stereocontrol in Free Radical Polymerizations .............................
II/445
A. Introduction ........................................................................................................................
II/445
B. Tables ................................................................................................................................ Table 1. Ratios of Some i-ADS for Different Mechanisms .................................................... Table 2. Ratios of Rate Constants for Markov First Order Mechanisms ............................... Table 3. ∆H++s/i - ∆H++i/s and ∆S++s/i - ∆S++i/s of Free Radical Polymerizations in Different Solvents .................................................................................................... Table 4. Activation Enthalpy Differences (∆H++A - ∆H++B) Calculated from Various Literature Data ........................................................................................................ Table 5. Activation Entropy Differences (∆S++A - ∆S++B) Calculated from Various Literature Data ........................................................................................................ Table 6. Calculated Compensation Temperatures T0 and Compensation Enthalpies ∆∆H++0 for Various Monomers and Modes of Addition, Assuming Markov First Order Trials .....................................................................................................
II/446 II/446 II/446
C. References .........................................................................................................................
II/450
Products of Thermal Degradation of Polymers ...........................................................................................
II/451
A. Introduction ........................................................................................................................
II/451
B. Tables ................................................................................................................................ Table 1. Main-chain Acyclic Carbon Polymers ..................................................................... Table 2. Main-chain Carbocyclic Polymers ........................................................................... Table 3. Main-chain Heteroatom Polymers ........................................................................... Table 4. Main-chain Heterocyclic Polymers .......................................................................... Table 5. Cellulose and Its Derivatives ...................................................................................
II/451 II/451 II/464 II/465 II/473 II/475
C. References .........................................................................................................................
II/475
Radiation Chemical Yields: G Values ..........................................................................................................
II/481
A. Introduction ........................................................................................................................
II/481
B. Tables of G Values ............................................................................................................. Table 1. Homopolymers ........................................................................................................ 1.1 Polydienes .............................................................................................. 1.2 Polyolefins .............................................................................................. 1.3 Polyacrylates .......................................................................................... 1.4 Poly(methacrylates) ................................................................................ 1.5 Poly(styrenes) ......................................................................................... 1.6 Poly(vinyls) .............................................................................................
II/481 II/482 II/482 II/482 II/483 II/484 II/485 II/486
1.6.1 Acrylamides and Nitriles ...................................................................
II/486
1.6.2 Vinyl Monomers ................................................................................ Miscellaneous Polymers .........................................................................
II/486 II/487
1.7.1 Cellulose and Derivatives .................................................................
II/487
1.7.2 Poly(siloxanes) .................................................................................
II/487
1.7.3 Poly(amino Acids) ............................................................................
II/487
1.7.4 Polyesters .........................................................................................
II/488
1.7
This page has been reformatted by Knovel to provide easier navigation.
II/447 II/448 II/449
II/449
Contents
III.
xix
1.7.5 Polysulfones .....................................................................................
II/488
1.7.6 Polyketones ......................................................................................
II/488
1.7.7 Fluoropolymers .................................................................................
II/488
1.7.8 Others ............................................................................................... Table 2. Copolymers ............................................................................................................. 2.1 Copolymers with Ethylene ...................................................................... 2.2 Copolymers with Methyl Methacrylate .................................................... 2.3 Copolymers with Styrene ........................................................................ 2.4 Copolymers with Sulfur Dioxide .............................................................. 2.5 Other Copolymers ................................................................................... Table 3. Polymers Blends ..................................................................................................... Table 4. Composites .............................................................................................................
II/489 II/490 II/490 II/490 II/491 II/491 II/492 II/493 II/493
C. References .........................................................................................................................
II/493
Physical Properties of Monomers and Solvents
Physical Properties of Monomers ................................................................................................................
III/1
A. Introduction ........................................................................................................................
III/1
B. Tables of Table 1. Table 2. Table 3. Table 4.
Table 5.
Table 6.
Table 7. Table 8. Table 9.
Table 10.
Table 11.
Physical Properties ............................................................................................. Acetylenes .............................................................................................................. Acid Dichlorides ...................................................................................................... Acroleins ................................................................................................................. Acrylamides/Methacrylamides ................................................................................ 4.1 Acrylamides ............................................................................................ 4.2 Methacrylamide ...................................................................................... Acrylates/Methacrylates .......................................................................................... 5.1 Acrylate, Acids/Esters ............................................................................. 5.2 Methacrylate, Acids/Esters ..................................................................... Alcohols .................................................................................................................. 6.1 Alkanediols ............................................................................................. 6.2 Ether Diols .............................................................................................. Allyl Functional ........................................................................................................ Amines, Difunctional ............................................................................................... Anhydrides .............................................................................................................. 9.1 Monoanhydrides ..................................................................................... 9.2 Dianhydrides ........................................................................................... Butadienes .............................................................................................................. 10.1 1,2-butadienes ........................................................................................ 10.2 1,3-butadienes ........................................................................................ Butenes ................................................................................................................... 11.1 1-butenes ................................................................................................ 11.2 2-butenes ................................................................................................
This page has been reformatted by Knovel to provide easier navigation.
III/4 III/4 III/4 III/4 III/4 III/4 III/6 III/8 III/8 III/12 III/16 III/16 III/18 III/18 III/20 III/20 III/20 III/24 III/24 III/24 III/24 III/26 III/26 III/26
xx
Contents Table 12. Epoxides ................................................................................................................. 12.1 Monoepoxides ........................................................................................ 12.2 Diepoxides .............................................................................................. Table 13. Ethylene Halides ..................................................................................................... Table 14. Fumaric, Acids/Esters ............................................................................................. Table 15. lsocyanates ............................................................................................................. Table 16. Lactams .................................................................................................................. Table 17. Lactones ................................................................................................................. Table 18. Maleate, Acids/Esters ............................................................................................. Table 19. Propenes ................................................................................................................. Table 20. Styrenes .................................................................................................................. Table 21. Vinyl Functional ....................................................................................................... 21.1 Aryl .......................................................................................................... 21.2 Esters ...................................................................................................... 21.3 Ethers ..................................................................................................... 21.4 N-substituted ........................................................................................... 21.5 Sulfonates ...............................................................................................
III/26 III/26 III/28 III/28 III/30 III/30 III/32 III/32 III/32 III/32 III/34 III/36 III/36 III/36 III/38 III/38 III/40
Isorefractive and Isopycnic Solvent Pairs ....................................................................................................
III/43
A. Introduction ........................................................................................................................
III/43
B. Table of Isorefractive and Isopycnic Solvent Pairs ..............................................................
III/43
Refractive Indices of Common Solvents .....................................................................................................
III/55
A. Introduction ........................................................................................................................
III/55
B. Table of Refractive Indices of Common Solvents ...............................................................
III/55
Physical Constants of the Most Common Solvents for Polymers ...............................................................
III/59
IV.
Physical Data of Oligomers
Physical Data of Oligomers .........................................................................................................................
IV/1
A. Introduction ........................................................................................................................
IV/2
B. Oligomers Containing Main Chain Acyclic Carbon Only ..................................................... Table 1. Oligo(olefins) ........................................................................................................... 1.1. Oligo(methylenes) and Oligo(ethylenes) ................................................ 1.2. Oligo(perfluoromethylenes) and Oligo(perfluoroethylenes) .................... 1.3. Oligo(isobutenes) .................................................................................... 1.4. Oligo(1-alkenylenes) ............................................................................... References .............................................................................................................. Table 2. Oligo(dienes) ........................................................................................................... 2.1. Oligomers of 1,3-butadiene .................................................................... 2.2. Oligomers of lsoprene ............................................................................. 2.3. Oligomers of 1,3-butadiene Derivatives .................................................. 2.4. 1,4-oligo(alkadienes) .............................................................................. 2.5. Oligomers of Cyclopentadiene and 1,3-cyclohexadiene .........................
IV/3 IV/3 IV/3 IV/6 IV/8 IV/9 IV/9 IV/14 IV/14 IV/15 IV/16 IV/16 IV/17
This page has been reformatted by Knovel to provide easier navigation.
Contents
xxi
2.6. Oligomers of Allene ................................................................................ References .............................................................................................................. Table 3. Oligo(acetylenes) .................................................................................................... 3.1. Linear Oligomers of Acetylene ................................................................ 3.2. Polyenyne Oligomers .............................................................................. 3.3. Oligomeric α-ω-diynes ............................................................................ 3.4. Oligo(alkynes) ......................................................................................... 3.5. Cyclic Oligo(alkynes) .............................................................................. 3.6. Pericyclynes ............................................................................................ References .............................................................................................................. Table 4. Oligomers with Aliphatic Side Chains Which in Addition Contain Heteroatoms ........................................................................................................... 4.1. Oligomeric Acrylic Derivatives ................................................................ 4.2. Oligomeric Methacrylic Derivatives ......................................................... 4.3. Oligomers of β-alkyl Substituted Vinyl Derivatives ................................. 4.4. Oligo(vinyl) Derivatives ........................................................................... References .............................................................................................................. Table 5. Oligo(styrenes) ........................................................................................................ References ..............................................................................................................
IV/17 IV/18 IV/19 IV/19 IV/20 IV/20 IV/20 IV/20 IV/21 IV/21
C. Oligomers Contaning Heteroatoms in the Main Chain ........................................................ Table 6. Oligomers Containing O in the Main Chain ............................................................. 6.1. Oligo(ethers) and Oligo(acetals) .............................................................
IV/33 IV/33 IV/33
6.2.
References .................................................................................................. Oligo(carbonates) ...................................................................................
IV/43 IV/47
6.3.
References .................................................................................................. Oligo(esters) ...........................................................................................
IV/47 IV/48
6.4.
References .................................................................................................. Oligo(urethanes) .....................................................................................
IV/56 IV/58
References .................................................................................................. Table 7. Oligo(sulfides) and Oligo(selenides) ....................................................................... 7.1. Cyclic Oligo(thiomethylenes) and Oligo(Selenomethylenes) .................. 7.2. Cyclic Oligo(thioalkylenes) ...................................................................... 7.3. Substituted Cyclic(thioethylenes) ............................................................ 7.4. Cyclic Co-oligomers of Formaldehyde and Thioformaldehyde ............... 7.5. Cyclic Oligo(ether Sulfides) .................................................................... 7.6. Thiacyclophanes ..................................................................................... References .............................................................................................................. Table 8. Oligomers Containing N in the Main Chain ............................................................. 8.1. Oligo(amides) .........................................................................................
IV/61 IV/62 IV/62 IV/62 IV/62 IV/62 IV/63 IV/63 IV/63 IV/64 IV/64
References .................................................................................................. Oligo(peptides) .......................................................................................
IV/70 IV/72
References ..................................................................................................
IV/84
8.2.
This page has been reformatted by Knovel to provide easier navigation.
IV/22 IV/22 IV/24 IV/26 IV/27 IV/28 IV/30 IV/32
xxii
Contents 8.3.
Oligo(imines) ...........................................................................................
IV/88
8.4.
References .................................................................................................. Oligo(ureas) ............................................................................................
IV/89 IV/89
References ..................................................................................................
IV/90
D. Carbon Chain Oligomers Containing Main Chain Cyclic Units ............................................ Table 9. Oligo(cyclopentylenes) ............................................................................................ Table 10. Oligo(spiranes) ........................................................................................................ Table 11. Oligo(xylylenes) ...................................................................................................... 11.1. Linear Oligo(xylenes) .............................................................................. 11.2. Cyclic Oligo(xylylenes) ............................................................................ Table 12. Oligo(stilbenes) ....................................................................................................... Table 13. Oligo(benzyls) ......................................................................................................... Table 14. Oigo(2,5-dimethyl-benzyls) ..................................................................................... Table 15. Oligo(2,3,5,6-tetramethyl-benzyls) .......................................................................... Table 16. Oligo(p-phenylene Oxides) ..................................................................................... Table 17. Oligo(p-phenylene Sulfides) .................................................................................... Table 18. Oligo(p-phenoxyphenylmethanes) .......................................................................... Table 19. Oligo(diphenylmethanes) ........................................................................................ References .............................................................................................................. Table 20. Phenol-formaldehyde and Related Oligomers ........................................................ 20.1. Linear Phenol-formaldehyde Oligomers ................................................. 20.2. Oligomeric Phenol Alcohols .................................................................... 20.3. Cyclic Phenol-formaldehyde Oligomers .................................................. 20.4. Branched Phenol-formaldehyde Oligomers ............................................ 20.5. Hydroquinone Oligomers ........................................................................ References .............................................................................................................. Table 21. Oligo(phenylenes) ................................................................................................... 21.1. o-oligo(phenylenes) ................................................................................ 21.2. m-oligo(phenylenes) ............................................................................... 21.3. p-oligo(phenylenes) ................................................................................ 21.4. Oligo(p-quinones) ................................................................................... References ..............................................................................................................
IV/90 IV/90 IV/90 IV/90 IV/90 IV/90 IV/91 IV/91 IV/91 IV/91 IV/91 IV/91 IV/91 IV/91 IV/91 IV/92 IV/92 IV/93 IV/94 IV/94 IV/95 IV/95 IV/96 IV/96 IV/96 IV/97 IV/98 IV/98
E. Oligomers Containing Heterocyclic Rings in the Main Chain .............................................. Table 22. Heterocyclic Oligomers ........................................................................................... 22.1 Oligo(furan) Derivatives .......................................................................... 22.2. Oligo(thiophene) Derivatives .................................................................. 22.3. Oligo(pyrrole) Derivatives ....................................................................... 22.4. Oligo(pyridine) Derivatives ...................................................................... 22.5. Cyclic Oligo(heterocyclics) ...................................................................... References .............................................................................................................. Table 23. Oligo(saccharides) .................................................................................................. 23.1. Oligomeric Pentoses ...............................................................................
IV/99 IV/99 IV/99 IV/100 IV/100 IV/100 IV/101 IV/101 IV/102 IV/102
This page has been reformatted by Knovel to provide easier navigation.
Contents
xxiii
23.2. Oligomeric Hexoses ................................................................................ IV/102 23.3. Oligomeric Amino Sugars ....................................................................... IV/103 References .............................................................................................................. IV/104
V.
Physical Constants of Some Important Polymers
Physical Constants of Rubbery Polymers ...................................................................................................
V/1
A. Introduction ........................................................................................................................
V/1
B. Tables ................................................................................................................................ Table 1. 1,4-cis(96-98%)Poly(butadiene) ............................................................................. Table 2. Poly(butadiene-co-acrylonitrile) .............................................................................. Table 3. Poly(butadiene-co-styrene) ..................................................................................... Table 4. Poly(chloroprene)(CR Neoprene) ........................................................................... Table 5. Poly(isobutene)-co-isoprene) Butyl Rubber (IIR) .................................................... Table 6. Polyisoprene, Natural Rubber ................................................................................. Table 7. Ethylene-propylene-diene-terpolymer (EPDM) .......................................................
V/1 V/1 V/2 V/3 V/3 V/4 V/5 V/6
C. References .........................................................................................................................
V/6
Physical Constants of Poly(ethylene) ..........................................................................................................
V/9
A. Crystallographic Data and Crystallographic Modifications ..................................................
V/9
B. Molecular Parameters and Solution Properties ...................................................................
V/9
C. Crystallinity, Crystal Size and Crystallization Kinetics .........................................................
V/10
D. Equilibrium Thermodynamic Properties ..............................................................................
V/11
E. Other General Physical Properties .....................................................................................
V/12
F. Effect of Chain Branching (Short) on Physical Properties ...................................................
V/15
G. Properties of a Series of Selected Poly(ethylene) Samples ................................................
V/16
H. Properties of Typical Poly(ethylenes) .................................................................................
V/17
I.
References .........................................................................................................................
V/17
Physical Constants of Poly(propylene) ........................................................................................................
V/21
A. Crystallographic Data and Modifications of Isotactic Polypropylenes ..................................
V/21
B. Crystallographic Data and Modifications of Syndiotactic Polypropylenes ............................
V/21
C. Dimensions of Poly(propylene) Molecules ..........................................................................
V/22
D. Crystallinity and Crystallization Kinetics ..............................................................................
V/22
E. Equilibrium Thermodynamic Properties ..............................................................................
V/23
F. Other General Properties ...................................................................................................
V/24
G. Properties of Typical Mainly Isotactic Poly(propylenes) ......................................................
V/26
H. Properties of Some Commercial Poly(propylene) Grades ...................................................
V/26
I.
Mechanical Properties of Poly(propylene) Homopolymers ..................................................
V/27
J. Mechanical Properties of Poly(propylene) Random Copolymers ........................................
V/28
K. Mechanical Properties of Poly(propylene) Impact Copolymers ...........................................
V/28
L. References .........................................................................................................................
V/28
Physical Constants of Fluoropolymers ........................................................................................................
V/31
A. Introduction ........................................................................................................................
V/31
This page has been reformatted by Knovel to provide easier navigation.
xxiv
Contents B. Physical Constants of Poly(tetrafluoroethylene) ................................................................. Notes ....................................................................................................................................... Infrared Absorption Spectrum of Poly(tetrafluoroethylene) ..................................................... References ..............................................................................................................................
V/31 V/37 V/38 V/39
C. Physical Constants of Melt Processible Fluorocarbon Polymers PFA and FEP .................. Notes ....................................................................................................................................... References ..............................................................................................................................
V/41 V/44 V/45
D. Physical Constants of Modified Poly(ethylene-co-tetrafluoroethylene) ................................ Notes ....................................................................................................................................... References ..............................................................................................................................
V/45 V/48 V/48
E. Physical Constants of Poly(vinylidene Fluoride) ................................................................. Notes ....................................................................................................................................... References ..............................................................................................................................
V/48 V/51 V/52
F. Physical Constants of Amorphous Fluoropolymers ............................................................. Notes ....................................................................................................................................... References ..............................................................................................................................
V/52 V/54 V/54
G. Physical Constants of Poly(chlorotrifluoroethylene) ............................................................ Notes ....................................................................................................................................... References ..............................................................................................................................
V/55 V/57 V/58
Physical Constants of Poly(acrylonitrile) .....................................................................................................
V/59
A. Tables of Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9.
Physical Constants ............................................................................................. Crystallinity/Crystallization Behavior ....................................................................... Electric and Electronic Properties ........................................................................... Fiber Properties ...................................................................................................... Further Properties of Acrylic Fibers ........................................................................ Optical Properties ................................................................................................... Polymerization: Kinetic and Thermodynamic Data ................................................. Solubility/Solution Properties .................................................................................. Special Solid State Properties ................................................................................ Thermal and Thermodynamic Data ........................................................................
V/59 V/59 V/60 V/61 V/61 V/61 V/62 V/62 V/63 V/64
B. References .........................................................................................................................
V/64
Physical Constants of Poly(vinyl Chloride) ..................................................................................................
V/67
Physical Constants of Poly(vinyl Acetate) ...................................................................................................
V/77
Physical Constants of Poly(methyl Methacrylate) .......................................................................................
V/87
Physical Constants of Poly(styrene) ............................................................................................................
V/91
Physical Constants of Poly(oxymethylene) .................................................................................................
V/97
Physical Constants of Poly(oxyethylene-oxyterephthaloyl), (Poly(ethylene Terephthalate)) .....................
V/113
Physical Constants of Poly(oxytetramethylene-oxyterephthaloyl) and Copolymers with Tetramethylene Oxide Thermoplastic Elastomers .............................................................................
V/119
Physical Constants of Various Polyamides: Poly[imino(1-oxohexamethylene)], (Polyamide 6) Poly(iminoadipoyl-iminohexamethylene), (Polyamide 66), Poly(iminohexamethyleneiminosebacoyl), (Polyamide 610), Poly[imino(1-oxododecamethylene)], Poly(amide 12) ................
V/121
This page has been reformatted by Knovel to provide easier navigation.
Contents
xxv
Physical Constants of Cellulose ..................................................................................................................
V/135
A. Introduction ........................................................................................................................
V/135
B. Solid State Properties ......................................................................................................... Table 1. Unit Cell Dimensions ............................................................................................... Table 2. Density .................................................................................................................... Table 3. Average Ordered Fraction of Cotton and Linters Measured by Various Techniques ............................................................................................................. Table 4. Average Ordered Fraction Measured by Various Techniques ................................ Table 5. Degree of Crystallinity ............................................................................................. Table 6. Crystallite Sizes ...................................................................................................... Table 7. X-ray Orientation of Cellulose Fibers ...................................................................... Table 8. Heat Capacity ......................................................................................................... Table 9. Thermal Expansion Coefficient ............................................................................... Table 10. Other Thermal Properties ....................................................................................... Table 11. Refractive Index and Birefringence ......................................................................... Table 12. Resistivity ................................................................................................................ Table 13. Dielectric Constant and Loss Factor at 1 kHz ......................................................... Table 14. Other Electrical Properties ...................................................................................... Table 15. Crystal Elastic Modulus E1 in Chain Direction ......................................................... Table 16. Fiber Strength, Elongation and Modulus .................................................................
V/136 V/136 V/136
C. Solution Properties ............................................................................................................. Table 17. Typical Non-aqueous Cellulose Solvents ............................................................... Table 18. Other Solvents ........................................................................................................ Table 19. Viscosity - Molecular Weight Relationships ............................................................ Table 20. Second Virial Coefficients ....................................................................................... Table 21. Sedimentation and Diffusion Coefficients ............................................................... Table 22. Partial Specific Volumes, ν2 .................................................................................... Table 23. Geometrical Chain Characteristics ......................................................................... Table 24. Polymer-solvent Interaction Parameters .................................................................
V/147 V/147 V/148 V/148 V/150 V/150 V/151 V/151 V/152
D. References .........................................................................................................................
V/152
Physical and Mechanical Properties of Some Important Polymers ............................................................
V/159
A. Introduction ........................................................................................................................
V/159
B. Narrative Descriptions ........................................................................................................ 1. Multipurpose Polymers ........................................................................................... 2. Polyolefins and Barrier Polymers ............................................................................ 3. Styrenics and Engineering Thermoplastics ............................................................. 4. Elastomers ..............................................................................................................
V/159 V/159 V/160 V/160 V/161
C. Properties of Commercial Polymers ................................................................................... Table 1. Multipurpose Thermoplastics .................................................................................. Table 2. Polyolefins and Barrier Polymers ............................................................................ Table 3. Styrenics and Engineering Thermoplastics ............................................................. Table 4. Elastomers ..............................................................................................................
V/162 V/162 V/164 V/166 V/168
This page has been reformatted by Knovel to provide easier navigation.
V/136 V/137 V/137 V/138 V/140 V/140 V/141 V/141 V/144 V/144 V/145 V/146 V/146 V/147
xxvi VI.
Contents Solid State Properties
Crystallographic Data and Melting Points for Various Polymers ................................................................
VI/1
A. Introduction ........................................................................................................................ 1. Nomenclature .......................................................................................................... 2. Examples of Polymer Names .................................................................................. 2.1. Polymer Names Based on Source .......................................................... 2.2. Polymer Names Based on Structure ...................................................... References for Introduction .....................................................................................
VI/1 VI/1 VI/2 VI/2 VI/3 VI/5
B. Crystallographic Data for Various Polymers ....................................................................... Table 1. Poly(olefins) ............................................................................................................ Table 2. Poly(vinyls) and Poly(vinylidenes) .......................................................................... Table 3. Poly(aromatics) and Poly(imides) ........................................................................... Table 4. Poly(dienes) and Poly(diynes) ................................................................................ Table 5. Poly(peptides) ......................................................................................................... Table 6. Poly(amides) ........................................................................................................... Table 7. Poly(esters) ............................................................................................................. Table 8. Poly(urethanes) and Poly(ureas) ............................................................................ Table 9. Poly(ethers) ............................................................................................................. Table 10. Poly(oxides) ............................................................................................................ Table 11. Poly(sulfides) and Poly(sulfones) ............................................................................ Table 12. Poly(saccharides) ................................................................................................... Table 13. Other Polymers .......................................................................................................
VI/5 VI/6 VI/13 VI/15 VI/22 VI/26 VI/33 VI/40 VI/49 VI/51 VI/52 VI/57 VI/59 VI/64
C. Melting Points of Polymers ................................................................................................. Cellulose, see Poly (1,4-β-D-glucose) to Poly(4,4'-methylenediphenylene isophthalamide) ....................................................................................................... Poly(4,4'-methylenediphenylene octadecamethylenediurea) to Poly(p-xylylene undecanediamide) ..................................................................................................
VI/71 VI/71 VI/94
D. Appendix: Formula Index to the Tables .............................................................................. VI/113 0 to 4 ....................................................................................................................................... VI/114 5 to 30 ..................................................................................................................................... VI/133 E. References ......................................................................................................................... VI/159 1 to 839 ................................................................................................................................... VI/159 840 to 1946 ............................................................................................................................. VI/174 Glass Transition Temperatures of Polymers ............................................................................................... VI/193 A. Introduction ........................................................................................................................ VI/194 1. Example of a Property Change at Tg ...................................................................... VI/194 2. Tg: a "Non-Equilibrium" Transition ........................................................................... VI/195 B. Tg Measurement Methods .................................................................................................. VI/195 1. Data Interpretation .................................................................................................. VI/195 2. Oscillating Load Methods ........................................................................................ VI/196 C. Other Factors Affecting Tg .................................................................................................. VI/196 1. Structure ................................................................................................................. VI/196 This page has been reformatted by Knovel to provide easier navigation.
2. 3. 4. 5. 6.
Contents
xxvii
Crystallinity/Crosslinking ......................................................................................... Diluents ................................................................................................................... Molecular Weight .................................................................................................... Thermal History ....................................................................................................... Pressure ..................................................................................................................
VI/196 VI/197 VI/197 VI/197 VI/197
D. Estimation Methods for the Glass Transition Temperature ................................................. VI/197 E. Classification, Nomenclature, and Abbreviations ................................................................ VI/197 1. Naming Conventions ............................................................................................... VI/198 2. Abbreviations .......................................................................................................... VI/198 F. Tables of Glass Transition Temperatures of Polymers ....................................................... VI/198 Table 1. Main-chain Acyclic Carbon Polymers ..................................................................... VI/198 1.1 Poly(acrylics) and Poly(methacrylics) ..................................................... VI/198 1.1.1 Poly(acrylic acid) and Poly(acrylic Acid Esters) ............................... VI/198 1.1.2 Poly(acrylamides) ............................................................................. VI/201 1.1.3 Poly(methacrylic Acid) and Poly(methacrylic Acid Esters) .............. VI/201 1.1.4 Poly(methacrylamides) ..................................................................... VI/205 1.1.5 Other α- and β-substituted Poly(acrylics) and Poly(methacrylics) ............................................................................ 1.2 Poly(alkenes) .......................................................................................... 1.3 Poly(dienes) ............................................................................................ 1.4 Poly(styrenes) ......................................................................................... 1.5 Poly(vinyl Alcohol) and Poly(vinyl Ketones) ............................................ 1.6 PoIy(vinyl Esters) .................................................................................... 1.7 Poly(vinyl Ethers) and Poly(vinyl Thioethers) ......................................... 1.8 Poly(vinyl Halides) and Poly(vinyl Nitriles) .............................................. 1.9 Others ..................................................................................................... Table 2. Main-chain Carbocyclic Polymers ........................................................................... 2.1 Poly(phenylenes) .................................................................................... 2.2 Others ..................................................................................................... Table 3. Main-chain Acyclic Heteroatom Polymers .............................................................. 3.1 Main-chain –C–O–C– Polymers .............................................................
VI/205 VI/205 VI/207 VI/209 VI/212 VI/213 VI/214 VI/215 VI/216 VI/218 VI/218 VI/218 VI/219 VI/219
3.1.1 Poly(anhydrides) .............................................................................. VI/219 3.1.2 Poly(carbonates) .............................................................................. VI/219 3.1.3 Poly(esters) ...................................................................................... VI/221 3.1.4 Poly(ether Ketones) ......................................................................... VI/226 3.1.5 Poly(oxides) ...................................................................................... VI/226 3.2
3.1.6 Poly(urethanes) ................................................................................ VI/229 Main-chain O-heteroatom Polymers ....................................................... VI/231 3.2.1 Nitroso-polymers .............................................................................. VI/231 3.2.2 PoIy(siloxanes) ................................................................................. VI/231 3.2.3 Poly(sulfonates) ................................................................................ VI/233
This page has been reformatted by Knovel to provide easier navigation.
xxviii
Contents 3.3
Main-chain –C–(S)n–C- and –C–S–N– Polymers ................................... VI/233 3.3.1 Poly(sulfides) .................................................................................... VI/233 3.3.2 Poly(sulfones) and Poly(sulfonamides) ........................................... VI/234
3.4
3.3.3 Poly(thioesters) ................................................................................ VI/235 Main-chain –C–N–C Polymers ............................................................... VI/235 3.4.1 Poly(amides) .................................................................................... VI/235 3.4.2 Poly(anilines) .................................................................................... VI/241 3.4.3 Poly(imides) ...................................................................................... VI/241 3.4.4 Poly(imines) ...................................................................................... VI/241
3.4.5 Poly(ureas) ....................................................................................... 3.5 Poly(phosphazenes) ............................................................................... 3.6 Poly(silanes) and Poly(silazanes) ........................................................... Table 4. Main-chain Heterocyclic Polymers .......................................................................... 4.1 Carbohydrates ........................................................................................ 4.2 Liquid Crystals ........................................................................................ 4.3 Natural Polymers .................................................................................... 4.4 Poly(acetals) ........................................................................................... 4.5 Poly(anhydrides) ..................................................................................... 4.6 Poly(benzimidazoles) .............................................................................. 4.7 Poly(benzothiazinophenothiazines) ........................................................ 4.8 Poly(benzothiazoles) .............................................................................. 4.9 Poly(benzoxazlnes) ................................................................................ 4.10 Poly(benzoxazoles) ................................................................................ 4.11 Poly(carboranes) .................................................................................... 4.12 Poly(dibenzofurans) ................................................................................ 4.13 Poly(dioxoisoindolines) ........................................................................... 4.14 Poly(fluoresceins) ................................................................................... 4.15 Poly(furan Tetracarboxylic Acid Diimides) .............................................. 4.16 Poly(oxabicyclononanes) ........................................................................ 4.17 Poly(oxadiazoles) ................................................................................... 4.18 Poly(oxindoles) ....................................................................................... 4.19 Poly(oxoisoindolines) .............................................................................. 4.20 Poly(phthalazines) .................................................................................. 4.21 Poly(phthalides) ...................................................................................... 4.22 Poly(piperazines) .................................................................................... 4.23 Poly(piperidines) ..................................................................................... 4.24 Poly(pyrazinoquinoxalines) ..................................................................... 4.25 Poly(pyrazoles) ....................................................................................... 4.26 Poly(pyridazines) .................................................................................... 4.27 Poly(pyridines) ........................................................................................ 4.28 Poly(pyromellitimides) ............................................................................. 4.29 Poly(pyrrolidines) ....................................................................................
This page has been reformatted by Knovel to provide easier navigation.
VI/242 VI/242 VI/243 VI/243 VI/243 VI/244 VI/244 VI/244 VI/244 VI/245 VI/245 VI/245 VI/245 VI/245 VI/245 VI/246 VI/246 VI/247 VI/247 VI/247 VI/248 VI/248 VI/248 VI/248 VI/248 VI/248 VI/249 VI/249 VI/249 VI/249 VI/249 VI/249 VI/250
Contents 4.30 Poly(quinones) ........................................................................................ 4.31 Poly(quinoxalines) .................................................................................. 4.32 Poly(triazines) ......................................................................................... 4.33 Poly(triazoles) ......................................................................................... Table 5. Copolymers .............................................................................................................
xxix VI/250 VI/250 VI/252 VI/252 VI/252
G. References ......................................................................................................................... VI/253 1 to 953 ................................................................................................................................... VI/253 954 to 1560 ............................................................................................................................. VI/268 Rates of Crystallization of Polymers ............................................................................................................ VI/279 A. Introduction ........................................................................................................................ 1. Background ............................................................................................................. 1.1 General Remarks .................................................................................... 1.2 Background ............................................................................................. 1.3 Morphological Outline/Growth Features ................................................. 2. General Principles and Techniques Involved in Crystallization Rate Studies ......... 2.1 Kinetics of Bulk Transformations ............................................................ 2.2 Thermodynamic Crystallization Models .................................................. 2.3 Growth Kinetics of Lamellar Structures: Crystals and Spherulites ......... 3. Other Significant Aspects of Crystallization ............................................................ 3.1 Nonisothermal Crystallization ................................................................. 3.2 Crystallization of Blends ......................................................................... 3.3 Solvent and Pressure-induced Crystallization ........................................ 3.4 Crystallization of Mesophases ................................................................ 3.5 Flow Induced Crystallization ................................................................... 3.6 Epitaxial Crystallization ........................................................................... 3.7 Orientational Crystallization .................................................................... 3.8 Crystallization of Copolymers ................................................................. 3.9 Computer Simulations ............................................................................
VI/280 VI/280 VI/280 VI/280 VI/281 VI/282 VI/282 VI/284 VI/284 VI/286 VI/286 VI/287 VI/288 VI/288 VI/289 VI/289 VI/289 VI/290 VI/290
B. Tables of Rates of Crystallization of Various Polymers ....................................................... VI/291 1. Rates of Crystal Growth .......................................................................................... VI/291 Table 1. Poly(alkenes), Poly(dienes), Poly(vinyls) ................................................ VI/291 1.1
2.
Homopolymer Melts ......................................................................... VI/291
1.2 Solutions ........................................................................................... Table 2. Poly(oxides) ............................................................................................ Rates of Radial Spherulitic Growth ......................................................................... Table 3. Poly(dienes), Poly(alkenes), Poly(vinyls) ................................................ 3.1
VI/296 VI/300 VI/304 VI/304
Homopolymer Melts ......................................................................... VI/304
3.2 Blends ............................................................................................... VI/312 Table 4. Poly(oxides) ............................................................................................ VI/315 4.1
Homopolymer Melts ......................................................................... VI/315
4.2
Complexes ....................................................................................... VI/318
4.3
Blends ............................................................................................... VI/319
This page has been reformatted by Knovel to provide easier navigation.
xxx
Contents Table 5. Poly(carbonates) ..................................................................................... VI/326 Table 6. Poly(esters) ............................................................................................. VI/327 6.1
Homopolymer Melts ......................................................................... VI/327
6.2
Blends ............................................................................................... VI/329
6.3 Copolymers ...................................................................................... VI/331 Table 7. Poly(amides) ........................................................................................... VI/331 Table 8. Poly(siloxanes) ....................................................................................... VI/334 8.1
Homopolymer Melts ......................................................................... VI/334
8.2 Copolymers ...................................................................................... VI/334 Table 9. Others ..................................................................................................... VI/336 9.1 3.
Homopolymers Melts ....................................................................... VI/336
9.2 lonomers ........................................................................................... VI/340 Rates of Bulk Crystallization (Avrami Constants) ................................................... VI/341 Table 10. Poly(dienes), Poly(alkenes), Poly(vinyls) ................................................ VI/341 10.1 Melts and Solutions .......................................................................... VI/341 10.2 Blends and Copolymers ................................................................... VI/353 Table 11. Poly(oxides) ............................................................................................ VI/365 11.1 Homopolymer Melts ......................................................................... VI/365 11.2 Blends ............................................................................................... VI/371 Table 12. Poly(carbonates) ..................................................................................... VI/372 Table 13. Poly(esters) ............................................................................................. VI/373 13.1 Homopolymer melts ......................................................................... VI/373 13.2 Blends and Copolymers ................................................................... VI/377 Table 14. Poly(amides) ........................................................................................... VI/379 14.1 Blends of Poly(amides) .................................................................... VI/382 Table 15. Poly(urethanes) ...................................................................................... VI/383 Table 16. Table 17. Table 18. Table 19.
15.1 Blends of Poly(urethanes) ................................................................ Poly(siloxanes) ....................................................................................... Poly(phosphazenes) ............................................................................... Others ..................................................................................................... Composites .............................................................................................
VI/383 VI/384 VI/384 VI/385 VI/389
19.1 Composites of Blends ...................................................................... VI/390 C. References ......................................................................................................................... VI/391 Isomorphous Polymers Pairs ....................................................................................................................... VI/399 A. Introduction ........................................................................................................................ VI/399 B. Techniques ......................................................................................................................... VI/400 C. Tables of lsomorphous Pairs of Monomer Units ................................................................. Table 1. lsomorphous Units Within the Same Macromolecules (Copolymers) ..................... 1.1 lsomorphous Units with Different Chemical Constitution ........................ 1.2 lsomorphous Units with Different Configurations and/or with Headto-head, Head-to-tail Constitutional Disorder ..........................................
This page has been reformatted by Knovel to provide easier navigation.
VI/401 VI/401 VI/401 VI/405
Contents
xxxi
Table 2. Isomorphism of Macromolecules ............................................................................ VI/405 D. References ......................................................................................................................... VI/406 Miscible Polymers ........................................................................................................................................ VI/409 A. Definition of Miscibility ........................................................................................................ VI/409 B. Data Collection ................................................................................................................... VI/410 C. Arrangement of the Tables ................................................................................................. VI/410 D. Tables ................................................................................................................................ Table 1. Chemically Dissimilar Polymer Pairs Miscible in the Amorphous State at Room Temperature ................................................................................................. Table 2. Polymer Pairs Containing One Monomer in Common, Miscible in the Amorphous State at Room Temperature ................................................................ Table 3. Chemically Dissimilar Polymer Triads (and Tetrads) Miscible in the Amorphous State at Room Temperature ................................................................ Table 4. Polymer Pairs Miscible in the Amorphous State at Room Temperature; Molecular Weight Dependence Investigated .......................................................... Table 5. Polymer Pairs That Appear to Have High Temperature Miscibility Although Immiscible at or Below Room Temperature ............................................................ Table 6. Polymer Pairs Miscible at Room Temperature That Appear to Have a Lower Critical Solution Temperature (LCST) Above Room Temperature ......................... Table 7. Polymer Pairs That Appear to Have Both a Lower Critical Solution Temperature and a Upper Critical Solution Temperature ....................................... Table 8. Polymer Pairs That Cocrystallize ............................................................................
VI/411 VI/411 VI/444 VI/448 VI/450 VI/452 VI/454 VI/458 VI/459
E. References ......................................................................................................................... VI/461 Heat Capacities of High Polymers ............................................................................................................... VI/483 A. Introduction ........................................................................................................................ VI/483 B. Experimental Curves .......................................................................................................... VI/485 C. Data Tables for Solids and Liquids ..................................................................................... Table 1. cis-1,4-Poly(butadiene) (PBDc) .............................................................................. Table 2. trans-1,4-Poly(butadiene) (PBDt) ............................................................................ Table 3. cis-1,4-Poly(2-methylbutadiene) (PMBD) ............................................................... Table 4. Poly(ethylene) (PE) ................................................................................................. Table 5. Poly(propylene) (PP) ............................................................................................... Table 6. PoIy(1-butene) (PB) ................................................................................................ Table 7. PoIy(1-pentene) (PPE) ............................................................................................ Table 8. PoIy(1-hexene) (PHE) ............................................................................................. Table 9. Poly(isobutene) (PIB) .............................................................................................. Table 10. Poly(4-methyl-1-pentene) (P4MPE) ........................................................................ Table 11. Poly(tetrafluoroethylene) (PTFE) ............................................................................ Table 12. Poly(vinyl Fluoride) (PVF) ....................................................................................... Table 13. Poly(vinylidene Fluoride) (PVF2) ............................................................................ Table 14. Poly(trifluoroethylene) (P3FE) ................................................................................. Table 15. Poly(vinyl Chloride) (PVC) ......................................................................................
This page has been reformatted by Knovel to provide easier navigation.
VI/486 VI/486 VI/487 VI/488 VI/488 VI/489 VI/490 VI/490 VI/491 VI/492 VI/492 VI/493 VI/494 VI/494 VI/495 VI/496
xxxii
Contents Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50.
Poly(vinylidene Chloride) (PVC2) ........................................................................... Poly(chlorotrifluoroethylene) (PC3FE) .................................................................... Poly(vinyl Alcohol) (PVA) ........................................................................................ Poly(vinyl Acetate) (PVAc) ...................................................................................... Poly(styrene) (PS) ................................................................................................... Poly(α-methylstyrene) (PMS) .................................................................................. Poly(vinyl Benzoate) (PVBZ) .................................................................................. Poly(methyl Acrylate) (PMA) ................................................................................... Poly(ethyl Acrylate) (PEA) ...................................................................................... Poly(n-butyl Acrylate) (PnBA) ................................................................................. Poly(iso-butyl Acrylate) (PIBA) ................................................................................ Poly(methacrylic Acid) (PMAA) ............................................................................... Poly(methyl Methacrylate) (PMMA) ........................................................................ Poly(ethyl Methacrylate) (PEMA) ............................................................................ Poly(n-butyl Methacrylate) (PnBMA) ....................................................................... Poly(iso-butyl Methacrylate) (PIBMA) ..................................................................... Poly(hexyl Methacrylate) (PHMA) ........................................................................... Poly(acrylonitrile) (PAN) .......................................................................................... Poly(methacrylamide) (PMAM) ............................................................................... Poly(oxy-1-oxoethylene) (PCL) ............................................................................... Poly(oxy-1-oxohexamethylene) (PCL) .................................................................... Poly(oxyethyleneoxyterephthaloyl) (PET) ............................................................... Poly(imino-(1-oxohexamethylene)) (Nylon 6) ......................................................... Poly(iminoadipoyliminohexamethylene) (Nylon 66) ................................................ Poly(iminoadipoyliminododecamethylene) (Nylon 612) .......................................... Poly(oxymethylene) (POM) ..................................................................................... Poly(oxyethylene) ................................................................................................... Poly(oxytrimethylene) (PO3M) ................................................................................ Poly(oxytetramethylene) (PO4M) ............................................................................ Poly(oxypropylene) (POPr) ..................................................................................... Poly(oxy-1,4-phenylene) (POPh) ............................................................................ Poly(oxy-2,6-dimethyl-1,4-phenylene) (PPO) ......................................................... Poly(oxy-2,6-diphenyl-1,4-phenylene) (POPPO) .................................................... Poly(oxycarbonyloxy-1,4-phenylene-isopropylidene- 1,4-phenylene) (PC) ............ Trigonal Selenium (SeT) .........................................................................................
VI/496 VI/497 VI/498 VI/498 VI/499 VI/500 VI/500 VI/501 VI/502 VI/502 VI/503 VI/504 VI/504 VI/505 VI/506 VI/506 VI/507 VI/508 VI/508 VI/509 VI/510 VI/510 VI/511 VI/512 VI/512 VI/513 VI/514 VI/514 VI/515 VI/515 VI/516 VI/517 VI/517 VI/518 VI/519
D. References ......................................................................................................................... VI/519 Surface and Interfacial Tensions of Polymers, Oligomers, Plasticizers, and Organic Pigments ............... VI/521 A. Introduction ........................................................................................................................ 1. Definition ................................................................................................................. 2. Temperature Dependence ...................................................................................... 3. Macleod's Relation .................................................................................................. 4. Molecular Weight Dependence ............................................................................... 5. Effects of Glass and Crystal-melt Transitions ......................................................... This page has been reformatted by Knovel to provide easier navigation.
VI/521 VI/521 VI/522 VI/522 VI/522 VI/522
Contents 6. 7.
xxxiii
Effect of Surface Chemical Constitution ................................................................. VI/523 Dispersion (Nonpolar) and Polar Components ....................................................... VI/523
B. Tables ................................................................................................................................ VI/523 Table 1. Surface Chemical Constitution and Surface Tension ............................. VI/524 1.1
Hydrocarbon Surfaces ..................................................................... VI/524
1.2
Fluorocarbon Surfaces ..................................................................... VI/524
1.3
Chlorocarbon Surfaces .................................................................... VI/524
1.4 Silicane Surfaces .............................................................................. VI/524 Table 2. Surface Tension, Polarity, and Macleod's Exponent for Amorphous Surfaces .............................................................................. VI/524 2.1
Hydrocarbon Polymers ..................................................................... VI/524
2.2
Styrene Polymers ............................................................................. VI/525
2.3
Halogenated Hydrocarbon Polymers ............................................... VI/525
2.4
Vinyl Polymers - Esters .................................................................... VI/526
2.5
Vinyl Polymers - Others ................................................................... VI/526
2.6
Acrylic Polymers - Nonfluorinated .................................................... VI/526
2.7
Acrylic Polymers - Fluorinated ......................................................... VI/527
2.8
Methacrylic Polymers - Nonfluorinated ............................................ VI/527
2.9
Methacrylic Polymers - Fluorinated ................................................. VI/527
2.10 Methacrylic Hydrogels ...................................................................... VI/527 2.11 Poly(ethers) ...................................................................................... VI/528 2.12 Poly(ether) Copolymers ................................................................... VI/529 2.13 Poly(esters) ...................................................................................... VI/529 2.14 Poly(carbonates) .............................................................................. VI/530 2.15 Poly(sulfones) ................................................................................... VI/530 2.16 Phenoxy Resins ............................................................................... VI/530 2.17 Epoxy Resins ................................................................................... VI/530 2.18 Poly(amides) .................................................................................... VI/530 2.19 Poly(imides) ...................................................................................... VI/531 2.20 Poly(imines) ...................................................................................... VI/531 2.21 Poly(urethanes) ................................................................................ VI/531 2.22 Poly(siloxanes) ................................................................................. VI/531 2.23 Organosilanes - Hydrolyzed and Condensed Films ........................ VI/532 2.24 Cellulosics ........................................................................................ VI/533 2.25 Poly(peptides) .................................................................................. VI/533 2.26 Miscellaneous ................................................................................... VI/533 Table 3. lnterfacial Tension for Amorphous Interfaces ......................................... VI/535 3.1
Hydrocarbon Polymers vs. Others ................................................... VI/535
3.2
Styrene Polymers vs. Others ........................................................... VI/537
3.3
Vinyl Polymers vs. Others ................................................................ VI/537
3.4
Acrylic Polymers vs. Others ............................................................. VI/538
This page has been reformatted by Knovel to provide easier navigation.
xxxiv
Contents 3.5
Methacrylic Polymers vs. Others ..................................................... VI/538
3.6
Poly(ethers) vs. Others .................................................................... VI/539
3.7
Poly(esters) vs. Others ..................................................................... VI/539
3.8
Poly(amides) vs. Others ................................................................... VI/539
3.9
Epoxy Resins vs. Others .................................................................. VI/539
3.10 Poly(Siloxanes) vs. Others ............................................................... VI/539 3.11 Miscellaneous ................................................................................... VI/540 C. References ......................................................................................................................... VI/540 Permeability and Diffusion Data .................................................................................................................. VI/543 A. Introduction ........................................................................................................................ VI/543 B. Conversion Factors for Various Units of the Permeability Coefficient ................................. VI/545 C. Tables ................................................................................................................................ Table 1. Permeability Coefficients, Diffusion Coefficients, and Solubility Coefficients of Polymers ............................................................................................................. 1.1 Poly(alkanes) .......................................................................................... 1.2 Poly(styrenes) ......................................................................................... 1.3 Poly(methacrylates) ................................................................................ 1.4 Poly(nitriles) ............................................................................................ 1.5 Poly(vinyls) ............................................................................................. 1.6 Fluorine Containing Polymers ................................................................. 1.7 Poly(dienes) ............................................................................................ 1.8 Poly(xylylenes) ........................................................................................ 1.9 Poly(oxides) ............................................................................................ 1.10 Poly(esters), Poly(carbonates) ............................................................... 1.11 PoIy(siloxanes) ....................................................................................... 1.12 Poly(amides), Poly(imides) ..................................................................... 1.13 Poly(urethanes) ...................................................................................... 1.14 Poly(sulfones) ......................................................................................... 1.15 Poly(aryl Ether Ether Ketone) ................................................................. 1.16 Cellulose and Derivatives ....................................................................... Table 2. Permeability Coefficients of Six Different Fluorinated Hydrocarbons through Polymers ................................................................................................................. Table 3. Permeability Coefficients of Various Organic Compounds through Lowdensity Poly(ethylene) ............................................................................................. Table 4. Permeability Coefficients and Diffusion Coefficients of an Equimolar Mixture of Various Compounds (1.25 M Each) through High-density Poly(ethylene) .......... Table 5. Permeability Coefficients of Various Organic Compounds through Highdensity Poly(ethylene) and Poly(propylene) ........................................................... Table 6. Permeability Coefficients of Various Organic Compounds through Irradiation Crosslinked Low-density Poly(ethylene) ................................................................. Table 7. Permeability Coefficients of Cases through Irradiation Crosslinked Lowdensity Poly(ethylene) .............................................................................................
This page has been reformatted by Knovel to provide easier navigation.
VI/545 VI/545 VI/545 VI/547 VI/548 VI/549 VI/549 VI/552 VI/553 VI/555 VI/555 VI/555 VI/558 VI/559 VI/560 VI/560 VI/561 VI/561 VI/562 VI/562 VI/564 VI/564 VI/564 VI/565
Contents
xxxv
Table 8. Permeability Coefficients of Chemically Crosslinked Poly(oxypropylene) .............. Table 9. Permeability Coefficients of Gases through Various Elastomers ............................ Table 10. Permeability Coefficients of Gases through Various Commercial Elastomers at 35°C. ................................................................................................................... Table 11. Permeability, Diffusion and Solubility Coefficients of Alkanes through Santoprene™ (Blend of Ethylene-propylene Copolymer and lsotactic Poly(propylene)) ...................................................................................................... Table 12. Permeability, Diffusion and Solubility Coefficients of Esters through Poly(epichlorohydrin) (ECO) ...................................................................................
VI/565 VI/566 VI/566
VI/566 VI/567
D. References ......................................................................................................................... VI/568 Refractive Indices of Polymers .................................................................................................................... VI/571 A. Introduction ........................................................................................................................ VI/571 B. Molar Refraction ................................................................................................................. VI/571 C. Refractive Indices of Heterogeneous Polymers .................................................................. VI/572 D. Optical Anisotropy .............................................................................................................. VI/572 E. Applications ........................................................................................................................ Table 1. Intrinsic Optical Properties of Selected Polymers ................................................... Table 2. Average Refractive Indices of Polymers (in Order of Increasing n) ........................ Table 3. Average Refractive Indices of Polymers (in Alphabetical Order) ............................
VI/573 VI/573 VI/574 VI/578
F. References ......................................................................................................................... VI/582 Radiation Resistance of Plastics and Elastomers ....................................................................................... VI/583 A. Introduction ........................................................................................................................ 1. General Comments ................................................................................................. 2. Criterion for Radiation Resistance .......................................................................... 3. Factors of Influence and Their Consideration in Tables ......................................... 3.1 Type of Polymer and Formulation ........................................................... 3.2 Type of Radiation and Dosimetry ........................................................... 3.3 Dose Rate and the Atmosphere ............................................................. 3.4 Temperature ........................................................................................... 3.5 Other Stresses ........................................................................................
VI/583 VI/583 VI/583 VI/583 VI/583 VI/584 VI/584 VI/584 VI/584
B. List of Symbols Used .......................................................................................................... VI/584 C. Tables of Table 1. Table 2. Table 3. Table 4.
Radiation Resistance .......................................................................................... Thermoplastics ........................................................................................................ Elastomers .............................................................................................................. Aromatic Polymers .................................................................................................. Organic Composite Materials ..................................................................................
VI/585 VI/585 VI/586 VI/587 VI/588
D. References ......................................................................................................................... VI/588 PVT Relationships and Equations of State of Polymers ............................................................................. VI/591 A. Introduction ........................................................................................................................ VI/591 B. Isothermal Compressibility Equations ................................................................................. VI/592 C. Empirical or Semiempirical 3-Parameter Equations of State ............................................... VI/593 D. Lattice or Quasi Lattice Models .......................................................................................... VI/593 This page has been reformatted by Knovel to provide easier navigation.
xxxvi
Contents E. Continuum Models .............................................................................................................. VI/594 F. Tables ................................................................................................................................ Table 1. Zero Pressure Volume V0(T) and Bulk Modulus B0(T) ............................................ Table 2. Abbreviations of Polymer Names and the Experimental TemperaturePressure Range for Polymer Liquids ...................................................................... Table 3. PVT Properties of Other Polymers .......................................................................... Table 4. Characteristic Parameters for the Sanchez-cho Equation of State ......................... Table 5. Characteristic Parameters for the Hartmann-haque Equation of State ................... Table 6. Characteristic Parameters for the Simple Cell Model Equation of State ................. Table 7. Characteristic Parameters for the Flory, Orwoll and Vrij Equation of State ............ Table 8. Characteristic Parameters for the Simha-somcynsky Equation of State ................ Table 9. Characteristic Parameters for the Sanchez-lacombe Equation of State ................. Table 10. Characteristic Parameters for the AHS + vdW Equation of State ...........................
VI/595 VI/595 VI/596 VI/597 VI/597 VI/597 VI/598 VI/599 VI/599 VI/600 VI/600
G. References ......................................................................................................................... VI/601
VII. Solution Properties Viscosity – Molecular Weight Relationships and Unperturbed Dimensions of Linear Chain Molecules ............................................................................................................................................
VII/1
A. Introduction ........................................................................................................................ 1. The Viscosity - Molecular Weight Relationship ....................................................... 2. Unperturbed Dimensions of Linear Chain Molecules ..............................................
VII/2 VII/2 VII/4
B. Effect of Molecular Weight Distribution on the Viscosity Constant K ...................................
VII/5
a
C. Tables of Viscosity - Molecular Weight Relationships, [η] = KM ........................................ Table 1. Main-chain Acyclic Carbon Polymers ..................................................................... 1.1 Poly(dienes) ............................................................................................ 1.2 Poly(alkenes), Poly(acetylenes) ............................................................. 1.3 Poly(acrylic Acid) and Derivatives .......................................................... 1.4 Poly(α-substituted Acrylic Acid) and Derivatives .................................... 1.5 Poly(vinyl Ethers) .................................................................................... 1.6 Poly(vinyl Alcohol), Poly(vinyl Halides) ................................................... 1.7 Poly(vinyI Esters) .................................................................................... 1.8 Poly(styrene) and Derivatives ................................................................. 1.9 Other Compounds .................................................................................. 1.10 Copolymers ............................................................................................. Table 2. Main-chain Carbocyclic Polymers ........................................................................... Table 3. Main-chain Heteroatom Polymers ........................................................................... 3.1 Poly(oxides), Poly(ethers) ....................................................................... 3.2 Poly(esters), Poly(carbonates) ............................................................... 3.3 Poly(amides) ........................................................................................... 3.4 Poly(amino Acids) ................................................................................... 3.5 Poly(ureas), Poly(urethanes), Poly(imines) ............................................ 3.6 Poly(sulfides) .......................................................................................... 3.7 Poly(phosphates) .................................................................................... This page has been reformatted by Knovel to provide easier navigation.
VII/5 VII/5 VII/5 VII/7 VII/10 VII/13 VII/17 VII/17 VII/18 VII/19 VII/24 VII/27 VII/31 VII/32 VII/32 VII/34 VII/36 VII/38 VII/39 VII/39 VII/39
Contents
xxxvii
3.8 Poly(siloxanes), Poly(silsesquioxanes) ................................................... 3.9 Poly(heterocyclics) .................................................................................. 3.10 Copolymers (Maleic Anhydride, Sulfones) .............................................. 3.11 Other Compounds .................................................................................. Table 4. Cellulose and Derivatives, Poly(saccharides) ......................................................... Table 5. Miscellaneous .........................................................................................................
VII/40 VII/41 VII/42 VII/42 VII/43 VII/46
D. Calculated Unperturbed Dimensions of Freely Rotating Chains .........................................
VII/46
E. Unperturbed Dimensions of Linear Polymer Molecules ...................................................... Table 6. Main-chain Acyclic Carbon Polymers ..................................................................... 6.1 Poly(dienes) ............................................................................................ 6.2 Poly(alkenes), Poly(acetylenes) ............................................................. 6.3 Poly(acrylic Acid) and Derivatives .......................................................... 6.4 Poly(α-substituted Acrylic Acid) and Derivatives .................................... 6.5 Poly(vinyl Ethers), Poly(vinyl Alcohol), Poly(vinyl Esters), Poly(vinyl Halides) .................................................................................. 6.6 Poly(styrene) and Derivatives ................................................................. 6.7 Other Compounds .................................................................................. 6.8 Copolymers ............................................................................................. Table 7. Main-chain Carbocyclic Polymers ........................................................................... Table 8. Main-chain Heteroatom Polymers ........................................................................... 8.1 Poly(oxides), Poly(ethers) ....................................................................... 8.2 Poly(esters), Poly(carbonates) ............................................................... 8.3 Poly(amides) ........................................................................................... 8.4 Poly(amino Acids) ................................................................................... 8.5 Poly(urethanes) ...................................................................................... 8.6 Poly(sulfides) .......................................................................................... 8.7 Poly(phosphates) .................................................................................... 8.8 Poly(siloxanes), Poly(silsesquioxanes), Poly(silmethylenes) ................. 8.9 Poly(heterocyclics) .................................................................................. 8.10 Copolymers (Maleic Anhydride, Sulfones, Siloxanes) ............................ 8.11 Other Compounds .................................................................................. Table 9. Cellulose and Derivatives, Poly(saccharides) .........................................................
VII/47 VII/47 VII/47 VII/48 VII/49 VII/50
F. References .........................................................................................................................
VII/68
Sedimentation Coefficients, Diffusion Coefficients, Partial Specific Volumes, Frictional Ratios, and Second Virial Coefficients of Polymers in Solution ............................................................................
VII/85
A. Sedimentation Coefficients, Diffusion Coefficients, Partial Specific Volumes, and Frictional Ratios of Polymers in Solution ............................................................................ 1. Introduction ............................................................................................................. 1.1. Sedimentation Coefficient ....................................................................... 1.2. Diffusion Coefficient ................................................................................ 1.3. Molar Mass Averages Determined from Sedimentation and Diffusion Coefficients .............................................................................. 1.4. Partial Specific Volumes ......................................................................... This page has been reformatted by Knovel to provide easier navigation.
VII/53 VII/54 VII/56 VII/58 VII/60 VII/60 VII/60 VII/61 VII/63 VII/63 VII/63 VII/63 VII/64 VII/64 VII/64 VII/65 VII/66 VII/66
VII/86 VII/86 VII/86 VII/87 VII/89 VII/89
xxxviii
Contents 1.5. 1.6. 1.7.
Frictional Ratios ...................................................................................... List of Symbols and Abbreviations .......................................................... Miscellaneous .........................................................................................
B. Tables of Sedimentation Coefficients, Diffusion Coefficients, Partial Specific Volumes, and Frictional Ratios of Polymers in Solution ...................................................... Table 1. Poly(alkenes) .......................................................................................................... Table 2. Poly(dienes) ............................................................................................................ Table 3. Acrylic Polymers ..................................................................................................... Table 4. Vinyl Polymers ........................................................................................................ Table 5. Styrene Polymers .................................................................................................... Table 6. (O, C)-Heterochain Polymers [Poly(ethers), Poly(esters), Poly(carbonates)] ......... Table 7. (N, C)- and (O, N, C)-Heterochain Polymers [Poly(amides), Poly(ureas), Poly(urethanes)] ...................................................................................................... Table 8. Other Synthetic Polymers ....................................................................................... Table 9. Inorganic Polymers ................................................................................................. Table 10. Poly(saccharides) ................................................................................................... Table 11. Other Biopolymers [Proteins, Poly(nucleotides)] ....................................................
VII/89 VII/90 VII/91 VII/92 VII/92 VII/94 VII/96 VII/105 VII/109 VII/134 VII/137 VII/140 VII/141 VII/144 VII/157
C. Second Virial Coefficients of Polymers in Solution .............................................................. 1. Introduction ............................................................................................................. 1.1. Colligative Properties .............................................................................. 1.2. Scattering Methods ................................................................................. 1.3. Sedimentation Velocity ........................................................................... 1.4. Sedimentation Equilibrium ...................................................................... 1.5. p–V–T Measurements ............................................................................ 1.6. Averages of the Second Virial Coefficient .............................................. 1.7. Second Virial Coefficient – Molar Mass Relationship ............................. 1.8. Temperature Dependence, Pressure Dependence ................................ 1.9. Abbreviations .......................................................................................... 1.10. Miscellaneous .........................................................................................
VII/163 VII/163 VII/163 VII/163 VII/163 VII/164 VII/164 VII/164 VII/164 VII/164 VII/164 VII/164
D. Tables of Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18.
VII/165 VII/165 VII/168 VII/170 VII/177 VII/179 VII/188
Table 19. Table 20. Table 21. Table 22.
Second Virial Coefficients of Polymers in Solution .............................................. Poly(alkenes), Poly(alkynes) ................................................................................... Poly(dienes) ............................................................................................................ Poly(acrylics) ........................................................................................................... Poly(vlnyls) .............................................................................................................. Poly(styrenes) ......................................................................................................... (O, C)-heterochain Polymers [Poly(ethers), Poly(esters), Poly(carbonates)] ......... (N, C)- and (O, N, C)-heterochain Polymers [Poly(amides), Poly(ureas), Poly(urethanes)] ...................................................................................................... Other Synthetic Polymers ....................................................................................... Inorganic Polymers ................................................................................................. Poly(saccharides) ................................................................................................... Other Biopolymers [Proteins, Poly(nucleotides)] ....................................................
VII/191 VII/192 VII/192 VII/194 VII/196
E. References ......................................................................................................................... VII/198 This page has been reformatted by Knovel to provide easier navigation.
Contents
xxxix
Polymolecularity Correction Factors ............................................................................................................ VII/215 A. List of Symbols Used .......................................................................................................... VII/216 B. Introduction ........................................................................................................................ VII/217 Table 1 .................................................................................................................................... VII/223 C. Polymolecularity Correction Factors for Intrinsic Viscosity Versus Molecular Weight Relationship ....................................................................................................................... Table 2 .................................................................................................................................... Table 3 .................................................................................................................................... Table 4 .................................................................................................................................... Table 5 .................................................................................................................................... Table 6 .................................................................................................................................... Table 7 .................................................................................................................................... Table 8 .................................................................................................................................... Table 9 .................................................................................................................................... Table 10 .................................................................................................................................. Table 11 .................................................................................................................................. Table 12 .................................................................................................................................. Table 13 .................................................................................................................................. Table 14 .................................................................................................................................. Table 15 .................................................................................................................................. Table 16 .................................................................................................................................. Table 17 .................................................................................................................................. Table 18 .................................................................................................................................. Table 19 ..................................................................................................................................
VII/223 VII/223 VII/223 VII/223 VII/224 VII/224 VII/224 VII/224 VII/224 VII/225 VII/225 VII/225 VII/225 VII/225 VII/226 VII/226 VII/226 VII/226 VII/226
D. Polymolecularity Correction Factors for Sedimentation Coefficient Versus Molecular Weight Relationship ........................................................................................................... Table 20 .................................................................................................................................. Table 21 .................................................................................................................................. Table 22 .................................................................................................................................. Table 23 .................................................................................................................................. Table 24 .................................................................................................................................. Table 25 .................................................................................................................................. Table 26 .................................................................................................................................. Table 27 ..................................................................................................................................
VII/227 VII/227 VII/227 VII/227 VII/227 VII/228 VII/228 VII/228 VII/229
E. Polymolecularity Correction Factors for Diffusion Coefficient Versus Molecular Weight Relationship ........................................................................................................... Table 28 .................................................................................................................................. Table 29 .................................................................................................................................. Table 30 .................................................................................................................................. Table 31 .................................................................................................................................. Table 32 .................................................................................................................................. Table 33 .................................................................................................................................. Table 34 ..................................................................................................................................
VII/229 VII/229 VII/229 VII/229 VII/230 VII/230 VII/230 VII/230
This page has been reformatted by Knovel to provide easier navigation.
xl
Contents Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41
.................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. ..................................................................................................................................
VII/230 VII/231 VII/231 VII/231 VII/231 VII/232 VII/232
F. Polymolecularity Correction Factors for Mean-Square Radius of Gyration versus Molecular Weight Relationship ........................................................................................... Table 42 .................................................................................................................................. Table 43 .................................................................................................................................. Table 44 .................................................................................................................................. Table 45 .................................................................................................................................. Table 46 .................................................................................................................................. Table 47 ..................................................................................................................................
VII/232 VII/232 VII/233 VII/233 VII/233 VII/234 VII/234
G. Polymolecularity Correction Factors for Second Virial Coefficient Versus Molecular Weight Relationship ........................................................................................................... Table 48 .................................................................................................................................. Table 49 .................................................................................................................................. Table 50 .................................................................................................................................. Table 51 ..................................................................................................................................
VII/234 VII/234 VII/235 VII/235 VII/235
H. Polymolecularity Correction Factors for the Determination of the Dimensions of Macromolecules ................................................................................................................. 1. Fox-flory Relationship ............................................................................................. Table 52 .................................................................................................................. Table 53 .................................................................................................................. Table 54 .................................................................................................................. Table 55 .................................................................................................................. 2. Interconversion of Different Averages of the Mean-square Radius of Gyration .................................................................................................................. Table 56 .................................................................................................................. Table 57 .................................................................................................................. Table 58 .................................................................................................................. Table 59 .................................................................................................................. 3. Interconversion of Different Averages of the Mean-square End-to-end Distance .................................................................................................................. Table 60 .................................................................................................................. Table 61 .................................................................................................................. Table 62 .................................................................................................................. Table 63 .................................................................................................................. Table 64 .................................................................................................................. Table 65 ..................................................................................................................
This page has been reformatted by Knovel to provide easier navigation.
VII/235 VII/235 VII/235 VII/236 VII/236 VII/236 VII/236 VII/236 VII/237 VII/237 VII/238 VII/238 VII/238 VII/238 VII/239 VII/239 VII/239 VII/239
Contents 4.
I.
xli
The Effect of Polymolecularity on the Radius of Gyration of Stiff Polymer Chains ..................................................................................................................... VII/240 Table 66 .................................................................................................................. VII/240 Table 67 .................................................................................................................. VII/240
Polymolecularity Correction Factors for the Determination of Unperturbed Dimensions of Macromolecules .......................................................................................... 1. Burchard-stockmayer-fixman Procedure ................................................................ Table 68 .................................................................................................................. Table 69 .................................................................................................................. Table 70 .................................................................................................................. 2. Cowie-bywater Procedure ....................................................................................... Table 71 .................................................................................................................. Table 72 .................................................................................................................. Table 73 .................................................................................................................. Table 74 .................................................................................................................. 3. Baumann-stockmayer-fixman Procedure ................................................................ Table 75 .................................................................................................................. Table 76 .................................................................................................................. Table 77 .................................................................................................................. Table 78 .................................................................................................................. 4. Baumann-kurata-stockmayer Procedure ................................................................ Table 79 .................................................................................................................. Table 80 .................................................................................................................. Table 81 .................................................................................................................. Table 82 ..................................................................................................................
VII/240 VII/240 VII/240 VII/240 VII/241 VII/241 VII/241 VII/241 VII/241 VII/241 VII/242 VII/242 VII/242 VII/242 VII/242 VII/243 VII/243 VII/243 VII/243 VII/244
J. References ......................................................................................................................... VII/244 Polymer-solvent Interaction Parameters ..................................................................................................... VII/247 A. Introduction ........................................................................................................................ VII/247 B. Concentration Variables ..................................................................................................... VII/247 C. Conversion of Concentration Variables .............................................................................. VII/247 D. Basic Equations .................................................................................................................. VII/247 E. Methods of Determination .................................................................................................. VII/248 F. Temperature Dependence .................................................................................................. VII/249 G. Concentration Dependence ................................................................................................ VII/249 H. Molecular Weight Dependence ........................................................................................... VII/250 I.
Polymer-solvent Interaction Parameters, χ ......................................................................... VII/250
J. References ......................................................................................................................... VII/262 Concentration Dependence of the Viscosity of Dilute Polymer Solutions: Huggins and Schulzblaschke Constants ............................................................................................................................ VII/265 A. Introduction ........................................................................................................................ VII/265 B. Tables ................................................................................................................................ VII/266
This page has been reformatted by Knovel to provide easier navigation.
xlii
Contents Table 1. Huggins Constants ................................................................................................. 1.1 Poly(dienes) and Poly(alkenes) .............................................................. 1.2 Poly(acrylic Acid) and Poly(methacrylic Acid) Derivatives ...................... 1.3 Vinyl Polymers ........................................................................................ 1.4 Poly(oxides) ............................................................................................ 1.5 Poly(esters) ............................................................................................. 1.6 Polyamides ............................................................................................. 1.7 Other Compounds .................................................................................. 1.8 Cellulose, Cellulose Derivatives, and Polysaccharides .......................... Table 2. Schulz-blaschke Constants .....................................................................................
VII/266 VII/266 VII/268 VII/272 VII/277 VII/278 VII/279 VII/280 VII/282 VII/284
C. References ......................................................................................................................... VII/285 Theta Solvents ............................................................................................................................................. VII/291 A. Introduction ........................................................................................................................ 1. Fundamentals ......................................................................................................... 1.1 Thermodynamics .................................................................................... 1.2 Unperturbed Dimensions ........................................................................ 2. Methods to Determine Theta Solvents .................................................................... 2.1 Phase Equilibrium (PE) ........................................................................... 2.2 Second Virial Coefficient (A) ................................................................... 2.3 Cloud Point Titration (CP) ....................................................................... 2.4 Cloud Temperature Titration (CT) ........................................................... 2.5 Unperturbed Dimensions (RGM, VM, DM, SM) ...................................... 2.6 Other Methods ........................................................................................
VII/291 VII/291 VII/291 VII/292 VII/293 VII/293 VII/293 VII/294 VII/294 VII/294 VII/294
B. Tables of Theta Solvents for Polymers ............................................................................... Table 1. Homochain Polymers .............................................................................................. 1.1 Poly(alkanes) .......................................................................................... 1.2 Poly(alkenes) .......................................................................................... 1.3 Poly(styrenes) ......................................................................................... 1.4 Poly(vinyls) ............................................................................................. 1.5 Poly(acrylics) and Related Compounds .................................................. 1.6 Poly(methacrylics) and Related Compounds .......................................... 1.7 Other Carbon Chains .............................................................................. Table 2. Heterochain Polymers ............................................................................................. 2.1 Poly(acetals) and Poly(ethers) ................................................................ 2.2 Poly(esters) ............................................................................................. 2.3 Poly(amides) ........................................................................................... 2.4 Polyureas and Polyurethanes ................................................................. 2.5 Polysaccharides ...................................................................................... 2.6 Carbon-sulfur Chains .............................................................................. 2.7 Silicon-oxygen Chains ............................................................................ 2.8 Phosphorus-oxygen Chains ....................................................................
VII/295 VII/295 VII/295 VII/299 VII/300 VII/305 VII/307 VII/308 VII/312 VII/313 VII/313 VII/315 VII/316 VII/316 VII/316 VII/317 VII/317 VII/318
C. References ......................................................................................................................... VII/318
This page has been reformatted by Knovel to provide easier navigation.
Contents
xliii
Fractionation of Polymers ............................................................................................................................ VII/327 A. Principles of Polymer Fractionation .................................................................................... VII/327 B. Fractionation Methods ........................................................................................................ 1. Fractionation by Solubility ....................................................................................... 2. Fractionation by Chromatography ........................................................................... 3. Cross Fractionation ................................................................................................. 4. Fractionation by Sedimentation .............................................................................. 5. Fractionation by Diffusion ....................................................................................... 6. Fractionation by Ultrafiltration through Porous Membranes .................................... 7. Fractionation by Zone Melting ................................................................................. 8. Electron Microscopic Counting Method ..................................................................
VII/328 VII/328 VII/330 VII/332 VII/333 VII/333 VII/333 VII/333 VII/333
C. Tables of Fractionation Systems for Different Polymers ..................................................... Table 1. Main-chain Acyclic Carbon Polymers ..................................................................... 1.1 Poly(dienes) ............................................................................................ 1.2 Poly(alkenes) .......................................................................................... 1.3 Poly(acrylic Acid) and Derivatives .......................................................... 1.4 Poly(methacrylic Acid) and Derivatives .................................................. 1.5 Other α- and β-Substituted Poly(acrylics) and Poly(methacrylics) ......... 1.6 Poly(vinyl Ethers) .................................................................................... 1.7 Poly(vinyl Alcohol), Poly(vinyl Ketones), Poly(vinyl Halides), Poly(vinyl Nitriles) ................................................................................... 1.8 Poly(vinyl Esters) .................................................................................... 1.9 Poly(styrenes) ......................................................................................... 1.10 Other Compounds .................................................................................. 1.11 Random and Alternating Copolymers ..................................................... 1.12 Block Copolymers ................................................................................... 1.13 Graft Copolymers .................................................................................... 1.14 Mixture of Polymers ................................................................................ Table 2. Main-chain Carbocyclic Polymers ........................................................................... 2.1 Poly(phenylenes) .................................................................................... 2.2 Formaldehyde Resins ............................................................................. Table 3. Main-chain Heteroatom Polymers ........................................................................... 3.1 Poly(oxides) ............................................................................................ 3.2 Poly(carbonates) ..................................................................................... 3.3 Poly(esters) ............................................................................................. 3.4 Poly(urethanes) and Poly(ureas) ............................................................ 3.5 Poly(amides) and Poly(imines) ............................................................... 3.6 Poly(amino Acids) ................................................................................... 3.7 Poly(sulfides), Poly(sulfones), Poly(sulfonamides) ................................. 3.8 Poly(silanes) and Poly(siloxanes) ........................................................... 3.9 Poly(phosphazenes) and Related Polymers ........................................... 3.10 Other Compounds .................................................................................. 3.11 Random Copolymers ..............................................................................
VII/333 VII/333 VII/333 VII/336 VII/344 VII/346 VII/351 VII/353
This page has been reformatted by Knovel to provide easier navigation.
VII/353 VII/355 VII/356 VII/363 VII/366 VII/382 VII/389 VII/395 VII/397 VII/397 VII/397 VII/398 VII/398 VII/404 VII/405 VII/410 VII/411 VII/414 VII/416 VII/418 VII/422 VII/423 VII/425
xliv
Contents 3.12 Block Copolymers ................................................................................... 3.13 Graft Copolymers .................................................................................... Table 4. Poly(saccharides) ................................................................................................... 4.1 Poly(saccharides) ................................................................................... 4.2 Graft Copolymers .................................................................................... 4.3 Mixtures of Polymers ..............................................................................
VII/427 VII/430 VII/431 VII/431 VII/436 VII/438
D. References ......................................................................................................................... 1 to 1188 ................................................................................................................................. 1189 to 2452 ........................................................................................................................... 2453 to 3608 ...........................................................................................................................
VII/438 VII/438 VII/458 VII/478
Solvents and Non Solvents for Polymers .................................................................................................... VII/497 A. Introduction ........................................................................................................................ VII/498 B. Abbreviations ..................................................................................................................... VII/498 C. Tables of Solvents and Nonsolvents ................................................................................... Table 1. Main-chain Acyclic Carbon Polymers ..................................................................... 1.1 Poly(dienes), Poly(acetylenes) ............................................................... 1.2 Poly(alkenes) .......................................................................................... 1.3 Poly(acrylics), Poly(methacrylics) ...........................................................
VII/499 VII/499 VII/499 VII/500 VII/501
1.3.1 Poly(acrylic Acids) ............................................................................ VII/501 1.3.2 Poly(acrylates) .................................................................................. VII/501 1.3.3 Poly(methacrylates) ......................................................................... VII/501 1.3.4 Poly(disubstituted Esters) ................................................................ VII/502 1.3.5 Poly(acrylamides), Poly(methacrylamides) ..................................... 1.4 Poly(vinyl Ethers) .................................................................................... 1.5 Poly(vinyl Alcohols), Poly(acetals), Poly(vinyl Ketones) ......................... 1.6 Poly(vinyl Halides) .................................................................................. 1.7 Poly(vinyl Nitrites) ................................................................................... 1.8 Poly(vinyl Esters) .................................................................................... 1.9 Poly(styrenes) ......................................................................................... 1.10 Other Compounds .................................................................................. Table 2. Main-chain Carbocyclic Polymers ........................................................................... 2.1 Poly(phenylenes) .................................................................................... 2.2 Other Compounds .................................................................................. Table 3. Main-chain Carbonyl Polymers ............................................................................... Table 4. Main-chain Acyclic Heteroatom Polymers .............................................................. 4.1 Main-chain –C–O–C– Polymers .............................................................
VII/503 VII/503 VII/504 VII/505 VII/506 VII/506 VII/507 VII/508 VII/509 VII/509 VII/510 VII/510 VII/511 VII/511
4.1.1 Poly(oxides) ...................................................................................... VII/511 4.1.2 Poly(carbonates) .............................................................................. VII/513 4.1.3 Poly(esters) ...................................................................................... VII/513 4.1.4 Poly(anhydrides) .............................................................................. VII/515 4.1.5 Poly(urethanes) ................................................................................ VII/515
This page has been reformatted by Knovel to provide easier navigation.
Contents 4.2
xlv
Main-chain –O– Heteroatom Polymers ................................................... VII/515 4.2.1 Poly(sulfonates) ................................................................................ VII/515
4.3
4.2.2 Poly(siloxanes) ................................................................................. VII/516 Main-chain –C–S–C– and –C–S–N– Polymers ...................................... VII/516 4.3.1 Poly(sulfides) .................................................................................... VII/516 4.3.2 Poly(sulfones) ................................................................................... VII/517
4.4
4.3.3 Others ............................................................................................... VII/518 Main-chain –C–N–C– Polymers ............................................................. VII/518 4.4.1 Poly(amides) .................................................................................... VII/518 4.4.2 Poly(hydrazides) ............................................................................... VII/520 4.4.3 Poly(ureas) ....................................................................................... VII/521 4.4.4 Poly(carbodiimides) .......................................................................... VII/521
4.4.5 Other Compounds ............................................................................ 4.5 Poly(phosphazenes) and Related Compounds ...................................... 4.6 Poly(silanes), Poly(silazanes) ................................................................. Table 5. Main-chain Heterocyclic Polymers .......................................................................... 5.1 Poly(benzoxazoles), Poly(oxadiazoles), Poly(oxadiazolidines) .............. 5.2 Poly(dithiazoles), Poly(benzothiazoles) .................................................. 5.3 Poly(imides) ............................................................................................
VII/521 VII/522 VII/522 VII/523 VII/523 VII/524 VII/524
5.3.1 Poly(benzimides) .............................................................................. VII/524 5.3.2 Poly(pyromellitides) .......................................................................... VII/525 5.3.3 Others ............................................................................................... 5.4 Poly(quinoxalines) .................................................................................. 5.5 Poly(benzimidazoles) .............................................................................. 5.6 Poly(piperazines) .................................................................................... 5.7 Poly(anhydrides) ..................................................................................... 5.8 Poly(thiophenes) ..................................................................................... 5.9 Others ..................................................................................................... Table 6. Formaldehyde Resins ............................................................................................. Table 7. Natural Polymers and Modified Natural Polymers .................................................. 7.1 Natural Rubber and Derivatives .............................................................. 7.2 Cutta Percha ........................................................................................... 7.3 Cellulose and Derivatives .......................................................................
VII/525 VII/526 VII/526 VII/526 VII/527 VII/527 VII/527 VII/528 VII/528 VII/528 VII/529 VII/529
7.3.1 Cellulose ........................................................................................... VII/529 7.3.2 Cellulose Ethers ............................................................................... VII/529 7.3.3 Cellulose Esters ............................................................................... VII/530 7.3.4 Cellulose Nitrate and Sulfate ........................................................... 7.4 Starch and Derivatives ............................................................................ 7.5 Other Poly(saccharides) ......................................................................... 7.6 Natural Resins ........................................................................................ Table 8. Inorganic Polymers ................................................................................................. Table 9. Poly(electrolytes) .................................................................................................... This page has been reformatted by Knovel to provide easier navigation.
VII/531 VII/531 VII/531 VII/532 VII/532 VII/533
xlvi
Contents Table 10. Block Polymers ....................................................................................................... VII/533 Table 11. Dendrimers ............................................................................................................. VII/534 D. References ......................................................................................................................... VII/536
Specific Refractive Index Increments of Polymers in Dilute Solution ......................................................... VII/547 A. Introduction ........................................................................................................................ VII/547 B. Introduction from the Third Edition ...................................................................................... VII/547 C. Refractometric Calibration Data .......................................................................................... VII/550 D. Tables of Specific Refractive Index Increments of Polymer Solutions ................................. Table 1. Main-chain Acyclic Carbon Polymers ..................................................................... 1.1 Poly(dienes) ............................................................................................ 1.2 Poly(alkenes) .......................................................................................... 1.3 Poly(acrylic Acid) and Derivatives .......................................................... 1.4 Poly(methacrylic Acid) and Derivatives .................................................. 1.5 Other α- or β-Substituted Poly(acrylics) and Poly(methacrylics) ............ 1.6 Poly(styrenes) ......................................................................................... 1.7 Other Compounds .................................................................................. Table 2. Main-chain Cyclic Carbon Polymers ....................................................................... Table 3. Main-chain Heteroatom Polymers ........................................................................... 3.1 C–O–C Polymers (Poly(oxides), Poly(esters), and Others) .................... 3.2 C–S–C Polymers (Poly(sulfones) and Others) ....................................... 3.3 C–N–C Polymers (Poly(amides), Poly(isocyanates), Poly(urethanes), and Others) ................................................................. 3.4 Poly(amino Acids) ................................................................................... 3.5 Poly(silanes) and Poly(silazanes) ........................................................... 3.6 Poly(heterocyclics) and Others ............................................................... Table 4. Cellulose and Derivatives ....................................................................................... Table 5. Poly(saccharides) ...................................................................................................
VII/551 VII/551 VII/551 VII/553 VII/557 VII/561 VII/573 VII/574 VII/588 VII/594 VII/594 VII/594 VII/599 VII/599 VII/604 VII/606 VII/608 VII/609 VII/611
E. References ......................................................................................................................... VII/615 Particle Scattering Factors in Rayleigh Scattering ...................................................................................... VII/629 A. Introduction: General Relations for a Homogeneous Solute ............................................... VII/629 B. Scattering Factors for Various Molecular Models ................................................................ VII/630 C. Effects of Dispersion in Molecular Weight .......................................................................... VII/631 D. Determination of Molecular Weight and Radius of Gyration ................................................ VII/632 E. Calculation of Scattering Factors ........................................................................................ VII/633 F. Particle Scattering Factors and Dissymmetries .................................................................. VII/633 Table 1. Dissymmetries for Monodisperse Systems ............................................................. VII/634 Table 2. Dissymmetries for Monodisperse and Polydisperse Coils ...................................... VII/634 G. References ......................................................................................................................... VII/635 Dipole Moments of Polymers in Solution ..................................................................................................... VII/637 A. Introduction ........................................................................................................................ VII/637 B. Dipole Moments of Polymers In Solution ............................................................................ VII/638 Table 1. Polyoxides (Polyethers) .......................................................................................... VII/638 This page has been reformatted by Knovel to provide easier navigation.
Contents Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13.
Polysulfides (Polythioethers) ................................................................................... Hydroxyl Terminated Oxide/Sulfide Copolymers .................................................... Polyesters Derived from Aromatic Diacids .............................................................. Aliphatic and Cycloaliphatic Polyesters .................................................................. Polycarbonates ....................................................................................................... Vinyl Polymers ........................................................................................................ Acrylic Polymers ..................................................................................................... Methacrylic Polymers .............................................................................................. Itaconate Polymers ................................................................................................. Polydienes .............................................................................................................. Silicon Based Polymers .......................................................................................... Styrene Copolymers ...............................................................................................
xlvii VII/639 VII/640 VII/640 VII/641 VII/641 VII/642 VII/643 VII/644 VII/644 VII/644 VII/645 VII/645
C. References ......................................................................................................................... VII/646 Heat, Entropy and Volume Changes for Polymer-liquid Mixtures .............................................................. VII/649 A. Introduction ........................................................................................................................ VII/649 1. Scope of the Table .................................................................................................. VII/649 2. Experimental Methods ............................................................................................ VII/649 B. Key for the Tables .............................................................................................................. VII/650 C. Tables of Literature References for Heat, Entropy, and Volume Changes for Polymer-solvent Mixtures ................................................................................................... Table 1. Main-chain Carbon Polymers .................................................................................. 1.1 Poly(dienes) ............................................................................................ 1.2 Poly(alkenes) .......................................................................................... 1.3 Poly(acrylics) .......................................................................................... 1.4 Vinyl Polymers ........................................................................................ 1.5 Poly(styrenes) ......................................................................................... 1.6 Other Compounds .................................................................................. Table 2. Main-chain Carbon Heteroatom Polymers .............................................................. 2.1 Poly(oxides) and Poly(esters) ................................................................. 2.2 Poly(amides) ........................................................................................... 2.3 Poly(siloxanes) ....................................................................................... 2.4 Derivatives of Cellulose .......................................................................... 2.5 Other Compounds ..................................................................................
VII/650 VII/650 VII/650 VII/651 VII/654 VII/655 VII/657 VII/659 VII/659 VII/659 VII/661 VII/661 VII/662 VII/663
D. References ......................................................................................................................... VII/663 Heats of Solution of Some Common Polymers ........................................................................................... VII/671 A. Introduction ........................................................................................................................ VII/671 B. Table of Heats of Solution .................................................................................................. VII/671 C. References ......................................................................................................................... VII/673 Solubility Parameter Values ......................................................................................................................... VII/675 A. Introduction ........................................................................................................................ VII/675 B. Miscibility of Solvents and Polymers ................................................................................... VII/676 1. Cohesive Energy Density and the Solubility (Hildebrand) Parameter ..................... VII/676 This page has been reformatted by Knovel to provide easier navigation.
xlviii
Contents 2. 3.
Cohesive Energy Parameters for Polar Systems .................................................... VII/677 Relationship Between Solubility Parameters and Other Thermodynamic Parameters ............................................................................................................. VII/677
C. Solubility Parameter Measurements, Calculations, and Correlations .................................. 1. Solvents .................................................................................................................. 2. Polymers ................................................................................................................. 2.1 Indirect Measurements ........................................................................... 2.2 Correlation Methods ............................................................................... Table 1. Selected Solvents for Use in Polymer Solvency Testing ........................................ Table 2. Group Contribution to Cohesive Energy Density .................................................... 2.1 Carbon-containing Groups ...................................................................... 2.2 Oxygen-containing Groups ..................................................................... 2.3 Nitrogen-containing Groups .................................................................... 2.4 Other Groups .......................................................................................... 2.5 Structural Features ................................................................................. Table 3. Contribution to Ecoh and V ....................................................................................... Table 4. Solubility Parameter I: Component Group Contributions ........................................ Table 5. Solubility Parameter II: Component Group Contributions ....................................... Table 6. Equations to be Used for Hoy's System .................................................................
VII/679 VII/679 VII/680 VII/680 VII/682 VII/683 VII/684 VII/684 VII/684 VII/684 VII/684 VII/685 VII/685 VII/686 VII/686 VII/687
D. Solubility Table 7. Table 8. Table 9.
VII/688 VII/688 VII/694 VII/698 VII/698 VII/698 VII/698 VII/699 VII/699 VII/699 VII/699 VII/700 VII/700 VII/700 VII/700 VII/701 VII/701 VII/701 VII/701 VII/702 VII/702 VII/708 VII/709 VII/710
Parameter Tables ................................................................................................ Solubility Parameters of Solvents in Alphabetical Order ......................................... Solubility Parameters of Solvents in Increasing Order of δ ..................................... Hansen Solubility Parameters of Liquids at 25°C ................................................... 9.1 Paraffinic Hydrocarbons ......................................................................... 9.2 Aromatic Hydrocarbons .......................................................................... 9.3 Halohydrocarbons ................................................................................... 9.4 Ethers ..................................................................................................... 9.5 Ketones ................................................................................................... 9.6 Aldehydes ............................................................................................... 9.7 Esters ...................................................................................................... 9.8 Nitrogen-containing Compounds ............................................................ 9.9 Sulfur-containing Compounds ................................................................ 9.10 Acid Halides and Anhydrides .................................................................. 9.11 Alcohols .................................................................................................. 9.12 Acids ....................................................................................................... 9.13 Phenols ................................................................................................... 9.14 Water ...................................................................................................... 9.15 Polyhydric Alcohols ................................................................................. Table 10. Solubility Parameters of Polymers .......................................................................... 10.1 Main Chain Carbon Polymers ................................................................. 10.2 Main Chain C–O Polymers ..................................................................... 10.3 Main Chain C–N Polymers ..................................................................... 10.4 Other Polymers ....................................................................................... This page has been reformatted by Knovel to provide easier navigation.
Contents
xlix
E. References ......................................................................................................................... VII/711 Optically Active Polymers ............................................................................................................................ VII/715 A. Abbreviations Used ............................................................................................................ VII/715 B. Optically Active Polymers from Chiral Monomers ............................................................... Table 1. Main-chain Acyclic Carbon Polymers ..................................................................... 1.1 Poly(alkenes) .......................................................................................... 1.2 Poly(acrylics) and Related Polymers ...................................................... 1.3 Poly(methacrylics) and Related Polymers .............................................. 1.4 Poly(vinyl Ethers), Poly(vinyl Ketones), and Poly(vinyl Esters) .............. 1.5 Poly(styrenes), Poly(carbazoles) ............................................................ 1.6 Poly(dienes) ............................................................................................ 1.7 Poly(isonitriles) ....................................................................................... 1.8 Poly(alkynes) .......................................................................................... 1.9 Poly(maleimides) and Related Polymers ................................................ 1.10 Other Compounds .................................................................................. Table 2. Main-chain Acyclic Heteroatom Polymers .............................................................. 2.1 Poly(oxides) ............................................................................................ 2.2 Poly(esters) ............................................................................................. 2.3 Poly (sulfides), Poly(thioesters) .............................................................. 2.4 Poly(urethanes), Poly(ureas) .................................................................. 2.5 Poly(amides) ........................................................................................... 2.6 Poly(isocyanates) ................................................................................... 2.7 Poly(imines) ............................................................................................ 2.8 Poly(amino Acids) ................................................................................... Table 3. Poly(saccharides) ...................................................................................................
VII/716 VII/716 VII/716 VII/716 VII/717 VII/718 VII/719 VII/720 VII/720 VII/721 VII/722 VII/723 VII/723 VII/723 VII/724 VII/725 VII/725 VII/726 VII/728 VII/728 VII/729 VII/732
C. Optically Active Polymers from Achiral Monomers .............................................................. Table 4. Main-chain Acyclic Carbon Polymers ..................................................................... 4.1 Poly(acrylics) and Related Polymers ...................................................... 4.2 Poly(methacrylics) and Related Polymers .............................................. 4.3 Poly(vinyl Ethers) .................................................................................... 4.4 Poly(styrenes) ......................................................................................... 4.5 Poly(dienes) ............................................................................................ 4.6 Poly(isonitriles) ....................................................................................... 4.7 Poly(maleimides) .................................................................................... 4.8 Other Compounds .................................................................................. Table 5. Main-chain Acyclic Heteroatom Polymers .............................................................. 5.1 Poly(oxides) and Poly(sulfides) .............................................................. 5.2 Poly(isocyanates) ...................................................................................
VII/733 VII/733 VII/733 VII/734 VII/735 VII/735 VII/735 VII/736 VII/736 VII/737 VII/737 VII/737 VII/738
D. References ......................................................................................................................... VII/739 Anisotropy of Segments and Monomer Units of Polymer Molecules ......................................................... VII/745 A. Introduction ........................................................................................................................ VII/745
This page has been reformatted by Knovel to provide easier navigation.
l
Contents B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules ................... Table 1. Main-chain Acyclic Carbon Polymers ..................................................................... 1.1 Poly(dienes) ............................................................................................ 1.2 Poly(alkenes) .......................................................................................... 1.3 Poly(acrylic Acid) and Derivatives .......................................................... 1.4 Poly(methacrylic Acid) and Derivatives .................................................. 1.5 Poly(acrylic Acid) Derivatives with Mesogenic Side Groups ................... 1.6 Poly(methacrylic Acid) Derivatives with Mesogenic Side Groups ........... 1.7 Vinyl Polymers ........................................................................................ 1.8 Poly(vinyl) Derivatives with Mesogenic Side Groups .............................. 1.9 Copolymers, Graft and Block Copolymers .............................................. Table 2. Main-chain Carbocyclic Polymers ........................................................................... Table 3. Main-chain Heteroatom Polymers ........................................................................... 3.1 Poly(oxides) ............................................................................................ 3.2 Poly(esters) ............................................................................................. 3.3 Poly(amides) ........................................................................................... 3.4 Poly(peptides) and Nucleic Acids ........................................................... 3.5 Poly(phosphazenes) ............................................................................... 3.6 Poly(siloxanes) ....................................................................................... Table 4. Main-chain Heterocyclic Polymers .......................................................................... 4.1 Poly(imides) ............................................................................................ 4.2 Poly(pyrromellitimides) ........................................................................... 4.3 Poly(quinoxalines) .................................................................................. 4.4 Poly(benzimidazoles), Poly(benzoxazoles) ............................................ 4.5 Poly(saccharides) ...................................................................................
VII/746 VII/746 VII/746 VII/747 VII/747 VII/748 VII/748 VII/749 VII/750 VII/751 VII/751 VII/752 VII/752 VII/752 VII/752 VII/755 VII/755 VII/755 VII/756 VII/756 VII/756 VII/756 VII/757 VII/757 VII/758
C. References ......................................................................................................................... VII/760 Gelation Properties of Polymer Solutions .................................................................................................... VII/765
VIII. Abbreviations of Polymer Names and Chemical Abstract Numbers Abbreviations for Thermoplastics, Thermosets, Fibers, Elastomers and Additives ...................................
VIII/1
A. Introduction ........................................................................................................................
VIII/1
B. Abbreviations in Alphabetical Order ....................................................................................
VIII/2
C. Abbreviations and Acronyms Based on Poly(monomer) Names ......................................... VIII/15 D. Abbreviations for Polymers Named after a Characteristic Polymer Croup .......................... VIII/17 E. Abbreviations for Polymers Produced by Chemical Transformation of Other Polymers ............................................................................................................................ VIII/18 F. Abbreviations for Blends, Reinforced Polymers, etc. .......................................................... VIII/19 G. ISO Codes for Thermoplastic Materials .............................................................................. 1. Codes for ISO Data Blocks 1-5 ............................................................................... 1.1 ISO and DIN Codes for Data Block 1 ..................................................... 1.2 ISO Codes for Items in Data Block 2 ...................................................... 1.3 ISO Codes for Items in Data Block 3 ......................................................
This page has been reformatted by Knovel to provide easier navigation.
VIII/19 VIII/19 VIII/19 VIII/20 VIII/20
Contents 1.4 1.5
li
ISO Codes for Extending and Reinforcing Fillers (Data Block 4) ........... VIII/20 ISO Codes for Data Block 5 .................................................................... VIII/21
H. SPI Codes for the Recycling of Plastics .............................................................................. VIII/21 I.
Recommended Abbreviations and Acronyms for Names of Elastomers ............................. VIII/21
J. Abbreviations for Textile Fibers .......................................................................................... VIII/22 Chemical Abstract Registry Numbers and Online Database Searching for Polymer Literature ................ VIII/25 A. Nomenclature ..................................................................................................................... VIII/25 B. CAS Registry Numbers ...................................................................................................... VIII/25 C. Indexing and CAS Registry Number Assignment ................................................................ VIII/26 D. Example Searches ............................................................................................................. 1. Example of a Search Using the Polymer CAS Registry Number ............................ 2. Example of a Search Using the Monomer CAS Registry Number .......................... 3. Example of a Combined Search ............................................................................. 4. Example of a Copolymer Search ............................................................................ 5. Example of an Engineering Database Search ........................................................ 6. Example of a Search with Punctuation in the Polymer Name ................................. 7. Example of an Engineering Materials Abstracts Search ......................................... 8. Example of a Polymer Trademark Search ..............................................................
VIII/26 VIII/26 VIII/26 VIII/26 VIII/28 VIII/29 VIII/29 VIII/29 VIII/29
E. List of CAS Regisry Numbers of Common Polymers .......................................................... VIII/32
Index .......................................................................................................................................
This page has been reformatted by Knovel to provide easier navigation.
IX/1
S E C T I O N
N
O
M
E
N
C
L
A
T
U
R
E
I
R U L E S
—
U
N
I
T
S
N o m e n c l a t u r e
W . V. Metanomski Chemical Abstracts Service, Columbus, Ohio, USA
A. Introduction B. IUPAC Recommendations 1. Source-Based Nomenclature 1.1. Homopolymers 1.2. Copolymers 1.3. Nonlinear Macromolecules & Macromolecular Assemblies 2. Structure-Based Nomenclature 2.1. Regular Single-Strand Organic Polymers 2.2. Regular Double-Strand Organic Polymers 2.3. Regular Single-Strand Inorganic and Coordination Polymers 2.4. Regular Quasi-Single-Strand Coordination Polymers 2.5. Irregular Single-Strand Organic Polymers C. Use of Common and Semisystematic Names D. Chemical Abstracts (CA) Index Names E. Polymer Class Names F. References A.
1-1 1-1 I-2 I-2 I-2 I-3 I-3 I-6 I-6 I-7 I-7 I-8 I-8 1-11 1-12
INTRODUCTION
Macromolecular (polymer) nomenclature has an almost 50-year history. As early as 1949 there existed a Subcommission on Nomenclature within the International Union of Pure and Applied Chemistry (IUPAC) under the chairmanship of Maurice L. Huggins. The Subcommission was part of the IUPAC Commission on Macromolecules, chaired then by Herman F. Mark. Other notable pioneers in polymer science, Jan Joseph Hermans, Otto Kratky, Harry W. Melville, and George J. Smets, were members of the Commission. The Subcommission produced its first official report in 1952. It recognized then, what is just as true today, that the practice in the field of small molecules of providing rigorous definitions is impractical for polymers. The latter consist of molecules not necessarily exactly of the same size, chemical composition, or structure. The differences result from the presence of end groups, branches, variation in orientation of monomeric units, and irregularity in the sequence of different types of units. The American Chemical Society (ACS) Division of Polymer Chemistry established its Nomenclature Commit-
tee in 1963 to try to unify earlier attempts to name polymers in some coherent way. Their first major project resulted in a structure-based nomenclature for regular linear polymers, first published in ACS Polymer Preprints in 1967, adopted by Chemical Abstracts in 1968, and incorporated in IUPAC recommendations in 1975 [I]. When the IUPAC Commission on Macromolecules was elevated to become the IUPAC Division of Macromolecular Chemistry, the latter in turn established its Commission on Macromolecular Nomenclature in 1968. The Commission in the course of its nearly 30 years of existence produced a series of major documents that have shaped modern nomenclature and terminology of polymer science. The recommendations are being published in the IUPAC official journal, Pure and Applied Chemistry, and occasionally are republished in the form of a "Compendium" which groups all the currently valid documents in a single volume. The Commission published its "Compendium of Macromolecular Nomenclature" in 1991 [2]. The book, which IUPAC has designated the "Purple Book", in analogy to other IUPAC books ("Blue" - organic, "Red" - inorganic, "Orange" - analytical, "Green"- physical, and "Gold" - overall chemistry), has the two most basic macromolecular nomenclature recommendations: "nomenclature of regular single-strand organic polymers" and "source-based nomenclature for copolymers". In more recent years, the Commission extended that basic nomenclature to double-strand (ladder and spiro) organic polymers, irregular and crosslinked polymers, and polymer blends and interpenetrating networks. In this article, the basic structure-based and source-based nomenclature of polymers is explained and illustrated in some detail. The continuing use of common and semisystematic nomenclature with reference to specific tables in this Handbook is highlighted. The current Chemical Abstracts (CA) index names [3] are compared and contrasted with the IUPAC practice and typical names employed in the polymer journals and textbooks. B.
IUPAC RECOMMENDATIONS
Since polymers, unlike low-molecular-weight compounds, have no uniform structure and are mixtures of macromolecules of different length and different structural
arrangement, their graphical representation and their names require a special approach. Often enough, the structure of the polymer has not been sufficiently characterized and the researcher cannot draw its chemical structure. Consequently, no name of the polymer reflecting its structure is possible. A polymerization reaction for a polymer formed from a monomer such as vinyl chloride can schematically be represented by
polybutadiene polyethylene poly(methyl methacrylate) poly(methyl vinyl ether) polystyrene poly(tetrafluoroethylene) poly(vinyl alcohol) poly(vinyl acetate) poly(vinyl chloride) poly(vinylidene dichloride)
That shows an idealized product. In fact, however, the polymer consists of long-chains of various lengths. The repeating units, - C H 2 - C H C l - , are not necessarily all uniquely oriented and joined in a regular fashion as shown in the idealized structure above. In addition to "head-totail" links
Parentheses are used when the name of the monomer consists of two or more words, and when the monomer has substituents. These are all olefinic type reactants, from which two carbon atoms originally linked by a double bond form a bivalent group:
other links such as "head-to-head"
where R and R [ represent a hydrogen atom or a substituent group. Many of these are joined, in turn, to each other but their exact orientation or sequence is seldom known. On the other hand, different polymers derived from a single monomer and having identical constitutional units can still be differentiated by additional information, such as average molecular weight and other chemical and physical characteristics.
and "tail-to-tail"
can occur, and the exact sequence of all these repeating units usually is not known. This becomes even more complicated when a copolymer is derived from more than one monomer, such as styrene and methyl acrylate, which contribute two constitutional or monomeric units:
They can combine into a polymeric chain, resulting in many types such as unspecified, statistical, random, alternating, periodic, block, or graft copolymers. Because the exact structure of the polymer is not always known, two systems of naming polymers exist: source-based nomenclature, structure-based nomenclature. 1.
Source-Based Nomenclature
1.1. Homopolymers Homopolymers are derived from only one species of monomer, which may be the actual starting reactant (or source), or be a hypothetical monomer if the homopolymer is formed by a modification of another homopolymer. The name of the polymer is formed by attaching the prefix "poly" to the name of the actual or assumed monomer, or the starting reactant (source), from which the polymer is derived. Examples: poly (acrylic acid) polyacrylonitrile
1.2. Copolymers For copolymers, the names of monomers are cited after the prefix "poly". In addition, an italicized connective (infix) is placed between the names of monomers to denote the kind of sequential arrangement by which the constitutional (monomeric) units, derived from each monomer, are related in the structure [4]. Seven types of sequence arrangements are listed with their corresponding connectives:
Type
Connective
unknown or unspecified statistical (obeying known statistical laws) random (obeying Bernoullian distribution) alternating (for two monomeric units) periodic (ordered sequence of more than two) block (linear arrangement of blocks) graft (side blocks chains connected to main chain)
Examples:
-co-stat-raft-alt-per-block-graft-
poly[styrene-C(?-(methyl methacrylate)! poly^tyrene-statf-acrylonitrile-statf-butadiene) poly[ethylene-ran-(vinyl acetate)] poly[(ethylene glycol)-tf/r-(terephthalic acid)] poly[formaldehyde-/?er-(ethylene oxide)-per(ethylene oxide)] polystyrene-&/oc&-polybutadiene polybutadiene-gra/f-polystyrene
The names of the monomers are those common or semisystematic names that are encountered most often in the literature of polymer science. The order of citation of monomers in copolymer names is arbitrary. An equally acceptable alternative scheme for naming copolymers utilizes the prefix "copoly", followed by citation of the names of the monomers, separated by an oblique stroke (a solidus). Parentheses are not needed to enclose monomer names consisting of two or more words. Examples:
the constituent macromolecules with an italicized connective between them. Examples:
copoly(styrene/methyl methacrylate) j"tatf-copoly(styrene/acrylonitrile/butadiene) ran-copoly(ethylene/vinyl acetate) a/f-copoly(ethylene glycol/terephthalic acid) per-copoly(formaldehyde/ethyleneoxide/ethylene oxide) Wtfc/:-copoly(styrene-butadiene) gra/£-copoly(butadiene-styrene)
1.3. Nonlinear Macromolecules and Macromolecular Assemblies Most recently, the source-based nomenclature has been extended for non-linear macromolecules and macromolecular assemblies [5], The non-linear macromolecules comprise branched, graft, comb, star, cyclic, and network macromolecules. The macromolecular assemblies comprise polymer blends, interpenetrating polymer networks, and polymer-polymer complexes. The following italicized qualifiers can be used as both prefixes (e.g., blend-, net-) and infixes (connectives) (e.g., -blend-, -net-) to designate the skeletal structure of nonlinear macromolecules or macromolecular assemblies:
Type cyclic branched, unspecified short-chain-branched long-chain-branched branched with branch point of functionality / comb star star with / arms network crosslink polymer blend interpenetrating polymer network semi-interpenetrating polymer network polymer-polymer complex
Connective cyclo branch sh-branch l-branch f-branch comb star f-star net t (Greek iota) blend ipn sipn compl
2.
poly styrene-com£>-poly aery lonitrile com&-poly(styrene~statf-acrylonitrile) poly styrene-comZ?- [poly acrylonitrile; poly(methyl methacrylate)] 4-sfar-polystyrene star-(po\yA-block-polyB-block-polyC) star-(polyA; polyB; polyC) star-(polyacrylonitrile; polystyrene) (M1 100000:20000) fte£-polystyrene-£-divinylbenzene n^-poly[styrene-<3/Kmaleic anhydride)]^-(ethylene glycol) polystyrene-Weftd-poly(2,6-dimethylphenol) poly(methyl methacrylate)-We?i(i-poly(tt-butyl acrylate) (net-polystyrene)-sipn-poly(vinyl chloride) [net-poly(styrenQ-stat-butSidiene]-ipn-[netpoly(ethyl acrylate)
Structure-Based Nomenclature
2.1. Regular Single-Strand Organic Polymers For regular organic polymers which have only one species of constitutional repeating unit (CRU) in a single sequential arrangement and consist of single strands only, the name is poly(constitutional repeating unit), wherein the repeating group is named as a bivalent organic group according to the IUPAC nomenclature rules for organic compounds [I]. Each such repeating group can consists of simple or substituted subunits such as: methylene ethylene vinylene hexane-l,6-diyl 1-chloroethylene 1 -oxopropane-1,3-diyl adipoyl 1,4-phenylene cyclohexane-1,4-diyl oxy thio sulfonyl imino methylimino hydrazo piperidine-1,4-diyl
In naming non-linear homopolymer molecules, the italicized prefix for the skeletal structure of the macromolecule is placed before the source-based name of the constituent linear chain. Assemblies of macromolecules held together by noncovalent bonds are named by a combination of the names of
silanediyl dimethylsilanediyl Before the total constitutional repeating unit (CRU) can be given a unique name, a single preferred CRU must be selected. References page 1-12
For instance, in a polymer such as
it is immediately evident that a three-atom group (oxygen, chlorine-substituted methylene group, and methylene group) are being regularly repeated. Yet, the CRU can be identified in at least three ways
d. for carbon-only acyclic chains, seniority is determined first by length, then by the number of substituents, by the ascending order of locants, and, finally, by the alphabetical order of the names of the substituent groups.
c. carbocycles, e.g., 1,4-phenylene:
In all cases, the basic seniority rules apply only to those atoms or groups of atoms that are in the main chain. The kinds of substituents on the main chain (whether acyclic carbon-only groups, or hetero-atom-containing groups, or any ring systems) do not affect the selection of the CRU, unless identical basic subunits in the chain have to be further differentiated by the number of substituents and their alphabetical order, but not by the type of the substituent. If completely identical subunits are separated by other subunits, the direction of citation is determined by the shorter part between them. The preferred CRU is the one beginning with the subunit of highest seniority. To establish direction, one proceeds from this subunit to the neighboring subunit of the same or next in seniority. In the example of a poly(chloroethylene oxide), shown above, where a regularly repeating structure has been assumed, the subunit of the highest seniority is the oxygen atom and the subunit next in seniority is a substituted - C H 2 - C H 2 - . The substituted subunit, - C H C l - C H 2 - , is oriented in such a way that the substituent, chlorine atom, is assigned the lowest locant (1 rather than 2). The CRU is written to read from left to right. Thus, the preferred CRU is
cyclobutane-1,3-diyl: d. carbon-containing acyclic groups, e.g., 1-chloroethylene: - C H C l - C H 2 propane-1,3-diyl: - C H 2 - C H 2 - C H 2 -
and the polymer
To obtain a unique name based on a preferred CRU, several rules have to be applied. Rules have been developed to specify both seniority among subunits, that is, the point at which to begin writing the CRU, and also the direction in which to move along the chain from left to right to reach the end of the chain. The order of seniority among the types of bivalent groups that are parts of the chain of a single-strand polymer is a.
heterocycles, e.g., piperidine-l,4-diyl: thiophene-2,5-diyl:
b. heteroatomic acyclic groups, e.g., oxy: - O - , sulfonyl: - S O 2 - , imino: - N H -
Within each structural type, the seniority is established by further criteria: a.
for heterocycles, a ring system containing nitrogen is senior to a system containing a hetero atom other than nitrogen, with further descending order of seniority governed by the greatest number of rings in the ring system, the largest individual ring in the ring system, the largest number of hetero atoms, and the greatest variety of hetero atoms; b. for heteroatomic acyclic chains, oxygen is senior to sulfur, sulfur to nitrogen, nitrogen to phosphorus, phosphorus to silicon, silicon to germanium, etc.; c. for carbocycles, a three-ring system is senior to a two-ring system, a two-ring system containing two 6-membered rings is senior to one containing a 5and a 6-membered rings, a fused two-ring system (two atoms common to both rings) is senior to a spiro two-ring system (one atom in common), and an unsaturated ring is senior to a saturated ring of the same size;
is named poly [oxy (1 -chloroethylene)] The second example:
poly [(methylimino)methyleneimino-1,3-phenylene] illustrates a polymer whose CRU starts with a substituted nitrogen atom and proceeds through the shortest path to the unsubstituted nitrogen atom and then through a carbocycle. The chemical structure of the CRU is enclosed in parentheses or brackets. While dashes representing chemical bonds may be omitted within the formula unless necessary for clarity, at the ends of the CRU, dashes must be shown. They are drawn across the enclosing marks.
symbol a denoting the left-hand end group and the symbol co denoting the other end group.
The third example:
Example: poly(pyridine-3,5-diylcarbonyloxymethylene) shows a polymer, whose CRU starts with a heterocycle and then proceeds through a substituted carbon atom to a hetero atom. If the end groups of the chain are known, they may be specified by adding prefixes to the polymer name, with the
Structure
a-(trichloromethyl)-co-chloropoly (1,4-phenylenemethylene) The following table compares and contrasts structurebased and source-based names of some common polymers.
Structure-based name
Source-based or trivial name
Poly(methylene) Poly(propylene)
Polyethylene Polypropene
Poly (1,1 -dimethylethylene) Poly (1 -methyl-1 -butenylene)
Polyisobutylene Polyisoprene
Poly (1 -phenylethylene)
Polystyrene
PoIy(I -chloroethylene)
Poly(vinyl chloride)
Poly (1 -cyanoethylene)
Poly aery lonitrile
PoIy(I-acetoxyethylene)
Poly(vinyl acetate)
PoIy(1,1-difluoroethylene) Poly(difluoromethylene)
Poly(vinylidene fluoride) Polytetrafluoroethylene
Poly[(2-propyl-1,3-dioxane-4,6-diyl)methylene]
Poly(vinyl butyral)
Poly[ 1 -(methoxycarbonyl)-1 -methylethylene]
Poly(methyl methacrylate)
Poly(oxyethylene)
Poly(ethylene oxide)
Poly(oxy-1,4-phenylene)
Poly(phenylene oxide)
Poly[imino(l-oxohexane-1,6-diyl)]
Poly(e-caprolactam)
Poly(oxyethyleneoxyterephthaloyl)
Poly(ethylene terephthalate)
Poly(iminoadipoyliminohexamethylene)
Poly(hexamethylenediamine-a/?-adipic acid) or poly(hexamethylene adipamide) Poly(maleic anhydride-a/r-styrene)
Poly[(2,5-dioxotetrahydrofuran-3,4-diyl)( 1 -phenylethylene)]
References page 1-12
2.2. Regular Double-Strand Organic Polymers In a double-strand polymer, the macromolecules consist of an uninterrupted sequence of rings with adjacent rings having two or more atoms in common (a ladder polymer) or one atom in common (a spiro polymer). As for a single-strand polymer, a single preferred constitutional repeating unit (CRU) must be selected in order to obtain a unique name [6]. The CRU is usually a tetravalent group denoting attachment to four atoms and is named according to the usual rules of organic nomenclature. Again, the name of the polymer is in the form of
common at each junction:
the name based on the preferred CRU is
poly(constitutional repeating unit) Since the polymer has a sequence of rings, in order to identify a preferred CRU, the rings must be broken by observing the following criteria in decreasing order of priority: a. minimize the number of free valences in the CRU, b. maximize the number of most preferred hetero atoms in the ring system, c. retain the most preferred ring system, and d. choose the longest chain for acyclic CRU. Further decisions are based on the seniority of ring systems (indicated in the preceding section), on the orientation of the CRU to give the lowest free valence locant at the lower left of the structural diagram, and on placing the acyclic subunits, if any, on the right side of the ring system within the CRU. For a polymer consisting of adjacent 6-membered saturated carbon rings:
the name of the preferred CRU, which in this case is an acyclic chain of four carbon atoms with four free valences at each atom (the lowest at the lower left), is
poly (butane-1,4: 3,2-tetrayl)
poly(l,4-dithiin-2,3:5,6-tetrayl-5,6-dicarbonyl) Here, by applying the seniority of the rings system, the heterocycle was left intact, but the carbocycle was broken. That left two bivalent acyclic subunits (carbonyl groups), which according to the rule, have been placed on the right side of the cyclic subunit, with attachments as in the original polymer. Another, still more complex ladder polymer, derived from the polycondensation of 1,4,5,8-naphthalenetetracarboxylic dianhydride with 1,2,4,5-benzenetetramine:
poly[(7-oxo-7//,10//-benz[
the preferred CRU and the name are:
The free valence locants are always placed just in front of the corresponding ending of the tetravalent unit and are cited in the order lower-left, upper-left: upper-right, lower-right that is, in a clockwise direction, the left locants being separated from the right locants by a colon. For a more complex ladder polymer consisting of an alternating sequence of 6-membered sulfur-containing rings and keto-group containing carbocycles, with two atoms in
poly(2,4,8,10-tetraoxaspiro[5.5]undecane-3,3:9,9-tetrayl-9,9-diethylene)
2.3. Regular Single-Strand Inorganic and Coordination Polymers The names of inorganic and coordination polymers are based on the fundamentals developed for organic polymers [7]. As in the nomenclature of organic polymers, these rules apply to structural representations
which may at times be idealized and do not take into account irregularities, chain imperfections, or random branching. A constitutional repeating unit (CRU) is selected and named. However, because of the basic difference between the organic and inorganic nomenclature, the subunits of the CRU are not named as bivalent groups, but as inorganic or coordination groups indicating covalent and/or coordinate bonding. The name of the polymer is the name of the CRU prefixed by the term "poly", "catena", or other structural indicator. In order to arrive at the preferred CRU, seniorities of the constitutent subunits are considered as well as the preferred direction for the sequential citation. The constituent subunit of the highest seniority must contain one or more central atoms; bridging groups between central atoms in the backbone of the polymer are of lower seniority. This is consistent with the principle of coordination nomenclature which puts the emphasis on the coordination center. Examples of homoatomic backbones are
catena-poly [dimethyltin]
caterca-poly[(difluorosilicon) (dimethylsilicon)]
More common coordination polymers consist of a mononuclear central atom with a bridging ligand. The CRU of such a polymer cites the central atom first, which is prefixed by its associated non-bridging ligands, followed in turn by the name of the bridging ligand prefixed by the Greek letter \i:
2.4. Regular Quasi-Single-Strand Coordination Polymers In a regular quasi-single-strand coordination polymer, the preferred CRU has one terminal constituent subunit connected through a single atom to the next CRU [7]. Such polymers are named as single-strand coordination polymers:
catena-poly [palladiumdi-u-chloro]
catena-polyfsilicondi-u-thio]
catena-poly[platinum(ubromo-u-chloro)]
catena-poly [titaniumtri-u-chloro]
2.5. Irregular Single-Strand Organic Polymers Irregular polymers are named by placing the prefix "poly" before the structure-based names of the constitutional units, collectively enclosed in parentheses or brackets, with the individual constitutional units separated by an oblique stroke (a solidus) [8]. The stroke indicates the irregular or unknown sequential arrangement of these units. The dashes at each end of the formula are drawn fully inside the enclosing marks to denote that these are not necessarily terminal bonds of the macromolecule. For instance, a partially hydrolyzed poly(vinyl acetate) containing units:
is represented graphically and named:
catena-poly [(amminechlorozinc)-u-chloro]
catena-pory[(dihydroboron)-ju-(dimethylamido)] poly( 1 -acetoxyethylene/1 -hydroxyethylene)
Multiple bridging ligands between the pair of central atoms are cited in alphabetic order. Italicized element symbols indicating the coordinating atoms in bridging ligands are cited in the order of direction of the CRU and are separated by a colon:
A copolymer of vinyl chloride and styrene joined head-totail is
poly (1 -chloroethy lene/1 -pheny lethylene) A chlorinated polyethylene consisting of units
catena-poly [copper-[|i-chloro-bis-u-(diethyl S')] -copper- u-chloro]
disulfide-S: References page 1-12
is shown and named as
poly(chloromethylene/dichloromethylene/methylene) C.
USE OF COMMON AND SEMISYSTEMATIC NAMES
The main purpose of chemical nomenclature is to identify a chemical species by means of written or spoken words for a useful communication among chemists. A systematic nomenclature arose from the need to provide a relationship between the structure and the name. In other words, the reader should be able to deduce and identify the structure from the name. Traditional names, however, not necessarily based on structures, have been widely used for many common compounds. These are the so-called common, trivial, or semisystematic names, which are satisfactory for communication within a given special chemical field. It was earlier stated that in the macromolecular nomenclature IUPAC is recommending the use of common and semisystematic names for monomers in the sourcebased polymer names. The structure-based names, on the other hand, are more related to the structural characteristic of the polymers. But even there, IUPAC allows for a limited number of common names for such substituent groups as "allyl" and "vinyl", and for bivalent groups such as "adipoyl" and "terephthaloyl". The authors in this Handbook for the most part are using the IUPAC-recommended names, or very close variants thereof. On the other hand, in some compilations such as "Crystallographic Data for Various Polymers" (in Section VI), the author provides an excellent introduction and explanation of the names used. For some structure-based names, reflecting constitutional repeating units (CRU), especially for those with a center of symmetry, the naming of linking bivalent groups begins with the central subunit and proceeds in both directions. The IUPAC method selects the most senior bivalent group and proceeds naming from left to right.
In no case, there is any misunderstanding in either case as to which structure is associated with each name. Abbreviations and acronyms are also extensively used in the chemical literature for monomers, polymers, as well as for additives, modifiers, and fillers. Their extensive list is provided in Section VIII of this Handbook. As is clearly stated there, the same abbreviation is often used for different monomers and polymers, and the same polymer may have different abbreviations or acronyms. Examples: 1. DPP 2. PVA 3. trioctyl phosphate 4. polyacrylonitrile
diphenyl phthalate dipropyl phthalate poly(vinyl alcohol) poly(vinyl acetate) TOF TOP PAC PAN
The IUPAC policy [9] on the use of abbreviations in the chemical literature states that there are great advantages in defining all abbreviations in a single conspicuous place in each paper, preferably near the beginning of the paper in a single list. An alternative is to define each abbreviation fully the first time it appears in the text. No abbreviations should be used in the titles of publications. A chapter of this Handbook contains a set of abbreviations recognized by international organizations. D.
CHEMICAL ABSTRACTS (CA) INDEX NAMES
Chemical Abstracts Service (CAS), the publisher of printed Chemical Abstracts (CA) and corresponding products and services in microform, online databases, CD-ROM, and World Wide Web also names the polymers, selected for inclusion in the CAS Chemical Registry System and in the CA Chemical Substance Indexes, in two ways: a.
Examples:
Handbook name: poly(4,4'-sulfonyldiphenylene carbonate) IUPAC name: poly(oxycarbonyloxy-l,4-phenylenesulfonyl-1,4-phenylene) 2.
Handbook name: poly (oxy die thy lene succinate) IUPAC name: poly(oxyethyleneoxyethyleneoxysuccinyl)
in terms of the component monomer(s) from which they are prepared b. in terms of the final structure of the resulting polymer. There are definitive rules that govern when each type of structure is recorded and named [3], The primary, comprehensive representation of polymers by CAS is by citation of the component monomer(s) because, in many cases, the structure of the final polymer is either not known or is not described in sufficient detail by the author. When the polymer structure is well documented by the author or can be confidently assumed, because one and only one structure is chemically possible, then a supplementary representation with a corresponding systematic name is added to the CAS Registry System and included in the printed indexes and online files.
The chemical nomenclature used by CAS has developed in parallel, and generally in accordance, with the rules and recommendations published by IUPAC. However, their rules of systematic nomenclature do not necessarily lead to a unique name for each compound, but do lead to an unambiguous one. This causes no difficulty in normal scientific communication, but is unacceptable in a formal, rigidly controlled, alphabetic listing such as the CA Chemical Substance Index. The CA index names must not only be unambiguous, unique, and totally reproducible, but also selected so as to bring the names of structurally related substances into juxtaposition in the alphabetic index. CAS has always recognized that, while a unique name is needed for an index and for substance identification, the use of such invariant name in scientific papers is neither practicable nor desirable. In this section, it is intended to highlight the characteristics of the CA index names for polymers and compare them with some of the typical names used in the scientific community. a. b.
c. d.
e.
IUPAC rules have been adapted to the specific needs of a highly ordered alphabetical index. Most common names were eliminated and exceptional treatment for various classes of substances was discontinued. A single preferred name is determined for each identifiable substance. A strict order of precedence of chemical functions and compound classes is followed to determine the preferred "index heading parent". A total name is "inverted" by citing first the index heading parent (usually, basic skeleton name with a locant and suffix denoting the principal function), followed by the comma of inversion, the substituents, and the modification (derivative of the principal function), e.g., 2-propenoic acid, 2-methyl-, methyl ester
As mentioned above, most common names, including those still sanctioned by IUPAC, have been replaced by fully systematic names. The following is a short list of most common monomers with both common names and CA Index names: Common acrylamide acrylic acid acrylonitrile adipic acid 8-caprolactam 8-caprolactone ethylene glycol ethylene oxide fumaric acid
CA Index names (inverted form) 2-propenamide 2-propenoic acid 2-propenamide hexanedioic acid 2//-azepin-2-one, hexahydro2-oxepanone 1,2-ethanediol oxirane 2-butenedioic acid, (E)-
glycolic acid hydroquinone isophthalic acid lactic acid maleic acid maleic anhydride melamine methacrylic acid methyl acrylate phthalic anhydride propylene oxide styrene terephthalic acid vinyl alcohol vinyl chloride vinylidene chloride
acetic acid, hydroxy1,4-benzenediol 1,3-benzenedicarboxylic acid propanoic acid, 2-hydroxy2-butenedioic acid, (Z)2,5-furandione 1,3,5-triazine-2,4,6-triamine 2-propenoic acid, 2-methyl2-propenoic acid, methyl ester 1,3-isobenzofurandione oxirane, methylbenzene, ethenyl1,4-benzenedicarboxylic acid ethenol ethene, chloroethene, 1,1-dichloro-
Similarly, commonly named substituent and multiplying groups have their systematic equivalents in CA Indexes: adipoyl allyl tert-butyl ethylene hexamethylene isopropyl succinyl vinyl vinylene
1,6-dioxo-1,6-hexanediyl 2-propenyl 1,1 -dimethylethyl 1,2-ethanediyl 1,6-hexanediyl 1-methylethyl 1,4-dioxo-1,4-butanediyl ethenyl 1,2-ethenediyl
Homopolymers are described by the term "homopolymer" cited in the modification under the monomer name in the index. In the structural diagram derived from the CAS Registry System records, the structure of the monomer is enclosed in parentheses followed by a subscript "x". The corresponding empirical formula is also expressed in a similar way. Examples: 1. Poly (methacrylic acid): (CH 2 =CH-COOH) x CH3 (C 4 H 6 O 2 ), CA name: 2-Propenoic acid, 2-methyl-, homopolymer 2. Polystyrene: (CH2=CH)x C6H5 (C 8 H 8 ), CA name: Benzene, ethenyl-, homopolymer 3. PoIy(11-aminoundecanoic acid): (H 2 N-(CH 2 )Io-COOH), (C 11 H 23 NO 2 ), CA name: Undecanoic acid, 11-amino-, homopolymer References page 1-12
4. Poly (lac tic acid): (CH3-CH-COOH)x OH (C3H6O3)* CA name: Propanoic acid, 2-hydroxy-, homopolymer Copolymers formed from two or more monomers are described by the term "polymer with" (followed by the other monomers in alphabetical order) cited in the modification under each monomer name. In the structural diagram derived from the CAS Registry System records, the structures of monomers, separated by a period or periods, are enclosed in parentheses followed by a subscript ' V . The corresponding empirical formulas are similarly expressed. The descriptors alternating, block, and graft are cited whenever applicable. Examples: 1. Butadiene-vinyl ethyl ether copolymer: (CH2=CH-CH=CH2•CH2=CH-O-CH2CH3)X (C4H8OC4H6)Jt (in Formula Index order) CA names: 1,3-Butadiene, polymer with ethoxyethene Ethene, ethoxy-, polymer with 1,3butadiene 2. Isophthalic acid-terephthalic acid-ethylene glycol polyester: (HOOC-m-C6H4-COOHHOOC-p-C6H4-COOHOH-(CH2)2-OH)X (C 8 H 6 O 4 C 8 H 6 O 4 C 2 H 6 O 2 ), CA names: 1,3-Benzenedicarboxylic acid, polymer with 1,4-benzenedicarboxylic acid and 1,2-ethanediol 1,4-Benzenedicarboxylic acid, polymer with 1,3-benzenedicarboxylic acid and 1,2-ethanediol 1,2-Ethanediol, polymer with 1,3-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid Telomers are named as copolymers with the term "telomer with" cited in the modification under both the monomer (taxogen) and the chain-transfer agent (telogen). In the structural representation, the monomer is enclosed in parentheses with a subscript "*", followed by the telogen structure. The corresponding empirical formula is expressed in the same way. Examples: 1. Vinylpyrrolidone homopolymer terminated with mercaptopropionic acid:
CA names: 2-Pyrrolidinone, 1-ethenyl-, telomer with 3-mercaptopropanoic acid Propanoic acid, 3-mercapto-, telomer with l-ethenyl-2-pyrrolidinone 2. Acrylic acid-vinyl choride copolymer terminated with carbon tetrachloride: (CH 2 =CH-COOH-CI-CH=CH 2 )X-CCI 4
(C3H4O2C2H3Cl)xCCl4 CA names: 2-Propenoic acid, telomer with chloroethene and tetrachloromethane Ethene, chloro-, telomer with 2-propenoic acid and tetrachloromethane Methane, tetrachloro-, telomer with chloroethene and 2-propenoic acid Structural repeating units (SRU), equivalent to IUPAC constitutional repeating units (CRU), are selected and named for polymers that have well documented regular structure, or can confidently be assumed. Assumptions are made for a. polyamides formed from a dibasic acid (ester or halide) and a diamine; from an amino acid (ester or halide); from a lactam; b. polyesters formed from a dibasic acid (anhydride, ester, or halide) and a dihydric alcohol (phenol); from a hydroxy acid (ester, halide); from a lactone; c. polycarbonates formed from carbonic acid (ester, dihalide) and a dihydric alcohol (phenol); d. polyurethanes formed from a diisocyanate and a dihydric alcohol (phenol). The structural repeating unit is named by citation of one or more multivalent radicals of regular substitutive nomenclature. The selection of the preferred SRU, its orientation, and the construction of the name, proceeding from left to right, follows the same rules as those in the IUPAC recommendations for the CRU. In CA names, however, the names of the radicals are fully systematic, as explained and contrasted above. The empirical formula is enclosed in parentheses followed by a subscript "n". Examples: 1. Nylon 11:
CA name: Poly[imino(l-oxo-l,ll-undecanediyl)] 2. Poly(ethylene adipate):
CA name: Poly[oxy-1,2-ethanediyloxy(1,6-dioxo1,6-hexanediyl)]
3. Poly (ether ether ketone) (PEEK):
CA name: Poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) Poly(alkylene glycols) and their ethers and esters are indexed in CA as structural repeating units with the specified end groups, if aplicable. Examples: 1. Poly(ethylene glycol): HfO-CH 2 -CH 2 ^ n OH CA name: Poly(oxy-l,2-ethanediyl), a-hydroco-hydroxy2. Poly(trimethylene glycol) dimethyl ether: CH3 4 0 - C H 2 - C H 2 - C H 2 ^ O - C H 3 CA name: Poly(oxy-1, 3-propanediyl), a-methylco-methoxy3. Poly(tetramethylene glycol) diacrylate: CH2=CH-C(O) 40-CH 2 -CH 2 -CH 2 -CH 2 ^ n 0-C(O)-CH=CH 2 CA name: Poly(oxy-1, 4-butanediyl), a-(l-oxo2-propenyl)-co- [(1 -oxo-2-propenyl)oxy ] E. POLYMER CLASS NAMES In most textbooks, handbooks, encyclopedias, and indexes to polymer nomenclature, information on polymer is grouped under polymer class names. The following is a list of such terms extracted from these sources. Acrylic Polymers Alkyd resins Aminoplasts Coumarone-indene-resins Epoxy resins Fluoropolymers Phenolic resins Polyacetals Polyacetylenes Polyacrylics Polyalkylenes Polyalkenylenes Polyalkynylenes Polyamic acids Polyamides Polyamines Polyanhydrides Polyarylenealkenylenes Polyarylenealkylenes Polyarylenes Polyazomethines
Polybenzimidazoles Polybenzothiazoles Polybenzoxazinones Polybenzoxazoles Polybenzyls Polycarbodiimides Polycarbonates Polycarboranes Polycarbosilanes Polycyanurates Polydienes Polyester-polyurethanes Polyesters Polyetheretherketones Polyether-polyurethanes Polyethers Polyhydrazides Polyimidazoles Polyimides Polyimines Polyisocyanurates Polyketones Polyolefins Polyoxadiazoles Polyoxides Polyoxyalkylenes Polyoxyarylenes Polyoxymethylenes Polyoxyphenylenes Polyphenyls Polyphosphazenes Polypyrroles Polypyrrones Polyquinolines Polyquinoxalines Polysilanes Polysilazanes Polysiloxanes Polysilsesquioxanes Polysulfides Polysulfonamides Polysulfones Polythiazoles Polythioalkylenes Polythioarylenes Polythioethers Polythiomethylenes Polythiophenylenes Polyureas Polyurethanes Polyvinyl acetals Polyvinyl butyrals Polyvinyl formals Vinyl polymers
These classes are not mutually exclusive, some are relatively generic and some more specific. Some of them References page 1-12
could be grouped and arranged in a hierarchy, e.g., Polyacetals Polyvinyl acetals polyvinyl butyrals polyvinyl formals Polyesters polycarbonates
Polyethers epoxy resins polyetheretherketones polyoxyalkylenes polyoxymethylenes polyoxyarylenes polyoxyphenylenes
Some are synonymous or near synonymous, e.g., polyalkenylenes and polydienes, polyalkynylenes and polyacetylenes, polyethers and polyoxides, polythioethers and polysulfides. F. REFERENCES 1. IUPAC, "Nomenclature of Regular Single-Strand Organic Polymers (Recommendations 1975)", Pure Appl. Chem. 48, 373 (1976). Reprinted as Chapter 5 in Ref. 2. 2. IUPAC, "Compendium of Macromolecular Nomenclature". W. V. Metanomski, (Ed.), Blackwell Scientific, Oxford, 1991.
3. Chemical Abstracts Service, "CA Index Guide 1997", Appendix IV, "Chemical Substance Index Names", Chemical Abstracts Service, Columbus, Ohio, 1997. 4. IUPAC, "Source-Based Nomenclature for Copolymers (Recommendations 1985)", Pure Appl. Chem. 57, 1427 (1985). Reprinted as Chapter 7 in Ref. 2. 5. IUPAC, "Source-Based Nomenclature for Non-Linear Macromolecules and Macromolecular Assemblies (Recommendations 1997)", Pure Appl. Chem. 69, 2511 (1997). 6. IUPAC, "Nomenclature of Regular Double-Strand (Ladder and Spiro) Organic Polymers (Recommendations 1993)", Pure Appl. Chem. 65, 1561 (1993). 7. IUPAC, "Nomenclature for Regular Single-Strand and Quasi-Single-Strand Inorganic and Coordination Polymers (Recommendations 1984)", Pure Appl. Chem. 57, 149 (1985). Reprinted as Chapter 6 in Ref. 2. 8. IUPAC, "Structure-Based Nomenclature for Irregular Single-Strand Polymers (Recommendations 1994)", Pure Appl. Chem. 66, 873 (1994). 9. IUPAC, "Use of Abbreviations in the Chemical Literature (Recommendations 1979)", Pure Appl. Chem. 52, 2229 (1980).
U n i t s J. Brandrup Wiesbaden, FR Germany
A. B. C. D. E.
A.
Introduction International Units Si-Prefixes Conversion Factors Conversion Table for SI vs. English-American Units
1-13 1-13 1-14 1-14 1-17
INTRODUCTION
The International System of Units (1) is used in this Handbook as far as possible, since this system has become obligatory in many European countries and since it is supported by the National Bureau of Standards (2) and the American Society for Testing and Materials (3). Only
cursory information is given here for units needed in this Handbook. Detailed information may be found in the following References: 1. "Si-units and recommendations for the use of their multiples and of certain other units'', ISO 1000-1973. 2. "The International System of Units (SI)", Eds. C. H. Page, P. Vigoreux, Natl. Bur. Std. Spec. Publ., 1981, 330. 3. "Standard Metric Practice Guide", ASTM E-380-85. 4. Manual of Symbols and Terminology for Physicochemical Quantities and Units; Pergamon Press, Oxford 1979 (Pure Appl. Chem., 51, 1 (1979). 5. F. S. Conant, using the SI units, Polym. Eng. ScL, 17, 222 (1977) (further references).
B. INTERNATIONAL UNITS Selection of multiples of the Si-unit
Quantity
Si-unit
Length Area Volume Time Frequency Mass Density Force
m (metre) m2 m3 s (second) Hz (hertz) kg (kilogram) kg/m3 N (newton)
km, cm, mm, jum, nm km2, dm2, cm2, mm2 dm3, cm3, mm3 ks, ms, us, ns THz, GHz, MHz, kHz Mg, g, mg, jag mg/m3; kg/dm3; g/cm3 MN, kN, mN, uN
Pressure
Pa (pascal) or N/m2
GPa, MPa, kPa, mPa, uPa
Stress Viscosity (dynamic) Viscosity (kinematic) Surface tension Energy, work, heat
Pa or N/m2 Pas m2/s N/m J (joule)
Power Temperature Thermal conductivity Heat capacity Specific heat Entropy Amount of substance Electrical resistance Electrical conductivity
W (watt) K (kelvin), 0C W/mK J/K J/(kgK) J/K mol (mole) ft S (I/ft)
GPa; MPa or N/mm2; kPa mPas mm2/s mN/m TJ, GJ, MJ, kJ, mJ GW, MW, kW, mW, uW
Accepted units used with SI
Units accepted temporarily 1A = 10 ~10 m
Non SI units that should not be used 1 JJ. = 10 ~6 m
litre (1, L) (1 1= 1 dm3) d, h, min Iy= 10 ~9 kg
t t/m3; kg/1 1 bar = 105 Pa 1 atm = 101325 Pa
Electronvolt (eV) IeV«1.602 x 10" 19 J
1 dyn = 10 ~5 N; pond, kilopond 101325 1 Torr = Pa /OU = 133.32Pa poise; 1P = 0.1 Pas stokes; 1 St= 1 cm2/s dyn/cm lerg=10~ 7 J lcal = 4.1868J I0K=IK 0.86kcal/(mhgrd)
kJ/K kJ/(kgK) kJ/K Mole
1/13
C
SI-PREFIXES
Factor
Prefix
Symbol
Factor
Prefix
Symbol
10 18 10 15 10 12 10 9 10 6 10 3 10 2 10 l
exa peta tera giga mega kilo hecto deca
E P T G M k h da
10 ~l 10 ~2 10 ~3 10 " 6 10 ~9 10 " 1 2 10 ~15 10 ~18
deci centi milli micro nano pico femto atto
d c m \i n p f a
in
ft
yd
thou or mil
3.281 8.333 x 10~2 1 3 8.334 xlO~ 5
1.094 2.778 x 10~2 3.333XlO" 1 1 2.778 x 10" 5
3.937 x 104 1.0 x l O 3 1.2 x 104 3.6 x 104 1
D.
CONVERSION FACTORS
Length
m
Im in ft yd thou or mil
1 2.540 xlO~ 2 3.048XlO- 1 9.144X10" 1 2.540 xlO~ 5
Area
m2
Im2 sq. in sq. ft sq. yd ar
1 6.452 x 10 ~4 9.29OxIO" 2 8.361 x KT 1 1.0 x l O 2
Volume
m3
1 m3 1 (lit) cu. in cu. ft cu. yd gal (US) gal (UK)
Mass lkg lbm ton (metric) ton (UK) cwt (UK) ton (US) ounce grain Density lkg/m 3 Mg/m 3 =g/cm 3 lbm/cu. ft lbm/cu. in lbm/gal (UK) lbm/gal (US)
3.937XlO 1 1 12 36 1.0 x l O " 3 sq. in 1.55OxIO3 1 1.44OxIO2 1.296 x 103 1.55OxIO5 1 (lit)
1 10~3 1.639 x 10 ~5 2.832 x 10~2 7.646XlO" 1 3.785 x 10~3 4.546 xlO~ 3
sq. ft
103 1 1.639 x 10 ~2 2.832 x 101 7.645 x 102 3.785 4.546
kg
lbm
1 4.536 x 10" 1 1 x 103 1.016 x l O 3 5.080 x 101 9.072 x 102 2.835 x 10~2 6.480 x 10 " 5
2.205 1 2.205 x 103 2.24OxIO 3 1.120 x 102 2.0 x 103 6.250 x 10~2 1.429 x 10 ~8
kg/m3 1 1.OxIO3 1.602 x 101 2.768 x 104 9.978XlO 1 1.198 x 102
1.076XlO1 6.994 x 10 ~3 1 9 1.076 x 103
sq. yd
ar
1.196 7.716 x 10 ~4 1.111 x 10" 1 1 1.196 x l O 2
l.OxlO" 2 6.452 x 10 ~6 9.29OxIO" 4 8.361 x 10" 3 1
cu. in
cu. ft
cu. yd
gal (US)
gal (UK)
6.102 x 104 6.102 x 101 1 1.728 x 103 4.666 x 104 2.31OxIO2 2.774 x 102
3.531 x 10l 3.531 x 10~2 5.787 x 10 ~4 1 2JxIO1 1.337 xlO" 1 1.605 x 10 - 1
1.308 1.308 x 10~3 2.143 x 10~5 3.703 x 10" 2 1 4.951 x 10~3 5.946 x 10~3
2.642 x 102 2.642 x 10" 1 4.329 x 10 ~3 7.481 2.02OxIO2 1 1.201
2.20 x 102 2.20 x 10" 1 3.605 x 10~3 6.229 1.682 xlO 2 8.327 x 10"1 1
ton (UK) (long ton) 9.842xlO~ 4 4.464 x 10~4 9.842XlO" 1 1 5.0 x 10~2 8.929 x 10" 1 2.790 x 10~5 6.378 x 10 ~8
Mg/m3 = g/cm3 1.0 XlO" 3 1 1.602 x 10" 2 2.768 x 101 9.978 x 10~2 1.198 x 10" 1
cwt (UK) (long cwt)
ton (US) (short ton)
ounce
grain
1.968xlO~ 2 8.929 x 10~3 19.68 2.OxIO 1 1 1.786 x 101 5.580 x 10" 4 1.276 x 10 ~6
1.102xl0~ 3 5.0 x 10~4 1.102 1.120 5.600 x 10" 2 1 3.125 x 10~5 7.143 x 10 ~8
3.527XlO 1 1.6 x 101 3.527 x 104 3.584 x 104 1.792 x 103 3.2 x 104 1 2.286 x 10 " 3
1.543 x 104 7.0 x 103 1.543 x 107 1.568 x 107 7.840 x 105 1.4 x 107 4.375 x 102 1
lbm/cu.ft 6.243 XlO" 2 6.243XlO 1 1 1.728 x 103 6.229 7.480
lbm/cu.in
lbm/gal (UK)
lbm/gal (US)
3.613 x 10" 5 3.613xlO~ 2 5.789 x 10~4 1 3.605 x 10~3 4.329 x 10~3
1.002 x 10~2 1.002XlO1 1.605 x 10" 1 2.774 x 102 1 1.201
8.345 x 10" 3 8.345 1.337 x 10" 1 2.310 x 102 8.327XlO" 1 1
Force IN kp lbf dyn tonf (UK) tonf (US)
N (kg m/s2)
kgf, kp
lbf
dyn
tonf (UK) (long ton)
tonf (US) (short ton)
1 9.807 4.448 1.0 x IO"5 9.964 x 103 8.896 x 103
1.02OxIO-1 1 4.536 x 10~! 1.020 x 10~6 1.016 x 103 9.072 x 102
2.248 x HT 1 2.205 1 2.248 x 10~6 2.240 x 103 2.0 x 103
1.0 xlO 5 9.807 x 105 4.448 x 105 1 9.964 x 108 8.896 x 108
1.004 x 10~4 9.842 x 10~4 4.464 x 10~4 1.004 x 10~9 1 8.929 x 10"1
1.124 x 10" 4 1.102 x 10~3 5.0 x 10~4 1.124 x 10~9 1.120 1
Pressure lPa(=lN/m2) IkPa 1 MPa (=1 N/mm2 1 bar ( = 0.1 MPa) lp/cm 2 t lkp/m 2 t lat^lkp/cm2)+ 1 atm( = 760Torr)t lTorr(= 1/760atm)f Psi (lbf/sq. in) f
Pa
MPa (N/mm 2 )
kPa
1 103 106 105 9.8IxIO 1 9.81 9.8IxIO 4 1.01325 x 105 1.33 x 102 6.895 x 103
10~3 1 103 102 9.8IxIO" 2 9.8IxIO" 3 9.8IxIO 1 1.01325 xlO 2 1.33XlO"1 6.895
10- 6 10" 3 1 10"1 9.8IxIO" 5 9.8IxIO" 6 9.81 x 10~2 1.01325XlO"1 1.33 x 10" 4 6.895 x 10" 3
bar
p/cm 2
kp/m 2
at+
atm*
Torrt
Psi (lbf/sq. in)t
10" 5 10" 2 10 ! 1 9.81 x 10"4 9.8IxIO" 5 9.8IxIO" 1 1.013 1.33 x 10" 3 6.895 xlO" 2
1.02 x 10" 2 1.02x10' 1.02 xlO 4 1.02 xlO 3 1 10" ! 103 1.033 x 103 1.36 7.03IxIO" 5
1.02XlO-1 1.02 xlO 2 1.02 x 105 1.02 xlO 4 10] 1 104 1.033 x 104 1.36XlO1 7.03IxIO" 6
1.02 x 10~5 1.02 xlO" 2 1.02x10" 1.02 10" 3 10~4 1 1.033 1.36 x 10" 3 7.031 x 10~2
9.87 x 10" 6 9.87 x 10" 3 9.87 9.87 xlO" 1 9.68 x 10 " 4 9.68 x 10" 5 9.68 xlO" 1 1 1.32 x 10" 3 6.805 xlO" 2
7.50xl0~ 6 7.50 7.5OxIO3 7.5OxIO2 7.36x10"' 7.36 x 10"2 7.36 xlO 2 7.6OxIO2 1 5.17IxIO" 1
1.450xl0~ 4 1.45OxIO-1 1.45OxIO2 1.45OxIO1 1.422 x 10 ~2 1.422 x 10~3 1.422XlO1 1.47OxIO1 1.934 x 10"2 1
Non SI units.
Stress l P a ( = lN/m 2 ) lN/mm 2 (= IMPa) lkp/cm2 ( = 1 at)t lkp/mm 2 t Psi lbf/sq. in
Pa
N/mm2
kp/cm 2t
kp/mm2t
Psi (lbf/sq. in)1
1 106 9.8IxIO 4 9.8IxIO 6 6.895 x 103
10" 6 1 9.8IxIO- 2 9.81 6.895 x 10~3
1.02 XlO" 5 1.02XlO1 1 102 7.031 x 10~2
1.02 xlO" 7 1.02XlO-1 10~2 1 7.031 x 10~4
1.45OxIO-4 1.45OxIO2 1.422XlO1 1.422 xlO 3 1
Non SI units.
Viscosity (dynamic) lPas mPas cP kps/m2 kph/m2 lbm/(fts) lbm/(fth) lbf s/sq. ft
Viscosity (kinematic) Im2Zs mm2/s m2/h cSt sq. ft/s sq. ft/h
Pas (Ns/rcm2) (kg/(sm)) 1 1.0 x 10- 3 1.0 xlO" 3 9.807 3.530 x 104 1.488 4.134 x 10~4 4.788XlO 1
mPas (mNs/m2)
cP
1.0 xlO 3 1.0 xlO 3 1 1 1 1 9.807 x 103 9.807 x 103 3.530 x 107 3.530 x 107 1.488 x 103 1.488 x 103 1 4.134 x 10" 4.134 x 10" 1 4.788 x 104 4.788 x 104
m2/s 1 1.0 x 10" 6 2.778 x 10~4 1.0 x IO' 6 9.290 x 10~2 2.581 x 10" 5
mm2/s 1.0 xlO 6 1 2.778 x 102 1.0 9.290 x 104 2.581 x 10" 1
kps/m 2
kph/m2
lbm/(fts)
1.02OxIO-1 1.020 x 10" 4 1.02OxIO-4 1 3.60 x 103 1.518 x 10"1 4.215 x 10~5 4.882
2.833 x 10 ~5 2.833 x 10~8 2.833 xlO~ 8 2.778 x 10" 4 1 4.215 x 10" 5 1.171 x IO"8 1.356 x l O " 3
6.720 x KT 1 6.720 x 10~4 6.72OxIO- 4 6.590 2.372 x 104 1 2.778 x 10" 4 3.2HxIO 1
m2/h 3.6OxIO3 3.60 x 10" 3 1 3.60 x 10- 3 3.345 x 102 9.290 x 10~2
cSt 1.0 x 106 1.0 2.778 x 102 1 9.290 x 104 2.581 x IO1
lbm/(fth) 2.419 x 103 2.419 2.419 2.372 x 104 8.540 x 107 3.60 x 103 1 1.158 x 105
sq. ft/s 1.076 x 10l 1.076 x 10~5 2.990 x 10"3 1.076 x 10~5 1 2.778 x 10~4
lbf s/sq. ft 2.089XlO" 2 2.089 x 10~5 2.089 x 10~5 2.048XlO- 1 7.373 x 102 3.103 x 10~2 8.634 x 10" 6 1
sq. ft/h 3.875 x 104 3.875 x 10~2 1.076 x 101 3.875 x 10" 2 3.60 x IO3 1
N/m (kg/s2)
Surface tension lN/m mN/m kp/m dyn/cm
Energy IJ kWh kpm PSh lbfft erg HPh kcal BTU a
J(Nm) (kgm 2 /s 2 ) 1 3.6OxIO6 9.807 2.648 x 106 1.356 1.0 x 10" 7 2.685 x 106 4.187 xlO 3 1.055 x 103
dyn/cm
1.02OxIO-1 1.020 xlO~ 4 1 1.020 x 10 ~4
1.0 xlO 3 1.0 9.807 x 103 1
kgfm kpm
Psh
lbfft
erg
HPh
kcal
BTUa
1.02OxIO-1 3.67IxIO 5 1 2.70 x 105 1.363 x 10"1 1.020 x 10 " 8 2.737 x 105 4.269 X^ 102 1.076 x 102
3.777xlO~ 7 1.360 3.704 xlO~ 6 1 5.120 x 10"7 3.777 x 10~14 1.014 1.581 x 10" 3 3.985 x 10" 4
7.376X10" 1 2.655 x 106 7.233 1.953 x 106 1 7.375 x 10" 8 1.980 x 106 3.088 x 103 7.782 x 102
1.OxIO7 3.6OxIO13 9.807 x 107 2.648 x 1013 1.356 x 107 1 2.685 x 1013 4.187 xlO 1 0 1.055 x 1010
3.725xlO~ 7 1.341 3.653 x 10~6 9.863 x 10"1 5.051 x 10~7 3.725 x 10~14 1 1.560 xlO~ 3 3.930 x 10~4
2.388xlO~ 4 8.598 x 102 2.342 x 10~3 6.324 x 102 3.238 x 10~4 2.388 x IO' 11 6.412 x 102 1 2.520 x 10"1
9.478xlO~ 4 3.412 x 103 9.295 x 10~3 2.510 x 103 1.285 x 10~3 9.478 x 10"11 2.544 x 103 3.968 1
kWh 2.778xlO~ 7 1 2.724 xlO" 6 7.355 x 10"1 3.766 x 10~7 2.778 x 10"14 7.457 x 10"1 1.163 xlO~ 3 2.931 x 10" 4
kgf/m (kp/m)
1.0 xlO 3 1 9.807 x 103 1.0
1 1.0 xlO~ 3 9.807 1.0 x 10 ~3
British thennal unit.
J (Nm) (kgm 2 /s 2 )
Heat 1J kcal BTU CHU Wh a
mN/m
kca! 2.388 x 10" 4 1 2.520 x 10" 1 4.539XlO" 1 8.598XlO" 1
1 4.187 xlO 3 1.055 x 103 1.90OxIO3 3.6OxIO3
BTU
CHU°
9.478 x 10~A 3.968 1 1.80 3.412
5.262 x 10" 4 2.203 5.552 x 10" 1 1 1.894
Centigrade heat unit.
Power
W (J/s) (kgm 2 /s 3 )
kgf m/s kpm/s
1W kpm/s PS HP erg/s ft lbf/s kcal/h BTU/h
1 1.020 x IO"1 9.807 1 7.355 x IO2 7.5 x IO1 7.457 x IO2 7.604 x 10l 1.0 x 10" 7 1.020 x 10~8 1.356 1.383 x 10" 1 1.163 1.186 x 10"1 2.931 x 10" 1 2.988 x 10~2
PS HP (metr) 1.360 x 10" 3 1.333 x 10~2 1 1.014 1.360 x IO"10 1.843 x 10" 3 1.581 x 10" 3 3.985 x 10" 4
HP 1.341 x 1.315 x 9.863 x 1 1.341 x 1.818 x 1.560 x 3.930 x
erg/s 10~3 10" 2 10" 1 10" 10 10" 3 10" 3 10" 4
1.0 x 107 9.807 x 107 7.355 x 109 7.457 x IO9 1 x 10~8 1.356 x IO7 1.163 x IO7 2.931 x IO6
ft lbffs 7.376 x 10"1 7.233 5.425 x IO2 5.50 x IO2 7.375 1 8.578 x 10" 1 2.162 x 10" 1
kcal/h
BTU/h
8.598 x 10" 1 8.432 6.324 x 102 6.412 x IO2 8.598 x 10~8 1.166 1 2.520 x 10" 1
3.412 3.346XlO1 2.510 x IO3 2.544 x IO3 3.412 x 10" 7 4.626 3.968 1
Thermal conductivity
W/mK (kgm/(s3K))
kcal/(mh°C)
BTU/(fth°F)
BTU/(inh°F)
BTU in/ (sq.fth°F)
1 W/(mK) kcal/(mh°C) BTU/(fth°F) BTU/(inh°F) BTU in/(sq. fth°F)
1 1.163 1.731 2.077 x IO1 1.442 x 10" 1
8.598 x 10~! 1 1.488 1.786 x IO1 1.24 x 10" 1
5.778 x 10~J 6.72OxIO" 1 1 1.2 x IO1 8.333 x 10~2
4.815 x 10~2 5.6OxIO" 2 8.333 x 10" 2 1 6.944 x 10~3
6.933 8.064 1.2XlO1 1.44 x IO2 1
Specific heat, heat capacity
J/kgK (m2Z(S2K))
kJ/(kgK)
kcal/(kg°C)
BTU/(lbm°F)
1 J/(kgK) kJ/(kgK) kcal/(kg°C) BTU/(lbm°F) Wh/(kgK)
1 1.0 x IO3 4.187 xlO 3 4.187 x IO3 3.6OxIO3
1.0 x 10 ~3 1 4.187 4.187 3.60
2.389 x 10 " 4 2.389 x 10" 1 1 1.0 8.598XlO" 1
2.389 x 10 ~4 2.389 x 10"1 1.0 1 0.8598
E.
C O N V E R S I O N TABLE FOR SI vs. E N G L I S H - A M E R I C A N U N I T S
SI to English-American unit
English-American unit to SI
Length I m = 1.0936 yd = 3.28 ft = 39.37 in 1 mm = 0.03937 in
lyd = 3 ft = 0.9144m l f t = 12 in = 0.3048 m Im = 25.4 mm
lkg = 2.20461b
lib = 0.45359 kg
1 N = l(kgm)/s 2 = 2.248 x 10" 1 lbf
I M = 4.448 N
1 Pa = 1 N/m 2 = 1.450 x 1O-4 lbf/in2
1 lbf /in 2 = 1 psi = 6.89475 x 103 Pa
Mass, weight
Force
Pressure 4
= 6.89475 x 10 ~2 bar
= 2.953 x 10 ~ in Hg = 4.015 x 10~ 3 inH 2 O
HnHg = 3.38638 x 103Pa = 3.38638 x 10"2 bar
1 bar = 105 Pa = 1.450 x 10l lbf /in 2 = 2.953 x 101UiHg
ImH 2 O = 2.49089 x 102Pa
2
= 4.015 x 10 HiH 2 O
= 2.49089 x 10 " 3 bar
Tension, stress lN/mm 2 = 1.450 x 10 2 lbf/in 2
1 lbf/in2 = 6.89475 x 10 " 3 N/mm 2
Dynamic viscosity IPas = (Ns)/m 2 = 2.089 x 10~2 (lbf s)/ft2 1
= lkg/(ms) = 6.72x 10" lbf/(ft s)
1 (lbf s)/ft2 = 4.78802 x 101 Pas llb/(fts) = 1.488 Pa s
Kinematic viscosity I m 2 / s = 1.076 x 101 ft 2 /s
Ift 2 /s = 9.29x 10~ 2 m 2 /s
U = I W s = INm = 7.376 x 10"1 ftlbf
1 ft lbf = 1.35582 J
Energy, quantity of heat
1
IkJ = 9.478 x 10- BTU
IBTU= 1.05506 kJ
Power, heat flow rate I W = I Nm/s = 7.367 x 10 - 1 (ftlbf)/s 1
= 1 J/s = 4.425 x 10 (ftlbf)/min = 3.412 BTU/h
l(ftlbf)/s= 1.35582 W 1 (ftlbf)/min = 2.25969 x 10~2 W 1 BTU/h = 2.93072 x 10" 1 W
Specific heat capacity 1 J/(kg K) = 2.388 x 10~ 4 BTU/(lb/ 0 F) 3
5
1 J/(m K) = 1.491 x 10~ BTU/(ft
3 0
F)
IBTU/(Ib 0F) =4.1868 x 10 3 J/(kgK) IBTU/(ft 3 0F) =6.71 x 10 4 J/(m 3 K)
Thermal conductivity 1 W/(mK) = 6.933 (BTUin)/(ft 2 h °F) = 5.778 x 10~ 1 BTU/(fth°F) = 4.815 x 10 " 2 BTU/(inh 0F)
1 (BTUin)/(ft2h °F) = 1.442 x 10^1 W/(mK) lBTU/(fth°F) = 1.7307 W/(m K) 1 BTU/(in h °F) = 2.07689 x 101 W/(mK)
English-American unit to SI
SI to English-American unit Heat flux density
lBTU/(ft 2 h) = 3.1546 W/m 2
l W / m 2 = 3.17x 10- 1 BTU/(ft 2 h)
1BTU/(in2 h) =4.54263 x 10 2 W/m 2
= 2.201 x Kr 3 BTU/(in 2 h) Heat transfer coefficient lW/(m 2 K) = 1.761 x 10- 1 BTU/(ft 2 h°F)
1 BTU/(ft2 h °F) = 5.678 W/(m 2 K)
1 (m2 K)/W = 5.678 (ft2 h °F)/BTU
1 (ft2h °F)/BTU = 1.761 x 10- 1 (m 2 /K)/W
I K = I 0 C = 1.8 0 F
1 0F = 5.555 x 10" 1 K = 5.555 x 10" 1 0C
Thermal resistance
Temperature
Conversion: Tc= ^(rF-32)
r F = | r c + 32
7 K = ^ Tp+ 255.372
TF = I (TK- 255.372)
TQ - Temperature in Celsius ( 0 C); T? - Temperature in fahrenheit (0F); TK -
Temperature in kelvin (K).
S E C T I O N
P
O
L
Y
M
E
R
I
D
E
P
O
L
Y
M
Z E
A R
T I
Il
I Z
O A
N T
A I
O
N N
D
D e c o m p o s i t i o n F r e e
R a t e s
R a d i c a l
o f
O r g a n i c
I n i t i a t o r s
K. W . D i x o n Akzo Nobel Chemicals Inc., Dobbs Ferry, NY, USA A. Introduction 11-1 B. Tables of Decomposition Rates of Organic Free Radical Initiators II-2 Table 1. Azonitriles II-2 Table 2. Miscellaneous AzoDerivatives M-9 Table 3. Alkyl Peroxides II-23 Table 4. Acyl Peroxides II-29 Table 5. Hydroperoxides and Ketone Peroxides II-43 Table 6. Peresters and Peroxy Carbonates II-48 Table 7. Miscellaneous Initiators II-68 C. Notes II-69 D. References II-70 A.
INTRODUCTION
The decomposition of most organic free radical initiators follows first order kinetics. With certain peroxides, however, higher order decompositions are observed. Generally, the higher order reaction is caused by a reaction of radicals with the initiator (induced decomposition). The value of the rate for unimolecular decomposition may be determined either by extrapolation of the rate back to zero initiator concentration or by use of a monomer or other radical "trap". Some of the peroxides may also decompose by non-radical routes. Acids, bases, and polar solvents favor ionic intermediates. Koenig (296) presents an excellent discussion of azo and peroxide decomposition pathways. Decomposition rate (kd) data in these tables are reported for first order kinetics:
where / is the initiator concentration (mol/1) and t is the time (s). The decomposition rate constant k^ is related to half-life (t ^ 2 ) by the following equation:
Fig. 1 relates kd in s" 1 to half-life for the range of k^ found in the tables. For some of the initiators listed, the enthalpy (AH *) is given (Note h) rather than the Arrhenius activation energy
(E2). The two quantities are related by the equation £ a = AH* +RT, where R is the gas constant (in kJ/moldeg.) and T is the absolute temperature (94). Assuming that k& is linear with respect to \/T and that the activation energy, £ a , and the decomposition rate constant, kd, for one temperature are known, kd for any temperature can be calculated from the following expression:
Where given by the author, the overall equation for kd in terms of the frequency factor (A) and activation energy (£ a ) has been included. Thus for any temperature (converted to K) the kd may be calculated:
Although a wide range of initiators is reported in the tables, the author admits that the compilation is far from complete. There are several purposeful omissions: (a) azo compounds, where the azo group is part of a ring structure - these recombine almost exclusively; (b) compounds that decompose at appreciable rates only above 200 degrees. Neither class would be expected to be useful initiators. The data have been arranged into seven tables. Within each table the individual initiators are listed according to the following criteria: 1. Initiators: (a) according to increasing number of carbon atoms; (b) alphabetically (neglecting trivial prefixes), for compounds containing equal number of carbons; (c) miscellaneous initiators are listed alphabetically in Table 7. 2. For each initiator, solvents are listed alphabetically. 3. For a given solvent, all measurements reported by one investigator are listed in a series, with the activation energy listed opposite the lowest temperature. Abbreviations: DMSO - dimethyl sulfoxide; DMAC dimethylacetamide; DMF - dimethylformamide; THF tetrahydrofuran; DCB - 1,2-dichlorobenzene.
20hrs. 100 days
120 min.
12 min.
10 days
100 sec. 200 min.
10 sec.
1 sec. 0.12 sec.
20 min.
40hrs. 200 days _200 sec.
60 min.
1 year 50 days
100 hrs.
10 hrs.
40 sec.
0.5 sec.
5 sec.
10 min. Rate constant (*d)
Figure 1. Relationship of half life to rate constant (k^) (half lives are to the right of each vertical line)
B.
TABLES O F D E C O M P O S I T I O N RATES O F O R G A N I C FREE R A D I C A L I N I T I A T O R S
TABLE 1. AZONITRILES Number of C atoms 5
Initiator
Solvent
N-Acetyl N'-oc-cyanoethyl diimide
Toluene
2-Cyano-2-propyl-azo-formamide
Chlorobenzene Toluene
Xylene
8
2-(Carbamoylazo)isobutyronitrile N-Acetyl N'-ot-cyanocyclopentyldiimide
Toluene Toluene
2,2/-Azo-bis-isobutyronitrile (2,2'-azo-bis-2-methylpropionitrile)
Acetic acid
Acetonitrile tert-Amyl alcohol Aniline Benzene
T( 0 C) 60.8 68.6 82.0 100 100 110 104 100 120 104 65.7 76.8 91.5 79.9 79.9 79.9 80 82 82 79.9 79.9 80.2 80.2 40.0 45.2 50.0 55.0 60.5 69.5
^d(S"1) 2.46 x 10 " 5 5.45 x l 0 ~ 5 2.49 xlO~ 4 1.5 x 10 " 5 2.1 x 10 ~5 6.8 x l O " 5 1.9 XlO" 5 2.IxIO-5 2.4xlO-4 1.93 x 10 ~5 1.82 x l O " 5 7.29 x 10 ~5 3.65 x l O " 4 1.43 x 10 ~4 1.48 x 10 ~4 1.62 XlO" 4 1.52 x l O - 4 1.50xl0" 4 1.49 XlO" 4 1.25 x 10 " 4 1.24 xlO~ 4 1.40 x 10~4 1.68 x l O " 4 5.44 x l O " 7 1.12 XlO" 6 2.64 XlO" 6 5.19 x l O " 6 1.16 x l O " 5 3.78 x l 0 ~ 5
Ea (kj/mol)
Notes
110.2
144.3 a 144.3 a 120.3
V2 V3 a a a v2
128.4
a,t2 a,t2 a,t2 a,t2 a,t2 a,t2
Refs. 322 322 322 93 93 93 339 93 93 340 322 322 322 146 146 146 62 2 175 146 146 61 61 69 69 69 69 69 69
TABLE 1. cont'd Number of C atoms S (cont'd)
Initiator 2,2'-Azo-bis-isobutyronitrile
Solvent Benzene
Benzene or Toluene
H-Butanol Isobutanol Di-n-butyl phthalate
Carbon tetrachloride
Chlorobenzene
Cyclohexanone Dichloroethane Dichloroethane: propionitrile (1:1) Diethylene glycol monobutylether DMF DMF DMF/methyl methacrylate (9/1) (8/2) (7/3) (6/4) (5/5) (4/6) (3/7) (2/8) (1/9) N,iV-Dimethylaniline
Dioxane/Water (80/20) pH7.0
Dioxane/Water (80/20) pH 10.7 Dodecanethiol
T( 0 C) 40 50 60 70 78 37 43 50 60 100 T (K) 82 82 82 80.2 80 90 100 110 120 127 137 145 80 90 100 110 120 40 60 77 64 82 101 T (K) 82 70
^d(S"1)
Ea (kj/mol)
4.83 x 10~7 2.085 XlO" 6 8.45 xlO~ 6 3.166 XlO" 5 8.023 x l O " 5 2.83 x 10 ~7 7.35 x l O - 7 2.16 x l O " 6 9.15 x l O - 6 1.52 x l O - 3 1.58 x 1015 1.54 x 10~4 1.55 XlO" 4 1.66 x 10~4 (1.67-1.76) x 10~4 2.64 x 10 ~4 6.47 x l O - 4 1.78 XlO" 3 4.88 x l O - 3 1.43 XlO" 2 2.48 x l O " 2 5.43 XlO" 2 1.24XlO- 1 2.22 x l O " 4 4.23 XlO" 4 1.99 x l O - 3 5.3 x l O " 3 1.48 x l O - 2 2.15XlO" 7 4.0OxIO- 6 1.2IxIO- 4 1.93 x 10 ~5 1.93 x l O - 4 1.93 x l O - 3 2.89 x 1015 1.43 x 10 ~4 2.0IxIO- 5 1.64 x l O - 5
123.4
Notes
128.9
exp[- 128.9/#7] a a a 122.2
y4 y4 y4 y4 y4 y 16 y 16 y 32
128.4
a,t2 a,t2 a
exp[- 130.23//?7] a m8
Refs. 66 66 66 66 66 39 39 39 19 39 39 175 2 2,175 61 236 236 236 236 236 236 236 236 375 375 375 375 375 69 69 62 344 344 344 344 2,175 293 293
1.94 x 10~5 2.442 x 10 ~5
293 26
6.2096 x l O - 5 6.45 x l O - 4
294 355
60 60 60 60 60 60 60 60 60 66.82 72.27 80 65.3 70.0 75.0 80.0
5.55 x 10~4 5.1OxIO- 4 5.1OxIO- 4 5.3OxIO- 4 5.65 x 10 ~A 5.35 x l O - 4 5.65 x l O - 4 6.25 x l O - 4 6.5OxIO- 4 3.483 x 10~5 6.914 XlO" 5 1.83 x l O - 4 2.53 x 10 " 5 3.20xl0~ 5 8.5 x l O - 5 1.62 x l O - 4
355 355 355 355 355 355 355 355 355 26 26 62 186 186 186 186
75.0 80
1.72 x l O " 4 1.46 x 10 ~4
70 66.82 71.2 60
a 141.0
a
186 62
Notes page 11-69; References page 11-70
TABLE 1. cont'd Number of C atoms S (cont'd)
Initiator 2,2'-Azo-bis-isobutyronitrile
Solvent Ethyl acetate Ethyl acetate/ SnCl4 (1:1) Glycerol/DMF 95/5, (v/v) Maleimide (solid state) Methyl methacrylate
Nitrobenzene 1-Nitrobutane Propionitrile/SnCl4 (1:1) Propylene carbonate Styrene
Toluene
Toluene/SnCl4 (1:1) Xylene
o-Xylene
3,6-Dicyano-3,6-dimethyl1,2-diazacyclohexene-l
Water Dichloromethane
2,2/-Azo-bis[2-(hydroxymethyl)propionitrile
Methyl cellosolve
9
N-Acetyl W-a-cyanocyclohexyldiimide
Toluene
10
N-Acetyl N'-oc-cyanocycloheptyldiimide
Toluene
4,4/-Azo-bis-(4-cyanopentanol) 4,4/-Azo-bis-(4-cyanovaleric acid) l,r-Azo-bis-l-cyclobutanenitrile
Acetone Acetone Mesitylene
2,2'-Azo-bis-2-methylbutyronitrile
Xylene Toluene Xylene
T( 0 C) 40 60 T (K) 71.2 65 72 50 50 60 70 70 80 100 82 T (K) 72.27 50 70 T (K) 68.4 60.00 60 65 70 80.4 90.0 100.0 105.0 69.8 80.2 80.3 60 50 77 82 80 80 82 85 95 105 T(K) 50 -6.06 0.03 2.52 77
82.0 92.8 100.6 59.4 66.1 79.6 70 70 130.4 141.6 120.4 69.8 80.2 80
kA (s^1) 4.7 x l O " 7 9.36 XlO- 6 8.56 x 1015 2.6054 x 10~5 4.97 x 10 ~5 2.07 x l O - 4 9.7 x 10 ~7 7.5 x l O - 6 7.2OxIO- 4 3.1 x 10" 5 1.27 x l O - 4 1.98 x l O " 4 2.24 x l O - 3 1.45 x l O " 4 9.10 x 1015 5.821 x 10 ~5 2.97 x 10~6 4.72 x l O - 5 1.29 x 1015 3.8 x l O - 5 9.03 x 10~6 9.8 x l O " 6 1.9 x l O - 5 4.OxIO- 5 1.55 x l O - 4 4.86 x 10- 4 1.6OxIO- 3 2.61 x 10 - 3 3.8 x l O - 5 (1.72-1.60) x 10- 4 1.3OxIO- 4 4.0 x 10" 5 2.OxIO- 6 9.46 x l O - 5 1.44 x l O - 4 1.53 xlO~ 4 1.5OxIO- 4 1.45 x l O " 5 2.75IxIO- 4 9.58IxIO- 4 2.782 x l O - 3 3.16xl0 1 5 1.56 x 10 ~6 4.6OxIO- 4 1.14 x l O " 3 1.64 x l O - 3 1.93 x 10 ~5
5.2IxIO- 5 1.7OxIO- 4 3.74 XlO" 4 4.44 x 10 ~5 9.82 x 10 ~5 4.51 x 10- 4 4.26 x 10~5 4.58 x 10 ~5 5.20xl0"5 1.6OxIO- 4 2.05 x 10 ~5 2.3 x IO"5 8.4-9.OxIO- 5 9.97 x 10~5
Ea (kj/mol)
Notes
128.5
a,t2 a,t2
exp[- 121 A/RT]
a a a a,v20
132.2
V4 a a a
exp[- 121.0/RT] 127.6
a a
exp[- 127.6/RT] c,m3 a 121.3
142.3 m2
131.0
a a a a a,t4 a
131.8
exp[-131.8//?7] 88.8
h
a
114.8
112.0
m7 ni7 134.3
129.7 123.0
a
Refs. 69 69 290 294 185 185 289 289 355 216 216 226 226 2,175 290 26 132 132 132 234 291 290 339 47 47 47 47 47 61 61 234 290 175 175 175 62 62 2 332 332 332 332 285 252 252 252 339
322 322 322 322 322 322 305 305 101 101 101 61 61 62
TABLE 1. cont'd Number of C atoms
Initiator
10 (cont'd)
2,2'-Azo-bis-2-ethylpropionitrile
Nitrobenzene
2,2'-Azo-bis-2-methylbutyronitrile
Cyclohexanone
Solvent
Chlorobenzene
Ethanol
Ethylbenzene
N-benzoyl iV'-a-cyanoethyldiimide
4-Bromophenyl-azo-2-methyl2-propionitrile 4-Bromophenyl-azo-(methylpropanedinitrile)
DCB
4-Nitrophenyl-azo-2-methyl2-propionitrile 4-Nitrophenyl-azo-2-(methylpropanedinitrile)
DCB
Phenyl-azo-2-methyl-2propionitrile Phenyl-azo-2-(methylpropanedinitrile)
11
Toluene Toluene
DCB
DCB
DCB DMF 1,2,4-Trimethylbenzene DCB
Phenyl-azo-2-(methylpropanedinitrile)
DCB
4-Bromophenyl-azo-2-(ethylpropanedinitrile)
DCB
4-Methoxyphenylazo-2(methylpropanedinitrile)
Butanol Chlorobenzene DCB Decane DMSO Heptane Hexanol Octane Octanol Propanol Toluene Chlorobenzene
4-Methoxyphenyl-azo2-(methylpropanedinitrile)
DCB
T( 0 C) 80 100 79.9 90.0 100.1 66 84 104 T (K) 80.0 90.0 100.0 80.0 90.0 100.0 67 69.2 83.2 90.0 160 80 85 90 T (K) 160 80 85 90 T(K) 160 160 160 80 85 90 T (K) 80 85 90 T (K) 80 85 90 T (K) 85 85 85 85 85 85 85 85 85 85 85 78.1 85.3 90.2 75.0 85.1 95.1 104.9
kd (s"1) 8.3 x 10~5 1.08 x l O - 3 1.06 x l O " 4 3.7IxIO-4 1.27xlO- 3 1.93 x 10 ~5 1.93 x l O - 4 1.93 XlO" 3 1.38 x 1015 1.05 x 10 " 4 3.23 x l O - 4 9.87 x l O - 4 8.22 x l O " 5 2.94 x l O - 4 1.02 x l 0 ~ 3 1.9 x l O " 5 1.31 x 10 ~5 7.96 x l O - 5 1.744 xlO~ 4 2.85 x 10 ~5 2.4xlO" 5 4.8xlO-5 9.4 x 10 ~5 7.23 xlO 1 6 2.3 x 10 " 5 3.1 x 10~5 6.0xl0"5 1.14 x l O - 4 1.35 xlO 1 6 5.65 x 10~5 6.9xlO" 5 5.35 x 10 ~5 4.45 x 10 ~5 8.0xl0"5 1.42 x l O - 4 8.48 x 1013 2.4xlO~ 5 4.8xlO" 5 9.4 x l O - 5 7.23 x 1016 1.85 x 10 " 5 3.65 x 10 ~5 7.05 x l O - 5 3.00 x 1016 2.9xlO" 4 9.5 x 10" 5 8.35 x l 0 ~ 5 3.8xl0"5 4.87 XlO" 4 5.15 x l 0 ~ 5 1.6 x l O " 4 4.4xlO~ 5 1.5xlO~ 4 3.1 x 10~4 6.75 x l 0 ~ 5 5.76 x 10 ~5 9.52 x 10 ~5 1.307 xlO~ 4 2.73 x l 0 ~ 5 8.35 x l 0 ~ 5 2.236 xlO~ 4 6.397 xlO~ 4
Ea (kj/mol)
Notes
143.1 131.6
a a h
exp[- 129.93//?7] 119.8
h
134.9
h
a 127.9
145.0
exp[-U5.0/RT]
139.1
exp[-139.1 /RT]
123.2
exp[- 123.2/RT] 145.0
exp[- 145.0/RT] 142.9
exp[- 142.9/RT] 110 71 115 142 114 136 102 140 112 103 137 71.5
116
Refs. 226 226 336 336 336 344 344 344 344 336 336 336 336 336 336 339 322 322 322 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 329 331 331 331 331 331 331 331 331 331 331 331 330 330 330 330 330 330 330
Notes page 11-69; References page 11-70
TABLE 1. confd Number of C atoms 11 {confd)
Initiator 4-Methoxyphenyl-azo2-(methylpropanedinitrile)
DCB
Phenyl-azo-2-(2-methylbutyronitrile)
DCB DMF 1,2,4-Trimethylbenzene DCB
4-Tolyl-azo-2-(methylpropanedinitrile)
12
13
14
Solvent
4,4/-Azo-bis-(l-bromo4-cyanopentane) 4,4/-Azo-bis-4-cyanopentanoic acid 4,4'-Azo-bis-(4-cyanopentanol)
Toluene
U'-Azo-bis-l-cyclopentanenitrile
Toluene
2,2'-Azo-bis-2-cyclopropylpropionitrile (mp 64-65)
Toluene
2,2'-Azo-bis-2-cyclopropylpropionitrile (mp 76-77)
Toluene
2,2'-Azo-bis-2,3dimethylbutyronitrile 2,2/-Azo-bis-2-methylvaleronitrile 4-Bromophenyl-azo-2(isopropylpropanedinitrile)
Toluene
T(K) 80 85 90 T (K) 160 160 160 80 85 90 T(K) T(K)
kd (s"1) 5.67 x 1012 4.7xlO~ 5 8.1 x 10 " 5 1.38 x l O " 4 2.94 x 1012 5.OxIO" 5 5.2xl0~ 5 5.05 x 10 " 5 4.5xlO" 5 7.9xl0~5 1.365 XlO" 5 1.21 x 1013 1.OxIO11 1.9 x l O " 5 8.97 x 10 " 5 2.55 x 10 " 4 7.99 XlO" 4 2.81 x 10" 3 8.99 x l O " 3 2.6xlO-2 5.2 XlO" 2 7.45 x l O " 5 2.43 x 10 " 4 5.18 xlO~ 4 3.50 x 10~5 7.53 x 10 ~5 2.68 XlO" 4 3.90 x 10 ~5 8.17 x 10 " 5 2.46 XlO" 4 2.6 x l O " 5 1.02 x 10 " 4 4.2xlO~ 5 (1.65-1.74) x 10" 4 1.4xl0~ 5 2.80xl0"5 5.4 XlO" 5 1.73 xlO 1 6 3.06 x 10 " 5 1.177 x 10 ~A 4.594 XlO" 4 7.320xl0" 4 2.06 xlO 1 7 1.62 x l O " 5 3.17 x 10 " 5 2.252 XlO" 4 1.12 x l O " 4 2.21 x 10 " 4 4.26 XlO" 4 1.19 xlO 1 7 4.85 x 10 " 5
£ a (kj/mol)
Notes
exp[- U6/RT] 114.8
Refs. 330 329 329 329 329 329 329 329 329 329 329 329 307
exp[- 114.S/RT]
117.7
exp[- UlJ/RT] exp[-104.7 /RT]
2,6-Dimethylphenyl-azo2-methylpropanedinitrile
DCB
N-Benzoyl W-a-cyanocyclopentyl diimide
Toluene
4-Bromophenyl-azoisobutylpropanedinitrile
DCB
4-Bromophenyl-azo-2(2-terf-butylpropionitrile) 4-Nitrophenyl-azo-2(2-terf-butylpropionitrile) Phenyl-azo-2-(2-terf-butylpropionitrile)
DCB
69 80 80 90 100 110 120 130 80.3 89.2 95.1 44.2 49.5 59.2 44.2 49.5 59.3 69.8 80.2 69.8 80.2 80 85 90 T(K) 60.1 70.0 80.6 84.5 T(K) 76.7 82.0 98.4 80 85 90 T(K) 160
DCB
160
1.8 x l O " 5
329
DCB 1,2,4-Trimethylbenzene Hexamethylphosphoramide Toluene
160 160 160
9.35 x 10 " 5 9.65 x 10 ~5 9.5xl0~5
329 329 329
2,2'-Azo-bis-2-cyclobutylpropionitrile (mp 38-42) 2,2'-AzO-Ws^-CyClObUIyIpropionitrile (mp 81.5-82.5)
Water
T( 0 C)
Di-w-butyl phthalate
Toluene DCB
Toluene
142.3
a a
141.4
117.2
108.8
w w w w w w
133.9 138.1 142.0
exp[- 142.0/RT] 130.5
exp[-130.5//?7] 131.9
141.6
exp[-141.6kJ//?7]
339 62 375 375 375 375 375 375 101 101 101 57 57 57 57 57 57 61 61 61 61 329 329 329 329 330 330 330 330 330 322 322 322 329 329 329 329 329
80.5
1.51 x 10 " 4
w
104
80.5
1.51 x 10 " 4
w
104
TABLE 1. cont'd Number of C atoms
Initiator
Solvent
14 {cont'd)
U'-Azo-bis-l-cyclohexanenitrile
Chlorobenzene DMSO
Nitrobenzene Toluene
2,2'-Azo-bis-2,4-dimethylvaleronitrile
Dimethyl-4,4'-azo-bis-cyanopentanoate (meso)
Xylene Toluene
Xylene DMAC
(no+)
(nD_)
4,4'-Azo-bis-4-cyano-l-methylpiperidine
DMSO
2,2'-Azo-bis-2-propylbutyronitrile
Nitrobenzene
2,2/-Azo-bis-2,3,3-trimethylbutyronitrile(mp 114-116) 2,2'-Azo-bis-2,3,3-trimethylbutyronitrile (mp 116-118) 2,2/-Azo-bis-2-methylhexylnitrile 2,2'-Azo-bis-2,4-dimethylvaleronitrile
Toluene
2,2/-Azo-bis-2,4-dimethylvaleronitrile (mp 56-57) 2,2/-Azo-bis-2,4-dimethylvaleronitrile (mp 74-76) 2,2/-Azo-bis-2-isopropylbutyronitrile AH4-Chlorobenzoyl) N'-OLcyanocyclohexyl diimide AHl-Cyanocyclohexyl)pentamethyleneketenimine
Toluene Toluene Toluene Toluene Toluene Toluene Toluene
Chlorobenzene Cumene Toluene terf-Butylbenzene
15
2-Phenyl-azo-2,4-dimethyl4-methoxyvaleronitrile JV-Benzoyl N'-ot-cyanocycloheptyl diimide
Xylene Toluene
T( 0 C) 79.97 100.12 80 85 90 95 100 80.3 95.2 102.4 88 77 51 68 T(K) 77 77.9 85.0 90.2 99.7 77.6 85.9 90.0 99.2 77.9 85.4 90.2 99.0 80 85 90 95 80 100 79.9 89.0 79.9 88.9 80.2 69.8 80.2 59.7 69.9 69.8 80.2 80.5 79.1 86.4 99.7 100 100 100 100 100 100 100 100 122 74.6 82.8 89.2
A^(S"1) 8.42 x l O " 6 1.107 XlO" 4 1.01 x l O " 5 2.01 x 10 " 5 3.89 x l O " 5 6.83 x l O " 5 1.14 x l O " 4 6.5 x 10" 6 5.44 x l O " 5 1.26 x l O " 4 1.9 XlO" 5 5.31 x 10 ~6 1.9 x l O " 5 1.9xlO" 4 6.98 xlO 1 4 5.77 x 10 ~4 1.43 x l O " 4 3.76 x 10 " 4 6.8OxIO" 4 2.05 XlO" 3 1.46 x l O " 4 4.03 x l O " 4 6.9OxIO" 4 2.04X10- 3 1.49 XlO" 4 3.90 x 10 ~4 6.95 x l O " 4 1.97xl0- 3 9.7xlO~ 6 1.75 x 10 " 5 3.64 x l O " 5 6.47 XlO" 5 2.55 x 10" 4 2.72 XlO" 5 7.42 x 10 " 5 2.59 x l O " 4 1.05 x 10 " 4 3.09 x 10" 4 1.58 x l O " 4 1.98 xlO~ 4 7.1 x 10 " 4 8.05 x 10 ~5 2.89 x 10 " 4 1.98 x l O " 4 7.IxIO"4 1.01 x 10" 4 8.6 x l O " 6 2.01 x 10 ~5 1.044 x l O - 4 3.85 x 10 " 5 2.07 x 10 " 5 3.93 x 10~5 1.42 x 10 " 5 3.10x 10" 5 1.83 x l O " 5 2.39 x 10 " 5 1.22 x 10- 5 1.9 x 10~5 6.43 x 10 " 5 1.781 x 10" 4 3.519 x l O " 4
E* (kj/mol)
Notes
140.2 135.6
h
121.3
121
a a a a
exp[-121//?7] 133.9
133.5
133.5
136.4
128.9 146.4 125.5
a a a a a a a a a a a a a h
a a w w w w
121.3 121.3 121.3
w w w w
132.7
p,z (1) p,z (3950) p,z (1) p,z (3950) p,z (1) p,z(3950) p,z (1) p,z (3950)
122.8
Refs. 179 179 135 135 135 135 226 101 101 101 339 175 343 343 343 175 205 205 205 205 205 205 205 205 205 205 205 205 135 135 135 135 226 226 57 57 57 57 61 61 61 57 57 57 57 50 322 322 322 299 299 299 299 299 299 299 299 339 322 322 322
Notes page 11-69; References page II - 70
TABLE 1. cont'd Number of C atoms 15 (cont'd)
16
Initiator
Solvent
N-(4-Methoxybenzoyl) N'-OLcyanocyclohexyldiimide
Toluene
JV-(4-Methylbenzoyl) jy'-otcyanocyclohexyl diimide
Toluene
iV-Phenylacetyl W-a-cyanocyclohexyl diimide
Toluene
4-Cyano-l-methylpiperidine-4,4'-azo4'-cyano-l,l'-dimethylpiperidinium nitrate
DMSO
4,4'-Azo-bis-4-cyano-1,1'-dimethylpiperidinium nitrate
DMSO
4,4/-Azo-bis(4-cyanopentanoyl)bis2-aminoethanol
DMF
Toluene
2,2/-Azo-bis-2-methylheptylonitrile
Toluene Xylene Toluene Xylene
80
Toluene
80.5
Toluene
80.5
Toluene
40 1.175 50 4.45 40 6.95 50 2.89 80.5 (1.325±0.35)
l,l'-Azo-bis-l-(2-methylcyclohexane)nitrile l,l'-Azo-bis-l-cyclohexanecarbonitrile 2,2/-Azo-bis-cyclopentylpropionitrile (mp 72.2-74.5) 2,2'-Azo-bis-2-cyclopentylpropionitrile (mp 96.3-97.6) 2,2/-Azo-bis-2,4,4-trimethylvaleronitrile (mp 67.5-69) 2,2'-Azo-bis-2,4,4-trimethylvaleronitrile (mp 94.5-95.5) 2,2'-Azo-bis-2-isopropyl-3-methylbutyronitrile U'-Azo-bis-l-cyano-^' dimethyl cyclohexane
Acetic acid Toluene
Toluene Toluene
133.9
132.6
h
124.7
h
115.1
a a exp[- 115/RT]
a
62
1.31 x 1O -4
w
104
1.30 x 10 ~4
w
104
w w w w
50 50 50 50 50
h
135 135 135 135 61 104 101 101 101 357 357 357 357
x x x x x
10~4 10~4 10~5 10~4 10~4
Toluene
69 74 80
2.83 x l O - 5 4.65 x l O - 5 1.16 x l O " 4
DMF
134.1
322 322 322 322 322 322 322 322 322 135 135 135 135 135 135 135 135 357 357 357 357 357 357 101 101 101 101 343 343 343 50 62 101
166.9
4.7 x l O " 6
DMAC
4,4'-Azo-bis(4-cyanopentanoyl)bis2-(2-aminoethoxy)ethanol
Toluene
142.8
Refs.
a
1.5IxIO- 5 2.79XlO" 5 5.4OxIO- 5 9.77 XlO" 5 8.3 x 10 ~6 2.27 x 10 ~4 5.35 x 10~5 1.45 x l O - 4 2.6OxIO- 4 1.77 x 10~5 2.9OxIO- 5 4.9OxIO- 5 1.74 x l 0 ~ 5
Toluene
Notes
126.4
80 85 90 95 80.3 80.5 36.6 45.4 49.7 65 69 74 65
DMSO
2,2'-AzO-Ms^-CyClOhCXyIpropionitrile l,l'-Azo-bis-l-cyclooctanenitrile
2,2'-Azo-bis-2-benzylpropionitrile
£ a (kj/mol)
7.1 x 1(T6 1.71 x 10 ~5 9.73 XlO- 5 1.06 x l O " 5 2.20 x 10 ~5 1.255 xlO~ 4 3.08 x 10 ~5 9.76 x 10 - 5 2.77xlO- 4 1.76 x 10~5 3.31 x 10~5 6.23 x 10 ~5 1.156xlO- 4 2.84 x l 0 ~ 5 5.1IxIO-5 9.87 x l 0 ~ 5 1.626xlO- 4 1.76 x 10 ~5 2.85 x 10 ~5 4.66 x l 0 ~ 5 1.73 x l O " 5 2.73 x l O - 5 4.53 x l O - 5 3.28 x 10~4 2.69 x l O " 5 9.72 x l O - 5 2.69X10- 4 1.9xlO" 5 1.9 x l O " 4 1.03 x 1015 1.63 x 10 ~4 1.78 x 10~4 7.43 x 10~6
2,2'-Azo-bis-(4-methoxy-2,4dimethylvaleronitrile)
l,r-Azo-bis-l-cycloheptane-nitrile
20
A:d (s"1)
80.8 87.9 101.2 81.4 87.3 101.9 74.3 82.9 91.2 80 85 90 95 80 85 90 95 65 69 74 65 69 74 69.5 48.9 58.9 67.3 30 47 T(K) 80.0 80.0 80.2
DMAC
18
T( 0 C)
113.5 121.3
132.2
108.4
357 357 54
TABLE 1. cont'd Number of C atoms 20 (cont'd)
22
34
Initiator /
2,2 -Azo-bis-2-isobutyl-4-methylvaleronitrile 2,2'-Azo-bis-2-(4-chlorobenzyl)propionitrile / 2,2 -Azo-bis-2-(4-nitrobenzyl)propionitrile l,l'-Azo-bis-l-cyclodecanenitrile
4,4'-Azo-bis-(4-cyanopentanyl)bis(heptadecafluorododecanoate)
Solvent Toluene
0
T( C)
1
kd (s" )
E* (kj/mol)
Notes
4
Refs.
Toluene
60.1 80.5 80
3.78 xlO~ 3 5.28 x 10 " 5 8.8xl0~
50 50 54
Toluene
80
1.00 x 10 ~
4
54
Toluene
50.8 60.2 69.5 90 100 110 120 130
5.4OxIO" 4 1.7OxIO4 5.69xlO4 9.86 x 10 " 3 2.11 x 10 ~ 3 4.4 x l 0 ~ 2 1.1 x 10~ 2 1.42 XlO"
Di-n-butyl phthalate
5
101 101 101 375 375 375 375 375
TABLE 2. MISCELLANEOUS AZO-DERIVATIVES Number of C atoms 2
Initiator l,l'-Azo-bis-formamide
Solvent DMF
DMSO
Formamide
4
Methyl-azo-3-propene
Hexamethylphosphoramide Vapor
5
2,3-Diazobicyclo[2,2,l]hept-2-ene
Isooctane
6
2,2'-AzO-Ws-PrOPaHe
Toluene Vapor
3,3'-Azo-bis-l-propene
Vapor
2,2'-Dichloro-2,2'-azo-bis-propane
Diphenyl ether
Siliconeoil
Methyl-azo-l,l-dimethyl-2-propene (cw) (trans)
Perfluoroazo-2-propane
Acetone
p-DiisopropylBenzene Vapor
T( 0 C)
*d (s" 1 )
86.0 100.3 115.3 86.0 100.3 115.3 86.0 115.3 115.3
1.56 x 10 " 5 5.73 XlO" 5 1.14x10-4 5.48 XlO" 6 2.72 x l O - 5 1.01 XlO" 4 9.25 x 10 ~5 -2.0 x l O " 3 3.83 x 10~5
163.3 169.8 182.8 T (K) 131.5 142.3 164.1 180.8 164.1 250 260 270 280 290 142.65 152.68 167.12 158.5 167.9 178.5 185 199 221 -13.89 -5.04 4.00 114.55 123.83 133.33 T(K)
5.88 x 10 ~4 1.110 x l 0 ~ 3 3.36 XlO" 3 3.2 x 10 1 4 5.44 x 10~6 1.82 XlO" 5 1.66xlO- 4 8.35 x l O " 4 1.64 x l O " 4 7.67 x 10 " 3 1.67xlO- 2 3.35X10- 2 6.52X10- 2 1.28XlO-1 3.88 x l O " 4 1.10 x l O - 3 4.45 x l O - 3 1.03 x 10~4 4.54 x l O - 4 8.08 X l O " 4 4.8xlO"4 2.1 x 10" 3 1.6xlO- 2 3.62 x 10~5 1.7OxIO- 4 6.82 x l O - 4 1.02 x l O " 4 2.68 x l O " 4 8.44 XlO" 4 5.0IxIO16
Ea (kj/mol)
148
Notes C2 C2 C2 c c c
268 268 268 268 268 268 268 268 268
h
298 298 298 298 180 180 180 180 180 110 110 110 110 110 319 319 319 297 297 297 240 240 240 252 252 252 252 252 252 360
exp[- №/RT] 157.7
171.1
a a a a a
151.3
138.3
h,u 4 U4 U4
96.8
h
147.9
h
exp[-189.0//?7]
Refs.
Notes page 11-69; References page 11-70
TABLE 2. cont'd Number of C atoms 6 (cont'd)
Initiator
Solvent
l-Propyl-azo-3'-propene
Vapor
Triazobenzene
Nitrobenzene
Tetralin
7
8
terf-Butyl-azo-3-propene
2,2/-Azo-isobutyramide Azo-bis-isobutyramidine
Azo-bis-isobutyramidine 2HCl (AIBA)
Vapor
Water Water Chloroform DMSO Methanol Water (pH 1.9) Water (pH 5.8) Water (pH 9.5) Water
AIBA
Water
AIBA-kaolin adduct
Water
AIBA-bentonite adduct
Water
Azo-bis(2-amidinopropane) 2HCl 2,2'-Azo-bis(2-amidinopropane) 2HCl Azo-bis-isobutyramidine 2HNO3
Methanol Water Water DMSO-cumene
2,2'-Azo-bis-isobutane
Vapor
2,2'-Azo-bis-isobutane
Diphenyl ether/isoquinoline (90/10)
J( 0 C) 101.32 114.10 126.02 T (K) 105 115 130 145 105 115 130 145 80.88 90.90 106.81 T (K) 88 60 60 60 70 60 50 60 50 60 50 60 60.0 70.0 75.0 80.0 40.15 50.05 60.20 70.10 100.10 70 50.0 60.0 70.0 80.0 50.0 55.0 65.0 70.0 80.0 50 50 56 60 70 160 180 190 210 174.8 188.3 188.8 165 175 185 190
kd (s'1) 1.10 x 10~ 6 5.60 x l O ~ 6 2.11 x l O ~ 5 6.3 x 10 1 4 3.5 x 10~ 7 1.20 x l O ~ 6 6.25 x l O ~ 6 2.5OxIO-5 4.0xl0~7 1.34 x 10~6 6.01 x 10 ~6 2.47 x l 0 ~ 5 2.13 x l O ~ 6 7.27 x l O ~ 6 3.89 x l O ~ 5 5.4 x 10 12 1.9xl0~ 5 3.15 x 10~5 2.80xl0~ 5 7.1 x 10~6 3.68 xlO~ 6 1.45 x 10 ~6 8.3 x 10 ~6 3.42 x 10 ~5 8.0xl0~ 6 3.22 x l 0 ~ 5 4.7 x 10 ~6 2.53 x l 0 ~ 5 3.70 x 10 ~5 1.33 xlO~ 4 2.58 xlO~ 4 5.13 xlO~ 4 2.49 xlO~ 6 9.79 xlO~ 6 4.03 x l 0 ~ 5 1.52 xlO~ 4 4.96 x l 0 ~ 3 1.52 xlO~ 4 1.37 x l 0 ~ 5 6.16 xlO~ 5 2.28 xlO~ 4 9.53 xlO~ 4 1.8OxIO- 5 3.97 xlO~ 5 1.53 xlO~ 4 3.21 x 10~4 1.04 XlO- 3 1.45 x 10 ~5 8.1x 10 ~6 1.93 x 10 ~5 4.86 x l 0 ~ 5 1.53 xlO~ 4 1.9xlO~ 5 5.01 x l 0 ~ 5 1.53 xlO~ 4 1.05 x l 0 ~ 3 6.8 x l 0 ~ 5 1.75 xlO~ 4 1.14 xlO~ 4 2.782 x l 0 ~ 5 8.74 x l 0 ~ 5 2.513 x l O ~ 4 4.143 XlO" 4
Ea (kj/mol)
Notes
149.2
v2i V2I V2I
e x p [ - 149.2/RT] 140.2
136.0
124.9
exp[- 124.9/RT]
v2i V21 V2I v2i a q2 q3
126.5 124.4 151.7 128.9
h
122.6
h
133.9
h
126.4
h
a
a m4 m4 m4
176.6
m4 h
Refs. 298 298 298 298 45 45 45 45 45 45 45 45 298 298 298 298 342 288 288 184 21 184 341 341 341 341 341 341 233 233 233 233 237 237 237 237 237 21 233 233 233 233 233 233 233 233 233 356 356 340 21 21 339 221 221 221 243 243 243 171 171 171 171
TABLE 2. cont'd Number of C atoms 8 (cont'd)
Initiator 2,2'-Azo-bis-isobutane 2,2'-Dimethoxy-2,2'-azopropane
10
Diphenyl ether/isoquinoline (90/10) Diphenyl ether
2,2/-Dimethylmercapto-2,2/azopropane
Diphenyl ether
Isopropyl-azo-l,l-dimethyl-2propene (cis)
Acetone
(trans)
9
Solvent
Diisopropylbenzene
2,2/-Azo-bis(2-methylpropane) 2-(4-Bromophenyl-azo)-2nitropropane
Vapor DCB
rm-Butyl-azo-U-dimethyl2-propene (trans)
Diisopropylbenzene
2-(4-Nitrophenylazo)-2-nitropropane
DCB
oc-Phenylethyl-azo-methane
Diphenyl ether
2,2'-Diacetylthio-2,2'-azopropane
Hexadecane Diphenyl ether
2,2 '-Diacetoxy-2,2 '-azopropane
Diphenyl ether
Siliconeoil Azo-bis( 1,1 -dimethyl-2-propene) (trans)
Xylene
Azo-bis-(l,l-dimethyl)-2-propyne (trans)
Xylene
2,2/-Azo-bis-2-methylbutane
Ethylbenzene
Isoamyl alcohol
2,2'-Azo-bis-2-methylbut-3-ene
n-Decane
2,2'-Azo-bis-2-(methylcarboxy)propane 2,2'-Azo-bis-methyl-2-methylpropionate
Water
2,2'-Azo-bis-methyl-2-methylpropionate
Collidine 1,2-Dichlorobenzene Diethyl oxalate Ethylene glycol Nitrobenzene Undecane Xylene
T( 0 C)
A;d (s *)
195 200 150.1 159.9 174.6 125.0 135.0 145.0 -25.09 -16.65 -8.20 97.41 106.06 115.06 160 130 135 140 T(K) 73.72 80.31 87.08 130 140 145 T(K) 151 161 171 161 130.0 140.0 149.4 190.0 200.1 210.3 258
6.73IxIO- 4 1.093 x 10~3 4.02 x l O " 5 1.50xl0~ 4 6.67 XlO" 4 3.40xl0~ 4 7.10 xlO~ 4 1.15 x l 0 ~ 3 6.30x 10" 5 2.87 x 10 " 4 1.10 x l O - 3 1.15 x 10~4 3.19 x l O - 4 9.22 x l O - 4 1.93 x 10 " 5 1.62 x 10~4 2.59 x 10 ~4 4.3OxIO- 4 1.1 xlO 1 3 8.69 x 10 ~5 1.83 x 10~4 3.80xl0~ 4 LOOx 10~4 2.44 x 10 ~4 4.06 x l O - 4 1.1 x 1013 4.35 x 10 ~5 1.16 x l O - 4 3.48 XlO" 4 1.2OxIO- 4 1.33 x 10~4 4.4OxIO" 4 1.19 x l O - 5 8.23 x 10 ~5 2.6IxIO-4 6.38 x l O " 4 1.46 x 10 ~2
42.03 49.98 57.39 41.32 48.20 57.19 180.0 190.0 200.0 180.0 190.0 200.0 44.90 55.44 63.74 50
5.95 x 10~5 1.73 x l O - 4 4.54 x l O - 4 5.37 x l 0 ~ 5 1.3OxIO- 4 4.39 x l O - 4 1.36 x KT 4 3.89 x l O - 4 1.03 x l O - 3 1.14xlO- 4 3.5IxIO-4 9.26 xlO~ 4 6.73 x 10 ~5 2.631 x 10 ~4 7.045 x l O " 4 3.51 x 10~6
80 80 80 80 80 100 80 80
1.67 x 10 ~A 1.44 x 10 " 4 1.52 x 10 ~4 1.24 x 10 " 4 1.6IxIO- 4 1.73 x 10- 3 1.04 x 10 ~4 1.09 x 10 ~4
Ea (kj/mol)
Notes
171.8
84.6
91.3
h,u5 U5 U5 h
137.8
h
a 130
exp[- 130/RT] 112.3
h
134
exp[- 134/RT] 161.5
151.3
h
171.4
h
109.4
h
111.9
h
176.4
h
176.0
h
107.3
h
129.3
149.8
a a a a a a a a
Refs. 171 171 297 297 297 297 297 297 252 252 252 252 252 252 340 325 325 325 325 252 252 252 325 325 325 325 149 149 149 149 297 297 297 297 297 297 240 252 252 252 252 252 252 336 336 336 336 336 336 278 278 278 285 226 226 226 226 226 226 226 62
Notes page 11-69; References page 11-70
TABLE 2. cont'd Number of C atoms 10 (cont'd)
Initiator
Solvent
N,Af'-Azo-piperidine
Silicone oil
2-(4-Methoxyphenylazo)2-nitropropane
DCB
Dimethyl 2,2'-azo-isobutyrate
Acetic acid
Acetonitrile
Benzene
Cyclohexane
Dimethyl-2,2'-azo-isobutyrate
Methanol
Methanol/SnCl4
Methanol/ZnCl2 Paraffin Toluene
11
2,3,7,8-Tetraazahexacyclo[7.4.1.04'12.0611.01013]tetradeca2,7-diene 2-(2,6-Dimethylphenylazo)2-nitropropane
a-Phenylethyl-azo-2-propane
12
Toluene/SnCl4 Acetonitrile-d3
DCB
Diphenyl ether/ benzoquinone Diphenyl ether
Azo-bis-isobutanoldiacetate
Cyclohexane
Azo-bis-(l-carbomethoxy-3-methylpropane)
Benzene
Carbon tetrachloride
4,4'-Azo-bis-(4-cyanopentanoic acid) (meso)
DMAC
T( 0 C)
kA (s" 1 )
181 228 135 140 150 T(K) 40 50 60 70 40 50 60 70 50 60 70 40 50 60 80 40 50 60 40 50 60 60 99.2 60 60 66 70 80 60 215 230 250 135 140 150 T(K) 143.2
1.7 x l O " 3 4.3 XlO- 2 7.4xlO" 5 1.30 x 10 ~4 3.67 XlO" 4 2.5 XlO 15 8.61 x 10 ~7 3.16 xlO~ 6 1.56 XlO" 5 5.49 x l O " 5 5.44 x 10~7 2.68 XlO" 6 1.01 x 10 " 5 3.57 XlO- 5 2.22 x 10 " 6 8.85 XlO" 6 3.27 x l O " 5 2.89 x 10 " 7 1.38 x l O " 6 5.85 XlO" 6 2.22 x l O - 5 6.86 x 10 " 7 3.12 XlO" 6 1.44 XlO" 5 1.20 x 10 " 6 4.46 x l O " 6 1.98 XlO" 5 1.51 x 10 ~5 1.02 x 10 " 3 8.9xlO- 6 8.11xlO" 6 1.93 x l 0 ~ 5 3.17 x l O " 5 1.19xlO- 4 1.63 x 10 ~4 1.18 x l 0 ~ 5 6.65 x l O " 5 3.4OxIO" 4 9.OxIO" 5 1.44 x 10 ~4 3.86 x l O " 4 4.8 xlO 1 3 1.5OxIO"4
143.0 152.0 165.5 170.0 180.0 189.0 199.0 36 45 55 65 45 55 65 77.6 85.3 90.9 99.8
1.54 x 10 ~4 4.24 xlO~ 4 1.57Ox 10" 3 4.86 x 10 " 5 1.27 XlO" 4 3.47 x l O " 4 1.01 x 10" 3 3.05 x 10 ~7 1.31 x 10 " 6 4.54 x l O " 6 1.82 x l O - 5 7.18 x 10 " 7 3.79 xlO~ 6 1.02 x l O " 5 1.33 x 10 ~4 3.7OxIO" 4 7.17 XlO" 4 2.02 x l O " 3
£ a (kj/mol)
Notes
153
exp[-153//CT] a a a a a a a a a a a a a a a a a a a a a
131.6 a
188.7
Xi X1 Xi
exp[- 13S/RT]
113 ti 3 ti3
133.5
a a a a
Refs. 240 240 325 325 325 325 326 326 326 326 326 326 326 326 326 326 326 326 326 326 326 326 326 326 326 326 326 326 240 290 340 340 340 340 290 174 174 174 325 325 325 325 220 310 310 310 189 189 189 189 68 68 68 68 68 68 68 205 205 205 205
TABLE 2. cont'd Number of C atoms 12 (cont'd)
Initiator
Solvent
4,4'-Azo-bis-(4-cyanopentanoic acid) (nD±)
Azo-bis-(AyV'-dimethylene isobutyramidine) 2HCl Azo-bis-(W-dimethyleneisobutyramidine)
tert-Butyl(2,2,4-trimethyl2-pentyl)diazene
60 70 75 70 60 44
2.06 x 10 " 4 6.64 x 10~4 1.08 XlO" 3 6.97 x 10 ~4 2.13 x 10 ~4 1.9xlO" 5
80 75 80 85 60 61 155 165.7 180.0 120.0 135.0 143.0 145.0 150.0 155.0 160.0 165.0 170.0 60 70 80 60 70 80 60 70 80 58
1.79 x 10~4 8.04 x 10 ~5 1.39 x l O - 4 2.6 x l O " 4 1.09 x 10~5 1.9xl0~ 5 1.6IxIO- 4 4.75 x 10 " 4 1.98 x l O - 3 1.06 x 10 ~4 5.94 x l O - 4 1.42IxIO- 3 7.56 xlO~ 5 1.273 xlO~ 4 2.147 x l O " 4 3.771 x 10~4 6.07 x l O - 4 1.033 x l O - 3 1.6IxIO- 5 5.88 x 10 ~5 2.02 XlO" 4 1.53xl0- 5 5.62 x l O - 5 2.OxIO- 4 1.62 x l O " 5 5.83 x l O - 5 2.066 XlO" 4 1.93 x 10 " 5
Methanol Water
50 50
4.83 x 10 ~5 4.02 x 10 ~5
Methanol «-Decane
50 39.21 50.71 58.95
Chlorobenzene Nitrobenzene Water DMSO
DMSO-cumene DMSO-tetralin Water DMSO DMSO-cumene
DMSO-tetralin Methanol Diphenyl ether
oc-Cumyl-azo-isopropane
Diphenyl ether
2,2/-Dicyclopropyl-2,2/-azopropane
Diphenyl ether/ ^ isoquinoline (90/10)
Di-(2-hydroxyethyl)-2,2'-azobis-isobutyrate
Dioxane
DMF
Toluene
14
2,2/-Azo-bis[AK2-hydroxyethyl)2-methylpropionamidine] 2HCl 2,2'-Azo-bis[2-(imidazoline-2-yl)propane 2HCl 2,2'-Azo-bis[2-(irnidazoline-2-yl)propane 2,2'-Azo-bis-(2-cyclobut1-enylpropane)
(s" 1 )
1.53 x l O - 4 4.1IxIO-4 7.0OxIO- 4 2.09 x l O - 3 1.55 x l O - 4 4.05 x l O " 4 6.98 x l O - 4 2.0OxIO- 3 1.51 x 10" 4 4.34 x l O - 4 7.33 xlO~ 4 2.24 x l O - 3 4.13 x l O " 5 5.93 x 10 ~4 1.56 x 10~4 1.9xl0" 5
(nD_)
2,2-Azo-bis-[2-methyl-J/V(2-hydroxyethyl) propionamide] Azo-bis-(AyV'-dimethyleneisobutyramidine) 2HNO3
fcd
77.9 85.8 90.1 99.1 78.0 85.4 90.0 99.0 77.7 86.0 90.5 99.7 70 92.6 80 86
(n D + )
2,2-Azo-bis-(ethyl-2-methylpropionate)
T( 0 C)
Water
4.7xlO~ 6 1.286 x l O " 4 5.678 x 10 ~4 1.762 XlO" 3
Ea (kj/mol)
Notes
134.3
a a a a a a a a a a a a a a a a
205 205 205 205 205 205 205 205 205 205 205 205 139 139 226 342
a
21 21 21 21 21 339
134.3
134.3
123.0
159.6
a h
158.2
h
125.7
129.9
129.9
a
Refs.
21 21 21 21 21 339 314 314 314 310 310 310 171 171 171 171 171 171 292 292 292 292 292 292 292 292 292 339 356 356
112.3
h
356 278 278 278
Notes page 11-69; References page II - 70
TABLE 2. cont'd Number of C atoms
Initiator
U (cont'd)
2,2'-Azo-bis-(2-methylhex-3-ene)
n-Decane
Di-(2-chloroethyl)-2,2'-azo-bisisobutyrate
Dioxane
Solvent
DMF Di-(2-chloroethyl)-2,2'-azo-bisisobutyrate
Toluene
l,l'-bis-(4-Chlorophenyl) azomethane
Diphenyl ether
Di-(2-hydroxypropyl)2,2/-azo-bis-isobutyrate
Dioxane DMF Toluene
15 16
2,2/,3,3,3',3/-Hexamethyl2,2'-azo-butane
Diphenyl ether
U'-Diphenyl-azo-methane
Diphenyl ether
2,2'-Azo-bis[2-methyl-N-(phenylWater methyl)propionamidine] 2HCl 2,2'- Azo-bis[2-(4-methylimidazoline-2-yl)-propane Methanol 2,2'-Azo-bis[2-(4-methylimidazolineMethanol 2-yl)-propane 2HCl Water 2,2'-Azo-bis[2-(3,4,5-trihydroMethanol pyrimidine-2-yl)propane 2,2'-Azo-bis[2-(3,4,5-trihydroMethanol pyrimidine-2-yl)propane 2HCl Water 1-Methylcyclopentyl-azoterf-Butyl benzene a-cumene l,r-Azo-bis-l-chloro1-phenylethane
Acetophenone Benzophenone Paraffin
Toluene
!,r-Azo-bis-1-chloro-l(3-bromophenyl)ethane l,r-Azo-bis-l-chloro-l(4-bromophenyl)ethane
Toluene Toluene
J(0C)
* d (s" 1 )
39.25 49.52 58.95 60 70 80 60 70 80 60 70 80 145.56 155.56 165.56 175.56 60 70 80 60 70 80 60 70 80 170.0 180.0 190.0 145.0 155.0 165.0 175.0 53
5.33 xlO~ 5 2.256 xlO~ 4 7.584 XlO" 4 1.56 x 10~5 5.55 x 10 " 5 1.9672 x l O - 4 1.25 x l O " 5 4.902 x l O - 5 1.9125 x 10" 4 1.666 x 10 " 5 5.018 x l O - 5 1.99 x l O " 4 2.3OxIO- 4 7.6OxIO" 4 1.49 XlO" 3 4.4OxIO" 3 1.80 x 10 " 5 7.6xlO~ 5 2.22 XlO" 4 1.97 x l O - 5 6.55 x l O " 5 2.3OxIO- 4 1.9Ox 10" 5 7.72 x l O " 5 2.365 x l O - 4 2.37 xlO" 4 5.29 x l O " 4 1.00 x l 0 ~ 3 1.72 x l O " 4 4.93 x l O - 4 1.12 x l O " 3 2.34 x l O - 3 1.93 x 10 " 5
50 50 50 50 50 50 88.3 107.3 117.6 74.8 83 67.8 86.2 98.2 94.5 112.3 120.5 129.3 137 64 74 64 74 59 69 59 69
Ea (kj/mol)
Notes
115.2
h
129.9 134.1 129.9 146.6
h
121.5 121.5 121.5 156.7
h
119.0
h
a
Refs. 278 278 278 292 292 292 292 292 292 292 292 292 297 297 297 297 292 292 292 292 292 292 292 292 292 297 297 297 297 297 297 297 339
10 ~5 10 " 5 10 " 5 10 ~6
356 356 356 356
7.8xlO~ 6 5.9xlO~ 6 5.00xl0" 5 4.95 x 10 " 4 1.43 x l O " 3 8.6xlO~ 4 1.95 x 10 " 3 2.8xlO" 4 3.3 x l O " 3 1.40xl0" 2 2.4xlO" 3 5.2 x l O - 2 1.03XlO"1 1.6XlO" 1 5.OxIO" 1 1.8 x 10 " 4 7.2 x l O " 4 1.79 xlO" 4 7.2OxIO" 4 1.64 x 10~4 6.64 x 10 ~4 1.77 xlO" 4 6.75 x 10 ~4
356 356 327 327 327 240 240 240 240 240 240 240 240 240 240 240 240 239 239 239 239 239 239
1.23 x 7.48 x 6.73 x 1.1 x
132.0
h
135.1
a a a a a a
131.8 127.2
TABLE 2. cont'd Number of C atoms 16 (cont'd)
Initiator U'-Azo-bis-l-chloro-l(4-chlorophenyl)ethane 2,2/-Azo-bis-(2-cyclopent-lenylpropane)
Solvent Toluene n-Decane
l,l'-Azo-bis-l,l-dicyclopropylethane
Diphenyl ether/ isoquinoline (90/10)
2,2/-Azo-bis-{2-methyk/V-[U(bis-hydroxymethyl)-2-hydroxyethyl] propionamide} 2,2/-Azo-bis-{2-methyl-iV-[l,l(bis-hydroxymethyl)ethyl] propionamide} 2,2'-Azo-bis[2-(4, 4-dimethylimidazoline-2-yl) propane 2,2'-Azo-bis[2-(4,4-dimethylimidazoline-2-yl)propane 2HCl 2,2 '-Azo-bis[2-(4,5-dimethylimidazoline-2-yl)propane 2HCl
Water
2,2'-Azo-bis[2-(4,5,6,7-tetrahydrolH-l,3-diazepine-2-yl)propane 2HCl 2,2/-Azo-bis-(2,2,4-trimethylpentane) U'-Azo-bis-l-phenylethane l,r-Azo-bis-l-phenylethane
l,l'-Di-(3-chlorophenyl)-l,razo-ethane l,l'-Di-(4-chlorophenyl)-l,l'azo-ethane
1.97 x 10~4 6.93 x 10 " 4 9.98 x l O " 5 4.593 x 10 " 4 1.528 x l O - 3 6.33 x l O " 5 2.03 x 10 ~4 6.07 XlO" 4 1.695 x l O " 3 1.9 x 10~5
Ea (kj/mol)
Notes
118.8 116.9
a a h
149.0
h
Refs.
a
239 239 278 278 278 171 171 171 171 342
a
342
82
1.9 x l O " 5
Methanol
50
9.3xlO" 6
356
Methanol Water
50 50
9.55 x 10 ~5 9.30xl0"5
356 356
Methanol Water Methanol Water
50 50 50 50
9.21 8.94 1.23 1.04
x 10 " 5 x 10 " 5 x 10~5 xlO"5
356 356 356 356
1.9 x 10~5
Diphenyl ether
110
Dodecane Ethylbenzene Toluene Ethylbenzene
97.3 3.175 x l 0 ~ 5 100.4 (5.45 ± 0.05) x 10~5 110.3 (1.69 ± 0.01) x 10 ~4 105.02 8.473 x 10 " 5 105.28 9.02 x l O - 5 105.28 7.62 x l O " 5 105.02 7.623 x l O " 5 97.3 4.135 x 10 ~5 97.3 3.688 x 10 " 5 97.3 3.995 x 10 " 5 97.3 3.294 x 10 ~5 140.0 1.93 x l O " 4 150.1 5.29 x 10~4 164.8 2.18 x l O " 3 95 4.13 x l O " 5 105 1.218 x l O " 4 85 1.45 x 10~5 95 4.82 x l O " 5 105 1.650xl0~ 4 120.05 7.8xlO-5 130.0 2.63 xlO~ 4 139.0 7.38 XlO" 4 147.0 1.906 x l O - 3 105 1.121 x 10~4
N-Methyl-N-benzyl aniline N-Methyl propionamide Diphenylmethane Propylene carbonate Diphenyl ether
p-Cymene p-Cymene
a,oc-Diethylbenzyl-azo-3-pentane
Diphenyl ether
l,l'-Di-(3-fluorophenyl)1,1'-azo-ethane l,r-Di-(4-fluorophenyl)1,1'-azo-ethane
p-Cymene
Di-(3-hydroxybutyl)-2,2'-azo-bisisobutyrate
59 69 39.21 49.52 58.95 120 130 140 150 80
^d(S" 1 )
Water
(l,l'-d 2 ) (l,l,U',r,l'-d6)
terr-Butyl-(2,2,4,6,6-pentamethyl-4-heptyl)-diazine
T( 0 C)
/?-Cymene
Dioxane
DMF
85 95 105 60 70 80 60 70 80
5.5 x l O " 6 2.35 x 10 " 5 7.85 x l O - 5 2.22 x 10" 5 7.84 x 10 ~5 2.413 x l O " 4 1.83 x l O " 5 7.69 x l O " 5 2.424 XlO" 4
a
136.4
141.6
h
122.3
h
134.1
h
147.0
h
117.3
121.5
339 26 107,98 107,98 152 183 183 152 26 26 26 26 314 314 314 266,313 266,313 266.313 266,313 266,313 310 310 310 310 266,313 266,313 266,313 266,313 292 292 292 292 292 292
Notes page 11-69; References page II - 70
TABLE 2. cont'd Number of C atoms 16 (cont'd)
Initiator
Solvent
Di-(3-hydroxybutyl)-2,2'-azo-bisisobutyrate
Toluene
Di-(4-hydroxybutyl)-azo-bisisobutyrate
Dioxane
DMF
Toluene
l,r-Bis-(4-methoxyphenyl)azo-methane
Diphenyl ether
2,2',4,4,4',4'-Hexamethyl2,2'-azo-pentane
Diphenyl ether
1-Methylcyclohexyl-azo-a-cumene
17
18
terf-Butylbenzene
1,1 '-Diphenyl-l,l'-azo-ethane
p-Cymene
2-(Phenylazo)-2-propyl perbenzoate
Chlorobenzene
(l-Phenylethyl)-azo-diphenylmethane l,l'-Bis(p-tolyl)-azo-methane
Chloroform-d Chlorotoluene Ethylbenzene Diphenyl ether
3,7-Diphenyl-l,2-diaza-l-cycloheptene
l,l'-Azo-bis-cumene
Xylene
Benzene terr-Butylbenzene
Chlorobenzene
Cumene
Dodecane «-Octane
Toluene
T( 0 C) 60 70 80 60 70 80 60 70 80 60 70 80 145.0 155.0 165.0 175.0 130.2 140.0 150.0 102.2 113.1 122.0 95 105 10 35 10 10 58 145.0 155.0 165.0 175.0 61.0 70.0 80.0 89.3 100.2 80 100.2 58.91 60 60 60 55 55 55 55 55 55 60 60 60 60.23 60 60 60 40.04 49.52 59.42 69.23 41.0 44.8 58.5
fcd
(s" 1 ) 2.43 x 10 ~5 8.18 x 10 ~5 2.461xlO~ 4 2.12 x 10 ~5 6.57 x 10 ~5 2.539 x l 0 ~ 4 1.97 x l 0 ~ 5 6.19xlO- 5 2.50xl0~ 4 2.59 x l 0 ~ 5 6.66 XlO- 5 2.628 xlO~ 4 2.23 x 10~A 5.67 x 10 ~4 1.61 x 10~3 3.79 x l 0 ~ 3 1.82 xlO~ 4 4.51 x 10 ~4 1.28 x l 0 ~ 3 2.58 x 10 ~4 9.81xlO~ 4 2.2OxIO- 3 2.74 x l 0 ~ 5 8.21xl0~ 5 4.5 x 10~4 1.9 x l 0 ~ 3 5.IxIO-. 4 6.4xlO~ 4 1.9XlO" 5 2.00 x 10~4 4.69 xlO~ 4 1.22 x l O - 3 3.45 x l 0 ~ 3 3.80xl0~ 5 1.34 xlO~ 4 4.27 XlO" 4 1.59 x l O - 3 4.04 x 10 ~3 4.26 xlO~ 4 3.94 XlO" 3 1.94 xlO~ 4 1.03 x 10 ~4 4.03 x l 0 ~ 5 4.44 x l O - 6 8.50 x 10 " 5 6.88 x l 0 ~ 5 4.42 x l O - 5 8.1OxIO- 5 6.75 x l O " 5 3.83 x l O - 5 1.16 x l O - 4 4.73 x l 0 ~ 5 7.23X10- 6 1.47 x 10~4 1.14 x 10~4 4.44 x l 0 ~ 5 8.32xl0-6 9.46 x 10 ~6 4.33 x l O - 5 1.62 xlO~ 4 5.80xl0~ 4 9.6x10-6 1.98 xlO~ 5 1.28OxIO-4
E* (kj/mol)
Notes
117.3
125.7
125.7
121.5
145.0
h
132.8
h
131.1
h
124.0
h
145.4
a h
a a V5 z (1256) z (3890) z (1013) z (4154) z (1013) z (4154) z (1256) z (3890)
z (1256) z (3890) h
122.8
Refs. 292 292 292 292 292 292 292 292 292 292 292 292 297 297 297 297 297 297 297 327 327 327 266,313 266,313 372 372 372 372 339 297 297 297 297 138 138 138 138 138 44 44 217 333 333 333 280 280 280 280 280 280 333 333 333 217 333 333 333 217 217 217 217 309 309 309
TABLE 2. cont'd Number of C atoms IS (cont'd)
Initiator
Solvent
l,l'-Azo-bis-4-bromocumene
Toluene
lJ'-Azo-bis-S-chlorocumene
Toluene
1,1'- Azo-bis-4-chlorocumene
Toluene
l,r-Azo-bis-l-chloro-l-(4-tolyl)ethane
Acetophenone
Paraffin
Toluene
2,2'-Azo-bis[2-(4-ethyl-4-methylimidazoline-2-yl)propane 2HCl 2,2/-Azo-bis[2-(4-ethyl-5-methylimidazoline-2-yl)propane 2HCl 2,2'-Azo-bis[2-(5,5-dimethyl-3,4,5-trihydropyrimidine-2-yl)propane 2,2/-Azo-bis[2-(5,5-dimethyl-3,4,5-trihydropyrimidine-2-yl)propane2HCl l,l'-Azo-bis-4-fluorocumene
Methanol Water Methanol Water Methanol
l,l'-Di-3-trifluoromethylphenyl)-l,l'-azo-ethane l,l/-Azo-bis-(2-methoxyphenyl)ethane
p-Cymene
Methanol Water Toluene
p-Cymene
l,l'-Azo-bis-(2-methoxyphenyl)ethane
Ethylbenzene
l,l/-Azo-bis-(3-methoxyphenyl)ethane l,r-Azo-bis-(4-methoxyphenyl)ethane l,r-Azo-bis-l-(4-methoxyphenyl)ethane l,r-Azo-bis-l-phenylpropane
p-Cymene
2,2/-Azo-bis-2-phenyl-hexafluoropropane
Toluene
p-Cymene Ethylbenzene Ethylbenzene
U'-Dimethyl-azo-cyclooctane
Benzene
!,l'-Diphenyl-azo-cyclopropane
Benzene
Ethylbenzene
T( 0 C) 42.8 48.6 58.0 36.0 42.8 48.2 61.1 36.0 42.8 48.2 74.8 79.5 86 105 109.5 126 135.5 59 69 59 69 50 50 50 50 50
kd ( s 1 ) 2.72 xlO~ 5 6.28 x l O " 5 2.189 x l O - 4 8.8 x 10~6 2.46 XlO" 5 5.55 x l 0 ~ 5 2.796xlO- 4 1.11 x 10 ~~5 2.9OxIO- 5 6.52 x l 0 ~ 5 2.1 x 10~3 3.OxIO" 3 7.4 x l O - 3 1.66 x l O " 3 2.5 x l O - 2 6.4 x l O - 2 UxlO"1 1.03 x 10 ~4 4.OxIO" 4 1.03 x l O - 4 3.93 XlO" 4 6.8OxIO" 5 7.38 x 10 " 5 9.48 x 10 " 5 1.1 x 10 " 4 9xlO"7
50 8.OxIO- 6 50 7.9xlO" 6 36.0 5.7xlO-6 42.8 1.31 x 10 ~5 48.2 2.94 XlO" 5 61.1 1.880xl0~ 4 95 4.13 x IO" 5 105 1.357 x 10~4 84.6 1.69 x 10~5 95 6.1IxIO-5 105 1.975 x l O - 4 106.06 2.29 x l O " 5 113.81 5.52 x 10~5 133.66 4.87 XlO" 4 95 1.53 x IO" 5 105 6.91 x 10 ~5 95 3.56 x l O " 5 105 1.09OxIO- 4 100.4 (7.15 ±0.1) x 10~5 110.3 (2.48 ± 0.02) x 10 ~4 100.4 (2.35 ±0.1) x 10~5 110.3 (7.2 ±0.2) x 10- 5 45.0 8.36 x l O " 6 50.0 2.16 x l O " 5 55.0 4.92 x l O - 5 60.0 8.81xl0"5 67.0 2.46 x l O - 4 43.8 6.3 x l O - 5 53.8 2.4 x l O - 4 130.0 1.09 x l O " 4 140.0 3.05 x l O - 4 150.0 8.96 x l O " 4 165.0 9.6xlO" 5 175.0 2.2IxIO" 4 185.0 5.09 x l O - 4 170.0 1.67 x 10 ~4 180.0 3.48 x l O " 4
Ea (kj/mol)
Notes
117.7
115.9
112.5
126.8
a
115.9
134.9
h
135.6
h
171.8
a a a h
126.5
h
149.8 135.1 137.2
h
115.5 145.8
h
135.3
h
Refs. 309 309 309 200 200 200 200 200 200 200 240 240 240 240 240 240 240 240 240 239 239 356 356 356 356 356 356 356 200 200 200 200 266,313 266,313 266 266,313 266,313 300 300 300 266,313 266,313 266,313 266,313 98 98 98 98 173 173 173 173 173 42 42 327 327 327 323 323 323 323 323
Notes page 11-69; References page 11-70
TABLE 2. cont'd Number of C atoms IS (cont'd)
19
20
Initiator
Solvent
3,8-Diphenyl-l,2-diaza-lcyclooctene
Tetralin
U'-Di-O-tolyO-U'-azo-ethane l,l'-Di-(4-tolyl)-l,r-azo-ethane
/?-Cymene p-Cymene
Phenyl-azo-diphenylmethane
Decalin
2-(2-Phenyl-4-methylpentyl)azo-2-(4-methylpentane)
Diphenyl ether
l,l'-Azo-bis-l-acetoxy1-phenylethane
Paraffin
U'-Azo-bis-U-dicyclopropylbutane
Diphenyl ether/ isoquinoline (90/10)
9-Azo-bis-decalin (cis)
Ethylbenzene
(trans)
oc,a'-Azo-bis(a-methylbenzyl) diacetate
Dichlorobenzene
Azo-bis-4-methylcumene
Cumene
Toluene
2,2'-Azo-bis[2-(4-ethyl-5-isopropylimidazoline-2-yl)propane 2HCl 2,2'-Azo-bis-2-(4-tolyl)-propane
Methanol Water Toluene
l,r-Azo-bis-l,l,l-tricyclopropylmethane
Diphenyl ether/ isoquinoline (90/10)
l,r~Di-(4-ethylphenyl)1,1-azo-ethane l,l'-Diphenyl-azo-butane
l,l'-Diphenyl-azo-cyclobutane
Decalin/ isoquinoline (90/10) Isoquinoline Cumene/ isoquinoline (90/10) p-Cymene Ethylbenzene
Ethylbenzene
T( 0 C)
^d(S"1)
143 151 165 173 105 95 105 124.5 144.5 103.0 110.0 120.0 130.0 131 142 149.5 120.0 125.0 130.0 135.0 140.0 147.0 180.0 190.0 200.0 180.0 190.0 200.0 65 70 80 90 55 55 55 41.0 49.5 58.5 50 50 36.0 42.8 61.1 105.0 110.0 115.0 120.0 125.0 130.0 135.0
9.52 x 10~5 2.09 x l O " 4 8.77 XlO" 4 1.82 xlO~ 3 8.17 x l O " 5 3.06 x 10~5 9.35 x l O - 5 3.44 x 10 " 5 2.69 x l O - 4 1.17 x l O " 4 2.52 x 10 ~4 8.51 x 10- 4 2.611 x l O " 3 3.2 x l O " 2 4.3 x 10~2 8.OxIO- 2 4.26 x l O " 5 7.94 x l O " 5 1.49 x l O " 4 2.697 x l O - 4 4.774 x l O " 4 1.055 XlO" 3 1.41 x 10" 4 3.95 x l O " 4 1.05 XlO" 3 1.9Ox 10" 4 5.35 XlO" 4 1.41xlO" 3 1.86 x 10 ~5 4.0OxIO" 5 1.592 x l O " 4 5.525 x l O " 4 8.86 x 10 " 5 7.54 XlO" 5 4.47 x 10- 5 1.33 x 10~5 5.02 XlO" 5 1.690xl0" 4 7.72 x 10~5 1.01 x 10 ~4 8.4xlO~ 6 1.62 x l O - 5 2.08 x l O " 4 7.89 x l O " 5 1.374 x l O " 4 2.36 XlO" 4 4.58 x l O " 4 7.76 xlO~ 4 1.38 x l O " 3 2.39 x l O " 3
118.5 118.5
3.60 x 10 " 4 3.30 x l O " 4
118.5 95 105 93.88 105.68 119.55 63.2 73.8 79.1 87.7
445xlO" 4 3.02 x l O " 5 9.14 x l O " 5 1.67 x 10~5 6.96 XlO" 5 3.39 x l O " 4 8.2xlO~ 6 3.5 XlO" 5 6.9 x l O " 5 1.69 XlO" 4
Ea (kj/mol)
Notes
153.6
126.5
h
142.3
159.0
h
175.1
h
175.1
h
z (1013) z (4154) 120.7
110.0
143.5
h
Refs. 137 137 137 137 266,313 266,313 266,313 46 46 310 310 310 310 240 240 240 171 171 171 171 171 171 335 335 335 335 335 335 366 366 366 366 280,333 280,333 280,333 309 309 309 356 356 200 200 200 171 171 171 171 171 171 171 171 171
h 125.3 a a a h 122.3
b,h
171 266,313 266,313 300 300 300 323 323 323 323
TABLE 2. cont'd Number of C atoms 20 (cont'd)
22
24
25
Initiator (-HJ)-I,l'-Diphenyl-lmethyl-azo-methane 2,2'-Azo-bis(2-methyl-A^-phenylpropionamidine) 2HCl 2,2/-Azo-bis[A^-(4-chlorophenyl)2-methylpropionamidine] 2HCl 2,2'-Azo-bis[Af-(4-hydroxyphenyl)2-methylpropionamidine] 2HCl l,r-Azo-bis-l-phenyl-3methylbutane 1,1'-Azo-bis-4-ethylcumene
Solvent
T( 0 C)
^d(S1)
Water
106.0 127.9 45
8.26 x l O " 6 1.18 x l O " 4 1.93 x 10 ~5
Water
45.5
Water
Cumene
Ethylbenzene Toluene
l,r-Azo-bis-4-isopropylcumene
Toluene
U'-Diisopropyl-U'diphenyl-azo-ethane l,l'-Diphenyl-azocyclopentane
Ethylbenzene
2,2'-Azo-bis[2-methyl-N-(phenylmethyl)propionamidine] 2HCl 2,2'-Azo-bis[2-(4-methyl-4-isobutylimidazoline-2-yl)propane 2HCl 2,2'-Azo-bis[2-(4-methyl-5-isobutylimidazoline-2-yl)propane 2HCl 2,2/-Azo-bis[2-(4-ethyl-5-propylimidazoline-2-yl)propane 2HCl U'-Azo-bis-4-terf-butylcumene
Water
oc,a'-Azo-bis(a-methylbenzyl)dimethacrylate
Dichlorobenzene
Bis(2,2,4,6,6-pentamethyl4-heptyl)diazine
Diphenyl ether
l,r-Diphenyl-azo-cyclohexane
Benzene
3-Bromophenyl-azo-triphenylmethane 4-Bromophenyl-azo-triphenylmethane 4-Hydroxyphenyl-azo-triphenylmethane
Toluene
Benzene
Methanol Water Methanol Water Methanol Water Toluene
Toluene Acetic acid Pyridine Toluene
2-Nitrophenyl-azo-9-phenylfluorene
Toluene
4-Nitrophenyl-azo-9-phenylfluorene
Toluene
2,4-Dinitrophenyl-azo-9-phenylfluorene 2-Nitrophenyl-azo-triphenylmethane
Toluene Toluene
3-Nitrophenyl-azo-triphenylmethane
Toluene Benzene terf-Butylbenzene
Ea (kj/mol)
Notes
149.2
b
Refs.
a
318 318 339
1.93 x 10 ~5
a
339
47.5
1.93 x 10~5
a
339
100.4 110.3 42.8 48.6 58.0 42.8 51.2 58.0 50
7.6xl0"5 2.42 x 10 " 4 1.29 x l O " 5 3.29 x l O " 5 1.24Ox 10~4 1.13 x l O " 5 4.26 x l 0 ~ 5 1.078 xlO~ 4 3.52 x l O ' 5
h
98 98 309 309 309 309 309 309 324
a
323 323 323 339
29.5 40.0 50.0 52 50 50 50 50 50 50 42.8 48.6 58.0 65 70 80 90 100.1 109.2 125.0 45.5 54.0 69.7 53.8 64.0 53.35 64.30 54.00 64.00 54.00 64.00 54.00 64.00 45.45 55.55 45.45 55.55 55.55 64.94 64.94 75.06 53.8 64.0 60 60
3.16 1.24 4.68 1.93
x 10~4 x 10 " 3 XlO" 3 x 10 ~5
5.54 x 10 " 5 7.08 x 10 ~5 7.72 x 10 ~5 9.78 x 10 ~5 1.06 x 10 " 4 1.41 x 10~4 1.16 x l 0 ~ 5 2.58 x l 0 ~ 5 1.080xl0" 4 3.65 x 10~5 7.98 x 10 ~5 2.313 xlO~ 4 1.344 XlO" 3 3.03 x 10 ~4 7.62 x l O " 4 3.90xl0~ 3 2.52 x 10~5 8.74 x l O - 5 7.12 xlO~ 4 1.14 x 10 " 4 4.58 x 10 " 4 1.05 x 10 " 4 4.28 x 10 " 4 1.42 x 10~4 6.2xlO~ 4 1.52 x l O " 4 6.7 XlO" 4 1.70 x 10~4 6.4 x l O " 4 1.01 x 10~4 3.71 x 10" 4 2.06 x 10 " 4 7.53 XlO" 4 2.06 x 10 " 4 6.92 x 10 ~4 1.46 x 10 ~4 5.26 XlO" 4 5.8 x 10 ~5 1.99 x l O " 4 9.92 x 10 ~5 9.18 x 10 ~5
139.3 108.9
124.4
113.6 103.1
123.6 h
125.7 h 125.7
125.1 117.2 133.9 133.9 121.3 119.7 111.7 119.2 123.8 110.9
356 356 356 356 356 356 309 309 309 366 366 366 366 314 314 314 323 323 323 42 42 52 52 52 52 52 52 52 52 75 75 75 75 75 75 75 75 42 42 263 263
Notes page 11-69; References page 11-70
TABLE 2. cont'd Number of C atoms 25 (cont'd)
Initiator
Solvent
3-Nitrophenyl-azo-triphenylmethane
Cumene Ethylbenzene Octane Toluene
4-Nitrophenyl-azo-triphenylmethane
Benzene tert-Butylbenzene
Chlorobenzene
Cumene
Decane
1-Decene Dodecane
1-Eicosene Heptane
Hexadecane
1-Hexadecene Hexane 1-Hexene Nonane
Octadecane 1-Octadecene Octane
1-Octene Pentane Tetradecane
4-Nitrophenyl-azo-triphenylmethane
2,4-Dinitrophenyl-azo-triphenylmethane Phenyl-azo-triphenylmethane
1-Tetradecene Toluene
Toluene Acetic acid Anisole
T( 0 C)
A^(S"1)
60 60 60 45 60 60 60 60 60 55 55 55 55 55 55 60 60 60 50 60 70 77.5 60 50 60 70 60 50 60 70 50 60 70 77.5 60 50 60 60 50 60 70
1.04 x 10~4 1.10 x 10~ 4 1.01 x 10~4 1.25 x 10 " 5 1.22 x l O ~ 4 1.09 x 10 " 4 9.7xlO~ 5 4.03 x l O - 5 4.44 x 10 " 6 8.50xl0~ 5 6.88 x l O " 5 4.42 x l O - 5 8.1OxIO- 5 6.75 XlO" 5 2.62 x l O - 5 1.15 x l O " 4 4.73 x l O " 5 7.23 XlO" 6 2.017 x l O " 5 9.988 x l O " 4 3.35OxIO- 4 1.16 XlO" 3 1.038 x l O " 4 1.933 x 10 ~5 9.166 x l O " 5 3.25OxIO- 4 7.6OxIO- 5 2.716 x l O " 5 1.043 x l O - 4 3.900xl0"4 1.716 x l O " 5 8.133 x l O " 5 2.966 x l O - 4 1.09xl0-3 8.25 x 10 ~5 2.75OxIO- 5 1.195 x l O ~ 4 1.143 x 10 ~4 2.20OxIO- 5 9.900 x l O " 5 3.71OxIO- 4
60 70 60 60 70 77.5 60 50 60 50 60 70 60 64.94 75.06 53.35 64.30 75.06 84.98 43.30 64.00 25.0
7.78OxIO- 5 2.783 x l O - 4 7.58 x 10 ~5 1.015 x 10~4 3.65OxIO- 4 1.78 x l O - 3 1.123 x l O ~ 4 3.600xl0"5 1.28OxIO- 4 1.866 x l O " 5 8.80OxIO- 5 3.116 x l O ~ 4 9.02 x 10 " 5 2.58 x 10~4 9.19 x l O - 4 5.7 x l O - 5 2.25 XlO" 4 1.9OxIO- 4 6.13 x 10~4 5.7 x 10~5 8.4 x l O - 4 2.58 x l O " 6
Ea (kj/mol)
Notes
z (1256) z (3890) z (1013) z (4154) z (1013) z (6180) z (1256) z (3890)
123.0 113.0 122.6 117.2 120.5
b,h
Refs. 263 263 263 263 263 263 263 263 263 333 333 333 333 333 333 263 263 263 168,263 168,263 168 168 168 168,263 168,263 168 168 168 168,263 168 168,263 168,263 168 168 168 168,263 168,263 168 168,263 168,263 168 168,263 168 168 168,263 168 168 168 168,263 168,263 168,263 168,263 168 168 75 75 52 52 75 75 52 52 103
TABLE 2. Number of C atoms 25 (cont'd)
cont'd
Initiator Phenyl-azo-triphenylmethane
Solvent Anisole
Benzene
Benzonitrile
/m-Butylbenzene
Chlorobenzene
Cumene
Cyclohexane
Decane Dodecane Diethyl malonate
Ethylbenzene Heptane Hexadecane Hexane Nitrobenzene
Octane
Pyridine Tetradecane Toluene
26
2,2/-Azo-bis[2-(4-ethyl-5-propylimidazoline-2-yl)propane 2HCl Azo-bis-diphenylmethane
Methanol Water Toluene
1,1'-Bis-biphenyl-azo-methane
Diphenyl ether
l,l'-Azo-bis-l-(4-tolyl)-cyclohexane
Toluene
T( 0 C) 50.2 74.7 25.0 74.5 80.1 85.9 25.0 49.6 74.7 50 25.0 50.3 74.7 50 50 50 25.0 49.6 74.7 50 50 50 25.0 49.6 74.7 60 60 25.1 74.5 80.1 85.9 50 60 60 60 25.0 74.5 80.1 85.9 50 50 50 60 53.35 64.00 60 43.8 53.8 45 50 45.45 55.55 43.30 53.35 53.3 50 50 54.0 64.0 135.0 145.0 155.0 165.0 36.0
^d(S1) 1.31 x 10~4 3.03 x l O ~ 3 3.0xl0~6 2.9 x l O ~ 3 6.8 x l 0 ~ 3 1.1 x l O ~ 2 4.29 x l O ~ 6 1.24 x l O - 4 3.12 x l 0 ~ 3 1.37 x l O ~ 4 2.62 x l O ~ 6 1.56 x l O ~ 4 3.14 x l 0 ~ 3 1.33 x 10 ~4 3.83 x l 0 ~ 5 9.53 x l O ~ 6 3.77 x l O ~ 6 1.67 x l O ~ 4 3.93 x l 0 ~ 3 1.50 x 10 ~4 6.82 x l 0 ~ 5 7.65 x l O ~ 6 4.22 x l O ~ 6 9.90 x l 0 ~ 5 1.75 x l 0 ~ 3 5.72 x 10~4 5.35 x 10 ~4 3.1 x 10~6 2.8 x 10 ~3 5.9 x l O " 3 1.0 x l 0 ~ 2 1.58 x 10 ~4 6.60xl0~4 4.76 x 10 ~4 7.60xl0~4 2.6xlO~ 6 3.0xl0~3 5.8 x l 0 ~ 3 9.8 x l 0 ~ 3 1.59 x 10 ~4 7.53 x l O ~ 5 1.17 x l 0 ~ 5 6.41 x l O ~ 4 1.74 x l 0 ~ 4 8.OxIO" 4 4.99 x 10 ~4 6.3 x 10" 5 2.4 x l O - 4 9.23 x l 0 ~ 5 1.73 x l O - 4 8.48 x l 0 ~ 5 3.5IxIO-4 6.0xl0~5 2.25 XlO" 4 2.25 x l O - 4 9.75 x 10 ~5 1.33 x 10 ~4 1.01 x 10 ~4 3.4OxIO- 4 1.23 x 10~4 3.58 x l O " 4 7.76 XlO" 4 2.09 x l O - 3 8.7xlO~ 6
E a (kj/mol)
Notes
Refs.
b b
118.3
112.1
121.3
118.4
102.5
116.6
118.7
129.7
115.5
122.6 113.0 113.0
111.3 134.1
107.1
103 103 114 114 114 114 b,h 103 103 b 103 263 b,h 103 b 103 103 263 z (1140) 263 z (4265) 263 b,h 103 b 103 b 103 263 z (1140) 263 z (4265) 263 h 103 b 103 b 103 263 263 114 114 114 114 263 263 263 263 114 114 114 114 263 z (1140) 263 z (4265) 263 263 52 52 263 42 42 263 263 75 75 52 52 46 356 356 107,312 46,107,312 h 297 297 297 297 200
Notes page 11-69; References page 11-70
TABLE 2. cont'd Number of C atoms 26 (cont'd)
Initiator l,l'-Azo-bis-l-(4-tolyl)-cyclohexane
Toluene
l,r-Diisopropyl-2,2'-dimethyl1,1 '-Diphenyl-azo-propane
Ethylbenzene
4-Methoxyphenyl-azo-triphenylmethane l,r-Diphenyl-azo-cycloheptane
Toluene
3-Tolyl-azo-triphenylmethane
Benzene terf-Butylbenzene Cumene Ethylbenzene Octane Toluene
4-Tolyl-azo-triphenylmethane
27 28
Solvent
4-Acetaminophenyl-azo-triphenylmethane U'-Azo-bis-l,2-diphenylethane (meso)
Benzene
Benzene tert-Butylbenzene Cumene Ethylbenzene Octane Toluene
Toluene Ethylbenzene
(D,L)
30
l,l'-Dibutyl-l,l'-diphenylazo-pentane
Ethylbenzene
34
l,r-Azo-bis-(l,3-diphenylpentane) 3,10,13,20-Tetraphenyl-l,2,ll,12-tetraaza-Ul-cycloeicosadiene
Bromobenzene Xylene Xylene
3,12,15,24-Tetraphenyl-l,2,13,14-tetraaza-l,13-cyclotetracosadiene
Ethylbenzene Xylene
40
44
Poly[oxyethylenexoxy(l-oxo-2,2-dimethylethylene)azo-(2-oxo-1,1 -dimethylethylene)
o-Xylene
T( 0 C) 42.8 61.1 50.0 60.0 70.0 54.00 64.00 16.2 24.8 33.4 41.1 50 50 50 50 45 43.8 53.8 45 50 50 50 50 50 45 43.30 53.35 45 50 54.00 64.00 96.56 106.47 115.28 96.56 106.47 115.28 50.0 60.0 70.0 89.7 118.8 110 120 130 112.95 110.8 119.8 110 120 130 85 95 105 T(K)
* d (s" 1 ) 2.0IxIO" 5 2.009 x l O " 4 6.24 x l O " 5 2.49 x 10 " 4 7.77 XlO" 4 2.13 x l O " 4 7.6xlO" 4 1.65 x 10 " 4 5.52 xlO~ 4 1.66 x l 0 ~ 3 4.52 XlO" 3 1.3OxIO"4 1.3OxIO"4 1.51 x 10 " 4 1.72 x 10 " 4 8.9xl0"5 7.4 x l O " 5 2.77 XlO" 4 9.74 XlO" 5 1.81 x 10" 4 1.26 x 10 ~4 1.35 x 10 ~4 1.4OxIO"4 1.62 x 10 ~4 8.6xl0"5 6.9xlO" 5 2.25 XlO" 4 9.3 x l O " 5 1.52 x l O " 4 1.46 x 10" 4 5.9xlO" 4 2.75 x l O " 5 9.03 x 10" 5 2.42 XlO" 4 3.22 x l O " 5 1.04 XlO" 4 2.84 XlO" 4 5.05 x l O " 5 2.03 x 10~4 6.24 x l O " 4 1.5 x 10" 5 5.6 x 10 " 4 7.2OxIO" 5 2.3OxIO" 4 6.9OxIO" 4 8.76IxIO" 5 8.9 x 10"5 2.2 XlO" 4 7.63 xlO" 5 2.46 x 10"4 7.12 xlO" 4 2.106 x 10"4 7.312 x 10~4 1.995 x 10"3 1.99 x 1014
Ea (kj/mol)
Notes
117.2
113.8
100.4
125.5 138.5
138.9
108.9
145.6
126.4 143.9
124.0
exp[-124.0//?7]
a,h a a a,h a a h
Refs. 200 200 324 324 324 52 52 323 323 323 323 263 263 263 263 263 42 42 263 263 263 263 263 263 263 52 52 263 263 52 52 162 162 162 162 162 162 324 324 324 311 311 38 38 38 158 48 48 38 38 38 332 332 332 332
TABLE 3. ALKYL PEROXIDES Number of C atoms
Initiator
2
Methyl peroxide
4
Ethyl peroxide
Solvent Vapor Methanol Styrene Vapor
Vapor (toluene)
5
2,4-Pentanedione peroxide
Triethyl phosphate
6
Propyl peroxide
Vapor
7
Isopropyl peroxide Allyl tert-butylperoxide
Styrene Toluene
Dimethylaminomethyl peroxide
ter/-butyl
8
tert-Butyl
peroxide
Acetic acid
Acetonitrile
Benzene
Benzhydrol terf-Butanol
2-Butanol n-Butyl mercaptan Tri-n-butylamine
T( 0 C) T(K) T(K) 60 140.2 147.8 160.0 176.5 184.5 145.9 145.9 200 210 218 226 234 245 100 115 125 146.5 155.3 166.8 175.4 60 130 140 150 160 110 120 130 115 120 125 130 95 125 115 120 125 130 80 130 100 100 115 130 120 120 120 120 120 125 130 135 125 120 125 130 135 125 125 125 135
^a(S1)
Ea (kj/mol)
1.6xlO 15 4.IxIO15 1.2xlO" 9 1.75 x 10 ~4 3.6OxIO- 4 1.08 x l O " 3 3.78 x l 0 ~ 3 7.16 x l O " 3 6.69 x l O - 4 5.02 x l O " 4 3.58 x 10 ~2 6.76xlO- 2 1.47XlO- 1 2.23XlO- 1 3.86XlO" 1 6.43XlO- 1 1.9X10" 6 6.IxIO"6 1.4 x l O " 5 2.50xl0~ 4 6.0OxIO- 4 1.95 x l O " 3 4.1OxIO- 3 6. xlO" 1 0 5.76 x l O " 5 1.785 XlO" 4 4.800xl0~ 4 1.27OxIO-3 5.5xl0~ 5 1.9 x l O " 4 4.76 x l O " 4 1.2 x l O " 5 2.19 x l O " 5 2.98 x l O " 5 6.29 x l O - 5 9.53 x 10 " 7 3.89 x l O - 5 1.19 x l O " 5 2.21 x 10~5 3.47 x l O - 5 5.63 x l O " 5 7.81xl0"8 (2.48-3.04) x 10~5 8.8 x l O " 7 8.75 XlO" 7 5.66 x l O " 6 3.0OxIO- 5 1.39 x l O - 5 7.6 x l O - 6 7.5 x l O - 6 3.7 XlO" 6 1.10 x l O - 5 1.99 x l O - 5 3.22 XlO" 5 6.19 x l O " 5 8.7xl0"5 1.41 x 10 ~5 2.49 x l O " 5 4.3OxIO- 5 7.32 x l 0 ~ 5 4.8xlO-5 1.5 x 10 ~5 (1.7±0.3) x 10" 5 (4.2 ±0.4) x 10 " 5
exp[- Ul.l/RT] exp[-153.9//?7] 147.3 131.8
Notes
a a a a a t8
132.6
92
132.2
154.8 139.1
a a a a a a a h,m6
134.5
139.7
h
129.7
d h
142.3 146.9
m 2 ,u 2 m 2 ,u 2 a
147.7
a a z (0.98) z (864) z (1620) z (3480) h
143.5
h
Refs. 72 225 92 127 127 127 127 127 187 187 87 87 87 87 87 87 337 337 337 128 128 128 128 92 321 321 321 321 303 303 303 192 192 192 192 208 208 192 192 192 192 129 129 126,337 197 126,337 126,337 33 33 33 33 192 192 192 192 140 192 192 192 192 140 140 64 64
Notes page II - 69; References page II - 70
TABLE 3. cont'd Number of C atoms 8 (cont'd)
Initiator terf-Butyl
peroxide
Solvent Tri-n-butylamine tert-Butylbenzene
Carbon tetrachloride
Chlorobenzene
Cumene
Cyclohexane
Cyclohexanol Cyclohexene
Cyclohexylamine Decane
Dodecane
Dimethylaniline
Ethyl benzoate
Af-Ethylcyclohexyl amine Heptane Hexadecane
Hexane
T( 0 C) 145 T (K) 125 135 145 T (K) 125 125 125 120 120 120 120 125 150 121 141 164 T (K) 125 135 145 T (K) 95 120 125 130 135 125 120 125 130 135 120 120 120 120 125 80 110 130 115 130 140 80 110 130 120 125 130 135 120 125 130 135 125 80 110 80 110 130 80 110
kd (s~l) (1.60±0.21) x 10~4 2.8 x 1 0 u (1.5 ±0.2) x 10~5 (5.0±0.3)xl0-5 (1.51 ±0.22) xlO~ 4 2.8 x 1014 2.1OxIO- 6 2.49 x l O - 6 2.03 xlO~ 6 9xlO"6 2.4 x l O - 6 2.3 x l O - 6 8.6 x l 0 ~ 7 1.4OxIO- 6 4.45 x 104 1.93 x l 0 ~ 5 1.93 x l O - 4 1.93 XlO" 3 4.20 x 1015 (1.6±0.1) x 10~5 (5.2 ±0.3) x 10- 5 (1.56±0.13)x 10~4 2.8 x 1014 2.48 x 10 ~7 6.3 x l O - 6 1.52 x l O - 5 2.59 XlO" 5 4.64 x l 0 ~ 5 2.4 x l O " 5 7.6 x 10~6 1.38 x l O - 5 2.81 x 10- 5 4.4IxIO-5 8.3 XlO" 6 6.2 XlO" 6 3.77 x l O " 6 2.65 XlO" 6 5.50xl0~ 5 1.39 x 10 ~8 2.0IxIO-6 2.48 XlO" 5 3.00xl0~ 6 2.16 xlO~ 5 6.66 x l 0 ~ 5 1.29 x 10 ~8 1.87 xlO~ 6 2.44 x l 0 ~ 5 9.6xlO~ 6 1.89 x l 0 ~ 5 3.41 x l 0 ~ 5 5.84 x l 0 ~ 5 1.07 x l 0 ~ 5 1.92 x l 0 ~ 5 3.39 x l 0 ~ 5 5.90xl0~ 5 4.01 x 10 ~5 1.44 x 10 ~8 2.19 xlO~ 6 1.07 x 10 ~8 1.82 xlO~ 6 2.33 xlO~ 5 1.64 x 10 ~8 2.17 xlO~ 6
EB (kj/mol)
Notes
exp[- U6A/RT\
exp[- 146A/RT] U1 s s,t6 z (0.98) z (1930) z (2890) z (5525) ui,t 6
exp[- 153.46/RT]
exp[- H6A/RT] 170.7
h
156.1
h
157.3
z (0.98) z (1275) z (2890) z (5725) h
163
a a a
148.5
h
Refs. 64 123 64 64 64 123 301 301 301 33 33 33 33 301 346 344 344 344 344 64 64 64 123 208 192 192 192 192 140 192 192 192 192 33 33 33 33 143 270 270 270 337 337 337 270 270 270 192 192 192 192 192 192 192 192 143 270 270 270 270 270 270 270
TABLE 3. cont'd Number of C atoms S (cont'd)
Initiator terf-Butyl
peroxide
Solvent 2-Methyl-2-butanol
Methyl methacrylate AT-Methylpipendine Mineral oil Nonane
Norbornanol Nujol Octane 2-Octanol Piperidine 1-Propanol Styrene Tetradecane
Tetrahydrofuran
Toluene
Triethylamine
Vapor (acetone)
Vapor (carbon tetrachloride) Vapor (chloroform) Vapor (dichlorodifluoromethane) Vapor (trichloro ethylene) Vapor (methylene chloride) Vapor (3-pentanone) Vapor (silicon tetrafluoride) Vapor (toluene) Vapor
T( 0 C)
^d(S"1)
Ea (kj/mol)
Notes
149.4
h
Refs.
120 125 130 135 T (K) 125 T (K) 80 110 130 125 125 80 110 125 125 125 T(K) 80 110 130 120 125 130 135 125 100 120 120 120 120 125 125 T(K) 120 125 130 135 127.5 131 146 151.5 162 167 145 T (K) 150
1.26 xlO" 5 2.34 XlO" 5 4.47 xlO" 5 6.8OxIO"5 2.8 x 10 14 1.54 xlO" 5 1.31 x 1015 1.36 x 10 ~8 2.0IxIO" 6 2.54 x 10 ~5 4.4xlO" 5 7.8 XlO" 7 1.48 x 10 "8 2.19 xlO" 6 5.5xl0"5 3.49 x 10 ~5 2.8xl0"5 2.8xlO 1 4 1.12 xlO" 8 1.82 xlO" 6 2.38 xlO" 5 9.7xlO" 6 1.84 XlO" 5 3.39 xlO" 5 5.76 xlO" 5 1.5 x l 0 ~ 5 6.82 x 10 ~7 1.34 XlO" 5 9.5 xlO" 6 8.OxIO- 6 5.7 xlO" 6 1.6 xlO" 5 1.62 xlO" 5 1.3OxIO16 7.9xlO~ 6 1.69 xlO" 5 3.15 xlO" 5 5.55 XlO" 5 7.4 xlO" 6 1.13 XlO" 5 6.OxIO" 5 1.03 xlO" 4 3.6 xlO~ 4 5.2 xlO" 4 1.3 xlO" 4 5.9 x 10 16 8.58 x 10 "4
150 150
1.167 xlO" 3 >(2.00 x 10 ~4)
1
130 130
150
2.35 x 10"3
1
130
150
1.017 x 10 ~3
1
130
145 T (K) 160 160 160 148 158 103.2 111.9
1.5 x 10~ 4 6.8 x 10 16 1.05 xlO" 3 1.25 x l 0 ~ 3 1.27 xlO" 3 9.OxIO- 5 2.5 xlO" 4 5.6xlO" 7 2.03 XlO" 6
exp[- U6A/RT] exp[- 154.6/RT]
u
exp[-146.4//?7]
155.2
h
z (0.98) z (2000) z (2850) z (5170)
exp[- 15S3/RT] 169.9
h
165.3 exp[- 1653/RT] 1
165.3 exp[- 1653/RT] 113.0
a,i(2.6) a,i(33) a,i(100)
192 192 192 192 123 143 376 270 270 270 140 301 270 270 140 143 140 123 270 270 270 192 192 192 192 140 197 33 33 33 33 140 143 376 192 192 192 192 238 238 238 238 238 238 125 125 130
125 125 117 117 117 88 88 227 227
Notes page 11-69; References page II - 70
TABLE 3. cont'd Number of C atoms S (cont'd)
Initiator tert-Butyl peroxide
Solvent Vapor
Vapor (He)
KBr pellets
terf-Butyl 2-chloro-l,l-dimethylethylperoxide
Cumene
sec-Butyl peroxide
Toluene Vapor Decane Dodecane Heptane Hexadecane Octane Styrene Tetradecane Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene
Butyl peroxide
Bromo-terf-butyl peroxide Chloro-terf-butyl peroxide Bis(chloro-tert-butyl) peroxide 2-terf-Butyl peroxy-2-methyl1-propanol
T( 0 C) 120.2 129.5 138.5 145.4 125 135 145 129.6 141.0 152.5 166.8 130 140 150 160 170 129 138 149 152 139.7 147.2 154.6 159.8 T (K) 145 T(K) 149.5 160 160 160 130 140 150 160 280 290 300 310 320 330 340 350 109 127 149 120 130 140 150 100 100 80 80 80 80 80 60 80 150 150 150 150
A^(S" 1 ) 6.39 x 10 " 6 1.98 XlO- 5 6.0OxIO- 5 1.24 x l O ~ 4 1.1 x K r 5 3.6 XlO- 5 1.15 x l O - 4 1.64 x l 0 ~ 5 6.28 XlO" 5 2.25 x l O - 4 8.92 x l O - 4 1.82 x l O - 5 5.75 x l O " 5 1.75 x l O - 4 4.88 x l O " 4 1.35 x l O - 3 1.97 x l O - 5 4.3 x l O - 5 1.30 x l O ~ 4 1.62 XlO" 4 6.OxIO- 5 1.43 x l O - 4 3.22 x l O - 4 5.53 x l O - 4 3.2 x 10 16 1.3 x l O - 4 1.9xlO 1 6 1.79 XlO" 4 4.0OxIO- 4 4.53 XlO" 4 4.83 x l O - 4 1.91 x 10" 5 5.95 x l 0 ~ 5 1.78 x l O " 4 4.96 x l 0 ~ 4 7.7 1.5IxIO 1 2.77X10 1 4.87XlO 1 8.34XlO 1 1.38 x l O 2 2.13 x l O 2 3.22 x l O 2 3.8 x 10" 7 2.96 x l O - 5 4.4 x l O " 4 8.82 x 10~6 2.8OxIO- 5 9.26 x l 0 ~ 5 2.78 x l O - 4 2.7 x 10 ~6 1.5 x 10" 6 1.43 x 10 " 8 1.17 x l O " 8 2.04 x 10~8 8.8 x 10 ~9 1.58 x l O " 8 3.3 x 10 ~9 9.6xlO-9 3.63 x 10 " 4 4.15 x 10 ~A 3.11 x 10 ~4 1.16 x 10 " 3
Ea (kj/mol)
159.0
Notes
a a a a a
163.6
exp[- 163.6/RT] 161.5 exp[-161.5//?7] 156.5 i(37-132) 154.8 a,i(2.6) a,i(33) a,i(100) 156.7 U3 U3 U3 U3 154.8 i(10) i(10) i(10) i(10) i(10) KlO) i(lO) i(lO) 159.0 h
t6 t6 t6 t6 t6 142.3 t6
Refs. 227 227 227 227 64 64 64 86 86 86 86 96 96 96 96 96 88 88 88 88 63 63 63 63 63 125 175,125 83 117 117 117 277 277 277 277 111 111 111 111 111 111 111 111 241 241 241 363 363 363 363 197 197 270 270 270 270 270 92 270 346 346 346 346
TABLE 3. cont'd Number of C atoms
J(0C)
Initiator
Solvent
2-tert-Buty\ peroxy-2-methyl1-propanol-di l-Hydroxybutyl-«-butyi peroxide
Chlorobenzene
150
a-Methylstyrene
1-Hydroxyisobutyl-isobutyl peroxide
a-Methylstyrene
1-Hydroxyisobutyl-l-di-isobutyll,l-d 2 peroxide
a-Methylstyrene
Dimethylaminomethylterf-amyl peroxide
Styrene
Diethylaminomethylterf-butyl peroxide
Styrene
N-Piperidinomethyltert-buty\ peroxide
Styrene
9
tert-Butyl tert-amyl peroxide
Cumene
10
tert-Amyl peroxide
Bulk
79.4 99.4 109.9 79.4 99.4 109.9 99.5 109.8 122.0 110 120 130 110 120 130 110 120 130 110 120 130 140 125 132.2 108 128 150 T (K) 125 125 125 132.2 136.7 142.2 149.2 136.7 142.2 149.7 110 120 130 140 110 120 130 140 150 127.5 130 132.5 135 137.5 140 142.5 145 147.5 150 80 85 100 115
8 (cont'd)
Chlorobenzene
Decalin Octane Triethylamine Vapor
11 12
tert-Butyl 1,1-dimethylbutyl peroxide
Cumene
ter/-Butyl 1,1,2-trimethylpropyl peroxide
Cumene
2-Methyl-2-tert-butyl-peroxyacetate Ethyl 2-terf-butylperoxymethylpropenoate
Chlorobenzene Triisopropylbenzene
Apocamphane-1-formyl peroxide 2,2-Bis(tert-butylperoxybutane)
Benzene Benzene
A:d (s" 1 )
Ea (kj/mol)
Notes
1.23 x 10" 3 1.7 x 10~5 1.06 x l O - 4 2.9 x l O - 4 3.7 x 10" 5 2.OxIO" 4 4.8 x l O - 4 6.9xlO~ 5 1.8 x 10~4 4.2 x l O - 4 4.9xlO"5 1.19 x 10" 4 3.76 x l O " 4 4.IxIO-5 1.35 x 10~4 3.25 x l O - 4 5.5 x 10" 5 2.66 x 10 ~4 4.16 x l O - 4 3.86 x 10" 6 1.287 x l O - 5 4.3OxIO- 5 1.406 x l O - 4 5.7xlO- 5 1.15 XlO" 4 1.93 x 10 ~5 1.93 x l O " 4 1.93 x 10- 3 4.02 xlO 1 5 2.8xl0-5 3.0xl0"5 3.5 x 10 ~5 7.2 x 10~5 1.15 XlO" 4 2.16 xlO~ 4 4.8 x l O " 4 1.34 x l O - 4 2.4IxIO- 4 5.61 x 10" 4 4.38 x l O " 6 1.537 x l O " 5 4.99 x l 0 ~ 5 1.544 x l O - 4 7.07 x 10 " 6 2.374 x 10 ~5 7.62 x l 0 ~ 5 2.308 xlO~ 4 4.12 x 10 " 4 1.63 x 10~4 1.95 x l O " 4 2.16 x l O " 4 2.56 x l O - 4 3.47 XlO" 4 3.92 x l O - 4 4.68 x l O - 4 5.37 x l O - 4 6.3OxIO- 4 7.76 x l O ~ 4 2.3 x 10 ~4 3.OxIO- 6 1.9 x l 0 ~ 5 9.36 x l 0 ~ 5
Refs. 346
102.9
83.7
c c c
89.5
130.7
132.4
130.7
tn tn tn tn tn tn tn tn tn
exp[- US35/RT]
154.8-171.5
i(200-225) i(200-225) i(200-225) i(100-200) i(440-610) i(440-610) i(440-610)
C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 151
a a a
32 32 32 32 32 32 25 25 25 303 303 303 303 303 303 303 303 303 363 363 363 363 202 202 344 344 344 344 202 202 202 63 63 63 63 63 63 63 363 363 363 363 363 363 363 363 346 353 353 353 353 353 353 353 353 353 353 244 337 337 337
Notes page 11-69; References page II - 70
TABLE 3. cont'd Number of C atoms 12 (cont'd)
13
Initiator
Solvent
tert-Butyl 1,1,3,3-tetramethylbutyl peroxide
Cumene
1-Hydroxy-l-hydroperoxydicyclohexyl peroxide
Benzene
Di-(I -hydroxycyclohexyl)peroxide Diisopropylaminomethyltert-amyl peroxide
Chlorobenzene
1-Phenylethyl terf-butyl peroxide terf-Butyla-cumyl peroxide
Chlorobenzene terf-Butylbenzene
Styrene
Chlorobenzene
Cumene
Dodecane
14
15 16
terf-Butyl />-chlorocumyl peroxide tert-Butyl p-nitrocumyl peroxide tert-Butyl l,l-dimethyl-2-phenylethyl peroxide
Cumene Cumene Cumene
U-Di-(terf-butylperoxy)cyclohexane Ethyl-3,3-di-tert-butylperoxy)-butyrate l-[4-(Dimethylamino)phenyl]ethyl tert-butyl peroxide
Benzene Benzene Chlorobenzene
tert-Butyl /?-methoxycumyl peroxide tert-Butyl p-methylcumyl peroxide terf-Butyl m-methoxycumyl peroxide Bis(l, 1,2,2-tetramethylpropyl) peroxide 2-[4-(Dimethylamino)phenyl]propyl tert-buty\ peroxide l,l-Di-(terf-amylperoxy)cyclohexane tert-Butyl 3-isopropenylcumyl peroxide
Cumene Cumene Cumene Cumene Chlorobenzene
2,5-Dimethyl-2,5-di(tert-butylperoxy)-hexane
Benzene
Benzene Chlorobenzene
Chlorobenzene
2,5-Dimethyl-2,5-di(terr-butylperoxy)-3-hexyne
Benzene
T( 0 C)
kd (s" 1 )
110 120 130 140 85 100 115 130 105 120 110 120 130 129.2 138 158 115 136 159 T(K) 138 158 125 128 138 148 158 125 125 110 120 130 140 93
1.085 x 10~5 3.73 x 10 ~5 1.141 x 10~4 3.40xl0~ 4 9.6xlO~ 6 5.1 x 10 ~5 1.9 xlO~ 4 5.2 x l O - 4 ~1.9xl0~5 ~1.9xlO~4 3.9xl0"5 1.21 x 10~4 3.OxIO" 4 3.09 x 10~5 1.48 xlO~ 4 9.62 XlO" 4 1.93 x 10 ~5 1.93 xlO~ 4 1.93 x l 0 ~ 3 1.17 xlO 1 5 1.44 xlO~ 4 8.88 xlO~ 4 3.04 x l 0 ~ 5 4.44 x 10 ~5 1.39 xlO~ 4 3.21 x 10 ~4 8.88 xlO~ 4 2.42 x 10 ~5 2.20 x 10 ~5 4.35 x 10 ~6 1.458 x 10~5 4.70xl0~ 5 1.463 xlO~ 4 1.9xlO~ 5
111 100.4 110.8 120.9 129.2 129.2 125 125 125 125 129.2
1.9xl0" 5 1.82 xlO~ 6 6.97 x 10 ~6 2.18 x l 0 ~ 5 6.18 x l 0 ~ 5 5.22 x l 0 ~ 5 3.72 x 10 ~5 3.22 x 10 ~5 2.84 x 10 ~5 4.84 xlO~ 4 1.51 x 10~4
90 104 126 152 T(K) 115 130 145 115 134 156 T (K) 115 130 145 160
1.9xl0~ 5 1.93 x 10 ~5 1.93 x 10 ~4 1.93x10-3 1.161xl0 13 1.15 x l 0 ~ 5 6.86 x 10 ~5 4.75 xlO~ 4 1.93 x l 0 ~ 5 1.93 xlO~ 4 1.93 x l 0 ~ 3 1.68 x 1016 3.91 x 10 ~6 2.35 x 10 ~5 1.14 xlO~ 4 6.17 xlO~ 4
Ea (kj/mol)
Notes
a,c2 a,c2 a,c2 a,c2
132.4
tn tn tn a a
exp[-146.98//?7] a a 146.4
a a a a
a a 151.7
m2
m2
a
exp[-128.33/#7] 166.9
exp[- 155.49/RT] 156.9
a a a
a a a a
Refs. 363 363 363 363 337 337 337 337 344 344 303 303 303 282 80 80 344 344 344 344 80 80 352 80 80 80 80 352 352 363 363 363 363 338 338 282 282 282 282 282 352 352 352 352 282
338 344 344 344 344 126,337 126,337 126,337 344 344 344 344 126,337 126,337 126,337 126,337
TABLE 3. cont'd Number of C atoms 16 (cont'd)
17
18
Initiator 2,5-Dimethyl-2,5-di(terf-butylperoxy)-3-hexyne
rc-Butyl-4,4-bis(terf-butylperoxy)valerate
Solvent Chlorobenzene
Dodecane
1,1 -Bis-(terr-butylperoxy)3,3,5-trimethylcyclohexane
Benzene
Cumyl peroxide
Benzene
terr-Butylbenzene Chlorobenzene
Cumene
Dodecane
Diisopropylcarbinol Neat
Bicyclo[2.2.2]octane1-formyl peroxide
20
a,a'-Bis(tert-butyrperoxy)diisopropyl benzene
Carbon tetrachloride
Chlorobenzene Cyclohexane Isooctane Toluene Benzene
Chlorobenzene
Neat
24
TABLE 4. Number of C atoms 4
2,5-Dimethyl-2,5-di-(2-ethylhexanoylperoxy) hexane
Benzene
T( 0 C)
^d(S" 1 )
Ea (kj/mol)
Notes
Refs.
120
1.93 x 10~5
344
141 164 T (K) 100 115 130
1.93 xlO~ 4 1.93 x l O - 3 1.90 x 1015 5.83 x 10" 6 3.53 x 10 ~5 2.9IxIO-4
344 344 344 8 8 8
85 100 115 115 130 145 158 112 132 154 T (K) T (K) 138 158 128 138 148 158 138 150 155 160 165 30
6.9xlO~ 6 138 5.05 x l O - 5 2.7IxIO-4 2.05 x 10 ~5 159 1.05 x l O - 4 6.86 x l O - 4 1.72 x 10 ~3 1.93 x IO" 5 1.93 xlO~ 4 1.93 x l O - 3 9.24 x 1015 exp[- 152.61/RT] 4.31 x 1014 exp[- 1443/RT] 2.57 x l O - 4 1.52 x l O - 3 8.75XlO" 5 2.31 x 10- 4 5.37 xlO~ 4 1.83 x l O - 3 3.16 x 10~4 3.98 x 10~3 4.81 x 10- 3 9.63 x l O - 3 1.16 x l O - 2 1.71 x 10 " 4 1.73 x 10 " 3 1.68 x l O - 4 6.2OxIO" 4 6.IxIO-5 5.OxIO- 5 3.66 x 10 " 4 1.9 x l O " 5 147 4.91 x 10 ~5 9.61 x 10- 5 1.93 x 10~5 1.93 x l O - 4 1.93 x l O - 3 7.65 xlO 1 5 exp[- 152.69 kJ/RT] 3.61 x 10~3 4.44 x l O " 3 4.62 x l O - 3 1.9xlO- 5
30 30 30 30 115 125 130 114 134 156 T(K) 155 160 165 68
exp[- 150.61/RT] a a a a a a a a a a
a a a a a a a a a a a n vi
a a a
a a a a
337 337 337 337 126,337 126,337 80 344 344 344 344 67 80 80 80 80 80 80 80 371 371 371 371 244 244 244 244 244 244 244 337 337 337 344 344 344 344 371 371 371 338
ACYL PEROXIDES
Initiator Acetyl peroxide
Solvent Acetic acid
T( 0 C) 55.2 64.9 75.2 85.2 73.2
kd (s"1) 2.8 x 10~6 9.9xlO~ 6 3.75 x l O - 5 1.3OxIO- 4 2.62 x l O - 5
£ a (kj/mol)
Notes
126.4
d,e d,e d,e d,e a
Refs. 106,176 106,176 106,176 106,176 100
Notes page 11-69; References page II - 70
Table 4. cont'd Number of C atoms 4 (cont'd)
Initiator Acetyl peroxide
Solvent Benzene
H-Butanol seoButanol tert-Butanol Carbon tetrachloride
Chloroform Cyclohexane
Cyclohexene
Cyclopentene
Cumene Decane n-Dodecane Ethanol Heptane Hexadecane «-Hexane 1-Hexene
2-Methyl-l-pentene
rc-Octadecane n-Octane Isooctane
1-Pentene
Propionic acid
J( 0 C) 35 55 65 50 70 85 70 60.3 80 55.2 64.9 75.2 85.2 60.3 60.3 60.3 80.3 26 46 65 80 80.3 55.2 64.9 75.2 85.2 60 70 80 90 100 70 80 90 100 80 80 60 80 60.3 80.3 80 80 60 70 80 90 100 80 90 100 60 60 80 60 55.2 64.9 75.2 85.2 70 80 90 64.9 85.2
A^(S"1) 9.5 x 10 ~7 3.14 XlO" 6 1.27 x l O - 5 1.1 x l O " 6 2.39X10" 5 1.73 x l O " 4 2.38 XlO" 5 5.OxIO" 6 8.7xl0-5 2.6 XlO" 6 1.07x10-5 4.65x10-5 1.62 XlO" 4 3.4xlO" 5 3xl0~5 3.1xl0"6 4.9x10-5 1.08 x 10 " 7 4.84 XlO" 7 2.11 x l O " 6 5.5x10-5 ~5 2.1 x 10"6 8.3 XlO" 6 3.6OxIO- 5 1.27 XlO" 4 4.5xlO~ 6 1.77x10-5 7.0x10-5 2.28 xlO" 4 7.61X10" 4 1.6OxIO-5 7.0x10-5 2.55 XlO" 4 7.25 xlO" 4 7.6xl0-5 6.85 x l 0 ~ 5 2.3xlO" 6 6.15x10-5 1.01 x 10 " 4 1.4OxIO-3 7.72 x 10 " 5 5.39 x l O " 5 3.4xlO~ 6 2.35 x 10" 5 8.7x10-5 3.05 XlO" 4 9.83 x l O " 4 9.OxIO" 5 3.12 XlO" 4 9.81 x 10 " 4 1.9xlO" 6 2.9xlO" 6 7.34x10-5 2.9xlO~ 6 2.35 x l O " 6 9.4 XlO" 6 4.03x10-5 1.49 XlO" 4 2.45 x 10 " 5 9.4 x 10"5 3.22 XlO" 4 1.4 x l O " 5 1.66 XlO" 4
Ea (kj/mol)
Notes
134
a a a a
135.1
c,e c,e c,e c,e
133.9
131.4
c,e c,e c,e c,e
133.5
137.2
129.7
132.6
126.8
134.7
c,e c,e c,e c,e
d,e
Refs. 68 68 68 337 126,337 126,337 16 4 20 106,176 106,176 106,176 106,176 4 4 4 4 68 68 68 20 4 106,176 106,176 106,176 106,176 20 20 20 20 20 20 20 20 20 20 168 70 168 4 4 168 168 70 20 20 20 20 20 20 20 70 70 168 70 106,176 106,176 106,176 106,176 20 20 20 106,176 106,176
Table 4. cont'd Number of C atoms 4 (cont'd)
Initiator Acetyl peroxide
Solvent n-Tetradecane Toluene
Vapor (toluene)
6
Propionyl peroxide
Acetic acid Acetic anhydride Benzene
Benzonitrile Dioxane n-Hexane Isooctane Nitrobenzene Toluene Vapor
2-Iodopropionyl peroxide
Perfluoropropionyl peroxide
8
2,2,3,3-Tetrafluoropropionyl peroxide tert-Butyl permaleic acid Butyryl peroxide
Acetone Benzene
H-Butyl vinyl ether Cyclohexene 95%Ethanol Freon 113
Isooctane Freon 113 Acetone Acetic acid Acetic anhydride
J( 0 C) 60 80 60.3 55.2 64.9 75.2 85.2 73.2 85.5 90 88.0 134.7 150.7 161.7 170.7 184.2 65.0 85.0 65.0 85.0 65.0 85.0 50 70 85 65.0 85.0 65.0 85.0 65.0 85.0 65.0 86.5 65.0 85.0 65.0 85.0 65.0 85.0 99.4 134.4 152.2 176.4 190.9 T (K) 56 62.5 62.5 62.5 62.5 62.5 62.5 20 30 40 T (K) T(K) 25 35 87 65.0 85.0 65.0 85.0
^d(S1) 2.OxIO" 6 5.9OxIO" 5 5xlO"6 2.7 xlO~ 6 1.14 x l O " 5 4.70xl0~ 5 1.59 xlO~ 4 3.06 XlO" 5 1.72 XlO" 4 7.33 x l O " 5 3.12 x l O " 4 3.1 x 10" 2 1.18XlO"1 2.77XlO" 1 6.10X10" 1 1.76 3.8xlO~ 5 4.3 XlO" 4 3.5 x l O " 5 4.5 x l O " 4 1.88 x KT 5 2.4OxIO" 4 2.72 x l O " 6 4.3OxIO" 5 2.89 XlO" 4 3.9xl0"5 5.IxIO"4 4.5 x 10~5 4.5 x l O " 4 1.50x 10" 5 1.72 x l O " 4 9.8 x l O " 6 1.44 x l O " 4 3.7xl0"5 4.1 x 10 " 4 1.87 x l O " 5 2.54 x l O " 4 1.0 x l O " 5 1.6 xlO~ 4 8 xlO"4 2.6 XlO" 2 1.22XlO- 1 8.OxIO" 1 2.33 2.5 x 10 " 4 2.19 x 10 ~4 (2.40-2.81) x 10 ~4 7.12 XlO" 4 (2.36 ±0.07) x 10 ~4 2.47 x 10" 4 2.7xlO" 4 4.OxIO" 4 2.19 x 10 " 5 8.5OxIO- 5 3.26 XlO" 4 1.8 x 109 1.5xlO 17 2.26 x 10 " 4 7.17 x 10 " 4 1.9xlO~ 5 4.7 x 10" 5 5.6 x l O " 4 4.3 x 10 " 5 5.5 x l O " 4
Ea (kj/mol)
129.7 133.9
138.1 129.7 123.4
123.0 128.9 129.3 127.6
130.5 116.7
Notes
c,e c,e c,e c,e a a a
c,e c,e d,e c,e c,e c,e a a a d,e d,e c,e c,e
123.8 130.5 120.9
c,e c,e c,e
130.1 125.5 125.5
exp[- 125.5/RT]
100.1
s s n,s p s s s h
exp[- 83.8//?7] exp[- 121.5/RT} 86.3
h
108.8
125.1
a c,e c,e c,e
Refs. 70 168 4 106,176 106,176 106,176 106,176 100 100 113 105 105 105 105 105 105 51 51 51 51 51 51 126,337 126,337 126,337 51 51 51 51 51 51 51 51 51 51 51 51 51 51 85 85 85 85 85 85 77 77 77 77 77 77 77 283 283 283 304 304 283 283 338 51 51 51 51
Notes page II - 69; References page II - 70
Table 4. cont'd Number of C atoms 8 (cont'd)
Initiator Butyryl peroxide
Solvent Benzene Benzonitrile Dioxane Hexane Isooctane Toluene Vapor
Isobutyryl peroxide
Acetonitrile Benzene
Benzonitrile tert-Butanol Carbon tetrachloride
Chlorobenzene
Chloroform Cyclohexane Fluorobenzene Isooctane
Cyclopropane formyl peroxide
Isopropanol Nitrobenzene Nujol Tetralin Toluene Vapor p-Xylene Carbon tetrachloride
Diacetyl succinoyl diperoxide
Styrene
Succinoyl peroxide
Acetone
T( 0 C) 65.0 85.0 65.0 85.0 65.0 85.0 65.0 85.0 65.0 85.0 65.0 85.0 65.0 85.0 96.7 127.4 158.9 178.9 T(K) 40 20 30 40 40 40 40 40 40 45 50 55 60 40 23 39 57 T (K) 40 40 40 40 25 35 45 55 T (K) 40 40 40 40 40 40 40 40 64.5 70.4 77.8 60 73.5 85 70 85 100
^a(S1) 2.24 x 10~5 3.02 x l O - 4 4.3 x 10~5 5.8 x l O - 4 4.6xlO~ 5 4.6 x l O - 4 1.14 x 10~5 1.53 x l O - 4 1.11 x 10~5 1.56 x l O " 4 2.14 x l O " 5 2.87 x l O - 4 1.6 x l O " 5 2.OxIO- 4 8.6 x l O " 4 1.5 XlO" 2 3.OxIO" 1 1.27 1.9 xlO~ 4 6.81 x 10 " 4 1.6 x l O " 5 6.75 x l O - 5 2.59 x l O - 4 2.38 XlO" 4 2.4OxIO- 4 4.2xlO~ 4 2.5IxIO" 4 7.8xl0"5 1.58 XlO" 4 3.05 x l O - 4 5.61 x 10~4 7.67 xlO~ 4 1.73 x 10 " 4 1.93 x l O - 5 1.93 x l O - 4 1.93 XlO" 3 3.37 xlO 1 4 7.5 x 10 ~5 4.5 x 10 ~5 4.7OxIO- 5 1.23 x 10 " 4 3.35 x 10 ~6 1.54 XlO" 5 6.14 x l O - 5 2.26 x l O - 4 2.8 x 1014 3.2 x l O " 5 3.05 x 10~4 5.8OxIO- 4 4.63 XlO" 5 1.75 x 10 ~4 1.43 x 10 ~4 -1 x 10 ~5 1.4OxIO- 4 4.4xlO" 6 9.3 x 10 ~6 2.31 x 10- 5 5.2xlO~~6 2.3 x l O - 5 9.3 x 10- 5 2.8OxIO- 5 1.21 x 10- 4 4.36 x l O - 4
Ea (kj/mol)
Notes
131.4
d,e c,e d,e
131.4 116.3 131.4 133.5 130.5
c,e c,e c,e c,e c,e c,e d,e c,e
123.8 123.8
exp[-123.8//?7] 109
1113 a a a In3
exp[- 109.06//?7]
114.2
exp[- 1H2/RT]
125.5
99.6
a a a
Refs. 51 51 51 51 51 51 51 51 51 51 51 51 51 51 85 85 85 85 85 167 337 337 337 167 148,244 148 148 148 148 148 148 148 148 344 344 344 344 148 148 167 148 84 84 84 84 84 148 148 148 167 148 148 167 148 34 34 34 215 215 215 126,337 126,337 126,337
Table 4. cont'd Number of C atoms 9
10
11
Initiator Acetyl benzoyl peroxide
T( 0 C)
Chlorobenzene
70 96 96 75 75 75 41 41 65 70 75 14 25 44.5 56.5 44.5 60 73.5 85 50 60 70
5-Bromo-2-thenoyl peroxide 4-Bromo-2-thenoyl peroxide 5-Chloro-2-thenoyl peroxide a-Chloropropionyl m-chlorobenzoylperoxide Cyclobutane formyl peroxide
Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Acetonitrile Cyclohexane Carbon tetrachloride
Cyclopropane acetyl peroxide
Carbon tetrachloride
Diacetyladipoyl diperoxide
Styrene
Difuroyl peroxide
styrene
2,2,3,3,4,4,5,5-Octafluoropentanoyl peroxide
Freon 113
Perfluoro-2-(2-ethoxysulfinic acid) propionyl peroxide Pivaloyl peroxide 2-Thenoyl peroxide 3-Thenoyl peroxide Benzoyl isobutyryl peroxide
m-Chlorobenzoyl isobutyryl peroxide
12
Solvent
Freon 113 Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Acetonitrile Cyclohexane
Acetonitrile Cyclohexane
p-Chlorobenzoyl isobutyryl peroxide
Cyclohexane
p-Fluorobenzoyl isobutyryl peroxide
Cyclohexane
5-Methyl-bis-2-thenoyl peroxide p-Nitrobenzoyl isobutyryl peroxide
Carbon tetrachloride Cyclohexane
P-Allyloxypropionyl peroxide
Toluene
p-Xylene
m-Chlorobenzoyl 2-methylbutanoyl peroxide
Acetic acid Acetonitrile
kd (s"1) 2xl0~5 5.12 x l O " 4 4.08 XlO" 4 1.53 x 10 " 5 1.14 x 10 ~5 1.58 x 10 ~5 3.05 x 10 ~5 1.51xl0~ 5 5.15 x 10 " 5 8.95,6.63 x l O " 5 1.41 x 10" 4 9.45 x 10 ~5 9.75,10.57 x 10" 4 5.01 x 10 " 5 2.64 XlO" 4 6.5-8.OxIO" 4 6.6xlO" 6 4.73 XlO" 5 1.84 x l O " 4 7.0xl0"7 2.9 xlO~ 6 1.03 XlO" 5
20 30 40 T(K)
3.29 x 10 " 5 1.27 XlO" 4 5.01 x 10 " 4 2.8xlO 1 4
10 75 75 41 41 70 40 50 60 70 41 40 50 41 50 55 60 65 55 60 65 70 75 40 45 50 55 60 70 80 90 70 80 90 40 40
1.9xlO~ 4 2.21 x 10 ~~5 2.14 x 10 " 5 4.06 x 10 " 4 1.63 x l O " 5 3.05 xlO~ 4 1.45 x l O - 5 5.398 XlO" 5 1.924 x l O " 4 6.872 x l O " 4 1.03 x 10 ~3 3.486 x 10 " 5 1.362 x l O " 4 4.4OxIO- 5 1.029 x 10 ~4 1.651 x 10- 4 3.21 x 10- 4 5.638 x l O - 4 1.117 x 10 " 4 2.038 XlO" 4 4.893 x l O - 4 9.603 x l O " 4 2.92 x 10 " 5 8.1xl0"5 1.336 x l O " 4 2.889 x l O - 4 4.725 X l O ' 4 8.921 x 10 ~4 2.0IxIO" 5 8.62 x l O " 5 2.53 x l O " 4 2.32 x l O " 5 8.88 x l O " 5 2.95 x l O " 4 1.60 x 10 ~3 1.72 x 10 " 3
Ea (kj/mol)
Notes
z(25),vi3 z(19),vi3 a,mi a,mi a,mi ni3 ni3
101.7 n
125.7
h
100.6
h
exp[-95.1//?7]
a,mi a,mi
112.5
h,j j j j
111.3
h,j j j
a
a a a a a a
Refs. 155 284 284 232 232 232 167 167 34 34 34 34 34 24 24 24 215 215 215 287 287 287 283 283 283 304 244 232 232 167 167 167 164 164 164 164 167 164 164 167 164 164 164 164 164 164 164 164 232 164 164 164 164 164 191 191 191 191 191 191 256 256
Notes page II - 69; References page II - 70
Table 4. cont'd Number of C atoms 12 (cont'd)
14
Initiator m-Chlorobenzoyl 2-methylbutanoyl peroxide
Solvent
Cyclobutane acetyl peroxide
2-Butanol Carbon tetrachloride Cyclohexane Carbon tetrachloride
Cyclopentane formyl peroxide
Carbon tetrachloride
Hexanoyl peroxide 5-Hexenoyl peroxide
Toluene Toluene
4-Methoxybenzoyl isobutyrylperoxide
Cyclohexane
4-Methylbenzoyl isobutyrylperoxide
Cyclohexane
4-Methyl-2-thenoyl peroxide 5-Methyl-2-thenoyl peroxide Perfluoro-2-furnanacetyl peroxide Perfluoro-2-propoxypropionylperoxide Perfluoro-2-n-propoxypropionylperoxide
Carbon tetrachloride Carbon tetrachloride Freon 113 Freon 113 perF-ether mix. Freon 113
Perfluoro-2-iso-propoxypropionylperoxide
Freon 113
2-Azidobenzoyl peroxide
Benzene
Benzoyl peroxide
Acetic acid Acetone
Acetonitrile Acetophenone
Allyl alcohol Anisole Benzaldehyde Benzene
T( 0 C) 40 40 40 65 70 75 40 45 50 55 77 60.1 70.4 76.4 85.0 55 60 65 70 40 50 60 70 75 75 T (K) T(K) T (K) 20 30 40 20 30 40 50 80 75 50 70 85 100 70 70 80 94.5 80 30 80 90 25 30 55 60 60 80 70 78 78 79.8 80 66 72.5 78 70
kd (s"1) 9.0xl0~4 1.32 x 10 ~4 6.OxIO" 5 1.37 x 10 ~5 2.13,3.08 x 10- 5 3.83 x l O - 5 1.50 x 10 ~5 2.55 XlO" 5 4.96 XlO" 5 8.17,7.85 x 10" 5 1.186 x 10 ~4 1.06 x 10 " 5 4.15 XlO" 5 8.59 x l O " 5 2.668 x l O - 4 5.465 x 10 ~5 1.024 x l O " 4 1.876 XlO" 4 3.208 XlO" 4 9.6IxIO" 6 3.619 x l 0 ~ 5 1.305 XlO" 4 4.772 x l O " 4 2.92 x 10 " 5 4.21 x 10 ~5 1.2 x 1011 4.4xlO 1 4 8.9 x 1016 4.81 x 10 ~5 1.96 x 10 ~4 7.16 XlO" 4 8.32 x 10 ~5 3.43 x 10 ~4 1.34 x l 0 ~ 3 2.5 x 10~5 9.4 XlO" 4 7.53 x 10 " 5 2.25 x 10 ~6 2.63X10- 5 1.34 xlO~ 4 5.83 xlO~ 4 1.76 x 10 ~5 1.15 x 10~5 4.32xlO- 5 2.30xl0~ 4 3.80 x 10 ~4 1.42 x 10 ~7 5.50xl0~ 5 1.71 x 10- 4 6.4xlO~ 5 4.80 xlO~ 8 1.14 xlO~ 6 2.76 xlO~ 6 2.0xl0~6 2.5xlO-5 1.38x10-5 2.3OxIO- 5 1.67x10-5 3.48x10-5 4.8x10-5 7.72 x 10 ~6 1.87x10-5 3.77x10-5 1.17x10-5
Ea (kj/mol)
129.3
Notes
c c c c
j j j j a,mi ^m1 exp[- 11A/RT] exp[- 9Z.5/RT] exp[-110.2/RT] 100.1
h
102.7
h
111.3
126.4
116.3
124.3
129.7
133.9
d2 d2 a,r a a a a tj a a a a,r a a,r a,r p2 a a,r a,r m2 m2 a c X9
a a a a
Refs. 256 256 256 34 34 34 34 34 34 34 209 209 209 209 209 164 164 164 164 164 164 164 164 232 232 304 304 304 283 283 283 283 283 283 161 161 74 126 126 126 126 124 5 5 5 74 109 74 74 279 109 74 74 14 14 213 230 230 170 20 131 131 131 73
Table 4. cont'd Number of C atoms 14 (cont'd)
Initiator Benzoyl peroxide
Solvent Benzene
Benzyl alcohol Bromobenzene
Butanol Butanone Di-n-butyl phthalate
Carbon tetrachloride Chlorobenzene
Chloroform Cumene
Cyclohexane Decane Decalin Dioxane
J( 0 C) 75 80 80 50.8 54.9 60.9 65.6 71.0 75.8 70 85 100 70 70 75 75 85 85 100 100 79 80 80 80.2
80 80 117 127 137 147 75 79 70 80 80.2 80.2 80.2 80.2 71 91 113 T (K) 30 80 85 90 30 45 60 80 T (K) 100 80 80 80 70 80 80 80
kd (s"1) 2.62 x 10 " 5 4.39 XlO" 5 3.27 XlO" 5 4.28 XlO" 7 8.53 x l O - 7 1.66 x l O - 6 3.22 XlO" 6 5.94 x l O - 6 1.19 XlO" 5 1.27 XlO" 5 8.94 x l O - 5 4.96 x l O - 4 1.03 x l O - 5 1.18 XlO" 5 1.48 x l O - 5 1.66 x l O - 5 4.7 x l O - 5 5.5 XlO" 5 2.28 x l O - 4 2.56 x l O " 4 2.58 x l O - 5 3.35 x l O " 5 4.44 x 10 " 4 8.15 x l O " 5 2.19 x l O " 5 3.84 x l O - 5 3.55 x l 0 ~ 5 4.34 x l O - 5 6.06 x 10 " 4 4.64 x 10 " 5 2.78 x 10 ~3 7.44 X l O " 3 1.72 x l O - 2 3.89 X l O " 2 1.07 x 10 " 5 1.69 X l O " 5 1.35 x 10 ~5 4.64 x l O - 5 2.85 x l O " 5 2.36 x l O - 5 3.52 x l 0 ~ 5 2.62 X l O " 5 1.93 x l O - 5 1.93 x l O " 4 1.93 XlO" 3 6.94 x l O 1 3 5.47 x 10 ~8 3.69 x 10 ~5 6.39 XlO" 5 1.19 x l O - 4 7.3OxIO- 8 1.85 x l O 7 1.45 x l O - 6 1.70 XlO" 5 1.20 x 10 13 2.5 XlO" 4 7.72 x 10 ~5 2.53 x 10 " 5 2.26 x 10 " 4 1.30 x 10 " 5 6.72 x l O - 4 4.2OxIO- 4 4.18 x l 0 ~ 5
Ea (kj/mol)
123.8
130
128.0 124.3
Notes a a a,b 2 a,t2 a,t2 a,t2 a,t2 a,t2 a,t2 a a a a,m2 t2 m3 m3 m3 a,t6 a a,r t9
Hi1 m3 m5
120.1
a,r a,r yi6
a,r t 6 ,a I1 a,r t9 Cm 1 c,m 3
exp[- 12235/RT] a a,r a,r a,r a 120.5
exp[- 120.5/RT] a,t7 a,r a,r ti a,r a,r a,m!
Refs. 73 73 347 69 69 69 69 69 69 337 126,337 126,337 16 124 12 12 12 12 12 12 120 7 74 231 231 231 231 231 74 74 236 236 236 236 74 121 124 74 231 231 231 231 344 344 344 344 109 74 74 74 109 67 67 67 67 122 74 270 74 74 74 6 232
Notes page 11-69; References page 11-70
Table 4. cont'd Number of C atoms 14 (cont'd)
Initiator Benzoyl peroxide
Solvent Ethanol
Ethylbenzene
90% Formic acid H-Heptane
Hexadecane Hexane Isooctane Isopropylbenzene Methyl acetate Methylcyclohexane 4-Methyl-2pentanone a-Methylstyrene Mineral oil Neat Nitrobenzene PEG 400
90% aq. PEG 400
80% aq. PEG 400
70% aq. PEG 400
rt-Pentanol Phenol Propionic acid Propylene glycol
Styrene
T( 0 C) 25 40 50 30 75 80 85 90 80 80 80 80 130 135 140 145 145 145 145 150 155 160 80 80 80 80 80 49.2 53.9 80 80 70 80 105 80 30 25 40 50 70 25 40 50 70 25 40 50 70 25 40 50 70 80 80 80 25 40 50 34.8 49.4 61.0 74.8 100.0
^d(S1) 3.02 x l O ~ 8 2.77 x l O " 7 4.72 x l O - 7 3.61 x 10 " 8 1.8IxIO- 5 3.33 XlO" 5 5.56 XlO" 5 1.01 x 10- 4 3.15 x l 0 ~ 5 6.94 x 10 " 4 3.11 x 10 ~5 2.7IxIO-5 5.73 XlO" 3 1.02 x l O " 2 1.54 x l O - 2 2.25 XlO" 2 2.22xlO-2 2.21 x 10~2 2.12 x l O - 2 3.47 x l O " 2 5.21 x 10- 2 7.87 x l O - 2 2.51 x 10 " 5 2.85 x 10 ~5 2.79 x 10 ~5 2.7OxIO" 5 3.34 x 10~5 6.28 x 10 ~7 1.0 XlO" 6 5.25 x 10 ~5 4.28 x 10 ~5 3.02 x 10 " 5 2.89 x 10~5 7.22 x 10 ~3 4.58 x 10 ~5 6.6IxIO-8 5.0IxIO-7 5.73 x l O - 6 1.15 x l 0 ~ 5 1.15 XlO" 4 3.65 x 10~7 5.35 x l O " 6 1.15 x l O - 5 1.15 x l O " 4 2.77 x 10 ~7 3.09 x l O " 6 7.29 x l O - 6 1.15 x l O - 4 1.71 x 10 ~7 2.1IxIO-6 5.01 x 10- 6 1.15 x l O " 4 1.48 x 10 ~4 6.25 x 10 " 4 3.19 x 10~5 3.25 x 10 ~8 1.51 x l O ~ 7 3.16 x l O - 7 3.89 x 10 ~8 5.28 XlO" 7 2.58 x l O - 6 1.83 x l 0 ~ 5 4.58 x l O " 4
£ a (kj/mol)
Notes a a a a a,r a,r a,r a,r c a,r a,r z (1500) z (1500) z (1500) z (500) z (1000) z (1500) z (2000) z (1500) z (1500) z (1500)
123.8
117.6
m2 c a,t2 a,t2 a,r a,r a m2 a a,r a a a a a a a a a a a a a a a a a a,r a,r a,r a a a a a a a a
Refs. 351 351 351 109 74 74 74 74 239 74 74 270 377 377 377 377 377 377 377 377 377 377 270 270 270 308 229 69 69 74 74 213 308 371 74 109 351 351 351 351 351 351 351 351 351 351 351 352 351 351 351 351 74 74 74 351 351 351 10 10 10 10 10
Table 4. cont'd Number of C atoms 14 (cont'd)
Initiator Benzoyl peroxide
Solvent Poly(styrene)
Tetradecane Tetralin Toluene
Poly(vinylchloride)
Styrene
3-Bromobenzoyl peroxide
4-Bromobenzoyl peroxide 4-terr-Butylbenzoyl peroxide 2-Chlorobenzoyl peroxide 3-Chlorobenzoyl peroxide 4-Chlorobenzoyl peroxide
p-Xylene Benzene
Dioxane Dioxane Dioxane Acetophenone Benzene Acetophenone Dioxane Acetophenone Benzene
Dioxane Styrene
Cyclohexane formyl peroxide
Benzene
Carbon tetrachloride
Cyclopentane acetyl peroxide
Carbon tetrachloride
Diacetylsebacoyl diperoxide
Carbon tetrachloride
T( 0 C) 56.4 64.6 76.7 83.4 98.5 70.9 80.1 89.5 80 80 30 49.0 55.1 60.2 65.1 70.3 60.00 64.6 76.7 83.4 98.5 50 60 70 80 60 80 80 80 80 80 80 80 80 80 80 80 50 85 100 80 34.8 49.4 61.0 74.8 100.0 30 35 40 45 50 35 45 50 60 35 40 45 65 70 75 60 73.5 85
^d(S"1) 3.8 x 10~7 1.47 x l O - 6 9.27 x l O " 6 2.5OxIO- 5 1.41 x l O " 4 2.86 x l O - 6 1.11 x l O - 5 3.33 x l O - 5 2.64 x 10 ~5 3.72 x 10 " 5 4.94 x l O " 8 6.OxIO- 7 1.31 x 10- 6 2.83 x l O - 6 5.69 x l O - 6 1.10 x l O - 5 2.24 x l O " 6 6.3xlO" 7 5.11 XlO" 6 1.44 x l O - 5 9.33 x l O " 5 7 x IO" 7 7.7 x l O - 6 9.9 x l O " 6 3.1OxIO- 5 1.1 x 10 " 6 1.22 x l O - 5 2.6OxIO- 5 2.57 x 10 ~5 3.23 x 10 ~5 6.06 x 10 ~5 3.88 x 10 " 4 3.12 x 10 " 4 2.85 x 10 ~5 2.63 x 10 ~5 3.83 x 10 " 5 2.17 x 10 ~5 6.2 x l O " 7 6.64 x l O - 5 3.86 x l O - 4 3.62 x 10 " 5 8.3xl0-8 8.3 x l O " 7 3.33 x l O - 6 2.22 x l O - 5 4.17 x l O - 4 9.64 x 10 ~5 1.46 x l O " 4 3.1OxIO- 4 5.11xlO" 4 7.77 x l O - 4 6.6xlO~~5 2.1IxIO-4 4.45 xlO~ 4 1.3OxlO" 3 2.87 x l O - 5 5.22,5.29 x 10 " 5 9.67 x l O - 5 1.48 x 10" 5 3.2OxIO" 5 4.97 x l O - 5 1.04 x 10 ~5 5.20xl0~5 2.3OxIO- 4
E a (kj/mol)
120.5 123.8
Notes
Refs.
a a a a a a a a
17 17 17 17 17 15 15 15 270 74 109 69 69 69 69 69 291 17 17 17 17 287 287 287 229 116 116 7 6,232 6,232 232 5 7 5 6 5 7 126 126 126 6 10 10 10 10 10 219 219 219 219 219 148 148 148 148 34 34 34 34 34 34 215 215 215
a,r a a,t2 a,t2 a,t2 a,t2 a,t2 e,m3 a a a a
125.7
c
123.0 128.4 127.2 128.9
84.5
a a,mi a,mi a,m a a a a,mi a a a a a ^m1 a a a a a a,h
Xi X1 xi
Notes page 11-69; References page II - 70
Table 4. cont'd Number of C atoms 14 (cont'd)
Initiator 2,4-Dichlorobenzoyl peroxide
Solvent Benzene
Styrene
2,2,3,3,4,4,5,5,6,6,7,7-Dodecafluoroheptanoyl peroxide Heptanoyl peroxide 6-Heptenoyl peroxide
2-Iodobenzoyl peroxide 2-Iodobenzoyl 4-nitrobenzoyl peroxide
3-Methylbenzoyl peroxide 4-Methylbenzoyl peroxide 2-Nitrobenzoyl peroxide
Freon 113 Toluene Toluene
Chloroform Acetone Acetonitrile Benzene Carbon tetrachloride Chloroform Nitrobenzene Dioxane Dioxane Acetophenone Methyl iodide
15
16
3-Nitrobenzoyl peroxide 4-Nitrobenzoyl peroxide 3,5-Dinitrobenzoyl peroxide Perfluoroheptanoyl peroxide
Acetophenone Acetophenone Acetophenone Freon 113
Benzoyl phenylacetyl peroxide
Benzene
4-terf-Butylbenzoyl isobutyryl peroxide
Cyclohexane
3-Cyanobenzoyl benzoyl peroxide 3-Methoxybenzoyl benzoyl peroxide 4-Methoxybenzoyl benzoyl peroxide 4-Methoxybenzoyl 3-bromobenzoyl peroxide 4-Methoxybenzoyl-3,5-dinitrobenzoyl peroxide
Dioxane Dioxane Dioxane Dioxane Benzene Nitrobenzene
J( 0 C) 70 70 50 70 85 34.8 49.4 61.0 74.8 100.0 30 40 77 70 70 77 85 22 25 25 25 25 25 25 80 80 59.3 80 24.95 45.05 80 80 80 20 30 40 20 25 25 25 30 35 55 60 65 70 80 80 80 80
^d(S" 1 ) 9.7OxIO" 5 1.24 xlO~ 4 1.08 xlO~ 5 1.37 xlO~ 4 7.69 XlO" 4 3.88 x 10 " 6 2.39 x l 0 ~ 5 7.78 xlO~ 5 2.78 xlO~ 4 4.17 x l 0 ~ 3 1.14 x 10~4 4.06 x 10 ~4 1.24 x 10 ~4 5.33 x 10 ~5 5.01 x 10 ~5 1.07 xlO~ 4 2.88 xlO~ 4 1.86 x 10 ~3 3.0xl0~4 2.1x 10 ~4 5.7xl0~5 3.4xl0~5 2.8xlO~ 4 6.2xlO~ 4 4.38 x 10 ~5 6.11 x 10 ~5 5.80xl0~ 5 1.34 x l 0 ~ 3 1.78 xlO~ 5 1.50xl0~ 4 3.80xl0"5 4.33 x 10 " 5 1.87 x l 0 ~ 5 3.01 x 10 ~5 1.11 xlO~ 4 4.20xl0~4 1.10 x 10~4 2.05 xlO~ 4 3.15 xlO~ 4 6.38 xlO~ 4 3.88 xlO~ 4 6.67 xlO~ 4 6.543 x 10 ~5 1.171 x 10~4 2.663 xlO~ 4 5.016 xlO~ 4 2.73 x 10 ~2 4.82 x 10 ~2 7.57 x 10 ~5 4.43 x 10 ~2
£ a (kj/mol)
117.6
100.6
Notes a,j a,k a a a a a a a a h a a,k a,j a,j a,k
119.7 81.2 126.4 126.8 130.5 98.0
a,mi a,mi a a h a a a
90.8 vi n
ti 0 tio t 10 tio a,m\ a,mi a,mi a,mi
Refs. 16 16 126,337 126,337 126,337 10 10 10 10 10 283 283 19 19 19 19 19 82 78 78 78 78 78 78 232 232 5 5 82 82 5 5 5 283 283 283 222 222 222 222 222 222 164 164 164 164 6 6 6 6
51 51 51
1.02 x 10 ~5 9.61 x 10 ~4 1.67 XlO" 3
t5
108 108 108
a a
89 89
a a a
95 116 116 126 126 126
4-Methoxybenzoyl 4-nitrobenzoyl peroxide
Benzene
70 70
2.08 x 10 ~5 8.03 x l 0 ~ 5
3,5-Dibromo-4-methoxybenzoyl peroxide
Benzene
Caprylyl peroxide
Benzene
60 60 80 50 70 85
9.5 x 10 ~7 6.1 xlO~ 7 9.4 x 10 ~6 3.44 x 10 ~6 5.78 x l 0 ~ 5 3.78 xlO~ 4
128.9
Table 4. cont'd Number of C atoms 16 (cont'd)
Initiator
Solvent
Caprylyl peroxide /7-(Chloromethyl)benzoyl peroxide
Mineral oil Acetone
3-Cyanobenzoyl peroxide 4-Cyanobenzoyl peroxide Cycloheptane formyl peroxide
THF Toluene Dioxane Acetophenone Dioxane Carbon tetrachloride
Cyclohexane acetyl peroxide
Carbon tetrachloride
2-Ethyl-4-methyl-2-pentenoyl peroxide 2-Ethylhexanoyl peroxide 2-Ethyl-2-hexenoyl peroxide 2-Iodophenylacetyl peroxide
2-Methoxybenzoyl peroxide 3-Methoxybenzoyl peroxide 4-Methoxybenzoyl peroxide 2-Methylbenzoyl peroxide 3-Methylbenzoyl peroxide 4-Methylbenzoyl peroxide Endo-norbornane-2-carbonylperoxide
Mineral oil Mineral oil Mineral oil Acetone Chloroform Toluene Acetophenone Acetophenone Dioxane Acetophenone Dioxane Acetophenone Acetophenone Dioxane Acetophenone Dioxane Carbon tetrachloride
Exo-norbornane-2-carbonylperoxide
Carbon tetrachloride
Endo-norbornene-5-carbonylperoxide
Carbon tetrachloride
Exo-norbornene-5-carbonylperoxide
Carbon tetrachloride
Dioctanoyl peroxide
w-Heptane
T( 0 C) T (K) 70 70 70 70 80 80 80 35 40 45 65 70 75 54.4 64.3 71.8 T(K) T(K) T (K) 0 0 0 50 80 80 80 80 80 70 80 80 80 80
A^(S"1)
Ea (kj/mol)
9.8 x 1015 2.07 x 10 ~5 1.82 x l O " 5 1.15 XlO" 5 8.8xl0"6 1.70 x 10 ~2 2.43 x 10 ~5 2.03 x 10 " 5 7.85 x 10 ~5 1.63,1.34XlO"5 2.02 XlO" 4 1.27 x 10 " 5 2.76 XlO" 5 3.61 x 10 " 5 3.1 x 10 " 6 1.19 x l O " 5 2.95 XlO" 5
exp[- UOA/RT]
7.IxIO16 1.2xlO 14 1.6 x 1016 2.6OxIO" 5 3.98 x 10 ~5 1.3xlO" 5 6.0xl0"5 2.15 XlO" 3 6.42 x 10 " 5 5.75 x 10 ~5 1.56 x 10 " 4 1.18 x 10 ~A 9.02 x 10 " 5 4.7OxIO" 5 4.4OxIO" 5 5.92 x 10 " 5 6.13 x 10~5
exp[-138.4//?7] exp[- 106A/RT] exp[-136.3//?7]
Notes
m7
a,mi a a,mi
113.8 120.9 120.1 126.4 126.4 125.1
Refs. 1 307 307 307 307 6 5 6 34 34 34 34 34 34 24 24 24
c,e,q q a a a a,mi a a,mi a a a,mi a a,mi
1 1 1 79 79 79 5 5 5 6 5 6 5 5 6 5 6
44.5 53.9 65.9
6.IxIO"6 2.83 XlO" 5 1.25 XlO" 4
j j j
23 23 23
44.5 53.9 65.9 44.5 53.9 65.9 44.5 53.9 65.9 44.5 53.9 65.9 445 53.9 65.9 44.5 53.9 65.9 44.5 53.9 65.9 70 80 80
9.1 x 10" 6 4.33 x l O " 5 1.28 x l O " 4 4.68 x 10 " 5 2.05 x 10 " 4 8.18 xlO~ 4 7.2 XlO" 5 1.6OxIO"4 8.48 XlO" 4 6.30xl0~ 5 1.2IxIO" 4 7.18 x l O " 4 2.22 x l O " 5 4.52 XlO" 5 2.37 x l O " 4 6.58 x 10 " 5 1.2IxIO- 4 8.42 XlO" 4 2.58 xlO~ 5 1.2OxIO"4 7.1OxIO- 4 1.70xl0" 5 7.0IxIO-5 6.8OxIO- 5
j,m 2 j , m2 j,m 2 j j j j , m2 j,m 2 j , m2 j j j j,m 2 j,m 2 j,m 2 j j j j,m 2 j,m 2 j,m 2 z (1500) z (500) z (1000)
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 377 377 377
Notes page 11-69; References page 11-70
Table 4. Number of C atoms 16 (cont'd)
18
cont'd
Initiator
Solvent
T( 0 C)
^d(S1)
Ea (kj/mol)
Notes
Refs.
80 80 80 90 95 100 63 80 100 T (K) 20 20 20 20 0 0 18 80 80 80
6.27 x 10~5 6.01 x l 0 ~ 5 5.77xlO-5 2.13 x l O ~ 4 3.8OxIO- 4 6.79 x l O ~ 4 1.93 x 10 ~5 1.93 x l O - 4 1.93 x l O - 3 2.30 x 10 15 1.02 x 10 ~3 4.76 x 10 ~4 1.86 x 10 ~4 1.6OxIO- 4 7.8xl0~5 2.5OxIO- 5 3.34 XlO" 4 1.42 x 10 ~4 1.4 x l O ~ 4 2.3 x 10 ~4
Acetonitrile 2-Butanol Carbon tetrachloride Cyclohexane
40 40 40 40
5.9xl0~3 4.4xlO~ 3 6.7 x 10 ~4 4.4xlO~ 4
256 256 256 256
5-terf-Butylthenoyl peroxide Cinnamoyl peroxide
Acetonitrile 2-Butanol Carbon tetrachloride Cyclohexane Carbon tetrachloride Styrene
Dibenzoyl succinoyl diperoxide
Unknown
Nonanoyl peroxide Isononanoyl peroxide (3,5,5trimethylhexanoyl peroxide)
Mineral oil
40 40 40 40 75 50 70 70 75 85 T(K)
4.2xlO~ 3 2.8 x 10 ~3 6.5 x 10 ~4 3.9xlO~ 4 4.03 x 10 ~5 1.2OxIO- 5 1.67 x l O - 4 7.7 x 10 ~6 1.42 x l O - 5 5.4 x l O - 5 8.4xlO 1 4
256 256 256 256 232 316 316 214 214 214 1
50 70 85 60 59 77 96 T (K) 60 70 80 80 80 80 80 80 90 100 120 125 130 135 140 145 150 T (K)
6.IxIO-6 8.02 x l 0 ~ 5 5.3OxIO- 4 1.9 x l O - 5 1.93 x 10 ~5 1.93 XlO" 4 1.93 x l O - 3 2.84 x 1015 5.28 x 10 ~6 2.06 x l 0 ~ 5 9.53 x l O - 5 9.1OxIO- 5 8.62 x l O - 5 8.24 x l O - 5 7.86 x l O - 5 7.46 x l O - 5 2.52 x l O - 4 8.8IxIO-4 6.98 x l O - 3 1.27xl0- 2 2.15 XlO" 2 2.6OxIO- 2 5.7IxIO- 2 8.62xl0-2 1.17XlO- 1 1.6 x 1015
Dioctanoyl peroxide
^-Heptane
Dioctanoyl peroxydicarbonate
Chlorobenzene
Phenylacetyl peroxide
Acetonitrile Benzene Carbon tetrachloride Cyclohexane Styrene Toluene
Triptoyl peroxide
Benzene
Apocamphoyl peroxide ds-5-rm-Butylcyclohexylformylm-chlorobenzoyl peroxide
Benzene
fra«5-4-^rf-Butylcyclohexylformylm-chlorobenzoyl peroxide
Benzene
Chlorobenzene
n-Heptane
2-Nonenoyl peroxide
Mineral oil
z z z z z z
(1500) (2000) (2500) (1500) (1500) (1500)
exp[- 129.05/RT]
96.2
f,u2 f,uj
a,mi
125.5
X1 xi xi
exp[-121A/RT] 126
a a a a
exp[- 128.34/^7] z (1500) z (1500) z(l) z (500) z (1000) z (1500) z (2000) z (2500) z (1500) z (1500) z (1500) z (1500) z (1500) z (1500) z (1500) z (1500) z (1500) exp[-128.8//?7]
377 377 377 377 377 377 344 344 344 344 167 167 167 167 316 59 59 102 244 102
337 337 337 338 344 344 344 344 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 1
Table 4. cont'd Number of C atoms
Initiator
18 (cont'd)
3-Nonenoyl peroxide 2-Phenylpropionyl peroxide
19
Dibenzoyl itaconyl diperoxide
Solvent Mineral oil Cyclohexane On silica Styrene Unknown
J(0C) T (K) 55.8 49.4 70 70 75 85
Dibenzoyl a-methylsuccinoyldiperoxide
Unknown
70 75 85
20
Decanoyl peroxide
Benzene
Chlorobenzene
Dioctanoyl a-bromosuccinoyldiperoxide
Mineral oil Unknown
60 70 85 63 80 100 T (K) T(K) 70 75 85
Dioctanoyl a-chlorosuccinoyldiperoxide
Unknown
70 75 85
21
Dioctanoyl a-chlorosuccinoyldiperoxide 4-Ethyl-2-octenoyl peroxide Dioctanoyl itaconoyl diperoxide
Chlorobenzene
70
Chlorobenzene THF Chlorobenzene
70 70 70
1.18 x 10 " 4 6.2xl0"5 1.54 x 10 " 5
Chlorobenzene
35 70 35 50 55 65 T(K) 55
9.42 x 10 " 5 3.02 x 10" 3 9.77 x 10" 4 7.92 x l O " 5 1.45 x l O " 4 4.13 x l O " 4 1.07 x l O 1 2 1.38 x l O " 4
85 T (K) 70
85 Unknown
70 75 85
22
Benzoyl 2-[mms-2-(3-nitrophenyl)vinyljbenzoyl peroxide Benzoyl 2- [frans-2-(4-nitrophenyI)vinyl]benzoyl peroxide Benzoyl 2-[fra«s-2-(4-nitrophenyI)vinyl]-4-nitrobenzoyl peroxide Benzoyl 2-[frans-2-(phenyl)vinyl]benzoyl peroxide 4-Benzylidenebutyryl peroxide
3.7 x 10 14 6.8xlO~ 6 7.5 x 10 " 5 5.5 x 10" 5 5.63 x 10~ 4 1.87 XlO" 5 8.63xlO- 4 3.62 xl0~ 5 1.69 X l O " 3 1.00 X l O - 4 2.74 x 10 " 4 1.26 x l O " 5 4.26 X l O " 4 2.40xl0~5 9.6OxIO"4 8.7 x l O " 5 1.53 x 10~5 5.67 XlO" 5 3.8OxIO- 4 1.93 x 10 " 5 1.93 x l O - 4 1.93 x l 0 ~ 3 3.64 x 10 15 2.7xl015 1.52 x 10 ~~4 1.82 x l O " 5 2.74 XlO" 4 3.83 xlO- 5 6.97 x l O " 4 1.15 X l O " 4 2.02 x 10 ~A 2.42 x l O " 5 3.23 x l O " 4 4.83 xlO~ 5 8.5OxIO-4 1.58 x 10~ 4 8.2 x 10 1 4 3.23 x 10 ~4 2.8OxIO-5 5.47 x l O " 4 5.6OxIO"5 1.28 x l O " 3 1.92 X l O " 4 5.48 x 10 ~4 5.88 x l 0 ~ 5 9.58 x l O " 4 1.06 x l O " 4 2.61xl0"3 3.84 x l O " 4 1.87 x 10~4
Unknown Mineral oil Unknown
75
Dioctanoyl a-methyl succinoyldiperoxide
* d (s" 1 )
Methanol Acetophenone
E31 (kj/mol)
Notes
exp[- 10S.0/RT]
83.7 115.1
82.8 116.3
127.2
exp[- 130.48//?7] exp[- 131.9/K7] 96.2 126.4
95.4 126.4
X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 x2 a a a
X2 X2 X2 X2 x2 X2 X2 X2 X2 X2 X2 X2
e x p [ - 121A/RT] 92.9 127.6
96.2 131.0
84.5
1 258 258 316 214 214 214 214 214 214 214 214 214 214 214 214 126,337 126,337 126,337 344 344 344 344 1 214 214 214 214 214 214 214 214 214 214 214
X2 X2 X2 X2 X2 X2 X2 x2 X2 x2 x2 x2 t9
214 1 214 214 214 214 214 214 214 214 214 214 214 214 175
t9 t9 t9
175 175 175
h,t 9 t9 t9
175 175 175 133 133 133 133 133
99.6
exp[-99.6//?7] 98.7
Refs.
m2
Notes page II - 69; References page II - 70
Table 4. cont'd Number of C atoms 22 (cont'd)
Initiator 4-Benzylidenebutyryl peroxide
Solvent Acetophenone Benzene
Carbon tetrachloride
Nitrobenzene Propylene carbonate
4-ter/-Butylbenzoyl peroxide cis-4-tert-Butylcyclohexane formylperoxide
Toluene Dioxane Butane Carbon tetrachloride
frarcs-4-te7t-Butylcyclohexane formylperoxide
Carbon tetrachloride
fra«s-4-(4-Chlorobenzylidene)butyryl peroxide
Benzene
Propylene carbonate
frarcs-4-(4-Fluorobenzylidene)butyryl peroxide
Benzene
Propylene carbonate
1-Naphthoyl peroxide
Benzene
4-Nitrobenzoyl-2-[rra«5-2-(4-nitrophenyl)vinyl] benzoyl peroxide 2-Phenylisovaleryl peroxide
Chlorobenzene
5-Phenylpenta-2,4-dienoyl-peroxide 5-Phenylpentanoyl peroxide
Acetonitrile Cyclohexane On silica Styrene Acetophenone Benzene Carbon tetrachloride
Propylene carbonate 24
Dibenzoyl 2-bromosebacoyldiperoxide
Unknown
J( 0 C) 65 T(K) 50 60 70 60 70 T(K) 60 40 50 T (K) 50 40 50 60 70 80 40 40 40.0 45.45 50.7 40.0 44.7 48.9 50 60 70 40 50 60 50 60 70 40 50 60 54.6 59.9 64.5 70 55.0 55.0 50 70 77 77 70 77 85 T(K) 60 60 70 75 85
Dioctanoyl 2-bromosebacoyldiperoxide
Unknown
70 75
A^(S"1) 4.02 x 10 " 4 7.14xlOn 2.40xl0~ 5 6.8OxIO- 5 1.845 x l O - 4 3.47 x 10~5 1.06 XlO" 4 1.42xlO 13 3.38 x 10~4 7.36 x 10~5 2.13 XlO- 4 5.93 x 1010 2.08 XlO" 4 7.23 x l O - 5 2.093 x l O " 4 5.117 x l O - 4 1.64 x 10~4 6.08 x 10 ~2 1.25 x 10 ~5 1.69 x l O " 5 (8.65 ± 0.35) x 10 ~5 (1.32 ±0.04) x 10- 4 (2.35 ±0.05) x 10- 4 (4.25 ±0.23) x 10~5 (7.10 ± 0.38) x 10 ~5 (1.14±0.04)x 10~4 2.10xl0"5 6.56 x 10 ~5 1.75 x l O " 4 5.33 x 10 ~5 1.448 x 10~4 2.791 x 10~4 2.67 x 10 " 5 8.44 x 10 ~5 2.119 x l O - 4 6.53 x 10 ~5 1.685 x l O - 4 4.54OxIO- 4 1.01 x 10~4 1.86 x l O - 4 3.OxIO" 4 6.06 x 10~5 2.27 x 10 " 5 6.4xlO-6 2.56 x 10 ~4 2.18 x l O " 4 2.37 x 10 ~4 1.054 x l O " 5 2.76 x l O " 5 7.19 x l O - 5 1.87 x l O - 4 1.76xlO 15 4.41 x 10 ~5 2.8Ox 10" 5 4.80xl0~4 3.87 x 10~5 7.64 x l O - 4 7.22 XlO" 5 2.0OxIO" 3 2.02 x l O - 4 6.46 x 10 ~4 5.23 x 10~5 1.17IxIO- 3
Ea (kj/mol)
Notes
exp[- 98.1/RT] 91.2
m2 m2 h
112.5 exp[-112.5 /RT]
m2 m2 m2
89.5 exp[- 89.5/RT] 82.0
m2 h
76.1
a,mi z (0.98) z (1010) h
81.6
h
95.0
h
94.1
h
t9
n2
127.6 130.1
exp[-130.1/i?7]
87.9 110.8
99.6 129.7
h,m2 m2 m2 m2 m2 m2 X2 X2 x2 X2 x2 X2 X2 X2 x2
Refs. 133 133 194 194 194 133 133 133 133 133 133 133 133 194 194 194 133 6 145 145 35 35 35 35 35 35 194 194 194 194 194 194 194 194 194 194 194 194 170 170 170 175 258 258 258 316 133 194 133 133 133 133 133 133 214 214 214 214 214 214 214 214 214
Next Page
Table 4. cont'd Number of C atoms 24 (cont'd)
Initiator
Solvent
Dioctanoyl 2-bromosebacoyldiperoxide
Unknown
Lauroyl peroxide
Benzene
Chlorobenzene
Ethyl acetate
Ethyl ether Mineral oil Styrene
26 28 36 x
TABLE 5. Number of C atoms 4
2-Phenoxybenzoyl peroxide Myristoyl peroxide Menthylphthaloyl peroxide Aliphatic polymeric diacyl peroxide
kd(s'1)
Benzene Benzene
Acetophenone Benzene Dioxane Chlorobenzene
Ea (kj/mol)
30 40 50 60 70 60 70 85 70 40 50 60 70 61 79 99 T (K) 40 50 61 70 30 T (K) 34.8 49.4 61.0 74.8 100.0 50 60 65 70 50
1.08 x 10 " 4 3.0OxIO" 3 3.72 x l 0 ~ 4 2.56 x 10 " 7 4.91 x 10~7 2.19 x l O - 6 9.17 xlO~ 6 2.86 x l O - 5 1.51 x 10~5 5.58 x l 0 ~ 5 3.75 x l O - 4 4.33 x l O - 5 2.91 x 10 ~7 1.15 XlO" 6 4.75 x l O - 6 1.87 xlO~ 5 1.93 x 10 ~5 1.93 x l O - 4 1.93 XlO" 3 3.92 xlO 1 4 6.03 x 10 ~7 2.7OxIO- 6 1.05 x l 0 ~ 5 3.99 x l 0 ~ 5 1.97 x 10 " 6 2.2 x 1016 2.06 x 10 ~7 2.25 x l O " 6 1.42 x l 0 ~ 5 1.00 x l O - 4 2.39 x l O - 3 3.1 x 10" 6 1.2OxIO- 5 2.22 x l O - 5 4.32 x l O - 5 2.03 x 10 ~4
50 60 70 65 70 55 75 75 80
6.58 x 10 ~5 1.815 x 10 ~4 4.729 x l O " 4 8.18x10 ~5 3.38 x 10 ~5 1.15 x 10~4 9.04 x 10 ~5 9.00 x 10 " 5 1.720xl0" 4
85
Carbon tetrachloride
rraw5-4-(4-Methoxybenzylidene)butyryl peroxide frarcs-4-(4-Methylbenzylidene)butyryl peroxide
T( 0 C)
Notes X2 X2 X2 a
127.2
a a a a,j
exp[- 12337/RT]
a exp[- 137.9/RT] a a a a a 121.1
90.4
121.3
c,h c c a a Vu Vi5 V 15
Refs. 214 214 214 99 68 68 68 68 126,337 126,337 126,337 16 68 68 68 68 344 344 344 344 68 68 68 68 99 1 10 10 10 10 10 287 287 287 287 194 194 194 194 5 16 65 302 302 302
HYDROPEROXIDES AND KETONE PEROXIDES
Initiator
Solvent
sec-Butyl hydroperoxide
Toluene
ter/-Butyl hydroperoxide
Benzene
T( 0 C) 172.0 182.3 130 145 160 154.5 161.7 169.3 174.6
fcd
(s"1) 2.65 x 10 ~5 4.9 XlO" 5 3 x 10 ~7 1.6 XlO" 6 6.6 x l O - 6 4.29 XlO" 6 9.27 x l O - 6 2.OxIO- 5 4.OxIO- 5
Ea (kj/mol)
138
170.7
Notes
a a a h
Refs. 199 199 337 337 337 76 76 76 76
Notes page 11-69; References page II - 70
Previous Page
Table 4. cont'd Number of C atoms 24 (cont'd)
Initiator
Solvent
Dioctanoyl 2-bromosebacoyldiperoxide
Unknown
Lauroyl peroxide
Benzene
Chlorobenzene
Ethyl acetate
Ethyl ether Mineral oil Styrene
26 28 36 x
TABLE 5. Number of C atoms 4
2-Phenoxybenzoyl peroxide Myristoyl peroxide Menthylphthaloyl peroxide Aliphatic polymeric diacyl peroxide
kd(s'1)
Benzene Benzene
Acetophenone Benzene Dioxane Chlorobenzene
Ea (kj/mol)
30 40 50 60 70 60 70 85 70 40 50 60 70 61 79 99 T (K) 40 50 61 70 30 T (K) 34.8 49.4 61.0 74.8 100.0 50 60 65 70 50
1.08 x 10 " 4 3.0OxIO" 3 3.72 x l 0 ~ 4 2.56 x 10 " 7 4.91 x 10~7 2.19 x l O - 6 9.17 xlO~ 6 2.86 x l O - 5 1.51 x 10~5 5.58 x l 0 ~ 5 3.75 x l O - 4 4.33 x l O - 5 2.91 x 10 ~7 1.15 XlO" 6 4.75 x l O - 6 1.87 xlO~ 5 1.93 x 10 ~5 1.93 x l O - 4 1.93 XlO" 3 3.92 xlO 1 4 6.03 x 10 ~7 2.7OxIO- 6 1.05 x l 0 ~ 5 3.99 x l 0 ~ 5 1.97 x 10 " 6 2.2 x 1016 2.06 x 10 ~7 2.25 x l O " 6 1.42 x l 0 ~ 5 1.00 x l O - 4 2.39 x l O - 3 3.1 x 10" 6 1.2OxIO- 5 2.22 x l O - 5 4.32 x l O - 5 2.03 x 10 ~4
50 60 70 65 70 55 75 75 80
6.58 x 10 ~5 1.815 x 10 ~4 4.729 x l O " 4 8.18x10 ~5 3.38 x 10 ~5 1.15 x 10~4 9.04 x 10 ~5 9.00 x 10 " 5 1.720xl0" 4
85
Carbon tetrachloride
rraw5-4-(4-Methoxybenzylidene)butyryl peroxide frarcs-4-(4-Methylbenzylidene)butyryl peroxide
T( 0 C)
Notes X2 X2 X2 a
127.2
a a a a,j
exp[- 12337/RT]
a exp[- 137.9/RT] a a a a a 121.1
90.4
121.3
c,h c c a a Vu Vi5 V 15
Refs. 214 214 214 99 68 68 68 68 126,337 126,337 126,337 16 68 68 68 68 344 344 344 344 68 68 68 68 99 1 10 10 10 10 10 287 287 287 287 194 194 194 194 5 16 65 302 302 302
HYDROPEROXIDES AND KETONE PEROXIDES
Initiator
Solvent
sec-Butyl hydroperoxide
Toluene
ter/-Butyl hydroperoxide
Benzene
T( 0 C) 172.0 182.3 130 145 160 154.5 161.7 169.3 174.6
fcd
(s"1) 2.65 x 10 ~5 4.9 XlO" 5 3 x 10 ~7 1.6 XlO" 6 6.6 x l O - 6 4.29 XlO" 6 9.27 x l O - 6 2.OxIO- 5 4.OxIO- 5
Ea (kj/mol)
138
170.7
Notes
a a a h
Refs. 199 199 337 337 337 76 76 76 76
Notes page 11-69; References page II - 70
TABLE 5. cont'd Number of C atoms 4 (cont'd)
Initiator tert-Butyl hydroperoxide
Solvent Benzene Chlorobenzene
Cumene Cyclohexane Dodecane Heptane w-Octane
Toluene
Vapor
tert-Butyl hydroperoxide/cobalt 2-Ethyl hexanoate
Chlorohenzene
tert-Butyl hydroperoxide/cobalt stearate Methyl ethyl ketone peroxides
Benzene
5
tert-Amyl hydroperoxide
Ethyl acetate Chlorobenzene
6
Acetone cyclic diperoxide
Benzene
3,3,6,6-Tetramethyl-1,2,4,5tetroxane
Toluene Benzene
Toluene Vapor
Cyclohexyl hydroperoxide
Benzene Benzene/styrene (50/50) Cyclohexane
T( 0 C) 172.3 182.6 171 199 231 182.6 100 172 86.1 98.5 172 149.8 159.9 169.6 179.6 100 172.5 181.5 192.6 204.5 214.9 570 670 773 873 973 0 0 0 25 25 45 45 100 115 130 70 153 190 228 135.5 145.5 165.0 165.0 135.5 140.5 145.5 150.5 165.0 165.0 130.1 150.1 170.1 177.1 185.1 194.1 207.1 215.1 250.1 70 70 130 140 150
#d ( s 1 ) 1.09 x l O " 5 3.1 x 10~5 1.93 x 10~5 1.93 x l O " 4 1.93 x l O " 3 8.1 x 10" 5 1.2xlO- ? 1.4IxIO- 4 1.32 xlO~ 6 5.55 x l O - 6 1.41 x 10" 4 8xlO"6 2.5 XlO" 5 6.9 x l 0 ~ 5 1.82 x l 0 ~ 5 5.7xl0"8 9.2 x l O " 6 2.69 XlO" 5 8.3 x l O " 5 1.52 XlO" 4 3.24 xlO~ 4 3.4XlO 1 4.95 8.4XlO 1 5.66 x 102 2.58 x 103 1.01 x 10" 3 8.29 x 10 ~5 5.4OxIO" 4 2.3 XlO" 3 1.1 x l O " 3 1.4xlO" 3 l.OxlO" 3 1.3 x 10 " 5 4.80xl0"5 1.60xl0" 4 1.28 x 10~6 1.93 x 10 " 5 1.93 x l O " 4 1.93 x l O " 3 6.25 x l O " 7 2.09xl0-6 1.41 x 10" 5 1.37 x l O " 5 6.25 x l O " 7 1.19 x 10~6 2.09 x l O " 6 2.83 XlO" 6 1.41 x 10" 5 1.37 x l O " 5 1.8 x l O " 6 3.4xlO- 6 3.5xl0-6 4.6x10-6 1.3 x l 0 ~ 5 2.4 x l O - 5 8.5 x l O " 5 1.66 x l O " 4 4.88 x l O - 4 0 1.27 x 10~3 2.38 x l 0 ~ 3 1.16 x l O - 2 3.20xl0" 2
Ea (kj/mol)
Notes
c
128.4
163.2
c b b f f f
c
Vi0 V7 V1
101
147.1
Vi a a a
h
a a a a a
Refs. 199 199 344 344 344 199 199 199 41 41 199 118 118 118 118 199 199 199 199 199 199 188 188 188 188 188 190 190 190 198 198 198 198 337 337 337 13 344 344 344 286 286 286 286 373 373 373 373 373 373 365 365 365 365 365 365 365 365 365 91 91 91 91 91
TABLE 5. cont'd Number of C atoms 6 (cont'd)
Initiator Cyclohexyl hydroperoxide
Solvent Benzene
80
Cyclohexane
80
Cyclohexene
80
Dimethylheptadiene
80
1-Octene
80
7
Benzyl hydroperoxide
Styrene
8
1,4-Dimethylcyclohexanehydroperoxide 1,1,3,3-Tetramethylbutylhydroperoxide
1,4-Dimethylcyclohexane
Benzene
Chlorobenzene
2,5-Dimethyl-2,5-di(hydroperoxy)hexane
(S)x
9
Benzene
n-Octyl hydroperoxide 2,4,4-Trimethylpentyl2-hydroperoxide Poly(phenyleneethyl hydroperoxide)/manganese resinate
White oil White oil
Cumene hydroperoxide
Benzene
Chlorobenzene
Chlorobenzene
Cumene
Mesitylene Styrene Toluene
Cumyl hydroperoxide
10
p-Cymene hydroperoxide
T( 0 C)
White oil Acetone-d6
/?-Cymene
^d(S" 1 )
60 60 120
Reaction order varies from 1.5 to 2.0 Reaction order varies from 1.5 to 2.0 Reaction order varies from 1.5 to 2.0 Reaction order varies from 1.5 to 2.0 Reaction order varies from 1.5 to 2.0 9xlO~6 1.8 x l O - 5 1.4xlO" 5
130 145 160 135 153 173
1.7xlO~ 5 7.41 x 10- 5 2.83 XlO" 4 1.93 x 10 ~5 1.93xlO- 4 1.93 x l O - 3
130 145 160 150 150
2.7xlO~ 6 1.0 x l O - 5 3.16 x l O - 5 9.29 x 10 ~5 9.29 x 10 " 5
26 30 35 115 130 145 159 193 253 110 120 132 T(K)
2.0OxIO- 4 2.75 x 10" 4 3.67 XlO" 4 4xlO"7 1.7 x l O - 6 6.6 x l O ~ 6 1.93 x 10 ~5 1.93 x l O " 4 1.93xl0-3 2.742 x 10 ~6 5.194 x l O - 6 9.305 x l O - 6 2.1OxIO 11
125 139 182.3 150 -33.0 -23.0 -12.0 -18.0 -8.0
9xlO~6 3 xlO-5 6.45 x l O " 5 1.34 x 10~4 7.0xl0~5 2.28 XlO" 4 1.2IxIO- 3 8.3 x l O - 5 4.23 x l O - 4
-3.0 110 120 132 T(K)
1.65xlO- 3 5.50OxIO" 6 1.20OxIO- 5 2.089 XlO" 5 1.23 x l O 1 2
Ea (kj/mol)
Notes
Refs. 119
119
119
119
119
C3 C4 c
276 276 224
134
a a a
337 337 337 344 344 344
113
a a a a a
337 337 337 177 177
t3 t3 t3 a a a
212 212 212 337 337 337 344 344 344 367 367 367 367 58 58 199 199 199 177 264 264 264 264 264
137.2
112.5 112.5 46.0
122
exp[- S0.0/RT] 98.7 101.3
121.3 62.0
a
110.2
tu tM tu
exp[-85.48//?71
264 367 367 367 367
Notes page 11-69; References page II - 70
TABLE 5. cont'd Number of C atoms 10 (cont'd)
Initiator Decalin hydroperoxide
Solvent
Pinane hydroperoxide
Acetic acid Chlorobenzene Decalin 1,2-Dichlorobenzene Ethylene glycol Nitrobenzene Pyridine Benzene
2-Phenylbutyl 2-hydroperoxide
sec-Butylbenzene
l-Phenyl-2-methylpropylhydroperoxide
Benzene
l-Phenyl-2-methylpropyl-2hydroperoxide
Benzene
Tetralin hydroperoxide
Poly(butene) n-Butyl stearate 2-Ethyl-l-hexene 1-Hexadecene Mineral oil
/i-Octadecane Isooctane Octyl ether Poly(propylene) «-Tetradecane Tetralin 2,2,4-Trimethyl-l-pentene white oil Toluene
(1O)n
Poly(cumyleneethylhydroperoxide) (MWIlOO)
11
2,2-Bis(terf-butyldioxy)propane
Cumene
l-Methoxy-l-(terf-butylperoxy) cyclohexane
Cumene
s£c-Butyltoluene hydroperoxide
^c-Butyl toluene
2,2-Di-(tert-butylperoxy)butane
Chlorobenzene
2,2-Bis(ter/-butyldioxy)butane Diisopropylbenzene monohydroperoxide
Cumene Chlorobenzene
l-Methoxy-l-(terr-amylperoxy) cyclohexane
Cumene
12
T( 0 C) 130 130 130 130 130 130 130 130 145 160 110 120 132 T(K) 133.8 143.9 153.9 163.7 174 144.2 154.5 165.6 176.0 170 170 130 170 170 135.6 150.6 170 170 170 170 170 170 T(K) 170 150 130 140 150 90 100 110 120 80 90 100 110 100 110 120 T(K) 98 116 136 T(K) 100 150 182 218 80 90
^d(S"1) 5.5xl0~4 10% in 3 h 1.4IxIO- 5 4.48 x l O " 5 1.65 x 10 ~4 4.73 x 10 ~5 (2.31-2.89) x 10 ~4 7.08 x 10 " 6 2.72 x l 0 ~ 5 9.17 x l O - 5 2.944 x 10 ~6 6.61IxIO- 6 1.089 XlO" 5 4.06 xlO 1 2 3.18 x l O " 6 8.95 x 10 " 6 2.OxIO" 5 4.03 XlO" 5 9.77 x l O " 5 5.04 x 10 " 6 1.21 x IO"5 2.92 x l O " 5 6.97 XlO" 5 2.17 x l O " 3 1.47 x l O " 4 1.08 x l O " 4 1.26 x l O " 3 7.92 x l O " 4 4.2 x l O " 5 1.00 XlO" 4 4.82 x l O - 4 2.54 x 10~4 1 31 x 10" 4 1.45 x l 0 ~ 3 2.5OxIO" 3 2.32 x 10~4 2.27 x 109 1.67 x 10~3 1.34 x 10~4 2.79 x 10" 5 4.OxIO- 5 5.78 XlO" 5 2.16 x 10~6 9.14 x l O " 6 2.97 XlO" 5 9.56 x l O " 5 4.79 x 10 ~6 1.898 x 10 ~5 6.57 x l 0 ~ 5 2.139 x l O - 4 4.11IxIO- 6 8.194 XlO" 6 1.9555 x l O - 5 1.02 xlO 1 6 1.93 x 10 ~5 1.93 x l O - 4 1.93 xlO" 3 9.3OxIO 16 1.84 x 10 ~5 1.93XlO" 5 1.93 x 10 ~4 1.93 x l O - 3 7.82 xlO~ 6 3.07 x 10 " 5
£ a (kj/mol)
Notes
124.3 176.4 117.2
123.8
a a a
exp[-87.15//?7] 122.2
h
125.5
h
78.2 125.5 82.8
t3 t3 e,t3 t3 t3 t3 e,t3 t3 t3 t3 t3 t3 t3
117.2 131.4
119.2 121.3
exp[-102.1 /RT] t3 121.3
txp[-\W2/RT]
exp[-154.08/^7]
Refs. 228 228 228 228 228 228 228 18 18 18 367 367 367 367 76 76 76 76 76 76 76 76 76 71 71 71 71 71 71 71 71 71 71 71 71 71 112 71 177 210 210 210 361 361 361 361 348 348 348 348 367 367 367 367 344 344 344 344 361 344 344 344 348 348
TABLE 5. cont'd Number of C atoms 12 (cont'd) 13
14
Initiator
Solvent
l-Methoxy-l-(te/Y-amylperoxy) cyclohexane l-Methoxy-l-(terf-hexylperoxy) cyclohexane
Cumene
U-Bis(tert-butylperoxy)cyclopentane
Cumene
2,2-Bis(terf-butyldioxy)-3-methylbutane
Diphenylmethane
U-Bis(terf-butylperoxy)cyclohexane
Cumene
Cumene Cumene
Chlorobenzene
l,l-Bis(terr-butylperoxy)-2-methylcyclopentane
15
16
17
w-Dodecane n-Hexadecane H-Hexane n-Nonane Cumene
1,1-Diphenylethyl hydroperoxide
Chlorobenzene
l-Methoxy-l-(rm-octylperoxy)cyclohexane
Cumene
U-Bis(^-butylperoxy)-2-methylcyclohexane
Cumene
U-Bis(terf-amylperoxy)cyclohexane
Cumene
l,l-Bis(terf-butylperoxy)cyclooctane
Cumene
l,l-Bis(^rr-butylperoxy)-2-n-propylcyclohexane
Cumene
l,l-Bis(terf-butylperoxy)2-isopropylcyclohexane
Cumene
l,l-Bis(ferf-butylperoxy)3,3,5-trimethylcyclohexane
Cumene
T( 0 C) 100 110 80 90 100 110 80 90 100 110 90 100 110 120 100 80 90 100 110 94 113 134 T (K) 100 100 100 100 80 90 100 110 90 110 130 150 T (K) 70 80 90 100 80 90 100 110 80 90 100 110 90 100 110 120 80 90 100 70 80 90 100 80 90 100 110
A:d (s"1) 1.058 xlO~ 4 3.450 x 10 " 4 8.34 x 10~6 3.17 x l O " 5 1.12Ox 10" 4 3.653 x l O - 4 4.98 x l O " 6 1.80xl0~ 5 6.67 x l O " 5 2.17 XlO" 4 1.08 x 10 ~5 3.75 x 10 ~5 1.29 XlO" 4 4.1IxIO-4 3.17 x l O " 5 3.47 x 10~6 1.45 x 10 ~5 5.06 x l O " 5 1.62 XlO" 4 1.93 x 10 " 5 1.93 x l O " 4 1.93 x l 0 ~ 3 3.47 x 1015 3.51 x 10 ~5 3.15 x l O " 5 3.82 x 10 " 5 3.62 x 10 ~5 1.55 x 10~5 5.82 x 10~5 1.85 x l O " 4 6.0OxIO" 4 2.OxIO" 9 1.007 XlO" 6 1.034 XlO" 6 1.223 XlO" 6 1.38 x 108 5.9xlO~ 6 2.3OxIO" 5 8.18 x l O " 5 2.84OxIO" 4 1.29 x 10~5 4.51 x 10 " 5 1.43 XlO" 4 4.58 x l O " 4 5.34 x l O " 6 2.02 x 10 " 5 7.32 x l O " 5 2.44 XlO" 4 1.11 x 10 " 5 4.15 x 10~5 1.36 x l O - 4 4.24 xlO~ 4 1.2OxIO- 5 4.19 x 10 " 5 1.38 XlO" 4 2.59 x 10" 5 4.86 x 10 ~5 1.98 x l O " 4 7.46 XlO" 4 3.82 x 10~6 1.50 x 10 " 5 5.31 x 10 " 5 1.75 XlO" 4
Ea (kj/mol)
exp[- 142A/RT]
exp[- 105A/RT]
Notes
Refs. 348 348 348 348 348 348 349,364 349,364 349,364 349,364 358 358 358 358 361 349,350 349,350 349,350 348,349,350 344 344 344 344 364 364 364 364 349 349 349 349 374 374 374 374 374 348 348 348 348 349 349 349 349 348 348 348 348 364 364 364 364 349 349 349 349 349 349 349 349,364 349,364 349,364 349,364
Notes page 11-69; References page 11-70
TABLE 5. cont'd Number of C atoms Il (cont'd)
Initiator
Solvent
U-Bis(tert-butylperoxy)3,3,5-trimethylcyclohexane
Chlorobenzene
rc-Butyl 4,4-di-(terf-butylperoxy) valerate
Chlorobenzene
18
l,l-Bis(terr-hexylperoxy)cyclohexane
Cumene
20
U-Bis(tert-butylperoxy)cyclododecane
Cumene
22
U-Bis(tert-octylperoxy)cyclohexane
Cumene
31
2,2-Bis[4,4-di-(tert-butylperoxycyclohexyl)propane
Chlorobenzene
TABLE 6. Number of C atoms 4 5
85 105 128 T (K) 102 121 143 T(K) 80 90 100 110 90 100 110 80 90 100 110 87 106 128 T(K)
kd (s"1) 1.93 x ICT5 1.93 x 10 ~4 1.93 X l O - 3 7.59 x 10 13 1.93 x 10 " 5 1.93 x 10 ~4 1.93 XlO- 3 1.91 x 1015 5.38 x 10~6 2.06 x 10 ~5 7.48 XlO" 5 2.48 XlO- 4 8.14 x l O " 6 3.22 x 10~5 9.93 XlO" 5 1.513 x 10~5 5.62 x 10 ~5 1.983 X l O - 4 6.26 x l O - 4 1.93 x 10 ~5 1.93 x 10 ~4 1.93 x l O - 3 8.79 x l O 1 4
Ea (kj/mol)
Notes
Refs. 344 344 344 344 344 344 344 344 348 348 348 348 364 364 364 348 348 348 348 344 344 344 344
exp[- 127.52/RT]
exp[- 143.51/RT]
exp[-135.56//?7]
PERESTERS AND PEROXYCARBONATES
Initiator Dimethyl peroxalate tert-Butyl percarbamate tert-Butyl performate
Solvent
J( 0 C)
Pentane Chlorobenzene Chlorobenzene
25 90 130.8 140.8 140.6 140 140 140.6 140 140.6 140 79.5 88.4 92.8 64 64 64 64 79.6 87.8 92.6 88.2 92.8 99.4 75 85 85 100 115 130 75
4-Chlorotoluene Cumene 6
J( 0 C)
Isobutyl peracetate
a-Methylstyrene
tt-Butyl peracetate
a-Methylstyrene
sec-Butyl peracetate
terr-Butyl peracetate
a-Methylstyrene
terf-Amyl
alcohol Benzene
n-Butanol
A^(S"1) 1.7xlO~ 5 6.6xlO" 6 5.43 x 10 ~5 1.7OxIO- 4 1.8OxIO- 4 2.12 XlO" 3 5.06 x l O - 4 1.61 x 10~4 1.62 x l O - 3 1.77 x 10~4 1.02 XlO" 3 1.36 x l O " 5 3.61xl0" 5 5.58 x l O - 5 ~9.6xl0~3 8.2 x l O - 3 6.5 x l O - 4 1.2 x l O - 3 1.57 x l O - 5 3.27 x l O - 5 5.38 x l O - 5 1.79XlO"5 3.19 x l O - 5 5.37 x l O - 5 2.8 x 10 " 6 1.2xlO~ 6 2.18 x l O - 6 1.54 x 10- 5 1.02 XlO" 4 5.69 x l O - 4 2.65 x 10 ~5
Ea (kj/mol)
Notes
159.0
h
64.0
m2 V8 V1 v8 b b,v6
115.2
g2,vi6 g2,vi7 g2,vi8 g2,vi9 101.0
104.3
151.9
a a a a
Refs. 203 141 218 218 218 218 218 218 218 218 218 253 253 253 253 253 253 253 253 253 253 253 253 253 193 193 126,337 126,337 126,337 126,337 193
TABLE 6. cont'd Number of C atoms 6 (cont'd)
Initiator rm-Butyl peracetate
Solvent 2-Butanol
Chlorobenzene
Decane
rm-Butyl trichloroperacetate
Diethyl peroxydicarbonate
Dodecane Hexadecane Hexane Octane Paraffin Tetradecane Chlorobenzene
terr-Butanol 2,2'-Oxydiethylene bis(allyl carbonate)
7
Diethyl peroxalate ten-Amyl peracetate
Pentane Chlorobenzene
tert-Butyl methoxyperacetate
Ethylbenzene
terf-Butyl peracrylate
Benzene
terr-Butylperoxy isopropyl
Chlorobenzene
terr-Butyl perpropionate carborate
Benzene Decane Dodecane Hexadecane a-Methylstyrene
8
rm-Butyl 2-acetoxyperacetate tert-Buty\ cyclopropanepercarboxylate
Octane Tetradecane Ethylbenzene «-Dodecane rc-Hexadecane 2,2,4-Trimethylpentane
ferf-Butyl ethoxyperacetate
Ethylbenzene
T (0C)
£ d (s" 1 )
75 75 75 60 100 119 139 T (K) 100 115 125 100 100 100 130.1 100 130.1 100 60 66.8 77.0 45 55 40 50 60 25 90 108 129 T(K) 40.0 39.6 50.2 60.1 90 100 110 98 117 137 T(K) 80 90 100 100 100 70 90 100 100 91.8
1.13 x 10" 4 5.3 XlO" 5 4 xlO-7 2.3IxIO"8 1.93 XlO" 5 1.93 XlO" 4 1.93 x l O " 3 1.57 x 10 16 1.5 x IO" 5 7.9IxIO-5 2.45 XlO" 4 1.95 x 10- 5 1.78 x 10 ~5 1.55 x 10 " 5 5.08 x 10~4 2.07 x 10 ~5 3.13 x 10~4 1.55 x 10 ~5 1.19 x 10 " 5 2.75 x l O - 5 1.00 XlO" 4 1.25 x 10 " 5 5.7 x l 0 ~ 5 6.94 x l O " 6 2.86 x 10 " 5 1.28 x l O - 4 2.6xlO"5 1.93 x 10 " 5 1.93 x l O " 4 1.93xl0- 3 4.13 x l O 1 5 2.2xlO"4 1.94 x l O - 4 8.24 x l O - 4 2.35 x l O - 3 1.12 x l O " 5 1.5IxIO- 5 4.85 x l O - 5 1.93 x 10 " 5 1.93 XlO" 4 1.93 x l O - 3 2.49 x l O 1 6 1.53 x 10~6 6.04 x 10 " 6 1.82 x 10 ~5 1.78 x IO" 5 1.58 x 10 ~5 3.02 x 10~7 4.85 x l O " 6 2.03 x 10 ~5 1.68 x 10 ~5 2.73 x 10 ~5
113.0 102.6 113.0 102.6 113.0 120.4 40.0 40.6 46.0 55.6
5.48 x 10 ~5 1.28XlO" 5 4.92 x l O - 5 1.7IxIO- 5 6.19 x 10~5 1.505 XlO" 4 2.96 x 10 ~4 2.89 x l O - 4 5.58 x l O - 4 1.94 XlO" 3
E31 (kj/mol)
Notes
159.0
c t7 m3 a,h
exp[- 149.36/RT] 134
125.9 126.8
a,h h
133.9-138.1
c c a a a
127.2
exp[-141.1/#n 104.7 103.9
86.2
a,h h
a a a
exp[-150.15//?7] a a
a a
b
153.8
h
146.2
h
105 102.7
a m 2 ,h
Refs. 193 193 193 81 344 344 344 344 337 337 337 270 270 270 169 270 169 270 81 28 28 18 18 90 90 90 203 344 344 344 344 315 328 328 328 211 211 211 344 344 344 344 213 213 270 270 270 213 213 270 270 328 255 255 255 255 255 255 315 328 328 328
Notes page 11-69; References page 11-70
TABLE 6. cont'd Number of C atoms 8 (cont'd)
Initiator tert-Butyl heptafluoroperoxybutyrate
Solvent Benzene
Methanol
Methoxybenzene
Nitrobenzene
Octane
Pyridine
Toluene
terf-Butyl methoxyperpropionate terr-Butyl perisobutyrate
Ethylbenzene Benzene
Bulk Chlorobenzene
Cumene
Decane
terf-Butyl percrotonate
Dodecane Hexadecane Iso-octane Nujol Octane Tetradecane Benzene
T( 0 C) 65.0 70.0 75.0 80.0 60.0 65.0 70.0 75.0 80.0 60.0 65.0 70.0 75.0 10.0 15.0 19.6 30.0 55.0 60.2 65.0 70.0 40.0 45.0 50.0 85.0 90.0 95.0 100.0 30.0 40.0 50.0 65.0 75.0 80.0 85.0 40.3 78 70 85 100 70 90.6 100.7 110.0 79 98 118 T(K) 90.6 100.7 110.0 70 85 100 100 100 100 103.4 103.4 100 100 100 115 130
^d(S"1) 1.56 x 10 " 5 3.09 x 10 ~5 5.27 XlO" 5 9.08 x l O " 5 9.5 x l O " 6 1.61 x 10~5 2.7OxIO- 5 5.23xl0-5 9.18 x l 0 ~ 5 9.6 XlO" 6 1.93 x l O - 5 3.57 XlO" 5 6.35 x l 0 ~ 5 7.19 x 10~5 9.37 x l 0 ~ 5 1.304 x l O - 4 2.604 x l O - 4 5.01 x 10 ~5 8.56 x l O " 5 1.378 x l O - 4 2.444 XlO" 4 3.26 x 10 ~5 6.36 x l O " 5 9.31 x 10 " 5 5.1 x 10 ~6 9.5 xlO~ 6 1.75 x l O - 5 3.41 x 10 " 5 2.74 x 10 " 5 7.66 x l O " 5 1.868 x l O " 4 1.88 x 10 " 5 4.66 XlO" 5 7.06 x l O " 5 1.203 x l O " 4 4.30xl0~ 3 3.77 x 10~5 6.69 x l O " 5 5.33 x l O - 5 3.5OxIO- 4 4.12 XlO" 5 8.13 x 10" 5 2.75 x l O " 4 8.92 x l O " 4 1.93 xlO~ 5 1.93 x l O - 4 1.93 x l O " 3 2.07 xlO 1 5 6.9 x l O " 5 2.35 x l O " 4 6.57 x l O " 4 4.7 x l O " 6 2.6 x l O - 5 1.55 x l O " 4 1.46 x l O " 4 1.56 x 10 " 4 1.47 x 10 " 4 2.16 xlO~ 4 2.23 x l O " 4 1.59 x 10 ~4 1.52 x 10 " 4 2.5xlO" 5 1.5OxIO- 4 7.39 x l O - 4
Ea (kj/mol)
Notes v 24 V24 V24 V24 V25 V25 V25 V25 V25 V26 V26 V26 V26
140.6
a a a a a h
exp[-135.16/,RrI 133.1
h
140.6
122
a a a
138
a a a
Refs. 370 370 370 370 370 370 370 370 370 370 370 370 370 369 369 369 369 370 370 370 370 370 370 370 370 370 370 370 370 370 370 369 369 369 369 328 37 126,337 126,337 126,337 37 136 136 136 344 344 344 344 136 136 136 337 337 337 270 270 270 251 251 270 270 337 337 337
TABLE 6. cont'd Number of C atoms 8 (cont'd)
Initiator
Solvent
tert-Butyl permaleic acid
Acetone
tert-Butyl permethacrylate
Benzene
tert-Butyl peroxyisopropyl carbonate
Benzene
Cyclohexyl peracetate
a-Methylstyrene
Diisopropyl peroxalate Diisopropyl peroxydicarbonate
Pentane Benzene Di-rc-butyl phthalate
Decane
Ethylbenzene Mineral spirits
2,2/-Oxydiethylenebis(allyl carbonate)
9
Ethyl tert-butyl peroxalate
Toluene Benzene
tert-Butyl 2-acetoxyperpropionate ter/-Butyl 5-bromo-2-perthenoate
Ethylbenzene Carbon tetrachloride
tert-Butyl 5-chloro-2-perthenoate
Carbon tetrachloride
tert-Butyl cyclobutanepercarboxylate
n-Hexadecane 2,2,4-Trimethylpentane
T( 0 C)
^d(S"1)
70 85 101 90 100 110 90 100 110 88.6 93.0 99.3 25 54.0 77 87 97 107 117 35 45 60 54.3 54.3 30 45 60 75 40 50 60 50 45 55 65 91.4 99.2 112.0 124.5 99.2 112.0 124.5
2.7xlO~ 6 1.6 x l O " 5 6.77 x l O " 5 1.92 x l O ' 5 7.66 XlO- 5 1.92 x l O " 4 6.64 x 10 " 6 2.21 x 10~5 6.87xl0-5 1.63 x l O " 5 2.30xl0"5 4.75 XlO" 5 6.0xl0~ 5 5.0xl0"5 1.39 x 10 ~3 4.09 x l O " 3 1.25 x l O " 2 3.54xl0-2 7.98 x l O " 2 6.3 x l O " 6 2.7xlO-5 1.85 x l O " 4 4.5 x 10 " 5 5.2x10-5 2xlO"6 1.8xl0-5 1.28 XlO" 4 7.55 x l O " 4 6.39 x 10~6 2.28 x 10 " 5 9.44xlO- 5 3.03 x 10 " 5 4.48 x 10~5 1.63 x l O " 4 5.93 x l O " 4 3.6OxIO" 4 2.24 x 10 " 6 1.18x10-5 4.30x10-5 2.29 x 10 " 6 9.56 XlO" 6 4.42x10-5
102.6 92.9 102.6 113.0
4.33 x 10~5 1.2IxIO- 5 4.84 x 10 " 5 1.668 XlO" 4
E2, (kj/mol)
Notes
113
a a a a a a a a a
137.0
109.4
113
113
117.6
112.5
143.5
143.5
ni2 yi 6 yi 6 y 16 yi6 y!6 a a a m2 a a a a a a a a c,h
a a a a a a
150.4
h
Refs. 337 337 337 211 211 211 9 9 9 253 253 253 203 60 236 236 236 236 236 337 337 337 60 60 337 337 337 337 90 90 90 90 31 31 31 328 176 176 176 176 176 176 255 255 255 255
ter/-Butyl 2,2-dimethyl3-bromoperpropionate
Cyclohexane
55 65 75
9.50xl0~ 6 3.58xl0-5 1.23 x l O " 4
118.2
h,t6 t6 t6
320 320 320
tert-Butyl 2,2-dimethyl3-chloroperpropionate
Cyclohexane
55 65 75
3.55 x 10" 6 1.48x10-5 5.65x10-5
128.6
h,t6 t6 t6
320 320 320
tert-Butyl 2,2-dimethyl3-iodoperpropionate
Cyclohexane Ethylbenzene
2.91 x 10" 5 3.76 x l O - 4 4.8 x 10~4 4.22 x l O - 4 1.39 x 10 " 3 2.68 x l O " 3
116.9
tert-Butyl isopropoxyperacetate
55 75 40.0 39.9 49.9 55.3
h,t6 t6 a,h h,m2
320 320 315 328 328 328
100.6 98.9
Notes page 11-69; References page 11-70
TABLE 6. cont'd Number of C atoms 9 (cont'd)
Initiator tert-Butyl 1-methylcyclopropylpercarboxylate Di-(tert-butylperoxy)-carbonate
terf-Butylperoxy isopropyl carbonate terf-Butyl perpivalate
Solvent 2,2,4-Trimethylpentane Chlorobenzene
1,2-Dichlorobenzene Cumene Isopropyl ether Benzene
Benzene
Chlorobenzene
Cumene
Cyclohexane
Decane
Dioxane/water (90/10) Dodecane Hexadecane Hexane
Heptane Isooctane Mineral spirits
tert-Buty\ perpivalate-d6
Octane Tetradecane Chlorobenzene
T(0C) 102.6 113.0 99.95 110.1 120.1 120.1 99.95 99.95 85 100 115 50 70 85 50 55 60 65 70 48.9 58.6 64.3 57 75 94 T(K) 74.8 60 60.6 74 45 55 60 65 64.6 75.6 84.6 70.3 55 65 75 50 70 80 60.6 80 80 55 60 65 70 80 60.6 73.9 55 60 65 70 75 T (K) 80 80 60.6 74.0
* d (s"1) 2.30 x 10 " 5 7.47 x l O " 5 6.72 x 10~5 2.13 xlO~ 4 6.05X10- 4 5.98 x 10 ~4 6.72 x 10 " 5 2.76 x 10 ~4 3.3xlO" 6 2.2xlO" 5 1.36xlO- 4 9.77 x 10 " 6 1.24X10- 4 7.64X10- 4 1.03 XlO" 5 1.94 XlO" 5 3.92 x l 0 ~ 5 7.31 x 10~5 1.30x10-4 8.4xlO" 6 3.35xlO- 5 7.0IxIO- 5 1.93 x l 0 ~ 5 1.93xlO- 4 1.93 x l O " 3 7.09 XlO 14 2.79xlO- 4 3.85 XlO" 5 4.0OxIO- 5 1.93X10- 4 3.53 x 10 ~6 1.73 x l O " 5 2.95 XlO" 5 4.53 x l O - 5 5.8IxIO- 5 2.1OxIO- 4 5.94 x l O " 4 1.11 x l O - 4 1.03 x 10 ~5 4.02 x l O - 5 1.45 x l O - 4 4.IxIO"6 5.52 XlO" 5 2.18 x l O - 4 6.26 x 10~5 2.38 x 10 ~4 2.39 x 10 " 4 8.42 x 10 '6 1.59 XlO" 5 3.39 x l O - 5 6.19 XlO" 5 2.33 x 10 ~4 1.97 x 10 ~5 8.82 x l O " 5 1.01 x 10 ~5 2.15 x l 0 ~ 5 4.14 x l O - 5 7.58 XlO" 5 1.47X10- 4 3.56 x 1014 2.34 x 10 ~4 2.27 x 10 ~A 3.24 x 10~5 1.57 xlO~ 4
£ a (kJ/mol)
Notes
Refs.
133.7
h
255 255 27 27 27 27 27 27 337 337 337 126,337 126,337 126,337 359 359 359 359 359 249 28 28 344 344 344 344 28 81 156 156 160 160 362 160 159 159 159 267 320 320 320 337 337 270 156 270 270 359 359 359 358 270 165 165 359 359 359 359 359 376 270 270 156 156
133.1
138
119.7
125.5
a a a a a a
k h
exp[- 123.59/RT] 128.0
106.7
a,h t9 t9 h
115.5
122.8
h
117
a a t9
t9 t9
exp[- 123/RT]
t9 t9
TABLE 6. cont'd Number of C atoms 9 (cont'd)
Initiator tert-Butyl
perpivalate-d6
tert-Butyl 2-perthenoate
tert-Butyl 1-pyrollidinepercarboxylate tert-Butyl Af-succinimidopercarboxylate
10
tert-Amyl
perpivalate
Solvent
(s"1) 5.05 x 10" 5 1.62 x 10~5 8.82 x l O - 5 3.3 x 10 " 6 1.66 x l 0 ~ 5 6.87 x l O - 5
Chlorobenzene
90
7.59 x 10 ~5
Acetonitrile Benzene Chlorobenzene
100 100 90 100 90 100 100 100 90 100 51 55 72 91 T (K) 50 60 70 80 35 45 60 47 63 82 T(K) 30 40 60 49 65 83 T (K) 74.7 80.7 90.8 40.3 99.8 116.6 129.9
9.9xlO~ 4 3.79 x 10~5 1.32 x 10 ~5 4.9IxIO-5 3.3xl0-6 1.10 x 10~5 9.OxIO- 6 6.00xl0"3 9.24 x 10 ~5 3.4IxIO-4 1.9XlO" 5 1.93 x 10 ~5 1.93 x l O - 4 1.93 x l O - 3 4.12 x 1015 1.05 x 10 ~5 3.5IxIO-5 1.309 XlO" 4 4.239 XlO" 4 6.9xlO~ 6 2.6xlO" 5 1.8OxIO- 4 1.93 x 10 ~5 1.93 XlO" 4 1.93 XlO" 3 3.19 xlO 1 5 2xlO"6 1.0 x l O - 5 1.34 x l O - 4 1.93 x 10 " 5 1.93 x l O - 4 1.93 XlO" 3 7.00 x 1015 1.98 xlO~ 4 4.37 x 10 " 4 1.25 x l O - 3 2.91 x 10 " 4 1.65 x 10 ~5 1.38 x 10~4 6.83 x l O - 4
113.0 92.9 102.6 113.0 75 93 113 T (K) 42.42 50.30 57.95 44.85 50.10 60.20
3.02 x 10 ~4 2.47 x 10 ~5 8.87 x 10 " 5 2.89 x l O - 4 1.93 x 10 " 5 1.93 x l O - 4 1.93 x l 0 ~ 3 2.45 x 1015 9.04 x 10 ~5 2.349 x l 0 ~ 5 5.66OxIO- 5 1.874 x 10 ~5 3.609 x l O - 5 1.306 x l O - 4
Carbon tetrachloride
Cumene Cyclohexane Cyclohexene Methanol Methylene chloride Nitrobenzene Benzene Chlorobenzene
Decane
Chlorobenzene
Mineral spirits
Di-w-butyl peroxydicarbonate
Chlorobenzene
tert-Butyl 2-acetoxy-2methyl perpropionate
Ethylbenzene
tert-Butyl tert-butoxyperacetate tert-Butyl 4-carbomethoxyperbutyrate
Ethylbenzene Cumene
tert-Butyl cyclopentylpercarboxylate
fcd
60.6 60.6 73.9 99.2 112.0 124.5
Dioxane/water (90/10) Isooctane
Cumene
Di-(sec-butyl)peroxydicarbonate
T( 0 C)
n-Hexadecane 2,2,4-Trimethylpentane
tert-Butyl peroxydiethyl acetate
Chlorobenzene
tert-Butyl 2,2-dimethylperbutenoate
Cumene
tert-Butyl 2,2-dimethylperbutyrate
Cumene
Ea (kj/mol)
147.3
Notes t9 t9 t9 m2 m2 m2
Refs. 156 165 165 176 176 176 141
113.4
h,m2 m2 t9
m2 a
exp[- 121J6/RT]
113
exp[-123.85//?7] 113
a a a
a a a
exp[- 126.65/RT] m2
151.3
h
140.8
h
exp[- 134.00/RT] 100.7
h
142 142 141 142 141 142 142 142 141 142 338 344 344 344 344 362 362 362 362 337 337 337 344 344 344 344 337 337 337 344 344 344 344 328 328 328 328 257 257 257 255 255 255 255 344 344 344 344 274 274 274 274 274 274
Notes page 11-69; References page II - 70
TABLE 6. cont'd Number of C atoms 10 (cont'd)
Initiator Di(tert-butylperoxy)-oxalate
Solvent Benzene
tert-Butanol Decane Dodecane Octane n-Pentane Tetradecane Styrene
11
tert-Butyl 5-methyl-7-perthenoate
Carbon tetrachloride
P-Methyl-P-phenyl-P-peroxypropiolactone
Carbon tetrachloride
Bis(2-nitro-2-methylpropyl)-peroxydicarbonate 1-Phenylethylperacetate tert-Butyl 4-chloroperbenzoate
tert-Butyl-JV-(2-chlorophenylperoxy)carbamate
Toluene Benzene Phenyl ether
Carbon tetrachloride Toluene
tert-Butyl-AK3-chlorophenylperoxy> carbamate
Toluene
tert-Butyl-AH4-chlorophenylperoxy)carbamate
Toluene
tert-Butyl cyclohexylperoxycarboxylate
«-Hexadecane 2,2,4-Trimethylpentane
tert-Butyl-iV-(2,5-dichlorophenylperoxy) carbamate
Toluene
tert-Butyl 2,2-dimethylperpentanoate
Cyclohexane
Cumene tert-Butyl 5-ethyl-2-perthenoate
Carbon tetrachloride
tert-Butyl 2-iodoperbenzoate
Chlorobenzene
tert-butyl 4-nitroperbenzoate
Phenyl ether
tert-Butyl 3,5-dinitroperbenzoate
Carbon tetrachloride Carbon tetrachloride
T( 0 C)
kd (s"1)
Ea (kj/mol)
Notes c,h c c
35.0 45.0 55.0 25.0 41 41 41 37.8 41 35 45 55 99.2 112.0 124.5 106.8 126 134 50
6.77 x 10" 5 2.6IxIO" 4 9.3 XlO" 4 1.83 x l O " 5 1.75 x 10 " 4 1.81 x 10" 4 1.79 x 10 " 4 1.01 x 10" 4 1.71 x 10~4 5.5xl0"5 1.71 x 10" 4 6.0IxIO" 4 4.6xlO~ 6 1.94 x l 0 ~ 5 7.95 XlO" 5 5.65 x 10 " 6 4.59 x 10 " 5 9.71 x 10" 5 2.22 x 10 ~5
106.7
100 100.0 110.1 120.2 130.9 80 87.0 95.5 103.3 78.0 87.0 96.6 102.7 73.0 78.5 87.0 92.5 92.9 102.6 82.2 92.9 102.6 113.0 88.0 95.0 103.3 114.5 55 65 75 45 55 99.2 112.0 124.5 85.0 102.4 118.8 110.1 120.2 130.9 141.5 80 80
1.14 x l O " 4 3.89 x 10 ~6 1.85 x l 0 ~ 5 6.39 XlO" 5 2.42 xlO~ 4 4.2xlO~ 7 3.5xl0"5 1.48 x 10 ~4 3.3 XlO" 4 2.6 x l O " 5 7.8xl0"5 2.03 xlO~ 4 4.62 XlO" 4 5.57 x 10 ~5 1.42 x 10 ~4 2.75 xlO~ 4 5.37 x l O " 4 6.70xl0~ 5 2.046 x 10 ~4 1.57 x l O " 5 6.13 x l 0 ~ 5 2.046 xlO~ 4 6.58 x l O " 4 2.75 x 10 ~5 5.58 x 10 ~5 1.48 xlO~ 4 4.82 xlO~ 4 1.66 x 10 ~5 6.31 x 10~5 2.23 xlO~ 4 6.2xlO~ 6 2.15 x l 0 ~ 5 5.39 x 10 ~6 2.12 x l 0 ~ 5 7.91 x 10~5 4.02 x 10 ~5 2.58 xlO~ 4 1.32 xlO~ 3 7.56 x 10 " 6 3.19 x l 0 ~ 5 1.11 xlO~ 4 3.92 xlO~ 4 2.9xlO~ 7 1.1 x 10 ~7
138.7 164.4
h a a a a
157.3
h
115.5
h
119.7
h
136.6
h
135.8
h
128.9
h
120.7
h
105.4
h
75.3
137.7
131.8
a,m2 a,m2 a,m2 h,v 9 c,v9 a
130.5
172.8
Refs. 30 30 30 197 270 270 270 197 270 215 215 215 176 176 176 195 195 195 90 259 53 53 53 53 354 36 36 36 36 36 36 36 36 36 36 36 255 255 255 255 255 255 36 36 36 36 320 320 320 160 160 176 176 176 134 134 134 53 53 53 53 354 354
TABLE 6. cont'd Number of C atoms W (cont'd)
Initiator
Solvent
/m-Butyl-AH3-nitrophenylperoxy)carbamate
Toluene
fm-Butyl-AK4-nitrophenylperoxy)carbamate
Toluene
terf-Butyl perbenzoate
Acetic acid Benzene
Bromobenzene rc-Butanol «-Butyl acetate
tert-Butylbenzene w-Butyl ether Carbon tetrachloride Chlorobenzene
4-Chlorotoluene
Cumene
Decane
Dodecane Ethylbenzene Heptane Hexadecane Methyl benzoate Octane Phenyl ether
Tetradecane Trimethylbenzene Xylene
T( 0 C) 78.0 88.7 98.0 106.0 73.0 87.0 98.0 106.0 100.0 110.0 100 115 130 110.0 119.4 130.0 119.4 90.0 100.0 110.0 119.4 110.0 1194 119.4 100.0 110.0 80 110.0 119.4 120 135 150 103 122 142 T(K) 110.0 119.4 130.0 60 79.6 85.0 99.3 115.0 130.2 100 115 130 115 115 119.4 115 115 119.4 115 100.0 110.1 120.2 130.9 115 T (K) 119.4 130.0
A:d (s"1) 8.4 x l O " 6 2.43 x 10 " 5 1.01 x 10- 4 2.36 x l O " 4 6.4xlO~ 6 3.11 x 10~5 8.75 x l O " 5 2.38 xlO~ 4 3.83 x 10 ~5 1.14 x 10~4 1.07 x KT 5 6.22 x l 0 ~ 5 3.5OxIO- 4 3.50xl0" 5 1.04 XlO" 4 3.30xl0~ 4 1.37 x 10 ~4 9.27 x 10 " 5 2.7OxIO- 4 1.06 x 10~4 2.67 x l O " 4 3.6IxIO- 5 1.10 xlO~ 4 1.03 x 10 ~4 7.8OxIO- 5 1.80 XlO" 4 8.8xl0"7 3.83 x 10~5 1.11 x l O " 4 1.3IxIO- 4 6.74 x l O - 4 3.12 x l O - 3 1.93 XlO" 5 1.93 x l O - 4 1.93 x l O " 3 2.23 xlO 1 6 3.25 x 10 " 5 9.80xl0"5 3.06 x l O - 4 3.85 XlO" 7 7.21 x 10 ~5 1.320xl0" 6 9.37 x l O - 6 5.8IxIO- 5 3.24 x l O " 4 1.4xlO- 5 8.05 XlO" 5 3.56 x l O - 4 6.77 XlO" 5 6.44 x KT 5 1.07 x 10~4 7.21 x 10~5 5.97 x 10 ~5 7.8OxIO" 5 7.06 x 10 " 5 6.94 x 10 ~6 2.28 x l O " 5 9.0OxIO- 5 2.92 x l O " 4 6.03 x 10 ~5 2.62 x 1016 1.09 x 10~4 3.42 x l O - 4
E2, (kj/mol)
Notes
133.1
h
113.8
h
130.1
a a a a a a a a a a a a a a,m2 a,m2 a a a
145.2
144.3
120.5 123.4 148.5
99.2
141.8
exp[- 151.59/RT\ 144.3
140.2
134
a a m2 m2 m2
c c c a,h
a a a
a
a 156.9
exp[-152.0/RT] 141.4
a a a a
a a
Refs. 36 36 36 36 36 36 36 36 56 56 126,337 126,337 126,337 56 56 56 56 56 56 56 56 56 56 56 56 56 354 56 56 22 22 22 344 344 344 344 55 55 55 81 272 345 345 345 345 337 337 337 270 270 56 270 270 56 270 53 53 53 53 270 376 56 56
Notes page 11-69; References page II - 70
TABLE 6. cont'd Number of C atoms 11 (cont'd)
Initiator
Solvent
terf-Butyl-AK4-bromophenylperoxy)carbamate
Toluene
tert-Butyl percarboxycyclohexane
Chlorobenzene
Cumene
12
tert-Butyl per-2-methylphenylacetate
Isooctane
tert-Butyl-N-(phenylperoxy) carbamate
Toluene
tert-Hexyl peroxypivalate
Chlorobenzene Cumene
1,1,2-Trimethylpropyl perpivalate
Cumene
Cumyl peracetate tert-Amyl peroxybenzoate
Carbon tetrachloride Toluene Chlorobenzene
4-Bromocumyl perpropionate
Benzene
oc-Methylstyrene
tert-Butyl bicyclo[2.2.1]lheptane2-percarboxylate
terf-Butyl endo-bicyclo[2.2.1]heptane percarboxylate
Cumene
Chlorobenzene
Cumene
terf-Butylexo-bicyclo[2.2.11]heptane-2-percarboxylate
Chlorobenzene
T( 0 C) 70.8 79.8 84.0 96.0 100.1 111.4 120.0 79.6 79.6 79.6 60.6 73.9 51.2 67.7 77.7 90.7 T(K) 40 50 60 70 80 40 50 60 70 100 100 99 118 139 T (K) 70 80 90 70 80 90 85 100 110 110 120 130 94.0 101.9 109.6 120.5 94.5 101.9 111.9 100.1 111.4 120.0 94.0 101.9 109.6 120.3 94.5 101.9 111.9 94.5 101.9 112.1
A^(S"1) 3.32 x 10 " 5 1.04 x 10 ~4 1.75 x l O - 4 7.70xl0~ 4 2.75 x 10 ~4 9.65 XlO- 4 2.39 XlO- 3 1.86 x l O " 5 1.42 x l 0 ~ 5 1.15xl0- 5 6.60 x 10 ~5 3.233 x l O - 4 3.4xlO-6 2.31 x 10 " 5 1.15 x l O - 4 6.41 x 10 ~4 1.51 x 1016 2.39 x 10 ~6 8.83 x l O - 6 3.37xl0-5 1.226 x l O - 4 4.166 x l O - 4 3.6xlO" 6 1.59x10-5 5.14x10-5 1.921 x 10- 4 4.68 x 10 " 5 3.43 x 10 ~5 1.93 x 10 ~5 1.93 x 10~4 1.93 x l O - 3 8.38 x 1015 1.48 x 10 " 6 5.73 x l O - 6 1.8IxIO- 5 1.99 x 10~6 4.93 x l O - 6 1.55x10-5 1.16 x 10~6 1.02 x 10 ~5 3.76xlO- 5 4.6x10-5 1.56 XlO" 4 4.99 x l O " 4 1.75XlO" 5 6.20xl0"5 1.7 x l O - 4 5.72 x l O - 4 9.69x10-5 1.96xlO- 5 6.53x10-5 4.6IxIO-5 1.96 xlO~ 4 5.4OxIO- 4 1.87 x l O " 5 5.3OxIO- 5 1.10 x l O " 4 4.3 x l O - 4 5.27xl0-5 1.12 x l O - 4 3.57 x l O - 4 8.86 x 10 ~5 2.28 x 10 ~4 8.85 x l O - 4
Ea (kj/mol)
Notes
177.6
h
131.0
h
139.7
z (1) z (2030) z (4050) ni2 m2 h
exp[- 136.0/RT]
c p
exp[- 147.02/RTl 129.7
121.3
a a a a a
155.2 160
h
150.2
h
137.2
h
149.0
h
154.0
h
130.1
h
Refs. 36 36 36 36 181 181 181 163 163 163 165 165 36 36 36 36 40 362 362 362 362 362 362 362 362 362 271 271 344 344 344 344 213 213 213 213 213 213 160 160 223 223 223 147 147 147 147 147 182 182 181 181 181 147 147 147 147 182 182 182 182 182 182
TABLE 6. Number of C atoms
cont'd
Initiator
Solvent
12 (cont'd)
Cumene
tert-Butyl endo-bicyclo[2.2.1]-hept5-ene-2-percarboxylate
Cumene
tert-Butyl exo-bicyclo[2.2.1]-hept5-ene-2-percarboxylate
Chlorobenzene
Cumene
tert-Butyl 4-bromophenoxyperacetate tert-Butyl 4-chlorophenoxyperacetate tert-Butyl 3-chlorophenylperacetate
Ethylbenzene Ethylbenzene Chlorobenzene
Cumene tert-Butyl 4-chlorophenyl peracetate
Chlorobenzene
Cumene tert-Butylcycloheptyl percarboxylate
rc-Hexadecane 2,2,4-Trimethylpentane
tert-Butyl 2,4-dichlorophenoxyperacetate tert-Butyl 2,2-diethyl perbutyrate
Ethylbenzene Cumene
tert-Butyl per-2-ethylhexanoate
Benzene Chlorobenzene
tert-Butyl 2-methoxy-2-methylperpropionate
Chlorobenzene
tert-Butyl 4-methoxyperbenzoate
Phenyl ether
tert-Butyl peroxy-2-methylbenzoate
Chlorobenzene
tert-Butyl 4-methoxyperbenzoate tert-Butyl 4-methylperbenzoate
Carbon tetrachloride Phenyl ether
T( 0 C)
£ d (s"1)
96.0 100.1 111.4 120.0 84.4 94.7 100.1 108.6 113.5 94.5 101.9 112.1 94.5 101.9 112.0 94.5 101.9 112.1 94.5 101.9 112.1 70.5 70.5 79.6 90.7 100.5 79.6 79.6 79.6 90.7 100.5 79.6 79.6 92.9 102.6 92.9 102.6 70.5
1.33 x 10"4 1.90xl0" 4 6.79 xlO" 4 1.64 xlO" 3 2.19 xlO" 5 7.29 x l 0 ~ 5 1.37 xlO~ 4 3.6 XlO" 4 6.19 XlO" 4 6.05 x l O " 5 1.53 x l O " 4 4.72 XlO" 4 3.11 x l O " 5 7.35 x 10 ~5 2.48 x l O " 4 5.59 x l O " 5 1 25 x 10" 4 5.0OxIO" 4 4.48 x l O " 5 1.18 x l O - 4 3.97 x l O " 4 2.6xlO~ 4 2.9xlO~ 4 4.05 x 10 ~5 1.44 x l O - 4 4.38 x l O " 4 2.98 x 10 " 5 1.99 x l O " 5 8.44 x 10 " 5 2.95 x l O - 4 8.19 x l O " 4 6.54 x 10 " 5 4.45 x 10 " 5 1.801 x 10 " 4 5.17 x l O " 4 1.703 x 10 " 4 5.07 x l O " 4 9.4xlO" 5
45 55 65 72 72 91 113 T(K) -14.0 -7.0 -1.0 15.0 100.0 110.1 120.2 130.9 96 115 136 T (K) 80 100.0 110.1 120.2
1.23 x 10 " 5 4.92 x l O " 5 1.46 x l O - 4 1.9xlO" 5 1.93 x 10 ~5 1.93 x l O " 4 1.93xl0- 3 1.54 xlO 1 4 2.05 x 10 " 5 6.73 x 10" 5 1.67 XlO" 4 1.28 XlO" 3 1.07 x 10 " 5 4.17 x l O " 5 1.28 x l O - 4 4.28 x l O " 4 1.93 x 10 " 5 1.93 x 10 " 4 1.93 x l O " 3 8.56 x 1015 l.OxlO" 6 9.42 x 10 " 6 3.19 XlO" 5 1.06 XlO" 4
Ea (kj/mol)
Notes
129.3
h
129.3
h
131.4
h
136.4
h
138.1
h
123.0
a a h
117.2
z (0.98) z (6090) h
121.5
z (0.98) z (6090) h
125.7
h a
100.3
h
a
exp[- 124.90/RT] 86.3
149.8
m2 m2 m2 m2 a a a a
expr[- 145.97/RT] 151.0
a a a
Refs. 147 181 181 181 147 147 147 147 147 182 182 182 182 182 182 182 182 182 182 182 182 315 315 178 178 178 207 207 178 178 178 207 207 255 255 255 255 315 160 160 160 338 344 344 344 344 275 275 275 275 53 53 53 53 344 344 344 344 354 53 53 53
Notes page 11-69; References page II - 70
TABLE 6. cont'd Number of C atoms 12 {cont'd)
Initiator terr-Butyl 4-methylperbenzoate rm-Butyl 2-methyl-2-terfbutylperoxyperpropionate
Solvent Phenyl ether Benzene
terf-Butyl 2-methylsulfonyl perbenzoate
Chlorobenzene
tert-Butyl 2-(methylthio)perbenzoate
Chlorobenzene
tert-Butyl 4-(methylthio)perbenzoate terf-Butyl 4-nitrophenoxyperacetate /m-Butyl 4-nitrophenylperacetate
Chlorobenzene Ethylbenzene Chlorobenzene
terf-Butyl 4-nitrophenylperacetate
Decane Dodecane Hexadecane Octane
Di-terf-butyl per-2-chlorosuccinoate
Tetradecane Unknown
T( 0 C) 130.9 9.0 19.0 30.0 42.0 105 120 135 150.6 60 39.4 50.1 50.2 69.8 120.4 70.5 79.6 90.7 100.5 80 77.5 77.5 100 77.5 77.5 100 77.5 105 115 125
tert-Butyl peroctoate
Benzene
Decane
Di-rm-butyl persuccinoate
Styrene
/m-Butyl phenoxyperacetate rm-Butyl phenylperacetate
Ethylbenzene Chlorobenzene
Cumene
Decane Dodecane Hexadecane Isooctane
70 85 100 70 85 100 105 115 125 70.5 60 77.0 88.6 79.6 90.7 100.5 79.6 79.6 79.6 79.6 85.0 79.6 79.6 79.6 79.6 79.61 77.5 77.5 77.5 85.0 95.2
^d(S"1) 3.25 x 10~A 6.66 xlO~ 5 1.99 x 10 ~4 6.94 xlO~ 4 2.43 x l 0 ~ 3 6.68 x 10 ~6 5.57 x 10~5 2.76 xlO~ 4 2.05 x l 0 ~ 3 8.08 x 10~A 2.59 x l O - 5 2.42 XlO- 4 1.88 x l O - 4 1.96 XlO" 3 1.75 x 10 ~4 6.7xlO" 5 2.5xlO" 5 8.9 XlO" 5 2.83 xlO~ 4 3.77 XlO" 5 6.3OxIO- 6 5.8IxIO" 6 1.3IxIO- 4 5.11 x 10" 6 6.42 x 10 " 6 1.6OxIO- 4 5.56 x 10 " 6 2.74 x 10 " 4 1.22 x l O - 5 5.9OxIO" 4 3.83 x l O - 5 1.52 XlO" 3 1.00 x l O - 4 1.4xlO" 5 8.55 x l O - 5 4.55 x l O - 4 6.9xlO~ 6 4.39 x l O - 5 2.64 x l O - 4 1.93 x 10 " 5 6.7 x l O - 5 2.53 XlO" 4 4.4xlO" 4 6.79 x 10~6 6.85 x l O - 5 2.45 x l O - 4 1.05 x l O - 4 3.53 XlO" 4 1.003 XlO" 3 1.07 x l O - 4 9.1 x 10 " 5 1.02 XlO" 4 9.0 x 10- 4 1.945 XlO" 4 6.6xlO- 5 5.6 xlO~ 5 6.78 x l O - 5 4.73 x l O - 5 1.1 x l 0 ~ 5 3.0OxIO- 5 2.75 x l 0 ~ 5 2.6OxIO- 5 1.08 x l O " 4 3.527 x l O - 4
E2, (kj/mol)
Notes
78.8
a m2
95.0
a,h b c m2
129.9 124.7
a,h h
102.9 143.5
X2 X2 X2 x2 X2 x2 a a a a a a Xi X1 X1 a,h a,h h m2 h
130
130
154.8
113.1 120.1 117.6 116.7
z (0.98) z (4050) z (0.98) z (4050) m2 z (0.98) z (4050) z (0.98) z (6090)
Refs. 53 275 275 275 275 22 22 22 22 97 134 134 134 134 134 315 178 178 178 169 168 168 168 168 168 168 168 214 214 214 214 214 214 337 337 337 337 337 337 215 215 215 315 81 28 28 178 178 178 157 157 163 163 165 157 157 163,207 163,207 274 168 168 168 165 165
TABLE 6. cont'd Number of C atoms 12 (cont'd)
Initiator tert-Butyl phenylperacetate
tert-Buty\ 2-propylperpenten-2-oate (cw)
(trans)
Solvent Octane Paraffin oil Tetradecane Cumene
Cumene
tert-Butyl 2,2,3,3-tetramethylperpropionate
Cumene
tert-Butyl thiophenylperacetate tert-Butyl per-o-toluate ferf-Butyl per-paratoluate
Ethylbenzene Benzene Cumene
tert-Butyl-AH3-tolylperoxy)carbamate
Toluene
tert-Butyl 2,4,5-trichlorophenoxyperacetate 4-Chlorocumyl perpropionate
Ethylbenzene Benzene
a-Methylstyrene
Cumyl perpropionate
Benzene
a-Methylstyrene
4-Iodocumyl perpropionate
Benzene
a-Methylstyrene
4-Nitrocumyl perpropionate
Benzene
a-Methylstyrene
13
1,1,3-Trimethylbutyl perpivalate
Cumene
tert-Amyl per-2-ethylhexanoate
Benzene Chlorobenzene
Benzyl(ter?-butylperoxy)oxalate
Benzene
T( 0 C) 77.5 85.0 77.3 94.9 100.1 100.1 100.1 110.1 94.9 100.1 100.1 100.1 110.1 42.2 54.9 70.3 70.5 97 84.0 99.3 115.0 64.0 70.7 78.0 88.5 70.5 70 80 90 70 80 90 70 80 90 70 80 90 70 80 90 70 80 90 70 80 90 70 80 90 40 50 60 70 70 73 91 111 T(K) 45 55 65
A^(S"1) 3.1IxIO"5 1.150 x 10~4 2.66 x 10 ~5 2.78 x 10 ~5 5.4 XlO" 5 4.26 x l 0 ~ 5 2.31 x 10~5 1.72 x l O - 4 2.47 x 10 ~5 4.7 x l O - 5 3.13 x l O - 5 1.42 x-K) - 5 1.64 x l O - 4 8.76 x l O " 6 5.84 x 10 ~5 3.36 x l O - 4 3.8 x 10 ~4 1.9xl0"5 1.660 x 10 ~6 1.139 x l O - 5 6.77 XlO" 5 4.58 x 10 " 5 9.17 x l O " 5 2.03 x l O - 4 5.78 x l O - 4 5.8 x l O " 5 1.46 x 10 " 6 5.68 x l O - 6 1.79 x l O " 5 1.50x 10" 6 4.54 x l O - 6 1.47 x l O - 5 2.6OxIO- 6 6.15 x l O - 6 1.90 x l O " 5 6.31 x 10 ~6 1.7IxIO- 5 4.94 x l O " 5 1.37 x 10~6 5.76 x l O - 6 1.79 x l O - 5 1.54 x 10~6 4.96 x l O - 6 1.62 x l O - 5 1.36 x 10 " 6 5.32 x l O " 6 1.78 x l O - 5 1.35 x 10~6 4.07 x l O - 6 1.43 x l O - 5 4.8OxIO- 6 1.77 x l O - 5 6.18 x l O " 5 2.344 x l O - 4 1.9xl0-5 1.93 x 10 ~5 1.93 x l O - 4 1.93 x l O - 3 1.77 x l O 1 5 3.65 x 10 " 5 1.33 x l O - 4 4.69 x l O - 4
Ea (kj/mol)
Notes
137.2
h z (0.98) z (1100) z (4000)
143.9
h z (0.98) z(llOO) z (3830)
114
h
a a
102.9
h
a 129.3
118.8
101.7
106.7
133.1
125.5
133.5
124.7
a a a a a a a a a a a a a a a a a a a a a a a a
a
exp[- 132.1 l/RT] 111.3
c,h c c
Refs. 168 165 168 172 172 172 172 172 172 172 172 172 172 267 267 267 315 338 345 345 345 36 36 36 36 315 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 213 362 362 362 362 338 344 344 344 344 31 31 31
Notes page 11-69; References page 11-70
TABLE 6. cont'd Number of C atoms 13 (cont'd)
Initiator
Solvent
tert-Butyl benzyloxyperacetate
Ethylbenzene
tert-Butyl benzylthioperacetate
Ethylbenzene
tert-Butyl bicyclo[2.2.2]octane1-percarboxylate
Cumene
ter/-Butyl endo-bicyclo[2.2.1j-2methylheptane-2-percarboxylate
Cumene
tert-Butyl exo-bicyclo[2.2.1]2-methylheptane-2-percarboxylate
Cumene
tert-Butyl 1,4-dimethylcyclohexane1-percarboxylate (cis)
Cumene
(trans)
Cumene
tert-Butyl 3-methoxyphenylperacetate
Chlorobenzene
terf-Butyl 4- methoxyphenylperacetate
Chlorobenzene
Cumene
tert-Butyl 4-methylphenyl peracetate
Decane Dodecane Ethylbenzene Isooctane Octane Paraffin oil Tetradecane Chlorobenzene
Cumene
Di-terr-butyl perglutarate
terf-Butylperoxy 2-ethylhexylcarbonate
Decane Dodecane Ethylbenzene Hexadecane Octane Tetradecane Styrene
Chlorobenzene
T( 0 C) 40.0 40.0 51.0 60.7 40.0 60.0 70.0 65 75 85 80 90 100 75 80 85 90 95 60 65 70 75 80 60.0 70.0 80.0 60.0 70.0 80.0 79.6 90.7 100.5 56.0 60.3 70.2 79.3 48.9 60 60 79.6 77.5 77.5 70.5 60.5 77.5 60.5 77.5 70.4 79.6 90.7 79.6 79.6 77.5 77.5 70.5 77.5 77.5 77.5 105 115 125 99 117 137
A:d (s"1) 1.3 x 10" 4 1.45 x l O - 4 5.03 XlO" 4 1.62 x l O - 3 2.60xl0~~5 3.31 x 10- 4 1.14 XlO" 3 7.5 x 10 ~6 2.82 x l O " 5 8.47 x l O " 5 5.IxIO"5 1.67 x l O - 4 4.86 XlO" 4 7.35 x 10 ~5 1.39 x 10 " 4 2.64 x l O - 4 4.81 x 10 " 4 8.41 x 10- 4 7.78 x 10 " 5 1.44 x 10 " 4 2.75 x l O " 4 4.89 XlO" 4 8.93 XlO" 4 7.52 x l O " 5 2.66 x 10 " 4 8.49 xlO~ 4 6.93 x 10 ~5 2.52 x l O " 4 7.79 x l 0 ~ 4 9.9xl0~5 3.45 x 10 ~4 1.051 x 10" 3 4.57 x 10 ~5 9.9xlO~ 5 3.06 x l O " 4 7.99 xlO~ 4 1.93 XlO" 5 6.85 x 10 ~5 5.31 x 10 ~5 5.942 x l O - 4 2.52 x 10 ~4 2.60xl0~ 4 1.4xlO~ 3 4.72 x 10 ~5 2.53 x 10 ~4 4.20 x l 0 ~ 5 2.68 x 10 ~4 8.67 x 10 ~5 2.37 xlO~ 4 7.95 xlO~ 4 1.649 x 10 ~4 1.180xl0~ 4 9.08 x 10 ~5 8.57 x l 0 ~ 5 7.2xlO~ 4 1.032 x 10 ~4 8.83 x 10 ~5 7.75 x 10 ~5 2.65 x 10 ~5 1.06 xlO~ 4 3.0OxIO- 4 1.93 x 10 ~5 1.93 x 10 ~4 1.93 x l 0 ~ 3
Ea (kj/mol)
Notes
100.6 101.8
a,h h,m2
108.1
h,m2
119.2
h
120.1
h
126.8
h
116.7
h
115.2
c h
116.3
c c,h c
122.2
h
105.4
h
k z (0.98) z (4050)
Refs. 315 328 328 328 328 328 328 160 160 160 223 223 223 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 206 178 178 178 178 178 178 178 249 207 207
207
104.8
a,h
110.9
h
z (0.98) z (6080)
a
Xi X1
168 168 315 169 168 169 168 178 178 178 207 207 168 168 315 168 168 168 215 215 215 344 344 344
TABLE 6.
cont'd
Number of C atoms 13 (cont'd)
14
Initiator terf-Butylperoxy 2-ethylhexylcarbonate terr-Butyl 2-phenylperpropionate
Solvent
T(K)
4.07 xlO 1 6
Cumene
40.7 60.1 80.1 40.8 54.7 70.7 40.0 95 114 135 T(K) 45 55 65 95 113 134 T (K) 54.7 70.2 85.4 70.8 85.4 101.0 40.0
7.88 x 10 " 6 8.44 x l O - 5 8.1OxIO- 4 6.15 x 10~6 3.82 x 10 ~5 2.73xlO- 4 2.62 x 10 " 5 1.93 x 10 " 5 1.93XlO" 4 1.93 x l O - 3 1.94 xlO 1 5 1.3OxIO" 5 4.89 x 10 " 5 1.89 x l O - 4 1.93 x 10 ~5 1.93 x l O " 4 1.93 x l O " 3 2.22 x 1016 4.38 x 1O -6 3.56 x l O - 5 2.44 x l O - 4 1.48 x 10 " 5 8.07 x 10" 5 4.38 x l O " 4 7.2xlO-4
50.0 50.0 50.0 60.0 67.0 50.0 60.0 67.0 50.0 60.0 67.0 99.6 109.8 99.6 109.8 34.1 39.7 47 46 64 84 T (K) 50.0 50.0 50.0 60.0 67.0 67.0 84.0 99.3 115.0 113.0 120.0 130.0 140.0
2.55 x 10 " 4 2.03 x 10 " 4 7.98 x 10~5 2.68 x l O - 4 6.36 x l O - 4 8.0OxIO- 5 2.56 x l O " 4 5.96 x l O - 4 8.1OxIO- 5 2.65 x l O - 4 5.95 x l O " 4 1.23 x 10 " 4 3.7OxIO- 4 3.5 x 10~5 1.03 x l O - 4 3.26 x 10 ~5 5.63 x 10" 5 1.9xlO- 5 1.93 x 10 " 5 1.93 x l O " 4 1.93 x l O " 3 1.52 x 1014 7.5OxIO- 5 6.4OxIO" 5 2.63 x 10- 5 9.27 x l O - 5 2.03 x l O " 4 1.98 x 10 - 4 1.464 x 10 " 5 9.94 XlO" 5 6.7 x l O - 5 8.67 x l O " 5 2.49 x 10 ~4 7.49 x l O " 4 2.22 x l O - 3
Cumene
terf-Butylthiobenzylperacetate tert-Butyl peroxy-3,5,5-trimethylhexanoate
Ethylbenzene Chlorobenzene
4-Nitrobenzyl(terf-butylperoxy)oxalate
Benzene
2-ethylhexyl-
Chlorobenzene
tert-Butyl di-terf-butylperacetate
Cumene
terf-Butyl 2-carbomethoxyphenylperacetate
Cumene
terf-Butyl 2-(4-chlorophenoxy)2-methylperpropionate tert-Butyl 2-(4-chlorophenyl)2-methylperpropionate
Ethylbenzene Acetonitrile Benzene Dodecane
Hexadecane
Octane
tert-Butyl a-methylpercinnamate (cis) (trans)
kd (s'1)
Chlorobenzene
tert-Butyl 2,2,4,4-tetramethylperbutyrate
terf-Amylperoxy carbonate
T(0C)
Cumene Cumene
tert-Butyl 2-methyl-2-phenylperpropionate tert-Butyl perneodecanoate
Chlorobenzene Cumene Benzene Chlorobenzene
tert-Butyl 2-(4-nitrophenyl)2-methylperpropionate
Acetonitrile Benzene Dodecane
tert-Butyl permesitoate
Octane Cumene
tert-Butyl 1-phenylcyclopropylpercarboxylate
rc-Dodecane Ethylbenzene
Ea (kj/mol)
Notes
exp[-151.72/RT]
344
111
h
100.6
a,h
exp[- 140.78/K7] 116.7
c,h c c
exp[- 148.41/#7] 125.3
h
116.9
h
a
108.1
h
128.0
f,h f f,h f
125.5
exp[- 115 A7/RT] 105.2
147.5
Refs.
h
h,t i ti ti
273 273 273 267 267 267 315 344 344 344 344 31 31 31 344 344 344 344 245 245 245 257 257 257 315 265 265 265 265 265 265 265 265 265 265 265 150 150 150 150 249 249 338 344 344 344 344 265 265 265 265 265 265 345 345 345 255 323 323 323
Notes page 11-69; References page 11-70
TABLE 6. cont'd Number of C atoms 14 (cont'd)
Initiator tert-Butyl 1-phenylcyclopropylpercarboxylate
Solvent 2,2,4-Trimethyl pentane
tert-Butyl phenyldimethylperacetate
Chlorobenzene Isooctane
tert-Butyl 2-phenyl-3-perbutenoate tert-Butyl 4-phenyl-3-perbutenoate tert-Butyl 2-phenyl-2-methylperpropionate
Chlorohenzene Chlorobenzene Acetonitrile Benzene Benzophenone Benzyl benzoate Butyl phthalate Chlorobenzene Cumene Dodecane
tert-Butyl 4-vinylphenylperacetate
Hexadecane Methyl benzoate Octyl phthalate Toluene Cumene
Dibenzyl peroxalate Di-tert-butyl adipate
Pentane Styrene
Dicyclohexyl peroxydicarbonate
Benzene Chlorobenzene
a-Methylstyrene Mineral spirits
15
4-Methoxybenzyl (tert-butylperoxy)oxalate
Benzene
1-Methyl-1-phenylethyl 2,2-dimethylperoxyporpionate
Cumene
tert-Amy\ perneodecanoate
Benzene Chlorobenzene
Dibenzoyl monopercarbonate tert-Butyl 1-adamantylpercarboxylate
Benzene Cumene
T( 0 C) 102.6 113.0 120.4 60 40.6 60.6 60.6 60 60 50.0 50.0 60 60 60 60 60 50.0 60.0 67.0 60 60 60 60 60 70.9 85.4 100.3 25 105 115 125 50 44 60 77 T (K) 50 45 50 60 45 55 65 40 50 60 70 45 43 61 81 T (K) 60.00 45 55 65 64.6 74.6 84.6 60 70 80
^d(S" 1 ) 2.53 x 10 ~5 8.96 x 10 ~5 2.04 xlO~ 4 9.6xlO~ 4 2.95 x 10 ~5 3.059 xlO~ 4 4.064 xlO~ 4 2.9xlO~ 3 1.15 x 10 ~4 3.08 x 10 " 4 2.18 xlO~ 4 7.73 x 10 ~A 7.92 x 10 ~4 6.5 x 10 ~4 7.00xl0~ 4 5.25 x 10 ~4 8.77 x 10 ~5 3.00xl0~ 4 7.13 xlO~ 4 2.88 xlO~ 4 3.53 x 10 ~4 7.55 x 10 ~4 5.70xl0~ 4 5.66 x 10 ~4 5.54 x 10 " 5 3.00xl0~ 4 1.48 x l 0 ~ 3 6.7 x 10 ~5 3.50xl0~ 5 1.23 xlO~ 4 3.05 xlO~ 4 5.4xlO~ 5 1.93 x 10 ~5 1.93 x l 0 ~ 4 1.93 x l 0 ~ 3 3.3 x 1016 5.9xlO~ 5 2.78 x 10 ~5 5.58 xlO~ 4 2.07 xlO~ 4 6.69 x 10 ~5 2.48 x 10 ~A 8.27 xlO~ 4 6.91 x 10 ~6 2.80 x 10 ~5 1.032 xlO~ 4 3.57 x l O - 4 1.9xl0~ 5 1.93 x 10 ~5 1.93 xlO~ 4 1.93 x l O - 3 1.47 x 1014 8.05 x 10 ~5 5.15 x 10 ~5 2.05 x 10 ~5 7.4OxIO- 5 6.87xl0-5 2.44 xlO~ 4 7.78 x l O - 4 5.4 x l O - 5 2.12 x l O - 4 7.20xl0~ 4
Ea (kj/mol)
Notes
141.2
h
109.2
96.2 98.3
c,h t9 t9 m2 c,h c,h,g
109.3
h
t 12
116.5
h,k k
151.0
X2 X1 X1 c
exp[- 129.0/RT] 117
109.6
a a a c,h c c
a
exp[- 114.38/K7] 116.5 115.5
h h
116.7
h
124.7
h
Refs. 255 255 255 81 165 165 165 81 81 265 265 334 334 334 334 334 265 265 265 334 334 334 334 334 254 254 254 203 215 215 215 201 344 344 344 344 201 337 337 337 31 31 31 368 368 368 368 338 344 344 344 344 280 160 160 160 159 159 159 223 223 223
TABLE 6. Number of C atoms 15 (cont'd)
cont'd
Initiator tert-Butyl 4-(carboethoxy)phenoxyperacetate tert-Butyl a,p-dimethylpercinnamate (cis)
Solvent Ethylbenzene
(trans)
tert-Butyl 1-pernaphthoate tert-Butyl 2,2-dimethyl3-phenylthio perpropionate
Chlorobenzene Cyclohexane
tert-Butyl 2-(4-methoxyphenyl)2-methylperpropionate
Acetonitrile Benzene Dodecane
tert-Butyl 1-phenylcyclo-n-Dodecane butylpercarboxylate
tert-Butyl 4-tert-butylperbenzoate
Chlorobenzene
Di-tert-butyl perpimelate
Styrene
tert-Butyl 2-(4-tolyl)2-methylperpropionate
Acetonitrile Benzene Dodecane
tert-Butyl triisopropylperacetate
16
Octane 52.3 Ethylbenzene n-Hexadecane 2,2,4-trimethyl pentane
Octane Cumene
l,l-Dimethyl-2-phenylethylperpivalate
Cumene
1-Phenylethyl 4-methoxyperacetate 1-Phenylethyl 3-nitroperbenzoate 1-Phenylethyl 4-nitroperbenzoate 1-Phenylethyl perbenzoate Dibenzyl peroxydicarbonate
Benzene Benzene Benzene Benzene Benzene
Di-tert-butyl2-iodoperisophthalate
Chlorobenzene
Di-tert-butyl perphthalate
Benzene
Di-n-butyl phthalate
Chlorobenzene
T( 0 C) 70.5 95.0 103.2 110.1 85.1 95.0 103.7 110.0 110.0 110.1 55 65 75 50 50 40 50 57 50 7.89 x 10 ~5 60.0 52.3 52.3 61.6 100.1 119.8 135.9 105 115 125 50.0 50.0 50.0 60.0 67.0 60.0 24.8 41.6 55.2 40 50 60 70 99.7 100 100 100 40 50 60 68.4 85.4 101.6 100 115 130 100 115 130 107 125 146 T(K)
A^(S"1)
Ea (kj/mol)
1.6xlO~ 4 1.02 xlO~ 4 2.29 x 10 ~4 5.15xlO- 4 3.9xl0~5 1.17xlO- 4 2.84xlO~4 6.05xl0-4 7.9OxIO- 4 8.69 x l 0 ~ 5 1.63 x 10 ~5 1.61 x 10 ~5 1.98xlO- 4 1.675 x 10 ~3 9.96 x 10 ~A 1.49 x l O " 4 4.21 x IO- 4 1.028 XlO" 3 4.18 xlO~ 4 3.62 x 10 " 4 8.80xl0~ 5 7.69 x 10 ~5 2.46x10-4 3.81 x 10 ~5 4.5OxIO- 4 2.38 x l 0 ~ 3 4.45 x 10 ~5 1.05x10-4 5.06x10-4 6.0OxIO" 4 3.85 x 10 " 4 1.9OxIO- 4 5.58 xlO~ 4 1.32OxlO" 3 5.43 x 10 " 4 5.32 x 10~6 6.84 x l O - 5 3.78 XlO" 4 4.56 x 10~6 1.833 x 10~5 6.1 x 10 ~5 2.5IxIO-4 3.50xl0"4 5.97 x 10 ~4 4.10xl0~4 4.03 x 10 ~4 2.0xl0"5 6.25 x l O - 5 2.67 x l O - 4 8.24 x 10~5 4.45 x l O - 4 1.68 x l O " 3 1.1 x 10 ~5 7.8IxIO-5 4.8IxIO"4 1.08 x 10 " 5 7.8 x l O " 5 4.8 XlO" 4 1.93 x 10 ~5 1.93 x l O - 4 1.93 x l O - 3 9.39 xlO 1 6
118.8
122.6
116.9
Notes a
315
a,h a a a,h a a a a,v6
151 151 151 151 151 151 151 151 154 320 320 320 265 265 265 265 265 265
h,t6 t6
93.0
h
255 ti 110.6
h
150.6
Xi X1 X1
100.6
h
111.5
h
134.1 136.2 146.2 123.6 117
h h h h a a a h
93.9
159
155.0
exp[-157.85/^7]
Refs.
a a a h
323 255 255 255 134 134 134 215 215 215 265 265 265 265 265 265 267 267 267 362 362 362 362 259 259 259 259 337 337 337 248 248 248 337 337 337 269 269 269 344 344 344 344
Notes page 11-69; References page 11-70
TABLE 6. cont'd Number of C atoms 16 (cont'd)
Initiator Di-tert-butyl perphthalate
Cumene
terr-Butyl 1-phenyl-l-cyclopentane percarboxylate terf-Butyl 2,3-dimethyl2-phenylperbutyrate Cumyl 7V-phenylperoxy carbamate Dibenzyl peroxydicarbonate Di-terr-butyl perphthalate
Di-tert-bxxty\ persuberate
17
Solvent
^d(S1) 6
Ethylbenzene
99.9 115.0 130.1 60.0
8.34 x 10" 4.68 XlO- 5 2.6OxIO- 4 1.52 x 10 ~3
Ethylbenzene
50
4.3OxIO- 5
T(K) 50 100 115 130 115 125 43.5 52.3 60 70 80 10 35 10 10 100
1.26 x l O 1 4 2.92 x 10 " 5 1.08 x 10 " 5 7.83 x l O - 5 4.8OxIO- 4 7.86 x 10 ~5 2.8IxIO-4 1.184 x l O " 4 3.51 x 10 ~4 1.9xlO~ 5 5.3OxIO- 5 1.38 x l O " 4 4.5 x 10~4 1.9 x l O - 3 6.4X10" 4 5.IxIO"4 2.16 x l O " 3
79.6 70.6 80.3 100.5 60.0 43.5 52.3 61.6 25 40 25 40 25 40 39.3 53.8 53.8 70.0 25 40 25 40 25 40 25 40 25 40 25 40 105 119.4 135.1 105 115 125 98 116 137 T (K)
2.38 x 10 " 5 9.44 x 10 ~6 2.8OxIO- 5 3.09 x l O - 4 1.9OxIO- 3 1.27 x 10 ~4 3.91 x 10 ~4 1.218 x l O - 3 1.89 x 10 ~5 1.22 x l O - 4 1.01 x 10 ~4 5.44 XlO" 4 5.26 x 10~5 3.24 x l O - 4 4.98 x 10 ~5 5.23 x l O ~ 4 4.58 x l O - 4 2.62 x l O " 3 1.76 XlO" 5 1.03 x l O - 4 9.8X10" 7 6.9 x l O - 6 1.11 x l O ~ 4 6.02 x 10 " 4 2.31 x 10~4 1.65 x l O " 3 1.33 x 10" 4 7.25 XlO" 4 8.21 x 10~4 4.75 x l O " 3 2.79 x 10 ~5 1.29 x 10 " 4 6.07 x l O - 4 5.13 x 10~5 1.2OxIO- 4 5.1OxIO- 4 1.93 x 10 ~5 1.93 x l O - 4 1.93 x l O - 3 1.35 x 10 16
Xylene Toluene Benzene
Styrene
tert-Butyl 1-phenylcyclopentylpercarboxylate 1,1,3,3-Tetramethylbutylper-2-ethylhexanoate
2,2,4-Trimethylpentane Benzene
2-Phenylazo-2-propylperbenzoate
Chlorobenzene
1-Phenylethyl 4-dimethylaminoperbenzoate Di-terf-butylperhomoterephthalate
J( 0 C)
/7-Chlorotoluene Chloroform-di Benzene Cumene Toluene
tert-Butyl 1-phenylcyclohexanepercarboxylate
Ethylbenzene 2,2,4-Trimethylpentane
tert-Butyl 2-(phenylthio)perbenzoate
Acetone Acetonitrile terf-Butanol Chlorobenzene
Cyclohexane DMSO Ethanol Isopropanol Methanol terf-Butyldibenzothiophene-4-percarboxylate
Chlorobenzene
Di-tert-butyl perazelate
Styrene
Chlorobenzene
E* (kj/mol)
Notes
140.8
h
ti
Refs. 269 269 269 323 324
exp[- U1.6/RT] 157.7
159.0 103.5
a a a a Xi Xi h
101
a a a
111.5
h
122.3
h
107.7
h
m2 ITi2 m2 m2 m2 m2 b m2
128.0
154.8
exp[- 141.95/RT]
m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 h
40 90 126 126 126 215 215 255 255 337 337 337 260 260 260 260 259 272 272 272 272 323 255 255 255 22 22 22 22 22 22 134 134 134 134 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 215 215 215 344 344 344 344
TABLE 6. cont'd Number of C atoms 18
Initiator tert-Butyl 4-benzoylperbenzoate terf-Butyl diphenylperacetate
2,4,4-Trimethylpentyl2-perneodecanoate
a,co-Di-0,O-ter?-butyl-(bispersuccinyl)ethylene glycol
tert-Buty\ 1-phenyl-l-cycloheptanepercarboxylate Di-tert-buty\ /?-phenylenediperacetate
tert-Buty\ 2-(phenylthiomethyl)perbenzoate tert-Buty\ thioxanthone-4-percarboxylate Di-tert-butyl persebacate
Di-(2-ethylhexyl)peroxydicarbonate
Solvent Benzene Chlorobenzene Chlorobenzene Cumene
Decane Dodecane Hexadecane Octane tetradecane Chlorobenzene
Ethylbenzene
Ethylbenzene Cumene
Chlorobenzene Chlorobenzene Styrene
Benzene Chlorobenzene
Decane
Mineral spirits
19
Di-«-heptyl persuccinate
Styrene
tert-BxAy\ diphenylmethylperacetate terr-Butyl diphenylperglycidate (cis)
Chlorobenzene Cumene
(trans)
tert-Buty\ 2,2-diphenylperpropionate tert-Butyl 4-hydroxy-3,5-di(tert-butyl)perbenzoate tert-Butyl 4-(4-methylbenzoyl)perbenzoate
Cumene
Chlorobenzene Benzene Carbon tetrachloride Benzene Chlorobenzene
T( 0 C)
kd (s"1)
Ea (kj/mol)
25 110 60 40.3 49.6 59.9 70.4 77.5 77.5 77.5 77.5 77.5 40 57 76 T (K)
1.84 x 10 ~4 2.88 x 10 ~5 4.44 x 10 ~4 2.75 x 10 " 5 9.81xl0"5 3.10xl0"4 1.04 XlO- 3 1.66 x l O " 3 1.688 x l O " 3 1.632 x 10~3 1.651 x 10" 3 1.627 x 10 ~3 1.93 x 10 ~5 1.93 x 10 " 4 1.93 XlO" 3 3.97 x 1014
95 105 115
2.68 x 10 " 6 9.10xl0"6 2.97 XlO" 5
60.0
2.75 x 10 ~3
70.9 85.4 100.3 98.7 120.1 120 135 105 115 125
3.69 x 10 ~5 2.08 XlO" 4 8.83 x l O " 4 4.64 x 10 " 5 4.2OxIO" 4 1.89 x 10 " 4 1.15 x l O " 3 5.10xl0~ 5 1.2Ox 10" 4 5.0OxIO" 4
40 47 64 83 T (K) 30 45 60 40 50 60 60 73.5 85
1.9xlO~ 5 1.93 x 10 " 5 1.93 XlO" 4 1.93 XlO" 3 1.83 x 1015 5.3xl0"6 3.31xl0~ 5 2.32 XlO- 4 1.3xl0" 5 6.14 xlO" 5 2.3IxIO- 4 6.IxIO"" 6 3.85xl0- 5 1.70 XlO" 4
60 60.0 70.0 80.0 60.0 70.0 80.0 34.1 100 100 25 110
1.9xl0" 3 2.8xl0"5 5.5 x l 0 ~ 5 1.68 x l O " 4 1.6 x l O " 5 3.9 XlO" 5 1.20 XlO" 4 7.76 x 10 ~5 3.18 x 3.60 x 1.45 x 3.03 x
10 ~5 10 ~5 10 " 4 10 ~5
Notes p2
101.7 104.6
a,h h
exp[- 115.19/RT\ 147.5
Refs. 279 279 81 136 136 136 136 168 168 168 168 168 344 344 344 344 306 306 306 323
112.7
134.7 156.5 154.8
h,k k k h h,m2 m2 Xi Xi Xi a
exp[- 122.45//?7] 105
126
131.0
a a a a a a Xi X1 X1
103.3 112.1
a,h h
117.2
h
c,e c,e p2
254 254 254 154 154 22 22 215 215 215 338 344 344 344 344 337 337 337 337 337 337 215 215 215 81 204 204 204 204 204 204 249 246 246 279 279
Notes page 11-69; References page 11-70
TABLE 6. cont'd Number of C atoms 19 (cont'd)
20
21
22
23
Initiator ten-Butyl a-phenylpercinnamate (cw) (trans)
Cumene Cumene
Cumyl perneodecanoate
Benzene Chlorobenzene
Di-rc-heptyl peradipate
Styrene
tert-Butyl 2-carbobenzoxyphenylperacetate
Cumene
tert-Butyl 2-methyl-2-phenylperhexanoate oc,co-Di-0,O-tert-butyl-(bispersuccinyl)diethylene glycol
Ethylbenzene Ethylbenzene
tert-Butyl 8-(phenylthio)1-pernaphthoate
Chlorobenzene
tert-Butyl 4-(2,4,6-trimethylbenzoyl)perbenzoate tert-Butyl 2,2-diphenyl3,3-dimethylperbutanoate
Benzene Chlorobenzene Toluene (?)
Di-tert-butyl 2-thiophenylperisophthalate
Chlorobenzene
2,5-Dimethylhexyl 2,5-di(peroxybenzoate)
Benzene
Di-(4-tert-butylcyclohexyl)peroxydicarbonate
Chlorobenzene
tert-Butyl 2,6-di(phenylthio)perbenzoate tert-Butylperoxy stearyl carbonate
Chlorobenzene
tert-Butyl 2,4,6-tri-tert-butylperbenzoate
24
Solvent
tert-Butyl
triphenylperacetate
Chlorobenzene
Cumene
Chlorobenzene Cumene
Di-tert-butyl 2,3-diphenylpersuccinate
Cumene
Di-rc-heptyl persebacate
Styrene
2,5-Dimethyl-2,5-bis(2-ethylhexanoylperoxy)hexane
Benzene
Chlorobenzene
T( 0 C)
A:d (s"1)
Ea (kj/mol)
Notes
136.8
h
133.9
h
99.6 109.8 99.6 109.8 39 39 56 75 T(K) 60 73.5 85 71.0 85.4 102.4 50
1.52 x 10~4 4.4IxIO"4 8.2 x 10~5 2.59 x 10 ~4 1.9xl0~ 5 1.93 x 10 " 5 1.93 xlO~ 4 1.93 x l 0 ~ 3 3.12 xlO 1 4 1.02 x 10 ~5 6.57 x l O " 5 2.98 x l O - 4 8.84 x 10" 6 5.46 x 10 ~5 4.23 x l O - 4 5.01 x 10 " 5
95 105 115 50 70 70 80 25 110 30 39.7 50 12.1 25.0 40.0 100 115 130 48 64 82 T (K) 40.1
2.34 x 10 ~6 155.0 8.88 x 10 ~6 3.27 x l O - 5 3.83 x 10 ~5 99.2 3.44 x 10~4 3.12 x l O " 4 9.82 x l O - 4 1.34 x 10 ~4 1.8OxIO- 5 2.76 x 10 ~5 • 114.8 1.15 x 10 ~4 5.45 x l O - 4 1.68 x l O " 4 73.7 6.45 x 10 ~4 3.09 x l O - 3 1.87 x l 0 ~ 5 154.0 1.25 x 10 ~4 7.14 xlO~ 4 1.93 x 10 ~5 1.93 x 10 ~4 1.93 XlO" 3 7.44 x 1015 exp[- 12639/RT] 7.07 x l O " 5
98 117 137 T (K) 70.4 84.0 99.3 115.0 34.9 25.7 34.9 45.5 70.1 79.9 90.0 60 73.5 85 60 70 80 68 86
1.93XlO" 5 1.93 x l O - 4 1.93 XlO" 3 3.94 x 1016 5.84 x 10 " 6 3.54 x 10 " 5 2.67 x l O - 4 1.656 x l O " 3 7.8xlO" 4 1.7 x l O " 4 5.8 XlO" 4 2.3 XlO" 3 9.83 x 10 ~5 3.29 x 10 " 4 1.20 x l O " 3 1.17xlO" 5 7.13 x l O - 5 3.03 xlO~ 5 6.7xlO~ 6 2.92 x 10 " 5 1.14 XlO" 4 1.93 x 10 " 5 1.93 x l O " 4
a
exp[-114.59//?7] 133.1
129.5
Xi Xi X1 h
h
h,m2 m2 m2 p2 J2 J2 k h
a a a
exp[- 151.59/RT]
100.8
h
125.5
c,h c c xi Xi X1 a a a
131.0
142
Refs. 150 150 150 150 338 344 344 344 344 215 215 215 257 257 257 324 306 306 306 154 154 154 154 279 279 250 250 250 248 248 248 126,337 126,337 126,337 344 344 344 344 154 344 344 344 344 345 345 345 345 153 153 153 153 196 196 196 215 215 215 337 337 337 344 344
TABLE 6. cont'd Number of C atoms 24 (cont'd) 25
Initiator
Solvent
2,5-Dimethyl-2,5-bis(2-ethylhexanoylperoxy)hexane tert-Butyl 2-(2,2-diphenylvinyl)perbenzoate
Chlorobenzene Chlorobenzene
Cyclohexane Methanol tert-Butyl 2-percarboxybenzalfluorene 26
30
oc,co-Di-0,0-caprylyl-(bis succinyl)ethylene glycol
Chlorobenzene Methanol Ethylbenzene
oc,co-Di-0,O-caprylyl-(bispersuccinyl)triethylene glycol
Ethylbenzene
Dimyristyl peroxydicarbonate
Chlorobenzene
34
Dicetyl peroxydicarbonate
Chlorobenzene
36
oc,0)-Di-0,0-heptanoyl-(bisperphthaloyl)triethylene glycol
Ethylbenzene
42
oc,co-Di-0,0-caprylyl-(bispersuccinyl)nonaethylene glycol
Ethylbenzene
46
a,oo-Di-0,0-heptanoyl-(bisperphthaloyl)tridecaethylene glycol a,ca-Di-O,O-caprylyl-(bispersuccinyl)tridecaethylene glycol
Ethylbenzene
50
TABLE 7.
Ethylbenzene
T( 0 C) 106 T(K) 90.0 90.3 100.0 105.5 119.3 90.0 90.4
*d (s" 1 ) 1.93 2.19 1.32 7.45 3.27 4.64 1.54 3.5 2.3
x 10 ~3 x 1015 x 10~4 x 10~5 xlO"4 XlO" 4 xlO-3 x 10 ~5 x 10~3
90 90
3.75 x 10 ~4 2.47 x 10 ~3
65 75 85 95 65 75 85 95 48 65 84 T (K) 48 65 84 T (K) 65 75 85 95 65 75 85 95 75 85 95 65 75 85
1.48 x 10~5 4.10xl0"5 2.19 x l O - 4 6.92 x l O - 4 2.74 x 10 ~5 8.47 x 10 " 5 2.95 x l O - 4 8.92 x l O - 4 1.93 x 10 " 5 1.93 x l O - 4 1.93 x l O " 3 2.82 x 10 15 1.93 x 10 ~5 1.93 x l O - 4 1.93 x l O - 3 3.02 x 1015 5.02 x IO ~5 1.420 x 10 ~4 5.19 x l O - 4 1.410 x l O " 3 1.66 x 1O~5 6.57 x 10 " 5 1.78 XlO" 4 9.72 x l O - 4 1.13OxIO- 4 3.5OxIO" 4 8.80xl0~ 4 1.28 x l 0 ~ 5 4.46 x 10 ~5 1.91 x l O ~ 4
Ea (kj/mol)
Notes
Refs. 344 344 175 175 175 175 175 175 175
exp[- 130.SS/RT] t9 t9 t9 t9
175 175 120.7
h
306 306 306 306 306 306 306 306 344 344 344 344 344 344 344 344 306 306 306 306 306 306 306 306 306 306 306 306 306 306
116.9
exp[- 124.10/RT]
exp[- 124.30/RT] 124.4
116.9
122.3
128.2
MISCELLANEOUS INITIATORS
Initiator
Solvent
Acetyl cyclohexyl sulfonyl peroxide
Benzene
AH1-Cyanocyclohexyl)pentamethylene keteneimine
Chlorobenzene
Dibenzyl hyponitrite
Paraffin
T ( 0 C) 30 40 45 80.0 89.2 100.1 61.5 68.5 75.5 80.5 132
^d(S1) 1.4XlO" 5 9.42 x l 0 ~ 5 2.10xl0~4 3.25 x 10 ~6 1.007 x l 0 ~ 5 4.025 XlO" 5 6.5 x 10~4 3.7 x l 0 ~ 3 8.3 x l O - 3 1.45 x l O ~ 2 8.7XlO- 1
£ a (kj/mol)
Notes
147
a a a
Refs. 337 337 337 179 179 179 240 240 240 240 240
Notes page 11-69; References page 11-70
TABLE 7. cont'd Initiator Di-terf-butyl hyponitrite
Peroxybenzoylnitrate
Solvent tert-Butanol rc-Butyl ether Ethanol(95%) Isooctane
Nujol Vapor
Vapor + NO
Vapor + NO
2,3-Dimethyl-2,3-diphenylbutane
Chlorobenzene
3,4-Dimethyl-3,4-diphenylhexane
Chlorobenzene
l,4-Dimethyl-l,4-diphenyl-tetrazene-2
Benzophenone Cumene Paraffin
Siliconeoil Potassium persulfate
0.1 M NaOH
Water (pH 3) Water
1-Pentanesulfonylazide 1,4-Butanedisulfonyl azide 1,6-Hexanedisulfonyl azide 1,9-Nonanedisulfonyl azide
Diphenyl ether Diphenyl ether Diphenyl ether Diphenyl ether
1,10-Decanedisulfonyl azide l,4-Dimethylcyclohexane-a,a'-disulfonyl azide
Diphenyl ether Diphenyl ether
T( 0 C) 65 65 65 45 55 65 75 65 7.6 19.9 30.4 40.6 50.1 60.5 T(K) 18.1 30.4 40.6 T (K) 30.4 50.2 68.5 T(K) 237 259 284 T(K) 201 226 254 T(K) 121 149 120 130 140 164.2 174.3 186 194 126 139 50 60 70 80 90 50 80 80 40 50 60 50 60 70 50 166 163 163 150 160 170 163 163
kd (s" 1 )
Ea (kj/mol)
4.68 x 10 " 4 4.50 x 10 " 4 3.93 x 10 ~4 2.72 xlO~ 5 116.9 1.07 x l O - 4 4.0OxIO" 4 1.33OxIO-3 5.17 x 10~4 2.79 x 10 ~6 69.1 1.05 x l O - 5 2.02 XlO" 5 3.64 x l O - 5 1.21 x 10- 4 2.74 XlO" 4 1 x 107 exp[-69.1//?7] 8.18 xlO" 5 108.5 3.62 XlO" 4 1.42 x l O - 3 1.6 x 1015 exp[- 108.5/RT] 1.34 x l 0 ~ 5 79.2 7.22 x l O - 5 3.41 x 10" 4 6.3 x l O - 8 exp[-79.2/i?n 1.93 x 10 ~5 1.93 x l O " 4 1.93 x l O - 3 7.34 xlO 1 8 exp[-230.19//?n 1.93 x 10 ~5 1.93 x l O - 4 1.93 x l 0 ~ 3 1.45 xlO 1 5 exp[- IS032/RT] 3.3xl0"4 3.45 x l 0 ~ 3 2.3xlO" 4 6.5 x l O - 4 1.67 XlO" 3 2.6xlO- 2 5.6 x l O - 2 1.43XlO"1 2.5XlO- 1 3.7xlO" 4 1.92 x l O - 3 9.5 x 10 ~7 140.2 3.16 xlO~ 6 2.33 x l O - 5 9.16 XlO" 5 3.5 x l O - 4 1.66 x 10 ~6 6.89 x 10~5 5.78 x l O - 5 1.65 xlO" 2 83.4 4.02 x l O " 2 1.08XlO"1 3.78 XlO" 3 121.5 2.18 x l O - 2 5.01xl0~ 2 1.1 x 10- 6 4.46 x 10 " 4 5.02 x 10 " 4 5.02 x 10 ~4 8.84 x 10 " 5 2.25 xlO" 4 4.45 x l O - 4 4.45 x 10 ~4 4.82 x 10" 4
Notes
h
h
h
h
a a a a a a a,vn a,v u d 3 ,v 22 d 3 ,v 22 d 3 ,v 22 d 3 ,v 23 d 3 ,v 23 d 3 ,v 23
Refs. 317 317 317 317 317 317 317 317 261 261 261 261 261 261 261 261 261 261 261 261 261 261 261 344 344 344 344 344 344 344 344 240 240 240 240 240 240 240 240 240 240 240 242 242 242 242 242 242 115 115 262 262 262 262 262 262 262 166 166 166 166 166 166 166 166
ro-Xylene-a,a'-disulfonyl azide p-Xylene-o^oc'-disulfonyl azide Benzenesulfonyl azide
Diphenyl ether Diphenyl ether Naphthalene
/7-Bromobenzenesulfonyl azide p-Chlorobenzenesulfonyl azide p-Methoxybenzenesulfonylazide p-Nitrobenzenesulfonyl azide p-Toluenesulfonyl azide
Naphthalene Naphthalene Naphthalene Naphthalene 1,4-Dichlorobutane Dimethyl terephthalate Diphenyl ether
p-Toluenesulfonyl-p-tolylsulfone
Hexanoic acid Naphthalene Nitrobenzene 1-Octanol Tetradecane Acetonitrile
Dioxane
163 163 110 120 125 130 175 120 120 120 120 145 155 130 145 155 155 120 155 155 155 29.3 39.1 49.3 29.3 39.5 49.3
6.09 x 10 ~4 5.78 x 10 ~4 3.6xlO" 6 1.07 x l O - 5 1.97xlO- 5 3.41xl0"5 6.08 x l O - 5 1.36 x 10 ~5 1.15 x 10 " 5 1.31 x 10 ~5 1.6OxIO" 5 1.7OxIO- 4 3.23 x 10 ~4 3.30 x 10~5 1.44 XlO" 4 3.43 x l O " 4 2.97 x 10 ~4 1.12 x l O " 5 3.97 x 10 ~4 3.63 x 10" 4 3.80 x 10 ~4 3.9xl0-5 1.45 x l O - 4 5.4 XlO" 4 2.IxIO-5 1.01 x l O - 4 3.9 x 10 ~4
152.3
103.8
h
115.5
h
166 166 235 235 235 235 235 235 235 235 235 166 166 166 166 166 166 235 166 166 166 144 144 144 144 144 144
C. NOTES a /cd converted to s" 1 from author's units b kd values for several concentrations averaged t)2 analyzed from nonisothermal conditions c kd increases with increasing initiator concentration c 2 rate non-linear c3 hydroperoxide concentration 7.83 x 10~ 3 mol/1 C4 hydroperoxide concentration 2.50 x 10~ 3 mol/1 d kd decreases with increasing initiator concentration d2 after 1st half life; rate slower initially d3 rate is second order: units are 1/mol sec. e fcd listed is for lowest initiator concentration f &d is extrapolated value for zero initiator concentration g kd ^ has been corrected for induced decomposition g2 corrected for uncatalysed reaction (7 x 10 ~5 s" 1 ) h AH (not E2) i pressure (number gives mbar) j iodometric analysis j 2 manometer measurement k infrared analysis 1 kd is limiting value with respect to additive concentration mi 3,4-dichlorostyrene added to minimize induced decomposition m2 styrene added to minimize induced decomposition ni3 methyl methacrylate added to minimize induced decomposition ni4 isobutene added to minimize induced decomposition m5 acenaphthalene added to minimize induced decomposition m 6 1 mol/1 oc-methylstyrene added to minimize induced
decomposition mj butadiene added to minimize induced decomposition mg acrylonitrile added to minimize induced decomposition n trichloroacetic acid added n2 3.2wt.% or about 0.1 monolayer o addition of trichloroacetic acid did not affect kd p degassed p 2 photochemical benzophenone added: 6.56 x 10 17 quants/min @ 366 nm q addition of trichloroacetic acid increased kd several fold q 2 pH 2.90 q 3 pH 7.05 r not inhibited, but initiator concentration low enough (0.01-0.09 M) so that higher order decomposition is unimportant s solvent not degassed 11 2,6-di-terr-butylphenol added to inhibit induced decomposition t2 oc,a-diphenyl-P-picrylhydrazyl added to inhibit induced decomposition t3 phenyl-oc-naphthylamine added to inhibit induced decomposition t4 tetrachloroquinone added to inhibit induced decomposition t5 1,3,5-trinitrobenzene added to inhibit induced decomposition t6 12 added to inhibit induced decomposition tj O 2 added to inhibit induced decomposition t8 5-20% NO 2 added to inhibit decomposition References page II - 70
t9 tio
vi V2 V3 V4 V5 v6 v7 Vg v9
galvanoxyl added to inhibit induced decomposition a,y-bisdiphenylene-p-phenylallyl added to inhibit induced decomposition oc-naphthylamine added to minimize induced decomposition 2,3 / ,5 / ,6 / -tetra-te7t-butyl indophenoxy added benzoquinone added 2,6-di-teJt-butyl-4-methylphenol added in absence of oxygen from initiation data in multisurface reaction vessel rate reduced when nujol layer used to exclude Hg vapor rate increased when nujol layer used to exclude Hg vapor acetic acid added CuCl 2 added CuCl added 0.1 mol AgClO 4 /mol AIBN added 3.9 mol thiophenol added tert-bxxtyl mercaptan added 2.5 mol cyclohexane added ~ 4 x l O ~ 2 mol pyridine added 2 x 10~ 2 mol pyridine added
D.
REFERENCES
tn ti2 ti3 114 ui u2 u3 U4 U5
1. J. E. Guillet, T. R. Walker, M. F. Meyer, J. R Hawk, E. B. Towne, Ind. Eng. Chem., Prod. Res. Develop., 3, 257 (1964). 2. L. M. Arnett, J. Am. Chem. S o c , 74, 2027 (1952). 3. L. M. Arnett, J. H. Peterson, J. Am. Chem. Soc, 74, 2031 (1952). 4. W. M. Thomas, M. T. O'Shaughnessy, J. Polym. Sci., 11,455 (1953). 5. A. T. Blomquist, A. J. Buselli, J. Am. Chem. S o c , 73, 3883 (1951). 6. C. G. Swain, J. T. Parke, W. H. Stockmeyer, J. Am. Chem. Soc, 72, 5426 (1950). 7. D. J. Brown, J. Am. Chem. Soc, 70, 1208 (1948). 8. S. W. Butaka, L. L. Zabrocki, M. F. McLaughlin, J. R. Kolcznski, O. L. Mageli, Ind. Env. Chem. Prod. Res. Develop., 3, 261 (1964). 9. W. A. Strong, Ind. Eng. Chem. Prod. Res. Develop., 3, 264 (1964). 10. L. E. Redington, J. Polym. Sci., 3, 503 (1948). 11. B. Baysal, A. V. Tobolsky, J. Polym. Sci., 8, 529 (1952). 12. A. Conix, G. Smets, J. Polym. Sci., 10, 525 (1953). 13. M. R. Gopalan, M. Santhappa, J. Polym. Sci., 25,333 (1957). 14. J. C. Bevington, J. Toole, J. Polym. Sci., 28, 413 (1958). 15. H. C. Haas, J. Polym. Sci., 39, 493 (1959). 16. A. I. Lowell, J. R. Price, J. Polym. Sci., 43, 1 (1960). 17. H. C. Haas, J. Polym. Sci., 55, 33 (1961). 18. D. F. Doehnert, O. L. Mageli, Mod. Plastics., 36, (6), 142 (1959). 19. R. C. Lamb, P W. Ayers, M. K. Toney, J. Am. Chem. Soc, 85, 3483 (1963).
v 10 Vn v 12 v 13 v 14 v 15 v 16 v 17 v is v 19 V 20 v2i V 22 v23 v24 v25 v 26 w x1 x2 y z
2.5 mol cumene added buffered with sodium pyrophosphate saturated with ethyl acetate 3.11 mol CCl4 present peroxide in P(MMA) peroxide in P(sty.) 0.26 mol piperidine 0.24 mol triethylamine 0.21 mol AT,Af-diethylaniline 0.22 mol pyridine 0.9 mol Z n C l 2 in presence of 1 5 N O 0.12 mol 18 crown 6 added 0.24 mol diglyme added 0.02 M pyridine added 0.10 M pyridine added 0.10 M 2,6-lutidine added stereoisomers actual rate divided by 2 because of two identical peroxide groups each peroxide group has different k^ measured in differential scanning calorimeter: subscript is heating rate in deg/min pressure (in bar)
20. H. J. Shine, J. A. Waters, D. M. Hoffman, J. Am. Chem. S o c , 85, 3613 (1963). 21. G. S. Hammond, R. C. Neuman, Jr., J. Am. Chem. Soc, 85, 1501 (1963). 22. D. L. Tuleen, W. G. Bentrude, J. C. Martin, J. Am. Chem. Soc, 85, 1938 (1963). 23. H. Hart, F. J. Chloupek, J. Am. Chem. Soc, 85,1155 (1963). 24. H. Hart, R. A. Cipriani, J. Am. Chem. Soc, 84, 3697 (1962). 25. L. J. Durham, H. S. Mosher, J. Am. Chem. Soc, 84, 2811 (1962). 26. R. C. Petersen, J. H. Markgraf, S. D. Ross, J. Am. Chem. Soc, 83, 3819 (1961). 27. M. M. Martin, J. Am. Chem. Soc, 83, 2869 (1961). 28. R D. Bartlett, D. M. Simons, J. Am. Chem. Soc, 82, 1753 (1960). 30. R D. Bartlett, E. P Benzing, R. E. Pincock, J. Am. Chem. Soc, 82, 1762 (1960). 31. R D . Bartlett, R. E. Pincock, J. Am. Chem. Soc, 82, 1769 (1960). 32. L. J. Durham, H. S. Mosher, J. Am. Chem. S o c , 82, 4537 (1960). 33. C. Walling, G. Metzger, J. Am. Chem. Soc, 81,5365 (1959). 34. H. Hart, D. P. Woman, J. Am. Chem. Soc, 81, 4891 (1959). 35. H. H. Lau, H. Hart, J. Am. Chem. Soc, 81, 4897 (1959). 36. E. L. O'Brien, F. M. Bennger, R. B. Mesrobian, J. Am. Chem. S o c , 81, 1506 (1959). 37. N. A. Milas, A. Golubovic, J. Am. Chem. S o c , 80, 5994 (1958). 38. C. G. Overberger, I. Tashlick, M. Vernstein, R. G. Hiskey, J. Am. Chem. S o c , 80, 6556 (1958).
39. J. P. Van Hook, A. V. Tobolsky, J. Am. Chem. Soc, 80, 779 (1958). 40. E. L. O'Brien, F. M. Beringer, R. B. Mesrobian, J. Am. Chem. Soc, 79, 6238 (1957). 41. B. K. Morse, J. Am. Chem. Soc, 79, 3375 (1957). 42. S. Solomon, C. H. Wang, S. G. Cohen, J. Am. Chem. Soc, 79, 4104 (1957). 43. C. Walling, J. Pellon, J. Am. Chem. Soc, 79, 4786 (1957). 44. C. G. Overberger, J. G. Lombardino, I. Tashlich, R. G. Hiskey, J. Am. Chem. Soc, 79, 2662 (1957). 45. K. E. Russel, J. Am. Chem. Soc, 77, 3487 (1955). 46. S. G. Cohen, C. H. Wang, J. Am. Chem. Soc, 77, 3628 (1955). 47. M. Talat-Erben, S. Bywater, J. Am. Chem. Soc, 77, 3712 (1955). 48. C. G. Overberger, M. Lapkin, J. Am. Chem. Soc, 77, 4651 (1955). 49. G. S. Hammond, J. N. Sen, C. E. Boozer, J. Am. Chem. Soc, 77, 3244 (1955). 50. C. G. Overberger, W. F. Hale, M. B. Berenbaum, A. B. Finestone, J. Am. Chem. Soc, 76, 6185 (1954). 51. J. Smid, A. Rembaum, M. Szwarc, J. Am. Chem. Soc, 78, 3315 (1956). 52. S. G. Cohen, C. H. Wang, J. Am. Chem. Soc, 75, 5504 (1953). 53. A. T. Blomquist, I. A. Berstein, J. Am. Chem. Soc, 73, 5546 (1951). 54. C. G. Overberger, H. Biletch, J. Am. Chem. Soc, 73, 4880 (1951). 55. A. T. Blomquist, A. F. Ferris, J. Am. Chem. Soc, 73, 3408 (1951). 56. A. T. Blomquist, A. F. Ferris, J. Am. Chem. Soc, 73, 3412 (1951). 57. C. G. Overberger, M. B. Berenbaum, J. Am. Chem. Soc, 73, 2618 (1951). 58. V. Stannett, R. B. Mesrobian, J. Am. Chem. Soc, 72, 4125 (1950). 59. P. D. Bartlett, J. E. Leffler, J. Am. Chem. Soc, 72, 3030 (1950). 60. S. G. Cohen, D. B. Sparrow, J. Am. Chem. Soc, 72, 611 (1950). 61. C. G. Overberger, M. T. O'Shaughnessy, H. Shalit, J. Am. Chem. Soc, 71, 2661 (1949). 62. F. M. Lewis, M. S. Matheson, J. Am. Chem. Soc, 71, 747 (1949). 63. J. H. Raley, F. F. Rust, W. E. Vaughan, J. Am. Chem. Soc, 70, 88 (1948). 64. J. H. Raley, F. F. Rust, W. E. Vaughan, J. Am. Chem. Soc, 70, 1336 (1948). 65. C. S. Marvel, R. L. Frank, E. Prill, J. Am. Chem. Soc, 65, 1647 (1943). 66. C. E. H. Bawn, D. Verdin, Trans. Faraday Soc, 56, 815 (1960). 67. H. C. Bailey, G. W. Godin, Trans. Faraday Soc, 52, 68 (1956). 68. C. E. H. Bawn, R. G. Halford, Trans. Faraday Soc, 51, 780 (1955).
69. C. E. H. Bawn, S. F. Mellish, Trans. Faraday Soc, 47, 1216 (1951). 70. W. Braun, L. Rajbenbach, F. R. Eirich, J. Phys. Chem., 66, 1591 (1962). 71. J. R. Thomas, O. L. Harle, J. Phys. Chem., 63, 1027 (1959). 72. P. L. Hanst, J. G. Calvert, J. Phys. Chem,. 63, 104 (1959). 73. B. Barnett, W. E. Vaughan, J. Phys. Chem., 51, 926 (1947). 74. B. Barnett, W. E. Vaughan, J. Phys. Chem., 51, 942 (1947). 75. S. G. Cohen, F. Cohen, C. H. Wang, J. Org. Chem., 28,1479 (1963). 76. R. R. Hiatt, W. M. J. Strachan, J. Org. Chem., 28, 1893 (1963). 77. J. E. Leffler, J. S. West, J. Org. Chem., 27, 4191 (1962). 78. W. Honsberg, J. E. Leffler, J. Org. Chem., 26, 733 (1961). 79. J. E. Leffler, A. E Wilson, J. Org. Chem., 25, 424 (1960). 80. M. S. Kharasch, A. Fono, W. Nudenberg, J. Org. Chem., 16, 105 (1951). 81. R D . Bartlett, R. R. Hiatt, J. Am. Chem. Soc, 80, 1398 (1958). 82. J. E. Leffler, R. D. Faulkner, C. C. Petropoulos, J. Am. Chem. Soc, 80, 5435 (1958). 83. L. Batt, S. W. Benson, J. Chem. Phys., 36, 895 (1962). 84. J. Smid, M. Szwarc, J. Chem. Phys., 29, 432 (1958). 85. A. Rembaum, M. Szwarc, J. Chem. Phys., 23, 909 (1955). 86. R. K. Brinton, D. H. Volman, J. Chem. Phys., 20, 25 (1952). 87. R. E. Rebbert, K. J. Laidler, J. Chem. Phys., 20, 574 (1952). 88. J. Murawski, J. S. Roberts, M. Szwarc, J. Chem. Phys., 19, 698 (1951). 89. J. E. Leffler, J. Am. Chem. Soc, 72, 67 (1950). 90. E Strain, W. E. Bissinger, W. R. Dial, H. Rudolf, B. J. DeWitt, H. C. Stevens, J. H. Langston, J. Am. Chem. Soc, 72, 1254 (1950). 91. A. Farkas, E. Passaglia, J. Am. Chem. Soc, 72, 3333 (1950). 92. W. A. Pryor, D. M. Huston, T. R. Fiske, T. L. Pickering, E. Ciuffarin, J. Am. Chem. Soc, 86, 4237 (1964). 93. J. C. Bevington, A. Wahid, Polymer, 4, 129 (1963). 94. A. A. Frost, R. G. Pearson, "Kinetics and Mechanism," Wiley, New York, 1953, p. 97. 95. J. C. Bevington, T. D. Levis, Polymer, 1, 1 (1960). 96. F. W. Birss, C. J. Danby, C. Hinshelwood, Proc Roy Soc. (London). A, 239, 154 (1957). 97. J. C. Martin, W. G. Bentrude, Chem. Ind. (London), 192 (1959). 98. S. G. Cohen, S. J. Groszos, D. B. Sparrow, J. Am. Chem. Soc, 72, 3947 (1950). 99. W. E. Cass, J. Am. Chem. Soc, 72, 4915 (1950). 100. S. D. Ross, M. A. Fineman, J. Am. Chem. Soc, 73, 2176 (1951). 101. CG. Overberger, H. Biletch, A B. Finestone, J. Lilker, J. Herbert, J. Am. Chem. Soc, 75, 2078 (1953). 102. P. D. Bartlett, F. D. Greene, J. Am. Chem. Soc, 76, 1088 (1954). 103. M. G. Alder, J. E. Leffler, J. Am. Chem. Soc, 76., 1425 (1954).
104. C. G. Overberger, A. Lebovits, J. Am. Chem. Soc, 76, 2722 (1954). 105. A. Rembaum, M. Szwarc, J. Am. Chem. Soc, 76, 5975 (1954). 106. M. Levy, M. Steinberg, M. Szwarc, J. Am. Chem. Soc, 76, 5978 (1954). 107. S. G. Cohen, C. H. Wang, J. Am. Chem. Soc, 77, 2457 (1955). 108. J. E. Leffler, C. C. Petropoulos, J. Am. Chem. Soc, 79, 3068 (1957). 109. W. E. Cass, J. Am. Chem. Soc, 68, 1976 (1946). 110. H. C. Ramsperger, J. Am. Chem. Soc, 50, 714 (1928). 111. RR Lossing, A. W. Tickner, J. Chem. Phys., 20, 907 (1952). 112. A. Robertson, W. A. Waters, J. Chem. Soc, 1578 (1948). 113. O. J. Walker, G. L. E. Wild, J. Chem. Soc, 1132 (1937). 114. J. E. Leffler, R. A. Hubbard, II, J. Org. Chem., 19, 1089 (1954). 115. P. D. Bartlett, K. Nozaki, J. Polym. ScL, 3, 216 (1948). 116. J. C. Bevington, J. Toole, L. Trossarelli, Makromol. Chem., 32, 57 (1959). 117. A. N. Bose, C. Hinshelwood, Proc Roy. Soc, (London) A, 249, 173 (1959). 118. E. R. Bell, J. H. Raley, F. F. Rust, F. H. Seubold, W. E. Vaughan, Disc. Faraday Soc, 10, 242 (1951). 119. L. Bateman, H. Hughes, A. L. Morns, Disc. Faraday Soc, 14, 190 (1953). 120. G. S. Hammond, J. Am. Chem. Soc, 72, 3737 (1950). 121. G. S. Hammond, L. M. Softer, J. Am. Chem. Soc, 72, 4711 (1950). 122. G. A. Russell, J. Am. Chem. Soc, 78, 1044 (1956). 123. J. A. Offenbach, A. V. Tobolsky, J. Am. Chem. Soc, 79, 278(1957). 124. G. S. Hammond, U. S. Nandi, J. Am. Chem. Soc, 83, 1213 (1961). 125. G. O. Pritchard, H. O. Pritchard, A. F. Trotman-Dickenson, J. Chem. Soc, 1425 (1954). 126. O. L. Mageli, S. D. Butaka, D. J. Bolton, Wallace and Tiernan, Lucidol Division, Bulletin 30.30, "Evaluation of Organic Peroxides from Half-Life Data". 127. E. J. Harris, A. C. Egenon, Proc Roy. Soc, (London) A, 168, 1 (1938). 128. E. J. Harry, Proc Roy. Soc, (London) A, 173, 126 (1939). 129. J. K. Allen, J. C. Bevington, Proc Roy. Soc, (London) A, 262, 271 (1961). 130. G. Archer, C. Hinshelwood, Proc Roy. Soc, (London) A, 261, 293 (1961). 131. J. H. McClure, R. E. Robertson, A. C. Cuthbertson, Can. J. Res. B, 20, 103 (1942). 132. J. W. Breitenbach, A. Schindler, Monatsh. Chem., 83, 724 (1952). 133. R. C. Lamb, F. F. Rogers, G D. Dean, F. W Voight, J. Am. Chem. Soc, 84, 2635 (1962). 134. W. G. Bentrude, J. C. Martin, J. Am. Chem,. 84,1561 (1962). 135. R. C. Neuman, R. P. Pankratz, J. Org. Chem., 36, 4046 (1971). 136. R D. Bartlett, L. B. Gonler, J. Am. Chem. Soc, 85, 1864 (1963).
137. C. G. Overberger, I. Tashlick, J. Am. Chem. Soc, 81, 217 (1959). 138. C. G. Overberger, J. G. Lambardino, J. Am. Chem. Soc, 80, 2317 (1958). 139. G. S. Hammond, J. R. Fox, J. Am. Chem. Soc, 86, 1918 (1964). 140. E. S. Huyser, C. J. Bredeweg, J. Am. Chem. Soc, 84, 2401 (1964). 141. E. Hedaya, R. L. Hinman, L. M. Kibler, S. Theodoropulos, J. Am. Chem. Soc, 86, 2727 (1964). 142. T. Koenig, W. Brewer, J. Am. Chem. Soc, 86, 2728 (1964). 143. E. S. Huyser, C. J. Bredeweg, R. M. Van Scoy, J. Am. Chem. Soc, 86, 4148 (1964). 144. J. L. Kice, N. E. Pawlowski, J. Am. Chem. Soc, 86, 4898 (1964). 145. C. Walling, H. N. Moulden, J. H. Waters, R. C. Newman, J. Am. Chem. Soc, 87, 518 (1965). 146. J. K. Kochi, D. M. Mog, J. Am. Chem. Soc, 87, 522 (1965). 147. P. D. Bartlett, M. McBride, J. Am. Chem. Soc, 87, 1727 (1965). 148. R. C. Lamb, J. G. Pacifici, P. W. Ayers, J. Am. Chem. Soc, 87, 3928 (1965). 149. S. Seltzer, F. T. Dunne, J. Am. Chem. Soc, 87, 2628 (1965). 150. L. A. Singer, N. R Kong, J. Am. Chem. Soc, 88, 5213 (1966). 151. R. M. Fantazier, J. A. Kampmeier, J. Am. Chem. Soc, 88, 5219 (1966). 152. S. Seltzer, E. J. Hamilton, Jr., J. Am. Chem. Soc, 88, 3775 (1966). 153. J. P. Lorand, P. D. Bartlett, J. Am. Chem. Soc, 88, 3294 (1966). 154. T. H. Fischer, J. C. Martin, J. Am. Chem. Soc, 88, 3382 (1966). 155. C. Walling, Z. Cekovic, J. Am. Chem. Soc, 89, 6681 (1967). 156. T. Koenig, R. Wolf, J. Am. Chem. Soc, 89, 2948 (1967). 157. R. C. Neuman, J. V. Behar, J. Am. Chem. Soc, 89, 4549 (1967). 158. S. G. Mylonakis, S. Seltzer, J. Am. Chem. Soc, 90, 5487 (1968). 159. J. P Lorand, S. D. Cnodroff, R. W. Wallace, J. Am. Chem. Soc, 90, 5266 (1968). 160. R. C. Fort Jr., R. E. Franklin, J. Am. Chem. Soc, 90, 5267 (1968). 161. J. E. Leffler, H. H. Gibson. Jr., J. Am. Chem. Soc, 90, 4117 (1968). 162. S. E. Scheppelle, S. Seltzer, J. Am. Chem. Soc, 90, 358 (1968). 163. R. C. Neuman, J. V. Behar, J. Am. Chem. Soc, 91, 6024 (1969). 164. R. C. Lamb, J. R. Sanderson, J. Am. Chem. Soc, 91, 5034 (1969). 165. T. Koenig, R. Wolf, J. Am. Chem. Soc, 91, 2574 (1969). 166. D. S. Breslow, M. F. Sloan, N. R. Newburg, W. B. Renfrow, J. Am. Chem. Soc, 91, 2273 (1969). 167. C. Walling, H. P. Warts, J. Milovanovic, C. G. Pappiaonnou, J. Am. Chem. Soc, 92, 4927 (1970).
168. W. A. Pryor, K. Smith, J. Am. Chem. Soc.,.92, 5403 (1970). 169. T. Koenig, J. Huntington, R. Cruthoff, J. Am. Chem. Soc, 92, 5413 (1970). 170. J. E. Leffler, R. G. Zepp, J. Am. Chem. Soc, 92, 3713 (1970). 171. J. C. Martin, J. W. Timberlake, J. Am. Chem. Soc, 92, 978 (1970). 172. R. C. Newman Jr., G. D. Holmes, J. Am. Chem. Soc, 93, 4242 (1971). 173. J. B. Levy, E. J. Lehmann, J. Am. Chem. Soc, 93, 5790 (1971). 174. K. Shen, J. Am. Chem. Soc, 93, 3064 (1971). 175. T. W. Koenig, J. C. Martin, J. Org. Chem., 29, 1520 (1964). 176. R. D. Schuetz, J. L. Shea, J. Org. Chem., 30, 844 (1965). 177. J. R. Thomas, J. Am. Chem. Soc, 77, 246 (1955). 178. P. D. Bartlett, C. Ruchardt, J. Am. Chem. Soc, 82, 1756 (1960). 179. C. S. Wu, G. S. Hammond, J. M. Wright, J. Am. Chem. Soc, 82, 5386 (1960). 180. S. G. Cohen, R. Zand, C. Steel, J. Am. Chem. Soc, 83, 2895 (1961). 181. RD. Bartlett, R. E. Pincock, J. Am. Chem. Soc, 84, 2445 (1962). 182. M. M. Martin, D. C. De Jongh, J. Am. Chem. Soc, 84, 3526 (1962). 183. S. Selzer, J. Am. Chem. Soc, 83, 2625 (1961). 184. S. N. Gupta, U. S. Nandi, J. Polym. Sci. A-1,8, 3019 (1970). 185. T. Kagiya, M. Izu, S. Kauai, K. Fukni, J. Polym. Sci. A-I, 6, 1719 (1968). 186. K-P. S. Kwei, J. Polym. Sci. A, 3, 2387 (1965). 187. C. Leggett, J. C. J. Thynne, Trans. Faraday Soc, 63, 2504 (1967). 188. S. W. Benson, G. N. Spokes, J. Phys. Chem., 72, 1182 (1968). 189. G. A. Mortimer, J. Org. Chem., 30, 1632 (1965). 190. W. H. Richardson, J. Org. Chem., 30, 2804 (1965). 191. R. C. Lamb, J. G. Pacifici, P. W. Ayers, J. Org. Chem., 30, 3099 (1965). 192. E. S. Huyser, R. M. Van Scoy, J. Org. Chem., 33, 3524 (1968). 193. C. Walling, J. C. Azar, J. Org. Chem., 33, 3888 (1968). 194. R. C. Lamb, L. R Spadafino, R. G. Webb, E. B. Smith, W. E. McNew, J. G. Pacifici, J Org. Chem., 31, 147 (1966). 195. F. D. Greene, W. Adam, G. A. Knudsen Jr., J. Org. Chem., 31, 2087 (1966). 196. L. M. Bobroff, L. B. Gortler, D. J. Sahn, H. Wiland, J. Org. Chem., 31, 2678 (1966). 197. R. Hiatt, T. Mill, K. C. Irwin, J. K. Castleman, J. Org. Chem., 33, 1421 (1968). 198. R. Hiatt, K. C. Irwin, C. W. Gould, J. Org. Chem., 33, 1430 (1968). 199. R. Hiatt, K. C. Irwin, J. Org. Chem., 33, 1436 (1968). 200. P. Kovacic, R. R. Flynn, J. F. Gormish, A. H. Kappelman, J. R. Shelton, J. Org. Chem., 34, 3312 (1969). 201. D. E. Van Sickle, J. Org. Chem., 34, 3446 (1969). 202. E. S. Huyser, K. J. Jankauskas, J. Org. Chem., 35, 3196 (1970).
203. R. A. Sheldon, J. K. Kochi, J. Org. Chem., 35, 1223 (1970). 204. A. Padwa, N. C. Das, J. Org. Chem., 34, 816 (1969). 205. C. G. Overberger, D. A. Labianca, J. Org. Chem., 35, 1762 (1970). 206. W. G. Schindel, R. E. Pincock, J. Org. Chem., 35, 1789 (1970). 207. R. C. Newman Jr., J. V Behar, J. Org. Chem., 36,654 (1971). 208. C. Walling, D. Bristol, J. Org. Chem., 36, 733 (1971). 209. R. C. Lamb, W. E. McNew Jr., J. R. Sanderson, D. C. Lunney, J. Org. Chem., 36, 174 (1971). 210. G. S. Kolesnikov, A. Y. Chuchin, Polym. Sci. USSR, 7,1931 (1965). 211. G. A. Nosayev, O. N. Romanlsova, Polym. Sci. USSR, 8, 14 (1966). 212. Y. A. Chuchin, V. A. Lazarev, M. B. Fromberg, Polym. Sci. USSR, 10, 2968 (1968). 213. L. M. Aparovich, T. I. Yurzhenko, Polym. Sci. USSR, 10, 1313 (1968). 214. A. I. Prisyazhnyuk, S. S. Ivanchev, Polym. Sci. USSR, 12, 514 (1970). 215. S. G. Yerigova, S. S. Ivanchev. Polym. Sci. USSR, 11, 2377 (1969). 216. C. H. Bamford, R. Denyer, J. Hobbs, Polymer, 8, 493 (1967). 217. S. F. Nelsen, P. D. Bartlett, J. Am. Chem. Soc, 88, 137 (1966). 218. R. E. Pincock, J. Am. Chem. Soc, 86, 1820 (1964). 219. R. C. Lamb, J. G. Pacifici, J. Am. Chem. Soc, 86, 914 (1964). 220. S. Seltzer, J. Am. Chem. Soc, 85, 14 (1963). 221. J. B. Levy, B. K. W. Copeland, J. Am. Chem. Soc, 82, 5314 (1960). 222. T. Suchiro, H. Tsuruta, S. Hibino, Bull. Chem. Soc Japan, 40, 674 (1967). 223. L. B. Humphrey, B. Hodgson, R. E. Pincock, Can. J. Chem., 46, 3099 (1968). 224. V. Stannett, R. B. Mesrobian, Disc. Faraday Soc, 14, 242 (1953). 225. Y. Takezaki, C. Takeuchi, J. Chem. Phys., 22, 1527 (1954). 226. K. Ziegler, W. Deparade, W. Meye, Annalen, 567, 141 (1950). 227. A. R. Blake, K. O. Kutschke, Can. J. Chem., 37, 1462 (1959). 228. C. F. H. Tipper, J. Chem. Soc, 1675 (1953). 229. W. R. Foster, G. H. Williams, J. Chem. Soc, 2862 (1962). 230. G. B. Gill, G. H. Williams, J. Chem. Soc, 995 (1965). 231. G. B. Gill, G. H. Williams, J. Chem. Soc, 7127 (1965). 232. R. D. Schuetz, D. M. Teller, J. Org. Chem., 27, 110 (1962). 233. H. G. G. Dekking, J. Appl. Polym. Sci., 9, 1641 (1965). 234. C. G. Overberger, P. Fram, T. Alfrey Jr., J. Polym. Sci., 6,539 (1951). 235. K. Takemoto, R. Fujita, M. Imoto, Makromol. Chem., 112, 116(1968). 236. K. E. J. Barrett, J. Appl. Polym. Sci., 11, 1617 (1967). 237. T. J. Dougherty, J. Am. Chem. Soc, 83, 4849 (1961).
238. M. T. Jaquiss, J. S. Roberts, M. Szwarc, J. Am. Chem. Soc, 74, 6005 (1952). 239. S. Goldschmidt, B. Acksteiner, Annalen, 618, 173 (1958). 240. J. C. McGowen, T. Powell, Rec. Trav. Chim., 81, 1061 (1962). 241. H. A. Bent, B. Crawford Jr., J. Am. Chem. Soc, 79, 1793 (1957). 242. I. M. Kolthoff, I. K. Miller, J. Am. Chem. Soc, 73, 3055 (1951). 243. D. F. McMillen, D. M. Golden, S. W. Benson, J. Am. Chem. Soc, 94, 4403 (1972). 244. J. E. Leffler, A. A. More, J. Am. Chem. Soc, 94, 2483 (1972). 245. G. J. Abruscato, T. T. Tidwell, J. Am. Chem. Soc, 94, 672 (1972). 246. A. M. Hucek, J. T. Barbas, J. E. Leffler, J. Am. Chem. Soc, 95, 4698 (1973). 247. E. L. Allred, K. J. Voorhees, J. Am. Chem. Soc, 95, 620 (1973). 248. J. C. Martin, M. M. Chau, J. Am. Chem. Soc, 96, 3319 (1974). 249. J. P. Lorand, J. Am. Chem. Soc, 96, 2867 (1974). 250. J. P. Lorand, R. W. Wallace, J. Am. Chem. Soc, 96, 1402 (1974). 251. T. Koenig, J. G. Huntington, J. Am. Chem. Soc, 96, 592 (1974). 252. P. S. Engel, D. J. Bishop, J. Am. Chem. Soc, 97, 6754 (1975). 253. R. R. Hiatt, L. C. Glover, H. S. Mosher, J. Am. Chem. Soc, 97, 1556 (1975). 254. L-F. Lai, T. T. Tidwell, J. Am. Chem. Soc, 99, 1465 (1977). 255. R. A. Wolf, M. J. Migliore, P. H. Fuery, P. R. Gagnier, I. C. Saheta, R. J. Trocino, J. Am. Chem. Soc, 100, 7967 (1978). 256. C. Walling, J. P. Sloan, J. Am. Chem. Soc, 101,7679 (1979). 257. C. M. Rynard, C. Thankachan, T. T. Tidwell, J. Am. Chem. Soc, 101, 1196(1979). 258. J. E. Lefller, J. T. Barbas, J. Am. Chem. Soc, 103, 768 (1981). 259. B. G. Dixon, G. B. Schuster, J. Am. Chem. Soc, 103, 3068 (1981). 260. A. S. Nazran, J. Warkentin, J. Am. Chem. Soc, 104, 6405 (1982). 261. R. A. Kenley, D. G. Hendry, J. Am. Chem. Soc, 104, 220 (1982). 262. J. K. Rasmussen, S. M. Heilmann, P. E. Toren, A. V. Pocius, T. A. Kotnour, J. Am. Chem. Soc, 105, 6845 (1983). 263. R. C. Neuman, G. D. Lockyer, J. Am. Chem. Soc, 105, 3982 (1983). 264. W. A. Pryor, N. Ohto, D. F. Church, J. Am. Chem. Soc, 105, 3614 (1983). 265. J. R Engstrom, J. C. DuBose, J. Org. Chem., 38,3817 (1973). 266. J. R. Shelton, C. K. Liang, J. Org. Chem., 38, 2301 (1973). 267. J. A. Ernst, C. Thankachan, T. T. Tidwell, J. Org. Chem., 39, 3614 (1974). 268. J. E. Herweh, R. M. Fantazier, J. Org. Chem., 39, 786 (1974).
269. D. A. Cable, J. A. Ernst, T. T. Tidwell, J. Org. Chem., 37, 3420 (1972). 270. W. A. Pryor, E. H. Morkved, H. T. Bickley, J. Org. Chem., 37, 1999 (1972). 271. J. E. Leffler, F. E. Scrivener, J. Org. Chem., 37, 1794 (1972). 272. A. I. Dalton, T. T. Tidwell, J. Org. Chem., 37, 1504 (1972) 273. J. P Engstrom, F D. Greene, J. Org. Chem., 37, 968 (1972). 274. P. S. Engel, A. I. Dalton, L. Shen, J. Org. Chem., 39, 384 (1974). 275. W. B. Richardson, W. C. Koskinen, J. Org. Chem., 41, 3182 (1976). 276. W. A. Pryor, D. Graham, J. Org. Chem., 43, 770 (1978). 277. L. Batt, S. W. Benson, J. Chem. Phys., 36, 895 (1962). 278. P. S. Engel, R. L. Allgren, W. K. Chae, R. A. Leckonby, N. A. Marron, J. Org. Chem., 44, 4233 (1979). 279. L. Thijs, S. N. Gupta, D. C. Neckers, J. Org. Chem., 44,4123 (1979). 280. R. C. Neuman, M. J. Amrich, J. Org. Chem., 45, 4629 (1980). 281. J. R. Hurst, G. B. Shuster, J. Org. Chem., 45, 1053 (1980). 282. W. H. Richardson, S. A. Thomson, J. Org. Chem., 47, 4515 (1982). 283. Z. Chengxue, Z. Renmo, P. Hegi, J. Xiangshan, Q. Yangling, W. Chengjiu, J. Xikui, J. Org. Chem., 47, 2009 (1982). 284. E. M. Shulman, A. E. Merbach, W. J. Ie Noble, J. Org. Chem., 47, 431 (1982). 285. A. Pohlman, T. Mill, J. Org. Chem., 48, 2133 (1983). 286. L. F. R. CaRerata, G. N. Eyler, M. V. Mirifico, J. Org. Chem., 49, 2107 (1984). 287. S. Molnar, J. Polym. Sci. A-I, 10, 2245 (1972). 288. K. Ito, J. Polym. Sci., Polym. Chem. Ed., 11, 1673 (1973). 289. M. B. Lachinov, V P. Zubov, V. A. Kabanov, J. Polym. Sci., Polym. Chem. Ed., 15, 1777 (1977). 290. B. Yamada, H. Kamei, T. Otsu, J. Polym. Sci., Polym. Chem. Ed., 18, 1917 (1980). 291. S. G. Ng, K. K. Che, J. Polym. Sci., Polym. Chem. Ed., 20, 409 (1982). 292. B. B. Idage, S. P Vernckar, N. D. Ghatge, J. Polym. Sci., Polym. Chem. Ed., 21, 2145 (1983). 293. B. L. Funt, G. Pawel Chak, J. Polym. Sci., Lett. Ed., 13, 451 (1975). 294. M. G. Kulkarni, R. A. Mashelkar, L. K. Doraiswam, J. Polym. Sci., Lett. Ed., 17, 713 (1979). 295. R S. Engel, Chem. Rev., 80, 99 (1980). 296. T. Koenig, in: "Free Radicals", Wiley, New York, 1973, p. 113. 297. B. K. Bandlish, A. W. Garner, M. L. Hodges, J. W. Timberlake, J. Am. Chem. Soc, 97, 5856 (1975). 298. R. J. Crawford, K. Takagi, J. Am. Chem. Soc, 94, 7406 (1972). 299. R. C. Neuman., J. J. Amrich, J. Am. Chem. Soc, 94, 2730 (1972). 300. S. E. Scheppele, W. H. Rapp, D. W. Miller, D. Wright, T. Marriott, J. Am. Chem. Soc, 94, 539 (1972). 301. C. Walling, H. P. Waits, J. Phys. Chem., 71, 2361 (1967). 302. Y. L. Zherebin, S. S, Ivanchev, N. M. Domareva, Polym. Sci., USSR, 16, 1033 (1974).
303. R. V. Kucher, A. A. Turovskii, N. V. Dzumedzei, V. A. Tamko, Polym. ScL, USSR, 16, 1216 (1974). 304. V. A. Novikov, V. P. Sass, S. L. Ivanova, L. F. Sokolov, S. V. Sokolov, Polym. ScL, USSR, 17, 1414 (1975). 305. V. P. Kartavykh, V. A. Drach, Y. N. Barantsevich, Y. L. Abramenko, Polym. ScL, USSR, 19, 1413 (1977). 306. V. I. Galibei. L. V. Dudnik, T. A. Tolpygina, A. B. Petrova, V. I. Sokolova, Polym. ScL, USSR, 19, 1519 (1977). 307. B. N. Pronin, Y. N. Barantsevich, L. V. Shumnyi, S. S. Ivanchev, Polym. ScL, USSR, 19, 1850 (1977). 308. J. C. Martin, J. H. Hargis, J. Am. Chem. Soc, 91, 5399 (1969). 309. J. R. Shelton, C. K. Liang, P. Kovacic, J. Am. Chem. Soc, 90, 354 (1968). 310. C. G. Overberger. A. V. DiGiulio, J. Am. Chem. Soc, 81, 2154 (1959). 311. C. G. Overberger, A. B. Finestone, J. Am. Chem. Soc, 78, 1638 (1956). 312. S. G. Cohen, C. H. Wang, J. Am. Chem. Soc, 77, 2457 (1955). 313. J. R. Shelton, C. K. Liang. J. Org. Chem., 38, 2301 (1973). 314. J. W. Timberlake. A. W. Garner, J. Org. Chem., 41, 1666 (1976). 315. C. Ruchardt, H. Bock, I. Ruthardt, Angew. Chem. Int. Ed., 5, 253 (1966). 316. W. Cooper, J. Chem. Soc, 2408 (1952). 317. H. Kiefer, T. G. Traylor, Tetrahedron Lett., 6163 (1966). 318. K. R. Kopecky, T. Gillan, Can. J. Chem., 47, 2371 (1969). 319. B. H. Al-Sader, R. J. Crawford, Can. J. Chem., 48, 2745 (1970). 320. D. D. Tanner, H. Yabuuchi, H, Lutzer, Can. J. Chem., 55,612 (1977). 321. R. Hiatt, V. G. K. Nair, Can. J. Chem., 58, 450 (1980). 322. T. R. Lynch, F. N. MacLachlan, J. L. Suschitzky, Can. J. Chem., 51, 1378 (1973). 323. J. Bonnekessel, C. Ruchardt, Chem. Ber., 106, 2890 (1973). 324. W. Duismann, C. Ruchardt, Chem. Ber., 106, 1083 (1973). 325. R. Kerber, O. Nuyken, L, Weithmann, Chem. Ber., 108,1533 (1975). 326. T. Otsu, B. Yamada, J. Macromol. Sci.-Chem., A3, 187 (1969). 327. I. Hinz, C. Ruchardt, Ann. Chem., 765, 94 (1972). 328. C. Ruchardt, I. Mayer-Ruthardt, Chem. Ber., 104, 593 (1971). 329. R. Kerber, O. Nuyken, Makromol. Chem., 164, 183 (1973). 330. R. Kerber, O. Nuyken, V. Pasupathy, Makromol. Chem., 170, 155 (1973). 331. R. Kerber, O. Nuyken, R. Steinhausen, Makromol. Chem., 175, 3225 (1974). 332. R. WaIz, B. Bomer, W. Heitz, Makromol. Chem., 178, 2527 (1977). 333. R. C. Neuman, G. D. Lockyer, M. J. Amrich, Tetrahedron Lett, 1221 (1972). 334. F. E. Herkes, J. Friedman, P. D. Bartlett, Int. J. Chem. Kinet., 1, 193 (1969). 335. N.-T.-Giac, C. Ruchardt, Chem. Ber., 110, 1095 (1977).
336. W. Duismann, C. Ruchardt, Chem. Ber., Ill, 596 (1978). 337. Anon., "Evaluation of Organic Peroxides from Half-Life Data," Technical Bulletin, Lucidol Division, Pennwalt (no date). 338. Anon., Product Guide US Peroxygen Division, Witco, 1984. 339. Anon., "Azo Polymerization Initiators", Wako Chemicals, USA, 1983. 340. Anon., Product Bulletin "V-601", Wako Chemicals, USA (no date). 341. Anon., Product Bulletin " V-50", Wako Chemicals, USA, 1985. 342. Anon., "Azo Amide Compounds", Wako Chemicals, USA (no date). 343. Anon., Product Bulletin "V-65" Wako Chemicals, USA, 1985. 344. Anon., "Initiators for Polymer Production", Akzo Nobel Chemicals Inc., pp. 94-116. 345. S. IcIi, K. A. Kandil, C. Thankachan, T. T. Tidwell, Can. J. Chem., 53, 979 (1975). 346. W. H. Richardson, M. B. Yelvington, A. H. Andrist, E. W. Ertley, R. S. Smith, T. D. Johnson, J. Org. Chem., 38, 4219 (1973). 347. D. J. Robbins, A. J. Almquist, D. C. Timm, J. I. Brand, R. E. Gilbert, Macromol., 28, 8729 (1995). 348. K. Matsuyama, T. Sugiura, Y. Minoshima, J. Org. Chem., 60, 5520 (1995). 349. S. Suyama, H. Ishigaki, T. Nakamura, Y. Sugihara, H. Kumura, Y. Watanabe, Polym. J., 26, 273 (1994). 350. Y. Sugihara, Y. Watanabe, H. Kumura, T. Nakamura, S. Suyama, Y. Sawaki, Bull. Chem. Soc. Japan, 65, 664 (1992). 351. E. M. Chellquist, W. G. Gorman, Pharmaceutical Research, 9, 1341 (1992). 352. W. H. Hendrickson, C. C. Nguyen, J. T. Nguyen, K. T. Simons, Tetrahedron Lett., 36, 7217 (1995). 353. C. Navarro, B. Maillard, Thermochimica Acta, 220, 103 (1993). 354. W. A. Pryor, W. H. Hendrickson Jr., J. Am. Chem. Soc, 105, 7114(1983). 355. J. Szafko, W. Feist, J. Polym. ScL, Polym. Chem., 33, 1637 (1995). 356. H. Fujie, K. Shiraki, T. Miyagawa, N. Minamii, J. Macromol. ScL, Pure Appl. Chem. A, 29, 741 (1992). 357. S. Idage, B. Idage, S. Vernekar, J. Appl. Polym. ScL, 45, 931 (1992). 358. T. Komai, S. Suyama, Bull. Chem. Soc. Japan, 58, 3045 (1985). 359. T. Komai, H. Ishigaki, K. Matsuyama, Bull. Chem. Soc. Japan, 58, 2431 (1985). 360. K. V. Scherer Jr., L. Batt, P. H. Stewart, Int. J. Chem. Kinet., 26, 73 (1994). 361. S. Suyama, Y. Watanabe, Y. Sawaki, Bull. Chem. Soc. Japan, 63, 716 (1990). 362. T. Komai, K. Matsuyama, M. Matsushima, Bull. Chem. Soc. Japan, 61, 1641 (1988). 363. K. Matsuyama, Y. Higuchi, Bull. Chem. Soc. Japan, 64, 259 (1991). 364. K. Matsuyama, H. Kumura, J. Org. Chem., 58, 1766 (1993).
365. L. F. R. Cafferata, J. D. Lombardo, Int. J. Chem. Kinet., 26, 503 (1994). 366. B. Yamada, T. Otsu, Makromol. Chem., 190, 915 (1989). 367. U. Shanker, G. N. Kulsrestha, J. S. Sharma, B. S. Pathania, Indian J. Tech., 23, 318 (1985). 368. T. Komai, K. Kato, K. Matsuyama, Bull. Chem. Soc. Japan, 61, 2641 (1988). 369. H. Sawada, H. Hagii, K. Aoshima, T. Arai, Bull. Chem. Soc. Japan, 57, 1161 (1984). 370. H. Sawada, H. Hagii, K. Aoshima, M. Yoshida, M. Kobayashi, Bull. Chem. Soc. Japan., 58, 3448 (1985). 371. F. Severini, R. Gallo, J. Thermal Anal., 30, 841 (1985).
372. A. S. Nazran, J. Warkentin, J. Am. Chem. Soc, 104, 6405 (1982). 373. L. F. R. Cafferata, G. N. Eyler, M. V. Mirifico, J. Org. Chem., 49, 2107 (1984). 374. A. F. Shushunova, L. Y. Prokhorova, J. Chrom., 283, 365 (1984). 375. J. M. Bessiere, B. Boutevin, O. Loubet, Polym. Bull., 30,545 (1993). 376. J. C. M. Torfs, L. Deij, A. J. Dorrepaal, J. C. Heijens, Anal. Chem., 56, 2863 (1984). 377. M. Buback, C. Hinton, Zeit. Phys. Chem., 193, 61 (1996).
P r o p a g a t i o n i n
F r e e
a n d
T e r m i n a t i o n
R a d i c a l
C o n s t a n t s
P o l y m e r i z a t i o n
M. Kamachi Department of Applied Physics and Chemistry, Fukui University of Technology, Gakuen, Fukui, Japan B. Y a m a d a Department of Applied Chemistry, Faculty of Technology Osaka City University, Sumiyoshi, Osaka, Japan A. Introduction B. Tables of Propagation and Termination Constants Table 1. Dienes Table 2. Olefins Table 3. Acrylic Derivatives Table 4. Methacrylic Derivatives Table 5. ltaconic Derivatives Table 6. Fumaric Derivatives Table 7. Vinyl Halides Table 8. Vinyl Esters Table 9. Vinyl Ethers Table 10. Styrene Derivatives Table 11. Vinyl Heteroaromatics Table 12. Aldehydes Table 13. Others C. References
11-77 11-79 II-79 II-79 II-80 II-82 II-85 U-87 II-87 II-87 II-88 II-88 II-90 II-90 II-90 11-91
The rate constants kv and kt have usually been assumed to be independent of chain length. In this chapter termination constants depending on the length of the polymer radicals are also reported. In American literature the right hand side of (A4) is written as 2£t[P#] . In this chapter the definition given in Eq. (A4) has been used. Simultaneous determination of absolute values of both kv and kt from a single experiment has not been reported. In practice, the ratio k^/kt is determined from measurements of molecular weight as a function of rate of polymerization for a low conversion polymerization or from measurements of initiation rate and polymerization rate in a low conversion. The ratio kp/kt is determined from nonsteady-state measurements of the average lifetime, r, of the growing polymer chain in a photochemically initiated polymerization. This lifetime may be defined by noting that the concentration of chains present must be related to their average lifetime and rate of disappearance by (A6)
A.
INTRODUCTION
In free radical polymerization the propagation and termination rate constants describe the reactions
which, from (A3) and (A4), yields (A7)
(Al) dead polymer
(A2)
where P^ is a propagating chain of any length n and M is the monomer. The rate constants are defined by the following equations:
By combining the separately determined ratios, k^/kt and kp/kt, the individual propagation and termination rate constants may be calculated. Alternatively, the rate of initiation, R[, may be measured as the rate of initiator disappearance and equated to R1. This gives (from (A6) and (A3))
(A3) (A4) where (A5)
(A8) There is a large degree of imprecision inherent in measuring r and in combining data from different experiments, which helps to explain the scatter in the data tabulated here.
/Ct(XiO"6)
kp
/C1(XiO-6)
Figure 1. Arrhenius plots of all bulk polymerization data for styrene for kp (•) and /ct (+). Solid lines are least squares obtained by assuming all points to be of equal value.
The two monomers styrene and methyl methacrylate have been so extensively studied that their data are presented as Arrhenius plots (Figs. 1 and 2). Because of the influence of solvents on the rates, only data of bulk polymerizations are shown. It remains a wide scatter, which should serve as a warning against casual acceptance of any single number. Solid lines are the least squares that have been calculated assuming all points to be of equal value. For the termination rate of methyl methacrylate the leastsquares line results in a positive slope and is not shown. In this case a temperature-independent kt could be a better representation of the experiments. The pulse laser polymerization (PLP) method has been developed as a new method of obtaining kp. In the PLP method, the value of kp can be estimated from the degree of polymerization of polymer formed, vp, a knowledge of the monomer concentration, [M], and tf the time between pulses: (A9) The reproducibility of the PLP method has been recognized by an IUPAC Working Party on Modeling of Kinetic and Process of Polymerization, which is establishing a critical review of the literature values of kp.
K9
1000 T Figure 2. Arrhenius plots of all bulk polymerization data for methyl methacrylate for /cp (•) and /ct(+). Solid lines are least squares obtained by assuming all points to be of equal value. The line for kx is not shown since a horizontal line for a temperature independent kt could be a better representation. Classification of the methods for the determination of rate constants The tabulated data refer to seven different methods. Method A uses the following four methods for the measurement of the lifetime r: Al -rotating sector or a "flashing" laser A2 - flow through a tube with spatially separated light and dark sections A3 - spacial intermittent polymerization (SIP) A4 - intermittent illumination method Method B effectively measures only a single decrease (increase), in the radical concentration by the following methods: B l - dilatometry B 2 - dielectric constant B 3 - interferomety B4 - temperature change B5 - viscosity B6 - light scattering B7 - monomer pressure
B 8 - cathetometer B9-inhibitor BlO-scavenger
Method F uses pulse laser photopolymerization (PLP) method
Method C uses electron spin resonance (ESR) for the determination of the radical concentration Method D refers to values obtained in emulsion polymerization by application of the Smith-Ewart theory
Fl - PLP F2 - PLP-GPC (MWD) F3 - PLP-MALDI TOF (-GPC) Method G refers to the method of measuring molecular weight (MW) and molecular weight distribution (MWD) by Gl - gel permeation chromatography (GPC) G2 - high performance liquid chromatography (HPLC)
Method E refers to recalculated values
B. TABLES OF PROPAGATION AND TERMINATION CONSTANTS TABLE 1. DIENES Monomer 1-Acetoxybutadiene Butadiene
k9 (1/mol/s)
M x I O " 6 ) (l/mol/s)
Temp. (0C)
Method
18.0 &p = 1 . 2 x l 0 8 x exp(- 39000/RT) 150 ± 4 0
281
25 10
Al D
152 23
kt = 1.13 x l O 4 xexp(-711/r)
5 45-60
C Gl
223 202
50
Fl
221
-
50
Fl F2
Solvent: chlorobenzene Solvent: chlorobenzene
-
40
D D
Quoted in Ref. 86
l n * p = l n (3.873 x 1010) - 53400/RT 111.6 kp = 8.05 x 107 xexp(-35710//?7) Chloroprene 220 fcp = 2 . 9 x l 0 9 x exp(-41000/^7) *p = 1.95 x l O 7 x exp(- 26630/RT) 2,3-Dimethyl-l,3-butadiene &p = 8 . 9 x l 0 7 x exp(- 38000//?7) Ethyl 4-ethoxy-2,4-pentadienoate 9.9 Ethyl 4-methyl-2,4-pentadienoate 29.7 Ethyl pentadienoate 30.9 1,3-Hexadiene 20 ± 1 0 2,4-Hexadiene 16 ± 1 2 Isoprene 2.8
2-Methyl-l,3-pentadiene
Remarks
Refs.
221 187 59 84
Fl
198
D
71 152 152 152 223 223 24
9.3 23 19 -
25 25 25 5 5 5
Al Al Al C C D
125 ± 3 0 35 ± 10
-
5 5
C C
k p (1/mol/s)
M x I O 6 ) (1/mol/s)
Temp. (° C)
Method
1050 ± 5 0 455 ± 5 0 200
83 -20.01 130
Al Al Al
3.9 (7.8) x 102 1.99 x 102 -
130 190 230
Al C Fl
3.2 x 103
190
Fl
Calalyst system: diisopropylbenzene, monohydroperoxidetetraethylenepentamine
223 223
TABLE 2. OLEFINS Monomer Ethylene
Propylene
470 ± 3 0 18.6 ± 2 5400 £ p = 4.8x 107 x exp[(- 4450 + 3.Ix 10~6p)/T] 1.2 x 104 1.09 x 104 3.08 x 104
&p = 2 x l 0 6 x exp(- 32000/RT)
50-150
Remarks Solvent: benzene Pressure 1.8 x 10 8 Pa Pressure (5-17.5) x 10 7 Pa, using results of Ref. 141 Pressure 1.9 x 108 Pa Initial pressure 2.27 x 108 Pa Pressure 2.55 x 108 Pa, at low or moderate conversion Pressure 2.50 x 108 Pa, at conversion 0 Radical telomerization
Refs. 53 66 139 142 135 151 167 167 129
References page 11-15
TABLE 3. ACRYLIC DERIVATIVES Monomer
kp (1/mol/s)
kt (xlO~ 6 ) (1/mol/s)
Acrylamide
6000 ± 1000 18000 ±1500 8200 220 (7.9 ±0.5) x 10 4 (4.3 ±0.2) x 104 (3.3 ±0.2) x 104 (2.3 ±0.1) x 10 4 fcp=7xl06 x exp[(- 21000 ± 2000)/RT]
3.3 ±0.6 14.5 ±2.0 5.5 1.0 660 ± 4 0 350 ± 2 0 230 ± 2 0 160 ± 1 0
650
2.6
3150
2.6
Temp. (0C)
25 19 26 30 30
Method Al, Bl Al A A Al Al Al Al Fl
Remarks Solvent: water, pH 5.5 Solvent: water Solvent: water Solvent: DMSO Solvent: water 0.38M H 2 O : DMSO (90:10) H 2 O:dioxane (90:10) H 2 O : THF (92:8)
Refs. 79 41 89 89 126 119 119 119 197
Acrylic acid
-,butyl ester
- , cyclohexyl ester -,ethyl ester
6600 2.7 13 0.018 2100 330 1977 3.84 679±66 6.4±0.6 log 10 fcp = 6.0123-748.4/7 ln[(*t[p]/(1.00 + OMp)] = l n * t [I]-0.6Op 1360 1.28 963 1.18 1320 1.07 360 0.36 2722 ±248 3.2 ±0.3 800 1.76 12.39 x 10 3 139.2
- , 2-ethylhexyl ester - , methyl ester
23
Al Al
30 25-80 30
Al Al B4 Al Al Fl B5
30
Al
30 50 50
Al Al Al
25 25
155 1300
0.233 75
50 15
Al Al
880
260
15
Al
25 25
Al Bl Al
1580 580 fcp = 1 . 0 x l 0 8 x exp(- 30000/RT) 1000 11680 21300 (1.5 ±0.2) x 10 4 (3.7 ±0.6) x 104 6.3 x 104 (1.4 ±0.2) x 104
55 6.5 fct = 2.8xl0n x exp(- 22000/RT) 3.5550 194 -
60
Al Al Al G2
-
60 60 60
G2 G2 G2
- , 2-(acetoacetoxy-methyl)-, ethyl ester - , 2-cyano-, ethyl ester
300 1622 1610 1613 1607
1.0 411 404 411 404
60 30 30 30 30
C Al Al Al Al
- , 2-chloro-, ethyl ester
1660 1408 1120 978 350
333 244 4.8 x 102 435 2.1
30 30 30 30 60
Al Al Al Al C
- , 2-fluoro-, ethyl ester - , 2-acetoxymethyl-, methyl ester
Solvent: Water, pH 7.9, (with 1.2MNaOH) Solvent: water, pH 7.9 (with 1.5NNaCl) Solvent: water, pH 11
Pressure 5.0 x 107 Pa Solvent: benzene 1.76M kt \p\; kt for pressure p (bar), kt [l] = 3.5x 106 Solvent: anisole 2.00M Solvent: benzene 2.00M Solvent: chlorobenzene 2.00M Solvent: benzonitrile 2.00 M Solvent: benzene 1.76M Solvent: toluene 1.84 M Solvent: benzene x\ molar fractions of monomer, x = 0.401, kp and kt also given by other [M] Solvent: toluene 1.94M From unpublished results of Ross and Melville From unpublished results of Matheson
99 99 99 10 57 107 137 201 122 138 138 138 138 137 108 171
108 22 22 19 48 21
Solvent: benzene 2.69 M Primary propagating step (jfcpl), Ph-MA* PhCO 2 -MA' tert-BuO-MAm Secondary propagating step (kp2), Ph-MA-MA*, PhCO 2 -MA-MA', tert-BuO-MA-MA* Solvent: benseme AcOH 7 wt.% 1,3-propanesulfone 0.5 wt.% Optimum value, solvent: AcOH Optimum value Solvent: propanesulfone AIBN 4.88 x 10" 2 M Optimum value Optimum value Solvent: benzene LOOM, MAIB 0.050 M
50 144 144 190 190 190
170 143 143 123 123 140 123 146 123 225
TABLE 3. cont'd Monomer
fep
(1/mol/s)
fct(x..l0-6)
(l/mol/s)
Temp. ( 0 C)
Method
- , 2-acetyloxy-, methyl ester
430
-
60
C
- , 2-benzoyloxy-, ethyl ester - , 2-(benzyloxymethyl)-, methyl ester
990 182
2.9 1.6
60 60
C C
- , 2-[2,2-bis(carbomethoxy) ethyl], methyl ester
4.0
0.038
60
C
- , 2-butoxy-, methyl ester
298 184
8 -
60 60
C C
- , 2-butyroxymethyl-, methyl ester
360
1.4
60
C
19
0.51
60
C
8.6 1.6 300
21 1.8 1.1
60 60 60
C C C
11
0.08
50
C
0.57
0.11
60
C
0.76
1.4
60
C
- , 3-methyl, dimethyladamantyl ester
0.41 0.71
0.081 1.1
60 60
C C
- , 3-methyl, terf-butyl ester
0.90 LO
2.3 4.7
60 60
C C
- , 2-naphthoyloxymethyl-, ethyl ester
320
0.37
60
C
- , 2-pivaroxymethyl-, methyl ester
230
0.59
60
C
- , trans-2-vinyl-, methyl ester
125
-
60
C
3000-5000 127 52 51 20000 24
12.2 5 1.8
OD 25 25 25 40 50
B4 B4 B4 D
1960 15400 28000 1910 382 ±230 3300 ± 300 3200 ±400 3000 ± 600 (6.5 ± 1.3) x 103 28.2
782 2700 3700 290 47.6 ± 2 2 1200 ± 170 300 ± 5 0 240 ± 70 4700± 1300 0.20
60 25 25 25 25 50 50 50 50 60
Al Al Al Al Al Al Al Al Al C
273 273 8267
17.9 11.9 2200
30 30 30
Al Al Al
- , 2-(2-carbomethoxy)- ethyl-, methyl ester - , 2-ethyl-, methyl ester - , 2-ethyl-, cyclohexyl ester - , 2-isobutyroxymethyl-, methyl ester -,-2-(methoxycarbonylmethyl)-, phenetyl ester - , 3-methyl, adamantyl ester
Acrylonitrile
Ar-Acryloyl-2,2-dimethyl5 (R)-phenyl-l,3-dioxazoline 7V-Acryloylpiperidine N-Acryloylpyrrolidine
23
Remarks Solvent: 1,1,2-trichloroethane 2.0M 2,2'-azobis (4-methoxy-2,4dimethylvaleronitrile) 0.030 M, kp also given by other temp. Solvent: benzene 1.56M Solvent: benzene 2.0M, AIBN 5 ^ x IQ^ 3 M Bulk AVN 0.05 M, Ic p and kt also given by other temp. Solvent: benzene 2 M Solvent: 1,1,2-trichloroethane 2.0M 2,2'-azobis (4-methoxy-2,4dimethylvaleronitrile) 0.030 M, kp also given by other temp. Solvent: benzene LOOM, MAIB 0.050 M Bulk MAIB 0.05 M, kp and kt also given by other temp. Bulk AIBN 0.10M Bulk AIBN 0.10M Solvent: benzene LOOM, MAIB 0.050 M Solvent: benzene 2.22 M, kp and kt also given by other temp. and [M] Bulk 4.8 M MAIB 0.05 M Solvent: benzene 2.4 M, MAIB 0.05 M, kp also given by other [M] Bulk 4.0 M, MAIB 0.05 M Solvent: benzene 2.0M, MAIB 0.05 M Bulk 5.9 M, MAIB 0.05 M Solvent: benzene 2.0M, MAIB 0.05 M Solvent: benzene LOOM, MAIB 0.01 M Solvent: benzene LOOM, MAIB 0.005 M Solvent: benzene LOM, AIBN 0.25 M
Solvent: DMF
Refs. 224
172 206 228
176 224
225 229 230 230 225 157
232 232
232 232 232 232 226 225 227 42 49 63 75 42 35
Primary radical termination in a precipitating medium Solvent: DMF 43 Solvent: water 54 Solvent: water 55 Solvent: DMSO 70 Solvent: DMF 68 Solvent: DMF 3.8 M 88 Solvent: DMSO 3.8 M 88 Solvent: Ethylene carbonate 3.8 M 88 Solvent: Mg (C1O4)2 • 12H2O 3.04M 88 Solvent: benzene 1.08 M, 231 MAIB 0.05 M, kp and kt also given by other temp. 145 Optimum value 123 Optimum value 123
References page 11-15
TABLE 3. cont'd Monomer
kp (1/mol/s)
ifetCxlO"6) (1/mol/s)
Temp. (0C)
Method
JVW'-Dimethylacrylamide
11000 27200 29198 15 x 10 3 2330 ±230
38 3540 4080 0.540 ±0.053
50 30 30 25 30
Al Al Al Fl A4
2760 ±342
0.452 ±0.056
30
9.9 x 10 3
-
25
Fl
kp (1/mol/s)
kt (x 10 ~6) (1/mol/s)
Temp. (0C)
Method
79.6 ±5.6 1.1 x 10 3 ~21 26
16.5 ± 1 . 4 ~27 21
25 25 30 25
Al Fl Al
670
2.1
23
Al
1950 1410 110 895 1250 510
2.25 41.9 80 40 41.9 2.87
30 32.5 32.5 30 20
Al Al C C Al Al
- , bornyl ester
580
3.3
60
C
- , n-butyl ester
369 573 360 lnfcp = 6 . 1 3 + 6.33 x 10 ~9 p lnfcp = 15.8-2751/7
10.2 18.0 10
30 30 30 30 12-93 70 30
Al Al Al F2 F2 B5 B5
10-90
Fl Fl A3 Al
3-Dimethyl-(acryloyloxyethyl)ammonium propane sulfonate
N-Methylacrylamide
Remarks
Optimum value Solvent: water, pH 1.4 Solvent: formamide: 1,4-dioxane (3:1 (v/v)) Solvent: formamide: 1,4-dioxane (3:1 (v/v)), NaCl 0.1 M Solvent: water, pH 1.9
Refs. 74 121 123 197 192 192 197
TABLE 4. METHACRYLIC DERIVATIVES Monomer Methacrylamide Methacrylonitrile £p
Remarks Solvent: water Solvent: water, pH 1
Refs. 69 197 26 39
106.43±0.26
=
xexp[(-29700±1500)//?n Methacrylic acid
- , benzyl ester
- , terf-butyl ester
2.6 In [(kt\p]/(\M + 0.0lp)] = InJt1[I] - 0.73/7 ln*p = (14.41 ±0.09) - (2472±29)/T jfcp = 3.44 x 10 6 exp(- 23300/RT) 1576 9.74 350 14 £p
=
1O7.4±o.4
30 25 9
_66
Solvent: water, pH 8.0 (with 0.22MNaOH) pH=13.6
kp and kt also given as a function of viscosity Solvent: benzene 1.0 M, AIBN 0.05 M Pressure: 5.0 x 10 7 Pa
Pressure 1.0 x 10 8 Pa 77=1.92cp kt \p]\ kt for pressure p (bar), kt[l] = 13.4 x 10 6
99 99 101 153 153 87 103 193 27 106 109 216 216 212 122 219 169 225 52 203
F 1
xexp[-(27.7±2.5)x IO3/RT] - , trans-4-tert-buty\cyclohexyl ester
- , cetyl ester - , p-Ip-(cetyloxy)benzoyloxy]phenyl ester - , 2-chloroethyl ester - , 2-cyclohexylethyl ester - , cyclohexyl ester - , 2-decahydronaphthyl ester
550
1.9
60
C
510 570 ± 1 0 300 ± 9 0 300
1.9 0.5-2.3 0.16 ±0.04 0.25
60 60 30 50
C C Al Al
170 254 1190
0.30 6.71 32.8
50 30 30
Al Al Al
510
5.4
60
C
570
3.1
60
C
Solvent: benzene LOM, AIBN 0.05 M, trans 100% trans 28.9% Solvent: benzene Solvent: dioxane 0.2 M
Solvent: toluene 0.2M
Solvent: benzene LOM, AIBN 0.05 M Solvent: benzene LOM, AIBN 0.05 M
194 194 210 109 97
97 87 87 193 193
TABLE 4. cont'd Monomer - , 2,6-dimethylphenyl ester - , dodecyl ester -,ethyl ester
- , hexadecyl ester - , isobornyl ester - , isobutyl ester - , isopropyl ester - , lauryl ester
- , 2-methoxyethyl ester - , methyl ester
kp (1/mol/s)
M x l O " 6 ) (1/mol/s)
Temp. (0C)
Method
68
2.1
30
Al
72 126
2.4 0.6 7.35 10
30 70 30 70
Al B5 Al B5 Fl
0.16 3.5
10-90 70 60
Fl B5 C
10-90 30 30
Fl Al Al Fl
219 87 109 169
30 23.6
Al Al Al
87 9 7
32.5 40 50 -30 20
C Bl E Bl Al
* p = 1.50 XlO 6 x exp(- 20460/RT) ln* p = (15.11±0.17)-(2753±55)/r 390
lnfcp = (14.72±0.13)-(2590±42)/7 121 4.52 460 ±140 0.6 ±0.2 kp = 2.93 x l O 5 x exp(- 16190/RT) 249 9.30 310 ± 2 0 66 ± 4 fcp = 5 . 1 3 x l 0 6 kt = 1.36 x l O 3 x exp(- 26400/RT) x exp(- 11900/flT) 187 72.1 404 17.6 410 24 13.2 0.488 390 517 527 28 260 270 280 285 310 330 340 240 335 270 330 250 240 280 320 390 ± 4 0 410 ± 40 410 ± 4 0 180±50
37 23 4.4 21 21 19.5 17.5 17 17 17 11.5 9 22 16 29 25 14 28 42 ± 4 29 ± 3 26 ± 3 20 ± 6
10 10 10 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 20
Bl Bl Bl Al Al Al Al Al Al B5 B5 B5 B5 B5 B5 B5 B5 B5 Al Al Al E
500 ±250 41.6 62 200 128 364
63 ± 3 2 2.69 8.44 41.8
20 0 5 20 22 22.5
B6 B5 D B6 Bl B4
512.6 410
46.6 42.7
25 25
Al Al
248 141 106 140
22.7 11.6 5.7 -
30 30 32 40
Al A B4 D
Remarks
Refs. 120
Optimum value r? = 3.96cp
123 212 87 212 169
7^ = 0.91 cp
rj = 7.52cp Solvent: benzene 1.0 M, AIBN 0.05 M
Solvent: ethyl acetate Using results of Ref. 7 Solvent: ethyl acetate kp also given as a function of temp. and of viscosity for other solvents Solvent: methanol Solvent: pyridine Solvent: DMF Solvent: benzene 4.69 M Solvent: fluorobenzene 4.69 M Solvent: chlorobenzene 4.69 M Solvent: anisole 4.69 M Solvent: bromobenzene 4.69M Solvent: benzonitrile 4.69 M Solvent: methyl benzoate 4.69 M Solvent: methylphenyl acetate 4.69 M Solvent: dimethyl phthalate 4.69 M Solvent: dimethyl carbonate 4.69 M Solvent: diethyl oxalate 4.69 M Solvent: methyl formate 4.69 M Solvent: methyl propionate 4.69 M Solvent: diethyl succinate 4.69 M Solvent: acetonitrile 4.69 M Solvent: methanol 50% by vol. Solvent: n-octane 5% by vol. Solvent: «-nonane 20% by vol. DP = (2-8) x 10 3 using results of Ref. 86 DP = ( 3 - 5 ) x l 0 4 Assuming biradical initiation Jfcp found as a linear function of Mw Rate of initiation; 1.20 x 10 " 8 (moles/1/s) kp and kt also given as a function of viscosity for other solvents
219 212 193
153 51 62 72 92 94 94 94 85 85 85 85 85 85 90 90 90 90 90 90 90 90 90 104 104 104 96 96 11 65 91 29 60 30 93 14 87 58 65
References page 11-15
TABLE 4. cont'd Monomer
A:p (1/mol/s)
M x l O ~ 6 ) (1/mol/s)
Temp. (0C)
Method
0.224 573
2.0
45 60
D E
573
11.9
60
E
995 ± 83 506 ±48 450 ± 3 3 456±29 448 ±47 498 ± 39 614±43 427 ±38 290 1020 530 550
43.6 ± 4.9 35.6 ±3.9 42.0 ±3.0 43.8±2.0 47.2 ±6.6 42.9 ± 4.7 39.9±3.3 30.9 ±3.7 21 292 55 68
80 30
kp= 4.92 XlO 5 x exp(- U210/RT) 315
kt = 9S x exp(- 2930/RT) 33.9
15-30
A2
25
A2
336 ± 9 0 441 fcp = 2 . 5 x l 0 6 x exp[(- 23000 ± 2500)/RT] kp=k® (0.33 < Wp < 0.84) = ££exp[-29.8(Wp-0.84)] (0.84 < w p < 0.99)
28 ± 12 19.7 720
25 30 25-60
Al Al C
50
C
w p (weight fraction of polymer)
150
At high conversions ( ~ 65%) Special evaluation from steady-state and Mn Solvent: toluene
148 134
30 60
Al Al Al Al Al Al Al Al Al Al Al
Remarks
Refs.
Termination by combinat. using results of Refs. 7 and 31 Termination by disprop. using results of Refs. 7 and 31 Solvent: benzene 4.7 M Solvent: anisole 2.0M Solvent: benzene 2.0M Solvent: C 6 D 6 2.0M Solvent: fluorobenzene 2.0M Solvent: chlorobenzene 2.0 M Solvent: benzonitrile 2.0M Solvent: benzene 1.0 M Addition of 1 x 10 " 3 mol pyridine Addition of 1 x 10" 3 mol acetone Addition of 1 x 10 " 3 mol triethanolamine P n = IO4 kp and kt also given as a function of P n Pressure 5.0 x 106 Pa Pressure 5.0 x 10 7 Pa
67 33 33 111 133 133 133 133 133 133 133 118 118 118 118 114 110 127 105 45
(*J= 790 ±300) 130 705.6
20.7 ±1.0 25
0 60
Al
170 306 292
-
0.2 25 25
F3 Fl Fl
60 20-90
C Fl
30
B5
670 ± 3 0 22 InATp = 14.69-2670/7+ 0.201/7x(1.0x 1 0 " 5 P - I ) \nkt[p] = InA:t[l] -0.57/7 26.6
1.4
5
BlO
5.8
0.017
5
BlO
kt(m,n) = 1.22 x W2(n x m)~ 0075
25
A3
21
70
B5
0.034
50
D
0.16
50
D
- 1 to - 70 60
Fl C
- 8 30
F3 Fl
fcp = 106 694 exp(- 23940/RT) lnJfcp (VmoVmin) = ln*p,<>-(3.86 [AIBME]0 + 0.8) x (l-(f>m)- 1.6 (l-cj)m)60
131 680- 820
-
690-810
-
Fl
222 196
Solvent: ethanol (50%) 4.67 M, kv also given by other [M] and solvents 175 207 kt\p\\ kt for pressure/? (bar), fct[l] = 15.4x 106 Scavenger DPPH, solvent: DMF, blank polymn. Scavenger DPPH, solvent: DMF, template polymn., template; it-MMA n: n-mer; m: m-mer, coupling with rt-mer and m-mer 77 = 0.53 cP No addition of chain-transfer agent, Time 7.5-20.5 min. Addition of 2% CBr4, Time 7.5-20.5 min. AIBME (dimethyl 2,2'azodiisobutyrate) 0.0434M, >m; monomer volume fraction £pX) = 700(l/mol/min) Benzoin 7 x 10 " 4 M Solvent: toluene, pressure 1.0 x 108 Pa, k p also given by other pressures Solvent/2-butanone, pressure 1.OxIO 8 Pa
122 115 115
147 212 149 149 217 158
199 208
208
TABLE 4. cont'd Monomer
kp (1/mol/s)
M x l O " 6 ) (1/mol/s)
Temp. (0C)
Method
313±8.1 794.0 815.0 957.0
39±4 62.4 51.6 38.2 25(±3)
25 60
Fl B5
60
C
21 ± 2 45 50
60 25 40
C Al
191 160 160
-
25 50
Fl Fl C
198 220 184
510 ±100 299 431 )tp = 2.39 x 106 x exp(- 22000/#D 359 12
135 292 200 135 ± 5 0 170
-, octyl ester
35 2960 *p = 1.9068 x 106 xexp(-21181.07//?D kp = 1.2169 x 106 x exp(- 25203.59//?D kp = 3.0598 x 107 x exp(-28008.18/RT) 35 1710 240 ± 8 0
0 25 28 0 50
29.1
50 30
Al Fl Bl Al C
Values from Chem. Abstr.
159 164 83 165 155
30% MMA in benzyl alcohol
227
Fl
30% MMA in NMP
227
p.s. 500 nm Pressure 5.0 x 10 7 Pa
155 113 109 122
30 30 30 60
Al Al Al Al Al Al Al Al Al Al C
26 1470 ±170
0.301 0.499 ±0.058
32.5 30
C A4
2760 ±342
0.452 ±0.056
30
185
0.034
20
B8
230
0.053
20
B8
kp (1/mol/s)
£ t ( x l 0 ~ 6 ) (1/mol/s)
Temp. (0C)
Method
1.7 3.9
2.5 x 10" 3 3.4xl0~3
60 60
C C
Polyhydroxytetramethylene-a, co-methacrylate of MW = 700
particle size 260 nm, kp also given by other particle sizes kp; average value
Fl
411 230 ± 1 5 176±8 180±9 223 ±11 235 ± 8 273 ± 8 228 149 467 590
30 30
Emulsion polymn.,
161 204 204 204 166
A3 Fl
50 30 30
Solvent: benzene 3 M Solvent: chlorobenzene 3 M Solvent: benzonitrile 3 M
Refs.
Emulsion polymn., n-butyl aery late: MMA: methacrylic acid (8:91:1), particle size (p.s.) 50 nm, kp also given by other temp, and particle sizes p.s. 500 nm 155 225 227
62.6 2.6 ±0.9 ln[(fct[p]/(1.00- 0.19)] = \nkt[l]-l.01p 11.9 2.02 ±0.22 2.06±0.21 2.16±0.19 2.26 ± 0.22 1.72 ±0.11 1.96 ±0.12 1.88 0.813 45.1 2.6
-, phenyl ester
- , 2-phenylethyl ester - , 3-phenylpropyl ester - , rc-propyl ester - , 3-tetracyclo-[4.4.02'5.l7'10]dodecyl ester -, triphenylmethyl ester 3-Dimethyl-(methacryloyloxy-ethyl) ammonium propane sulfonate
25.6 -
Remarks
Al Al B5
kt[p]\ kt for pressure p (bar), ikt[l] =40.0 x 106 Solvent: Solvent: Solvent: Solvent: Solvent: Solvent:
anisole 2.00M benzene 2.00M fluorobenzene 2.00M chlorobenzene 2.00M bromobenzene 2.00M benzonitrile 2.00M
Solvent: benzene 1.0M, AIBN 0.05 M
87 116 116 116 116 116 116 87 87 28 193
153 Solvent: formamide: 192 1,4-dioxane (3 :1 (v/v)) Solvent: formamide: 192 1,4-dioxane (3 : 1 (v/v)), NaCl 0.1 M Calcd. from nonstationary 125 state kinetics Calcd. from stationary state kinetics 125
TABLE 5. ITACONIC DERIVATIVES Monomer Itaconic acid - , bis (4-terf-butyl-cyclohexyl) ester - , bis (cyclohexyl-methyl) ester
Remarks
Solvent: benzene 0.5M Solvent: benzene 1.5M, MAIB 0.02 M
Refs.
213 182
References page 11-15
TABLE 5. cont'd kp (1/mol/s)
M x l O " 6 ) (1/mol/s)
Temp. (0C)
Method
- , bis (3,5-dimethyl-l-adamantyl) ester - , bis (2-ethylhexyl) ester
0.92 6.8 3.4 2.0 2.1 2.2 2.1 2.1 1.4 3.0
0.32 x 10~3 0.001
60 50 50 50 50 50 50 50 50 50
C C C C C C C C C C
- , diadamantyl ester
0.56
0.30 x 10~3
60
C
- , di-n-butyl ester
3.5
1.59 x l O " 2
60
C
13
0.11
50
C
11 6.8 9.4 6.7 3.4 3.2
0.13 0.07 0.11 0.083 0.068 0.13 1.0 x l O " 3
50 50 50 50 50 50 50
C
5.3
8.5 x l O " 2
50
C
5.9
0.053
50
C
- , di-sec-butyl ester
0.6
4.0 x 10 ~3
60
C
- , di-terf-butyl ester
0.2
5.6 x 10~3
60
C
- , dicyclohexyl ester
2.3
1.4xlO" 3
60
C
- , diethyl ester
7.7
0.24
50
C
3.7
6.41 x l 0 ~ 2
60
C
- , diisobutyl ester
2.7
1.56 x 10~2
60
C
- , diisopropyl ester
1.1
5.0xl0~~ 3
60
C
- , dimethyl ester
5.2
0.36
60
C
10
0.59
50
C
- , a-ethyl-P-hexarluoropropyl ester
5.0
0.28
60
C
- , a-methyl-P-isopropyl ester - , a-methyl-P-tert-butyl ester - , a-isopropyl-P-methyl ester - , a-fm-butyl-P-methyl ester AT(2,6-dimethylphenyl)itaconimide
3.4 4.2 1.9 0.91 26
0.06 0.051 0.07 0.056 0.082
60 60 60 60 50
C C C C C
15
0.29
60
C
Monomer
Methyl N-phenyl-itaconamate
Remarks Solvent: benzene 1.5 M Solvent: hexane 1.03 M Solvent: cyclohexane 1.03 M Solvent: toluene 1.03 M Solvent: benzene 1.03 M Solvent: chlorobenzene 1.03 M Solvent: ethyl acetate 1.03 M Solvent: THF 1.03 M Solvent: acetone 1.03 M Solvent: benzene 2.0M, MAIB 0.05 M Solvent: benzene 1.5 M, kp and kt also given by other [M] Solvent: benzene 1.5M, MAIB 0.02 M Solvent: cyclohexane 1.33 M, MAIB 5.00 x 10~2 M, kp and kt also given by other temp. Solvent: n-hexane 1.33 M Solvent: chlorobenzene 1.33 M Solvent: methyl benzoate 1.33 M Solvent: benzene 1.33 M Solvent: acetone 1.33 M Solvent: acetonitrile 1.33 M Solvent: benzene 0.794M, AIBN 0.05 M kt also given by other [M] Solvent: benzene 0.794M, MAIB 0.05 M Solvent: benzene 2.0M, MAIB 0.05 M Solvent: benzene 1.5 M, MAIB 0.02 M Solvent: benzene 1.5M, MAIB 0.02 M Solvent: benzene 1.5 M, MAIB 0.02 M Solvent: benzene 2.0M, MAIB 0.05 M Solvent: benzene 1.5M, MAIB 0.02 M Solvent: benzene 1.5M, MAIB 0.02 M Solvent: benzene 1.5M, MAIB 0.02 M Solvent: benzene 1.5 M, MAIB 0.02 M Solvent: benzene 2.0M, MAIB 0.05 M Solvent: benzene 2.0M, MAIB 0.05 M, kp and kt also given by other [M] and temp.
Solvent: THF 0.44 M, AIBN 0.05 M, J^p andfct also given by other [M] Solvent: DMF 1.4 M, AIBN 0.05 M, jfcp andfct also given by other [M] and temp.
Refs. 213 185 185 185 185 185 185 185 185 177 213 182 162
162 162 162 162 162 162 154
154 177 182 182 182 177 182 182 182 195 177 233
195 195 195 195 234
235
TABLE 6. FUMARIC DERIVATIVES Monomer Fumaric acid - , bis (2-methoxy-ethyl) ester - , bis (2-chloro-ethyl) ester - , tert-butyl methyl ester - , tert-buty\ isopropyl ester
- , di-terf-butyl ester - , dicyclohexyl ester - , diethyl ester
- , diisopropyl ester
- , dimethyl ester - , dineopentyl ester Ethyl o-formylphenyl fumarate
TABLE 7.
M x l O " 6 ) (1/mol/s)
Temp. (0C)
Method
0.19 0.26 0.23 0.51 0.35 0.39 0.61 0.60 0.21 0.015
330 x 10~6 320 x 10~6 150xl0~6 26xlO"6
60 60 60 60 60
C C C C C
1.75 x l O - 5 30 x 10~6 40 x 10~6 (510-560) x 10" 6 1.64 x l O - 4
60 60 60 30
C C C Al
0.029 ±0.003
8 xlO-6
30
BlO
0.46 0.31 ±0.07
(80-100) x 10~6 0.84 x l O - 6
60 30
C BlO
0.058 0.028 4.0
430 x 10~6 44xlO~6 1.4
60 60 60
C C C
k p (1/mol/s)
M x I O " 6 ) (1/mol/s)
Temp. (0C)
Method
7400
7.4xlO"5
40
22.7 570 kp = 3.3 x 106 x exp(- 15000/RT) 11000 3130 8.6 kp = 10 9 x exp(- 4540/7)
92 385 kt = 1.3 x 106 x exp(- 4200/RT) 2100 2300 0.175 kt = 106 x exp(- 2670/7)
-30 20
kp (1/mol/s) 4600 795 556-586 670-770 700 559 1100 1000 895 kp = 2.43 x l O 8 x exp(- 30600/RT) 9500-19000 (15-26) x 102
Remarks
Solvent: benzene l.OM Solvent: benzene l.OM Solvent: benzene l.OM Solvent: benzene l.OM AIBN MAIB Solvent: benzene l.OM Solvent: benzene l.OM Solvent: benzene l.OM AVN (2,2'-azobis-2,4dimethylvaleronitrile), ACN (l.l'-azobiscyclo-hexane1 -carbonitrile) ACN, scavenger TPV (1,3,5-triphenylverdazyl), sovent: benzene Solvent: benzene l.OM ACN, scavenger TPV, solvent: benzene Solvent: benzene l.OM Solvent: benzene l.OM Solvent: benzene 1.16 M, MAIB 0.100 M, kp and ^ t also given by other [M]
Refs.
211 211 211 211 181 181 211 211 211 173
179
211 180 211 211 236
VINYL HALIDES
Monomer Tetrafluoroethylene
Vinyl bromide Vinyl chloride
Vinylidene chloride
TABLE 8.
kp (1/mol/s)
Remarks Large active chain end concentration measured by addition of inhibitor in aqueous solution polymn.
Al
Refs. 81
Al
80 44 32
25 25 25 22-75
Al Al Al Al
56 77 18 117
M x I O " 6 ) (1/mol/s)
Temp. (0C)
Method
220 46 2860-3040 2500-3100 2600 51.8 80 59 24 kt =4.16 x 105 x exp(- 21900/RT) 380-760 25
25 15 15.9 15.9 15.9 20 25 25 25
B5 Bl Al Al Al B4 Al Al B4 Al
60 50
E Al
Quoted in Ref. 80
Solvent: N-methylpyrrolidone 2.0M
VINYL ESTERS
Monomer Vinyl acetate
Remarks
Solvent: «-hexane
At 4% conversion
Using results of Refs. 8 and 15
Refs. 13 47 1 3 4 37 2 15 36 8 64 128
References page 11-15
TABLE 8. cont'd Monomer
Vinyl benzoate
TABLE 9.
kv (1/mol/s)
£ t (xIO~ 6 ) (1/mol/s)
Temp. (0C)
Method
Remarks
117zb 12 113±10 48 ± 5 97 ± 10 61 ± 9 37 ± 5 8± 1 637 ± 101 78 #
319±61 351±54 239 ± 4 5 311 d= 59 266 ± 7 5 412 ± 104 258 ± 76 94.2 ± 23.7 -
30
Al Al Al Al Al Al Al Al
32.5 32.5 32.5 32.5 30 15-60
Al C C C Al C
Solvent: benzene 2.00M Solvent: C 6 D 6 2.00M Solvent: anisole 2.00M Solvent: fluorobenzene 2.00M Solvent: chlorobenzene 2.00M Solvent: ethyl benzoate 2.00M Solvent: benzonitrile 2.00M Solvent: ethyl acetate 2.00M Solvent: ethyl acetate: ethyl benzoate (1:1 (v/v)) Solvent: benzene Solvent: benzene 5.41 M Solvent: ethyl acetate 5.43 M
120 310 530 630 1900 280 1400 4435 64.4 £ p = 2.0 XlO 6 27.5 x exp[(- 19000 ± 2900)/RT] Jcp = 2 . 1 x l O 8 x exp(- 27820//?7) ln[(*t|>]/(1.00-0.07/?)] = lnJfct[l]-0.50p 106 ± 1 4 253 ± 6 3 185 ± 8 402 ± 3 2 245 ± 13 522 ± 48 168 ± 18 383 ± 76 69 ± 13 257 ± 72 33 ± 3 299 ± 4 4 267±33 451 ± 6 5
Monovinyl ether of ethylene glycol Monovinyl ether of diethylene glycol
Monomer Styrene
Pressure 5.0 x 10 7 Pa
Fl 30
B5
30
Al Al Al Al Al Al Al
130 130 130 130 130 130 130 130 130 153 153 153 153 112 45 209
kt\p]; kt for pressure p (bar) £ t [l] = 52.0x 106 Solvent: anisole 1.01 M Solvent: benzene 1.01 M Solvent: fluorobenzene 1.01 M Solvent: chlorobenzene 1.01 M Solvent: ethyl benzoate 1.01 M Solvent: benzonitrile 1.01 M Solvent: ethyl acetate 1.01 M
122 116 116 116 116 116 116 116
VINYL ETHERS
Monomer
TABLE 10.
Refs.
k p (1/mol/s)
kt (x 10 6 ) (1/mol/s)
5.0 ±1.0 3.0 ± 0.8
1.5 ±0.3 1.4 ± 0.3
Temp. ( C )
Method
50 50
Al Al
Refs. 136 136
STYRENE DERIVATIVES k p (1/mol/s)
kt (x 10 ~6) (1/mol/s)
Temp. (0C)
Method
40 ± 20 24
80 ± 40 14
15 20
Al Al
51.9 108 106 102 390 209 18.7 39.5 £p = 2 . 1 6 x l 0 7 x exp(- 32500/RT) 22
10.5 32.5 108 -
30 30 30 40 50 50 25 25
Al Al Al D D E B5 Bl Al
5
D
40 50 50
D D D
139 223 206
115 2.79 5.96 2£t = 2 . 5 9 x l 0 3 x exp(- 9920/RT) -
Remarks Dimension of kp and kt: kg/mol/s From copolymn. data with sulfur dioxide
Quoted in Ref. 86 Using results of Ref. 20
Catalyst: cumene hydroperoxidetriethylenetetramine Catalyst: persulfate
Refs. 46 25 16 38 78 59 5 61 6 17 20 24 24 40 67
TABLE 10. cont'd Monomer
kp (1/mol/s)
M x l O " 6 ) (l/mol/s)
Temp. (0C)
* p = 2.24 XlO 14 xexp(-73510//?r) 50 80 64 370 915 25 ± 3 9 ± 1.5 35 ± 7 19 ± 4 35 ± 5 19 ± 3 29 ± 7 15 ± 4 23±8 11 ± 2 27 ± 4 31 ± 0.4 *p = 1.09 XlO 7 * t = 1.703 x l O 3 x exp(- 31380/K7) x exp(- 9489/RT) 66.6 22.4 66.5 £ p = 2.4 XlO 8 x exp(- 38000 ± 11OO)/RT 187.1 29.4
84
-,p-bromo-,/?-chloro-,/7-cyano-,p-fluoro-,/7-methoxy-
25 60
D Al
25 25 25 25 25 25 15-30
Al Al Al Al Al Al A2
65 118 Addition of 1 x 10 " 3 mol pyridine 118 Solvent: dodecane 40% by vol 104 100 Solvent: bromobenzene 20% by vol 100 Solvent: diethyl malonate 20% by vol 100 Solvent: diethyl phthalate 20% by vol 100 Solvent: dinonyl phthalate 60% by vol 100 DP = 2500 114
30 25 50-90
Al C
60 F2 Fl
25 25 40 70
Fl Fl Fl C
16.6-17.0
100
C
190 -
50 25
C Gl
kt (m,/i) = 1.97 x 102 (n x m) " ° 1 2
30
A3
5 30-90
C Fl F2
25 25 60
Fl Fl B5
91.2 25 30 25 25 28
Gl Al Fl Fl Fl Bl Fl
180 ± 1 0 £ p = 1.99xl0 7 exp(-30780//?D In kp = 17.14-1.873 x 10" 9 p - 3748/r + 2.02 x 10 " 6 p/T 77 ±4.1 79 ±5.1 187.0 201.0 167.0 641 ±48 89 107 92 78 23 In kp = 16.09-28950//?r (overall) = 16.47-3003/KT (chain length > 4) * p = 107-1±0-5 xexp[-(29±3)xlO3/*r] fcp = 1.8861 x 107 x exp(- 30737.52//?r) kp = 4.2060 x l O 8 x exp(- 37468.93/RT) kp = 4.2458 x 108 xexp(-39014.90//?7) 186 150 219 112 2.92 71
-
78 ± 1 2 96 ± 9 63.2 51.1 37.9 132 0.6
46 77 35 127 1.06 33
Refs. 73
-
256 107
Remarks
Bl
kp = 107-630 x exp(- 32510/RT) - 1 2 - 93 25
76 70 380 ±110 480 ± 1 0
Method
30 30 30 30 0 30
Pressure 5.0 x 10 7 Pa
102 98 98
Special evaluation from steady-state kinetics and Mn
134
215 kp also given by other [M] and 196 solvents Solvent/ethanol(25%)6.52M 196 Solvent: methanol (25%) 6.52 M 196 Pressure 2.0 x 108 Pa 186 Over a range of degree of polymn. 188 of the polymer radical from 40 to 410 Conversion 0-20% 174 TBP (terf-butyl peroxide) kp and kt also given by other temp. 189 Laser-flash-initiated polymn. by 156 benzoin n: n-mer, m: m-mer, 147 coupling with n-mer and m-mer 223 169 Pressure 1 x 10 5 -2.8 x 108 Pa 214
Solvent: Solvent: Solvent: Solvent: Solvent:
toluene 50% (v/v) benzene 3 M chlorobenzene 3 M benzonitrile 3 M toluene
kp also given by other temp.
Solvent: benzene 4.33 M
161 161 204 204 204 178 160 198 220 164 83 200
Bl
131
Fl
227
Fl
30% styrene in benzylalcohol
227
Fl
30% styrene in NMP
227
Al Al Al Al B5 Al
Solvent: dimethylacetamide
78 78 78 78 12 78
References page 11-15
TABLE 10. cont'd Monomer
kv (l/mol/s) kp = 1.67 x 1 0 n x exp(- 58240/RT) 84 kp = 2.27 XlO 7 x exp(- 32060/RT) kp = 10 5 7 7 x exp(- 23.0/RT) &p = 3 . 6 3 x l 0 7 x exp(- 31500/RT)
- , o-methyl- , p-methyl-
Styrene-d8
TABLE 11.
A: t (xl0~ 6 ) (l/mol/s)
66
Temp. (0C)
Method Bl
73
30
Al Bl
78 73
24-55
Fl
£t = 2 . 5 5 x l 0 4 x exp(- 14200/7?7)
Solvent: toluene 2M
Al
kp (l/mol/s)
Ict (x 10~ 6 ) (l/mol/s)
Temp. (0C)
Method
6.0 186 96.6 12 47 122
0.306 33 8.9 3 3.5 66
10 25 25 25 25 20
Al Al B4 B5 B4 Bl
209 17.3 953 22000 ± 4000
43 1.2 65 600 db 200
20 20 20 25
Bl Bl B4 Al
k p (l/mol/s)
M x 10 ~6) (l/mol/s)
Temp. (0C)
Method
-
(7-10) x 10 ~3
—190
B4
kp (l/mol/s)
kt(x 10~ 6 ) (l/mol/s)
Temp. (0C)
Method
Maleimide - , N-tert-amyl- , N-tert-butyl-
69 100
0.048a,0.017b 0.021 a ,0.023 b
60 60
C C
-, -, -, -,
120 23 120 49
0.20a 0.027 a ,0.015 b 0.15 a ,0.23 b 0.054
60 60 60 50
C C C C
55
0.069
W-Vinylcarbazole 2-Vinylpyridine 4-Vinylpyridine 5-Vinylpyridine - , 2-methyl-
Af-Vinylpyrrolidone
226 168
Remarks
Refs. 80 76 76 34 75 94
Solvent: methanol 1.95 M, kp also given as a function of [M] Solvent: 50% (molar) aqueous methanol 94 Solvent: acetic acid 94 82 Solvent: water 132
ALDEHYDES
Monomer Formaldehyde
TABLE 13.
Refs.
VINYLHETEROAROMATICS
Monomer
TABLE 12.
Remarks
Remarks Solid monomer, gamma irradiation
Refs. 95
OTHERS
Monomer
A^m-butyl-dimethylsilylN-tert-octylN-trimethylsilylN-cyclohexyl-
Remarks
Solvent: benzene 1M (a) Determined from steady-state equation kt = (2kdf[l])/[P']2, AIBN 0.005 M; (b) determined from second order plot of the decay curve of the radical concentration, ATMP (2,2 '-azobis-(2,4,4-trimethylpentane)) 0.02 M, for tert-BMl, ATMP 0.01 M
Solvent: benzene 0.559 M, AIBN 1.39 x 10" 2 M Solvent: benzene 0.698 M, AIBN 1.00 x 10~2 M, kp and kt also given by other [M] and [I]
Refs.
205 205
205 205 205 163 163
TABLE 13. cont'd A: p (1/mol/s)
Jt t (xl0" 6 ) (1/mol/s)
Temp. (0C)
- , AH2,6-diethylphenyl-
2.0
0.0078
60
C
- , Af-(2,6-dimethylphenyl)-
14
0.034
60
C
- , AH4-ethylphenyl)-
1200
3.9
60
C
- , #-(2-methylphenyl)-
190
0.59
60
C
- , Af-(2-carboethoxyphenyl)- , N-dodecyl-
96 54 104 175 80 128 149
0.10 0.12 0.45 1.0 0.40 0.064 0.17
60 50 50 50 50 50 50
C C C C C C C
386 250 235 196
0.55 -
50 50 50 50
C C C C
33
0.10
50
C
400
0.07
50
B9
Monomer
- , iV-octadecylOligotetramethylene glycol dimethacrylic ester (MW 600)
Method
Remarks Solvent: benzene 1M, AIBN 5 x 10- 3 M Solvent: benzene 1M, AIBN 5 x 10- 3 M Solvent: benzene 1M, AIBN 5 x 10- 3 M Solvent: benzene 1M, AIBN 5 x 10- 3 M Solvent: benzene MAIB 0.005 M Solvent: benzene MAIB 0.01 M Solvent: toluene MAIB 0.01 M Solvent: anisole MAIB 0.01 M Solvent: chlorobenzene MAIB 0.01 M Solvent: bromobenzene MAIB 0.01 M Solvent: methyl benzoate MAIB 0.01 M Solvent: THF, MAIB 0.01 M Solvent: dioxane, MAIB 0.01 M Solvent: ethyl acetate MAIB 0.01 M Solvent: methyl ethyl ketone MAIB 0.01 M Solvent: benzene AIBN 0.20M, kp and k[ also given by other [I]
Refs. 183 183 183 183 237 238 238 238 238 238 238 238 238 238 238 239 124
C. REFERENCES 1. G. M. Burnett, H. W. Melville, Nature, 156, 661 (1945). 2. C. G. Swain, P. D. Bartlett, J. Am. Chem. Soc, 68, 2381 (1946). 3. G. M. Burnett, H. W. Melville, Proc. R. Soc. London, Ser. A, 189, 456 (1947). 4. G. M. Burnett, H. W. Melville, Proc. R. Soc. London, Ser. A, 189, 494 (1947). 5. W. V. Smith, J. Am. Chem. Soc, 70, 3695 (1948). 6. C. H. Bamford, M. J. S. Dewar, Proc. R. Soc. London, Ser. A, 192, 308 (1948). 7. M. S. Matheson, E. E. Auer, E. B. Bevilacque, E. J. Hart, J. Am. Chem. Soc, 71, 497 (1949). 8. M. S. Matheson, E. E. Auer, E. B. Bevilacque, E. J. Hart, J. Am. Chem. Soc, 71, 2610 (1949). 9. M. H. Mackay, H. W. Melville, Trans Faraday Soc, 45, 323 (1949). 10. H. W. Melville, A. F. Bickel, Trans. Faraday Soc, 45, 1049 (1949). 11. C H . Bamford, M. J. S. Dewar, Proc R. Soc London, Ser. A, 197, 356 (1949). 12. D. W. E. Axford, Proc. R. Soc. London, Ser. A, 197, 374 (1949). 13. G. Dixon-Lewis, Proc R. Soc. London, Ser. A, 198, 510 (1949). 14. L. Valentine, Thesis, Aberdeen (1949). 15. H. Kwart, H. S. Broadbent, P. D. Bartlett, J. Am. Chem. Soc, 72, 1060 (1950). 16. H. W. Melville, L. Valentine, Trans. Faraday Soc, 46, 210 (1950).
17. G. M. Burnett, Trans. Faraday Soc, 46, 772 (1950). 18. J. D. Burnett, H. W. Melville, Trans. Faraday Soc, 46, 976 (1950). 19. Ross, Thesis, Aberdeen (1950). 20. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Am. Chem. Soc, 73, 1700 (1951). 21. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Am. Chem. Soc, 73, 5395 (1951). 22. T. G. Majury, H. W. Melville, Proc R. Soc London, Ser. A, 205, 496 (1951). 23. M. Morton, P. P. Salatiello, H. Landfield, J. Polym. Sci., 8, 215 (1952). 24. M. Morton, P. P. Salatiello, H. Landfield, J. Polym. Sci., 8, 279 (1952). 25. W. G. Barb, Proc. R. Soc London, Ser. A., 212, 177 (1952). 26. P. J. Flory, in: P. J. Flory (Ed.), "Principles of Polymer Chemistry", Cornell University Press, New York, 1953, p. 158. 27. G. M. Burnett, P. Evans, H. W. Melville, Trans. Faraday Soc, 49, 1096 (1953). 28. G. M. Burnett, P. Evans, H. W. Melville, Trans. Faraday Soc, 49, 1105 (1953). 29. G. M. Burnett, in: G. M. Burnett (Ed.), "Mechanism of Polymer Reactions", Interscience, New York, 1954, p. 230, p. 233. 30. B. R. Chinmayanandam, H. W. Melville, Trans. Faraday Soc, 50, 73 (1954). 31. J. C. Bevington, H. W. Melville, R. P. Taylor, J. Polym. Sci., 14, 463 (1954).
32. G. M. Burnett, W. W. Wright, Proc. R. Soc. London, Ser. A, 211, 41 (1954). 33. J. L. O'Brien, F. Gormick, J. Am. Chem. Soc, 77, 4757 (1955). 34. R F. Onyon, Trans. Faraday Soc, 51, 400 (1955). 35. J. Dump, M. Magat, J. Polym. ScL, 18, 586 (1955). 36. W. J. Bengough, H. W. Melville, Proc R. Soc London, Ser. A, 230, 429 (1955). 37. H. Miyama, Bull. Chem. Soc. Japan, 29, 720 (1956); ibid. 30, 10 (1957). 38. E. A. Nicholson, R. G. W. Norrish, Disc. Faraday Soc, 22, 104 (1956). 39. N. Grassie, E. Vance, Trans. Faraday Soc, 52, 727 (1956). 40. E. Bartholome, H. Gerrens, R. Herbeck, H. Weitz, Z. Elektrochem., 60, 334 (1956). 41. F. S. Dainton, M. Tordoff, Trans. Faraday Soc, 53, 499 (1957). 42. W. M. Thomas, R. L. Webb, J. Polym. ScL, 25, 124 (1957). 43. C. H. Bamford, A. D. Jenkins, R. Johnston, Proc R. Soc. London, Ser. A, 241, 364 (1957). 44. M. Kryszewski, Roczniki Chemii, 31, 893 (1957). 45. S. E. Bresler, E. N. Kasbezov, V. N. Shandrin, Vysokomol. Soedin., Ser. A, 17, 507 (1957). 46. K. Ueberreiter, G. Sorge, Z. Phys. Chem. (Frankfurt), 13, 158 (1957). 47. W. J. Bengough, Trans. Faraday Soc, 54, 868 (1958). 48. W. J. Bengough, A. C. K. Smith, Trans. Faraday Soc, 54, 1553 (1958). 49. W. J. Bengough, J. Polym. ScL, 28, 475 (1958). 50. Z. A. Sinitsyna, Kh. S. Bagdasaryan, Zh. Fiz. Khim., 32, 1319 (1958). 51. S. W. Benson, A. M. North, J. Am. Chem. Soc, 81, 1339 (1959). 52. D. H. Grant, N. Grassie, Trans. Faraday Soc, 55, 1042 (1959). 53. Z. Litia, Z. Machacek, J. Polym. ScL, 38, 459 (1959). 54. F. S. Dainton, D. G. L. James, J. Polym. ScL, 39, 299 (1959). 55. F. S. Dainton, R. S. Eaton, J. Polym. ScL, 39, 313 (1959). 56. W. J. Bengough, S. A. Mclntosh, R. A. M. Thomson, Nature, 184, 266 (1959). 57. W. J. Bengough, H. W. Melville, Proc R. Soc London, Ser. A, 249, 445 (1959). 58. W. J. Bengough, H. W. Melville, Proc R. Soc London, Ser. A, 249, 455 (1959). 59. Z. Manasek, A. Rezabek, Int. Symp. Macromol. Chem. (Moscow), Section 2 (Russian version) (1960). 60. R Hayden, H. W. Melville, J. Polym. ScL, 43, 201 (1960). 61. G. Henrici-Olive, S. Olive, Makromol. Chem., 37, 71 (1960). 62. G. V. Shulz, G. Henrici-Olive, S. Olive, Z. Phys. Chem. (Frankfurt), 27, 1 (1960). 63. W. J. Bengough, Proc R. Soc. London, Ser. A, 260, 205 (1961). 64. G. V. Schulz, D. J. Stein, Makromol. Chem., 52, 1 (1962). 65. R E. M. Allen, G. M. Burnett, J. M. Downer, J. R. Majer, Makromol. Chem., 58, 169 (1962).
66. W. Rabel, K. Ueberreiter, Ber. Bunsenges. Phys. Chem., 67, 710 (1963). 67. H. Gerrens, Ber. Bunsenges. Phys. Chem., 67, 741 (1963). 68. N. Coleboume, E. Collinson, D. J. Currie, F. S. Dainton, Trans. Faraday Soc, 59, 1357 (1963). 69. F S. Dainton, W. D. Sisley, Trans. Faraday Soc, 59, 1369 (1963). 70. E. F. T. White, M. J. Zissell, J. Polym. ScL, Part A: Gen. Pap., 1, 2189 (1963). 71. M. Morton, W. E. Gibbs, J. Polym. ScL, Part A: Gen. Pap., 1, 2679 (1963). 72. J. Hughes, A. M. North, Trans. Faraday Soc, 60, 960 (1964). 73. K. R Paoletti, Jr. F. W. Billmeyer, J. Polym. ScL, Part A: Gen. Pap., 2, 2049 (1964). 74. A. M. North, A. M. Scallan, Polymer, 5, 447 (1964). 75. A. F. Revzin, Kh. S. Bagdasaryan, Zh. Fiz. Khim., 38, 1020 (1964). 76. W. I. Bengough, W. Henderson, Trans. Faraday Soc, 61,141 (1965). 77. W. I. Bengough, R. A. M. Thomson, Trans. Faraday Soc, 61, 1735 (1965). 78. M. Imoto, M. Kinoshita, M. Nishigaki, Makromol. Chem., 86, 217 (1965). 79. D. J. Currie, F. S. Dainton, W. S. Watt, Polymer, 6, 451 (1965). 80. J. Hughes, A. M. North, Trans. Faraday Soc, 62, 1866 (1966). 81. A. N. Plyusnin, N. M. Chirkor, Teor. Eksp. Khimiya, 2, 777 (1966). 82. V. A. Agasandyan, E. A. Trosman, Kh. S. Bagdasaryan, A. D. Litmonovich, V. Ya. Shtern, Vysokomol. Soedin., 8, 1580 (1966). 83. K. M. Gibov, G. R Gladyshev, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 17, 53 (1967). 84. F. Hrabak, M. Bezdek, V. Hynkova, Z. Pelzbauer, J. Polym. ScL, Part C: Polym. Symp., 16, 1345 (1967). 85. C. H. Bamford, S. Brumby, Makromol. Chem., 105, 122 (1967). 86. Kh. S., in: Kh. S. Bagdasaryan (Ed.), "Bagdasaryan Theory of Free Radical Polymerization", translated from the Russian Second Edition (1966) by J. Schmorak, Israel Program for Scientific Translations, 1968. 87. K. Yokota, M. Kani, Y. Ishii, J. Polym. ScL, Part A-I: Polym. Chem., 6, 1325 (1968). 88. J. Ulbricht, J. Polym. ScL, Part C: Polym. Symp., 16, 3747 (1968). 89. W. F. Gromov, R M. Chomikovski, A. D. Abkin, N. A. Rosanova, Vysokomol. Soedin., Ser. B, 10, 754 (1968). 90. C. H. Bamford, S. Brumby, Chem. Ind., 1020 (1969). 91. G. N. Kornienko, A. Chervenka, I. M. Belugovskii, N. S. Yenikolopyan, Vysokomol. Soedin., Ser. A, 11, 2703 (1969). 92. J. R Fischer, G. V. Schulz, Ber. Bunsenges. Phys. Chem., 74, 1077 (1970). 93. G. M. Burnett, G. G. Cameron, M. M. Zafar, Eur. Polym. J., 6, 823 (1970).
94. A. V. Angelova, Yu. L. Spirin, R. Ye. Koval'chuk, Vysokomol. Soedin., Ser. A, 12, 2703 (1970). 95. D. R Kiryukin, A. M. Kaplan, I. M. Barkalov, V. I. Gol'danskii, Dokl. Akad. Nauk SSSR, 199, 857 (1971). 96. S. V. Koslov, I. M. Bulugovskii, N. S. Enikolopyan, Vy sokomol. Soedin., Ser. B, 13, 46 (1971). 97. A. A. Baturin, Yu. B. Amerik, B. A. Krentsel, V. N. Tsvetkov, I. N. Shtennikova, E. I. Ryumtsev, Dokl. Akad. Nauk SSSR, 202, 586 (1972). 98. S. B. Bresler, E. N. Kasbekov, V. N. Formichev, V. N. Shadrin, Makromol. Chem., 157, 167 (1972). 99. T. M. Karaputadse, A. I. Kurilova, D. A. Topchiev, V. A. Kabanov, Vysokomol. Soedin., Ser. B, 14, 323 (1972). 100. G. M. Burnett, G. G. Cameron, S. N. Joiner, J. Chem. Soc, Faraday Trans. I, 69, 322 (1973). 101. K. Yokota, A. Konda, Makromol. Chem., 171, 113 (1973). 102. Y. Ogo, M. Yokawa, T. Imoto, Makromol. Chem., 171, 123 (1973). 103. G. Mayer, G. V. Schulz, Makromol. Chem., 173,101 (1973). 104. G. G. Cameron, J. Cameron, Polymer, 14, 107 (1973). 105. M. Yokawa, Y. Ogo, T. Imoto, Makromol. Chem., 175, 179 (1974). 106. M. Yokawa, Y. Ogo, T. Imoto, Makromol. Chem., 175, 2903 (1974). 107. M. Yokawa, Y. Ogo, T. Imoto, Makromol. Chem., 175, 2913 (1974). 108. M. Ratzsch, J. Zschach, Plaste und Kautschuk, 21, 245 (1974). 109. N. A. Plate, A. G. Ponomarenko, Polym. Sci. USSR (Engl. Transl.), 16, 3067 (1974). 110. K. F. O'Driscoll, H. K. Mahabadi, J. Polym. Sci., Polym. Chem. Ed., 14, 869 (1976). 111. P. Penchev, Makromol. Chem., 177, 413 (1976). 112. M. Yokawa, Y Ogo, Makromol. Chem., 177, 429 (1976). 113. M. Yokawa, Y. Ogo, T. Imoto, Makromol. Chem., 178, 443 (1976). 114. H. K. Mahabadi, K. F. O'Driscoll, J. Macromol. Sci. A: Chem., 11, 967 (1977). 115. J. Gons, E. J. Vorenkamp, G. Challa, J. Polym. Sci., Polym. Chem. Ed., 15, 3031 (1977). 116. M. Kamachi, J. Satoh, D. J. Liaw, S. Nozakura, Macromolecules, 10, 501 (1977). 117. K. Matsuo, G. W. NeIb, W. H. Stockmayer, Macromolecules, 10, 654 (1977). 118. B. M. Soghomonyan, N. M. Beilerian, Armen. Chim. Zh., 31, 567 (1978). 119. T. O. Osmanov, V. F. Gromov, P. M. Khomikovskii, A. D. Abkin, Dokl. Akad. Nauk SSSR, 240, 910 (1978). 120. T. Otsu, B. Yamada, S. Sugiyama, Kobunshi Ronbunsyu, 35, 705 (1978). 121. B. Yamada, M. Yoshioka, T. Otsu, Kobunshi Ronbunsyu, 35, 795 (1978). 122. Y. Ogo, T. Kyotani, Makromol. Chem., 179, 2407 (1978). 123. B. Yamada, H. Ohnishi, T. Otsu, Mem. Fac. Eng., Osaka City Univ., 19, 189 (1978). 124. N. N. Tvorogov, A. G. Kondrat'eva, Vysokomol. Soedin., Ser. A, 20, 230 (1978).
125. N. N. Tvorogov, A. G. Kondrat'eva, Vysokomol. Soedin., Ser. A, 20, 1550 (1978). 126. R M. Komikovskii, A. D. Abin, Vysokomol. Soedin., Ser. B, 20, 263 (1978). 127. N. N. Bashenova, B. A. Egorov, Yu. D. Semchikov, Dokl. Akad. Nauk SSSR, 245, 621 (1979). 128. H. A. Bruk, S. A. Pavlov, A. D. Abkin, Dokl. Akad. Nauk SSSR, 245, 626 (1979). 129. A. G. Shostenko, V. E. Myshkin, Kinet. Katal., 20, 781 (1979). 130. M. Kamachi, D. J. Liaw, S. Nozakura, Polym. J., 11, 921 (1979). 131. S. W. Lansdowne, R. G. Gilbert, D. H. Napper, J. Chem. Soc, Faraday Trans. I, 76, 1344 (1980). 132. E. V. Shtamm, Yu. I. Skurlatav, I. M. Karaputadse, Yu. E. Kirsh, A. P. Purmal, Vysokomol. Soedin., Ser. B, 22, 420 (1980). 133. M. Kamachi, D. J. Liaw, S. Nozakura, Polym. J., 13, 41 (1981). 134. K. Jen-Feng, C. Chu-Yung, Polym. J., 13, 453 (1981). 135. T. Takahashi, R Ehrlich, Polym. Prepr., 22, 203 (1981). 136. Z. S. Nurkeeva, E. M. Shaidutinov, A. S. Seitov, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 1982, 47 (1982). 137. D. J. Liaw, K. C. Chung, J. Chinese Inst. Chem. Eng., 13,145 (1982). 138. M. Kamachi, M. Fujii, S. Nozakura, J. Polym. Sci., Polym. Chem. Ed., 20, 1489 (1982). 139. T. Takahashi, P. Ehrlich, Macromolecules, 15, 714 (1982). 140. B. Yamada, T. Hayashi, T. Otsu, J. Macromol. Sci. A: Chem., 19, 1023 (1983). 141. P. C. Lim, G. Luft, Makromol. Chem., 184, 207 (1983). 142. P. C. Lim, G. Luft, Makromol. Chem., 184, 849 (1983). 143. B. Yamada, M. Yoshioka, T. Otsu, Makromol. Chem., 184, 1025 (1983). 144. A. Nagy, T. Foldes-Beresznich, T. Tudos, Eur. Polym. J., 20, 25 (1984). 145. B. Yamada, M. Yoshioka, T. Otsu, J. Polym. Sci., Polym. Chem. Ed., 22, 463 (1984). 146. B. Yamada, T. Kontani, M. Yoshioka, T. Otsu, J. Polym. Sci., Polym. Chem. Ed., 22, 2381 (1984). 147. H. K. Mahabadi, Macromolecules, 18, 1319 (1985). 148. G. Meyerhoff, R. Sack, M. Kouloumbris, Polym. Prepr., 26 (1), 293 (1985). 149. M. J. Ballard, D. H. Napper, R. G. Gilbert, D. F. Sangster, J. Polym. Sci., Part A: Polym. Chem., 24, 1027 (1986). 150. M. J. Ballard, R. G. Gilbert, D. H. Napper, P. J. Pomery, P. W. O'Sullivan, J. H. O'Donnell, Macromolecules, 19, 1303 (1986). 151. M. Buback, H. Hippler, J. Schweer, H. -P. Vogele, Makromol. Chem., Rapid Commun., 7, 261 (1986). 152. M. Kamachi, H. Umetani, S. Nozakura, Polym. J., 18, 211 (1986). 153. M. Kamachi, Adv. Polym. Sci., 82, 209 (1987). 154. T. Sato, S. Inui, H. Tanaka, T. Ota, M. Kamachi, K. Tanaka, J. Polym. Sci., Part A: Polym. Chem., 25, 637 (1987). 155. W. Lau, D. G. Westmoreland, R. W. Novak, Macromolecules, 20, 457 (1987).
156. O. F. Olaj, I. Schnoll-Bitai, F. Hinkelmann, Makromol. Chem., 188, 1689 (1987). 157. T. Sato, K. Morino, H. Tanaka, T. Ota, Makromol. Chem., 188, 2951 (1987). 158. J. Shen, Y. Tian, Y. Zeng, Z. Qiu, Makromol. Chem., Rapid Commun., 8, 615 (1987). 159. R. Sack, G. V. Schulz, G. Meyerhoff, Macromolecules, 21 3345 (1988). 160. O. F. Olaj, P. Kremminger, I. Schnoll-Bitai, Makromol. Chem., Rapid Commun., 9, 771 (1988). 161. O. F. Olaj, I. Schnoll-Bitai, Eur. Polym. J., 25, 635 (1989). 162. T. Sato, N. Morita, H. Tanaka, T. Ota, J. Polym. Sci., Part A: Polym. Chem., 27, 2497 (1989). 163. T. Sato, K. Arimoto, H. Tanaka, T. Ota, K. Kato, K. Doiuchi, Macromolecules, 22, 2219 (1989). 164. T. P. Davis, K. F. O'Driscoll, M. C. Piton, M. A. Winnik, Macromolecules, 22, 2785 (1989). 165. R. Sack-Kouloumbris, G. Meyerhoff, Makromol. Chem., 190, 1133 (1989). 166. R. W. Garrett, D. J. T. Hill, J. H. O'Donnell, P. J. Pomery, C. L. Winzor, Polym. Bull., 22, 611 (1989). 167. M. Buback, J. Schweer, Z. Phys. Chem. (Munich), 161, 153 (1989). 168. G. Clouet, P. Chaffanjon, J. Macromol. Sci. A: Chem., 27, 193 (1990). 169. T. P. Davis, K. F. O'Driscoll, M. C. Piton, M. A. Winnik, Macromolecules, 23, 2113 (1990). 170. T. Sato, N. Morita, H. Tanaka, T. Ota, Makromol. Chem., 191, 2559 (1990). 171. F. Tudos, A. Nagy, T. Foldes-Berezsnich, Angew. Makromol. Chem., 185/186, 303 (1991). 172. T. Sato, I. Kamiya, H. Tanaka, T. Ota, Eur. Polym. J., 27, 1087 (1991). 173. T. Otsu, B. Yamada, T. Ishikawa, Macromolecules, 24, 415 (1991). 174. B. Yamada, M. Kageoka, T. Otsu, Macromolecules, 24,5234 (1991). 175. J. Shen, Y Tian, G. Wang, M. Yang, Makromol. Chem., 192, 2669 (1991). 176. B. Yamada, M. Satake, T. Otsu, Makromol. Chem., 192, 2713 (1991). 177. T. Sato, Y Takahashi, M. Seno, H. Nakamura, H. Tanaka, T. Ota, Makromol. Chem., 192, 2909 (1991). 178. O. F. Olaj, I. Schnoll-Bitai, Makromol. Chem., Rapid Commun., 12, 373 (1991). 179. B. Yamada, E. Yoshikawa, H. Miura, T. Otsu, Polym. Bull., 26, 543 (1991). 180. B. Yamada, E. Yoshikawa, K. Shiraishi, H. Miura, T. Otsu, Polymer, 32, 1892 (1991). 181. M. Yoshioka, T. Otsu, Macromolecules, 25, 559 (1992). 182. T. Otsu, K. Yamagishi, M. Yoshioka, Macromolecules, 25, 2713 (1992). 183. A. Matsumoto, Y Oki, T. Otsu, Eur. Polym. J., 29, 1225 (1993). 184. W. Lau, D. G. Westmoreland, Macromolecules, 25, 4448 (1992).
185. T. Sato, T. Shimizu, M. Seno, H. Tanaka, T. Ota, Makromol. Chem., 193, 1439 (1992). 186. M. Buback, B. Huckestein, B. Lugwig, Makromol. Chem., Rapid Commun., 13, 1 (1992). 187. S. Deibert, F. Bandermann, J. Schweer, J. Sarnecki, Makromol. Chem., Rapid Commun., 13, 351 (1992). 188. B. Yamada, M. Kageoka, T. Otsu, Polym. Bull., 28, 75 (1992). 189. B. Yamada, M. Kageoka, T. Otsu, Polym. Bull., 29, 385 (1992). 190. G. Moad, E. Rizzardo, D. H. Solomon, A. L. J. Beckwith, Polym. Bull., 29, 647 (1992). 191. T. G. Carswell, D. J. T. Hill, D. I. Londero, J. H. O'Donnell, P. J. Pomery, C. L. Winzor, Polymer, 33, 137 (1992). 192. D. J. Liaw, J. R. Lin, K. C. Chung, J. Macromol. Sci. A: Pure Appl. Chem., 30, 51 (1993). 193. A. Matsumoto, K. Mizuta, T. Otsu, J. Polym. Sci., Part A: Polym. Chem., 31, 2531 (1993). 194. A. Matsumoto, K. Mizuta, T. Otsu, Macromolecules, 26, 1659 (1993). 195. T. Otsu, K. Yamagishi, A. Matsumoto, M. Yoshioka, H. Watanabe, Macromolecules, 26, 3026 (1993). 196. B. R. Morrison, M. C. Piton, M. A. Winnik, R. G. Gilbert, D. H. Napper, Macromolecules, 26, 4368 (1993). 197. P. Pascal, M. A. Winnik, D. H. Napper, R. G. Gilbert, Macromolecules, 26, 4572 (1993). 198. R. A. Hutchinson, M. T. Aronson, J. R. Richards, Macromolecules, 26, 6410 (1993). 199. P. O. Danis, D. E. Karr, D. G. Westmoreland, M. C. Piton, D. I. Christie, P. A. Clay, S. H. Kable, R. G. Gilbert, Macromolecules, 26, 6684 (1993). 200. M. Deady, A. W. H. Mau, G. Moad, T. H. Spurling, Makromol. Chem., 194, 1691 (1993). 201. M. Buback, B. Degener, Makromol. Chem., 194, 2875 (1993). 202. S. Deibert, F. Bandermann, Makromol. Chem., 194, 3287 (1993). 203. P. Pascal, M. A. Winnik, D. H. Napper, R. G. Gilbert, Makromol. Chem., Rapid Commun., 14, 213 (1993). 204. E. L. Madruga, Makromol. Chem., Rapid Commun., 14,581 (1993). 205. A. Matsumoto, Y. Oki, T. Otsu, Polym. J., 25, 237 (1993). 206. B. Yamada, S. Kobatake, S. Aoki, Macromol. Chem. Phys., 195, 933 (1994). 207. S. Beuermann, M. Buback, G. T. Russell, Macromol. Rapid Commun., 15, 351 (1994). 208. S. Beuermann, M. Buback, G. T. Russell, Macromol. Rapid Commun., 15, 647 (1994). 209. R. A. Hutchinson, J. R. Richards, M. T. Aronson, Macromolecules, 27, 4530 (1994). 210. A. Matsumoto, K. Mizuta, Macromolecules, 27, 5863 (1994). 211. A. Matsumoto, T. Otsu, Proc. Jpn. Acad., Ser. B, 70, 43 (1994). 212. V. P. Budtov, B. V. Revnov, Vysokomol. Soedin., Ser. A Ser. B, 36, 1061 (1994). 213. A. Matsumoto, K. Yamagishi, T. Otsu, Eur. Polym. J., 31, 121 (1995).
214. M. Buback, F. D. Kuchta, Macromol. Chem. Phys., 196, 1887 (1995). 215. M. Buback, R. G. Gilbert, R. A. Hutchison, B. Klumperman, F. Kuchta, B. G. Manders, K. F. O'Driscoll, G. T. Russell, J. Schweer, Macromol. Chem. Phys., 196, 3267 (1995). 216. U. Bergert, M. Buback, Macromol. Rapid Commun., 16,275 (1995). 217. U. Bergert, S. Beuermann, M. Buback, C. H. Kurz, G. T. Russell, C. Schmaltz, Macromol. Rapid Commun., 16, 425 (1995). 218. D. A. Shipp, T. A. Smith, D. H. Solomon, H. David, G. Moad, Macromol. Rapid Commun., 16, 837 (1995). 219. R. A. Hutchinson, D. A. Paquet, J. H. McMinn, R. E. Fuller, Macromolecules, 28, 4023 (1995). 220. J. Sarnecki, J. Schweer, Macromolecules, 28, 4080 (1995). 221. F. Bandrmann, C. Guenther, J. Schweer, Macromol. Chem. Phys., 197, 1055 (1996). 222. M. D. Zammit, T. P. Davis, D. M. Haddleton, Macromolecules, 29, 492 (1996). 223. M. Kamachi, A. Kajiwara, Macromolecules, 29, 2378 (1996). 224. H. Tanaka, S. Yoshida, Macromolecules, 28, 8117 (1995). 225. S. Kobatake, B. Yamada, S. Aoki, Polymer, 36, 413 (1995). 226. T. Sato, I. Kamiya, M. Seno, H. Tanaka, J. Macromol. Sci. A: Pure Appl. Chem., 32, 415 (1995).
227. M. Ueda, S. Shimada, T. Ogata, K. Ookawa, H. Ito, B. Yamada, J. Polym. Sci., Part A: Polym. Chem., 33, 1059 (1995). 228. S. Kobatake, B. Yamada, Macromolecules, 28,4047 (1995). 229. S. Kobatake, B. Yamada, J. Polym. Sci., Part A: Polym. Chem., 34, 95 (1996). 230. S. Kobatake, B. Yamada, Polym. J., 28, 535 (1996). 231. M. Seno, T. Takikawa, H. Tanaka, T. Sato, Macromolecules, 28, 4795 (1995). 232. A. Matsumoto, K. Shimizu, K. Mizuta, T. Otsu, J. Polym. Sci., Part A: Polym. Chem., 32, 1957 (1994). 233. T. Sato, Y. Hirose, M. Seno, H. Tanaka, J. Polym. Sci., Part A: Polym. Chem., 33, 797 (1995). 234. T. Sato, A. Takarada, H. Tanaka, T. Ota, Makromol. Chem., 192, 2231 (1991). 235. T. Sato, M. Okazaki, M. Seno, H. Tanaka, Makromol. Chem., 194, 637 (1993). 236. T. Sato, S. Shimooka, M. Seno, H. Tanaka, J. Polym. Sci., Part A: Polym. Chem., 33, 2865 (1995). 237. A. Matsumoto, T. Kimura, J. Macromol. Sci. A: Pure Appl. Chem., 33, 1049 (1996). 238. T. Sato, K. Masaki, M. Seno, H. Tanaka, Polym. Bull., 35, 345 (1995). 239. T. Sato, K. Masaki, M. Seno, H. Tanaka, Makromol Chem., 194, 849 (1993).
T r a n s f e r
C o n s t a n t s
P o l y m e r s ,
C a t a l y s t s
S o l v e n t s S u l f u r
a n d
t o a n d
I n i t i a t o r s ,
A d d i t i v e s ,
C o m p o u n d s
R a d i c a l
M o n o m e r s ,
i n
a n d F r e e
P o l y m e r i z a t i o n
A. Ueda Osaka Municipal Technical Research Institute, Osaka, Japan S. Nagai Plastics Technical Association, Osaka, Japan
A. Introduction B. Tables Table 1. Transfer Constants Table 2. Transfer Constants Table 3. Transfer Constants Initiators Table 4. Transfer Constants Additives Table 5. Transfer Constants Compounds C. Remarks D. References A.
to Monomers to Polymers to Catalysts and
11-97 11-98 II-98 11-103 11-106
to Solvents and 11-110 to Sulfur 11-150 11-157 11-159
INTRODUCTION
The transfer reaction in radical polymerization describes a process in which the polymer radical reacts with another molecule (monomer, polymer, catalyst, solvent, modifier, etc.) forming a dead polymer and new radical. This new radical can continue the kinetic chain:
If it is assumed that (a) all new radicals X# react only by formation of growing polymer radicals; (b) all polymer radicals have equal reactivities independent of their size; (c) all rate constants are independent of solvent; (d) the consumption of monomer by initiation and transfer is negligible compared with propagation; (e) a steady-state concentration of polymer radicals is quickly established (d[P#]/dr = 0). The application of these assumptions to the common reaction scheme results in the following relationship of ideal kinetics (Ref. 145):
P n , p n 0 = number-average degree of polymerization obtained in the presence or absence, respectively, of transfer agent X. [M], [X] = concentration of monomer or transfer agent, respectively.
The dimensionless transfer constant is defined by the ratio
where kv is the rate constant of propagation. Based on the tables in the third edition, by K. C. Berger and G. Brandrup.
The left-hand side of this equation is obtained by measuring the number average molecular weight of polymer at different concentrations of the transfer agent X, all other variables being kept constant. In many cases the degree of polymerization was determined by measurement of viscosity (Remark R). It should be noted that the ratio of
viscosimetric to number average molecular weight shows a considerable dependence on the molecular weight distribution. The first term P n 0 of the right-hand side of this equation is the number average molecular weight measured in the absence of transfer agent X. This is limited to cases where the transfer agent is a modifier. In all other cases, Pno is calculated by combination of several kinetic expressions and used with its numerical value:
This decrease of the transfer agent concentration with increasing monomer conversion is important in practice because very reactive transfer agents are used up preferentially, giving a broad molecular weight distribution if they cannot be replenished. In analogy to quickly decomposing initiators with their criterion of "half-life", one can define, in addition to the transfer constant Cx, a "half-conversion" U\/2 as that monomer conversion where the transfer agent is half consumed:
Initiation Termination Propagation Number-average molecular weight where ku fct,d, and k^c are the rate constants of termination, termination by disproportionation, and termination by combination, respectively.
The second term of the right-hand side of the above equation is given by the following expression:
where Cp is the constant of chain transfer with added polymer before starting polymerization. The transfer constant of very reactive molecules can be determined from the rate of disappearance of both transfer agent and monomer:
The following table demonstrates (with some examples for a calibration curve) that the "half-conversion" IZ1^2 decreases with increasing transfer constant Cx: The "Half-Conversion" of Transfer Agents Cx
U1/2(%)
Cx
Ul/2(%)
0.1 0.2 0.5 1 2
99.9 96.8 75.0 50.0 29.3
5 10 20 50 100
13.0 6.7 3.4 1.4 0.7
The transfer agent must be replenished at this monomer conversion at the latest, if polymerization is to proceed, still yielding a narrow molecular weight distribution. Numerous examples are known of polymerization systems that possibly do not satisfy basic assumptions: retardation (Remark J), induced decomposition and primary radical termination by peroxide or hydroperoxide initiation (Remarks C and B), diffusion control of termination (Remark X), electron donor/acceptor complexes (Remarks JJ), etc. Corresponding data in this table have to be used with caution.
B. TABLES OF TRANSFER CONSTANTS TABLE 1. TRANSFER CONSTANTS TO MONOMERS Monomer
T( 0 C)
Acetic acid, allyl ester
80
Acrylamide
25
Acrylamide, AT,iV-dimethylAcrylic acid, benzyl ester
50 60 60 50 55 60 60 60
- , butyl ester
C M (xlO 4 ) 170 700 0.12 0.16 0.2 0.2 0.558 0.651 0.6 1.5 0.883 0.905 0.333 1.05
Remarks
D E C2, F13, LL C2, F13, LL E
Cl, H, KK Cl, H, KK
Refs. 29 27 92 74 75 103 560 560 103 272 291 291 561 561
TABLE 1. cont'd Monomer Acetic acid, butyl ester (cont'd) -,ethyl ester
T( 0 C) 60 65 50 60 65 70
- , - 2 ethylhexyl ester - , methyl ester
70 80 50 55 60 65
70
75 -, tetrahydrofurfuryl ester -, 2-chloro-, ethyl ester - , thio-, methyl ester Acrylonitrile
40 60 60 20 25 30 40 50 60
Allyl bromide Ammonium chloride, A^-diallyl-MJV-diethyl- , Ar,Ar-diallyl-AW-dimethylAnisole, p-\iny\ Anthranilic acid, vinyl ester Benzoic acid, vinyl ester
1,3-Butadiene, 2-chloro- , 1,1,2-trichloro1-Butene 2-Butene, cis- , trans3-Butene-2-one, 3-methyl-
60 60 60 60 60 60 0 60 70 60 80 95 50 25 40 50 60 40 50 60 40 50 60 80
C M (xlO 4 )
Remarks
1.25 0.955 0.193 0.90 0.41 0.579 0.332 0.351 0.789 6.28 3.79 0.80 0.275 0.036 0.325 0.10 0.11 0.11 0.37 0.01 0.072 0.16 0.18 0.405 0.224 0.25 0.25 4.0 3.0 560 0.18 0.105 1.5 0.17 0.050 0.27 8.2 0.26 0.3 0.333 0.57 1.02 30 18 7 0.198 0.74 80 6.0 7.0 2.0 4.0 2.32 16 3.1 5.1 7.3 3.2 4.9 11.2 3.0 5.2 10.8 4.00
Cl, H, KK
F7 C, F17, R C, F17, R C, F17, R C, F17, R C, F17, R F7 C,AA B, AA C, AA C,AA CFlO CAA C, AA CFlO B, AA CAA C AA C, AA CAA C, FlO C AA C, F2 E F8 F18 F17 F16 Cl, H, KK Cl, H, KK Cl, H, KK C, R, HH Cl, F30 Cl, F30
F2 E
C
Refs. 561 291 306 510 512 512 306 306 512 512 512 510 221 221 221 221 123 221 221 322 221 221 221 221 221 123 221 319 342 140 299 284 196 284 410 376 362 95 23 561 561 561 505 538 538 13 53 139 321,393 26 321 213 153 230 334 334 334 334 334 334 334 334 334 84
Remarks page 11-157; References page 11-159
TABLE 1. cont '6 Monomer Butyric acid, vinyl ester Carbamic acid, vinyl-, ethyl ester Carbazole, A^-vinyl-7H-benzo(2)Decanoic acid, vinyl ester Ethylene
T( 0 C) 50 80 60 70 50 60
70
26.7 22.3 0.25 11 45.5 0.4 1.4 4.2 5.0 5.32 1.1 3.5 9.0 0.0 1.6 4.7 11.2 5 3.2 3.2 7.0 6.25 19.4 50 6.4 7.8 8.5 11 13.5 10.8 12.3 12.8 23.8
60
42
83 110
130
- , chloro-
50-70 20 25 30 40 50
60
Glutaramic acid, MA^-diisobutyl-, vinyl ester - , AW-diisopentyl-, vinyl ester
Hexanoic acid, vinyl ester 5-Hexen-3-yn-2-ol, 2-methylIsobutyric acid, vinyl ester Laurie acid, vinyl ester Maleic anyhydride Maleic anhydride/methyl methacrylate Maleimide, A^-(3-dimethylamino-6-methyl-phenyl) Methacrylamide Methacrylic acid, bornyl ester - , butyl ester
-, -, -, -, -, -,
tert-butyl ester o-r-butylphenyl ester /?-?-butylphenyl ester n-dodecyl ester 2,3-epoxypropyl ester ethyl ester
-, -, -, -, -,
0-ethylphenyl ester p-ethylphenyl ester glycidyl ester hexadecyl ester isobornyl ester
C M (xlO 4 )
60 70 80 80 60 80 50 75 60 50 60 60 50 60 70 60 60 60 60 45 60 80 90 60 60 60 70 60
51 51 51 36 5.0 46 45.5 750 100 720 10 x 105 2.85 0.54 120 x 105 0.14 0.35 30.41 2.01 80xl05 0.59 0.248 0.259 0.456 0.442 3.63 1.36 45 x 105 0.14 1.85
Remarks
Refs.
F4 Y
71 200 117 522 71 102 102 102 204 205 102 102 102 259 102 102 102 218 94 315 425 58 463 246 379 379 379 392 58 379 379 379 58
C, FlO
106
C, FlO C, FlO CFlO
107 107 107 200 226 200 71 175 367 542 515 162 233 515 264 9 550 550 515 198 193 193 193 193 550 550 515 138 162
R, F2 W5 W4, W5 W4 D, W D, W W4, W5 W4, W5 W4 C, F21,W5 W4, W5 W4, W5 W4 W3
Y F5 F3 F4 C, F26 Y F3
C F2 JJl
JJl
C C JJl CC CC CC CC C C JJl
TABLE 1. cont'd Monomer Methacrylic acid, isobutyl ester
- , n-nonyl ester - , phenyl ester - , o-tolyl ester - , p-tolyl ester Methacrylonitrile
Methyl methacrylate
J( 0 C) 35 50 60 80 100 60 27 60 60 60 25 60 70 80 0 30
40 50
60
65 70
75
80
Naphthalene, 1-vinyl1,4-Pentadiene, 1,1,2,3,3,4,5,5-octafluoroPhernol, o-vinyl2-Picoline, 5-vinyl1-Propene, 2-chloro-, 2-methylPropionic acid, vinyl ester
90 100 120 50 60 70 110 70 70 80 40 50 60 50
C M (xlO 4 ) 0.189 0.179 0.14 0.165 0.224 0.301 0.382 105 x 105 400 0.61 1.13 1.06 2.08 5.81 8.00 10.05 0.128 0.148 0.117 0.260 0.15 30 x 105 242 x 105 0.10 0.15 0.477 241 x 105 0.85 0.07 0.10 0.103 0.18 240 x 105 0.20 0.17 0.20 0.23 0.265 0.29 0.30 0.45 0.807 1.37 240 x 105 0.27 0.33 0.60 0.70 0.25 0.40 0.10 0.38 0.58 290 310 300 500 130 6.7 1600 2.5 4.4 6.9 3.6 48.9
Remarks DD DD F2 DD DD DD JJl R C C C Z Z Z Z
D JJ2 JJl F2 D JJl
C JJO CFlO
C, F17 D JJl CFlO C CFIl C, F2
WlO
Refs. 193 193 264 264 193 193 193 515 534 550 550 550 125 125 125 125 69 18 69 224 508 525 528 147,327 145 224 528 69 274 34,290,317 316 145 556 123 123 267 145 440 123 123 104 224 459 528 123 123 123 123 145 123 147 145 145 216 216 216 68 186 11 27 334 334 334 158 71
Remarks page II-157; References page II-159
TABLE 1. cont'd Monomer Pyridine, 2-vinyl- , 4-vinyl2-Pyrrolidinone, 1-vinylStearic acid, vinyl ester Styrene
T( 0 C) 15-35 25 20 50 O 25 27 30 45 50
60
67.8 70
75
80 80.3 90
99 100
110 117 132
Styrene, p-boromo-, o-chloro-
50 30 50
C M (xlO 4 ) O 6.7 4.0 69.8 O
Remarks D
BB 0.108 0.279 0.358 0.31 0.2 0.32 0.3 0.35 0.40 0.50 0.6 0.62 0.65 0.78 0.07 0.6 0.6 0.6 0.75 0.79 0.85 0.92 1.1 1.37 20 x 10 5 1.0 O 0.6 0.6 0.8 0.96 1.16 1.35 2.0 O 1.6 5.0 5.00 0.7 0.75 1.00 4.0 0.85 1.25 1.47 1.79 1.5 1.72 1.8 1.83 2.80 1.40 2.45 3.0 3.4 5.33 23 0.25 0.25 0.28
A BB BB H F2 C, H C A, K B, C, H A C C BB A A, F
C JJl CFlO BB B, H A A C, F2 C,F10 C C, F2 CFIl BB BB CF A A A A, F A A A A, F A A
C C, H
Refs. 38 283 59 71 360 17,69 69,245 17 145 318,360 245 360 354,355 318,327 388 145 145 388 146 467 34,171,223 145,240 318,360 467 145 145 447 53 234 515 34 123 104 360 388 67 145 145 123 123 123 123 123 98 360 318 34 360 145 145 145 98 145 145 145 145 318 145 145 145 145 192 62 60 60
TABLE 1. cont'd Monomer Styrene, p-iodoSuccinimide, JV-vinylValeric acid, 4-methyl-, vinyl ester Vinyl acetate
T( 0 C) 50 55 80 -60 -40 -20 -20 O 20 25
40 45 50
60
65 70 Vinylidene chloride
50 60
C M (xlO 4 )
Remarks
Refs.
1.9 0.55 24.8 1.9 0.40 0.60 0.70 0.30 0.50 0.90 0.96 0.94 0.90 1.3 1.45 2.4 10.7 1.29 1.32 2.0 0.25 0.41 0.54 0.61 1.29 2 4.55 20 1.75 1.8 1.9 1.91 1.93 2.0 2.1 2.4 2.5 2.5 2.6 2.8 2.1 2.4 2.9 22 38
Fl C
113 R R
56 93 200 158 464 464 464 241 241 86 464 328 241 86 86 202 69 12 328 51 466 265 265 265 12 552 71 225 12 466 124 328 348 231 145 294 86 167 167 80 466 403 86 541 541
C P (xlO 4 )
Remarks
Refs.
D D D D D 14 D D 17 17 D
W14 W15 C
112 C
C C
TABLE 2. TRANSFER CONSTANTS TO POLYMERS Polymer Acrylamide, N,N-dimethylPoIy(N, Af-dimethylacrylamide) Acrylic acid, ethyl ester Poly(methyl methacrylate) - , methyl ester Poly(isoprene) - , chlorinated Poly (methyl acrylate) Poly (methyl methacrylate) Acrylonitrile Cellulose
T( 0 C) 50
0.61
272
60
12800
M6
120
75 60
12.6 0.5 1.0 18000
C, F2 L L M6
308 212 105 120
1.0 11 20
L, N L, M4 L, M5
361 361 361
60 60
Remarks page 11-157; References page 11-159
TABLE 2. cont'd Polymer Acrylonitrile, (cont'd) Poly(acrylonitrile) Poly(methyl methacrylate)
Poly(sarcosine) 1,3-Butadiene PoIy(1,3-butadiene) Ethylene
-, chloro Poly(vinyl chloride) Hexanoic acid, vinyl ester Poly(oxyethylene), dodecyl ether Methacrylic acid, butyl ester Poly(methyl methacrylate) -, dodecyl ester Poly (methyl methacrylate) -, ethyl ester Poly(isoprene), chlorinated Poly (vinyl chloride) Methyl methacrylate Poly(ethylene) Poly(isoprene), chlorinated Poly(methyl methacrylate)
T(0C)
50 60 60
60
Poly(vinyl chloride) Poly(vinyl urethane) Rubber, natural 2-Pyrrolidinone, 1-vinyl-dextran Dextran
376 135 25 25 25 25 23
C, C, C, C, C, C, C, C, C, C,
50
5
L
60
780
60
7700
M6
120
60
12800
M6
120
C, F2 C, F28
308 308
70 70
18.3 21.0
50 80 40
0.6 23.4 1.5 360 0.22 1.5 1.5 360 360 1000 0.1 1.5 2.1 360 2.48 0.22 1000 0.04 1.0 0.42 0.75 2.20 2.95 2.0 2.8 11 10.0 17 10.9 11.0
80 90
Poly(vinyl acetate)
F14 L N M2 M3 M
Refs.
11 108.40 150.70 194.81 214.46 337.31 256.85 195.81 199.89 155.78 348.46
60
Poly(styrene)
4.7 3.5 0.2 240 900 1270 400
Remarks
50 174.8 201.6 215.0 231.2 230.3 229.2 230.3 230.4 230.5 256.0
50
Poly(propylene)
C P (xlO 4 )
50 130 50 60 80 60 80 70 50 50 50
5 5.87
W20, F32 W20, F32 W20, F32 W20, F32 W22, F32 W21, F32 W20, F32 W19, F32 W18, F32 W20, F32
142 540 540 540 540 540 540 540 540 540 540 211 278
C, F17 N M N N M M N M N M N M C
C, F28 C, F8 C
209 307 326 326 147 326 327 326 327 147 105 326 262 326 262 147 147 292 209 292 148 262 262 263 263 250 308 157 258 258 333 203
TABLE 2. cont'd Polymer Styrene Poly(oxyadipoyloxy-2,2-dibromomethyl trimethylene) Poly(oxyethylene) - , dodecyl ether Poly(oxythexamethyleneoxy sebacoyl) Poly(methyl methacrylate)
T( 0 C)
60 70 70 60 80 50
60
Poly(propylene)
Poly(styrene)
80 100 60 66 130 50
55 60
73.5 85 90 100 110
Poly(vinyl acetate) Poly(vinyl chloride) Poly(2-vinylpyridine) Vinyl acetate Poly(oxyethylene) - , dodecyl ether Poly (methyl methacrylate) Poly(styrene) Poly(vinyl acetate)
130 154 100 130 50 60 60 60 75 40 60 75 -15 0 11 21 31 40 50
C P (xlO 4 ) 4.05 19 14 20 13 0.4 <0.3 1110 1140 16.4 17.5 5.7 x 104 32 x 104 3.74 6.04 0.025 26 0.3 0.30 1.9 4.5 14.0 16.6 15 0.8 1.9 3.1 15.4 15.8 16.6 1.0 1.4 5.8 2.0 9.2 10.8 1.8 1.5 6.6 9.2 160 8-10 17 40 10 40 750 21 26 12 15 19 0.36 0.5 1.7 2 4 16 11.2 30.9 32.0 0.06
Remarks
L MlO MlO C, N N M N M Ml Ml M7 M6 C
L
Ml Ml C C N
N M M8 M9
O O O
W15
Refs.
325 562 562 278 394 327 326 326 327 64 64 120 120 262 262 292 486 292 207 144,148 327 327 176 177 105 73 105 64 64 176 8 8 327 276 177 176 43 43 263 263 250 279 277 277 277 277 271 263 263 263 263 263 97 97 350 145 145 145 12 43 263 265
Remarks page 11-157; References page 11-159
TABLE 2. cont'd T( 0 C)
Polymer Vinyl acetate {cont'd) Poly (vinyl acetate) (cont 'd)
60
60-70 70 Poly(vinyl acetate-co-vinyl chloride)
TABLE 3.
60
C P (xlO 4 )
Remarks
0.11 0.15 3 10.2 1.2 1.4 1.8 1.9 2.5 3.0 4.0 6.8 8.0 47.0 3.5 2 4 0.21 3.0
W14
P O VCL-Part VOAC-Part
Refs.
265 265 43 12 124 168,169 348 328 329 165 105 12 105 263 350 403 403 166 166
TRANSFER CONSTANTS TO CATALYSTS AND INITIATORS
Catalyst/Initiator Acrylamide Bisulfite ion Hydrogen peroxide Potassium persulfate Acrylic acid, benzyl ester Isobutyronitrile, 2,2'-azobis-
- , ethyl ester Isobutyronitrile, 2,2'-azobis- , methyl ester Benzoyl peroxide
2-Butanone, peroxide
T(0C)
tert-Butyl peroxide
Chloroform/CuCl2 Acrylonitrile Isobutyronitrile, 2,2'-azobis-
Azodiphenylmethane, benzyl-
-, cyclohexyl-
Remarks
0.17 0.0005 0.0258 0.028
55 60 65
0 0 0
291 291 291
65
0
306
55 60 65 70 65
60 70 65 70 75 120
0.0143 0.0246 0.0375 0.01 0.05 0.05 0.05 0.077 0.113 0.113 0.01 0.0266 0.00047 0.00082 0.00111 600
F13 D F13, LL F13, LL
Refs.
75 25 50 60
70 75 tert-Butyl hydroperoxide
Ci
C, FlO FlO
FlO
Q(5-19), Fl
352 92 560 560
221 221 221 322 221 123 221 221 123 221 221 221 221 221 221 551
50 60
0 0
F16
362 95
50 60 80 50 60 80
0.07 0.07 0.07 0.02 0.04 0.05
R R R R R R
536 536 536 536 536 536
TABLE 3. cont'd Catalyst/Initiator Azodiphenylmethane (cont'd) - , 1-phenylethyl-
- , 2-propyl-
Benzoic acid, vinyl ester Benzoyl peroxide Isobutyronitrile, 2,2'-azobis3-Buten-2-one, 3-methylBenzoyl peroxide Ethylene Azoethane, 1,1 '-dimethylEthylene, chloroValeronitrile, 2,2'-azobis[2,4,4-trimethylMaleic anhydride Benzoyl peroxide Methacrylonitrile Isobutyronitrile, 2,2'-azobisMethyl methacrylate Acetophenone, 2-diazo-2-phenyl/7-Anisoyl peroxide Benzoyl peroxide
2-Butanone peroxide
T (0C)
Remarks
0.1 0.1 0.1 0.02 0.04 0.05
80 80
0.0527 0
26 26
80
0.0509
84
83
0.5 0.51
25
0.85
425
75
2.63
175
60
0
125
70 60 50 60
0.0 0.037 0.01 0 0.02 0.0025 0.00698
459 316 145 34 145 123 123
65
75
80 tert-Buty\ hydroperoxide terf-Butyl peroxide Butyronitrile, 2-ethyl-,2,2'-azobis- , 2-methyl-, 2,2'-azobis- , 2,3,3-trimethyl-, 2,2'-azobisCinnamoyl peroxide Cobalt, [bis-[ja-[(2,3-butane-dionedioximato)(2-)-O,O;]] tetrafluorodiborato(2-)-A^',vV",;V'']-
60 20 60 60 60 60
Cyclohexanecarbonitrile, l,l'-azodiCyclopropanecarboxylic acid, 1-methyl2-(9/-anthryl)-, methyl ester Hydrogen peroxide Hydroperoxide, a,oc-dimethylbenzyl Isobutyronitrile, 2,2'-azobis-
60
Methane, diazodiphenylPalmitoyl peroxide
70 60 60 50 60 70 60
Peroxide, bis(ra-chlorobenzoyl) - , bis(o-chlorobenzoyl)
60 60
60 60
0.0033 0.0033 0.0040 0.0092 0.00553 0.00667 0.0071 0.0089 0.0111 0.0128 1.27 x [cat] < 0.0001 0 0 0 0.009 36000 2500 0 0.002 0.046 0.33 0 0 0.0 0 0.16 0.003 0.019 0.35 0.8 0.009 0.012
R R R R R R
Refs.
50 60 80 50 60 80
70
- , bis(p-chlorobenzoyl) - , bis(m-nitrobenzoyl)
C1
D, W D, W
12 F2
F17 FlO FIl FIl F2 FlO F17
C, D
536 536 536 536 536 536
204 205
123 123 123 123 123 123 123 123 123 123 34 35 317 317
317 316 563 F17 317 440 FIl F2 FlO
111
FlO 110
563
290 34 327 34,290,317 267 316 145 316 316 290 145 316 316
Remarks page 11-157; References page 11-159
TABLE 3.
cont'd
Catalyst/Initiator Methyl methacrylate (cont'd) - , bis(p-nitrobenzoyl) - , bis(m-phenylazobenzoyl) 2-Tetrazene, 1,1,4,4-tetramethyl0-Toluoyl peroxide Valeronitrile, 2-methyl, 2,2'-azobisStyrene Acetyl peroxide p-Anisoyl peroxide Benzoyl peroxide
J(0C)
Ci
60 50 30 60
0.144 0.00001 0.038 0.046 0.06 0
60 70 70 22 50 60 70
80 Cobalt, [Bis-[^-[(2,3-butane-dionedioximato)(2-)-O,O/]] tetrafluorodiborato(2-)-N,iV/,A^//,N//]Di-3-phenylazo benzoyl peroxide 2-Butanone, peroxide
50 70 90 50 70 75
tert-Butyl hydroperoxide
Butyl peroxide sec-Butyl peroxide tert-Buty\ peroxide
60 70
80 60 80 60 80 60
70 80 Butyryl peroxide Cinnamoyl peroxide Crotonyl peroxide Cyclohexanone peroxide Ethyl peroxide Formamide, 2-cyano-2-propylazoFuroyl peroxide Hexanoyl peroxide Hydroperoxide, a,a-dimethylbenzyl
70 70 70 60 60 80 100 70 70 40
0 0.074 0.1 0.13 0.048 0.055 0.101 0 0.075 0.12 0.18 0.13 0.813 1500 6.7 5.5 4.8 0.46 0.0667 0.1250 0.1670 0.1250 0.1670 0.2000 0.243 0.035 0.051 0.060 0.063 0.064 0.066 0.003 0.00076 0.00092 0.0029 0.0004 0.0021 0.00023 0.0003 0.0006 0.00086 0.0013 0.039 0.0022 0.0033 0.018 1.10 0.146 0.062 0.00066 0.0024 0.17 0.23 0.166 0.052
Remarks
C D 111
D
C
F17 R R R H F2 FlO FIl F2 FlO FIl H F6 F2, F5 F9 F2 F9 F2 F2 F9 F2, F12 F2 F2
F2 F2
H
Refs.
316 282 483 316 145 317 87,217 87 65 58 171 240 234 217 87 67 58,65 58,65 530 563 527 527 527 388 123 123 123 123 123 123 123 171 388 399 400 400 400 385 302 302 302 301 301 303 303 303 300 304 400 303 385 87 87 87 33 301 301 47 87 87 388
TABLE 3. cont'd T( 0 C)
Catalyst/Initiator Styrene (cont'd) Hydroperoxide, a,a-dimethylbenzyl (cont'd)
-, a,a-dimethylbenzyl, /?-isopropylIsobutyronitrile,2,2'-azobis-
50 60 70 70 50 60
Isopropyl peroxide Lauroyl peroxide
60 80 70
p-Menth-8-yl hydroperoxide Myristoyl peroxide
84 50 70
2-Naphthoyl peroxide Nickel peroxide Octanoyl peroxide
70 60 70
Oleoyl peroxide Palmitoyl peroxide Peroxide, bis(p-acetoxybenzoyl) -, bis(ra-bromobenzoyl) -, bis(o-[bromobenzoyl)
70 70 70 70 50 70 70 70 70 22 70 70 70 60 70 50 70 70 70 50 70 70 70 70 70 90 70 50 70 70 70 80 90 80 90 80 90 80 90 70
-, bis(/?-bromobenzoyl) - , bis(p-ter£-butylbenzoyl) -, bis(m-chlorobenzoyl) Peroxide, bis(o-chlorobenzoyl) - , bis(p-chlorobenzoyl) - , bis(/7-cyanobenzoyl) - , bis(2,4-dichlorobenzoyl) -, -, -, -, -, -, -, -, -, -,
bis(oc,a-dimethylbenzyl) bis(m-fluorobenzoyl) bisO-fluorobenzoyl) bis(p-fluorobenzoyl) bis(hydroxyheptyl) bis(m-iodobenzoyl) bis(/?-methoxycarbonyloxy-benzoyl) bis(m-nitrobenzoyl) bis(/?-nitrobenzoyl) bis(m-phenylazobenzoyl)
- , bis(5-phenyl-2,4-pentadienoyl) - , bis(2-thiophenecarbonyl) -, -, -, butylidenebis[rm-butyl
tert-butoxymaleoyl tert-butoxyphthaloyl
-, sec-butylidenebis[terf-butyl -, isobutylidenebis[terr-butyl - , isopropylidenebis[tert-butyl Pinanyl hydroperoxide
Ci 0.069 0.063 0.082 0.10 0.033 0 0 0 0 0.012 0.16 0.0003 0.0015 0 0.024 0 0.048 0 0.116 0.178 0.00265 0 0.098 0.154 0.142 0.187 0.465 1.0 2.17 0.193 0 0.346 2.0 1.91 0.216 0.804 2.9 2.6 0.01 0.246 0.40 0.219 < 0.005 0.262 0.208 6.2 7.4 5.5 4.8 5.24 0.23 0.38 1.52 0.018 0.00077 0.00140 0.00072 0.00115 0.00083 0.00155 0.00040 0.00105 0.026
Remarks H H H F2 H
F2 F2
H
C, F2
D
H
H
C C
C C C C C C C C H
Refs. 388 171 388 399 388 327 388 171 318 468 447 301 301 217 87 217 388 217 87 87 266 217 87 87 87 87 87 58,65 87 87 87 87 65 87 217 87 217 217 388 87 87 87 388 87 87 87 87 281 281 87 65 65 87 87 411 411 411 411 411 411 411 411 388
Remarks page II-157; References page II-159
TABLE 3. cont'd Catalyst/Initiator Styrene (cont'd) Pivalonitrile Propylene, oxidized Propyl peroxide Sorboyl peroxide Stearoyl peroxide Succinonitrile, tetramethyl2-Tetrazene, 1,1,4,4-tetramethylo-Toluoyl peroxide /7-Toluoyl peroxide 9-Undecenoyl peroxide Valeronitrile, 2,2/-azobis[2,44-trimethylVinyl acetate Benzoyl peroxide
T( 0 C)
60 60 70 60 70 70 60 30 70 50 70 70 25 60
Lauroyl peroxide Palmitoyl peroxide
65 50 60 60 60
Peroxide, bis(m-bromobenzoyl)
60
- , bis(o-bromobenzoyl)
60
- , bis(/?-bromobenzoyl) - , bis(o-chlorobenzoyl)
60 60
Isobutyronitrile, 2,2/-azobis-
Ci
0.000038 1.01 1.14 0.00084 1.19 0.154 0.000037 0.038 0.175 0.17 0.003 0.19 0.065 0.59 0.032 0.09 0.15 0.040 0.025 0.055 0.10 0.10 0.17 0.24 0.6 0.25 3.5 0.17 0.17
Remarks
D
13 13 13 13
Refs.
468 396 396 305 87 87 468 483 87 65 87 65 87 426 465 231 80 466 466 466 80 80 145 80 145 80 145 80 145
TABLE 4. TRANSFER CONSTANTS TO SOLVENTS AND ADDITIVES Solvent/Additive Acetic acid, allyl ester Benzene /7-Benzoquinone -, 2,3,5,6-tetrachloro- , 2,3,5,6-tetramethyl- , 2,3,5-trichloroCarbon tetrachloride Phosphorus trichloride Acrylamide Acetonitrile tris(2-Carbamoylethyl)amine Iron(III) chloride Isopropyl alcohol Methanol Propionamide
Water Acrylic acid, butyl ester Aniline, MN-dimethylEthanol Methanol Propanol Iso-propanol
J( 0 C)
C s (xlO 4 )
Remarks
80 80 80 80 80 100 40
21.0 5.2 x 105 16 x 105 4.14 x l O 4 5.5 x 105 2.0 x 104 1.0 x 104
J J J J C C, D
25 50 80 30 25 60
5.5 85 4.26 x 104 19 7.2 0.13 220 64
25 40 50 80 80 80 80
0.204 5.8 380 4.28 0.47 3.78 14.12
F13 Fl 3
Refs.
273 27 27 27 27 210 214
F13 F13, S C, F13 E E
564 564 75 353 353 130 103 103
C, F13 F13
437 444
A, R F31, A, R A, R A, R
161 548 548 548 548
TABLE 4. cont'd Solvent/Additive Acrylic acid, ethyl ester Acetic acid Acetone
Acetonitrile
Aniline, A^-dimethylBenzene
-, bromo- , chloro- , ethyl-
2-Butanone
Butyl alcohol
sec-Butyl alcohol
terf-Butyl alcohol
Butyric acid Carbon tetrachloride
Chloroform
Cumene
Cyclohexane
T( 0 C)
50 80 100 40 60 80 100 50 60 80 100 50 50 60 80 100 60 80 100 40 80 100 40 60 80 100 50 60 80 90 40 60 80 100 45 63 80 100 40 60 80 100 80 40 60 70 80 100 40 60 70 80 100 50 60 80 90 50 60
C 8 (xlO 4 )
0.176 0.537 1.05 0.207 0.27 1.10 2.30 0.158 0.245 0.55 1.43 2300 0.016 0.22 0.27 0.45 0.525 2.2 0.163 0.685 3.34 0.054 0.37 1.68 0.668 11.6 16.80 28.7 1.44 0.151 1.92 3.29 4.45 1.28 2.91 5.85 12.6 10.6 18.5 22.20 31.5 0.068 0.17 0.712 1.64 0.855 0.332 0.90 3.2 1.13 1.55 2.80 0.195 0.89 1.57 1.49 4.74 11.7 13.8 22.2 26.0 28.9 0.48 0.61
Remarks
A A C A A A A F16 C C A A A A A A A A C A A A A A A A A A
C A A C C A A A A C
Refs.
472 471 472 472 134 471 472 472 472 471 472 228 472 472 133 134 471 472 472 471 472 472 471 472 472 472 471 472 472 134 472 471 472 472 472 471 472 472 472 471 472 472 472 471 472 471 472 472 416 134 471 472 472 134 134 471 472 472 472 471 472 472 472 134
Remarks page II-157; References page II-159
TABLE 4. cont'd Solvent/Additive Acrylic acid, ethyl ester (cont'd) cyclohexane (cont'd) Dimethylformamide Ethanol Ethyl acetate
T( 0 C)
C s (xlO 4 )
Remarks
80 100 50 80 50 60
1.22 3.08 0.1 4.38 0.298 0.448 0.69 0.89 1.82 0.046 0.524 0.593 0.97 1.46 2.1 3.31 4.65 8.06 21 28.70 0.32 1.70 0.36
A A F7 A, R
80 100 80 50 60 80 100 45 63 80 100
Formic acid Heaxane
Isobutyl alcohol
Isopropyl alcohol 80 60
Methanol
80
Propanol Toluene
80 40 50 60 70 80 100
- , 2-ethylhexylester Toluene - , methyl ester Acetone
70 80
28.70 2.13
60 80
0.23 0.622 1.1 <2.5 480 <1.0 60 42.1 26.7 72.7 1000 0.326 0.45 0.52 0.986 0.71 309 6.056 46.4 2040 107 <1.0 600 1890 1000 3.92 400 1200 33.1 1600
Acetophenone Aluminum, triethyl Aniline -,MTV-dimethyl- , m-nitro-,p-nitroAnisole, m-nitroAnthracene Benzene
50 60 50 50 50 50 50 50 80
- , chloro-
80
- , 0-dichloro-, -,ethyl- , nitro- , 1,3,5-trinitroBenzoic acid, /?-nitroBenzonitrile Copper(II) chloride Phosphine, tributylPhosphorus trichloride Propanol Silane, dimethyphenyl- , methyldichloro- , tetraethyl- , trichloro-
ra-dinitro-
4.73 0.88 0.611 0.929 1.37 1.84 2.60 6.80
80 50 80 50 50 50 50 120 60 40 80 60 60 60 60
C A A A
A A
A A C A, R C 4 A, R
A,R
Refs.
471 472 510 548 472 472 134 471 472 471 472 472 471 472 472 472 471 472 445 548 134 472 548
C, F17, R C, F17, R C, F17, R C A A
548 472 512 512 512 134 471 471
C, F17, R C, F17, R
512 512
C
470 332 111 15 156 15 228 15 15 15 15 332 111 111 332 111 15 332 15 15 15 15 565 156 214 548 539 539 156 539
C F2, S F16
C C C
F34 F2 C, D A, R A, R A, R F2 A, R
TABLE 4.
cont'd
Solvent/Additive Acrylic acid, methyl ester(cont'd) - , triethyl- , triphenylStearic acid, methyl ester Toluene - , m-nitro-,/7-nitroTriethylamine Tripropylamine - , tetrahydrofurfuryl ester Carbon tetrachloride Acrylonitrile Acetaldehyde Acetamide, AW-dimethylAcetic acid Acetone Acetonitrile Acrolein, bis(2-ethoxyethyl)acetal - , bis(2-butoxyethyl)acetal Aluminum, hydrodiisobutyl -,triethyl - , triisobutyl Aniline
- , N,N-diethy\-
T( 0 C)
Remarks
Refs.
A, R A, R
50 50 60 60
300 800 0.751 2.7 1.775 2.7 41.2 48.6 400 470
539 539 441 21,24 332 111 15 15 24 156
40
1.0
C, F2
60 60 60 60 80
50 50 50 50 60 50 60 60 60 60 60 100 100 40 50 60 40 50 60
Aniline, AW-dimethyl-
40 50
60 Anthracene Arabinose Benzene - , bromo- , tert-butyl- , chloro-,ethyl- , iodoBenzoic acid, vinyl ester /7-Benzoquinone Borane, tributyl 2-Butanone - , 3-methyll-Buten-3-yne Butyl alcohol sec-Butyl alcohol tert-Butyl alcohol
C s (xlO 4 )
50 60 60 60 60 60 60 60 65 50 60 60 60 50 60 60 60
14 47 4.945 5.05 0.81 1.7 1.13 0.7 2.0 120 90.5 3940 590 17.0 x 104 28.0 x 104 32.0 44.0 9600 1.22 xlO 4 215 5.8IxIO 4 359 9.38 x 104 547 14.3 x 104 605 1.19 xlO 4 708 1040 1.5 x 104 1.54 xlO 4 870 964 2.18 xlO 4 1.8 x 104 13.0 2.46 1.36 1.93 0.79 35.73 5.19 1400 1.3 x 104 6470 6.43 21.08 3800 15.42 97.55 0.44
C
F2
F F7 F14 F14 F F14 Fl 5 F7 F7 F7 F7 F7 F7 F2, G F2, J F16, G, J F16, G, J F2, J F16, G, J F2, J F16, G, J F2, J F16, G, J F2, J F16, G, J F2, J F16, J F16, G, J J F2, J F16, G, J F8 G G, S G G, S G G, S F7 G G F7 G G G
319 436 377 375 197 377 377 95 377 86 499 156 156 156 247 247 229 229 227,229 229 229 229 229 227,229 229 229 229 229 229 161 228 227,229 24 229 229 15 361 95 95 95 95 95 95 136 15 156 95 95 377 95 95 95
Remarks page 11-157; References page 11-159
TABLE 4. cont'd Solvent/Additive Acrylonitrile (cont'd) Butyric acid, 4-hydroxy-y-lactone Cadmium, dibutyl Carbonic acid, cyclic ethylene ester
Carbon tetrabromide Carbon tetrachloride
T( 0 C) 50 60 50
60 50 60
Copper(II) chloride
60 80 60 80 35
Copper(II) sulfate
60 35
Chloroform
Crotonaldehyde Crotononitrile, transCumene Cyclohexane -,methylDimethylamine m-Dioxane, 5,5-dimethyl-2-vinylm-Dioxane, 5,5-dimethyl-2-vinyl- , 4-methyl-2-vinyl- , 2-vinyl1,3,-Dioxolane, 2-vinyll,3-Dioxolane-4-methanol, 2-vinylDiphenylamine-T Erythritol Ethane, 1,2-dichloro- , 1,1,2,2-tetrachloro- , 1,1,1-trichloro- , 1,1,2-trichloroEthanol, 2,2MmInOdI- , 2,2',2"-nitrilotriEther, dodecyl vinyl Ethyl acetate Formamide, N,N-dimethyl-
50 50 60 60 60 50 60 60 60 60 60 60 60 60 60 60 60 30 30 50 60 20 25 40 50
60
C s (xlO 4 ) 0.658 0.74 5.5 x 104 0.073 0.33 0.39 0.474 0.5 0.511 1.0 0.128 400 500 1900 0.85 1.13 5.64 5.90 1.8 x 105 1.9 xlO 5 3.2 xlO 5 10 x 105 1900 2800 3000 1.07 x 104 1.35 xlO 4 3.93 x 104 13.6 x 104 21.OxIO 4 47 19 41.41 2.06 2.31 175 2.20 4.40 2.71 16.60 2.40 700 12.8 1.47 3.11 1.25 1.68 10.1 76.0 4.95 2.54 1.4 4.97 3.24 1.0 2.70 2.78 2.8 2.83 10 2.412 4.494 5.0
Remarks
F7
E
F7, J G C G C U(0.01) U(0.1) U(l.O) F7 F13, J J, V(0.0001) J, U(0.01) J, V(0.001) J, U(0.1) J, V(O.Ol) J, U(LO) J, V(0.1) F7 F7 G G G F7 F7 F7 F7 F7 F7 F7 F8 G G G G F13 F13 C G C, J, F7 D, J E
F7
F15
Refs. 375 374 156 293 197 374 375 404 458 356 293 493 20 24 96 336 95 336 402 402 402 37 402 402 402 402 402 402 402 402 377 377 95 95 95 377 498 498 498 498 498 61 361 95 95 95 95 476 476 4 95 248 91 458 347 374 197 377 375 356 347 22 86
TABLE 4. cont'd Solvent/Additive Acrylonitrile (cont'd) Formamide, A^N-dimethyl- (cont'd) -, Af-methylFormic acid Glucose ot,D-Glucoside, methyl- , -, 6-deoxy-6-iodo- , - , 6-deoxy-6-mercapto- , - , 6-deoxy-6-phthalimido- , -, 2,3-di-O-benzyl- , -, 2,3,4,6-tetra-O-acetyl- , -, 6,-O-(/?-toluenesulfonyl)- , - , 6-O-triphenylmethylP,D-Glucoside, methyl- , - , 6-deoxy-6-dipropylaminoGlutaronitrile, 2,4-dimethylGlyceraldehyde Glycerol 2,4,6-Heptanetricarbonitrile 1-Heptanol, 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluorol,5-Hexadien-3-yne Hydrocyanic acid
T( 0 C)
50 50 60 60 60 60 60 60 60 60 60 60 60 50 60 60 50 60 50 50
Indium, triethyl Iron(III) chloride Isobutyl alcohol Isobutylene Isobutyronitrile
60 60 60 60 50 60
Lactonitrile Lead, tetraethyl Magnesium perchlorate Mercury, diethyl Methane, dichloro- , nitroMethanol Methylamine 2,6-Octadiene, 2,6-dimethylOxime, acrolein -, crotonaldehyde-, ethylisopropenylketone-, methacrolein-, methylacrolein-, methylvinylketone-, methylisopropenylketone-, methylisobutenylketone1-Pentanol, 2,2,3,3,4,4,5,5-octa-fluoro1-Pentanol, 4-methylPiperidine, 1-ethyl- , 1-methyl1-Propanol, 2,2,3,3-tetrafluoroSilane, tetraethyl Sorbitol Stibine, tributyl Succinonitrile Sulfur dioxide Tin, tetrabutyl Toluene
50 60 50 60 60 60 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 50 60 50 60
o-Toluidine, MN-dimethyl-
40 50
C s (xlO 4 )
1.8 0.5 6.9 20 50 1300 60 90 30 10 80 20 1100 0.6 32.1 23.5 1.0 1.9 1.17 x 104 0.81 6.2 2220 3.33 x 104 24.06 70 1.3 1.8 3.5 4.0 1 243 < 0.05 72.2 3.06 6.0 0.5 175 450 6.26 x 105 2.05 x 104 1.03 x 104 9.41 x 104 5.35 x 104 1.2 x 104 1.71 x 104 2.65 x 104 1.9 11.79 3300 2300 1.5 21.0 6.1 11.1 x 104 0.6 0 80.8 1.153 2.632 3.2 5.83 272 334
Remarks
Refs.
F14 F14 F8 F7 F7 F7 F7 F7 F7 F7 F7 F7 F7 F14 F8 F8 F14 F2 F7 F14 F F7 F7 G
377 377 361 220 220 220 220 220 220 220 220 220 220 376 361 361 376 442 377 377 436 156 19 95 553 376 376 135 86 377 156 376 156 95 86 377 377 6 555 555 555 555 555 555 555 555 442 95 24 24 442 156 361 156 86 362 156 347 347 21 24,95 229 229
F14 16 F15 F14 F7 F7 G F15 F14 F7
F2 G J J F2 F7 F8 F7 F7 G G G F2, J F2, J
Remarks page 11-157; References page II-159
TABLE 4. cont'd Solvent/Additive
T( 0 C)
Acrylonitrile (cont'd) 0-Toluidine, ^//-dimethyl- (confd) Tributylamine Triethylamine
Trimethylamine Tripropylamine Zinc, diethyl Zinc chloride Acrylonitrile/styrene (38.5-61.5 mol%) Methanol Anisole, /?-vinylAnisole, /?-isopropylBenzonitrile,/7-isopropylCumene -,/7-bromo-,/7-tert-butyl-,/?-chloroBenzoic acid, vinyl ester Benzene Benzoic acid, isopropyl ester 2-Butanone Carbon tetrachloride Chloroform Cyclohexane 1,3-Butadiene, 2-chloro1-Butene, 3-chloro-3-methyl2-Butene, l-chloro-3-methyl2,6-Octadiene, 2,7-dichloro3-Buten-2-one, 3-methylBenzene -,ethylCyclohexane, methylToluene Butyraldehyde, divinyl acetal Aniline, N,TV-dimethylBenzene Butyl alcohol tert-Butyl alcohol 1,3-Dioxolane, 2-propylButyric acid, vinyl ester Benzene Carbamic acid, vinyl-, ethyl ester Acetone Benzene Chloroprene 3-Chloro-(methyl-14C)l-butene(4-14C) 3-Cfcloro-2-pentene-(2,4-14C) /?-Dioxin, 2,3-dihydro-/maleic anhydride Benzene Carbon tetrabromide Carbon tetrachloride Chloroform /7-Dioxane Toluene m-Xylene
60 60 60
50 60 60 60 50
C s (xlO 4 )
30200 463 6700 1700 1900 3800 5900 6600 175 790 4820 1.05 x l O 4 1.06 x l O 4 0.006
Remarks
Refs.
F16, G, J F2, J J T
227,229 229 24 20 20 22 24 24 377 24 156 24 156 410
F7, J J F7 J F7 J F7 F13
65
1.4
116
60 60 60 60 60 60
3.40 40.9 4.28 11.8 3.64 8.52
407 407 407 407 407 407
60 80 60 80 80 80 80
1.5 0.4 1.0 29.0 730 105 2.3
393 26 393 26 26 26 26
50 50 50
5.47 4.57 5.24
Fl F2 F2
80 80 80 80
2.489 6.934 0.500 3.282
C C C C
50 50 50 50 50
1060 27.7 3500 37.2 708
152 152 152 84 84 84 84 430 430 430 430 430
80
3.28
201
60 60
8.5 1.25
117 117
50 50
5.37 3.94
60 60 60 60 60 60 60
11500 100 x 105 1.7 x 105 3.6 x 104 1.07 x 104 6.OxIO 4 9.9 x 104
F2 F2
509 509
R R R R R R R
169 169 169 169 169 169 169
TABLE 4. cont'd Solvent/Additive Ethylene Acetamide, AW-diethyl- , AW-diisopropyl- , Ar,A7-dimethyl- , N-ethyl-,TV-methylAcetic acid, butyl ester - , tert-buty\ ester - , methyl ester Acetic acid, chloro- , - , methyl ester
T( 0 C)
C s (xlO 4 )
Remarks
130 130 130 130 130 130 130 130
125 57 182 115 61 89 40 40
C, W5 C, W5 C, W5 C, W5 C, W5 C, W5 C, W5 C, W5
454 454 454 454 454 454 454 454
90
130
610 1210 2170 2150 2580 630 1160 1880 1990 2090 1120
C, Ql C, Q2 C, Q3 C, Q4 C, Q5 CQl C, Q2 C, Q3 C, Q4 C, Q5 C, W5
434 434 434 434 434 434 434 434 434 434 454
130
6700
C, W5
454
55
1800 7900 11100 13000 1900 6900 9400 10500 2000 5900 8100 11100
C, Ql C, Q2 C, Q3 C CQl C, Q2 C, Q3 C C, Ql C, Q2 C Q3 C
435 435 435 435 435 435 435 435 435 435 435 435
700 16100 27500 38000 65700 1000 17000 27700 39000 65200 1200 15400 23600 33000 54100 130 160 165 168 282 100 1970 0.629 20 21 9.4 18
C, Ql C, Q2 C, Q3 C, Q4 C CQl C, Q2 C, Q3 C, Q4 C CQl C, Q2 C, Q3 C Q4 C C, W5 C, W17 C, F21, W5 C, W5 C,W5 C, F21, W5 C, W5 E, W D D, W C,W5 W3
484 484 484 484 484 484 484 484 484 484 484 484 484 484 484 454 456 259 456 455 159 457 143 204 205 260 218
120
Acetic acid, cyano- , - , methyl ester Acetic acid, dichloro- , -, methyl ester
90
120
Acetic acid, trichloro- , - , methyl ester
55
90
120
Acetic anhydride Acetone
130 130
Acetonitrile Benzaldehyde Benzene
200 130 130 20 83 130 50-70
Refs.
Remarks page 11-157; References page 11-159
TABLE 4. cont'd Solvent/Additive
T( 0 C)
Ethylene (cont'd) -,ethyl-
130
Benzene-D6 Benzoic acid, butyl ester -,ethyl ester - , methyl ester Butane
200 130 130 130 130 130
- , 1-iodo-
100
2-Butanone
130
- , 3-methyl1-Butene
200 130 130
- , 2-methyl-
189 200 130
-,3-methyl2-Butene
130 130
- , 1,4-dichloro-,2-methyl tert-Buty\ alcohol
130 130 30 130 130 130 130 130 20 50 70
Butylamine Butyraldehyde Butyric acid, methyl ester Butyronitrile Carbon tetrachloride
90
95
130
140
C s (xlO 4 )
Remarks
Refs.
430 480 520 560 500 5.6 140 55 53 40 45 9.45 x 104 11.3 xlO 4 12.6 x 104 550 600 750 840 330 470 560 900 570 210 530 1200 250 380 4100 470 0 2 220 3250 220 520 215 772 974 7000 32000 740 1210 20200 32500 34000 1250 ±200 22000 ± 1000 43000 ± 4000 1130 ±700 2000 ±1000 37000 ± 3000 9800
C, W17 C, W5 C, W5 C, W5 C, W5 C, W5 C, W5 C, W5 C, W5 C, F21, W5 C, W17 Ql, W14 Q2, W14 Q3, W14 C, W17 C, F21, W5 C, W5 C, F21, W5 C, W5 C, W5 C, F21, W5 B, W5 C, W5 C, F21, W5 C, F21, W5 C, F21, W5 C, F21, W5 C, W5 C, W5 C, F21, W5 E, W4 C, F21,W5 C-W5 C, W5 C, W5 C, F21, W5 E, W CQl, C, Ql C, W4 C Ql, W12 CQl Q2, W12 Q3, W12 W12 W23, Q(I) W23, Q(2) W23, Q(3) W20, Q(I) W20, Q(2) W20, Q(3) C,F21,W5
456 52 454 52 455 260 454 454 454 259 456 187 187 187 456 259 455 259 52 52 259 443 455 259 259 259 259 454 454 259 482 259 454 457 454 259 143 391 391 215 210 453 391 453 453 453 518 518 518 518 518 518 259
1600 1700 1800 2200 22000 23000 30000 36000 38000 39000 60000
CQl C, Ql, F19 C, Ql, W13 C, Ql, F20 C, Q2 C, Q2, F19 C, Ql, Wl C Q3 C Q2, F20 C Q3, F19 C,Q2, W13
170 170 170 170 170 170 170 170 170 170 170
TABLE 4. cont'd Solvent/Additive Ethylene (cont'd) Carbon tetrachloride (cont'd)
Chloroacetic acid, methyl ester Chloroform
Cumene Cyclohexane
-,methylCyclopentane Cyclopropane Decane 1-Decene Dibutylamine Dichloroacetic acid, methyl ester Dimethylamine p-Dioxane Ethane - , U-bis(dimethylamino)- , l-bromo-2-chloro- , chloro- , 1,2-dibromo- , 1,1-dichloro-
T( 0 C)
C s (xlO 4 )
60000 61000 70000 90000 100000 110000 130000 140000 180000 90 590, 550, 1200 1680, 2240, 2340 28 2100 13000 15000 70 8000 30000 80 2470 15500 24900 31200 43900 95 2000±120 10000 ±500 16000 ± 3000 1150±50 5000 ±300 8000 ±1000 101 1500 4500 5400 103 2890 15400 23800 29800 41100 130 2900 140 3210 15200 22200 28000 37600 130 500 130 80 90 91 200 190 130 110 130 109 127 200 22& 130 0 130 120 189 425 189 1090 130 1070 901900, 6900, 9400 130 1900 130 320 130 6 130 1070 130 390 70 120 130 1250 70 1500
Remarks C, Q3 C, Q3, F20 C, Q4, F20 C, Q4, F20 C, Q2, Wl C, Q3, Wl C, Q3, W13 C, Q4, Wl C C, Q(I), Q(2), Q(3) C, Q(4), Q(5), Q(6) E, Ql, W E, Q2, W E, Q3, W C, W4 C C, Ql, W12 C, Q2, W12 C, Q3, W12 C, Q4, W12 C, W12 W23, Q(I) W23, Q(2) W23, Q(3) W20, Q(I) W20, Q(3) W20, Q(3) E, Ql, W E, Q3, W E, Q2, W C, Q1,W12 C, Q2, W12 C, Q3, W12 C, Q4, W12 C, W12 C, F21,W5 C, Ql, W12 C, Q2, W12 C, Q3, W12 C, Q4, W12 C, W12 C, F21, W5 C, F21, W5 C, W17 C, F21, W5 C, W5 C, F21, W5 C, W17 C, F21, W5 C, W5 C, F21, W5 C, F21, W5 B, W5 B, W5 C, W5 C, Q(I), Q(2), Q(3) C, F21, W5 C, F21, W5 C, F21, W5 C, W5 C, W5 C, W4 C, W5 C, W4
Refs. 170 170 170 170 170 170 170 170 170 557 557 244 244 244 215 210 101 101 101 101 101 518 518 518 518 518 518 224 244 244 101 101 101 101 101 259 101 101 101 101 101 259 259 456 259 455 259 456 259 455 259 259 443 443 454 558 259 259 259 457 454 215 454 215
Remarks page 11-157; References page 11-159
TABLE 4. cont'd Solvent/Additive
T( 0 C)
Ethylene (cont'd) Ethane, 1,2-dichloro- , iodo-
130 65 100
- , 1,1,1-trichloroEthanol
Ethyl acetate Ethylene oxide Formaldehyde Fomamide, W,TV-dimethylFormic acid, methyl ester Furan, tetrahydroHeptaldehyde Heptane Hexane 1-Hexene - , 2-ethylHydrogen Isobutyronitrile Isocyanic acid, butyl ester Isopropanol
Isothiocyanic acid, butyl ester Methane - , bromochloro-
70 20 30 60 100 125 130 125-135 150 180 200 130 200 130 130 130 130 130 200 130 200 50-70 130 130 189 189 130 130 200 130 130 30 60 100 125 130 125-135 150 180 200 130 130 100
130 140
C s (xlO 4 )
110 1.51 x 105 1.59 x l O 5 1.65 x 105 1.1 x 105 1.36 x l O 5 1.43 x l O 5 1.48 x l O 5 1.49 x 105 500 5.71 110,210, 270 76,240, 280 89,270, 340 100,310, 320 68 69 75 190 92,260 73,350 135 45 121 7 560 260 42 288 289 401 2600 3900 4800 90 80 68 225 900 3300 159 160 400 1070 212 96,410, 520 65,310, 380 65,300, 350 75,380, 380 130 140 144 570 98,470, 460 86,440, 500 234 0 0 1600 4500 7500 8000 10000 16.OxIO 5
Remarks
C, F21, W5 Ql Q2 Q3 Ql Q1,W14 Q2, W14 Q3, W14 Q3 C, W4 E, W E, Q(I), Q(3), Q(5) E, Q(I), Q(3), Q(5) E, Q(I), Q(3), Q(5) E, Q(I), Q(3), Q(5) C, W17 C, F21, W5 C, W5 C, W2 E, Q(I), Q(3) E, Q(I), Q(3) C, W5 C, W5 C, W17 C, F21, W5 C, W5 C, F21, W5 C, W5 C, W5 C, F21, W5 C, W5 C, W17 C, W5 C, W5 W3 C, F21,W5 C, F21, W5 B, W5 B, W5 C, F21, W5 C, W5 C, F21, W5 C, W5 C, F21, W5 C, W5 E, Q(I), Q(3), Q(5) E, Q(I), Q(3), Q(5) E, Q(I), Q(3), Q(5) E, Q(I), Q(3), Q(5) C, W17 C, F21, W5 C, W5 C, Wl E, Q(I), Q(3), Q(5) E, Q(I), Q(3), Q(5) C, W5 C, W5 C, W5 C, Ql, WIl C, Q2, WIl C, Q3, WIl C, Q4, WIl C, W5 Ql, WIl, II
Refs.
259 189 189 189 452 188 188 188 452 215 143 523 523 523 523 456 259 454 381 523 523 455 454 455 259 457 259 454 454 259 455 457 457 457 218 259 259 443 443 259 454 259 455 259 454 523 523 523 523 456 259 454 381 523 523 455 454 259 2 2 2 2 454 1
TABLE 4. cont'd Solvent/additive Ethylene (cont'd) Methane, bromochloro- (cont'd) - , chloro- , dichloro- , dimethoxy- , iodo-
T( 0 C)
70 70 130 130 65 100
Methanol
Methylamine 1-Octene
30 60 100 125 130 150 180 130 130
Pentane, 2,2,4-trimethylPentene - , 4,4-dimethyl- , 4-methylPhosphine - , dibutyl - , tributyl - , triphenyl Phosphorous acid, dimethyl ester Propane
130 189 130 130 130 130 130 130 130 130
- , 2-chloroPropane, 2-chloro-2-methyl-, 2,2-dimethyl- , 2-iodo-
200 70 70 130 65 100
- , 2-methyl-
130
- , 1,1,1,2,2,3,3,3-octafluoro1-Propene
200 130 130
Propionaldehyde
200 130
Propionic acid, methyl ester
200 90
120
C 8 (xlO 4 ) 47.0 x 105 4 700 360 73 41000 45000 45000 41000 45000 45000 36, 84, 100 46, 100, 140 34, 90, 120 56, 100, 140 21 53, 120, 160 37, 120, 160 53 360 360 64 900 175 310 207000 36000 4500 50 5100 27 27.6 31 65.2 250 40 8 5.7 x 105 5.9 x 105 6.07 xlO 5 4.55 x 105 4.70 x 105 4.83 x 105 50 72 136 4 110 122 150 200 2300 3300 2830 63000 92000
1.08 xlO 5 630, 420, 780 890, 1030, 1230 78000 1.12 xlO 5 1.39 xlO 5 780, 430, 1060 1220, 1300, 1410
Remarks
Refs.
Q2, WIl, II C, W4 C, W4 C, F21,W5 C, W5 Ql Q2 Q3 Ql Q2 Q3 E, Q(I), Q(2), Q(3) E, Q(I), Q(2), Q(3) E, Q(I), Q(2), Q(3) E, Q(I), Q(2), Q(3) C, F21, W5 E, Q(I), Q(2), Q(3) E, Q(I), Q(2), Q(3) C, W5 C, W5 C, F21, W5 C, F21, W5 B, W5 C, W5 C, W5 C, W5 C, W5 C, W5 C, W5 C, F21, W5 C, F21, W5 C, W17 C, F21, W5 C, W5 C, W4 C, W4 C, F21, W5 Ql Q2 Q3 Ql Q2 Q3 C, F21, W5 C, W5 C, W5 C, F21, W5 C, W5 C, W5 C, W5 C, W5 C, W17 C, W5 C, W5 C, Ql C, Q3
1 215 215 259 454 189 189 189 189 189 189 523 523 523 523 259 523 523 454 52 259 259 443 454 454 457 454 454 454 259 259 456 259 455 215 215 259 189 189 189 189 189 189 259 454 455 259 52 454 52 455 457 457 457 485 485
C, Q5 C, Q(I), Q(2), Q(3) C, Q(4), Q(5), Q(6) CQl
485 516 516 485
C, Q3 C, Q5 C, Q(I), Q(2), Q(3) C, Q(4), Q(5), Q(6)
485 485 516 516
Remarks page II-157; References page II-159
TABLE 4. cont'd Solvent/Additive
T( 0 C)
Ethylene (cont'd) -, 3-cyano-, methyl ester Silane, tetramethyl Tetradecane 1-Tetradecene Toluene
130 130 189 189 130
Tributylamine Trichloroacetic acid, methyl ester Tridecane Trimethylamine
200 130 90 130 130
Water /?-Xylene
20 130 200
Ethylene, bromoCarbon tetrachloride Ethylene, chloroAcetaldehyde Aniline, A^-dimethylBenzene Butyraldehyde
Carbon tetrabromide
60 50 50 35 50
50 60
Cyclohexane, 1,2-epoxy-4- vinylEthane, 1,2-dichloroEther, dodecyl vinyl Furan, tetrahydroHeptane, 2,4,6-trichloroOxalic acid, diethyl ester Pentane, 2,4-dichloroEthylene, 1,1 -dichloroPhosphorus trichloride Ethylene, tetrafluoroEthanol
25 50 50 25 40 50 50 25 25 50
790 0 580 1760 130 154 180 220 820 1000, 1700, 2770 140 180 330 1.71 300 317 400 434
110 2700 1500 350 420 500 580 4.7 x 104 50.0 x 104 3300 1.85 xlO 4 7.45 x 104 12.15 xlO 4 264 4.0 4.5 156 16 30 24 5 1.4 9.0 5 14
100
800 820 860 880 1540 1660 1700 350 390
100
Methanol
100 80 140 125-135 30-35
Remarks
C, W5 C, F21, W5 B, W5 B, W5 C, W5 C, W5 C, W17 C, W5 C, W5 C, Q(I), Q(2), Q(3) C, F21, W5 C, F21, W5 C, W5 E, W C, F21, W5 C, W5 C, W17 C, W5
50
60
Isopropanol
Hexanoic acid, vinyl ester Benzene 1-Hexene Carbon tetrachloride Cyclohexanol Ethyl alcohol
C s (xlO 4 )
454 259 443 443 52 454 456 455 454 559 259 259 454 143 259 454 456 455 417
W8 W7 W15 F26 Ql Q2 Q3 Q4 C, F26
G D C, Q5, W2 C, Q6, W2 C, Q4, W2 C, Q3, W2 C, Q3, W2 C, Q4, W2 C, Q5, W2 C, Q3, W2 C, Q4, W2
4.9 4.1 x 104 390 170
Refs.
164 161 219 500 500 500 500 492 66 418 418 418 418 428 425 392 4 425 246 164 211 315 315 211 214 3 3 3 3 3 3 3 3 3 201
C, Ql, F19 C D
170 381 381
TABLE 4. cont'd Solvent/Additive
T( 0 C)
Isobutene Carbon tetrachloride
100
Isobutyric acid, vinyl ester Benzene Maleic acid, diethyl ester Stearamide, iV-allylMaleic anhydride/methyl methacrylate Acetone Maleic anhydride/styrene Aniline, A^-dimethylCarbon tetrachloride Methacrylic acid Bromotrichloromethane - , butyl ester Benzene -, 2-(diethylamino)ethyl ester/styrene Carbon tetrachloride Toluene -, ethyl ester Acetic acid Acetone Acetophenone Benzene -, chloro- , ethyl2-Butanone Butyl alcohol sec-Butyl alcohol tert-Butyl alcohol Carbon tetrachloride
80
Remarks
E, Q(I) E, Q(2)
4.49 22.4
60
Refs.
537 201
J
173
1.6
HH
367
60 70
930 1.04
HH
489 365
70
300
60 80 80 80 80 80 80 80 80 80 80 80 80 80
566
0.158
264
23.6 13.3
335 335
80 80 80 80 80 80 80 80
0.095 0.102 0.281 0.081 0.436 1.428 0.252 0.454 1.604 0.417 0.901 5.640 0.703 2.360 2.067 0.928 1.821 0.311 1.820 0.536 0.919 0.429 0.865 0.702 0.445 0.236 0.436
70 70
0.983 2.05
-
137 137
60 80 80 80 80
0.165 1.971 1.110 0.510 0.510
C C C C
264 183 183 183 183
100 120 60 60 60
900 1000 30800 0.001 0.996
80
Cumene Cyclohexane Ethane, 1,2-dichloroEthane, 1,1,2,2-tetrachloro-
80 80 80 80
Iron(III) chloride Isobutyraldehyde Toluene Methyl methacrylate Acetaldehyde Acetic acid
(7.1 ±0.2) x 104 (8.1 ±0.5) xlO 5
90
Chloroform
-, 1,1,1-trichloroEthyl acetate Ethyl alcohol Heptane 2-Heptanone Isobutyl alcohol 2,4-Pentanedione Toluene - , hexadecyl ester Carbon tetrachloride Cumene - , isobutyl ester Benzene Carbon tetrachloride Chloroform Ethane, 1,2-dichloro- , 1,1,2,2-tetrachloroMethacrylonitrile Carbon tetrabromide
C s (xlO 4 )
60 80
6.5 0.24
S
C C C C
A, F7 A, F7 F7
A
83 83 83 83 83 83 83 83 83 83 83 183 83 183 83 83 183 83 183 83 83 83 83 83 83 83 83
109 109 19 70 21 86 31
Remarks page II-157; References page 11-159
TABLE 4.
cont'd
Solvent/Additive
T (°)
Methyl methacrylate (cont'd) Acetic acid, monochloro- , dichloro- , l,l-dimethyl-2,2,2-trinitroethyl ester - , trichloroAcetone
60 60 45 60 60 80
Acetonitrile, (m-bromophenyl)- , (p-bromophenyl)- , (m-chlorophenyl)- , (p-chlorophenyl)- , (p-methoxyphenyl)- , phenyl- , m-tolyl-,/?-tolylAcetylene,/7-bromophenyl-,/?-chlorophenyl- , /MiitrophenylAluminum, hydrodiisobutyl - , triethyl
60 60 60 60 60 60 60 60 60 60 60 60 50 60 60 80 100 30 50
Aniline - , MN-dimethyl-
60 70 80 100 60 60 80 100 60 25 60 60 60 50 50 60
- , AW-divinyl- , Af-methylp-Anisaldehyde Anisole - , />-ethynyl-,/j-isopropyl-,p-methylAnthracene Azobenzene Benzaldehyde -,/j-bromo-, m-chloro-,p-chloro-,/?-cyanoBenzene
60 60 60 60 25 30 50 52 60 75 80
- , allyl- , bromo-,
tert-butyl-
90 60 25 80
C 8 (xlO 4 ) 0.64 0.80 520 1.10 0.195 0.225 0.275 3.89 2.78 4.28 3.21 19.0 5.18 5.75 7.83 41.3 38.9 127.5 3600 1550 1240 4.2 6.3 9.0 2.45 18 30.4 430 11.3 10.8 17.0 20.0 340 7.0 10.0 13.3 1.11 0 40.3 3.46 0.57 0 100 2.5 0.86 1.43 0.96 1.03 2.06 0 0.01 0.036 0.027 0.040 0.83 0.33 0.075 0.080 0.24 0.036 400 0 0.260
Remarks R R R A
K K K S R, F2 F2 F2 F2 F16 H A, F2 A, F2 A, F2 F2 F2 F2 D K
C
D
C C A Il D A
Refs. 529 529 110 529 81 31 81 462 461 462 461 461 461 462 461 151 151 151 156 547 156 424 424 424 508 228 409 161 424 270 424 424 82 424 424 424 495 16 151 406 496 15 282 86 495 495 495 495 495 16 508 147,327 81 81 181 123 31 81 145 147 502 16 31
TABLE 4. cont'd J( 0 C)
Solvent/Additive Methyl methacrylate (cont'd) -, chloro-
-,/7-diisopropyl-, - , ethyl-
25 60 80 ra-dinitro-
- , ethynyl-, Benzene sulfonylchloride -,/7-chloro-,/7-dimethylBenzonitrile -,p-hydroxy- , p-isopropylp-Benzoquinone - , 2,3,5,6-tetrachloroBenzothiazolethion, 3-allylBenzyl ether Bibenzyl Biphenyl, 2,2-methyleneBorane, tributylBromoform Butane, 1-chloro-, 1,1,1-trinitro1,4-Butanediol 2-Butanone
1-Butene - , 3,4-epoxy-2-methyl2-Butene, cis- , trans3-Buten-2-ol, l-chloro-3-methylButyl alcohol sec-Butyl alcohol tert-Butyl alcohol
60 50 52 60 80 60
fluoro-
25 60 60 60 25 60 50 60 44.1 50 60 44.1 60 25 60 50 60 60 60 77 80 45 60 80 60 70 75 80 40 50 80 40 50 40 50 80 60 80 60 80 60 80
Butylamine, N-nitroButyl ether 1-Butyne, 1-phenylButyraldehyde
45 60 60 50
Carbon tetrabromide
30
C s (xlO 4 )
0 0.074 0.200 0.207 5.72 52 0.501 0.766 1.311 1.350 2.1 21.9 22.3 0 5.16 8.56 4.06 0 0.162 6.0 4.99 5.5 x 104 5.7 x 104 4.5 x 104 2600 153 10.4 8.0 0.0 41.8 53.5 7.45 23 1.20 8300 0.61 1.07 0.45 0.56 0.83 0.70 3.1 5.1 29.6 3.2 4.9 3.0 5.2 18.8 0.394 0.25 0.259 0.85 0.085 0.100 0.152 0 0.8 10.8 1.47 2.25 3.40 2800 ±600 1000 ±100
Remarks
Refs.
D
16 81 31 81 406 15 81 81 81 31 145 151 150 16 543 543 543 16 150 479 406 194 15 42 194 502 368 368 354 567 567 156 506 31 110 421 421 290 123 123 31 287 287 269 287 287 287 287 269 479 31 479 31 81 31 81 110 86 150 500 500 500 521 521
A
A Il K J D R R R D
D F2
D, C, R A F24 F24 C C C A
A A A
W8 W7 D, R, JJ3a D, R, JJ3b
Remarks page 11-157; References page 11-159
TABLE 4. cont'd Solvent/Additive
T( 0 C)
Methyl methacrylate (cont'd) Carbon tetrabromide (cont'd)
Carbon tetrachloride
60 60 60 80 100 20 30 50 60
70 80
Chloroform
60 80
Copper(II) chloride Cumene
60 60 80
-,p-bromo-
60
-, p-tert-butyl-,/7-chloroCyclohexane
60 60 60 80 80 60 60 50 79.5 80 44.1 60 79.5 79.5 60 60 60 80 45 60 80
-,methyl- , trans-lA-, diacetate - , cis/trans-1,4-, dicarboxylic acid dimethylester Cyclotetrasiloxane, octamethylp-Dioxane Diphenylamine Diphenylamine-T Disiloxane, l,l-dimethoxy-3,3,3-trimethyl-l-phenyl- , hexamethylEpibromohydrin Epichlorohydrin Ethane, 1,2-dichloro- , nitro- , 1,1,2,2-tetrachloro- , 1,1,1-trichloro- , 1,1,1-trinitroEthyl acetate
80 45 60
C s (xlO 4 ) 1000 ±500 50Od= 200 2700 1500 1900 3300 4600 0.2 20 0.20 0.82 0.925 2.40 5 20.11 18.52 0.42 0.5 1.74 2.393 2.421 3.3 24.4 0.454 1.77 1.129 1.400 1.9 1.9 105 x 105 1.9 2.56 1.9 2.4
Remarks
Refs.
D, R, JJ3c D, R, JJ3d F2
521 521 109 568 568 109 109 35 451 514 514 81 181 86 529 529 568 568 514 31 81 145 427 81 181 81 31 145 427 36 7 406 31 145
F2 F2 C, D D, F2
C R R, H R R, H A Il D C A Il D F7 A Il
3.71
2.74 3.07 12 0.10 0.195 8.46 1.16 2.5 0.080 0.222 0 0.3 0.032 0.104 16.53 9.3 0.35 0.756 2.0 0.155 0.200 0.235 0.600 1400 0.100 0.13 0.132 0.134 0.155
406
A A C C C A F2 R R
A A C A C
406 406 86 31 31 569 569 450 474 31 194 46 474 474 529 529 81 81 110 81 31 81 31 110 316 290,316 216 290 290
TABLE 4. cont'd Solvent/Additive
T( 0 C)
Methyl methacrylate (cont'd) Ethyl acetate (cont'd)
Ethyl alcohol Ethylene glycol Germane, diethylchloro- , ethyldichloro- , triethyl- , triphenylGlycerol Heptane 1-Heptanol, 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroHydrazyl, 2,2-diphenyl-l-picryl Hydroquinone Indium, triethylIsobutyl alcohol
70 75 80 60 80 100 60 80 60 60 60 60 60 50 60 44.1 45 131 60 60 80
Isobutyric acid - , methyl ester Isopropyl alcohol
80 60 60 80 100 130
Lead, tetraethyl Malononitrile, furfurylideneMercury, diethyl Methane, bromotrichloro- , bromotrinitroMethane, dichloro- , nitro- , trinitro- , triphenylMethanol 1-Naphthol 2,6-Octadiene, 2,6-dimethylOleic acid, methyl ester Oxime, acrolein- , crotonaldehyde-, ethylisopropenylketone- , methacrolein- , methylacrolein-, methylisobutenylketone-, methylisopropenylketone- , methylvinylketoneOxolane, c/s-3,4-diacetoxyPentane, 2,2,4-trimethyl1-Pentanol, 2,2,3,3,4,4,5,5-octa-fluoro2-Pentanone, 4,4-dimethyl-5,5,5-trinitro-
60 44.1 60 30 45 60 80 60 45 60 60 80 100 45 60 60 60 60 60 60 60 60 60 60 60 50 60 45
C s (xlO 4 )
0.156 0.46 0.55 0.83 0.240 0.40 0.625 0.80 0.28 0.60 22000 39300 5800 18500 0.152 1.8 2.8 20OxIO 5 7.0 100 332 0.10 0.505 0.229 0.250 0.900 0.26 0.583 1.907 3.00 8 43 45 3.14 1.2 x 104 0.898 830 1.2 xlO 4 4.5 xlO 4 1.0 x 104 0.100 0.217 2.0 5400 4.0 0.2 0.33 0.45 <5.0 6.7 1.68 8.0 25500 500 3000 17000 5200 4700 2900 1300 1.39 1.2 2.36 400
Remarks
C 110 C C A A, F2 A, F2 A F24 F24 A, R A, R A, R A, R F2 A
A A
A C C C S D, Q3 D D, Q4
A, F2 A, F2 A
C F2
Refs.
290 146 123 123 31 423 423 49 421 421 539 539 539 539 479 206 442 194 30 398 156 81 479 81 31 31 275 81 81 49 337 337 480 156 194 156 311 311 311 110 81 81 86 110 44 423 423 49 30 324 441 7 555 555 555 555 555 555 555 555 569 206 442 110
Remarks page II-157; References page II-159
TABLE 4. cont'd Solvent/Additive Methyl methacrylate (cont'd) - , 4-methyl3-Pentanone
Pentasiloxane, dodecamethylPhenol - , 0-bromo-,/7-bromo- , o-chloro- , o-ethyl-,/?-ethyl- , 0-isopropyl- , /?-isopropyl-,/7-methoxy- , 2,3,4,6-tetramethylPhenyl ether Phosphine, octyl-,phenyl- , tributylPhthalic acid, dimethylester Piperidine, 1-nitrosoPropane, 1,2-dichloro- , 1,1-dinitro- , 2,2-dinitro- , 1-nitro1,2-Propanediol 1-Propanol, 2,2,3,3-tetrafluoroPropene, 1,3-diphenyl1-Propene, 2-methylPropionic acid, 2,2,2-trinitroethyl ester Propionitrile, 3-phosphino- , 3,3/-phosphinylidenediPropyl alcohol
Pyridine Pyrocatechol - , p-tert-buty\Pyrogallol Silane, (oc-bromotolyl)trimethoxy- , bromomethylphenyltrimethoxy- , chlorotrimethyl- , dichlorodimethyl- , dichloromethyl- , diethylchloro- , dimethoxymethylphenyl- , dimethylphenyl- , hexamethoxy-^^'-thiodipropyDbis- , methyldichloro- , (3-mercaptopropyl)trimethoxy- , tetraethyl- , tetramethyl- , trichloro - , trichloromethyl-
J(0C)
80 60 80
79.5 50 50 50 50 50 50 50 50 45 45 25 60 60 60 60 30 45 80 45 45 45 60 80 60 60 40 50 45 60 60 60 80 100 70 45 45 45 79.5 79.5 30 50 30 50 79.5 60 79.5 60 79.5 79.5 60 79.5 60 30 50 60 30 50
C s (xlO 4 )
0.700 0.833 1.729 1.775 2.7 0.145 2.5 5.0 5.0 3.5 7.2 7.5 13.3 13.3 <5.0 11.0 6.42 9.13 2.3 x 104 16.IxIO4 30.6 0.2 8.2 0.675 68 15 5 0.48 0.86 1.86 15.6 2.5 4.4 3000 1.4 x l O 4 1.3 x 104 0.69 0.84 1.25 0.176 <5 9 26 29.8 29.8 144 2.2 175 2.45 15.2 1700 0.20 0.2 300 25.8 15.2 3100 6930 5.75 5.0 1.3 5000 185 2.7
Remarks
A
A Il
D
S
A
F24 F24 F2
A, F2 A, F2 A
R D, F2 D, F2
A, R R A, R R R A, R R D, F2 A, R D, F2
Refs.
31 81 81 31 145 474 479 479 479 479 479 479 479 479 30 30 368 368 295 295 156 508 110 31 110 110 110 421 421 442 567 287 287 110 295 295 423 423 49 514 30 30 30 474 554 451 249 451 249 474 539 474 554 539 554 554 539 554 156 451 249 539 451 249
TABLE 4. cont'd T( 0 C)
Solvent/Additive Methyl methacrylate (cont'd) - , triethyl - , triisopropoxymethyl-
60 79.5
- , trimethoxymethyl-
79.5
- , trimethoxyphenyl-
79.5
- , triphenylSilicon chloride
60 30 50 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5
Siloxane, l,l-dimethoxy-trimethyl-l-phenyl-di-3,3,3- , dodecamethyl penta- , l,l,l,3,5,5,5-heptamethyl-3-phenyltri- , 1,1,1,3,5,5,5-heptamethyl-tri- , 1,1,1,3,5,5,5-heptamethyl-tri- , l,l,l,3,5,5,5-heptamethyl-3-(3,3,3,3-tri-fluoropropyl)-tri- , hexamethyl-di- , hexamethyl-phenyl-tri- , l,l,l,5,5,5-bexamethyl-3-(2-phenylpropyl)-tri- , 3-(3-mercaptopropyl)1,1,1,3,5,5,5-heptamethyl-tri- , octamethyl cyclotetra- , octamethyl triSorbit-2,5-diacetate, 1,4:3, 6-, dianhydroStearamide, JV-allylStearic acid, methyl ester Stibine, tributyl Tin, tetrabutyl Toluene
79.5 79.5 60 90 60 60 60 20 52 60
70 80
-, p-bromo-, -,p-chloro-, a-chloro - , p-ethynyl-,p-nitro-, 2,4,6-trinitrom-Tolunitrile, a-cyanop-Tolunitrile -, a-cyanoTributylamine Triethylamine
ra-chloro-
Tripropylamine Trisiloxane, 1,1,1,3,5,5,5-heptamethyl- , - , 3-(p-methylphenethyl)- , - , 3-phenyl- , - , 3-propyl- , - , 3-(3,3,3-trifluoropropyl)-
60 60 60 60 60 44.1 44.1 60 60 60 70 20 60 60 79.5 79.5 79.5 79.5 79.5
C s (xlO 4 )
200 0.697 0.697 0.331 0.331 0.053 0.053 1200 256 3.0 0.032 0.145 0.232 0.284 0.189 0.205 0.104 1.84 2.08 1284.5 0.08 0.0316 29 3.01 0.282 <1.0 1.32 0.04 0.084 0.170 0.190 0.202 0.250 0.26 0.400 0.45 0.567 0.292 0.303 0.52 0.525 0.91 0.58 0.48 0.49 4.17 64.4 0 500 4.55 0.73 1.74 25.7 1.5 8.3 1900 14.6 0.284 2.08 0.232 0.189 0.205
Remarks
A, R
Refs.
R R R R R R R R R R
539 474 554 474 554 474 554 539 451 249 554 554 554 554 554 554 554 554 554 554
R R C
554 554 569
R R R A, R D, F2
C, J
C, D C C C C C C Il A C
C K
C, D J
173 441 156 156 35 81 21,81 316 32,316,317 316 275 316 496 123 32 81 145 31 123 496 496 496 181 151 194 194 462 496 461 270 35 24 25 156 474 474 474 474 474
Remarks page 11-157; References page 11-159
TABLE 4. cont'd Solvent/Additive Methyl methacrylate {cont'd) - , l,l,l,5,5,5-hexamethyl-3-phenyl- , octamethylUrea, thioWater
m-Xylene p-Xylene 2,4-Xylenol Naphthalene, 1-vinylNaphthalene Nonanoic acid, vinyl ester Toluene 1-Octene Butyl alcohol sec-Butyl alcohol Ethyl alcohol Isopropyl alcohol Methanol Phthalimide, N-vinylChloroform Ethane, 1,2-dichloroMethane, dichloro2-Picoline, 5-vinylAllyl ether 1-Propene Carbon tetrachloride Chloroform 1-Propene, 3-chloroCarbon tetrachloride Hydrochloric acid 1-Propene, 2-methylCarbon tetrachloride - , 3,3,3-trifluoroCarbon tetrabromide Propionic acid, vinyl ester Toluene Propylene Bromoethane
J( 0 C) 79.5 79.5 42 60 80.5 60 60 50
30-50
50 60 70
11.1 13.9 15.2
117-118 117-118 115-118 30-35 120-125 116-120 55 55 55 70 100 100
Styrene Acetaldehyde
270 520 230 630 520 110
Remarks
A, R F7, F24
4800 1.8 x 104 5.4 xlO 4
100
17.0 x 104 640000
474 474 503 268 479 529 48 496 496 479
R R R
357 357 357
C C C D C C
381 381 381 381 381 381 313 313 313
21.4 (5-10) x 104 1.03 x 104
Refs.
216
3.4 0.35 0.97
100 80
11 C C
210 210
C Ql Q2
210 238 238
C
210
C, Q(I-3)
570
-
1.4
50 75
1200 1400 1500 1800 1700 1900 1800 2200 2100 2700 17200 ±1100 33000 ± 15000 17000 ±800 299000 ± 8000
Q(I-4) Q(I) Q(2) Q(3-4) Q(I) Q(2) Q(3-4) Q(l-2) Q(3-4) Q(l-4) W23, Q(I) W23, Q(2) W24, Q(I) W24, Q(2)
517 517 517 517 517 517 517 517 517 517 518 518 518 518
13800 ±800 266000 ± 10000
W20, Q(I) W20, Q(2)
518 518
125
Stearic acid, vinyl ester Toluene
1.84 0.032 1.21 0 0.002 0.03 0 0.43 0.50 6.5
60
100
Chloroform
C s (xlO 4 )
150 95
50 70
20.7 21.6
60
8.5
158
R R
357 357 86
TABLE 4. cont'd Solvent/Additive Styrene (cont'd) Acetamide, N,Af-dimethylAcetic acid - , methyl ester - , bromo- , chloro- , - , methyl ester - , dibromo-, ethyl ester - , monochloro- , dichloro-, -, -, -, -,
dichloro-, ethyl ester iodophenyl- , ethyl ester tribromo-
- , -, ethyl ester - , trichloro-
-, - , ethyl ester
T( 0 C)
50 60 40 100 60 68 68 60 100 90 60 60 60 68 60 100 90 90 60
Acetic anhydride Acetoacetic acid, ethyl ester - , 2-acetyl, ethyl ester Acetone
60 90 100 60 100 100 60
- , oxime Acetonitrile - , m-bromophenylAcetonitrile, p-bromophenyl-, m-chlorophenyl-,/7-chlorophenyl-,/?-methoxyphenyl-,phenyl-, m-tolyl-,/7-tolylAcetyl bromide Acetyl chloride, chloroAcetylene, p-bromophenyl- , p-chlorophenyl-,/7-nitrophenylAdipic acid, diallyl ester - , di-(3,3,5,5-tetramethyl-4-nitrosocyclohexyl) ester Allyl alcohol Aluminum, hydrodiisobutyl
60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 100
- , triethoxy- , triethyl
100 100
-, triisobutyoxy- , triisobutyl Aniline
100 110 50 60 50
- , MN-dimethyl- , AW-divinyl-
60
C s (xlO 4 )
0.743 4.6 2.22 0.33 430 300 200 0.3 0.75 2700 28.6 0.76 35.0 1.0 1.3 8000 6.0 8.8 3.0 x 104 2.4 xlO 4 10.5 x 104 270 66.0 100 3.75 65.0 90.0 145.0 0.7 1.3 3.0 4.1 <0.5 0.32 2.2 0.44 66.7 68.5 65.2 66.0 51.0 45.1 48.5 49.2 8600 3300 188.5 161 3130 6.0 1.1 x 104 1.5 26.9 x 104 28.OxIO 4 <0.1 8.05 x 104 17.OxIO4 <1.0 28.5 x 104 20 2.0 12 53 130
Remarks
C
A A C R R, H R R, H A A C C A R R, H A C A A C A A A A
S K K K F9, J A A A A A A F2 A F2
Refs.
375 113 385 72 112 149 149 128 128 64 529 529 529 529 128 149 128 72 178 64 64 178 128 529 529 128 64 128 128 72 72 182 128 501 128 128 462 461 462 461 461 461 462 461 112 112 151 151 151 446 314 128 156 155 155,156 156 155 155 155 154 128 154 161 82
Remarks page 11-157; References page 11-159
TABLE 4. cont'd Solvent/Additive
T (°)
C s (xlO 4 )
Styrene (cont'd) Aniline, N-methyl- , 2,4,6-trinitro/7-Anisaldehyde Anisole,/7-ethynyl- , m-isopropyl- , p-isopropyl- , p-methyl-,2,4,6-trinitroAnthracene - , dihydro2H-Azepin-2-one, hexahydroAzobenzene Benzaldehyde
50 50 60 60 60 60 60 50 44.1 50 130 70 60
13 11.8 x 104 2.86 60.0 5.23 3.23 0.78 20.3 x 104 2.OxIO 4 610 0.61 750 4.54 5.5 2.6 12.2 13.7 8.63 5.6 76.7 3.9 5.8 0.01 0.018 0.023 0.028 0.04 1.92 5.50 6.67 0.061 0.121 0.156 0.184 0.23 0.31 0.42 0.81 0.89 1.5 36 1.78 3 6.22 0.04 0.06 0.193 0.55 0.133 1.50 0.235 0.874 0.54 0.6 58.5 x 104 1950 7.02 10.70
-,/7-bromo-, m-chloro-,/7-chloro-,p-cyanoBenzene
100 60 60 60 100 60 35 40 50 60
70 75 80
100
132
-, allyl-, bromo- , sec-butyl- , tert-bx\ly\-
100 60 155 60 60
- , chloro-
80 100 60 80
- , - , 2,4,6-trinitro- , 1,2-dibromoethyl-,/?-dibutyl - , /?-di-seobutyl- , p-<\i-tert-bu\y\-
100 140 50 60 60 60 60
0.87
- , m-dichloro-
140
- , o-dichloro-,/7-dichloro-
60 60
0.2 1.4 3.4 2.6
Remarks F2
Refs.
H H
154 370,372 495 151 405 406 496 370,372 159 271 108 281 495 86 298 495 495 495 298 495 119 119 327 127 79 255 145 415 123 123 185 255 273 127 145 235 235 235 127 145 524 182 237 415 145 127 185 127 255 182 255 185 235 58 370,372 112 415 415
H
415
C C
58 67 182 182
K
J D C, I C A
A F2 F2 A C A, 15 H C C 15 C A A, 15 A A A A A, 15 A, R C A H A, 15 A 15 A C C C 15 A
TABLE 4. cont'd Solvent/Additive
T( 0 C)
C s (xlO 4 )
Remarks
Styrene (cont'd) Benzene, diethyl-, (mixture)
100
A A A
-, ethynyl-
60
-, -, -, -,
60 60 60 40 50 60 44.1
3.35 6.33 5.13 3.30 6.60 0.67 0.70 0.710 0.83 2.7 1.07 1.113 1.38 1.62 2.2 2.33 2.31 2.9 4.9 96.3 98.3 12.76 9.43 13.30 9.48 x 105 6.43 x 105 3.51 x 105 1.3 x 105
70 50 60 60 60 44.1 60 80 45 80 80 80 80 80 25 60 60 60 80 60 60 100 100 60 100 60 100 60 100 60 60 100 60 80 100
700 5.72 x 105 40 5.3 18.6 1.4 x 105 22.7 x 105 56.6 x l O 5 53.2 x 105 4.3 x 105 21.OxIO 5 95.0 x 105 6700 2.6 x 105 71.6 62.4 3020 1.12 x 104 1.2 x l O 4 142 97.9 <0.1 34.8 0.06 0.35 0.04 0.37 1.2 0.3 0.43 1.85 5.5 3.2 5.6 9.3
-,/?-diisopropyl-,ethyl-
132 60 60
80 100
132
sec-hexylsec-pentyltri-sec-butyl1,3,5-trinitro-
Benzo[B] chrysene Benzoic acid -, m-(phenylazo)-, methyl ester - , 2,4,6-trinitro-, ethyl ester Benzoin Benzonitrile -,/7-isopropyl Benzo[A]pyrene p-Benzoquinone /7-Benzoquinone, 2-anilino- , 2,5-dimethyl- , 2-methyl- , 2,3,5,6-tetrachloro- , 2,3,5,6-tetramethyl- , 2,3,5-trimethylBenzyl ether Bibenzyl, ococ'-dibromoBicyclohexyl, 3,3,3',3',5,5,5',5'-octamethyl-4,4'-dinitrosoBiphenyl, 2,2 '-methyleneBorane, tributoxy- , tributyl Butane, 1-bromo- , 1-chloro-, 2-chloro- , 2,2-dimethyl- , 1-iodo1,4-Butanediol
A C A, 15 C 15 C A A A, 15 A A A A, 15 K J H H H
J C A J J J J J J J J D F9, J F9, J
A A A A A, S A A A F24 F24 F24
Refs. 235 235 235 497 406 127 79 255 145 363 185 255 235 127 145 235 235 127 145 151 150 415 415 415 372 370,372,373 372 159 281 370,372 128 150 406 159 42 27 199 27 27 27 27 27 368 368 112 314 314 567 567 156 156 128 128 128 128 128 128 304 128 128 422 422 422
Remarks page II-157; References page 11-159
TABLE 4. cont'd Solvent/Additive Styrene (cont'd) 2-Butanone
T( 0 C)
1-Butene - , 3,3-dimethyl-2-phenyl- , 2,4-diphenyl- , 3,4-epoxy-2-methyl- , 2-methyl- , 3-methyl-
60 70 75 100 110 110 80 100 100
2-Butene - , 1,4-dichloro- , 2,3-dimethyl-
100 80 100
-,2-methyl3-Buten-2-ol, l-chloro-3-methylButyl alcohol
100 80 40 50 60
sec-Butyl alcohol terf-Butyl alcohol
Butylamine terf-Butyl ether tert-Buty\ isocyanide 1-Butyne, 1-phenylButyraldehyde
60 50 60 80 100 130 60 60 80 100 60 50
- , diallyl acetal Butyric acid, 4-hydroxy-, y-lactone Cadmium, dibutyl Carobonic acid, cyclic ethylene ester - , diallyl ester - , di-(3,3,5,5-tetramethyl-4-nitrosocyclohexyl) ester Carbon tetrabromide
60 100 60 50 100 50 60 60 80 40 60
60 60 70 80 90 100
C s (xlO 4 ) 4.98 8.60 12.00 2.6 10 70 17.4 3.1 6.9 6.1 2.0 51 5.4 5.1 2.9 8.2 11.2 6.5 0.06 1.6 0.562 6.6 0.22 6.65 0.345 0.55 1.0 0.5 2.6 1.0 33.0 34.3 2.7 14.3 2.7 3.7 4.0 4.7 8.0 8.0 11.7 14.3 5.7 11.0 20.2 0.409 1170 0.235 6.2 1.3 x 104 1.4 x l O 4 1.8 x 104 1.78 x l O 4
2.2 x 10 4 2.5 x 10 4 13.6 x 10 4 4.2 x 10 4 (5.09 ±0.18) xlO 5 88300 40600 1.8 x 10 4 2.3 xlO 4 2.51 x 10 4 2.35 x 10 4
Remarks C C C A A A A A A, R A C A A, R A F24 A A, C
A A A A C, F2 C, F2 W8 F29, W8 F29, W16 F2, W7 F29, W7 F2, W15 F29, W15 F2 F29 A A
E F27, J F9, J F2 C
F2 Fl A 112
F2 C A
Refs. 182 123 123 358 433 433 269 358 358 524 358 112 358 524 358 269 119 430 128 323,385 479 430 422 385 422 261 261 128 301 301 4,75 150 412 412 414 414 413 414 413 414 413 414 128 128 446 375 156 458 446 314 314 109 64
109 109 128 487 520 568 568 61 109 64 128
TABLE 4. cont'd Solvent/Additive
F( 0 C)
C s (xlO 4 )
Remarks
80 100 17 248 69 84 87 90 92 98 100 109 110 120 122 144.1 130.9 148 92 110 18 117 133 34.1 148 186 185 304 300 0.41 0.5 0.566 3.40 4.0 0.50 0.916 3.3 11 33 43 22.1 39 <5 0.8 0.82 1.04 3.88 1.31 2.00 2.90 8.29 7.57 3.46 6.90 0.024 0.031 0.04 0.063 8.5 0.066 0.083 0.156 0.16 0.23
W8
Refs.
Styrene (cont'd)
Carbon tetrachloride
50 60
60 60 76 80 85 95
Chloroform
100 132 140 60
68 80 Chloroform/acetone m-Cresol 0-Cresol p-Cresol - , a-phenylCumene
60 50 50 60 50 60 60 60
80 100 - , m-bromo-,/7-bromo- , p-tert-butyl-,p-chloroCyclohexane
60 60 60 60 60
80 100
Q36 C, W8 C C, W7 A C Q142 A, X R R, H X C A 15 Q38 Q142 A A A A C C 15 C
A A, 15 15 A A, 15
A A, 15 C F23 15 C A A, 15
412 412 513 513 63 401 113,183 401 128,129,210 401 366 63 223 416 114 529 529 115 568 568 236 236 185 163 63 63 128,129 129 58 501 128,210 255 182 149 185 255 501 247,248 247,248 121 247,248 121 121 7 127 145 406 185 127 145 405 406 406 406 127 79 145 255 119 185 255 273 127 145
Remarks page 11-157; References page 11-159
TABLE 4.
cont'd
Solvent/Additive
T( 0 C)
Styrene (cont'd) Cyclohexane (cont'd) 132 Cyclohexanone •-, trans-lA-, diacetate - , cis/trans-1,4-, dicarboxylic acid dimethylester Cyclopentanone 1-Cyclopentene- 1-carboxylic acid, 3,3,5,5-tetramethyl-4-nitroso-, diester with pyrocatechol Cyclotetrasiloxane, octamethyl1,2,3,4-Dibenzpyrene 1,2,7,8-Dibenztetracene 1,2,9,10-Dibenztetracene p-Dioxane
Diphenylamine-T Disiloxane, hexamethylEpibromohydrine Epichlorohydrine Ethane, 1,2-dibromo-,1,2-dichloro-
60 60 60 60 60 80 50 44.4 44.4 44.4 60 100 60 79.5 60 60 60 80 60 70 80
- , pentaphenyl- , 1,1,2,2-tetrachloro- , l,l,2,2-tetrachloro-l,2-difluoro- , l,l,2-trichloro-l,2,2-trifluoroEthanehexacarboxylic acid, hexaethyl ester 1,1,2-Ethanetricarboxyic acid Ether, benzyl methyl -, p-bromobenzyl methyl - , p-chlorobenzyl methyl -, /7-cyanobenzyl methyl - , dodecyl vinyl Ethyl acetate
Ethyl alcohol Ethylene, 1,1-diphenylEthylene glycol - , bis(m-phenylazobenzoate) Ethyl ether Fluorene Formamide, N,AT-dimethyl-
100 60 100 90 90 50 100 68 68 68 68 60 60 70 75 100 60 80 110 60 80 100 70 60 60 100 40 50 60 100
C 8 (xlO 4 )
Remarks
0.31 12.3 0.81 0.87 1.5 7.90 16.9 4.2 3.30
A A, R A A A, 15 C C C C
235 524 235 127 145 182 569 569 182
1.3 x 104 1.0 x l O 4 4.0 6.0 x 104 13.OxIO 4 13.OxIO 4 0 2.28 2.75 0.8 0.9 0.387 67.48 37.87 0.988 1.914 0.333 4.12 1.1 1.137 9.8 3.84 20000 10.8 1.13 0.84 <50 0.94 6.0 6.0 4.0 20.0 3.32 4.11 15.5 5.5 6.67 0.39 1.32 1.611 2.60 450 1.36 2.70 4.70 900 5.64 75.0 124.0 1.09 0.869 4.0 1.08
F27, J F9, J C J J J A, S C C
314 314 450 159 159 159 128 4 182 220 46 474 529 529 255 255 255 182 67 255 112 235 127 235 14 14 89 72 149 149 149 149 4 4 119 123 123 72 423 479 423 432 422 422 422 281 4 127 127 458 375 113 256
F2 R R C C C C C C A A A A A
C C FlO C C F2 F2 A F24 F24 F24 C C A A E
Refs.
TABLE 4. cont'd Solvent/Additive
T( 0 C)
C s (xlO 4 )
Remarks
Refs.
Styrene (cont'd)
Furan, tetrahydroa, D-Glucoside, methyl- , - , 6-deoxy-6-mercapto- , - , 2,3-di-O-benzyl- , - , 2,3,4,6-tetra-O-acejyl- , -,6-0-(p-toluenesulfbnyl)- , - , 2,3,4-tri-0-acetyl-6-deoxy-6-iodo- , - , 6-0-triphenylmethylP, D-Glucoside, methyl- , - , 6-deoxy-6-dipropylaminoGermane, ethyldichloro- , diethylchloro- , triethyl- , dimethylchloro- , triphenylHeptane
50
0.50
100 100 100 100 100 100
55000 62 2.0 2.0 50 21
1-Heptanol, 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro1-Heptene 2-Heptene Hexane 1-Hexene
100 60 60 60 60 60 60 100 60 100 100 100 100
2-Hexene Hydrochloric acid Hydroquinone Hydroxylamine, MW-dibenzyl- , N-benzyl-N-phenyl- , iV,AT-diethylene- , W-ethyl-W-phenylIndium triethyl Iron(III) chloride Isobutyl alcohol
100 100 60 60 60 60 60 100 60 60
Isobutyl alcohol-D
100 130
22 56900 31600 2400 33500 23000 0.42 0.95 13.33 2.7 3.2 0.9 2.5 2.5 3.6 0 3.6 5000 3.8 x 104 2.5 x 104 20.5 x 104 1.760OxIO4 536.0 x 104 0.17 0.497 2.9 7.8 8.2 21.0 2.5 4.6 2.7 3.5 3.5 3.05 4.00 1.7 6.0 2.7 1.6 0.78 1.24 5.2 0.47 0.46 0.42 1.2 700 1200 0.82 1.2 x 104 30.0 62.0 0.88 0.72
Isobutyraldehyde Isobutyric acid
60
Isobutyronitrile
100 130 60 60 80 100
Isophthalic acid, diallyl ester Isopropyl alcohol
Isopropyl alcohol-D Isopropyl-1-D alcohol-D Lead, tetraethyl Malonic acid, diallyl ester - , diethyl ester - , dimethyl ester - , acetyl-, diethyl ester - , bromo-, diethyl ester - , butyl-, diethyl ester - , dibromo-, diethyl ester - , dichloro-, diethyl ester - , diethyl-, diethyl ester - , ethyl-, diethyl ester
130 100 100 100 60 60 100 100 100 60 100 100 60 60 100 100 100
C
449 220 220 220 220 220 220
A, R A, R A, R A, R A, R A A F2 A A A A A, R A A R R R R A A A W8 C A A A F2 F2 A F2 A A A A
A A A A A
220 539 539 539 539 539 127 127 442 358 358 358 358 524 358 238 128 533 533 533 533 156 19 385 479 261 261 412 412 385 385 261 261 446 423 423 261 423 261 261 261 156 446 128 72 72 72 128 128 72 128 128 128 72 72
Remarks page 11-157; References page 11-159
TABLE 4. cont'd Solvent/Addition
J( 0 C)
Styrene (cont'd) Malonic acid, phenyl-, diethyl ester Mercury, diethyl Methane, bis(2-chloroethoxy)- , bromotrichloro-
100 100 80 80
60-80 - , dibromo- , dichloro- , diiodo- , diphenyl- , nitro- , triphenyl-
80 60 60 80 100 60 60 100
Methanetricarboxylic acid Methanol
60 60 80 100 100 60
- , (4-biphenylyl)phenyl(p-vinyl-phenyl)- , bis(4-biphenylyl)(/?-vinyl-phenyl)Naphthalene - , decahydro- , 2-isopropenyl-
80 100 50 50 60 60 80 99
- , 2-methoxy- , 1,2,3,9-tetahydro-l-phenyl1-Naphthol - , 2,4-dichloro1-Naphthol-D 2-Naphthol Naphtho[2,3-a]pyrene 2,6-Octadiene, 2,6-dimethyl2-Octene Oleic acid, methyl ester
60 60 60 60 60 60 44.4 60 100 60
Oxalic acid, diallyl ester - , diethyl ester Oxetane, 3,3-bis(chloromethyl)Oxime, acrolein - , crotonaldehyde- , ethylisopropenylketone- , methacrolein- , methylacrolein- , methylisobutylketone-,methylisopropenylketone-, methylvinylketoneOxolane, ds-3,4-diacetoxyPentane, 1-chloro- , 2,2,4-trimethyl2,4-Pentanedione
70 90 60 60 50 60 60 60 60 60 60 60 60 60 60 100 100
C s (xlO 4 )
3.5 0.335 6.0 7.6 x 104 7.7 x 104 2.4 xlO 6 2.78 x 106 6.5 x 105 (6.5 ±0.4) xlO 5 9450 110 0.15 9.5 11.8 710 2.3 4.2 35 10 3.5 6.0 8.0 0.91 0.296 0.74 1.10 1.22 3.5 3.5 11 0.4 56 70 69 86 <5.0 10000 480 490 75 77 24.0 x 105 2.0 2.8 3.15 3.52 455 420 6.64 4.2 13.5 8.0 10800 1500 4300 13000 400 2300 1100 2700 1.89 0.49 < 10 2.0
Remarks
C D, Q2 D, Q2 D, Q3 D, Q3 15 A C A A A A, R A A F2 F2 F2
A
C J J J C A C C A F22 C
C A A
Refs.
72 156 112 312 195 312 195 439 504 185 112 128 112 128 112 127 127 524 86 127 44 127 72 479 423 423 423 57 57 216 127 98 98 98 98 121 467 50,121 121 50,121 122 159 324 358 441 441 239 141 441 446 119 449 555 555 555 555 555 555 555 555 569 128 155 72
TABLE 4. cont'd Solvent/Additive Styrene (cont'd) 1-Pentanol, 2,2,3,3,4,4,5,5-octa-fluoro3-Pentanone Pentasiloxane, dodecamethyl1-Pentene - , 4,4-dimethyl-2-phenyl- , 2,4-diphenyl- , 4-methyl-2,4-diphenyl- , 4-methyl-2-phenyl- , 2,4,4-triphenyl2-Pentene - , 2-methyl- , 4-methylPhenol -,/7-benzyloxy - , p-tert-buty\- , 0-chloro-,p-chloro- , 2,6-di-terf-butyl- , 2,6-diisopropyl-,p-fluoro-, m-methoxy-, o-methoxy-,/7-methoxy- , 0-phenyl- , 2,3,4,6-tetramethyl- , 2,4,6-trinitroPhenol-D,/7-benzyloxy- , 2,3,4,6-tetramethylPhenyl ether Phosphine, dibutyl - , diethyl - , octyl Phosphine, phenyl - , tributyl Phosphoric acid, tributyl ester Phosphorus, white (P4) Phosphorus trichloride o-Phthalic acid - , bis(2-methylallyl) ester - , diallyl ester - , di-(3,3,5,5-tetramethyl-4-nitrosocyclohexyl) ester Piperidine Propane, l-chloro-2,3-epoxy- , l-chloro-2-methyl - , l,l,l,3-tetrabromo-3-phenyl- , 1,1,1-tribromo1,2-Propanediol 1,3-Propanediol, 2,2-bis(bromomethyl)-, diacetate 1,3-Propanedione, 1,3-diphenyl1-Propene, 3-chloro-2-methyl- , 2-methyl-, 1,3-diphenylPropionaldehyde, diallyl acetal Propionic acid
T( 0 C)
C s (xlO 4 )
60 60 79.5 100 110 110 110 110 110 100 100 100 50 60 60 60 60 60 60 60 60 60 60 60 60 60 50 60 60 25 60 100 100 60 60 100 100 25 57 75
11.36 2.6 0.285 2.3 10 170 2900 10 2600 4.2 6.3 6.9 8.1 14 290 26 6.0 -11 49 310 54 <5 43 260 <5 580 2.1IxIO 5 10 20 7.94 7.86 2.08 x 104 1.35 x 104 3.6 x 104 43.9 x 104 24.4 <0.1 400 250 800
60 60 80 60 50 60 100 90 90 60 80 100 60 60 60 100 60 60 60
6.3 6.3 1.2 x 104 1.32 xlO 4 1.0 7.5 1.4 3.0 3.65 x 104 2.41 x 104 2.08 3.90 6.80 4.05 7.0 24.0 1.7 87.3 12.3 0.05 4.3 4.5 4.65
Remarks F2 A A A A A A A A A A J
J
J J
D
A A, S E C, D
F9, J F27, J A C A A C C F24 F24 F24 A A A A C A
Refs. 442 385 474 358 433 433 433 433 433 358 358 358 247,248 122 50,121 121 122 121 121 121 121 121 122 121 121 50,121 371 50 50 368 368 296 296 295 295 156 156 99 214 494 446 446 314 314 128 449 128 128 64 64 422 422 422 325 128 128 358 567 446 128 385 323 385
Remarks page 11-157; References page 11-159
TABLE 4. cont'd Solvent/Additive Styrene (cont'd) Propionitrile, 3-phosphino- , 3,3'-phophinylidenediPropyl alcohol Propylene oxide 2-Propyn-l-ol Pyridine Pyrocatechol - , p-tert-buty\Pyrocatechol-D - , p-tert-butylPyrogallol Pyrogallol-D Sebacic acid, diallyl ester Silane, chlorotrimethyl- , dichlorodimethyl- , diethylchloro- , dimethylphenyl- , hexamethoxy-(3,3'-thiodipropyl) bis- , methyldichloro- , 3-mercaptopropyl-trimethoxy- , trichloro- , tetraethyl- , tetramethyl- , trichloromethyl- , triethyl- , trimethoxymethyl- , triphenyl-
T( 0 C)
60 60 60 80 100 50 60 60 60 60 60 60 60 60 60 50 50 60 60 79.5 60 79.5 60 100 50 50 60 70 80 79.5
Silicon chloride Siloxane, hexamethyl-di- , dodecamethyl-penta- , octamethyltriSorbit-2,5-diacetate, 1,4:3,6-, dianhydroStannane, triphenylStearamide, Af-allyl-
60 70 80 50 79.5 79.5 79.5 60 60 90
Stearic acid, methyl ester
60
Stibine, tributyl Stibene, dibromoStyrene, oe-bromo- , p-bromo-,dibromo- , a-ethyl- , a-methyl-
70 90 100 60 70 70 60 110 60 74 80 99
Succinic acid, diallyl ester Succinonitrile, tetraphenylSulfonyl chloride, benzene-,/7-chloro-benzene- , p-methyl-benzene-
110 60 50 60 60 60
C s (xlO 4 )
50000 50000 2.00 3.14 3.60 1.6 7.0 0.6 1340 3600 260 370 10400 1600 4.8 12.5 17.8 5700 2200 118 9800 5.9 x 104 1.4 x 104 8.12 3.1 19.2 1200 33.4 36.8 0.23 0.230 3700 2.44 1.3 20.0 0.387 0.285 0.069 77 3.3 x 104 5.82 8.30 1.06 526 15.6 0.676 58.0 3020 10000 2000 1950 10 0.86 95 3.2 4.9 5.6 8.5 1.67 5.4 28000 4330 7650 3180
Remarks
A A F2 F2 F2 C A A J J J
A, R A, R R A, R R A, R
A, R
R A, R
R R R C A, R A, J C, J C A A
R R R
Refs.
295 295 423 423 423 449 128 128 50,121 50,121 50 50 50,121 50 446 249 249 539 539 554 539 554 539 156 249 249 539 90 90 474 554 539 90 90 249 554 554 554 569 539 173 173 441 239 141 441 156 112 172 172 112 439 431 343 98 98 98 98 431 446 89 543 543 543
TABLE 4. cont'd Solvent/Additive Styrene (cont'd) Sulfonyl chloride,/?-methoxy-benzene-,methane- , phenylmethane- , a-phenyl-P-(methanesulfonyl)-ethaneTerephthalamide, NX-dimethyl-MAr'-dinitrosoTerephthalic acid, diallyl ester Tin, tetrabutyl Toluene
T (°) 60 60 60 60 40 60 60 100 60
80
100
-,p-bromo- , m-chloro-,p-chloro- , oc-chloro-, oc,a-dichloro-, p-ethynyl-,(X- 2 Hi, toluene -, PP- 2 H 2 , toluene - , app- 2 H 3 , toluene - , aaa-trichloro- , 2,4,6-trinitro/?-Toluidine - , AW-dimethyl- , Af-methylm-Tolunitrile, a-cyanop-Tolunitrile -,a-cyanos-Triazine, trimethylTriethylamine
Tripropylamine Trisiloxane, octamethylUrea, l,3-bis(3,3,5,5-tetramethyl-4-nitrosocyclohexyl)Water m-Xylene p-Xylene - , ot,a'-dibromo2,6-Xylenol
132 60 60 70 140 60 60 60 60 80 80 80 60 50 50 50 50 60 60 60 60 60
100 79.5 60 80 60 60 60 60 60
C s (xlO 4 ) 3110 1180 3190 27600 1400 2000 4.5 3.71 0.105 0.121 0.125 0.134 0.16 0.21 0.82 1.10 2.05 0.15 0.298 0.3 0.308 0.310 0.313 0.813 0.53 0.55 0.645 0.72 0.8 1.12 1.30 1.25 0.62 1.8 1.07 1.56 50.0 72.0 0.825 0.820 0.992 57.5 14.6 x 104 78 16 11 91.4 2.07 112 0.468 1.4 3.0 7.1 7.5 24.2 0.069 14500 15000 0.006 0.31 0.78 0.84 150 110
Remarks R R R R
C A A, 15 C C 15 C C C, F17 A C A A A, 15 A
A A K C, F17 C, F17 C, F17 A F2 F2 F2
W9 W6
F9, J F9, J A, R
Refs. 543 543 543 543 160 160 446 156 255 21,24,79 127 78 145 318 496 363 363 385 185 385 255 76,77 78,273 530 235 385 127 235 145 235 496 496 67 67 496 128 128 151 530 530 530 128 370,372 154 154 154 462 496 461 88 364 364 24 363,364 156 474 314 314 479 529 496 496 112 121
Remarks page 11-157; References page 11-159
TABLE 4. cont'd Solvent/Additive Styrene {confd) Zinc, diethyl - , p-chloroAnisole, p-isopropylBenzaldehyde -,p-chloroBenzene, p-diisopropyl-
T( 0 C) 100 60 100 100 60
Benzonitrile, p-isopropylCarbon tetrabromide Carbon tetrachloride Cumene -,p-bromo- , p-terf-butyl--, p-chloro- , p-iodoBenzene - , p-methyl Anisole, p-isopropylBenzene, p-diisopropyl-
60 60 60 60 60 60 60
Benzonitrile, p-isopropylCumene -,p-bromo- , p-terf-butyl-,p-chloro- , pentafluoroBenzene, bromo- , chloro-,ethyl- , fluoro2-Butanone, 3-methylCumene Furan, tetrahydro-
60 60 60 60 60
2-Pentanone, 4-methylToluene Styrene/Styrene, p-chloroCarbon tetrachloride
60 60
Succinimide, N-vinylAcetic acid Ethane, 1,2-dichloroValeric acid, 4-methyl-, vinyl ester Benzene Vinyl acetate Acetaldehyde
Acetamide, N-butylAcetic acid
C s (xlO 4 )
Remarks
3660 3.86 1.9 9.7 3.62 7.24 8.84 52000 45 3.44 5.71 3.52 4.97
Refs. 156
A A
F2
406 298 298 497 406 406 109 366 406 406 406 406
50
0.2
56
60 60
3.27 3.67 7.34 26.0 4.12 9.23 3.59 7.67
408 408 406 408 408 408 408 408
60 60 60 60 60 60 60
60
0 0 5.35 0.117 1.09 6.76 1.53 1.61 0.033 1.20 15 115
55 55
0.077 0.127
80
6.2
30 45 50 60
400 530 390 0.72 200 220 500 570 660 610 700 40 0.180 0.166 0.200 1.0 1.13 10 0.170
70 75 60 50 60
65
A
EF EE C, F25 C, F26
469 469 469 469 469 469 469 469 469 469 366 366 93 93 201
J 18 F2 J J C 19 F2 C
346 86 460 257 145 232 460 86 86 460 86 86 466 465 466 145 289 86 466
TABLE 4. cont'd Solvent/Additive Vinyl acetate (cont'd) Acetic acid, allyl ester - , benzyl ester - , butyl ester - , sec-butyl ester - , tert-butyl ester - , isobutyl ester - , isopropyl ester
- , methyl ester - , propyl ester - , 1,3,3,3-tetrachloropropyl ester - , bromo- , chloro- , cyano-, methyl ester - , dichloro-, ethyl ester - , phenyl- , trichloro- , ethyl ester - , trifluoro-, ethyl ester Acetic anhydride Acetoacetic acid, ethyl ester Acetone
Acetonitrile -,phenylAcetophenone - , 3'-hydroxy- , 3'-hydroxy-DAniline - , AW-dimethyl- , W-methyl-,p-nitrom-Anisaldehyde o-Anisaldehyde /7-Anisaldehyde Anisole Anthracene
- , 9-phenylBenzaldehyde
T( 0 C)
60 60 50 50 60 50 60 50 50 60 67.5 75 60 50 60 70 60 70 70 60 60 60 70 60 50 60 70 60 70 75 60 60 50 60 70 45 45 50 50 50 50 60 60 60 60 20 30 40 50 60 50 60 70 75
C s (xlO 4 )
85 94 80 13.2 4.4 8.0 1.5 6.2 9.1 3.5 3.1 8.0 9.0 10 1.56 1.6 2.5 6.2 3.4 423.2 489 4450 2550 5000 210 400 1445 4400 30 8.0 80.4 1.5 11.70 12.0 25.6 42 10 2100 91.5 100 62.0 1405 1290 149 210 260 360 48600 2500 420 370 10 6.68 x 105 6.03 x l O 5 4.55 x 105 2.057 x 105 3.64 x 105 2.78 x 105 2.73 x 105 230 460 540 421 600
Remarks
F2 J F2, J
J J
C C, J C C J J C C C
C C J J C J J F2 F2 F2 J J J F2, J J J J J J J J F2 J C,J J
Refs.
86 86 86 208 208 86 208 232 208 208 145,232 86 86 86 145,231 145,232 86 208 145,232 389 386 389 389 86 86 86 389 86 71 86 390 86 289 145 330 184 86 86 15 86 390 51 51 15 154 154 154 15 86 86 86 86 41 41 41 15 41 41 41 145,355 86 86 390 86
Remarks page 11-157; References page 11-159
TABLE 4. cont'd T( 0 C)
Solvent/Additive Vinyl acetate (cont'd) Benzaldehyde, m-chloro- , o-chloro-,p-chloro-, - , p-cyano-,/7-isopropylBenz[A]anthracene Benzene
ra-cyano-
60 60 60 60 60 60 50 60
70 75 - , bromo-
- , tert-butyl- , chloro-
Benzene, o-dichloro-,/7-dichloro- , m-dinitro- , 0-dinitro - , p-dinitro-,ethyl- , nitro- , 1,3,5-trinitroBenzo[B]chrysene Benzoic acid - , ethyl ester -,p-nitroBenzoic anhydride Benzoin Benzonitrile - , m-hydroxy- , m-hydroxy-DBenzo[GHI]perylene Benzophenone Benzo[A]pyrene Benzo[E]pyrene p-Benzoquinone, 2,3,5,6-tetramethylBenzoyl chloride Benzyl alcohol Biphenyl Borane, tributyl
50 60 70 75 60 60
70 75 75 70 45 50 45 45 50 60 50 45 50 50 60 60 50 60 60 50 45 45 50 50 50 50 45 50 70 70 50 60 10
C s (xlO 4 )
860 390 340 1070 610 540 1.17 xlO 5 1.07 1.2 1.2 2.4 2.96 20 5.27 1.4 1.40 3.6 18.9 8.0 9.2 10.0 134.2 25.2 3.61 5.6 6.8 8.0 8.35 80 2.61 12.7 42 11.8 1.05 x 106 645700 9.6 x 105 26.7 x 105 662800 55.15 100 110300 8.9 x 106 434280 2.83 x 105 50 26 245700 130 800 40.6 820 805 1.82 xlO 4 286 3.06 x 105 8400 9.5 x 105 366 300 556 263 6.4 9000
Remarks
J J J J J J J J C C J C W7 W15 C C W7 W15 J C C C C C, J C, J C, J J C, J J J J J J J J J J J J C C
Refs.
86 86 86 86 86 86 41 263 86 294 80 289 294 390 86 263 184 15 265 265 265 389 184 289 265 265 265 289 86 389 184 184 389 28 15 28 28 15 289 86 15 28 15 41 86 86 15 86 86 15 51 51 370 15 41 370 27 15 389 390 15 132 191
TABLE 4. cont'd Solvent/Additive Vinyl acetate (cont'd) Butane, 1-bromo- , 1-chloro- , 1-iodo2,3-Butanedione 2-Butanone -, 3-methyl1-Butene, 3-chloro-3-methyl2-Butene, l-chloro-3-methyll-Buten-3-yne Butyl alcohol sec-Butyl alcohol tert-Butyl alcohol
Butyl ether 3-Butyn-2-ol, 2-methylButyraldehyde
T( 0 C)
60 70 60 60 60 60 75 60 50 50 60 60 70 60 70 75 60 70 60 60 40
60 Butyric acid, ethyl ester - , methyl ester
70 50 60
Carbon tetrabromide
60 70
Carbon tetrachloride
0 20 45 60
Chloral
Chloral hydrate Chloroform
2-Chloro-3-(methyl-14C)-lbutene(4-14C) 3-Chloro-2-pentene-(2,4-14C)
70 75 60 70
70 30 60
70 50 50
C s (xlO 4 )
50 1100 10 800 670 73.80 165 118.16 28900 4300 0 20.0 20.39 29.1 31.74 6.21 95.0 0.46 0.5 1.3 12.1 76 400 440 510 590 670 650 1000 388 45 18 19 7.39 x 106 28740 1500 4700 7600 800 1300 4700 6700 7300 8000 9000 9600 10000 10500 10700 2023 10500 5000 4927
4312 100 140 125.18 130 150 160 170 554 3980 628
Remarks
C F2, J C F2 F2 J 19 C C C 19 C,J J W8 W7 W15
C C F2 C E J Ql Q2 Q3 Q4 F2 Q5 Q6 J Q7 Q8 C J C
C
19 J F2 C F2 F2
Refs.
86 389 86 86 86 289 184 289 152 152 232 145 289 390 289 390 184 289 145 86 390 86 86 500 500 500 500 232,355 86 390 71 145,232 86 109,145 389 346 309 86 10 10 10 10 86 10 10 86 210 10 10 389 86 86 389
389 345 346 289 145 86 210 86 389 509 509
Remarks page II-157; References page 11-159
TABLE 4. cont'd Solvent/Additive Vinyl acetate (cont'd) Chrysene w-Cresol m-Cresol-D p-Cresol p-Cresol-D Crotonaldehyde Cumene
Cyclohexane
T( 0 C)
50 45 45 45 45 60 60 70 75 60
-,methyl-
60
1,3-Cyclohexanedione, 5,5-dimethylCyclohexanol Cyclohexanone
70 70 60 75 60
Cyclohexene Dibenz[a,h]anthracene Dibenzo[def,mno]chrysene 1,2,3,4-Dibenzpyrene Diethylene glycol Diethylphosphonate
p-Dioxane Diphenylamine Diphenylamine-D Diphenylamine-T Ethane, 1,1-dibromo- , 1,2-dibromo- , 1,1-dichloro- , 1,2-dichloro-, -, -, -, -,
75 50 40 50 60 50 70 60 60 60 60 60 70 50 60 60 60 60 70 60 60
1,2-dichlorohexachloropentachloro1,1,2,2-tetrabromo1,1,2,2-tetrachloro-
70 70 70 60 60
- , 1,1,1-trichloro- , 1,1,2-trichloro1,1-Ethanediol, diacetate Ether, benzyl methyl - , bis(2-chloroethyl) - , dodecyl vinyl
70 60 60 60 60 70 60
-,ethyl Ethyl acetate
60 20 40 50 60
C s (xlO 4 )
3360 375 85 710 130 1800 89.9 100 139 356 6.59 7.0 100 11.75 24 5580 127 180 670 620 1600 770 8.7 x 104 156.5 x 104 129.2 xlO 4 105.4 xlO 4 73.6 x 104 85.3 350 910 830 730 20 49.1 138 240 170 230 1100 134 65 5 7 7.18 10.2 1210 1348 6000 107.03 160 67.72 71.11 35.98 40 280 245 57.2 73.5 45.3 1.52 2.11 2.9 12 1.07
Remarks
J J J J J J C C 19 F2 C C F2 C J F2 J J J J J J C Fl F2 F2 F2 F2 C
C 19 C C C
C
F2, J C C C C
C
Refs.
370 51 61 51 51 355 289 7,86 390 184 289 145 86 289 86 390 390 86 184 86 86 86 370 41 41 41 41 390 571 571 571 571 86 390 15 46 46 46 86 389 86 86 145 289 389 389 389 86 289 86 389 289 289 86 86 389 4 4 4 328 328 208 71 289
TABLE 4. cont'd Solvent/Additive
T( 0 C)
Vinyl acetate (cont'd) Ethyl acetate (cont'd)
Ethyl alcohol Ethylene, tetrabromo- , tetrachloro- , tribromo- , trichloroEthylene glycol Fluorene - , 9-phenylFormamide, N9N, -dimethylFormic acid, ethyl ester - , methyl ester 2-Furaldehyde Furfuryl alcohol Germane, diethylchloro- , dimethylchloro- , triethyl-,triphenylGlycolic acid, methyl ester Heptane 1-Heptanol, 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluorol,5-Hexadien-3-yne Hexanoic acid, 2-ethyl-, ethyl ester Hydroquinone - , 2,5-di-terf-butyl- , 2,6-dimethyl- , tetramethylIsobutyl alcohol Isobutyric acid Isobutyric acid, ethyl ester -, methyl ester Isobutyronitrile Isopropyl alcohol Lactic acid, ethyl ester -, methyl ester Laurie acid, ethyl ester Malonic acid, dimethyl ester /?-Mentha-l,8-dene Mesitol Methane, bromotrichloro-
- , dichloro- , iodo- , nitro-,tribromo- , triphenylMethanol
C s (xlO 4 ) 1.25
70 60 70 70 70 70 70 70 60 70 70 60 50 60 60 70 60 60 60 60 60 50 60 60 50 50 50 50 50 60 70 60 50 60 60 70 60 60 50 60 60 50 25 60 70 60 70 60 75 70 60 10 60
2.6 2.96 3.3 3.4 7.8 25 26.3 2800 465 34720 3810 83.0 4700 3610 16240 50 22 3 15000 2520 7800 86600 4500 56000 300 17.0 33.3 0 65 7000 38000 29000 74000 21.75 32.4 5.02 160 58 71 86 100 44.6 700 640 105 17 1900 5000 > 104 6000 >4xlO5 6303 4 1230 2300 2600 34760 700 9.0 10.0 10.5 3.4 2.26
Remarks
C
C F2 C C C C C C, J J C,J C C J C, J A, R A, R A, R A, R F2 C J J J J C C
C C J J D, S C C C C F2, J J C
Refs.
80
145,232 328 86 420 390 86 390 389 389 389 389 390 86 390 390 86 71 86 86 390 539 539 539 539 86 208 442 232 71 338 338 338 338 289 390 289 71 145,232 420 86 86 390 86 86 71 86 86 338 39 39 39 389 86 389 86 86 389 45 5 5 5 190 145,231
Remarks page II-157; References page 11-159
TABLE 4. cont'd Solvent/Additive
T (0C)
Vinyl acetate (cont'd) Methanol (cont'd) Naphthacene Naphthalene
70 50 50
- , decahydroNaphtho[l,2,3,4-def]chrysene Nonanoic acid, ethyl ester 2,6-Octadiene, 2,7-dichloro- , 2,6-dimethyl-
70 60 50 50 50 60
Octanoic acid, ethyl ester Oleic acid, methyl ester
50 60
Oxalic acid, diethyl ester - , dimethyl ester
90 30 60 60
Paraldehyde Pentane, 2,2,4-trimethyl2,4-Pentanedione 1-Pentanol, n 2,2,3,3,4,4,5,5-octafluoro2-Pentanone, 4-methyl3-Pentanone
70 50 60 60 60 60
Pentyl acetate
70 75 75 50 50
Orthoformic acid, trimethyl ester
Pentyl alcohol Perylene Phenanthrene
Phenol
70 45 50 60
- , m-chloro-,p-chloro- , p-nitro- , 2,3,4,6-tetramethylPhenol-D -,m-chloro-,p-chloro-,2,3,4,6-tetramethylPhosphorus trichloride Propane, 2-bromo-2-methyl- , 2-chloro-2-methyl 1-Propanol, 2,2,3,3-tetrafluoro1-Propene, 3-chloro- , 3-chloro-2-methylPropionaldehyde
45 45 50 45 45 45 45 45 60 60 60 60 60 60 60
Propionic acid, ethyl ester - , methyl ester
70 50 60
Pyrene Pyrocatechol, 4-(l,l,3,3,-tetramethylbutyl)Pyrogallol Salicylic acid Silane, dimethylphenyl-
50 50 50 70 60
C s (xlO 4 )
4.3 6.0 5.5 8.62 x 106 1150 1457 1715 48 1.35 x 105 80 3200 430 700 70 217 1000 358 7.6 8.0 4.0 1.0 2.0 136 8.0 10 26.1 34.52 10.0 114.39 7.2 87.0 56 2.88 x 105 870 5600
3380 215 120 600 205 400 8.86 x 104 1.13 x 104 35 70 80 800 1.5 x 104 150 26 7.11 3100 400 950 1000 457 40 23 26 11500 11000 50000 296 2200
Remarks
J J C,J J C F2 C J
C F2 19 C C C J J
C,J J J J J J J J J J C, D F2 J J F2 C C J J J C A, R
Refs.
320 86 320 370 370 15 390 86 41 71 152 324 7 71 441 86 441 345 346 86 86 145,232 390 208 86 442 289 145 289 390 184 184 41 370 15
390 51 15 86 51 51 15 51 51 51 51 51 214 86 86 442 86 86 86 86 390 71 232 420 370 338 338 390 539
TABLE 4. cont'd Solvent/Additive Vinyl acetate (cont'd) Silane, methyldichloro- , trichloro- , triethyl- , triphenylStearamide, N-allylStearic acid, ehtyl ester - , methyl ester Succinic acid, diethyl ester - , dihexyl ester - , dimethyl ester m-Tolualdehyde p-Tolualdehyde Toluene
T( 0 C)
60 60 60 60 90 50 60 60 60 60 60 60
75 80 50 70 70 60 70 75 50 50 50 50 50 50 60 50 60 50 70 75 60 60 60
280 290 400000
Q(3) Q(3) Q(3)
511 511 511
50 60
20 20
R R
541 541
60 60 60 60 60
5400 8600 12000 2000 4000
A, R A, R A, R A, R A, R
539 539 539 539 539
C, Q(I-2)
572
60 70
Triphenylene Veratraldeyhyde Xylene Vinyl chloride Carbon tetrachloride Chloroform Bromotrichloromethane Vinylidene chloride Af-Methylpyrolidone 2-Vinylpyridine Silane, diethylchloro- , Methyldichloro-,trichloro-,triethyl-,triphenylVinyltrimethylsilane Bromoform
Refs.
A, R A, R A, R A, R C, J C
60
Toluene, p-nitrop-Toluidine -, N,Ar-dimethyl-, AT-methylToluonitrile Triethylamine
Remarks
5800 8800 1200 2700 620.1 140 38.2 41 40 31 570 440 3.3 12.0 14.9 100 123 17.8 20.75 20.89 21.6 34 35 49.0 69.0 21.1 21.8 29.2 66 91.6 20.6 92.86 195 450 584 118 106300 750 380 830 38.3 360 370 160 550 14.9 278 166
50
- , bromo- , o-chloro-,p-chloro- , a-chloro-
C s (xlO 4 )
1200000
J J R C R C J F2 W15 R C C C C J C C F2 F2 F2 F2 J J J C C
539 539 539 539 173 71 441 420 420 420 86 86 158 15 357 71 71 357 80 21,59,289 357 86 86 265 265 357 390 357 184 273 15 389 389 86 389 184 15 154 154 154 15 154 24,145 370 86 15 390 184
Remarks page 11-157; References page 11-159
TABLE 5. TRANSFER CONSTANTS TO SULFUR COMPOUNDS Modifier Acrylamide, A/-octadecyl-/acrylonitrile (1:1 mol ratio) 1-Dodecanethiol Acrylic acid 1-Dodecanethiol - , methyl ester 1-Butanethiol
J( 0 C)
Cx
Remarks
Refs.
60
0.539
C, F24
174
45
1.9
C, F31
549
Ethanethiol
30 60 50
2-Propanethiol
60
1.53 1.69 0.78 0.94 ±0.07 1.65 ±0.12 1.57 ±0.09 1.57 ±0.18 1.79 5.00 0.544 0.668 0.700 0.656
A A Ql Ql Q2 Q3 Q4 Q2 Q3 Ql Q2 Q3 Q4
Acrylonitrile 1-Dodecanethiol Hydrogen sulfide Methyl sulfoxide
Methyl tetrasulfide p-Toluenethiol Acrylonitrile/1,3-butadiene (10-90%) 1-Hexanethiol, - , 1,1,3,3,5,5-hexamethyl1-Pentanethiol, - , 1,1,3,3-tetramethylAcrylonitrile/1,3-butadiene (20-80%) 1-Hexanethiol - , 1,1,3,3,5,5-hexamethyl1-Pentanethiol - , 1,1,3,3-tetramethylAcrylonitrile/1,3-butadiene (30-70%) 1-Hexanethiol - , 1,1,3,3,5,5-hexamethyl1-Pentanethiol - , 1,1,3,3-tetramethylAcrylonitrile/styrene (38.5-61.5 mol%) 1-Pentanethiol - , 1,1,3,3,4-pentamethylButadiene Xanthogendisulfide, dibutyl- , diethyl- , di-2-ethylhexyl- , di-isopropyl1,3-Butadiene 1-Butanethiol, 1,1,3,3-tetramethyl1-Octanethiol - , 1,1,3,3,5,5,7,7-octamethyl1-Tetradecanethiol 1,3-Butadiene/styrene 1-Dodecanethiol Formic acid, thio-, dithiobis_, _, _, ao'-dibutyl ester
50 50 20 30 40 50 80 50 5
0.73 0.13 0.1 0.47 0.0000812 0.11 0.29 0.795 0.69 0.97
C, F8 E
J
397 69,397 330 478,507 478,507 508 330,509 330 330 477 477 477 477 378 378 248 196 458 404 197 375 85 378
1.5
C, H
380
53.3
C, H
380
5
1.2
C, H
380
5
2.1
C, H
380
5
1.1
C, H
380
5
1.8
C, H
380
50
1.02
C, H
380
60 60 60 60
6.9 8.1 7.5 8.3
J J J J
532 532 532 532
5 50 5 50
5.3 3.7 21.8 16.0 19.0 3.0 19.5
H H H H H H H
242 242 242 242 243 242 242
50 50 5
0.66
B, H, J
384
5
2.42
B, H, J
383
TABLE 5. cont'd Modifier
T( 0 C)
1,3-Butadiene/styrene {cont'd)
- , - , ao'-diisopentyl ester
-5 50 5 -5 5 50 5 -5 50 5 50 5 50 5 -5 50 5
- , - , - , 0,O'-diisopropyl ester
-5 50 5
- , - , - , O,O'-di-sec-butyl ester - , - , - 0,O'-dicyclohexyl ester _, _, _, 0,0'-diethyl ester - , - , - , 0,O'-diheptyl ester - , - , - , 0,6>'-dihexyl ester - , - , - , 0,O'-diisobutyl ester
- , - , - , 0,O'-dimethyl ester - , - , - , 0,O'-dineopentyl ester - , - , - , 0,0'-dioctyl ester - , - , - , 0,O'-dipentyl ester - , - , - , 0,0'-dipropyl ester 1-Heptanethiol - , 1,1,3,3,5,5,6-heptamethyl1-Hexanethiol - , 1,1,3,3,5,5-hexamethyl1-Octanethiol - , 1,1,3,5,5,7,7-octamethyl/7-Dioxin, 2,3-dihydro/maleic anhydride 1-Butanethil Ethylene 1-Butanethiol Ethyl sulflde Methyl sulfoxide 2-Propanethiol, 2-methylSulfur hexafluoride Methyl methacrylate Acetic acid, dithiodi-, diethyl ester - , mercapto-, methyl ester Acetophenone, 3'-mercapto- , 4'-mercapto-
-5 50 5 -5 50 5 50 5 50 5 -5 50 5 -5 50
Cx 1.75 5.34 1.65 1.565 1.78 3.71 8.43 4.23 16.04 0.41 1.12 0.74 1.78 1.87 1.573 6.43 1.21 7.0 1.85 4.38 2.83 3.4 12.5 0.40-1.31 0.80-3.01 1.40-3.70 1.80-3.50 1.80-6.0 9.78 1.185 9.78 16.43 15.86 27.04 1.01 3.40 0.23 0.64 1.45 1.70 3.20 4.42 1.815 9.20
Remarks H C, H, J B, H, J H B, H, J C, H, J B, H, J H C, H, J B, H, J C, H, J B, H, J C, H, J B, H, J H C, H, J B, H, J B, H, J H C, H, J B, H, J B, H, J B, H B, H, J, B, H, J, B, H, J, B, H, J, B, H, J,
Refs. 180 382
H C, H, J B, H, J H C, H, J B, H, J C, H, J B, H, J C, H, J B, H, J H C, H, J B, H, J H C, H, J
180 383 383 383 180 382 383 382 383 382 383 180 382 383 341 180 382 383 341 100 100 100 100 100 100 179 180 382 383 180 382 383 382 383 382 383 180 382 383 180 382
GG4 GG3 GG2 GGl GG5
5
0.64
B, H, J
384
5
1.22 4.1 2.7-4.7
B, H, J H H
384 54,55 54
5
0.34
B, H, J
384
R
169
C, W5 C, W5 C, F21, W5 C, W5 C, F21, W5
457 454 259 457 259
60 130 130 130 130 130 60 60 45 45
6300 5.8 0.027 12 15.0 0.0000 0.00065 0.63 4.2 2.6
86 274 30 30
Remarks page II-157; References page 11-159
TABLE 5. cont'd Modifier Methyl methacrylate {cont'd) Anisole, 4,4'-dithiodip-Anisoyl disulfide Benzenesulfonic acid - , compound with pyridine - , thio-, S-phenyl ester Benzenethiol - , m-bromo- , /7-bromo- , m-chloro-,p-chloroBenzoyl disulfide Benzyl disulfide Benzyl sulfide
J( 0 C) 50 60 60
0.0044 0.0052 14.6
60 60 45 60 70 45 45 45 45 60 25 50 60 25 50
0.00365 0.0196 4.7 2.7 15 3.8 5.6 3.5 4.6 10.0 0.134 0.016 0.00627 0.0183 0.0098 0.0098 0.00154 0.0040 0.0039 0.084 0.021 0.66 0.67 0.008 0.22 0.09 0.35 0.33 0.21 0.13 0.55 0.00007 0.00258 16.7 0.0046 0.0098 10.0 0.0072 0.0117 290 0.0115 694 0.0176 0.0508 0.0127 0.0193 0.7 0.55 0.42 0.33 0.17 0.15 0.43 0.62 0.40 0.00013
Benzyl sulfone Benzyl sulfoxide Benzyl tetrasulfide Benzyl trisulfide 1-Butanethiol
60 50 50 50 50 60
Carbanilide, thio-
50
_, _, 4,4/-bis(dimethylamino)- , - , 4,4'-dichloro- , - , 3,3/-dimethoxy-, -, 3,3'-dimethyl- , -, 4,4'-dimethyl- , - , 3,3'-dinitroCarbon disulfide 2,13-Dioxa-7,8-dithia-3,12-disila-tetradecane, 3,3,12,12-tetrameth oxyDisulfide, bis(p-bromobenzoyl)- , bis (p-bromophenyl)-
50 50 50 50 50 50 60 79.5 60 50 60 60 50 60 60 70 60 50 60 50 60 60 70 80 90 50 70 50 60 70 60
- , bis(p-chlorobenzoyl)- , bis(p-chlorophenyl)-, -, -, -,
bis(p-cyanobenzoyl)bis(dimethylthiocarbamoyl)bis(p-nitrobenzoyl)bis(onitrophenyl)-
- , bis(/?-nitrophenyl)1-Dodecanethiol
Ethanethiol, 2-amino-, hydrochloride Ethanol, 2-mercaptoEthyl disulfide Formamidine, A^Af'-diphenyl- , - , U'-dithiobisMethyl sufoxide
Cx
50 60
0.22 0.0000071
Remarks
Refs. 285 285 369
A
F2 D F2
F2, J F2, J A F2 C, F2 C, F2 C, F2 C, F2 C, F2 C, F2 C, F2 A
F7 F7 F2 F2 C, F2 A
490 491 30 274 566 30 30 30 30 369 368 354 368 368 252 354 368 252 252 354 354 274 69,397 251 251 251 251 251 251 251 251 288 474 369 285 285 369 285 285 369 104 369 285 285 285 285 573 573 573 573 473 473 473 274 473 310 251 438
TABLE 5. cont'd Modifier Methyl methacrylate (cont'd) 2-Naphthalenethiol 1-Penthanethiol Phenyl disulfide
Phenyl disufone Phenyl sulfide Phenyl sulfone Phenyl sulfoxide 1-Propanethiol, 3-[l,3,3,3-tetramethyl-l-(trimethylsiloxy)disiloxanyl]- , 3-(trimethoxy)2-Propanethiol - , 2-methylPropionic acid, 3-mercaptoSulfide, benzoyl dimethylthiocarbamoyl Sulfur Thiosulfuric acid, S-butyl ester - , - , sodium salt - , S-isopropyl ester - , - , sodium salt - , S-phenyl ester - , - , compound with pyridine - , - , potassium salt - , S-propyl ester - , - , sodium salt m-Toluenethiol p-Toluenethiol a-Toluenethiol p-Toluoyl disulfide p-Tolyl disulfide Styrene Acetic acid, dithiodi-, -, -, -, -, -,
-, -, -, -, -, -,
diethyl ester dimethyl ester mercaptobutyl ester ethyl ester methyl ester
- , phenyl- , - , /?,/?'-dithiodi- , thio Aniline, 2,2' dithiodi-
-, 4,4'-dithiodi- , N-dodecyl-, 4,4'-dithiodiAnisole, 2,2'-dithiodi- , 4,4'-dithiodi- , p-methyl-, a,a'-dithiobis-
T( 0 C) 45 60 50 25 50 60
Cx
Remarks
Refs.
60 25 50 60 50 50 79.5 79.5 60 60 50 70 20 60 44.1 50
1.3 3.1 0.8 0.0174 0.0038 0.0007 0.00176 0.0085 0.0110 0.0003 0.00554 0.0064 0.00132 0.0006 0.0013 0.128 0.693 0.38 0.18 0.39 0.38 5.5 0.08 1.3 0.075 0.106
60
0.00226
490
60
0.00167
490
60 60
0.374 0.00537
490 490
60 45 45 50 60 50 60
0.00190 4.7 7.4 0.027 11.0 0.0031 0.0044
490 30 30 354 369 285 285
50 99 60 99 99 50 60 60 99
< 0.005 0.2 0.015 0.1 >14.0 26.0 58.0 0.63 27.6
50 99 25 50
0.24 >14.7 3.8 3.0 3.4 3.0 0.24 0.21 3.0 0.18 0.021
75 50 50 50 50 99
H D
A A D
F2 F2 D A C F2, J
F2, J
J, R A A
J
30 274 344 368 285 310 368 285 491 491 368 252 368 252 252 474 474 274 274 473 473 280 280 118 194 354
297 96 86 96 96 146 126 323 96 89 96 297 297 297 297 89 89 89 89 96
Remarks page 11-157; References page 11-159
TABLE 5. cont'd Modifier Styrene {cont'd) /7-Anisoyl disulfide Anthranilic acid, 4,4'-dithiobisArylbenzene thiolsulfonate - , /?-chloro - , p-methoxy- , p-methylBenzenesulfonic acid - , compound with pyridine - , thio-, S-phenyl ester Benzenethiol - , o-ethoxy-,p-ethoxyBenzene thiosulfonate - , aryl-p-chloro- , aryl-p-methoxy- , aryl-p-methyl 2-Benzimidazolethiol Benzoic acid, 2,2/-dithiodi- , - , diethyl ester - , -,dimethyl ester -, 4,4'-dithiodi- , - , diethyl ester - , o-mercapto- , -, methyl ester -,thioBenzothiazole, 2,2/-dithiobis-
- , 2,2'-thiobis2-Benzothiazolethiol Benzo[B]thiophene, 4,5,6,7-tetrahydro-4(2-thienyl)Benzoyl disulfide
Benzyl alcohol, ^o'-dithiobis-,/vAdithiobisBenzyl diselenide Benzyl disulfide
T( 0 C) 60 50 60 60 60 60
96.0 3.0 0.95 2.22 1.872 1.237
60 50 60 99 99 99
0.00617 1.60 1.67 0.08 25.1 0.13
60 60 60 99 50 50 99 50
2.597 1.475 1.099 0.21 0.01 < 0.005 0.2 0.11 0.17 0.11 >14.7 17.0 6.23 2.3 2.1 2.3 2.4 2.73 < 0.005 0.03 0.26 0.011 < 0.005 0.010 0.0107 36.0 0.11 0.58 0.09 2.0 0.02 0.03 0.00878 0.01 0.011 0.548 0.069 0.00335 0.052 0.051 5.4 13.2 21.0 22.0 25 15.0 17.0 15.4
50 99 99 99 25 50 75 99 50 50 99 60 50 60 99 50 50 60 50 60
Benzyl sulfide Benzyl sulfone Benzyl sulfoxide 1-Butanethiol
Cx
99 25 50 60 50 50 25 60
70 80 99
Remarks
R, F2 R, F2 R, F2 R, F2 A A
R, F2 R, F2 R, F2
J
A
A D
D, Ql D A A A A
Refs. 369 89 544 544 544 544 490 491 491 96 96 96 544 544 544 96 89 89 96 297 89 89,297 96 96 96 297 297 297 297 96 297 297 96 419 89 545 304 369 96 89 297 128 89 297 368 128 96 368 252 368 252 252 340 340 395 69,397 131 395 395 96
TABLE 5. cont'd Modifier Styrene (cont'd) 1-Butanethiol, 1,1,3,3-tetramethyl-
1-Butanethiol-D
Butyl disulfide
sec-Butyl disulfide tert-Butyl disulfide Butyl sulfide tert-Butyl sulfide Carbanilic acid, /?,/?'-dithiodi-diethyl ester Carbon disulfide Carbonic acid, dithio- , - , S,S'-bis(carboxymethyl)ester - , trithio- , - , S,S'-bis(carboxymethyl) ester 1-Decanethiol 2,13-Dioxa-7,8-dithia-3,12-disilatetradecane, 3,3,12,12-tetramethoxyDiphenyldisulfide Disulfide, bis(/?-bromobenzoyl) - , bis(a-bromo-o-tolyl) - , bis(/?-chlorobenzoyl) - , bis(chlorobenzyl) - , bis(2-chloroethyl) - , bis(a-chloro-o-tolyl) - , bis(>-cyanobenzoyl) - , bis(diethylthiocarbamoyl) - , bis(dimethylthiocarbamoyl)
T( 0 C)
5 50 60 70 80 25 55 60 99 150 50 50 60 60 60 50 60 50 50 80 80 79.5 60 60 50 60 50 50 50 60 60 60 70 80 95 115 130
- , bis(2-ethylhexyl) - , bis(A^ethyl-A^phenylthio-carbamoyl) - , bis(l-methylheptyl) - , bis(morpholinothiocarbonyl) - , bis(l-naphthylmethyl) - , bis(/?-nitrobenzoyl - , bis(o-nitrophenyl) - , bis(l-phenylethyl) - , bis(P-(2-pyridyl)ethyl) - , bis(2,3,5,6-tetramethylphenyl) - , bis(2,4,6-triisopropylphenyl) 1-Dodecanethiol
50 60 99 60 99 60 50 50 50 50 50 60 70 70 90 100 110
Cx
5.5 6.4 4.3 5.2 4.0 7.0 0.00079 0.00154 0.0024 0.0068 0.022 < 0.005 < 0.005 0.00014 0.0022 0.025 0.24 0.00066
Remarks
H H H A A A
A
A
0.36 0.21 4.3 4.2 0.0118 0.147 745 1.0 196 < 0.005 0.01 1.3 3190 0.724 1.11 0.0136 0.568 0.620 0.780 0.860 0.939 1.035 0.984 1.150 < 0.005 1.75 0.0104 6.1 0.033 6650 <0.005 0.03 0.73 0.12 14.8 19.0 19 0.69 1.3 13.0 26.0
Refs.
242 222 242 395 395 395 448 448 304 96 359 89 89 304 304 304 89 288 297
C3, H C3, H
J
J J J
A
C3, H C3, H
297 574 574 474 546 369 297 369 297 297 297 369 286 286 104 40 481 481 40 40 481 40 481 297 286 96 286 96 369 89 89 297 297 89 69,126 59 562 574 574 156 156
Remarks page II-157; References page 11-159
TABLE 5. cont'd Modifier Styrene (cont'd) terf-Dodecanethiol Ethanethiol Ethanol, 2,2'-dithiodi- , - , di(chloroacetate) Ether, ethyl 3-mercaptopropyl Ethyl disulfide Formamidine, AW-diphenyl-, l,l'-dithiobisFormic acid, thio-, dithiobis, 0,0'-diisopropyl ester 1-Heptanethiol 1-Hexanethiol - , 1,1,3,3,5,5-hexamethylHexyl disulfide Hydrogen sulflde Isobutyl disulfide Isopropyl disulfide Lauryl disulfide Lepidine, 2,2-dithiodiMesityl disulfide Methyl disulfide Methyl sulfoxide
T( 0 C)
70 90 90 50 50 50 60 100 99 50 50 99 99 99 25 50 75 99 70 60 60 60 50 50 60 40 50
60 Morpholine, 4,4'-dithiodi1-Naphthalenemethanethiol
1-Naphthalenethiol 2-Naphthalenethiol 1-Naphthoyl disulfide 1-Naphthyl disulfide 2-Naphthyl disulfide
1-Octadecanethiol Octadecyl disulfide 1-Octanethiol - , 1,1,3,3,5,5,7,7-octamethyl2-Octanethiol 1,4,5-Oxadithiepane 1-Pentanethiol Phenetole, 2,2'-dithiodi- , 4,4'-dithiodiPhenyl disulfide
50 25 50 75 99 99 99 50 99 25 50 75 99 99 99 5 50 50 99 150 50 99 99 50 60
Phenyl disulfone Phenyl sulfide
50 60 25 50 60
Cx
1.5 1.5 1.6 17.1 < 0.005 <0.005 14.1 21.0 13.7 0.0045 6.72 5.3 7.5 15.1 15.3 3.2 2.9 2.4 0.0104 5.0 0.0020 0.00066 0.00023 0.04 0.69 0.0094 0.0000693 0.548
0.0000242 0.000048 < 0.005 12.7 18.3 15.7 24.6 0.15 0.18 0.34 1.57 0.17 0.19 0.29 0.36 14.7 0.024 19.3 23.0 19.0 4.7 3.2 0.057 20.0 0.075 0.33 0.06 0.102 0.0103 0.111 0.147 0.022 0.025 0.0325 0.056 0.00548
Remarks
C3, H C3, H C3, H
A
C, F2
A
E
A
H H H H A H
A A A A D
Refs.
574 574 574 331 297 297 126 69 69 96 251 297 96 96 96 297 297 297 96 145 304 304 128 89 89 304 458 375
429 438 297 297 297 297 96 96 96 89 96 297 297 297 96 96 96 339 242 242 242 96 359 344 96 96 297 491 368 491 285 491 491 368 252 368
Next Page
TABLE 5. cont'd Modifier Styrene (cont'd) Phenyl sulfone Phenyl sulfoxide 1-Propanethiol, 3-(trimethoxysilyl)2-Propanethiol, 2-methyl-
T( 0 C)
50 50 79.5 50 60 60 100
Propionic acid, 3,3-dithiodi- , - , dipropyl ester - , 2-mercapto- , 3-mercaptoPropyl disulfide Pyridine, 2,2'-dithiodiQuinoline, 2,2'-dithiodiSulfide, ethyl 2,4-diphenylbutyl - , ethyl phenethyl 1-Tetradecanethiol Thiosulfuric acid, S-butyl ester - , - , sodium salt - , S-isopropyl ester, sodium salt - , 5-phenyl ester - , - potassium salt - , 5-propyl ester, sodium salt p-Toluenethiol a-Toluenethiol -,/7-methoxy/7-Toluoyl disulfide o-Tolyl disulfide
p-Tolyl disulfide 2,6-Xylyl disulfide Vinyl acetate Acetic acid, dithiodi- , - , diethyl ester Acetic acid, ithio- , - , S-(2-hydroxyethyl)ester, acetate Acetyl disulfide 1-Butanethiol Butyl disulfide Butyl sulfide 1,4,5-Oxadithiepane Sulfur oc-Toluenethiol Thiol acetate
Cx
0.021 0.024 5.90 4.0 3.1 3.7 4.6 1.8 2.3
Remarks
Refs.
A A
252 252 474 344 261 69,126 59 261 69,126
H
297 178 178 297 304 89 89 331 331 242
H A A
50 50 60 50 50 50 50 50
< 0.005 7.7 9.4 6.0 0.00234 0.01 0.05 30.0 7.15 19.0
60 60
0.173 0.407
490 490
60 60 99 99 99 60 25 50
0.763 0.150 0.07 25.5 26.0 46.3 0.22 0.23 0.28 0.32 0.11 0.15 0.69
490 490 96 96 96 369 297 297 297 297 297 96 297
1.41 1.5
86 351
75 50 99 50
60
60 60 60 60 60 60 45 70 60
0.0132 0.29 48.0 1.0 0.026 0.25-2.5 470.0 0.885 0.186
J J J J J C F20
140 86 140,397 86, 351 351 351 28 390 575
C. REMARKS A. B. C.
D.
Thermal initiation Hydroperoxide initiation Peroxide initiation C1. Ammonium persulfate C2. Potassium persulf ate C3. Sodium persulf ate Photoinitiation
E. F.
y-Ray initiation Solution polymerization in: Fl. Acetonitrile F2. Benzene F3. Butyl acetate F4. Butyl chloride F5. Chlorobenzene References page 11-159
Previous Page
TABLE 5. cont'd Modifier Styrene (cont'd) Phenyl sulfone Phenyl sulfoxide 1-Propanethiol, 3-(trimethoxysilyl)2-Propanethiol, 2-methyl-
T( 0 C)
50 50 79.5 50 60 60 100
Propionic acid, 3,3-dithiodi- , - , dipropyl ester - , 2-mercapto- , 3-mercaptoPropyl disulfide Pyridine, 2,2'-dithiodiQuinoline, 2,2'-dithiodiSulfide, ethyl 2,4-diphenylbutyl - , ethyl phenethyl 1-Tetradecanethiol Thiosulfuric acid, S-butyl ester - , - , sodium salt - , S-isopropyl ester, sodium salt - , 5-phenyl ester - , - potassium salt - , 5-propyl ester, sodium salt p-Toluenethiol a-Toluenethiol -,/7-methoxy/7-Toluoyl disulfide o-Tolyl disulfide
p-Tolyl disulfide 2,6-Xylyl disulfide Vinyl acetate Acetic acid, dithiodi- , - , diethyl ester Acetic acid, ithio- , - , S-(2-hydroxyethyl)ester, acetate Acetyl disulfide 1-Butanethiol Butyl disulfide Butyl sulfide 1,4,5-Oxadithiepane Sulfur oc-Toluenethiol Thiol acetate
Cx
0.021 0.024 5.90 4.0 3.1 3.7 4.6 1.8 2.3
Remarks
Refs.
A A
252 252 474 344 261 69,126 59 261 69,126
H
297 178 178 297 304 89 89 331 331 242
H A A
50 50 60 50 50 50 50 50
< 0.005 7.7 9.4 6.0 0.00234 0.01 0.05 30.0 7.15 19.0
60 60
0.173 0.407
490 490
60 60 99 99 99 60 25 50
0.763 0.150 0.07 25.5 26.0 46.3 0.22 0.23 0.28 0.32 0.11 0.15 0.69
490 490 96 96 96 369 297 297 297 297 297 96 297
1.41 1.5
86 351
75 50 99 50
60
60 60 60 60 60 60 45 70 60
0.0132 0.29 48.0 1.0 0.026 0.25-2.5 470.0 0.885 0.186
J J J J J C F20
140 86 140,397 86, 351 351 351 28 390 575
C. REMARKS A. B. C.
D.
Thermal initiation Hydroperoxide initiation Peroxide initiation C1. Ammonium persulfate C2. Potassium persulf ate C3. Sodium persulf ate Photoinitiation
E. F.
y-Ray initiation Solution polymerization in: Fl. Acetonitrile F2. Benzene F3. Butyl acetate F4. Butyl chloride F5. Chlorobenzene References page 11-159
F6. o-Dichlorobenzene F7. Dimethylformamide F8. Dimethyl sulfoxide F9. /7-Dioxane FlO. Ethyl acetate FIl. Ethyl methyl ketone F12. Heptane F13. Water F14. Magnesium perchlorate F15. Succinonitrile F16. Sulfur dioxide F17. Toluene Fl 8. Zinc chloride F19. Octane F20. Methanol F21. Propane F22. Diethyl oxalate F23. Cyclohexane F24. Butyl alcohol F25. Acetic acid F26. 1,2-Dichloroethane F27. Ethylbenzene F28. Cylohexanone F29. Parabutyr aldehyde F30. Water-methanol mixture F31. tert-Butyl alcohol F32. Hexane F33. 1-Propanol F34. Carbon tetrachloride G. Heterogeneous polymerization H. Emulsion polymerization I. Recalculated from data of: 11. Basu, Sen, and Palit (1950) 12. Baysal and Tobolsky (1952) 13. Chadha and Misra (1958) 14. Dixon-Lewis (1949) 15. Gregg and Mayo (1953) 16. Ham (1956) 17. Kwart, Broadbent, and Bartlett (1950) 18. Matsumoto, et. al. (1959) 19. Palit and Das (1954) 110. Palit, Nandi, and Saha (1954) Il 1. Saha, Nandi, and Palit (1956) 112. Stein and Schulz (I960) 113. Wheeler, Lavin, and Crozier (1952) J. Apparent transfer constant; retardation occurred K. Average value L. Estimated from model compounds M. For end groups: M1. Tribromomethy 1 M2. Butylamino M3. Diethylamino M4. Hy droxy methyl M5. Aldehyde M6. Thioglycolate M7. -CH(OH)CH2-SH M8. Dodecyl M9. 2-Hydroxyethyl
N. O. P. Q. R. S. T. U. V. W.
X. Y. Z. AA. BB. CC. DD. EE. FF. GG.
HH.
II.
MlO. -(CH 2 )IiSH For middle groups For side chain For main chain Telomerization (number of monomer units in transferring chain) Calculated from viscosity average molecular weight Value uncertain In presence of 0.4 mol/1 lithium nitrate In presence of ( ) mol/1 sodium chloride In presence of ( ) mol/1 sodium bromide Under pressure of: Wl. 200psi (13.8bar) W2. 250psi(17.2bar) W3. 1470psi(101.4bar) W4. 5000 psi (344.8 bar) W5. 20000 psi (1379.0 bar) W6. 26600psi (1834.1 bar) W7. 28400 psi (1958.2bar) W8. 56000psi(3861.2bar) W9. 64600 psi (4454.2 bar) WlO. 168000psi (11583.6 bar) WIl. 600psi (41.4 bar) W12. 2500psi (172.4bar) W13. 18 psi (1.2bar) W14. 735 psi (50.7 bar) W15. 14200psi (979.1 bar) W16. 42600 psi (2937.3 bar) W17. 34500 psi (2378.8 bar) Wl8. 3000bar W19. 2700 bar W20. 2400 bar W21. 2000bar W22. 1800 bar W23. 150 bar W24. 600 bar Corrected for loss of low molecular weight polymer CM = 125 x exp(-7300//?r) CM = 3.0 x exp(-5673/#r) CM = 0.4 x exp(-6219//?r) CM = 0.2 x exp(-5400/#r) CM = 6.4 x exp(-4120/#r) CM = 4.77 x exp(-3540/#r) Radical is styrene Radical is p-chlorostyrene 1/C varies with polym. rate and emulsifier of: GGl. Kcaprate GG2. Klaurate GG3. K myristate GG4. Kpalmitate GG5. K rosinate C is combined constant for copolymerization, = (Csi X i J 1 X M i + CS2 XiJ 2 X M 2 )/ (Ri x Mi x Mi + 2 x Mi x M 2 +R2 x M 2 x M2) In presence of FeBr2
111. 112. JJO. JJl.
In presence of FE(CO)5 In presence of methacrylic acid methyl ester Catalyzed by Co(II)-tetramethylhematoporphyrine Catalyzed by Co(II)-hematoporphyrinetetramethyl ether JJ2. Catalyzed by Co(II)-tetra-4-tertbutylbenzoporphyrine
JJ3. In presence of ZnCl 2 ; [ZnCl 2 ]/[MMA] = (a)0 (b) 0.1 (c) 0.23 (d) 0.40 KK. Copolymerization of acrylonitrile and butyl acrylate LL. Controlled to pH 3 - 4 with acetic acid
D. REFERENCES 1. I. B. Afanas'ev, T. N. Eremina, Zh. Org. Khim., 2, 1832 (1966). 2. LB. Afanas'ev, T. N. Eremina, E. D. Safronenko, Zh. Org. Khim., 1, 844 (1965); J. Org. Chem. USSR, 1, 849 (1965). 3. LB. Afanas'ev, E. D. Safronenko, A. A. Beer, Vysokomol. Soedin., Ser. B, 9, 802 (1967). 4. G. Akazome, S. Sakai, K. Maurai, Kogyo Kagaku Zasshi, 63, 592 (1960); from CA, 56, 4924F (1962). 5. L. Alexandra, M. Oprish, Polym. Sci. USSR, 3, 99 (1962). 6. P. W. Allen, G. P. Mcsweeney, Trans. Faraday Soc, 54, 715 (1958). 7. P. W. Allen, F. M. Merrett, J. Scanlan, Trans. Faraday Soc, 51, 95 (1955). 8. U. N. Anistmov, S. S. Ivanchev, A. I. Yurzhenko, Vysokomol, Soedin., Ser. A, 9, 692 (1967). 9. I. A. Arbusova, L. I. Medvedeva, Izv. Akad. Nauk SSSR, Ser. Khim., 1957, 1349. 10. T. Asahara, T. Makishima, Kogyo Kagaku Zasshi, 69, 2173 (1966). 11. C. Aso, M. Sugabe, Kogyo Kagaku Zasshi, 68, 1970 (1965). 12. R. Autrata, J. Muller, Collect. Czech. Chem. Commun., 24, 3442 (1959). 13. D. W. E. Axford, Proc. Roy. Soc, Ser. A, 197, 137 (1949). 14. T. M. Babchinitser, K. K. Mozgova, V. V. Korshak, Dokl. Akad. Nauk SSSR, 173, 575 (1967); from CA, 67, 117314E (1967). 15. Kh. S. Bagdasar'ian, Z. A. Sinitsina, J. Polym. Sci., 52, 31 (1961). 16. C. H. Bamford, S. Brumby, Makromol. Chem., 105, 122 (1967). 17. C. H. Bamford, M. J. S. Dewar, Proc. Roy. Soc, Ser. A, 192, 309 (1948). 18. C. H. Bamford, M. J. S. Dewar, Proc. Roy. Soc, Ser. A, 197, 356 (1949). 19. C. H. Bamford, A. D. Jenkins, R. Johnston, Proc. Roy. Soc, Ser. A, 239, 214 (1957). 20. C. H. Bamford, A. D. Jenkins, R. Johnston, Proc Roy. Soc, Ser. A, 241, 364 (1957). 21. C H . Bamford, A. D. Jenkins, R. Johnston, Trans. Faraday Soc, 55, 418 (1959). 22. C. H. Bamford, A. D. Jenkins, R. Johnston, E. F. T. White, Trans. Faraday Soc, 55, 168 (1959). 23. C. H. Bamford, A. D. Jenkins, E. F. T. White, J. Polym. Sci., 34, 271 (1959). 24. C. H. Bamford, E. F. T. White, Trans. Faraday Soc, 52, 716 (1956).
25. C. H. Bamford, E. F. T. White, Trans. Faraday Soc, 54, 268 (1958). 26. S. Banerjee, M. S. Muthana, J. Polym. Sci., 37, 469 (1959). 27. P. D. Bartlett, G. S. Hammond, H. Kwart, Dis. Faraday Soc, 2, 342 (1947). 28. P. D. Bartlett, H. Kwart, J. Am. Chem. Soc, 74, 3969 (1952). 29. P. D. Bartlett, F. A. Tate, J. Am. Chem. Soc, 75, 91 (1953). 30. S. C. Barton, R. A. Bird, K. E. Russell, Can. J. Chem., 41, 2737 (1963). 31. S. Basu, J. N. Sen, S. R. Palit, Proc Roy. Soc, Ser. A, 202, 485 (1950). 32. S. Basu, J. N. Sen, S. R. Palit, Proc Roy. Soc, Ser. A, 214, 247 (1952). 33. B. Baysal, J. Polym. Sci., 33, 381 (1958). 34. B. Baysal, A. V. Tobolsky, J. Polym. Sci., 8, 529 (1952). 35. I. M. Bel'govskii, L. S. Sakhonenko, N. S. Yenikolopyan, Vysokomol. Soedin., 8, 369 (1966). 36. W. I. Bengough, W. H. Fairservice, Trans. Faraday Soc, 61, 1206 (1965). 37. W. I. Bengough, W. H. Fairservice, Trans. Faraday Soc, 63, 382 (1967). 38. W. I. Bengough, W. Henderson, Trans. Faraday Soc, 61,141 (1965). 39. W. I. Bengough, R. A. M. Thomson, Trans. Faraday Soc, 56, 407 (1960). 40. J. Beniska, E. Staudner, J. Polym. Sci. C, 16, 1301 (1967). 41. T. Berezhnykh-Foldes, F. Tudos, Eur. Polym. J., 2, 219 (1996). 42. J. C. Bevington, N. A. Ghanem, H. W. Melville, J. Chem. Soc, 1995, 2822. 43. J. C. Bevington, G. M. Guzman, H. W. Melville, Proc. Roy. Soc. Ser. A, 221, 437 (1954). 44. J. C. Bevington, H. G. Troth, Trans. Faraday Soc, 58, 2005 (1962). 45. J. C. Bevington, H. G. Troth, Trans. Faraday Soc, 59, 127 (1963). 46. J. C. Bevington, H. G. Troth, Trans. Faraday Soc, 59, 1348 (1963). 47. J. C. Bevington, A. Wahid, Polymer, 3, 585 (1962). 48. B. R. Bhattacharyya, U. S. Nandi, J. Polym. Sci. A-1,4,2675 (1966). 49. B. R. Bhattacharyya, U. S. Nandi, Makromol. Chem. 116, 8 (1968). 50. R. A. Bird, G. A. Harpell, K. E. Russell, Can. J. Chem., 40, 701 (1962). 51. R. A. Bird, K. E. Russell, Can. J. Chem., 43, 2123 (1965).
52. L. Bogetich, G. A. Mortimer, G. W. Daues, J. Polym. ScL, 61, 3 (1962). 53. E. P. Bonsall, L. Valentine, H. W. Melville, J. Polym. ScL, 7, 39 (1951). 54. C. Booth, L. R. Beason, J. Polym. ScL, 42, 93 (1960). 55. C. Booth, L. R. Beason, J. T. Bailey, J. Appl. Polym. ScL, 5, 116(1961). 56. D. Braun, T.-O. O. Ami., W. Kern, Makromol. Chem., 53, 154 (1962). 57. D. Braun, G. Arcache, R. J. Faust, W. Neumann, Makromol. Chem., 114, 51 (1968). 58. J. W. Breitenbach, Makromol Chem., 8, 147 (1952). 59. J. W. Breitenbach, Z. Elektrochem., 60, 286 (1956). 60. J. W. Breitenbach, H. Edelhauser, R. Hochrainer, Monatsh. Chem., 97, 217 (1966). 61. J. W. Breitenbach, H. Karlinger, Monatsh. Chem., 82, 245 (1951). 62. J. W. Breitenbach, O. F. Olaj, Makromol. Chem., 96, 83 (1966). 63. J. W. Breitenbach, O. F. Olaj, K. Kuchner, H. Horacek, Makromol. Chem., 87, 295 (1965). 64. J. W. Breitenbach, O. F. Olaj, A. Schindler, Monatsh. Chem., 91, 205 (1960). 65. J. W. Breintenbach, A. Schindler, Monatsh. Chem., 83, 724 (1952). 66. J. W. Breintenbach, A. Schindler, Monatsh. Chem., 86, 437 (1955). 67. J. W. Breintenbach, A. Schindler, Monatsh. Chem., 88, 53 (1957). 68. D. W. Brown, J. E. Fearn, R. E. Lowry, J. Polym. Sci. A, 3,16 (1965). 69. G. M. Burnett, Quart. Rev. (London), 4, 292 (1950). 70. G. M. Burnett, F. L. Ross, J. N. Hay, Makromol. Chem., 105, 1 (1965). 71. A. J. Buselli, M. K. Lindemann, C. E. Blades, J. Polym. ScL, 28, 485 (1958). 72. J. I. G. Cadogan, D. H. Hey, J. T. Sharp, J. Chem. Soc, B, 1966, 933. 73. M. Cantow, G. Meyerhoff, G. V. Schulz, Makromol. Chem., 49, 1 (1961). 74. E. A. S. Cavell, Makromol. Chem., 54, 70 (1962). 75. E. A. S. Cavell, I. T. Gilson, J. Polym. Sci. A-I, 4, 541 (1966). 76. R. N. Chadha, G. S. Misra, Indian J. Phys., 28, 37 (1954). 77. R. N. Chadha, G. S. Misra, Current Sci. (India), 23, 186 (1954). 78. R. N. Chadha, G. S. Misra, Makromol. Chem., 14,97 (1954). 79. R. N. Chadha, G. S. Misra, Current Sci. (India), 24, 26 (1955). 80. R. N. Chadha, G. S. Misra, Trans. Faraday Soc, 54, 1227 (1958). 81. R. N. Chadha, J. S. Shukla, G. S. Misra, Trans. Faraday Soc, 53, 240 (1957). 82. E. Y. C. Chang, C. C. Price, J. Am. Chem. Soc, 83, 4650 (1961). 83. S. R. Chatterjee, S. N. Khanna, S. R. Palit, J. Indian Chem. Soc, 41, 622 (1964).
84. A. K. Chaudhuri, Makromol. Chem., 31, 214 (1959). 85. S. Chubachi, P. K. Chatterjee, A. V. Tobolsky, J. Org. Chem., 32, 1511 (1967). 86. J. T. Clarke, R. O. Howard, W. H. Stockmayer, Makromol. Chem., 44-46, 427 (1961). 87. W. Cooper, J. Chem. Soc 1952, 2408. 88. A. T. Coscia, R. L. Kugel, J. Pellon, J. Polym. Sci., 55, 303 (1961). 89. A. J. Costanza, R. J. Coleman, R. M. Pierson, C. S. Marvel, C. King, J. Polym. Sci., 17, 319 (1955). 90. J. Curtice, H. Gilman, G. S. Hammond, J. Am. Chem. Soc, 79, 4754 (1957). 91. E S. Dainton, R. G. Jones, Trans. Faraday Soc, 63, 1512 (1967). 92. F. S. Dainton, M. Tordoff, Trans. Faraday Soc, 53, 499 (1957). 93. N. V. Daniel, A. F. Nikolaev, Vysokomol. Soedin., 8, 465 (1966). 94. F. Danusso, D. Sianesi, Chim. Ind. (Milan), 37, 695 (1955). 95. S. K. Das, S. R. Chatterjee, S. R. Palit, Proc Roy. Soc, Ser. A, 227, 252 (1955). 96. V. A. Dinaburg, A. A. Vansheidt, Zh. Obshch. Khim., 24, 840 (1954). 97. G. Dixon-Lewis, Proc. Roy. Soc, Ser. A, 198, 510 (1949). 98. K. W. Doak, M. A. Deahl, I. H. Christmas, 137th ACS Meeting, Cleveland, Ohio, Abstr. Papers, Vol. 1, No. 1, 151 (April 1960). 99. H. Drawe, A. Henglein, Makromol. Chem., 84, 203 (1965). 100. E. Dvorak, F. Hrabak, J. Polym. Sci. C, 16, 1051 (1967). 101. B. A. Englin, R. Kh. Freidlina, Izv. Akas. Nauk SSSR, Ser. Khim., 1965 (13), 425; from CA, 63, 4122E (1965). 102. B. Erussalimsky, N. Tumarkin, F. Duntoff, S. Lyubetzky, A. Goldenberg, Makromol. Chem., 104, 288 (1967). 103. T. A. Fadner, H. Morawetz, J. Polym. Sci., 45, 475 (1960). 104. T. E. Ferington, A. V. Tobolsky, J. Am. Chem. Soc, 77,4510 (1955). 105. T. G. Fox, S. Gratch, Ann. N. Y. Acad. Sci., 57, 367 (1953). 106. G. N. Freidlin, K. A. Solop, Vysokomol. Soedin., 7, 1060 (1965). 107. G. N. Freidlin, K. A. Solop, Vysokomol. Soedin., 8, 1151 (1966). 108. T. M. Frunze, V V Korshak, E. L. Baranov, B. V. Lokshin, Vysokomol. Soedin, 8, 455 (1966). 109. N. Fuhrma, R. B. Mesrobian, J. Am. Chem. Soc, 76, 3281 (1954). 110. T. R. Fukuto, J. P. Kispersky, US Dept. Com., Office Tech. Serv., Pb Rept. 147, 271 (1953). 111. S. Gadkary, S. Kapur, Makromol. Chem., 17, 29 (1955). 112. J. A. Gannon, E. M. Fettes, A. V Tobolsky, J. Am. Chem. Soc, 74, 1854 (1952). 113. M. H. George, J. Polym. Sci. A, 2, 3169 (1964). 114. M. H. George, P. F. Onyon, Trans. Faraday Soc, 59, 134 (1963). 115. M. H. George, P. F. Onyon, Trans. Faraday Soc, 59, 1390 (1963). 116. H. Gerrens, H. Ohlinger, R. Fricker, Markromol. Chem., 87, 209 (1965).
117. L. Ghosez, G. Smets, J. Polym. Sci., 37, 445 (1959). 118. G. P. Gladyshev, G. V. Leplyanin, Vysokomol. Soedin., Ser. A, 9, 2438 (1967). 119. J. E. Glass, N. L. Zutty, J. Polym. Sci. A-I, 4, 1223 (1966). 120. M. S. Gluckman, M. J. Kampf, J. L. O'Brien, T. G. Fox, R. K. Graham, J. Polym. Sci., 37, 411 (1959). 121. M. P. Godsay, G. A. Harpell, K. E. Russell, J. Polym. Sci., 57, 641 (1962). 122. M. P. Godsay, D. H. Lohmann, K. E. Russell, Chem. Ind. (London), 1959, 1603. 123. M. R. Gopalan, M. Santhappa, J. Polym. Sci., 25, 333 (1957). 124. W. W. Graessley, H. Mittelhauser, R. Maramba, Makromol. Chem., 86, 129 (1965). 125. N. Grassie, E. Vance, Trans. Faraday Soc, 52 727 (1956). 126. R. A. Gregg, D. M. Alderman, F. R. Mayo, J. Am. Chem. Soc, 70, 3740 (1948). 127. R. A. Gregg, F. R. Mayo, Disc. Faraday Soc, 2, 328 (1947). 128. R. A. Gregg, F. R. Mayo, J. Am. Chem. Soc, 70, 2373 (1948). 129. R. A. Gregg, F. R. Mayo, J. Am. Chem. Soc, 75, 3530 (1953). 130. V. F. Gromov, A. V. Matveeva, P. M. Khomikovskii, A. D. Abkin, Vysokomol. Soedin., Ser. A, 9, 1444 (1967). 131. J. Guillot, A. Guyot, Compt. Rend., Ser. C, 266,1209 (1968). 132. H. C. Haas, H. Husek, J. Polym. Sci. A, 2, 2297 (1964). 133. Y. Hachihama, H. Sumitomo, Technol. Repts. Osaka Univ., 5, 491 (1955); from CA, 51, 8474B (1957). 134. Y. Hachihama, H. Sumitomo, Technol. Repts. Osaka Univ., 5, 497 (1955); from CA, 51, 8474C (1957). 135. G. E. Ham, J. Polym. Sci., 21, 337 (1956). 136. G. E. Ham, E. L. Ringwald, J. Polym. Sci., 8, 91 (1952). 137. D. Hardy, K. Nytrai, N. Fedorova, G. Kovacs, Polym. Sci. USSR, 4, 584 (1963). 138. D. Hardy, K. Nytrai, N. Fedorova, G. Kovacs, Vysokomol. Soedin, 4, 1872 (1962). 139. D. Hardy, V Spiegel, K. Nytrai, Polym. Sci. USSR, 2, 528 (1961). 140. G. Hardy, J. Varga, K. Nytrai, I. Tsajlik, L. Zubonyai, Vysokomol. Soedin., 6, 758 (1964). 141. S. A. Harrison, W. E. Tolberg, J. Am. Oil Chem. Soc, 30, 114 (1953); calc by F. R. Mayo and C. W. Gould (1964). 142. R. A. Hayes, J. Polym. Sci., 13, 583 (1954). 143. E. J. Henley, C. Chong, J. Polym. Sci., 36, 511 (1959). 144. G. Henrici-Olive, S. Olive, Makromol. Chem., 37, 71 (1960). 145. G. Henrici-Olive, S. Olive, Fortschr. Hochpolymer. Forsch., 2, 496 (1961). 146. G. Henrici-Olive, S. Olive, Makromol. Chem., 53, 122 (1962). 147. G. Henrici-Olive, S. Olive, G. V. Schulz, Makromol. Chem., 23, 207 (1957). 148. G. Henrici-Olive, S. Olive, G. V. Schulz, Z. Phys. Chem. (Frankfurt), 20, 176 (1959). 149. R. Hiddema, Proefschrift Rijks Universitat Groningen, 1953, Ref. 16 in Breitenbach (1956). 150. K. Higashiura, Kogyo Kagaku Zasshi, 69, 349 (1966).
151. K. Higaashiura, M. Oiwa, J. Polym. Sci., A-I, 6, 1857 (1968). 152. F. Hrabak, M. Bezdek, Makromol. Chem., 115, 43 (1968). 153. F. Hrabak, M. Bezdek, Collect. Czech. Chem. Commun., 33, 278 (1968). 154. F. Hrabak, L. Jiresova, Collect. Czech. Chem. Commun., 26, 1283 (1961). 155. T. Huff, E. Perry, J. Am. Chem. Soc, 82, 4277 (1960). 156. T. Huff, E. Perry, J. Polym. Sci. A, 1, 1553 (1963). 157. F. Ide, K. Nakatsuka, H. Tamura, Kobunshi Kagaku, 23, 45 (1965); from CA, 64, 17716G (1966). 158. F. Ide, K. Okano, S. Nakano, K. Nakstsuka, Shikizai Kyokaishi, 40, 571 (1967); from CA, 69, 3162Q (1968). 159. J. L. Ihrig, S. P. Sood, J. Polym. Sci. A-3, 1573 (1965). 160. M. Imoto, K. Higashiura, Kobunshi Kagaku, 17,468 (1960); from CA, 55, 22900G (1961). 161. M. Imoto, T. Otsu, T. Oda, H. Takatsugi, M. Matsuda, J. Polym. Sci., 22, 137 (1956). 162. M. Imoto, T. Otsu, K. Tsuda, T. Ito, J. Polym. Sci. A-2,1407 (1964). 163. M. Imoto, K. Takemoto, H. Azuma, Makromol. Chem., 114, 210 (1968). 164. M. Imoto, K. Takemoto, Y. Nakai, Makromol. Chem., 48, 80 (1961). 165. S. Imoto, T. Kominami, Kobunshi Kagaku, 15, 60 (1958); from CA, 53, 8690G (1959). 166. S. Imoto, T. Kominami, Kobunshi Kagaku, 15, 279 (1958); from CA, 54, 2803A (1960). 167. S. Imoto, J. Ukida, T. Kominami, Kobunshi Kagaku, 14, 127 (1957); from CA, 52, 1670A (1958). 168. S. Imoto, J. Ukida, T. Kominami, Kobunshi Kagaku, 14, 384 (1957); from CA, 52, 5024D (1958). 169. S. Iwatsuki, K. Nishio, Y. Yamashita, Kogyo Kagaku Zasshi, 70, 384 (1967). 170. V Jaacks, F. R. Mayo, J. Am. Chem. Soc, 87, 3371 (1965). 171. D. H. Johnson, A. V. Tobolsky, J. Am. Chem. Soc, 74, 938 (1952). 172. M. H. Jones, Can. J. Chem., 34, 108 (1956). 173. E. F. Jordan, Jr., B. Artymyshyn, A. N. Wrigley, J. Polym. Sci. A-I, 6, 575 (1968). 174. E. F. Jordan, Jr., G. R. Riser, W. E. Parker, A. N. Wrigley, J. Polym. Sci. A-2, 4, 975 (1966). 175. R. M. Joshi, Makromol. Chem., 53, 33 (1962). 176. H. Kaemmerer, F. Rocaboy, Compt. Rend. Ser. AB, 256, 4440 (1963). 177. H. Kaemmerer, F. Rocaboy, Makromol. Chem., 72, 76 (1964). 178. K. Kaeriyama, Nippon Kagaku Zasshi, 88, 783 (1967); from CA, 69, 19607Z (1968). 179. M. Kalfus, J. Kopytowski, S. Lesniak, Z. Skupinska, Polimery, 9, (2) 54 (1964); from CA, 62, 9325E (1965). 180. S. Kamenar, Chem. Zvesti, 14, 525 (1960); from Chem. Zentr., 133, 493 (1961). 181. S. L. Kapur, J. Sci. Ind. Res., 108, 186 (1951). 182. S. L. Kapur, J. Polym. Sci., 11, 399 (1953). 183. S. L. Kapur, S. D. Gadkary, J. Sci. Ind. Res., 17B, 152 (1958).
184. S. L. Kapur, R. M. Joshi, J. Polym. ScL, 14, 489 (1954). 185. K. Katagiri, K. Uno, S. Okamura, J. Polym. ScL, 17, 142 (1955). 186. M. Kato, H. Kamogawa, J. Polym. ScL A-I, 4, 2771 (1966). 187. V. Ya. Katsobashvili, R. Ya. Chernaya, I. B. Afanas'ev, Vysokomol. Soedin., Ser. B, 9, 342 (1967). 188. V. Ya. Katsobashvili, E. D. Safronenko, I. B. Afanas'ev, Vysokomol. Soedin., 7, 823 (1965). 189. V. Ya. Katsobashvili, E. D. Safronenko, I. B. Afanas'ev, Vysokomol. Soedin., 8, 282 (1966). 190. H. Kawakami, N. Mori, K. Kawashima, M. Sumi, Kogyo Kagaku Zasshi, 66, 88 (1963); from CA, 59, 4042B (1963). 191. H. Kawakami, N. Mori, M. Sumi, Kobunshi Kagaku, 20,408 (1963); from CA, 61, 13422D (1964). 192. W. Kern, D. Braun, Makromol. Chem., 27, 23 (1958). 193. S. N. Khanna, S. R. Chatterjee, U. S. Nandi, S. R. Palit, Trans. Faraday Soc, 58, 1827 (1962). 194. J. L. Kice, J. Am. Chem. Soc, 76, 6274 (1954). 195. W. J. Kirkham, J. C. Robb, Trans. Faraday Soc, 57, 1757 (1961). 196. H. Kitagama, Kobunshi Kagaku, 20, 5 (1963); from Makromol. Chem., 64, 229 (1963). 197. H. Kiuchi, M. Watanabe, Kobunshi Kagaku, 21, 37 (1964) from CA, 61, 7107F (1964). 198. I. M. Kochnov, M. F. Sorokin, Polym. Sci. USSR, 6, 869 (1964). 199. M. Kubin, L. Zikmund, Collect. Czech. Chem. Commun., 32, 535 (1967). 200. C. J. Kurian, M. S. Muthana, Makromol. Chem., 29, 1 (1959). 201. C. J. Kurian, M. S. Muthana, Makromol. Chem., 29, 19 (1959). 202. H. Kwart, H. S. Broadbent, P. D. Bartlett, J. Am. Chem. Soc, 72, 1060 (1950). 203. K. S. Kwei, F. R. Eirich, J. Phys. Chem., 66, 828 (1962). 204. Z. Laita, J. Polym. Sci., 38, 247 (1959). 205. Z. Laita, Z. Machacek, J. Polym. Sci., 38, 459 (1959). 206. M. Lazar, J. Pavlinec, Chem. Zvesti, 15, 428 (1961); from CA, 55, 22896C (1961). 207. M. Lazar, J. Pavlinec, J. Polym. Sci. A, 2, 3197 (1964). 208. M. Lazar, J. Pavlinec, Z. Manasek, Collect. Czech. Chem. Commun., 26, 1380 (1961). 209. M. Lazar, R. Rado, J. Pavlinec, J. Polym. Sci., 53, 163 (1961). 210. F. M. Lewis, F. R. Mayo, J. Am. Chem. Soc, 76,457 (1954). 211. D. Lim, M. Kolinsky, J. Polym. Sci., 53, 173 (1961). 212. D. Lim, O. Wichterle, J. Polym. Sci., 29, 579 (1958). 213. M. Litt, V. Stannett, Makromol. Chem., 37, 19 (1960). 214. J. R. Little, RF. Hartman, J. Am. Chem. Soc, 88,96 (1966). 215. J. R. Little, L. W. Hartzel, F. O. Guenther, F. R. Mayo, private communication to C. Walling, "Free radicals in solution", Wiley, NY, 1957, p. 257. 216. S. Loshaek, E. Broderick, R Bernstein, J. Polym. ScL, 39, 223 (1959). 217. A. I. Lowell, J. R. Price, J. Polym. Sci., 43, 1 (1960). 218. S. G. Lyubetskii, B. A. Dolgoplosk, B. L. Erusalimskii, Polym. Sci. USSR, 3, 164 (1962).
219. Z. Machacek, F. Cermak, Chem, Prum., 16,604 (1966); from CA, 66, 18907Y (1967). 220. G. Machell, G. N. Richards, J. Chem. Soc, 1961, 3308. 221. V Mahadevan, M. Santhappa, Makromol. Chem., 16, 119 (1955). 222. K. L. Malik, Naturwissenschaften, 45, 385 (1958). 223. T. Manabe, T. Utsumi, S. Okamura, J. Polym. Sci., 58, 121 (1962). 224. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Am. Chem. Soc, 71, 497 (1949). 225. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Am. Chem. Soc, 71, 2610 (1949). 226. S. G. Matsoyan, N. N. Morlyan, F. S. Kinoyan, Vysokomol. Soedin., 7, 1159 (1965). 227. M. Matsuda, S. Abe, N. Tokura, J. Polym. Sci. A, 2, 3877 (1964). 228. M. Matsuda, K. Matsumoto, N. Tokura, Kogyo Kagaku Zasshi, 68, 1269 (1965). 229. M. Matsuda. N. Tokura, J. Polym. Sci. A, 2, 4281 (1964). 230. M. Matsuda, S. Fujii, J. Polym. ScL A-I, 5, 2617 (1967). 231. M. Matsumoto, M. Maeda, J. Polym. ScL, 17, 438 (1955). 232. M. Matsumoto, J. Ukida, G. Takayama, T. Eguchi, K. Mukumoto, K. Imai, Y. Kazusa, M. Maeda, Makromol. Chem. 32, 13 (1959). 233. B. Matuska, J. Kossler, V. Srajer, Collect, Czech. Chem. Commun., 23, 1456 (1958). 234. J. A. May, Jr., W. B. Smith, J. Phys. Chem., 72, 216 (1968). 235. F. R. Mayo, J. Am. Chem. Soc, 65, 2324 (1943). 236. F. R. Mayo, J. Am. Chem. Soc, 70, 3689 (1948). 237. F. R. Mayo, J. Am. Chem. Soc, 75, 6133 (1953). 238. F. R. Mayo. J. Am. Chem. Soc, 76, 5392 (1954). 239. F. R. Mayo, C. W. Gould, J. Am. Oil Chem. Soc, 41, 25 (1964). 240. F. R. Mayo, R. A. Gregg, M. S. Matheson, J. Am. Chem. Soc, 73, 1691 (1951). 241. V. V. Mazurek, V. G. Gasan-Zade, G. T. Nesterchuk, Polym. Sci. USSR, 6, 1587 (1964). 242. E. J. Meehan, I. M. Kolthoff, H. R. Sinha, J. Polym. Sci., 16, 471 (1955). 243. E. J. Meehan, I. M. Kolthoff, P. R. Sinha, J. Polym. Sci. A-2, 4911 (1964). 244. F. W. Mellows, M. Burton, J. Phys. Chem., 66, 2164 (1962). 245. H. W. Melville, L. Valentine, Trans. Faraday Soc, 46, 210 (1950). 246. H. S. Mickley, A. S. Michaels, A. L. Moore, J. Polym. Sci., 60, 121 (1962). 247. E. B. Milovskaya, T. G. Zhuravleva, Vysokomol. Soedin., Ser. A, 9, 1128 (1967). 248. E. B. Milovskaya, T. G. Zhuravleva, L. V Zamoyskaya, J. Polym. Sci., C, 16, 899 (1967). 249. Y. Minoura, Y. Enomoto, Kogyo Kagaku Zasshi, 70, 1021 (1967). 250. Y. Minoura, Y. Hayashi, M. Imoto, Kobunshi Kagaku, 15, 260 (1958); from CA, 54 2803F (1960). 251. Y Minoura, T. Sugimura, J. Polym. Sci. A-I, 4, 2721 (1966).
252. Y. Minoura, T. Sugimura, T. Hirahara, Kogyo Kagaku Zasshi, 70, 357 (1967). 253. Y. Minoura, N. Yasumoto, T. Ishii, Kogyo Kagaku Zasshi, 65, 1299 (1962); from CA, 58, 1538D (1963). 254. Y. Minoura, N. Yasumoto, T. Ishii, Makromol. Chem., 71, 159 (1964). 255. G. S. Misra, R. N. Chadha, Makromol. Chem., 23, 134 (1957). 256. G. S. Misra, R. C. Rastogi, V. P. Gupta, Makromol. Chem., 50, 72 (1961). 257. T. Miyake, M. Matsumoto, Kogyo Kagaku Zasshi, 62, 1101 (1959); from CA, 57, 15342A (1962). 258. Y. Mori, K. Sato, Y. Minoura, Kogyo Kagaku Zasshi, 61,462 (1958); from CA, 55, 4021F (1961). 259. G. A. Mortimer, J. Polym. Sci. A-I, 4, 881 and 1895 (1966). 260. G. A. Mortimer, L. C. Arnold, J. Am. Chem. Soc, 84, 4986 (1962). 261. M. Morton, J. A. CaIa, I. Piirma, J. Am. Chem. Soc, 78, 5394 (1956). 262. M. Morton, I. Piirma, J. Am. Chem. Soc, 80, 5596 (1958). 263. M. Morton, I. Piirma, J. Polym. Sci. A, 1, 3043 (1963). 264. A. S. Nair, M. S. Muthana, Makromol. Chem., 47, 114, 128 (1961). 265. H. Nakamoto, Y. Ogo, T. Imoto, Makromol. Chem., I l l , 93 (1968). 266. T. Nakata, T. Otsu, M. Imoto, J. Polym. Sci. A, 3, 3383 (1965). 267. T. Nakaya, K. Ohashi, M. Imoto, Makromol. Chem., 114, 201 (1968). 268. U. S. Nandi, P. Ghosh, S. R. Palit, Nature, 195, 1197 (1962). 269. A. F. Nikolaev, N. V. Meiya, G. A. Balaev, Vysokomol. Soedin., 7, 2122 (1965). 270. K. Noma, Y Tajima, M. Niwa, Sci. Eng. Rev. Doshisha Univ., 3, 91 (1962); from CA, 59, 2955C (1963). 271. R. G. W. Norrish, J. P Simons, Proc Roy. Soc, Ser. A, 251,4 (1959). 272. A. M. North, A. M. Scallan, Polymer, 5, 447 (1964). 273. K. Nozaki, Disc Faraday Soc, 2, 337 (1947). 274. J. L. O'Brien, F. Gornick, J. Am. Chem. Soc, 77, 4757 (1955). 275. J. L. O'Brien, J. R. Panchak, T. G. Fox, Abstract of 124th ACS Meeting, Chicago, 1953. 276. S. Okamura, K. Katagiri, Makromol. Chem., 28, 177 (1958). 277. S. Okamura, K. Katagiri, T. Motoyama, J. Polym. Sci., 43, 509 (1960). 278. S. Okamura, T. Motoyama, J. Polym. Sci., 58, 221 (1962). 279. S. Okamura, K. Takeya, Kobunshi Kagaku, 15, 353 (1958); from CA, 54, 8143 (1960). 280. M. Okawara, T. Nakai, E. Imoto, Kogyo Kagaku Zasshi, 69, 973 (1966). 281. O. F. Olaj, J. W. Breitenbach, I. Hofreitere, Makromol. Chem., 91, 264 (1966). 282. O. F. Olaj, J. W. Breitenbach, I. Hofreitere, Makromol. Chem., 110, 72 (1967). 283. P F. Onyon, Trans. Faraday Soc, 51, 400 (1955). 284. R F. Onyon, J. Polym. Sci., 22, 19 (1956).
285. T. Otsu, Y. Kinoshita, M. Imoto, Makromol. Chem., 73, 225 (1964). 286. T. Otsu, K. Nayatani, Makromol. Chem., 27, 149 (1955). 287. T. Otsu, A. Shimizu, M. Imoto, J. Polym. Sci. B, 2, 973 (1964). 288. T. Otsu, K. Tsuda, N. Kita, Mem. Fac Eng., Osaka City Univ., 7, 95 (1965); from CA, 66, 95434U (1967). 289. S. R. Palit, S. K. Das, Proc Roy. Soc, Ser. A, 226, 82 (1954). 290. S. R. Palit, U. S. Nandi, N. G. Saha, J. Polym. Sci., 14, 295 (1954). 291. S. K. Patra, D. Mangaraj, Makromol. Chem., Ill, 168 (1968). 292. J. Pavlinec, M. Lazar, J. Polym. Sci. C, 22, 297 (1968). 293. L. H. Peebles, J. Polym. Sci. A, 3, 341 (1965). 294. L. H. Peebles, J. T. Clarke, W. H. Stockmayer, J. Am. Chem. Soc, 82, 4780 (1960). 295. J. J. Pellon, J. Polym. Sci., 43, 537 (1960). 296. E. Perry, J. Polym. Sci., 54, S-46 (1961). 297. R. Pierson, A. Costanza, A. Weinstein, J. Polym. Sci., 17, 221 (1955). 298. G. Platau, F. R. Eirich, R. B. Mesrobian, A. E. Woodward, J. Polym. Sci., 39, 357 (1959). 299. A. Prevot-Bernas, J. Sebban-Danon, J. Chem. Phys., 53,418 (1956). 300. W. A. Pryor, J. Phys. Chem., 67, 519 (1963). 301. W. A. Pryor, D. M. Huston, T. R. Fiske, T. L. Pickering, E. Ciuffarin, J. Am. Chem. Soc, 86, 4237 (1964). 302. W. A. Pryor, G. L. Kaplan, J. Am. Chem. Soc, 86, 4234 (1964). 303. W. A. Pryor, A. Lee, C. E. Witt, J. Am. Chem. Soc, 86,4229 (1964). 304. W. A. Pryor, T. L. Pickering, J. Am. Chem. Soc, 84, 2705 (1962). 305. W. A. Pryor, E. P. Pultinas, Jr., J. Am. Chem. Soc, 85, 133 (1963). 306. R V. T. Raghuram, U. S. Nandi, J. Polym. Sci. A-I, 5, 2005 (1967). 307. S. P. Rao, M. Santhappa, Curr. Sci. (India), 34, (6) 174 (1965). 308. S. P. Rao, M. Santhappa, J. Polym. Sci. A-I, 5, 2681 (1967). 309. A. I. Restaino, W. N. Reed, J. Polym. Sci., 36, 499 (1959). 310. E. H. Riddle, "Monomeric Acrylic Ester", Reinhold, NY, 1954, Ref. 14, p. 64. 311. J. C. Robb, E. Senogles, Trans. Faraday Soc, 58,708 (1962). 312. J. C. Robb, D. Vofsi, Trans, Faraday Soc, 55, 558 (1959). 313. M. E. Rozenberg, A. F. Nikolaev, A. V. Pustovalova, Vysokomol. Soedin., 8, 1155 (1966). 314. L. V. Ruban, A. L. Buchachenko, M. B. Neiman, Yu. V. Koknanov, Vysokomol. Soedin., 8, 1642 (1966). 315. M. Ryska, M. Kolinsky, D. Lim, J. Polym. Sci. C, 16, 621 (1967). 316. N. G. Saha, U. S. Nandi, S. R. Palit, J. Chem. Soc, 427 (1956). 317. N. G. Saha, U. S. Nandi, S. R. Palit, Chem. Soc, 7 (1958). 318. N. G. Saha, U. S. Nandi, S. R. Palit, Chem. Soc, 12 (1958). 319. I. Sakurada, K. Noma, Y Ofuji, Kobunshi Kagaku, 20, 481 (1963); from CA, 63, 8487C (1965).
320. I. Sakurada, Y. Sakaguchi, K. Hashimoto, Kobunshi Kagaku, 19, 593 (1962); from CA, 61, 16159D (1964). 321. G. F. Santee, R. H. Marchessault, H. G. Clark, J. J. Kearny, V. Stannett, Makromol. Chem., 73, 177 (1964). 322. M. Santhappa, V. M. Iyer, Current Sci. (India), 24, 173 (1955). 323. M. Santhappa, V. S. Vaidhyanathan, Current Sci. (India) 23, 259 (1954). 324. J. Scanian, Trans. Faraday Soc, 50, 756 (1954). 325. E. Schonfeld, I. Waltcher, J. Polym. Sci., 35, 536 (1959). 326. G. V. Schulz, G. Henrici, S. Olive, J. Polym. Sci., 17, 45 (1955). 327. G. V. Schulz, G. Henrici, S. Olive, Z. Elektrochem., 60, 296 (1956). 328. G. V. Schulz, L. Roberts-Nowakowska, Makromol. Chem., 80, 36 (1964). 329. G. V. Schulz, D. J. Stein, Makromol. Chem., 52, 1 (1962). 330. G. P. Scott, C. C. Soong, W.-S. Huang, J. L. Reynolds, J. Org. Chem., 29, 83 (1964). 331. G. R Scott, J. C. Wang, J. Org. Chem., 28, 1314 (1963). 332. J. N. Sen, U. S. Nandi, S. R. Palit, J. Indian Chem. Soc, 40, 729 (1963). 333. K. P. Shen, F. R. Eirich, J. Polym. Sci., 53, 81 (1961). 334. A. Shimzu, T. Otsu, M. Imoto, Bull. Chem. Soc. Japan, 38, 1535 (1965). 335. T. Shimomura, Y. Kuwabara, E. Tsuchida, I. Shinohara, Kogyo Kagaku Zasshi, 71, 283 (1968). 336. T. Shimomura, E. Tsuchida, I. Shinohara, Mem. School Sci. Eng., Waseda Univ., 8, 37 (1964); from CA, 63, 14985A (1965). 337. T. Shimomura, E. Tsuchida, I. Shinohara, Mem. School Sci. Eng., Waseda Univ., 29, 1 (1965); from CA, 65, 10675A (1966). 338. M. Simonyi, F. Tudos, J. Pospisil, Eur. Polym. J., 3, 101 (1967). 339. P. R. Sinha, K. L. Mallik, J. Indian Chem. Soc, 34, 424 (1957). 340. C. Sivertz, J. Phys. Chem., 63, 34 (1959). 341. B. Skrabal, L. Rosik, Chem. Prumysl, 8, 46 (1958). 342. G. Smets, L. Convent, X. van der Borght, Makromol. Chem., 23, 162 (1957). 343. G. Smets, L. Dehaes, Bull. Soc Chim. Beiges, 59, 13 (1950). 344. w. V. Smith, J. Am. Chem. Soc, 68, 2059 (1964). 345. R. D. Spencer, M. B. Fulton, U.S. Dept. Com., Office Tech. Serv., PB Rept., 144, 990 (1961). 346. R. D. Spencer, M. B. Fulton, B. H. Beggs, Abstracts of 137th ACS Meeting, Cleveland, 1960. 347. N. T. Srinivasan, M. Santhappa, Makromol. Chem., 26, 80 (1958). 348. D. J. Stein, Makromol. Chem., 76, 170 (1964). 349. D. J. Stein, G. V. Schulz, Makromol. Chem., 38, 248 (1960). 350. D. J. Stein, G. V. Schulz Makromol. Chem., 52, 249 (1962). 351. W. H. Stockmayer, R. O. Howard, J. T. Clarke, J. Am. Chem. Soc, 75, 1756 (1953). 352. T. J. Suen, Y. Jen, J. V. Lockwood, J. Polym. Sci., 31, 481 (1958).
353. T. J. Suen, A. M. Schiller, W. N. Russell, Adv. Chem. Series No. 34, "Polymerization and Polycondensation Processes," ACS, Washington, DC, 1962, pp. 217-24. 354. T. Sugimura, Y. Ogata, Y. Minoura, J. Polym. Sci. A-I, 4, 2747 (1966). 355. G. Takayama, Kobunshi Kagaku, 15, 89 (1958); from CA, 53, 868D (1959). 356. W. M. Thomas, E. H. Gleason, J. J. Pellon, J. Polym. Sci., 17, 275 (1955). 357. C. F. Thompson, W. S. Port, L. P. Witnauer, J. Am. Chem. Soc, 81, 2552 (1959). 358. A. P Titov, I. A. Livshits, Zh. Obshch. Khim., 29, 1605 (1959). 359. A. V. Tobolsky, B. Baysal, J. Am. Chem. Soc, 75, 1757 (1953). 360. A. V. Tobolsky, J. Offenbach, J. Polym. Sci., 16, 311 (1955). 361. T. Toda, J. Polym. Sci., 58, 411 (1962). 362. N. Tokura, M. Matsuda, F. Yazaki, Makromol. Chem., 42, 108 (1960). 363. A. C. Toohey, K. E. Weale, Trans. Faraday Soc, 58, 2439 (1962). 364. A. C. Toohey, K. E. Weale, Trans. Faraday Soc, 58, 2446 (1962). 365. E. Tsuchida, Y. Ohtani, H. Nakadai, I. Shinohara, Kogyo Kagaku Zasshi, 70, 573 (1967). 366. E. Tsuchida, Y. Ohtani, H. Nakadai, I. Shinohara, Kogyo Kagaku Zasshi, 69, 1230 (1966). 367. E. Tsuchida, T. Shimomura, K. Fujimori, Y. Ohtani, I. Shinohara, Kogyo Kagaku Zasshi, 70, 566 (1967). 368. K. Tsuda, S. Kobayashi, T. Otsu, Bull, Chem. Soc. Japan, 38, 1517 (1965). 369. K. Tsuda, T. Otsu, Bull. Chem. Soc Japan, 39, 2206 (1966). 370. F. Tudos, T. Berezhnykh-Foldes, Eur. Polym. J., 2, 229 (1966). 371. F. Tudos, I. Kende, M. Azori, J. Polym. Sci., 53, 17 (1961). 372. F. Tudos, I. Kende, M. Azori, J. Polym. Sci. A, 1, 1353 (1963). 373. F. Tudos, I. Kende, M. Azori, J. Polym. Sci. A, 1, 1369 (1963). 374. J. Ulbricht, Faserforsch. Textiltech., 10, 166 (1959) 375. J. Ulbricht, Faserforsch. Textiltech., 11, 62 (1960). 376. J. Ulbricht, Z. Phys. Chem. (Frankfurt), 221, 346 (1962). 377. J. Ulbricht, B. Sandner, Faserforsch. Textiltech., 17, 208 (1966). 378. J. Ulbricht, R. Sourisseau, Faserforsch. Textiltech., 16, 213 (1965). 379. T. Uno, K. Yoshida, Kobunshi Kagaku, 15, 819 (1958); from CA, 54, 20298D (1960). 380. C. A. Uraneck, J. E. Bulreigh, J. Appl. Polym. Sci., 12, 1075 (1968). 381. W. H. Urry, F. W. Stacey, E. S. Huyser, O. O. Juveland, J. Am. Chem. Soc, 76, 450 (1954). 382. V. Vaclavek, Chem. Prumysl, 10, 103 (1960). 383. V. Vaclavek, J. Appl. Polym. Sci., 11, 1881 (1967). 384. V. Vaclavek, J. Appl. Polym. Sci., 11, 1903 (1967).
385. V. S. Vaidhyanathan, M. Santhappa, Makromol. Chem., 16, 140 (1955). 386. R. L. Vale, W. G. R Robertson, J. Polym. ScL, 33, 518 (1958). 387. B. M. E. van der Hoff, J. Polym. ScL, 44, 241 (1960). 388. B. M. E. van der Hoff, J. Polym. ScL, 48, 175 (1960). 389. A. A. Vansheidt, G. Khardi, Acta Chim. Acad. ScL Hung., 20, 261 (1959); from CA, 54, 6180B (1960). 390. A. A. Vansheidt, G. Khardi, Acta Chim. Acad. Sci. Hung., 20, 381 (1959); from CA, 54, 1152F (1960). 391. F. K. Velichko, I. P. Lavrent'ev, Yu. P Chizhov, Izv. Akad. Nauk SSSR, Ser, Khim., 1966, 172; from CA, 64, 12485C (1966). 392. G. Vidotto, A. Crosato-Amaldi, G. Talmini, Makromol. Chem., 114, 217 (1968). 393. M. Vrancken, G. Smets, Makromol. Chem., 30, 197 (1959). 394. J. Vuillemenot, B. Barbier, G. Riess, A. Banderet, J. Polym. Sci. A, 3, 1969 (1965). 395. L. A. Wall, D. W. Brown, J. Polym. ScL, 14, 513 (1954). 396. R. A. Wallace, K. L. Hadley, J. Polym. ScL A-1,4,71 (1966). 397. C. Walling, J. Am. Chem. Soc, 70, 2561 (1948). 398. C. Walling, E. R. Briggs, J. Am. Chem. Soc, 68, 1141 (1946). 399. C. Walling, Y. Chang, J. Am. Chem. Soc, 76, 4878 (1954). 400. C. Walling, L. Heaton, J. Am. Chem. Soc, 87, 38 (1965). 401. C. Walling, J. J. Pellon, J. Am. Chem. Soc, 79,4776 (1957). 402. M. Watanabe, H. Kiuchi, J. Polym. Sci., 58, 103 (1962). 403. O. L. Wheeler, E. Lavin, R. N. Crozier, J. Polym. Sci., 9,157 (1952). 404. E. F. T. White, M. J. Zissell, J. Polym. Sci. A, 1,2189 (1963). 405. T. Yamamoto, Bull. Chem. Soc Japan, 40, 642 (1967). 406. T. Yamamoto, T. Otsu, J. Polym. Sci. B, 4, 1039 (1966); see also Bull. Chem. Soc Japan, 40, 2449 (1967). 407. T. Yamamoto, T. Otsu, Koguo Kagaku Zasshi, 70, 2403 (1967). 408. T. Yamamoto, T. Otsu, M. Imoto, Kogyo Kagaku Zasshi, 69, 990 (1966). 409. S. D. Yevstratova, M. F. Margaritova, S. S. Medvedev, Polym. Sci. USSR, 5, 681 (1964). 410. M. Yoshida, K. Tanouchi, Kobunshi Kangaku, 20, 545 (1963); from Makromol. Chem., 71, 216 (1964). 411. V. V Zaitseva, V. D. Enal'ev, A. I. Yurzhenko, Vysokomol. Soedin., Ser. A, 9, 1958 (1967). 412. V. M. Zhulin, M. G. Gonikberg, V. N. Zagorbinina, Dokl. Akad. Nauk SSSR, 163, 106 (1965); from CA, 63, 11706G (1965). 413. V. M. Zhulin, M. G. Gonikberg, V. N. Zagorbinina, Izv. Akad. Nauk SSSR, Ser. Khim., 827 (1966). 414. V. M. Zhulin, M. G. Bonikberg, V N. Zagorbinina, Izv. Akad. Nauk SSSR, Ser. Khim., 997 (1966). 415. M. G. Zimina, N. P. Apukhtina, Kolloid Zh., 21, 181 (1959). 416. J. Aoyagi, K. Kitamura, I. Shinohara, Kogyo Kagaku Zasshi, 73, 2045 (1970). 417. J. Aoyagi, I. Shinohara, Kogyo Kagaku Zasshi, 74, 1191 (1971). 418. T. Asahara, M. C. Chou, Bull. Chem. Soc. Japan, 42, 1373 (1969).
419. C. Aso, T. Kunitake, M. Shinsenji, H. Miyazaki, J. Polym. Sci. A-I, 7, 1497 (1969). 420. J. C. Bevington, M. Johnson, J. P. Sheen, Eur. Polym. J., 8, 209 (1972). 421. G. C. Bhaduri, U. S. Nandi, Makroml. Chem., 128, 176 (1969). 422. G. C. Bhaduri, U. S. Nandi, Makromol. Chem., 128, 183 (1969). 423. B. R. Bhattacharyya, U. S. Nandi, Makromol. Chem., 149, 231 (1971). 424. B. R. Bhattacharyya, U. S. Nandi, Makromol. Chem., 149, 243 (1971). 425. D. Braun, F. Weiss, Makromol. Chem., 138, 83 (1970). 426. D. Braun, F. Weiss, Angew. Makromol. Chem., 15, 127 (1971). 427. C-T. Chen, W-D. Huang, J. Chin. Chem. Soc, 16,46 (1969); from CA, 71, 102247U (1969). 428. Y. Choshi, A. Tsuji, G. Akazome, K. Murai, Kogyo Kagaku Zasshi, 71, 908 (1968); from CA, 69, 67745Q (1968). 429. N. N. Dass, M. H. George, Eur. Polym. J., 6, 897 (1970). 430. H. J. Dietrich, M. A. Raymond, J. Macromol. Sci. Chem. A, 6, 191 (1972). 431. J. P. Fischer, Makromol. Chem., 155, 211 (1972). 432. J. P. Fischer, Makromol. Chem., 155, 227 (1972). 433. J. R Fischer, W. Liiders, Makromol. Chem. 155, 239 (1972). 434. R. Kh. Freidlina, A. B. Terent'ev, N. S. Ikonnikov, Dokl. Akad. Nauk SSSR, 193, 605 (1970). 435. R. Kh. Freidlina, A. V. Terent'ev, N. S. Ikonnikov, Izv. Akad. Nauk SSSR, Ser. Khim., 1970, 554. 436. S. S. Frolov, T. M. Slivchenko, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 14, 1264 (1971); from CA, 76, 25660X (1972). 437. I. Geczy, H. I. Nasr, Acta Chim. (Budapest), 70, 319 (1971); from CA, 76, 100150M (1972). 438. S. N. Gupta, U. S. Nandi, J. Polym. ScL A-I, 8, 1493 (1970). 439. D. A. J. Harker, R. A. M. Thomson, I. R. Walters, Trans. Faraday Soc, 67, 3057 (1971). 440. M. Imoto, K. Ohashi, Makromol. Chem., 117, 117 (1968). 441. E. F. Jordan, Jr., B. Artymyshyn, A. N. Wrigley, J. Polym. Sci. A-I, 7, 2605 (1969). 442. I. Kar, B. M. Mandal, S. R. Palit, J. Polym. Sci. A-I, 7, 2829 (1969). 443. S. Kobayashi, Kogyo Kagaku Zasshi, 72, 2511 (1969). 444. C. Kwang-Fu, Kobunshi Kagaku, 29, 233 (1972). 445. I. M. Likhterova, E. M. Lukina, Zh. Obshch. Khim., 42, 194 (1972); from CA, 76, 127504S (1972). 446. A. Matsumoto, M. Oiwa, J. Polym. ScL A-1,10, 103 (1972). 447. J. A. May, Jr., W. B. Smith, J. Phys. Chem., 72, 2993 (1968). 448. L. A. Miller, V. Stannett, J. Polym. Sci. A-I, 7, 3159 (1969). 449. Y. Minoura, M. Mitoh, Kogyo Kagaku Zasshi, 74, 747 (1971). 450. Y. Minoura, A. Tabuse, Kogyo Kagaku Zasshi, 74, 990 (1971). 451. Y. Minoura, H. Toshima, J. Polym. ScL A-I, 7, 2837 (1969). 452. M. Modena, P. Piccardi, Eur. Polym. J., 7, 1 (1971). 453. N. Mogi, M. Shindo, Kogyo Kagaku Zasshi, 73, 786 (1970).
454. 455. 456. 457. 458. 459. 460. 461. 462. 463. 464. 465. 466. 467. 468. 469. 470. 471. 472. 473. 474. 475. 476. 477. 478. 479. 480. 481. 482. 483. 484. 485. 486.
487.
G. A. Mortimer, J. Polym. Sci. A-I, 8, 1513 (1970). G. A. Mortimer, J. Polym. Sci. A-I, 8, 1535 (1970). G. A. Mortimer, J. Polym. Sci. A-I, 8, 1543 (1970). G. A. Mortimer, J. Polym. Sci. A-I, 10, 163 (1972). I. G. Murgulescu, I. Vlagiu, Rev. Roum. Chim., 14, 411 (1969); from CA, 71, 71773F (1969). T. Nakaya, M. Tanaka, M. Imoto, Makromol. Chem., 149, 221 (1971). J. H. Ok, S. B. Pak, Hwahak Kwa Hwahak Kongop, 1971, 239 (Korean); from CA, 77, 20147U (1972). T. Ota, S. Masuda, Kogyo Kagaku Zasshi, 73, 2020 (1970). T. Ota, S. Masuda, C. Aoyama, M. Ebisudani, Kogyo Kagaku Zasshi, 74, 994 (1971). G. S. Park, D. G. Smith, Trans. Faraday Soc, 65, 1854 (1969). F. Patat, R Mehnert, Monatsh. Chem., 98, 538 (1967). S. P. Potnis, A. M. Deshpande, Makromol. Chem., 125, 48 (1969). S. R Potnis, A. M. Deshpande, Makromol. Chem., 153, 139 (1972). W. A. Pryor, J. H. Coco, Macromolecules, 3, 500 (1970). W. A. Pryor, T. R. Fiske, Macromolecules, 2, 62 (1969). W. A. Pryor, T.-L. Huang, Macromolecules, 2, 70 (1969). E. Pulat, C. B. Senvar, Commun. Fac. Sci. Univ. Ankara, Ser. B, 15, (3) 25 (1968); from CA, 72, 55934Z (1970). R V. T. Raghuram, U. S. Nandi, J. Polym. Sci. A-I, 7, 2379 (1969). R V. T. Raghuram, U. S. Nandi, J. Polym. Sci. A-I, 8, 3079 (1970). K. K. Roy, D. Pramanick, S. R. Palit, Makromol. Chem., 153, 71 (1972). J. C. Saam, D. J. Gordon, J. Polym. Sci. A-I, 8, 2509 (1970). T. Saegusa, Y. Ito, N. Yasuda, Polym. J., 1, 591 (1970). S. K. Saha, A. K. Chaudhuri, J. Polym. Sci. A-I, 10, 797 (1972). G. P. Scott, A. M. R. Elghoul, J. Polym. Sci. A-I, 8, 2255 (1970). G. R Scott, F. J. Foster, Macromolecules, 2, 428 (1969). R. B. Seymour, J. M. Sosa, V. J. Patel, J. Paint Technol., 43, (563), 45 (1971). T. Shimomura, E. Tsuchida, I. Shinohara, Kogyo Kagaku Zasshi, 71, 1074 (1968); from CA, 69, 97249Y (1968). E. Staudner, J. Beniska, Eur. Polym. J. Suppl., 1969, 537. F. Suganuma, H. Mitsui, S. Machi, M. Hagiwara, T. Kagiya, J. Polym. Sci. A-I, 6, 3127 (1968). K. Sugiyama, T. Nakaya, M. Imoto, J. Polym. Sci. A-I, 10, 205 (1972). A. B. Terent'ev, N. S. Ikonnikov, R. Kh. Freidlina, Izv. Akad. Nauk SSSR, Ser. Khim, 73 (1971). A. B. Terent'ev, N. S. Ikonnikov, R. Kh. Freidlina, Dokl. Akad. Nauk USSR, 196, 1373 (1971). A. S. Tevlina, H. S. Kolesnikov, S. N. Sividova, V. V. Ryltsev, Vysokomol. Soedin., Ser. A, 9, 2473 (1967); Polym. Sci. USSR, 9, 2797 (1967). R. A. M. Thomson, L R. Walters, Trans. Faraday Soc, 67, 3046 (1971).
488. R. A. M. Thomson, I. R. Walters, J. R. King, J. Polym. Sci., B, 10, 63 (1972). 489. E. Tsuchida, T. Tomono, Kogyo Kagaku Zasshi, 73, 2040 (1970). 490. M. Tsunooka, M. Fujii, N. Ando, M. Tanaka, N. Murata, Kogyo Kagaku Zasshi, 73, 805 (1970). 491. M. Tsunooka, T. Higuchi, M. Fujii, M. Tanaka, N. Murata, Kogyo Kagaku Zasshi, 73, 596 (1970). 492. G. Vidotto, S. Brugnaro, G. Talamini, Makromol. Chem., 140, 249 (1970). 493. G. Vidotto, S. Brugnaro, G. Talamini, Makromol. Chem., 140, 263 (1970). 494. F. Yamada, M. Kanbe, I. Shinohara, Memo. Sch. Sci. Eng. Waseda Univ. 1969, No. 33, 67: from CA, 73, 88255C (1970). 495. T. Yamamoto, M. Hasegawa, T. Otsu, Bull. Chem. Soc. Japan, 42, 1364 (1969). 496. T. Yamamoto, S. Nakamura, M. Hasegawa, T. Otsu, Kogyo Kagaku Zasshi, 72, 727 (1969). 497. T. Yamamoto, T. Otsu, J. Polym. Sci. A-I, 7, 1279 (1969). 498. N. Yamashita, T. Seita, M. Yoshihara, T. Maeshima, Kogyo Kagaku Zasshi, 74, 2157 (1971). 499. N. Yamashita, T. Seita, M. Yoshihara, T. Maeshima, J. Polym. Sci. B, 9, 641 (1971). 500. V. M. Zhulin, M. G. Gonikberg, A. L. Goff, V. N. Zagorbinina, Vysokomol. Soedin., Ser. A, 11, 777 (1969). 501. N. Ya. Kaloforov, E. Borsig, J. Polym. Sci., Polym. Chem. Ed., 11, (10) 2665 (1973). 502. O. A. Aminova, B. D. Saidov, Dokl. Akad. Nauk Uzb. SSSR, 4, 45 (1979). 503. D. Pramanick, A. K. Chaterjee, Eur. Polym. J., 16, (9) 895 (1980). 504. D. A. J. Harker, R. A. M. Thomson, I. R. Walters, Trans. Faraday Soc, 67, (Pt. 10) 3057 (1971). 505. U. A. Safaev, Kh. Rakhmatullaev, A. T. Dzhalilov, Uzb. Khim. Zh., 3, 42 (1983). 506. E. Abuin, E. A. Lissi, J. Macromol. Sci., Chem., 13 (8), 1147 (1979). 507. G. R Scott, F. J. Foster, Macromolecules, 2 (4), 428 (1969). 508. K. Yokota, H. Tomioka, A. Tazumi, J. Macromol. Sci., Chem., 6 (7), 1337 (1972). 509. M. Bezdek, J. Exner, J. Kriz, F. Hrabak, Makromol. Chem., 147, 1 (1971). 510. A. Fehervari, E. Boros Gyevi, T. Foldes-Bereznish, F. Tudos, J. Macromol. Sci. A: Chem., 18 (3), 431 (1982). 511. B. A. Englin, T. A. Onishchenko, R. Kh. Freidlina, Izv. Akad. Nauk SSSR, Ser, Khim. 12, 2542 (1971). 512. M. Raetzsch, I. Zschach, Plaste Kaut., 21 (5), 345 (1974). 513. T. Foldes-Bereznich, M. Szesztay, F. Tudos, J. Macromol. Sci. A: Chem., 16 (5), 977 (1981). 514. J. Pavlinec, E. Borsig, J. Polym. Sci., Polym. Chem. Ed., 19 (9), 2305 (1981). 515. N. S. Enikolopyan, B. R. Smirnov, G. V. Ponomarev, L M. Belgovskii, J. Polym. Sci., Polym. Chem. Ed., 19 (4), 879 (1981). 516. A. B. Terentev, N. S. Ikonnikov, R. Kh. Freidlina, Dokl. Akad. Nauk SSSR, 196, (6) 1373 (1971).
517. A. G. Shostenko, V. E. Myshkin, Vysokomol. Soedin., Ser. B, 20, 163 (1978). 518. Sl. A. Karapetyan, G. P. Shakhovskoi, N. A. Grigorev, V. M. Zhulin, B. A. Englin, Izv. Akad. Nauk SSSR, Ser. Khim., 6, 1303 (1970). 519. B. A. Englin, B. N. Ospipov, Izv. Akad. Nauk SSSR, Ser. Khim., 1, 65 (1971). 520. C. H. Bamford, J. Chem. Soc, Faraday Trans., 1, 72 (12), 2805 (1976). 521. M. R. Lachinov, T. R. Aslamazova, V. P. Zubov, V. A. Kabanov, Vysokomol. Soedin., Ser. A, 17 (5), 1146 (1975). 522. V. P. Naidenov, V. G. Syromyatnikov, Ukr. Khim. Zh. (Russ. Ed.), 45 (10), 982 (1979). 523. P. A. Zagorets, A. G. Shostenko, A. M. Dodonov, N. P. Tarsova, Zh. Org. Khim., 10 (10), 2093 (1974). 524. A. P. Titov, V. V. Kotov, Vysokomol. Soedin., Ser. B, 10 (7), 495 (1968). 525. B. R. Smirnov, V. E. Mironychev, I. V. Golikov, M. M. Mogilevich, I. V. Enikolopov, Depos. Doc, SPSTL 598 Khp-D82, 9 pp. Avail. SPSTL (1982). 526. M. Niwa, N. Higashi, Sci. Eng. Rev. Doshisha Univ., 24 (3), 129 (1983). 527. O. F. Olaj, J. W. Breitenbach, I. Hofreiter, Rec. Chem. Progr., 30 (2), 87 (1969). 528. B. R. Smirnov, A. R Marchenko, G. V. Korolev, I. M. Belgovskii, N. S. Enikolopyan, Vysokomol. Soedin., Ser. A, 23 (5), 1042 (1981). 529. R. B. Seymour, V. Patel, J. Paint Technol., 44 (569), 53 (1972). 530. N. M. Kozyreva, A. I. Kirilin, V. V. Korshak, Plast. Massy, 2, 24 (1983). 531. N. G. Podosenova, E. G. Zotilov, V. P. Budtov, Vysokomol. Soedin., Ser. A, 25 (1), 43 (1983). 532. S. K. Verma, K. Wendler, M. Fedtke, Acta Polym., 35 (1), 58 (1984). 533. A. Hrivik, J. Beniska, E. Hudecova, Chem. Zvesti, 37 (4), 503 (1983). 534. S. Raghunath, M. H. Rao, K. N. Rao, Radiat, Phys. Chem., 22(6), 1011 (1983). 535. K. Kodaira, K. Ito, Nagoya Kogyo Gijutsu Shikensho Hokoku, 31 (1/2), 22 (1982). 536. K. Kodaira, T. Ito, M. Omi, Y. Onishi, K. Ito, Nagoya Kogyo Gijutsu Shik, Hokoku, 31 (6/7), 186 (1982). 537. V. Kim, A. G. Shostenko, M. D. Gasparyan, React. Kinet. Catal. Lett., 12 (4), 479 (1979). 538. V. A. Kabanov, D. A. Topchiev, G. T. Nazhmethdinova, Izv. Akad. Nauk SSSR, Ser. Khim., 9, 2146 (1983). 539. L. A. Smirnova, Yu. D. Semchikov, L. I. Kamyshenkova, T. G. Sveshnikova, A. N. Egorochkin, G. S. Kalinina, B. A. Egorov, Vysokomol. Soedin., Ser. A, 24 (5), 999 (1982). 540. K. Yamamoto, M. Sugimoto, J. Makromol. Sci. A: Chem., 13 (8), 1067 (1979). 541. K. Matsuo, G. W. NeIb, R. G. NeIb, W. H. Stockmayer, Macromolecules, 10 (3), 654 (1977). 542. J. Lokaj, F. Hrabak, Eur. Polym. J., 14 (12), 1039 (1978). 543. M. lino, M. Igarashi, M. Matsuda, Macromolecules, 12 (4), 697 (1979).
544. M. Yoshihara, N. Miryamoto, M. Fukumura, T. Maeshima, J. Polym. Sci., Polym. Lett. Ed., 14 (2), 97 (1976). 545. W. A. Pryor, Tetrahedron Lett., 1201 (1963). 546. T. Otsu, Radical Polymerization - I, Kapakudojin, Koyoto, 1971, p. 143. 547. I. Grotewold, M. M. Hirschler, J. Polym. Sci., Polym. Chem. Ed., 15, 383 (1977). 548. U. S. Nandi, M. Singh, P. V T. Raghuram, Makromol. Chem., 183 (8), 1467 (1982). 549. B. Cellard, Ch. Pichot, A. Revillon, Makromol. Chem., 183 (8), 1935 (1982). 550. L. Vrhovac, J. Velickovic, D. Filipovic, Makromol. Chem., 185 (8), 1637 (1984). 551. B. Boutevin, Y. Pietrasanta, Makromol. Chem., 186 (4), 831 (1985). 552. M. A. Bruk, S. A. Pavlov, A. D. Abkin, Dokl. Akad. Nauk SSSR, 245, 626 (1979). 553. W. Berger, H. J. Schneider, H. Schmidt, Faserforsch. Textiltech., 27 (8), 437 (1976). 554. J. C. Saam, D. J. Gordon, J. Polym. Sci., Part. A-I, 8 (9), 2509 (1970). 555. T. Ota, Kenkyu Hokoku-Asyhi Garasu Kogyo Gijutsu Shoreikai, 42, 65 (1983). 556. B. R. Smirnov, I. M. Bel'Govskii, G. V Ponomarev, N. S. Enikolopyan, Dokl. Akad. Nauk SSSR, 254 (1), 127 (Chem.). 557. R. Kh. Freidlina, A. B. Terentjev, N. S. Ikonnikov, Dokl. Akad. Nauk, 3, 193, 605 (1970). 558. R. Kh. Freidlina, A. B. Terentjev, N. S. Ikonnikov, Isv. Akad. Nauk, Ser. Chem., 554 (1970). 559. A. B. Terentijev, N. S. Ikonnikov, R. Kh. Freidlina, Isv. Akad. Nauk, Ser. Chem., 1, 73 (1971). 560. C. F. Jasso, E. Mendizabal, M. E. Hernandez, Rev. Plast. Mod., 62, 823 (1991); from CA, 117, 131596f (1992). 561. I. Capek, Collect. Czech. Chem. Commun., 51, 2546 (1986). 562. F. Vidal, R. G. Gilbert, Macromol. Chem. Phys., 197, 1835 (1996). 563. K. G. Suddaaby, D. R. Maloney, D. M. Haddleton, Macromolecules, 30, 702 (1997). 564. L. I. Abramova, E. N. Zilberman, V. V. Leshin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. TekhnoL, 30, 117 (1987); from CA, 107, 237343e (1987). 565. B. Boutevin, Y. Pietrasanta, Makromol. Chem., 186, 831 (1985). 566. G. Bauduin, B. Boutevin, J. P. Mistral, L. Sarraf, Makromol. Chem., 186, 1445 (1985). 567. C. A. Barson, J. C. Bevington, B. J. Hunt, J. Polym. Sci., Part A, Polym. Chem., 34, 227 (1996). 568. C. A. Barson, J. C. Bevington, B. J. Hunt, J. Polym. Sci., Part A, Polym. Chem., 33, 863 (1995). 569. D. Braun, P. Hempler, Polym. Bull. (Berlin), 30, 55 (1993). 570. T. T. Vasileva, V. A. Kochetkova, B. V. Nelyubin, V. I. Dostovalova, R. K. Freidlina, Izv. Akad. Nauk SSSR, Ser. Khim., 808b (1987); from CA, 108, 111753r (1988). 571. G. Bauduin, B. Boutevin, B. Pucci, J. P. Rigaud, Makromol. Chem., 188, 2339 (1987).
572. T. T. Vasileva, V. A. Kochetkova, B. V. Nelyubin, R. K. Freidlina, Izv. Akad. Nauk. SSSR, Ser. Khim., 1397 (1986); from CA, 106, 11993e (1987). 573. F. Jahanzad, M. Kazemi, S. Sajjadi, F. A. Taromi, Polymer, 34, 3542 (1993).
574. B. K. Dietrich, W. A. Pryor, S. J. Wu, J. Appl. Polym. ScL, 36, 1129 (1988). 575. S. Y. Lee, Y. J. Shin, Pollimo, 20, 233 (1966); from CA, 124, 318076y (1996).
P h o t o p o l y m e r i z a t i o n
R e a c t i o n s
J. P. Fouassier Laboratoire de Photochimie Generale, Mulhouse, Cedex, France
A. Introduction 11-169 B. Tables 11-170 Table 1. Rate Constants of Cleavage, Electron Transfer and Monomer Quenching in Radical Photoinitiators 11-170 Annex to Table 1. Photoinitiator Compound Chemistries 11-173 Table 2. Bimolecular Rate Constants for the Reaction of Phosphonyl Radicals with Various Monomers in Cyclohexane at Room Temperature 11-176 Table 3. Bimolecular Rate Constants for the Reaction of Various Radicals with Various Olefinic Monomers at Room Temperature 11-176 Table 4. Bimolecular Rate Constants for the Reaction of Ph 2 P=O and Ph2P = S with Various Monomers 11-176 Table 5. Electron Transfer Reaction of Radicals with Diphenyliodonium Salts 11-176 Table 6. Electron Transfer Rate Constants (ke) Between Photosensitizers and Cationic Photoinitiators and Quenching Rate Constants (fcq) for Cyclohexene Oxide in Methanol (M) and Acetonitrile (AN) 11-177 Table 7. Excitation Transfer Rate Constants (kj) for Thioxanthones and Photoinitiators 11-178 Annex to Table 7. Compound Chemistries 11-178 Table 8. Triplet State Lifetimes (rT) of the Sensitizer (TXI) in Different Media, and Rate Constant (A:T) of the Interaction between TXI and TPMK 11-179 Table 9. Some Values of the Triplet State Energy Levels of Photoinitiators and Monomers 11-179 Table 10. Values of r f , rT, and k% in Solution 11-179 Table 11. Rate Constant of Interaction of Ketones and Light Stabilizers in Solution 11-179 Annex to Table 11 11-179 C. References 11-180
A.
INTRODUCTION
UV curing technologies use light beams to start photochemical and chemical reactions in organic materials (monomers, oligomers, prepolymers, polymers), mostly through a Photo-Induced Polymerization (PIP) reaction. This leads to the formation of a new polymeric material whose applications lie in various industrial sectors, such as coatings, graphic arts, imaging, microelectronics, etc. Specific advantages of these technologies over the usual thermal operations are rapid through-cure, solvent-free formulation, room temperature treatment and low energy requirements. This PIP process is concerned with the creation of a polymer P through a chain radical or cationic reaction initiated by light in the presence of a photoinitiator (PI) and a coupled Pl/photosensitizer (PS): light
light
light
add species :X
excited PS excited PI
R* or acid species
The reactivities of PI and PS govern, for a large part, the practical efficiency of the PIP reaction. The present chapter reports typical data obtained (through time-resolved laser spectroscopy experiments) on the excited state processes in PI and PS occurring after the absorption of the photon. Rate constants reported in the following tables correspond to the following processes: 1.
PI (ground singlet state)
light
1 PI* first excited singlet state
cleavage H abstraction monomer quenching electron transfer
3 Pi* triplet state
2. R' (or A# or S*...) + M — ^ 3. 3 P F + light stabilizer (LS) 3
(b) Energy and electron transfer can also occur in the first excited singlet state 1 PS*.
RM'
—-
k
4. PS* + PI —- excitation transfer 5. Tj'. Triplet state lifetime under the given conditions (equal to the reciprocal value of the sum of the first-order rate constants of the different processes) Tj: Triplet state lifetime in the presence of a given additive 6 3
- PS* + cationic photoinitiator C+ —- PS" + C* (a) Energy transfer can sometimes occur: 3 PS*+ C+ - PS+ C+*
Detailed data are available, especially in several chapters of two edited books (1) and in a recent monograph (2). Few data are known on the photopolymerization itself and largely depend on the practical formulation used as well as the experimental conditions. Typically, one photon absorbed can lead to ~10000 polymerized double bonds (3). Rate constants of propagation kp and termination fct for a polyurethane acrylate resin containing an acrylate monomer (weight ratio, 1:1) as reactive diluent are ~10 4 1/mol/s and 3 x 10 4 l/mol/s respectively (when half of the double bonds have been polymerized) (3).
B. TABLES TABLE 1. RATE CONSTANTS OF CLEAVAGE, ELECTRON TRANSFER AND MONOMER QUENCHING IN RADICAL PHOTOINITIATORS0 10~9A:e (1/mol/s)
10~6A:q (1/mol/s)
Monomers famines 7 solventsd
Ha Hb Hc lid lie Hf Hg Hh Hi Ha
1.3 2.0 1.2 1.2 0.2 0.07 1.5 0.6 0.27
Mi, AHi, Si
Ha
0.003e 0.001^ 7 2 1.9 2 0.56
66 150 2.5 2 1 13 180 8 0.05 3200 360 5.4 34
Compound
10 "8Jk0 (s"1)
Ha
Hj Ilk 111 Hm Hn Up Hq Hr Hs Ilr Hs Hr Hs Hr Ils Ilr Hs I2a I2b I2c I2d I2e I2f I2g I2h I2i
10 0.5 0.9 0.0064* 0.0025e 0.0056e 0.0043*
7.14 0.87 0.003 0.00025 0.83 0.003 0.67 1.18 0.80
0.26 < 0.001 0.08 0.20 0.08 0.17 0.15 0.05
1500 1550
56 110 5500 7400 5100 6500 49 140 9.4 50 250 20 4.5 8 22 10 29 20 21
M2, M5, M3, M4,
Refs. 4
S2 S2 S2 S2
21 21 21 21 22
S 2 , AH3 S 2 , AH4 S 2 , AH2 S 2 , AH5 S 2 , AH6 S3 M 7 , AH2, S 4
26
S2
26
S 6 , Mi
26
S6, M2
26
S6, M5
26
S6, M3
26
S6, M4
26
Mi, AHi, Si
23 25
5
TABLE 1. cont'd Compound Ba I3b 13c I3d I3e I3f I3g I3h I4a I4b I4c I4d I4e I4f I4g I4h I4i I4e I4f I4g I4h I4i I4f I4g I4h I4i I4f I4g I4h I4i I5a I6a I7a I7b I8a I9a HOa Ilia IHb IHc Hid I12a I12b I12c I12d I12e I12a I12b I12c I12d I12e I12b I12c I12d I12e I12b I12c I12d I12e I13a I14a I14b I14c I14d I15a I15b I15c
10 8A: c (s"1) 10 1 25 0.005 10 0.006 0.007 0.13 >100 >100 > 100 >100
W~9ke (1/mol/s)
10 6 A: q (I/moI/s) >200 2
0.7 6 XlO" 5 0.85 2.5
0.9 0.4
0.7 0.05 440 0.35 11
700 1200 480 800 1000 200 13 8100 4800 6500 1500 190 6 17 <10 5.7 1300 700 380 180
1.6 6.5 6.0 3.5
>5 4 >5
Mi5AHi5S1
6
Si
7
M2, S2
7
Mi, S 2
7
M3, S2
7
M4, S2
7
Mj5S1 Mi, AHi, Si
8 9 9
«10 ~4 <10~ 4 <10~ 4
> 10 7 xlO-3
1.4
Refs.
<10~ 4
8100 4800 6500 1500 190 480 800 1000 200 13 60 17 <1 5.7 1300 700 380 180
> 10 0.8 >1 0.12 0.01
Monomers famines 7 solvents^
11000 2900 15 1200
Mi7AHi9S1 Mi5AH19Si Mi, AHi, Si
9 9 10 10
M15S2
11
M25S2
11
M3, S2
11
M4, S2
11
AH 2 , S 2 M19AH15S1
12 13
S2
14
References page 11-180
TABLE 1. cont'd Compound I15d I16a I16b I17a I18a I19a I20a I21a I22a I22b I22c I22d I23a I23b I23c I23d I23e I23f I23a I23b I23c I23d I23a I23b I23c I23d I23a I23b I23c I23d I23a I23b I23c I23d I23a I23b I23c I23d I23a I23b I23c I23d I23a I23a I23b I23b I23g I23h 124 125 126 127 128 129 a
10*kc (s1)
10~9ke (1/mol/s)
10~6kq (1/mol/s)
Monomers famines 7 solvents^
Refs.
3.3 1.5 >3 0.05 0.16 0.3 29 60 -10 -5 0.02 0.014
0.7
6 5 4 4 0.01 0.017 2.5
180
AH 1 9 S 1
15
300
S1 S1 S1 S2 S2 S3
16 17 18 18 18 19
M 1 , AH3, S 2
20
AH2, S 5
24
M 2 , S 2 , AH2
20
M3, S2
20
M4, S2
20
M5, S2
20
M6, S2
20
S 2 , AH4
26
S1, M8 S19M9 S 2 , AH7 S 2 , AH8 M7, S 4
13 13 26 26 25
S 2 , Mi S2, M10 S2, M10 S2
37 37 37 39
S 7 , AH 9
41
100
93 2.3 2.0 15 2 3 3 3000 6000 6000 6000 0.2 0.02 0.03 0.04 4 0.4 1 1 40 30 5 6 1 1 0.3 0.3
8 6 6 6 26 23 8 0.85 <10~5 <10~5
4.4-f 0.3 0.015
65 37 0.016 0.006 0.007
Compound chemistries given in Annex to Table 1. 1} Monomers: Mi - methyl methacrylate; M2 - styrene; M3 - vinyl acetate; M4 - acrylonitrile; M5 - vinyl pyrrolidone; M6 - butylvinylether; M 7 - acrylamide; Mg PETA; M 9 - TMPTA; M10 - butylmethacrylate. c Amines: AHi - methyl diethanolamine; AH 2 - triethylamine; AH 3 - ethyl-4-(dimethylamino)-benzoate; AH 4 - bis-(2-hydroxy ethyl)-methylamine; AH 5 - methyl-4amino benzoate; AH 6 - 1,4-diazabicyclo [2.2.2] octane (DABCO); AH 7 - dimethylamine; AHg - 2-(dimethyl aminoethyl)-benzoate; AH 9 - diethylaniline. d Solvents: Si - toluene; S 2 - benzene; S 3 - acetonitrile; S 4 - water; S5 - 2-propanol; S 6 - acetone; S 7 - ethanol. e Rate constant of H abstraction by THF. ^Rate constant of H abstraction by isopropanol.
ANNEX TO TABLE 1. PHOTOINITIATOR COMPOUND CHEMISTRIES Compound
R
Ri
R2
R3
R4
Ha lib lie Hd He iif Hg Hh
in Hj
Ilk 111 Hm Hn Up Hq Hr
Hs
I2a I2b I2c I2d I2e I2f I2g I2h I2i Ba I3b 13c Dd I3e I3f Bg Dh I4a I4b I4c I4d I4e I4f I4g I4h I4i
References page 11-180
ANNEX TO TABLE 1. cont'd Compound
R
Ri
R2
I5a
I6a
I7a I7b Fluorenone
H CH 2 SOjNa
+
I8a I9a
I9b
HOa
C2H5
Ilia IHb IHc IHd I12a 112b I12c I12d
H H CH 3 CH 3 O OH OCOCH3 H CH 3
I12e I13a
CH 3
I14a I14b I14c I14d
H /-C 3 H 7 OC 2 H 5 J-C 4 H 9
I15a
I15b I15c
I15d
I16a
H CH 3
H CH3 H H
R3
R4
ANNEX TO TABLE 1. cont'd Compound
R
Ri
R2
R3
R4
I16b I17a I18a I19a I20a I21a
I22a I22b I22c I22d I23a I23b I23c I23d I23e I23f
H Cl CH 3 CH 3 (CH 3 ) 2 H H
I23g
-OCH 2 COOH
I23h
OCH 2 CH 2 CH 2 N(CH 3 ) 3 SO 3 Me-
124 Acridine Phenazine
125 126 127
128
129
References page 11-180
TABLE 2. BIMOLECULAR RATE CONSTANTS0 FOR THE REACTION OF PHOSPHONYL RADICALS WITH VARIOUS MONOMERS IN CYCLOHEXANE AT ROOM TEMPERATU RE *
Radical Monomer Methacrylonitrile
5.0
4.6
4.5
Styrene Methylmethacrylate Acrylonitrile Methyl acrylate n-Butyl vinyl ether Vinyl acetate
6.0 8.0 2.0 3.5 0.4 0.16
4.5 5.0 2.0 2.1 0.3 0.13
8.0 5.8 0.18 1.3 0.23 0.082
a
b
kRM in 10 7 l/mol/s. Ref. 26.
9.2
11
22 5.8 0.58 1.7 2.1 0.29
25 5.3 0.26 1.6 1.4 0.18
TABLE 3. BIMOLECULAR RATE C O N S T A N T S " FOR THE REACTION OF V A R I O U S RADICALS W I T H V A R I O U S OLEFINIC M O N O M E R S AT R O O M TEMPERATURE*
Radical
Monomer 3.5 x 10" 2
Styrene
Methylmethacrylate Acrylonitrile Methyl acrylate n-Butyl vinyl ether Vinyl acetate Af-Vinyrpyrrolidone a
4
9xlO~ 4 x 10 ~4
2
5.4xlO~ 1.6 x 10~2
7 x 10~ 4
4xlO"
5
< 10 " 6
6 x 10 ~4
4xlO~
5
1.2 x 10 ~2
6
0.9xl0~ 2 2 x 10 ~3
6 2 2 0.5 0.2
2 x 10 ~2
18C
10" 3t
IO"1*
7
kRU in 10 l/mol/s. Ref. 26. From Ref. 40. +From Ref. 16.
fo c
TABLE 4. BIMOLECULAR RATE C O N S T A N T S 0 FOR THE REACT I O N OF P h 2 R = O A N D Ph 2 P-=* W I T H V A R I O U S M O N O M E R S * 0
Radical Monomer Methacrylonitrile Styrene Methylmethacrylate Acrylonitrile Methyl acrylate rc-Butyl vinyl ether Vinyl acetate a
Ph2P = O 1.9 4.6 4.1 1.3 1.7 5.0 1.4
Ph2P = S 0.9 0.4 0.19 0.52 0.62 0.15 0.042
kRM in 10 7 l/mol/s *Ref. 27. c Experiments were carried out in CH 2 C^ solution at room temperature.
TABLE 5. ELECTRON TRANSFER REACTION O F RADICALS W I T H D I P H E N Y L I O D O N I U M SALTS
Radicals
Ph2PO Ph2COH (CHs)2COH
10"9Jt6 (1/mol/s)
Refs.
<10"3 0.03 0.06
42 43
TABLE 6. ELECTRON TRANSFER RATE CONSTANTS (ke) BETWEEN PHOTOSENSITIZERS AND CATIONIC PHOTOINITIATORS AND QUENCHING RATE CONSTANTS (kq) FOR CYCLOHEXENE OXIDE IN METHANOL (M) AND ACETONITRILE (AN) Photosensitizer Chlorothioxanthone
Chlorothioxanthone
Cationic photoinitiator
Anion
Solvent
(1/mol/s)
(1/mol/s) 0.3
AsF6" Cl" PF6BF4; AsF 6
M
AN
24 24 26 24 290
AsF 6
M
400
Refs. 28
36 Benzophenone
AsF 6 Cl" BF4"
M
15 1 47
0.33
Ketocoumarin
BF 4
M
6.4
0.04
M
14
Chlorothioxanthone
PF 6
35
PF 6
28
SbF 6
4
AsF 6
8
BF 4
570
BF 4
110
PF 6
14
AsF 6
100
BF 4
38
29
15
References page 11-180
TABLE 6. cont'd Photosensitizer
Cationic photoinitiator
Xanthone Michler's ketone Thioxanthone 10-Methylacridone Acridone Anthracene Chlorothioxanthone Pyrene Benzophenone Isopropylthioxanthone
Anion
Solvent
10-7Are (1/mol/s)
Cl"
M
140
10~7A:q (1/mol/s)
Refs. 30
0.7 200 350 740 M (NO2Cp)2I+
l
Cl"
31 28
400 130 500 250
TABLE 7. EXCITATION TRANSFER RATE CONSTANTS (kT) FOR THIOXANTHONES AND PHOTOINITIATORSa Thioxanthone
Initiator
Solvent
TXI
HMK
Toluene Methanol Toluene Methanol Toluene Methanol Toluene Methanol Toluene Methanol Toluene Methanol
OMK TPMK NMK ETX
TPMK
ITX
TPMK
10 " 6 ^ x (1/mol/s) 100 290 75 380 240 630 4700 7900 12 110 60 55
"Ref. 32.
ANNEX TO TABLE 7. COMPOUND CHEMISTRIES
TX's
R
Ri
R2
R3
R4
Abbrev.
Triplet state energy level (kcal/mol)
H H CH 3 H
Cl CH(CH 3 ) 2 H H H
H H COOET
H H H COOET
CTX ITX ETX TXI
62 61 58,5 63
Mok's H SCH 3 OCH 3 N(CH 3 ) 2
HMK TPMK OMK NMK
65 61 65 63
TABLE 8. TRIPLET STATE LIFETIMES (TT) OF THE SENSITIZER (TXI) IN DIFFERENT MEDIA*, AND RATE CONSTANT (kj) OF THE INTERACTION BETWEEN TXI AND TPMK* XT
tl
Hr6Jkx
Medium
(ns)
(cp at 28° C)
(I/moI/s)
TMPTAC (100%) Acrylate (66/33) Toluene-Ep. acrylate (50/50) Toluene-TMPTA (25/75) Toluene-TMPTA (50/50) Toluene-TMPTA (75/25) HDDA^ (100%) HDDA-Ep. acrylate (50/50) Toluene-HDDA (50/50) Toluene-HDDA-Ep. acrylate (25/50/25) Toluene-PETAe (50/50) Toluene-PETA-Ep. acrylate (43/43/14) Toluene Methanol
650 2200 1500
40 185 9.5
80 31 35
270 200 280 650 2500
5.8 1.7 0.9 5.2 58
135 <40 150 95 22
1000 850
1.2 5.8
140 68
220 360
3.1 6.9
40 69
50 140
0.53 0.52
240 630
TABLE 11. RATE CONSTANT OF INTERACTION OF KETONES AND LIGHT STABILIZERS IN SOLUTION Photoinitiator
Light stabilizer
l
Benzophenone
LSI LS2 LS3 LS4 LS5 SL6 LSI LS7
6500 8550 10300 15000 7050 5900 500 700
Acetone
Refs. 34
35 36
ANNEX TO TABLE 11. LSI:
a
Viscosity: 77. Ref. 33; for formula, see Annex to Table 7. Trimethylolpropane triacrylate. ^Hexanedioldiacrylate. Tentaerythritol triacrylate. &
LS2:
TABLE 9. SOME VALUES OF THE TRIPLET STATE ENERGY LEVELS OF PHOTOINITIATORS AND MONOMERS
Compound
Triplet state energy (AE) (kcal/mol)
Ila I4a I7a I8a I9b M2 I14a 124
69 73 53 53 59 61 75 57
Cited in Ref. 13
LS3:
Cited in Ref. 38 LS4:
TABLE 10. VALUES OF T°, T1, AND IrJt IN SOLUTION Photoinitiators
t j (ns)
Xj (ns)
4200
4000
10"6JkJ (1/mol/s)
LS5:
0.85 LS6:
3300
2000
14
470
470
<5
4000
1750
24
LS7:
determined in bulk epoxyacrylate-HDDA (60:4OwAv); a in solution b in the presence of LSI (2%).; Ref. 34.
References page 11-180
C. REFERENCES 1. (a) "Lasers in Polymer Science and Technology: Applications", J. R Fouassier, J. F. Rabek (Eds.), CRC Press, Boca Raton, 1990. (b) "Radiation Curing in Polymer Science and Technology", J. P. Fouassier, J. F. Rabek (Eds.), Chapman & Hall, London, (1993). 2. J. P. Fouassier, "Photoinitiation, Photopolymerization, Photocuring", Hanser, Munich, (1995). 3. (a) C. Decker, in: S. P Pappas, (Ed.), "Radiation Curing: Science and Technology", Plenum Press, New York, 1992. (b) C. Decker, B. Elzaouk in "Laser Curing of Photopolymers", Proc. Polymer Photochemistry Symposium, Genes, 112,(1993). (c) C. Decker, B. Elzaouk, Eur. Polym. J., 31 (12), 1155 (1995). 4. D. Ruhlmann, J. R Fouassier, Eur. Polym. J., 27 (9), 991 (1991). 5. D. Ruhlmann, J. R Fouassier, W. Schnabel, Eur. Polym. J., 28 (3), 287 (1992). 6. D. Ruhlmann, E Wieder, J. R Fouassier, Eur. Polym. J., 28 (6), 591 (1992). 7. R. Kuhlmann, W. Schnabel, Polymer, 18, 1163 (1977). 8. J. P. Fouassier, in: J. R Fouassier, J. F. Rabek (Eds.) "Lasers in Polymer Science and Technology: Applications", CRC Press, Boca Raton, 1990. 9. J. R Fouassier, D. J. Lougnot, Polymer Comm., 31, 418 (1990). 10. J. R Fouassier, D. J. Lougnot, J. Chem. Soc, Faraday Trans., 1, 83 (9), 2935 (1987). 11. G. Amirzadeh, R. Kuhlmann, W. Schnabel, J. Photochem., 10, 133 (1979). 12. J. R Fouassier, D. J. Lougnot, L. Avar, Polymer, 36 (26), 5005 (1995). 13. J. R Fouassier, in: J. R Fouassier, J. F. Rabek (Eds.) "Radiation Curing in Polymer Science and Technology", Chapman & Hall, London, vol. II, 1993. 14. T. Sumiyoshi, W. Schnabel, A. Henne, J. Photochem., 32, 191 (1986). 15. D. Ruhlmann, K. Zahouily, J. R Fouassier, Eur. Polym. J., 28 (9), 1063 (1992). 16. J. R Fouassier, D. Burr, Macromolecules, 23, 3615 (1990). 17. J. R Fouassier, D. J. Lougnot, J. C. Scaiano, Chem. Phys. Lett., 160, 335 (1989). 18. R J. Wagner, M. J. Lindstrom, Jacs, 109, 3062 (1987). 19. F. Morlet-Savary, J. R Fouassier, H. Tomioka, Polymer, 33, 4202 (1992). 20. G. Amirzadeh, W. Schnabel, Makromol. Chem., 182, 2821 (1981).
21. R. Kuhlmann, W. Schnabel, Angew. Makromol. Chem., 57, 195 (1977). 22. R. Kuhlmann, W. Schnabel, Polymer, 17, 419 (1976). 23. F. Morlet-Savary, J. R Fouassier, T. Matsumoto, K. Inomata, Polymers for Adv. Techn., 5, 56 (1994). 24. N. S. Allen, A. W. Timms, W. A. Green, F. Catalina, T. Corrales, S. Navaratnam, B. J. Parsons, J. Chem. Soc. Faraday, 90, 83 (1994). 25. D. J. Lougnot, C. Turck, J. R Fouassier, Macromolecules, 22, 108 (1989). 26. W. Schnabel, in: J. R Fouassier, J. F. Rabek (Eds.), "Lasers in Polymer Science and Technology: Applications", vol. II, CRC Press, Boca Raton, 1990. 27. T. Sumiyoshi, W. Weber, W Schnabel, Z. Naturforsch, 40a, 541 (1985). 28. J. R Fouassier, D. Burr, J. V. Crivello, J. Photochem. Photobiol., A: Chem., 49, 318 (1989). 29. G. Mannivannan, J. R Fouassier, J. V. Crivello, J. Polym. Sci. Part A: Polym. Chem., 30, 1999 (1992). 30. H. J. Timpe, K. R Kronfeld, U. Lammel, J. R Fouassier, D. J. Lougnot, J. Photochem., 52, 111 (1990). 31. M. R. V. Sahyun, R. J. DeVoe, R M. Olofson, in: J. R Fouassier, J. F. Rabek, (Eds.), "Radiation Curing in Polymer Science and Technology", vol. II, Chapman & Hall, London, 1993. 32. A. Bohrer, G. Rist, K. Dietliker, V. Desobry, J. R Fouassier, D. Ruhlmann, Macromolecules, 25, 4182 (1992). 33. J. R Fouassier, D. Ruhlmann, Eur. Polym. J., 29 (4), 505 (1993). 34. J. R Fouassier, D. Ruhlmann, A. Erddalane, Macromolecules, 26, 721 (1993). 35. J. R Guillory, C. F. Cook, Jacs, 95, 4885 (1973). 36. R Bortolus, in: J. R Fouassier, J. F. Rabek (Eds.), "Radiation Curing in Polymer Science and Technology", vol. II, Chapman & Hall, London, 1993. 37. H-J. Timpe, Topics in Current Chemistry, vol. 156, 167, (1990). 38. H-J. Timpe, K-R Kronfeld, J. Photochem. & Photobiol., A: Chem., 46, 253 (1989). 39. J. C. Netto-Ferreira, D. Weir, J. C. Scaiano, J. Photochem. & Photobiol., A: Chem., 48, 345 (1989). 40. J. C. Scaiano, L. C. Stewart, J. Am. Chem. Soc, 105 (11), 3609 (1983). 41. E. Klimtchuk, M. A. J. Rodgers, D. C. Neckers, J. Phys. Chem., 96 (24), 9817 (1992). 42. Y. Yagci, W. Schnabel, Makromol. Chem., Rapid Commun., 8, 209 (1987). 43. Y. Yagci, S. R Pappas, W. Schnabel, Z. Naturforsch, 42a, 1425 (1987).
F r e e
R a d i c a l
C o p o l y m e r i z a t i o n
R e a c t i v i t y
R a t i o s
Robert Z. Greenley* Monsanto Co., 544 Oak Valley Drive, St. Louis, MO 63131, USA A. Introduction B. Tables Table 1. Copolymer Reactivity Ratios Table 2. Listing of Quick Basic (Microsoft) Program for Calculating Reactivity Ratios C. References A.
11-181 11-182 11-182
II-288 II-290
INTRODUCTION
When a vinyl monomer is copolymerized with a second monomer, the relationship between the composition of the initially formed copolymer and the initial monomer mixture is given by
where m \ is the number of moles of monomer 1 entering the copolymer, ra2, the number of moles of monomer 2 entering the copolymer, Mi, the number of moles of monomer 1 in the monomeric mixture, M2, the number of the moles of monomer 2 in the monomer mixture, and r\ and r2 are the monomer reactivity ratios. The monomer reactivity ratios, r\ and r 2 , for any monomer pair are the ratios of the rate constants of the different propagation reactions:
with r\ = &11/&12, ri = ^22/^21- ~ M" represents a polymer chain ending in a radical derived from monomer M. The original compilations of reactivity ratios and their references were published by L. J. Young in the first two editions of this Handbook. In the third edition, the original listings and those through 1986 were re-evaluated. This fourth edition contains an additional 548 evaluated monomer pairs giving a total of 3,265 such pairs. Only free * Retired.
radical reactivity ratios are listed. When the original references were available, they were read. If the experimental data was published, the reactivity ratios were recalculated according to the methods of Kelen and Tudos (803,804). The 95% confidence limits for the reactivity ratios were also calculated (805). If the authors used this method for r-value evaluation, including adjustment of the monomer feeds for total conversion, then the reported values were utilized. There are a number of reported reactivity ratios that are not reported here. This is due to the absence of these values in the abstracts of papers which were published in journals unavailable to the author. All of the monomer pairs in Table 1 are cross-referenced. The full spelling of each monomer was included in its Monomer 1 citation. Sometimes truncated but distinguishable names have been used in the Monomer 2 lists. If only the reactivity ratios and reference are given, then, either no experimental data was given or the journal was not available and the Chemical Abstracts summary was the source of the data. If a Y or N (yes or no) appears in the conversion (Conv.) column then the reactivity ratios were recalculated. If a recalculation was performed but the 95% confidence columns (95%) are still left blank, it indicates that only two feed/polymer data pairs were available. In general, if there is a citation (Y or N) in the Conv. column but no reactivity ratios are shown in the reactivity ratio columns, the copolymerization did not follow the copolymerization equation (ionic or penultimate effects were prevalent). In a few cases, the data were too scattered to allow a reactivity ratio calculation. Recalculations yield negative reactivity ratios in several cases. We are aware that this is a physically unrealistic artifact. When the 95% confidence limits are applied to these negative numbers, a value of zero usually falls within these limits. It may be noted that a single reference sometimes contains a variety of reactivity ratios for one monomer pair. The reader may assume that these result from a change of polymerization conditions; e.g., different polymerization temperatures or polymerization media of varying polarity. For those who are interested in using the Kelen-Tudos calculations, a listing of a simplistic program written in QuickBasic (Microsoft) is also given (Table 2).
B. TABLES TABLE 1. COPOLYMER REACTIVITY RATIOS Monomer 1 Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Acetamide, A^-(4-methacryloyloxyphenyl)2-(4-methoxy) Acetamide, TV-vinylAcetamide, Af-vinylAcetamide, AT-vinylAcetamide, N-vinylAcetamide, N-vinylAcetamide, Af-vinylAcetanilide, 4-(2-methacryloyloxy)ethyloxy) Acetanilide, 4-(2-methacryloyloxy)hexyloxy) Acetanilide, 4-(methacryloyloxy)Acetate, 2-chloro-, vinyl Acetate, allyl Acetate, chloro-, allyl Acetate, dichloro-, allyl Acetate, isopropenyl Acetate, trichloro-, allyl Acetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAcetylene, phenylAconitate, trimethyl Aconitate, trimethyl Aconitate, trimethyl Aconitate, trimethyl Aconitate, trimethyl Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein
Monomer 2 Acrylate, (-)-menthyl Acrylonitrile Carbazole, N-vinylFumarate, diisopropyl Maleic anhydride Maleic anhydride Maleimide, N-cyclohexylMethacrylate, (-)-menthyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylonitrile Pyrrolidone, N-vinylPyrrolidone, N-vinylStilbene Styrene Methacrylate, 2-hydroxyethyl Acrylamide Methacrylate, Methacrylate, Methacrylate, Vinyl acetate Vinyl acetate Methacrylate,
rx
2.56 6.62 2.57 0.46 0.46 0.57 2.48 1.05 0.99 2.25 2.38 5.65 0.33 1.49
±95%
1.77 0.13 0.55 0.14 0.15
0.23
r2
0.02 -0.03 0.06 0.02 -0.04 0.11 0.316 0.36 0.38 0.44 0.15 -0.01 3.81 0.61
±95%
Conv.
Refs.
Y
645 575 331 1039 1039 26 1039 645 326 326 575 575 326 326 725 525 1051
0.12
N
0.05
N
0.085 0.04 0.04
Y N N
0.04
N N N
2-hydroxyethyl
0.3 0.19 0.71 0.01 5.5 21 0.67
1.4 2.65 1.18 2.1 0.6 0 1.39
984 984 984 984 984 984 1096
Methacrylate, 2-hydroxyethyl
0.87
1.19
1096
Methacrylate, 2-hydroxyethyl Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Fumarate, diisopropyl Vinyl acetate Acrylate, methyl Acrylate, methyl Acrylonitrile Isoprene Maleic anhydride Methacrylate, methyl Methacrylate, butyl Methacrylate, isobutyl Methacrylate, methyl Methacrylate, methyl Methacrylonitrile Pyridine, 2-vinylStyrene Acrylonitrile Butadiene Styrene Vinyl chloride Vinylidene chloride Acrylamide Acrylamide Acrylate, butyl Acrylate, butyl Acrylate, ethyl Acrylate, ethyl Acrylate, methyl Acrylate, methyl
1.94 1.18 0.43 0.69 0.54 0.011 0.28 0.272 0.093 0.325 0.1 0.08 0.2 0.21 0.27 1.69 0.07 0.04
0.78 0.8 1.8 0.77 0.57 0.67 0.41 0.622 0.664 0.266 3.01 0.06 1.5 1.7 1.9 -0.06 1.111 0.78
1096 892 1045 1045 1045 1038 1045 60 731 60 648 797 443 565 565 357 732 648 192 357 147 147 147 147 149 207 208 291 292 291 292 207 291
methyl methyl methyl
0.33 -0.48 0 -0.013 0.19 0.15 1.95 1.59 1.86 2.29 1.2 1.98 -0.07 1.41
0.072 0.01 0.083
26.56 0.016 0.12 0.11 0.22 0.009 0.94 0.58 0.1 0.19 0.58 0.44 0.03 0.4
0.324 4.24 0.4 1.026 0.04 64.6 0.8 0.18 0.638 1.12 0.6 1.09 7.86 0.83
0.062 0.045 0.044
Y Y Y
0.16 0.095
Y Y
23.74 0.23 0.02 0.032 0.41
Y Y Y Y Y Y N N N Y N
0.25 3.58 0.12
N N Y
0.02 0.92 0.4 0.091
TABLE 1. cont'd Monomer 1 Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein Acrolein diethylacetal Acrolein diethylacetal Acrolein, methylAcrolein, methylAcrolein, methylAcrolein, methylAcrolein, methylAcrolein, methylAcrolein, methylAcrolein, methylAcrolein, methylAcrolein, methylAcrolein, methylAcrolein, methylAcrolein, 2-chloroAcryl-2/-ethyl-4,5,7-trinitro9-flurenone-2-carboxylate Acryl-2/-ethyl-4,5,7-trinitro-9-flurenone2-carboxylate Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide
Monomer 2 Acrylate, methyl Acrylic acid Acrylic acid Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Methacrylate, methyl Methacrylate, methyl Methacrylonitrile Methacrylonitrile Pyridine, 2-vinylStyrene Styrene Styrene Styrenesulfonate, /?-, sodium Styrenesulfonate, /?-, sodium Styrenesulfonate, p-, sodium Vinyl acetate Vinyl chloride Acrylonitrile Maleic anhydride Acrylate, butyl Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Methacrylate, methyl Methacrylonitrile Methacrylonitrile Methacrylonitrile Styrene Styrene Vinyl acetate Styrene Acrylate, iV-(2-hydroxyethyl)carbazolyl Methacrylate, JV-(2-hydroxyethyl)carbazolyl Acetamide, Af-vinylAcrolein Acrolein Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid, cw-3-bromoAcrylic acid, ds-3-ethylAcrylic acid, trans-3-bromoAcrylic acid, frcms-3-ethylAcrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Cinnamic acid, cisCinnamic acid, transCrotonic acid Crotonic acid Crotonic acid Crotonic acid Crotonic acid, cisCrotonic acid, trans-
r\
±95%
r2
±95%
Conv.
Refs.
0.93 1.24
0.38 0.28
N Y
0.06 0.03 0.01
N N N
0.05 0.4 0.05
Y N N
0.03 0.017 0.02 0.006 0.033 0.071 0.009 0.12 0.11
N Y N Y Y Y Y N N
0.19
Y
0.01
N
0.017
N
0.05 0.079
Y
292 57 57 207 207 208 504 291 292 208 446 208 291 292 307 57 57 57 207 271 767 767 589 455 587 589 91 589 208 587 589 223 589 589 806 715
0.096
Y
703
0.58 0.1 0.029 0.069 0.012 0.14
N N Y Y Y N
0.11 0.1 0.16 0.11 0.033 0.1 0.75
Y Y Y Y Y Y N
0.28 0.15 0.14 0.19
Y Y Y Y
0.024
Y Y
2.54 2.48 0.5 1.16 1.07 1.52 1.28 0.76 0.59 0.68 0.72 2.64 0.216 0.02 0.32 0.395 0.26 0.113 3.04 5.22 0.02 0.18 2.5 1.7 3.8 3.8 1.72 0.4 1.78 1.25 1.25 0.833 0.3 0.98 0.15 0.585
0.07 0.028
1.08 0.08 1.15 0.88 0.71 0.48 0.6 1.136 1.33 1.17 1.2 -0.12 0.257 0.22 0.205 0.327 0.047 0.01 -0.02 0.03 11.19 0.07 0.02 0.15 0.15 0.15 0.03 0.1 0.41 0.45 0.45 0.173 0.41 0.15 0.02 0.912
0.102
0.022
0.773
1.4 0.8 0.18 1.08 0.445 1.346 0.598 0.58 1.06 7.64 6.32 4.13 8.19 0.81 1.08 0.5 1.36 1.3 3.84 3.4 3.76 4.23 4.72 5.32 12
0.13 0.08 0.07 0.12 0.3 0.12 0.14 0.036 0.01 0.002 0.092 0.16 0.018 0.43 0.13
0.42 0.07 0.092
0.23 0.02 0.17 0.075 0.044 0.047 1.67 0.68 0.76 1.09 0.11 0.51 0.26 0.68 0.24 0.89 1.37
0.33
0.3 1.95 1.59 0.288 1.644 0.341 1.38 3.8 0.29 -0.2 -0.16 -0.33 -0.21 0.863 0.97 1.8 0.88 0.8 -0.24 -0.18 -0.19 0.11 0.12 -0.085
984 207 208 221 278 278 37 869 869 298 298 298 298 228 228 330 421 461 298 298 298 298 569 569 341 341
References page II - 290
TABLE 1. cont'd Monomer 1
Monomer 2
r\
Dioxolane, l,3,4-methylene-2-trichloro- 8.6 Maleic anhydride 0.56 Methacrylate, 2-hydroxyethyl 0.05 Methacrylate, 2-hydroxyethyl 0.14 Methacrylate, 3-methoxy0.04 2-hydroxypropyl Acrylamide Methacrylate, dimethylaminoethyl 0.52 sulfate Acrylamide Methacrylate, methyl 2.29 Acrylamide Methacrylate, methyl 0.53 Acrylamide Methacrylate, methyl 0.82 Acrylamide Methacrylate, methyl 0.9 Acrylamide Methacrylic acid 0.57 Acrylamide Methacrylic acid 0.58 Acrylamide Methacrylic acid 0.56 Acrylamide Methylenebutyrolactone 0.3 Acrylamide Styrene 0.58 Acrylamide Styrene 1.32 Acrylamide Styrene 0.33 Acrylamide Styrene 0.59 Acrylamide Styrene 8.97 Acrylamide Styrene 0.2 Acrylamide Succinimide, N-vinyl1.86 Acrylamide Vinyl chloride Acrylamide Vinyl methyl ketone 3.99 Acrylamide Vinyl methyl ketone 1.02 Acrylamide Vinylene carbonate 13.8 Acrylamide Vinylmethylphenylsulfonium 3.4 tetrarluoro Acrylamide Vinylsulfonic acid 3.5 Acrylamide, 2-chloro-WV-dimethylMethacrylate, methyl -0.159 Acrylamide, 2-chloro-AW-dimethylStyrene -0.036 Acrylamide, JV,7V-dibutylStyrene 0.294 Acrylamide, WV-diethylAcrylic acid 0.35 Acrylamide, iV,iV-diethylButanoate, 3-acrylamido-3-methyl-, 0.987 sodium Acrylamide, A^TV-diethylMethacrylate, methyl 0.41 Acrylamide, MN-diethylStyrene 0.39 Acrylamide, WV-diethylStyrene 0.34 Acrylamide, A^-diethylStyrene 0.18 Acrylamide, WV-dimethylMethacrylate, methyl 0.57 Acrylamide, iV,N-dimethylMethacrylate, methyl 0.59 Acrylamide, A^Af-dimethylMethacrylate, methyl 0.21 Acrylamide, A^V-dimethylStyrene 0.12 Acrylamide, A^V-dimethylStyrene 0.49 Acrylamide, A^V-dimethylStyrene 0.47 Acrylamide, MiV-dimethylSulfonate, 2-acrylamido1.108 2-methylpropane Acrylamide, N,7V-dimethylVinyl methyl ketone 0.82 Acrylamide, A^-(2-(4-hydroxyphenyl)ethyl)- Methacrylamide, A^-(2-hydroxypropyl)0.95 Acrylamide, N-(2-(propionamide)Styrene 0.86 Acrylamide, Af-methylMethacrylate, methyl 0.05 Acrylamide, N-methylol Acrylate, butyl 0.61 Acrylamide, Af-methylol Acrylate, ethyl 1.4 Acrylamide, N-methylol Acrylate, methyl 1.9 Acrylamide, iV-methylol Acrylonitrile 1.2 Acrylamide, N-methylol Acrylonitrile 2.33 Acrylamide, N-methylol Acrylonitrile 2.56 Acrylamide, TV-methylol Methacrylate, methyl 0.7 Acrylamide, N-methylol Methacrylate, methyl 0.7 Acrylamide, JV-methylol Styrene 0.48 Acrylamide, Af-methylol Vinyl chloride Acrylamide, N-methylolStyrene 0.4 Acrylamide, N-octadecylAcrylonitrile 1.4 Acrylamide, N-octadecylMethacrylate, methyl 0.42
±95%
Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide
r2
±95%
Conv.
0.037 0 1.89 0.98 3.98
616 655 689 928 689
0.05
1.9
0.2
0.44 0.09
2.34 3 2.53 3 1.63 4.4 0.15 2.85 1.17 1.21 1.49 1.13 0.65 1.05 0.17
0.17 0.09
N N
0.45
N
0.06 0.04 0.16
N N N
0.03
N
0.7 0.13
0.47 0.75 0.05 0.1
0.44 0.23
Y Y Y
0.15 0.502 0.152 0.058 0.12 0.153
0.3 2.71 1.29 1.6 0.36 0.22
0.1 0.398 0.065 0.058 0.04 0.138
N Y
0.15
1.65 1.23 1.36 1.54 2.15 2.8 2.64 1.15 1.37 1.32 0.162
0.16
N
0.08 0.1 0.15 0.35 0.1 0.12 0.949
N N N N N N Y Y
1.07
0.12 0.13 0.14 0.43
0.08 0.09 0.21 0.3 0.15 0.2 0.59
Refs.
0.36 0.09 0.3 0.72
0.1 1.01 1.84 1.14 0.87 1.4 1.3 0.7 0.98 0.22 1.62 1.62 0.03
0.43 0.09 0.21 0.09
0.03 0.17 0.11
1.55 1.034 4.119
0.05 0.02 0.07
1052
Y Y
N N
Y Y Y
314 314 314 691 1028 852 852 746 295 314 314 314 343 555 600 156 609 609 387 793 1066 917 917 806 205 857 170 739 739 739 315 315 691 170 315 315 857 609 965 295 691 441 442 441 442 577 596 593 596 596 157 891 119 290
TABLE 1. cont'd Monomer 1 Acrylamide, N-octadecylAcrylamide, N-octadecylAcrylamide, Af-octadecylAcrylamide, Af-octylAcrylamide, N-propylAcrylamide, N-propylAcrylamide, N-tert-buty\Acrylamide, N-tert-buty\Acrylamide, a-fluoroAcrylamido, 1-,-1-deoxy-D-glucitol Acrylamido, 1-,-1-deoxy-D-glucitol Acrylamido, 1-,-1-deoxy-D-glucitol Acrylamido, 2-,2-methylpropanesulfonate, sodium Acrylamido, 2-,-2-methylpropanesulfonic acid Acrylamido, 2-,-2-methylpropanesulfonic acid Acrylamido-2-methylpropane sulfonate sodium salt Acrylamidomethylamino, /?-, azobenzene Acrylamidomethylamino, p-, azobenzene Acrylate, (-)-menthyl Acrylate, (-)-menthyl Acrylate, 1,1,5-trihydroperfluoroamyl Acrylate, 2,3-dibromopropyl Acrylate, 2,4,5-trichlorophenyl Acrylate, 2,4,5-trichlorophenyl Acrylate, 2,4,6-tribromophenyl Acrylate, 2,4-dinitrophenyl Acrylate, 2,4-dinitrophenyl Acrylate, 2(0-ethyl methylphosphonoxy)-, methyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyi Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethylglucitol Acrylate, 2-cyano-, methyl Acrylate, 2-cyano-, methyl Acrylate, 2-cyanoethyl Acrylate, 2-ethylhexyl Acrylate, 2-ethylhexyl Acrylate, 2-ethylhexyl Acrylate, 2-ethylhexyl Acrylate, 2-ethylhexyl Acrylate, 2-ethylhexyl Acrylate, 2-hydroxyethyl Acrylate, 2-hydroxyethyl Acrylate, 2-hydroxyethyl Acrylate, 2-nitrobutyl Acrylate, 2-nitrobutyl Acrylate, 2-nitrobutyl Acrylate, 3,4-epoxyhexahydrobenzyl
Monomer 2 Styrene Vinyl acetate Vinylidene chloride Styrene Acrylate, butyl Acrylate, methyl Acrylonitrile Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Vinyl acetate Vinyl acetate
r\ 0.54 8.25 1.4 0.258 0.4 0.26 1.14 2.83 0.148 0.05 0.03 0.98 11.6
±95% 0.14 1.46 0.11 0.119
0.081 0.09 0.02 0.87
r2 2.08 0.004 0.432 2.715 0.8 1.2 0.2 0.25 2.13 3.75 2.42 0.03 0.05
±95%
Conv.
0.12 0.011 0.008 0.244
Y Y Y
0.136 0.24 0.08 0.17
Y N N N
Refs. 290 119 119 806 730 730 709 709 823 258 258 258 700
Methacrylate, 2-hydroxyethyl
0.9
0.86
618
Methacrylate, 2-hydroxypropyl
1.03
0.89
618
iV-Vinylpyrrolidone
0.66
0.13
939
0.083 0.126
858 858 645 667 809 643 840 622 643 716 716
Styrene 8.5 Vinyl acetate 12.98 Acenaphthalene Pyridine, 4-vinyl0.291 Methacrylonitrile 0.14 Styrene 0.16 Pyrrolidone, N-vinyl0.163 Styrene 0.23 Styrene 0.1 Acrylate, N-(2-hydroxyethyl)-carbazolyl 0.158 Methacrylate, A^-(2-hydroxyethyl)0.186 carbazolyl Methacrylate, methyl 0.44 Acrylate, ethyl Acrylate, methyl Acrylonitrile Itaconate, bis(tri-rc-butyltin) Itaconic anhydride Itaconic anhydride Maleic anhydride Methacrylate, methyl Pyrrolidone, Af-vinylStyrene Styrene Styrene Vinyl butyl ether Vinyl isobutyl ether Styrene Styrene, a-methylVinyl acetate Styrene Acrylate, glycidyl Methacrylate, glycidyl Styrene Styrene Vinyl acetate Vinyl chloride Acrylate, butyl Acrylate, ethyl Acrylate, methyl Acrylonitrile Methacrylate, methyl Styrene Acrylonitrile
1.03 1.07 0.87 0.683 -0.016 0.251 7.15 0.37 0.52 0.1 0.139 0.12 2.01 2.24 0.14 0.001 0.5 0.128 1.12 0.09 0.31 0.26 7.5 4.15 0.9 0.97 0.9 1.76 0.27 0.12 0.388
0.45
Y Y
0.008 0.048
Y Y
0.015 0.009
2.32 1.03 0.42 0.012 0.277 0.2 0.109 0.243
0.026 0.034
Y
0.25
0.73
0.04
0.017 0.02 0.021
0.022 0.021 0.31 0.17 0.083
0.09 0.074 0.07 0.13 0.6
0.23 0.24 0.13 0.69 0.04 0.01 0.074
0.9 0.9 1.03 0.391 2.46 2.61 0.027 2.15 0.03 0.55 0.494 0.54 0 0 0.49 0.05 0.005 0.399 1.18 2.41 0.96 0.94 0.04 0.16 0.3 0.5 0.94 0.67 1.19 0.35 0.25
882
0.38 0.32 0.004
Y Y Y
0.47 0.097
Y Y
0.2 0.032 0.06 0.46 0.3
Y N Y N
0.06 0.03 0.04 0.25 0.12 0.03 0.13
N N N N N N Y
726 726 790 940 365 365 117 790 790 140 178 790 790 790 806 452 452 178 126 674 126 463 570 510 868 868 868 234 234 234 680
References page II - 290
TABLE 1. cont'd Monomer 1 Acrylate, 3,4-epoxyhexahydrobenzyl Acrylate, 4-acetylphenyl Acrylate, P-acetoxymethyl-, methyl Acrylate, P-acetoxymethyl-, methyl Acrylate, |3-chloro-2-hydroxypropyl Acrylate, p-ethoxy-, ethyl Acrylate, (3-ethoxy-, ethyl Acrylate, N-(2-hydroxyethyl)3,6-dichlorocarbazolyl Acrylate, 7V-(2-hydroxyethyl)carbazolyl Acrylate, AH2-hydroxyethyl)carbazolyl Acrylate, iV-(2-hydroxyethyl)carbazolyl
Monomer 2 Styrene Methacrylate, glycidyl Methacrylate, methyl Styrene Acrylonitrile Acrylonitrile Styrene Methacrylate, 2,4-dinitrophenyl
Acryl^'-ethyl-^J-trinitro^-fluorene Acrylate, 2,4-dinitrophenyl Acryloyl-(3-hydroxyethyl3,5 -dinitrobenzoate Acrylate, iV-(2-hydroxyethyl)carbazolyl Methacryloyl-p-hydroxyethyl3,5-dinitrobenzoate Acrylate, A^-(2-hydroxyethyl)carbazolyl Methacryloyl-p-hydroxyethyl3,5-dinitrobenzoate Acrylate, a-(4-chlorobenzyl)-, ethyl Styrene Acrylate, a-(4-cyanobenzyl)-, ethyl Styrene Acrylate, a-(4-methoxybenzyl)-, ethyl Styrene Acrylate, a-((9-ethyl methylphosphonoxy)- Methacrylate, methyl methyl Acrylate, a-(hydroxymethyl)-, methyl Styrene Acrylate, a-[2,2-bis(carbomethoxy)ethyl]-, Methacrylate, methyl methyl Acrylate, a-[2,2-bis(carbomethoxy)ethyl]-, Styrene methyl Acrylate, a-acetoxy-, ethyl Acrylate, a-chloro-, ethyl Acrylate, a-acetoxy-, ethyl Acrylate, ethyl Acrylate, a-acetoxy-, ethyl Methacrylate, methyl Acrylate, a-acetoxy-, ethyl Styrene Acrylate, a-acetoxy-, ethyl Vinyl acetate Acrylate, a-benzyl-, methyl Styrene Acrylate, a-benzyl-, ethyl Styrene Acrylate, a-benzyl-, methyl Methacrylate methyl Acrylate, a-benzyl-, methyl Methacrylate methyl Acrylate, a-bromo-, ethyl Styrene Acrylate, a-butyl-, methyl Styrene Acrylate, a-chloro-, methyl Methacrylate, methyl Acrylate, a-chloro-, ethyl Acrylate, a-methoxy-, methyl Acrylate, a-chloro-, ethyl Acrylate, a-acetoxy-, ethyl Acrylate, a-chloro-, ethyl Acrylate, a-fluoro-, ethyl Acrylate, a-chloro-, ethyl Acrylate, methyl Acrylate, a-chloro-, ethyl Acrylonitrile, a-methoxyAcrylate, a-chloro-, ethyl Methacrylonitrile Acrylate, a-chloro-, ethyl Styrene Acrylate, a-chloro-, ethyl Vinyl acetate Acrylate, a-chloro-, methyl Acrylonitrile Acrylate, a-chloro-, methyl Methacrylate, methyl Acrylate, a-chloro-, methyl Styrene Acrylate, a-chloro-, methyl Vinylidene cyanide Acrylate, a-chloro-, sodium Styrenesulfonate, /?-, sodium Acrylate, a-cyano-, methyl Acrylonitrile Acrylate, a-cyano-, methyl Acrylate, methyl Acrylate, a-cyano-, methyl Methacrylate, methyl Acrylate, a-cyano-, methyl Methacrylate, methyl Acrylate, a-cyano-, methyl Methacrylonitrile Acrylate, a-cyano-, methyl Styrene Acrylate, a-cyclohexyl-, methyl Styrene Acrylate, a-ethyl-, methyl Styrene Acrylate, a-ethyloxymethyl-, methyl Styrene Acrylate, a-fluoro-, ethyl Acrylate, a-chloro-, ethyl Acrylate, a-fluoro-, methyl Styrene Acrylate, a-hexafluoropropyloxymethyl-, Styrene methyl
rx
±95%
r2
±95%
Conv.
Refs.
0.3 0.13
N Y
1.8 27.03 0.032
N Y Y
680 1012 1091 1091 654 194 194 736
1.97 0.292 0.24 0.19 0.7 -0.26 -0.21 0.115
0.35 0.141
0.56 0.44 0.029
0.27 0.644 0.91 0.34 0.24 2.42 46.98 1.207
0.912 0.109 0.62
0.079 0.026 0.044
0.585 0.158 0.361
0.028 0.015 0.016
Y Y Y
715 716 702
1.04
0.14
0.08
0.026
Y
702
0.334
0.022
1.364
0.018
Y
719
1.03 0.65 0.71 0.44
0.13 0.09 0.24
0.04 0.06 0.33 0.73
0.09 0.05 0.3
806 806 806 851
0.34 0.04
0.36 3.7
932 1092
0.09
0.58
1092
0.3 0.968 0.608 0.173 5.621 0.175 0.9 0.173 0.09 0.44 0.205 1.13 0.58 1.71 2.9 3.22 0.9 2 0.32 30 1.76 1.92 0.3 0.313 0.27 0.68 0.34 0.03 0.135 0.15 0.61 -0.001 0.197 0.24 0.21 0.16 0.07
0.033 0.02 0.01 0.094 0.053 0.2 0.022 0.01 0.08 0.053 0.19
0.11 0.18 0.08 0.021 0.06 0.09 0.07 0.01 0.016 0.01 0.05 0.034 0.014 0.11
1.71 0.943 1.65 0.557 0.08 0.57 0.14 2.36 3.9 0.02 0.812 0.31 0.11 0.3 0.21 0.09 0.3 0.45 0.08 0.03 0.122 0.11 0.25 0.066 1.44 0.01 0.02 0.21 0.068 0.18 0.05 1.615 0.758 0.37 2.9 0.66 0.23
0.075 0.12 0.031 0.021 0.028 0.17 0.23 0.19 0.04 0.043 0.24
Y Y Y Y Y Y N Y Y
0.07 0.081 0.09
Y N
0.07 0.31 0.02 0.04 0.02 0.014 0.01 0.01 0.048 0.014
Y Y N N N Y N N Y Y
0.17
638 244 244 244 244 49 806 610 610 806 49 6 638 638 638 638 638 638 806 638 6 31 74 82 834 141 141 141 182 143 141 49 49 1047 638 806 1047
TABLE 1. cont'd Monomer 1 Acrylate, a-hydroxymethyl-, ethyl Acrylate, a-hydroxymethyl-, ethyl Acrylate, a-hydroxymethyl-, ethyl Acrylate, a-isobutyl-, methyl Acrylate, a-isopropyl-, methyl Acrylate, a-isopropyloxymethyl-, methyl Acrylate, a-methoxy, methyl Acrylate, a-methoxy-, methyl Acrylate, a-p-chlorobenzyl-, methyl Acrylate, a-/?-methoxybenzyl-, methyl Acrylate, a-phenoxymethyl-, methyl Acrylate, a- phenoxymethyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, butyl Acrylate, a-phenyl-, chloroethyl Acrylate, a-phenyl-, propyl Acrylate, a-propyl-, methyl Acrylate, a-propyloxymethyl-, methyl Acrylate, a-seobutyl-, methyl Acrylate, a-tetrafluoropropyloxymethyl-, methyl Acrylate, a-tetrafluoropropyloxymethyl-, methyl Acrylate, a-trifluoroethyloxymethyl-, methyl Acrylate, a-trifluoromethyl-, methyl Acrylate, a-trifluoromethyl-, methyl Acrylate, a-trifluoromethyl-, methyl Acrylate, a-trifluoromethyl-, methyl Acrylate, a-trimethylsiloxy-, methyl Acrylate, benzyl Acrylate, benzyl Acrylate, benzyl Acrylate, benzyl Acrylate, benzyl Acrylate, benzyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, butyl
Monomer 2
rx
±95%
Conv.
Refs.
0.229 0.17 0.03 0.022 0.052
Y N Y Y Y
0.078 0.222 0.109 0.038 0.05
Y Y Y Y
0.015 0.022 0.015 0.015 0.029
Y Y Y Y Y
0.068
Y
1011 1027 982 49 49 1047 638 806 905 905 1048 1048 141 141 141 49 143 141 399 488 49 488 488 488 49 1047 49 1047
0.668 1.34 0.546 0.202 0.036 0.26 0.11 0.513 0.255 0.13 0.755 0.256 1 6.7 0 0 0.25 1 0.4 0.45 1.275 0.107 0.201 0.126 0.208 0.29 0.004 0.61
Styrene
0.17
0.37
1047
Styrene
0.2
0.26
1047
-0.17 0 0.1 0 1.42 0.72 0.63 9.9 0.19 0.2 0.248 0.24 0.638 1.12 0.02 0.8 0.87 0.3 1.08 0.91 0.19 1.06 0.894 0.82 0.9 1.2 10.2 5.83 0.041 0.074 13.94 0.118
0.058 0.034 0.008 0.061 0.102
0.008 0.055 0.09 0.063 0.07 0.024
0.18 0.1 0.1 0.03 0.16 0.2 0.12 0.041 0.01 0.032 0.41
0.06 0.18 0.13 0.15 0.019 0.13 42.2 0.043 0.03 0.38 0.019
0.389 1.26 0.468 0.974 1.872 0.41 0.58 1.131 1.87 1.71 1.13 0.176 0.06 0.08 0.21 0.3 0.19 0.06 0.03 0.06 1.176 0.04 0.025 0.03 0.821 0.47 2.29 1.43
±95%
Azlactone, 2-vinyl-4,4-dimethylMethacrylate, methyl Styrene Styrene Styrene Styrene Acrylate, a-chloro-, ethyl Styrene Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Acrylate, methyl Acrylonitrile Methacrylate, methyl Methacrylate, methyl Methacrylonitrile Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Methacrylate, methyl
Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene, p-chloroStyrene Acrylonitrile Acrylonitrile Allyl chloride Methacrylate, methyl Styrene Styrene 2-Oxazoline, 2-isopropenylAcrolein Acrolein Acrolein, methylAcrylamide, N-propylAcrylamide, Af-methylolAcrylate, 2-hydroxyethyl Acrylic acid Acrylic acid Acrylic acid, a-bromoAcrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Allyl acetate Allyl chloride Benzofuran, 2-vinylButadiene Ethylene Furan, 2-vinyl-5-methyl
0.12 0.062 0.127 0.042 0.034
r2
1.8 3.2 2.3 0.24 0.46 0.28 1.49 0.06 2.23 0.494 0.534 1.4 1.86 2.29 2.5 0.4 0.61 0.9 0.59 1.31 0.09 1.679 0.781 1.08 1 1 0.039 0.1 7.8 1.04 0.01 0.392
0.23 0.5 0.2 0.02
Y N N N
0.19
N
0.14 0.05 0.028 0.08 0.19 0.58
Y Y Y Y N
0.23 0.27 0.3
N N N
0.058 0.083 0.08
Y Y N
0.066
N
1.36 0.11 0.003 0.051
N Y N Y
681 825 825 825 1101 23 385 438 277 178 277 894 291 292 589 730 441 868 187 252 733 118 162 233 513 513 1053 438 1020 257 42 1105
References page II - 290
TABLE 1. cont'd Monomer 1 Acrylate, Acrylate, Acrylate, Acrylate,
butyl butyl butyl butyl
Acrylate, butyl Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate,
butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl butyl cis-B-cyano-, methyl c/s-B-cyano-, methyl cresyl cyclododecyl cyclododecyl cyclododecyl cyclohexyl cyclohexyl cyclohexyl cyclohexyl cyclohexyl cyclohexyl di-, copper
Acrylate, di-, copper Acrylate, di-, copper
Monomer 2 Itaconate, bis(tri-w-butyltin) Itaconate, dimethyl Maleimide, iV-(2,4-dimethylphenyl)Methacrylate, 2-(Af,AT-dimethylcarbamoyloxy)ethyl Methacrylate, 2-chloro2,3,3,3-fluoropropyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, butyl Methacrylate, glycidyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylic acid Oxazoline, 2,2-isopropenylPyridine, 2-vinylPyridine, 2-vinylPyridine, 4-vinylStyrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene, o-chloroStyrene, p-l-(2-hydroxybutyl)Styrene, p-octylamine sulfonate Succinimide, iV-vinylThiophene, 3-vinyl Vinyl acetate Vinyl bromide Vinyl bromide Vinyl chloride Vinyl fluoride Vinyl fluoride Vinyl methyl ketone Vinyl,/?-, benzylethylcarbinol Vinylanthracene, 9Vinylidene chloride Vinylidene chloride Vinylidene chloride Acrylonitrile Styrene Acrylonitrile Styrene Styrene Styrene N-Vinylpyrrolidone Styrene Styrene Styrene Styrene Styrene Methacrylate, di-, dicyclopentadienyltitanium Styrene Styrene
/*i
±95%
0.91 0.4 o.62 0.47
r2
±95%
Conv.
0.422 0.94 0.2 1.89
Refs. 940 398 788 600
0.079
0.304
0.221
0.636
N
927
0.09 0.171 0.24 0.3 0.083 0.13 0.11 0.43 0.31 0.24 0.1 0.11 0.23 0.25 0.34 0.38 -0.106 0.29 0.18 0.19 0.21 0.15 0.164 0.164 0.2 0.17 0.3 1.54 0.386 3.48 4.07 3.7 4.4 19 19 0.8 0.17 3.717 0.873 0.46 0.58
0.11 0.041 0.16
4.75 5.35 3.3 2.2 2.16 0.92 2.86 1.88 1.25 1.4 2.51 2.59 4.3 0.79 0.79 0.75 1.23 0.44 0.84 0.66 0.82 0.8 0.698 0.698 2.25 0.4 2.3 0.15 0.499 0.018 0.18 0.19 0.07 0.01 0.01 1.81 0.4 0.126 0.934 0.84 0.87
4.2 0.32 6.82
Y Y Y
0.57 0.2 0.32 0.4 0.31
Y N Y N N
0.14 0.34 0.08 0.11 0.1 0.21 0.03 0.2
N N
0.072 0.16
Y N
0.24
N
0.054 0.006
Y Y
358 333 662 187 674 30 639 87 187 862 236 78 78 1032 1032 1032 19 20 38 38 463 549 612 632 558 548 817 789 1000 301 268 268 518 604 606 53 591 123 118 464 464 1034 1034 363 806 806 806 1061 1061 806 806 806 806 876
0.052 0.15 0.018 0.07 0.1 0.01 0.04 0.05 0.06 0.05 0.099 0.05 0.03
3.39 0.44
0.06 0.046 0.022
0.773 0.34 0.31 0.301 1.297 0.272 0.254 0.16 0.17 0.18 1.09
0.067 0.15 0.08 0.072 0.088 0.048 0.141 0.13 0.09 0.07
0.72 0.47 0.54 0.461 0.122 0.913 0.885 0.53 0.7 0.58 0.89
0.15 0.14 0.08 0.07 0.014 0.107 0.102 0.11 0.12 0.1
0.12 0.56
0.08 0.09
5.94 1.74
0.05 0.03
N N N
N N Y
N N
829 829
TABLE 1.
cont'd
Monomer 1 Acrylate, di-, nickel Acrylate, di-, nickel Acrylate, di-, zinc Acrylate, di-, zinc Acrylate, dibutylchlorotin Acrylate, diethylaluminum Acrylate, diethylaluminum Acrylate, dodecyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ferrocenylmethyl
Monomer 2 Methacrylate, di-, dicyclopentadienyltitanium Styrene Acrylonitrile Styrene Acrylate, methyl Styrene Styrene Acrylonitrile 2-Oxazoline, 2-isopropenylAcrolein Acrolein Acrylamide, Af-methylolAcrylate, 2-chloroethyl Acrylate, 2-hydroxyethyl Acrylate, oc-acetoxy-, ethyl Acrylate, hydroxyethyl Acrylic acid Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Allyl chloride Benzofuran, 2-vinylCarbazole, N-vinylEthylene, 1,1-diphenylImidazolid-2-one, 1,3-divinylImidazolid-2-one, l-ethyl-3-vinylIsopropenylisocyanate Maleimide, 2,3-dimethylAf-(2-methacryloyloxy)ethyl Methacrylate, 2-(sulfonic acid)ethyl Methacrylate, 2-bromoethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, butyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylic acid Norbornadiene Oxazoline, 2-, 2-isopropenylPropanesulfonate, 3-[diethyl2- (2-methacroy loxyethoxy)] ethyl Pyridine, 2-vinylPyridine, 2-vinylPyridine, 4-vinylPyrimid-2-one, 1,3-divinylhexahydroStyrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene 3-tri-rc-butylstannylTropone, 2-methacryloyloxyVinyl 2-chloroethyl ether Vinyl 2-chloroethyl ether Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinylanthracene, 9Vinylidene chloride Acrylate, methyl
r\
±95%
0.95 0.53 0.24 0.9 0.09 0.046 0.88 0.19 0.6 1.09 1.4 0.9 0.5 0.943 0.5 1.02 1.2 0.81 4 0.95 7.73 0.015 1.1 0.8 0.41 0.47 0.79 0.28 0.3 0.37 0.189 0.273 0.207 0.22 0.47 0.28 0.22
r2
±95%
Conv.
0.65 0.06 0.07 0.035 0.16 0.02 0.25 0.03 0.075 0.05 0.07 0.27
0.01 0.13 0.06 1.15
0.008 0.054 0.045 0.17 0.05
2.39 0.19 3.97
0.44
0.21 0.21 0.29 0.59 0.139 0.16 0.19 0.2 0.48 0.152 0.152 10.4 0.387 5 4.65 0.36 0.32 3.498 0.72 0.14
0.06
1.03
0.13 0.085
0.027 0.02 0.02 0.041 0.39
876
1.83 0.41 1.1 0.81 -0.002
0.02
N
0.02
N
0.016
2.37 1.39 1.2 1.98 1.4 1.03 0.97 0.968 0.88 0.91 0.92 1.16 0.66 0.44 0.08 5.76 0.27 0.5 -0.08 0.01 0.15 1.55
0.07 0.06
Y Y N
3.2 2.7 11.21 13.32 9.08 2.43 1.83 2 2.04
Refs.
0.44
N
0.24 0.033 0.09
N Y
0.08 0.78
N
0.334
N
0.03 0.01
N N
3.06
Y
0.43 1.05 3.95 0.39
Y Y Y Y
0.28
-0.01 1.39 0.19
0.03
N N N
0.02
Y
0.28 2.25 2.58 -0.05 0.699 1.01 0.79 0.8 0.8 0.787 0.787 0.01 3.13 0.15 0 0.05 0.05 0.295 0.58 4.46
0.1
N
0.03 0.072
N Y
0.528
Y
0.04 0.05 0.056 0.15
N N Y Y
829 646 829 659 652 652 233 894 291 292 442 726 868 244 890 711 1023 198 389 542 438 1020 757 65 800 800 434 619 564 657 358 333 662 690 30 469 87 1065 267 862 962 250 832 832 800 178 463 530 530 542 673 677 985 1104 439 726 285 336 123 65 293
References page II - 290
TABLE 1. cont'd Monomer 1 Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate, Acrylate,
ferrocenylmethyl ferrocenylmethyl ferrocenylmethyl ferrocenylmethyl ferrocenylmethyl ferrocenylmethyl furfuryl glycidyl glycidyl glycidyl glycidyl glycidyl heptafluorobutyl heptafluorobutyl heptafluorobutyl heptyl heptyl hydroxyethyl hydroxyethyl hydroxyethyl isobutyl isobutyl isobutyl isopropyl m-chlorophenyl m-nitrophenyl methyl methyl
Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl
Monomer 2 Maleic anhydride Methacrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Methacrylate, 2-hydroxyethyl Acrylate, 2-ethylhexyl Acrylonitrile Styrene Styrene Vinyl acetate Butadiene Methacrylate, methyl Styrene Maleimide, AH2,4-dimethylphenyl)Methacrylate, methyl Acrylate, ethyl Acrylate, methyl Acrylate, methyl Methacrylate, methyl Methacrylate, glycidyl Methacrylate, methyl Styrene Acrylonitrile Methacrylate methyl 2-Oxazoline, 2-isopropenyl2-Oxazolinium BF4, 3-methyl2-isopropenyl2-Oxazolinium, 2-isopropenylAcetylene, phenylAcetylene, phenylAcrolein Acrolein Acrolein Acrylamide, Af-methylolAcrylamide, Af-propylAcrylate, 2-chloroethyl Acrylate, 2-hydroxyethyl Acrylate, a-chloro-, ethyl Acrylate, a-cyano-, methyl Acrylate, ot-phenyl-, methyl Acrylate, dibutylchlorotin Acrylate, ferrocenylmethyl Acrylate, hydroxyethyl Acrylate, hydroxyethyl Acrylate, tributyltin Acrylic acid, oe-bromoAcrylonitrile Acrylonitrile Acrylonitrile Acryloyl chloride Allyl acetate Allyl acrylate Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allylbenzene Benzophenone, p-vinylBenzophenone,/7-vinylButadiene Butadiene, 2-chloroCarbamate, WV-diethyl-, vinyl
rx
±95%
-0.3 0.024 0.08 -0.016 0.02 0.02 0.88 1.18 1 0.17 0.24 7.6 0.073 0.177 0.049 0.14 0.46 0.88 1 0.94 0.135 0.282 0.29 0.195 0.85 1.04 0.16 0.096
2.96 0.064
0.191 0.622 0.664 7.86 0.83 1.08 1.3 1.2 0.9 0.94 0.09 0.02 0.06 0.81 4.46 1 0.23 0.82 0.24 0.51 0.844 0.85 0.34 5 0.52
0.031 0.062 0.045 3.58 0.12 0.38
0.06 0.19 0.06
0.031 0.013 0.02 0.09 0.1 0.1 0.02 0.026 0.04 0.027 0.036 0.135 0.04 0.057
0.04 0.04
0.1 0.03 0.02 0.037 0.2
r2 0.09 2.8 2.9 1.87 2.3 2.5 1.35 1.12 1.01 0.6 0.73 0.003 0.359 0.084 0.31 0.2 2.51 0.5 1 0.23 4.1 1.24 1.04 0.755 1.3 0.928 1.9 0.251 2.08 0.272 0.093 - 0.07 1.41 2.54 1.9 0.26 1.07 0.9 3.22 0.34 1 0.09 0.14 1 0.94 0.03 0.1 0.56 1.54 1.31 2.3 0 0.33
±95%
Conv.
Refs.
0.14 0.19
Y Y
0.17
Y
0.08 0.07
N
0.34
N
0.039
Y Y Y
325 293 293 293 293 576 1063 126 114 114 126 553 206 206 206 788 980 890 890 890 639 674 30 178 363 1074 894 908
0.01 0.13 0.05 0.1 0.03 0.5 0.12 0.08 0.024 0.073 0.248 0.08 0.483
Y Y N Y Y Y Y
0.327 0.072 0.01 0.03 0.4 0.93
Y Y Y N Y N
0.13
N
0.07
N
0.1 0.1 0.03 0.044 0.08
Y N
Y 8.45 5.45 6.46 9.1 11.35 0.09 1.1 0.07 0.06 4.78
0.66 0.02 0.02 0.87 0.22
0.05 0.07 0.4 -0.02 -0.036 3.6 3.54 1.09 10.4 - 0.027
0.016 1.06 0.077 4.53 0.049
Y Y Y Y Y Y
908 60 731 207 291 292 441 730 726 868 638 141 141 659 293 890 890 659 733 1024 151 233 508 470 578 204 437 437 437 437 351 866 911 257 61 92
TABLE 1. cont'd Monomer 1 Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl
Monomer 2
rx
Carbazole, JV-vinyl0.53 Carbazole, N-vinyl0.43 Carbazole, N-vinyl0.51 Cinnamate, dibutylchlorotin 1.65 Diallyl phthalate 6.208 Diallyl phthalate 6.18 Diallylcyanamide 6.7 Diallylcyanamide 6.7 Ethylene Ethylene 19.4 Ethylene 1,1-diphenyl0.09 Ethylene, 1,1-diphenyl0.12 Ethylene tetrachloro830 Ethylene, trichloro33 Fumarate, diisopropyl 1.9 Hexatriene, tetrachloro0.262 Hexene-1 -0.13 Imidazole, l-vinyl-2-methyl1.28 Indene 0.63 Indene 0.62 Isoprene 0.12 Isoprene, 3-acetoxy0.27 Isopropenyl, 3-1-cyclohexenyl, acetate 0.37 Isopropenylisocyanate 0.6 Isopropenylisocyanate 0.799 Maleic anhydride 2.788 Maleic anhydride 2.5 Maleimide, A^-(4-bromophenyl)0.429 Maleimide, A^-(4-chlorophenyl)0.684 Maleimide, JV-(4-tolyl)0.64 Maleimide, N-phenyl0.554 Methacrylate, 2,3-epithiopropyl 0.34 Methacrylate, 2-(AyV-dimethyl 0.22 carbamoyloxy)ethyl Methacrylate, 2-chloroethyl 0.29 Methacrylate, 2-hydroxyethyl - 0.005 Methacrylate, 2-hydroxypropyl 0.013 Methacrylate, ferrocenylmethyl 1.4 Methacrylate, methyl 0.4 Methacrylate, f-butyl dimethylsilyl 0.288 Methacrylic anhydride 0.16 Oxazoline, 2-,2-isopropenyl0.16 Oxazoline, 2-,2-isopropenyl0.328 Oxazoline, 2-,2-isopropenyl0.46 4,4-dimethyl Oxazoline, 2-,4-acryloxy-methyl0.29 2,4-dimethyl Oxazoline, 2-,4-methacryl-oxy0.4 2,4-dimethyl Oxazolinium, 2-, tetrafluoro-borate, 0.552 3-methyl Phthalimide, 7V-(4-vinylphenyl)1.14 Phthalimide, N-(methacryloyloxy)0.193 Propenyl, 2-chloro-, acetate 0.7 Pyridine, 2-methyl-5-vinyl0.18 Pyridine, 2-vinyl0.37 Pyridine, 2-vinyl0.17 Pyridine, 2-vinyl0.2 Pyridine, 2-vinyl-5-ethyl0.18 Pyridine, 4-vinyl0.2 Pyridine, 4-vinyl0.15 Pyrrolidone, 1 -benzyl-3-methylene0.125 5-methyl Styrene 0.24 Styrene 0.8
±95%
r2
0.13
0.049 0.11 0.028 -0.2 0.028 0.038 0.05 0.05
0.073 0.069 0.16
±95%
Conv.
Refs.
0.029
Y
0.045
Y
0.005 0.008
Y Y
13 551 98 659 297 297 603 604 41 768 334 334 402 470 1038 5 60 465 606 606 424 770 770 434 99 260 470 628 628 644 644 787 600
N 0.01 0.01
0.087 0.6
0.049 0.051 0.099 0.052 0.16 0.048
0.036 0.007 0.35 0.12 0.057 0.032
0.043
0.02 -0.24 0.21 0 0 0.091 3.19 -0.67 0.05 0.1 0.12 0.75 5.71 0.57 0.11 0.079 0.012 0 0.39 0.155 0.14 0.103 2.81 1.32 2.19 8.67 7.335 0.042 2.15 1.07 4.75 1.9 2.07 1.3
1.36 0.03
Y Y
0.047 0.013
Y Y
0.17 0.052 0.16 0.052
Y Y Y Y
8.28 0.083 0.085 0.04 0.21
Y Y Y N Y
0.191
Y
726 358 333 293 324 1069 275 862 877 596 596
0.56
596
0.344
0.025 0.21
0.82 0.192
0.05 0.4 0.03 0.03 0.004 0.03
N N
0.11
1.56 1.23 0 1 2.13 1.72 2.12 1.32 1.78 2.14 1.58
0.028
0.15 0.05
0.105
Y
877
0.168
Y
0.3 0.54 0.26 0.1 0.03 0.32
N Y N N N N
0.24
Y
636 979 445 232 2 231 749 231 231 424 633
0.057
Y
139 14
References page II - 290
TABLE 1. cont'd Monomer 1 Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, mono-, ethylene glycol Acrylate, o-chlorophenyl Acrylate, o-chlorophenyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octyl Acrylate, octyl
Monomer 2 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, a-methoxyStyrene, m-methylStyrene, p-l-(2-hydroxybutyl)Styrene, /?-Af,N-dimethylaminoStyrene, /?-dimethylaminoStyrene, p-methoxyStyrene, /?-methylSuccinimide, N-vinylVinyl 2-chloroethyl ether Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl butyl ether Vinyl butyl ether Vinyl butylsulfonate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl cymantrene Vinyl ethyl ether Vinyl fluoride Vinyl fluoride Vinyl hendecanoate Vinyl isobutyl ether Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl methyl sulfide Vinyl phenyl sulfide Vinyl stearate Vinyl thiolacetate Vinyl, 2-bromo-, ethyl ether Vinyl, /?-, benzylethylcarbinol Vinylanthracene, 9Vinylhydroquinone dibenzoate Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylisocyanate Acrylonitrile Acrylonitrile Methacrylate, methyl Acrylonitrile Acrylonitrile Acrylonitrile Methacrylate, methyl Styrene Styrene Styrene Styrene Vinylidene chloride Acrylonitrile Styrene
r\ 0.168 0.18 0.18 0.14 0.07 0.3 0.16 0.148 0.142 0.288 0.17 0.14 0.18 0.06 0.192 0.07 0.17 0.357 3.27 7.28 6.38 2.58 6.7 6.3 3.65 3.6 4.14 4.4 7.66 5 4 0.46 3.3 43 43 3.615 3.63 0.3 0.29 0.209 0.57 5.8 0.8 16.83 0.18 2.998 0.46 0.95 0.8 1 1.38 1.2 1.171 0.4 1.04 1.35 0.32 0.464 0.37 0.18 0.31 0.18 1 0.84 0.01
±95% 0.067
0.026 0.054 0.069 0.02 0.01 0.01 0.063 0.37 0.3 0.07 0.58 0.22 0.5 0.14
0.012 0.04 0.01 0.01 0.034 0.1 2.34 0.067 0.21
0.023 0.38 0.4 0.35 0.07 0.12
0.14 0.74 0.53
r2 0.722 0.75 0.75 0.68 0.9 0.65 0.4 0.871 3.93 4.47 0.003 1.65 0.48 0.38 0.372 2 1.54 0.9 0 0.04 0.03 0.405 0.03 0.03 0.01 0 0 0.093 0.002 0 0.06 0.211 0 0.01 0.01 0.033 0 0.05 0.06 0.084 -0.02 0.03 0.23 -0.79 0.48 0.08 0.75 0.9 0.7 1 0.14 0.8 1.123 1.25 1.91 4.39 1.76 2.477 0.777 0.44 0.79 0.44 0.9 1.98 0.39
±95%
Conv.
Refs.
0.056
Y
0.022 1.38 0.15 0.01
Y Y Y N
0.16 0.055
Y Y
0.17
Y
151 393 397 463 495 496 496 865 136 2 142 558 548 866 911 558 558 80 726 1067 158 25 489 568 345 574 185 151 46 470 518 354 470 604 606 145 347 285 336 195 193 537 566 194 591 123 440 107 107 377 435 682 363 621 118 233 290 290 290 290 290 290 118 118 806
0.01 0.043
Y Y
0.01
N
0.4 0.002 0.01
Y Y Y
0.067
Y
0.008 0.002 0.02 0.02 0.086 0.22
Y N N N Y Y
0.32
Y
0.092
Y
0.11
Y
0.037
Y
0.1 0.64 0.2 0.024 0.018
Y N Y Y Y
0.037 0.3 0.11
Y Y
TABLE 1. cont'd Monomer 1 Acrylate, octyl Acrylate, octyl Acrylate, p-(cinnamoylamino)phenyl Acrylate,/7-bromophenyl Acrylate,/7-bromophenyl Acrylate,/7-chlorophenyl Acrylate,/7-chlorophenyl Acrylate,/?-chlorophenyl Acrylate, p-methylphenyl Acrylate, pentabromophenyl Acrylate, pentachlorophenyl Acrylate, pentachlorophenyl Acrylate, phenyl Acrylate, phenyl Acrylate, phenyl Acrylate, phenyl Acrylate, sodium Acrylate, tert-buty\ Acrylate, tetrahydrofurfuryl Acrylate, thio- butyl Acrylate, thio-, ethyl Acrylate, thio-, tert-butyl Acrylate, tributyltin Acrylate, trifluoro-, methyl Acrylate, trifluoro-, methyl Acrylate, trifluoro-, methyl Acrylate, trifluoro-, methyl Acrylate, trifluoro-, methyl Acrylate, trifluoro-, methyl Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid
Monomer 2 Vinyl chloride Vinylidene chloride Styrene Acrylonitrile Methacrylate, methyl Acrylonitrile Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Acrylic acid Styrene Acrylonitrile Fumarate, diisopropyl Methacrylate, methyl Methacrylate, methyl Vinyl acetate Methacrylate, glycidyl Styrene Styrene Styrene Styrene Acrylate, methyl Styrene Styrene Vinyl acetate Vinyl acetate Vinyl chloride Vinyl chloride Acrolein Acrolein Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide, A^-dimethylAcrylate, pentachlorophenyl Acrylate, butyl Acrylate, butyl Acrylate, ethyl Acrylic acid, 2-benzamidoAcrylic acid, N-acetyl-a-aminoCarbamate, AW-diethyl-, vinyl Carbamate, //-vinyl-, ethyl Imidazole, 1-vinylMethacrylate, isopropyl Methacrylate, methyl Methacrylate, butyl N-Vinylimidazole Phosphonic acid, oc-phenylvinylPropenyl, 2-chloro-, acetate Propylene Pyrrolidone, N-vinylStyrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Vinyl acetate Vinyl chloride
rx 4.8 0.679 0.35 1.026 0.191 0.951 0.235 0.3 0.223 0.1 1.12 0.9 0.327 3.4 0.45 0.416
±95%
0.057 0.062 0.014 0.063 0.023 0.036
0.045 0.041
0.463 0.489 0.421 0.291 0.368 0.03 0 0 0 0 0 0 0.08 1.15 0.288 1.644 0.341 1.38 3.8 0.29 0.36 0.82 0.59 1.31 0.91 0.48 1.41 5.58 4.69 0.0025 1.03 1.73 0.24 1.932 0.7 1
0.079 0.196 0.17 0.075 0.055
0.88 0.05 0.08 0.25 0.35 0.136 0.15 0.45 0.25 8.66 6.69
0.69
0.28 0.029 0.069 0.012 0.14 0.04 0.27 0.3
0.32
0.096 0.21 0.077 0.13
0.029
6.63 0.88
r2 0.12 0.851 1.08 0.8 0.926 0.32 1.01 1.09 1.45 0.16 0.82 2.11 0.43 0.07 1.56 1.54 2.096 0.475 0.439 0.18 0.157 0.82 1.4 1.4 0.24 0.24 1.5 1.5 2.48 0.5 1.08 0.445 1.346 0.598 0.58 1.06 0.35 1.12 1.08 0.91 1.02 2.08 0.49 -0.097 0.26 0.32 0.68 0.418 3.53 0.187 0.04 0 0.1 0.25 1.1 0.15 0.22 0.253 0.25 0.25 0.15 0.021 0.107
±95%
Conv.
0.018
Y
0.13 0.056 0.056 0.132
Y Y Y Y
0.275
Y
0.13
Y
0.14
Y Y Y
0.443 0.186 0.14 0.038 0.034
1.24
Y
0.17 0.075 0.044 0.047
Y Y Y Y
0.12
N
0.18 0.13
N N
0.068
Y Y
0.02 0.42 0.025 0.83
N N Y Y
0.21
Y N
0.069
Y
0.059 0.011
Y Y
Refs. 518 118 685 363 1074 63 1074 621 1074 643 900 900 363 1038 621 672 37 814 806 806 806 806 659 595 598 595 598 595 598 57 57 221 278 278 37 869 869 205 900 187 252 711 1019 661 92 81 955 847 964 187 879 132 445 183 250 312 312 397 414 47 490 542 561 37 135
References page II-290
TABLE 1. cont'd Monomer 1 Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid, 2-benzamidoAcrylic acid, 2-benzamidoAcrylic acid, 2-ethyl Acrylic acid, 2-ethyl Acrylic acid, 2-ethyl Acrylic acid, N-acetyl-a-amino Acrylic acid, N-acetyl-a-aminoAcrylic acid, oc-bromo Acrylic acid, a-bromo Acrylic acid, a-bromo Acrylic acid, a-bromo Acrylic acid, a-bromo Acrylic acid, ds-3-bromoAcrylic acid, c/s-3-ethyl Acrylic acid, trans-3-bxomoAcrylic acid, frarcs-3-ethylAcrylic anhydride Acrylic anhydride Acrylic anhydride Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile
Monomer 2 Vinyl chloride Vinyl chloride Vinyl chloride Vinylhydroquinone Vinylhydroquinone dibenzoate Vinylidene chloride Vinylidene cyanide Acrylic acid Styrene Methacrylic acid Methacrylic acid Methacrylic acid Acrylic acid Styrene Methacrylate, methyl Acrylate, butyl Acrylate, methyl Methacrylate, butyl Pyrrolidone, Af-vinyl Acrylamide Acrylamide Acrylamide Acrylamide Allyl chloride Methacrylonitrile Styrene 1,3-pentadiene, cis1,3-pentadiene, cis1,3-pentadiene, trans1,3-pentadiene, trans2-Oxazoline, 2-isopropenylAcenaphthalene Acetylene, phenylAconitate, trimethyl Acrolein Acrolein Acrolein Acrolein Acrolein diethylacetal Acrolein, methylAcrolein, methylAcrolein, methylAcrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide, Af-methylolAcrylamide, N-methylolAcrylamide, Af-methylolAcrylamide, JV-octadecylAcrylamide, N-tert-butylAcrylate, 2-chloroethyl Acrylate, 2-nitrobutyl Acrylate, 3,4-epoxyhexahydrobenzyl Acrylate, p-chloro-2-hydroxypropyl Acrylate, P-ethoxy-, ethyl Acrylate, a-chloro-, methyl Acrylate, a-cyano-, methyl Acrylate, a-phenyl-, methyl Acrylate, benzyl Acrylate, benzyl Acrylate, butyl Acrylate, butyl Acrylate, butyl
rx 9.28 7.04 6.8 0.29 0.44 1.246 0.212 2.08 0.78 0.194 0.069 0.23 0.49 0.44 0.11 0.09 0.1 0.13 0.07 -0.2 -0.16 -0.33 -0.21 11.66 1 0.1 0.026 0.06 0.069 0.068 0.13 0.02 0.266 4.24 0.88 0.71 0.48 0.6 11.19 0.15 0.15 0.03 0.863 0.97 1.8 0.88 0.8 0.7 0.98 0.22 1.034 0.2 1.03 0.67 0.25 0.24 2.42 0.122 0.01 0.08 0.28 1.49 1.679 0.781 1.08
±95% 0.51 0.33 0.11 0.042 0.016 0.027 0.04
0.11 0.1 0.16 0.11 0.56 0.13 0.004 0.173 0.242 0.104 0.096 0.04 0.044 0.92 0.06 0.03 0.01
0.19 0.033 0.1 0.75
0.02 0.25 0.13 1.8 0.081 0.02 0.19 0.058 0.083 0.08
r2 0.03 0.024 0.11 0.026 0.95 0.437 0.291 0.48 0.13 1.12 2.29 1.14 1.41 0.91 0.37 0.19 0.24 0.85 0.25 7.64 6.32 4.13 8.19 0.02 0.42 0.16 0.017 0.071 0.018 0.064 0.52 2.56 0.325 -0.48 1.16 1.07 1.52 1.28 0.02 1.7 3.8 1.72 0.81 1.08 0.5 1.36 1.3 1.2 2.33 2.56 1.4 1.14 0.87 1.76 0.388 0.7 -0.26 1.76 0.68 6.7 0.72 0.63 1.06 0.894 0.82
±95%
Conv.
Refs.
0.09 0.069
N Y
0.092
Y
0.065 0.042
Y Y
0.132 0.417
Y Y Y
1.67 0.68 0.76 1.09 0.02 0.04 0.01 0.012 0.029 0.01 0.02 0.06
Y Y Y Y N N N Y Y Y Y
0.083 0.11 0.13 0.08 0.07
Y Y N N N
0.42 0.11 0.51 0.26
Y Y Y N
0.17
Y
0.69 0.074
N Y
0.56 0.18 0.09
N Y N
0.16
N
0.15 0.019 0.13
Y Y N
229 288 379 337 444 288 82 1019 1019 1004 1004 961 661 661 733 733 733 733 694 298 298 298 298 219 219 219 912 912 912 912 894 575 60 147 207 207 208 504 767 455 587 91 228 228 330 421 461 442 577 596 119 709 790 234 680 654 194 6 141 141 23 385 118 162 233
TABLE 1. cont'd Monomer 1 Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile
Monomer 2 Acrylate, butyl Acrylate, butyl Acrylate, cis-(3-cyano-, methyl Acrylate, cresyl Acrylate, di-, zinc Acrylate, dodecyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, glycidyl Acrylate, m-chlorophenyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, mono-, ethylene glycol Acrylate, tf-chlorophenyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octyl Acrylate, /?-bromophenyl Acrylate, /7-chlorophenyl Acrylate, phenyl Acryloyl chloride Acryloylpyrrolidone Allyl acetate Allyl alcohol Allyl alcohol Allyl alcohol Allyl alcohol Allyl chloride Allyl chloride Allylbenzene Allylbenzene Allylcyclohexane Allylstearamide, NBenzothiazole, vinylmercaptoButadiene Butadiene Butadiene Butadiene Butadiene Butadiene, 1,4-dicarboxylate, diethyl Butadiene, l-(diethylamino)Butadiene, l-(diethylamino)Butadiene, 1-acetoxyButadiene, 1-ethoxy Butadiene, 1-ethoxy Butadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-fluoroButadiene, 2-trimethylsilyloxyButadiene-1-carboxylate, ethyl Butadiene-1-carboxylic acid Butadiene-1-carboxylic acid Butene-1 Butene-1, 4-(/?-chlorophenyl)Butene-1, 4-(p-methoxy-phenyl)Butene-1, 4-cyclohexylButene-1, 4-phenylButene-2, cis Butene-2, trans Carbazole, N-vinyl-
rt
±95%
1 1 0.72 0.41 2.37 0.92 1.16 0.66 0.44 1.01 1.3 0.56 1.54 1.31 0.8 1.123 1.91 4.39 1.76 1.98 0.8 0.32 0.43 1.2 1.56 6.57 2.6 3.9 1.79 2.145 3.45 3.82 5.35 3.81 3.79 0.191 0.046 0.1 0.05 0.06 0.03 0.29 0.481 0.208 -0.012 0.02 0.01 0.04 0.05 0.056 0.077 0.036 0.3 0.2 0.03 13.46 4.68 2.56 5.03 4.51 22.32 62.99 0.39
r2
±95%
Conv.
0.9 1.2 0.15 0.07 0.08 0.78
0.073 0.03 0.044 0.08 0.037 0.1 0.64 0.2 0.3 0.13 0.056 0.13 2.11 1.06 0.11 0.049 0.65 1.7 0.3 11.42 0.28 0.014 0.006 0.059 0.02 0.12 0.049 0.049 0.043 0.008 0.008 0.023 0.021
3.61 0.63 1.11 0.76 0.86 10.67 0.04
0.773 0.24 0.88 1.2 0.81 4 0.95 1 0.85 0.51 0.844 0.85 1.2 1.171 1.04 1.35 0.32 0.84 1.026 0.951 0.327 1 0.43 -0.09 0.05 0.1 0.12 -0.152 0.08 -0.05 -0.026 -0.18 0.03 0.178 0.358 0.452 0.35 0.1 0.2 2.79 0.426 0.425 0.82 0.065 0.065 5.35 4.8 5.38 0.6 0.065 3.2 4 11 0.24 0.066 -0.085 0.014 0.024 0.11 0.84 0.09
0.067 0.16 0.07 0.27
N Y N N
0.036 0.02 0.037 0.2
Y N
0.023 0.38 0.4 0.35 0.74 0.062 0.063 0.045
Y Y N Y Y Y Y Y
0.12
Y N
0.16 0.37 0.008 0.03 0.15 0.022 1.01 0.27 0.081 0.046 0.023
N Y Y Y Y Y Y Y Y Y Y
0.01 0.9 0.208 0.48 0.68 0.009 0.02
N N Y Y Y Y Y
0.45 0.18
Y Y
0.81 0.044 0.088 0.055 0.069
Y Y Y Y Y Y Y N
0.6 0.04
Y
Refs. 513 513 1034 363 646 233 1023 198 389 542 114 363 1024 151 233 682 363 118 233 290 118 363 363 363 580 666 108 108 108 176 300 108 47 24 351 24 119 763 21 255 418 501 66 327 864 889 91 864 889 402 504 61 174 993 791 791 799 211 24 24 24 24 211 211 269
References page II - 290
TABLE 1. cont'd Monomer 1 Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile
Monomer 2 Cinnamate, a-cyano-, ethyl Cinnamonitrile Cinnamonitrile, a-cyanoCitraconimide, N-methylCrotonaldehyde Crotonaldehyde Crotonate, a-chloro-, ethyl Crotonate, a-cyano-, ethyl Crotonate, a-methoxy-, methyl Crotonate, a-methyl-, methyl Crotonate, a-acetyl-, methyl Crotonate, a-carboethoxy-, ethyl Crotonate, ethyl Crotonic acid Cyclopentene, 4-, -1,3-dione Cyclopropene, 3,3-dimethoxyDiallyl phthalate Diallyl phthalate Ethylene Ethylene, 1,1-diphenylEthylene, tetrachloroEthylene, tetrachloroEthylene, trichloroEthylene, trichloroFumarate, diisopropyl Fumarate, diethyl Fumarate, diethyl Hexatriene, tetrachloroHexene-1 Indene Indene Isobutylene Isobutylene Isobutylene Isoprene Isopropenyl methyl ketone Isopropenyl methyl ketone Isopropenylisocyanate Itaconic acid Itaconic anhydride Maleate, diethyl Maleate, diethyl Maleic anhydride Maleimide, 7V-(2-bromophenyl)Maleimide, A^-(2-chlorophenyl)Maleimide, iV-(4-chlorophenyl)Maleimide, N-2-bromophenylMaleimide, N-2-chlorophenylMaleimide, N-4-chlorophenylMaleimide, N-octadecylMaleimide, N-octadecylMethacrylamide, N-(/?-chlorophenyl)Methacrylamide, iV-(/?-methoxyphenyl)Methacrylamide, A^-methylphenyl)Methacrylamide, Af-(p-nitrophenyl)Methacrylamide, N-phenylMethacrylate, 2,2,6,6-tetramethyl4-piperidinyl Methacrylate, 2-(AUV-dimethylcarbamoyloxy)ethyl Methacrylate, 2-bromoethyl Methacrylate, 2-chloroethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl
r\ 12.6 8.46 0.53 8 25 9.53 11.4 1 2.97 8.68 18.7 25.2 21 3.02 1.424 4.23 2.78 7 0.05 456 470 67 62.1 16 8 10 0.234 2.07 0.281 0.29 1.295 0.98 1.02 0.03 0.3 0.36 0.24 0.59 0.034 12 20 6 2.029 0.956 0.972 2.02 0.955 0.972 2.482 2.46 0.399 0.337 0.336 0.37 0.381 0.02
±95% 2.3 0.37
0.71 0.038 0.15 0.52 0.01
0.05 0.05 0.12 0.008 0.25
0.34 0.014
0.214 0.095 0.112 0.205 0.095 0.112 0.119 0.115 0.019 0.019 0.026 0.14 0.085
r2 -0.18 0.36 0.6 0 0.01 0 0.06 0 0 0 0 0 0 0.04 0.245 0.04 0.037 0 -0.02 0 0 0 0 0.2 0 0.1 4.01 -1.08 0.09 0.07 0 0.02 0 0.45 1.2 0.7 0.1 0.86 4.83 0 0 0 0.338 1.078 0.743 0.348 1.08 0.743 0.389 0.39 0.627 0.559 0.549 2.34 0.71 14
±95%
Conv.
Refs.
0.15 0.1
Y Y Y
0.058 0.037 0.012 0.031
Y Y Y Y
0.01
N
1.25 0.25 0.24 0.002 0.38
Y Y Y Y Y Y
0.74 0.33
Y Y
0.045 0.048 0.048 0.044 0.048 0.048 0.023 0.023 0.051 0.048 0.06 1.07 0.19
Y Y Y Y Y Y Y Y Y Y Y Y Y
310 310 310 460 429 504 785 785 785 785 785 785 785 402 95 838 153 153 415 143 571 59 470 572 1038 470 640 4 60 360 360 21 211 484 417 490 542 434 164 365 470 640 470 863 863 863 915 915 915 863 915 352 352 352 352 352 664
0.38
1.89
600
0.31 0.14 0.2 0.15 0.094
2.38 1.3 1 1.17 1.02
657 382 689 611 611
0.2 0.099
0.2 0.19
Y Y
TABLE 1. cont'd Monomer 1 Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile
Monomer 2
rx
Methacrylate, 2-naphthyl 0.06 Methacrylate, 2-naphthyl -0.01 Methacrylate, 3,5-dimethyladamantyl 0.19 Methacrylate, benzyl 0.2 Methacrylate, butyl 0.291 Methacrylate, ferrocenylmethyl 0.15 Methacrylate, glycidyl 0.95 Methacrylate, glycidyl 0.14 Methacrylate, isobutyl 0.217 Methacrylate, methyl 0.138 Methacrylate, methyl -0.016 Methacrylate, mono-, ethylene glycol 0.19 Methacrylate, phenyl 0.36 Methacrylate, potassium 0.226 Methacrylate, potassium 18-crown0.07 6-ether Methacrylic acid 0.04 Methacrylic acid 0.092 Methacrylonitrile 0.43 Methacryloyl chloride 0.35 Methacryloyl acetone 0.01 Methylenebutyrolactone 0.09 WV-Divinylaniline 0.246 AA-Vinylimidazole 3.393 Naphthalene, 1-vinyl0.107 Norbornadiene 0.48 Norbornadiene 0.66 Oct-1-ene, 6,6-dimethyl-4,8-dioxaspiro 0.985 Oxazoline, 2-,2-isopropenyl0.13 Oxazoline, 2-,2-isopropenyl-, 0.24 4-dimethyl Oxazoline, 2-,4-methacryloxy0.11 2,4-dimethyl Pentadiene, trans-1,30.06 Pentadiene, as-1,30.026 Pentadiene, cis-1,30.056 Pentadiene, cis-1,30.033 Pentadiene, trans-1,30.07 Pentadiene, trans-1,30.085 Pentadiene, trans-1,30.079 Pentadiene, cis-1,30.06 Pentadienoate, trans-4-ethoxy-2,4-, ethyl 0.01 Pentene-1, 5-cyclohexyl4.22 Pentene-1, 5-phenyl3.84 Phosphate, diethyl isopropenyl 15.2 Phosphine oxide, diphenylvinyl3.8 Phosphonic acid, a-phenylvinyl0.34 Phosphonic acid, a-phenylvinyl2.36 Phthalide, 3-(4-vinylphenoxy)0.084 Phthalimide, N-vinyl0.43 Phthalimide, AHmethacryloyloxy)0.204 Pinene 0.07 Propene, 2-chloro1.164 Propene, 3,3,3-trichloro12.2 Propene, 1-chloro-, cis23.37 Propene, 1-chloro-, trans19.61 Pyridazinone, 3-(2-vinyl)-6-methyl0.32 Pyridazinone, 3-(2-vinyl)-6-methyl-4,50.74 Pyridine, 2-methyl-5-vinyl0.16 Pyridine, 2-vinyl0.05 Pyridine, 2-vinyl0.1 Pyridine, 2-vinyl-5-ethyl0.02 Pyridine, 2-vinyl-5-ethyl0.06 Pyridine, 4-vinyl0.11 Pyridine, 4-vinyl0.09
±95% 0.1 0.16 0.01 0.1 0.039 0.04 0.06 0.037 0.037 0.048
0.04 0.006 0.13 0.06 0.04 0.004 0.014 0.008 0.028 0.27 0.01 0.675
r2
±95%
Conv.
0.76 0.64 1.3 0.96 0.98 0.82 0.85 1.32 1.05 1.322 1.11 1.5 0.46 0.203 0.175
0.18 0.24 0.23 0.1 0.2 0.42 0.05
Y N N N Y Y N
0.22 0.05 0.12
Y Y Y
0.086 0.018
Y Y
0.2 2.38 1.67 2.8 3.74 1.1 -0.006 0.832 0.451 0.05 0.44 1.484 0.52 1.83
0.26 0.29 0.12
Y Y N
0.22
Y
0.07 0.044 0.088 0.23 0.05 1.078
Y Y N N Y
0.89 0.064 0.018 0.017 0.017 0.018 0.071 0.45 0.48
0.12 0.053 0.01 0.016 0.01 0.053 2.99 1.72 0.02 0.02 0.01 0.03 0.07 0.04
0.095 0.172 0.198 0.188 0.104 0.132 0.114 0.241 5.4 -0.043 -0.026 0.03 0.16 -0.45 0 0.43 0.24 1.45 13.5 -0.023 0.1 -0.12 0.01 0.19 0.02 0.31 21.9 0.44 0.43 0.43 0.41 0.34
Refs. 611 611 335 23 165 325 114 433 165 216 681 682 363 808 808 16 216 198 580 339 745 45 879 967 267 69 838 862 596 596
0.021 0.012
Y Y
0.011 0.01
N Y
0.009 0.029
N Y
0.044 0.046
N Y
0.41
Y
0.19 0.02 0.072 0.1 0.062
Y Y
0.19 0.17 0.04 0.02 0.02
Y Y N N N
0.08
N
0.18
N
0.13
N
Y
867 867 952 997 867 952 997 867 723 24 24 650 843 132 590 721 1046 979 936 181 402 181 181 340 340 232 456 50 115 50 115 50
References page 11-290
TABLE 1. cont'd Monomer 1 Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile
Monomer 2
r\
Pyrrolidone, N-vinylSilane, y-methacryloxypropyltrimethoxy- 0.094 Styrene 0 Styrene 0.02 Styrene 0.05 Styrene 0.03 Styrene 0.06 Styrene 0.05 Styrene 0.07 Styrene 0.04 Styrene 0.17 Styrene 0.17 Styrene 0.15 Styrene 0.17 Styrene 0.07 Styrene 0.06 Styrene 0.03 Styrene 0.06 Styrene 0.01 Styrene, 2,4,6-trimethyl0.874 Styrene, 2,5-dichloro0.22 Styrene, 2,5-dichloro0.25 Styrene, 2,5-dichloro0.26 Styrene, 3-tri-rc-butylstannyl4.88 Styrene, 4-methyl0.079 Styrene, a-(trimethylsilyloxy)0.05 Styrene, a-methoxy0.06 Styrene, a-methyl0.07 Styrene, a-methyl0.04 Styrene, a-methyl0.04 Styrene, a-methyl0.04 Styrene, a-methyl0.063 Styrene, a-methyl0.34 Styrene, a-methyl0.03 Styrene, a-methyl- 0.02 Styrene, m-methyl0.07 Styrene, /?-l-(2-hydroxy-butyl)0.04 Styrene, /?-l-(2-hydroxy-propyl)0.1 Styrene, /?-2-(2-hydroxy-propyl)0.05 Styrene, p-acetoxy0.07 Styrene, /?-chloro-0.09 Styrene, p-chloromethyl0.067 Styrene/7-methyl0.05 Succinimide, N-vinyl0.116 Tetrazole, 2-methyl-5-(4/-vinyl)phenyl0.42 Tetrazole, 5-phenyl-2-(4/-vinyl)phenyl0.32 Tetrazole, 1-vinyl0.54 Toluenesulfonamide, A^V-methyl-vinyl- 0.42 Triallyl citrate 1.76 Tricyclo[4.2.2.0{2,5}]dec-7-ene2.75 3,4,9,10-tetracarboxylic acid Vinyl 12-ketostearate 3.3 Vinyl 2-chloroethyl ether 1.09 Vinyl 2-ethylhexanoate 9.24 Vinyl 3,3-bis(ethoxycarbonyl)propyl 1.02 ether Vinyl acetate 4.05 Vinyl acetate Vinyl acetate 5.51 Vinyl acetate 5.29 Vinyl acetate 9.2 Vinyl benzoate 5.03 Vinyl bromide 2.79 Vinyl bromide 2.25 Vinyl butyl ether
±95% 0.034 0.06
0.051 0.01
0.005 0.01 0.04 0.005 0.041 0.15 0.27
0.01 0.06 0.024 0.032 0.12 0.082 0.5 1.96
r2 3.79 0.33 0.29 0.4 0.36 0.39 0.37 0.37 0.4 0.3 0.33 0.33 0.36 0.46 0.41 0.43 0.55 0.35 0.065 0.08 0.07 0.09 0.001 0.227 0 - 0.002 0.08 0.17 0.24 0.14 0.09 0.103 0.14 0.08 0.43 0.31 0.53 0.41 0.4 0.92 0.56 0.33 0.516 1.1 1.4 0.314 0.04 -0.08 0.25 -0.18 0 -0.047 0.06
±95%
Conv.
Refs.
0.594
Y Y
0.04
N
0.048 0.03
Y N
0.021
Y
0.01 0.03
N N
0.03 0.024 0.036
N Y Y
0.07
N
0.03 0.06
N N
213 977 140 198 269 396 403 417 543 60 727 727 727 727 727 727 727 727 812 58 84 84 84 985 929 970 142 171 265 265 65 75 75 835 94 378 548 380 547 47 825 1035 378 80 583 583 925 80 367 963
0.081 0.066 1.04 0.1
Y Y Y
0.36
Y
0.05
Y Y N Y Y Y Y N
0.82
0.04
0.067
0.91 1.13 6.39 1.08 0.2
0.06 -0.06 - 0.03 0.019 0.06 0.06
0.22 0.08 0.09 0.051 0.04
N
146 597 47 1015 158 235 6 75 75 47 268 268 345
TABLE 1. cont'd Monomer 1 Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile
Monomer 2 Vinyl butyl ether Vinyl butyl sulfide Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloroacetate Vinyl chloroacetate Vinyl chloroethyl ether Vinyl chloromethyl ketone Vinyl cymantrene Vinyl dichloroacetate Vinyl dichloroacetate Vinyl dodecyl ether Vinyl ether Vinyl ethyl ether Vinyl ethyl oxalate Vinyl ethyl sulfide Vinyl ethyl sulfide Vinyl ethyl sulfoxide Vinyl fluoride Vinyl fluoride Vinyl formate Vinyl hendecanoate Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isothiocyanate Vinyl laurate Vinyl methyl ketone Vinyl methyl ketone Vinyl octadecyl ether Vinyl octyl ether Vinyl phenyl ether Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl stearate Vinyl terf-butyl sulfide Vinyl trichloroacetate Vinyl, a-chloro-, triethoxysilane Vinyl,/?-, benzylethylcarbinol Vinyl, /?-, benzylmethylcarbinol Vinyl-tris(trimethoxysiloxy)-silane Vinyl-tris(trimethoxysiloxy)-silane Vinylbenzoate, p-, sodium Vinylbenzoic acid, pVinylene carbonate Vinylethynyl-4-piperidinol, 1,2,5-trimethyl Vinylferrocene Vinylferrocene Vinylhydroquinone Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride
r\ 0.98 0.086 3.26 2.55 2.62 3.62 3.65 4 4.18 0.34 1.04 0.064 0.446 7.45 0.25 0.82 0.94 0.69 1.34 0.09 0.06 1.63 44 24 2.54 1.88 - 0.24 - 0.05 0.98 1.26 0.08 0.062 0.08 0.36 4 0.59 0.63 0.85 0.81 2.5 0.11 0.11 4.639 0.09 7.34 0.04 0.11 3.9 3.85 0.174 0.06 14.9 0.08 0.186 0.16 0.56 0.92 1.04 0.44 0.58 0.65 0.57 0.5
±95% 0.13 0.01 0.34 0.12 0.25 0.21 0.22 0.33 0.05 0.019 0.048 0.32
0.12 0.45 0.01 0.01 0.16 1.79 0.44 0.26 0.07 0.15 0.19 0.005 0.004 0.004 0.13
0.01 0.01 0.015 0.024 0.9 0.17 0.04 0.009
0.025 0.36 0.11 0.2
r2 -0.03 0.041 -0.01 0.07 0.02 0.044 0.052 0.04 -0.007 0.09 -0.02 0.88 - 0.065 0.044 0.18 0 0.02 0.06 0.06 0.06 0.05 -0.08 0.005 1 -0.004 0.09 0.7 0.99 -0.04 -0.04 0.03 0.022 0.03 1.4 0.04 1.75 1.39 0 0 0.23 0.03 0.03 0.078 0 0.047 0.31 0.54 0.07 0.08 0.23 1.63 0.08 0.38 0.165 0.15 0.04 0.32 0.28 0.4 0.42 0.49 0.69 0.76
±95%
Conv.
0.01 0.028 0.037 0.03 0.08 0.002 0.01
N Y Y N N Y Y
0.016
Y
0.02 0.12 0.093 0.015
N Y Y N
0.12 0.03 0.03 0.03 0.14
N N N N Y
0.12 0.91 0.09 0.06 0.01 0.02 0.01 0.038 0.01
Y Y N N N N N Y N
0.11
Y
0.02 0.01 0.007 0.013 0.039
N N Y Y Y Y
0.2
N
0.34 0.42
Y Y
0.092
Y
0.03 0.14 0.034
N Y Y
Refs. 347 303 140 202 22 238 46 529 362 542 116 356 354 362 542 373 386 194 285 285 336 286 528 590 47 145 322 322 347 347 285 303 336 542 381 140 504 373 373 556 285 336 145 303 362 591 48 209 573 175 175 579 783 294 294 338 138 238 404 404 404 404 404
References page II - 290
TABLE 1. cont'd Monomer 1 Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile, 2-chloroAcrylonitrile, 2-fluoroAcrylonitrile, oc-chloroAcrylonitrile, oc-fluoroAcrylonitrile, a-hydroxymethylAcrylonitrile, a-methoxy Acrylonitrile, a-methoxy Acrylonitrile, a-perfluoropropylAcryloxymethylpentamethyldisiloxane Acryloyl chloride Acryloyl chloride Acryloyl chloride Acryloyl chloride Acryloyl chloride Acryloyl chloride Acryloyl chloride Acryloyl chloride Acryloyl chloride Acryloyl-P-hydroxyethyl-3,5dinitrobenzoate Acryloyl-P-hydroxyethyl-3,5dinitrobenzoate Acryloyloxy, 2-, benzoic acid Acryloyloxy, 2-, benzoic acid Acryloylpyrrolidone Adipate, divinyl Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acetate Allyl acrylate Allyl acrylate Allyl acrylate Allyl alcohol Allyl alcohol Allyl alcohol Allyl alcohol
Monomer 2
ri
Vinylidene chloride 0.48 Vinylidene chloride 0.65 Vinylidene chloride 0.65 Vinylidene chloride 0.66 Vinylidene chloride 0.63 Vinylidene chloride 0.63 Vinylidene chloride 0.58 Vinylisocyanate 0.19 Vinylmethyldiacetoxysilane 2.246 Vinylmethylphenylsulfonium 2.2 tetrafluoroborate Vinyltriethoxysilane 6.59 Vinyltriethoxysilane 26.83 Vinyltrimethoxysilane 9.09 Vinyltrimethylsilane 4.08 Styrene 0.087 Styrene Styrene 0.03 Styrene 0.03 Styrene 0.528 Acrylate, a-chloro-, ethyl 0.3 Styrene 0.312 Methacrylate, methyl 0 Methacrylate, 2-hydroxyethyl 0.52 Acrylate, methyl 2.3 Acrylonitrile 1 Methacrylate, 2-hydroxypropyl 0.29 Methacrylate, methyl 1.51 Methacrylate, methyl 0.05 Pyrrolidone, N-vinyl 0.15 Styrene 0.02 Vinyl chloride 3.03 Vinylidene chloride 1.12 Acrylate, A^-(2-hydroxyethyl)-carbazolyl 0.361 Methacrylate, N-ethyl3-hydroxymethylcarbazolyl Methacrylate, N-methyl-N-phenyl2-amino Styrene Acrylonitrile Styrene Acrylate, butyl Acrylate, methyl Acrylonitrile Isobutylene, 3-chloroMaleic anhydride Methacrylate, ethyl Methacrylate, methyl Methacrylate, methyl Styrene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl chloride Vinyl chloride Vinylidene chloride Acrylate, methyl Allyl chloride Vinyl acetate Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile
±95%
0.054 0.6 29.59 0.76 0.04 0.02
r2 0.95 0.95 1.3 1.74 1.43 1.8 0.39 0.16 -0.11 0.1 0.41 2.69 0.45 0.1 0.014
±95%
Conv.
0.23
Y
0.38 2.5
Y Y Y Y Y Y
Refs. 404 404 404 404 404 404 468 435 754 793
0.05 0.029
N Y
0.044
Y
209 237 237 209 884 884 806 850 981 638 806 926 822 508 580 649 508 776 599 220 288 288 702
0.27 0.004
0.016
0.13 0.44 0.205 0.9 0.534 1.9 0.86 0.34 1.2 1.79 0.48 0.42 0.04 0.1 0.02 0.5 0.62
0.103
0.015
1.425
0.09
Y
701
1.82
0.2
0.22
0.03
N
651
0.64 0.43 0.011 0.039 0 -0.09 0.15 -0.001 -0.57 -2.42 0 0.01 0 0.45 0.7 0.7 1.2 0 0 0.33 10.4 17.35
0.02
0.06 1.56 20.36 10.2 5 6.57 4.5 0.028 81.27 99.24 23 62.8 90 0.6 1 1
0.02
N
0.26 42.2
Y N
2.11
Y
0.019 1.93 24.6
Y N N
82.7
N
651 666 815 1053 470 108 412 27 210 210 470 1053 470 140 502 998 470 475 470 578 578 578 108 108 176 300
0.086 0.054 0.05
0.02 0.22
0.011 0.066 0.12 0.007 0.82 37.66 0.05
0.04 0.029
Y
0.069 0.3
1.16 6.6 0.52 0.08 0.11 N
0.05 0.1 0.12
0.16 0.37
2.6 3.9 1.79
1.06 0.11
N Y
TABLE 1. cont'd Monomer 1 Allyl alcohol AUyI alcohol Allyl butyrate Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloride Allyl chloroacetate Allyl chloroacetate Allyl glycidyl hexahydrophthalate Allyl glycidyl phthalate Allyl isobutyrate Allyl propionate Allyl trichloroacetate Allyl trimethylacetate Allyl valerate Allylbenzene Allylbenzene Allylbenzene Allylbenzene Allylbenzene Allylbenzene Allylcyclohexane Allylstearamide, NAllylstearamide, NAllylstearamide,//Allyltriethoxysilane Allylurea Azlactone, 2-vinyl-4,4-dimethylAzlactone, 2-vinyl-4,4-dimethylAzobenzene, 4-(acrylamidomethylamino)Azobenzene, 4-(acrylamidomethylamino)Benzenesulfamide,/?-methacrylamideBenzimidazole, vinylmercaptoBenzoate, p-(acryloylethoxy)-, /?-butoxy phenyl Benzoate, /?-(acryloylethoxy)-, phenyl Benzoate, /?-(acryloyloxy)-, p-butoxy phenyl Benzoate, /?-(acryloyloxy)-, p-butoxy phenyl Benzoate, /?-(acryloyloxy)-, p-methoxy phenyl
Monomer 2 Methacrylate, ethyl Methacrylate, methyl Vinyl acetate Acrylate, benzyl Acrylate, butyl Acrylate, ethyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylic anhydride Acrylonitrile Acrylonitrile Allyl acrylate Methacrylate, benzyl Methacrylate, methyl Styrene Styrene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl benzoate Vinyl butyrate Vinyl formate Vinyl propionate Vinylidene chloride Methacrylic anhydride Styrene Styrene Styrene Vinyl acetate Vinyl acetate Styrene Vinyl acetate Vinyl acetate Acrylate, methyl Acrylonitrile Acrylonitrile Maleic anhydride Methacrylonitrile Triallyl citrate Acrylonitrile Acrylonitrile Vinyl acetate Vinylidene chloride Vinyl chloride Methacrylic anhydride Acrylate, a-hydroxymethyl-, ethyl Styrene Styrene Vinyl acetate Vinyl butyl ether Styrene Benzoate, /?-(acryloyloxy)-, p-butoxy phenyl Benzoate, p-(acryloyloxy)-, p-butoxy phenyl Benzoate, /?-(acryloyloxy)-, p-butoxy phenyl Benzoate, /?-(acryloyloxy)-, phenyl Benzoate, p-(acryloyloxy)-, phenyl p-butoxyphenyl
ri
±95%
r2
±95%
Conv.
Refs.
-0.02 -1.62 0.64 0.06 0.1 0.08
1.92 2.9
107.4 78.79 0.97 9.9 5.83 7.73
5.3 6.5
N N
210 210 998 438 438 438 204 437 437 437 437 219 108 47 578 438 204 10 204 438 204 3 438 438 438 438 438 3 106 782 782 782 998 998 913 998 998 351 24 351 351 351 367 24 119 119 119 237 106 1011 1011 880 880 1005 764 881
Y 0.05 0.07 0.4 -0.02 0.02 -0.152 0.08 0.08 0.02 0.05 0.03 -2.4 0.61 0.75 0.88 1.15 0.78 0.68 0.24 -0.01 0.06 0.06 0.14 0.51 0.42 0.81 0.34 0.58 -0.036 -0.05 -0.026 -0.061 0.339 -0.18 0.03 0.68 -0.24 -0.94 -0.06 0.389 0.237 8.5 12.98 3.4 0.56 0.36
0.02 0.008 0.03
0.16 3.21 0.15
0.24 0.13
0.02 0.016 0.15 0.022 0.03 0.039 1.01 0.27 0.26 0.19 0.48 0.17 0.229 0.129 0.1 0.41
8.45 5.45 6.46 9.1 11.66 2.145 3.45 10.4 58.7 35.55 36.8 1.355 0.66 0.34 0.46 0.31 0.57 0.62 3.49 29.76 34.3 34.3 34.8 1.04 1.29 2.32 1.15 1.07 11.35 3.82 5.35 16.24 2.01 3.81 3.79 0.923 5.22 1.68 29.01 0.668 0.175 0.083 0.126 0 6.51 0.91
0.56 0.049 0.65
15.82 0.089 0.15
1.4 13
N Y Y Y Y Y Y
Y Y
0.15 0.66 1.7 0.3 1.36 0.5 11.42 0.28 0.092 0.15 0.38 18.48 0.12 0.054
Y Y Y Y Y Y Y Y Y Y Y Y Y Y
0.51
Y
0.61
0.32
881
0.91
0.36
881
0.32
0.61
881
0.49
1.5
881
References page 11-290
TABLE 1. cont'd Monomer 1 Benzoate, /?-(acryloyloxy)-, phenyl p-butoxy phenyl Benzoate, /?-(acryloyloxy)-, phenyl p-butoxy phenyl Benzoate, /?-(acryloyloxy)-, /7-butoxy phenyl Benzoate, /?-(acryloyloxy)-, p-butoxy phenyl Benzoate, p-(acryloyloxy)-, phenyl Benzoate, p-(acryloyloxy)-, phenyl Benzoate, p-(acryloyloxy-ethoxy)-, p-butoxy phenyl Benzoate, p-(acryloyloxy-ethoxy)-, p-methoxy phenyl Benzoate, p-(acryloyloxy-ethoxy)-,phenyl Benzoate, p-(methacryloyloxy)-, p-octyloxy phenyl Benzoate, p-(methacryloyloxyethoxy)-, p-octyloxy phenyl Benzocyclobutane, a-methyleneBenzocyclobutane, a-methyleneBenzocyclobutene, 4-vinylBenzofuran, 2-vinylBenzofuran, 2-vinylBenzofuran, 2-vinylBenzophenone, 2-hydroxy4-(methacryloxy)Benzophenone, p-vinylBenzophenone, p-vinylBenzophenone, p-vinylBenzophenone, p-vinylBenzophenone, p-vinylBenzophenone, p-vinylBenzothiazole, vinylmercaptoBenzothiazole, vinylmercaptoBenzothiazole, vinylmercaptoBenzothiazole, vinylmercaptoBenzothiazole, vinylmercaptoBenzothiazole, vinylmercaptoBenzothiazole, vinylmercaptoBenzothiazole, vinylmercaptoBenzothiazolone, Aq(methacroyloxy)methyl] Benzoxazole, vinylmercaptoBicyclo[2,2,l]hept-2-ene-5,6-dicarboximide, Af-benzyl Bicyclo[2,2,l]hept-2-ene-5,6-dicarboximide, N-benzyl Bicyclo[2,2,l]hept-2-ene-5,6-dicarboximide, N-benzyl Bicyclo[2,2,l]hept-2-ene-5,6-dicarboximide, Af-benzyl Bicyclo[2,2,l]hept-2-ene-5,6-dicarboximide, Af-benzyl Bicyclo[2,2,l]hept-2-ene-5,6-dicarboximide, TV-benzyl Bicyclo[2,2,l]hept-2-ene-5,6-dicarboximide, Af-benzyl Borazine, p-vinyl Butadiene Butadiene Butadiene
Monomer 2 Benzoate,/?-(acryloyloxy)-, /7-methoxyphenyl Benzoate,/?-(methacryloyloxy)-, (p-octyloxy)phenyl Benzoate, /?-(acryloyloxy-ethoxy)-, /?-butoxy phenyl Benzoate, p-(acryloyloxy-ethoxy)-, phenyl Benzoate, /?-(acryloyloxy-ethoxy)-, p-methoxy phenyl Benzoate, p-(methacryloyloxyethoxy)-, p-methoxy phenyl Benzoate, p-(acryloyloxy)-, p-butoxy phenyl Benzoate, p-(acryloyloxy)-, phenyl
T1
±95%
r2
±95%
Conv.
Refs.
1.5
0.49
881
0.23
1.26
881
0.91
0.36
856
0.32
0.61
856
1.5
0.49
856
0.23
1.26
856
0.36
0.91
856
0.49
1.5
856
Benzoate, p-(acryloyloxy)-, p-butoxy phenyl Benzoate, p-(acryloyloxy)-, phenyl butoxy phenyl Benzoate, p-(acryloyloxy)-, phenyl
0.61
0.32
856
1.26
0.23
881
1.26
0.23
856
Maleic anhydride Methacrylate, methyl Methacrylate, methyl Acrylate, butyl Acrylate, ethyl Methacrylate, methyl Methacrylate, methyl
0.002 0.46 1.47 7.8 5.76 3.89 1.65
1.36 0.334 0.617 0.114
0.025 0.32 0.6 0.041 0.015 0.006 0.315
0.043 0.01 0.02 0.036
N N N Y
1083 1083 1085 1020 1020 1020 934
Acrylate, methyl Acrylate, methyl Styrene, /?-A^A^imethyl-aminomethylStyrene, p-WV-dimethylaminoStyrene, p-dimethylaminoStyrene, p-dimethylaminomethylAcrylonitrile Fumaronitrile Maleic anhydride Methacrylate, methyl Styrene Styrene Vinyl acetate Vinyl phenyl sulflde Styrene
3.6 3.54 2.54 0.84 0.842 2.54 0.178
1.06 0.077 0.136 0.18 0.072 0.259 0.081
0.09 1.1 0.26 0.07 0.176 0.135 0.191
0.02 0.02 0.017 0.05 0.046 0.017 0.014
0.43 0.349 0.5 2.53 0.95 3.1
0.14 0.087 0.095 0.47 0.61 0.01
1.25 2.171 3.02 0.013 0.24 0.35
0.083 0.07 0.14 0.037 0.12 0.02
Y Y Y Y Y Y Y Y Y Y Y Y Y Y
866 911 86 866 911 911 763 763 763 763 764 764 763 763 960
Styrene Methacrylate, methyl
0.24 0
0.12
Y
764 994
Methacrylate, methyl
0
Styrene
0
18.2
994
Styrene
0
89.2
994
Vinyl acetate
0.35
1.26
994
Vinyl acetate
0.15
1.46
994
Vinyl acetate
0.014
1.99
994
Styrene Aconitate, trimethyl Acrylate, butyl Acrylate, heptafluorobutyl
0.001 0.4 1.04 0.359
2.87 30.5
0.19
108
0.016 0.4 0.11 0.039
4.53 0 0.074 0.073
994
0.62 0.22 0.03 0.031
Y Y Y
1018 147 257 206
TABLE 1. cont'd Monomer 1 Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene monoxide Butadiene, 1,4-dicarboxy late-,diethyl Butadiene, 1,4-dicarboxy late-, diethyl Butadiene, l,4-dicarboxylate-,diethyl Butadiene, l-(2-hydroxyethylthio)Butadiene, l-(diethylamino)Butadiene, l-(diethylamino)Butadiene, 1-acetoxy-
Monomer 2 Acrylate, methyl Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Butadiene, 2,3-dimethylButadiene, 2,3-dimethylButadiene, 2-chloroButadiene, 2-phthalidomethyl Cyclobutane, 1,2-dimethyleneCyclobutane, 1,2-dimethyleneEthylene, trichloroFerrocene, ethyl-oc-cylopentadienylide Fumarate, diethyl Isoprene Isoprene Maleamic acid, N-3-dimethylamino6-methyl phenyl Maleate, diethyl Methacrylate, 2-(AW-dimethylcarbamoyloxy)ethyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylonitrile Methyleneglutaronitrile, 2Pentadiene, cis-1,3Pentadiene, trans-1,3Pyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylStyrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, p-chloromethyl Styrene, ot-methylStyrene, /7-chloroVinyl chloride Vinyl chloride Vinylhendecanoate Vinyl pelargonate Vinyl stearate Vinylferrocene Vinylidene chloride Maleic anhydride Acrylonitrile Pyridine, 2-vinylStyrene Styrene, /?-chloroAcrylonitrile Acrylonitrile Acrylonitrile
rx 1.09 0.358 0.452 0.35 0.1 0.2 1.26 0.3 0.06 1.014 0.1 0.1 9.64 0.02 2.13 0.94 0.14 0.37
±95% 4.53 0.046 0.23 0.01 0.92 0.049 0.05 0.21
0.37 0.04
8.08 1.06 0.75 0.504 0.7 0.39 0.63 1.22 0.61 1.32 1.29 1.44 1.55 1.37
r2 0.07 0.046 0.1 0.05 0.06 0.03 0.78 0.86 3.41 1.35 5.76 5.76 -0.03 1.51 0.25 1.06 0.608 - 0.08
±95%
Conv.
Refs.
0.87 0.006 0.059
Y Y Y
0.02
N
0.24
Y
0.45
Y
0.36 0.07
N
0.062 0.03
Y N
257 21 255 418 501 66 173 83 418 735 854 885 89 699 466 173 83 679
0.11 0.35 0.024 0.15
0.02 0.56 0.14
0.25 0.027 0.32 0.053 0.26 0.09 0.47 0.72 0.41 0.84 0.37 0.38
466 600 0.004
Y
0.016
Y N
0.02 0.4 0.25
N Y N Y
1.35 1.59 1.8 1.4 1.4 0.5 1.38 1.83 1.38 0.449 0.662 0.87 1.5 1.22 8.8 5.27 22.56 26.3 42.5 4.34 1.97 0.05 2.79 0.69 0.55 3.27 0.426 0.425 0.82
0.11 0.41 0.043 0.017 0.13 2.16 3.35 24.54 4.73 0.18 0.25 0.18 0.9 0.23 0.1 0.208 0.48 0.68
0.58 0.44 0.6 0.44 0.38 0.68 0.82 0.83 0.64 0.45 0.187 0.42 0.139 1.6 0.04 -0.11 -0.22 0.02 0.02 0.16 -0.044 0.64 0.29 0.41 0.09 0.24 0.481 0.208 -0.012
0.13 0.21
N Y
0.17 0.049
Y Y
0.087 5.7
Y Y
0.31 1.26
Y Y
0.27 0.15 0.038 0.06 0.12 0.07 0.014
Y Y Y N N Y
0.049 0.049 0.043
Y Y Y
140 257 467 257 196 743 743 462 520 56 140 159 173 21 418 428 473 486 486 491 56 83 83 255 8 1075 70 255 517 717 145 145 145 802 257 1064 327 327 327 810 864 889 91
References page II - 290
TABLE 1. cont'd Monomer 1 Butadiene, 1-chloroButadiene, 1-ethoxyButadiene, 1-ethoxyButadiene, 1-phthalimidoButadiene, 1-succinimidoButadiene, 2,3-bis(diethylphosphono)Butadiene, 2,3-bis(diethylphosphono)Butadiene, 2,3-bis(diethylphosphono)Butadiene, 2,3-bis(diethylphosphono)Butadiene, 2,3-bis(diethylphosphono)Butadiene, 2,3-bis(diethylphosphono)Butadiene, 2,3-dichloroButadiene, 2,3-dichloroButadiene, 2,3-dichloroButadiene, 2,3-dichloroButadiene, 2,3-dichloroButadiene, 2,3-dichloroButadiene, 2,3-dichloroButadiene, 2,3-dimethylButadiene, 2,3-dimethylButadiene, 2,3-dimethylButadiene, 2,3-dimethylButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-chloroButadiene, 2,3-dichloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-fluoroButadiene, 2-fluoroButadiene, 2-fluoroButadiene, 2-fluoroButadiene, 2-fluoroButadiene, 2-fluoroButadiene, 2-fluoroButadiene, 2-fluoroButadiene, 2-phthalidomethylButadiene, 2-trimethylsilyloxyButadiene, 2-trimethylsilyloxy-
Monomer 2 Styrene Acrylonitrile Acrylonitrile Styrene Styrene Maleimide Maleimide, Af-(2-hydroxyethyl)Maleimide, iV-(4-chlorophenyl)Maleimide, N-(4-methoxy-phenyl)Maleimide, N-chloromethylMaleimide, N-phenylButadiene, 2-chloroEthylene, 1,1-diphenylMethacrylate, methyl Phosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylStyrene Styrene Butadiene Butadiene Isoprene Styrene Acrylate, methyl Acrylonitrile Acrylonitrile Acrylonitrile Butadiene Butadiene, l-(2-hydroxyethyl-thio)Butadiene, 2,3-dichloroButadiene, 2-fluoroButadiene, hexafluoroButadiene, hexafluoroEthylene, 1,1-diphenylFumarate, diethyl Hexatriene, tetrachloroIsoprene Isopropenyl methyl ketone Methacrylate, methyl Maleic anhydride Methacrylate, isobutyl Methacrylate, methyl Methacrylic acid Phosphonate, vinyl-,dimethyl Phosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylQuinoline, 2-vinylStyrene Styrene Vinyl acetate Vinyl butyrate Vinyl formate Vinyl formate Vinyl propionate Vinylidene cyanide Acrylonitrile Butadiene, 2-chloroButadiene, hexafluoroIsoprene Methacrylate, methyl Styrene Styrene Styrene, a-methylButadiene Acrylonitrile Styrene
T1 1.44 0.065 0.065 1.56 1.68 0.14 0.12 0.03 0.04 0.05 0.05 1.98 3.58 11.04 7.75 7.75 8.65 10.6 0.78 0.86 0.84 1.048 5.19 10.4 5.35 4.8 5.38 3.41 1 0.31 3.7 5.47 5.52 3.4 6.51 3.6 2.82 4.035 11.04 0.026 1.8 6.33 2.52 7.5 7.5 7.5 2.1 7.84 5.98 33.52 15 11.91 0.6 0.22 2.93 2.63 1.23 2.1 1.24 2.22 1.35 0.065 1.2
±95% 3.1 0.009 0.02 0.63 0.16
r2
±95%
Conv.
Refs. 695 864 889 163 163 759 759 759 759 759 759 122 61 61 588 597 587 61 173 83 173 173 457 61 402 504 61 418 810 122 493 127 453 61 61 459 418 259 61 1068 1057 61 259 594 546 597 456 61 8 247 247 127 247 247 82 174 493 453 174 174 174 174 174 735 993 993
0.27 0.02 0.01 0.299 0.286 0.43 0.49 0.41 0.47 0.3 0.42 0.31 -0.08 0.08 0.07 0.07 0.25 0.05 1.26 0.3 1.18 0.534 0.06 0.06 0.04 0.05 0.056 0.06 0.2 1.98 0.22 0.1 0.1 0.03 0.02 0.2 0.06 0.14
0.27 0.008 0.008 0.049 0.018
Y Y Y Y Y
0.12
Y Y Y
0.107 0.088
0.5 8.98
0.329 0.9 0.08 - 0.035 0.1 0.1 0.1 0.38 0.05 0.025 - 0.02
3.89
-0.04 -0.05
0.25
0.24 0.066
0.45 0.12
0.087 0.08 0.03 0.06 0.2
0.18 0.96 1.77 0.12 0.61 0.7 0.45
0.077 3.7 0.24 0.25 0.76 0.214 0.22 0.72 1.014 0.036 0.64
Y 0.92
Y
0.035
Y Y
0.023
Y
0.25
Y
Y Y 0.01
0.058
0.047 0.09 0.01
Y Y N N Y Y
Y Y N N
0.021
N N Y Y
0.12 0.77 0.03 0.15 0.24 0.049
Y Y Y Y Y Y
TABLE 1. cont'd Monomer 1 Butadiene, hexafluoroButadiene, hexafluoroButadiene, hexafluoroButadiene, hexafluoroButadiene, l-(2-hydroxyethylthio)Butadiene-lcarboxylate, ethyl Butadiene-lcarboxylate, S-(-)oc-phenethylammonium Butadiene-1-carboxylate, ethyl Butadiene-1-carboxylate, ethyl Butadiene-1-carboxylic acid Butadiene-1-carboxylic acid Butadiene-1-carboxylic acid Butadiene-1-carboxylic acid Butanoate, 3-acrylamido-3-methyl-, sodium Butene, cis-2Butene-1 Butene-1 Butene-1 Butene-1 Butene-1 Butene-1, 2-ethylButene-1, 2-methylButene-1, 3,3-dimethylButene-1, 3,3-dimethylButene-1, 4-(p-chlorophenyl)Butene-1, 4-(/?-methoxyphenyl)Butene-1, 4-cyclohexylButene-1,4-phenylButene-2 Butene-2 Butene-2, 2-methylButene-2, cwButene-2, cwButene-2, cisButene-2, transButene-2, transButenoate, 3-phenyl-3-, methyl Butyrolactone, oc-methyleneCaprolactam, N-vinylCaprolactam, TV-vinylCaprolactam, N-vinylCaprolactam, N-vinylCaprolactam, N-vinylCaprolactam, N-vinylCaprolactam, N-vinylCaprolactam, N-vinylCaprolactam, N-vinylCaprolactam, N-vinylCaprolactam, N-vinylCaprolactam, N-vinylCaprolactam, JV-vinylCaprolactam, TV-vinylCaprolactam, N-vinylCaprolactam, TV-vinylCaprolactam, TV-vinylCarbamate, TV,TV-diethyl-, vinyl Carbamate, TV,TV-diethyl-, vinyl Carbamate, TV,TV-diethyl-, vinyl Carbamate, TV,TV-diethyl-, vinyl Carbamate, TV,TV-diethyl-, vinyl Carbamate, TV-phenyl-, vinyl Carbamate, TV-phenyl-, vinyl Carbamate, N-vinyl-, ethyl
Monomer 2 Butadiene, Butadiene, Butadiene, Isoprene Butadiene, Styrene Styrene
2-chloro2-chloro2-fluoro2-chloro-
Acrylonitrile Pyridine, 2-vinylAcrylonitrile Acrylonitrile Styrene Styrene Acrylamide, TV,TV-dimethylMaleimide, TV-cyclohexylAcrylonitrile Ethylene Ethylene Vinyl acetate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Ethylene Vinyl chloride Vinyl chloride Acrylonitrile Vinyl acetate Vinyl chloride Acrylonitrile Vinyl acetate Styrene Styrene Crotonaldehyde Crotonaldehyde N-Vinyl pyrrolidone Pyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 4-vinylPyridine, 4-vinylPyrrolidone, N-vinylStyrene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl butyl ether Vinyl isopropyl ether Vinyl phenyl ether Acrylate, methyl Acrylic acid Maleic anhydride Styrene Vinyl acetate Methacrylate, butyl Methacrylate, di-, triethylene-glycol Acrylic acid
rx 0.1 0.1 0.24 0.78 0.2 0.56 6.81 3.2 0.8 4 11 0.52 5.55 0.22 3 0.24 3.25 0.16 0.11 0.12 -1.05 -1.18 -0.44 -0.07 -0.066 -0.085 0.014 0.024 -1.79 0.3 0.11 0.03 0 0.84 -0.03 -0.532 0.85 0.31 0.31 1.7 0.04 0.04 0.12 0.12 0.1 0.1 1.7 1.02 0.31 2.5 2.5 3.1 0.22 1.3 - 0.027 -0.097 0.024 -0.08 0.13 0.329 0.034 0.26
±95%
r2
1.68
5.47 5.52 2.93 1.19 1 0.12 0.45
0.138
0.3 0.4 0.2 0.03 0.15 0.08 0.987
0.81
0.42 0.12 0.89 1.2 0.28 2.5 0.044 0.088 0.055 0.069 5.22 5.31 0.25 0.6 0.44 0.512 0.06 0.005 0.2
0.01
5.3 1.95 2.43 0.049 0.068 0.066 0.18 0.19
0 13.46 3.6 1.55 3.34 1.56 1.01 5.64 6.18 4.68 2.56 5.03 4.51 7.5 3.3 8.52 22.32 8.27 8.8 62.99 7.2 1.97 0.14 0 0 2.8 11.58 11.58 4.35 4.35 4.43 4.43 2.8 0.2 0.63 0.35 0.35 0.03 0.01 0.26 4.78 5.58 0.025 29.56 1.7 0.418 0.504 4.69
±95%
Conv.
Refs.
Y
127 453 453 453 810 791 748
0.153
Y
791 791 791 799 791 799 857
3.61
Y
0.24 0.58 0.26 0.31 0.2 13.57 0.63 1.11 0.76 0.86
Y Y N N N Y Y Y Y Y
2.18 10.54 1.05
N N Y Y
10.67 1.69 0.364 0.01
Y Y Y N
0.13
0.2
0.01
0.73 0.96 0.37 0.22 0.32 0.034 3.59 0.04
Y Y Y Y Y Y Y Y
Y
995 211 388 407 211 30 329 329 329 6 24 24 24 24 477 329 329 211 211 230 211 211 1008 663 875 907 883 589 592 589 592 589 592 859 916 557 859 883 215 215 214 92 92 92 197 197 833 833 81
References page II - 290
TABLE 1. cont'd Monomer 1 Carbamate, N-vinyl-, ethyl Carbamate, N-vinyl-, ethyl Carbamate, N-vinyl-, ethyl Carbamate, TV-vinyl-, ter/-butyl Carbamate, N-vinyl-, terf-butyl Carbamate, N-vinyl-, terf-butyl Carbazole, 2-butenylCarbazole, 9-propenylCarbazole, 9-vinylCarbazole, 9-vinylCarbazole, N-butenylCarbazole, N-methyl-3-vinyl Carbazole, N-propenylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbon monoxide Carbon monoxide Carbon monoxide Carbon monoxide Carbon monoxide Carbon monoxide Cinnamat, methyl Cinnamate, 2-chloroethyl Cinnamate, a-cyano-, 2-ethylhexyl Cinnamate, a-cyano-, benzyl Cinnamate, a-cyano-, butyl Cinnamate, a-cyano-, cyclohexyl Cinnamate, a-cyano-, ethyl Cinnamate, a-cyano-, ethyl Cinnamate, a-cyano-, hexyl Cinnamate, a-cyano-, methyl Cinnamate, a-cyano-, methyl Cinnamate, benzyl
Monomer 2 Pyrrolidone, N-vinylVinyl acetate Vinyl acetate Vinyl acetate Methacrylate, methyl N-Vinylpyrrolidone Carbazole, 9-vinylCarbazole, 9-vinylCarbazole, 2-butenylCarbazole, 9-propenylCarbazole, N-vinylStyrene Carbazole, N-vinylAcenaphthalene Acrylate, ethyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylonitrile Carbazole, N-butenylCarbazole, N-propenylFumarate, diisopropyl Maleate, diethyl Maleate, dimethyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Propene, 2,3-dichloroStyrene Styrene Styrene Styrene, /?-chloroSuccinimide, N-vinylVinyl acetate Vinyl acetate Vinyl acetate Vinyl butyrate Vinyl chloride Vinyl formate Vinyl propionate Vinyl thiolacetate Vinylidene chloride Vinylidene chloride Ethylene Ethylene Ethylene Ethylene Vinyl acetate Vinyl chloride Styrene Styrene Styrene Styrene Styrene Styrene Acrylonitrile Styrene Styrene Pyrrolidone, N-vinylStyrene Styrene
/*i
±95%
r2
±95%
Conv.
Refs.
0.371 2.09 0.4 0.46 0.17 2.4 0.02 0.02 2.6 2.8 0.02 1.404 0.02 -0.03 0.27 0.049 0.11 0.028 0.09 2.6 2.8 0 0.21 0.51 0.14 0.033 0.06 0.75 0.08 0.33 0.031 1 -0.02 0.026 0.032 0.02 0.04 2.67 3.02 3.9 1.33 4.77 4.142 1.69 0.44 3.6 3.65 0.32 0.004 -0.15 0 0.33 0.121 0.04 0.01 0.06 -0.16 - 0.09 - 0.24 -0.18
0.05
0.12
Y
0.063 0.07 0.2 0.06 0.5 0.5 0.003 0.003
Y N
0.011 0.13 0.11 0.01 0.17 0.08 0.22 0.15
1.77 0.39 0.418 1.12 1.87 0.4 2.6 2.8 0.02 0.02 2.6 0.735 2.8 6.62 1.1 0.53 0.43 0.51 0.39 0.02 0.02 0 0 0 1.55 2.12 1.8 0.57 1.84 0.44 2.123 0 6 5.93 5.72 7 0.11 0.126 0.15 0.13 0.07 0.17 0.192 0.081 0.45 -0.023 -0.008 0.068 0.025 0.04 0.5 0.24 13.52 1.799 1.394 0.58 0.4 0.47 0.37 12.6
0.26 0.001 0.35 0.13
0.39 0.044 0.4 1.33
81 629 81 827 991 991 904 904 904 904 871 806 871 331 757 13 551 98 269 871 871 1038 361 361 11 13 738 738 758 758 98 376 11 13 98 551 284 246 246 551 246 427 246 246 97 13 98 51 51 52 52 474 184 488 488 282 282 282 282 310 134 282 816 282 488
-0.17 -0.001 -0.21 0.14
0.26 0.03 0.1 0.5 0.003 0.003 0.5 0.5 0.146 0.12 0.029 0.045 0.04
0.05 0.11 0.03 0.015 0.05 0.18 0.022 0.06 0.034 0.057 0.09 0.13 0.34 0.011 0.21 0.28 0.12 0.3 0.65 0.012 0.07
0.067 1.77
N
0.13
Y
0.073 0.04
Y N
0.01 0.01 0.16 0.14
N N N Y
0.26 0.22 0.048
N N Y
1.34 1.05 0.4
N Y Y
0.83 0.023
Y Y
0.12
Y
0.001 0.073 0.15 0.068 0.018 0.012 0.006 0.01
Y Y N Y Y Y Y N
0.25 0.073 0.068 0.004 0.03 0.03 0.04 2.3
Y Y Y N N N N Y Y N Y N Y
0.04 0.008 0.06 0.12
TABLE 1.
coni'd
Monomer 1 Cinnamate, butyl Cinnamate, dibutylchlorotin Cinnamate, ethyl Cinnamate, ethyl Cinnamate, methyl Cinnamate, p-chloro-, methyl Cinnamate, /?-methyl-, methyl Cinnamate, phenyl Cinnamate, tert-butyl Cinnamic acid, cisCinnamic acid, transCinnamide, AW-diethylCinnamide, p-chloro-, AW-diethylCinnamide, p-methyl-, AW-diethylCinnamonitrile Cinnamonitrile Cinnamonitrile, a-cyanoCinnamonitrile, a-cyanoCitraconate, di-sec-buiy\ Citraconate, dibenzyl Citraconate, dibutyl Citraconate, dicyclohexyl Citraconate, diethyl Citraconate, diisobuty Citraconate, diisopropyl Citraconate, dimethyl Citraconate, dipropyl Citraconic acid Citraconic anhydride Citraconimide, p-iso-, N-(4-acetylphenyl)Citraconimide, p-iso-, AK4-acetylphenyl)Citraconimide, p-iso-, A^-(4-ethoxycarbonylphenyl)Citraconimide, p-iso-, 7V-(4-methoxyphenyl)Citraconimide, p-iso-, N-{p-to\y\)Citraconimide, p-iso-, N-phenylCitraconimde, TV-(I-menthylcarboxylatomethyl)Citraconimide, A^-(4-acetoxyphenyl)Citraconimide, A^-(4-acetoxyphenyl)Citraconimide, A^-(4-chlorophenyl)Citraconimide, Af-(4-chlorophenyl)Citraconimide, A^-(4-ethoxycarbonylphenyl)Citraconimide, A^-(4-ethoxycarbonylphenyl)Citraconimide, N-(4-methoxyphenyl)Citraconimide, A^-(4-methoxyphenyl)Citraconimide, N-aHyl Citraconimide, N-benzylCitraconimide, Af-benzyl Citraconimide, TV-butylCitraconimide, TV-butylCitraconimide, TV-ethylCitraconimide, TV-ethylCitraconimide, TV-hexylCitraconimide, TV-hexylCitraconimide, TV-isobutylCitraconimide, TV-isobutylCitraconimide, TV-isopropylCitraconimide, JV-isopropylCitraconimide, TV-methylCitraconimide, TV-methylCitraconimide, TV-methyl-
Monomer 2 Styrene Acrylate, methyl Styrene Styrene Styrene Styrene Styrene Styrene Styrene Acrylamide Acrylamide Styrene Styrene Styrene Acrylonitrile Styrene Acrylonitrile Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
r\
±95%
0.04 -0.2 -0.076 0.082 0.02 0.04 0 0.029 0.1 -0.48 -0.24 0.01 0.01 0.01 0.36 -0.008
0.15
0.13 0.047 0.054 0.03 0.029 0.03 0.076 0.049 0.027 0 0.021 0 0 0
0.054 0.045
0.055 0.12 0.28 0.15
0.1 0.021
0.058
r2 1.757 1.65 1.52 1.566 1.27 2.24 2.84 1.66 1.692 3.84 3.4 4.17 2.99 4.95 8.46 2.549 2 1.55 2.74 1.88 2.48 1.8 1.62 1.58 2.19 1.36 0.16 0.42 0.28 0.3
±95%
Conv.
Refs.
0.082
Y
0.31 0.035
Y Y
0.12 0.087 0.68 0.24
Y Y Y Y
0.37 0.092
Y Y Y Y
0.15
Y
488 659 200 488 653 653 653 488 488 298 298 737 737 737 310 134 310 134 841 841 841 841 841 841 841 841 841 1021 47 608 608 608
Styrene
0
0.27
608
Styrene Styrene Methacrylate, methyl
0 0 0.109
0.115
0.4 0.39 3.47
0.335
Y
608 608 950
Methacrylate, methyl Styrene Methacrylate, methyl Styrene Methacrylate, methyl
0.18 0.015 -0.01 0.075 -0.027
0.13 0.086 0.18 0.093 0.084
1.88 0.151 2.93 0.181 2.72
0.16 0.054 0.4 0.057 0.18
Y Y Y Y Y
728 728 728 728 728
0.004
0.033
0.148
0.018
Y
728
0.19 0.11
3.16 0.63 0.142 2.77 0.19 2.17 0.169 3.25 0.231 2.38 0.316 1.78 0.326 2.7 0.244 0.53 3.24 0.15
0.73 0.19
Y Y
0.28 0.087 0.56 0.028 0.79 0.044 0.45 0.086 0.85 0.094 0.51 0.055
Y Y Y Y Y Y Y Y Y Y Y Y
728 728 959 714 714 714 714 714 714 714 714 714 714 714 714 460 460 460
Styrene Methacrylate, Styrene Styrene Methacrylate, Styrene Methacrylate, Styrene Methacrylate, Styrene Methacrylate, Styrene Methacrylate, Styrene Methacrylate, Styrene Acrylonitrile Methacrylate, Styrene
methyl methyl methyl methyl methyl methyl methyl methyl
-0.1 0.04 0.004 0.02 -0.066 -0.12 0.03 -0.04 -0.002 -0.08 -0.03 -0.18 0.07 0.09 -0.014 0.6 0.15 0.24
0.14 0.082 0.36 0.045 0.33 0.05 0.28 0.11 0.42 0.14 0.27 0.063
References page II - 290
TABLE 1. cont'd Monomer 1 Citraconimide, Af-methylCitraconimide, AT-phenylCitraconimide, N-phenylCitraconimide, Af-propylCitraconimide, N-propylCitraconimide, N-tert-buty\Citraconimide, N-tert-butylCitraconimide, N-tolylCitraconimide, JV-tolylCitraconimide, a-iso-, 7V-(4-acetylphenyl)Citraconimide, a-iso-, A^-(4-chlorophenyl)Citraconimide, a-iso-, N-(4-ethoxycarbonylphenyl)Citraconimide, a-iso-, N-(4-methoxyphenyl)Citraconimide, a-iso-, TV-(p-tolyl)Citraconimide, a-iso-, TV-phenylCopper diacrylate Crotonaldehyde Crotonaldehyde Crotonaldehyde Crotonaldehyde Crotonaldehyde Crotonaldehyde Crotonaldehyde Crotonaldehyde Crotonaldehyde Crotonaldehyde Crotonate, hydrocortisone 21Crotonate, a-acetyl-, methyl Crotonate, a-acetyl-, methyl Crotonate, a-bromo-, ethyl Crotonate, a-carboethoxy-, ethyl Crotonate, a-carboethoxy-, ethyl Crotonate, a-chloro-, ethyl Crotonate, a-chloro-, ethyl Crotonate, a-cyano-, ethyl Crotonate, a-cyano-, ethyl Crotonate, a-methoxy-, methyl Crotonate, a-methoxy-, methyl Crotonate, a-methyl-, methyl Crotonate, a-methyl-, methyl Crotonate, ethyl Crotonate, ethyl Crotonate, methyl Crotonic acid Crotonic acid Crotonic acid Crotonic acid Crotonic acid' Crotonic acid Crotonic acid Crotonic acid Crotonic acid Crotonic acid Crotonic acid Crotonic acid, cisCrotonic acid, transCrotononitrile Crotononitrile Crotononitrile, a-phenylCyclobutane, 1,2-dimethyleneCyclobutane, 1,2-dimethyleneCyclobutane, 1,2-dimethylene-
Monomer 2 Styrene Methacrylate, Styrene Methacrylate, Styrene Methacrylate, Styrene Methacrylate, Styrene Styrene Styrene Styrene
methyl methyl methyl methyl
rx 0.24 0.001 -0.001 -0.03 -0.014 0.038 0.045 0.003 -0.02 0 0 0
±95%
0.033 0.023 0.43 0.087 0.072 0.05 0.088 0.18
r2 0.14 3.081 0.175 3.23 0.196 2.88 0.465 2.75 0.31 0.81 1.03 0.96
±95%
0.074 0.016 0.98 0.062 0.19 0.039 0.19 0.13
Conv.
Y Y Y Y Y Y Y Y
Refs. 506 728 728 714 714 714 714 728 728 608 608 608
Styrene
0
0.39
608
Styrene Styrene Titanium, dicylopentadienyl-, dimethacrylate Acrylonitrile Acrylonitrile Caprolactam, N-vinylCaprolactam, N-vinylPyrrolidone, N-vinylStyrene Styrene Styrene Vinyl chloride Vinylidene chloride N-Vinyl pyrrolidone Acrylonitrile Styrene Styrene Acrylonitrile Styrene Acrylonitrile Styrene Acrylonitrile Styrene Acrylonitrile Styrene Acrylonitrile Styrene Acrylonitrile Styrene Styrene Acrylamide Acrylamide Acrylamide Acrylamide Acrylonitrile Pyrrolidone, TV-vinylStyrene Vinyl acetate Vinyl acetate Vinyl acetate Vinylidene chloride Acrylamide Acrylamide Styrene Styrene Styrene Butadiene Butadiene Styrene
0 0 1.09
1.69 1.76 0.89
608 608 895
0 0.01 0 0 -0.15 0.03 0.07 0.12 -0.56 0 0.05 0 0 0 0 0 0 0 0.06 0.02 0 0.04 0 0.02 0 0 -0.27 -0.18 -0.19 0.11 0.12 0 0 0 0.04 0.01 0.001 -0.2
8 25 0.31 0.31 0.42 14.7 14.7 14.7 1.55
429 504 875 907 248 428 428 428 271 405 1022 785 785 785 785 785 785 785 785 785 785 785 785 785 785 785 112 298 298 569 569 402 245 402 47 526 94 47 341 341 112 785 785 854 885 854
-0.085 -0.012 0 0 5.76 5.76 3.6
0.01
0.25 0.05
0.22 0.14 0.19
0.03 0.14 0.1 1.03 0.024 0.06
0.36
0.75 8.68 2.7 4.42 18.7 8.24 9.53 5.13 11.4 0.26 1 18.4 2.97 30.7 25.2 27 9.68 3.76 4.23 4.72 5.32 21 0.84 20 0.317 0.3 0.31 18.1 7.2 23.29 23.8 0.43 0.1 0.1 0.26
0.005 0.02
N
0.26
N
0.02
1.86 0.89 1.37
Y Y Y
0.07
N
0.081
Y
0.07 43.7 0.33 1.7
0.05
N Y Y Y Y
TABLE 1. cont'd Monomer 1 Cyclobutane, 1,2-dimethyleneCyclopentene, 4-,-1,3-dione Cyclopentene, 4-,-1,3-dione Cyclopentene, 4-,-1,3-dione Cyclopentene, 4-,-1,3-dione Cyclopentene, 4-,-1,3-dione Cyclopropane, l,l-bis(ethoxycarbonyl)2-vinylCyclopropane, l,l-bis(ethoxycarbonyl)2-vinylCyclopropene, 3,3-dimethoxyDiallyl P-cyanoethylisocyanurate Diallyl melamine Diallyl melamine Diallyl melamine Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallyl, l,3-,5-(2-hydroxy3-phenoxypropyl)isocyanate Diallyl, l,3-,5-(2-hydroxy3-phenoxypropyl)isocyanate Diallylcyanamide Diallylcyanamide Diallylcyanamide Diallylcyanamide Diallylcyanamide Diallylcyanamide Diallylcyanamide Diallyldimethylammonium chloride Dicyclopentadiene Dihydroxydiphenylsulfone diallyl ether Dimethyleneheptanedioate, 2,6-,dimethyl Dioxolane,l,3-,4,4-dimethyl-5-methylene2-trichloroDioxolane,l,3-,4-methylene2-trichloromethylDioxolane,l,3-,4-methylene2-trichloromethylDiphenylsulfone,3,3'-bisitaconimido-m,m'Dithiane, 2-methylene-l,3Dithiane, 2-methylene-1,3Divinylbenzene, mDivinylbenzene, p-
Monomer 2
rx
±95%
r2
±95%
Conv.
Refs. 885 95 95 263 264 264 1076
Styrene Acrylonitrile Methacrylate, methyl Styrene Styrene, p-chloroVinylidene chloride Methacrylate, methyl
3.6 0.04 0.094
0.16 0.058 0.017
0.28 3.02 8.11
0.05 0.71 0.38
0.014 0.113 0.223
0.006 0.027 0.194
0.294 1.88 4.21
0.081 0.35 0.905
Y Y Y Y Y Y
Methacrylate, methyl
0.111
0.194
2.5
Y
1076
Acrylonitrile Vinyl acetate Methacrylate, methyl Styrene Vinyl acetate Acrylate, methyl Acrylate methyl Acrylonitrile Acrylonitrile Fumarate, dibutyl Fumarate, diethyl Fumarate, dioctyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl chloride Vinylidene chloride Vinyl acetate
0.245 4.6
0.037
1.424 0.06
0.038
Y
-0.32 0.318 0.028 0.038 0.04 0.037 0.02 0.01 0.02 -0.001 0.029 0.076 0.041 0.026 0.038 0.08 0.09 0.1 0.1 0.13 2.19 1.66 2 0.7 0.2 5.5
0.2 0.073 0.005 0.008 0.012 0.031
36.96 0.68 6.208 6.18 4.23 2.78 1.01 1.25 0.96 26.56 22.73 21.52 36.41 25.59 23.67 18.8 27.5 16.9 23.8 15.1 0.336 0.414 0.72 0.833 5 0.15
4.02 0.026 0.069 0.16 0.15 0.52
Y Y Y Y Y Y Y
1.98 1.48 0.39 1.23 2.19 1.2
Y Y Y Y Y Y
0.049 0.029
Y Y
0.012
Y
838 778 201 201 201 297 297 153 153 665 665 665 153 153 153 152 152 152 152 152 152 152 152 297 297 509 296 376 671
0.011 0.026 0.006 0.038 0.071 0.04
0.34 0.16 0.046
18.3
Vinyl acetate
3.65
0.16
676
Acrylate, methyl Acrylate, methyl Methacrylate, methyl Methacrylate, methyl Vinyl acetate Vinyl chloride Vinyl chloride Vinyl acetate Maleic anhydride Styrene Methacrylate, methyl Pyrrolidone, N-vinyl-
0.05 0.05 0.04 0.04 1.62 0.68 0.68 1.95 0.037 0.92 0.53 0.01
6.7 6.7 25 25 0.01 0.44 0.44 0.35 0.071 0.975 2.36 3.87
603 604 603 604 581 602 603 1029 914 1016 795 647
Acrylamide
0.037
8.6
616
Pyrrolidone, N-vinyl-
0.04
2.98
647
Methacrylic acid
0.015
Methacrylate, methyl Styrene Styrene Maleic anhydride
4.12 3.35 0.58 0.01
0.112 0.16 0.02
0.058
0.564
0.04 0.01
0.08 0.03 0.58 0.09
0.045 0.015 0.25
0.032
0.15 0.01
Y N
Y
N
1042 1031 1031 262 943
References page II - 290
TABLE 1. cont'd Monomer 1 Divinylbenzene, pEthene, 2-phenyl-l,l-dicyanoEthylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene, 1,1 -dichloro-2,2-difluoro Ethylene, 1,1-diphenylEthylene, 1,1-diphenylEthylene, 1,1-diphenylEthylene, 1,1-diphenylEthylene, 1,1-diphenylEthylene, 1,1-diphenylEthylene, 1,1-diphenylEthylene, 1,1-diphenylEthylene, 1,1-diphenylEthylene, 1,1-diphenylEthylene, 1,1-diphenyl-
Monomer 2 Styrene N-Vinylpyrrolidone Acrylate, butyl Acrylate, methyl Acrylate, methyl Acrylonitrile Butene-1 Butene-1 Butene-2 Carbon monoxide Carbon monoxide Carbon monoxide Carbon monoxide Ethylene, tetrafluoroEthylene, tetrafluoroEthylene, tetrafluoroEthylene, tetrafluoroFumarate, diethyl Maleate, diethyl Maleic anhydride Methacrylate, di-, zinc Methacrylate, methyl Phosphonate, vinyl-, diphenyl Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl- diisobutyl Propylene Propylene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl butyrate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl diethylphosphinate Vinyl diphenylphosphinate Vinyl ethyl ether Vinyl fluoride Vinyl fluoride Vinyl propionate Vinylidene chloride Vinyl acetate Acrylate, ethyl Acrylate, methyl Acrylate, methyl Acrylonitrile Butadiene, 2,3-dichloroButadiene, 2-chloroMethacrylate, methyl Methacrylate, methyl Methacrylonitrile Styrene Styrene
r\
±95%
r2
±95%
Conv.
Refs.
1.18
0.17
0.26
0.25
0.01
0.003
13.94
0.38
N Y N N
262 947 42 41 768 415 388 407 477 51 51 52 52 1093 1094 563 563 41 41 620 935 41 801 801 801 388 477 615 309 41 413 42 559 68 68 766 605 180 270 42 472 536 63 63 64 68 311 311 584 42 590 605 299 6 65 334 334 143 61 61 65 901 143 189 281
0.02 0 3.25 3.6 7.5 0.068 0.025 0.04 0.5 0.52 0.575 0.61 0.38 0.11 0.25 0.04 0.19 0.088 0.077 3.43 3.2 0.05 0.16 0.28 0.88 0.74 0.67 0.13 0.79 0.7 0.19 0.24 0.34 0.2 0.21 0.21 0.14 0.23 0.16 0.15 0.05 2.7 2.52 1.7 0.67 0.018 -0.13 0.5 -0.24 0.21 -0.02 -0.08 0.03 0.09 0 -0.45 0.01 -0.02
19.4 7 0.16 0.012 0.006 0.01 0.18 0.09 1.14
0.32 0.004 -0.15 0 0.067 0.065 0.02 0.1 1.91 10 0 40
0.65 0.012 0.07
Y Y N
0.12 0.027 3.4
N
N Y Y Y
0.01 0.003
1.66 7.73
2.22 2.19
0.03
0.62 14.88 0.72
1.2
N N
0.77
N
0.64 0.21
N N
0.42 0.58 0.44
N N N
0.1 0.22 0.22 0.18 80.64 34.66
N N N N Y Y
0.15
N
1.96 0.58
Y Y
0.01 0.01 0.01
N N N Y Y
0.1 0.02 0.01
N N N
0.52 0.03 0.01 0.17 0.13 0.13 0.01 0.12 0.01 0.01 0.16 0.01 0.32 0.005 0.36 0.15 0.05 0.01
0.11 0.02 0.01
1.14 1.03 1.52 3.74 1.23 1.4 1.5 1.99 1.74 4.38 2 3.21 1.85 0.96 1.63 1.55 -11.99 -62.84 0 0.01 0.3 1.5 15.71 0.33 0.8 0.09 0.12 0.05 3.58 3.4 2.1 8.7 0.48 0.33 0.34
Next Page
TABLE 1. cont'd Monomer 1 Ethylene, 1,1-diphenylEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, dichloro-, cis Ethylene, p-vinyl- 1,1-diphenylEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrachloroEthylene, tetrafluoroEthylene, tetrafluoroEthylene, tetrafluoroEthylene, tetrafluoroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroEthylene, trichloroFerrocene, ethyl-a-cyclopentadienylidene Ferrocene, ethyl-a-cyclopentadienylidene Formaldehyde-S-vinyl-O-ethylthioacetal Fumarate, allyl methyl Fumarate, bis(2-butyl) Fumarate, bis(3-[tris(trimethylsiloxy)silyl)propyl] Fumarate, bis(3-[tris(trimethylsiloxy)silyl)propyl] Fumarate, bis(3-chloro-2-butyl)
Monomer 2 Styrene Ethylene, tetrafluoroIsobutylene Methacrylate, methyl Propionate, vinyl Propylene Pyrrolidone, N-vinylStyrene Styrene Vinyl acetate Vinyl acetate Vinyl chloride Vinyl fluoride Vinylidene chloride Styrene Styrene Styrene Styrene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinylidene cyanide Vinylidene cyanide Styrene Acrylate, methyl Acrylonitrile Acrylonitrile Methacrylate, methyl Styrene Styrene Styrene Styrene Styrene Vinyl acetate Vinyl acetate Ethylene Ethylene Ethylene Ethylene Ethylene, chlorotrifluoroAcrylate, methyl Acrylonitrile Acrylonitrile Butadiene Methacrylate, methyl Styrene Styrene Styrene Styrene Styrene Vinyl acetate Vinyl acetate Vinyl isobutyl ether Butadiene Isoprene Styrene Styrene Styrene Fumarate, di-te/t-butyl Fumarate, diisopropyl Styrene
r\ 1.15 1 0.01 -0.074 0.08 0.02 0.3 -0.1 0.01 0.04 - 0.02 0.01 1.2 0.02 -3.1 -2.2 -0.28 -0.02 0.067 0.055 0.01 0.058 0.1
±95%
0.02 0.062 0.01 0.08 0.21 0.02
0.12 0.062 0.053 0.024 0.03 0.14
1.31 0 0 0
r2 0.87 1 0.06 51.36 0.63 0.08 0.38 4.38 5.2 0.68 0.47 2.53 0.8 17.14 3.1 63.1 21.4 161.3 24.75 1.02 6.4 0.898 4.13
±95%
Conv.
0.03 3.31 0.04 0.07
N Y N
0.99
Y
0.11 Y
4.9 30.3 2.64 0.27 0.06 1.94
Y Y Y Y Y Y Y Y Y Y Y
0.46 830 456 470 Y Y
200 Y 0 0 -0.07 0.067 0.065 0.02 0.1 1 0 0 0 -0.03 0 0 0 0 0 -0.006 -0.06 -0.006 0.014 1.51 1.91 0.32 0.03 0 0.21
0.15 0.12 0.027
0.07
0.37 0.34 0.019 0.003 0.24 0.02 0.01
0.07 - 0.06
187 185 4.45 0.52 0.575 0.61 0.38 1 33 67 62.1 9.64 100 17.1 16.5 12.1 12.7 16 0.607 0.7 0.05 0.02 0.01 7.75 0.25 0.51 0.67
1.87
Y Y
0.18 0.09
0.21
N
11 0.076 0.1 0.009
Y Y Y Y
0.68 0.01 0.04
Y N N
0.87 0.03
0.26
Refs. 901 392 318 236 1097 318 830 236 567 1097 236 454 406 454 137 137 40 9 9 137 137 9 9 82 82 742 402 571 59 204 204 204 40 40 59 3 59 1093 1094 563 563 392 470 470 572 89 470 40 40 40 40 59 158 9 332 699 699 273 713 249 1040 1040
0.04
N
249
References page II - 290
Previous Page
TABLE 1. cont'd Monomer 1 Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate,
di-(2-chloroethyl) di-(2-cyanoethyl) di-(2-(methoxyethyl) di-(2-phenylethyl) di-^c-butyl di-terf-amyl di-tert-butyl
Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate,
di-terf-butyl di-tert-buty\ di-terf-butyl dibenzyl dibutyl dibutyl dibutyl dibutyl dicyclohexyl dicyclopentyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diethyl diisobutyl diisopropyl diisopropyl diisopropyl diisopropyl diisopropyl diisopropyl diisopropyl
Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate, Fumarate,
diisopropyl diisopropyl diisopropyl diisopropyl diisopropyl diisopropyl diisopropyl dimethyl dimethyl dimethyl dioctyl dioctyl dipropyl dipropyl isopropyl butyl isopropyl butyl
Monomer 2 Styrene Styrene Styrene Styrene Styrene Styrene Fumarate, bis(3-[tris(trimethylsiloxy) silyl)propyl Fumarate, dimethyl Maleate, dimethyl Styrene Styrene Diallyl phthalate Imidazole, 1-vinylStyrene Styrene, terf-butoxy Styrene Styrene Acrylonitrile Acrylonitrile Butadiene Butadiene, 2-chloroDiallyl phthalate Ethylene Methacrylate, methyl Methacrylate, methyl A^-Vinylimidazole Styrene Styrene Styrene Styrene Styrene Styrene Styrene Vinyl acetate Vinyl acetate Vinyl chloride Vinyl ethyl ether Vinyl isobutyl ether Vinylidene chloride Styrene Acenaphthalene Acetate, isopropenyl Acrylate, methyl Acrylate, phenyl Acrylonitrile Carbazole, iV-vinylFumarate, bis(3-[tris(trimethylsiloxy) silyl)propyl Isobutylene Methacrylate, methyl Methacrylonitrile Styrene Vinyl acetate Vinyl chloride Vinylidene chloride Fumarate, di-tert-buty\ JV-Vinylimidazole Styrene Diallyl phthalate Pyrrolidone, N-vinylImidazole, 1-vinylStyrene Styrene Styrene
r\
±95%
0 0.09 0.03 O 0.04 0.08 0.67 1.57 18.2 0.04 O 1.01 0.182 0.04 0.01 0.06 0.06 0 0.1 0.25 0.02 1.25 1.91 0.04 0.05 0.191 0.02 0.081 0.11 0.07 0 0.1 0.02 0.443 0.33 0.48 1.63 0.52 0.012 0.05 0.06 0.67 0.091 0.07 0.2 0 0.87 0.42 0.17 0 0.055 0.9 0.49 0.095 0.156 0.252 0.03 0.96 0.04 0.163 0.02 0.01 0.01
r2
±95%
Conv.
0.18 0.07 0.35 0.27 0.55 0.69 0.21 0.365 6.7
0.054
3.4 0.004 0.022 0.005 0.022 0.01 0.007 0.1 0.16 0.038
0.227 0.015 0.04 0.69
0.156 0.011 0.57 0.32 0.02 0.03 0.35 0.18 0.49 0.3 8 10 2.13 6.51 0.01 0.11 40.3 2.1 0.113 0.29 6.3 0.394 0.3 0.31 0.36 0.29 0.011 0.09 0.13 -0.124 0 12.19 0.37 2.57 0.011 1.9 3.4 16 0 0.07 0 23 85 0.4 0.012 0.29 48 1.57 0.133 0.39 0.02 0.02 0.009 0.32 0.42 0.3
Refs. 1038 1038 1038 1038 1038 1038 1040
0.227 0.037
Y Y
0.01
Y
Y 1.14 0.6
N N
0.019
Y
0.26 0.06
Y Y
0.02
N
0.004
Y
0.1 0.059
Y Y
1.58
Y
0.365 0.021
Y Y
0.01 0.012
N Y
1049 1049 1038 1038 665 614 1038 1077 1038 1038 470 640 466 61 665 41 28 394 879 1038 139 139 139 249 562 640 137 718 137 194 640 59 1038 1039 1038 1038 1038 1038 1038 1040 1038 1038 1038 1038 1038 1038 1038 1049 879 1038 665 121 614 1038 1056 1056
TABLE 1. cont'd Monomer 1 Fumarate, isopropyl isobutyl Fumarate, isopropyl methyl Fumarate, isopropyl sec-butyl Fumarate, methyl butyl Fumarate, methyl ethyl Fumarate, methyl isobutyl Fumarate, methyl isopropyl Fumarate, methyl propyl Fumarate, methyl 5ec-butyl Fumarate, methyl terf-amyl Fumarate, methyl tert-bvXy\ Fumarate, mono-2-butyl Fumarate, tert-buiyl 2-ethylhexyl Fumarate, terr-butyl 4-methyl-2-pentyl Fumarate, tert-b\xiy\ ethyl Fumarate, terf-Butyl isoamyl Fumarate, tert-buiy\ methyl Fumarate, tert-bxxtyX sec-butyl Fumaricacid Fumaronitrile Fumaronitrile Fumaronitrile Fumaronitrile Fumaronitrile Fumaronitrile Fumaronitrile Fumaryl chloride Fumaryl chloride Furan, 2,3-dihydroFuran, 2-vinyl-5-methyl Furan, 2-vinyl-5-methyl Furan, 2-vinyl-5-methyl Hex-3-yne-5-ene, 2-methyl-terf-butyl peroxide Hexatriene, tetrachloroHexatriene, tetrachloroHexatriene, tetrachloroHexatriene, tetrachloroHexatriene, tetrachloroHexatriene, tetrachloroHexatriene, tetrachloroHexene, 1-, 3,4-dioic anhydride Hexene, 2-, 3,4-dioic anhydride Hexene, 3-, 3,4-dioic anhydride Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene-1 Hexene-1 Hexene-1 Hexene-1, 2,5-dicarboxylate, dimethyl Imidazole, 1-vinyl Imidazole, 1-vinylImidazole, 1-vinylImidazole, 1-vinyl-
Monomer 2 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene N-vinylimidazole Benzothiazole, vinylmercaptoMethacrylate, methyl Styrene Styrene Styrene Styrene Styrene, a-methylStyrene Vinyl acetate Styrene Acrylate, butyl Methacrylate, isobutyl Methacrylate, methyl Maleic anhydride Acrylate, methyl Acrylonitrile Butadiene, 2-chloroIsoprene Methacrylate, methyl Styrene Vinyl acetate Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Acrylate, methyl Acrylonitrile Vinyl chloride Styrene Triazole, 1-N-vinyl-1,2,4Acrylic acid Fumarate, dibutyl Fumarate, dipropyl
rx 0.01 0.16 0.02 0.02 0.02 0.03 0.16 0.05 0.02 0.06 0.03 - 0.04 0.01 0.01 0.04 0.06 0.03 0.07 0.313
±95%
0.03
0.012
r2 0.46 0.3 0.54 0.36 0.32 0.32 0.3 0.28 0.45 0.53 0.45 0.33 0.54 0.57 0.25 0.45 0.45 0.55 0.121
±95%
Conv.
0.03
N
0.01
Y Y Y Y Y
-0.064 -0.016 0.006 0
0.096 0.021 0.031
6.74 0.202 0.294 0.3
0.79 0.058 0.044
-0.01
0.078
0.094
0.02
0.051 0.169 0.292
20 0.118 0.105 0.183 0.01
0.019 0.044 0.146
Y Y Y
0.087 0.05
Y Y
0.057 0.042
Y Y Y Y Y Y
0 0.392 0.716 0.867 0.36 3.19 4.01 0.2 1.58 1.76 0.85 -0.052 -0.08 -0.54 1.22 1.38 1.52 1.73 1.91 1.91 2.07 2.46 2.69 2.93 3.19 4.11 -0.67 -1.08 -1.72 0.196 0.32 0.03 0.009
1.36 1.25
0.28 0.22 1 1.17 5.83
0.262 0.234 3.6 0.58 0.504 0.123
9.23 0.043
8.57 3.63 17.17 0.031 0.049 0.066 0.07 0.171 0.179 0.173 0.121 0.24 0.014 0.044 0.028 -0.13 2.07 1.54 0.678
0.01 0.012
0.002 0.182 0.163
0.03
8.4 5.6 436
0.6 0.98 0.031
0.054 0.069
Y Y Y Y
Y Y N Y N Y Y
Refs. 1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 249 1056 1056 1056 1056 1056 1056 879 763 191 137 199 478 77 77 91 91 806 1105 1105 1105 637 5 4 459 459 5 4 4 933 933 933 931 931 931 931 931 931 931 931 931 931 931 931 60 60 329 828 972 955 614 614
References page II - 290
TABLE 1. cont'd Monomer 1 Imidazole, 1-vinylImidazole, 1-vinylImidazole, 1-vinylImidazole, 1-vinylImidazole, 1-vinylImidazole, 1-vinylImidazole, 1-vinylImidazole, 1-vinylImidazole, l-vinyl-2-methylImidazole, l-vinyl-2-methylImidazole, l-vinyl-2-methylImidazole, l-vinyl-2-methylImidazole, l-vinyl-2-methylImidazole, l-vinyl-2-methylImidazole, N-vinylImidazole, N-vinylImidazole, TV-vinylImidazolid-2-one, 1,3-divinylImidazolid-2-one, l-ethyl-3-vinylIndene Indene Indene Indene Indene Indene Indene Indene Indene Indene Indene Isobutene Isobutylene Isobutylene Isobutylene Isobutylene Isobutylene Isobutylene Isobutylene Isobutylene Isobutylene Isobutylene Isobutylene Isobutylene, 3-chloroIsobutylene, 3-chloroIsobutylene, 3-chloroIsobutylene, 3-chloroIsooctene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene
Monomer 2 Maleate, dibutyl Maleate, dipropyl Maleate, monomethyl Maleic acid Methacrylate, methyl Pyrrolidone, N-vinylStyrene Vinyl acetate Acrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Styrene Vinyl chloride Silane, methacryloxypropyldimethoxy methylSilane, methacryloxypropyltrimethoxyStyrene, /?-trimethyoxysilylAcrylate, ethyl Acrylate, ethyl Acrylate, methyl Acrylate, methyl Acrylonitrile Acrylonitrile Styrene, /?-chloroVinyl acetate Vinyl 1-menthyl ether Vinyl methyl ketone Vinyl methyl ketone Vinylidene chloride Vinylidene chloride Maleimide, Af-cyclohexylAcrylonitrile Acrylonitrile Acrylonitrile Ethylene, chlorotrifluoroFumarate, diisopropyl Maleic anhydride Vinyl acetate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Allyl acetate Vinyl acetate Vinyl chloride Vinylidene chloride Maleimide, JV-cyclohexylAcetylene, phenylAcrylate, methyl Acrylonitrile Butadiene Butadiene Butadiene, 2,3-dimethylButadiene, 2-chloroButadiene, 2-fluoroButadiene, hexafluoroFerrocene, ethyl-oc-cyclo-pentadienylide Hexatriene, tetrachloroMethacrylate, methyl Methacrylate, methyl Methacrylate, methyl Pyridine, 2-vinylPyridine, 2-vinylPyridine, 4-vinyl-
T1 0.486 0.314 0.4 0.3 0.014 0.96 0.071 1.9 0.05 0.047 0.003 0.09 0.07 2.15 0.079 0.158 0.002 -0.08 0.01 0.1 0.12 0.09 0.07 -0.069 8.64 12.64 0.2 0.25 0.293 0.34 0.41 0 0.02 0 0.06 0 0.012 0.17 0.06 0.268 -0.54 0.08 4.5 0 0 0 0.72 3.01 0.75 0.45 1.06 0.608 1.18 0.06 0.25 1.19 0.01 0.58 0.65 0.64 0.64 0.59 0.58 0.32
±95% 0.057 0.028 0.03 0.19 0.029 6.99 0.088 0.064 0.26 0.04 0.03 0.01 0.25 0.24 0.066 2.8 12.59 0.095 0.85 0.002 0.38 0.03 0.19 0.8 0.043 5.8
0.062 0.12
0.23
r2
±95%
Conv.
Refs. 614 614 724 635 364 364 364 364 465 364 479 364 479 154 1095
0.093 0.053 0.6 0.6 4.36 0.16 9.94 -0.11 1.28 4 3.48 8.87 8.97 0.188 1.39
0.08 0.035
Y Y
1.86 0.074 0.24 1.17
Y Y Y Y
0.54
Y
0.62
Y
0.077
Y
2.27 6.9 0.41 0.47 0.63 0.62 0.281 0.29 2.86 0.39 0.67 2.63 2.9 0.49 -0.02 0 1.295 0.98 1.02 0.01 0.42 0.065 1.66 2.04 2.12 1.2 1.54 0.15 0.13 0.31 1.1 0 0.1 0.12 0.03 0.94 0.14 0.84 2.82 2.63 0.78 1.91 1.58 0.26 0.25 0.25 0.47 0.46 2.49
1.12
Y
0.13 0.06
N N
0.05 0.12 0.83 0.2 2.82
Y Y Y Y Y
0.15 1.15
Y Y
0.008 0.25
Y Y
0.02
N
0.18 1.82 0.2 2.05
Y Y Y N
0.37
Y
0.96
Y
0.21
Y
1088 1095 800 800 606 606 360 360 6 360 750 606 606 6 6 995 21 211 484 318 1038 988 211 140 155 329 560 412 475 475 470 995 648 424 417 173 83 173 418 174 453 699 459 302 698 704 456 458 424
TABLE 1.
cont'd
Monomer 1 Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene Isoprene, 3-acetoxyIsoprene, 3-acetoxyIsoprene, 3-acetoxyIsopropenyl acetate Isopropenyl acetate Isopropenyl acetate Isopropenyl acetate Isopropenyl methyl ketone Isopropenyl methyl ketone Isopropenyl methyl ketone Isopropenyl methyl ketone Isopropenyl methyl ketone Isopropenyl methyl ketone Isopropenyl, 3-(l-cyclohexenyl), acetate Isopropenyl, 3-(l-cyclohexenyl), acetate Isopropenyl, 3-(l-cyclohexenyl), acetate Isopropenyl-, p-, phenol glycidyl ether Isopropenylacetophenone, pIsopropenylisocyanate Isopropenylisocyanate Isopropenylisocyanate Isopropenylisocyanate Isopropenylisocyanate Isopropenylisocyanate Isopropenylisocyanate Isopropenylisocyanate Isopropenylisocyanate Isopropenyltoluene Isopropenyltoluene Isopropylidene, 2,3:4,5-di-0-, -1 - vinylbenzyl- (3-D-fructose Itaconamate, N-(4-carboethoxyphenyl)-, butyl Itaconamate, Af-(4-carboethoxyphenyl)-, ethyl Itaconamate, N-(4-carboethoxyphenyl)-, ethyl Itaconamate, N-(4-carboethoxyphenyl)-, methyl Itaconamate, Af-(4-carboethoxyphenyl)-, propyl Itaconamate, A^-(4-carboethoxyphenyl)-, propyl Itaconamate, A^-(4-chlorophenyl)-, ethyl Itaconamate, N-(4-chlorophenyl)-, ethyl Itaconamate, A^-(4-chlorophenyl)-, methyl Itaconamate, Af-(4-chlorophenyl)-, propyl Itaconamate, A^-(4-chlorophenyl)-, propyl Itaconamate, Af-(4-methoxyphenyl)-, butyl Itaconamate, N-(4-methoxyphenyl)-, ethyl Itaconamate, A^-(4-methoxyphenyl)-, ethyl Itaconamate, N-(4-methoxyphenyl)-, methyl Itaconamate, Af-(4-methoxyphenyl)-, propyl Itaconamate, AH4-methoxyphenyl)-, propyl Itaconamate, Af-(4-methylphenyl)-, propyl Itaconamate, Af-(4-methylphenyl)-, propyl
Monomer 2 Quinoline, 2-vinylStyrene Styrene Styrene Styrene Styrene Acrylate, methyl Methacrylate, methyl Styrene Maleic anhydride Methacrylate, methyl Vinyl acetate Vinyl chloride Acrylonitrile Acrylonitirle Butadiene, 2-chloroStyrene Styrene Vinylidene chloride Acrylate, methyl Methacrylate, methyl Styrene Maleic anhydride Styrene Acrylate, ethyl Acrylate, methyl Acrylate, methyl Acrylonitrile Methacrylate, methyl Styrene Styrene Vinyl chloride Vinylidene chloride Methacrylate, methyl Methacrylate, methyl Styrene
r\ 1.88 1.922 1.957 1.98 2.02 1.3 5.71 2.81 4.47 0.034 -0.09 1.082 0.23 1.2 0.7 0.14 0.29 0.66 4.06 0.57 0.4 0.56 0.003 0.84 0.15 0.11 0.079 0.1 0.14 0.07 0.122 3 0.31 0.04 0.04 3.26
±95%
0.016 0.011
0.022 0.12 0.074 0.16 0.01 0.66
0.59 0.047
0.047
1.12
r2 0.53 0.513 0.476 0.44 0.42 0.48 0.27 0.16 0.34 0.002 17.36 1.171 2.26 0.3 0.36 4.035 0.44 0.32 0.134 0.37 0.81 1.59 0.002 0.3 0.79 0.6 0.799 0.24 3.1 8.12 6.84 0.39 0.85 0.68 0.68 0.14
±95%
Conv.
0.02 0.018
Y Y
0.011 1.95 0.038 0.13
Y Y Y Y
0.087
Y
0.099
Y
0.18
Y
0.049
Y
0.18
Y
0.055
Y
Refs. 456 366 366 544 544 83 770 770 770 260 100 100 100 490 542 259 542 542 47 770 770 770 937 266 434 434 99 434 434 434 99 777 434 688 722 772
Styrene
0.61
0.2
678
Methacrylate, methyl
0.48
1.21
678
Styrene
0.2
0.23
678
Styrene
0.58
0.15
678
Methacrylate, methyl
0.53
1
678
Styrene
0.4
0.26
678
Methacrylate, methyl Styrene Styrene Methacrylate, methyl Styrene Styrene Methacrylate, methyl Styrene Styrene
0.36 0.16 0.18 0.31 0.31 0.69 0.43 0.34 0.41
1.24 0.35 0.38 1.26 0.39 0.12 1.31 0.33 0.26
678 678 678 678 678 678 678 678 678
Methacrylate, methyl
0.4
1.03
678
Styrene
0.4
0.38
678
Methacrylate, methyl Styrene
0.28 0.19
1.11 0.54
678 678
References page II - 290
TABLE 1. cont'd Monomer 1 Itaconamate, N-(4-methylphenyl)-, butyl Itaconamate, Af-(4-methylphenyl)-, ethyl Itaconamate, A^-(4-methylphenyl)-, ethyl Itaconamate, Ar-(4-methylphenyl)-, methyl Itaconamate, N-phenyl-, butyl Itaconamate, N-phenyl-, ethyl Itaconamate, N-phenyl-, ethyl Itaconamate, N-phenyl-, methyl Itaconamate, N-phenyl-, methyl Itaconamate, Af-phenyl-, propyl Itaconamate, Af-phenyl-, propyl Itaconate, bis(2-ethylhexyl) Itaconate, bis(tri-w-butyltin) Itaconate, bis(tri-rc-butyltin) Itaconate, bis(tri-n-butyltin) Itaconate, bis(tri-rc-butyltin) Itaconate, di-2[-2(2-methoxyethoxy)ethoxy]ethyl Itaconate, di-^-butyl Itaconate, diamyl Itaconate, dibutyl Itaconate, dibutyl Itaconate, dibutyl Itaconate, dibutyl Itaconate, diethyl Itaconate, diethyl Itaconate, diethyl Itaconate, dimenthyl Itaconate, dimenthyl Itaconate, dimenthyl Itaconate, dimenthyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dioctyl Itaconate, dipropy Itaconate, ethyl hexafluoroisopropyl Itaconate, glycidyl methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, monomethyl Itaconic acid Itaconic acid Itaconic acid Itaconic acid Itaconic acid Itaconic acid mono(/?-sulfamidoanilide) Itaconic anhydride Itaconic anhydride Itaconic anhydride Itaconic anhydride Itaconic anhydride
Monomer 2 Styrene Methacrylate, methyl Styrene Styrene Styrene Methacrylate, methyl Styrene Styrene Styrene Methacrylate, methyl Styrene Maleimide, N-cyclohexylAcrylate, 2-chloroethyl Acrylate, butyl Methacrylate,allyl N-Vinylpyrrolidone Styrene Maleimide, N-cyclohexyl Styrene Itaconate, dimethyl Methacrylate, methyl Methacrylate, methyl Styrene Pyridine, 2-methyl-5-vinylStyrene Vinyl chloride Maleimide, 7V-cyclohexylMethacrylate, methyl Styrene Vinyl acetate Acrylate, butyl Itaconate, dibutyl Methacrylate, methyl Methacrylonitrile Pyridine, 2-methyl-5-vinylStyrene Styrene Styrene Styrene, /?-chloroVinyl chloride Styrene Styrene Styrene Styrene Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Styrene Styrene Styrene Styrene Methacrylate, methyl Acrylonitrile Methacrylate, methyl Methacrylate, methyl Styrene Styrene Methacrylate, propargyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylonitrile Methacrylate, methyl Styrene
rx 0.31 0.63 0.26 0.16 0.49 0.47 0.21 0.52 0.18 0.15 0.18 0.38 0.391 0.422 0.038 0.065 0.2 0.34 0.5 1.1 0.717 0.4 0.34 0.17 0.34 5.65 0.318 -0.156 0.483
±95%
0.04 0.015 0.04 0.09 0.11 0.05 0.12 0.213 0.02 0.364
r2 0.19 1.43 0.38 0.3 0.12 1.32 0.45 0.31 0.39 1.13 0.5 0.34 0.683 0.91 1.08 0.21 0.53 0.21 0.36 1.1 1.33 0.8 0.42 0.51 0.23 0.06 0.601 3.34 0.502
0.94 1.1 0.3 0.28 0.22
0.4 1.1 1.2 1.26 0.88
0.14 0.06 0.15 5 0.14 0.28 0.039 0.041 0.31 0.36 0.135 0.04 0.111 0.33 0.33 0.218 0.139 0.86 0 0 0 0.12 0.58 2.46 2.61 4.83 1.17 0.405
0.48 0.5 0.69 0.05 0.33 0.16 0.435 0.376 0.52 0.59 0.223 0.189 0.029 0.34 0.52 0.404 1.1 0.59 1.23 1.14 0.34 0.26 1.65 -0.016 0.251 0.034 0.155 0.004
±95%
0.013 0.022 0.04 0.05
Conv.
Y
N
0.09 0.06
N
0.11
N
0.193 0.557 0.188
Y Y Y Y
N
0.12 0.06 0.035 0.079 0.42 0.21 0.028 0.11 0.052 0.15 0.11 0.086 0.103 0.74
0.67 0.05 0.38 0.32 0.33 0.33 0.09
0.16 0.07 0.025 0.036 0.16 0.14 0.02 0.055 0.039 0.077 0.085 0.06 0.071 0.34
0.08 0.02 0.022 0.021 0.014 0.024 0.01
N N N Y Y Y Y Y Y Y Y Y Y
Y Y Y Y Y Y
Refs. 678 678 678 678 678 678 678 1059 678 678 678 1060 940 940 940 941 1098 1014 39 398 1073 398 39 545 39 480 975 975 975 975 398 398 398 398 545 39 398 586 398 479 39 39 1103 806 613 613 613 613 656 656 656 656 1010 164 260 408 420 76 957 365 365 365 1010 365
TABLE 1. cont'd Monomer 1 Itaconic anhydride Itaconic anhydride Itaconic anhydride Itaconic anhydride Itaconimide, AH2-chloroethyl)Itaconimide, AK2-chloroethyl)Itaconimide, AH4-acetoxyphenyl)Itaconimide, Af-(4-chlorophenyl)Itaconimide, N-(4-ethoxycarbonylphenyl)Itaconimide, N-(p-chlorophenyl)Itaconimide, N-(p-lo\y\)Itaconimide, Af-benzylItaconimide, Af-benzylItaconimide, Af-butylItaconimide, iV-ethylItaconimide, JV-ethylItaconimide, N-isobutylItaconimide, AMsopropylItaconimide, N-methylItaconimide, N-methylItaconimide, N-naphthylItaconimide, W-phenylItaconimide, Af-phenylItaconimide, N-phenylItaconimide, N-propylItaconimide, N-XxAyV Malemic acid, A^-3-dimethylamino6-methylphenylMalemic acid, A^-3-dimethylamino6-methylphenylMaleate, chloro-, diethyl Maleate, dibutyl Maleate, allyl methyl Maleate, butyl stannylallyl Maleate, di-tert-butyl Maleate, dibutyl tin Maleate, dibutyl tin Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, diethyl Maleate, dimethyl Maleate, dimethyl Maleate, dimethyl Maleate, dimethyl Maleate, dimethyl Maleate, dimethyl Maleate, dimethyl Maleate, dioctyl
Monomer 2 Styrene Styrene Vinyl acetate Vinyl acetate Methacrylate, Styrene Styrene Styrene Styrene Styrene Styrene Methacrylate, Styrene Styrene Methacrylate, Styrene Styrene Styrene Methacrylate, Styrene Styrene Styrene Styrene Styrene Styrene Styrene Butadiene
rx 0.456 0.785 1.57 2.87 0.54 0.162 0.21 0.2 0.112 0.14 0.24 1.06 0.2 -0.019 0.42 0.172 -0.03 0.045 1.12 0.12 0.35 0.109 0.08 0.998 0.04 0.219 - 0.08
Styrene Styrene Imidazole, 1-vinylStyrene Styrene Vinyl acetate Methacrylate, methyl Styrene Acrylonitrile Acrylonitrile Butadiene Carbazole, N-vinylEthylene Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl iV-Vinylimidazole Styrene Styrene Styrene Styrene Styrene Vinyl acetate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl isobutyl ether Vinylidene chloride Carbzole, Af-vinylFumarate, di-tert-butyl N-Vinylimidazole Styrene Styrene Succinimide, Af-vinylVinyl acetate Vinyl chloride
methyl
methyl methyl
methyl
±95%
±95%
Conv.
Refs.
0.015 0.005 0.045 0.024 0.11 0.045 0.12 0.084 0.032
Y Y Y Y Y Y Y Y Y
0.18 0.048 0.03 0.066 0.029 0.11 0.043 0.22 0.069
Y Y Y Y Y Y Y Y Y
0.043
Y
0.123 0.18 0.079 0.03
0.086 0.003 -0.019 - 0.04 0 0.069 0.35 0.159 0.232 0.15 0.16 0.46 0.056 0.22 0.486 0.232 0.44 0.308 0.38 0.153 0.08 0.116 0.05 0.05 0.28 0.134 0.37
0.248 0.12 0.031 0.04
N Y Y N
62 62 365 365 642 642 729 729 729 740 740 642 642 642 642 642 642 642 642 642 740 729 740 978 642 729 679
-0.19
0.03
0.55
0.03
N
679
-0.043 0.093 0.02 0.06 0.199 -0.095 0.194 0 0 0.11 0 10 -0.1 0 -0.02 0.106
0.021 0.08 0.01 0.03 0.02 0.199 0.121
2.07 0.486 8.29 0.1 0.005 72.7 2.08 12 20 8.08 0.21 0.25 341 20 285.8 0.057
0.14 0.057 0.14 0.02 0.024 5.93 0.118
Y Y N N Y Y Y
0.05
N
14 614 713 811 1049 987 987 470 640 466 361 41 28 470 873 879 14 139 640 874 888 137 137 449 6 640 3 361 1049 879 137 317 284 1049 3
-0.013 0.07 0.01 0.001 0.04 -0.003 0 0.046 0.17 12.5 0 0.011 0.046 0.15 0.105 -0.012 0.257 0.608
0.09 0.05 0.3 0.32 0.39 0.092 0.21 0.18 0.054
r2
0.75 0.11 0.04 0.13 0.06 0.11 0.064 0.73 0.12 0.082
0.01 0.05 0.015 0.147 0.022 0.01 0.012 0.044 0.07 0.01 0.037 0.438 0.12 0.058 0.021 0.086 0.099
6.59 8 6.07 6.592 0.171 0.768 0.8 0.9 0 0.51 18.2 0.046 10.65 0.083 1.25 -0.006 0.05
46
N
35.9 0.028 0.46
Y Y Y Y
0.07
N
0.025 0.078
Y Y
0.11
Y
0.11 6.7 0.046 2.81 0.015 0.16 0.084 0.14
N Y Y Y Y Y Y Y
References page II - 290
TABLE 1. cont'd Monomer 1 Maleate, dipropyl Maleate, monoallyl Maleate, monoallyl Maleate, monomethyl Maleate, tributylstannyl allyl Maleic Anhydride Maleic acid Maleic acid Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic Maleic
anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride anhydride
Monomer 2 Imidazole, 1-vinylMaleic anhydride Styrene Imidazole, 1-vinylMaleic anhydride Isopropenyl-, /?-, phenol glycidyl ether Imidazole, 1-vinylN-Vinylimidazole Acenaphthalene Acenaphthalene Acetylene, phenylAcrolein diethylacetal Acrylamide Acrylate, 2-chloroethyl Acrylate, ferrocenylmethyl Acrylate, methyl Acrylate, methyl Acrylonitrile Allyl acetate Allylbenzene Benzocyclobutane, oc-methyleneBenzothiazole, vinylmercaptoButadiene monoxide Butadiene, 2-chloroCarbamate, AUV-diethyl-, vinyl Dicyclopentadiene Divinylbenzene, p Ethylene Hex-3-yne-5-ene, 2-methyl-terf-butylperoxide Isobutylene Isopropenyl acetate Maleate, monoallyl Maleate, tributylstannyl allyl Maleimide, N-phenylMaleimide, N-phenylMethacrylate, ferrocenylmethyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, di-, di-rc-butylstannyl Methacrylate, benzyl Methacrylate, benzyl Phthalimide, N-vinylPropene, 1-chloro-, cisPropene, 1-chloro-, transStyrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene, a-methyl-
rx
±95%
0.053 0.027 0.07 0.6 0.095 0.002 0.6 0.094 0.02 -0.04 0.06 0.07 0 0.027
0.035 0.014 0.02
0.012 0 0 0.028
0.013
0.104 0.027 0.05
0.004
0.019
0.025
r2 0.314 0.051 0.14 0.4 0.032 0.003 0.3 0.018 0.46 0.46 0.08 0.18 0.56 7.15 2.788 2.5 6 -0.001
±95%
Conv.
Refs.
0.028 0.054 0.01
Y N N
0.017
N
0.007
Y
0.13
N
0.31 2.96 0.051
Y Y Y Y
614 906 811 724 906 937 635 879 1039 326 797 767 655 117 325 260 470 470 27 351 1083 763 1064 1068 92 914 943 620 637
0.007
Y Y
0.002 Y
0.64 0.329 0.025 0.071 0.09 0 0.01 0.065 0.002 0.051 0.032 -0.095 0.02 0.24 -0.163 -0.019 0.08 0.02 0.01 0.01 0.01 0.02 0.024 0.372 0.008 0.347 0.28 0.001 0 0.003 0.02 0 0 0.02 0.01 0.001 0.005 0.01 0.02 0.05
0.06 0.107 0.034 0.045 0.01
0.011 0.054 0.017 0.106 0.65 0.28 0.027 0.026 1.77 0.004
0.008 0.093 0.012 0.082 0.012 0.008 0.13 0.03 0.01
0.05 0.026 0.024 0.037 0.01 0.04 0.36 0.012 0.034 0.027 0.095 1.08 1.92 0.33 4.18 6.36 0.46 5.2 3.1 3.85 3.4 3.85 0.012 - 0.075 0.344 -0.022 0.05 0.097 0.04 0.02 0 0.02 0.02 0.04 0.04 0.04 0.05 0.02 0.04 0.04
0.18 0.03 0.066 0.112 0.01
N Y Y
0.022 0.014 0.104 0.13 11.83 0.65 0.31 0.64 0.69 0.47
Y N N Y Y Y Y Y N N
0.016
Y Y Y Y Y Y N Y N N
0.088 0.061 0.08 0.015 0.002 0.12 0.003 0.01
N 0.08
0.04
988 260 906 906 990 341 325 169 260 320 33 524 524 524 524 954 720 720 284 181 181 105 12 17 241 384 397 483 506 522 522 522 522 522 923 492
TABLE 1. cont'd Monomer 1 Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride Maleic anhydride, a-chloroMaleimide Maleimide Maleimide Maleimide Maleimide Maleimide Maleimide, N-hydroxymethyl Maleimide, 2,3-dimethylAf-(2-methacryloxyethyl)Maleimide, 2,3-dimethylAf-(2-methacryloxyethyl)Maleimide, 2,3-dimethylAf-(2-methacryloxyethyl)Maleimide, A^-(2,4-dimethylphenyl)Maleimide, N-(2,4-dimethylphenyl)Maleimide, N-(2,6-diethylphenyl)Maleimide, A^-(2,6-diethylphenyl)Maleimide, A^-(2,6-diisopropylphenyl)Maleimide, Af(2,6-dimethylphenyl)Maleimide, J/V-(2,6-dimethylphenyl)Maleimide, A^-(2-bromophenyl)Maleimide, AH2-chlorophenyl)Maleimide, N-(2-chlorophenyl)Maleimide, iV-(2-chlorophenyl)Maleimide, iV-(2-chlorophenyl)Maleimide, N-(2-chlorophenyl)Maleimide, A^-(2-chlorophenyl)Maleimide, N-(2-hydroxyethyl)Maleimide, 7V-(2-hydroxyethyl)Maleimide, iV-(2-hydroxyethyl)Maleimide, A^-(2-hydroxyethyl)Maleimide, A^-(2-hydroxyethyl)Maleimide, A^-(2-hydroxyethyl)Maleimide, TV-(2-methylphenyl)Maleimide, iV-(3,5-dimethylphenyl)Maleimide, AK3-dimethylaminophenyl)Maleimide, N-(3-methylphenyl)Maleimide, A^-(3-trifluoromethylphenyl)Maleimide, A^-(4-bromophenyl)Maleimide, A^-(4-bromophenyl)Maleimide, A^-(4-carboxyethylphenyl)Maleimide, JV-(4-carboxyethylphenyl)a-chloroMaleimide, A^-(4-carboxyethylphenyl)a-chloroMaleimide, A^-(4-chlorophenyl)Maleimide, A^-(4-chlorophenyl)Maleimide, 7V-(4-chlorophenyl)Maleimide, A^-(4-chlorophenyl)Maleimide, N-(4-chlorophenyI)-a-chloroMaleimide, A^-(4-chlorophenyl)-a-chloroMaleimide, iV-(4-hydroxyphenyl)Maleimide, A^-(4-hydroxyphenyl)Maleimide, AT-(4-hydroxyphenyl)Maleimide, Af-(4-hydroxyphenyl)-
Monomer 2
rx
Succinimide, N-vinyl0.021 Vinyl 2-chlorocyclohexyl ketone 0.83 Vinyl 4-chlorocyclohexyl ketone 0.08 Vinyl acetate -0.058 Vinyl chloride -0.22 Vinyl chloride 0.4 Vinyl chloride 0.67 Vinylidene cyanide Styrene 0 Butadiene, 2,3-bis(diethyl-phosphono)0.43 Methacrylate, methyl 0.166 Methacrylate, methyl 0.17 Piperidinol, 4-, TV-methyl0.49 4-(vinylethynyl)Styrene 0.088 Vinylidene chloride 0.464 Methacrylate, methyl 0.263 Acrylate, ethyl 1.55
±95% 0.027
0.074 0.38
r2 0.148 1.7 0.12 0.019 0.098 0.04 0.1
±95%
Conv.
0.073
Y
0.008 0.042
Y Y
Y
Refs. 284 836 836 260 260 521 521 82 845 759 251 992 948
0.061
0.01
0.07 0.14 2.576 2.5 2.05
0.036 0.083 0.026 3.06
0.057 0.666 1.745 0.28
0.012 0.056 0.03 1.15
Y Y Y Y
251 251 323 619
0.047
Y
0.03
Methacrylate, methyl
1.1
3.58
0.51
1.66
Y
619
Methacrylic acid
1.33
0.1
0.746
0.059
Y
619
Acrylate, butyl Acrylate, heptyl Methacrylate, methyl Styrene Methacrylate, methyl Methacrylate, methyl Styrene Acrylonitrile Acrylonitrile Methacrylate, methyl Styrene Styrene Styrene Styrene Butadiene, 2,3-bis(diethyl-phosphono)Methacrylate, methyl Pyrrolidone, TV-vinylStyrene Vinyl acetate Vinyl acetate Methacrylate, methyl Methacrylate, methyl Styrene Methacrylate, methyl Methacrylate, methyl Acrylate, methyl Styrene Vinyl chloride Methacrylate, methyl
0.2 0.2 0.05 0.02 0.02 0.07 0.08 0.338 1.078 0.1 0.013 0.028 0.01 0.006 0.49 0.201 0.038 0.011 0.61 0.88 0.09 0.28 0.19 0.22 0.1 0.39 0.018 3.29 -0.004
0.17 0.007 0.18 0.168
0.62 0.14 4.78 0.19 10.9 3.62 0.14 2.029 0.956 2.1 0.011 0.038 0.013 0.038 0.12 1.396 0.002 0.046 -0.014 0.01 2.22 1.63 0.03 1.18 1.57 0.429 0.02 0.04 0.472
0.045 0.048 0.002 0.003 0.005 0.003 0.083 0.01 0.027 0.12 0.17
0.214 0.095
Y Y
0.004 0.006 0.012 0.28
Y Y Y Y
0.089 0.002 0.017 0.037 0.041
Y Y Y Y Y
0.099 0.006 0.03 0.114
Y N Y
788 788 992 992 992 992 992 863 863 992 853 853 910 910 759 323 323 323 323 323 992 992 747 992 992 628 1030 306 973
Styrene
0.022
0.041
0.059
0.021
Y
973
Acrylate, methyl Acrylonitrile Butadiene, 2,3-bis(diethyl-phosphono)Vinyl chloride Methacrylate, methyl Styrene Methacrylate, methyl Styrene Vinyl acetate Butadiene, 2,3-bis(diethyl-phosphono)-
0.155 0.743 0.41 3.65 0.02 0.019 0.345 0.13 1.75 0.47
0.052 0.048
0.684 0.972 0.03 0.026 0.562 0.149 1.392 -0.059 -0.011 0.04
0.052 0.112
Y Y
0.044 0.025 0.048 0.001 0.041 0.027
Y Y Y Y Y Y
628 863 759 306 973 973 323 323 323 75
0.39 0.03 0.038 0.001 0.1 0.17
References page II - 290
TABLE 1. cont'd Monomer 1 Maleimide, A^-(4-methoxyphenyl)-a-chloroMaleimide, AH4-methoxyphenyl)-a-chloroMaleimide, TV-(4-methylphenyl)Maleimide, TV-(4-methylphenyl)Maleimide, AK4-methylphenyl)-a-chloroMaleimide, iV-(4-methylphneyl)-a-chloroMaleimide, TV-(4-tolyl)Maleimide, TV-(P-chloroethyl)-a-chloroMaleimide, AHP-chloroethyl)-oc-chloroMaleimide, TV-(p-chloroethyl)-a-chloroMaleimide, TV-(L-menthoxycarbonylmethyl)Maleimide, TV-(L-menthoxycarbonylmethyl)Maleimide, TV-2-bromophenylMaleimide, TV-2-chlorophenylMaleimide, TV-4-chlorophenylMaleimide, TV-[TV'-a-methylbenzyl) aminocarbonylpentyl]Maleimide, TV-[TV'-a-methylbenzyl) aminocarbonylpenty 1] Maleimide, TV-[TV'-a-methylbenzyl) aminocarbonylpenty I]Maleimide, TV-a-methylbenzylMaleimide, TV-a-methylbenzylMaleimide, TV-allylMaleimide, TV-benzylMaleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide, Maleimide,
TV-benzylTV-benzylTV-benzyl-a-chloroTV-butylTV-butylTV-butylTV-butylTV-chloromethylTV-cyclohexyliV-cyclohexylTV-cyclohexylTV-cyclohexylTV-cyclohexylTV-cyclohexylTV-cyclohexylTV-cyclohexylTV-cyclohexylTV-cyclohexylTV-cyclohexylTV-cyclohexylTV-cyclohexylTV-ethyl-a-chloroTV-ethyl-a-chloroTV-hexylTV-hexyliV-hydroxymethylTV-hydroxymethylTV-methyl-a-chloroTV-methyl-a-chloroTV-octadecylTV-octadecylTV-phenylTV-phenylTV-phenylTV-phenylTV-phenyl-
Maleimide, TV-phenyl-
Monomer 2
T1
±95%
Methacrylate, methyl Styrene Methacrylate, methyl Vinyl chloride Methacrylate, methyl Styrene Acrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Maleimide, TV-benzyl Maleimide, TV-phenyl-
0.064 0.049 0.34 4.49 0.029 0.019 0.14 0.05 0.11 0 0.848 0.79
0.189 0.061
Acrylonitrile Acrylonitrile Acrylonitrile Methacrylate, methyl Styrene
r2
±95%
Conv.
Refs.
0.145 0.031
Y Y
0.34 0.158 0.078 0.16 0.04 0.05 0.06 0.221 0.261
0.556 0.112 0.83 0.022 0.564 0.107 0.64 0.94 0.59 0.29 0.474 0.798
0.048 0.117 0.048 0.16 0.06 0.06 0.05 0.087 0.141
Y Y Y Y
Y Y
973 973 992 306 973 973 644 974 974 974 1089 1089
0.348 1.08 0.743 0.582
0.044 0.048 0.048 0.359
2.02 0.955 0.972 1.37
0.205 0.095 0.112 0.291
Y Y Y Y
915 915 915 1099
0.258
0.25
0.198
0.143
Y
1099
Y
1099 1055 1055 1003 1089
Styrene Maleimide, TV-cyclohexyl1.07 Maleimide, TV-phenyl0.683 Styrene 0.035 Maleimide, TV-(L-menthoxycarbonyl0.474 methyl)Methacrylate, methyl 0.03 Styrene 0.013 Styrene 0 Methacrylate, methyl -0.1 Styrene Styrene 60 Vinyl chloride -12.7 Butadiene, 2,3-bis(diethyl-phosphono)0.3 Methacrylate, methyl 0.24 Acenaphthalene 0.11 Butene, cis-20 Isobutene 0 Itaconate, bis(2-ethylhexyl) 0.34 Itaconate, di-n-butyl 0.21 Itaconate, dimenthyl 0.601 Maleimide, TV-a-methylbenzyl0.392 Methacrylate, methyl 0.19 Methacrylate, methyl 0.106 Styrene 0.1 Styrene 0.162 Isooctene 0 Methacrylate, methyl 0.13 Styrene 0 Methacrylate, methyl 0.1 Styrene 0.09 Styrene 0.06 Vinyl acetate 1.45 Methacrylate, methyl 0.11 Styrene 0 Acrylonitrile 0.389 Acrylonitrile 0.39 Acrylate, methyl 0.103 Butadiene, 2,3-bis(diethyl-phosphono)0.42 Maleic anhydride 1.92 Maleic anhydride 1.08 Maleimide, TV-(L-menthoxycarbonyl0.798 methyl)Maleimide, TV-a-methylbenzyl0.788
0.177 0.177
0.214 0.5
Y Y
0.087
0.392 0.788 0.056 0.848
0.221
Y
0.23 0.031 0.06 0.16
1.28 0.058 0.42 1.41
0.23 0.021 0.06 0.19
Y Y
1.13
Y
0.04 0.213 0.177
Y Y
0.066
Y
0.017
Y
106.2
0.04 0.193 0.214 0.048 0.054 0.03 0.04 0.15 0.16 0.11 0.21 0.03 0.03 0.023 0.023 0.052 11.83 0.13 0.141 0.5
0.02 0.24 0.05 1.35 0.57 3 0.41 0.38 0.34 0.318 1.07 1.31 2.26 0.102 -0.01 0.72 0.53 0.9 1.9 -0.041 -0.035 0.017 0.63 0.63 2.482 2.46 0.554 0.05 0.02 -0.095 0.79
0.04 0.05 0.2 0.069 0.053 0.037 0.34 0.04 0.119 0.115 0.048
Y Y Y
0.65 0.106 0.261
Y Y Y
348 348 974 115 115 50 305 759 992 1039 995 995 1060 1014 975 1055 1100 348 1100 348 995 974 974 348 348 323 323 974 974 863 915 644 759 341 990 1089
0.683
0.177
Y
1055
Y Y
Y Y Y Y
TABLE 1. cont'd Monomer 1 Maleirnide, W-phenylMaleimide, N-phenylMaleimide, N-phenylMaleimide, N-phenylMaleimide, 7V-phenylMaleimide, N-phenylMaleimide, iV-phenylMaleimide, JV-phenylMaleimide, N-phenyl-a-chloroMaleimide, N-phenyl-a-chloroMaleimide, N-propylMaleimido-A^V-dimethylaniline, 4-(2-chlorophenyl)azo Mesaconate, dibenzyl Mesaconate, di-seobutyldithiol Mesaconate, diamyl Mesaconate, dibenzyldithiol Mesaconate, dibutyl Mesaconate, dibutyldithiol Mesaconate, dicyclohexyl Mesaconate, diethyl Mesaconate, diethyldithiol Mesaconate, dihexyl Mesaconate, diisoamyl Mesaconate, diisobutyl Mesaconate, diisobutyldithiol Mesaconate, diisopropyl Mesaconate, diisopropyldithiol Mesaconate, dimethyl Mesaconate, dimethyldithiol Mesaconate, dioctyl Mesaconate, diphenyl Mesaconate, diphenyldithiol Mesaconate, dipropyl Mesaconate, dipropyldithiol Mesaconic acid Methacryl-2'-ethyl-4,5J-trinitro9-fluorenone-2-carboxylate Methacrylamide Methacrylamide Methacrylamide Methacrylamide Methacrylamide Methacrylamide Methacrylamide Methacrylamide Methacrylamide Methacrylamide Methacrylamide, 1-deoxy-D-glucitol Methacrylamide, AK2-hydroxypropyl)Methacrylamide, A^-(4/-nitro-4-stilbenyl)Methacrylamide, iV-(4-stilbenyl)Methacrylamide, N-(p-chloroprienyl)Methacrylamide, N-(/?-methoxyphenyl)Methacrylamide, Af-(/?-methyrphenyl)Methacrylamide, 7V-(/?-nitrophenyl)Methacrylamide, A^-[4-(4-methoxyphenylacetyloxy)phenyl]Methacrylamide, iV-methoxymethylMethacrylamide, Af-/?-bromophenylMethacrylamide, N-p-tolylMethacrylamide, N-phenyl Methacrylamide, N-phenylMethacrylamide, N-phenyl-
Monomer 2 Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Vinyl acetate Vinyl chloride Methacrylate, methyl Styrene Vinyl chloride Styrene
rx 0.3 0.164 0.3 0.044 0.01 1.284 4.01 0.077 - 0.002 2.38 0.04
0.065 0.017 0.046 0.18 0.098 0.073 0.16
r2 0.98 1.014 0.91 0.016 0.07 -0.003 0.023 0.657 0.087 0.06 0.05
Conv.
0.06
Y
0.004
N Y
0.006 0.026 0.083 0.04 0.05
Y Y Y Y N
Refs. 323 328 992 1026 328 992 328 306 973 973 305 747
0.593 0.7 0.627 0.559 0.549 2.34 0.29
0.047 0.23 0.051 0.048 0.06 1.07
1.474 1.842 0.399 0.337 0.336 0.37 1.47
0.05 0.062 0.019 0.019 0.026 0.14
Y Y Y Y Y Y
342 342 352 352 352 352 1051
Methacrylate, Methacrylate, Methacrylate, Methacrylate, Acrylonitrile Methacrylate,
0.265 0.38 0.78 0.28 0.71 0.56
0.009 0.2 0.2 0.2 0.19 0.12
1.678 3.48 1.43 1.95 0.381 1.42
0.048 0.2 0.2 0.2 0.085 0.096
Y
227 968 968 968 352 352
methyl
1.27 0.425 0.49 0.33 1.28 0.2 0.48 1.24 3 1.72 0.56 1.01
0.014 0.24 0.085 0.25 0.014 0.2 0.38 0.18 0.26 0.09
0.73 0.45 1.27 0.28 1.28 0.41 1.25 1.24 0.4 1.51 1.34 1.29 0.41 1.31 0.44 0.98 0.35 1.23 0.45 0.16 1.22 0.39 1.6 0.63
±95%
Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Methacrylate, AT-(2-hydroxyethyl)carbazolyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylic acid Methacrylic acid Methacrylic acid Styrene Styrene Vinyl methyl ketone Vinyl methyl ketone Vinyl acetate Acrylamide, AH2-(4-hydroxyphenyl)ethyl)Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Methacrylate, 2-hydroxyethyl methyl methyl methyl methyl
0.08 0.02 0.02 0.06 0.05 0.05 0.1 0.06 0.03 0.1 0.07 0.1 0.03 0.04 0.05 0.04 0.07 0.01 0.07 0.15 0.05 0.06 0 0.382
±95%
1.57 1.39 1.65 2.73 1.55 2.006 1.4 1.42 0.25 0.28 0.16 0.95
0.041
Y
0.11 0.074
N Y
0.28
Y
0.09 0.13 0.17 0.12 0.24
Y N N Y Y
0.09
Y Y
658 624 658 624 658 624 658 658 624 658 658 658 624 658 624 658 624 658 658 624 658 624 1021 703 316 54 55 190 527 55 316 316 609 609 258 965
References page II - 290
TABLE 1. cont'd Monomer 1 Methacrylamide, N-phenylMethacrylamide, 1-deoxy-D-glucitol Methacrylamide, 1-deoxy-D-glucitol Methacrylamide, Af-/?-nitrophenylMethacrylate, 2-ethylhexyl Methacrylate, ferrocenylmethyl Methacrylate, ferrocenylmethyl Methacrylate, octyl Methacrylate, potassium 18-crown6-ether Methacrylate, tert-butyl Methacrylate, (-)-menthyl Methacrylate, (2,2-dimethyl1,3-dioxolane-4-yl)methyl Methacrylate, 1,1-diphenylethyl Methacrylate, 1-naphthyl Methacrylate, 1-naphthyl Methacrylate, 1-naphthyl Methacrylate, 1-naphthyl Methacrylate, 2,2,6,6-tetramethyl4-piperidinyl Methacrylate, 2,2,6,6-tetramethyl4-piperidinyl Methacrylate, 2,2,6,6-tetramethyl4-piperidinyl Methacrylate, 2,2,6,6-tetramethyl4-piperidinyl Methacrylate, 2,2-dimethylaminoethyl Methacrylate, 2,3-epithiopropyl Methacrylate, 2,3-epithiopropyl Methacrylate, 2,3-epithiopropyl Methacrylate, 2,3-epithiopropyl Methacrylate, 2,4,6-trinitrophenyl Methacrylate, 2,4-dinitrophenyl ethyl Methacrylate, 2,4-dinitrophenyl Methacrylate, 2,6-(diphenyl)phenyl Methacrylate, 2-(2-carboxybenzoyloxy)ethyl Methacrylate, 2-(2-carboxybenzoyloxy)ethyl Methacrylate, 2-(N,Ar-dimethylcarbamoyloxy)ethyl Methacrylate, 2-(AW-dimethylcarbamoyloxy)ethyl Methacrylate, 2-(N,N-dimethylcarbamoyloxy)ethyl Methacrylate, 2-(AW-dimethyl carbamoyloxy)ethyl Methacrylate, 2-(N,AT-dimethylcarbamoyloxy)ethyl Methacrylate, 2-acetoxyethyl Methacrylate, 2-acetoxyethyl Methacrylate, 2-acetoxyethyl Methacrylate, 2-acetylsalicylicoyloxy3-hydroxypropyl Methacrylate, 2-bromoethyl Methacrylate, 2-bromoethyl Methacrylate, 2-bromoethyl Methacrylate, 2-bromoethyl Methacrylate, 2-bromoethyl Methacrylate, 2-bromoethyl Methacrylate, 2-chloro-2,3,3,3-fluoropropyl
Monomer 2
rx
±95%
Styrene Methacrylate, methyl Styrene Methacrylate, methyl Methacrylate, 2-hydroxypropyl Maleic anhydride Pyrrolidone, Af-vinylMethacrylonitrile Acrylonitrile
0.88 0.04 0.005 0.29 0.083 0.33 2.57 0.61 0.175
0.17
Methacrylate, 2-chloroethyl Acenaphthalene Methacrylate, methyl
0.98 0.316 1.1
0.22 0.085
Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Acrylonitrile
methyl methyl methyl methyl methyl
Styrene Vinyl acetate
0.77 1.8 1.68 2.62 1.52 14
0.2 0.006 0.65 2.77 0.05 0.018
0.73 0.38 0.47
r2
±95%
Conv.
1.24 4.2 2.09 5.05 4.56 0.24 0.073 0.75 0.07
0.06
N
0.2 0.18 0.28 0.096 0.04 0.006
Y Y Y N Y
1.18 2.48 0.9
0.11 0.55
Y Y
0.14 0.078 0.084
Y Y Y
0.72 0.77 0.809 0.851 0.61 0.02
Refs. 352 258 258 968 708 325 325 44 808 179 645 807 761 752 752 752 761 664
0.3
0.63
664
13.7
0.2
664
0.41
664
Vinyl methyl ketone
0.53
Methacrylate, methyl Acrylate, methyl Methacrylate glycidyl Methacrylate, methyl Styrene Methacrylate, 2-naphthyl Acrylate, AK2-hydroxyethyl)-oxy) 3,6-dichloro Methyacrylate, A^-(2-hydroxyethyl)3,6-dichloro Methacrylate, methyl Methacrylate, butyl
1.01 2.81 0.78 0.97 0.28
0.54
0.42 0.34 0.81 0.83 0.41
0.02
N
1.207
0.032
0.115
0.029
Y Y
1.112
0.026
0.126
0.026
Y
0.071 0.85
0.004
1.42 0.75
0.06
Methacrylate, butyl
0.85
0.75
1041
Acrylate, butyl
1.89
0.47
600
Acrylate, methyl
1.32
0.22
600
Acrylonitrile
1.89
0.38
600
Butadiene
0.35
1.06
600
Methacrylate, methyl
0.42
0.59
600
Methacrylate, 2-hydroxyethyl Methacrylate, methyl Styrene Af-Vinylpyrrolidone
0.99 1.12 0.58 0.85
Acrylate, ethyl Acrylonitrile Methacrylate, methyl Pyrrolidone, N-vinylStyrene Vinyl butyl ether Acrylate, butyl
2.7 2.38 1.18 2.44 0.41 13.7 0.221
0.02 0.06 0.04
0.636
1.02 0.94 0.44 0.34 0.37 0.31 0.79 0.02 0.32 0 0.079
0.01 0.02 0.02
0.304
691 787 787 787 787 744 736
1079 1009
N N N
N
346 346 346 1080 657 657 657 657 657 657 927
TABLE 1. cont'd Monomer 1 Methacrylate, propyl Methacrylate, propyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
Monomer 2
r2
±95%
Conv.
Refs.
Methacrylate, methyl
0.583
1.17
0.984
0.395
N
927
2-chloro-2,3,3,3-fluoro-
Styrene
0.243
0.15
0.121
0.068
N
927
2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-chloroethyl 2-ethylhexyl 2-hydroxyethyl
Acrylate, methyl Acrylonitrile Methacrylate, benzyl Methacrylate, butyl Methacrylate, isobutyl Methacrylate, methyl Methacrylate, methyl Methacrylate, phenyl Methacrylate, tert-buiy\ Styrene Styrene Styrene Methacrylate, tributyltin Methacrylate, 2-hydroxypropyl Acetamide, 7V-(4-methacryloyloxyphenyl)-2-(4-methoxy) Acetanilide, 4-(2-(methacryloyloxy) ethyloxy) Acetanilide, 4-(2-(methacryloyloxy) hexyloxy) Acetanilide, 4-(methacryloyloxy)Acrylamide Acrylamide Acrylamido, 2-,2-methylpropanesulfonic Acrylate, butyl Acrylate, ethyl Acrylate, furfuryl Acrylate, methyl Acrylonitrile Acryloxymethylpentamethyl disiloxane Methacrylate, 2-hydroxypropyl Methacrylamide, AK4'-nitro-4-stilbenyl)Methacrylamide, J/V-(4-stilbenyl)Methacrylamide, Af-[4-(4-methoxyphenylacetyloxy )phenyl] Methacrylate, 2-acetoxyethyl Methacrylate, dodecyl Methacrylate, dodecyl Methacrylate, dodecyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacryloxymethylpentamethyl disiloxane Pyridine, 2-vinylPyridine, 3-vinylPyridine, 4-vinylPyrrolidone, N-vinylStyrene Styrene Styrene Styrene Styrene Styrene Styrene Acrylamido, 2-, 2-methylpropanesulfonic Acrylate, butyl Acrylate, butyl Acrylate, ethyl Acrylate, ethyl
2.19 1.3 0.989 0.82 0.85 0.97 0.48 1.02 1.18 0.341 0.34 0.23 0.53 0.083 0.61
Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl 2-hydroxyethyl 2-hydroxyethyl 2-hydroxyethyl 2-hydroxyethyl 2-hydroxyethyl 2-hydroxyethyl 2-hydroxyethyl 2-hydroxyethyl
Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxypropyl Methacrylate, Methacrylate, Methacrylate, Methacrylate,
±95%
2-chloro-2,3,3,3-fluoro-
Methacrylate, 2-hydroxyethyl
Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
T1
2-hydroxypropyl 2-hydroxypropyl 2-hydroxypropyl 2-hydroxypropyl
0.098 0.041 0.14 0.18 0.21 0.11 0.075 0.08 0.16 0.006
0.29 0.14 1.068 1.086 1.014 1.156 0.55 0.785 0.98 0.35 0.345 0.42 0.2 4.56 1.49
0.042 0.02 0.064 0.082
Y Y Y Y
0.083 0.22 0.046 0.048
Y Y Y Y
0.444 0.18
N Y
726 382 179 179 179 179 382 179 179 179 179 382 945 692 1051
1.39
0.67
1096
1.19
0.87
1096
0.78 1.89 0.98 0.86 4.75 11.21 1.35 8.67 1 0.86 0.55 1.474 1.842 1.47
1.94 0.05 0.14 0.9 0.09 0.189 0.88 - 0.005 0.2 0.52 1.82 0.593 0.7 0.29
1096 689 928 618 358 358 1063 358 689 822 686 342 342 1051
1.02 11.2 1.6 0.8 0.63 0.81 1.5 0.97 0.56 0.69 0.62 4.841 0.54 0.856 0.65 1.65 0.53 0.59 1.65 0.89 5.35 3.3 13.32 9.08
4.2 0.43 0.08 8.28
0.05 0.062 0.01
0.076 1.02
0.04 0.01 0.04 0.133 0.03 0.018
0.32 6.82 1.05 3.95
0.11 0.008 0.19 0.036
Y
0.047 0.23
Y Y
0.02
N
0.01 0.09
Y Y
0.64 0.73 0.9 -0.019 0.44 0.332 0.57 0.5 0.59 0.53 0.5 1.03
0.16 0.04 0.09 0.046 0.02 0.006
N N N Y N Y
342 342 342 840 346 350 463 878 878 903 903 618
0.171 0.24 0.273 0.207
0.041 0.16 0.054 0.045
Y Y Y Y
333 662 333 662
0.99 0.7 0.5 0.8 0.824 0.192 0.75 0.33
Y Y
346 837 837 837 350 358 710 822
References page II - 290
TABLE 1. cont'd Monomer 1 Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacryiate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl-, methyl Methacrylate, 2-naphthyl-, methyl Methacrylate, 2-naphthyl-, methyl Methacrylate, 2-naphthyl-, methyl Methacrylate, 2-sulfonic acid)ethyl Methacrylate, 2-sulfonic acid)ethyl Methacrylate, 2-sulfonic acid)ethyl Methacrylate, 2-sulfonic acid)ethyl Methacrylate, 2-methoxyethyl Methacrylate, 3,5-dimethyladamantyl Methacrylate, 3,5-dimethyladamantyl Methacrylate, 3,5-dimethyladamantyl Methacrylate, 3,5-dimethyladamantyl Methacrylate, 3-methoxy-2-hydroxypropyl Methacrylate, 5-oxo-pyrrolidinylmethyl Methacrylate, 5-oxo-pyrrolidinylmethyl Methacrylate, p-(2-benzothiazolylthio) ethyl Methacrylate, A^-(2-hydroxyethyl)3,6-dichlorocarbazolyl Methacrylate, N-(2-hydroxyethyl)carbazolyl Methacrylate, JV-(2-hydroxyethyl)carbazolyl Methacrylate, A^-(2-hydroxyethyl)carbazolyl Methacrylate, iV-ot-benzothiazolonylmethyl Methacrylate, iV-ethyl3-hydroxymethylcarbazolyl Methacrylate, N-ethyl-3hydroxymethylcarbazolyl Methacrylate, Af-methyl-N-phenyl2-aminoethyl Methacrylate, A^-methyl-A^-phenyl2-aminoethyl Methacrylate, N-methyl-N-phenyl2-aminoethyl
Monomer 2
T1
±95%
Acrylate, methyl Acryloyl chloride Methacrylate, 2-ethylhexyl Methacrylate, 2-ethylhexyl Methacrylate, 2-hydroxyethyl Methacrylate, butyl Methacrylate, butyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, methyl Methacrylate, tributyltin Methacrylic acid Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Methacrylate, 2,4,6-trinitrophenyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Styrene Styrene Acrylate, ethyl Methacrylate, ethyl Styrene Vinylidene chloride Styrene Acrylonitrile Methacrylate, methyl Styrene Vinyl chloride Acrylamide Methacrylate, methyl Styrene Vinyl chloride
7.335 1.79 4.56 4.56 1.82 2.35 2.35 1.878 1.844 1.055 1.81 0.31 1.17 1.02 0.76 0.64 0.52 0.59 0.223 0.189
0.083
0.85 2.57 2.53 1.91 4.41 3.83 0.534 0.113 0.321 0.576 0.216 3.2 2 0.6 3.6 0.48 1.3 0.45 0.63 1.85 3.98 0.694 0.411 0.26
0.34 0.48 0.27 0.6 0.76 0.57 0.099 0.126 0.098 0.477 0.422
Methacrylate, 2,4-dinitrophenyl
0.126
Acryl-2/-ethyl-4,5,7-trinitroflourenone
r2
±95%
Conv.
Refs.
0.013 0.29 0.083 0.083 0.55 0.158 0.158 0.245 0.267 0.402 0.728 0.99 0.15 0.094 0.06 -0.01 0.31 0.36 0.135 0.04
0.007
Y
0.006 0.006
Y Y
0.007 0.007 0.007 0.005 0.017 0.517
Y Y Y Y Y N
0.2 0.099 0.1 0.16 0.42 0.21 0.028 0.11
0.75 0.602 0.581 0.532 0.614 0.623 0.56 0.786 0.486 0.61 0.384 0.3 1 0.37 0.22 0.46 0.19 0.68 0.89 0.21 0.04 0.421 0.342 0.64
0.16 0.059 0.023 0.055 0.051 0.048 0.025 0.16 0.117 0.195 0.225
Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
0.01 0.04 0.14 0.04
N N N N
0.033 0.013
Y Y
0.026
1.112
0.026
Y
736
0.773
0.096
0.102
0.022
Y
703
Acrylate, 2,4-dinitrophenyl
0.243
0.034
0.186
0.009
Y
716
Methacryl-2/-ethyl-4,5,7-trinitro9-fluorenone Methacrylate, methyl Acryloyl-p-hydroxyethyl3,5-dinitrobenzoate Methacryloyl-P-hydroxyethyl3,5-dinitrobenzoate Acryloyloxy, 2-, benzoic acid
0.63
0.041
0.382
0.014
Y
703
0.6 1.425
0.02 0.09
0.5 0.103
0.01 0.015
Y
887 701
0.729
0.051
0.554
0.019
Y
701
0.22
0.03
1.82
0.2
N
651
Methacrylic acid
0.2
0.01
2.16
0.18
N
651
Methacryloyloxy, 2-,benzoate, methyl
0.55
0.04
1.11
0.18
N
651
0.18 0.18 0.13 0.13 0.056 0.039 0.04 0.275 0.2 0.19 0.18 0.24 0.16 0.14 0.02 0.055
0.23 0.16 0.21 8.87 0.087 0.033
333 649 692 708 686 692 708 692 708 333 945 886 611 611 611 611 613 613 613 613 744 540 760 760 760 760 760 540 924 924 924 924 564 564 564 564 918 335 335 335 335 689 633 633 741
TABLE 1. cont'd Monomer 1
Monomer 2
Methacrylate, N-methyl-Ar-phenyl2-aminoethyl Methacrylate, A^-methyl-A^-phenyl2-aminoethyl Methacrylate, a,a-dimethylbenzyl Methacrylate, oc-naphthoyloxy-, ethyl Methacrylate, acetonyl Methacrylate, allyl Methacrylate, amyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzylmethylaminoethyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, Methacrylate, Methacrylate, Methacrylate,
butyl butyl butyl butyl
Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, butyl Methacrylate, chloromethyl Methacrylate, chloromethyl
rx
±95%
r2
±95%
Conv.
Methacryloyloxy, 2-,benzoic acid
0.2
0.01
2.6
0.08
N
651
Styrene
0.58
0.02
0.44
0.04
N
651
Methacrylate, methyl Styrene Styrene Itaconate, bis(tri-w-butyltin) Styrene Acrylonitrile Allyl chloride Maleic anhydride Maleic anhydride Methacrylate, 2-chloroethyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, phenyl Styrene Styrene Styrene Styrene Styrene Styrene Vinylidene chloride Methacrylate, methyl Acetylene, phenylAcrylate, butyl Acrylate, ethyl Acrylic acid Acrylic acid, a-bromoAcrylonitrile Carbamate, Af-phenyl-, allyl Methacrylate, 2-(2-carboxybenzoyloxy)ethyl Methacrylate, 2-(2-carboxybenzoyloxy)ethyl Methacrylate, 2-chloroethyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, ethyleneglycolAf-phenylcarbamate Methacrylate, glycidyl Methacrylate, methyl Methacrylate, methyl Methacrylic acid Methacrylic acid Methacrylonitrile Styrene Styrene Styrene Styrene Styrene Styrene Styrene, o-chloroStyrene, p-chloroStyrene p-chloroStyrene chloromethylStyrene/?-octylamine sulfonate Thioindigoid Vinyl acetate Vinyl chloride Vinylidene chloride Methacrylate, methyl Styrene
0.92 0.242 0.505 1.08 0.46 0.96 58.7 - 0.075 1.068 1.112 1.05 1.38 0.67 0.658 0.467 0.51 0.42 0.3 0.5 3.3 0.296 1.7 2.2 2.43 3.53 0.85 0.98 0.418 0.75
0.018 0.115 0.2 0.1 0.088 0.042 0.093 0.06 0.084 0.048
0.38 0.123 0.39 0.42 0.2
0.75
0.372 0.989 0.808 0.93 0.78 1.42 0.463 0.435 0.45 0.48 0.8 0.45 0.34 0.523 0.21 0.3 0.22 0.24 0.13 0.291 0.329 0.85
0.043 0.041
Y
0.11 0.1
Y N
0.093 0.098 0.03
Y Y Y Y
0.09 0.041 0.026
N Y Y
0.32 0.134
Y
0.17 0.21
Y N
0.039
Y
0.85
1.086 0.158 0.158 0.395
0.02 0.007 0.007
0.85 2.11 1.2 1.26 1.15 0.75 0.31 2.52 0.47 0.64 0.64 0.59 0.32
0.03 0.08
0.564 0.38 0.7 11.5 30.18 13.5 2.07 1.02 0.298
0.81 0.216 0.285 0.038 0.52 0.2 0.02
0.12 0.12 0.07 0.2 1.1
0.1 0.131
14.47 0.18 0.16 0.03
0.82 2.35 2.35 0.299 0.94 0.52 1.27 0.8 0.73 0.56 0.56 -0.05 0.52 0.63 0.54 0.74 1.24 1.025 1.46 1.5 0.5 -0.003 0.05 0.35 0.477 0.208
Refs.
761 1102 958 940 179 23 438 720 720 179 111 32 540 32 111 179 487 540 602 806 432 1081 565 187 690 187 733 165 833 1009 1041
0.041 0.13 0.13
Y Y Y
179 692 708 833
0.06 0.07
N N
0.16 0.2 0.15 0.12 1.09
N N N Y N
0.1 0.124
N
0.15
Y
0.03 0.029 0.006
Y Y Y
224 30 844 187 224 44 179 43 463 530 530 835 558 872 966 1035 817 1007 165 519 3 712 712
References page II - 290
TABLE 1. cont'd Monomer 1 Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, titanate Methacrylate, titanate Methacrylate, Methacrylate, Methacrylate,
Monomer 2
T1
cyanomethyl cyanomethyl cyclohexyl cyclohexyl decyl di-, di-n-butylstannyl di-, di-rc-butylstannyl di-, zinc di-, dicyclopentadienyl-
Methacrylate, methyl Styrene Methacrylate, tributyltin Styrene Oxazolidone, TV-vinylMaleic anhydride Vinyl acetate Ethylene Acrylate, di-, copper
0.73 0.28 0.891 0.57 12.19 0.012 0.013 40 0.89
di-, dicyclopentadienyl-
Acrylate, di-, nickel
0.65
di-, ethylene glycol di-, triethyleneglycol di-, triethyleneglycol
Styrene Carbamate, N-phenyl-, allyl Methacrylate, ethylene-glycol Af-phenylcarbamate Methacrylate, methyl Methacrylic acid Methacrylate, methyl Acrylamide Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, dodecyl Methacrylate, methyl Styrene Allyl acetate Allyl alcohol Methacrylate, 2-(sulfonic acid)ethyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-hydroxypropyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, tributyltin Methacrylic acid Methacrylonitrile Styrene Styrene Styrene Styrene Styrene, o-chloroStyrene, p-chloromethylVinyl acetate Vinylidene chloride Methacrylate, butyl
0.67 0.504 0.59
Methacrylate, diethylaminoethyl Methacrylate, diethylaminoethyl Methacrylate, dimethylaminoethyl Methacrylate, dimethylaminoethyl sulfate Methacrylate, diphenylmethyl Methacrylate, diphenylmethyl Methacrylate, diphenylmethyl Methacrylate, diphenylmethyl Methacrylate, diphenylmethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyleneglycolAf-phenylcarbamate Methacrylate, ethyleneglycolAf-phenylcarbamate Methacrylate, ferrocenylmethyl Methacrylate, ferrocenylmethyl Methacrylate, ferrocenylmethyl Methacrylate, ferrocenylmethyl Methacrylate, ferrocenylmethyl Methacrylate, furfuryl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl
Methacrylate, di-, triethyleneglycol Acrylate, methyl Acrylonitrile Styrene Styrene Vinyl acetate N-Vinylpyrrolidone Acrylate, 2-ethylhexyl Acrylate, 4-acetylphenyl Acrylate, butyl Acrylate, isobutyl Acrylate, tert-butyl Acrylonitrile Acrylonitrile Methacrylate, 2,3-epithiopropyl Methacrylate, butyl Methacrylate, methyl Methacrylate, methyl
1.44 2.34 1.2 1.9 0.5 0.8 0.7 1.07 0.3 81.27 107.4 1 0.245 0.267 1.08 1 0.601 0.71 0.83 0.36 0.26 0.29 0.33 0.45 0.36 131.8 2.18 0.299
±95% 0.11 0.041 0.136 0.28 1.35 0.016 0.036
0.399 0.144 0.395 0.586 -0.052 0.024 0.013 0.19 1.09
±95% 0.019 0.011 0.428 0.088 0.049 0.008 0.018
Conv. Y Y N Y Y Y Y
0.95 0.08
0.085 1.59 0.154 0.2
0.1 1.93 5.3 0.007 0.005 0.09 0.123 0.05 0.12
29.8 0.1
0.24 0.042 0.82 -0.01 0.01 1.52 5.16 2.41 0.644 2.16 1.24 2.096 0.85 1.32 0.81 0.94 0.52 0.934
r2
0.39 0.034 0.24 0.843 0.63 0.699 0.52 1.6 0.8 11.2 0.81 0.528 -0.57 -0.02 2 1.878 1.844 1.08 1.16 0.299 0.57 0.46 0.55 0.67 0.65 0.55 1.34 1.29 -0.77 0.353 0.395
1.13 0.46 0.13 0.57 0.12 0.443 0.05 0.06 0.06 0.085
1.4 0.15 3.6 0.2 0.0036 0.09 0.292 0.083 0.282 0.463 0.95 0.14 0.78 0.85 0.71 0.726
625 625 945 179 36 954 949 935 876 876
0.15
N
262 833 833
0.128 1.47 0.051 0.05
Y Y Y
0.05 0.82 1.92
Y N N
0.056 0.039
Y Y N
0.19 0.607
N N
0.04 0.062
N Y
5.29 0.02
N Y
1081 16 1081 1052 837 837 837 761 179 210 210 564 692 708 32 844 87 945 820 44 179 530 530 570 558 1035 210 3 833
0.59 0.085 0.42 0.14
Refs.
833 0.35 0.04 3.63
Y Y Y
0.02 0.13 0.141 0.052 0.026 0.079 0.06
Y Y Y Y Y Y N
0.03 0.08 0.042
N Y Y
293 325 293 576 293 1050 674 1012 674 674 814 114 433 787 224 113 226
TABLE 1. cont'd Monomer 1 Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
Monomer 2 glycidyl glycidyl glycidyl glycidyl glycidyl glycidyl glycidyl glycidyl glycidyl glycidyl glycidyl glycidyl glycidyl glycidyl hexyl hydroxyethyl
Methacrylate, hydroxyethyl Methacrylate, iso-butyl Methacrylte, isobornyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, m-chlorophenyl Methacrylate, m-nitrophenyl Methacrylate, methoxymethyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl
rx
Methacrylate, methyl 1.05 Methacrylate, methyl 0.501 Methacrylic acid 1.2 Af-Vinylpyrrolidone 4.29 Styrene 0.16 Styrene 0.539 Styrene 0.46 Styrene 0.54 Styrene 0.55 Styrene 0.74 Styrene 0.73 Styrene 0.514 Vinyl phenyl ketone 0.719 Vinyl, mono-, ethylene glycol ether 4.41 Styrene 0.44 Methacrylate, tetra(2-hydroxypropyl) 0.606 ethylenediamine Methacrylate, tributyltin 2.33 Butadiene, 2-chloro0.9 Styrene 0.24 Acetylene, phenyl1.9 Acrylic acid 0.68 Acrylonitrile 1.05 Furan, 2-vinyl-5-methyl 0.105 Methacrylate, 2-chloroethyl 1.014 Methacrylate, methyl 1.88 Methacrylate, methyl 1.2 Methacrylate, methyl 0.488 Methacrylic acid 0.47 Methacrylonitrile 0.68 Methacrylonitrile 0.94 Styrene 0.271 Styrene 0.58 Styrene 0.42 Styrene 0.4 Styrene 0.74 Vinyl acetate 29.7 Styrene 0.209 Styrene 0.185 Styrene 0.586 2-Oxazoline, 2-isopropenyl0.69 3-Pyridazone, 2-vinyl 0.63 3-Pyridazone, 2-vinyl-6-methyl0.16 3-Pyridazone, 2-vinyl-6-methyl1.65 4,5-benz-33-Pyridazone, 2-vinyl-6-phenyl0.58 4H-1,3-Oxazinium F 3 CSO 3 , 3-methyl0.37 2-vinyl-5,6-dihydroAcenaphthalene 0.36 Acenaphthalene 0.38 Acenaphthalene 0.44 Acetamide, N-vinyl2.65 Acetamide, N-vinyl1.18 Acetamide, N-vinyl2.1 Acetylene, phenyl-0.06 Acetylene, phenyl1.5 Acetylene, phenyl1.111 Acrolein 1.136 Acrolein 1.33 Acrolein, methyl0.1 Acrylamide 2.34 Acrylamide 3 Acrylamide 2.53 Acrylamide 3 Acrylamide, 2-chloro-AyV-dimethyl2.71
±95%
0.027 0.1 0.498 0.03 0.04 0.08 0.1 0.284 0.098 0.13 0.416 0.185 0.088 0.3 0.22 0.044 0.064 0.07 0.029 0.05 0.12 0.036
24.16 0.013 0.054 0.069 0.02
r2 0.8 0.688 0.98 0.003 0.54 0.278 0.47 0.44 0.45 0.31 0.11 0.435 0.697 0 0.58 1.44 0.282 1.8 0.61 0.27 1.03 0.217 0.716 0.85 0.62 0.89 0.92 2.01 0.74 0.43 0.509 0.56 0.5 0.55 0.47 -0.06 0.375 0.44 0.395 0.99 1.56 0.3 0.27
±95%
Conv.
0.076 0.16 0.018 0.07 0.086 0.02
Y N
0.04 0.045 0.033
N N Y
0.07 1
Y Y
0.424 0.06 0.45
N N
0.037 0.169 0.14 0.08
Y Y Y N
0.15
Y
0.07 0.08 0.014
N N Y
0.22 0.05 0.16 0.014 0.07
Y Y Y Y
N Y N
0.49 0.31 0.04 0.04
0.16 0.095 0.05 0.4 0.17 0.09 0.45 0.398
1.05 0.99 2.25 0.19 0.71 0.01 1.69 0.2 0.07 0.76 0.59 0.4 2.29 0.53 0.82 0.9 -0.159
Refs. 463 639 224 1017 114 217 225 225 463 849 893 999 946 780 179 996 945 1057 806 565 847 165 1105 179 30 541 639 847 44 44 179 463 463 487 541 165 177 177 821 894 897 897 897 897 909
0.14 0.15
N N
26.56
Y
0.016 0.12 0.3
Y Y N
0.44 0.09
N N
1.07 0.502
N Y
326 326 575 984 984 984 357 443 732 291 292 589 314 314 314 691 917
References page II - 290
TABLE 1. cont'd Monomer 1
Monomer 2
Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Acrylamide, N,N-dimethylAcrylamide, AA,A^-dimethylAcrylamide, WV-dimethylAcrylamide, WV-dimethylAcrylamide, N-methylAcrylamide, N-methylolAcrylamide, N-methylol Acrylamide, N-octadecylAcrylamide, N-tert-butylAcrylamide, a-fluoroAcrylamido, 1-,-1-deoxy-D-glucitol Acrylate, a-benzyl-, methyl Acrylate, a-chloro-methyl Acrylate, ferrocenylmethyl Acrylate, 2-(0-ethyl methylphosphonoxy)-, methyl Acrylate, 2-chloroethyl Acrylate, 2-nitrobutyl Acrylate, p-acetoxymethyl-, methyl Acrylate, a-(0-ethyl methylphosphenoxy) Acrylate, a-[2,2-bis(carbomethoxy)ethyl]-, methyl Acrylate, oc-acetoxy-, ethyl Acrylate, a-benzyl-, methyl Acrylate, a-chloro-, methyl Acrylate, oc-cyano-, methyl Acrylate, a-cyano-, methyl Acrylate, a-hydroxymethyl-, ethyl Acrylate, a-phenoxymethyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, a-phenyl-, methyl Acrylate, oc-tetrafluoropropyloxymethyl-, methyl Acrylate, a-trifluoromethyl-, methyl Acrylate, a-trifluoromethyl-, methyl Acrylate, a-trifluoromethyl-, methyl Acrylate, benzyl Acrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, ethyl Acrylate, ethyl Acrylate, ethyl Acrylate, ferrocenylmethyl Acrylate, heptafluorobutyl Acrylate, heptyl Acrylate, isobutyl Acrylate, isobutyl Acrylate, m-nitrophenyl Acrylate, methyl Acrylate, o-chlorophenyl Acrylate, octadecyl Acrylate, p-bromophenyl Acrylate, p-chlorophenyl Acrylate,/?-chlorophenyl Acrylate, methylphenyl Acrylate, phenyl Acrylate, phenyl Acrylate, a-p-chlorobenzyl-, methyl Acrylate, a-p-methoxybenzyl-, methyl Acrylic acid Acrylic acid, a-bromoAcrylonitrile Acrylonitrile, a-trifluoromethyl-
rx 1.65 2.15 2.8 2.64 1.14 1.62 1.62 4.119 0.25 2.13 3.75 3.9 0.11 2.9 0.73 2.15 1.19 0.91 0.73
±95% 0.16 0.08 0.1 0.15 0.09 0.07 0.136 0.24 0.19 0.09 0.04 0.12
3.7
r2 0.41 0.57 0.59 0.21 0.05 0.7 0.7 0.42 2.83 0.148 0.05 0.09 1.92 0.08 0.44 0.37 0.27 0.24 0.44
±95%
Conv.
0.15 0.08 0.09 0.21 0.72
N N N N N
0.11
Y
0.081 0.09 0.01 0.08
Y N N N
0.25 0.04
N
0.04
1.65 2.36 0.31 0.21 0.068 1.26 1.13 0.21 0.3 1.43
0.12 0.23 0.24 0.02 0.014 0.17 0.038
1.8 3.2 2.3 2.23 0.92 2.86 1.88 1.83 2 2.04 2.8 1.387 2.51 1.04 4.1 0.928 2.15 1.25 2.477 0.926 1.01 1.09 1.45 1.56 1.54 1.87 1.71 0.418 0.37 1.322 1.11
0.23 0.5 0.2 0.14 0.2 0.32 0.4 0.28 0.19 0.072 0.13 0.08 0.5 0.248 0.04 0.024 0.056 0.132 0.275 0.14 0.222 0.109 0.02 0.05 0.12
Refs. 170 315 315 691 691 593 596 290 709 823 258 610 31 293 882 790 234 1091 851 1092
0.608 0.173 1.13 0.03 0.135 1.34 0.755 0 0 0.61
0.02 0.022 0.19 0.01 0.016 0.062 0.061
Y Y Y N Y N Y
244 610 6 141 182 1027 1048 141 49 1047
-0.17 0 0.1 0.19 0.13 0.11 0.43 0.47 0.28 0.22 0.024 0.177 0.46 0.29 0.135 1.04 0.4 0.4 0.464 0.191 0.235 0.3 0.223 0.45 0.416 0.255 0.13 1.73 0.11 0.138 -0.016
0.18 0.1 0.1 0.2 0.15 0.018 0.07
Y N N Y N Y N
0.05 0.064 0.084 0.02 0.04 0.02 0.135 0.12
N Y Y N Y Y N
0.07 0.014 0.023
Y Y Y
0.036
Y
0.041 0.034 0.008 0.096
Y Y Y N
0.037 0.048
Y Y
681 825 825 277 30 639 87 30 469 87 293 206 980 30 639 1074 324 621 290 1074 1074 621 1074 621 672 905 905 964 733 216 681
TABLE 1. cont'd Monomer 1 Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
Monomer 2 methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, methyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, methyl
Acrylonitrile, a-perfluoropropylAcryloyl chloride Acryloyl chloride Allyl acetate Allyl acetate Allyl alcohol Allyl chloride Benzocyclobutane, a-methyleneBenzocyclobutene, 4-vinylBenzofuran, 2-vinylBenzophenone, 2-hydroxy4-(methacryloxy)Benzothiazole, vinylmercaptoBicyclo[2,2,l]hept-2-ene5,6-dicarboximide, TV-benzyl Bicyclo[2,2,l]hept-2-ene5,6-dicarboximide, TV-benzyl Butadiene Butadiene Butadiene Butadiene, 2,3-dichloroButadiene, 2-chloroButadiene, 2-fluoroCarbamate, TV-vinyl-f-butylCarbazole, TV-vinylCarbazole, TV-vinylCarbazole, TV-vinylCarbazole, TV-vinylCarbazole, TV-vinylCarbazole, TV-vinylCarbazole, TV-vinylCitraconimide, TV-(4-acetoxyphenyl)Citraconimide, TV-(4-chlorophenyl)Citraconimide, TV-(4-ethoxycarbonylphenyl)Citraconimide, TV-(4-methoxyphenyl)Citraconimide, TV-( 1 -menthylcarboxylatomethyl)Citraconimide, TV-benzylCitraconimide, TV-butylCitraconimide, TV-ethylCitraconimide, TV-hexylCitraconimide, TV-isobutylCitraconimide, TV-isopropylCitraconimide, TV-methyl Citraconimide, TV-phenyl Citraconimide, Af-propyl Citraconimide, N-tert-butylCitraconimide, TV-tolylCyclopentene, 4-,-1,3-dione Cyclopropane, l,l-bis(ethoxycarbonyl)-2-vinylCyclopropane, 1,1-bis(ethoxycarbonyl)-2-vinylDiallyl melamine Diallyl phthalate Diallyl phthalate Diallyl phthalate Diallylcyanamide Diallylcyanamide Dimethyleneheptanedioate, 2,6-dimethyl Ditiane, 2-methylene-l,3Ethylene
rx
±95%
r2
1.9 0.48 0.42 99.24 23 78.79
0.3
0 1.51 0.05 -2.42 0 -1.62
0.32 0.6 0.006 0.315 1.25 30.5
24.6 6.5
0.02 0.036 0.083
108 0.25 0.027 0.32 0.08 0.08 0.76 1.87 1.55 2.12 1.8 0.57 1.84 0.44 2.123 1.88 2.93 2.72
0.46 1.47 3.89 1.65 0.43 0
±95%
Conv.
0.05
37.66
N
2.9
N Y
0.617 0.114
N Y
0.14
Y
0
Refs. 926 508 776 210 470 210 204 1083 1085 1020 934 763 994 994
0.26 0.22 0.048 0.16 0.4 0.18
0.75 0.504 0.7 11.04 6.33 1.23 0.17 0.14 0.033 0.06 0.75 0.08 0.33 0.031 0.18 -0.01 -0.027
3.16 3.47
0.73 0.335
-0.1 0.109
0.19 0.115
Y Y
728 950
2.77 2.17 3.25 2.38 1.78 2.7 3.24 3.081 3.23 2.88 2.75 8.11 4.21
0.28 0.56 0.79 0.45 0.85 0.51
0.02 -0.12 -0.04 -0.18 -0.18 0.09 0.15 0.001 -0.03 0.038 0.003 0.094 0.223
0.14 0.36 0.33 0.28 0.42 0.27
Y Y Y Y Y Y
0.033 0.43 0.072 0.088 0.017 0.194
Y Y Y Y Y Y
714 714 714 714 714 714 460 728 714 714 728 95 1076
0.111
0.194
Y
1076
-0.001 0.029 0.076 0.04 0.04 0.53
0.011 0.026 0.006
Y Y Y Y
0.02
N
201 153 153 153 603 604 795
N
1031 41
0.004
0.77 0.2 0.16 0.14
0.074 0.98 0.19 0.19 0.38 0.905
18.3
2.5
26.56 22.73 21.52 25 25 2.36
1.98 1.48 0.39
0.08
0.25
1.77 0.1 0.03 0.015
N Y
0.05 0.18 0.022 0.13 0.18 0.084
N N Y Y Y Y
140 257 467 61 61 174 991 11 13 738 738 758 758 98 728 728 728
0.024
Y Y Y Y
4.12
References page II - 290
TABLE 1. cont'd Monomer 1 Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
Monomer 2 methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
rt
Ethylene, 1,1-diphenyl2.1 Ethylene, 1,1-diphenyl8.7 Ethylene, chlorotrifluoro51.36 Ethylene, tetrachloroEthylene, trichloro100 Fumarate, diethyl 40.3 Fumarate, diethyl 2.1 Fumarate, diisopropyl 23 Fumaronitrile 6.74 Furan, 2-vinyl-5-methyl 0.183 Hexatriene, tetrachloro0.504 Imidazole, 1-vinyl4.36 Imidazole, l-vinyl-2-methyl4 Imidazole, l-vinyl-2-methyl3.48 Isoprene 0.26 Isoprene 0.25 Isoprene 0.25 Isoprene, 3-acetoxy0.16 Isopropenyl acetate 17.36 Isopropenyl, 3-(l-cyclohexenyl), acetate 0.81 Isopropenylisocyanate 3.1 Isopropenyltoluene 0.68 Isopropenyltoluene 0.68 Itaconamate, Af-(4-chlorophenyl)-, ethyl 1.24 Itaconamate, Ar-(4-chlorophenyl)-, 1.26 propyl Itaconamate, N-(4-methoxyphenyl)-, 1.31 ethyl Itaconamate, A^-(4-carboethoxyphenyl)1.21 ethyl Itaconamate, Ar-(4-methylphenyl)-, ethyl 1.43 Itaconamate, iV-(4-methoxyphenyl)-, 1.03 propyl Itaconamate, A^-(4-methylphenyl)-, 1.11 propyl Itaconamate, Af-phenyl-, ethyl 1.32 Itaconamate, N-phenyl-, propyl 1.13 Itaconamate, Af-(4-carboethoxyphenyl)1 propyl Itaconate, dibutyl 1.33 Itaconate, dibutyl 0.8 Itaconate, dimethyl 3.34 Itaconate, dimethyl 1.2 Itaconate, monomethyl 1.1 Itaconic acid 1.23 Itaconic acid 1.14 Itaconic anhydride 0.155 Itaconimide, N-(2-chloroethyl)0 Itaconimide, N-benzyl0.46 Itaconimide, JV-ethyl0.486 Itaconimide, N-methyl0.38 Maleate, dibutyl tin 72.7 Maleate, diethyl 341 Maleate, diethyl 20 Maleate, diethyl 285.8 Maleic anhydride 4.18 Maleic anhydride 6.36 Maleic anhydride 0.46 Maleic anhydride 5.2 Maleic anhydride 3.1 Maleic anhydride 3.85 Maleic anhydride 3.4 Maleic anhydride 3.85 Maleimide 2.576 Maleimide 2.5
±95%
3.31 0.6 0.79 0.146 0.057 1.86 0.54 0.21
1.95
0.09 0.557 0.071 0.024 0.11 0.18 0.066 0.22 5.93 46 35.9 0.31 0.64 0.69 0.47
0.061
r2 0.09 O -0.074 0 0.04 0.05 0.17 -0.064 0.867 1.76 0.014 0.047 0.003 0.65 0.64 0.64 2.81 -0.09 0.4 0.14 0.04 0.04 0.36 0.31
±95%
Conv.
0.062
Y Y
0.004
N
0.096 0.292 0.28 0.03 0.088
Y Y Y Y Y
0.23
Y
0.12
Y
Refs. 65 901 236 204 470 28 394 1038 191 1105 5 364 364 479 302 698 704 770 100 770 434 688 722 678 678
0.43
678
0.48
678
0.63 0.4
678 678
0.28
678
0.47 0.15 0.53
678 678 678
0.717 0.4 -0.156 0.3 0.139 0 0 1.17 0.54 1.06 0.42 1.12 -0.095 -0.1 0 -0.02 -0.163 -0.019 0.08 0.02 0.01 0.01 0.01 0.02 0.166 0.17
0.11 0.02
Y
0.103
Y
0.33 0.39 0.75 0.13 0.73 0.199 0.05
Y Y Y Y Y Y N
0.015 0.027 0.026 1.77 0.004
Y Y Y N N
0.047
Y
1073 398 975 398 1010 260 408 1010 642 642 642 642 987 28 470 873 169 260 320 33 524 524 524 524 251 992
TABLE 1. cont'd Monomer 1
Monomer 2
Methacrylate, methyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl
Maleimide, 2,3-dimethylA^-(2-methacryloyloxyethyl) Maleimide, A^-(4-hydroxyphenyl)Maleimide, 7V-(2-hydroxyethyl)Maleimide, Af-(2,6-diethylphenyl)Maleimide, 7V-(2,6-diisopropylphenyl)Maleimide, AT-(2,6-dimethylphenyl)Maleimide, A^-(2-chlorophenyl)Maleimide, 7V-(2-methylphenyl)Maleimide, Af-(3,5-dimethylphenyl)Maleimide, 7V-(3-methylphenyl)Maleimide, AK3-trifluoromethylphenyl)Maleimide, 7V-(4-carboxyethylphenyl)a-chloroMaleimide, 7V-(4-chlorophenyl)-a-chloroMaleimide, Af-4-methoxyphenyl)a-chloroMaleimide, AK4-methylphenyl)Maleimide, A^-(4-methylphenyl)a-chloroMaleimide, AK|3-chloroethyl)-a-chloroMaleimide, AH (3-chloroethyl)-a-chloroMaleimide, N-[JV'-(a-methylbenzyl) aminocarbonylpenty 1] Maleimide, TV-benzyl Maleimide, TV-butyl Maleimide, 7V-cyclohexyl Maleimide, N-cyclohexyl Maleimide, Af-cyclohexyl Maleimide, AT-ethyl-a-chloroMaleimide, TV-hexylMaleimide, 7V-hydroxymethylMaleimide, 7V-methyl-a-chloroMaleimide, 7V-phenylMaleimide, 7V-phenylMaleimide, Af-phenyl-a-chloroMaleimide, N-phenylMethacrylate, 2-acetoxyethyl Methacrylate, cyanomethyl Methacrylate, diphenylmethyl Methacrylamide Methacrylamide Methacrylamide Methacrylamide Methacrylamide, Af-methoxymethylMethacrylamide, iV-p-bromophenyl~ Methacrylamide, N-p-tolylMethacrylamide, N-phenyl Methacrylamide, N-phenylMethacrylamide, 1-deoxy-D-glucitol Methacrylamide, N-/?-nitrophenylMethacrylate, tert-butyl Methacrylate, a,a-dimethylbenzyl Methacrylate, (2,2-dimethyl1,3-dioxolane) Methacrylate, 1,1-diphenylethyl Methacrylate, 1-naphthyl Methacrylate, 1-naphthyl Methacrylate, 1-naphthyl Methacrylate, 1-naphthyl Methacrylate, 2,2-dimethylaminoethyl Methacrylate, 2,3-epithiopropyl Methacrylate, 2,6-(diphenyl)phenyl Methacrylate, 2-(Ar,N-dimethylcarbamoyloxy)ethyl
/*i
±95%
r2
±95%
Conv.
0.51
1.66
1.1
3.58
Y
619
1.392 1.396 4.78 10.9 3.62 2.1 2.22 1.63 1.18 1.57 0.472
0.001 0.089
0.001 0.083
Y Y
0.114
0.345 0.201 0.05 0.02 0.07 0.1 0.09 0.28 0.22 0.1 -0.004
0.168
Y
323 323 992 992 992 992 992 992 992 992 973
0.562 0.556
0.025 0.145
0.02 0.064
0.03 0.189
Y Y
973 973
0.83 0.564
0.117
0.34 0.029
0.158
Y
992 973
0.94 0.59 1-37
0.06 0.06 0.291
0.05 0.11 0.582
0.04 0.05 0.359
Y
974 974 1009
1.28 1.41 1.35 1.31 2.26 0.53 1.9 1.745 0.63 0.98 0.91 0.657 1.014 0.94 0.399 0.81 1.57 1.7 1.39 1.65 1.678 3.48 1.43 1.95 1.42 4.2 5.05 0.96 0.81 0.9
0.23 0.19
0.23 0.16
Y Y
0.048 0.03 0.15 0.026 0.03
Y
0.72 0.77 0.809 0.851 0.61 0.42 0.83 1.42 0.59
0.066 0.04 0.2 0.03 0.34 0.083 0.06 0.02 0.019 0.11 0.04 0.074 0.048 0.2 0.2 0.2 0.096 0.2
0.14 0.078 0.084 0.02 0.06
0.03 -0.1 0.24 0.19 0.106 0.13 0.1 0.263 0.11 0.3 0.3 0.077 0.164 1.12 0.73 1.07 1.27 0.44 0.425 0.49 0.265 0.38 0.78 0.28 0.56 0.04 0.29 1.35 0.92 1.1 0.77 1.8 1.68 2.62 1.52 1.01 0.97 0.071 0.42
Y Y
0.098 0.065 0.06 0.11
Y Y N Y
0.24 0.06 0.085
N N Y
0.009 0.2 0.2 0.2 0.12
Y
Y
0.2
0.73 0.38 0.47
Y Y Y
0.54
N
0.004
Refs.
348 115 992 1100 348 974 348 323 974 323 992 973 328 346 625 761 316 316 54 55 227 968 968 968 352 258 968 761 761 807 761 752 752 752 761 691 787 1079 600
References page II - 290
TABLE 1. cont'd Monomer 1
Monomer 2
Methacrylate, methyl Methacrylate, methyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, 2-bromoethyl Methacrylate, 2-chloro2,3,3,3-fluoropropyl Methacrylate, 2-chloroethyl Methacrylate, 2-chloroethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxypropyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-naphthyl Methacrylate, 2-phenylethyl Methacrylate, 3,5-dimethyladamantyl Methacrylate, 5-oxo-pyrrolidinylmethyl Methacrylate, N-a-benzothiazolonylmethyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzyl Methacrylate, benzylmethylaminoethyl Methacrylate, butyl Methacrylate, butyl Methacrylate, chloromethyl Methacrylate, diethylaminoethyl Methacrylate, dimethylaminoethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, ethyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, glycidyl Methacrylate, isobutyl Methacrylate, isobutyl Methacrylate, isopropyl Methacrylate, methyl diphenylsilyl Methacrylate, methylthiomethyl Methacrylate, /?-acetylphenyl Methacrylate, /?-chlorophenyl Methacrylate, /?-methoxyphenyl Methacrylate, /7-tolyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, propyl Methacrylate, sulfolanyl Methacrylate, f-butyl dimethylsilyl Methacrylate, f-butyl diphenylsilyl Methacrylate, tributyltin Methacrylate, tributyltin Methacrylate, trimethyltin Methacrylate, trimethyltin Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid
/*i 0.79 0.984 1.156 0.55 0.824 0.192 0.75 0.402 0.602 0.581 0.532 0.614 0.623 0.75 0.68 0.421 0.5 0.808 0.93 0.78 0.523 0.52 1.27 0.477 0.843 0.699 0.81 1.08 1.16 0.71 0.726 0.8 0.688 0.62 0.92 0.89 0.438 0.639 0.47 0.54 0.72 0.59 0.53 0.58 0.56 0.66 0.55 1.21 1.07 0.897 0.636 0.58 0.62 0.63 0.6 0.63 0.1 0.78 0.31 0.27 0.1 0.78 0.32
±95%
0.395 0.082 0.01 0.09 0.017 0.059 0.023 0.055 0.051 0.048 0.16 0.04 0.033 0.01 0.03 0.134 0.07 0.029 0.128 0.051 0.22 0.19 0.08 0.042 0.076 0.08 0.15 0.075 0.057
2.48 0.05 0.014
0.03 0.01 0.03 0.02 0.03 0.01 0.03 0.02
r2
±95%
Conv.
Refs.
1.17
N
657 927
0.97 0.48 0.63 0.81 1.5 1.055 2.57 2.53 1.91 4.41 3.83 0.85 0.45 0.694 0.6
0.18
Y
0.076 1.02
Y Y
0.04 0.48 0.27 0.6 0.76 0.57 0.34 0.16 0.087 0.02
Y Y Y Y Y Y Y N Y
1.112 1.05 1.38 0.296 2.11 1.2 1.02 1.44 1.2 0.86 1.08 1 0.52 0.934 1.05 0.501 1.88 0.488 1.2 0.38 1.1 0.67 1.08 1.19 1.28 1.67 1.69 1.72 1.55 0.99 1.24 7.16 0.725 0.396 0.62 0.87 1.07 0.68 0.25 1.06 0.33 0.63 0.46 1.06 0.33 0.63
0.093
Y
0.123 0.08
Y N
0.16 0.085 0.154 0.12
Y Y Y N
0.09 0.06 0.085
N Y Y
0.027 0.07 0.029
Y N Y
0.178 0.356
Y Y
23.7 0.455 0.257
N Y Y
1.18 0.583
0.05 0.02 0.02 0.02 0.03 0.02 0.02 0.02
179 382 350 358 710 333 760 760 760 760 760 540 335 633 887 111 32 540 1081 30 844 712 1081 1081 32 844 87 113 226 463 639 30 639 541 1069 920 769 769 769 769 32 32 32 761 769 844 359 1069 1069 1082 1082 1082 1082 1071 1072 1072 1072 1072 1087 1087 1087
TABLE 1.
cont'd
Monomer 1 Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
Monomer 2 methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl
Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic anhydride Methacrylophenone, aMethacrylophenone, aMethacryloyl chloride Methacryloyl chloride Methacryloyl fluoride Methacryloyl fluoride Methacryloyl isocyanate Methacryloyloxy-, o-, benzoic acid Methylenebutyrolactone Methyleneglutaronitrile, 2Methyleneglutaronitrile, 2Myrcene AW-divinylaniline W-Vinylimidazole N-Vinylpyrrolidone N-Vinylpyrrolidone iV-Vinylpyrrolidone Af-Vinylpyrrolidone Naphthalene, 1-vinylNorbornadiene Oxazolidone, N-vinylOxazolidone, Af-vinylOxazoline, 2-,2-isopropenyl 4,4-dimethyl Oxazoline, 2-,2-isopropenyl Oxazoline, 2-,4-acryloxymethyl 2,4-dimethyl Oxazoline, 2-,4-methacryloxy2,4-dimethyl Pentadiene, trans-1,3Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl
/*i
±95%
r2
±95%
Conv.
Refs.
0.87 1.81 0.56 0.29 1.28 0.77 0.36 1.18 0.55 0.209 1.25 0.48 0.22 1.79 1.74 0.45 0.45 0.405 0.53 0.75 0.908 0.6 1.36 1.27 0.256 1.06 4.306 4.78 5.93 2.07 4.04 0.321 14.68 6.75 9.46 0.53
0.05 0.16 0.23 0.04 0.1 0.05 0.08
2.16 1.63 0.99 1.18 0.48 1.84 1.38 0.63 1.55 1.26 0.78 0.68 1.58 0.11 0.119 0.2 0.2 0.43 0.9 0.35 1.37 1.67 0.12 0.12 0.448 0.005 0.663 0.006 0.014 0.027 0.066 0.574 - 0.5 0.04 0.027 0.82
0.28 6.25 0.55 0.19 0.1 0.24 0.27
N N Y N N N N
0.2
Y
0.06 0.02 0.009
N N Y
0.12 0.16
Y N
0.64
Y
0.74
N
0.06 0.018 0.104 2.29 0.899 0.062 3.96 0.073 0.52 0.13 0.008
Y Y Y
203 210 216 276 276 312 313 313 424 54 630 819 275 798 798 591 593 617 660 944 938 746 196 196 1062 45 879 1084 1084 1084 1084 967 267 102 36 596
0.05 0.02 0.07 0.22 0.037 0.06 0.252 0.28 0.013 0.18 0.185 0.236 0.198 0.247 0.956 0.096 16.78 0.37 0.39
N Y Y
0.69 0.41
0.99 0.11
862 596
1.17
0.19
596
0.404 0.555 0.424 0.591 0.443 0.34 0.57 0.606 0.269 0.715 0.528 0.597 0.38 0.513 0.43 0.474 0.581 0.616 0.663 0.528 2.37 2.23 1.87
0.038 0.032 0.022 0.046 0.032 0.031 0.023 0.045 0.027 0.048 0.02 0.03 0.034 0.022 0.034 0.023 0.025 0.024 0.023 0.02 0.046 0.047 0.086
0.379 3.39 2.02 3.06 1.67 1.24 1.72 1.69 0.72 1.55 1.09 2.56 0.748 1.14 0.952 1.67 1.04 1.05 0.725 1.09 0.486 0.521 0.946
0.013 0.263 0.141 0.349 0.183 0.168 0.123 0.236 0.12 0.224 0.09 0.218 0.155 0.109 0.164 0.143 0.111 0.108 0.08 0.09 0.088 0.138 0.436
Y N N N N N N N N N N N N N N N N N N N N N N
1058 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 971 971 971
References page II - 290
TABLE 1. cont'd Monomer 1 Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
Monomer 2 methyl methyl methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphonate, a-bromovinyl-,diethyl Phosphonate, a-carboethoxyvinyl-, diethyl Phosphonate, a-carbomethoxyvinyl-, diethyl Phosphonate, isopropenyl-, dimethyl Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, diethyl Phosphonic acid, a-phenylvinylPhthalimide,-N-)methacryloyloxy)Pinene, aPropene, 2,3-dichloroPropene, 2-chloro-3-hydroxyPropenyl, 2-chloro-, acetate Propenyl, 2-methyl, acetate Pyridazinone, 3-(2-vinyl)-6-methyl-4,5Pyridazinone 3-(2-vinyl)-6-methylPyridine, 2-methyl-5-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinyl-5-ethylPyridine, 4-vinylPyridine, 4-vinylPyrrolidone, l-benzyl-3-methylene5-methyl Pyrrolidone, N-vinylPyrrolidone, N-vinylPyrrolidone, A^-vinylPyrrolidone, N-vinylPyrrolidone, Af-vinylPyrrolidone, a-methylene-AT-methylSilane, y-methacryloxypropyltrimethoxyStyrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
rx 1.97 2.1 2.56 2.04 1.25 1
±95%
0.01
684
30 29.9 11.1 1.362 0.69 10 6.02 4.4 1 10 1.19 0.86 0.42 0.42 0.4 0.35 0.31 0.27 0.39 0.57 0.54 0.387
0.2 0.26
684 410 684 131 979 48 11 445 445 470 340 340 232 231 532 6 623 749 231 231 691 33
0.04 0.02 0.09 0.02 0.19 0.04 0.02 0.02 0.01 0.07
0.3 0.34 0.61 0.61 0.058 0.082
0.13 0.085 0.029 0.011 0.01
N N N N
Refs.
4.7
1.66
0.248 0.097 0.226 0.052
Conv.
0.05
0.04 0.084 0.048
1.16 0.42 0.258 0.0701
±95%
971 971 971 971 684 684
5.62 4.63 4.36 4.04 0.577 0.788 0.5 0.46 0.46 0.42 0.45 0.46 0.47 0.48 0.5 0.22 0.32 0.418 0.54 0.478 0.45 0.45 0.49 0.47 0.48 0.46 0.42 0.5 0.46 0.44 0.49 0.49
0.029 0.045 0.094 0.012 0.04
r2
-0.063 1.45 0.08 0.18 0 0 0 0.08 0.56 0.54 0.73 0.86 0.76 0.64 1.1 0.68 0.77 0.99 2.28
0.077 0.151
Y Y
0.1
N
0.03 0.04 0.19 0.06
N N N N
0.12
Y
0.08 0.06 0.07 0.18 0.47
N N N N Y
- 0.05 -0.032 -0.052 0.01 0.24 2.06 0.5 0.52 0.52 0.48 0.52 0.49 0.45 0.58 0.44 0.396 0.42 0.49 0.564 0.585 0.44 0.47 0.54 0.52 0.38 0.52 0.54 0.44 0.52 0.5 0.56 0.53
0.08 0.068 0.028 0.15 0.14 0.309
Y N Y Y N Y Y
0.048
Y
0.14 0.047 0.007 0.08
Y Y Y N
213 320 321 36 691 641 977 138 139 179 20 21 21 21 21 21 241 241 254 254 287 324 324 403 416 451 463 492 492 505 531 531 534
TABLE 1. cont'd Monomer 1 Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate, Methacrylate,
Monomer 2 methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl methyl
Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl
Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene, 2,4,6-trimethylStyrene, 2,4,6-trimethylStyrene, 2,5-dichloroStyrene, 2,6-dichloroStyrene, 3-methyl Styrene, 3-methyl Styrene, 3-methyl Styrene, 3-tri-rc-butylstannylStyrene, 4-methylStyrene, a-methoxyStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, m-bromoStyrene, m-chloroStyrene, m-methylStyrene, m-nitroStyrene, /?-chloroStyrene, o-chloroStyrene, /?-l-(2-hydroxypropyl)Styrene, p-JVyV-dimethylaminoStyrene, p-bromoStyrene, /?-chloroStyrene, p-chloroStyrene, /7-chloroStyrene, /?-chloromethylStyrene,/?-cyanoStyrene, /?-methoxyStyrene, p-methylStyrene,/7-octylamine sulfonate Styrene, p-tert-buty\Styrene, pentachloroSuccinamete, potassium N-vinylSuccinimide, TV-vinylSuccinimide, N-vinylTetrazole, 1-VinylTetrazole, 2-methyl-5-vinylTetrazole, 2-phenyl-5(4/-vinyl) phenylThiophene, 3-vinyl Thioxanthone, 2-(acryloyloxy)Toluenesulfonamide, Af,N-methylvinylTriallyl cyanurate Triallyl isocyanurate Triazole, 1,2,3-, 1-p-bromophenyl4-vinyl Triazole, 1,2,3-, 4(5)-vinylUrea, TV-vinyl-AT'-ethyl-
r\ 0.409 0.504 0.611 0.59 0.6 0.63 0.58 0.64 0.41 0.454 0.464 0.422 0.41 0.314 1.511 1.45 0.44 1.98 0.48 0.38 0.41 0.69 0.345 2.5 0.48 0.55 0.55 0.5 0.42 0.47 0.48 0.512 0.35 0.5 0.46 0.26 0.204 0.4 0.334 0.42 0.43 0.408 0.22 0.29 0.4 0.6 0.44 3.65 1.1 9.94 0.01 7.13 1.026 0.7 0.563 1.36 1.87
±95% 0.02 0.026 0.028
0.072 0.16 0.13 0.16 0.04 0.03 0.04 0.008 0.39 0.02
0.036 0.11
r2 0.485 0.48 0.371 0.62 0.52 0.5 0.55 0.55 0.41 0.472 0.497 0.432 0.57 0.275 0.083 -0.01 2.66 -0.15 0.53 0.36 0.51 0.03 0.46 - 0.02 0.27 0.51 0.6 0.14 0.22 0.48 1.17
±95%
Conv.
Refs.
0.052 0.059 0.055
Y Y Y
0.045 0.11 0.38 0.27 0.04 0.06 0.05
Y Y Y N
0.022 0.04 0.07
Y N N
0.02 0.32
Y Y Y
0.016
Y
0.12
Y
0.15
Y
0.05 0.12 0.026 0.096 0.026 0.075
N Y Y Y Y Y
0.26
Y
751 751 751 753 753 753 753 753 753 824 824 824 835 860 58 58 3 324 1087 1087 1087 985 929 142 265 265 265 532 835 899 256 150 256 222 532 558 380 256 256 150 256 476 756 256 35 256 817 634 7 771 104 693 925 670 583 1000 986 80
0.19
0.486 0.8 1.37 1.34 1 0.101 1.1 0.77 0.89 0.47 0.91 1.41 0.32 0.44 2.6 0.5 0.3 -0.02 0.048 -0.059 0.262 0.486 0.4 0.25 0.5 -1.83
16.12 16.88 0.832
0.56 6.64 0.022
-0.005 -0.49 0.266
0.05 0.94 0.058
Y Y Y
201 201 670
0.839 1.85
0.055 0.23
0.27 -0.008
0.13 0.029
Y Y
670 101
0.022 0.016
0.038
0.85 0.17 0.27 0.031 0.093 0.029
References page II - 290
TABLE 1. cont'd Monomer 1 Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl
Monomer 2 Vinyl 2-chloroethyl ether Vinyl 4-chlorocyclohexyl ketone Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl benzoate Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl butyl ether Vinyl butyrate Vinyl chloride Vinyl chloromethyl ketone Vinyl ether Vinyl ethyl ether Vinyl ethyl ketone Vinyl ethyl oxalate Vinyl ethyl sulfide Vinyl ethyl sulfide Vinyl ethyl sulfoxide Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl isopropyl sulfide Vinyl isothiocyanate Vinyl m-cresyl ether Vinyl methyl sulfide Vinyl o-cresyl ether Vinyl /7-cresyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ketone Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl propionate Vinyl sulfone Vinyl tert-butyl ketone Vinyl, 4-, dithiobenzoate, methyl Vinyl, /?-,benzylmethylcarbinol Vinyl-tris(trimethoxysiloxy)silane Vinylacetophenone, p Vinylanthracene, 9Vinylbenzoic acid, p Vinylbenzyl chloride Vinylene carbonate Vinylferrocene Vinylhydroquinone Vinylhydroquinone dibenzoate Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene cyanide Vinylisocyanate
T1 18.8 0.77 2.71 137.5 26 28.6 22.21 20.3 14.11 17.1 25.1 19.84 25 8.99 0.121 4.9 37 0.42 4.74 1.03 2.7 11.17 0.89 0.985 0.88 0.81 0.54 0.822 0.85 3.3 1 1.8 2.6 11.34 2.8 0.71 0.79 0.85 24 4.5 1.21 0.151 0.24 34 0.33 4.068 0.398 0.46 126 1.22 0.49 0.34 2.6 2.38 2.16 2.5 2.5 2.1 1.8 2.83 1.23 2.77 3.3
±95%
0.25 5.9
0.67 0.88 2.58 2.97 0.021 0.99 0.17 2.95 0.11 0.48 0.01 0.077 0.02 0.22 0.064
5.76 0.6 0.06 0.49 0.11 0.092 0.26 0.36 0.04 0.097 298 0.21 0.02 0.06
0.95 0.06 0.012
r2 0 0.51 -0.2 -0.81 0.03 0.04 0.07 0.07 0.12 0.33 0.052 0.05 0.03 0.07 0.593 -0.15 0.01 0.65 -0.05 0.036 0.3 0.37 0.05 0.021 0.03 1.44 0.6 0.046 0.6 0.2 0.03 0.1 0 0.01 0 0.59 0.06 0.08 0.03 0.1 0.65 0.3 0.98 0.02 1.65 0.117 1.16 1.02 -0.04 0.52 0.02 0.41 0.3 0.36 0.18 0.5 0.34 0.09 0.094 0.19 0.02 0.27 0.01
±95%
Conv.
0.01 1.17
N
0.06
N
0.026 0.074
Y Y N
0.047 0.092 0.16
Y Y Y
0.42 0.44 0.017
Y Y Y
0.06 0.03 0.034 0.02
Y N Y N
0.47 0.025
Y Y
0.32
Y
1.9 0.09
Y N
0.16 0.15 0.29 0.28
Y Y Y Y
3.81 0.043 0.3
Y Y Y
0.85
Y
0.13
Y
0.03 0.18
Y N N
0.032
Y
0.01 0.013
N Y
Refs. 597 668 158 210 272 383 471 272 268 268 34 34 127 272 3 356 45 106 794 124 303 507 286 285 303 336 601 794 303 422 605 106 605 605 172 605 794 239 239 272 45 794 697 48 482 266 123 266 792 103 294 337 440 138 324 324 426 432 538 65 762 762 786 82 422
TABLE 1. cont'd Monomer 1 Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl diphenylsilyl Methacrylate, methylthiomethyl Methacrylate, methylthiomethyl Methacrylate, mono-,ethylene glycol Methacrylate, octyl Methacrylate, octyl Methacrylate, octyl Methacrylate, /?-(cinnamoylamino)phenyl Methacrylate, /?-acetylphenyl Methacrylate,/?-carbomethoxyphenyl Methacrylate, p-chlorophenyl Methacrylate, p-chlorophenyl Methacrylate, /?-methoxyphenyl Methacrylate, p-methoxyphenyl Methacrylate, p-methylphenyl Methacrylate, p-methylphenyl Methacrylate, p-tolyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, potassium Methacrylate, propargyl Methacrylate, propyl Methacrylate, propyl Methacrylate, sodium (2-sulphoxyethyl)Methacrylate, sulfolanyl Methacrylate, sulfolanyl Methacrylate, sufolanyl Methacrylate, f-butyl dimethylsilyl Methacrylate, f-butyl dimethylsilyl Methacrylate, f-butyl diphenylsilyl Methacrylate, terf-butyl Methacrylate, terf-butyl Methacrylate, tetra(2-hydroxypropyl)ethylenediamine Methacrylate, tetra(2-hydroxypropyl)ethylenediamine Methacrylate, tributyltin Methacrylate, tributyltin Methacrylate, tributyltin Methacrylate, tributyltin Methacrylate, tributyltin Methacrylate, tributyltin Methacrylate, triethyltin Methacrylate, trimethyltin Methacrylate, triphenyltin Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid
Monomer 2
rx
Vinylphenyldimethylsilane 29.79 Vinyltrimethylsilane 35.66 Xanthate, 5-methacryloyl O-ethyl 0.76 Methacrylate, methyl 0.38 Methacrylate, methyl 1.1 Styrene 0.512 Acrylonitrile 1.5 Styrene 0.56 Styrene 0.68 Vinyl chloride 14 Styrene 0.31 Methacrylate, methyl 0.67 Styrene 0.178 Methacrylate, methyl 1.08 Styrene 0.243 Methacrylate, methyl 1.19 Styrene 0.244 Styrene 0.225 Styrene 0.185 Methacrylate, methyl 1.28 Acrylonitrile 0.46 Methacrylate, 2-chloroethyl 0.785 Methacrylate, benzyl 1.42 Methacrylate, methyl 1.67 Methacrylate, methyl 1.69 Methacrylate, methyl 1.72 Methacrylate, methyl 1.55 Methacrylate, methyl 0.99 Methacrylic, acid 1.89 Methacrylic, acid 0.589 N-Vinylpyrrolidone 4.17 Styrene 0.48 Styrene 0.55 Styrene 0.51 Acrylonitrile 0.203 Itaconic acid mono(/?-sulfamidoanilide) 1.65 Methacrylate, methyl 1.24 Styrene 0.38 Methacrylic, acid 1.2 Methacrylate methyl 7.16 Methacrylic, acid 0.81 Styrene -0.2 Acrylate, methyl 1.07 Methacrylate, methyl 0.725 Methacrylate, methyl 0.396 Methacrylate, methyl 1.35 Styrene 0.61 Methacrylate, hydroxyethyl 1.44
±95% 1.89 0.85 0.04 0.178 0.356 0.05
r2
0.51 1
-0.009 0.028 0.6 0.438 0.639 0.338 0.19 0.65 0.56 0.04 0.62 0.47 0.482 0.54 0.34 0.72 0.499 0.49 0.223 0.59 0.36 1.02 0.67 0.53 0.58 0.56 0.66 0.55 0.211 0.398 -0.026 0.246 0.247 0.26 0.226 0.58 1.21 0.565 0.78 1.07 0.81 0.2 0.288 0.897 0.636 0.96 0.545 0.606
0.16
0.027 0.022 0.026 0.04 0.039
0.083 0.09
0.17 0.081 0.756 0.23 0.33 0.086 0.02 0.11 0.19 23.7 0.24 2.46 0.21 0.455 0.257
±95%
Conv.
Refs.
Y Y
0.034 0.016 0.08 0.075 0.057 0.01
Y Y Y
0.1
Y
0.084
Y
0.11
Y
0.089 0.25 0.09
Y Y Y
0.21 0.06
Y N
0.018 0.019 0.032 0.049 0.064
Y Y Y Y Y
0.04 0.05
Y
0.081 0.08 2.48 0.03 0.1 0.057 0.05 0.014
Y N N N N Y Y Y
0.054 0.416
Y Y
482 482 1086 1069 920 920 682 179 463 511 685 769 177 769 177 769 177 177 177 769 363 179 32 32 32 32 761 769 88 88 1013 177 179 463 808 957 844 179 745 359 359 359 1069 1069 1069 761 179 996
Methacrylic acid
0.328
0.181
1.56
0.237
Y
996
Methacrylate, 2-ethoxyethyl Methacrylate, 2-hydroxypropyl Methacrylate, cyclohexyl Methacrylate, ethyl Methacrylate, hydroxyethyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Acrylamide Acrylamide Acrylamide Acrylate, butyl
0.2 0.728 0.395 0.299 0.282 0.62 0.87 1.07 0.68 1.63 4.4 0.15 1.25
0.444 0.517 0.428 0.607 0.424
0.53 1.81 0.891 0.601 2.33 0.58 0.62 0.63 0.6 0.57 0.58 0.56 0.31
0.16 0.275 0.136 0.123 0.185
N N N N N
0.1
N
945 945 945 945 945 1082 1082 1082 1082 1028 852 852 187
0.31
References page II - 290
TABLE 1. cont'd Monomer 1 Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic
Monomer 2 acid acid acid acid acid acid acid acid
Methacrylic acid Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic
acid acid acid acid acid
Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic
acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid
Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic
acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid acid
rx
Acrylate, ethyl Acrylic acid, 2-ethyl 1.12 Acrylic acid, 2-ethyl 2.29 Acrylic acid, 2-ethyl 1.14 Acrylonitrile 0.2 Acrylonitrile 2.38 Butadiene, 2-chloro-0.035 Diphenyl sulfone, 0.564 3,3 '-bisitaconimido-m,ra 'Maleimide, 2,3-dimethyl0.746 AH2-methacryl) Methacrylamide 2.73 Methacrylamide 1.55 Methacrylamide 2.006 Methacrylate, 2-hydroxypropyl 0.99 Methacrylate, N-methyl-N-phenyl2.16 2-amino Methacrylate, butyl 0.8 Methacrylate, butyl 0.73 Methacrylate, diethylaminoethyl 0.63 Methacrylate, ethyl 0.57 Methacrylate, glycidyl 0.98 Methacrylate, isopropyl 2.01 Methacrylate, methyl 0.25 Methacrylate, methyl 1.06 Methacrylate, methyl 0.33 Methacrylate, methyl 0.63 Methacrylate, methyl 0.46 Methacrylate, methyl 1.06 Methacrylate, methyl 0.33 Methacrylate, methyl 0.63 Methacrylate, methyl 2.16 Methacrylate, methyl 1.63 Methacrylate, methyl 0.99 Methacrylate, methyl 1.18 Methacrylate, methyl 0.48 Methacrylate, methyl 1.84 Methacrylate, methyl 1.38 Methacrylate, methyl 0.63 Methacrylate, methyl 1.55 Methacrylate, methyl 1.26 Methacrylate, methyl 0.78 Methacrylate, methyl 0.68 Methacrylate, phenyl 0.211 Methacrylate, phenyl 0.398 Methacrylate, sodium (2-sulphoxyethyl)- 0.78 Methacrylate, sulfolanyl 0.81 Methacrylate, tetra(21.56 hydroxypropyl)ethylenediamine Methacrylonitrile 1.74 Methacrylonitrile 0.54 7V-Vinylimidazole 1.384 Phosphonate, vinyl-, diethyl 1.9 Phosphonic acid, a-phenylvinyl1.49 Piperylene, cis0.4 Piperylene, trans0.38 Propene, 2,3-dichloro4 Propene, 2-chloro-3-hydroxy4.5 Pyridine, 2-methy 1-5-vinyl0.43 Pyridine, 2-vinyl0.58 Pyridine, 2-vinyl0.44 Styrene 0.55 Styrene 0.64 Styrene 0.66 Styrene 0.49
±95%
r2
±95%
Conv.
Refs. 1065 1004 1004 961 16 216 259 1042
0.027 0.04
0.26 0.29 0.058 0.032
0.194 0.069 0.23 0.04 0.092 2.52 0.015
0.13 0.06 0.2 0.058
N Y Y Y Y Y Y Y
0.059
1.33
0.1
Y
619
0.28
0.33 1.28 0.2 0.31 0.2
0.25
Y
0.014
Y
0.01
N
190 527 55 886 651
0.12 0.12 1.59
N N Y
0.1
N
0.03 0.01 0.03 0.02 0.03 0.01 0.03 0.02 0.05 0.16 0.23 0.04 0.1 0.05 0.08
N N Y N N N N
0.05
Y
0.17 0.081 0.19 0.24 0.181
Y Y N N Y
0.07 0.32 0.022
N N Y
0.3
Y
0.71
Y
0.02
N
0.04
N
0.132 0.417
0.09 0.18 0.16 0.2 1.47 0.16 0.05 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.28 6.25 0.55 0.19 0.1 0.24 0.27 0.2 0.018 0.019 0.08 0.03 0.237 0.1 3.71 0.034 0.16
0.21 0.66 0.08
1.26 1.15 2.34 0.71 1.2 0.47 0.63 0.1 0.78 0.31 0.27 0.1 0.78 0.32 0.87 1.81 0.56 0.29 1.28 0.77 0.36 1.18 0.55 0.209 1.25 0.48 1.89 0.589 1.2 0.81 0.328 0.64 0.52 0.145 0.15 0.17 0.38 0.33 0 0 0.85 1.69 1.38 0.21 0.22 0.2 0.15
187 224 16 820 224 847 1071 1072 1072 1072 1072 1087 1087 1087 203 210 216 276 276 312 313 313 424 54 630 819 88 88 745 359 996 44 85 879 431 130 773 773 445 445 552 15 498 166 166 203 312
TABLE 1. cont'd Monomer 1 Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic
Monomer 2 acid acid acid acid acid acid acid acid acid acid acid acid acid acid
Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic Methacrylic
acid acid acid acid acid acid
Methacrylic acid Methacrylic anhydride Methacrylic anhydride Methacrylic anhydride Methacrylic anhydride Methacrylic anhydride Methacrylic anhydride Methacrylic anhydride Methacrylic anhydride Methacrylic anhydride Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile
Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene, 3-methyl Styrene, 3-methyl Styrene, 3-methyl Styrene, o-chloroSulfonic acid, o-methacryloylaminobenzeneSulfonic acid, o-methacryloylaminobenzeneSulfonic acid,/7-methacryloylaminobenzeneSulfonic acid, p-methacryloylaminobenzeneVinyl acetate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl, mono-, diethyleneglycol ether Vinylethynyl-4-piperidinol, 1,2,5-trimethyl Vinylidene chloride Acrylate, methyl Allyl chloroacetate Allylurea Methacrylate, methyl Methacrylonitrile Styrene Styrene Vinyl benzyl sulfide Vinyl chloroethyl ether Acenaphthalene Acetylene, phenylAcrolein Acrolein Acrolein, methylAcrolein, methylAcrolein, methylAcrylate, 1,1,5-trihydroperfluoroamyl Acrylate, a-chloro-, ethyl Acrylate, oc-cyano-, methyl Acrylate, oc-phenyl-, methyl Acrylic anhydride Acrylonitrile Allylbenzene Butadiene Ethylene 1,1-diphenylFumarate, diisopropyl Itaconate, dimethyl Methacrylate, butyl Methacrylate, ethyl Methacrylate, isobutyl Methacrylate, isopropyl Methacrylate, octyl Methacrylic acid Methacrylic acid Methacrylic anhydride Phosphonic acid, a-phenylvinyl-
rx 0.56 0.28 0.602 0.85 0.631 0.6 0.44 0.39 0.12 0.35 0.18 0.51 0.622 0.203
±95%
±95%
Conv.
Refs.
0.04
N
0.092
Y
0.146 0.249 0.089 0.199 0.118 0.08 0.02 0.01 0.058 0.067
0.2 0.38 0.124 0.17 0.041 0.067 0.627 0.55 0.221 0.06 0.33 0.42 0.101 0.217
0.03 0.046 0.031 0.06 0.048 0.03 0.02 0.01 0.034 0.122
Y Y Y Y Y
Y Y
313 313 47 812 842 842 842 842 842 1087 1087 1087 6 1006
0.188
0.076
0.523
0.195
Y
1006
0.156
0.081
1.08
0.338
Y
1006
0.155
0.052
1.65
0.27
Y
1006
0.008 0.02
Y Y
0.047
Y
0.13 0.17 0.02 0.06 0.01
Y Y N N N
0.033
Y Y
0.12
N
0.07
N
0.01
N
0.13 0.04 0.03 0.15 0.11
N N Y Y N
0.07 0.05 0.05 0.12 0.05 0.1 3.71 0.18
N N N N N N N N
0.2 23.52 23.26 9.05 0 0.4 3.368 4.75 29.76 29.01 1.58 1.45 0.27 0.33 0.97 0.15 0.78 1.17 1.2 0.41 0.45 0.45 1.03 0.45 0.18 0.19 0.42 1.67 16.24 0.053 0.48 85 1.26 0.56 0.46 0.74 0.43 0.75 0.64 0.52 0.26 2.24
0.19
r2
0.088
0.98 0.96
0.098 13 18.48 0.06 0.18 0.02 0.27
0.05 0.01
0.01 0.04 0.12 1.36 0.016 0.1 0.15 0.04 0.07 0.08 0.04 0.07 0.32 0.06
0.01 0.064 -0.022 0.07 2.2 0.05 0.154 0.16 -0.01 -0.06 0.22 0.26 0.13 0.1 - 0.048 2.38 0.04 0.68 0.72 1.78 1.25 1.25 0.14 2 0.15 0.25 1 0.43 -0.061 0.39 -0.45 0 0.28 0.75 0.83 0.68 0.94 0.61 1.74 0.54 1.45 0
377 135 229 46 831 734 6 275 106 106 275 219 219 275 106 106 575 648 208 446 208 587 589 809 638 143 143 219 198 351 257 143 1038 398 44 44 44 44 44 44 85 219 590
References page II - 290
Next Page TABLE 1.
cont'd
Monomer 1 Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylophenone, aMethacrylophenone, aMethacryloxymethylpentamethyldisiloxane Methacryloxypropyltrimethoxysilane Methacryloyl chloride Methacryloyl chloride Methacryloyl chloride Methacryloyl chloride Methacryloyl chloride Methacryloyl fluoride Methacryloyl fluoride Methacryloyl fluoride Methacryloyl fluoride, perfluoroMethacryloyl isocyanate Methacryloyl-P-hydroxyethyl3,5-dinitrobenzoate Methacryloyl-P-hydroxyethyl3,5-dinitrobenzoate Methacryloyl-P-hydroxyethyl3,5-dinitrobenzoate Methacryloylacetone Methacryloylacetone Methacryloylacetone Methacryloyloxy, 2-benzoate methyl Methacryloyloxy, 2-benzoate methyl Methacryloyloxy, 2-benzoic acid methyl Methacryloyloxy, 2-benzoic acid Methacryloyloxy, 4-,2,2,6,6-tetramethylpiperidine Methacryloyloxy-, o-, benzoic acid Methacryloyloxy-, o-, benzoic acid Methylenebutyrolactone Methylenebutyrolactone Methylenebutyrolactone Methylenebutyrolactone Methyleneglutaronitrile, 2Methyleneglutaronitrile, 2Methyleneglutaronitrile, 2Methyleneglutaronitrile, 2Methyleneglutaronitrile, 2Methyleneglutaronitrile, 2Methyleneglutaronitrile, 2Myrcene Myrcene Myrcene N-N-Divinylaniline N-TV-Divinylaniline JV-JV-Divinylaniline N-N-Divinylaniline TV-N-Divinylaniline
Monomer 2
rx
Styrene Styrene Styrene Styrene Styrene Styrene Styrene, oc-methoxyStyrene, a-methylStyrene, ochloroVinyl acetate Vinyl cinnamate Vinylidene chloride Vinylidene chloride Methacrylate, methyl Methacrylate, methyl Methacrylate, 2-hydroxyethyl Styrene Acrylonitrile Methacrylate, methyl Methacrylate, methyl Pyrrolidone, N-vinylVinyl chloride Methacrylate, methyl Methacrylate, methyl Styrene Vinylidene fluoride Methacrylate, methyl Acrylate, Af-(2-hydroxyethyl)carbazolyl
0.41 0.42 0.28 0.21 0.25 0.21 0.83 0.21 0.86 12 4.6 2.43 2.38 0.11 0.119 0.33 0.58 2.8 0.2 0.2 0.58 2 0.43 0.9 0.164 0.02 0.35 0.08
Acrylate, N-(2-hydroxyethyl)carbazolyl Methacrylate, N-ethyl-3-hydroxymethylcarbazolyl Acrylonitrile Pyrrolidone, TV-vinylStyrene Methacrylate, N-methyl-JV-phenyl2-amino ethyl Styrene Methacrylate, Af-methyl-7V-phenyl2-amino ethyl Styrene Styrene Methacrylate, methyl Vinylchloride Acrylamide Acrylonitrile Methacrylate, methyl Styrene Butadiene Methacrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Vinyl methyl ketone Methacrylate, methyl Styrene Styrene/7-fluoroAcrylonitrile Methacrylate, methyl Styrene Styrene, p-methylVinyl acetate
±95%
r2
±95%
Conv.
Refs.
0.026
0.37 0.38 0.43 0.34 0.25 0.34 - 0.02 0.15 0.78 0.01 0.15 0.3 0.36 1.79 1.74 0.97 0.36 0.35 0.45 0.45 0.05 0.3 0.405 0.53 0.069 7.6 0.75 1.04
1.364
0.018
0.334
0.022
Y
719
0.554
0.019
0.729
0.051
Y
701
3.74 5.66 1.66 1.11
0.22 0.4 0.16 0.18
0.01 0.008 0.067 0.55
0.004 0.004 0.007 0.04
Y Y Y N
339 339 339 651
0.48 2.6
0.02 0.08
0.27 0.2
0.04 0.01
N N
651 651
1.17 0.32
0.03
0.15 0.6
0.04
N
651 687
1.37 11.26 2.85 1.1 1.67 0.7
0.64 3.5
0.908 0.004 0.3 0.09 0.6 0.09
0.252 0.052
Y Y
0.12 0.12 -0.02 0.02 0.25 1.24 0.448 1.38 0.87 -0.006 0.005 0.033 0.06 3.99
0.74
1.36 1.27 0.42 0.5 0.85 5.05 0.256 0.891 0.362 0.246 1.06 5.38 6.15 0.058
0.28
N N
0.52
N
0.013 0.015 0.022 0.014 0.18 0.36 0.16 0.009
Y Y Y Y Y Y Y Y
938 938 746 745 746 746 196 196 196 196 196 512 512 1062 1062 1062 45 45 45 45 45
0.04
0.1 0.05 0.02 0.009
0.12 0.16 0.045
1.3
0.06 0.081 0.143 0.07 0.018 0.067 0.03 0.12
0.005
N
0.1 0.05 0.07 0.22
N N N Y
0.037 0.06 0.014
Y N Y
0.14
Y
311 311 542 707 75 835 143 542 44 75 200 781 781 798 798 822 951 580 591 593 599 432 617 660 660 669 944 702
Previous Page
TABLE 1. cont'd Monomer 1 JV-Vinylimidazole N-Vinylimidazole Af-Vinylimidazole N-Vinylimidazole N-Vinylimidazole N-Vinylimidazole N-Vinylimidazole N-Vinylimidazole Af-Vinylimidazole Af-Vinylimidazole W-Vinylimidazole N-Vinylpyrolidone AT-Vinylpyrolidone Af-Vinylpyrrolidone Af-Vinylpyrrolidone N-Vinylpyrrolidone N-Vinylpyrrolidone Af-Vinylpyrrolidone AT-Vinylpyrrolidone N-Vinylpyrrolidone N-Vinylpyrrolidone N-Vinylpyrrolidone Af-Vinylpyrrolidone N-Vinylpyrrolidone JV-Vinylpyrrolidone N-Vinylpyrrolidone N-Vinylpyrrolidone N-Vinylpyrrolidone N-Vinylpyrrolidone N-Vinylpyrrolidone Af-Vinylpyrrolidone Af-Vinylpyrrolidone Af-Vinylpyrrolidone Naphthalene, 1-vinylNaphthalene, 1-vinylNaphthalene, 1-vinylNaphthalene, l-vinyl-4-chloroNaphthalene, 2-vinylNaphthalene, 2-vinyl-6-chloroNaphthalene, 6-vinyl-2-tert-butyl Nickel diacrylate Norbornadiene Norbornadiene Norbornadiene Norbornadiene Norbornadiene Norbornadiene Norbornadiene Norbornadiene OcM-ene, 4,8-dioxaspiro(2.5)Oct-1-ene, 6,6-dimethyl4,8-dioxaspiro(2.5)Oct-1-ene, 6,6-dimethyl4,8-dioxaspiro(2.5)Oct-1-ene, 6,6-dimethyl4,8-dioxaspiro(2.5)Oct-1-ene, 6,6-dimethyl4,8-dioxaspiro(2.5)Octene-1 Oxazinium F3CSO3, 3-methyl-2-vinyl5,6-dihydro-4H-l,3-
Monomer 2
rx
±95%
r2
±95%
Acrylic acid 0.187 Acrylonitrile 0.832 Fumarate, diethyl 0.113 Fumarate, dimethyl 0.133 Fumaric acid 0.121 Maleate, diethyl 0.057 Maleate, dimethyl 0.046 Maleic acid 0.018 Methacrylate, methyl 0.663 Methacrylic acid 0.145 Styrene 0.68 Caprolactam, N-vinyl2.8 Crotonate, hydrocortisone 210.75 2-Oxazoline, 2-isopropenyl0.01 Acrylamido-2-methylpropane sulfonate 0.13 sodium salt Acrylate, cyclohexyl 0.122 Carbamate, N-vinyl-f-butyl0.4 Ethene, 2-phenyl-l,l-dicyanoItaconate, bis(tri-rc-butyltin) 0.21 Methacrylate, 2-acetylsalicylicoyloxy0.34 3-hydroxypropyl Methacrylate, furfuryl 0.0036 Methacrylate, glycidyl 0.003 Methacrylate, methyl 0.006 Methacrylate, methyl 0.014 Methacrylate, methyl 0.027 Methacrylate, methyl 0.066 Methacrylate, phenyl -0.026 Pyridine, 2-methyl-5-vinyl0.039 Pyridine, 2-vinyl0.014 Pyridine, 4-vinyl0.01 Quinine 2.2 Styrene sulfonate, sodium salt 0.084 Vinyl trimethylammonioethyl ether 11.6 iodide Acrylonitrile 0.451 Methacrylate, methyl 0.574 Styrene 2.02 Styrene 0.75 Styrene 1.345 Styrene 2.44 Styrene 1.014 Titanium, dicylopentadienyl-, 0.95 dimethacrylate Acrylate, ethyl -0.01 Acrylonitrile 0.05 Acrylonitrile 0.44 Methacrylate, methyl -0.5 Styrene, p-chloro0 Vinyl acetate 1.354 Vinyl chloride 0.41 Vinylidene chloride 0.09 Styrene 0.246 Acrylonitrile 1.484
0.025 0.044 0.019 0.021 0.01 0.028 0.046 0.007 0.104 0.022 0.02 0.2 0.02 0.02
1.932 3.393 0.191 0.252 0.313 0.106 0.046 0.094 4.306 1.384 8.377 1.7 0.05 3.5 0.66
0.077 0.008 0.022 0.015 0.012 0.147 0.438 0.027 0.185 0.034 0.149 0.2 0.05 1.2
0.014 0.06
1.297 2.4
0.088 0.5
0.013
0.065 0.85
0.04
Pyridine, 2-vinyl-
0.02 0.018 2.29 0.899 0.062 3.96 0.032 0.006 0.002 0.002 0.03
5.16 4.29 4.78 5.93 2.07 4.04 4.17 13 12.4 9.8 0.37 7.19 0
1.13 0.498 0.236 0.198 0.247 0.956 0.756 2 2.3 1.5
Conv.
Refs.
Y Y Y Y Y Y Y Y Y Y Y
879 879 879 879 879 879 879 879 879 879 879 883 1022 894 939
Y Y Y
Y
0.02
1061 991 947 941 1080 1050 1017 1084 1084 1084 1084 1013 1070 1070 1070 922 939 1037
0.088 0.073 0.401 0.45 0.093 1.38 0.244
0.107 0.321 0.699 0.76 0.395 0.39 0.616 0.65
0.028 0.096 0.233 0.68 0.049 0.6 0.069
0.03 0.23 0.05 0.52 0.12 0.07 0.01 0.17 0.024 1.078
2.39 0.48 0.66 14.68 69.93 0.818 0.67 1.36 1.831 0.985
0.44 0.27 0.01 16.78 24.19 0.019 0.02 0.63 0.027 0.675
N N N N Y Y N N Y Y
267 267 69 267 188 188 267 267 838 838
0.073
0.04
2.216
0.062
Y
838
Pyrrolidone, Af-vinyl-
0.552
0.075
-0.009
0.018
Y
838
Styrene
0.271
0.109
1.93
0.098
Y
838
0.85
3.26 0.37
0.45
N
329 909
Vinyl chloride Methacrylate, methyl
-0.57 0.31
967 967 967 806 806 806 806 895
ReferencespageII-290
TABLE 1. cont'd Monomer 1 Oxazolidone, N-vinylOxazolidone, N-vinylOxazolidone, N-vinylOxazolidone, N-vinylOxazolidone, TV-vinylOxazolidone, N-vinylOxazolidone, JV-vinylOxazolidone, N-vinylOxazoline, 2-, 2-isopropenylOxazoline, 2-, 2-isopropenylOxazoline, 2-, 2-isopropenylOxazoline, 2-, 2-isopropenylOxazoline, 2-, 2-isopropenylOxazoline, 2-, 2-isopropenylOxazoline, 2-, 2-isopropenylOxazoline, 2-, 2-isopropenylOxazoline, 2-, 2-isopropenylOxazoline, 2-, 2-isopropenyl4,4-dimethylOxazoline, 2-, 2-isopropenyl4,4-dimethylOxazoline, 2-, 2-isopropenyl4,4-dimethylOxazoline, 2-, 2-isopropenyl4,4-dimethylOxazoline, 2-, 4-acryloxymethyl2,4-dimethylOxazoline, 2-, 4-acryloxymethyl2,4-dimethylOxazoline, 2-, 4-acryloxymethyl2,4-dimethylOxazoline, 2-, 4-acryloxymethyl2,4-dimethylOxazoline, 2-, 4-methacryloxy2,4-dimethylOxazoline, 2-, 4-methacryloxy2,4-dimethylOxazoline, 2-, 4-methacryloxy2,4-dimethylOxazoline, 2-, 4-methacryloxy2,4-dimethylOxazoline, 2-isopropenyl-2Oxazoline, 2-isopropenyl-2Oxazoline, 2-isopropenyl-2Oxazoline, 2-isopropenyl-2Oxazoline, 2-isopropenyl-2Oxazoline, 2-isopropenyl-2Oxazoline, 2-isopropenyl-2Oxazoline, 2-isopropenyl-2Oxazolinium BF4, 3-methyl2-isopropenyl-2Oxazolinium BF4, 3-methyl2-isopropenyl-2Oxazolinium, 2-, tetrafluoroborate 3-methyl-2-isopropenylOxazolinium, 2-, tetrafluoroborate 3-methyl-2-isopropenylOxazolinium, 2-isopropenyl-2Oxirane, 4-vinylphenylPentadiene, cis-1,3Pentadiene, cis-1,3Pentadiene, cis-1,3Pentadiene, cis-1,3Pentadiene, cis-1,3Pentadiene, cis-1,3-
Monomer 2 Methacrylate, decyl Methacrylate, methyl Methacrylate, methyl Styrene Vinyl acetate Vinyl acetate Vinyl chloride Vinylidene chloride Acrylate, butyl Acrylate, ethyl Acrylate, methyl Acrylate, methyl Acrylonitrile Methacrylate, methyl Pyrrolidone, N-vinylStyrene Vinyl acetate Acrylate, methyl
T1 -0.052 0.04 0.027 -0.029 1.55 2.04 0.822 0.091 1.4 1.39 1.9 2.07 0.52 0.99 3.5 0.64 7.1 1.3
±95% 0.049 0.13 0.008 0.014 0.28 0.13 0.048 0.077
0.191
r2 12.19 6.75 9.46 29.42 0.602 0.55 0.313 1.42 0.24 0.19 0.16 0.328 0.13 0.69 0.01 0.67 0.25 0.46
±95%
Conv.
Refs.
1.35 0.37 0.39 2.19 0.038 0.18 0.095 0.11
Y Y Y Y Y Y Y Y
0.032
Y
36 102 36 36 102 36 36 102 862 862 862 877 862 862 862 862 862 596
Acrylonitrile
1.83
0.24
596
Methacrylate, methyl
0.82
0.53
596
Styrene
0.68
0.55
596
Acrylate, methyl
0.11
0.29
596
Methacrylate, methyl
0.11
0.41
596
Styrene
0.14
0.56
596
Vinyl acetate
1.41
0.03
596
Acrylate, methyl
0.56
0.4
596
Acrylonitrile
0.89
0.11
596
Methacrylate, methyl
0.19
1.17
596
Vinyl acetate
6.2
0.05
596
Acrylate, butyl Acrylate, ethyl Acrylate, methyl Acrylonitrile Methacrylate, methyl 7V-Vinylpyrrolidone Styrene Vinyl acetate Acrylate, methyl
1.4 1.39 1.9 0.52 0.99 3.5 0.64 7.1 0.251
0.08 0.06 0.08 0.06 0.07 1.2 0.03 2 0.483
0.24 0.19 0.16 0.13 0.69 0.01 0.67 0.25 0.096
0.01 0.02 0.04 0.04 0.02 0.02 0.02 0.04 0.057
Y
894 894 894 894 894 894 894 894 908
Vinyl acetate
0.413
0.005
0.114
0.021
Y
908
Acrylate, methyl
0.344
0.105
0.552
0.043
Y
877
Vinyl acetate
0.366
0.151
0.43
0.057
Y
877
Acrylate methyl Styrene Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile
2.08 1.06 0.172 0.241 0.017 0.071 0.198 0.188
0.327
0.191 0.78 0.026 0.06 0.026 0.06 0.056 0.033
0.031
Y
0.018 0.071 0.173 0.242
Y Y Y Y
0.017
N
908 1001 867 867 912 912 952 997
0.012 0.029 0.012 0.029 0.011
TABLE 1. cont'd Monomer 1 Pentadiene, cis-1,3Pentadiene, cis-1,3Pentadiene, trans-1,3Pentadiene, trans-1,3Pentadiene, trans-1,3Pentadiene, trans-1,3Pentadiene, trans-1,3Pentadiene, trans-1,3Pentadiene, trans-1,3Pentadiene, trans-1,3Pentadiene, trans-1,3Pentadienoate, frarcs-4-ethoxy-2,4-,ethyl Pentadienoate, frarcs-4-ethoxy-2,4-,ethyl Pentadienoate, trans-4-ethoxy-2,4Penten-2,4-one Pentene-1 Pentene-1 Pentene-1, 2-methylPentene-1, 5-cyclohexylPentene-1, 5-phenylPentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-OXO-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-OXO-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Pentenoate, 4-methyl-3-oxo-4-, ethyl Phenol, 3-(methacryloylamino)Phenol, 4-(methacryloylamino)Phosphate diethyl isopropenyl Phosphate diethyl isopropenyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl
Monomer 2 Butadiene Pentadiene, trans-1,3Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Butadiene Methacrylate, methyl Pentadiene, cis-1,3Styrene Acrylonitrile Styrene Styrene Vinyl chloride Vinyl chloride Vinyl chloride Acrylonitrile Acrylonitrile Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Styrene Acrylonitrile Vinyl acetate Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Styrene Styrene Styrene
T1 0.26 0.86 0.104 0.095 0.018 0.064 0.132 0.114 0.09 0.379 0.37 12.2 5.4 11.8 -0.033 0.001 0.81 -1.16 -0.043 -0.026 3.29 1.57 1.29 1.4 0.923 0.747 0.635 1.12 0.568 3.39 2.02 3.06 1.67 1.24 1.72 1.69 0.72 1.55 1.09 2.56 0.748 1.14 0.952 1.67 1.04 1.05 0.725 1.09 0.99 0.86 0.03 0.44 0.486 0.521 0.946 1.16 0.42 0.258 0.0701 0.171 0.15 0.146 0.168 0.094 0.23
±95%
0.01 0.021 0.01 0.02 0.009 0.013
0.055 5.2 2.31 0.044 0.046 0.712 0.193 0.309 0.322 0.075 0.073 0.068 0.112 0.035 0.263 0.141 0.349 0.183 0.168 0.123 0.236 0.12 0.224 0.09 0.218 0.155 0.109 0.164 0.143 0.111 0.108 0.08 0.09 0.04 0.03 0.088 0.138 0.436 0.248 0.097 0.226 0.052 0.01 0.05 0.073 0.355 0.02 0.187
r2 0.63 0.37 0.07 0.06 0.069 0.068 0.085 0.079 1.22 0.404 0.86 0.04 0.01 0.08 13.84 4 2.08 1.59 4.22 3.84 0.233 0.161 0.215 0.189 0.179 0.164 0.162 0.178 0.217 0.555 0.424 0.591 0.443 0.34 0.57 0.606 0.269 0.715 0.528 0.597 0.38 0.513 0.43 0.474 0.581 0.616 0.663 0.528 0.5 0.71 15.2 1.56 2.37 2.23 1.87 1.97 2.1 2.56 2.04 0.629 0.612 0.595 0.597 0.633 0.61
±95%
Conv.
0.017 0.064 0.104 0.096
Y Y Y Y
0.018
N
0.038
Y
0.57
Y
1.78 0.68 0.45 0.48 0.069 0.028 0.051 0.05 0.014 0.015 0.015 0.02 0.009 0.032 0.022 0.046 0.032 0.031 0.023 0.045 0.027 0.048 0.02 0.03 0.034 0.022 0.034 0.023 0.025 0.024 0.023 0.02 0.06 0.04
N N N Y N N N N N N N N N N N N N N N N N N N N N N N N N N N N
0.046 0.047 0.086 0.029 0.045 0.094 0.012 0.003 0.004 0.005 0.044 0.002 0.018
N N N N N N N N N N N N N
Refs. 743 743 867 867 912 912 952 997 743 1058 743 723 723 723 112 3 329 329 24 24 930 930 930 930 930 930 930 930 930 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 1033 896 896 650 650 971 971 971 971 971 971 971 971 971 971 971 971 971
References page II - 290
TABLE 1. cont'd Monomer 1 Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, vinyl bis(chloroethyl) Phosphate, vinyl diethyl Phosphate, vinyl diethyl Phosphate, vinyl diphenyl Phosphate, vinyl diphenyl Phosphazene, isopropenylpentafluoroPhosphazene, isopropenylpentafluoroPhosphine oxide, diphenylvinylPhosphine oxide, diphenylvinylPhosphonate, 2-(4-vinylphenyl)ethyl, diethyl Phosphonate, 4-vinylphenyl, diethyl Phosphonate, a-bromovinyl-, diethyl Phosphonate, a-carboethoxyvinyl-, diethyl Phosphonate, a-carboethoxy vinyl-, diethyl Phosphonate, a-carboethoxy vinyl-, diethyl Phosphonate, isopropenyl-, dimethyl Phosphonate, isopropenyl-, dimethyl Phosphonate, isopropenyl-, dimethyl Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, dibutyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diisobutyl Phosphonate, vinyl-, diisobutyl Phosphonate, vinyl-, diisopropyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, diphenyl Phosphonate, vinyl-, diphenyl Phosphonate, vinyl-, dipropyl Phosphonic acid, a-phenylvinyl Phosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinylPhosphonic acid, a-phenylvinyl-
Monomer 2
r\
Styrene Styrene Vinyl chloride Vinyl chloroacetate Vinyl chloride Vinyl chloroacetate Styrene Styrene, p-chloromethylAcrylonitrile Vinyl acetate Styrene
0.108 0.03 0.15 0.374 0.327 0.53 -0.121 —0.048 0.16 1.7 1.36
Styrene Methacrylate, methyl Methacrylate, methyl Phosphonate, vinyl-, diethyl Methacrylate, methyl Methacrylate, methyl Styrene Vinyl acetate Ethylene Methacrylate, methyl Styrene Styrene Styrene Styrene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Styrene Methacrylate, methyl Methacrylic acid Phosphonate, a-carbomethoxyvinyl-, diethyl Styrene Styrene Styrene Styrene Vinyl acetate Vinyl acetate Ethylene Styrene Styrene Butadiene, 2-chloroStyrene Styrene Styrene Styrene Vinyl acetate Vinyl acetate Ethylene Styrene Styrene Vinylidene cyanide Acrylic acid Acrylonitrile Acrylonitrile Butadiene, 2,3-dichloroButadiene, 2,3-dichloroButadiene, 2-chloroButadiene, 2-chloroMethacrylate, methyl Methacrylic acid Methacrylonitrile
1.4 0.04 0.05 0.55 0.01 0.2 0.23 0.99 7.73 0.26 0.02 0.16 0.2 0.18 0.18 0.85 0.85 0.47 -0.12 0.04 0.15 0.62
±95% 0.034 0.23 0.047 0.046 0.023 0.12 0.088 0.067
2.19 0.39
2.33
r2 0.599 2.47 3.4 2.01 3.009 1.42 1.6 1.64 3.8 0.38 0.55 0.7 1.25 1 0.62 4.7 30 8.6 0.14 0.077 29.9 2.46 2.3 2.2 6.32 6.32 0.09 0.09 0.33 4.97 11.1 1.9 0.55
±95% 0.002 0.78 0.21 0.2 0.077 0.15 0.27 0.58
Conv.
Refs.
N Y Y Y Y Y Y Y
971 133 779 779 779 779 765 765 843 843 796
0.003
Y
0.43
Y
3.44
Y
-0.15 -0.52 0.02 0 0.74 0.6
2.18 0.22
4.36 1.59 2.45 3.88 0.04 0.09
4.27 0.24
Y Y
-0.32 -0.52 0.1
1.46 2.52
3.87 2.57 7.5
1.59 2.13
Y Y Y Y
0.4 0.15 0.02 0.74 0.74 1.66 -0.38 -0.41 0.1 0.04 -0.45 0 0.07 0.07 0.1 0.1 -0.063 0.17 0
2.22 0.29 0.72 0.83 0.41
0.077 0.3
4.61 2.45 2.45 0.04 0.04 0.088 1.74 3.81 4.58 0.7 0.34 2.36 7.75 7.75 7.5 7.5 1.362 1.49 2.24
0.01 0.16 0.68
Y Y Y
0.13 0.12
Y Y
0.084 0.16
Y Y
796 684 684 684 684 684 684 684 801 410 133 410 485 592 594 592 594 595 129 684 431 684 129 18 592 684 592 684 801 129 129 594 129 129 592 594 592 594 801 129 129 921 132 132 590 588 597 546 597 131 130 590
TABLE 1. cont'd Monomer 1 Phthalide, 3-(4-vinylphenyl)Phthalimide, N-(4-vinylphenyl)Phthalimide, Af-(methacryloyloxy)Phthalimide, AKmethacryloyloxy)Phthalimide, AA-(methacryloyloxy)Phthalimide, N-vinylPhthalimide, TV-vinylPhthalimide, N-vinylPinene Pinene, aPiperidinol, 4-, A/-methyl-4-(vinylethynyl)Piperylene, cisPiperylene, transPropanesulfonate, 3-[diethyl[2-(2-methacroyloxyethoxy)ethyl Propene, 3,3,3-trichloroPropene, 3,3,3-trichloroPropene, 3,3,3-trichloroPropene, 1-chloro-cwPropene, 1-chloro-cwPropene, 1-chloro-cwPropene, 1-chloro-cwPropene, \-ch\oxo-transPropene, \-ch\oxo-transPropene, \-c\\\oxo-transPropene, \-c\\\oxo-transPropene, 2,3-dichloroPropene, 2,3-dichloroPropene, 2,3-dichloroPropene, 2,3-dichloroPropene, 2,3-dichloroPropene, 2-chloroPropene, 2-chloroPropene, 2-chloroPropene, 2-chloroPropene, 2-chloroPropene, 2-chloro-3-hydroxyPropene, 2-chloro-3-hydroxyPropene, 2~chloro-3-hydroxyPropene, 3-chloro-2-chloromethylPropenyl methyl ketone Propenyl, 2-, acetate Propenyl, 2-chloro-, acetate Propenyl, 2-chloro-, acetate Propenyl, 2-chloro-, acetate Propenyl, 2-chloro-, acetate Propenyl, 2-chloro-, acetate Propenyl, 2-methyl-, acetate Propenyl, 2-chloro-, acetate Propenyl, 2-methyl-, acetate Propenyltriethoxysilane Propiolactam, A^-phenyl-a-methylenePropionate, vinyl Propylene Propylene Propylene Propylene Propylene Propylene Propylene Propylene Propylene Pyrazole, 3-methyl-l-vinylPyrazole, 5-methyl-l-vinylPyrazole, N-vinyl-3,5-dimethyl-
Monomer 2 Acrylonitrile Acrylate, methyl Acrylate, methyl Acrylonitrile Methacrylate, methyl Acrylonitrile Maleic anhydride Styrene Acrylonitrile Methacrylate, methyl Maleimide Methacrylic acid Methacrylic acid Acrylate, ethyl Acrylonitrile Styrene Vinyl acetate Acrylonitrile Maleic anhydride Vinyl acetate Vinyl chloride Acrylonitrile Maleic anhydride Vinyl acetate Vinyl chloride Carbazole, TV-vinylMethacrylate, methyl Methacrylic acid Styrene Styrene Acrylonitrile Vinyl acetate Vinyl chloride Vinyl chloride Vinylidene cyanide Methacrylate, methyl Methacrylic acid Styrene Styrene Styrene Vinyl chloride Acrylate, methyl Acrylic acid Methacrylate, methyl Styrene Vinyl chloride Methacrylate, methyl Styrene Vinylidene chloride Vinyl chloride Styrene Ethylene, chlorotrifluoroAcrylic acid Ethylene Ethylene Ethylene, chlorotrifluoroVinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Pyrazole, 5-methyl-l-vinylPyrazole, 3-methyl-l-vinylStyrene
rx 0.43 1.56 1.23 1.45 1.45 0.24 0.344 0.07 13.5 0.08 2.05 0.38 0.33 0.19 0.1 0 0.19 -0.12 -0.022 -0.012 0.1 0.01 0.05 0.011 0.33 0 0.18 0 0.05 0.036 -0.023 1.65 4.75 0.58 0.001 0 0 0 0.01 0.08 0.25 0 0 0 0 0 0 0 0 0.406 0.63
±95% 0.19 0.168 0.072 0.151 0.02 0.061 0.11 0.1 0.03
0.02
0.19 0.08 0.061 0.63 0.17 0.015 0.074 0.4 0.1 0.01 0.062 0.36 5.12 0.003
0.1 0.3
0.106 0.04
r2 0.084 1.14 0.193 0.204 0.69 0.43 0.008 6.27 0.07 10 0.49 0.4 0.38 3.97 12.2 6.9 0.19 23.37 0.347 7.08 11.52 19.61 0.28 3.13 4.45 1 6.02 4 3.51 3 1.164 0.186 0.095 0.75 0.204 4.4 4.5 12.5 3.37 18.12 2.2 0.7 1 1 4.1 0.7 10 71 2.4 0.626 0.08
±95%
Conv.
Refs.
0.053
Y
0.028 0.016 0.048 0.01 0.012 0.66 0.01
Y Y Y
721 636 979 979 979 1046 284 163 936 848 948 773 773 962
Y Y
0.01
1.03
Y
2.99 0.082 0.35 2.14 1.72 0.012 0.15 0.81
Y Y Y Y Y Y Y Y
1.66
N
0.18
N
0.053 0.091 0.085
Y Y Y
0.079
Y
0.73 6.09
0.025 0.01
Y Y Y
0.62 0.08 0.196 3.1 -0.02 0.09 0.42 1.35 0.049
0.07 0.023 0.21 0.04
0.011
3.43 3.2 0.02 2.35 -0.05 5.16 2.45 2.9 1.35 0.42 8.663
0.08 0.14 0.1 0.06
0.196
N Y N N
402 402 402 181 181 181 181 181 181 181 181 376 11 445 11 983 181 181 181 517 82 445 445 445 806 806 189 445 445 445 445 445 470 470 470 237 1002 1097 183 388 477 318 155 329 355 560 588 898 898 806
References page II - 290
TABLE 1. cont'd Monomer 1 Pyridazinone, 3-(2-vinyl)-6-methylPyridazinone, 3-(2-vinyl)-6-methylPyridazinone, 3-(2-vinyl)-6-methylPyridazinone, 3-(2-vinyl)-6-methyl4,5-dihydroPyridazinone, 3-(2-vinyl)-6-methyl4,5-dihydroPyridazinone, 3-(2-vinyl)-6-methyl4,5-dihydroPyridazone, 2-vinyl-3Pyridazone, 2-vinyl-3Pyridazone, 2-vinyl-6-methyl-3Pyridazone, 2-vinyl-6-methyl-3Pyridazone, 2-vinyl-6-methyl-4,5-benz-3Pyridazone, 2-vinyl-6-methyl-4,5-benz-3Pyridazone, 2-vinyl-6-phenyl-3Pyridazone, 2-vinyl-6-phenyl-3Pyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methy 1-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinyl-
Monomer 2
T1
±95%
r2
±95%
Conv.
Refs.
Acrylonitrile Methacrylate, methyl Styrene Acrylonitrile
0.19 0.56 0.85 0.02
0.04 0.04 0.05 0.02
0.32 0.86 0.9 0.74
0.02 0.02 0.03 0.02
N N N N
340 340 340 340
Methacrylate, methyl
0.08
0.03
1.19
0.04
N
340
Styrene
0.13
0.03
5.92
0.1
N
340
Methacrylate, methyl Styrene Methacrylate, methyl Styrene Methacrylate, methyl Styrene Methacrylate, methyl Styrene Acrylate, methyl Acrylonitrile Butadiene Butadiene Butadiene Caprolactam, N-vinylCaprolactam, Af-vinylItaconate, diethyl Itaconate, dimethyl Methacrylate, methyl Methacrylic acid N-Vinylpyrrolidone Styrene Styrene Styrene Styrene Sulfonic acid, o-methacryloylaminobenzeneSulfonic acid, p-methacryloylaminobenzeneVinyl acetate Acetylene, phenylAcrolein Acrylate, butyl Acrylate, butyl Acrylate, ethyl Acrylate, ethyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylonitrile Acrylonitrile Butadiene, 1,4-dicarboxylate-, diethyl Butadiene, 1-carboxylate, ethyl Butadiene, 2-chloroCaprolactam, N-vinylCaprolactam, N-vinylIsoprene Isoprene Methacrylate, 2-hydroxyethyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylic acid Methacrylic acid N-Vinylpyrrolidone
1.56 0.43 0.3 1.2 0.27 0.24 0.49 1.45 1 0.31 0.47 0.72 0.41 11.58 11.58 0.51 0.88 0.54 0.85 13 0.75 0.68 1.2 0.78 -0.002 -0.054
0.03 0.031
0.63 0.53 0.16 0.9 1.65 0.7 0.58 0.51 0.18 0.16 0.61 1.32 1.29 0.04 0.04 0.17 0.22 0.42 0.43 0.039 0.74 0.6 0.72 0.73 1.83
0.048
2.72
0.3 0.02 0.02
0.19 2 0.08
9 -0.12 2.51 2.59 0.28 2.25 2.13 1.72 2.12 21.9 0.44 0.41 0.4 0.06 4.35 4.35 0.47 0.46 0.64 0.73 0.86 0.76 0.64 1.1 1.69 1.38 12.4
0.05 0.01
N N
0.02
N
0.09
N
0.006 0.03
N
0.03 0.218
N Y
897 897 897 897 897 897 897 897 232 232 462 520 56 589 592 545 545 232 552 1070 232 500 514 56 1006
0.525
Y
1006
0.14
Y N
0.01 0.06
N N
0.4 0.03 0.03
Y N N
0.03 0.23
N
0.04 0.02
N N
0.19
Y
0.04 0.21
N Y
0.11 0.03 0.14 0.1 0.54 0.26 0.1 0.08 0.07
0.16 0.06 0.12 0.08 0.71 2.3
2.64 0.1 0.11 0.21 0.21 0.37 0.17 0.2 0.05 0.1 0.69 0.8 5.19 0.12 0.12 0.59 0.58 0.56 0.42 0.4 0.35 0.31 0.27 0.58 0.44 0.014
0.002
812 192 208 236 78 250 832 2 231 749 456 50 327 791 457 589 592 456 458 342 231 532 6 623 749 15 498 1070
TABLE 1. cont'd Monomer 1 Pyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinyl-5-ethylPyridine, 2-vinyl-5-ethylPyridine, 2-vinyl-5-ethylPyridine, 2-vinyl-5-ethylPyridine, 2-vinyl-5-ethylPyridine, 3-ethynyl-6-methylPyridine, 3-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, 4-vinylPyridine, TV-oxide-, 2-vinyl-5-ethylPyrimidine-2-one, 1,3-divinylhexahydroPyrimidine, 2-TV-TV-dimethylamino-4-vinylPyrimidine, 4-vinylPyrrolidone, l-benzyl-3-methylene5-methylPyrrolidone, l-benzyl-3-methylene5-methylPyrrolidone, l-benzyl-3-methylene5-methylPyrrolidone, TV-vinylPyrrolidone, N-vinylPyrrolidone, TV-vinylPyrrolidone, N-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, AT-vinylPyrrolidone, N-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, N-vinylPyrrolidone, N-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinyl-
Monomer 2
rx
±95%
r2
±95%
Conv.
Refs.
0.04 0.15
Y N
0.18 0.17
N Y
0.004
N
0.07 0.02 0.05
N N N
0.01 0.017 0.04
N Y N
0.03
N
0.04
N
0.09 0.07 0.18 1.5 0.16 0.22
0.073 0.46 0.5 0.55 0.57 0.55 0.14 -0.11 O 0.18 0.02 0.06 0.39 0.74 2.3 0.69 0.291 0.23 0.29 0.2 0.15 0.11 0.09 0.1 0.1 0.32 0.62 0.57 0.54 0.01 0.52 -0.73
0.04 0.02 0.01 0.002 0.07 1.09
N N N
0.4 0.88 0.03 0.071 1.06 0.24
0.03 - 0.23 0.06 0.59 0.338 0.219 0.125
0.36 0.11 0.13 0.017 0.095 0.025
Y N Y Y Y
838 231 41 456 499 532 2 6 6 231 115 50 231 231 784 342 667 78 832 231 424 115 50 589 592 424 342 231 691 1070 231 79 154 395 337 806 800 243 243 633
Oct-1-ene, 6,6-dimethyl-4,8-dioxaspiro 2.216 Styrene 0.75 Styrene 1.27 Styrene 1.81 Styrene 1.33 Styrene 1.14 Styrene, 2,5-dichloro0.62 Vinyl acetate 13.65 Vinyl acetate 30 Acrylate, methyl 1.32 Acrylonitrile 0.43 Acrylonitrile 0.43 Methacrylate, methyl 0.68 Styrene 1.09 Styrene 0.15 Methacrylate, 2-hydroxyethyl 0.73 Acrylate, (-)-menthyl 2.32 Acrylate, butyl 4.3 Acrylate, ethyl 2.58 Acrylate, methyl 1.78 Acrylate, methyl 2.14 Acrylonitrile 0.41 Acrylonitrile 0.34 Caprolactam, TV-vinyl4.43 Caprolactam, TV-vinyl4.43 Isoprene 2.49 Methacrylate, 2-hydroxyethyl 0.9 Methacrylate, methyl 0.77 Methacrylate, methyl 0.99 TV-Vinylpyrrolidone 9.8 Styrene 0.69 Styrene 1.04 Vinyl chloride Vinyl ether 32 Vinylhydroquinone 0.53 Styrene 2.27 Acrylate, ethyl -0.05 Styrene 1.404 Styrene 2.38 Acrylate, methyl 1.58
0.062 0.32
Methacrylate, methyl
2.28
0.47
0.387
0.07
Y
633
Styrene
0.71
0.17
0.555
0.053
Y
633
0.008
0.163 0.52 0.88 0.07
0.02
N Y
0.69
N
326 840 790 250 694 213 599 859 81 816 248 245 647 647 830 121 364 323 657 840
Acenaphthalene Acrylate, 2,4,5-trichlorophenyl 0.012 Acrylate, 2-chloroethyl 0.03 Acrylic acid 0.1 Acrylic acid, oc-bromo0.25 Acrylonitrile Acryloyl chloride 0.04 Caprolactam, N-vinyl2.8 Carbamate, N-vinyl-, ethyl 1.77 Cinnamate, a-cyano-, methyl 0.044 Crotonaldehyde 0.42 Crotonic acid 0.84 Dioxolane, l,3,4-methylene-2-trichlor 2.98 Dioxolane, 1,3-, 4,4-dimethyl-5-methyl 3.87 Ethylene, chlorotrirluoro0.38 Fumarate, dioctyl 0.02 Imidazole, 1-vinyl0.16 Maleimide, TV-(2-hydroxyethyl)0.002 Methacrylate, 2-bromoethyl 0.02 Methacrylate, 2-hydroxyethyl -0.019
0.12 3.64 0.03 0.18 0.06 0.12 0.04 0.45 0.34 0.32 0.13
0.21
N Y Y
Y 0.12 0.008 0.02 0.07
0.01 0.074 0.002 0.046
0.15 1.7 0.371 -0.001 -0.15 0 0.04 0.01 0.3 0.04 0.96 0.038 2.44 4.841
0.05 0.001 0.01 0.03
Y Y N N
0.04 0.19 0.01
N Y Y
0.133
Y
References page II-290
TABLE 1. cont'd Monomer 1 Pyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, TV-vinylPyrrolidone, a-methylene-TV-methylQuinine Quinoline, 2-vinylQuinoline, 2-vinylQuinoline, 2-vinylQuinoline, 2-vinyl5-Ethyl TV-vinyl-TV-methylthiolcarbamate S-Ethyl TV-vinyl-TV-methylthiolcarbamate S-Vinyl TV, TV-diethylthiolcarbamate 5-Vinyl ,V, TV-diethylthiolcarbamate Silane, 7-methacryloxypropyltrimethoxySilane, 7-methacryloxypropyltrimethoxySilane, 7-methacryloxypropyltrimethoxySilane, methacryloxypropyldimethoxymethylSilane, methacryloxypropyltrimethoxyStilbene Stilbene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Methacrylate, ferrocenylmethyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacryloyl chloride Methacryloylacetone Oct-1-ene, 6,6-dimethyl-4,8-dioxaspiro Oxazoline, 2-, 2-isopropenylStyrene Succinimide, TV-vinylTriazine, 2-allyloxy-4,6-dichloroVinyl acetate Vinyl acetate Vinyl acetate Vinyl benzoate Vinyl butyl ether Vinyl chloride Vinyl chloride Vinyl chloride Vinyl cinnamate Vinyl cyclohexyl ether Vinyl cymantrene Vinyl ethylene glycol glycidyl ether Vinyl ethyleneglycol glycidyl ether Vinyl isopropyl ether Vinyl phenyl ether Vinylene carbonate Vinylferrocene Methacrylate, methyl TV-Vinylpyrrolidone Butadiene, 2-chloroIsoprene Styrene Styrene Styrene Vinyl acetate Styrene Vinyl acetate Acrylonitrile Methacrylate, methyl Styrene Imidazole, TV-VinylImidazole, TV-VinylAcenaphthalene Styrene 2-Oxazoline, 2-isopropenyl3-Pyridazone, 2-vinyl3-Pyridazone, 2-vinyl-6-methyl3-Pyridazone, 2-vinyl-6-methyl4,5-benz-33-Pyridazone, 2-vinyl-6-phenyl4-Pentenoate, 3-oxo-, ethyl 4-Pentenoate, 3-oxo-, ethyl 4-Pentenoate, 3-oxo-, ethyl 4-Pentenoate, 3-oxo-, ethyl 4-Pentenoate, 3-oxo-, ethyl 4-Pentenoate, 3-oxo-, ethyl 4-Pentenoate, 3-oxo-, ethyl 4-Pentenoate, 3-oxo-, ethyl 4-Pentenoate, 3-oxo-, ethyl Acenaphthalene Acetylene, phenyl-
rx
±95%
r2
±95%
Conv.
Refs. 325 213 320 321 36 691 599 339 838 862 36 96 826 103 121 36 253 215 40 582 582 200 214 308 369 818 215 214 103 308 641 922 456 456 456 458 197 197 197 197 977 977 977 1095
0.073
0.096
2.57
2.77
- 0.05 -0.032 -0.052 0.01 0.05 0.008 -0.009 0.01 0.057 0.97 0.98 1.06 1.75 3.4 2.507 1.49 0.38 0.34 0.73 0.01 1.91 0.037 1.4 1.4 0.87 4.48 1.08 0.364 0.24 0.37 0.38 0.53 2.09 2.69 -0.11 1.22 0.1 1.89 3.79 2.06 0.868 1.39
0.08 0.068 0.028 0.15
5.62 4.63 4.36 4.04 0.58 5.66 0.552 3.5 17.2 3.67 0.5 0.26 0.19 0.195 0.408 -0.027 0.53 0.55 0.74 1.2 -0.11 0.093 0.06 0.06 0.03 0.253 0.056 0.71 0.577 2.2 2.1 1.88 0.49 0.49 10 0.67 4.45 0.133 0.094 0.788 0.425 0.079
0.3 0.34 0.61 0.61
Y Y N Y Y N
0.4 0.075
Y Y
1.55 0.89
Y N
0.25 1.77 0.057 0.03 0.063
Y N Y Y Y
0.59 0.053
Y Y
2.09 0.007 0.059 0.16 0.058
Y Y Y Y Y
1.72 0.1 0.48 0.025 0.034 0.082 0.048
Y Y Y Y Y Y Y
0.04 0.23 0.17 0.03
Y N N
0.712 0.193 0.309 0.322 0.075 0.073 0.068 0.112 0.035
N N N N N N N N N
0.12
Y
2.27 -0.01 0 0.67 0.53 0.9 0.7 0.51 0.233 0.161 0.215 0.189 0.179 0.164 0.162 0.178 0.217 3.81 0.324
0.004 0.018 0.028 0.42 0.25 2.79 0.21 0.039 0.95
9.39 0.03 9.3 0.1 0.11 0.068 0.14
0.26 1.17 0.34 0.77 0.594 0.309 0.096 1.12 0.04 0.09 0.02
0.069 0.028 0.051 0.05 0.014 0.015 0.015 0.02 0.009 0.02
0.158 5.65 3.92 0.64 0.43 1.2 0.24 1.45 3.29 1.57 1.29 1.4 0.923 0.747 0.635 1.12 0.568 0.33 0.33
1088 725 725 894 897 897 897 897 930 930 930 930 930 930 930 930 930 525 357
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Aconitate, trimethyl Acrolein Acrolein Acrolein Acrolein, 2-chloroAcrolein, methylAcrolein, methylAcrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide Acrylamide, 2-chloro-AyV-dimethylAcrylamide, AT,iV-dibutylAcrylamide, N,N-diethy\Acrylamide, JV,N-diethylAcrylamide, AW-diethyl Acrylamide, AW-dimethylAcrylamide, iV,iV-dimethylAcrylamide, MW-dimethylAcrylamide, N-(2-propionamido)Acrylamide, N-methylolAcrylamide, N-methylolAcrylamide, N-octadecylAcrylamide, Af-octylAcrylamido, 1- , -1-deoxy-D-glucitol Acrylamidomethylamino, p-, azobenzene Acrylate, 2,3-dibromopropyl Acrylate, 2,4,5-trichlorophenyl Acrylate, 2,4,6-tribromophenyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethyl Acrylate, 2-chloroethylglucitol Acrylate, 2-cyanoethyl Acrylate, 2-ethylhexyl Acrylate, 2-ethylhexyl Acrylate, 2-nitrobutyl Acrylate, 3,4-epoxyhexahydrobenzyl Acrylate, P-acetoxymethyl-, methyl Acrylate, p-ethoxy-, ethyl Acrylate, a-(4-chlorobenzyl)-, ethyl Acrylate, a-(4-cyanobenzyl)-, ethyl Acrylate, a-(4-methoxybenzyl)-, ethyl Acrylate, a-(hydroxymethyl)-, methyl Acrylate, a-[2,2-bis(carbomethoxy)ethyl]-, methyl Acrylate, a-acetoxy-, ethyl Acrylate, a-benzyl-, ethyl Acrylate, a-benzyl-, methyl Acrylate, oc-bromo-, ethyl Acrylate, oc-butyl-, methyl Acrylate, a-chloro-, ethyl Acrylate, a-chloro-, methyl Acrylate, a-cyano-, methyl Acrylate, a-cyclohexyl-, methyl Acrylate, a-ethyl-, methyl Acrylate, a-ethyloxymethyl-, methyl Acrylate, a-fluoro-, methyl Acrylate, a-hexafluoropropyloxymethyl-, methyl Acrylate, a-hydroxymethyl-, ethyl Acrylate, a-isobutyl-, methyl
rx 1.026 0.257 0.22 0.205 0.02 0.173 0.41 1.17 1.21 1.49 1.13 0.65 1.05 1.29 1.6 1.23 1.36 1.54 1.15 1.37 1.32 1.84 0.03 1.55 2.08 2.715 2.42 0.083 0.42 0.277 0.2 0.55 0.494 0.54 0.49 0.399 0.96 0.94 0.35 0.27 0.34 46.98 0.04 0.06 0.33 0.36 0.58
±95% 0.091 0.017 0.02 0.006 0.05 0.017 0.06 0.04 0.16 0.03 0.065 0.058
0.35 0.1 0.12 0.21 0.05 0.12 0.244 0.08 0.048 0.47 0.097 0.2 0.032 0.3 0.03 0.3 27.03 0.09 0.05 0.3
0.557 0.14 0.57 0.02 0.812 0.08 0.25 0.05 1.615 0.758 0.37 0.66 0.23
0.031 0.17 0.028 0.04 0.043 0.07
0.468 0.974
0.03 0.022
0.01 0.048 0.014 0.17
r2
±95%
Conv.
Refs. 147 291 292 307 806 223 589 295 314 314 314 343 555 917 806 739 739 739 170 315 315 295 596 891 290 806 258 858 643 622 643 140 178 790 806 178 126 463 234 680 1091 194 806 806 806 932 1092
-0.013 0.216 0.02 0.32 0.15 0.833 0.3 0.58 1.32 0.33 0.59 8.97 0.2 -0.036 0.294 0.39 0.34 0.18 0.12 0.49 0.47 0.86 0.48 0.4 0.54 0.258 0.03 8.5 0.16 0.23 0.1 0.1 0.139 0.12 0.14 0.128 0.31 0.26 0.12 1.97 0.19 -0.21 1.03 0.65 0.71 0.34 0.09
0.009 0.036 0.01 0.002 0.07 0.092
Y Y N Y
0.12 0.13 0.14
N N N
0.43
N
0.152 0.058
Y
0.3 0.15 0.2 0.3
N N N N
Y
0.03 0.14 0.119 0.02
N
0.021
Y
0.17 0.083
Y Y
0.09 0.074 0.6
Y N
0.01 0.35
N N
0.44 0.13 0.09 0.24
Y
0.173 0.9 0.175 0.44 0.205 0.32 0.3 0.61 -0.001 0.197 0.24 0.16 0.07
0.01 0.2 0.053 0.08 0.053 0.11
Y
0.546 0.202
0.127 0.042
0.05 0.034 0.014
Y
Y Y N Y Y
0.11 Y Y
244 806 49 806 49 806 74 141 49 49 1047 806 1047 982 49
References page II-290
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2
#*i
Acrylate, a-isopropyl-, methyl 1.872 Acrylate, a-isopropyloxymethyl-, 0.41 methyl Acrylate, a-methoxy-, methyl 1.131 Acrylate, a-phenoxymethyl-, methyl 0.176 Acrylate, a-phenyl-, chloroethyl 0.025 Acrylate, a-phenyl-, methyl 0.06 Acrylate, a-phenyl-, methyl 0.03 Acrylate, a-phenyl-, methyl 0.06 Acrylate, a-phenyl-, methyl 1.176 Acrylate, a-phenyl-, propyl 0.03 Acrylate, a-phenyl-, butyl 0.04 Acrylate, a-propyl-, methyl 0.821 Acrylate, a-propyloxymethyl-, methyl 0.47 Acrylate, a-sec-butyl-, methyl 2.29 Acrylate, a-tetrafluoropropyloxymethyl-, 0.37 methyl Acrylate, a-trifluoroethyloxymethyl-, 0.26 methyl Acrylate, a-trimethylsiloxy-, methyl 0.46 Acrylate, benzyl 0.494 Acrylate, benzyl 0.534 Acrylate, butyl 0.79 Acrylate, butyl 0.79 Acrylate, butyl 0.75 Acrylate, butyl 1.23 Acrylate, butyl 0.44 Acrylate, butyl 0.84 Acrylate, butyl 0.66 Acrylate, butyl 0.82 Acrylate, butyl 0.8 Acrylate, butyl 0.698 Acrylate, butyl 0.698 Acrylate, c/s-(3-cyano-, methyl Acrylate, cyclododecyl 0.47 Acrylate, cyclododecyl 0.54 Acrylate, cyclododecyl 0.461 Acrylate, cyclohexyl 0.913 Acrylate, cyclohexyl 0.885 Actylate, cyclohexyl 0.53 Acrylate, cyclohexyl 0.7 Acrylate, cyclohexyl 0.58 Acrylate, di-, copper 1.74 Acrylate, di-, copper 5.94 Acrylate, di-, nickel 1.83 Acrylate, di-, zinc 1.1 Acrylate, diethylaluminum -0.002 Acrylate, diethylaluminum Acrylate, ethyl 0.699 Acrylate, ethyl 1.01 Acrylate, ethyl 0.79 Acrylate, ethyl 0.8 Acrylate, ethyl 0.8 Acrylate, ethyl 0.787 Acrylate, ethyl 0.787 Acrylate, ferrocenylmethyl 1.87 Acrylate, ferrocenylmethyl 2.3 Acrylate, ferrocenylmethyl 2.5 Acrylate, glycidyl 0.6 Acrylate, glycidyl 0.73 Acrylate, heptafluorobutyl 0.31 Acrylate, isopropyl 0.755 Acrylate, methyl 0.82 Acrylate, methyl 0.192 Acrylate, methyl 0.722
±95%
r2
±95%
Conv.
Refs. 49 1047
0.052
0.036 0.26
0.034
Y
0.078 0.05 0.015
0.513 0.256 0.201 1 0.4 0.45 1.275 0.126 0.107 0.208 0.29 0.004 0.17
0.058 0.102 0.09
Y Y
0.008 0.063 0.055 0.07
Y Y Y Y
0.024
Y
0.015 0.015 0.022 0.029 0.068
0.2 0.05 0.028 0.08 0.11 0.1 0.21 0.03 0.2
1.42 0.2 0.248 0.25 0.34 0.38 -0.106 0.29 0.18 0.19 0.21 0.15 0.164 0.164
1047 0.12 0.041 0.05 0.06 0.05 0.099 0.05 0.03
Y Y
N N N
N 0.14 0.08 0.07 0.107 0.102 0.11 0.12 0.1 0.03 0.05 0.02 0.02 0.016
0.34 0.31 0.301 0.272 0.254 0.16 0.17 0.18 0.56 0.12 0.53 0.9 0.046
0.15 0.08 0.072 0.048 0.141 0.13 0.09 0.07 0.09 0.08 0.06 0.07 0.035
0.072
0.139 0.16 0.19 0.2 0.48 0.152 0.152 -0.016 0.02 0.02 0.17 0.24 0.049 0.195 0.24 0.8 0.168
0.085
N N N N Y Y Y
0.06
Y
0.58 0.013 0.027
N Y Y
0.21 0.067
Y Y
0.17
0.34 0.01 0.024 0.057 0.056
806 1048 488 141 399 488 49 488 488 49 1047 49 1047
1101 178 277 1032 1032 1032 19 20 38 38 463 549 612 632 1034 806 806 806 1061 806 806 806 806 829 829 829 829 652 652 178 463 530 530 542 673 677 293 293 576 114 126 206 178 139 14 151
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octadecyl Acrylate, octyl Acrylate, p-(cinnamoylamino)phenyl Acrylate, pentabromophenyl Acrylate, pentachlorophenyl Acrylate, tetrahydrofurfuryl Acrylate, thio-, butyl Acrylate, thio-, ethyl Acrylate, thio-, tert-butyl Acrylate, trifluoro-, methyl Acrylate, trifluoro-, methyl Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylic acid, 2-benzamidoAcrylic acid, Af-acetyl-oc-aminoAcrylic anhydride Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile- 2-chloroAcrylonitrile, 2-fluoroAcrylonitrile, a-chloroAcrylonitrile, a-fluoroAcrylonitrile, oc-hydroxymethylAcrylonitrile, a-methoxyAcryloyl chloride Acryloyloxy, 2-, benzoic acid Adipate, divinyl Allyl acetate Allyl acetate Allyl chloride Allyl chloride Allyl chloride Allyl glycidyl hexahydrophthalate Allyl glycidyl phthalate
rx 0.75 0.75 0.68 0.9 0.65 0.4 0.871 0.777 0.44 0.79 0.44 0.39 1.08 0.16 2.11 0.475 0.439 0.18 0.157 1.4 1.4 0.25 1.1 0.15 0.22 0.253 0.25 0.25 0.15 0.13 0.91 0.16 0.33 0.29 0.4 0.36 0.39 0.37 0.37 0.4 0.3 0.33 0.33 0.36 0.46 0.41 0.43 0.55 0.35 0.014 0.13 0.44 0.205 0.534 0.1 0.06 20.36 62.8 90 35.55 36.8 34.3 34.8
±95%
0.022 0.018
0.11
0.186 0.14 0.038 0.034
0.069
0.01 0.04
0.004 0.04 0.029 0.069 0.05 0.02 0.26 82.7 15.82
r2 0.18 0.18 0.14 0.07 0.3 0.16 0.148 0.37 0.18 0.31 0.18 0.01 0.35 0.1 0.9 0.489 0.421 0.291 0.368 0 0 0.05 0.08 0.25 0.35 0.136 0.15 0.45 0.25 0.78 0.44 0.1 0 0.02 0.05 0.03 0.06 0.05 0.07 0.04 0.17 0.17 0.15 0.17 0.07 0.06 0.03 0.06 0.01 0.087 0.03 0.03 0.528 0.312 0.02 0.64 0.011 0.01 0 0.05 0.03 0.06 0.14
±95%
0.026 0.12
Conv.
Y Y
0.53
0.196 0.17 0.075 0.055
0.029
Y
0.004
N
0.06
N
0.04
Y Y
0.02 0.086 0.054 0.02 0.02 0.011 0.05 0.16
Y N N Y N Y Y
Refs. 393 397 463 495 496 496 865 290 290 290 290 806 685 643 900 806 806 806 806 595 598 312 312 397 414 47 490 542 561 1019 661 219 140 198 269 396 403 417 543 60 727 727 727 727 727 727 727 727 812 884 884 806 850 981 806 220 651 815 1053 470 10 204 438 782 782
References page II - 290
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Allyl trichloroacetate Azlactone, 2-vinyl-4,4-dimethylAzobenzene, 4-(acrylamidomethylamino)Benzimidazole, vinylmercaptoBenzothiazole, vinylmercaptoBenzothiazole, vinylmercaptoBenzothiazolone, N- [(methacroyloxy )methyl] Benzoxazole, vinylmercaptoBicyclo[2,2,l]hept-2-ene5,6-dicarboximide, iV-benzyl Bicyclo[2,2,l]hept-2-ene5,6-dicarboximide, N-benzyl Borazine, (3-vinyl Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene Butadiene, 1,4-dicarboxylate-, diethyl Butadiene, 1-chloroButadiene, 1-phthalimidoButadiene, 1-succimmidoButadiene, 2,3-dichloroButadiene, 2,3-dichloroButadiene, 2,3-dimethylButadiene, 2-chloroButadiene, 2-chloroButadiene, 2-fluoroButadiene, 2-fluoroButadiene, 2-trimethylsilyloxyButadiene-1-carboxylate, 5(-)-a-phenethyl Butadiene-1-carboxylate, ethyl Butadiene- 1-carboxylic acid Butadiene-1-carboxylic acid Butenoate, 3-phenyl-3-, methyl Bntyrolactone, a-methyleneCaprolactam, N-vinylCarbamate, N, N-diethyl-, vinyl Carbazole, N-methyl-3-vinylCarbazole, JV-vinylCarbazole, Af-vinylCarbazole, N-vinylCinnamate, 2-chloroethyl Cinnamate, a-cyano-, 2-ethylhexyl Cinnamate, oc-cyano-, benzyl Cinnamate, a-cyano-, butyl Cinnamate, a-cyano-, cyclohexyl Cinnamate, a-cyano-, ethyl Cinnamate, a-cyano-, hexyl Cinnamate, a-cyano-, methyl Cinnamate, benzyl Cinnamate, butyl Cinnamate, ethyl Cinnamate, ethyl
r\
±95%
r2
±95%
Conv.
Refs.
Y
913 1011 880
2.32 0.175 0.083
0.15 0.054 8.5
0.81 0.237
0.02 0.129
6.51 2.171 3.02 0.35
0.51 0.07 0.14 0.02
0.56 0.349 0.5 3.1
0.41 0.087 0.095 0.01
Y Y Y
764 764 764 960
0.19
0.24 0
0.12
Y
764 994
2.87 18.2 89.2 4.53 0.84 0.37 0.38
0 0.62 0.4 0.25
0.001 1.44 1.55 1.37
994 0.016 0.56 0.14
Y N Y
0.58 0.44 0.6 0.44 0.38 0.68 0.82 0.83 0.64 0.09 0.27 0.299 0.286 0.25 0.05 0.534 0.05 0.025 0.214 0.22 0.64 0.45
0.13
1.35 1.59 1.8 1.4 1.4 0.5 1.38 1.83 1.38 0.55 1.44 1.56 1.68 8.65 10.6 1.048 7.84 5.98 2.1 1.24 1.2 6.81
0.12 0.15 0.08 1.97 0.14 0.2 29.56 0.735 6 5.93 5.72 1.394 0.58 0.4 0.47 0.37
0.364 0.01 0.01 3.59 0.067 1.34 1.05 0.4 0.068 0.004 0.03 0.03 0.04
0.56 0.52 5.55 -0.532 0.85 1.02 -0.08 1.404 -0.02 0.026 0.032 0.01 -0.06 -0.16 - 0.09 - 0.24
0.512 0.06 0.01 0.18 0.146 0.06 0.034 0.057 0.11 0.01 0.17 0.08 0.22
0.39 0.4 1.33 1.757 1.52 1.566
0.04 0.06 0.12 0.082 0.31 0.035
-0.17 -0.21 0.14 0.04 -0.076 0.082
0.26 0.35 0.13 0.15 0.054 0.045
0.13 0.21 0.014 0.27 0.049 0.018 0.035 0.047 0.03 0.15
0.11 0.41
N Y
0.1 3.1 0.63 0.16
Y Y Y Y
0.5 0.12 0.61
Y Y Y Y Y Y
1.68
Y
0.066
Y N Y N Y Y Y N N N N Y N N Y Y Y Y
1018 140 159 173 21 418 428 473 486 486 491 56 83 83 327 695 163 163 587 61 173 61 8 174 174 993 748 791 791 799 1008 663 916 197 806 11 13 98 488 282 282 282 282 134 282 282 488 488 200 488
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Cinnamate, methyl Cinnamate, methyl Cinnamate, p-chloro-, methyl Cinnamate, /?-methyl-, methyl Cinnamate, phenyl Cinnamate, tert-buty\ Cinnamide, AW-diethylCinnamide, p-chloro-, N, N-diethylCinnamide, /?-methyl-, 7V,N-diethylCinnamonitrile Cinnamonitrile, a-cyanoCitraconate, di-^c-butyl Citraconate, dibenzyl Citraconate, dibutyl Citraconate, dicyclohexyl Citraconate, diethyl Citraconate, diisobutyl Citraconate, diisopropyl Citraconate, dimethyl Citraconate, dipropyl Citraconic acid Citraconic anhydride Citraconimide, P-iso-, A^-(4-acetylphenyl)Citraconimide, p-iso-, N-(4-chlorophenyl)Citraconimide, p-iso-, Ar-(4-ethoxycarbonylphenyl)Citraconimide, p-iso-, Af(4-methoxyphenyl)Citraconimide, P-iso-, N-(p-to\y\)Citraconimide, P-iso-, N-phenylCitraconimide, N-(4-acetoxyphenyl)Citraconimide, JV-(4-chlorophenyl)Citraconimide, Af-(4-ethoxycarbonylphenyl)Citraconimide, AH4-methoxyphenyl)Citraconimide, N-allyl Citraconimide, N-benzylCitraconimide, N-butylCitraconimide, Af-ethylCitraconimide, N-hexylCitraconimide, N-isobutylCitraconimide, N-isopropylCitraconimide, N-methylCitraconimide, N-methylCitraconimide, N-phenylCitraconimide, N-propylCitraconimide, N-tert-buty\Citraconimide, 7V-tolylCitraconimide, a-iso-, A^-(4-acetylphenyl)Citraconimide, a-iso-, Af-(4-chlorophenyl)Citraconimide, a-iso-, Af-(4-ethoxycarbonylphenyl)Citraconimide, a-iso-, N-(4-methoxyphenyl)Citraconimide, a-iso-, N-(p-toly\)Citraconimide, a-iso-, Af-phenylCrotonaldehyde Crotonaldehyde Crotonaldehyde Crotonate, a-acetyl-, methyl Crotonate, a-bromo-, ethyl
rx 1.799 1.27 2.24 2.84 1.66 1.692 4.17 2.99 4.95 2.549 2 1.55 2.74 1.88 2.48 1.8 1.62 1.58 2.19 1.36 0.16 0.42
±95% 0.073
0.12 0.087
0.092
0.15
r2 0.04 0.02 0.04 0 0.029 0.1 0.01 0.01 0.01 -0.008 0.13 0.047 0.054 0.03 0.029 0.03 0.076 0.049 0.027 0 0.021 0
±95%
Conv.
Refs.
0.13
Y
0.055 0.12
Y Y
0.021
Y Y
0.058
Y
488 653 653 653 488 488 737 737 737 134 134 841 841 841 841 841 841 841 841 841 1021 47 608
0.28
0
608
0.3
0
608
0.27
0
608
0.4 0.39 0.151 0.181 0.148
0 0 0.015 0.075 0.004
608 608 728 728 728
0.63 0.142 0.19 0.169 0.231 0.316 0.326 0.244 0.15 0.14 0.175 0.196 0.465 0.31 0.81
0.054 0.057 0.018 0.19 0.087 0.028 0.044 0.086 0.094 0.055
0.016 0.062 0.039 0.13
0.04 0.004 -0.066 0.03 -0.002 -0.03 0.07 -0.014 0.24 0.24 -0.001 -0.014 0.045 -0.02 0
0.086 0.093 0.033
Y Y Y
0.11
Y
0.082 0.045 0.05 0.11 0.14 0.063
Y Y Y Y Y Y
0.023 0.087 0.05 0.18
Y Y Y Y
728 959 714 714 714 714 714 714 460 506 728 714 714 728 608
1.03
0
608
0.96
0
608
0.39
0
608
0 0 0.03 0.07 0.12 0 0
608 608 428 428 428 785 785
1.69 1.76 14.7 14.7 14.7 2.7 4.42
References page II - 290
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2
ri
Crotonate, oc-carboethoxy-, ethyl 8.24 Crotonate, oc-chloro-, ethyl 5.13 Crotonate, a-cyano-, ethyl 0.26 Crotonate, oc-methoxy-, methyl 18.4 Crotonate, a-methyl-, methyl 30.7 Crotonate, ethyl 27 Crotonate, methyl 9.68 Crotonic acid 20 Crotononitrile 23.29 Crotononitrile 23.8 Crotononitrile, a-phenyl0.43 Cyclobutane, 1,2-dimethylene0.26 Cyclobutane, 1,2-dimethylene0.28 Cyclopentene, 4-, -1,3-dione Diallyl melamine 36.96 Diallyl phthalate 36.41 Diallyl phthalate 25.59 Diallyl phthalate 23.67 Diallyl phthalate 18.8 Diallyl phthalate 27.5 Diallyl phthalate 16.9 Diallyl phthalate 23.8 Diallyl phthalate 15.1 Dihydroxydiphenylsulfone diallyl ether 0.975 Dithiane, 2-methylene-l,30.03 Divinylbenzene, m0.58 Divinylbenzene, p 0.26 Ethylene 14.88 Ethylene, 1,1 -diphenyl0.34 Ethylene, 1,1-diphenyl0.87 Ethylene, 1-diphenyl0.33 Ethylene, chlorotrifluoro4.38 Ethylene, dichloro-, cis3.1 Ethylene, dichloro-, cis63.1 Ethylene, dichloro-, cis21.4 Ethylene, dichloro-, cis161.3 Ethylene, dichloro-, cis24.75 Ethylene, p-vinyl-1,1 -diphenyl0.46 Ethylene, tetrachloroEthylene, tetrachloro200 Ethylene, tetrachloroEthylene, tetrachloro187 Ethylene, tetrachloro185 Ethylene, tetrafluoro5.2 Ethylene, trichloro17.1 Ethylene, trichloro16.5 Ethylene, trichloro12.1 Ethylene, trichloro12.7 Ethylene, trichloro16 Formaldehyde,-S-vinyl-O7.75 ethylthioacetal Fumarate, allyl methyl 0.25 Fumarate, bis(2-butyl) 0.51 Fumarate, bis(3-chloro-2-butyl) 0.26 Fumarate, di-(2-chloroethyl) 0.18 Fumarate, di-(2-cyanoethyl) 0.07 Fumarate, di-(2-methoxyethyl) 0.35 Fumarate, di-(2-phenylethyl) 0.27 Fumarate, di-^obutyl 0.55 Fumarate, di-tert-amyl 0.69 Fumarate, di-terf-butyl 0.57 Fumarate, dibenzyl 0.32 Fumarate, dibutyl 0.35 Fumarate, dicyclohexyl 0.49 Fumarate, dicyclopentyl 0.3
±95%
1.86 1.7
0.05 4.02 1.23 2.19 1.2
0.015 0.15 0.25 0.01 0.02 0.99 4.9 30.3 2.64
r2 0 0 0.02 0.04 0.02 0 -0.27 0 -0.012 0 0 3.6 3.6 -0.32 0.041 0.026 0.038 0.08 0.09 0.1 0.1 0.13 0.92 3.35 0.58 1.18 0.05 -0.02 1.15 0.01 -0.1 -3.1 -2.2 -0.28 -0.02 0.067 1.31
±95%
Conv.
0.22
Y
0.06
Y
0.16 0.2 0.038 0.071 0.04
Y Y Y Y Y
0.16 0.04 0.17
N N
0.01
N
0.02 0.21
N Y Y Y Y Y Y
0.12 0.062 0.053
Y Y
11 0.68 0.01 0.04 0.04
0 0 0.01 0 0 0 0 -0.006 0.32 0.03 0 - 0.06 0 0.09 0.03 0 0.04 0.08 0.04 0 0.04 0.06 0.06
0.37 0.24
Y Y
0.02 0.01 0.03
N N N
Refs. 785 785 785 785 785 785 112 402 112 785 785 854 885 263 201 152 152 152 152 152 152 152 152 1016 1031 262 262 615 281 901 189 236 137 137 40 9 9 742 204 204 40 40 59 567 40 40 40 40 59 273 713 249 249 1038 1038 1038 1038 1038 1038 1038 1038 1038 1038 1038
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Fumarate, diethyl Fumarate, diethyl Fumarate, diethyl Fumarate, diethyl Fumarate, diethyl Fumarate, diethyl Fumarate, diethyl Fumarate, diisobutyl Fumarate, diisopropyl Fumarate, dimethyl Fumarate, dipropyl Fumarate, isopropyl butyl Fumarate, isopropyl ethyl Fumarate, isopropyl isobutyl Fumarate, isopropyl methyl Fumarate, isopropyl sec-butyl Fumarate, methyl butyl Fumarate, methyl ethyl Fumarate, methyl isobutyl Fumarate, methyl isopropyl Fumarate, methyl propyl Fumarate, methyl sec-butyl Fumarate, methyl tert-amyl Fumarate, methyl tert-butyl Fumarate, mono-2-butyl Fumarate, tert-butyl 2-ethylhexyl Fumarate, tert-butyl 4-methyl-2-pentyl Fumarate, tert-butyl ethyl Fumarate, tert-butyl isoamyl Fumarate, tert-butyl methyl Fumarate, tert-butyl sec-butyl Fumaronitrile Fumaronitrile Fumaronitrile Fumaronitrile Fumaronitrile Fumaryl chloride Furan, 2,3-dihydroHexatriene, tetrachloroHexene, 1-, 3,4-dioic anhydride Hexene, 2-, 3,4-dioic anhydride Hexene, 3-, 3,4-dioic anhydride Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene, 5-, 2,4-dione Hexene-1,5-dicarboxylate, dimethyl Imidazole, 1-vinylImidazole, l-vinyl-2-methylImidazole, l-vinyl-2-methylIsoprene Isoprene Isoprene Isoprene Isoprene Isoprene, 3-acetoxyIsopropenyl methyl ketone
rt 0.29 6.3 0.394 0.3 0.31 0.36 0.29 0.37 0.4 0.39 0.32 0.42 0.3 0.46 0.3 0.54 0.36 0.32 0.32 0.3 0.28 0.45 0.53 0.45 0.33 0.54 0.57 0.25 0.45 0.45 0.55 0.202 0.294 0.3
±95%
0.26 0.06 0.02
0.03
0.058 0.044
r2 0.02 0.081 0.11 0.07 O 0.1 0.02 0.05 0.055 0.03 0.02 0.01 0.01 0.01 0.16 0.02 0.02 0.02 0.03 0.16 0.05 0.02 0.06 0.03 - 0.04 0.01 0.01 0.04 0.06 0.03 0.07 -0.016 0.006 0
±95%
Conv.
0.005 0.022
Y Y
0.01
N
0.03
N
0.021
Y Y Y
0.031
Y Y 20 0.123 8.57 3.63 17.17 0.031 0.049 0.066 0.07 0.171 0.179 0.173 0.121 0.24 0.014 0.044 0.028 0.678 9.94 8.87 8.97 0.513 0.476 0.44 0.42 0.48 0.34 0.44
0.0428 8.4 5.6 436
0.031 0.24 0.62 0.02 0.018
0 0.85 -0.052 -0.08 -0.54 1.22 1.38 1.52 1.73 1.91 1.91 2.07 2.46 2.69 2.93 3.19 4.11 0.196 0.071 0.09 0.07 1.922 1.957 1.98 2.02 1.3 4.47 0.29
0.22 1 1,17 5.83
Y Y Y Y
0.043 0.029 0.064
Y Y Y
0.016 0.011
Y Y
Refs. 1038 139 139 139 249 562 640 1038 1038 1038 1038 1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 249 1056 1056 1056 1056 1056 1056 137 191 199 478 77 91 806 4 933 933 933 931 931 931 931 931 931 931 931 931 931 931 931 828 364 364 479 366 366 544 544 83 770 542
References page II - 290
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Isopropenyl methyl ketone Isopropenyl, 3-(l-cyclohexenyl), acetate Isopropenylacetophenone, pIsopropenylisocyanate Isopropenylisocyanate Isopropylidene, 2,3:4,5-di-O-, -1-vinylbenzylItaconamate, A^-(4-carboethoxyphenyl)-, butyl Itaconamate, 7V-(4-carboethoxyphenyl)-, ethyl Itaconamate, N-(4-carboethoxyphenyl)-, methyl Itaconamate, Af-(4-carboethoxyphenyl)-, propyl Itaconamate, N-(4-chlorophenyl)-, ethyl Itaconamate, A^-(4-chlorophenyl)-, methyl Itaconamate, Af-(-chlorophenyl)-, propyl Itaconamate, N-(4-methoxyphenyl-, butyl Itaconamate, N-(4-methoxyphenyl)-, ethyl Itaconamate, A^-(4-methoxyphenyl)-, methyl Itaconamate, Af-(4-methoxyphenyl)-, propyl Itaconamate, N-(4-methylphenyl)-, butyl Itaconamate, A^-(4-methlyphenyl)-, ethyl Itaconamate, N-(4-methylphenyl)-, methyl Itaconamate, A^-(4-methylphenyl)-, propyl Itaconamate, N-phenyl, methyl Itaconamate, N-phenyl-, butyl Itaconamate, N-phenyl, ethyl Itaconamate, N-phenyl-, methyl Itaconamate, A^-phenyl-, propyl Itaconate, di-2[-2(2-methoxyethoxy)ethoxy]ethyl Itaconate, diamyl Itaconate, dibutyl Itaconate, diethyl Itaconate, dimenthyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dimethyl Itaconate, dioctyl Itaconate, dipropyl Itaconate, ethyl hexafluoroisopropyl Itaconate, glycidyl methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconate, mono-methyl Itaconic acid Itaconic acid Itaconic anhydride Itaconic anhydride Itaconic anhydride Itaconimide, A^-(2-chloroethyl)Itaconimide, N-(4-acetoxyphenyl)Itaconimide, N-(4-chlorophenyl)-
rY 0.32 1.59 0.3 8.12 6.84 0.14
±95%
0.18 0.18 0.055
r2 0.66 0.56 0.84 0.07 0.122 3.26
±95%
Conv.
Refs.
0.59
Y
0.047 1.12
Y Y
542 770 266 434 99 772
0.2
0.61
678
0.23
0.2
678
0.15
0.58
678
0.26
0.4
678
0.35 0.38
0.16 0.18
678 678
0.39 0.12
0.31 0.69
678 678
0.33
0.34
678
0.26
0.41
678
0.38
0.4
678
0.19
0.31
678
0.38
0.26
678
0.3
0.16
678
0.54
0.19
678
0.39 0.12 0.45 0.31 0.5 0.53
0.022
0.18 0.49 0.21 0.52 0.18 0.2
0.015
678 678 678 1059 678 1098
0.36 0.42 0.23 0.502
0.05 0.06 0.11 0.188
0.5 0.34 0.34 0.483
0.09 0.05 0.12 0.364
N N N Y N
0.12 0.06 0.035 0.079 0.052 0.15 0.11 0.086
N N N
0.67 0.09 0.09 0.05 0.092 0.21 0.18
Y Y Y Y Y Y Y
0.48 0.5 0.33 0.16 0.435 0.376 0.029 0.34 0.52 0.404 0.34 0.26 0.004 0.086 0.003 0.069 0.35 0.159
0.16 0.07 0.025 0.036 0.039 0.077 0.085 0.06 0.08 0.01 0.015 0.005 0.045 0.12 0.084
0.14 0.06 0.14 0.28 0.039 0.041 0.111 0.33 0.33 0.218 0 0.12 0.405 0.456 0.785 0.162 0.21 0.2
Y Y Y Y
39 39 39 975 39 398 586 39 39 1103 806 656 656 656 656 420 76 365 62 62 642 729 729
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2
rx
Itaconimide, 0.232 iV-(4-ethoxycarbonylphenyl) Itaconimide, Af-(/?-chlorophenyl)0.15 Itaconimide, N-(p-tolyl)0.16 Itaconimide, N-benzyl0.056 Itaconimide, Af-butyl0.22 Itaconimide, AT-ethyl 0.232 Itaconimide, AMsobutyl0.44 Itaconimide, Af-Isopropyl0.308 Itaconimide, Af-methyl0.153 Itaconimide, Af-naphthyl0.08 Itaconimide, Af-phenyl0.116 Itaconimide, N-phenyl0.05 Itaconimide, AT-phenyl0.05 Itaconimide, JV-propyl0.28 Itaconimide, N-tolyl0.134 Maleamic acid, 0.55 A^3-dimethylamino-6-methyl Maleate, allyl methyl 8.29 Maleate, butyl stannyl, allyl 0.1 Maleate, chloro-, diethyl 2.07 Maleate, dibutyl tin 2.08 Maleate, diethyl 6.59 Maleate, diethyl Maleate, diethyl 8 Maleate, diethyl 6.07 Maleate, diethyl 6.592 Maleate, dimethyl 10.65 Maleate, dimethyl 0.083 Maleate, monoallyl 0.14 Maleic anhydride 0.097 Maleic anhydride 0.04 Maleic anhydride 0.02 Maleic anhydride 0 Maleic anhydride 0.02 Maleic anhydride 0.02 Maleic anhydride 0.04 Maleic anhydride 0.04 Maleic anhydride 0.04 Maleic anhydride 0.05 Maleic anhydride 0.02 Maleic anhydride 0.04 Maleic anhydride 0.04 Maleic anhydride Maleic anhydride, a-chloro0.07 Maleimide 0.057 Maleimide, A^-(2,6-diethylphenyl)0.19 Maleimide, A^-(2,6-dimethylphenyl)0.14 Maleimide, N-(2-chlorophenyl)0.011 Maleimide, 7V-(2-chlorophenyl)0.038 Maleimide, A^-(2-chlorophenyl)0.013 Maleimide, AH2-chlorophenyl)0.038 Maleimide, N-(2-hydroxyethyl)0.046 Maleimide, A^-(3-dimethylaminophenyl)- 0.03 Maleimide, AK4-bromophenyl)0.02 Maleimide, A^-(4-carboxyethylphenyl)0.059 a-chloroMaleimide, A^-(4-chlorophenyl)0.149 oc-chloroMaleimide, N-(4-hydroxyphenyl)-0.059 Maleimide, A^-(4-methoxyphenyl)0.112 a-chloroMaleimide, 7V-(4-methylphenyl)0.107 oc-chloroMaleimide, 7V-(p-chloroethyl)-a-chloro- 0.29
±95% 0.032
r2 0.112
0.248 0.12 0.031 0.03
0.14 0.24 0.2 -0.019 0.172 -0.03 0.045 0.12 0.35 0.109 0.08 0.998 0.04 0.219 -0.19
0.14 0.02 0.14 0.118 0.46
0.02 0.06 -0.043 0.194 -0.013
0.048 0.03 0.029 0.11 0.043 0.069 0.043
±95% 0.054
Conv. Y
0.11 0.04 0.06 0.11 0.064 0.12
Y Y Y Y Y Y
0.082
Y
0.123 0.18 0.079 0.03
N Y Y N
0.01 0.03 0.021 0.121 0.022
N N Y Y Y Y
0.01
N
0.12 0.058 0.02 0.008 0.13 0.03 0.01
Y Y N N Y N N
Refs. 729 740 740 642 642 642 642 642 642 740 729 740 978 642 729 679
0.036
Y
0.002 0.003 0.005 0.003 0.027
Y Y Y Y Y
0.007 0.041
Y Y
713 811 14 987 139 14 640 874 888 137 317 811 105 12 17 241 384 397 483 506 522 522 522 522 522 923 845 251 992 992 853 853 910 910 323 747 1030 973
0.019
0.038
Y
973
0.041 0.031
0.13 0.049
0.1 0.061
Y Y
323 973
0.048
0.019
0.078
Y
973
0.05
0
0.06
0.07 2.81 0.015 0.01 0.002 0.12 0.003 0.01
0.07 0.01 0.001 0.15 0.105 0.07 0.001 0 0.003 0.02 0 0 0.02 0.01 0.001 0.005 0.01 0.02 0.05
N
0.006 0.021
0 0.088 0.02 0.08 0.013 0.028 0.01 0.006 0.011 0.19 0.018 0.022
0.048
0.012 0.004 0.006 0.012 0.028 0.017
974
References page II - 290
TABLE 1. Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
cont'd Monomer 2 Maleimide, TV-[TV'-(a-methylbenzyl)aminocarbonylpentyl] Maleimide, AKN'-(a-methylbenzyl)aminocarbonylundecy 1] Maleimide, TV-allyl Maleimide, iV-benzylMaleimide, TV-benzyl-a-chloroMaleimide, TV-butylMaleimide, TV-butylMaleimide, TV-cyclohexylMaleimide, TV-cyclohexylMaleimide, TV-ethyl-a-chloroMaleimide, TV-hexylMaleimide, iV-hydroxymethylMaleimide, TV-methyl-a-chloroMaleimide, TV-phenylMaleimide, TV-phenylMaleimide, TV-phenylMaleimide, TV-phenyl-a-chloroMaleimide-TV,TV-dimethylaniline, 4-(2-chlorophenyl)Mesaconate, di-sec-butyldithiol Mesaconate, diamyl Mesaconate, dibenzyl Mesaconate, dibenzyldithiol Mesaconate, dibutyl Mesaconate, dibutyldithiol Mesaconate, dicyclohexyl Mesaconate, diethyl Mesaconate, diethyldithiol Mesaconate, dihexyl Mesaconate, diisoamyl Mesaconate, diisobutyl Mesaconate, diisobutyldithiol Mesaconate, diisopropyl Mesaconate, diisopropyldithiol Mesaconate, dimethyl Mesaconate, dimethyldithiol Mesaconate, dioctyl Mesaconate, diphenyl Mesaconate, diphenyldithiol Mesaconate, dipropyl Mesaconate, dipropyldithiol Mesaconic acid Methacrylamide Methacrylamide Methacrylamide, 1-deoxy-D-glucitol Methacrylamide, TV-phenylMethacrylate, 2,2,6,6,-tetramethyl4-piperidinyl Methacrylate, 2,3-epithiopropyl Methacrylate, 2-(sulfonic acid)ethyl Methacrylate, 2-acetoxyethyl Methacrylate, 2-bromoethyl Methacrylate, 2-chloro2,3,3,3-fluoropropyl Methacrylate, 2-chloroethyl Methacrylate, 2-chloroethyl Methacrylate, 2-chloroethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxyethyl
rx 0.198
0.056 0.058 0.42
±95% 0.143
r2 0.258
0.021 0.06
0.035 0.013 0
0.017 0.05 0.069 0.053 0.04
0.06 0.1 0.162 0 0.09 0.06 0
±95% 0.25
0.031 0.06
Conv.
Refs.
Y
1099
Y
1099
Y Y
0.02 0.102 -0.01 0.9 -0.041 -0.035 0.63 0.016 0.07 0.087 0.05 0.45 1.27 0.73 0.28 1.28 0.41 1.25 1.24 0.4 1.51 1.34 1.29 0.41 1.31 0.44 0.98 0.35 1.23 0.45 0.16 1.22 0.39 1.6 1.4 1.42 2.09 1.24 0.63 0.41 0.37 0.44 0.32 0.121 0.35 0.345 0.42 0.44 0.332 0.57 0.5 0.59 0.53
0.004 0.04
0.13 0.17 0.06
0.02 0.068 0.046 0.048 0.02 0.006
0.044 0.01 - 0.002 0.04 0.02 0.02 0.08 0.06 0.05 0.05 0.1 0.06 0.03 0.1 0.07 0.1 0.03 0.04 0.05 0.04 0.07 0.01 0.07 0.15 0.05 0.06 0 0.48 1.24 0.005 0.88 0.3 0.28 0.6 0.58 0.41 0.243 0.341 0.34 0.23 0.54 0.856 0.65 1.65 0.53 0.59
0.054 0.04 0.16 0.11 0.03
Y Y Y
0.017
N Y
0.073
Y
0.2 0.38
N N
0.17
N
0.04
N
0.15
N
0.075 0.08
Y Y
0.03 0.018
N Y
1003 348 974 115 50 1100 348 974 348 323 974 1026 328 992 973 747 624 658 658 624 658 624 658 658 624 658 658 658 624 658 624 658 624 658 658 624 658 624 1021 316 316 258 352 664 787 564 346 657 927 179 179 382 346 350 463 878 878 903
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2
rx
Methacrylate, 2-hydroxyethyl 0.5 Methacrylate, 2-methoxyethyl 0.46 Methacrylate, 2-naphthyl-, methyl 0.786 Methacrylate, 2-naphthyl-, methyl 0.486 Methacrylate, 2-naphthyl-, methyl 0.61 Methacrylate, 2-naphthyl-, methyl 0.384 Methacrylate, 2-phenethyl 0.56 Methacrylate, 3,5-dimethyladamantyl 0.89 Methacrylate, 5-oxo-pyrrolidinylmethyl 0.342 Methacrylate, A^-methyl-7V-phenyl0.44 2-aminoethyl Methacrylate, a-naphthoyloxy-, ethyl 0.216 Methacrylate, acetonyl 0.285 Methacrylate, amyl 0.52 Methacrylate, benzyl 0.463 Methacrylate, benzyl 0.435 Methacrylate, benzyl 0.45 Methacrylate, benzyl 0.48 Methacrylate, benzyl 0.8 Methacrylate, bornyl 0.45 Methacrylate, butyl 0.56 Methacrylate, butyl -0.05 Methacrylate, butyl 0.52 Methacrylate, butyl 0.63 Methacrylate, butyl 0.54 Methacrylate, butyl 0.74 Methacrylate, chloromethyl 0.208 Methacrylate, cyanomethyl 0.144 Methacrylate, cyclohexyl 0.586 Methacrylate, di-ethylene glycol 0.39 Methacrylate, dodecyl 0.528 Methacrylate, ethyl 0.55 Methacrylate, ethyl 0.67 Methacrylate, ethyl 0.65 Methacrylate, ethyl 0.55 Methacrylate, ferrocenylmethyl 3.63 Methacrylate, ferrocenylmethyl 3.6 Methacrylate, glycidyl 0.54 Methacrylate, glycidyl 0.278 Methacrylate, glycidyl 0.47 Methacrylate, glycidyl 0.44 Methacrylate, glycidyl 0.45 Methacrylate, glycidyl 0.31 Methacrylate, glycidyl 0.11 Methacrylate, glycidyl 0.435 Methacrylate, hexyl 0.58 Methacrylate, isobornyl 0.61 Methacrylate, isobutyl 0.509 Methacrylate, isobutyl 0.56 Methacrylate, isobutyl 0.55 Methacrylate, isopropyl 0.5 Methacrylate, isopropyl 0.47 Methacrylate, m-chlorophenyl 0.375 Methacrylate, ra-nitrophenyl 0.44 Methacrylate, methoxymethyl 0.395 Methacrylate, methyl 0.5 Methacrylate, methyl 0.52 Methacrylate, methyl 0.52 Methacrylate, methyl 0.48 Methacrylate, methyl 0.52 Methacrylate, methyl 0.49 Methacrylate, methyl 0.45 Methacrylate, methyl 0.58 Methacrylate, methyl 0.44 Methacrylate, methyl 0.396
±95%
0.16 0.117 0.195 0.225 0.025 0.14 0.013 0.04 0.043 0.041 0.11 0.041 0.026
0.32 0.12 1.09
0.006 0.011 0.088 0.15 0.05 0.062
0.14 0.07 0.086 0.02 0.04 0.045 0.033 0.07 0.45 0.014
0.05 0.16 0.014
0.048
r2 1.65 0.48 0.113 0.321 0.576 0.216 0.534 0.63 0.411 0.58 0.242 0.505 0.46 0.658 0.467 0.51 0.42 0.3 0.5 0.31 2.52 0.47 0.64 0.64 0.59 0.298 0.28 0.57 0.67 0.3 0.36 0.26 0.29 0.33 -0.019 0.01 0.16 0.539 0.46 0.54 0.55 0.74 0.73 0.514 0.44 0.24 0.271 0.58 0.4 0.42 0.74 0.209 0.185 0.586 0.5 0.46 0.46 0.42 0.45 0.46 0.47 0.48 0.5 0.22
±95%
Conv.
0.126 0.098 0.477 0.422 0.099 0.21 0.033 0.02
Y Y Y Y Y N Y N
0.018 0.115 0.2 0.084 0.048
Y Y Y Y
0.38 0.2 1.1
Y N
0.03 0.041 0.28 0.08 0.1 0.12
Y Y Y N Y Y
0.022
Y
0.03 0.04 0.08
N Y N
0.1 0.284 0.098 0.13 0.3 0.036
N N Y Y
0.013 0.054 0.069
Y Y Y
0.13
Y
Y
Refs. 903 918 924 924 924 924 540 335 633 651 1102 958 179 111 179 487 540 602 806 179 43 463 530 530 835 712 625 179 262 179 179 530 530 570 293 576 114 217 225 225 463 849 893 999 179 806 179 463 487 463 541 177 177 821 138 139 179 20 21 21 21 21 21 241
References page II - 290
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methylthiomethyl Methacrylate, octyl Methacrylate, octyl Methacrylate, /?-(cinnamoylamino)phenyl Methacrylate,/7-carbomethoxyphenyl Methacrylate, /?-chlorophenyl Methacrylate,/7-methoxyphenyl Methacrylate, p-methylphenyl Methacrylate, p-nitrophenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, phenyl Methacrylate, propyl Methacrylate, sulfolanyl Methacrylate, tert-buty\ Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic acid Methacrylic anhydride Methacrylic anhydride Methacrylonitrile Methacrylonitrile Methacrylonitrile Methacrylonitrile
T1 0.42 0.49 0.564 0.585 0.44 0.47 0.54 0.52 0.38 0.52 0.54 0.44 0.52 0.5 0.56 0.53 0.485 0.48 0.371 0.62 0.52 0.5 0.55 0.55 0.41 0.472 0.497 0.432 0.57 0.275 0.338 0.65 0.56 0.62 0.482 0.34 0.499 0.49 0.223 0.246 0.247 0.26 0.565 0.2 0.545 0.21 0.22 0.2 0.15 0.2 0.38 0.124 0.17 0.041 0.067 0.627 0.55 0.221 0.13 0.1 0.37 0.38 0.43 0.34
±95%
0.14 0.047 0.007 0.08
0.052 0.059 0.055
0.1
0.084 0.11 0.089 0.25 0.09 0.049 0.064 0.081 0.1 0.054 0.02 0.04 0.04 0.092 0.03 0.046 0.031 0.06 0.048 0.01
r2 0.32 0.418 0.54 0.478 0.45 0.45 0.49 0.47 0.48 0.46 0.42 0.5 0.46 0.44 0.49 0.49 0.409 0.504 0.611 0.59 0.6 0.63 0.58 0.64 0.41 0.454 0.464 0.422 0.41 0.314 0.512 0.56 0.68 0.31 0.178 0.243 0.244 0.225 0.185 0.48 0.55 0.51 0.38 -0.2 0.61 0.55 0.64 0.66 0.49 0.56 0.28 0.602 0.85 0.631 0.6 0.44 0.39 0.12 0.27 0.33 0.41 0.42 0.28 0.21
±95%
Conv.
0.085 0.029 0.011 0.01
Y Y Y N
0.02 0.026 0.028
Y Y Y
0.05 0.16
Y Y
0.027 0.022 0.026 0.04 0.039 0.23 0.33
Y Y Y Y Y Y Y
0.11 2.46 0.51 0.66
Y N Y N
0.08 0.19
N N
0.088
Y
0.146 0.249 0.089 0.199 0.118 0.02
Y Y Y Y Y N
Refs. 241 254 254 287 324 324 403 416 451 463 492 492 505 531 531 534 751 751 751 753 753 753 753 753 753 824 824 824 835 860 920 179 463 685 177 177 177 177 177 177 179 463 179 359 179 166 166 203 312 313 313 47 812 842 842 842 842 842 219 275 311 311 542 707
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Methacrylonitrile Methacrylonitrile Methacryloxypropyltrimethoxysilane Methacryloyl fluoride Methacryloylacetone Methacryloyloxy, 2-, benzoate, methyl Methacryloyloxy, 2-, benzoic acid Methacryloyloxy, 4-, 2,2,6,6-tetramethyl Methylenebutyrolactone Methyleneglutaronitrile, 2Methyleneglutaronitrile, 2Methyleneglutaronitrile, 2Myrcene AW-Divinylaniline N-Vinylimidazole Naphthalene, 1-vinylNaphthalene, l-vinyl-4-chloroNaphthalene, 2-vinylNaphthalene, 2-vinyl-6-chloroNaphthalene, 6-vinyl-2-tert-butyl Oct-1-ene, 4,8-dioxaspiro(2,5)Oct-1-ene, 6,6-dimethyl-4,8-dioxaspiro Oxazolidone, N-vinylOxazoline, 2-, 2-isopropenyl4,4-dimethyl Oxazoline, 2-, 4-acryloxymethyl2,4-dimethyl Oxazoline, 2-isopropenylOxirane, 4-vinylphenylPentadienoate, trans-4-ethoxy-2,4-, ethyl Pentadienonitrile, trans-4-ethoxy-2,4Penten, 2-,-4-one Phenol, 3-(methacryloylamino)Phenol, 4-(methacryloylamino)Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, 2-(acryloyloxy)ethyl diethyl Phosphate, vinyl bis(chloroethyl) Phosphazene, isopropenylpentafluoroPhosphonate, 2-(4-vinylphenyl)ethyl, diethyl Phosphonate, 4-vinylphenyl, diethyl Phosphonate, oc-carbomethoxyvinyl-, diethyl Phosphonate, isopropenyl-, dimethyl Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, dibutyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, diisobutyl Phosphonate, vinyl-, diispropyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, dimethyl Phosphonate, vinyl-, dimethyl
rx 0.25 0.34 0.36 0.069 0.067 0.27 0.15 0.6 0.09 0.42 0.5 0.85 0.891 5.38 8.377 0.699 0.76 0.395 0.39 0.616 1.831 1.93 29.42 0.55
±95%
0.014 0.007 0.04 0.04
0.52
0.015 0.36 0.149 0.233 0.68 0.049 0.6 0.069 0.027 0.098 2.19
r2 0.25 0.21 0.58 0.164 1.66 0.48 1.17 0.32 0.7 -0.02 0.02 0.25 1.38 0.033 0.68 2.02 0.75 1.345 2.44 1.014 0.246 0.271 -0.029 0.68
±95%
Conv.
0.045 0.16 0.02 0.03
Y Y N N
1.3
N
0.081 0.067 0.02 0.401 0.45 0.093 1.38 0.244 0.024 0.109 0.014
Y Y Y
Y Y Y
Refs. 75 835 951 660 339 651 651 687 746 196 196 512 1062 45 879 967 806 806 806 806 838 838 36 596
0.56
0.14
596
0.67 0.78 0.04 0.08 13.84 0.5 0.71 0.629 0.612 0.595 0.597 0.633 0.61 0.599 2.47 1.6 0.55
0.64 1.06 12.2 11.8 -0.033 0.99 0.86 0.171 0.15 0.146 0.168 0.094 0.23 0.108 0.03 -0.121 1.36
862 1001 723 723 112 896 896 971 971 971 971 971 971 971 133 765 796
0.57 0.06 0.04 0.003 0.004 0.005 0.044 0.002 0.018 0.002 0.78 0.27
0.7 3.88 8.6 2.46 2.3 2.2 6.32 6.32 4.97 4.36 1.59 2.45 3.87 2.57 4.61 2.45 2.45
0.055 0.04 0.03 0.01 0.05 0.073 0.355 0.02 0.187 0.034 0.23 0.088
Y
N N N N N N N Y Y
1.4 0
0.43
3.44 4.27 0.24 1.59 2.13
0.23 0.02 0.16 0.2 0.18 0.18 -0.12 -0.15 -0.52 0.02 -0.32 -0.52 0.4 0.15 0.02
796 684
0.39
Y
2.33 2.18 0.22
Y Y Y
1.46 2.52
Y Y Y
684 133 410 485 592 594 129 129 18 592 129 129 129 129 592 594
References page II - 290
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Phosphonate, vinyl-, diphenyl Phosphonate, vinyl-, dipropyl Phthalimide, N-vinylPropene, 2,3-dichloroPropene, 2,3-dichloroPropene, 2-chloro-3-hydroxyPropene 3,3,3-trichloroPropene, 3-chloro-2-chloromethylPropneyl methyl ketone Propenyl, 2-chloro-, acetate Propenyl, 2-methyl, acetate Propiolactam, Af-phenyl-a-methylenePyrazole, N-vinyl-3,5-dimethylPyridazinone, 3-(2-vinyl)-6-methylPyridazinone, 3-(2-vinyl)-6-methyl4,5-dihydro Pyridine, 2-methyl-5-vinylPyridine, 2-methy 1-5-vinylPyridine, 2-methy 1-5-vinylPyridine, 2-methyl-5-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinylPyridine, 2-vinyl-5-ethylPyridine, 3-ethynyl-6-methylPyridine, 4-vinylPyridine, 4-vinylPyridine, AT-oxide-, 2-vinyl-5-ethylPyrimidine, 2-WV-dimethylamino4-vinyl Pyrimidine, 4-vinylPyrrolidone, l-benzyl-3-methylene5-methyl Pyrrolidone, Af-vinylQuinoline, 2-vinylQuinoline, 2-vinyl5-Ethyl Ar-vinyl-N-methylthiolcarbamate 5-Vinyl AW-diethylthiolcarbamate Silane, y-methacryloxypropyltrimethoxyStilbene Styrene, 2,4-dibromoStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,4,5-tribromoStyrene, 3-m-n-butylstannylStyrene, 4-(f-butyldimethylsilyloxy)Styrene, 4-(trimethylsilyl)Styrene, 4-phenoxyStyrene, a-(trimethylsilyloxy)Styrene, a-methoxyStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, m-aminoStyrene, m-aminoStyrene, m-bromoStyrene, m-bromo-
r\
±95%
r2
±95%
Conv.
Refs.
1.74 3.81 6.27 3.51 3 12.5 6.9 3.37 18.12 4.1 71 0.626 8.663 0.9 5.92
0.16 0.68 0.66 0.18
-0.38 -0.41 0.07 0.05 0.036 0 0 0.01 0.08 0 0 0.406 0.049 0.85 0.13
0.29 0.72 0.11 0.01
Y Y Y N
0.106 0.011 0.05 0.03
N N
129 129 163 11 983 445 402 806 806 445 470 1002 806 340 340
0.74 0.6 0.72 0.73 0.46 0.5 0.55 0.57 0.55 0.74 2.3 0.52 -0.73 0.06 0.338
0.03
0.08
N
0.23 0.32
N N
0.12
N
0.07 1.09 0.11 0.017
0.75 0.68 1.2 0.78 0.75 1.27 1.81 1.33 1.14 1.09 0.15 0.69 1.04 2.27 1.404
0.16 0.22 0.88 0.071
N Y Y
232 500 514 56 231 41 456 499 532 231 784 231 79 806 243
0.095 0.053
2.38 0.71
1.06 0.17
Y Y
243 633
1.55
0.057 2.09 2.69 -0.11
0.028
Y
0.26
Y
36 456 458 197
0.219 0.555 17.2 0.49 0.49 10
0.73 6.09 0.025 0.196 0.03 0.1
0.03 0.15
0.05
1.72
0.1 0.3 Y
4.45 0.425
0.48 0.048
0.1 0.868
0.34 0.096
Y Y
197 977
3.92 0.14 0.268 0.18 0.23 0.26 0.23 18.5 0.877 0.48 1.38 1.48 2.51 1.21 0.96 1.09 1.13 1.08 1.12 1.04 0.786 0.5 0.55
0.17 1.61 0.08
0 0.91 0.81 0.25 2.2 0.14 2.78 0.03 0.863 0.28 0.94 0 0.07 0.14 0.05 0.3 0.4 0.521 0.63 1.16 1.18 1.6 1.05
0.09 2.88 0.14
N
0.04
N
0.193
Y
0.05 0.06 0.13
N N N
0.084
Y
0.007
Y
725 806 14 411 419 84 1054 985 976 1036 602 970 142 171 281 281 281 289 289 775 989 168 256
0.17 0.351
0.34 0.41 0.03 0.11 0.01
Y
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Styrene, ra-chloroStyrene, m-chloroStyrene, m-cyanoStyrene, m-diethylaminoethylStyrene, m-dimethylaminoStyrene, m-hydroxyStyrene, m-methoxyStyrene, m-nitroStyrene, m-sulfonic acid fluoride Styrene, p-2-methoxyphenyl ketone Styrene, p-4-methoxyphenyl ketone Styrene, p-phenyl ketone Styrene, p-phenyl ketone Styrene, p-l-(2-hydroxypropyl)Styrene, p-2-(2-hydroxypropyl)Styrene, p-2-(2-hydroxypropyl)Styrene, p-acetoxyStyrene, p-acetoxyStyrene,/7-aminoStyrene, p-aminoStyrene, p-bromoStyrene, p-bromoStyrene, p-bromoStyrene, p-bromoStyrene, p-bormoStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-cyanoStyrene, p-cyanoStyrene, p-decylStyrene, p-diethylaminoethylStyrene, p-ethoxy Styrene, p-fluoromethylStyrene, p-formylStyrene, p-formylStyrene, p-iodoStyrene, p-iodoStyrene, p-mercaptoStyrene, p-methoxyStyrene, p-methoxyStyrene, p-methoxyStyrene, p-methoxyStyrene, p-methylStyrene, p-nitroStyrene, p-octylamine sulfonate Styrene, p-sulfonic acid fluoride Styrene, p-trimethoxysilylStyrene, p-trimethylsilylStyrene, pentachloroSuccinimide, N-vinylSuccinimide, N-vinylSuccinimide, N-vinylSuccinimide, N-vinylTerpyridinyl, 4/-vinyl-2,2/:6/,2//Tetrazole, 1-vinylTetrazole, 2-methyl-5-(4/-vinyl)phenylTetrazole, 2-methy 1-5-vinyl-
r\ 0.57 0.64 0.851 1.2 1.027 0.78 1.742 0.279 0.788 0.23 0.423 0.11 0.13 0.97 0.5 0.79 0.835 0.887 0.41 0.876 0.7 0.67 0.71 0.71 0.69 0.62 0.744 0.816 0.74 0.39 0.76 0.74 0.622 0.62 0.6 0.24 0.28 0.88 1.12 0.98 0.474 0.2 0.16 0.485 0.629 0.607 0.85 1.14 1.16 1.05 0.891 0.193 0.7 0.171 0.774 1.26 1.33 10.74 10.09 2.31 0.052 0.53 3.85 0.65 1.124
±95%
0.534 0.28 0.248 0.07 0.456 0.055 0.183 0.07 0.071 0.15 0.02
0.029 0.034 0.007 0.03 0.09 0.14 0.1 0.08 0.029 0.043 0.047 0.15 0.3 0.07 0.22 0.19 0.19 0.151 0.093 0.039 0.188 0.19 0.6 0.086 0.092 0.045 0.126 0.47 0.19 0.49 0.46 0.98 0.032 0.384 0.045 0.081
r2 2.3 1.09 0.363 1.21 0.617 1.33 0.661 0.5 1.268 1.52 1.85 2.58 0.55 0.91 0.56 1.25 1.305 1.218 0.22 1.07 1.05 1.1 0.99 1.05 1 1.08 1.029 1.062 1.03 0.76 1.76 1.02 1.12 1.12 1.66 1.22 1.16 0.26 0.59 0.71 1.399 3 1.43 1.044 0.965 0.907 0.69 1.01 0.82 0.79 0.993 1.13 2.7 1.372 1.581 1.15 0.07 0.045 0.045 0.01 7 1.26 0.184 1.3 0.62
±95%
0.08 0.26 0.264 0.06 0.232 0.14 0.236 0.58 0.93 0.83 9.44
Conv.
N Y
0.05 0.069 0.004 0.07 0.05 0.11
Y N N Y
0.07 0.056 0.014
N Y Y
0.12
Y
0.17 0.2 0.46 0.11
Y N
1.32 0.19 0.14 0.236 0.159 0.124 0.223 0.1 1.27
N N
0.028 0.13
Y Y
0.188 0.342 0.72 0.1 0.036 0.072 0.23 1.6 0.33 0.031
N Y Y Y Y N Y
0.21
Y
Y
Refs. 168 256 806 806 806 35 806 222 806 806 806 806 806 380 390 547 806 806 775 989 125 128 256 447 554 128 139 139 140 150 523 554 756 806 806 128 256 806 806 806 806 1025 956 806 839 806 128 160 256 535 261 256 817 806 806 806 7 104 163 693 80 953 925 583 670
References page II - 290
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2
rx
Tetrazole, 2-phenyl-5-(4/-vinyl)phenyl0.95 Tetrazole, 5-phenyl-2-(4/vinyl)phenyl0.48 Tetrazole, 5-vinyl0.78 Tetrazole, 5-vinyl0.78 Toluenesulfonamide, 7V,N-methyl-vinyl5.6 Triallyl citrate 20.02 Triallyl cyanurate 32.45 Triallyl isocyanurate 28.6 Triazine, 1,3,5-, 2-amino-4-(N-methyl0.306 /7-aminoanilino)Triazine, 1,3,5-, 2-amino-4-(7V-methyl0.169 p-nitroanilino)Triazine, 1,3,5-, 2-amino-4-(/?-nitroanil)- 0.257 Triazine, 4,6-diamino-2-vinyl1.104 Triazole, 1,2,3-, l-/?-bromophenyl-4-vi 1.32 Triazole, 1,2,3-, 4(5)-vinyl1.48 Urea, l,3-divinyl-l,3-diphenyl3.62 Urea, N-acryloyl-W-benzoyl0.404 Urea, TV-vinyl-iV'-ethyl10.78 Valerolactone, a-methylen0.097 Valerolactone, a-methylene0.096 Vinyl 2-, 1,1-dichlorocyclopropane 17.98 Vinyl 2-, 2-methyl-4,4,6-6-tetraphenyl 0.11 cyclotrisiloxane Vinyl 2-chloroethyl ether 160 Vinyl 4, dithiobenzoate methyl 0.111 Vinyl 4-chlorocyclohexyl ketone 0.53 Vinyl acetate 42.48 Vinyl acetate 18.8 Vinyl acetate 56 Vinyl acetate 48 Vinyl acetate 60 Vinyl acetate 57.8 Vinyl acetoxymethyl ketone 0.103 Vinyl benzoate 34.8 Vinyl benzoate 31.56 Vinyl benzyl sulfide 2.32 Vinyl bromide 16.88 Vinyl bromide 18 Vinyl bromide 15 Vinyl butyl ether 21.25 Vinyl butyl sulfide 2.69 Vinyl butylsulfonate 1.74 Vinyl chloride 27.54 Vinyl chloride 17.24 Vinyl chloride 23.92 Vinyl chloride 25 Vinyl chloride 12.4 Vinyl chloride 14.7 Vinyl chloroacetate 14.57 Vinyl chloroacetate 45 Vinyl chloromethyl ketone 0.127 Vinyl cymantrene 2.324 Vinyl dichloroacetate 20 Vinyl dodecyl ether 27 Vinyl dodecyl ether 56 Vinyl ether 152 Vinyl ethyl ether 90 Vinyl ethyl ether 111 Vinyl ethyl ketone 13.83 Vinyl ethyl ketone 0.2 Vinyl ethyl ketone 0.29 Vinyl ethyl ketone 0.665 Vinyl ethyl oxalate 5.62 Vinyl ethyl sulfide 4.76
±95%
r2
±95%
Conv.
Refs.
0.3 1.13 0.81 1.27 1.39 0.054
1 2.2 0.31 0.31 -0.58 0.076 0.22 -0.05 0.44
0.02 0.44 0.041 0.12 0.11 0.12
Y Y Y Y Y
583 583 870 902 80 367 201 201 364
0.013
1.676
0.065
Y
364
0.062 0.157 0.15 0.12 0.98
0.91 0.538 0.73 0.52 -1.76 0.053 -0.33 1.42 1.44 0 0.8
0.18 0.141 0.4 0.26 1.36
Y Y Y Y
0.33
Y
364 806 670 670 800 1090 101 919 855 806 626
2.07
0.59
0.009 26.85 2.87
0.011 29.3 4.33 0.25 0.94 8.26 16.53 0.25 0.27 7.35 1.12 3.6 5 29.2 62.41 0.047 0.06
185 15.5 1.44 0.08 0.16 0.021 1.06 0.2
0.07 2.08 0.58 -0.04 0.02 0.01 0.05 0.16 0.08 0.368 -0.02 0.06 0.04 0.012 0.06 0.09 -0.08 -0.06 0 -0.06 0.058 0.16 0.005 0.04 0.01 -0.04 0.03 0.507 0.096 0.28 0 0 1.2 0 -0.122 -0.033 0.43 0.332 0.122 -0.12 0.113
0.034
0.81
Y
0.072 0.12
Y Y
0.018 1.62 0.15 0.17 0.049
Y N Y Y
0.2 0.78 0.18 0.16 0.08 0.003 0.08 0.031
N Y Y Y Y Y N Y
0.87 0.24
Y Y
0.039 0.014
Y Y
5.3
Y
0.066 0.023 0.06 0.043 0.017 0.19 0.032
Y Y N Y Y Y Y
597 697 668 158 241 481 481 481 812 806 26 696 303 34 34 368 241 303 185 109 238 242 46 516 59 212 542 353 354 542 374 374 45 140 194 112 344 353 550 124 303
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene
Monomer 2 Vinyl ethyl sulfide Vinyl ethyl sulfioxde Vinyl ethyl sulfoxide Vinyl hendecanoate Vinyl iodide Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl sulfide Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl isopropyl sulfide Vinyl isothiocyanate Vinyl isothiocyanate Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl sulfide Vinyl methyl sulfide Vinyl methyl sulfide Vinyl methyl sulfone Vinyl methyl sulfoxide Vinyl octyl ether Vinyl pelargonate Vinyl phenyl ether Vinyl phenyl ketone Vinyl phenyl ketone Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl phenyl sulfone Vinyl stearate Vinyl sulfone Vinyl tert-butyl ketone Vinyl tert-butyl ketone Vinyl tert-butyl sulfide Vinyl thiolacetate Vinyl, 1-cyano, acetate Vinyl, 2-bromo-, ethyl ether Vinyl, p-benzylmethylcarbinol Vinyl-frts(trimethoxysiloxy)silane Vinyl-fns(trimethoxysiloxy)silane Vinylacetophenone, pVinylanthracene, 9Vinylanthracene, 9Vinylbenzoic acid, /?Vinylene carbonate Vinylene carbonate Vinylferrocene Vinylferrocene Vinylhydroquinone dibenzoate Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene cyanide Vinylidene cyanide Vinylisocyanate Vinylisocyanate Vinylmethyldiacetoxysilane Vinylmethyldiethoxysilane Vinylmethyldiethoxysilane Vinylphenyldimethylsilane
rx 6 9.64 6 24.89 7.401 11.58 11.96 50 2.38 0.46 0.36 0.4 4.61 0.65 0.8 0.288 0.237 0.35 4.5 4.46 5 1.146 3.57 65 49.5 1.7 0.24 0.21 3.63 3.96 1.562 15.96 0.731 0.3 0.36 4.36 4 0.181 0.98 26 24 0.246 2.12 2.12 0.282 411 21.03 4.37 2.76 0.22 1.81 1.79 1.8 1.839 1.81 1.7 0.015 0.003 8.13 6.9 4.08 5.68 11.29 32.53
±95%
0.54 1.22 0.315 1.91 2.32 0.41 0.05 0.1 0.18 0.092 0.023 0.11 0.24 0.087
0.04 0.042 0.12 0.27 0.091 13.32 0.058 0.31 0.11 0.76 0.409 0.32 0.072 0.011 23.45 1.44 0.22 0.35 0.14 0.024 0.12 0.007 0.001 0.14 0.1 0.43 0.49
r2 0.25 0.101 0.1 -0.17 0.126 0.65 0.29 0.01 -0.11 0.26 0.272 0.3 0.16 0.37 0.5 0.349 0.348 0.27 0.15 0.066 0.046 -0.22 0.01 0 0.01 0.01 0.3 0.465 0.019 0.26 -0.31 -0.39 -0.027 3.2 0.248 0.158 0.25 0.147 0.94 0 0.01 1.12 0.25 0.3 1.029 3.16 -0.73 0.2 0.14 0.43 0.134 0.098 1.5 0.87 0.15 0.11 0.72 0.001 0.08 0.1 0 0.08 -0.08 0.024
±95%
Conv.
0.044
Y
0.18 0.035 0.39 0.33
Y N N
0.2 0.07 0.046
Y N Y
0.068
Y
0.068 0.009
Y Y
0.056 0.084 0.17
Y Y Y
0.02 0.03 0.054 0.18 0.16 0.71 0.047 0.46 0.05 0.073
N Y Y N Y Y Y N Y Y
0.033 0.15
Y Y
0.42
Y
0.06 0.98 0.1 0.14
Y Y Y Y Y
0.48 0.01
Y Y
0.007
Y
0.005 0.16 0.001
N Y Y
0.15 0.14 0.2 0.016
Y Y Y Y
Refs. 507 286 286 145 806 349 349 490 303 344 353 599 303 422 542 140 353 550 193 195 303 195 737 374 145 423 344 353 193 239 193 145 45 344 353 303 566 806 194 48 209 482 266 123 48 266 103 120 274 294 440 138 238 393 59 812 93 134 82 435 533 754 754 754 482
References page II-290
TABLE 1. cont'd Monomer 1 Styrene Styrene Styrene Styrene Styrene Styrene Styrene sulfonate, sodium salt Styrene, 2,4,6-trimethylStyrene, 2,4,6-trimethylStyrene, 2,4,6-trimethylStyrene, 2,4,6-trimethylStyrene, 2,4-dibromoStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dichloroStyrene, 2,5-dimethylStyrene, 2,6-dichloroStyrene, 2,4,5-tribromoStyrene, 3-tri-rc-butylstannylStyrene, 3-tri-/2-butylstannylStyrene, 3-tri-n-butylstannylStyrene, 3-tri-rc-butylstannylStyrene, 3-tri-rc-butylstannylStyrene, 4-(te?t-butyldiinethylsilyloxy)Styrene, 4-(trimethylsilyl)Styrene, 4-methylStyrene, 4-methylStyrene, 4-phenoxyStyrene, a-(trimethylsiryloxy)Styrene, a-(trimethylsilyloxy)Styrene, a-methoxyStyrene, a-methoxyStyrene, a-methoxyStyrene, a-methoxyStyrene, a-methoxyStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methyl-
Monomer 2 Vinylphenylpropanol, 2-pVinyltriethoxysilane Vinyltrimethylsilane Vinyltrimethylsilane Vinyltrimethylsilane Xanathate, 5-methacryloyl O-ethyl N-Vinylpyrrolidone Acrylonitrile Methacrylate, methyl Methacrylate, methyl Styrene, /7-chloroStyrene Acrylate, methyl Acrylate, methyl Acrylonitrile Acrylonitrile Acrylonitrile Butadiene Butadiene Methacrylate, methyl Pyridine, 2-vinylStyrene Styrene Styrene Styrene Styrene, 2,5-dimethylStyrene, a-methylVinyl methyl ketone Vinylidene cyanide Styrene, 2,5-dichloroMethacrylate, methyl Styrene Acrylate, ethyl Acrylonitrile Methacrylate, methyl Styrene Vinyl acetate Styrene Styrene Acrylonitrile Methacrylate, methyl Styrene Acrylonitrile Styrene Acrylate, methyl Acrylonitrile Methacrylate, methyl Methacrylonitrile Styrene Acrylate, 2-cyano-, methyl Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Butadiene Butadiene, 2-fluoroFumaronitrile Maleic anhydride Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl
rx
±95%
r2
±95%
Conv.
Refs.
Y Y Y Y Y
72 209 209 482 73 1086 939 58 58 58 58 806 136 2 84 84 84 255 8 3 2 14 411 419 84 91 377 375 82 91 324 1054 985 985 985 985 985 976 1036 929 929 602 970 970 142 142 142 143 142 452 171 265 265 265 75 75 835 94 70 174 77 492 265 265 265
0.48 20.86 14.66
0.3 1.99 5.15
0.41 -0.09 -0.19
0.4 0.14 0.36
5.98 0.44 7.19 0.065 0.083 -0.01 0.34 0.91 3.93 4.47 0.08 0.07 0.09 0.45 0.187 2.66 0.14 0.81 0.25 2.2 0.14 1.543 3 2 0.026 0.263 -0.15 2.78 0.01 0.001 0.03 0.03 0.38 0.863 0.28 0.227 0.46 0.94 0 0 0.003 -0.002 -0.02 -0.02 0.07 0.05 0.08 0.14 0.17 0.24 0.09 0.103 0.14 0.08 0.139 0.72 0.094 0.04 0.27 0.51 0.6
0.18 0.06
0.049 0.36 0.084 0.874 1.511 1.45 17.83 0.14 0.142 0.288 0.22 0.25 0.26 0.449 0.662 0.44 0.62 0.268 0.18 0.23 0.26 0.263 0.14 0.5 0.005 1.543 1.98 0.23 10.4 4.88 0.69 18.5 5.33 0.877 0.48 0.079 0.345 1.38 0.05 1.48 0.17 0.06 2.5 0.83 2.51 0.001 0.07 0.04 0.04 0.04 0.063 0.34 0.03 - 0.02 1.5 2.22 -0.01 0.08 0.48 0.55 0.55
0.025 0.08
0.048 0.045 0.11 1.05 2.88 1.38 0.15 0.03 0.17 0.049 0.38 0.18 0.14 0.04 0.068 0.006 0.022 0.27
0.193 0.021 0.022
0.01 0.01 0.04 0.005 0.05 0.03 0.03 0.024 0.036 0.07 0.087 0.24 0.02 0.07
0.051 0.072 0.16 5.24 1.61 0.054 0.069 0.01
Y Y Y Y
0.043 0.017 0.13 0.12 0.08
Y Y Y N Y
0.17 0.022
N Y
0.009 0.068 0.16
Y Y N
0.351
Y
0.005 0.008
Y Y
0.02 0.01 0.39 0.04 0.34
N N N N N
0.04 0.005
N N
0.041 0.15
Y Y
0.27 0.13 0.7 0.078
N Y Y Y
0.02
N
Y Y N
Next Page
TABLE 1. cont'd Monomer 1 Styrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, a-methylStyrene, ra-aminoStyrene, ra-aminoStyrene, m-aminoStyrene, ra-bromoStyrene, ra-bromoStyrene, ra-bromoStyrene, ra-bromoStyrene, ra-bromoStyrene, ra-chloroStyrene, ra-chloroStyrene, ra-chloroStyrene, ra-cyanoStyrene, ra-diethylaminoethylStyrene, ra-dimethylaminoStyrene, ra-hydroxyStyrene, ra-methoxyStyrene, ra-methyl Styrene, ra-methyl Styrene, ra-methyl Styrene, ra-methyl Styrene, ra-methyl Styrene, ra-methyl Styrene, ra-methyl Styrene, ra-methylStyrene, m-methylStyrene, ra-nitroStyrene, ra-nitroStyrene, ra-nitroStyrene, ra-sulfonic acid fluoride Styrene, o-chloroStyrene, o-chloroStyrene, ochloroStyrene, o-chloroStyrene, o-chloroStyrene, ochloroStyrene, o-chloroStyrene, o-chloroStyrene, p-2-methoxyphenyl ketone Styrene, p-phenyl ketone Styrene, p-phenyl ketone Styrene, p-1 -(2-hydroxybutyl)Styrene,/7-1-(2-hydroxybutyl)Styrene, p-1-(2-hydroxybutyl)Styrene, p-1-(2-hydroxypropyl)Styrene, p-1-(2-hydroxypropyl)Styrene, p-1-(2-hydroxypropyl)Styrene, p-1-(2-hydroxypropyl)Styrene, p-2-(2-hydroxypropyl)Styrene, p-2-(2-hydroxypropyl)Styrene, p-2-(2-hydroxypropyl)Styrene, p-2-(2-hydroxypropyl)-
Monomer 2 Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylonitrile Styrene Styrene Styrene Styrene Styrene Styrene Styrene, 2,5-dichloroStyrene, p-chloroVinyl chloromethyl ketone Vinylhydroquinone dibenzoate Styrene Styrene Styrene, p-aminoMethacrylate, methyl Styrene Styrene Styrene, p-methoxyMethacrylate, methyl Styrene Styrene Styrene, p-methoxyStyrene Styrene Styrene Styrene Styrene Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylic acid Methacrylic acid Methacrylic acid Acrylate, methyl Acrylonitrile Methacrylate, methyl Methacrylate, methyl Styrene Styrene, p-chloroStyrene Acrylate, butyl Indene Methacrylate, butyl Methacrylate, ethyl Methacrylate, methyl Methacrylate, methyl Methacrylic acid Methacrylonitrile Styrene Styrene Styrene Acrylate, butyl Acrylate, methyl Acrylonitrile Acrylonitrile Methacrylate, methyl Styrene Styrene, p-chloroAcrylonitrile Styrene Styrene Styrene, p-chloro-
rx 0.14 0.22 0.48 0.15 0.14 0.05 0.3 0.4 0.521 0.63 0.14 0.21 0.009 0.11 1.16 1.18 0.63 1.17 1.6 1.05 1.4
±95%
0.06 0.13 0.084 0.2 0.01 0.007
r2 0.5 0.42 0.47 0.21 1.21 0.96 1.09 1.13 1.08 1.12 3 1.56 0.386 0.3 1.04 0.786 0.49 0.48 0.5 0.55 0.25
±95%
Conv.
0.41 0.03
N N
0.11
Y
0.42 0.034
Y Y
0.01
Y
Y 2.3 1.09 1.9 0.363 1.21 0.617 1.33 0.661 0.53 0.36 0.51 0.06 0.33 0.42 1.65 0.43 0.486 0.8 0.5 1.73 1.268 2.25 2.86 1.24 1.34 1.37 1.34 0.101 0.78 1.52 2.58 0.55 0.4 0.48 0.31 0.53 1 0.91 0.63 0.41 0.56 1.25 0.53
0.08 0.26 0.264 0.06 0.232 0.04 0.06 0.05 0.03 0.02 0.01 0.02 0.32 0.14 0.47 0.236 0.83
0.034 0.58 0.83 9.44
0.57 0.64 0.2 0.851 1.2 1.027 0.78 1.742 0.48 0.38 0.41 0.35 0.18 0.51 0.14 0.07 0.512 0.35 0.279 0.3 0.788 0.2 - 0.069 0.32 0.45 0.5 0.46 0.622 0.86 0.23 0.11 0.13 0.17 0.18 0.04 0.1 0.26 0.97 0.91 0.05 0.5 0.79 1.24
0.534 0.28 0.248 0.07 0.456 0.04 0.03 0.04 0.08 0.02 0.01
N
0.036 0.11 0.055 0.14 0.183
Y Y Y Y
0.066
Y
0.058
Y
0.07 0.15 0.02
Refs. 532 835 899 542 171 281 281 281 289 289 377 218 356 440 775 989 774 256 168 256 168 150 168 256 168 806 806 806 35 806 1087 1087 1087 1087 1087 1087 558 378 256 222 222 222 806 558 6 558 558 532 558 6 44 806 806 806 548 548 548 380 380 380 380 547 390 547 547
References page II - 290
Previous Page
TABLE 1. cont'd Monomer 1 Styrene, p-4-methoxyphenyl ketone Styrene, p-WV-dimethylaminoStyrene, p-WV-dimethylaminoStyrene, p-WV-dimethylaminoStyrene, p-AW-dimethylaminomethylStyrene, p-acetoxyStyrene,/7-acetoxyStyrene, p-acetoxyStyrene, p-aminoStyrene, p-aminoStyrene, p-aminoStyrene, p-bromoStyrene, p-bromoStyrene, p-bromoStyrene, p-bromoStyrene, p-bromoStyrene, p-bromoStyrene, p-bromoStyrene, /?-chloroStyrene, p-chloroStyrene, p-chloroStyrene,/7-chloroStyrene, p-chloroStyrene, p-chloroStyrene,/7-chloroStyrene,/7-chloroStyrene,/7-chloroStyrene,/?-chloroStyrene, /7-chloroStyrene, /7-chloroStyrene,/7-chloroStyrene, p-chloroStyrene,/7-chloroStyrene,/7-chloroStyrene,/?-chloroStyrene,/7-chloroStyrene,/7-chloroStyrene,/7-chloroStyrene,/7-chloroStyrene,/7-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloroStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-chloromethylStyrene, p-cyanoStyrene, p-cyanoStyrene, p-cyanoStyrene, p-cyanoStyrene, p-cyanoStyrene, p-decylStyrene, p-diethylaminoethyl-
Monomer 2 Styrene Acrylate, methyl Benzophenone, p-vinylMethacrylate, methyl Benzophenone, p-vinyl Acrylonitrile Styrene Styrene Styrene Styrene Styrene, m-aminoMethacrylate, methyl Styrene Styrene Styrene Styrene Styrene Styrene, p-methoxyAcrylate, a-trifluoromethyl-, methyl Acrylonitrile, a-trifluoromethylButadiene Butadiene, l-(2-hydroxyethylthio)Carbazole, Af-vinylCyclopentene, 4-,-1,3-dione Itaconate, dimethyl Methacrylate, butyl Methacrylate, butyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Norbornadiene Styrene Styrene Styrene Styrene Styrene Styrene Styrene Styrene, 2,4,6-trimethylStyrene, a-methylStyrene, m-nitroStyrene, p-l-(2-hydroxypropyl)Styrene, p-2-(2-hydroxypropyl)Styrene, p-cyanoStyrene, p-methoxyStyrene, p-methoxyStyrene, p-methylVinyl methyl sulfoxide Vinyl, p-, benzylmethylcarbinol Acrylonitrile Butadiene Methacrylate, butyl Methacrylate, ethyl Methacrylate, methyl Phosphazene, isopropenylpentafluoroStyrene Styrene Styrene Methacrylate, methyl Styrene Styrene Styrene, p-chloro Styrene, p-methoxyStyrene Styrene
r\ 1.85 0.38 0.07 0.101 0.26 0.4 1.305 1.218 0.22 1.07 0.49 1.1 1.05 1.1 0.99 1.05 1 1.15 0.24 0.92 1.6 0.24 7 0.294 0.69 1.036 1.025 0.77 0.89 0.47 69.93 1.08 1.029 1.062 1.03 0.76 1.76 1.02 17.83 1.56 0.3 0.91 1.24 0.26 0.47 0.86 1.15 6.46 1 0.56 0.42 1.46 1.29 0.91 1.64 1.12 1.12 1.66 1.41 1.22 1.16 1.28 0.89 0.26 0.59
±95% 0.93 0.16 0.05 0.016 0.017 0.03 0.05 0.069 0.004 0.07 0.05 0.11 0.08 0.02 0.06 5.7 0.081 0.1 0.124 0.12 24.19 0.07 0.056 0.014 0.12 5.24 0.42 0.14 0.08 0.16
0.15 0.58 0.17 0.2 0.46 0.11 0.13 0.03 1.32 0.19
r2 0.423 0.06 0.84 0.204 2.54 0.07 0.835 0.887 0.41 0.876 0.63 0.4 0.7 0.67 0.71 0.71 0.69 0.44 0 - 0.09 1.22 3.27 0.02 0.014 0.15 0.517 0.564 0.334 0.42 0.43 0 0.62 0.744 0.816 0.74 0.39 0.76 0.74 0.34 0.21 1.73 0.63 0.53 1.28 0.41 0.56 0.61 0.01 1 0.067 0.87 0.38 0.36 0.408 -0.048 0.622 0.62 0.6 0.22 0.24 0.28 0.26 0.14 0.88 1.12
±95%
Conv.
0.071 0.01 0.18 0.022 0.136 0.01 0.029 0.034
Y Y Y Y N
0.007
Y
0.03 0.09 0.14
N N Y
0.02 0.03 0.06 2.16
N N N Y
0.006
Y
0.1 0.131 0.016
N
0.12 0.1 0.08 0.029
Y N Y Y
0.043
Y
1.05 0.2 0.47
Y Y Y
0.13 0.08
N N
Y
Y
0.038 0.067 0.047 0.15 0.3
Y Y Y
0.07
N
0.08 0.05 0.22 0.19
N N
Refs. 806 866 866 256 86 47 806 806 775 989 774 256 125 128 256 447 554 128 825 825 255 810 551 264 398 872 966 150 256 476 188 128 139 139 140 150 523 554 58 218 222 380 547 128 128 256 256 737 48 1035 1075 1035 1035 756 765 756 806 806 256 128 256 128 128 806 806
TABLE 1. cont'd Monomer 1 Styrene,/7-dimethylaminoStyrene, /7-dimethylaminoStyrene,/7-dimethylaminomethylStyrene,/7-ethoxyStyrene, p-fluoroStyrene, /7-fluoromethylStyrene,/7-formylStyrene,/7-formylStyrene, /7-iodoStyrene,/7-iodoStyrene,/7-mercaptoStyrene, /7-methoxyStyrene, /7-methoxy Styrene,/7-methoxy Styrene,/7-methoxy Styrene,/?-methoxy Styrene, p-methoxy Styrene, /7-methoxy Styrene,/7-methoxy Styrene,/7-methoxy Styrene,/7-methoxy Styrene, /7-methoxy Styrene,/7-methoxy Styrene,/7-methyl Styrene,/7-methyl Styrene, /7-methyl Styrene,/7-methyl Styrene,/7-methyl Styrene,/?-methyl Styrene, p-methyl Styrene, p-nitro Styrene,/7-octylamine sulfonate Styrene,/7-octylamine sulfonate Styrene,/?-octylamine sulfonate Styrene,/7-octylamine sulfonate Styrene, p-sulfonic acid fluoride Styrene, p-tert-buty\Styrene, p-tert-buty\Styrene, p-trimethoxysilylStyrene,/7-trimethylsilylStyrene, pentachloroStyrene, pentachloroStyrene, pentachloroStyrene, tert-butoxyStyrenesulfonate,/7-, sodium Styrenesulfonate, p-, sodium Styrenesulfonate,/?-, sodium Styrenesulfonate,/?-, sodium Succinamate, potassium TV-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, N-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, TV-vinylSuccinimide, N-vinylSuccinimide, N-vinylSuccinimide, TV-vinyl-
Monomer 2 Acrylate, methyl Benzophenone, p-vinylBenzophenone,/?-vinylStyrene Myrcene Styrene Styrene Styrene Styrene Styrene Styrene Acrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Styrene Styrene; m-bromoStyrene, m-chloroStyrene, /7-bromoStyrene,/?-chloroStyrene, /7-chloroStyrene,/?-cyanoAcrylate, methyl Acrylonitrile Methacrylate, methyl TV,TV-Divinylaniline Styrene Styrene,/?-chloroVinyl methyl sulfoxide Styrene Acrylate, butyl Methacrylate, butyl Methacrylate, methyl Styrene Styrene Methacrylate, methyl Styrene Imidazole, TV-vinylStyrene Methacrylate, methyl Styrene Vinyl chloride Fumarate, dibutyl Acrolein Acrolein Acrolein Acrylate, oc-chloro-, sodium Methacrylate, methyl Acrylamide Acrylate, butyl Acrylate, methyl Acrylonitrile Carbazole, N-vinylMaleate, dimethyl Maleic anhydride Methacrylate, methyl Methacrylate, methyl Pyrrolidone, TV-vinylStyrene Styrene Styrene Styrene Vinyl acetate Vinyl acetate
rx 0.372 0.176 0.135 0.71 0.362 1.399 3 1.43 1.044 0.965 0.907 2 0.32 0.69 1.01 0.82 0.79 0.25 0.2 0.44 0.41 0.56 0.14 1.54 0.33 0.44 6.15 0.993 0.61 2.73 1.13 2.3 1.5 2.6 2.7 1.372 0.5 1.581 6.9 1.15 0.3 0.07 5.3 0.18 0.047 0.327 0.01 1.44 -0.02 0.17 0.15 0.9 0.516 0.11 1.25 0.148 0.048 -0.059 3.67 0.045 0.045 0.01 7 5.68 4.49
±95% 0.055 0.046 0.017 0.14 0.022 0.236
0.159 0.124 0.223
0.1 1.27
0.02 0.08 0.05
0.16 0.028
0.13
0.188 0.342 0.72 0.05 0.1
0.071 0.033 0.009 0.31 0.12
0.17 0.081 0.83 0.16 0.073 0.026 0.096 0.89 0.036 0.072 0.23 1.6 0.12 9.49
r2 0.192 0.842 2.54 0.98 0.87 0.474 0.2 0.16 0.485 0.629 0.607 0.07 0.29 0.85 1.14 1.16 1.05 1.4 1.9 1.15 0.47 0.86 0.89 0.17 0.05 0.4 0.06 0.891 1.15 0.01 0.193 0.3 0.7 0.6 0.7 0.171 0.44 0.774 0.002 1.26 3.65 1.33 0.43 0.01 0.26 0.395 0.113 0.27 1.1 1.86 1.54 0.357 0.116 0.04 -0.012 0.021 9.94 0.01 0.97 10.74 10.09 2.31 0.052 0.072 0.18
±95% 0.01 0.072 0.259 0.19 0.143 0.151
Conv.
Refs.
Y Y Y
911 911 911 806 1062 806 1025 956 806 839 806 558 35 128 160 256 535 168 168 128 128 256 128 558 378 256 45 261 256 737 256 817 817 817 817 806 634 806 1095 806 7 7 516 1077 57 57 57 834 771 600 789 80 80 284 284 284 104 693 96 104 163 693 80 104 167
Y
0.093 0.039 0.188
Y
0.19 0.6
N N
0.08 0.16
N N
0.03
N
0.03 0.086
Y Y
0.092
Y
0.045 0.126 0.47 0.85 0.19
N N
0.16 0.092 0.018 0.06 0.17
Y Y Y Y Y
0.063 0.024 0.09 0.021 0.027 0.27 0.031 0.42 0.49 0.46 0.98 0.32 0.009 0.54
Y Y Y Y Y Y Y N Y Y Y Y Y Y
References page II - 290
TABLE 1. cont'd Monomer 1 Succinimide, N-vinylSuccinimide, N-vinylSuccinimide, N-vinylSulfonate, 2-acrylamido2-methylpropane-, sodium Sulfonic acid, o-methacryloylaminobenzeneSulfonic acid, o-methacryloylaminobenzeneSulfonic acid, o-methacryloylaminobenzeneSulfonic acid,/?-methacryloylaminobenzeneSulfonic acid,/7-methacryloylamino benzeneSulfonic acid, /?-methacryloylamino benzeneTerpyridinyM'-vinyl^'tf'^''Tetrazole, 1-vinylTetrazole, 1-vinylTetrazole, 1-vinylTetrazole, 2-methyl-5-(4/-vinyl)phenylTetrazole, 2-methyl-5-(4/-vinyl)phenylTetrazole, 2-methyl-5-(4/-vinyl)phenylTetrazole, 2-methyl-5-vinylTetrazole, 2-methyl-5-vinylTetrazole, 2-methyl-5-vinylTetrazole, 2-phenyl-5-(4/-vinyl)phenylTetrazole, 2-phenyl-5-(4/-vinyl)phenylTetrazole, 2-phenyl-5-(4'-vinyl)phenylTetrazole, 2-phenyl-5-(4/-vinyl)phenylTetrazole, 2-phenyl-5-(4 '-vinyl)phenylTetrazole, 2-phenyl-5-(4/-vinyl)phenylTetrazole, 5-vinylTetrazole, 5-vinylThioindigoid Thiophene, 3-vinyl Thiophene, 3-vinyl Thioxanthone, 2-(acryloyloxy)Titanium, dicylopentadienyl-, dimethacrylate Titanium, dicylopentadienyl-, dimethacrylate Toluenesulfonamide, A^V-methyl-vinylToluenesulfonamide, AW-methyl-vinylToluenesulfonamide, WV-methyl-vinylToluenesulfonamide, AW-methyl-vinylTriallyl citrate Triallyl citrate Triallyl citrate Triallyl citrate Triallyl citrate Triallyl cyanurate Triallyl cyanurate Triallyl cyanurate Triallyl isocyanurate Triallyl isocyanurate Triallyl isocyanurate Triazine, 4,6-diamino-2-vinylTriazine, l,3,5-2-amino-4-(A^-methylp-aminoanilino)-6-isopropenylTriazine, l,3,5-2-amino-4-(N-methyl/?-aminoanilino)-6-isopropenylTriazine, 1,3,5-2-amino4-(p-nitroanilino)-6-isopropenyl-
Monomer 2
r\
±95%
r2
±95%
Conv.
Refs.
Vinyl acetate Vinyl thiolacetate Vinylidene chloride Acrylamide, AW-dimethyl-
1.99 0.17 0.311 0.162
0.43 0.15 0.058 0.949
0.229 2.47 1.441 1.108
0.06 0.37 0.061 0.59
Y N Y Y
80 97 104 857
Methacrylic acid
0.217
0.122
0.203
0.067
Y
1006
Methacrylic acid
0.523
0.195
0.188
0.076
Y
1006
Pyridine, 2-methyl-5-vinyl-
1.83
0.218
-0.002
0.031
Y
1006
Methacrylic acid
1.08
0.338
0.156
0.081
Y
1006
Methacrylic acid
1.65
0.27
0.155
0.052
Y
1006
Pyridine, 2-methyl-5-vinyl-
2.72
0.525
- 0.054
0.048
Y
1006
1.26 0.314 0.262 0.184 1.1 1.3 1.9 0.486 0.62 28.51 0.4 1 1.8 1.4 2.2 1.9 0.31 0.31 0.5 0.499 0.25 0.5 0.89
0.33 0.066 0.026 0.031
0.53 0.54 7.13 3.85 0.42 0.65 0.13 1.026 1.124 0.04 0.7 0.95 0.25 0.32 0.48 0.11 0.78 0.78 11.5 0.386 0.563 1.36 1.09
0.384 0.032 0.093 0.045
N Y Y Y
0.029 0.081 0.16
Y Y Y
953 925 925 925 583 583 583 670 670 670 583 583 583 583 583 583 870 902 1007 1000 1000 986 895
Styrene Acrylonitrile Methacrylate, methyl Styrene Acrylonitrile Styrene Vinylidene chloride Methacrylate, methyl Styrene Vinyl acetate Methacrylate, methyl Styrene Vinylidene chloride Acrylonitrile Styrene Vinylidene chloride Styrene Styrene Methacrylate, butyl Acrylate, butyl Methacrylate, methyl Methacrylate, methyl Copper diacrylate Nickel diacrylate Acrylonitrile Methacrylate methyl Styrene Vinyl butyl ether Acrylonitrile Allylbenzene Styrene Vinyl acetate Vinyl chloride Methacrylate, methyl Styrene Vinyl acetate Methacrylate, methyl Styrene Vinyl acetate Styrene Styrene
0.075 0.21 31.34
0.02
0.65
0.3
0.95
895
0.04 -1.83 -0.58 -0.31 -0.08 2.01 0.076 2.97 1.03 -0.005 0.22 1.29 - 0.49 -0.05 1.95 0.538 0.44
1.04 0.26 0.44 0.29 0.1 0.5 0.041 0.38 0.17 0.05 0.12 0.42 0.94 0.11 0.42 0.141 0.12
0.42 1.87 5.6 3.37 1.76 0.339 20.02 0.222 0.605 16.12 32.45 0.197 16.88 28.6 0.278 1.104 0.306
0.12 0.19 1.13 1.65 0.082 0.039 0.81 0.025 0.033 0.56 1.27 0.053 6.64 1.39 0.043 0.157 0.054
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
80 80 80 80 367 367 367 367 367 201 201 201 201 201 201 806 364
Styrene
1.676
0.065
0.169
0.013
Y
364
Styrene
0.91
0.18
0.257
0.062
Y
364
TABLE 1. cont'd Monomer 1 Triazine, 2-allyloxy-4,6-dichloroTriazine, 4,6-diamino-2-vinylTriazole, 1,2,3-, l-/?-bromophenyl-4-vinylTriazole, 1,2,3-, l-p-bromophenyl-4-vinylTriazole, 1,2,3-, l-p-bromophenyl-4-vinylTriazole, 1,2,3-, 4(5)-vinylTriazole, 1,2,3-, 4(5)-vinylTriazole, 1 -N- vinyl-1,2,4Tricyclo[4,2,2,0{2,5}]dec-7-ene3,4,9,10-tetracarboxylicacid Tropone, 2-methacryloyloxyUrea, l,3-divinyl-l,3-diphenylUrea, JV-acryloyl-N'-benzoylUrea, N-vinyl-iV'-ethylUrea, N-vinyl-N'-ethylUrea, N-vinyl-W-ethylUrea, N-vinyl-N'-ethylUrea, JV-vinyl-iV'-ethylValerolactone, a-methyleneValerolactone, a-methyleneVinyl 1-cyano- acetate Vinyl 12-ketostearate Vinyl 12-ketostearate Vinyl 12-ketostearate Vinyl 12-ketostearate Vinyl 2-, 1,1-dichlorocyclopropane Vinyl 2-bromo-ethyl ether Vinyl 2-bromo-ethyl ether Vinyl 2-chlorocyclohexyl ketone Vinyl 2-chloroethyl ether Vinyl 2-chloroethyl ether Vinyl 2-chloroethyl ether Vinyl 2-chloroethyl ether Vinyl 2-chloroethyl ether Vinyl 2-chloroethyl ether Vinyl 2-chloroethyl ether Vinyl 2-chloroethyl ether Vinyl 2-ethylhexanoate Vinyl 3,3-bis(ethoxycarbonyl)propyl ether Vinyl 4-dithiobenzoate methyl Vinyl 4-dithiobenzoate methyl Vinyl 4-chlorocyclohexyl ketone Vinyl 4-chlorocyclohexyl ketone Vinyl 4-chlorocyclohexyl ketone Vinyl 4-chlorocyclohexyl ketone Vinyl 4-chlorocyclohexyl ketone Vinyl N,N-methylacetamide Vinyl oc-chloro-, triethoxysilane Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate
Monomer 2
r\
Pyrrolidone, N-vinylVinyl methyl ketone Methacrylate, methyl Styrene Vinyl acetate Methacrylate, methyl Styrene Imidazole, 1-Af-vinyl Acrylonitrile
0.5 1.35 0.266 0.73 42.47 0.27 0.52
Acrylate, ethyl Styrene Styrene Methacrylate, methyl Styrene Vinyl acetate Vinyl acetate Vinyl acetate Styrene Styrene Styrene Acrylonitrile Vinyl acetate Vinyl chloride Vinylidene chloride Styrene Acrylate, methyl Styrene Maleic anhydride Acrylate, ethyl Acrylate, ethyl Acrylate, methyl Acrylonitrile Methacrylate, methyl Styrene Vinyl acetate Vinyl chloride Acrylonitrile Acrylonitrile
3.13 -1.76 0.053 -0.008 -0.33 0.621 3.61 1.45 1.42 1.44 0.147 -0.18 -0.28 -0.01 0.26 0 -0.79
Methacrylate, methyl Styrene Maleic anhydride Methacrylate, methyl Styrene Vinyl acetate Vinyl cyclohexyl ketone Vinyl acetate Acrylonitrile 2-Oxazoline, 2-isopropenyl2-Oxazolinium BF4, 3-methyl2-isopropenylAcetamide, N-vinylAcetamide, N-vinylAcetate, 2-chloro-, vinyl Acetate, allyl Acetate, chloro-, allyl Acetate, dichloro-, allyl Acetate, trichloro-, allyl Acrolein Acrolein, methyl Acrylamide, N-octadecylAcrylamido, 1-, -1-deoxy-D-glucitol Acrylamido, 2-, -2-methylpropanesulfonate
±95%
0.68 0.058 0.4 9.84 0.13 0.26
0.25
1.7 0.15 0 0 0 0 0.07 0.16 -0.07 -0.047 0.06
r2 0.98 0.17 0.832 1.32 -0.011 0.839 1.48
±95%
Conv.
0.11 0.022 0.15 0.008 0.055 0.12
Y Y Y Y Y Y N
0.027 0.98
Y Y
0.23 2.07 0.029
Y Y Y
2.75 0.528 1.36 0.029 0.33 0.081
0.033 0.36 2.61 0.034 0.32
0.11 0.05
0.387 3.62 0.404 1.85 10.78 0.463 0.16 0.38 0.097 0.096 0.181 3.3 0.18 0.03 4.4 17.98 16.83 0.83 5 4.65 3.27 1.09 18.8 160 2.36 2.46 9.24 1.02
0.409 0.5 4.8 0.59 2.34
Y Y Y Y Y Y
0.52 1.96
Y Y Y Y
0.3 2.08 0.12 0.51 0.58 0.15 0.5 0.93
0.29 0.81
0.151 0.111 0.08 0.77 0.53 0.1 1.6 0.49
0.092 0.009
0.25 0.114
0.04 0.021
7.1 0.413
2 0.005
Y
0.6 0 0.8 1.8 0.77 0.57 0.41 -0.02 0.15 0.004 0.03 0.05
0.12 0.011 0.17
5.5 21 1.18 0.43 0.69 0.54 0.28 3.04 0.98 8.25 0.98 11.6
Y
0.43
N
1.46 0.87
Y N
Refs. 826 243 670 670 670 670 670 972 963 1104 800 1090 101 101 101 683 683 919 855 806 146 146 146 146 806 194 194 836 439 726 726 597 597 597 597 304 47 1015 697 697 836 668 668 668 668 631 237 894 908 984 984 892 1045 1045 1045 1045 207 589 119 258 700
References page II - 290
TABLE 1. cont'd Monomer 1 Vinyl acetate Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl
acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate
Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl
acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate acetate
Monomer 2 Acrylamidomethylamino, p-, azobenzene Acrylate, 2-cyano-, methyl Acrylate, 2-ethylhexyl Acrylate, a-acetoxy-, ethyl Acrylate, a-chloro-, ethyl Acrylate, butyl Acrylate, glycidyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, sodium Acrylate, trifluoro-, methyl Actylate, trifluoro-, methyl Acrylic acid Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Allyl acetate Allyl acetate Allyl acetate Allyl acrylate Allyl butyrate Allyl chloride Allyl chloride Allyl chloride Allyl isobutyrate Allyl propionate Allyl trimethylacetate Allyl valerate Allystearamide, NAzobenzene, 4-(acrylamidomethylamino)Benzothiazole, vinylmercaptoBicyclo[2,2,l]hept-2-ene5,6-dicarboximide, N-benzyl Bicyclo[2,2,l]hept-2-ene5,6-dicarboximide, N-benzyl Bicyclo[2,2,l]hept-2-ene5,6-dicarboximide, Af-benzyl Butadiene, 2-chloroButene-1 Butene-2, cisButene-2, transCaprolactam, Af-vinylCaprolactam, N-vinylCaprolactam, Af-vinylCarbamate, N,N-diethyl-, vinyl Carbamate, N-vinyl-, ethyl Carbamate, N-vinyl-, ethyl Carbamate, N-vinyl-, tert-buty\ Carbazole, N-vinylCarbazole, N-vinylCarbazole, N-vinylCarbon monoxide Crotonic acid Crotonic acid Crotonic acid Diallyl P-cyanoethylisocyanurate Diallyl melamine Diallyl phthalate
rx
±95%
r2
±95%
Conv.
Refs.
0.126
12.98
858
0.005 0.04 0.08 0.03 0.018 0.003 0.04 0.03 0.405 0.03 0.03
0.05 7.5 5.621 30 3.48 7.6 7.28 6.38 2.58 6.7 6.3
452 570 244 638 301 553 1067 158 25 489 568 37 595 598 37 158 235 6 75 75 140 502 998 578 998 204 3 438 998 998 998 998 119 880
0.021 0.072 0.01 0.043
0.094
Y
3.39
Y
0.37 0.3
Y Y
Y 0.24 0.24 0.021 0.04 0.06 -0.06 -0.03 0.6 1 1 0.11 0.97 1.355 0.66 0.34 1.04 1.29 1.15 1.07 0.923 0.126 0.013 1.26
0.059 0.067 0.22 0.08 0.09
0.089 0.15
0.092
0.037
0 0 8.66 4.05
Y Y N Y Y Y
5.51 5.29 9.2 0.45 0.7 0.7 17.35 0.64 -2.4 0.61 0.75 0.51 0.42 0.34 0.58 0.68 12.98
0.91 1.13 6.39
0.26
Y
2.53 0.35
0.47
Y
1.46
3.21
Y Y
0.15
0.15
1.99 - 0.02 1.55 %21 12 0.63 0.35 0.35 1.7 0.39 0.418 0.07 0.126 0.15 0.13 0.24 0.317 0.3 0.31 0.06 0.68 0.336
6.63 0.82
994
0.014 0.09 0.24 1.05 1.69
0.04 0.063 1.12 0.023
0.081 0.07 0.026 0.049
33.52 0.11 0.03 -0.03 0.31 2.5 2.5 0.13 2.09 0.4 0.46 2.67 3.02 3.9 0.33 0.04 0.01 0.001 4.6 0.318 2.19
763 994
994 8.98 0.42 0.25 0.44
N Y Y Y
0.19
Y
0.26 0.03 0.13
Y N Y
0.14
Y
0.1
N
0.073 0.34
Y Y
247 211 211 211 557 859 883 197 629 81 827 246 246 551 474 47 526 94 778 201 297
TABLE 1. cont'd Monomer 1 Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate
Monomer 2 Diallyl phthalate Diallyl phthalate Diallyl, 1,3-, 5-(2-hydroxy3-phenoxypropyl) Diallyl, 1,3-, 5-(2-hydroxy3-phenoxypropyl) Diallylcyanamide Diallyldimethylammonium chloride Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene, chlorotrifluoroEthylene, chlorotrifluoroEthylene, dichloro-, cisEthylene, dichloro-, cisEthylene, dichloro-, cisEthylene, dichloro-, cisEthylene, tetrachloroEthylene, tetrachloroEthylene, trichloroEthylene, trichloroFumarate, diethyl Fumarate, diethyl Fumarate, diisopropyl Fumaryl chloride Hexatriene, tetrachloroImidazole, 1-vinylIndene Isobutylene Isobutylene, 3-chloroIsopropenyl acetate Itaconate, dimenthyl Itaconic anhydride Itaconic anhydride Maleate, di-terf-butyl Maleate, diethyl Maleate, dimethyl Maleic anhydride Maleimide, A^-(2-hydroxyethyl)Maleimide, N-(2-hydroxyethyl)Maleimide, A^-(2-hydroxyphenyl)Maleimide, N-hydroxymethylMaleimide, W-phenylMethacrylamide, 1-deoxy-D-glucitol Methacrylate, 2,2,6,6-tetramethyl4-piperidinyl Methacrylate, butyl Methacrylate, di-, di-n-butylstannyl Methacrylate, ethyl Methacrylate, ferrocenylmethyl Methacrylate, isobutyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate acid Methacrylonitrile tyAr-Divinylaniline
rx 0.414 0.72 0.15
±95% 0.029
r2
±95%
Conv.
Refs.
1.66 2 5.5
0.16
Y
297 509 671
0.16
3.65
676
0.01 0.35 0.72
1.62 1.95 0.16
581 1029 309 41 413 42 559 68 68 766 6 1097 236 137 137 9 9 3 59 158 9 137 718 1038 91 4 364 360 211 475 100 975 365 365 1049 137 1049 260 323 323 323 323 328 258 664
1.14 1.03 1.52 3.74 1.23 1.4 0.33 0.68 0.47 1.02 6.4 0.898 4.13 4.45 0.607 0.7 0.011 0.09 0.012
1.2 0.77 0.64 0.21 0.58 0.11 0.27 0.06 1.94 1.87 0.076 0.1 0.004
0.28 0.88 0.74 0.67 0.13 0.79 -0.13 0.04 - .0.02 0.055 0.01 0.058 0.1 -0.07 -0.06 -0.006 0.443 0.33 0.9
N N
0.52
N
0.03 0.01
N N
0.36 0.02
Y
0.34 0.019 0.007
Y Y Y Y Y Y Y Y Y Y
6.99 2.8 0.19
Y Y Y Y Y
0.024 0.03 0.14 0.015
-0.11 0.39 1.66 0.13 1.171
1.17 0.2 0.18
-0.019 - 0.04 0.005 0.171 -0.006 0.019 -0.014 0.01 -0.011 0.017 -0.003 0.16 0.2
0.045 0.024 0.024 0.025 0.084 0.008 0.037 0.041 0.027 0.037 0.006
1.57 2.87 0.199 0.04 0.257 -0.058 0.61 0.88 1.75 1.45 1.284 0.56 13.7
0.36 0.32 0.02 0.012 0.086 0.074 0.12 0.17 0.17 0.21 0.046
Y Y Y Y Y Y Y Y Y Y Y Y Y
-0.003 0.013 -0.77 0.2 -0.06 -0.2 -0.81 0.03 0.04 0.07 0.01 0.01 0.058
0.15 0.018 5.29
30.18 0.013 131.8 1.52 29.7 2.71 137.5 26 28.6 22.21 0.2 12 3.99
14.47 0.036 29.8
Y Y N
24.16 0.25 5.9
Y Y N
0.12
Y
0.038
0.22 0.01 1.17
0.009
1.9 8.64 0.17 0 1.082
0.03
0.074
165 949 210 293 165 158 210 272 383 471 377 75 45
References page II - 290
TABLE 1. cont'd Monomer 1 Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate
Monomer 2
rx
Norbornadiene 0.818 Oxazolidone, N-vinyl0.602 Oxazolidone, Af-vinyl0.55 Oxazoline, 2-, 2-isopropenyl0.25 Oxazoline, 2-, 4-acryloxymethyl0.03 dimethyl-2,4-dimethyl Oxazoline, 2-, 4-methacryloxy0.05 2,4-dimethyl Oxazolinium, 2- tetrafluoroborate, 0.43 3-methyl Phosphate, diethyl isopropenyl 1.56 Phosphine oxide, diphenylvinyl0.38 Phosphonate, oc-carbomethoxyvinyl-, 0.09 diethyl Phosphonate, isopropenyl-, dimethyl 0.14 Phosphonate, vinyl-, bis(2-chloroethyl) 0.09 Phosphonate, vinyl-, bis(2-chloroethyl) 0.09 Phosphonate, vinyl-, bis(2-chloroethyl) 0.33 Phosphonate, vinyl-, diethyl 0.04 Phosphonate, vinyl-, dimethyl 0.04 Phosphonate, vinyl-, dimethyl 0.04 Propene, 1-chloro-, cis7.08 Propene, 1-chloro-, trans3.13 Propene, 2-chloro0.186 Propene, 3,3,3-trichloro0.19 Pyridine, 2-methyl-5-vinyl0.11 Pyridine, 2-vinyl-0.11 Pyridine, 2-vinyl0 Pyrrolidone, N-vinyl0.26 Pyrrolidone, Af-vinyl0.19 Pyrrolidone, N-vinyl0.195 5-Ethyl AT-vinyl-iV-methylthiolcarbamate 0.67 5-Vinyl AW-diethylthiolcarbamate 0.133 Styrene -0.04 Styrene 0.02 Styrene 0.01 Styrene 0.05 Styrene 0.16 Styrene 0.08 Styrene, 3-fn-rc-butylstannyl5.33 Succinimide, N-vinyl0.072 Succinimide, N-vinyl0.18 Succinimide, N-vinyl0.229 Tetrazole, 2-methyl-5-vinyl0.04 Triallyl citrate 0.222 Triallyl cyanurate 0.197 Triallyl isocyanurate 0.278 Triazole, 1,2,3-, l-/?-bromophenyl-0.011 4-vinylUrea, W-vinyl-AA'-ethyl0.463 Urea, N-vinyl-7V'-ethyl0.16 Urea, N-vinyl-Ar'-ethyl0.38 Vinyl 12-ketostearate 0.18 Vinyl 2-chloroethyl ether 2.36 Vinyl 4-chlorocyclohexyl ketone 0.1 Vinyl benzenesulfonate 0.628 Vinyl benzoate 0.455 Vinyl benzoate 0.35 Vinyl benzoate 0.78 Vinyl benzoate 0.7 Vinyl benzoate 0.66 Vinyl benzoate 0.24 Vinyl bromide 0.41 Vinyl bromide 0.6 Vinyl bromide 0.38
±95% 0.019 0.038 0.18
r2 1.354 1.55 2.04 7.1 1.41
±95%
Conv.
0.07 0.28 0.13
Y Y Y
6.2 0.057
0.35 0.15 0.091 0.17 0.25 1.77 0.057 0.1 0.025 0.072 0.12
0.009 0.54 0.06 0.16 0.025 0.053 0.043 0.008 0.029
0.036 0.069 0.52 0.2 0.13 0.09
0.366
Refs. 188 102 36 862 596 596
0.151
Y
877
0.44 1.7 0.6
650 843 684
0.99 0.85 0.85 0.47 0.74 0.74 0.74 -0.012 0.011 1.65 0.19 9 13.65 30 1.06 1.75 3.4 1.22 1.89 42.48 18.8 56 48 60 57.8 0.38 5.68 4.49 1.99 28.51 2.97 1.29 1.95 42.47
684 592 594 595 592 592 594 181 181 181 402 812 6 6 103 121 36 197 197 158 241 481 481 481 812 985 104 167 80 670 367 201 201 670
0.621 3.61 1.45 -0.28 0.16 0.15 -1.34 1.07 0.99 1.64 1.13 1.74 1.98 5.26 1.92 3
0.061 0.074 0.36
Y Y Y
3.64
Y
0.25 2.79 0.21 1.17 0.77 26.85 2.87
Y N Y Y Y Y Y
0.12 9.49 0.43 31.34 0.38 0.42 0.42 9.84
Y Y Y Y Y Y Y Y
0.081
Y Y
1.7 0.27
Y Y
1.93
Y
0.98 1.23 0.35
N Y N
101 683 683 146 597 668 942 253 253 26 272 430 696 158 268 268
TABLEI. cont'd Monomer 1 Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetoxymethyl ketone Vinyl benzenesulfonate Vinyl benzoate
Monomer 2 Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butylsulfonate Vinyl butyrate Vinyl butyrate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloroacetate Vinyl chloroacetate Vinyl chloroacetate Vinyl chloroformate Vinyl chloroformate Vinyl chloromethyl ketone Vinyl cinnamate Vinyl cyclohexyl ketone Vinyl cymantrene Vinyl dodecyl ether Vinyl ethyl ether Vinyl ethyl ketone Vinyl ethyl oxalate Vinyl fluoride Vinyl formate Vinyl formate Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl laurate Vinyl methanesulfonate Vinyl methyl ketone Vinyl methyl sulfone Vinyl octadecyl ether Vinyl octyl ether Vinyl phenyl carbonate Vinyl phenyl carbonate Vinyl phenyl ketone Vinyl phenyl sulfone Vinyl propionate Vinyl propionate Vinyl stearate Vinyl stearate Vinyl tert-butyl sulfide Vinyl tert-butyl sulfide Vinyl thiolacetate Vinyl, N-, N-methylacetamide Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene cyanide Vinylidene fluoride Styrene Vinyl acetate Acrylonitrile
rx
±95%
3.72 0.71 2.5 0.025 1 1.35 0.43 0.981 0.24 0.263 0.25 0.65 0.26 0.83 0.803 0.8 0.67 0.66 0.044 0.04 0.08 0.072 3.67 3.42 -0.13 1.35 3.5 0.94 1.41 0.3 -0.154 1.4 0.639
0.09
0 4.5 3.47 0.85 0.85 -0.06 0.171 0.98 0.9 0.953 0.9 13 13 0.05 0.49 3.2 3 7.16 7.3 3.83 3.92 0.03 0.05 0.05 -0.002 0.12 0.003 6 0.368 -1.34 0.019
0.02
0.006 0.14 0.036 0.15 0.028 0.15 0.14 0.12 0.089 0.16 0.12 0.054 0.003 0.18 0.84 0.14 0.073 0.014
0.23 0.23 0.057 0.064 0.015
0.62 0.64 0.18 0.32 0.1 0.026 0.002 0.018 1.7 0.051
r2
±95%
Conv.
0.01 0.2 0.16 0.13 0.97 1.25 1.63 1.032 1.84 2.13 1.64 1.35 2.3 1.39 0.88 1.18 0.579 0.586 49.52 1.2 13.76 7.21 0 0.26 10.18 9.89 0.25 0.98 0.68 7.87 6.47 0.7 0.206
0.02
N
0.33
Y
0.32 0.097 0.68 0.2 0.12
Y Y Y Y Y
0.64 0.3 0.19
N N Y Y Y Y
0.355 0 0 0.384 0.384 5.81 -0.35 0.98 1 0.96 0.73 0.07 0.07 5.5 0.93 0.3 0.27 0.05 0.13 0.044 0.08 4.66 6.7 5 3.49 4.7 0.1 0.08 0.103 0.628 5.03
0.076 0.052 15.79 1.01
Y
6.62 8.44
Y Y Y
0.06
N
2.18
Y
0.427 0.21
Y Y Y
0.083 0.083 0.96 0.37
Y Y Y Y
0.17
Y
0.3
Y
0.16
Y
0.039 0.11 0.26
Y Y Y
0.17
Y
0.11
Y
0.011 0.036 1.08
Y Y
Refs. 345 448 553 185 272 515 109 148 158 283 3 450 86 71 779 861 675 706 356 200 846 354 372 158 794 124 755 272 401 601 794 503 942 91 195 372 372 675 705 794 193 272 425 1 537 598 601 566 631 103 103 120 120 144 90 3 432 436 59 812 82 627 806 942 47
References page II - 290
TABLE 1. cont'd Monomer 1 Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl benzyl sulfide Vinyl benzyl sulfide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl bromide Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl ether Vinyl butyl sulfide Vinyl butyl sulfide Vinyl butylsulfonate Vinyl butylsulfonate Vinyl butylsulfonate Vinyl butylsulfonate Vinyl butylsulfonate Vinyl butyrate Vinyl butyrate Vinyl butyrate Vinyl butyrate Vinyl butyrate
Monomer 2 Allyl chloride Methacrylate, methyl Pyrrolidone, N-vinylStyrene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl p-bromobenzoate Vinyl p-chlorobenzoate Vinyl p-cyanobenzoate Vinylidene chloride Vinylidene cyanide Methacrylic anhydride Styrene Acrylate, butyl Acrylate, butyl Acrylonitrile Acrylonitrile Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Acrylate, 2-chloroethyl Acrylate, methyl Acrylate, methyl Acrylonitrile Acrylonitrile Benzenesulfamide, /?-methacrylamideCaprolactam, TV-vinylMethacrylate, 2-bromoethyl Methacrylate, methyl Pyrrolidone, N-vinyl Styrene Toluenesulfonamide, AW-methyl-vinylVinyl acetate Vinyl acetate Vinyl acetate Vinyl chloride Vinyl chloroacetate Vinylidene chloride Acrylonitrile Styrene Acrylate, methyl Styrene Vinyl acetate Vinyl chloride Vinyl chloride Allyl chloride Butadiene, 2-chloroCarbazole, N-vinylEthylene Methacrylate, methyl
T1 0.46 0.07 0.408 -0.02 0.06 1.07 0.99 1.64 1.13 1.74 1.98 0.343 0.5 0.28 0.716 0.832 0.659 0.065 0 - 0.048 0.04 0.18 0.19 0.06 0.06 0.12 0.33 0.052 0.05 0.012 0.06 0.09 5.26 1.92 3 0 0.01 0 -0.03 0 0.03 0 -0.027 -0.08 3.37 0.01 0.2 0.16 0.023 0.12 0.004 0.041 -0.06 0 0 0.13 0.267 0.083 0.31 0.07 1.5 0.03
±95%
0.03 1.62 0.15 0.27 1.93 0.98 0.036 0.031 0.028 0.033 0.093 0.017 0.033 0.17 0.16 0.04 0.06 0.026 0.074 0.049 0.2 1.23 0.35 0.01 0.01 0.73 0.063 0.78 1.65 0.02 0.001 4.39 0.001 0.028 0.18 0.14 0.16 0.33 0.046 0.096 0.12
r2 0.88 20.3 2.507 34.8 31.56 0.455 0.35 0.78 0.7 0.66 0.24 1.66 1.7 0.72 1.17 0.81 0.878 5.58 0.061 0.97 2.32 4.07 3.7 2.25 2.79 14.11 17.1 25.1 19.84 16.88 18 15 0.41 0.6 0.38 2.01 3.65 3.6
±95%
Conv.
0.039 29.3 4.33 0.069
Y Y N Y
0.52
Y
0.2 0.16
N Y
0.13 0.072 0.094 1.76 0.047 0.27 0.25 0.44
Y Y Y Y Y Y Y N
0.2 0.67
N N
0.88 2.58 0.94
Y Y Y
8.26 0.13 0.09
N Y N
0.07
N N N
0.98 3.4 3.1 13.7
0.13 0.1 5.3
1.49 21.25 -0.31 3.72 0.71 2.5 2.084 1.49 1.75 0.086 2.69 4.14 1.74 0.025 0.325 8.47 1.15
0.95 16.53 0.29 0.09
N Y Y Y N
0.016 34.5 0.11 0.01 0.25 0.58 0.27 0.006 0.013 0.86
Y Y Y Y Y Y Y Y Y Y
0.34
N Y
1.33 0.7 25
Y
Refs. 438 272 253 26 696 253 253 26 272 430 696 283 450 519 110 110 110 47 82 106 303 268 268 268 286 268 268 34 34 34 34 368 158 268 268 790 345 574 345 347 1005 215 657 127 215 241 80 345 448 553 279 212 279 303 303 185 185 185 185 185 438 247 246 605 272
TABLE 1.
cont'd
Monomer 1 Vinyl butyrate Vinyl butyrate Vinyl butyrate Vinyl butyrate Vinyl butyrate Vinyl caproate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride
Monomer 2 Vinyl acetate Vinyl acetate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Aconitate, trimethyl Acrolein Acrylamide Acrylamide, Af-methylolAcrylate, 2-ethylhexyl Acrylate, butyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, methyl Acrylate, octyl Acrylate, trifluoro-, methyl Acrylate, trifluoro-, methyl Acrylic acid Acrylic acid Acrylic acid Acrylic acid Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acryloyl chloride Allyl acetate Allyl acetate Allyltriethoxysilane Butadiene Butadiene Butene-1 Butene-1, 2-ethylButene-1, 2-methylButene-1,3, 3-dimethylButene-1,3, 3-dimethylButene-2 Butene-2, 2-methylButene-2, cisCarbazole, N-vinylCarbon monoxide Crotonaldehyde Diallyl phthalate Diallylcyanamide Diallylcyanamide Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene, chlorotrifluoroFumarate, diethyl Fumarate, diisopropyl Hexene-1 Imidazole, l-vinyl-2-methylIsobutylene
rx 0.97 1.25 0.302 0.55 0.65 0.348 0.04 0.03
0.16 0.07 0.093 0.002 0 0.06 0.12 1.5 1.5 0.107 0.03 0.024 0.11 -0.01 0.07 0.02 0.044 0.052 0.04 0.02 1.2 1.16 1.68 0.04 -0.11 3.34 1.56 1.01 5.64 6.18 3.3 8.52 8.8 0.17 13.52 1.55 0.833 0.44 0.44 3.82 1.99 1.74 4.38 2 3.21 1.85 0.96 1.63 1.55 2.53 0.13 0.29 1.54 0.188 2.04
±95%
0.013
0.05 0.11
0.002 0.01
0.011 0.09 0.069 0.037 0.03 0.08 0.002 0.01 0.029
0.38 0.31 0.58 0.26 0.31 0.2 13.57 2.18 10.54
0.25 0.26 0.012
0.59 0.42 0.58 0.44
0.1 0.22 0.22 0.18 0.1 0.98 0.077 1.82
r2 1 1.35 2.092 1.75 1.35 2.26 0.19 5.22
4.15 4.4 4.4 7.66 5 4 4.8 0 0 6.69 9.28 7.04 6.8 3.26 2.55 2.62 3.62 3.65 4 3.03 0 -0.94 8.8 5.27 0.12 -1.05 -1.18 -0.44 -0.07 -1.79 0.3 0 4.77 0.121 -0.56 0.7 0.68 0.68 0.02 0.19 0.24 0.34 0.2 0.21 0.21 0.14 0.23 0.16 0.01 0.48 0.49 -1.72 2.15 0.06
±95%
Conv.
0.074
Y
0.22 0.13
Y Y N Y Y
0.22 0.5
Y Y
0.88 0.51 0.33
Y N Y
0.34 0.12 0.25 0.21 0.22
Y N N Y Y
0.22
Y
0.48
Y
3.35 0.12 0.89 1.2 0.28 2.5 5.22 5.31
Y Y N N N Y N N
0.011 0.25 0.046
Y N Y
0.06 0.17 0.13 0.13
N N N N
0.01 0.12 0.01 0.01
N N N N
0.1
Y
9.23 0.26 0.8
N Y Y
Refs. 272 515 283 400 494 283 147 271 156 157 510 518 151 46 470 518 518 595 598 135 229 288 379 140 202 22 238 46 529 288 470 475 237 517 717 230 329 329 329 6 329 329 230 427 184 271 296 602 603 161 180 270 42 472 536 63 63 64 68 454 137 1038 329 154 140
References page II - 290
TABLE 1. cont'd Monomer 1 Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl
chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride chloride
Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride
Monomer 2
rx
Isobutylene 2.12 Isobutylene 1.2 Isobutylene 1.54 Isobutylene, 3-chloro0.31 Isopropenyl acetate 2.26 Isopropenylisocyanate 0.39 Itaconate, diethyl 0.06 Itaconate, dimethyl 0.05 Maleate, diethyl 0.768 Maleate, diethyl 0.8 Maleate, diethyl 0.9 Maleate, dioctyl 0.05 Maleic anhydride 0.098 Maleic anhydride 0.04 Maleic anhydride 0.1 Maleimide, N-(4-carboxyethylphenyl)0.04 Maleimide, N-(4-chlorophenyl)0.026 Maleimide, AH4-methylphenyl)0.022 Maleimide, N-butyl0.24 Maleimide, N-phenyl0.023 Maleimide, Af-propyl0.06 Methacrylate, 3,5-dimethyladamantyl 0.21 Methacrylate, p-(2-benzothiazolylthio)- 0.64 ethyl Methacrylate, butyl 0.05 Methacrylate, methyl 0.07 Methacrylate, octyl 0.04 Methacrylic acid 0.064 Methacrylic acid -0.022 Methacrylic acid 0.07 Methacryloyl chloride 0.3 Methacryloyloxy-, 0-, benzoic acid 0.004 Norbornadiene 0.67 Octene-1 3.26 Oxazolidone, Af-vinyl0.313 Pentene-1 4 Pentene-1 2.08 Pentene-1, 2-methyl1.59 Phosphate, vinyl diethyl 3.4 Phosphate, vinyl diphenyl 3.009 Propene, 1-chloro-, ds11.52 Propene, 1-chloro-, trans4.45 Propene, 2-chloro0.095 Propene, 2-chloro0.75 Propenyl, 2-, acetate 2.2 Propenyl, 2-chloro-, acetate 0.7 Propenyltriethoxysilane Propylene 2.35 Propylene -0.05 Propylene 5.16 Propylene 2.45 Propylene 2.9 Pyridine, 4-vinylPyrrolidone, N-vinyl0.53 Pyrrolidone, N-vinyl0.55 Pyrrolidone, Af-vinyl0.74 Styrene -0.06 Styrene 0.058 Styrene 0.16 Styrene 0.005 Styrene 0.04 Styrene 0.01 Styrene, pentachloro0.43 Triallyl citrate 0.605 Vinyl 12-ketostearate 0.03
±95% 0.2 2.05 0.13
0.078 0.11 0.14 0.042 0.03 0.044 0.048 1.13 0.026 0.05 0.04
0.047 0.008 0.02 0.052 0.02 0.45 0.095 1.78 0.68 0.21 0.077 2.14 0.81 0.085
0.14 0.1 0.06
r2 0.268 -0.54 0.08 0 0.23 3 5.65 5 -0.003 0 0.046 0.608 -0.22 0.4 0.67 3.29 3.65 4.49 -12.7 4.01 2.38 1.85 0.26 13.5 8.99 14 23.52 23.26 9.05 2 11.26 0.41 -0.57 0.822 0.001 0.81 -1.16 0.15 0.327 0.1 0.33 4.75 0.58 0.25 0 0.196 3.1 -0.02 0.09
±95%
Conv.
Refs.
0.043 5.8
Y N
0.16
Y
0.044
Y
0.07 0.099 0.38
Y Y Y
155 329 560 475 100 777 480 479 137 449 6 3 260 521 521 306 306 306 305 306 305 335 741
0.18 0.39 0.34 106.2 0.18 0.16 8.87
N Y Y Y Y N N
2.97
Y
0.98 0.96
Y Y
3.5 0.01 0.85 0.048 5.2 2.31 0.047 0.023 0.63 0.4 5.12
Y N N Y Y N N Y Y Y Y Y
0.023 0.21 0.04
Y Y N N Y
0.08 0.003 0.08 0.031 0.87 0.033
0.38 0.34 0.73 27.54 17.24 23.92 25 12.4 14.7 5.3 1.03 - 0.01
7.35 1.12 3.6 5 29.2 0.17
Y Y N Y Y Y Y
519 3 511 135 229 46 432 938 267 329 36 3 329 329 779 779 181 181 181 517 189 445 237 155 329 355 560 588 154 40 582 582 109 238 242 46 516 59 516 367 146
TABLE 1. cont'd Monomer 1 Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloroacetate Vinyl chloroacetate
Monomer 2 Vinyl 2-chloroethyl ether Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl benzoate Vinyl benzoate Vinyl benzoate Vinyl butyl ether Vinyl butylsulfonate Vinyl butylsulfonate Vinyl butyrate Vinyl butyrate Vinyl butyrate Vinyl caproate Vinyl chloroacetate Vinyl dichloroacetate Vinyl dodecyl ether Vinyl fluoride Vinyl fluoride Vinyl hendecanoate Vinyl isobutyl ether Vinyl laurate Vinyl m-cresyl ether Vinyl methyl ketone Vinyl o-cresyl ether Vinyl octadecyl ether Vinyl octyl ether Vinyl p-chlorophenyl ether Vinyl /?-cresyl ether Vinyl p-terf-butylphenyl ether Vinyl p-vinyloxybenzoate Vinyl pelargonate Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl propionate Vinyl propionate Vinyl stearate Vinyl tert-buty\ sulfide Vinyl terf-butyl sulfide Vinyl valerate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylethyldiethoxysilane Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene cyanide Vinylidene cyanide Vinylisocyanate Vinylphenylisocyanate, p Vinyltriethoxysilane Vinyltrimethoxysilane Acrylonitrile Acrylonitrile
rx 2.46 1.63 1.032 1.84 2.13 1.64 1.35 2.3 1.66 1.7 0.72 2.084 0.325 8.47 2.092 1.75 1.35 2.26 1.64 1.3 1.93 11 11.6 1.081 2.19 7.4 1.23 0.1 1.33 2.1 1.9 1 1.17 1.08 0.58 1.16 1.28 1.06 1.21 1.6 1.35 0.71 3 3 2.006 4.82 15.38 17.81 0.94 0.071 0.14 0.25 0.3 0.2 0.2 0.16 0.205 0.01 0.016 0.46 0.01 0.82 0.93 -0.007 0.09
±95% 0.52 0.32 0.097 0.68 0.2 0.12 0.64 0.16 0.016 0.013 0.86 0.074 0.22 0.34 0.55
0.016 1.43 0.04 0.02 0.04 0.02 0.06 0.06 0.14 0.03 0.097 0.071 0.49 1.44 7.84 1.53 0.025 0.32
0.003 0.002 0.16 0.016
r2 -0.07 0.43 0.981 0.24 0.263 0.25 0.65 0.26 0.343 0.5 0.28 0.023 0.267 0.083 0.302 0.55 0.65 0.348 0.421 0.91 0.15 0.05 0.11 0.38 0.04 0.2 0.13 8.3 0.14 -0.1 0.1 0.63 0.13 0.14 0.78 0.28 0.01 0.16 0.17 0.6 0.65 0.24 0.15 0.15 0.277 0.03 0.069 0 -0.44 2.06 3.39 8.92 3.2 4.5 1.8 4.5 3.068 0.72 0.6 3.7 11.9 -0.04 0.09 4.18 0.34
±95%
Conv.
0.11 0.14 0.036 0.15 0.028 0.15
Y Y Y Y Y Y
0.14 0.036
N Y
0.001 0.046 0.096 0.013
Y Y Y Y
0.05 0.055 0.49
Y Y Y
0.022 0.37
Y Y
0.02
Y
0.01
Y
0.05 0.01 0.02 0.07
Y Y Y N
0.59
Y
0.03
N
0.64
Y
0.014 0.12 0.068 0.22 2.97 0.32 1.16
Y Y Y Y Y Y N Y
0.076
Y
0.068
Y
0.44
Y Y Y
0.33
Refs. 304 109 148 158 283 3 450 86 283 450 519 279 185 185 283 400 494 283 283 283 370 590 755 145 47 450 279 375 279 370 370 279 279 279 497 145 172 279 280 400 450 145 598 601 283 103 319 319 237 238 29 3 470 517 539 585 67 409 82 777 777 237 237 362 542
References page II-290
TABLE 1. cont'd Monomer 1 Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl
chloroacetate chloroacetate chloroacetate chloroacetate chloroacetate chloroacetate chloroacetate chloroacetate chloroacetate chloroacetate chloroacetate chloroacetate chloroethyl ether chloroethyl ether chloroformate chloroformate chloromethyl ketone chloromethyl ketone chloromethyl ketone chloromethyl ketone chloromethyl ketone chloromethyl ketone cinnamate cinnamate cinnamate cyclohexyl ether cyclohexyl ketone cyclohexyl ketone cymantrene cymantrene cymantrene cymantrene cymantrene dichloroacetate dichloroacetate dichloroacetate dichloroacetate diethylphosphinate diethylphosphinate dodecyl ether dodecyl ether dodecyl ether dodecyl ether dodecyl ether dodecyl ether ether ether ether ether ethyl ether ethyl ether ethyl ether ethyl ether ethyl ether ethyl ether ethyl ether ethyl ether ethyl ether ethyl ether ethyl ketone ethyl ketone ethyl ketone ethyl ketone ethyl ketone ethyl ketone
Monomer 2 Phosphate, vinyl diethyl Phosphate, vinyl diphenyl Styrene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl butyl ether Vinyl chloride Vinyl ethyl ether Vinyl phenyl ether Vinylidene cyanide Acrylonitrile Methacrylic anhydride Vinyl acetate Vinyl acetate Acrylonitrile Methacrylate, methyl Styrene Styrene, a-methylVinyl acetate Vinylidene chloride Methacrylonitrile Pyrrolidone, N-vinylVinyl acetate Pyrrolidone, A^-vinylVinyl 4-chlorocyclohexyl ketone Vinyl acetate Acrylate, methyl Acrylonitrile Pyrrolidone, N-vinylStyrene Vinyl acetate Acrylonitrile Acrylonitrile Styrene Vinyl chloride Ethylene Ethylene Acrylonitrile Styrene Styrene Vinyl acetate Vinyl chloride Vinylidene chloride Acrylonitrile Methacrylate, methyl Pyridine, 4-vinylStyrene Acrylate, methyl Acrylonitrile Ethylene Fumarate, diethyl Methacrylate methyl Styrene Styrene Vinyl acetate Vinyl chloroacetate Vinylidene chloride Methacrylate, methyl Styrene Styrene Styrene Styrene Vinyl acetate
rt 2.01 1.42 -0.04 0.03 1.39 0.88 1.18 1.49 0.421 1.92 0.84 0 -0.02 0.579 0.586 0.88 0.593 0.507 0.386 49.52 6.8 0.15 1.2 1.2 -0.11 1.6 13.76 0.211 - 0.065 0.093 0.096 7.21 0.044 0.18 0.28 0.91 -11.99 -62.84 0 0 0 0 0.15 0 0.02 -0.15 0.03 1.2 0 0.06 0 -0.124 0.01 0 -0.122 0.26 0.43 0 0.65 -0.033 0.43 0.332 0.122 10.18
±95% 0.2 0.15 0.24 0.3 0.19 34.5 0.055 17.19 1.67 0.006 0.02 0.076 0.052 0.12 0.092 0.039 0.034 15.79 0.3
0.59
0.067 0.093 0.053 0.014 1.01 0.015
0.49 80.64 34.66
0.16 5.3 0.12 0.059
0.066 3.9 0.42 0.023 0.06 0.043 0.017 6.62
r2
±95%
Conv.
0.374 0.53 14.57 45 0.83 0.803 0.8 0.12 1.64 0.43 0.55 0.137 1.04
0.046 0.12 62.41
Y Y Y
0.12 0.089
N Y
4.39 0.34 3.9 0.61 0.037 0.05
0.67 0.66 0.064 0.121 0.127 0.009 0.044 0.018 4.6 0.01 0.04 1.91 0.5 0.08 0.46 0.446 0.037 2.324 0.072 7.45 0.25 20 1.3 0.15 0.05 0.82 27 56 3.67 1.93 1.3 0.94 4.9 32 152 3.3 0.69 2.7 1.63 37 90 111 3.42 1.92 3.2 0.42 13.83 0.2 0.29 0.665 -0.13
0.16 0.12 0.019 0.021 0.047 0.01 0.054 0.009
Y Y Y Y Y N Y Y Y Y Y Y Y Y Y
9.39
Y
0.14 0.048 0.03 0.06 0.003 0.32
Y Y Y Y Y Y
0.55 0.16 0.01
Y Y Y
0.99
Y
185
Y
0.12
N
0.16
Y
15.5 17.19 0.17 1.44 0.08 0.16 0.021 0.18
Y Y Y Y Y N Y Y Y
Refs. 779 779 212 542 71 779 861 212 283 212 212 82 116 106 675 706 356 356 353 356 356 356 200 200 200 214 668 846 354 354 308 354 354 362 542 542 283 311 311 373 374 374 372 370 371 386 45 395 45 470 194 584 194 106 140 194 158 212 470 794 112 344 353 550 794
TABLE 1. cont'd Monomer 1 Vinyl ethyl oxalate Vinyl ethyl oxalate Vinyl ethyl oxalate Vinyl ethyl oxalate Vinyl ethyl sulfide Vinyl ethyl sulfide Vinyl ethyl sulfide Vinyl ethyl sulfide Vinyl ethyl sulfide Vinyl ethyl sulfide Vinyl ethyl sulfoxide Vinyl ethyl sulfoxide Vinyl ethyl sulfoxide Vinyl ethyl sulfoxide Vinyl ethylene glycol glycidyl ether Vinyl ethylene glycol glycidyl ether Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl fluoride Vinyl formate Vinyl formate Vinyl formate Vinyl formate Vinyl formate Vinyl formate Vinyl formate Vinyl hendecanoate Vinyl hendecanoate Vinyl hendecanoate Vinyl hendecanoate Vinyl hendecanoate Vinyl hendecanoate Vinyl iodide Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl ether Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isobutyl sulfide
Monomer 2
r\
Acrylonitrile Methacrylate, methyl Styrene Vinyl acetate Acrylonitrile Acrylonitrile Methacrylate, methyl Methacrylate, methyl Styrene Styrene Acrylonitrile Methacrylate, methyl Styrene Styrene Pyrrolidone, AT-vinylPyrrolidone, N-vinylAcrylate, butyl Acrylate, butyl Acrylate, methyl Acrylate, methyl Acrylonitrile Acrylonitrile Ethylene Ethylene Ethylene, chlorotrifluoroVinyl acetate Vinyl chloride Vinyl chloride Vinylidene chloride Acrylonitrile Allyl chloride Butadiene, 2-chloroButadiene, 2-chloroCarbazole, iV-vinylVinyl acetate Vinyl acetate Acrylate, methyl Acrylonitrile Butadiene Styrene Vinyl chloride Vinylidene chloride Styrene Acrylate, 2-chloroethyl Acrylate, methyl Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Ethylene, trichloroFumarate, diethyl Maleate, diethyl Styrene Styrene Styrene Vinyl chloride Vinylene carbonate Acrylate, ethyl Acrylate, ethyl Acrylate, methyl Acrylate, methyl Acrylonitrile Acrylonitrile Acrylonitrile Methacrylate, methyl
0 -0.05 -0.12 9.89 0.06 0.05 0.036 0.3 0.113 0.25 -0.08 -0.037 0.101 0.1 0.06 0.06 0.01 0.01 0.01 0.01 0.005 1 0.01 0.3 0.8 0.25 0.05 0.11 0.16 -0.004 0.57 -0.04 -0.05 0.192 0.98 0.68 0.033 0.09 -0.22 -0.17 0.38 0.04 0.126 0 0 0.7 0.99 -0.04 -0.04 0.05 0 0 0.65 0.29 0.01 0.04 0.18 0.05 0.05 0.05 0.06 0.03 0.022 0.03 0.05
±95% 0.28 0.44 0.19 8.44 0.03 0.03 0.017 0.032 0.14 0.06 0.044
0.15
0.12 0.01 0.001 0.06 0.008 0.91 1.26 0.18 0.022 0.16 0.035 0.002 0.09 0.06 0.01 0.02 0.009 0.39 0.33 0.37 0.04 0.05 0.02 0.02 0.01 0.038 0.01 0.03
r2
±95%
Conv.
1.34 4.74 5.62 1.35 0.09 0.06 1.03 2.7 4.76 6 1.63 11.17 9.64 6 1.4 1.4 19 19 43 43 44 24 2.52 1.7 1.2 3.5 11 11.6 6 2.54 0.78 15 11.91 4.142 0.94 1.41 3.615 1.88 22.56 24.89 1.081 2.72 7.401 2.24 3.63 - 0.24 - 0.05 0.98 1.26 0.014 0.52 0.17 11.58 11.96 50 2.19 0.16 0.36 0.32 0.3 0.29 0.08 0.062 0.08 0.89
0.45 2.95 1.06 0.84 0.01 0.01 0.11
Y Y Y Y N N Y
0.2
Y
0.16 0.48 0.54
Y Y Y
0.32
N
1.79
Y
3.89 0.011 0.14
N Y N
0.012 0.44 24.54 1.22 0.016 0.37 0.315
Y Y Y Y Y Y
0.04 0.26 0.07 0.15 0.19 0.003
N N N N N Y
1.91 2.32
N N
1.43
Y
0.02 0.02 0.01 0.01 0.005 0.004 0.004 0.01
N N N N N Y N N
Refs. 124 124 124 124 285 336 303 507 303 507 286 286 286 286 369 818 604 606 604 606 528 590 42 590 406 755 590 755 607 47 438 127 247 246 272 401 145 145 145 145 145 145 806 790 347 322 322 347 347 332 640 640 349 349 490 47 322 285 336 285 336 285 303 336 285
References page II-290
TABLE 1. cont'd Monomer 1 Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isobutyl sulfide Vinyl isopropyl ether Vinyl isopropyl ether Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl isopropyl ketone Vinyl isopropyl sulfide Vinyl isopropyl sulfide Vinyl isothiocyanate Vinyl isothiocyanate Vinyl isothiocyanate Vinyl isothiocyanate Vinyl 1-methyl ether Vinyl laurate Vinyl laurate Vinyl laurate Vinyl m-cresyl ether Vinyl m-cresyl ether Vinyl m-cresyl ether Vinyl methanesulfonate Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl ketone Vinyl methyl sulfide Vinyl methyl sulfide Vinyl methyl sulfide Vinyl methyl sulfide Vinyl methyl sulfide Vinyl methyl sulfide Vinyl methyl sulfone Vinyl methyl sulfone Vinyl methyl sulfoxide Vinyl methyl sulfoxide Vinyl methyl sulfoxide Vinyl mono-diethyleneglycol ether Vinyl mono-ethyleneglycol ether Vinyl o-cresyl ether Vinyl o-cresyl ether Vinyl o-cresyl ether
Monomer 2 Methacrylate, methyl Methacrylate, methyl Styrene Caprolactam, N-vinylPyrrolidone, TV-vinylMethacrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Vinyl acetate Vinyl acetate Methacrylate, methyl Styrene Acrylonitrile Methacrylate, methyl Styrene Styrene Indene Acrylonitrile Vinyl acetate Vinyl chloride Methacrylate, methyl Vinyl chloride Vinylidene chloride Vinyl acetate Acrylamide Acrylamide Acrylamide, AyV-dimethyl Acrylate, butyl Acrylonitrile Acrylonitrile Indene Indene Methacrylamide Methacrylamide Methacrylate, 2,2,6,6-tetramethyl4-piperidinyl Methyleneglutaronitrile, 2Styrene Styrene Styrene Styrene, 2,5-dichloroTriazine, 4,6-diamino-2-vinylVinyl acetate Vinyl chloride Vinyl phenyl ether Vinyl phenyl ketone Vinylidene chloride Acrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Vinylene carbonate Styrene Vinyl acetate Styrene Styrene, /?-chloroStyrene, /7-methylMethacrylic acid Methacrylate, glycidyl Methacrylate, methyl Vinyl chloride Vinylidene chloride
rx 0.021 0.03 -0.11 0.01 0.03 1.44 0.6 0.26 0.272 0.3 7.87 6.47 0.046 0.16 1.4 0.6 0.37 0.5 0.67 0.04 0.7 0.2 0.2 0.13 0.04 0.206 0.47 0.75 0.1 1.81 1.75 1.39 2.63 2.9 0.25 0.28 0.41 5.05 0.349 0.348 0.27 0.5 0.17 8.3 4.4 0.74 1.8 0.084 0.03 0.15 0.066 0.046 7.72 -0.22 0.55 0.01 0.01 0.01 2.2 0 0.1 0.14 0.04
±95% 0.034 0.02 0.2 0.96 2.09 0.47 0.07 0.046 2.18 0.025 0.068
2.82
0.02 0.004 0.427 0.44 0.23 0.43 0.24 0.11
0.12 0.24
0.068 0.009 0.11
0.086 0.056 0.084 1.68 0.17 0.21
0.01 0.01
r2 0.985 0.88 2.38 0.22 0.87 0.81 0.54 0.46 0.36 0.4 0.3 -0.154 0.822 4.61 0.36 0.85 0.65 0.8 12.64 4 1.4 7.4 3.3 1.23 1.95 0.639 3.99 1.02 0.82 0.8 0.59 0.63 0.2 0.25 3 1.72 0.53 1.24 0.288 0.237 0.35 2 1.35 0.1 0.01 0.671 0.55 0.209 1 4.5 4.46 5 -0.08 1.146 0 3.57 6.46 2.73 0 4.41 1.8 1.33 2.1
±95%
Conv.
0.077 0.02 0.41 1.95 9.3
Y N Y Y Y
0.22 0.05 0.1
Y N Y
0.073 0.064 0.18
Y Y Y
12.59
Y
0.04 0.07 0.014 0.7 0.13 0.36 0.06 0.13
Y Y Y Y Y Y N Y
0.18 0.26
Y Y
0.092 0.023
Y Y
0.68
Y Y
0.034
Y
0.11 0.24 0.17 0.087 0.02
Y Y Y Y Y
0.02 0.1
Y Y
Refs. 303 336 303 215 215 601 794 344 353 599 601 794 303 303 542 422 422 542 750 381 503 450 605 279 279 942 609 609 609 53 140 504 606 606 609 609 664 512 140 353 550 375 243 91 375 423 946 375 195 106 193 195 303 120 195 195 737 737 737 831 780 605 279 279
TABLE 1. cont'd Monomer 1 Vinyl octadecyl ether Vinyl octadecyl ether Vinyl octadecyl ether Vinyl octadecyl ether Vinyl octyl ether Vinyl octyl ether Vinyl octyl ether Vinyl octyl ether Vinyl p-benzylethylcarbinol Vinyl p-benzylethylcarbinol Vinyl p-benzylethylcarbinol Vinyl p-benzylmethylcarbinol Vinyl p-benzylmethylcarbinol Vinyl p-benzylmethylcarbinol Vinyl p-benzylmethylcarbinol Vinyl p-bromobenzoate Vinyl p-bromobenzoate Vinyl p-bromobenzoate Vinyl p-bromobenzoate Vinyl p-chlorobenzoate Vinyl p-chlorobenzoate Vinyl p-chlorobenzoate Vinyl p-chlorobenzoate Vinyl p-chlorophenyl ether Vinyl p-chlorophenyl ether Vinyl p-cresyl ether Vinyl p-cresyl ether Vinyl p-cresyl ether Vinyl p-cyanobenzoate Vinyl p-cyanobenzoate Vinyl p-cyanobenzoate Vinyl p-cyanobenzoate Vinyl/?-cyanobenzoate Vinyl p-methoxybenzoate Vinyl p-methoxybenzoate Vinyl p-methoxybenzoate Vinyl p-methylbenzoate Vinyl p-methylbenzoate Vinyl p-methylbenzoate Vinyl p-tert-butylphenyl ether Vinyl p-terf-butylphenyl ether Vinyl p-vinyloxybenzoate Vinyl pelargonate Vinyl pelargonate Vinyl pelargonate Vinyl pelargonate Vinyl phenyl carbonate Vinyl phenyl carbonate Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ether Vinyl phenyl ketone Vinyl phenyl ketone Vinyl phenyl ketone Vinyl phenyl ketone
Monomer 2
rx
Acrylonitrile Vinyl acetate Vinyl chloride Vinylidene chloride Acrylonitrile Styrene Vinyl acetate Vinyl chloride Acrylate, butyl Acrylate, methyl Acrylonitrile Acrylonitrile Methacrylate, methyl Styrene Styrene, p-chloroVinyl benzoate Vinyl p-cyanobenzoate Vinyl p-methoxybenzoate Vinyl p-methylbenzoate Vinyl benzoate Vinyl p-cyanobenzoate Vinyl p-methoxybenzoate Vinyl p-methylbenzoate Vinyl chloride Vinylidene chloride Methacrylate, methyl Vinyl chloride Vinylidene chloride Vinyl benzoate Vinyl p-bromobenzoate Vinyl/7-chlorobenzoate Vinyl p-methoxybenzoate Vinyl/7-methylbenzoate Vinyl/7-bromobenzoate Vinyl p-chlorobenzoate Vinyl p-cyanobenzoate Vinyl p-bromobenzoate Vinyl p-chlorobenzoate Vinyl p-cyanobenzoate Vinyl chloride Vinylidene chloride Vinyl chloride Butadiene Styrene Vinyl chloride Vinylidene chloride Vinyl acetate Vinyl acetate Acrylonitrile Caprolactam, N-vinylMethacrylate, methyl Methacrylate, methyl Pyrrolidone, N-vinylStyrene Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloroacetate Vinyl methyl ketone Vinylidene chloride Vinylidene chloride Methacrylate, glycidyl Methacrylate, methyl Styrene Styrene
0 0 -0.1 0 0 0 0 0.1 0.4 0.48 0.31 0.54 0.98 0.94 1 1.17 0.83 1.08 1.05 0.81 0.813 1 0.853 0.63 0.14 0 0.13 0.03 0.878 0.901 1.031 0.63 0.81 0.72 0.699 0.685 0.594 0.682 0.624 0.14 0.05 0.78 0.02 0.01 0.28 0 0.384 0.384 0.23 0.26 0.01 0 0.253 0.01 0.01 0.16 0.17 0.55 0.01 0.433 0.04 0.697 0.59 0.3 0.465
±95%
0.2 0.28 0.15 0.13 0.021 0.29 0.17 0.072 0.014 0.14 0.054 0.05 0.01 0.01 0.004 0.094 0.034 0.028 0.22 0.1 0.1 0.057 0.075 0.045 0.021 0.04 0.02 0.004 0.07
0.083 0.083 0.37 0.32 0.007 0.59 0.03 0.61 0.051 0.03 1.9 0.02 0.03
r2 0.85 4.5 2.1 1.5 0.81 65 3.47 1.9 0.17 0.18 0.04 0.11 0.24 0.98 1 0.716 0.901 0.72 0.594 0.832 1.031 0.699 0.682 1 2.44 2.6 1.17 1.97 0.659 0.83 0.813 0.685 0.624 1.08 1 0.63 1.05 0.853 0.81 1.08 2.04 0.58 26.3 49.5 1.16 4.08 0.85 0.85 2.5 1.3 11.34 2.8 4.48 1.7 1.28 1.06 1.21 0.84 4.4 2.45 2.11 0.719 0.71 0.24 0.21
±95%
0.17 0.26 0.32
Conv.
0.031 0.034 0.1 0.045 0.028 0.028 0.057 0.021 0.04 0.04
N Y Y Y Y Y Y Y Y Y Y Y Y Y
0.02 0.06 0.033 0.021 0.014 0.075 0.04 0.29 0.14 0.22 0.17 0.054 0.1 0.06 0.06 0.06
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N
0.23 0.23
Y Y
2.43 5.76
Y Y
0.1
Y
0.14
Y
0.03 1.67
N Y
0.34 0.11
Y N
0.6 0.04 0.042
Y N Y
Refs. 373 372 370 371 373 374 372 370 591 591 591 48 48 48 48 110 110 110 110 110 110 110 110 279 279 605 279 279 110 110 110 110 110 110 110 110 110 110 110 279 279 497 145 145 145 145 675 705 556 214 172 605 214 423 172 279 280 212 423 240 280 946 794 344 353
References page II - 290
Next Page
TABLE 1. cont'd Monomer 1 Vinyl phenyl ketone Vinyl phenyl ketone Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl phenyl sulfide Vinyl phenyl sulfone Vinyl phenyl sulfone Vinyl propionate Vinyl propionate Vinyl propionate Vinyl propionate Vinyl propionate Vinyl propionate Vinyl propionate Vinyl propionate Vinyl propionate Vinyl stearate Vinyl stearate Vinyl stearate Vinyl stearate Vinyl stearate Vinyl stearate Vinyl stearate Vinyl stearate Vinyl sulfone Vinyl sulfone Vinyl tert-butyl ketone Vinyl tert-butyl ketone Vinyl tert-butyl sulfide Vinyl tert-buty\ sulfide Vinyl tert-butyl sulfide Vinyl tert-butyl sulfide Vinyl tert-butyl sulfide Vinyl tert-butyl sulfide Vinyl tert-butyl sulfide Vinyl thiolacetate Vinyl thiolacetate Vinyl thiolacetate Vinyl thiolacetate Vinyl thiolacetate Vinyl thiolacetate Vinyl trichloroacetate Vinyl trimethylammonioethyl ether iodide Vinyl valerate Vinyl, 2-, 2-methyl-4,4,6,6-tetraphenylcyclotrisiloxane Vinyl-tris(trimethoxysiloxy)silane Vinyl-tris(trimethoxysiloxy)silane Vinyl-tris(trimethoxysiloxy)silane Vinyl-tris(trimethoxysiloxy)silane Vinyl-tris(trimethoxysiloxy)silane Vinylacetophenone Vinylacetophenone Vinylanthracene, 9Vinylanthracene, 9Vinylanthracene, 9Vinylanthracene, 9Vinylanthracene, 9Vinylanthracene, 9Vinylbenzoate, /?-, sodium
Monomer 2 Vinyl acetate Vinyl methyl ketone Acrylate, methyl Acrylonitrile Acrylonitrile Benzothiazole, vinylmercaptoMethacrylate, methyl Methacrylate, methyl Styrene Styrene Styrene Vinyl acetate Allyl chloride Butadiene, 2-chloroCarbazole, JV-vinylEthylene Methacrylate, methyl Vinyl acetate Vinyl acetate Vinyl chloride Vinyl chloride Acrylate, methyl Acrylonitrile Butadiene Styrene Vinyl acetate Vinyl acetate Vinyl chloride Vinylidene chloride Methacrylate, methyl Styrene Methacrylate, methyl Styrene Styrene Acrylonitrile Styrene Vinyl acetate Vinyl acetate Vinyl chloride Vinyl chloride Acrylate, methyl Carbazole, Af-vinylStyrene Succinimide, N-vinylVinyl acetate Vinylene carbonate Acrylonitrile Af-Vinylpyrrolidone Vinyl chloride Styrene Acrylonitrile Acrylonitrile Methacrylate, methyl Styrene Styrene Methacrylate, methyl Styrene Acrylate, butyl Acrylate, ethyl Acrylate, methyl Methacrylate, methyl Styrene Styrene Acrylonitrile
T1
±95%
r2
5.81 0.671 -0.02 0.03 0.03 0.24 0.06 0.08 0.019 0.26 -0.31 -0.35 0.62
0.96
-0.06 0.74 0.57 0.11 0.1.1 0.95 0.79 0.85 3.63 3.96 1.562 0.171 0.68
0.081 1.5 0.03 0.98 1 0.6 0.65 0.03 0.078 0.02 -0.39 0.96 0.73 0.24 0.08 0.1 -0.027 0.65 3.2 0.248 0 0.158 0.07 0.07 0.15 0.15 0.23 0.45 0.25 2.47 5.5 13.57 0.047 0 0.277 0.8 0.07 0.08 0.02 0 0.01 1.65 1.12 0.126 0.295 0.08 0.117 0.25 0.3 0.23
0.22 0.02 0.01 0.12 0.09 0.054 0.18 0.16 0.37 0.073
0.007 0.27 0.71 0.17 0.64 0.17 0.16 0.047 0.15 0.46 0.05 0.013 0.073
0.15 0.37 1.04 0.039 0.02 0.014
3.81 0.42 0.054 0.056 0.092 0.043 0.34
1.69 0.67 24 0.98 0.9 1.6 1.35 5.8 4.639 42.5 15.96 0.953 0.9 0.71 3.92 4.5 0.731 1.21 0.3 0.36 0.09 4.36 13 13 3 3 0.8 0.44 4 0.17 0.05 0.041 7.34 11.6 2.006 0.11 3.9 3.85 34 26 24 0.33 0.246 3.717 3.498 2.998 4.068 2.12 2.12 0.174
±95%
Conv.
Refs.
0.057
Y
0.1 0.01 0.01 0.61 0.06
Y N N Y N
0.12 0.27 0.091 0.064
Y N Y Y
0.21
N Y
0.015 4.73 13.32 0.015
Y Y Y Y
0.097 0.14 0.49 0.058 0.11 0.31 0.11 0.024 0.76
Y Y Y Y Y N Y Y Y
0.28
N
0.15
N
0.01 0.9 0.03 0.071
Y Y
794 946 193 285 336 763 239 239 193 239 193 193 438 247 246 605 272 272 425 400 450 537 145 145 145 1 537 145 145 45 45 794 344 353 303 303 598 601 598 601 566 97 566 97 566 186 362 1037 283 626
Y
0.36 0.072 0.046 0.041 0.067 0.04
Y Y Y Y Y Y
0.04
Y
209 573 482 209 482 266 266 123 123 123 123 123 48 175
Previous Page
TABLE 1. cont'd Monomer 1 Vinylbenzoic acid, pVinylbenzoic acid, pVinylbenzoic acid, pVinylbenzyl chloride Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylene carbonate Vinylethyldiethoxysilane Vinylethynyl-4-piperidinol, l,2,5-trimethyl-4Vinylethynyl-4-piperidinol, l,2,5-trimethyl-4Vinylferrocene Vinylferrocene Vinylferrocene Vinylferrocene Vinylferrocene Vinylferrocene Vinylferrocene Vinylhydroquinone Vinylhydroquinone Vinylhydroquinone Vinylhydroquinone Vinylhydroquinone dibenzoate Vinylhydroquinone dibenzoate Vinylhydroquinone dibenzoate Vinylhydroquinone dibenzoate Vinylhydroquinone dibenzoate Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride
Monomer 2 Acrylonitrile Methacrylate, methyl Styrene Methacrylate, methyl Acrylamide Acrylonitrile Methacrylate, methyl Pyrrolidone,//-vinylStyrene Styrene Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl chloride Vinyl chloride Vinyl chloride Vinyl isobutyl ether Vinyl 1-menthyl ether Vinyl methyl sulfide Vinyl thiolacetate Vinyl chloride Acrylonitrile Methacrylic acid Acrylonitrile Acrylonitrile Butadiene Methacrylate, methyl Pyrrolidone, N-vinylStyrene Styrene Acrylic acid Acrylonitrile Methacrylate, methyl Pyridine, 4-vinylAcrylate, methyl Acrylic acid Methacrylate, methyl Styrene Styrene, a-methylAconitate, trimethyl Acrylamide, N-octadecylAcrylate, butyl Acrylate, butyl Acrylate, butyl Acrylate, ethyl Acrylate, methyl Acrylate, methyl Acrylate, methyl' Acrylate, octadecyl Acrylate, octyl Acrylic acid Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile
rx 1.63 1.16 1.029 1.02 0.05 0.08 - 0.04 0.056 3.16 -0.73 0.3 0.27 0.05 0.13 0.044 0.08 0.03 0.069 0 0.16 0.14 -0.08 0.041 -0.44 0.38
±95% 0.42 0.3 0.06
0.85 0.059 0.98 0.3 0.16 0.039 0.11 0.12 0.068 0.22 1.91 0.17 0.01 2.97
0.05 0.165 0.15 0.16 0.52 0.71 0.2 0.14 0.026 0.04 0.02 - 0.23 0.75 0.95 0.41 0.43 0.3 64.6 0.432 0.934 0.84 0.87 0.58 0.9 0.7 1 0.9 0.851 0.437 0.32 0.28 0.4 0.42 0.49 0.69 0.76 0.95 0.95
r2 0.06 0.398 0.282 0.46 13.8 14.9 126 1.08 411 21.03 3.2 3 7.16 7.3 3.83 3.92 4.82 15.38 17.81 0.18 0.25 7.72 13.57 0.94 0.08
±95% 0.009 0.097 0.011
298 0.11
Conv. Y Y Y
23.45 0.62
Y Y Y Y Y
0.64
Y
0.18 0.32 0.49 1.44 7.84
Y Y Y Y Y
3.32 1.68 1.04 1.53
Y Y Y Y
0.4 0.092 0.15 0.16 0.1 0.14 0.092 0.03 0.13 0.36
23.74 0.008 0.006
0.15 0.11
0.037 0.018 0.065 0.14 0.034
0.186 0.16 4.34 1.22 0.364 4.37 2.76 0.29 0.56 0.49 0.53 0.46 0.44 0.34 0.22 0.11 0.15 1.4 0.873 0.46 0.58 0.72 0.95 0.8 1 1 0.679 1.246 0.92 1.04 0.44 0.58 0.65 0.57 0.5 0.48 0.65
Refs. 175 266 266 792 387 579 103 103 103 120 103 103 120 120 144 90 103 319 319 322 750 120 186 237 783 734
0.025
Y
0.18
Y
0.068 1.44 0.22 0.11 0.36 0.21 0.4
Y Y Y Y N Y Y
0.94 0.11 0.022
N Y Y
0.39 0.21
Y Y
0.14 0.057 0.042 0.11 0.2
Y Y Y Y Y
294 294 802 294 308 274 294 337 338 337 337 440 444 440 440 440 149 119 118 464 464 65 107 107 377 118 118 288 138 238 404 404 404 404 404 404 404
References page II - 290
TABLE 1. cont'd Monomer 1 Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride
Monomer 2 Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acryloyl chloride AHyI acetate Allyl chloride Allylstearamide, NButadiene Carbazole, N-vinylCarbazole, TV-vinylCrotonaldehyde Crotonic acid Cyclopentene, 4-, 1,3-dione Diallyl phthalate Ethylene Ethylene chlorotrifluoroFumarate, diethyl Fumarate, diisopropyl Indene Indene Isobutylene, 3-chloroIsopropenyl methyl ketone Isopropenylisocyanate Maleate, diethyl Maleimide Methacrylate, 2-(sulfonic acid)ethyl Methacrylate, benzyl Methacrylate, butyl Methacrylate, ethyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylate, methyl Methacrylic acid Methacrylonitrile Methacrylonitrile Norbornadiene Oxazolidone, AT-vinylPropenyl 2-methyl, acetate Styrene Styrene Styrene Styrene Styrene Styrene Succinimide, Af-vinylTetrazole, 2-methyl-5-(4/-vinyl)phenylTetrazole, 2-phenyl-5-(4'-vinyl)phenylTetrazole, 5-phenyl-2-(4'-vinyl)phenylVinyl 12-ketostearate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl acetate Vinyl benzoate Vinyl butyl ether
rx 1.3 1.74 1.43 1.8 0.39 0.5 6.6 3.49 5.22 -0.044 -0.023 -0.008 18.1 1.88 5 15.71 17.14 12.19 48 0.49 -0.02 1.1 0.134 0.85 12.5 0.666 0.22 0.34 0.35 0.353 0.3 0.36 0.18 0.5 0.34 0.09 0.094 0.19 0.02 0.27 0.154 0.3 0.036 1.36 1.42 2.4 0.134 0.098 1.5 0.087 0.15 0.11 1.441 0.13 0.25 0.11 4.4 4.66 6.7 5 3.49 4.7 5.58 1.75
±95%
1.4 0.15 0.038 0.068 0.018 43.7 0.35 1.96 1.58 0.15 1.15 0.099 0.056 0.03 0.02 0.03 0.18
0.032 0.01 0.047 0.1 0.05 0.63 0.11 0.048 0.01 0.007 0.005 0.061
4.8 0.26 0.17 1.76 0.11
r2 0.65 0.66 0.63 0.63 0.58 1.12 0 0.24 -0.24 1.97 3.6 3.65 0 -0.2 0.113 0.2 0.018 0.02 0.012 0.095 0.293 0.34 0 4.06 0.31 0.464 3.6 3.3 2.07 2.18 2.6 2.38 2.16 2.5 2.5 2.1 1.8 2.83 1.23 2.77 3.368 2.43 2.38 0.09 0.091 0 1.81 1.79 1.8 1.839 1.81 1.7 0.311 1.9 1.8 1.9 0.26 0.03 0.05 0.05 -0.002 0.12 0.065 0.004
±95%
Conv.
0.24 0.19 0.25 0.12 0.3
Y Y Y Y Y
1.03 0.027
Y Y
0.005
Y
0.038
Y
0.095 0.85
Y Y
0.66
Y
0.083
Y
0.18 0.1 0.02 0.06
Y Y Y N N
0.95
Y
0.06 0.098 0.1 0.05 0.17 0.077
N Y N N N Y
0.35 0.14
Y Y
0.024
Y
0.12 0.058
N Y
2.61 0.1
Y Y
0.026
Y
0.093 0.001
Y Y
Refs. 404 404 404 404 468 288 470 3 119 257 13 98 405 47 264 376 299 454 59 1038 6 6 470 47 434 3 251 564 432 3 3 138 324 324 426 432 538 65 762 762 786 6 781 781 267 102 470 138 238 393 59 812 93 104 583 583 583 146 3 432 436 59 812 47 279
TABLE 1. cont'd Monomer 1 Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene chloride Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene cyanide Vinylidene fluoride Vinylidene fluoride Vinylisocyanate Vinylisocyanate Vinylisocyanate Vinylisocyanate Vinylisocyanate Vinylisocyanate Vinylisocyanate Vinylmethyldiacetoxysilane Vinylmethyldiacetoxysilane Vinylmethyldiethoxysilane Vinylmethyldiethoxysilane Vinylmethylphenylsulfonium tetrafluoroborate Vinylmethylphenylsulfonium tetrafluoroborate Vinylphenyldimethylsilane Vinylphenyldimethylsilane Vinylphenylisocyanate, pVinylphenylpropanol, 2-p-
Monomer 2 Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloride Vinyl chloromethyl ketone Vinyl dodecyl ether Vinyl ethyl ether Vinyl fluoride Vinyl hendecanoate Vinyl m-cresyl ether Vinyl methyl ketone Vinyl o-cresyl ether Vinyl octadecyl ether Vinyl p-chlorophenyl ether Vinyl /?-cresyl ether Vinyl p-tert-buty\ phenyl ether Vinyl pelargonate Vinyl phenyl ether Vinyl phenyl ether Vinyl stearate Vinylidene cyanide Vinylisocyanate Acrylate, a-chloro-, methyl Acrylic acid Butadiene, 2-chloroEthylene, dichloro-, cisEthylene, dichloro-, cisMaleic anhydride Methacrylate, methyl Phosphonic acid, 1-phenylvinyl Propene, 2-chloroStyrene Styrene Styrene, 2,5-dichloroVinyl acetate Vinyl benzoate Vinyl chloride Vinyl chloride Vinyl chloroacetate Vinyl chloride Methacryloyl fluoride, perfluoroVinyl acetate Acrylate, methyl Acrylonitrile Methacrylate, methyl Styrene Styrene Vinyl chloride Vinylidene chloride Acrylonitrile Styrene Styrene Styrene Acrylamide Acrylonitrile Methacrylate, methyl Styrene Vinyl chloride Styrene
rx 2.06 3.39 8.92 3.2 4.5 1.8 4.5 3.068 0.018 1.3 3.2 6 2.72 1.95 0.55 2.1 1.5 2.44 1.97 2.04 4.08 2.45 2.11 3.92 0.009 1.46 0.066 0.291
0.028 4.58 0.204 0.72 0.001 0.005 0.1 0.061 0.72 0.6 0.137 0.049 7.6 0.08 0.14 0.16 0.01 0.08 0.1 3.7 0.33 -0.11 0 0.08 -0.08 0.1
±95% 0.32 1.16
0.076 0.009
0.37 0.07 0.1 0.04 0.06 0.06 0.34 0.11 0.14 0.001 0.07 0.042
0.013 0.079 0.16 0.001 0.009 0.11 0.047 0.068 0.037 0.02
0.23 0.15 0.14 0.2
0.1 -0.009 0.024 11.9 0.41
r2 0.071 0.14 0.25 0.3 0.2 0.2 0.16 0.205 6.8 0 0 0.16 0.04 0.04 1.8 0.04 0 0.14 0.03 0.05 0 0.433 0.04 0.08 0.049 0.33 0.313 0.212
0.057 0.1 0.001 0.015 0.003 0.026 0.003 0 0.01 0.016 0 0.009 0.02 6 1.38 0.19 3.3 8.13 6.9 0.46 1.46 2.246 4.08 5.68 11.29 3.4
±95%
Conv.
Refs.
0.025 0.32
Y N Y
0.003 0.3
Y Y
0.16 0.004
Y Y
0.01
Y
0.01 0.004 0.004
Y Y Y
0.051 0.03 0.17 0.02
Y N Y Y
0.021 0.016
0.012
Y Y Y Y Y Y Y
0.03 0.007 0.001 0.006 0.002 0.017
Y Y Y Y Y Y
0.002 0.006 0.001
Y Y Y
0.054 0.14 0.1 0.43
Y Y Y Y
238 29 3 470 517 539 585 67 356 371 470 607 145 279 375 279 371 279 279 279 145 240 280 145 82 435 82 82 82 82 82 82 82 921 82 134 82 82 82 82 409 82 82 82 669 627 435 435 422 435 533 777 435 754 754 754 754 793
2.2 0.034 0.016 0.4
29.79 32.53 0.1 0.48
793 1.89 0.49
Y Y
0.3
Y
482 482 777 72
References page II - 290
TABLE 1. cont'd Monomer 1 Vinylsulfonic acid Vinyltriethoxysilane Vinyltriethoxysilane Vinyltriethoxysilane Vinyltriethoxysilane Vinyltrimethoxysilane Vinyltrimethoxysilane Vinyltrimethylsilane Vinyltrimethylsilane Vinyltrimethylsilane Vinyltrimethylsilane Vinyltrimethylsilane Xanthate, S-methacryloyl O-ethyl Xanthate, S-methacryloyl O-ethyl
Monomer 2 Acrylamide Acrylonitrile Acrylonitrile Styrene Vinyl chloride Acrylonitrile Vinyl chloride Acrylonitrile Methacrylate, methyl Styrene Styrene Styrene Methacrylate, methyl Styrene
T1
±95%
r2
±95%
0.3 0.41 2.69 -0.09 -0.04 0.45 0.09 0.1 0.028 -0.19
0.1 0.38 2.5 0.14 0.44
0.15 0.6 29.59 1.99 0.16
0.27 0.016 0.36
3.5 6.59 26.83 20.86 0.82 9.09 0.93 4.08 35.66 14.66
0.025 0.08 0.08
5.98 0.76 0.44
0.18 0.04 0.06
0.049 0.6 0.36
TABLE 2. LISTING OF QUICK BASIC (MICROSOFT) PROGRAM FOR CALCULATING REACTIVITY RATIOS* 100 OPTION BASE 1 110 DIM eta (20) 120 DIM ksi (20) 130 DIM gee (20) 140 DIM ef (20) 150 DIM t (20) 151 F O R b = I TO 20 152 READ t(b) 153 NEXT b 170 DATA 12.71,4.3,3.18,2.78,2.57,2.45,2.37,2.31,2.26,2.23,2.2,2.18,2.16,2.14,2.13,2.12,2.11,2.1,2.09,2.09 180 DEF FNLog 10(X) = LOG(X)/LOG( 10#) 190 PRINT "Calculation of reactivity ratios by the method of Kelen and Tudos" 210 PRINT "Enter 0 for monomer 1 in the feed to start the calculation" 220 REM initialize all of the summing addresses 230 n = 0 231 m = 0 232 var = 0 233 sumasi = 0 234 sumi = 0 235 suma = 0 236 sumsqi = 0 237 sumnegi = 0 238 sum2i = 0 250 INPUT "Do you wish to stop (Y/N)?";f$ 260 IF f$ = "y" THEN GO TO 1510 270 REM enter the names and molecular weights of the monomers 280 INPUT "Monomer 1 is:"; mone$ 290 INPUT "Monomer 2 is:"; mtwo$ 340 REM enter the feed, polymer and conversion values 350 PRINT "Are the feed and polymer values in mol fractions (mol), mol ratios (ratio) or weight fractions (wt) ?" 370 INPUT type$ 380 IF type$ = "ratio" THEN GOTO 1210 390 IF type$ = "wt" THEN GOTO 1360 400 PRINT "Mol fraction of"; mone$; "in the feed = " 410 INPUTmIO 420 IF mlO = 0 THEN GOTO 800 430 n = n + 1 440 m20=l-ml0 450 PRINT "Mol fraction of"; mone$; "in the polymer= " 460 INPUTpI 470 p 2 = l - p l 480 PRINT "Conversion, weight fraction = ? (If none given enter 0)" 490 INPUT w 500 IF w = 0 THEN GOTO 680 * Method of Kelen and Tudos (803,804).
0.76 0.85 5.15
Conv.
Refs.
Y Y Y Y Y Y Y Y Y Y Y
1066 209 237 209 237 2.37 237 209 482 209 482 73 1086 1086
510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190
REM calculate G and F X = ml0/m20 y = pl/p2 mu = mw2/mw 1 zeta2 - w * (mu + X)/(mu -f y) zetal=(y/X)*zeta2 z = (FNLoglO(l-zetal))/(FNLoglO(l-zeta2)) g = (y-l)/z f=y/(zA2) I F n = I THEN fmin = f IF n = 1 THEN fmax = f IF fmin>f THEN fmin = f IF fmax
f THEN fmin = f IF fmax
References page 11-290
1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1351 1352 1353 1354 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 1510 1520
C.
REM calculation of Ml and M2 from mol ratios PRINT "MoI ratio of"; mone$; "in the feed = " ; INPUT qf IF qf = 0 THEN GOTO 800 n= n+l ml0 = q£/(qf+l) m20=l-ml0 PRINT "Mole ratio of"; mone$ "in the polymer= " INPUT qp pl=qp/(qp+l) p2=l-pl PRINT '' Weight fraction conversion = '' INPUTw IF w - 0 THEN GOTO 680 GOTO 510 REM calculation of Ml and M2 from weight fractions PRINT "The molecular weight of"; mone$; "is" INPUT mwl PRINT "The molecular weight of"; mtwo$; "is" INPUT mw2 PRINT "Weight fraction of"; mone$ "in the feed = " INPUT rfl If rfl = 0 THEN GOTO 800 n= n+l rf2 = 1-rfl mlO = (if l/mwl)/((rf 1/mwl) + (rf2/mw2)) m20=l-ml0 PRINT "Weight fraction of"; mone$; "in the polymer= " INPUT rpl rp2 = l-rpl pi = (rpl/mwl)/((rpl/mwl) + (rp2/mw2)) PRINT "Weight fraction conversion= " INPUTw IF w = 0 THEN GOTO 680 GOTO 510 PRINT "FINI" END
REFERENCES
1. A. Adicoff, A. Buselli, J. Polym. ScL, 21, 340 (1956). 2. S. L. Aggarwal, F. A. Long, J. Polym. Sci., 11, 127 (1953). 3. P. Argon, T. Alfrey, J. Bohrer, H. Hass, H. Wechsler, J. Polym. Sci., 3, 157 (1948). 4. A. N. Akopyan, G. Ye. Krbekyan, Vysokomol. Soedin., 5, 201 (1963). 5. A. N. Akopyan, G. Ye. Krbekyan, E. G. Sinanyan, Vysokomol. Soedin., 5, 681 (1963). 6. T. Alfrey, J. Bohrer, H. Haas, C. Lewis, J. Polym. Sci., 5, 719 (1950). 7. T. Alfrey, W. H. Ebelke, J. Am. Chem. Soc, 71, 3235 (1949). 8. T. Alfrey, A. I. Goldberg, W. P. Hohenstein, J. Am. Chem. Soc, 68, 2464 (1946). 9. T. Alfrey, S. Greenberg, J. Polym. Sci., 3, 297 (1948). 10. T. Alfrey, J. G. Harrison, J. Am. Chem. Soc, 68, 299 (1946). 11. T. Alfrey, S. L. Kapur, J. Polym. Sci., 4, 215 (1949). 12. T. Alfrey, E. Lavin, J. Am. Chem. Soc, 67, 2044 (1945). 13. T. Alfrey, B. Magel, quoted by Hart, Makromol. Chem., 47, 143 (1961). 14. T. Alfrey, E. Mertz, H. Mark, J. Polym. Sci., 1, 37 (1946).
15. T. Alfrey, H. Morawetz, J. Am. Chem. Soc, 74,436 (1952). 16. T. Alfrey, C. G. Overberger, S. H. Pinner, J. Am. Chem. Soc, 75, 4221 (1953). 17. T. L. Ang, H. J. Hardwood, Am. Chem. Soc, Div. Polymer Chem. Preprints, 5, 306 (1964). 18. C. L. Arcus, R. J. S. Mathews, J. Chem. Soc, 4607, (1956). 19. E. J. Arlman, H. W. Melville, Proc Roy. Soc (London) A, 203, 301 (1950). 20. E. J. Arlman, H. W. Melville, L. Valentine, Rec Trav. Chim., 68, 945 (1949). 21. H. Asai, T. Imoto, J. Polym. Sci. B, 2, 553 (1964). 22. N. Ashikari, A. Nishimura, J. Polym. Sci., 31, 250 (1958). 23. M. A. Askarov, A. S. Bank, Vysokomol. Soedin., 8, 1012 (1966). 24. C. Aso, T. Kunitake, K. Watanabe, Kogyo Kagaku Zasshi, 70, 1001 (1967). 25. I. S. Avetisyan, V. I. Eliseeva, O. G. Larinovo, Vysokomol Soedin. A, 9, 570 (1967). 26. S. Banarjee, M. S. Muthana, J. Polym. Sci., 35, 292 (1959). 27. P. D. Bartlett, K. Nozaki, J. Am. Chem. Soc, 68, 1495 (1946).
28. W. I. Bengough, D. Goldrich, R. A. Young, Eur. Polym. J., 3, 117 (1967). 29. W. I. Bengough, R. G. W. Norrish, Proc. Roy. Soc. (London) A, 218, 155 (1953). 30. J. C. Bevington, D. O. Harris, J. Polym. Sci. B, 5, 799 (1967). 31. J. C. Bevington, M. Johnson, Makromol. Chem., 87, 66 (1965). 32. J. C. Bevington, B. W. Malpass, Eur. Polym. J., 1, 85 (1965). 33. D. C. Blackley, H. W. Melville, Makromol. Chem., 18, 16 (1956). 34. G. Blauer, L. Goldstein, J. Polym. Sci., 25, 19 (1957). 35. E. P. Bonsall, L. Valentine, H. W. Melville, Trans Faraday Soc, 48, 763 (1952). 36. J. F. Bork, L. E. Coleman, J. Polym. Sci., 43, 413 (1960). 37. J. Bourdais, Bull. Soc. Chim. France, 485 (1955). 38. J. H. Bradbury, H. W. Melville, Proc. Roy. Soc. (London) A, 222, 456 (1954). 39. D. Braun, T.-O. Ahn, Kolloid Z., 188, 1 (1963). 40. J. W. Breitenbach, A. Schindler, C. Pflug, Monatsh. Chem., 81, 21 (1950). 41. F. E. Brown, G. E. Ham, J. Polym. Sci. A, 2, 3623 (1964). 42. R. D. Burkhart, N. L. Zutty, J. Polym. Sci. A, 1, 1137 (1963). 43. G. M. Burnett, P. Evans, H. W. Melville, Trans. Faraday Soc, 49, 1096 (1953). 44. G. G. Cameron, D. H. Grant, N. Grassie, J. E. Lamb, I. C. McNeill, J. Polym. Sci., 36, 173 (1959). 45. E. Y. C. Chang, C. C. Price, J. Am. Chem. Soc, 83, 4650 (1961). 46. E. C. Chapin, G. E. Ham, R. G. Fordyce, J. Am. Chem. Soc, 70, 538 (1948). 47. E. C. Chapin, G. E. Ham, C. L. Mills, J. Polymer Sci., 4,597 (1949); errata, J. Polymer Sci., 55, S-6 (1961). 48. K. Anda, S. Iwai, Kogyo Kagaku Zasshi, 70, 557 (1967). 49. K. Chikanishi, T. Tsuruta, Makromol. Chem., 81, 211 (1965). 50. L. E. Coleman, J. A. Conrady, J. Polym. Sci., 38, 241 (1959). 51. P. Colombo, L. E. Kukacka, J. Fontana, R. N. Chapman, M. Steinberg, J. Polym. Sci. A-I, 4, 29 (1966). 52. P. Colombo, M. Steinberg, J. Fontana, J. Polym. Sci. B, 1, 447 (1963). 53. W. Cooper, E. Catterall, Can. J. Chem., 34, 387 (1956). 54. K. Crauwels, G. Smets, Bull. Soc. Chim. BeIg., 59, 443 (1950). 55. K. Crauwels, G. Smets, Bull. Soc Chim. BeIg., 59, 182 (1950). 56. I. Crescentini, G. B. Getchele, A. Zanella, J. Appl. Polym. Sci., 9, 1323 (1965). 57. G. F. D'Alelio, T. Huemmer, J. Polym. Sci. A-I, 5, 77 (1967). 58. A. DePauw, G. Smets, Bull. Soc. Chim. BeIg., 59, 629 (1950). 59. K. W. Doak, J. Am. Chem. Soc, 70, 1525 (1948). 60. K. W. Doak, J. Am. Chem. Soc, 72, 4681 (1950).
61. K. W. Doak, D. L. Dineen, J. Am. Chem. Soc, 73, 1084 (1951). 62. J. Drougas, R. L. Guile, J. Polym. Sci., 55, 297 (1961). 63. F. I. Duntov, B. L. Erusalimskii, Vyskomol. Soedin., 7,1075 (1965). 64. F. I. Duntov, A. L. Gol'denberg, M. A. Litvinova, B. L. Erusalimskii, Vysokomol. Soedin. A, 9, 1920 (1967). 65. B. G. Elgood, B. J. Sauntson, Chem. Ind. (London), 1558 (1965). 66. W. H. Embree, J. M. Mitchell, H. L. Williams, Can. J. Chem., 29, 253 (1951). 67. S. Enomoto, J. Polym. Sci., 55, 95 (1961). 68. B. Erussalimsky, N. Tumarkin, F. Duntoff. S. Lyubetzky, A. Goldenberg, Makromol. Chem., 104, 288 (1967). 69. E. S. Ferdinandi, W. P. Garby, D. G. L. James, Can. J. Chem., 42, 2568 (1964). 70. R. E. Florin, J. Am. Chem. Soc, 71, 1867 (1949). 71. J. W. L. Fordham, G. H. McCain, L. E. Alexander, J. Polym. Sci., 39, 335 (1959). 72. D. Braun, H.-G. Keppler, Makromol. Chem., 82, 132 (1965). 73. V. G. Filippova, N. S. Nametkin, S. G. Durgaryan, , Izv. Akad. Nauk SSR, Ser. Khim., 1727 (1966). 74. R. G. Fordyce, E. C. Chapin, J. Am. Chem. Soc, 69, 581 (1947). 75. R. G. Fordyce, E. C. Chapin, G. E. Ham, J. Am. Chem. Soc, 70, 2489 (1948). 76. R. G. Fordyce, G. E. Ham, J. Am. Chem. Soc, 69, 695 (1947). 77. R. G. Fordyce, G. E. Ham, J. Am. Chem. Soc, 73, 1186 (1951). 78. B. L. Funt, E. A. Ogryzlo, J. Polym. Sci., 25, 279 (1957). 79. R. M. Fuoss, G. I. Cathers, J. Polym. Sci., 4, 97 (1949). 80. J. Furukawa, T. Tsuruta, N. Yamamoto, H. Fukutani, J. Polym. Sci., 37, 215 (1959). 81. L. Ghosez, G. Smets, J. Polym. Sci., 35, 215 (1959). 82. H. Gilbert, F. F. Miller, S. J. Averill, E. J. Carlson, V. L. FoIt, H. J. Heller, F. D. Stewart, R. F. Schmidt, H. L. Trumbull, J. Am. Chem. Soc, 78, 1669 (1956). 83. R. D. Gilbert, H. L. Williams, J. Am. Chem. Soc, 74, 4114 (1952). 84. G. Goldflnger, M. Steidlitz, J. Polym. Sci., 3, 786 (1948). 85. N. Grassie, I. C. McNeill, J. Polym. Sci., 27, 207 (1958). 86. N. Grassie, I. C. McNeill, I. F. McLaren, J. Polym. Sci. B, 3, 897 (1965). 87. N. Grassie, B. J. D. Torrance, J. D. Fortune, J. D. Gemmell, Polymer, 6, 653 (1965). 88. E. Yun, L. V. Lobanova, A. D. Litmanovich, N. A. Plate, M. V. Shishkina, T. A. Polikarpova, Vysokomol. Soedin., 12, 2488 (1970). 89. E. Grzyma, Z. Jedlinski, Vysokomol. Soedin., 8, 1653 (1966). 90. H. C. Haas, N. W. Schuler, J. Polym. Sci., 31, 237 (1958). 91. H. C. Hass, M. S. Simon, J. Polym. Sci., 9, 309 (1952). 92. G. Hagele, H. Frolich, D. Bischoff, K. Hamann, Makromol. Chem., 75, 98 (1964). 93. R. A. Haldron, J. N. Hay, J. Polym. Sci. A-I, 6, 951 (1968).
94. G. E. Ham, J. Polym. ScL, 14, 87 (1954). 95. F. L. Hamb, A. Winston, J. Polym. Sci. A, 2, 4475 (1964). 96. G. Hardy, J. Varga, G. Nagy, Makromol. Chem., 85, 58 (1965). 97. G. Hardy, J. Varga, K. Nytrai, I. Tsajlik, L. Zubonyai, Vysokomol. Soedin., 6, 758 (1964). 98. R. Hart, Makromol. Chem., 47, 143 (1961). 99. R. Hart, A. E. vanDormael, Bull. Soc. Chim. BeIg., 65, 571 (1956). 100. R. Hart, G. Smets, J. Polym. Sci., 5, 55 (1950). 101. R. Hart, D. Timmerman, Bull. Soc. Chim. BeIg., 67, 123 (1958). 102. R. Hart, D. Timmerman, Makromol. Chem., 31,223 (1959). 103. K. Hayashi, G. Smets, J. Polym. Sci., 27, 275 (1958). 104. H. Hopff, P. Schlumbom, Makromol. Chem., 43, 173 (1961). 105. M. B. Huglin, Polymer, 3, 335 (1962). 106. J. C. H. Hwa, L. Miller, J. Polym. Sci., 55, 197 (1961). 107. M. Ibonai, T. Kato, Kogyo Kagaku Zasshi, 70, 2078 (1967). 108. M. Imoto, T. Otsu, B. Yamada, Kogyo Kagaku Zasshi, 68, 1132(1965). 109. T. Imoto, Y. Ogo, H. Nakamoto, Bull. Chem. Soc. Japan, 41, 543 (1968). 110. K. Ito, Y. Yamashita, J. Polym. Sci. B, 3, 637 (1965). 111. K. Ito, Y. Yamashita, Kogyo Kagaku Zasshi, 68, 1469 (1965). 112. Y. Minoura, T. Tadokoro, Y. Suzuki, J. Polym. Sci. A-I, 5, 2641 (1967). 113. Y. Iwakura, T. Kurosaki, N. Ariga, T. Ito, Makromol. Chem., 97, 128 (1966). 114. Y. Iwakura, T. Kurosaki, N. Nakabayashi, Makromol. Chem., 46, 570 (1961). 115. Y. Iwakura, T. Tamikado, M. Yamaguchi, K. Takei, J. Polym. Sci., 39, 203 (1959). 116. S. Iwatsuki, M. Murakami, Y. Yamashita, Kogyo Kagaku Zasshi, 68, 1967 (1965). 117. S. Iwatsuki, Y. Yamashita, Kogyo Kagaku Zasshi, 68, 1963 (1965). 118. E. F. Jordan, K. M. Doughty, W. S. Port, J. Appl. Polym. Sci., 4, 203, (1960). 119. E. F. Jordan, A. N. Wrigley, J. Appl. Polym. Sci., 8, 527 (1964). 120. J. M. Judge, C. C. Price, J. Polym. Sci., 41, 435 (1959). 121. D. J. Kahn, H. H. Horowitz, J. Polym. Sci., 54, 363 (1961). 122. N. G. Karapetyan, I. S. Boshnyakov, A. S. Magaryan, Vysokomol. Soedin., 7, 1993 (1965). 123. D. Katz, J. Relis, J. Polym. Sci. A-I, 6, 2079 (1968). 124. N. Kawabata, T. Tsuruta, J. Furukawa, Makromol. Chem., 48, 106 (1961). 125. R. Kerber, Makromol. Chem., 96, 30 (1966). 126. J. T. Khamis, Polymer, 6, 98 (1965). 127. A. M. Khomutov, Izv. Akad. Nauk SSSR Otd. Khim. Nauk, 352 (1961). 128. M. Kinoshita, M. Imoto, Kogyo Kagaku Zasshi, 68, 2454 (1965).
129. G. S. Kolesnikov, E. F. Rodionova, I. G. Safaralieva, Izv. Akad. Nauk SSSR, Ser. Khim., 2028, (1963). 130. G. S. Kolesnikov, A. S. Tevlina, A. B. Alovitdinov, Vysokomol. Soedin., 7, 1913 (1965). 131. G. S. Kolesnikov, A. S. Tevlina, A. B. Alovitdinov, Plasticheskie Massy, 12 (1966). 132. G. S. Kolesnikov, A. S. Tevlina, S. R Novikova, S. N. Sividova, Vysokomol. Soedin., 7, 2160 (1965). 133. S. Konya, M. Yokoyama, Kogyo Kagaku Zasshi, 68, 1080 (1965). 134. M. Kreisel, U. Garbatski, D. H. Kohn, J. Polym. Sci. A, 2, 105 (1964). 135. A. G. Kronman, I. V. Pasmanik, B. I. Fedoseev, V. A. Kargin, Vysokomol. Soedin. A, 9, 2503 (1967). 136. F. Leonard, W. P. Hohenstein, E. Merz, J. Am. Chem. Soc, 70, 1283 (1948). 137. F. M. Lewis, F. R. Mayo, J. Am. Chem. Soc, 70, 1533 (1948). 138. F. M. Lewis, F. R. Mayo, W. F. Hulse, J. Am. Chem. Soc, 67, 1701 (1945). 139. F. M. Lewis, C. Walling, W. Cummings, E. R. Briggs, F. R. Mayo, J. Am. Chem. Soc, 70, 1519 (1948). 140. F. M. Lewis, C. Walling, W. Cummings, E. R. Briggs, W. J. Wenisch, J. Am. Chem. Soc, 70, 1527 (1948). 141. H. Lussi, Makromol. Chem., 103, 62 (1967). 142. H. Lussi, Makromol. Chem., 103, 68 (1967). 143. H. Lussi, Makromol. Chem., 110, 100 (1967). 144. H. L. Marder, C. Schuerch, J. Polym. Sci., 44, 129 (1960). 145. C. S. Marvel, W. G. Dipierri, J. Polym. Sci., 27, 39 (1958). 146. C. S. Marvel, T. K. Dykstra, F. C. Magne, J. Polym. Sci., 62, 369 (1962). 147. C. S. Marvel, J. W. Johnson, J. P. Economy, G. P. Scott, W. K. Taft, B. G. Labbe, J. Polym. Sci., 20, 437 (1956). 148. C. S. Marvel, G. D. Jones, T. W. Mastin, G. L. Schertz, J. Am. Chem. Soc, 64, 2356 (1942). 149. C. S. Marvel, E. B. Mano, J. Polym. Sci., 31, 165 (1958). 150. C. S. Marvel, G. L. Schertz, J. Am. Chem. Soc, 65, 2045 (1943). 151. C. S. Marvel, R. Schwen, J. Am. Chem. Soc, 79, 6003 (1957). 152. A. Matsumoto, M. Oiwa, Kogyo Kagaku Zasshi, 70, 360 (1967). 153. A. Matsumoto, S. Shoda, T. Harada, M. Oiwa, Kogyo Kagaku Zasshi, 70, 1007 (1967). 154. K. Matsuoka, M. Otsuka, K. Takemoto, M. Imoto, Kogyo Kagaku Zasshi, 69, 137 (1966). 155. K. Matsuoka, K. Takemoto, M. Imoto, Kogyo Kagaku Zasshi, 68, 1941 (1965). 156. K. Matsuoka, K. Takemoto, M. Imoto, Kogyo Kagaku Zasshi, 69, 134 (1966). 157. K. Matsuoka, K. Takemoto, M. Imoto, Kogyo Kagaku Zasshi, 69, 142 (1966). 158. F. R. Mayo, C. Walling, F. M. Lewis, W. F. Hulse, J. Am. Chem. Soc, 70, 1523 (1948). 159. E. J. Meehan, J. Polym. Sci., 1, 318 (1946). 160. H. W. Melville, L. Valentine, Trans. Faraday Soc, 51, 1474 (1955).
161. A. Misono, Y. Uchida, Bull. Chem. Soc. Japan, 39, 2458 (1966). 162. J. Muller, Collection Czech. Chem. Commun., 20, 241 (1955). 163. K. Murata, A. Terada, Bull. Chem. Soc. Japan, 39, 2494 (1966). 164. S. Nagai, Bull. Chem. Soc. Japan, 36, 1459 (1963). 165. A. S. Nair, M. S. Muthana, Makromol. Chem., 47, 138 (1961). 166. A. F. Nikolaev, V. M. Gaperin, Vysokomol. Soedin. A, 9, 2469 (1967). 167. A. F. Nikolaev, S. N. Ushakov, L. S. Mishkileeva, Vysokomol. Soedin., 6, 287 (1964). 168. M. Nishigaki, M. Kinoshita, M. Imoto, Kogyo Kagaku Zasshi, 70, 1938 (1967). 169. A. M. North, D. Postlethwaite, Polymer, 5, 237 (1964). 170. A. M. North, A. M. Scallan, Polymer, 5, 447 (1964). 171. K. F. O'Driscoll, F. P. Gasparro, J. Macromol. Sci. A: Chem., 1, 643 (1967). 172. E. Ohmori, Y. Ohi, T. Otsu, M. Imoto, Kogyo Kagaku Zasshi, 68, 1600 (1965). 173. R. J. Orr, H. L. Williams, Can. J. Chem., 30, 108 (1952). 174. R. J. Orr, H. L. Williams, Can. J. Chem., 33, 1328 (1955). 175. E. Osawa, K. Wang, O. Kurihara, Makromol. Chem., 83, 100 (1965). 176. G. Oster, Y. Mizutani, J. Polym. Sci., 22, 173 (1956). 177. T. Otsu, T. Ito, Y. Fujii, M. Imoto, Bull. Soc. Chem. Japan, 41, 204 (1968). 178. T. Otsu, T. Ito, T. Fukumizu, M. Imoto, Bull. Soc. Chem. Japan, 39, 2257 (1966). 179. T. Otsu, T. Ito, M. Imoto, Kogyo Kagaku Zasshi, 69, 986 (1966). 180. T.Otsu, Y. Kinoshita, A. Nakamachi, Makromol. Chem., 115, 27 (1968). 181. T. Otsu, A. Shimizu, M. Imoto, J. Polym. Sci. A, 3, 615 (1965). 182. T. Otsu, B. Yamada, Makromol. Chem., 110, 297 (1967). 183. M. Otsuka, K. Takemoto, M. Imoto, Kobunshi Kagaku, 23, 765 (1966). 184. M. Otsuka, Y. Yashuhara, K. Takemoto, M. Imoto, Makromol. Chem., 103, 291 (1967). 185. C. G. Overberger, D. E. Baldwin, H. P. Gregor, J. Am. Chem. Soc, 72, 4864 (1950). 186. C. G. Overberger, H. Biletch, R. G. Nickerson, J. Polym. Sci., 27, 381 (1958). 187. T. R. Paxton, J. Polym. Sci. B, 1, 73 (1963). 188. J. Pellon, R. L. Kugel, R. Marcus, R. Rabinowitz, J. Polym. Sci., A-2, 4105 (1964). 189. J. R Fischer, Makromol. Chem., 156, 227 (1972). 190. S. H. Pinner, J. Polym. Sci., 10, 379 (1953). 191. C. C. Price, R. D. Gilbert, J. Polym. Sci., 8, 580 (1952). 192. C. C. Price, C. E. Greene, J. Polym. Sci., 6, 111 (1951). 193. C. C. Price, H. Morita, J. Am. Chem. Soc, 75, 4747 (1953). 194. C. C. Price, T. C. Schwan, J. Polym. Sci., 16, 577 (1955). 195. C. C. Price, J. Zomlefer, J. Am. Chem. Soc, 72, 14 (1950).
196. E. G. Pritchett, P M. Kamath, J. Polym. Sci. B, 4, 849 (1966). 197. H. Ringsdorf, N. Weinshenker, C. G. Overberger, Makromol. Chem., 64, 126 (1963). 198. W M. Ritchey, L. E. Ball, J. Polym. Sci. B, 4, 557 (1966). 199. L. Rodriguez, Makromol. Chem., 12, 110 (1954). 200. J. Roovers, G. Smets, Makromol. Chem., 60, 89 (1963). 201. R. W. Roth, R. F. Church, J. Polym. Sci., 55, 41 (1961). 202. E. W. Rugeley, T. A. Field, G. H. Fremon, Ind. Eng. Chem., 40, 1724 (1948). 203. A. V. Ryabov, Yu. D. Semchikov, N. N. Slavnitskaya, Dokl. Akad. Nauk SSSR, 145, 822 (1962). 204. M. K. Saha, P. Ghosh, S. R. Palit, J. Polym. Sci. A, 2, 1365 (1964). 205. G. Saini, G. Polla-Mattiot, M. Meirone, J. Polym. Sci., 50, S-13 (1961). 206. C. L. Sandberg, F. A. Bovey, J. Polym. Sci., 15, 553 (1955). 207. R. C. Schulz, H. Cherdron, W. Kern, Makromol. Chem., 28, 197 (1958). 208. R. C. Schulz, E. Kaiser, W. Kern, Makromol. Chem., 58, 160 (1962). 209. C. E. Scott, C. C. Price, J. Am. Chem. Soc, 81,2670 (1959). 210. P. K. Sengupta, A. R. Mukherjee, P. Ghosh, J. Macromol. Chem., 1, 481 (1966). 211. A. Shimizu, T. Otsu, M. Imoto, Bull. Chem. Soc. Japan, 38, 1535 (1965). 212. M. F. Shostakovskii, A. M. Khomutov, A. R Alimov, Izv. Akad. Nauk SSSR, Ser. Khim., 1839, (1963). 213. M. F. Shostakovskii, A. M. Khomutov, F. P. Sidel'kovskaya, Izv. Akad. Nauk SSSR, Ser. Khim., 2222, (1961). 214. F. P. Sidel'kovskaya, M. A. Askarov, F. Ibragimov, Vysokomol. Soedin., 6, 1810 (1964). 215. F. P. Sidel'kovskaya, M. F. Shostakovskii, F. Ibragimov, M. A. Askarov, Vysokomol. Soedin., 6, 1585 (1964). 216. C. Simionescu, N. Asandei, A. Liga, Makromol. Chem., 110, 278 (1967). 217. J. A. Simms, J. Appl. Polym. Sci., 5, 58 (1961). 218. G. Smets, L. Dehaes, Bull. Soc Chim. BeIg., 59,13 (1950). 219. G. Smets, N. Deval, P. Hous, J. Polym. Sci. A, 2, 4835 (1964). 220. G. Smets, E. Dysseleer, Makromol. Chem., 91, 160 (1966). 221. G. Smets, A. M. Hesbain, J. Polym. Sci., 40, 217 (1959). 222. G. Smets, A. Reckers, Rec Trav. Chim., 68, 983 (1949). 223. W. E. Smith, G. E. Ham, H. D. Anspon, S. E. Gebura, D. W. Alwani, J. Polym. Sci. A-I, 6, 2001 (1968). 224. M. F Sorokin, M. M. Babkina, Vysokomol. Soedin., 7, 734 (1965). 225. M. F. Sorokin, L M. Kochnov, Vysokomol. Soedin., 6, 798 (1964). 226. M. F Sorokin, K. A. Lyalyushko, R. A. Dudakova, V. S. Vasil'ev, A. N. Shuvalova, Plasticheskie Massy, 3 (1963). 227. E. Muccer, K. Dinges, W. Graulich, Makromol. Chem., 57, 27 (1962). 228. A. Takahashi, H. Tanaka, I. Kagawa, Kogyo Kagaku Zasshi, 70, 988 (1967). 229. K. Takemoto, Y. Kikuchi, M. Imoto, Kogyo Kagaku Zasshi, 69, 1367 (1966).
230. K. Takemoto, K. Matsuoka, M. Otsuka, M. Imoto, Kogyo Kagaku Zasshi, 69, 2026 (1966). 231. T. Tamikado, J. Polym. ScL, 43, 489 (1960). 232. T. Tamikado, Makromol. Chem., 38, 85 (1960). 233. T. Tamikado, Y. Iwakura, J. Polym. ScL, 36, 529 (1959). 234. A. Tanaka, K. Sasaki, Y. Hozumi, O. Hashimoto, J. Appl. Polym. ScL, 8, 1787 (1964). 235. M. Taniyama, G. Oster, Bull. Chem. Soc. Japan, 30, 856 (1957). 236. W. M. Thomas, M. T. O'Shaughnessy, J. Polym. ScL, 11, 455 (1953). 237. B. R. Thompson, J. Polym. ScL, 19, 373 (1956). 238. B. R. Thompson, R. H. Raines, J. Polym. ScL, 41, 265 (1959). 239. K. Tsuda, S. Kobayashi, T. Otsu, J. Polym. ScL A-I, 6, 41 (1968). 240. N. A. Tyukavkina, A. V. Kalabina, G. I. Deryabina, G. T. Zhikarev, A. D. Biryukova, Vysokomol. Soedin., 6, 1573 (1964). 241. K. Uehara, T. Nishi, T. Tsuyuri, F. Tamura, N. Murata, Kogyo Kagaku Zasshi, 70, 750 (1967). 242. J. Ulbricht, J. Giesemann, M. Gebauer, Angew. Makromol. Chem., 3, 69 (1968). 243. C. G. Overberger, F. W. Michelotti, J. Am. Chem. Soc, 80, 988 (1958). 244. C. C. Unruh, T. M. Laasko, J. Polym. ScL, 33, 87 (1958). 245. S. N. Ushakov, V. A. Kropachev, L. B. Trukhmanova, R. I. Gruz, T. M. Markelova, Vysokomol. Soedin. A, 9, 1807 (1967). 246. S. N. Ushakov, A. F. Nikolaev, Izv. Akad. Nauk SSSR, Ser. Khim., 83 (1956). 247. S. N. Ushakov, L. B. Trukhmanova, Izv. Akad. Nauk SSSR, Ser. Khim., 980 (1957). 248. S. N. Ushakov, L. B. Trukhmanova, T. M. Markelova, V. A. Kropachev, Vysokomol. Soedin. A, 9, 999 (1967). 249. L. F. Vandenburgh, C. E. Brockway, J. Polym. ScL A, 3,575 (1965). 250. G. vanPaesschen, G. Smets, Bull. Soc. Chim. BeIg., 64,173 (1955). 251. G. vanPaesschen, D. Timmerman, Makromol. Chem., 78, 112(1964). 252. B. Vollmert, Angew. Makromol. Chem., 3, 1 (1968). 253. M. Vrancken, G. Smets, Makromol. Chem., 30,197 (1969). 254. F. T. Wall, R. E. Florin, C. J. Delbecq. J. Am. Chem. Soc, 72, 4769 (1950). 255. F. T. Wall, R. W. Powers, G. D. Sands, G. S. Stent, J. Am. Chem. Soc, 70, 1031 (1948). 256. C. Walling, F. R. Briggs, K. B. Wolfstirn, F. R. Mayo, J. Am. Chem. Soc, 70, 1537 (1948). 257. C. Walling, J. A. Davison, J. Am. Chem. Soc, 73, 5736 (1951). 258. R. L. Whistler, J. L. Goatley, J. Polym. ScL, 50, 127 (1961). 259. G. S. Wich, N. Brodoway, J. Polym. Sci. A, 1, 2163 (1963). 260. M. C. DeWilde, G. Smets, J. Polym. ScL, 5, 253 (1950). 261. R. H. Wiley, B. Davis, J. Polym. Sci., 46, 423 (1960). 262. R. H. Wiley, E. E. Sale, J. Polym. Sci., 42, 497 (1960). 263. A. Winston, F. L. Hamb, J. Polym. ScL A, 3, 583 (1965).
264. A. Winston, G. T. C. Li., J. Polym. Sci. A-I, 5, 1223 (1967). 265. P. Wittmer, Makromol. Chem., 103, 188 (1967). 266. B. A. Zaitsev, G. A. Shtraikhman, Vysokomol. Soedin. A, 10, 438 (1968). 267. N. L. Zutty, J. Polym. ScL A, 1, 2231 (1963). 268. J. Aoyagi, I. Shinohara, Nippon Kagaku Kaishi, 788, 1972. 269. S. Tazuke, S. Okamura, J. Polym. Sci. A-I, 6, 2907 (1968). 270. T. Otsu, T.-C. Lai, Y. Kinoshita, A. Nakamachi, M. Imoto, Kogyo Kagaku Zasshi, 71, 904 (1968). 271. K. Takemoto, S. Takahashi, M. Imoto, Kogyo Kagaku Zasshi, 71, 742 (1968). 272. J. C. Bevington, M. Johnson, Eur. Polym. J., 4, 669 (1968). 273. R. Kroker, H. Ringsdorf, Makromol. Chem., 121, 240 (1969). 274. C. Aso, T. Kunitake, T. Nakashima, Kogyo Kagaku Zasshi, 72, 1411 (1969). 275. F. C. Baines, J. C. Bevington, Polymer, 11, 647 (1970). 276. V. D. Bezuglyi, I. B. Voskresenskaya, T. A. Alekseeva, M. M. Gemer, Vysokomol. Soedin. A, 14, 540 (1972). 277. D. Braun, G. Mott, Angew. Makromol. Chem., 18, 183 (1971). 278. W. R. Cabaness, T. Y-C. Lin, C. Parkanyi, J. Polym. Sci. A-I, 9, 2155 (1971). 279. G. I. Deryabina, Yu. L. Frolov, A. V. Kalabina, Vysokomol. Soedin., A13, 1162(1971). 280. G. I. Deryabina, G. I. Gershengorn, Vysokomol. Soedin. A, 11, 941 (1969). 281. J. P. Fischer, Makromol. Chem., 155, 211 (1972). 282. A. Gilath, S. H. Ronel, M. Shmueli, D. H. Kohn, J. Appl. Polym. Sci., 14, 1491 (1970). 283. K. Hayashi, T. Otsu, Makromol. Chem., 127, 54 (1969). 284. H. Hopff, G. Becker, Makromol. Chem., 133, 1 (1970). 285. H. Inoue, T. Otsu, Makromol. Chem., 153, 21 (1972). 286. H. Inoue, I. Umeda, T. Otsu, Makromol. Chem., 147, 271 (1971). 287. T Ito, T. Otsu, J. Macromol. Sci. Chem., 3, 197 (1969). 288. Z. Janovic, C. S. Marvel, M. J. Diamond, D. J. Kertesz, G. Fuller, J. Polymer Sci. A-I, 9, 2639 (1971). 289. H. K. Johnson, A. Rudin, J. Paint Technol., 42, 435 (1970). 290. E. F. Jordan, R. Bennett, A. C. Shuman, A. N. Wrigley, J. Polym. Sci. A-I, 8, 3113 (1970). 291. Y. Kinoshita, J. Kobayashi, F. Ide, K. Nakatsuka, Kobunshi Kagaku, 27, 469 (1970). 292. Y. Kinoshita, J. Kobayashi, F. Ide, K. Nakatsuka, Kobunshi Kagaku, 28, 430 (1971). 293. J. C. Lai, T. D. Rounsefell, C. U. Pittman, Macromolecules, 4, 155 (1971). 294. J. C. Lai, T. Rounsefell, C. U. Pittman, J. Polym. Sci. A-1,9, 651 (1971). 295. A. Leoni, S. Franco, Macromolecules, 4, 355 (1971). 296. A. Matsumoto, T. Ise, M. Oiwa, Nippon Kagaku Kaishi, 209 (1972). 297. A. Matsumoto, H. Muraoka, M. Taniguchi, M. Oiwa, Kogyo Kagaku Zasshi, 74, 1913 (1971). 298. K. Matsuo, S. Machida, J. Polym. Sci. A-1,10, 187 (1972).
299. H. Mitsui, K. Tsuneta, T. Kagiya, Kogyo Kagaku Zasshi, 74, 1918 (1971). 300. Z. Moniyama, A. Yamamoto, M. Kagiyama, R. Chujo, J. Macromol. Sci. A: Chem., 4, 1649 (1970). 301. A. F. Nikolaev, L. P. Vishnevetskaya, O. A. Gromova, M. M. Grigor'eva, M. S. Kleshcheva, Vysokomol. Soedin. A, 11, 2418 (1969). 302. E. Oikawa, K. Yamamoto, Polym. J., 1, 669 (1970). 303. T. Otsu, H. Inoue, J. Macromol. Sci. A-I, 4, 35 (1970). 304. T. Otsu, O. Nakatsuka, Kobunshi Kagaku, 29, 168 (1972). 305. M. Otsuka, K. Matsuoka, K. Takemoto, M. Imoto, Kogyo Kagaku Zasshi, 72, 2505 (1969). 306. M. Otsuka, K. Matsuoka, K. Takemoto, M. Imoto, Kogyo Kagaku Zasshi, 73, 1062 (1970). 307. T. Ouchi, M. Oiwa, Kogyo Kagaku Zasshi, 72,1587 (1969). 308. C. U. Pittman, P. L. Grube, J. Polym. Sci. A-I, 9, 3175 (1971). 309. M. Ratzch, W. Schneider, D. Musche, J. Polym. Sci. A-I, 9, 785 (1971). 310. S. H. Ronel, D. H. Kohn, J. Polym. Sci. A-1,7,2209 (1969). 311. R. A. Terteryan, Vysokomol. Soedin., 11, 1798 (1969). 312. A. V. Ryabov, Yu. D. Semchikov, N. N. Sivanitskaya, Vysokomol. Soedin. A, 12, 553 (1970). 313. A. V. Ryabov, L. A. Smirnova, V. A. Soldatov, Dokl. Akad. Nauk SSSR, 194, 1338 (1970). 314. G. Saini, A. Leoni, S. Franco, Makromol. Chem., 144, 235 (1971). 315. G. Saini, A. Leoni, S. Franco, Makromol. Chem., 146, 165 (1971). 316. G. Saini, A. Leoni, S. Franco, Makromol. Chem., 147, 213 (1971). 317. F. F. Shcherbina, O. I. Bakumenko, Vysokomol. Soedin. A, 11, 772 (1969). 318. Y. Tabata, K. Ishigure, H. Higaki, K. Oshima, J. Macromol. Sci. A: Chem., 4, 801 (1970). 319. S. Takahashi, K. Takemoto, M. Imoto, Kobunshi Kagaku, 27, 156 (1970). 320. H. Tamura, M. Tanaka, N. Murata, Kobunshi Kagaku, 27, 652 (1970). 321. H. Tamura, M. Tanaka, N. Murata, Kobunshi Kagaku, 27, 736 (1970). 322. S. Tazuke, S. Okamura, J. Polym. Sci. A-I, 7, 715 (1969). 323. M. Yamada, I. Takase, T. Tsukano, Y. Ueda, N. Koutou, Kobunshi Kagaku, 26, 593 (1969). 324. V. R Zubov, L. I. Valuev, V. A. Kabanov, V A. Kargin, J. Polym. Sci. A-I, 9, 833 (1971). 325. O. E. Ayers, S. P. McManus, C. U. Pittman, J. Polym. Sci., Polym. Chem. Ed., 11, 1201 (1973). 326. J. Ballesteros, G. J. Howard, L. Teasdale, J. Macromol. Sci. A: Chem., 11, 29 (1977). 327. Y. Bando, T. Dodou, Y. Minoura, J. Polym. Sci., Polym. Chem. Ed., 15, 1917 (1977). 328. J. M. Barrales-Rienda, J. I. Gonzalez de Ia Campa, R. J. Gonzalez, J. Macromol. Sci. A: Chem., 11, 267 (1977). 329. A. R. Cain, Am. Chem. Soc, Div. Polym. Chem. Preprints, 11, 312 (1970). 330. A. Chapiro, L. Perec-Spitzer, Eur. Polym. J., 11, 59 (1975).
331. A. Chapiro, P. Lessulnier, Eur. Polym. J., 12, 761 (1976). 332. T. A. DuPlessis, A. C. Thomas, J. Polym. Sci., Polym. Chem. Ed., 11, 2681 (1973). 333. N. B. Gaddam, S. F. Xavioir, T. C. Goel, J. Polym. Sci., Polym. Chem. Ed., 15, 1473 (1977). 334. C. V. Hinton, H. G. Spencer, Macromolecules, 9, 864 (1976). 335. M. E. Hoaglund, I. N. Duling, Am. Chem. Soc, Petrol. Chem. Preprints, 15, B85 (1970). 336. H. Inoue, T. Otsu, Makromol. Chem., 153, 21 (1972). 337. S. Iwabuchi, K. Kojima, T. Nakahira, M. Ueda, M. Kobayashi, M. Iwakura, J. Polym. Sci., Polym. Chem. Ed., 12,2801 (1974). 338. S. Iwabuchi, M. Ueda, M. Kobayashi, K. Kojima, Polym. J., 6, 185 (1974). 339. V. V. Kopeikin, E. F. Panarin, I. S. Milevskaya, N. S. Redi, Vysokomol. Soedin. A, 19, 861 (1977). 340. Y. Matsubara, M. Yoshihara, T. Maeshima, Nippon Kagaku Kaishi, 2186 (1974). 341. D. R. Abayasekara, R. M. Ottenbrite, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 25, 164 (1984). 342. F. Mikes, P. Strop, O. Seycek, J. Roda, J. Kalal, Eur. Polym. J., 10, 1029 (1974). 343. L. M. Minsk, C. Kotlarchik, G. N. Meyer, J. Polym. Sci., Polym. Chem. Ed., 11, 3037 (1973). 344. J. C. Salmone, R Taylor, B. Snider, S. C. Israel, Am. Chem. Soc, Polym. Chem. Preprints, 15, 462 (1974). 345. M. Niwa, Kobunshi Kagaku, 29, 52 (1972). 346. M. Niwa, S. Iida, Y. Nakazato, Kobunshi Robunshu, 32,189 (1975). 347. K. Noma, M. Niwa, K. Morita, Kobunshi Kagaku, 29, 907 (1972). 348. T. Oishi, T. Kimura, Kobunshi Robunshu, 33, 685 (1976). 349. S. Okamura, K. Hayashi, Polym. J., 4, 495 (1973). 350. T. Okano, J. Aoyagi, I. Shinohara, Nippon Kagaku Kaishi, 161 (1976). 351. T. Masuda, C. Aoyama, Kobunshi Kagaku, 30, 223 (1973). 352. T. Otsu, M. Inoue, Kobunshi Robunshu, 31, 250 (1974). 353. T. Otsu, H. Tanaka, J. Polym. Sci. Polym. Chem. Ed., 13, 2605 (1975). 354. C. U. Pittman, G. Marlin, T. D. Rounsefell, Macromolecules, 6, 1 (1973). 355. G. Sielaff, D. O. Hummel, Makromol. Chem., 175, 1579 (1974). 356. H. Tanaka, T. Otsu, J. Macromol. Sci. A: Chem., 11, 231 (1977). 357. A. Kh. Usbekova, V. V. Razumovskii, Vysokomol. Soedin. A, 14, 1681 (1972). 358. I. K. Varma, S. Patnaik, Eur. Polym. J., 12, 259 (1976). 359. A. I. Vorob'eva, E. I. Ablyakimov, G. V Leplyanin, Vysokomol. Soedin. A, 16, 349 (1974). 360. T. Yala-Lutokanu, G. Jenner, A. Deluzarche, Bull. Soc Chim. France, 609 (1974). 361. M. Yoshimura, Y. Shirota, H. Mikawa, Macromolecules, 8, 713 (1975). 362. A. Miller, J. Szafko, E. Turska, J. Polym. Sci., Polym. Chem. Ed., 15, 51 (1977).
363. A. Miller, J. Szafko, J. Polym. ScL, Polym. Chem. Ed., 15, 1595 (1977). 364. K. L. Petrak, J. Polym. ScL, Polym. Letters Ed., 16, 393 (1978). 365. M. Sharabash, R. L. Guile, J. Macromol. Sci. A: Chem., 10, 1039 (1976). 366. R. H. Wiley, B. Davis, J. Polym. Sci. A, 1, 2819 (1963). 367. T. Ohata, A. Matsumoto, M. Oiwa, Bull. Chem. Soc. Japan, 47, 928 (1974). 368. J. Aoyagi, I. Shinohara, Kogyo Kagaku Zasshi, 74, 1191 (1971). 369. L. V. Morozova, T. T. Minakova, B. A. Troflmov, Deposited Doc, VINITI 1228 (1983). 370. G. Akasome, S. Sakai, Y. Choshi, K. Murai, Kobunshi Kagaku, 17, 478 (1960). 371. G. Akasome, S. Sakai, Y. Choshi, K. Murai, Kobunshi Kagaku, 17, 558 (1960). 372. G. Akasome, S. Sakai, K. Murai, Kobunshi Kagaku, 17,449 (1960). 373. G. Akasome, S. Sakai, K. Murai, Kobunshi Kagaku, 17,452 (1960). 374. G. Akasome, S. Sakai, K. Murai, Kobunshi Kagaku, 17,482 (1960). 375. T. Alfrey, L. Arond, C. G. Overberger, quoted by Alfrey, "Coporymerization", p. 35. 376. T. Alfrey, jr., J. Bohrer, H. Mark, "Copolymerization", High Polymer Series, Vol. VIII, Interscience, New York, 1952, p. 40. 377. T. Alfrey, B. Magel, quoted by Alfrey, "Copolymerization", Wiley, New York. 378. American Cyanamid Co., "Chemistry of Acrylonitrile", 2nd Ed., 1960, p. 34. 379. American Cyanamid Co., private communication to L. J. Young. 380. K. Anda, S. Iwai, Kogyo Kagaku Zasshi, 70, 557 (1967). 381. T. Asahara, K. Mitsuhashi, Yukagaku, 6, 331 (1957). 382. M. A. Askarov, S. R. Pinkhasov, A. S. Bank, Vysokomol. Soedin. B, 9, 601 (1967). 383. J. N. Atherton, A. M. North, Trans. Faraday Soc, 58, 2049 (1962). 384. C. H. Bamford, W. G. Barb, Discussions Faraday Soc, 14, 208 (1953). 385. A. S. Bank, S. D. Savranskaya, M. A. Askarov, Khim. iFiz.Khim. Prirodn. iSintetich. Polimerov, Akad. NaukUz. SSR, Inst. Khim. Polimerov No. 2, 110 (1964). 386. I. M. Barton, G. B. Butler, E. C. Chapin, J. Polym. Sci. A, 3, 501 (1965). 387. T. F. Baskova, O. M. Klimova, Vysokomol. Soedin. B, 10, 63 (1968). 388. L. Bogetich, G. A. Mortimer, G. W. Daues, J. Polym. ScL, 61, 3, (1962). 389. J. Brandrup, Faserforsch. Textiltech., 12, 135 (1961). 390. D. Braun, H.-G. Keppler, Makromol. Chem., 82, 132 (1965). 391. J. W. Breitenbach, H. Edelhauser, Ric ScL, 25, 242 (1955).
392. M. A. Bruk, A. D. Abkin, P M. Khomikovskii, G. A. Gold'er, H.-L. Chu, Dokl. Akad. Nauk SSSR, 157, 1399 (1964). 393. W. J. Burlant, D. H. Green, J. Polym. Sci., 31, 227 (1958). 394. G. M. Burnett, J. M. Pearson, J. D. B. Smith, J. Polym. Sci. A-I, 4, 2024 (1966). 395. G. B. Butler, G. Vanhaeren, M.-F. Ramadier, J. Polym. Sci. A-I, 5, 1265 (1967). 396. A. Chapiro, A.-M. Jendrychowska-Bonamour, J. Polym. ScL C, 1, 1211 (1963). 397. C. B. Chapman, L. Valentine, J. Polym. Sci., 34, 319 (1959). 398. Chas. Pfizer, Co., Product News, quoted by L. J. Young (1961). 399. K. Chikanishi, T. Tsuruta, Makromol. Chem., 73, 231 (1964). 400. M. A. Chilingaryan, A. E. Akopyan, M. G. Barkudaryan, Arm. Khim. Zh., 20, 428 (1967). 401. L. E. DeMiIIo, G. A. Shtraikhman, E. N. Rostovskii, Zh. Prikl. Khim., 39, 1360 (1966). 402. K. W. Doak, quoted by Mayo, Walling, 1950. 403. K. W. Doak, M. A. Deahl, I. H. Christmas, 137th ACS Meeting, Cleveland, Ohio, Abstr. Papers, Vol. 1, No. 1, 151 (April, 1960). 404. T. Doi, M. Matsuki, A. Sugiyama, Kogyo Kagaku Zasshi, 70, 1792 (1967). 405. G. Dolgin, P. Gordon, quoted by Alfrey, "Copolymerization", Wiley, New York, p. 40. 406. DuPont Co., British Patent, 593, 605 (1947). 407. E H. C. Edgecombe, Nature, 198, 1085 (1963). 408. J. Exner, M. Bohdanecky, Chem. Listy, 48, 483 (1954). 409. V. L. FoIt, Canadian Patent, 509, 259 (1955). 410. S. Fujii, Radiation Res., 33, 249 (1968). 411. J. Furukawa, T. Tsuruta, N. Yameda, Kogyo Kagaku Zasshi, 61, 734 (1958). 412. L. H. Gale, J. Org. Chem., 31, 2475 (1966). 413. A. L. Gol'denberg, S. G. Lubetskii, Dokl. Nauk SSSR, 179, 900 (1968). 414. M. Goodstein, quoted in Alfrey, "Copolymerization", Wiley, New York, p. 35. 415. VF. Gromov, P. M. Khomikovskii, A. D. Abkin, Vysokomol. Soedin., 3, 1015 (1961). 416. A. Guyot, J. Guillot, J. Chem. Phys., 61, 1434 (1964). 417. K. R. Henery-Logan, R. V. V Nichlos, quoted by Simha and Wall. 418. K. R. Henery-Logan, R. V V. Nichlos, quoted by Mayo and Walling. 419. R. Hess, quoted in Alfrey, "Copolymerization", Wiley, New York, p. 36, p. 37. 420. T. Higuchi, H. Imoto, Kogyo Kagaku Zasshi, 61, 1053 (1958). 421. A. Hunyar, H. Reichert, Faserforsch. Textiltech., 5, 204 (1954). 422. E. Husemann, Univ. Freiberg i. Br. Germany, private communication to L. J. Young. 423. F. Ida, K. Uemura, S. Abe, Kagaku to Kogyo (Osaka), 38, 215 (1964).
424. F. Ida, K. Uemura, S. Abe, Kagaku to Kogyo (Osaka), 39, 565 (1965). 425. F. Ide, K. Okano, S. Nakano, K. Nakstuka, Shikizai Kyokaishi, 40, 571 (1967). 426. M. Imoto, T. Otsu, Y. Harada, Makromol. Chem., 65, 180 (1963). 427. M. Imoto, S. Shimizu, Kobunshi Kagaku, 18, 747 (1961). 428. T. Imoto, Y. Ogo, S. Goto, T. Mitani, Kogyo Kagaku Zasshi, 69, 1371 (1966). 429. T. Imoto, Y. Ogo, T. Mitani, Kogyo Kagaku Zasshi, 70, 1217 (1967). 430. T. Irie, M. Kinoshita, M. Imoto, Kogyo Kagaku Zasshi, 69, 980 (1966). 431. O. A. Iskhakov, E. V. Kuznetzov, G. M. Eliseeva, Vysokomol. Soedin. B, 10, 32 (1968). 432. K. Ito, S. Iwase, Y. Yamashita, Makromol. Chem., 110, 233 (1967). 433. Y. Iwakura, K. Matsuzaki, Kobunshi Kagaku, 17, 187 (1960). 434. Y. Iwakura, M. Sato, T. Tamikado, S. Mimashi, Kobunshi Kagaku, 13, 125 (1956). 435. Y. Iwakura, M. Sato, T. Tamikado, T. Mizoguchi, Kobunshi Kagaku, 13, 390 (1956). 436. U. Johnsen, K. Kolbe, Kolloid-Z. Z. Polymer, 216, 97 (1967). 437. R. M. Joshi, S. L. Kapur, J. Sci. Ind. Res., 16B, 379 (1957). 438. R. M. Joshi, S. L. Kapur, J. Sci. Ind. Res., 16B, 441 (1957). 439. N. Kamiya, H. Matsuura, Nippon Gomu Kyokaishi, 40, 64 (1967). 440. H. Kamogawa, H. G. Cassidy, J. Polym. Sci. A, 1, 1971 (1963). 441. H. Kamogowa, R. Murase, T. Sekiya, Kogyo Kagaku Zasshi, 62, 1749 (1959). 442. H. Kamogawa, T. Sekiya, Kogyo Kagaku Zasshi, 62, 1117 (1959). 443. R. G. Karzhaubaeva, G. P. Gladyshev, S. R. Rafikov, Vysomokol. Soedin. B, 9, 453 (1967). 444. v. F. Kazanskaya, O. M. Klimova, B. M. Khlebnikov, Vysomokol. Soedin., 6, 1799 (1964). 445. W. O. Kenyon, J. H. vanCampen, U.S. Patent, 2,419,221 (1947). 446. W. Kern, Univ. Mainz, private communication to L. J. Young. 447. W. Kern, D. Braun, Makromol. Chem., 27, 23 (1958). 448. A. M. Khomutov, Vysokomol. Soedin., 5, 1121 (1963). 449. T. Kimura, K. Yoshida, Kagaku to Kogyo (Osaka), 27, 288 (1953). 450. T. Kimura, K. Yoshida, Kagaku to Kogyo (Osaka), 32, 223, 341 (1958). 451. J. B. Kinsinger, J. S. Bartlett, N. H. Rauscher, J. Appl. Polym. Sci., 6, 529 (1962). 452. J. B. Kinsinger, J. R. Panchak, R. L. Kelso, J. S. Bartlett, R. K. Graham, J. Appl. Polym. Sci., 9, 429 (1965). 453. A. L. Klebanskii, O. A. Timofeev, Zh. Prikl. Khim., 32, 2294 (1959). 454. N. Kliman, M. Lazar, Chem. Prum., 9, 668 (1959).
455. A. R. Kol'k, A. A. Konkin, Z. A. Rogovin, Khim. Volokna, 12 (1963). 456. M. M. Koton, J. Polym. Sci., 30, 331 (1958). 457. M. M. Koton, Inst. Akad. Nauk Latv. SSR Riga, 119 (1957). 458. M. M. Koton, O. K. Sumina, Dokl. Akad. Nauk SSSR, 113, 1063 (1957). 459. G. E. Krybekyan, E. G. Sinanyan, A. N. Akopyan, Izv. Akad. Nauk Arm. SSR, Khim. Nauki, 15, 527 (1962). 460. G. N. Larina, Z. V. Borisova, T. V. Sheremeteva, Vysokomol. Soedin., 3, 1664 (1961). 461. F.-M. Li, Y-L. Ch'en, L.-C. Wang, H.-C. Wei, L.-H. Yeh, Ko Fen Tzu T'ung Hsun, 8, 1 (1966). 462. P. T. Li, K.-K. Wu, K'O Hsueh Ch'u Pan She, 151 (1963). 463. L. S. Luskin, R. J. Myers, "Encyclopedia of Polymer Science and Technology", Vol. 1, Interscience Publishers, 1964, p. 246. 464. Z. Machacek, Chem. Listy, 48, 477 (1954). 465. S. Machida, Y. Shimizu, T. Makita, Kamipa Gikyoshi, 21, 352 (1967). 466. M. F. Margaritova, G. D. Berezhnov, Tr. Mosk. Khim.Tekhnol. Inst., 4, 46 (1953). 467. M. F. Margaritova, V. A. Raiskaya, Tr. Mosk. Khim.Tekhnol. Inst., 4, 37 (1953). 468. L. Marker, O. J. Sweeting, J. G. Wepsic, J. Polym. Sci., 57, 855 (1962). 469. G. Markert, Makromol. Chem., 103, 109 (1967). 470. F. R. Mayo, F. M. Lewis, C. Walling, J. Am. Chem. Soc, 70, 1529 (1948). 471. Min. (Szu-Kwei), Chen Ho Chu, Hua Hsueh Hsueh Pao, 23, 262 (1957). 472. A. Misono, Y. Uchida, K. Yamada, Bull. Chem. Soc. Japan, 40, 2366 (1967). 473. J. M. Mitchell, H. L. Williams, Can. J. Res., 27, 35 (1949). 474. A. Mitsutani, M. Yono, Kogyo Kagaku Zasshi, 67, 935 (1964). 475. E. W. Moffett, R. E. Smith, U.S. Patent 2,356,871 (1944). 476. R. B. Mohite, S. Gundiah, S. L. Kapur, Makromol. Chem., 108, 52 (1967). 477. G. A. Mortimer, J. Polymer Sci. B, 3, 343 (1965). 478. D. T. Mowry, U.S. Patent 2,417,607 (1947). 479. S. Murahashi, S. Nozakura, A. Umehara, K. Obata, Kobunshi Kagaku, 21, 625 (1964). 480. S. Nagai, K. Yoshida, Kobunshi Kagaku, 17, 77 (1960). 481. T. Nakata, T. Otsu, M. Imoto, J. Polym. Sci. A, 3, 3383 (1965). 482. N. S. Nametkin, S. G. Durgar'yan, V. G. Filippova, Dokl. Akad. Nauk SSSR, 177, 853 (1967). 483. K. Noma, M. Niwa, K. Iwasaki, Kobunshi Kagaku, 20, 646 (1963). 484. S. Okamura, T. Yamashita, J. Soc. Textile Cellulose Ind. Japan, 9, 446 (1953). 485. V. A. Orlov, O. G. Tarakanov, Plasticheskie Massy, 6 (1964). 486. R. J. Orr, Polymer, 2, 79 (1961). 487. T. Otsu, T. Ito, M. Imoto, J. Polym. Sci. B, 3, 113 (1965). 488. T. Otsu, B. Yamada, T. Nozaki, Kogyo Kagaku Zasshi, 70, 1941 (1967).
489. G. S. Park, private communication to L. J. Young, (1966). 490. N. Platzer, Monsanto Co., private communication to L. J. Young. 491. Polymer Corp. Ltd., Sarnia, Can., private communication to L. J. Young. 492. C. C Price, J. G. Walsh, J. Polym. ScL, 6, 239 (1951). 493. N. V. Rakityanskii, R. L. Rabinovich, Rept. Allunion Sci. Inst. Synthetic Rubber, 1951. 494. R. C. Reinhardt, Ind. Eng. Chem., 35, 422 (1943). 495. N. N. Rozovskaya, A. P. Sheinker, A. D. Abkin, Vysokomol. Soedin., 7, 1383 (1965). 496. N. N. Rozovskaya, A. R Sheinker, A. D. Abkin, Vysokomol. Soedin., 7, 1500 (1965). 497. M. Kinoshita, S. Kataoka, M. Imoto, Kogyo Kagaku Zasshi, 72, 969 (1969). 498. A. V. Ryabov, Yu. D. Semchikov, N. N. Slavnitskaya, Tr. Khim. Khim. TekhnoL, 334 (1963). 499. A. V. Ryabov, Yu. D. Semchikov, V. N. Vakhrusheva, Tr. Khim. Khim. TekhnoL, 188 (1963). 500. I. Sakurada, Kobunshi Kagaku, 18, 496 (1961). 501. I. Sakurada, T. Okada, S. Hatakeyama, F. Kimura, J. Polym. Sci. C, 1, 1233 (1963). 502. I. Sakurada, G. Takahashi, Kobunshi Kagaku, 11, 286 (1954). 503. I. Sakurada, G. Takahashi, H. Mata, Kobunshi Kagaku, 12, 362 (1955). 504. B. Sandner, J. Ulbricht, Faserforsch. Textiltech., 17, 286 (1966). 505. A. P. Sheinker, A. D. Abkin, Tr. Tashkentsk Konf. po Mimomu Ispol Z. at. Energii Akad. Nauk Uz. SSR, 1, 395 (1961). 506. T. V. Sheremeteva, G. N. Larina, Dokl. Akad. Nauk SSSR, 162, 1323 (1965). 507. M. F. Shostakovskii, E. N. Prilezhaeva, J. M. Karavaeva, Vysokomol. Soedin., 1, 781 (1959). 508. G. Smets, A. Poot, G. L. Duncan, J. Polym. ScL, 54, 65 (1961). 509. G. Takashi, Kobunshi Kagaku, 14, 151 (1957). 510. G. Talamini, G. Vidotto, C. Garbuglio, Chim. Ind. (Milan), 47, 955 (1965). 511. A. Tanaka, Y. Hozumi, K. Hatada, Kobunshi Kagaku, 22, 216 (1965). 512. M. Tanaka, A. Asai, S. Takeya, Kogyo Kagaku Zasshi, 62, 1786 (1959). 513. H. Tatemichi, S. Suzuki, Kogyo Kagaku Zasshi, 63, 1843 (1960). 514. S. Tazuke, N. Sato, S. Okamura, J. Polym. Sci. A-I, 4, 2461 (1966). 515. R. W. Tess, W. T. Tsatsos, A. Chem. Soc, Div. Org. Coatings Plast. Chem., Preprints, 26, 276 (1966). 516. G. V. Tkachenko, V. S. Etlis, L. V. Stupen, L. P. Kofman, Zh. Fiz. Khim, 33, 25 (1959). 517. G. V. Tkachenko, P. H. Khomikovskii, A. D. Abkin, S. S. Medvedev, Zh. Fiz. Khim., 31, 242 (1957). 518. G. V. Tkachenko, L. V. Stupen, L. R Kofman, L. Z. Frolova, Zh. Fiz. Khim., 31, 2676 (1957).
519. G. V. Tkachenko, L. V. Stupen, L. P. Kofman, L. A. Karacheva, Zh. Fiz. Khim., 32, 2492 (1958). 520. V. L. Tsailingol'd, M. I. Farberov, G. A. Burgova, Vysokomol. Soedin., 1, 415 (1959). 521. E. Tsuchida, T. Kawagoe, Enka Biniiru to Porima, 8, 21 (1968). 522. E. Tsuchida, Y. Ohtani, H. Nakadai, I. Shinohara, Kogyo Kagaku Zasshi, 70, 573 (1967). 523. E. Tsuchida, Z. Okuno, T. Yao, I. Shinohara, Kogyo Kagaku Zasshi, 69, 1230 (1966). 524. E. Tsuchida, T. Shimomura, K. Fujimora, Y Ohtani, I. Shinohara, Kogyo Kagaku Zasshi, 70, 1230 (1966). 525. K. Ueberreiter, W. Krull, Z. Physik. Chem. (Frankfort), 12, 303 (1957). 526. S. N. Ushakov, E. M. Lavrent'eva, Zh. Prikl. Khim., 31, 1686 (1958). 527. Kh. U. Usmanov, R. S. Tillaev, U. N. Musaev, M. M. Nauchn. Tr., Tashkenysk. Gos. Univ. No. 257, 30 (1964). 528. Kh. U. Usmanov, A. A. Yul'chibaev, Kh. Yuldasheva, Uzb. Khim. Zh., 11, 27 (1967). 529. Kh. U. Usmanov, A. A. Yul'chibaev, Kh. Yuldasheva, Uzb. Khim. Zh., 11, 41 (1967). 530. J. W. Vanderhoff in E. H. Riddle, "Monomeric Acrylic Esters", Reinhold, New York, 1954, p. 94, Ref. 154. 531. F. T. Wall, quoted by F. R. Mayo and C. Walling. 532. C. Walling, E. R. Briggs, K. B. Wolfstirn, J. Am. Chem. Soc, 70, 1543 (1948). 533. G. Welzel, G. Greber, Makromol. Chem., 31, 230 (1959). 534. R. H. Wiley, B. Davis, J. Polym. Sci., 62, S-132 (1962). 535. R. H. Wiley, L. K. Heidemann, B. Davis, J. Polym. Sci. B, 1, 521 (1963). 536. C. E. Wilkes, J. C. Westfahl, R. H. Backderf, Am. Chem. Soc, Div. Polym. Chem., Preprints, 8, 386 (1967). 537. L. P. Witnauer, E. Watkins, W. S. Port, J. Polym. Sci., 20, 213 (1956). 538. D. M. Woodford, Chem. Ind. (London), 1966, 316. 539. N. Yamazaki, S. Kambara, J. Polym. Sci. C, 22, 75 (1968). 540. K. Yokota, Y. Ishii, Kogyo Kagaku Zasshi, 69, 1057 (1966). 541. K. Yokota, M. Kani, Y Ishii, J. Polym. Sci. A-I, 6, 1325 (1968). 542. L. J. Young, unpublished data, quoted in J. Polym. Sci., 54, 411 (1961). 543. N. L. Zutty, R. D. Burkhart, Advances in Chem. Series No, 34, "Polymerization and Condensation Processes", ACS, Washington D. C, 1962, p. 52. 544. M. P. Zverev, M. F. Margaritova, Ukr. Khim. Zh., 24, 626 (1958). 545. D. D. Al-Khashimi, T. R. Abdurashidov, M. A. Askarov, Uzb. Khim. Zh., 14, 87 (1970). 546. A. B. Alovitdinov, A. B. Kuchkarov, A. I. Kurbanov, Vysokomol. Soedin. B, 13, 657 (1971). 547. K. Anda, S. Iwai, J. Polym. Sci. A-I, 7, 2414 (1969). 548. K. Anda, S. Iwai, Kobunshi Kagaku, 29, 212 (1972). 549. J. Aoyagi, K. Kitamura, I. Shinohara, Kogyo Kagaku Zasshi, 73, 2045 (1970). 550. J. Ushirone, T. Otsu, Kogyo Kagaku Zasshi, 71,772 (1968). 551. A. M. North, K. E. Whitelock, Polymer, 9, 590 (1968).
552. B. K. Basov, V. L. Tsailingol'd, E. G. Lazaryants, Prom. Sin. Kauch., 17 (1967). 553. J. M. Carcamo, F. Arranz, Rev. Plast. Mod., 22, (182), 1169 (1971). 554. A. V. Chernobai, Zh. Kh. Zelichenko, Vysokomol. Soedin. A, 11, 1470 (1969). 555. K. H. Chung, Daehan Hwahak Hwoejee, 14, 333 (1970). 556. G. I. Deryabina, A. K. Khaliullin, S. Yu. Federova, L. A. Kron, Izv. Nauch.-Issled. Inst. Nefte-Uglekhim. Sin. Irkutsk. Univ., 12, 57 (1970). 557. M. Z. El-Sabban, S. I. Dmitrieva, A. I. Meos, Vysokomol. Soedin. B, 12, 243 (1970). 558. J. W. H. Faber, W. F. Fowler, J. Polym. Sci. A-I, 8, 1777 (1970). 559. A. L. German, D. Heikens, J. Polym. Sci. A-I, 9, 2225 (1971). 560. K. Hamanoue, Rev. Phys. Chem. Japan, 38, 120 (1968). 561. G. W. Hastings, J. Chem. Soc. D, 1039, (1969). 562. K. Horie, I. Mita, H. Kambe, J. Polym. Sci. A-I, 7, 2561 (1969). 563. A. S. Kabankin, S. A. Balabanova, A. M. Markevich, Vysokomol. Soedin. A, 12, 267 (1970). 564. D. A. Kangas, R. R. Pelletier, J. Polym. Sci. A-I, 8, 3543 (1970). 565. R. G. Karzhaubaeva, G. M. L'dokova, G. P. Gladyshev, S. R. Rafikov, Tr. Inst. Khim. Nauk Akad. Nauk Kaz. SSR, 28, 115(1970). 566. M. Kinoshita, T. Me, M. Imoto, Kogyo Kagaku Zasshi, 72, 1210 (1969). 567. K. Kitanaka, Y. Tabata, Kobunshi Kagaku, 28, 206 (1971). 568. N. G. Kulkami, N. Krishnamurti, P. C. Chatterjee, M. A. Sivasamban, Makromol. Chem., 139, 165 (1970). 569. S. Machida, K. Matsuo, Yukei Gosei Kagaku Kyokoi Shi, 27, 759 (1969). 570. K. Moser, R. Signer, H. U. Stuber, Chimia, 23, 393 (1969). 571. S. U. Mullik, M. A. Quddus, Pak. J. Sci., Ind. Res., 12, 186 (1970). 572. S. U. Mullik, M. A. Quddus, Pak. J. Sci., Ind. Res., 12, 181 (1970). 573. N. S. Nametkin, I. N. Kozhukhova, S. G. Durgar'yan, V. G. Filippova, Vysokomol. Soedin. A, 11, 2523 (1969). 574. K. Noma, M. Niwa, Kobunshi Kagaku, 29, 52 (1972). 575. K. Noma, M. Niwa, H. Norisada, Doshisha Daigaku Rikogaku Kenkyu Hokoku, 10, 349 (1970). 576. C. U. Pittman, N. C. Lai, D. P. Vanderpool, Macromolecules, 3, 105 (1970). 577. G. P. Popova, T. R. Kirpichenko, K. L. Glazomitskii, B. E. Glo'tsin, E. S. Roskin, E. N. Rostovskii, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 13, 259 (1970). 578. M. Ratzsch, L. Stephan, Plaste Kautschuk, 18, 572 (1971). 579. E. A. Rassolova, M. A. Zharkova, G. I. Kudryavtsev, V. S. Klimenkov, Khim. Volokna, 50 (1969). 580. S. A. Rostovtseva, Vysokomol. Soedin. B, 12, 588 (1970). 581. A. G. Sayadyan, D. A. Simonyan, Arm. Khim. Zh., 22, 528 (1969). 582. Yu. L. Spirin, T. S. Yatsmirskaya, Vysokomol. Soedin. B, 11, 515 (1969).
583. J. K. Stille, L. D. Gotter, Macromolecules, 2, 468 (1969). 584. R. A. Tterteryan, N. V. Fomicheva, V. N. Monastyrskii, Vysokomol. Soedin. B, 13, 485 (1971). 585. Y. Yamashita, K. Ito, H. Ishii, S. Hoshino, M. Kai, Macromolecules, 1, 529 (1968). 586. K. Yokota, J. Macromol. Sci. A: Chem., 4, 65 (1970). 587. A. B. Alovitdinov, A. I. Kurbanov, A. B. Kuchkarov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 17, 1443, (1974). 588. A. B. Alovitdinov, A. I. Kurbanov, A. B. Kuchkarov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 18, 160 (1975). 589. L. Ambroz, J. Caskova, M. Jelinek, J. Majer, Chem. Prum., 26, 27 (1976). 590. A. B. Alovitdinov, Kh. U. Kochkarova, D. K. Khamdamova, A. B. Kuchkarov, Tr. Tashk. Politekh. Inst., 135, 12 (1974). 591. K. Anda, S. Iwai, Kobunshi Kagaku, 29, 212 (1972). 592. N. Cobianu, C. Boghina, B. Marculescu, C. Cincu, I. Amalinei, Rev. Roum. Chim., 19, 1251 (1974). 593. A. T. Dzhalilov, O. M. Yariev, N. N. Yadgarov, Uzb. Khim. Zh., 29, (1976). 594. G. B. Fridman, Ya. A. Levin, B. E. Ivanov, Sb. Nekot. Probl. Org. Khim., Mater. Nauch. Sess., Inst. Org. Fiz. Khim., Akad. Nauk SSSR, 89, (1972). 595. J.-I. Jin. H.-S. Byun, Y-M. Park, Taehan Hwahak Hoechi, 21, 219 (1977). 596. T. G. Kulagina, M. A. Askarov, A. S. Bank, Sin. Vysokomol. Soedin., 9, (1972). 597. A. I. Kurbanov, A. B. Kucharov, A. B. Alovitdinov, Tr. Tashk. Politekh. Inst., 90, 133 (1972). 598. Z. Laita, O. Paleta, A. Posta, E Liska, Collect. Czech. Chem. Commun., 40, 2059 (1975). 599. Sh. Nadzhimutdinov, A. S. Turnev, A. Bazarbaev, Kh. U. Usmanov, Vysokomol. Soedin. B, 15, 574 (1973). 600. A. F. Nikolaev, V. Bondarenko, L. E. Klubikova, S. A. Golenishcheva, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 19, 1141 (1976). 601. T. Otsu, I. Umeda, H. Inoue, Mem. Fac. Eng., Osaka City Univ., 16, 107 (1975). 602. V. S. Romanova, M. A. Bulatov, V. V. Sinitsyn, Deposited Doc, 1975, VINITI 2407. 603. A. G. Savadyan, O. A. Dzhanikyan, V. A. Mirzoyan, Arm. Khim. Zh., 29, 708 (1976). 604. A. G. Sayadyan, O. A. Dzhanikyan, M. G. Ketikyan, Arm. Khim. Zh., 30, 433 (1977). 605. E. M. Shaikhutdinov, B. A. Zhubanov, N. Kadyrsizov, A. B. Sagyndykova, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 25, 55 (1974). 606. Kh. U. Usmanov, A. A. Yul'chibaev, A. A. Mat'yakubov, Kh. Kuzieva, S. Kazakov, Dokl. Akad. Nauk Uzb. SSR, 29, 37 (1972). 607. Kh. U. Usmanov, Kh. Kuzieva, A. A. Yul'chibaev, M. Zh. Akimdzhanova, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 16, 948 (1973). 608. T. Oishi, S. Maruyama, M. Momoi, M. Fujimoto, T. Kimura, Makromol. Chem., 185, 479 (1984). 609. N. Yamashita, K. Ikezawa, S. Ayukawa, T. Toshihisa, J. Macromol. Sci. A: Chem., 21, 621 (1984).
610. E. L. Madruga, J. San Roman, M. A. Lavia, J. Polym. ScL, Poly. Chem. Ed., 22, 801 (1984). 611. Kh. Budevska, V. Sinigerski, Makromol. Chem., 185, 531 (1984). 612. G. Kaszas, T. Foldes-Berezsnich, F. Tudos, Eur. Polym. J., 20, 395 (1984). 613. H. Boudevska, O. Todorova, Makromol. Chem., 185, 353 (1984). 614. J. Tanaka, A. Yamada, J. Macromol. Sci. A: Chem., 21, 253 (1984). 615. R. A. Terteryan, S. D. Livshits, Sb. Nauch. Tr.-Vses. Nauchno-Issled. Inst. Pererab. Nefti, 41, 118 (1982). 616. V. A. Kruglova, V. V. Annenkov, I. V. Zaitseva, A. V. Kalabina, A. N. Mirskova, Vysokomol. Soedin. B, 25, 852 (1983). 617. M. Ueda, T. Kumakura, Y. Imai, C. U. Pittman, E. Wallace, J. Polym. Sci., Polym. Chem. Ed., 22, 85 (1984). 618. Y. K. Sung, S. Y. Lee, J. O. Pollimo, 7, 392 (1983). 619. J. Berger, H. Zweifel, Angew. Makromol. Chem., 115, 163 (1983). 620. R. A. Terteryan, V. S. Khrapov, Vysokomol. Soedin. A, 25, 1850 (1983). 621. J. San Roman, E. L. Madruga, M. A. Del Puerto, J. Polym. Sci., Polym. Chem. Ed., 21, 3303 (1983). 622. B. S. R. Reddy, R. Arshady, M. H. George, Macromolecules, 16, 1813 (1983). 623. G. Yuan, Huaxue Xuebao, 41, 746 (1983). 624. T. Oishi, M. Momoi, M. Fujimoto, T. Kimura, J. Macromol. Sci. A: Chem., 20, 763 (1983). 625. M. Ueda, T. Suzuki, Y Imai, C. U. Pittman, E. Wallace, J. Polym. Sci., Polym. Chem. Ed., 21, 2997 (1983). 626. A. A. Zhdanov, B. G. Zavin, O. G. Blokhina, Vysokomol. Soedin. B, 25, 582 (1983). 627. T. L. Latypov, A. A. Yul'chibaev, Kh. Yu. Kuzieva, Uzb. Khim. Zh., 62 (1983). 628. J. D. Patel, M. R. Patel, J. Polym. Sci., Polym. Chem. Ed., 21, 3027 (1983). 629. W. S. Kim, O. R. Kwan, I. K. Kang, U. R. Cho, Pollimo, 7, 242 (1983). 630. Y. Kihira, K. Moriwaki, H. Nishio, H. Yamamura, Kinki Daigaku Kogakubu Kenkyu Hokoku, 16, 1 (1982). 631. J. R Fishcer, S. Roesinger, Makromol. Chem., 184, 1247 (1983). 632. G. Kaszas, T. Foldes-Berezsnich, F. Tudos, Magy. Kern. FoIy., 89, 154 (1983). 633. C. Samyn, G. Smets, Makromol. Chem., 184, 949 (1983). 634. J. J. Uebel, F. J. Dinan, J. Polym. Sci., Polym. Chem. Ed., 21, 1773 (1983). 635. V. Konsulov, Yu. Piruleva, Vysokomol. Soedin. B, 25, 307 (1983). 636. R. N. Majumdar, S. L. Yang, H. J. Harwood, J. Polym. Sci., Polym. Chem. Ed., 21, 1717 (1983). 637. V. S. Kurganskii, V. A. Puchin, S. A. Voronov, V. S. Tokarev, Vysokomol. Soedin. A, 25, 997 (1983). 638. B. Yamada, T. Hayashi, T. Otsu, J. Macromol. Sci. A: Chem., 19, 1023 (1983).
639. J. C. Brosse, J. M. Gauthier, J. C. Lenain, Makromol. Chem., 184, 505 (1983). 640. N. Toyoda, M. Yoshida and T. Otsu, Polym. J. (Tokyo), 15, 255 (1983). 641. M. Ueda, M. Takahashi, T. Suzuki, Y. Imai, C. U. Pittman, J. Polym. Sci., Polym. Chem. Ed., 21, 1139 (1983). 642. T. Oishi, M. Momoi, M. Fujimoto, T. Kimura, J. Polym. Sci., Polym. Chem. Ed., 21, 1139 (1983). 643. K. Saric, Z. Janovic, O. Vogl, J. Macromol. Sci. A: Chem., 19, 837 (1983). 644. J. D. Patel, M. R. Patel, J. Macromol. Sci. A: Chem., 19, 801 (1983). 645. G. Galli, R. solaro, E. Chiellini, A. Ledwith, Macromolecules, 16, 497 (1983). 646. Z. Wojtczak, T. Czerniawski, B. Rozwadowska, Acta Polym., 34, 125 (1983). 647. V. A. Kruglova, N. I. Skobeeva, A. A. Antonovich, L. M. Dobrynina, A. V. Kalabina, A. N. Mirskova, Deposited Doc, SPSTL 744, Khp-D81 (1981). 648. C. I. Simionescu, B. C. Simionescu, C. Mihailescu, Acta Polym., 34, 62 (1983). 649. A. C. Constantinescu, S. Dumitriu, C. I. Simionescu, Acta Polym., 34, 60 (1983). 650. J. I. Jin, H. K. Shim, S. M. Lee, Taehan Hwahakhoe Chi, 26, 421 (1982). 651. F. Hrabak, M. Bezdek, V. Hynkova, J. Svobodova, Makromol. Chem., 183, 2675 (1982). 652. L. Lukasik, W. Kuran, J. Kiryjow, J. Polym. Sci., Polym. Lett. Ed., 21, 17 (1983). 653. J. Asakura, M. Yoshihara, H. Fujihara, Y. Matsubara, T. Maeshima, J. Macromol. Sci. A: Chem., 19, 311 (1983). 654. E. Dumitriu, S. Oprea, G. Datcu, Mater. Plast. (Bucharest), 19, 141 (1982). 655. M. Tomescu, S. E Cretu, BuI. Inst. Politeh. "Gheorghe Gheorghiu-Dej" Bucuresti, Ser. Chim.-Metal., 44, 67 (1982). 656. Kh. Budevska, S. Plachkova, O. Todorova, Makromol. Chem., 183, 2583 (1982). 657. M. Niwa, N. Higashi, K. Noma, Sci. Eng. Rev. Doshisha Univ., 23, 87 (1982). 658. T. Oishi, M. Fujimoto, T. Kimura, J. Polym. Sci., Polym. Chem. Ed., 20, 2999 (1982). 659. G. Ayrey, M. J. Humphrey, R. C. Poller, Eur. Polym. J., 18, 693 (1982). 660. M. Ueda, T. Kumakura, Y. Imai, C. U. Pittman, J. Polym. Sci., Polym. Chem. Ed., 20, 2829 (1982). 661. H. I. Park, C. K. Lee, J. H. Choi, J. I. Jin, Taehan Hwahakhoe Chi, 26, 235 (1982). 662. G. N. Babu, A. Deshpande, D. D. Deshpande, Angew. Makromol. Chem., 105, 83 (1982). 663. M. Ueda, M. Takahashi, Y. Imai, C. U. Pittman, J. Polym. Sci., Polym. Chem. Ed., 20, 2819 (1982). 664. H. Feng, X. Zhou, W. Liang, Q. Lu, R. Zhao, Gaofenzi Tongxun, 126, (1982). 665. A. Matsumoto, H. Kamigaki, M. Oiwa, J. Polym. Sci., Polym. Chem. Ed., 20, 2611 (1982). 666. H. G. Woo, S. K. Choi, Taehan Hwahakhoe, 26, 179 (1982).
667. R. N. Majumdar, C. Carlini, C. Bertucci, Makromol. Chem., 183, 2047 (1982). 668. A. G. Ismailov, S. G. Karaeva, N. Sh. Rasulov, Azerb. Khim. Zh., 66, (1982). 669. S. G. Khodzhaev, F. Z. Yusupbekova, A. A. Yul'chibaev, Sb. Nauchn. Tr.-Tashk. Gos. Univ. im V. I. Lenina, 667, 34 (1981). 670. G. Wouters, G. Smets, Makromol. Chem., 183, 1861 (1982). 671. A. V. Agasaryan, M. L. Eritsyan, A. O. Marukyan, Arm. Khim. Zh., 35, 329 (1982). 672. J. San Roman, E. L. Madruga, Eur. Polym. J., 18, 481 (1982). 673. A. Fehervari, T. Foldes-Berezsnich, F. Tudos, J. Macromol. Sci. A: Chem., 18, 337 (1982). 674. R K. Dhal, M. S. Ramakrishna, G. N. Babu, J. Polym. Sci., Polym. Chem. Ed., 20, 1581 (1982). 675. G. Meunier, P. Hemery, S. Boileau, Polymer, 23, 855 (1982). 676. M. L. Eritsyan, A. V. Agasaryan, Arm. Khim. Zh., 35, 265 (1982). 677. A. Fehervari, T. Foldes-Berezsnich, F. Tudos, Magy. Kem. FoIy., 88, 226 (1982). 678. T. Oishi, M. Fujimoto, T. Kimura, Polym. J. (Tokyo), 14, 323 (1982). 679. O. Sosanwo, J. Lokaj, F. Hrabak, Eur. Polym. J., 18, 341 (1982). 680. S. Yu Zaitsev, A. E. Batog, A. V. Bondarenko, V. V. Zaitseva, Vysokomol. Soedin. A, 24, 778 (1982). 681. H. Ito, D. C. Miller, C. G. Willson, Macromolecules, 15, 915 (1982). 682. O. I. Sorokina, M. L. Syrkina, G. A. Kiselev, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 25, 227 (1982). 683. W. S. Kim, D. H. Oh, O. R. Kwon, I. K. Kang, K. H. Seo, Pollimo, 6, 113 (1982). 684. Ya. A. Levin, G. B. Fridman, V. Sh. Gurskaya, L. Kh. Gazizova, S. V. Shulyndin, B. E. Ivanov, Vysokomol. Soedin. A, 24, 601 (1982). 685. L. P. Paskal, V. G. Syromyatnikov, Ukr. Khim. Zh. (Russ. Ed.), 48, 204 (1982). 686. M. Macret, G. HiId, Polymer, 23, 81 (1982). 687. C. Hu, H. Feng, D. Jiang, Gaofenzi Tongxun, 275, (1981). 688. A. K. Askerov, A. D. Aliev, G. R. Slamanovva, A. A. Ibragimov, Mater. Sumgaitskoi Gor. Nauchno-Tekh. Konf. Probl. "Org. Khlororg. Sint", 1980, p. 45. 689. K. Qiu, Y. Sun, X. Feng, Gaofenzi Tongxun, 1981, 373. 690. S. Pitchumani, R. C. Rami, S. Rajadurai, J. Polym. Sci., Polym. Chem. Ed., 20, 277 (1982). 691. M. Orbay, R. Laible, L. Dulog, Makromol. Chem., 183, 47 (1982). 692. G. N. Babu, A. Deshpande, J. Macromol. Sci., Chem., A17, 717 (1982). 693. S. G. Bondarenko, A. F. Nikolaev, S. A. Baranova, N. I. Plyashechnik, G. A. Smirnova, S. V. Obukhova, I. V. Baidenok, E. M. Stepanov, I. N. Gluschenok, E. D. Andreeva, Vysokomol. Soedin. A, 23, 2639 (1981).
694. M. K. Abdullaeva, K. M. Muminov, M. A. Askarov, A. T. Dzhalilov, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 24, 1022 (1981). 695. S. Kohjiya, H. Takeuchi, K. Kawamoto, S. Yamashita, Bull. Chem. Soc. Jpn., 54, 3245 (1981). 696. B. Plavljanic, Z. Janovic, J. Polym. Sci., Polym. Chem. Ed., 19, 1795 (1981). 697. R. Haraoubia, C. Bonnans-Plaisance, G. Levesque, Makromol. Chem., 182, 2409 (1981). 698. D. Jiang, C. Hu, G. Yuan, Sci. Sin. (Engl. Ed.), 24, 1248 (1981). 699. V. I. Gulimov, T. P. Vishnyakova, I. D. Vlasova, T. Z. Tabasaranskaya, Vysokomol. Soedin. B, 23, 633 (1981). 700. K. Arai, Y. Ogiwara, Makromol. Chem., Rapid Commun., 2, 363 (1981). 701. V. Percec, A. Natansohn, C. I. Simionescu, Polym. Bull. (Berlin), 4, 255 (1981). 702. V. Percec, A. Natansohn, C. I. Simionescu, Polym. Bull. (Berlin), 4, 247 (1981). 703. C. I. Simionescu, V. Percec, A. Natansohn, Polym. Bull., 4, 623 (1981). 704. D.-Z. Jiang, C. Hu, G.-Q. Yuan, Proc. China-U.S. Bilateral Symp. Polym. Chem. Phys., 1979, 138. Sci. Press: Peking, Peop. Rep. China. 705. G. Meunier, P. Hemery, J. P. Senet, S. Boileau, Polym. Bull. (Berlin), 4, 705 (1981). 706. G. Meunier, P. Hemery, J. P. Senet, S. Boileau, Polym. Bull. (Berlin), 4, 699 (1981). 707. B. C. Simionescu, A. Natansohn, M. Leanca, C. Ananiescu, C. L Simionescu, Polym. Bull. (Berlin), 4, 569 (1981). 708. G. N. Babu, A. Deshpande, J. Macromol. Sci. A: Chem., 16, 1299 (1981). 709. T.-C. Chiang, K.-H. Yu, Polym. Bull. (Berlin), 4, 425 (1981). 710. J. K. Fink, Makromol. Chem., 182, 2105 (1981). 711. M. Niwa, M. Kobayashi, T. Matsumoto, Kobunshi Robunshu, 38, 413 (1981). 712. M. Ueda, K. M, Y Imai, C. U. Pittman, Macromolecules, 14, 1046 (1981). 713. K. Urushido, A. Matsumoto, M. Oiwa, J. Polym. Sci., Polym. Chem. Ed., 19, 245 (1981). 714. T. Oishi, Polym. J. (Tokyo), 13, 65 (1981). 715. C. I. Simionescu, V Percec, A. Natansohn, Polym. Bull. (Berlin), 3, 551 (1980). 716. C. I. Simionescu, V. Percec, A. Natansohn, Polym. Bull. (Berlin), 3, 529 (1980). 717. K. Hayashi, M. Tachibana, Y. Tanaka, S. Okamura, J. Polym. Sci., Polym. Chem. Ed., 19, 1571 (1981). 718. J. L. De Ia Pena, J. Guzman, An. Quim. C, 76, 245 (1980). 719. C. I. Simionescu, V. Percec, A. Natansohn, Polym. Bull. (Berlin), 3, 535 (1980). 720. Kh. Budevska, S. Plachkova, Makromol. Chem., 182, 1119 (1981). 721. T. Shimidzu, M. Yoshikawa, B. Ohtani, Macromolecules, 14, 506 (1981). 722. A. K. Askerov, A. D. Aliev, G. R. Salmanova, A. A. Ibragimov, Azerb. Khim. Zh., 65, (1980).
723. M. Kamachi, R. Miwa, S. Nozakura, Polym. J. (Tokyo), 12, 899 (1980). 724. V. Konsulov, Yu. Piruleva, V. Mircheva, I. Mladenov, Dokl. bolg. Akad. Nauk, 33, 807 (1980). 725. A. I. Shepeleva, V. D. Bezuglyi, Vysokomol. Soedin. A, 23, 121 (1981). 726. K. Noma, N. Higashi, M. Kobayashi, M. Niwa, Sci. Eng. Rev. Doshisha Univ., 21, 141 (1980). 727. J. Asakura, M. Yoshihara, Y. Matsubara, T. Maeshima, J. Macromol. Sci. A: Chem., 15, 1473 (1981). 728. T. Oishi, Polym. J. (Tokyo), 12, 799 (1980). 729. T. Oishi, Polym. J. (Tokyo), 12, 719 (1980). 730. S. Oprea, E. Dumitriu, BuI. Inst. Politeh. Iasi, Sec. 2: Chim. Ing. Chim., 26, 71 (1980). 731. C. I. Simionescu, A. Natansohn, V. Percec, J. Macromol. Sci. A: Chem., 15, 659 (1981). 732. C. I. Simionescu, A. Natansohn, V. Percec, J. Macromol. Sci. A: Chem., 15, 643 (1981). 733. M. K. Shaikhova, K. M. Muminov, A. T. Dzhalilov, M. A. Askarov, Uzb. Khim. Zh., 48, (1980). 734. O. Sh. Kurmanaliev, E. M. Shaikhutdinov, Sh. S. Tul'baev, T. M. Mukhametkaliev, Vysokomol. Soedin. B, 22, 526 (1980). 735. F. Borg-Visse, F. Dawans, E. Marechal, J. Polym. Sci., Polym. Chem. Ed., 18, 2481 (1980). 736. V. Percec, A. Natansohn, V. Barboiu, B. C. Simionescu, D. Galea, Polym. Bull. (Berlin), 2, 505 (1980). 737. H. Fujihara, T. Shindo, M. Yoshihara, T. Maeshima, J. Macromol. Sci. A: Chem., 14, 1029 (1980). 738. E. Chiellini, G. Galli, R. Solaro, A. Ledwith, Conv. Ital. Sci. Macromol., {Atti}, 4th 85. Univ. Genova, 1st Chim. Ind.: Genoa, Italy. 739. H. Fujihara, M. Yoshihara, T. Maeshima, J. Macromol. Sci. A: Chem., 14, 867 (1980). 740. T. Oishi, I. Seo, T. Kimura, Technol. Rep. Yamaguchi Univ., 2, 199 (1979). 741. M. A. Askarov, E. N. Shakirova, S. Masharipov, A. S. Bank, Kh. D. Islomov, Vysokomol. Soedin. B, 22, 68 (1980). 742. Sh. S. Vezirov, S. M. Aliev, N. F. Shakhmamedova, E. S. Zeinalova, Vysokomol. Soedin. B, 22, 22 (1980). 743. V. V. Rabotnov, L. I. Batik, B. K. Basov, V. A. Lysanov, V. A. Kotov, Prom-st. Sint. Kauch., 1979, 5. 744. C, I. Simionescu, V. Percec, A. Natansohn, Polym. Bull. (Berlin), 2, 57 (1980). 745. H. Boudevska, C. Brutchkov, V. Veltchev, Eur. Polym. J., 15, 907 (1979). 746. M. K. Akkapeddi, Polymer, 20, 1215 (1979). 747. F. Hrabak, J. Lokaj, Eur. Polym. J., 15, 701 (1979). 748. Y. Bando, Y. Minoura, Eur. Polym. J., 15, 333 (1979). 749. A. Natansohn, S. Maxim, D. Feldman, Polymer, 20, 629 (1979). 750. M. Kurokawa, Y Minoura, J. Polym. Sci., Polym. Chem. Ed., 17, 3297 (1979). 751. E. L. Madruga, J. San Roman, M. A. Del Puerto, J. Macromol. Sci., Chem., 13 1105 (1979). 752. E. L. Madruga, J. San Roman, J. Guzman, J. Macromol. Sci., Chem., 13 1089 (1979).
753. H. Fujihara, K. Yamazaki, Y Matsubara, M. Yoshihara, T. Maeshima, J. Macromol. Sci., Chem., 13, 1081 (1979). 754. R Bajaj, D. C. Gupta, Eur. Polym. J., 15, 271 (1979). 755. D. Raucher, M. Levy, J. Polym. Sci., Polym. Chem. Ed., 17, 2663 (1979). 756. S. Kondo, T. Ohtsuka, K. Tsuda, J. Macromol. Sci., Chem., 13, 767 (1979). 757. J. L. Acosta, R. Sastre, J. A. Penaranda, Rev. Plast. Mod., 37, 709 (1979). 758. A. Ledwith, G. Galli, E. Chiellini, R. Solaro, Polym. Bull. (Berlin), 1, 491 (1979). 759. S. V. Shulyndin, V. A. Byl'ev, E. F. Gubanov, Kh. G. Sanatullin, E. P. Dikolenko, T. G. Valeeva, B. E. Ivanov, Vysokomol. Soedin. A, 21, 985 (1979). 760. M. Sorm, S. Nespurek, Eur. Polym. J., 14, 977 (1978). 761. H. Yuki, Y. Okamoto, Y. Shimada, K. Ohta, K. Hatada, J. Polym. Sci., Polym. Chem. Ed., 17, 1215 (1979). 762. N. N. Bazhenova, B. A. Egorov, Yu. D. Semchikov, Dokl. Akad. Nauk SSSR, 245, 621 (1979). 763. H. Ohnishi, T. Otsu, J. Macromol. Sci. A: Chem., 12, 1491 (1978). 764. T. Otsu, H. Ohnishi, J. Macromol. Sci. A: Chem., 12, 1477 (1978). 765. J. G. DuPont, C. W. Allen, Macromolecules, 12,169 (1979). 766. R. Van der Meer, A. L. German, J. Polym. Sci., Polym. Chem. Ed., 17, 571 (1979). 767. R. Sastre, J. L. Mateo, J. Acosta, Angew. Makromol. Chem., 73, 25 (1978). 768. M. Raetzsch, H. Lange, Plaste Kautsch., 26, 6 (1979). 769. M. Kamachi, D. J. Liaw, S. Nozakura, Polym. J., 10, 641 (1978). 770. C. Bonnans-Plaisance, P. F. Casals, G. Levesque, Makromol. Chem., 180, 79 (1979). 771. S. G. Bondarenko, A. F. Nikolaev, N. I. Dubkova, V. P. Kochanenkov, Vysokomol. Soedin. A, 20, 2433 (1978). 772. W. K. Busfield, F. P. Franke, R. D. Guthrie, Aust. J. Chem., 31, 2559 (1978). 773. A. I. Vorob'eva, G. V. Leplyanin, S. R. Rafikov, Vysokomol. Soedin. B, 20, 763 (1978). 774. A. P. Donya, A. M. Shur, Deposited Doc, VINITI 2672 (1972). 775. A. P. Donya, A. M. Shur, G. N. Agafanova, Z. Z. Malinina, S. I. Sokhina, Deposited Doc, VINITI 2675 (1976). 776. T. Tajima, T. Otsu, Mem. Fac Eng., Osaka City Univ., 18, 107 (1977). 777. S. Hoering, D. Kleine, J. Ulbricht, J. Prakt. Chem., 320,473 (1978). 778. M. L. Eritsyan, V. V Zolotukhin, G. I. Zolotukhina, Deposited Doc, VINITI 3792 (1976). 779. K. Hayashi, Makromol. Chem., 179, 1753 (1978). 780. E. F. Osadchaya, R. G. Karzhaubaeva, B. A. Zhubanov, E. M. Shaikhutdinov, Prikl. Teor. Khim., 6, 135 (1975). 781. J. R. Suggate, Makromol. Chem., 179, 1219 (1978). 782. Y. Yamamoto, A. Fukami, Nippon Kagaku Kaishi, 1978, 288. 783. O. Sh. Kurmanaliev, E. M. Shaikhutdinov, Sh. S. Tul'baev, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 28, 53 (1978).
784. Yu. M. Rodionov, M. G. Chauser, M. I. Cherkashin, Tezisy Dokl.-Vses. Konf. Khim. Atsetilena, 5th, 404. "Metsniereba": Tiflis, USSR (1975). 785. B. Yamada, M. Itahashi, T. Otsu, J. Macromol. Sci. A: Chem., 11, 1773 (1977). 786. T. C. Chiang, C. Graillat, J. Guillot, Q. T. Pham, J. Polym. Sci., Polym. Chem. Ed., 15, 2961 (1977). 787. H. Egawa, T. Nonaka, Kobunshi Robunshu, 35, 21 (1978). 788. E. N. Konstantinova, V. K. Smirnova, V. S. Ivanov, Vestn. Leningr. Univ., Fiz. Khim., 155, (1977). 789. A. F. Nikolaev, V. M. Bondarenko, L. M. Lopukhinskii, Deposited Doc, VINITI 3271 (1975). 790. K. Noma, S. Emi, N. Niwa, Doshisha Daigaku Rikogaku Kenkyu Hokoku, 18, 28 (1977). 791. Y. Bando, T. Dodou, Y. Minoura, J. Polym. Sci., Polym. Chem. Ed., 15, 1917 (1977). 792. M. A. Askarov, A. T. Dzhalilov, G. A. Babakhanov, Deposited Doc, VINITI 1693 (1975). 793. S. Kondo, M. Tsumadori, K. Tsuda, J. Polym. Sci., Polym. Lett. Ed., 15, 333 (1977). 794. R. Sastre, J. L. Acosta, R. Garrido, J. Fontan, Angew. Makromol. Chem., 62, 85 (1977). 795. E. Casorati, A. Martina, M. Guaita, Makromol. Chem., 178, 765 (1977). 796. M. Hartmann, U. C. Hipler, K. Huebig, Z. Chem., 16, 487 (1976). 797. S. N. Novikov, D. V. Pebalk, L. K. Vasyanina, A. N. Pravednikov, Vysokomol. Soedin. A, 18, 2333 (1976). 798. R. Roussel, M. Galin, J. C. Galin, J. Macromol. Sci. A: Chem., 10, 1479 (1976). 799. Y. Bando, Y. Minoura, J. Polym. Sci., Polym. Chem. Ed., 14, 693 (1976). 800. G. C. Corfield, H. H. Monks, L. P. Ellinger, Polymer, 16, 770 (1975). 801. S. M. Samoilov, S. D. Yankova, L. S. Sememova, V. N. Monastyrskii, Vysokomol. Soedin. A, 18, 340 (1976). 802. M. H. George, G. F. Hayes, Makromol. Chem., 177, 399 (1976). 803. T. Kelen, F. Tudos, J. Macromol. Sci. A: Chem., 9,1 (1975). 804. F. Tudos, T. Kelen, T. Foldes-Berezsnich, B. Turcsanyi, J. Macromol. Sci. A: Chem., 10, 1513 (1976). 805. T. Kelen, E Tudos, B. Turcsanyi, Polym. Bull., 2,71 (1980). 806. D. Braun, W. Czerwinski, G. Disselhoff, F. Tudos, T. Kelen, B. Turcsanyi, Angew. Makromol. Chem., 125, 161 (1984). 807. S. Hudecek, J. Otoupalova, M. Ryska, J. Svetlik, P. Cefelin, Collect. Czech. Chem. Commun., 48, 2015 (1983). 808. L. Lukasik, W. Kuran, B. Laguna, J. Gosk, J. Polym. Sci., Polym. Chem. Ed., 21, 3333 (1983). 809. G. Bajoras, R. Gedraitis, A. V. Kashkin, S. Slaucka, Vysokomol. Soedin. A, 25, 2626 (1983). 810. G. D. Jones, H. E. Doorenbos, J. Macromol. Sci. A: Chem., 21, 155 (1984). 811. Z. Rzaev, K. I. Gurbanov, S. G. Mamedova, M. M. Guseinov, G. S. Sharifov, Vysokomol. Soedin. A, 26, 736 (1984). 812. Yu. D. Semchikov, L. A. Smirnova, T. E. Knyazeva, S. A. Bulgakova, G. A. Voskoboinik, V. I. Sherstyanykh, Vysokomol. Soedin. A, 26, 704 (1984).
813. M. F. Sorokin, E. L. Gershanova, T. P. Skopina, Deposited Doc, VINITI 1642 (1983). 814. R K. Dahl, G. N. Babu, J. Polym. Sci., Polym. Chem. Ed., 22, 1817 (1984). 815. B. G. Zadontsev, V. G. Neroznik, O. I. Vasilova, T. V Novikova, S. I. Kuznetsova, Yu. S. Zaitsev, Vysokomol. Soedin. A, 26, 1591 (1984). 816. G. B. Kharas, M. H. Litt, Polym. Bull. (Berlin), 12, 65 (1984). 817. Y. Oda, T. Shintani, N. Emura, Toyo Soda Kenkyu Hokoku, 28, 71 (1984). 818. T. T. Minakova, L. V Morozova, B. A. Troflmov, Zh. Prokl. Khim. (Leningrad), 57, 1667 (1984). 819. E. A. Gonyukh, E. V. Kuznetsov, L. Kh. Khazryatova, V P. Prokop'ev, M. A. Akhmerov, Isv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 27, 1070 (1984). 820. Y. Kihira, H. Yamamura, Kinki Daigaku Kogakubu Kenkyu Hokoku, 17, 1 (1983). 821. M. Ueda, S. Ishibashi, T. Suzuki, T. Masuko, C. U. Pittman, J. Polym. Sci., Polym. Chem. Ed., 22, 2305 (1984). 822. M. A. Al-Issa, T. P. Davis, M. B. Huglin, I. B. Yahya, D. C. F. Yip, Eur. Polym. J., 20, 947 (1984). 823. M. Ueda, S. Shouji, T. Ogata, M. Kamachi, C. U. Pittman, Macromolecules, 17, 2800 (1984). 824. K. E O'Driscoll, L. T Kale, L. H. Rubio, R M. Reilly, J. Polym. Sci., Polym. Chem. Ed., 22, 2777 (1984). 825. S. Iwatsuki, A. Kondo, H. Harashina, Macromolecules, 17, 2473 (1984). 826. O. P. Kosharnaya, Yu. V Korshak, M. I. Shtil'man, T. M. Yarmizina, Deposited Doc, VINITI 5295 (1983). 827. W. M. Brouwer, P. Piet, A. L. German, J. Polym. Sci., Polym. Chem. Ed., 22, 2353 (1984). 828. M. Miura, F. Akutsu, M. Yamamoto, K. Naruchi, K. Nagakubo, Makromol. Chem., Rapid Commun., 5, 745 (1984). 829. Z. Wojtczak, A. Gronowski, Makromol. Chem., 186, 139 (1985). 830. C. Jin, K. Kazushige, Y Tabata, J. Macromol. Sci. A: Chem., 22, 379 (1985). 831. O. Sh. Kurmanaliev, E. M. Shaikhutdinov, K. A. Akhmetkarimov, Deposited Doc, VINITI 1114 (1984). 832. M. Niwa, T. Matsumoto, M. Kagami, K. Kajiyama, Sci. Eng. Rev. Doshisha Univ., 25, 192 (1984). 833. M. F. Sorokin, L. A. Onosova, L. G. Shode, O. F. Guseva, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 28, 91 (1985). 834. G. B. Kharas, S. Ponrathnam, S. Jiarui, Y. Ozcayir, A. Blumstein, Polym. Bull. (Berlin), 13, 357 (1985). 835. C. Simionescu, B. C. Simionescu, S. loan, J. Macromol. ScL A: Chem., 22, 765 (1985). 836. N. Sh. Rasulov, L. V. Medyakova, N. Yu. Lezgiev, Z. M. Rzaev, Vysokomol. Soedin. B, 27, 247 (1985). 837. K. Ito, K. Uchida, T. Kitano, E. Yamada, T. Matsumoto, Polym. J. (Tokyo), 17, 761 (1985). 838. G. A. Cook, G. B. Butler, J. Macromol. Sci. A: Chem., 22, 1049 (1985). 839. D. Braun, D. Chaudhari, W. Czerwinski, Makromol. Chem., 186, 1435 (1985).
840. B. S. R. Reddy, R. Arshady, M. H. George, Eur. Polym. J., 21,511 (1985). 841. T. Oishi, M. Fujimoto, J. Macromol. Sci. A: Chem., 22, 1201 (1985). 842. H. Boudevska, O. Todorova, Makromol. Chem., 186, 1711 (1985). 843. J. I. Jin, H. K. Shim, Pollimo, 9, 301 (1985). 844. Y. Musha, Y. Hori, Y. Sato, M. Katayama, Nihon Daigaku Kogakubu Kiyo, Bunrui A, 26, 175 (1985). 845. K. Nagai, K. Akiyama, N. Kuramoto, Makromol. Chem., 186, 1855 (1985). 846. N. Sh. Rasulov, Sh. Z. Mekhtieva, N. Yu. Lezgiev, S. Z. Rizaeva, Z. M. Rzaev, Azerb. Khim. Zh., 60 (1985). 847. Y. Kihira, H. Yamamura, Kinki Daigaku Kogakubu Kenkyu Hokoku, 18, 1 (1984). 848. A. H. K. Yousafzai, A. R. Khan, T. Akhtar, Pak. J. Sci. Ind. Res., 28, 135 (1985). 849. P. K. Dhal, J. Macromol. Sci. A: Chem., 23, 181 (1986). 850. M. Ueda, M. Yazawa, Nippon Kagaku Kaishi, 1862 (1985). 851. V. Likhterov, V. S. Etlis, Vysokomol. Soedin. B, 27, 664 (1985). 852. C. Pichot, C. Graillat, V. Glukhikh, Makromol. Chem., Suppl., 10/11, 199 (1985). 853. A. A. Mohamed, F. H. Jebrael, M. Z. Maher, Macromolecules, 19, 32 (1986). 854. A. V. Yurkovetskii, V. L. Kofman, G. N. Bondarenko, A. M. Taber, K. L. Makovetskii, Vysokomol. Soedin. B, 27, 786 (1985). 855. M. Ueda, T. Suzuki, M. Takahashi, Z. B. Li, K. Koyama, C. U. Pittman, Macromolecules, 19, 558 (1986). 856. J. Horvath, F. Cser, G. Hardy, Magy. Kern. FoIy., 91, 529 (1985). 857. C. L. McCormick, D. L. Elliott, Macromolecules, 19, 542 (1986). 858. K. R. Cho, K. H. Kim, Han'guk Somyu Konghakhoechi, 22, 320 (1985). 859. E. E. Skorikova, T. M. Karaputadze, A. M. Ovespyan, A. I. Aksenov, Yu. E. Kirsh, Vysokomol. Soedin. B, 27, 869 (1985). 860. S. A. Chen, L. C. Tsai, Makromol. Chem., 187, 653 (1986). 861. S. Das, F. Rodriguez, Polym. Mater. Sci. Eng., 54, 32 (1986). 862. D. M. Dibona, R. F. Fibiger, E. F. Gurnee, J. E. Shuetz, J. Appl. Polym. Sci., 31, 1509 (1986). 863. M. W. Sabaa, M. G. Mikhael, A. Yassin, M. Z. Elsabee, Angew. Makromol. Chem., 139, 95 (1986). 864. G. B. Butler, J. C. Chen, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 27, 94 (1986). 865. C. Simionescu, V. Barboiu, B. C. Simionescu, V. Talmaciu, C. Sava, J. Polym. Sci., Polym. Chem. Ed., 24, 851 (1986). 866. T. J. Oh, G. Smets, J. Polym. Sci., Polym. Lett., 24, 229 (1986). 867. A. Petti, J. Neel, J. Polym. Sci., Polym. Chem. Ed., 24, 883 (1986). 868. J. M. Catala, A. Nonn, J. M. Pujol, J. Brossas, Polym. Bull. (Berlin), 15, 311 (1986).
869. F. Canadau, Z. Zekhnini, F. Heatley, Macromolecules, 19, 1895 (1986). 870. V. A. Kruglova, V. V. Annenkov, S. R. Buzilova, Vysokomol. Soedin. B, 28, 257 (1986). 871. L. I. Leonenko, S. I. Kudinova, N. N. Chernyshova, E. E. Sirotkina, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 29, 92 (1986). 872. D. Braun, E. Manger, Colloid Polym. Sci., 264, 494 (1986). 873. D. Braun, G. Cei, Makromol. Chem., 187, 1699 (1986). 874. D. Braun, G. Cei, Makromol. Chem., 187, 1713 (1986). 875. U. M. Mirzaev, M. D. Inoyatov, I. F. Shadrin, Uzb. Khim. Zh., 39 (1986). 876. G. I. Dzhardimalieva, V. A. Zhorin. I. N. Ivleva, A. D. Pompgailo, N. S. Enikolopyan, Dokl. Akad. Nauk SSSR, 287, 654 (1986). 877. M. Miyamoto, Y. Sano, Y. Kimura, T. Saegusa, Makromol. Chem., 187, 1807 (1986). 878. J. Lebduska, J. Snuparek, L. Pryskyric, Chem. Prum., 36, 472 (1986). 879. J. Tanaka, A. Yamada, J. Macromol. Sci. A: Chem., 19,453 (1983). 880. K. R. Cho, K. H. Kim, H. Kyung, Han'guk Somyu Konghakhoechi, 22, 320 (1985). 881. J. Horvath, F. Cser, G. Hardy, Magy. Kern. FoIy., 91, 529 (1095). 882. V. R. Likhterov, V. S. Etlis, Vysokomol. Soedin., Ser. B, 27, 664 (1985). 883. E. E. Skorikova, T. M. Karaputadze, A. M. Ovsepyan, A. I. Aksenov, Yu. E. Kirsh, Vysokomol. Soedin., Ser. B, 27, 869 (1985). 884. M. Ueda, M. Yazawa, Nippon Kagaku Kaishi, 10, 1862 (1985). 885. A. V. Yurkovetskii, V. I. Kofman, G. N. Bondarenko, A. M. Taber, K. L. Makovetskii, Vysokomol. Soedin., Ser. B, 27, 786 (1985). 886. V. S. Aliev, Z. G. Asadov, A. Yu. Yusubov, A. D. Agazade, D. I. Allakhverdiev, A. I. Gasanov, Ch. K. Salmanova, Azerb. Khim. Zh., 2, 55 (1986). 887. B. M. Beshimov, O. M. Yariev, A. T. Dzhalilov, Uzb. Khim. Zh., 5, 38 (1986). 888. D. Bruan, G. Sei, Makromol. Chem., 187, 1713 (1986). 889. G. B. Butler, J. C. Chen, Polym. Propr., (Am. Chem. Soc, Div. Polym. Chem.), 27, 94 (1986). 890. J. M. Catala, A. Nonn, J. M. Pujol, J. Brossas, Polym. Bull. (Berlin), 15, 311 (1986). 891. K. H. Chung, J. K. Park, Nonmumjip-Sanop Kwahak Kisul Yoneuso, 14, 391 (1986). 892. S. Das, F. Rodriguez, Polym. Mater. Sci. Eng., 54, 32 (1986). 893. P. K. Dhal, J. Macromol. Sci. A: Chem., 23, 181 (1986). 894. D. M. Dibona, R. F. Fibiger, E. F. Gurnee, J. E. Shuetz, J. Appl. Polym. Sci., 31, 1509 (1986). 895. G. I. Dzhardimalieva, V A. Zhorin, I. N. Ivleva, A. D. Pomogailo, N. S. Enikolopyan, Dokl. Akad. Nauk SSSR, 287, 654 (1986). 896. E. E. Ergozhin, N. I. Chugunova, B. R. Tausarova, Z. S. Birimzhanova, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 6,58 (1986).
897. S. A. Gridchin, M. B. Lachinov, A. V. Kisin, G. V. Shatalov, V. R Zubov, Vysokomol. Soedin., Ser. A, 28, 2191 (1986). 898. A. G. Gzyryan, R. V. Egoyan, O. S. Attaryan, V. A. Danielyan, E. G. Darbinyan, Arm. Khim. Zh., 39, 369 (1986). 899. K. Ito, K. Kodaira, Polym. J. (Tokyo), 18, 667 (1986). 900. A. P. Kiseleva, V. T. Kolesnikov, B. I. Budzan, Vestn. L'vov. Politekh. Inst., 201, 54 (1986). 901. K. Kodaira, K. Ito, Nagoya Kogyo Gijutsu Shikensho Hokoku, 35, 291 (1986). 902. V. A. Kruglova, V. V. Annenkov, S. R. Buzilova, Vysokomol. Soedin., Ser. B, 28, 257 (1986). 903. J. Lebduska, J. Snuparek, K. Kaspar, Chem. Prum., 36, 472 (1986). 904. L. I. Leonenko, S. I. Kudinova, N. N. Chernyshova, E. E. Sirotkina, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 29, 92 (1986). 905. E. L. Madruga, J. San Roman, M. A. Lavia, J. Polym. Sci., Polym. Chem. Ed., 24, 1379 (1986). 906. S. G. Mamedova, K. I. Gurbanov, Z. M. Rzaev, Vysokomol. Soedin., Ser. A, 28, 758 (1986). 907. U. M. Mirzaev, M. D. Inoyatov, I. F. Shadrin, Uzb. Khim. Zh., 1, 39 (1986). 908. M. Miyamoto, Y. Sano, Y. Kimura, T. Saegusa, Makromol. Chem., 187, 1807 (1986). 909. M. Miyamoto, Y. Sano, T. Saegusa, Makromol. Chem., 187, 2747 (1986). 910. A. A. Mohamed, F. H. Jebrael, M. Z. Elsabee, Macromolecules, 19, 32 (1986). 911. T. J. Oh, G. Smets, J. Polym. Sci., Polym. Lett., 24, 229 (1986). 912. A. Petit, J. Neel, J. Polym. Sci., Polym. Chem., 24, 883 (1986). 913. Z. M. Rzaev, S. G. Mamedova, N. Sh. Rasulov, U. Kh. Agaev, Azerb. Khim. Zh., 3, 58 (1986). 914. Z. I. Rzaeva, L. V. Medyakova, U. Kh. Agaev, Vysokomol. Soedin., Ser. A, 28, 1089 (1986). 915. M. W. Sabaa, M. G. Mikhael, A. A. Yassin, M. Z. Elsabee, Angew. Makromol. Chem., 139, 95 (1986). 916. B. B. Sadriddinov, M. A. Askarov, 1.1. Ismailov, Uzb. Khim. Zh., 5, 32 (1986). 917. G. Smets, C. Samyn, K. Swaelen, Makromol. Chem., 187, 2853 (1986). 918. J. Stejskal, P. Kratochvil, D. Strakova, O. Prochazka, Macromolecules, 19, 1575 (1986). 919. M. Ueda, T. Suzuki, M. Takahashi, Z. B. Li, K. Koyama, C. U. Pittman, Macromolecules, 19, 558 (1986). 920. M. Ueda, M. Yazawa, T. Suzuki, C. U. Pittman, J. Polym. Sci., Polym. Chem., 24, 3177 (1986). 921. A. Akmalov, A. B. Alovitdinov, Zh. M. Niyazova, Uzb. Khim. Zh., 1, 33 (1987). 922. S. M. A. Borban, I. V. Zadneprovskaya, T. M. Babaev, U. N. Musaev, Vysokomol. Soedin., Ser. A, 29, 39 (1987). 923. A. S. Brown, K. Fujimori, Makromol. Chem., 188, 2177 (1987). 924. K. Budevska, K. Brachkov, O. Todorova, D. Braun, W. K. Czerwinski, Makromol. Chem., 188, 1157 (1987).
925. R N. Gaponik, O. A. Ivashkevich, T. B. Kovaleva, T. N. Andreeva, J. Appl. Polym. Sci., 33, 769 (1987). 926. S. Iwatsuki, M. Yamaxaki, Kenkyu Hokoku-Asahi Garasu Kogyo Gijutsu Shoreikai, 51, 113 (1987). 927. A. Karpatyova, J. Barton, O. Paleta, Makromol. Chem., Rapid Commun., 8, 621 (1987). 928. V. Konsulov, D. Kirova, Z. Grozeva, N. Kirov, Khim. Ind. (Sofia), 59, 216 (1987). 929. D. J. Lin, A. Petit, J. Neel, Makromol. Chim., 188, 1163 (1987). 930. S. Masuda, M. Tanaka, T. Ota, Makromol. Chem., 188, 371 (1987). 931. S. Masuda, M. Tanaka, T. Ota, Polymer, 28, 1945 (1987). 932. L. J. Mathias, S. H. Kusefoglu, A. O. Kress, Macromolecules, 20, 2326 (1987). 933. K. Naruchi, F. Akutsu, M. Miura, Makromol. Chem., Rapid Commun., 8, 281 (1987). 934. M. Patel, J. S. Parmar, M. R. Patel, M. M. Patel, J. Macromol. Sci.-Chem., 24, 1085 (1987). 935. U. Kredel, G. Luft, Angew. Makromol. Chem., 185/186,16 (1991). 936. K. A. Rasheed, A. H. K. Yousufzai, T. Akhtar, Pak. J. Sci. Ind. Res., 30, 230 (1987). 937. Z. M. Rzaev, M. R. Bairamov, S. M. Aliev, S. G. Mamedova, M. D. Ibragimova, R. V. Dzhafarov, S. G. Aliev, Vysokomol. Soedin., Ser. B, 29, 89 (1987). 938. J. San Roman, M. Lopez, E. Madruga, L. Pargada, Polymer, 28, 315 (1987). 939. D. N. Shulz, K. Kitano, J. A. Danik, J. J. Kaladas, Polym. Mater. Sci. Eng., 57, 149 (1987). 940. A. F. Shaaban, M. M. Arief, A. A. Mahmoud, N. N. Messiha, Acta Polym., 38, 492 (1987). 941. A. F. Shaaban, M. M. Arief, A. A. Mahmoud, N. N. Messiha, Polymer, 28, 1423 (1987). 942. Y Tezuka, Y Horie, K. Imai, Polymer, 28, 1025 (1987). 943. S. V. Zlev, L. Ya. Tsarik, G. V. Ratovskii, N. A. Ivanova, D. D. Chuvashev, Vysokomol. Soedin., Ser. A, 29, 2026 (1987). 944. K. Aoki, S. Urano, H. Umemoto, R. Mizuguchi, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 29, 423 (1988). 945. J. R. Dharia, C. R Pthak, G. N. Babu, S. K. Gupta, J. Polym. Sci., Part A.: Polym. Chem., 26, 595 (1988). 946. Y Ikeda, Y Takeda, Y. Yasuaki, Mem. Konan Univ., Sci. Ser., 35, 17 (1988). 947. G. B. Kharas, J. Appl. Polym. Sci., 35, 733 (1988). 948. O. Sh. Kurmanaliev, L. M. Sugralina, E. M. Shaikhutdinov, A. V. Omasheva, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 31 98 (1988). 949. S. G. Mamedova, G. A. Yusifov, Z. M. Rzaev, F. B. Rustamov, Vysokomol. Soedin., Ser. A, 30, 316 (1988). 950. T. Oishi, N. Okamoto, M. Fujimoto, J. Macromol. Sci. A: Chem., 25, 1039 (1988). 951. T. Otsu, K. Endo, M. Tanaka, Mem. Fac. Eng., Osaka City Univ., 29, 151 (1988). 952. A. Petit, M. T. Cung, J. Neel, J. Chim. Phys. Phys.-Chim., Biol., 85, 319 (1988). 953. K. T. Potts, D. A. Usifer, Macromolecules, 21,1985 (1988).
954. Z. M. Rzaev, S. G. Mamedova, G. A. Yusifov, F. B. Rustamov, J. Polym. Sri., part A: Polym. Chem., 26, 849 (1988). 955. A. I. Skushnikova, E. S. Domnina, A. I. Pavlova, I. M. Korotaeva, Vysokomol. Soedin., Ser. B, 30, 537 (1988). 956. K. Takeda, M. Akiyama, T. Yamamizu, Kobunshi Ronbunshu, 45, 485 (1988). 957. D. Tulyaganova, F. Kh. Khadzhaeva, D. D. H'yasova, Uzb. Khim. Zh., 3, 28 (1988). 958. M. Ueda, M. Mano, M. Yazawa, J. Polym. ScL, Part A: Polym. Chem., 26, 2295 (1988). 959. K. Urushido, M. Yokoyama, Y. Shiratori, A. Matsumoto, Kobunshi Ronbunshu, 45, 435 (1988). 960. O. M. Yariev, B. M. Beshimov, A. T. Dzhalilov, B. A. Mavlonov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 31, 93 (1988). 961. H. You, D. A. Tirrell, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 29, 330 (1988). 962. Y-L. Zheng, M. Galin, J. C. Galin, Polymer, 29,724 (1988). 963. B. A. Zhubanov, O. V. Grinina, N. P. Lyubchenko, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 1, 48 (1988). 964. A. S. Brar, E. Arunan, G. S. Kapur, Polym. J. (Tokyo), 21, 689 (1989). 965. J. Brown, P. Goddard, K. Petrak, J. Polym. ScL, Part C: Polym. Lett., 27, 515 (1989). 966. D. Braun, E. Manger, Colloid Polym. ScL, 264, 494 (1989). 967. D. Braun, A. E. Pour, W. K. Czerwinski, Colloid Polym. ScL, 267, 1096 (1989). 968. Y Ding, D. Qi, Beijing Daxue Xuebao, Ziran Kexueban, 25, 648 (1989). 969. O. Sh. Kurmanaliev, N. U. Aliev, M. Zh. Burkeev, E. M. Shaikhutdinov, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 5,75 (1989). 970. K. Nagai, K. Asada, K. Chiba, N. Kuramoto, J. Polym. ScL, Part A: Polym. Chem., 27, 3779 (1989). 971. C. P. R. Nair, G. Clouet, Eur. Polym. J., 25, 251 (1989). 972. V. V. Nikolaenko, A. V. Nekrasov, V. V. Smolyaninov, G. A. Bodun, Vysokomol. Soedin., Ser. A, 31, 780 (1989). 973. T. Oishi, M. Moriwaki, M. Momoi, M. Fujimoto, J. Macronol. Sci. A: Chem, 26, 861 (1989). 974. T. Oishi, K. Saeki, M. Fujimoto, J. Polym. Sci., Part A: Polym. Chem., 27, 1429 (1989). 975. T. Oishi, M. Fujimoto, J. Macromol. Sci. A: Chem., 26, 1611 (1989). 976. S. Packirisamy, A. Hirao, S. Nakahama, J. Polym. ScL, Part A: Polym. Chem., 27, 2811 (1989). 977. V. L. Rao, G. N. Babu, Eur. Polym. J., 25, 605 (1989). 978. T. Sato, K. Morina, H. Tanaka, T. Ota, Eur. Polym. J., 25, 1281 (1989). 979. A. F. Shaaban, A. A. Khalil, N. N. Messiha, J. Appl. Polym. Sci., 37, 2051 (1989). 980. Yu. E. Shapiro, N. A. Budanov, Z. V. Orlova, S. I. Kuchanov, Vysokomol. Soedin., Ser. B, 31, 123 (1989). 981. M. Ueda, K. Kawaguchi, M. Mano, J. Polym. Sci., Part A: Polym. Chem., 27, 737 (1989). 982. M. Ueda, T. Koyama, M. Mano, M. Yazawa, J. Polym. ScL, Part A: Polym. Chem., 27, 751 (1989).
983. F. D. Agaev, Ch. A. Chalbiev, Vysokomol. Soedin., Ser. B, 32, 725 (1990). 984. M. Akashi, E. Yashima, T. Yamashita, N. Miyauchi, S. Sugita, K. Marumo, J. Polym. Sci., Part A: Polym. Chem., 28, 3487 (1990). 985. S. S. S. Al-Diab, H. K. Suh, J. E. Mark, H. Zimmer, J. Polym. Sci., Part A: Polym. Chem., 28, 299 (1990). 986. F. Catalina, C. Peinado, E. L. Madruga, R. Sastre, J. L. Mateo, N. S. Allen, J. Polym. Sci., Part A: Polym. Chem., 28, 967 (1990). 987. H. Chen, Y. Wu, Z. Jin, J. Appl. Polym. Sci., 41,427 (1990). 988. C. Deng, Y Qi, Shiyou Huagong, 19, 739 (1990). 989. A. P. Donya, O. I. Kachurin, Yu. B. Vysotskii, V. M. Murav'eva, Vysokomol. Soedin., Ser. A, 32, 1309 (1990). 990. Z. Florjanczyk, W. Krawiec, K. Such, J. Polym. Sci., Part A: Polym. Chem., 28, 795 (1990). 991. L. Janus, H. Tbal, M. Delporte, J. Morcellet, M. Morcellet, Polym. Bull. (Berlin), 23, 13 (1990). 992. A. Matsumoto, T. Kubota, T. Otsu, Macromolecules, 23, 4508 (1990). 993. K. Nagai, K. Asada, N. Kuramoto, J. Polym. Sci., Part A: Polym. Chem., b, 2845 (1990). 994. T. Oishi, M. Iwahara, M. Fujimoto, J. Macromol. Sci. A: Chem., 27, 843 (1990). 995. T. Otsu, A. Matsumoto, H. Ito, Chem. Express, b, 901 (1990). 996. D. R. Patil, D. J. Smith, J. Polym. Sci., Part A: Polym. Chem., 28, 949 (1990). 997. A. Petit, J. Neel, J. Appl. Polym. ScL, 41, 267 (1990). 998. Y. Shigetomi, T. Kojima, N. Ono, J. Polym. Sci., Part A: Polym. Chem., 28, 3317 (1990). 999. S. Soundararaan, B. S. Reddy, S. Rajadurai, Polymer, 31, 366 (1990). 1000. D. L. Trumbo, Polym. Bull. (Berlin), 24, 215 (1990). 1001. R. Truxa, Makromol. Chem., 191, 1941 (1990). 1002. M. Ueda, H. Mori, H. Ito, J. polym. ScL, Part A: Polym. Chem., 28, 2597 (1990). 1003. K. Urushido, K. Koike, K. M. Hiroharu, S. Kuribayashi, Kobunshi Ronbunshu, 47, 79 (1990). 1004. H. You, D. A. Tirrell, J. Polym. Sci., Part A: Polym. Chem., 28, 3155 (1990). 1005. S. Z. Zhakupova, R. G. Karzhaubaeva, E. E. Ergozhin, Sh. M. Nurymbetova, Dokl. Akad. Nauk SSSR, 314, 885 (1990). 1006. E. E. Ergozhin, B. R. Tausarova, S. A. Shitybaev, Dokl. Akad. Nauk SSSR, 321, 108 (1991). 1007. L. F. Gorbas, P. P. Kisilita, Plast. Massy, 2, 55 (1991). 1008. K. Itoh, T. Harada, H. Nagashima, Bull. Chem. Soc. Jpn., 64, 3746 (1991). 1009. Z. Sedlakova, K. Bouchal, M. Ilavsky, Angew. Makromol. Chem., 201, 33 (1992). 1010. A. F. Miles, J. M. G. Cowie, Eur. Polym. J., b, 165 (1991). 1011. J. Muthiah, L. J. Mathias, J. Polym. Sci., Part A:, b, 29 (1991). 1012. T. Narasimhaswamy, S. C. Sumathi, B. S. R. Reddy, Eur. Polym. J., 27, 255 (1991).
1013. T. Narasimhaswamy, S. C. Sumathi, B. S. R. Reddy, J. Macromol. Sci. A: Chem., 28, 517 (1991). 1014. T. Sato, K. Takahashi, H. Tanaka, T. Ota, Macromolecules, 24, 2330 (1991). 1015. T. Sato, D. Ito, M. Kuki, H. Tanaka, T. Ota, Macromolecules, 24, 2963 (1991). 1016. R. V. Sharipov, E. E. Ergozhin, L. N. Prodius, K. Kh. Tastanov, Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 2, 46 (1991). 1017. S. Soundarrarajan, B. S. R. Reddy, J. Appl. Polym. Sci., 43, 251 (1991). 1018. K. Su, E. E. Remsen, H. M. Thompson, L. G. Sneddon, Macromolecules, 24, 3760 (1991). 1019. P. S. Chung, C. K. Lee, Pollimo, 15, 749 (1991). 1020. D. I. Trumbo, J. Polym. Sci., Part A: Polym. Chem., 29, 357 (1991). 1021. J. Z. Yang, T. Otsu, Chem. Express, 6, 41 (1991). 1022. V. E. Baikov, E. F. Panarin, S. L. Timofeevskii, Vysokomol. Soedin., Ser. B, 34, 3 (1992). 1023. A. S. Brar, Eur. Polym. J., 28, 803 (1992). 1024. A. S. Brar, J. Polym. Sci., Part A: Polym. Chem., 30, 2549 (1992). 1025. B. Charleux, C. Pichot, M. F. Llauro, Makromol. Chem., 193, 187 (1992). 1026. H. Cheng, G. Zhao, D. Yan, J. Polym. Sci., Part A: Polym. Chem., 30, 2181 (1992). 1027. M. C. Fernandez-Monreal, R. Cuervo, E. L. Madruga, J. Polym. Sci., Part A: Polym. Chem., 30, 2313 (1992). 1028. M. Georgieva, T. Arabadzhieva, Dokl. Blug. Akad. Nauk, 45, 81 (1992). 1029. S. Janietz, M. Hahn, W. Jaeger, Acta Polym., 43, 230 (1992). 1030. Z. Janovi, T. T. Matusinovitch, J. Macromol. Sci. A: Pure Appl. Chem., 29, 801 (1992). 1031. S. Kobayashi, J. Kadokawa, Y. Matsumura, I. F. Yen, H. Uyama, Macromol. Rep. A, 29, (Suppl. 3), 243 (1992). 1032. L. K. Kostanski, A. E. Hamielec, Polymer, 33, 3706 (1992). 1033. S. Masuda, J. Macromol. Sci. A: Pure Appl. Chem., 29, 821 (1992). 1034. K. Nagai, K. Okada, J. Kido, J. Polym. Sci., Part A: Polym. Chem., 30, 1187 (1992). 1035. Y. Lu, J. Wu, S. Lin, Gaofenzi Xuebao, 1, 112 (1992). 1036. Y. Nagasaki, S. B. Han, M. Kato, T. Tsuruta, Makromol. Chem., 193, 1633 (1992). 1037. Z. S. Nurkeeva, G. G. Khazrenova, G. A. Mun, Vysokomol. Soedin. Ser. B, 34, 34 (1992). 1038. T. Otsu, A. Matsumoto, K. Shiraishi, N. Amaya, Y. Koiunuma, J. Polym. Sci., Part A: Polym. Chem., 30, 1559 (1992). 1039. T. Otsu, A. Matsumoto, K. Nakamura, J. Appl. Polym. Sci., 45, 1889 (1992). 1040. T. Otsu, M. Yoshioka, Makromol. Chem., 193, 2283 (1992). 1041. Z. Sedlakova, K. Bouchal, M. Ilavsky, Angew. Makromol. Chem., 201, 33 (1992). 1042. K. V. C. Rao, S. K. Nema, V. N. G. Kumar, S. Mathew, Angew. Makromol. Chem., 152, 21 (1987).
1043. K. Takenaka, A. Hirao, S. Nakahama, Makromol. Chem., 193, 1943 (1992). 1044. S. Wen, X. Yin, W. T. K. Stevenson, Polym. Int., 27, 81 (1992). 1045. Y. Shigetomi, N. Ono, H. Kato, M. Oki, Polym. J. (Tokyo), 24, 87 (1992). 1046. G. A. Valieva, A. S. Maksumova, I. I. Ismailov, M. A. Askarov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 35, 109 (1992). 1047. B. Yamada, M. Satake, T. Otsu, J. Macromol. Sci. A: Pure Appl. Chem., 29, 533 (1992). 1048. B. Yamada, M. Satake, T. Otsu, Polym. J. (Tokyo), 24, 563 (1992). 1049. M. Yoshioka, A. Matsumoto, T. Otsu, Macromolecules, 25, 2837 (1992). 1050. D. Zaldivar, C. Peniche, A. Bulay, J. San Romano, Polymer, 33, 4625 (1992). 1051. A. Gallardo, J. San Roman, Polymer, 34, 567 (1993). 1052. V. F. Gromov, Yu. S. Bogachev, E. V. Bune, I. L. Zhuravleva, E. N. Teleshov, Vysokomol. Soedin., Ser. A, 35, 7 (1993). 1053. F. Heatley, R A. Lovell, J. McDonald, Eur. Polym. J., 29, 255 (1993). 1054. T. Oishi, H. Tsotomu, S. Haruyuki, Polym. J. (Tokyo), 25, 781 (1993). 1055. T. Oishi, K. Kagawa, M. Fujimoto, Polymer, 34, 2644 (1993). 1056. T. Otsu, K. Shiraishi, A. Matsumoto, J. Polym. Sci., Part A: Polym. Chem., 31, 2523 (1993). 1057. C. K. Park, C. S. Ha, J. K. Lee, J. Won, J. Appl. Polym. Sci., 50, 1239 (1993). 1058. A. Petit, Eur. Polym. J., 29, 1419 (1993). 1059. T. Sato, M. Ikazaki, M. Seno, H. Tanaka, Makromol. Chem., 194, 637 (1993). 1060. T. Sato, S. Kawasaki, M. Seno, H. Tanaka, K. Kato, Makromol. Chem., 194, 2247 (1993). 1061. S. Soundrarajan, B. S. R. Reddy, Polymer, 34, 2224 (1993). 1062. D. L. Trumbo, Polym. Bull. (Berlin), 31, 629 (1993). 1063. D. Zaldivar, C. Peniche, A. Bulay, J. San Roman, Polym. Sci., Part A: Polym. Chem., 31, 625 (1993). 1064. R. A. Akhmed'yanova, A. G. Liakumovich, S. V. Shulyndin, P. A. Kirpichnikov, G. B. Kamardin, S. V. Mokeeva, Zh. Prikl. Khim. (S.-Peterburg), 67, 514 (1994). 1065. P. Bajaj, M. Goyal, R. B. Chavan, J. Appl. Polym. Sci., 53, 1771 (1994). 1066. A. I. Barabanova, V. F. Gromov, E. V. Bune, Yu. S. Bogachev, N. V. Kozlova, E. N. Teleshov, Vysokomol. Soedin., Ser. A. Ser. B, 36, 901 (1994). 1067. A. S. Brar, S. Charan, J. Appl. Polym. Sci., 53,1813 (1994). 1068. W. -J. Cho, C. -H. Choi, C. -S. Ha, Polym. Sci., Part A: Polym. Chem., 32, 2301 (1994). 1069. P. Durand, A. Margaillan, M. Camail, J. L. Vernet, Polymer, 35, 4392 (1994). 1070. E. K. Fedorov, O. E. Labanov, L. F. Mosalova, V. I. Svergun, S. A. Kedik, Yu. E. Kirsh, Vysokomol. Soedin., Ser. A Ser. B, 36, 1446 (1994). 1071. G. S. Georgiev, I. G. Dakova, Eur. Polym. J., 30, 1417 (1994).
1072. G. S. Georgiev, I. G. Dakova, Macromol. Chem. Phys., 195, 1695 (1994). 1073. E. L. Madruga, M. Fernandez-Garcia, Polymer, 35, 4437 (1994). 1074. A. Miller, Eur. Polym. J., 30, 185 (1994). 1075. U. Rehn, W. Frank, M. Arnold, Plaste Kautsch., 41, 69 (1994). 1076. F. Sanda, T. Takata, T. Endo, Macromolecules, 27, 3982 (1994). 1077. T. Sato, S. Shimooka, M. Seno, H. Tanaka, Macromol. Chem. Phys., 195, 833 (1994). 1078. H. Tanaka, M. Sakaguchi, Y. Kikukawa, T. Sato, Macromol. Chem. Phys., 195, 2083 (1994). 1079. Y. Y Tan, G. O. R. A. van Ekenstein, Eur. Polym. J., 30, 1363 (1994). 1080. G. Bauduin, B. Boutevin, M. Belbachir, R. Meghabar, Macromolecules, 28, 1750 (1995). 1081. M. Camail, H. Essaoudi, A. Margaillan, J. L. Vernet, Eur. Polym. J., 31, 1119(1995). 1082. Y Chen, Z. Han, P. Wu, Qingdao Daxue Xuebao Ziran Kexueban, 8, 86 (1995). 1083. K. Chino, T. Takata, T. Endo, Macromolecules, 28, 5947 (1995). 1084. W. K. Czerwinski, Macromolecules, 28, 5411 (1995). 1085. T. Endo, T. Koizumi, T. Takata, K. Chino, Polym. ScL, Part A: Polym. Chem., 33, 707 (1995). 1086. R. Francis, A. Ajayaghosh, Polymer, 36, 1091 (1995). 1087. G. S. Georgiev, I. G. Dakova, S. J. Simpson, Macromol. Sci. A: Pure Appl. Chem., 32, 497 (1995). 1088. J. Jang, H. Kim, J. Appl. Polym. Sci., 56, 1495 (1995).
1089. K. Kagawa, T. Oishi, K. Matsusaki, M. Fujimoto, Polymer, 36, 941 (1995). 1090. M. Kanamaru, T. Takata, T. Endo, Polym. Sci., Part A: Polym. Chem., 33, 1361 (1995). 1091. S. Kobatake, B. Tamada, S. Aoki, Polymer, 36, 413 (1995). 1092. S. Kobatake, B. Yamada, Macromolecules, 28,4047 (1995). 1093. G. K. Kostov, Al. T. Nikolov, J. Appl. Polym. Sci., 55,1529 (1995). 1094. G. K. Kostov, Al. T. Nikolov, J. Appl. Polym. Sci., 55,1545 (1995). 1095. M. Kumagai, K. Tsuchida, Y Ogino, J. Hansen, H. Ishida, Polymer, 36, 535 (1995). 1096. B. Levenfeld, J. San Roman, Macromolecules, 28, 3650 (1995). 1097. D. L. Murray, H. J. Harwood, M. M. Samy, I. Piirma, Polymer, 36, 3841 (1995). 1098. H. Nakamura, M. Seno, H. Tanaka, T. Sato, Colloid Polym. Sci., 273, 122 (1995). 1099. T. Oishi, K. Kagawa, M. Fujimoto, Polym. Sci., Part A: Polym. Chem., 33, 1341 (1995). 1100. T. Oishi, K. Sase, K. Saeki, S. Yao, K. Ohdan, Polymer, 36, 3935 (1995). 1101. J. Penelle, S. verraver, P. Raucq, J. Marchand-Brynaert, Macromol. Chem. Phys., 196, 857 (1995). 1102. T. Sato, I. Kamiya, M. Seno, H. Tanaka, J. Macromol. Sci. A: Pure Appl. Chem., 32, 415 (1995). 1103. T. Sato, Y Hirose, M. Seno, H. Tanaka, Polym. Sci., Part A: Polym. Chem., 33, 797 (1995). 1104. D. L. Trumbo, Polym. Bull. (Berlin), 34, 27 (1995). 1105. D. L. Trumbo, Polym. Bull. (Berlin), 34, 399 (1995).
Q
a n d
e
V a l u e s
f o r
F r e e
C o p o l y m e r i z a t i o n s M o n o m e r s
a n d
o f
R a d i c a l V i n y l
T e l o g e n s
Robert Z. Greenley* Monsanto Co., 544 Oak Valley Drive, St. Louis, MO 63131, USA
A. Introduction B. Q and e Values for Free Radical Copolymerizations Table 1. Monomers Table 2. Telogens Table 3. Monomers Arranged by Q Values Table 4. Monomers Arranged by e Values C. References A.
11-309 11-310 11-310 11-314 11-314 11-317 11-319
INTRODUCTION
The Alfrey and Price Q and e equation (Al) is well known: (Al) Q and e are measures of the reactivity and polarity, respectively, of a vinyl monomer and r\ = kn/kn, a reactivity ratio. This equation may be arranged to a logarithmic form (A2) which provides a more convenient linear solution: (A2) When monomer 2 is the one to be characterized, its Q and e values may be determined from the slope (—^2) and intercept (InQ 2 ) of the equation. The first requirement for the use of Eq. (A2) is the selection of a small group of common monomers for which Q and e could be independently established. Since, by definition the Q and e scheme is based on styrene (Q=LO and e = — 0.8), the average Q and e values of these primary monomers were calculated using Eqs. (Al) and (A3) (Ref. 1). (A3) utilizing only their reactivity ratios with styrene. The six primary monomers (Group I) - acrylic acid, acrylonitrile, *Retired.
butadiene, methyl acrylate, methacrylonitrile and methyl methacrylate - were chosen because their reactivity ratios had been narrowly defined by several investigators. These primary reactivity ratios were taken from the compilation in the second edition of this Handbook. The Q and e values of a secondary group (Group II) of ten common vinyl monomers were determined using Eq. (A2), with the primary monomer group supplying the Qx and e\ values. The Q and e values were then calculated for a tertiary set (Group III) of reactivity ratios for which a set of reactivity ratios with four or more of the primary and secondary monomers was available. For all groups except Group I, recalculated reactivity ratios (see the preceding chapter) were used when available. Otherwise, reported values were included. The Q and e values developed for the three groups during the first pass through the data were subsequently used to recalculate the Q and e values for Groups II and III. Group I was not redetermined so that the styrene bias of the system could be better maintained. After four iterations, no significant changes were observed. During the iterative process, a number of reactivity ratio citations were dropped due to a lack of fit with the majority of data points. The final Q and e values for these three groups were then used to determine the Q and e values of other monomers with four or more reactivity ratio citations with at least three comonomers (Group IV), and monomers with three citations with three different comonomers (Group V). By replacing r\ in Eq. (A2) with the reciprocal of the chain transfer constant, \/Cs (3), Q and e values of telogens may also be estimated (4) from their coreactivity with vinyl monomers. The Monomer Table lists the monomer group designation, the Q and e values, and the correlation coefficient (r) for the regression. The Number column (n) represents the number of r\ values actually used in the regression. If the monomer is in Group V, the number is understood to be 3. The data are listed alphabetically as well as in increasing values of Q and e.
Recent work by Jenkins (5) has uncovered another approach to characterizing the copolymerization character of vinyl monomers. By deriving data from r\ and T2 values,
he was able to calculate three coefficients which appear to allow a more precise prediction of the actual reactivity ratios.
B. Q AND e VALUES FOR FREE RADICAL COPOLYMERIZATIONS TABLE 1. MONOMERS Monomer
Group
Q
e
n
r
5 6 5 16 5 17 6 4 5
0.98 0.75 0.63 0.97 0.98 0.64 0.91 0.93 0.56 0.68 0.99 0.87 0.38 0.99 0.90 0.92 0.94 0.91 0.65 0.87 0.81
Acenaphthalene Acetylene, phenylAconitate, trimethyl Acrolein Acrolein, methylAcrylamide Acrylamide, Af-methylolAcrylamide, Af-octadecylAcrylamide, N,iV-diethyl Acrylamide, WV-dimethyl-glucitol Acrylate, a-acetoxy-, ethyl Acrylate, a-chloro, ethyl Acrylate, a-chloro-, methyl Acrylate, a-cyano-, methyl Acrylate, oc-phenyl-, methyl Acrylate, benzyl Acrylate, butyl Acrylate, ethyl Acrylate, ferrocenylmethyl Acrylate, glycidyl Acrylate, heptafluorobutyl Acrylate, methyl Acrylate, octadecyl Acrylate, octyl Acrylate, trifluoro-, methyl Acrylate, 2-chloroethyl Acrylate, 2-ethylhexyl Acrylate, 2-nitrobutyl Acrylic acid Acrylic acid, oc-bromoAcrylic anhydride Acrylonitrile Acryloyl chloride AUyI acetate Allyl acrylate AUyI alcohol Allyl chloride Allylbenzene TV-Allylstearamide
IV IV III IV IV IV IV IV IV V V V IV IV IV IV II III IV IV V I IV V V V IV V I V V I IV III V IV III IV V
0.72 0.45 0.25 0.80 1.83 0.23 0.52 0.66 0.48 0.22 0.52 1.00 2.43 4.91 5.19 0.33 0.38 0.41 0.15 0.48 0.96 0.45 0.33 0.63 0.048 0.49 0.37 0.69 0.83 3.07 1.46 0.48 1.82 0.24 0.32 0.005 0.026 0.038 0.024
-1.88 0.10 2.27 1.31 0.71 0.54 1.15 1.64 -0.31 0.61 0.77 -1.03 0.35 0.91 0.96 1.13 0.85 0.55 0.51 1.28 1.34 0.64 1.26 2.01 1.20 1.03 0.24 1.09 0.88 1.37 0.31 1.23 1.92 -1.07 -0.99 -1.48 - 0.60 0.40 -0.41
Benzothiazole, vinylmercaptoBicyclo[2.2.1]hept-2-ene-5,6-dicarboxamine, TV-benzylButadiene Butadiene-1-carboxylate, ethyl Butadiene, 1,4-dicarboxylate, diethyl Butadiene, 2,3-dichloroButadiene, 2,3-dimethylButadiene, hexafluoroButadiene, 2-chloroButadiene, 2-fluoroButene-1 Butene-2 Carbamate, TV-vinyl-, ethyl Carbamate, TV,TV-diethyl-, vinyl Carbazole, TV-vinylCarbon monoxide
IV IV I V V V V IV II III IV IV V IV III V
0.36 0.01 1.70 1.67 1.94 9.08 1.42 0.82 10.52 1.88 0.007 0.002 0.037 0.028 0.26 0.013
- 0.44 -0.36 -0.50 1.26 1.39 0.14 -0.43 0.58 1.20 0.63 -0.06 -0.29 -1.12 -1.11 -1.29 1.68
4 4 8 5 20 12 4 4 7 5 4
0.97 0.99 0.55 0.95 0.37 0.98 0.99 0.37
6 8 5 12 4 4 6 24
4 10 6 5 6 4 12
0.90 0.85 0.96 0.98 0.93 0.60 0.62 0.95 0.47 0.82 0.99 0.99 0.93 0.58 0.93 0.98 0.77 0.08 0.44 0.91 0.95 0.99 0.70
TABLE 1. cont'd Monomer
Group
Q
e
n
r
Citraconimide, N-methylCrotonaldehyde Crotonicacid 4-Cyclopentene-l,3-dione
IV IV III IV
0.87 0.023 0.017 0.42
1.58 0.84 0.89 2.43
4 5 6 4
0.94 0.82 0.98 0.96
Diallyl melamine Diallyl phthalate Diallycyanamide AW-Divinylaniline
V IV IV II
0.059 0.031 0.14 0.26
-1.57 -0.26 2.41 -0.68
20 4 5
0.99 0.50 0.96 0.78
Ethylene Ethylene, 1,1-diphenylEthylene, chlorotrifluoroEthylene, tetrachloroEthylene, tetrafluoroEthylene, trichloro-
III IV III III IV III
0.016 0.17 0.026 0.001 0.032 0.010
0.05 -1.71 1.56 1.24 1.63 1.29
6 5 5 7 4 11
0.52 0.84 0.99 0.99 0.99 0.94
Fumarate, diethyl Fumarate, diisopropyl Fumaronitrile
IV IV IV
0.25 0.11 0.29
2.26 2.58 2.73
10 8 5
0.91 0.84 0.96
Hexatriene, tetrachloroHexene-1
IV V
1.83 0.035
0.94 0.92
6
0.98 0.69
Imidazole, 1-vinylImidazole, l-vinyl-2-methylIndene Isobutylene Isobutylene, 3-chloroIsoprene Isoprene, 3-acetoxyIsopropenyl acetate Isopropenyl methyl ketone Isopropenyl, 3-(l-cyclohexenyl), acetate Isopropenylisocyanate Itaconate, dibutyl Itaconate, diethyl Itaconate, dimethyl Itaconicacid
V IV IV III IV II V IV III V III V V III IV
0.11 0.14 0.13 0.023 0.17 1.99 1.91 0.023 1.03 0.57 0.18 0.82 1.04 0.73 0.78
-0.68 -0.98 -0.71 -1.20 -0.86 -0.55 -0.11 - 0.94 0.64 -0.66 -1.05 0.57 0.88 0.57 1.07
Maleate, diethyl Maleic anhydride Maleimide Maleimide, 2,3-dimethyl-iV-(2-methacryloxyethyl)Maleimide, 7V-(2-hydroxyethyl)Maleimide, AK2-chlorophenyl)Maleimide, A^-(4-chlorophenyl)Maleimide, Af-butylMaleimide, N-phenylMethacrylamide Methacrylamide, Af-phenylMethacrylamide, 1-deoxy-D-glucital Methacrylate, 2-chloro-2,3,3,3-tetrafluoropropyl Methacrylate, 2,2,6,6-tetra-methyl-4-piperidinyl Methacrylate, 2,3-epithio-propyl Methacrylate, benzyl Methacrylate, butyl Methacrylate, ethyl Methacrylate, ferrocenylmethyl Methacrylate, glycidyl Methacrylate, isobutyl Methacrylate, isopropyl Methacrylate, methyl Methacrylate, phenyl Methacrylate, sulfolanyl
IV IV V V V IV V V IV IV V V V IV IV IV III III IV III III IV I IV V
0.053 0.86 0.94 2.54 1.26 2.29 2.98 0.88 2.81 0.40 0.40 0.15 2.09 0.52 1.04 0.88 0.82 0.76 0.22 0.96 0.82 0.97 0.78 1.25 1.18
1.08 3.69 2.86 1.64 1.07 2.87 2.75 3.70 3.24 -0.05 0.19 -0.16 0.62 -1.09 0.29 0.35 0.28 0.17 0.65 0.20 0.27 0.10 0.40 0.79 0.95
6 8 7 4 11 4 6 8 8 5 12 25
5 4 8
4 4 10 10 7 7 9 5 4 7
0.98 0.93 0.45 0.99 0.98 0.86 0.10 0.98 0.78 0.98 0.94 0.88 0.98 0.90 0.99 0.87 0.98 0.99 0.98 0.68 0.96 0.99 0.92 0.99 0.29 0.70 0.19 0.56 0.68 0.84 0.97 0.68 0.62 0.85 0.92 0.76 0.46 0.91 0.95
References page 11-319
TABLE 1. cont'd Monomer
Group
Q
e
n
r
8 5 4
Methacrylate, 2-naphthyl Methacrylate, 2-(N,Ar-dimethyl-carbamoyloxy)ethyl Methacrylate, 2-(sulfonic acid)ethyl Methacrylate, 2-acetoxyethyl Methacrylate, 2-bromoethyl Methacrylate, 2-chloroethyl Methacrylate, 2-hydroxyethyl Methacrylate, 2-hydroxypropyl Methacrylic acid Methacrylic anhydride Methacrylonitrile Methacryloyl chloride Methacryloylacetone Methylenebutyrolactone 2-Methyleneglutaronitrile
IV IV IV V IV IV IV IV III IV I V V V IV
1.04 1.14 1.09 0.60 1.18 1.04 1.78 4.38 0.98 3.00 0.86 2.04 5.47 2.48 0.41
-0.09 0.84 0.25 0.51 0.74 0.31 -0.39 1.86 0.62 0.56 0.68 1.54 -0.76 0.83 1.25
4 7 7 7 23 5
0.46 0.74 0.52 0.80 0.96 0.79 0.67 0.81 0.73 0.93
6
0.94 0.79 0.90 0.83
Norbornadiene
III
0.051
-1.48
7
0.90
Oct-1-ene, 6,6-dimethyl-4,8-dioxaspiro(2.5)Oxazolidone, N-vinylOxazoline, 2,-2-isopropenyl-4,4-dimethylOxazoline, 2-isopropenyl-2Oxazoline, 2-,4-acryloxymethyl-2,4-dimethylOxazoline, 2-,4-methacryloxymethyl-2,4-dimethyl-
V III IV IV IV IV
0.25 0.087 0.87 0.59 0.97 0.44
0.61 -1.70 0.34 - 0.64 -0.51 - 0.70
6 4 7 4 4
0.82 0.95 0.65 0.54 0.71 0.99
Pentadiene, trans-1,3Phosphonate, a-carbomethoxyvinyl-, diethyl Phosphonate, isopropenyl-, dimethyl Phosphonate, vinyl-, bis(2-chloroethyl) Phosphonate, vinyl-, diethyl Phosphonate, vinyl-, dimethyl Phosphonic acid, a-phenyl-vinylPhthalimide, iV-Cmethacryloyloxy)Propene, 3,3,3-trichloroPropene, 1-chloro-, cisPropene, 1-chloro-, transPropene, 2-chloroPropene, 2-chloro-3-hydroxyPropene, 2,3-dichloroPropenyl, 2-chloro-, acetate Propenyl, 2-methyl-, acetate Propylene Pyridazinone, 3-(2-vinyl)-6-methylPyridazinone, 3-(2-vmyl)-6-methyl-4,5-dihydroPyridine, 2-methyl-5-vinylPyridine, 2-vinylPyridine, 2-vinyl-5-ethylPyridine, 4-vinylPyrrolidone, l-benzyl-3-methylene-5-methyl-
IV V V V V V IV V V V V V V IV IV V V V V III II IV III V
1.28 0.14 0.032 0.044 0.27 0.24 0.65 1.89 0.030 0.003 0.006 0.073 0.091 0.12 0.20 0.040 0.009 0.57 0.18 1.32 1.41 1.29 2.47 1.50
-0.13 —0.04 0.96 1.64 - 0.40 - 0.25 0.52 0.96 1.00 -0.46 -0.16 -0.16 -0.95 -0.40 -0.85 - 2.08 -1.69 0.24 -0.32 -0.66 -0.42 -0.91 0.84 -0.59
Quinoline, 2-vinyl-
IV
1.04
-0.09
Silane, 7-methacryloxypropyl-trimethoxy Styrene Styrene, 2,4,6-trimethylStyrene, 2,5-dichloroStyrene, 3-tri-«-butylstannylStyrene, a-methoxyStyrene, a-methylStyrene, m-bromoStyrene, m-chloroStyrene, m-methylStyrene, m-nitroStyrene,/7-bromoStyrene,/7-chloro-
V I IV II IV IV III IV IV V IV IV III
1.08 1.00 0.15 1.50 0.014 0.39 0.97 1.25 2.46 1.57 2.66 1.30 1.33
0.07 -0.80 -0.58 0.94 -0.61 -1.02 -0.81 -0.27 - 0.90 -0.03 1.57 -0.68 -0.64
8
5
4 5 7
9 12 4 7
4
0.54 0.96 0.98 0.89 0.54 0.53 0.76 0.74 0.99 0.84 0.28 0.99 0.99 0.67 0.61 0.97 0.84 0.58 0.35 0.95 0.97 0.94 0.86 0.98 0.46 0.35
4 12 4 5 15 4 4 7 7 12
0.41 0.96 0.51 0.77 0.98 0.98 0.87 0.06 0.85 0.99 0.92
TABLE 1. cont'd Monomer
Group
Q
e
n
r
7 5 6 5
0.74 0.75 0.99 0.98 0.65 0.51 0.91 0.87 0.96
Styrene, p-chloromethylStyrene, p-cyanoStyrene, p-methoxyStyrene,/?-methylStyrene, p-\-(2-hydroxybutyl)Styrene,/7-l-(2-hydroxypropyl)Styrene,/?-2-(2-hydroxypropyl)Styrene, pentachloroSuccinimide, iV-vinyl-
IV IV III III V IV IV V III
1.39 2.93 1.53 1.10 0.70 1.08 1.15 0.20 0.19
-0.38 -0.38 -1.40 -0.63 -0.97 -0.35 -0.49 0.79 -1.42
Tetrazole, 1-vinylTetrazole, 2-methyl-5-(4/-vinyl)phenylTetrazole, 2-methyl-5-vinylTetrazole, 2-phenyl-5-(4/-vinyl)phenylTetrazole, 5-phenyl-2-(4/-vinyl)phenylToluenesulfonamide, A^methyl-vinylTriallyl citrate Triallyl cyanurate Triallyl isocyanurate
V V V V V V IV V V
0.13 0.86 0.55 0.84 1.11 0.18 0.054 0.14 0.035
-0.14 0.51 - 0.46 -0.52 0.53 -0.53 0.26 2.41 -0.23
Urea, N-vinyl-iV'-ethyl-
V
0.17
-1.88
Vinyl acetate Vinyl benzoate Vinyl bromide Vinyl butyl ether Vinyl butylsulfonate Vinyl butyrate Vinyl chloride Vinyl chloroacetate Vinyl chloromethyl ketone Vinyl cinnamate Vinyl cymantrene Vinyl dichloroacetate Vinyl dodecyl ether Vinyl ether Vinyl ethyl ether Vinyl ethyl oxalate Vinyl ethyl sulfide Vinyl ethyl sulfoxide Vinyl fluoride Vinyl formate Vinyl hendecanoate Vinyl isobutyl ether Vinyl isobutyl sulfide Vinyl isopropyl ketone Vinyl isothiocyanate Vinyl laurate Vinyl-m-cresyl ether Vinyl methyl ketone Vinyl methyl sulfide Vinyl methyl sulfoxide Vinyl -cresyl ether Vinyl octadecyl ether Vinyl octyl ether Vinyl p-cresyl ether Vinyl pelargonate Vinyl phenyl ether Vinyl phenyl ketone Vinyl phenyl sulfide Vinyl propionate Vinyl stearate Vinyl tert-butyl sulfide Vinyl thiolacetate
II III IV IV IV IV II IV IV IV IV V IV IV III IV IV IV IV III III IV IV V IV V V II IV V V IV IV V IV IV IV IV IV III IV IV
0.026 0.030 0.038 0.038 0.16 0.024 0.056 0.039 16.00 0.18 0.39 0.059 0.041 0.029 0.018 0.056 0.27 0.065 0.008 0.043 0.056 0.030 0.49 0.58 0.59 0.011 0.016 0.66 0.42 0.60 0.010 0.024 0.020 0.015 0.046 0.046 1.16 0.33 0.027 0.043 0.046 0.27
-0.88 -0.89 -0.23 -1.50 1.06 -0.89 0.16 -1.61 1.78 0.76 -0.57 -1.38 -1.69 -1.16 -1.80 - 0.65 -1.31 0.05 0.72 -1.19 -0.84 -1.27 - 0.95 -1.16 0.37 -0.54 - 6.33 1.05 -1.66 -1.79 -8.53 -1.93 -1.57 -6.86 -1.22 -2.16 1.02 -0.99 -0.68 -0.97 - 2.20 -0.52
4 4 8
4
0.39 0.49 0.85 0.97 0.53 0.78 0.50 0.17 0.35 0.98
49 9 10 10 4 8 38 5 4 4 4 6 4 8 4 6 4 8 5 5 7 7 4 8 5 4 4 4 9 5 5 7 7 4 5
0.87 0.95 0.94 0.87 0.97 0.91 0.37 0.98 0.97 0.99 0.88 0.95 0.83 0.80 0.90 0.53 0.96 0.21 0.71 0.99 0.82 0.98 0.99 0.44 0.77 0.81 0.99 0.98 0.99 0.46 0.97 0.87 0.98 0.99 0.79 0.95 0.95 0.96 0.82 0.85 0.72 0.85
References page II - 319
TABLE 1. cont'd Monomer
Group
Vinyl 4-chlorocyclohexyl ketone Vinyl 2-chloroethyl ether Vinyl-tris(trimethoxysiloxy)silane /?-Vinylbenzylethylcarbinol /?-Vinylbenzylmethylcarbinol 9-Vinylanthracene Vinyl AW-diethylcarbamate p-Vinylbenzoic acid Af-Vinylcaprolactam Vinylene carbonate Vinylferrocene Vinylhydroquinone Vinylhydroquinone dibenzoate Vinylidene chloride Vinylidene cyanide Vinylisocyanate JV-Vinylpyrrolidone Vinyltriethoxysilane Vinyltrimethylsilane
IV IV IV V V IV IV V IV III IV V IV II IV III II V V
Q 0.66 0.019 0.022 0.69 1.70 0.14 0.028 5.17 0.14 0.004 0.31 4.30 1.73 0.31 14.22 0.14 0.088 0.021 0.027
e - 0.82 -1.64 -0.12 -0.98 -1.27 0.82 -1.10 1.08 -1.18 - 0.49 -1.34 2.26 0.84 0.34 1.92 -0.95 -1.62 0.82 0.19
n
9 5 5 4 4 9 6 5 40 9 6 12
r 0.50 0.96 0.75 0.67 0.98 0.90 0.95 0.95 0.72 0.73 0.91 0.87 0.87 0.68 0.82 0.98 0.95 0.61 0.58
TABLE 2. TELOGENS Telogen
Temp. (0C)
Acetone
60 80 60 80 60 80 60 80 60 80 60 60 60 80 60 80 60 80 60 60 60 60 60 60 60 80 60 80 60 60
Benzene -, chloro-,ethyl-,methylBenzoyl peroxide Butanol Butanone Cyclohexane 1,2-Dichloroethane Ethyl acetate Mercaptan, alkylMercaptoacetate, alkylMethane, dichloro-, nitro-, tetrabromoMethane, tetrachloro-, trichloroMethanol Triethylamine
Q ( x 104) 0.11 0.32 0.05 0.07 0.07 0.13 0.95 0.91 0.16 0.34 36 0.53 0.82 1.40 0.11 0.14 0.62 1.1 0.07 14500 15100 0.10 3.26 7300 3.64 5.15 1.18 1.24 0.18 28.8
e
No.
r
0.35 0.45 -1.21 -0.61 0.08 -0.06 -1.02 -0.61 -0.95 -0.87 -1.89 -0.57 0.53 1.00 -0.64 -1.41 1.34 2.07 -0.87 2.44 3.27 -0.68 -1.50 2.90 3.21 3.41 0.47 0.70 -0.93 -2.39
5 5 16 9 7 5 8 7 12 11 4 6 4 7 6 7 3 6 11 11 4 4 4 8 13 9 8 10 5 7
0.80 0.68 0.94 0.72 0.30 0.30 0.84 0.86 0.93 0.94 0.93 0.63 0.60 0.80 0.86 0.77 0.96 0.96 0.97 0.99 0.99 0.82 0.92 0.99 0.99 0.99 0.95 0.82 0.76 0.99
TABLE 3. MONOMERS ARRANGED BY Q VALUES Monomer Ethylene, tetrachloroButene-2 Propene, 1-chloro-, cis-
Q
e
0.001 0.002 0.003
1.24 - 0.29 - 0.46
Monomer Vinylene carbonate Allyl alcohol Propene, 1-chloro-, trans-
Q
e
0.004 0.005 0.006
- 0.49 - 1.48 -0.16
TABLE 3.
cont'd
Monomer Butene-1 Vinyl fluoride Propylene Bicyclo[2.2.1]hept-2-ene5,6 dicarboxamine, N-benzylEthylene, trichloroVinyl o-cresyl ether Vinyl laurate Carbon monoxide Styrene, 3-tri-rc-butylstannylVinyl p-cresyl ether Ethylene Vinyl m-cresyl ether Crotonic acid Vinyl ethyl ether Vinyl 2-chloroethyl ether Vinyl octyl ether Vinyltriethoxysilane Vinyl-tris(trimethoxysiloxy)silane Crotonaldehyde Isobutylene Isopropenyl acetate N-Allylstearamide Vinyl butyrate Vinyl octadecyl ether AUyI chloride Ethylene, chlorotrifluoroVinyl acetate Vinyl propionate Vinyltrimethylsilane Carbamate, MN-diethyl-, vinyl Vinyl WV-diethylcarbamate Vinyl ether Propene, 3,3,3-trichloroVinyl benzoate Vinyl isobutyl ether Diallyl phthalate Ethylene, tetrafluoroPhosphonate, isopropenyl-, dimethyl Hexene-1 Triallyl isocyanurate Carbamate, AT-vinyl-, ethyl Allylbenzene Vinyl bromide Vinyl butyl ether Vinyl chloroacetate Propenyl, 2-methyl-, acetate Vinyl dodecyl ether Vinyl formate Vinyl stearate Phosphonate, vinyl-, bis(2-chloroethyl) Vinyl pelargonate Vinyl phenyl ether Vinyl tert-butyl sulfide Acrylate, trifluoro-, methyl Norbornadiene Maleate, diethyl Triallyl citrate Vinyl chloride Vinyl ethyl oxalate Vinyl hendecanoate Diallyl melamine Vinyl dichloroacetate Vinyl ethyl sulfoxide Propene, 2-chloro-
Q
e
0.007 0.008 0.009
-0.06 0.72 -1.69
0.010 0.010 0.010 0.011 0.013 0.014 0.015 0.016 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.023 0.023 0.023 0.024 0.024 0.024 0.026 0.026 0.026 0.027 0.027 0.028 0.028 0.029 0.030 0.030 0.030 0.031 0.032 0.032 0.035 0.035 0.037 0.038 0.038 0.038 0.039 0.040 0.041 0.043 0.043 0.044 0.046 0.046 0.046 0.048 0.051 0.053 0.054 0.056 0.056 0.056 0.059 0.059 0.065 0.073
- 0.36 1.29 - 8.53 - 0.54 1.68 -0.61 - 6.86 0.05 - 6.33 0.89 -1.80 -1.64 -1.57 0.82 - 0.12 0.84 -1.20 - 0.94 -0.41 - 0.89 -1.93 - 0.60 1.56 - 0.88 - 0.68 0.19 -1.11 -1.10 -1.16 1.00 - 0.89 -1.27 -0.26 1.63 0.96 0.92 - 0.23 -1.12 0.40 - 0.23 -1.50 -1.61 - 2.08 -1.69 -1.19 - 0.97 1.64 - 1.22 - 2.16 - 2.20 1.20 -1.48 1.08 - 0.26 0.16 - 0.65 - 0.84 -1.57 -1.38 0.05 -0.16
Monomer Oxazolidone, N-vinylN-Vinylpyrrolidone Propene, 2-chloro-3-hydroxyFumarate, diisopropyl Imidazole, 1-vinylPropene, 2,3-dichloroIndene Tetrazole, 1-vinylN-Vinylcaprolactam Diallylcyanamide Imidazole, l-vinyl-2-methylPhosphonate, a-carbomethoxyvinyl-diethyl Triallyl cyanurate 9-Vinylanthracene Vinylisocyanate Acrylate, ferrocenylmethyl Methacrylamide, 1-deoxy-D-glucitol Styrene, 2,4,6-trimethylVinyl butylsulfonate Ethylene, 1,1 -diphenylIsobutylene, 3-chloroUrea, TV-vinyl-TV'ethylIsopropenylisocyanate Pyridazinone, 3-(2-vinyl)-6-methyl4,5-dihydroToluenesulfonamide, iVyV-methyl-vinylVinyl cinnamate Succinimide, N-vinylPropenyl, 2-chloro-, acetate Styrene, pentachloro1-Acrylamido-1-deoxy-D-glucitol Methacrylate, ferrocenylmethyl Acrylamide AHyI acetate Phosphonate, vinyl-, dimethyl Aconitate, trimethyl Fumarate, diethyl Oct-1-ene, 6,6-dimethyl-4,8-dioxaspiro(2,5)Carbazole, N-vinylAW-Divinylaniline Phosphonate, vinyl-, diethyl Vinyl ethyl sulfide Vinyl thiolacetate Fumaronitrile Vinylferrocene Vinylidene chloride Allyl acrylate Acrylate, benzyl Acrylate, octadecyl Vinyl phenyl sulfide Benzothiazole, vinylmercaptoAcrylate, 2-ethylhexyl Acrylate, butyl Styrene, a-methoxyVinyl cymantrene Methacrylamide Methacrylamide, N-phenylAcrylamide, A^Af-dimethylAcrylate, ethyl 2-Methyleneglutaronitrile 4-Cyclopentene-l,3-dione Vinyl methyl sulfide Oxazoline, 2-,4-methacryloxymethyl2,4-dimethylAcetylene, phenyl-
Q
e
0.087 0.088 0.091 0.11 0.11 0.12 0.13 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.16 0.17 0.17 0.17 0.18 0.18
-1.70 -1.62 -0.95 2.58 -0.68 -0.40 -0.71 -0.14 -1.18 2.41 -0.98 —0.04 2.41 0.82 —0.95 0.51 —0.16 -0.58 1.06 -1.71 -0.86 -1.88 —1.05 -0.32
0.18 0.18 0.19 0.20 0.20 0.22 0.22 0.23 0.24 0.24 0.25 0.25 0.25 0.26 0.26 0.27 0.27 0.27 0.29 0.31 0.31 0.32 0.33 0.33 0.33 0.36 0.37 0.38 0.39 0.39 0.40 0.40 0.41 0.41 0.41 0.42 0.42 0.44
—0.53 0.76 -1.42 - 0.85 0.79 0.61 - 0.65 0.54 -1.07 - 0.25 2.27 2.26 0.61 -1.29 - 0.68 - 0.40 -1.31 - 0.52 2.73 -1.34 0.34 - 0.99 1.13 1.26 - 0.99 — 0.44 0.24 0.85 - 1.02 - 0.57 - 0.05 0.19 -0.26 0.55 1.25 2.43 -1.66 — 0.70
0.45
0.10
References page 11-319
TABLE 3.
cont'd
Monomer Acrylate, methyl Acrylamide, N,N-diethy\ Acrylate, glycidyl Acrylonitrile Acrylate, 2-chloroethyl Vinyl isobutyl sulfide Acrylamide, Af-methylolAcrylate, a-acetoxy-, ethyl Methacrylate, 2,2,6,6-tetramethyl4-piperidinyl Tetrazole, 2-methyl-5-vinylIsopropenyl, 3-(l-cyclohexenyl)acetate Pyridazinone, 3-(2-vinyl)-6-methylVinyl isopropyl ketone Oxazoline, 2-isopropenyl-2Vinyl isothiocyanate Methacrylate, 2-acetoxyethyl Vinyl methyl sulfoxide Acrylate, octyl Phosphonic acid, a-phenylAcrylamide, Af-octadecylVinyl methyl ketone Vinyl 4-chlorocyclohexyl ketone Acrylate, 2-nitrobutyl p-Vinylbenzylethylcarbinol Styrene, p-1 -(2-hydroxybutyl)Acenaphthalene Itaconate, dimethyl Methacrylate, ethyl Itaconic acid Methacrylate, methyl Acrolein Butadiene, hexafluoroItaconate, dibutyl Methacrylate, butyl Methacrylate, isobutyl Acrylic acid Tetrazole, 2-phenyl-5-(4'-vinyl)-phenylMaleic anhydride Methacrylonitrile Tetrazole, 2-methyl-5-(4/-vinyl)-phenylCitraconimide, TV-methylOxazoline, 2-, 2-isopropenyl-4,4-dimethylMaleimide, A^-butylMethacrylate, benzyl Maleimide Acrylate, heptafluorobutyl Methacrylate, isopropyl Oxazoline, 2-,4-acryloxymethyl-2,4-dimethylStyrene, a-methylMethacrylic acid Acrylate, a-chloro-, ethyl Styrene Isopropenyl methyl ketone Itaconate, diethyl Methacrylate, 2-naphthyl Methacrylate, 2,3-epithiopropyl Methacrylate, 2-chloroethyl Quinoline, 2-vinylSilane, y-methacryloxypropyl-trimethoxy Styrene, /?-l-(2-hydroxypropyl)Methacrylate, 2-(sulfonic acid)ethyl Styrene, p-methyl-
Q
e
0.45 0.48 0.48 0.48 0.49 0.49 0.52 0.52 0.52
0.64 - 0.31 1.28 1.23 1.03 - 0.95 1.15 0.77 -1.09
0.55 0.57 0.57 0.58 0.59 0.59 0.60 0.60 0.63 0.65 0.66 0.66 0.66 0.69 0.69 0.70 0.72 0.73 0.76 0.78 0.78 0.80 0.82 0.82 0.82 0.82 0.83 0.84 0.86 0.86 0.86 0.87 0.87 0.88 0.88 0.94 0.96 0.97 0.97 0.97 0.98 1.00 1.00 1.03 1.04 1.04 1.04 1.04 1.04 1.08 1.08 1.09 1.10
- 0.46 —0.66 0.24 —1.16 - 0.64 0.37 0.51 -1.79 2.01 0.52 1.64 1.05 - 0.82 1.09 - 0.98 - 0.97 -1.88 0.57 0.17 1.07 0.40 1.31 0.58 0.57 0.28 0.27 0.88 -0.52 3.69 0.68 0.51 1.58 0.34 3.70 0.35 2.86 0.20 0.10 -0.51 -0.81 0.62 -1.03 -0.80 0.64 0.88 -0.09 0.29 0.31 -0.09 0.07 - 0.35 0.25 - 0.63
Monomer Tetrazole, 5-phenyl-2-(4'-vinyl)-phenylMethacrylate, 2-(N,N-dimethylcarbamoyloxy)ethyl Styrene, /?-2-(2-hydroxypropyl)Vinyl phenyl ketone Methacrylate, sulfolanyl Methacrylate, 2-bromoethyl Methacrylate, phenyl Styrene, m-bromoMaleimide, A^-(2-hydroxyethyl)Pentadiene, trans-1,3Pyridine, 2-vinyl-5-ethylStyrene, p-bromoPyridine, 2-methyl-5-vinylStyrene, /?-chloroStyrene, /?-chloromethylPyridine, 2-vinylButadiene, 2,3-dimethylAcrylic anhydride Pyrrolidone, l-benzyl-3-methylene-5-methylStyrene, 2,5-dichloroStyrene, p-methoxyStyrene, m-methylButadiene-1-carboxylate, ethyl Butadiene p-Vinylbenzylmethylcarbinol Vinylhydroquinone dibenzoate Methacrylate, 2-hydroxyethyl Acryloyl chloride Acrolein, methylHexatriene, tetrachloroButadiene, 2-fluoroPhthalimide, AHmethacryloyloxy)Isoprene, 3-acetoxyButadiene, 1,4-dicarboxylate, diethyl Isoprene Methacryloyl chloride Methacrylate, 2-chloro2,3,3,3-tetrafluoropropyl Styrene, m-nitroMaleimide, Ar-(2-chlorophenyl)Acrylate, a-chloro-, methyl Styrene, ra-chloroPyridine, 4-vinylMethylenebutyrolactone Maleimide, 2,3-dimethylAf-(2-methacryloxyethyl)Styrene, o-chloroMaleimide, JV-phenylStyrene, /?-cyanoMaleimide, A^-(4-chlorophenyl)Methacrylic anhydride Acrylic acid, a-bromoVinylhydroquinone Methacrylate, 2-hydroxypropyl Acrylate, a-cyano-, methyl /7-Vinylbenzoic acid Acrylate, a-phenyl-, methyl Methacryloylacetone Butadiene, 2,3-dichloroButadiene, 2-chloroVinylidene cyanide Vinyl chloromethyl ketone
Q
e
1.11 1.14
0.53 0.84
1.15 1.16 1.18 1.18 1.25 1.25 1.26 1.28 1.29 1.30 1.32 1.33 1.39 1.41 1.42 1.46 1.50 1.50 1.53 1.57 1.67 1.70 1.70 1.73 1.78 1.82 1.83 1.83 1.88 1.89 1.91 1.94 1.99 2.04
- 0.49 1.02 0.95 0.74 0.79 -0.27 1.07 -0.13 - 0.91 - 0.68 -0.66 — 0.64 - 0.38 -0.42 -0.43 0.31 -0.59 0.94 —1.40 -0.03 1.26 -0.50 —1.27 0.84 -0.39 1.92 0.71 0.94 0.63 0.96 —0.11 1.39 -0.55 1.54
2.09 2.19 2.29 2.43 2.46 2.47 2.48 2.54
0.62 0.20 2.87 0.35 - 0.90 0.84 0.83 1.64
2.66 2.81 2.93 2.98 3.00 3.07 4.30 4.38 4.91 5.17 5.19 5.47 9.08 10.52 14.22 16.00
1.57 3.24 - 0.38 2.75 0.56 1.37 2.26 1.86 0.91 1.08 0.96 - 0.76 0.14 1.20 1.92 1.78
TABLE 4. MONOMERS ARRANGED BY e VALUES Monomer Vinyl ethyl sulfoxide Ethylene Silane, y-methacryloxypropyl-trimethoxy Acetylene, phenylMethacrylate, isopropyl Butadiene, 2,3-dichloroVinyl chloride Methacrylate, ethyl Vinyltrimethylsilane Methacrylamide, N-phenylMethacrylate, glycidyl Styrene, ra-nitroAcrylate, 2-ethylhexyl Pyridazinone, 3-(2-vinyl)-6-methylMethacrylate, 2-(sulfonic acid)ethyl Methacrylate, isobutyl Methacrylate, butyl Methacrylate, 2,3-epithiopropyl Methacrylate, 2-chloroethyl Acrylic anhydride Vinylidene chloride Oxazoline, 2-,2-isopropenyl-4,4-dimethylMethacrylate, benzyl Acrylate, a-chloro-, methyl Vinyl isothiocyanate Allylbenzene Methacrylate, methyl Acrylate, ferrocenylmethyl Methacrylate, 2-acetoxyethyl Tetrazole, 2-methyl-5-(4'-vinyl)-phenylPhosphonic acid, oc-phenylvinylTetrazole, 5-phenyl-2-(4'-vinyl)-phenylAcrylamide Acrylate, ethyl Methacrylic anhydride Itaconate, dimethyl Itaconate, dibutyl Butadiene, hexafluoro1-Acrylamideo-l-deoxy-D-glucitol Oct-1-ene, 6,6-dimethyl-4,8-dioxaspiro(2.5)Methacrylic acid Butadiene, 2-fluoroAcrylate, methyl Isopropenyl methyl ketone Methacrylonitrile Acrolein, methylVinyl fluoride Methacrylate, 2-bromoethyl Vinyl cinnamate Acrylate, oc-acetoxy-, ethyl Styrene, pentachloroMethacrylate, phenyl Vinyltriethoxysilane 9-Vinylanthracene Methylenebutyrolactone Vinylhydroquinone dibenzoate Crotonaldehyde Methacrylate, 2-(ATv/V-dimethylcarbamoyloxy)ethyl Pyridine, 4-vinylAcrylate, butyl Acrylic acid Itaconate, diethyl Crotonic acid Acrylate, a-cyano-, methyl
Q
e
Monomer
0.065 0.016 1.08 0.45 0.97 9.08 0.056 0.76 0.027 0.40 0.96 2.19 0.37 0.57 1.09 0.82 0.82 1.04 1.04 1.46 0.31 0.87 0.88 2.43 0.59 0.038 0.78 0.15 0.60 0.86 0.65 1.11 0.23 0.41 3.00 0.73 0.82 0.82 0.22 0.25 0.98 1.88 0.45 1.03 0.86 1.83 0.008 1.18 0.18 0.52 0.20 1.25 0.021 0.14 2.48 1.73 0.023 1.14
0.05 0.05 0.07 0.10 0.10 0.14 0.16 0.17 0.19 0.19 0.20 0.20 0.24 0.24 0.25 0.27 0.28 0.29 0.31 0.31 0.34 0.34 0.35 0.35 0.37 0.40 0.40 0.51 0.51 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.57 0.58 0.61 0.61 0.62 0.63 0.64 0.64 0.68 0.71 0.72 0.74 0.76 0.77 0.79 0.79 0.82 0.82 0.83 0.84 0.84 0.84
2.47 0.38 0.83 1.04 0.017 4.91
0.84 0.85 0.88 0.88 0.89 0.91
Hexene-1 Styrene, 2,5-dichloroHexatriene, tetrachloroMethacrylate, sulfolanyl Phosphonate, isopropenyl-, dimethyl Phthalimide, AHmethacryloyloxy)Acrylate, a-phenyl-, methyl Propene, 3,3,3-trichloroVinyl phenyl ketone Acrylate, 2-chloroethyl Vinyl methyl ketone Vinyl butylsulfonate Itaconic acid Maleimide, A^-(2-hydroxyethyl)/?-Vinylbenzoic acid Maleate, diethyl Acrylate, 2-nitrobutyl Acrylate, benzyl Acrylamide, Af-methylolAcrylate, trifluoro-, methyl Butadiene, 2-chloroAcrylonitrile Ethylene, tetrachloro2-Methyleneglutaronitrile Acrylate, octadecyl Butadiene-1-carboxylate, ethyl Acrylate, glycidyl Ethylene, trichloroAcrolein Acrylate, heptafluorobutyl Acrylic acid, a-bromoButadiene, 1,4-dicarboxylate, diethyl Methacryloyl chloride Ethylene, chlorotrifluoroStyrene, ochloroCitraconimide, N-methylEthylene, tetrafluoroPhosphonate, vinyl-, bis(2-chloro-ethyl) Acrylamide, N-octadecylMaleimide, 2,3-dimethyl-Af(2-methacryloxyethyl)Carbon monoxide Vinyl chloromethyl ketone Methacrylate, 2-hydroxypropyl Vinylidene cyanide Acryloyl chloride Acrylate, octyl Methacrylate, 2-chloro2,3,3,3-tetrafluoropropyl Vinylhydroquinone Fumarate, diethyl Aconitate, trimethyl Fumarate, diisopropyl Triallyl cyanurate Diallylcyanamide 4-Cyclopentene-l,3-dione Fumaronitrile Maleimide, AT-(4-chlorophenyl)Maleimide Maleimide, N-(2-chlorophenyl)Maleimide, Af-phenylMaleic anhydride Maleimide, N-butylStyrene, m-methylPhosphonate, a-carbomethoxyvinyl-, diethyl
Q
e
0.035 1.50 1.83 1.18 0.032 1.89 5.19 0.030 1.16 0.49 0.66 0.16 0.78 1.26 5.17 0.053 0.69 0.33 0.52 0.048 10.52 0.48 0.001 0.41 0.33 1.67 0.48 0.010 0.80 0.96 3.07 1.94 2.04 0.026 2.66 0.87 0.032 0.044 0.66
0.92 0.94 0.94 0.95 0.96 0.96 0.96 1.00 1.02 1.03 1.05 1.06 1.07 1.07 1.08 1.08 1.09 1.13 1.15 1.20 1.20 1.23 1.24 1.25 1.26 1.26 1.28 1.29 1.31 1.34 1.37 1.39 1.54 1.56 1.57 1.58 1.63 1.64 1.64
2.54 0.013 16.00 4.38 14.22 1.82 0.63 0.62
1.64 1.68 1.78 1.86 1.92 1.92 2.01 2.09
4.30 0.25 0.25 0.11 0.14 0.14 0.42 0.29 2.98 0.94 2.29 2.81 0.86 0.88 1.57 0.14
2.26 2.26 2.27 2.58 2.41 2.41 2.43 2.73 2.75 2.86 2.87 3.24 3.69 3.70 -0.03 —0.04
References page 11-319
TABLE 4. cont'd Monomer Methacrylamide Butene-1 Methacrylate, 2-naphthyl Quinoline, 2-vinylIsoprene, 3-acetoxyVinyl-tris(trimethoxysiloxy )silane Pentadiene, trans-1,3Tetrazole, 1-vinylPropene, 1-chloro-, transPropene, 2-chloroMethacrylamide, 1-deoxy-D-glucitol Triallyl isocyanurate Vinyl bromide Phosphonate, vinyl-, dimethyl Triallyl citrate Diallyl phthalate Acrylamide, WV-dimethylStyrene, m-bromoButene-2 Acrylamide, MA^-diethyl Pyridazinone, 3-(2-vinyl)-6-methylStyrene, /?-l-(2-hydroxypropyl)Bicyclo[2.2.1]hept-2-ene5,6 dicarboxamine, Af-benzylStyrene, /?-chloromethylStyrene, /?-cyanoMethacrylate, 2-hydroxyethyl Propene, 2,3-dichloroPhosphonate, vinyl-, diethyl N-Allylstearamide Pyridine, 2-vinylButadiene, 2,3-dimethylBenzothiazole, vinylmercaptoTetrazole, 2-methyl-5-vinylPropene, 1-chloro-, cisVinylene carbonate Styrene, p-2-(2-hydroxypropyl)Butadiene Oxazoline, 2,4-acryloxymethyl-2,4-dimethylVinyl thiolacetate Tetrazole, 2-phenyl-5-(4/-vinyl)-phenylToluenesulfonamide, iVVV-methyl-vinylVinyl laurate Isoprene Vinyl cymantrene Styrene, 2,4,6-trimethylPyrrolidone, l-benzyl-3-methylene-5-methylAUyI chloride Styrene, 3-tri-n-butylstannylStyrene, /?-methylOxazoline, 2-isopropenyl-2Styrene, /?-chloroVinyl ethyl oxalate Methacrylate, ferrocenylmethyl Isopropenyl, 3-(l-cyclohexenyl)-acetate Pyridine, 2-methyl-5-vinylVinyl propionate Imidazole, 1-vinylMN-Divinylaniline Styrene, p-bromoOxazoline, 2-,4-methacryloxymethyl2,4-dimethylIndene Methacryloylacetone Styrene Styrene, a-methyl-
Q
e
0.40 0.007 1.04 1.04 1.91 0.022 1.28 0.13 0.006 0.073 0.15 0.035 0.038 0.24 0.054 0.031 0.41 1.25 0.002 0.48 0.18 1.08
- 0.05 -0.06 -0.09 -0.09 —0.11 -0.12 -0.13 -0.14 -0.16 - 0.16 —0.16 - 0.23 - 0.23 - 0.25 - 0.26 -0.26 -0.26 -0.27 - 0.29 -0.31 -0.32 - 0.35
0.01 1.39 2.93 1.78 0.12 0.27 0.024 1.41 1.42 0.36 0.55 0.003 0.004 1.15 1.70 0.97 0.27 0.84 0.18 0.011 1.99 0.39 0.15 1.50 0.026 0.014 1.10 0.59 1.33 0.056 0.22 0.57 1.32 0.027 0.11 0.26 1.30 0.44
— 0.36 - 0.38 - 0.38 -0.39 -0.40 - 0.40 -0.41 - 0.42 -0.43 — 0.44 - 0.46 - 0.46 - 0.49 - 0.49 -0.50 -0.51 - 0.52 -0.52 - 0.53 -0.54 -0.55 - 0.57 -0.58 —0.59 -0.60 -0.61 - 0.63 —0.64 - 0.64 - 0.65 - 0.65 —0.66 -0.66 - 0.68 -0.68 - 0.68 - 0.68 - 0.70
0.13 5.47 1.00 0.97
-0.71 - 0.76 -0.80 -0.81
Monomer Vinyl 4-chlorocyclohexyl ketone Vinyl hendecanoate Propenyl, 2-chloro-, acetate Isobutylene, 3-chloroVinyl acetate Vinyl butyrate Vinyl benzoate Styrene, m-chloroPyridine, 2-vinyl-5-ethylIsopropenyl acetate Vinylisocyanate Vinyl isobutyl sulfide Propene, 2-chloro-3-hydroxyVinyl stearate Styrene, p-1 (2-hydroxybutyl)/7-Vinylbenzylethylcarbinol Imidazole, l-vinyl-2-methylVinyl phenyl sulfide AHyI acrylate Styrene, oe-methoxyAcrylate, a-chloro-, ethyl Isopropenylisocyanate Allyl acetate Methacrylate, 2,2,6,6-tetramethyl-piperidinyl Vinyl AW-diethylcarbamate Carbamate, AW-diethyl-, vinyl Carbamate, N-vinyl-, ethyl Vinyl ether Vinyl isopropyl ketone N- Vinylcaprolactam Vinyl formate Isobutylene Vinyl pelargonate Vinyl isobutyl ether /7-Vinylbenzylmethylcarbinol Carbazole, N-vinylVinyl ethyl sulfide Vinylferrocene Vinyl dichloroacetate Styrene, p-methoxySuccinimide, N-vinylAllyl alcohol Norbornadiene Vinyl butyl ether Vinyl octyl ether Diallyl melamine Vinyl chloroacetate N-Vinylpyrrolidone Vinyl 2-chloroethyl ether Vinyl methyl sulfide Vinyl dodecyl ether Propylene Oxazolidone, TV-vinylEthylene, 1,1-diphenylVinyl methyl sulfoxide Vinyl ethyl ether Urea, Af-vinyl-Af'ethylAcenaphthalene Vinyl octadecyl ether Propenyl, 2-methyl-, acetate Vinyl phenyl ether Vinyl terf-butyl sulfide Vinyl m-cresyl ether Vinyl /?-cresyl ether Vinyl o-cresyl ether
Q
e
0.66 0.056 0.20 0.17 0.026 0.024 0.030 2.46 1.29 0.023 0.14 0.49 0.091 0.043 0.70 0.69 0.14 0.33 0.32 0.39 1.00 0.18 0.24 0.52 0.028 0.028 0.037 0.029 0.58 0.14 0.043 0.023 0.046 0.030 1.70 0.26 0.27 0.31 0.059 1.53 0.19 0.005 0.051 0.038 0.020 0.059 0.039 0.088 0.019 0.42 0.041 0.009 0.087 0.17 0.60 0.018 0.17 0.72 0.024 0.040 0.046 0.046 0.016 0.015 0.010
- 0.82 - 0.84 - 0.85 -0.86 - 0.88 - 0.89 - 0.89 - 0.90 - 0.91 - 0.94 —0.95 - 0.95 -0.95 - 0.97 - 0.97 - 0.98 -0.98 - 0.99 - 0.99 -1.02 -1.03 —1.05 -1.07 -1.09 -1.10 -1.11 -1.12 -1.16 —1.16 -1.18 -1.19 -1.20 -1.22 -1.27 —1.27 -1.29 -1.31 —1.34 -1.38 -1.40 —1.42 -1.48 -1.48 -1.50 -1.57 -1.57 -1.61 -1.62 -1.64 -1.66 -1.69 -1.69 -1.70 -1.71 -1.79 -1.80 -1.88 -1.88 -1.93 - 2.08 -2.16 - 2.20 - 6.33 - 6.86 - 8.53
C. REFERENCES 1. T. Alfrey, C. C. Price, J. Polym. ScL, 2, 101 (1947). 2. R. Z. Greenley, J. Macromol. Sci. A: Chem., 9, 505 (1975). 3. L. J. Young, in: J. Brandrup, E. H. Immergut (Eds.), "Polymer Handbook", 2nd ed., Wiley, New York, 1975.
4. R. Z. Greenley, J. Macromol. Sci. A: Chem., 11, 933 (1977). 5. A. D. Jenkins, J. Polym. Sci.: Part A: Polym. Chem., 34, 3495 (1996).
P a t t e r n s f o r
t h e
o f
R e a c t i v i t y
P r e d i c t i o n
R a t i o s i n
a n d
o f
( U , V )
M o n o m e r
T r a n s f e r
R a d i c a l
P a r a m e t e r s R e a c t i v i t y
C o n s t a n t s
P o l y m e r i z a t i o n
A u b r e y D . Jenkins, Jitka Jenkins School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, Sussex, BN1 9QJ, UK
A. B. C. D.
Introduction Example Transfer Constants Tables of Parameters Table 1. Monomers Table 2. Transfer Agents E. References
A.
11-321 II-322 II-322 II-323 II-323 II-326 II-327
INTRODUCTION
The relation between monomer reactivity ratios and the Alfrey-Price Q-e parameters is explained in the introduction to the tables of monomer reactivity ratios and Q-e values, compiled by Robert Z. Greenley and published in the present volume (1,2). Although very widely used, the Q-e scheme is well known to have serious limitations (3), which have prompted several attempts to improve upon it. One such endeavour was the "Patterns of Reactivity" scheme, first described as long ago as 1959 (4-7), when the Q-e scheme was only about ten years old; despite the indisputably more satisfactory basis of this procedure, it did not achieve popularity but recent revisions have greatly improved both its accessibility and its accuracy (3,8,9). In the Q-e scheme, four parameters (Qi, Q2, e\, e2, two for each monomer) are necessary for the prediction of a monomer reactivity ratio (e.g. r\2 = &11/&12, where subscript 1 refers to the radical and subscript 2 to the monomer) but the same four parameters also facilitate the prediction of the partner monomer reactivity ratio (?2\ — k22/k2\) because identical Q and e parameters are used to characterise both a given monomer and its derived radical. This device is certainly economical on input data but it introduces an approximation of very doubtful validity. In the "Patterns" scheme (to use the abbreviated title), different parameters are designated for the monomer and its conjugate radical. Hence, while four input parameters are
again necessary for the calculation of a single monomer reactivity ratio, eight are required to calculate both r\2 and r2\. The reward for the greater input of data is a substantial increase in the precision of the result; furthermore, all four parameters for each monomer/radical conjugate pair are experimentally determined from polymerization data, specifically monomer reactivity ratios from Greenley's tabulation, so no arbitrary assignment is involved, as it is with the Q-e scheme. The fundamental equation for the calculation of a reactivity ratio, r\2, is given below. log rn = log ris - U2TTi - V2.
(Al)
Here, the symbol S denotes the monomer styrene, and log ris is the counterpart of Q\ in the Q-e scheme. The counterpart of ei is the polarity parameter TTI; this is usually almost exactly equal to the Hammett a parameter for the substituent(s) present on the oc-carbon atom of the radical derived from monomer 1 but it is best calculated (8) from monomer reactivity ratio data according to Eq. (A2). TT1 = 0.385 log[(r 1A )/0.377(n s )]
(A2)
Here, the symbol A denotes the monomer acrylonitrile. It is truly an astonishing fact that the Hammett a parameter, derived originally from studies of the dissociation of substituted benzoic acids, is equal in value to a simple quantity derived from a knowledge of the monomer reactivity ratios for the reactions of a monomer 1 with (separately) acrylonitrile and styrene. The values of U2 and V2, the respective counterparts of the Q-e scheme's e2 and Q2, are determined by reference to data for the (separate) copolymerizations of monomer 2 with the members of a Basic Monomer Set. These are five monomers for which reliable data exist in the literature: styrene (S); methyl methacrylate (MM); methyl acrylate
(MA); methacrylonitrile (MAN); and acrylonitrile (A). Ideally, monomer reactivity ratios should be known for the copolymerization of the monomer of interest (labelled 2 in this case) with each of these five reference monomers. If the reference monomer is monomer 1 in this context, a plot is made of [log r 12 — log ris] against TT\; the slope of the resulting straight line is — Ui and the intercept on the ordinate axis is — V2, in conformity with Eq. (Al). If data for reactions with all five members of the Basic Monomer Set are not available, use can be made of such data as exists, always provided that styrene and acrylonitrile are among the monomers included. This condition ensures that the data are spread over a wide range of radical polarity, represented by TT\, because styrene has a very low value (zero), while acrylonitrile has one of the highest values known (0.701). In Table 1, each monomer is designated either as Basic or assigned to a category according to the number of members of the Basic Monomer Set for which data have been employed in the determination of its U2 and V2; for category 5, all five Basic monomers were involved, and so on down to category 2, where data for only styrene and acrylonitrile are available. Clearly, the higher the category number, the more reliable the w2 and V2 values. The procedure described thus far is known as the Patterns U, V Scheme (3). For Group 2 monomers, there is no need to make a plot because the use of just two data points permits algebraic solutions to be found. In fact, it can be shown (3) that the following relations hold.
(A3) Substitution in Eq. (Al) leads to the following relationships (A4, A5), giving the two monomer reactivity ratios for the copolymerization of any two monomers, 1 and 2.
(A4)
(A5) Application of Eqs. (A3-A5) corresponds to the Patterns A, S Scheme (4), so-called, because data for reaction with only acrylonitrile and styrene are involved. According to the Patterns A,S Scheme, it is possible to calculate the two monomer reactivity ratios for copolymerization of monomers 1 and 2, if each of them has separately been copolymerized with acrylonitrile and styrene. (The two monomer reactivity ratios for copolymerization of acrylonitrile and styrene are also required. These are taken to be: rAS = 0.04, r SA = 0.38 (3).)
The TT, w, and v values listed in the table below have been derived as explained above, with the Patterns U,V Scheme being used for the monomers in categories 3 - 5 and the Patterns A,S Scheme for those in category 2. The r\$ values are mean values from the figures supplied in Greenley's table, making due allowance for the consistency of the data. B. EXAMPLE Suppose one wants to evaluate the monomer reactivity ratios for the copolymerization of 2-chlorobutadiene (CB) and 2-vinylpyridine (VP). To use the Patterns U,V Scheme for this purpose, it is first necessary to consult Greenley's table of monomer reactivity ratios for data characterizing the copolymerizations of each of these monomers with as many members of the Basic Monomer Set as possible. In fact, in both cases, values exist for reactions with styrene, methyl methacrylate, methyl acrylate and acrylonitrile, but not methacrylonitrile. The TT values for the four useful basic monomers are, respectively, 0.000, 0.339, 0.423 and 0.701. The relevant monomer reactivity ratios are listed in the table below. MONOMER REACTIVITY RATIOS FOR 2-CHLOROBUTADIENE AND 2-VINYLPYRIDINE AND MEMBERS OF THE BASIC MONOMER SET Monomer reactivity ratio
2-Chlorobutadiene
2-Vinylpyridine
rxs rXA rs,x rA,x
6.91 5.18 0.038 0.05
1.26 0.44 0.53 0.10
r MM ,x r MA ,x
0.08 0.06
0.35 0.25
X = 2-chlorobutadiene or 2-vinylpyridine.
Plots of [log r 12 — log ris] against TT\, where 2 = CB or VP, are linear with slopes and intercepts that provide the following u and v values (9). For CB, u = - 2.18, v = 1.44, and for VP, u = - 0.982 and v = 0.323. All the data are now available for substitution in Eq. (Al), first for CB = monomer 1 and VP = monomer 2, and secondly with the monomers' roles reversed, to obtain values of r\i and rj\. The results are rn = 4.26 and r2\ =0.04. The Patterns A,S Scheme can be applied by simply substituting the appropriate monomer reactivity ratio data in Eqs. (A4) and (A5), giving ri2 = 4.71 and r 2 i = 0 . 0 5 . The corresponding experimental results are ri2 = 5.19 and 7*21 =0.06, while the Q = e scheme predicts that ri2 = 1.07 and r2i =0.07. C
TRANSFERCONSTANTS
Transfer constants can be predicted by exactly parallel reasoning (3). It is necessary only to realise that whereas the rate constant for the propagation step of a radical with its own parent monomer appears in the numerator of a monomer reactivity ratio (Vi2 = &11A12X where both rate
constants refer to propagation reactions, it figures in the denominator of a transfer constant because (C 2) 1 = kn/kn, where k\2 represents a transfer reaction between the radical derived from a monomer (species 1) and a transfer agent (species 2); the equations for calculating transfer constants are thus easily obtained from the equations above by replacing log rn by - l o g (C2)1. The only formal difference between the two cases is that, for transfer, there is no symmetrical counterpart of the equations representing reaction of a radical of type 2 with a transfer agent of type 1. Thus, the equivalent of Eq. (Al), for transfer is Eq. (A6), and this enables the Patterns U,V Scheme to be applied to chain transfer. (A6) For use of the Patterns A,S Scheme in transfer, a parallel derivation to that used in copolymerization leads to the following equation, where (C2) s a n d (C 2) A are, respectively, the (known) transfer constants for reaction of the same transfer agent (species 2) with radicals derived from styrene and acrylonitrile (species 1). (A7) Since IT A — 0.701 and r A s = 0 . 0 4 , this equation can be reduced to Eq. (A8) for general use. (A8) The transfer constants used here are taken from two tabulations, one due to Eastmond (10) and one in the Polymer Handbook (11). D.
TABLES OF PARAMETERS
As explained above, each monomer or transfer agent is assigned to a category, designated by Basic or the number 2, 3, 4, or 5, according to the number of members of the
Basic Monomer Set with which this reagent has been reacted to obtain data for the evaluation of w, v and (in the case of monomers) TT. Although it must be true that the higher the category, the more reliable the derived parameters, the difference between Categories 2 and 5 is not so great as might appear at first sight. In all cases, two of the basic monomers involved are styrene, S, (the least polar) and acrylonitrile, A, (the most polar), so the role played by other basic monomers is merely to add intermediate points to what should be a straight line joining the data points for S and A; if the data for these two latter monomers are accurate, intermediate points add little or no value beyond confirmation of the slope and intercept. They do contribute valuable weighting when there are some discrepancies in the data, but parameters have not been recorded here in cases where the discrepancies are large. Where either r\$ or r i A was reported as zero, the value 0.05 has been assigned arbitrarily in order to make it possible to calculate an approximate value for the TT parameter but the values of the u and v parameters are not influenced by this device; entries of this type are printed in italics in Table 1. Sometimes both r\s and n A are reported to be zero; when this happens, TT cannot usefully be estimated but u and v can still be determined, if positive values of r$\ and r A i are available. Nomenclature In the tables below, compounds are listed in alphabetical sequence in accordance with the following rules: The primary listing is based on the root name of the compound and the secondary sequence on the name(s) of the substituent(s) or the esterifying moiety. For example, the compounds, p-methyl styrene, N-vinyl carbazole, and ethyl acrylate, will be found listed under Styrene, p-methyl, Carbazole, N-vinyl, and Acrylate, ethyl, respectively. In deciding on the appropriate order of names, all prefixes (alphanumeric, Greek or whatever) and spaces are ignored, and reliance is placed solely on the alphabetical priority of the strictly chemical part of the name. In styrene, p-methyl, for example, the prefix p- plays no part in determining the place of this name in the list; this is governed by the m in methyl.
TABLE 1. MONOMERS Monomer Acenaphthalene Acetylene, phenyl Aconitate, trimethyl Acrolein Acrolein, methyl Acrylamide Acrylamide, iV-methylol Acrylamide, N-octadecyl Acrylate, benzyl Acrylate, butyl Acrylate, 2-chloroethyl Acrylate, oc-chloro-, methyl
Category
rls
r1A
rA1
4 5 2 5 4 3 4 3 3 3 4 3
0.33 0.33
2.56 0.33
0.27 0.60 0.70 0.48 0.54 0.20 0.18 0.12 0.30
1.11 3.10 1.10 2.43 1.40 0.72 0.97 0.87 1.76
0.02 0.27 4.24 0.78 0.15 0.90 0.60 1.03 1.49 1.11 1.03 O.fe
rSi
log(ri S )
n
3.81 0.32 1.026 0.23 0.26 1.20 0.03 2.08 0.49 0.77 0.53 0.25
-0.4815 -0.4815
0.506 0.159
-0.5686 -0.2219 -0.1549 -0.3188 -0.2676 -0.6990 -0.7447 -0.9208 -0.5229
0.397 0.436 0.237 0.432 0.321 0.376 0.443 0.492 0.457
u
v
1.33 -1.88 -2.88 -2.75 -1.73 -1.82 -3.94 -1.56 -2.68 -2.22 -2.38 -1.55
-0.46 0.37 -0.01 0.59 0.77 -0.07 1.18 -0.35 0.28 0.12 0.25 0.64
References page II - 327
TABLE 1. cont'd Monomer
Category
Acrylate, a-cyano-, methyl Acrylate, 3,4-epoxyhexahydrobenzyl Acrylate, P-ethoxy-, ethyl Acrylate, ethyl Acrylate, methyl Acrylate, octadecyl Acrylate, octyl Acrylate, 2-nitrobutyl Acrylate, a-phenyl-, methyl Acrylate, di-zinc Acrylonitrile Acryloyl chloride Allyl acetate AUyI chloride Aniline, N,N-divinyl Benzothiazole, vinylmercaptoButadiene Butadiene-1-carboxylic acid Butadiene- 1-carboxylate, ethyl Butadiene-1,4-dicarboxylic acid Butadiene, 1,4-dicarboxylate-, diethyl Butadiene, 2-chloroButadiene, 2-fluoroButadiene, 2-trimethylsilyloxyCarbazole, TV-vinyl Cinnamonitrile Citraconimide, TV-methylCrotonaldehyde Crotonate, a-acetyl-, methyl Crotonate, a-carboethoxy-, ethyl Crotonate, a-chloro-, ethyl Crotonate, a-cyano-, ethyl Crotonate, ethyl Crotonate, u-methoxy-, methyl Crotonate, OL-methyl-, methyl Crotonicacid Diallyl phthalate Ethylene Ethylene, tetrachloroEthylene, trichloroEthylene, diphenylFumarate, diethyl Fumarate, diisopropyl Hexatriene, tetrachloroImidazole, yV-vinyl Isoprene Isopropenyl isocyanate Isopropenyl methyl ketone Itaconicacid Itaconic anhydride Maleate, diethyl Maleic anhydride Maleimide, N-(2-chlorophenyl)Methacrylamide, /V-phenylMethacrylate, benzyl Methacrylate, 2-bromoethyl Methacrylate, butyl Methacrylate, isobutyl
rls
rlA
rAl
rSi
log(ri S )
n
u
0.61 1.97
0.68 0.39
0.01 0.25
0.05 0.27
-0.2147 0.2945
0.180 -0.110
-1.09 -1.95
1.20 0.57
0.17 0.18 0.26 0.125 0.12 1.28 0.90 0.04 0.02
0.87 0.85 1.20 0.84 1.76 6.70 0.24 1.00 1.00
-0.7696 -0.7447 -0.5850 -2.0000 -0.9208 0.1072 -0.0458 -1.3980 -1.6990
0.436 0.421 0.417 0.482 0.610 0.438 -0.060 0.701 0.815
0.04 0.033 0.42 1.40 5.55 0.3 0.52
0.04 0.05 0.18 0.29 7.5 3.2 4.00
2.42 0.80 1.42 3.15 1.98 0.67 0.08 0.41 1.00 1.20 6.57 2.80 0.246 0.19 0.06 0.12 0.3 0.20
-1.3980 -1.482 -0.3768 0.1461 0.7443 -0.5229 -0.2840
0.162 0.231 0.020 -0.100 0.213 0.559 0.502
-0.16 -1.99 -2.34 -3.01 -3.01 -2.39 -2.13 -1.39 -2.60 -3.50 -0.37 -0.39 -0.08 -0.38 -0.30 -2.00 -2.57 -2.18
-1.67 0.08 0.16 0.24 0.41 0.44 1.20 -0.04 0.42 1.09 -1.97 -1.53 -0.73 -0.38 0.41 0.94 0.92 0.82
2
0.55
2.79
0.29
0.09
-0.2596
0.433
-2.73
1.05
4 3 2
6.91 1.67 1.20
5.18 0.60 0.07
0.05 0.077 0.036
0.038 0.22 0.64
0.113 -0.0095 -0.324
-2.18 -1.32 -0.21
1.44 0.51 0.19
0.05 0.24 0.07
0.36 0.60 0.01
-0.25 -2.74 -2.77 -2.33 -2.72 -2.51
-0.58 -0.41 0.59 -1.17 -0.43 -0.92
0.02
0.06
0.04
-0.71 0.59 -1.43 -1.26
5 2 2 3 B 3 2 3 5 2 B 4 3 3 2 3 5 2 2 2
4 2 3 2 2 2 2 2 2 2 2 2 4 3 3 4 5 3 5 4 3 4 3 2 3 2 3 4 3 3 3 3 4 4
46.98 0.81 0.75 0.61 0.39 0.35 0.06 1.10 0.38 0.10 90 36 5.38 2.6 0.57 0.115 0.12 0.15
0.39 8.46 0.53 25 8.68 18.7
5.82 2.55 0.145 14.7 2.7 8.24
0.05
9.53 11.4 25.2 1.00
5.13 0.26 27 18.4
0.02
0.05
2.97
30.7
0.076 0.05
0.0385 0.05
0.06 0.055 0.85 0.68 1.84 0.096 0.48 0.12 0.55 0.04 0.011 0.021 0.88 0.47 0.41 0.53 0.42
0.05 0.20 4.01 0.832 0.45 0.1 0.95 0.86 4.83 0.05 0.05 1.078 0.71 0.96 2.38 0.98 1.05
21 3.5 7 463 64.5 0.05 9 16 0.234 3.39 0.03 0.24 0.33 0.59 0.034 16 6 0.956 0.381 0.2 0.31 0.291 0.217
20 23.5 14.88 195 14.6 0.335 0.33 0.4 0.123 8.38 0.458 7.48 0.38 0.26 0.031 7.03 0.36 0.0245 1.24 0.52 0.32 0.6 0.54
0.8395 0.2227 0.0792
v
-1.3010 -0.6198 -1.1549
0.491 0.315 -0.164
-1.6990
0.345
-1.3980
0.199
-2.38 -4.35 -1.96 -0.19
-1.699
0.315
-0.55
-1.49
-1.301 -1.12 -1.301
0.048 0.162
-2.03 -0.77 -1.57 - 2.60 -2.87 - 0.74 -4.05 -4.31 -2.39 -1.44 -0.32 0.14 -1.91 -2.50 -2.06 -2.51 -5.20 -4.23 -1.26 -1.40 -1.97 -1.49 -1.43
-1.30 -1.35 -1.23 - 2.36 -1.20 0.23 0.56 0.17 0.86 -0.92 0.34 -0.87 0.42 0.54 1.51 -0.83 1.22 1.32 -0.08 0.26 0.47 0.26 0.27
-1.222 -1.26 -0.0706 -0.1675 0.2648 -1.0177 -0.3188 -0.9208 -0.2596 -1.398 -1.959 -1.688 -0.0555 -0.3279 -0.3872 -0.2757 -0.3768
0.131 0.377 0.421 0.195 -0.074 0.170 0.276 0.491 0.526 0.199 0.416 0.826 0.126 0.281 0.455 0.267 0.315
TABLE 1. cont'd Monomer Methacrylate, 2-chloroethyl Methacrylate, ferrocenylmethyl Methacrylate, glycidyl Methacrylate, 2-hydroxyethyl Methacrylate, methyl Methacrylate, 3,5-dimethyladamantyl Methacrylate, 2,2,6,6-tetramethyl4-piperidinylMethacrylate, phenyl Methacrylic acid Methacrylonitrile Methacryloylacetone Methylenebutyrolactone Naphthalene, 1-vinylOct-l-ene,6,6-dimethyl4,8-dioxaspiro(2,5)Oxazoline, 2,2-isopropenylOxazoline, 2,2-isopropenyl4,4-dimethylPentadienoate, rra^-4-ethoxy2,4-,ethyl Phthalimide, N-vinylPropene, 3,3,3-trichloroPyridazinone, 3-(2-vinyl)-6-methylPyridazinone, 3-(2-vinyl)-6-methyl4,5-dihydroPyridine, 2-methyl-5-vinylPyridine, 2-vinylPyridine, 2-vinyl-5-ethylPyridine, 4-vinylSilane, 3-methacryloxypropyl, trimethoxyStyrene Styrene,/7-acetoxyStyrene, 3-tri-rc-butylstannylStyrene, 2,5-dichloroStyrene, p-chloromethylStyrene, p-1 -(2-hydroxypropyl)Styrene, a-methoxy Styrene, a-methyl Styrene, p-methyl Succinimide, N-vinyl Tetrazole, 1-vinylTetrazole, 5-phenyl-2(4 '-vinyl)-phenylToluenesulfonamide, N,N-methyl-vinylTriallyl citrate Vinyl acetate Vinyl benzoate Vinylbenzoic acid, pVinyl benzyl methyl carbinol Vinyl bromide Vinyl isobutyl ether Vinyl butyl sulfide Vinyl isobutyl sulfide Vinyl tert-butyl sulfide Vinyl chloride Vinyl chloroacetate Vinyl dichloroacetate
Category
rls
r1A
rA1
3 2 3 3 B 3
0.3 0.01 0.5 0.64 0.46 0.63
1.30 0.82 1.32 1 1.32 1.30
2
0.30
3 4 B 2 3 2 2
0.51 0.524 0.33 1.66 0.7 2.02 0.271
4 4
0.64 0.68
2
12.2
rSi
log(ri S )
n
u
v
0.14 0.15 0.14 0.2 0.138 0.19
0.37 3.6 0.415 0.48 0.5 0.89
-0.5229 -2 -0.301 -0.1938 -0.3372 -0.2007
0.406 0.898 0.325 0.238 0.339 0.283
-1.39 -0.03 -1.32 -1.45 -1.18 -1.04
0.42 -0.56 0.34 0.34 0.23 0.10
0.02
0.63
-0.5229
0.806
0.14
0.20
0.46 0.2 1.67 3.74 1.10 0.451 1.484
0.36 0.04 0.43 0.01 0.09 0.107 0.985
0.25 0.24 0.38 0.067 0.09 0.699 1.93
-0.2924 -0.2807 -0.4815 0.2202 -0.1549 0.3054 -0.567
0.146 0.002 0.432 0.297 0.237 -0.089 0.446
-2.22 -0.95 -2.08 -0.82 -1.98 -0.83 -1.58
0.62 0.39 0.44 1.17 0.88 0.16 -0.29
0.52 1.83
0.13 0.24
0.67 0.55
-0.1938 -0.1675
0.127 0.327
-0.95 -1.51
0.19 0.31
5.40
0.01
0.04
1.0864
0.025
-1.14
1.40
14
2 2 3
0.07 0.05 0.85
0.24 0.10 0.19
0.43 12.2 0.32
6.27 6.9 0.90
-1.155 -1.301 -0.0706
0.367 0.277 -0.089
-0.33 -2.35 -1.36
-0.80 -0.84 0.09
3
0.13
0.02
0.74
5.92
-0.8861
-0.151
-0.73
-0.57
4 4 4 4 2
0.85 1.26 1.09 0.69 0.868
0.31 0.44 0.43 0.375 3.79
0.16 0.10 0.04 0.10 0.094
0.70 0.53 0.74 0.52 0.425
-0.0706 0.1004 0.03743 -0.1612 -0.0615
-0.007 -0.014 0.006 0.06 0.408
-1.04 -0.98 -0.20 -0.94 -1.06
0.28 0.32 0.12 0.30 0.37
B 2 2 4 2 3
1.00 1.26 0.03 0.40 1.12 0.91
0.38 0.40 0.001 0.08 0.56 0.53
0.04 0.07 4.88 0.24 0.067 0.10
1.00 0.86 18.5 0.236 0.62 0.97
0 0.1004 -1.5229 -0.3979 0.0492 -0.041
0 -0.030 -0.407 -0.107 0.046 0.071
0.00 -0.44 -1.17 -1.98 -0.62 -0.60
0.00 0.07 -1.27 0.67 0.21 0.16
5 3 4 4 2 2
0.07 0.60 0.993 0.033 0.184 2.2
0.05 0.143 0.33 0.516 0.314 1.4
0.06 0.047 0.05 0.116 0.54 0.32
2.51 1.1 0.891 7.71 3.85 0.48
-1.1549 -0.2219 -0.0031 -1.4815 -0.7352 0.3424
0.105 -0.077 -0.021 0.623 0.251 0.088
0.41 -0.04 -0.20 0.75 -0.78 -1.75
-0.49 -0.03 0.08 -1.02 -0.59 0.32
3
0.05
0.04
0.42
5.6
-1.301
-0.40
-0.66
2 5 3 3 3 3 3 2 4 2 4 2 2
0.076 0.02 0.06 1.03 0.94 0.054 0.32 0.05 0.05 0.158 0.055 0.03 0.28
0.05 0.05 0.019 1.63 0.54 0.06 0.40 0.041 0.027 0.05 0.045 0.09 0.04
1.76 4.78 5.03 0.06 0.11 2.52 0.49 0.086 0.074 0.09 3.29 0.34 3.85
-0.49 -0.44 -0.86 -1.03 -0.66 -0.82 0.41 0.14 0.18 0.41 -0.90 1.04 -0.98
-1.30 -1.56 -1.45 0.50 0.18 -1.27 -1.41 -0.43 -0.36 -0.64 -1.16 -1.65 -1.30
20 48 31.56 0.282 0.98 16.6 24.5 2.69 2.38 4.36 18.7 45 20
-1.12 -1.699 -1.222 0.0124 -0.027 -1.268 -0.495 -1.3.01 -1301 -0.8013 -1.26 -1.523 -0.553
0.126 0.092 0.315 -0.031 0.238 0.069 0.179 0.200 0.128 0.059 -0.029 0.128 0.345 -0.162
References page 11-327
TABLE 1. cont'd Monomer
Category
Vinyl 2-chloroethyl ether Vinyl chloromethyl ketone Vinyl cymantrene Vinyl dodecyl ether Vinylene carbonate Vinyl ethyl ether Vinyl ethyl oxalate Vinyl ethyl sulfide Vinyl ethyl sulfoxide Vinylferrocene Vinyl hendecanoate Vinylidene chloride Vinyl isocyanate Vinyl isothiocyanate Vinyl methyl ketone Vinyl phenyl ether Vinyl phenyl sulfide Vinyl stearate Vinyltriethoxysilane Vinyl-tris(trimethoxysiloxy) silane Vinyltrimethylsilane
ri S
r1A
rA1
rSi
0.07 0.507 0.096
0.05 0.88 0.05
1.09 0.064 0.446 0.82 14.9 0.69 1.34 0.075 1.63 0.173 1.88 0.64 0.19 0.36 0.61 2.50 0.11 4.64 6.59 3.90
160 0.127 2.32 41.5 70 100 5.62 5.38 7.82 3.57 24.89 1.79 8.13 0.725 0.29 1.70 3.8 15.96 20.86 25
-0.740 -1.000 -0.7696 -1.301 -0.9686 -1.097 -0.3615 -0.495 -2.000 -0.854 -1.301 -1.301 -2.301
4.08
10.32
-1.301
4 3 2 2 3 4 3 3 3 3 3 5 3 3 2 3 3 3 2 3
0.05 0.05
0.08 0.06
0.182 0.10 0.17 0.05 0.1075 0.08 0.435 0.32 0.01 0.14 0.05 0.05 0.005
0.055 0.05 0.158 0.09 0.32 0.16 1.40 1.57 0.23 0.03 0.078 0.41 0.075
3
0.05
0.10
log(riS)
n
u
v
-1.155 -0.295 -1.018
0.105 0.255 0.053
-0.038 0.046 0.149 0.260 0.346 0.277 0.357 0.427 0.685 -0.090 0.236 0.513 0.616
1.18 -1.58 -0.97 0.44 -1.03 1.11 -1.11 0.66 -1.02 -0.12 -0.34 -1.34 0.29 -1.56 -2.46 -2.23 0.20 -1.19 -1.28 -0.84
-2.CX 0.9' -0.3 -1.6: -1.9: -2.Ol -0.7 -0.7' -0.9' -0.51 -1.3. -0.2< -0.91 0.1! 0.5< -0.31 -0.5! -LL -1.3: -1.4
0.29 -1.301
0.252 0.192
0.277
-1.41
-1.1:
TABLE 2. TRANSFER AGENT Transfer agent Acetaldehyde Acetamide, N,N-dimethylAcetic acid Acetone Acetonitrile Allyl chloride Aluminium, hydrodiisobutyl Aluminium, triethyl Aluminium, triisobutyl Aniline Aniline, WV-dimethylAnthracene Benzene Benzene, bromoBenzene, tert-butylBenzene, chloroBenzene, ethyl/7-Benzoquinone Borane, tributyl Butanone Butyl alcohol sec-Butyl alcohol tert-Butyl alcohol Butyl mercaptan Butyric acid, 4-hydroxy-y-lactone Cadmium, dibutyl Carbonic acid, cyclic ethylene ester Carbon tetrabromide, Carbon tetrachloride, Chloroform Copper(II) chloride Cumene Cyclohexane
Category 3 2 3 4 2 2 3 4 2 4 4 3 4 3 3 4 4 3 3 3 3 3 3 4 2 2 2 3 5 3 3
Cs 0.00085 0.00046 0.000222 0.000032 0.000044 0.00151 27.5 12.5 28.5 0.0020 0.0053 2 0.000003 0.000178 0.000005 0.000041 0.00007 227 0.00348 0.0005 0.00016 0.000056 0.00003 21.99 0.00004 0.117 0.000024 See methane, tetrabromoSee methane, tetrachloro0.00005 10300 0.00009 0.000005
CA
U
V
0.0047 0.0005 0.000081 0.000113 0.0002 0.000595 0.394 0.059 28 0.0050 0.0547 1.8 0.000246 0.000136 0.000193 0.000079 0.003573 1.3 0.647 0.000643 0.001542 0.009755 0.000044 0.409 0.00007 5.5 0.000013
-0.93 -1.94 -2.61 -1.28 -1.06 -2.57 -4.60 -5.46 -2.01 -1.43 -0.55 -2.29 0.80 -2.07 0.26 -1.49 0.49 -5.19 1.29 -1.82 -0.57 1.23 -1.75 -4.42 -1.66 0.39 - 2.36
-3.12 -3.34 -3.80 -4.59 -4.36 -2.82 1.21 0.79 1.45 -2.70 -2.20 -0.01 -5.65 -4.73 - 5.20 -4.51 -4.28 2.29 -2.95 -3.55 -4.05 -4.62 -4.62 1.23 -4.39 -0.93 - 4.63
0.000577 67.19 0.004141 0.000206
-0.49 -4.61 0.38 0.25
-4.17 4.33 -4.07 -4.63
TABLE 2. cont'd Transfer agent Dimethyl sulfoxide Diphenylamine-T Ethane, 1,2-dichloroEthane, 1,1,2,2-tetrachloroEther, dodecyl vinyl Ethyl acetate Formamide, WV-dimethyloc-D-Glucoside, methyl, 6-deoxy-6-mercaptooc-D-Glucoside, methyl-, di-O-benzyla-D-Glucoside, methyl-, 2,3,4,6-tetra-O-acetyla-D-Glucoside, methyl-, 6-(p-toluene sulfonyl)a-D-Glucoside, methyl-, 6-O-triphenylmethylP-D-Glucoside, methyl-, 6-deoxy-6-dipropylaminoGlycerol Heptanol, dodecafluoroIndium, triethyl Iron(III) chloride Isobutyl alcohol Isobutyronitrile Lead, tetraethyl Mercury, diethyl Methane, dichloroMethane, tetrabromoMethane, tetrachloroMethane, nitroMethanol Octadiene, 2,6-dimethylOxime, acroleinOxime, crotonaldehydeOxime, ethyl isopropenyl ketoneOxime, methacroleinOxime, methylacroleinOxime, methyl isopropenyl ketoneOxime, methyl vinyl ketonePentanol, octafluoroSilane, tetraethyl Stibine, tributyl Tin, tetrabutyl Toluene Triethylamine Tripropylamine Zinc, diethyl
E. 1. 2. 3. 4.
Category
Cs
CA
U
V
3 3 3 3 2 3 2 2
0.00005 0.00009 0.0002 0.00108 0.000372 0.00155 0.0001 5.5
0.000029 0.07 0.000147 0.000311 0.000495 0.000254 0.000278 0.13
-2.32 2.18 -2.17 -2.73 -1.82 -3.07 -1.36 -4.31
-4.44 -4.57 -3.82 -3.39 -3.43 -3.28 -4.00 0.74
2
0.0062
0.009
-1.76
-2.21
2
0.0002
0.003
-0.32
-3.70
2
0.0002
0.001
-1.00
-3.70
2
0.0021
0.008
-1.17
-2.68
2
0.0022
0.11
0.43
-2.66
2 3 3 3 3 2 2 3 2 4 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 5 4 4 2
0.002864 0.001333 1.76 536 0.00005 0.00027 0.000124 0.000034 0.000015 2.2 0.01 0.001 0.000074 0.0002 1.08 0.15 0.43 1.3 0.04 0.11 0.27 0.001136 0.000812 0.0058 0.000371 0.000012 0.00071 0.00242 0.366
-2.12 -3.20 -3.25 -5.44 0.41 -1.95 1.28 1.35 -0.13 - 4.04 -4.85 -2.30 -2.23 1.37 0.53 -0.35 -1.45 -0.77 1.03 -0.30 -1.06 -3.10 -1.30 2.78 -0.06 0.26 1.85 1.32 -1.08
-2.54 -2.85 -0.08 2.43 -4.54 -3.57 -3.91 -4.60 -4.82 0.37 -2.09 -3.09 -4.18 -3.79 -0.02 -1.06 -0.37 0.13 -1.25 -0.90 -0.67 -2.93 -3.02 -3.27 -3.69 -4.84 -3.04 -2.89 -0.44
0.00235 0.00019 0.222 3.33 0.002406 0.00029 0.0243 0.00722 0.000306 0.085 0.000099 0.0006 0.00005 0.045 62.6 2.05 1.03 9.41 5.35 1.71 1.20 0.00019 0.0021 11.1 0.00808 0.00032 0.304 0.428 1.6
REFERENCES
R. Z. Greenley, "Polymer Handbook", this volume, p. 181. R. Z. Greenley, "Polymer Handbook", this volume, p. 309. A. D. Jenkins, J. Polymer ScL, 34, 3495 (1996). C. H. Bamford, A. D. Jenkins, R. Johnston, Transactions. Farad. Soc, 55, 418 (1959). 5. C. H. Bamford, A. D. Jenkins, J. Polymer ScL, 53,149 (1961). 6. C. H. Bamford, A. D. Jenkins, Transactions. Farad. Soc, 58, 530 (1962).
7. A. D. Jenkins, Eur. Polymer J., 1, 177 (1965). 8. A. D. Jenkins, Macromol. Chem. Phys. Rapid Commun., 17, 275 (1996). 9. A. D. Jenkins, J. Jenkins, Macromol. Chem. Phys., Macromol. Symp., I l l , 159 (1996). 10. G. C. Eastmond, Comprehensive Chemical Kinetics, (C. H. Bamford, C. F. H. Tipper (Eds.)), 14A, 105 (1976). 11. A. Ueda, S. Nagai, "Polymer Handbook", this volume, p. 97.
C o p o l y m e r i z a t i o n M e t a l l o c e n e - C a t a l y z e d
P a r a m e t e r s
o f
C o p o l y m e r i z a t i o n s
G e r h a r d F i n k , W o l f JCirgen R i c h t e r Max-Planck-lnstitut fur Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45466 Mulheim an der Ruhr, FR Germany
A. Introduction 11-329 B. A Brief Theoretical Outline of Copolymerization Reactions 11-329 1. First-Order Markov Model II-330 2. Second-Order Markov Model II-330 C. Calculation of the Copolymerization Parameters 11-331 1. First-Order Markov Model 11-331 1.1. Copolymerization Parameters Deduced from the Mayo-Lewis Equation 11-331 1.2. Determination of Copolymerization from the Sequence Distribution (Triad Distribution) Parameters 11-331 2. Second-Order Markov Model M-332 3. Example M-332 D. Table of Copolymerization Parameters II-333 E. List of Catalysts/Cocatalysts Used II-336 F. References II-336 A.
the copolymerization behavior, and, in particular, determination of copolymerization parameters requires correct modeling, i.e. adequate Markov-statistics. B. A BRIEF THEORETICAL OUTLINE OF COPOLYMERIZATION REACTIONS
Various mathematical models have been applied to copolymerization reactions induced by Ziegler-catalysts. Wall (1) assumed the velocity of the monomer addition Mi and M 2 to be independent of the previously integrated monomeric unit (zero-order Markov model):
R = Polymer chain This scheme gives rise to the following equation for a copolymerization reaction:
INTRODUCTION
In contrast to radical and ionic polymerization reactions in which the incoming monomer always adds to the end of the growing chain
Mayo and Lewis (2) extended this model by including the influence of the last built-in monomer into the chain during the subsequent step (first-order Markov model):
the most distinct feature of Ziegler-Natta-catalysis is the attachment of a monomer molecule to a highly structured catalyst complex (which may be homogeneously solvated or heterogeneously fixed to a surface) and its insertion between the catalyst complex and the growing chain:
Since the structural features of the catalyst - in particular the steric bulk of ligands, the bite angle of metallocenes, the configuration and conformation on the one hand, and the increasing space-filling demand of the growing chain and of the various monomers on the other do influence the addition of the monomers, elucidation of
This results in the so-called Mayo-Lewis equation,
with ri = k\\/k\2 and r 2 = £22/^21 • Taking the effect of
the last two built-in monomers into account, Merz, et al (3) developed a second-order Markov model. This 'penultimate model' necessarily results in a more complex kinetic scheme:
with P n + P 1 2 = 1 and P 21 + P22 = 1 The proportion of the Mi and M 2 units (1Pi or 1 P 2 ) in the copolymer is also determined by reactivity probabilities: With m = km/km, r2\ = £211/^212, ^22 = &222A221 and 7*12 = k \22/k 121, the following copolymerization equation is obtained:
with x= [Mi]/[M2]. Expanding this model even further to the influence of the last three monomeric units, Ham (4) proposed a third-order Markov model. However, due to the many parameters involved, it has been of little practical use. Thus, most authors restrict themselves to first- or secondorder Markov models when dealing with Ziegler-Nattacatalysis for copolymerization, and this is elaborated below.
1 1 giving Pi - P 2 i/(Pi 2 +P21) and P2 = Pi2/ (Pn+Pn). All the potential sequence distributions can thus be calculated. Consider, for example, the triad distributions:
1. First-Order Markov Model
The Mayo-Lewis equation describes the composition of a copolymer as a function of the composition of the monomer mixture and their respective copolymerization parameters. These parameters not only determine the composition of the resulting copolymer, but also its microstructure, e.g. the distribution of the sequence length. A knowledge of the ratio of the starting monomers and their copolymerization parameters enables the sequence length distribution to be calculated. The reactivity probabilities Ptj are defined (5,6) that give the probability of the monomer j adding to the polymer chain with the terminating monomer /:
The triad distribution allows the calculation of the true copolymerization parameters. For a given polymer, the triad distribution is deduced from experimental 13C-NMR spectra (7) (see below). 2. Second-Order Markov Model
The kinetic scheme for this model gives rise to eight reaction probabilities Pijk that result from the probability of the monomer k adding to the polymer chain with the terminating monomers ij. The reactivity probability P m is
given for instance as
1. First-Order Markov Model
with P1n +Pm = 1, Pm + Piii = 1, ^122+^121 = 1, ^211+^212 = 1. The triad distribution is calculated in a manner analogous to the first-order Markov model:
7.7. Copolymerization Parameters Deduced from the Mayo-Lewis Equation The Mayo-Lewis equation calculates the composition of the copolymer formed as a function of the ratio of the monomer concentration at a given time. At arbitrary intervals these values are generally inaccessible; thus a sufficiently small interval (a small percent of the total conversion) is taken and the relative change of the monomer concentration d[M 2]/d[Mi] is assumed to be the composition of the copolymer ([mi], [1112]) itself according to
l
Pij is the frequency of the diad //, and is calculated as follows:
It is advisable to keep the monomer ratio [M2]/[Mi] constant during polymerization by constantly feeding both monomers, or at least the most reactive monomer. To determine the copolymerization parameters the experiments are run with varying ratios of the starting monomers, and their compositions are subsequently measured. The data obtained can be analyzed by linear or nonlinear methods. Linear Methods: Mayo and Lewis (2), Fineman and Ross (8), Kelen and Tudos (9) Nonlinear Methods: Behnken (10), Tidwell and Mortimer (11), Braunet al. (12) Independent of the analytical methods the copolymerization parameters derived from the Mayo-Lewis equation have some major drawbacks, but do enable a part of the information contained in each copolymerization experiment to be extracted, namely the integral composition of the copolymer. A series of experiments is necessary to obtain the copolymerization parameters. Furthermore, using this approach it cannot be decided whether the application of the first-order Markov model is valid or not. One may even obtain a nearly perfect Fineman-Ross plot, where other methods show that a first-order Markov model cannot be applied.
It results in
and
7.2. Determination of Copolymerization Parameters from the Sequence Distribution (Triad Distribution)
Once the copolymerization parameters of a catalyst system with a given ratio of monomers are known, the composition of the copolymer and all its sequence distributions result, e.g., the complete microstructure of the copolymer is revealed. These parameters characterize any catalyst system and enable different systems to be compared. The major practical problem is the choice of the adequate statistical model.
As mentioned above, a knowledge of the copolymerization parameters enables all the sequence distributions to be calculated. Or inversely, experimentally determined sequence distributions yield the copolymerization parameters. In the simplest case, intensities of appropriate single sequences can be compared. The results are even more reliable, if the determination of the copolymerization parameters is based on the maximal accessible information on the microstructure of the copolymer. To derive the rparameters from the overall triad distribution is the safest way (13). This may be done by calculating a triad distribution based on a first-order Markov model and optimizing by variation of the reaction probabilities Ptj until the best fit between calculated and experimental data
The
diad
frequency
C. CALCULATION OF THE COPOLYMERIZATION PARAMETERS
References page II - 336
is reached. Based on the optimized reaction probabilities the copolymerization parameters r\ and r2 are calculated according to the following equations:
This, procedure for determining the copolymerization parameters is superior to the Mayo-Lewis approach. While the latter requires several experiments, using the above approach, all the information can be obtained from one experiment. To determine the copolymerization parameters from the triad distribution, six variables are available, five of which are independent. The system is over-determined and thus allows critical evaluation.
Randall (7) found a way to avoid this problem by creating a "collective assignment method". Here the complete triad distribution results from combining the experimental spectral information with the relation between different n-ades. In the first step the 13C-NMR spectrum of an ethene/oc-olefin copolymer is split into several spectral areas given by signal overlap. The 13C-NMR spectra of ethene/propene copolymers, for example, are divided into eight appropriate spectral areas A to H, as shown in Fig. 1. The integrals Tx of different spectral areas are expressed by the number of contributing triads ending up in the complete triad distribution by appropriately combining several TVdata. Randall exemplified this method in detail for ethene/propene-, ethene/1-butene-, and ethene/1-hexenecopolymerizations (7). The resulting triad distribution allows the composition of the copolymer
2. Second-Order Markov Model The second-order Markov model gives four copolymerization parameters, which are gained from the sequence distribution (full triad distribution) with a high degree of reliability. The calculated triad distribution from the second-order Markov model is optimized by varying the reaction probabilities P^ until the best fit is reached. The four copolymerization parameters are calculated from reaction probabilities P^ as follows (13-15):
and the average sequence length:
to be calculated. 3. Example
The second-order Markov model results in four copolymerization parameters from six variables based on triad distribution. A higher degree of determination clearly is desirable to justify this copolymerization model. However, the complete distribution is not obtained from 13C-NMR spectra of ethene/oc-olefin copolymers. The full triad distribution does not exhaust the full information of the spectra, since some peaks exhibit tetrad or even pentad sensitivity. Cheng (16,17) suggested that all recorded peaks of a 13C-NMR spectrum should be included to calculate the copolymerization parameters. Arbitrarily chosen reaction probabilities give rise to a polymer chain built at random, and its 13C-NMR spectrum is calculated. This spectrum is superimposed on the experimental one and optimized by varying the starting values, until the minimal difference is reached. Since the 13C-NMR spectra of ethene/oc-olefin copolymers display many overlapping peaks, the quality of the spectra simulation very much influences the success of this method.
To demonstrate which model describes the experimental results best, the following table from a recent publication by Fink is reproduced (15). It is based on ethene/1-octene copolymerization experiments using a homogeneous metallocene/MAO catalyst.
area C area B
area D area F area H area E area G
area A
ppm Figure 1. 13C-NMR spectrum of an ethene/propene copolymer.
COMPARISON BETWEEN THE EXPERIMENTAL MEASURED TRIAD DISTRIBUTION AND THE CALCULATED TRIAD DISTRIBUTION ACCORDING TO THE FIRST- (M1) AND THE SECOND-ORDER (M2) MARKOVIAN-STATISTIC OF THE ETHYLENE (E)/1 -OCTADECENE (O) COPOLYMERIZATION0 [O]/[E] in solution 0.28
1.39
1.41
2.84
7.14
14.18
Model
EEE
EEO+ OEE
OEO
OOO
EOO + OOE
EOE
Exp. Ml M2 Exp. Ml M2 Exp. Ml M2 Exp. Ml M2 Exp. Ml M2 Exp. Ml M2
0.976 0.980 0.976 0.878 0.878 0.878 0.883 0.883 0.882 0.795 0.798 0.795 0.878 0.738 0.731 0.718 0.733 0.718
0.014 0.004 0.014 0.077 0.078 0.078 0.074 0.074 0.072 0.118 0.124 0.117 0.143 0.158 0.143 0.112 0.153 0.111
0.000 0.000 0.001 0.004 0.002 0.003 0.005 0.002 0.003 0.011 0.005 0.010 0.020 0.008 0.019 0.046 0.008 0.045
0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.006 0.011 0.001 0.011 0.010 0.005 0.010
0.001 0.004 0.001 0.004 0.004 0.004 0.005 0.006 0.006 0.008 0.010 0.008 0.011 0.014 0.011 0.030 0.035 0.031
0.008 0.000 0.008 0.038 0.038 0.039 0.033 0.035 0.036 0.063 0.062 0.064 0.084 0.080 0.085 0.084 0.066 0.085
Rb ( x 106)
50 0.22 0 0.3 0 6.27 20 0.64 90 0.27 610 0.60
T p = 60 0C, Kat: iPr(CpFlu)ZrCl2 and MAO, [Zr] = 7.56 x l(r 6 mol/l, Al/Zr = 9800. b R is the sum of the least squares divided by the number of measured values.
Second-order Markov statistics is only applicable when there is a sufficiently high comonomer concentration in solution, and enables the formation of a-olefin/ a-olefin dual-blocks. Now the insertion of another a-olefin unit into this dual-block sequence is preferred to that into in a single-block. The complete triad distribution is gained by this procedure and it has to be performed over a wide range of the monomer/comonomer ratio in solution.
If the experimentally determined triad distribution is compared with the calculated values based on a first-order or alternatively on a second-order Markov model (Mi or M 2 of the table), both models give a reasonable good fit up to a monomer/comonomer ratio in solution of 1.5. Beyond a ratio of 3, however, the second-order Markov model proves to be the better approximation as indicated by the sum of the error squares divided by the number of experimental values (R of the table). D.
TABLE OF COPOLYMERIZATION PARAMETERS
Monomer/ comonomer
r\
r2
Ethene/propene 6.26 6.61 18.6 2.57 2.90 15.7 16.1 20.6 12.43 5.1 1.3 5.60 4.23 25.42 13.75 16.53 19.61 24
0.11 0.06 0.032 0.39 0.28 0.009 0.025 0.074 0.08 0.14 0.2 0.13 0.12 0.18 0.0085
r\\
r2\
r2i
ru
3.4 4.1
2.2 3.9
0.270 0.153
0.153 0.065
Cat./ cocat. 19 28 24 24 2 24 25 1 7 35 29 24 19 24 28 13 12 7 11 4
Remarks
Aa
B^ B B B B B
r Po i y (0C) 25 25 25 50 36 50 50 50 50 50 120-220 0 25 40 40 40 40 40 40 50
Model tested
Analytical method*
Refs.
Ml; M2 Ml; M2 Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml
C.T.A. C.T.A. R-R. E-R. R-R. See Ref. 20 See Ref. 20 See Ref. 20 See Ref. 20 See Ref. 20 R-R. R-R. R-R. See Ref. 24 See Ref. 24 See Ref. 24 See Ref. 24 See Ref. 24 See Ref. 24 R-R.
13 13 18 18 19 20 20 20 20 20 21 22 22 23 23 23 23 23 23 25
*C.T.A. - Complete Triad Analysis (7); D.A. - Diad Analysis (28); R-R. - Pineman-Ross (8); K.-T. - Kelen-Tiidos (9); M.-L. - Mayo-Lewis (2).
References page II - 336
Monomer/ comonomer
r\ 19.5 50 48 24 250 60 3.9 4.4 5.5
ri
20.2 2.5 42.28 43.35 61.56 99.43 4.71 6.36 8.16 10.6 10.1 7.5 10.1 18.9 19.5 10.7
Remarks
B B B
Model tested
Analytical method
Refs.
50 50 50 50 50 50 40 60 40
Ml Ml Ml Ml Ml Ml Ml Ml Ml
E-R. E-R. E-R. E-R. E-R. E-R. see ref. 24 see ref. 24 see ref. 24
25 25 25 25 25 25 26 26 26
Tp0Iy (0C)
2.9 6.8
0.21 0.085
0.041 0.017
19 28 24 24 24 37 37 37
25 25 30 50 70 30 50 70
Ml; M2 Ml; M2 Ml Ml Ml Ml Ml Ml
C.T.A. C.T.A. E-R. E-R. E-R. E-R. E-R. E-R.
13 13 27 27 27 27 27 27
3.2 10.3
2.6 6.4
0.150 0.111
0.065 0.022
19 28
25 25
Ml; M2 Ml; M2
C.T.A. C.T.A.
13 13
0.034 0.024 0.022
26 26 6 6 24 24 12 12 6 6 6 6 19 19 19
60 60 60 60 60 60 60 60 20 40 60 70 25 40 60
Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml; M2 Ml; M2 Ml; M2
E-R. D. A. E-R. D. A. E-R. D. A. E-R. D. A. E-R. E-R. E-R. E-R. C.T.A. C.T.A. C.T.A.
29 29 29 29 29 29 29 29 30 30 30 30 15 15 15
85 85 60 60 60 60 0 20 40 60 40 60 40 40 40 40
Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml
D.A. D.A. E-R. D.A. E-R. D.A. C.T.A. C.T.A. C.T.A. C.T.A. see ref. 24 see ref. 24 C.T.A. C.T.A. C.T.A. C.T.A.
31 31 29 29 29 29 32 32 32 32 26 26 33 33 33 33
4.58 6.60 8.85
0.130 0.109 0.098
0.55 0.035 0 0.03 0 0.23 0.18 0.14 0.11 0.03 0.07 0.118 0.014 0.013 0.076
Ethene/ 1-octadecene
Cat/ cocat.
3.6 7.9
0.027 0 0.003 0 0.013 0 0.005 0 0.004 0.005 0.005 0.005
Ethene/ 1-dodecene
Ethene/styrene Ethene/2-allylnorbornane
r\i
3 8 6 27 10 9 37 37 24
5.93 7.95 10.08 Ethene/ 1-octene
rii
0.05 0.03 0.04 0.17 0.10 0.21
Ethene/ 1-hexene 32.67 44.75 62.31 74.60 31.00 36.00 88.00 86.70 55 54 52 79
rn
0.015 0.007 0.015 0.029 0.002 0.12 0.12 0.11
Ethene/ 1-butene 19.4 23.6 29.2 5.4 6.6 6.8
/*n
6 5 26 26 6 6 32 32 32 32 24 24 32 28 30 31 7.2 12.0
5.0 5.7
11.2 14.7 38.45
6.3 8.4 18.58
B B
2.9 0.3
0.057 0.036
19 28
28 28
Ml; M2 Ml; M2
C.T.A. C.T.A.
34 34
1.6 0.4 0.085
0.044 0.035 0.041
28 28 60 40
Ml; M2 Ml; M2 Ml; M2 Ml
C.T.A. C.T.A. C.T.A. E-R.
34 34 15 35,46
35 35
Ml Ml
E-R. K.-T.
36 36
23.4
0.015
19 28 19 5
43.7 42.6
0.038 0.027
6 6
Monomer/ comonomer Ethene/ cyclopentene
Ethene/ norbornene
ri\
rii
Model tested
Analytical method
-10 0 10 20 0 25
Ml Ml Ml Ml Ml Ml
R-R. R-R. R-R. R-R. R-R. R-R.
39 39 39 39 40 40
28 34 19 23 23 25 25 25 25 6 24 28 19 23 23 22
30 30 30 30 0 -25 0 25 50 25 25 30 30 0 30 30
Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml Ml
R-R. R-R. R-R. R-R. R-R. R-R. R-R. R-R. R-R. R-R. R-R. R-R. R-R. R-R. R-R. R-R.
37 37 37 37 37 38 38 38 38 38 38 40 40 40 40 40
15 16 17 14 19 20 21 22 33 5
70 70 70 70 70 70 70 70 70 70
Ml Ml Ml Ml Ml M2 M2 M2 M2 M2
K.-T. K.-T. K.-T. K.-T. K.-T. C.T.A. C.T.A. C.T.A. C.T.A. C.T.A.
41 41 41 41 41 41 41 41 41 41
28 19
30 30
Ml Ml
M.-L. M.-L.
43 43
23 18 38
50 50 50
Ml Ml Ml
R-R. R-R. R-R.
40,42 40,42 40,42
28 19
30 30
Ml Ml
M.-L. M.-L.
43 43
23 28 30 31 32
50 40 40 40 40
Ml Ml Ml Ml Ml
R-R. D.A. D.A. D.A. D.A.
40 44 44 44 44
28
60
Ml
K.-T.
45
ri
80 120 250 300 1.9 2.2
<0.05 <0.02 <0.02 <0.07 <1 <1
24 24 24 24 25 25
n.d.c n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. <2 0.06 0.05 0.05 0
2.66 3.44 2.93 2.61 1.85 1.5 1.9 2.2 3.2 20 6.6 2.6 3.4 2.0 3.0 3.1
ru
Cat./ /*i2 cocat.
r\
Remarks
TV0Iy (0C)
Refs.
Ethene/norbornene 0.88 1.14 1.1 0.83 1.3
0.05 0.1 0.026 0.29 0.03 1.2 2.2 2.2 5.2 2.2
Ethene/5-phenyl-2-norbornene 7.8 0.1 7.0 0.05 Ethene/dimethanooctahydronaphthalene 7.8 0.1 7.0 0.05 7.1 0.04 Ethene/phenyldimethanooctahydronaphthalene 11.5 0.05 7.1 0.03 Ethene/trimethanododecahydroanthracene 15.6 0.06 Propene/1-octene 3.3 0.39 3.6 0.32 2.6 0.37 2.4 0.48 Propene/cyclopentene 40 0.001
3.6 2.7 8.9 18.2 54
0 0 0 0 0
0 0 0 0 0
Cd C C C C
°High pressure copolymerization (100-150 MPa). fc [Monomer]/[Comonomer] ratio varied. The cited r-values hold only for a selected ratio of [Ethene]/[Propene]. c Not determined. d Alternating copolymerization, hence, rn = r 22 = 0.
References page II - 336
E. LIST OF CATALYSTS/COCATALYSTS USED 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
[Cp] 2 TiCl 2 [Cp] 2 TiMe 2 [Cp] 2TiPh 2 [Cp] 2 Ti = CH 2 Me 2 Si[Me 4 CpNt-Bu]TiCl 2 [Cp] 2 ZrCl 2 [Cp] 2 ZrCl 2 ([Cp] 2 ZrCl 2 )O [MeCp] 2 ZrCl 2 [C 5 Me 4 J 2 ZrCl 2 [n-Bu-Cp] 2 ZrCl 2 [lnd] 2 ZrCl 2 [lnd] 2 ZrBenzyl 2 MeCH[Cp] 2 ZrCl 2 Me 2 C[Cplnd]ZrCl 2 Me 2 C[MeCpIiId]ZrCl 2 Me 2 C[3-t-BuCplnd]ZrCl 2 Ph 2 C[Cplnd]ZrCl 2 Me 2 C[CpFIu]ZrCl 2 Me 2 C[3-MeCpFlu]ZrCl 2 Me 2 C[3-PropCpFlu]ZrCl 2 Me 2 C[3-t-BuCpFlu]ZrCl 2 Ph 2 C[CpFIu]ZrCl 2 C 2 H 4 [IiId] 2 ZrCl 2 C 2 H 4 [lndH4] 2 ZrCl 2 Me 2 Si[Cp] 2 ZrCl 2 Me 2 Si[Cp] 2 ZrCl 2 Me 2 Si[lnd] 2 ZrCl 2 Modified silylbridged [lndH4] 2 ZrCl 2 Me 2 Si[2-Melnd] 2 ZrCl 2 Me 2 Si[Benz(e)lnd] 2 ZrCl 2 Me 2 Si[2-MeBenz(e)lnd] 2 ZrCl 2 Me 2 Si[3-t-BuCpFlu]ZrCl 2 Ph 2 Si[IiId] 2 ZrCl 2 [Cp] 2 HfCl 2 Me 2 C[CpFIu]HfCl 2 C 2 H 4 [IiId] 2 HfCl 2 Ph 2 C[CpFIu]HfCl 2
MAO AlMe 3 MAO: AlMe 3 AlMe 2 Cl MAO MAO MAO: AlMe 3 MAO: AlMe 3 MAO: AlMe 3 MAO: AlMe 3 MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO: AlMe 3 MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO MAO
(1:1 mixture) (Tebbe reagent)
( 1 : 1 mixture) ( 1 : 1 mixture) ( 1 : 1 mixture) ( 1 : 1 mixture)
( 1 : 1 mixture)
F. REFERENCES 1. F. T. Wall, J. Am. Chem. Soc, 63, 1862 (1941). 2. F. R. Mayo, F. M. Lewis, J. Am. Chem. Soc, 66, 1594 (1944). 3. E. Merz, T. Alfrey, and G. Goldfinger, J. Polym. ScL, 1, 75 (1946). 4. G. E. Ham, J. Polym. ScL, 45, 169 (1960). 5. F. P. Price, J. Chem. Phys., 36, 209 (1962). 6. K. Ito, Y. Yamashita, J. Polym. ScL, Part A: Gen. Pap., 3, 2165 (1965). 7. J. C. Randall, J. Macromol. ScL, C: Rev. Macromol. Chem. Phys., 29, 201 (1989). 8. M. Fineman, S. D. Ross, J. Polym. ScL, 5, 269 (1950). 9. T. Kelen, F. Tiidos, J. Macromol. ScL, A: Chem., 9, 1 (1975). 10. D. W. Behnken, J. Polym. ScL, Part A: Gen. Pap., 2, 645 (1964). 11. RW. Tidwell, G. A. Mortimer, J. Polym. ScL, Part A: Gen. Pap., 3, 369 (1965). 12. D. Braun, W. Brendlein, G. Mott, Eur. Polym. J., 9, 1007 (1973).
13. N. Herfert, P. Montag, G. Fink, Makromol. Chem., 194, 3167 (1993). 14. J. Koivumaki, G. Fink, Macromolecules, 27, 6254 (1994). 15. P. Muhlenbrock, G. Fink, Z. Naturforsch., B: Chem. ScL, 50, 423 (1995). 16. H. N. Cheng, J. Chem. Inf. Comput. ScL, 27, 8 (1987). 17. H. N. Cheng, J. Appl. Polym. ScL: Appl. Polym. Symp., 43, 129 (1989). 18. H. Drogemuller, K. Heiland, W. Kaminsky, in: W. Kaminsky, H. Sinn (Eds.), "Transition Metals and Organometallics as Catalysts for Olefin Polymerization", Springer, Heidelberg, 1988, p. 302. 19. V. Busico, L. Mevo, G. Palumbo, A. Zambelli, Makromol. Chem., 184, 2193 (1983). 20. J. C. W. Chien, D. He, J. Polym. ScL, Part A: Polym. Chem., 29, (1991). 21. C. Bergemann, R. Cropp, G. Luft, J. MoI. Catal., 102, 1 (1995).
22. A. Zambelli, A. Grassi, M. Galimberti, R. Mazzocchi, F. Piemontesi, Macromol. Chem., Rapid Commun., 12, 523 (1991). 23. C. Lethinen, B. Lofgren, Eur. Polym. J., 33, 115 (1997). .24. M. Kakugo, Y. Naito, K. Mizunuma, T. Miyatake, Macromolecules, 15, 1150(1982). 25. J. A. Ewen, in: T. Keii, K. Soga (Eds.), Cataytic Polymerization of Olefins, Stud. Surf. Sci. Catal., 25, 271 Elsevier, Amsterdam (1986). 26. P. Starck, C. Lethinen, B. Lofgren, Angew. Makromol. Chem., 249, 115 (1997). 27. K. Heiland, W. Kaminsky, Makromol. Chem., 193,601 (1992). 28. K. Soga, T. Uozumi, Makromol. Chem., 193, 823 (1992). 29. R. Quijada, J. Dupont, M. S. L. Miranda, R. B. Scipioni, G. B. Galland, Macromol. Chem. Phys., 196, 3991 (1995). 30. W. Kaminsky, in: T. Keii, K. Soga, Catalytic Polymerization of Olefins, Stud. Surf. Sci. Catal, 25, 293, Elsevier, Amsterdam (1986). 31. K. Soga, T. Uozumi, S. Nakamura, T. Toneri, T. Teranishi, T. Sano, T. Arai, Macromol. Chem. Phys., 197, 4237 (1996). 32. J. Suhm, M. J. Schneider, R. Mulhaupt, J. Polym. Sci., Part A: Polym. Phys., 35, 735 (1997). 33. M. J. Schneider, J. Suhm, R. Mulhaupt, M.-H. Prosenc, H.-H. Brintzinger, Macromolecules, 30, 3164 (1997). 34. J. Koivumaki, G. Fink, J. V. Seppala, Macromolecules, 27, 6254 (1994).
35. F. G. Sernetz, R. Mulhaupt, R. M. Waymouth, Macromol. Chem. Phys., 197, 1071 (1996). 36. S. Marathe, T. P. Mohandas, S. Sivaram, Macromolecules, 28, 7318 (1995). 37. W. Kaminsky, A. Noll, Polym. Bull. (Berlin), 31, 175 (1993). 38. W. Kaminsky, A. Bark, M. Arndt, Makromol. Chem., Makromol. Symp., 47, 83 (1991). 39. W. Kaminsky, R. Spiehl, Makromol. Chem., 190, 515 (1989). 40. W. Kaminsky, Macromol. Chem. Phys., 197, 3907 (1996). 41. D. Ruchatz, G. Fink, Macromolecules, 31,4681 (1998) and the two preceeding papers by the same authors on pages 4669 and 4674 (1998). 42. W. Kaminsky, R. Engehausen, J. Kopf, Angew. Chem., 107, 2469 (1995), Angew. Chem. Int. Ed. Engl., 34, 2273 (1995). 43. W. Kaminsky, A. Noll, in: G. Fink, R. Mulhaupt, H.-H. Brinzinger (Eds.), Ziegler Catalysts, Springer, Berlin, 1995, p. 149. 44. M. J. Schneider, R. Mulhaupt, Macromol. Chem. Phys., 198, 1121 (1997). 45. M. Arnold, O. Henschke, F. Koller, Macromol. Rep., A33,219 (1996). 46. L. Oliva, P. Longo, L. Izzo, M. DiSerio, Macromolecules, 30, (1997).
R a t e s
o f
P o l y m e r i z a t i o n
A v e r a g e
M o l e c u l a r
W e i g h t
a n d
D e p o l y m e r i z a t i o n ,
W e i g h t s ,
D i s t r i b u t i o n s
o f
a n d
M o l e c u l a r
P o l y m e r s
L. H . Peebles, Jr. Chemistry Division, Naval Research Laboratory, Washington, DC, USA
A. Introduction 11-339 B. Reference Tables for the Calculation of Rates of Polymerization, Average Molecular Weights, and Molecular Weight Distributions of Polymers for Various Types of Polymerization 11-340 Table 1. Addition Polymerization with Termination 11-341 Table 2. Addition Polymerization - "Living" Polymers with Partial Deactivation II-344 Table 3. Linear Condensation Polymerization without Ring Formation II-346 Table 4. Equilibrium Polymerization II-347 Table 5. Nonlinear Polymerization Systems II-348 Table 6. Degradation of Polymers - May be Accompanied by Crosslinking II-350 Table 7. Influence of Reactor Conditions and Design on the Molecular Weight Distribution II-352 C. Some Distribution Functions and Their Properties II-352 1. Normal Distribution Function (Gaussian Distribution) II-353 2. Logarithmic Normal Distribution Function II-353 3. Generalized Exponential Distribution II-354 4. Poisson Distribution II-354 D. Molecular Weight Distribution in Condensation Polymers: The Stockmayer Distribution Function II-354 E. References II-356
A.
INTRODUCTION
An attempt is made to present a systematic guide to the literature dealing with rates of polymerization, average molecular weights, and molecular weight distributions of polymers for various types of polymerization. This chapter is based on a review of molecular weight distributions (1) in which many of the equations are given in detail along with
graphs showing the interrelationship among various distributions; here, we present only references to the literature. In addition, sections have been added on the effects of degradation and reactor design on the reaction rates and the molecular weight distributions. Literature references beyond (312) are those that have been added since the third edition of Polymer Handbook. The theoretical description of the molecular weight distribution of a polymer and its rate of polymerization is dependent on the assumed mechanism of polymerization and on the mathematical simplifications used to obtain analytical expressions. As the number of distinct reactions is increased, such as the various transfer reactions, the mathematical expressions can become quite complex and unwieldy. In general, the equations for the rate of polymerization are the most difficult to describe, the distribution equations are somewhat easier, and the average molecular weights the simplest. In condensation polymerization, many of the distribution formulas are derived by considering the statistics or the probability of a given reaction instead of the kinetics of the reactions. Depending on which assumptions are made, quite different average molecular weights are derived, despite the rigor of the derivation. The emphasis in this section is, therefore, on the distribution functions and their averages; the rates of polymerization are given only if they have been explicitly derived. This chapter is divided into several tables and sections, each treating various types of polymerization. The Stockmayer distribution function for condensation polymers is given in detail because of its general applicability and usefulness. Some general distribution functions are given in Section C. For all the other expressions, the reader must refer to the original literature. Many of the simpler functions are adequately described in textbooks of polymer chemistry. Flory (2), Bamford et al. (3), Odian (4), Billmeyer (5), and Kuechler (6) give extended descriptions of many systems. Bagdasarian (7) gives an extended discussion of methods of determining absolute values of propagation and termination constants, the influence of cage effects on the rate of initiation, and the influence
of retardation, inhibition, and diffusion-controlled termination on the rate of polymerization. A review of the various ways of deriving molecular weight distributions and the moments of a distribution is given by Chappelear and Simon (8). Section B presents a series of tables describing the main assumption or conditions imposed on the theoretical models and references to the articles where the corresponding equations may be found. Tables 1 and 2 present rate equations and the distribution formulas for addition polymerization by a variety of mechanisms. No distinction is made among free radical, cationic, anionic, or coordinationtype polymerization. While Table 1 treats those cases where termination reactions predominate and where steady-state assumptions are usually made, Table 2 treats those cases where termination reactions either do not exist, or may be considered as side reactions, having a minor to major control over the molecular weight distribution. The sequence length distributions for addition-type copolymers are omitted. However, see Kuechler (6) for an extended discussion of copolymerization distributions. Table 3 contains distribution formulas for linear condensation polymers in which the polymer is assumed to be perfectly linear and to contain no rings. Table 4 treats equilibrium polymerization. Table 5 describes nonlinear systems. Table 6 treats those cases where polymers are degraded (or altered) by the application of heat, light, or ionizing radiation. In the latter case, the polymer may undergo scission, crosslinking, or both reactions simultaneously. Several references on crosslinking are included here but not in Table 5. Finally, Table 7 is concerned with the influence of reactor design on molecular weight distribution; the kinetic equations for addition polymerization (with and without termination) and condensation polymerization are considered. Section C lists a number of distribution functions and their properties. Among them is the generalized exponential function which is a good approximation to many real systems (Eq. C29). Section D presents the Stockmayer distribution function for condensation polymerization wherein molecules of various types of kind A react with molecules of various types of kind B. B. REFERENCE TABLES FOR THE CALCULATION OF RATES OF POLYMERIZATION, AVERAGE MOLECULAR WEIGHTS, AND MOLECULAR WEIGHT DISTRIBUTIONS OF POLYMERS FOR VARIOUS TYPES OF POLYMERIZATION
The following symbols are used in this chapter. Rv: rate of polymerization; R^: rate of depolymerization; R\: active, growing polymer containing one monomer unit; R^ and Q*: active, growing polymer chains containing n monomer units; Pr: molecular weight distribution; U1: rate constant for initiation; kv\ rate constant for propagation; /: initiator concentration; M: monomer concentration; Mn and Mw: number-average and weight-average molecular weights,
respectively; 1° and 2° represent first and second order, respectively. No distinction is made among free radical, cationic, anionic, or coordination-type polymerizations. The rate of initiation may be held constant (const) throughout the polymerization, or it may depend on some function of the catalyst and monomer concentrations, or it may be instantaneous (instant), in which case only the total number of initiating species need be known. The rate of propagation is normally only the consumption of monomer; in some cases, the rate of propagation through terminal or pendant double bonds is also considered. Transfer reactions may occur to initiator, momomer, solvent, or polymer. Termination of active species may occur by a first-order deactivation, by second-order combination (comb) or disproportionation (disprop), or not at all ("living" polymers). Confusion exists over the meaning of the transfer-tocatalyst reaction. In free radical systems, it means transfer of the active species to the initiator by a second-order mechanism. In ionic polymerization, it means the expulsion of an active fragment from a growing chain by a first-order mechanism to form dead polymer and an active initiator fragment. The first-order mechanism is called here the "catalyst expulsion reaction" (cat ex). The nomenclature of distribution functions can be quite confusing. In this work, the Flory distribution (Eq. C41) is also known as the Schulz-Flory distribution, the "most probable" distribution, and the exponential distribution. The Schulz distribution (Eq. C36) is also known as the Schulz-Zimm distribution or the generalized Poisson distribution; at large values of k it approximates the Poisson distribution (Eq. C48). The Pearson Type III distribution is a variation of the Schulz distribution. If an addition polymer is made at constant monomer concentration, no transfer reactions occur, termination is only by second-order combination, and the distribution of the polymer is described by the Schulz distribution with k — 2. This distribution is sometimes called the self-convolution distribution or the convoluted exponential distribution. In a uniform distribution, all molcules have the same size - it is monodisperse. A rectangular or box distribution has no molecules below ra, an equal number (or weight) of molecules between r a and Tb, and no molecules whose size is above r\>. In Table 5, systems are treated where branching reactions, ring formation, or gel formation may occur. See also Table 6 for crosslinking reactions during degradation. The symbol RA/ means a monomer containing/reactive A units. The problem of calculating the species distribution of polyfunctional condensation polymers where branched, cyclic, and crosslinked species can be formed is exceedingly complex. Most treatments apply the restriction that ring formation does not occur prior to the gel point, which obviously is incorrect. The restriction is invoked because of the transition from the pre-gel condition, where all unreacted functional groups can react without steric limitations to a condition containing rings in which some of the unreacted groups are sterically unable to react with all of the remaining unreacted groups. The problem is
further compounded because each different reacting monomer will have various degrees of steric hindrance. Therefore, a general treatment must ignore this aspect. An examination of the Stockmayer distribution function in Section D shows that in-depth calculations are required even for simple oligomer species. A number of attempts have been made to provide simpler expressions for the number or weight of individual species and the average
molecular weights before and after the gel point. These include the theory of stochastic processes (271), stochastic graph theory (272), the theory of cascade processes which is based on probability generating functions (151), the use of link distribution functions (273), the recursive nature of branching processes and elementary probability laws (274), Monte Carlo methods (275), graph theory (276), and a kinetic approach (277).
TABLE 1. ADDITION POLYMERIZATION WITH TERMINATION References Set
Initiation
Monomer
Transfer
Termination
Rp
Pr
Mn,M^
1.1. INVARIANT MONOMER CONCENTRATION 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5
Const Const Const Const Const
None Monomer, solvent Monomer, solvent Activator None
2° Disprop or comb 2° Disprop 2° Disprop and comb 2° Comb 2° With catalyst; redox system
1.1.6
Const Const Const Const, redox Const, initiation by activator kxM2
2-4 2,3,10-12 3 13 14
1-4 1-3 1,3 13 -
1-4 1-3 1,3 13 14
Const
2° Term
15
-
15
1.1.7
Instant
Const
Dimer, Monomer Initiator None
2° Term; 1° or 2° reactivation
16
-
16
1.2. VARYING MONOMER CONCENTRATION, NO TRANSFER-TO-MONOMER REACTION 1.2.1 1.2.2 1.2.3 1.2.4
Const Const Photosensitized Const
Varies Varies Varies Varies
None Solvent None None
2° Comb or disprop 2° Comb and disprop 2° Disprop 2° Disprop and comb pseudo 1° with scavenger
3 3 39 17 (rate of scavenger
1,3 1,3 1,3 1,3 39 disappearance)
1.3. VARYING MONOMER CONCENTRATION, TRANSFER-TO-MONOMER REACTION OCCURS 1.3.1 1.3.2 1.3.3 1.3.4 .3.5
Const Const k{M2 kxMl Instant
Varies Varies Varies Varies Varies
Monomer, solvent Monomer, solvent Monomer Monomer, initiator Monomer
2° Disprop or comb 2° Disprop and comb 2° Comb and disprop 2° Disprop; degradative chain transfer Non-steady state conditions, term by comb or disprop
3,18 3,4 20 313
1,3,18 1,3,4 313
1 19 1,3,4 20 313
1.4. 1° TERMINATION OR DEACTIVATION, STEADY-STATE KINETICS 1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6
Const kiMI k-xM2 kiMI k-M1 kiMI
Const Const Const Varies Varies Const
Monomer Monomer, solvent Monomer Solvent None None
1° Deactivation 1° Deactivation 1° Deactivation 1° Plus solvent term 1° Deactivation Deactivation by init. expulsion
4 1,4 1,4 4 1.4,21,22 1,4,21,22 4 1,4 1,4 4,23 1,4 1,4 4,23 1,4 1,4 21 1,21 1,21
1.5. TERMINATION BY 2° REACTION WITH MONOMER, STEADY-STATE KINETICS 1.5.1 1.5.2 1.5.3 1.6. 1.6.1 1.6.2 1.6.3
Const kiMI Const
Varies Varies Const
None Monomer Monomer
2° With monomer 2° With monomer 2° With monomer
None Monomer Monomer
2° Disprop 2° Disprop 2° Comb; two active chains couple to form a chain with two active ends
4,23 23 4
1,4 1 1,4
1,4 1 1,4
3 3
1,3 18 1,3
1,3 18 1,3
TWO ACTIVE ENDS PER CHAIN Const Const Const
Const Const Const
1.7. SLOW EXHAUSTION OF INITIATOR, NONSTEADY-STATE KINETICS 1.7.1 1.7.2
kj kj
Const Varies
None None
2° Disprop* or comb 2° Comb
25*,26 27
-
1,25*,26 27
*Data belong together.
References page II - 356
TABLE 1. cont'd References Set
Initiation
Monomer
Transfer
Termination
Rp
Pr
Afn, Mw
1.8. DEAD-END POLYMERIZATION, RAPID DECAY OF INITIATOR, MONOMER CONCENTRATION INVARIANT 1.8.1 1.8.2
kj kj2
Const Const
Monomer, solvent None
2° Disprop or comb 2° Disprop or comb
28 28
1,28 1,28
1,28 1,28
30 30 31
-
1,19* 1 -
40 41
-
-
1,2,3,4,10 32,33 239
34
1,35
239
239
315 -
316
316
37*
1,36
27 42 240 241
240 241
242
242
242
243
243
243
317
-
317
-
1,38
1.9. DEAD-END POLYMERIZATION, SLOW DECAY OF INITIATOR, MONOMER CONCENTRATION VARIES 1.9.1 1.9.2 1.9.3
kj kj kJM
Varies Varies Varies
Monomer, solvent Monomer, solvent None
1.9.4 1.9.5
Instant Redox
Varies Varies
Monomer None
2° Disprop * or comb 2° Comb 1° Term, bimolecular monomer addition. /* and R) do not terminate 1° Term, or 2° with monomer 2° Term
1.10. COPOLYMERIZATION: TWO DIFFERENT MONOMERS PRESENT 1.10.1
Const
Const
Monomer
2° Disprop or comb
1.10.2
Const
Varies
None
1.10.3
Const
Const
None
1.10.4 1.10.5
Const Varies
Const Varies
None Agent
Diffusion controlled and inversely proportional to viscosity Rate const for term is known as fn(conc). Comparison of cross term parameter ^ Alternating copolymerization Various; Monte Carlo calculations; initiation and term influences composition
314
1.11. DIFFUSION-CONTROLLED TERMINATION (see also 1.10.2 and 5.1.4) 1.11.1
Const
Varies
None or solvent*
1.11.2 1.11.3 1.11.4 1.11.5
kj Const kj kj
Varies Varies Varies Varies
None None Monomer None
1.11.6
k[
Varies
None
1.11.7
k{
Varies
Monomer, solvent
1.11.8
kj or none
Varies
Monomer, solvent
1.11.9
Const
Const
Solvent
2° Disprop or comb* and diffusion controlled 2° Comb, Rt = ktMn,n > 1 2° Process 2° Disprop and diffusion controlled 2° Disprop and comb, diffusion controlled 2° Disprop, term rate for long chains depends on entanglement density 2° Disprop, term rate for long chains depends on entanglement density 2° Comb, and disprop term depends on free volume or free volume plus entanglement, CaIc. of gel point kt^m) = ko(nm)~a. Term by comb and disprop.
27
318
1.12. PRIMARY RADICAL TERMINATION 1.12.1
Const
Varies
Monomer
1.12.2
Const
Const
None or init. and monomer*
2° Comb and disprop and primary radicals 2° Term and primary radicals
38 33,43-45
- 44,45,15*
1.13. MIXED SPECIES PROPAGATION 1.13.1
Const
Varies
Monomer
1.13.2
Const
Const
None
1.13.3
Const
Varies
None
*Data belong together.
Propagation, transfer and termination rates depend on species type, i.e. free radical and cationic occurring simultaneously Zwitter-ion polymerization; distance between ions varies as r 3/2 , equilibrium between free and solvated ions; 1° term Bifunctional initiator, term by comb
46 244
46 244
244
47
-
47
319
-
319
TABLE 1. cont'd References Set
Initiation
Monomer
Transfer
Termination
Rv
Pr
Mn,Mw
1.14. EMULSION POLYMERIZATION (see also Tables 2 and 7) 1.14.1
Const
Const within particles
None
1.14.2
Const
None
1.14.3
Const
1.14.4
Const
Const within particles Const within particles Const within particles
1.14.5
Const
1.14.6
Slow and const
1.14.7
Const
1.14.8
None Monomer
Const within Monomer particles varies outside Const None None
Const
Const within particles Const
1.14.9
Varies
Varies
Minimize
1.14.10
Const
Const within particles
Monomer, agent
1.14.11
Const
Monomer, agent
1.14.12
Varies
Const within particles Varies
1.14.13
Const
Const
None
1.14.14
Const
Const
None
None
Monomer
General theory; particles act as independent units; 2° term within particles; number of particles remain constant; number of radicals per particle General theory; Slow-term rate within particles Inst. term within particles; number of particles varies Normal 2° term within particles; rapid interchange between phases of small-sized radicals; number of radicals per particle Rapid exchange between phases of small-sized radicals; term in aq phase and in particles Slow 2° comb; calcn. of number of radicals per particle Const number of particles; term by 2° comb Inst term on entering a particle; const number of particles Adjust initiation and term rates while minimizing transfer to obtain "monodisperse" polymer Instant 2° term when a free radical enters a particle containing two growing chains and reacts with one of them. No term by disprop or comb within particles Same as case 1.14.10 but plus term by disprop or particle by comb Varying rate of entry, desorption of oligometic radicals, term by comb and disprop, Monte Carlo simulation model Any number of chains per particle, 1° term, 2° term by disprop or by comb. Use of Markov chains See 1.14.13. Copolymerization, chain composition distribution
48-54
-
53
55
-
55
56
-
-
-
59
59
60
-
60
-
-
61
72
72
72
245
245
245
245
245
245
-
320
-
-
321
-
322
62
62
62
63
-
63
-
-
68
-
68
69
-
69
57
58
1.15. HETEROGENEOUS POLYMERIZATION 1.15.1
k[MI, I varies
Varies
Monomer
1.15.2
Instant
Varies
None
1.15.3
Const
Const
None
1.15.4
Const
Const
None
Polymerization in monomer rich and monomer poor phases; 2° disprop Term by precipitation onto growing solid particle 2° Comb, 1° occlusion onto particle surfaces, and primary radical term 2° Term in liquid phase, 1° radical precipitation, propagation and 2° term at solid-liquid interface
64 65
1.16. INHIBITION AND RETARDATION 1.16.1
Const
Varies
None
1.16.2
Const
Const
Inhibitor
1.16.3
Const
Const
Retarder
2° Term, 2° addition to inhibitor 2° Term, inhibitor term, inhibitor coupling 2° Term, retarder reinitiation and term
3,66,67,73
References page II - 356
TABLE 1. cont'd References Set
Initiation
Monomer
Transfer
1.16.4
Const
Const
Retarder
1.16.5
Const
Const
Retarder
1.16.6 1.16.7 1.16.8 1.16.9
Const Const Const kj
Const Varies Const Const
Retarder None Inhibitor Inhibitor
1.17.
Termination 2° Term, retarder reinitiation, term and coupling 2° Term, rate of transfer equals rate of reinitiation 2° Term, copolymerization of retarder Pseudo 1° with scavenger 2° Disprop, 2° reaction with inhibitor 2° with inhibitor or with monomer to assess the efficiency of initiation
^p
Pr
Mn, Mw
3,12,70 71,74 10
-
-
-
-
11 17 75 246
-
11 75 -
-
-
247
-
323
-
324
324
324
-
325
-
POLYFUNCTIONAL INITIATOR WITH VARIOUS THERMAL STABILITIES
1.17.1
k\Ml On raising the temp., other peroxide groups can initiate
1.18.
Const
None
2° disproportionate
PERIODIC MODULATION OF TERMINATION OR INITIATION
1.18.1
Const
Varies
None
1.18.2
Varies
Varies
None
1.18.3
Varies
Varies
None
Periodic modulation of term by disprop by addition of an inhibitor or by magnetic or electric fields Periodic modulation of initiation, term by comb and/or disprop, computer calculation Periodic modulation of initiation, term by comb. Calcn. of MWD by generating functions
TABLE 2. ADDITION POLYMERIZATION - "LIVING" POLYMERS WITH PARTIAL DEACTIVATION References Set 2.1.
Initiation
Monomer
Transfer
Termination
kpMI
Varies
None
None
2.1.2
kpMIt
Varies
None
None; initiator added at a constant rate
None
None
2.2.1 2.3. 2.3.1 2.3.2 2.3.3
2.3.4 2.3.5 2.3.6
2A. 2.4.1 2.4.2
Pr
Mn^Mw
103
1,2,101, 102 -
1,2,101, 102 103
102, 104
1,102
1,102
THE POISSON DISTRIBUTION: Jc1 = kp
2.1.1
2.2.
Rp
2,101,102
THE GOLD DISTRIBUTION: Zt1 + kp kiMI
Varies
PARTIAL DEACTIVATION BYA 1° PROCESS OR A 2° PROCESS WITH AN IMPURITY Instant Instant Instant initiator has two active sites Instant Instant Instant
Varies Varies Varies
None None None
1° or 2° Rate of term//?p = const. Rate of term//?p = const.
Varies Varies Const
None None None
Rate of term independent of Rp 1° at infinite time Probability that a chain will terminate rather than propagate is kt/kvM
105 1,106 1,106 - 1,106,107 1,106,107 1,107 1,107
1,106 108,109 -
-
1,106 108,109 248
MULTIPLE PROPAGATING SPECIES: R*n CAN TRANSFORM INTO Ql, ETC. Instant kiMI
Const Varies
None None
None, two propagating species None, two propagating species
1, 77-79
76 1,77,78 80
76 1,77-80
TABLE 2. cont'd References Set
Initiation
Monomer
Transfer
2.4.3 2.4.4
Instant Activated monomer addition
Varies Varies; volume also varies
None None
Termination None, multiple propagating species None; two prop constants kp can increase
Rp
Pr
Mn, M ^
249 -
249 326 327
249 326 327
82,83 84
1,81 81
1,81 83
2.5. SIMULTANEOUS POLYMERIZATION AND DEPOLYMERIZATION 2.5.1 2.5.2 2.5.3
kiMI kiMI JcpM2
Const Varies Varies
None None None
None None None
2.6. THE kp VARIES WITH CHAIN LENGTH (see also 2.4.4, 3.3, and 3.4) 2.6.1
2.6.2 2.6.3 2.6.4 2.6.5
kiMI Varies None None (a) all propagation constants (kT) are different 1,85,86 (b) ki : ki : k2 : k3 :~-kn=m : (m - 1) : (m - 2) : (m - 3) : • • • 1,85 (C) * i ^ * 2 - - - ^ m = W i = ••• = *» 1.85 1,85 (d)*i^*i^*2=*m 1,85 Instant, kx = k2 • • • = km,km+l, etc.= 0 86 86 86 Instant, kp is a linear decreasing function of r 86 86 86 Const Varies None None; kv for monomer, dimer, and 328 328 trimer different from remaining molecules Rate constants can vary with extent of conversion; determination of rate constants from Pr and the use of generating functions; termination by monomolecular decay, disprop and/or comb. 329 -
2.7. DEACTIVATION BY TRANSFER TO MONOMER 2.7.1 2.7.2 2.7.3
kxMI Instant Instant
Varies Varies Varies
Monomer Monomer Monomer
None None None, two active ends per initiator
1,87 1,74,90 1,91
1,87 1,74,87,88 1,89,90 1,74,90 1,91,92 1,91
2.8. DEACTIVATION BY SLOW 1° TERMINATION 2.8.1 2.8.2
Instant Instant
Varies Varies
None Monomer
Slow 1° Slow 1°, at infinite time
1,74 1,74
-
1,74 1,74
None 1° term None
67 250
250
1,93 67 250
95
2.9. DEACTIVATION BY INITIATOR EXPULSION REACTION 2.9.1 2.9.2 2.9.3
Instant kiMI Instant
Varies Varies Varies
None Monomer Monomer
2.10. DEACTIVATION BY DEGRADATIVE CHAIN TRANSFER 2.10.1 2.11. 2.11.1
kiMI
Varies
Degradative transfer to polymer
None
94
-
Varies
None
None
-
96
None; diffusion of monomer through solid polymer 2° Term with monomer; diffusion of monomer through solid polymer Sorption and desorption of chains from the surface; slow 1° term which depends on chain length
97
-
97
98
-
98
-
99
99
100
-
100
COPOLYMERIZATION Instant
2.12. HETEROGENEOUS POLYMERIZATION 2.12.1
Instant
Varies
None
2.12.2
Instant
Varies
None
2.12.3
Const
Const
None
2.13. SPONTANEOUS POLYMERIZATION 2.13.1
Const
Const
None
Vinyl compound and activator form monomer; monomer both initiates and propagates; no term
References page II - 356
TABLE 2. cont'd References Set 2.14.
Initiation
Rev 2° with monomer
k[MI
2.15.2
kM
Const
Monomer
No termination; dead species in equilibrium with living species, irreversible propagation
251
252
Numerical method for calc. of MWD with mono- or polyfunctional transfer agent. Latter leads to branching.
-
330
3-State mechanism consisting of two successive equilibria Equilibrium between dormant aggregated polymer and "living" polymer
-
-
331
332
-
-
-
-
334
-
-
335
SLOW EQUILIBRIA
Varies
Varies
None
POLYMER MICROSTRUCTURE
2.17.1
Varies
Varies
None
2.17.2
NA
NA
NA
TABLE 3.
LINEAR CONDENSATION POLYMERIZATION WITHOUT RING FORMATION
3.7
251
-
2.16.2
3.6
251
-
None
3.5
Mn,Mw
No termination. Transfer creates dead polymer and active initiator
Varies
3.1 3.2 3.3 3.4
Pr
Agent const varies Agent
Varies
Set
Rp
Const or varies Varies
2.16.1
2.17.
Termination
DEACTIVATION BY TRANSFER TO AGENT
2.15.1
2.16.
Transfer
REVERSIBLE INITIATION AND REACTIVATION
2.14.1
2.15.
Monomer
None; concentration of head-to-head and tail-to-tail, sequence length distributions, various dyad and triad fractions Block copolymers
Conditions Condensation of bifunctional monomer AB; the Flory distribution. See Eq. (C41) Bifunctional monomer AA reacting with bifunctional monomer BB; the nylon case of hexamethylene diamine and adipic acid Deviations from the principle of equal reactivity; the "substitution effect" Rate of condensation varies 3.4.1 Rate of condensation proportional to chain size 3.4.2 Condensation requires rotation into colinear orientation prior to reaction 3.4.3 The order of reaction varies with conversion, or a catalytic influence of unreacted A or B groups, or both effects occurring simultaneously Other simple linear condensation cases 3.5.1 AA reacting with BC. BC is an anhydride; within a given molecule, B must react before C 3.5.2 AA reacting with BC. BC is an unsymmetrical acid or glycol; B reacts only with A at a different rate from that of C reacting with A 3.5.3 AB reacting with C and itself. B and C react only with A; C is a terminator or capping material 3.5.4 AA reacting with BB and C; the nylon case again with acetic acid as terminator 3.5.5 AA reacting with BC; A and B react with C 3.5.6 AB reacts with CC or DD kinetics 3.5.7 AA and A reacting with BB and B Further polymerization of polymers with an initial geometric distribution 3.6.1 Further polymerization of AB when the initial distribution is geometric 3.6.2 Further polymerization of AB when the initial distribution is a superposition of two geometric distributions 3.6.3 Further polymerization of AA with BB when the initial distribution of both is geometric Copolymerization of condensation polymers 3.7.1 AB reacting with CD; AB and CD can be hydroxy acids or similar materials 3.7.2 AA reacting with BB and CC. A reacts with B and C only and vice versa; BB and CC can be adipic and sebacic acids 3.7.3 AA and BB reacting with CC and DD; A and B react only with C and D and vice versa 3.7.4 AA reacting with BC and DD; A reacts only with B, C, and D 3.7.5 AA and DD reacting with BC; A and B react only with C and D and vice versa 3.7.6 AA reacting with BC-BC, the latter can be a dianhydride; B must react before C
References 1,2,110 1,24,111 1,112,253,254 1,113,114,134 255 256 1,111 1,111 1,111 1,111 1,111 115 336 1,116 1,116 1,116 1,111 111,257 111 111 111 258,259
TABLE 3. cont'd Set 3.8
3.9 3.10 3.11
Conditions Coupled polymers 3.8.1 AB polymerized to extent of conversion a, then coupled with CC 3.8.2 AB polymerized to extent of conversion a, then coupled with CD. A and B can react with C or D 3.8.3 AA and BB polymerized to extent of conversion a, then coupled with an excess of CC. A and B to react completely on coupling 3.8.4 Poisson-distribution polymer of AA coupled with BC 3.8.5 Monomer AB polymerized to extent of conversion a, then coupled with excess CC to extent of conversion 7, then recoupled with excess DD 3.8.6 Particularly narrow distributions via coupling reaction I. AA and BB (great excess)—^BBAABB, then remove excess BB. CC and BBAABB (great excess)—> BBAABBCCBBAABB, then remove excess BBAABB, and continue in like manner II. AA and 2BC^CBAABC then CBAABC and 2DE^EDCBAABCDE, etc III. AB and CD^ABCD then ABCD and EF^ABCDEF, etc 3.8.7 Blocks of polymers of known distribution are coupled together I. A series of Poisson-type-polymers coupled together II. Poisson-type-polymers coupled to "most probable"-type polymers III. A series of "most probable"-type polymers coupled together AB reacts with CC or CD; rate of reaction of A dependent upon whether or not B has reacted Segmented block copolymers; distribution of block sizes Reacted sequences in homopolymers
TABLE 4. Set 4.1
References
1,117 1,117 1,117 119 119 119
120,118 115 260-262 263, 264
EQUILIBRIUM POLYMERIZATION Conditions
References
The "most probable" distribution of Flory has been derived for condensation polymerization when all reactions are assumed to have the same probability, regardless of chain length, and whether or not exchange reactions occur: P r + P5 = P r + s - i + P t ,
4.2
1,117,118 1,117
Eq. C41
i
Here, P1- can be a byproduct such as water, or a polymer molecule whose size is smaller than r + s. The same distribution results when random scission occurs to infinitely long chains. See also (265) for multifunctional monomers. The theoretical equilibrium molecular weight distribution for the system
2,121 122
rM = Pr
4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17
depends upon the thermodynamic definition of the final product. If the change in Gibbs free energy of formation and polymerization is a linear function of molecular size r, then two cases can be considered: 4.2.1 The monomer is polymerized to a pure perfectly ordered state (solid); this gives the "most probable" distribution 4.2.2 The monomer is polymerized to a pure randomly ordered state (liquid); a completely different distribution results If the free-energy change upon disordering of the pure polymer is independent of the molecular weight distribution, a new distribution arises Thermodynamics of living equilibrium polymers Given an initial distribution, find the distribution as a function of time when chain ends react at random with all monomer units Initiation, propagation, and termination reactions are all equilibrium reactions; an initiator is required Initiation, propagation, and termination reactions are all equilibrium reactions; the system is self-initiating Equilibrium initiation and equilibrium propagation with a multifunctional initiator Equilibrium initiation and equilibrium propagation; no termination; nonequilibrium solution. The catalyst can form an active species with any polymer molecule, and the total number of moles of the system is kept constant (constant pressure and volume if all polymer molecules are ideal gases) Addition polymerization, instantaneous initiation, no transfer, no termination, monomer concentration held constant, active species in equilibrium with inactive species Addition polymerization, rate of initiation equals k\MC, no transfer, no termination, two active species in equilibrium, monomer concentration varies Addition polymerization, instantaneous initiation, no transfer, no termination, active species in equilibrium with inactive species, monomer concentration varies Poly(phosphate) equilibria Instantaneous initiation, polymerization and depolymerization, 1° termination Instantaneous initiation, polymerization and depolymerization, degradative transfer to monomer Copolymerization: bimolecular addition of one monomer, equilibrium addition of other monomer Copolymerization: equilibrium growth with monomer A or B adding to a chain with a terminal group of either A or B. Three cases: 2° reaction with initiator; 1° formation of active radical; 2° reaction with another monomer
Eq. C41 123 124 125 126 127 127 128,266 129 130 77 78 77 131 132 133 230 267
References page II - 356
TABLE 4. cont'd Set 4.18 4.19 4.20
Conditions Equilibrium copolymerization of two or more comonomers Polycondensation where groups have different equilibrium constants Equilibrium copolymerization initiated by polymer chains with active sites: average mol. wts, grafting ratio, grafting efficiency, grafting success, branching distribution, frequency of grafts
References 268 269,270 337
TABLE 5. NONLINEAR POLYMERIZATION SYSTEMS Set
Conditions
Vinyl polymerization; self-grafting 5.1.1 General case; molecular weight averages for grafted and ungrafted polymer 5.1.2 Constant rate of initiation, monomer concentration invariant, transfer to monomer and to polymer, termination by 2° disproportionation 5.1.3 Constant rate of initiation, monomer concentration varies, transfer to polymer, termination by 2° combination 5.1.4 Constant rate of initiation, monomer concentration can vary, transfer to monomer and to polymer, termination by 2° disproportionation and/or combination 5.1.5 Instantaneous initiation, monomer varies, either no transfer occurs or transfer to monomer, solvent, or polymer is allowed; termination by coupling and varies with chain length 5.2 Vinyl polymerization; grafting onto a performed polymer whose initial distribution is either (i) of constant length or (ii) a geometric distribution 5.3 Vinyl polymerization; all segments of the backbone chains have equal probability to be grafted 5.4 Vinyl polymerization; terminal double-bond polymerization, monomer concentration varies, transfer to monomer and to polymer, terminal double bond polymerization 5.4.1 Termination predominantly by transfer, constant rate of initiation; batch or continuous polymerization 5.4.2 Termination by disproportionation, constant rate of initiation, includes transfer to solvent 5.4.3 Termination by combination, constant rate of initiation, amount of short and long chain branching, transfer to a tertiary site 5.4.4 Termination by combination, initiator and monomer concentration vary, transfer to monomer and to polymer 5.4.5 Termination by combination, initiator and monomer concentration vary, transfer to monomer and to polymer, characterization following saponification and reacetylation 5.5 Vinyl polymerization; long-chain branching. 5.5.1 constant rate of initiation, monomer concentration invariant, transfer to monomer and to polymer, termination by 2° disproportionation 5.5.2 "Living polymer". Instantaneous initiation, P-hydride or p-methyl elimination to form a terminal double bond, transfer with agent to form a saturated end 5.6 Vinyl polymerizaton; "living" branched polymer; polyfunctional initiator RA/; rate of initiation equals rate of propagation, no transfer, no termination 5.7 Vinyl polymerization; Rp, in a diffusion controlled gelling system; termination by disproportionation or combination, no transfer 5.8 Vinyl polymerization; branching density as a function of conversion; branches formed by polymerization through a vinyl group (diene polymers) or by transfer-to-polymer reaction 5.8.1 Batch polymerization 5.8.2 Continuous polymerization 5.9 Vinyl polymerization 5.9.1 Branching density as a function of conversion of (1) long-chain branching, (2) short-chain branching (backbiting), (3) very short chain branching (radical migration) 5.9.2 Copolymerization with divinyl, no ring formation prior to gelation 5.9.3 Copolymerization with divinyl; ring formation permitted; Monte Carlo calculations for crosslinking density, weight fraction of gel; chain-length distribution between crosslinks 5.9.4 Circuits in a network, elastically active chains 5.10a Emulsion polymerization; branch density 5.10b Emulsion polymerization; Monte Carlo calculations; can account for desorption of oligomers, chain-length dependence of kinetic parameters, chain transfer to monomer and solvent, polymerization through terminal double bonds and long-chain branching 5.11 Cyclopolymerization: the concentration of pendent double bonds per molecule 5.12 Gelation condition in a system when cyclopolymerization also occurs; transfer to monomer reaction occurs. Molecular weight given 5.13 General theory of gelation for poly addition- and poly condensation-type polymers 5.14 The general distribution function for various molecules of type A reacting with various molecules of type B; A can only react with B 5.14.1 All functional groups have equal reactivity, independent of position within the molecule or the size of the molecule. Ring formation excluded
References
5.1
278 1,3,18 135 279 280 18 136 1,137-139 338 338,339 340 341 1,140 355 141 142 1,2 1,138 143 274,281 342,343 282,283 144,344 345 145-149 150 151 Section D 276
TABLE 5. cont'd Set
5.15
Conditions
References
5.14.2 Monomers of type RA/ (/can vary) can only react with monomers of type RBg (g can vary) where the various B's can have different reactivities. No ring formation 5.14.3 Monomers of type RA/ and RB g where/and g can vary, the reactivity of a given B can depend on whether or not an adjacent B on the same molecule has reacted. No ring formation 5.14.4 Monomers of type RA/ and RB g where/and g can vary; no ring formation; calculation of higher distribution moments Crosslinking or coupling of a polymer with a known primary distribution (see also Table 6) 5.15.1 General case. No ring formation prior to gelation 5.15.2 All primary chains have the same size; no ring formation prior to gelation
5.16
5.15.3 Primary chains of the Poisson type, (Eq. C48); no ring formation prior to gelation 5.15.4 Primary chains of the Schulz type, (Eq. C36); no ring formation prior to gelation 5.15.5 Primary chains of the "most probable" type; ring formation allowed prior to gelation 5.15.6 Formation of star-type polymers Homopolymer of ARB r _i. A can react only with B; the B's may have different reactivities. Formation of rings excluded prior to gelation 5.16.1 All B groups have the same reactivity 5.16.2 Let B groups have different reactivities 5.16.3 A controversy over the statistical approach
5.17 5.18
5.19
5.20 5.21 5.22
5.23
5.24
Copolymer of ARB/_i and AB; A can react only with B; formation of rings excluded prior to gelation Homopolymer of RA/; formation of rings excluded prior to gelation 5.18.1 All A's equally reactive
284 285 346 1,152-155, 286 1,2,152, 155-157 155,157 286 287 288 1,2,158,265, 289 1,159,160 161,162,163, 164 1,2,158 1,2,121,158, 165,166, 265,274, 277,281, 290-292 167,273,293
5.18.2 Reactivity of A depends on number of A's previously reacted Various copolymers 5.19.1 Copolymer of RA/ and AA; formation of rings excluded prior to gelation 1,2,165 5.19.2 Copolymer of RA/, AA, and BB; A can react only with B; formation of rings excluded prior to gelation; all branch points completely reacted. See set 5.16.3 for a controversy 1,168,169 5.19.3 A mixture of self-condensing monomers RjA g , RiA/j, etc., no ring formation 277,294,295 5.19.4 A stoichiometric mixture of RA/ and RB/ of the same functionality/, indistinguishable reactivity, no ring formation. Note that different authors get different equations for Mn and Mw 277 5.19.5 A stoichiometric mixture of RA/, RA g ,.. .and RBzn R B / . . . , / , g, h, i being different functionalities, indistinguishable reactivities, no ring formation 277,294 5.19.6 A copolymer of RA/ and BB; no ring formation prior to gelation 274,281,290 5.19.7 A copolymer of RA^, AA, and B'B" where B' has a different reaction rate from B"; no rings prior to gelation 293 5.19.8 Copolymer of RA/, AA, and BB where the A's in RA/ can have different rates of reaction 293 Polymers of RA/B g 5.20.1 Homopolymer of RA/B g ; A can only react with B; formation of rings excluded prior to gelation 170,265 5.20.2 A mixture of monomers RA/B g , where/, g = 0,1, 2 , . . . , stoichiometry not required 295 Branching without gelation; copolymer of RA/ and AB. A can react only with B 1,171 Gelation conditions; formation of rings excluded prior to gelation 5.22.1 AA reacting with B/C g . A can react with B and C, but with different velocities. B cannot react with C 1,172 5.22.2 AA, BB, and C reacting with DDE and FF; A, B, and C individually can react with D, E, and F, but with different velocities 1,172 5.22.3 AAB, RC4, and GC reacting with DE and F. DE is an anhydride or similar material. D must react first and may have a different velocity from E. A, B, C. and G may react with different velocities 1,172 5.22.4 AB and CD reacting with EEF and GG. AB and CD are anhydrides or similar materials, where A must react before B and C must react before D. A, B, C, and D may react with different velocities 1,172 5.22.5 AA and BC reacting with DDE and FG. BC is an anhydride, B reacting first, and FG is like an unsymmetrical glycol 1,172 Ring formation in linear polymers 5.23.1 Homopolymer of type AA 1,173,174 5.23.2 Homopolymer of type AA. Formation of catenanes 296 5.23.3 Homopolymer of type AB 1,173,175 5.23.4 Copolymer of type AABB 1,173,176 5.23.5 Distribution for chain fraction 1,2 5.23.6 Copolymer of AA with BC. BC can be an anhydride; within a given molecule, B must react before C; A single cyclic oligomer is permitted to form 297 5.23.7 Ring-chain equilibrium constant, Rp of rings, cut-off point of monomer cone below which only cyclics formed 347 Crosslinking of a polymer with a known distribution; rings are permitted prior to gelation 153
References page II - 356
TABLE 5. cont'd Set
Conditions
References
5.25 5.26
Gelation conditions for RA/ when rings are permitted prior to gelation Homopolymer of RA/. Ring formation permitted prior to gelation
5.27 5.28 5.29 5.30
Copolymer of RA/ and BB when rings are permitted prior to gelation Gelation condition for RA/, AA, and BB when rings are permitted prior to gelation Monte Carlo calculations on small amounts of crosslinking Monte Carlo calculations for RA3, the reactivity of an A group depends on the number of previously reacted groups on that monomer, no ring formation prior to gelation Monte Carlo calculations for vinyl and divinyl copolymerization Grafting of reactive polymers of the type AA, AAB, BB, and BBA where rings can form prior to gelation; M w and the gel point Star type molecules prepared by anionic polymerization and different precursors (see also 5.19.1, 5.21 and 5.27)
5.31 5.32 5.33
1,177 1,178,179, 298 180 1,181 299 275 300 348 349
TABLE 6. DEGRADATION OF POLYMERS - MAY BE ACCOMPANIED BY CROSSLINKING References Set
Initiation
Mass
Initial distribution
Transfer
Termination
Rd
Pr
Mn, M^
6.1. RANDOM SCISSION ONLY 6.1.1 6.1.2
Proportional to time Const Proportional to time Const
6.1.3
Random at all bonds Random at chain ends Random at all chains Random Random Random
6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.1.10 6.1.11 6.1.12
Random Random at normal and weak bonds Gaussian about the midpoint Central
None None
None None
-
183-186 183-187
182-184 183,184,188
Const
Arbitrary Infinite or uniform Uniform
None
None
-
189
189
Const
Uniform
None
None
-
190
Const
Uniform
None
None
-
191
191
Const Const Const
Rectangular Flory Schulz
None None None
None None None
-
184 184,188 187,301
Const Const
Poisson Uniform
None None
None None
-
184,187 184,187 184,187, 301 187 -
Const
Schulz
None
None
301
301
Const
Schulz
None
None
301
301
192
6.2. UNZIPPING-TYPE REACTION 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12
1° end 1° end 1° end 1° end 1° end 1° end 1° end; various rates of initiation Random scission only Random scission only 1° end and random scission
Varies Varies Varies Varies Varies Varies Varies; monomer radicals may evaporate Varies
Uniform Uniform Schulz Schulz Schulz (k = 2) Schulz (k = 2) Flory
None Polymer None None None None None
1° 2° Disprop 1° 2° Disprop 1° 2° Comb 1° or 2° Disprop
193 194 193 195 196 196 197
-
193 194 193 195 196 196 -
Uniform
Polymer
2° Disprop
194
-
194
Varies
Schulz
None
2° Disprop
198
-
198
Varies
Unspecified
None
1° and 2° Process
1° end and random scission 1° end and random scission
Varies
Flory
Polymer
Varies
Flory
Polymer
1° and 2° Disprop 2° Comb
199 (all molecules must terminate) 200 (some molecules can completely disappear) 201 201 201
-
201
TABLE 6. cont'd References Initial Distribution
Set
Initiation
Mass
6.2.13
1° end and random scission
Varies
6.2.14
1° end and random scission
Varies
Uniform
Polymer
6.2.15
1° end and random scission
Polymer
6.2.16
1° end and random scission
6.2.17
Unzipping reactions
Varies; units Uniform other than monomer may evaporate Varies; units Flory other than monomer may evaporate Varies Various
Flory
Transfer Polymer
Termination
Ra
Pr
Mn, M^
1° and 2° Process; comparison of random scission, weak link, and transfer theories. Comparison of various term mechanisms 2° Disprop
202 203
-
203
204
-
-
205
-
205
polymer
1° and 2° Disprop or 2° comb
206
206
206
Various
Various, a review
207
153 208 302 303 209
153 208 282 302 303 210 209
153 208 302
211 208
211 208
211 28
211
211
211
29
-
29
-
-
350
153
153
153
182
182
182
182,212, 213 -
182
182
182
-
153
153
153
6.3. RANDOM SCISSION AND CROSSLINKING 6.3.1
Proportional to time
Const
Arbitrary
None
Unspecified term, with and without ring formation
6.3.2
Varies with depth of penetration
Const
Flory
None
6.3.3
Proportional to time
Const
Arbitrary
None
6.3.4
Proportional to time Proportional to time
Const
Arbitrary
None
Const
Schulz
None
Const
Various
Unspecified
1° and 2° Disprop without ring formation End-linking (grafting) rather than crosslinking; without ring formation End-linking; with ring formation Unspecified term, without ring formation Various initial distributions
6.3.5 6.3.6
Proportional to time
210
6.4. CROSS LINKING ONLY 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5
Proportional time Proportional time Proportional time Proportional time Proportional time
to
Const
Arbitrary
None
to
Const
Uniform
None
to
Const
Schulz
None
to
Const
Beasley (140)
None
to
Const
Arbitrary
None
Ring formation prohibited Ring formation prohibited Ring formation prohibited Ring formation prohibited Ring formation permitted
6.5. RANDOM SCISSION FOLLOWED BY UNZIPPING 6.5.1 6.5.2
Random macromolecular fragmentation to form defective groups which subsequently initiates depolymerization Random macromolecular fragmentation to form defective groups which subsequently initiates depolymerization with bimolecular kinetic chain termination
351 352
References page 11-356
TABLE 7. INFLUENCE OF REACTOR CONDITIONS AND DESIGN ON THE MOLECULAR WEIGHT DISTRIBUTION Set 7.1 7.2
7.3 7.4 7.5 7.6a 7.6b 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17
Conditions Comparison of 1° term, 2° term with monomer, 2° disprop, 2° comb, and no term for 1° and 2° self-initiation and initiation by light in a CFSTR°: Rv, Pr and Mn are given Emulsion polymerization 7.2.1 Emulsion polymerization in a CFSTR. Instantaneous 2° termination 7.2.2 Emulsion polymerization in isothermal BR a ; 1° init, termination with initiator, four stages of polymerization Effect of inadequate stirring in a CFSTR; comparison with BR and normal CFSTR. Term, by 2° or no term. Rp, P r M n ' s Control of MWD a by use of temperature variation; term by 2° disprop or 2° comb. M n 's Effect of expanding drop of monomer in a catalyst solution on MWD of "living" polymers Effect of inadequate mixing by a laminar shear model on MWD of "living" polymers Effect of different flow lines spending different times in the reactor on the MWD of "living" polymers; the bimodal MWD changes with reactor length Effect of varying rate of addition of initiator and/or monomer, transfer agent, or terminator, in a BR, neglecting change in volume Effect of varying the rate of addition of an instantaneous initiator on MWD of "living" polymers Effect of back mixing on MWD of "living" polymers prepared in BR, semi-BR, and CFSTR See also Table 3, set 3.6: Further polymerization of polymers with an initial geometric distribution Linear condensation of a multifunctional monomer in a BR "Living" polymer, inst. initiation, no transfer, no termination in a TR a , monomer varies Effect of mixing in a BR Condensation polymerization when monomer is R times more reactive with monomer or with polymer molecules, CFSTR, and references to BRs Effect of recycling a portion of a TR; chain-stopper control Production of monodisperse particles Reversible polymerization with multifunctional monomers. Comparison of MWD from CFSTR with BR
References
214 215 304 216 217 218 219 353 220 103,221 222 305 306,307 308 309,310 311 312 354
a
CFSTR: Continuous-flow, stirred tank reactor; BR: batch reactor; TR: tube reactor; MWD: molecular weight distribution.
C. SOME DISTRIBUTION FUNCTIONS AND THEIR PROPERTIES
The frequency function, F(r), is the fraction of molecules of size r. Furthermore, F(r) is normalized
Thus, by the definitions of F(r) and W(r) (C5) The weight-average degree of polymerization is
(Cl) (C6) The weight fraction of molecules of size r is
(C2)
Averages of any distribution are defined by
The z and z + 1 averages are defined by Eq. (C3) with / set equal to 3 and 4. There is no need to restrict averages of a distribution to positive integers - any useful average can be defined; such as the (—5/2) average. If the intrinsic viscosity of a polymer is related to the degree of polymerization through the equation (C7) where rv is the viscosity-average degree of polymerization, it is related to the frequency function by
(C3)
The number-average degree of polymerization is defined by
(C4)
(C8) As a approaches unity, rv approaches r w . In principle, a distribution function can be determined if sufficient averages of the distribution can be determined. In practice, only the number, weight, and perhaps z averages can be found, which are insufficient to define any distribution without making further assumptions.
The degree of polymerization is a useful concept as long as one is describing polymers made with a single monomer or with monomers of equal molecular weight. When considering copolymers, one must work with the actual molecular weight of the reacted unit. This is done in condensation polymerization. The molecular weight distribution of addition copolymers is not included here because of the extreme complexity of these systems. When performing the summation of a distribution equation to find an average of the distribution, use is frequently made of the following sums:
Values of F(r) and J^ F(r) Ar are found in many statistical tables (223). 2. Logarithmic Normal Distribution Function Under the assumption that the weight distribution of the logarithm of molecular size is normally distributed, we can replace r in the normal distribution function by In r and f by lnrm (C15)
(C9) where
(C16)
or in the alternate form (C17) n is an integer where (C18)
and (C19)
Here r m is the median value of the distribution, that is, onehalf of the values of r are less than r m . (C20) (C21) (C22)
1. Normal Distribution Function (Gaussian Distribution)
(C23) (ClO) (CU)
(C24) Note that (C25)
(C12)
(C26)
(C13)
The logarithmic normal distribution sometimes is given in a "generalized" form (224)
(C14)
(C27) References page II - 356
but Honig (225) has shown that (C28) Thus, the normalized Lansing-Kramer function (s = 0) (226) is identical to the normalized Wesslau function (s = - l ) ( 2 2 7 ) . The generalized logarithmic normal distribution is skewed to large values of r, but Kotliar (237, 238) shows that this distribution is not a good representation of a polymer after either low- or high-molecular weight material is removed or degradation has occurred.
(b) The Weibull (231) or Tung (232) distribution is obtained by setting m = 1 + k and k > 0. This distribution is usually seen in the form
(C40)
Kotliar (233) shows that evaluation of y and k by the Tung method can lead to erroneous values of fw/fn. (c) The Flory distribution, as noted above, occurs when Jc = m = 1, provided that In/? can be replaced by - ( I — /?), i.e. p & 1. The Flory distribution is also written as:
3. Generalized Exponential Distribution (1,228)
(C41) (C29)
(C42)
(C30)
(C43)
(C31)
(C44)
(C32) (C33)
and with the approximation In p = p — 1
(C34)
(C45)
and (C35) where a is defined by equation (C7). The variance of a distribution
For high molecular weights p « 1, hence
4. Poisson Distribution Hence, the preferred measure distribution breadth is fw/rn. (a) The distribution function (229) is obtained by setting m = This distribution is equivalent distribution
of the molecular weight
(C37) The distribution reduces to the "most probable" distribution where k = 1. The cumulative number or weight fraction of the Schulz distribution may be computed from
(C38)
(C39)
(CAl)
(C48) (C49)
of Schulz (9) and Zimm 1 and requiring that k > 0. to the Pearson Type III
(C36)
(C46)
(C50) (C51) D. MOLECULAR WEIGHT DISTRIBUTION IN CONDENSATION POLYMERS: THE STOCKMAYER DISTRIBUTION FUNCTION Stockmayer (234) has presented a generalized distribution formula for a variety of monomers containing end groups of type A which can only react with a variety of monomers containing end groups of type B. In the original mixture there are A \, A 2, A 3 , . . . , A,-,... moles of reactants bearing respectively,/1,/2,/3,...,/,-,... functional groups of type A each, together with Bi, B2, • • •, Bj,... moles of reactants of functionalities gi, g2, • • -gj,- • • in groups of type B. all functional groups of a given type are equally reactive and ring formation does not occur appreciably; which obviously is not true near the gel point. The system reacts until a fraction a of the A groups and a fraction /3 of the B groups
have reacted. Further
If each species / has an effective molecular weight Af1-, which is lower than the original molecular weight by the term Wo / ; / 2 , where Wo is the molecular weight of the byproduct, then
Now N{mn, Hj) represents the number of moles of that species which consists of mi, ra2, . . . , m f , . . . monomer units of the A type combined with n 1, ^ 2 , . . . , rij units of the B type.
(D5)
The number of molecules of the end of the reaction is,
(Dl) where
neglecting byproduct, (D6)
The number-average molecular weight is (D2) (D7) The weight-average molecular weight is
An example will illustrate the use of Eq. (Dl). Suppose we have the monomers acetic acid (CH3COOH, A1, /1 = 1) and adipic acid (HOOC(CH 2 ) 4 COOH, A 2 , /2 = 2) reacting with ethylene glycol (HOCH 2 CH 2 OH, B i , gi = 2)
and
glycerol
(HOCH2CHOHCH2OH,
B 2 , g2 = 3) (all hydroxyl groups of the glycerol are considered equally reactive). What is the number of molecules which contain exactly 1 acetic acid unit, 4 adipic acid units, 3 glycol units, and 2 glycerol units? It is W{1,4,3,2} and
(D8) where
(D3) (D9)
where
(D4)
Simpler expressions for M n and M w are given by Ziegel et al. (235) for the case when only bifunctional B monomers are present. The gel point is (DlO) Extensive computations of N{mi,rij} for the Z1 = IJ2 = 2 , / 4 , and g2 = 2 have appeared (236).
case
References page 11-356
E. REFERENCES • 1. L. H. Peebles, Jr., "Molecular Weight Distributions in Polymers", Interscience, New York, 1971. 2. P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, Ithaca, N.Y, 1953. 3. C. H. Bamford, W. G. Barb, A. D. Jenkins, P F. Onyon, "The Kinetics of Vinyl Polymerization by Radical Mechanisms", Academic Press, New York, 1958. 4. G. Odian, "Principles of Polymerization", McGraw-Hill, New York, 1970; 2nd ed., Wiley-Inter science, New York, 1981. 5. F. W. Billmeyer, Jr., "Textbook of Polymer Science", 2nd ed., Interscience, New York, 1971; 3rd ed., 1984. 6. L. Kuechler, "Polymerisationskinetik", Springer, Berlin, 1951. 7. Kh. S. Bagdasarian, "Theory of Free Radical Polymerization", Israel Program for Scientific Translations, Jerusalem, 1968. 8. D. C. Chappelear, R. H. M. Simon. "Addition and Condensation Polymerization Processes", in: N. Platzer (Ed.), Adv. in Chem., 91, Am. Chem. Soc, Washington, DC, 1969, p. 1. 9. G. V. Schulz, Z. Physik, Chem. B, 43, 25 (1939). 10. G. M. Burnett, L. D. Loan, Trans. Faraday Soc, 51, 214 (1955). 11. L. H. Peebles, Jr., J. T. Clarke, W. H. Stockmayer, J. Am. Chem. Soc, 82, 4780 (1960). 12. J. L. Kice, J. Am. Chem. Soc, 76, 6274 (1954). 13. L. H. Peebles, Jr., J. Appl. Polym. ScL, 17, 113 (1973). 14. S. Saccubai, M. Santappa, Makromol. Chem., 117, 50 (1968). 15. W. A. Pryor, J. H. Coco, Macromolecules, 3, 300 (1970). 16. L. S. Bresler, V. A. Grechanovsky, A. Muzsay, I. Ya. Poddubnyi, Makromol. Chem., 133, 111 (1970). 17. C. H. Bamford, A. D. Jenkins, R. Johnson, Trans. Faraday Soc, 58, 1212 (1962). 18. C. H. Bamford, H. Tompa, Trans. Faraday Soc, 50, 1097 (1954). 19. M. Litt, J. Polym. Sci. A-2, 8, 2105 (1970). 20. M. Litt, F. R. Eirich, J. Polym. Sci., 45, 379 (1960). 21. P. H. Plesch, Ed., "The Chemistry of Cationic Polymerization", MacMillan Co., New York, 1963. 22. A. A. Korotkov, S. R Mitsengendler, V. N. Krasulina, J. Polym. Sci., 53, 217 (1961). 23. D. O. Jordan, A. R. Mathieson, J. Chem. Soc, 1952, 2358. (Note: equation 13 et seq. contain errors owing to an integration error.) 24. H. E. Grethlein, Ind. Eng. Chem. Fund., 8, 206 (1969). 25. J. C. W. Chien, J. Polym. Sci. A, 1, 1839 (1963). 26. J. C. W. Chien, J. Am. Chem. Soc, 81, 86 (1959). 27. S. Katz, G. M. Saidel, Am. Inst. Chem. Eng. J., 13, 319 (1967). 28. C. H. Bamford, Polymer, 6, 63 (1965). 29. M. Inokuti, J. Chem. Phys., 38, 2999 (1963). 30. A. V. Tobolsky, J. Am. Chem. Soc, 80, 5927 (1958); A. V. Tobolsky, C. E. Rogers, R. D. Brinkman, ibid., 82, 1277 (1960).
31. C B . Wooster, Macromolecules, 1, 324 (1968). 32. K. F. O'Driscoll, R. Knorr, Macromolecules, 1, 367 1968). 33. J. C. Bevington, "Radical Polymerization", Academic Press, New York, 1961. 34. W. H. Ray, T. L. Douglas, E. W. Goodsolve, Macromolecules, 4, 166 (1971). 35. W. H. Stockmayer, J. Chem. Phys., 13, 199 (1945). 36. K. Ito, J. Polym. Sci. A-2, 7, 241 (1969). 37. S. W. Benson, A. M. North, J. Am. Chem. Soc, 84, 935 (1962). 38. S. Okamura, T. Manabe, Polymer, 2, 83 (1961). 39. K. Venkatarao, M. Santappa, J. Polym. Sci. A-I, 8, 1785, 3429 (1970). 40. S. Kohjiya, Y. Imanishi, T Higashimura, J. Polym. Sci. A-I, 9, 747 (1971). 41. K. R O'Driscoll, S. A. McArdle, J. Polym. Sci., 40, 557 (1959). 42. K. Ito, J. Polym. Sci., A-I, 7, 827, 2995 (1969). 43. C. H. Bamford, A. D. Jenkins, R. Johnson, Trans. Faraday Soc, 55, 1451 (1959). 44. K. Ito, J. Polym. Sci. A-I, 7, 2247, 3387 (1969); 8, 1823 (1970); 10, 1481 (1972); K. Ito, T. Matsuda, J. Appl. Polym. Sci., 14, 311 (1970). 45. T. Nagabhushanam, M. Santappa, J. Polym. Sci. A-I, 10, 1511 (1972). 46. J. F. Westlake, R. Y. Hunag, J. Polym. Sci. A-I, 10, 1429, 1442 (1972). 47. M. A. Markevich, Ye. V. Kochetov, N. S. Yenikolopyan, Vysokomol. Soedin. A, 13,1013 (1971); Polym. Sci., USSR, 13, 1153 (1971). 48. R. N. Haward, J. Polym. Sci., 4, 273 (1949). 49. W. V. Smith, R. H. Ewart, J. Chem. Phys., 16, 592 (1948). 50. W. H. Stockmayer, J. Polym. Sci., 24, 314 (1957). 51. J. T. O'Toole, J. Appl. Polym. Sci., 9, 1291 (1965). 52. A. G. Parts, D. E. Moore, J. G. Watterson, Makromol. Chem., 89, 156 (1965). 53. J. L. Gardon, J. Polym. Sci. A-I, 6, 623 (1968). 54. L. M. Pisman, S. I. Kuchanov, Polym. Sci., USSR, 13, 1187 (1971); Vysokomol. Soedin. A, 13, 1055 (1971). 55. J. L. Gardon, J. Polym. Sci. A-I, 6, 665 (1968). 56. J. L. Gardon, J. Polym. Sci. A-I, 9, 2763 (1971). 57. P. Harriot, J. Polym. Sci. A-I, 9, 1153 (1971). 58. M. Litt, R. Patsiga, V. Stannett, J. Polym. Sci. A-I, 8, 3607 (1970). 59. S. Katz, R. Shinnar, G. M. Saidel, "Addition and Condensation Polymerization Processes", N. Platzer, Ed., Adv. in Chem. Ser., 91, Am. Chem. Soc, Washington, DC, 1969, p. 145. 60. G. M. Saidel, S. Katz, J. Polym. Sci. C, 149 (1969). 61. J. G. Watterson, J. G. Parts, Markromol. Chem., 146, 1 (1971). 62. A. H. Abdeh-Alim, A. E. Hamielec, J. Appl. Polym. Sci., 16, 783 (1972). 63. M, Iguchi, J. Polym. Sci. A-I, 8, 1013 (1970).
64. O. G. Lewis, R, M. King, Jr., "Addition and Condensation Polymerization Processes", N. Platzer, Ed., in Adv. in Chem. Ser. 91, Am. Chem. Soc, Washington, DC, 1969, p. 25. 65. R. Wessling, I. R. Harrion, J. Polym. Sci. A-I, 9, 3471 (1971). 66. R D. Barlett, H. Kwart, J. Am. Chem. Soc, 72,1051 (1950). 67. Th. Deleanu, M. Dimonie, J. Polym. Sci. A-I, 8, 95 (1970). 68. I. Kar, B. M. Mandal, S. R. Palit, Makromol. Chem., 127, 196 (1969). 69. W. H. Atkinson, C. H. Bamford, G. C. Eastmond, Trans. Faraday Soc, 66, 1446 (1970). 70. A. D. Jenkins, Trans. Faraday Soc, 54, 1885 (1958). 71. A. D. Jenkins, Trans. Faraday Soc, 54, 1895 (1958). 72. J. P. Bianchi, F. P. Price, B. H. Zimm, J. Polym. Sci., 25, 27 (1957). 73. F. F. Williams, K. Hayashi, K. Ueno, K. Hayashi, S. Okamura, Trans. Faraday Soc, 63, 1501 (1967). 74. P. W. Allen, F. M. Merrett, J. Scanlan, Trans. Faraday Soc, 51, 95 (1955). 75. C. H. Bamford, A. D. Jenkins, R. Johnson, Proc Roy. Soc, (London) A239, 214 (1957). 76. B. D. Coleman, T. G. Fox, J. Am. Chem. Soc, 85, 1241 (1963). 77. M. Szwarc, J. J. Hermans, Polym. Lett. B, 2, 815 (1964). 78. R. V. Figini, Makromol. Chem., 71, 193 (1964). 79. R. V. Figini, Makromol. Chem., 107, 170 (1967). 80. R. V. Figini, Makromol. Chem., 88, 271 (1965). 81. A. Miyake, W. H. Stockmayer, Makromol. Chem., 88, 90 (1965). 82. C. R. Huang, H. H. Wang, J. Polym. Sci. A-I, 10, 791 (1972). 83. V. S. Nanda, S. C. Jain, Eur. Polym. J., 6, 1517 (1970). 84. J. Leonard, Macromolecules, 2, 661 (1969). 85. H. J. R. Maget, J. Polym. Sci. A-2, 1281 (1964). 86. I. Mita, J. Macromol. Sci. Chem. A-5, 883 (1971). 87. W. T. Kyner, J. R. M. Radok, M. Wales. J. Chem. Phys., 30, 363 (1959). 88. V. S. Nanda, Trans. Faraday Soc, 60, 949 (1964). 89. L. H. Peebles, Jr., Polym. Lett., 7,75 (1969). See also Ref. 91. 90. S. C. Jain, V. S. Nanda, Polym. Lett., 8, 843 (1970). 91. L. H. Peebles, Jr., J. Polym. Sci. A-2, 8, 1235 (1970) (Note: Eq. 13 of Ref. 89 should be written x = (r - r)/rl/2\ the figures are correct.) 92. V. S. Nanda, R. K. Jain, Trans. Faraday Soc, 64, 1022 (1968). 93. J. C. W. Chien, J. Polym. Sci. A, 1, 425 (1963). 94. S. Penzek, P. Kubisa, Makromol. Chem., 130, 186 (1969). 95. V. I. Irzhak, N. S. Enikolopyan, Dokl. Akad. Nauk SSSR 185, 862 (1969); Dokl. Phys. Chem., 185, 226 (1969). 96. W. H. Ray, Macromolecules, 4, 162 (1971). 97. W. R. Schmeal, J. R. Street, Am. Inst. Chem. Eng. J., 17, 1188 (1971). 98. D. Singh, R. P. Merrill, Macromolecules, 4, 599 (1971). 99. M. Gordon, R. J. Roe, Polymer, 2, 41 (1961).
100. M. I. Mustafayev, K. V. Aliev, V. A. Kabanov, Vysokomol. Soedin. A, 12, 855 (1970); Polym. Sci., USSR, 12, 968 (1970). 101. P. J. Flory, J. Am. Chem. Soc, 62, 1561 (1940). 102. L. Gold, J. Chem. Phys., 28, 91 (1958). 103. M. Litt, D. H. Richards, Polym. Lett., 5, 867 (1967). 104. L. F. Beste, H. K. Hall, Jr., J. Phys. Chem., 68, 269 (1964). 105. H. N. Friedlander, J. Polym. Sci. A, 2, 3885 (1964). 106. B. D. Coleman, F. Gornick, G. Weiss, J. Chem. Phys., 39, 3233 (1963). 107. T. A. Orofino, F. Wenger, J. Chem. Phys., 35, 532 (1961). 108. R. Chiang, J. J. Hermans, J. Polym. Sci. A-1,4, 2843 (1966). 109. A. Guyot, J. Chim. Phys., 548, 1964. 110. P. J. Flory, J. Am. Chem. Soc, 58, 1877 (1936). 111. L. C. Case, J. Polym. Sci., 29, 455 (1958). 112. G. Challa, Makromol. Chem., 38, 105 (1960). 113. V. S. Nanda, S. C. Jain, J. Chem. Phys., 49, 1318 (1968). 114. A. Ninagawa, I. Ijichi, M. Imoto, Makromol. Chem., 107, 196 (1967). 115. L. C. Case, J. Polym. Sci., 48, 27 (1960). 116. J. J. Hermans, Makromol. Chem., 87, 21 (1965). 117. L. C. Case, J. Polym. Sci., 37, 147 (1959). 118. C. H. Bamford, A. D. Jenkins, Trans. Faraday Soc, 56, 907 (1960). 119. L. C. Case, J. Polym. Sci., 39, 175 (1959). 120. L. C. Case, J. Polym. Sci., 39, 183 (1959). 121. P. J. Flory, Chem. Rev., 39, 137 (1946). 122. W. Kuhn, Chem. Ber., 63, 1503 (1930). 123. J. L. Lundberg, J. Polym. Sci. A, 2, 1121 (1964). 124. F. E. Harries, J. Polym. Sci., 18, 351 (1955). 125. M. Szwarc, Adv. Polym. Sci., 4, 457 (1967). 126. J. J. Hermans, J. Polym. Sci. C, 12, 345 (1966). 127. A. V. Tobolsky, J. Polym. Sci., 25,220 (1957); J. Polym. Sci., 31, 126 (1958); A. V. Tobolsky, A. Eisenberg, J. Am. Chem. Soc, 81, 2302 (1959); J. Am. Chem. Soc, 82, 289 (1960). 128. M. E. Baur, A. Eisenberg, J. Chem. Phys., 42, 85 (1965). 129. F. P. Adams, J. B. Carmichael, R. J. Zeman, J. Polym. Sci. A-I, 5, 741 (1967). 130. C. M. Fonatana in: The Chemistry of Cationic Polymerization, P. H. Plesch (Ed.), Macmillan, New York, 1963. 131. J. R. Van Wazer, "Phosphorus and Its Compounds", Vol. 1, Interscience Publishers, Inc., New York, 1958. 132. T. Saegusa, T. Shiota, S. Matsumoto, H. Fujii, Macromolecules, 5, 34 (1972). 133. R. Z. Greenley, J. C. Stauffer, J. E. Kurz, Macromolecules, 2, 561 (1969). 134. V. S. Nanda, S. C. Jain, J. Polym. Sci. A-I, 8, 1871 (1970). 135. G. M Saidel, S. Katz, J. Polym. Sci. A-2, 6, 1149 (1968). 136. L. H. Tung. T. M. Wiley, Polym. Preprints, 13, 1060 (1972). 137. W. W. Graessley. H. Mittelhauser, R. Maramba, Markromol. Chem., 86, 129 (1965). 138. W. W. Graessley, Am. Inst. Chem. Eng.-Inst. Chem. Eng. Joint Meeting, London, June, 1965, 3, 16. 139. O. Saito, K. Najasubramanian, W. W. Graessley, J Polym. Sci. A-2, 7, 1937 (1969).
140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179.
J. K. Beasley, J. Am. Chem. Soc, 75, 6123 (1953). K. Fukii, T. Yamade, J. Polym. Sci. A, 2, 3743 (1964). M. Gordon, R. J. Roe, J. Polym. Sci., 21, 57 (1956). A. Rigo, G. Palma, G. Talamini, Markromol. Chem., 153, 219 (1972). L. E. Dannals. J. Polym. Sci. A-I, 8, 2989 (1970). M. Gordon, J. Chem. Phys., 22, 610 (1954). C. Aso, T. Nawata, H. Kamao, Makromol. Chem., 68, 1 (1963). Y. Minoura, M. Mitoh, J. Polym. Sci. A, 3, 2149 (1965). G. B. Butler, M. A. Raymond, J. Polym. Sci. A, 3, 3413 (1965). L. Trassarelli, M. Guaita, T. Macromol. Sci.-Chem. 1, 471 (1966). M. Gordon, R. J. Roe, J. Polym. Sci., 21, 75 (1956). M. Gordon, Proc. Roy. Soc. (London), A268, 240 (1962). W. H. Stockmayer, J. Chem. Phys., 12, 125 (1944). O. Saito, J. Phys. Soc. (Japan), 13, 198 (1958). A. A. Miler, J. Polym. Sci., 42, 441 (1960). G. R. Dobson, M. Gordon, J. Chem. Phys., 43, 705 (1965). P. J. Flory, J. Am. Chem. Soc, 63, 3096 (1941). A. Amemiya, J. Phys. Soc. (Japan), 23, 1394, 1402 (1967). P. J. Flory, J. Am. Chem. Soc, 74, 2718 (1952). E. S. Allen, J. Polym. Sci., 21, 349 (1956). S. Erlander, D. French, J. Polym. Sci., 20, 7 (1956). M. Gordon, M. Judd, Nature, 234, 96 (1971). C. R. Masson, I. B. Smith, S. G. Whiteway, Nature, 234, 97 (1971). C. R. Masson, I. B. Smith, S. G. Whiteway, Can. J. Chem., 48, 1456 (1970). S. G. Whiteway, I. B. Smith, C. R. Masson, Can. J. Chem., 48, 33 (1970). P. J. Flory, J. Am. Chem. Soc, 63, 3091 (1941). W. H. Stockmayer, J. Chem. Phys., 11, 45 (1943). M. Gordon, G. R. Scantlebury, Trans. Faraday Soc, 60, 604 (1964). A. R. Shultz, J. Polym. Sci. A, 3, 4211 (1965). H. L. Berger, A. R. Shultz, J. Polym. Sci. A, 3, 4227 (1965). L. M. Pismen, S. I. Kuchanov, Polym. Sci., USSR 13, 890 (1971); Vysokomol. Soedin. A, 13, 791 (1971). J. R. Schaefgen, R J. Flory, J. Am. Chem. Soc, 70, 2709 (1948). L. C. Case, J. Polym. Sci., 26, 333 (1957). H. Jacobson, W. H. Stockmayer, J. Chem. Phys., 18, 1600 (1950). R J. Flory, J. A. Semlyen, J. Am. Chem. Soc, 88, 3209 (1966). H. Morawetz, N. Goodman, Macromolecules, 3, 699 (1970). M. Gordon, W. B. Temple, Makromol. Chem., 152, 277 (1972). F. E. Harris, J. Chem. Phys., 23, 1518 (1955). C. A. J. Hoeve, J. Polym. Sci., 21, 11 (1956). M. Gordon, G. R. Scantlebury, J. Polym. Sci. C, 16, 3933 (1968).
180. M. Gordon, G. R. Scantlebury, J. Chem. Soc. B, 1967, 1 (1967). 181. R. W. KiIb, J. Phys. Chem., 62, 969 (1958). 182. A. Charlesby, S. H. Pinner, Proc. Roy. Soc (London), A, 249, 367 (1959). 183. D. Mejzler, J. Schmorak, M. Lewin, J. Polym. Sci., 46, 289 (1960). 184. V. S. Nanda, R. K. Pathria, Proc. Roy. Soc. (London), A, 270, 14 (1962). 185. L. Monnerie, J. Neel, J. Chim. Phys., 62, 53 (1965). 186. S. W. Lee, J. Polym. Sci. A-2, 7, 77 (1969). 187. L. Monnerie, J. Neel, J. Chim. Phys., 62, 510 (1965). 188. J. Dump. J. Chim. Phys., 51, 64 (1954). 189. R. Simha, J. Appl. Phys., 12, 569 (1941). 190. B. J. Coyne, J. Polym. Sci. A-2, 5, 633 (1967). 191. E. W. Montroll, R. Simha, J. Chem. Phys., 8, 721 (1940). 192. J. R. MacCallum, Markromol. Chem., 83, 129 (1965). 193. M. Gordon, L. R. Shenton, J. Polym. Sci., 38, 157 (1959). 194. R. Simba, L. A. Wall, J. Phys. Chem., 56, 707 (1952). 195. R. H. Boyd, T. P. Lin, J. Chem. Phys., 45, 773 (1966). 196. M. Gordon, L. R. Shenton, J. Polym. Sci., 38, 179 (1959). 197. M. Gordon, J. Phys. Chem., 64, 19 (1960). 198. R. H. Boyd, T. P. Lin, J. Chem. Phys., 45, 778 (1966). 199. G. G. Cameron, Makromol. Chem., 100, 225 (1967). 200. G. G. Cameron, G. P. Kerr, Makromol. Chem., 115, 268 (1968). 201. R. H. Boyd, J. Chem. Phys., 31, 321 (1959). 202. M. Gordon, Trans. Faraday Soc, 53, 1662 (1957). 203. R. Simha, Trans. Faraday Soc, 54, 1345 (1958). 204. L. A. Wall, S. Strauss, Polym. Preprints, 10, 1472 (1969). 205. L. A. Walls, S. Strauss, J. H. Flynn, D. Mclntyre, J. Phys. Chem., 70, 53 (1966). 206. R. H. Boyd, J. Polym. Sci. A-I, 5, 1573 (1967). 207. M. Gordon, Soc Chem. Ind. (London) Monograph, 13, 163 (1961). 208. O. Saito, J. Phys. Soc. (Japan), 13, 1465 (1958). 209. A. R. Shultz, J. Appl. Polym. Sci., 10, 353 (1966). 210. A. R. Shultz, J. Chem. Phys., 29,200 (1958); J. Phys. Chem., 65, 967 (1961). 211. O. Satio, J. Phys. Soc. (Japan), 13, 1451 (1958). 212. T. Kimura, J. Phys. Soc. (Japan), 17, 1884 (1962). See also ref. 213. 213. D. I. C. Kells, J. E. Guillet, J. Polym. Sci. A-2, 7, 1895 (1969). 214. K. G. Denbigh, Trans. Faraday Soc, 43, 648 (1947). 215. A. W. DeGraft, G. W. Poehlin, J. Polym. Sci. A-2, 9, 1955 (1971). 216. Z. Tadmor. J. A. Biesenberger, Ind. Eng. Chem. Fund., 5,336 (1966). 217. M. E. Sacks, S. Lee, J. A. Biesenberger, Chem. Eng. Sci., 28, 241 (1973). 218. R. V. Figini, G. V. Schulz, Z. Physik, Chem. (Frankfurt), 23, 233 (1960); Makromol. Chem., 41, 1 (1960). 219. M. Litt, J. Polym. Sci., 58, 429 (1962).
220. L. F. Beste, H. K. Hall, Jr., J. Macromol. Chem., 1, 121 (1966). 221. A. Eisenberg, D. A. McQuarrie, J. Polym. Sci. A-I, 4, 737 (1966). 222. T. E. Corrigan, M. J. Dean, J. Macromol. Sci. A: Chem., 2, 645 (1968). 223. "Handbook of Chemistry and Physics", Vol. 34 th Edition et seq. Chemical Rubber Publishing Co., Cleveland. 224. W. F. Espenscheid, M. Kerker, E. Matijevic, J. Phys. Chem., 68, 3093 (1964). 225. E. P. Honig, J. Phys. Chem., 69, 4418 (1965). 226. W. D. Lansing, E. O. Kramer, J. Am. Chem. Soc, 57, 1369 (1935). 227. H. Wesslau, Makromol. Chem., 20, 111 (1956). 228. L. T. Muus, W. H. Stockmayer, quoted by F. W. Billmeyer, Jr., in "Textbook of Polymer Science", Interscience, New York, 1962. 229. B. H. Zimm, J. Chem. Phys., 16, 1099 (1948). 230. M. Matsuda, M. lino, T. Hirayama, T. Miyashita, Macromolecules, 5, 240 (1972). 231. W. Weibull, J. Appl. Mech., 18, 293 (1951). 232. L. H. Tung, J. Polym. Sci., 20, 495 (1956). 233. A. M. Kotliar, J. Polym. Sci. A, 2, 1373 (1964). 234. W. H. Stockmayer, J. Polym. Sci., 9, 69 (1952); 11, 424 (1953). 235. K. D. Siegel, A. W. Fogiel, R. Pariser, Macromolecules, 5,95 (1972). 236. I. Nakamura, R. Yokouchi, T. Ito, D. Miura, K. Fujii, Kobunshi Kagaku, 21, 553 (1964). 237. A. M. Kotliar, J. Polym. Sci. A, 2, 4304 (1964). 238. A. M. Kotliar, J. Polym. Sci. A, 2, 4329 (1964). 239. O. Prochazka, P. Kratochvil, J. Polym. Sci., Polym. Phys., Ed. 22, 501 (1984). 240. T. J. Tulig, M. Tirrell, Macromolecules, 14, 1501 (1981). 241. W. Y. Chiu, G. M. Carratt, D. S. Soong, Macromolecules, 16, 348 (1983). 242. J. N. Cardenas, K. F. O'Driscoll, J. Polym. Sci., Polym. Chem. Ed., 14, 883 (1976). 243. J. N. Cardenas, K. F. O'Driscoll, J. Polym. Sci., Polym. Chem. Ed., 15, 1883 (1977). 244. N. S. Yenikolopyan, F. S. D'yachkovskii, R Ye. Matkovshii, Ye. L. Pechatnikov, Kh. M. A. Brikenshtein, G. A. Furman, S. P. Davtyan, Vysokomol. Soyedin. A, 25, 265 (1983); Polym. Sci., USSR, 25, 303 (1983). 245. G. Lichti, R. G. Gilbert, D. H. Napper, J. Polym. Sci., Polym. Chem. Ed., 18, 1297 (1980). 246. K. Ito, J. Polym. Sci., A-I, 57 (1972). 247. V. A. Ivanov, S. I. Kuchanov, S. S. Ivanchev, Vysokomol. Soyedin. A, 19, 1684 (1977); Polym. Sci., USSR, 19, 1923 (1977). 248. H. Morawetz, Macromolecules, 12, 532 (1979). 249. L. L. Boehm, Z. Phys. Chem. N. F, 88, 297 (1974). 250. S. C. Jain, V S. Nanda, Eur. Polym. J., 13, 137 (1977). 251. M. Szwarc, B. H. Zimm, Macromolecules, 16, 1918 (1983). 252. J. Largo-Cabrerizo, J. Guzman, Macromolecules, 12, 526 (1979).
253. S. I. Kuchanov, Ye. S. Povolotskaya, Vysokomol. Soyedin. A, 24, 2179 (1982); Polym. Sci., USSR, 24, 2499 (1982). 254. S. K. Gupta, A. Kumar, A. Bhargava, Eur. Polym., J., 15,557 (1979). 255. L. H. Peebles, Jr., Macromolecules, 16, 929 (1983). 256. J. W. Stafford, J. Polym. Sci., Polym. Chem. Ed., 21, 1627 (1983). 257. E. Ozizmir, G. Odian, J. Polym. Sci., Polym. Chem. Ed., 18, 2281 (1980). 258. V. I. Kolegov, S. Ya. Frenkel, Vysokomol. Soyedin. A, 18, 1680 (1975); Polym. Sci., USSR, 18, 8 (1975). 259. V. I. Kolegov, Vysokomol. Soyedin. A, 18, 1689 (1976); Polym. Sci., USSR, 18, 1929 (1976). 260. L. H. Peebles, Jr., Macromolecules, 7, 872 (1974). 261. L. H. Peebles, Jr., Macromolecules, 9, 58 (1976). 262. Ye. P. Piskareva, Ye. G. Erenburg, I. Ya Poddubnyi, Vysokomol. Soyedin. A, 20 (1978); Polym. Sci., USSR, 20, 883 (1979). 263. J. J. Gonzalez, K. W. Kehr, Macromolecules, 11,996 (1978). See also Ref. 264. 264. N. A. Plate, A. D. Litmanovich, O. V. Noah, Macromolecules, 12, 1231 (1979). 265. J. L. Spouge, Macromolecules, 16, 121 (1983). 266. D. Y Yan, G. F. Cai, Makromol. Chem., 186, 583 (1985). 267. G. F. Cai, D. Y. Yan, Makromol. Chem., 186, 597 (1985). 268. M. Szwarc, C. L. Perrin, Macromolecules, 18, 528 (1985). 269. Ye. B. Brun, S. I. Kuchanov, Vysokomol. Soyedin. A, 21, 691 (1979); Polym. Sci., USSR, 21, 757 (1979). 270. S. I. Kuchanov, Ye. B. Brun, Vysokomol. Soyedin. A, 21, 700 (1979); Polym. Sci., USSR, 21, 767 (1979). 271. P. Whittle, Proc. Cambridge Phil. Soc, 61,475 (1965); Proc. Roy. Soc. London, Ser. A, 285, 501 (1965). 272. D. W. Matula, L. C. D. Groenweghe, J. R. Van Wazer, J. Chem. Phys., 41, 3105 (1964). 273. P. Luby, J. Phys. Chem., 78, 1083 (1974). 274. C. W. Macosko, D. R. Miller, Macromolecules, 9, 199 (1976). 275. J. Mikes, K. Dusek, Macromolecules, 15, 93 (1982). 276. D. Durand, C. M. Bruneau, Macromolecules, 12, 1216 (1979). 277. J. W. Stafford, J. Polym. Sci., Polym. Chem. Ed., 19, 3219 (1981). 278. R. Collins, M. B. Huglin, R. W. Richards, Eur. Polym. J., 11, 197 (1975). 279. B. L. Gutin, Vysokomol. Soyedin. A, 20,620 (1978); Polym. Sci., USSR, 20, 699 (1979). 280. T. Yasukawa, Y Sasaki, K. Murikami, J. Polym. Sci., Polym. Chem. Ed., 13, 17 (1975). 281. D. R. Miller, C. W. Macosko, Macromolecules, 9, 206 (1976). 282. D. S. Pearson, W. W. Graessley, Macromolecules, 11, 528 (1978). 283. A. Ziabicki, J. Walasek, Macromolecules, 11, 471 (1978). 284. D. Durand, C. M. Bruneau, Polymer, 24, 587 (1983). 285. D. Durand, C. M. Bruneau, Polymer, 24, 592 (1983). 286. V. Vojta, K. Dusek, Brit. Polym. J., 12, 1 (1980).
287. K. Dusek, M. Gordon, S. B. Ross-Murphy, Macromolecules, 11, 236 (1978). 288. T. Kotaka, Bull. Inst. Chem. Res., Kyoto Univ., 55, 135 (1977). 289. V. S. Nanda, J. Macromol. ScL, Phys. B, 18, 685 (1980). 290. M. A. Bibbo, E. M. Valles, Macromolecules, 15, 1293 (1982). 291. D. R. Miller, E. M. Valles, C. W. Macosko, Polym. Eng. ScL, 19, 272 (1979). 292. E. Donoghue, Macromolecules, 15, 1634 (1982). 293. D. R. Miller, C. W. Macosko, Macromolecules, 11, 656 (1978). 294. J. W. Stafford, J. Polym. ScL, Polym. Chem. Ed., 22, 365 (1984). 295. D. Durand, C. M. Bruneau, Brit. Polym. J. 13, 33 (1981). 296. H. Jacobson, Macromolecules, 17, 705 (1984). 297. V. I. Kolegov, T. S. Kozlova, V. M. Artemichev, O. I. Rodionova, Vysokomol. Soyedin. A, 25, 1005 (1983); Polym. ScL, USSR, 25, 1162 (1983). 298. M. Gordon, G. R. Scantlebury, Proc. Roy. Soc. London, Ser. A, 292, 380 (1966). 299. I. I. Romantsova, Yu. A. Taran, O. V. Noa, N. A. Plate, Vysokomol, Soyedin A, 21, 1176 (1979); Polym. ScL, USSR, 21, 1293 (1980). 300. R. Bansil, H. J. Herrmann, D. Stauffer, Macromolecules, 17, 998 (1984). 301. M. Ballauff, B. A. Wolf, Macromolecules, 14, 654 (1981). 302. O. Saito in: M. Dole (Ed.), "The Radiation Chemistry of Macromolecules", vol. 1, Academic Press, New York, 1972, p. 223. 303. J. H. O'Donnell, N. P. Rahman, C. A. Smith, D. J. Winzor Macromolecules, 12, 113 (1979). 304. C. C. Lin, W. Y. Chiu, J. Appl. Polym. ScL, 23, 2049 (1979). 305. A. Kumar, S. K. Gupta, B. Kumar, N. Somu, Polymer, 24, 1180(1983). 306. A. Ya. Malkin, Yu. B. Lavochnik, V. P. Begishev, Polym. Proc. Eng., 1, 71 (1983). 307. A. Ya. Malkin, Yu. B. Lavochnik, V. P Begishev, Vysokomol. Soyedin A, 26, 775 (1984); Polym. ScL, USSR, 26, 868 (1984). 308. H. T. Chen, J. Steenord, Polym. Eng. ScL, 15, 357 (1975). 309. A. Kumar, S. K. Gupta, R. Saraf, Polymer, 21, 1323 (1980). 310. A. Kumar, P. Rajora, N. L. Agarwalla, S. K. Gupta, Polymer, 23, 222 (1982). 311. H. Kilkson, I & EC Fund., 3, 281 (1964). 312. J. Ugelstad, H. R. Mfutakamba, P. C. M0rk, T. Ellington, A. Berge, R. Schmid, L. Holm, A. J0rgedal, F. K. Hansen, K. Justad, J. Polym. ScL, Polym, Symp., 72, 225 (1985). 313. D. Yan, Macromolecules, 22, 2926 (1989). 314. G. Kaszas, T. Foldes-Berezsnich, F. Tiidos, J. Macromol. Sci.-Chem. A, 22, 1571 (1985). 315. K. Fujimori, P. P. Organ, M. J. Costigan, I. A. Craven, J. Macromol. Sci.-Chem. A, 33, 647 (1986).
316. M. N. Galbraith, G. Moad, D. H. Soloman, T. H. Spurling Macromolecules, 20, 675 (1987). 317. K. Ito, Eur. Polym. J., 23, 409 (1987). 318. H.-Kh. Mahabadi, Macromolecules, 24, 606 (1991). 319. B. V. Revnov. E. G. Zotikov, N. G. Podosenova, V. P. Budtov, J. Appl. Chem., 58, 766 (1985); Zh. Prikl. Khim. (Leningrad), 58, 845 (1985). 320. H. Tobita, Y. Takada, M. Nomura, J. Polym. ScL, Polym. Chem. Ed., 33, 441 (1995). 321. G. Storti, G. Polotti, M. Cociani, M. Morbidelli, J. Polym. ScL, Polym. Chem. Ed., 30, 731 (1992). 322. G. Storti, G. Polotti, P. Canu, N. Morbidelli, J. Polym. ScL, Polym. Chem. Ed., 30, 751 (1992). 323. G. Zifferer, O. F. Olaj, Macromol. Theory Simul., 6, 53 (1997). 324. A. N. Nikitin, A. V. Evsseev, Macromol. Reports A, 33 (Suppls. 3-4), 187 (1996). 325. K. W. McLaughlin, D. D. Latham, C. E. Hoyle, M. A. Trapp, J. Phys. Chem., 93, 3643 (1989). 326. R. Szymanski, Makromol. Chem., 191, 933 (1990). 327. R. Szymanski, N. Manolova, I. Rashkov, Makromol. Chem., 194, 941 (1993). 328. D.-Y. Yan. G.-F. Cai, Z.-D. Lan, Makromol Chem., 187, 2179 (1986). 329. N. G. Taganov, Vysokomol. Soyed. A, 29, 1682 (1987); Polym. ScL, USSR, 29, 1847 (1987). 330. I. Ermakov, R. DeClercq, E. Goethals, Macromol. Theory Simul., 3, 427 (1994). 331. D. Yan, H. Dong, P. Ye, Macromolecules, 29, 8057 (1996). 332. M. Fontanille, G. Helary, M. Szware, Macromolecules, 21, 1532 (1988). 333. D. Yan, X. Hu, Polymer, 29, 1858 (1988). 334. X. Hu, D. Yan, Polymer, 31, 1950 (1990). 335. D. Yan, C. Yuan, Makromol. Chem. Rapid Commun., 8, 83 (1987). 336. E. T. Thachil, Polym.-Plast. Technol. Eng., 32, 151 (1993). 337. G.-F. Cai, D.-Y. Yan, Makromol. Chem., 188, 1885 (1987). 338. J. Villermaux, L. Blavier, M. Pons, in: K. H. Richert, W. Geisler, (Eds.), Influence React. Eng. Polym. Prop., [Workshop Proc] Hanser, Munich, 1983, p. 1. 339. P. Lorenzini, M. Pons, J. Villermaux, Chem. Eng. ScL, 47, 3969 (1992). 340. N. G. Taganov, Vysokomol. Soyed. A, 27 732 (1985); Polym. ScL, USSR, 27, 816 (1985). 341. N. G. Taganov, Vysokomol. Soyed. A, 27, 741 (1985); Polym. ScL, USSR, 27, 828 (1985). 342. H. Tobita, Macromolecules, 26, 836; 5427 (1993). 343. H. Tobita, Makromol. Chem. Theory Simul., 2, 761 (1993). 344. H. Tobita, Polymer, 35, 3023 (1994). 345. H. Tobita, Y. Takada, M. Nomura, Macromolecules, 27, 3804 (1994). 346. L.-D. Shiau, Macromolecules, 28, 6273 (1995). 347. L. Rief, H. Hocker, Macromolecules, 17, 952 (1984). 348. L. Nie, R. Narayan, Polym. Preprints, 34, 632 (1993). 349. M. Kosmas, N. Hadjichristidis, Macromolecules, 27, 5216 (1994).
350. J. H. O'Donnell, C. L. Winzor, D. J. Winzor, Macromolecules, 23, 167 (1990). 351. V. S. Papkov, M. N. Il'ina, G. L. Slonimskii, Vysokomol. Soyed. A, 30, 1487 (1988); Polym. ScL, USSR, 30, 1566 (1988). 352. V. S. Papkov, M. N. Il'ina, G. L. Slonimskii, Vysokomol. Soyed. A, 30, 1495 (1988); Polym. ScL, USSR, 30, 1576 (1988).
353. A. Ya. Malkin, Yu. B. Lavochnik, V. P. Begishev, Vysokomol. Soyed. A, 26, 775 (1984); Polym. ScL, USSR, 26, 863 (1984). 354. A. Kumar, J. Appl. Polym. ScL, 34, 1383 (1987). 355. J. B. P. Soares, A. E. Hamielec, Macromol. Theory Simul., 5, 547 (1996).
H e a t s C e i l i n g
a n d
E n t r o p i e s
T e m p e r a t u r e s ,
C o n c e n t r a t i o n s , o f
o f
E q u i l i b r i u m
a n d
H e t e r o c y c l i c
P o l y m e r i z a t i o n , M
o
n
o
m
e
r
P o l y m e r i z a b i l i t y C o m p o u n d s *
J. L e o n a r d Departement de Chimie and CERSIM, Universite Laval, Quebec, Canada
A. Heats of Polymerization 11-365 Table 1. Monomers Giving Polymers Containing Carbon Atoms Only in the Main Chain II-365 1.1. With Acyclic Carbons Only in the Main Chain II-365 1.1.1. Dienes M-365 1.1.2. Monomers Giving Polymers With or Without Aliphatic Side Chains that Contain Only C, H M-365 1.1.3. Monomers Giving Polymers With Aliphatic Side Chains that Contain Heteroatoms II-368 1.1.4. Monomers Giving Polymers With Aromatic Side Chains that Contain Only C, H 11-371 1.1.5. Monomers Giving Polymers With Aromatic Side Chains and that Contain Heteroatoms 11-371 1.2. With Aromatic or Cyclic Carbons in the Main Chain II-372 Table 2. Monomers Giving Polymers Containing Heteroatoms in the Main Chain II-373 2.1. Monomers Giving Polymers Containing O in the Main Chain, Bonded to Carbon Only II-373 2.1.1. Ethers and Acetals M-373 2.1.2. Cyclic Esters II-376
2.2.
Monomers Giving Polymers Containing O in the Main Chain, Bonded to other Heteroatoms (S, Si, P) 2.3. Monomers Giving Polymers Containing S in the Main Chain, Bonded in the Chain to Carbon Only 2.4. Monomers Giving Polymers Containing N in the Main Chain, Bonded in the Chain to Carbon Only 2.5. Monomers Giving Polymers Containing N in the Main Chain, Bonded to other Heteroatoms (P) 2.6. Other Monomers Giving Polymers not Listed Above Table 3. Copolymers B. Entropies of Polymerization Table 4. Monomers Giving Polymers Containing Main Chain Carbon Only 4.1. Main Chain Acyclic Carbon Only 4.1.1. Dienes 4.1.2. Monomers Giving Polymers Without or With Aliphatic Side Chains that Contain Only C, H 4.1.3. Monomers Giving Polymers With Aliphatic Side Chains that Contain Heteroatoms
*Based on the tables compiled for the third edition, by W.K. Buslield, School of Sciences Griffith University, Brisbane, Australia.
11-377
II-378
II-378
II-379 II-379 II-380 11-381
II-382 II-382 II-382
II-382
II-384
4.1.4. Monomers Giving Polymers With Aromatic Side Chains that Contain Only C, H II-385 4.1.5. Monomers Giving Polymers With Aromatic Side Chains that Contain Heteroatoms II-385 4.1.6. Other Monomers Giving Polymers not Listed Above 11-386 4.2. With Aromatic or Cyclic Carbons in the Main Chain 11-386 Table 5. Monomers Giving Polymers Containing Heteroatoms in the Main Chain 11-387 5.1. Monomers Giving Polymers Containing O in the Main Chain, Bonded to Carbon Only II-387 5.1.1. Ethers and Acetals II-387 5.1.2. Cyclic Esters II-390 5.2. Monomers Giving Polymers Containing O in the Main Chain, Bonded to Other Heteroatoms (S, Si, P) 11-391 5.3. Monomers Giving Polymers Containing N in the Main Chain, Bonded in the Chain to Carbon Only 11-391 5.4. Other Monomers Giving Polymers not Listed Above II-392 Table 6. Copolymers II-392 C. Ceiling Temperatures and Equilibrium Monomer Concentrations II-393 1. Equilibria Involving Pure Liquid Monomers II-394 Table 7. Monomers Giving Polymers Containing Main Chain Acyclic Carbon Only II-394 Table 8. Monomers Giving Polymers Containing Heteroatoms in the Main Chain II-395 8.1. Monomers Giving Polymers Containing O in the Main Chain, Bonded to Carbon Only II-395 8.2. Monomers Giving Polymers Containing O in the Main Chain, Bonded to Other Heteroatoms (S, P, Si) II-396 8.3. Monomers Giving Polymers Containing S in the Main
Chain, Bonded in the Chain to Carbon Only 8.4. Monomers Giving Polymers Containing N in the Main Chain, Bonded in the Chain to Carbon Only 8.5. Other Monomers Giving Polymers not Listed Above 2. Equilibria Involving Gaseous Monomers 3. Equilibria Involving Monomers in Solution Table 9. Monomers Giving Polymers Containing Main Chain Carbon Only 9.1. Monomers Giving Polymers Containing Main Chain Acyclic Carbon Only 9.2. Monomers Giving Polymers Containing Main Chain Cyclic Carbon Table 10. Monomers Giving Polymers Containing Heteroatoms in the Main Chain 10.1. Monomers Giving Polymers Containing O in the Main Chain, Bonded to Carbon Only 10.2. Monomers Giving Polymers Containing O in the Main Chain, Bonded to Other Heteroatoms (Si, P) 10.3. Monomers Giving Polymers Containing S in the Main Chain, Bonded in the Chain to Carbon Only 10.4. Monomers Giving Polymers Containing N in the Main Chain, Bonded in the Chain to Carbon Only Table 11. Copolymers 11.1. 1:1 Copolymers 11.2. General Copolymers D. Polymerizability of 5-, 6-, and 7-Membered Heterocyclic Ring Compounds Table 12. 5-Membered Ring Compounds Table 13. 6-Membered Ring Compounds Table 14. 7-Membered Ring Compounds Table 15. Comparison of Polymerizability of Unsubstituted 5-, 6- and 7-Membered Ring Compounds E. Notes F. References
II-396
II-397 II-397 II-397 II-398
II-398 II-398
II-399
II-399
II-399
II-400
II-400
II-400 11-401 11-401 11-401 11-401 II-402 II-403 II-404
II-405 M-406 II-407
A.
HEATS OF POLYMERIZATION
Symbols: The subscripts xx to A// denote the state of the monomer (first letter) and the state of the polymer (second letter), as follows: g c c' 1 s
Gaseous state (hypothetical in case of polymer) Condensed amorphous state Crystalline or partially crystalline state Liquid state In solution; solvent specified in the sixth column (Is denotes polymer dissolved in monomer).
For emulsion polymerization the subscript Ic is used and a note added in the sixth column. In all cases where monomer or polymer is present in solution etc., the value of AH will depend on the composition to some extent. Where the polymer is crystalline, AH will depend on the degree of crystallinity. AH values are in kJ per mol of monomer and are generally the limiting values for high degree of polymerization n [1 kcal = 4.187 kJ]. Where more than one value is available in the literature for given states of monomer and polymer and a given method, only one value is shown in the tables. This corresponds to one of the references indicated N1- refers to the ith note given at the end of the table. Example: C 2 H 4 (g) -> ( 1 / ^ ) ( C 2 H 4 ) J g ) ,
AHgg = -93.5kJ
Precision: generally 0.5-4.0 kj/mol (for details see Ref. 1). Methods of determination: These are summarized below, using the numbering system in Ref. 1. 2 3 4a 4b 5
Combustion of monomer or polymer or both. Reaction calorimetry. Thermodynamic (van't Hoff Equation). Semiempirical rules applied to evaluate heat of formation of polymer or monomer or both. Such rules may be found in Refs. 25,143,223,224,335. Heat capacity and heat of transition (Kirchhoff's equation).
TABLE 1. MONOMERS GJVING POLYMERS CONTAINING CARBON ATOMS ONLY IN THE MAIN CHAIN
Monomer 1.1.
State of monomer
-AZZxx
Temp.
and polymer (xx)
(kj/mol)
(0C)
73 78 73 68 59 70.5 75 71 65.5
25 25 25 61.3 - 70 25 25 74.5 34.6
Method
Solvent/Notes
Refs.
WITH ACYCLIC CARBONS ONLY IN THE MAIN CHAIN
1.1.1. DIENES 1,3-Butadiene
Chloroprene Cyclopentadiene Isoprene
gg gg Ic Ic ss gg Ic Is Is
4b 4b 2 3 3 4b 2 3 3
1:2 Polymerization 1:4 Polymerization Ni Methylene chloride
N2
10 10 45 41 190 10 46 15 47
1.1.2 MONOMERS GIVING POLYMERS WITH OR WITHOUT ALIPHATIC SIDE CHAINS THAT CONTAIN ONLY C, H 1.1.2.1. Olefins (listed by increasing carbon number) Ethylene
Propene
gg gc' gc' gc c'c' c'c gc' gc gc' gc gc' gc gl gg gc7 Ic sc
93.5 108.5 107.5 101.5 173 169 212 209 212 209 211 204 198 86.5 104 84 69
25 25 25 25 -173 -173 173 173 25 25 127 127 227 25 25 25 -78
4b 2 3 2 5 5 5 5 4b 4b 5 5 5 4b 2 4b 3
A#fUS (Polymer) taken as 5.0 Polymer is poly(l-butene), iso Polymer is poly(l-butene), iso Polymer is poly(l-butene), iso Polymer is poly(l-butene), iso Polymer is poly(l-butene), iso Polymer is poly(l-butene), iso Polymer is poly(l-butene), iso Polymer is poly(l-butene), iso Polymer is poly(l-butene), iso
n-Butane
2 2,3 183 2,4 385 385 385 385 385 385 385 385 385 5 3 5 6
Notes page 11-406; References page II - 407
TABLEI.
cont'd
Monomer 1-Butene
2-Butene, cis
2-Butene, trans
Isobutene
1-Pentene
-, 4-methyl
2-Pentene, cis
State of monomer and polymer (xx) gg Ic Ic' Ic Ic' Ic gc' gc gc' gc gl gg Ic cV c'c Ic' Ic gc' gc gc' gc gl gg Ic c'c' c'c Ic' Ic gc' gc gc' gc gl gc Ic ss ss c'c' c'c Ic' Ic Ic' Ic gl gl c'c' c'c Ic' Ic Ic' Ic gc' gc gcf gc gl gg c'c' c'c Ic' Ic Ic' Ic
-AHx x (kj/mol) 86.5 83.5 78 74 83 79 108 103 107 99 94 80 75 63 59 75 71 101 96 99 92 86 75.5 71 57 54 71 67 96 91 96 89 83 72 48 53.5 54 84 81 95 93 99 95 117 113 82 79 93 90 97 95 124 117 122 112 105 80.5 75 72 87 85 91 87
Temp. (0C) 25 25 -173 -173 -73 - 73 25 25 127 127 227 25 25 -173 -173 -73 -73 25 25 127 127 227 25 25 -173 -173 -73 - 73 25 25 127 127 227 25 25 25 -35 -173 -173 -73 -73 25 25 127 227 -173 -173 -73 -73 25 25 127 127 227 227 327 25 -173 -173 -73 -73 25 25
Method 4b 4b 5 5 5 5 4b 4b 5 5 5 4b 4b 5 5 5 5 4b 4b 5 5 5 4b 4b 5 5 5 5 4b 4b 5 5 5 2 2 ? 3 5 5 5 5 2,4b 2,4b 5 5 5 5 5 5 4b 4b 5 5 5 5 5 4b 5 5 5 5 2,4b 2,4b
Solvent/Notes
Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic
polymer polymer polymer polymer polymer polymer polymer polymer polymer
Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic
polymer polymer polymer polymer polymer polymer polymer polymer polymer
Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic
polymer polymer polymer polymer polymer polymer polymer polymer polymer
Low polymer Solvent? low polymer CH 2 Cl 2 , polymer swollen, N 3
Refs. 5 5 385 385 385 385 385 385 385 385 385 5 5 385 385 385 385 385 385 385 385 385 5 5 385 385 385 385 385 385 385 385 385 7 3,8 8 9 386 386 386 386 386 386 386 386 387 387 387 387 387 387 387 387 387 387 387 10 386 386 386 386 386 386
TABLE 1. cont'd Monomer
- , 4-methyl
2-Pentene, trans
-,4-methyl
1-Hexene 1-Heptene
State of monomer and polymer (xx) gl gl Ic' Ic gc' gc gc' gc gl gg c'c' c'c Ic' Ic Ic' Ic gl gl Ic' Ic gc' gc gc' gc gl Ic gg
1.1.2.2. Cycloalkanes (listed by increasing ring size) Cyclopropane Ic -,methylIc -, 1,1-dimethylIc Cyclobutane Ic -,methylIc -, 1,1-dimethylIc Cyclopentane Ic -,methylIc - 1,1-dimethylIc Cyclohexane Ic -,methylIc - , 1,1-dimethylIc Cycloheptane Ic Cyclooctane Ic Cyclononane Ic Cyclodecane Ic Cycloundecane Ic Cyclododecane Ic Cyclotridecane Ic Cyclotetradecane Ic Cyclopentadecane Ic Cyclohexadecane Ic Cycloheptadecane Ic 1.1.2.3. Cycloalkenes Cyclobutene Cyclopentene
11 gl Ic c ;(I)c Ic Ic c'(I)c Ic Ic Ic
-AHx x (kj/mol)
Temp. (0C)
109 105 90 88 118 111 116 114 100 75.5 70 68 83 81 87 83 106 103 86 83 115 107 113 103 97 83 86
127 227 25 25 127 127 227 227 327 25 -173 -173 -73 -73 25 25 127 227 25 25 127 127 227 227 327 25 25
113 105 97.5 105 100 93.5 22 17 13.5 -3 -9 -7.5 21.5 34.5 47 48 45 14 22 7 12 8 8.5
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
121 145 17.5 11 16 15 23 19 18 18
25 25 25 -173 -73 25 -173 -73 25 77
Method
Solvent/Notes
5 5 4b 4b 5 5 5 5 5 4b 5 5 5 5 2,4b 2,4b 5 5 4b 4b 5 5 5 5 5 4b 4b
Refs. 386 386 387 387 387 387 387 387 387 10 386 386 386 386 386 386 386 386 387 387 387 387 387 387 387 5 5
2 4b 4b 2 4b 4b 2 4b 4b 2 4b 4b 2 2 2 2 2 2 2 2 2 2 2
11 11 11 12 11 11 12 11 11 12 11 11 12 12 13 13 13 13 13 13 13 13 13
2,4b 2,4b 2 5 5 2,4b 5 5 2,4b 5
ds-Polybutadiene ds-Polybutadiene N 66 cw-Polymer cw-Polymer ds-Polymer frans-Polymer rrans-Polymer fraws-Polymer toms-Polymer
388 388 361 388 388 388 388 388 388 388
Notes page 11-406; References page 11-407
TABLE 1. cont'd Monomer
State of monomer and polymer (xx)
Cyclopentadiene Cyclohexene Cycloheptene
ss ss C7CIII)C C7CIII)C' C7CII)C C7CII)C7 Ic Ic 7 11 c 7 (II)c 7 C7CII)C c 7 (I)c 7 c 7 (I)c Ic 7 Ic 11
Cyclooctene
-AHx^ (kj/mol) 59 1 12 18 18 26 18 29 17 18 6 27 19 30 13 13
-
Temp. ( 0 C)
6
-173 5 -173 -173 -73 -73 25 25 51 -173 -173 -73 -73 25 25 57
Method 3 4a 5 5 5 5 2,4b 2,4b 5 5 5 5 5 2,4b 2,4b 5
Solvent/Notes
Refs.
Butyl chloride, N 7 0 Toluene, N 7 8 7 0 % trans, 30% ds-Polymer, 7 0 % trans, 3 0 % ds-Polymer, 7 0 % trans, 30% ds-Polymer, 7 0 % trans, 30% ds-Polymer, 7 0 % trans, 30% ds-Polymer 7 0 % trans, 3 0 % ds-Polymer 7 0 % trans, 3 0 % ds-Polymer 4 8 % trans, 5 2 % ds-Polymer, 4 8 % trans, 5 2 % ds-Polymer, 4 8 % trans, 5 2 % ds-Polymer, 4 8 % trans, 5 2 % ds-Polymer, 4 8 % trans, 5 2 % ds-Polymer 4 8 % trans, 5 2 % ds-Polymer 4 8 % trans, 5 2 % ds-Polymer
N54 N54 N54 N54
N54 N54 N54 N54
371 389 388 388 388 388 388 388 388 388 388 388 388 388 388 388
1.1.3. MONOMERS GIVING POLYMERS WITH ALIPHATIC SIDE CHAINS THAT CONTAIN HETEROATOMS 1.1.3.1. Acrylic Derivatives Acrolein
Acrylamide
- , N-methylol- , AyV 7 -methylene bisAcrylic acid
- , rc-butyl ester
-,ethyl ester - , ethylhexyl ester - , lauryl ester - , methyl ester
Acrylonitrile
(listed alphabetically) Ic ss ss ss Ic ss? sc sc Ic Ic Ic ss sc sc sc Ic ss ss ss ss ss Ic Ic Ic Ic Ic Ic ss ss Ic7 sc7
1.1.3.2. ^-Substituted Acrylic Derivatives (listed alphabetically) a-Chloroacrylic acid, methyl ester Ic a-Cyanoacrilic acid, methyl ether Ic - , ethyl ester c7c c7c Ic Ic Ic - , allyl ester c7c
c7c c7c Ic
80 57.5 81.5 81.5 79.4 70.5 60 57.5 74.5 82.7 67 77.5 73.5 72 74.5 78 77 79 76 75.5 78 78 80.7 78.2 80.5 78 81.8 84.5 81 76.5 77.5
52.7 42 28 29 47 53 54 41
42 43 62
74.5 74.5 74.5 74.5 90 74.5 74.5 74.5 190 190 74.5 20 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 90 90 30 76.8 80 20 74.5 74.5 74.5
80 60 173 -73 25 127 177 -173
-73 -8 -8
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Hexane Water Water Acetone Benzene Hexane
Water Benzene Carbon tetrachloride Hexane Acetone Butanone Benzene Carbon tetrachloride Hexane
Ethyl alcohol Hexane Benzene
15 17 17 17,14 332 17 17 17 332 332 15 36,37 15 15 15 17,37 17 17 17 17 17 34,37 318 318 352 21,34,37 319 36 34 17,21,38,201 17
3 3 5 5 2 5 5 5
319 354 390 390 390 390 390 391
5 5 5
391 391 391
TABLE 1. cont'd Monomer
- , rc-decyl ester
- , allyloxyethyl
Ethacrylic acid, methyl ester Methacrolein Methacrylamide
Methacrylic acid
-, benzoic acid ester
- , benzyl ester -, /i-butyl ester -, rm-butyl ester -, cyclohexyl ester -, 2-ethoxyethyl ester -, ethyl ester -, p(N-piperidyl)ethyl ester -, rc-hexyl ester -, -, -, -, -,
2-hydroxyethyl ester 2-hydroxypropyl ester isobutyl ester isopropyl ester methyl ester
- , methyl ester deuterated
- , n-octyl ester
State of monomer and polymer (xx)
-AH^ (kj/mol)
Temp. (0C)
Ic Ic c'c c'c Ic Ic cc Ic Ic Ic Is Ic ss ss ss ss Ic Ic ss ss ss sc c'c c'c c'c ss 11 Ic Ic Is Is Ic Is Ic Is Ic Ic Is Ic Ic Is Ic Ic Ic Ic Ic Ic
64 68 29 29 69 74 41 43 49 51 31 65.5 56 42.5 39.5 35 42.5 64.5 66 56.5 54 57 55 56 59 57 90 56 57.5 60 54.5 51 53 57.5 62 60 59.5 57.5 57 58.5 60 50 50.5 60 60 56 55.5
25 127 -173 -73 25 127 -173 -73 25 57 87 74.5 74.5 74.5 74.5 74.5 74.5 25 20 25 25 74.5 -173 -73 25 77 227 76.8 74.5 26.9 26.9 76.8 26.9 74.5 26.9 120 74.5 26.9 40 25 26.9 25 25
Ic Is c'c c'c Ic Ic ss ss ss ss
55 57.5 34 36 55 56 54 58.5 57.5 58.5
25 26.9 -173 -73 25 77 130 74.5 74.5 74.5
2 3 5 5 5 3 4a 3 3 3
c'c c'c Ic Ic Ic
33 35 55 57 57
-173 -73 25 77 65
5 5 5 3 3
74.5 130 74.5
Method 2,4b 5 5 5 2,4b 5 5 5 2,4b 5 4a 3 3 3 3 3 3 2 3 3 3 3 5 5 5 2,3 5 3 3 3 3 3 3 3 3 4a 3 3 3 3 3 3 3 3 3 4a 3
Solvent/Notes
Water Chloroform Acetone Benzene Water Water Dimethylformamide, N 7 Methanol, N 5
1,4 Dioxane N6
Emulsion (aq.) Emulsion (aq.) Emulsion (aq.)
o-Dichlorobenzene Acetonitrile Tetrahydrofuran Hexane
Refs. 391 391 392 392 392 392 393 393 393 393 395 15 17 17 17 17 15 206 36 37 203,316 15 394 394 394 394 394 39 34,37,39 14 14 39 14 34 14 40 34,37 14 188 37 14 37 37 34 34 42,43,29 17,34,36,37, 41,201,235 206 14 414 414 414 414 42,29 34 34 34 414 414 414 414 188
Notes page 11-406; References page II - 407
TABLE 1. cont'd Monomer - , phenyl ester - , rc-propyl ester Methacrylonitrile
State of monomer and polymer (xx)
-AZZxx (kj/mol)
Ic Ic Ic ss
51.5 57.5 56.5 64
Ic?
60
Is gc Ic Ic Ic
Temp. (0C)
Method
Solvent/Notes
76.8 74.5 74.5 130
3 3 3 4a
N6
50
3
N6
74 132 71 111.5 96
74.5 25 25 25 74.5
3 2 4b 2 3
Ic Is ss ss ss Ic Ic
88 89.5 90 86.5 86 86 88
74.5 25 74.5 74.5 74.5 74.5 74.5
3 3 3 3 3 3 3
Is Ic ss
77.5 88 91
74.5 20 20
3 2 3
Benzonitrile
Refs. 39 34 15 44,29
LlJJ. Vinyl Ethers Vinyl n-butyl ether 1.1.3.4. Vinyl Alcohol, Ketones, Halogens Vinyl alcohol Methyl vinyl ketone Vinyl chloride
1.1J.5. Vinyl Esters Vinyl acetate
Vinyl propionate Vinyl 2-ethylhexoate 7.7.3.6. Others (listed alphabetically) AUyI chloride Ethylene, nitro - , tetrafluoroFumaric acid, diethyl ester Itaconic acid, dimethyl ester Maleic anhydride Maleimide
- , phenyl a-Methylene pentanolactone Vinyl cyclohexane
Vinylidene chloride
N-Vinyl succinimide
see Acetaldehyde
gg gc7 Ic' Ic ss Is ss ss ss ss ss ss c'c' c'c Ic' Ic Ic' Ic Ic' Ic Ic' Ic' Ic' c'c' c'c Ic' Ic Ic' Ic gc' gc gc' gc Is
155 172 163 ± 1 7 65 60.5 59 67.5 89.5 88.5 87.5 37 38.8 88 68 100 79 105 85 111 86 60 75.5 73 67 56 77 66 81 70 108 97 107 95 54.7
25 25 25 100 26.9 74.5 74.5 74.5 74.5 74.5 55 83 -173 -173 -73 -73 25 25 127 127 76.8 25 74.5 -173 -173 -73 -73 25 25 25 25 127 127 97
2 2 2 3 3 3 3 3 3 3 4a 4a 5 5 5 5 2,4b 2,4b 5 5 3 2 3 5 5 5 5 2 2 2 5 5 5 3
Atffus (Monomer) taken as 20
Acetone Hexane Benzene
Dimethylformamide, tetrahydrofuran
o-Dichlorobenzene Chlorobenzene Dioxane Acetonitrile Dimethylformamide DMF, N 78 , N 75 DMF
216 195 17 18.19,20 10 18 215 17,34,21 35 17 17 17 17,34 34 15 214 214 22 22,23 1 235 14 15 24 24 24 24 440 315 396 396 396 396 396 396 396 396 21 18 15 397 397 397 397 397 397 397 397 397 397 384
TABLE 1. cont'd Monomer
State of monomer and polymer (xx)
-AZZxx (kj/mol)
Temp. (0C)
Method
Solvent/Notes
Refs.
1.1.4. MONOMERS GIVING POLYMERS WITH AROMATIC SIDE CHAINS THAT CONTAIN ONLY C, H (listed alphabetically) Acenaphthalene
Acenaphthylene Biphenyl, p-isopropenylIndene - , 5-methyl- , 6-methyl-, 7-methyl-, 4,6-dimethyl-, 4,7-dimethyl-, 5,6-dimethyl- , 4,5,6,7-tetramethylNaphthalene, 2-isopropenylStyrene
- a-acetoxy - , o-chloro-,p-chloro-, 2,5-dichloro-, ar-ethyl-,a-methyl-
- , a-methyl, p-tert-buty\- , 2,4,6-trimethyl-
ss ss ss ss ss c'c ss ss ss
87.8 84.8 98.5 67 67 82 43 34 58
0 18 26.9 74.5 74.5 26.9 60 -15 - 30
3 3 3 3 3 3 4a 4a 3
ss ss ss ss ss ss ss ss ss gg Ic Ic Ic Is Is ss ss Ic Ic Ic Ic Ic Ic Ic ss ss ss ss ss Ic
58 57.5 58.5 77.5 65 79 75 36.5 38 74.5 70 68.5 73 73 73 66.5 26 68.5 67 69 68 35 34.5 39 33.5 47.7 15 14 29.7 70
- 50 -60 -70 -40 -40 - 40 -40 —5 10 25 25 26.9 127 25 26.9 -60 64 76.8 76.8 76.8 76.8 25 -20 25 -20 22 -10 -10
3 3 3 3 3 3 3 4a 4a 4b 2 3 4a 2 3 3 4a 3 3 3 3 2 4a
26.9
4a 4a 4a 4a 4a 3
Dichloromethane Dichloromethane o-Dichlorobenzene 6>-Dichlorobenzene Benzene Toluene, N 78 , N 75 Tetrahydrofuran Methylene chloride indep. of 7 [ - 7 O 0 to 10°] Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Tetrahydrofuran Toluene, N 7 8
320 320 14 15 15 14 399 16 190
175 175,169 175,169 175 175 175 175 16 400 25 26 14,17,27,201,235 28,29 26 14 Methylene chloride 30,190 Toluene, N 7 8 , N 7 5 401 27 27 27 27 31 32,29 N9 123 Tetrahydrofuran 32,29,33,16 Cyclohexane 341 rc-Heptane, N78 402 Toluene, N 7 8 402 Solvent and temp, not stated 381 14
1.1.5. MONOMERS GIVING POLYMERS WITH AROMATIC SIDE CHAINS AND THAT CONTAIN HETEROATOMS 2-Amino-4-alkyl/aryl-amino-6-isopropenyl-1,3,5-triazine, R 1 = H , R 2 = ethyl Is R 1 = H , R i = propyl Is R i = ethyl, R 2 = ethyl , Is R i = p r o p y l , R 2 = propyl Is R i = methyl, R 2 = phenyl Is R i = methyl, R 2 = phenyl Is R i = H, R 2 = p-methoxyphenyl Is R i = H, R 2 = p-methoxyphenyl Is 2-Amino-4-(7V-R. anilino)-6-isopropenyl-1,3,5-triazine R = «-alkyl = «-propyl Ic = w-hexyl Ic = n-octyl Ic = rc-decyl Ic = n-dodecyl Ic = «-tetradecyl Ic = n-hexadecyl Ic R = alkyl = isopropyl Ic = isobutyl Ic = sec-butyl Ic
64.8 63.5 53.9 47.7 50.2 53.1 50.2 46.8 46 43 42 41 41 40 39 44 44 43
170 160 161 153 140 150 160 160
3 3 3 3 3 4a 3 4a
60 60 60 60 60 60 60 60 60 60
3 3 3 3 3 3 3 3 3 3
N65 N65 N65 N65
370 370 370 370 379 379 378 378 403 403 403 403 403 403 403 404 40 404
Notes page 11-406; References page II - 407
TABLE 1.
cont'd
Monomer
State of monomer and polymer (xx)
= n-pentyl = isopentyl = 1-methylbutyl R = benzyl R = chloro R = -4-methoxyR = -4-ethoxy2-Anilo-4-R-6-isopropenyl-1,3,5-triazine R = methoxy R = ethoxy Atropic acid, methyl ester Atroponitrile Benzoic acid, w-methacryloyloxy- , v i n y l ester Carbazole, JV-vinyl2,4-Hexadiyne-l,6-di(R group) R = -SO3C6H4CH3(p) R = -NHC 6 H 3 (NO 2 ) 2 (2,4posn.) R =-SO3C6H4NNC6H5(P) R =-OCONHCH2COOH
Oxazole, 2-isopropenylPyridine - , 2-isopropenyl- , 2-vinyl-
- , 4-vinylSilane, benzyl dimethyl vinyl-
- , dimethyl phenyl vinyl- , trimethyl vinylAWV',N'-Tetraethyl-4-isopropenylphenylphosphonous diamide Thiazole, 2-isopropenyl/7-[bis(Trimethylsilyl)methyl]isopropenylbenzene 1.2.
-AHxx (kj/mol)
Ic Ic Ic Ic Is Is Is
44 43 42 44 11 14 14
Is Is ss ss Ic Ic sc' ss
Temp. ( 0 C)
Method
Solvent/Notes
Refs.
60 60 60 60 170 183 182
3 3 3 3 3 3 3
404 404 404 404 405 406 406
12 12 28 39 59 84.5 63.5 94.9
174 174 -40 50 25 74.5 74.5 0
3 3 4b 4b 2 3 3 3
406 406 149 149 363 34 15 321
c'c' c'c' c'c'
152.6 77.5 138
187 135 140
3 3 3
C'C'
130
137
Toluene, N i 0 Toluene, N i 0
Hexane Dichloromethane
372 373 374
3
375
ss
39.5
20
4a
Tetrahydrofuran
284
ss ss Ic Is sc Ic ss c'c' Ic Ic Ic Ic ss
26 40 71.5 75.5 73.5 78 78 48.2 66.7 67.1 56.5 65.8 27
20 -15 74.5 74.5 74.5 74.5 74.5 -73 25 77 25 25 -55
4a 4a 3 3 3 3 3 2 3 3 3 3 4a
Tetrahydrofuran Toluene, N 7 8
N62 N62 N62 N62 Tetrahydrofuran
284 407 15 15 15 17 17 355 366 366 362 367 408
ss ss
28.5 30
20 — 30
4a 4a
Tetrahydrofuran Tetrahydrofuran
284 409
Benzene Benzene, hexane
WITH AROMATIC OR CYCLIC CARBONS IN THE MAIN CHAIN
— 11,12-Dicyano-2,6-naphtoquinodimethane ll,12-bis(alkylthio) alkyl = butyl = s-butyl = isopropyl = ethyl = methyl —, 7,8-Dicyanoquinodimethane 7,8-bis(butoxycarbonyl)7,8-diacetyl7,8-dibenzoyl7,8-dibutoxycarbonyl7,8-diisobutyryl7,8-dipropionyl7,8-bis(ethylthio)7,8-bis(phenylacetyl)7,8-bis(phenylthio)Norbornylene
5-Trimethylsilyl-2-
ss ss ss ss ss
67 59 65 69 70
30 30 30 30 30
4a 4a 4a 4a 4a
Oligomer, Oligomer, Oligomer, Oligomer, Oligomer,
benzene, benzene, benzene, benzene, benzene,
N78, N78, N78, N78, N78,
ss ss ss ss ss ss ss ss ss c'(II)c c'(I)c c'(I)c Ic c'c cc
26 25 22 26 23 24 23 25 23 56 62 62 65 38 40
60 55 55 55 55 55 60 55 50 -173 -73 25 57 -173 —173
4a 4a 4a 4a 4a 4a 4a 4a 4a 5 5 4b 5 5 5
Chloroform, N 7 8 , N 8 1 Chloroform, N 7 8 , N 8 i Chloroform, N 7 8 , N 8 i Chloroform, N 7 8 , N 8 1 Chloroform, N 7 8 , N 8 1 Chloroform, N 7 8 , N 8 1 Chloroform, N 7 8 , N 8 1 Chloroform, N 7 8 , N 8 1 Chloroform, N 7 8 , N 8 1 55% cis/45% trans Polymer, 55% c/s/45% trans Polymer, 55% cis/45% trans Polymer, 55% cis/45% trans Polymer, Overcooled monomer
N 8o N 8o N 8o N80 N 8o
410 410 410 410 410
N54 N54 N54 N54
411 412 412 412 413 413 411 413 411 415 415 415 415 416 416
TABLE 1.
cont'd State of monomer and polymer (xx)
Monomer
Af-7,7-Triacyanobenzoquinonemethideimine
TABLE 2.
39 46 52 55 22
Temp. (0C) -73 — 73 25 107 55
Method 5 5 4b 5 4a
Solvent/Notes
Overcooled monomer
Toluene N7g, Ng 2
Refs. 416 416 416 416 438
MONOMERS GIVING POLYMERS CONTAINING HETEROATOMS IN THE MAIN CHAIN
Monomer 2.1.
c'c cc Ic Ic ss
-AZZxx (kj/mol)
State of monomer and polymer (xx)
-AH^x (kj/mol)
Temp. (0C)
Method
Solvent/Notes
Refs.
MONOMERS GIVING POLYMERS CONTAINING O IN THE MAIN CHAIN, BONDED TO CARBON ONLY
2.1.1. ETHERS AND ACETALS (listed by increasing ring size of monomer) 2-RINGS (aldehydes and ketones) Acetaldehyde
-, -, -, -, -, -, -, -, -,
bromochlorofluorobromodichlorobromodifluorodibromochlorodibromofluorodichlorofluorodifluorochlorotribromotrichloro-
- , trifluoro-
Acetone
Butanal
4,7-Dioxaoctanal Formaldehyde
Heptanal
Ic Ic' Ic c'c Ic Ic sc' sc' sc' sc' sc' sc' sc' sc' gc' gc' gc Ic' Ic' Ic' Ic' Ic Ic' cc' ss sc' sc' sc' gc Ic sc sc' gg gc Ic Ic sc sc Ic ss gc'
0 25 64.5 25 62.5 25 31 -173 34 -73 36 25 36.0 31.2 43.4 26.0 29.0 56.2 51.0 19.6 71 ± 8 50 65.5 -50 5 1 - 5 0 17 57 38 ± 8 50 34 25 34.5 -50 20 -50 30 -73 25 -173 14.5 -50 33.5 13 39 10 37.8 64.5 45 47 25 50.8 25 54.9 -12 25 10 25 -25 25 20.5 20 35.5 18 21.5 20 15.9 -80 16.7 -80 66 25
gc' c'c' c'c
55 25 2 0 - 1 7 3 10 -173
4b Nn 2 To poly(vinyl alcohol) 2 To poly(vinyl alcohol) 5 5 2,4b 4a Toluene, N74 4a Toluene, N74 4a Toluene, N74 4a Toluene, N74 4a Toluene, N 7 4 4a Toluene, N74 4a Toluene, N74 4a Toluene, N74 4a 4a 4a 5 4a 3 4a 4a 5 5 4a Tetrahydrofuran 4a Pyridine 4a n-Heptane 4a Toluene, N 7 4 4a 4a Dichloromethane 4a Dichloromethane 4a Toluene, N 7 4 4b 4b 4b 3 4a «-Hexane (9 kbar), Ni 2 3 rc-Hexane (1 bar, IM), N i 2 4a N69 4a THF 4a Nn 2 5 5
48 195 195 417 417 417 233 344 344 344 344 344 344 344 50 166 166 418 50 418 166 166 418 418 167 50 166 344 129 322 322 344 234 144,148 48,234 161 161 161 330 330 49,164, 165,132 7,49 419 419
Notes page 11-406; References page II - 407
TABLE 2.
cont'd
Monomer
Hexanal
Octanal 4-Oxapentanal Pentanal 0-Phthalaldehyde Propanal
- 2,2-dichloro-, 2-chloro, 2-methyl-, 2-methyl-
State of monomer and polymer (xx) c'c' c;c Ic(I) Ic 11 c'c' c'c c'c' c'c 11 11 Ic sc Ic Is Ic sc ss c'c' c'c Ic' Ic Ic' Ic Ic' Ic gc Ic ss gc Ic ss gc Ic ss ss ss
-A/^ (kj/mol)
Temp. (0C)
22 -73 8 - 7 3 39 25 33 25 36 97 8 - 1 7 3 7 - 1 7 3 12 -73 1 0 - 7 3 27 25 28 67 14.7 -75 14.2 -75 19.7 -80 20.1 -80 22.7 -75 22.2 -75 22 -70 5 - 1 7 3 2 - 1 7 3 15 -73 12 -73 19 25 14 25 21 57 15 57 50 -65 20.5 -65 1 7 - 6 5 47 - 65 19.5 -65 19.5 -65 46 - 65 16 -65 15.5 -65 16.5 -65 22 -65
Method
Solvent/Notes
Refs.
5 5 3 3 5 5 5 5 5 3 5 4a 4a 4a 4a 4a 4a 4a 5 5 5 5 3 3 5 5 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a
419 419 N 77 419 419 419 420 420 420 420 420 420 N69 330 THF 330 N69 329 329 N69 328 THF 328 Dichloromethane, cyclopolymer 154 421 421 421 421 421 421 421 421 172 172 Tetrahydrofuran 172 172 172 Tetrahydrofuran 172 166 166 Tetrahydrofuran 167,172 Diethyl ether 166 rc-Pentane 166 422 14 168 306 306 51 14,52 14 14
3-RINGS
Cyclohexene oxide Ethylene oxide
Propylene oxide Styrene oxide - , 3-nitro-
Ic gg gc' gc Ic' Ic gg Ic Ic
97 104 140 127.3 102.4 94.5 75.5 101.5 101
25 25 25 25 25 25 25 26.9 26.9
2 4b 3 2 2 2 4b 3 3
gc Ic ss Ic ss ss
81.8 51.4 81 84.5 67.5 83.5
25 25 —9 26.9 -9 26.9
4a 4a 3 3 3 3
gg gc gc Ic Ic Ic
26 50 52.0 24 17 15
20 25 57 100 90 25
4b 4a 4a 4b 4a 4a
4-RINGS
Oxetane - , 3,3-di(chloromethyl)- , 3,3-dimethyl- 3,3-di(phenoxymethyl)-
Chloromethane + chloroethane o-Dichlorobenzene
325 325 53 14 53 14
N60 Ni 4 N 69 , N 78 Nn
54 292 353 198 437 292
N 17 Chloromethane + chloroethane
5-RINGS
1,3-Dioxolane
TABLE 2. cont'd Monomer
-, 4-ethyl- , 4,4-dimethyl-, as-4,5-dimethyl- , tmns-4,5-dimethy\- , 4-isopropyl- , 4-methyltams-7-Oxabicyclo[4.3.0]nonane 7-Oxa-bicyclo[2.2. l]heptane, 2-alkylR= H R = exo-CH3 R = endo-CH3 Tetrahydrofuran
- , 3-methyl-
State of monomer and polymer (xx)
- A / f xx (kj/mol)
Temp. (0C)
Method
Ic Is ss ss ss ss ss Ic Ic Ic Ic Ic Ic Ic
23 6.5 22 27 15 17.5 8 13.0 9.6 12.1 7.5 12.1 13.4 14.0
40 55 0 20 30 70 75 -24 80 80 80 80 -8
4a 4a 4a/3 4a 4a 3 4a 4a 4b 4b 4b 4b 4a
Ic Ic Ic gg gg gc gc Ic' Ic' Ic Ic Ic Ic Ic Is ss Is
44.3 49.7 45.4 21 12 39.5 47.1 29.6 38 18.6 7.5 12.5 15 25.5 23 23 22.6
25 25 25 20 25 25 50 25 25 25 25 50 30 25 40 40 -6
2 2 2 4b 4b 4a 4a 2 2 2 4a 4a 4a 2 4a 4a 4a
gg Is gg sc' sc' sc' sc' sc' c'c' c'c' c'c' c'c'
0 -4 1.5 17.5 26.5 19.5 12.5 21.5 6 11.5 4.5 5.5
20 20 20 40 58 30 30 30 30 58 25 25
4b 4a 4b 4a 3 3 4a 3 3 3 4a 2
Solvent/Notes N 15 Dichloromethane Chloroethane Benzene Dichloromethane Toluene, N 78
N 61
N 17 N 16 Diethyl ether
Refs. 159 219 133,159,220 293 134 220 423 333 335 335 335 335 334 357 308 308 308 55 56 292 353 358 56,57 358 292 130 231 140,208 57,58,211 211 342
6-RINGS
m-Dioxane /j-Dioxane Tetrahydropyran Trioxane
N 78 1,2-Dichloroethane 1,2-Dichloroethane Dichloromethane Nitrobenzene Nitrobenzene N 18 N 19
54,59,60 436 55,56,59 178 212 182,202 182 202 202 212 164 see 202
7-RINGS
1,3-Dioxepane
- 2-butyl -, 4-methyl-, 2-methyll-Oxa-4,5dithiepane
gg gc Ic ss ss ss ss ss ss ss ss Ic ss ss
19.5 20 53.9 25 13.0 25 12 75 13.5 60 14 0 15 -30 7 - 5 9.3 -15 8.8 -15 9 - 1 0 7.5 9 8
26.9 26.9 26.9
4b 4a 4a 4a 4a 4a 4a/3 4a 4a 4a 4a
N 17 Toluene, N 78 Benzene 1,2-Dichloroethane, N 78 Dichloromethane 1,2-Dichloroethane, N 78 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane, N 78
3 3 3
Dioxane Benzene
54 323 323 423 134,87 424 136 424 339 340 424 61 61 61
Notes page 11-406; References page II - 407
TABLE 2. cont'd Monomer Oxepane
State of monomer and polymer (xx)
—AHXX (kj/mol)
Temp. (0C)
Method
Solvent/Notes
Refs.
gc Ic
38.6 -1.7
25 25
4a 4a
ss gg gc Ic sc' c'c' c'c' gc Ic ss ss
8 53.5 62.1 18.3 26 3.5 4 62.2 12.0 13 22
10 20 25 25 30 30 25 5 25 20 60
4a 4b 4a 4a 3 3 2 4a 4a 4a 4a
ss ss ss
16.7 4.6 00
0 0
4a 4a 4a
Dichloromethane Dichloromethane Dichloromethane
343 343 343
ss ss ss ss
13.4 3.8 3.8 0
0 0 0 0
4a 4a 4a 4a
Dichloromethane Dichloromethane Dichloromethane Dichloromethane
343 343 343 343
ss ss ss
11.3 7.5 0
5 5 5
4a 4a 4a
Dichloromethane Dichloromethane Dichloromethane
343 343 343
ss ss ss
10.5 -2 2.9 -2 0 — 2
4a 4a 4a
Dichloromethane Dichloromethane Dichloromethane
343 343 343
Ic Ic' Ic' Ic
75 82 80.5 74
3 3 2/4b 3
368 368 137 368
3 3 3
368 368 368
N 17
323 323
8- AND LARGER RINGS
2-Butyl-l,3,6-trioxocane 1,3-Dioxocane Tetraoxane 1,3,6-Trioxocane
(1,3,6-Trioxocane) n n=l n=2 rc = 3-8 (1,3,6,9-Tetraoxacycloundecane) „ n=\ n=2 n=3 n = 4~S 1,3,6,9,12-Pentaoxacyclotetradecane)n n=\ n=2 n = 3-l 1,3,6,9,12,15-Hexaoxacycloheptadecane) „ n=l n=2 n = 3-5
Toluene, N 78 N 17 Nitrobenzene
N 17 Toluene, N 78 Benzene
425 54 324 324 202 131,202 see 202 324 324 425 134
2.1.2. CYCLIC ESTERS 4-RINGS
P-Propiolactone
25 25 25 127
5-RINGS
y-Butyrolactone
Ic Ic' Ic
-5 7 -6
25 25 77
c'(II)c'(II) c'(II)c c'(II)c'(H) c'(II)c Ic'(I) 11 c'c' c'c c'c' c'c c'c' c'c 11 c'c c'c c'c c'c
7 - 1 7 3 -9 -173 7 25 -8 25 18 117 12 147 21 -173 6 - 1 7 3 21 -73 6 - 7 3 21 25 4 25 17 127 8.6 -173 9.0 -73 10.1 25 8.3 87
6-RINGS
2,2-Dimethyltrimethylene carbonate
p-Dioxanone
Ethylene oxalate
5 5 4b 4b 5 5 5 5 5 5 2 2 5 5 5 2 5
N 54 , N 63 , N 77 N545N63 N 63 , N 77 N 63
426 426 426 426 426 426 427 427 427 427 427 427 427 312 312 312 312
TABLE 2.
cont'd
Monomer Glycollide DL-Lactide L-Lactide 8-Oxo-7-oxabicyclo[2,2,2]octane Pentanolactone
State of monomer and polymer (xx)
-AZJxx (kj/mol)
Temp. (0C)
Method
Solvent/Notes
Refs.
Ic c'c' cc Ic c'c Ic ss ss c'c' gc' Ic' Ic' Ic Ic
20.0 34.0 10.8 31.4 8.7 27.0 25 23 20.9 90.5 34.5 27.5 10.5 9.9
142 25 25 277 25 127 40 105 25 25 25 25 25 77
2 2 2 2 2 2 4a 4a 2 2 2 2 2 3
Ic Ic' Ic ss
17 31 13.7 15
25 25 77 40
3 3 3 4a
Nitrobenzene, N 78
368 368 368 428
ss ss ss
11 8 5
4b 4b 4b
Dichloromethane Dichloromethane Dichloromethane
430 430 430
ss
7
- 5 0 t o - 1 0 4b
Dichloromethane
430
Nitrobenzene, N 78 1,4-Dioxane, N 78 N53 N53 N53
312 364 364 364 311 311 428 429 307 307 307 314 314 314
7-RINGS
e-Caprolactone
Spiroorthoester 2-R-1,4,6-trioxaspiro[4.6] undecane R= H R = CH 3 R = CH3Br
R = Ph
- 30 to 5 - 5 0 to 5 -35 t o - 5
8-AND LARGER RINGS
Heptanolactone Octanolactone Nonanolactone Decanolactone Undecanolactone Dodecanolactone Tridecanolactone Tetradecanolactone Pentadecanolactone
Hexadecanolactone
Ic Ic Ic Ic Ic Ic' Ic Ic c'c c'c' Ic Ic c'c c'c' Ic c'(II)c Ic
16 19 22 24 28 62 27 17 -2 38 6 2 -10 39 -3 -37 0
127 127 127 127 25 25 127 127 25 25 127 127 25 25 97 -73 127
4b 4b 4b 4b 3 3 3 4b 3 3 3 4b 1 1 1 1 4b
N54
368 368 368 368 368 368 368 368 368 368 368 368 313 313 313 313 368
2.2. MONOMERS GIVING POLYMERS CONTAINING O IN THE MAIN CHAIN, BONDED TO OTHER HETEROATOMS (S, Si, P) Cyclotrisiloxane, 1,1,3,3,5,5-hexaethyl
-, hexamethyl Cyclotetrasiloxane, octamethylAW-Diethylamino1,3,2-dioxaphosphorinane 1,3,2-Dioxaphospholan, 2-methoxy-
c'(IH)c'(II) c'(II)c'(II) c'(II)c c'(I)c'(I) c'(I)c 11 Is Ic Ic c'c Ic Ic Is ss ss
4.6 -173 5 - 7 3 -10 -23 10 -23 1 25 14 25 15 170 14.5 25 23.4 77 2.79 25 -13.4 77 -6.4 25 -6.3 -20 15 14
3 3 3 3 3 3 3 3 3 3 3 3 4a
N 54 , N 63 , N 77 N 54 , N 63 , N 77 N 54 , N 63 N 54 , N 63 , N 77 N 54 , N 63 N 63 95% Conversion N 62 N63 N 62 N63 N 58
431 431 431 431 431 431 431 84 365 365 365 365 346
3 4a
Dichloromethane 1,1,2,2-Tetrachloroethane
309 309
Notes page 11-406; References page 11-407
TABLE 2.
cont'd
Monomer 2-Oxo-1,3,2-dioxaphosphorinane - , 2-alkoxyR = methyl R = methyl R = ethyl R = propyl R = trimethyl silyl Sulfur trioxide
State of monomer
—AH^
Temp.
and polymer (xx)
(kj/mol)
(0C)
Ic
-6.28
90
Method 4a
Solvent/Notes N59
Refs. 347
Is 2.9 140 4a Diglyme or DMSO 348 ss 0.8 100 4a Dichloromethane 356 ss -1.0 100 4a Dichloromethane 356 ss -2.4 100 4a Dichloromethane 356 ss -2.7 100 4a Dichloromethane 356 gc' 56 13 4a 86 Ic' 12.5 25 4a 86 2.3. MONOMERS GIVING POLYMERS CONTAINING S IN THE MAIN CHAIN, BONDED IN THE CHAIN TO CARBON ONLY (listed by increasing ring size) (polysulfones listed under Table 3. Copolymers) Carbon disulflde Thiirane
- , 2,2-dimethyl- , c/s-2,3-dimethyl- , frarcs-2,3-dimethyl- , 2-methylThietane Thioacetone Thiolane 1,2-Dithiolane Thiane oDithiane SS(CH2)3CH2 exo-3,4,5-Trithiatricyclo[5.2.2.02'6]decane exo-3,4,5-Trithiatetracyclo[5.5.1.02'6.0812]tridec-10-ene
Ic' gg Ic sc' gg gg gg gg gg Is gg ss gg Ic
23 81 73 ± 4 80 ± 4 70.5 63 5.5 71 80 10.8 7.5 26.5 -2.5 2
2 4b 3 3 4b 4b 4b 4b 4b 4a 4b 4a 4b 3
N20 Various solvents N20 N20 N20 N20 N20 Monomer N20 Ethyl alcohol N20
179 69,70,71 173 173 69,70,71 69,70,71 69,70,71 69,70,71 69,70,71 327 69,70,71 72 69,70,71 14
ss
5.8
40
4a
Toluene, N 7 8
377
ss
6.6
50
4a
Toluene, N 7 8
376
4b
N20
Thiepane
gg
14.5
1,2-Dithiepane SS(CH2)4CH2
lc
10 5
1,2-Dithiocane SS(CH2)5CH2
25 25 20 20 25 25 25 25 25 50-90 25 30 25 26.9
sc
11.5
lc
16
25 26 9
26.9 26 9 -
69,70,71
3
14
3
Dioxane
14
3
14
2.4. MONOMERS GIVING POLYMERS CONTAINING N IN THE MAIN CHAIN, BONDED IN THE CHAIN TO CARBON ONLY (listed by increasing ring size) 2-RINGS
Butylisocyanate
ss
2 4 — 5 5
4a
Dimethylformamide, N 7 8
432
3-RINGS
Ethyleneimine -,Ar-(P-trimethylsilylethyl)(TEI) - , - Z n C l 2 - ( T E I ) 2 (complex)
Ic Ic c'c
96.2 119 264
27 27 27
2 2 2
Ic c'c
115 258
27 27
2 2
ss Ic Ic Ic' c'c' Ic ss ss ss
24 4.5 3.5 12 -5.5 3.5 145 104 60
38 75 43 43 25 25 15 30 50
4a 2/4b 3 3 2/4b 4b 3 3 3
#
360 360 360
4-RINGS
Trimethyleneimine, - , AKP-trimethylsilylethyl)(TMI) - , - , Z n C l 2 - (TMI)2(complex)
360 360
5-RINGS
8-Oxa-6-azabicyclo[3.2.1]octan-7-one 2-Pyrollidinone
- , 1-methylPyrrole
Dimethylsulfoxide, N 7 8
Acetonitrile Acetonitrile Acetonitrile
433 62 135 135 63 64 434 434 434
TABLE 2. cont'd Monomer
State of monomer and polymer (xx)
-AHx^ (kj/mol)
Temp. (0C)
Method
Solvent/Notes
Refs.
6-RINGS
2-Piperidone - , 1-methyl-
Ic c'c' Ic
9 4.5 -2
75 25 25
2/4b 2/4b 4b
62 63 64
Ic Ic Ic Is c'c' Ic Is Is Is Is Ic Is Ic Is Is Is
16.3 16 15.5 16.5 12.5 9.5 12.5 16 16.5 14.5 16 11 16 16.5 14.5 14.5
186 75 200 250 25 25 260 240 240 240 75 200 75 225 240 240
3 2 3 4a 2 4b 4a 3 3 3 4b 4a 4b 4a 3 3
310 62 65,135,138 68,67,66 63 64 194 191 191 171 62 225 62 226 191 191
Ic Ic cV Ic Is Is
22 22 24 16.5 22 21.5
75 230 25 25 240 240
4b 3 2 4b 3 3
62 138,207 63 64 171 171
Ic Ic c'c' c'c' c'c' Ic Is
10.6 32.5 23.5 11.5 -2 ~0 13
186 230 25 25 25 230 290
3 3 2/4b 2/4b 2/4b 3 4a
310 138,189 138 138 138 138,139 139
7-RINGS
8-Caprolactam
-, -, -, -, -, -,
1-methyl 3-methyl 3-ethyl 3-propyl 4-ethyl 5-methyl
-, 7-methyl -, 7-ethyl -, 7-propyl 8-RINGS
2-Oxo-hexamethyleneimine -, 1-methyl-,4-ethyl-, 7-ethyl9-13-RINGS
Q-Dodecalactam 2-Oxo-heptamethyleneimine 2-Oxo-octamethyleneimine 2-Oxo-nonamethyleneimine 2-Oxo-decamethyleneimine 2-Oxo-undecamethyleneimine
2.5. MONOMERS GIVING POLYMERS CONTAINING N IN THE MAIN CHAIN, BONDED TO OTHER HETEROATOMS (P) Phosphonitrile chloride -, cyclic trimer - , cyclic tetramer -, cyclic pentamer - , cyclic hexamer -, cyclic heptamer
gc Ic gc Ic gc Ic gc Ic gc Ic
61 6 68 4 79.5 3.5 88 1.5 96.5 0
230 230 230 230 230 230 230 230 230 230
3 3 3 3 3 3 3 3 3 3
125 125 125 125 125 125 125 125 125 125
25 60
2
Linear polymer (carbyne) Chloroform, N 78 , N 79
187 435
4a
Dichloromethane, N 67
317
2.6. OTHER MONOMERS GIVING POLYMERS NOT LISTED ABOVE Carbon C (graphite) 4,7-bis[Cyano(ethoxycarbonyl) methylene]-4,7-dihydrobenzofuran 4-(2,3-Diphenyl cyclopropenylidene)cyclohexa-2,5-dienone 1,3-Disilacyclobutane, 1,1,3,3-tetramethylSelenium Se 8
c'c7 ss ss Ic Is
-39.5 21.6
21.2-15 73.9 -9.5
25 400
2 4a
359 85 Notes page 11-406; References page II - 407
TABLE 2. cont'd State of monomer and polymer (xx)
Monomer 1-Silacyclobutane, 1,1-dimethyl-, 1-phenyl, 1-methylSulfur, S 6 -,S7 -,S8 -,S8
Ic' Ic Ic Is Is Is Is
-AH101 (kj/mol)
Temp. (0C)
92.7 85.4 91.5 10 4 -19 -13.5
Method
25 25 25 138 138 160 200
Solvent/Notes
2 2 2 2 2 4a 4a
Refs. 359 359 359 380 380 380 73,74
N 72 N 72 Nn
TABLE 3. COPOLYMERS (listed alphabetically under Monomer A) N 2 i
Monomer A
Monomer B
State of monomer and polymer xx
Acrylonitrile
Methacrylic acid, Methyl ester Styrene Vinyl acetate Vinylidene chloride Maleic anhydride
sc ss ss ss sc ss
Allyl chloride bis-(0-Aminophenyl)-2,2' dibenzymidazoleoxide Terephthalic acid -, dichloride - , dimethylether 1,3-Butadiene 1-Butene
Styrene Sulfur dioxide Sulfur dioxide
-, 3-methyl-
Sulfur dioxide
2-Butene, cis
Sulfur dioxide
- , trans
Sulfur dioxide
Cyclohexene Cyclopentene 1,3-Dioxane
Sulfur dioxide Sulfur dioxide 1,3-Dioxolane
Fumaric acid, diethyl ester Fumaroyl chloride Isobutene
Vinyl acetate Styrene Styrene, a-methylSulfur dioxide
1-Hexadecene
Sulfur dioxide
1-Hexene Isopropenyl acetate Maleic acid, diethyl ester Maleic anhydride
Sulfur dioxide Maleic anhydride Vinyl acetate Allyl chloride Isopropenyl acetate Styrene
-AH11x (kj/mol)
74
c'c c'c c'c c'c c'c c'c c'c c'c c'c Ic
24 18 6.5 136 96 83.5 31.5 16.5 5.5
ss ss Ic' Ic ss ss ss ss ss ss ss
44.5 43.5 46 22 42.5 43.5 39.5 40.5 38 45 16
ss? ss ss Ic Ic ss ss ss sc ss? ss sc ss ss
Temp. (0C) 25 30.5 20 20 25 74.5 -173 -73 25 -173 -73 25 -173 -73 25 25
Method 3 3 3 3 3 3
Solvent/Notes Emulsion (aq.)
Emulsion(aq.), N 22
5 5 2 5 5 2 5 5 2 2
Polymer Polymer Polymer Polymer Polymer Polymer Polymer Polymer Polymer
+ + + + + + + + +
H 2 O (c') H2O (c 0 H 2 O (1) HCl (c') HCl (g) HCl (g) CH3OH (c') CH3OH (1) CH3OH (1)
26.9 55 35 25 26.9 25 26.9 25 25 26.9 20
3 4a 4a 4a 3 4a 3 4a 4a 3 4a
Excess B Excess B From B-rich mixture From A-rich mixture Excess B Excess B Excess B Excess B Excess B Excess B Methylene dichloride, N 78 A ^ B A = - H
78 80 71.5 31 39.5 42 40 43.5 74.5
76.8 74.5 74.5 25 0 26.9 30 26.9 76.8
3 3 3 2 4a 3 4a 3 3
Excess B, N 22 Hexane Excess B
83.5 74 74.5 81 82.5
76.8 74.5 76.8 74.5 74.5
3 3 3 s 3
Excess B, N 22
N 23 Chloroform Chloroform Excess B
Benzene Acetonitrile
Refs. 38 76 76,201 76 75 34 445 445 445 445 445 445 445 445 445 45 197 5 77 199,200 199,200 5 5 5 5 78 5 446 79 34 34 82 83 5 80 5 79 79 34 79 34 34
TABLE 3. cont'd
Monomer A
Maleimide Methacrylic acid - , methyl ester
Propene Styrene
- , a-methyl-
Sulfur dioxide
Monomer B Styrene, a-methylVinyl acetate Vinyl rc-butyl ether Styrene Styrene, a-methylMethacrylic acid, methyl ester Acrylonitrile Methacrylic acid Styrene Vinyl acetate Sulfur dioxide Acrylonitrile 1,3-Butadiene Fumaroyl chloride Maleic anhydride Maleimide Methacrylic, acid, methyl ester Vinyl acetate Fumaroyl chloride Maleic anhydride Maleimide Butadiene 1-Butene - , 3-methyl2-Butene, cis - , trans Cyclohexene Cyclopentene 1-Hexadecene 1-Hexene Isobutene
Vinyl acetate
Vinyl rc-butyl ether Vinylidene chloride
B.
Propene Acrylonitrile Fumaric acid, diethyl ester Maleic acid, diethyl ester Maleic anhydride Methacrylic acid, methyl ester Styrene Maleic anhydride Acrylonitrile
State of monomer and polymer xx
—AHXX (kj/mol)
Temp. (0C)
ss sc ss ss ss
72.5 84.5 90 87.5 72
74.5 76.8 74.5 74.5 74.5
3 3 3 3 3
25 25 30.5 25 24 24 26.9 20 25 74.5 74.5 74.5 74.5 24
2 3 3 2 3 3 3 3 2 3 3 3 3 3
35 74.5 74.5 74.5
3 3 3 3
26.9 55 35 25 26.9 25 26.9 25 25 26.9 26.9 30 26.9 25 0 26.9 20 76.8 76.8 76.8
3 4a 4a 4a 3 4a 3 4a 4a 3 3 4a 3 2 4a 3 3 3 3 3
24 35 74.5 25
3 3 3 3
Ic sc ss Ic ss ss sc ss Ic ss ss ss ss ss ss ss ss ss ss ss Ic7 Ic ss ss ss ss ss ss ss ss ss Ic Ic sc ss ss? ss? sc ss ss ss sc
42.5
80 81 82.5 87.5
71.5 72.5 72 44.5 43.5 92 44.5 42.5 43.5 39.5 40.5 38 45 42 40 43.5 31 39.5 42.5 78 83.5 84.5
90
Method
Solvent/Notes Excess B Excess B Benzene Acetonitrile Acetonitrile
Emulsion (aq.)
Excess B
Hexane Benzene Acetonitrile Acetonitrile
Excess A Excess A Acetonitrile Excess A Excess A From A-rich mixture From B-rich mixture Excess A Excess A Excess A Excess A Excess A Excess A Chloroform Chloroform Excess A N24 Excess A Excess A, N22 Excess A, N 2 2 Excess A
Benzene Emulsion (aq.), N 2 2
Refs. 34 79 34 34 34 206 38 76 206 81 81 5 76,201 45, 34 34 34 34 81 81 34 34 34 197 5 77 199 199 5 5 5 5 78 5 5 80 5 82 83 5 76 79 79 79 81 81 34 75
ENTROPIES O F P O L Y M E R I Z A T I O N
Symbols: The subscripts to AS0 denote the state of the monomer (first letter) and the state of the polymer (second letter) as in Section A. The standard state of the monomer is 1 atm for the gaseous state and IM in solution, unless otherwise stated. In all cases where monomer or polymer is present in solution, the value of AS0 will depend to some extent on the composition. Where the polymer is crystalline, AS0 will depend on the degree of crystallinity. AS values are in (J/K) per mol of monomer and are generally the limiting values for high degree of polymerization (1 kcal = 4.187kJ).
Notes page 11-406; References page 11-407
Precision: generally 0.5-8.0 (J/K/mol) Methods of determination: (numbering conforms with that in Section A) 1 Third law or statistical. 4a Thermodynamic (van't Hoff Equation). 4b Semiempirical rules applied to evaluate entropy of monomer or polymer or both.
TABLE 4. MONOMERS GIVING POLYMERS CONTAINING MAIN CHAIN CARBON ONLY
Monomer
State of monomer
-AS^ x
Temp.
and polymer xx
(J/K/mol)
(0C)
Method
Solvent/Notes
Refs.
4.1. MAIN CHAIN ACYCLIC CARBON ONLY 4.1.1. DIENES 1,3-Butadiene Isoprene
Ic Ic Ic
89 84 101
25 25 25
1 1 1
ds-l,4-Polymer
95,96 97 100,101
4.1.2. MONOMERS GIVING POLYMERS WITHOUT OR WITH ALIPHATIC SIDE CHAINS WHICH CONTAIN ONLY C, H 4.1.2.1. Olefins (listed by increasing carbon number) Ethylene
Propene
1-Butene
2-Butene, cis
c'c' c'c gc' gc gg gc gc gc1 gc' gc' gc gc' gc gl gg gc' gc' Ic Ic Ic Ic' Ic' Ic Ic' Ic gg gc' gc Ic Ic Ic' gc' gc gl c'c' c'c Ic' Ic gg Ic gc' gc gc' gc gl
66 59 338 331 142 155 158 172 174 336 325 334 317 311 167 191 205 113 116 116 136 75 69 114 107 166 213 193 113 112 141 204 187 182 21 14 106 99 163 104 201 190 196 179 172
-173 -173 -73 -73 25 25 25 25 25 25 25 127 127 227 25 25 25 25 25 25 25 -173 -173 -73 - 73 25 25 25 25 25 25 127 127 227 -173 -173 -73 - 73 25 25 25 25 127 127 227
1 1 1 1 4b 4b 1 4b 1 1 1 1 1 1 4b 1 1 4b 1 1 1 1 1 1 1 4b 1 1 4b 1 1 1 1 1 1 1 1 1 4b 4b 1 1 1 1 1
Isotactic Isotactic Isotactic Isotactic
poly(-l-butene) poly(-l-butene) poly(-1-butene) poly (-1-butene)
100% Cryst. polymer Isotactic poly (-1-butene) Isotactic poly (-1-butene) Isotactic poly (-1-butene) Isotactic poly (-1-butene) Isotactic poly (-1-butene) Syndiotactic polymer Isotactic polymer Isotactic polymer Atactic polymer 100% Cryst. isotactic Isotactic polymer Isotactic polymer Isotactic polymer Isotactic polymer Isotactic polymer Isotactic polymer Isotactic polymer 100% Cryst. isotactic Isotactic polymer Isotactic polymer Isotactic polymer Isotactic polymer Isotactic polymer Isotactic polymer Isotactic polymer Isotactic Isotactic Isotactic Isotactic Isotactic
polymer polymer polymer polymer polymer
385 385 385 385 2,87 11 88-91 11 88-91 385 385 385 385 385 5 186 207 5 88 88,92 88,92 385 385 385 385 5 88,385 88,385 5 88 88 385 385 385 385 385 385 385 5 5 385 385 385 385 385
TABLE 4.
cont'd
Monomer -, trans
Isobutene
1-Pentene
-, 4-methyl
2-Pentene, cis
-,4-methyl
2-Pentene, trans
-,4-methyl
State of monomer and polymer xx
-ASJ x (J/K/mol)
Temp. (0C)
Method
c'c' c'c Ic' Ic gg Ic gc' gc gc' gc gl gg Ic Ic
17 10 100 93 159 100 195 194 193 175 170 172 112 121
-173 -173 -73 - 73 25 25 25 25 127 127 227 25 25 25
1 1 1 1 4b 4b 1 1 1 1 1 4b 4b 1
c'c' c'c Ic' Ic Ic' Ic gl gl c'c' c'c Ic' Ic gc' Ic' Ic gc' gc gc' gc gl c'c' c'c Ic' Ic Ic' Ic gl gl Ic' Ic gc' gc gc' gc gl c'c' c'c Ic' Ic Ic' Ic gl gl Ic' Ic gc' gc gc'
24 20 117 113 133 124 198 190 28 28 111 111 216 131 131 214 200 209 188 176 20 16 114 111 129 120 195 185 134 134 220 205 215 215 183 18 14 111 102 127 118 194 186 130 130 216 202 214
-173 -173 -73 -73 25 25 127 227 -173 -173 -73 -73 25 25 25 127 127 227 227 327 -173 -173 -73 -73 25 25 127 227 25 25 127 127 227 227 327 -173 -173 -73 -73 25 25 127 227 25 25 127 127 227
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Solvent/Notes Isotactic Isotactic Isotactic Isotactic
polymer polymer polymer polymer
Isotactic Isotactic Isotactic Isotactic Isotactic
polymer polymer polymer polymer polymer
Isotactic polymer
Refs. 385 385 385 385 5 5 385 385 385 385 385 5 5 11,93 386 386 386 386 386 386 386 386 387 387 387 387 196 387 387 387 387 387 387 387 386 386 386 386 386 386 386 386 387 387 387 387 387 387 387 386 386 386 386 386 386 386 386 387 387 387 387 387
Notes page 11-406; References page 11-407
TABLE 4. cont'd State of monomer and polymer xx
Monomer
1-Hexene 1-Heptene
-ASJJx (J/K/mol)
Temp. (0C)
Method
Solvent/Notes
Refs.
gc gl Ic gg
194 182 113 168
227 327 25 25
1 1 4b 4b
387 387 5 5
Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic
69 85 93 55 72 75 43 64 66 11 32 36 16 3
25 25 25 25 25 25 25 25 25 25 25 25 25 25
4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b
11 87 87 11 87 87 11 87 87 11,87 87 87 11,94 11,94
52 131 17 54 52 47.2 18 56 52 51 17 -7 6 37 56 37 70 36 10 -25 49 8 63 9 9
25 25 -173 -73 25 25 -173 -73 25 77 -65 -173 -173 - 73 -73 25 25 5 1 -173 -173 -73 - 73 25 25 57
4.1.2.2. Cycloalkanes (listed by increasing ring size) Cyclopropane - , methyl- , 1,1-dimethylCyclobutane - , methyl- , 1,1-dimethylCyclopentane - , methyl- , 1,1-dimethylCyclohexane -,methyl- , 1,1-dimethylCycloheptane Cyclooctane Cycloalkenes Cyclobutene
11 gl c'(I)c Ic Ic Ic c'(I)c Ic Ic Ic ss c'(III)c c '(HI)C' c'(II)c c'(II)c' Ic Ic' 11 c'(II)c' c'(1I)C c'(I)C7 c r(I)c Ic' Ic 11
Cyclopentene
Cyclohexene Cycloheptene
Cyclooctene
1,4b 1,4b 1 1 1,4b 1 1 1 1,4b 1 4b 1 1 1 1 4b 4b 1 1 1 1 1 1,4b 1,4b 1
N25 N25
ds-Polybutadiene as-Polybutadiene czs-Polymer ds-Polymer ds-Polymer N66 frans-Porymer Jra^-Polymer tarns-Polymer tarns-Polymer Toluene, N 7 8 70% trans, 30% cis Polymer, N 5 4 70% trans, 30% cis Polymer, N 5 4 70% trans, 30% cis Polymer, N 5 4 70% trans, 30% cis Polymer, N 5 4 70% trans, 30% cis Polymer 70% trans, 30% cis Polymer 70% trans, 30% cis Polymer 48% trans, 52% cis Polymer, N 5 4 48% trans, 52% cis Polymer, N 5 4 48% trans, 52% cis Polymer, N 5 4 48% trans, 52% cis Polymer, N 5 4 48% trans, 52% cis Polymer 48% trans, 52% cis Polymer 48% trans, 52% cis Polymer
388 388 388 388 388 361 388 388 388 388 389 388 388 388 388 388 388 388 388 388 388 388 388 388 388
4.1.3. MONOMERS GIVING POLYMERS WITH ALIPHATIC SIDE CHAINS THAT CONTAIN HETEROATOMS Acrylonitrile - , allylester
- , allylloxyethyl
-,
rc-decylester
Ic' c'c c'c c'c Ic Ic Ic cc Ic Ic Ic c'c c'c
109 -6 1 24 97 85 96 16 29 56 60 4 8
25 -173 -73 -8 -8 25 127 -173 -73 25 57 -173 -73
1 1 1 1 1 1 1 1 1 1 1 1 1
193 391 391 391 391 391 391 393 393 393 393 392 392
TABLE 4. cont'd Monomer
State of monomer and polymer xx
- , ethylester
Ethacrylic acid -methyl ester Ethylene, tetrafluoroMethacrylic acid - , ethyl ester - , methyl ester
- , methyl ester deuterated
Methacrylonitrile a-Methylene pentanolactone Vinylidene chloride
"AS^ x (J/K/mol)
Temp. (0C)
Ic Ic c'c C7C Ic Ic Ic
141 155 3 16 88 104 107
25 127 -173 -73 25 127 177
Is gc' Ic' ss Ic Ic c'c c'c c'c' Ic Ic ss c'c c'c Ic Ic ss ss c'c' c'c Ic' Ic Ic' Ic gc' gc gc' gc
105 87 197 -75.7 112 -75.7 146 80 126 120 117 127 9 -173 24.1 -73 40 -63 105 25 115 77 130 127 1 0 - 1 7 3 26 -73 110 25 118 77 151 127 108.8 83 31 -173 25 -173 97 -73 91 -73 112 25 106 25 201 25 195 25 198 127 191 127
Method
Solvent/Notes
1 1 1 1 1 1 1 4b 1 1 4b 4a 4a 1 1 1 1 1 4a 1 1 1 1 4a 4a 1 1 1 1 1 1 1 1 1 1
Refs. 392 392 390 390 390 390 390
o-Dichlorobenzene
Benzonitrile DMF
395 98,99 98,99 316 40 42,43,102 414 414 102,103 414 414 42,49 414 414 414 414 44,29 315 397 397 213,397 397 397 397 397 397 397 397
4.1.4. MONOMERS GIVING POLYMERS WITH AROMATIC SIDE CHAINS THAT CONTAIN ONLY C, H Acenaphtylene Biphenyl,/7-isopropenylNaphthalene, 2-isopropenylStyrene
- , oc-methyl-
-, a-methyl, p-tert-buly\-
ss ss ss ss gg Ic Ic Ic Ic Ic Ic Ic' Ic ss ss ss ss ss
98 118 122 125 149 90 104 116 104 105 112 111 110 130 51 47 163.3 106.6
60 -20 -5 10 25 -23 25 127 127 25 25 25 -20 -20 -10 -10 22
4a 4a 4a 4a 4b 1 1 1 4a 1 1 1 4a 4a 4a 4a 4a 4a
Toluene, N 78 Tetrahydrofuran Tetrahydrofuran Toluene, N 78
N 26 Isotactic polymer 100% Cryst. isotactic Tetrahydrofuran rc-Heptane, N 78 Toluene, N 78 Cyclohexane Solvent and temp, not stated
399 16 16 400 25 104 104 104 28 88 105 88 32 32,29,16 402 402 341 381
4.1.5. MONOMERS GIVING POLYMERS WITH AROMATIC SIDE CHAINS AND THAT CONTAIN HETEROATOMS a-Acetoxystyrene 2-Amino-4-(Af-alkalino)-6-isopropenyl-1,3,5-triazine alkyl = «-propyl isopropyl isobutyl
ss
83
64
4a
Is Is Is
117 114 114
157 151 154
4a 4a 4a
Toluene, N 78
401 402 403 403
Notes page 11-406; References page 11-407
TABLE 4. cont'd
Monomer
State of monomer and polymer xx
sec-butyl Is 1-methylbutyl Is rc-pentyl Is isopentyl Is rc-hexyl Is n-octyl Is rc-decyl Is rc-dodecyl Is rc-tetradecyl Is n-hexadecyl Is benzyl Is 2-Amino-4-alkyl/aryl-amino-6-isopropenyl-1,3,5-triazine Is Ri = H, R 2 = ethyl Is Ri = H, R 2 = propyl Is Ri = ethyl, R 2 = ethyl Is R 1 = propyl, R 2 = propyl Ri = methyl, R 2 = phenyl Is Ri = H, R 2 = p-methoxyphenyl Is Benzoic acid, rc-methacryloyloxyc'c c'c crc 11 Oxazole, 2-isopropenyl, 4,5-dimethylss Pyridine, 2-isopropenylss Silane, benzyl dimethyl vinylc'c Ic Ic - , dimethyl phenyl vinylIc - , trimethyl vinylIc Thiazole, 2-isopropenylss /7-[bis(Trimethylsilyl)methyl] isopropenylbenzene ss AWV',Ar'-Tetraethyl-4isopropenylphenyl-phosphonous diamide ss
-AS^ x (J/K/mol) 112 111 114 113 112 110 109 109 105 102 113 160.5 153.8 137.5 124.6 131.7 117 -2 5 8 85 96 70 0.7 83.5 107.3 127.5 109.5 69
Temp. (0C) 148 146 150 151 149 143 140 134 132 130 157 150 145 130 125 150 160 -173 -73 25 227 20 20 -73 25 77 25 25 20
Method
Solvent/Notes
Refs.
4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 1,4a 4a 4a 4a 1 1 3 1 1 4a
403 403 403 403 402 402 402 402 402 402 403
Tetrahydrofuran
370 370 370 370 379 378 394 394 363,394 394 284 284 355 366 366 362 367 284
Tetrahydrofuran Tetrahydrofuran
110
-30
4a
Tetrahydrofuran
409
10
-55
4a
Tetrahydrofuran
408
4.1.6. OTHER MONOMERS GIVING POLYMERS NOT LISTED ABOVE
Vinylcyclohexane
4.2.
c'c c'c Ic' Ic Ic' Ic Ic' Ic
28 3 95 75 120 85 136 102
-173 -173 -73 -73 25 25 127 127
1 1 1 1 1 1 1 1
396 396 396 396 396 396 396 396
WITH AROMATIC OR CYCLIC CARBONS IN THE MAIN CHAIN
-11,12-Dicyano-2,6-naphtoquinodimethane ll,12-bis(alkylthio) alkyl = butyl = sec-butyl = isopropyl = ethyl = methyl -7,8-Dicyanoquinodimethane 7,8-bis(butoxycarbonyl)7,8-diacetyl7,8-dibenzoyl7,8-dibutoxycarbonyl7,8-diisobutyryl7,8-dipropionyl7,8-bis(ethylthio)-
ss ss ss ss ss
109 109 116 115 114
30 30 30 30 30
4a 4a 4a 4a 4a
Oligomer, Oligomer, Oligomer, Oligomer, Oligomer,
benzene, benzene, benzene, benzene, benzene,
ss ss ss ss ss ss ss
37 37 38 37 39 37 37
60 55 55 55 55 55 60
4a 4a 4a 4a 4a 4a 4a
Chloroform, Chloroform, Chloroform, Chloroform, Chloroform, Chloroform, Chloroform,
N78, N78, N78, N78, N78, N78, N78,
N78, N78, N78, N78, N78,
N8i N8i N 82 Ngi N8i N8i N8i
N 8o N80 N80 N80 N 8o
410 410 410 410 410 411 412 412 412 413 413 411
TABLE 4. cont'd Monomer 7,8-bis(phenylacetyl)7,8-bis(phenylthio)-4,7-Dihydrobenzofuran 4,7-bis-[cyano(ethoxycarbonyl)methylene] Norbornylene
5-trimethylsilyl-2-
Af,7,7-Tricyanobenzoquinonemethideimine
State of monomer and polymer xx
-ASJ x (J/K/mol)
ss ss
37 34
ss c'(II)c c'(I)c c'(I)c Ic c'c cc c'c cc Ic Ic ss
41 5 50 50 58 4 13 14 48 70 81 38
Temp. (0C) 55 50 60 -173 -73 25 57 -173 —173 -73 — 73 25 107 55
Method
Solvent/Notes
4a 4a
Chloroform, N 78 , N 8 i Chloroform, N 78 , N 81
4a 3 3 4b 3 1 1 1 1 1 1 4a
Chloroform, N 78 55% cis/45% trans 55% cis/45% trans 55% cis/45% trans 55% cis/45% trans
Polymer Polymer Polymer Polymer
Overcooled monomer Overcooled monomer Toluene, N 7 8 , N 8 i
Refs. 413 411 N54 N54 N54 N54
435 415 415 415 415 416 416 416 416 416 416 438
TABLE 5. MONOMERS GIVING POLYMERS CONTAINING HETEROATOMS IN THE MAIN CHAIN
Monomer 5.1.
State of monomer
-AS^ x
Temp.
and polymer xx
(J/K/mol)
(0C)
Method
Solvent/Notes
Refs.
MONOMERS GIVING POLYMERS CONTAINING O IN THE MAIN CHAIN, BONDED TO CARBON ONLY
5.1.1. ETHERS AND ACETALS (listed by increasing ring size of monomer) 2-RINGS (aldehydes and ketones) Acetaldehyde c'c -6 Ic 14 Ic 21 -, bromochlorofluorosc' 122 -, bromodichlorosc' 122 -, bromodifluorosc' 135 -, dibromochlorosc' 116 -, dibromofluorosc' 114 - , dichlorofluorosc' 179 - , difluorochlorosc' 152 - , tribromosc' 100 - , trichlorogc' 190 ± 3 0 Ic' 95 ± 3 0 sc' 134 sc' 117 ss 52 sc' 142 - , trichloro cc' 37 Ic' 69 Ic' 80 Ic' 30 - , trifluorogc 187 Ic 97 sc' 155 sc 142.7 Acetone gc 188 Butanal sc 122 4,7-Dioxaoctanal Ic 67.4 ss 77.0 Formaldehyde gg 124 gc' 174 gc; 169 Heptanal c'c' 25 c'c 1 c'c' 32
-173 -73 25
50 50 13 -50 10 -173 -73 25 57 45 25 25 25 10 -80 -80 25 25 25 -173 -173 -73
1 1 1 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 1 1 1 1 4a 4a 4a 4a 4b 4a 4a 4a 1 1 4a 1 1 1
Toluene, Toluene, Toluene, Toluene, Toluene, Toluene, Toluene, Toluene,
N74 N74 N74 N74 N74 N74 N74 N 74
Toluene, N 7 4 Pyridine, N 27 Tetrahydrofuran n-Heptane
Dichloromethane Toluene, N 7 4 Dichloromethane rc-Hexane N 69 THF N28
[9 kbar], N n
417 417 417 233 344 344 344 344 344 344 344 50 50 344 50 167 166 418 418 418 418 129 322 344 322 144,148 161 330 330 141,142 106 164,165 419 419 419
Notes page 11-406; References page II - 407
TABLE 5. cont'd Monomer
Hexanal
Octanal 4-Oxapentanal Pentanal oPhthalaldehyde Propanal
-, 2-chloro 2-methyl-, 2,2-dichloro-, 2-methyl-
State of monomer and polymer xx
"AS^ x (J/K/mol)
Temp. (0C) -73 25 25 97 -173 -173 -73 -73 25 67 -75 -75 -80 -80 -75 -75 -70 -173 -173 -73 -73 25 25 57 57 - 65 - 65 - 65 - 65 -65
Method
c'c Ic'(I) Ic 11 c'c' c'c c'c' c'c 11 11 Ic sc Ic Is Ic sc ss c'c' c'c Ic' Ic Ic' Ic Ic' Ic ss ss ss ss ss
4 Hl 101 110 19 16 43 41 117 121 57.8 65.7 81.6 93.6 97.1 107.6 96 8 6 69 67 85 76 90 77 90 69 74 78 94
1 1 1 1 1 1 1 1 1 1 4a 4a 4a 4a 4a 4a 4a 1 1 1 1 1 1 1 1 4a 4a 4a 4a 4a
gc' gc'
174 189
25 25
gc Ic Ic
162.7 68.4 83
25 25 25
4a 4a 1
gc' gc gc gc Ic' Ic Ic Ic Ic Ic ss ss ss ss Ic Ic Ic Ic Ic Ic Ic Ic Ic
205 167 139 147 100 37 67 63 76 18 78 94 22 59 54.8 55.3 55.3 59.4 60.7 53.2 75.3 96.2 96.2
25 25 25 57 25 25 25 40 100 90 0 20 75 30 80 80 80 -24 80 -8 25 25 25
1 1 4a 4a 1 4a 1 4a 4a 4a 4a 4a 4a 4a b4 4b 4b 4a 4b 4a 4b 4b 4b
Solvent/Notes
Refs.
Tetrahydrofuran Tetrahydrofuran Tetrahydrofuran Diethyl ether rc-Pentane
419 419 419 419 420 420 420 420 420 420 330 330 329 329 328 328 154 421 421 421 421 421 421 421 421 172 172 172 166 166
100% Cryst. polymer Estimated for 100% cryst. polymer
210 210
N 17
325 325 107
N 77
N 69 THF N 69 N 69 THF Dichloromethane
3-RINGS
Ethylene oxide Propylene oxide 4-RINGS
Oxetane -, 3,3-dichloromethyl 5-RINGS
1,3-Dioxolane
- , 4,4-dimethyl- , cis 4,5-dimethyl- , trans 4,5-dimethyl- , 4-ethyl- , 4-isopropyl - , 4-methyl7-Oxa-bicyclo[2,2, l]heptane - , 2-exo-methyl- , 2-endo-methyl-
N 60 N 17 N 15 NM N 69 , N 78 Dichloromethane Chloromethane Toluene, N 78 Benzene
177 177 292 353 177 292 177 159 198 398 133,154 213 423 134 335 335 335 333 335 334 308 308 308
TABLE 5. cont'd Monomer £rarcs-7-Oxabicyclo[4.3.0]nonane Tetrahydrofuran
-, 3-methyl-
State of monomer and polymer xx Ic gc' gc gc gc Ic' Ic' Ic Ic Ic Ic Ic Is ss Is
-AS^ x (J/K/mol)
Temp. (0C)
55.7 177 112 139 143 100 81.9 47.6 16 62 41 49 67 87 100.9
25 25 25 50 25 25 25 25 25 50 30 40 40 - 6
1 4a 1 4a 1 1 1 4a 1 4a 4a 4a 4a 4a
20 25 25 25 25 40 25 25
4a 1 1 1 1 4a 4a 4a
Method
Solvent/Notes
N 61
N 17 N 16 Diethyl ether
Refs. 357 140 292 140 353 140 358 358 292 140 130 231 57,58 211 342
6-RINGS
1,3-Dioxane Paraldehyde Trioxane
Is gc' gc' gg gc' ss sc' c'c'
-23 201 159 64 156 41 42 18 ± 1 6
N 78 , Cyclic oligomer Isotactic polymer Syndiotactic polymer 1,2-Dichloroethane Nitrobenzene
436 184 184 141 141 178 182 164
7-RINGS
1,3-Dioxepane
-, 2-butyl - , 2-methyl-,4-methylOxepane l-Oxa-4,5-dithiepane
gc' gc' gc Ic Ic' Ic ss ss ss ss ss ss ss ss gc Ic ss
181 144 131.4 25.1 77 39 48 39 26 43 33 37.2 39 38.8 91.8 -12.4 > 12
25 25 25 25 25 25 -30 60 75 0 -5 -15 - 10 -15 25 25 25
1 1 4a 4a 1 1 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a 4a
ss gc Ic gg c'c' gc Ic ss ss
16 121.7 10.2 51 -3 129.1 8.0 39 13
10 25 25 25 27 25 25 60 20
4a 4a 4a 1 1 4a 4a 4a 4a
Toluene, N 78
N17 Benzene Toluene, N 78
425 324 324 142 131 324 324 134 425
4a 4a 4a 4a 4a 4a 4a 4a
Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane
343 343 343 343 343 343 343 343
N 17 Dichloromethane Benzene Toluene, N 78 1,2-Dichloroethane, N 78 1,2-Dichloroethane, N 78 1,2-Dichloroethane 1,1-Dichloromethene, N 78 1,2-Dichloroethane N 17 Benzene
170 170 323 323 170 170 136 134 423 424 424 340 424 339 323 323 61
8-AND LARGER RINGS
2-Butyl-l,3,6-trioxocane 1,3-Dioxocane Tetraoxane 1,3,6-Trioxocane
(1,3,6-Trioxocane) n n=\ n=2 n=3 n= 4 n=5 n—6 rc = 7 n=S
ss ss ss ss ss ss ss ss
34.3 12.6 36.4 43.1 47.7 51.5 54.8 57.8
0 0 0 0 0 0 0 0
N 17
Notes page 11-406; References page II - 407
TABLE 5.
cont'd
Monomer (1,3,6,9-Tetraoxacycloundecane) n n= \ n=2 n=3 n= 4 n=5 n=6 w= 7 n=$ (1,3,6,9,12-Pentaoxacyclotetradecane) n n= l n= 2 n=3 n=4 n= 5 n=6 n=l (1,3,6,9,12,15-Hexaoxacycloheptadecane) „ n=\ n=2 n=3 n=4 n=5
State of monomer and polymer xx
-ASJ x (J/K/mol)
Temp. (0C)
Method
Solvent/Notes
Refs.
ss ss ss ss ss ss ss ss
13.0 20.1 28.9 48.2 52.3 56.9 59.9 62.8
0 0 0 0 0 0 0 0
4a 4a 4a 4a 4a 4a 4a 4a
Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane
343 343 343 343 343 343 343 343
ss ss ss ss ss ss ss
8.4 10.0 43.1 49.8 54.4 58.2 61.1
5 5 5 5 5 5 5
4a 4a 4a 4a 4a 4a 4a
Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane
343 343 343 343 343 343 343
ss ss ss ss ss
8.4 28.1 44.8 50.7 54.8
-2 -2 —2 -2 -2
4a 4a 4a 4a 4a
Dichloromethane Dichloromethane Dichloromethane Dichloromethane Dichloromethane
343 343 343 343 343
Ic Ic' Ic
54 74 51
25 25 127
1 1 1
368 368 368
Ic Ic' Ic
30 65 29
25 25 77
1 1 1
368 368 368
5.1.2. CYCLIC ESTERS 4-RINGS
P-Propiolactone
5-RINGS
y-Butyrolactone
6-RINGS
2,2-Dimetyltrimethylene carbonate
p-Dioxanone
Ethylene oxalate
Glycollide DL-Lactide L-Lactide 8-Oxo-7-oxabicyclo[2,2,2]octane
c'(II)c'(II) c'(II)c c'(II)c'(II) c'(1I)C Ic'(I) 11 c'c' c'c c'c' c'c c'c' c'c 11 c'c c'c c'c Ic c'c' cc Ic c'c Ic ss ss gg Ic'
7.7 -35.3 5.8 -35.2 38.7 24.0 6 -28 9 -25 10 -32 13 -12 -9 -5 15 0.3 -10.5 17.5 -31.3 13.0 41 25 127.7 76.2
-173 -173 25 25 117 147 -173 -173 -73 -73 25 25 127 -173 -73 25 142 25 25 277 25 127 105 40 25 25
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4a 4a 4b 4b
N63 N63 N63 N63 N63 N 63
1,4-Dioxane, N 78 Nitrobenzene, N 78 N53 N53
426 426 426 426 426 426 427 427 427 427 427 427 427 312 312 312 312 364 364 364 311 311 429 428 307 307
TABLE 5. cont'd Monomer Pentanolactone
State of monomer and polymer xx
-AS^ x (J/K/mol)
Temp. (0C)
Method
Solvent/Notes
Refs.
Ic' Ic Ic
65 15 13
25 25 77
1 1 1
314 314 314
Ic Ic' Ic
4 54 8
25 25 77
1 1 1
368 368 368
ss ss ss ss
-39.6 -30.7 -20.8 -25.7
7-RINGS
s-Caprolactone Spiroorthoester 2-R-1,4,6-trioxaspiro[4.6] undecane R= H = CH 3 = CH 2 Br = Ph
-10 -25 -20 -30
4a 4a 4a 4a
127 127 127 127 25 25 127 127 25 25 127 127 25 25 97 -73 127
4b 4b 4b 4b 1 1 1 4b 1 1 1 4b 1 1 1 1 4b
Dichloromethane, Dichloromethane, Dichloromethane, Dichloromethane,
N78 N78 N78 N78
430 430 430 430
8-AND LARGER RINGS
Heptanolactone Octanolactone Nonanolactone Decanolactone Undecanolactone Dodecanolactone Tridecanolactone Tetradecanolactone Pentadecanolactone
Hexadecanolactone
Ic Ic Ic Ic Ic Ic7 Ic Ic c'c cV Ic Ic c'c c'c' Ic C7CII)C Ic
1 -5 -12 -18 -24 69 -25 -25 -57 50 -26 -25 —41 86 -23 -109 -21
N54
368 368 368 368 368 368 368 368 368 368 368 368 313 313 313 313 368
5.2. MONOMERS GIVING POLYMERS CONTAINING O IN THE MAIN CHAIN, BONDED TO OTHER HETEROATOMS (S, Si, P) Cyclotrisiloxane, 1,1,3,3,5,5-hexaethyl
hexamethylCyclotetrasiloxane, octamethylAf,7V-Diethylamino1,3,2-dioxaphosphorinane 1,3,2-Dioxaphospholan, 2-methoxy 2-Oxo-1,3,2-dioxaphosphorinane - , 2-alkoxyR = methyl R = methyl R = ethyl R = propyl R = trimethyl silyl Sulfur trioxide
c'(HI)C'(II) c'(H)C7OI) c'(II)c c'(I)c'(I) c'0)c 11 Ic c'c Ic Ic
7 0 -62 9 -22 25 3.03 -51.0 -190 -194.4
-173 -73 -23 -23 25 25 77 25 77 25
1 1 1 1 1 1 1 1 1 1
N54, N63, N77 N54, N63, N77 N54, N63 N54, N63, N77 N54, N63 N63
431 431 431 431 431 431 365 365 365 365
Is ss Ic
-20.9 13.5 -19.3
-20 90
4a 4a 4a
N58 1,1,2,2-Tetrachloroethane N59
346 309 347
Is ss ss ss ss gc'
11.7 2.5 -1.5 -4.5 -6.0 178
140 100 100 100 100 41
4a 4a 4a 4a 4a 4a
Diglyme or DMSO Dichloromethane Dichloromethane Dichloromethane Dichloromethane
348 356 356 356 356 86
5.3. MONOMERS GIVING POLYMERS CONTAINING N IN THE MAIN CHAIN, BONDED IN THE CHAIN TO CARBON ONLY (listed by increasing ring size) 3-RINGS
Ethyleneimine - , MP-trimethylsilyl ethyl)-(TEI)
Ic Ic
51.9 113
27 27
1 1
360 360 Notes page 11-406; References page II - 407
TABLE 5. cont'd State of monomer
-AS^ x
Temp.
and polymer xx
(J/K/mol)
(0C)
Monomer - , - , ZnCl2(TEI)2(complex)
c'c
114
Method
Solvent/Notes
Refs.
27
1
360
360 360
4-RINGS
Trimethyleneimine, iV-(P-trimethylsilyl ethyl)-(TMI) - , ZnCl2(TEI)2(complex)
Ic c'c
83.0 37.2
27 27
1 1
ss c'c'
72 31
38 25
4a l/4b
c'c'
25
25
l/4b
63
c-Caprolactam
Is c'c'
29 -5
250 25
4a 1
68 63
-, 3-methyl-, 5-methyl-, 7-methyl-
Is Is Is
260 200 225
4a 4a 4a
5-RINGS
Bicyclic oxalactam 2-Pyrrolidinone
Dimethylsulfoxide
433 63
6-RINGS
2-Piperidone 7-RINGS
11 16 21
194 225 226
8-RINGS
2-Oxo-hexamethyleneimine c'c' —17 25 1 N. B. Values for 9-13 rings by probably unreliable extrapolation of ASC>C> for 5-8 rings are given in Ref. 138
63
13-RINGS
2-Oxo-undecamethyleneimine 5.4.
Is
16
290
4a
- 15
4a
25 55 200 25 25 25 80 80 160 159 50-90
1 4a 4a 1 1 1 1 1 4a 4a 4a
139
OTHER MONOMERS GIVING POLYMERS NOT LISTED ABOVE
4-(2,3-Diphenyl cyclopropenylidene)cyclohexa-2,5-dienone ss
1,3-Disilacyclobutane, 1,1,3,3-tetramethylTV-Phenylmaleimide Selenium Se g 1-Silacyclobutane, 1,1-dimethyl- , 1-phenyl 1-methylSulfur, S 6 -,S7 -,S8 Thioacetone exo-3,4,5-Trithiatricyclo[5.2.1.02'6]decane exo-3,4,5-Trithiatetracyclo[5.5.1.02'6.08'12]tridec-10-ene
TABLE 6.
69.4
Dichloromethane, N67
317
Ic ss Is Ic' Ic Ic Is Is Is Is Is
18.1 86 - 27 85.4 71.2 57.4 2 -11 -44.7 -31 48.9
ss
31.4
40
4a
Toluene, N 7 6
377
ss
29.3
50
4a
Toluene, N 7 6
376
DMF 9 N 78 From estimated T e
N73 N73 Nn Monomer
359 440 88,111 359 359 359 380 380 380 73,74,111 327
COPOLYMERS (listed alphabetically under Monomer A)
Monomer A Bis-(o-aminophenyl)-2,2' dibenzimidazoleoxide
Monomer B Terephthalic acid
State of monomer and polymer, xx c'c c'c c'c
— A5° x (J/K/mol) 19 -17 -112
Temp. (0C) -173 -73 25
Method 1 1 1
Solvent/Notes Polymer + H 2 O (c') Polymer + H 2 O (c') Polymer + H 2 O (1)
Refs. 445 445 445
TABLE 6. cont'd Monomer A
Monomer B - , dichloride - , dimethylester
1,3-Butadiene 1-Butene
Styrene Sulfur dioxide
-, 3-methyl-
Sulfur dioxide
2-Butene, cis -, trans Cyclopentene 1,3 Dioxane
Sulfur dioxide Sulfur dioxide Sulfur dioxide 1,3 Dioxolane
1-Hexadecene 1-Hexene
Sulfur dioxide Sulfur dioxide
Isobutene Methacrylic acid
Sulfur dioxide Methacrylic acid, methyl ester Sulfur dioxide
State of monomer and polymer, xx
-AS^ x (J/K/mol)
c'c c'c c'c c'c c'c c'c Ic Ic ss Ic Ic ss ss ss ss
-33 -295 -320 -13 -108 -160
Temp. (0C)
Method
Solvent/Notes
1 1 1 1 1 1 1 1 4a 4a 4a 4a 4a 4a 4a
Polymer + HcI (c') Polymer + HcI (g) Polymer + HCl (g) Polymer+ CH 3 OH (c') Polymer+ CH 3 OH(I) Polymer+ CH 3 OH(I)
116 145 162 81 146 140 134 57
-173 -73 25 -173 -73 25 30 25 64 35 25 25 25 102 20
ss Ic ss Ic
139 116 145 134
30 25 60 0
4a 1 4a 4a
Chloroform
Ic sc gc
117 130 172
25 90 25
1 4a 1
Excess B Excess B Excess A Excess B Excess B Excess B Methylene ASBA =
Propene
Ethylene
C.
Refs.
445 445 445 445 445 445 108 109 110 199,200 199,200 5 5 110 dichloride, N 78 , 446 -34
Excess B N 23
Excess B 31 mol% A in copolymer, N 3 0
110 109 110 83 206 109 110 222
CEILING TEMPERATURES A N D EQUILIBRIUM MONOMER CONCENTRATIONS
Most addition polymerization reactions are exothermic and exentropic. The free energy of polymerization per monomer unit therefore becomes less negative as the temperature is raised. At the ceiling temperature Tc, the free energy of polymerization under the prevailing conditions is zero, and above this temperature, polymerization to long-chain polymer is impossible (just as in physical aggregation a liquid cannot form a solid when the temperature is above the melting point). The reverse phenomenon of a floor temperature is also known, e.g., for sulfur. In general a pure liquid monomer which gives an insoluble polymer will have a single well-defined ceiling temperature, given by Tc = AH\C/AS\C. A pure liquid monomer which gives a soluble polymer will have a series of ceiling temperatures corresponding to different percentage conversions of monomer to polymer. The condition for equilibrium is then - A G i + AGic + AG 2 = 0 The partial molar free energy per mol of monomer, AG i and per base mol of polymer, AG 2 are then functions of composition and may be evaluated from an appropriate equation for mixing of monomer and polymer, e.g., the Flory-Huggins equation. For a monomer dissolved in a solvent the situation is more complex and the ceiling temperature at a given monomer concentration (or the equilibrium concentration of monomer at a given temperature) is dependent on the nature of the solvent and the composition of the medium (Refs. 28,29,112,113,114,160). For the case where both monomer and polymer are in solution the variation of Tc with concentration is given to a first approximation by r c =A// s ° s /(A5 s s +RIn[M]) where [M] is the concentration of monomer and A//° s and A5°s refer to the heat and entropy changes in an appropriate standard state. A more general expression may be derived from the free energy condition by insertion of suitable expressions for AG i and AG 2 . These will contain the various interaction parameters appropriate to the polymer-monomer-solvent system. The values of Tc quoted in the table are mostly obtained from experimental values by interpolation or short extrapolation. Some unpolymerizable monomers are included where these are structurally closely related to monomers which do polymerize and where the cause of nonpolymerization appears to be thermodynamic. This is amplified for cyclic monomers in Section D. Section C is divided into three sections 1 Equilibria involving pure liquid monomers (Ic, Ic', Is) 2 Equilibria involving gaseous monomers (gc, gc') 3 Equilibria involving monomers in solution (sc, sc', ss) and copolymerizations For meaning of symbols, see Section A.
Notes page 11-406; References page II - 407
1.
Equilibria Involving Pure Liquid Monomers
TABLE 7. MONOMERS GIVING POLYMERS CONTAINING MAIN CHAIN ACYCLIC CARBON ONLY
Monomer
State of monomer and polymer
2-Amino-4-(7V-alkylanilino)-6-isopropenyl-1,3,5-triazine alkyl = rc-propanyl Ic = n-hexanyl Ic = rc-octanyl Ic = /z-decanyl Ic = n-dodecanyl Ic = rc-tetradecanyl Ic = rc-hexadecanyl Ic = isopropyl Ic = isobutyl Ic = sec-butyl Ic = rc-pentyl Ic = isopentyl Ic = 1-methylbutyl Ic = benzyl Ic 2-Amino-4-alkyl/aryl-amino-6-isopropenyl-1,3,5-triazine Is R 1 = H , R 2 = ethyl Is R i = H , R 2 = propyl Is R i = ethyl, R 2 = ethyl Is R i = propyl, R 2 = propyl Is Ri = methyl, R 2 = phenyl Is R i = H, R 2 =/?-methoxyphenyl 2-Amino-4-(/?-chloroanilino)-6-isopropenyl-1,3-5-triazine Ic 2-Amino-4-methoxy Is -4-ethoxy Is 6-isopropenyl-1 -3,5-triazine 2-Anilo-4-methoxy Is -4-ethoxy Is 6-isopropenyl-1,3,5-triazine Atropic acid, methyl ester Is 1-Butene Ic 2-Butene, cis Ic , trans Ic - , 2-methyl11 - , 2,3-dimethyl11 ot-Cyanoacrilic acid - , allyl ester Ic - , rc-decyl ester Ic - , allyloxyethyl Ic Cyclopentene Ic Ethacrylic acid - , methyl ester Is Ethylene Ic Methacrylic acid - , benzoil acid ester Ic - , methyl ester Ic - , methyl ester deuterated Ic Naphtalene, 2-isopropenyl Is Pentene-1 Ic Pentene-2, cis Ic Pentene-2, trans Ic - , 4-methyl, cis Ic - , 4-methyl, trans Ic Silane, benzyl dimethyl vinylIc - , dimethyl phenyl vinylIc Styrene, a-methylIs Is Is
Tc [0C]
Wt. fraction monomer at equilibrium
157 149 143 140 134 132 130 151 154 148 150 151 146 157
1 1 1 1 1 1 1 1 1 1 1 1 1 1
402 402 402 402 402 402 402 403 403 403 403 403 403 403
181 177 163 161 169 169
1 1 1 1 1 1
370 370 370 370 379 378
170 183 182
1 1 1
404 405 405
174 174
1 1
405 405
—8 247 227 217 -29 -223
1 1 1 1 1 1
Isotactic polymer, N 5 7 Isotactic polymer, N 5 7 Isotactic polymer, N 5 7 Calculated, N 3 1 Calculated, N 3 1
149 385 385 385 143 143
307 217 607 97
1 1 1 1
N57 N57 N57 N66
391 392 393 361
87 367
1 1
N75 Polymer is polybutene-1-iso
395 385
787 102 93 69 317 287 277 317 267 397 197 61 54 170
1 1 1 1 1 1 1 1 1 1 1 1 1 1
N57
394 414 414 400 386 386 386 387 387 366 362 119 341 119
Notes
N43 N57 N57 N57 N57 N57
1 bar 6.57 kbar
Refs.
TABLE 7. cont'd
Monomer Vinylcyclohexane Vinylidenechloride Vinyldimethylbenzylsilane Vinyldimethylphenylsilane Vinyltrimethylsilane
State of monomer and polymer
Tc [ 0 C]
Wt. fraction monomer at equilibrium
Ic Ic Ic Ic Ic
567 387 397 117 327
1 1 1 1 1
Notes N57 N57 N57 N57 N57
Refs. 396 397 367 367 367
N.B. The following compounds are not polymerizable for thermodynamic reasons but can sometimes be copolymerized with other monomers (see Ref. 205): a-trifluoromethyl vinyl acetate, oc-methoxystyrene, 1,1-diphenylethylene, frafts-crotonitrile, trans-stilbene, rrarcs-l,2-di(2-pyridyl)-ethylene, ?raw5-l,2-dibenzoylethylene, /rarcs-l,2-diacetylethylene, oc-stillbazole, methyl 2-terf-butylacrylate, 1-isopropenylnaphthalene, 2,4-dimethyl-a-methyl-styrene.
TABLE 8.
M O N O M E R S G I V I N G POLYMERS C O N T A I N I N G HETEROATOMS I N THE M A I N C H A I N
State of monomer and polymer
Monomer 8.1.
Tc [ 0 C]
Wt. fraction monomer at equilibrium
Notes
Refs.
MONOMERS GIVING POLYMERS CONTAINING O IN THE MAIN CHAIN, BONDED TO CARBON ONLY
Acetaldehyde
—, trichloro- , trifluoro2,2-Dimethyltrimethylene carbonate 4,7-Dioxaoctanal 1,3-Dioxepane
- , 2-phenyl(1,3-Dioxolane) n
n=\
/2=1-8 1,3-Dioxolane, 4,4-dimethyl- , cis 4,5-dimethyl- , trans 4,5-dimethyl- , 4-ethyl- , 4-isopropyl- , 4-methyl- , 4-phenylHeptanal Hexanal L-Lactide Octanal 7-Oxabicyclo[2,2,1 ]heptane - , 2-exo-methyl- , 2-endo-methylfrarcs-7-Oxabicyclo[4,3,0]nonane 4-Oxapentanal 1,2-Oxathiolane-2,2-dioxide Oxepane Oxetane 8-Oxo-7-oxabicyclo[2,2,2]octane
gg Is Is Ic' Ic Ic Ic Ic Is Is Is Is Is Is Is Ic Is
—31 -39 20 58 177 212 227 -38 100 192 144 20 100 165 100 98 60
1 1 1 1 1 1 1 1 0.1 1 1 0.36 0.3 1 1 1
Ic Ic Ic Is Ic Ic Is Ic Is Ic Ic' Ic Ic Ic Ic Ic Ic
-98 -54 -137 -48 -54 -74 -20 -21 20 74 -43 -25 640 -19 320 240 200
1 1 1 4.74 Md/1 1 1 4.47 Md/1 1 1 1 1 1 1 1 1 1 1
Ic Ic Is Is Is Ic Ic Ic7
12 -35 -59 95 41.5 -136 478 180
1 1 1 0.74 1 1 1 1
Atactic polymer (1 bar) Isotactic polymer (1 bar) <10kbar N57 N68 N57 N69 N22 N43 N22
N43 Kn determined for cyclic monomers N57 N57 N57 N56 N57 N57 N56 N57 N57 N57 N57 N 5 7 , calculated N69 N57 N57 N57
N69 N22 N32, N57 N3i N53
115 115 158 233 418 322 426 330 H6 423 398 116 116,219 198 423 353 232 335 335 335 333 333 335 334 334 285 419 420 420 429 330 308 308 308 357 329 329 152 147 323 325 307
Notes page 11-406; References page II - 407
TABLE 8.
cont'd
State of monomer and polymer
Monomer Pentanal Propanal
Spiroorthoester 2-R-1,4,6-trioxaspiro[4,6]undecane R= H = CH 3 = CH2Br = Ph Tetrahydrofuran - , 3-methyl Tri(ethylene terephthalate)
Tc [0C]
Wt. fraction monomer at equilibrium
Ic Is Is Ic' Ic
-42 -31 —39 -48 -83
1 1 1 1 1
Ic Ic Ic Ic Is Is Is Is
172 254 498 258 80 129 4 297
1 1 1 1 1 1 1 0.014
Notes
Refs.
N69 Atactic polymer Isotactic polymer N 57 N 57
328 115 115 421 421
N68 N 68 N68 N68 1 bar 12.5 kbar
430 430 430 430 58,130 146 342 see 174
N.B. The following compounds are not polymerizable for thermodynamic reasons but can sometimes be copolymerized with other monomers (see Ref. 205); benzaldehyde (Refs. 297-299), hexafluoroacetone, 1,1-dimethylpropanal; also numerous cyclic ethers - see Section D. 8.2.
MONOMERS GIVING POLYMERS CONTAINING O IN THE MAIN CHAIN, BONDED TO OTHER HETEROATOMS (S, Si, P)
Sulfur trioxide Sodium metaphosphate Na„(OPO 2 ) n n=3
Ic' Is
800
0.043
n=4 n= 5 Siloxanes (RiR 2 SiO) n Ri, R 2 Me, H /z = 3-5
Is Is
800 800
0.026 0.008
Is
0
0.045
n = 6-18 /i=19-oo n = 3-oo
Is Is Is
0 0 0
0.034 0.046 0.125
/2 = 3-5
Is
110
0.100
n = 6-18 /i=19-oo rc = 3-oo n = 4-40
Is Is Is Is
110 110 110 110
0.036 0.047 0.183
n = 4-30
Is
145
Me, Et
n = 3-5
Is
110
0.170
Me, Pr
n= «= /i = n=
Is Is Is Is
110 110 110 110
0.049 0.039 0.258 0.270
Me, CF 3 (CH 2 ) 2
/i = 3-8 n = 3-5
Is Is
110 110
0.310 0.711
Et, Et
n = 6-18 n =19-oo n = 3-00 n= 3
Is Is Is Ic
110 110 110 247
0.089 0.027 0.827 1
Me, Me
8.3.
6-18 19-oo 3-oo 3-5
30.4
1
86 Kn determined for cyclic monomers, n = 3-l
300,301 300,301 300,301
Kn determined for cyclic monomers, n — 4-15
176 176 176 176
Kn determined for cyclic monomers, n = 4-40
Kn determined for values of n indicated Kn determined for values of n indicated Kn determined for cyclic monomers, n — 4-20
Kn determined for cyclic monomers, n = 4 - 8 Kn determined for cyclic monomers, n — 4-20
Calculated
176 176 176 176 180 180 176 176 176 176 176 176 176 176 176 176 431
MONOMERS GIVING POLYMERS CONTAINING S IN THE MAIN CHAIN, BONDED IN THE CHAIN TO CARBON ONLY
Thiacetone Thioacetophenone
Ic Is Is
95 -52 approx. 40
1 1 1
N 55
148 327 288
N.B. Isothiocyanates (Ref. 295) are not polymerizable for thermodynamic reasons, but can be copolymerized with thiiranes; carbon disulfide (Ref. 296) can also be copolymerized with thianes
TABLE 8. cont'd State of monomer and polymer
Monomer 8.4.
n=l
n=2 n=3 /i = 4 n=5 n=>6 - , 3-methyl- , 3-ethyl- , 3-propyl- , 4-ethyl- , 5-methyl- , 7-methyl- , 7-ethyl- , 7-propyl2,5-Dioxopiperazine 2-Oxo-hexamethylenimine -,4-ethyl- , 7-ethyl- , 8-propyl2-Oxo-undecamethylenimine 2-Piperidone 2-Pyrrolidone
Notes
Refs.
Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Ic Is
220 225 277 277 277 277 277 277 225 240 240 240 172 225 240 240 171 240 240 240 240 290 60 76 70
0.055 0.067 0.084 0.0078 0.0052 0.0056 0.0048 0.0076 0.086 0.1 0.1 0.35 0.18 0.107 0.1 0.1 1 0.03 0.06 0.02 0.32 1 1
68 192 See 181 Cyclic monomer See 181 Cyclic monomer See 181 Cyclic monomer See 181 Cyclic monomer See 181 Cyclic monomer See 181 192,194 191 191 171 225,302 226,302 191,302 191,302 From calorimetric data 437 302 171 171 302 139 118 N 75 383 Tc varies with the accelerator, N 75 439
OTHER MONOMERS GIVING POLYMERS NOT LISTED ABOVE
Norbornene 5-trimethylsilyl-2Selenium Se 8 Sulfur S 8
2.
Wt. fraction monomer at equilibrium
MONOMERS GIVING POLYxMERS CONTAINING N IN THE MAIN CHAIN, BONDED IN THE CHAIN TO CARBON ONLY
(s-Caprolactam),,
8.5.
Tc [0C]
Ic Ic Is Is
777 417 83 159
1 1 1 1
Is
157
1
55% cis/45% trans polymer, N57 N32 N33 Effect of pressure N33
415 416 85 73,,111 145 380
Equilibria Involving Gaseous Monomers (listed alphabetically)
Monomer
State of monomer and polymer xx
Tc (0C)
gc' gc gc gc gc gc gc gc'
98 73 -220 149 288 87 560 119
Acetaldehyde, trichloro- , trifluoroAcetone 1,3-Dioxepane 1,3-Dioxocane 1,3-Dioxolane Ethylene, tetrafluoroFormaldehyde Methacrylic acid - , ethyl ester - , methyl ester Oxepane Oxetane Sulfur trioxide
gs gs gc gc gc'
Tetrahydrofuran 1,3,6-Trioxocane
gc gc
173 164 135 319 27.0 0.0 83 243
Equilibrium pressure (mbar)
Notes
1013 1013 Estimated, N 3 6 1013 1013 1013 128 1013 1013 1013 1013 1013 372 40.8 1013 1013
N34 N28 N35 N35
Refs. 50 129 144 323 324 292 23,120 49,164,165 40 43 323 325 86 86 292 324
Notes page 11-406; References page II - 407
3.
Equilibria Involving Monomers in Solution
TABLE 9. MONOMERS GIVING POLYMERS CONTAINING MAIN CHAIN CARBON ONLY Monomer
State of monomer and polymer xx
Tc (0C)
M (mol/i)
Solvent/Notes
Refs.
9.1. MONOMERS GIVING POLYMERS CONTAINING MAIN CHAIN ACYCLIC CARBON ONLY Acrylonitrile Atropic acid - , methyl ester -, ethyl ester - , n-propyl ester - , n-butyl ester -,/?-methyl-, methyl ester Atroponitrile Biphenyl, p-isopropenylCyclohexene Cyclooctene Isobutylene Methacrylamide, N-butyl- , Af-phenylMethacrylic acid, methyl ester - , o-methyl phenyl ester - , phenyl ester - , o-tert-buiy\ phenyl ester - , cKseobutylphenyl ester - , o-chlorophenyl ester -, 2,6-diisopropylphenyl ester - , 2,6-dimethyl phenyl ester - , o-ethylphenyl ester - , o-isopropylphenyl ester - , o-methoxyphenyl ester - , 0-methoxycarbonylphenyl ester - , onitrophenyl ester - , ophenylphenyl ester -, 0-propylphenyl ester 2,4,6-tribromophenyl ester 2,4,6-trichlorophenyl ester 2,4,6-trimethylphenyl ester Methacrylonitrile Methyl-a-/?-chlorobenzylacrylate a-Methylene pentanolactone Methyl-a-p-methoxybenzylacrylate Methylphenylitaconate Naphthalene, 2-isopropenylOxazole, - , 2-isopropenyl-4,5-dimethylPyridine, 2-isopropenylStyrene - , a, acetoxy - , a-methyl- , - , o-methoxyAWA^Af'-TetraethyMisopropenylphenylphosphorous diamide Thiazole, 2-isopropenyl/?-[Bis(Trimethylsilyl)methyl] isopropenylbenzene
25 ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss ss
-40 -67 -72 -80 —37 50 0 -23 20 88 122 125 155.5 135 140 146 81 100 139 33 77 118 112 145 112 108 100 118 92 104 69 145 85 83 55 95 120 0
ss ss ss ss ss ss ss ss ss ss
0 0 150 150 47 0 53 58 -25 10
ss ss
0 1.2
3 x 1 ~8 1.0 1.0 1.0 1.0 1.0 1.0 0.515 5 1.2 0.651 0.611 0.82 0.611 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.27 5 1 0.324 5 2,22 0.284 0.0025 0.043 9.1 x 10 ~4 6.5 x l O " 4 1.0 0.76 1.8 1.8 ~2 1.0 0.010 1.0
Estimated from AG]c>
193
Toluene Toluene Toluene Toluene Toluene Toluene Tetrahydrofuran Toluene Benzene, N 38 Supercritical CO 2 Ethyl benzoate Ethyl benzoate o-Dichlorobenzene Ethyl benzoate /?-Xylene Benzene or/?-xylene, N75 /?-Xylene Benzene or p-xylene, N 75 Benzene or/?-xylene, N 75 Benzene or /?-xylene, N75 /?-Xylene Benzene or p-xylene, N 75 Benzene or/?-xylene, N 75 Benzene or p-xylene, N 75 Benzene or p-xylene, N75 Benzene or/?-xylene, N 75 Benzene or/?-xylene, N 75 Benzene or p-xylene, N 75 Benzene or p-xylene, N 75 Benzene or/?-xylene, N 75 Benzene or /?-xylene, N 75 Benzonitrile Toluene DMF DMF Toluene Dichlorobenzene Tetrahydrofuran
149 150 150 150 150 149 16 389 229,230 441 326 326 42 326 345 442 345 442 442 442 345 442 442 442 442 442 442 442 442 442 442 44 443 315 315 443 444 16
Tetrahydrofuran Tetrahydrofuran Benzene Cyclohexane Toluene Tetrahydrofuran, N 37 rc-Heptane Toluene Methylene chloride Tetrahydrofuran
284 284 28 28 401 16,32,33 402 402 155 408
Tetrahydrofuran Tetrahydrofuran
284 409
TABLE 9. cont'd State of monomer and polymer xx
Monomer 9.2.
Tc (0C)
M (mol/1)
Solvent/Notes
Refs.
MONOMERS GIVING POLYMERS CONTAINING MAIN CHAIN CYCLIC CARBON
- , 7,8-Dycyanoquinodimethane 7,8-bis(butoxycarbonyl) 7,8-Diacetyl7,8-Dibenzoyl7,8-Dibutoxycarbonyl
ss ss ss ss ss ss ss ss ss ss ss ss
93 442 87 415 88 301 93 442 79 422 67 481
0.014 1.0 0.018 1.0 0.069 1.0 0.014 1.0 0.014 1.0 0.014 1.1
Chloroform, Chloroform, Chloroform, Chloroform, Chloroform, Chloroform, Chloroform, Chloroform, Chloroform, Chloroform, Chloroform, Chloroform,
N75 N43 N75 N43 N75 N43 N75 N43 N75 N43 N75 N43
411 411 412 412 412 412 412 411 411 411 411 411
TABLE 10. MONOMERS GIVING POLYMERS CONTAINING HETEROATOMS IN THE MAIN CHAIN State of monomer and polymer xx
Monomer 10.1.
Tc (0C)
M (mol/1)
Solvent/Notes
Refs.
MONOMERS GIVING POLYMERS CONTAINING O IN THE MAIN CHAIN, BONDED TO CARBON ONLY
Acetaldehyde - , bromochlorofluoro- , bromodichloro- , bromodifluoro- , dibromochloro- , dibromofluoro- , dichlorofluoro- , chlorodifluoro- , tribromo- , trichloro-
- , trifluoroButanal
4,7-Dioxaoctanal 1,3-Dioxepane
- , 2-butyl - , 2-methyl- , 4-methyl(1,3-Dioxolane)n
n=l
n=l-8
sc sc' sc' sc' sc sc' sc sc' sc sc' sc' ss sc' sc' sc' sc' sc' sc sc sc sc ss ss ss ss ss ss ss ss ss ss ss ss Is
~ - 80 23 —17 48 -40 -19 52 41 70 63 -75 11 12.5 35 18 9 81 9 -18 12 27 -56 78 27 32 -51 -37 -40 -33 1 -8 20 20 60
Is
145
ss
60
6 1 1 1 1 1 1 1 1 1 1 1.0 (0.1) 1.0 1 1 1 1 ~2 1.0 1.0 1 1.0 1.0 1.0 1.0 1 1.0 1 1.0 1.0 2.0 1.0 2.0 10.0
Toluene, N 22 Toluene Toluene Toluene Toluene Toluene Methyl cyclohexane Toluene Methyl cyclohexane Toluene Toluene Tetrahydrofuran Pyridine, N 3 9 , N 4 0 /i-Heptane Methyl cyclohexane Toluene Toluene Dichloromethane Toluene, isotactic polymer n-Hexane [8kbar], Ni 2 n-Hexane [10 kbar], N12 THF Benzene Dichloromethane 1,2-Dichloroethane, N 5 7 1,2-Dichloroethane, N 5 7 1,2-Dichloroethane 1,2-Dichloroethane, N 5 7 1,2-Dichloroethane Dichloromethane Benzene, N 4 i 1,3-Dioxane, N41 Chloroethane A few percent dichloromethane present A few percent dichloromethane present Dichloroethane, N 42
228 233 344 344 337 344 336 344 336 344 338 167 50 166 336 344 344 322 227 161 161 330 116,134 136 424 424 340 424 339 133,159 134,159 159 293 198 198 232
Notes page 11-406; References page 11-407
TABLE 10. cont'd
Monomer Formaldehyde L-Lactide Octanal frans-8-Oxabicyclo[4,3,0]nonane mms-2-Oxabicyclo[3,3,0]octane Oxa-4,5 -dithiepane Oxepane Pentanal o-Phthalaldehyde Propanal, 2-chloro-, 2-methyl- , 2,2-dichloro- , 2-methyl-
Tetrahydrofuran Tetraoxane
Trioxane
1,3,6-Trioxocane - , 2-Butyl10.2.
sc' sc' ss sc ss
30 25 284 -59 -51
ss ss ss sc ss ss ss ss ss ss ss ss ss sc' sc' sc' sc' sc' sc' sc' sc' sc' ss ss ss
0 25 30 -68 -43 -54 -24 approx. 5 -36.6 -63 -61.6 25 20 50 25 25 50 30 30 30 25 25 297 330 220
M (mol/l) 0.06 0.004 1.0 1 1 0.63 < 0.005 0.08 1 1.0 1.0 1.0 (0.25) 1.0 1.0 1.0 4.45 2.8 < 0.008 0.12 0.10 0.20 0.13 0.05 0.19 1.5 2.5 1.0 1.0 1.0
Solvent/Notes
Refs.
Dichloromethane Nitrobenzene 1,4-Dioxane THF Dichloromethane
122 182 429 330 357
Dichloromethane Benzene Dichloromethane THF Dichloromethane, cyclopolymer Tetrahydrofuran Tetrahydrofuran Dichloromethane, N 2 2 , N40 rc-Pentane Tetrahydrofuran Diethyl ether Benzene, N 3 7 , N 4 4 Diethyl ether 1,2-Dichloroethane Dichloromethane Nitrobenzene 1,2-Dichloroethane 1,2-Dichloroethane Benzene Nitrobenzene, N 45 Nitrobenzene, N 4 5 Dichloromethane Benzene, N 4 5 Toluene, N 57 Toluene, N 5 7
357 61 236 328 154 172 172 153 166 172 166 231 211 178 182 182 178 178 178 178 182 182 134 425 425
ss ss ss
157 -33 -37
0.1 1 1
ss ss ss ss
0 110 110 110
(0.2) 0.3 (0.4) (0.9)
1,1,2,2-Tetrachloroethane 1,2-Dichloroethane 1,2-Dichloroethane
Toluene, N 4 6 Toluene, N 47 Toluene, N 4 6 Cyclohexanone, N 4 6
309 339 340
176 217,218 176 176
MONOMERS GIVING POLYMERS CONTAINING S IN THE MAIN CHAIN, BONDED IN THE CHAIN TO CARBON ONLY
1,3-Dithiolane, 2-phenylimino-4-methylexo-3,4,5-Trithiatetracyclo[5,5,l,02'6.0812]tridec-10-ene exo-3,4,5-Trithiatricyclo5.2.1.026]decane
10.4.
Tc (0C)
MONOMERS GIVING POLYMERS CONTAINING O IN THE MAIN CHAIN, BONDED TO OTHER HETEROATOMS (Si, P)
1,3,2-Dioxaphospholan, 2-methoxy1,3-Dioxepane, 4-methyl- , 2-methylSiloxanes (RiR 2 SiO) n R1, R2 H, Me Me, Me Me, Et Me, CF 3 (CH 2 ) 2 10.3.
State of monomer and polymer xx
ss
65
2.7
Benzene
290
ss ss
25 90
2.37 3.72
Toluene, N 7 6 Toluene, N 7 6
376 376
ss ss
10 70
3.8 6.0
Toluene, N 7 6 Toluene, N 7 6
377 377
MONOMERS GIVING POLYMERS CONTAINING N IN THE MAIN CHAIN, BONDED IN THE CHAIN TO CARBON ONLY
Bicyclic oxalactam n-Hexyl isocyanate Pyrrole N,7,7-Tricyanobenzoquinone methide imine
ss sc ss ss
60 —22 77 74
1.0 2 0.017 0.14
Dimethylsulfoxide Dimethylformamide Acetonitrile Toluene, N 7 5 , N 8 i
433 127 434 438
Next Page
TABLE 11. COPOLYMERS Monomer A
Monomer B
State of monomer and polymer
Ta (0C)
[A][B] (mol 2 /I 2 )
Solvent/Notes
Refs.
11.1. 1:1 COPOLYMERS Allyl acetate Allyl alcohol Allyl ethyl ether Allyl formate 1-Butene -, 2-ethyl-, 3-methyl2-Butene, cis -,trans 2-Butene, (50% cis) - , 2-methylCycloheptene Cyclohexene 1,3-Cyclooctadiene Cyclopentene Ethene Ethene oxide Formaldehyde 2-Heptene (88% m ) 1-Hexadecene 1-Hexene -,2-ethylIsobutene 1-Pentene -,2-methyl-, 4,4-dimethyl-, 2,4,4-trimethyl2-Pentene (50% cis) -, 4-methyl4-Pentenoic acid Propene Propene oxide 3-Propenyl phenyl ether Styrene Tetrafluoroethene Vinyl chloride
Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Carbon monoxide Carbon dioxide Sulfur dioxide Carbon monoxide Carbon dioxide Carbon monoxide Carbon dioxide Sulfur dioxide Sulfur dioxide
Sulfur dioxide Sulfur dioxide Carbon monoxide Carbon dioxide Carbon monoxide Carbon dioxide Carbon monoxide
sc sc gg gg gg gg gg
45 76 68 45 64 <-80 36 46 38 34.6 <—80 11 24 37 103 150 (-35) -(50) >135 350 (—127) 220 (-58) 190 (-47) - 1 5 0 (46) -38 69 30 60 <-80 5 63 -34 14 <-80 8.5 <-80 66 90 140 (-39) - 1 2 0 (39) 490 (-129) 180 (-49) 590 (—136)
Carbon Carbon Carbon Carbon Carbon Carbon
gg gg gg gg gg gg
190 (-36) -190 (53) 280 (-74) 30 ( - 2 ) 230 (-55) -45(18)
N 64 N 64 N 64 N 64 N 64 N 64
369 369 369 369 369 369
Is
225
N50
192,194
Sulfur Sulfur Sulfur Sulfur Sulfur Sulfur Sulfur Sulfur
dioxide dioxide dioxide dioxide dioxide dioxide dioxide dioxide
dioixde monoxide monoxide dioxide monoxide dioxide
ss sc ss sc ss sc ss ss ss ss ss ss ss gg gg sc' gg gg gg gg ss sc ss ss sc ss ss sc ss
27 27 27 27 27 27 27 27 27 27 27 10 27 27
33 27 1.15 27 27 27 27 27 32 27 27
Excess B Excess B Excess B Excess B Excess B All compositions Excess B Excess B, N 48 Excess B, N 48 Excess B, N 49 All compositions Excess B Excess B Excess B (1,2 addition) Excess B N 64 N 64 Excess B N 64 N64 N 64 N 64 Excess B, N 49 Excess B Chloroform Excess B All compositions Excess B Excess B Excess B Excess B All compositions N 49 All compositions Excess B Excess B N 64 N 64 N 64 N 64 N 64
110 110 110 110 110 110 110,199 110 110 110 110 124 110 156 110 369 369 110 369 369 369 369 110 110 80 110 110 110 110 110 110 110 110 110 110 110 369 369 369 369 369
11.2. GENERAL COPOLYMERS 8-Caprolactam a
e-Caprolactam, 3-methyl-
Values in parentheses are for AGJ98 in (kJ/mol).
D.
POLYMERIZABILITY OF 5-, 6- AND 7-MEMBERED HETEROCYCLIC RING COMPOUNDS
The free energy of polymerization is generally negative for 3-, 4-, 8-, and higher-membered ring compounds. With heterocyclic rings there is generally an ionic mechanism available which allows these compounds to polymerize. With 5-, 6- and 7-membered ring compounds the sign of AG, and hence the polymerizability, is critically dependent on the nature of the ring and on the extent and position of substitution. Substitution generally makes AG less negative (more positive) and reduces polymerizability in the thermodynamic sense. Tables 12-14 summarize the polymerizability of 5-, 6- and 7-membered rings, respectively, as a function of the nature of the ring and extent of substitution. Table 15 provides a comparison of polymerizability of unsubstituted 5-, 6-, and 7-membered rings.
Notes page 11-406; References page II - 407
Previous Page
TABLE 11. COPOLYMERS Monomer A
Monomer B
State of monomer and polymer
Ta (0C)
[A][B] (mol 2 /I 2 )
Solvent/Notes
Refs.
11.1. 1:1 COPOLYMERS Allyl acetate Allyl alcohol Allyl ethyl ether Allyl formate 1-Butene -, 2-ethyl-, 3-methyl2-Butene, cis -,trans 2-Butene, (50% cis) - , 2-methylCycloheptene Cyclohexene 1,3-Cyclooctadiene Cyclopentene Ethene Ethene oxide Formaldehyde 2-Heptene (88% m ) 1-Hexadecene 1-Hexene -,2-ethylIsobutene 1-Pentene -,2-methyl-, 4,4-dimethyl-, 2,4,4-trimethyl2-Pentene (50% cis) -, 4-methyl4-Pentenoic acid Propene Propene oxide 3-Propenyl phenyl ether Styrene Tetrafluoroethene Vinyl chloride
Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Sulfur dioxide Carbon monoxide Carbon dioxide Sulfur dioxide Carbon monoxide Carbon dioxide Carbon monoxide Carbon dioxide Sulfur dioxide Sulfur dioxide
Sulfur dioxide Sulfur dioxide Carbon monoxide Carbon dioxide Carbon monoxide Carbon dioxide Carbon monoxide
sc sc gg gg gg gg gg
45 76 68 45 64 <-80 36 46 38 34.6 <—80 11 24 37 103 150 (-35) -(50) >135 350 (—127) 220 (-58) 190 (-47) - 1 5 0 (46) -38 69 30 60 <-80 5 63 -34 14 <-80 8.5 <-80 66 90 140 (-39) - 1 2 0 (39) 490 (-129) 180 (-49) 590 (—136)
Carbon Carbon Carbon Carbon Carbon Carbon
gg gg gg gg gg gg
190 (-36) -190 (53) 280 (-74) 30 ( - 2 ) 230 (-55) -45(18)
N 64 N 64 N 64 N 64 N 64 N 64
369 369 369 369 369 369
Is
225
N50
192,194
Sulfur Sulfur Sulfur Sulfur Sulfur Sulfur Sulfur Sulfur
dioxide dioxide dioxide dioxide dioxide dioxide dioxide dioxide
dioixde monoxide monoxide dioxide monoxide dioxide
ss sc ss sc ss sc ss ss ss ss ss ss ss gg gg sc' gg gg gg gg ss sc ss ss sc ss ss sc ss
27 27 27 27 27 27 27 27 27 27 27 10 27 27
33 27 1.15 27 27 27 27 27 32 27 27
Excess B Excess B Excess B Excess B Excess B All compositions Excess B Excess B, N 48 Excess B, N 48 Excess B, N 49 All compositions Excess B Excess B Excess B (1,2 addition) Excess B N 64 N 64 Excess B N 64 N64 N 64 N 64 Excess B, N 49 Excess B Chloroform Excess B All compositions Excess B Excess B Excess B Excess B All compositions N 49 All compositions Excess B Excess B N 64 N 64 N 64 N 64 N 64
110 110 110 110 110 110 110,199 110 110 110 110 124 110 156 110 369 369 110 369 369 369 369 110 110 80 110 110 110 110 110 110 110 110 110 110 110 369 369 369 369 369
11.2. GENERAL COPOLYMERS 8-Caprolactam a
e-Caprolactam, 3-methyl-
Values in parentheses are for AGJ98 in (kJ/mol).
D.
POLYMERIZABILITY OF 5-, 6- AND 7-MEMBERED HETEROCYCLIC RING COMPOUNDS
The free energy of polymerization is generally negative for 3-, 4-, 8-, and higher-membered ring compounds. With heterocyclic rings there is generally an ionic mechanism available which allows these compounds to polymerize. With 5-, 6- and 7-membered ring compounds the sign of AG, and hence the polymerizability, is critically dependent on the nature of the ring and on the extent and position of substitution. Substitution generally makes AG less negative (more positive) and reduces polymerizability in the thermodynamic sense. Tables 12-14 summarize the polymerizability of 5-, 6- and 7-membered rings, respectively, as a function of the nature of the ring and extent of substitution. Table 15 provides a comparison of polymerizability of unsubstituted 5-, 6-, and 7-membered rings.
Notes page 11-406; References page II - 407
TABLE 12. 5-MEMBERED RING COMPOUNDS Ring
Polymerized
Not polymerized
C2N2O
Refs. 237
R = Me, Ph
376
C2S3
377
238,239,433
C3NO R = Me, Ph etc.
239,240
C3NS
C3N2
239 R = Me, MeCO
C3OS
152
C3O2 R = Me, CH2Cl, Ph
R1 R1 R1 R1 R1
= R 2 = R 3 =H = R 2 = R 3 =Me = R 2 = R 3 = CH 2 Ph = R 3 = CH2Ph5R2= H = R 2 = CH 2 Ph 5 R 3 = H
R = Me, Ph
R = Me, CH2Cl
116,133,134, 159,177. 239,241-244, 285-287, 350,351,349, 398,423
331
C3S2
245,246,290
C4N
239,240,243
240,247-249
C4O
51,58,117, 130,140,146, 239,243,250-256, 291,303,304 R' = H,R = H R' = H, R = endo - Me R' = H, R = e x o - M e R' = endo - Me, R = exo - Me
R' = exo-Me R = exo-Me
TABLE 12. cont'd Ring
Polymerized
Not polymerized
Refs. 357
(trans)
(cis)
(trans)
(cis)
(trans)
(cis)
357
357
357 {trans)
(cis)
185,256
C4S
TABLE 13. 6-MEMBERED RING COMPOUNDS Ring
Polymerized
Not polymerized
Refs.
C3N2O
239
C3N3
239
C3O2P
346
R=H
347 348
R = OCH 3
C3O3
141,178,184,257
C3S3
148,258,259,260
C 4 NO
185,239,240
C 4 NS
240
C4N2
239,240,261 R = Me,Ph
Notes page 11-406; References page II - 407
TABLE 13. cont'd Ring
Polymerized
Not polymerized
Refs.
C4OS
152
C4O2
116,136,239,243,262,426,436
239,243,262,263,428,429 R = Me, Ph
R = Me 1 Ph
427
382 246,265
C4S2 C5N
R = H, Et, Ph
118,209,239,240,243,266
153,239,243,264,226-270,283
C5O
331
185,256
C5S
431
Si 3 O 3
TABLE 14. 7-MEMBERED RING COMPOUNDS Ring
Polymerized
Not polymerized
Refs.
C 4 OS 2
61
C5NS
240
C5N2
239,240
TABLE 14. Ring
cont'd Polymerized
Not polymerized
Refs.
C5O2
116,136,170,241, 262,271,423,424
C5S2
246
C6N
63,68,240, 249,272-279 R= 3555-
Me, 4 - Me, R = H, Me Me, 5 - Et, n - propyl, 5-z-propyl Cyclohexyl
R = Me, Ph, CH 2 OH, EtSCH 2
R = Ph, PhCH 2 n - Heptyl
6 - Me, 7 - Me
240,243,276, 277,280,305 C6O
153,239,243, 281,282
C6S
256
TABLE 15. COMPARISON OF POLYMERIZABILITY (+ OR - ) OF UNSUBSTITUTED 5-, 6- AND 7-MEMBERED RING COMPOUNDS0 T^pe of ring
Name of 5-ring
1,3-CnNO
2-Oxazolidinone
1,3-CnN2
2-Imidazolidinone
1,2-CnOS
1,2-Oxathiolane-2,2-dioxide
1,3-CnO2
1,3-Dioxolane
5-Ring
6-Ring
7-Ring
Ethylene carbonate 1,2-CnS2
1,2-Dithiolane
CnN
Pyrrolidine 2-Pyrrolidinone Succinimide
Notes page 11-406; References page II - 407
TABLE 15. cont'd Type of ring
Name of 5-ring
5-Ring
6-Ring
7-Ring
2-Pyrrolidinethione CnO
Tetrahydrofuran (oxolane) Oxolane-2-one (y-butyrolactone) Oxolane-2,5-dione(succinic anhydride)
CnS a
Thiolan-2-one (y -thiobutyrolactone)
The formulae denote rings of any size. Thus in the first line 1,3C4NO is drawn as
and represents
E. NOTES Ni N2 N3 N4
Corrected for end-group effects. Is assumed. Partial allowance for unreacted monomer. Semi-empirical values for a number of other olefins are given in Ref. 143. N5 Value given is for dilute solution. Values determined for complete range of composition; maximum (14.4) at 50 mol% monomer. N 6 No allowance for unreacted monomer. N 7 Strongly dependent on both monomer concentration and temperature. N 9 Corrected for enthalpy of glassy state. N i 0 - AS s s assumed to be 120.3 J/Kmol. N n Zero heat not necessarily in conflict with observed polymerizability below — 40 0 C. Additional loss of free energy may be provided by the crystallization of the polymer. N12 Polymer largely insoluble and remains in suspension. N13 After correction for species in vapour other than formaldehyde. N14 In the presence of a few per cent methylene chloride. N15 From measurements in methylene chloride, benzene and 1,4-dioxane. N i6 From measurements in benzene. N n From measurements on vapor-solid equilibrium. N i8 From measurements in both methylene chloride and nitrobenzene. NI 9 From measurements in 1,2-dichloroethane. N 20 Value calculated by the compiler of this table from data in Ref. cited. N21 Numerical values for heats of copolymerization are listed only for those systems yielding 1:1 copolymers. The values refer to the copolymerization of 0.5 mol of each monomer. In all other cases listed the copolymers have a range of composition; details of the corresponding heats of copolymerization are given in the Ref. cited.
N 22 N 23 N 24 N 25 N 26 N 27 N 28 N 29
N 30 N 31 N 32 N 33 N34 N35
Where no solvent is specified in the seventh column, the symbol AH ss denotes that the measured heat is for a liquid mixture of monomers going to a solution of copolymers. AH\c denotes the heat change for pure liquid monomers going to condensed amorphous polymer. (This symbolism differs from that in Ref. 1.) The states of monomer and/or polymer are not stated in Ref. but are likely to be the ones given. Value calculated from measurements on mixtures containing excess B. Value calculated from measurements on mixtures containing excess A. Value in Ref. 11 corrected using entropy of monomer in Ref. 94. From measurements in both benzene and cyclohexane. Standard state: mol fraction of monomer = 0.1. After correction for species in vapor other than formaldehyde. Numerical values for entropies of polymerizaiton listed are for systems yielding 1:1 copolymers. The values refer to the copolymerization of 0.5 mol of each monomer. The symbolism and standard states are the same as used for the heats of copolymerization (see N 2 i). Value of A5° for the composition of polymer indicated. No allowance for free energy of mixing of polymer and monomer. Floor temperature (hypothetical for supercooled liquid). Floor temperature. Calculated value. Not measurable experimentally because of side reactions. Small amount of vapor dissolved in the polymer: approximately gc.
N 36 Hypothetical value for acetone as a gas at 1013 mbar pressure. N 37 Decreases with increasing polymer concentration (Ref. 112,160,289). N 38 Recognised that polymerization over WCl 6/EtAlCl 2/ EtOH yields an equilibrium mixture of unsaturated cyclic rings (CsH 14)«. Species up to n = 15 have been identified and higher cyclic polymers are also likely to be present. No firm equilibrium data exist as yet. N 3 9 dr c /dP=19deg/kbar. N 40 Value in [M] column is the mol fraction of monomer. N41 Decreases with increasing polymer concentration in methylene chloride, in benzene and in 1,4-dioxane (Ref. 159). N42 Kn values determined for cyclic monomers, n = 1-8. N43 Extrapolated value. N 4 4 For equilibrium concentrations of linear oligomeric species see Ref. 294. N45 Note the substantial discrepancy between the two sets of results with nitrobenzene as solvent. N 46 Value in [M] column is the volume fraction of cyclic monomer (rings of all sizes). N47 Concentration of rings, rc = 13-oo, taking mol. wt. = 74 (value for n— 1); Kn determined for cyclic monomers, n — 3-400. N48 Corrected for isomerization effect. N 49 Uncorrected for isomerization effect. N 50 Equilibrium concentrations of A and B lower than expected from values for homopolymerizations. N51 Polymer is -{CONHN(COMe)f. N 5 2 Polymer is 4CH 2 CH 2 N(COR)J-. N53 cis and trans forms of polymer. N 5 4 c'(I)^(IIXc(III) refer to crystal forms I, II, III of monomer. N 5 5 Standard state is IM, calculated from data in Ref. 148. N56 Polymer dissolved in monomer; equilibrium concentration in mol/L. N 5 7 Tc calculated from AH?JAS°lc or A#S°S/ASS°S. N5g Valid in concentration range 2.3 to 4.6 M. N59 Corrected for monomer-polymer interactions; required temperature variable interaction parameter. N6O Data from Ref. 292, with corrections for monomer adsorbed in polymer. N 6 i Ic data from Ref. 231 combined with vaporization data.
N 62 Calorimetry in solution with adjustments for solution enthalpies. N63 With heat capacity adjustment for T change: may apply to N 62N64 From group method calculations; AG° (298K) value given in brackets in kJ/mol; Tc refers to standard state conditions, PA = PB = I atm. N65 AHP by method 4a in close agreement. N66 Ring opening polymerization giving 78% trans polymer. N 67 Polymer is N 68 Calculated from solution values with experimentally determined data. N 69 Calculated from solution data utilizing monomerpolymer interaction parameters, see Ref. 130. N 70 Mixture of 1,2 and 1,4 polymerization. N71 Includes adjustment for the presence of small concentrations of other cyclics; Sn 7^ S 8 . N 72 Calculations based on standard enthalpies of formation of Sn and AHP (S 8 ). N73 Calculation based on standard entropies of Sn and AS P (S 8 ). N 7 4 Values apply in temperature range below the appropriate ceiling temperature, see Section C, Table 10, under "Monomers Giving Polymers Containing O in the Main Chain, Bonded to C Only." N 7 5 Obtained by extrapolation of kinetic data. N 7 6 Ring opening at S-C bond. N 7 7 c'(I), C7CII) refer to crystal forms I, II of polymer. N 7 8 Average Temperature
N 7 9 Polymer is
N8o Polymer is
N 8 i Polymer is
N82 Polymer is
F. REFERENCES 1. E S . Dainton, K. J. Ivin, in: H. A. Skinner (Ed.) "Experimental Thermochemistry", vol. II, Interscience, New York, 1962, p. 251. 2. R. S. Jessup, J. Chem. Phys., 16, 661 (1948). 3. J. W. Richardson, G. S. Parks, J. Am. Chem. Soc, 61, 3545 (1939). 4. F. A. Quinn, L. Mandelkern, J. Am. Chem. Soc, 80, 3178 (1958).
5. F. S. Dainton, J. Diaper, K. J. Ivin, D. R. Sheard, Trans. Faraday Soc, 53, 1269 (1957)., 6. C. M. Fontana, G. A. Kidder, J. Am. Chem. Soc, 70, 3745 (1948). 7. G. S. Parks, H. P. Mosher, J. Polym. Sci. A, 1, 1979 (1963). 8. A. G. Evans, M. Polanyi, Nature, 152, 738 (1943).
9. R. H. Biddulph, R H. Plesch, R R Rutherford, Polymer, 1, 521 (1960). 10. D. E. Roberts, J. Res. Natl. Bur. Std. 44, 221 (1950). 11. R S . Dainton, T. R. E. Devlin, R A. Small, Trans. Faraday Soc, 51, 1710 (1955). 12. S. Kaarsemaker, J. Coops, Rec. Trav. Chim, 71, 261 (1952). 13. H. van Kamp, J. Coops, W. A. Lambregts, B. J. Visser, H. Dekker, Rec. Trav. Chim, 79, 1226 (1960). 14. F. S. Dainton, K. J. Ivin, D. A. G. Walmsley, Trans. Faraday Soc, 56, 1784 (1960). 15. R. M. Joshi, Makromol. Chem., 55, 35 (1962). 16. H. Hopff, H. Luessi, Makromol. Chem., 62, 31 (1963). 17. R. M. Joshi, J. Polym. ScL, 56, 313 (1962). 18. G. C. Sinke, D. R. Stull, J. Phys. Chem., 62, 397 (1958). 19. J. R. Lacher, E. E. Merz, E. Bohmfalk, J. D. Park, J. Phys. Chem., 60, 492 (1956). 20. J. R. Lacher, H. B. Gottlieb, J. D. Park, Trans. Faraday Soc, 58, 2348 (1962). 21. L. K. J. Tong, W. O. Kenyon, J. Am. Chem. Soc, 69, 2245 (1947). 22. W. M. D. Bryant, J. Polym. ScL, 56, 277 (1962). 23. C. R. Patrick, Tetrahedron, 4, 26 (1958). 24. R. M. Joshi, Makromol. Chem., 62, 140 (1963). 25. F. S. Dainton, K. J. Ivin, Trans. Faraday Soc, 46, 331 (1950). 26. D. E. Roberts, W. W. Walton, R. S. Jessup, J. Res. Natl. Bur. Std., 38, 627 (1947). 27. L. K. J. Tong, W. O. Kenyon, J. Am. Chem. Soc, 69, 1402 (1947). 28. S. Bywater, D. J. Worsfold, J. Polym. ScL, 58, 571 (1962). 29. S. Bywater, Makromol. Chem., 52, 120 (1962). 30. R. H. Biddulph, W. R. Longworth, J. Penfold, R H. Plesch, P. P. Rutherford, Polymer, 1, 521 (1960). 31. D. E. Roberts, R. S. Jessup, J. Res. Natl. Bur. Std., 46, 11 (1951). 32. D. J. Worsfold, S. Bywater, J. Polym. ScL, 26, 299 (1957). 33. H. W. McCormick, J. Polym. ScL, 25, 488 (1957). 34. R. M. Joshi, Makromol. Chem., 66, 114 (1963). 35. W. I. Bengough, Trans. Faraday Soc, 54, 1560 (1958). 36. A. G. Evans, E. Tyrrall, J. Polym. ScL, 2, 387 (1947). 37. K. G. McCurdy, K. J. Laidler, Can. J. Chem., 42, 818 (1964). 38. J. H. Baxendale, G. W. Madaras, J. Polym. ScL, 19, 171 (1956). 39. L. K. J. Tong, W. O. Kenyon, J. Am. Chem. Soc, 68, 1355 (1946). 40. R. E. Cook, K. J. Ivin, Trans. Faraday Soc, 53, 1132 (1957). 41. S. Ekegren, S. Oehrn, K. Granath, R Kinell, Acta Chem. Scand., 4, 126 (1950). 42. S. Bywater, Trans. Faraday Soc, 51, 1267 (1955). 43. K. J. Ivin, Trans. Faraday Soc, 51, 1273 (1955). 44. S. Bywater, Can. J. Chem., 35, 552 (1957). 45. R. A. Nelson, R. S. Jessup, D. E. Roberts, J. Res. Natl. Bur. Std., 48, 275 (1952). 46. R. S. Jessup, A. D. Cummings, J. Res. Natl. Bur. Std., 13,357 (1934). 47. A. A. Korotkov, E. N. Marandzheva, Russ. J. Phys. Chem. (English Transl.), 37, 135 (1963).
48. V. A. Kargin, V. A. Kabanov, V. R Zubov, I. M. Papisov, Dokl. Akad. Nauk SSSR, 134,1098 (1960). Chem. Abst, 55, 8282 (1961). 49. F. S. Dainton, K. J. Ivin, D. A. G. Walmsley, Trans. Faraday Soc, 55, 61 (1959). 50. W. K. Busfield, E. Whalley, Trans. Faraday Soc, 59, 679 (1963). 51. H. C. Raine, R. B. Richards, H. Ryder, Trans. Faraday Soc, 41, 56 (1945). 52. R Gray, A. Williams. Trans. Faraday Soc, 55, 760 (1959). 53. J. B. Rose, J. Chem. Soc, 546 (1946). 54. S. M. Skuratov, A. A. Strepikheev, S. M. Shtekher, A. V. Volokhina, Dokl. Akad. Nauk. SSSR, 117, 263 (1957). 55. S. M. Skuratov, A. A. Strepikheev, M. R Kozina, Dokl. Akad. Nauk. SSSR, 117, 452 (1957). 56. R. C. Cass, S. E. Fletcher, C. T. Mortimer, H. D. Springall, T. R. White, J. Chem. Soc, 1406, (1958). 57. D. Sims, J. Chem. Soc, 864, (1964). 58. C. E. H. Bawn, R. M. Bell, A. Ledwith, Polymer, 6, 95 (1965). 59. A. Snelson, H. A. Skinner, Trans. Faraday Soc, 57, 2125 (1961). 60. S. E. Fletcher, C. T. Mortimer, H. D. Springall, J. Chem. Soc, 580 (1959). 61. E S . Dainton, J. A. Davies, R P. Manning, S. A. Zahir, Trans. Faraday Soc, 53, 813 (1957). 62. A. A. Strepikheev, S. M. Skuratov, O. N. Kachinskaya, R. S. Muramova, E. R Brykina, S. M. Shtekher, Dokl. Akad. Nauk. SSSR, 102, 105 (1955). 63. V. R Kolesov, I. E. Paukov, S. M. Skuratov, Zh. Fiz. Khim., 36, 770 (1962); Russ. J. Phys. Chem., 36, 400 (1962). 64. M. R Kozina, S. M. Skuratov, Dokl. Akad. Nauk. SSSR, 127, 561 (1959). 65. S. M. Skuratov, A. A. Strepikheev, Y. N. Kanarskaya, Kolloidn. Zh., 14, 185 (1952). 66. A. B. Meggy, J. Chem. Soc, 796, (1953). 67. P. F. van Velden, G. M. van der Want, D. Heikens, C. A. Kruissink, R H. Hermans, A. J. Staverman, Rec. Trav. Chim., 74, 1376 (1955). 68. A. V. Tobolsky, A. Eisenberg, J. Am. Chem. Soc, 81, 2302 (1959). 69. H. Mackle, R A. G. O'Hare, Tetrahedron, 19, 961 (1963). 70. S. Sunner, Acta Chem. Scand., 17, 728 (1963). 71. H. Mackle, R. G. Mayrick, Trans. Faraday Soc, 58, 230 (1962). 72. J. A. Barltrop, R M. Hayes, M. Calvin, J. Am. Chem. Soc, 76, 4348 (1954). 73. F. Fairbrother, G. Gee, G. T. Merrall, J. Polym. ScL,16, 459 (1955). 74. A. V. Tobolsky, A. Eisenberg, J. Am. Chem. Soc, 81, 780 (1959). 75. H. Nagao, T. Yamaguchi, J. Chem. Soc Japan, Ind. Eng. Chem. Sect, 59, 1363 (1956). 76. H. Miyama, S. Fujimoto, J. Polym. ScL, 54, S 32 (1961). 77. F. S. Dainton, K. J. Ivin, Proc Roy. Soc. (London) A, 212, 207 (1952). 78. J. E. Hazell, K. J. Ivin, Trans. Faraday Soc, 58, 342 (1962).
79. L. K. J. Tong, W. O. Kenyon, J. Am. Chem. Soc, 71, 1925 (1949). 80. F. S. Dainton, K. J. Mn, D. R. Sheard, Trans. Faraday Soc, 52, 414 (1956). 81. M. Suzuki, H Miyama, S. Fujimoto, J. Polym. ScL, 31, 212 (1958). 82. K. J. Ivin, W. A. Keith, H. Mackle, Trans. Faraday Soc, 55, 262 (1959). 83. R. E. Cook, K. J. Ivin, J. H. O'Donnell, Trans. Faraday Soc, 61, 1881 (1965). 84. W. A. Piccoli, G. G. Haberland, R. L. Merker, J. Am. Chem. Soc, 82, 1883 (1960). 85. A. Eisenberg, A. V. Tobolsky, J. Polym. ScL, 46, 19 (1960). 86. D. C. Abercromby, R. A. Hyne, P. F. Tiley, J. Chem. Soc, 5832 (1963). 87. F. S. Dainton, K. J. Ivin, Quart. Rev., 12, 61 (1958). 88. F. S. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer 3, 277, 286 (1962). 89. E. Passaglia, H. K. Kevorkian, J. Appl. Polym. ScL, 7, 119 (1963). 90. R. W. Warfield, M. C. Petree, Makromol. Chem., 51, 113 (1962). 91. B. Wunderlich, J. Chem. Phys. 37, 1203 (1962). 92. E. Passaglia, H. K. Kevorkian, J. Appl. Phys., 34, 90 (1963). 93. G. T. Furukawa, M. L. Reilly, J. Res. Natl. Bur. Std., 56, 285 (1956). 94. H. L. Finke, D. W. Scott, M. E. Gross, J. F. Messerly, G. Waddington, J. Am. Chem. Soc, 78, 5469 (1956). 95. R. B. Scott, C. H. Meyers, R. D. Rands, F. G. Brickwedde, N. Bekkedahl, J. Res. Natl. Bur. Std., 35, 39 (1945). 96. G. T. Furukawa, R. E. McCoskey, J. Res. Natl. Bur. Std., 51, 321 (1953). 97. F. S. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 3, 297 (1962). 98. G. T. Furukawa, R. E. McCoskey, M. L. Reilly, J. Res. Natl. Bur. Std., 51, 69 (1953). 99. G. T. Furukawa, R. E. McCoskey, G. J. King, J. Res. Natl. Bur. Std., 49, 273 (1952). 100. N. Bekkedahl, L. A. Wood, J. Res. Natl. Bur. Std., 19, 551 (1937). 101. N. Bekkedahl, H. Matheson, J. Res. Natl. Bur. Std., 15, 503 (1953). 102. T. P. Melia, Polymer, 3, 317 (1962). 103. R. W. Warfield, M. C. Petree, J. Polym. ScL A, 1, 1701 (1963). 104. R. H. Boundy, R. F. Boyer, "Styrene", Reinhold, New York, 1952, p. 67. 105. R. W. Warfield, M. C. Petree, J. Polym. ScL, 55, 497 (1961). 106. F. S. Dainton, D. M. Evans, F. E. Hoare, T. P Melia, Polymer, 3, 263 (1962) 107. F. S. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 3, 271 (1962). 108. R. J. Orr, Polymer, 2, 74 (1961). 109. F. S. Dainton, D. M. Evans, F. E. Hoare, T. R Melia, Polymer, 3, 310 (1962). 110. R. E. Cook, F. S. Dainton, K. J. Mn, J. Polym. ScL, 26, 351 (1957).
111. G. Gee, Chemical Society (London) Special Publication, 15, 67 (1961). 112. A. Vrancken, J. Smid, M. Szwarc, Trans. Faraday Soc, 58, 2036 (1962). 113. A. V. Tobolsky, A. Rembaum, A. Eisenberg, J. Polym. ScL, 45, 347 (1960). 114. K. J. Mn, Pure Appl. Chem., 4, 271 (1962). 115. A. M. North, D. Richardson, Polymer, 6, 333 (1965). 116. A. A. Strepikheev, A. V. Volokhina, Dokl. Akad. Nauk. SSSR, 99, 407 (1954). 117. C. L. Hamermesh, V. E. Haury, J. Org. Chem., 26, 4748 (1961). 118. N. Yoda, A. Miyake, J. Polym. ScL, 43, 117 (1960). 119. J. G. Kilroe, K. E. Weale, J. Chem. Soc, 3849, (1960). 120. H. H. G. Jellinek, H. Kachi, Makromol. Chem., 85,1 (1965). 121. R. B. Whitney, M. Calvin, J. Chem. Phys., 23, 1750 (1955). 122. W. Kern, V. Jaacks, J. Polym. ScL, 48, 399 (1960). 123. B. J. Cottam, J. M. G. Cowie, S. Bywater, Makromol. Chem., 86, 116(1965). 124. J. E. Hazell, K. J. Mn, Trans. Faraday Soc, 58, 176 (1962). 125. J. K. Jacques, M. F. Mole, N. L. Paddock, J. Chem. Soc, 2112, (1965). 126. J. W. C. Crawford, J. Chem. Soc, 2658, (1953). 127. V. E. Shashoua, W. Sweeny, R. E. Tietz, J. Am. Chem. Soc, 82, 866 (1960). 128. R. C. P. Cubbon, Makromol. Chem., 80, 44 (1964). 129. W. K. Busfield, Polymer, 7, 541 (1966). 130. K. J. Mn, J. Leonard, Polymer, 6, 621 (1965). 131. K. Nakatsuka, H. Suga, S. Seki, J. Polym. Sci. B, 7, 361 (1969). 132. J. B. Thompson, W. M. D. Bryant, Am. Chem. Soc. Polym. Preprints, 11, 204 (1970). 133. P. H. Plesch, P. H. Westermann, J. Polym. Sci. C, 16, 3837 (1968). 134. Y. Yamashita, M. Okada, K. Suyama, H. Kasahara, Makromol. Chem., 144, 146 (1968). 135. O. Riedel, P. Wittmer, Makromol. Chem., 97, 1 (1966). 136. R H. Plesch, P. H. Westermann, Polymer, 10, 105 (1969). 137. B. Boerjesson, Y. Nakase, S. Sunner, Acta Chem. Scand., 20, 803 (1966). 138. A. K. Bonetskaya, S. M. Skuratov, Vysokomol. Soedin. A, 11, 532 (1969). 139. H. G. Elias, A. Fritz, Makromol. Chem., 114,31 (1968); 120, 238 (1968). 140. G. A. Clegg, D. R. Gee, T. P. Melia, A. Tyson, Polymer, 9, 501 (1968). 141. G. A. Clegg, T. P. Melia, A. Tyson, Polymer, 9, 75 (1968). 142. G. A. Clegg, T. P. Melia, Makromol. Chem., 123, 184 (1969). 143. R. M. Joshi, B. J. Zwolinski, C. W. Hayes, Macromolecules, 1, 30 (1968). 144. D. R. Waywell, J. Polym. Sci. B, 8, 327 (1970). 145. G. C. Vezzoli, F. Dachille, R. Roy. J. Polym. Sci. A-I, 7, 1557 (1969). 146. M. Rahman, K. E. Weale, Polymer, 11, 122 (1970). 147. F. P. Jones, Ph.D. Thesis, Keele University, 1970.
148. V. C. E. Burnop, K. G. Latham, Polymer, 8, 589 (1967). 149. H. Hopff, H. Luessi, L. Borla, Makromol. Chem., 81, 268 (1965). 150. L. Borla, Promotionsarbeit Nr. 3668, E. T. H. Zuerich (1965). 151. H. Luessi, Makromol. Chem., 103, 68 (1967). 152. S. Hashimoto, T. Yamashita, Kobunshi Kagaku, 27, 400 (1970). 153. H. Sumimoto, T. Nakagawa, J. Polym. Sci. B, 7, 739 (1969). 154. C. Aso, S. Tagami, T. Kunitake, J. Polym. Sci. A-I, 7, 497 (1969). 155. Y.Okamoto, H. Takano, H. Yuki, Polym. J., 1, 403 (1970). 156. T. Yamaguchi, K. Nagi, Kobunshi Kagaku, 26, 809 (1969). 157. J. Stein, P. Wittmer, J. Toelle, Angew. Makromol. Chem., 8, 61 (1969). 158. A. Novak, E. Whalley, Can. J. Chem., 37,1710 (1959). 159. L. I. Kuzub, M. A. Markevich, A. A. Berlin, N. S. Yenikolopyan, Vysokomol. Soedin. A, 10,2007 (1968); Polym. Sci. SSSR, 10, 2332 (1968). 160. K. J. Ivin J. Leonard, Eur. Polym. J., 6, 331 (1970). 161. Y. Ohtsuka, C. Walling, J. Am. Chem. Soc, 88,4167 (1966). 162. C. Walling, T. A. Augurt, J. Am. Chem. Soc, 88, 4163 (1966). 163. G. Natta, G. Mazzanti, P. Corradini, I. W. Bassi, Makromol. Chem., 37, 156 (1960). 164. W. K. Busfield, D. Merigold, Makromol. Chem., 138, 65 (1970). 165. Y. Iwasa, T. Imoto, J. Chem. Soc. Japan, Pure Chem. Sect. (Nippon Kagaku Zasshi), 84, (29 (1963). 166. I. Mita, I. Imai, H. Kambe, Makromol. Chem., 137, 169 (1970). 167. I. Mita, I. Imai, H. Kambe, Makromol. Chem., 137, 143 (1970). 168. V. E. Ostrovskii, V. A. Khodzhemirov, A. P. Barkova, Dokl. Akad. Nauk. SSSR, 191, 1095 (1970). 169. R Caillaud, J. M. Huet, E. Marechal, Bull. Soc. Chim. France, 1473 (1970). 170. G. A. Clegg, T. P. Melia, Polymer, 11, 245 (1970). 171. A. K. Bonetskaya, T. V. Sopova, O. B. Salamatina, S. M. Skuratov, B. P. Fabrichuyi, I. F. Shalavina, V. L. Gol'dfarb, Vysokomol. Soedin. B, 11, 894 (1969). 172. I. Mita, I. Imai, H. Kambe, Makromol. Chem., 137, 155 (1970). 173. A. Nicco, B. Boucheron, Europ. Polym. J., 6, 1477 (1970). 174. G. R. Walker, J. A. Semlyen, Polymer, 11, 472 (1970). 175. E. Marechal, J. Polym. Sci. A-I, 8, 2867 (1970). 176. P. V. Wright, J. A. Semlyen, Polymer, 11, 462 (1970). 177. G. A. Cleg, T. P. Melia, Polymer, 10, 912 (1969). 178. T. Miki, T. Higashimura, S. Okamura, J. Polym. Sci. A-I, 8, 157 (1970). 179. E. G. Butcher, H. Mackle, D. V. McNaIIy, Trans. Faraday Soc, 65, 2331 (1969). 180. J. A. Semlyen, P. V. Wright, Polymer, 10, 543 (1969). 181. J. A. Semlyen, G. R. Walker, Polymer, 10, 597 (1969). 182. A. A. Berlin, K. A. Bogdanova, I. P. Kravchuk, G. P. Rakova, N. S. Yenikolopyan, Dokl. Akad. Nauk. SSSR, 184, 1128 (1969).
183. V. E. Ostrovskii, V. A. Khodzhemirov, S. P. Kostareva, Dokl. Akad. Nauk. SSSR, 184, 103 (1969). 184. G. A. Clegg, T. P. Melia, Makromol. Chem., 123, 194 (1969). 185. G. Nabi, Pak. J. Sci., 20, 29 (1968). 186. D. R. Gee, T. P. Melia, Makromol. Chem., 116, 122 (1968). 187. V. I. Kasatochkin, M. E. Kazakov, Y. P. Kudryavtsev, A. M. Sladkov, V. V. Korshak, Dokl. Akad. Nauk. SSSR, 183, 109 (1968). 188. E. M. Morazova, V. I. Yeliseyeva, M. A. Korshunov, Vysokomol. Soedin. A, 10, 2354 (1968); Polym. Sci. A, SSSR, 10, 2736 (1968). 189. A. K. Bonetskaya, S. M. Skuratov, N. A. Lukina, A. A. Strel'tsova, K. E. Kuznetsova, M. P. Lazareva, Vysokomol. Soedin. B, 10, 75 (1968). 190. H. Cheradame, J. R Vairon, P. Sigwalt, Europ. Polym. J., 4, 13 (1968). 191. O. B. Salamatina, A. K. Bonetskaya, S. M. Skuratov, B. P. Fabrichnyi, I. F. Shalavina, Y L. Gol'dfarb, Vysokomol. Soedin. B, 10, 10 (1968). 192. P., Cefelm, R Schmidt, J. Sebenda, J. Polym. Sci. C, 23,175 (1966). 193. B. V. Lebedev, I. B. Rabonovich, L. Y. Martynenko, Vysokomol. Soedin. A, 9, 1640 (1967). 194. P. Cefelm, A. Frydrychova, J. Labsky, P. Schmidt, J. Sebenda, Coll. Czech Chem. Comm., 32, 2787 (1967). 195. M. Furue, S. Nozakura, S. Murahashi, T. Tanaka, Bull. Chem. Soc. Japan, 40, 2700 (1967). 196. T. P. Melia, A. Tyson, Makromol. Chem., 109, 87 (1967). 197. S. Iwatsuki, S. Amano, Y. Yamashita, Kogyo Kagaku Zassi, 70, 2027 (1967). 198. L. A. Kharitonova, G. V. Rakova, A. A. Shaginyan, N. S. Yenikolopyan, Vysokomol. Soedin. A, 9, 2586 (1967). 199. B. H. G. Brady, J. H. O'Donnell, Trans. Faraday Soc, 64, 29 (1968). 200. B. H. G. Brady, J. H. O'Donnell, Europ. Polym. J., 4, 537 (1968). 201. J. Chiu, Proc 2nd Symp. on Anal. Calorimetry 171, (1970). 202. K. A. Bogdanova, A. K. Bonetskaya, A. A. Berlin, G. V Rakova, N. S. Yenikolopyan, Dokl. Akad. Nauk. SSSR, 197, 618 (1971). 203. F. Delben, V. Crescenzi, Ann. Chim. (Rome), 60,782 (1970). 204. G. Natta, G. Mazzanti, R Corradini, I. W. Bassi, Makromol. Chem., 37, 156 (1968). 205. K. J. Ivin, Thermodynamics of Addition Polymerization Processes, Ch. 16 in: A. D. Jenkins, A. Ledwith, (Eds.), "Reactivity, Mechanism and Structure in Polymer Chemistry", Wiley, New York, 1973. 206. I. B. Rabinovich, L. L Pavlinov, Vysokomol. Soedin. A, 10, 416 (1968). 207. S. M. Skuratov, V. V. Voevodskii, A. A. Strepikheev, Y. N. Kanarskaya, R. S. Muramova, N. V. Fok, Dokl. Akad. Nauk. SSSR, 95, 591 (1954). 208. J. H. S. Green, Quart. Rev. Chem. Soc, 15, 125 (1961). 209. F. Korte, W. Glet, J. Polym. Sci. B, 4, 685 (1966). 210. R. H. Beaumont, B. Clegg, G. Gee, J. B. M. Herbert, D. J. Marks, R. C. Roberts, D. Sims, Polymer, 7, 401 (1966).
211. B. A. Rozenberg, O. M. Chekhuta, Y. B., Lyudvig, A. R. Gantmakher, S. S. Medvedev, Vysokomol. Soedin., 6, 2030 (1964); Polym. Sci. SSSR, 6, 2246 (1964). 212. L. Lesse, M. W. Baumber, Polymer, 6, 269 (1965). 213. R. W. Warfield, M. C. Petree, J. Polym. Sci. A-2, 4, 532 (1966). 214. J. Grodzinsky, A. Katchalsky, D. Vofsi, Makromol. Chem., 44/46, 591 (1961). 215. R. M. Joshi, Indian. J. Chem., 2, 215 (1964). 216. M. F. Shostakovskii, I. F. Bogdanov, J. Appl. Chem. Russ., 15, 249 (1942). 217. J. F. Brown, G. M. J. Slusarczuk, J. Am. Chem. Soc, 87, 931 (1965). 218. P. J. Flory, J. A. Semlyen, J. Am. Chem. Soc, 88, 3209 (1966). 219. M. Kucera, Y. Pichler, Vysokomol. Soedin., 7, 10 (1965); Polym. Sci. SSSR, 7, 9 (1965). 220. G. M. Chil'-Gevorgyan, A. K. Bonetskaya, S. M. Skuratov, N. S. Yenikolopyan, Vysokomol. Soedin. A, 9, 1363 (1967). 221. I. Mita, S. Yabe, I. Imai, H. Kambe, Makromol. Chem., 137, 133 (1970). 222. T. P. Melia, G. A. Clegg, A. Tyson, Makromol. Chem., 112, 84 (1968). 223. O. E. Grikina, V M. Tatevskii, N. F. Stepanov, S. S. Yarovoi, Vestn. Mosk. Univ. Ser. II, 22, 8 (1967). 224. O. E. Grikina, N. F. Stepanov, V. M. Tatevskii, S. S. Yarovoi, Vysokomol. Soedin. A, 13, 575 (1971); Polym. Sci. SSSR, 13, 653 (1971). 225. R Cefelin, D. Doskocilova, A. Frydrychova, J. Sebenda, Coll. Czech. Chem. Comm., 29, 485 (1964). 226. P. Cefelin, A. Frydrychova, P. Schmidt, J. Sebenda, Coll. Czech. Chem. Comm., 32, 1006 (1967). 227. O. Vogl. J. Polym. Sci. A, 2, 4607 (1964). 228. H. Takida, K. Noro, Chemistry of High Polymers, Japan, 21, 452 (1964). 229. E. Wasserman, D. A. Ben-Efraim, R. Wolovsky, J. Am. Chem. Soc, 90, 3286 (1968). 230. N. Calderon, J. Macromol. Sci. Rev. Macromol. Chem. C7, 105 (1972). 231. J. Leonard, D. Maheux, Am. Chem. Soc. Polymer Preprints, 13, 78 (1972). 232. J. M. Andrews, J. A. Semlyen, Polymer, 13, 142 (1972). 233. O. Vogl, personal communication. 234. O. Vogl, W. M. D. Bryant, J. Polym. Sci. A, 2, 4633 (1964). 235. H. Kambe, I. Mita, K. Horie, Proc 2nd Int. Conf. on Thermal Analysis (1969) 1071. 236. T. Saegusa, T. Shiota, S. Matsumoto, H. Fujii, quoted in Macromolecules, 5, 34 (1972). 237. T. Endo, Bull. Chem. Soc. Japan, 44, 870 (1971). 238. T. Kagiya, S. Narisawa, T. Maeda, K. Fukui, Kogyo Kagaku Zasshi, 69, 732 (1969); J. Polym. Sci. B, 4, 441 (1966). 239. H. K. Hall, A. K. Schneider, J. Am. Chem. Soc, 80, 6409 (1958). 240. H. K. Hall, J. Am. Chem. Soc, 80, 6404 (1958). 241. J. W. Hill W. H. Carothers, J. Am. Chem. Soc, 57, 925 (1935).
242. M. Okada, Y Yamashita, Y. Ishii, Makromol. Chem., 80,196 (1964). 243. W. H. Carothers, Collected papers of, G. S. Whitby, H. Mark, (Ed.), Interscience, New York, 1940. 244. I. Maruyama, M. Nakaniwa, T. Saegusa, J. Furukawa, J. Chem. Soc Japan Ind. Chem. Sect., 68, 1149 (1965). 245. R. B. Whitney, M. Calvin, J. Chem. Phys., 23, 1750 (1955). 246. J. G. Affleck, G. Dougherty, J. Org. Chem., 15, 865 (1950). 247. W. O. Ney, W. R. Nummy, C. E. Barnes, USP. 2638463 (1953). 248. W. O. Ney, M. Crowther, USP. 2739959 (1956). 249. M. P. Kozina, S. M. Skuratov, Dokl. Akad. Nauk. SSSR, 127, 561 (1959). 250. H. Meerwein, Angew. Chem., 59, 168 (1947). 251. H. Meerwein, D. Delfs, H. Morschel, Angew. Chem., 72, 927 (1960). 252. M. P. Dreyfuss, R Dreyfuss, J. Polym. Sci. A, 4,2179 (1966). 253. T. Saegusa, S. Matsumoto, J. Macromol. Sci. A: Chem., 4, 873 (1970). 254. J. B. Rose, J. Stuart-Webb, unpublished results quoted in: P H. Plesch, (Ed.), "The Chemistry of Cationic Polymerization", Pergamon, Oxford 1963. 255. R. Chiang, J. H. Rhodes, J. Polym. Sci. B, 7, 643 (1969). 256. C. G. Overberger, J. K. Weise, J. Am. Chem. Soc, 90, 3533 (1968). 257. W. Kern, H. Cherdron, V. Jaacks, Angew. Chem., 73, 177 (1961). 258. E. Gipstein, E. Wellisch, O. L. Sweeting, J. Polym. Sci. B, 1, 237 (1963). 259. J. B. Lando, V Stannett, J. Polym. Sci. B, 2, 375 (1964). 260. O. G. von Ettinghausen, E. Kendrick, Polymer, 7, 469 (1966). 261. A. B. Meggy, J. Chem. Soc, 1444, (1956). 262. H. K. Hall, Am. Chem. Soc Polymer Preprints, 6, 535 (1965). 263. W. Dittrich, R. C. Schulz, Angew. Makromol. Chem., 15, 109 (1971). 264. E. Hollo, Bericht, 61, 895 (1928). 265. A. Schoeberl, G. Wiehler, Ann., 595, 101 (1955). 266. P. A. Small, Trans. Faraday Soc, 51, 1717 (1955). 267. F. Fichter, A. Beisswenger, Ber., 36, 1200 (1903). 268. K. Saotome, Y. Kodaira, Makromol. Chem., 82, 41 (1965). 269. H. Batzer, G. Fritz, Makromol. Chem., 14, 179 (1954). 270. H. D. K. Drew, W. N. Haworth, J. Chem. Soc, 775, (1927). 271. M. H. Palomaa, V Toukola, Ber. 66B, 1629 (1933). 272. D. D. Coffman, N. L. Cox, E. L. Martin, W. E. Mochel, F. J. van Natta, J. Polym. Sci., 3, 85 (1948). 273. W. E. Hanford, R. M. Joyce, J. Polym. Sci., 3, 167 (1948). 274. H. R. Mighton, USR 2647105 (1953). 275. F. N. S. Carver, B. L. Hollingsworth, Makromol. Chem., 95, 135 (1966). 276. A. Schaffler, W. Ziegenbein, Ber., 88, 1374 (1955). 277. W. Ziegenbein, A. Schaffler, R. Kaufhold, Ber., 88, 1906 (1955). 278. L. E. Wolinski, H. R. Mighton, J. Polym. Sci., 49, 217 (1961).
279. M. Imoto, H. Sakurai, T. Kono, J. Polym. Sci., 50, 467 (1961). 280. N. L. Coxx, W. E. Hanford, USR 2276164 (1942); Swiss P. 270546 (1951), 276924 (1952). 281. F. P. Jones, Ph.D. thesis, Univers. of Keele, 1970. 282. R. Gehm, Angew. Makromol. Chem., 18, 159 (1971). 283. T. Saegusa, T. Hodaka, H. Fujii, Polym. J., 2, 670 (1971). 284. K. Yagi, T. Miyazaki, H. Okitsu, F. Toda, Y. Iwakura, J. Polym. Sci. A-I, 10, 1149 (1972). 285. B. Krummenacher, H. G. Elias, Makromol. Chem., 150, 271 (1971). 286. R C. Wollwage, R A. Seib, J. Polym. Sci. A-I, 9, 2877 (1971). 287. C. C. Tu, C. Schuerch, J. Polym. Sci. B, 1, 163 (1963). 288. T. Kunitake, M. Yasumatsu, C. Aso, J. Polym. Sci. A-I, 9, 3678 (1971). 289. I. Mita, H. Okuyama, J. Polym. Sci. A-I, 9, 3437 (1971). 290. G. Belonovskaya, Z. Tchernova, B. Dolgoplosk, Europ. Polym. J., 8, 35 (1972). 291. J. Kops, H. Spanggaard, Makromol. Chem., 151, 21 (1972). 292. W. K. Busfield, R. M. Lee, D. Merigold, Makromol. Chem., 156, 183 (1972). 293. Y. B. Lyudvig, Y. E. Berman, Z. N. Nysenko, V. A. Ponomarenko, S. S. Medvedev, Vysokomol. Soedin. A, 13, 1375 (1971); Polym. Sci. SSSR, 13, 1546 (1971). 294. J. M. Andrews, J. A. Semlyen, Polymer, 12, 642 (1971). 295. V. S. Etlis, G. A. Razuvaev, A. P. Sineokof, Khim. Geterosicl. Soedin., 2, 223 (1967). 296. G. A. Razuvaev, V. S. Etlis, L. N. Gribov, Zh. Obshch. Khim., 33, 1366 (1963). 297. C. Aso, S. Tagami, T. Kunitake, Kobunshi Kagaku, 23, 63 (1966). 298. A. A. Dugaryan, A. V. Agumyan, Vysokomol. Soedin., 5, 1755 (1963). 299. R. Raff, J. L. Cook, B. V. Etting, J. Polym. Sci. A, 3, 3511 (1965). 300. E. Thilo, U. Schuelke, Z. Anorg. Allgem. Chem., 341, 293 (1965). 301. D. R. Cooper, J. A. Semlyen, Polymer, 13, 414 (1972). 302. O. B. Salamatina, A. K. Bonetskaya, S. M. Skuratov, B. P. Fabrichnyi, I. F. Shalavina, Y. L. Gol'dfarb, Vysokomol. Soedin., 7, 485 (1965). 303. K. Weissermel, E. Noelken, Makromol. Chem., 68, 140 (1963). 304. T. Saegusa, M. Matoi, S. Matsumoto, H. Fujii, Macromolecules, 5, 233, 236 (1972). 305. T. Kodaira, J. Stehlicek, J. Sebenda, Eur. Polym. J., 6, 1451 (1970). 306. F. Andruzzi, S. Suradi, G. Pilcher, Makromol. Chem., 183, 2183 (1982). 307. F. Andruzzi, G. Pilcher, J. M. Hacking, S. Cavell, Makromol. Chem., 181, 923 (1980). 308. F. Andruzzi, G. Pilcher, Y. Virmani, P. H. Plesch, Makromol. Chem., 178, 2367 (1977). 309. S. Sosnowski, J. Libiszowski, S. Slomkowski, S. Penczek, Macromol. Chem., Rapid Commun., 5, 239 (1984).
310. T. M. Frunze, V. A. Kolelnikov, M. P. Ivanov, V. V. Kurashev, L. B. Danilevskaya, S. P. Davtyan, V. V. Korshak, Dokl. Akad. Nauk. SSSR (Chem.), 260, 1379 (1981). 311. T. G. Kulagina, B. V. Lebedev, E. G. Kiparisova, E. B. Lyudvig, I. G. Barskaya, Polym. Sci. USSR, 24, 1702 (1982). 312. B. V. Lebedev, T. G. Kulagina, E. B. Lyudvig, T. N. Ovchinnikova; Polym. Sci. USSR, 24, 1695 (1982). 313. A. A. Yevstropov, B. V. Lebedev, E. Kiparisova, Polym. Sci., USSR, 25, 1951 (1983). 314. A. A. Yevstropov, B. V. Lebedev, T. G. Kulagina, N. K. Lebedev, Polym. Sci., USSR, 24, 628 (1982). 315. M. Ueda, M. Takahashi, Y. Imai, C. U. Pitman, Macromolecules, 16, 1300 (1983). 316. G. O. R. Alberda von Ekenstein, Y. Y. Tan, Eur. Polym. J., 18, 1061 (1982). 317. K. Takahashi, K. Ohnishi, K. Takase, Tetrahedron Lett., 25, 73 (1984). 318. T. Malavasic, U. Osredkar, I. Anzur, I. Vizovisk, J. Macromol. Sci. A, Chem., 19, 987 (1983). 319. T. Malavasik, I. Visorisek, U. Osredkar, I. Anzur, J. Polym. Sci., Polym. Symp., 69, 73 (1981). 320. A. M. Soledad, L. M. Leon, J. Polym. Sci., Polym. Lett. Ed., 21, 979 (1983). 321. M. Rodriguez, L. M. Leon, J. Polym. Sci., Polym. Lett. Ed., 21, 881 (1983). 322. W. K. Busfield, I. J. McEwen, Eur. Polym. J., 9, 1143 (1973). 323. W. K. Busfield, R. M. Lee, Makromol. Chem., 169, 199 (1973). 324. W. K. Busfield, R. M. Lee, Makromol. Chem., 176, 2017 (1975). 325. R. M. Lee, Ph.D. Thesis, University of Dundee, 1972. 326. T. Otsu, B. Yamada, T. Mari, M. Inoue, J. Polym. Sci., Polym. Lett. Ed., 14, 283 (1976). 327. R. M. Joshi, Polymer, 20, 394 (1979). 328. K. Hashimoto, H. Sumitomo, S. Ohsawa, J. Polym. Sci., Polym. Chem. Ed., 14, 1221 (1976). 329. K. Hashimoto, H. Sumitomo, S. Ohsawa, J. Polym. Sci., Polym. Chem. Ed., 13, 2775 (1975). 330. K. Hashimoto, H. Sumitomo, S. Ohsawa, J. Polym. Sci., Polym. Chem. Ed., 16, 435 (1978). 331. M. Okada, H. Sumitomo, M. Atsumi, Macromolecules, 17, 1840 (1984). 332. V. R. Pai Verneker, K. N. Santhanalakshimi, J. Polym. Sci., Polym. Chem. Ed., 22, 3217 (1984). 333. M. Okada, K. Mita, H. Sumitomo, Makromol. Chem., 177, 895 (1976). 334. M. Okada, K. Mita, H. Sumitomo, Makromol. Chem., 176, 859 (1975). 335. M. Okada, K. Mita, H. Sumitomo, Makromol. Chem., 177, 2055 (1976). 336. B. Yamada, R. W. Campbell, O. Vogl, J. Polym. Sci., Polym. Chem. Ed., 15, 1123 (1977). 337. D. W. Lipp, O. Vogl, Polym. J., 9, 499 (1977). 338. D. W. Lipp, O. Vogl, Polymer, 18, 1051 (1977). 339. M. Okada, T. Hisada, H. Sumitomo, Makromol. Chem., 179, 959 (1978).
340. M. Okada, K. Yagi, H. Sumitomo, Makromol. Chem., 163, 225 (1973). 341. R. E. Cunningham, Polymer, 19, 729 (1978). 342. L. Garrido, J. Guzman, E. Riande, Macromol., 14, 1132 (1981). 343. Y. Yamashita, J. Mayumi, Y. Kawakami, K. Ito, Macromolecules, 13, 1075 (1980). 344. P. Kubisa, O. Vogl, Polymer, 21, 525 (1980). 345. T. Otsu, B. Yamada, S. Sugiyama, S. Mori, J. Polym. Sci., Polym. Chem. Ed., 18, 2197 (1980). 346. J. Pretula, K. Kaluzynski, S. Penczek, J. Polym. Sci., Polym. Chem. Ed., 22, 1251 (1984). 347. K. Kaluzynski, S. Penczek, Makromol. Chem., 180, 2289 (1979). 348. G. Lapienis, S. Penczek, J. Polym. Sci., J. Polym. Sci., Polym. Chem. Ed., 15, 371 (1977). 349. K. Hatanaka, S. Kanazawa, T. Uryu; J. Polym. Sci., Polym. Chem. Ed., 22, 1987 (1984). 350. K. Kobayashi, H. Sumitomo, Macromolecules, 16, 710 (1983). 351. T. Uryu, Y. Sakamoto, K. Hatanaka, K. Matsuzaki, Macromolecules, 17, 1307 (1984). 352. J. E. Moore, S. H. Schroeter, A.R. Shultz, L. D. Stang, Am. Chem. Soc. Symp. Ser., 25, 90 (1976). 353. J. C. Favier, J. Leonard, Macromolecules, 11, 424 (1978). 354. J. C. Bevington, J. A. L. Jemmett, P. F. Onyon, Polymer, 18, 73 (1977). 355. N. K. Lebedev, B. V. Lebedev, V. S. Khotimskii, S. G. Durgar'yan, Polym. Sci., USSR, 21, 1131 (1980). 356. G. Lapienis, S. Penczek, Macromolecules, 10, 1301 (1977). 357. J. Kops, S. Hvilsted, H. Spanggaard, Pure Appl. Chem., 53, 1777 (1981). 358. B. V. Lebedev, V. Ya Lityagov, Vysokomol. Soedin. A, 19, 2283 (1977). 359. B. V. Lebedev, I. B. Rabinovich, N. K. Lebedev, N. V. Ushakov, Dokl. Phys. Chem., 239, 376 (1978). 360. B. V. Lebedev, I. B. Rabinovich, Dokl. Phys. Chem., 235, 762 (1977). 361. B. V. Lebedev, I. B. Rabinovich, V. Ya Lityagov, Yu. V. Kobshak, V. M. Kuteinikov, Vysokomol. Soedin. A, 18, 2444 (1976). 362. B. V. Lebedev, I. B. Rabinovich, N. K. Lebedev, V. G. Tsvetkov, S. G. Durgar'yan, V. S. Khotimskii, Vysokomol. Soedin. A, 19, 513 (1977). 363. B. V Lebedev, N. K. Lebedev, Ye. G. Kiparisova, K. A. Yesayan, L. K. GoIova, Yu. B. Amerik, Vysokomol. Soedin., 26, 909 (1984). 364. B. V. Lebedev, A. A. Yevstropov, Ye. G. Kiparisova, V. I. Belov, Vysokomol. Soedin. A, 20, 29 (1978). 365. B. V. Lebedev, N. N. Mukhina, T. G. Kulagina, Vysokomol. Soedin. A, 20, 1297 (1978). 366. N. K. Lebedev, B. V. Lebedev, V. S. Khotimiskii, S. G. Durgar'yan, Vysokomol. Soedin. A, 21, 1031 (1979). 367. B. V Lebedev, N. K. Lebedev, V. S. Khotimskii, S. G. Durgar'yan, N. S. Nametkin, Dokl. Phys. Chem., 259, 666 (1981). 368. B. V. Lebedev, A. A. Evstropov, Dokl. Phys. Chem., 264, 334 (1982).
369. M. A. Markevich, L. I. Pavlinov, Yu. A. Lebedev, Dokl. Phys. Chem., 262, 64 (1982). 370. Y. Yuki, H. Kunisada, T. Seo, T. Kakurai, Kobunshu Ronbunshu, 40, 733 (1983). 371. I. M. Barkalov, D. P. Kirukhin, G. A. Kichigina, M. P. Muidinov, Eur. Polym. J., 20, 1013 (1984). 372. G. M. Patel, R. R. Chance, E. A. Turi, Y. R Khanna, J. Am. Chem. Soc, 100, 6644 (1978). 373. A. F. Garito, C. J. Horner, P. S. Kalyanaraman, K. N. Desai, Makromol. Chem., 181, 1605 (1980). 374. G. N. Patel, Macromolecules, 14, 1170 (1981). 375. G. N. Patel A. F. Preziosi, H. R. Bhattacharjee, J. Polym. Sci., Polym. Symp., 71, 247 (1984). 376. T. Baran, A. Duda, S. Penczek, Makromol. Chem., 185,2337 (1984). 377. T. Baran, A. Duda, S. Penczek, J. Polym. Sci., Polym. Chem. Ed., 22, 1085 (1984). 378. Y. Yuki, T. Ouchi, Kobunshu Ronbunshu, 33, 303 (1976). 379. Y. Yuki, T. Ouchi, Kobunshu Ronbunshu, 32, 97 (1975). 380. R. Steudal, S. Passlack-Stephan, G. Holdt, Z. Anorg. AlIg. Chem., 517, 7 (1984). 381. H. Sawada, "Thermodynamics of Polymerization", Marcel Dekker, New York, 1976. 382. H. Uno, T. Endo, M. Okawara, J. Polym. Sci., Polym. Chem. Ed., 23, 63 (1985). 383. T. Fries, J. Belohlavkova, J. Roda, J. Kralicek, Polym. Bull., 12, 87 (1984). 384. M. Morcellet, Thermochim. Acta, 80, 361 (1984). 385. B. V. Lebedev, L. Ya. Tsvetkova, V G. Vasil'ev, V. I. Kleiner, B. A. Krentsel, Vysokomol. Soedin. A, 35, 1941 (1993). 386. B. V Lebedev, N. N. Smirnova, E. G. Kiparisova, D. G. Faminskii, V. G. Vasil'ev, V. F. Vasilenko, Vysokomol. Soedin. A, 35, 1951 (1993). 387. B. V Lebedev, N. N. Smirnova, V. G. Vasil'ev, E. G. Kiparisova, V. I. Kleiner, Vysokomol. Soedin. A, 36, 1413 (1994). 388. N. N. Smirnova, B. V. Lebedev, Vysokomol. Soedin. A, 32, 2536 (1990). 389. P. A. Patton, T. J. McCarthy, Polym. Prep., 26 (1), 160 (1985). 390. T. A. Bykova, Ye. G. Kiparisova, B. V, Lebedev, K. A. Mager, Yu. G. Gololobov, Vysokomol. Soedin. A, 33, 614 (1991). 391. E. G. Kiparisova, T. A. Bykova, B. V. Lebedev, T. I. Guseva, K. A. Mager, Yu. G. Gololobov, Vysokomol. Soedin. A, 35, 615 (1993). 392. T. A. Bykova, E. G. Kiparisova, B. V. Lebedev, N. G. Senchenya, K. A. Mager, Yu. G. Gololobov, Vysokomol. Soedin. A, 35, 13 (1993). 393. T. A. Bykova, Ye. G. Kiparisova, B. V. Lebedev, T. I. Guseva, K. A. Mager, Yu. G. Gololobov, Vysokomol. Soedin. A, 33, 2602 (1991). 394. B. V. Lebedev, N. K. Lebedev, Ye. G. Kiparosiva, K. A. Yesayan, L. G. GoIova, Yu. B. Amerik, Polym. Sci. USSR, 26, 1013 (1984). 395. J. Penelle, J. Collot, G. Rufflard, J. Polym. Sci. A: Polym. Chem., 31, 2407 (1993).
396. B. V. Lebedev, N. N. Smirnova, E. G. Kiparisova, V. G. Vasil'ev, N. Yu. Surkova, V. I. Kleiner, B. A. Krentsel, Vysokomol. Soedin. A, 35, 767 (1993). 397. B. V. Lebedev, T. G. Kulagina, N. N. Smirnova, T. A. Bykova, V. G. Visil'ev, D. F. Grishin, Vysokomol. Soedin. A, 37, 1896 (1995). 398. R. Binet, J. Leonard, Polymer, 14, 355 (1973). 399. S. Iwatsuki, M. Kubo, H. Iwayama, Macromolecules, 26, 7309 (1993). 400. R. E. Cunningham, H. A. Colvin, Polymer, 33, 5073 (1992). 401. M. Ueda, T. Ito, H. Ito, Macromolecules, 23, 2895 (1990). 402. V. Gebauer, K. Burghardt, S. Jaehrig, K. Gehrke, Plaste Kautsch., 38, 372 (1991). 403. H. Kunisada, Y. Yuki, S. Kondo, Macromolecules, 24, 4733 (1991). 404. H. Kunisada, Y. Yuki, S. Kondo, K. Adachi, N. Takahashi, Polymer, 33, 3512 (1992). 405. H. Kunisada, Y. Yuki, Kobunshi Ronbunshu, 43, 895 (1986). 406. Y. Yuki, H. Kunisada, Nippon Kagaku Kaishi, 2, 242 (1985). 407. A. Aboudalle, A. Soum, M. Fontanille, T. E. Hogen-Esch, Polym. Prepr., 27(1), 143 (1986). 408. T. Kase, M. Imahori, T. Kazama, Y. Isono, T. Fujimoto, Macromolecules, 24, 1714 (1991). 409. Y. Nagasaki, N. Yamazaki, K. Takeda, N. Kato, M. Kato, Macromolecules, 27, 3702 (1994). 410. T. Itoh, T. Ario, M. Kido, S. Iwatsuki, Macromolecules, 27, 7035 (1994). 411. S. Iwatsuki, T. Itoh, N. Kusaka, H. Maeno, Macromolecules, 25, 6395 (1992). 412. S. Iwatsuki, T. Itoh, T. Higuchi, K. Enomoto, Macromolecules, 21, 1571 (1988). 413. S. Iwatsuki, T. Itoh, H. Yabunouchi, M. Kubo, Macromolecules, 23, 3450 (1990). 414. N. K. Lebedev, B. V. Lebedev, N. N. Smirnova, V. G. Vasil'ev, N. M. Kozyreva, S. B. Skubina, V V. Korshak, Vysokomol. Soedin. B, 28, 357 (1986). 415. B. V. Lebedev, N. Smirnova, Y. Kiparisova, K. Makovetsky, Makromol. Chem., 193, 1399 (1992). 416. B. Lebedev, N. Smirnova, N. Novosyolova, K. Makovetsky, I. Ostrovskaya, Macromol. Chem. Phys., 195, 1807 (1994). 417. B. V. Lebedev, V. G. Vasil'ev, Ye. G. Kiparisiova, Vysokomol. Soedin. A, 32, 1070 (1990). 418. V. G. Vasil'ev, B. V. Lebedev, Vysokomol. Soedin. A, 33, 818 (1991). 419. V. G. Vasil'ev, B. V. Lebedev, N. V. Novoselova, Vysokomol. Soedin. A, 35, 621 (1993). 420. B. V. Lebedev, V. G. Vasil'ev, N. Novosyolova, Makromol. Chem., 194, 739 (1993).
421. B. V. Lebedev, V. G. Vasil'ev, N. Novosyolova, J. Therm. Anal., 38, 1299 (1992). 422. F. Andruzzi, S. Li, G. Pilcher, F. Heatley, Makromol. Chem., 188, 2643 (1987). 423. H. Kriiger, J. Rubner, W. Wittke, G. Gnauk, Acta Polym., 37, 601 (1986). 424. J. C. W. Chien, Y. G. Cheun, P. Lillya, Macromolecules, 21, 870 (1988). 425. B. Xu, C. P. Lillya, J. C. W. Chien, Macromolecules, 20, 1445 (1987). 426. B. V. Lebedev, T. G. Kulagina, V. I. Telnoy, V. G. Vasil'ev, Macromol. Chem. Phys., 196, 3487 (1995). 427. B. V. Lebedev, T. A. Bykova, E. G. Kiparisova, B. G. Belen'kaya, V. N. Filatova, Vysokomol, Soedin. A, 37, 187 (1995). 428. I. Rangel, M. Richard, A. Ricaard, Macromol. Chem. Phys., 195, 3095 (1994). 429. A. Duda, S. Penczek, Macromolecules, 23, 1636 (1990). 430. S. Chikaoka, T. Takata, T. Endo, Macromolecules, 24, 6557 (1991). 431. B. V. Lebedev, T. G. Kulagina, V. S. Svistunov, V. S. Papkov, A. A. Zhdanov, Polym. Sci. USSR, 26, 2773 (1984). 432. I. C. Eromosele, D. C. Pepper, J. Polym. Sci., Part A: Polym. Chem., 25, 3499 (1987). 433. K. Hashimoto, H. Sumitomo, H. Shinoda, A. Washio, J. Polym. Sci., Part C, Polymer Letters, 27, 307 (1989). 434. S. Cavallero, A. Colligiani, G. Cum, J. Therm. Anal., 38, 2649 (1992). 435. S. Iwatsuki, T. Itoh, K. Enomoto, T. Itoh, E. Yamamoto, T. Myamoto, Macromolecules, 22, 1014 (1989). 436. R. Szymanski, Makromol. Chem., 192, 2961 (1991). 437. T. G. Kulagina, B. V. Lebedev, Fiz, -Chim. Osn. Sint. Perebab. Polim., 99, (1983). 438. S. Iwatsuki, T. Itoh, H. Ito, M. Kubo, Macromolecules, 23, 2423 (1990). 439. T. Fries, J. Belohlavkova, O. Novakova, J. Roda, J. Kralicek, Makromol. Chem., 188, 239 (1987). 440. S. Iwatsuki, M. Kubo, M. Wakita, Y. Matsui, H. Hanoh, Macromolecules, 24, 5009 (1991). 441. G. Deak, T. Pernecker, J. P. Kennedy, Polym. Bull., 33, 259 (1994). 442. B. Yamada, T. Tanaka, T. Otsu, Eur. Polym. J., 25, 117 (1989). 443. E. L. Madruza, J. S. Roman, M. A. Lavia, M. C. Fernandez-Monreal, Eur. Polym. J., 22, 357 (1986). 444. T. Sato, K. Morino, H. Tanaka, T. Ota, Eur. Polym. J., 26, 1279 (1990). 445. N. V. Karyakin, N. G. Shvetsova, G. P. Kamelova, A. L. Rusanov, V. V. Korshak, L. Kh. Plieva, Vysokomol. Soedin. A, 26, 36 (1984). 446. R. Szymanski, Makromol. Chem., 192, 2943 (1991).
A c t i v a t i o n a n d
E n e r g i e s
o f
T e r m i n a t i o n
R a d i c a l
P r o p a g a t i o n i n
F r e e
P o l y m e r i z a t i o n
T. F. M c k e n n a Laboratoire de Chimie et Procedes de Polymerization, Villeurbanne, Cedex, France A . M . Santos Faculdade de Engenharia Quimica de Lorena-Faenquil, Lorena, Sao Paulo, Brazil
A. Introduction B. Tables Table 1. Dienes Table 2. Olefins Table 3. Acrylic Derivatives Table 4. Methacrylic Derivatives Table 5. Vinyl Halogens Table 6. Vinyl Ethers and Vinyl Esters Table 7. Styrene and Derivatives Table 8. Vinyl Heteroaromatics Table 9. Miscellaneous Compounds C. References A.
11-415 11-416 11-416 11-416 11-417 11-418 II-420 11-421 11-421 II-422 II-423 II-424
INTRODUCTION
The conversion of a free radical homopolymerization as a function of time is usually expressed by the following equation:
where x is the conversion, t the time, fep, ku and k& the propagation, termination and initiator decomposition rate constants, respectively, / the initiator efficiency and / the initiator concentration.
It is generally assumed that the temperature dependence of free radical polymerization rate constants can be expressed using the well-known Arrhenius equation:
where Ao is the frequency factor, R the universal gas constant, T the absolute temperature, and E the activation of the reaction in question. Measurement of kp and kt at different temperatures allows one to determine values of the activation energies of the same two reactions, Ep and E1, respectively. If we accept this representation, then the overall activation energy of a homopolymerization can be written as
The value of the activation energy for the initiator decomposition reaction, 2Jd, can often be estimated separately. When data are not available for Ep and Et as separate quantities, the term (Ev —\Et) can be used to model the polymerization reaction. In the following tables, all energies are reported in terms of kJ/mol, and any appropriate remark(s) associated with the data are presented.
B. TABLES TABLE 1. DIENES Monomer
Ep
Butadiene
10.9 38.9 24.3 & 20.9 20.5 35.7
Et
Ev — \Et
8.42
Chloroprene Dimethyl butadiene Isoprene
40.6 37.7 46.0
Refs.
In gas phase In emulsion In gas phase In gas phase Solution polymerization in CCl4; temperature range: 303-333 K For emulsion polymerization, supposing w = 0.5 Thermal and photoinitiation; temperature range: 278-333 K; kp measured by ESR In emulsion In emulsion In emulsion
5.9
38.9 1,3-Hexadiene
Remarks
13 14 16 21 90 91 92 35 45 15
TABLE 2. OLEFINS Monomer
Ev
Acetylene Ethylene
21.4 34.3 18.4 23.9 46.4
Et
£ p -|£ t
1.3
17.8
33.5
29.7 31.0
36.8 29.7 40.0
6.22 10.0 15.2
25.1 20.8 29.7 32.5 36.9 31.4
-1.59 3.13 10.0 4.19 1.05
Refs.
In gas phase In gas phase Calculated using results of Ref. 24 In gas phase High pressure in gas phase (up to 300 NPa); initiated by oxygen; temperature range: 60-250 0 C; conversion found by gravimetry High pressure polymerization (up to 300 MPa); initiated by DTBPO; temperature range: 130-1650C Activation volumes (cal/mol/atm): propagation: — 19.7, termination: 13.0
Estimation for simulation of emulsion copolymerization with vinyl acetate 14.2 31.6
Propene Isoprene
Remarks
30.3
4.2
17.6 ± 0.31
15.3 ± 0.26
30.2 23.4 41.0
6.44
Activation volume = - 26.2£ x 10~6 m3/gmol Activation volume for propagation = — 0.5 cal/mol/atm Activation volumes (cal/mol/atm): propagation: —16.8 ±0.1; termination: 9.2. Optimized from values of industrial runs In gas phase In emulsion
21 21 35 44 73 82 93 94 95 96 97 98 99 100 101 102 103 104 105 106 21 15
TABLE 3. ACRYLIC DERIVATIVES Monomer
Ep
Et
Acrylamide A B C D E
11.7 ± 1.2 16.3 ± 0.8 18.8 ± 1.9 20.5 ±0.8 25.1 ±0.9
11.7 ±0.8 10.9 ± 0.4 10.9 ±0.4 7.9 ±0.4 0±0.8
22 ±0.2 20 ±0.2 11.5 57.8
Ep-\Et 5.8 dz 1.6 10.9 ± 1.3 13.4±0.3 16.9 ±1.0 25.1 ±1.3
6.2 10.46
iVyV-methylene-bis-acrylamide
9.3
Remarks
Refs.
Solution polymerization in H2O/DMSO mixture with potassium persulfate; initiators: H 2 O: DMSO: (A) 100:0 (B) 88:12 (C) 65:35 (D) 38:62 (E) 0:100 pH 1 pH4 Compilation of data, validated for inverse suspension polymerization Compilation from various sources, validated for solution polymerization Aqueous polymerization with temperature range: 293-313 K
68
111 112 113
Acrylic acid 23.4 21.7 14.1 - , sodium salt
(1) 67.5 (2) 72.1
- , chromium salt
33.5
-, zinc salt
13.0
-, butyl ester
8.8 52.3 15.5
0 73.7 38.1
14 ± 6 £ p - ET = 0 9.6 ± 0.56
- , ethyl ester - , methyl ester
41 29.7 19.7 31.8 ±2.5
12.3 22.2 -0 20.1 ±0.8
-, methyl oc-acetoxy ester
35.5
46.8
-, methyl a-butoxy ester
30.5
25.1
Acrylonitrile
17.2 16.2
22.6 15.5
107 108
109 By PLP; temperature range: 288-328 K 110 Thermally induced solid state polymerization; 87 two methods to find Ep: (1) ESR, (2) DSC; temperature range: 60-160 0 C Polymerized with styrene-arsenic sulfide 114 complex initiator in DMF Initiated with an As2S3-styrene complex in 115 DMSO at 363 K 8 At 20% conversion 26 From PLP-GPC; temperature range: 116 (208-266 K); bulk polymerization 109 From PLP; temperature range: (298-353 K); 117 conversion range: (10-80%); bulk polymerization; P = 1 bar. From PLP; conversion = 30% in bulk 118 polymerization By PLP-GPC; bulk polymerization with 119 photoinitiators: benzoin and 2,2dimethoxy-2-phenylacetophenone; temperature range: 298-303 K 109 Gamma ray induced solid state polymerization; temperature range: 243-283 K
40.7 31.8
-, 1,3-hydroxyneopentyl ester
Initiation with APS; temperature range: 309.5-324.5 K; solution polymerization at pH 0 4.38 Precipitation polymerization; temperature range: 313-333 K
5.9 8.5
109 Measured by dilatometry in both benzene 120 and 1,4 dioxane (kp/k®-5 higher in dioxane) By ESR; temperature range: 303-333 K; 121 solution polymerization in 1,1,2-trichloroethane; initiator: 2,2 '-azobis(4-methoxy-2,4dimethylvaleronitrile) (V-70) By ESR; assuming Ed = 109.5; 121 solution polymerization in 1,1,2-trichloroethane; initiator: 2,2 /-azobis(4-methoxy-2, 4-dimethylvaleronitrile (V-70) In water solvent 25 In DMF solvent 32
References page II - 424
TABLE 3. cont'd Monomer
Ep
Et
Ep — \Et
Acrylonitrile {cont'd)
26.8
~0
6.8 21.4
29.6
7.0
Remarks In DMF solvent Estimated from data on solution copolymerization with styrene as azeotrope
42.7
D-Fluoroacrylic acid -, methyl ester
23.9
Polymerization in NaSCN solution with Mn(CsH702)2 as free radical initiator; temperature range: 295-313 K; value estimated from overall activation energy with Ed = 58.6 kJ/mol
9.6
Solution: acrylonitrile; initiator: AIBN; (assume Ed = 128 kJ/mol)
Refs. 37 109 122 123 124
71
TABLE 4. METHACRYLIC DERIVATIVES Monomer
Ep
Et
Methacrylamide
15.5 22.1
16.7
Methacrylic acid
17.7
-, butyl ester - , butyl ester
17.4 18.4 20.4 20.9 21.8 ± 0.27 22.9 ±1.1
4.6 12.7 8.8
Ev -\Et 7.1
16.1 14.1 16.7
23.3 20.4 20.5 ± 0.24 - , i-butyl ester
22.5 ± 0.42 21.5 ± 0.35
-, f-butyl ester
27.7 ± 2.5
-, chloromethyl ester
5.5
-, cyanomethyl ester
~ 8.4
- , dodecyl ester (lauryl ester)
15.5 29.8 21.5 ±0.34 13.7 16.2
- , ethyl ester
23.2
8.9
18.0
21.3
7.1
17.7 16.5
Remarks Solvent: water By PLP; temperature range: (288-328 K); pH 1 By PLP-GPC; 33% monomer in methanol; temperature range: 293-333 K
Refs. 34 110 125
109 Gamma ray initiation 27 Kinetics from calorimetry 55 Temperature range: 35-27°C Quoted in 58 By PLP 131 By PLP-GPC; P = 1000 bars; temperature 141 range: - 10 to 6O0C Temperature range: 25-55°C; by PLP bulk 135 polymerization; photoinitiator: benzoin 126 By PLP-MWD; bulk polymerization; 127 pressure: 1 bar; photoinitiator: benzoin 131 By PLP-MWD; bulk polymerization; 127 pressure: 1 bar; photoinitiator: benzoin Temperature range: 9-66°C; by PLP with 128 benzoinethyl ether as free rapid initiator Ampoule and emulsion polymerization; 78 AIBN initiator Solution: acetonitrile AIBN initiator 87 calculated, assuming Ed of AIBN= 128 kJ/mol from overall activation energy; temperature range: 50-70 0 C Quoted in 58 Bulk polymerization with BPO initiator; 66 temperature range 60-80 0 C; maximum conversion 1% ByPLP 131 135 By PLP-MWD; bulk polymerization; 135 photoinitiator: benzoin Gamma ray initiation; temperature range: 52 — 30 to 55 0 C; kinetics from calorimetry Quoted in 58 Data from bulk and solution (50% DMF); 63 AIBN initiator; kinetics from GLC and gravimetry
TABLE 4. cont'd Monomer Methacrylic acid, ethyl ester {cont'd)
Ev
Et
27.0 22.8 ±0.35 20.46
- 6.6
Ev-\Et 30.4
27.0 22.9 ± 0.46 22.2 16.3 -, hexadecyl ester - , hexyl ester - , methyl ester
20.1 18.0 26.4 18.4 24.3 20.9
18.8 11.9 0 2.1 0-16.7
10.5 ~ 8.4 20.5 18.4 23.2 20.9-12.6
18.8 22.4 22.8
13.2
11.2
22.6 ± 2.5
Tends to 0
22.6 ± 2.5 13.0
19.7 18.2 ± 0.2
3.3 2.9 ± 0.0
18.0 16.7 ± 0.2
23.4 20.4
~ 10.5
15.1
20.9 ±3.3
1.6 ± 0.4
20.1 ±3.6
31.3 21.3 ±0.25 18.2 26.4
11.7
29.1
3.55 22.6 18.9 15.7 18.0 18.2 24.2 18.3 31.3
0 ± 2.5 2.93
2.9 26.9 2.94 21.1 36 -14 ±8 - 1 6 ±15
22.2 ±0.3
Remarks
Refs.
Quoted in 79 ByPLP 131 By PLP; temperature range: 298-328 0 C; 135 bulk polymerization; photoinitiator: benzoin Evaluated for emulsion polymerization 129 By PLP-GPC; bulk polymerization, 127 pressure: 1 bar; photoinitiator: benzoin Bulk polymerization; initiator: AIBN 130 Solution polymerization in benzene; 130 initiator: AIBN Quoted in 58 Quoted in 58 4 7 28 Termination by combination or 30 disproportionation 47 In emulsion 31 Gamma ray induced; temperature range: 48 - 25 to 55 0 C; used a combination of DCS and inhibition with DPPH to find kinetic parameters Polymerization in benzene; DMDM initiator; 49 temperature range: 50-80 0C Bulk polymerization; DBPO initiator; 53 maximum conversion 25%; ESR used to find kinetic parameters Isothermal bulk; polymerization with AIBN 56 initiator; DCS used to follow reaction; value found assuming E& AIBN= 128 kJ/mol Quoted in 58 Bulk polymerization; AIBN initiator 64 temperature range 15-3O 0 C; reaction followed by spatially intermittent polymerization; DP 10000-15000 Bulk polymerization; AIBN initiator; 65 1-butanethiol used as CTA; value assumes Ed AIBN= 128 kJ/mol Solution: benzene; AIBN initiator; kinetic 68 data from molecular weight data; maximum conversion 5% Emulsion data; particle sizes from turbidity; 72 potassium persulfate initiator Solution: benzene; AIBN initiator; kinetic 77 parameters from intermittent illumination Bulk polymerization 85 ByPLP 131 132 133 109 Temperature range: 293-353 K 156 Suspension polymerization 134 Spatially intermittent polymerization/ 164 emulsion polymerization 135 136 137 Solution polymerization in toluene 138 139 1 Bar; temperature range: 323-353 K, 140 low conversion 100 bars 1000 bars 141
References page II - 424
TABLE 4. cont'd Monomer
Ep
Methcrylic acid, methyl ester (cont'd)
22.4
Et
Ev-\Et
Remarks PLP plus GPC for bulk polymerization; temperature range: 272-363 K
22.2 23.9
22.2
nonyl ester octyl ester phenyl ester o-methylphenyl ester 0-ethylphenyl ester 6>-iso-propylphenyl ester /7-methylphenyl ester p-ethylphenyl ester /7-iso-propylphenyl ester /?-te7t-butylphenyl ester ethyl a-Benzoyloxymethyl ester
17.2 15.9
13.0 12.1
- , ethyl a-acetacetoxymethyl ester - , 2-(3-chloro-3-methylcyclobutyl)-2hydroxyethyl ester Methacryloyl fluoride
Methacrylonitrile
10.4
20.9
- , «-Phenyl-a-methylene-p-lactam
TABLE 5.
10.9 9.7 9.2 9.6 12.2 14.4 10.6 9.3 13.2 9.5 11.5 24.55 30.68
48.1 29.7 ±1.5
142 143 144 145
2.9
-, -, -, -, -, -, -, -, -, -, -,
Refs.
37.7
22.8
By PLP-GPC; bulk polymerization; pressure: 1 bar; photoinitiator: 2-hydroxy-2,2-dimethylacetophenone; temperature range: 272-363 K By PLP-GPC; bulk polymerization; 146 pressure: 1 bar; photoinitiator: benzoin; temperature range: 272-363 K Quoted in 58 Quoted in 58 147 147 147 147 147 147 147 147 By ESR, assuming E& = 129; solution 148 polymerization in benzene; initiator: AIBN 149 Polymerization in dioxane using BZ2O2 as 150 initiator Solution: MEK; AIBN initiator; calculated 81 using Ed AIBN = 128 kJ/mol; temperature range: 50-70 0 C 20 By PLP; solution polymerization in 151 benzylactone; temperature range: 283-333K Solution polymerization in n-methyl-2152 pyrrolidone with AIBN (calculated from £ O v assuming Ed of AIBN= 129 kJ/mol)
VINYL HALOGENS
Monomer
Ev
Tetrafluoroethylene
17.4 5.4 30.0 16.0
Vinyl bromide Vinyl chloride
Vinylidene chloride
27.6 104 37.7 ± 5.9
Et 13.6 0.8 16.3 17.6
18.2 167 20.9 ± 10.5
Ep-\Et 10.6 5.0 21.8 7.4 12
20.5 27.2 ±11.1
Remarks
Validated for model of suspension polymerization For suspension polymerization Solvent: hexane Solution: N-methylpyrrolidone; AIBN used as photoinitiator; most runs < 1% conversion
Refs. 46 43 42 17 153 154 9 67
TABLE 6. VINYL ETHERS AND VINYL ESTERS Monomer
Ep
Et
Butyl vinyl ether
Vinyl acetate
E9-\Et 46.4
18.0 30.6 13 18 18 39±3 19.6 ± 2.9
O 21.9 0 <4 0 0
Refs.
Bulk polymerization; initiator DTBPO; assume Ed = 51.5 kJ/mol (Ref. 82) at given conditions; GPC data used to find kinetic parameters
18.0 19.6 13 16-18 0 19.6 ± 2.9 ~ 26.4
20.5 ±0.39 26.4 23.5
Remarks
Bulk polymerization; DBPO and cyclohexyloxyperoxide initiators; ESR used to find kinetics Bulk polymerization; DBPO and cyclohexyloxyperoxide initiators; temperature range: 55-70 0 C; DSC used for kinetics; maximum conversion 20%
11.7 Validated for emulsion copolymerization with ethylene; temperature range: 293-323 K; pressure range: 0-34 bar 14.2 28.1
19.7 ± 2.9 23.7 23.6 24.2 26.4 35.2
0
Temperature range: 293-353 K For emulsion polymerization Emulsion polymerization
4.0 13.4 14.2
Rotating-sector method; bulk polymerization; photoinitiator: benzoin By PLP-MWD; bulk polymerization; photoinitiator: benzoin
27.8
84
1 5 6 18 22 38 53 57
131 133 102 155 109 156 157 158 159 160 155 161
TABLE 7. STYRENE AND DERIVATIVES Monomer Styrene
Ep 49.0 27.2±4.2 26.0 32.5 31.0 & 35.0 54.0 & 59.0 25.0 73.6 29.0
E1
Ep-\Et
11.7±4.2 8.0 9.9
21.3 ±6.3 22.0 27.5 In emulsions In emulsions
2.0
24.0
37.7 9.2 ± 0.5
24.9 ± 0.4
34.1 29.0 ±3.0
Refs.
In emulsion
25.1
29.5 ± 0.1
Remarks
Gamma ray induced; bulk liquid phase polymerization; maximum conversion 10%; temperature range: 19-74 0 C Low conversion; bulk polymerization; ESR spectroscopy used for kinetics Bulk photopolymerization; kinetics from spatially intermittent polymerization technique; temperature range: 15-36 0C DP 2400-2700 AIBN initiator; assume Ed = 128 kJ/mol; bulk polymerization 1-butanethiol as CTA; maximum conversion 0.4% In emulsion; reaction followed by dilatometry
2 3 10 11 15 19 29 36 42 50 51 64
65 70
References page II - 424
Table 7. cont'd Monomer
Ep
Et
Ep-\Et
32.2 32.5
14.5
25.2
17.7 29.6
Remarks Emulsion data; assume N = 0.5, sodium persulfate and sodium bisulfite initiators Bulk polymerization; AIBN initiator; temperature range: 45-100 0 C In emulsion; sodium persulfate initiator
25.2 37.8 ±1.7 39.8 36.1
15.6 18.7
29.5 44.4 29
36.4
37.5 ± 1.6 30.8
10.91
30.0 29.0 32.3
31.5 31.5 31.5 18
9.5 14.2
32.5
/?-Bromostyrene o-Methylstyrene /7-Methylstyrene
32.0 58.2 32.0
a-Methyl styrene Divinylbenzene
29.6 29.6 54.3 35.5
30.5 8.27 8.4 29.8
Ep
Et
By ESR; temperature range: 273-403 K Suspension polymerization; conversion less than 0.8; temperature range: 283-353 K Spatially intermittent polymerization/emulsion polymerization High conversion suspension polymerization Emulsion polymerization; temperature range: 318-338 K ESR; temperature range: 323-363 K By PLP; temperature range: 298-328 K By PLP; temperature range: 293-353 For dp (degree of polymerization) >4 For all chain lengths together Bulk and diluted systems initiated by (p-acetylbenzylidene)triphenylarsonium Measurements by rotating sector method; initiators: AIBN (30-50 0 C), BPO (70-90 °C) Styrene Perdeuterated styrene PLP; temperature range: 303-363 K; in bulk Measurments by ESR; photo and thermal initiation; temperature range: 293-363 0C PLP; temperature range: 261-366 K; bulk polymerization with photoinitiators: benzoin and 2,2-dimethoxy-2phenylacetophenone (DMPA) In emulsion In emulsion
25.4
Searched by EVM
Refs. 76 79 89 132 109 156 162 163 164 165 166 167 168 169 170 171
172 173 174
39 36 36 109 175 176 177 178
TABLE 8. VINYL HETEROAROMATICS Monomer
Ev-\Et
3-Methylene-5,5-dimethyl-2-pyrrolidone
8.2
Methylene-Af-methylpyrrolidone
20.1
N-Vinylcarbazole 2-Vinylpyridine Af-Vinylpyrrolidone (A) (B) (C) (D)
28.9 33.5 29.7 68.0 40.Od= 2.0 31.6 ±3.0 23.0
20.9 6.7 19.0 13.0 9.0 8.0
23.0 26.4 58.5 33.5 ±2.0 27.5 ±3.0 19.0
Remarks Solution polymerization in DMSO with AIBN (calculated from £ov assuming £ d o f AIBN =129 kJ/mol) In bulk and in solution with acetonitrile; AIBN initiator (assume Ed = 128 kJ/mol) Low conversion In various solvents: (A) Water (B) L-Propanol (C) Methanol (D) Ethyl acetate; rates followed by dilatometry
Refs. 179 86 42 40 41 61
Table 8. cont'd Monomer
Ev
E1
E9-±Et 4.8 (1) 12.8 (2) 10.8
65.8 ± 0.1 29.7
Remarks
Refs.
Template polymerization in DMF; AIBN initiator; DSC used to follow reaction Solution polymerization In DMF; assume Ed of AIBN in DMF =142 kJ/mol; reaction followed by DSC in 2 modes: (1) dynamic (2) isothermal Aqueous phase polymerization with potassium peroxydiphosphate Ag + ; temperature range: 293-323 K
6.7
4-Methylene-4H-l,3-benzodioxin-2-one
11.2
Solution polymerization in rc-methyl-2pyrrolidone with AIBN (calculated from Eov assuming Ed of AIBN= 129 kJ/mol)
74 75
180 181 182
TABLE 9. MISCELLANEOUS COMPOUNDS Monomer Acetaldehyde
Ep
Et
Ep-\Et
46.0 ± 6.3
Diethyl fumarate
25.0 ± 2.0
26.5 Diisopropyl fumarate Formaldehyde D-Methylene-y-butyrolactone
16.8 8.4
Vinylferrocene
20.0
16.3 12.1 7.9
N-Vinyl-methylacetamide ot-Ethyl, P-hexafluoroisopropyl itaconate
26.9 18.0
57.4
29.0 21.0 28.5
30.0 24.0 66.1
Diethyl itaconate
Diisopropyl itaconate Di-«-Butyl itaconate (DBI)
0.5 4.35
l,l-bis[(l-adamantyloxy)carbonyl]-2-vinylcyclopropane Diethylene glycol bis-allyl carbonate (DEAC) A^-Acryloyl-2,2-dimethyl-5®-phenyl-l, 3-oxazolidine (ADPO)
87.1 53.6 29
21
Remarks
Refs.
Radiation induced in solid phase; calorimetry used to follow reaction; temperature range: 130-150 0 K Bulk polymerization; AIBN initiator; (assume Ed = 128 kJ/mol) dilatometry used to follow the reaction; temperature range: 60-80 0 C Assuming Ed = 129; by dilatometry; bulk polymerization; initiator: AIBN
54 59
183
184 Quoted in 54 Solution: DMF; AIBN initiator (assume 80 Ed = 128 kJ/mol); E9-E1K 12.1 Note nonclassical kinetics; overall 62 activation energy does not equal Ed + Ep — Et/2\ can approximate Et = that of styrene Solution: methanol; AIBN initiator; 83 maximum conversion 10%; temperature range: 25-75 0C Polymerization in benzene catalyzed by 185 dimethyl 2,2-azobisisobutyrate Polymerization in benzene catalyzed by dimethyl 2,2-azobisisobutyrate 186 (no SnCl4) (0.342 mol/1 SnCl4) Polymerization in benzene catalysed by 187 dimethyl 2,2-azobisisobutyrate Assuming Ed = 129; by ESR; solution 188 polymerization in benzene; initiator: AIBN Assuming Ed = 129.1; By ESR; 188 solution polymerization in benzene; / initiator: 2,2 -azobis(isobutyrate): MAIB Ring-opening solution homopolymerization 189 in benzene; temperature range: 323-343 K; with AIBN (assume £D,AIBN = 123.5 kJ/mol) Rotating sector method; Initiator: BPO 190 Assuming Ed = 124.3; temperature range: 191 323-343 0 C; solution polymerization in benzene; initiator: 2,2'-azobis(isobutyrate): MAIB
References page II - 424
Table 9. cont'd Monomer
Ep
Et
Af-Cyclohexyrmaleimide (CHMIm)
40.9
20.1
Af-Acryloyl-/?-aminobenzoic acid
Ep-\Et
48.3
Remarks By ESR; temperature range: 313-333 K; solution polymerization in benzene; initiator: AIBN Assuming E^= 129; solution polymerization in dioxane; initiator: AIBN
Refs. 192
193
C. REFERENCES 1. G. M. Burnett, H. W. Burnett, Nature, 156, 661 (1945). 2. W. V. Smith, J. Am. Chem. Soc, 70, 3695 (1948). 3. C. H. Bamford and M. J. S. Dewar, Proc. Roy. Soc. (London) A, 192, 369 (1948). 4. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Am. Chem. Soc, 71, 497 (1949). 5. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Am. Chem. Soc, 71, 2610 (1949). 6. G. Dixon-Lewis, Proc. Roy. Soc (London) A, 198, 501 (1949). 7. M. H. Mackay, H. W. Melville, Trans. Faraday Soc, 45, 323 (1949). 8. H. W. Melville, A. F. Bickel, Trans. Faraday Soc, 45, 1049 (1949). 9. J. D. Burnett, H. W. Melville, Trans. Faraday Soc, 46, 976 (1950). 10. G. M. Burnett, Trans. Faraday Soc, 47, 772 (1950). 11. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Am. Chem. Soc, 73, 1700 (1951). 12. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J. Am. Chem. Soc, 73, 5395 (1951). 13. D. H. Volman, J. Chem. Phys., 19, 68 (1951). 14. M. Morton, R P Salatiello, H. Landfield, J. Polym. ScL, 8, 215 (1952). 15. M. Morton, P P Salatiello, H. Landfield, J. Polym. ScL, 8, 279 (1952). 16. D. H. Volman, W. M. Graven, J. Am. Chem. Soc, 75, 3111 (1953). 17. G. M. Burnett, W. W. Wright, Proc Roy. Soc. (London) A, 221, 41 (1954). 18. W. I. Bengough, H. W. Melville, Proc. Roy. Soc. (London) A, 230, 429 (1955). 19. E. Bartholme, H. Gerrens, R. Herbeck, H. Weitz, Z. Electrochem., 60, 334 (1956). 20. N. Grassie, E. Vance, Trans. Faraday Soc, 52, 727 (1956). 21. L. C. Landers, D. H. Volman, J. Am. Chem. Soc, 79, 2996 (1957). 22. W. I. Bengough, Trans. Faraday Soc, 54, 868 (1958). 23. Z. A. Sinitsyna, Kh. S. Bagdasaryan, Zh. Fiz. Khim., 32, 1319 (1958). 24. Z. Laita, Z. Machacek, J. Polym. ScL, 38, 459 (1959). 25. F. S. Dainton, R. S. Eaton, J. Polym. ScL, 39, 313 (1959).
26. W. I. Bengough, H. W. Melville, Proc. Roy. Soc (London) A, 249, 445 (1959). 27. D. H. Grant, N. Grassie, Trans. Faraday Soc, 55, 1042 (1959). 28. P Heyden, H. W. Melville, J. Polym. ScL, 43, 201 (1960). 29. G. Henrici-Olive, S. Olive, Makromol. Chem., 37, 71 (1960). 30. G. V Schulz, G. Henrici-Olive, S. Olive, Z. Physik. Chem. (Frankfurt), 27, 1 (1960). 31. P. E. M. Allen, G. M. Burnett, J. M. Downer, J. R. Majer, Makromol. Chem., 58, 169 (1962). 32. W. Rabel, K. Ueberreiter, Ber. Bunsenges., 67,710 (1963). 33. N. Coleboume, E. Collinson, D. J. Currie, and F. S. Dainton, Trans. Faraday Soc, 59, 1357 (1963). 34. F. S. Dainton, W. D. Sisley, Trans. Faraday Soc, 59, 1369 (1963). 35. M. Morton, W. E. Gibbs, J. Polym. Sci. A, 1, 2679 (1963). 36. K-P Paoletti, F. W. Billmeyer, J. Polym. Sci. A, 2, 2049 (1964). 37. A. F. Revzin, Kh. S. Bagdasaryan, Zh. Fiz. Khim., 38, 1020 (1964). 38. T A . Berezsnich-Foldes, F. Tudos, Vysokomol. Soedin., 6, 1529 (1964). 39. M. Imoto, M. Kinoshita, M. Nishigaki, Makromol. Chem., 86, 2167 (1965). 40. W. I. Bengough, W. Henderson, Trans. Faraday Soc, 61, 141 (1965). 41. V. A. Agasandyan, E. A. Trosman, Kh. S. Bagdasarayan, A. D. Litmanovich, V. Ya. Shtern, Vysokomol. Soedin., 8, 1580 (1966). 42. J. Hughes, A. M. North, Trans. Faraday Soc, 62, 1866 (1966). 43. A. N. Plyusnin, N. M. Chirkov, Teoret. Eksp. Khim., 2, 777 (1966). 44. S. Machi, S. Kise, M. Hagiwara, T. Kagiya, J. Polym. Sci., A-I, 5, 3115 (1967). 45. F. Khrabk, M. Bezdek, V. Hynkova, Z. Pelzbauer, J. Polym. Sci. C, 16, 1345 (1967). 46. E. F. Nosov, Kinet. Katal. 8, 680 (1967). 47. J. P. Fischer, G. V. Schulz, Ber. Bunsenges. Phys. Chem., 74, 1077 (1970). 48. G. Palma, L. Busolini, S. Lora, Eur. Polym. J., 6, 453 (1970).
49. T. Nakaya, H. Wada, M. Tanaka, J. Macromol. Sci., Chem., A: 5, 1043 (1971). 50. S. R Sood, J. W. Hodgins, J. Polym. Sci. A-I, 9, 3383 (1971). 51. S. E. Bresler, E. N. Kazebov, V. N. Fomichev, V. N. Shadrin, Makromol. Chem., 157, 167 (1972). 52. L. Busulini, S. Lora, G. Palma, G. Lunardon, Eur. Polym. J., 8, 455 (1972). 53. S. E. Bresler, E. N. Kazebov, V. N. Shadrin, Makromol. Chem., 175, 2875 (1974). 54. P. P. Kuryukhin, I. M. Barkalov, V. I. Gol'danski, Eur. Polym. J., 10, 309 (1974). 55. S. Lora, G. Palma, L. Busulini, B. Castiletti, Eur. Polym. J., 10, 1223 (1974). 56. T. Malavasic, I. Vizovisek, S. Lapanje, A. Moze, Makromol. Chem., 175, 873 (1974). 57. A. Moze, I. Vizovisek, T. Malavasic, F. Cernec, S. Lapanje, Makromol. Chem., 175, 1507 (1974). 58. N. A. Plate, A. G. Ponomarenko, Polym. Sci. U.S.S.R., 16, 3067 (1974). 59. W. I. Bengough, G. B. Park, R. A. Young, Eur. Polym. J., 11, 305 (1975). 60. C. Chachaty, M. Latimer, A. Forchioni, J. Polym. Sci.: Polym. Chem. Ed., 13, 189 (1975). 61. E. Senogles, R. Thomas, J. Polym. Sci.: Polym. Symp. Ed., 49, 203 (1975). 62. M. H. George, G. E. Hayes, J. Polym. Sci.: Polym. Chem. Ed., 13, 1059 (1975). 63. J. N. Cardenas, K. F. O'Driscoll, J. Polym. Sci.: Polym. Chem. Ed., 15, 2097 (1977). 64. H. K. Mahabadabi, K. F. O'Driscoll, J. Macromol. Sci. Chem. A: 11, 967 (1977). 65. H. K. Mahabadabi, K. F. O'Driscoll, Makromol. Chem., 178, 2629 (1977). 66. H. K. Mahabadabi, K. F. O'Driscoll, Makromol. Chem., 179, 1921 (1978). 67. K. Matsuo, G. W. Nells, R. G. NeIb, W. H. Stockmayer, Macromolecules, 10, 654 (1977). 68. R C. Deb, S. K. Kapoor, Eur. Polym. J., 15, 477 (1979). 69. V. F. Kurenkov, V. A. Myagchenkov, Eur. Polym. J., 16,1229 (1980). 70. S. W. Landsdowne, R. G. Gilbert, D. H. Napper, J. Chem. Soc, Faraday Trans. I, 76, 1344 (1980). 71. CU.Pittman,M.Ueda,K.Iri,Y.Imai,Macromolecules, 13, 1031 (1980). 72. S. K. Soh, J. Appl. Polym. Sci., 25, 2993 (1980). 73. U. Tatsuikami, T. Takahashi, H. Yoshioka, Makromol. Chem., 181, 1097 (1980). 74. G. O. R. Alberda van Ekenstein, Y. Y. Tan. Eur. Polym. J., 17, 838 (1981). 75. G. O. R. Alberda van Ekenstein, D. W. Koetsier, Y. Y. Tan, Eur. Polym. J., 17, 845 (1981). 76. B. Harris, A. E. Hamielec, L. Marten, A. C. S. Symp. Series, 165, 315 (1981). 77. M. Kamachi, D. J. Liaw, S. Nozakura, Polym. J., 13, 41 (1981).
78. M. Ueda, K. Iri. Y. Imai, C. U. Pittman, Macromolecules, 14, 1046 (1981). 79. S. K. Soh, D. C. Sundberg, J. Polym. Sci.: Polym. Chem. Ed., 20, 1345 (1982). 80. M. Ueda, M. Takahashi, Y. Imai, C. U. Pittman, J. Polym. Sci.: Polym. Chem. Ed., 20, 3819 (1982). 81. M. Ueda, M. Takahashi, Y. Imai, C. U. Pittman, J. Polym. Sci.: Polym. Chem. Ed., 20, 3829 (1982). 82. M. Buback, H. Lendle, Makromol. Chem., 184, 193 (1983). 83. J. P. Fischer, S. Rosinger, Makromol. Chem. 184, 1247 (1983). 84. A. Matsumoto, T. Nakana, M. Oiwa, Makromol. Chem.: Rapid Commun., 4, 277 (1983). 85. M. Stickler, Makromol. Chem., 184, 2563 (1983). 86. M. Ueda, M. Takahashi, T. Suzuki, Y. Imai, C. U. Pittman, J. Polym. Sci.: Polym. Chem. Ed., 20, 1139 (1983). 87. M. Ueda, T. Suzuki, Y. Imai, C. U. Pittman, E. Wallace, J. Polym. Sci.: Polym. Chem. Ed., 21, 2997 (1983). 88. V. R. R Verneker, R. Vasanthakumari, J. Polym. Chem. Ed., 21, 1657, 1664 (1983). 89. C. I. Kao, D. B. Gundlach, R. T. Nelson, J. Polym. Sci. Polym. Chem. Ed., 22, 3499 (1984). 90. S. Deibert, F. Banderman, Makromol. Chem. Rapid. Commun., 13, 351 (1992). 91. M. Morton, R R Salatillo, H. Landfield, J. Polym. Sci., 8,215 (1952). 92. M. Kamachi, Polym. Pre., 38, 649 (1997). 93. S. Agrawal, C. D. Han, AlChE J., 21 (3), 449 (1975). 94. C. H. Chen, J. G. Vermeychuk, S. A. Howell, R Elrich, AlChE J, 22, 463 (1976). 95. S. Goto, S. Yamamoto, S. Furui, M. Sugimoto, J. Polym. Sci.: Appl. Polym. Symp., 36, 21 (1981). 96. K. H. Lee, J. P. Marano, in: J. N. Henderson, T. C. Bouton (Eds.), "Polymerization Reactors and Processes", ACS, Symp. Series 104, 1979, p. 221. 97. G. M. Donati, M. Marini, L. Marziano, C. Mazzaferri, M. Spaminaot, E. Langianni, in: J. Wei, C. Georgakis (Eds.), "Chemical Reaction Engineering", ACS Symp. Ser. 196, 1982, p. 579. 98. W. Hollard, R Elrich, Chem. Eng. Commun., 24, 57 (1983). 99. H. Mavridis, C. Kiparissides, Polym. Proc. Engng., 3 (3), 263 (1985). 100. R R Shirodkar, G. O. Tsien, Chem. Engng. Sci., 41 (4), p. 1031 (1986). 101. R J. Scott, A. Penlidis, G. L. Rempel, Polym. Rxn Engng., 3 (2), p. 93 (1995). 102. A. Penlidis, Ph. D. Thesis, McMaster University, 1986. 103. C. Kiparissides, G. Verros, G. Kalfas, M. Koutoudi, C. Kantzia, Chem. Eng. Commun., 121, 193 (1993). 104. L. Marini, C. Georgakis, AlChE J., 30 (3), 410 (1984). 105. A. Brandolin, M. H. Lacunza, R E. Ugrin, N. J. Capiati, Polym React. Engng. 4 (4), 193 (1996). 106. R Lorenzini, M. Pons, J. Villermaux, Chem. Engng. Sci., 47 (15), 3981 (1992). 107. R. A. Scott, N. Peppas, AlChE J., 43 (1), 135 (1997).
108. H. G. Poersch-Panke, A. Avela, K. H. Reichert, Angew. Chemie, 206, 157 (1993). 109. J. Gao, A. Penlidis, J. Macromol Si., Rev. Macromol. Chem. C, 36 (2), 199 (1996). 110. R Pascal, D. H. Napper, R. G. Gilbert, M. C. Piton, M. A. Winnik, Macromolecules, 23 (24), 5161 (1990). 111. J. Hernadez-Barajak, D. J. Hunkler, Polym. Adv. Tech., 6, 509 (1995). 112. N. F. Umoh, P. Harriott, R. Hughes, Chem. Eng. J., 21, 85 (1981). 113. K. C. Gupta, J. Macromol. ScL, Pure & Appl. Chem. A, 31, 805 (1994). 114. B. Chaturvedi, A. K. Srivastava, Indian J. Technol., 31 (12), 851 (1993). 115. B. R Agrawal, A. K. Srivastava, Macromol. Rep. A, 29 (Suppl. 3), 325 (1992). 116. R. A. Lyons, J. Hutovic, M. C. Piton, D. Christie, P. Clay, B. G. Mandrs, S. H. Kable, R. G. Gilbert, Macromolecules 29, 1918 (1996). 117. M. Buback, B. Degener, Makromol Chemie, 194, 2875 (1993). 118. M. Buback, B. Degener, B. Huckstein, Makromol Chemie, Rapid Commun., 10, 311 (1989). 119. S. Beuermann, D. A. Paquet Jr., R. A. Hutchinson, Macromolecules, 29 (12), 4206 (1996). 120. M. T. Iglesias, G. M. Guzman, J. Riande, E., J. Polym. ScL, Part A: Polym. Chem. 32 (13), 2565 (1994). 121. H. Tanaka, S. Yoshida, Macromolecules, 28 (24), 8117 (1995). 122. C. C. Lin, W. Y. Chiu, C. T. Wang, J. Appl. Polym. ScL, 23, 1203 (1979). 123. C. Lin, W. Chiu, C. Wang, J. Appl. Polym. Sci. 23, p. 1203 (1979). 124. N. Jocheska, G. Petrov, A. Jenevski, A., Sedenik, Eur. Polym. J., 32 (2), 209 (1996). 125. S. Beuermann, D. A. Paquet, J. McMinn, R. A. Hutchinson, Macromolecules, 30 (2), 194 (1997). 126. S. Lora, G. Palma, L. Busilini, B. Castelleti, Eur. Polym. J., 10, 1223 (1974). 127. R. A. Hutchinson, D. A. Paquet Jr., J. H. McMinn, R. E. Fuller, Macromolecules, 28, p. 4023 (1995). 128. P. Pascal, M. A. Winnik, D. H. Napper, R. G. Gilbert, Makromol. Chem., Rapid Commun., 14 (3), 213 (1993). 129. J. Cardenas, K. F. O'Driscoll, J. Polym. ScL: Polym. Chem., 15, 2097 (1977). 130. H. H. Catalgil, B. M. Baysal, Eur. Polym. J., 27 (1), 7 (1991). 131. R. A. Hutchinson, D. A. Paquet, J. H. McMinn, S. Beuermann, in 5th International Workshop on Polymer Reaction Engineering, Dechema Monographs, vol. 131, 1995, p. 467. 132. N. Tefera, G. Weickert, K. R. Westerterp, J. Schweer, in 5th International Workshop on Polymer Reaction Engineering, Dechema Monographs, vol. 131, 1995, p. 557. 133. K. Y. Choi, D. N. Butala, Polym. Eng. ScL, 31 (5), 353 (1991). 134. G. Maschio, T. Bello, C. Scali, Chem. Engng. ScL, 47 (9), 2609 (1992). 135. T. P. Davis, K. F. O'Driscoll, M. C. Piton, M. A. Winnick, Macromol., 23, 2113 (1990).
136. G. Polacco, D. Semino, M. Palla, Polym. Eng. ScL, 36 (11), 2088 (1996). 137. J. Congalides, J. Richards, W. H. Ray, AlChE J., 35 (6), 891 (1989). 138. P. E. Baillagou, D. S. Soong, Chem. Engng. Sci., 40 (1), 87 (1985). 139. D. Panke, M. Stickler, W. Wunderlich, Makromol. Chem., 184, 175 (1983). 140. S. Beuermann, Ph.D. Thesis, University of Gottingen 1993. 141. U. Begert, M. Buback, J. Heyne, Macromol. Chem. Rapid Commun., 16, 275 (1995). 142. S. Beuermann, M. Buback, T. R Davis, R. G. Gilbert, R. A. Hutchinson, O. F. Olaj, G. T. Russel, J. Schweer, A. M. van Herk, Macromol. Chem. Phys., 198, 1545 (1997). 143. G. T. Russel, Macromol. Theory Simul., 4, 549 (1995). 144. R. A. Hutchinson, Polym. React. Eng., 1, 521 (1993). 145. U. Berger, S. Beuermann, M. Buback, H. K. Caroline, G. T. Russell, C. Schmaltz, Macromol. Rapid Commun., 16, 425 (1995). 146. R. A. Hutchinson, M. T. Aronson, J. R. Richards, Macromolecules, 26, 6410 (1993). 147. L. Vrhovac, D. Filipovic, M. Misic-Vukovic, J. Vellekovic, Int. J. Chem. Kin., 24 (10), 861 (1992). 148. T. Sato, I. Kamiya, H. Tanaka, T. Ota, Eur. Polym. J., 27 (10), 1087 (1991). 149. T. Sato, N. Morita, H. Tanaka, T. Ota, Macromol. Chem. Phys., 191 (11), 2599(1990). 150. M. Coskun, K. Demirelli, M. A. Ahmetzade, J. Macromol. ScL, Pure Appl. Chem. A, 34 (3), 429 (1997). 151. D. A. Shipp, T. A. Smith, D. H. Soloman, G. Moad, Macromol. Chem. Rapid Commun., 16, 837 (1995). 152. M. Ueda, H. Mori, H. Ito, J. Polym. Sci., Polym. Chem. A, 28 (10), 2597 (1990). 153. J. C. Pinto, Polym. Eng. Sci., 30 (5), 291 (1990). 154. C. Sidiropoulou, C. Kiparissides, J. Macromol. Sci. A: Chem., 27 (3), 257 (1990). 155. T. Pernecker, T. Foldes-Berezsnich, F. Tudos, J. Macromol. ScL A: Chem., 27 (8), 1029 (1990). 156. M. Kamachi, Adv. Polym. Sci., 82, p. 207 (1987). 157. N. Friis, D. Goosney, J. D. Wright, A. E. Hamielec, J. Polym. Sci., 18, 1247 (1974). 158. S. S. Jang, P. H. Liu, Chem. Engng. Sci., 46 (12), 3153 (1991). 159. J. Congalides, J. Richards, W. H. Ray AlChE J., 35 (6), 891 (1989). 160. F. Teymour, Ph.D. Thesis, University of Wisconsin (Madison) (1989). 161. R. A. Hutchinson, J. R. Richards, M. T. Aronson, Macromolecules, 27 (16), 4530 (1994). 162. B. Yamada, M. Kageoka, T. Otsu, Polym. Bull. 29 (3-4), 385 (1992). 163. N. Tefera, G. Weickert, R. Bloodworm, J. Schweer, Macromol. Chem. Phys., 195, 3067. 164. M. Buback, L. H. Garcia-Rubio, R. G. Gilbert, D. H. Napper, J. Guillot, A. E. Hamielec, D. Hill, K. F. O'Driscoll, F. Olaj, J. Shen, D. Soloman, G. Moad, M. Stickler, M. Tirrell,
165. 166. 167. 168. 169. 170. 171. 172. 173. 174.
175. 176. 177. 178. 179.
M. A. Winnick, J. Polym. ScL: Polym. Let., 26, 293 (1988). D. K. Sharma, D. S. Soong, Macromol., 21 (3), (1988) W. Lansdowne, R. G. Gilbert, D. H. Napper, D. F. Sangster, J. Chem. Soc, Faraday Trans., 76, 1344 (1980). S. E. Bresler, E. N. Kazbekov, U. N. Shardin, Makromol. Chem., 157, 167 (1972). T. P. Davis, K. F. O'Driscoll, M. C. Piton, M. A. Winnick, Macromol., 22, 2785 (1990). M. Deady, A. W. H. Mau, G. Moad, T. H. Spurly, Macromol Chem., 194, 1691 (1993). R. Vasishtha, A. K. Srivastava, Polymer, 31 (1), 150 (1990). G. Clouet, P. Chaffanjon, J. Macromol. Sci. A: Chem., 27 (2), 193 (1990). M. Buback, F. D. Kuchta, Macromol. Chem. Phys., 196, 1887 (1995). M. Kamachi, A. Kajiwara, Macromol. Chem. Phys., 198, 787 (1997). M. Buback, R. G. Gilbert, R. A. Hutchinson, B. Klumpermann, F. D. Kuchta, B. A. Manders, K. F. O'Driscoll, G. T. Russell, J. Schweer, Macromol. Chem. Phys., 196, 3267 (1995). S. K. Soh, D. C. Sundberg, J. Polym. Sci.: Polym. Chem., 20, 1345 (1982). O. Chiantore, A. E. Hamielec, Polymer, 26, 608 (1985). J. P. Fisher, Makromol. Chem., 155, 211 (1972). E. Vivaldo-Lima, A. E. Hamielec, R E. Wood, Polym. React. Engng., 2 (2-1), 87 (1994). K. C. Gupta, J. Appl. Polym. Sci., 53 (1), 71 (1994).
180. K. C. Gupta, J. Appl. Polym. Sci., 53 (1), 71 (1994). 181. V. A. Agasandyan, E. A. Trosman, Kh. S. Bagdasar'yan, A. D. Litmovich, V. Ya. Shtern, Vysokomol. Soyed., 8,1580 (1966). 182. M. Ueda, H. Toyota, A. Sane, H. Ito, J. Polym. Sci., Polym. Chem., 131, 1895 (1993). 183. O. Takayuki, Y. Bunichiro, I. Toshihiro, Macromolecules, 24/2, 415 (1991). 184. B. Yamada, E. Yoshikawa, H. Miura, T. Otso, Macromol. Chem. Rapid Commun., 13, 531 (1992). 185. T. Sato, Y. Hirose, M. Seno, H. Tanaka, J. Polym. Sci., Part A: Polym. Chem., 33 (5), 797 (1995). 186. T. Sato, H. Nakamura, H. Tanaka, T. Ota, Makromol. Chem., 192(11), 2659 (1991). 187. T. Sato, Y. Hirose, M. Seno, H. Tanaka, N. Uchiumi, M. Matsumoto, Eur. Polym. J., 30 (3), 347 (1994). 188. T. Sato, S. Inui, H. Tanaka, T. Ota, M. Kamachi, T. Tanaka, J. Polym. Sci., Part A: Polym. Chem., 25, 637 (1987). 189. J. Sugiyama, N. Kanamori, S. Shimada, Macromol., 29, 1943 (1996). 190. V. S. Nikiforenko, Yu. S. Zaitsev, V. V. Zaitseva, Academician R. V. Kucher, S. V. Muravchenko, A. V. Bulavin, L. N. Mikhailova, Doklady Physical Chemistry, 300 (1-3), 455 (1988). 191. M. Seno, T. Takikawa, H. Tanaka, T. Sato, Macromolecules, 28, 4795 (1995). 192. T. Sato, K. Arimoto, H. Tanaka, T. Ota, K. Kato, K. Doiuchi, Macromolecules, 22, 2219 (1989). 193. B. Patel, B. Suthar, R. Patel, Macromolecular Reports, 29 (1), 55 (1992).
Activation Volumes of Polymerization Reactions G. Luft n l stiut fur Chem siche Technoo lgei, Technsiche Hochschuel, Darmsad,t FR Gem r any Yh Oag Research n Istiute for Sovlo t.erm loT*echnoo lgy, Takamas tu, Takamas tu, Japan
A IA trocd uo co tinVo 11e 4 -2 9o B..Rn v t i a t i n u l m e s o f S o m e P o y l m z r i a itn e a c o i t n s 1 1 4 3 2 C .. A c v titia o titin V o u llm e s o ff C n I tih aatn o rP D ep co m p oo s itin114 1514 -35 D A c v a o n V o u m e s o i r o a g a o i t n 3 E Ac cv v ao o nV Vo o u me es so off C Ch ha an n Tre m irao itn 114 -36 F.. A titia titin u llm ii T arn se fn Reactions G. Influence of Pressure on Copolymerization Table 1. Copolymerization Parameters Table 2. Reactivity Ratios of Terpolymerization Table 3. Activation Volumes Table 4. Q, e Values H. References A.
11-436 11-437 II-437 II-438 II-439 II-440 II-440
INTRODUCTION
The activation volume is included in the pressure dependence of the reaction rate constant (1-4): (Al) where k is the reaction rate constant, p is the pressure, T, the temperature K the volume, and Av*, the activation volume (analogous to the activation energy). It is the difference between the partial molar volume of the activated complex, as formed in the transition state theory by the efficient collision of molecules, and those of the initial reactants. The sign of the activation volume depends on the type of the chemical reaction. If new bonds are formed in the transition state, the activated complex is larger than the
* Table 3. Activation Volumes.
initial species, and hence the activation volume is positive. Inversely the activation volume is negative if bonds are stretched and broken. For a rough calculation of the activation volume, we can assume that the formation of new bonds as well as stretching occurs along the axis of a cylinder, whose constant cross section is determined by the van der Waal's radii dmA/2, dmB/2, and dmC/2 of the atoms A, B, C:
(A2) with A A B = (0.10-0.35) dmAB, A B ,c = (1.10-1.35)J m B C ^mB,c (see Refs. 2,5,6), N is the Avogadro number, dmAB, dmBC = bond length (values, see Ref. 7), and d mB c is the interatomic distance at the minimum of potential (sum of van der Waal's radii), d mA / 2 , dmB/2 (see Ref. 8). The stretching of the bonds in the transition state is about 0.01-0.1 nm, whereas the change in the distance dmB£ between the unbonded atoms is usually larger (up to 0.25 nm). If the decomposition of the activated complex causes only small changes in the bond length or in the distance between the atoms, its partial molar volume differs from that of the activated complex only slightly. Hence we can assume
where Av is the excess of the partial molar volume of the reaction products over the partial molar volumes of the initial species. This simplification is valid for reactions in which products of cyclic structure are formed, as in the dimerization of cyclopentadiene, with Ai>* ~ Av = — 30cm 3 /mol (9, 10).
A second term is added to the volume change of the reacting molecules in the transition state if a polar solvent is involved. This term takes into account the change in the packing density of the surrounding solvent molecules due to the arising or disappearing of electrostatic charges between the solvent and the reactant species. This volume change is negative in bimolecular association and positive in unimolecular dissociation and tends therefore to counteract the effect of volume change during the reaction. The activation volume can be determined according to Eq. (Al) from rate measurements at different pressures and constant temperature using a semilog plot of reaction rate constant versus pressure. In this evaluation the value of (QV/dp)T/V can often be neglected, because the compressibility of fluid reactants and compressed gases is generally small at pressures above 100-200MPa. At very high pressures the increase of the reaction rate constant at negative activation volume is retarded by the lower mobility of the molecules due to the increased viscosity. This effect was first measured by Hamann (11) in an examination of the alkaline etherification of ethyl bromide at pressures up to 4000MPa. It was also found in the polymerization of styrene by Nicholson and Norrish (12). In order to obtain the reaction rate as an explicite function of pressure, Eq. (Al) can be integrated, neglecting the compressibility and assuming that the activation volume does not change greatly with pressure (13): (A3) where kp is the reaction rate constant at pressure p and fco is the reaction rate constant at reference pressure po. According to Eq. (A3) the reaction rate constant increases exponentially with pressure if the activation volume is negative and decreases if Ai;* is positive. Eq. (A3) is valid only in the high pressure range (p > 50MPa). At low pressures the compressibility cannot be neglected anymore, and the activation volume changes noticeably with pressure, especially in the neighborhood of the critical point. Simmons and Mason (14) studied the dimerization of chlorotrifluoroethylene at pressures up to 10 MPa. They found that the value of the negative activation volume decreases first with pressure and then increases rapidly. It has a maximum at the critical point and after decreasing again it approaches asymptotically a constant value. The authors describe the pressure dependence of the rate constant, taking account of the partial molar volume of the initial reactants as well as that of the activated complex by the use of suitable equations of state (e.g., Redlich-Kwong or virial coefficient equations). In order to appreciate the influence of pressure on the reaction rate constant one can compare it with the influence of the temperature: an increase in pressure (activation volume Av* = —25cm3/mol) at a temperature of 500C from 0.1 to 450MPa corresponds to a temperature increase (activation energy E = 84kJ/mol) from 50 to 1050C.
Experimentally determined overall activation volumes of some polymerization reactions are listed in Section B. The data were determined from the dependence of the overall rate constant of the polymerization reactions on pressure. The values are more or less negative, hence the rate of polymerization increases with pressure. The overall activation volume is composed of the activation volumes of the different polymerization steps, initiation, or initiator decomposition, chain propagation and chain termination: (A4) where Av* is the activation volume of chain propagation, Av^ is the activation volume of initiation with respect to initiator decomposition, and Ai;* the activation volume of chain termination. The activation volumes of initiator decomposition (values in Section C) are always positive because this reaction is a unimolecular dissociation, in which a bond (e.g., the O-O bond in peroxides and peresters or the N-N bond in azo-compounds) is stretched in the transition state and finally broken. As mentioned before, Ai;^ depends on the solvent. It can significantly be influenced by a change of electrostatic charges, viscosity, and cage effects. The activation volume of initiator decomposition is different when induced decomposition is involved at high concentration of the initiator or when the initiator decomposes in a concerted mechanism. Av^ is small for two-bond scission initiators (15). The activation volume is higher for one-bond scission initiator, bulky molecules, and when more bonds brake simultaneously. The data collected in Section C were obtained in separate measurements, observing the decrease of the initiator concentration with time at different pressures. The disappearance of the initiator can also be measured during polymerization by observing the light absorption at a characteristic waver length or using scavenger techniques. In the chain propagation reaction, the decrease in the distance between the radical and the monomer molecule is greater than the increase in length of the double bond of the monomer. Hence the activation volumes Ai;* listed in Section D are always negative. The data for Ai;* are measured at high pressures by the method of the rotating sector together with Ai;*, the activation volume of chain termination. The activation volumes Ai;* are also negative as shown in Section E. Mostly the termination reactions are diffusioncontrolled. The reactant molecules undergo translational diffusion at first to form a collision pair. It follows the movement of the reactive sites on these molecules into a position favorable to chemical reaction. This process has been considered to be the rate-determining step. The activation volume involved in this so-called segment diffusion is observed. When chain termination is governed by translational diffusion, the activation volume, Ai;*is for viscous flow, is the key parameter for the evaluation of the influence of pressure.
The chain transfer of a radical to the monomer, to a "dead" polymer, or to a modifier molecule is mostly favored by the pressure which means that the activation volumes should be negative, whereas the activation volume of the intramolecular transfer (by "back biting"), which initiates the formation of short side chains, can be negative or positive. The activation volumes of these reactions are determined from the change in short- and long-chain branching or from the change of the average molar mass or degree of polymerization of the formed polymers with pressure. Under the assumption that the monomer and the polymer concentration do not change over a wide range and that the temperature is kept constant, the following relation can be derived from kinetic considerations:
modulus increase with pressure: (A7)
(A5)
where v = chain length. The small negative activation volume of the intramolecular chain transfer shows that this reaction step, which determines the short chain branching, is less favored by high pressures, which means that polymers with high density and crystallinity can be synthesized at high pressures. Similar considerations also show that the composition of copolymers and thus their molecular structure is influenced by the synthesis pressure. The pressure dependence of the copolymerization parameters r\ and r2, which determine the composition of a copolymer, is expressed by the relationship
where VZG is the number of branches and Av *r is the activation volume of the chain transfer reaction. Analogously, the influence of the pressure on the chain transfer to a modifier can be described by the expression
(A8)
(A6) where P is the average degree of polymerization obtained in the presence of a transfer agent and P n o is the average degree of polymerization obtained in the absence of a transfer agent. Because of the mostly negative sign of the activation volumes (listed in Section F), the radical transfer to the modifier molecule is often slightly decreased at high pressures. The activation volume of degradation reactions which can occur at high temperatures should be positive because bond cleavage increases the volume of the activated complex more than the formation of double bonds from single bonds decreases it. The difference in the activation volumes of the various component reactions results in a different influence of the pressure on the rate constants and leads to modified polymers. Because of its larger negative activation volume the chain propagation reaction is more favored by high pressures than the termination. The chain length and consequently the tensile strength as well as the tensile
where Av*n, Av* 22 are the activation volumes of the propagation reaction between a monomer molecule and a radical formed from the same monomer, and Av *12, Ai>*21 are the activation volumes of the propagation reaction between a monomer molecule and a radical formed from the comonomer. Equation (A8) is valid if the composition of the initial reaction mixture does not change appreciably with pressure. According to Eq. (A8), an increase in pressure favors the inclusion of monomers, which in homopolymerization show a large negative activation volume (e.g., substituted olefins). Values of copolymerization parameters obtained at different pressures and activation volumes of some copolymerization reactions are listed in Section G. When r\ and Yi should be calculated for high-pressure copolymerization, following Alfrey and Price, the pressure dependence of Q, e data must be taken into account. Some values of Q and e for high pressures are collected in Section G. The dependence of the e data of two monomers on pressure is given by the equation
(A9)
References page 11-440
B. ACTIVATION VOLUMES (cm3/mol) OF SOME POLYMERIZATION REACTIONS
Monomer Acenaphthylene Acetaldehyde
Acrylic acid anhydride Acrylonitrile AUyI acetate /V-(4-Anilinophenyl)acrylamide
3,3-Bis(chloromethyl)oxetane Butadiene
Butyl acrylate Butyl acrylate
Butyl methacrylate
2-Cyclopropylpropene-l Diallyl cyanamide Diallyl phthalate 3,3-Dichloropropene-l l,l-Dichloro-2-vinylcyclopropane Diethyl fumarate 3,3,3-Difluorochloropropene-l l,l-Difluoro-2-vinylcyclopropane
Maximum pressure (MPa) 390 150 844 844 844 400 200 850 100 200 300 500 1500 500 500 500 500 100 100 100 300 460 700 100 100 100 300 460 >460 140 140 600 500 500 1000 1000 1000 300 1400 1000 1000
Temp. (0C) 60 100-200 -60 - 70 -78 50 50 80 60 60 60 60 60 60 50 70 95 30 30 20 20 20 20 60 30 20 20 20 20 70 20 80 70 70 40 80 20 60 30 50 20
2,3-Dimethyl-l,3-butadiene Ethylene
1,2-Epoxycyclohexane Az-Hexyl methacrylate Indene Isobutyl methacrylate Isoprene
Solvent
AIBN Diethyamine
DMF DMF THF
Toluene
Benzene
Toluene Benzene
Heptane DEE 250 760 200 190
129 50-70 225-235 80
100-210 110-220 250 110-550 175 300 840-1250 450 800 800 100 1400 1400 1400 1400
200-300 190 130-165 170-240 127-197 135-165 60 20 20 64 60 20-30 20-30 20 20
Initiator0
Heptane Benzene Toluene Ethyl acetate
A^*
-5.8 -12.5 -11.1 - 8.0 -6.2 AIBN -14 AIBN -22* BPO -13.4 AIBN -36.1 -31.2 - 22.3 -15.4 -6.4 BF3/diethyl ether -16 -8.8 -13.3 -17.2 ACN -26.3 ACN -26.3 Radiation -21.0 -21.2 - 5.7 -11.4 AIBN -25.6 ACN -17.4 Radiation -21 -21.2 -5.7 -14.4 AIBN -23 Stannic chloirde -15 TBPB -14 AIBN - 9 . 9 to -11.8 AIBN -14.3 DCPC 0 to 8* AIBN -14^ Stannic chlorde - 30 to - 70 -14 DCPC -15 AIBN -15 Stannic chloride -45 BuLi -36 BuLi -48 DTBP - 2 0 to - 2 3 AIBN - 3 to - 6 Peroxide - 20 to - 26 DCPC -10 Enanthylperoxide - 5 8 to - 6 8 Methylinobutylketone -18 TBPO - 1 8 to - 2 2 TBPP -22.6 Oxygen - 1 2 to - 1 8 Diphenyl disulfide -29 DTBP -17.5 BPO -13 Radiation - 24 -17.4 -21.0 AIBN -23.9 Oxygen -11.0 BPO - 7 . 9 to 18.0 HLOI2O -7.9 HLW2O -9.8C
Refs. 16 127 142 51 52 17 150
55 141 91 154 147
128 90 94,95 53 53 54 130 57 56 18 58 59 59,60 133 46,20 19 73 74 151 114 61 79 21 85 79 55 94 22 122 23 24
Monomer
Isopropenylcyclopropane Itaconic acid
Maleic anhydride Maleimide Methyl acrylate
Methyl methacrylate
a-Methylstyrene
Octyl methacrylate Propylene
Sodium allylsulfonate Styrene
Maximum pressure (MPa)
Temp. (0C)
1400 1400 1400 500 500 500 500
20 70 20 40 50 60 70
500 100 180 270 400 700 200 300 100
20-40 50 20 20 20 20 40 40 30
300 550 100 100 100 100 100 100 400 100
20 20 50 50 40 50 60 70 50 50
100 100 100 100 100 350 500 500 500 500 100
50 50 50 50 50 60 50 60 70 80 30
1600 1600 1600 800 400 400 400 900 208
21 48 83 80-100 80 90 100 22
Radiation Radiation Radiation AIBN BPO BPO BPO Radiation Radiation
273 400 100
25 30 30
Radiation Radiation ACN
200 280 400 600 300 100 200
40 40 40 40 50 50 60
Radiation Radiation Radiation Radiation AIBN AIBN AIBN
Initiator0
Solvent Dichloromethane DMF DMF DMF DMF Methanol Benzene
HI/H2O AIBN Stannic chloride AIBN AIBN AIBN AIBN BPO AIBN Radiation
Peroxide Peroxide ACN Radiation Acetone Benzene Benzene Benzene Benzene Benzene Butyraldehyde Carbon tetrachloride Dichloroethane Ethanol Ethyl acetate H-Hexane Trichloromethane
Peroxide AIBN Peroxide Peroxide Peroxide Peroxide AIBN AIBN AIBN AIBN Peroxide Peroxide Peroxide AIBN AIBN AIBN AIBN ACN
H2O
\v* -10.8 -23.0 -15.0 - 23.2 -27.4 -30.8 -32.3 —4.6 - 1 5 to - 25 -17.6 -21.4 -22.9 -3.6 -12.8 -19 -19 -15.6 -21.8 C -23.6 -13.7 -26.0 -21.6 -17 -19 -21 -23 -25 -19 -21 -20 - 24 -19 -22 -18 -14.5 -13.8 -11.8 -10.7 -26.3 -25.6 C -9.6 -9.6 -12.2 -14 -9.0 -10.8 -12.7 - 5 to - 7 -20.5 -18.6 C + 5.8 -20.9 -18 -17.1 -17.6 C -15.8 -50.5 -4.3 -29.5 -21 -20.2 -15
Refs.
158 140
132 122 129 147
25 26 87,153 93,95 27 129 27 27 27 27 62 27 27 27 27 27 27 18 135
99 28 144
145 137 136 126 89 146 146 146 146 64 27 149
References page II - 440
Monomer
Maximum pressure (MPa)
Temp. (0C)
293 265 265 274
60 80 80 25
274
l,l,2,2-Tetrachloro-l,3-butadiene Tetrahydrofuran Vinyl acetate
Vinyl chloride
25
200-500 100 100
60 50 50
100 400 400 100
50 50 50 50
300 100 100 100 100 400 100 400 268 293 440 300 300 100-600 1400 250-540 100 600 400 400 300
25-30 50 50 50 50 60 50 60 60 60 60 30 40 72 25-80 60 30 20 40 40 40
400 500 390 390 390 390 250 200 300 200 400
65 60 40 50 60 70 50 60 60 60 60
Initiator0
Solvent
Emulsion Emulsion with SDS SDS Emulsion with aerosol OT Emulsion Emulsion with nonionic emulsifier Emulsion Acetone Benzene Benzene Benzene Butyraldehyde Butyraldehyde Carbon tetrachloride Chlorobenzene Chloroform Dichloroethene Ethanol Ethyl acetate Isopropyl aldehyde Hexane Propionaldehyde Tetrachloroethylene Toluene Triethylamine Triethylamine Triethylamine Triethylamine
Acetone Butyraldehyde Carbon tetrachloride Trichloroethylene
Benzaldehyde Benzene Benzonitrile Toluene
AIBN BPO Thermal Radiation
Av*
Refs.
-18 -17 -25.8 138 - 18.7C - 17.9C -18.3c
29 125 125
Radiation
AIBN AIBN AIBN Peroxide AIBN AIBN AIBN HClO4 AIBN AIBN AIBN AIBN AIBN AIBN AIBN Peroxide AIBN AIBN BPO BPO Thermal BF3/diethyl ether ACN Radiation AIBN AIBN AIBN AIBN BPO BPO BPO BPO LPO AIBN AIBN AIBN AIBN
138 138 138
-21.6
139 139
-11.1 -25.5 -19.2 -23.0 -18 -25 -22 -19.1
35 27 27 63 30 65 63 27
- 2 0 to - 2 5 -21.9 -21.2 -19.6 -24.3 -6.8 -19.1 -15.5 -16 -17 -17 -18 > —11.5 -17.5 -36 -22 -17.2 -9 -19 -21 -13
155 27 27 27 27 157 27 157 31 29 29 32 33 34 159 55 86 148 62 62 36
-10.5 -16.7 -4.6 -6.8 -8.1 -10.4 -18 -4.1 -20.5 -12.0 -8.2
65 131 143
124 98 131 98 98
a Abbreviation: ACN: l,l'-azobiscyclohexane-l-carbonitrile; AIBN: 2,2/-azobisisobutyronitrile; BPO: benzoyl peroxide; DCPC: dicyclohexyl peroxidicarbonate; DEE: diethyl ehter; DMF: dimethylformamide; DTBP: di-terf-butyl peroxide; LPO: lauroyl peroxide; TBPB: terf-butyl perbenzoate; TBPO: te/Y-butyl peroctoate; THF: tetrahydrofuran; SDS: sodium dodecylsulfate; Aerosol OT: sodium dioctyl sulfosuccinate; TBPP: tert-butyl pervivalate. ^Calculated by other authors. c Cationic polymerization.
C. ACTIVATION VOLUMES OF INITIATOR DECOMPOSITION
Initiator
Solvent
AIBN* Azobis-terf-butanolate Benzoyl peroxide
2,2-Bis(tert-butyl peroxy)butane Decanoyl peroxide Dicyclohexyl peroxydicarbonate Di-rc-propyl peroxydicarbonate Dioctanoyl peroxide Di-tert-butyl peroxide
Pentaphenylethane tert-Amyl perneodecanoate tert-Amyl perpivalate tert-Buty\ cyclohexanecarboxylate tert-Buty\ perbenzoate tert-Butyl perneodecanoate tert-Butyl perpivalate tert-Butyl peroxy-2-ethylhexanoate terf-Butyl phenylperacetate 1-Methyl-l propylpentyl perpivalate 1,1,4-Trimethylpentyl perpivalate 1,1,4-Trimethylpentyl perneodecanoate
Toluene Toluene Octane Acetophenone Allyl acetate Carbon tetrachloride Carbon tetrachloride Iso-dodecane Benzene Iso-dodecane Benzene Iso-dodecane Benzene Iso-dodecane Carbon tetrachloride «-Heptane Cyclohexane Toluene Toluene Toluene Iso-dodecane Iso-dodecane Cumene Cumene Benzene Iso-dodecane Iso-dodecane n-Heptane Benzene Cumene Iso-dodecane Iso-dodecane Iso-dodecane
Absolute pressure (MPa)
Temperature (0C)
Activation volume Av J (cm3/mol)
Refs.
0.1-150 0.1-1000 0.1-630 0.1-650 0.1-550 0.1-300 0.1-300 0.1-200 0.1-300 0.1-300 0.1-300 0.1-300 0.1-300 0.1-730 0.1-300 0.1-730 10-230 0.1-730 0.1-730 0.1-150 100-270 0.1-300 0.1-300 0.1-410 0.1-410 0.1-300 0.1-300 0.1-300 0.1-200 0.1-300 0.1-410 0.1-300 0.1-300 0.1-300
70 62.5 55 80 80 60 70 135-212 <100 95-200 <100 80-200 <100 120 143-230 120 140-200 120 120 60 50 100-200 120-200 80 80 <100 100-200 120-200 65-105 <100 80 120-200 120-200 100-200
13.1 3.8* to 9.4C 4.3 4.8 4.7 9.7 8.6 22.3 3 4.3 4 5.9 15 12.6 13.4 13.3 10.1 6.7 5.4 7 5 7.0 9.4 3.9 10 7 6.1 6.1 1.6 6 1 13 14 9
37 37 104 38 17 39 39 81 78 75 78 75 78 40 75 40 77 40 40 37 37 75 75 101 102 78 75 88 78 78 103 76 76 76
Absolute pressure (MPa)
Temperature (0C)
Activation volume Av* (cm3/mol)
Refs.
0.1-100 0.1-100 -40 50-175 0.1-100 0.1-100 0.1-100 0.1-100
30 30 24 130-200 30 30 30 30
-22.5 -23.2 -39 -25.5 -19 -24.7 -17.9 -23.3
91 90 152 85 87 99 89 86
a
Azobisisobutyronitrile. ^Photometric analysis. c By 12 scavenger technique.
D.
ACTIVATION VOLUMES OF C H A I N PROPAGATION
Monomer
Solvent
Butyl acrylate Butyl methacrylate Ethylene Ethylene Methyl methacrylate Octyl methacrylate Styrene Vinyl acetate
/-Butanol -
a
Initiator ACNa ACN Radiation Diphenyl disulfide ACN ACN ACN ACN
ACN: 1,1 -azocyclohexane-1,1' -dicarbonitrile.
References page 11-440
E. ACTIVATION VOLUMES OF CHAIN TERMINATION
Monomer Butyl acrylate Butyl methacrylate Ethylene Methyl methacrylate Octyl methacrylate Styrene Vinyl acetate a
Solvent -
Initiator ACN" ACN Diphenyl disulfide ACN ACN ACN ACN
Absolute pressure (MPa)
Temperature (0C)
Activation volume Av * (cm3/mol)
0.1-100 0.1-100 50-175 0.1-100 0.1-100 0.1-100 0.1-100
30 30 130-200 30 30 30 30
20.8 17.8 7 25.0 20.8 13.1 16.3
Refs. 91 90 85 87 99 89 86
ACN: 1,1 -azocyclohexane-1,1 '-dicarbonitrile.
F.
A C T I V A T I O N V O L U M E S O F C H A I N TRANSFER REACTIONS
Activation volume (cm3/mol) Monomer Acrylonitrile 3,3-Dichloropropene-l Ethylene
Transfer agent Butyraldehyde 3,3-Dichloropropene-l Acetone Butane Butanone Cyclohexane Cyclopentane Ethanol Ethylbenzene Ethylene Isopropanol Polyethylene - intermolecular intramolecular Propane Toluene Xylene
Methyl methacrylate Styrene
Vinyl acetate Vinyl chloride
Butyraldehyde Butyraldehyde Carbon tetrachloride Isobutyraldehyde Triethylamine Butyraldehyde Butyraldehyde
Absolute pressure (MPa)
Temperature (0C)
0.1-400 0.1 136-238 138-240 136-238 136-238 136-238 138-240 198-240 136-238 138-240 136-238 138-240 136-238 -250 138-240 136-238 110-200 110-200 180-300 138-240 136-238 138-240 136-238 138-240 138-238 0.1-400 0.1-400 600 0.1-400 181-440 0.1-400 0.1-400
50 50 130 130-200 130 130 130 130-200 130-200 130 130-200 130 130-200 130 130-255 130-200 130 100-300 100-300 175-275 130-200 130 130-200 130 130-200 130 50 50 60 50 60 50 50
Av*r
-24.9
-24.5 -21.3 -22.9 -19.3 -20.1 -19.9 -23 -21 -22.9 -30.7 4.7 -33.8
Av* - \v*r -6.6 —8 -1.1 -1.1 -3.2 -2.9 -1.5 -1.5 -4.7 -4.7 -3.1 -3.1 -6.7 -6.7 -6.1 -6.1 3 5 20-24 -3.1 -3.1 4.7 4.7 7.8 7.8 -6.6 -15
-11 -6.6 - 2 to - 3 -3.2 -3.8
Refs. 62 62 41 83 41 41 41 83 83 41 83 41 83 41 96 83 41 82,85 82,85 83,84 83 41 83 41 83 83 67 63,65,68 33 68 42 67 67
G.
INFLUENCE OF PRESSURE ON COPOLYMERIZATION
TABLE 1. COPOLYMERIZATION PARAMETERS Copolymerization parameters Monomer 1
Monomer 2
Acrylonitrile
Ethyl cinnamate
Solvent
Absolute pressure (MPa)
Temperature ( 0 C)
0.1 80 280 0.1 300 0.1 300 0.1 300 0.1 300 0.1 300 0.1 300 0.1 200 400 3.5 60 51 102-204 3.5 3.5 3.5 3.5 60 120 3.5 34 102 204 3.5 3.5 3.5 3.5 118 0.1 288 0.1 300 0.1 200 0.1 300 0.1 300 0.1 300 0.1 320 0.1 300 0.1 600 0.1 300 0.1 300
60
-
Ethyl fumarate Methyl acrylate a-Methylstyrene Styrene Vinyl acetate Butyl acrylate
Styrene
Cyclopentene
Maleic anhydride
Benzene
Ethylene
Vinyl acetate
-
Benzene Isopropyl alcohol AyV-Dimethylformamide tert-Butyl alcohol Vinyl butyrate Vinyl chloride
tert-Butyl -
Vinyl formate tert-Butyl Vinyl isobutyrate tert-Butyl Vinyl pivalate tert-Butyl Vinyl propionate tert-Butyl Maleic anhydride
Acenaphthylene 2-Ethyl-l-hexene 1-Hexene 2-Methyl-2-butene a-Methylstyrene Norbornene Thiophene
Methyl acrylate
a-Methylstyrene Croton aldehyde Methyl vinyl ketone Vinyl-2-pyridine
alcohol
alcohol alcohol alcohol alcohol
Acetic anhydride
60 62 62 120 62 62 62 62 62 62 62 74 62 62 62 62 62 60 70 70 70 70 70 70 50 50 50 50
/*i 2.4 2.8 3.9 5.5 9.20 0.65 0.76 0.05 0.04 0.02 0.05 3.10 3.50 0.20 0.17 0.49 0.21 0.10 0.74 0.94 0.6 0.82 0.80 0.77 0.92 0.74 0.79 0.80 0.696 0.16 0.16 0.21 0.586 0.609 0.645 0.674 0.68 0.07 0.10 0.15 0.11 0.15 0.10 0.10 0.005 0.005 0.03 0.03 0.02 0.20 0.15 0.10 0.08 20 20 0.50 0.60 0.20 0.30
r2 0.17 0.21 0.36 0.15 0.10 0.46 0.43 0.15 0.10 0.65 0.53 0.10 0.05 0.62 0.50 0.049 0.041 0.030 1.51 1.20 0.95 0.99 1.39 1.485 1.13 1.50 1.40 1.37 1.505 2.7 2.1 2.0 1.29 1.49 1.49 1.50 1.26 0.43 0.32 0.015 0.011 0.015 0.010 0.035 0.025 0.04 0.03 0.05 0.03 0 0 0.27 0.23 0.02 0.02 1.80 1.20 1.10 1.05
Refs. 69 69 69 105 105 105 105 105 105 105 105 105 105 105 105 100 100 100 97 97 41 41 116 116 116 116 117 118 120 41 41 41 120 120 120 120 115 43 43 106 106 106 106 106 106 106 106 106 106 106 106 105 105 105 105 105 105 105 105
References page II - 440
TABLE 1. cont'd Copolymerization parameters Monomer 1
Monomer 2
Methyl methacrylate
Acenaphthylene
Styrene
Solvent
Absolute pressure (MPa)
Temperature (0C)
0.1
60
Toluene
Acrylonitrile
Toluene
Methyl acrylate
Toluene
Acrylic acid
-
Acrylonitrile
Toluene
Diethyl fumarate
Benzene
Diethyl maleate
Benzene
Ethyl methacrylate
Benzene
190 390 0.1 10 100 3.4 590 118 0.1 100 250 0.1 10 100 0.1 10 100 0.1 10 100 0.1 10 100 0.1 100 300 3.4 59 118 3.4 59 118 0.1 10 100 0.1 150 200 0.1 200 300 0.1 300 0.1 150 250 0.1 200 400
Methyl methacrylate -
Vinyl acetate
Vinylidene chloride
Methyl acrylate
Toluene
Methylacrylate
Toluene
Vinyl acetate
Benzene
Vinylidene chloride
-
Vinylidene chloride
-
Isopropyl acetate Vinylidene chloride
-
Indene
-
rx
r2
Refs.
0.57
3.1
43
0.60 0.58 1.34 1.46 2.01 2.42 2.36 2.40 0.25 0.27 0.31 0.37 0.43 0.55 0.26 0.29 0.32 6.53 7.08 9.50 0.56 0.62 0.72 0.704 0.710 0.718 1.20 1.12 1.10 0.86 0.82 0.77 44 46 47 2.6 2.5 2.5 0.54-0.55 0.560 0.605-0.70 0.90 0.60 0.025 0.025 0.03 0.475 0.500 0.525
70 62 62 62 60 70 60 60 50 60 62 62 62 62 62 62 60 60 60
60 60
1.9 1.6 0.12 0.37 0.45 0.31 0.31 0.30 0.07 0.08 0.095 0.07 0.13 0.14 0.06 0.09 0.15 0.01 0.02 0.02 0.50 0.55 0.67 0.159 0.163 0.171 0.09 0.11 0.13 0.38 0.39 0.41 0.01 0.01 0.01 0.04 0.04 0.01 0.80-1.135 1.145 0.80-1.165 0.30 0.35 3.2 3.1 3.1 0.205 0.215 0.225
43 43 44 44 44 119 119 119 69 69 69 44 44 44 70 70 70 70 70 70 45 45 45 69 69 69 119 119 119 119 119 119 46 46 46 47 47 47 69,105 69 69,105 105 105 47 47 47 69 69 69
TABLE 2. REACTIVITY RATIOS OF TERPOLYMERIZATION" Pressure (MPa)
ri2
r2\
ri3
r$\
r23
r32
0.1 300
5.5 3.2
0.15 0.10
0.02 0.05
0.65 0.53
0.06 0.15
0.15 0.25
a
Monomers: (i) acrylonitrile; (ii) diethyl fumarate; (iii) styrene.
Refs.
107,108
TABLE 3. ACTIVATION VOLUMES Activation volume (cm3/mol) Monomer 1
Monomer 2
Acrylonitrile
Butyl acrylate Cyclopentene Ethylene
Ethylfumarate Methyl acrylate a-Methylstyrene Styrene Vinyl acetate Styrene Maleic anhydride Vinyl acetate
Ethylene Indene
Vinyl acetate Acrylonitrile
Isoprene Maleic anhydride
Solvent
Benzene Heptane Dioxane Heptane Heptane
Methyl vinyl ketone Methyl methacrylate Vinylidiene chloride Acrylonitrile Heptane 2-Ethyl-l-hexene 2,3-Dimethyl-2-butene 1,1-Diphenyl ethylene 1-Hexane Cyclohexene 2-Methyl-2-butene a-Methylstyrene Norbornene Thiophene trans-Stilbene
Absolute pressure (MPa) 0.1-300 0.1-300 0.1-300 0.1-300 0.1-300 0.1-300 0.1 -0.1-600 2.5-60 110-190
0.1-300 0.1-300 0.1-300 0.1-200 0.1-300 0.1-300 0.1-300 0.1-300 0.1-320 0.1-300
Temperature ( 0 C) 50 50 50 50 50 50 60 60 62 240 50 50 50 50 50 70 70 70 70 70 70 70 70 70 60
Av*
Av*n - Av\2
Av^2 - Av^1
-5.0 -1.5 ~0 -8.5 -1.1 0
3.7 ~0 3.7 1.9 6.3 1.0
9.3 -11.3
2.7 11.9
0 0 2.5 0
-4.3 -3.6 -1.0 0
- 2 6 . 4 to - 3 7 . 4
-36 -17.5 -18.0 -24.0 -20.1 - 17.8 to - 19.1 —27.0 -36 -25 - 5 0 to - 6 0 -18 -23 -25 -35 -28 -26 -25
-
-
C O P O L Y M E R I Z A T I O N O F MALEIC A N H Y D R I D E W I T H M O N O - A N D POLY-SUBSTITUTED OLEFINS Substitution mono-
di-(l,2)
gem-
tritetra-
Methyl acrylate
a-Methylstyrene Croton aldehyde Maleic anhydride Methyl vinyl ketone Vinyl-2-pyridine
Comonomer
Refs. 107 105 105 105 105 105 100 100 97 72 48 48 49 48 71 50 106 106 106 106 121 106 106 106 106 106
160
Activation volume (cmVmol)
= CH(Pr) = CH(Bu) = CH(z-Pr) = CH(i-Bu) = CH(J-Bu) = CH(Ph) CH(Me) = CH(Et) CH(Me) = CH(Z-Pr) CH(Me) = CH(J-Bu) CH(Z-Pr) = CH(Z-Pr) CH(Ph) = CH(Ph) = C(Me)(Pr) = C(Me)(Z-Pr) = (MeXf-Bu) = C(Me)(CH2J-Bu) = C(Me)(Ph) = C(Et)(Et) = C(Et)(Bu) = (Ph)(Ph) CH(Me) = C(Me)(Me) CH(Et) = C(Me)(Me) C(Me)(Me) = C(Me)(Me)
0.1-300 0.1-300
50 50
0.1-300 0.1-300
50 50
-16.6 -18.0 -17.0 -17.5 -31 -18.5 -19.0 - 20.0 -35 -18.5 -25.0 -31 -33 -60 -46 -35 -34 -36 -50 - 25 - 31 -25
1.0 0
0.7 0
-1.9 -3.7
1.9 ~0
- 1 8 to - 2 5
105 105 71 105 105
References page II - 440
TABLE 3. cont'd Activation volume (cm3/mol) Monomer 1
Monomer 2
Methyl methylacrylate Styrene
Methyl acrylate
TABLE 4.
Solvent
Absolute pressure (MPa)
Temperature (0C)
3.4-118
62
Diethyl fumarate Methyl acrylate Methyl methacrylate Vinyl-2-pyridine
Av*
Av*n - bv\2
Sv*22 - Av*21
0.9 - 1 8 to - 13.8 to - 1 8 to - 2 3 . 5 to
-25 - 14.5 -25 -26
-2.2
1.8
0
Refs. 119 71,105 71 71 71
Q, e VALUES
Qa Monomer
At 0.1 MPa
Acrylic acid Acrylonitrile rt-Butyl acrylate rc-Butyl methacrylate Crotonaldehyde Diethyl fumarate Diethyl maleate Ethylene Ethyl methacrylate Indene Isobutylene Isopropenyl acetate Methylacrylate Methyl methacrylate oc-Methylstyrene Methyl vinyl ketone Propylene Styrene Vinyl acetate Vinyl chloride Vinyl pivalate 2-Vinylpyridine Vinylidene chloride
0.53(0.83)^ 0.53(0.50) 0.40(0.30) 0.62 (0.66) 0.015(0.02) 0.20 (0.03) 0.03(0.04) 0.015(0.013) 0.62(0.57) 0.30(0.36) 0.025 (0.029) 0.08 (0.02) 0.44(0.44) 0.63(0.74) 1.40(1.00) 1.07 (0.65) 0.010 (0.008) 1.20(1.00) 0.06 (0.03) 0.0450(0.056) 0.023 (-) 1.05(1.03) 0.27(0.26)
ea At 300 MPa 0.45 0.62 0.40 0.70 0.015 0.25 0.03 0.05 0.66 0.28 0.022 0.12 0.44 0.63 1.65 1.03 0.015 1.35 0.05 0.045 0.046 0.95 0.24
At 0.1 MPa +0.91(0.88)* +0.90(1.20) +0.35(0.74) - 0.08 (0.34) +0.80(0.84) +1.35 (2.17) +0.62(1.40) -0.15 (-0.15) 0.00(0.35) -1.10 (-1.03) -1.72 (-1.06) -1.30 ( - 0.34) +0.60(0.60) -0.20(0.38) -1.30 (-1.27) +0.95 (1.11) -1.50 ( - 2.20) -1.10(-0.80) - 0.20 ( - 0.22) +0.16(0.20) -0.19 (-) -0.60(-0.50) +0.42(0.40)
At 300 MPa +0.64 +0.95 +0.35 - 0.54 +0.80 +1.25 +0.40 -0.02 -0.35 -1.05 -1.25 -1.60 +0.60 -0.05 -1.40 +1.15 -1.05 -1.22 - 0.35 +0.19 -0.02 -0.50 +0.43
Refs. 108 105 105 92 105 105,109,25 109 110 92 111,108 112 105 105 108,25 105 105 112 105,108,92 105,108,110 112,41 113 105 108
a Reference monomer is methyl acrylate (105). ^Values in parentheses refer to the values of styrene.
H.
REFERENCES
1. M. G. Evans, M. Polanyi, Trans. Faraday Soc, 32, 1333 (1936). 2. S. D. Hamann, in: R. S. Bradley (Ed.), "High Pressure Physics and Chemistry", London, 1963. 3. M. G. Gonikberg., "Chemical Equilibrium and Reaction Rates at High Pressures", 2nd. ed., Khmiya, Moscow, 1969, Td. Y. Ogo., "Kouatsu Kouatsu Kagaku", Nikkan Kogyo Shinbunsha, Tokyo, 1972. 4. G. Luft, Dissertation, Darmstadt 1967. 5. A. E. Steam, H. Eyring, Chem. Rev., 29, 509 (1941). 6. G. Luft, Chem. Ing. Tech., 41, 712 (1969). 7. Landolt-Boernstein, "Zahlenwerte und Funktionen aus Physik und Chemie", Berlin, 1951. 8. W. Kleinpaul, Z. Physik. Chem. (Frankfurt), 29, 201 (1961); 30, 262 (1961).
9. B. Raistrick, R. H. Sapiro, D. M. Newitt, J. Chem. Soc. (London), 1761 (1939). 10. M. G. Gonikberg, L. F. Vereshchagin, Zh. Fiz. Khim., 23, 1447 (1949). 11. S. D. Hamann, Trans. Faraday Soc, 54, 507 (1958). 12. A. E. Nicholson, R. G. W. Norrish, Disc. Faraday Soc, 22, 104 (1956). 13. R. Steiner, G. Luft, Chem. Eng. Sci., 22, 537 (1967). 14. G. M. Simmons, D. M. Mason, Chem. Eng. Sci., 27, 89 (1972). 15. R. C. Neumann, Jr., Ace Chem. Res., 5, 381 (1972). 16. M. N. Romanii, K. E. Weale, Trans. Faraday Soc, 62, 2264 (1966). 17. C. Walling, J. Pellon, J. Am. Chem. Soc, 79, 4782 (1957).
18. R. L. Hemmings, K. E. Weale, "Chemical Reactions at High Pressures", Spon, London, 1967. 19. A. L. Shriers, B. F. Dodge, R. H. Bretton, "Free Radical Polymerization of Ethylene at High Pressures", paper presented on the A.I.Ch.E./London, 1965, Chem. Eng. Symp. Ser., 2, 10 (1965). 20. R. O. Symcox, P. Ehrilich, J. Am. Chem. Soc, 84, 531 (1962). 21. D. Lierse, G. Luft, unpublished. 22. T. YaIa, G. Jenner, in: H. KeIm (Ed.), "High Pressure Chemistry", Reidel, Dordrecht, 1977, p. 376. 23. G. Jenner, Thesis, Strasbourg, 1966 and Bull. Soc. Chim. France, 1, 344 (1967). 24. H. Abdi, G. Jenner, C. Brun, Makromol. Chem., 164, 149 (1973). 25. J. A. Lamb, K. E. Weale, Symp. Phys. Chem. High Pressures, 229 (1963) (Soc. Chem. Ind., London). 26. A. A. Zharov, N. S. Enikolopyan, Zh. Fiz. Khim., 38, 2727 (1964). 27. H. Asai, T. Imoto, J. Chem. Soc. (Japan), 66, 863 (1963); Nirrou Kagaku Zasshi, 84, 863 (1963). 28. D. W. Brown, L. A. Wall, J. Phys. Chem., 67, 1016 (1963). 29. A. C. Toohey, K. E. Weale, Trans. Faraday Soc, 58, 2439, 2446 (1962). 30. H. Asai, T. Imoto, J. Chem. Soc. (Japan), 66, 871 (1963). 31. K. Salahuddin, K. E. Weale, in: K. E. Weale (Ed.), "Chemical Reactions at High Pressures", Spon, London, 1967. 32. A. E. Nicholson, R. G. W. Norrish, Disc. Faraday Soc, 22, 104 (1956). 33. C. Walling, J. Pellon, J. Am. Chem. Soc, 79, 4776 (1957). 34. P. P. Kobeko, E. U. Kuvshinskii, A. S. Semonova, Zh. Fiz. Khim., 24, 345 (1950). 35. F. M. Merrett, R. G. W. Norrish, Proc Roy. Soc (London) A, 206, 309 (1951). 36. V. M. Zhulin, M. G. Gonikberg, R. F. Barkova, Izv. Akad. Nauk. SSSR, 432 (1965). 37. A. H. Ewald, Disc Faraday Soc, 22, 138 (1956). 38. C. Walling, J. Pellon, J. Am. Chem. Soc, 79, 4786 (1957). 39. A. H. Ewald, Disc. Faraday Soc, 22, 146 (1956). 40. C. Walling, G. Metzger, J. Am. Chem. Soc, 81, 5365 (1959). 41. P. Ehrlich, G. Mortimer in Adv. Polymer ScL, 7 (3), 420 (1970). 42. A. C. Toohey, K. E. Weale, Trans. Faraday Soc, 58, 2446 (1962). 43. M. N. Romani, K. E. Weale, Thesis, London University 1964. 44. R. D. Burkhart, N. L. Zutti, J. Polym. ScL, 57, 793 (1962). 45. H. Asai, T. Imoto, J. Chem. Soc (Japan), 85, 155 (1964). 46. Ibid., 85, 152 (1964). 47. B. S. Maulik, K. E. Weale, in: K. E. Weale (Ed.), "Chemical Reactions at High Pressures", Spon, London, 1967. 48. T. YaIa, G. Jenner, Communication 10, Meeting EHPRG, Strasbourg, 1972. 49. T YaIa, Thesis 3, Cycle, Strasbourg, 1972. 50. G. Jenner, J. Rimmelin, unpublished.
51. J. P. J. Higgins, K. E. Weale, J. Polym. Sci. A-I, 8, 1705 (1970). 52. R. I. Baikova, V. M. Zhulin, M. G. Gonikberg, Izv. Akad. Nauk SSSR, Ser. Khim., 154 (1966). 53. V. M. Zhulin, A. R. Volchek, M. G. Gonikberg, A. S. Shashkow, S. V. Zotova, Vysokomol. Soedin., 7A, 1513 (1972). 54. J. P. J. Higgins, K. E. Weale, unpublished. 55. S. A. Mehdi, K. E. Weale, unpublished. 56. A. R. Volchek, V. M. Zhulin, A. S. Shashkov, O. M. Nefedov, A. A. Ivashenko, Vysokomol. Soedin., A14, 2258 (1973). 57. V. M. Zhulin, N. V. Klimentova, M. G. Gonikberg, V. V. Korshak, A. P. Suprun, Vysokomol. Soedin., HA, 101 (1969). 58. V. M. Zhulin, A. P. Suprun, G. P. Lopatina, T. A. Soboleva, A. S. Shashkov, M. G. Gonikberg, G. P. Shakhovskoi, Vysokomol. Soedin., 13A, 2518 (1971). 59. V. M. Zhulin, M. G. Gonikberg, A. R. Volchok, O. M. Nefedov, A. S. Shashkov, Vysokomol. Soedin., 9A, 2153 (1971). 60. A. R. Volchek, V M. Zhulin, A. S. Shashkov, O. M. Nefedov, A. A. Ivashenko, Vysokomol. Soedin., A14, 2258 (1973). 61. G. Luft, H. Bitsch, unpublished. 62. V. M. Zhulin, Thesis for Doctor of Science degree, Moscow (1971). 63. V. M. Zhulin, M. G. Gonikberg, V N. Zagorbinina, Izv. Akad. Nauk, SSSR, Ser. Khim., 827 (1966). 64. V. M. Zhulin, R. I. Baikova, M. G. Gonikberg, G. P. Shakhovskoi, Vysokomol. Soedin., 13, 1071 (1971). 65. V. M. Zhulin, M. G. Gonikberg, V. N. Zagorbinina, Izv. Akad. Nauk, SSSR, Ser. Khim., 997 (1966). 66. M. G. Gonikberg, R. I. Baikova, V. M. Zhulin, Izv. Akad. Nauk, SSSR, 1164(1962). 67. V. M. Zhulin, M. G. Gonikberg, A. L. Goff, V N. Zagorbinina, Vysokomol. Soedin., HA, 777 (1969). 68. V. M. Zhulin, M. G. Gonikberg, V. N. Zagorbinina, Dokl. Akad. Nauk SSSR, 163, 106 (1965). 69. W. F. Dellsperger, K. E. Weale, ACS Polym. Preprints, 11, 645 (1970). 70. H. Asai, J. Chem. Soc (Japan), 85, 247 (1964). 71. J. A. Lamb, Thesis, London University, 1961. 72. H. Bitsch, G. Luft, Angew. Makromol. Chem., 32, 17 (1973). 73. Th. J. van der Molen, Preprint IUPAC Symp. on Macromolecular Chemistry, Budapest, 1969. 74. Th. J. van der Molen, International Symp. on Macromolecules, Helsinki, 1972. 75. G. Luft, P. Mehrling, H. Seidl, Angew. Makromol. Chem., 73, 85 (1978). 76. P. Mehrling, G. Luft, B. Giese, H. Seidl, Chem. Ber., 118, 240 (1985). 77. M. Buback, H. Lendle, Z. Naturforsch., 34A, 1482 (1979). 78. R. Halle, Plastic Compound., 73 (1980). 79. M. Buback, H. Lendle, Makromol. Chem., 184, 193 (1983). 80. M. Buback, Z. Naturforsch., 39A, 399 (1984). 81. G. Luft, P. -Ch. Lim, S. Pavlakis, J. Macromol. Sci. Chem. A, 22(9), 1183(1985).
82. G. Luft, R. Kampf, H. Seidl, Angew. Makromol. Chem., 108, 203 (1982). 83. K. Yamamoto, J. Macromol. Sci. Chem. A, 17 (3), 415 (1982). 84. K. Yamamoto, M. Sugimoto, J. Macromol. Sci. Chem. A, 13 (8), 1067 (1979). 85. R-Ch. Lim, G. Luft, Makromol. Chem., 184, 849 (1983). 86. M. Yokawa, Y. Ogo, Makromol. Chem., 177, 429 (1976). 87. R Ehrlich, G. A. Mortimer, Adv. Polym. Sci., 7, 386 (1970). 88. M. Buback, H. Lendle, Z. Naturforsch, 36A, 1371 (1981). 89. Y. Ogo, M. Yokawa, T. Imoto, Makromol. Chem., 171, 123 (1973). 90. M. Yokawa, Y Ogo, T. Imoto, Makromol. Chem., 175, 2903 (1974). 91. M. Yokawa, Y Ogo, T. Imoto, Makromol. Chem., 175, 2913 (1974). 92. H. Asai, T. Imoto, Nippon Kagaku Zasshi, 85, 149 (1964). 93. T. Sasuga, M. Takehisa, J. Makromol. Sci. Chem. A, 12 (9), 1307 (1978). 94. T. Sasuga, M. Takehisa, J. Makromol. Sci. Chem. A, 12 (9), 1333 (1978). 95. T. Sasuga, S. Kawanishi, M. Takehisa, J. Makromol. Sci. Chem. A, 14 (4), 605 (1980). 96. M. Buback, Ch.-R. Choe, E.-U. Franck, Makromol. Chem., 185, 1685 (1984). 97. F. de Kok, D. Heikens, A. L. German, Proc. 4th Int. Conf. High Pressure, Kyoto 1974, Phys. Soc. Japan. 98. Y Ogo, M. Yoshikawa, S. Ontani, T. Imoto, J. Polym. Sci. Chem., 16, 1413 (1978). 99. M. Yokawa, I. Yoshida, Y Ogo, Makromol. Chem., 178,443 (1977). 100. M. Yokawa, Y. Ogo, T. Imoto, Makromol. Chem., 163, 135 (1973). 101. R. C. Neumann, J. V. Behar, J. Am. Chem. Soc, 91, 6024 (1969). 102. R. C. Neumann, J. V. Behar, Tetrahedron Lett., 3281 (1968). 103. R. C. Neumann, J. V. Behar, J. Am. Chem. Soc, 89, 4549 (1967). 104. R. C. Neumann, R. J. Bussey, J. Am. Chem. Soc, 92, 2440 (1970). 105. G. Jenner, S. Aieche, J. Polym. Sci. Chem., 16, 1017 (1978). 106. M. Kellou, G. Jenner, Makromol. Chem., 180, 1687 (1979). 107. S. Aieche, G. Jenner, Polymer, 19, 1236 (1978). 108. W. Dellsperger, K. Weale, Am. Chem. Soc, Polym. Prepr., 11, 645 (1970). 109. H. Asai, Nippon Kagaku Zasshi, 85, 247 (1964). 110. R. van der Meer, E. H. M. van Gorp, A. German, J. Polym. Sci., Polym. Chem. Ed., 15, 1489 (1977). 111. T. Yala-Lutokanu, G. Jenner, A. Deluzarche, Bull. Soc Chim. France, 609 (1974). 112. K. Hamanoue, Rev. Phys. Chem. Japan, 38, 120 (1968). 113. R. van der Meer, A. German, 15th Meeting EHPRG, Darmstadt, Germany (1977). 114. G. Luft, W. Henning, M. Dorn, Angew. Makromol. Chem. (in press). 115. J. Schrijver, J. L. Ammerdorffer, A. L. German, J. Polym. Sci. Chem., 20, 2693 (1982).
116. R. van der Meer, M. W. A. M. Aarts, A. L. German, J> Polym. Sci. Chem., 18, 1347 (1980). 117. R. van der Meer, A. L. German, J. Polym. Sci. Chem., 17, 571 (1979). 118. R. van der Meer, A. L. German, D. Heikens, J. Polym. Sci. Chem., 15, 1765 (1977). 119. J. Schrijver, A. L. German, J. Polym. Sci. Chem., 21, 341 (1983). 120. R. van der Meer, E. H. M. van Gorp, A. L. German, J. Polym. Sci. Chem., 15, 1498 (1977). 121. G. Jenner, M. Kellou, M. Papadopoulos, Angew. Chem. Suppl., 929 (1982). 122. T. Bartnik, B. Baranowski, Polym. J. Chem., 53 (3), 741 (1979) 124. A. Crosato-Arnaldi, G. B. Guarise, G. Talamini, Polymer, 10, 385 (1969). 125. G. B. Gualise, Polymer, 7, 497 (1966). 126. G. B. Gualise, G. Palma, E. Siviero, G. Talamini, ibid., 11, 613 (1970). 127. T. Imoto, Mem. Fac Eng., Osaka City Univ., 3, 217 (1961). 128. T. Imoto, H. Asai, Nippon Kagaku Zasshi, 85, 149 (1964). 129. T. Imoto, H. Asai, ibid., 85, 347 (1964). 130. T. Imoto, T. Nakajima, Kogyo Kagaku Zasshi, 69, 520 (1966). 131. T. Imoto, Y. Ogo, Y Hashimoto, ibid., 70, 1952 (1967). 132. G. Jenner, M. Kellou, Abstracts, 15th Annual Meeting of European High Pressure Research Group, Darmstadt, 1977, p. 12. 133. A. R. Khalilpour, G. Jenner, A. Deluzarche, Bull. Soc Chim. Fr., 3-4 (2), 583 (1976). 134. G. Luft, R Lim, M. Yokawa, Makromol. Chem., 184, 207 (1983). 135. T. Mitani, Y. Ogo, T. Imoto, Rev. Phys. Chem. Soc Japan, 42, 25 (1972). 136. R W. Moore, F. W. Ayscough, J. G. Clouston, J. Polym. Sci., Polym. Chem. Ed., 15, 1291 (1977). 137. R W. Moore, J. G. Clouston, R. R Chaplin, ibid., 19, 1659 (1981). 138. R W. Moore, J. G. Clouston, R. R Chaplin, ibid., 21, 2491 (1983). 139. R W. Moore, J. G. Clouston, R. R Chaplin, ibid., 21, 2503 (1983). 140. H. Nakomoto, Y. Ogo, T. Imoto, Makromol. Chem., I l l , 104 (1968). 141. J. Osugi, K. Hamanoue, E. Hirayama, Nippon Kagaku Zasshi, 87, 1032 (1966). 142. J. Osugi, T. Mizukami, ibid., 87, 1157 (1966). 143. J. Osugi, K. Hamanoue, ibid., 90, 544 (1969). 144. J. Osugi, K. Hamanoue, ibid., 90, 549 (1969). 145. T. Sasuga, N. Morishita, A. Udagawa, Y Kusama, M. Takehisa, J. Polym. Sci., Polym. Chem. Ed., 14, 2527 (1976). 146. T. Sasuga, S. Kawanishi, J. Phys. Chem., 83, 3290 (1979). 147. T. Sasuga, S. Kawanishi, M. Takehisa, J. Macromol. ScLChem. A, 14 (4), 605 (1980). 148. T. Sasuga, S. Kawanishi, M. Takehisa, Macromolecules, 16, 545 (1983).
149. T. Sano, Y. Ogo, T. Imoto, Kobunshi Ronbunshu., 32, 338 (1975). 150. Y. Tanaka, K. Noguchi, T. Shibata, A. Okada, Macromolecules, 11, 1017 (1978). 151. O. N. Tsvetkov, T. N. Tsvetkova, V. N. Monastyrskii, Plast. Massy, 9, 9 (1975). 152. T. Wada, T. Watanabe, M. Takehisa, J. Polym. ScL, Polym. Chem. Ed., 10, 2639 (1972). 153. M. Yokawa, Y. Ogo, T. Imoto, Makromol. Chem., 175, 179 (1974). 154. M. Yokawa, Y. Ogo, T. Imoto, Makromol. Chem., 175, 2913 (1974).
155. A. A. Zharov, Al. Al. Berlin, N. S. Enikolopyan, J. Polym. ScL, Part C, 16, 2313 (1967). 156. V. A. Zhorin, A. A. Zharov, Yu. V. Kissin, N. S. Enikolopyan, Dokl. Akad. Nauk SSSR, 219, 674 (1974). 157. V. M. Zhulin, M. G. Gonikberg, Dokl. Akad. Nauk, SSSR, 163, 106 (1965). 158. V. M. Zhulin, A. R. Volchek, M. G. Gonikberg, A. S. Shashkov, S. V. Zotova, ibid., 14A, 1484 (1972). 159. V. M. Zhulin, Z. G. Makarova, N. V. Klimentova, A. P. Suprun, A. N. Akopyan, G. P. Shakhovskoi, ibid., 24A, 2621 (1982). 160. G. Jenner, M. Kellou, Tetrahedron, 37, 1153-60 (1981).
A c t i v a t i o n S t e r e o c o n t r o l
E n t h a l p i e s i n
F r e e
a n d
E n t r o p i e s
R a d i c a l
o f
P o l y m e r i z a t i o n s
H a n s - G . Elias Michigan Molecular Institute, 1910 West St. Andrews Rd., Midland, Ml 48640, USA
A. Introduction B. Tables Table 1. Ratios of Some /-ads for Different Mechanisms Table 2. Ratios of Rate Constants for Markov First Order Mechanisms Table 3. AH^. - AHf/s and A S ^ - ASf/s of Free Radical Polymerizations in Different Solvents Table 4. Activation Enthalpy Differences (AH\ - AHl) Calculated from Various Literature Data Table 5. Activation Entropy Differences (ASl-ASl) Calculated from Various Literature Data Table 6. Calculated Compensation Temperatures T0 and Compensation Enthalpies AAHQ for Various Monomers and Modes of Addition, Assuming Markov First Order Trials C. References A.
il-445
II-446 II-446
II-447
(b) The last monomeric unit of the chain, but not the last diad, controls the propagation step. The probabilities for the formation of isotactic and syndiotactic diads are thus different (pi / ps). The process is Bernoullian (zeroth order Markov statistics) with respect to the formation of diads. Consequently, the probability of forming an isotactic diad at an existing isotactic diad equals the probability of forming an isotactic diad at an existing syndiotactic diad (P1J1 = ps/{), and, by analogy, Ps/s = Pi/s• It follows for the diads (6,8)
II-448
II-449
(A3) and for the triads (A4) (A5)
II-449 II-450
INTRODUCTION
In free radical polymerization, the tacticity of the resulting polymer depends on the propagation step, i.e., on stereocontrol by the propagating end. The following simple cases exist: (a) The last monomeric unit does not control the stereospecificity of the propagation step. Isotactic (i) and syndiotactic (s) additions thus exhibit the same conditional probabilities (px — ps). The mole fractions x of the resulting isotactic and syndiotactic diads are equal (x\ = xs). If all steps occur at random, the four conditional probabilities for the formation of triads are equal Q)^1 = p-x/s = ps/-x = /? s / s ), and so are the conditional probabilities for the formation of tetrads, pentads, etc. The resulting polymer is a true atactic polymer. It follows that (Al) (A2)
where xa is the mole fraction of isotactic triads and xss is the mole fraction of syndiotactic triads. ;cht is the mole fraction of heterotactic triads, regardless of whether formed by the formation of an isotactic unit at a syndiotactic one (conditional probability ps/i) or vice versa (conditional probability p i / s ). (c) The last two monomeric units of the chain, i.e., the last monomeric diad, regulate the stereocontrol of the propagation step. The four conditional probabilities do not equal each other (P1J1 ^ pi/s ^ ps/i ^ ps/s)- The mole fractions of isotactic (JCH), syndiotactic (xss) and heterotactic triads (jcht) are thus given by (8,11) (A6) (A7) This process corresponds to a Markov trial of first order. (d) Second order Markov statistics are present if the last two diads (i.e., the last triad or the last three monomeric
units) control the propagation step. In this case (A8) (A9) (AlO) (All) In order to distinguish between Markov second order and Markov first order mechanisms, at least tetrads must be known. The probability of the addition of a 'b' diad (b = i, s) to an existing end 'a' (a = i, s) is given by the corresponding rates R: (A12) with a = i, s or b = i, s, in the Markov first order case, or a = ii, is, si, ss b = ii, is, si, ss, in the Markov second order case. Using these definitions and assuming steady states and the equality of instantaneous and final diad and triad fractions, one can express ratios of all diads, triads, and tetrads in terms of rate constants (Table 1) or ratios of rate constants in terms of diad, triad, etc. fractions (Table 2). The rate constants themselves can be calculated if the rate constants of propagation are known for the corresponding experimental conditions (1). From the temperature dependence of the expressions given in Table 2, differences in activation enthalpies (AHA* — A//g) and differences in activation entropies (AS^ - AS^) can be calculated:
from literature data as very few triad fractions have been reported. For any two modes of addition, the compensation effect between AAH$ and AAS$ (10,12,43) for the polymerization of a given monomer, in different solvents and/or at different monomer/solvent ratios, can be described by (A14) The compensation temperature To has been found to be independent, of the mode of addition (e.g., A = i/i vs. B = i/s) within the limits of error (12,43). However, the compensation enthalpy AAH^ depends on the mode of addition. B. TABLES TABLE 1. RATIOS OF SOME /ADS FOR DIFFERENT MECHANISMS0 Mechanism i-ad Ratio Bernoulli
a
Markov 1st order Markov 2nd order
From Ref. 42.
(AB)
TABLE 2. RATIOS OF RATE CONSTANT FOR MARKOV FIRST ORDER MECHANISMS0
The quantities (AH\ - A # | ) and (AS* - AS^) may reflect activation parameters (2,3), conformation parameters (4,5), or combinations thereof. Table 3 gives the difference AAH^ = AHJ - A # | and AAS^ = AS\ - ASg calculated from the temperature dependence of diad ratios X[/xs. In the case of Bernoulli trials, they represent AHf - AHj and ASf - AS^, respectively. For first order Markov trials, they stand for AHj/{ - AH}/S and ASJ/{ - Asf/s, respectively. In general, both AAH^ and AAS^ depend on the solvent (9,10), and consequently on the monomer/solvent ratio (11,12), but they are nearly independent of monomer conversion. Table 4 gives the differences in activation enthalpies for modes of addition other than s/i vs. i/s, and Table 5 gives the corresponding differences in activation entropies. Only a few of these activation parameters could be calculated
Ratios of rate constants Expressions giving ratios of rate constants
a
From Ref. 43.
TABLE 3.
AHJ/J -
AIfJ1 AND Asjfi - As}/s OF FREE RADICAL POLYMERIZATIONS IN DIFFERENT SOLVENTS*
Monomer (H-additive) Acrylonitrile
Vol.%
30 100 Acrylic acid, isopropyl ester ? ? - , methyl ester ? a-Chloroacrylic acid, methyl ester ? Methacrylonitrile 100 100 - , ( + 1 mol SnCV2 mol monomer) 3:1* - , ( + 1 molSnCVl mol monomer) 2:1* - , ( + 1 molSnCyi mol monomer) 1:1* - , ( + 1 mol SnCl4/2 mol monomer) 1:1* Methacrylic acid 10 20 20 20 -,anhydride ? - , benzyl ester 50 - , j-butyl ester 50 - , f-butyl ester 50 - , p-carboxyphenyl ester ? ? - , cyclohexyl ester 100 - , glycidyl ester 45 50 57 100 - , a-methylbenzyl ester 50 - , methyl ester 9. \d 9Ad 9. ld 9Ad 9.1* 9Ad 9Ad 9Ad 9Ad 9Ad 9Ad 9.1^ 9.1d 9Ad 20 25 25 25 25 25 25 25 28.5 50 100 100 100 100 100 - , - , ( + 8.7 mol ZnCl2A mol MMA) 1.1« - , - , ( + 1 mol ZnCl2A mol MMA) 3.2e - , - , (±0.04 mol ZnCl2A mol MMA) 100 - , - , ( + 1 mol ZnCl2/2 mol MMA) 100 - , - , ( + 1 mol ZnCl2A mol MMA) 100 - , - , ( + 1 mol SnCU/2 mol MMA) 100
Solvent
(J/mol)
Toluene Bulk
3770 ±59 0 0 0 3800 ±190 250 ±50 -4100±71 - 630 ± 54 170±63 251 2350 ± 38 3980 ±92 3850 ±80 7800 ±180 3140±42 13300 ±210 2300 ±130 3430 ±63 2090 ±80 4310 0 1210 ±80 700 ±100 5780 ±42 8600 ±130 9800 ±110 3640 ±59 6280 ± 75 5360 ±75 3480 ±71 3900 ±160 3140 ±88 5100 ±71 3500 ±150 3350 ±96 5317 ± 8 3100 ±67 4860 ±75 5200 ±100 3900 ±110 2810 ±96 2720 ±34 7030 ±75 5860 ±21 9380 ±71 6700 ±46 4980 ±50 5200 ±210 6700 ±29 5650 ±80 2900 ±420 6200 ±110 4480 3800 ±230 2300±54 3560 ±84 2850 ± 71 4100 ±71 2700±190 - 1 3 0 ± 80 - 40 ± 130 800 ± 100
? Toluene Bulk Bulk Toluene Toluene Benzene Benzene 1-Propanol 1-Propanol 2-Propanol Methanol Benzene Toluene Toluene Toluene Dimethylformamide /7-Cetyloxybenzoic acid Bulk Acetone Dimethylformamide Toluene Bulk Toluene Acetone Acetonitrile Benzene Butanone y-Butyrolactone Chloroform Dimethylformamide Dimethyl sulfoxide 1,4-Dioxane Methylene chloride Pyridine Tetrachloroethane Tetrahydrofuran Toluene Paraffin Acetone Carbon tetrachloride Chloroform Dichloroethylene Ethanol ^-Heptane /i-Hexane Toluene Toluene Bulk Bulk Bulk Bulk Bulk Water Ethyl acetate Bulk Bulk Bulk Bulk
(J/mol/K) 2.7 ±0.19 0 -5.9 - 5.9 2.5 ±0.59 3.0 ±0.14 -10.8±0.21 - 0.7 ± 0.18 -0.1±0.18 0.75±0.88 9.76 ± 0.096 - 2 . 2 ±0.32 - 1 . 8 ±0.28 10.5 ±0.63 - 4 . 1 ±0.13 44.4 ±0.63 - 1 . 7 ±3.8 2.0 ±0.22 - 2.6 ± 0.29 2.09 - 6.87 - 5 . 0 ±0.20 9.5 ±0.36 5.0 ±0.15 14.2 ±0.042 17.5 ±0.28 2.2 ±0.22 10.2 ± 0.23 7.3 ±0.26 2.3 ±0.23 4.2 ±0.46 1.4 ±0.27 7.5 ±0.23 3.4 ±0.46 2.5 ±0.28 7.4 ±0.30 2.0 ±0.22 7.7 ±0.22 7.2 ±0.29 4.4 ±0.33 0.8 ±0.26 1.6 ±0.13 9.0 ±0.23 5.36 ±0.067 16.0 ±0.21 8.4 ±0.13 3.6 ±0.14 3.69 ±0.059 8.50 ±0.092 3.9 ±0.26 1.3 ±1.3 9 ±3.8 4.2 -0.04 ±0.63 -1.8±0.16 3.3 ±0.24 2.2 ± 0.20 5.2 ± 0.2 1.13±0.054 - 9.80 ± 0.67 - 6.7 ± 0.46 - 8.2 ± 0.33
Remarks a a
a
c
IR IR IR IR IR IR IR a
-
a
a
-
Refs. 10,14 13 15 15 16 17 18 18 18 18 18 19 19 19 19 20 21 10,22 10,22 23 10,23 10,24 10,25 10,25 10,25 10,25 10,22 12 12 12 12 12 12 12 12 12 12 12 12 12 12 27 9 9 9 9 9 9 9 10,26 21 27 1 25 28 12 10,29 10,29 10,29 27 27 27
*In all cases, except those marked by IR (infrared) (see Remarks column), diad fractions were determined via NMR. References page 11-450
TABLE 3. cont'd Monomer ( +additive)
Vol.%
- , - , ( + 1 mol SnCVl mol MMA) - , L-menthyl ester - , phenetyl ester Trifluorochloroethylene Vinyl bromide Vinyl bromide N-Vinyl carbazole
? ? ? 10 33.3 33.3 100 100 100 100 50d 50 J 50d 100 100 100 ? 100 ?
Vinyl chloride
- P , p-d2 Vinyl formate
Vinyl trichloroacetate
a c e
100 50 50 0.4*" 100 ? 6.5 100 100 ? ? ? ?
Solvent
(J/mol)
Bulk Toluene Toluene Carbon tetrachloride Bulk n-Butyl acetate o-Dichlorobenzene Bulk Bulk Dimethylacetamide Dimethylformamide Dimethylsulfoxide Hexamethylphosphoric triamide Hexane/nonane Methylene dichloride Toluene Cyclohexane Water/ethanol Water Bulk Bulk Bulk Bulk Acetone Chloroform Dimethylformamide Bulk Bulk Bulk w-Butyl acetate Bulk w-Butyl acetate
420 ± 13 960 ± 46 5600 ± 1700 0 710 250 1930 ± 5 4 2140 ±17 1270 ± 3 0 - 4600 ±300 - 2850 ± 100 -3300 ±500 -3400 ±200
-14.07 ± 0.054 0.3 ± 0.18 4.6 ±4.6 -5.8 2.5 2.1 5.3 ±0.17 5.99 ±0.080 2.72 - 20 ± 1 -13.5 ± 0.4 -15.4 ±1.4 -14.7 ±0.7
-1500 ±200 -2650 ±100 -3650 ±1000 1300 ± 8 4 5000 ±1000 1500 ±630 2900 ±160 2260 ± 5 0 1090 ± 2 0 -2650 ± 4 340 ±25 290 ± 5 0 250 ±38 1050 ± 5 4 880 ±25 2830 1800 1590 880
-10.5 ±0.7 -11.7 ±0.4 -16.0 ±0.8 2.5 ±0.42 18 ±4.2 2.9 ±2.0 6.78 ±0.067 5.7 ±0.14 1.9 -6.28 ±0.04 0.21 ±0.80 0.08 ±0.16 0.5 ±0.12 3.3 ±0.17 3.4 ±0.080 84 4.6 4.2 2.1
Data directly from literature, mechanistic assumptions unknown. Literature data, calculated under the assumption of Bernoulli statistics. mol/1.
TABLE 4.
(J/moI/K)
Remarks -
a
a a a
a
IR a
a a a
Refs. 27 30 21 31 32 32 34 34 44 45 45 45 45 45 45 45 36 35 35 37 34 44 34 41 41 41 38 41 32 32 32 32
b
Solvent/monomer molar ratio. mol%. f g/ml. d
ACTIVATION ENTHALPY DIFFERENCE (AH* - AHj|) CALCULATED FROM VARIOUS LITERATURE DATA
\H\ - AHI (J/mol) A = i/i B = i/s
Monomer
Solvent
Glycidyl methacrylate
Acetone Bulk Dimethylformamide Toluene Methanol 1-Propanol 2-Propanol
33000 ±2300 25000 ± 1400 14000 ±1500 27000 ±1800
Bulk Bulk Bulk Ethyl acetate 70% ZnCl2/H2O Acetone Bulk Chloroform Dimethylformamide Water Water/methanol Bulk
2800 ±120 - 1 3 ±110 -20±160 2300±230 700±240 670 ±25 2850 ±84 1700 ±180 0±150 423 3600 ±63 3180 ± 46
Methacrylic acid (20 vol.%) Methyl methacrylate/ZnCl2 9.34/0.369 (mol/mol) 2.00/1.00 (mol/mol) 1.00/1.00 (mol/mol) 3.19/3.19 (mol/mol) 1.10/9.6 (mol/mol) Vinyl formate
Vinyl chloride Vinyl chloride, P, P-d2
A = s/i B = i/i
A = i/i B = s/s
-
-
-
-
38000 ± 2500 20000 ±1800 33000 ±2600
6500 ± 750 300 ±160 5556 ± 8
-130 ±110 -100 ±75 -21±110 1800±180 2200±180 -1060 ±88 -1700 ±100 -3200 ±190 -250 ±190 1210 -1230 ±54 540 ± 46
2430 ±59 - 4 2 ±88 -29±130 2600±170 1400±150 -419 ± 4 650 ±25 -520 ±46 -180 ±200 170 4420 ±29 2860 ±21
A = i/s B = s/s 420 ± 80 -1240 ±75 150 ±29 -340 ±59 - 2 9 ±29 -8±17 370±63 700±92 -1060 ±92 -1900 ±130 -300 ±190 -180 ±200 980 830 ±84 - 330 ± 29
A = s/i B = s/s
Refs.
7100 ±110 9300 ±140 580 ±33 10000 ±1000 3300 ±110 4010 ±96 8000 ±220
25 25 25 25 19 19 19
2310 ±54 -140 ±75 -46±130 4480±54 3550±38 -2150 ±92 -900 ±130 -3700 ±1250 -440 ±230 2500 5600 ±140 2320 ± 25
29 27 27 29 29 41 41 41 41 35 35 39
TABLE 5. ACTIVATION ENTROPY DIFFERENCES (As| - ASj[) CALCULATED FROM VARIOUS LITERATURE DATA AS* - ASJ (J/mol/K)
Monomer
Solvent
A = i/i B = i/s
Glycidyl methacrylate
Acetone Bulk Dimethylformamide Toluene Methanol 1-Propanol 2-Propanol
85 ±8.8 54 ± 4.2 32 ±7.1 75±7.5
Methacrylic acid (20 vol.%) Methyl methacrylate/ZnCl2 9.34/0.369 (mol/mol) 2.00/1.00 (mol/mol) 1.00/1.00 (mol/mol) 3.19/3.19 (mol/mol) 1.10/9.6 (mol/mol) Vinyl formate
Vinyl chloride Vinyl chloride, P, P-d2
Bulk Bulk Bulk Ethyl acetate 70% ZnCl2 in water Acetone Bulk Chloroform Dimethylformamide Water Water/methanol Bulk
4.0±0.34 -7.0±0.46 - 5 . 2 ±0.63 1.4 ±0.88 3.1 ±0.71 5.1 ±0.25 11.1 ±0.25 7.7 ±0.54 4.6 ±0.46 -1.3 11.7 ±0.25 8.3 ±0.17
A = s/i B = i/i
A = i/i B = s/s
A = i/s B = s/s
A = s/i B = s/s
-
-
-
125 ±8.4 72 ±8.0 100±ll
- 1 . 3 ± 2.3 -15.8 ±0.54 -1.84 ±0.04
2.3 ± 0.25 - 3 . 4 ±0.25 .0.7 ±0.13
10.3 ±0.42 16.1 ±0.54 5.8 ±0.13 17 ±3.9 - 1 . 1 ± 0.13 - 0 . 9 ±0.38 11.1 ±0.75
25 25 25 25 19 19 19
-2.9±0.29 -2.8±0.29 -1.7 ±0.38 3.9 ±0.71 5.2±0.54 - 5 . 6 ±0.29 - 7 . 6 ±0.25 -13.0 ±0.63 - 3 . 9 ±0.59 4.6 - 4 . 1 ±0.21 2.1 ±0.17
1.8±0.17 -8.0±0.38 - 6 . 0 ±0.46 1.8 ±0.63 -1.5±0.42 -0.75 ±0.04 2.55 ±0.080 - 1 . 1 ±0.13 - 0 . 3 ±0.13 4.5 15.3 ±0.54 7.03 ±0.080
-2.2±0.17 -1.5±0.13 - 0 . 8 ±0.21 0.4 ±0.25 1.6±0.25 - 5 . 8 ±0.29 - 8 . 6 ±0.34 -13.9 ±0.59 - 4 . 3 ±0.39 3.8 3.6 ±0.34 -1.30 ±0.08
—1.1 ±0.13 -10.8±0.29 -7.7 ±0.42 5.7 ±0.13 3.8±0.13 - 9 . 3 ±0.29 - 5 . 0 ±0.38 -13.9 ±0.75 - 3 . 9 ±0.71 6.8 20.6 ±0.54 4.98 ±0.08
29 27 27 29 29 41 41 41 41 35 35 39
Refs.
TABLE 6. CALCULATED COMPENSATION TEMPERATURES T0 AND COMPENSATION ENTHALPIES AAH* FOR VARIOUS MONOMERS AND MODES OF ADDITION, ASSUMING MARKOV FIRST ORDER TRIALS Modes of addition M o n o m e r
A
Acrylonitrile Methacrylic acid, in alcohols
s/i s/i i/i s/i i/i s/i i/s s/i s/i s/i s/i s/i s/i s/i i/i s/i i/i s/i i/s s/i i/i s/i i/i s/i i/s s/i s/i s/i s/i i/i s/i i/i s/i
- , /-butyl ester - , rc-butyl ester - , /7-carboxyphenyl ester - , glycidyl ester - , hexyl ester - , methyl ester
- , - , ( + ZnCl2)
- , /-propyl ester - , rc-propyl ester Vinyl acetate Vinyl chloride
B
T0 (K) i/s i/s i/i i/i s/s i/s s/s s/s i/s i/s i/s i/s s/s i/s i/s i/i s/s i/s s/s s/s i/s i/i s/s i/s s/s s/s i/s i/s i/s i/s i/i s/s i/s
1400 455 294 ±26 323 ± 5 403 ±140 323 ±10 302 ±74 333 ±23 294 ± 3 236 ± 4 481 345 ± 15 373 ±11 303 ±11 315 ± 49 310 ±20 323 ±124 362 ±15 338 ±51 334 ±54 314 ± 39 321 ± 9 331 ±24 336 ±21 304 ±10 328 ±42 230 ± 54 248 ± 41 1100 283 ±25 282±6 235 ±28 305 ±124
AAHJ (J/mol) 0 2780 6300 ±1260 -2300 ±510 6600 ±200 4480 ±21 - 1 8 0 ±63 4250 ±25 3304 ± 4 3576 ± 8 3308 3800 ± 200 3500 ±120 3260 ± 29 120 ± 160 2600 ±130 1440 ±84 1470 ±50 1400 ±92 4010 ±75 1650 ± 67 540 ±33 1930 ±42 2250 ±50 243 ± 4 2530 ±80 3420 ± 67 3300 ± 176 -2050 820 ±130 -75±17 900 ±160 - 2 2 0 ±420 References page 11-450
TABLE 6. cont'd Modes of addition M o n o m e r
Vinyl formate
N-Vinyl carbazole Vinyl chloroacetate Vinyl trifluoroacetate
A i/s s/i i/i s/i i/i s/i i/s s/i s/i s/i s/i
B
T0 (K) s/s s/s i/s i/i s/s i/s s/s s/s i/s i/s i/s
248 ± 9 219 ± 1 0 362 ± 2 3 315 ± 1 6 323 ± 2 7 330 ± 9 5 320 ± 1 8 316 ± 5 - 243 300 340
AA/fJ (J/mol) - 1 3 ±33 1130 ± 5 9 -1400 ±130 850 ± 8 0 -200 ±25 -290 ±42 970 ± 9 6 740 ± 2 1 288 419 167
"Based on data in Tables 3-5; see also Refs. 40,43.
REFERENCES
1. H. -G. Elias, Makromol. Chem. 137, 277 (1970). 2. J. W. L. Fordham, J. Polym. ScL, 39, 321 (1959). 3. C. E. H. Bawn, W. H. Janes, A. M. North, J. Polym. Sci. C 4, 427 (1963). 4. H. Fischer, Kolloid-Z., 206, 131 (1965). 5. P. L. Luisi, R. M. Mazo, J. Polym. Sci. A-2, 7, 775 (1969). 6. F. A. Bovey, G. V. D. Tiers, J. Polym. Sci., 44, 173 (1960). 7. T. G. Fox, H. W. Schnecko, Polymer 3, 575 (1962). 8. F. A. Bovey, "Polymer Conformation and Configuration", Academic Press, New York, 1969. 9. H. Watanabe, Y. Sono, Kogyo Kagaku Zasshi, 65, 273 (1962). 10. H. -G. Elias, P. Goeldi, V. S. Kamat, Makromol. Chem., 117, 269 (1968). 11. E. L. Miller, SPE Trans., 3, 1 (1963). 12. P. Goeldi, H. -G. Elias, Makromol. Chem., 153, 81 (1972). 13. G. Svegliado, G. Talamini, G. Vidotto, J. Polym. Sci. A-I, 5, 2875 (1967). 14. H. Murano, R. Yamadera, J. Polym. Sci. B, 5, 333 (1967). 15. C. Schuerch, W. Fowells, F. P. Hood, F. A. Bovey, cited in Ref. 36. 16. K. Matsuzaki, T. Uryu, K. Ito, Makromol. Chem., 126, 292 (1969). 17. K. Matsuzaki, T. Uryu, J. Polym. Sci. B, 4, 255 (1966). 18. H. Hirai, T. Ikegami, S. Makishima, J. Polym. Sci. A-1,7,2059 (1969). 19. J. B. Lando, J. Semen, B. Farmer, Polym. Preprints, 10, 586 (1969). 20. W. L. Miller, W. S. Brey, G. B. Butler, J. Polym. Sci., 54, 329 (1961). 21. K. Yokota, Y. Ishi, Kogyo Kagaku Zasshi, 69, 1966 (1966). 22. K. Matsuzaki, A. Ishida, N. Tateno, T. Asakura, A. Hasegawa, T. Tameda, Kogyo Kagaku Zasshi, 68, 852 (1965). 23. Y. B. Amerik, I. I. Konstantinov, B. A. Krentsel, IUPAC, International Symposium, Macromolecular Chemistry, Tokyo, 1966, Preprint 1.1.09. 24. K. Matsuzaki, A. Ishida, N. Tateno, IUPAC, International Symposium, Macromolecular Chemistry, Prague, 1965, Preprint 265.
25. Y. Iwakura, F. Toda, T. Ito, K. Aoshima, Makromol. Chem., 104, 26 (1967). 26. Y Kato, A. Nishioka, Bull. Chem. Soc. Japan, 37, 1614 (1964). 27. S. Okuzawa, H. Hirai, S. Makishima, J. Polym. Sci. A-I, 7, 1039 (1969). 28. F. A. Bovey, J. Polym. Sci., 46, 59 (1960). 29. T. Otsu, B. Yamada, M. Imoto, J. Macromol. Chem., 1, 61 (1966). 30. H. Sobue, K. Matsuzaki, S. Nakano, J. Polym. Sci. A, 2, 3339 (1964). 31. EA. Bovey, G. V. D. Tiers, Fortschr. Hochpolym. -Forschg., 3, 139 (1963). 32. M. Uoi, M. Sumi, S. Nozakura, S. Murahashi, cited in Ref. 33. 33. S. Murahashi, in: IUPAC, International Symposium, Makromol. Chem., 3, 435 (1967) ( = Pure Appl. Chem., 15, nos. 3-4 (1967)). 34. G. Talamini, G. Yidotto, Markromol. Chem., 100, 48 (1967). 35. J. Bargon, K. H. Hellwege, U. Johnsen, Makromol. Chem., 95, 187 (1966). 36. F. A. Bovey, F. D. Hood, E. W. Anderson, R. L. Kornegay, J. Phys. Chem., 71, 312 (1967). 37. H. U. Pohl, D. O. Hummel, Makromol. Chem., 113, 203 (1968). 38. K. C. Ramey, D. C. Lini, G. Statton, J. Polym. Sci. A-I, 5, 257 (1967). 39. L. Cavalli, G. C. Borsini, G. Carraro, G. Confalonieri, J. Polym. Sci. A-I, 8, 801 (1970). 40. H. -G. Elias, P Goeldi, Makromol. Chem., 144, 85 (1971). 41. H. -G. Elias, M. Riva, P. Goeldi, Makromol. Chem., 145, 163 (1971). 42. B. L. Johnson, H. -G. Elias, Makromol. Chem., 155, 121 (1972). 43. H. -G. Elias, P. Geoldi, B. L. Johnson, Adv. Chem. Ser., 128, 21 (1973). 44. R. E. Cais, W. L. Brown, Macromolecules, 13, 801 (1980). 45. D. R. Torrell, F. Evers, Makromol. Chem., 183, 863 (1982).
P r o d u c t s
o f
T h e r m a l
D e g r a d a t i o n
o f
P o l y m e r s
John Liggat Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, Scotland A. Introduction B. Tables Table 1. Main-Chain Acyclic Carbon Polymers Table 2. Main-Chain Carbocyclic Polymers Table 3. Main-Chain Heteroatom Polymers Table 4. Main-Chain Heterocyclic Polymers Table 5. Cellulose and Its Derivatives C. References A.
11-451 11-451 11-451 II-464 II-465 II-473 II-475 II-475
INTRODUCTION
Polymer degradation is a complex phenomenon, and the nature of the chemistry occurring during thermal decomposition can be difficult to determine precisely. The observed products of degradation can be the result of a mixture of primary, secondary or even tertiary decomposition processes, and as a consequence, the distribution of products will depend on such factors as sample thickness and melt viscosity, in addition to the more obvious factors such as temperature, atmosphere and the chemical structure of the polymer itself. It is often overlooked that abnormal structures (terminal unsaturation, head-to-head structures, peroxide links etc.) can also markedly effect polymer stability and product distribution. Products are of three types. Firstly, there are the volatile small molecules (typically of the size of monomer or smaller) which are fairly readily separated and character-
ized. Secondly, there are the larger molecules that represent fragments of the chain. These species are volatile at the degradation temperature but condense outwith the degradation zone. Generally produced as a complex spectrum of oligomers, these fragments are more difficult to separate and characterize in detail, particularly as internal rearrangements of the backbone often occur before and during fragmentation. In many cases, identification is limited to key functionalities but the advent of sophisticated chromatographic and mass spectrometric techniques is leading to increasingly detailed analyses. In particular, the smaller fragments such as dimer and trimer are in principle more readily fully characterized than the larger fragments; nevertheless there often remains some uncertainty, particularly in relation to end groups. The most intractable product is the third type, the residue, which is often (but not always) insoluble, and characterization may again be limited to identification of key functionalities. Naturally, most of the information in the literature relates to the easily identified low molecular weight species, and the data in this section reflects this. In addition, most thermal degradation studies focus on inert rather than oxidizing environments. Following the lead of the previous author, Norman Grassie, the vast majority of the entries included here are concerned with products of the first two types from purely thermal degradation processes under inert atmospheres.
B. TABLES TABLE 1. MAIN-CHAIN ACYCLIC CARBON POLYMERS Polymer
Temperature range (0C)
Degradation products
Refs.
1.1. UNSATURATEDPOLYMERS Poly(acetylene)
650
Poly(butadiene)
325-475 20°C/min to 15% weight loss
Methane (0.87 moles relative to benzene= 1), ethylene (0.47), ethane 82 (0.26), propylene (0.27), propane (0.047), 1,3-butadiene (0.19), cyclopentadiene (0.086), cyclopentene (0.063), benzene (1.0), toluene (0.18), m-xylene (0.091), /?-xylene (0.015), styrene (0.041), o-xylene (0.013), methylstyrene (0.010), frans-p-methylstyrene (0.011), indane (0.0074), indene (0.036), methylindene (0.0072), naphthalene (0.052), 2-methylnaphthalene (0.015), 1-methylnaphthalene (0.018), biphenyl (0.0091), fluorene (1.0), anthracene (0.005) 14.1% of products are volatile at 25°C including 1.5% of monomer 16 among other saturated and unsaturated hydrocarbons; 85.9% of products are larger fragments involatile at 250C Effect of cisltrans ratio; increasing trans content gives more cyclopentene 83 and 1,3-cyclohexadiene and less 4-vinyl-l-cyclohexene and 1,3-butadiene
TABLE 1. cont'd Polymer Poly(butadiene-co-acrylonitrile) (70/30) 25-100 mol% butadiene
Poly(butadiene)-£/ewd-poly(styrene) (0-100wt.%) Poly(butadiene-co-sytrene) (75/25) Poly(chloroprene)
Poly(chloroprene)-fc/em/ poly(methyl methacrylate) Poly(isoprene), synthetic 97% c/s-1,4; 3%, 3,4
natural rubber
Temperature range (0C) 310-400 350-400
Ambient to 500 327-430
chlorinated rubber-blendpoly(vinyl chloride) Poly(perfluoro-4-chloro-l,6-heptadiene)
14.5% of products are volatile at 25°C, consisting of saturated hydrocarbons Main product is structurally modified chain fragments; ammonia and hydrogen cyanide increasing with acrylonitrile content to approximately 4% each by weight of copolymer containing mole 75% acrylonitrile; traces of hydrogen and hydrocarbons up to C 7 Volatile products as for individual polymers
Refs. 10 98
84
160-350
11.8% of products are volatile at 25°C; 1.9% butadiene with 10,16 other saturated and unsaturated hydrocarbons Hydrogen chloride 19 HCl (90% of theoretical), ethylene, chloroprene (trace), chloroprene 85 dimers and other modified chain fragments HCl (trace), methane, ethylene, propylene (trace) 85 Methyl methacrylate, HCl, CO 2 , CO, 86 methyl chloride, methanol. 3.4% isoprene, 8.8% dipentene, small amounts of p-menthene. 2,16,31 In helium; methane (0.04 wt.%), ethylene (0.08), ethane (0.03), 87 propylene (0.15), propane (0.06), isobutylene (0.09), butenes (0.07), methyl butene (0.09), isoprene (29), toluene (0.02), 2,3-dimethyl cyclopentene (1.2), octene (0.05), 2,4-dimethyl cyclohexene (0.16), m-xylene (0.33), l-methyl-4-ethyl cyclohexene (0.18), l,5-dimethyl-5-vinyl cyclohexene (2.5), dipentene (60), C n H i 8 (0.2), C 12 H 18 (0.2), C 15 H 24 (3.5), C 16 H 26 (1.8) 3.9% isoprene, 13.2% dipentene, small amounts of /?-menthene 2,16,31 Dipentene main product at 4500C, optimum yields of isoprene in 32 range 675-8000C, e.g., 58% at 7500C and 13mbar Monomer, dimers (l,7,7-trimethyl-2,2,l-bicyclohept-2-ene, 259 2,5,6-trimethyl 1,3,6-heptatriene, dipentene/d,l-limonene), trimers 3.0% Isoprene, 15.6% dipentene, small amounts of/?-menthene 2,16,31 Styrene, isoprene, dipentene larger chain fragments of both 88 polymers, traces of ethylene, ethane, and propane HCl (almost quantitative), CH 4, C 2 H 4 , and H 2 are minor products 89 formed in the later stages of reaction HCl 90
320-400
Completely volatilized - products unknown.
335-450
Continuous spectrum of saturated and unsaturated hydrocarbons 13,16 from C 2 -C90; lower temperature favors larger fragments Continuous spectrum of saturated and unsaturated hydrocarbons 243 C 1 -C 1 5 ; trace of hydrogen In air; CO 2 , H2O, ethene, propene, propane, cyclopropane, butene, 91 butane, pentene, pentane, hexene, hexane, heptene, heptane, octene, octane, methanol, ethanol, furan, tetrahydrofuran, formaldehyde, acetaldehyde, propanal, acrolein, butanal, isobutanal, pentanal, acetone, methyl vinyl ketone, methyl ethyl ketone, 2-pentanone, 2-hexanone, 2-heptanone, formic acid, acetic acid, propionic acid, acrylic acid, butyric acid, isovaleric acid, hydroxyvaleric acid, crotonic acid, caproic acid, butyrolactone, valerolactone CO, H2O, ethene, series of ketones with general structure 270 R_[_CO-CH 2 -CH 2 -] n -CO-R / where R, R' = - C H 3 , -CH 2 -CH 3 or -CH=CH 2 Broad spectrum of saturated and unsaturated hydrocarbons, ethyl esters 243 and carboxylic acids; ethanol, ethylene, CO2, CO and small amounts of ketene and ethyl acrylate Acetic acid, ketene, CO 2 , ethylene, saturated and usaturated 92 hydrocarbons, chain fragment fraction containing some vinyl acetate units Acetic acid > 99% 93 18.1% monomer together with methane, isobutane, and C 5 and 16 higher saturated and unsaturated hydrocarbons As temperature is increased the yields of fragments smaller than 28 monomer increase at the expense of larger fragments
377 170-400 400-500 Ambient to 500 287-400 384
287-400 450-800 500
gutta percha Poly(isoprene)-&/ew
Degradation products
287-400 Ambient to 500 Ambient to 500
49
1.2. POLY(ALKENES) Poly(ethylene) - , low density
Ambient to 500 264-289
Poly(ethylene-co-carbon monoxide) Alternating copolymer
500
Poly(ethylene-c0-ethyl acrylate) 18:1 mole ratio
Ambient to 500
Poly(ethylene-c0-vinyl acetate) (12-33 mol% vinyl acetate) (38.5% (wt.%) of ester groups) Poly(isobutene)
Ambient to 500 260-290 288-425 Up to 1200
TABLE 1. cont'd Polymer
Temperature range (0C) 325 345 365 300-320
Poly(isopropenylcyclohexane)
400-900
Poly(isopropenylcyclohexane-co-amethylstyrene) (92/8 and 33/67)
400-900
Poly(4-methyl-l-pentene)
291-341
Poly(propylene)
328-410 400-1200 360-400
120-280
200-356 Poly (propylene)-£/end-poly (methyl methacrylate)
Poly(vinylcyclohexane)
Ambient to 500
335-391 360-380
Poly(chlorotrifluoro-ethylene)
Ambient to 500
Degradation products
Refs.
At 4.9% weight loss, products are isobutene (64.3%), CH4 (13.6%), 29 neopentane (10.3%); remainder C2-C12 hydrocarbons At 15.7% weight loss, products are isobutene (78.9%), CH4 (5.9%), 29 neopentane (4.7%); remainder C 2-C12 hydrocarbons At 46.8% weight loss, products are isobutene (81.6%), CH4 (3.9%), 29 neopentane (3.1%); remainder C2-C12 hydrocarbons Two types of f-butyl ended and two types of isopropyl ended terminal 249 monoolefins in range 2-mers to 12-mers Methylenecyclohexane and/or methyl-1-cyclohexene, ethylcyclohexane, 94 toluene, isopropenylcyclohexane, isomer of isopropenylcyclohexane, ethyl benzene, isopropylcyclohexadiene, pentadienylcyclohexane (5 isomers), dicyclohexylpropane, 3-cyclohexenyl-l-cyclohexylpentadiene, dicyclohexylhexadiene Methylenecyclohexane and/or methyl-1-cyclohexane, benzene, toluene, 94 isopropenylcyclohexane, ethylbenzene (92/8 only), decalin (92/8 only), cumene (33/67 only), oc-methylstyrene, styrene, (33/67 only), pentadienylcyclohexane (92/8 only), indene and methyleneindene (33/67 only), naphthalene, dicyclohexylhexadiene (92/8 only). The following from the 33/67 copolymer only: 2-methylnaphthalene, 1-methylnaphthalene, biphenyl, methylstilbene, a-methylstilbene, anthracene/phenanthrene, dihydropyrene After 22 hours at 341°C, 20% residue, 71% saturated and 43 chain fragments; 9% of products volatile at 25°C, comprising isobutene (56%), propane (34%), traces of monomer, and hydrocarbons Saturated and hydrocarbons from C2 upwards, monomer yield 0.17% 13 As temperature is raised, yield of small fragments increases at 28 expense of large fragments At 4000C, chain fragments with 7.05 wt.% of volatile products 95 comprising principally, methane 0.057 wt.%, ethane 0.13, propane 0.078, propene 0.83, isobutene 0.16, butane 0.004, 2-methyl-l-butene 0.010, 1-pentene 0.008, pentane 1.62, 2-pentene (cis and trans) 0.015, 2-methyl pentane 0.074, 2-methyl-1-pentene 1.19, 2,4-dimethylpentane 0.032, 2,4-di-methyl-1-pentene 0.089, 4-methylheptane 0.24, 2,4-dimethyl-l-heptene 2.20, 4,6-dimethylnonane (threo form) 0.042 (erythro form) 0.052, 2,4,6-trimethyl-l-nonene (threo form) 0.055 (erythro form) 0.066 In air; ethene, ethane, propene, propane, isobutene, butane, isobutane, 96 pentadiene, 2-methyl-1-pentene, 2,4-dimethyl-1-pentene, 5-methyl-l-heptene, dimethylbenzene, methanol, ethanol, 2-methyl-2-propene-l-ol, 2-methyl furan, 2,5-dimethylfuran, formaldehyde, acetaldehyde, acrolein, propanal, methacrolein, 2-methyl propanal, butanal, 2-vinyl crotonaldehyde, 3-methyl pentanal, 3-methyl hexanal, octanal, nonanal, decanal, ethenone, acetone, 3-buten-2-one, 2-butanone, l-hydroxy-2-propanone, 1-cyclopropylethanone, 3-methyl-2-buten-2-one, 3-penten-2-one, 2-pentanone, 2,3-butanedione Under 254 nm radiation; additional methane and ethylene are formed 97 compared with the thermal reaction Poly (methyl methacrylate) stabilized by blending with polypropylene; 99 pre-irradiation with 2537 A radiation at ambient temperature reduces amount of methyl methacrylate formed on subsequent thermal degradation; missing methyl methacrylate units appear in a chain fragment fraction Small amounts of cyclohexane, cyclohexane, methylcyclohexene, methyl 2,3 cyclohexane, vinylcyclohexene, vinylcyclohexane, ethylcyclohexane with larger chain fragments Cyclohexane (main product), cyclohexene, vinylcyclohexane, vinylcyclo 100 hexane oligomers, methane, ethane, ethylene, propane, propylene, butane, butylene, hydrogen Monomer, traces of dichlorodifluoroethene, chloropentafluoropropene, 261 trichlorotrifluoroethane
References page II - 475
TABLE 1. cont'd Polymer
Temperature range (0C)
Degradation products
Refs.
1.3. POLY(ACRYLICS), POLY(METHACRYLICS) Poly(acrylic acid)
- , methyl ester
Ambient to 500
292-399
Up to 980
50 - , ethyl ester
300-500 50 Ambient to 500
- , w-propyl ester
300-500
- , isopropyl ester
250-500
- , n-butyl ester
300-500 50
- , tert-butyl ester -, 2-ethyl hexyl ester - , benzyl ester
>160 300-500 260-300
-, 1,1,5-trihydroperfluoroamyl ester
300-315
- , 2,2,2-trichloroethyl ester
319
- , oc-bromo-, methyl ester - , a-chloro-, methyl ester - , a-chloro-, .sec-butyl ester -, a-cyano-, methyl ester - , a-phenyl-, methyl ester Poly (acrylic acid, magnesium salt)
110-150 600 600 190 > 180 210-280 Ambient to 500
Poly(acrylic acid, calcium salt)
Ambient to 500
CO, CO 2 , H 2 O, CH 4 , acetone, ketene, ethene, propylene, 1-butene, 297 methyl vinyl ketone, benzene, acrylic acid, toluene, xylene, short chain fragments such as dimer to octamer with unsaturated and anhydride functionalities 26% of products are volatile at 25°C, mainly methyl alcohol and 2,3 carbon dioxide with traces of monomer and methyl methacrylate and C 4-C 6 oxygenated compounds (74% of products are large chain fragments involatile at 250C) Methanol (1.9%), methyl formate (trace), methyl acetate (1.4%), methyl 101 acrylate (19.0%), methyl methacrylate (1.9%), saturated ester (2.1%), dimethyl glutarate (7.5%), methyl 4-methoxycarbonyl-pent-4-enoate (11.6%), trimethyl pentane 1,3,5-tricarboxylate (0.6%) methyl 4,6-di-methoxycarbonylhept-6-enoate (53%), saturated and tetramers (1.0%) Irradiated with high-pressure mercury lamp; methanol, formaldehyde, 102 methyl acetate, methyl formate, CO 2 , CO, H 2 , CH 4 Major products, carbon dioxide, ethylene, ethanol, and chain fragments; 103 minor products, ethane, ethyl acrylate, and ethyl methacrylate Irradiated with high-pressure mercury lamp; CO, CO 2 , ethanol, acetalde- 104 hyde, ethane, ethyl formate, acetal, ethyl propionate Ethylene, carbon dioxide, trace of ketene, ethanol (major product), 243 various ethyl esters (see Ref.) Major products carbon dioxide, propene, propanol, and chain fragments; 103 minor products, propane, carbon monoxide, hydrogen, rc-propyl acrylate, and w-propyl methacrylate Major products carbon dioxide, propene; minor products isopropanol 105 with trace carbon monoxide Major products carbon dioxide, 1-butene, butanol, and chain fragments; 103 minor products, butane, /i-butyl acrylate, and n-butyl methacrylate Irradiated with high-pressure mercury lamp. CO, CO 2 rc-butanol, 104 butyraldehyde, «-butene, n-butyl formate, n-butyl valerate (after prolonged exposure) 86% isobutylene, 11% water, 3% carbon dioxide 4 Carbon dioxide, 2-ethyl-l-hexene, 2-ethyl-l-hexanol 103 Major products are benzyl alcohol, chain fragments, partially crosslinked 1 residue; minor products are CO 2 , toluene, CO, CH 4 , H 2 CO 2 , benzyl alcohol, and low polymers 106 Oligomers, 1,1,5-trihydroperfluoroamyl alcohol, monomer, 1,1,5-trihydro- 107 perfluoroamyl methacrylate 2,2,2-Trichloroethanol (80%), monomer (9%), 1,1-dichloroethene, 263 2-chloroethanal, 2,2-dichloroethanal, 1,1-dichloropropane, 1,1,1 -trichloroethane, 2,2,2-trichloroethylethanoate, 2,2,2-trichloroethyl chloromethanoate, 2,2,2-trichloroethylpropanoate, 2,2,2-trichloroethylmethacrylate, 2,2,2-trichloroethyl chloroethanoate, 2,2,2-trichloroethyl-2-chloroacrylate Methylbromide, hydrogen bromide 5 CO 2 , propene, methyl bromide, vinyl bromide 305 CO 2 , propene, methyl chloride, monomer 306 sec-Butyl chloride, butylene, hydrogen chloride 7 Yellows and some monomer formed 6 Monomer is the sole product 8 CO, CH 4 , CO 2 , acetone, ketene, ethene, propene, 1-butene, benzene, 312 toluene, xylene, cyclopentene, methyl ethyl ketone, diethyl ketone, methyl-«-propyl ketone, di-w-propyl ketone, methyl vinyl ketone, methyl isopropenyl ketone, methyl isopropyl ketone, ethyl vinyl ketone, trace amounts of methyl-w-butyl ketone, cyclopentanone, cyclohexanone, acrolein, ethanal and butanal, chain fragments, some monomer CO, CH 4 , CO 2 , acetone, ketene, ethene, propene, 1-butene, benzene, 312 toluene, mesitylene, xylene, methyl ethyl ketone, diethyl ketone, methyl-H-propyl ketone, methyl-fl-butyl ketone, ethyl vinyl ketone, methyl propenyl ketone (trace), ethyl propyl ketone (trace), 3-methyl-cyclopentanone, cyclohexanone (trace), cyclohexa-2-enone,
TABLE 1. cont'd Polymer
Temperature range (0C)
Poly (acrylic acid, sodium salt)
Ambient to 500
Poly(acrylic acid, potassium salt)
Ambient to 500
Poly(methyl acrylate-co-methyl methacrylate) (mole ratios 112/1-2/1)
Ambient to 500
Poly (methyl acrylate-co-acryloyl chloride) 6, 15, 41, 83 mol% AC
Ambient to 500
Poly (methyl acrylate-co-2-bromoethyl methyacrylate) (10-82 mol% methyl acrylate) Poly(methyl acry\ate)-blendpoly((2-bromoethyl methacrylate) (50/50, w/w) Poly(/i-butyl acrylate-co-methyl methacrylate) (3.9-93.4 mol% butyl acrylate)
Ambient to 500
Ambient to 500
313-332
165
Poly(terf-butyl acrylate-co-glycidyl methacrylate) (34/66) Poly(methyl-oc-chloroacrylatec0-2,2,2-trifluoroethyl methacrylate) (70/30) Poly(methyl-a-chloroacrylate-co-2,2,2trifluoroethyl methacrylate) (70/30) Poly(acrylonitrile)
0-700 Ambient
Ambient <200 250-280
280-450 250-350 235 - , a-chloro - , a-phenyl Poly (aery lonitrile-co-2-bromoethyl methacrylate (50/50, mol/mol) Poly(acrylonitrile-co-methyl methacrylate)( 1/410-1/8)
150-200 Ambient to 500 Ambient to 500 Below 310 310-500 220-280
Degradation products
Refs.
2-methyl-cyclohexanone, l-methyl-cyclohexa-l-ene-3-one (trace), acrolein, mesityl oxide, ethanal, propanal, butanal, chain fragments, some monomer CO, CH 4 , CO 2, ketene, 1-butene, propene, acetone, methyl ethyl ketone, 303 methyl isopropyl ketone, methyl-fi-propyl ketone, diethyl ketone, methyl propenyl ketone, 3-hexanone, toluene, 2-hexanone, 1,3-cyclopentadiene, cyclopentanone, 2-methyl cyclopentanone, mesityl oxide, xylenes, benzene, propionaldehyde, acrolein, acetaldehyde, ethene, short chain fragments, traces of monomer CO, CH4, CO2, ketene, 1-butene, propene, acetone, methyl ethyl ketone, 303 methyl rc-propyl ketone, 1,4-cyclohexadiene, toluene, 1-methyl-1,3-cyclohexadiene, 2-hexanone, cyclopentene, 1-methyl cyclopentene, mesityl oxide, xylenes, benzene, ethene, cyclopentanone, 1,3-cyclopentadiene, diethyl ketone, short chain fragments, traces of monomer Monomers, CO2, chain fragments larger than monomer, H2; 108,109 more stable than poly(methyl methacrylate); rapid decrease in molecular weight; products of phtodegradation at 170° by 254 nm radiation are qualitatively similar Acrylic acid, HCl, H2O, CO, CO 2, acryloyl chloride, methyl acrylate, 262 methyl acrylate chain fragments, anhydride and y-lactone structures, chloro-methane, methyl methacrylate, methanol, 3,5-(6-chloro-2-pyrone) and fragments thereof, C6, C9, C12, C15 fragments. Relative yields depend upon copolymer composition CO 2, ketene, methyl bromide, acetaldehyde, methyl acrylate, methanol, 110 1,2-dibromoethane, methyl methacrylate, 2-bromoethanol, ethyl methacrylate, CH 4 , CO, H 2 modified chain fragments CO2, ketene (minor), methyl bromide, vinyl bromide (minor), acetalde111 hyde, methanol, methyl methacrylate, methyl acrylate, 1,2-dibromoethane, 2-bromoethyl methacrylate 1-Butene, carbon dioxide, butanol methyl methacrylate, butyl acrylate, 112 and butyl methacrylate; small quantities of methane, ethane, propane, butane, ethylene, propene, cis, and trans 2-butene, hydrogen, and carbon monoxide increase with butyl acrylate content of the copolymer Under 2537 A radiation; methyl methacrylate with smaller quantities of 113 n-butyl acrylate, n-butanol, n-butyraldehyde, hydrogen, carbon monoxide, and methane; a chain fragment fraction increases with rc-butyl acrylate content CO, CO 2, propene, ethanal, isobutene, acrolein, allyl alcohol 114 Gamma Radiolysis; CH 4 , CO, ethylene, ethane, CH 3 OH, CHF3, HCl, C 3 H 6 , CO 2 , C 2 H 3 F, CH 3 Cl, methyl formate, CH 3 CH 2 Cl, CHF3, CH 3 CF 3 , C H 2 = C ( C H 3 ) C O O C H 2 C F 3 Gamma Radiolysis; CH 4 , CO, ethylene, ethane, CH 3 OH, HCl, C 3 H 6 , CO 2 , CH 3 Cl, methyl formate, CH 3 CH 2 Cl, CH 2 Cl 2 , CHCl3 Colours through yellow, orange, red, and black 12% of products are volatile at 25°C, consisting of hydrogen cyanide, acrylonitrile, and vinyl acetonitrile; 88% of products are involatile at room temperature Five major volatile products are cyanogen, HCN, acrylonitrile, acetonitrile, vinyl acetonitrile; involatile residue remains NH 3 , HCN HCN, hydrogenated acrylonitrile, dimer and trimer, acetonitrile, methacrylonitrile Hydrogen chloride Hydrogen chloride and small amount of HCN at higher temperatures High yields of monomer Ethylene, CO 2 , vinyl bromide acetaldehyde, 1,2-dibromoethane Propane, isobutene, CO 2 , HCN, isocyanic acid, yellow-chain fragment fraction Only methyl methacrylate from 410/1 and 40/1 (molar ratio) copolymers; methyl methacrylate and small amounts of acrylonitrile from 16/1 and 8/1 copolymers; rapid decrease in the molecular weight of all copolymers
115
115 9 10,11
12 116 117 118 119 119 120 121 121
References page II - 475
TABLE 1. cont'd Polymer
Temperature range (0C) 160
Poly(acrylonitrile-c0-methyl vinyl ketone) Poly(acrylonitrile-co-styrene) (0/100-50/50, mol/mol)
(1.86-96.62 mol% acrylonitrile)
Poly(acrylonitrile-co vinyl acetate) (7.5 wt.% vinyl acetate) Poly(acrylonitrile-co-methyl acrylate-co-vinyl bromide) (methyl acrylate, 10 wt.%; vinyl bromide, 5 wt.%) Poly(a-chloroacrylonitrile-co methyl methacrylate) (0-50 mol% a-chloroacrylonitrile) Poly (aciylonitrile)-We/idpoly(methyl methacrylate) (50/50, w/w) Poly(acryloyl chloride) Poly(methacrylic acid)
292
500
260 180-320
> 150 Ambient Up to 320 320-500 Ambient to 500 200 900
- , methyl ester
- , ethyl ester - , rc-propyl ester - , iso-propyl ester - , fz-butyl ester - , wo-butyl ester - , s^c-butyl ester - , tert-butyl ester
-, -, -, -, -, -, -, -,
n-amyl ester wo-amyl ester 1,2-dimethylpropyl ester neopentyl ester 3,3-dimethylbutyl ester 1,3-dimethylbutyl ester 2-bromoethyl ester 2-sulfoethyl ester
- , 2-chloroethyl ester
170-300 246-400 160 100-400 250 245 250 250 250 170 250 250 180-200 < 180 250 250 250 250 250 250 Ambient to 500 50-600 600 600 268
Degradation products Photodegradation by 254 nm radiation gives methyl methacrylate from 410/1 to 8/1 copolymers with a 8/1 copolymer; rapid decrease in the molecular weight of all copolymers Production of water from poly(methyl vinyl ketone) accelerated by copolymerization with acrylonitrile Acrylonitrile causes increase in rate of chain scission; proportion of acrylonitrile among degradation products greater than from pure polyacrylonitrile; chain fragments increase with acrylonitrile content of copolymer; styrene, acrylonitrile, toluene, benzene, four dimers, and four trimers Hydrocyanic acid, acetonitrile, acrylonitrile, propionitrile, toluene, ethyl benzene, styrene, methane, ethylene, ethane, C 3 hydrocarbons, but-1-ene, prop-l-ene-3-nitrile, isopropylnitrile, benzene HCN, hydrogenated acrylonitrile, dimer and trimer, acetonitrile, methacrylonitrile, acetic acid CH3Br, HBr, H 2 O, CO 2 , CH 3 OH, NH 3 , HCN, hydrogenated acrylonitrile, dimer and trimer, acetonitrile, methacrylonitrile, naphthyridine fragments Hydrogen chloride, methyl methacrylate, oc-chloroacrylonitrile
Refs. 121
122 123
124
117 117
125
Under 254 nm radiation. HCl, CO 2 , methyl chloride, methyl formate, 126 methanol, methyl methacrylate, CO, CH 4, H 2 NH 3 , HCN, MMA 127 Chain-fragment fraction and small amounts of CO, CO 2 , methanol, CH 4 Acrylic acid, HCl, H 2 O, CO, acryloyl chloride, 3,5-(6-chloro-2-pyrone) 262 and fragments thereof, C6, C9, Cj 2 , C15 fragments Almost quantitative yields of H 2 O, traces of monomer, residue of 33 poly(methacrylic anhydride) CO 2 , propene, butenes, pentenes, pentadienes, hexene, hexadienes, 128 hexatrienes, benzene, toluene, heptene, heptatriene, methacrylic acid, xylene, octatriene, octadienyne, nonatriene, hexadienoic acid, decatriene, decatetraene, decapentaene, undecatriene, methylbenzoic acids, trimethylbenzoic acid 100% monomer 34, 35 As temperature is raised fragmentation increases to give complex 2 series of products and monomer yields correspondingly decreases 100% monomer under 253.7nm radiation 36 Under 254 nm radiation; 100% monomer 129 Monomer 37 Monomer, ethanol, ethanoic acid 300 Monomer 37 Monomer 37 40% monomer and traces of 1-butene 38 100% monomer under 253.7nm radiation 38 Monomer 37 Monomer and small amount of olefin by cracking of side chain 37 High yields of isobutylene and water, 1% monomer, trace of methacrylic 39 acid, residue of poly(methacrylic anhydride) 100% monomer under 253.7 nm radiation Monomer 37 Monomer 37 Monomer and small amount of olefin by side chain cracking 37 Monomer 37 Monomer 37 Monomer and small amount of olefin by side chain cracking 37 2-Bromoethyl methacrylate (>95%), CO 2 (< 1%), vinyl bromide (< 1%) 130 CO, CO 2 , H 2 O, SO 2 , ethene 290 CO, CO 2 , propene, acetaldehyde, methyl bromide, butene, 305 vinyl bromide, ethyl bromide, methyl methacrylate CO 2 , propene, acetaldehyde, vinyl chloride, ethyl chloride, monomer 306 Monomer (99%), traces of acetaldehyde, methyl methacrylate, 268 1,2-dichloroethane, ethylene methacrylate
TABLE 1. cont'd Polymer
Temperature range (0C)
Degradation products
Refs.
Poly(methacrylic acid), 2-fluoroethyl ester - , 2,2-dichloroethyl ester
600
CO 2, vinyl fluoride, acetaldehyde,
242
- , 2-methoxyethyl ester
Ambient to 300 Ambient to 500
Monomer (90.7%), chloroacetaldehyde (8%), 1,1,2-trichloroethane (0.5%), 268 2,2-dichloroethanol, methacrylic acid (0.1%), 2-chloroethylene methacrylate (0.1%) Monomer, CO 2 309 Monomer, CO 2 , CO, CH4, ethene, formaldehyde, isobutene, methyl 309 vinyl ether, methanol CO 2 , propene, acetaldehyde, methyl bromide, butene, ethyl bromide, 305 bromocyclopropane or 2-bromopropane 2-Hydroxyethyl methacrylate (20% at 5000C), ethylene dimethacrylate 131 (6%at 500°C)(main products), ethylene glycol, 3-methyl-5-hydroxy6-valerolactone (probably), 1,2-di-iospropenyl-oxyethane (probably), CO, CO2, methane, ethylene, ethane, propane, H2O Gamma radiolysis; CH4, CO, ethylene, ethane, CH3OH, CH3F, C 3 H 6 , 115 CO 2 , C 2 H 3 F, methyl formate, CH3CHFOH, CHF3, CF3CH3, CF3OH, CH2 = C(CH3)-COOCH2CF3 CO 2 , vinylidene fluoride, trifluoroacetaldehyde, trifluorethanol, 310 monomer CO 2 , propene, vinyl chloride, vinylidene chloride 306 1,1-Dichloroethene, chloroform, methyl methacrylate, methacrylic acid, 300 2,2,2-trichloroethanol, 2,2,2-trichloroethyl acrylate, 2,2,2-trichloroethyl methacrylate, 2,2-dichloroethyl methacrylate, CH2 = C(CH3)-COOCHI=CCl2 or CH2 = C(CH3)-COOCCl = CHCl CO 2 , trifluoracetaldehyde, acetaldehyde, 1,1,1,3,3,3-hexafluoropropane, 310 hexafluoro-isopropylformate CO 2 , SO 2 , phenol, bisphenol S, hydroquinone, fragments of backbone, 248 benzene sulfonic acid CO 2 , CH4, CO, H 2 , propene, isobutene, dimethyl ketene, acrolein, 283 diallyl ether, allyl methacrylate monomer and dimer, chain fragments including anhydride structures from side-group cyclization and an aliphatic ketone in the vicinity of unsaturation Monomer, some CO2 314 CO, CO 2 , dimethyl ketene, isobutene, propene, acrolein, allyl alcohol, 302 glycidyl methacrylate, glycidol, short chain fragments with some unsaturation Isocyanic acid, NH 3 , HCN, isobutene, CO2 (trace), methacrylonitrile 132 (trace) Ethylene, butene-1, isobutene, acetylene, CO 2 , CH4, CO, acetone, 133 isopropylaldehyde, methacrolein, butyraldehyde, methyl ethyl ketone, benzene (trace), methyl isopropyl ketones, methyl isopropenyl ketone, diethyl ketone, methyl rc-propenyl ketone, cyclopentanone, methyl cyclopentanone, dimethyl cyclopentanone, dimethyl cyclopentenone and traces of toluene, di-isopropyl ketone, mesitylene, mesityl oxide CO2, dimethyl ketene trace amounts of CO, CH4, isobutene, butene-1, 134 ethylene, acetylene, benzene toluene isobutyraldehyde, methyl ethyl ketone, methyl isopropenyl ketone, diethyl ketone, methyl isopropenyl ketone, di-isopropyl ketone, cyclopentanone, 2-methyl cyclopentanone, 2,5-dimethyl-cyclopentanone, 2,5-dimethylcyclopent-3-ene-l-one, methacrolein, butyraldehyde Monomer 194 Monomer, phthalic anhydride, diethylene glycol, C 2 H 4 , propylene, CO2 194 CO 2 , alkenes, CH4, CO, propanal methanol (major), acetone, 2-methyl 135 propanal, methacrolein, butanal, methyl ethyl ketone, methyl isopropyl ketone, methyl isopropenyl ketone, methyl methacrylate (major), methyl prop-2-enyl ketone, toluene, di-isopropyl ketone, cyclopentanone, 2-methyl cyclopentanone, 2,5-dimethyl cyclopentanone, 2,5-di-methyl cyclopent-3-enone. Relative yields depend upon salt and copolymer composition Methyl methacrylate, 2-bromoethyl methacrylate, traces of vinyl bromide 130 and CO2
- , 2,3-dibromopropyl ester
600
-, 2-hydroxyethyl ester
375-500
- , 2,2,2-trifluoroethyl ester
Ambient 600
- , 2,2,2-trichloroethyl ester
600 240
- , hexafluoroisopropyl ester
600
- , bisphenol S ester
464
- , allyl ester
Ambient to 500
- , phenyl ester - , glycidyl ester
Ambient to 500 Ambient to 500
- , ammonium salt
Ambient to 500
- , Li, Na, K, and Co salts
Ambient to 500
- , Mg, Ca, Sr, and Ba salts
Ambient to 500
Poly[a-co-(diethylene glycol phthalate)dimethacrylate] Poly(methyl methacrylate-co-alkali (metal methacrylates) (Li, Na, K) (0-100 mol%)
300 400 Ambient to 500
Poly (methyl methacrylate-co2-bromoethyl methacrylate) (50/50, mol/mol) Poly(methyl methacrylateco-methacrylamide)
Ambient to 500 Up to 340
fluoroacetaldehyde
> 35 mol% methacrylamide. MMA, methanol, NH3, H 2 O
310
146
References page 11-475
TABLE 1. cont'd Polymer
Temperature range (0C) >340
Poly(methyl methacrylate-comethacrylic acid)
Poly(methyl methacrylate-co2-chloroethylmethacrylate) 22 mol% CEMA Poly (methyl methacrylateco2,2,2-trichloroethyl methacrylate) 24 mol% TCEMA Poly (methyl methacrylatecomethyl-oc-chloroacrylate) 38 mol% MCA Poly(methyl methacrylatec6>-2-bromoethyl methacrylate) 22 mol% BEMA Poly (methyl methacrylateco-2,3-dibromopropyl methacrylate) 16 mol% DBPMA Poly (methyl methacrylateco-methyl-a-bromoacrylate) 22 mol% MBA Poly(methyl methacrylateco-chlorotrifluoroethylene) 7.7 mol% MMA 77.7 and 85.7 mol% MMA Poly(methyl methacrylateco-2-sulfoethyl methacrylate) 20, 40, 60 mol% MMA Poly(methyl methacrylateco-4-vinylpyridine) 22, 35, 46, 56 mol% 4vinyl pyridine Poly (methyl methacrylatecophenyl methacrylate) 9, 18, 47, 88 mol% PMA
<300 >300 900
600
Degradation products Methacrylamide; chain fragments and small amounts of CH4, CO2, CO, HCN, methacrylonitrile and isobutene < 10 mol% methacrylamide. Degradation becomes progressively more like that of PMMA Water and methanol Methyl methacrylate, CO2, CO, CH4 (50/50 and 75/25); CO2, propene, butenes, pentenes, pentadienes, hexene, hexadienes, hexatrienes, benzene, methyl isobutyrate, methyl methacrylate, toluene, heptene, heptatriene, methyl pentenoate, methacrylic acid, xylene, octatriene, octadienyne, nonatriene, hexadienoic acid, decatriene, decatetraene, decapentaene, undecatriene, methylbenzoic acids CO2, propene, acetaldehyde, vinyl chloride, ethyl chloride, methyl methacrylate
Refs. 146 146 136 128
306
600
CO2, propene, vinyl chloride, vinylidene chloride, dichloroacetaldehyde, methyl methacrylate
306
600
CO2, propene, methyl chloride, methyl methacrylate
306
600
CO2, propene, acetaldehyde, methyl bromide, butene, vinyl bromide, methyl methacrylate
305
600
CO, CO 2 , ethene, propene, methyl bromide, butene, vinyl bromide, ethyl bromide, 1-bromopropene, 2-bromopropene, cyclopropyl bromide, methyl methacrylate
305
600
CO 2 , acetaldehyde, methyl bromide, butene, vinyl bromide, unidentified alkenyl bromides, methyl methacrylate
305
Ambient to 500
HCl, CO 2 , CH3Cl, C 2 F 3 Cl (monomer), C3F5Cl, C 2 F 3 Cl 3 , methyl methacrylate, chain fragments possibly with some lactonization
281
Ambient to 500 50-600
HCl, CO 2 , CH3Cl, C 2 F 3 Cl (monomer), methyl methacrylate CO, CO2, H2O, SO2, ethene, methanol, methyl methacrylate (only 60 and 80 mol% methyl methacrylate copolymers)
281 290
Ambient to 500
4-vinyl pyridine, methyl methacrylate, traces of pyridine and 4-methyl pyridine
260
Ambient to 500
CO 2 , isobutene, ketene, formaldehyde, methanol, methyl methacrylate, phenyl methacrylate, chain fragments including six-membered anhydride ring structures. Product distribution varies with copolymer composition with non-monomer products most pronounced at low PMA contents CH4, CO, CO 2 , propene, isobutene, dimethyl ketene, acrolein, allyl alcohol, glycidol, glycidyl methyl ether, methyl methacrylate, glycidyl methacrylate, chain fragments. Distribution varies with copolymer composition CO, CH4, CO 2 , ethene, propene, isobutene, aziridine, methanol, methyl methacrylate, a-methylstyrene, 2-phenyl-2-butene, l-r-butylamino-2-isopropenylamino-ethane, 2-r-butylaminoethyl-ethylisopropenylamine, 2-aminoethyl-2-?-butylaminoethylisopropenylamine, oligomers - principally butylaziridine based
314
Poly(methyl methacrylatecoglycidyl methacrylate)
Ambient to 500
Poly (methyl methacrylate -/?/6>c£-j-butylaziridine) ABA type copolymer with MW 12000 butylaziridine (B) and MW 16000 MMA (A) Poly(methyl methacrylate-co-styrene)
Ambient to 600
Poly (methyl methacrylate-covinyl acetate) (5-40 mol% vinyl acetate)
Ambient to 500
260-340
286
287
Methyl methacrylate, styrene and oligomers of styrene; formation of 137 oligomers of styrene strongly inhibited by presence of methyl methacrylate units Acetic acid, methyl methacrylate, methyl acetate, chain fragment fraction, 92 ketene, CO2
TABLE 1. cont'd Polymer
Temperature range (0C)
Poly(methyl methacrylate-co-vinyl bromide) (6-75 mol% vinyl bromide)
Ambient to 500
Poly(2-bromoethyl methacrylateco-styrene) (50/50, mol/mol) Poly(methyl methacrylate)-blendammonium polyphosphate
Ambient to 500 Ambient to 450
Poly (methyl methacrylate)-&/e/2
Ambient to 500
Poly(methyl methacrylate)-&/endpoly (vinyl acetate) (10/1-1/1, w/w) Poly(methyl methacrylate)-£/era/poly(vinyl bromide) (50/50, mol/mol) Poly(methyl methacry\ate)-blendpoly(vinyl chloride) Poly(methacrylamide)
Ambient to 500
Poly(methacrylonitrile)
Ambient to 500 Ambient to 500 Up to 340 Above 340 Ambient to 500 < 200 220-270 Ambient to 500
Poly(methacrylonitrile-c0styrene) 10:1 mole ratio
Ambient to 500
Poly(methacrylonitrileco-styrene) 1:1 mole ratio
Ambient to 500
Poly(methacrylonitrileco-styrene) 1:10 mole ratio
Ambient to 500
1.4.
Degradation products
Refs.
Methyl methacrylate, methyl bromide, methanol, CO2, methanol, HBr, CO, H2 and other unidentified minor products. Relative amounts depend upon copolymer composition Styrene, 2-bromoethyl methacrylate, modified chain fragement fraction. Minor products; ethylene, CO 2, HBr, vinyl bromide, acetaldehyde H2O and NH3 from ammonium polyphosphate. Methyl methacrylate (major product), CO, CO2, methanol, dimethyl ether, hydrocarbons, high boiling chain fragments Polymers degrade separately without interaction to give same products as polymers degraded separately; copolymers and mixtures of the same molar compositions can be distinguished by degradation behavior Methyl methacrylate, acetic acid, methyl acetate, methanol, CO2, butene, benzene, ketene Methyl methacrylate, HBr, CO, CO 2 and other unidentified products
138
139 140
141
142 143
Major products: HCl, methyl methacrylate; minor products: CO 2 , 144,145 methyl chloride, benzene NH 3 and H 2 O 146 Chain fragments (50%) in which a high proportion of amide groups have 146 been converted to cyclic imides; small amounts of CO 2, CH 4, HCN NH 3 , HCN, isobutene, CO 2 (trace), methacrylonitrile (trace) 132 Non-volatile material, coloration through yellow, orange, and red 40 50-100% monomer depending upon pretreatment and purity of polymer 40 Ethene, propene, isobutene, HCN, CO 2 (from benzoyl peroxide end 277 groups), methacrylonitrile (major product), 2-cyanobutane, 2-cyanopentene, CH 4 Ethene, isobutene, HCN, methacrylonitrile, styrene, toluene, 279 a-methylstyrene, p-methylstyrene, 2-phenylbutene, 4-cyano2,4-dimethylpentene, 4-phenyl-2-methylbutene, 3-phenyl2-propenenitrile, chain fragments Ethene, isobutene, HCN, methacrylonitrile, styrene, toluene, 279 a-methylstyrene, 4-phenylbutene, 4-phenyl-2-methylbutene, 3-phenyl-2-propenenitrile, chain fragments Ethene, isobutene, HCN, methacrylonitrile, styrene, toluene, 279 a-methylstyrene, p-methylstyrene, 4-phenylbutene, allylbenzene, 4-phenyl-2-methylbutene, 3-phenyl-2-propenenitrile, chain fragments
POLY(VINYLS)
Poly(tert-butyl-Af-vinyl carbamate) Poly(chlorotrifluoroethylene) (KEL-F)
185-220 347-418
Poly(l,l-dichloro-2,2-difluoroethylene) Poly(perfluoroheptene) Poly(perfluoropropylene) Poly(tetrafluoroethylene)
240 210-270 280-400 504-538 1200 600-700
Poly(trifluoroethylene) Poly(vinyl acetate)
380-800 213-235 300 280-350
Poly (vinyl acetate) in presence of zinc bromide Poly(vinyl acetate-comaleic anhydride) alternating copolymer Poly (vinyl acetate-cocrotonic acid) alternating copolymer
Ambient to 500
Equal amounts of CO 2 and isobutylene, in yields ranging from 43 to 60% 196 25% of products volatile at 25°C-monomer with traces of C 3 F 5 Cl 14 and C 3 F4C1 2 ; 72.1% of larger chain fragments involatile at 25°C 20% black involatile residue; 80% monomer 22 100% monomer 49 100% monomer 49 >95% monomer, 2 - 3 % C 3 Fe, no larger fragments (in vacuum) 14 Monomer yield drops, larger fragments appear (in vacuum) 23 At 6.66 mbar pressure; pure monomer; at 1013 mbar pressure, 24 15.9% monomer, 25.7% C 3 F 6 , 58.4% C 4 F 8 High yields of HF and products involatile at 25°C 23 Quantitative yields of acetic acid 71 Small amounts of aromatics including benzene 71 Acetic acid, benzene, naphthalene, toluene, styrene, ethyl benzene, 147 propenyl benzene, propylbenzene, methylnaphthalene, ethylnaphthalene, propenylnaphthalene, propylnaphthalene, anthracene, methylanthracene, ethylanthracene, propylanthracene Acetic acid produced as low as 1000C 148
Ambient to 500
Acetic acid, CO 2, H 2 O, maleic anhydride, CO
240
Ambient to 500
Ethene, propene, acetic acid, CO 2 , propanoic acid, 2-methylpropanoic acid, butanoic acid, cyclopentanone, some unsaturated cyclic and acyclic aliphatic ketones, some chain fragments containing lactones
241
References page 11-475
TABLE 1. cont'd Polymer Poly (vinyl acetate-comethylvinylidene cyanide) Alternating with 10-15 mol% VA homosequence Poly (vinyl acetate-co-styrene) (5-20 mol% vinyl acetate) Poly(vinyl acetate-co-vinyl alcohol) (50-99 mol% vinyl alcohol) Poly (vinyl acetate-co-vinyl chloride)
0
Temperature range ( C) 285-350
Ambient to 500 0-600 Ambient to 500
180 Poly (vinyl acetate-co-vinyl fluoride) (91:9 to 1:89) (80:20 to 23:77) Poly (vinyl acetate)-blendpoly(styrene) (1/1, w/w) Poly(vinyl acetate-blendpoly (vinyl chloride) Poly (vinyl alcohol)
Poly (vinyl bromide) Poly(vinyl butyrate) Poly(A^-vinylcarbazole)
200-500
Vinyl acetate, acetonitrile, HCN, acetic acid, acetamide, 2-methyl1-aminonaphthalene, 3-cyano-3-pentene Acetic acid, styrene, chain fragment fraction, ketene, CO 2 Acetaldehyde, acetone, benzene, crotonaldehyde, acetic acid
Refs. 266
92 154
Bulk polymer; hydrogen chloride and acetic acid in the proportions of 155 the monomers in the copolymer; at each end of the composition range, incorporation of the comonomer results in a copolymer less stable than the homopolymer; minimum stability at 40-50 mol% vinyl acetate In tritolyl phosphate solution; similar to bulk polymer with minimum in 156 stability at 30-40 mol% vinyl acetate Hydrogen fluoride, acetic acid, hydrocarbons 150
200-500 Ambient to 500
Hydrogen fluoride, HCl, hydrocarbons Products as for individual polymers
Ambient to 500
Ambient to 500
Acetic acid, HCl, and traces of CO 2, ketene, acetyl chloride, CO 157 and CH 4 Quantitative yields of H 2 O 72 Main products H 2 O and C 2 H 5 OH, with aldehydes 73 CH 3 -(CH = CH) n -CHO and ketones C H 3 - ( C H = C H ) n - C O C H 3 where n = 0,1,2, etc. HBr, ethylene, benzene, and other unidentified minor products 143 Butyric acid 74 Below 350°, monomer; above 350°, monomer and low-molecular 175 weight oligomers Monomer (49% of total volatiles at 3000C, 39% at 5000C) ethane, 244 ethene, propene, n-butane, isobutene, cis and trans but-2-ene, 1,3-butadiene, 2-methylbutadiene, trace amounts of C 5 and C 6 hydrocarbons Monomer (83% of total volatiles at 3000C, 67% at 5000C), ethane, 244 ethene, propene, w-butane, isobutene, cis and trans but-2-ene, 1,3- butadiene, 2-methylbutadiene, trace amounts of C 5 and C 6 hydrocarbons Monomer (48% of total volatiles at 3500C, 40% at 500°C), ethane, 244 ethene, propene, /i-butane, isobutene, cis and trans but-2-ene, 1,3-butadiene, 2-methylbutadiene, trace amounts of C 5 and C 6 hydrocarbons Quantitative yields of HCl 75 Saturated and unsaturated, aliphatic and aromatic hydrocarbons are 75 produced with benzene and toluene in high yield In helium; quantitative yield of HCl, remainder residue and 76 hydrocarbons; benzene is major volatile hydrocarbons product Aliphatic hydrocarbons, benzene (major product), toluene, ethylbenzene, 149 o-xylene, monochlorobenzene, styrene, vinyl toluene, p-dichlorobenzene, o-dichlorobenzene, indene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, naphthalene, a-methylnaphthalene, (3-methylnaphthalene; effect of ZnO, SnO 2 , and Al 2 O 3 on the yields of products is also recorded HCl, CO 2 , ethene, ethane, propane, 1-butene, 2-butene, 1-pentene, 267 cyclopentene, n-pentane, 2-methylbutane, 1,3-pentadiene, 2-methyl-1,3-pentadiene, complex series (60 identified) of aromatic and polyaromatic species, including benzene, styrene, methylstyrenes, toluene, o-xylene, m-xylene, /?-xylene, biphenyl, naphthalene, anthracene, phenanthrene, pyrene, etc. (see Ref.) HCl, a-methyl styrene 159
Ambient to 500
HCl, styrene
159
Ambient to 500 Ambient to 500
Products as for individual polymers CO 2 , HCl, benzene, traces of toluene, phenol and other phenolic compounds, bisphenol A, polycarbonate chain fragments
160 291
250 240
300-325 230-410 300-500
Poly(3,6-dichloro N-vinylcarbazole)
300-500
Poly(3,6-dibromo 7V-vinylcarbazole)
350-500
Poly(vinyl chloride)
200-300 400 600 200-800
Ambient to 1000
Poly (vinyl chloride)-&/era/poly(a-methylstyrene) Poly (vinyl chloride)-№ra/poly(styrene) (10/1 to 1/10, w/w) PVC 1:1 blend with bisphenol A polycarbonate
Degradation products
150 158
TABLE 1. cont'd Temperature range (0C)
Polymer PVC 1: 1 blend with poly(dimethylsiloxane) Poly(vinyl fluoride)
Poly(vinylidene chloride) Poly(vinylidene cyanide) Poly(vinylidene
fluoride)
Poly(vinylidene fluorideco-chlorotrifluoroethylene) 80 mol% vinylidene fluoride 3, 10 mol% vinylidene fluoride Poly(vinyltrimethylsilane)
Ambient to 500 372-480 200-500 450
225-275 170 >160 400-530 Ambient to 500 Ambient to 500 Ambient to 500 300-600 in argon
Poly(4-vinyl pyridine) Poly(vinylacetophenone)
Ambient to 500 380
PolytN-acryloyl-N'cyanoacetohydrazide)
600
Degradation products
Refs.
HCl, benzene, traces of toluene, octamethylcyclotetrasiloxane, 292 oligomeric siloxanes High yields of HF and products involatile at 25°C - little carbonization 23 Hydrogen fluoride, C 2 -C9 fractions 150 85% wt. loss, 33 ± 5% volatile products, remainder was oily green liquid; 151 Volatile products: HF (82 mol%), CH4 (5.2), C 2 H 6 (0.6), ethylene (0.8), acetylene (0.03), fluoroethylene (0.07), propene (0.5), C 3 H 5 F (0.4), butane (0.06), butene (1.1), 1,4-butadiene (0.2), 1,3-butadiene (0.7), C 4 H 5 F (0.06), Cyclopentadiene (0.05), benzene (4.5), fluorobenzene (0.3), toluene (1.0), C 6 H 4 (CH 3 )F (0.04), C 6 H 5 C 2 H 5 or C 6 H 4 (CH 3 ) 2 , and styrene (0.9), rc-propylbenzene (0.2), iso-propylbenzene (0.3), C 6 H 5 -C 3 H 5 (0.2), indene (0.3), naphthalene (0.8), fluoronaphthalene (0.3) High yields of HCl 77 Polymer prepared in presence of oxygen; phosgene, formaldehyde, HCl 152 High yields of monomer 78 35% HF and high yields of products involatile at 25°C - some 23 carbonization Monomer, dimer (C 4 F 3 H 3 ), SiF4, (from reaction of HF with glass) 265 HCl, HF, vinylidene fluoride, chlorotrifluoroethylene, dimer (C 4 F 3 H 3 ) 265 HCl, chlorotrifluoroethylene, dichlorodifluoroethene, chloropentafluoropropene, trichlorotrifluoroethane, dimer (C 4 F 3 H 3 ) Tetramethylsilane, trimethylvinylsilane, 2-trimethylsilylpropene, 1,3-tri-methylsilylpropane, 1,3-trimethylsilylpropene, 2,4-trimethylsilylbutene-1,2,4,6-trimethylsilylhexene-1 Monomer, traces of pyridine and 4-methyl pyridine CO, CH4, ethane, 4-acetyl styrene, 4-acetyl toluene, styrene, toluene, 4-vinyl acetaldehyde, a-methylstyrene, a-methyl-4-acetylstyrene, 4-methylstyrene Cyanoactetamide
265 153 260 307 289
1.5. POLY(VINYL KETONES), POLY(VINYL ETHERS) Poly(methyl isopropenyl ketone)
Poly(methyl vinyl ketone) Poly(trifluorovinyl phenyl ether) 1.6.
270-360 Ambient to 500 150-190 270-360 Ambient to 500 275-500
H2O 41 Methyl isopropenyl ketone (50%), modified chain fragments, water, 161 small amounts of CH4 and CO Monomer under 313 nm radiation 42 H2O, 3-methyl-2-cyclohexene-l-one and other six-membered ring ketones 44 Water, modified chain fragments, small amounts of CH4 and CO 161 Maximum of 75% volatilization-products unknown 49
POLY(STYRENES)
Poly(styrene)
300-400 500-1200 300-570
-, (crosslinked) -, (head-to-head)
Ambient to 500 346-450 320 500 under N2
40.6% monomer, 2.0% toluene, 0.1% CO, remainder dimer, trimer, 62,63 and tetramer - monomer yield increases with pressure of nitrogen - 62% at 1013 mbar Small hydrocarbon fragments appear (Ci-C 6 ) - fragmentation is greater 28 the higher the temperature and the greater the pressure of inert gas Pulsed pyrolysis and 40 jig of polymer. Styrene (92.4-99.8% depending 163 upon temperature), benzene, toluene, and ethyl benzene Thin films (1000 A or less), monomer yield about 55% 164 Crosslinking with increasing quantities of divinyl or trivinyl benzene 11,64 progressively decreases the styrene yield-the yield of larger chain fragments and the amount of carbonization also increase Monomer, dimer, trimer, tetramer, pentamer, stilbene 165 Hydrocarbons (Ci-C 4 ) (2.2 relative GC peak intensity), benzene (0.4), 166 toluene (3.3), ethylbenzene (2.0), styrene (20.4), 3-phenyl-1-propene (1.5), 1-pheny!propane (2.3), a-methylstyrene (0.3), 1-phenylbutadiene (1.0), diphenylmethane (0.3), 1,1-diphenylethylene (2.6), 1,2-diphenylethane (1.3), 1,2-diphenylpropane, (0.7), 1,2-diphenyl-l-propene (0.5), 2,3-diphenyl-l-propene (2.2), 3,4-diphenyl-l-butene (0.5), 2,3-diphenylbutadiene (2.0), 1,2-diphenylethylene (6.5), 1,4-diphenylbutane (3.5), 1,4-diphenyl-l-butene (3.8), 1,4-diphenyl-l-pentene (1.3),
References page II - 475
TABLE 1. cont'd Polymer
-, -, -, -,
(poly(divinyl benzene)) (poly(trivinyl benzene)) a-acetoxym-amino-
- , /7-chloro-a-methyl-
-, a-deutero- , p-deutero- , p-fluoro-oc-methyl-
-, /7-methoxy-a-methyl-
-, 3-methyl-, 4-methylPoly(o-propionylstyrene) - , oc-methyl-
-, /?-7VyV-diethylamino-
- , m-A^Af-dimethylamino-
Temperature range (0C)
Degradation products
Refs.
1,3-diphenylpropadiene (2.1), 1,2-diphenylbutadiene (1.8), 1,4-diphenylbutadiene (1.9), 1,3,4-triphenylbutene (0.6), 1,2,5-triphenylpentane (1.5), 1,2,5-triphenyl-l-pentene (4.6), 2,3,6-triphenyl-l-hexene and 2,5,6-triphenyl-l-hexene (8.9), 1,4,5-triphenyl-l-pentene (4.4) Ambient to 600 Styrene, 1,2-diphenylethene, 1,2-diphenylpropane, 1,4-diphenylbutane, 271 1,4-diphenyl-1 -butene, 1,4-diphenylpentane, 4,5-diphenyl-1,8-octadiene, 2,3,6-triphenyl-l-hexene, 1,4,5-triphenyl- 1-pentene 385-450 Volatile products include toluene, benzene, styrene, and xylene 11,64 470-500 Mixture of aliphatic and aromatic hydrocarbons 11,64 270 Acetic acid (99%), mixture of a-acetoxystyrene and acetophenone (1%) 167 340-500 Gaseous fraction CO2, CH4, C 2 H 6 , C 3 H 6 , C 3 H 8 ; liquid fraction 65 m-aminostyrene, m-toluidine; gum fraction mainly dimer and trimer; crosslinked residue remains 320-500 Monomer yield rises from 41% (32O0C) to 61%(500°C); minor product is 66 m-toluidine, with traces of aniline, m-ethylaniline, oc-methylm-aminostyrene, H 2 , CO2, CH4; remainder comprises chain fragments and residue Ambient Gamma radiolysis: CH4 (12.9 relative mass spec, ion current), C 2 H 6 168 (21.8), C 3 H 6 (13.6), C 3 H 8 (10.5), C 4 Hi 0 (61), HCl (4.2), CH3Cl (17.4), C 3 H 4 Cl (20), C 2 H 5 Cl (28.1), C 3 H 7 Cl (3.3), CH2Cl2 (9.9), C 6 H 5 Cl (3.0), p-chlorostyrene (1.5), p-chloro-a-methyl styrene (12.5) 334-387 68.4% monomer, 1.5% a-deuterostyrene, 0.6% a-methylstyrene, 2,13 29.5% larger chain fragments 345-384 39.7% monomer, 1,2% toluene, 0.1% deuterotoluene, 59% larger 2,13 chain fragments Ambient Gamma radiolysis: CH4 (0.4 relative mass spec, ion current), C 3 H 4 168 (3.0), C 3 H 6 (0.6), C 3 H 8 (0.8), C 4 H 4 (3.5), C 4 H 6 (6.0), C 3 H 7 F (3.2), C 4 H 3 F (6.0), C 4 H 9 F (14.5), C 5 H 5 F (9.37), C 6 H 5 F (29), p-fluorotoluene (23), /?-fluorostyrene (6.45), /?-fluoro-a-methyl styrene (175.5), /?-fluoro-isopropyl benzene (11.5) Ambient Gamma radiolysis: CH4 (32 relative mass spec, ion current), H2O (26), 168 C 2 H 4 (35), C 3 H 4 (7.3), C 3 H 6 (15.2), C 3 H 8 (68.7), C 4 H 10 (8.2), CH3OH (24.2), phenol (63.8), methoxybenzene (38.6), p-methoxytoluene (19.6) 309-399 44.4% monomer, 7.3% xylene, 48.3% larger chain fragments 3 200-350 Ratio of monomer to oligomer rises from 40% at 2000C to 95% at 35O0C 79 560 C i - C 4 hydrocarbons, benzene, toluene, ethylbenzene, styrene, 278 ethyltoluene, vinyltoluene, naphthalene, ethylstyrene 385 CO, CH4, ethane, ethene, butane, 2-propionylstyrene, 2-propionyltoluene, 313 styrene, toluene, a-methylstyrene, a-methyl-2-propionylstyrene, various dimeric and trimeric species not fully characterized 200-500 95-100% monomer 28 520-1200 Fragments both larger and smaller than monomer appear in increasing 28 amounts the higher the temperature, particularly CH4, C 2 H 4 , and C 6 H 6 until at 12000C the monomer yield is only 33.9% Ambient Gamma radiolysis: CH4 (1.0 relative mass spec, ion current) C 2 H 6 (1.2), 168 C 3 H 4 (6.7), C 3 H 6 (1.8), C 3 H 8 (2.7), C 4 H 4 (22), C 4 H 10 (9.9), cyclopentadiene (6.1), benzene (72.8), toluene (20), styrene (50.5), oc-methyl styrene (184), isopropyl benzene (10) 400-900 Benzene, toluene, ethylbenzene, cumene, styrene, a-methyl styrene, 169 indene/phenylpropyne, methyl-1,2-dihydronaphthalene, methylene indene, naphthalene, 2-methylnaphthalene, 1-methylnaphthalene, biphenyl, anthracene/phenanthrene, dihydropyrene 350-500 Toluene, styrene, /?-ethylstyrene, 7VyV-diethyl-/?-toluidine, WV-diethyl170 /?-ethylaniline, p-TVyV-diethylaminostyrene, a-methyl-A^Af-diethylaminostyrene, 2-(p-Af,iV-diethylaminophenyl) butane, a-propyl-p-AW-diethylaminostyrene, N-ethyl-p-toluidine, Af-ethyl-p-toluidine, Af-ethyl/?-ethylaniline, Af-ethyl-/?-aminostyrene and closely related compounds 350-500 ra-iVyV-Dimethylaminostyrene, A^TV-dimethyl-m-toluidine, m-xylene, 171 styrene, AUV-dimethyl-m-ethylaniline, toluene, m-methylstyrene, a-methyl-m-A^,A^-dimethylaminostyrene, trans- fi-methy\-m-N,Ndimethylaminostyrene, a-emyl-ra-Af,Af-dimethylaminostyrene, N-methyl-m-toluidine, Af-methyl-ra-ethylaniline, Af-methyl-ra-aminostyrene, oligomers of m-A^Af-dimethylaminostyrene and closely related compounds
TABLE 1. cont'd Polymer
Temperature range (0C)
- , /?-Af,N-dimethylamino-
Poly(/?-(2,4-dichlorobenzyl)styrene)
-, /?-isopropyl-a-methyl- , 2,3,4,5,6-pentafluoro- , a,p,(3-trifluoroPolystyrene (chain brominated on a-position) Poly(styrene-co-methylene) ~ ~ CH-CH 2 -CH 2 -CH-(CH 2 ) „ ~ ~ ' I _ Qi 3 4 d 5 ' ' Poly(styrene-a?-SO2) (1.85 :1) Poly(styrene-c0-methacrylic acid) 18, 44 and 72 mol% MAA Poly(styrene-co-chlorotrifluoroethylene) 7.7, 14, 20 mol% CTFE
500 for 30min
Ambient to 500
Ambient 390-446 333-382 150-300 300-500 Ambient to 500 350 for 4hr
200 Ambient to 500 Ambient to 500
Poly(styrene-co-glycidyl methacrylate) 10, 23, 51, 62, 78, 86 mol% GMA
Ambient to 500
Poly(styrene-cc>-phenyl methacrylate) 10-90 mol% PMA
Ambient to 500
Poly(styrene-co-1,2,2,2,-tetrachloroethyl acrylate) (4.7/1)
310 and 500
Poly(styrene-c-l,2,2,2-tetrachloroethyl methacrylate) (3.8/1)
310 and 500
Poly(styrene-c0-bis-(l,2,2,2-tetrachloroethyl)fumarate) (8.9/1)
310 and 500
Poly(styrene-c6>-bis-(l,2,2,2-tetrachloroethyl) muconate) (7.72/1)
310 and 500
Poly(styrene-co-iV-(2,4,6-tribromophenyl)maleimide) (6.4/1)
310 and 500
Degradation products
Refs.
iV,iV-dimethylaniline (0.2% of original polymer weight), A^Af-dimethylp-toluidine (2.8%), N-methylaniline (0.4%), AyV-dimethyl-/?-ethylaniline (0.4%), N-methyl-/?-toluidine (0.4%), JV-methyl-o-toluidine (0.4%), p-toluidine (0.4%), Af-methyl-p-ethylaniline (0.4%), p-N,JV-dimethylaminostyrene (36.3%), a-methyl-/?-A^,A^-dimethylaminostyrene (0.7%) Benzene, toluene, ethylbenzene, styrene, a-methylstyrene, 1,3-dichlorobenzene, 2,4-dichlorotoluene, monomer (major product), complex series of halogenated and dehalogenated chain fragments (see Ref.) Gamma radiolysis: CH4 (8, relative mass spec, ion current), C 2 H 4 (4.6), C 3 H 4 (7.2), C 3 H 6 (21.2), C3H8 (108), C 4 Hi 0 , (57.4) 63% of the products are volatile at 25°C - contains some monomer 72% monomer, 28% larger chain fragments HBr, trace styrene Styrene, HBr, toluene, benzene HBr, styrene, traces of toluene and benzene, /?-bromostyrene Benzene, toluene, ethylbenzene, styrene (major volatile product), n-propylbenzene (except with n = 2), phenylpropene, butylbenzene (except with n = 0), phenylbutene (with n = 4 and 5 only), amylbenzene ^ wittl n ~ 4 a n c l ^ o m ^ hexylbenzene (with n = 4 and 5 only), chain fragment fraction (major product) At 26.7 mbar pressure; 40% weight loss; main product is 2,4-diphenyl thiophene; at least 11 unidentified minor products CO 2 , H2O, butene, isobutene, dimethyl ketene, styrene, methacrylic acid, succinic-type 5-membered cyclic anhydrides Chlorotrifluoroethylene, styrene, HCl, chloropentafluoropropene, ethene, chloroethene, toluene, a-methylstyrene, dimer and trimer structures with some unsaturation; SiF4 (from reaction of HF with glass). Distribution of products varies with polymer composition CO, CO2, propene, isobutene, dimethyl ketene, acrolein, allyl alcohol, toluene, styrene, a-methylstyrene, ethylbenzene, glycidol, glycidylmethacrylate; product distribution depends on copolymer composition CH4, CO, CO 2 , propene, dimethyl ketene, toluene, styrene, 4-phenylbutene, 4-phenyl-2-methylbutene, phenyl methacrylate, a-methylstyrene, short chain fragments Styrene, benzene, toluene, ethylbenzene, a-methyl styrene, diphenyl, 5,6-benzo-2-methyl-3,5-cyclohexadienone, diphenylethane, 1,3-diphenylpropane, dimers and trimers of styrene, chloroacetaldehyde, dichloroacetaldehyde, trichloroacetaldehyde, trichloropropanal Styrene, benzene, toluene, allylbenzene, a-methylstyrene, indane, isopropenylstyrene, 5,6-benzo-2-methyl-3,5-cyclo-hexadienone, propyl-propenylbenzene, diphenylethane, 1,3-diphenylpropane, dimers and trimers of styrene chloroacetaldehyde, dichloroacetaldehyde, trichloroacetaldehyde, trichloropropanal, benzyl chloride, 2-chloroethylstyrene, 2,2-dichloroethenyl methacrylate, 1,2,2,2-tetrachloroethyl methacrylate Styrene, benzene, toluene, ethylbenzene, allylbenzene, a-methylstyrene, indane, diphenyl propylpropenylbenzene, diphenylethane, 1,3-diphenylpropane, dimers and trimers of styrene, chloroacetaldehyde, dichloroacetaldehyde, trichloroacetaldehyde, benzyl chloride Styrene, benzene, toluene, ethylbenzene, a-methylstyrene, diphenyl, propylpropenylbenzene, diphenylethane, 1,3-diphenylpropane, dimers and trimers of styrene, chloroacetaldehyde, dichloroacetaldehyde, trichloroacetaldehyde, trichloropropanal, benzyl chloride Styrene, benzene, toluene, ethylbenzene, allylbenzene, a-methylstyrene, indane, diphenylethane, 1,3-diphenylpropane, dimers and trimers of styrene, N-(2,4,6-tribromophenyl) maleimide, N-dibromophenyl maleinimide
172
275
168 67 14 271 271 271 173
68 294 261
264
280 174
174
174
174
174
References page II - 475
TABLE 1. cont'd Temperature range (0C)
Polymer Poly(styrene-co-AKpentachlorophenyl)maleimide) (4.9/1)
310 and 500
Poly(styrene) 1:1 (w/w) blend with bisphenol A polycarbonate
Ambient to 500
Poly(vinyl toluene-codivinyl benzene) 10-50% DVB
560
Poly(4-methoxystyrene) 1:1 (w/w) blend with bisphenol A polycarbonate
TABLE 2.
Ambient to 500
Degradation products
Refs.
Styrene, benzene, toluene, ethylbenzene, allylbenzene, oc-methylstyrene, indane, diphenylethane, 1,3-diphenylpropane, dimers and trimers of styrene, pentachlorophenyl isocyanate, Af-pentachlorophenyl formamide, Af-tetrachlorophenyl maleinimide, N-(pentachlorophenyl) maleimide, methyl maleic acid pentachlorophenylimide CO 2 styrene, a-methylstyrene, p-cresol, phenol, /?-ethylphenol, p-vinylphenol, p-isopropylphenol, polystyrene short chain fragments with vinylidene and saturated ends, polycarbonate cyclic dimer and chain fragments, bisphenol A C i - C 4 hydrocarbons, benzene, toluene, ethylbenzene, styrene, ethyltoluene, a-methylstyrene, vinyltoluene, divinylbenzene, naphthalene, ethylstyrene; distribution varies with copolymer composition CO 2, 4-methoxystyrene, a-methyl-4-methoxystyrene, p-cresol and other phenols in small amounts, poly (4-methoxy styrene) dimer and trimer with vinylidene and saturated ends, polycarbonate cyclic dimer and chain fragments, bisphenol A
174
272
278
272
MAIN-CHAIN CARBOCYCLIC POLYMERS
Polymer Poly((E,E)[6.2]paracyclophane-l,5-diene)
Temperature range (0C) 460, 515, 620
Poly(perfluoro-m-phenylene)
700
Poly(perfluoro-p-phenylene) high molecular weight (15000)
700
low molecular weight (3700)
700
Poly(l,4-phenylene)
250-620
- , 2-hydroxy-
300-620
Poly(l,4-phenylene ethylene)
420-465
408-515 436-475 Poy(l,3-phenylene-hexafluorotrimethylene
660 for 30 s
PoIy(1,4-phenylenemethylene)
386-416
Poly a-(ethoxycarbonyl-vinyl)-oo[4-(ethoxycarbonyl-vinyl)-phenyl] (1,4-phenylene-2,4-bis-ethoxycarbonyl1,3-cyclobutylene)
320-360 for 1 h under N 2
Degradation products
Refs.
Primary product is monomer; in addition, a series of secondary products 251 based on ring-opened monomer are formed by H-abstraction (see Ref.); also detected: toluene (not 4600C) and p-xylene Volatiles comprise SiF4 (from silica vessel), CO2, with traces of C6F6 50 and C6F5H; white sublimate on vessel walls; residue contains 1% fluorine Volatiles comprise SiF4 (from silica vessel), CO2, with traces of 50 C-(Fe and C 6 F 5 H; white sublimate on vessel walls; residue contains 1% fluorine Volatiles comprise SiF4 (from silica vessel), CO2, with traces of 50 C 6Fe and CeF5H; no white sublimate; residue contains 33-41% fluorine 79% residue, 10% chain fragments, 11% volatiles comprising H 2 , CH4, 55 H2O, HCl (from catalyst) 60% residue, 24% chain fragments, 16% volatiles comprising CO, CO2 55 H 2 , CH4 3.6% of products are volatile at 25°C and consist of 2.83% xylene, 13,14,80 0.29% toluene, 0.28% methylethyl benzene, 0.14% methylstyrene, 0.06% benzene, products involatile at 250C consist of dimericoctameric fragments Mainly chain fragments (dimer-pentamer); traces of H 2 , monomer 81 H 2 , CH4, C 2 H 4 , C 2 H 6 , toluene, p-xylylene, p-ethyltoluene, p-methyl176 bibenzyl, l,2-di-/?-torylethane, 4,4'-dimethylstilbene C 2 F 4 (21.6% of original weight of polymer), HF (17), 177
C 6 H 6 (8.5%), C 6 H 5 (CF 2 ) 3 C 6 H 5 (7.9%) 7.4% of products are volatile at 25°C; 5.9% toluene, 1.4% benzene, 0.1% xylene Low-molecular-weight polymer and small amount of monomer
13,14 195
TABLE 3. MAIN-CHAIN HETEROATOM POLYMERS Temperature range (0C)
Polymer
Degradation products
Refs.
3.1. POLY(OXIDES) AND POLY(KETONES) Poly(fluoro ethers)
510-540
178
b.
c.
d.
Poly(oxybutylethylene)
321-365
Poly(oxy-2,5-dimethoxy-l,4-phenylene)
100-550
Poly(oxy-2,6-dimethyl-l,4-phenylene)
100-550 400-550
Poly(oxyethylene)
324-363 280
Poly(oxymethylene)
222 100-180
Poly(oxymethyleneoxyethylene) Poly(oxy-2-methylphenylene)
314-338 250-500
Poly(oxy-l,3-phenylene)
300-620
Poly(oxy-l,4-phenylene)
550
Poly(oxy-l,4-phenylene)blend-polystyrene (60: 40) Poly(oxypropylene) atactic isotactic Poly(oxytetramethylene) Poly(oxytrichloromethyl methylene) (Poly(trichloro acetaldehyde))
585 300-360
270-330 275-355 347 Ambient
Mixture of saturated and hydrocarbons (Ci-C 6), aldehydes (C 1 -C 6 XH 2 5 H 2 O 41% residue, 29% fragments, 30% volatiles comprising H 2 , CH4, CO, CO 2 , CH3OH, traces of H 2 O, C 2 H 6 , other hydrocarbons 26% residue, 66% chain fragments, 8% volatiles comprising H 2 , CH4, H2O, CO, CO2 0-Cresol, 2,6-dimethyl phenol, 2,4-dimethyl phenol, 2,4,6-trimethyl phenol, various ketones, dimers, and more complicated structures (see Ref.), various combinations of the monomeric skeletons 9.7% of products volatile at 25°C-3.9% monomer with smaller amounts of CO2, formaldehyde, ethanol, and saturated and C i - C 7 compounds Diethyl ether, ethyl methyl ether, acetaldehyde, formaldehyde, CO 2 , CO, ethene, cyclohex-3-ene-l-one 100% Monomer 100% Formaldehyde; inverse relationship between molecular weight and rate for hydroxyl terminated polymers; acetylation of terminal hydroxy groups inhibits the reaction Major volatile products CH4, C 2 H 6 , C 2 H 4 , C 2 H 2 , HCO 2 C 2 H 5 p-Xylene, phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, and a variety of more complex structures (see Ref.) 34% Residue, 53% chain fragments, 13% volatiles comprising H2O, CO, H 2 , CH4, CO 2 , trace of C 6 H 6 Hydroquinone, phenol, benzene, diphenylether, 4,4/-dihydroxydiphenylether, 4-phenoxyphenol. In addition, a broad spectrum of phenyl and phenolic terminated oligomers with up to 10 aromatic units As 5500C plus dibenzofuran and dibenzofuran-containing oligomers Ethylbenzene, styrene, a-methylstyrene, 2-methylphenol, 2,6-dimethylphenol, 2,4-dimethylphenol, 2,4,6-trimethylphenol, 1,3-diphenylpropane, 2,4-diphenyl-1 -butene, 2,4,6-triphenyl-1 -hexene, PPO dimers 12.8% of products volatile at 25°C, including 4.00% acetaldehyde, 2.22% acetone, 1.43% dipropyl ether and 0.75% propylene 20% of products volatile at 25°C, including 6.34% acetaldehyde, 2.39% acetone, 2.19% dipropyl ether, and 2.22% propylene Volatiles comprise a mixture of CH4, C 2 H 6 , C 3 H 8 , C 4 Hi 0 , C 2 H 4 , C 3 H 6 , CH3CHO, C2H5CHO, C3H7CHO Monomer
20 55 55 179
25 252 27 181 20 180 55 255
255 318
25 25 20 182
References page II - 475
TABLE 3. cont'd Polymer
Temperature range (0C)
Poly(oxy- 1,4-phenylenecarbonyl-l,4-phenylene) (Poly(ether ketone), PEK)
390, 490, 530
506 Poly(oxy-1,4-phenyleneoxy-1,4-phenylene -carbonyl-1,4-phenylene) (Poly(ether ether ketone), PEEK) Poly(etherketone-coethersulphone) Mole ratio 1:3, 3:1, 1:1 (random), 1:1 (alternating) 3.2.
506
Degradation products
Refs.
Low MW polymer at 4900C produces benzene, phenol, benzaldehyde, 4-hydroxybenzaldehyde, diphenyl ether, biphenylene, benzophenone, series of -H, -OH and -CHO terminated chain fragments containing < 8 aromatic units and fragments containing dibenzofuran units. High MW polymer at 53O°C as above. Low MW polymer at 3900C produces significant quantities of 4-hydroxy benzaldehyde and benzophenone-4,4 '-diol Phenol, dibenzofuran, benzofuran derivatives, mixtures of oligomers mostly hydroxy terminated Phenol, dibenzofuran, benzofuran derivatives, mixtures of oligomers mostly hydroxy terminated
250
315 315
All polymers have same products with distribution varying with 250 composition. Biphenyl, hydroquinone, 4-phenoxyphenol, benzaldehyde, 4-hydroxybenzaldehyde, diphenyl sulphone, diphenylether, phenol, benzophenone-4,4'-diol. Also two series of chain fragments containing PEK and PES units with -H, -OH and -CHO ends. Analogous fragments with biphenyl units
POLY(ESTERS)
Poly(3-oxybenzoyl) Poly(4-oxybenzoyl) Poly(oxycarbonyl-l,3-phenylenehexafluoroisopropylidene-1,3-phenylene carbonyloxy-1,3-phenylene-hexafluoroisopropylidene-1,3-phenylene) Poly(oxycarbonyl-l-chloroisopropylidene) Poly(oxycarbonylcyclohexylidene) Poly(oxycarbonylcyclopentylidene) Poly(oxycarbonyl-3-pentylidene) Poly(oxyethyleneoxyterephthaloyl) (Poly(ethylene terephthalate))
330 505-565
Monomer, cyclic dimer-heptamer CO, CO 2 , phenol, p-hydroxy phenyl benzoate HF (12%), cyclic structures (see Ref.)
187 197 177
253-384 200-500 200-500 200-300 283-306
HCl and a compound with a glycollidic structure Cyclohexen-1-carboxylic acid, cyclohexanone Cyclopenten-1-carboxylic acid, cyclopentanone, dicyclopentyl glycollide Cw- and trans-2-tthy\ crotonic acid (major products) Acetaldehyde major gaseous product with CO 2 , CO, C 2 H 4 , H2O, CH4, benzene, 2-methyl-dioxolane, terephthalic acid, and more complex chain fragments CO, CH4, CO 2 , ethylene, acetylene, ethane, H2O, propylene, ethanal, acetone, propanal, ethanol, benzene, toluene, ethyl benzene, styrene, /?-vinyl toluene, benzaldehyde, p-ethyl toluene, acetophenone, methyl benzoate, vinyl benzoate, ethyl benzoate, /?-methyl acetophenone, benzoic acid, p-methyl vinyl benzoate, /?-vinyl acetophenone, propyl benzoate, /?-ethyl vinyl benzoate, p-vinyl vinyl benzoate, biphenyl, 1-hydroxy ethyl benzoate, diacetyl benzene, p-acetyl vinyl benzoate, divinyl terephthalate, ethyl vinyl terephthalate, ethyl vinyl terephthalate, /7-acetyl benzoic acid, methyl 1-hydroxyethyl terephthalate, ethylene dibenzoate CO, CH4, CO 2 , ethene, ketene, acetaldehyde, 1,4-dioxane, toluene, benzaldehyde, vinylbenzoate, divinylterephthalate, benzoic acid, terephthaldehydic acid, terephthalic acid, hydroxyethyl methyl terephthalate, short chain fragments CO, CH4 (trace), CO 2 , ethene (trace), formaldehyde, acetaldehyde, 1,3-dioxalane, ethoxyacetaldehyde, 1,4-dioxane, glycidol, diethylether, 1,2-dimethoxyethane, 2-methoxyethanol, 2-ethoxyethanol, -CH2CH2COCH 2 -(ring), HOCH2CH2OCH2CHO, CH3OCH2CH2OC2H5, terephthalic acid, triethylene glycol, tetraethylene glycol, chain fragments CO, CH4 (trace), CO 2 , ethene (trace), formaldehyde, acetaldehyde, 1,3-dioxalane, methoxyacetaldehyde, 1,4-dioxane, 7-membered cyclic ether, methyl benzoate, ethyl benzoate, benzaldehyde,
185 198 198 188 26
900
Ambient to 500
Polyester from terephthaloyl chloride and n = 4 polyethylene glycol
Polyester from terephthaloyl chloride and n = 22 polyethylene glycol
Ambient to 500
-CH 2 CH 2 COCH 2 -(ring), H O C H 2 C H 2 O C H 2 C H O ,
CH3OCH2CH2OC2H5, -(CH 2 CH 2 O) 2 CH 2 CO-(ring), CH2 = CHOCH 2CH 2OCH2CHO, HO(CH 2CH2O) 2C 2H5 , C 2 H 5 (OCH 2 CH 2 ) 3 H, terephthalic acid, triethylene glycol, tetraethylene glycol, chain fragments
192
298
274
274
TABLE 3. cont'd Polymer
Temperature range (0C)
Poly(oxyisophthaloyl-oxy-l,3-phenylene)
330
Poly(oxyisophthaloyl-oxy-l,4-phenylene)
330
Poly(oxy-l-oxohexamethylene) Poly((D)-oxy-l-oxo-3-methyl-trimethylene) (Poly(3-hydroxybutyrate))
220 Ambient to 338
250 400 600 350 Poly((D)-oxy-l-oxotetramethylene) (Poly(4-hydroxybutyrate)) Poly(oxy-l-oxo-2methylethylene) (Poly(l-lactic acid)) Poly(oxy-l-oxo-2,2-dimethyltrimethylene (Poly(a,a-dimethyl-p-propiolactone)) Poly(oxy- 1-oxo-trimethylene) (Poly(p-propiolactone)) Poly(oxyterephthaloyloxy1,2-phenylene) Poly(oxyterephthaloyloxy-l,3-phenylene)
320 500
Poly(oxytetramethyleneoxyterephthaloyl) (Poly(butylene terephthalate))
187 187 184 186
245 245 245 246 257
250-600 180-220
Acrylic acid
189
CO2, benzene, phenol, benzaldehyde, catechol, cyclic dimer
285
Ambient to 500 345
350
Ambient to 500 240-280 200-400 Ambient to 500
Poly(oxydecamethyleneoxyterephthaloyl) Poly(oxyethyleneoxyadipoyl) Poly(oxytetramethyleneoxysebacoyl) Polyester from maleic anhydride, hexolic acid and butanediol; mole ratio 1:1:2.2
Cyclic monomer (10 relative abundance), cyclic dimer (83.5), cyclic trimer (24.5), benzoic acid, isophthalic acid, resorcinol and various fragments of the main chain (see Ref.) Cyclic dimer (17), cyclic trimer (4), m-phthalic acid (26), benzoic acid (7.5), hydroquinone (46), and various fragments of the main chain (see Ref.) Monomer (e-caprolactone) Dimer (41.2 wt.%), crotonic acid (35.3), trimer (12.5), tetramer (2.9), iso-crotonic acid (0.9). Small amounts of CO 2, propene, ketene, acetaldehyde, and P-butyrolactone are formed at higher temperatures due to decomposition of primary products Crotonic acid (64.4% of original polymer), dehydrated dimer (7.2%), dehydrated trimer (1.2%) Crotonic acid (65.4% of original polymer), dehydrated dimer (8.2%), dehydrated trimer (2.1%) Crotonic acid (58.3% of original polymer), dehydrated dimer (9.0%), dehydrated trimer (2.7%) Crotonic acid (trans), dehydrated dimer (trans), dehydrated trimer and tetramer (cisltrans not resolved) Cyclic oligomers (y-butyrolactone and higher homologues)
282
Ambient to 500
Poly(oxyterephthaloyloxy-4,4/diphenylene)
Refs.
CO, CO2, acetaldehyde, acetone, acrylic acid, acetic acid, DL-lactide, meso-lactide, cyclic oligomers up to nonamer, 2,3 pentanedione (?), lactoyl lactic acid (?) Isobutylene and CO2
Ambient to 500
Poly(oxyterephthaloyloxy-l,4-phenylene)
Degradation products
Ambient to 500 Ambient to 500 Ambient to 500 100-440
183
Cyclic dimer (2), cyclic trimer (0.3), terephthalic acid (0.4), benzoic acid 187 (1.5), resorcinol (20) and various fragments of the main chain (see Ref.) CO2, benzene, phenol, benzaldehyde, biphenyl, benzoic acid, 285 3-hydroxyphenylbenzoate, resorcinol, mono and di(3-hydroxyphenyl) terephthalate, terephthalic acid, terephthaldehydic acid, short chain fragments Cyclic dimer (0.1), terephthalic acid (0.5), benzoic acid (6), hydroquinone 187 (40.5), and various fragments of the main chain (see Ref.) Benzene, phenol, benzaldehyde, biphenyl, benzoquinone, 285 4-hydroxyphenylbenzoate, benzoic acid, mono and di(4-hydroxyphenyl) terephthalate, terephthalic acid, terephthaldehydic acid, short chain fragments CO2, benzene, phenol, benzaldehyde, biphenyl, 4-phenylphenol, 285 /?,/?'-dihydroxybiphenyl, 4-hydroxybiphenylbenzoate, di(4-hydroxybiphenyl) terephthalate Butadiene, terephthalic acid, mono-3-butenyl terephthalate, and 190 di-3-butenyl terephthalate Tetrahydrofuran, 1,3-butadiene, CO2, CO, H2O, benzoic acid, tereph191 thalic acid, terephthalic acid mono-3-butenyl, toluene, phenol, benzene CO, CO 2 , butadiene, tetrahydrofuran, toluene, benzene, 1,5-hexadiene, 298 dihydrofuran, 4-vinyl cyclohexene, 1,4-butane diol, benzaldehyde, benzoic acid, terephthaldehydic acid, terephthalic acid, mono-3-butenyl terephthalate, cyclic dimer, short chain fragments CO, CO 2 , 1,9-decadiene, 1,10-decane diol, l-decene-10-ol, benzoic acid, 298 terephthalic acid, mono-decenyl terephthalate Cyclic oligomers, CO, CO2, acetaldehyde, 2-ethylacrolein 269 CO 2 , H2O, butadiene, tetrahydrofuran 299 Tetrahydrofuran, 1-butanol, toluene, maleic anhydride, chlorosuccinic 311 acid isomers, chlorovalerolactone isomers, hydroxypyran, allylpyran, trichlorocylopentadiene, tetrachlorocylopentadiene, pentachlorocylopentadiene, hexachlorocylopentadiene, phthalic anhydride, 1,4-butanediol, 1,4-butanediol dibenzoate, benzoic acid, 4-cyclohexene-l,2-dicarboxylic acid anhydride, benzoic acid butenyl ester, cyclohexadiene carboxylic acid propyl ester, hexolic anhydride,
References page II - 475
TABLE 3. cont'd Polymer
Temperature range (0C)
Degradation products
Refs.
unidentified butenyl ester, compound containing C 5 HCl 5 unit, CH3-CH=CH-CH2-O-CH3, C H 3 - C H = C H - C H 2 - O - C H = CH2,
Polyester from maleic anhydride, phthalic anhydride and butanediol; mol ratio 1:1:2.2
100-440
Unsaturated polyester resins a. Maleic acid-phthalic acid-propylene glycol-styrene
300-800
Cl-CH=CH-O-CH2-CH3 Tetrahydrofuran, 1-butanol, 3-butene-l-ol, toluene, maleic anhydride, 311 phthalic anhydride, 1,4-butanediol, 1,4-butanediol dibenzoate, phthalic acid butenyl ester, various esters containing butenyl, maleate and phthalate units, C H 3 - C H = C H - C H 2 - O - C H 3 , C H 3 - C H = C H - C H 2 - O - C H = CH2
b. Maleic acid-tetrabromophthalic acid-phthalic acid-propylene glycolstyrene c. Maleic acid-phthalic aciddibromoneopentyl glycol-styrene 3.3.
Ethane (above 5000C), propionaldehyde (above 4000C), styrene (major product), phthalic anhydride (major product), benzene (above 5000C), toluene (above 5000C), xylene (above 5000C)
193
Cyclic trimer, tetramer, and pentamer, and various chain fragments Major products: CO 2 , bisphenol A; minor products: CO, CH4, 4-alkyl phenols CO, CO 2 , CH 4 , phenol, diphenyl carbonate, 4-(4-hydroxyphenyl)-2phenyl propane Cyclic dimer, cyclic trimer, bisphenol A, and other chain fragments CO, CH4, CO 2 , H 2 O, phenol, /?-cresol, /?-ethyl phenol, /?-isopropyl phenol, p-vinyl phenol, bisphenol A, cyclic dimer, chain fragments including some ester structures Phenol, /7-cresol CO2, phenol, /?-cresol Cyclic monomer and dimer, and higher cyclic fragments
226 60
304 304 226
HF (3%), cyclic dimer
177
270
Cyclic dimer and trimer, and higher cyclic fragments
226
350
CO 2 , CO, O 2 , H 2 O, phenol, fluorenone, diphenyl carbonate, xanthone, anthraquinone, 2-hydroxyanthraquinone, 2-benzoxyanthraquinone, phenolphthalein, traces of benzoxyphenol and hydroquinone CO2/H2O (possibly desorbed), trimethylene carbonate, cyclic oligomers CO 2 , monomer, oligomer CO, CO 2 , H 2 O (possibly desorbed), a-methylstyrene, chain fragments (85%, w/w)
227
POLY(CARBONATES)
Poly(oxycarbonyloxy-l,3-phenylene) Poly(oxycarbonyloxy-l,4-phenyleneisopropylidene-l,4-phenylene)
270 300-389 200^00 290 Ambient to 500
Poly(oxycarbonyloxy-l,4-phenyleneisopropylidene-1,4-phenylene-oxy-carbonyltetramethylene) Poly(oxycarbonyloxy-l,3-phenylene hexafluorotrimethylene-1,3-phenylene) Poly(oxycarbonyloxy-l,4-phenyleneoxycarbonyloxy-tetramethylene) Poly(oxycarbonyloxy-l,4-phenylenephthalidylidene-l,4-phenylene) Poly(trimethy}ene carbonate) Poly(neopentylene carbonate) Poly(2-phenyl trimethylene carbonate) 3.4.
Ethane (above 6000C), propionaldehyde (above 4000C), styrene (major 193 product), phthalic anhydride (major product), benzene (above (4500C), toluene (above 5000C), xylene (above 4000C) Styrene (major product), phthalic anhydride (major product), benzene 193 (above 5500C), toluene (above 4500C), xylene (above 5000C)
300 375 240
Ambient to 500 Ambient to 500 Ambient to 500
225 226 304
295 296 296
POLY(ANHYDRIDES)
Poly(oxycarbonyl-1,3-phenylenehexafluorotrimethylene-1,3-phenylenecarbonyl) Poly(maleic anhydride-co-frans stilbene) (alternating copolymer)
350 Ambient to 500
Cyclic dimer
177
CO 2 , styrene, maleic anhydride; small amounts benzene, cyclohexadiene, 242 dimethylbutene, ethylcyclobutanol and 4-methoxystyrene; major products (79%) are chain fragments, including aromatic, ketonic and unsaturated structures
3.5. POLY(SULFIDES) AND POLY(SULFONES) Poly(thioacetone) Poly(thioethylene) Poly(thio-l,4-perfluorophenylene)
145 220-260 500
Poly(thiomethylene-1,4phenylene-methylene)
250-350
Main product is cyclic trimer [(CH3) 2CS] 69 Ethylene, H 2 S, ethanethiol 199 73% Residue; remainder, chain fragments, H 2 , SiF 4 (from silica vessel), 51 CO 2 Sulphur, styrene, thiobenzaldehyde, 4-methyl styrene, /?-xylene, 254 4-ethyl toluene, H 2 S, 4-methyl thiobenzaldehyde, stilbene and chain
TABLE 3. cont'd Polymer
Temperature range (0C)
650 Poly(dithiomethylene-1,4phenylene-methylene)
250-350
650 Poly(thio-l,2-phenylene) Poly(thio-l,3-phenylene) Poly(thio-l,4-phenylene)
430 540 460 300-620 325-625 560
Degradation products
Refs.
fragments containing stilbene units, chain fragments containing polymer repeat units with -CH 2 SH, -CH = S and -CH 3 terminal units Toluene, ethylbenzene, p-xylene, 1,4-diethylbenzene, 4-ethyltoluene; series of polycyclic aromatics containing phenanthrene and dihydrophenanthrene Sulphur, styrene, thiobenzaldehyde, 4-methyl styrene, /?-xylene, 4-ethyl toluene, H 2 S, 4-methyl thiobenzaldehyde, stilbene and chain fragments containing stilbene units, chain fragments containing polymer repeat units with -CH 2 SH, - C H = S and -CH 3 terminal units Toluene, ethylbenzene, p-xylene, 1,4-diethylbenzene, 4-ethyltoluene; series of polycyclic aromatics containing phenanthrene and dihydrophenanthrene Cyclic dimer (thianthrene), some cyclic trimer Cyclic oligomers (trimer to heptamer) in decreasing yield 72% Residue; remainder chain fragments, H 2 , dibenzthiophene 38% Residue, 47% chain fragments, 15% volatiles comprising mainly H2S and H 2 Benzene, thiophenol, diphenyl, diphenylsulfide, dibenzothiophene, chlorobenzene (from polymers with terminal chlorine atoms) Cyclic oligomers tetramer to heptamer (pentamer dominates)
254 254
254 258 258 51 59 200 258
Poly(oxy-1,4-phenylene-sulfonyl1,4-phenylene-oxy-1,4-phenyleneisopropylidene-1,4-phenylene) 380
350-450 470 for 2 h 800 Poly(oxy-1,4-phenylene-sulfonyl1,4-phenylene)
470 for 2h 550-600
800 Poy(tris-(oxy-l,4-phenylene)-sulfonyl-l,4phenylene) Poly(oxy-4,4'-diphenylene-oxy-l,4-phenylene sulfonyl-1,4-phenylene) Poly(oxy-l,4-phenylene-sulfony 1-1,4-phenyleneoxy-1,4-phenylenemethylene-1,4-phenylene) Poly(sulfur dioxide-co-1-butene) Poly(sulfur dioxide-co-1-hexene) Poly(sulfur dioxide-co-1-octadecene) Poly(sulfur dioxide-co-bicycloheptene)
700-800 700-800 700-800 700-800
Poly(sulfur dioxide-co-cyclopentene)
700-800
Poly(sulfur dioxide-co-c/s-2-butene)
700-800
Poly(sulfur dioxide-co-methyl methacrylate-co-1-hexene) (24.2/1) Poly(sulfur dioxide-co-methyl methacrylate-co-bicycloheptene) (2.5/1)
700-800 700-800
Phenol with smaller amounts of/7-cresol, /?-ethyl phenol, /?-isopropylphenyl phenol, bisphenol A, diphenyl ether, p-tolyl phenyl ether, p-ethyl diphenyl ether, p-isopropenyl diphenyl ether, isomers of tolyl (ethyl-phenyl)ether In 90min at 4500C, 15% (of initial weight) of gaseous products are formed; SO2 (76% of gaseous products), CO2 (15%), CO (4.5%), CH4 (4.5%) Benzene, toluene, /?-xylene, isopropylbenzene, phenol (main product), diphenyl oxide, diphenyl sulfide SO2, benzene, toluene, styrene, phenol, methylphenol, diphenylether, methyl diphenylether Phenol (main product), diphenyl oxide
201
SO2, diphenylsulfone, phenol, diphenylether, hydroquinone, benzenesulfonic acid, 4-hydroxybenzenesulfonic acid, 4,4/-dihydroxydiphenylether, 4-phenoxyphenol; series of -H and -OH terminated fragments up to trimer, series of compounds containing consecutive diphenylether and dibenzofuran units, fragments containing biphenyl units as a result of SO2 elimination; complex ring structures with sulfonate links SO2, benzene, phenol, diphenyl ether, dibenzofuran Benzene, phenol (major product), diphenyl oxide, p-hydroxydiphenyl, or /?-hydroxydiphenyl oxide Phenol (main product), diphenyl oxide
255
202 203 288 203
288 203 203
Benzene, toluene, /7-xylene, phenol (main product), diphenyl oxide
203
Monomers Monomers Monomers SO2, bicycloheptene, cyclopentadiene, ethylene, methyl cyclohexadiene, benzene, indene, naphthalene, dihydronaphthalenes SO2, cyclopentene, xylenes, ethylbenzene, styrene, indene/decadienes, dihydronaphthalenes, tetralin, napthalene SO 2 , butenes, benzene, toluene, octadienes, xylenes, styrene, indene, naphthalene SO2, hexenes, hexadienes, methyl methacrylate, toluene, naphthalene, dodecadienes SO2, ethylene cyclopentadiene, benzene, methyl methacrylate, bicycloheptene, methylcyclohexa-2,4-diene, ethylbenzene, xylenes, styrene, indene, naphthalene, dihydronaphthalenes
204 204 204 204 204 204 204 204
References page II - 475
TABLE 3. cont'd Polymer
Temperature range (0C)
Degradation products
Refs.
3.6. POLY(AMIDES) Poly(2,5-dimethyl-l,4-piperazinediylisophthaloyl)
475
Poly(2,5-dimethyl-1,4-piperazinediyloxaloyl)
475
Poly(2,5-dimethyl-l,4-piperazinediylterephthaloyl)
475
Poly(iminoisophthaloylimino1,3-phenylene) (Nomex)
300-500 300-500 450-550
PolyOminoisophthaloylimino1,3-perchlorophenylene)
550
Poly(iminoisophthalylimino1,4-phenylene) Poly(iminoisophthaloyl-co-terephthaloylimino-1,4-phenylene) Poly(imino(l-oxohexamethylene) (Nylon 6)
Poly(iminohexamethyleneiminoadipoyl) (Nylon 66)
300-500 250-620 327
310-380 305 305
400
Poly(imino(l-oxoundecamethylene) (Nylon 11)
800
Poly(imino(l-oxododecamethylene) (Nylon 12)
800
Poly(iminoterephthaloylimino1,3-phenylene) Poly(iminoterephthaloylimino1,4-phenylene) (Kevlar)
300-500 300-500 370-450 450-550 527
Poly(2-methylpiperazinediylterephthaloyl)
475
Poly(l,4-piperazinediylterephthaloyl)
475
After 1 h, 5.1% residue, 73.8% chain fragments, 20.5% volatiles comprising mainly CO, H2O, CH4, CO2, H2, with traces of hydrocarbons, pyrazines, pyrroles After Ih, 1% residue, 73.5% chain fragments, comprising mainly CO, with traces of H2, CO2, H2O, hydrocarbons, pyrazines, pyrroles After Ih, 9.4% residue, 3.2% chain fragments 87.4% volatiles comprising mainly CO, H2O, CO2, CH4, NH3, with traces of hydrocarbons, pyrazines, and pyrroles Mixture of H 2 , CO, CO 2 , H2O, HCN, benzene, toluene, benzonitrile CO2, H2O, CO Benzene, HCN, toluene, benzonitrile, H 2 CO, CO 2 , H2O, benzene, benzonitrile, 1,3-dicyanobenzene, 3-cyanobenzoic acid, other trace compounds Water (46 mol%), CO (18), CO2 (31), CH4 (1.2), HCN (1.3), and smaller quantities of, N 2 O, NO, CH3CI, ethylene, acetylene, cyanogen, acetonitrile, acetone, acetic acid, cyanogen chloride, propenenitrile, benzene, toluene, benzonitrile, phenol, chlorobenzene Mixture of H 2 , CO, CO 2 , H2O, HCN, benzene, toluene, benzonitrile
30 47 47 57 205 205 319 206
57
36% residue, 24% chain fragments, 40% volatiles comprising H 2 , CO, 58 CO2, CH 4 Cyclic monomer, acetonitrile, HCN, NH 3, acrylonitrile, 3-cyanopropene, 293 4-cyanobutadiene, 4-cyano-1 -butene, 5-cyano-1,3-pentadiene, 4-pentenal, 5-cyano-l-pentene, 3,5-hexadienal, 5-isocyanato1-pentene, linear dimer H2O, CO 2 , cyclopentanone, traces of saturated and hydrocarbons; 45,46 purification from water and acid polymerization catalysts increases stability and decreases yield of CO2 H2O, CO2, NH 3, cyclic monomer, cyclopentanone, cyclopentylidine207 cyclopentanone, cyclopentylcyclopentanone, hexylamine, hexamethyleneimine, hexamethylenediamine CO 2 , NH3, H2O, cyclic monomer, cyclopentanone, 207 2-cyclopentylidenecyclo pentanone, 2-cyclopentylcyclopentanone, hexylamine, hexamethyleneimine, hexamethylenediamine, 1,2,3,5,6,7-hexahydro dicyclopenta[b,e]pyridine Hexamethylenediamine, aminohexamethylene isocyanate, 247 hexamethylenediamine-monocyclopentanimine, hexamethylenediaminedicyclopentanimine and larger oligomers related to above; cyclopentanone CO 2 , HCN, saturated and olefinic hydrocarbons C5-Cn, 308 saturated and olefinic mononitriles CwH(2n+1)CN and CwH(2n_i)CN, undecalactam, hydrocarbons and nitriles containing amide units CO2, HCN, saturated and olefinic hydrocarbons C 5 - C n , 308 saturated and olefinic mononitriles CnH(2n+1)CN and CnH(2n_!)CN, dodecalactam, hydrocarbons and nitriles containing amide units Mixture of H 2 , CO, CO2, H2O, HCN, benzene, toluene, benzonitrile 57 Mixture of H 2 , CO, CO2, H2O, HCN, benzene, toluene, benzonitrile 57 CO 2 , H2O, CO 205 Benzene, HCN, toluene, benzonitrile, H 2 Cyanobenzene, dicyanobenzene, aniline, 1,4-diaminobenzene, 293 4-cyanoaniline, benzaldehyde, benzene, CO, NH3, CO2, H2O, benzamide, benzoic acid, phenylisocyanate, terephthaldehyde, benzanilide, NH 2 -Ph-NH-CO-Ph, NC-Ph-NH-CO-Ph, NH 2 -Ph-NH-CO-Ph-CN, Ph-NH-CO-Ph-CHO After Ih, 11.3% residue, 46.2% chain fragments, 42.5% volatiles 30 comprising mainly CO, H2O, CO2, CH4, NH3, H 2 , with traces of hydrocarbons, pyrazines, and pyrroles After Ih, 21.1% residue, 45.6% chain fragments, 33.3% volatiles 30 comprising mainly H2O, CO, H 2 , CO2, NH3, with traces of hydrocarbons, pyrazines, and pyrroles
TABLE 3. cont'd Polymer 3.7.
Temperature range (0C)
Degradation products
Refs.
POLY(SILOXANES)
Poly(oxy-dimethylsilylene) (Poly(dimethyl siloxane))
Ambient to 500
470
Poly(oxy-methylphenylsilylene)
Ambient to 500
Poly(oxy-methyl-3,3,3-trifluoropropylsilylene)
400 615 for 30 s
Poly(oxy-phenylbutoxysilylene) Poly(dimethyl siloxane-codiphenyl siloxane)
430-500 Ambient to 500
Poly(dimethyl siloxane-co phenylmethyl siloxane)
Ambient to 500
Poly (dimethyl-1,4-silphenylene)
400 in argon
Predominantly cyclic trimer with smaller amounts of cyclic tetramer and 208 higher cyclics; threshold degradation temperature of about 3000C reduced to 1000C by 5% KOH and CH 4 formed as additional product Distribution of cyclic oligomers, n = 3 (243.9 relative mass spec. 317 intensity), n = 4 (100), n = 5 (35.6), n = 6 (37.6), n = 1 (13.1), n = 8 ( l . l ) , n = 9(0.2) Mixture of all possible stereoisomeric cyclic trimers and tetramers with 209 small amounts of pentamer, benzene, and two more complex oligomers Low-molecular-weight cyclic oligomers, CF 2 = CH-CH 3 , CHF 3 70 Cyclic methyl-(3,3,3-trifluoropropyl)siloxanes, CH 4 , CHF3, CF 2 = CH-CH 3 , CH 2 = CH-CF 3 CO, H 2 and hydrocarbons Complex mixture of cyclic oligomers, which have been individually identified, whose composition varies with the dimethyl/diphenyl ratio; small amounts of benzene Complex mixture of cyclic oligomers, which have been individually identified, whose composition varies with the dimethyl/methyl phenyl ratio; small amounts of benzene Methane, dimethylsilane, benzene, dimethylphenylsilane,
210 211 212
213
214
dimethyldiphenylsilane,
Poly(oxy-methylphenyl1,4-silphenylene-silylene) Poly(oxy-tetramethyl-
Ambient to 500 500 in argon
1,4-silphenylene-silylene)
Benzene, diphenylmethylsilane, triphenylmethylsilane, and higher linear oligomers CH3 CH3
214
Methane, H - S i - O - S i - H , benzene, cyclic trimer of dimethylsiloxane, CH3 Ambient to 500
Poly(oxy-tetramethyl-l,3-silphenylene615 for 30s silylene-hexafluoropropylenephenylene) Poly(oxy-tetramethyl-l,3-silphenylene615 for 30s silylene-tetrafluoroethylenephenylene) Poly(oxy-tetramethyl-l,3-silphenyleneAmbient to 500 siloxane-co-dimethylsiloxane) Poly(boron tri(dimethylsiloxane)), nonlinear 250-350
3.8.
215
CH3
and various higher chain fragments (see Ref.) Cyclic trimer and tetramer of dimethylsiloxane and a complex mixture of higher linear and cyclic oligomers HF (15-18%), methane, methyltrifluorosilane, dimethyldifluorosilane, benzene, toluene, phenyldifluoromethane HF (15-18%), methane, methyltrifluorosilane, dimethyldifluorosilane, benzene, toluene, phenyldifluoromethane Cyclic trimer and tetramer of dimethylsiloxane and a complex mixture of higher linear and cyclic oligomers Molecular weight increases; traces of cyclic products [(CH 3 ) 2 Si0] 3 and [(CH 3 ) 2 Si0] 4
216 210 210 216 15
POLY(URETHANES)
Poly(oxy-2,2-dimethyltrimethylene) oxycarbonyl-Af-imino-1,4-phenylenemethylene1,4-phenylene-A/-iminocarbonyl) Poly(oxy-l,4-phenyleneisopropylidene1,4-phenyleneoxycarbonylimino-l ,4-phenylene methylene-1,4-phenylene-iminocarbonyl) Poly(oxy-l,4-phenyleneisopropylidene1,4-phenylene-oxycarbonyl-A^methylimino1,4-phenylenemethylene-1,4-phenyleneAf-methyliminocarbonyl) Poly(oxy-l,4-phenyleneisopropylidene1,4-phenylene-oxycarbonyl-Af-methyliminohexamethylene-Af-methyliminocarbonyl) Poly((oxy-l,4-phenyleneisopropylidene1,4-phenylene-oxycarbonyl-piperazine1,4-diyl-carbonyl)
350
Various fragments of the main chain (see Ref.)
231
190
4,4/-Diphenylmethane diisocyanate, bisphenol A
231
Bisphenol A, 4,4/-J/V-methyldiphenyl methane and linear and cyclic fragments of the main chain (see Ref.)
231
330
Cyclic monomer and dimer, and various chain fragments
232
330
Cyclic dimer, bisphenol A and various chain fragments
232
References page II - 475
TABLE 3.
cont'd
Polymer
Temperature range (0C)
Poly(oxy-l,3-phenylene-oxycarbonyl320 Af-methylimino-hexamethyleneAf-methyliminocarbonyl) Poly(oxy-l,4-phenyleneoxycarbonyl325 Af-methylimino-1,4-phenylenemethylene1,4-phenylene-A^methyliminocarbonyl) Poly(oxy-l,3-phenylene-oxycarbonyl360 piperazine-1,4-diyl-carbonyl) Poly(oxytetramethylene oxycarbonylAmbient to 500 imino-1,4-phenylenemethylene1,4-phenylene-iminocarbonyl) with 10% (w/w) ammonium Ambient to 500 polyphosphate Poly(oxy-xylylene-oxycarbonylimino300 xylylene-iminocarbonyl) Polyurethane from methylene bis600 (4-phenyl isocyanate) (105 parts) and propoxylated trimethyl propane (100 parts) 250-350 350-500 500-650 Polyurethane from butane diol, phenylphosphonic dichloride, and methylene bis-(4-phenyl isocyanate) Polyester urethane from an ethylene/ propylene glycol/adipic acid polyester, butane diol and methyl bis(4-phenyl isocyanate) Poly(urethane-cocarbonates)
650-800 Ambient to 500 Ambient to 500
330
290
Degradation products
Refs.
Cyclic monomer, dimer and trimer, resorcinol
232
Cyclic dimer, 4,4/-Af-methyldiphenylmethane, hydroquinone, and higher chain fragments (see Ref.)
232
Cyclic dimer and trimer, resorcinol, and various chain fragments (see Ref.) 1,4-Butanediol, methylene bis-(4-phenyl isocyanate), tetrahydrofuran, CO2, H2O, butadiene, HCN, CO
232
Methylene bis-(4-phenyl isocyanate), tetrahydrofuran, H2O, aniline, formaldehyde, CO2 CO 2 , frajis-l,4-cyclohexane-dimethanol, 4-methylene-cyclohexanemethanol, xylylene diamine Methane, CO 2 , ethylene ethane, H2O, propene, propane, ethanol, isobutene, acrolein, propanal, 2-methyl-l-butene, 2-methylpropenal, 2-butanone, benzene, dihydropyran, 2,2,4-trimethyl-l,3-dioxalane CO2, propene, some methane and propanal Methane, ethane, ethene, propane, propene, ethanal, propanal, diminishing quantities of CO2 Methane (max. rate of production at 6000C), ethane, ethene, propene, ethanal, propanal Methane, ethane, ethene, propene, ethanal, propanal CO 2 tetrahydrofuran, dihydrofuran, aniline, /?-toluidine, TV-phenyl pyrrolidine, N-(p-io\y\) pyrrolidine, cyclobutylene phenylphosphonate, butane diol, methylene bis-(4-phenyl isocyanate), 4,4/-methylene dianiline Modified chain fragments, ethylene, propylene, CO2, ethylene oxide, propylene oxide, acetaldehyde, tetrahydrofuran, water, cyclopentanone, ethylene, glycol, propylene glycol, adipic anhydride (trace), aniline (trace) Cyclic monomer, bisphenol A and higher linear and cyclic fragments of the chain (see Ref.)
228 229 230 234 256 256 256 256 235 236
237
Cyclic monomer, resorcinol, and various fragments of the chain (see Ref.)
237
Ethene, propane, propene, isobutane, isobutene, ethylamine, aziridine, 1-r-butyl-perhydro-l,4-diazine, N-t-b\xty\ ethylamine, 1 -?-butyl-4-isopropenyl-1,2,3,4-tetrahydro-1,4-diazine, 1,4-di-(/-butyl)-perhydro-1,4-diazine, oligomers
276
Butadiene, tetrahydrofuran, dihydrofuran, H2O, cyclic ester of phenylphosphonic acid and 1,4-butanediol, phenylphosphonic acid, butane diol Butadiene, tetrahydrofuran, dihydrofuran, H2O, cyclic ester of phenylphosphonic acid and butanediol, phenylphosphonic acid, butane diol, CO2, aniline
233
Cyclic trimer, tetramer, pentamer, hexamer, and higher oligomers, l,l,l-trifluoro-2-chloroethane (due to residual chlorine in the polymer) Cyclic tetramer, trimer and higher oligomers, chlorobenzene (due to residual chlorine in the polymer), phenol, triphenylphosphate
238
3.9. OTHER NITROGEN CONTAINING POLYMERS Poly(£-butyl aziridine)
Ambient to 500
3.10. PHOSPHOROUS CONTAINING POLYMERS Poly(oxytetramethylene oxyphenyl phosphono)
Ambient to 550
Poly(oxytetramethylene oxyphenylAmbient to 500 phosphono) capped with phenylisocyanate)
Poly(bis(trifluoroethoxy)phosphazene)
150-400
Poly(diphenoxyphosphazene)
100-400
233
239
TABLE 3. cont'd Polymer Poly(diphenoxy-phosphazene) (residual chlorine content: <0.05%) Poly(diphenoxy-phosphazene) (residual chlorine content: 2.4%) Poly(diphenoxy-phosphazene) (residual chlorine content: 9.9%)
Temperature range (0C) Ambient to 480 Ambient to 480 Ambient to 480
Degradation products
Refs.
Traces of phenol, phenoxy cyclic trimer and monochlorophenoxy 316 cyclic trimer Phenoxy cyclic trimer and tetramer, monochloropentaphenoxy cyclic 316 trimer, monochloroheptaphenoxy cyclic tetramer, dichlorohexaphenoxy cyclic tetramers Phenoxy cyclic trimer and tetramer, monochloropentaphenoxy cyclic 316 trimer, monochloroheptaphenoxy cyclic tetramer, dichlorohexaphenoxy cyclic tetramers, dichlorotetraphenoxy cyclic trimers, trichloropentaphenoxy cyclic tetramers, HCl
TABLE 4. MAIN-CHAIN HETEROCYCLIC POLYMERS Polymer Phenol-formaldehyde resin PoIy(I-methylene-2-imidazolidinone) (Poly(ethyleneurea formaldehyde))
Temperature range (0C) 250-400 240 Ambient to 600
Poly(7V-phenylmaleimide)
100-400
Poly(5,5/-bibenzimidazole-2,2/-diyl1,4-phenylene)
400-700 570, 700, 1000
Poly(5,5/-bibenzimidazole-2,2/-diyl1,3-phenylene)
599-667
PoIy(1,3,5,7-tetraoxo-2,3,6,7-tetra700 hydro-(lH,5H)-2,6-benzo[l,2-c: 4,5-c']dipyrroldiyl-1,4-phenylene-carbonyl1,4-phenylene) (Poly(pyromellitimide)) Poly(l,3,5,7-tetraoxo-2,3,6,7-tetra700 hydro-(lH,5H)-2,6-benzo[l,2-c:4,5-c']dipyrroldiyl-1,4-phenylene-methylene1,4-phenylene) (Poly(pyromellitimide)) PoIy(1,3,5,7-tetraoxo-2,3,6,7-tetra700 hydro-( 1 H,5H)-2,6-benzo[ 1,2-c: 4,5-c']dipyrroldiyl-1,4-phenylene-oxy1,4-phenylene) (Poly(pyromellitimide)) Poly(l,5-diimino-3,7-dioxo450-500 2,3,6,7-tetrahydro-(lH,5H)-2,6-benzo [1,2-c: 4,5-c'] dipyrroldiyl- 1,3-phenylene) PoIy(1,5-diimino-3,7-dioxo450-500 2,3,6,7-tetrahydro-(lH,5H)-2,6-benzo [1,2-c: 4,5-c']dipyrroldiyl-l,4-phenyleneoxy1,4-phenylene)
Degradation products
Refs.
Volatiles comprise xylene (76%), traces of phenol, cresol, benzene 53 Formaldehyde (trace) 253 Low boiling fraction consists of NH 3 , CO 2 , HCN, CH 4 , CO (trace); 253 IR data also suggests presence of isocyanate, ketamine and carbodiimide or cyanogen compounds; high boiling fraction (77% of total volatiles) consists of chain fragments up to pentamer, including Af-methylethylene urea, corresponding unsaturated compounds and higher homologues; similarly, AUV'-dimethylethylene urea and homologues Aniline, P h - N = C H - C H 2 - C H 3 , Af-phenylsuccinimide, 301 N-phenylmaleimide (trace), P h - N = C H - C H = CH-CO-NH-Ph Phenol, terephthalodinitrile, benzonitrile, 4,4/-diaminodiphenyl, H 2 , CO, 56 NH 3 , HCN, traces of aniline, carbonaceous residue H 2 (700 and 1000°C), NH 3 (570 and 700), N 2 O, HCN, cyanogen (570 217 only), CH 4 , C 2 H 6 , ethylene, acetylene (700 and 1000), acetonitrile (700 and 1000), propene (570 and 700), benzene, toluene, benzonitrile (700 only), ethylbenzene, methylbenzonitrile (700 only) Gaseous products; H 2 , NH 3 , HCN, and CH 4 ; products involatile at 218 ambient temperature after approx. 50% weight loss; benzimidazole (29.8%), benzoxazole (4.9%), 2-methylbenzimidazole (7.3%), 2-phenyl-benzimidazole (24.3%), 2-(3-methylphenyl)benzimidazole (5.3%), 5-(3-aminophenyl)benzimidazole (9.6%), 2-(3-cyanophenyl)benzimidazole (7.8%), 5,5'-bibenzimidazole (4.4%), 2-phenyl-5-(3-aminophenyl)-benzimidazole (4.4%), 2-phenyl-5,5/-bibenzimidazole (1.9%), 2-phenyl-5-(benzoxazolo)benzimidazole (0.3%) H 2 , CO, CH 4 , CO 2 , H 2 O, benzene, benzonitrile, chain fragments, 60% 61 residue H 2 , CO, CH 4 , CO 2 , H 2 O, benzene, toluene, benzonitrile, chain fragments, 60% residue
61
H 2 , CO, CH 4 , CO 2 , H 2 O, benzene, benzonitrile, phenol, chain fragments, 60% residue
61
CO, CO 2 , HCN, NH 3 , H 2 and traces of CH 4 and C 6 H 6 ; NH 3 is the main product at 4400C, CO increases at higher temperatures
219
CO, CO2 HCN, NH3, H2 and traces of CH4 and C6H6; NH3 is the main product at 4400C, CO increases at higher temperatures
References page II - 475
TABLE 4. cont'd Polymer
Temperature range (0C)
Degradation products
Refs.
Poly(triazines)
Poly(perfluoropyridine)
415-505
C 2 F 4 , C 2 F 6 , and smaller amounts of C 3 H 6 and C 3 H 8 and larger chain fragments
48
430-503
C 2 F 4 with traces of CF4, C 3 H 6 , and larger chain fragments
48
305-465 480-660 690-760
Only volatile product is benzonitrile HCN and NH3 H 2 and carbonaceous residue
54 54 54
424-550
Perfluoroethane, perfluoromethane, perfluoroethylene, 220 perfluoropropane, perfluoropropylene, acetal fluoride, carbonyl fluoride
600
Volatiles comprise CO2, CO, SiF4 (all from silica vessel); carbonaceous residue remains
300
CO 2 , CO, NO
52
Poly(parabanic acid)
221
Poly(bismaleimides)
Poly(3-(4-octylphenyl)2,2/-bithiophene) Poly(3-octylthiophene) Poly(3-octyl-2,2'-bithiophene) Poly(3-(4-octylphenyl)thiophene)
350-500
Aliphatic: C 2 - C 6 fractions, maleimide (MI), succinimide (SI) 222 MI-CH 3 , SI-CH 3 , MI-C 2 H 5 , SI-C 2 H 5 , MI-C 3 H 7 , SI-C 3 H 7 , MI-C 4 H 9 , SI-C 4 H 9 , MI-C 5 Hn, SI-C 5 Hn, MI-(CH 2 ) 2 -MI, SI-(CH 2 ) 2 -SI, MI-(CH 2 ) 6 -MI, MI-(CH 2 )S-MI, MI-(CH 2 )I 0 -MI, MI-(CH 2 )I 2 -MI
350-500
Benzene, toluene, aniline, SI, methylaniline, phenylisocyanate, tolylisocyanate, and various other products (see Ref.)
222
350-500
Aniline, phenol, SI, anisidine, phenylisocyanate, and various other products (see Ref.)
222
H 2 S, COS, SO2, CH3SH, CS 2 , S 8 , C i - C 8 alkanes and alkenes, benzene, ethylbenzene, toluene, styrene, octylbenzene, thiophene, methylthiophene, bithiophene C i - C 8 alkanes and alkenes, H 2 S, CS 2 , benzene, toluene C i - C 8 alkanes and alkenes, H 2 S, CS 2 , benzene, toluene C i - C 8 alkanes and alkenes, H 2 S, CS 2 , benzene, toluene
284
800 550-1400 550-1400 550-1400
284 284 284
Next Page
TABLE 5. CELLULOSE AND ITS DERIVATIVES Polymer
Temperature range (0C)
Cellulose
250-397 Ambient to 500
- , a form
330-440
Cellulose (oxidized)
180-331
Cellulose triacetate
250-310 250-900
Ethyl cellulose
C.
230-320 306
Degradation products
Refs.
H 2 O with smaller amounts of CO2 and CO and a tar containing 17,18 principally levoglucosan H 2 , CO, CO2, H2O, furan, furancarboxyaldehyde, methylfurans, acetone, 273 hydroxypropanone, butenal, butanone, butanedione, levoglucosan Fixed gases (not identified), pentene, acetaldehyde, furan, 162 propionaldehyde, acetone, acrolein, 2-methylfuran, butyraldehyde, methyl ethyl ketone, benzene, 2,5-dimethylfuran, methyl vinyl ketone, 2,3-butanedione, toluene, crotonaldehyde, H2O, cyclopentanone, cyclooctatetraene, acetol, pyruvaldehyde, acetic acid, furfural, formic acid, 5-methyl-2-furfural, furfuryl alcohol, butyrolactone, 2-hydroxy-3-methyl-3-cyclopenten-2-one, phenol, o-cresol, m-cresol, p-cresol, 2,5-dimethylphenol, 3,4-dimethylphenol, 5-hydroxymethylfurfural Mainly H 2 O and CO2, smaller amounts of CO, formaldehyde, methanol, acetic acid, ethanol and acetaldehyde, and very little tar Product fraction volatile at 25°C contains acetic acid, CO2, CO, CH4, 18 H 2 , acetaldehyde and acetone; heavier fractions do not contain levoglucosan acetate Main products: acetic acid, water, CO, CH4, H 2 , CO 2 ; minor products: 223 ketene, acetaldehyde, acetone, acetylene, ethylene, ethane, propylene, and C 4 , C 5 and C 6 hydrocarbons Acetic acid, acetyl derivatives of D-glucose 224 H2O, CO, CO2, C 2 H 4 , C 2 H 6 , C2H5OH, CH3CHO, aliphatic 224 compounds, furan derivatives
REFERENCES
1. G. G. Cameron, D. R. Kane, Polymer, 9, 461 (1968). 2. S. Straus, S. L. Madorsky, J. Res. Natl. Bur. Std., 50, 165 (1953). 3. S. L. Madorsky, J. Polym. Sci., 11, 491 (1953). 4. J. R. Schaefgen, I. M. Sarasohn, J. Polym. Sci., 58, 1049 (1962). 5. C. S. Marvel, J. C. Cowan, J. Am. Chem. Soc, 61, 3156 (1939). 6. A. J. Canale, W. E. Goode, J. B. Kinsinger, J. R. Panchak, R. L. Kelso, R. K. Graham, J. Appl. Polym. Sci., 4, 231 (1960). 7. J. W. C. Crawford, D. Plant, J. Chem. Soc, 4492, 1952. 8. G. G. Cameron, G. P. Kerr, J. Polym. Sci. A-I, 7, 3067 (1969). 9. W. J. Burlant, J. L. Parsons, J. Polym. Sci., 22, 249 (1956). 10. S. Straus, S. L. Madorsky, J. Res. Natl. Bur. Std., 61, 77 (1958). 11. S. L. Madorsky, S. Straus, J. Res. Natl. Bur. Std., 63A, 261 (1959). 12. A. R. Monahan, J. Polym. Sci. A-I, 4, 2391 (1966). 13. S. L. Madorsky, S. Straus, J. Res. Natl. Bur. Std., 53, 361 (1954). 14. S. L. Madorsky, S. Straus, J. Res. Natl. Bur. Std., 55, 223 (1955). 15. M. A. Verkhotin, K. A. Andrianov, M. N. Yermakova, S. R. Rafikov, V. V. Rode, Polym. Sci. USSR, 8,2369 (1966). 16. S. L. Madorsky, S. Straus, D. Thompson, L. Williamson, J. Res. Natl. Bur. Std., 42, 499 (1949). 17. S. L. Madorsky, V. E. Hart, S. Straus, J. Res. Natl. Bur. Std., 56, 343 (1956).
18. S. L. Madorsky, V. E. Hart, S. Straus, J. Res. Natl. Bur. Std., 60, 343 (1958). 19. R. F. Schwenker, Jr., L. R. Beck, Textile Res. J., 624, (August, 1960). 20. A. B. Blyumenfel'd, B. M. Kovarskaya, Polym. Sci. USSR, 12, 710 (1970). 21. L. G. Kaufman, R T. Funke, A. A. Volpe, Macromolecules, 3, 358 (1970). 22. J. L. Cotter, G. J. Knight, W. W. Wright, J. Polym. Sci. B, 6, 763 (1968). 23. S. L. Madorsky, V. E. Hart, S. Straus, V. A. Sedlek, J. Res. Natl. Bur. Std., 51, 327 (1953). 24. E. E. Lewis, M. A. Naylor, J. Am. Chem. Soc, 69, 1968 (1947). 25. S. L. Madorksy, S. Straus, J. Polym. Sci., 36, 183 (1959). 26. E. P. Goodings, Soc. Chem. Ind. (London), Monograph, 13, 211 (1961). 27. C. E. Schweitzer, R. N. MacDonald, J. O. Punderson, J. Appl. Polym. Sci., 1, 158 (1959). 28. S. Straus, S. L. Madorsky, J. Res. Natl. Bur. Std., 66A, 401 (1962). 29. Y. Tsuchiya, K. Sumi, J. Polym. Sci. A-I, 7, 813 (1969). 30. S. D. Bruck, Polymer, 7, 231 (1966). 31. S. Straus, S. L. Madorsky, Ind. Eng. Chem., 48, 1212 (1956). 32. B. S. T. Boonstra, G. J. Van Amerongen, Ind. Eng. Chem., 41, 161 (1949). 33. D. H. Grant, N. Grassie, Polymer, 1, 125 (1960). 34. N. Grassie, H. W. Melville, Proc Roy. Soc A, 190, 1 (1949). 35. R D. Zemany, Nature, 171, 391 (1953).
Previous Page
TABLE 5. CELLULOSE AND ITS DERIVATIVES Polymer
Temperature range (0C)
Cellulose
250-397 Ambient to 500
- , a form
330-440
Cellulose (oxidized)
180-331
Cellulose triacetate
250-310 250-900
Ethyl cellulose
C.
230-320 306
Degradation products
Refs.
H 2 O with smaller amounts of CO2 and CO and a tar containing 17,18 principally levoglucosan H 2 , CO, CO2, H2O, furan, furancarboxyaldehyde, methylfurans, acetone, 273 hydroxypropanone, butenal, butanone, butanedione, levoglucosan Fixed gases (not identified), pentene, acetaldehyde, furan, 162 propionaldehyde, acetone, acrolein, 2-methylfuran, butyraldehyde, methyl ethyl ketone, benzene, 2,5-dimethylfuran, methyl vinyl ketone, 2,3-butanedione, toluene, crotonaldehyde, H2O, cyclopentanone, cyclooctatetraene, acetol, pyruvaldehyde, acetic acid, furfural, formic acid, 5-methyl-2-furfural, furfuryl alcohol, butyrolactone, 2-hydroxy-3-methyl-3-cyclopenten-2-one, phenol, o-cresol, m-cresol, p-cresol, 2,5-dimethylphenol, 3,4-dimethylphenol, 5-hydroxymethylfurfural Mainly H 2 O and CO2, smaller amounts of CO, formaldehyde, methanol, acetic acid, ethanol and acetaldehyde, and very little tar Product fraction volatile at 25°C contains acetic acid, CO2, CO, CH4, 18 H 2 , acetaldehyde and acetone; heavier fractions do not contain levoglucosan acetate Main products: acetic acid, water, CO, CH4, H 2 , CO 2 ; minor products: 223 ketene, acetaldehyde, acetone, acetylene, ethylene, ethane, propylene, and C 4 , C 5 and C 6 hydrocarbons Acetic acid, acetyl derivatives of D-glucose 224 H2O, CO, CO2, C 2 H 4 , C 2 H 6 , C2H5OH, CH3CHO, aliphatic 224 compounds, furan derivatives
REFERENCES
1. G. G. Cameron, D. R. Kane, Polymer, 9, 461 (1968). 2. S. Straus, S. L. Madorsky, J. Res. Natl. Bur. Std., 50, 165 (1953). 3. S. L. Madorsky, J. Polym. Sci., 11, 491 (1953). 4. J. R. Schaefgen, I. M. Sarasohn, J. Polym. Sci., 58, 1049 (1962). 5. C. S. Marvel, J. C. Cowan, J. Am. Chem. Soc, 61, 3156 (1939). 6. A. J. Canale, W. E. Goode, J. B. Kinsinger, J. R. Panchak, R. L. Kelso, R. K. Graham, J. Appl. Polym. Sci., 4, 231 (1960). 7. J. W. C. Crawford, D. Plant, J. Chem. Soc, 4492, 1952. 8. G. G. Cameron, G. P. Kerr, J. Polym. Sci. A-I, 7, 3067 (1969). 9. W. J. Burlant, J. L. Parsons, J. Polym. Sci., 22, 249 (1956). 10. S. Straus, S. L. Madorsky, J. Res. Natl. Bur. Std., 61, 77 (1958). 11. S. L. Madorsky, S. Straus, J. Res. Natl. Bur. Std., 63A, 261 (1959). 12. A. R. Monahan, J. Polym. Sci. A-I, 4, 2391 (1966). 13. S. L. Madorsky, S. Straus, J. Res. Natl. Bur. Std., 53, 361 (1954). 14. S. L. Madorsky, S. Straus, J. Res. Natl. Bur. Std., 55, 223 (1955). 15. M. A. Verkhotin, K. A. Andrianov, M. N. Yermakova, S. R. Rafikov, V. V. Rode, Polym. Sci. USSR, 8,2369 (1966). 16. S. L. Madorsky, S. Straus, D. Thompson, L. Williamson, J. Res. Natl. Bur. Std., 42, 499 (1949). 17. S. L. Madorsky, V. E. Hart, S. Straus, J. Res. Natl. Bur. Std., 56, 343 (1956).
18. S. L. Madorsky, V. E. Hart, S. Straus, J. Res. Natl. Bur. Std., 60, 343 (1958). 19. R. F. Schwenker, Jr., L. R. Beck, Textile Res. J., 624, (August, 1960). 20. A. B. Blyumenfel'd, B. M. Kovarskaya, Polym. Sci. USSR, 12, 710 (1970). 21. L. G. Kaufman, R T. Funke, A. A. Volpe, Macromolecules, 3, 358 (1970). 22. J. L. Cotter, G. J. Knight, W. W. Wright, J. Polym. Sci. B, 6, 763 (1968). 23. S. L. Madorsky, V. E. Hart, S. Straus, V. A. Sedlek, J. Res. Natl. Bur. Std., 51, 327 (1953). 24. E. E. Lewis, M. A. Naylor, J. Am. Chem. Soc, 69, 1968 (1947). 25. S. L. Madorksy, S. Straus, J. Polym. Sci., 36, 183 (1959). 26. E. P. Goodings, Soc. Chem. Ind. (London), Monograph, 13, 211 (1961). 27. C. E. Schweitzer, R. N. MacDonald, J. O. Punderson, J. Appl. Polym. Sci., 1, 158 (1959). 28. S. Straus, S. L. Madorsky, J. Res. Natl. Bur. Std., 66A, 401 (1962). 29. Y. Tsuchiya, K. Sumi, J. Polym. Sci. A-I, 7, 813 (1969). 30. S. D. Bruck, Polymer, 7, 231 (1966). 31. S. Straus, S. L. Madorsky, Ind. Eng. Chem., 48, 1212 (1956). 32. B. S. T. Boonstra, G. J. Van Amerongen, Ind. Eng. Chem., 41, 161 (1949). 33. D. H. Grant, N. Grassie, Polymer, 1, 125 (1960). 34. N. Grassie, H. W. Melville, Proc Roy. Soc A, 190, 1 (1949). 35. R D. Zemany, Nature, 171, 391 (1953).
36. R R. E. J. Cowley, H. W. Melville, Proc. Roy. Soc. A, 210, 461 (1952). 37. J. W. C. Crawford, J. Soc. Chem. Ind., 68, 201 (1949). 38. N. Grassie, J. R. MacCallum, J. Polym. ScL, 2, 983 (1964). 39. D. H. Grant, N. Grassie, Polymer, 1, 445 (1960). 40. N. Grassie, I. C. McNeill, J. Chem. Soc, 3929, 1956. 41. C. S. Marvel, E. H. Riddle, J. O. Corner, J. Am. Chem. Soc, 64, 92 (1942). 42. K. F. Wissbrun, J. Am. Chem. Soc, 81, 58 (1959). 43. L. Reginato, Makromol. Chem., 132, 113 (1970). 44. C. S. Marvel, C. L. Levesque, J. Am. Chem. Soc, 60, 280 (1938). 45. S. Straus, L. A. Wall, J. Res. Natl. Bur. Std., 60, 39 (1958). 46. S. Straus, L. A. Wall, J. Res. Natl. Bur. Std., 63A, 269 (1959). 47. S. D. Bruck, Polymer, 6, 483 (1965). 48. L. A. Wall, S. Straus, J. Res. Natl. Bur,. Std., 65A, 227 (1961). 49. S. Straus, L. A. Wall, Soc. Plastics Eng. J., 56, (January 1964). 50. J. L. Cotter, G. J. Knight, J. M. Lancaster, W. W. Wright, J. Appl. Polym. ScL, 12, 2481 (1968). 51. N. S. J. Christopher, J. L. Cotter, G. J. Knight, W. W. Wright, J. Appl. Polym. Sci., 12, 863 (1968). 52. J. L. Cotter, H. Dickinson, G. J. Knight, W. W. Wright, J. Appl. Polym. Sci., 15, 317 (1971). 53. A. A. Berlin, V. V. Yarkina, A. P. Firsov, Polym. Sci. USSR, 10, 2219 (1968). 54. W. Wrasidlo, P. M. Hergenrother, Macromolecules, 3, 548 (1970). 55. G. F. L. Ehlers, K. R. Fisch, W. R. Powell, J. Polym. Sci. A-I, 7, 2931 (1969). 56. V. V. Rode, N. M. Kotsoyeva, G. M. Cherkasova, D. S. Tugushi, G. M. Tseitlin, A. L. Rusanov, V. V. Korshak, Polym. Sci. USSR, 12, 2103 (1970). 57. Ye. P. Krasnov, V. M. Savinov, L. B. Sokolov, V. I. Logunova, V. K. Belyakov, T. A. Polyakova, Polym. Sci. USSR, 8, 413 (1966). 58. G. F. L. Ehlers, K. R. Fisch, W. R. Powell, J. Polym. Sci. A-1, 7, 2969 (1969). 59. G. F. L. Ehlers, K. R. Fisch, W. R. Powell, J. Polym. Sci. A-1, 7, 2955 (1969). 60. A. Davis, J. H. Golden, J. Chem. Soc B, 1, 45 (1968). 61. D. P. Bishop, D. A. Smith, J. Appl. Polym. Sci., 14, 345 (1970). 62. S. L. Madorsky, S. Straus, J. Res. Natl. Bur. Std., 40, 417 (1948). 63. S. L. Madorsky, "Thermal Degradation of Organic Polymers", Wiley, New York, 1964. 64. S. Straus, S. L. Madorsky, J. Res. Natl. Bur. Std., 65A, 243 (1961). 65. R. H. Still, R B. Jones, A. L. Mansell, J. Appl. Polym. Sci., 13, 401 (1969). 66. R. H. Still, P. B. Jones, J. Appl. Polym. Sci., 13, 2033 (1969). 67. L. A. Wall, J. M. Antonucci, S. Straus, M. Tryon, Soc Chem. Ind. (London), Monograph, 13, 295 (1961). 68. D. C. Allport, Polymer, 8, 492 (1967).
69. V. C. E. Burnop, K. G. Latham, Polymer, 8, 589 (1967). 70. S. N. Novikov, Ye. G. Kagan, A. N. Pravednikov, Polym. Sci. USSR, 8, 1114(1966). 71. N. Grassie, Trans. Faraday Soc, 48, 379 (1952). 72. J. B. Gilbert, J. J. Kipling, Fuel, 12, 249 (1962). 73. Y Tsuchiya, K. Sumi, J. Polym. Sci. A-I, 7, 3151 (1969). 74. J. B. Gilbert, J. J. Kipling, B. McEnaney, J. N. Sherwood, Polymer, 3, 1 (1962). 75. R. R. Stromberg, S. Straus, B. G. Achhammer, J. Polym. Sci., 35, 355 (1959). 76. M. M. O'Mara, J. Polym. Sci. A-I, 8, 1887 (1970). 77. F. H. Winslow, W. O. Baker, W. A. Yager, quoted in Ch. V of Ref. 63. 78. H. Gilbert, F. F. Miller, S. J. Averill, R. F. Schmidt, F. D. Stewart, H. L. Trumbull, J. Am. Chem. Soc, 76, 1074 (1954). 79. Y. A. Glagoleva, V. R. Regel, Polym. Sci. USSR, 12, 1078 (1970). 80. P. Brandt, V. H. Dibeler, F. L. Mohler, J. Res. Natl. Bur. Std., 50, 201 (1953). 81. H. H. G. Jellinek, S. N. Lipovac, J. Polym. Sci. A-I, 8, 2517 (1970). 82. J. C. W. Chien, P. C. Uden, Ju-Li Fan, J. Polym. Sci., Chem. Ed., 20, 2159 (1982). 83. S. Tamura, J. K. Gillham, J. Appl. Polym. Sci., 22, 1867 (1978). 84. I. C. McNeill, L. Ackerman, S. N. Gupta, J. Polym. Sci., Chem. Ed., 16, 2169 (1978). 85. D. L. Gardner, I. C. McNeill, Eur. Polym. J., 7, 593 (1971). 86. D. L. Gardner, I. C. McNeill, Eur. Polym. J., 7, 603 (1971). 87. J. C. W. Chien, J. K. Y. Kiang, Eur. Polym. J., 15, 1059 (1979). 88. I. C. McNeil, S. N. Gupta, Polym. Degrad. Stab., 2, 95 (1980). 89. B. Dodson, I. C. McNeill, J. Polym. Sci., Chem. Ed., 12, 2305 (1974). 90. B. Dodson, I. C. McNeill, T. Straiton, J. Polym. Sci., Chem. Ed., 12, 2369 (1974). 91. A. Hoff, S. Jacobson, J. Appl. Polym. Sci., 26, 3409 (1981). 92. I. C. McNeill, A. Jamieson, D. J. Tosh, J. J. McClune, Eur. Polym. J., 12, 305 (1976). 93. G. A. Razuvaev, B. B. Troitskii, L. V. Chochlova, Z. B. Dubova, J. Polym. Sci. (Letters), 11, 521 (1973). 94. R. J. Gritter, E. Gipstein, G. E. Adams, J. Polym. Sci., Chem. Ed., 17, 3959 (1979). 95. Y. Tsuchiya, K. Sumi, J. Polym. ScL A-I, 7, 1599 (1969). 96. A. Hoff, S. Jacobson, J. Appl. Polym. Sci., 29, 465 (1984). 97. N. Grassie, W. B. H. Leeming, Eur. Polym. J., 11, 809 (1975). 98. N. Grassie, A. Heaney, Eur. Polym. J., 10, 415 (1974). 99. N. Grassie, W. B. H. Leeming, Eur. Polym. J., 11, 819 (1975). 100. V. V. Konovalov, A. B. Blyumenfel'd, Ye. F. Zinin, M. S. Akutin, B. M. Kovarskaya, B. V. Andrianov, V. I. Kleiner, Vysokomolkul Soedin. A, 16, 323 (1974). 101. J. K. Haken, D. K. M. Ho, E. Houghton, J. Polym. Sci., Chem. Ed., 12, 1163(1974).
102. L. Ackerman, W. J. McGiIl, J. S. African Chem. Inst., 26, 82 (1973). 103. N. Grassie, J. G. Speakman, T. I. Davis, J. Polym. Sci. A-1,9, 931 (1971). 104. W. J. McGiIl, L. Ackerman, J. Polym. Sci., Chem. Ed., 12, 1541 (1974). 105. N. Grassie, J. G. Speakman, J. Polym. Sci. A-I, 9, 949 (1971). 106. G. G. Cameron, D. R. Kane, Polymer, 9, 461 (1968). 107. Yu. P. Gorelov, R. Ya Khvilivitskii, R. P. Chernovskaya, L. M. Terman, Polym. Sci., USSR, 18, 2309 (1976). 108. N. Grassie, B. J. D. Torrance, J. Polym. Sci. A-I, 6, 3303 (1968). 109. N. Grassie, B. J. D. Torrance, J. B. Colford, J. Polym. Sci. A1, 7, 1425 (1969). 110. N. Grassie, A. Johnston, A. Scotney, Polym. Degrad. Stab., 3, 349 (1980-81). 111. N. Grassie, A. Johnston, A. Scotney, Polym. Degrad. Stab., 3, 365 (1980-81). 112. N. Grassie, J. D. Fortune, Makromol. Chem., 168, 1 (1973). 113. N. Grassie, R. M. Jenkins, Eur. Polym. J., 9, 697 (1973). 114. P. K. Dhal, G. N. Babu, J. Polym. Sci., Chem. Ed., 22, 1817 (1984). 115. G. N. Babu, P. H. Lu, S. L. Hsu, J. C. W. Chien, J. Polym. Sci., Chem. Ed., 22, 195 (1984). 116. N. Grassie, R. McGuchan, Eur. Polym. J., 7, 1091, 1357 (1971). 117. A. Ballistreri, S. Foti, G. Montaudo, S. Pappalardo, E. Scamporrino, Makromol. Chem., 180, 2835 (1979). 118. N. Grassie, E. M. Grant, J. Polym. Sci., C, 16, 591 (1967). 119. N. Grassie, R. McGuchan, Eur. Polym. J., 8, 243 (1972). 120. N. Grassie, A. Johnston, A. Scotney, Polym. Degrad. Stab., 4, 173 (1982). 121. N. Grassie, E. Farish, Eur. Polym. J., 3, 619 (1967). 122. N. Grassie, J. N. Hay, Makromol. Chem., 64, 82 (1963). 123. N. Grassie, D. R. Bain, J. Polym. Sci. A-I, 8, 2653, 2665 (1970). 124. D. Braun, R. Disselhoff, Angew. Makromol. Chem., 23, 103 (1972). 125. N. Grassie, E. M. Grant, Eur. Polym. J., 2, 255 (1966). 126. N. Grassie, A. S. Holmes, Polym. Degrad. Stab., 3, 145 (1981). 127. N. Grassie, I. C. McNeill, J. N. R. Samson, Polym. Degrad. Stab., 1, 17 (1979). 128. R. J. Gritter, M. Seeger, D. E. Johnson, J. Polym. Sci., Chem. Ed., 16, 169 (1978). 129. N. Grassie, A. Scotney, L. Mackinnon, J. Polym. Sci., Chem. Ed., 15, 251 (1977). 130. N. Grassie, A. Johnston, A. Scotney, Eur. Polym. J., 17, 589 (1981). 131. J. Razga, J. Petranek, Eur. Polym. J., 11, 805 (1975). 132. I. C. McNeill, M. Zulfiqar, J. Polym. Sci., Chem. Ed., 16, 2465 (1978). 133. I. C. McNeill, M. Zulfiqar, J. Polym. Sci., Chem. Ed., 16, 3201 (1978). 134. I. C. McNeill, M. Zulfiqar, Polym. Degrad. Stab., 1, 89 (1979).
135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167.
A. Hamoudi, I. C. McNeill, Eur. Polym. J., 14, 525 (1978). A. Jamieson, I. C. McNeill, Eur. Polym. J., 10, 217 (1974). N. Grassie, E. Farish, Eur. Polym. J., 3, 305 (1967). I. C. McNeill, T. Straiton, P. Anderson, J. Polym. Sci., Chem. Ed., 18, 2085 (1980). N. Grassie, A. Johnston, A. Scotney, Polym. Degrad. Stab., 4, 123 (1982). G. Camino, N. Grassie, I. C. McNeill, J. Polym. Sci., Chem. Ed., 16, 95 (1978). N. Grassie, I. C. McNeill, I. Cooke, J. Polym. Sci., 12, 831 (1968). A. Jamieson, I. C. McNeill, J. Polym. Sci., Chem. Ed., 14, 1839 (1976). I. C. McNeill, T. Straiton, P. Anderson, J. Polym. Sci., Chem. Ed., 18, 2085 (1980). I. C. McNeill, D. Neil, Eur. Polym. J., 6, 569 (1970). A. Guyot, M. Bert, A. Michel, I. C. McNeill, Eur. Polym. J., 7, 471 (1971). N. Grassie, I. C. McNeill, J. N. R. Samson, Eur. Polym. J., 14, 931 (1978). A. Ballistreri, S. Foti, G. Montaudo, E. Scamporrino, J. Polym. Sci., Chem. Ed., 18, 1147 (1980). I. C. McNeill, R. C. McGuiness, Polym. Degrad. Stab., 5, 303 (1983). T. Iida, M. Nakanishi, K. Goto, J. Polym. Sci., Chem. Ed., 12, 737 (1974). D. Raucher, M. Levy, J. Polym. Sci., Chem. Ed., 17, 2675 (1979). D. A. Chatfield, J. Polym. Sci., Chem. Ed., 21, 1681 (1983). D. R. Roberts, A. L. Gatzke, J. Polym. Sci., Chem. Ed., 16, 1211 (1978). M. Blazso, T. Szekely, Eur. Polym. J., 10, 115 (1974). C. Vasile, C. N. Cascaval, P. Barbu, J. Polym. Sci., Chem. Ed., 19, 907 (1981). N. Grassie, I. F. McLaren, I. C. McNeill, Eur. Polym. J., 6, 679 (1970). N. Grassie, I. F. McLaren, I. C. McNeill, Eur. Polym. J., 6, 865 (1970). A. Jamieson, I. C. McNeill, J. Polym. Sci., Chem. Ed., 12, 387 (1974). A. Jamieson, I. C. McNeill, J. Polym. Sci., Chem. Ed., 14, 603 (1976). I. C. McNeill, D. Neil, A. Guyot, M. Bert, A. Michel, Eur. Polym. J., 7, 453 (1971). B. Dodson, I. C. McNeill, J. Polym. Sci., Chem. Ed., 14, 353 (1976). I. C. McNeill, D. Neil, Eur. Polym. J., 7, 115 (1971). F. A. Wodley, J. Appl. Polym. Sci., 15, 835 (1971). N. B. Zaitsev, I. Ya Poddubnyi, Polym. Sci. USSR, 17, 1299 (1975). I. C. McNeill, M. A. J. Mohammed, Eur. Polym. J., 8, 975 (1972). I. Luderwald, O. Vogl, Makromol. Chem., 180, 2295 (1979). Y Sugimura, T. Nagaya, S. Tsuge, Macromolecules, 14, 520 (1981). J. P. Montheard, M. Camps, S. Kawayi, Makromol. Chem., 183, 1191 (1982).
168. G. N. Babu, R H. Lu, S. L. Hsu, J. C. W. Chien, J. Polym. ScL, Chem. Ed., 22, 213 (1984). 169. R. J. Gritter, E. Gipstein, G. E. Adams, J. Polym. ScL, Chem. Ed., 17, 3959 (1979). 170. T. S. Ellis, R. H. Still, J. Appl. Polym. ScL, 23, 2871, 2881 (1979). 171. T. S. Ellis, R. H. Still, J. Appl. Polym. ScL, 23, 2837, 2855 (1979). 172. R. H. Still, M. B. Evans, A. Whitehead, J. Appl. Polym. ScL, 16, 3207 (1972). 173. J. R. MacCallum, K. Paterson, Eur. Polym. J., 10, 477 (1974). 174. F. Hrabak, J. Mitera, V. Kubelka, M. Bezdek, Eur. Polym. J., 14, 219 (1978). 175. J. Y. C. Chu, M. Stolka, J. Polym. ScL, Chem. Ed., 13, 2867 (1975). 176. H. H. G. Jellinek, S. H. Ronel, J. Polym. ScL A-I, 9, 2605 (1971). 177. J. L. Cotter, G. J. Knight, W. W. Wright, Br. Polym. J., 7, 389 (1975). 178. J. L. Cotter, G. J. Knight, W. W. Wright, Br. Polym. J., 7,375 (1975). 179. J. Jachowicz, M. Kryszewski, P. Kowalski, J. Appl. Polym. ScL, 22, 2891 (1978). 180. J. Jachowicz, M. Kryszewski, A. Sobol, Polymer, 20, 995 (1979). 181. N. Grassie, R. S. Roche, Makromol. Chem., 112, 16 (1968). 182. G. H. McCain, J. M. Sanders, J. Appl. Polym. ScL, 18, 3077 (1974). 183. N. A. Nikolayeva, B. G. Belenkii, N. A. Glukhov, Yu. V. Zhuravlev, Yu N. Sazanov, Polym. Sci. USSR, 12, 2978 (1970). 184. S. Iwabuchi, V. Jaacks, W. Kern, Makromol. Chem., 177, 2675 (1976). 185. A. Patterson, G. J. Sutton, B. J. Tighe, J. Polym. Sci., Chem. Ed., 11, 2343 (1973). 186. N. Grassie, E. J. Murray, P A. Holmes, Polym. Degrad. Stab., 6, 47 (1984). 187. S. Foti, M. Giuffrida, P. Maravigna, G. Montaudo, J. Polym. Sci., Chem. Ed., 22, 1201 (1984). 188. D. R. Cooper, R. Molloy, G. J. Sutton, B. J. Tighe, J. Polym. Sci., Chem. Ed., 18, 123 (1980). 189. S. Iwabuchi, V. Jaacks, F. GaKl, W. Kern, Makromol. Chem., 165, 59 (1973). 190. V. Passalacqua, F. Pilati, V. Zamboni, B. Fortunato, P. Manarese, Polymer, 17, 1044 (1976). 191. R. M. Lum, J. Polym. Sci., Chem. Ed., 17, 203 (1979). 192. M. E. Bednas, M. Day, K. Ho, R. Sander, D. M. Wiles, J. Appl. Polym. Sci., 26, 277 (1981). 193. M. Ravey, J. Polym. Sci., Chem. Ed., 21, 1 (1983). 194. R. M. Aseyeva, T. V. Zelenetskaya, O. G. Sel'skaya, A. A. Berlin, Polym. Sci. USSR, 14, 1766 (1972). 195. F. Nakanishi, M. Hasegawa, T. Tasai, Polymer, 16,218 (1975). 196. G. O. Schulz, H. J. Harwood, J. Polym. Sci., Chem. Ed., 12, 1451 (1974). 197. H. H. G. Jellinek, H. Fujiwara, J. Polym. Sci. A-1,10, 1719 (1972).
198. G. P. Norton, B. J. Tighe, R. Molloy, J. Polym. Sci., Chem. Ed., 16, 283 (1978). 199. E. H. Catsiff, M. N. Gillis, R. H. Gobran, J. Polym. ScL A-I, 9, 1271 (1971). 200. V. B. Gavalyan, I. V. Zhieravleva, S-S. A. Pavlova, V. I. Nedel'hin, V. A. Sergeyev, Vysokomol. Soedin., A22, 2121 (1980). 201. A. Davis, Makromol. Chem., 128, 242 (1969). 202. I. I. Levantovaskaya, G. V. Dralyuk, O. A. Mochalova, I. A. Yurkova, M. S. Akutin, B. M. Kovarskaya, Polym. Sci. USSR, 13, 7 (1971). 203. L. I. Danilina, E. N. Teleshov, A. N. Pravednikov, Polym. ScL USSR, 16, 672 (1974). 204. R. J. Gritter, M. Seeger, E. Gipstein, J. Polym. Sci., Chem. Ed., 16, 353 (1978). 205. Yl. P. Krasnov, V. M. Savinov, L. B. Sokolov, V. I. Logunova, V. K. Belyakov, T. A. Polyakova, Vysokomol. Soedin., 8, 380 (1970). 206. D. A. Chatfield, I. N. Einhorn, R. W. Michelson, J. H. Futrell, J. Polym. Sci., Chem. Ed., 17, 1353 (1979). 207. L. H. Peebles, Jr., M. W. Huffman, J. Polym. Sci. A-I, 9, 1807 (1971). 208. N. Grassie, I. G. Macfarlane, Eur. Polym. J., 14, 875 (1978). 209. N. Grassie, I. G. Macfarlane, K. F. Francey, Eur. Polym. J., 15, 415 (1979). 210. J. L. Cotter, G. J. Knight, W. W. Wright, Br. Polym. J., 7, 381 (1975). 211. A. I. Sidnev, Yu. V. Khvashchevskaya, A. F. Moiseyev, I. A. Zubkov, A. N. Pravednikov, Polym. Sci. USSR, 12, 2905 (1970). 212. N. Grassie, K. F. Francey, I. G. Macfarlane, Polym. Degrad. Stab., 2, 67 (1980). 213. N. Grassie, K. F. Francey, Polym. Degrad. Stab., 2, 53 (1980). 214. B. Zelei, M. Blazso, S. Dobos, Eur. Polym. J., 17, 503 (1981). 215. N. Grassie, S. R. Beattie, Polym. Degrad. Stab., 9, 23 (1984). 216. N. Grassie, S. R. Beattie, Polym. Degrad. Stab., 7, 231 (1984). 217. D. A. Chatfield, I. N. Einhorn, J. Polym. Sci., Chem. Ed., 19, 601 (1981). 218. N. R. Lerner, J. Polym. Sci., Chem. Ed., 15, 1145 (1977). 219. R. M. Kromaite, S. V. Lavrov, L. A. Oksentevich, I. V. Vasileva, E. N. Teleshov, A. N. Pravednikov, Polym. ScL USSR, 16, 1006 (1974). 220. V. A. Ponomarenko, V. N. Shilgayev, A. G. Kechina, A. A. Yarosh, S. P. Krukovskii, Polym. ScL USSR, 16, 637 (1974). 221. J. P. Luongo, H. Schonhorn, J. Polym. Sci., Chem. Ed., 13, 1363 (1975). 222. H. D. Stenzenberger, K. U. Heinen, D. O. Hummel, J. Polym. Sci., Chem. Ed., 14, 2911 (1976). 223. A. Scotney, Eur. Polym. J., 8, 163 (1972). 224. W. P. Brown, C. F. H. Tipper, J. Appl. Polym. Sci., 22, 1459 (1978). 225. A. Davis, J. H. Golden, J. Macromol. Sci. Rev. Macromol. Chem. C, 3, 49 (1969).
226. S. Foti, M. Giuffrida, P. Maravigna, G. Montaudo, J. Polym. Sci., Chem. Ed., 21, 1567 (1983). 227. M. S. Lim, B. J. Bulken, E. M. Pearce, J. Polym. Sci., 19, 2773 (1981). 228. N. Grassie, M. Zulfiqar, J. Polym. Sci., Chem. Ed., 16, 1563 (1978). 229. N. Grassie, M. Zulfiqar, in: G. Scott (Ed.), "Developments in Polymer Stabilisation", vol. 1, Applied Science Publishers, London, 1979, p. 197. 230. L. P. Rumao, K. C. Frisch, J. Polym. Sci. A-I, 10, 1499 (1972). 231. S. Foti, P. Maravigna, G. Montaudo, J. Polym. Sci., 19,1679 (1981). 232. S. Foti, M. Giuffrida, P. Maravigna, G. Montaudo, J. Polym. Sci., Chem. Ed., 21, 1583 (1983). 233. N. Grassie, D. H. Mackerron, Polym. Degrad. Stab., 5, 43 (1983). 234. F. Gaboriaud, J. P. Vantelon, J. Polym. Sci., Chem. Ed., 19, 139 (1981). 235. N. Grassie, D. H. Mackerron, Polym. Degrad. Stab., 5, 89 (1983). 236. N. Grassie, M. Zulfiqar, M. I. Guy, J. Polym. Sci., Chem. Ed., 18, 265 (1980). 237. S. Foti, M. Giuffrida, P. Maravigna, G. Montaudo, J. Polym. Sci., Chem. Ed., 21, 1599 (1983). 238. H. R. Allcock, W. J. Cook, Macromolecules, 7, 284 (1974). 239. H. R. Allcock, G. Y. Moore, W. J. Cook, Macromolecules, 7, 571 (1974). 240. I. C. McNeill, A. Ya. Polishchuk, G. E. Zaikov, Polym. Degrad. Stab., 37, 223 (1992). 241. LC. McNeill, S. Ahmed, L Memetea, Polym. Degrad. Stab., 46, 303 (1994). 242. I. C. McNeill, A. Ya. Polishchuk, G. E. Zaikov, Polym. Degrad. Stab., 47, 319 (1995). 243. I. C. McNeill, M. H. Mohammed, Polym. Degrad. Stab., 48, 175 (1995). 244. E. Trebacz, Thermochimica Acta, 143, 51 (1989). 245. H. Morikawa, R. H. Marchessault, Can. J. Chem., 59, 2306 (1981). 246. R. S. Lehrle, R. J. Williams, Macromolecules, 27, 3782 (1994). 247. A. Ballistreri, D. Garozzo, M. Giufrida, G. Montaudo, Macromolecules, 20, 2991 (1987). 248. D.-J. Liaw, K.-F. Teng, Polym. Int., 37, 77 (1995). 249. T. Sawaguchi, T. Takesue, T. Ikemura, M. Seno, Macromol. Chem. Phys., 196, 4139 (1995). 250. G. Montaudo, C. Puglosi, F. Samperi, Macromol. Chem. Phys., 195, 1241 (1994). 251. R. C. White, E. C. Sikabwe, J. Polym. Sci., Chem. Ed., 30, 2781 (1992). 252. M. M. Fares, J. Hacaloglu, S. Suzer, Eur. Polym. J., 30, 845 (1994) 253. G. Camino, M. P. Luda, L. Costa, M. Guaita, Macromol. Chem. Phys., 197, 41 (1996). 254. G. Montaudo, C. Puglisi, J. W. de Leeuw, W. Hartgers, K. Kishore, K. Ganesh, Macromolecules, 29, 6466 (1996).
255. G. Montaudo, C. Puglisi, R. Rapisardi, F. Samperi, Macromol. Chem. Phys., 195, 1225 (1994). 256. F. Gaboriaud, J. P. Vantelon, L Polym. Sci., Chem. Ed., 20, 2063 (1982). 257. R. Abate, A. Ballistreri, G. Montaudo, G. Impallomeni, Macromolecules, 27, 332 (1994). 258. G. Montaudo, C. Puglosi, E. Scamporrino, D. Vitalini, Macromolecules, 19, 2157 (1986). 259. S. Groves, R. Lehrle, Eur. Polym. L, 28, 373 (1992). 260. K. S. Khairou, M. A. Diab, Polym. Degrad. Stab., 44, 17 (1994). 261. K. S. Khairou, M. A. Diab, Polym. Degrad. Stab., 44, 21 (1994). 262. K. S. Khairou, M. A. Diab, Polym. Degrad. Stab., 43, 329 (1993). 263. J. Song, W. Schnabel, Polym. Degrad. Stab., 43, 335 (1994). 264. M. Zulfiqar, A. Paracha, S. Zulfiqar, Polym. Degrad. Stab., 43, 403 (1994). 265. S. Zulfiqar, M. Zulfiqar, M. Rizvi, A. Munir, I. C. McNeill, Polym. Degrad. Stab., 43, 423 (1994). 266. B. Boinon, M. Raihane, J. P. Montheard, Polym. Degrad. Stab., 43, 27 (1994). 267. I. C. McNeill, L. Memetea, Polym. Degrad. Stab., 43, 9 (1994). 268. J. Song, Ch.-H. Fischer, W. Schnabel, Polym. Degrad. Stab., 41, 141 (1993). 269. I. C. McNeill and S. Basan, Polym. Degrad. Stab., 41, 311 (1993). 270. J. C. W. Chien, A. X. Zhao, Polym. Degrad. Stab., 40, 257 (1993). 271. M. Kryszewski, J. Jachowicz, M. Malanga, O. Vogl, Polymer, 23, 271 (1982). 272. A. Rincon, I. C. McNeill, Polym. Degrad. Stab., 40, 343 (1993). 273. S. Soares, G. Camino, S. Levchik, Polym. Degrad. Stab., 49, 275 (1995). 274. M. Bounekhel, I. C. McNeill, Polym. Degrad. Stab., 49, 347 (1995). 275. M. Coskun, K. Demirelli, E. Odzemir, Polym. Degrad. Stab., 47, 251 (1995). 276. S. Zulfiqar, M. Zafar-uz-Zaman, A. Munir, I. C. McNeill, Polym. Degrad. Stab., 47, 59 (1995). 277. I. C. McNeill, T. Mahmood, Polym. Degrad. Stab., 45, 285 (1994). 278. C. N. Cascaval, V. Neagu, Polym. Degrad. Stab., 45, 423 (1994). 279. I. C. McNeill, T. Mahmood, Polym. Degrad. Stab., 46, 195 (1994). 280. S. Zulfiqar, K. Masud, B. Siddique, A. Piracha, Polym. Degrad. Stab., 52, 293 (1996). 281. S. Zulfiqar, M. Rizvi, A. Munir, A. Ghaffar, I. C. McNeill, Polym. Degrad. Stab., 52, 341 (1996). 282. E-D. Kopinke, M. Remmler, K. Mackenzie, M. Moder, O. Wachsen, Polym. Degrad. Stab., 53, 329 (1996). 283. S. Zulfiqar, A. Piracha, K. Masud, Polym. Degrad. Stab., 52, 89 (1996). 284. P. Selsbo, I. Ericsson, Polym. Degrad. Stab., 51, 83 (1996).
285. M. Bounekhel, I. C. McNeill, Polym. Degrad. Stab., 51, 35 (1996). 286. A. Piracha, S. Zulfiqar, Polym. Degrad. Stab., 51, 27 (1996). 287. S. Zulfiqar, M. Zafar-uz-Zaman, A. Munir, I. C. McNeill, Polym. Degrad. Stab., 50, 33 (1996). 288. P. Almen, I. Ericsson, Polym. Degrad. Stab., 50, 223 (1995). 289. N. A. Al-Awadi, M. Z. Elsabee, Polym. Degrad. Stab., 50, 319 (1995). 290. S. L. Hurley, M. L. Mittleman, C. A. Wilkie, Polym. Degrad. Stab., 39, 345 (1993). 291. I. C. McNeill, S. Basan, Polym. Degrad. Stab., 39, 145 (1993). 292. I. C. McNeill, S. Basan, Polym. Degrad. Stab., 39, 139 (1993). 293. H.-J. Dussel, H. Rosen, D. O. Hummel, Makromol. Chem., 177, 2343 (1976). 294. I. C. McNeill, J. J. Liggat, Polym. Degrad. Stab., 36, 291 (1992). 295. I. C. McNeill, A. Rincon, Polym. Degrad. Stab., 24, 59 (1989). 296. I. C. McNeill, A. Rincon, Polym. Degrad. Stab., 24, 171 (1989). 297. I. C. McNeill, S. M. T. Sadeghi, Polym. Degrad. Stab., 29, 233 (1990). 298. I. C. McNeill, M. Bounekhel, Polym. Degrad. Stab., 34, 187 (1991). 299. I. C. McNeill, J. G. Gorman, S. Basan, Polym. Degrad. Stab., 33, 263 (1991). 300. I. Popovic, J. Song, Ch.-H. Fischer, L. Katsikas, G. Hohne, J. Velickovic, W. Schnabel, Polym. Degrad. Stab., 32, 265 (1991). 301. C. T. Vijayakumar, K. Lederer, A. Kramer, Polym. Degrad. Stab., 32, 9 (1991).
302. S. Zulfiqar, M. Zulfiqar, M. Nawaz, I. C. McNeill, J. G. Gorman, Polym. Degrad. Stab., 30, 195 (1990). 303. I. C. McNeill, S. M. T. Sadeghi, Polym. Degrad. Stab., 30, 213 (1990). 304. I. C. McNeill, A. Rincon, Polym. Degrad. Stab., 31, 163 (1990). 305. P. K. Dhal, G. N. Babu, J. C. W. Chien, Polym. Degrad. Stab., 18, 1 (1987). 306. V. L. Rao, P. K. Dhal, G. N. Babu, Polym. Degrad. Stab., 18, 19 (1987). 307. N. A. Weir, K. Whiting, J. Arct, G. McCulloch, Polym. Degrad. Stab., 18, 293 (1987). 308. V. Mailhos-Lefievre, D. Sallot, B. Martel, Polym. Degrad. Stab., 23, 327 (1989). 309. S. Zulfiqar, N. Akthar, M. Zulfiqar, I. C. McNeill, Polym. Degrad. Stab., 23, 299 (1989). 310. P. K. Dhal, G. N. Babu, J. C. W. Chien, Polym. Degrad. Stab., 16, 135 (1986). 311. G. Sivasubramanian, P. Sivasamy, C. T. Vijayakumar, J. K. Fink, Polym. Degrad. Stab., 21, 151 (1988). 312. I. C. McNeill, S. M. T. Sadeghi, Polym. Degrad. Stab., 30, 267 (1990). 313. N. A. Weir, K. Whiting, J. Arct, Polym. Degrad. Stab., 22,17 (1988). 314. S. Zulfiqar, M. Zulfiqar, T. Kausar, I. C. McNeill, Polym. Degrad. Stab., 17, 347 (1987). 315. J. N. Hay, D. J. Kemmish, Polymer, 28, 2047 (1987). 316. S. J. Maynard, T. R. Sharp, J. F. Haw, Macromolecules, 24, 2794 (1991). 317. A. Ballistreri, D. Garozzo, G. Montaudo, Macromolecules, 17, 1312 (1984). 318. J. Jachowicz, M. Kryszewski, M. Mucha, Macromolecules, 17, 1315 (1984). 319. D. A. Chatfield, I. N. Einhorn, R. W. Mickelson, J. H. Futrell, J. Polym. ScL, Chem. Ed., 17, 1367 (1979).
R a d i a t i o n
C h e m i c a l
Y i e l d s :
G
V a l u e s
M . C. Senake Perera Magnetic Resonance Facility, School of Science, Griffith University, Nathan, QId 4111, Australia D a v i d J. T. H i l l Department of Chemistry, University of Queensland, St Lucia, QId 4072, Australia
A. Introduction B. Tables of G values Table 1. Homopolymers 1.1. Polydienes 1.2. Polyolefins 1.3. Polyacrylates 1.4. Poly(methacrylates) 1.5. Poly(styrenes) 1.6. Poly(vinyls) 1.6.1. Acrylamides and Nitriles 1.6.2. Vinyl Monomers 1.7. Miscellaneous Polymers 1.7.1. Cellulose and Derivatives 1.7.2. Poly(siloxanes) 1.7.3. Poly(amino acids) 1.7.4. Polyesters 1.7.5. Polysulfones 1.7.6. Polyketones 1.7.7. Fluoropolymers 1.7.8. Others Table 2. Copolymers 2.1. Copolymers with Ethylene 2.2. Copolymers with Methyl Methacrylate 2.3. Copolymers with Styrene 2.4. Copolymers with Sulfur Dioxide 2.5. Other copolymers Table 3. Polymers Blends Table 4. Composites C. References
11-481 11-481 M-482 M-482 II-482 II-483 II-484 II-485 II-486 II-486 M-486 II-487 II-487 II-487 II-487 II-488 II-488 II-488 II-488 II-489 II-490 II-490 II-490 11-491 11-491 II-492 II-493 II-493 II-493
A.
INTRODUCTION
The G values quoted in the following tables are defined as the radiation chemical yields of individual atomic or molecular events for 100 eV of energy absorbed by the system. G(R) represents the yield of free radicals, G(X) the yield of crosslinks, G(S) the yield of main chain scission, and G(products) the yield of product molecules per 10OeV of absorbed radiation. This table has been compiled from the polymer literature that has been published since the third edition of the "Polymer Handbook" (i.e. 1986-1997). In many cases, the tabulated data are only representative of the total data in the paper, and the original publication should be consulted. B. TABLES OF G VALUES Notes to the Tables General: Unless otherwise stated, the conditions applying are y-rays, vacuum, room temperature (ambient). Symbols/Abbreviations + — vac RT e
cation radical anion radical vacuum room temperature electron beam
d.b. t-v Y X n
double bond trans-vinylene crosslinks crosslinks neutron
TABLE 1. HOMOPOLYMERS Polymer 1.1.
G(R)
G(X)
G(S)
G(products)
Radiation conditions
38.7 (d.b.)
e, 263 K
Refs.
POLYDIENES
Polybutadiene 610 (1,2) 0.0054
2.1 Various
Polyisoprene
0.009 0.5-0.8 Various
NR latex Polychloroprene
77 K 9.3 105 3.36/9.4 5.3
112 (Vinyl) Various 0.34/0.19 90
Various
Various
41 7.2
Poly(2-phenyl butadiene)
1.2.
Comments
3.0
1.6-2.1 Various Various 3.9
e 77K/RT Air, 295 K
Excitation scavenger 1, 2-PBD Radical pairs, isotactic Syndiotactic cis 1,4
64 138 74 97 84 98 104
Effect of pressure Various Review 186 G(Cy) > G(X) 261 G(X) depend on MW G (initiation), 262 G(X) increases G(Cy), G(db) decreases with Crosslinker Vac, 303 K 180 Vac/303 K, ethyl178 ene dichloride 77 K Radical pairs 74 Var cis content 15
94-168 (d.b.), CH 4 , H 2 Various
Various
2.8 (-Cl)
Vac/77, 303 K
186 248 179
RT, vac
235 226
Review +acrylate
POLYOLEFINS
Squalene Poly(butene-l)
1.0
Poly(ethylene)
1.09-1.39 0.63
3.2
4 4.1
4 1.4 15-30 0.25 1.50-2.40
3.0 (H 2 ) 13.9 (-isotactic pentad) 7 (COOH) 9.1 (O 2 ) - 2 (MO
e, air Vac/O2 300K
0.48 8-15
Carries
Air, 300/450K
Pressure effects
1.08-1.69
Various
303-373 K He, 77K O 2 , CCl 4
e pre-irradiated
2.8, 5.8 (C 2 D 4 ) 2.4
Fibers,
89 101 107 172 116 169 30 63 52 147 151
G(S)ZG(X) = 1
1.1-2.8
0.05-2.7 Various gases
1.1 1.5
<0.05 0.48
2.6/0.56 (alkyl) 0.74 G (H) 0.27 G (Y) 1.0
Air
e, N 2 Various compounds e, N 2 Gamma/n
Gamma/alpha, 77 K Vac, molten state 0.2
3.9(H 2 ) 3.5 (damage)
155 70 87 174 163 183
Crystalline region units
228 270
TABLE 1. cont'd Polymer -,LDPE
G(R)
G(X)
G(S)
G(products)
2.5(alkyl) 12.4-15.4 (O 2 ) 4.45 (butanes) Various -1.9(MO
Radiation conditions 77 K O2 air 303 K 298-423 K
Comments
Refs.
G(S)/G(X) = 1.6 +I2 +CH 3 SH antioxidants
Alkanes 77 K
129 164
Various
Air
231 105 184
0.16 (butanes)
Air 77 K 77 K 303 K
3.0 (total) 2.8 (alkyl) Various G(M) -,LLDPE
2.4
-, HDPE
0.4
1.3 2.9-3.6 2.3-4.5(alkyl) 0.3* 0.21
-,HDLPE
5.5
0.3,0.43
Alkanes Y, C = C, (M)
3.7 0.76 (bulk)
- 9 . 6 (f-v)
88 92 177 10 28 32 125 45
Morphology
Monolayer crystals 303 K Air, 77K/RT
1.6* 0.76
Wanning, morphology *G(X/unsat.) 77 K
2.4 (trans) 0.7 (cis) 4-5 (gas) 4.0 2.5 3.8-11.1 Various 2.1
Poly(4-methylpentene-l) polypropylene
Butene-1, hexene-1
Allylic
- , Chlorosulfonated polyisobutylene
Various 3.6
Various Various 0.3,0.6*
4.8, 2.7(dPP) 3.1/0.64 9.4
e 77 K Various temperatures Various Vac/77, 303 K N2/air He, e, 77 K Air/vac O 2 + CCl 4
2.9 (H 2 ) 2.19*
/-Polypropylene
177 96 117 10 27 71
+CCl 4
47 134 75 79 240
119 131 133 78,90,100 186 *G(S)/G(X) Also 373-623 K Also O 2 Decreases with dose *G(S)-G(X)
43 52 129 147 158 159
Various Various 94 (-/-pentad) Various (pentad sequences) 220 (-/-pentad)
Air Air Gamma
118 40 244
e
245
Various gases
Vac/air
Various
293-308 K Vac 77, 300K
Various
Gamma, aq.
H 2 , CO, CO 2 , CH 4 etc.
195-423
170 2 4 185 189 190 233 59 126
1.3. POLYACRYLATES Poly(acrylic acid) 3.6 3.49
Poly(acrylic anhydride) Poly(methyl acrylate)
0.0
0.44
0.47
0.62 1.1*
*G(S)- S(X)
References page II - 493
TABLE 1. cont'd Polymer Poly (methyl bromoacrylate) Poly(methyl a-chloroacrylate)
G(R)
G(X)
G(products)
6.98 5.1
Radiation conditions
Comments
77 K 0.3-0.9 0.8
Poly(methyl a-cyanoacrylate) Poly(methyl oc-fluoroacrylate)
G(S)
1.6 1.0
3.2-7.4 6.0 6.7*
Dose dependent *G(S)-G(X) 77 K 77 K
0.05
Refs. 139 133 24 62 17 133 65
1.4. POLY (METHACRYLATES) Poly(benzyl methacrylate) 0 Poly(f-butyl methacrylate) Poly(cyclohexyl methacrylate) Poly(glycidyl methacrylate) Poly(hexafluoroisopropyl methacrylate) Poly(hexyl methacrylate) Poly(isobutyl methacrylate)
0.29* 0 0.14 1.28* 0.44* 2.4*
e 300K
*G(S)-G(X) Syndiotactic
e e
*G(S)-G(X) *G(S)-G(X) * G(S)-G(X)
Various
9.2
0.1 0.5
Poly(2-methyl heptyl methacrylate) Poly(methacrylic acid)
2.6 0.38* 1.1* 0.8 0.3 3.4 Various
0.2
0.6/2.9 4.8 6.0
0.04
6
Poly(methacrylic anhydride) Poly(methyl methacrylate) 1.1-1.5( + ) 0.7-0.9(-)
7K e e 300K 300K N2 Gamma/e 77/273 K 77 K
Various
77, 303 K
Various
Gamma/e
1.8-2.9 1.9 (DMF) 1.3 (THF) 1.5
SoIn. 77 K
0.5, 1.5( + )
77 K
2.8-4.1
303, 343 K 1.3 1.31 1.9
Aromatic additives Aromatic additives Absorbed on zeolite
77 K
1.63, 1.09 1.4 1.5/0.33 1.2
Gamma/X Various
0.71-1.63 1.9/4.1 1.04/1.11 1.9,4.4 1.5 Various 15.8 (units) 0.34 (H2) 18.6 0.22,0.46,1.08 Various
Si wafers
e/gamma, 303-383K Gamma/n, vac/air 77/273 K Vac/air, 273 K 77 K
Bulk, alcohol
Air
*G(S)-G(X) 4- ethane diol Isotactic
1.5*
Vac, 363 K Deep UV, e, X-ray
73 57 51 53 65 50 131 132 135
e 77 K Gamma/n, vac/air 206 K
0.58 1.42
*G(S)-G(X) *G(S)-G(X) Syndiotactic Syndiotactic Aq. solution
22 192 238 22 22 120 246 65 22 22 192 192 91 176 123 133 185 189 195 176 59 59
139 152 161 176 86
Various radicals
Isotactic
173 146 171 162 17 14 23 33 187 188
TABLE I.cont'd Polymer
G(R)
G(X)
G(S)
G(products)
1.5 1.1 1.7 1.7 1.6 0.99, 0.4 0.77 5.1 (soln.) 0.89 (amorphous solid) 0.48 (crystalline solid) 1.21 (333K) 0.89 (303 K) 0.46(195K) G(damage) = 8.8
1.0
300K N 2 , RT Vac N2 Vac
0.14
Poly(2-naphthyl methacrylate) Poly(2,2,2-trichloroethyl methacrylate)
0.14 0.19 3.7
1.5.
0 0.4
Refs.
Isotactic Syndiotactic
190 192 222 223 224 225 238 249
Protons, gamma e, gamma C5 + , O5 + ions i-PMMA
Morphology effects, racemization Benzene solution
1.7 1.3
300K 300K 77, 300K
1.2, 1.7
258
264 1 238 238 175
Gamma/e, 298-416K
3.7 Poly(ethyl methacrylate) Poly(w-butyl methacrylate) Poly(2-hydroxyethyl methacrylate) Poly(phenyl methacrylate)
Comments
Air, RT
PoIy(I-naphthyl methacrylate)
0.03
Radiation conditions
Dioxane solution Syndiotactic Syndiotactic
0.44
11 192 192 193 238
POLY(STYRENES)
Poly(oc-methyl styrene)
0.3 0.33
e Gamma/e, 77-373K 273-319 K
0.78 0
0.29 0.48,0.89, 0.97, 1.13
303, 353, 373, 383, 393 K
0.105,0.05 Poly(/?-methyl styrene)
0.1
Poly(styrene)
0.45-7.9
77, 298 K Gamma/e, 77-373K 303 K
0.022 0.17
0.022 1.09, 2.12
0.035-0.042 0.043
0.010-0.051 0.0009
0.043-0.027 0.048, 0.021
0.086-0.074 0.2* 0.27, 0.07
0.03/0.2
0.02/0.2
0.043
0.00086 3.9
0.05
0.02
0.1
Air
0.032 (H 2 )
303-373 K 303 K 303-423 K 77 K Air 77 K Gamma/n, vac/air, 206 K
131 38 Benzene solution + Depolymerization
194
197 38 Emulsion polymerization Sheet absorbed on silica gel Includes lit. review * G(S)-G(X) Various doses
Sheet O 2 + CCl 4 373-623K Air
25
48 56 58 60 61 67 73 130 132 135 136 147 157
References page II - 493
TABLE 1. cont'd Polymer
G(R)
G(X) 0.077
G(S)
G(products)
Radiation conditions
Comments
0.055
0.0009 0.094 Various
0.0027 Various
0.018,0.15
0.06,0.07
0.0174 0.0425
0.0012
0.014-0.05
0.105
77 K 313 K Gamma/n, vac/air 77 K Gamma/n/alpha, air 77 K
1.8
0.5
Radical pairs
0.05
Various
24.7-30.4 G(degradation) 0.01 0.03 (H 2 ) H 2 , CH 4 , C 2 H 2 , C3H4, C6H6 Various (-O 2 ) Various Various hydrogen
Warming
Gamma/e, 77-373 K Abs of air Various dose rates
Various sources + Crosslinking agents
Ion beam
Deuterium subs
Vac, various temp.
Variable temp. dose rate Tacticity, crystallinity effect Gamma, X-ray,
0.03-0.05
161 74 81 85 98 112
0.033 (H 2 )
0.03-0.05 6.7-15.2
Refs.
19 6 7 33 38 195 196 228 234
250 257
255
Ne, Ar 1.6.
POLY(VINYLS)
1.6.1. ACRYLAMIDES AND NITRILES Poly(acrylamide)
2.5 0.04
0.88
5 1.33/0.62
Poly(methacrylamide)
0.45/0.52 1.2*
Poly(acrylonitrile)
3.7-4.1
Poly(methacrylonitrile)
0.15-3.0 2.8,4.2 2.2,2.8
303 K
0.59
0.0 0.4-3.3 3.3 gamma 3.6 X 0.5Ne 0.4 Ar
Poly(a-chloroacrylonitrile)
Various
AhYH2O e, O 2 Aq. soln, 304 K Vac/air, 77-393K
1.4
77, 300K 77, 300K Absence of O 2
Aq. soln. Hydrogel
149 103 108 167
* G(S)-GQQ
141
Absorbed on zeolite
53
Various sources
77 K 2.7* 1.1-7.2 3.2 2.1-3.3* 3.1-3.3 3.3*
Vac/air
* G(S)-G(X) Solution + bulk *G(S)-G(X) *G(S)- G(X)
5 198 200 195 255
133 59 99 145 59 62 17
1.6.2. VINYL MONOMERS Poly(r-butyl crotonate) Poly(f-butyl vinyl ether) Poly(ethyl vinyl ether) Poly(isobutyl vinyl ether) Poly(isopropyl vinyl ether)
0.66
0.59 3.6,10.3 0.36,0.50 0.39,1.73 0.86,1.50
273, 273, 273, 273,
348 K 348 K 348 K 348 K
Liquid
54 122 122 122 122
TABLE 1. cont'd Polymer Poly(methyl vinyl ether) Poly(tetrafluoroethylene) Poly(vinyl acetate)
G(R)
G(X)
0.31,0.64 0.5 2.4-4.1
Poly(vinyl alcohol) Poly(vinyl bromide) Poly(vinyl butyral) Poly (vinyl carbazole) Poly (vinyl chloride)
G(S)
1.08 1.02 0.71 0.35
0.6
0.7 (holes) 1.7 2.36 10-11
20-115
G(products)
Radiation conditions
273, 348 K O 2 + CCl4 K 243-273 K 0.9-2.4 gel dose Absence of O 2 O2 Air N2 39-55(HBr) e, N 2 e 77 K Air Various Vac/O2 7.7 (HCl) Vac/O2 (d.b.) 17(HCl) e, N2/vac 0.24 (H2) Vac/O2 8 (HCl) 2.8-3.5(Py + ) 0-1.2 (Phenyl + ) 3.0 (-Cl)
Poly(vinyl imidazole) Poly(vinyl pyrrolidone)
10-54 0.41-0.75
Aq
3.3
77 K 0.01-1.32
Comments
Also 373-623 K
Solution
Underpressure THFsoln. + additives
Refs. 122 147 21 195 236 9 241 168 165 113 115 119 8,44 154 160
G(cation) 247 273 K G(X) Increases 263 with crosslinker 269 +Crosslinker 256 Aq. soln. 12 +Warming 13 Various 205 solutions
1.7. MISCELLANEOUS POLYMERS 1.7.1. CELLULOSE AND DERIVATIVES Cellulose 13-186 7.1
Cellulose acetate
CO, CHO, COOH Vac/air Vac/air Air
Post irrad. H2O incr. G(S)
111 26 156
1.7.2. POLY(SILOXANES) Poly(oxydimethyl diphenylsilylene) Poly(oxydimethyl silylene)
Various Poly(methyl phenyl silane) Poly(cyclohexyl methyl silane)
Various 2.48
N 2 , 303 K
18.5/120
Air
2.7 3.0 2.8 Various
Various
Various
0.01-0.21 1
Poly(dimethyl siloxane) Silicon containing poly(acetylene)
1.8-17.4 1.7 0.3-2.3
Liq. 94 Also blends with 143 PS Effect of 104 pressure 76 80 Liquid 82 186 G(X) increases 265 with crosslinker LET 230 dependence Dose 232 dependence 243 Effect of various 252 pendent groups
1.7.3. POLY (AMINO ACIDS) Poly(alanine) Poly(glycine) Poly(tyrosine) Poly(valine)
2.9 3.6 2.2 < 0.4
3.8-7.0 3.0-3.3 0.12
Various Various Various Various 0.04-0.12 (NH3) Air/N2/N2O Various
Aq. soln.
95 128 95 95 102 95
References page II - 493
TABLE 1. cont'd Polymer
G(R)
G(X)
G(S)
G(products)
Radiation conditions
Comments
Refs.
1.7.4. POLYESTERS Poly(hydroxybutyrate) Poly(L-lactic acid) PoIy(D, L lactic acid)
1.65
Air 77, 300K 77, 300K 77, 300K
2.0,1.5 2.37-1.23 2.4, 1.2
Pressure and temp, effect on G(S) and G(X) Poly(glycolic acid)
1.72,1.47
77, 300K Pressure and temp, effects on G(S) and G(X)
191 201 203 201 274
203 274
1.7.5. POLYSULFONES Bis-A-PSF Hydroquinone PSF Biphenol PSF Bis-S-PSF PES (Polyethersulfone)
0.13 0.13 0.57 0.19 0.14 0.56 0.084 0.084 0.51 0.128 0.24
0.13-1.34
0.11-0.67
Various gases 0.14 (SO2) 0.145 (SO2) 0.136 (SO2) 0.14 (SO2) 0.14(SO2) 0.063 (SO2) 0.06 (SO2) 0.6(SO 2 ) 0.198 (SO2) 0.243 (SO2)
Various temp
207 208 211 207 208 211 207 208 211 207 207
1.7.6. POLYKETONES PEEK
PEEKK
PEEK-Me PEEKK-Me PEK-Ar
0.11 0.004 0.001 1.0e20 spin/kG 0.11 0.12 0.004 0.001 Lle20spin/kG 0.28 0.009 0.001 0.37 0.012 0.001 0.42 0.039 0.005
Vac, 77 K Vac, 300K Air, 300K 77 K
209 211
0.00054 gases
212 209
Vac, 77 K Vac, 300K Air, 300K 77 K Vac, 77 K Vac, 300K Air, 300K Vac, 77 K Vac, 300K Air, 300K Vac, 77 K Vac, 300K Air, 300K
211 209 209 209
1.7.7. FLUOROPOLYMERS Fluoro elastomers Poly(perfluoroethers)
Various
Various
Various
G(S) Poly(tetrafluoroethylene)
2.15 6.0
Various Various Various gases e, argon 9 K G(decomposition) e = 0.2-1.2 G(wt. loss), G(gas)
Review Structure, temp. effects
186 202 259 260
As polymerized 237 sintered, low crystalline Dose rate 267 effects on G(S)
TABLE 1. cont'd Polymer
G(R)
G(X)
G(S)
G(products)
Radiation conditions
0.3 at 373 0.57 at 473 0.89 at 573 1.33 at 673 2.07 at 773 Poly(vinyl Poly(vinylidene
fluoride) fluoride)
0.22 0.37 0.46-0.78 0.6-0.78
0.38-0.86 0.29
Various
Various
Comments
Refs.
+Dose effects 271
0.07 (Polyvinyl) 0.11 (Polyvinyl) 1-4 (HF)
46 46 49 254
293 K +Crosslinker
1.7.8. OTHERS Aromatic polymers Alkyl aromatic poly amides
Various
Aryloxyphosphazenes -[(R-Ph-O)2-PN]n-biphenol 0.6,0.19 -bis phenol 0.6,0.22 -hydroquinone 0.6,0.35 Poly(bis(phenoxy)phosphazene) Poly(bis(4-methyl-phenoxy)phosphazene) Poly(bis(4-r-butyl-phenoxy)phosphazene) Poly(bis(4-cumyl-phenoxy)phosphazene) PoIy(I-(f-butoxycarbonylthio)ethylene) 3.39 Poly(f-butyl isopropenyl ketone) Poly(butylene), l,4-disubstituted(urethane side chain) Poly(epoxide)(Araldite) 0.59 Poly(ether imide) (Ultem) 0.01 Hyaluronic acid
PoIy(I-mercapto ethylene) 2.65 Poly(oxadiazole-2,5-diyl-l,4-phenylenephthalidylidene-1,4-phenylene) Poly (oxycarbonyl-1,1 -dimethy 1-2isopropylidene-ethylene) Poly(oxycarboxyethylene) Poly(oxyethylene)
Various gases
0.22(R = Me) 2.12(R = Et)
G(S)ZG(X) Reduces with increase in methylene 0.26 0.26 77, 300K 77, 300K 77, 300K
0.9 3.5 0.1 0.2
0.7 2.0 0.1 0.2 77 K
0.33 0.139
77 K 77 K
0.00528 5.0-6.7 (O2) 2.0 (H 2 O 2 ) 0-0.1 (peroxide) Vac/air
0.0014
Warming 39
1.9 0.4-11
Poly(oxyethyleneoxyterephthaloyl) 0.023 Poly(oxymethylene) Poly (oxy-l,4-phenylenesulfonyl-l,4-phenelene 0.05 oxy-1,4-phenylene-isopropylidene-1,4phenylene) Poly(oxy-1,4-phenylenesulfony-1,4-phenylene) Poly(oxysebacoyloxy-1,4-phenylene) isopropylidene-1,4-phenylene) Poly(phenylene oxide) 5.7e20 spin/kG 0.6,0.33
Poly(thiopropylene)
pH dependence
77 K Various
0.015/0.067
110 110 210 210 210 273 273 273 273 13 142 93 36 114 253
19 50
14.5,40.5 2.6
N 2 air e, O 2 air 200K
36
0.16,0.04
Warming
1.5
5
Poly(phenylene sulfide) Poly(thiophenylene)
204,211 251
Aq. soln.
57-144
Various
8 0.012
320 (HCHO) 0.04 gas
423 K 300-423 K
29 37 153
0.04 gas
300-423 K Air
153 68
77 K 77, 300K
211 206
77, 300K Gamma/e, vac/air 77 K
206 109
9 0.08H 2 0.015 CH4 0.03H2 0.030/0.15
Dose rate dependence Also e
35 103 83 55
Radical pairs
74
References page 11-493
TABLE 2. COPOLYMERS Copolymers 2.1.
G(R)
G(X)
G(S)
Radiation conditions
Comments
Refs.
303-423 K
+Additives
10 125 89 125 10 127
COPOLYMERS WITH ETHYLENE
Poly(ethylene-co-l-butene)
Various Various
Poly(ethylene-c0-ethyl acrylate) Poly(ethylene-co-hexene)
2.53-3.2
Poly(ethylene-co-propylene)
0.43,0.83
Butyl rubber Halogenated butyl rubber
e, air Various Various
2.92
2.2.
G(products)
0.11,0.35
0.69 1.1 0.9/3.2
1.2 0.33 3.2
0.26
0.16
Various
Various
Various
2.3 (total) 0.19 (allyl) 3.7-4.0
0-0.6
3.9-6.09
Dose dependent
Dose dependent
Various Various Various 8.6-11.0(O 2 ) 5(COOH)
Various gases, O2 Various 0.07-0.62 gel dose Various chain ends Various gases
303-423 K 303 K Air
+Additives 23%, 36% Propylene +Additives
303-423 K Air Air
+Additives
Air
2.0 GPa + variation In terpolymer
293-298 Various
16 182
Review 186 various sources 195
77-398 K 77 K
70 125 10 96 101 116 104
219 Chloro and bromo
220
COPOLYMER WITH METHYL METHACRYLATE
Poly(methyl methacrylate-cobromomethyl methacrylate) Poly(methyl methacrylate-cochlorotrifluoroethylene)
0.2-1.4
0.06-0.1
0.7-1 2.1
139 77 K
65
2.1 Poly(methyl methacrylate-codichlorostyrene) Poly(methyl methacrylate-codimethyl itaconate) Poly(methyl methacrylate-cohexafluoroisopropyl methacrylate) Poly(methyl methacrylate-cohexyl methacrylate) Poly(methyl methacrylate-comethacrylic acid)
50 3.2-3.5* 1.0* 2.0-3.1
0.4 0.53-0.87
77 K
17 59 65 137
22
1.8,2.06
2.0
*G(S)-G(X) * G(S)-G(X)
3.6
273 K
2.9 Poly(methyl methacrylate-comethacrylic acid-styrene) Poly(methyl methacrylate-comethacrylic acid-co-cumyl phenyl methacrylate) Poly(methyl methacrylate-comethacrylic acid-co-2-naphthyl methacrylate) Poly (methyl methacrylate-comethacrylic acid) Poly(methyl methacrylate-co-2 naphthyl methacrylate) Poly(methyl methacrylate-comethacrylonitrile, vinylidene chloride, methyl-a-chloroacrylate, a-chloronitrile ter polymers) Poly(methyl methacrylate-co-methyl bromoacrylate)
137
1.3
77 K
146
1.2
20% MAA 238
1.6
238
133
1.09
238
2.0
238
1.06
238
0.06
1.9-3.1
145
0.41
4.16
139
TABLE 2. cont'd Copolymer
G(R)
Poly(methyl methacrylate-ctf-methyl3.1 oc-chloroacrylate) Poly(methyl methacrylate-co-methyloc-chloroacrylate) Poly(methyl methacrylate-comethyl2-chloroacrylate) Poly(methyl methacrylate-co-methyla-chloroacrylonitrile) Poly(methyl methacrylate-ctf-methyl5.9 a-cyanoacrylate) Poly(methyl methacrylate-co-methyloc-fluoroacrylate) Poly(methyl methacrylate-comethyl fluoroacrylate) Poly(methyl methacrylate-co3-oximino-2-butanone methacrylate) Poly(methyl methacrylate-cotribromophenyl methacrylate) Poly(methyl methacrylate-cotrichloroethyl-alpha-chloroacrylate) Poly(methyl methacrylate-cotrichlorophenyl methacrylate) Poly(methyl methacrylate-cotrifluoroethylene methacrylate) Poly(methyl methacrylate-covinylidene chloride) Poly(methyl methacrylate-covinylidene fluoride) Poly(glycidyl methacrylate-co-ethyl methacrylate) Poly(glycidyl methacrylate-coethyl acrylate) 2.3.
G(X)
0.06
G(S)
G(products)
Comments
Refs.
77 K
14% MCA
133
3.1
24
2.8*
*G(S)-G(X)
6.6
0-0.44
1.0-2.2
14% CAN
133
77 K
20% MCA
133
77 K
65
2.4 > 0.55 0.07-0.19
137 1.4-2.4
0.38-2.2
Various
69
Air
72
3.8 0.05-0.7
17
77 K
Also TFEM
140
0.4-4.4
72
1.9
77 K
2.8-3.4*
65 *G(S)-G(X)
17
1.6
137
1.35-8.5
1.6 1.51-5.5
77 K
0.077 0.04-0.59
Various 0.055 0.0-0.09
Vac
4.3/33
2.8/17
Air
0.3-3.0 Various
Various
313 K 77 K
0.04-0.38
2.18-2.47
Various compositions 246
6.5
65 246
COPOLYMERS WITH STYRENE
Poly(styrene-coacrylates) Poly(styrene-c<9-acrylonitrile) 0.4-2.8 77 K 0.14-4.2 300 K Poly(styrene-co-butadiene)
Poly(styrene-co-cyanoacrylates) Poly(styrene-co-l-mercaptoethylene) Poly(styrene-co-methyl acrylate)
Various CO, CH 4 , CO 2 etc.
Poly(styrene-co-methyl methacrylate)
0.40-2.76 77 K 0.14-1.39 300K 0.18
Poly(styrene-co-methacrylonitrile)
0.31-2.16
0.83 (gases)
Poly(styrene-co-butyl vinyl ketone) Poly(styrene-co-methyl isopropyl ketone) 2.4.
Radiation conditions
77 K Various temperatures Vac 77K/(R), 300 K/(gas)
e e
73 34 Various 215,221 compositions Effect of 104 pressure 3 Block 98 copolymers 73 19 12-80% sty 126 Various compositions 51% sty
216
Various compositions
199
132
239 239
COPOYMERS WITH SULFUR DIOXIDE
Poly(1 -butene-co-sulfur dioxide)
Various gases 12
Poly(2-butene-co-sulfur dioxide) Poly(cyclohexene-co-sulfur dioxide) Poly(4,4-dimethylpentene-co-sulfur dioxide)
Various gases Various gases Various gases
273 -423 K e 273-423 K 273-423 K 273-423 K
31,124,150 131 31,124 31,124 31,124
References page II - 493
TABLE 2. cont'd Copolymer Poly(ethylene-co-sulfur dioxide) Poly(hexene-l-co-sulfur dioxide) Poly(isobutene-co-sulfur dioxide) Poly(3-methyl-l-butene-co-sulfur dioxide) Poly(propylene-co-sulfur dioxide)
G(products)
Radiation conditions
1.8
Various gases Various gases Various gases Various gases
273-423 K 273-423 K 273-423 K 273-423 K
124 31,124 31,124 Poly(31,124, 150
2.2
Various gases
273-423 K
31,124,150
G(R)
G(X)
G(S)
Comments
Refs.
2.5. OTHER COPOLYMERS Poly (butyl methacrylate-col-naphthyl methacrylate) Poly(glutamic acid-co-tyrosine) Poly(glycolic acid-co-1 -lactic acid) Poly(glycidyl methacrylate-co3-chlorostyrene) Poly(hydroxy butyrate-co-valerate)
0.14 0.03-0.5 2.23-2.36 1.49-1.53 1.0
0-0.5
300K 77 K 300K
Various 2.7-3.4
Various gases 1,4-ester
77, 263, 273, 303 K e, gamma
3.2-43.*
Different compositions
77 K 20/150
+ Warming
Air
3.3 0.42 0.6-5.2(HF)
N2 240C
30 (d.b.) 2.3-2.7 1.2
0.9
Various
203
Vac/air/H2O
217
17 13 104 119 106
3.5 (Gas)
Poly(vinyl chloride-coethylglycodimethacrylate) Poly(vinylidene chloride-co-dimethyl itaconate) Poly(vinylidene chloride-co-hexafluoropropylene) Tetrafluoroethylene, perfluoro methyl vinyl ether copolymer 2:1
214
218 *G(S)- G(X)
3.01
1.3
1
144
1.16
Polysulphone-polydimethyl siloxane block copolymer
Various compositions Various compositions
0.42
3.0-0.5 Poly(methacrylonitrile-c0-methyl2-chloroacrylate) Poly (N- vinylpyrrolidone-c0-/-buty I5-vinyl thiocarbonate) Poly(acrylonitrile-co-butadiene) Poly(acrylonitrile-co-chloroprene) Poly(tetrafluoroetnylene-c0hexafluoropropylene) Poly(tetrafluoroethylene-co-propylene)
Benzene soln.
Emulsion 121 polymer + H 2O 116 266 8 *G(S)-G(X)
17
+Additives
166
0.93 (CF4) e 0.31 (COF2) 0.055 (CO2) 0.14 (CF3 OCF3) 1.43 (total gas) 0.34 (acid fluoride) New chain ends 1 (_CF 2 -CF 3 ) 0.09 (-CF 2 -O-CF 3 ) 0.5 (CF2-COOH) 0.2(-CF = CF2)
229
268
Dose and molecular weight effects
272
TABLE 3. POLYMERS BLENDS Polymer Blends
G(X)
Poly (methyl methacrylate)/ Poly (1 -naphthyl(methacrylate) Poly(methyl methacrylate)/ Poly(styrene-co-acrylonitrile) Poly (methyl methacrylate)/styreneacrylonitrile Poly(methyl methacrylate)/Acrylonitrile
G(S)
Comments
Refs.
0.14
Benzene
1
0.025
0.051
50% PMMA
161
0.041 0.034 0.02 0.008 0.042 0.036 0.009 0.01
0.027 0.15 0.21 0.23 0.14 0.25 0.34 0.88
SAN 100 85 50 15 ACNlOO 85 50 15
242
242
TABLE 4. COMPOSITES Polymer Composites
G(products)
Radiation conditions
Refs.
Glass-DGEBA-DDM Color-DGEBA-DDM
H 2 , CO, CO2 H 2 , CO, CO2
77 K, RT 77 K, RT
227 227
C
REFERENCES
1. S. Nishimoto, K. Yamamoti, T. Kagiya, Polym. Photochem., 5, 231 (1984). 2. M. R. Clay, A. Charlesby, Europ. Polym. J., 11, 187 (1975). 3. M. A. El-Azmirly, A. A. Yehia, W. M. Khalifa, N. A. Ghanem, Europ. Polym. J., 11, 499 (1975). 4. A. Chapiro, D. Goldfield-Freilich, J. Perichon, Europ. Polym. J., 11, 515 (1975). 5. A. Chapiro, Z. Mankowski, Europ. Polym. J., 14,15, (1978). 6. C. David, D. Breyens-Volant, Europ. Polym. J., 14, 29 (1978). 7. S. Warty, J. A. Sauer, A. Charlesby, Europ. Polym. J., 15, 445, (1979). 8. G. Palma, M. Gnrenza, C. Pollini, Europ. Polym. J., 16, 333, (1980). 9. A. Chapiro, Z. Mankowski, Europ. Polym. J., 18, 707 (1982). 10. S. Y. Ho, J. H. O'Donnell, Europ. Polym. J., 20, 421 (1984). 11. J. Rosiak, W. Schnabel, Europ. Polym. J., 20, 1159 (1984). 12. A. Chapiro, C. Legris, Europ. Polym. J., 21, 49 (1985). 13. H. Monig, H. Ringsdorf, S. Wessel, Makromol. Chem., 176, 1323 (1975). 14. C. David, F. de Bie, G. Geuskens, Makromol. Chem., 176, 3493 (1975). 15. R. Kaufman, H. Heusinger, Makromol. Chem., 177, 871 (1976). 16. W. Geissler, H. Zott, H. Heusinger, Makromol. Chem., 179, 697 (1978). 17. C-Y. Chen, M. Igbal, C. U. Pitman Jr., Makromol. Chem., 179, 2109 (1978).
18. M. B. Huglin, J. Smith, Makromol. Chem., 180, 2775 (1979). 19. H. Monig, H. Ringsdorf, E. Spirk, Makromol. Chem., 181, 2293 (1980). 20. R. Basheer, M. Dole, Makromol. Chem., 183, 2141 (1982). 21. J. G. Braks, R. Y. M. Huang, Makromol. Chem., 185, 317 (1984). 22. J. H. Lai, J. H. Helbert, Macromolecules, 11, 617 (1978). 23. R. P. Kusy, A. R. Greenburg, Macromolecules, 11, 1051 (1978). 24. J. N. Helbert, C-Y. Chen, C. U. Pittman Jr., G. L. Hagnauer, Macromolecules, 11, 1104 (1978). 25. T. Ikeda, H. S. von Euler-Chelpin, S. Okamura, H. Yamaoka, Macromolecules, 17, 1655 (1984). 26. J. T. Guthrie, Polymer, 16, 134 (1975). 27. T. N. Bowmer, J. H. O'Donnell, Polymer, 18, 1032 (1977). 28. Y. Hori, Z. Fukunaga, S. Shimada, H. Kashiwabara, Polymers, 20, 181 (1979). 29. T. Memetea, V. Stannett, Polymer, 20, 469 (1979). 30. G. Ungar, Polymer, 21, 1278 (1980). 31. T. N. Bowmer, J. H. O'Donnell, Polymer, 22, 71 (1981). 32. M. Dole, Polymer 22, 1458 (1981). 33. W. K. Busfield, J. H. O'Donnell, C. A. Smith, Polymer, 23, 431 (1982). 34. T. Q. Nguyen, H. H. Kausch, K. Jud, M. Dettenmaier, Polymer, 23, 1305 (1982). 35. M. C. Gupta, V. G. Deshmukh, Polymer, 24, 827 (1983). 36. K. R. Schaeffer, R. E. Fornes, R. D. Gilbert, J. D. Memory, Polymer, 25, 54 (1984).
37. L. R Burlak, Y. S. Deyev, G. V. Levit, V. R Pshenitsyna, V. I. Serennkov, N. A. Slovokhotova, F. F. Sukhov, V. S. Tikhomirov, Polymer Science USSR, 21, 2326 (1979). 38. I. K. Chernova, S. S. Leshchenko, V. R Golikov, V. L. Karpov, Polymer Science USSR, 22, 2382 (1980). 39. V. V. Lyashevich, V. V. Korshak, D. R. Tur, V. V. Rode, Polym. Sci. USSR, 22, 2422 (1980). 40. S. G. Kiryushkin, Y. A. Shlyapnikov, Polym. Sci. USSR, 23, 617 (1981). 41. A. R Tyutnev, V. S. Sayenko, Y. D. Pozhidayev, Polym. Sci. USSR, 24, 120 (1982). 42. A. R Tyutnev, V. S. Sayenko, V. S. Tikhomirov, Y. D. Pozhidayev, Polym. Sci. USSR, 25, 113 (1983). 43. N. S. Soboleva, S. S. Leshchenko, V. L. Karpov, Polym. Sci. USSR, 25, 446 (1983). 44. V. I. Dakin, A. V. Danchenko, V. L. Karpov, Polym. Sci. USSR, 26, 2473 (1984). 45. G. N. Patel, J. Polym. Sci. Polym. Phys. Ed., 13, 339 (1975). 46. J. N. Helbert, E. W. Burkhard, E. H. Poindexter, L. Kevan, J. Polym. Sci., Polym. Phys. Ed., 13, 825 (1975). 47. J. C. Randall, Makromol. Chem., Rapid Commun., 4, 149 (1983). 48. K. Sato, A. Rudin, R. Y. M. Huang, J. Polym. Sci., Polym. Chem. Ed., 14, 37 (1976). 49. K. Makuuchi, M. Asano, T. Abe, J. Polym. Sci., Polym. Chem. Ed., 14, 617 (1976). 50. A. C. Ouano, D. E. Johnson, B. Dawson, L. A. Pederson, J. Polym. Sci., Polym. Chem. Ed., 14, 701 (1976). 51. A. Torikai, H. Kato, Z-I. Kuri, J. Polym. Sci., Polym. Chem. Ed., 14, 1065 (1976). 52. V. K. Micinchuk, E. R. Klinshpont, V. V. Vasilenko, J. Polym. Sci., Polym. Chem. Ed., 14, 1419 (1976). 53. J. R Quaegebeur, T. Teguchi, H. LeBail, C. Chachaty, J. Polym. Sci., Polym. Chem. Ed., 14, 2703 (1976). 54. J. H. O'Donnell, N. R Rahman, D. J. Winzor, J. Polym. Sci., Polym. Chem. Ed., 15, 131 (1977). 55. C. Decker, J. Polym. Sci., Polym. Chem. Ed., 15,781 (1977). 56. J. M. Nichol, J. H. O'Donnell, N. R Rahman, D. J. Winzor, J. Polym. Sci., Polym. Chem. Ed., 15, 2919 (1977). 57. A. Torikai, R. Kato, J. Polym. Sci., Polym. Chem. Ed., 16, 1487 (1978). 58. Y. Kasama, A. Udagawa, M. Takehisa, J. Polym. Sci., Polym. Chem. Ed., 16, 2607 (1978). 59. J. Helbert, E. Poindexter, G. Stahl, C-Y. Chen, C. Pittman, J. Polym. Sci., Polym. Chem. Ed., 17, 49 (1979). 60. Y. Shimizu, H. Mitsui, J. Polym. Sci., Polym. Chem. Ed., 17, 2307 (1979). 61. J. H. O'Donnell, N. R Rahman, C. A. Smith D. J. Winzor, J. Polym. Sci., Polym. Chem. Ed., 17, 4081 (1979). 62. C-Y. Chen, C. U. Pittman, Jr., J. N. Helbert, J. Polym. Sci., Polym. Chem. Ed., 18, 169 (1980). 63. H, Mitsui, Y. Shimizu J. Polym. Sci., Polym. Chem. Ed., 18, 1115 (1980). 64. K. Hayashi, M. Tachibana, S. Okamura, J. Polym. Sci., Polym. Chem. Ed., 18, 2785 (1980). 65. C. Pittman, Jr., C-Y. Chen, M. Ueda, J. N. Helbert, J. Kwiatkowski, J. Polym. Sci., Polym. Chem. Ed., 18, 3413 (1980).
66. T. N. Bowmer, J. H. O'Donnell, J. Polym. Sci., Polym. Chem. Ed., 19, 45 (1981). 67. T. N. Bowmer, J. H. O'Donnell, D. J. Winzor, J. Polym. Sci., Polym. Chem. Ed., 19, 1167 (1981). 68. M. C. Gupta, A. K. Srivastava, J. Polym. Sci., Polym. Chem. Ed., 20, 541 (1982). 69. T. N. Bowmer, E. Reichmans, C. W. Wilkins, Jr., M. Y. Hellman, J. Polym. Sci., Polym. Chem. Ed., 20, 2661 (1982). 70. K. Arakawa, T. Seguchi, N. Hayakawa, S. Machi, J. Polym. Sci., Polym. Chem. Ed., 21, 1173 (1983). 71. EJ. Zoepfl, J. Silverman, J. Polym. Sci., Polym. Chem. Ed., 21, 1763 (1983). 72. R H. Lu, G. Babu, J. C. W. Chien, J. Polym. Sci., Polym. Chem. Ed., 23, 1421 (1985). 73. H. Ito, C. Hrusa, H. K. Hall, Jr. A. B. Padias, J. Polym. Sci., Polym. Chem. Ed., 24, 955 (1986). 74. R Hesse, H. Heusinger, Radiat. Phys. Chem., 7, 1 (1975). 75. S. Rafi Ahmad, A. Charlesby, Radiat. Phys. Chem., 8, 497 (1976). 76. R. Folland, A. Charlesby, Radiat. Phys. Chem., 8, 555 (1976). 77. A. Rafi Ahmad, A. Charlesby, Radiat. Phys. Chem., 8, 585 (1976). 78. A. Charlesby, J. Steven, Radiat. Phys. Chem., 8, 719 (1976). 79. M. Dole, V. M. Patel, Radiat. Phys. Chem., 9, 433 (1977). 80. R. Folland, A. Charlesby, Radiat. Phys. Chem., 10, 61 (1977). 81. A. Charlesby, Radiat. Phys. Chem., 10, 177 (1977). 82. C. G. Delides, I. W. Shepherd, Radiat. Phys. Chem., 10, 379 (1977). 83. A. Charlesby, M. Byrne, Radiat. Phys. Chem., 12, 191 (1978). 84. S. G. Burnay, Radiat. Phys. Chem., 13, 171 (1979). 85. Y. Tabata, Radiat. Phys. Chem., 14, 235 (1979). 86. K. Ishigure, S. Egusa, S. Tagawa, Y. Tabata, Radiat. Phys. Chem., 14, 585 (1979). 87. V. Handlos, Radiat. Phys. Chem., 14, 721 (1979). 88. G. N. Patel. Radiat. Phys. Chem., 14, 729 (1979). 89. N. M. Burns, Radiat. Phys. Cehm., 14, 97 (1979). 90. A. Charlesby, R. Folland, Radiat. Phys. Chem., 15, 393 (1980). 91. T. S. Chien, J. K. Thomas, Radiat. Phys. Chem., 15, 429 (1980). 92. N. Gvozdic, M. Dole, Radiat. Phys. Chem., 15, 435 (1980). 93. G. N. Patel, Radiat. Phys. Chem. 15, 637 (1980). 94. G. G. Delides, Radiat. Phys. Chem., 16, 345 (1980). 95. D. J. T. Hill, R. W. Garrett, S. Y. Ho, J. H. O'Donnell, R W. O'Sullivan, P. J. Pomery, Radiat. Phys. Chem., 17,163 (1981). 96. T. Seguchi, S. Hashimoto, K. Arakawa, N. Hayakawa, W. Kawakami, I. Kuriyama, Radiat. Phys. Chem., 17, 195 (1981). 97. H. Okamoto, T. Iwai, Radiat. Phys. Chem., 18, 407 (1981). 98. R. Basheer, M. Dole, Radiat. Phys. Chem., 18, 1053 (1981). 99. H. Yamaoka, K. Nagta, T. Ikeda, S. Okamura, Radiat. Phys. Chem., 18, 1073, (1981).
100. A. Charlesby, B. J. Bridges, Radiat. Phys. Chem., 19, 155 (1982). 101. T. Seguchi, K. Arakawa, N. Hayakawa, Y. Watanabe, I. Kuriyama, Radiat. Phys. Chem., 19, 321 (1982). 102. G. Boguta, A. M. Dancewicz, Radiat. Phys. Chem., 20, 359 (1982). 103. W. Schnabel, O. Denk, V. Grollmann, I. A. Raapand, K. Washino, Radiat. Phys. Chem., 21, 225 (1983). 104. V. K. Milinchuk, E. R. Klinshpont, V. R Kiryukhin, Radiat. Phys. Chem., 21, 519 (1983). 105. M. Dole, Radiat. Phys. Chem., 22, 11 (1983). 106. N. Lin, Radiat. Phys. Chem., 22, 259 (1983). 107. K. Hayakawa, K. Kawase, H. Yamikita, Radiat. Phys. Chem., 22, 929 (1983). 108. Z. -C. Zhang, Q. Li, D. -H. Li, Radiat. Phys. Chem., 22,1064 (1983). 109. G. -L Huang, Z. -F. Chang, Y. -X. Han, Radiat. Phys. Chem., 22, 1067, (1983). 110. S. Yanai, V. T. Stannett, D. R. Squire, G. L. Hagnauer, R. L. Singler, Radiat. Phys. Chem., 23, 489 (1984). 111. W. M. Dziedziela, D. J. Kotynska, Radiat. Phys. Chem., 23, 723 (1984). 112. M. C. Gupta, V. P. Bansod, Radiat. Phys. Chem., 24, 499 (1984). 113. G. Urillo, Radiat. Phys. Chem., 25, 383 (1985). 114. R. Basheer, M. Dole, Radiat. Phys. Chem., 25, 389 (1985). 115. A. H. Zahran, E. A. Hegazy, F. M. Ezz Eldin, Radiat. Phys. Chem., 26, 25 (1985). 116. T. Seguchi, N. Hayakawa, K. Yoshida, N. Tamura, Y. Katsumura, Y. Tabata, Radiat. Phys. Chem., 26, 221 (1985). 117. O. S. Gal, V. M. Markovic, L. J. R. Novakovic, V. T. Stannett, Radiat. Phys. Chem., 26, 325 (1985). 118. E-S. A. Hegazy, A. H. Zahran, Radiat. Phys. Chem., 27,139 (1986). 119. K. Arakawa, T. Seguchi, K. Yoshida, Radiat. Phys. Chem., 27, 157 (1986). 120. M. Kumar, M. H. Rao, K. N. Rao, Radiat. Phys. Chem., 27, 219 (1986). 121. N. Suzuki, J. Okamoto, J. Macromol. Sci. A: Chem., 9 (2), 285 (1975). 122. Y Suzuki, J. M. Rooney, V. Stannett, J. Macromol Sci. A: Chem., 12 (7), 1055 (1978). 123. J. H. O'Donnell, R. D. Sothman, J. Macromol. Sci. A: Chem., 14 (46), 879 (1980). 124. T. N. Bowmer, J. H. O'Donnell, J. Macromol. Sci. A: Chem., 17 (2), 243 (1982). 125. T. N. Bowmer, S. Ho, J. H. O' Donnell, P. W. O'Sullivan, J. Macromol. Sci. A: Chem., 21 (6&7), 745 (1984). 126. W. H. Busfield, J. H. O'Donnell, C. A. Smith, J. Macromol. Sci. A: Chem., 17 (8), 1263 (1982). 127. J. H. O'Donnell, A. K. Whittaker, Brit. Polym. J., 17, 51 (1985). 128. D. J. T. Hill, S. Y Ho, J. H. O'Donnell, P. W. O'Sullivan, R J. Pomery, Polym. Degrad. Stability, 3, 83 (1980-81). 129. T. Kayiga S. Nishimoto, Polym. Degrad. Stability, 12, 261 (1985).
130. M. C. Gupta, B. S. Shaprio, B. P. Kanphade, V. R Bansoo, Polym. Comm., 25, 335 (1984). 131. M. J. Bowden, J. Polym. Sci., Polym. Symp., 49, 221, (1975). 132. J. H. O'Donnell, P. J. Pomery, J. Polym. Sci. Polym. Symp., 55, 269 (1976). 133. J. Helbert, B. Wagner, P. Caplan, E. Poindexter, Polym. Preprints, 16 (1), 708 (1975). 134. N. Gvozdic, M. Dole, Polym. Preprints, 19 (1), 584 (1978). 135. K. Ishigure, S. Egusa, M. Ogawa, S. Tagawa, Y. Tabata, Polym. Preprints, 20 (1), 372 (1979). 136. T. Bowmer, L. Cowen, J. Nichol, J. H. O'Donnell, N. Rahman, C. Smith, D. Winzor, Polym. Preprints, 20 (1), 376 (1979). 137. C. Pittman, C. Chen, M. Ueda, J. Helbert, Polym. Preprints, 20 (2), 602, (1979). 138. M. Golub, R. Cormia, Polym. Preprints, 22 (1), 40 (1981). 139. C. Babu, J. Chien, Polym. Preprints, 23 (2), 85 (1982). 140. E. Wallace, C. Pittman, J. Kwiatkowski, C. Cook, J. Helbert, Polym. Preprints, 24 (1), 157 (1983). 141. D. O'Connor, N. Yang, A. Woodward, Polym. Preprints, 24 (1), 172 (1983). 142. S. MacDonald, H. Ito, C. Willson, J. Moore, H. Gharapetian, J. Guillet, Polym. Preprints, 25 (1), 298 (1984). 143. G. Corfield, D. Astill, D. Clegg, Polym. Preprints, 25 (1), 311 (1984). 144. A. Novembre, T. Bowmer, Polym. Preprints, 25 (1), 324 (1984). 145. E. Wallace, C. Chen, C. Pittman, J. Helbert, J. Kwiatkowski, C. Cook, Polym. Preprints, 25 (1), 326 (1984). 146. P. R. Wunsche, K. Pfeiffer, H-J. Lorkowski, J. Reinhardt, Acta Polymerica, 36, 265 (1985). 147. T. Tagawa, E. Tsuchida, I. Shinohara, M. Hagiwara, T. Kagiya, J. Polym. Sci., Polym. Letters Ed., 13,287 (1975). 148. G. Gasparrini, M. Carenza, G. Palma, J. Polym. Sci., Polym. Letters Ed., 18, 29 (1980) 149. G. Burillo, T. Ogave, J. Polym. Sci., Polym. Letters Ed., 21, 615 (1983). 150. T. N. Bowmer, J. H. O'Donnell, P. R. Wells, Polym. Bull., 2, 103 (1980). 151. J. de Boer, A. J. Pennings, Polym. Bull., 5, 317 (1981). 152. H. Sotobayashi, E Asmussen, K. Thimm, W. Schnabel, H. Betz, D. Einfeld, Polym. Bull., 7, 95 (1982). 153. J. R. Brown, J. H. O'Donnell, J. Appl. Polym. Sci., 19, 405 (1975). 154. W. Szymanski, G. Smietanska, J. Appl. Polym. Sci., 19, 1955 (1975). 155. V. N. Handlos, K. A. Singer, J. Appl. Polym. Sci., 20, 3375 (1976). 156. S. M. AIi, P. G. Clay, J. Appl. Polym. Sci., 23, 2893 (1979). 157. T. N. Bowmer, L. K. Cowen, J. H. O'Donnell, D. J. Winzor, J. Appl. Polym. Sci., 24, 425 (1979). 158. E. A. Hegazy, T. Seguchi, K. Arakawa, S. Machi, J. Appl. Polym. Sci., 26, 1361 (1981). 159. G. Ramanan, M. H. Rao, J. Appl. Polym. Sci., 26, 1439 (1981).
160. E. A. Hegazy, T. Seguchi, S. Machi, J. Appl. Polym. ScL, 26, 2947 (1981). 161. T. Q. Nguyen, H. H. Kausch, J. Appl. Polym. ScL, 29, 455 (1984). 162. P. A. Zagorets, A. G. Shostenko, A. I. Krivonosov, A. M. Dodonov, B. A. Gorelik, M. V. Postrigan, High Energy Chem., 10, 254 (1976). 163. B. K. Pasal'skii, Ya. I. Lavrentovich, V. A. Vonsyatskii, A. M. Kabakchi, High Energy Chem., 10, 316 (1976). 164. A. P. Mal'tseva, V. P. Golikov, S. S. Leshchenko, V. L. Karpov, V. I. Muromtsev, High Energy Chem., 11, 189 (1977). 165. V. I. Dakin, Z. S. Egorova, V. L. Karpov, High Energy Chem., 11, 317 (1977). 166. T. G. Samoilenko, High Energy Chem., 12, 72 (1978). 167. V. N. Khabarov, L. L. Kozlov, G. Panchenkov, High Energy Chem., 15, 382 (1981). 168. A. P. Tyutnev, A. V. Vannikov, V. S. Saenko, S. Likhovidov, E. D. Pozhidaev, High Energy Chem., 16, 386 (1982). 169. P. I. Dubenskov, A. P. Tyutnev, V. S. Shenko, A. V. Vannikov, High Energy Chem., 19, 92, (1985). 170. A. M. Afanas'ev, V. A. Barakova, V. N. Demishev, V. A. Novozhilov, High Energy Chem., 19, 342 (1985). 171. G. S. Zhadanov, A. S. Smolyanskii, V. R. Milinchuk, High Energy Chem., 20, 27 (1986). 172. J. Silverman, F. J. Zoepfl, J. Randall, V. Markovic, in: J. Dobo, P. Hedvig, R. Schiller (Eds.), Proc. Fifth Tihany Symp. Radiation Chem. (Siofok, Hungary, 19-24 Sept, 1982), vol. 2, Akad. Kiado, Budapest, 2, 1983, 895. 173. J. Dobo, P. Hedvig, R. Schiller (Eds.), Proc. Fifth Tihany Symp. Radiation Chem. (Siofok, Hungary, 19-24 Sept, 1982), vol. 2, Akad. Kiado, Budapest, 1983, p. 979. 174. Y. Tabata, Y. Katsumuka, T. Seguchi, N. Hayakawa, K. Yoshida, N. Tamura, Radiat. Process. Plastics and Rubber, 2nd Int. Conf., Canterbury, UK, 28-30 March, 1984, p. 1. 175. J. Rosiak, W. Schnabel, Radiat. Process. Plastics and Rubber, 2nd Int. Conf., Canterbury, UK, 28-30 March, 1984, p. 37. 176. H. Hiroka, IBM J. Res. Develop., 21, 121 (1977) 177. G. Ungar, J. Mater. ScL, 16, 2635 (1981). 178. H. Yamaoka, K. Kato, S. Okamura, Polym. J., 19, 667 (1987). 179. D. J. T. Hill, J. H. O'Donnell, M. C. S. Perera, P. J. Pomery, ACS Symposium Series, 527, 74 (1993) 180. P. F. Barron, J. H. O'Donnell, A. K. Whittaker, Polym. Bull., 14, 339 (1985). 181. A. J. Whittaker, Ph.D. Thesis, University of Queensland, (1986). 182. K. Arakawa, J. Polym. ScL, Polym. Chem. Ed., 25, 1713 (1987). 183. F. Horii, Q. Zhu, R. Kitamaru, H. Yamaoka, Macromolecules, 23, 977 (1990). 184. A. Tidjani, Y. Watanbe J. Polym., ScL, Polym. Chem. Ed., 33, 1455 (1995). 185. D. J. T. Hill, J. H. O'Donnell, C. L. Winzor, D. J. Winzor, Polymer, 31, 538 (1990). 186. G. G. A. Bohm, J. O, Tveekrem, Rubb. Chem. Technol., 55, 575 (1982).
187. L. Dong, D. J. T. Hill, J. H. O'Donnell, T. G. CarswellPomerantz, P. J. Pomery, A. K. Whittaker, K. Hatada, Macromolecules, 28, 3681 (1995). 188. J. A. Moore, J. O. Choi, ACS Symposium series, 475, 156 (1991) 189. D. J. T. Hill, J. H. O'Donnell, R J. Pomery, C. L. Winzor, Radiat. Phys. Chem., 39, 237 (1992). 190. D. J. T. Hill, K. A. Milne, J. H. O'Donnell, P. J. Pomery, ACS Symposium Series, 620, 130 (1996). 191. H. Mitomo, Y. Watanabe, I. Ishigaki, T. Saito, Polym. Degrad. Stab., 5, 11 (1994). 192. L. Dong, D. J. T. Hill, J. H. O'Donnell, P. J. Pomery, K. Hatada, J. Appl. Polym. ScL, 59, 589, (1996). 193. D. J. T. Hill, J. H. O'Donnell, P. J. Pomery, G. Saadat, Radiat. Phys. Chem., 48, 605 (1996). 194. R. W. Garrett, T. Le, D. J. T. Hill, J. H. O'Donnell, P. J. Pomery, in: T. Tabata, I. Mira, T. Nonogaki, (Eds.), "Polymers for Microelectronics Science and Technology", VCH, New York, 1990, p. 47. 195. W. Schnabel, Q. Q. Zin, S. Klaumunzer, ACS Symposium Series, 475, 44 (1991). 196. D. Lopez, G. Burillo, ACS Symposium Series, 475, 262 (1991). 197. R. W. Garrett. D. J. T. Hill, T. T. Le, J. H. O'Donnell, P. J. Pomery, Radiat. Phys. Chem., 39, 215 (1992). 198. D. J. T. Hill, A. P. Lang, J. H. O'Donnell, P. J. Pomery, Polym. Degrad. Stab., 38, 193 (1992). 199. L. Dong, D. J. T. Hill, J. H. O'Donnell, P. J. Pomery, Polym. Degrad. Stab., 48, 71 (1995). 200. L. Dong, D. J. T. Hill, J. H. O'Donnell, P. J. Pomery, Polymer, 36, 2873 (1995). 201. A. Babanalbandi, D. J. T. Hill, J. H. O'Donnell, R J. Pomery, Polym. Degrad. Stab., 50, 297 (1995). 202. J. Pacansky, R. J. Waltman, J. Phys. Chem., 95, 1512 (1991). 203. A. Babanalbandi, D. J. T. Hill, J. H. O'Donnell, P. J. Pomery, Polym. Degrad. Stab., 52, 59 (1996). 204. E. S. A. Hegazy, T. Sasuga, M. Nishii, T. Seguchi, Polymer, 33, 2897 (1992). 205. J. M. Rosiak, ACS Symposium Series, 475, 271 (1991). 206. D. J. T. Hill, D. S. Hunter, D. A. Lewis, J. H. O'Donnell, P. J. Pomery, Radiat. Phys. Chem., 36, 550 (1990). 207. D. J. T. Hill, D. A. Lewis, J. H. O'Donnell, P. J. Pomery, J. L. Hedrick, J. E. McGrath, Polym. Adv. Tech., 2, 15 (1991). 208. D. J. T. Hill, D. A. Lewis, J. H. O'Donnell, P. J. Pomery, Polym. International, 28, 233 (1992). 209. K. Heiland, D. J. T. Hill, J. H. O'Donnell, P. J. Pomery, Polym. Adv., 8, 116(1994). 210. J. L. Hopewell, D. J. T. Hill, J. H. O'Donnell, R J. Pomery, Polym. Degrad. Stab., 293, (1994). 211. K. Heiland, D. J. T. Hill, J. L. Hopewell, D. A. Lewis, J. H. O'Donnell, P. J. Pomery, A. K. Whittaker, Adv. Chem. sen, 249, 637 (1996). 212. L. Dong, K. Heiland, D. J. T. Hill, M. C. S. Perera, in: M. Kitajima, H. Haneda, K. Ishioka, K. Hirata, (Eds.), "Materials Chemistry in Nuclear Environment", National Research Institute of Metals, Tsukuba, Japan, 1996, 61.
213. E. A. Hegazy, T. Sasuga, M. Nishi, T. Seguchi, Polymer, 33, 2897 (1992). 214. D. J. T. Hill, S. Y. Ho, J. H. O'Donnell, P. J. Pomery, Radiat. Phys. Chem., 36, 467 (1990), 215. D. J. T. Hill, A. P. Lang, J. H. O'Donnell, P. J. Pomery, Polym. Degrad. Stab., 38, 205 (1992). 216. R. Kellman, D. J. T. Hill, D. S. Hunter, J. H. O'Donnell, P. J. Pomery, ACS Symposium Series, 475, 119 (1991). 217. T. G. Carswell-Pomerantz, D. J. T. Hill, J. H. O'Donnell, P. J. Pomery, Radiat. Phys. Chem., 45, 737 (1995). 218. T. Bremner, D. J. T. Hill, J. H. O'Donnell, M. C. S. Perera, P J. Pomery, J. Polym. ScL, Polym. Chem. Ed., 34, 971 (1996). 219. D. J. T. Hill, J. H. O'Donnell, M. C. S. Perera, P. J. Pomery, Radiat. Phys. Chem., 40, 127 (1992). 220. D. J. T. Hill, J. H. O'Donnell, M. C. S. Perera, P. J. Pomery, Polymer, 36, 4185 (1995). 221. T. Q. Nguyen, H. H. Kausch, K. Jud, M. Dettnmaier, Polymer, 23, 1305 (1982). 222. H. Kudoh, T. Sasuga, T. Seguchi, ACS Symposium Series, 620, 2 (1996). 223. H. Kudoh, T. Sasuga, T. Seguchi, Y. Katsumura, Polymer, 4663 (1996), 224. H. Kudoh, M. Celina, G. M. Malone, R. J. Kaye, K. T. Gillen, R. L. Clough, Radiat. Phys. Chem., 48, 553 (1996). 225. H. Kudoh, T. Sasuga, T. Seguchi, Y. Katsumura, Polymer, 37, 2903 (1996). 226. W. K. Busfield, G. S. Watson, ACS Symposium Series, 620, 74 (1996). 227. H. Kudoh, N. Kasai, T. Sasuga, T. Seguchi, Radiat. Phys. Chem., 48, 695 (1996). 228. M. Dole, Radiat. Phys. Chem. 37, 65 (1991). 229. J. Pacansky, R. J. Waltman, D. Jebens, Macromolecules, 29, 7699 (1996). 230. S. Seik, H. Shibata, H. Ban, K. Ishigure, S. Tagawa, Radiat. Phys. Chem., 48, 539 (1996). 231. Y. Hama, K. Hamanaka, H. Matsumoto, T. Takano, H. Kudoru M. Sugimoto, T. Seguchi, Radiat. Phys. Chem., 48, 549 (1996). 232. J. Kumagai, K. Oyama, H. Yoshida, T. Ichikawa, Radiat. Phys. Chem., 47, 631 (1996). 233. P Ulanski, E. Bothe, J. M. Rosiak, C. Von Sonntag, J. Chem. Soc, Perkin Trans., 2, 1, 5 (1996). 234. M. B. Lewis, E. H. Lee, J. Nucl. Mater., 203, 224 (1993). 235. Y. S. Soebianto, Y. Katsumura, K. Ishigure, J. Kubo, T. Koizumi, H. Shigekuni, K. Azami, Polym. Degrad. Stab., 42, 29 (1993). 236. G. Lu, H. Chen, D. Liu, Radiat. Phys. Chem., 42,229 (1993). 237. X. Zhong, L. Yu, W. Zhao, Y. Zhang, J. Sun, J. Appl. Polym. ScL, 48, 741 (1993). 238. I. Gitsov, O. Todorova, J. Appl. Polym. ScL, 46,1631 (1992). 239. S. A. M. Hesp, J. E. Guillet, Polym. Microelectron. Proc. Int. Symp., 113, CA 118: 39547, (1989). 240. Q. Zhu, F. Horii, R. Kitamaru, H. Yamaoka, J. Polym. ScL Polym. Chem. ed., 28, 2741 (1990). 241. J. Pacansky, R. J. Waltman, Proc. Water-Borne Higher Solids Coat. Symp., 175, CA: 111: 195538 (1989).
242. A. Daro, F. Zabeau, C. David, Eur. Polym. J., 25, 71 (1989). 243. J. Rosiak, J. Olejniczak, A. Charlesby, Radiat. Phys. Chem., 32, 691 (1988). 244. R F. Barron, W. K. Busfield, J. V. Hanna, J. Polym. ScL, Polym. Lett, ed., 26, 225 (1988). 245. P. F. Barron, W. K. Busfield, J. V. Hanna, Polym. Commun., 29, 70 (1988). 246. D. N. Payne, F. Williams, Polym. Prepr., 28, 303 (1987). 247. A. Torikai, T. Adachi, K. Fueki, J. Polym. ScL, Polym. Chem. Ed., 24, 1413 (1986). 248. P. Peele, Song, Hu, Radiat. Phys. Chem., 42, 121 (1993). 249. L. Yunxia, Y Hang, L. Shuhua, Y Bin, D. Mengxian, J. Bingzhen, Radiat. Phys. Chem., 42, 233 (1993). 250. K. T. Gillen, J. S. Wallace, R. L. Clough, Radiat. Phys. Chem., 41, 101 (1993). 251. B. J. Lyons, L. C. Glover, Radiat. Phys. Chem., 37, 93 (1991). 252. H. Yamaoka, T. Matsuyama, T. Masuda, T. Higashimura, Radiat. Phys. Chem., 37, 111 (1991). 253. D. J. Deeble, G. O. Phillips, E. Bothe, H. P. Schuchmann, C. von Sonntag, Radiat, Phys. Chem., 37 115 (1991). 254. V. S. Ivanov, I. I. Migunova, A. J. Mikhailov, Radiat. Phys. Chem., 37, 119 (1991). 255. W. Schnabel, S. Klaumunzer, Radiat. Phys. Chem., 37, 131 (1991). 256. A. Chapiro, S. Galant, Radiat. Phys. Chem., 37, 505 (1991). 257. Y. Tabata, A. Oshima, K. Takashika, T. Seguchi, Radiat. Phys. Chem., 48, 563 (1996). 258. Y. Lau, J. Guan, H. Yang, S. Li, D. Bin, B. Jiang, CA: 121: 36389, (1992). 259. J. Pacansky, R. J. Waltman, G. Pacansky, Chem. Mater, 5, 1526 (1993). 260. J. Pacansky, R. J. Waltman,, Chem. Mater., 5, 486 (1993). 261. L. Zhang, L. Feng, S. Li, S. Wang, Z. Zhang, CA, 115:184090, (1990). 262. L. Zhang, L. Feng, S. Li, Z. Zhang, CA, 114,102961 (1990). 263. J Shou, Z. Zhu, S. Shi, Y Liu, CA, 111, 195542, (1988). 264. L. Ye, P. Li, Z. Mei, Y Ye, CA, 107: 78430, (1986). 265. X. Chen, X. Tang, H. Guan, Z. Zhang, L. Zhang, S. Li, J. Zhang, Y. Zhang, CA. 107: 78428, (1985). 266. J Sun, S. Zhu, Y. Zhang, CA, 107: 78425, (1986). 267. M. Wang, M. Xu, X. Mao, Y. Liu, CA, 108: 78424 (1986). 268. J. S. Forsythe, D. J. T. Hill, A. L. L. Logothetis, A. K. Whittaker, "Radiothon 96", Australian Institute of Nuclear Science and Engineering, Sydney, 1996. 269. J. Rickards, R. Trejo-Luna, E. Andrade, Radiat. Phys. Chem., 45, 629 (1995). 270. Y. Luo, K. Yang, Y. Chui, CA, 122:82249 (1993). 271. K. Lunkwitz, H. J. Brink, D. Handle, A. Ferse, Radiat. Phys. Chem., 33, 523 (1989). 272. C. Xinfang, Z. Chunshan, Radiat. Phys. Chem., 31, 623 (1988). 273. S. Lora, F. Minto, M. Carenza, G. Palma, A. Faucitanu, Radiat. Phys. Chem., 31, 629 (1988). 274. J. H. Collet, L. Y Lim, P. L. Gould, Polym. Prep., 30, 468 (1989).
S E C T I O N
P H Y S I C A L M
O
N
O
M
E
R
III
P R O P E R T I E S S
A
N
D
S
O
L
O V
E
N
F T
S
P h y s i c a l
P r o p e r t i e s
o f
M o n o m e r s
D a n i e l R. B l o c h Lakeshore Research, 5536 W. Branch Trail, Racine, Wl 53402, USA
A. Introduction B. Tables of Physical Properties Table 1. Acetylenes Table 2. Acid Dichlorides Table 3. Acroleins Table 4. Acrylamides/Methacrylamides 4.1. Acrylamides 4.2. Methacrylamide Table 5. Acrylates/Methacrylates 5.1. Acrylate, Acids/Esters 5.2. Methacrylate, Acids/Esters Table 6. Alcohols 6.1. Alkanediols 6.2. Ether Diols Table 7. AIIyI Functional Table 8. Amines, Difunctional Table 9. Anhydrides 9.1. Monoanhydrides 9.2. Dianhydrides Table 10. Butadienes 10.1. 1,2-Butadienes 10.2. 1,3-Butadienes Table 11. Butenes 11.1. 1-Butenes 11.2. 2-Butenes Table 12. Epoxides 12.1. Monoepoxides 12.2. Diepoxides Table 13. Ethylene Halides Table 14. Fumaric, Acids/Esters Table 15. lsocyanates Table 16. Lactams Table 17. Lactones Table 18. Maleic, Acids/Esters Table 19. Propenes Table 20. Styrenes Table 21. Vinyl Functional 21.1. Aryl 21.2. Esters 21.3. Ethers
111-1 ill-4 III-4 III-4 III-4 III-4 III-4 III-6 III-8 III-8 111-12 111-16 111-16 111-18 111-18 III-20 III-20 III-20 III-24 III-24 III-24 III-24 III-26 III-26 III-26 III-26 III-26 III-28 III-28 III-30 III-30 III-32 IM-32 III-32 III-32 III-34 III-36 III-36 III-36 III-38
21.4. /V-substituted 21.5. Sulfonates
A.
III-38 III-40
INTRODUCTION
This chapter contains some of the principal properties of the more common monomers. The monomers are arranged alphabetically, in groups, with derivatives listed alphabetically within the groups. Compounds are listed under their most commonly used names in polymer chemistry. Therefore, some names are not in agreement with the nomenclature rules of the International Union of Pure and Applied Chemistry. Data are taken from a variety of published literature, including the 3rd edition of the "Polymer Handbook", "The Brandon Worldwide Monomer Reference Guide and Sourcebook", the "Aldrich Catalog Handbook of Fine Chemicals", and "Polysciences Monomers/Polymers, Scientific Polymer Products", "TCI America", "Lancaster and Janssen Chemica" catalogs. Where a range is reported in the literature, the average value is used here for melting points and boiling points. No attempt was made to verify the reported values experimentally. Linear structures are given for most monomers. Molecular formulas are provided when linear structures cannot be unambiguously drawn. Molecular weight is calculated based on the International Atomic Weight values. Boiling point is given in degrees Celsius (0C), at 760mmHg, unless indicated otherwise by the value in mmHg following a slash (/). Melting point is given in degrees Celsius (0C), at 760 mmHg, unless indicated otherwise by the value in mmHg following a slash (/). Refractive index is given at 200C, unless indicated otherwise by the temperature in Celsius following a slash (/). Density is relative to water at 4°C and measured at 200C, unless otherwise indicated by the value following a slash (/). Flash point was determined by the closed-cup method, using a Setaflash apparatus.
RTECS# is the reference to the Registry of Toxic Effects of Chemical Substances. R&S is the reference found in the "Sigma-Aldrich Library of Regulatory & Safety Data", available from Aldrich Chemical Company. FT-NMR is the reference to spectra in the "Aldrich Library of 13C and 1H FT-NMR Spectra", available from the Aldrich Chemical Company. FT-IR is the reference to spectra in the "Aldrich Library of FT-IR Spectra", available from the Aldrich Chemical Company.
Merck Index is the reference to "The Merck Index", Merck & Co., Inc., Whitehouse Station, NJ. Beilstein is the reference to "Beilsteins Handbuch der Organischen Chemie", Springer-Verlag, New York, NY. Fieser is the reference to L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis", John Wiley, New York, NY. Abbreviations: (d) decomposes; (s) sublimes; (aq) aqueous.
B. TABLES OF PHYSICAL PROPERTIES TABLE 1. ACETYLENES Formula RC = CR' Name Acetylene - , Chloro - , Dichloro- , Diphenyl- , Phenyl-
R
CAS Registry Number
R'
-H -Cl -Cl -C 6 H 5 -C 6 H 5
-H -H -Cl -C 6 H 5 -H
74-86-2 501-65-5
MoL wt. 26.04 60.48 94.93 178.23 102.14
Boiling point (0C) -82 -32 60 143
Melting point (0C) - 84(s) -126 -66 170/19
TABLE 2. ACID DICHLORIDES Formula ClC(O)RC(O)Cl Name Adipoyl Azelaoyl Diethylmanoyl Dodecanedioyl Glutaryl Isophthaloyl Malonyl Methylpimeloyl Oxalyl Phthaloyl Pimeloyl Sebacoyl Suberoyl Succinyl Terephthaloyl Thionyl
CAS Registry Number
R -(CH 2 ) 4 -(CH 2 ) 7 -C(CH 2 CH 3 ) 2 -(CH 2 ) 1 0 -(CH 2 ) 3 -C6H4-CH2-(CH 2 ) 2 CH(CH 3 )(CH 2 ) 2 -CO-CO-C6H4-(CH 2 ) 5 -(CH 2 ) 8 -(CH 2 ) 6 -(CH 2 ) 2 -C6H4ClC(S)Cl
111-50-2 123-98-8 54505-72-5 4834-98-4 2873-74-7 99-63-8 1663-67-8 44987-62-4 79-37-8 88-95-9 142-79-0 111-19-3 10027-07-3 543-20-4 100-20-9 7719-09-7
MoI. wt.
Boiling point (0C)
183.03 255.12 197.06 267.20 169.01 203.02 140.95 197.06 126.93 203.02 197.06 239.14 211.09 154.98 203.02 118.97
106/2 166/18 198 140/0.5 217 276 54/19 118/10 61 270 113/5 168/12 162/15 190 266 79
MoI. wt.
Boiling point (0C)
Melting point (0C)
43 -8 12 -2.5 16 80 -105
TABLE 3. ACROLEINS Formula HC(O)CR = CHR' Name Acrolein -, 2-Chloro- , 2-Methyl- , 3-Methyl-, fra/w-(Crotonaldehyde) - , 2-Chloro-3-methyl-
R
CAS Registry Number
R'
-H -Cl -CH 3
-H -H -H
107-02-8
-H -Cl
-CH 3 -CH 3
123-73-9
78-85-3
56.06 90.51 70.09
53 40/30 68
70.09 104.54
148
Melting point (0C) -87 -81 104
TABLE 4. ACRYLAMIDES/METHACRYLAMIDES Name
R
4.1. ACRYLAMIDES H2C=CHC(O)NRR' Acrylamide -H -, Acetyl-, N-C(O)CH3 - , Adamantyl-, N-Ci 0 H 5 -,AlIyI-, N-CH2CH=CH2 - , Benzyl-, N-CH 2 C 6 H 5 - , Butoxymethyl-, N-CH2O(CH2)3CH3 - , terf-Butyl-, N-C(CH 3 ) 3 - , Cyclohexyl-, N-C 6 Hn - , Cystamine-bis-, NJf'-CH 2 CH 2 SSCH 2 CH 2 - , Diacetone-, N-C(CH3)2CH2C(O)CH3 - , Diallyl-, N,N-CH2CH=CH2 - , Di-n-butyl-, N9N-(CH 2 ) 3 CH 3
R' -H -H -H -H -H -H -H -H -H -H -CH2CH=CH2 -(CH 2 ) 3 CH 3
CAS Registry Number
MoI. wt.
79-06-1 1432-45-7 19026-83-6 2555-13-7 13304-62-6 1852-16-0 107-58-4 3066-72-6 60984-57-8 2873-97-4 3085-68-5 2274-13-7
71.08 113.12 205.30 111.14 161.20 157.21 127.19 153.23 260.38 169.23 151.21 183.29
Boiling point (C)
Melting point (0C)
125/25 129 155 120/19 125/0.3
93/0.1 108/3 97/1
70 -9 128 113 123 55
Density (at 200C)
Refractive index (at 200C)
Flash point (°C)
1.000 0.990 0.929
Density (at 200C) 1.259 1.143 1.145 1.069 1.324
R and S
FT-NMR
FT-IR
Fieser 1,11
1(2),2711I
Refractive index (at 200C) 1.4700 1.4680 1.4590 1.4680 1.4720
1.631
1.5190
1(3), 533A
1(2),946B
Refractive index (at 200C)
Flash point (0C) >110 >110 74 >110 107 180 47 >110 None >110 >110 >110 >110 77 180 None
RTECS Number
R and S
WN4900000 WZ1797000 XM515OOOO
1(1), 867J 1(1),869C 1(1),867G 1(1),869E 1(1),867I 1(2),1981H 1(1),867F 1(1),867K 1(1),867D 1(2),1981G 1(1),869A 1(1),869D 1(1),869B 1(1),867H 1(2),1981I 1(2),3197F
Flash point (°C)
RTECS Number
R and S
NT2625000 KI2950000
FT-NMR
FT-IR
11,9428
1(1),1211B 1(1)1212C 1(1),1212A
5,656
1,335
Beilstein
Fieser
1(1),1211A 1(1),1212B
1(1),1211C
FT-NMR
l(l),740D 1(2),352A l(l),740A 1(1),741B 1(1),739C 1(2),351D 1(1),741C 1(1),742B 1(1),741D l(l),740C 1(2),352B 1(2),1227B
FT-IR
-19
AS105000
1(1),515A
1(1),733B
l(l),470D
-16
OZ2625000
1(1),515B
1(1),733C
1(1),471A
0.846 1.478
1.4365
9
GP9625000
1(1),515G
RTECS Number
R and S
AS3325000
1(1),877K
Flash point (°C)
1.122
1.4620
> 110
>110
1(1),472C
FT-NMR 1(1),1221A
2,653 2,709 2,687 2(4),2127 2,634 9,834 2(1),252
l(l),740B
1.4025 1.463 1.4160
Refractive index (at 200C)
Merck
1(1),741A
0.839 1.199 0.847
0.9790
Beilstein
1.548
1.4650 1.4720 1.4290 1.5684 1.4690 1.4680 1.4680 1.4680
Density (at 200C)
Merck
AO9600000
1.449 1.217 1.455 1.409 1.205 1.121 1.172 1.407
Density (at 200C)
RTECS Number
FT-IR 1(1),749B
11,6867 11,7439
11,8844 11,9278
Merck 11,122
13,297
Beilstein
Fieser
1,725
10,2
11,2599
Merck 11,123
1,728
Beilstein 2,400
4(4),664 1(1),887I
1(1),1236A
l(l),750C
17,241 14,263
1(3),2981
AS3450000 AS3460000 AS3475000
2,542 9,805 2,671 2,719 2,694 2,613 9,844
12,291
11,2943
Fieser
TABLE 4.
cont'd
- , Diethyl-, N9N- , 1,2-Dihydroxyethylenebis-,N,N' - , Diisopropyl-, N,N- , 4,4-Dimethoxybutyl-, N- , Dimethyl-, N9N- , 3-(Dimethylamino)propyl-, N-, l,l-Dimethyl-2sulfoethyl-, N-(AMPS) - , Diphenylmethyl-,7V- , Ethylenebis-,WV'- , Ethylhexyl-,iV- , 2-Glycolic acid, N- , 2-Glycolic acid methyl ester, N- , Hexamethylenebis-, N,Nf - , tert-Hexyl-, N- , Hydroxymethyl-, N- (solution) - , Isobornyl-, N-, Isobutoxymethyl-, N-, Isopropyl-, N-, Isopropylidenebis-, N9N1- , 3-Methoxypropyl-, N- , Methyl-, N- , Methylenebis-, N,Nf- , (1-Methoxy) - , (Methoxy)acetoxymethyl-, N- , Morpholinoethyl-, N- , 1-Naphthyl-, N- , Octadecyl-, N- , Octamethylenebis-, NJ*'- , tert-Octyl-, N- , Phthalamidomethyl-, N- , 2,2,2-Trichloro-lhydroxyethyl-, N- , Tri(hydroxymethyl)methyl-, N -, 1,1,3-Trimethylbutyl-, N- , Trimethylenebis-, N,N'- , Triphenylmethyl-, N4.2.
R;
R
Name
Boiling point (0C)
CAS Registry Number
MoI. wt.
2675-94-7 868-63-3
127.19 200.19
93/19 54/0.4 135/0.7 82/21 117/2
Melting point (0C)
-CH 2 CH 3 -CH(OH)CH(OH)-
-CH 2 CH 3 -H
-CH(CHs) 2 -(CH 2 ) 3 CH(OCH 3 ) 2 -CH3 -(CH 2 ) 3 N(CH 3 ) 2
-CH(CH 3 ), -H -CH3 -H
44975-46-4 38486-53-2 2680-03-7 3845-76-9
155.24 187.24 99.13 156.23
-C(CH 3 ) 2 CH 2 SO 3 H
-H
15214-89-8
207.25
-CH(C 6 H 5 ), -CH2CH2-CH 2 CH(CH 2 CH 3 ) (CH 2 ) 3 CH 3 -CH(OH)C(O)OH -CH(OH)C(O)OCH3
-H -H -H
10254-08-7 2956-58-3 91625-16-0
237.30 168.20 183.30
-H -H
6737-24-2 77402-03-0
163.13 173.17
-(CH2)6-
-H
7150-41-6
224.28
135
-CH 2 CH 2 C(CH 3 ), -CH 2 OH
-H -H
51330-07-5 924-42-5
155.24 101.11
100
- C H)H 17
-CH 2 OCH 2 CH(CH 3 ) 2 -CH(CH 3 ), -C(CH3)2-
-H -H -H -H
17159-04-5 16669-59-3 2210-25-5
207.31 157.21 113.16 182.22
-(CH 2 ) 3 OCH 3 -CH3 -CH2-
-H -H -H
107374-86-7 1187-59-3 110-26-9
143.19 85.11 154.17
-C(OCH 3 )C(O)OCH 3
-H
77402-03-0
173.17
-CH 2 CH 2 NC 4 H 8 O -Ci0H7 -(CH 2 ) 17 CH 3 -(CH2)8-
-H -H -H -H
5117-12-4 22302-62-1 1506-54-3 2945-02-0
141.17 197.24 323.56 252.35
-(CH 2 ) 4 C(CH 3 ) 3 -CH 2 NC 8 H 4 O 2 -CH(OH)CCl 3
-H -H -H
4223-03-4 80500-94-3
183.29 230.22 218.47
58 190 170
-C(CH 2 OH) 3
-H
13880-05-2
175.18
139
-C(CH 3 ) 2 CH 2 CH(CH 3 ) 2 -(CH2),-C(C 6 H 5 ),
-H -H -H
25269-93-6 4887-13-2 102548-89-0
169.27 182.22 313.40
156(d)
18
195(d)
178 140
123/0.5 95 74
135
108 90/2
61 210
99/0.3 106/4 >300 73
158/50
125/25
>110 138 75 138
55 112 204
METHACRYLAMIDES H2C=C(CH3)C(O)NRR'
215 76/1.2
Methacrylamide - , Acetyl-, N- , Acetylphenyl-, N- , AlIyI-, N- , 3-Aminopropyl-, N-, hydrochloride - , Benzyl-, N-, Bis(diethylaminoethyl)-, N9N- , Butoxymethyl-, N-
-H -C(O)CH 3 -C 6 H 4 C(O)CH 3 -CH 2 CH=CH 2 -(CH 2 ) 3 NH 2 HC1
-H -H -H -H -H
79-39-0 44810-87-9 58813-69-7 2186-33-6 72607-53-5
85.11 127.14 203.24 125.17 178.66
-CH 2 C 6 H 5 -CH 2 CH 2 N(CH 2 CH 3 ) 2
3219-55-4 76392-05-7
175.23 183.28
122/0.4
-CH 2 O(CH 2 ) 3 CH 3
-H -CH 2 CH 2 N(CH 2 CH 3 ), -H
171.24
105/0.3
-, ^rr-Butyl-, N- , 2-Cyanoethyl-, N- , 2-Cyanoethyl-, N-, methyl-, N
-C(CH 3 ), -CH 2 CH 2 CN -CH 2 CH 2 CN
-H -H -CH3
5153-77-5 28384-61-4 6554-73-0 24854-94-2
142.20 138.17 152.20
163
109 138 138
90/2.2 124 82
113/1
60 46 46
Density (at 200C)
0.962 0.949
Refractive index (at 200C)
1.4730 1.4820
Flash point (0C)
71 > 110
RTECS Number
AU3230000
160
R and S
FT-NMR
1(1),885K
1(1),1233C
1(1),893I
1(1),1244C
l(l),1065K
1(1),1438C
FT-IR
1(3),784B
1(1),915E 1(1),913D
1(1),885J
1.074
1.4130
None
AS3600000
0.970
1.4610
79
AS3630000 AS3675000
1.122
1.5120
Beilstein
4(3),130 4(4), 1268
4(3),526
1(1),883K
AI8967330
Merck
1(1),1276B 1(1),1272B
1(1),781A
l(l),750A
2(4), 1472
4(4),517
AS3678000
1(1),883J
l(l),1230C
AI8967330
1(1),913D
1(1),1272B
> 110
1(1),749D
1.10
UC6475000
1(1),883M
1(1),1231B
1(1),877L
1(1),1221B
27(4),278
2(2),399 1.4702 0.96
1.46
1.4755
122
1(1),749C
Fieser
TABLE 4.
cont'd R
Name -, -, -, -, -, -, -, -, -, -, -, -,
Cyclohexyl-, NDiallyl-, N,NDibenzyl-, N,NDibutyl-, NJf3-Di(butyl)aminopropyl-, NDiethyl-, NJf3-(Diethylamino)propyl-, NDiisopropyl-, NJf2,2-Dimethoxyethyl-, NDimethyl-, NJf2-(Dimethylamino)ethyl-, N3-(Dimethylamino)propyl-, N- , Dodecyl-, N-, Ethylenebis-, NJf'- , 2-Ethylhexyl-, N-, 2-Hydroxyethyl-, N- , Hydroxymethyl-, N- , 4-Hydroxyphenyl-, N- , Isobutoxymethyl-, Af- , Isopropyl-, N-, Methoxymethyl-, N- , Methyl-, N- , Methylenebis-, NJf'- , Methyl-, N-, Phenyl-, N-, Methyl-, N-, 2,2-dimethoxyethyl-, N-, 3-(Af-morpholino)propyl-, A^- , 2-(2-Oxo-l-imidazolidinyl)ethyl-, N- , Phenyl-, N- , Phenyl-, N-, Phenylethyl-, N-, 3-(Trifluoromethyl)phenyl-, A^- , 3-(Trimethylammonium)propyl-, chloride, N- (eq. solution)
TABLE 5.
-C6Hn -CH2CH=CH2 -CH 2 C 6 H 5 -(CH 2 ) 3 CH 3 -(CH2)3N((CH2)3CH3)2 -CH 2 CH 3 -(CH 2 ) 3 N(CH 2 CH 3 ) 2 -CH(CH 3 ) 2 -CH2CH(OCH3)2 -CH 3 -CH 2 CH 2 N(CH 3 ) 2 -(CH 2 ) 3 N(CH 3 ) 2
-H -CH2CH=CH2 -CH 2 C 6 H 5 -(CH 2 ) 3 CH 3 -H -CH 2 CH 3 -H -CH(CH 3 ) 2 -H -CH 3 -H -H
-(CH 2 )nCH 3 -CH 2 CH 2 -CH2CH(CH2CH3)(CH2)3CH3 -CH2CH2OH -CH 2 OH -C 6 H 4 OH -CH2OCH(CH3)2 -CH(CH 3 ), -CH 2 OCH 3 -CH 3 -CH2-CH 3 -CH 3
-H -H -H -H -H -H -H -H -H -H -H -C 6 H 5 -CH2CH(OCH3)2
-(CH 2 ) 3 NC 4 H 4 O -CH 2 CH 2 C 3 H 5 N 2 O
CAS Registry Number 2918-67-4 13169-99-8 57625-30-6 22240-86-4 76392-03-5 5441-99-6 51745-62-1 95984-11-5 6976-91-6 13081-44-2 5205-93-6
MoL wt. 167.25 197.32 265.36 197.32 253.41 141.21 197.30 169.27 173.21 113.16 156.34 170.26
Boiling point (0C)
Melting point (°C) 102
50/1.1 41 81/0.8 125/0.13 82/7 134/10 47 27 66/10 87/1.8 134/2
1191-39-5 6117-25-5 5238-56-2 923-02-4 19243-95-9 4548-27-0 13749-61-6 3644-12-0 3887-02-3 2359-15-1 2918-73-2 95984-81-9
253.43 196.25 197.32 129.16 115.13 177.20 171.24 127.19 129.16 99.13 182.22 238.31 187.24
110/0.3 147/1.2 ca. 100 127/5 112/115 80.03 88/3.5
-H -H
55937-58-1 3089-19-8
212.30 197.24
150/0.08 100
-C 6 H 5 -C 6 H 5 -C 6 H 4 CF 3
-H -CH 2 CH 2 C 6 H 5 -H
1611-83-2 76392-02-4 783-05-1
161.20 266.37 229.20
84 63 95
-(CH 2 ) 3 N(CH 3 ) 3 HC1
-H
51410-72-1
220.74
-22.5
CAS Registry Number
MoL wt.
-H -CH2CH=CH2 -C(O)CH=CH2 -CH 2 C 6 H 5 -C 6 H 4 C 6 H 5 (-(CH2CH2OC6H4)2C(CH3)2 (-CH2CH(OH)CH2OC6H4)2C(CH3)2
79-10-7 999-55-3 2051-76-5 2495-35-4 13026-23-8 64401-02-1 4687-94-9
72.06 112.13 126.11 162.19 226.27 424 484.55
H2C=CBrC(O)OH BrCH=CHC(O)OH H2C=CBrC(O)OCH2CH3 -CH 2 CH 2 Br H2C=C(CH2Br)C(O)OH H2C=C(CH2Br)C(O)OCH2CH3 H2C=C(CH2Br)C(O)OCH3 -CH 2 CH 2 CH(CH 3 )-(CH 2 ) 4 -CH 2 CH=CHCH 2 -
10443-65-9 1609-92-3 4519-46-4 4823-47-6 72707-66-5 17435-72-2 4224-69-5 19485-03-1 1070-70-8
150.97 150.96 164.99 179.03 164.99 193.05 179.02 198.22 198.22 127.16
145/0.08
88/2 72/2
170 -37 154 90 164 50
ACRYLATES/METHACRYLATES
R
Name 5.1.
R'
Boiling point (0C)
Melting point (0C)
139 123 97/35 110/8
13
ACRYLATE, ACIDS/ESIPERS H2C = CHC(O)OR
Acid Allyl ester Anhydride Benzyl ester 4-Biphenylyl ester Bisphenol A ethoxylate diester Bisphenol A diglycidyl ether diester 2-Bromo3-Bromo-, cis2-Bromo-, ethyl ester 2-Bromoethyl ester 2-Bromomethyl2-Bromomethyl-, ethyl ester 2-Bromomethyl-, methyl ester 1,3-Butylene diester 1,4-Butylene diester 2-Butylene-l,4 diester
224
63 63 72/78 52/5 70 86/20 36/1.3 73/0.1 83/0.3 60/23
Density (at 200C)
Refractive index (at 200C)
Flash point (0C)
RTECS Number
R and S
FT-NMR
FT-IR
Merck
Beilstein
Fieser
1.4731
0.940
1.4600 1.4744 1.4790
140
1.5002 1.100 0.97
1.4300 1.46
>110
UC6380000
107 4(3),276
SI1225000 1.4707 1.4740 0.97
1.4560
>110
1.110
1.427 1.053
Density (at 200C)
1.051 0.880
Refractive index (at 20°C)
Flash point (0C)
54 8
1.0573
1.4202 1.4320 1.4487 1.5143
101
1.146 1.180
1.5450 1.5570
> 110 > 110
RTECS Number
R and S
AS4375000
1(1),547A
FT-NMR
1(1),776A
FT-IR
1(1),498B
1.4770
1.388 1.489 1.030 1.051 0.9344
1.478 1.490 1.4500 1.4560 1.4422
78 93 >110
AS4900000 AS5250000 UD3130000
11,124 2,400
Beilstein
2,397
2,402 2(4), 1486
1(1),563H 1(1),563I 1.4774
Merck
1(1),563K
l(l),806C
1(1),516C
1(1),745J
l(l),1031C
1(3),696D 2(4), 170
Fieser
TABLE 5.
Name
cont'd
R
2-(2-Butoxyethoxy)ethyl ester -CH2CH2OCH2CH2O(CH2)3CH3 2-Butoxyethyl ester -CH2CH2O(CH2)SCH3 w-Butyl ester -(CH 2 ) 3 CH 3 s-Butyl ester -CH(CH3)CH2CH3 f-Butyl ester -C(CH 3 ) 3 2-ChloroH2C=CClC(O)OH 2-Chloro-, butyl ester H2C=CC1(O)O(CH2)3CH3 2-Chloro-, ethyl ester H2C=CClC(O)OCH2CH3 2-Chloro-, methyl ester H2C=CClC(O)OCH3 3-Chloro-, cisClCH=CHC(O)OH 3-Chloro-, transClCH=CHC(O)OH 2-Chloroethyl ester -CH2CH2Cl Cinnamyl ester -CH2CH=CHC6H5 Crotyl ester -CH2CH=CHCH3 2-Cyano-, butyl ester H2C=C(CN)C(O)O(CH2)3CH3 2-Cyano-, ethyl ester H2C=C(CN)C(O)OCH2CH3 2-Cyano, isobutyl ester H2C=C(CN)C(O)OCH2CH(CH3)2 2-Cyanoethyl ester -CH2CH2CN Cyclohexyl ester -C 6 H 1 1 Cyclopentyl ester -C 5 H 9 rc-Decyl ester -(CH 2 ) 9 CH 3 2,3-Dibromopropyl ester -CH2CHBrCH2Br 2,3-Dichloropropyl ester -CH2CHCICH2Cl Dicyclopentenyl ester -C1OH13 Dicyclopentenyloxyethyl ester -CH2CH2OC 10H 13 2-(Diethylamino)ethyl ester -CH2CH2N(CH2CH3)2 3-(Diethylamino)propyl ester -(CH 2 ) 3 N(CH 2 CH 3 ) 2 Di(ethylene glycol) diester -CH 2 CH 2 OCH 2 CH 2 Dihydrodicyclopentadienyl estei -C1OH15 2,3-Dihydroxypropyl ester -CH2CH(OH)CH2OH 2-(Dimethylamino) ethyl ester -CH 2 CH 2 N(CH 3 ) 2 3-(Dimethylamino) neopentyl - CH2C(CH3)2CH2N(CH3)2 ester 3-(Dimethylamino) propyl ester -(CH 2 ) 3 N(CH 3 ) 2 Dipentaerythritol pentaester (-CH2)3CCH2OCH2C(CH2OH)(CH2-)2 Di(propylene glycol) diester -CH2CH(CH3)OCH2CH(CH3)Di(trimethylolpropane) tetraester ((-CH2)2C(CH2CH3)CH2)2O Dodecyl ester -(CH 2 ) n CH 3 1H,1H,1 lH-Eicosafluoro-CH 2 (CF 2 ) 9 CHF 2 undecylester 2-(2-Ethoxyethoxy)ethyl ester -(CH2CH2O)2CH2CH3 2-Ethoxyethyl ester -CH2CH2OCH2CH3 Ethyl ester -CH 2 CH 3 Ethylene diester -CH 2 CH 2 2-Ethylhexyl ester -CH2CH(CH2CH3)(CH2)3CH3 Furfuryl ester -CH 2 C 4 H 3 O Glycidyl ester -CH 2 CH(-O-)CH 2 Glycerol propoxylate triester -CH(CH3)CH2OCH(CH2OCH2CH(CH3)-)2 1H,1H,2H,2H-Heptadecafluoro- -CH 2 CH 2 (CF 2 ) 7 CF 3 decyl ester 1H, 1 H-Heptafluorobutyl ester -CH 2 CF 2 CF 2 CF 3 Heptyl ester -(CH 2 ) 6 CH 3 Hexadecyl ester -(CH 2 ) 15CH3 2,2,3,4,4,4-Hexafluorobutyl este:r -CH2CF2CHFCF3 lH-Hexafluoroisoporpyl ester -CH(CF 3 ), Hexanediol diester -(CHa) 6 n-Hexyl ester -(CH 2 ) 5 CH 3 4-Hydroxybutyl ester -(CH 2 ) 4 OH 2-Hydroxyethyl ester -CH2CH2OH 2-Hydroxy-3-phenoxypropyl -CH2CH(OH)CH2OC6H5 ester 2-Hydroxypropyl ester -CH2CH(OH)CH3 Isobornyl ester -C 10 H 18 Isobutyl ester -CH2CH(CH3)2
CAS Registry Number
MoI. wt.
Boiling point (0C)
Melting point (0C)
4074-88-8 12542-30-2 10095-20-2 2439-35-2 20166-73-8
232.28 172.22 128.17 128.17 128.17 106.51 162.62 134.56 120.54 106.51 106.51 134.57 188.23 126.16 153.18 125.13 153.18 125.13 154.21 282.38 212.34 271.94 183.04 202.25 248.32 171.27 185.27 214.22 204.27 146.15 143.19 181.24
18526-07-3 60506-81-2 85136-76-1 94108-97-1 2156-97-0 4998-38-3
157.22 524.53 242.27 466.53 240.39 586.17
7328-17-8 106-74-1 140-88-5 2274-11-5 103-11-7 10525-17-4 106-90-1 52408-84-1 27905-45-9
188.23 144.17 100.12 170.16 184.28 152.15 128.13 428 518.10
250 65/16 99 67/2 217 92/16 115/78
424-64-6 2499-58-3 13402-02-3 54052-90-3 2160-89-6 13048-33-4 2499-95-8 2478-10-6 818-61-1 16969-10-1
254.11 170.25 296.50 236.11 222.09 226.28 156.23 144.17 116.11 222.24
121/743 56/1 170/15 48/12 84 295 190 95/0.1 90/12
-101
999-61-1 5888-33-5 106-63-8
130.15 208.30 128.19
77/15 275 132
-92 -15 -61
7251-90-3 141-32-2 2998-08-5 1663-39-4 26952-44-3 13401-85-9 687-46-7 80-63-7 1609-93-4 2345-61-1 2206-89-5 23916-33-8 6606-65-1 7085-85-0 1069-55-2 106-71-8 3066-71-5 16868-13-6 2156-96-9 19660-16-3 24910-84-7 33791-58-1 65983-31-5 2426-54-2
103/23 63/2 145 59/25 30/25 176(d) 100/42 41/20 52/50
-64 60
61 84 64/20 105/2 38/10 92/6 90/5 81/4 103/8 183 145/0.08 185/50 105/6 58/0.5 105/4 100/0.5 171.27 44/0.1 162 119/5 115/0.1 64/12 53/1.4
-17 -17
<-60 -40 <-60
167 95/0.5 120/1 115/1
49
-72 -90
100/4
-45
Density (at 200C) 0.9821 0.9497 0.894 0.8114 0.8850
Refractive index (at 200C) 1.4394 1.4323 1.4180 1.4140 1.4108
Flash point (0C) 90 39
RTECS Number
R and S
UD3150000
1(1),719E
1(1),974A
1(1),642A
1(1),719F
1(1),974B
1(3),674D
2(3),1228
1(1),563F 1(1),563G
l(l),805C l(l),806A
1(1),516A 1(1),516B
2,400 2,400
FT-NMR
FT-IR
Merck
11,1539
Beilstein
Fieser
2(2),388
17 1.1404 1.189
1.4384 1.4420 33
AS5960000
1.1404 1.0495
1.4384 1.5660
0.986 1.069
1.4420
99 108
1.0690 0.975
1.4433 1.4673
124 29
0.8781 1.7803 1.2603
1.440 1.5520 1.4765
227
1.085 0.9250 0.9180 1.118 1.08
1.5010 1.443 1.441 1.4630 1.509
99 68
AS8225000
> 110
AS9450000
0.943 0.90
1.4380 1.439
58 75
AS8578000
0.928 1.1915
1.4400
68 115
1.101 0.884
1.4488 1.4790 1.4450
3(3),543
AT1500000 AS7350000
1(1),771G
l(l),1073C
1(3),734A
4(3),649
> 110 > 110
2(3), 1230
1.016 0.9819 0.924 1.090 0.8859 1.1125 1.099 1.064
1.4390 1.4282 1.4060 1.4610 1.4360 1.4800 1.4490 1.4610 1.3380
102 65 15 100 79
AS9800000 AT0700000 AT0350000 AT0855000
76
AS9275000
1.418 0.8846 0.8620 1.398 1.330 1.010 0.8882 1.039 1.011 1.160
1.3301 1.4311 1.4470 1.352 1.3190 1.4562 1.4280 1.4520 1.4502 1.5280
31 59 10 > 110 68 > 110 98 89
1.05 0.986 0.8896
1.4448 1.4760 1.4140
65 93 33
1(1),719D 1(1),727M 1(1),719G
1(1),973C 1(1),974C
1(1),638C 1(3),675B 1(3),675A
11,3715
2(3),1232 2(3), 1232 2,399 2(4), 1496 2(3),1229
1(1),1O88C 17(3), 1005
2(4), 1464
AT1430000 AT1450000
1(1),745C 1(1),729E
l(l),1029B
1(1),753L 1(1),753J
l(l),1044C l(l),1044A
1(1),639B l(3),720C l(3),720B
2(3), 1228 2(4), 1470 2(4), 1496
AT1750000 1(1),719H 2(3),1227 AT2100000
6,251
TABLE 5.
cont'd
Name
R
Isodecyl ester -(CH 2 )7CH(CH 3 ) 2 Isooctyl ester -(CH 2 )5CH(CH 3 )2 Isopropoxyethyl ester -CH 2 CH 2 OCH(CH 3 )S Isopropyl ester -CH(CH 3 ) 2 Methallyl ester -CH 2 C(CH 3 )=CH 2 2-(2-Methoxyethoxy) ethyl ester - C H 2 C H 2 O C H 2 C H 2 O C H 3 2-Methoxyethyl ester -CH 2 CH 2 OCH 3 Methyl ester -CH3 2-Methylbutyl ester -CH 2 CH(CH 3 )CH 2 CH 3 2-(A^Morpholino)ethyl ester -CH 2 CH 2 NC 4 H 8 O 1-Naphthyl ester -Ci0H7 2-Naphthyl ester -Ci0H7 Neopentyl ester -CH 2 C(CH 3 ) 3 Neopentyl glycol diester -CH 2 C(CH 3 ) 2 CH 2 Nonyl ester -(CH 2 ) 8 CH 3 Octadecyl ester -(CH 2 ) I 7 CH 3 1H,1H,5H-Octafluoropentyl ester -CH 2 (CF 2 ) 3 CF 2 H rc-Octyl ester -(CH 2 ) 7 CH 3 1H,1H-Pentadecafluorooctyl ester-CH 2 (CF 2 ) 6 CF 3 Pentaerythritol tetraester (-CH 2 ) 4 C Penterythritol triester (-CH 2 ) 3 CCH 2 OH Pentaerythritol stearate diester (-CH 2 ) 2 C(CH 2 OH)CH 2 OC(O)(CH 2 )I 6 CH 3 2,2,3,3,3-Pentafluoropropyl e s t e r -CH 2 CF 2 CF 3 1,5-Pentanediol diester -(CH2)5w-Pentyl ester -(CH 2 ) 4 CH 3 2-Phenoxyethyl ester -CH 2 CH 2 OC 6 H 5 Phenyl ester -C6H5 1,4-Phenylene diester -C6H41,4-Phenylene di(acrylic acid) C 6 H 4 (CH=CHC(O)OH) 2 2-Phenylethyl ester -CH 2 CH 2 C 6 H 5 Trimethyl 2-phosphonoacrylate (CH 3 O) 2 P(O)C(C(O)OCH 3 )=CH 2 Propargyl ester - C H 2 C = CH w-Propyl ester -CH 2 CH 2 CH 3 1,2-Propylene glycol diester -CH 2 CH(CH 3 )1,3-Propylene glycol diester -(CH2)3Tetradecyl ester -(CH 2 )I 3 CH 3 Tetra(ethylene glycol) diester -(CH 2 CH 2 O) 3 CH 2 CH 2 2,2,3,3-Tetrafluoropropyl ester -CH 2 CF 2 CF 2 H Tetrahydrofurfuryl ester -C5H^ S,S'-Thiodi-l,4-phenylene dithiol - S C 6 H 4 S S C 6 H 4 S diester 2,3,3-TrichloroClCH 2 =CC1C(O)OH Tridecyl ester -(CH 2 ) I 2 CH 3 Tri(ethylene glycol) diester -(CH 2 CH 2 O) 2 CH 2 CH 2 2,2,2-Trifluoroethyl ester -CH2CF3 l,l,l-Tri(2-hydroxyethoxy(-CH 2 CH 2 OCH 2 ) 3 CCH 2 CH 3 methyl)propane triester Tri(2-hydroxyethyl) isocyanurate (-CH 2 CH 2 ) 3 C 3 N 3 O 3 triester 3,5,5-Trimethylcyclohexyl ester -C 6 H 8 (CH 3 ) 3 3,5,5-Trimethylhexyl ester -(CH 2 ) 2 CH(CH 3 )CH 2 C(CH 3 ) 3 Trimethylolpropane triester (-CH 2 ) 3 CCH 2 CH 3 Trimethylolpropane ethoxylate ((-CH 2 CH 2 O) X CH 2 ) 3 CCH 2 CH 3 triester Tri(propylene glycol) diester (-CH2(CH3)CH2O)2CH2CH(CH3)Vinyl ester -CH=CH 2
5.2.
CAS Registry Number
MoI. wt.
Boiling point ( 0 C)
25151-33-1 21643-42-5 17831-71-9 7383-71-3 2399-48-6 129283-82-5
212.34 184.25 159.21 114.14 126.16 174.20 130.14 86.09 142.20 185.2 198.22 198.22 142.24 212.25 198.31 324.55 286.12 184.28 454.13 352.34 298.30 510.72 204.10 212.25 142.20 192.21 148.16 218.21 218.21 176.22 194.13 110.11 114.14 184.19 184.19 268.44 302.33 186.11 156.18 386.56
2257-35-4 3076-04-8 1680-21-3 407-47-6 28961-43-5
175.40 254.41 258.30 154.09 428.48
40220-08-4
423.38
86178-38-3 2664-55-3 15625-89-5 28961-43-5
196.29 198.31 296.32 ca. 428
42978-66-5 2177-18-6
300 98.10
>120/l 91
79-41-4 21282-97-3 96-05-9 760-93-0 6498-81-3
86.09 214.22 126.16 154.17 155.20
163 274 60/43 200 190
1330-61-6 29590-42-9 689-12-3 818-67-7 7328-18-9 3121-61-7 96-33-3 19727-38-9 20069-66-3 52684-34-1 4513-36-4 2223-82-7 4813-57-4 376-84-1 2499-59-4 307-98-2 4986-89-4 3524-68-3 92092-01-8 356-86-5 36840-85-4 2998-23-4 48145-04-6 937-41-7 6729-79-9 16323-43-6 3530-36-7 55168-74-6 10477-47-1 925-60-0
121/10 125/20 82/19 51/103 70/50 86/4.6 56/12 80 63/27 67/0.2 212/1 138/0.4 31/3 105/5 76/0.2 160/3 88/41 57/0.05 65/5 >315
Melting point (0C) -100
-75
32
18 15 30
50/100 94/0.3 47/7 103/0.6 87/12 88 >300 104/5 91/0.1 138 43/40 63/0.3 122/0.5 138/0.4 >120/0.3 132 87/9
<-60 64 72
150/10 125/0.2 92 157 97 40/0.1 58/0.8 316 157
-34
<-20
METHACRYLATE, ACIDS/ESTERS (H 2 C=C(CH 3 )C(O)OR)
Acid 2-(Acetoacetoxy)ethyl ester AUyI ester Anhydride 2-(l-Aziridinyl)ethyl ester
-H -CH 2 CH 2 C(O)OCH 2 C(O)CH 3 -CH 2 CH=CH 2 -C(O)C(CH 3 )=CH 2 -CH 2 CH(-NH-)CH 2
16
-20
Density (at 200C)
Refractive index (at 200C)
0.875 0.880 0.9549 0.8932 0.9285 1.0421 1.012 0.956 0.8883 1.0711
1.4420 1.4370 1.4258 1.4060 1.4372 1.4392 1.4272 1.4020 1.4800 1.4728
0.859 1.030 0.875 0.800
1.4530 1.4375
0.8810 1.63 1.190 1.180 1.018 1.32 0.8920 1.104
Flash point (0C)
RTECS Number
106 80
AT2190000 UD3391000
60 7
KL6000000 AT2800000
>37 123
AS8925000
R and S
1(1),719C
FT-NMR
1(1),973B
FT-IR
1(1),638B
Merck
11,5935
190 70
Beilstein
2(3),1232 3,638B
2(4), 1468
1.3467 1.4350 1.3279 1.4870 1.4840
170 > 110
UD3370000
1.3363 1.4551 1.4240 1.5180
> 110
KM0700000
6(3),572
1(2),1775F
1(2), 1050A
l(l),1109B
1(1),1489B
1(1),759E 1(1),745A
l(l),1053B
1(1),743M
l(l),1028C 1(1),999C
1.249
1.4540
105
0.9078
0.8700 1.110 1.317 1.063
1.4130 1.4470 1.4529 1.4468 1.4638 1.3629 1.4580
>110 45 >110
1.099 1.216 1.110
1.4609 1.3506 1.4710
63 12 >110
KM2890000
0.9292 0.875 1.100 1.110
1.455 1.4370 1.4736 1.4720
88 89 >110 86
UD3643625 AT4810000 KM2890000
1(1),729F
1.030 0.942
1.4500 1.4320
AT4690000
1(1),729A
2
1.015 1.122 0.934 1.035
1.432 1.4560 1.4360 1.454
76 106 34 83
OZ2975000
1(1),547B 1(1),791E 1(1),721E 1(1),831C
AS8100000
UD3483000 OZ5700000
1(1),639C
1(1),753I
9,914
1(2),179B
4(4),3638
1(1),639A 17(3),1104 17(3),1104
2(4), 1462
1(3),696C
2(3),1230 l(l),640A 1(1),999C 1(1),638D
1(1),776B l(l),1107C 1(1),977A l(l),1170C
1(1),499C 1(1),641B
11,5849
2,421 2(3), 1290 2(3),1293 6(3),1481
Fieser
17,183
TABLE 5.
cont'd
Benzyl ester Bisphenol A diester Bisphenol A tetraethoxylate diester 2-Bromoethyl ester 1,3-Butylene diester 1,4-Butylene diester 2-Butoxyethyl ester «-Butyl ester s-Butyl ester tert-Butyl ester 7V-te/?-Butyl-2-aminoethyl ester 2-Chloro-2-hydroxypropyl ester 2-Chloroethyl ester Chloromethyl ester Cinnamyl ester Chloride 2-Cyanoethyl ester 1,4-Cyclohexanediol diester Cyclohexyl ester Decanediol diester Decyl ester 2,3-Dibromopropyl ester 2-(Dibutylamino)ethyl ester Dicyclopentenyl ester Dicyclopentenyloxyethyl ester 2-(Diethylamino) ethyl ester 3-(Dimethylamino) propyl ester Di(ethylene glycol) diester 3,4-Dihydroxybutyl ester 2,3-Dihydroxypropyl ester 2-(Dimethylamino) ethyl ester Diurethane diester (isomers) IH, 1H,7H-Dodecafluoroheptyl ester Dodecanediol diester Dodecyl ester 2,3-Epithiopropyl ester 2,3-Epoxybutyl ester 3,4-Epoxybutyl ester 2,3-Epoxyopropyl ester 4-Ethoxybutyl ester 2-Ethoxyethyl ester Ethyl ester Ethyl 2-bromomethyl- ester 2-Ethylbutyl ester 1,2-Ethylene diester 2-Ethylhexyl ester 2-(Ethylthio)ethyl ester Ethyl 2-(trimethoxysilylmethyl-) ester Furfuryl ester Glycerol diester Glycerol triester Glycidyl ester 1H,1H,2H,2H-Heptadecafluorodecyl ester 1H, 1 H-Heptafluorobutyl ester Heptyl ester 1,6-Hexanediol diester 2,2,3,4,4,4-Hexafluorobutyl ester lH-Hexafluoroisopropyl ester Hexyl ester
Boiling point ( 0 C)
CAS Registry Number
MoI. wt.
-CH2C6H5 —C 6 H 4 C(CH 3 ) 2 C 6 H 4 — ((-CH 2 CH 2 O) 2 C 6 H 4 )SC(CHs) 2
2495-37-6 3253-39-2 41637-38-1
176.22 364.44 452.55
-CH 2 CH 2 Br -CH 2 CH 2 CH(CH 3 )-(CHz)4-CH 2 CH 2 O(CH 2 ) 3 CH 3 -(CH 2 ) 3 CH 3 -CH(CH 3 )CH 2 CH 3 -C(CH 3 ) 3 -CH 2 CH 2 NHC(CH 3 ) 3 -CH 2 C(OH)ClCH 3 -CH 2 CH 2 Cl -CH 2 Cl -CH 2 CH=CHC 6 H 5 CH 2 =C(CH 3 )C(O)Cl -CH 2 CH 2 CN -C6HiO-
4513-56-8 1189-08-8 2082-81-7 13532-94-0 97-88-1 2998-18-7 585-07-9 3775-90-4 13159-52-9 1888-94-4 27550-73-8 31736-34-2 920-46-7 4513-53-5 38479-34-4 101-43-9 6701-13-9 3179-47-3 3066-70-4 2397-75-3 31621-69-9 68586-19-6 105-16-8 17577-32-1 2358-84-1 62180-57-8 5919.74.4 2867-47-2 72869-86-4 2261-99-6
193.05 226.28 226.28 186.25 142.20 142.20 142.20 185.27 178.62 148.60 146.57 202.25 104.54 139.16 252.31 168.24 310.44 226.36 285.96 241.38 218.30 262.35 185.28 199.30 242.27 174.20 160.17 157.22 470.57 400.17
69/4 170/2 327 72/0.03 100/1 137/13 150/10 80/10 105/1.5 134/2 110/0.25 140/0.6 187 200 107/23
-CH2CH2-CH 2 CH(CH 2 CH 3 )(CH 2 ) 3 CH 3 -CH 2 CH 2 SCH 2 CH 3 CH 2 =C(CH 2 Si(OCH 3 ) 3 )C(O)OCH 2 CH 3
72829-09-5 142-90-5 3139-91-1 68212-07-7 55750-22-6 106-91-2 76392-24-0 2370-63-0 97-63-2 17435-72-2 5138-86-3 97-90-5 688-84-6 14216-25-2 74976-84-4
338.49 252.42 158.22 156.18 156.18 142.16 186.25 158.20 114.15 193.05 170.25 198.22 198.31 174.26 186.33
142/4 59/1.4 45/0.25 55/0.8 189 85/23 92/35 118 38/0.8 74/16 240 218 102/15 71/10
-CH2C4H3O -CH 2 CH(OH)CH 2 -CH(CH2-), -CH(-O-)CH2 -(CH 2 ) 2 (CF 2 ) 7 CF 3
3454-28-2 1830-78-0 52408-84-1 106-91-2 1996-88-9
166.18 228.25 296.3 142.16 532.20
81/5 120/1 150/0.1 189 120/4
-CH 2 (CF 2 ) 2 CF 3 -(CH 2 ) 6 CH 3 -(CH2)6-CH 2 CF 2 CHFCF 3 -CH(CF 3 ), -(CH 2 ) 5 CH 3
13695-31-3 5459-37-0 6606-59-3 36405-47-7 3063-94-3 142-09-6
268.13 184.28 254.33 250.14 236.11 170.25
R
Name
-C 6 Hn -(CH 2 )IO-(CH 2 ) 9 CH 3 -CH 2 CHBrCH 2 Br -(CH 2 ) 2 N(CH 2 CH 2 CH 2 CH 3 ) 2 -C10H13 -C12HnO -(CH 2 ) 2 N(CH 2 CH 3 ) 2 -(CH 2 ) 3 N(CH 3 ) 2 -CH2CH2OCH2CH2-CH2CH2CH(OH)CH2OH
-CH 2 CH(OH)CH 2 OH -CH 2 CH 2 N(CH 3 ) 2 C23H38N2O8 -CH 2 (CF 2 ) 5 CF 2 H -(CHz)12-(CH 2 )IiCH 3 -CH2CH(-S-)CH2 -CH 2 CH(-O-)CHCH 3 -CH 2 CH 2 CH(-O-)CH 2 -CH2CH(-O-)CH2 -(CH 2 ) 4 OCH 2 CH 3 -CH 2 CH 2 OCH 2 CH 3 -CH 2 CH 3 CH 2 =C(CH 2 Br)C(O)OCH 2 CH 3 -CH2CH(CH2CH3)CH2CH3
Melting point (0C)
232 73 ca. 540 47/2.7 290 133/4 90/3 161 146 132 100/12 95/2 59/7.5 54/20 141/3 95 99/2 50
134 104/14 >315 158 99 88/14
-44
<-60
-30
0.95 -7
<-75 -40
<-18
Density 0
Refractive index (at 20°C)
Flash point (0C)
RTECS Number
R and S
FT-NMR
FT-IR
Merck
Beilstein
(at 20 C) 1.5120
107
1.5320
> 110
1.4520 1.4565 1.4335 1.4230 1.4195 1.4150 1.4420 1.4750
130 113 93 50
1.040
1(2),1931F
1(2),1296C
1(2),316B
1(1),729D
1(1),999A
1(1),639D
1(1),721A
1(1),975C
1(1),641A
1.120 1.010 1.023 0.939 0.894 0.875 0.914 1.190
OZ3675000
50 71 150
OZ3675500 OZ3500000
3
OZ5791000
2(4),1534 2(3),1292 2(3),1286 2(4),1582 4(4),1509 2(4),1533
1.4434 1.070
1.4420 1.4459
0.9626 0.875
1.459 1.4577 1.443
101
1.050 1.064 0.922
1.4474 1.4990 1.4970 1.4442
>110 > 110 85
1.082
1.4580
66
0.933 1.110
1.4400 1.485
70 >150
OZ4200000
1.46 0.868
1.4450
>110
OZ4300000
1(1),732C
82 82
2(3), 1293
6(3),25
6(3), 1942 4(3),676 2(3),1292
1(1),771H
l(l),1074A
1(1),675C 4(3),649
1(1),721D
1(1),976C
1(3),678B 2(3), 1290
0.964 0.917 1.398
1.4422 1.4472 1.4490 1.4223 1.4290 1.4130 1.4790
1.051 0.885
1.4540 1.4380
86 92
0.897
1.4380
59
1.078 1.120
1.4820 1.4720
90 > 115
1.042
1.4490
76
1.345
1.3410
37
0.995 1.348 1.302 0.885
1.4580 1.3610 1.3310 1.432
150 57 14 63
1.038 1.042
1(1),857B
76
OZ4375000
1(1),781F
l(l),1089A
1(1),668D
71 15 87
OZ4550000
1(1),759C 1(1),719J
l(l),1052C 1(1),975B
1(3),723C l(l),640D
OZ4400000 OZ4630000
1(1),729B 1(1),721C
1(1),998B 1(1),976B
2(3),1291 2,423
2(3), 1292 2(3),1289 1(1),642D
1(2),2985A
1(3),686B
1(1),781F
l(l),1089A
17(3), 1248
OZ4375000
1(1),668D 1(1),745F 1(1),745E
l(l),1030B l(l),1030A
Fieser
TABLE 5.
cont'd
R
Name
-(CH 2 ) 4 OH 4-Hydroxybutyl ester 2-Hydroxyethyl ester -CH 2 CH 2 OH 3-(5-Hydroxypentyloxy)-CH 2 CH 2 C(O)O(CH 2 ) 5 OH 3-oxopropyl ester 3-Hydroxypropyl ester -(CH 2 ) 3 OH Isobornyl ester -CioHg Isobutyl ester -CH 2 CH(CHs) 2 2-Isocyanatoethyl ester -CH 2 CH 2 NCO Isodecyl ester -(CH 2 ) 7 CH(CH 3 ) 2 Isopropyl ester -CH(CHs) 2 Methallyl ester -CH 2 C(CH 3 )=CH 2 2-(2-Methoxyethoxy) ethyl ester -(CH 2 CH 2 O) 2 CH 3 2-Methoxyethyl ester -CH 2 CH 2 OCH 3 Methyl ester -CH3 2-Methyl-2-nitropropyl ester -CH 2 C(CH 3 )(NO 2 )CH 3 2-(Methylthio) ethyl ester -CH 2 CH 2 SCH 3 Methyl 2-bromomethyl ester CH 2 =C(CH 2 Br)C(O)OCH 3 Methyl 2-(l-hydroxyethyl-)ester CH 2 =C(CH(OH)CH 3 )C(O)OCH 3 2-Af-Morpholinoethyl ester -CH 2 CH 2 NC 4 H 8 O Neopentylglycol diester -CH2C(CH3)2CH2Nona(ethylene glycol) diester -(CH 2 CH 2 O) 8 CH 2 CH 2 Nona(propylene glycol) diester - ( C H ( C H 3 ) C H 2 O ) 8 C H ( C H 3 ) C H 2 Nonyl ester -(CH 2 ) 8 CH 3 4-Nonylphenyl ester -C 6 H 4 (CH 2 ) 8 CH 3 Octadecyl ester -(CH 2 ) 17 CH 3 «-Octyl ester -(CH 2 ) 7 CH 3 Pentabromophenyl ester -C6Br5 Pentachlorophenyl ester -C6Cl5 1H, 1 H-Pentafluorooctyl ester -CH 2 (CF 2 ) 6 CF 3 Pentaerythritol tetraester C(CH2-), 2,2,3,3,3-Pentafloropropyl ester -CH 2 CF 2 CF 3 Pentyl ester -(CH 2 ) 4 CH 3 2-Phenoxyethyl ester -CH 2 CH 2 OC 6 H 5 Phenyl ester -C6H5 2-Phenylethyl ester -CH 2 CH 2 C 6 H 5 rc-Propyl ester -CH 2 CH 2 CH 3 1,2-Propylene diester -CH 2 CH(CH 3 )1,3-Propylene diester -(CH2),2-Sulfoethyl ester -CH 2 CH 2 SO 3 H 3-Sulfopropyl ester, potassium -(CH 2 ) 3 SO 3 K salt Tetra(ethylene glycol) diester -CH 2 CH 2 (OCH 2 CH 2 ) 3 2,2,3,3-Tetrafluoropropyl ester -CH 2 CF 2 CF 2 H Trimethylsilyl ester -Si(CH 3 ), 2-(Trimethylsilyloxy)ethyl ester -CH 2 CH 2 OSi(CHs) 3 3-(Trimethylsilyloxy)propyl ester -(CH 2 ) 3 OSi(CH 3 ) 3 3-(Tris(trimethylsiryloxy)silyl) -(CH 2 ) 3 Si(OSi(CH 3 ) 3 ) 3 propyl ester Vinyl ester -CH=CH 2
TABLE 6.
MoI. wt.
997-46-6 868-77-9 85099-10-1
158.20 130.14 244.29
105/0.01 250
276-09-3 7534-94-3 97-86-9 30674-80-7 29964-84-9 4655-34-9 816-74-0 45103-58-0 6976-93-8 80-62-6 2177-42-6 14216-23-0 4224-69-5 18020-65-0 2997-88-8 1985-51-9 25852-47-5 25852-49-7 2696-43-7 76391-98-5 32360-05-7 2157-01-9 18967-31-2 16184-61-5 3934-23-4 3253-41-6 45115-53-5 2849-98-1 10595-06-9 2177-70-0 3683-12-3 2210-28-8 1188-09-6
90/9 245 155 211 126/10 125 157 67/1 66/16 100 102/4 38/0.06 36/1.3 91/20 80/0.08 112/1.2
10595-80-9 31098-21-2
144.17 222.33 142.20 155.17 226.36 128.17 140.18 188.22 144.17 100.12 187.20 160.24 179.02 130.14 199.25 240.30 550 560 212.33 288.43 338.58 198.31 556.69 334.41 468.16 408.45 218.12 156.23 206.24 162.19 190.24 128.17 212.25 212.25 194.21 246.33
109-17-1 45102-52-1 13688-56-7 17407-09-9 2530-85-0 17096-07-0
300.37 200.14 158.28 202.33 248.35 422.82
220 124 51/20 65/0.9 190 113/0.2
4245-37-8
112.13
111
Melting point ( 0 C)
-12 -48
-51 -45 -41
-48
>200/l 125/0.03 195/6 105/4
19 132 87
67/5 55/110 73/17 183 115/10 119/11 140 68/1 68/1 (d)
66
295(d)
ALCOHOLS Formula HOROH R
Name 6.1.
Boiling point ( 0 C)
CAS Registry Number
CAS Registry Number
MoI. wt.
Boiling point ( 0 C)
Melting point (0C)
ALKANEDIOLS
1,2-Butane 1,3-Butane 1,4-Butane 1,10-Decane 1,12-Dodecane 1,2-Ethylene
-CH(C2H5)CH2-CH(CH 3 )CH 2 CH 2 -(CH2),-(CHa)10-(CH2)I2-(CH2)2-
584-03-2 107-88-0 110-63-4 112-47-0 5675-51-4 107-21-1
90.12 90.12 90.12 174.28 202.34 62.07
191/747 203 230 170/8 189/12 197
16 73 82 -13
Density (at 200C)
Refractive index (at 200C)
Flash point (0C)
1.073 1.080
1.4520 1.4360
97 >110
1.066 0.9830 0.886 1.096 0.878 0.8847
1.4470 1.4770 1.420
96 107 41 97 >110
1.020 0.993 0.936 1.087 1.040 1.489 1.071
1.4397 1.4310 1.4140 1.450 1.4800 1.4900 1.4520
> 110 65 10 > 110 88 78 43
1.003 1.099 1.010 1.099
1.4530 1.4660 1.4520 1.4660 1.5020 1.4510 1.4373
117 >110 >110 > 110 > 110 196
0.864
1.4430 1.4122
1.5732
1.3482
1.0687
1.5130 1.5184 1.508 1.4450 1.4450
0.98 0.9022
1.3245
1(1),753M
l(l),1045A
OZ4900000
1(1),721B
1(1),976A
FT-IR
Merck
Beilstein
Fieser
1(1),665B
2(3),1287 1(3),677C
OZ5000000
OZ5075000
1(1),719I
11,5849
1(1),975A 1(1),64OC
AS4900000
1(1),745J
2(2),398 2(3),1288
l(l),1031C
2(4),1535
2(3),1290
122
1.4772
82 50 32 76 92 > 110
0.933
1.4360
13
1.113
OZ4725000
FT-NMR
100
1.4630 1.3730 1.4147 1.4280 1.4310 1.4190
1.006 1.005 1.017
Rand S
96 >100 6
1.080 1.250 0.890 0.928 1.045 0.918
Density (at 2O0C)
RTECS Number
Refractive index (at 200C)
1.4380 1.4400 1.4450
1.4310
Flash point (0C)
93 121 >110
>110
l(l),1065F
1(1),1438B
1(1),745B 1(2),2985B 1(2),2985C 1(2),2985D
l(l),1029A 1(3),686C 1(3),687A 1(3),687B
l(l),890D 2(4),1531
OZ4000000
UC0230000
1(2),1116C
2(3),1290
RTECS Number
EK0380000 EK0440000 EK0525000 HD8433713 KW2975000
R and S
1(1),141A 1(1),139L 1(1),139K 1(1),143N 1(1),145A 1(1),139A
FT-NMR
1(1),196C 1(1),195C 1(1),195B l(l),205C l(l),206B
FT-IR
1(1), 130B 1(1), 130D l(l),130A 1(1),136D 1(1),137A 1(1),127D
Merck
11,1566 11,2842 11,3755
Beilstein
1,477 1,477 1,478 l(2),560 1(2),562 1,465
Fieser
15,156
TABLE 6.
cont'd Formula HOROH R
Name 1,7-Heptane 1,16-Hexadiene 1,6-Hexane 1,7-Heptane 1,16-Hexadiene 1,9-Nonane 1,8-Octane 1,5-Pentane 1,2-Propane 1,3-Propane 1,14-Tetradecane 6.2.
ETHERDIOLS
Di(ethylene glycol) Di(propylene glycol) Hexa(ethylene glycol) Penta(ethylene glycol) Tetra(ethylene glycol) Tri(ethylene glycol) Tri(propylene glycol)
TABLE 7.
CAS Registry Number
MoL wt.
Boiling point ( 0 C)
Melting point (0C)
-(CHa)7-(CH2)I6-(CH2)6-(CHa)7-(CH 2 ) 1 6 -(CH2)9-(CH2)S-(CH2)S-CH(CH 3 )CH 2 -(CH2)S-(CH 2 ) 1 4 -CH2CH 2 OCH2CH2-
629-30-1 23079-20-1 629-11-8 629-30-1 23079-20-1 3937-56-2 629-41-4 111-29-5 57-55-6 504-63-2 19812-64-7
132.20 258.45 118.18 132.20 258.45 160.26 146.23 104.15 76.10 76.10 230.39
259 198/3 250 259 198/3 177/15 172/20 242 187 214
-CH(CH3)CH2OCH(CH3)CH2-
111-46-6 110-98-5 2615-15-8 4792-15-8 112-60-7 112-27-6 24800-44-0
106.12 134.18 282.34 238.28 194.23 150.17 192.26
245
-10
217/4 184/2 314 285 273
6
MoL wt.
Boiling point ( 0 C)
-CH 2 CH 2 (OCH 2 CH 2 )S-CH 2 CH 2 (OCH 2 CH 2 ) 4 -CH 2 CH 2 (OCH 2 CH 2 ) 3 -CH 2 CH 2 (OCH 2 CH 2 ) 2 -CH(CH 3 )CH 2 (OCH(CH 3 )CH 2 ) 2 -
18 92 42 18 92 48 60 -60 -27 88
-6 -7
ALLYL FUNCTIONAL Formula CH 2 =CHCH 2 R
Name Acetate -Acetic acid Acetoacetate Alcohol - , 2-Bromo- , 2-Chloro- , 3-Methyl(crotyl alcohol;) -Amine -AT-Aniline -4-Anisole -Benzene Benzyl ether Bromide Butyl ether Butyrate Chloride Chloroacetate Chloroformate Cyanide Cyanoacetate Diallyl amine 2,3-Dibromide 2,3-Dichloride Ether Ethyl ether Fluoride Formate Glycidyl ether Iodide Isocyanate Isopropyl ether 4-(2-Methoxyphenol) Methyl ether -2-Phenol
R -OC(O)CH 3 -CH 2 C(O)OH -OC(O)CH 2 C(O)CH 3 -OH H 2 C=CBrCH 2 OH H 2 C=CClCH 2 OH CH 3 CH=CHCH 2 OH -NH2 -NC6H5 -C 6 H 4 OCH 3 -C6H5 -OCH 2 C 6 H 5 -Br -O(CH 2 ) 3 CH 3 -OC(O)CH 2 CH 2 CH 3 -Cl -OC(O)CH 2 Cl -OC(O)Cl -CN -OC(O)CH 2 CN -NHH 2 =CBrCH 2 Br H 2 C=CClCH 2 Cl -O-OCH 2 CH 3 -F -OC(O)H -O-CH2CH(-O-)CH2 -I -NCO -OCH(CH 3 ) 2 -C 6 H 4 (OCH 3 )OH -OCH3 -C6H4OH
CAS Registry Number 591-87-7 591-80-0 1118-84-9 107-18-6 5976-47-6 6117-91-5 107-11-9 589-09-3 140-67-0 300-57-2 14593-43-2 106-95-6 3739-64-8 2051-78-7 107-05-1 2916-14-5 2937-50-0 109-75-1 13361-32-5 124-02-7 513-31-5 557-40-4 557-31-3 818-92-8 106-92-3 556-569 1476-23-9 97-53-0 627-40-7 1745-81-9
100.12 100.12 142.16 58.08 136.98 92.53 72.12 57.10 133.19 148.21 118.18 148.21 120.98 114.19 128.17 76.09 134.56 120.54 67.09 125.13 97.16 199.88 110.97 98.15 86.13 60.07 86.09 114.14 167.98 83.09 100.16 164.20 72.11 134.18
104 84/12 194/737 97 152 134 122 53 219 215 156 204 70 44/15 45 164/265 109 118 110/20 112 141 94 95 66 -10 84 154 103 88 84 154 46 220
Melting point (0C)
-22 -129
-88
-119
-134
-88
-11
Density (at 20 0 C)
Refractive index (at 20°C)
Flash point (0C)
RTECS Number
0.951
1.4550
>110
MI9804000
0.951
1.4550
102 > 110
MO2100000 MI9804000
1.4500 1.4320 1.4400
129 107 79
1.118 1.023 1.127 1.126 1.125 1.125 1.021
1.4460 1.4410 1.4640 1.4620 1.4590 1.4550 1.4440
143 138 >110 >110 177 166 >110
Density (at 20 0 C)
Refractive index (at 200 C)
0.928 0.981 1.037 0.854 1.6 1.162 0.845 0.761 0.982 0.965 0.892 0.959 1.398 0.783 0.902 0.939 1.159 1.136 0.834 1.065 0.787 1.934 1.211 0.803 0.760
1.4040 1.4283 1.4390 1.4120 1.5 1.4590 1.4270 1.4205 1.5630 1.5210 1.5100 1.5070 1.4690 1.4060 1.4140 1.4135 1.4460 1.4220 1.4050 1.4430 1.4405 1.5470 1.4603 1.4160 1.3880
0.9460 0.962 1.837 0.940 0.7764 1.066 0.978 1.028
1.4330 1.5540 1.4170 1.3946 1.5410 1.5200 1.5450
Flash point (0C)
FT-NMR l(l),204B
1(1),143J 1(1),145E 1(1),143D 1(1),143J 1(1),145E 1(1),143M 1(1),143K 1(1),141I 1(1),139C 1(1),139B 1(1),145C
l(l),205B l(l),204C 1(1),199A 1(1),192C 1(1),192B l(l),207A
ID5950000 UB8785000 MM3670000 RZ2670000 XC2100000 YE4550000 YK6825000
1(1),225D 1(1),225E 1(1),229B 1(1),227K 1(1),227H 1(1),227D 1(1),227F
1(1),341B 1(1),341C 1(1),347A 1(1),346B 1(1),346A 1(1),345A 1(1),345B
RTECS Number
Rand S
>110 0.994 1.036 1.053
R and S
SA0480000 TY2000000 TY2010000
7 89 75 22
AFl760000 SB2800000
54 37 -29 89 81 33 76 -2 14 41 -29 61 31 23 >110 16 81
UD4725000 EM9275000 BA5425000
l(l),202B l(l),204B
FT-NMR
FT-IR 1(1),135C 1(1),137D 1(1),134B 1(1),135C 1(1),137D 1(1),136B 1(1),135D 1(1),132B 1(1),128B 1(1),128A
1(1),223B 1(1),226A 1(1),227A 1(1),226D 1(1),226C 1(1),226B
Merck
Beilstein 1,489
11,4610
11,7073 11,7868 11,9629 1(2),564
11,3109
1,484 1,489 1,489 1,493 1,490 1,481 1,472 1,475
1,468 1(2),537 1,468 1,468 1,468 1,468
11,9585
FT-IR
Merck
Beilstein
1(1),715C 1(1),547H 1(1),787A 1(1),147A
1(1),963C 1(1),778A 1(1),687C l(l),207B
1(1),633B 1(1),499B l(l),1098A 1(1),138B
1(1),183D 1(1),147C 1(1),347A 1(1),1383K 1(1),1243C 1(1),1139E
l(l),208A 1(1),518C 1(2),454B l(2),208B 1(2),24B
1(1),138C 1(1),322B 1(1),1191A l(l),1053B 1(1),946B
1(1),135A 1(1),333B l(l),970B 1(1),133C
1(1),93D
ES5775000 UC7350000
1(1),95I 1(1),219G 1(1),717N 1(1),95E
LQ5775000 EM8050000 AG3690000 UC6650000 UC8200000
1(1),863B 1(1),991F l(l),1013F 1(1),347K l(l),101K
l(l),1206B 1(1),1358C 1(1),1391B l(l),520A
1(1),737A 1(1),843A 1(1),322C 1(1),99C
11,2951 11,3009
4,208 1,201
-7 -21
KN7525000
1(1),219H 1(1),219E
1(1),333C 1(1),332C
1(1),212D 1(1),212C
11,290 11,291
1,438 1,438
57 18 43
RR0875000 VD0450000 NQ8175000
1(1),251C 1(1),95J l(l),1023E
1(1),374A
11,292
1,202
l(l),1404A
1(1),233D 1(1),94A 1(1),872A
SJ4375000
1(1),1283E
1(2),278A
l(l),1091A
11,3855
SJ3850000
1(1),1265H
1(2),245B
l(l),1070D
>110 63 88
BA5075000
BZ8225000 CY2275000 UC7090000
Fieser
1(1),637B 1(1),93C
1(1),687C 11,284
11,2604 11,285 11,3657
11,286
11,287
11,288
Fieser
2,136 2,425 19(3), 1203 1,436 1,439 1,442 4,205 12,170 6,751 5,484 6(3),1459 1,201 1(3),1882 2,272 1,198 2,198 3,12 2,408
4,214 6,961 6,572
13,2
TABLE 7.
cont'd Formula CH 2 =CHCH 2 R
Name
R
Phenyl ether 4-Chloro2,4,6-TribromoPhenyl sulfone Propyl -Succinic anhydride Sulfide 2-Tolyl ether 3-Tolyl ether 4-Tolyl ether -Urea
TABLE 8.
-OC6H5 -OC 6 H 4 Cl -OC 6 H 2 Br 3 -S(O)(O)C 6 H 5 -CH 2 CH 2 CH 3 -C4H3O3 -S-OC 6 H 4 CH 3 -OC 6 H 4 CH 3 -OC 6 H 4 CH 3 -NHC(O)NH 2
Name
R
Butane DecaneDodecaneEthyleneHeptaneHexaneNonaneOctanePentane1,2-Phenylene1,3-Phenylene1,4-PhenylenePropane-
3278-89-5 16212-05-8 1471-03-0 7539-12-0 592-88-1
557-11-9
134.18 168.63 370.88 182.24 100.16 140.1 114.21 148.21 148.21 148.21 100.12
Boiling point (0C)
Melting point (0C)
192 107/12 75 111/0.5 91 260 138 81/2 213 91/10
6
85
CAS Registry Number
MoL wt.
110-60-1 646-25-3 2783-17-7 107-15-3 646-19-5 124-09-4 646-24-2 373-44-4 462-94-2 95-54-5 108-45-2 106-50-3 109-76-2
88.15 172.32 200.37 60.10 130.24 116.21 158.29 144.26 102.18 108.14 108.14 108.14 74.13
CAS Registry Number
MoL wt.
C6H6O5 C6H6O4S C6H4O5
79814-40-7 6953-60-2 6318-55-4
158.11 174.18 156.10
C7H8O3 C 1 2 H 7 NO 3 C9H4O5
7539-12-0 6492-86-0 552-30-7
140.1 213.20 192.13
C10H10O3
24327-08-0
178.19
C 4 HBrO 3 C 1 2 H 5 BrO 3 C 11 H 20 O 4 Si
5926-51-2 21563-29-1 91424-40-7
176.96 277.08 244.37
C12H12O3 C 1 2 H 1 1 NO 5 C10H12O4 C 8 H 4 ClNO 3 C 1 2 H 5 ClO 3 C5H4O3 C8H10O3
32703-79-0 4515-23-5 56-25-7 4743-17-3 4053-08-1 616-02-4 13149-00-3
204.23 249.23 196.20 197.58 232.63 112.08 154.17
-(CHz)4-(CHz)10-(CHz)12-(CHz)2-(CHz)7-(CHz)6-(CHz)9-(CHz)8-(CH2)S-C6H4-C6H4-C6H4-(CHz)3-
Boiling Point(°C) 159 140/12 118 224 204 258/756 225 179 257 283 267 140
Melting Point(°C) 27 62 70 8.5 28 43 37 51 104 65 144 -12
ANHYDRIDES
Name 9.1.
1746-13-0
MoL wt.
AMINES, DIFUNCTIONAL Formula H 2 NRNH 2
TABLE 9.
CAS Registry Number
Formula
Boiling point ( 0 C)
Melting point ( 0 C)
MONOANHYDRIDES
Acetoxysuccinic 5-Acetylmercaptosuccinic Aconitic, cisAcrylic (see Acrylates) Allylsuccinic 4-Amino-1,8-naphthalic 1,2,4-Benzenetricarboxylic (trimellitic) Bicyclo[2.2.2.]oct-5-ene2,3-dicarboxylic, endoBromomaleic 4-Bromo, 1,8-naphthalic 3-(tert-Butyldimethylsilyloxy)glutaric 4-tert-Butylphthalic N-Carboxybenzyloxy-L-aspartic Cantharidin 5-Chloroisotoic 4-Chloro-1,8-naphthalic Citraconic Cyclohexane-1,2-dicarboxylic, cis-
56 83 75 260
6 167 145
215 218 80
213 158/17
73 123 216 300(d) 208 7 33
Density (at 20 0 C)
Refractive index (at 20 0 C)
Flash point (0C)
RTECS Number
R and S
FT-NMR
0.978
1.5200 1.5348
63
DA8575000
1(1),1241M
l(2),207A
1.189 0.767
1.5480 1.3990
>110 _5
WR2400000
1(2),2185B 1(1),219F
1(2), 1580A 1(1),333A
0.887 0.950 0.9564 0.970
1.4889 1.5179 1.5179 1.5168
46
BC4900000
Refractive Index*At 200 C)
0.877
1.4569
0.899
1.4565
0.873
1.4582
Flash Point(°C) 52 155 34 88 81 >110 165 63 >110
0.888
Density (at 200C)
1.4565
Refractive index (at 20 0 C)
34
Flash point (0C)
RTECS Number EJ6800000 HD7175000 JR2200000 KH8575000
1(1),287J
1(1),432C
1(1),939M
l(l),1308B
Rand S
RG8841500 SA0200000 SS7875000 SS7700000 SS8050000 TX6825000
RTECS Number
R and S
FT-NMR 1(1),465A 1(1),469B 1(1),469C 1(1),463B 1(1),468A 1(1),467A 1(1),469A 1(1),468B 1(2),536B 1(2),539A 1(2),542C 1(1),464A
FT-NMR
Merck
Beilstein
6,144
11,14
11,295 1,440 11,296 4,209
FT-IR 1(1),291D 1(1),293D 1(1),294A 1(1),289C 1(1),293A 1(1),292C 1(1),293C 1(1),293B 1(1,292B 1(1),1235C 1(1),1239A 1(1),1242B l(l),290A
FT-IR
Merck 11,7964
11,3752 11,4614
11,1608 11,7255 11,7254 11,7256
Merck
Beilstein 4,264 4,273 4,273 4,230 4,271 4,269 4,272 4,271 4,266 13,6 3,33 13,61 4,261
Beilstein
18(2), 1128 1(1),837E 1(1),837D
1(1),1179B
1QV715C 18,463
1.163 DC2050000
1(2),336A
1(2),1961B 1(2),1959G
1(2),1329C
1(1),835N
1(1),1178B
1(1),839A 1(2),1961A 1(2),2987F
1(1),1182B 1(2), 133OB 1(3),692A
11,9617
18(2),469 18,468
1,(2),334A 1(1),717D 1.905
>110
1(1),719C
RN8575000
1.247
1.4710
101 >110
QL6127295 GE6825000
1(2),1957H 1(2),1959N 1(1),837J 1(1),835G
1(1),1181A 1(1),1175C
Fieser
6,205 6,299 1,438
l(3),2780
l(l),800D
l(l),309G 1(1)3111 1(1),31U l(l),309A 1(1),3HE 1(1),311B 1(1),3HH 1(1),3HF l(l,309K 1(1),1429A 1(1),1431C 1(1),1433D l(l),309D
MOl 180000
l(l),1052B
1(1),269C
YR7875000
Density (at 20 0 C)
FT-IR
1(2),332C 1(2),335D 1(1),718D 1(1),715D
17,435 17,523
19,161 27,265 17,522 17,440
Fieser
4,231
8,393
Fieser
TABLE 9.
cont'd
Name Cyclohexane-1,2-dicarboxylic, transDiacetyl-L-tartaric 3,5-Diacetyltetrahydropyran2,4,6-trione Dichloromaleic 3,6-Dichlorophthalic 4,5-Dichlorophthalic 3,6-Difluorophthalic Diglycolic 2,2-Dimethylglutaric 3,3-Dimethylglutaric 2,3-Dimethylmaleic 2,2-Dimethylsuccinic Diphenic 2,3-Diphenylmaleic 2-Dodecen-1 -ylsuccinic 3,6-Epoxy-l,2,3,6-tetrahydrophthalic, exo3-Ethyl-3-methylglutaric 3-Fluorophthalic 4-Fluorophthalic 2-Foraiamidosuccinic Glutaric l,4,5,6,7,7-Hexachloro-5norbornene2,3-dicarboxylic Hexafluoroglutaric Hexahydro-4-methylphthalic Homophthalic 3 -Hy droxy phthalic Isatoic Isobutenylsuccinic Itaconic Maleic 3-Methylglutaric Af-Methylisatoic Methyl-5-norbornene2,3-dicarboxylic 4-Methylphthalic Methylsuccinic 1,8-Naphthalic 3-Nitro-1,8-naphthalic 4-Nitro-1,8-naphthalic 3-Nitrophthalic 4-Nitrophthalic 5 -Norbornene- endo2,3-dicarboxylic,
Boiling point ( 0 C)
Melting point ( 0 C)
CAS Registry Number
MoI. wt.
C8H10O3
14166-21-3
154.17
146
C8H8O7 C9H8O6
6283-74-5 33524-89-9
216.15 212.16
131 154
C 4 Cl 2 O 3 C 8 H 2 Cl 2 O 3 C 8 H 2 Cl 2 O 3 C8H2F2O3 C4H4O4 C7H10O3 C6H6O3 C6H8O3 Ci 4 H 8 O 3 C 1 6 Hi 0 O 3 C16H26O3 C8H6O4
1122-17-4 4466-59-5 942-06-3 652-40-4 4480-83-5 2938-48-9 4160-82-1 766-39-2 17347-61-4 6050-13-1 4808-48-4 19780-11-1 6118-51-0
166.95 217.01 217.01 184.10 116.07 142.16 142.16 126.11 128.13 224.22 250.26 266.38 166.13
188 186 219 92 36 124 94 30 225 160 42 118(d)
C8H12O3 C 8 H 3 FO 3 C 8 H 3 FO 3 C 5 H 5 NO 4 C5H6C3 C 9 H 2 Cl 6 O 3
6970-57-6 652-39-1 319-03-9 33605-73-1 108-55-4 115-27-5
156.18 166.11 116.11 143.10 114.10 370.83
185/20
C5F6O3 C9H12O3 C9H6O3 C8H4O4 C 8 H 5 NO 3 C8H10O3 C5H4O3 C4H2O3 C6H8O3 C 9 H 7 NO 3 C10H10O3
376-68-1 19438-60-9 703-59-3 37418-88-5 118-48-9 18908-20-8 2170-03-8 108-31-6 4166-53-4 10328-92-4 25134-21-8
222.04 168.19 162.14 164.12 163.13 157.17 112.09 98.06 128.13 117.16 178.19
72
C9H6O3 C5H6O3 Ci 2 H 6 O 3 Ci 2 H 5 NO 5 C 1 2 H 5 NO 5 C 8 H 3 NO 5 C 8 H 3 NO 5 C9H8O3
19438-61-0 4100-80-5 81-84-5 3027-38-1 34087-02-0 641-70-3 5466-84-2 129-64-6
162.14 114.10 198.18 243.17 343.17 193.11 193.11 164.16
295 239
C22H38O3 C12H18O3 C5H4O3
26680-54-6 5617-74-3
350.55 210.27 112.08
251/4 168/10 100/5
C 3 H 3 NO 3 C11H10O3 C10H6O3 C18H10O3
2185-00-4 2959-96-8 36122-35-7 1985-37-1
101.06 190.20 176.16 247.28
C10H8O3 C8H4O3 C 1 3 H 9 NO 5 C7H10O4 C6H2N2O3
1131-15-3 85-44-9 3343-28-0 130221-78-2 4744-5O-7
176.17 148.12 259.22 158.16 150.09
Formula
CVHK)O3
240 175/60 181/25 223 219
180/5
159 79 145 56 237
146/14 114/12 202 181/25
141 200 233(d) 64 71 52 45
91 34 268 248(d) 228 164 118 166
CJS-
Octadecylsuccinic 2-Octen-1 -ylsuccinic 3-Oxabicyclo[3.1.0] hexane2,4-dione 2,5-Oxazolidenedione 2-Phenylglutaric Phenylmaleic 1 -Phenyl-2,3-naphthalenedicarboxylic Phenylsuccinic Phthalic N-Phthaloylglutamic 1 -Propenyloxymethylmaleic Pyrazinedicarboxylic
218/13
191/12 284
62 10 60 120(d) 97 121 259 54 132 199
251 210(d)
Density (at 20 0 C)
Refractive index (at 2O0C)
Flash point (0C)
RTECS Number
ON4025000 1.135
108
177
Rand S
1.654 1.162
1.3240 1.4770
MA3850000 RB9080000
None >110 TI3300000 DM3100000
103 >110
ON3675000 DM3140000
1.232
1.5060
1.220
>110
>110
RB9100000
QK5350000 QK5370000
TI3328000 DT5600000
1.055 1.000
FT-IR
Merck
1(1),1176A
1(1),716A
17,452
1(1),837F 1(1),839L
1(1),1179C 1(1),1174A
1(1),457D
18,162 17(4),6841
1(1),839B 1(2),1959B 1(2),1959C 1(2),1959A 1(1),841C 1(1),839G 1(1),839H 1(1),837K 1(1),835C 1(2),1959L 1(2),1957C 1(1),835K 1(1),837B
1(1),1183C 1(1),1184A 1(1),1181B 1(1),1175A
1(1),722A l(l),720D 1(1),721A 1(1),719A 1(2),335B
1(1),1177A 1(1),1179A
1(1),717A
1(1),1184B
1(1),721B
19(2),181
1(1),839E 1(1),839C
1(1),1183A 1(1),1182C
l(l),720B l(l),720A
1(1),839K 1(1),835I 1(2),1957E 1(2),1959F 1(2),1957F 1(1),835E 1(1),835J 1(1),837I 1(1),839F 1(2),1957G l(l),835O
1(1),1184C 1(1),1176B
1(1),716B
1(2),1957M 1(1),835B 1(2),1959M 1(2),1961C 1(2),1961D 1(2),1959H 1(2),1959I 1(1),835M
1(2),1329B
17(1),231 17(5),11,259 18(11),5,548 17,411 11,2084
17(4),5814 1(2),331D 1(2),332A
1(1),1175B 1(1),1176C l(l),1180C 1(1),1183B 1(1),1178C 1(2),1327B 1(1),1174C
1(1),716D 1(1),718C l(l),720C 1(2),332B 1(1),718C
11,5586
1(1),715B 1(2),335C
1(2), 1330C l(2),1330A 1(1),1177C
Fieser
17,434 5,195 17,483 17,483 17(5), 11,259 19,153 17,418 17,419 17,445 17,417 17,526 17,532
1(1),719D 1(2),1328B 1(2),1328C 1(2),1328A
1(2),334B 1(2),334C 1(1),717C
11,1801
17,489 18,94 27,264 17(4),5927 17,442 17,432 17,415 27,265 17(2),461
11,254
5,422
17,492 17,414 17,521 17,523 17,524 17,486 17,486 17(2),461 1,713
1.4694
>110 17,442
1(1),835F l(l),907M 1(2),1957D
TI3150000 MA3900000 1.100
Beilstein
1(1),835H
1(1),839I
>110
FT-NMR
1.4610
1(2), 1957 J l(2),2017M
27,245 17,494 17,510
1(2),331C
1(2),1327A 1(2)1391A
1(2),332D
11,7346
17,492 17,469 21(3),5370
>110 27,681
1,882
TABLE 9.
cont'd
Name
2,3-Pyridenedicarboxylic 3,4-Pyridinedicarboxylic Succinic 4-Sulfo-1,8-naphthalic Tetrabromophthalic Tetrachlorophthalic Tetrafluorophthalic 1,2,3,6-Tetrahydrophthalic, cis3,4,5,6-Tetrahydrophthalic 3,3-Tetramethy leneglutaric Tetrapropenylsuccinic (isomers) Trimellitic 2-(Triphenylphosphoranylidene)succinic 9.2.
TABLE 10.
699-98-9 4664-08-8 108-30-5 71501-16-1 632-79-1 117-08-8 652-12-0 935-79-5 2426-02-0 5662-95-3 26544-38-7 1204-28-0 906-65-0
149.11 149.11 100.07 316.34 463.72 285.90 220.08 152.15 152.15 168.19 266.38 210.57 360.35
C10H2O6 C17H6O7
89-32-7 2421-28-5
218.12
C12H8O6
1719-83-1
C16H6O6
2420-87-3
C8H4O6 C9H6O6
4415-87-6 6053-68-5
196.11 210.14
>300 225(d)
23911-26-4 23911-25-3 1107-00-2
357.32 256.22 444.25
183 190(d) 244
C14H4O6
81-30-1
268.18
>300
C24H8O6 C8H4O7
128-69-8 25774-69-0
392.32 212.11
>300 223
CAS Registry Number
MoI. wt.
C 7 H 3 NO 3 C 7 H 3 NO 3 C4H4O3 C12H6O6S C 8 Br 4 O 3 C 8 Cl 4 O 3 C8F4O3 C8H8O3 C8H8O3 C9H12O3 C16H26O3 C 9 H 3 ClO 4 C22H17O3P
126
371
186/15 150/3
138 76 119 275 256 95 98 72 65 67 167(d)
C14H19N3O8 C10H12N2O6 C19H6F6O6
397
283 220
322.23 >300 248.19 300 294.22
BUTADIENES
Name
Formula
Boiling point ( 0 C)
Melting point (0C)
1,2-BUTADIENES
1,2-Butadiene - , 4-Bromo- , 4-Chloro- , 4-Hydroxy- , 4-Iodo- , 3-Methyl10.2.
Melting point ( 0 C)
MoI. wt.
DIANHYDRIDES
Benzene-1,2,4,5-tetracarboxylic Benzophenone3 3 ',4,4'-tetracarboxylic Bicyclo[2.2.2.]oct-7-ene2,3,5,6-tetracarboxylic Biphenylene-3,3',4,4'tetracarboxylic Cyclobutanetetracarboxylic Cyclopentane-1,2,3,4tetracarboxylic, cis,cisDiethylenetriaminepentaacetic Ethylenediaminetetraacetic 4,4'-(HeXaSuOrOiSOPrOPyUdBnC) diphthalic Naphthalene-1,4,5,8-tetracarboxylic Pery lene-3,4,9,10-tetracarboxylic Tetrahydrofuran-2,3,4,5-tetracarboxylic
10.1.
Boiling point ( 0 C)
CAS Registry Number
Formula
H 2 C=C=CHCH 3 H 2 C=C=CHCH 2 Br H 2 C=C=CHCH 2 Cl H 2 C=C=CHCH 2 OH H 2 C=C=CHCH 2 I H 2 C=C=C(CH 3 ),
590-19-2
H 2 C=CHCH=CH 2 H 2 C=CBrCH=CH 2 HCCl=CHCH=CH 2 HCCl=C(CH 3 )CH=CH 2 HCC1=CHC(CH 3 )=CH 2 H 2 C=CClCH=CH 2 H 2 C=CC1C(CH 3 )=CH 2
106-99-0
598-25-4
54.09 133.00 88.54 70.09 179.99 68.12
11 110 88 127 130 41
54.09 133.00 88.54 102.57 102.57 88.54 102.57 122.98 122.98
-4 42/165 68 107 100 59 93 63/105 98
-136
-148
1,3-BUTADIENES
1,3-Butadiene - , 2-Bromo- , 1-Chloro- , l-Chloro-2-methyl- , l-Chloro-3-Methyl- , 2-Chloro- , 2-Chloro-3-methyl- , 1,2-Dichloro- , 2,3-Dichloro-
HCCI=CCICH=CH2
H 2 C=CClCCl = CH 2
126-99-8
-109
Density (at 2O0C)
Refractive index (at 200 C)
Flash point (0C)
RTECS Number
WN0875000 TI3350000 TI3450000 GW5775000 1.005
1.4790
>110
WN1300000
DB9300000 162
QK3695000
Density (at 2O0C)
Refractive index (at 20 0 C)
0.652 1.4255 0.9891 0.9164 1.7129 0.694
1.4205/1.3 1.5248 1.4775 1.4759 1.5709 1.4190
0.650/- 6 1.397 0.961 0.9710 0.9543 0.9583 0.9593 1.1991 1.1829
1.4292/ - 2 5 1.4988 1.4709 1.4792 1.4719 1.4583 1.4686 1.4960 1.4890
Flash point (0C)
RTECS Number
R and S 1(2),2547K 1(2),2547L 1(1),835A l(2),2203F 1(2),1959E 1(2),1959D 1(1),835L 1(1),837M 1(1),839J 1(2),1981E
FT-NMR 1(3),336A 1(3),336B 1(1),1174B
1(2),1329A 1(1),1177B 1(1),1182A
1(2),1353B l(2),1680C
1(2),1959K 1(21),1957L
FT-IR 1(2),795B 1(1),715A l(2),501D 1(2),333D 1(2),333C
11,8841
l(l),1180B
1(1),837G
l(l),1180A
1(1),841B 1(1),841A 1(2),1957N
1(1),1185A 1(2),1327C
1(1),717B 1(1),719B 1(1),721C
Fieser
27,261 27,261 17,407
4,468
1(2),351B l(2),550D
19,196
1(1),716C
1(2),1961F
1(2),336B
1(2),1961G
1(2),336C
FT-NMR
Beilstein
17,485 17,484 15,300 17(5),ll,260 17,462 17,461 17,237 17(5),ll,105
1(2),335A 1(2),333B
1(1),837H
Rand S
Merck
FT-IR
19,196
Merck
Beilstein
1(4),975
-23
EI9275000
EI9625000
1(1),27B
1(1),35C
1(1),27D
1(1),36B
1,252
l(l),30C
11,1500
1,249
Fieser
TABLE 10.
cont'd
Name -, -, -, -, -, -,
Formula
2,3-Dimethyl2-FluoroHexachloroHexafluoro2-Iodo2-Methyl-
TABLE 11.
CAS Registry Number
MoI. wt.
H 2 C=CHCH 2 CH 3 H 2 C=CHCH 2 CH 2 Br H 2 C=C(CH 3 )CH(CH 3 ), H 2 C=CHC(CH 3 ) 2 CH 3 H 2 C=C(CH 3 )CH 2 CH 3 H 2 C=CHCH 2 (CH 3 ) 2
106-98-9 5162-44-7 563-78-0 558-37-2 563-46-2 563-45-1
56.11 135.01 84.16 84.16 70.14 70.14
-6 99 56 41 31 20
-158 -115 -137 -168
CH 3 CH=CHCH 3 CH 3 CH=CHCH 3 H 2 C(OH)CH = CHCH 2 (OH) (CH 3 ) 2 C = C(CH 3 ) 2 (CH 3 ) 2 C=CHCH 3
590-18-1 624-64-6 6117-80-2 563-79-1 513-35-9
56.11 56.11 88.11 84.16 70.14
4 1 131/12 73 36
-139 -105 7 -75 -134
CAS Registry Number
MoL wt.
106-92-3 7144-65-2 2426-08-6 7665-72-7 3101-60-8 2212-05-7 286-20-4 286-62-4 285-67-6 3132-64-7 106-89-8 503-09-3 21490-63-1 2404-44-6 2855-19-8 7320-37-8 1436-34-6 3146-39-2 7390-81-0 4436-24-2 5455-98-1 3234-28-4 75-21-8 2461-15-6 5380-87-0 556-52-5
114.14 266.28 130.19 130.19 206.29 184.62 98.15 126.20 84.12 136.98 92.53 76.07 72.11 156.27 184.32 240.43 100.16 110.16 268.49 134.18 203.20 212.38 44.05 186.30 154.17 74.08
CCI2=CCICCI = CCI2
87-68-3 685-63-2
68 12 215 7 112 34
-76 -20 -132 -146
Boiling point ( 0 C)
Melting point (°C)
1-BUTENES -185
2-BUTENES
TABLE 12.
12.1.
Melting point (0C)
78-79-5
513-81-5
Formula
2-Butene, cis2-Butene, trans1,4-Dihydroxy-, cis2,3-Dimethyl2-Methyl-
Name
Boiling point (0C)
82.15 72.08 260.76 162.03 179.99 68.12
H 2 C=C(CH 3 )C(CHs)=CH 2 H 2 C=CFCH=CH 2 CF 2 =CFCF=CF 2 H 2 C=CICH=CH 2 H 2 C=C(CH 3 )CH=CH 2
1-Butene - , 4-Bromo- , 2,3-Dimethyl- , 3,3-Dimethyl- , 2-Methyl- , 3-Methyl11.2.
MoI. wt.
BUTENES
Name 11.1.
CAS Registry Number
EPOXIDES
Formula
Boiling point ( 0 C)
Melting point (0C)
MONOEPOXIDES CH 2 (-O-)CHR
Allylglycidyl ether 2-Biphenylyl glycidyl ether n-Butyl glycidyl ether r-Butyl glycidyl ether 4-f-Butylphenyl glycidyl ether 4-Chlorophenyl glycidyl ether Cyclohexene oxide Cyclooctene oxide Cyclopentene oxide Epibromohydrin Epichlorohydrin Epifluorohydrin 1,2-Epoxybutane, trans1,2-Epoxydecane 1,2-Epoxydodecane 1,2-Epoxyhexadecane 1,2-Epoxyhexane 2,3-Epoxynorbornane, exo1,2-Epoxyoctadecane 2,3-Epoxypropyl benzene iV-(2,3-Epoxypropyl)phthalimide 1,2-Epoxytetradecane Ethylene oxide 2-Ethylhexyl glycidyl ether Furfuryl glycidyl ether Glycidol
-CH 2 OCH 2 CH=CH 2 -CH 2 OC 6 H 4 C 6 H 5 -CH 2 O(CH 2 ) 3 CH 3 -CH 2 OC(CH 3 ) 3 -CH 2 OC 6 H 4 C(CHs) 3 -CH 2 OC 6 H 4 Cl C6H10O C8H14O C5H8O -CH 2 Br -CH 2 Cl -CH2F CH 3 CH(-O-)CHCH 3 -(CH 2 ) 7 CH 3 -(CH 2 ) 9 CH 3 -(CH 2 ) 13 CH 3 -(CH 2 ) 3 CH 3 C7H10O -(CH 2 ) 1 5 CH 3 -CH2C6H5 -CH 2 NC 8 H 4 O 2 -(CH 2 ) n CH 3 -H -CH 2 OCH 2 CH(CH 2 CH 3 )(CH 2 ) 3 CH 3 -CH 2 OCH 2 C 4 H 3 O -CH 2 OH
154 120/0.1 165 151 166/4
31
32 129 55/5 102 135 116 85 54 94/15 124/15 176/12 119 137/0.5 99/17
54 -40 -57
21 123 34 99
95/10.4 10.7 61/0.3 103/11 61/15
-111
Density (at 200C) 0.726 0.843 1.665 1.553/-20 1.4220
Density (at 200C)
Refractive index (at 200C) 1.4390 1.400 1.5550 1.378/-20 1.5616 1.4220
Refractive index (at 200C)
1.330 0.684 0.653 0.650 0.627/0
1.3962 1.4625 1.3890 1.3760 1.3780 1.3640
1.070 0.708 0.662
1.3931/-25 1.3848/-25 1.4780 1.4120 1.3870
Density (at 20°C)
Refractive index (at 200C)
Flash point (0C)
RTECS Number
-22
1(1),32A
l(l),150A
l(l),102A
-54
NT4037000
1(1),27E
1(1),36C
l(l),30D
RTECS Number
Rand S
FT-NMR
Flash point (0C)
1(1),15C 1(1),97E 1(1),23I 1(1),23B 1(1),23G 1(1),23A
9 -18 -29 <-35 -57
37 126 -17 -46
Flash point (0C)
EM4970000
RTECS Number
RR0875000
0.910 0.917 1.038 0.970
1.4190 1.4170 1.5150 1.5450 1.4520
TX4200000 RR0475000 TX4250000 TX5600000 RN7175000
0.964 1.601 1.183 1.067 0.804 0.840 0.844 0.846 0.831
1.4340 1.4820 1.4380 1.3680 1.3730 1.4290 1.4360 1.4460 1.4060
56 43 102 107 27 56 10 56 34 4 -27 78 105 93 16 10 >110 82
1.4408 1.3597/7 1.4340 1.4810 1.4330
1(1),37A
l(l),105H
57
0.845 0.891/4 0.891 1.122 1.117
1(1),27F
FT-IR
EJ0700000
1.4330
1.5230
FT-NMR
None
0.962
1.020
R and S
RN8935000 TX4115000 TX4900000 TZ3325000 EK3855000 JR2450000 ML9450000 MO3630000 RB7176000 DA0178000 TI4950000
>110 97 102 81
KX2450000 TZ33OOOOO LU1423000 UB4375000
1(1),19A 1(1),19B 1(1),153A 1(1),25H 1(1),25D
Rand S
1(1),251C 1(1),1253D 1(1),249K 1(1),251A 1(1),1253A 1(1),1253B 1(1),251L 1(1),251M 1(1),251K 1(1),247L 1(1),247I 1(1),247H 1(1),245F 1(1),245J 1(1),245K 1(1),247A 1(1),245H 1(1),253D 1(1),247B 1(1),1251D l(2),2083B 1(1),245L 1(1),245A 1(1), 251B 1 (2),2319J 1(1),249B
FT-IR
Merck 11,3228
11,5087
Merck
11,1513 1(1),136C 1(1),31B 1(1),29B l(l),30C 1(1),29A
1(1),221A 1(1),35B 1(1),34A
FT-NMR
1(1),374A 1(2),225A 1(1),373A 1(1),373B 1(2),224A 1(2),224B 1(1),376C 1(1),377A 1(1),376B l(l),370B 1(1),369B 1(1),369A 1(1),364C 1(1),365C 1(1),366A 1(1),366C 1(1),378B 1(1),367A l(2),220C 1(2),1461C 1(1),366B 1(1),373C 1(3),17C l(l),370C
Beilstein
Fieser
1(3),991
1,276
1,250
10,195
1,252
Beilstein
Fieser
1(1),94B 1(1),22A 1(1),25B 1(1),21B 1(1),21C
1,203 1(D,84 1(3),816 1,217 1,211 1,213
1,205 1,205
1(1),146C 1(1),25A 1(1),21D'
11,1514 11,1514 1(2),567 1,218 1,211
Beilstein
Fieser
FT-IR
11,644 11,644
Merck
1(1),233D l(l),1065C 1(1),232C l(l),1065B l(l),1064E) 1(1),235A 1(1),235B 1(1),234D 1(1),232A 1(1),231D 11,3563 1(1),231C 1(1),229B l(l),230A l(l),230B l(l),230D 1(1),229A 1(1),235D 1(1),231B l(2),408A l(2),230C
17(3),988 17(3),988
17,21 17,21 17,21 17,6 17(3),49 17,18 17(3),136 17,20 17,86 17(3), 140 17,51
11,3758
17(3), 139 17,4
11,4385
17(5),347 17,104
1(1),232D 1(1),232B
5,290
8,150
TABLE 12.
cont'd
Name
Formula
3-Glycidoxypropyl trimethoxy- -CH 2 O(CH 2 )SSi(OCHs) 3 silane (R)-(-)-Glycidyl Butyrate -CH 2 OC(O)CH 2 CH 2 CH 3 Glycidyl isopropyl ether -CH 2 OCH(CH 3 ) 2 Glycidyl methacrylate (see Methacrylates) GIy cidy ltrimethy lammonium -CH 2 N(CH 3 ) 3 C1 chloride, (70% aq. solution) Hexafluoropropylene oxide F 2 C(-O-)CFCF 3 4-Methoxyphenyl glycidyl ether -CH 2 OC 6 H 4 OCH 3 a-Pinene oxide CioH^O Propylene oxide -CH3 Styrene oxide -C6Hs Tetracyanoethylene oxide (NC) 2 C(-O-)C(CN) 2 1,1,2,2-Tetrafluoroethyl glycidyl -CH 2 OCF 2 CHF 2 ether Vinylethylene oxide -CH=CH 2
CAS Registry Number
MoI. wt.
Boiling point (0C)
2530-83-8
236.34
120/2
60456-26-0 4016-14-2
144.17 116.16
90/19 131
3033-77-0
151.54
428-59-1 2211-94-1 1686-14-2 75-56-9 96-09-3 3189-43-3 85567-21-1
166.02 180.20 152.24 58.08 120.15 144.09 174.10
102/50 34 194
930-22-3
70.09
65
3130-19-6
366.46
1464-53-5 2425-79-8 27035-39-8 2426-07-5 2386-87-0
86.09 202.25 140.18 142.20 252.31
57/25 158/11 70/0.4 240
2224-15-9
174.20
112/4.5
CAS Registry Number
MoI. wt.
Boiling point ( 0 C)
28.05 106.96 62.50 84.48 116.47 185.86
-104 16/750 -13.4 -24 -29 92
Melting point (0C)
-42 46 -112 -37
143
12.2. DIEPOXIDES CH2(-O-)CHRCH(-O-)CH2 Bis(3,4-epoxycyclohexylmethyl) C 6 H9(-O-)CH 2 OC(O)(CH 2 )4C(O)OCH 2 C 6 H9(-O-) adipate 1,3-Butadiene diepoxide CH 2 (-O-)CHCH(-O-)CH 2 1,4-Butanediol diglycidol ether -CH 2 O(CH 2 ) 4 OCH 2 1,2,5,6-Diepoxycyclooctane CgHi 2 O 2 1,2,7,8-Diepoxyoctane -(CH2)43,4-Epoxycyclohexylmethyl C 6 H9(-O-)CH 2 OC(O)C 6 H 9 (-O-) 3,4-epoxycyclohexanecarboxylate Ethylene glycol digycidyl ether -CH 2 O(CH 2 ) 2 OCH 2 -
TABLE 13.
3
-37
ETHYLENE HALIDES
Name Ethylene - , Bromo- (vinyl bromide) - , Chloro- (vinyl chloride) - , 1-Chloro-1-fluoro- , Chlorotrifluoro- , 1,1-Dibromo- (vinylidene bromide) - , 1,2-Dibromo-, cis1,2-Dibromo-, trans- , 1,1-Dichloro- (vinylidene chloride) - , 1,2-Dichloro-, cis- , 1,2-Dichloro-, trans- , Tetrabromo- , Tetrachloro- , Tetrafluoro- , Tetraiodo- , Tribromo- , Trichloro-
Formula H 2 C=CH 2 BrCH=CH 2 ClCH=CH 2 ClCF=CH 2 ClCF=CF 2 Br 2 C=CH 2 BrCH=CHBr BrCH=CHBr Cl 2 C=CH 2 ClCH=CHCl ClCH=CHCl Br 2 C=CBr 2 Cl 2 C=CCl 2 F 2 C=CF 2 I 2 C=CI 2 Br 2 C=CHBr Cl 2 C=CHCl
74-85-1 593-60-2 75-01-4 79-38-9
75-35-4 156-59-2 156-60-5 127-18-4 116-14-3 513-92-8 79-01-6
Melting point (0C) -169 -139 -154 -169 -157
185.86 185.86 96.94
112 108 31
-53 -6 -122
96.94 96.94 343.66 165.83 100.02 531.64 264.76 131.39
60 48 226 121 -76
-80 -50 56 -22 -142 192
163 87
-85
Density (at 20 0 C)
Refractive index (at 20 0 C)
Flash point ( 0 C)
RTECS Number
Rand S
FT-NMR
FT-IR
1.070
1.4290
>110
VV4025000
1(2),2973B
1(3),667C
1(2),1113D
1.018 0.924
1.4280 1.4100
85 33
TZ35OOOOO
1(1),781E 1(1),249J
l(l),1088B 1(1),372C
l(3),306A
1.129
1.4780
> 110
BQ3480000
0.964 0.830 1.054
1.4690 1.3660 1.5350
>110 66 -35 79
TZ3400000 DA0176000 TK4565000 TZ2975000 CZ9625000
1.380
1.3490
51
0.870
1.4170
-50
EM7350000
1.149
1.4930
> 110
MO 1880550
1.113 1.100 1.138 0.997 1.170
1.4340 1.4610 1.4690 1.4450 1.4980
46 >110 105 98 118
1.118
1.4630
> 110
Density (at 20 0 C)
Refractive index (at 20 0 C)
1.517 0.911
1.4350 1.3700
Flash point ( 0 C)
None - 61
Merck
Beilstein
Fieser
17(5),3,34 17(3),988 18,583
1(1),616B 1(1),249A 1(1),1253C 1(1),253B 1(1),245B 1(1),1251A l(l),1003F
1(2),224C 1(1),377C 1(1),363B 1(2),219C 1(1),1376C
l(l),1065A 1(1),237A 1(1),228B l(l),1063C
1(1),247D
1(1),367C
1(1),233A
EJ8400000 EJ5100000 GX9627000 RG9450000 RN7750000
1(1),251E 1(1),251I 1(1),253E 1(1),251F
1(1),374B 1(1),375C 1(1),378C 1(1),374C
1(1),234A 1(1),234C 1(1),235C 1(1),234B
KH5780000
1(1),251G
1(1),375A
RTECS Number
Rand S
KU5340000 KU8400000 KU9625000
1(1),15A 1(1),95B 1(1),95A
KV0525000
l(l),103I
17(3),20
FT-NMR 1(3),17C 1(1),133A
11,7869
5,152 17,6 17,49
18(5),7,215
17(1),13
11,3621
4,53
19,14
17(3),997
FT-IR
Merck 11,3748
1(1),93A 11,9898
Beilstein 1,180 1,188 1,186
Fieser
1,1274
1(3),646
2.178 2.2464 2.2308 1.213
1.5428 1.550 1.4254
-9
KV9275000
l(l),101B
1(1),142B
1(1),98B
11,9900
1,186
1.284 1.257
1.4481 1.4456
6 6
KV9420000 KV9400000
l(l),101D l(l),101E
1(1),143A 1(1),134B
1(1),98A 1(1),79D
11,86 11,86
1,188 1,188
1.623 1.1507/- 40 2.983 2.708 1.463
1.5060
KX3850000
l(l),103J
11,9126
1,187
11,9151
1,195
11,9552
1,187
None 1.6045/16 1.4760 None
KX4125000
l(l),103K
KX4550000
l(l),103G
l(l),101C 1(1),147C l(l),101B
14,127 12,175
11,552
TABLE 14.
FUMARATE ACIDS/ESTERS Formula ROC(O)CH=CHC(O)OR
Name
CAS Registry Number
R
Acid 2-Bromo2-Chloro2-Chloro-, diethyl ester 2-Chloro-, dimethyl ester Di-n-amyl ester Diethyl ester Diisoamyl ester Diisobutyl ester Diisopropyl ester 2,3-DimethylDimethyl ester Dinitrile- (fumaronitrile) Diphenyl ester Di-/z-propyl ester 2-Methyl- (mesaconic acid) 2-Methyl-, diethyl ester
-H HOC(O)CBr=CHC(O)OH HOC(O)CCl=CHC(O)OH CH3CH2OC(O)CCI=CHC(O)OCH2CH3 CH3OC(O)CCI=CHC(O)OCH3 -(CH 2 ) 4 CH 3 -CH 2 CH 3 -CH 2 CH 2 CH(CH 3 ) 2 -CH 2 CH(CH 3 ) 2 -CH(CH 3 ) 2 HOC(O)C(CH3)=C(CH3)C(O)OH -CH 3 NCCH=CHCN -C6H5 -CH 2 CH 2 CH 3 HOC(O)C(CH3) = CHC(O)OH CH3CH2OC(O)C(CH3)=CHC(O)CH2CH3
2-Methyl-, dimethyl ester
CH3OC(O)C(CH3)=CHC(O)OCH3
TABLE 15.
623-91-6
624-49-7 764-42-1
498-24-8
116.07 194.98 150.52 206.63 178.57 256.33 172.18 256.33 228.29 200.24 144.13 144.13 78.07 268.27 200.24 130.10
Boiling point (0C)
200(d) 136/19 224 162/7 217 166/11 170/160 226 192 186 219/14 110/5 205(d) 186.21 158.16
Melting point (0C) 299(s) 186 193
2
241 103 96 162 204 229 204
ISOCYANATES Formula OCNRNCO
Name
110-17-8
MoI. wt.
R
1,3-Benzene diisocyanate -C6H41,4-Benzene diisocyanate -C6H41,3-Bis(isopropyl)benzene -C(CH 3 ) 2 C 6 H 4 C(CH 3 ) 2 a,oc'-diisocyanate 1,4-Bis(isopropyl)benzene -C(CH 3 ) 2 C 6 H 4 C(CH 3 ) 2 a,a'-diisocyanate 1,4-Butene diisocyanate -(CH2)4a-Chlorotoluene -C 6 H 3 (CH 2 Cl)2,4-diisocyanate 1,4-Cyclohexylene diisocyanate, - C 6 H 1 0 trans1,12-Dodecane diisocyanate -(CH 2 ) 1 2 1,6-Hexane diisocyanate -(CH 2 ) 6 Isopherone diisocyanate -C 1 0 H 1 S(isomers) / 4,4 -Methylenebis(cyclohexyl -(C 6 H 1 0 )CH 2 (C 6 H 1 0 )isocyanate) (isomers) 4,4'-Methylenebis(2,6-di-C 6 H 2 (CH 2 CH 3 ) 2 CH 2 C 6 H 2 (CH 2 CH 3 ) 2 ethylphenyl isocyanate) 4,4/-Methylenebis(phenyliso-C6H4CH2C6H4cyanate) 2-Methylpentane 1,5-diisocyanate-CH2CH(CH3)(CH2)3 1,8-Octane diisocyanate -(CH 2 )g2,4-Toluene diisocyanate -C 6 H 3 (CH 3 )-
CAS Registry Number
MoI. wt.
Boiling point (0C)
Melting point (0C)
123-61-5 104-49-4 2778-42-9
160.13 160.13 244.30
121/25 260 157/10
2778-41-8
244.30
150/3
4538-37-8 51979-57-8
140.14 208.60
102/14 153/11
72
7517-76-2
166.18
13879-35-1 822-06-0 4098-71-9
252.36 168.20 222.29
168/3 255 158/15
60
5124-30-1
262.35
105442-35-1
362.48
101-68-8
250.26
200/5
43
34813-62-2 10124-86-4 584-84-9
168.20 196.25 174.16
156/15 120/10
21
50 98 -10
56
Density (at 20 0 C)
Refractive index (at 20 0 C)
1.1880 1.290 0.9681 1.052 0.9655 0.9760
1.4571
0.9416
1.4349
1.0129 1.466
1.4439
Density (at 20 0 C)
1.4496 1.4410 1.4479 1.4432
Flash point ( 0 C)
94
1.0453
1.4488
1.0914
1.4512
Refractive index (at 20 0 C)
Flash point (0C) >110 >110 153
1.05
RTECS Number
R and S
LS9625000
1(1),553A
1(1),787B
l(l),502D
EM5950000
1(1),725M
1(1),993C
1(1),645A
2,742
EM6125000 LT2300000
1(1),725L 1(1),993A
1(1),993B l(l),1360B
1(1),644D 1(1),844A
2,741 2(l),302
OX5075000
1(1),553C
1(1),788A
l(l),503B
RTECS Number
Rand S
NR0150000 CZ6150000 CY8480000
FT-NMR
FT-NMR
FT-IR
FT-IR
Merck 11,4200
11,5806
Merck
Beilstein
Fieser
2,737
5,319
2,763
Beilstein
Fieser
13,50 13,105
1(2),2165G 1(2),2165H
>93 1.105 1.362
1.5960
106 >110
l(l),1023F 1(2),2169H
l(l),1404B 1(2),1572A
4(3),578 13(4),245
GU9642500
l(l),1025A
l(l),1406A
13(3),12
l(l),1405A l(l),1404C l(l),1405C
4(3),624 4(2),711
1(3),1432D
0.940 1.040 1.049
1.4590 1.4520 1.4840
>110 140 >110
MO1740000 NQ9370000
l(l),1023H l(l),1023G l(l),1023J
1.066
1.4970
>110
NQ9250000
l(l),1025B 1(2),2169K
1.180 1.049 1.007 1.214
>110 1.4550 1.4550 1.5680
>110 > 110 > 110
NQ9350000
1(2),1572C 1(1),871A
1(2),2163D l(l),1023I
CZ630000
13(4),33
13(3),461
l(l),1405B
1(2),2169F
11,9456
1(2),478B
4(3),614 13,138
1,117
TABLE 16.
LACTAMS
Name
Formula
y-Butyrolactam (2-pyrrolidinone) s-Caprolactam 12-Dodecanolactam 7-Heptanolactam P-Propiolactam 5-Valerolactam
-C(O)(CH 2 ) 3 NH-C(O)(CH 2 ) 5 NH-C(O)(CH 2 ) n N H -C(O)(CH 2 ) 6 NH-C(O)CH 2 CH 2 NH-C(O)(CH 2 ) 4 NH-
TABLE 17.
Formula
y-Butyrolactone 8-Caprolactone p-Propiolactone 5-Valerolactone
-C(O)(CH 2 )^O-C(O)(CH 2 ) 5 O-C(O)(CH 2 ) 2 O-C(O)(CH 2 ) 4 O-
616-45-5 105-60-2 947-04-6 673-66-5 930-21-2 675-20-7
85.11 113.16 197.32 127.19 71.08 99.13
CAS Registry Number
MoI. wt.
Boiling point (0C)
96-48-0 502-44-3 57-57-8 542-28-9
86.09 114.14 72.06 100.12
204 97/15 162 59/0.5
MoI. wt.
Boiling point (°C)
245 137/10 149/10 106/15 256
Melting point (0C) 24 69 151 36 75 39
Melting point (0C) -45 -33
MALEATE ACIDS/ESTERS Formula ROC(O)CH=CHC(O)OR
Name
R
Acid 2-Chloro2-Chloro-, diethyl ester 2-Chloro-, dimethyl ester Diallyl ester Di-n-amyl ester Di-«-butyl ester 2,3-DichloroDiethyl ester 2,3-DihydroxyDiisoamyl ester Dimethyl ester Diphenyl ester Di-n-propyl ester 2-Methyl-, cis- (citraconic acid) 2-Methyl-, diethyl ester, cis2-Methyl-, dimethyl ester, cis-
TABLE 19.
MoI. wt.
LACTONES
Name
TABLE 18.
Boiling point (0C)
CAS Registry Number
-H HOC(O)CCl=CHC(O)OH CH3CH2OC(O)CCI=CHC(O)OCH2CH3 CH3OC(O)CCI=CHC(O)OCH3 -CH 2 CH=CH 2 -(CH 2 ) 4 CH 3 -(CH 2 ) 3 CH 3 HOC(O)CC1=CC1C(O)OH -CH 2 CH 3 HOC(O)C(OH)=C(OH)C(O)OH -CH 2 CH 2 CH(CH 3 ) 2 -CH 3 -C6H5 -CH 2 CH 2 CH 3 HOC(O)C(CH3 )=CHC(O)OH CH3CH2OC(O)C(CH3)=CHC(O)OCH2CH3 CH3OC(O)C(CH3)=CHC(O)OCH3
CAS Registry Number 110-16-7
999-21-3 105-76-0 141-05-9
624-48-6
498-23-7
116.07 150.52 206.63 178.57 196.20 256.33 228.29 184.97 172.18 148.07 156.33 144.13 268.27 200.24 130.10 186.21
Melting point (0C) 141 110
235 107 110/4 161/10 281
-47
225
120 -10 155
157/13 204 226/15 126/12
93 90
230 158.16
211
PROPENES
Name Propene - , 1-Bromo-, cis- , 1-Bromo-, trans- , 2-Bromo- , 1-Chloro-, cis- , 1-Chloro-, trans- , 2-Chloro- , l-Chloro-2-methyl(isocrotyl chloride) - , 3-Chloro-2-methyl(methallyl chloride) - , 1,1-Dichloro-
Formula
CAS Registry Number
MoI. wt.
Boiling point (0C)
Melting point (0C)
-48 58 64 48 33 37 22.5 68
-185
557-98-2 513-37-1
42.08 120.98 120.98 120.98 76.53 76.53 76.53 90.55
H 2 C=C(CH 3 )CH 2 Cl
563-47-3
90.55
71
-80
Cl 2 C=CHCH 3
563-58-6
110.97
76
H 2 C=CHCH 3 BrCH=CHCH3 BrCH=CHCH3 H 2 C=CBrCH 3 ClCH=CHCH3 ClCH=CHCH3 H 2 C=CClCH 3 C1CH=C(CH3)2
115-07-1 590-13-6 590-15-8 557-93-7
-125 -135 -99 -139
Density (at 2O0C) 1.120
Density (at 200C) 1.120 1.030 1.146 1.079
Density (at 200C)
Refractive index (at 2O0C) 1.4870
Refractive index (at 200 C) 1.4360 1.4630 1.4120 1.4580
Refractive index (at 2O0C)
Flash point (0C) >110
RTECS Number
Rand S
>110
UY5715000 CM3675000 CL6940000 CN4810000
> 110
TO0110000
1(1),923B 1(1),927G 1(1),929A 1(1),927M 1(1),923A 1(1),927E
RTECS Number
Rand S
Flash point (0C) 98 109 70 100
Flash point (0C)
1.590
LU3500000 MO8400000 RQ7350000
l(l),803J 1(1),819E l(l),803A 1(1),815A
FT-NMR 1(1),1285B 1(1),1293B 1(1),1296A 1(1),1295B 1(1),1285A 1(1),1292C
FT-NMR
FT-IR 1(1),788D 1(1),792B 1(1),794A 1(1),793C
Merck 11,8027 11,1762
1(1),1127A 1(1),1161C
1(1),697D 1(1),699B
1(1),1152A
l(l),704D
Merck 11,1596 11,7832
RTECS Number
Rand S
OM9625000
l(l),5510
1(1),787A
FT-NMR
FT-IR l(l),503A
21,236 21(2),216
Merck 11,5585
Beilstein 17,234 17(2),290 17(l),130 17,235
Beilstein
Fieser 1,101 1,957
Fieser
2,748
1.1741 1.277 1.073 0.9741 0.988
1.4690 1.4475 1.4452
>110
ON0700000
1(1),725K
1(1),993A
2(3), 1926
>110
ON0875000
1(1),725J
1(1),992C
2(3),1925
1.064
1.4410
93
ON1225000
1(1),725I
1(1),992B
0.9714 1.152
1.4459 1.4410
1.0245
1.4433
1.0491
1.4468 1.9491
1(1),644C
Fieser
21,242 21(3),3141 21,238
1(1),791D
FT-IR
Beilstein
11,3113 2,751
91
EM6300000
1(1),725H
1(1),992A
1(1),644B 2,751
GE6650000
Density (at 2O0C)
Refractive index (at 2O0C)
1(1),553B
1(1),787C
l(l),503C
11,2323 2,768
1.4473
Flash point (0C)
RTECS Number
R and S
FT-NMR
FT-IR
Merck 11,7862
Beilstein 1,196 l(3),710 1(4),754 1,200
1(1),15B 1(1),95F 1(1),95C 1(1),95H
1(1),134C
1(1),96B
UC7200000 UC8045000
1(1),95D 1(1),97I
1(1),133B 1(1),137C
1(1),96A 1(1),97A
11,2147
1,198 1,209
-12
UC8050000
1(1),97J
1(1),138A
1(1),96D
11,2148
1,209
0
UC8290000
l(l),101G
1(1),144A
1(3),138D
1.423 1.408 1.362 0.9347 0.9351 0.899 0.920
1.4545 1.4530 1.436 1.4055 1.4054 1.3939 1.4225
-34 -15 4
-34 -1
0.917
1.4278
1.169
1.4450
UC6740000
UC7085000
1(1),134A
1,199
Fieser
4,236
TABLE 19.
cont'd
Name
Formula
-, -, -, -, -, -, -,
CICH=CClCH 3 F 2 C=CFCF 3 H 2 C=C(CH 3 ) 2 Cl 2 C=CClCH 3 Cl 2 C=CHCH 2 Cl
1,2-DichloroHexafluoro2-Methyl- (isobutylene) 1,1,2-Trichloro1,1,3-Trichloro1,2,3-Trichloro3,3,3-Trichloro-
TABLE 20.
CAS Registry Number
116-15-4 115-11-7
CICH=CCICH2CI
H 2 C=CHCCl 3
MoI. wt.
Boiling point (0C)
110.97 150.02 56.11 145.42 145.42 145.42 145.42
77 -28 -7 118 131 142 114
MoI. wt.
Boiling point (0C)
Melting point (0C)
-153 -140
STYRENES Formula CH 2 =CHR
Name Styrene - , 4-Acetoxy- , 2-Amino- , 4-Amino- , 4-Benzyloxy-3-methoxy- , 3,5-Bis(trifluoromethyl)a-Bromop-Bromo- , 2-Bromo- , 3-Bromo- , 4-Bromo- , 4-terf-Butyl- , 4-Carboxya-Chloro(3-Chloro- , 2-Chloro- , 3-Chloro - , 3-Chloromethyl (3-vinylbenzyl chloride) - , 4-Chloro- , 4-Chloromethyl- , 4-Chloro-a-Methyl- , 2-Cyano- , 3-Cyano - , 4-Cyano- , 2,5-Dichloro- , 2,6-Dichloro- , 3,4-Dichloro- , a,p-Difluoro- , 1,2-Difluoro- , 2,6-Difluoro- , 1,3-Diisopropenyl benzene - , 3,4-Dimethoxy- , a,2-dimethyl- , 2,4-Dimethyl- , 2,5-Dimethyl- , Divinyl-, (isomers) - , 4-Ethoxy- , 2-Ethyl- , 4-Ethyl- , 3-Iodo- , 2-Fluoro- , 3-Fluoro- , 4-Fluoro- , 2-Hydroxy- , 3-Hydroxy- , 4-Hydroxy- , 4-Isopropyl-
R -C6H5 -C 6 H 4 OC(O)CH 3 -C6H4NH2 -C6H4NH2 -C 6 H 3 (OCH 3 )OCH 2 C 6 H 5 -C 6 H 4 (CF 3 ) 2 H 2 C=CBrC 6 H 5 HCBr=CHC 6 H 5 -C 6 H 4 Br -C 6 H 4 Br -C6H4Br -C 6 H 4 C(CH 3 ), -C6H4CO2H H 2 C=CClC 6 H 5 HCCl=CHC 6 H 5 -C 6 H 4 Cl -C 6 H 4 Cl -C 6 H 4 CH 2 Cl -C 6 H 4 Cl -C 6 H 4 CH 2 Cl H 2 C=C(CH 3 )C 6 H 4 Cl -C6H4CN -C 6 H 4 CN -C 6 H 4 CN -C6H3Cl2 -C6H3Cl2 -C6H3Cl2 HCF=CFC 6 H 5 -C6H3F2 -C6H3F2 C 6 H 4 (C(CH 3 )=CH 2 ) 2 -C6H3(OCH3), H 2 C=C(CH 3 )C 6 H 4 CH 3 -C6H3(CH3), -C6H3(CH3), C 6 H 4 (CH=CH 2 ) 2 -C 6 H 4 OCH 2 CH 3 -C 6 H 4 CH 2 CH 3 -C 6 H 4 CH 2 CH 3 -C6H4I -C6H4F -C6H4F -C6H4F -C6H4OH -C6H4OH -C 6 H 4 OH -C 6 H 4 CH(CH 3 ),
CAS Registry Number 100-42-5 2628-16-2 3867-18-3 1520-21-4 55708-65-1 349-59-7 98-81-7 103-64-0 2039-88-5 2039-86-3 2039-82-9 1746-23-2 1075-49-6
2039-87-4 2039-85-2 57458-41-0 1073-67-2 1592-20-7 1712-70-5 5338-96-5 3435-51-6 1123-84-8 28469-92-3 2039-83-0 366-37-0 3748-13-8 6380-23-0 26444-18-8 2234-20-0 2039-89-6 1321-74-0 5459-40-5 7564-63-8 3454-07-7 394-46-7 350-51-6 405-99-2
2055-40-5
104.15 162.19 119.18 119.18 240.30 240.15 183.05 183.05 183.05 183.05 183.05 160.26 148.16 138.60 138.60 138.60 138.60 152.62
145 260 104/8 249 51 60/20 69/4 111/20 210 74/3 212 219
138.60 152.62 152.62 129.16 129.16 129.16 173.04 173.04 173.04 140.03 140.03 140.03 158.25 164.20 132.21 132.21 132.21 130.19 148.21 132.21 132.21 233.05 122.14 122.14 122.14 120.15 120.15 120.15 146.22
192 229
199 199 188 62/6 229
53/0.15 83/2.6 92/3 74/3 88/8 76/3 88/60 90/45 59/51 231 120/10 54/11 70/11 71/10 59/1 191 193 67/15 30/4 30/14 108/15 115 204
Melting point (0C) -30 7 23 7 -44 7 -53 4.5 -37 143 -23
-63
-16
-15
-64 -35
-127 -50 73
29 73.5 -45
Density (at 20 0 C) 1.1818
1.382 1.403 1.414 1.369
Density (at 20 0 C) 0.9059 1.060 1.608 1.014
Refractive index (at 20 0 C)
1.4827 1.4950 1.5020 1.4827
Refractive index (at 2O0C) 1.5470 1.5380
R and S
UD0350000 UD0890000
l(l),105A 1(1),23F
UD1928500
l(l),103H
RTECS Number
R and S
WL3675000 SL3784000
1(1),1139A 1(2),1927F
1(2),23A 1(2),1287C
1(1),945B
1(1),1237M 1(1),1213A l(l),1203F l(l),1203H l(l),1203L l(l),1205D l(l),1205H
1(2),197C 1(2),155A
l(l),1053A
1(2),136C 1(2),138A 1(2),139C 1(2),141A
l(l),1017B l(l),1018A 1(3),195B l(l),1019C
1(2),1789D
l(2),1076A
1(2),194D
l(l),1203K l(l),1205C
1(2),137C 1(2),139B
l(l),1017D l(l),1018C
l(l),1205F
1(2), 140B
l(l),1019B
l(l),1205G
1(2), 140C
l(l),1018D
l(l),1205J
1(2),141C
l(l),1019D
1(1X12051 1(1),1139L 1(1),1243D
1(2),141B 1(2),26B l(2),208C
1(1),947C l(l),1053D
1(1),1141D 1(1),1141E 1(1),1141B 1(1), 1243 A
1(2),27C 1(2),28A
l(l),1203J l(l),1205B l(l),1205E
1(2),137B 1(2), 139 A 1(2), 140A
FT-NMR
FT-IR
48
Flash PQint ( 0 C) 31 87
1(3),143C 1(3),28B 1(1),148A
Merck
FT-NMR
1.1016/18 1.1095/15 1.080 1.090 1.074
1.5612 1.5648 1.5648 1.5613
1.155 1.083 1.065
1.5662 1.5740 1.5550 1.5756 1.5630 1.575 1.5740
11,5024
1(3),142A
FT-IR
Beilstein
l(3),707
Merck 11,8830
Beilstein 5,474 6(3),2387
>110 122 87 102 85 67 75 80
58 62 105
WL3840000 WL385OOOO
WL4160000
60 104 74
5(4), 1386 5,477 5,477 5(3X1176 5(3),1176 5(2),367 5(3X1254 9(3),2755
5(2),367
104
71
1.5061 1.130 0.925 1.109 0.894 0.906 0.904 0.914 0.990 0.8955 0.8925
Fieser
1(3),697 1,207
12,1187
1.6267 1.4250 1.5880 1.6070 1.5927 1.5891 1.5940 1.5260
1.267
RTECS Number
1.4471
1.334 1.410 1.427 1.460 1.406 1.400 0.875
1.083
Flash point ( 0 C)
1.025 1.025 1.024 1.0609/18 1.0468/35
1.4990 1.5570 1.5710 1.5150 1.5390 1.5391 1.5470 1.5498 1.5351 1.5376 1.6390 1.5200 1.5175 1.5156 1.5783/27 1.5804/31
0.885
1.5289
30 91 >110 43 60 63 64 87
35 29 26
CY8535OOO
WL4450000 WL4460000 CZ9370000
6,954 5,491 5,491
1(3),984B
l(l),1081B l(l),1019A
6,561
5(3),1171 5(3),1171
Fieser
TABLE 20.
cont'd Formula CH 2 =CHR R
Name - , 2-Methoxy- , 3-Methoxy- , 4-Methoxy- , 2-Methoxy-4-hydroxya-Methyl- , 2-Methyl- , 3-Methyl- , 4-Methyl- , P-Nitro- , 2-Nitro- , 3-Nitro- , 4-Nitro- , Pentabromo- , Pentafluoro- , 4-Phenoxy- , 4-Phenyl- , 4-Sulfonic acid, sodium salt - , 2-Trifluoromethyl- , 3-Trifluoromethyl- , 4-Trifluoromethyl- , 2,4,6-Trimethyl-
TABLE 21.
Boiling point (0C)
Melting point (0C)
61.3 144/2 204 224 167 171 170 172 250
29
586-39-0 100-13-0 53097-59-9 653-34-9 4973-29-9 2350-89-2 2695-37-6 395-45-9 402-24-4 402-50-6 769-25-5
134.18 134.18 134.18 150.18 118.18 118.18 118.18 118.18 149.15 149.15 149.15 149.15 498.66 194.10 196.25 180.25 206.20 172.15 172.15 172.15 146.24
Formula
CAS Registry Number
MoI. wt.
Boiling point (0C)
Melting point (0C)
-CI4HQ
2444-68-0
204.27
62/10
65
-C10H7 -C5H4N -C5H4N -C5H4N -C9H6N
827-54-3 100-69-6 1121-55-7 100-43-6 772-03-2
154.21 105.14 105.14 105.14 155.20
80/29 68/15 63/15 71/0.5
108-05-4
86.09
72
56860-96-9 769-78-8 5309-70-6 15484-80-7 123-20-6 872-36-6 2549-51-1 15721-27-4 5130-24-5 3098-92-8 14861-06-4 4704-31-8 2146-71-6 94-04-2 692-45-5 1917-10-8 693-38-9 3050-69-9
212.25 148.16 165.0 204.27 114.14 86.05 120.54 182.61 106.51 174.20 112.13 198.31 226.36 170.25 72.06 138.12 282.47 142.20 168.15
135/9 203 50/10 111/2 116 162 134
-C 6 H 4 OCH 3 -C 6 H 4 OCH 3 -C 6 H 4 OCH 3 -C 6 H 3 OCH 3 (OH) H 2 C=C(CH 3 )C 6 H 5 -C6H4CH3 -C6H4CH3 -C6H4CH3 HC(NO 2 )=CHC 6 H 5 -C6H4NO2 -C6H4NO2 -C6H4NO2 -C6Br5 -C6F5 -C6H4OC6H5 -C6H4C6H5 -C 6 H 4 SO 3 Na -C6H4CF3 -C6H4CF3 -C6H4CF3 -C6H2(CH3),
90/3.5 120/10
-24 -69 -82 -34 58 13 -5 25 188
139 71 120 225 61/40 55/12 65/40 209
ARYLH 2 C=CHR
9-Anthracene Benzene (see Styrene) 2-Naphthalene 2-Pyridine 3-Pyridine 4-Pyridine 2-Quinoline 21.2.
612-15-7 626-20-0 637-69-4 7786-61-0 98-83-9 611-15-4 100-80-1 622-97-9
MoI. wt.
VINYLFUNCTIONAL
Name 21.1.
CAS Registry Number
61
ESTERS H 2 C=CHOC(O)R
Acetate Acrylate (see Acrylates) AUyI adipate Benzoate Bromoacetate 4-tert-Buty\ benzoate Butyrate Carbonate Chloroacetate 2-Chlorobenzoate Chloroformate Cinnamate Crotonate Decanoate Dodecanoate 2-Ethylhexanoate Formate 2-Furoate Hexadecanoate (palmitate) Hexanoate (caproate) Maleate
-CH3 -(CH 2 ) 4 C(O)OCH 2 CH=CH 2 -C6H5 -CH 2 Br -C 6 H 4 C(CH 3 ) 3 -(CH 2 ) 2 CH 3 -OCH=CH 2 -CH 2 Cl -C 6 H 4 Cl -Cl -CH=CHC 6 H 5 -CH 2 CH=CHCH 3 -(CH 2 ) 8 CH 3 -(CH 2 ) K)CH3 -CH(CH 2 CH 3 )(CH 2 ) 3 CH 3 -H -C4H3O -(CH 2 ) 14 CH 3 -(CH 2 ) 4 CH 3 -CH=CHC(O)OCH=CH 2
68/735 125/7 133 146/50 140/10 128/20 46 182/10 165/2 160/10 94/10
-93
22
-90 14 24
Density (at 20 0 C)
Refractive index (at 200 C)
Flash point (0C)
1.0049 0.9999 0.994 1.110 0.909 0.917 0.890 0.897
1.5388 1.5540 1.5620 1.5820 1.5380 1.544 1.5408 1.5412
1.070
1.5840 1.6016
107
1.4455
34
72 >110 45 58 52 45
RTECS Number
SL8205000 WL5075300 WL5075900 WL5075800 WL5076000
R and S
FT-NMR
FT-IR
Merck
Beilstein
l(l),1241O
l(2),207C
l(l),1052C
1(1),1139B 1(1),1139K 1(1),1139M 1(1),1139N
1(2),2437C
1(1),945C 1(1),947A 1(3),869B 1(1),947B
6,561 6(3),4981 5,484 5(1),233 5,485 5,485
1(1),1334D
5,478
1(2),26C
Fieser
1(2),27A
1.406
1.175 1.161 1.165 0.906
1.4700 1.4655 1.4660 1.5320
1(1),1555D WL5470000
42
75
l(l),1205N l(l),1205K
1(2),687C
1(1),1145G l(2),2207I l(l),1207C l(l),1207K l(l),1209F 1(1),1141G
1(2),142A 1(2),35B 1(2),1598C 1(2), 143 A 1(2),138C 1(2),148A
l(l),1020B l(l),1020A
5(4), 1367 5(3),1197 5(4), 1369 5,500
1(1),951D
1(3),871A
Density (at 20 0 C)
0.975 0.975 1.340
Refractive index (at 20 0 C)
1.5490 1.5530 1.5500
Flash point (0C)
RTECS Number
47
UU1040000
52 128
UU1045000
R and S
1.3950
-6
1.5290
82
0.999 0.9022 1.355 1.19 1.22 1.253 1.07 0.940 0.886 0.8639 0.875 0.9651
1.5180 1.411 1.4210 1.4440
>110 20 72
1.4100
-4
1.4480 1.4350 1.4387 1.4256 1.4757
27 104 136 65
0.8602 0.8837
1.4444 1.4159
Merck
Beilstein
1(2),51A
1(1),963B
1(1),1151G 1(2),2495G
1(2),46A 1(3),242C
1(1),959C 1(2),734A
20,256
1(2),738D 1(2),853D
20(2),170 20,425
1(1),632D
11,9896
2(1),63
12,565
1(1),963A 9(1),65
DI1050000
9(4), 1885 2(4),792
l(2),1903L
1(2),1248C
1(1),697E
1(1),933A
1(1),644A
1(1),863A
l(l),1206A
1(1),736D
3(3),28
GQ5850000
1(1),721H
1(1),978C
1(1),642B
2(3),1263 2(3),843
MO7875000 LR0525000
1(1),719A
1(1),793A l(l),1206A
1(1),637C 1(1),736C
2(4), 1005 3(3),28
FG3325000
Fieser
1(3),248B
AK0875000 1(1),715A
1.070
FT-IR
1(1),1153I
1(2),2499B 0.934
FT-NMR
13,342
8,530
8,530
TABLE 21.
cont'd
Name
Maleate, monoester Methacrylate (see Methacrylates) Neodecanoate Nonate Octadecanoate (stearate) 9-Octadecenoate (oleate) Octanoate Pentafluoropropionate Pentanoate Pivalate Propionate Sebacate Succinate Tetradecanoate (myristate) Thioacetate Trichloroacetate Trifluoroacetate 1-Trifluoromethyl acetate Trithiocarbonate Undecanoate Versatate 21.3.
MoI. wt.
Boiling point (0C)
-CH=CHC(O)OH
19896-47-0
142.11
80/1
-C9H19 -(CH 2 ) 7 CH 3 -(CH 2 ) i 6 CH 3 -(CH2)7CH=CH(CH2)7CH3 -(CH 2 ) 6 CH 3 -CF2CF3 -(CH 2 ) 3 CH 3 -C(CH 3 ) 3 -CH 2 CH 3 -(CH 2 ) 8 C(O)OCH=CH 2 -CH 2 CH 2 C(O)OCH=CH 2 -(CH 2 ) I 2 CH 3 H 2 C=CHSC(O)CH 3 -CCl 3 -CF3 H 2 C=C(CF 3 )OC(O)CH 3 H 2 C=CHSC(S)SCH=CH 2 -(CH 2 ) 9 CH 3 -C(CH 3 ) 2 (CH 2 ) 5 CH 3
51000-52-3 6280-03-1 111-63-7 3896-58-0 818-44-0
198.31 184.28 310.51 308.49 170.25 190.08 128.17 128.17 100.12 254.33 170.16 254.41 102.15 189.43 140.06 154.09 134.24 212.33 198.31
216 133/50 181/2 145 79/7 58/560 132 112 95 142/3 50/3 152/3 115 38/5 42 86
109-53-5 37769-62-3 926-65-8 26256-87-1 1663-35-0 107-25-5 930-02-9 1623-05-8 766-94-9 6230-62-2 764-47-6
84.12 144.21 100.16 100.16 100.16 106.55 106.55 126.20 141.00 132.16 70.09 212.38 72.11 156.27 100.12 276.76 268.47 116.16 88.11 114.19 100.16 156.27 86.13 190.24 102.13 58.08 296.54 266.04 120.15 148.21 86.13
67 70/20 94 87 75 109 109 147 128 196 28 118 33 177 139 210 173/5 189 143 112 82 175 83 242 108 5 178/5 36 154 211 65
2235-00-9 1484-13-5 13162-05-5 3485-84-5 88-12-0 3195-78-6
139.20 193.25 71.08 173.17 1-11.14 99.10
128/21 154/3 210
36 65 -16 85
166
-36
5873-43-8 3377-92-2 105-38-4 10355-50-7 13416-90-5 5809-91-6 10340-63-3 7062-87-5 433-28-3 2247-91-8 930-35-8 49863-74-3
Melting point (0C)
32 36
-81
15
48 125/8 60/1
ETHERS H 2 C=CHOR
Allyl Butoxyethyl /i-Butyl 2-Butyl tert-Butyl 1 -Chloroethyl 2-Chloroethyl Cyclohexyl 1,2-Dichloroethyl Di(ethylene glycol) Divinyl Dodecyl Ethyl 2-Ethylhexyl Glycidyl Hexachlorodivinyl Hexadecyl 4-Hydroxybutyl 2-Hydroxyethyl Isoamyl Isobutyl Isooctyl Isopropyl 2-(2-Methoxyethoxy)ethyl 2-Methoxyethyl Methyl Octadecyl Perfluoropropyl Phenyl 1-Phenylethyl Propyl 21.4.
CAS Registry Number
Formula
-CH 2 CH=CH 2 -CH 2 CH 2 O(CH 2 ) 3 CH 3 -(CH 2 ) 3 CH 3 -CH(CH 2 CH 3 )CH 3 -C(CH 3 ) 3 -CHClCH 3 -CH 2 CH 2 Cl -C6Hn -CHClCH 2 Cl -CH 2 CH 2 OCH 2 CH 2 OH -CH=CH 2 -(CH 2 ) 11CH3 -CH 2 CH 3 -CH 2 CH(CH 2 CH 3 )(CH 2 ) 3 CH 3 -CH2CH(-O-)CH2 (Cl 2 C=CCl) 2 O -(CH 2 )I 5 CH 3 -(CH 2 ) 4 OH -CH 2 CH 2 OH -CH 2 CH 2 CH(CH 3 ) 2 -CH 2 CH(CH 3 ) 2 -(CH 2 ) 5 CH(CH 3 ) 2 -CH(CH 3 ) 2 -(CH 2 CH 2 O) 2 CH 3 -CH 2 CH 2 OCH 3 -CH3 -(CH 2 )I 7 CH 3 F 2 C=CFOCF 2 CF 2 CF 3 -C6H5 -CH(C 6 H 5 )CH 3 -CH 2 CH 2 CH 3
3917-15-5 4223-11-4 111-34-2 4181-12-8 926-02-3 110-75-8 110-75-8 2182-55-0 929-37-3 109-93-3 765-14-0 109-92-2 103-44-6 3678-15-7 822-28-6 17832-28-9 764-48-7
-92
-70 -109
-101 -12 -116 -85
16 -33
-112 -140 -83 -123 27
-50
^-SUBSTITUTED H 2 C=CHR
-Caprolactam -Carbazole -Formamide -Phthalimide -Pyrolidone -N-Methylacetamide
-NC 6 H10O -NCi2H8 -NHC(O)H -NC8H4O2 -NC4H6O -N(CH 3 )C(O)CH 3
Density (at 20 0 C)
Refractive index (at 20 0 C)
Flash point ( 0 C)
0.882 0.8689 0.904
1.4360 1.4291
0.8719
1.4256
0.866 0.9173
1.4050 1.4030
10 6
1.3170 1.3410
-31 2 > 110
RTECS Number
83
R and S
FT-NMR
FT-IR
Merck
Beilstein
Fieser
2(3),1290 2(4),1045
1(1),719B
>110 >110
2(3),532
UF8575000
0.87
1.203 1.212
0.8 0.866 0.774 0.762 1.048 1.048 0.891 1.197 0.986 0.773 0.817 0.754 0.816 1.006 1.654
1.4109 1.4220 1.410 1.4558 1.3980 1.4380 1.4380 1.4540 1.4558/17 1.4480 1.3989 1.4382 1.3770 1.4280 1.4326
0.939 0.982 0.7826 0.7645
1.4440 1.4360 1.4072 1.3950
0.7534 0.990 0.8967 0.7511/0 0.821 1.53
1.3840 1.4390 1.4072 1.3730/0 1.440
<20 46 -9 -17 16 16 35 83 -30 >110 -45 52 35
1(1),745G
l(l),1030C
1(1),697F
1(1),933B
KH7175000 KN5950000
1(1),219C
1(1),332B
1(1),213D
KN6300000 KN6300000
1(1),221C 1(1),221C
1(1),336A 1(1),336A
1(1),213B 1(1),213B
1(1),219B
1(1),332A
1(1),212B
19(3),1598
1(4),2387
KM5495500
KO0710000 KO0175000
2(4),466
l(3),704B
11,2139 11,2139
1(3), 1863 1(2),473 1(2),473 6(3), 18 1(4),2398 1(4),2398
1,433 1(3),1864 17(5),8,12
85 48
KM5495000
-13
KO1300000
1(1),219D
1(3),278A
1(3),1862
KO2300000 RG0300000
1(1),219A
1(3),277C
1(3), 1857 l(4),2057
1(4),2518 l(2),520
-32 17 -56 177
1.5226 1.3908
1.029
11,235
-26
1(3),1859
101
1.014
1.4940
102
1.040 0.9600
1.5120 1.4835
94 60
FE6350000
1(2),2425E
1(3),161C
UY6107000 AC6475000
1(1),923K 1(1),891K
1(1),1288A 1(1),1242C
2(3),3207 20(2),282 21(1),363 l(l),790B 1(1),759C
4(3),442
1,697
TABLE 21.
cont'd
Name 21.5.
Formula
CAS Registry Number
MoL wt.
Boiling point (0C)
108.10 178.23 164.21 136.16 192.26 178.23 164.21 152.20 122.13 184.21 152.20
100/0.5 131/17 117/15 76/5 146/15 124/15 78/5 70/4 91/15 45/2 110/18
SULFONATES H 2 C=CHSO 3 R
Ethylene sulfonic acid n-Amy\ ester n-Butyl ester Ethyl ester n-Hexyl ester Isoamyl ester Isobutyl ester Isopropyl ester Methyl ester Phenyl ester rc-Propyl ester
-H -(CH 2 ) 4 CH 3 -(CH 2 ) 3 CH 3 -CH 2 CH 3 -(CH 2 ) 5 CH 3 -(CH 2 ) 2 CH(CH 3 ) 2 -CH 2 CH(CH 3 ) 2 -CH(CH 3 ) 2 -CH3 -C6H5 -CH 2 CH 2 CH 3
1562-34-1
Melting point (0C)
Density (at 200C)
1.4003 1.087 1.122 1.183 1.050 1.082 1.190 1.132 1.248 1.165 1.156
Refractive index (at 200C)
1.4493 1.4412 1.4416 1.431 1.4430 1.4415 1.426 1.4321 1.4316 1.426 1.4368
Flash point (0C)
>110
RTECS Number
Rand S
1(2),2219A
FT-NMR
l(2),1605A
FT-IR
1(3),1437A
Merck
Beilstein
6(3),651
Fieser
13,241
I s o r e f r a c t i v e
a n d
l s o p y c n i c
S o l v e n t
P a i r s
H a n s - G . Elias Michigan Molecular Institute, 1910 West St. Andrews Rd., Midland, Ml 48640, USA
A.
INTRODUCTION
Isorefractive solvents are solvents having the same refractive index, and isopycnic solvents are those that have the same density. The determination of molar masses by non-colligative methods such as light scattering and ultracentrifugation will lead only to apparent molar masses if solvent mixtures are used whose components are not isorefractive. The observed increases or decreases of these apparent molar masses depend in sign and magnitude on both the preferential solvation and the refractive index increment
of solvent 2 in solvent 1 at a fixed polymer concentration. The effect disappears if isorefractive solvent pairs are used. A similar effect may be observed in ultracentrifugal experiments with non-isopycnic solvent pairs. To suppress these effects, isopycnic-isorefractive solvent pairs should be used. A table of isorefractive and isopycnic solvent pairs was prepared (for 25°C), starting with 392 commonly used solvents. A solvent pair was classified as isorefractive and isopycnic if the components had differences no greater than ±0.002 in refractive index and ± 0.015 g/ml in density. The miscibility of the components was not checked.
B. TABLE OF ISOREFRACTIVE AND ISOPYCNIC SOLVENT PAIRS Refractive index Solvent 1
Solvent 2
Acetone Ethyl formate
Ethanol Methyl acetate Propionitrile 2-Methylpentane n-Hexane 2,3-Dimethylbutane 3 -Methy lpentane n-Hexane 3 -Methy lpentane 3 -Methy lpentane 2-Chloropropane Butyraldehyde Butyronitrile n-Butyl ethyl ether 2-Methylhexane rc-Butyl ethyl ether Ethyl propionate Isobutyl formate 1 -Chloropropane f-Butanol Isobutyl formate 1 -Chloropropane rc-Heptane 3-Methylhexane
2,2-Dimethylbutane 2-Methylpentane
2,3 -Dimethy lbutane fl-Hexane Isopropyl acetate 2-Butanone Butyraldehyde n-Propyl ether 2,4-Dimethylpentane Acetaldehyde diethyl acetal n-Propyl acetate
Butyronitrile Ethyl propionate 2-Methylhexane
Density (g/ml)
1
2
1
2
1.357 1.358 1.359 1.366 1.369 1.369 1.369 1.372 1.372 1.372 1.375 1.377 1.378 1.379 1.379 1.379 1.382 1.382 1.382 1.382 1.382 1.382 1.382 1.382
1.359 1.360 1.363 1.369 1.372 1.372 1.374 1.372 1.374 1.374 1.376 1.378 1.382 1.380 1.382 1.380 1.382 1.383 1.386 1.385 1.383 1.386 1.385 1.386
0.788 0.916 0.786 0.644 0.649 0.649 0.649 0.657 0.657 0.655 0.868 0.801 0.799 0.753 0.799 0.753 0.883 0.883 0.883 0.786 0.888 0.888 0.674 0.674
0.786 0.935 0.777 0.649 0.655 0.657 0.660 0.655 0.660 0.660 0.865 0.799 0.786 0.746 0.786 0.746 0.888 0.881 0.890 0.781 0.881 0.890 0.680 0.683
Refractive index Solvent 1
Solvent 2
n-Propanol
3-Methyl-2-butanone 2-Pentanone 1-Chloropropane s-Butyl acetate fl-Butylformate n-Propylamine 3-Methylhexane 2,3,3-Trimethylbutane 2,2,4-Trimethylpentane 2,3-Dimethylpentane 2,3,3-Trimethylbutane 2,4-Trimethylpentane 2,3 -Dimethy lpentane Butyl formate 2-Pentanone 3-Pentanone Diisopropylamine s-Butylamine 2,2,4-Trimethylpentane 2,3 -Dimethy lpentane Methyl butyrate /z-Dodecane Methyl butyrate w-Butyl acetate 2,3-Dimethylpentane 5-Butylamine 3-Pentanone 4-Methyl-2-pentanone 2-Methyl-1 -propanol 4-Methyl-2-pentanone 2-Methyl-1 -propanol rc-Butyl acetate 2-Chlorobutane 2-Chlorobutane 2-Chlorobutane 2-Methyl-1 -propanol Valeronitrile 2-Butanol 2-Hexanone 1-Butanol Methacrylonitrile 3-Methyl-2-pentanone Valeronitrile 2-Butanol 2-Hexanone Butanol Methacrylonitrile 3-Methyl-2-pentanone 2,2,5-Trimethylhexane Butanol Methacrylonitrile 3-Methyl-2-pentanone 2,4-Dimethyl-3-pentanone Butanol
Isobutyl formate
Diethylamine n-Heptane
3-Methylhexane
1-Chloropropane 3-Methyl-2-butanone ft-Propylamine 2,3,3-Trimethylbutane 5-Butyl acetate /z-Butyl formate Isobutyl acetate 2,2,4-Trimethylpentane Diisopropylamine 2-Pentanone
3-Pentanone Methyl butyrate 2-Chloro-2-methyl-propane n-Butyl acetate 4-Methyl-2-pentanone
2-Methyl-1 -propanol
Octane 2-Butanol
2-Hexanone
Density (g/ml)
1
2
1
2
1.383 1.383 1.383 1.383 1.383 1.384 1.385 1.385 1.385 1.385 1.386 1.386 1.386 1.386 1.386 1.386 1.386 1.386 1.387 1.387 1.387 1.387 1.388 1.388 1.389 1.390 1.390 1.390 1.390 1.390 1.390 1.391 1.391 1.392 1.392 1.394 1.394 1.394 1.394 1.394 1.394 1.394 1.394 1.394 1.394 1.394 1.394 1.394 1.395 1.395 1.395 1.395 1.395 1.395
1.386 1.387 1.386 1.387 1.387 1.386 1.386 1.387 1.389 1.389 1.387 1.389 1.389 1.387 1.390 1.390 1.390 1.390 1.389 1.389 1.391 1.391 1.391 1.392 1.389 1.390 1.390 1.394 1.394 1.394 1.394 1.392 1.395 1.395 1.395 1.394 1.395 1.395 1.395 1.397 1.398 1.398 1.395 1.395 1.395 1.397 1.398 1.398 1.397 1.397 1.398 1.398 1.399 1.397
0.806 0.806 0.881 0.881 0.881 0.702 0.680 0.680 0.680 0.680 0.683 0.683 0.683 0.890 0.807 0.807 0.713 0.713 0.686 0.686 0.868 0.888 0.871 0.871 0.687 0.712 0.802 0.802 0.802 0.810 0.810 0.875 0.875 0.872 0.877 0.797 0.797 0.797 0.797 0.797 0.797 0.797 0.798 0.798 0.798 0.798 0.798 0.798 0.698 0.803 0.803 0.803 0.803 0.810
0.807 0.804 0.890 0.868 0.888 0.713 0.683 0.686 0.687 0.691 0.686 0.687 0.691 0.888 0.802 0.810 0.712 0.720 0.683 0.691 0.875 0.775 0.875 0.877 0.691 0.720 0.810 0.797 0.798 0.797 0.798 0.877 0.868 0.868 0.868 0.798 0.795 0.803 0.810 0.812 0.795 0.808 0.795 0.803 0.810 0.812 0.795 0.808 0.703 0.812 0.795 0.808 0.805 0.812
Refractive index Solvent 1
Valeronitrile
2-Hexanone Isobutylamine 2-Chlorobutane Butyric acid «-Butanol 1 -Chloro-2-methyl-propane
2,5,5-Trimethylhexane Methyl methacrylate Methacrylonitrile 3-Methyl-2-pentanone Triethylamine
n-Butylamine Isobutyl n-butyrate
1-Nitropropane Amyl acetate n-Dodecane 1-Chlorobutane 2,2,3-Trimethylpentane Isovaleric acid Dipropylamine n-Nonane Isoamylacetate 2-Pentanol
2-Methoxybutanol
3-Methyl-l-butanol
Solvent 2 Methacrylonitrile 3-Methyl-2-pentanone 2,4-Dimethyl-3-pentanone Methacrylonitrile 3-Methyl-2-pentanone 2,4-Dimethyl-3-pentanone 3 -Methy 1-2-pentanone Triethylamine fl-Butylamine Isobutyl /i-butyrate 2-Methoxyethanol 3-Methyl-2-pentanone 2,4-Dimethyl-3-pentanone Isobutyl n-Butyrate Amyl acetate 1-Chlorobutane 2,2,3-Trimethylpentane 3-Methyl-2-pentanone 2,4-Dimethyl-3-pentanone 2-Methyl-2-butanol 2,4-Dimethyl-4-pentanone n-Butylamine 2,2,3-Trimethylpentane n-Nonane Dipropylamine rc-Dodecane n-Amyl acetate Isoamyl acetate 1-Chlorobutane Propionic anhydride 1-Chlorobutane Tetrahydrofuran Dipropylamine Cyclopentane Tetrahydrofuran n-Nonane 2-Ethoxyethanol Valeric acid Cyclopentane Methylcyclopentane 2,2,4-Trimethyl-1 -pentene Tributyl borate 2-Methyl-l-butanol 3-Methyl-1 -butanol 4-Heptanone 2-Heptanone 3-Methyl-l-butanol Capronitrile 4-Heptanone 2-Heptanone Pentanol 3-Methyl-2-butanol Capronitrile 4-Heptanone
Density (g/ml)
1
2
1
2
1.395 1.395 1.395 1.395 1.395 1.395 1.395 1.395 1.395 1.395 1.396 1.397 1.397 1.397 1.397 1.397 1.397 1.398 1.398 1.398 1.398 1.399 1.399 1.399 1.399 1.399 1.399 1.399 1.399 1.399 1.400 1.400 1.400 1.400 1.400 1.401 1.402 1.402 1.403 1.403 1.403 1.403 1.404 1.404 1.404 1.404 1.404 1.404 1.404 1.404 1.404 1.404 1.404 1.404
1.398 1.398 1.399 1.398 1.398 1.399 1.398 1.399 1.399 1.399 1.400 1.398 1.399 1.399 1.400 1.400 1.401 1.398 1.399 1.404 1.399 1.399 1.401 1.401 1.401 1.400 1.400 1.403 1.401 1.400 1.400 1.404 1.403 1.404 1.404 1.403 1.405 1.406 1.404 1.407 1.407 1.407 1.404 1.404 1.405 1.406 1.404 1.405 1.405 1.406 1.408 1.408 1.405 1.405
0.810 0.810 0.810 0.795 0.795 0.795 0.810 0.729 0.729 0.868 0.955 0.812 0.812 0.872 0.872 0.872 0.703 0.795 0.795 0.795 0.808 0.723 0.723 0.723 0.723 0.736 0.860 0.860 8.860 0.995 0.871 0.871 0.746 0.746 0.871 0.712 0.923 0.923 0.736 0.736 0.714 0.868 0.804 0.804 0.804 0.804 0.805 0.805 0.805 0.805 0.805 0.805 0.805 0.805
0.795 0.808 0.805 0.795 0.808 0.805 0.808 0.723 0.736 0.860 0.960 0.808 0.805 0.860 0.871 0.881 0.712 0.808 0.805 0.805 0.805 0.736 0.712 0.714 0.736 0.746 0.871 0.868 0.875 1.007 0.881 0.885 0.736 0.740 0.885 0.714 0.926 0.936 0.740 0.744 0.712 0.854 0.805 0.805 0.813 0.811 0.805 0.801 0.813 0.811 0.810 0.815 0.801 0.813
Refractive index Solvent 1
Cyclopentane Capronitrile
4-Heptanone
2-Ethoxyethanol 2-Heptanone
2-Pentanol
2,2,4-Trimethyl-1 -pentene Tributyl borate 1-Pentanol
3-Methyl-2-butanol
4-Methyl-2-pentanol
3-Isopropyl-2-pentanone 2-Methyl-l-butanol Isoamyl isovalerate Amyl ether 2,4-Dimethyldioxane
Solvent 2 2-Heptanone Pentanol 3-Methyl-2-butanol Methylcyclopentane 4-Heptanone 2-Heptanone 2-Pentanol 1-Pentanol 3-Methyl-2-butanol 4-Methyl-2-pentanol 3-Isopropyl-2-pentanone 2-Methyl-l-butanol 2-Heptanone 1-Pentanol 3-Methyl-2-butanol 4-Methyl-2-pentanol 3-Isopropyl-2-pentanone 2-Methyl-1 -butanol Valeric acid 1-Pentanol 3-Methyl-2-butanol 4-Methyl-2-pentanol 3-Isopropyl-2-pentanone 2-Ethoxyethanol 2-Methyl-1 -butanol Amyl ether 1-Pentanol 3-Methyl-2-butanol 4-Methyl-2-pentanol 3-Isopropyl-2-pentanone 2-Methyl-l-butanol Amyl ether n-Decane Isoamyl isovalerate Allyl alcohol 3-Methyl-2-butanol 4-Methyl-2-pentanol 3-Isopropyl-2-pentanone 2-Methyl-1 -butanol Amyl ether 4-Methyl-2-pentanol 3-Isopropyl-2-pentanone 2-Methyl-1 -butanol Amyl ether 3-Isopropyl-2-pentanone 2-Methyl-l-butanol Amyl ether 2-Methyl-1 -butanol Amyl ether Amyl ether Allyl alcohol 2-Octanone Allyl chloride Caproic acid
Density (g/ml)
1
2
1
2
1.404 1.404 1.404 1.404 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.406 1.406 1.406 1.406 1.406 1.406 1.406 1.407 1.407 1.407 1.407 1.407 1.407 1.407 1.407 1.407 1.408 1.408 1.408 1.408 1.408 1.408 1.408 1.408 1.408 1.409 1.409 1.409 1.409 1.409 1.409 1.410 1.410 1.412 1.412
1.406 1.408 1.408 1.407 1.405 1.406 1.407 1.408 1.408 1.409 1.409 1.409 1.406 1.408 1.408 1.409 1.409 1.409 1.406 1.408 1.408 1.409 1.409 1.409 1.409 1.410 1.408 1.408 1.409 1.409 1.409 1.410 1.409 1.410 1.411 1.408 1.409 1.409 1.409 1.410 1.409 1.409 1.409 1.410 1.409 1.409 1.410 1.409 1.410 1.410 1.411 1.414 1.413 1.415
0.805 0.805 0.805 0.740 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.813 0.813 0.813 0.813 0.813 0.813 0.926 0.811 0.811 0.811 0.811 0.811 0.811 0.811 0.804 0.804 0.804 0.804 0.804 0.804 0.712 0.854 0.854 0.810 0.810 0.810 0.810 0.810 0.815 0.815 0.815 0.815 0.802 0.802 0.802 0.808 0.808 0.815 0.853 0.799 0.935 0.935
0.811 0.810 0.815 0.744 0.813 0.811 0.804 0.810 0.815 0.802 0.808 0.815 0.811 0.810 0.815 0.802 0.808 0.815 0.936 0.810 0.802 0.802 0.808 0.815 0.815 0.799 0.810 0.815 0.802 0.808 0.815 0.799 0.726 0.853 0.847 0.815 0.802 0.808 0.815 0.799 0.802 0.808 0.815 0.799 0.808 0.815 0.799 0.815 0.799 0.799 0.847 0.814 0.932 0.923
Refractive index Solvent 1
Solvent 2
Diethyl malonate Allyl chloride 2-Octanone
Ethyl cyanoacetate Capric acid 3-Methyl-2-heptanone 1-Hexanol 2-Pentanol Caprylnitrile 2-Heptanol 3-Methyl-2-heptanone 2-Pentanol 1-Hexanol 2-Pentanol Caprylonitrile 2-Heptanol 2-Pentanol Caprylonitrile 2-Heptanol 3-Methyl-2-pentanol 2-Ethyl-l-butanol 2-Heptanol 3-Methyl-2-pentanol 2-Ethyl-l-butanol Allylamine 2-Heptanol 3-Methyl-2-pentanol 1-Heptanol 2-Methyl-2-pentanol 2-Ethyl-l-butanol 1-Heptanol 3-Isopropyl-2-heptanone Methylcyclohexane 2-Ethyl-l-butanol 1-Heptanol 3-Isopropyl-2-heptanone 1-Heptanol 3-Isopropyl-2-heptanone Cyclohexane 3-Isopropyl-2-heptanone 1-Octanol 3-Methyl-2-pentanone Caprylic acid Af-Methylalaninenitrile 3-Methy 1-2-pentanol 1 -Chloro-2-ethylhexane 2-Methyl-7-ethyl-4-undecanone Chloro-f-butanol 1,3-Propanediol Diethyl maleate A^-methylmorpholine 2-Methyl-7-ethyl-4-nonanol 6-Ethyl-2-nonanol 5-Ethyl-2-nonanol 1,3-Propanediol Diethyl maleate Dibutyl sebacate
3-Octanone 3-Methyl-2-heptanone
1-Hexanol
2-Pentanol
Dibutylamine Caprylonitrile
2-Heptanol
Allylamine 3-Methyl-2-pentanol
2-Ethyl-l-butanol Methylcyclohexane 1-Heptanol 3-Isopropyl-2-heptanone 3-Chloro-2-methyl-1 -propene Caprylic acid 1-Octanol 1-Chlorooctane 2-Methyl-7-ethylnonane Butyrolactone
4-n-Propyl-5-ethyldioxane 2-Methyl-7-ethyl-4-undecanone 6-Ethyl-3-octanol Chloro-f-butanol 7V-Methylmorpholine
Density (g/ml)
1
2
1
2
1.412 1.413 1.414 1.414 1.414 1.414 1.414 1.414 1.414 1.415 1.415 1.415 1.415 1.416 1.416 1.416 1.416 1.416 1.416 1.416 1.416 1.416 1.418 1.418 1.418 1.418 1.418 1.418 1.418 1.419 1.420 1.420 1.420 1.420 1.420 1.421 1.422 1.423 1.423 1.425 1.426 1.427 1.428 1.433 1.434 1.434 1.434 1.435 1.435 1.435 1.435 1.436 1.436 1.436
1.415 1.415 1.415 1.416 1.416 1.418 1.418 1.415 1.416 1.416 1.416 1.418 1.418 1.416 1.418 1.418 1.420 1.420 1.418 1.418 1.420 1.419 1.418 1.420 1.422 1.420 1.420 1.422 1.423 1.421 1.420 1.422 1.423 1.420 1.423 1.424 1.423 1.427 1.427 1.426 1.429 1.427 1.430 1.435 1.436 1.438 1.438 1.436 1.438 1.438 1.438 1.438 1.438 1.440
1.051 0.932 0.814 0.814 0.814 0.814 0.814 0.830 0.830 0.818 0.818 0.818 0.818 0.814 0.814 0.814 0.814 0.814 0.826 0.816 0.826 0.756 0.810 0.810 0.810 0.818 0.818 0.818 0.818 0.758 0.823 0.823 0.815 0.829 0.829 0.765 0.818 0.815 0.815 0.917 0.905 0.821 0.867 0.830 1.051 1.051 1.051 0.927 0.832 0.832 0.832 1.059 1.059 0.924
1.056 0.923 0.818 0.814 0.826 0.810 0.818 0.818 0.826 0.814 0.826 0.810 0.818 0.826 0.810 0.818 0.823 0.829 0.818 0.818 0.829 0.758 0.818 0.823 0.818 0.823 0.829 0.818 0.815 0.765 0.829 0.818 0.815 0.818 0.815 0.774 0.815 0.821 0.824 0.905 0.895 0.824 0.872 0.832 1.059 1.049 1.064 0.924 0.829 0.836 0.830 1.049 1.064 0.932
Refractive index Solvent 1
Solvent 2
2-Methyl-7-ethyl-4-nonanol
5-Ethyl-2-nonanol 6-Ethyl-3-octanol Butanethiol 7-Methyl-7-ethyl-4-undecanol Ethyl sulfide 6-Ethyl-3-decanol 6-Ethyl-3-octanol Butanethiol 2-Methyl-7-ethyl-4-undecanol Ethyl sulfide 6-Ethyl-3-decanol Diethyl maleate 2-Methy 1-7-ethy 1-1 -undecanol Ethyl sulfide Butanethiol 6-Ethyl-3-decanol 6-Ethyl-3-decanol 2-Methyl-7-ethyl-4-undecanol Ethyl sulfide Mesityl oxide 2-Methyl-7-ethyl-4-undecanol Ethyl sulfide Mesityl oxide Mesityl oxide Butyl stearate 1 -Chlorotetradecane Ethyl sulfide 2-Butyloctyl-3-aminopropyl ether Butyl stearate 1 -Chlorotetradecane 2-Butyloctyl-3-aminopropyl ether 1 -Chlorotetradecane 2-Butyloctyl-3-aminopropyl ether 2-Butyloctyl-3-aminopropyl ether 1,2-Dichloroethane trans-1,2-Dichloroethylene trans-1,2-Dichloroethylene 2-Butyloctyl-3-aminopropyl ether 1 -Chlorohexadecane Formamide Ethylene glycol diglycidyl ether 3-Lauroxy-1 -propylamine Ethylene glycol diglycidyl ether Cyclohexanone 1 - Amino-2-propanol Tetrahydrofurfuryl alcohol 2-Butylcyclohexanone 2-Propylcyclohexanone 4-Methylcyclohexanone 2,2 '-Dimethyl-2,2 '-dipropyldiethanolamine 4-Methylcyclohexanol 3-Methylcyclohexanol 2,2 '-Dimethyl-2,2 '-dipropyldiethanolamine 1,8-Cineole
5-Ethyl-2-nonanol
1,3-Propanediol Methyl salicylate
6-Ethyl-3-octanol Butanethiol
6-Ethyl-3-decanol
1-Chlorododecane (technical)
2-Methyl-7-ethyl-4-undecanol Mesityl oxide
Butyl stearate Ethyl sulfide 1,3-Butanediol sulfite 1,2-Dichloroethane 1 -Chlorotetradecane Diethylene glycol 2-Butyloctyl-3-aminopropyl ether Formamide 2-Methylmorpholine Dipropylene glycol monoethyl ether 1 - Amino-2-methyl-2-pentanol 3-Methyl-5-ethyl-2,4-heptanediol
2-Propylcyclohexanone
Density (g/ml)
1
2
1
2
1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.438 1.440 1.440 1.440 1.440 1.441 1.441 1.441 1.441 1.441 1.441 1.442 1.442 1.442 1.442 1.442 1.442 1.442 1.442 1.444 1.444 1.444 1.445 1.445 1.445 1.445 1.446 1.446 1.446 1.446 1.446 1.449 1.452 1.452 1.452 1.452 1.452 1.452 1.452
1.438 1.438 1.440 1.442 1.442 1.441 1.438 1.440 1.442 1.442 1.441 1.438 1.442 1.442 1.442 1.441 1.441 1.442 1.442 1.442 1.442 1.442 1.442 1.442 1.442 1.445 1.442 1.446 1.442 1.445 1.446 1.445 1.446 1.446 1.444 1.444 1.444 1.446 1.448 1.446 1.447 1.447 1.447 1.448 1.448 1.450 1.453 1.452 1.454 1.456 1.454 1.455 1.456 1.456
0.829 0.829 0.829 0.829 0.829 0.829 0.830 0.830 0.830 0.830 0.830 1.049 0.836 0.836 0.836 0.836 0.837 0.837 0.837 0.837 0.838 0.838 0.838 0.862 0.862 0.862 0.829 0.829 0.850 0.850 0.850 0.850 0.854 0.831 1.231 1.231 1.231 0.857 0.857 1.128 1.128 0.842 1.129 0.951 0.951 1.043 1.050 0.922 0.922 0.922 0.923 0.923 0.923 0.923
0.830 0.836 0.837 0.829 0.831 0.838 0.836 0.837 0.829 0.831 0.838 1.064 0.829 0.831 0.837 0.838 0.838 0.829 0.831 0.850 0.829 0.831 0.850 0.850 0.854 0.858 0.831 0.842 0.854 0.858 0.842 0.858 0.842 0.842 1.245 1.257 1.257 0.842 0.859 1.129 1.134 0.840 1.134 0.943 0.961 1.050 1.047 0.923 0.908 0.922 0.908 0.913 0.922 0.921
Refractive index Solvent 1
Solvent 2
4-Methylcyclohexanol 3 -Methy Icy clohexanol Cyclohexylamine 1-Chloroeicosane (technical) Oleic acid
2,2 '-Dimethyl-2,2 '-dipropyldiethanolamine 2,2 '-Dimethyl-2,2 '-dipropyldiethanolamine 1-Chloroeicosane Oleic acid 2-((3-Ethyl)butylcyclohexanone 2-Butylcyclohexanol 2-(P-Ethyl)hexylcyclohexanone 1 - Aminopropanol Af-(n-Butyl)diethanolamine 4,5-Dichloro-1,3-dioxolane-2-one 2,4-(bis)oc-Phenylethyl)phenylmethyl ether 2-((3-Ethyl)hexylcyclohexanone Cyclohexanol 2-(p-Ethyl)hexylcyclohexanone 2-Ethylcyclohexanol Fluorobenzene Af-(2-Hydroxyethyl)-2-hydroxybutyl amine 1-oc-Pinene mzns-Decahydronaphthalene p-Fluorotoluene frans-Decahydronaphthalene o-Fluorotoluene AT-(2-Hydroxyethyl)-2-hydropropylamine 2-Allyloxy-2-hydroxypropylamine Di(2-Hydroxybutyl)ethanolamine Di(2-Hydroxypropyl)ethanolamine Di(2-Hydroxybutyl)ethanolamine 1 -Methoxy-1 -butene-3-yn n-Dodecyl-4-r-butylphenyl ether n-Dodecylphenyl ether ft-Dodecyl-4-methylphenyl ether rc-Dodecylphenyl ether n-Dodecyl-4-methylphenyl ether n-Dodecylphenyl ether Dioctylbenzene (90% /?; 10% m) p-Cymene Isopropylbenzene f-Butylbenzene (80% p, 15% m, 5% o) n-Propylbenzene 5"-Butylbenzene Hexyl-m-xylene f-Butylbenzene Isopropylethylbenzene (35% p, 60% m, 5% o) Isopropylbenzene f-Butylcumene (80% /?, 15% m, 5% o) n-Propylbenzene 5-Butylbenzene Hexyl-m-xylene (mainly 1,3,5) f-Butylbenzene Isopropylethylbenzene (35% p, 60% m, 5% o) J-Butyltoluene Hexylcumene (90% /7, 5% m, 5% o) Octyltoluene (96% /7, 2% m, 2% o) f-Butylcumene (80% p, 15% m, 5% o)
1,1 ',2,2 '-Tetramethyldiethanolamine Carbon tetrachloride 2-((3-Ethyl)butylcyclohexanone N-(n-Butyl)diethanolamine 2-Butylcyclohexanol N- (3-Oxypropylmorpholine Fluorobenzene D-a-Pinene m-Fluorotoluene 1-oc-Pinene /7-Fluorotoluene Ar-(2-Hydroxyethyl)-2-hydrobutylamine
2-Allyloxy-2-hydroxypropylamine c/s-Decahydronaphthalene
1 -Methoxy-1 -butene-3-yn rc-Dodecyl-4-r-butylphenyl ether Butylbenzene
p-Cymene
Isopropylbenzene
Density (g/ml)
1
2
1
2
1.454 1.455 1.456 1.459 1.459 1.459 1.459 1.459 1.459 1.459 1.461 1.461 1.461 1.462 1.462 1.462 1.463 1.464 1.464 1.465 1.465 1.467 1.467 1.467 1.467 1.467 1.469 1.479 1.479 1.479 1.479 1.480 1.480 1.482 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.487 1.488 1.488 1.488 1.488 1.488 1.488 1.488 1.488 1.488 1.488 1.489
1.456 1.456 1.459 1.459 1.461 1.462 1.463 1.459 1.461 1.461 1.462 1.463 1.465 1.463 1.463 1.463 1.467 1.465 1.468 1.467 1.468 1.468 1.468 1.469 1.469 1.469 1.469 1.480 1.482 1.482 1.483 1.482 1.483 1.482 1.487 1.488 1.489 1.490 1.490 1.490 1.490 1.490 1.491 1.489 1.490 1.490 1.490 1.490 1.490 1.491 1.491 1.492 1.492 1.490
0.908 0.913 0.862 0.872 0.887 0.887 0.887 0.973 0.973 1.584 0.892 0.892 0.965 0.898 0.898 1.013 1.020 0.855 0.855 0.994 0.855 0.994 1.027 1.027 1.027 1.027 1.017 0.893 0.893 0.893 0.893 0.902 0.902 0.881 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.853 0.857
0.922 0.922 0.872 0.887 0.892 0.898 0.892 0.965 0.965 1.591 0.898 0.892 0.968 0.892 0.908 1.020 1.027 0.855 0.867 0.995 0.867 0.995 1.042 1.017 1.018 1.042 1.018 0.902 0.881 0.891 0.889 0.891 0.889 0.891 0.856 0.853 0.857 0.856 0.856 0.856 0.860 0.862 0.856 0.857 0.856 0.858 0.858 0.860 0.862 0.856 0.858 0.863 0.866 0.856
Refractive index Solvent 1
/-Butylcumene (80% /?, 15% m, 5% o)
n-Propylbenzene
s-Butylbenzene
Solvent 2 n-Propylbenzene 5-Butylbenzene Hexyl-m-xylene (mainly 1,3,5) f-Butylbenzene Isopropylethylbenzene (35% p, 60% m, 5% o) f-Butylbenzene (80% p, 15% m, 5% o) w-Propylbenzene s-Butylbenzene Hexyl-m-xylene (mainly 1,3,5) f-Butylbenzene Isopropylethylbenzene (35% /?, 60% m, 5% o) f-Butyltoluene (80% p, 15% m, 5% o) Hexylcumene (90% /7, 5% m, 5% ) Octyltoluene (96% p, 2% m, 2% o) Octylcumene (90% /7, 4% m, 6% 0) Dihexylbenzene /7-Xylene 1,3-Diethylbenzene £-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% p, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene s-Butylbenzene Hexyl-m-xylene (mainly 1,3,5) f-Butylbenzene Isopropylethylbenzene (35% p, 60% m, 5% o) f-Butyltoluene (80% p, 15% m, 5% p) Hexylcumene (90% p, 5% m, 5% o) Octyltoluene (96% /7, 2% m 2% 0) Octylcumene (90% p, 4% m 6% 0) Dihexylbenzene p-Xylene 1,3-Diethylbenzene f-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% p, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene Hexyl-m-xylene (mainly 1,3,5) f-Butylbenzene Isopropylethylbenzene (35% /7, 60% m, 5% 0) f-Butyltoluene (80% /7, 15% m, 5% 0) Hexylcumene (90% p, 5% m, 5% 0) Octyltoluene (96% /?, 2% m, 2% 0) Octylcumene (90% p, 4% m, 6% 0) Dihexylbenzene /7-Xylene 1,3 -Diethy lbenzene f-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% p, 10% m)
Density (g/ml)
1
2
1
2
1.489 1.489 1.489 1.489
1.490 1.490 1.490 1.490
0.857 0.857 0.857 0.857
0.858 0.858 0.860 0.862
1.489 1.489 1.490 1.490 1.490 1.490
1.491 1.491 1.490 1.490 1.490 1.490
0.857 0.857 0.856 0.856 0.856 0.856
0.856 0.858 0.858 0.858 0.860 0.862
1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490
1.491 1.491 1.492 1.492 1.492 1.492 1.493 1.493 1.493 1.493 1.493 1.494 1.494 1.490 1.490 1.490 1.491 1.491 1.492 1.492 1.492 1.492 1.493 1.493 1.493 1.493 1.493 1.494 1.494 1.490 1.490 1.491 1.491 1.492 1.492 1.492 1.492 1.493 1.493 1.493 1.493 1.493
0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858
0.856 0.858 0.863 0.866 0.869 0.870 0.857 0.860 0.862 0.863 0.866 0.860 0.862 0.858 0.860 0.862 0.856 0.858 0.863 0.866 0.869 0.870 0.857 0.860 0.862 0.863 0.866 0.860 0.862 0.860 0.862 0.856 0.858 0.863 0.866 0.869 0.870 0.857 0.860 0.862 0.863 0.866
Refractive index Solvent 1
Solvent 2
Isopropyl-m-xylene (mainly 1,3,5) Toluene f-Butylbenzene Hexyl-m-xylene (mainly 1,3,5) Isopropylethylbenzene (35% /?, 60% m, 5% o) f-Butyltoluene (80% p, 15% m, 5% o) Hexylcumene (90% /?, 5% m, 5% o) Octyltoluene (96% /?, 2% m, 2% o) Octylcumene (90% /?, 4% m, 6% 0) Dihexylbenzene p-Xylene 1,3-Diethylbenzene f-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% /?, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene Isopropylethylbenzene (35% p, 60% m, 5% o) f-Butylbenzene f-Butyltoluene (80% /?, 15% m, 5% ) Hexylcumene (90% /?, 5% m, 5% o) Octyltoluene (96% /?, 2% m, 2% 0) Octylcumene (90% p, 4% m, 6% 0) Dihexylbenzene p-Xylene 1,3-Diethylbenzene f-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% /?, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene Isopropylethylbenzene (35% /?, 60% m) Hexylcumene (90% /?, 5% m, 5% o) Octyltoluene (96% /?, 2% m, 2% o) Octylcumene (90% /?, 4% m, 6% o) Dihexylbenzene /7-Xylene 1,3-Diethylbenzene f-Butyl-ra-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% /?, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene f-Butylethylbenzene (70% p, 25% m, 5% o) m-Xylene Hexylethylbenzene Hexylcumene (90% /?, 5% m, 5% o) f-Butyltoluene (85% p, 10% m) Octyltoluene (96% /?, 2% m, 2% o) Octylcumene (90% p, 4% m, 6% t?) Dihexylbenzene p-Xylene 1,3-Diethylbenzene r-Butyl-w-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% /?, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene
Density (g/ml)
1
2
1
2
1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.490 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491 1.491
1.494 1.494 1.490 1.491 1.491 1.492 1.492 1.492 1.492 1.493 1.493 1.493 1.493 1.493 1.494 1.494 1.491 1.491 1.492 1.492 1.492 1.492 1.493 1.493 1.493 1.493 1.493 1.494 1.494 1.492 1.492 1.492 1.492 1.493 1.493 1.493 1.493 1.493 1.494 1.494 1.495 1.495 1.495 1.492 1.492 1.492 1.492 1.493 1.493 1.493 1.493 1.493 1.494 1.494
0.858 0.858 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856
0.860 0.862 0.862 0.856 0.858 0.863 0.866 0.869 0.870 0.857 0.860 0.862 0.863 0.866 0.860 0.862 0.856 0.858 0.863 0.866 0.869 0.870 0.857 0.860 0.862 0.863 0.866 0.860 0.862 0.863 0.866 0.869 0.870 0.857 0.860 0.862 0.863 0.866 0.860 0.862 0.854 0.860 0.868 0.863 0.866 0.869 0.870 0.857 0.860 0.862 0.863 0.866 0.860 0.862
Refractive index Solvent 1
1-Phenyl-l-hydroxyphenyl ether Hexylcumene (90% p, 5% m)
Dihexylbenzene (85% p, 10% m)
Octyltoluene (96% p, 2% m)
Octylcumene (90% /?, 4% m, 6% o)
Solvent 2 f-Butylethylbenzene (70% /?, 25% m, 5% 0) m-Xylene Hexylethylbenzene(70% p, 25% m, 5% o) 1,3-Dimorpholyl-2-propanol Octyltoluene (96% p, 2% m, 2% o) Octylcumene (90% /?, 4% m, 6% #) Dihexylbenzene p-Xylene 1,3-Diethylbenzene f-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% /7, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene f-Butylethylbenzene (70% p, 25% m, 5% o) m-Xylene Hexylethylbenzene (70% /?, 25% m, 5% o) 1,4-Diethylbenzene Isopropylbenzene Octylcumene (90% /?, 4% m, 6% 0) /7-Xylene 1,3-Diethylbenzene f-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% p, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene m-Xylene Hexylethylbenzene (70% /?, 25% m, 5% o) 1,4-Diethylbenzene Isopropylbenzene Octylcumene (90% p, 4% m, 6% o) Dihexylbenzene (85% p, 10% m, 5% o) /7-Xylene f-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% /7, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene r-Butylethylbenzene (70% /?, 25% m, 5% o) m-Xylene Hexylethylbenzene (70% /?, 25% m, 5% o) 1,4-Diethylbenzene Isopropylbenzene p-Xylene 1,3-Diethylbenzene r-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% p, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene /-Butylethylbenzene (70% /?, 25% m, 5% o) m-Xylene Hexylethylbenzene (70% /7, 25% m, 5% o)
Density (g/ml)
1
2
1
2
1.491 1.491 1.491 1.491 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492 1.492
1.495 1.495 1.495 1.493 1.492 1.492 1.492 1.493 1.493 1.493 1.493 1.493 1.494 1.494 1.495 1.495 1.495 1.496 1.498 1.492 1.493 1.493 1.493 1.493 1.493 1.494 1.494 1.495 1.495 1.496 1.498 1.492 1.492 1.493 1.493 1.493 1.493 1.494 1.494 1.495 1.495 1.495 1.496 1.498 1.493 1.493 1.493 1.493 1.493 1.494 1.494 1.495 1.495 1.495
0.856 0.856 0.856 1.081 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866
0.854 0.860 0.868 1.094 0.866 0.869 0.870 0.857 0.860 0.862 0.863 0.866 0.860 0.862 0.854 0.860 0.868 0.858 0.857 0.869 0.857 0.860 0.862 0.863 0.866 0.860 0.862 0.860 0.868 0.858 0.857 0.869 0.870 0.857 0.862 0.863 0.866 0.860 0.862 0.854 0.860 0.868 0.858 0.857 0.857 0.860 0.862 0.863 0.866 0.860 0.862 0.854 0.860 0.868
Refractive index Solvent 1
Solvent 2
1,4-Diethylbenzene Isopropylbenzene 1,3-Diethylbenzene f-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% /?, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene f-Butylethylbenzene (70% p, 25% m, 5% o) p-Xylene m-Xylene Hexylethylbenzene (70% p, 25% m, 5% o) 1,4-Diethylbenzene Mesitylene Isopropylbenzene f-Butyl-m-xylene (mainly 1,3,5) Ethylbenzene Octyltoluene (96% /?, 2% m, 2% o) Octylethylbenzene (80-90% p, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene f-Butylethylbenzene (70% /?, 25% m, 5% o) 1,3-Diethylbenzene m-Xylene 1,4-Diethylbenzene Mesitylene Hexyltoluene (70% p, 25% m, 5% o) Isopropylbenzene Ethylbenzene Octylethylbenzene (80-90% p, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene f-Butylethylbenzene (70% /?, 25% m, 5% o) m-Xylene Hexylethylbenzene (70% /?, 25% m, 5% o) f-Butyl-m-xylene (mainly 1,3,5) 1,4-Diethylbenzene Mesitylene Hexyltoluene (70% p, 25% m, 5% o) Isopropylbenzene Octylethylbenzene (80-90% /?, 10% m) Isopropyl-m-xylene (mainly 1,3,5) Toluene r-Butylethylbenzene (70% p, 25% m, 5% o) m-Xylene Hexylethylbenzene (70% /?, 25% m, 5% 0) 1,4-Diethylbenzene Ethylbenzene Mesitylene Hexyltoluene (70% /?, 25% m, 5% 0) Isopropylbenzene Isopropyl-m-xylene (mainly 1,3,5) Toluene f-Butylethylbenzene (70% /?, 25% m, 5% 0) m-Xylene Hexylethylbenzene (70% /?, 25% m, 5% 0) 1,4-Diethylbenzene Octylethylbenzene (80-90% p, 10% m) Mesitylene
Density (g/ml)
1
2
1
2
1.492 1.492 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.493
1.496 1.498 1.493 1.493 1.493 1.493 1.494 1.494 1.495 1.495 1.495 1.496 1.497 1.498 1.493 1.493 1.493 1.493 1.494 1.494 1.495 1.495 1.496 1.497 1.497 1.498 1.493 1.493 1.494 1.494 1.495 1.495 1.495 1.496 1.497 1.491 1.498 1.493 1.494 1.494 1.495 1.495 1.495 1.496 1.497 1.497 1.498 1.494 1.494 1.495 1.495 1.495 1.496 1.497
0.866 0.866 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.866 0.866 0.866 0.866 0.866 0.866 0.866
0.858 0.857 0.860 0.862 0.863 0.866 0.860 0.862 0.854 0.860 0.868 0.858 0.861 0.857 0.862 0.863 0.866 0.866 0.860 0.862 0.854 0.860 0.858 0.861 0.870 0.860 0.863 0.866 0.860 0.862 0.854 0.860 0.868 0.858 0.861 0.870 0.857 0.866 0.860 0.862 0.854 0.860 0.868 0.858 0.861 0.870 0.857 0.860 0.862 0.854 0.860 0.868 0.858 0.861
Refractive index Solvent 1
Solvent 2
Hexyltoluene (70% /?, 25% ra, 5% o) Isopropylbenzene Toluene Isopropyl-ra-xylene (mainly 1,3,5) f-Butylethylbenzene (70% /?, 25% m, 5% o) ra-Xylene Hexylethylbenzene (70% p, 25% m, 5% o) 1,4-Diethylbenzene Mesitylene Hexyltoluene (70% p, 25% m, 5% o) Benzene J-Butylethylbenzene (70% /?, 25% ra, 5% 6>) Toluene m-Xylene Hexylethylbenzene (70% p, 25% ra, 5% ) 1,4-Diethylbenzene Mesitylene Hexyltoluene (70% /?, 25% m, 5% o) Benzene wi-Xylene /-Butylethylbenzene (70% /?, 25% m) 1,4-Diethylbenzene Mesitylene Hexylethylbenzene (70% p, 25% m, 5% 6>) ra-Xylene 1,4-Diethylbenzene Mesitylene Benzene 1,4-Diethylbenzene Hexylethylbenzene (70% /?, 25% m) Mesitylene Hexyltoluene (70% /?, 25% m, 5% o) Benzene Mesitylene 1,4-Diethylbenzene Hexyltoluene (70% /?, 25% m, 5% o) Ethylbenzene Mesitylene Benzene Hexyltoluene (70% p, 25% m) 1,2-Diethylbenzene Mesitylene Benzene 1,2-Diethylbenzene 1,2-Diethylbenzene Mesitylene oXylene 1,2-Diethylbenzene Phenetole p-Picoline Pyridine Phenetole Cyclohexylethylbenzene Cyclohexylcumene (50% p, 20% m) (60% p, 20% m, 20% a) Chloro-f-butylbenzene Benzyl acetate Cyclohexylethylbenzene (60% p, 20% m) Cyclohexyltoluene Thiophene 2-Furfurol m-Cresol Benzyl alcohol Benzaldehyde ra-Cresol oToluidine ra-Toluidine
Density (g/ml)
1
2
1
2
1.493 1.493 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.494 1.495 1.495 1.495 1.495 1.495 1.495 1.495 1.495 1.495 1.495 1.495 1.496 1.496 1.497 1.497 1.497 1.498 1.498 1.498 1.501 1.504 1.505
1.497 1.498 1.494 1.495 1.495 1495 1496 1.497 1.497 1.498 1.495 1.495 1.495 1.496 1.497 1.491 1.498 1.495 1.496 1.497 1.495 1.496 1.497 1.498 1.496 1.497 1.497 1.498 1.497 1.498 1.497 1.498 1.501 1.498 1.501 1.501 1.503 1.505 1.507
0.866 0.866 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.860 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.854 0.854 0.854 0.860 0.860 0.860 0.860 0.868 0.868 0.868 0.868 0.858 0.858 0.861 0.870 0.870 0.874 0.874 0.874 0.867 0.953 0.961
0.870 0.857 0.862 0.854 0.860 0.868 0.858 0.861 0.870 0.874 0.854 0.860 0.868 0.858 0.861 0.870 0.874 0.860 0.858 0.861 0.868 0.858 0.861 0.874 0.858 0.861 0.870 0.874 0.861 0.870 0.870 0.874 0.876 0.874 0.876 0.876 0.876 0.961 0.978
1.516 1.518 1.520 1.524 1.538 1.542 1.566
1.520 1.521 1.523 1.526 1.542 1.544 1.570
0.917 1.051 0.923 1.057 1.041 1.037 0.985
0.923 1.039 0.923 1.059 1.037 1.041 0.994
R e f r a c t i v e
I n d i c e s
o f
C o m m o n
S o l v e n t s
H a n s - G . Elias Michigan Molecular Institute, 1910 West St. Andrews Rd., Midland, Ml 48640, USA
A.
INTRODUCTION
Solvents
Measurements which depend on the difference in refractive index between the polymer and the solvent will, in general, give greater accuracy as the refractive index increment between polymer and solvent is increased. The magnitude of the increment may be either positive or negative. Systems involving refractive index increments are those of light scattering and ultracentrifugation when either schlieren or interference optics is used. A table of commonly used solvents, arranged according to increasing refractive index, will be useful in practical work with many different polymers. Data at 25°C, D-line. B. TABLE OF REFRACTIVE INDICES OF COMMON SOLVENTS Solvents
Trifluoroacetic acid Trifluoroethanol Octafluoro-1 -pentanol Dodecafluoro-1 -heptanol Methanol Acetonitrile Ethyl ether Acetone Ethyl formate Ethanol Methyl acetate Propionitrile 2,2-Dimethylbutane Isopropyl ether 2-Methylpentane Formic acid Ethyl acetate Acetic acid Propionaldehyde n-Hexane 2,3-Dimethylbutane 3-Methylpentane 2-Propanol Isopropyl acetate Propyl formate
Refractive index 1.283 1.290 1.316 1.316 1.326 1.342 1.352 1.357 1.358 1.359 1.360 1.363 1.366 1.367 1.369 1.369 1.370 1.370 1.371 1.372 1.372 1.374 1.375 1.375 1.375
2-Chloropropane 2-Butanone Butyraldehyde 2,4-Dimethylpentane Propyl ether Acetaldehyde diethyl acetal Butyl ethyl ether Nitromethane Trifluoropropanol 2-Methylhexane Butyronitrile Propyl acetate Ethyl propionate 2-Methyl-2-propanol Propanol Isobutyl formate Diethyl carbonate Heptane /-Butanol Propionic acid 3-Methylhexane Propylamine 3-Methyl-2-butanone 1-Chloropropane 2,2,3-Trimethylbutane 5-Butyl acetate Butyl formate Isobutyl acetate 2,2,4-Trimethylpentane 2,3-Dimethylpentane Acetic anhydride Diisopropylamine 2-Butylamine 2-Pentanone 3-Pentanone Nitroethane Methyl n-butyrate Butyl acetate 2-Nitropropane 4-Methyl-2-propanone 2-Methyl-1 -propanol Octane
Refractive index 1.376 1.377 1.378 1.379 1.379 1.379 1.380 1.380 1.381 1.382 1.382 1.382 1.382 1.383 1.383 1.383 1.383 1.385 1.385 1.385 1.386 1.386 1.386 1.386 1.387 1.387 1.387 1.388 1.389 1.389 1.389 1.390 1.390 1.390 1.390 1.390 1.391 1.392 1.392 1.394 1.394 1.395
Solvents Isobutylamine Valeronitrile 2-Butanol 2-Hexanone 2-Chlorobutane Butyric acid 2,2,5-Trimethylhexane Dibutyl ether Butanol Acrolein 1 -Chloro-2-methylpropane Methacrylonitrile 3-Methyl-2-pentanone Triethylamine Butylamine 2,4-Dimethyl-3-pentanone Isobutyl ft-butyrate 1-Nitropropane Dodecane Amyl acetate 1-Chlorobutane 2-Methoxyethanol Propionic anhydride 2,2,3-Trimethylpentane 1-Chlorobutane P-Methoxypropionitrile Isovaleric acid Nonane Dipropylamine Isoamyl acetate Cyclopentane 2-Methyl-2-butanol 3-Methyl-l-butanol Tetrahydrofuran Capronitrile 4-Heptanone 2-Ethoxyethanol 2-Heptanone Valeric acid Diisobutylene Methylcyclopentane Isoamyl ether 2-Pentanol Tributyl borate Pentanol 3-Methyl-2-butanol Diethyl oxalate Decane 4-Methyl-2-pentanol 3-Isopropyl-2-pentanone 2-Methyl-1 -butanol Butyric anhydride Amyl ether Isoamyl isovalerate 1-Chloropentane Allyl alcohol
Refractive index 1.395 1.395 1.395 1.395 1.395 1.396 1.397 1.397 1.397 1.397 1.397 1.398 1.398 1.399 1.399 1.399 1.399 1.399 1.400 1.400 1.400 1.400 1.400 1.401 1.401 1.401 1.402 1.403 1.403 1.403 1.404 1.404 1.404 1.404 1.405 1.405 1.405 1.406 1.406 1.407 1.407 1.405 1.407 1.407 1.408 1.408 1.408 1.409 1.409 1.409 1.409 1.409 1.410 1.410 1.410 1.411
Solvents 2,4-Dimethyldioxane Ethyl lactate Diethyl malonate 3-Chloropropene Ethylene glycol diacetate 2-Octanone 3-Octanone 3-Methyl-2-heptanone Caproic acid 4-Methyldioxane 1,2-Propylene glycol monobutyl ether Ethyl cyanoacetate Dibutylamine Hexanol 2-Pentanol 1,1 -Dichloroethane Heptachlorodiethyl ether 3-Methoxypropylamine Caprylonitrile 2-Heptanol Allylamine 1,2-Propylene glycol carbonate 2-Heptanol 3-Methyl-2-pentanol 2-Ethyl-l-butanol 1 -Chloro-2-methyl-1 -propene 1,4-Dioxane Methylcyclopropane 4-Hydroxy-4-methyl-2-pentanone Heptanol 3-Isopropyl-2-heptanone Cyclohexane 2-Bromopropane 3-Chloro-2-methyl-1 -propene Caprylic acid Ethylene carbonate Octanol 3-Methyl-2-heptanol Af,A^Dimethylformamide Sulfuric acid 1-Chlorooctane Triisobutylene Af-Methylalaninenitrile 1,2-Ethanediol 1 -Chloro-2-ethylhexane Ethylcyclohexane 1,2-Propanediol 1-Bromopropane 2-Methyl-7-ethyl-4-nonanone Ethylene glycol monoallyl ether Butyrolactone 2-Methyl-7-ethyl-undecanone 1,2-Dichloroisobutane 1,2-Propylene glycol sulfite Af-Methylmorpholine ChlorcK-butanol
Refractive index 1.412 1.412 1.412 1.413 1.413 1.414 1.414 1.415 1.415 1.415 1.415 1.415 1.416 1.416 1.416 1.416 1.416 1.417 1.418 1.418 1.419 1.419 1.420 1.420 1.420 1.420 1.420 1.421 1.421 1.422 1.423 1.424 1.424 1.425 1.426 1.426 1.427 1.427 1.427 1.427 1.428 1.429 1.429 1.429 1.430 1.431 1.431 1.431 1.433 1.434 1.434 1.435 1.435 1.435 1.436 1.436
Solvents Epichlorohydrin Triethylene glycol monobutyl ether 2-Methyl-7-ethyl-4-nonanol 5-Ethyl-2-nonanol 6-Ethyl-3-octanol 1,3-Propanediol Diethyl maleate Butanethiol Dibutyl sebacate 2-Chloroethanol 6-Ethyl-3-decanol 1 -Chlorododecane 3-Methyl-2,4-pentanediol Dimethyl maleate 2-Methyl-7-ethyl-4-undecanol Ethyl sulfide Mesityl oxide Butyl stearate Cyclohexene Lauryl glycidyl ether Dibutyl maleate 1,3-Butylene glycol sulfite 1,2-Dichloroethane Glycol sulfite Chloroform 1 -Chlorotetradecane Diethylene glycol cis-1,2-Dichloroethylene 2-Butyloctyl-3-aminopropyl ether 2-Methylmorpholine Formamide 3-Lauryl-1 -hydroxypropylamine Ethylene glycol diglycidyl ether 1 -Chlorohexanedecane Cyclohexanone 1 - Amino-2-propanol Diethylene glycol mono-P-hydroxyisopropyl ether 1 - Amino-2-methyl-2-pentanol Tetrahydrofurfuryl alcohol 2-Propylcyclohexanone 2-Aminoethanol 1,4-Butanediol glycidyl ether 4-Chloro-1,3-dioxolane-2-one 1 -Chlorooctadecane 2-Butylcyclohexanone Ethylenediamine 2-((3-Methyl)propylcyclohexanone 4-Methylcyclohexanol 3-Methylcyclohexanol Bis(2-chloroethyl) ether Cyclohexyl methacrylate 1,8-Cineole 2,2/-Dimethyl-2,2/-dipropyl diethanolamine 1,3-Butanediol glycidyl ether
Refractive index 1.436 1.437 1.438 1.438 1.438 1.438 1.438 1.440 1.440 1.440 1.441 1.441 1.441 1.441 1.442 1.442 1.442 1.442 1.443 1.443 1.444 1.444 1.444 1.444 1.444 1.445 1.445 1.445 1.446 1.446 1.446 1.447 1.447 1.448 1.448 1.448 1.448 1.449 1.450 1.452 1.452 1.452 1.452 1.453 1.453 1.454 1.454 1.454 1.455 1.455 1.456 1.456 1.456 1.456
Solvents 1-Chloroeicosane Oleic acid (1,1 ',^'-Tetramethyl) diethanolamine 3-Aminopropanol Carbon tetrachloride 3-Methyl-5-ethyl-2,4-heptanediol 2-((3-Ethyl)butylcyclohexanone 2-Methylcyclohexanol AHrc-ButyOdiethanolamine 4,5-Dichloro-l,3-dioxolane-2-one 2-Butylcyclohexanol N- P-Hydroxypropylmorpholine 2-(P-Ethyl)hexylcyclohexanone 2-Ethylcyclohexanol Fluorobenzene D-a-Pinene L-a-Pinene Cyclohexanol m-Fluorotoluene /?-Fluorotoluene AH2-Hydroxyethyl)-2hydroxybutylamine 4-Chloromethyl-1,3-dioxolane-2-one ^rarcs-Decahydronaphthalene -Fluorotoluene AH2-Hydroxyethyl)-2hydroxypropylamine 3-Allyloxy-2-hydroxypropylamine Di(2-hydroxybutyl)ethanolamine Di(2-hydroxypropyl)ethanolamine D-Limonene 2-(a-Hydroxybutyl)cyclohexanol 1,2,3-Trichloroisobutane Decahydronaphthalene 1,2,3-Propanetriol Trichloroethylene AH p-Hy droxy ethyl)morpholine Dimethyl sulfoxide ds-Decahydronaphthalene 2-(a-Hydroxyethyl)cyclohexanol 1 -Methoxy-1 -butene-3-yn 2-Butylidenecyclohexanone N-( P-Chloroallyl)morpholine rc-Dodecyl-4-f-butyl phenyl ether n-Dodecyl phenyl ether n-Dodecyl 4-methylphenyl ether Af-Hy droxyethyl-1,3-propanediamine Morpholyl A^-(ethylhydroxy)ethylamine 2-Ethylidenecyclohexanone Butylbenzene Dioctylbenzene (90% p, 10% m) p-Cymene Isopropylbenzene Furfuryl alcohol f-Butylcumene (80% p, 15% m, 5% o) n-Propylbenzene
Refractive index 1.459 1.459 1.459 1.459 1.459 1.459 1.461 1.461 1.461 1.462 1.462 1.462 1.463 1.463 1.463 1.464 1.465 1.465 1.465 1.467 1.467 1.467 1.468 1.468 1.468 1.469 1.469 1.469 1.471 1.473 1.473 1.474 1.475 1.474 1.476 1.476 1.479 1.479 1.480 1.481 1.481 1.482 1.482 1.483 1.483 1.485 1.486 1.487 1.487 1.488 1.489 1.489 1.490 1.490
Solvents s-Butylbenzene Hexyl-m-xylene (mainly 1,3,5) J-Butylbenzene Dibutyl phthalate Isopropylethylbenzene (35% /?, 60% m, 5% o) r-Butyltoluene (85% p, 10% m, 5% o) 1-Phenyl-l-hydroxyphenyl ethane Hexylcumene (90% /?, 5% ra, 5% o) Octyltoluene (96% p, 2% m, 2% o) Octylcumene (90% p, 4% m, 6% o) Dihexylbenzene (85% p, 10% m, 5% o) p-Xylene 1,3-Diethylbenzene /-Butyl-ra-xylene (mainly 1,3,5) Ethylbenzene Octylethylbenzene (80-90% p, 10% m) 1,3-Dimorpholyl-2-propanol 1,1,2,2-Tetrachloroethane Isopropyl-ra-xylene (mainly 1,3,5) Toluene Benzyl ethyl ether r-Butylethylbenzene (70% p9 25% m, 5% o) m-Xylene Hexylethylbenzene (70% p, 25% m, 5% o) 1,4-Diethylbenzene 2,3-Dichlorodioxane Mesitylene Hexyltoluene (90% p, 5% m, 5% o) 2-Iodopropane Benzene Propyl benzoate a-Picoline 1,2-Diethylbenzene Pentachloroethane 1-Iodopropane o-Xylene Ethyl benzoate P-Picoline Tetrachloroethylene Phenetole Pyridine Iodoethane Phenyl methallyl ether Anisole
Refractive index 1.490 1.490 1.490 1.490 1.491 1.491 1.491 1.492 1.492 1.493 1.492 1.493 1.493 1.493 1.493 1.493 1.493 1.493 1.494 1.494 1.494 1.495 1.495 1.495 1.496 1.496 1.497 1.497 1.497 1.498 1.498 1.499 1.501 1.501 1.502 1.503 1.503 1.504 1.504 1.505 1.507 1.512 1.514 1.515
Solvents Methyl benzoate Cyclohexylcumene (60% p, 25% m, 15% o) Diallyl phthalate Benzyl acetate Cyclohexylethylbenzene (70% p, 20% m, 20% o) 2-Methyl-4-f-butylphenol Phenyl acetonitrile (Chloro-r-butyl)benzene Methyl salicylate Cyclohexyltoluene (50% p, 20% m, 30% o) Chlorobenzene Furfural Octachlorodiethyl ether Benzonitrile Thiophene Nonachlorodiethyl ether Iodomethane 4-Phenyldioxane 3-Phenyl-1 -propanol Acetophenone Benzyl alcohol 1,2-Dibromoethane 1,2,3,4-Tetrahydronaphthalene m-Cresol P,P-Di(butylxanthogenic acid) diethylester m-Dichlorobenzene Benzaldehyde Styrene Nitrobenzene 6>-Dichlorobenzene Bromobenzene o-Nitroanisole m-Toluidine Benzyl benzoate o-Toluidine 1 -Methoxyphenyl-1 -phenylethane Aniline o-Chloroaniline Bromoform Thiophenol 2,4-Bis(a-phenylethyl)phenylmethyl ether Carbon disulfide 1,1,2,2-Tetrabromoethane Methylene iodide
Refractive index 1.515 1.516 1.517 1.518 1.520 1.521 1.521 1.521 1.522 1.523 1.523 1.524 1.525 1.526 1.526 1.529 1.530 1.530 1.532 1.532 1.538 1.538 1.539 1.542 1.543 1.544 1.544 1.545 1.550 1.551 1.557 1.560 1.566 1.568 1.570 1.571 1.583 1.586 1.587 1.588 1.590 1.628 1.633 1.749
P h y s i c a l
C o n s t a n t s S o l v e n t s
o f f o r
t h e
M o s t
C o m m o n
P o l y m e r s
D a n i e l R. B l o c h Lakeshore Research, Racine, Wl, USA
Values given here have been taken a variety of reference books. Where a range was given, the melting and boiling points given here are average values. Flash point was determined by the closed cup method, using a Setaflash apparatus. The refractive index is reported relative to the
Compound Acetic acid Acetic anhydride Acetone Acetonitrile n-Amyl acetate Aniline Anisole Benzene Benzonitrile Benzyl acetate Benzyl alcohol Biphenyl Bromoform n-Butanol n-Butyl acetate y-Butyrolactone Carbon disulfide Carbon tetrachloride Chlorobenzene 2-Chloroethanol Chloroform 2-Chlorophenol m-Cresol Cyclohexane Cyclohexanol Cyclohexanone Cyclohexyl acetate Cyclopentanol ds-Decahydronaphthalene Diacetone alcohol Di-n-amyl ether 1,2-Dichlorobenzene Di-2-chlorodiethylether 1,2-Dichloroethylene, cis & trans Dichloromethane/methylene chloride l,3,-Dichloro-2,4,6-trifluorobenzene Diethyl ether
CAS Number 64-19-7 108-24-7 67-64-1 75-05-8 628-63-7 62-53-3 100-66-3 71-43-2 100-47-0 140-11-4 100-51-6 92-52-4 75-25-2 71-36-3 123-86-4 96-48-0 75-15-0 56-23-5 108-90-7 107-07-3 67-66-3 95-57-8 108-39-4 110-82-7 108-93-0 108-94-1 622-45-7 96-41-3 493-01-6 123-42-2 693-65-2 95-50-1 111-44-4 540-59-0 75-09-2 2368-53-8 60-29-7
Formula Wt. 60.05 102.09 58.08 41.05 130.19 93.13 108.14 78.11 103.12 150.18 108.14 154.21 252.75 74.12 116.16 86.09 76.14 153.82 112.56 80.51 119.38 128.56 108.14 84.16 100.16 98.15 142.2 86.13 138.25 116.16 158.29 147 143.01 96.94 84.93 200.98 74.12
Melting Pt. (0C) 17 -73 -94 -48 -71 -6 -37 6 -13 -51 -15 71 8.3 -90 -78 -45 -111 -23 -45 -89 -63 8 9 7 22 -47 -19 -43 -69 -17 -47 -57 -97 -116
sodium D line. Boiling points are given at 760 mmHg unless indicated otherwise by the pressure in mmHg following a slash (/). Viscosity is reported at 200C unless indicated at another temperature in Celsius following a slash (/).
Boiling pt. (0C) 118 140 56 82 148 184 154 80 191 206 205 255 151 118 125 205 46 77 132 129 61 176 203 81 161 155 173 140 193 166 188 180 66/15 48-60 40 162 34.6
Density Viscosity at (at 200C) 200C (cps) 1.049 1.082 0.790 0.786 0.876 1.022 0.995 0.874 1.010 1.040 1.045 0.992 2.894 0.810 0.882 1.120 1.266 1.594 1.107 1.201 1.492 1.241 1.034 0.779 0.948 0.947 0.966 0.949 0.896 0.931 0.785 1.306 1.220 1.265 1.325 1.599 0.708
1.21 0.324
0.52 5.8 2.948 5.8 0.969 0.568 20.8 0.979
2.543/15
1.4230
1.4870 1.26
Flash pt. Refractive index (at 200C) (0C) 1.3716 1.3900 1.3588 1.3440 1.4026 1.5860 1.5160 1.5010 1.5280 1.5020 1.5400 1.5960 1.3990 1.3940 1.4360 1.6270 1.4600 1.5240 1.4410 1.4460 1.5580 1.5400 1.4260 1.4650 1.4500 1.4390 1.4530 1.4750 1.4119 1.5510 1.4560 1.4470 1.4240 1.3530
40 54 -17 5 36 70 51 -11 71 102 93 35 98 -33 23 60 63 86 -18 67 46 57 51 57 61 57 65 55 6 76 -40
Compound
CAS Number
Di(ethylene glycol) 111-46-6 Di(ethylene glycol mono-n-butyl 112-34-5 ether Di(ethylene glycol) monoethyl ether 111-90-0 Diisobutyl ketone 108-83-8 Diisopropyl ketone 565-80-0 1,2-Dimethoxyethane/ethylene 110-71-4 glycol dimethyl ether AyV-Dimethylacetamide 127-19-5 Af,Af-Dimethylformamide 68-12-2 Dimethylsulfoxide 67-68-5 1,4-Dioxane 123-91-1 Diphenyl ether 101-84-8 Di(propylene glycol) 110-98-5 Di(propylene glycol) monomethyl 34590-94-8 ether Ethanol 64-17-5 Ethyl acetate 141-78-6 Ethylene glycol diacetate 111-55-7 Ethylene carbonate 96-49-1 Ethylene dichloride 107-06-2 Ethylene gylcol 107-21-1 Ethylene glycol mono-rc-butyl ether 111-76-2 Ethylene glycol diacetate 111-55-7 Ethylene glycol diethyl ether 629-14-1 Ethylene glycol dimethyl ether 110-71-4 Ethylene glycol monoethyl ether 110-80-5 Ethylhexyl acetate 103-09-3 (5)-(-)-Ethyl lactate 687-47-8 Formaldehyde, 37% solution 50-00-0 Formamide 75-12-7 Formic acid, 96% 64-18-6 Furfurol 98-00-0 Glycerine 56-81-5 w-Heptane 142-82-5 Hexachloroethane 67-72-1 Hexafluorobenzene 392-56-3 Hexamethylphosphoric triamide 680-31-9 Hexane 110-54-3 Isobutanol 78-83-1 Isobutyl isobutyrate 97-85-8 Isobutyric acid 79-31-2 Isophorone 78-59-1 Isopropanol 67-63-0 Isopropyl acetate 108-21-4 Isopropylamine 75-31-0 Mesitylene 108-67-8 Mesityl oxide 141-79-7 Methanol 67-56-1 2-Methoxyethanol 109-86-4 Methyl acetate 79-20-9 Methyl ethyl ketone 78-93-3 Methyl isoamyl ketone 110-12-3 Methyl isobutyl ketone 108-10-1 Methyl propyl ketone 107-87-9 N-Methylpyrrolidone 872-50-4 Morpholine 110-91-8 Nitrobenzene 98-95-3 Nitromethane 75-52-5 rc-Octane 111-65-9 rc-Pentanol 71-41-0 Perfluoroacetone 684-16-2 Perfluorotributylamine 311-89-7 Phenol 108-95-2 1,4-Phenylenediamine 106-50-3
Formula Wt.
Viscosity at 200C (cps)
Refractive Flash pt. index (at 2O0C) (0C)
Melting Pt. (0C)
Boiling pt. (°C)
Density (at 200C)
106.12 162.23
-10 -68
245 231
1.118 0.967
1.4460 1.4320
143 100
134.18 142.24 114.19 90.12
-46 -80 -58
202 169 124 85
0.999 0.806 0.806 0.867
1.4270 1.4113 1.4000 1.3790
96 49 15 0
1.4380 1.4310 1.4790 1.4220 1.5790 1.4410 1.4220
70 57 95 12 >110 137 74
1.3600 1.3720 1.4150
1.4130 1.3765 1.4470 1.3704 1.4860 1.4740 1.3870
8 -3 82 160 15 > 110 60 82 20 0 44 77 28 56 154 68 65 160 -1
1.3770 1.4580 1.3750 1.3960 1.3980 1.3930 1.4760 1.3770 1.3770 1.3746 1.4990 1.4450 1.3290 1.4020 1.3610 1.3970 1.4070 1.3960 1.3900 1.4700 1.4540 1.5510 1.3820 1.3980 1.4090
10 105 -23 27 37 55 84 11 16 -32 44 30 11 46 -9 3 41 13 7 86 35 87 35 15 48
1.5425
None 79
87.12 73.1 78.13 88.11 170.21 134.18 148.2
-20 -61 18 12 28
166 153 189 102 259 230 90/12
0.937 0.944 1.101 1.034 1.073 1.023 0.938
46.07 88.11 146.14 88.06 98.96 62.07 118.18 146.14 118.18 90.12 90.12 172.27 118.13 30.03 45.04 46.03 98.1 92.09 100.21 236.74 186.05 179.2 86.18 74.12 144.21 88.11 138.21 60.1 102.13 59.11 120.2 98.15 32.04 76.1 74.08 72.11 114.19 100.16 86.13 99.13 87.12 123.11 61.04 114.23 88.15 166.02 671.1 94.11 108.14
-130 -84 -41 39 -35 -13 -75 -41 -74 -58 -90
78 77 187 244/740 83 197 171/743 187 121 85 135 200 154 97 210 101 170 182/20 98
0.785 0.902 1.128 1.321 1.256 1.113 0.903 1.128 0.842 0.867 0.930 0.870 1.042 1.083 1.134 1.220 1.135 1.261 0.684 2.091 1.612 1.030 0.659 0.803 0.855 0.950 0.923 0.785 0.872 0.694 0.864 0.858 0.791 0.965 0.932 0.805 0.888 0.801 0.802 1.033 0.999 1.196 1.127 0.703 0.811
-26 -15 3 8 -29 20 -91 193 4 7 -95 -108 -81 -47 -8 -89 -73 -101 -45 -53 -98 -85 -98 -87 -80 -78 -24 -7 6 -29 -57 -78 -129 41 144
80 232/740 69 108 148 154 214 82 89 34 163 129 65 125 58 80 145 118 110 82/10 129 211 101 127 138 -26 178 182 267
1.883 1.071
1.26
1.2 0.455
1.4450 1.4310 1.4190 1.4150 1.3923 1.3790 1.4070
0.326
0.423/15
2.256
Compound Piperazine H-Propanol Propyl acetate Propylene carbonate Propylene glycol Propylene glycol mono-n-butyl ether Propylene glycol monomethyl ether Propylene glycol mono-n-propyl ether Propylene glycol mono-f-butyl ether Pyridine 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tetrahydrofuran Tetrahydrofurfuryl alcohol Tetrahydronaphthalene/tetralin Tetramethylene sulfone Tetramethylurea Toluene 1,1,1-Trichloroethane Trichloroethylene Tricresyl phosphate Trifluoroacetic acid Water o-Xylene p-Xylene
CAS Number
Formula Wt.
Melting Pt. (0C)
Boiling pt. (0C)
Density Viscosity at (at 200C) 200C (cps)
1.3840 1.3840 1.4210 1.4320 1.4160
109 15 12 132 107 58
0.922
1.4030
33
140-160
0.885
1.4110
48
144
0.874
1.4130
44
115 147 121 66 178 207 285 177 111 75 87 265/10 72 100 144 138
0.978 1.586 1.623 0.889 1.054 0.973 1.261 0.971 0.865 1.338 1.463 1.143 1.480 0.998 0.870 0.866
1.5100 1.4935 1.5060 1.4070 1.4520 1.5410 1.4840 1.4506 1.4960 1.4366 1.4760 1.5550
20 None None -17 83 77 165 65 4 None None >110 None None 32 27
110-85-0 71-23-8 109-60-4 108-32-7 57-55-6
86.14 60.1 102.13 102.09 76.1 132.2
109 -127 -95 -55 -60
146 97 102 240 187 72/20
0.804 0.888 1.189 1.036 0.885
107-98-2
90.12
-97
119
1569-01-3
118.18
57018-52-7
132.20
110-86-1 79-34-5 127-18-4 109-99-9 97-99-4 119-64-2 126-33-0 632-22-4 108-88-3 71-55-6 79-01-6 1330-78-5 76-05-1 7732-18-5 95-47-6 106-42-3
79.1 167.85 165.83 72.11 102.13 132.21 120.17 116.16 92.14 133.41 131.39 368.37 114.02 18.02 106.17 106.17
-42 -45 -22 -108 -80 -35 27 -1 -93 -35 -85 -15 0 -24 13
Flash pt. Refractive index (at 20°C) (°C)
2.256
0.486
0.59
1.005 0.648
1.3329 1.5050 1.4950
S E C T I O N
P H Y S I C A L
D
A
T
A
O
I V
F
O
L
I
G
O
M
E
R
S
P h y s i c a l
D a t a
o f
O l i g o m e r s
M . Rothe Lehrstuhl Organische Chemie II, University at UIm, UIm, FR Germany
A. Introduction B. Oligomers Containing Main Chain Acyclic Carbon Only Table 1. Oligo(olefins) 1.1. Oligo(methylenes) and Oligo(ethylenes) 1.2. Oligo(perfluoromethylenes) and Oligo(perfluoroethylenes) 1.3. Oligo(isobutenes) 1.4. OligoO -alkenylenes) References Table 2. Oligo(dienes) 2.1. Oligomers of 1,3-Butadiene 2.2. Oligomers of lsoprene 2.3. Oligomers of 1,3-Butadiene Derivatives 2.4. 1,4-Oligo(alkadienes) 2.5. Oligomers of Cyclopentadiene and 1,3-Cyclohexadiene 2.6. Oligomers of Allene References Table 3. Oligo(acetylenes) 3.1. Linear Oligomers of Acetylene 3.2. Polyenyne Oligomers 3.3. Oligomeric oc-co-Diynes 3.4. Oligo(alkynes) 3.5. Cyclic Oligo(alkynes) 3.6. Pericyclynes References Table 4. Oligomers with Aliphatic Side Chains which in Addition Contain Heteroatoms 4.1. Oligomeric Acrylic Derivatives 4.2. Oligomeric Methacrylic Derivatives 4.3. Oligomers of P-Alkyl Substituted Vinyl Derivatives 4.4. Oligo(vinyl) Derivatives References Table 5. Oligo(styrenes) References
IV-2 IV-3 IV-3 IV-3 IV-6 IV-8 IV-9 IV-9 IV-14 IV-14 IV-15 IV-16 IV-16 IV-I 7 IV-17 IV-18 IV-19 IV-19 IV-20 IV-20 IV-20 IV-20 IV-21 IV-21
IV-22 IV-22 IV-24 IV-26 IV-27 IV-28 IV-30 IV-32
C. Oligomers Contaning Heteroatoms in the Main Chain Table 6. Oligomers Containing O in the Main Chain 6.1. Oligo(ethers) and Oligo(acetals) References 6.2. Oligo(carbonates) References 6.3. Oligo(esters) References 6.4. Oligo(urethanes) References Table 7. Oligo(sulfides) and Oligo(selenides) 7.1. Cyclic Oligo(thiomethylenes) and Oligo(Selenomethylenes) 7.2. Cyclic Oligo(thioalkylenes) 7.3. Substituted Cyclic(thioethylenes) 7.4. Cyclic Co-Oligomers of Formaldehyde and Thioformaldehyde 7.5. Cyclic Oligo(ethersulfides) 7.6. Thiacyclophanes References Table 8. Oligomers Containing N in the Main Chain 8.1. Oligo(amides) References 8.2. Oligo(peptides) References 8.3. Oligo(imines) References 8.4. Oligo(ureas) References D. Carbon Chain Oligomers Containing Main Chain Cyclic Units Table 9. Oligocyclopentylenes Table 10. Oligo(spiranes) Table 11. Oligo(xylylenes) 11.1. Linear Oligo(xylenes) 11.2. Cyclic Oligo(xylylenes) Table 12. Oligo(stilbenes)
IV-33 IV-33 IV-33 IV-43 IV-47 IV-47 IV-48 IV-56 IV-58 IV-61 IV-62 IV-62 IV-62 IV-62
IV-62 IV-63 IV-63 IV-63 IV-64 IV-64 IV-70 IV-72 IV-84 IV-88 IV-89 IV-89 IV-90 IV-90 IV-90 IV-90 IV-90 IV-90 IV-90 IV-91
Table Table Table Table Table Table Table
Oligo(benzyls) Oigo(2,5-dimethyl-benzyls) Oligo(2,3,5,6-tetramethyl benzyls) Oligo(p-phenylene oxides) Oligo(p-phenylene sulfides) Oligo(p-phenoxy phenylmethanes) Oligo(diphenylmethanes) References Table 20. Phenol-Formaldehyde and Related Oligomers 20.1. Linear Phenol-Formaldehyde Oligomers 20.2. Oligomeric Phenol Alcohols 20.3. Cyclic Phenol-Formaldehyde Oligomers 20.4. Branched PhenolFormaldehyde Oligomers 20.5. Hydroquinone Oligomers References Table 21. Oligo(phenylenes) 21.1. o-Oligo(phenylenes) 21.2. m-Oligo(phenylenes) 21.3. p-Oligo(phenylenes) 21.4. Oligo(p-quinones) References E. Oligomers Containing Heterocyclic Rings in the Main Chain Table 22. Heterocyclic Oligomers 22.1 Oligo(furan) Derivatives 22.2. Oligo(thiophene) Derivatives 22.3. Oligo(pyrrole) Derivatives 22.4. Oligo(pyridine) Derivatives 22.5. Cyclic Oligo(heterocyclics) References Table 23. Oligo(saccharides) 23.1. Oligomeric Pentoses 23.2. Oligomeric Hexoses 23.3. Oligomeric Amino Sugars References A.
13. 14. 15. 16. 17. 18. 19.
IV-91 IV-91 IV-91 IV-91 IV-91 IV-91 IV-91 IV-91 IV-92 IV-92 IV-93 IV-94 IV-94 IV-95 IV-95 IV-96 IV-96 IV-96 IV-97 IV-98 IV-98 IV-99 IV-99 IV-99 IV-100 IV-100 IV-100 IV-101 IV-101 IV-102 IV-102 IV-102 IV-103 IV-104
INTRODUCTION
Oligomers are defined as the low members of the polymeric-homologous series with molecular weights up to about 1000-2000. They are easily obtained by stepwise synthesis from suitably protected monomer derivatives or by separation from the polymers. As monodisperse oligomers are low molecular compounds of defined molecular weights, they represent ideal model substances for the polymers. By physical studies of a complete series of oligomers, substantial knowledge is gained of the relation between chain length and physical properties. In this way certain physical data of the polymers could be explained for the first time. In chemical aspects, oligomers must, on principle, have the same properties as the related polymers; they are, however, much more accessible to all
studies, owing to their strictly defined and comparatively simpler structure. Homologous oligomers differ sufficiently in their physical properties - due to their low molecular weight so that they can be separated into individual chemicals. They can therefore be used for elucidating the structure of polymers and, in close relation, for the investigation of the mechanisms of polymerization. Oligomers are intermediates in polycondensation and polyaddition reactions and are present in more or less significant amounts in the polymers, due to equilibria between different chains, and between chains and rings. Therefore important conclusions on the structure of the related high polymers can be drawn from isolation and structure determination of oligomers, along with a comparison of the chemical properties of polymers and oligomers. In this way clear evidence can be obtained as regards the type of linkage between the monomer units in the polymer as well as the structure of unknown endgroups. Finally, unequivocal evidence on the mechanism of polymer formation is to be expected from the behavior of oligomers under the conditions of the polyreaction. The following tables give the physical properties of the most important, linear, cyclic, and branched monodisperse oligomers which are significant for polymer chemistry. Derivatives and co-oligomers (such as co-oligo-peptides, -saccharides, and -nucleotides) as well as organosilicon and inorganic oligomers are not included, nor are any low polymers which have not been proved to be strictly monodisperse. Only those literature references are cited that indicate the best methods of synthesis and the most important physical properties of the oligomers concerned (including spectroscopic and conformational data which could not be mentioned in detail in the tables). In the last few decades several reviews on linear and cyclic oligomers have appeared. A small list is giving below. 1. H. Zahn, G. B. Gleitsmann, Angew. Chem., 68, 229 (1956); Angew. Chem., Int. Ed. Engl., 2, 410 (1963). 2. M. Rothe, Makromol. Chem., 35, 183 (1960). 3. M. Rothe, I. Rothe, in: J. Brandrup, H. Immergut (Eds.), "Polymer Handbook", 3rd Ed., Wiley, New York, 1989. 4. J. A. Semlyen, "Cyclic Polymers", Elsevier, London, 1986. 5. S. Penczek, S. Slomkowski, Compr. Polym. Sci., 3, 725 (1989). 6. P. Maravigna, G. Montaudo, Compr. Polym. Sci., 5,63 (1989). 7. V. Percec, C. Pugh, O. Nuyken, S. D. Pask, Compr. Polym. Sci., 6, 281 (1989). 8. C. V. Uglea, 1.1. Negulescu, "Synthesis and Characterization of Oligomers", CRC Press, Boca Raton, 1991. 9. M. Rothe, in: E. W. Fischer, R. C. Schulz, H. Sillescu (Eds.), "Chemistry and Physics of Macromolecules", VCH, Weinheim, 1991. 10. K. Hatada, K. Ute, N. Miyatake, Prog. Polym. Sci., 19, 1067 (1994). 11. J. M. Tour, Trends Polym. Sci., 2, 332 (1994).
B. OLIGOMERS CONTAINING MAIN CHAIN ACYCLIC CARBON ONLY TABLE 1. OLIGO(OLEFINS) 1.1. OLIGO(METHYLENES) AND OLIGO(ETHYLENES) 1.1.1. w-ALKANES H[CH2LH n
MoL wt.
m.p. (0C) -182.6 -183.3 -187.1 -138.4 -129.7 -94.0 -90.5 -56.8 -53.5 -29.7 -25.6 -9.7 -6.0 5.5 10.1 18.1 22.1 28.2 32.0
b.p. (°C/mbar)
d4 (g/cm3)/°C
Refs.
-161.6/1013 -88.5/1013 -42.2/1013 -0.5/1013 36.1/1013 68.7/1013 98.4/1013 125.5/1013 150.8/1013 174.1/1013 195.9/1013 216.3/1013 235.5/1013 253.6/1013 270.7/1013 287.1/1013 302.6/1013 317.4/1013 331.6/1013
0.4240/-164 0.5462/89 0.5824/-45 0.6011/0 0.6263/20 0.6594/20 0.6838/20 0.7026/20 0.1111/20 0.7301/20 0.7402/20 0.7487/20 0.7563/20 0.7627/20 0.7684/20 0.7733/20 0.7767/22 0.7768/28 0.7776/32
21,22,75,84,88,93 21,75,84,88,93 21,22,75,84,88,93 21,22,75,84,88,112,178,192 3,7,13,21,22,30,75,84,88,93,112,178,192,195 3,5,7,21,22,30,75,78,84,88,93,112,178,192,195 3,5,7,13,21,22,30,75,84,88,93,112,178,192 3,5,7,13,21,22,30,78,84,87,88,93,112,178,192,195 1,5,7,13,21,22,30,84,87,88,93,111,112,178,192 1,3,5,7,18,21,22,30,84,87,88,93,111,112,178,192,195 1,3,7,13,21,22,30,77,83,84,87,88,93,111,112 1,7,17,21,22,30,79,84,87,88,93,111,112,178,185,192 1,7,13,21,30,77,83,84,87,88,93,112,205,206 1,7,17,21,30,84,87,88,93,111,112 1,3,7,21,30,77,83,84,87,88,93,112 1,7,11,15,16,19,21,30,78,84,87,88,93,111,112,192 1,3,7,13,14,21,30,75,77,83,84,88,93,111,112,193 1-3,7,11,14,15,17,19,21,30,75,84,88,93,111 1,3,4,7,14,15,19,21,77,83,84,88,93,97,111,121, 198,221,235 1,3-7,11,14,15,17-19,21,22,79,82,88,91,93,107, 110,111,198 1,3,4,10,14,15,19,21,77,83,86,88,93,111,118, 194,198,232 1,3,4,7,11,14,21,78,83,88,91,93,97,111,115,121,198 1,3,4,10,14,21,77,83,86,88,93,121,198 1,3,4,11,14,17,21,83,86,88,91,93,99,182,198,202,204 1,3-5,14,21,77,83,88,93,118,193,198,232 1-4,7,11,14,21,83,85,88,93,198 1-4,8,14,21,77,83,85,88,93,118,198 1,4,11,13-15,17,19,21,83,85,86,88,90,93,99,100, 111,198 1,3,4,11,14,21,77,83,85,88,91,93,118,198 1-4,6,7,11,14,18,21,82,83,85,86,88,93,110,198 1-4,8,77,83,85,86 1,2,4,11,15,16,19,20,83,85,91,95,97,99,109,111, 115,185,198 1,4,5,77,83,91,109,116,119,198,207 1-4,7,11,77,83,85,86,198 1,4,7,8,10,15,19,77,79,83,85,86,88,91,95,118 1,2,4,7,10,13-15,19,77,78,83,85,86,88,90,91 107,109,111,185,191,193,194,198,207,211,221, 223,232,233 75,109,198 75,77,83,198 12,75,77,83 6,7,10,17,18,21,75,77,82,83,86,93,99,110,198 75 76 10,22,77,83,86 3,11,15,19,77,79,80,83,89,91,95,107,110,111,115, 116,118,205 109 77,80,83,91,100,198 100,109,202,204 6,7,11,15,18,21,77,80,82,83,90,93,110,116, 188,193,198 77,80,83,90
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
16.0 30.1 44.1 58.1 72.2 86.2 100.2 114.2 128.3 142.3 156.3 170.3 184.4 198.4 212.4 226.4 240.5 254.5 268.5
20
282.6
36.7
345.1/1013
0.7550/70
21
296.6
40.4
215/20
0.7583/70
22 23 24 25 26 27 28
310.6 324.6 338.7 352.7 366.7 380.7 394.8
44.4 47.4 51.1 54 57.0 60.0 61.6
222-225/20 234/20 243/20 259/20 262/20 270/20 279-281/20
0.7631/70 0.7641/70 0.7657/70 0.7693/70 0.7704/70 0.7732/70 0.7750/70
29 30 31 32
408.8 422.8 436.9 450.9
64.0 66.0 67.9 70.4
286/20 304/20 302/20 310/20
0.7755/70 0.7795/70 0.7678/100 0.7645/100
33 34 35 36
464.9 478.9 493.0 507.0
71.3 72.9 74.7 76.1
331/20 298.4/4
0.7436/135 0.7783/90
37 38 39 40 41 42 43 44
531.0 535.0 549.1 563.1 577.1 591.2 605.2 619.2
77.2 79.2 80.5 81.5 81.7 82.9 85.5 86.4
45 46 48 50
633.2 647.2 675.3 703.4
87.2 88.0 88.5-89 92.1
52
731.4
94.0
150/10- 4 332/4
420-422/20
0.7812/90 0.7514/135
1.1.1. cont'd MoL wt.
m.p. (0C)
54 56 60
759.5 787.6 843.6
95.0 95.5-96 99.1
61 62 64 65 66 67 69 70 72 80 82 94
857.6 871.7 899.7 913.7 927.8 941.8 969.9 983.9 1012.0 1124.2 1152.2 1320.6
100.3 100.5 102.1 102.1 103.6 104.1 104.7 105.3 103-105 108.0 110.1 113.8
n
96 98 100 102 104 120 122 140 144 150 160 162 168 192 194 198 210 216 240 242 246 258 288 294 384 390
1348.6 1404.7 1432.8 1460.8 1685.3 1965.8 2021.9 2106.1 2246.4 2358.5 2695.2 2779.4 2947.7 3029.8 3368.5 3396.6 3450.6 3621.0 4039.8 4126.0 5386.4 5470.5
b.p. (°C/mbar)
d4 (g/cm3)/°C
250/10" 4
0.7654/135
300/10" 4
0.783/115
110-112 113-114 115.2 115.5-116.5 115-115.5 119.2 116-117 121.0 121 123-123.5 122.2 121-121.5 121.9 127.5 126.9 127.0 127.4 128.4 120-121 128-130 128.8 128.8 130.4 131.3 132
Refs. 2,7,77,80,83,90 106,204 6,7,18,21,77,80,82,83,90,93,104,109,110,187,188, 190,193,198 109 2,7,77,80,83,90,116 2,7,13,22,77,79,80,83,90 109 9,77,80,83,90 9,77,80,83,90 109 6,7,18,21,77,80,82,83,90,93,100,110,116 100,202 18,82,104,109 20,77,80,81,83,89,110,188 15,19,20,77,79,80,83,100,103,107,110, 116-118,188,204 100,202 229 18,22,77,80-83,93,104,110,185 105,108,183,203 106,203,204 82,98,104,200,202 229 82 98,200,202 105,108,183,203,227,248 104,108 229 98,114,177,189,199,200,202,221 98,186,189,200-202,225 224,229 105,108,183,184,197,203,224-227,229,248 224,229 98,200,202,225 189,199 229 105,108,181,183,184,203,224-227,229,249 224,229 98,200,202 108,183,203,224,225,229,248 98,200 105,108,183,203,229,248
Conformation, chain folding: Refs. 108,178 (n = 2-10,12), 179 (n = 9-44), 181,183,184,193,194,202,205-208,211,226,227,248. Crystallization: Refs. 168,177-179,181,183,184,188-190,194,197,199-202,211,224-227,248. Thermal behavior, phase transitions, DSC: Refs. 88,98,107,107,109,119,181,184,186-191,193,197-204,217,221,224-226,246. NMR: Refs. 95,97 (n = 19,22,32), 99 (n = 6,8,10,14,18,24,28), 100,179,187,191,205,206,221,229,246. IR, Raman: Refs. 98,108,116,119,178,182,192-194,200,202,232,248. X-ray: Refs. 100,107,109,112,119,183,184,187,190,191,198,206,223,224,226,233. Electron diffraction: Refs. 187,188. MS: Ref. 195. GPC: Ref. 185.
1.1.2. CYCLOALKANES r [CH2]ni n
MoL wt. 3 4 5 6 7 8
42.1 56.1 70.1 84.2 98.2 112.2
m.p. (0C) -127.5 -90 -93.9 6.6 -8.0 13.5
b.p. (°C/mbar)
d4 (g/cm3)/°C
Refs.
-32.8/1013 12.5/1013 49.3/1013 80.7/1013 118.5/1013 149/1000
0.688/-40 0.7038/0 0.7457/20 0.7784/20 0.8098/20 0.8349/20
23,24,93,94,178 25,93,94,178,232 26,93,94,178,183,195 27-29,93,94,99,111,178,183,195 29,31,93,94,178,195 32-34,93,94,99,178,195,208
1.1.2. cont'd n
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
d4 (g/cm3)/°C
Refs.
9.7 9.5 -7.3 60.6
69/19 69/16 91/16
0.8534/20 0.8575/20 0.8591/20 0.861/20
128/27 131/15
0.861/20 0.8259/79
147/16 170-171/27
0.8240/78 0.819/79
29,34,93,94,178,208 29,35,36,93,94,99,178,180,208 29,37,93,94,99,208 29,38,39,40,93,94,99,101,111,114,178,180,196, 208,214,215,217,232 29,34,38,40,93,94,99,196,208,217 17,29,38,40,41,93,94,99,180,196,208-210,214, 217,218,220 29,38,40,44,93,94,99,196,208,217 16,38,40-42,93,94,99,111,169,180,196,208,209, 212,214,217,220 40,43,44,93,94 17,40-42,45,93,94,99 40,93,94,99 18,40,41,93,94,99,111 41,94,99,102 38,40,43,48,94,96,99,220 46,48,94,99 38,40,41,45,48,94-99,100,101,111,114,169,196, 202,210,211,213-217,219,228,235,246 47,94 38,40,43,48,94,99,210 41,94,102 38,41,48,94,97,99,102,111,219,222 38,94,99 18,41,42,45,48,90,93,94,99,102 41,48,94,97,99,102,111,169,222 48,92,94,113 41,45,94,97,99,100,101,102,111,114,115,120,196, 211,214,215,217,228,248,256 99 18,41,93,97,99,102,111,115,216,219,222,248,256 42,102 99,100 41,102 222 97,98,100,101,111,114,115,120,196,198,200, 202,207,211,213,217,230,235,248,256 18 41,102 101,120,211,247 97,111,115,234,248,256 98,100,101,120,196,198,200,202,207,211,213, 216,217,228,230,231,235 97,111,115,248,256 101 96,98,100,120,196,198,202,216,217,230,231,235 228 248,256 211,228 219,248,256 98,100,198,200,202,230 219,248,256 177 98 228,248,256 98,100,202,230
9 10 11 12
126.2 140.3 154.3 168.3
13 14
182.4 196.4
24.4 56.2
15 16
210.4 224.4
63.4 60.5
17 18 19 20 21 22 23 24
238.5 252.5 266.5 280.5 294.6 308.6 322.6 336.6
65 72-73 80 61-62 64-65 46.8 53-54 48.8
25 26 27 28 29 30 32 34 36
350.7 364.7 378.7 392.8 406.8 420.8 448.9 476.9 505.0
53-54 44-46 47-48 47-48 54.5-55.5 57-58 65.5-66.5 66-67 70.0
37 40 42 44 45 46 48
519.0 561.1 589.2 617.2 631.2 645.2 673.3
65-66 76-77 75-76 82-82.5 80-81 83.5-85 89.2
50 54 60 64 72
701.4 757.5 841.6 897.7 1009.9
87-88 90-91 96.5
80 84 96 100 104 120 128 144 160 168 192 200 288
1122.2 1178.3 1346.6 1402.7 1683.2 1795.5 2019.9 2294.3 2356.5 2693.2 2805.4 4039.8
107.0
0.8200/77 0.8201/76
177/0.5 177/0.1 222-228/0.8
0.8174/75 0.8259/64
218-219/0.7
0.8120/78
213-214/0.3 215/1.5 230/0.3
0.8243/58 0.8232/64 0.8233/69 0.8261/70 0.8229/76
230-240/0.4
13 C-NMR 103.5-104.5 13
108.8 116.0
120.8
124.3 129.8
C-NMR
Conformation, chain folding: Refs: 94,97,113,178 (n = 3-10,12), 179 (n = 3-96), 180,187,202,207-209,211-213,215-217,219,220,228,230,231,234,235,246,248. Crystallization: Refs. 178,179,217,230,234,248. Thermal behavior, phase transition, DSC: Refs. 96,101,179,196,209,216-221,230,246. NMR: Refs. 95,97,99 (n = 6,8,10-16,18-24,26,28-30,32,36,37,40,44), 100 (n = 24,26,44,48,72,96), 111,114,115,179 (n = 3-96), 180,189,214-219,234,246,248,256. IR, Raman: Refs. 92,96,178,179,200,202,209,220,235. X-ray: Refs. 113,120,179,202,210,211,215,216,218,223,230,256. Electron diffraction: Refs. 230,231. GPC.Ref. 211.
1.2. OLIGO(PERFLUOROMETHYLENES) AND OLIGO (PERFLUOROETHYLENES) 1.2.1. PERFLUORO-w-ALKANES F[CF 2 LF n
MoL wt.
1 2 3 4 5 6 7 8 9 10 11 12 14 16 18 20 24
88.0 138.0 188.0 238.0 288.1 338.1 388.1 438.1 488.1 538.1 588.1 638.1 738.1 838.2 938.2 1038.2 1238.2
m.p. (0C)
b.p. (°C/mbar)
-183.6 -96.6 -147.7 -129.2 -125.4 90.7 93.3 -19.0 -16 36 57 75.3
d4 (g/cm3)/°C
Refs.
1.619/-129 1.590/-78
22,49,63,64,125,130,179 49,50,63,64,125,130,154,179 22,51,52,64,125,130,131,179 22,52-54,64,125,126,129,132,139,144,179,241 22,52,54-56,124,129 22,52,57,58,124-126,134,144,175,179 22,52,56,59,125,128,134,144,175,179 22,52,59,125,134,144,175,179 22,52,59,127 22,52,59,127 22,52,59 22,52,59,127,175,179,250,251 124,127,133,179,240,249 54,59,127,175 124,127,133 124,127,133,175,179,243-245,249,252 175,242,243,245
-128/1005 -78.3/1013 -36.7/1013 -2.2/1013 29.2/1013 57.2/1013 82.2/1013 103.3/1013 125.3/1013 144.2/1013 161/1013 178/1013 IR, Raman spectr. 232/1013 IR, Raman spectr. IR, Raman spectr. IR, Raman spectr.
129.0 164.7 192.0
1.620/20 1.6995/20 1.7333/20 1.776/25 1.799/25 1.770/45 1.745/70 1.670/113.5
1.2.2. PERFLUORO-CYCLOALKANES J-[CH2IfI n 3 4 5 6 7 8 9 10
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0
-80 -38.7 10.3 58.2 -37 -55 -56 -44
-31.5/1013 -2/1013 22.5/1013 51 (subl.) 76.2/1013 101.5/1013 124.6/1013 146.5/1013
Refs. 60,61 61,63,144 51,54-56,61,64 51,56,59,64,65,144 51,59 59 59 59
1.2.3. oc,co-DISUBSTITUTED PERFLUORO-rc-ALKANES X-[CF 2 J n -X X
n
MoI. wt.
H
1 2 3 4 5 6 7 8 10 2 4 6 8 10 12 2 4 6 8 10 4 6 8 10 2 4
52.0 102.0 152.0 202.0 252.1 302.1 352.1 402.1 502.1 194.2 294.2 394.3 494.3 594.3 694.3 258.4 358.4 458.5 558.5 658.5 318.1 418.1 518.1 618.2 164.1 264.1
CH3S
CH3SO2
CH3COO
HOCH2
m.p. (0C)
42-43
b.p. (°C/mbar) -51.6/1013 -20°/1013 10-11/1013 43.5/1013 66.5/1013 88.5-89.5/1013 104.2/1013 130.6/1013 153-154/1013 67-70/53 80-83/27 81-84/5 102-106/5 90-94/1 118-122/1
125 151 168 171 187 115-116/133 121-123/67 126-127/33 144-146/33 81-82 69
135-136/36
Refs. 144,145 146 135-137,144 136 135-137,144 136,137 136,137 135-137 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135
1.2.3. cont'd X
n
MoI. wt.
I
2 4 6 8 10
353.8 453.8 553.8 653.8 753.8
m.p. (0C)
b.p. (°C/mbar)
Refs.
113/1013 149/1013 186/1013 222/1013 258/1013
236 236 236 236 236
1.2.4. a,co-DISUBSTITUTED PERFLUORO-rc-ALKANES WITH DIFFERENT ENDGROUPS X-[CF 2 L-Y X
Y n
H
Cl
H
F
(CF 3 ) 2 CF
I
MoI. wt. 2 3 4 5 6 7 8 9 10 11 12 13 14 2 3 4 5 7 12 4 6
136.5 186.5 236.5 286.5 336.5 386.5 436.5 486.5 536.5 586.5 636.5 686.5 736.5 120.0 170.0 220.0 270.0 370.0 620.0 495.9 596.0
m.p.
b.p. (°C/mbar) -10/1013 21/1013 50/1013 77/1013 100/1013 122.5/1013 144.5/1013 162.5/1013 162.5/1013 177/1013 202/1013 213/1013 227-228/1013 -48.5/1013 -16/986 14/986 46/986 94/986
46 52 78 87 95
df (g/cm3)
1.556 1.607 1.661 1.719 1.738 1.778
72 139/1026 189/1008
Refs. 61 61 61 61 61 61 61 61 61 61 61 61 61 240,252 240 240 240 240 250,251 237 237
1.2.5. SEMIFLUORINATED n-ALKANES F-[CF 2 ] m -[CH 2 ] n -H m
n
MoI. wt.
1 6 7 8 10 10 10 10 12 12 12 12 12 12 12 12 12 12
1 12 7 8
84.0 488.3 468.3 532.3 540.3 632.4 660.4 688.4 648.2 676.2 704.3 732.4 760.4 788.4 816.5 844.5 872.6 800.6
8 10 12 2 4 6 8 10 12 14 16 18 20
m.p. (0C)
b.p. (°C/mbar) -46.7/1013
-13.0 27.0 35 53.0 64 65 71.0 76.0 84 88 92 91 93 94 97 100
Refs. 155,176 138,176 255 138,176 251 138,176 138,176,251,255 138,176,251 138,176,250,251,255 138,176,250,251,255 138,176,250,251,255 138,176,251 138,176,251 138,176,250,251,255 138,176,251 138,176,251 138,176,251 138,176,250,251,255
1.2.6. ANIONIC OLIGOMERS OF PERFLUORO-rc-ALKENES (MAJOR OLIGOMERS, cisltrans MIXTURES) n
Compound
MoI. wt.
b.p. (°C/mbar)
400.1 500.1
95-96/1013 135-138/1012
CF 2 =CF 2 (Refs. 238,239,243): 4 5
1.2.6. cont'd n
Compound
MoI. wt.
b.p. (°C/mbar)
6
600.1
160-165/1013
2
300.1
3
450.1
46-48.5/1013 46-48.5/1013 114.8/1013 110-115/1013 110-115/1013
1.2.7. PERFLUORO-1-ALKENES F-[CF 2 L-CF=CR 2 n
MoL wt.
1 2 3 5 7
150.0 200.0 250.0 350.0 450.1
b.p. at ~ 983 mbar (0C)
nf
-29 1 28-29 81 123
Refs. 240 240 240 240 240
1.2571 1.2782 1.2868
Conformation; Crystallization: Refs. 126,179,242,243-245,251. Phase transition, DSC: Refs. 55,125,138,175,176,179,242,244,245,249,251. NMR: Refs. 134,179,250,251. X-ray: Refs. 65,138,175,176,179,244,245. IR, Raman: Refs. 125-127,133,138,175,176,241,242,245,249,250,255. MS: Ref. 56.
1.3.
OLIGO(ISOBUTENES) m.p. (0C)
Compound MONOMER (mol. wt.
b.p. (°C/1013mbar)
df (g/cm3)
56.1)
Isobutene CH 2 =C(CH 3 ) 2
- 6
DiMERS (mol. wt. 112.2; Refs. 66-70,72,74,122,141,143,147,148,150-152,153) 2,4,4-Trimethyl-l-pentene
-93.6
101.4
0.7150
-106.5
104.9
0.7212
112.3
0.7392
116.3
0.7434
108
0.729
108.4
0.7352
105.0
0.7481
2,4,4-Trimethyl-2-pentene
3,4,4-Trimethyl-2-pentene
2,3,4-Trimethyl-2-pentene -113.4 2,3,4-Trimethyl-1 -pentene
2,3,3-Trimethyl- 1-pentene -69 1,1,3-Trimethyl-cyclopentane
1.3. cont'd m.p. (0C)
Compound
TRiMERS (mol. wt. 168.3, Refs. 71,73,74,123,140,142,143,147-149,151,152) 1,1 -Dineopentylethylene CH2=C[CH2C(CH3)2]2
b.p. (0C/1013 mbar)
178.0/1013
df
(g/cm3)
0.7599
2,2,4,6,6-Pentamethyl-3-heptene 13
(CH 3 ) 3 C-CH=C-CH 2 -C(CH 3 ) 3
C-NMR
CH3 TETRAMERS (mol. wt. 224.4; Refs. 74,141-143,147,151,152) 2,2,6,6,8,8-Hexamethyl-4-methylene-nonane (CH 3 ) 3 C- C H 2 - C - CH 2 - C(CH3)2— C H 2 - C(CH3)3
106-107/11 C-NMR
13
CH2 2,2,4,6,6,8,8-Heptamethyl-4-nonene (CH 3 ) 3 C- C H 2 - C = C H - C(CH 3 ) 2 - C H 2 - C(CH3)3
13
C-NMR
CH3
1.4. x
OLIGO(l-ALKENYLENES) n
2
3 4
5 6 n= 7 8 10
13
Configuration
MoI. wt.
m.p. (0C)
2 cisltrans 108.2 -70 3 cisltrans 162.3 4 cisltrans 216.3 5 cisltrans 270.4 6 cisltrans 324.5 n = 4-13 cisltrans GC Refs. 161,166 /1 = 4-7,10,11 cisltrans 1H-, 13C-NMR Ref. 161 2 cis 136.2 21-23 2 cw 164.3 0 3 cisltrans 246.4 4 cis 328.6 25-27 2 cis 192.3 46 3 cisltrans 288.5 2 c/5 220.4 18.5 3 cisltrans 330.6 2-8 (cisltrans): GPC, b.p., /ig\ IR, UV, MS Refs. 158-160 2 ds 248.4 38.5 2 cis 276.5 38-39 1 cisltrans 166.3 2 cw/ftww 332.6 54-55 trans/trans IR: 970 cm" 1 translcis 970, 725Cm"1 cislcis 725 cm" 1 3 cw/fra/w 498.3 4 cisltrans 665.2 /i = 2-14: MS Refs. 167,168 /i = 2-9: GPC Ref. 160 rc = 2-7: MS Ref. 166
b.p. (°C/mbar)
«J?
150.8/1002 104/15 88-91/0.07 105-110/0.07 162/0.1
51/0.5 {cisltrans) 112/0.5 48/0.001 (cisltrans) 116/0.001 89/0.07 (cisltrans) 130/0.07 122/0.4 (cisltrans) 123-124/0.2 (cisltrans) 100/0.11 150/0.09
220/0.12 255/0.12
Refs. 163,170-172 164,173,174 161,164 161,164 161
1.4972 1.4971
162 40,157,162 157 40 40,157 157 40,157,158 157,158 40,157 40,157 156 156-158,160 156 156 156 156 156
REFERENCES
1. F. Krafft, Chem. Ber., 15, 1687, 1711 (1882); 19, 2218 (1886); 40, 4479 (1907). 2. A. Gascard, Ann. Chim. (Paris) (9), 15, 332 (1921). 3. A. Mueller, Proc. Roy. Soc. (London) A, 120, 437 (1928); 127, 417 (1930); 138, 514 (1932). 4. J. H. Hildebrand, A. Wachter, J. Am. Chem. Soc, 51, 2487 (1929).
5. G. S. Parks, H. M. Huffmann, S. B. Thomas, J. Am. Chem. Soc, 52, 1032 (1930). 6. W. H. Carothers, J. W. Hill, J. E. Kirby, R. A. Jacobsen, J. Am. Chem. Soc, 52, 5279 (1930). 7. W. E. Gramer, K. van Bibber, A. M. King, J. Chem. Soc, 1533 (1931). 8. H. Staudinger, F. Staiger, Chem. Ber., 68, 707 (1935).
9. F. Francis, A. M. King, J. A. V. Willis, J. Chem. Soc, 999 (1937) 10. H. J. Backer, J. Strating, Rec. Trav. Chim. Pays-Bas, 59, 933 (1940); 55, 903 (1936). 11. W. F. Seyer, R. F. Patterson, J. L. Keays, J. Am. Chem. Soc, 66, 179 (1944); W. F. Seyer, Wm. Morris, ibid., 61, 1114 (1939). 12. E. Stenhagen, B. Taegtstroem, J. Am. Chem. Soc, 66, 845 (1944). 13. A. K. Doolittle, R. H. Peterson, J. Am. Chem. Soc, 73, 2145 (1951). 14. A. A. Schaerer, C. J. Busso, A. E. Smith, L. B. Skinner, J. Am. Chem. Soc, 77, 2017 (1955). 15. P. R. Templin, Ind. Eng. Chem., 48, 154 (1956). 16. F. Sondheimer, Y. Amiel, J. Am. Chem. Soc, 79, 5817 (1957). 17. F. Sondheimer, Y. Amiel, R. Wolovsky, J. Am. Chem. Soc, 79, 6263 (1957). 18. F. Sondheimer, R. Wolovsky, D. A. Ben-Efraim, J. Am. Chem. Soc, 83, 1686 (1961). 19. A. Odajima, J. A. Sauer, A. E. Woodward, J. Phys. Chem., 66, 718 (1962). 20. D. W. McCaIl, D. C. Douglass, E. W. Anderson, Ber. Bunsenges. Phys. Chem., 67, 336 (1963); D. C. Douglass, D. W. McCaIl, J. Phys. Chem., 62, 1102 (1958). 21. J. D. Downer, K. J. Beynon, in: "Rodd's Chemistry of Carbon Compounds", vol. I, Part A, 2nd ed., Elsevier, Amsterdam, 1964, p. 367. 22. R. Simha, A. J. Havlik, J. Am. Chem. Soc, 86, 197 (1964). 23. M. Trautz, K. Winkler, J. Prakt. Chem., 104, 37 (1922). 24. R. A. Ruehrwein, T. M. Powell, J. Am. Chem. Soc, 68,1063 (1946). 25. G. B. Heisig, J. Am. Chem. Soc, 63, 1698 (1941). 26. J. G. Aston, H. L. Fink, S. C. Schumann, J. Am. Chem. Soc, 65, 341 (1943). 27. J. G. Aston, G. J. Szasz, H. L. Fink, J. Am. Chem. Soc, 65, 1135 (1943). 28. R. A. Raphael, in: E. R. Rodd (Ed.), "Chemistry of Carbon Compounds", vol. II, Part A, 1st ed., Elsevier, Amsterdam, 1953, p. 124. 29. L. Ruzicka, P. A. Plattner, H. Wild, HeIv. Chim. Acta, 29, 1611 (1946). 30. R. M. Deanesley, L. T. Carleton, J. Phys. Chem., 45, 1104 (1941). 31. R. Willstaetter, T. Kametaka, Chem. Ber., 41, 1480 (1908). 32. N. D. Zelinsky, M. G. Freimann, Chem. Ber., 63, 1485 (1930). 33. L. Ruzicka, H. A. Boekenoogen, HeIv. Chim. Acta, 14, 1319 (1931). 34. L. Ruzicka, P. A. Plattner, H. Wild, HeIv. Chim. Acta, 28, 395 (1945). 35. P. A. Plattner, J. Huelstkamp, HeIv. Chim. Acta, 27, 220 (1944). 36. W. Hueckel, A. Gercke, A. Gross, Chem. Ber., 66, 563 (1933). 37. P. A. Plattner, HeIv. Chim. Acta, 27, 801 (1944).
38. L. Ruzicka, M. Stoll, H. W. Huyser, H. A. Boekenoogen, HeIv. Chim. Acta, 13, 1152 (1930). 39. R. Wolovsky, F. Sondheimer, J. Am. Chem. Soc, 84, 2844 (1962). 40. J. Dale, A. J. Hubert, G. S. D. King, J. Chem. Soc, 73 (1963). 41. F. Sondheimer, Y. Amiel, R. Wolosky, J. Am. Chem. Soc, 81, 4600 (1959). 42. L. Ruzicka, W. Bruegger, C. F. Seidel, H. Schinz, HeIv. Chim. Acta, 11, 496 (1928). 43. L. Ruzicka, G. Giacomello, HeIv. Chim. Acta, 20, 548 (1937). 44. L. Ruzicka, W. Bruegger, M. Pfeiffer, H. Schinz, M. Stoll, HeIv. Chim. Acta, 9, 499 (1926). 45. F. Sondheimer, R. Wolovsky, J. Am. Chem. Soc, 84, 260 (1962). 46. R. Stol, HeIv. Chim. Acta, 16, 493 (1933). 47. A. J. Hubert, J. Dale, J. Chem. Soc, 86 (1963). 48. L. Ruzicka, M. Huerbin, M. Furter, HeIv. Chim. Acta, 17,78 (1934). 49. O. Ruff, Angew. Chem., 46, 739 (1933). 50. E. L. Pace, J. G. Aston, J. Am. Chem. Soc, 70, 566 (1948). 51. J. H. Simons, L, P Block, J. Am. Chem. Soc, 61, 2962 (1939). 52. R. N. Haszeldine, J. Chem. Soc, 3761 (1953) 53. J. A. Brown, W. H. Mears, J. Phys. Chem., 62, 960 (1958). 54. W. B. Burford, R. D. Fowler, J. M. Hamilton, Jr., H. C. Anderson, C. E. Weber, R. G. Sweet, Ind. Eng. Chem., 39, 319 (1947). 55. L. L. Burger, G. H. Cady, J. Am. Chem. Soc, 73, 4243 (1951). 56. F. L. Mohler, E. G. Bloom, J. H. Lengel, C. E. Wise, J. Am. Chem. Soc, 71, 337 (1949). 57. V. E. Stiles, G. H. Cady, J. Am. Chem. Soc, 74, 3771 (1952). 58. R. D. Dunlap, C. J. Murphy, R. G. Bedford, J. Am. Chem. Soc, 80, 83 (1958). 59. R. N. Haszeldine, F Smith, J. Chem. Soc, 3617 (1950); 603 (1951). 60. B. Atkinson, J. Chem. Soc, 2684 (1952). 61. J. D. Park, A. F Benning, F. Downing, J. F. Laucius, R. C. McHarness, Ind. Eng. Chem., 39, 354 (1947). 62. J. R. Lacher, G. W. Tompkin, J. D. Park, J. Am. Chem. Soc, 74, 1693 (1952). 63. G. Bier, R. Schaeff, K.-H. Kahrs, Angew. Chem., 66, 285 (1954). 64. N. Fukuhara, L. A. Bigelow, J. Am. Chem. Soc, 63, 2792 (1941). 65. H. J. Christoffers, E. C. Lingafelter, G. H. Cady, J. Am. Chem. Soc, 69, 2502 (1947). 66. F. C. Whitmore, S. N. Wrenn, J. Am. Chem. Soc, 53, 3136 (1931). 67. C. O. Tongberg, J. D. Pickens, M. R. Fenske, F. C. Whitmore, J. Am. Chem. Soc, 54, 3706 (1932). 68. F. C. Whitmore, K. C. Laughlin, J. Am. Chem. Soc, 54, 4011 (1932). 69. F. C. Whitmore, K. C. Laughlin, J. F. Matuszeski, J. D. Surmatis, J. Am. Chem. Soc, 63, 756 (1941).
70. J. A. Dixon, N. C. Cook, F. C. Whitmore, J. Am. Chem. Soc, 70, 3361 (1948). 71. F. C. Whitmore, C. D. Wilson, J. V. Capinjola, C. O. Tongberg, G. H. Fleming, R. V. McGrew, J. N. Cosby, J. Am. Chem. Soc, 63, 2035 (1941). 72. F. L. Howard, T. W. Mears, A. Fookson, P. Pomerantz, D. B. Brooks, J. Res. Natl. Bur. Std., 38, 365 (1947). 73. P. D. Bartlett, G. L. Fraser, R. B. Woodward, J. Am. Chem. Soc, 63, 495 (1941). 74. M. I. Batuev, A. P. Meshcheriakov, A. D. Matveeva, Izv. Akad. Nauk, SSSR, 75 (1958); Bull. Acad. Sci. USSR, 66 (1958). 75. F. D. Rossini, K. S. Pitzer, R. L. Arnett, R. M. Braun, G. C. Pimental, "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds", Carnegie Press, Pittsburgh, Pa., 1953. 76. G. L. Clark, H. A. Smith, Ind. Eng. Chem., 23, 700 (1931). 77. P. J. Flory, A. Vrij, J. Am. Chem. Soc, 85, 3548 (1963). 78. R. A. Orwoll, P. J. Flory, J. Am. Chem. Soc, 89, 6814 (1967). 79. R. R. Reinhard, J. A. Dixon, J. Org. Chem., 30,1450 (1965). 80. M. G. Broadhurst, J. Chem. Phys., 36, 2578 (1962). 81. G. Staellberg, S. Staellberg-Stenhagen, E. Stenhagen, Acta Chem. Scand., 6, 313 (1952). 82. W. Heitz, Th. Wirth, R. Peters, G. Strobl, E. W. Fischer, Makromol. Chem., 162, 63 (1972). 83. M. G. Broadhurst, J. Res. Natl. Bur. Std., 66A, 241 (1962). 84. M. Kurata, S. Isida, J. Chem. Phys., 23, 1126 (1955). 85. S. H. Piper, A. C. Chibnall, S. J. Hopkins, A. Pollard, J. A. B. Smith, E. F. Williams, Biochem. J., 25, 2072 (1931). 86. W. M. Mazee, Rec Trav. CMm. Pays-Bas, 67, 197 (1948). 87. H. L. Finke, M. E. Gross, G. Waddington, H. M. Huffmann, J. Am. Chem. Soc, 76, 333 (1954). 88. A. A. Schaerer, G. G. Bayle, W. M. Mazee, Rec Trav. Chim. Pays-Bas, 75, 513 (1956). 89. B. G. Ranby, F. F. Morehead, N. M. Walter, J. Polym. Sci., 44, 349 (1960). 90. G. Egloff, "Physical Constants of Hydrocarbons", VoIs. 1 and 5, A. C. S. Monograph Series, Reinhold, New York, 1953. 91. M. Brini, Bull. Soc Chim. France, 996 (1955). 92. T. Tasumi, T. Shimanouchi, R. F. Schaufele, Polym. J., 6,740 (1971). 93. D. Barton, W. D. Ollis, in: J. F. Stoddart (Ed.), Comprehensive Organic Chemistry, Vol. 1, Pergamon Press, Oxford, 1979, pp. 49-51. 94. J. Dale, J. Chem. Soc, 93 (1963). 95. M. Moeller, H.-J. Cantow, J. K. Krueger, H. Hoecker, Polym. Bull., 5, 125 (1981). 96. H.-R Grossmann, Polym. Bull., 5, 137 (1981). 97. I. Ando, T. Yamanobe, T. Sorita, T. Komoto, H. Sato, K. Deguchi, M. Imanari, Macromolecules, 17, 1955 (1984). 98. K. S. Lee, G. Wegner, Makromol. Chem., Rapid Commun., 6, 203 (1985). 99. H. Fritz, E. Logemann, G. Schill, T. Winkler, Chem. Ber., 109, 1258 (1976).
100. G. Schill, C. Zuercher, H. Fritz, Chem. Ber., I l l , 2901 (1978). 101. H. Hoecker, K. Riebel, Makromol. Chem., 178, 3101 (1977). 102. F. Sondheimer, Y. Amiel, R. Wolovsky, J. Am. Chem. Soc, 79, 4247 (1957). 103. J. D. Hoffman, Macromolecules, 18, 772 (1985). 104. K. Takamizawa, Y. Sasaki, K. Kono, Y. Urabe, Rep. Progr. Polym. Phys. Jpn., 19, 285 (1976). 105. I. Bidd, M. C. Whiting, J. Chem. Soc, Chem. Commun., 543 (1985). 106. O. I. Paynter, D. J. Simmonds, M. C. Whiting, J. Chem. Soc, Chem. Commun., 1165 (1982). 107. P. K. Sullivan, J. J. Weeks, J. Res. Natl. Bur. Std., 74A, 203 (1970); R. G. Sullivan, ibid., 78A, 129 (1974). 108. G. Ungar, I. Stejny, A. Keller, I. Bidd, M. C. Whiting, Science, 229, 386 (1985). 109. K. Takamizawa, Y. Ogawa, I. Oyama, Polym. J., 14, 441 (1982). 110. J. N. Hay, J. Polym. Sci., Polym. Chem. Ed., 14, 2845 (1976). 111. T. Yamanobe, T. Sorita, I. Ando, H. Sato, Makromol. Chem., 186, 2071 (1985). 112. R. G. Snyder, J. Chem. Phys., 47, 1316 (1967). 113. B. A. Newman, H. F. Kay, J. Appl. Phys., 38, 4105 (1967); Acta Cryst. B, 24, 615 (1968). 114. H.-J. Cantow, D. Emeis, W. Gronski, A. Hasenhindl, D. Lausberg, M. Moeller, Y. Shahab, Makromol. Chem., Suppl., 7, 63 (1984). 115. T. Sorita, T. Yamanobe, T. Komoto, I. Ando, H. Sato, K. Deguchi, M. Imaneri, Makromol. Chem., Rapid Commun., 5, 657 (1984). 116. G. R. Strobl, R. Eckel, J. Polym. Sci., Polym. Phys. Ed., 14, 913 (1976). 117. F. Khoury, J. Appl. Phys., 34, 73 (1963). 118. G. T. Davis, J. J. Weeks, G. M. Martin, R. K. Eby, J. Appl. Phys., 45, 4175 (1974). 119. B. Ewen, D. Richter, J. Chem. Phys., 69, 2954 (1978); G. R. Strobl, B. Ewen, E. W. Fischer, W. Piesczek, J. Chem. Phys., 61, 5257, 5265 (1974); W. Piesczek, G. R. Strobl, K. Malzahn, Acta Cryst. B, 30, 1278 (1974); G. R. Strobl, Coll. Polym. Sci., 254, 170 (1976). 120. T. Trzebiatowski, M. Drager, G. R. Strobl, Makromol. Chem., 183, 731 (1982). 121. J. D. Barnes, J. Chem. Phys., 58, 5193 (1973). 122. F. C. Whitmore, J. M. Church, J. Am. Chem. Soc, 54, 3710 (1932). 123. R. J. McCubbin, J. Am. Chem. Soc, 53, 356 (1931); R. J. McCubbin, H. Adkins, ibid., 52, 2547 (1930). 124. J. L. Koenig, F. J. Brerio, J. Chem. Phys., 50, 2823 (1909). 125. M. Campos-Vallette, M. Rey-Lafon, R. Lagnier, Chem. Phys. Lett., 89, 189 (1982). 126. P. Piaggio, P. G. Francese, G. Masetti, G. Dellepiane, J. MoI. Struct., 26, 421 (1975). 127. J. Rabolt, B. Fanconi, Polymer 18, 1258 (1977), Macromolecules 11, 740 (1978). 128. G. D. Oliver, J. W. Grisard, J. Am. Chem. Soc, 73, 1688 (1951).
129. J. H. Simons, R. D. Dunlap, J. Chem. Phys., 18, 335 (1950). 130. J. H. Smith, E. L. Pace, J. Phys. Chem., 73, 2368, 4232 (1969). 131. E. L. Pace, A. C. Plaush, J. Chem. Phys., 47, 38 (1967). 132. J. H. Simons, J. W. Mausteller, J. Chem. Phys., 20, 1516 (1952). 133. G. W. Chantry, E. A. Nicol, R. G. Jones, H. A. Willis, M. E. A. Cudby, Polymer, 18, 37 (1977). 134. J. R. Lyerla Jr., D. L. VanderHart, J. Am. Chem. Soc, 98, 1697 (1976). 135. R. B. Ward, J. Org. Chem., 30, 3009, (1965). 136. K. Matsuo, W. H. Stockmayer, J. Phys. Chem., 85, 3307 (1981). 137. T. W. Bates, W. H. Stockmayer, Macromolecules, 1, 12 (1968). 138. J. F. Rabolt, T. P. Russell, R. J. Twieg, Macromolecules, 17, 2786 (1984). 139. T. W. Bates, Trans. Faraday Soc, 63, 1825 (1967). 140. T. Higashimura, Y. Miyoshi, H. Hasegawa, J. Appl. Polym. Sci., 28, 241 (1983). 141. H. Hasegawa, T. Higashimura, J. Appl. Polym. Sci., 27, 171 (1982). 142. S. A. Francis, E. D. Archer, Anal. Chem., 35, 1363 (1963). 143. H. Schiitz, R. Radeglia, G. Heublein, Acta Polym., 36, 415 (1985). 144. R. N. Haszeldine, J. Chem. Soc, 4259 (1952); R. N. Haszeldine, R. J. Marklow, J. Chem. Soc. 962 (1956). 145. A. L. Henne, M. W. Renoll, J. Am. Chem. Soc, 58, 887 (1936). 146. F. B. Downing, A. F. Benning, R. C. McHarness, United States Patent 2.387.247 (1945), 2.413.695 (1947); through Chem. Abstr., 588 (1946), 2427 (1947). 147. J. P. Kennedy, S. Rengachary, Adv. Polym. Sci., 14,1 (1974). 148. L. Schmerling, V. N. Ipatieff, Adv. Catal., 2, 21 (1950). 149. J. Kriz, M. Marek, Makromol. Chem., 163, 155, 171 (1973). 150. J. B. McKinley, D. R. Stevens, W. E. Baldwin, J. Am. Chem. Soc, 67, 1455 (1945). 151. T. Higashimura, M. Swamoto, Adv. Polym. Sci., 62, 50 (1984). 152. W. O. Haag, Chem. Eng. Progr., 63, 145 (1967). 153. D. H. Rank, E. R. Bordner, J. Chem. Phys., 3, 248 (1935). 154. E. G. Locke, W. R. Brode, A. L. Henne, J. Am. Chem. Soc, 56, 1726 (1934). 155. A. L. Henne, M. W. Renoll, J. Am. Chem. Soc, 58, 889 (1936). 156. R. Wolovsky, Z. Nir, Synthesis, 4, 134 (1972). 157. H. J. Bestmann, H. Pfuller, Angew. Chem., 84, 528 (1972). 158. H. Hocker, R. Musch, Makromol. Chem., 157, 201 1972; 175, 1395 (1974). 159. E. A. Ofstead, E. Asch, H. Hocker, Macromol. Synth., 6, 69 (1977). 160. H. Hocker, W. Reimann, K. Riebel, Z. Szentivany;, Makromol. Chem., 177, 1707 (1976). 161. H. Sato, Y. Tanaka, T. Taketomi, Makromol. Chem., 178, 1993 (1977). 162. D. J. Cram, N. L. Allinger, J. Am. Chem. Soc, 78, 2518 (1956).
163. A. C. Cope, C. L. Stevens, F. A. Hochstein, J. Am. Chem. Soc, 72, 2510 (1950). 164. K. Saito, T. Yamaguchi, K. Tanabe, T. Ogura, M. Yagi, Bull. Chem. Soc Japan, 52, 3192 (1979). 165. H. Kumobayashi, T. Ogura, S. Akutagawa, K. Saito, T. Yamaguchi, K. Tanabe, Chem. Lett., 317 (1976). 166. H. Hocker, W. Reimann, L. Reif, K. Riebel, Makromol. Chem., J. MoI. Catal., 8, 191 (1980). 167. R. Wolovsky, J. Am. Chem. Soc, 92, 2132 (1970). 168. D. A. Ben-Efraim, C. Batich, E. Wasserman, J. Am. Chem. Soc, 92, 2133 (1970). 169. E. Wasserman, D. A. Ben-Efraim, R. Wolovsky, J. Am. Chem. Soc, 90, 3286 (1968). 170. W. Brenner, P. Heimbach, H. Hey, E. W. Mueller, G. Wilke, Ann. Chem., 727, 161 (1969). 171. K. Ziegler, H. Wilms, Ann. Chem., 567,1 (1950); K. Ziegler, H. Sauer, L. Bruns, H. Froitzheim-Kuehlhorn, J. Schneider, Ann. Chem., 589, 122 (1954). 172. A. C. Cope, W. J. Bailey, J. Am. Chem. Soc, 70, 2305 (1948); A. C. Cope, C. L. Stevens, F. A. Hochstein, ibid., 72, 2510 (1950). 173. G. Wilke, Angew. Chem., 69, 397 (1957); G. Wilke, E. W. Mueller, M. Kroener, ibid., 73, 33 (1961); B. Bogdanovic, P. Heimbach, M. Kroener, G. Wilke, E. G. Hoffmann, J. Brandt, Ann. Chem., 727, 143 (1969). 174. H. Breil, R Heimbach, M. Kroener, H. Mueller, G. Wilke, Makromol. Chem., 69, 18 (1963). 175. H. W. Starkweather, Jr., Macromolecules, 19, 1131 (1986). 176. Th. P. Russell, J. F. Rabolt, R. J. Twieg, R. L. Siemens, Macromolecules, 19, 1135 (1986). 177. R. G. Alamo, NATO ASI, Ser. C, 405, 73 (1993); Chem. Abstr., 121, 110078f (1994). 178. N. L. Allinger, Y. H. Yuh, J.-H. Lii, J. Am. Chem. Soc, 111, 8551 (1989); J.-H. Lii, N. L. Allinger, ibid., Ill, 8566, 8576 (1989). 179. B. Wunderlich, M. Moller, J. Grebowicz, H. Baur, Adv. Polym. Sci., 87, 1 (1988). 180. F. A. L. Anet, A. K. Cheng, J. Am. Chem. Soc, 97, 2420 (1975); F. A. L. Anet, A. K. Cheng, J. Wagner, ibid., 94,9250 (1972). 181. J. D. Hoffman, Polymer, 32, 2828 (1991). 182. K. Ishii, M. Nukaga, Y. Hibino, S. Hagiwara, H. Nakayama, Bull. Chem. Soc Jpn., 68, 1323 (1995). 183. A. Keller, G. Ungar, S. I. Organ, Polym. Preprints, 30, 263 (1989); A. Keller, S. J. Organ, G. Ungar, Makromol. Chem., Macromol. Symp., 48/49, 93 (1991); J. Polym. Sci., Polym. Phys., 25, 2409 (1987); J. Polym. Sci., C, Polym. Lett., 26, 259 (1988); G. Ungar, Integr. Fundament. Polym. Sci. TechnoL, Ed. P. J. Lemstra, L. A. Kleintjens, Elsevier, London, 2, 346 (1988). 184. G. Ungar, A. Keller, Polym., 27, 1835 (1986). 185. D. J. Blundell, A. Keller, I. M. Ward, I. J. Grant, J. Polym. Sci., Part B, Polym. Lett., 4, 781 (1966). 186. L. Mandelkern, A. Prasad, R. G. Alamo, G. M. Stack, Macromolecules, 23, 3696 (1990). 187. W. L. Jarrett, L. J. Mathias, R. G. Alamo, L. Mandelkern, D. L. Dorset, Macromolecules, 25, 3468 (1992).
188. D. L. Dorset, R. G. Alamo, L. Mandelkern, Macromolecules, 25, 6284 (1992). 189. R. G. Alamo, L. Mandelkern, G. M. Stack, C. Krohnke, G. Wegner, Macromolecules, 27, 147 (1994). 190. L. Mandelkern, R. G. Alamo, E. L. Sokolov, Y. Li, B. Chu, Macromolecules, 27, 2324 (1994). 191. M. J. Stewart, W. L. Jarrett, L. J. Mathias, R. G. Alamo, L. Mandelkern, Polym. Preprints, 35, 779 (1994). 192. S.-I. Mizushima, T. Simanouti, J. Am. Chem. Soc, 71, 1320 (1949). 193. Y Kim, H. L. Strauss, R. G. Snyder, J. Chem. Phys., 93,7520 (1989). 194. H. Hagemann, H. L. Strauss, R. G. Snyder, Macromolecules, 20, 2810 (1987). 195. R. L. Betts, M. A. Park, E. L. Shirey, E. A. Schweikert, Org. Mass Spectr., 29, 679 (1994). 196. K. Drotloff, M. Moller, Thermochem. Acta, 112, 57 (1987). 197. S. J. Organ, G. Ungar, A. Keller, Macromolecules, 22, 1995 (1989). 198. R. D. Heyding, K. E. Russell, T. L. Varty, D. St.-Cyr, Powder Diffraction, 5, 93 (1990). 199. R. G. Alamo, L. Mandelkern, G. M. Stack, C. Krohnke, G. Wegner, Macromolecules, 26, 2743 (1993). 200. G. Wegner, G. Lieser, Polym. Preprints, 30, 265 (1989). 201. G. M. Stack, L. Mandelkern, C. Krohnke, G. Wegner, Macromolecules, 22, 4351 (1989). 202. K.-S. Lee, G. Wegner, S. L. Hsu, Polymer, 28, 889 (1987). 203. I. Bidd, D. W. Holdup, M. C. Whiting, J. Chem. Soc, Perkin Trans. I, 2455 (1987). 204. E. Igner, O. I. Paynter, D. J. Simmonds, M. C. Whiting, J. Chem. Soc, Perkin Trans. /, 2447 (1987). 205. G. D. Smith, D. Y. Yoon, W. Zhu, M. D. Ediger, Macromolecules, 27, 5563 (1994); G. D. Smith, D. Y Yoon, R. L. Jaffe, ibid., 28, 5897 (1995). 206. G. D. Smith, D. Y Yoon, J. Chem. Phys., 100, 649 (1994). 207. W. Stocker, G. Bar, M. Kunz, M. Moller, S. N. Magonov, H.-J. Cantow, Polym. Bull., 26, 215 (1991). 208. J. Dale, Acta Chem. Scand., 27, 1115, 1130 (1973). 209. G. Borgen, J. Dale, J. Chem. Soc, Chem. Commun., 1340 (1970). 210. P. Groth, Acta Chem. Scand. A, 33, 199 (1979); 30, 155 (1979). 211. K. J. Ihn, M. Tsuji, S. Isoda, A. Kawaguchi, K. Katayama, Y Tanaka, H. Sato, Macromolecules, 23,1781,1788 (1990); K. J. Ihn, M. Tsuji, A. Kawaguchi, K.-I. Katayama, Microscop. Res. Tech., 20,205 (1992); K. J. Ihn, M. Tsuji, S. Isoda, A. Kawaguchi, K. Katayama, Y. Tanaka, H. Sato, Makromol. Chem., 190, 837 (1989). 212. R. Zhang, W. L. Mattice, J. Chem. Phys., 98, 9888 (1993). 213. A. Wawkuschewski, H.-J. Cantow, S. N. Magonov, M. Moller, W. Liang, M.-H. Whangbo, Adv. Mater., 5, 821 (1993). 214. M. Moller, Adv. Polym. ScL, 66, 59 (1985). 215. M. Moller, W. Gronski, H.-J. Cantow, H. Hocker, J. Am. Chem. Soc, 106, 5093 (1984). 216. M. Moller, G. Kogler, D. OeMn, H. Drotloff, Solid-State NMR Polymer, Ed. L. Mathias, Plenum Press, NY, 245 (1991); Chem. Abstr, 116, 23643Oe (1992).
217. H. Drotloff, D. Emeis, R. F. Waldron, M. Moller, Polymer, 28, 1200 (1987). 218. H. Drotloff, H. Rotter, D. Emeis, M. Moller, J. Am. Chem. Soc, 109, 7797 (1987). 219. M. Takenaka, T. Yamanobe, T. Komoto, I. Ando, H. Sato, K. Sato, J. Polym. Sci., Part B, Polym. Phys., 25, 2165 (1987). 220. V. L. Shannon, H. L. Strauss, R. G. Snyder, C. A. Elliger, W. L. Mattice, J. Am. Chem. Soc, 111, 1947 (1989). 221. M. Moller, H.-J. Cantow, H. Drotloff, D. Emeis, K.-S. Lee, G. Wegner, Makromol. Chem., 187, 1237 (1986). 222. G. Schill, N. Schweickert, H. Fritza, W. Vetter, Chem. Ber., 121, 961 (1988). 223. H. M. M. Shearer, V. Vand, Acta Cryst., 9, 379 (1956). 224. E. Boda, G. Ungar, G. M. Brooke, S. Burnett, S. Mohammed, D. Proctor, M. C. Whiting, Macromolecules, 30, 4674 (1977). 225. S. J. Sutton, A. S. Vaughan, D. C. Bassett, Polymer, 25,5735 (1996). 226. G. Ungar, A. Keller, Polymer, 28, 1899 (1987). 227. S. J. Organ, A. Keller, M. Hikosaka, G. Ungar, Polymer, 37, 2517 (1996). 228. P. R. Sundararajan, T. A. Kavassalis, Macromolecules, 30, 5172 (1977). 229. G. M. Brooke, S. Burnett, S. Mohammed, D. Proctor, M. C. Whiting, J. Chem. Soc, Perkin Trans. I, 1635 (1996). 230. G. Lieser, K.-S. Lee, G. Wegner, Colloid Polym. Sci., 266, 419 (1988). 231. D. L. Dorsett, S.-L. Hsu, Polymer, 30, 1596 (1989). 232. G. Zerbi, R Roncone, G. Longhi, S. L. Wunder, J. Chem. Phys., 89, 166 (1988). 233. P. W. Teare, Acta Cryst., 12, 294 (1959). 234. I. Ando, T. Sorita, T. Yamanobe, T. Komoto, H. Sato, K. Deguchi, M. Imanari, Polymer, 26, 1864 (1985). 235. P. Grossmann, R. Arnold, K. R. Burkle, Polymer Bull., 3, 135 (1980). 236. S. Boneva, St. Kotov, Chromatographia, 25, 735 (1988). 237. R. D. Chambers, J. Hutchinson, R. H. Mobbs, W. K. R. Musgrove, Tetrahedron, 20, 497 (1964). 238. D. P. Graham, J. Org. Chem., 31, 955 (1966). 239. R L. Coe, S. F. Sellers, J. C. Tatlow, H. C. Fielding, G. Whittaker, J. Fluorine Chem., 18, 417 (1981). 240. J. D. LaZerte, L. J. Hals, T. S. Reid, G. H. Smith, J. Am. Chem. Soc, 75, 4525 (1953). 241. B. Albinsson, J. Michl, J. Am. Chem. Soc, 117, 6378 (1995). 242. R. J. Twieg, J. R Rabolt, Macromolecules, 21, 1806 (1988); 16, 1361 (1985). 243. R. D. Chambers, A. A. Lindley, H. C. Fielding, J. S. Moilliet, G. Whittaker, J. Chem. Soc, Perkin Trans. I, 1064 (1981). 244. T. Albrecht, H. Elber, R. Jaeger, M. Kimmig, W. Petry, C. Ritter, H. Schwickert, R. Steiner, G. Strobl, B. Stuhn, Progr. Colloid Polym. Sci., 87, 46 (1992). 245. S. Tsubakihara, K. Higashi, S. Taki, K. Matsushige, M. Yasuniwa, Polymer J., 24, 777, 1215 (1992).
246. J. K. Krtiger, J. Albers, M. Moller, H.-J. Cantow, Polym. Bull., 5, 131 (1981). 247. H. Schwickert, G. Strobl, M. Kimmig, J. Chem. Phys., 95, 2800 (1991). 248. K. Hatada, K. Ute, N. Miyatake, Progr. Polym. ScL, 19,1067 (1994). 249. H. Vanni, J. F. Rabolt, J. Polym. Sci., Polym. Phys., 18, 587 (1980). 250. R. J. Twieg, J. F. Rabolt, J. Polym. Sci., Polym. Lett., 21,901 (1983). 251. J. Hopken, C. Pugh, W. Richtering, M. Moller, Makromol. Chem., 189, 911 (1988); J. Hopken, M. Moller, Macromolecules, 25, 2482 (1992).
252. D. S. Young, N. Fukuhara, L. A. Bigelow, J. Am. Chem. Soc, 62, 1171 (1940). 253. W. Brunskill, W. T. Flowers, R. Gregory, R. N. Haszeldine. J. Chem. Soc, Chem. Commun., 1444 (1970). 254. S. P. V. Halasz, F. Kluge, T. Martini, Chem. Ber., 106, 2950 (1973). 255. G. Minoni, G. Zerbi, J. Polym. Sci., Polym. Lett., 22, 533 (1984). 256. T. Takenaka, T. Yamanobe, T. Komoto, I. Ando, H. Sato, Solid State Commun., 61, 563 (1987). 257. W. Dmowski, W. T. Flowers, R. N. Haszeldine, J. Fluorine Chem., 9, 94 (1977).
TABLE 2. OLIGO(DIENES) 2.1. OLIGOMERS OF 1,3-BUTADIENE Oligomers
n
MoI. wt
LINEAR DIMERS
2
108.2
m.p. (0C)
3-Methyl-l-fra«s-4,6-heptatriene CH 2 =CH-CH(CH 3 )-CH=CH-CH=CH 2 1,3,6-Octatriene
b.p. (°C/mbar)
nDl°C
Refs.
117/1013
1.4657/20
13,14,33,35,36,38
129/1013
1.4743/20
33,36
CH2=CH-CH=CH-CH2-CH=CH-CH3
1,3,7-Octatriene
31,32,35,36,39
CH2=CH-CH=CH-CH2-CH2-CH=CH2
trans CW 2,4,6-Octatriene {cisltrans)
124-125/1013 115-117/1013 65-66/53
1.4686/20 1.4594/20
39 39 34,40,41
147-148/1019 230-232/1013
1.5131/27
34,40,41 42,43
CH 3 - C H = C H - C H = C H - C H = C H - C H 3
all-trans A3'3'-Octahydro-diphenyl 3 162.3 Vinylcyclopolyenes p [(CH 2 CH= CHCH 2 ^CH(CH= CH2)CH2]-] 4-Vinyl-l-cyclohexene
52.5
2
108.2
129-130/1013
1.4642/20
1-7,34-37,44,48,49
5
270.4
~ 136/1.3
1.5093/20
37
6
324.5
~ 170/1.3
1.5098/20
37
2
108.2
(*=D 17-Vinyl-all-frarcs-l,5,9,13-cyclooctadecatetraene (X = A)
21-Vinyl-all-fra«s-l,5,9,13,17cyclodocosapentaene (x = 5) 1,2-Divinyl-cyclobutane cis
38/51
trans
1.4563
1,8,48,49
112-113/1013
1.4451/20
8,44,48,49
-70.1 -62
150.8/1002
1.4936/20 1.4933/20
34 -16.8 -9 to-8 19-20
237.5/1013 241.5/1013 244/1013 ~97/l
1.5005/20 1.5078/20 1.5129/20 1.507/20
1,3-10,35-37 1,4,8,9 4 5-7,10-12,35-37 5-7,12,45,46 5,6,12,45-47 6,12,46 37
CYCLOPOLYENES
1,5-Cyclooctadiene cis,cis trans,trans 1,5,9-Cyclododecatriene trans,trans,trans cis,trans,trans cis,cis,trans All-/ra«s-l,5,9,13-cyclohexadecatetraene
2
4
216.4
All-rram-l,5,9,13,17-cycloeicosapentaene
5
270.4
~ 142/1
1.5133/20
37
All-rraiw-l,5,9,13,17,21-cyclotetracosahexaene
6
324.5
~ 176/1
1.5133/20
37
3
108.2
162.3
2.2. OLIGOMERS OF ISOPRENE Oligomers
n
MoI. wt.
2
136.3
2
b.p. (°C/mbar)
nD/° C
Refs.
176/1013
1.4721/25
50,51
136.3
57-58/16
1.4794
2
136.3
54/13
1.4786/20
11,29,30
2
136.3
167/1013
1.4704/25
50
2
136.3
161/1013
1.4570/25
50
3
204.3
78/1.3
1.4963/20
53
3
204.3
70/1.3
1.4786/20
53
4
272.5
160/1.3
1.5013/20
53
frans-l,2-Dimethyl-l,2-divinylcyclobutane
2
136.3
134.5-135/992
1.4541/27
49
trans-1 -Isopropenyl-2-methyl-2- vinylcyclobutane
2
136.3
152.5-153/992
1.4591/27
49
trans-1,2-Diisopropenylcyclobutane
2
136.3
155.1-155.4/987
1.4585/29
49
4-Isopropenyl-l-methyl-1-cyclohexene (dipentene) (D,L)
2
136.3
178/1013
1.4727/18
15-17, 55,62,71
6-Isopropenyl-3-methyl-l-cyclohexene (diprene) (D,L)
2
136.3
173-175/1000
1.4735/20
15,16, 59,71
2,4-Dimethyl-4-vinyl-1 -cyclohexene
2
136.3
162/1000
1.4654/20
11,29,30, 49,55, 58-60,71
1,4-Dimethyl-4-vinyl-1 -cyclohexene
2
136.3
160.5-161.5/988
1.4658/28
11,17,30, 49,53,55, 57-59,71
cis,cis 1,5-Dimethyl-1,5-cyclooctadiene
2
136.3
182.4/988
1.4863/28
49,54, 56-59,71
cis,cis 2,5-Dimethyl-1,5-cyclooctadiene
2
136.3
182.5-184/992
1.4870/27
49,54, 56-59,71
LINEAR OLIGOMERS
2,7-Dimethyl-l-rrayw-3,7-octatriene CH 2 =C(CH 3 )-CH=CH-CH 2 -CH 2 -C(CH 3 )=CH 2 2,6-Dimethyl-l,3,6-Octatriene CH2=C(CH3)-CH=CH-CH2-C(CH3)=CH-CH3 2,7-Dimethyl-l-/ra«5-3,6-octatriene CH 2 =C(CH 3 )-CH=CH-CH 2 -CH=C(CH 3 )-CH 3 2,6-Dimethyl-l-mms-3,7-octatriene CH2=C(CH3)-CH=CH-CH2-CH(CH3)-CH=CH2 3-Methyl-6-methylene-l,7-octadiene CH2=CH-C(CH3)-(CH2)2-C(=CH2)-CH=CH2 2,6,10-Trimethyl-l-/ra^-3,5,10-dodecatetraene CH2=C(CH3)-CH=CH-CH=C(CH3)-(CH2)3-C(CH3)=CH-CH3 7,ll-Dimethyl-3-methylene-l-fran5-6,ll-dodecatriene (P-farnesene) CH 2 =C(CH 3 )-(CH 2 )3-C(CH 3 )=CH-(CH 2 ) 2 -C(=CH 2 )-CH=CH 2 2,6,10,14-Tetramethyl- l-trans-3,6,10,14-hexadecapentaene CH2=C(CH3)CH=CH-[CH2C(CH3)=CHCH2]3=H
6,30,52,27
CYCLIC OLIGOMERS
2.2. cont'd Oligomers
n
MoI. wt.
l,5,10-Trimethyl-d5,rra«5,rraw5-l,5,9-cyclododecatriene
3
204.3
2.3.
b.p. (°C/mbar)
nD/°C
Refs.
1.5120
61
b.p. (°C/mbar)
«/>/°C
Refs.
53/1.2
1.5135/25
63-66
1.5339/25
9,63-66
138/17
OLIGOMERS OF 1,3-BUTADIENE DERIVATIVES
Monomer
Oligomers
m.p. ( 0 C)
n
MoI. wt.
l-Chloro-4-(a-chloro-vinyl)-l-cyclohexene
2
177.1
l,6-Dichloro-l,5-cyclooctadiene
2
177.1
13.8
64/0.33
2,3-Dichloro-l,3-butadiene Hexafluoro-l,3-butadiene
3,4,7,8-Tetrachloro-l,5-cyclooctadiene Cyclic dimer
2 2
246.0 324.1
98-99 40
140-146/4.8 80/1013
63 20,21
2-Cyano-l,3-butadiene
4-Vinyl-l,4-dicyano-l-cyclohexene
2
158.2
55-56
110-112/1.3
69
l-Phenyl-l,3-butadiene
3-Phenyl-4-/ra«s-styryl-l-cyclohexene
2
260.4
189-191/3
67
2-Phenyl-l,3-butadiene
l,4-Diphenyl-4-vinyl-l-cyclohexene
2
260.4
60
220-222/17
68
l,3-Diphenyl-l,3-butadiene
l,3,4-Triphenyl-4-fra7w-styryl-l-cyclohexene
2
412.3
137-138
2-Chloro-l,3-butadiene
2.4.
1,4-OLIGO(ALKADIENES) CH 3 CH 2 - [ C H 2 - C X = C H - C H 2 ] „-CH 2 CH 3
X
n
Configuration
H
1
cis trans M-cis All-trans AU-CiJ
2
CH 3
18,19
3 1 2 3 4
MoI. wt.
b.p. (°C/mbar)
nD/°C
112.2
121.7/985 121.4/985 90-91/23 87-88/23 120-125/2 138-140/1013 92/7 98/0.3 140/0.2
1.4136/20 1.4116/20 1.4455/23 1.4415/24 1.4638/19 1.4224/20 1.4540/20 1.4729/20 1.4878/16
166.3 220.4 126.2 194.3 262.5 330.6
Refs. 87 87 85 85 86 75 75 75 75
2.5.
OLIGOMERS OF CYCLOPENTADIENE AND 1,3-CYCLOHEXADIENE
Oligomers
n
MoI. wt.
Dicyclopentadiene endo exo
2
132.2
m.p. ( 0 C)
b.p. (°C/mbar)
nDl°C
Refs. 84
32
163/1021 170/1017
1.5070/25
22,23,49,70,74 49,70,72
Tricyclopentadiene 3
198.3
68
251/1021
22,23,74,84
4
264.4
207
344/1021
22,23,74,84
2
132.2
170-172/1013
2
160.3
229/1013
Tetracyclopentadiene
/rarcs-Tricyclo[5,3,0,02'6]-3,9-decadiene
Dicyclohexadiene
2.6.
1.5080/25
49,70
22,73,74
OLIGOMERS OF ALLENE
Oligomers
n
DIMERS
2
MoI. wt.
m.p. ( 0 C)
b.p. (°C/mbar)
nD/°C
Refs.
80.1
1,2-Dimethylene-cyclobutane
74/1013
1.4690/20
24-27,77,81,82
1,3-Dimethylene-cyclobutane
69/1013
1.4485/20
77-80
68-69/80
1.4919/25
76,77
68-69/80
1.4919/25
76
TRIMERS
3
120.2
1,2,4-Trimethylene-cyclohexane
1,3,5-Trimethylene-cyclohexane
33.5-35
3-Methylenebicyclo-[4,2,0]-octa-l(6)-ene
1.5-(or l,6-)-Dimethylenespiro-[3,3]heptane
TETRAMERS
4
2,6- + 2,7-Dimethylenebicyclo-[4,4,0]-dec-9,10-ene (P-tetramer)
UV, 1H-NMR, MS
77
IR, UV, 1H-NMR, MS
77
160.3
107-108/17
1.5248/25
24,25,28,60,83
2.6. cont'd Oligomers
n
MoI. wt.
1,3,5,7-Tetramethylene cyclooctane
PENTAMERS
m.p. ( 0 C)
b.p. (°C/mbar) 60/4.7
5
nD/°C 1.5102/25
Refs. 76
200.4
6 '-Methylene-3 ',4',7 ',8 '-tetrahydrospiro[2- and 3-methylene]-cyclobutane-1,2'(1 'H,5 'H)-naphthalene + 7 '-methylene-3 ',4',5 ',6 '-tetrahydrospiro[2- and 3-methylene]cyclobutane-l,2'-(l 'H,8 'H)-naphthalene 73/0.03 1.5307/20
24,88
REFERENCES 1. W. Brenner, R Heimbach, H. Hey, E. W. Mueller, G. Wilke, Ann. Chem., 727, 161 (1969). 2. N. E. Duncan, G. J. Janz, J. Chem. Phys., 20, 1644 (1952). 3. J. C. Hillyer, J. V. Smith, Jr., Ind. Eng. Chem., 45,1133 (1953). 4. K. Ziegler, H. Wilms, Ann. Chem., 567, 1 (1950); K. Ziegler, H. Sauer, L. Bruns, H. Froitzheim-Kuehlhorn, J. Schneider, Ann. Chem., 589, 122 (1954). 5. G. Wilke, Angew. Chem., 69, 397 (1957); G. Wilke, E. W. Mueller, M. Kroener, ibid., 73, 33 (1961); B. Bogdanovic, R Heimbach, M. Kroener, G. Wilke, E. G. Hoffmann, J. Brandt, Ann. Chem., 727, 143 (1969). 6. G. Wilke, Angew. Chem., 75, 10 (1963). 7. G. Pajaro, D. Fiumani, M. Moro, Gazz. Chim. Ital., 92, 1452 (1962); C. 1965, II, 990. 8. E. Vogel, Angew. Chem., 68, 413 (1956); Ann. Chem., 615, 1 (1958). 9. A. C. Cope, W. J. Bailey, J. Am. Chem. Soc, 70, 2305 (1948); A. C. Cope, C. L. Stevens, E A. Hochstein, ibid., 72, 2510 (1950). 10. H. W. B. Reed, J. Chem. Soc, 1931 (1954). 11. G. Wilke, J. Polym. ScL, 38, 45 (1959). 12. H. Breil, R Heimbach, M. Kroener, H. Mueller, G. Wilke, Makromol. Chem., 69, 18 (1963). 13. S. Tanaka, K. Mabuchi, N. Shimazaki, J. Org. Chem., 29,1626 (1964). 14. S. Otsuka, T. Kikuchi, T. Taketomi, J. Am. Chem. Soc, 85, 3709 (1963). 15. T. Wagner-Jauregg, Ann. Chem., 488, 176 (1931). 16. O. Aschan, Ann. Chem., 439, 221 (1924); Chem. Ber., 57, 1959 (1924). 17. C. Walling, J. Paisach, J. Am. Chem. Soc, 80, 5819 (1958). 18. W. Herz, W. Lewis, J. Org. Chem., 23, 1646 (1958). 19. T. L. Jacobs, M. H. Goodrow, J. Org. Chem., 23, 1653 (1958). 20. I. L. Karle, J. Karle, T. B. Owen, R. W. Broge, A. H. Fox, J. L. Hoard, J. Am. Chem. Soc, 86, 2523 (1964).
21. M. Prober, W. T. Miller, Jr., J. Am. Chem. Soc, 71, 598 (1949). 22. K. Alder, G. Stein, Ann. Chem., 485, 223 (1931); 496, 204 (1932); 504, 216 (1933). 23. H. Staudinger, H. A. Bruson, Ann. Chem., 447, 97 (1926). 24. S. V. Lebedev, Zh. Fiz. Khim. Obshch., 45,1357 (1913); C. A., 9, 799 (1915). 25. R. N. Meinert, C. D. Hurd, J. Am. Chem. Soc, 52, 4540 (1930). 26. K. Alder, O. Ackermann, Chem. Ber., 87, 1567 (1954). 27. A. T. Blomquist, J. A. Verdol, J. Am. Chem. Soc, 78, 109 (1956). 28. B. Weinstein, A. H. Fenselau, Tetrahedron Lett., 1463, (1963). 29. J. Itakura, H. Tanaka, Makromol. Chem., 123, 274 (1969). 30. L. I. Zakharkin, Dokl. Akad. Nauk SSSR, 131, 1069 (1960). 31. E. J. Smutny, J. Am. Chem. Soc, 89, 6793 (1967). 32. S. Takahashi, T. Shibano, N. Hagihara, Tetrahedron Lett., 2451, (1967). 33. H. Takahasi, S. Tai, M. Yamaguchi, J. Org. Chem., 30, 1661 (1965). 34. T. Alderson, E. L. Jenner, R. V. Lindsey, Jr., J. Am. Chem. Soc, 87, 5638 (1965). 35. G. R Potapov, V. V. Punegov, U. M. Dzhemilev, Izv. Akad. Nauk SSSR, Ser. Khim., 1468 (1985); Bull. Acad. Sci. USSR, 1342 (1985). 36. H. Mueller, D. Wittenberg, H. Seibt, E. Scharf, Angew. Chem., 77, 318 (1965); D. Wittenberg, Angew. Chem., 75, 1124(1963). 37. A. Miyake, H. Kondo, M. Nishino, Angew. Chem., 83, 851 (1971). 38. T. Saito, Y. Uchida, A. Misono, Bull. Chem. Soc Japan, 37, 105 (1964). 39. G. B. Butler, T. W. Brooks, J. Org. Chem., 28, 2699 (1963). 40. M. Urion, Koll.-Z., 63, 84 (1933); Compt. Rend. Acad. Sci., 196, 353 (1933).
41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53.
54. 55. 56. 57. 58. 59. 60.
61. 62. 63. 64.
R. Kuhn, Ch. Grundmann, Chem. Ber., 71, 442 (1938). K. Alder, H. F. Rickert, Chem. Ber., 71, 373 (1938). G. B. Kistiakowsky, W. W. Ransom, J. Chem. Phys., 7,725 (1939). H. W. B. Reed, J. Chem. Soc, 685, (1951). H. Nozaki, Y. Nisikawa, M. Kawanisi, R. Noyori, Tetrahedron, 23, 2173 (1967). M. Denecke, H. C. Broecker, Makromol. Chem., 176, 1471 (1975); V. D. Mochel, J. Polym. Sci. A-I, 10, 1009 (1972). H. Takahasi, M. Yamaguchi, J. Org. Chem., 28, 1409 (1963). G. S. Hammond, N. J. Turro, A. Fischer, J. Am. Chem. Soc, 83, 4674 (1961). G. S. Hammond, N. J. Turro, R. S. H. Liu, J. Org. Chem., 28, 3297 (1963). K. Takahashi, G. Hata, A. Miyake, Bull. Chem. Soc. Japan, 46, 600 (1973). A. Josey, J. Org. Chem., 39, 139 (1974). A. Misono, Y. Uchida, K. Furuhata, S. Yoshida, Bull. Chem. Soc. Japan, 42, 2303 (1969). U. M. Dzhemilev, G. M. Latypov, G. A. Tolstikov, O. S. Vostrikova, Izv. Akad. Nauk SSSR, Ser. Khim., 553 (1979); Bull. Akad. Sci. USSR, 509 (1979). U. M. Dzhemilev, G. E. Ivanov, G. A. Tolstikov, Zh. Org. Khim, 11,1636 (1975); J. Org. Chem. USSR, 11,1623 (1975). J. R Candlin, W. H. Janes, J. Chem. Soc. C, 1856 (1968). A. Misono, V. Uchida, M. Hidai, V. Ohsawa, Bull. Chem. Soc. Japan, 39, 2425 (1966). S. Watanabe, K. Suga, H. Vikuchi, Austr. J. Chem., 3,385 (1970). L. L Zakharkin, G. G. Zhigareva, Izv. Akad. Nauk SSSR, 168, (1964); Bull. Akad. Sci. USSR, 149 (1964). J. L. Binder, K. C. Eberly, G. E. P. Smith, Jr., J. Polym. Sci., 38, 229 (1959). S. Lebedev, Zh. Russ. Fiz.-Khim. Obshch., 45, 1249 (1913); C. 1914 I, 1406; J. W. Lebedew, A. A. Ivanov, ibid., 48, 997 (1916); C. 1923 I, 1539. Y. Tanaka, H. Sato, Y. Nakafutami, H. Iwasaki, T. Taketomi, Polym. J., 14, 713 (1982). G. S. Whitby, R. N. Crozier, Can. J. Res., 6, 203 (1932). R. E. Foster, R. S. Schreiber, J. Am. Chem. Soc, 70,2303 (1948). J. G. T. Brown, J. D. Rose, J. L. Simonsen, J. Chem. Soc, 10 (1944).
65. A. C. Cope, W. R. Schmitz, J. Am. Chem. Soc, 72, 3056 (1950). 66. A. L. Klebanskii, M. M. Denisova, Zh. Obshch. Khim. SSSR, 17, 703 (1947); Chem. Abstr. 42, 1215c (1948). 67. K. Alder, J. Haydn, W. Vogt, Chem. Ber., 86, 1302 (1953); C. Liebermann, C. N. Riiber, Chem. Ber., 35, 2696 (1902). 68. K. Alder, J. Haydn, Ann. Chem., 570, 201 (1950). 69. C. S. Marvel, N. O. Brace, J. Am. Chem. Soc, 71, 37 (1949). 70. N. J. Turro, G. S. Hammond, J. Am. Chem. Soc, 84, 2841 (1962). 71. LN. Nazarov, A. I. Kuznetsova, N. V. Kuznetsov, Zh. Obshch. Khim. SSSR, 25, 291 (1955); J. Gen. Chem., 25, 307 (1955). 72. P. D. Bartlett, I. S. Goldstern, J. Am. Chem. Soc, 69, 2553 (1947); P. D. Bartlett, A. Schneider, J. Am. Chem. Soc, 68, 6 (1946); H. A. Bruson, T. W. Riener, J. Am. Chem. Soc, 67, 723, 1178(1945),68,8(1946). 73. K. Alder, G. Stein, Ann. Chem., 496, 197 (1932). 74. K. Alder, G. Stein, Chem. Ber., 67, 613 (1934). 75. C. Pinazzi, D. Reyx, Bull. Soc Chim. France, 3930 (1972). 76. R. E. Benson, R. V. Lindsey, Jr., J. Am. Chem. Soc, 81, 4247 (1959). 77. B. Weinstein, A. H. Fenselau, J. Chem. Soc C, 368 (1967). 78. F. F. Caserio, Jr., S. H. Parker, R. Piccolini, J. D. Roberts, J. Am. Chem. Soc, 80, 5507 (1958). 79. J. K. Williams, W. H. Sharkey, J. Am. Chem. Soc, 81, 4269 (1959). 80. Y. M. Slobodin, A. R Khitrov, Zh. Obshch. Khim., 33, 153 (1963); J. Gen. Chem. USSR, 33, 146 (1963). 81. A. T. Blomquist, J. A. Verdol, J. Am. Chem. Soc, 77, 1806 (1955). 82. Y. M. Slobodin, A. P. Khitrov, Zh. Obshch. Khim., 33, 2819 (1963); J. Gen. Chem. USSR, 33, 2745 (1963). 83. B. Weinstein, A. H. Fenselau, J. Org. Chem., 32, 2278 (1967). 84. H. Staudinger, A. Rheiner, HeIv. Chim. Acta, 7, 23 (1924). 85. C. Pinazzi, D. Reyx, G. Levesque, C. R., Ser. C, 270, 2120 (1970). 86. C. Pinazzi, D. Reyx, C. R. Ser. C, 274, 252 (1972). 87. K. N. Campbell, L. T. Eby, J. Am. Chem. Soc, 63, 2683 (1941). 88. B. Weinstein, A. H. Fenselau, J. Org. Chem., 32, 2988 (1967).
TABLE 3. OLIGO(ACETYLENES)
3.1. LINEAR OLIGOMERS OF ACETYLENE b.p. (°C/mbar)
d (g/cm3)/°C
n
MoI. wt.
nf
Refs.
Vinylacetylene CH2=CH-C = CH
2
52.1
5/1009
0.705/0
Divinylacetylene CH2=CH-C = C-CH=CH2 l,3-Hexadiene-5-yne cisltrans CH2=CH-CH=CH-C= CH
3
78.1
84.5-85/1013
0.772/20
1.5055
1-3
3
78.1
81-82/1013
0.780/28
1.4900
1,2,4-6,25
l,3,7-Octatriene-5-yne CH 2 =CH-CH=CH-C= C-CH=CH2 (E)-: GC; 1H-, 13C-NMR; Ref. 7 (Z)-: GC; 1H-, 13C-NMR; Ref. 7
4
105.1
10/27
0.830/20
1.5834
1,2,7
1,2
3.2.
POLYENYNE OLIGOMERS ( C H 3 ) 3 C - [ O C - C H = C H ] n - C = C-C(CH 3 ) 3
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 5 7
188.3 238.4 288.4 388.5 488.6
69-72 118-120 155-156 22Od 204 d
26 26 26 26 26
3.3. JC 1
2
3
4
5 6
OLIGOMERIC a,co-DIYNES H[Cs C - ( C H 2 ) ^ - C s C]rtH /i
MoI. wt.
1 2 3 1 2 4 1 2 4 1 2 4 1 2 1 2 4
64.1 126.1 188.2 78.1 154.2 30.4 92.1 182.3 362.5 106.2 210.3 418.6 120.2 238.4 134.2 266.4 530.8
m.p. (0C) -20 to-19 65-66 103-104 99-100 167-168 d -84.8 --5 60-61 21-22 93-94 -27.3 21-22
b.p. (°C/mbar)
wD/°C
63-64/1013
87.5-88.5/1011
1.4381/23
111.5/1013 110-111/0.9
1.4423/20
93-95/253 119-120/0.1
1.4521/18 1.5205/23
162/1013
1.4490/20 1.5119/26
68-71/18 30-31 59-61
Refs. 8 8,9 8 10 11-14 11,12 15 11,12 11,12 16 11,17 11,17 15 11,12 18 11,12 11,12
3.4. OLIGO(ALKYNES) H[C= C-(CH 2 )Jn-C = CH x 1
2 4
5
6
3.5.
n
MoI. wt.
1 2 3 4 6 1 2 1 2 3 7 8
64.1 102.1 140.2 178.2 254.3 78.1 130.2 106.2 186.2 266.4 586.9 667.0
1 2 3 1 2
120.2 214.3 308.5 134.2 242.4
m.p. (0C) -21 to-19 21-21.5 44-45 73-74 112-113.5 46 -3 19 36 55
-27.3 8 33 24
b.p. (°C/mbar)
nD/°C
63-64/1013 1.4833/22
87.5-88.5/1011 61-63/3 93-95/253 111/1.3 167/0.4
1.4381/23
162/1013 113/1.1 170/0.1 68-71/18 131/0.3
1.4490/20 1.4791/26
1.4521/18 1.4775/25 1.4918/25
1.4806/25
Refs. 8 8 8 8 8 10 19 16 9 9 9 9
15 9 9 18 9
CYCLIC OLIGO(ALKYNES) p [ ( C = C ) x - (CH2)y]r\
x
y
n
MoI. wt.
m.p. (0C)
1
4
2 4 2 2 2 2 2
160.2 320.5 188.3 216.4 244.4 272.5 300.5
39 71 100 -3.5 97 38-39 106.5
5 6 7 8 9
b.p. (°C/mbar) 87/0.3 215/0.3 100-110/0.001 110-120/0.001 160-180/4 145-147/0.01 198-202/0.001
Refs. 9,20,21 9,20 9,20 20 20 20 20
3.5.
cont'd
x
y
n
MoI. wt.
m.p. (0C)
2
2
3 4 5 6 7 2 3 4 2 3 4 5 2 3 4 5 6 2 3 4 2 2 2 1 2 2
228.3 304.4 380.5 456.6 532.6 180.2 270.4 360.5 208.3 312.4 416.6 520.7 236.3 354.5 472.7 590.9 709.0 264.4 396.6 528.8 292.4 320.5 348.5 188.3 376.6 284.4
175-180d 170-18Od 165 d ~180d -180d 115-120 (expl.) 174-175 213-214 163 173-174 154-155 155-157 212 125-126 135-136 144-145 144-145 82 135-136 152-154 171 85 142 18 101-102 >200
3
4
5
6
7 8 9 10 3
3.6.
5
b.p. (°C/mbar)
Refs. 14 14 14 14 14 11,12 13 13,22 12,13,17,20,22 13,22 13,22 13,22 11-13,20,22 13,22 13,22 13,22 13,22 12,20,22 22 22 20 20,22 20 23 23 20
PERICYCLYNES p[C=C-C(CH 3 ) 2 ],n
n
MoI. wt.
m.p. (0C)
Refs.
5 6 7 8
330.5 396.6 462.7 528.8
201-202 249-250 173-174 189-190
24 24 24 24
REFERENCES 1. J. A. Nieuwland, W. S. Calcott, F. B. Downing, A. S. Carter, J. Am. Chem. Soc, 53, 4197 (1931). 2. K. K. Georgieff, W. T. Cave, K. G. Blaikie, J. Am. Chem. Soc, 76, 5494 (1954). 3. R. Lespieau, Guillemonat, Koll.-Z., 63, 84 (1933). 4. D. A. Ben-Efraim, F. Sondheimer, Tetrahedron, 25, 2837 (1969). 5. J. H. Van Boom, L. Brandsma, J. F. Arens, Rec. Trav. Chim. Pay-Bas, 85, 952 (1966). 6. F. Sondheimer, D. A. Ben-Efraim, Y. Gaoni, J. Am. Chem. Soc, 83, 1682 (1961). 7. H. Hopf, L. Eisenhuth, V. Lehne, L. Ernst, Chem. Ber., 119, 1105 (1986). 8. D. A. Ben-Efraim, F. Sondheimer, Tetrahedron, 25, 2823 (1969). 9. J. H. Wotiz, R. F. Adams, C. G. Parsons, J. Am. Chem. Soc, 83, 373 (1961). 10. R. A. Raphael, F. Sondheimer, J. Chem. Soc, 120 (1950). 11. Y. Amiel, F. Sondheimer, R. Wolovsky, Proc Chem. Soc, 1957, p. 22.
12. F. Sondheimer, Y. Amiel, R. Wolovsky, J. Am. Chem. Soc, 79, 6263 (1957). 13. F. Sondheimer, Y. Amiel, R. Wolovsky, J. Am. Chem. Soc, 79, 4247 (1957). 14. F. Sondheimer, R. Wolovsky, J. Am. Chem. Soc, 84, 260 (1962). 15. A. L. Henne, K. W. Greenlee, J. Am. Chem. Soc, 67, 484 (1945); R. Lespieau, Journaud, Compt. Rend., 188, 1410 (1929). 16. H. Bader, L. C. Cross, I. M. Heilborn, E. R. H. Jones, J. Chem. Soc, 619 (1949). 17. F. Sondheimer, Y. Amiel, J. Am. Chem. Soc, 79,5817 (1957). 18. W. M. Lauer, W. J. Gensler, J. Am. Chem. Soc, 67, 1171 (1945). 19. F. Sondheimer, Y. Gaoni, J. Am. Chem. Soc, 84,3520 (1962). 20. J. Dale, A. J. Hubert, G. S. D., King, J. Chem. Soc, 73, (1963). 21. D. J. Cram, N. L. Allinger, J. Am. Chem. Soc, 78, 2518 (1956). 22. F. Sondheimer, Y Amiel, R. Wolovsky, J. Am. Chem. Soc, 81, 4600 (1959).
23. G. Eglinton, A. R. Galbraith, J. Chem. Soc, 889 (1959); Chem & Ind., 737 (1956). 24. L. T. Scott, G. J. DeCicco, J. L. Hyun, G. Reinhardt, J. Am. Chem. Soc, 105, 7760 (1983); 107, 6546 (1985).
TABLE 4. 4.1.
25. A. L. Klebanskii, U. A. Dranitzina, I. M. Dobromilskaya, Compt. Rend. Acad. Sci. USSR, 2, 229 (1935); Chem, Abstr., 29, 6205 (1935). 26. F. Wudl, S. P. Bitler, J. Am. Chem. Soc, 108, 4685 (1986).
OLIGOMERS WITH ALIPHATIC SIDE CHAINS WHICH IN ADDITION CONTAIN HETEROATOMS
OLIGOMERIC ACRYLIC DERIVATIVES
4.1.1. O L I G O ( A C R Y L I C ACIDS) 4.1.1.1. H[CH2CH(COOH)JnCH3 n
MoI. wt.
1 2
88.1 160.2
3
232.2
m.p. (0C)
Configuration
-46 128 141 167.5-170.0 160.0-163.0 153.5-154.5
Isotactic (meso) Syndiotactic (racemic) Isotactic (meso) Heterotactic (racemic) Syndiotactic (meso)
b.p. (°C/mbar)
Refs.
153/1012 1-3,11 1-3,11 3,78 3,78 3,78
4.1.1.2. (CH3)2C(COOH)-[CH2CH(COOH)]n-C(COOHXCH3)2 n
MoI. wt.
1 2 3 4
246.3 318.3 390.4 462.5
a
m.p. (0C)
Refs.
30-35 70-80 a 181-183 80-82
4 4 4 5
p-Nitrobenzyl ester.
4.1.2. OLIGO (ACRYLATES) 4.1.2.1. H[CH2CH(COOH)JnCH3 n
MoI. wt.
1 2
102.1 188.2
3
274.3
Configuration
b.p. (°C/mbar)
Isotactic (meso) Syndiotactic (racemic) Isotactic (meso) Heterotactic (racemic) Syndiotactic (meso)
nD/°C
91.5/990 64/0.9 NMR 163/15 160/15 156/15
1.4440 1.4420 1.4407
nf
Refs.
1.3838/20 1.4258
6 3,6,101 3 3,6,78 3,6,78 3,6,78
4.1.2.2. Anionic Oligomers RO[CH2CH(COOR)JnH R
n
MoI. wt.
b.p. (°C/mbar)
CH 3 CH 3 C2H5 C2H5
1 2 1 2
118.1 204.2 146.2 246.3
55-56/27 90/1 75-77/27 82/0.15
Refs. 7 7 7,42,56 7,42,56,62
1.433 1.446
4.1.2.3. Unsaturated Oligomers Oligomers Dialkyl-A2-dihydromuconate (trans) ROOC-CH=CH-CH2CH2COOR Dialkyl-A3-dihydromuconate ROOC-CH2-CH=CH-CH2COOR Dialkyl-oc-methyleneglutarate oligomers
R
n
MoI. wt.
b.p. (°C/mbar)
/if?
CH3 C2H5 CH3 C2H5 CH3
2 2 2 2 1
172.2 200.2 172.2 200.2 172.2
86-88/1.3 80-84/1.3 74-75/1.3 107-108/1.3 59/0.3
1.4497
Refs. 42,44,58,60,61,63 58 42,58,60,63 58,63 7,8,42,44,62
4.1.2.3. cont'd Oligomers
R
n
MoI. wt.
b.p. (°C/mbar)
C2H5
2 3 4 1
258.2 344.3 430.4 200.2
120/0.9 166-168/0.4 180/0.03 52-53/0.2
C H 2 = C ( C O O R ) - [ C H 2 C H ( C O O R ) ] nH
4.1.3.
1.0392
Refs. 8 8 8 42,52,56,62
ANIONIC OLIGOMERS OF ACRYLAMIDE CH 2 =CHCO-[NHCH 2 CH 2 CO] n NH 2
n
MoI. wt.
m.p. (0C)
Refs.
1 2
142.2 213.2
149-150 179-181
110-112 112
4.1.4.
nf
OLIGO(ACRYLONITRILES)
4.1.4.1. H[CH 2 CH(CN)] n H n
MoI. wt.
1 2 3
55.1 108.1 161.2
b.p. (°C/mbar) 97.1/1013 116-118/6.5 195-196/3.5
nD/°C
Refs.
1.3689/15 1.4320/25 1.4609/20
9,45 9,10,45
4.1.4.2. H[CH 2 CH(CN)] n CH 3 na
MoI. wt.
m.p. ( 0 C)
b.p. (°C/mbar)
1 2
69.1 122.2
107-108/1013 106/3 94/3
3
175.2
4
228.3
-71.5 8.8* 55 C 37-39* 53-54J 80-81e 130-132^ 158
(g/cm 3 )
dfl°C
0.773 0.9051 0.8940
nD/°C
Refs.
1.3720/20 1.4191/60 1.4155/60
37 10,11,38,54,80 10,11,38,54,80 10,38,53 10,53 10,53 10 10
a
n = 2-5 (diastereomers): 13C-NMR, Ref. 35. Isotactic (meso). c Syndiotactic (racemic). d Heterotactic (racemic). e Syndiotactic (meso). f Two stereoisomers. b
4.1.4.3. H[CH(CN)CH 2 I n CH 2 CN n
MoI. wt.
1 2 3
94.1 147.2 200.2
4.1.4.4.
b.p. (°C/mbar)
nD/°C
287.4/1013 85/0.01 95/0.01
Refs.
1.4347/20 1.4644/25
9,12 9,12
1,2-Dicyanocyclobutanes
n
Configuration
1
cisltrans cis trans
MoI. wt.
m.p. ( 0 C)
b.p. (°C/mbar)
67-67.5 30.5/31.5
190/20 160/20
#i|f
106.1 1.4628
Refs. 13,42,43,66,81 13,14,79 13,14,79
4.1.4.5. Unsaturated Oligomers Oligomers"
n
MoI. wt.
m.p. ( 0 C)
2,3-Dihydromuconitrile
2
106.1
76
2
106.1
b.p. (°C/mbar)
iff?
Refs. 14,15,82
NCCH2CH=CHCH2CN
1,4-Dicyano-l-butene
42,46,49,67
CN-CH=CH-CH2CH2CN
cis trans 2-Methyleneglutaronitrile CH 2 =C(CN)-CH 2CH 2CN {cisltrans) 2,4,6-Tricyano-l-hexene CH 2 =C(CN)-CH 2 CH(CN)-CH 2CH 2CN l,l,4,4-Tetracyanoethyl-l,4-dicyano-2-butene (NCCH 2 CH 2 ) 2 C(CN)-CH=CH-C(CN)(CH 2 CH 2 CN) 2 l,4-Dicyano-l,3-butadiene
2
106.1
3
159.2
6
318.4
2
104.1
-19 t o - 1 7 -13 to - 1 2 -9.6
99.5-102.5/0.5 84.5-86.5/0.5 65/0.13
1.4677 1.4646 1.4550
49,50,83 49,50 42,44-48,52
152-164/2.5
1.4762
42,45
240
14,45,46 42,51
NC-CH=CH-CH=CH-CH
cis9cis
128-129
83
transjrans
159-161
97
4.2.
OLIGOMERIC METHACRYLIC DERIVATIVES
4.2.1. OLIGO(METHACRYLIC ACIDS) 4.2.1.1. H[CH2C(CH3)(COOH)]M-C(COOH)(CH3)2 n
MoI. wt.
m.p. ( 0 C)
Refs.
2 3 4
260.3 346.4 432.5
Oil 45-48 56-59
19 18,19 19
m.p. ( 0 C)
Refs.
4.2.1.2. Anionic Oligo(methacrylic acids) n
MoI. wt.
CH3O-[CH2C(CH3XCOOH)]
2 3
nH
204.2 290.3
82 160
17 17
4.2.2. OLIGO(METHACRYLATES) 4.2.2.1. Anionic Oligo(methacrylates) R O - [ C H 2 C ( C H 3 ) ( C O O O R ) ] n H R
R
/i
MoI. wt.
CH 3 O
CH 3 O
1 2 3 4 6
132.2 232.3 332.4 432.5 632.8
H-C 4 H 9 O
W-C 4 H 9 O
1 2 3 4
216.3 358.5 500.7 642.9
b.p. (°C/mbar) 147/1013 241/1013 116/0.1 190/0.1
n = 2-10: GPC Ref. 36 59-61/0.13 128-130/0.13 186-90/0.13 246-250/0.4
20 /(g/cm 3 ) 0 C
nf
Refs.
0.7949 1.0540 1.1045 1.12 1.565
1.4053 1.4378 1.4567 1.4681
17,36,41,73 17,36,41 17,36,41 17 17
0.8970 0.9436 0.9736 0.9909
1.4213 1.4400 1.4508 1.4574
74 74 74 74
Isotactic and syndiotactic oligomers, (CH S)3C-[CH2C(CH3)COOCHs]n-H, n = 2-100 (mol. wt. 158.2-10070.0): HPLC, GPC, SFC; DSC (F 8 , r m ) , X-ray (n = 2-5), NMR, MS; Refs. 114-124. Reviews: Refs. 114,115. Properties of specific oligomers: n (isotactic and syndiotactic, resp.) = 2-8,13,14,16,19,21,22-25,27-29,31,36,41,44,45,50,58,80,100. m.p. (0C), (isotactic oligomers): n = 28: 98.5, n = 31: 104.5, n = 36: 109.6, n = 41: 117.3, n = 44: 124.3; Ref. 116.
4.2.2.2. Unsaturated Oligomersa
CH2=C(COOCH3)-[CH2-X-(COOCH3)],,-CH3
X
n
MoL wt.
b.p. (°C/mbar)
nf?
CH 2 CH
1 2 1
188.2 276.3 188.2
107/4 173/4
1.4445 1.4588 IR, MS, 1 H-NMR
C(CH 3 ) a
Refs. 16,20,42,59,65,77 16,20,42,59,65,77 Ref. 65,77 Ref. 75
n = 2-4: 2D-COSY-NMR
4.2.2.3. Cyclic Oligomers Oligomers
R
n
Configuration
MoL wt.
CH 3
2
cis trans
200.2
2,4,6-Trimethyl-6-methoxy-methyl-cyclohexanone-2,4-dicarboxylate CH 3
3
l,3,3,5-Tetramethylcyclohexane-2-one-l,5-dicarboxylate
3
l,2-Dimethylcyclobutane-l,2-dicarboxylates
CH 3
4,6,7-Trimethyl-3-oxo-7-propyl-2-oxabicyclo-[2,2,2]octane-6-carboxylate CH 3 3
b.p. (°C/mbar)
IR, MS, 1H-NMR IR, MS, 1H-NMR
268.3
Refs. 65 65
122/0.13
17,36
128-138/3 128-138/3
64,72 64,72
cis trans
270.1
6-endo 6-exo
268.3
117-119 Oil
64 64
296.4
IR, MS, 1H-NMR
64
52-54
l-Ethyl-4,6,7-trimethyl-3-oxo-7-propyl-2-oxa-bicyclo[2,2,2]octane-6-carboxylate CH 3 4 6-exo
4.2.3.
m.p. ( 0 C)
OLIGO(METHACRYLOYL CHLORIDES)
Oligomers
n
MoL wt.
b.p. (°C/mbar)
Refs.
2-Chloro-2,5-dimethylcyclopentanone-5-carboxylic chloride 2
209.1
111-117/23
40
2,5-Dimethyl-A 2 -cyclopentenone-5-carboxylic acid chloride 2
209.1
111-117/23
40
4.2.4. ANIONIC OLIGOMERS OF METHACRYLAMIDE CH 2 =C(CH 3 )CO-[NHCH 2 CH(CH 3 )CO] n NH 2 /i
MoI. wt
m.p. (0C)
Refs.
170.2 255.3 340.4
118-120 155-158 195
84 84 84
1 2 3 n = 4-9: GPC, MS, Ref. 84
4.2.5.
OLIGO(METHACRYLONITRILES)
4.2.5.1. Anionic Oligo(methacrylonitriles) CH3O[CH2C(CH3)CN]nH n
MoI. wt.
b.p. (°C/mbar)
1 2 3 4 5
99.1 166.2 233.3 300.4 367.5
160.6/1013 92/0.7 165/0.7 235/0.7 300-305/0.7
nDl°C
Refs.
1.4038/20 1.438 1.464 1.478 1.488
113 21,34 21,34 21,34 21,34
Refs.
4.2.5.2. l,2-Dicyano-l,2-dimethyl-cyclobutanes p[CH2C(CH3)(CN)- C(CH3)(CN)CH2]^I n
Configuration
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
2 2
CW trans
134.2 134.2
107-108 90.3
170/33 120/33
16,66,89 16,66,89
4.2.5.3. Unsaturated Oligomers Oligomers
n
MoI. wt.
a-Methylene-5-methyladiponitrile
2
134.2
3
201.3
m.p. (0C)
b.p. (°C/mbar)
iiff
Refs.
148/33
1.4502
16,42,89
194/1.3
1.4720
16
CH3CH(CN)-CH2CH2C(CN)=CH2
5-Cyano-8-methyl-2-methylene-nonanedinitrile
47-49
C H 2 = C ( C N ) - [ C H 2 C H 2 C H ( C N ) ] 2=CH 3
4.3. OLIGOMERS OF 0 ALKYL-SUBSTITUTED VINYL DERIVATIVES 4.3.1.
OLIGO(ESTERS)
Monomer
R
CH3CH=CHCOOR
Oligomers
n
MoI. wt.
b.p. (°C/mbar)
«ff
Refs.
2 2 2
200.2 228.3 200.2
70-80/96 84/0.75 90-110/13
1.4512
2
252.3
100-102/4
55
2
252.3
90-93/3
55
2-methyl-3-pentene1,3-dicarboxylate {cisltrans) OT3CH=C(COOR)CH(CH3)CH2COOR CH3 C2H5 CH3
W-C3H7CH=CHCOOR
CH3
i-C 3H7CH=CHCOOR
CH3
2-Methyl-4-pentene1,3-dicarboxylate {cisltrans) CH2=CH-CH(COOR)CH(CH3)CH2COOR 2-«-Propyl-3-heptene1,3-dicarboxylate C3H7-CH=C(COOR)CH(CH2COOR)-C3H7 2-Isopropyl-5-methyl4-hexene-1,3-dicarboxylate (CH3)2C=CH-CH(COOR)CH(CH 2COOR)-CH(CH 3) 2
42,55,68,70,71 42,55,56,69 42,70,71
•4.3.2.
OLIGO(CROTONONITRILES)
Oligomers
n
MoI. wt.
b.p. (°C/mbar)
n%
Refs.
l,3-Dicyano-2-methyl-3-pentene(aVfra«s)
2
134.2
81-83/0.3
1.4730
42,52,55-57
l,3,5-Tricyano-2,4,6-trimethylcyclohexane P[CH(CN)-CH(CH 3 )Ig 1
3
201.3
152-155/0.3
1.4950
42,57
l,3,5-Tricyano-2,4-dimethyl-5-heptene
3
CH3CH=C(CN)-CH(CH3)CH2CN
150-160/0.13
42,52
CH3CH=C(CN)-CH(CH3)CH(CN)-CH(CH3)CH2CN
4.4.
OLIGO(VINYL) DERIVATIVES
4.4.1.
OLIGO(VINYL ALCOHOLS) AND OLIGO(VINYL ACETATES) H[CH2CHOR] nCH3
R
n
H
2 3
COCH 3
2
3
4.4.2.
Configuration
2b
Isotactic (meso) Syndiotactic (racemic) Mixture Isotactic Heterotactic Syndiotactic Mixture
3b
b
MoI. wt.
Isotactic (meso) Syndiotactic (racemic) Isotactic (meso) Heterotactic (racemic) Syndiotactic (meso) Isotactic (meso) Syndiotactic (racemic) Mixture Isotactic Heterotactic Syndiotactic Mixture
104.1
m.p. (0C)
b.p. (°C/mbar) 73/4 74/4 120/1.3 120/1.3
1.4327 1.4378
20/1013 201/1013 103-107/27 116-117.5/0.7 115-116/0.7 112-114/0.5 120-122/0.7
1.4172 1.4142 1.4170 1.4342 1.4319 1.4297 1.4320
48-49 67
148.2
nf
87.5-88 188.2
274.3 21-22 32.5-33.5
Refs. 80,86,87 80,86,87 84,85 84,85 84,85 86,88,97 86,88,97 96 84,88 84 84,88 84,96
O L I G O ( V I N Y L CHLORIDES) H[CH2CHCL] n CH 3 a
n
a
Configuration
MoL wt. 141.0
203.5
b.p. (°C/mbar)
nD20
Refs.
40/16 36/16 140-141/1013 102.5/20 103.5/20 104.5/20 102.5-104.5
1.4409 1.4390 1.4409 1.4722 1.4704 1.4686 1.4699
80,90-95,97 80,90-95,97 95 89,94,95 89,94,95 89,94,95 89
Oligomers (CHs) 3 C-[CH 2 CHCl] n -H, n = 1,2,3 (threo-; erythro-), 4 (ribo-; xylo-; arabino-; lyxo-): HPLC, 13C-NMR, Ref. 39. 2,4-Dibromopentanes and 2,4,6-tribromoheptanes: Kerr Effekt, Ref. 98.
4.4.3.
O L I G O ( V I N Y L ALDEHYDES) AND OLIGO(VINYL KETONES)
Monomer
n
MoI. wt.
2-Formyl-2,3-dihydropyran
2
3-Formyl-5,6-dihydropyran
a-Methylacrolein
oc-Ethylacrolein
Acrolein CH 2 =CHCHO
Oligomers
m.p. ( 0 C)
b.p. (C/mbar)
Refs.
112.1
145-148/1013
22-25
2
112.1
77-78/16
26,27
2-Formyl-2,5-dimethyl-2,3-dihydropyran
2
140.2
166/1000
24,28
2-Formyl-2,5-diethyl-2,3-dihydropyran
2
168.2
195/1013
24
-75
4.4.3. cont'd Monomer
Oligomers
n
MoI. wt.
Methyl vinyl ketone
2-Methyl-6-acetyl-5,6-dihydropyran
2
128.2
2
140.2
2-Methyl-l-butene-(3)-one CH 2 =C(CH 3 )COCH 3 Phenyl vinyl ketone
3-Methylene-2,6-heptanedione CH 3 COC(=CH 2 )CH 2 CH 2 COCH 3 2,6-Dimethyl-3,7-dioxo-l-octene CH 3 COCH(CH 3 )CH 2 CH 2 COC(CH 3 )=CH 2 2,4-Dibenzoylpentane
2
168.2
2
280.4
CH2=CH-CO-C6H5
CH3CH(COC6H5)CH2CH(COC6H5)CH3
Isotactic (meso) Syndiotactic (racemic)
4.4.4.
5-7
1
b.p. (C/mbar)
Refs.
68/17
29
91-92/7
46
83-85/23
30,99,100
H-NMR 64-65 62-63
99,100 100/1.3 155/1.3
99,100 99,100
OLIGOMERIC N-VINYL DERIVATIVES Oligomers
n
MoI. wt.
m.p. ( 0 C)
l,3-Bis-[N-pyrrolidone-(2)-yl]-l-butene
2
212.3
75
Monomer N-Vinyl-pyrrolidone
4.4.5.
m.p. ( 0 C)
Ref. 31
OLIGO(VINYL PYRIDINES)
Monomer
2-Vinylpyridine
4-Vinylpyridine
Oligomers
n
Configuration
MoL wt.
2 Isotactic (meso) 226.3 3 Isotactic (meso) 331.4 4 Isotactic (meso) 436.6 n = 2-7: LC, 1 H-, 13C-NMR Refs. 108,109 sym-Tri(4-pyridyl)-cyclohexane 3 315.4
b.p. (° C/mbar)
106-108/0.33 LC, GC, 1 H-, 13C-NMR LC, GC, 1 H-, 13C-NMR m.p. (0C): 228.5
Refs.
102,105-107,109 103,105,107,109 104,103,107,109 32,33
REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
K. Auwers, J. Thrope, Ann. Chem., 285, 337 (1985). E. Moeller, Chem. Ber., 43, 3250 (1910). H. G. Clark, Makromol. Chem., 86, 107 (1965). H. Kaemmerer, A. Jung, Makromol. Chem., 101, 284 (1967). H. Kaemmerer, N. Oender, Makromol. Chem., I l l , 67 (1968). D. Lim, O. Wichterle, J. Polym. Sci., 29, 579 (1958). B. A. Feit, Eur. Polym. J., 3, 523 (1967). B. A. Feit, Eur. Polym. J., 8, 321 (1972). H. Zahn, P. Schaefer, Chem. Ber., 92, 736 (1959); Makromol. Chem., 30, 225 (1959). T. Takata, M. Taniyama, Kobunshi Kagaku, 16, 693 (1955);T. Takata, H. Ishii, Y. Nishiyama, M. Taniyama,
11.
12. 13. 14. 15. 16.
ibid., 18, 235 (1961); C. 729 (1964); Chem. Abstr., 56, 1591 (1962); T. Takata, I. Hirori, M. Taniyama, J. Polym. Sci. A, 2, 1567 (1964). H. G. Clark, Makromol. Chem., 63, 69 (1963); L. E. Alexander, R. Engmann, H. G. Clark, J. Phys. Chem., 70, 252 (1966). R. C. Houtz, Textile Res. J., 20, 786 (1950). E. C. Coyner, W. S. Hillman, J. Am. Chem. Soc, 71, 324 (1949). N. Takashina, C. C. Price, J. Am. Chem. Soc, 84, 489 (1962). W. Reppe, Ann. Chem., 596, 133 (1956). C. J. Albisetti, D. C. England, M. J. Hogsed, R. M. Joyce, J. Am. Chem. Soc, 78, 472 (1956).
17. Th. Voelker, A. Neumann, U. Baumann, Makromol. Chem., 63,182 (1963); G. Schreyer, Th. Voelker, Makromol. Chem., 63, 202 (1963). 18. H. Kaemmerer, J. S. Shukla, G. Scheuermann, Makromol. Chem., 116, 72 (1968). 19. H. Kaemmerer, J. S. Shukla, Makromol. Chem., 116, 62 (1968). 20. E. Trommsdorf, Angew. Chem., 68, 355 (1956). 21. B. A. Feit, J. Wallach, A. Zilkha, J. Polym. Sci. A, 2, 4743 (1964). 22. K. Alder, A. Rueden, Chem. Ber., 74, 920 (1941). 23. S. Potnis, K. Shorara, R. C. Schulz, W. Kern, Makromol. Chem., 63, 78 (1963). 24. H. Schulz, H. Wagner, Angew. Chem., 62, 105 (1950). 25. S. M. Scherlin, A. J. Berlin, T. A. Sserebrennikowa, F. E. Rabinowitsch, Zh. Obshch. Khim., 8, 22 (1938); C. 1939 I, 1971. 26. R. Hall, Chem. Ind., 1772 (1955). 27. G. Dumas, R Rumpff, C. R. Ser. C, 242, 2574 (1956). 28. G. G. Stoner, J. S. McNulty, J. Am. Chem. Soc, 72, 1531 (1950). 29. K. Alder, H. Offermanns, E. Rueden, Chem. Ber., 74, 905 (1941). 30. H. Staudinger, B. Ritzenthaler, Chem. Ber., 67, 1773 (1934). 31. J. W. Breitenbach, F. Galinovsky, H. Nesvadba, E. Wolf, Naturwissenschaften, 42, 155, 440 (1955). 32. F. Longo, J. W. Bassi, F. Greco, M. Cambini, Tetrahedron Lett., 995 (1964). 33. A. Segre, Tetrahedron Lett., 1001 (1964). 34. B. A. Feit, E. Heller, A. Zilkha, J. Polym. Sci. A-I, 4, 1499 (1966); G. Teichmann, A. Zilkha, Eur. Polym. J., 3, 25 (1967). 35. H. Balard, H. Fritz, J. Meybeck, Makromol. Chem., 178, 2393 (1977). 36. A. Laguerre, J.-P. Busnel, C-M. Bruneau, Makromol. Chem., Rapid Commun., 5, 21 (1984). 37. R. E. Kent, S. M. McElvain, Org. Synth., 25, 61 (1945). 38. V. Janout, P. Cafelin, Coll. Czech. Chem. Commun., 45, 1928 (1980). 39. K.-F. Elgert, R. Kosfeld, Polym. Bull., 175, 244 (1983). 40. W. Fischer, D. Bellus, A. Alder, E. Francotte, A. Roloff, Chimia, 39, 19 (1985). 41. S. Fujishige, Makromol. Chem., 177, 375 (1976); 179, 2251 (1978). 42. V. R Yurev, G. A. Gailyunas, O. T. Kofanova, Usp. Khim., 53, 1352 (1984); Russ, Chem. Rev., 53, 783 (1984). 43. D. M. Gale, J. Org. Chem., 35, 970 (1970). 44. T. Saegusa, Y. Ito, H. Kinoshita, S. Tomita, Bull. Chem. Soc. Japan, 43, 877 (1970). 45. M. M. Baizer, J. D. Anderson, J. Org. Chem., 30, 1357 (1965). 46. J. D. McClure, J. Org. Chem., 35, 3045 (1970). 47. British Patent 1,003,656; Chem. Abstr., 64, 605a (1966). 48. French Patent 1,388,444; Chem. Abstr., 63, 504e (1965). 49. C. M. Langkammer, United States Patent 2,478,285; Chem. Abstr., 44, 2009c (1950).
50. A. Misono, Y. Uchida, M. Hidai, H. Shinobara, Y. Watanabe, Bull. Chem. Soc. Japan, 41, 396 (1968). 51. D. J. Milner, R. Whelan, J. Organomet. Chem., 152, 193 (1978). 52. D. A. White, Synth. React. Inorg. Met.-Org. Chem., 7, 433 (1977). 53. M. Murano, R. Yamadera, J. Polym. Sci., Polym. Lett. Ed., 5, 483 (1967). 54. M. Murano, R. Yamadera, J. Polym. Sci. A-I, 5, 1855 (1967). 55. T. Saegusa, Y Ito, S. Tomita, H. Kinoshita, J. Org. Chem., 35, 670 (1970). 56. D. A. White, M. M. Baizer, J. Chem. Soc, Perkin Trans. I, 2230 (1973). 57. J. Shabtai, E. Ney-Igner, H. Pines, J. Org. Chem., 40, 1158 (1975). 58. G. Oehme, H. Pracejus, J. Prakt. Chem., 322, 798 (1980). 59. M. Stickler, G. Meyerhoff, Makromol. Chem., 181, 131 (1980). 60. M. G. Barlow, M. J. Bryant, R. N. Haszeldine, A. G. Mackie, J. Organomet. Chem., 21, 215 (1970). 61. T. Alderson, E. L. Jenner, R. V. Lindsey, Jr., J. Am. Chem. Soc, 87, 5638 (1965). 62. M. M. Rauhut, H. Currier, United States Patent 3,074,999 (1963); Chem. Abstr., 58, 11224b (1963). 63. E. H. Farmer, J. Chem. Soc, 123, 2531 (1923). 64. K. Yamaguchi, K. Yokota, Y Takada, Makromol. Chem., 182,669 (1981); Makromol. Chem., Rapid Commun., 2,645 (1981). 65. J. Lingnau, M. Stickler, G. Meyerhoff, Eur. Polym. J., 16, 785 (1980). 66. M. Bolte, J. Lemaire, C. R., Ser. C, 288, 403 (1979). 67. H.-F. Piepenbrink, Ann. Chem., 572, 83 (1951). 68. T. Saegusa, Y. Ito, S. Kobayashi, S. Tomita, J. Chem. Soc, Chem. Commun., 273 (1968). 69. J. Shabtai, H. Pines, J. Org. Chem., 30, 3854 (1965). 70. M. Ikeda, T. Hirano, T. Tsuruta, Tetrahedron, 30, 2217 (1974). 71. M. Ikeda, T. Hirano, T. Tsuruta, Tetrahedron Lett., 4477, (1972). 72. L. Lochmann, M. Rodova, J. Petranek, D. Lim, J. Polym. Sci., Polym. Chem. Ed., 12, 2295 (1974). 73. D. Dosococilova, J. Stokr, B. Schneider, M. Pradny, S. Sevcik, Coll. Czech. Chem. Commun., 49, 2275 (1984). 74. J. Trekoval, Coll. Czech. Chem. Commun., 38, 3769 (1973). 75. P. Cacioli, D. G. Hawthorne, S. R. Johns, D. H. Solomon, E. Rizzardo, R. I. Willing, J. Chem. Soc, Chem. Commun., 1355 (1985). 76. W. von E. Doering, C. A. Guyton, J. Am. Chem. Soc, 100, 3229 (1978). 77. K. Naruchi, M. Miura, Polymer, 22, 1716 (1981); K. Naruchi, M. Miura, K. Nagakubo, Nipoon Kagaku Kaishi, 871, (1977); K. Naruchi, O. Yamamoto, M. Miura, K. Nagakubo, ibid., 1974, (1976). 78. D. Lim, B. Obereigner, D. Doskocilova, J. Polym. Sci., Polym. Lett., 3, 893 (1965).
79. J. A. Barltrop, H. A. J. Carless, J. Am. Chem. Soc, 94,1951 (1972). 80. R E. McMohan, W. C. Tincher, J. MoI. Spectr., 15, 180 (1965). 81. S. Hosaka, S. Wakamatsu, Tetrahedron Lett., 219 (1968). 82. R Kurtz, Ann. Chem., 572, 23 (1951). 83. K. Nakagawa, H. Onoue, Tetrahedron Lett., 1433, (1965). 84. D. Lim, E. Votavova, J. Stokr, J. Petranek, J. Polym. Sci., Polym. Lett., 4, 581 (1966). 85. K. Fujii, J. Polym. Sci., Polym. Lett., 3, 375 (1965). 86. J. G. Pritchard, R. L. Vollmer, J. Org. Chem., 28, 1545 (1963). 87. Y. Fujiwara, S. Fujiwara, Bull. Chem. Soc. Japan, 37, 1010 (1964). 88. Y. Fujiwara, S. Fujiwara, K. Fujii, J. Polym. Sci. A-I, 4, 257 (1966). 89. D. Lim, M. Kolinsky, J. Stokr, J. Petranek, J. Polym. Sci., Polym. Lett., 4, 577 (1966). 90. S. Satoh, J. Polym. Sci. A, 2, 5221 (1964). 91. Y. Inoue, I. Ando, A. Nishioka, Polym. J., 3, 246 (1972). 92. T. Shimanouchi, M. Tasumi, Spectrochim. Acta, 17, 755 (1961). 93. T. Shimanouchi, M. Tasumi, Y. Abe, Makromol. Chem., 86, 43 (1965). 94. Y. Abe, M. Tasumi, T. Shimanouchi, S. Satoh, R. Chujo, J. Polym. Sci. A-I, 4, 1413 (1966). 95. R. Lukas, J. Jakes, V. Paleckova, S. Pokorny, M. Kolinsky, J. Polym. Sci., Polym. Chem. Ed., 21, 3093 (1983). 96. J. Stokr, B. Schneider, Coll. Czech. Chem. Commun., 28, 1946 (1963). 97. D. Doskocilova, B. Schneider, Coll. Czech. Chem. Commun., 29, 2290 (1964). 98. A. E. Tonelli, G. Khanarian, R. E. Cais, Macromolecules, 18, 2324 (1985). 99. L. Merle-Aubry, Y. Merle, E. Selegny, C. R., Ser. C, 276, 249 (1973). 100. Y. Merle, L. Merle-Aubry, E. Selegny, C. R., Ser. C, 280, 443 (1975). 101. T. E. Hogen-Esch, C. F. Tien, J. Polym. Sci., Polym. Chem. Ed., 17, 281 (1979). 102. C. F. Tien, T. E. Hogen-Esch, Macromolecules, 9, 871 (1976); C. F. Tien, T. E. Hogen-Esch, J. Am. Chem. Soc, 98, 7109 (1976).
103. C. F. Tien, T. E. Hogen-Esch, J. Polym. Sci., Polym. Lett., 16, 297 (1978). 104. T. E. Hogen-Esch, C. F. Tien, J. Polym. Sci., Polym. Lett., 17, 431 (1979). 105. T. E. Hogen-Esch, C. F. Tien, Macromolecules, 13, 207 (1980). 106. T. E. Hogen-Esch, W. L. Jenkins, Macromolecules, 14, 510 (1981). 107. S. S. Hung, C. Mathis, T. E. Hogen-Esch, Macromolecules, 14, 1802 (1981). 108. S. S. Hung, T. E. Hogen-Esch, J. Polym. Sci., Polym. Chem. Ed., 23, 1203 (1985). 109. W. L. Jenkins, C. F. Tien, T. E. Hogen-Esch, Pure Appl. Chem., 51, 139 (1979). 110. A. Leoni, S. Franco, Macromolecules, 4, 355 (1971). 111. D. S. Breslow, G. E. Hulse, A. S. Matlack, J. Am. Chem. Soc, 79, 3760 (1957). 112. A. Leoni, S. Franco, G. Polla, J. Polym. Sci. A-I, 6, 3187 (1968). 113. D. S. Tarbell, P. Noble, Jr., J. Am. Chem. Soc, 72, 2657 (1950). 114. K. Hatada, K. Ute, T. Kitayama, T. Nishiura, N. Miyatake, Macromol. Chem. Macromol. Symp., 85, 325 (1994). 115. K. Hatada, K. Ute, N. Miyatake, Prog. Polym. Sci., 19,1067 (1994). 116. K. Ute, N. Miyatake, K. Hatada, Polymer, 36, 1415 (1995). 117. T. Kitayama, T. Nishimura, A, Oshima, K. Ute, K. Hatada, Polymer Bull., 32, 215 (1994). 118. K. Ute, N. Miyatake, Y. Osugi, K. Hatada, Polym. J., 25, 1153(1993). 119. K. Ute, N. Miyatake, T. Asada, K. Hatada, Polym. Bull., 28, 561 (1992). 120. K. Ute, N. Miyatake, K. Hatada, J. Macromol. Sci., Pure Appl. Chem. A, 29, 599 (1992). 121. K. Hatada, K. Ute, T. Nishimura, M. Kashiyama, T. Saito, M. Takeuchi, Polymer Bull., 23, 157 (1990). 122. K. Ute, T. Nishimura, K. Hatada, Polym. J., 21, 1027 (1989). 123. K. Ute, T. Nishimura, Y. Matsuura, K. Hatada, Polym. J., 21, 231 (1989). 124. K. Hatada, K. Ute, K. Tanaka, T. Kitayama, Polym. J., 19, 1325 (1987).
TABLE 5. OLIGO(STYRENES) No. Styrene
Monomer
Oligomers
n
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
ri^
3-Methyl-l-phenylindane (2 stereoisomers)
2
208.3
9.5 25.5
168-169/21 157/16
1.5810 1.5809
Refs. 1-5
5.1. cont'd No.
Monomer
a-Methylstyrene
n
MoI. wt.
1,3-Diphenyl-1 -butene
2
208.3
181-182/27 134-135/1
1,4-Diphenyl-1 -butene
2
208.3
124/1013
1,2-Diphenylcyclobutane
2
208.3
1,3,3-Trimethyl- 1-phenylindane
2
236.4
53
158-160/13
4-Methyl-2,4-diphenyl-2-pentene
2
236.4
52
166-167/20
1.5728
8,11,12
2
296.4
237-240/24
1.5703
9,13
2
266.4
93-94
2
266.4
173
9,14 9,14
a-Methyl-/?-methoxystyrene
a-Methyl-p-aminostyrene
m.p. ( 0 C)
Oligomers
1,3,3-Trimethy 1-4' ,6-diaminophenylindane
b.p. (°C/mbar)
n$ 1.5930
1,3,3-Trimethy 1-1-phenylindane4',6-dicarboxylic acid
2
348.4
297
a-/?-Dimethylstyrene
1,3,3,4',6-Pentamethyl1-phenylindane
2
264.4
40
1-3,6,23
6,23
1.5913
a-Methyl-p-carboxystyren
Refs.
7
8-10
9
142-144/1.1
9,15,16
Next Page
5.1. cont'd No.
Monomer
oc-Ethylstyrene
Oligomers
n
MoI. wt.
m.p. ( 0 C)
b.p. (°C/mbar)
n™
Refs.
l,3-Diethyl-3-methyl1-phenylindane
2
264.4
104-106/0.4
1.5642
17
3,5-Diphenyl-5-methyl-2-heptene
2
264.4
133-135/1.6
1.54345/25
17
a-m-Dimethylstyrene
1,3,3,3 ',7-Pentamethyl1-phenylindane
2
264.4
57
p-Bromostyrene
cw-l,3-Di(p-bromophenyl)-l-butene
2
366.1
67-68
18,19
Stilbene
1,2,3,4-Tetraphenylcyclobutane
2
360.5
164-165
20-22
l,2-Diphenyl-l-/?-tolyethane
2
272.4
42-43
9
20
REFERENCES 1. R E . Spoerri, M. J. Rosen, J. Am. Chem. Soc, 72, 4918 (1950). 2. M. J. Rosen, J. Org. Chem., 18, 1701 (1953). 3. B. B. Corson, J. Dorsky, J. E. Nickels, W. M. Kutz, H. I. Thayer, J. Org. Chem., 19, 17 (1954). 4. M. J. Rosen, Org. Syn. Coll. Vol. IV, 665 (1963). 5. R. Stoemer, H. Kootz, Chem. Ber., 61, 2330 (1928). 6. R. Fittig, E. Erdmann, Ann. Chem., 216, 179 (1883); H. Stobbe, G. Posnjak, Ann. Chem., 371, 287 (1909). 7. I. S. Bengelsdorf, J. Org. Chem., 25, 1468 (1960). 8. E. Bergmann, H. Taubadel, H. Weiss, Chem. Ber., 64, 1493 (1931). 9. J. C. Petropoulos, J. J. Fisher, J. Am. Chem. Soc, 80, 1938 (1958). 10. L. M. Adams, R. J. Lee, F. T. Wadsworth, J. Org. Chem., 24, 1186(1959). 11. F. S. Dainton, R. H. Tomlinson, J. Chem. Soc, 151 (1953).
12. J. M. Van der Zanden, Th. R. Rix, Rec Trav. Chim., 75, 1343 (1956). 13. J. M. Van der Zanden, Th. R. Rix, Rec Trav. Chim., 75, 1166 (1956). 14. J. V Braun, E. Anton, W. Haensel, G. Werner, Ann. Chem., 472, 1 (1929). 15. M. Tiffeneau, Ann. Chim. Phys., 10, p. 145, p. 197 (1907). 16. V. N. Ipatieff, H. Pines, R. C. Oldberg, J. Am. Chem. Soc, 70, 2123 (1948). 17. C. G. Overberger, E. M. Pearce, D. Thanner, J. Am. Chem. Soc, 80, 1761 (1958). 18. G. L. Goemer, J. W. Pearce, J. Am. Chem. Soc, 73,2304 (1951). 19. J. Hukki, Acta Chem. Scand., 3, 279 (1949). 20. D. S. Brackman, P. H. Plesch, J. Chem. Soc, 3563 (1958); Chem. Ind., 255 (1955). 21. M. Pailer, U. Mueller, Monatsh. Chem., 79, 615 (1948). 22. J. D. Fulton, J. D. Dunitz, Nature (London), 160, 161 (1947).
Previous Page
C. OLIGOMERS CONTAINING HETEROATOMS IN THE MAIN CHAIN
TABLE 6. 6.1.
OLIGOMERS CONTAINING O IN THE MAIN CHAIN
OLIGO(ETHERS) AND OLIGO(ACETALS)
6.1.1. OLIGO(OXYETHYLENES) 6.1.1.1. Linear Oligo(oxyethylenes) H[OCH 2 CH 2 I n OH na
MoI. wt.
1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 25 27 30 35 36 45 54
62.1 106.1 150.2 194.2 238.3 282.3 326.4 370.4 414.5 458.6 546.6 634.7 678.8 722.9 811.0 899.1 1119.3 1207.5 1321.6 1559.8 1604.0 2000.4 2396.9
a
m.p. ( 0 C) -12.6 -6 -4.3 -3 - 2 toO 9 17.8-18.8 19.7-21.8 30.0 25.8-28.3 36.5-38.5 29.5 40.0 49.5-505 35.0 44.4 47.0 44.6-44.8 46.4 50.1 43.0-43.4 53.0 54.2
b.p. (°C/mbar) 197.8/1013 245/1013 122-123/0.1 155-156/0.8 173-174/0.8 175-177/0.07 230-232/0.9 206-209/0.02 186-192/0.001 210/0.1
(g/cm 3 ) 1.1136/20 1.120/20 1.1274/15 1.127/20 1.127/20 1.1278/20
d2o n£°/°C 1.4324 1.4479 1.4573 1.4611 1.4629 1.4640 1.4653 1.4660
246-257/0.001
Refs. 23-26,55,119,149,209 23-26,55,57,119,129,149,209 23-25,26,55,57,119,129,149,209 23-27,55,57,70,119,120,129,149,209 25-27,55,57,68,71,119,149,209 23-28,55,68-70,119,120,209,215 25,26,55,57,69,71,119,219 27,120,215,219 37,50,52-54,56,59,219 27,51,54,71,219 219 25 37,50-54,59 219 25,37,211 51,54 51,53,54,59 37 25,54 51,53,54,59 37 37,54 212
n = 1-27: HPLC, Refs. 72-74; n = 1-45: GPG, Ref. 220; n = 6,8,9,10,15,16,18,25,35,54: IR, Raman, NMR, MS, DSC, Ref. 211,212,214,215,219,224.
6.1.L2. Oligo(oxyethylene) Monoalkyl Ethers R - [ O C H 2 C H 2 ] ^ - O H R
na
MoI. wt.
m.p. ( 0 C)
CH 3
1 2 3 5 6 7 8 9 10 11 18 1 2 3 4 1 2 3 1 2 3 1 2 3 4
76.1 120.1 164.2 252.3 296.4 341.4 385.5 429.5 473.6 518.1 825.0 90.1 134.2 178.2 222.3 148.2 192.3 236.3 118.2 162.2 206.3 146.2 190.3 234.3 278.4
-85.1
C2H5
M-C3H7
n-C 4 H 9
Ai-C6Hi3
13-14 18-18.5 22 24-25
-68.1 -50.1 -36.9 -30.3 -15.0
b.p. (°C/mbar)
n™
124/1009 194.2/1013 245.3/1013 110/0.013 125/0.013 150/0.007 165/0.007 185/0.003 218-220/0.013 236-238/0.013
1.4024 1.4260
135/1013 196/1013 248/1013 284/1013 152-153/1012 215.8/1023 148-150/23 171/1013 112-114/15 278/1013
1.4075 1.4273 1.4380 1.4499 1.4133
1.4196
Refs. 26,124,125,127-129,177,196 127 180 178 178 178 178 178 178 178 24 24,125-129,176,177,196 126,129 126 129 128,129,175-177,196 175 175 24,125,129,176,177,194,196 194 206 102 102 102 102
6.1.1.1. cont'd na
W-C9H19 W-Ci2H25
W-Ci6H33 C 6 H 5 CH 2
(C 6 Hs) 3 C
C6H5
MoI. wt. 5 6 9 4 8 1 2 3 4 5 6 7 8 9 10 11 12 9 12 3 4 5 6 8 9 3 4 5 6 1 2 3 4 5
m.p. ( 0 C) 322.4 366.5 498.6 320.5 496.7 186.3 230.4 274.4 318.5 362.5 406.6 550.8 594.8 638.9 683.0 727.0 771.1 638.9 771.1 240.3 284.3 328.4 372.4 460.6 504.6 392.4 436.5 480.6 524.6 138.2 182.2 226.3 270.3 314.4
(g/cm 3 )
b.p. (°C/mbar)
°/°C
-3.3 1.2 13.0 180-182/0.5 22.7 20.2 18.6 17.0 20.0 22.8 25.4 28.5 32.3 33.5 40.0 40.3 42.0 40.5 43.5
NMR, MS
144/0.13 164/0.13 178/0.13 188/0.07 212/0.07 233/0.13 236-240/0.15
1.4456 1.4485 1.4510 1.4531 1.4548 1.4560 1.4576
166-169/0.5
1.503 1.501 1.499 1.493 1.488 1.483 1.540 1.544 1.549 1.561 1.5370 1.5230 1.5144 1.5075 1.5030
120.5/12 163.0/11 190.5/11 181/0.3 218/0.5
Refs. 102 102 102 225 225 70,207 70,207 70,207 70,207 70,207 70,207 207 207 207 207 207 207 56 56 75,175 75 75 75 75 75 75 75 75 75 109 109 109 109 109
a
n = 4,6,8,12,16 with R= W-C9Hi9 and n-Ci5H3i: Raman spectr., Ref. 213.
6.1.1.3. Oligo(oxyethylene) Dialkyl Ethers H(CH 2 )^-[OCH 2 CH 2 ] n -O(CH 2 )^H na
x
1
1 2 3 4 1 2 3 4 1 2 1 2 4 1 2 1 2 4 1 1 2 3 4 6
2
3 4
5 6
7 9
MoL wt.
90.1 118.2 145.7 174.2 134.2 162.2 190.2 218.3 178.8 206.3 222.3 250.3 306.4 266.3 294.4 310.4 338.4 394.5 354.4 442.5 470.6 498.6 526.7 582.8
m.p. ( 0 C)
b.p. (°C/mbar)
84/1013 124/1013 159-160/965 204/1013 161/1013 189/1013 219/983 250/1013 216/1013 118/13 148/19 159/15 192/13 149-151/3.3 174/4 135/0.1 125/0.01 155/0.4 205-207/4 16.0 21.5 12.7 11.7 13.0
n D /°C
1.3797/20 1.3922/20
1.4183/20 1.4143/20 1.4025/25 1.4265/20 1.4233/20 1.4371/20 1.4332/20 1.4384/20
1.4471/20 1.4454/20 1.4509/20
Refs.
130,131,133,134,195 24,131,132,135 131,175 24,131,132 24,26,134,179,195 8,24,135,179 179 24,179 134 135 8,24,134 24,135 24 134,136,166 135 24,134 24,135 24 134 52,58,59 58,59 58 58 58
6.1.1.3. cont'd na
15
25
45
x
MoL wt.
m.p. ( 0 C)
8 10 12 16 18 21 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 26 30 4 15 30 1 10 13 15 18 21 30
638.8 695.0 751.1 863.3 919.4 1003.8 1143.8 706.8 734.9 762.9 791.0 819.0 847.1 875.2 903.2 931.2 959.3 987.4 1015.4 1043.5 1071.6 1099.6 1127.6 1155.7 1183.7 1267.9 1408.2 1520.4 1231.5 1540.1 1960.9 2028.4 2280.9 2365.0 2449.2 2505.3 2589.4 2841.9
19.5 28.5 37.0 49.5 54.0 62.0 69.0 28.7 35.1 30.8 31.3 32.0 32.2 33.7 35.3 38.4 39.5 42.5 45.5 47.3 50.0 51.7 54.4 57.6 59.0 62 68 71 43.5 55.5 72.7 51.3 52.8 56.1 57.1 61.2 64.3 66
b.p. (°C/mbar)
w D /°C
Refs.
Raman
58 58,63 58,63,64 58,63,64 58,63 58 58,63 52,59,60 59,60,224 60,63 60,63 60,63 60,63 60,63 60,63 60,63 60,63 60,63 60,63 60,63,64,67 60,63,64,67 60,63,64,67 60,63,64,67 60,63,64,67 60,63,64,67 60,62,65 62 62 66 66 66 61 61 61 61 61 61 66
a
n = 2 - 4 5 , x=l: GPC, Ref.: 220; a-alkyl (CH 3 , C 9 H } 9 , C i 5 H 3 O , co-methoxy oligo(oxyethylenes), n = 4-12,15,16,25: Ref. 214; n = 15, x = 5,6,7: micelliation and surface properties, Ref. 221.
6.1.1.4. Amino Derivatives of Oligo(oxyethylenes) a,G)-Diamines RNH-CH 2 CH 2 - [OCH 2 CH 2 ] „ - N H R R
n
MoI. wt.
b.p. (°C/mbar)
H
1 2 3 4 5 3 4 5
94.2 148.2 192.3 236.3 280.4 220.3 264.4 308.4
48-50/1.3 77-78/0.3 115/0.3 133-134/0.2 175-177/0.07 97-98/0.2 131-133/0.2 146-148/0.07
CH 3
a
nD/25°C
Refs.
1.4637 1.4647 1.4668 1.4511 1.4549 1.4562
76 76 76,77 77 77 77 77 77
Af-Oligoethylene mono- and dialkylamines RiR 2 N(CH 2 CH 2 O) n H; Ri, R 2 = C 4 H 9 and R2 = W-Ci0H2I, R 2 =H; n = 1-6; GC; Ref. 88.
6.1.1.5. Cyclic Oligo(oxyethylenes) na 1 2 3 4 5
[-[OCH2CH2],,-]
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
44.1 88.1 132.2 176.2 220.3
-111.3 11.8 0 17 Oil
10.7/1013 101.3/1013 168-172/1013 106/13 152/1.7
d4 (g/cm3)/°C 1.8922/6 1.0336/20 1.109/25 1.113/20
Refs. 29 30,85-87,92,102,145 78,79,102 31,40,79-81,86,102,145,216 31,39,79,81,83,102,145,216
6.1.1.5. cont'd na
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
264.3 308.4 352.4 396.9 441.0 485.1 529.2 573.3 617.4 661.5 705.6 749.7 793.8 837.9 882.0
39.5-40.5 Oil 19 Oil 35.5-36.8 Oil 36.5-38.5 Oil 28.5-31 38-41.5 49.5-50.5 44-47 47-50 51-53.5 46-50.5
80/0.013
a
d4 (g/cm3)/°C
Refs. 39,41,79,81-83,102,145,216 39,84,145,216 39,84,145 217 217,219 217 217,219 217 217 217 217,219 217 217 217 217
n = 2, 4-8; GC, MS; Ref. 145; n = 4-20: IR, NMR, MS, Refs. 216,217,219.
6.1.1.6. Oligomers of Substituted Ethylene Oxides Epoxide Oxirane (Ethylene oxide)
Methyloxirane (Propylene oxide)
Ethyloxirane (1,2-Butene oxide) 2,3-Dimethyl oxirane (2,3-Butene oxide) cis-
Oligomers
n
MoI. wt.
m.p. ( 0 C)
b.p. (°C/mbar)
nD/°C
110-112 1.3970/20
Crown ethers p[OCH 2 CH 2 ] n ^
1-8
2-Methyl-l,3-dioxolane r [OCH(CH 3 )- OCH 2 CH 2 ]-!
2
88.1
82-83/1013
2-Methyl-l,3,6-trioxocane p [OCH(CH 3 )- (OCH 2 CH 2 ) 2 ]-|
3
132.2
110/13
Dimers cis- + frarcs-2,5-Dimethyl-l,4-dioxane transP[OCH(CH 3 )CH 2 L n
2
116.2
Refs.
cf. Tab. 1.1.1.5
117-130/1013 GC, MS, 1H-NMR, IR -4.5 121.5/1000
ds- + fra^-2,6-Dimethyl-l,4-dioxane P[OCH(CH 3 )CH 2 - OCH 2 CH(CH 3 )I 1
127.7-129/1001 GC, MS, 1H-NMR, IR
cis- + fra«s-2-Ethyl-4-methyl-l,3-dioxolane cistransP[OCH(C 2 H 5 )- O C ^ C H ^ H ^ ] - !
GC, MS, 1H-NMR, IR
Higher Oligomers P[OCH(CH3)CH2Jn-I
4 5«
232.3 290.4
p [OCH(CH 2 CH 3 )CH 2 ]^
4
288.4
Monomer Dimers
1 2
72.1 144.2
93
61-65/0.009 77-83/0.009 n = 4-6: GPC, Ref. 91 99-101/0.13 n = 4-6: GPC, Ref. 91
59.9-60.4/996
85-87,92, 110-112 70,150
1.4147/22
80,90,92,93 89,114 112,113
1.4169/20
89,119
1.4029/24 1.4044/24
89 115 115
1.4453/23 1.4453/23
49,89-93 90-92
1.4503/23
90-92
1.3826/20
116 94,95
2,cis-3,trans-5,cis-6Tetramethyl-l,4-dioxane^
GC, 1H-NMR
94,95
2,c/s-4,/ra«5-5-Trimethyl2-ethyl-l,3-dioxanefc
GC, 1H-NMR
94,95
GPC, 1H-NMR GPC, 1H-NMR
95 95
Trimers Tetramers
3 4
216.3 288.4
6.1.1.6. cont'd Epoxide trans-
cis-, trans-
Oligomers
n
Monomer
1
72.1
Dimers 2,cis-3ytrans-5 -cis-6Tetramethyl-1,4-dioxane b
2
144.2
m.p. ( 0 C)
nD/°C
53.6-54.1/996
1.3736/20
Refs. 116 94,95 94,95
2,ds-4,cw-5-Trimethyl2-ethyl-l,3-dioxolane*
GC, 1H-NMR
94,95
2,trans-4,trans-5-Trimeihy\2-ethyl-1,3-dioxolane b
GC, 1H-NMR
94,95
GC 1 H-NMR
94,95,114
GC 1 H-NMR
94,95,114,117
2,trans-3 ,cis-5-trans-6Tetramethyl-1,4-dioxane
2
Dimers 2,5-Tetramethyl-1,4-dioxane
39.5-40.0
2
144.2
2-Isopropyl-4,4-dimethyl1,3-dioxolane 2,4,6-Triisopropyl-1,3,5-trioxane
(R)-tert, Butyloxirane
3
216.3
4
400.6
4
224.2
2
185.0
2R, 5R, 8R, HRMethyleneoxirane (Epoxyallene) Epichlorohydrin cistrans2R, 5R, 8S, HS-
n-Propoxymethyloxirane («-Propyl glycidyl ether) Phenyloxirane (Styrene oxide)
b.p. (°C/mbar)
GC, 1H-NMR
2,trans-3,trans-5,cis-6Tetramethyl-1,4-dioxane
2,2-Dimethyloxirane (Isobutene oxide)
MoI. wt.
140/1013
96 96
135/1013
96
64
96
168.0 [a]g =50,8 (C= 1.1, C 6 Hi 2 ) 120-122 146-147/1007
65-66 109-110 136-136.5
60/0.2(subl.) 67-75/0.7
4
370.1
190-205/1
2
232.3
n = 2-6: GPC, Refs. 100,103,104 88/0.6 n = 2 - 5 : GPC, Ref, 91
2-Benzyl-4-phenyl-1,3-dioxolane
2
240.3
37-40
2,5-Diphenyl-1,4-dioxane
2
240.3
152 121-122
150-151/1
92,97 1.4880/20
98,118
92,100,103-105 99 99 90,92,98,100,101, 103,104 1.4330/30
91
43,106 92,106,107 42,43
trans177
42-44
2,4,6-Tribenzyl-l ,3,5-trioxane 3 a b
360.4
3n = 2 - 5 : Stereoisomers. The letters r and i indicate retention and inversion at the carbon, respectively.
GPCNMR
106
GPC, MS,
106
6.1.1.7. Oligo(oxyethylenes) Containing Spirane Residues m.p. ( 0 C)
A
n
x
MoI. wt.
0
1
1 2 3 7 1 2 3 7 2 2 2
144.2 188.2 232.3 408.3 288.3 376.4 464.5 816.6 294.1 588.3 882.4
163-165 86-87 52-53 42-43 Oil 99 86-87
2
OCH(C 6 H 5 )O
1 2 3
Oil
b.p. (°C/mbar)
Refs.
97-99/13 MS, 1H-NMR 97-98/0.008 182-183/0.004
182 182,183 182 182 182 182-183 182 182 183 183 183
MS, 1H-NMR
6.1.1.8. Benzo Crown Ethers"
Position of phenolic groups
x
n
MoI. wt.
m.p. ( 0 C)
o-
1
2 3 4
272.3 408.4 544.6 180.2 360.4 224.2 448.5 268.3 536.3 977.1 448.5 536.6 624.7
208.5 190-192 150-152 67-69 164.0 44-45.0 113-114 79-79.5 106.8 <26 95.5-96.5 93.5-94 67-68
2 2 1 2 1 2 2 2 2 2
3 4 9 3 4 5
p
b.p. ( 0 C)
380-384/1025
Refs. 102 41,188 41,188 41 41,102,188,189 41 41,102,188,189 41 41,188 41,188 187,190 187,190 187,190
fl
Ref. 187.
6.1.2. OLIGO(OXYPOLYMETHYLENES) 6.1.2.1. Linear Oligomers R - [ O ( C H 2 ) J n - R ' R H
R' OH
* 4
5
6 10
H
Cl
4
m.p. ( 0 C)
w
MoI. wt.
1 2 3 4 5 6 7 8 9 14 1 2 3 7 1 3 1 3
90.1 20.1 85/0.01 162.2 3 108/0.01 234.4 10.1 151/0.01 306.4 18 183/0.01 378.5 37 226/0.01 450.6 31 253/0.01 522.7 42 594.8 34 667.0 41 1027.5 38 104.2 -18 137-138/16 190.3 16-18 141-142/0.7 276.4 29.5 188-190/1 620.9 36-38 118.2 43 132/2 318.5 56 209-210/1 174.3 72-75 175-176/19 486.8 80 290-300/1 n = 3, x = 3-6: X-ray, IR, Raman Spectr., DSC 108.6 81-82/19
1
2 3 4
180.7 252.8 324.9
b.p. (°C/mbar)
87/0.01 132/0.01 160/0.01
nD/°C 1.4460/20 1.4544/26 1.4484/60
Refs. 137 108,120,137 33,120,137,222,223 137 137 137 137 137 137 137
1.4494/20 1.4570/25 1.4495/60 1.4538/60
108 33,222 33
1.4538/60
33,222
1.4518/60
33 137,138
137 137 137
6.1.2.1. cont'd R
R'
C 6 H 5 NHCO
x
OCONHC 6 H 5
CH 3
OCH 3
4
n
m.p. ( 0 C)
MoL wt.
b.p. (°C/mbar)
nDl°C
Refs.
1
328.4
180
137
2 3 4 5 6
400.5 472.6 544.7 616.8 688.9
119 74 54 48 47
137 137 137 137 137 n = 2-7: HPLC, MS; Ref. 146 n = 2-8: GC,MS; Ref. 139
4
6.1.2.2. Oligo(oxypolymethylene) Ethers H(CH 2 )^-[O(CH 2 )J n -H x 3 4
5
6
10
n
MoI. wt.
2 3 2 3 4 2 3 4 2 3 4 2 3 4
160.3 218.3 202.3 274.4 346.6 244.4 330.6 416.7 286.5 386.7 486.8 454.8 611.1 767.4
m.p. ( 0 C)
b.p. (°C/mbar) 180/1013 240-250/1013 234-236/1013 137/2 190/1 120/03 160/0.4 200/0.3 130/0.5 184/0.8 260/2 233/0.4 310-330/3
20.5 40 50 59
rf4(g/cm3)/°C
n$
0.836/20
1.4090
0.843/20 0.878/20 0.895/20 0.843/20 0.870/20 0.890/20 0.842/20 0.867/20 0.879/20 0.819/60 0.834/60 0.850/60
1.4226 1.4357 1.4393 1.4318 1.4416 1.4471 1.4379 1.445 1.451 1.4370/60 1.4416/60 1.4457/60
Refs. 33 33 24,32,33 32,33 32,33 33 33 33 33 33 33 33 33 33
6.1.2.3. Cyclic Oligomers Oligomers
n
m.p. ( 0 C)
MoI. wt.
1 4
b.p. (°C/mbar)
58.1 47 232.3 70 n = 3-8: GC, MS; Refs. 140,141,143 86.1 344.5 157 n = 3-9: GLC, MS; Refs. 140,143 114.2 456.7 138 465.1 122
1 4 1 4 3 2
Refs. 140 38,92,140,141,143
79-80/1013
139-141/1013
144.2 183-185 n = 2-9: GC, MS; Refs. 139
60/13
142,143 38,92,140,143 142 144 34,92 147,148
6.1.2.4. Oligomers of Catechol Poly(methylene ethers)
x 1 2 3 5
n
MoI. wt.
1 2 1 2 1 2 1 2
122.1 244.2 136.1 272.3 150.2 300.3 178.2 356.4
m.p. ( 0 C) -18 261.6-262.6 208-209 14-15 150-152 Oil 185.5-187.5
b.p. (°C/mbar)
df
nj?
172-173/1013
1.0640
1.5423
212-214/1009
1.180
120/27
1.1343
1.5396
95/3
1.0847
1.5346
Refs. 198,199,208-211 198 208,210 41 199-203,210 41,202 199-201 201
6.1.2.4. cont'd x 6 7 10
n
MoL w t
1 2 3 1 2 2 2
192.2 384.5 576.7 206.3 412.5 248.4 496.7
m.p. (0C)
b.p. (°C/mbar)
38 140-141 112 17-18 158-159 Oil 137-138.5
df
nf
Refs.
104/1.3 200-201/0.11 156/13
1.0638
179/13
1.0342
200,204 41,204 204 200 205 200 41
6.1.3. OLIGO(FORMALDEHYDE) DERIVATIVES 6.1.3.1. Oligo(oxymethylene) Dihydrates H[OCH2JnOH n
MoI. wt.
m.p. (0C)
Refs.
4 8
138.1 258.1
95-105(1 115-120d
1,2 1,2
6.1.3.2. Oligo(oxymethylene) Diacetates CH 3 CO-[OCH 2 ] n -OCOCH 3 n
MoI. wt.
m.p. (°C)
b.p. (°C/mbar)
d (g/cm3)/°C
1 2 3 4 5 8 9 10 11 12 14 15 16 17 19 20 22
132.1 162.1 192.2 222.2 252.2 342.3 372.3 402.4 432.4 462.4 522.5 552.5 582.5 612.6 672.6 702.6 762.7
-23 -13 -3 7 17 32-34 40-43 63.1-66.2 71.2-73.7 79.9-82.5 84-86 90.5-92 93-95 98.5-99.5 107-109 111-112 116-118
39-40/0.13 60-62/0.13 84/0.13 102-104/0.13 124-126/0.13
1.128/24 1.158/24 1.179/24 1.195/24 1.204/24 1.216/36 1.353/15
n D /°C 1.4025/24 1.4124/24 1.4185/24 1.233/24 1.4258/24 1.4297/36
1.364/15 1.370/15 1.390/15 1.465
Refs. 2-4 3,4 3 2,3 3 2,3 3 3,218 3,218 2,3,218 3 3 2,3 3 3 2,23 3
6.1.3.3. Oligo(oxymethylene) Dimethyl Ethers CH 3 -[OCH 2 J n -OCH 3 n
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
d (g/cm3)/°C
1 2 3 4 5 6 8 10 11 12 13 14 15
76.1 106.1 136.2 166.2 196.2 226.3 286.4 346.4 376.4 406.5 436.5 466.5 496.5
104.8 -69.7 -42.5 -9.8 18.3 31-34 49-51 63.1-66.2 71.2-73.7 79.9-82.5 89-91 101-104 109-111
45.5/1013 105.0/1013 155.9/1013 201.8/1013 242.3/1013
0.8538/20 0.9597/25 1.0242/25 1.0671/25 1.1003/25
Refs. 5,8,12,15 5,13-15,197 5,197 5,197 5,197 3 3 3,218 3,218 3,218 3 3 3
6.13.4. Oligo(oxymethylene) Dipropyl Ethers C 3 H 7 - [ O C H 2 I n - O C 3 H 7 C3H7
n
MoL wt.
n-
1 2 3 4 5 1 2 3 4 5 6
132.2 162.2 192.2 222.3 252.3 132.2 162.2 192.2 222.3 252.3 282.3
i-
m.p. (0C)
b.p. (°C/mbar)
d/°C (g/cm3)
nD/°C
137.5/1013 67/15 97/15
0.83325/25 0.89725/25 0.94325/25 0.99025/25 1.01424/25 0.8242/20 0.8897/20 0.9348/20 0.9751/20 1.0275/20 1.101/26
1.3913/25 1.4004/25 1.4086/23 1.4137/26 1.4181/26 1.3864/20 1.3971/20 1.4035/20 1.4117/20 1.4235/20 1.4467/26
- 1 5 to - 1 3 8-8.56 117-119/1013 39.5-41/31 68.2-68.5/4 93.5-94.5/4 120-123/4 159-163/5
23.4-24.3
Refs. 6-9 6,9 6,9 6 6 8,10 10 10 10 10 10
6.1.3.5. Oligo(oxymethylene) Diallyl Ethers CH 2 =CHCH 2 -[OCH 2 I n -OCH 2 CH-CH 2 n
MoL wt.
1 2 3 4 5 6
128.2 158.2 188.2 218.2 248.3 278.3
m.p. (0C)
b.p. (°C/mbar)
25/(g/cm3)
nD/°C
-4.3 15.5 22.5
138-139/1013 75-76.5/20 58.5-64/0.4 82-87/0.4 105-107/0.4 144-155/0.5
0.946 0.992 1.027 1.059 1.079
1.4226/21 1.4280/25 1.4320/25 1.4350/25 1.4377/25 1.4411/25
Refs. 6,11 6 6 6 6 6
6.1.3.6. Cyclic Oligo(oxymethylenes) r-[OCH2InI n
MoL wt.
m.p. (0C)
b.p. (°C/mbar)
3 4 5 6 15
90.1 120.1 150.2 180.2 450.4
67-68 114 61 72.5 68-70
114.5/1013
6.1.4.
d (g/cm3)
Refs.
1.39 1.435 1.480 1.440
16-18,31,46-48,121,122 17-19,31,46-48,122,123 31,45-47 47 31
OLIGOMERS OF HIGHER ALDEHYDES
Aldehyde
Oligomers
n
MoL wt.
m.p. (0C)
b.p. (°C/mbar)
Refs.
3 4 3
132.3 176.2 318.4
12.6 246.2 175-176
125/1013 112-115 (Subl.) 75/1013
20 20,21 35
3
444.5
284-285
36
6.1.5. HIGHER CYCLIC OLIGO(ACETALS) 6.1.5.1. Oligomers of 1,3-Dioxacycloalkanes [-QCH 2 -Q(CH 2 )J„] x 2
n
MoL wt.
m.p. (0C)
b.p. (°C/mbar)
d4 (g/cm3)/°C
1 2 5
74.1 148.2 370.4
-95.3 67 28
75/1013
1.0595/20
n = 2-5: NMR, Ref. 152 n = 2-9: GC, MS, Refs. 153-155
nD/°C 1.4002/20
Refs. 151 152-155 152
6.1.5.1. cont'd x 4 5 6 8 9 10 14
n
MoL wt.
1 2 1 2 2 1 2 2 2 2
102.1 204.3 116.2 232.3 260.4 158.2 316.5 344.5 372.6 484.8
m.p. (0C)
b.p. (°C/mbar)
d4 (g/cm3)/°C
117/1009
1.003/20
1.4308/20
0.985/25
1.4564/25
nD/°C
Refs. 22,147,156-158 157 22,169-171 22,152,169 22 159,160,162 159,160 22 22 22
90-92 40-44/15 56-58 71-72 -63 82 68-69 93-94 103.5-104
196/1013
6.1.5.2. Oligomers of Poly(oxacycloalkanes) x
n
MoI. wt.
2
1 2 3 4 5 6
118.1 236.3 354.4 472.5 590.7 708.8
3
1 2 3 4 5 6 7 8
162.2 324.4 486.5 648.7 810.9 973.1 1135.3 1297.5
4
1 2 3 4 5 6
206.2 412.5 618.7 824.9
5
1 2 3 4 5 6 1
250.3 500.6 750.9 1001.1
6
294.3
m.p. (0C)
b.p. (°C/mbar)
157/1013 59.9-60.3 Oil 34.7-35.2 Oil 39.7-40.1 n= 1-9: G P C , Ref. 168 27 56/0.5 88.0-88.6 85 (subl.) 27 56.5 19 38.3-39.5 23 28.5 n = 1-8: GPC, 1H-NMR, 13C-NMR, Refs. 163,164,168 23.5 90/0.3 44.0-44.6 16 54 27 30 n = 1-4: GPC, Ref. 168 -6.5 142-144/0.3 79.1-79.5 34 63 32 48 142-144/0.3 « = 1-7: GPC, Ref. 168
wD/°C
Refs.
1.4421
151,158,168,170 152,168,171 152,168 152,168 168 168
1.4541/30
22,159,161,164,166-168 159,161,164,165,168,214 159,164,165,168,214 159,164,165,168,214 159,164,165,168,214 159,164,168,214 159,164,214 164
1.4616/25
161,162,166-168 167,168,214 167,168,214 168,214 214 214
1.4642/20
166-168 168,214 168,214 168,214 214 214 166
6.1.5.3. Oligomers of Substituted 1,3-Dioxacycloalkanes R CH3 H
H
X n CH 2 -CH 2 CH=CH
MoI. wt. 1 2 1 2
130.2 260.4 100.1 200.2
1 2
154.2 308.4
m.p. (0C)
b.p. (°C/mbar)
d4 (g/cm3)/°C
nDl°C
73-74/139 145.7/146.8 -55.2 117 n = 2-6: 1 234
128/979 HP-GPC 30/0.03
1.067/20
1.4570/20
1.4932/24
Refs. 181 181 173,174 174,184,185 Ref. 174 160,186 186
6.1.5.4. Oligomers of 7,9-Dioxabicyclo[4,3,0]nonane
Monomer
Configuration
n
MoL wt.
cis
1 2 1 2
128.2 256.3 128.2 256.3
trans
m.p. (0C)
b.p. (0C)
Refs.
52.0/12
191 191,192 191 191,192
142-143 57.0/27 107-109
6.1.5.5. Oligomers of Substituted Poly(oxacycloalkanes) x
n
MoI. wt.
2
1 2 1 2 1 2 1 2
132.2 264.3 176.2 352.4 220.3 440.5 264.3 528.6
3 4 5
m.p. (0C)
b.p. (°C/mbar) 32/1.3
36-37 60/0.3 61-62 82/0.2 33-34 120/0.13 52-53.5
Refs. 172 172 172 172 172 172 172 172
REFERENCES 1. H. Staudinger, W. Kern, in "Die hochmolekularen organischen Verbindungen", Springer, Berlin, 1960, p. 224, p. 248, p. 275. 2. W. Kern, H. Cherdron, V. Jaacks, H. Baader, H. Deibig, A. Giefer, L. Hohr, A. Wildenau, Angew. Chem., 73, 177 (1961). 3. H. Staudinger, H. Johner, R. Signer, G. Mie, J. Hengstenberg, Z. Physik. Chem., 126, 425 (1927). 4. M. Descude, Ann. Chim. (Paris), 29, p. 486, p. 502 (1903). 5. R. H. Boyd, J. Polym. ScL, 50, 133 (1961). 6. R. F. Webb, A. J. Duke, L. S. A. Smith, J. Chem. Soc, 4307, (1962). 7. M. Ghysels, Bull. Soc. Chim. Beiges, 33, 57 (1924). 8. A. I. Vogel, J. Chem. Soc, 616 (1948). 9. A. Rieche, H. Gross, Chem. Ber., 93, 259 (1960). 10. E. Klein, J. K. Smith, R. J. Eckert, Jr., J. Appl. Polym. Sci., 7, 383 (1963). 11. J. A. Trillat, R. Cambier, Bull. Soc. Chim. France, 11, 752 (1894). 12. E. Fischer, G. Giebe, Chem. Ber., 30, 3053 (1897). 13. M. Descude, Compt. Rend., 138, 1705 (1904). 14. J. Loebering, R. Fleischmann, Chem. Ber., 70, 1680 (1937). 15. T. Uchida, Y. Kurita, M. Kubo, J. Polym. Sci., 19, 365 (1956). 16. V. Jaacks, W. Kern, Makromol. Chem., 52, 37 (1962). 17. J. F. Walker, "Formaldehyde", 3rd ed., Reinhold, New York, 1964. 18. H. Staudinger, M. Luethy, HeIv. Chim. Acta, 8, 65 (1925). 19. K. Hayashi, H. Ochi, M. Nishii, Y. Miyake, S. Okamura, J. Polym. Sci. B, 1, 427 (1963). 20. A. W. Johnson et al., in: E. H. Rodd (Ed.), "Chemistry of Carbon Compounds", Vol. I, Part A, Elsevier, New York, 1951, p. 476.
21. T. S. Patterson, G. M. Holmes, J. Chem. Soc, 904 (1935). 22. J. W. Hill, W. H. Carothers, J. Am. Chem. Soc, 57, 925 (1935). 23. K. J. Rauterkus, H. G. Schimmel, W. Kern, Makromol. Chem., 50, 166 (1961); K. J. Rauterkus, W. Kern, Chimia, 16, 114(1962). 24. P. Rempp, Bull. Soc Chim. France, 844 (1957). 25. Y. Kuroda, M. Kubo, J. Polym. Sci., 26, 323 (1957); 36,453 (1959); T. Uchida, Y. Kurita, N. Koizumi, M. Kubo, J. Polym. Sci., 21, 313 (1956). 26. A. F. Gallaugher, H. Hibbert, J. Am. Chem. Soc, 58, 813 (1936). 27. S. Z. Perry, H. Hibbert, Can. J. Res. B, 14, 77 (1936). 28. R. Fordyce, E. L. Lovell, H. Hibbert, J. Am. Chem. Soc, 61, 1905, 1912, 1916 (1939). 29. A. W. Johnson, A. G. Long, C. E. Dalgliesh, in: E. H. Rodd (Ed.), "Chemistry of Carbon Compounds", Vol. I, Part A, Elsevier, New York, 1951, p. 670. 30. G. R. Ramage, E. H. Rodd, J. K. Landquist, in: E. H. Rodd (Ed.), "Chemistry of Carbon Compounds", Vol. IV, Part C, Elsevier, New York, 1951 p. 1529. 31. K. H. Burg, H. D. Hermann, H. Rehling, Makromol. Chem., I l l , 181 (1968). 32. T. P. Hobin, Polymer, 9, 65 (1968). 33. T. P Hobin, Polymer, 6, 403 (1965). 34. Y. Arimatsu, J. Polym. Sci. A-I, 4, 728 (1966). 35. G. B. Stampa, Macromolecules, 2, 203 (1969). 36. S. Tagami, T. Kagiyama, C. Aso, Polym. J., 2, 101 (1971). 37. B. Boemer, H. Heitz, W. Kern, J. Chromatogr., 53, 51 (1970). 38. J. B. Rose, J. Chem. Soc, 542, (1956).
39. J. Dale, R O. Kristiansen, Chem. Commun., 670, (1971); Acta Chem. Scand., 26, 1471 (1972). 40. D. G. Stewart, D. Y. Waddan, E. T. Borrows, B. R, 785, 229 (1957); Chem. Abstr., 5038th (1958). 41. C. J. Pedersen, J. Am. Chem. Soc, 89, 7017 (1967). 42. L. A. Bryan, W. M. Smedley, R. K. Summerbell, J. Am. Chem. Soc, 72,2206 (1950); W. M. Pasika, J. Polym. Sci. A, 3, 4287 (1965). 43. R. K. Summerbell, M. J. Kland-Englich, J. Am. Chem. Soc, 77, 5095 (1955). 44. S. Kondo, L. R Blanchard, J. Polym. Sci. B, 7, 621 (1969). 45. M. Nishii, K. Hayashi, S. Okamura, J. Polym. Sci. B, 7, 891 (1969). 46. Y. Chatani, K. Kitahama, H. Tadokoro, T. Yamauchi, Y Miyake, J. Macromol. Sci. B: Phys. 4, 61 (1970). 47. Y. Chatani, T. Ohno, T. Yamauchi, Y Miyake, J. Polym. Sci. A-2, Polym. Phys. Ed., 11, 369 (1973). 48. Y Chatani, T. Uchida, H. Tadokoro, K. Hayashi, M. Nishii, S. Okamura, J. Macromol. Sci. B: Phys. 2, 567 (1968). 49. J. L. Down, J. Lewis, B. Moore, G. Wilkinson, J. Chem. Soc, 3767, (1959). 50. A. Marshall, R. H. Mobbs, C. Booth, Eur. Polym. J., 16, 881 (1980). 51. H. H. Teo, R. H. Mobbs, C. Booth, Eur. Polym. J., 18, 541 (1982). 52. A. Marshall, R. C. Domszy, H. H. Teo, R. H. Mobbs, C. Booth, Eur. Polym. J., 17, 885 (1981). 53. H. H. Teo, A. Marshall, C. Booth, Makromol. Chem., 183, 2265 (1982). 54. S. G. Yeates, H. H. Teo, R. H. Mobbs, C. Booth, Makromol. Chem., 185, 1559 (1984). 55. H. Matsuura, T. Miyazawa, Spectrochim. Acta, 23A, 2433 (1967). 56. R H. Elworthy, C. B. Macfarlane, J. Chem. Soc, 537 (1962). 57. V. P. Privalko, A. R Lobodina, Eur. Polym. J., 10, 1033 (1974). 58. R. C. Domszy, C. Booth, Makromol. Chem., 183, 1051 (1982). 59. K. Viras, H. H. Teo, A. Marshall, R. C. Domszy, T. A. King, C. Booth, J. Polym. Sci., Polym. Phys. Ed., 21, 919 (1983). 60. H. H. Teo, T. G. E. Swales, R. C. Domszy, F. Heatley, C. Booth, Makromol. Chem., 184, 861 (1983). 61. S. G. Yeates, C. Booth, Makromol. Chem., 186, 2663 (1985). 62. S. G. Yeates, H. H. Teo. C. Booth, Makromol. Chem., 185, 2475 (1984). 63. T. G. E. Swales, H. H. Teo, R. C. Domszy, K. Viras, T. A. King, C. Booth, J. Polym. Sci., Polym. Phys. Ed., 21, 1501 (1983). 64. T. G. E. Swales, R. C. Domszy, R. L. Beddoes, C. Price, C. Booth, J. Polym. Sci., Polym. Phys. Ed., 23, 1585 (1985). 65. T. G. E. Swales, S. G. Yeates, C. Booth, Br. Polym. J., 17, 32 (1985). 66. S. G. Yeates, C. Booth, Eur. Polym. J., 21, 217 (1985).
67. T. G. E. Swales, R. L. Beddoes, C. Price, C. Booth, Eur. Polym. J., 21, 629 (1985). 68. M. Newcomb, S. S. Moore, D. J. Cram, J. Am. Chem. Soc, 99, 6405 (1977). 69. J. S. Bradshaw, R. A. Reeder, M. D. Thompson, E. D. Flanders, R. L. Carruth, R. M. Izatt, J. J. Christensen, J. Org. Chem., 41, 134 (1976). 70. R Sally, J. Morgos, L. Farkas, I. Rusznak, B. Bartha, Acta Chim. Acad. Sci. Hung., 102, 85 (1979). 71. A. Warshawsky, N. Shoef, J. Polym. Sci., Polym. Chem. Ed., 22, 657 (1984). 72. F. EisenbeiB, S. Ehlerding, Kontakte (Merck), 1, 22 (1978). 73. Sj. Van der WaI, L. R. Snyder, J. Chromatogr., 255, 463 (1983). 74. S.-T. Lai, L. Sangermano, D. C. Locke, J. High Resolut. Chromatogr., 7, 494 (1984). 75. T. Gartiser, C. Selve, L. Mansuy, A. Robert, J.-J. Delpuech, J. Chem. Res. (S), 292 (1984); (M), 2672 (1984). 76. B. Dietrich, J. M. Lehn, J. R Sauvage, J. Blanzat, Tetrahedron, 29, 1629 (1973). 77. W. Kern, S. Iwabuchi, H. Sato, V Bohmer, Makromol. Chem., 180, 2539 (1979). 78. J. Dale, G. Borgen, K. Daasvatn, Acta Chem. Scand. B, 28, 378 (1974). 79. J. Dale, K. Daasvatn, J. Chem. Soc, Chem. Commun., 295, (1976); Acta Chem. Scand. B, 34, 327 (1980). 80. F. A. L. Anet, J. Krane, J. Dale, K. Daasvatn, R O. Kristiansen, Acta Chem. Scand., 27, 3395 (1973). 81. E L . Cook, T. C. Caruso, M. P. Byrne, C. W. Bowers, D. H. Speck, C. L. Liotta, Tetrahedron Lett., 4029 (1974). 82. G. W. Gokel, D. J. Cram, C. I. Liotta, H. P. Harris, F. L. Cook, J. Org. Chem., 39, 2445 (1974); Org. Synth., 57, 30 (1977). 83. G. Johns, C. J. Ransom, C. B. Reese, Synthesis, 515, (1976). 84. R. N. Greene, Tetrahedron Lett., 1793, (1972). 85. D. J. Worsfold, A. M. Eastham, J. Am. Chem. Soc, 79, 897, 900 (1957); G. A. Latremouille, G. T. Merrall, A. M. Eastham, J. Am. Chem. Soc, 82, 120 (1960). 86. S. Kobayashi, K. Morikawa, T. Saegusa, Macromolecules, 8, 952 (1975); S. Kobayashi, T. Kobayashi, T. Saegusa, Polym. J., 15, 883 (1983). 87. S. Kobayashi, K. Morikawa, T. Saegusa, Polym. J., 11, 405 (1979). 88. J. Szymanowski, H. Szewczyk, J. Hetper, J. Beger, J. Chromatogr., 351, 183 (1986). 89. R. J. Katnik, J. Schaefer, J. Org. Chem., 33, 384 (1968). 90. R. J. Kern, J. Org. Chem., 33, 388 (1968). 91. J. H. Hammond, J. F. Hooper, W. G. P. Robertson, J. Polym. Sci. A-I, 9, 265, 281 (1971). 92. E. J. Goethals, Adv. Polym. Sci., 23, 103 (1977); Pure Appl. Chem., 48, 335 (1976). 93. R. O. Colclough, K. Wilkinson, J. Polym. Sci. C, 4, 311 (1966). 94. Y Kawakami, A. Ogawa, Y Yamashita, J. Org. Chem., 44, 441 (1979).
95. Y. Kawakami, A. Ogawa, Y. Yamashita, J. Polym. Sci., Polym. Chem. Ed., 17, 3785 (1979). 96. Y. Yamashita, K. Iwao, K. Ito, Polym. Bull., 1, 73 (1978). 97. A. Sato, T. Hirano, M. Suga, T. Tsuruta, Polym. J., 9, 209 (1977). 98. M. G. Zelenskaya, F. L. Kolodkin, F. R Sidelkovskaya, V. A. Ponomarenko, Izv. Akad. Nauk SSSR, Ser. Khim., 1105, (1968); Bull. Acad. Sci. USSR, 1050, (1968). 99. J. D. McClure, U S Patent, 3,140, 296 (1963); Chem. Abstr., 61, 8318b (1964). 100. K. Ito, N. Usami, Y Yamashita, Polym. J., 11, 171 (1979). 101. T. Miyasaka, S. Tanaka, Polym. J., 16, 365 (1984). 102. I. Geczy, Acta Chim. Acad. Sci. Hung., 118, 131 (1985). 103. Y. I. Estrin, S. G. Entelis, Vysokomol. Soedin. A, 13, 1654 (1971); Polym. Sci. USSR, 13, 1862 (1971). 104. S. G. Entelis, G. V. Korovina, Makromol. Chem., 175, 1253 (1974). 105. K. Weissermel, E. Nolken, Makromol. Chem., 68, 140 (1963). 106. Y. Yamashita, K. Iwao, K. Ito, J. Polym. Sci., Polym. Lett. Ed., 17, 1 (1979). 107. R. O. Colclough, G. Gee, W. C. E. Higginson, J. B. Jackson, M. Litt, J. Polym. Sci., 34, 171 (1959). 108. K. Alexander, L. E. Schniepp, J. Am. Chem. Soc, 70, 1839 (1948). 109. S. A. Miller, B. Bann, R. D. Thrower, J. Chem. Soc, 3623 (1950). 110. H. J. Dauben, Jr., B. Loken, H. J. Ringold, J. Am. Chem. Soc, 76, 1359 (1954). 111. W. J. Croxall, F. J. Glavis, H. T. Neher, J. Am. Chem. Soc, 70, 2805 (1948). 112. A. N. Nesmeyanov, I. F. Lutsenko, Bull. Acad. Sci. USSR, Ser. Khim., 296 (1943); Chem. Abstr. 38, 5498 (1944). 113. E. Augdahl, Acta Chem. Scand., 9, 1237 (1955). 114. M. J. Astle, B. E. Jacobson, J. Org. Chem., 24, 1766 (1959). 115. F. Kametani, Y Sumi, Chem. Pharm. Bull., 20, 1479 (1972). 116. C. E. Wilson, H. J. Lucas, J. Am. Chem. Soc, 58, 2396 (1936). 117. Y Sumi, F. Kametani, Chem. Pharm. Bull., 21,1103 (1973). 118. R. K. Summerbell, G. J. Lestina, J. Am. Chem. Soc, 79, 6219 (1957). 119. N. Koizumi, T. Hanai, J. Phys. Chem., 60, 1496 (1956). 120. A. L. Kravchenko, N. A. Lipatnikov, V. T. Burmistrov, T. M. Gritsenko, I. A. Popov, Zh. Prikl. Khim., 45, 2581 (1972); J. Appl. Chem. USSR, 45, 2708 (1972). 121. V. Busetti, M. Mammi, G. Carazzolo, Z. Kristallogr., 119, 310 (1963); G. Carazzolo, S. Leghissa, M. Mammi, Makromol. Chem., 60, 171 (1963). 122. M. Mansson, E. Morawetz, Y Nakase, S. Sunner, Acta Chem. Scand., 23, 56 (1969). 123. J. A. Ladd, J. MoI. Struct., 36, 329 (1977). 124. M. Gordon, J. G. Miller, A. R. Day, J. Am. Chem. Soc, 71, 1245 (1949). 125. A. I. Vogel, J. Chem. Soc, 1814 (1948). 126. C. W. Tasker, C. B. Purves, J. Am. Chem. Soc, 71, 1017 (1949).
127. J. N. Street, H. Adkins, J. Am. Chem. Soc, 50, 162 (1928). 128. M. H. Palomaa, Chem. Ber., 35, 3299 (1903); 42, 3873 (1910). 129. J. G. Davidson, Ind. Eng. Chem., 18, 669 (1926). 130. M. H. Palomaa, I. Honkanen, Chem. Ber., 70, 2199 (1937). 131. W. Lippert, Ann. Chem., 276, 148, 171 (1893). 132. L. Liston, W. M. Dehn, J. Am. Chem. Soc, 60,1264 (1938). 133. J. V. Capinjola, J. Am. Chem. Soc, 67, 1615 (1945). 134. K. Machida, T. Miyazawa, Spectrochim. Acta, 20, 1865 (1964). 135. A. Kotera, K. Suzuki, K. Matsumura, T. Nakano, T. Oyama, U. Kambayashi, Bull. Chem. Soc Japan, 35, 797 (1962). 136. L. L. Chan, K. H. Wong, J. Smid, J. Am. Chem. Soc, 92, 1955 (1970); U. Takaki, J. Smid, ibid., 96, 2588 (1974). 137. R. Bill, M. Droscher, G. Wegner, Makromol. Chem., 179, 2993 (1978); 182, 1033 (1981). 138. D. Starr, R. M. Hixon, J. Am. Chem. Soc, 56, 1595 (1934). 139. G. Pruckmayr, T. K. Wu, Macromolecules, 11, 265 (1978); J. M. McKenna, T. K. Wu, G. Pruckmayr, Macromolecules, 10, 877 (1977). 140. M. Bucquoye, E. J. Goethals, Makromol. Chem., 179, 1681 (1978). 141. P. Dreyfuss, M. P. Dreyfuss, Polym. J., 8, 81 (1976). 142. L. E Schmoyer, L. F. Case, Nature, 187, 592 (1960). 143. M. R. Bucquoye, E. J. Goethals, Makromol. Chem., 182, 3379 (1981). 144. M. R. Bucquoye, E. J. Goethals, Polym. Bull., 2, 707 (1980). 145. I. M. Robinson, G. Pruckmayr, Macromolecules, 12, 1043 (1979). 146. G. D. Andrews, A. Vatvars, G. Pruckmayr, Macromolecules, 15, 1580 (1982). 147. W. Reppe, Ann. Chem., 596, 1, 132 (1955). 148. V. Weinmayr, J. Am. Chem. Soc, 81, 3590 (1959). 149. A. Weissler, J. W. Fitzgerald, I. Resnick, J. Appl. Phys., 18, 434 (1947). 150. J. Dale, K. Daasvatn, T. Gr0nneberg, Makromol. Chem., 178, 873 (1977). 151. M. Astle, J. A. Zaslowsky, P. G. Lafyatis, Ind. Eng. Chem., 46, 787 (1954); W. Baker, F. B. Field, J. Chem. Soc, 87 (1932). 152. Y Kawakami, Y. Yamashita, Macromolecules, 10, 837 (1977). 153. J. A. Semlyen, Adv. Polym. Sci., 21, 41 (1976). 154. J. A. Semlyen, Pure Appl. Chem., 53, 1797 (1981). 155. J. M. Andrews, J. A. Semlyen, Polymer, 13, 142 (1972). 156. P. A. Laurent, P. Tarte, B. Rodrigues, Bull. Soc Chim. France, 946 (1959). 157. R H. Plesch, P. H. Westermann, Polymer, 10, 105 (1969). 158. J. Riibner, R. Gnauck, H. Frommelt, Acta Polym., 32, 238 (1981). 159. R. C. Schulz, K. Albrecht, Q. V. Tran Thi, J. Nienburg, D. Engel, Polym. J., 12, 639 (1980). 160. R. C. Schulz, K. Albrecht, W. Hellermann, A. Kane, Q. V. Tran Thi, Pure Appl Chem., 53, 1763 (1981).
161. K. Albrecht, D. Fleischer, C. Rentsch, H. Yamaguchi, R. C. Schulz, Makromol. Chem., 178, 3191 (1977). 162. K. Albrecht, D. Fleischer, A. Kane, C. Rentsch, Q. V. Tran Thi, H. Yamaguchi, R. C. Schulz, Makromol. Chem., 178, 881 (1977). 163. C. Rentsch, R. C. Schulz, Makromol. Chem., 179, 1403 (1978). 164. C. Rentsch, R. C. Schulz, Makromol. Chem., 178, 2535 (1977). 165. Y. Yamashita, Y. Kawakami, K. Kitano, J. Polym. ScL, Polym. Lett. Ed., 15, 213 (1977). 166. Y. Kawakami, T. Sugiura, Y. Yamashita, Bull. Chem. Soc. Japan, 51, 3053 (1978). 167. Y. Kawakami, J. Suzuki, Y Yamashita, Polym. J., 9, 519 (1977). 168. Y. Yamashita, J. Mayumi, Y. Kawakami, K. Ito, Macromolecules, 13, 1075 (1980). 169. J. Dale, T. Ekeland, Acta Chem. Scand., 27, 1519 (1973). 170. F. A. L. Anet, R J. Degen, J. Am. Chem. Soc, 94, 1390 (1972). 171. J. Dale, T. Ekeland, J. Krane, J. Am. Chem. Soc, 94, 1389 (1972). 172. V. Gold, C. M. Sghibartz, J. Chem. Soc, Chem. Commun., 507, (1978). 173. K. C. Brannock, G. R. Lappin, J. Org. Chem., 21, 1366 (1956). 174. W. Hellermann, R. C. Schulz, Makromol. Chem., Rapid Commun., 2, 585 (1981). 175. R. Riemschneider, W. M. Schneider, Monatsh. Chem., 90, 510 (1959). 176. L. H. Cretcher, W. H. Pittenger, J. Am. Chem. Soc, 46, 1503 (1924). 177. R. C. Tallman, J. Am. Chem. Soc, 56, 126 (1934). 178. M. Matter, A. Kobler, U S Patent 2,798,873 (1957), British Patent 762,761 (1956); Chem. Abstr., 51,18012a (1957); U S Patent 2,858,315 (1958); Chem. Abstr., 53, 6262e (1959); M. Matter, A. Kobler, M. Kuhn, K. Michel, US Patent 2,857,418 (1958); Chem. Abstr. 53, 10131g (1959); US Patent 2,769,838 (1956); Chem. Abstr., 52, 1247c (1958). 179. L. H. Cretcher, W. H. Pittenger, J. Am. Chem. Soc, 47, 163 (1925). 180. M. Lecat, Ann. Chim., 2, 171 (1947). 181. M. Okada, K. Yagi, H. Sumitomo, Makromol. Chem., 163, 225 (1973). 182. C. G. Krespan, J. Org. Chem., 39, 2351 (1974). 183. A. C. Coxon, J. F. Stoddart, J. Chem. Soc, Perkin I, 767 (1977). 184. J. U. R. Nielsen, S. E. J0rgensen, N. Frederiksen, R. B. Jensen, O. Dahl, O. Buchardt, G. Schroll, Acta Chem. Scand. B, 29, 400 (1975). 185. O. Dahl, J. Dale, N. Frederiksen, H. Henriksen, R. B. Jensen, S. E. J0rgensen, S. Larsen, L. N0rskov, G. Schroll, Acta Chem. Scand. B, 33, 197 (1979). 186. Ch. Mletzko, R. C. Schulz, Makromol. Chem., Rapid Commun., 4, 445 (1983). 187. J. S. Bradshaw, R E. Stott, Tetrahedron, 36, 461 (1980). 188. C. J. Pedersen, H. K. Frensdorff, Angew. Chem., 84, 16 (1972).
189. C. J. Pedersen, J. Am. Chem. Soc, 92, 386 (1970); 89, 2495 (1967). 190. R. C. Helgeson, T. L. Tarnarski, J. M. Timko, D. J. Cram, J. Am. Chem. Soc, 99, 6411 (1977). 191. J. Kops, H. Spanggaard, Makromol. Chem., 176, 299 (1975). 192. S. Brimacombe, A. B. Foster, B. D. Jones, J. J. Willard, J. Chem. Soc. C, 2404, (1967). 193. B. R. Bowsher, A. J. Rest, J. Chem. Soc, Dalton Trans., 1157, (1981). 194. R. Riemschneider, P. Grab, Monatsh. Chem., 90, 783 (1959). 195. H. Bohme, W. Schurhoff, Chem. Ber., 84, 28 (1951). 196. T. L. Davis, V. F. Harrington, J. Am. Chem. Soc, 56, 126 (1934). 197. ICI Ltd., British Patent 603,872 (1948), US Patent 2449,469 (1948); Chem. Abstr. 43, 1051h (1949). 198. W. J. Gensler, C. M. Samour, J. Org. Chem., 18, 9 (1953). 199. G. Baddeley, N. H. P. Smith, J. Chem. Soc, 2516, (1961). 200. K. Ziegler, A. Luttringhaus, K. Wohlgemuth, Ann. Chem., 528, 162, 179 (1937). 201. G. Illuminati, L. Mandolini, G. Masci, J. Am. Chem. Soc, 96, 1422 (1974). 202. A. W. Archer, R A. Claret, Chem. Ind., 171 (1969). 203. R. B. Thompson, E. Symon, J. Am. Oil Chem. Soc, 33, 414 (1956). 204. A. Luttringhaus, I. Sichert-Modrow, Makromol. Chem., 18/ 19,511 (1956). 205. G. R. Brown, J. H. P. Tyman, Chem. Ind., 436 (1970). 206. K. F. Ridley, J. Ridley, British Patent 795,866 (1955); Chem. Abstr. 53, 1154(1959). 207. S. Schiiring, W. Ziegenbein, Tenside, 4, 161 (1967). 208. B. N. Ghosh, J. Chem. Soc, 107, 1588 (1915). 209. W. Baker, F. B. Field, J. Chem. Soc, 86 (1931). 210. R. C. Cass, S. E. Fletcher, C. T. Mortimer, R G. Quincey, H. D. Springall, J. Chem. Soc, 2595 (1958). 211. S. Kinugasa, H. Hayashi, S. Hattori, Polym. J., 22, 1059 (1990). 212. S. Kinugasa, A. Takatsu, H. Nakanishi, H. Nakahara, S. Hattori, Macromolecules, 25, 4848 (1992). 213. C. Campbell, K. Viras, C. Booth, J. Polym. Sci., Polym. Phys., 29,1613 (1991); J. R. Craven, K. Viras, A. J. Masters, C. Booth, J. Chem. Soc, Faraday Trans, 87, 3677 (1991). 214. M. Nekomanesk, Ch. V. Nicholas, S. Booth, Makromol. Chem., 191, 2567 (1990). 215. Y. Nakatsuji, N. Kameda, M. Okahara, Synthesis, 280 (1987). 216. R-L. Kuo, N. Kawamura, M. Miki, M. Okahara, Bull. Chem. Soc Japan., 53, 1689 (1980). 217. R. Chenevert, L. D'Astous, J. Heterocycl. Chem., 23, 1785 (1986). 218. K. Ute, T. Takahashi, K. Matsui, K. Hatada, Polymer, 25, 1275 (1993). 219. C. A. Vitali, B. Masci, Tetrahedron, 45, 2201 (1989). 220. J. R. Craven, H. Tyrer, S. P. L. Li, C. Booth, D. Jackson, J. Chromatogr., 387, 233 (1987).
224. K. Viras, T. A. King, C. Booth, J. Polym. Sci., Polym. Phys., 23, 741 (1985). 225. J. Craven, R. H. Mobbs, C. Booth, E. J. Goodwin, D. Jackson, Makromol. Chem., 190, 1207 (1989).
221. S. G. Yeates, J. R. Craven, R. H. Mobbs, C. Booth, J. Chem. Soc, Faraday Trans. I, 82, 1865 (1986). 222. A. D. Bedells, C. Booth, Makromol. Chem., 192, 2099 (1991). 223. A. D. Bedells, R. H. Mobbs, C. Booth, Makromol. Chem., 192, 2089 (1991). 6.2. OLIGO(CARBONATES) 6.2.1. CYCLIC OLIGO(DIOL CARBONATES) P[O(CH2)Z)-CO]nI JC
n
MoI. wt.
m.p. (0C)
Refs.
4 5 6 7 8 8 9 9 10 10 11 11 12 12
2 2 2 2 1 2 1 2 1 2 1 2 1 2
232.2 260.3 288.3 316.4 172.2 344.5 186.3 372.5 200.3 400.6 214.3 428.6 228.3 456.7
175-176 117-118 128-129 97-98 21.5-23 116-117 35-35 95-95.5 10-11 105-106 40-41 97-97.5 11-12 93-95
1,2,9 2,8,9 2,8,9 2,9 2,9 2,8,9 2,9 2,9 2,9 2,8,9 2,9 2,9 2,9 2,8,9
6.2.2. CYCLIC OLIGO(CARBONATES) OF DI- AND TRI-ETHYLENE GLYCOL p [Q(CH 2 CH 2 O) X - CO]n-^ JC
n
MoI. wt.
m.p. (0C)
Refs.
2 2 3 3
2 3 1 2
264.2 396.3 176.2 352.4
139-140 165-167 39-40 120-121
8 8 8 8
6.2.3. CYCLIC OLIGO(p,p '-BISPHENOL CARBONATES)
A
R1
R2
n
MoI. wt.
m.p. (0C)
Refs.
C(CH3)2
H H CH3 Cl H
H H H Cl H
3 4 4 4 4
762.9 1017.1 1129.4 1568.2 977.1
335-340 375 301-303 420 320-322
6,7,9,10 3,4,9,10 3,9 3,9 3,9
S
6.2.4. CYCLIC O L I G O ( O ^ - B I S P H E N O L CARBONATES) R
n
MoI. wt.
m.p. (0C)
Refs.
CH3
1 2 2
254.3 508.6 295.1
144-146 276-279 365-368
7 5-7 5
Cl
REFERENCES
1. W. H. Carothers, F. J. van Natta, J. Am. Chem. Soc, 52, 314 (1930). 2. J. W. Hill, W. H. Carothers, J. Am. Chem. Soc, 55, 5031 (1933). 3. H. Schnell, L. Bottenbruch, Makromol. Chem., 57, 1 (1962). 4. H. Sotobayashi, S. L. Lie, J. Springer, K. Ueberreiter, Makromol. Chem., I l l , 172 (1968). 5. R. J. Prochaska, Belgian Patent 648.741 (1964); Chem. Abstr., 63, P 16.262 d (1965).
6. R. J. Prochaska, French Patent 1.385.700 (1965); Chem. Abstr., 62, 13269 g (1965). 7. L. S. Moody, US Patent 3.155.683 (1964); Chem. Abstr., 62, 2739c (1965). 8. H. Krimm, H. J. Buysch, Bayer-AG., Ger. Offen. DE 3.103.135, 3.103.137, 3.103.140 (1981); Chem. Abstr., 97, 216894, 216892, 216893 (1982). 9. J. S. Bradshaw, G. E. Mass, R. M. Izatt, J. J. Christensen, Chem. Rev., 79, 37 (1979). 10. R. H. Wiley, Macromolecules, 4, 254 (1971).
6.3.
OLIGO(ESTERS)
6.3.1.1.2. ACETYL OLIGO(a-HYDROXY ACID) METHYL ESTERS
CH 3 CO-[OCHRCO] n OCH 3 6.3.1.
OLIGO(ESTERS) OF HYDROXY ACIDS R
n
CH 3
1 2 3 1 2 3 4 5
MoI. wt. b.p. (°C/mbar)
[{a}] ff
Cone.
Refs.
-47.3 -65.6 -81.8 -30.9 -43.8 -49.0 -53.6 -60.8
1.41« 1.98° 1.53a 1.78* 1.14* 1.21* 1.14* 0.86*
48,53 53 53 51 51 51 51 51
6.3.1.1. Oligo(esters) of Aliphatic Hydroxy Acids 6.3.1.1.1. OLIGO(Ot-HYDROXY ACID) METHYL ESTERS
H[OCHRCO]nOCH3 R
/i
MoL wt.
b.p. (°C/mbar)
CH 3
1 2 1 2 3 4 5
104.1 176.2 132.2 232.3 332.4 432.5 532.6
58-59/39 79-80/3 81-82/60 106.5-107/1 151-153/1 197-199.5/1 207-212
CH(CH 3 ) 2 CH(CH 3 ) 2
Refs.
CH(CH 3 ) 2 CH(CH 3 ) 2
53 51 51 51 51 51
"InCH2CI2. 6 InCHCl3.
146.1 218.2 290.3 174.2 274.3 374.4 474.5 574.6
67-68/17 87-88/0.7 144-146/1 89-89.5 101-101.5 153-154 186-188 230-232
6.3.1.1.3. CYCLIC OLIGO(ESTERS) OF OC-HYDROXY ACIDS
R
Config.
n
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
116.1 290.2 348.2 144.1
86-87 230 215 98.7
169/16
L
2 5 6 2
DL L DL L DL
2 2 2 2 2
144.1 200.2 200.2 228.3 228.3
128 152-153 134-135 169-170 138-140
H
CH3 CH(CH3)2 CH2CH(CH3)2
a
[{<*}] D
Refs. 1,2,100,101 102 102 3,4
-280a
150/33 256
2-7 103 103 103 103
-256* -226*
c = 0.58, C 6 H 6 , 18°C. c = l, CHCl 3 , 25 0 C.
fe
6.3.1.1.4. O L I G O ( ( R ) - P - H Y D R O X Y B U T Y R I C ACIDS) H [ O C H ( C H 3 ) C H 2 C O ] n O H n
2 3 4 5 6 7 8 12 16 24 32 64 128
MoI. wt.
190.2 276.3 362.4 448.5 534.5 620.6 706.7 1051.1 1395.5 2084.2 2772.9 5527.9 11037.8
m.p. (0C)
49 65 81 89 100-101 128-129 134.3 155-156.5 154.3 161.3
[{a}]?
(c = l , C H 2 C l 2 ) ; Jl (urn)
-19.7
(H2O); 389 NMR, MS
-52.9,365
Method
IR, NMR, MS NMR5MS NMR, MS
11.7; 365 - 7 . 7 ; 365
3.8; 365 7.1; 365
IR, NMR, MS IR, NMR, MS NMR IR, NMR, MS IR, NMR, MS NMR, MS
6.3.1.1.5. OLIGO(P-HYDROXYPIVALIC ACIDS) H[OCH 2 C(CH 3 ) 2 CO] n OH
Refs.
149,150 149 63,64,73,144,149 64,73,144,149 64,73 64,73 64,73,144,151 144 144 144 144 144 144
6.3.1.1.6. OLIGO(P-HYDROXYPIVALIC ACID) ISOBUTYL ESTERS
H[OCH 2 C-(CH 3 ) 2 CO] n OCH 2 CH(CH 3 ) 2 n
MoI. wt.
m.p. [0C]
1 2 3 4 5 6
118.1 218.2 318.4 418.5 518.6 618.7
123-124 71.5-72.5 67-68 111.5-112.5 119.5-120.5 138-139
Refs. 50 50 50 50 50 50
n
MoL wt.
2 3 4 5 6 7
274.4 374.5 474.6 574.7 674.8 774.9
m.p. (0C)
b.p. (°C/mbar) 115-117/0.7 175-177/1
75.5-76 97-98 120.5-121.5 134-135
Refs. 49 49 49 49 49 49
6.3.1.1.7. CYCLIC OLIGO(ESTERS) OF 6-HYDROXYTETRAHYDROPYRAN-2-CARBOXYLIC ACID
Config.
n
MoI. wt.
m.p. ( 0 C)
b.p. (°C/mbar)
RS
1 2 4 5 1 4 5
128.1 256.2 512.5 640.7 128.1 512.5 640.7
18-20 160 155 175
64-65/5
R
[a]f? (CHCl 3 )
+142 -189 -136
115 125
Refs. 79,82,105 76,79,80,82-84 76,79,80,82,83,85 76,79,80,82,83,86 81,83,87 76,78,82-84,87 76,81-83,86,87
6.3.1.1.8. CYCLIC OLIGO(ESTERS) OF OO-HYDROXY ACIDS p[O(CH2)A:CO]^-[
xa 2
5
6
7 8
9
10 11 12 13 14 15 16 17 22
na
MoI. wt.
1 3 4 5 6 7 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
72.1 216.2 288.3 350.3 432.4 504.5 114.1 228.3 342.4 128.2 256.3 384.5 142.2 284.4 156.2 312.5 468.7 170.3 340.5 510.8 184.3 368.6 198.3 396.6 212.3 424.7 226.4 452.7 240.4 480.7 254.4 508.8 268.4 536.9 282.5 564.9 348.6 697.2
m.p. (0C)
b.p. (°C/mbar)
Refs.
51/133 56-58 116-120 80-85 133-135 84-86 5 112-113
45
93 31-31.5 57-58 20 6.4 97 29 3 74 2 104 27.5 84 33-33.7 107 37-37.5 90-91 35.5-36.5 111 42-43 97 37 114 36 105
140-106/13 130/0.2 250/0.3 80-82/15 135/0.3 202/0.3 72-73/15 152/0.2 86-87/13 158/0.04 240/0.1 100/13 192/0.4 270/0.4 116/13 130/13 143/13 165/20 169/13 188/20 194/20 143/0.3 175/0.3
104 104 104 104 104 8-10,91 8,9,65,66,69,77,91-95 9,65,66,72,91-95 10 9,69 9 10,91 9,69,91 9-11 9,10,69,77 9 9-12,77 9,12-14,69,77 9 9-12,77,91 9,12,69,77,91 10,11,15,77,91 9,69,77,91 9-12,16,77,91 9,14,77,91 9,11,16,77 9,12,77 9-11,16,77,91 9,15,69,76,77,88,91 9,11,16,77 9,69,77 9,11,16 9 9 9 9 9
°x = 10, n = 2.7 (sharp fractions): GPC, NMR, MS, Ref. 154. 6.3.1.1.9. CYCLIC OLIGOESTERS OF (R)-P-HYDROXYBUTYRIC ACID
n 2 3 4 5 6
MoI. wt. 172.2 258.3 344.4 430.5 516.6
m.p. ( 0 C) 124.5-125 110-110.5 178-178.5 102.5-103.5 112-113.5
r
[OCH(CH3)CH2CO]^
[a] f? (c = 1, CHCl 3 ) -91.7 -33.9 15.4 6.7 11.1
Methods IR, NMR, MS, X-ray IR, NMR, MS, X-ray IR, NMR, MS, X-ray IR, NMR, MS, X-ray IR, NMR, MS, X-ray
Refs. 146 144,145,148,151 144,151 144,151,152 144,151,152
6.3.1.1.9. cont'd n
MoI. wt.
m.p. ( 0 C)
7 8 9 10 12 16 32
602.6 688.7 774.8 860.9 1033.1 1377.5 2754.9
118-119.2 84-85 92.5-93 89.5-90.5 98-99 122-123
[a]f? (c = l, CHCl 3 ) -1.0 3.1 0.8 +0.5 6.5 (CH 2 Cl 2 ) 1.3 (CH 2 Cl 2 )
Methods
Refs.
IR, NMR, MS, X-ray NMR, X-ray IR, NMR, MS IR, NMR, MS IR, NMR, MS IR, NMR, MS NMR, MS
144,151,152 144,151 144,151 144,151 144 144 144
6.3.1.1.10. CYCLIC OLIGESTERS OF (R)-3-HYDROXYPENTANOIC ACID r [OCH(C2H5)CH2CQ]^
n 3 4 5 6 7 8 9 10 11 12
MoI. wt.
m.p. ( 0 C)
[a]f>° (c = 1, CHCl 3 )
Refs.
300.4 400.5 500.6 600.7 700.8 801.0 901.1 1001.2 1101.3 1201.4
98.5-99.0 36.0-36.6 110.5-111 97.5-98.5 54.0-54.5
-19.4 34.0 19.8 19.6 13.2 15.3 14.5 13.9 13.8 13.2
147 147 147 147 147 147 147 147 147 147
6.3.1.2. Oligo(esters) of Aromatic Hydroxy Acids 6.3.1.2.1. LINEAR OLIGO(ESTERS) OF SALICYLIC ACIDS
R3
R4
H H
H H
R5
H
n
MoL wt.
H H
2 3 4 2 2
258.2 378.3 498.4 286.3 286.3
Re
n
MoI. wt.
m.p. ( 0 C)
Refs.
2 3 4 6 2 3 4 2 3 4 2 3 4 2 3 2 3
240.2 360.3 480.4 720.7 268.3 402.4 536.5 268.3 402.4 536.5 268.3 402.4 536.5 296.3 444.5 352.4 528.7
234 200 298-300 375 240 264-265 299-300 255 207-207.5 305 235-235.5 244.5-245 347 211-212 255 209 217
17,19,132,135 17,21,132,135 17,132,135,141 17 20-23,135 22,135,139 22,135,141 20,22,23,135 22,135,139 22 20,22,23,135 22,135 21,22 137 137,138 24,139,142 24,133,134,136,138,142
H H
Me H
H Me
m.p. ( 0 C)
R6
148-149 150-152 177-183 162 128-129
Refs. 17-19 130 130 20 20
6.3.1.2.2. CYCLIC OLIGO(ESTERS) OF SALICYLIC ACIDS
R3
R4
H H
R5 H H
Me
H
H
H
H
Me
H
H
H
H
Me
H
Me
H
H
Me
CHMe2
H
H
Me
6.3.1.2.2. cont'd R3
R4
R5
R6
n
MoI. wt.
Me
H
H
CHMe 2
2 3 4 2 2 3 4
352.4 528.7 704.8 380.5 352.4 528.7 784.8
CMe 3 H
H CHMe2
H H
Me Me
Ph
H
H H
Re
n
MoL wt.
2 3 4 2 3 4 2 3 2 3 2 3 2
m.p. ( 0 C)
Refs.
176-178 247 323 238 136 191 360
137,139 136-138,140 137 137 137 137 137
6.3.1.2.3. CYCLIC OLIGO(ESTERS) OF THIOSALICYLIC ACIDS
R3
R4
R5
H H
H H
Me
H
H
H
H
H
Me
H
H
H
H
Me
Me
H
H
Me
CHMe2
H
H
Me
m.p. ( 0 C)
272.3 408.5 544.7 300.0 450.0 600.1 300.0 450.0 300.0 450.0 328.1 492.1 384.1
182-183 257-258 288-290 245-250 300-302 320 155-157 250-255 155 >300 235 >300 203
Refs. 25,26,131,141,143 25,131 25 131,136 131,136 131 131 131 131,136 131,136 131 131 131
6.3.1.2.4. LINEAR OLIGO(ESTERS) OF P-((3-HYDROXY)-ETHOXYBENZOIC ACID
R=H
R=-CH2CH2OH
n
MoI. wt.
m.p. ( 0 C)
1 2 3 4 1 2 3 4
182.2 346.3 510.5 674.7 226.2 390.4 554.6 718.7
177 165 183 192 77 114 136 156
Refs. 27 27 27 27 28 28 28 28
6.3.1.2.5. LINEAR OLIGO(ESTERS) OF 2,5-HYDROXYMETHYLFURAN CARBOXYLIC ACID
n = 1-5: GPC, HPLC, 1 H-NMR; Ref. 67,68. 6.3.1.2.6. CYCLIC OLIGO(ESTERS) OF 2,5-HYDROXYMETHYLFURAN CARBOXYLIC ACID
n = 3 - 5 : GPC, MS, 1 H-NMR, 6.3.2.
13
C-NMR; Ref. 67,68.
OLIGO(ESTERS) OF DIOLS AND DICARBOXYLIC ACIDS
6.3.2.1. Aliphatic
Oligo(esters)
6.3.2.1.1. CYCLIC OLIGO(ALKYLENE SUCCINATES)
x 2 3 4
n
MoI. wt.
m.p. ( 0 C)
2 1 2 1 2
288.3 158.2 316.3 172.2 344.4
131 82 138 42 121
b.p. (°C/mbar)
90-92/3 95-96/3
Refs. 29,30,89,108,116,118 29,108,118,128 29,108,118,129 29,108,118,128 29,108,118
6.3.2.1.1. cont'd JC 5 6 7 8 10
n
MoI. wt.
m.p. (0C)
1 2 1 2 1 2 1 2 1 2
186.2 372.4 200.2 400.5 214.3 428.5 228.3 456.6 256.3 512.7
19 87 -15 110 49 86 71 109 60 109
b.p. (°C/mbar)
Refs.
88-89/1
29,108,118,128 29,108,118 29,108,118,128 29,108,118 29,108,118 29,108,118 29,108,118 29,108,118 29,108,118,128 15,29,108
108-110/3 116-118/1-3
130-132/1
6.3.2.1.2. CYCLIC OLIGO(ALKYLENE ADIPATES)
6.3.2.1.5. CYCLIC OLIGO(THIOESTERS) OF DICARBOXYLIC ACIDS
r - [ O C H 2 - X - C H 2 O - CO(CH2)4CO]n-i
r
X
n
MoL wt.
C(CH 3 ) 2 (CH 2 ) 2 (CH 2 ) 3 (CH 2 ) 8
2 428.5 2 400.4 2 428.5 n = 1-5 (sharp fractions):
[S(CH2)^S- CO(CH2)3;CO]^
m.p. (0C)
Refs.
x
y
n
MoI. wt.
127-128 57 82-84 GPC, NMR
47 106 115 156
2
1 3 4 5 5 3 4 4
2 2 2 1 2 2 1 2
324.5 380.5 408.4 218.2 436.4 408.4 218.2 436.4
3
m.p. (0C) 144 140-145 97-105 75-78 125-129 97-102 115-117 108-110
Refs. 109 110,111 111 111 110 111 111 111
6.3.2.1.3. CYCLIC OLIGO(ALKYLENE SEBACATES) r [O(CH 2 ) Jg O-CO(CH2) 8 CO]^
JC
n
2
1 2 1 2 1
3 8
MoI. wt.
228.3 456.6 242.3 484.6 312.5
m.p. (0C)
Refs.
42 81 14 113-113.5 68
15,29 15,29 29,31 15,29,31 69
6.3.2.1.4. CYCLIC OLIGO(ETHYLENE DICARBOXYLATES)
[O(CH 2 ) 2 O- C0(CH 2 )^C0]^
r
JC 1 2 3 4 5 6 7 8 9 10 11 12
n 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 2
MoI. wt. 260.2 288.3 316.3 344.4 372.4 400.5 214.3 428.5 228.3 456.6 242.3 484.6 256.3 512.7 270.4 540.7 568.8
m.p. (0C) 160 131 144 56 147 54 52 147 42 81 35 143 18 96 -8 145-146 102-103
Refs. 109 29,30,116,118 106,107 107 106,107 107 15,29 15,29,106-108 15,29 15,29,106-108 15 15 29 15,29 29 15,29 15,108
6.3.2.1.6. CYCLIC OLIGO(CYCLOHEXYLENE DICARBOXYLATES)
x
MoI. wt.
Config.
m.p. (0C)
Config.
m.p. (0C)
Refs.
1 3 5 7 8
368.4 424.5 480.6 536.7 564.8
trans
233-235 220-222 210-212 160-162 145-148
cis
189-191 144-146 143-145 134-136 93-95
112,113 112,113 112,113 112,113 112,113
6.3.2.1.7. CYCLIC OLIGO(ESTERS) OF OXALIC ACID
p [ O C H 2 - X - C H 2 O - COCO]2-] X CH 2 CH 2 OCH 2 (CH 2 OCH 2 ) 2
MoI. wt.
m.p. (0C)
260.2 320.2 408.3
185-187 162.5-164 68-72
Refs. 108,125 62,108,115 62,108
6.3.2.2.3. CYCLIC OLIGO(O-XYLYLENE DICARBOXYLATES)
6.3.2.1.8. CYCLIC OLIGO(ESTERS) OF DIGLYCOLIC ACID
J-O-X-O-COCH 2 OCH 2 CO] 2 -I MoI. wt.
m.p. (0C)
320.3 376.4 408.4
185-187 128-130 125-126
114,129 114 129
trans
428.4
276-278
114
cis
428.4
265-268
114
416.3
208-209
114
X CH 2 CH 2 CH(CH 3 )-CH(CH 3 ) (CH 2 ) 2 O(CH 2 ) 2
Refs. JC
MoI. w t .
m.p. ( 0 C )
Refs.
0 1 2 3 4 5 6 7 8
320.3 348.4 376.5 404.5 432.6 460.6 488.7 516.7 544.8
233-235 215-218 217 173 144 121 134 119 135
117 117 117 117 117 117 117 117 117
6.3.2.2.4. CYCLIC OLIGO(ETHYLENE ISOPHTHALATES)
6.3.2.1.9. CYCLIC OLIGO(TETRAETHYLENE GLYCOL SUCCINATE)
n = l: X-ray, NMR, MS; n = 2-8: (sharp fractions): GPC, NMR, MS, Refs. 160-162. 6.3.2.2. Aromatic Oligo(esters)
n
MoI. wt.
m.p. (0C)
Refs.
2
384.4
330
34,90
6.3.2.2.1. CYCLIC OLIGO(ALKYLENE PHTHALATES) 6.3.2.2.5. OLIGO(ETHYLENE TEREPHTHALATES) 6.3.2.2.5.1. OLIGOMERIC HYDROXY ACIDS
x 2 3 4 5 6 7 8 9 10 11 12
n
MoI. wt.
m.p. (0C)
Refs.
1 2 2 1 2 1 2 1 2 2 2 2 2 2 2
192.2 384.3 412.4 220.2 440.5 234.3 468.5 248.3 496.6 524.6 552.7 580.7 608.8 636.8 664.9
60-62 198 193 106 140 101-102 139 64-65 66 163 64-65 140-141 78-79 138-139 84
118,119 90,108,118-120 108,120 108,120 108,120 108,119,120 108,120 108,119,120 108,120 108,120 108,120 108,120 108,120 108,120 108,120
6.3.2.2.2. CYCLIC OLIGO(O-PHENYLENE DICARBOXYLATES)
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3
210.2 402.4 594.6
178 200-205 219-223
35 36 36
6.3.2.2.5.2. OLIGOMERIC DIOLS
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 4 5
254.2 446.4 638.6 830.8 1023.0
109-110 173-174 200-205 213-216 218-220
35,36,59,74,75 35,36,74,75 35,36,74,75 35,36,74 36
6.3.2.2.5.3. OLIGOMERIC DICARBOXYLIC ACIDS
x
MoL wt.
m.p. (0C)
Refs.
3 5 7 8
412.4 468.5 524.6 552.7
238-240 145-147 110-112 108-110
122 122 122 122
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 4 5
358.3 550.5 742.7 934.9 1127.1
>360 284-286 274-276 252-255 233-236
36-38 33,36-38 33,37,38 38 38
6.3.2.2.5.5. CYCLIC OLIGO(ESTERS)
6.3.2.2.5.4. OLIGOMERIC DICARBOXYLATES
n 1 2 3 4 5 6 7 8 9 10
MoI. wt.
m.p. (0C)
Refs.
386.3 578.5 770.7 962.8 1155.0 1347.1 1539.3 1731.5 1923.7 2115.8
168-170 194-198 215-217 231-232 242-243 248-249 250-252 251-253 253-254 254-256
35,52,74 35,52,74 52,74 52 52 52 52 52 52 52
n
MoL wt.
m.p. (0C)
2 3
384.0 576.5
225 321
Refs.
32,33,46,57,75,90,159 33,39,40,43,44,46,57,58, 60,61,70,75,90,163-165 768.7 326 33,40,43,46,57,58,61,75,166 960.9 264 33,40,46,57,58,61,75 1152.7 306 33,46,58,61,75 1344.8 238-240 33,61,75 n = 3-13 (sharp fractions): GPC, MS, NMR, Ref. 158
4 5 6 7
6.3.2.2.6. CYCLIC OLIGO(ESTERS) OF D I - AND TRI-ETHYLENE GLYCOLS
X
Y
Z
m.p. (0C)
Refs.
428.4
173-179
40,43,57,90
472.4 560.5 472.4 560.5
223 130 168-170 108-111
45,90,115 90 115 115
MoL wt.
n = 3-7 (sharp fractions): GPC, MS, NMR, Ref. 158
6.3.2.2.9.2. OLIGOMERIC DICARBOXYLIC ACIDS
6.3.2.2.7. CYCLIC OLIGO(ESTERS) OF TETRAETHYLENE GLYCOL
n
MoL wt.
1 2
324.3 648.7
m.p. (0C) 98-99 96
Refs.
n
MoL wt.
126 90,126,127
1 2 3 4 6
386.4 606.6 826.8 1047.0 1487.5
6.3.2.2.8. CYCLIC OLIGO(ALKYLENE TEREPHTHALATES)
m.p. (0C) 290 266 254 247 235
Refs. 43,96-98 96-98 97,98 97,98 97,98
6.3.2.2.9.3. OLIGOMERIC DICARBOXYLIC ACID DIBENZYL ESTERS
Xa
a
na
MoL wt.
m.p. (0C)
2 2 2
412.4 440.4 454.5 234.3
251 208 149 284
90 90 90 90
2
268.3
384
90
Refs.
X = (CH2)8, n = 2-5 (sharp fractions): GPC, NMR, MS 157.
n 1 2 3 4 6 8 10
MoL wt. 566.6 786.8 1007.1 1227.3 1667.8 2108.2 2548.7
m.p. (0C) 139 168 178 187 199 205 208
Refs. 96-98 96-98 97,98 97,98 97,98 97,98 97,98
6.3.2.2.9. OLIGO(BUTYLENE TEREPHTHALATES) 6.3.2.2.9.4. CYCLIC OLIGO(ESTERS)
6.3.2.2.9.1. OLiGOMERic DIOLS
n
MoL wt.
1 2 3 5 7
310.3 530.6 750.8 1191.1 1630.5
m.p. (0C) 72 138 175 193 202
Refs.
n
96-99 43,96-99 96-99 96-99 97-99
2 3 4 5
MoL wt.
m.p. (0C)
Refs.
440.5 199 54-56,90,96,159 660.7 171.5 55,56,96 880.9 251 43,55,56,96 1101.2 207 96 n = 2 - 9 (sharp fractions): GPC, MS, X-ray (n = 2), Ref. 155
6.3.2.2.10. OLIGO(1,4-CYCLOHEXYLENEDIMETHYLENE TEREPHTHALATES)
6.3.2.2.10.3. CYCLIC OLIGO(ESTERS)
6.3.2.2.10.1. OLiGOMERic HYDROXY ACIDS
n
Config.
MoI. wt.
m.p. (0C)
Refs.
1
trans
292.3
175-178
41
n
Config.
MoI. wt.
m.p. (0C)
2 3
trans trans
548.7 823.0
299 385
Refs. 90 41,42,90
6.3.2.2.10.2. OLIGOMERIC DICARBOXYLIC ACIDS
n
Config.
MoI. wt.
m.p. (0C)
Refs.
1 1
trans ds
440.4 440.4
>310 >300
41 41
6.1.3.2.2.11. OLIGOMERIC 4 , 4 ' - I S O P R O P Y L I D E N E D I P H E N O L (BISPHENOL A ) TEREPHTHALATES
Ri
R2
C 6 H 5 CH 2
O-C(CH 3 ) 3
H
O-C(CH 3 ) 3
C 6 H 5 CH 2
OH
H H
OH OH
C 6 H 5 CH 2
0(CH 2 ) I0Br
O(CH 2 ) 20 Br
Aa
Cc
B* O-C(CH 3 ) 3
Cc
Q(CH2) ioBr
n
MoI. wt.
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 1 2 3 1 2 3 1 2 1 1 2 1
522.6 881.0 1239.4 1597.7 1956.1 432.5 790.9 1149.2 1513.6 1866.0 466.4 824.9 1183.3 1541.6 1900.0 376.4 734.8 913.1 1451.5 685.7 1044.1 1402.5 826.0 1184.4 1542.8 1071.3 1788.1 1211.6 798.8 1157.5 962.8
m.p. ( 0 C) 120 197 265 307 147 160 280 297 314 213 280 300 305 315 193 275 292 305 63 134 232 88 130 236 132 170 83 117 177 47
Refs. 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124 123,124
REFERENCES 1. C. A. Bischoff, P. Walden, Ann. Chem., 279, 45 (1894); Chem. Ber., 26, 262 (1893). 2. C. A. Bischoff, P. Walden, Ann. Chem., 279, 71 (1894); Chem. Ber., 27, 2939, 2950 (1894). 3. E. Jungfleisch, M. Godchot, Compt. Rend., 141,111 (1905); 142, 637 (1906); 144, 425 (1908). 4. J. Kleine, K.-H. Kleine, Makromol. Chem., 30, 23 (1959). 5. R. Dietzel, R. Krug, Chem. Ber., 58, 1307 (1925). 6. J. Wislicenus, Ann. Chem., 167, 302, 319 (1873). 7. R. Eder. F. Kutter, HeIv. Chim. Acta, 9, 557 (1926). 8. F. J. van Natta, J. W. Hill, W. H. Carothers, J. Am. Chem. Soc, 56, 455 (1934). 9. M. Stoll, A. Rouve, HeIv. Chim. Acta, 18, 1087 (1935); 17, 1283 (1934). 10. R. Huisgen, H. Ott, Tetrahedron, 6, 253 (1959). 11. H. Hundsdiecker, H. Erlbach, Chem. Ber., 80, 129 (1947). 12. E. W. Spanagel, W. H. Carothers, J. Am. Chem. Soc, 58,654 (1936). 13. W. H. Lycan, R. Adams, J. Am. Chem. Soc, 51,3450 (1929). 14. W. H. Carothers, F. J. van Natta, J. Am. Chem. Soc, 55,4714 (1933). 15. J. W. Hill, W. H. Carothers, J. Am. Chem. Soc, 55, 5031 (1933). 16. L. Ruzicka, M. Stoll, HeIv. Chim. Acta, 11, 1159 (1928). 17. W. Baker, W. D. Ollis, T. S. Zealley, J. Chem. Soc, 201 (1951). 18. A. Einhorn, Chem. Ber., 44, 431, 437 (1911). 19. G. Schroeter, Chem. Ber., 52, 2224 (1919). 20. R. Anschuetz, Ann. Chem., 439, 8 (1924). 21. A. Einhorn, H. Pfeiffer, Chem. Ber., 34, 2952 (1901); A. Einhorn, C. Mettler, Chem. Ber., 35, 3644 (1902). 22. W. Baker, B. Gilbert, W. D. Ollis, T. S. Zealley, J. Chem. Soc, 209 (1951). 23. L. Anschuetz, G. Gross, Chem. Ber., 77, 644 (1944). 24. W. Baker, B. Gilbert, W. D. Ollis, J. Chem. Soc, 1443 (1952). 25. W. Baker, A. S. El-Nawary, W. D. Ollis, J. Chem. Soc, 3163 (1952). 26. R. Anschuetz, E. Rhodius, Chem. Ber., 47, 2733 (1914). 27. M. Ishibashi, M, Hirai, Chem. High Polym. (Tokyo), 21,231 (1964); Chem. Abstr., 62, 5342f (1965). 28. M. Ishibashi, M. Hirai, Chem. High Polym. (Tokyo), 21,235 (1964); Chem. Abstr., 62, 5342g (1965). 29. E. W. Spanagel, W. H. Carothers, J. Am. Chem. Soc, 57,929 (1935). 30. W. H. Carothers, G. L. Dorough, J. Am. Chem. Soc, 52,711 (1930). 31. M. Stoll, A. Rouve, HeIv. Chim. Acta, 19, 253 (1936). 32. H. Repin, E. Papanikolau, J. Polym. Sci. A-1,7,3426 (1969). 33. H. Zahn, H. Repin, Chem. Ber., 103, 3041 (1970). 34. C. E. Berr, J. Polym. Sci., 40, 591 (1955). 35. H. Zahn, R. Krzikalla, Makromol. Chem., 23, 31 (1957). 36. H. Zahn, C. Borstlap, G. VaIk, Makromol. Chem., 64, 18 (1963). 37. H. Zahn, B. Seidel, Makromol. Chem., 29, 70 (1959).
38. H. Zahn, B. Gleitsmann, Angew. Chem., 75, 772 (1963). 39. S. D. Ross, E. R. Coburn, W. A. Leach, W. B. Robinson, J. Polym. Sci., 13, 406 (1954). 40. J. Goodman, B. F. Nesbitt, Polymer, 1,384 (1960); J. Polym. Sci., 48, 423 (1960). 41. H. Zahn, G. VaIk, Makromol. Chem., 64, 37 (1963). 42. H. Zahn, G. VaIk, Polym. Lett., 1, 105 (1963). 43. E. Meraskentis, H. Zahn, J. Polym. Sci. A-1,4,1890 (1966); Chem. Ber., 103, 3034 (1970). 44. G. L. Binns, J. S. Frost, F. S. Smith, E. C. Yeadon, Polymer, 7, 583 (1966). 45. T. Morimoto, Y. Fujita, A. Takeda, J. Polym. Sci. A-I, 6, 1044 (1968). 46. L. H. Peebles, Jr., M. W. Huffman, C. T. Ablett, J. Polym. Sci. A-I, 7, 479 (1969). 47. I. S. Megna, A. Koroscil, J. Polym. Sci. A-1,7,1371 (1969). 48. M. Goodman, M. D'Alagni, J. Polym. Sci. B, 5, 515 (1967). 49. Y. Iwakura, K. Hayashi, K. Iwata, S. Matsuo, Makromol. Chem., 108, 300 (1967); 110, 90 (1967). 50. Y. Iwakura, K. Hayashi, K. Iwata, S. Matsuo, Makromol. Chem., 123, 245 (1969). 51. Y. Iwakura, K. Iwata, S. Matsuo, A. Tohara, Makromol. Chem., 146, 33 (1971). 52. R. Penisson, H. Zahn, Makromol. Chem., 133, 25 (1970). 53. S. Matsuo, Y. Iwakura, Makromol. Chem., 152, 203 (1972). 54. K. Burzin, R-J Frenzel, Angew. Makromol. Chem., 71, 61 (1978); K. Burzin, W. Holtrup, R. Feinauer, Angew. Makromol. Chem., 74, 93 (1978). 55. J. Steinke, H. WaId, Melliand Textilber., 58, 494 (1977). 56. G. C. East, A. M. Girshab, Polymer, 23, 323 (1982). 57. S. Shiono, J. Polym. Sci., Polym. Chem. Ed., 17, 4123 (1979). 58. H. Zahn, P. Kusch, Z. Ges. Textilind. 69, 880 (1967). 59. K. Tomita, Polymer, 14, 50 (1973). 60. R. Giuffria, J. Polym. Sci., 49, 427 (1961). 61. D. R. Cooper, J. A. Semlyen, Polymer, 14, 185 (1973). 62. P. E. Fore, J. S. Bradshaw, S. F. Nielsen, J. Heterocycl. Chem., 15, 269 (1978). 63. N. Grassie, E. J. Murray, P. A. Holmes, Polym. Deg. Stab., 6, 47 95, 127 (1984). 64. R. H. Marchessault, S. Coulombe, H. Morikawa, K. Okamura, J. F. Revol, Can. J. Chem., 59, 38 (1981). 65. K. Ito, Y. Hashizuka, Y. Yamashita, Macromolecules, 10, 821 (1977). 66. K. Ito, Y. Yamashita, Macromolecules, 11, 68 (1978). 67. H. Hirai, K. Naito, T. Hamasaki, M. Goto, H. Koinuma, Makromol. Chem., 185, 2347 (1984). 68. H. Hirai, J. Macromol. Sci.-Chem. A, 21, 1165 (1984)., 69. J. Dale, J. Chem. Soc, 72 (1965). 70. F. L. Hamb, L. C. Trent, J. Polym. Sci. B, 5, 1057 (1967). 71. R. H. Wiley, Macromolecules, 4, 254 (1971). 72. K. Ito, M. Tomida, Y. Yamashita, Polym. Bull., 1, 569 (1979). 73. B. Hauttecoeur, M. Jolivet, R. Gavard, Compt. Rend., 280, 2801 (1975).
74. G. Heidemann, R Kusch, H.-J. Nettelbeck, Z. Anal. Chem., 212, 401 (1965). 75. W. R. Hudgins, K. Theurer, T. Mariani, J. Appl. Polym. Sci., Appl. Polym. Symp., 34, 145 (1978). 76. M. Okada, H. Sumitomo, J. Tajima, Macromolecules, 14, 1180(1981). 77. W. H. Kruizinga, R. M. Kellogg, J. Chem. Soc, Chem. Commun., 286 (1979). 78. J. Tajima, M. Okada, H. Sumitomo, Makromol. Chem., Rapid Commun., 1, 197 (1980). 79. M. Okada, H. Sumitomo, J. Tajima, Macromolecules, 10, 505 (1977). 80. M. Okada, H. Sumitomo, J. Tajima, Polym. Bull., 1, 41 (1978). 81. M. Okada, H. Sumitomo, J. Tajima, J. Am. Chem. Soc, 101, 4013 (1979). 82. J. Tajima, M. Okada, H. Sumitomo, J. Am. Chem. Soc, 103, 4096 (1981). 83. M. Okada, H. Sumitomo, M. Atsumi, Makromol. Chem., Rapid Commun., 4, 253 (1983). 84. J. Tanaka, J. Tajima, Y. Hayakawa, M. Okada, M. Bitoh, T. Ashida, H. Sumitomo, J. Am. Chem. Soc, 102, 7873 (1980). 85. M. Imaeda, J. Tanaka, T. Ashida, J. Tajima, M. Okada, H. Sumitomo, Polym. J., 14, 197 (1982). 86. J. Sakuragi, J. Tanaka, T. Ashida, J. Tajima, M. Okada, H. Sumitomo, J. Am. Chem. Soc, 104, 6035 (1982). 87. M. Okada, H. Sumitomo, M. Atsumi, J. Am. Chem. Soc, 106, 2101 (1984). 88. D. A. Jaeger, J. T. Ippoliti, J. Org. Chem., 46, 4964 (1981). 89. D. Vorlander, Ann. Chem., 280, 167 (1894). 90. G. Wick, H. Zeitler, Angew. Makromol. Chem., 112, 59 (1983). 91. E. J. Corey, K. C. Nicolaou, J. Am. Chem. Soc, 96, 5614 (1974). 92. J. B. Rashkov, J. Gitsov, J. M. Panayotov, J.-P. Pascault, J. Polym. Sci., Polym. Chem. Ed., 21, 923 (1983). 93. N. E. Manolova, J. Gitsov, R. S. Velichkova, J. B. Rashkov, Polym. Bull., 13, 285 (1985). 94. S. Sosnowski, S. Slomkowski, S. Penczek, Makromol. Chem., 184, 2159 (1983). 95. J. S. Megna, A. Koroscil, Polym. Lett., 6, 653 (1968). 96. R-J. Muller, P. Kusch, J. Windeln, H. Zahn, Makromol. Chem., 184, 2487 (1983). 97. H.-W. Hasslin, M. Droscher, G. Wegner, Makromol. Chem., 179, 1373 (1978). 98. H.-W. Hasslin, M. Droscher, Makromol. Chem., 181, 235 (1980); Polymer Bull., 2, 769 (1980). 99. P. C. Gillette, S. D. Dirlikov, J. L. Koenig, J. B. Lando, Polymer, 23, 1759 (1982). 100. F. Andreas, R. Sowada, J. Scholz, J. Prakt. Chem., 18, 141 (1962). 101. D. K. Gilding, A. M. Reed, Polymer, 20, 1459 (1979). 102. J. Dale, O. Sevaldsen, K. Tittlestad, Acta Chem. Scand. B, 32, 306 (1978). 103. Y. Iwakura, K. Iwata, S. Matsuo, A. Tohara, Makromol. Chem., 146, 21 (1971).
104. A. Shanzer, J. Libman, F. Frolow, J. Am. Chem. Soc, 103, 7339 (1981). 105. R. R. Wetstone, S. A. Ballard, J. Am. Chem. Soc, 73, 5280 (1951). 106. A. Shanzer, N. Mayer-Shochet, J. Chem. Soc, Chem. Commun., 176 (1980). 107. A. Shanzer, N. Mayer-Shochet, F. Frolow, D. Rabinovich, J. Org. Chem., 46, 4662 (1981). 108. J. S. Bradshaw, G. E. Maas, R. M. Izatt, J. J. Christensen, Chem. Rev., 79, 37 (1979). 109. P. Margaretha, F. P. Schmook, H. Budzikiewicz, O. E. Polansky, Monatsh. Chem., 99, 2539 (1968). 110. A. Shanzer, E. Schwartz, Tetrahedron Lett., 5019 (1979). 111. A. Shanzer, J. Libmann, Synthesis, 140, (1984). 112. C. Anchisi, L. Corda, A. M. Fadda, A. Maccioni, G. Podda, J. Heterocycl. Chem., 21, 577 (1984). 113. G. Podda, A. Maccioni, C. Anchisi, S. Daolio, B. Pelli, R Traldi, J. Heterocycl. Chem., 21, 491 (1984). 114. G. Podda, C. Anchisi, L. Corda, A. M. Fadda, A. Maccioni, J. Heterocycl. Chem., 21, 1789 (1984). 115. A. Ninagana, T. Maeda, H. Matsuda, Chem. Lett., 1985 (1984). 116. R. Asay, J. S. Bradshaw, S. F. Nielsen, M. D. Thompson, J. W. Snow, D. R. K. Masilidas, R. M. Izatt, J. J. Christensen, J. Heterocycl. Chem., 14, 85 (1977). 117. S. E. Drewes, B. G. Riphagen, J. Chem. Soc, Perkin Trans. I, 323 (1974). 118. E. W. Spanagel, United States Patent 2.092.031 (1937), Chem. Abstr., 31, 7443 (1937); French Patent 796.410 (1936), Chem. Abstr., 30, 6138 (1936). 119. W. A. Ehrhart, J. Org. Chem., 33, 2930 (1968). 120. S. E. Drewes, P. C. Coleman, J. Chem. Soc, Perkin Trans. I, 2148, (1972); 2578 (1974). 121. G. R. Brown, J. H. P. Tyman, Chem. Ind., 436 (1970). 122. A. Maccioni, A. Plumitallo, G. Podda, J. Heterocycl. Chem., 20, 1397 (1983). 123. H. Seliger, M. B. Bitar, H. Nguyen-Trong, A. Marx, R. Roberts, J.-K Krueger, H.-G. Unruh, Makromol. Chem., 185, 1335 (1984). 124. J.-K. Krueger, A. Marx, R. Roberts, H.-G. Unruh, M. B. Bitar, H. Nguyen-Trong, H. Seliger, Makromol. Chem., 185, 1469 (1984). 125. W. H. Carothers, J. A. Arvin, G. L. Dorough, J. Am. Chem. Soc, 52, 3292 (1930). 126. K. Frensch, F. Voegtle, Tetrahedron Lett., 2573 (1977); J. Org. Chem., 44, 884 (1979). 127. J. D. Bradshaw, M. D. Thompson, J. Org. Chem., 43, 2456 (1978). 128. A. Bachrach, A. Zilkha, Eur. Polym. J., 18, 421 (1982). 129. A. V. Bogatskii, N. G. Lukyanenko, V. A. Shapkin, M. S. Salakhov, M. U. Mamina, D. Taubert, Zh. Org. Khim., 16, 2057 (1980); J. Org. Chem. USSR, 16, 1750 (1980). 130. J. C. Reepmeyer, J. Pharm. Sci., 72, 322 (1983). 131. G. B. Guise, W. D. Ollis, J. A. Peacock, J. S. Stephanatou, J. F. Stoddart, Tetrahedron Lett., 4203 (1980) J. Chem. Soc, perkin Trans. I, 1637 (1982). 132. R. Anschutz, Ber. Dtsch. Chem. Ges., 52, 1875 (1919); R. Anschutz, K. Riepenkroger, Ann. Chem., 439, 1 (1924).
133. A. R Downing, W. D. Ollis, I. O. Sutherland, J. Mason, S. F. Mason, J. Chem. Soc, Chem. Commun., 329 (1968); W. D. Ollis, I. O. Sutherland, J. Chem. Soc, Chem. Commun., 402 (1966). 134. A. C. D. Newman, H. M. Powell, J. Chem. Soc, 3747 (1952); D. Lawton, H. M. Powell, J. Chem. Soc, 2339 (1958). 135. P. G. Edgerley, L. E. Sutton, J. Chem. Soc, 1069 (1951). 136. E. Gil, A. Quick, D. J. Williams, Tetrahedron Lett., 4207 (1980); D. J. Williams, D. Lawton, Tetrahedron Lett., I l l (1975). 137. W. Baker, J. B. Harborne, A. J. Price, A. Rutt, J. Chem. Soc, 2042 (1954). 138. A. P. Downing, W. D. Ollis, I. O. Sutherland, J. Chem. Soc B, 24 (1970). 139. W. D. Ollis, J. S. Stephanatou, J. F. Stoddart, J. Chem. Soc, Perkin Trans. I, 1629 (1982); W. D. Ollis, J. F. Stoddart, J. Chem. Soc, Chem. Commun., 571 (1973). 140. A. P. Downing, W. D. Ollis, I. O. Sutherland, J. Chem. Soc, Chem. Commun., 171 (1967). 141. V. D. Gaitonde, B. D. Hosangadi, Indian J. Chem., 14B, 97 (1976). 142. C. M. Farias, B. D. Hosangadi, Indian J. Chem., 15B, 997 (1977). 143. J.-M. Medard, N. Rodier, R Reynaud, J. D. Brion, N. T. Xuong, Acta Cryst. C, 39, 1136 (1983). 144. U. D. Lengweiler, M. G. Fritz, D. Seebach, HeIv. Chim. Acta, 79, 670 (1996). 145. D. Seebach, H. M. Burger, D. A. Plattner, R. Nesper, T. Fassler, HeIv. Chim. Acta, 76, 2581 (1993). 146. D. Seebach, T. Hoffmann, F. N. M. Kuhnle, J. N. Kinkel, M. Schulte, HeIv. Chim. Acta, 78, 1525 (1995). 147. D. Seebach, T. Hoffmann, F. N. M. Kuhnle, U. D. Lengweiler, HeIv. Chim. Acta, 77, 2007 (1994). 148. D. Seebach, H.-M. Miiller, H. M. Burger, D. A. Platner, Angew. Chem., 104, 443 (1992); Angew. Chem., Int. Ed. Engl., 31, 435 (1992).
149. T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kaiho, S. Masamune, Eur. J. Biochem., 124, 71 (1982). 150. I. Olsen, J. M. Merrick, I. J. Goldstein, Biochem., 4, 453 (1965). 151. D. A. Plattner, A. Brunner, M. Dobler, H.-M. Miiller, W. Petter, P. Zbinden, D. Seebach, HeIv. Chim. Acta, 76, 2004 (1993). 152. D. Seebach, U. Brandli, P. Schnurrenberger, M. Przybylski, HeIv. Chim. Acta, 71, 155 (1988). 153. B. R. Wood, J. A. Semlyen, P. Hodge, Polymer, 38, 2287 (1997). 154. B. R. Wood, R Hodge, J. A. Semlyen, Polymer, 34, 3052 (1993). 155. J. J. L. Briant, J. A. Semlyen, Polymer, 38, 4531 (1997). 156. B. R. Wood, J. A. Semlyen, P. Hodge, Polymer, 38, 191 (1997). 157. S. C. Hamilton, J. A. Semlyen, Polymer, 38, 1685 (1997). 158. J. J. L. Bryant, J. A. Semlyen, Polymer, 38, 2475 (1997). 159. Y. Kitano, A. Ishitani, T. Ashida, Polymer J., 23, 949 (1991). 160. P. Singh, M. Kumar, H. Singh, Indian J. Chem. B, 26, 64 (1987); J. Chem. Res. (S), 94 (1989) (M), 0675 (1989). 161. T. Ogawa, A Yoshikawa, H. Wada, C. Ogawa, N. Ono, H. Suzuki, J. Chem. Soc, Chem. Commun., 14, 1407 (1995). 162. J. S. Bradshaw, C. T. Bishop, S. F. Nielson, R. E. Asay, D. R. K. Masihdas, E. D. Flanders, L. D. Hansen, R. M. Izatt, J. J. Christensen, J. Chem. Soc, Perkin Trans. I, 2505, (1976). 163. Y. Kitano, T. Ashida, Polym. J., 24, 1099 (1992). 164. D. II Yoo, S. W. Seo, W. S. Ha, Polym. Bull., 28, 593 (1992). 165. J. Hasek, J. Jecny, V. Langer, K. Huml, P. Sedlacek, Acta Cryst. B, 36, 2698 (1980); 38, 2710 (1982). 166. T. Yu, H. Bu, Y. Jin, Makromol. Chem., 187, 2461 (1986).
6.4. OLIGO(URETHANES) 6.4.1.
OLIGO(ALKYLENEURETHANES)
6.4J.I. Oligo(ethylene urethanes) R-[OCH2CH2NHCO]n-OCH3 R
n
MoI. wt.
m.p. (0C)
CH3CO
2 3 4 5 6 7 1 2 3 4 5 6
248.2 335.3 422.4 509.5 596.6 683.6 119.1 206.2 293.3 380.4 467.4 554.5
69-70 98-99 138.5-139.5 164-165 174-176 185-186 -0 62-63 101.5-102.5 129-130 152-153 168.5-169.5
H
b.p. (°C/mbar)
116-117/3
Refs. 15 15 15 15 15 15 15 15 15 15 15
6.4.1.2. Oligo[(3-methyl)ethylene urethanes] R-[OCH2CH(CH3)NHCO]n-OCH3 R
n
MoI. wt.
CH 3 CO
1 2 3 4 5 6 7 1 2 3 4 5 6
175.2 276.3 377.4 478.5 579.6 680.7 781.8 133.2 234.3 335.4 436.5 537.6 638.7
H
6.4.1.3. Oligo[(3-isopropyl)ethylene
m.p. ( 0 C)
b.p. (°C/mbar)
c (%), EtOH
109-110/4
-23.2 -30.2 -31.8 -30.9 -30.6
1.39 0.32 0.77 1.14 0.42
109-110/3
-15.8
2.8
93-98 113-117 143-147 153-154 167 173 60-64 86-87 120-122 135-137 152-153
urethanes] CH3CO
n
MoI. wt.
m.p. ( 0 C)
1 2 3 4
203.2 332.4 461.6 590.7
111.5-112.5 142-143 156.5-158
11 11 11 11 11 11 11 11,16 11 11 11 11 11
n
b.p. (°C/mbar) 117.5-118/1
urethanes]
Refs.
OCH2CHNHCO-OCH3 CH(CH3)2
6.4.1.4. Oligo[(3-isobutyl)ethylene
[<x]D
R-OCH2CHNHCO
[<x]D -22.2 -33.5 -28.4 -4.2
c (%), EtOH 0.79 2.0 2.1 1.9
Refs. 10 10 10 10
-OCH3
CH 2 CH(CH 3 ), n R
n
MoI. wt.
CH 3 CO
1 2 3 4 5 6 7 8 9 1 2 3
217.3 360.5 503.6 646.8 790.0 933.2 1076.4 1219.5 1362.7 175.3
H
m.p. (°C)
b.p. (°C/mbar)
[a]* 5
c (%), EtOH
-41.7 -42.9 -41.5 -38.5 -35.9 -30.5
2.0 1.0 1.4 2.0 1.0 2.2
-34.1 -47.2 -45.0
2.6 2.3 0.99
128-129/1 73-74 97-98 136-138 149-150 162-164 168-169 180-181 185.5-186.5 119-121/1 Oil Oil
6.4.1.5. Oligo [(3-benzyl)ethylene urethanes]
Refs. 9 9,14 9,14 9,14 9,13 9,13 9,13 12 12 14 14 14
R-f OCH2CHNHCO - O C H 3 CH 2 C 6 H 5 „
R
n
MoI. wt.
m.p. ( 0 C)
[ai]D
CH 3 CO
2 3 4 1 2 3
428.5 605.7 782.9 209.2 386.4 563.6
104.5-106.5 138-139 149-150 51.5-53 130-131 153-154
-17.9 -18.1
1.2 0.71
-25.9 -27.8
0.72 0.77
H
c (%), EtOH
Refs. 11,14 11,14 11 11,14 11,14 11
6.4.1.6. Oligo(trimethylene R
n
CH 3 CO
2 3 4 5 1 2 3 4 5
H
urethanes)
6.4.1.7. Oligo(pentamethylene urethanes) R- [O(CH2) 5NHCO]n -OCH 3 m.p. ( 0 C)
MoI. wt. 276.3 377.4 478.5 579.6 133.2 234.3 335.4 436.5 537.6
Refs.
57.5-58.5 95-97 118.5-120 133.5-135 Oil Oil 76.5-79 106.5-108.5 126-128
18 18 18 18 18 18 18 18 18
R
n
MoI. wt.
m.p. (0C)
CH3CO
2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8
332.4 461.6 590.7 719.9 849.0 978.2 1107.4 1236.6 1365.7 161.2 290.4 419.5 548.7 677.8 807.0 936.2 1065.3
63.7 98.7 109.2 124.7 131.2 138.2 143.2 150.2 155.2
H
6.4.2.
b.p. (°C/mbar)
131-134/0.3 75.2 100.2 112.2 116.2 125.2 135.2 141.2
Refs. 1,18-21 1,18-21 1,18-21 1,18-21 1,18-21 1,18-21 1,18-21 1,18-21 1,18-21 1,18-20 1,18-20 1,18-20 1,18-20 1,18-20 1,18-20 1,18-20 1,18-20
OLIGO(URETHANES) OF DIISOCYANATES AND GLYCOLS
6.4.2.1. Oligo(urethanes) of Diisocyanates and 1,4-Butanediol 6.4.2.1.1. DIOL OLIGO(URETHANES)
H[O(CH 2 ) 4 O - C O - N H - X - N H - C O ] „ - 0 ( C H 2 ) 4 OH X
n
MoI. wt.
1 2 3 4 5 6 7 9 1 2 3 7 15 1 2 3 4 5
348.4 606.8 865.1 1123.4 1381.7 1640.0 1898.3 2414.9 476.5 862.9 1249.4 2795.0 5886.3 404.4 710.7 1021.0 1331.3 1641.6
m.p. ( 0 C)
Refs.
103-105 146 162-163 169-170 171-173 173-174 175-176 177-179 133.5 127-128 164-166 190-195 210-215 115 122 120 136 133
2,3,5,6 2,3,5 2,3,5 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 2,3 22 22 22 22 22
6.4.2.1.2. DlAMINE OLIGO(URETHANES)
H[NR-X-NR-CO-O(CH 2 ) 4 O-CO] n -NR-X-NHR X
R H
a
Dihydrobromides.
n
MoI. wt. 1 2 3 4 1 2 3 4
536.4 794.7 1053.0 1311.4 314.4 542.6 770.9 999.2
m.p. ( 0 C) 228 226 218 212 97-98 126.5 147-148 169
Refs. 5 5 5 5 23 23 23 23
6.4.2.1.3. ALKOXYACYLAMiNE OLIGO(URETHANES)
R
n
MoI. wt.
m.p. ( 0 C)
Refs.
CH 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
314.3 654.7 995.1 1335.5 328.3 668.7 1009.1 1449.5 412.5 752.9 1093.3 1433.7 552.7 893.1 1233.5 1573.9
181.7 185.2 201.6 176.9 125.3 187.6 208 182.5 114 183.3 208.2 185 123.8 166.2 192.4 199
24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
C2H5
C8Hn
C18H37
6.4.2.1.4. CYCLIC OLIGO(URETHANES) |— [ N R - X — N R - C Q - Q — Y — O — CO] n -] R
X
Y
6.4.2.2. Oligo(urethanes) of Hexamethylene Diisocyanate and Diglycols
n
MoI. wt.
1 2 2
258.3 516.6 764.9
164 198 254-255
Refs. 4,6,7 6,8 25
6.4.2.2.2. CYCLIC OLIGO(URETHANES)
f~ [(CH 2 ) 2 X(CH 2 ) 2 O- CONH(CH 2 ) 6 N№- CO — O]n-]
6.4.2.2.1. DIOL OLIGO(URETHANES) HO[(CH 2 )2X(CH 2 )2O-CO-NH(CH 2 )6NH-CO-O] n (CH 2 ) 2 X(CH 2 ) 2 OH
X
n
MoI. wt.
m.p. ( 0 C)
Refs.
1 2 3 4 5 6 7 1
274.3 548.6 722.9 1097.2 1371.5 1645.8 1920.1 290.4
138 170 131-133 151-153 136 145-148 134 128
4,17 17 17 17 17 17 17 4
X
n
MoI. wt.
m.p. (0C)
Refs.
O
O
1 2 3 4 5 7 15 1 3 7
380.4 654.8 929.1 1203.4 1478.7 2026.3 4221.0 412.6 993.4 2155.5
68-69 103-104 123-125 120-123 123-124 122-124 119-123 105-106 132-134 133-135
2,3 2 2,3 2 2,3 2,3 2,3 2 2 2
S
S
m.p. ( 0 C)
REFERENCES 1. Y. Iwakura, K. Hayashi, K. Iwata, Makromol. Chem., 89, 214 (1965). 2. W. Kern, H. Kalsch, K. J. Rauterkus, H. Sutter, Makromol. Chem., 44-46, 78 (1961). 3. W. Kern, Angew. Chem., 71, 585 (1959). 4. W. Kern, K. J. Rauterkus, W. Weber, Makromol. Chem., 43, 98 (1961). 5. H. Zahn, M. Dominik, Makromol. Chem., 44-46, 290 (1961). 6. H. Zahn, M. Dominik, Chem. Ber., 94, 125 (1961).
7. O. Bayer, Ann. Chem., 549, 286 (1941); Angew. Chem., 59A, 257 (1947). 8. W. Kern, K. J. Rauterkus, W. Weber, W. Heitz, Makromol. Chem., 57, 241 (1962). 9. K. Iwata, Y. Iwakura, K. Hayashi, Makromol. Chem., 112,242 (1968). 10. K. Iwata, Y. Iwakura, K. Hayashi, Makromol. Chem., 116,250 (1968). 11. K. Iwata, Y. Iwakura, Makromol. Chem., 135, 165 (1970).
12. K. Iwata, Y. Iwakura, Makromol. Chem., 134, 321 (1970). 13. Y. Iwakura, K. Hayashi, K. Iwata, Makromol. Chem., 108,296 (1967). 14. Y. Iwakura, K. Hayashi, K. Iwata, Makromol. Chem., 93, 274 (1966). 15. Y. Iwakura, K. Hayashi, K. Iwata, Makromol. Chem., 95, 217 (1966). 16. Y. Iwakura, K. Hayashi, K. Iwata, Makromol. Chem., 104, 46 (1967). 17. W. Heitz, H. Hoecker, W. Kern, H. Ullner, Makromol. Chem., 150, 73 (1971). 18. J. N. Hay. Makromol. Chem., 178, 1601 (1977).
19. H. Tagawa, E. Wada, K. Iwata, K. Hayashi, Y. Iwakura, Rep. Prog. Polym. Phys. Japan., 10, 211 (1967). 20. H. Tagawa, E. Wada, T. Sakurai, Makromol. Chem., 154, 215 (1972). 21. M. Nagura, H. Tagawa, E. Wada, Makromol. Chem., 165, 325 (1973). 22. B. Fu, C. Feger, W. J. MacKnight, N. S. Schneider, Polymer, 20, 889 (1985). 23. L. L. Harrell, Jr., Macromolecules, 2, 607 (1969). 24. Y. Camberlin, J. P. Pascault, J. M. Letoffe, P. Claudy, J. Polym. Sci., Polym. Chem. Ed., 20, 383 (1982). 25. S. Foti, P. Maravigna, G. Montaudo, Macromolecules, 15, 883 (1982).
TABLE 7. OLIGO(SULFIDES) AND OLIGO(SELENIDES)
7.2. CYCLIC OLIGO(THIOALKYLENES) p-[S(CH 2 )^-I
7.1. CYCLIC OLIGO(THIOMETHYLENES) AND OLIGO(SELENOMETHYLENES) [-[XCH2Jn-I
x 2
X
/i
MoI. wt.
m.p. (0C)
Refs.
S
2 3 4 5 6 3 4
92.2 138.3 184.4 230.5 276.5 279.0 372.0
105-106 215-218 49-50 123-125 227-229 226-228 80-81
11 1-7,15,16,20 1,5,6,8,13,18,20 6,9,13,14,19,20 12 1,17 1
S Se
3
4 4 5 6 10 16
n
MoL wt.
m.p. (0C)
b.p. (°C/mbar)
Refs.
2 3 4 5 6 2 3 4 6 2 4 6 2 4 6 2 4 6 2 2
120.2 180.4 240.5 300.6 360.7 148.3 222.4 296.6 444.9 176.3 352.7 529.0 204.3 408.6 612.8 232.5 464.9 697.4 344.7 513.0
112-113 84 224-225 97.5-99 91-93
199-200/1013
43-45 22,24,27 23,25,26,30 25 25,28,29 25,29,42 23,30 25,29,30,42 25 25 25 25 25,26 25 25 21,25 25 25 21,26 26
86-87/1 87-88 57.5-59 29-30 94-95.5 31-32 67-70 81-82.5 33-33.5 36.5-38 82 30-32 56-59.5 48-49 75-77
7.3. SUBSTITUTED CYCLIC OLIGO(THIOETHYLENES)|— [ S - CR1R2- CHR3],,--) Ri CH3 C2H5 (CH3)2CH C6H5 CH3 CH3
R2
R3
n
MoI. wt.
H
H
4 5 4 4 2 2 4
296.6 370.7 352.7 408.8 272.4 176.3 352.6
2
280.5
CH3 H
H CH3
H
7.4. CYCLIC CO-OLIGOMERS OF FORMALDEHYDE AND THIOFORMALDEHYDE |— [OCH 2 - (SCH 2 )J-! x
MoI. wt.
m.p. (0C)
Refs.
4 5
214.4 260.5
106-108 163-165
6,10 6,10
m.p. (0C)
Oil
155-180 (NMR)
Refs. 32,33 32,33 33 33 33,34 33 33,35 33
7.5.
CYCLIC O L I G O ( E T H E R SULFIDES)
x
y
n
MoI. wt.
m.p. ( 0 C)
b.p. (°C/mbar)
1
1 1 2 2 3 3 4 5 1 1 1 2 3 4 1 2 3 4 1 2
1 2 1 2 1 2 1 1 1 2 3 1 1 1 1 1 1 1 1 1
104.2 208.3 148.2 296.5 192.3 384.6 236.3 280.4 164.3 328.6 492.9 208.3 252.4 296.4 224.4 268.5 312.5 356.6 284.5 328.6
-17 22.5-23
147/1007
2
3
4
40-48/0.2 90-91 90-95/1 Liquid 123-124/0.1 164-170/0.1 62-64/0.1 50 123 20-24 51-52 54-56 89-90 43-44
134-136/0.1 34-36/0.1
200-206/3 Liquid 93-95 125
Refs. 45,46 26,36 30,31 26,31,36 31,36 26,36 30,31 30,31 30,31 28,29 28 31 29-31 30,31 30,31 30,31 30,31 30,31 30,31 31
7.6. THIACYCLOPHANES X
/i
MoI. wt.
m.p. (0C)
Refs.
CH
2 3 4 2 3
272.4 408.7 544.9 274.4 411.6
122-123 124-125 161-162 220-222 185-188
30,37,39 37,39 39 30,37,38,41 30,37,40,41
N
REFERENCES
1. M. Russo, L. Mortillaro, L. Credali, C. De Checchi, J. Polym. Sci. A-I, 4, 248 (1966). 2. A. W. V. Hofmann, Ann. Chem., 145, 357 (1868). 3. E. Baumann, Chem. Ber., 23, 60 (1890). 4. R. W. Bonst, E. W. Constable, Org. Syn. Coll. Vol. II, 610. 5. M. Schmidt, K. Blaettner, Angew. Chem., 71, 407 (1959). 6. L. Credali, M. Russo, Polymer, 8, 469 (1967). 7. E. Gipstein, E. Wellisch, O. J. Sweeting, J. Polym. Sci. B, 1, 237 (1963). 8. M. Russo, L. Mortillaro, C. De Checchi, G. Valle, M. Mammi, J. Polym. Sci. B, 3, 501 (1965). 9. M. Russo, L. Mortillaro, L. Credali, C. De Checchi, J. Polym. Sci. B, 3, 455 (1965). 10. M. Russo, L. Mortillaro, L. Credali, C. De Checchi, J. Chem. Soc. C, 428 (1966). 11. E. Block, E. R. Corey, R. E. Penn, T. L. Renken, P. F. Sherwin, J. Am. Chem. Soc, 98, 5715 (1976). 12. E. Weissflog, Phosph. SuIf., 12, 141 (1982). 13. M. Schmidt, K. Blaettner, P. Kochendoerfer, H. Ruf, Z. Naturforsch., 21b, 622 (1966). 14. H. Schmidt, E. Weissflog, Z. Anorg. AlIg. Chem., 406, 271 (1974). 15. J. LaI, J. Org. Chem., 26, 971 (1961).
16. B. G. Maura, L. Tulli, Ann. Chim., Roma, 55, 892 (1965). 17. L. Mortillaro, L. Credali, M. Russo, C. De Chjecchi, Polym. Lett., 3, 581 (1965). 18. G. W. Frank, P. J. Degen, Acta Cryst. B, 29, 1815 (1973). 19. G. Valle, A. Piazzesi, A. del Pra, Cryst. Struct. Commun., 1, 289 (1972). 20. M. E. Peach, E. Weissflog, N. PeIz, Org. Mass Spectr., 10,781 (1975). 21. H. Stetter, W. Wirth, Ann. Chem., 631, 144 (1960). 22. D. Sellmann, L. Zapf, Angew. Chem., 96, 799 (1984). 23. W. Rosen, D. M. Busch, Inorg. Chem., 9, 262 (1970). 24. D. Gerber, P. Chongsawangvirod, A. K. Leung, L. A. Ochrymowycz, J. Org. Chem., 42, 2644 (1977). 25. L. A. Ochrymowycz, C-P. Mak, J. D. Michna, J. Org. Chem., 39, 2079 (1974). 26. J. Buter, R. M. Kellogg, J. Chem. Soc, Chem. Commun., 466 (1980); J. Buter, R. M. Kellogg, J. Org. Chem., 46,4481 (1981). 27. W. N. Setzer, C. A. Ogle, G. S. Wilson, R. S. Glass, Inorg. Chem., 22, 266 (1983); R. S. Glass, G. S. Wilson, W. N. Setzer, J. Am. Chem. Soc, 102, 5068 (1980). 28. D. St. C. Black, I. A. McLean, Tetrahedron Lett., 3961 (1969); Austr. J. Chem., 24, 1401 (1971). 29. J. R. Meadow, E. E. Reid, J. Am. Soc, 56, 2177 (1934).
Next Page
30. J. S. Bradshaw, J. Y. K. Hui, J. Heterocycl. Chem., 11, 649 (1974). 31. J. S. Bradshaw, J. Y. K. Hui, B. L. Baymore, R. M. Izatt, J. J. Christensen, J. Heterocycl. Chem., 10, 1 (1973); J. S. Bradshaw, J. Y. K. Hui, J. Y. Chan, B. L. Haymore, J. J. Christensen, R. M. Izatt, J. Heterocycl. Chem., 11, 45 (1974). 32. J. L. Lambert, D. van Ooteghem, E. J. Goethals, J. Polym. Sci. A-I, 9, 3055 (1971). 33. E. J. Goethals, Adv. Polym. Sci., 23, 103 (1977). 34. A. Noshay, C. C. Price, J. Polym. Sci., 54, 533 (1961). 35. W. van Craeynest, E. J. Goethals, Eur. Polym. J., 12,859.9 (1976). 36. J. R. Dann, P. P. Chiesa, J. W. Gates, J. Org. Chem., 26, 1991 (1961). TABLE 8. OLIGOMERS CONTAINING N IN THE MAIN CHAIN
8.1.1.4. Cyclic Oligo(amides) of C-Methyl-$-Alanines |— [NHCHR1CHR2CO]^n
8.1. OLIGO(AMIDES) 8.1.1.
37. F. Vogtle, F. Ley, Chem. Ber., 116, 3000 (1983). 38. F. Vogtle, L. Schunder, Chem. Ber., 102, 2677 (1969). 39. R. H. Mitchell, V. Boekelheide, J. Am. Chem. Soc, 96, 1547 (1974); V. Boekelheide, J. L. Mondt, Tetrahedron Lett., 1203 (1970). 40. K. Galuszko, Rocz. Chem., 49, 1597 (1975). 41. H. J. J.-B. Martel, M. Rasmussen, Tetrahedron Lett., 3843 (1971). 42. B. V. Gorewit, W. K. Musker, J. Coord. Chem., 5, 67 (1976). 43. R. G. GiIUs, A. B. Lacey, Org. Synth., Coll. Vol. IV, 396 (1963). 44. V. Meyer, Chem. Ber., 19, 3259 (1886). 45. J. D. A. Johnson, J. Chem. Soc, 1530 (1933). 46. H. T. Clarke, J. Chem. Soc, 101, 1806 (1912).
Ri
OLIGO(AMIDES) OF p-AMINO ACIDS (NYLON 3)
R2
CH 3
8.1.1.1. Linear Oligo(amides) of (3-Alanine H[NH(CH 2 ) 2 C0] n 0H n
MoI. wt.
m.p. (d) (0C)
Refs.
1 2 3 4 5 6
89.1 160.2 231.2 302.3 373.4 444.5
206 212 >255 >260 >310 >320
1 2,4,96 3,4,96 4,96 5 5
H
H
CH 3
n
MoL wt.
1 3 1 2 3 4 5 6 7 8 9 10 11
85.1 255.3 85.1 170.2 255.3 340.4 425.5 510.6 595.7 680.8 765.9 851.0 936.0
m.p. (0C)
b.p. (°C/mbar) 100/13
300 98-99/20 255 >350 >350 >350 >350 330-335 338-340 327-330 330 325
Refs. 104,105 91 104 84 84,85,87 84 84 84 84 84 84 84 84
8.1.1.5. Linear Oligo(amides) of C-Dimethyl-(3-Alanines H[NHC(R!) 2 C(R 2 ) 2 CO] n OH 8.1.1.2. Cyclic Oligo(amides) of f3-Alanine r [NH(CH 2 ) 2 CO] n -| n 1 2 3 4 5 6 7 8 9 10 11
MoI. wt.
m.p (0C)
Refs.
71.1 142.2 213.2 284.3 355.4 426.5 497.6 568.8 639.7 710.8 781.8
74-74.5 298-299 >360 353 327 360 341 >360 349 >350 >350
6,104,113 4,8,9,72,84,114,116 4,10,84,88,93,101,114,116 4,10,84,114,116 84,114,116 114,116 114,116 114,116 114,116 116 116
Ri
R2
n
MoI. wt.
m.p. (0C)
H
CH 3
CH 3
H
1 3 6 1 3
117.1 315.4 612.8 117.1 315.4
239 209-212 207.5-210.5 217 182-184
R2
n
CH 3
H
1 3
MoI. wt. 103.1 273.3
m.p. (0C) 188-189 240-241
8.1.1.6. Cyclic Oligo(amides) of C-Dimethyl- p-Alanines
Ri
R2
n
MoI. wt.
m.p. (°C)
H
CH 3
1 3 4 5 6 7 8 9 10 11 12 1 3
99.1 297.4 396.5 495.7 594.8 693.9 793.1 892.3 991.3 1090.5 1189.6 99.1 297.4
255-259.5 270 257 310 290 256 315 252 315 245 16-17 257-258
Refs. 102 92
106 94 94 103 95
n [NHC(R 1 ) 2 C(R 2 ) 2 CO]^- ]
8.1.1.3. Linear Oligo(amides) of C-Methyl- $-Alanines H[NHCHR i CHR 2CO] nOH Ri
Refs.
CH 3
H
b.p. (°C/mbar) 70-73/1.1
112/20
Refs. 107 84,91 84 84 84,91 84 84 84 84 84 84 104,105 91
Previous Page
30. J. S. Bradshaw, J. Y. K. Hui, J. Heterocycl. Chem., 11, 649 (1974). 31. J. S. Bradshaw, J. Y. K. Hui, B. L. Baymore, R. M. Izatt, J. J. Christensen, J. Heterocycl. Chem., 10, 1 (1973); J. S. Bradshaw, J. Y. K. Hui, J. Y. Chan, B. L. Haymore, J. J. Christensen, R. M. Izatt, J. Heterocycl. Chem., 11, 45 (1974). 32. J. L. Lambert, D. van Ooteghem, E. J. Goethals, J. Polym. Sci. A-I, 9, 3055 (1971). 33. E. J. Goethals, Adv. Polym. Sci., 23, 103 (1977). 34. A. Noshay, C. C. Price, J. Polym. Sci., 54, 533 (1961). 35. W. van Craeynest, E. J. Goethals, Eur. Polym. J., 12,859.9 (1976). 36. J. R. Dann, P. P. Chiesa, J. W. Gates, J. Org. Chem., 26, 1991 (1961). TABLE 8. OLIGOMERS CONTAINING N IN THE MAIN CHAIN
8.1.1.4. Cyclic Oligo(amides) of C-Methyl-$-Alanines |— [NHCHR1CHR2CO]^n
8.1. OLIGO(AMIDES) 8.1.1.
37. F. Vogtle, F. Ley, Chem. Ber., 116, 3000 (1983). 38. F. Vogtle, L. Schunder, Chem. Ber., 102, 2677 (1969). 39. R. H. Mitchell, V. Boekelheide, J. Am. Chem. Soc, 96, 1547 (1974); V. Boekelheide, J. L. Mondt, Tetrahedron Lett., 1203 (1970). 40. K. Galuszko, Rocz. Chem., 49, 1597 (1975). 41. H. J. J.-B. Martel, M. Rasmussen, Tetrahedron Lett., 3843 (1971). 42. B. V. Gorewit, W. K. Musker, J. Coord. Chem., 5, 67 (1976). 43. R. G. GiIUs, A. B. Lacey, Org. Synth., Coll. Vol. IV, 396 (1963). 44. V. Meyer, Chem. Ber., 19, 3259 (1886). 45. J. D. A. Johnson, J. Chem. Soc, 1530 (1933). 46. H. T. Clarke, J. Chem. Soc, 101, 1806 (1912).
Ri
OLIGO(AMIDES) OF p-AMINO ACIDS (NYLON 3)
R2
CH 3
8.1.1.1. Linear Oligo(amides) of (3-Alanine H[NH(CH 2 ) 2 C0] n 0H n
MoI. wt.
m.p. (d) (0C)
Refs.
1 2 3 4 5 6
89.1 160.2 231.2 302.3 373.4 444.5
206 212 >255 >260 >310 >320
1 2,4,96 3,4,96 4,96 5 5
H
H
CH 3
n
MoL wt.
1 3 1 2 3 4 5 6 7 8 9 10 11
85.1 255.3 85.1 170.2 255.3 340.4 425.5 510.6 595.7 680.8 765.9 851.0 936.0
m.p. (0C)
b.p. (°C/mbar) 100/13
300 98-99/20 255 >350 >350 >350 >350 330-335 338-340 327-330 330 325
Refs. 104,105 91 104 84 84,85,87 84 84 84 84 84 84 84 84
8.1.1.5. Linear Oligo(amides) of C-Dimethyl-(3-Alanines H[NHC(R!) 2 C(R 2 ) 2 CO] n OH 8.1.1.2. Cyclic Oligo(amides) of f3-Alanine r [NH(CH 2 ) 2 CO] n -| n 1 2 3 4 5 6 7 8 9 10 11
MoI. wt.
m.p (0C)
Refs.
71.1 142.2 213.2 284.3 355.4 426.5 497.6 568.8 639.7 710.8 781.8
74-74.5 298-299 >360 353 327 360 341 >360 349 >350 >350
6,104,113 4,8,9,72,84,114,116 4,10,84,88,93,101,114,116 4,10,84,114,116 84,114,116 114,116 114,116 114,116 114,116 116 116
Ri
R2
n
MoI. wt.
m.p. (0C)
H
CH 3
CH 3
H
1 3 6 1 3
117.1 315.4 612.8 117.1 315.4
239 209-212 207.5-210.5 217 182-184
R2
n
CH 3
H
1 3
MoI. wt. 103.1 273.3
m.p. (0C) 188-189 240-241
8.1.1.6. Cyclic Oligo(amides) of C-Dimethyl- p-Alanines
Ri
R2
n
MoI. wt.
m.p. (°C)
H
CH 3
1 3 4 5 6 7 8 9 10 11 12 1 3
99.1 297.4 396.5 495.7 594.8 693.9 793.1 892.3 991.3 1090.5 1189.6 99.1 297.4
255-259.5 270 257 310 290 256 315 252 315 245 16-17 257-258
Refs. 102 92
106 94 94 103 95
n [NHC(R 1 ) 2 C(R 2 ) 2 CO]^- ]
8.1.1.3. Linear Oligo(amides) of C-Methyl- $-Alanines H[NHCHR i CHR 2CO] nOH Ri
Refs.
CH 3
H
b.p. (°C/mbar) 70-73/1.1
112/20
Refs. 107 84,91 84 84 84,91 84 84 84 84 84 84 104,105 91
8.1.2. OLIGO(AMIDES) OF y-AMINOBUTYRIC ACID (NYLON 4)
8.1.3. OLIGO(AMIDES) OF-5-AMINOVALERIC ACID (NYLON 5)
8.1.2.1. Linear Oligo(amides) H[NH(CH2)3CO]«OH
8.1.3.1. Linear Oligo(amides) H[NH(CH2)4CO]«OH
n 1 2 3 4 6 8 10 12 16 20
0
MoL wt.
m.p. ( C)
Refs.
103.1 188.2 273.4 358.4 528.6 698.8 869.0 1039.3 1379.6 1719.4
204-205 186 198-199 202-203 196-198 206-208 199-203 208 207-209 206-208
11 4,7,12 4 4 133 133 133 133 133 133
8.1.2.2. Cyclic Oligo(amides) ^[NH(CH2)SCO]n-]
n 1 2 3 4 6 8 10 12 14
MoI. wt.
m.p. (0C)
85.1 170.2 255.3 340.4 510.6 680.9 851.1 1021.3 1191.5
24 283 242-243 255 303 298 312 301 >355
n
MoL wt.
m.p. (0C)
Refs.
1
117.2
160-162
17
2 3 4
216.3 315.4 414.5
178 184-185.5 196.5-198.5
18 18 18
8.1.3.2. Cyclic Oligo(amides) r—[NH(CH2)4CO]/ri n
MoI. wt.
1
98.1
2 3 4
198.3 297.4 396.5
m.p. (0C)
Refs.
39-40
14,17,19
295-296 329-331 266-267
8,18 18 18
Refs. 13,14 4,10,70,71,73 4,10 4,10,70 10,135 135 135 135 135
8.1.3.3. Cationic Oligo(amides)
R
n
MoI. wt.
m.p. ( C )
Refs.
1 0
234.5 216.5
114 93-94
89 89
1
315.5
138
89
8.1.3.4. Amidino-Oligo(aminovaleric Acids)
8.1.2.3. Anionic Oligo(amides)
n
MoI. wt.
m.p. (0C)
0 1
189.2 274.3
92.5 121
Refs. 15 16
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3
198.3 297.4 396.5
166-168 92-94 112
89,118 89 89
8.1.2.4. Cationic Oligo(amides)
R
n
MoI. wt.
1
206.5
m.p. (0C)
Refs.
8.1.4. OLIGO(AMIDES) OF E-AMINOCAPROIC ACID (NYLON 6) 8.1.4.1. Linear Oligo(amides) H[NH(CH2) 5 CO] n OH
181
71,89,118 n
0 1
188.7 273.5
156 162
89,119 89
8.1.2.5. Amidino-Oligo(aminobutyric Acids)
n 1 2 3
MoI. wt. 170.2 255.3 340.4
m.p. (0C)
Refs.
175-177 175 162-163
89,118,121 89 89
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17
MoI. wt.
m.p. (0C)
131.2 244.3 357.3 470.6 583.8 697.0 810.1 923.3 1036.5 1149.6 1262.8 1375.9 1489.1 1602.3 1715.3 1941.5
206-208 204-205 208-209 220-221 214-215 212-214 210-211 210-211 208-211 212-213 209-212 211-213 210-211 207-208 207-208 209-211
Refs. 20,21 22-24,136 23-25,69,136 23,24,36 23,69,136 23,24,136 23,69,136 23 26,69 26 26,69 26 69 136 69 69
8.1.4.1.
cont'd 8.1.4.5. Anionic Oligo(amides)
n
m.p. ( 0 C)
MoI. wt.
Refs.
18
2054.9
206-209
136
21 22 25 26 30 34 38
2394.5 2507.5 2847.0 2960.2 3412.8 3865.5 4318.1
212-213 209-211 212-213.5 209-211 210-213 211-214 214-217
69 136 69 136 136 136 136
R
n
MoI. wt.
m.p. ( 0 C)
Refs.
H-C 4 H 9
1 2 3 1 2 3
222.8 335.9 449.1 256.8 369.9 483.1
143 176 189 164.5 179 194-195
122 122 122 122 122 122
0 1 2 3
b.p. (°C/mbar)
155.2 268.5 381.5 494.7
nff
123/21
J?f
1.4898 1.4992
0.76 0.67 0.58
Refs.
32 33 33 33
"PC: solvent, tetrahydrofuran/cyclohexane/water (186:14:10).
n
MoI. wt.
m.p. ( 0 C)
1 2 3
226.3 339.5 452.6
168 120 154
8.1.4.4. Amidino-Oligo(aminocaproic
R
n
MoI. wt.
1 2 3 0 1
262.8 375.9 489.1 244.8 357.9
8.1.4.7. End-group Protected
8.1.4.3. Arnidino-Oligo(aminocaproic Acids)
m.p. ( 0 C)
Refs.
112 Oil Oil 137 106-108
120 120 120 89,120 120
Oligo(amides)
C2H5CO-[NH(CH2)SCOL-NHC3H7
Refs. 120,128 120 120
Amides)
0
R
n
MoL wt.
m.p. ( C)
Refs.
M-C4H9
0 1 2 0 1 2
168.3 281.4 394.6 202.3 315.5 428.6
53 129 148-150 76-78 135 157
122 122 122 122 122 122
CH2C6H5
MoI. wt.
8.1.4.6. Cationic Oligo(amides)
8.1.4.2. Oligo(aminocapmic Amides) H+[NH(CH 2 ) 5 CO] n -NHR C L "
CH2C6H5
n
m.p. ( 0 C)
n
MoI. wt.
Refs.
1 2 3 4 5 6 7 8 9 10 11
228.3 341.5 454.7 567.8 681.0 794.2 907.3 1020.5 1133.6 1246.8 1360.0
106 149 172 181 187 191 197 200 201 201 204
31,112 31,112 31,112 31 31,112 31,112 31,112 31,112 31,112 31,112 31
12 13 14 15 16
1473.1 1586.3 1699.3 1812.6 1925.8
202 200 205 206 206
31,112 31 31 31 31
8.1.4.8. Cyclic Oligo(amides) RF
na 1 2 3 4 5 6 7 8 9
MoI. wt.
m.p. ( 0 C)
TCW*
EAWC
113.2 226.3 339.5 452.6 565.8 678.9 792.1 905.3 1018.4
69.5 348 244 256-257 254 260 243 254 245
0.56 0.48 0.34 0.25 0.16 0.10 0.08 0.04 0.02
0.88 0.81 0.77 0.69 0.59 0.49 0.40
Refs. 14,17,27,78 4,24,28,29,45,78,98,110,111,112,148 4,24,28,29,45,78,98,111,112,147 4,24,28,29,45,78,98,111,112 4,24,29,78,98,111,112 4,24,29,60,98,111,112 29,30,60,98,111 29,30,60,98,111 29,30,68,138
8.1.4.8. cont'd RF
na
MoL wt.
10 11 12 13 14 15 16 18 20 21 22 24 25 26 27 28 30 32 33 34 36 38 40 48 50 55 56 60 64 70 72 80 90 100
m.p. (°C)
1131.8 1244.8 1357.9 1471.1 1584.3 1697.4 1810.6 2036.9 2263.2 2376.4 2489.5 2715.9 2829.0 2942.2 3055.3 3168.5 3394.8 3621.2 3734.3 3847.5 4073.8 4300.1 4526.4 5431.7 5658.1 6223.9 6337.0 6789.7 7242.3 7921.3 8147.6 9052.9 10184.5 11316.1
TCW b
EAWc
Refs.
257 249 262 249 263 256 261 263 259 248 250 252 249 246 244 247 255 248 231 231 228 230 235 234 229 226 229 227 226 225 225 224 222 221
117,137 138 117,137 138 117,137 138 117,137 117,137 117,137 138 117,137 117,137 138 137 138 137 117,137 137 138 137 137 137 137 138 138 138 138 138 138 138 138 138 138 138
a
n = 2-40: HPLC (trifluoroethanol/water mixtures), Ref. 117; n = 2-18: FD-MS, Ref. 117; n = 2-100: HPLC (trifluoroethanol/water, gradient elution, Ref. 138. PC, TLC: solvent, tetrahydrofuran/cyclohexane/water (186:14:10). PC, TLC: solvent, ethyl acetate/acetone/water (10:10:2), Refs. 29,134.
b
C
8.1.5. OLIGO(AMIDES) OF HIGHER co-AMINO ACIDS
8.1.5.2. Cyclic Oligo(amides) [— [NH(CH2^CO]n-[
(NYLON 7-12)
x
8.1.5.1. Linear Oligo(amides) H[NH(CH2) ^CO]nOH x 6 7 8 10
11
n 1 2 1 2 1 2 1 2 3 4 5 10 1 2
MoL wt. 145.2 272.4 159.2 300.4 173.3 328.5 201.3 384.6 567.9 751.2 934.5 1850.8 215.3 412.6
0
m.p. ( C) 195 205-208 188 191-192 184 184-186 186-187 189-190 183-184 177-179 177-178 181-182 186-187 192-193
n 6
Refs. 34,35 36 4,37 4,38 4,34 4 34,38,39 4,40,140 5,40,115,140 40,63,115 63 63,67 41 31
6
7
8 9
1 2 3 4 5 6 8 10 1 2 3 4 5 6 1 2 1 2
MoL wt.
m.p. (0C)
Refs.
127.2 254.4 381.6 508.8 636.0 763.2 1017.5 1271.9 141.2 282.4 423.6 564.8 706.0 847.2 155.3 310.5 169.3 338.4
29-30 236-237 259-261 215-216 236 244-245 258-259 262-263 72-73 277 217 219 215 215 138-139 201 162 238
14,17,42 4,10 89 89 89 89 89 89 13,14,34,42 4,10,76,77 89 82,89 89 89 14,42 4,10 14,42 10,144
8.1.5.2. cont'd x
n 10 10
11
14
8.1.6.4. Linear Oligo(amides) of p-Aminobenzoic Acid
m.p. (0C)
MoI. wt.
1 2 4 5 6 7 8 9 3 1 2 3 2
183.3 366.6 741.2 926.6 1111.9 1297.2 1482.5 1667.8 549.9 197.3 394.6 531.9 478.8
155 188-189 203 204 217 205 221 201 184 155 212 175 182
Refs. 42,43,75 4,10,44,75,98 140 140 140 140 140 140 44,60,75,98 13,14,42,75 60,61,75,98,115 31,75 139
R
n
MoI. wt.
m.p. (0C)
H
2 3 2 3 4
256.1 375.4 284.1 403.2 522.2
276 >310 176 >266 >330
C2H5
Refs. 86 86 86 86 86
8.1.6.5. Cyclic Oligo(amides) of 4-Amino-2,3-dihydroquinoline3-Carboxylic Acid
8.1.6. OLIGO(AMIDES) OFAROMATIC AMINO ACIDS 8.1.6.1. Linear Oligo(amides) of o-Aminobenzoic Acid
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 4
137.1 256.3 375.4 494.5
146 203-204 256 d
46-48 46,123,124,131 46,131 46
R
n
MoI. wt.
m.p. (0C)
H-C3H7 CH 2 C 6 H 5
4 4
857.0 1049.2
198 206
Ref. 97 97
8.1.7. CYCLIC DIAMIDES OF ALIPHATIC DICARBOXYLIC ACIDS AND DIAMINES j — [NH(CH2^NH- CO(CH2)xCO]n-| n
MoI. wt.
m.p. (0C)
6 7 8
1 1 1 1 2 3 4 1 1 1
142.2 170.2 198.3 226.3 452.6 679.0 905.3 254.3 282.4 310.5
201 238 304 337 234 246 244 238 267 209
9 10 11 12
1 1 1 1
338.5 366.6 394.6 422.7
228 195 206 186
x
Refs.
8.1.6.2. Cyclic Oligo(amides) of o-Aminobenzoic Acids 2 3 4 5
Ri H CH 3
R2 H H
C 6 H 5 CH 2
H
CH 3
CH 3 CH 3
n
MoI. wt.
m.p. (0C)
Refs.
2 2 3 4 2 3 3 3
238.2 266.3 399.2 532.2 418.2 627.3 669.3 441.2
335-337 207 >320 >300 158-159 260-263 260-263 >300
47,125-128,131 47 131 130 131 131 129 129
142 49,50,74,139 49,51,139 49,139 143 143 143 49,51,139 49,139 8,49,139,146
49,139,147 8,49,139 139 139
8.1.8. OLIGO(AMIDES) OFADIPIC ACID AND HEXAMETHYLENE DIAMINE (NYLON 6.6) 8.1.8.1. Linear Oligo(amides) H[NH(CH 2 ) 6 NH-CO(CH 2 ) 4 CO] n OH 8.1.6.3. Cyclic Oligo(amides) of m-Aminobenzoic Acids n
R
n
MoI. wt.
CH 3
3
399.2
m.p. (0C) >320
Ref. 132
1 2 3 4 5 10
MoI. wt.
m.p. (0C)
Refs.
244.3 470.7 696.9 923.3 1149.5 2281.1
193 221-222 246-248 247-249 247-250 250-255
52,53 52,53,63 52,53,63 31,63,65 31,63,65 63
8.1.8.2. End-Group Protected
Oligo(amides)
8.1.8.3. Oligomeric Diamines H 2 f [NH(CH 2 )6NH-CO(CH 2 )4CO] w -NH(CH2)6NHj 2Cl"
8.1.8.2.1. OLIGOMERIC DICARBOXYLIC ACID DIPROPYLAMIDES
C3H 7 NH-CO(CH2)4CO-[NH(CH2)6NH-CO(CH2)4CO] n -NHC3H7 0
n
MoI. wt.
m.p. ( C)
Refs.
1 2 3 4 5
454.7 681.0 907.3 1133.6 1359.9
229-230 239-242 248-250 257-260 258-261
64 64 64 64 64
n
MoI. wt.
m.p. ( 0 C)
Refs.
1 2 3 4 5
415.4 641.7 868.0 1094.4 1320.7
248-250 249-251 252-254 251-254 252-255
65 65 65 65 65
8.1.8.4. Oligomeric Dicarboxylic Acids 8.1.8.2.2. OLIGOMERIC DIPROPIONYL DIAMINES
HOOC(CH 2 ) 4 C O - [NH(CH 2 ) 6 NH-CO(CH 2 ) 4 CO] »OH
C2H 5 CO-[NH(CH2)6NH-CO(CH2)4CO] n -NH(CH2)6NH-COC 2 H5 n
MoI. wt.
m.p. ( 0 C)
Refs.
n
MoI. wt.
m.p. ( 0 C)
Refs.
1 2 3
454.7 681.0 907.3
202-203 226-228 229-231
64 64 64
1 2 3 4
372.4 598.7 825.0 1051.3
188-189 200-205 210-211 214-219
56 56,57 56 31
8.1.8.5. Cyclic Oligo(amides) na
MoI. wt.
m.p. ( 0 C)
TCW*
EAW C
1 2 3 4 5 6 7 8 9 10 12 14 16 18 20
226.3 452.6 678.9 905.3 1131.6 1357.9 1584.3 1810.6 2036.9 2263.2 2715.9 3168.5 3621.2 4073.8 4526.4
254 243-244 235 273 279 279 291 282 280 280 280 292 284 275 270
0.47 0.28 0.13 0.06
0.51 0.38 0.23 0.16
a
Refs. 51,53-55,62,80,81,90,98,108 53-55,62,80,81,90,98,109 53,55,62,98 53,60,62,98 149 149 149 149 149 149 149 149 149 149 149
n = 1-20: HPLC (trifluoroethanol/water, gradient elution), Ref. 149. PC, TLC: solvent: tetrahydrofuran/cyclohexane/water (186:14:10). PC, TLC: solvent: ethyl acetate/acetone/water .(10:10:2).
fe C
8.1.9. OLIGO(AMIDES) OF SEBACIC ACID AND HEXAMETHYLENEDIAMINE (NYLON 6.10)
8.1.9.3. Oligomeric Diamines H[NH(CH 2 ) 6 NH-CO(CH 2 ) 8 CO] n -NH(CH 2 ) 6 NH 2
8.1.9.1. Linear Oligo(amides)
H[NH(CH 2 ) 6 NH-CO(CH 2 )8CO] M OH 0
n
MoI. wt.
m.p. ( C)
Refs.
1 2 3
300.4 582.8 865.3
187-188 196-199 208-210
58 63,67 63,67
n
MoI. wt.
m.p. ( 0 C)
Refs.
1 2 3
398.6 681.1 963.5
129-131 177-179 203-210
57,58 58 58
8.1.9.4. Oligomeric Dicarboxylic Acids 8.1.9.2. Cyclic Oligo(amides) f~ [NH(CH 2 ) 6 NH~CO(CH 2 ) 8 CO] n -| HOOC(CH 2 ) 8 CO-[NH(CH 2 ) 6 NH-CO(CH 2 ) 8 CO] WOH n 1 2 3
MoI. wt. 282.4 564.8 847.3
m.p. ( 0 C) 232 222 221
Refs. 51,98,145 58,60,98,145 145
n
MoI. wt.
m.p. ( 0 C)
Refs.
1 2 3
494.6 767.1 1049.5
156-159 182-184 181-185
57,58 57,58 58
8.1.10. OLIGO(AMIDES)OFDECANEDICARBOXYLICACIDAND p,p '-DIAMINO-DICYCLOHEXYLMETHANE (QIANA TYPE)
8.1.13. OLIGO(AMIDES) OF A^-DIALKYLETHYLENEDIAMINE AND DICARBOXYLIC ACIDS 8.1.13.1. Aliphatic Dicarboxylic Acids [-NRCH2CH2NR- CO(CH2)xCO]/n
n 1
Config.
m.p. (0C)
Refs.
trans-trans cis-trans cis-cis
310-314 269-272 254-257
83 83 83
MoI. wt. 404.6
8.1.11. OLIGO(AMIDES) OF OXALIC ACID AND HEXAMETHYLENEDIAMINE [— [NH(CH2)6NH~ COCO]n-^
n
MoI. wt.
1 2 3
170.2 340.4 510.6
m.p. (0C)
Refs.
232 303 345
66 66 66
8.1.12. OLIGO(AMIDES) OF TEREPHTHALIC ACID AND
R
x
C 6 H 5 CH 2
3 5 7
n 2 2 2
MoI. wt.
m.p. (0C)
672.8 729.0 785.1
231-234 199-201 199-204
Refs. 79 79 79
8.1.13.2. Terephthalic Acid
R
n
MoI. wt.
m.p. (0C)
CH 3 C 6 H 5 CH 2
3 3 4 6
654.8 1111.4 1481.8 2222.8
114-123 255-257 143-145 140-144
99 100 100 100
Refs.
Refs.
8.1.13.3. Pyridine-2.5-Dicarboxylic Acid
PENTAMETHYLENEDIAMINE n
MoI. wt.
m.p. (0C)
2
464.3
407
Refs. 59
R
n
MoI. wt.
m.p. (0C)
CH 3
3 4
663.8 885.0
123-129 132-136
99 99
REFERENCES
1. J. H. Ford, Org. Syn., Coll. Vol. Ill, 34; T. W. J. Taylor, J. Chem. Soc, 1897 (1928). 2. H. Th. Hanson, E. L. Smith, J. Biol. Chem., 175, 833 (1948). 3. E. Adams, N. C. Davis, E. L. Smith, J. Biol. Chem., 199, 845 (1952). 4. M. Rothe, Habilitationsschrift, Universitat Halle, DDR, 1960. 5. M. Rothe, Unpublished data. 6. R. W. Holley, A. D. Holley, J. Am. Chem. Soc, 71, 2129 (1949). 7. S. Murahashi, H. Sekiguchi, H. Yuki, Compt. Rend., 248, 1521 (1959). .8. M. Rothe, R. Timler, Chem. Ber., 95, 783 (1962). 9. H. K. Hall, Jr., J. Am. Chem. Soc, 80, 6404 (1958). 10. M. Rothe, Angew. Chem., 74, 725 (1962). 11. C C . DeWitt, Org. Syn., Coll. vol. II, 25 (1943). 12. R. L. Evans, F. Irreverre, J. Org. Chem., 24, 863 (1959). 13. K. Dachs, E. Schwarz, Angew. Chem., 74, 540 (1962). 14. R. Huisgen, H. Brade, H. WaIz, I. Glogger, Chem. Ber., 90, 1437 (1957). 15. S. J. Kanewskaja, Chem. Ber., 69, 266 (1936). 16. H. Sekiguchi, Bull. Sci. Chim. (France), 1835 (1960). 17. O. Wallach, Ann. Chem., 312, 171 (1900); 324, 281 (1902). 18. M. Rothe, R. HoBbach, Makromol. Chem., 70, 150 (1964). 19. N. Yoda, A. Miyake, J. Polym. Sci., 43, 117 (1960).
20. S. Gabriel, A. Maass, Chem. Ber., 32, 1266 (1899). 21. J. C. Eck, Org. Syn., Coll. vol. II, 28 (1943); C. Y. Meyers, L. E. Miller, Org. Syn., Coll. vol. IV, 39 (1963). 22. G. M. van der Want, A. Staverman, Rec. Trav. Chim., 71,379 (1952). 23. H. Zahn, D. Hildebrand, Chem. Ber., 90, 320 (1957). 24. M. Rothe, R-W. Kunitz, Ann. Chem., 609, 88 (1957); Angew. Chem., 68, 414 (1956). 25. G. M. van der Want, H. Peters, P. Inklaar, Rec. Trav. Chim., 71, 1221 (1952). 26. H. Zahn, D. Hildebrand, Chem. Ber., 92, 1963 (1959). 27. C. S. Marvel, J. C. Eck, Org. Syn., Coll. vol. II, 371 (1943). 28. P. H. Hermans, Rec. Trav. Chim., 72, 798 (1953); Nature, 177, 126 (1956). 29. M. Rothe, J. Polym. Sci., 30, 227 (1958). 30. H. Zahn, J. Kunde, Angew. Chem., 70, 189 (1958). 31. H. Zahn, G. B. Gleitsmann, Angew. Chem., 75, 772 (1963). 32. H. A. Offe, Z. Naturforsch, 2b, 182 (1947). 33. K. Gehrke, Faserforsch. Textiltechn., 13, 556 (1962). 34. D. D. Coffman, N. L. Cox, E. L. Martin, W. E. Mochel, F. J. van Natta, J. Polym. Sci., 3, 85 (1948). 35. C. F. Horn, B. T. Freure, H. Vineyard, H. J. Decker. Angew. Chem., 74, 531 (1962). 36. M. Rothe, R. HoBbach, unpublished data. 37. A. G. Goldsobel, Chem. Ber., 27, 3121 (1894).
38. T. Gaeumann, H. H. Guenthardt, HeIv. Chim. Acta, 35, 53 (1952). 39. M. Genas, Angew. Chem., 74, 535 (1962). 40. M. Zahn, H. Roedel, J. Kunde, J. Polym. ScL, 36, 539 (1959). 41. A. Neuberger, Proc. Roy. Soc. A, 158, 68, 84 (1937). 42. L. Ruzicka, M. Kobelt, O. Haefliger, V. Prelog, HeIv. Chim. Acta, 32, 544 (1949). 43. W. Ziegenbein, W. Lang, Angew. Chem., 74, 943 (1962), 44. H. Zahn, J. Kunde, Chem. Ber., 94, 2470 (1961). 45. I. Rothe, M. Rothe, Chem. Ber., 88, 284 (1955). 46. H. Meyer, Ann. Chem., 351, 267 (1907). 47. G. Schroeter, O. Eisleb, Ann. Chem., 367, 101 (1909); Chem. Ber., 52, 2224 (1919). 48. E. Mohr, F. Koehler, H. Ulrich, J. Prakt. Chem., 79, 281 (1909); 80, 1 (1909). 49. J. Dale, R. Coulon, J. Chem. Soc, 182 (1964). 50. G. I. Glover, H. Rapoport, J. Am.Chem. Soc, 86, 3397 (1964). 51. H. Stetter, J. Marx, Ann. Chem., 607, 59 (1957). 52. H. Zahn, R Schmidt, Makromol. Chem., 36, 1 (1959). 53. I. Rothe, M. Rothe, Makromol. Chem., 68, 206 (1963). 54. H. Zahn, F. Schmidt, Chem. Ber., 92, 1381 (1959); H. Zahn, P. Miro, F. Schmidt, Chem. Ber., 90, 1411 (1957). 55. M. Rothe, I. Rothe, H. Bruenig, K.-D. Schwenke, Angew. Chem., 71, 700 (1959). 56. H. Zahn, W. Lauer, Makromol. Chem., 23, 85 (1957). 57. C. D. Cowell, Chem. Ind., 577 (1954). 58. H. Zahn, G. B. Gleitsmann, Makromol. Chem., 60, 45 (1963). 59. H. K. Livingston, R. L. Gregory, Polymer, 13, 297 (1972). 60. P. Kusch, H. Zahn, Angew. Chem., 77, 720 (1965). 61. H. Zahn, H.-D. Stolper, G. Heidemann, Chem. Ber., 98,3251 (1965). 62. H. Zahn., P. Kusch. Chem. Ber., 98, 2588 (1965). 63. P. Kusch, Kolloid-Z., 208, 138 (1966); H. Klostermeyer, J. Halstr0m, P. Kusch, J. Foehles, W. Lunkenheimer, Peptides, 113 (1967), North-Holland Publ. Co., Amsterdam. 64. H. Zahn, O. R Garg, Kolloid-Z., 208, 132 (1966). 65. H. Zahn, P. Kusch, J. Shah, Kolloid-Z., 216/7, 298 (1967); H. Zahn, Z. Ges. Textil-Ind., 66, 928 (1964). 66. O. Vogl, A. C. Knight, Macromolecules, 1, 311, 315 (1968). 67. H. Zahn, P. Kusch, Z. Ges. Textil-Ind., 69, 880 (1967). 68. M. Rothe, U. Kress, unpublished data. 69. M. Rothe, W. Dunkel, J. Polym. ScL, Polym. Lett., 5, 589 (1967). 70. M. Rothe, I. Rothe, Makromol. Chem., 85, 307 (1965). 71. G. I. Glover, R. B. Smith, H. Rapoport, J. Am. Chem. Soc, 87, 2003 (1965). 72. D. N. White, J. D. Dunitz, Israel J. Chem., 10, 249 (1972). 73. T. Winkler, T. Leutert, HeIv. Chim. Acta, 65, 1760 (1982). 74. T. Srikrishnan, J. D. Dunitza, Acta Cryst. B, 31,1372 (1975). 75. R. Feldmann, R. Feinauer, Angew. Makromol. Chem., 34, 9 (1973). 76. J. Marik, J. Mitera, J. Kralicek, J. Stehlicek, Eur. Polym. J., 13, 961 (1977).
77. I. Falgova, J. Kondelikova, J. Kralicek, Angew. Makromol. Chem., 49, 75 (1976). 78. R. Okada, T. Fukumura, H. Tanzawa, J. Polym. ScL, Polym. Lett., 4, 971 (1960). 79. E. Schwartz, A. Shanzer, J. Chem. Soc, Chem. Commun. 634 (1981). 80. P. D. Frayer, J. L. Koenig, J. B. Lando, J. Macromol. ScLPhys. B, 3, 329 (1969). 81. C J . Brown, A. Hill, R. V. Youle, Nature, 177, 128 (1956). 82. Y. Okuno, K. Horita, O. Yonemitsu, Chem. Pharm. Bull., 31, 737 (1983). 83. G. E. Hahn, P. Kusch, V. Rossbach, H. Zahn, Makromol. Chem., 186, 297 (1985). 84. M. Rothe, B. Benz, unpublished data. 85. M. Guaita, L. F. Thomas, Makromol. Chem., 117, 171 (1968). 86. H. Bredereck, H. v. Schuh, Chem. Ber., 81, 715 (1948). 87. L. Trossarelli, M. Guaita, A. Priola, Makromol. Chem., 109, 253 (1967). 88. G. Camino, L. Costa, L. Trossarelli, J. Polym. ScL, Polym. Chem. Ed., 18, 377 (1980). 89. M. Rothe, Ch. Seltenreich, R. HoBbach, H. Emmert, unpublished data. 90. L. E. Alexander, J. Polym. ScL, Polym. Lett. Ed., 10, 759 (1972). 91. J. Lowbridge, E. Mtetwa, R. J. Ridge, C. N. C. Drey, J. Chem. Soc, Perkin Trans. I, 155, (1986). 92. C. N. C. Drey, E. Mtetwa, J. Chem. Soc, Perkin Trans. I, 1587 (1982). 93. D. N. White, C. Morrow, R J. Cox, C. N. C. Drey, J. Lowbridge, J. Chem. Soc, Perkin Trans. II, 239 (1982). 94. C. N. C. Drey, R. J. Ridge, J. Chem. Soc, Perkin Trans. I, 2468 (1981). 95. C. N. C. Drey, J. Lowbridge, R. J. Ridge, J. Chem. Soc, Perkin Trans. I, 2001 (1973). 96. W. Ried, K. Marquardt, Ann. Chem., 642, 141 (1961). 97. H. Berenbold, W-H. Gundel, Ann. Chem., 532 (1978). 98. G. Heidemann, Encycl. Polym. Sci. Technol., 9, 485 (1968). 99. F. Voegtle, W. M. Miiller, Angew. Chem., 96, 711 (1984). 100. F. Behm, W. Simon, W M. Miiller, F. Voegtle, HeIv. Chim. Acta, 68, 940 (1985); F. Voegtle, H. Puff, E. Friedrichs, W. M. Miiller, J. Chem. Soc, Chem. Commun., 1398 (1982). 101. J. L. Van Winkle, J. D. McClure, R H. Williams, J. Org. Chem., 31, 3300 (1966). 102. L. Birkofer, I. Storch, Chem. Ber., 86, 749 (1953). 103. M. D. Slimmer, Chem. Ber., 35, 400 (1902). 104. L. Birkofer, J. Schramm, Ann. Chem., 2195 (1975). 105. R. Graf, Ann. Chem., 661, 111 (1963). 106. D. H. Johnson, J. Chem. Soc. C, 126 (1968). 107. E. Testa, L. Fontanella, Ann. Chem., 625, 95 (1959). 108. M. G. Northolt, L. E. Alexander, J. Phys. Chem., 72, 2838 (1968). 109. M. G. Northolt, Acta Cryst. B, 26, 240 (1970). 110. M. G. Northolt, L. E. Alexander, Acta Cryst. B, 27, 523 (1971). 111. G. Heidemann, H.-J. Nettelbeck, Faserforsch. Textiltechn., 18, 183 (1967).
112. H. Halboth, J. Polym. Sci. C, 729 (1969); H. Halboth, G. Rehage, Faserforsch. Textiltechn., 18, 177 (1967). 113. M. Rothe, A. Haberle, unpublished data. 114. M. Rothe, F. Wehowsky, unpublished data. 115. M. Rothe, W. Fischer, unpublished data. 116. M. Rothe, D. Miihlhausen, unpublished data. 117. M. Rothe, M. Lohmiiller, G. Schmidtberg, unpublished data. 118. M. Rothe, W. Helmling, unpublished data. 119. H. Bredereck, K. Bredereck, Chem. Ber., 94, 2278 (1961). 120. M. Rothe, M. Schlipf, unpublished data. 121. M. Rothe, D. Jacob, unpublished data. 122. M. Rothe, W. Muller, unpublished data. 123. R. P. Staiger, E. B. Miller, J. Org. Chem., 24, 1214 (1959). 124. S. Petersen, E. Tietze, Ann. Chem., 623, 166 (1959). 125. N. S. Dokunikhin, L. A. Galva, J. D. Kraft, Dokl. Akad. Nauk SSSR, 81, 1073 (1951). 126. F. C. Cooper, M. W. Partridge, J. Chem. Soc, 3429 (1954). 127. H. N. Rydon, N. H. P. Smith, D. Williams, J. Chem. Soc, 1900 (1957). 128. D. J. Williams, J. Chem. Soc, Chem. Commun., 170 (1977). 129. S. J. Edge, W. D. Ollis, J. S. Stephanatou, J. F. Stoddart, J. Chem. Soc, Perkin Trans. I, 1701 (1982); S. J. Edge. W. D. Ollis, J. S. Stephanatou, J. F. Stoddart, D. J. Williams, K. A, Woode, Tetrahedron Lett., 2229 (1981). 130. A. Hoorfar, W. D. Ollis, J. F. Stoddart, D. J. Williams, Tetrahedron Lett., 4211 (1980); A. Hoorfar, W. D. Ollis, J. F. Stoddart, J. Chem. Soc, Perkin Trans. I, 1721 (1982). 131. A. Hoorfar, W. D. Oills, J. A. Price, J. S. Stephanatou, J. F. Stoddart, J. Chem. Soc, Perkin Trans. I, 1649 (1982); W. D. Ollis, J. S. Stephanatou, J. F. Stoddart, A. G. Ferrige,
132.
133. 134. 135. 136. 137.
138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.
Angew. Chem., 88, 223 (1976); W. D. Ollis, J. A. Price, J. S. Stephanatou, J. F. Stoddart, Angew. Chem., 87, 169 (1975). F. E. Elhadi, W. D. Ollis, J. F. Stoddart, D. J. Williams, K. A. Woode, Tetrahedron Lett., 4215 (1980); F. E. Elhadi, W. D. Ollis, J. F. Stoddart, J. Chem. Soc, Perkin Trans. I, 1727 (1982). M. Rothe, E. Bigdeli, unpublished data. M. Rothe, Makromol. Chem., 35, 183 (1960). M. Rothe, G. Ries, unpublished data. M. Rothe, M. Schilling, unpublished data. M. Rothe, M. Lohmiiller, U. Breuksch, G. Schmidtberg, Angew. Chem., 106, 2047 (1994); Angew. Chem., Int. Ed. Engl., 33, 1960 (1994). M. Rothe, T. Mohr, B. Trnka, R. Berginski, unpublished data. M. Rothe, E. W. Reinold, unpublished data. M. Rothe, H. Ritsche-Thoma, unpublished data. M. Rothe, E. Gatter, unpublished data. M. Rothe, K. Steiner, W. Knobloch, unpublished data. M. Rothe, K. Kitzelmann, unpublished data. M. Rothe, N. Grtiner, unpublished data. M. Rothe, M. Gehrmann, unpublished data. H. P. GroBmann, J. Schwede, B. Heise, V. Rauschenberger, E. W. Reinold, M. Rothe, Polymer Bull., 32, 653 (1994). J. Dybal, B. Schneider, D. Doskocilova, J. Baldrian, H. Pavlikova, J. Kvarda, I. Prokopova, Polymer, 38,2483 (1997). G. Di Silvestro, R Sozzani, S. Bruckner, L. Malpezzi, C. Guaita, Makromol. Chem., 188, 2745 (1987). M. Rothe, G. Dangel, G. Ries, unpublished data.
8.2. OLIGO(PEPTIDES)
8.2.2. OLIGO(PEPTIDES) OF SARCOSINE
8.2.1. OLIGO(PEPTIDES) OF GLYCINE
8.2.2.1. Linear Oligo(peptides) H[N(CH3)CH2CO]nOH
8.2.1.1. Linear Oligo(peptides) H[NHCH2CO]nOH
n
n
MoL wt.
m.p. (0C)
1 2 3 4 5 6
75.1 132.1 189.2 246.2 303.3 360.3
233-236 210-215 235 240 270 >256d
Refs. 1 2,7,75 3,4,75 4,5,75 4,5,75,78 6
1 2
m.p. (0C)
MoI. wt. 89.1 160.2
211-213 190-191
Refs. 1 13,17,21
8.2.2.2. Cyclic Oligo(peptides) |— [N(CH3)CH2CO]^-I 8.2.1.2. Cyclic Oligo(peptides) [-[NHCH2CO]n-] n n 2 4 5 6 7 8 9 10 11
0
MoI. wt.
m.p. ( C)
114.1 228.2 285.3 342.3 399.4 456.4 513.5 570.5 627.6
309 340 >330 >360 >280 >350 290 290 300
MoI. wt.
m.p. (0C)
142.2 213.3 284.4 355.5 426.5 497.7 568.7 639.8 711.0 853.0
147 221 >350 255 315 296 338 >320
Refs.
Refs. 2,7,79,131,174,177,184 8,9,77,79,80,191,205,206 9,77-80,136 4,8,10,11,77,79,80,131 77,79,131 77,79,131,205 77,79,131 77,79,131 77,79,131
2 3 4 5 6 7 8 9 10 12
>320
13,27,51,61,177,187,191,204 51,191,192,197 51,166,191-195,198 51,191-193,199 17,51,163,166,191,193,200 51,191,193,201 51,191,193,196,202 17,163 193,203 17,163
8.2.3. OLIGO(PEPTIDES) OF L - A L A N I N E 8.2.3.1. Linear Oligo(peptides) H[NHCH(CH 3 )CO] nOH Specific rotation n
MoI. wt.
m.p. ( 0 C)
1 2 3 4 5 6 7
89.1 160.2 231.3 302.3 373.4 444.5 515.6
298 257-263 269-272 >320 >320 >320
8.2.3.2. Endgroup Protected Oligo(peptides)
[ai\D +14.5 -38.5 -85.7 -131.0 -150.0 -167.0
( 0 C)
c (%)
25 27 27 27 27 27
10 0.9 0.6 0.6 0.5 0.3
Solvent 6.0 N HCl 0.2 N HCl 0.2 N HCl 0.2 N HCl 0.2 N HCl 0.2 N HCl
Refs. 1 6,12,15,73,85,138,139 14,15,73,85,138,139 15,16,73,85,138,139 15,16,85,138 15,16,85,138 15
R-[NHCH(CH 3 )CO] n -R'
Specific rotation R'
n
MoI. wt.
m.p. ( 0 C)
BOC
OMe
Zb
OEt
2 3 4 5 6 7 2 3 4 5 6 7 10 2 3 4 5 6 7 8 9 3 4 5 6 7 3 5 6 7 8 9
274.3 345.4 416.5 487.6 558.6 629.7 322.4 393.4 464.5 535.6 606.7 677.8 891.0 363.4 434.5 505.6 576.7 647.7 718.8 789.9 861.0 419.5 490.6 561.6 632.7 703.8 460.5 602.7 673.8 744.9 816.0 887.1
110-111 193-194 >240d >240d >240d >240d 116 192 251-253 250 >275d >275d >250d 135-136 198-200 270-271 >275d >275d >275d >275d >275d 138-140 240-241 >250d >250d >250d 110-111 25Od >275d >275d >275d >275d
R
Mo
MEEA
OEt
Mo
[<x]f? -71.8" -84.8" -84.0* -83.1a -82.0° -79.5a -51.1 -73.0 -95.1 -107.1 -119.3 -125.4 -136.9 -35.4 -62.5 -78.0 -92.0 -102.5 -108.1 -1171.1 -121.6 -70.7 -89.2 -98.5 -108.2 -119.0 -49.9 -87.5 -94.5 -102.3 -104.4 -110.2
c (%)
0.5 0.5 0.5 0.5 0.25 0.25 0.2 0.47 0.48 0.46 0.45 0.45 0.45 0.44 0.20 0.55 0.49 0.20 0.45 0.50 0.44 0.40 0.21 0.23 0.25 0.22
Solvent HFIP HFIP HFIP HFIP HFIP HFIP TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE TFE
Refs. 86,95,102,103 86,87,95,102,103 86,87,95,102,103 86,87,95,102,103 86,87,102,103 86,87,102,103 81-83 14,81-83 81 81-83 81 81 82,83 81 81 81 81 81 81 81 81 81 81 81 81 81 81,84 81,84 81,84 81,84 81,84 81,84
a
t = 22°C. Z-, C 6 H 5 CH 2 -OCO-; BOC-, (CH 3 HC-OCO-; MEEA-, C H 3 O C H 2 C H 2 O C H 2 C H 2 O C H 2 C O - ; -OMe, -CH 3 ; -OEt, -OC 2 H 5 ;
b
- M o , O^
^ N - ; TFE, trifluorethanol; HFIP, Hexafluoroisopropanol.
8.2.3.3. Cyclic Oligo(peptides) P-[NHCH(CH 3 )CO]^ 1 Specific rotation n 2 4 6
MoI. wt.
m.p. ( 0 C)
[<x\D
142.2 284.3 426.5
297 250 >310
-29.6 -68 -210.4
( 0 C) 20 22 20
c (%)
Solvent
1.9 0.5 0.02
H2O DMF H2O
Refs. 6,79,174,183-185 134,135,195,206 136,137
8.2.3.3. cont'd Specific rotation n 7 8 9 10 11
MoI. wt.
m.p. ( 0 C)
[a]D
( 0 C)
497.6 568.6 639.7 710.8 781.8
302 331 321 368 289
-60.5 -62.1 -97.1 -102.7 -133.0
20 20 20 20 20
8.2.4. OLIGO(PEPTIDES) OF O C - A M I N O I S O B U T Y R I C C 6 H 5 CH 2 OCO-[NHC(CH 3 ) 2 COL-OX X
n
MoL wt.
C(CH 3 ) 3
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6
293.4 378.5 463.6 558.7 633.8 718.9 804.0 889.1 974.2 1059.3 1144.4 1229.5 237.2 322.4 407.5 482.5 577.7 662.8
C(CH 3 ) 3
m.p. (0C) 60-1 134 166.5-167.5 178 236 215-218 229-230 247-248 262-263 257-258 271-272 >300 88-89 161-162.5 205-206 243-244 254-256 243-245
c (%)
Solvent
2.1 1.4 1 0.1 0.002
H2O H2O H2O H2O H2O
Refs. 79 79 79 79 79
ACID
Refs. 88,90,91,94 90,91,94 88,91-94 88,89,91-94 88,89,91-94 88,91 91 91 91 91 91 91 90,151,152 151 88,92 88,92 88,92 88
8.2.5. OLIGO(PEPTIDES) OF HYDROPHOBIC AMINO ACIDS (a-AMINOBUTYRIC ACIDS, NORVALINE, VALINE, NORELEUCINE, LEUCINE, ISOLEUCINE, CYCLOHEXYLALANINE, PHENYLALANINE, TRIYPTOPHAN) 8.2.5.1. Linear Oligo(peptides) H[NHCHRCO] n OH Specific rotation R L-VaI -CH(CH 3 ) 2 L-Leu -CH 2 CH(CH 3 ) 2
L-IIe -CH(CH 3 )CH 2 CH 3
n
MoL wt.
[a]D
( 0 C)
1 2 3 1 2 3 4 1 2
117.2 216.3 315.4 131.2 244.3 357.5 470.7 131.2 244.3
+28.8 +10.8 -41.8 +13.9 -13.7 -51.4 - 90.0 +40.6 +17.1
20 25 21 25 23 20 20 20 25
8.2.5.2. Endgroup Protected Oligo(peptides)
c (%)
Solvent
3.4 2.0 2.7 9.1 1.0 3.1 7.6 1 1 1 eq. HCl
6 N HCl H2O INCl 4.5 N HCl INNaOH INNaOH 1 N NaOH 6 N HCl H2O+
Refs. 1 18,19 19 1 18,22-24,74 26 26 1 20
(CH 3 ) 3 COCO-[NHCHRCO] n -OCH 3 Specific rotation
R
n
MoL wt.
L-Abu -CH 2 CH 3
2 3 4 5
302.3 387.5 472.6 557.7
m.p. ( 0 C) 108-109 126-127 228-229 >250
[a]r -5.95 -10.84 -16.72 -20.44
Solvent HFIP° HFIP a HFIP° HFIPfl
Refs. 95 95 95 95
8.2.5.2. cont'd Specific rotation m.p. ( 0 C)
R
n
MoL wt.
L-Nva
6 7 2
642.8 727.8 330.4
>250 >250 95-96
L-VaI
3 4 5 6 7 2
429.5 528.7 627.8 726.9 826.1 330.4
119-120 207-208 220 220 220 166-167
3
429.5
170-171
4
528.7
247-248
5
627.8
>260
6
726.9
>260
7
826.1
>260
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 8 2
358.5 471.6 584.8 698.0 811.1 924.3 358.5 471.6 584.8 698.0 811.1 924.3 358.5 471.6 584.8 698.0 811.1 924.3 1037.5 358.5
63-64 146-147 214-215 >240 >240 >240 141-142 158-159 208-209 >250 >250 >250 158-159 193-194 245 >250d >250d >240d >240d 133-134
3
471.6
175-176
4
584.8
245
5
698.0
>250d
6
811.1
>250d
7 2 3 4 5 6 7 2
924.3 438.6 591.8 745.1 898.3 1051.5 1204.7 426.5
>250d 117-118 171-172 203-204 >240 >240 >240 121-122
3
573.7
173-174
L-NIe
L-Leu
L-IIe
D-alle
L-Cha
L-Phe
[a]r -23.12 -27.21
Solvent
Refs.
HFIP a HFIP a
-48.3 -40.8 -76.7 -77.4 -91.0 -107.5 -103.6 -126.2 -94.3 193.0 +37.8 -144.5 -3.88 -6.51 -6.42 -7.74 -7.26 -7.51 -46.9 -75.1 -92.6 -101.0 -111.1 -120.0 -44.0 -67.6 -83.4 -87.8 -93.9 +13.9 +24.6 +30.1 + 39.9 +48.1 + 58.3 +58.3 + 73.5
TFE* HFA6 TFE* HFA* TFE* HFA* TFE* HFA* TFE* HFA* TFE* HFA* HFIPC HFIPC HFIPC HFIPC HFIPC HFIPC HFA <* HFA rf HFA^ HFA HFA^ HFA TFE' TFE* TFE* TFE* TFE* TFE* TFE* TFE' HFIP* TFE' HFIP* TFE' HFIP*
+55.0 + 94.8 +55.3 + 101.8 +109.4 -43.3 -54.1 -57.7 -61.2 -65.6 -66.9 0.00 -8.7 -15.3 -14.9
TFE' HFTP* TFE' HFIP* HHP* HFIP* HFIP* HFIP* HFIP* HFIP* HHP* TFE' DMF' TFE1 DMF'
95 95 98,102,103,105,113,153 95,97,98,102,103,105,113,153 95,97,98,102,103,105,113,153 95,97,98,102,103,153 97-99,102,103,153 97,98,102,103,153 96,102,103,112,113,115 96,102,103,112,113,115 153 96,102,103,112,113,115 153 96,102,103,112,115,153 96,102,103,153 96,102,103,112,153
rf
rf
95,106 95,106 95,106 95,106 106 106 100,102,104,111 100,102,104,111,153 100,102,104,111,153 100,102,104,111,153 100,102,104,111,153 100,102,104,111,153 56-58,101,102,112,115,116 56-58,101,102,112,115,116 56,57,101,102,112,115,116 56,57,101,102,112,115,116 56,57,101,102,112,115,116 56,101,102 56,101 115,116 115,116 115,116
115,116 115,116 115 110,111,115 110,111 110,111 110,111,114 110,111 110,111 102,107-109,111,112 102,107-109,111,112
8.2.5.2. cont'd Specific rotation R
n
MoI. wt.
m.p. ( 0 C)
4
720.8
196-197
5
868.0
213-214
6
1015.2
223-226
7 8 9
1162.3 1309.5 1456.7
>235 >235 >235
[a]r
Solvent
-22.2 -16.1 -28.3 - 19.2 -25.0 -21.1 -22.1
Refs.
TFE' DMF' TFE' DMF' TFE' DMF' DMF'
102,107-109,111,112 102,107-109,111,112 102,108,109,111 102,108,109,111 108,109 108,109
a
A = 546nm; T = 200C; c = 5x W-4M; a[(7r/18O) rad x cm 2 /gl; HFIP = hexafluoroisopropanol. ^A = 589 nm; T = 25°C; c = 3 x 10 " 3 M (n = 2-6), 3 x 10 ~4 M (n = 7); TFE = trifluoroethanol; HFA = hexafluoroacetone sesquihydrate. c A = 589 nm; T = 22°C; c = 10 ~3 M; HFIP = hexafluoroisopropanol. ^A = 589 nm; T = 25°C; c = 3 x 10 ~3 M; HFA = hexafluoroacetone sesquihydrate. e A = 589 nm; T = 25°C; c = 0.025-0.2%; TFE = trifluoroethanol. ^A = 589 nm; T = 250C; c = 0.6%; TFE = trifluoroethanol. 8 X = 589 nm; T = 210C; c = 0.1%; hexafluoroacetone sesquihydrate. h A = 589 nm; T = 200C; c = 0.1-0.2%; HFIP = hexafluoroisopropanol. 'A = 589nm; Tin TFE = 23°C, in DMF= 18°C; c = 0.2%; TFE = trifluoroethanol.
8.2.5.3. Endgroup Protected Oligo(peptides) ofTryptophan X-[NHCHRCO]n-OCH3 Specific rotation R
X
n
MoI. wt.
m.p. ( 0 C)
2 3 1 2 3 4 5
538.5 721.8 276.3 428.4 580.6 732.7 884.9
196 85-95 108-109 153-154
151-154
[a]f?
c (%)
Solvent
-13
1
MeOH
-2.4 -47.6 -66.8 -65.6 -65.0
1.0 0.5 0.5 0.5 0.5
MeOH MeOH MeOH MeOH MeOH
Refs. 208,225 208 140 140 140 140 140
a
Z- = Benzyloxycarbonyl-.
8.2.5.4. Cyclic Oligo(peptides) ^ [ N H C H R C O ] ^ Specific rotation R
n
MoI. wt.
m.p. ( 0 C)
L-VaI
2
198.3
269-271
L-Leu
2
226.3
5 2 5 2 5 10 2
565.8 226.3 565.8 294.4 735.9 1471.8 372.4
L-IIe L-Phe
L-Trp
( 0 C)
c (%)
Solvent
-77.5
18-22
1.0
CH 3 COOH
207
277
-46.0
20
0.8
CH3COOH
22,25,177,184,185, 188,207
>300 308 357 315-316 250-254 251.5
-71 -60.0
15 18-22
1.0 1.0
EtOH CH3COOH
-100 -124.3 -142 -14.7
25-28 25 20 20
0.2 1.0 0.4
CH3COOH DMF MeOH CH3COOH
132 131,207 131 177,184,185,188 78 131 230,232
[a] D
Refs.
8.2.5.5. Endgroup Protected Oligo(Dipeptides)
R'[NHCHRiCO-NHCHR 2 CO] n -R"* Specific rotation
R''
Ri
R2
n
MoI. wt.
m.p. ( 0 C)
[a]|?
c (%)
Bocfl
OMe
D-VaI L-CH(CH3)2
L-VaI D-CH(CH3)2
Nps"
OEt
L-Leu -CH 2 CH(CH 3 ) 2
L-AIa -CH3
1 2 3 4 6 8 2 3 4 5 6 8
300.4 528.7 727.0 925.2 1321.8 1718.3 567.6 751.8 936.0 1120.2 1304.4 1672.8
110.7 209.6 232.7 261.1 d d 110-111 203-205 257-26Od >270d >270d >270d
-23.7 -17.8 -21.0 -8.9 -6.2 -11.4 -66.5 -96.9 -101.3 -84.6 -50.0 -52.6
1.02 1.00 1.02 1.00 1.12 1.05 2.0 2.0 2.0 2.0 2.0 2.0
R'
a
Solvent
Refs.
CHCl 3 118 CHCl 3 118 CHCl 3 118 CHCl 3 117,118 CHCl 3 118 CHCl 3 118 HFIP/TFE a (1:2) 119 HFIP/TFE (1:2) 119 HFIP/TFE (1:2) 119 HFIP/TFE (1:2) 119 HFIP/TFE (1:2) 119 HFIP/TFE (1:2) 119
Boc- — ten. butyloxycarbonyl-; Nps. = 0-nitrophenylsulfenyl-; HFIP = hexafluoroisopropanol; TFE = trifluoroethanol.
8.2.6. OLIGO(PEPTIDES) OF L - A N D D - P R O L I N E
8.2.6.1. Linear Oligo(all-L-peptides) n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 25 28 30 31 34 37 40
n H[N-CHCO] n OH
MoI. wt.
m.p. ( 0 C)
115.2 212.3 309.4 406.5 503.6 600.7 697.8 794.9 892.0 989.1 1086.2 1183.3 1280.4 1377.5 1474.6 1571.7 1668.8 1765.9 1863.0 1960.1 2057.3 2154.5 2445.7 2737.0 2931.3 3028.5 3320.1 3611.4 3902.7
220-222 144-145 122 170 189 209 228 >280 >280 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300
£ F -Vahies fl 1.00 0.84 0.72 0.60 0.52
1.00 0.91 0.77 0.72 0.66 0.60
1.00 0.92 0.83 0.75 0.70 0.64
1.00 0.95 0.90 0.84 100 0.93
1.00 0.93
1.00 0.92
1.00 0.95 0.93
1.00 0.94 0.90 0.86 0.81
1.00 0.93-530
1.00 0.94
[a]£°*
Refs.
-87 -175 -220 -293 -338 -376 -394 -412 -435 -456 -466 -472 -480 -491 -496 -499 -505 -509 -513 -520 -521 -523 -526 -528 -530 -532 70 -528 -532
1 52,62,69,70,150,171-173 53,62,69,70,150,171-173 62,69,70,150,171-173 62,69,70,150,172,173 62,69,70,150,172,173 62,69,70,150 62,69,70,150 62,69,150 62,69,70,150 62,69,70,150 62,69,70,150 69,70 69 62,69,70 69,70 69 69,70 69 69,70 70 70 70 70 70 70 70 70
a
Paper electrophoresis; buffer; HCOOH/CH3COOH/H2O (1:1:3), 1000-5000V, 40-115mA, 40-240min. *c(%)=l,H2O. 8.2.6.2. Endgroup Protected
Oligo(peptides) n
8.2.6.2.1.tert-BuTYLOXYCARBONYLOLIGO(ALL-L-PROLINES) (CH 3 ) 3 COCO—[N-CHCO] n -OH n 1 2 3 4
MoI. wt. 215.3 312.4 409.5 506.6
m.p. ( 0 C)
R%
[*]$"
Refs.
137-138 191-193 219-220 178
0.84 0.68 0.60 0.53
-105 -153.5 -173 -194
62,72,169,179 62,150,167,179,181 62,150,167,179 62,150,167
8.2.6.2.1. cont'd n
MoI. wt.
m.p. ( 0 C)
R%
5 6 7 8 9 10 11 12 15
603.7 700.8 797.9 894.0 991.1 1088.2 1185.3 1282.4 1573.7
225 247 267 >280 >280 >280 >300 >300 >300
0.47 0.41 0.37 0.33 0.29 0.25 0.23 0.22 0.22
a
[a] Jj**
Refs.
-220 -239 -247 -256 -265 -272 -269 -277 -291
62,150,167 62,150,167 62,150 62,150 62,150 62,150 62,150 62,150 62,150
TLC: solvent, fl-butanol/acetone/acetic acid/ammonia, 1:4/water (9:3:2:2:4). c (%) = 1, CHCl3.
b
8.2.6.2.2. ten-AMYLOXYCARBONYL
OLIGO(ALL-L-PROLINES)
Specific rotation n
MoI. wt.
1 2 3 4 5 6 8
229.3 326.4 423.5 520.6 617.7 714.8 908.0
m.p. ( 0 C)
[<x]D
( 0 C)
c (%)
Solvent
94-95.5 157-159 200-201.5 207.5-208.5 224.5-226 240-242 280
-47.2 -113 -170 -227 -248 -291 -318
21 25 25 24 24 24 22
1.7 2.0 2.2 2.1 2.3 2.1 0.9
EtOH EtOH EtOH EtOH EtOH EtOH EtOH
Refs. 63-68,170,179 64-68,179 64-68,179,182 64-68 64-68 64-68 64-68
8.2.6.2.4.tert-BuTYLOXYCARBONYLOLIGO(D,L-DIPROLINE)
8.2.6.2.3. tert-B UT YLOX YC ARBON YL D,L-OLIGO(DIPROLINES)
BENZYL ESTERS
n 1 2 3 a
MoI. wt. 312.4 506.6 700.8
m.p. (0C) 204 188-189 220-221
[a]^
Refs.
-70.1 -38.8 -32.4
158,165 158 158,159
c ( % ) = l , DMF.
n
MoI. wt.
m.p. (0C)
[a]^
Refs.
2 3 4
612.7 806.9 1001.2
64-66 157-160 146-148
-24.0 -23.2 -20.4
164 164 164
a
c (%) = !, DMF.
8.2.6.3. Cyclic Oligo(peptides) 8.2.6.3.1. CYCLIC OLIGO(ALL-L-PROLINES)
n
MoI. wt.
m.p. (0C)
2 3
194.2 291.3
146 358
MD
(0C)
-151.6 +48.5
19 25
8.2.6.3.2. CYCLIC OLIGO(L,D-DIPROLINES)
n 1 2 3 4 6 9 12
MoI. wt. 194.2 388.4 582.6 776.8 1165.2 1747.8 2330.4
m.p. (0C)
Refs.
194-199 >300d >310d >250d >280d >250d >250d
158,180,185,186 158 158,159 158 158 158 158
C (%)
Solvent
Refs.
0.5 0.48
H2O CH 3 OH
54,55,180,185 53,154-157,162,163,168,176,189,190
8.2.6.3.3. CYCLIC OLIGO(D,L,L-TRIPROLINES)
Specific rotation n
MoI. wt.
m.p. ( 0 C)
1 2 3 4 5
291.2 582.3 873.5 1164.6 1455.8
181-184 304 23Od 25Od 25Od
[a]|?
c (%)
Solvent
1 1 1 1 0.5
H2O H2O H2O H2O H2O
+70.7 -60.9 -114.5 -72.0 -101.8
Refs. 159-163 159-163 159-163 159-163 159-163
8.2.7. OLIGO(PEPTIDES) OF L - A Z E T I D I N E - 2 - C A R B O X Y L I C ACID I 8.2.7.1. Cyclic Oligo(peptides)
I
r[N-CHCO]nH
n
MoI. wt.
m.p. ( 0 C)
2 3 6
166.2 249.3 498.5
207-212 334-340 339-350
[a]f,78fl
Refs.
+8.2 +20.8 -352.0
175 175 175
«c(%) = 0.5, H 2 O.
8.2.8. OLIGO(PEPTIDES) OF L - H Y D R O X Y AND L-MERCAPTO AMINO ACIDS 8.2.8.1. Linear Oligo(peptides) H[NHCHRCO] n OH Specific rotation
L-Ser -CH 2 OH L-Tyr -CH 2 C 6 H 4 OH L-Cys -CH 2 SH1.5HC1 L-Met -CH 2 CH 2 SCH 3
n
MoI. wt.
1 2 1 2 3 1 2 1 2 3
105.1 192.2 181.2 344.4 507.6 121.1 224.2 149.2 280.4 411.6
m.p. ( 0 C)
285-288 181-182
229-231 219-220
[a] D
( 0 C)
c (%)
Solvent 0
+14.5 +14.2 -7.3 +30.1
25 25 25 19
9.3 7 4 4
NHCl NHCl 6.1 N HCl H 2 O + l e q . HCl
+7.6 +35 +23.4 +27.0 -70.0
26 22 20 24 16
12 1 5 2 1
NHCl 0.2 N HCl 3 N HCl H2O H2O
Refs. 1 28,35,139 1 29-31 31 1 37 1 32-34 33
8.2.8.2. Endgroup Protected Oligo(peptides) (CH 3 )3COCO-[NHCHRCO] n -OCH 3 Specific rotation R
n
MoI. wt.
m.p. ( 0 C)
L-Cys(Me) -CH 2 SCH 3
2 3 4 5 6 7 2 3 4 5 6 7
366.5 483.7 600.8 718.0 835.2 952.3 394.5 525.8 656.9 788.1 919.3 1050.5
94-95 104-105 191-192 211-212 >220 >220 66-67 92-96 191-194 236 d 245 d >275
L-Met -CH 2 CH 2 SCH 3
a
HFIP = hexafluoroisopropanol.
[a] D
-29.6 -37.6 -41.4 -48.1 -50.3 -54.8
c (%)
0.003 M 0.003 M 0.03M 0.003M 0.03M 0.03 M
Solvent*
HFIP a HFIP HFIP HFIP HHP HFIP
Refs. 102,121,122,133 102,121,122,133 102,121,122,133 102,121,122,133 102,121,122,133 102,121,122,133 102,123,124,127-129 102,123,124,127-129 102,123,124,127-129 102,123,124,127-129 102,123,124,126-129 102,123-129
8.2.8J.
Formyl-Oligo(L-Methionines)
HCO-[NHCHRCO]n-OH Specific rotation
R
n
m.p. (0C)
MoI. w t .
[<x]D
c (%)
Solvent0
Refs.
L-Met
2
308.4
125-126
-44.8
0.5
HFIP
130
-CH2CH2SCH3
3 4 5 6
439.6 570.8 702.0 833.2
176-177 195-196 216-217 230-231 d
-56.7 -67.2 -63.3 -81.8
0.5 0.5 0.5 0.5
HFIP HFIP HFIP HHP
130 130 130 130
8.2.8.4.
Cyclic
Oligo(peptides)
[-[NHCHRCO] n -J Specific rotation
R
n
MoI. w t .
-CH2OH -CH2C6H4OH
2 2
174.2 326.4
m.p. (0C) 247 277-280
[<x]D
(0C)
c (%)
Solvent*
67.5 -223.8
25 20
2.2 2.4
H2O NaOH
Refs. 35,174,183 36,174
8.2.8.5. Oligo(peptides) of Cystine CyS= —NHCHCO— CH2SSpecific rotation n
m.p. (0C)
MD
(0C)
H-CyS-CyS-OH
222.3
-29
25
1
NHCl
38
H-CyS-CyS-OH I I H-CyS-CyS-OH
444.6
-58.7
26
1
NHCl
37,38
R
a
Solvent
Refs.
HFIP = hexafluoroisopropanol.
8.2.9. OLIGO(PEPTIDES) OF ACIDIC AMINO ACIDS 8.2.9.1. a- and to-Oligo(peptides) of h-Aspartic Acid and L-Glutamic Acid H[NH-X-CO] n OH Specific rotation X
n
MoI. wt.
[a]o
Asp
2
248.2
+18.5
-CHCH2 I
3
363 3
+6
C 0 0 H
GIu -CHCH2CH2COOH GIu -CHCHCH2 2 I C 0 0 H
2
' 478.3 593.4 708.5 147.1 276.3 4 <)5.4 276.3
3
405<4
4 5 6 7
534.5 663.6 792.7 921.8
4 5 6 1 2 3
'° +16.1 +6.1 +8.7 +31.2 +18.2 -7.2 +4.2 ~12 -16.0 -14.8 -17.2 -19.1
(0C)
c (%)
20 20
20 20 20 22.4 24 19 24 20
24 20 20 20
2 2
1 1 2 1 1-2 1.4 1-2 2
1-2 1-5 1-5 1-5
Solvent
Refs.
0.5 N HCl
76
0.5 N HCl 0.5 N HCl 0.5 N HCl 0.5 N HCl 6 N HCl 0.5 N HCl H2O 0.5 N HCl 0.5 N HCl 0.5 N HCl 0.5 N HCl 0.5 N HCl 0.5 N HCl
76 76 76 76 1 42-44 45 43,44,46,47,59,178 48,59,178 59,178 59 59 59,71
8.2.9.2. y-Oligo(peptides) of D-Glutamic Acid Esters H[NH-X-CO] n -OC(CH 3 ) 3 Specific rotation X
n
D-GIu -CHCH2CH2I COOC(CH3)3
MoL wt.
m.p. ( 0 C)
-[a]J?
629.8 ° 1000.2
81-84 125-127.5 126-131
+17.9 +22.3 +27.6
3 4
815
5 6
llg54
>58
8.2.9.3. ai-Oligo(peptides) of y-Unsubstituted L-Glutamic Acid Derivatives
c (%) 3 3 3
+ 2 9 4
3
Solvent
Refs.
MeOH MeOH MeOH
59 59 59
M e 0 H
59
CH 3 CO-[NHCH(CH 2 CH 2 COOH)CO] n -NHC 2 H 5
Specific rotation na
MoI. wt.
[a]|5
c (%)
Solvent
Ref.
1 2 3
216.2 345.4 474.3
-23 -36 -49.5
1 1 1
H2O H2O H2O
226 226 226
a
n = 2-12: ion-exchange chromatography, IR, CD, MS, pK values, Refs. 227,228.
8.2.9.4. <x-Oligo(peptides) of Benzyloxycarbonyl L-Aspartic Acid and L-Glutamic Acid Ethyl Esters C6H5CH2OCO-[NHCHRCO]n-I-NHCHR7COOC2H5 Specific rotation R
R'
Asp -CH 2 COOCH 3
-CH 2 COOC 2 H 5
GIu -CH 2 CH 2 COOCH 3
-CH 2 CH 2 COOC 2 H 5
GIu -CH 2 CH 2 COOC 2 H 5
-CH 2 CH 2 COOC 2 H 5
a
n
MoI. wt.
m.p. ( 0 C)
[a]|f
c (%)
Solvent 0
Refs.
2 3 4 5 6 8 11 14 2 3 4 5 6 7 9 11 2 3 4 5 7 8 9
452.5 581.6 710.7 839.8 968.9 1227.2 1614.5 2001.9 480.5 623.6 766.8 910.0 1053.1 1196.3 1482.5 1768.8 494.5 651.7 808.9 966.0 1280.4 1437.5 1594.7
80-81 127-128 143-144 161-163 175-178 207 d 224 d 233 d 86 124 139 200 250 259 d d 104-105 127-128 137-139 177-178.5 >235 >235 >235
+17.9 -1.01 -13.1 -19.1 -26.6 -35.1 -42.9 -46.0 -12.4 -18.0 -21.3 -22.7 -26.7 -28.7 -32.6 -35.6 -17.9 -27.1 -30.9 -26.5 -20.9 -16.5 -7.6
3.1 3.1 1.1 0.1 0.7 0.5 0.45 0.3 2 2 2 2 2 2 2 2
DCA DCA DCA DCA DCA DCA DCA DCA DCA DCA DCA DCA DCA DCA DCA DCA TFE TFE TFE TFE TFE TFE TFE
49,146 49,146 49,146 49,146 49 49,141,146 49,146 49,146 50,141,146 50,146 50,141,146 50,141,146 50,146 50,141,146 50,146 50,146 43,120,142-145 43,120,142-145 142-145 142-145 142-144 142,143,145 142,143,145
2
1 1
7
DCA, dichloroacetic acid; TI E, trifluoroethanol.
8.2.9.5. a-Oligo(peptides) of Benzyloxycarbonyl L-Aspartic Acid and L- and D-Glutamic Acid co-Alkyl Esters C 6 H 5 CH 2 OCO-[NH-X-CO] n -OR Specific rotation X L-Asp -CHCH2 I COOC(CH3)3
R C(CH 3 ) 3
w
MoI. wt. 2 3
4 5
6
550.7 721 9
893.1
10643
1235.4
m.p. (0C) 70-72 93
"95 97-99 121-123 157-162
[a] D -23.0 ~221 -19.3 -18.7 -20.0
( 0 C)
c (%)
25 25
25 25 25
1 l
Solvent 0 DMF D M F
1 1 1
DMF DMF DMF
Refs. 76 76
76 76 76
8.2.9.5.
cont'd Specific rotation
X
R n
L-GIu -CHCH2CH2I COOCH3
CH 3
MoL wt. 2
452.5 738.6
6 7 2
1319.6 1504.8 578.7
97-98 135-137 135-139 175-179 195-198 206-213 88.5-91 77.5-81.5 95-97 99-102 73-77 74-78 83-84
3
763 9
79
3
595 5
4
D-GIu -CHCH C H I COOC(CH3)3
C(CH 3 ) 3
5
8817
6 7 2 4
1024.8 1153.9 578.7 763 9 949.1
5
11343
3
L-GIu
C(CH 3 ) 3
-CHCH2CH2I COOC(CH3)3
m.p. ( 0 C)
949.1
4 5
11343
6 7
1319.6 1504.8
[<x]D
87-89 102-103.5 123-125 130-132
( 0 C)
c (%)
-25.2 -26.1 -28.2 -30.1 -31.5 -32.8 +27.4 +30.6 +34.5 +36.1 +42.4 +42.9 -25.4
20 20 20 20 20 20 25 25 25 25 25 25 22
5 5 5 5 5 5 3 3 3 3 3 3 1
-30-2 -33.2 -36.8 -39.9 -43.7
21
l
22 23 22.5 21
Solvent 0
Refs.
DMF DMF DMF DMF DMF DMF MeOH MeOH MeOH MeOH MeOH MeOH MeOH
59 59 59 59 59 59 59 59 59 59 59 59 71
M e 0 H
1 1 1 1
MeOH MeOH MeOH MeOH
71
71 71 71 71
8.2.9.6. OL-Oligo(peptides) of Acetyl L-Glutamic Acid Esters CH3CO-[NHCH(CH2CH2COOC2H5)CO]nOC2H5 Specific rotation n
MoI. wt.
2 3 4 5 8
402.4 559.6 716.8 873.9 1345.5
a
m.p. ( 0 C) 94-95 150-151 171 >230 >230
[a]f?
c (%)
Solvent 41
Ref.
-29.1 -31.2 -39.3 -34.9 -17.3
0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5
TFE TFE TFE TFE TFE
142 142 142 142 142
TFE, Trifluoroethanol
8.2.9.7. OL-Oligo(peptides) of o-Nitrophenylsulfenyl
L-Glutamic Acid Amides and Esters N p s f l - [ N H C H ( C H 2 C H 2 C O O C H 2 C 6 H 5 ) C O ] n - R Specific rotation
R
n
NHC 2 H 5
1 2 4 6 2 4 8 12
OCH 2 C 6 H 5
a
MoI. wt.
m.p. ( 0 C)
417.5 636.7 1075.2 1513.6 699.7 1138.1 2014.9 2891.7
92-93 147-148 180-182 233-234 65-67 114-115 198-205 236-238
[<x]D
-40.0 -26.2 -8.2 +7.1
( 0 C)
20 22 25 26
c(%)
1.0 1.0 0.9 0.5
Solvent
Ref.
CHCl 3 CHCl 3 CHCl 3 CHCl 3
147 147 147 148 149 149 149 149
Solvent
Ref.
Nps = o-Nitrophenylsulfenyl.
8.2.9.8. Cyclo-y-Oligo(peptides)
of Glutamic Acid r - [NHCHCH2CH2CO]^-]
I
COOR Specific rotation
R
n
MoI. wt.
m.p. ( 0 C)
[<x]D
( 0 C)
c (%)
H
2 3 4 2 3 4
258.2 387.3 516.5 370.4 555.7 740.9
189-192 235-238 232-236 220-222 203-206 230-232
+14.0 +90.0 +38.5 +23.0 -52.5 -38.0
22 22 22 23 23 23
0.5 0.5 0.45 1 1 0.5
C(CH 3 ) 3
0.1 N HCl 0.1 N HCl 0.1 N HCl DMF DMF DMF
60 60 60 60 60 60
8.2.10. OLIGO(PEPTIDES) OF BASIC L-AMINO ACIDS (LYSINE, ORNITHINE, ARGININE, HISTIDINE) 8.2.10.1. Linear Oligo(peptides) H[NHCHRCO]nOH Specific rotation R
n
Rva
MoI. wt.
( 0 C)
[a]D
c (%)
Solvent
Lys -(CH 2 ) 4 NH 2
1 146.2 0.24 +25.7 25 1.6 6 N HCl 2 274.4 0.17 +5.6 25 2 6 N HCl 3 402.6 0.12 -2.2 24 2 0.5 N HCl 4 530.7 0.09 5 658.9 0.06 n = 2-20: Ion-exchange chromatography, Refs. 209-212; n = 2-22; ORD, pK values, Ref. 209; n = 2 - 5 : CD, Ref. 217. Lys(Boc)* 1 246.3 237-255 +4.7 26 0.88 2 N NH 3 -(CH 2 ) 4 NH-Boc 2 474.6 188 +16.4 20 1 MeOH 3 702.9 185-187 +7.4 20 1 MeOH Arg 2 330.4 224-226° +1780^ 1.4 NHCl -(CH 2 ) 3 -NHCNH 2 3 486.6 227-232* + 1540crf 3.9 NHCl b Il 4 642.7 238-241 + 1030c'<* 1.8 NHCl NH
Refs. 1 39,40 40,41 40 40 219 213,214 214 216 126 216
a
TLC in n-butanol/acetic acid/water/pyridine (30:6:24:20). Boc = tert butyloxycarbonyl-. As flavianates. ^A = 224 nm b c
8.2.10.2. Endgroup Protected Oligo(peptides) X-[NHCHRCO] n -Y Specific rotation R
X
Lys(Boc)* -(CH 2 ) 4 NH-Boc
Y
n
Z
OCH 3
Z
OC(CH 3 ) 3
Z
NHCH 3
Z
OH
Boc Boc
OC(CH 3 ) 3 OH
H Boc
Suco a OCH 2 C 6 H 5
Lys(Z) -(CH 2 ) 4 NH-Z
Boc
OH
Om(Boc) -(CH 2 ) 3 NH-Boc
Z
OCH 3
Z
OCH 3
Lys(Z)* -(CH 2 ) 4 NH-Z
Orn(Boc) Arg(NO2) — (CH2)3— NHCNH2 N-NO2
MoI. wt.
m.p. ( 0 C)
1 394.5 Oil 2 622.8 97-98 4 1079.4 121 8 2192.6 >260 2 664.8 82-84 4 1121.4 143-145 2 721.8 129 4 1078.3 174 8 1991.5 >260 16 3817.7 >260 1 380.4 Oil 2 790.0 112 3 837.0 107 7 1773.2 268 3 802.0 114 4 1031.0 92-95 n = 1,5-8,10,20: TLC, IR, CD 2 732.8 80 3 995.1 140 4 1257.4 156-158 5 1519.7 170 7 2044.3 245-248 2 642.7 97-105 4 1167.3 124-127 8 2216.5 1235-140 1 380.4 71 2 594.7 125 3 809.0 147 4 1023.2 152 5 1237.5 165-171 1 367.4 153-153.5 3 769.7 133-136 4
970.9
139-140
k (nm)
( 0 C)
c (%)
Solvent
-10.6 -5.5 -15.3 -16.4 -10.4 -15.5 •-14.4 -16.6 -18.0 -14.6 -2.4 -3.1 -12.2 -19.0 -5.5 -15.4
589 589 589 589 578 578 589 589 589 589 589 578 589 578 578 589
26 20 22 22 22 20 22 22 22 22 26 22 20 22 22 20
1.9 2.1 2.1 2.1 1 1
2.0 1 1 1 1 1
Acetone Acetone CH3COOH CH3COOH DMF DMF CH3COOH CH3COOH CH3COOH CH3COOH Acetone CH3COOH MeOH DMF DMF MeOH
-14.0 -16.2 -15.7 -16.7 -13.9
578 578 578 578 578
1 1 1 1 1
DMF DMF DMF DMF DMF
-14.4 -15.1 -13.7 -17.8 -5.1
589 589 589 589 589
1.08 1.34 1.1 1 1.05
90% AcOH b 90% AcOH 90% AcOH MeOH DMF
[ah
27 20 20 20 25
Refs. 219 218-220 220 220 213 213 220 220 220 220 219 213 214 213 213 214 213 213 213 213 213 215 215 215 221 221,222 222 221,222 222 216 216 216
8.2.10.2.
cont'd Specific rotation
R
X
His(7t-Bom)fe
a b
BOc
Y OCH 3
w
MoL w t 3 4 5 6 7
904.1 1161.4 1418.7 1676.0 1933.3
m.p. ( 0 C)
[ah
I (nm)
( 0 C)
c (%)
67-69 78-81 93-97 117-122 155-163
-15.5 -21.2 -22.3 -23.3 -23.2
589 589 589 589 589
20 20 20 20 20
0.49 0.49 0.48 0.52 0.52
Solvent MeOH MeOH MeOH MeOH MeOH
Refs. 223 223 223 223 223
Suco=/?-oxymethylbenzylcholestan-3-p-yl succinate. Z- = Benzyloxycarbonyl-; Boc- = tert butyloxycarbonyl-; Ti-Bom-= 7V(7c)-benzyloxymethyl-; AcOH = acetic acid.
REFERENCES 1. J. P. Greenstein, M. Wintz, "Chemistry of the Amino Acids", vol. Ill, Wiley, New York, 1961. 2. E. Fischer, E. Fourneau, Chem. Ber., 34, 2868 (1901). 3. E. Fischer, Chem. Ber., 36, 2982 (1903). 4. M. Rothe, H. Bruenig, G. Eppert, J. Prakt. Chem., 8, 323 (1959). 5. E. Fischer, Chem. Ber., 37, 2486 (1904). 6. E. Fischer, Chem. Ber., 39, 453 (1906). 7. H. F. Schott, J. B. Larkin, L. B. Rockland, M. S. Dunn, J. Org. Chem., 12, 490 (1947). 8. R. Schwyzer, B. Iselin, W. Rittel, P. Sieber, HeIv. Chim. Acta, 39, 872 (1956). 9. M. Rothe, G. Luedke, unpublished data. 10. J. C. Sheehan, W. L. Richardson, J. Am. Chem. Soc, 76, 6239 (1954); J. C. Sheehan, M. Goodman, W. L. Richardson, J. Am. Chem. Soc, 77, 6391 (1955). 11. D. G. Ballard, C. H. Bamford, F. J. Weymouth, Proc. Roy. Soc. A, 227 155 (1955). 12. B. F. Erlanger, E. Brand, J. Am. Chem. Soc, 73, 3508 (1951). 13. F. Sigmund, E. Liedl, Hoppe-Seyler's Z. Physiol. Chem., 202, 268, 275 (1931). 14. E. Brand, B. F. Erlanger, H. Sachs, J. Polatnick, J. Am. Chem. Soc, 73, 3510 (1951). 15. H. Zahn, A. Meifiner, Ann. Chem., 636, 132 (1960). 16. E. Brand, B. F. Erlanger, H. Sachs, J. Am. Chem. Soc, 74, 1849 (1952). 17. M. Rothe, R. Theyson, W. Taiber, unpublished data. 18. M. A. Nyman, R. M. Herbst, J. Org. Chem., 15, 108 (1950). 19. S. Shankman, Y. Schvo, J. Am. Chem. Soc, 80,1164 (1958). 20. T. Sugimura, W. K. Paik, unpublished data. 21. S. P. Datta, R. Leberman, B. R. Rabin, Trans. Faraday Soc, 55, 1982 (1959). 22. E. Fischer, Chem. Ber., 39, 2893 (1906). 23. F. H. Carpenter, D. T. Gish, J. Am. Chem. Soc, 74, 3818 (1952). 24. F. C. McKay, N. F. Albertson, J. Am. Soc, 79, 4686 (1957). 25. M. M. Exner, R. J. Kostelnik, Biopolymers, 16,1387 (1977). 26. E. Abderhalden, R. Fleischmann, Fermentforsch., 9, 524 (1928). 27. Y. Shibata, T. Asahina, Bull. Chem. Soc, Japan, 1, 71 (1927).
28. J. S. Fruton, J. Biol. Chem., 146, 463 (1942). 29. M. Bergmann, L. Zervas, L. Salzmann, H. Schleich, HoppeSeyler's Z. Physiol. Chem., 224, 17 (1934). 30. J. L. Bailey, J. Chem. Soc, 3461 (1950). 31. A. E. Barkdoll, W. F. Ross, J. Am. Chem. Soc, 66, 951 (1944). 32. C. A. Dekker, S. R Taylor, Jr., J. S. Fruton, J. Biol. Chem., 180, 155 (1949). 33. M. Brenner, R. W. Pfister, HeIv. Chim. Acta, 34, 2085 (1951). 34. H. B. Milne, C-H. Peng, J. Am. Chem. Soc, 79, 645 (1957). 35. E. Fischer, Chem. Ber., 40, 1501 (1907); E. Fischer, W. A. Jacobs, Chem. Ber., 39, 2942 (1906). 36. E. Fischer, W. Schrauth, Ann. Chem., 354, 21 (1907). 37. J. R Greenstein, J. Biol. Chem., 121, 9 (1937). 38. N. Izumiya, J. P. Greenstein, Arch. Biochem. Biophys., 52, 203 (1954); R. Wade, M. Wintz, J. P. Greenstein, J. Am. Chem. Soc, 78, 373 (1956). 39. B. F. Erlanger, E. Brand, J. Am. Chem. Soc, 73, 4025 (1951); 72, 3314 (1950). 40. S. G. Waley, J. Watson, J. Chem. Soc, 475 (1953). 41. E. Brand, B. F. Erlanger, J. Polatnick, H. Sachs, D. Kirschenbaum, J. Am. Chem. Soc, 73, 4027 (1957). 42. M. Bergmann, L. Zervas, Chem. Ber., 65, 1192 (1932). 43. S. Goldschmidt, C. Jutz, Chem. Ber., 89, 518 (1956). 44. H. Sachs, E. Brand, J. Am. Chem. Soc, 75, 4608 (1953). 45. D. A. Rowlands, G. T. Young, Biochem. J., 65, 516 (1957). 46. V. Bruckner, M. Szekerke, J. Kovacs, Hoppe-Seyler's Z. Physiol. Chem., 309, 25 (1957). 47. W. L. Le Quesne, G. T. Young, J. Chem. Soc, 1959, (1950). 48. H. Sachs, E. Brand, J. Am. Chem. Soc, 76, 1811 (1954). 49. M. Goodman, F. Boardman, J. Listowsky, J. Am. Chem. Soc, 85, 2483 2491 (1963). 50. M. Goodman, E. E. Schmitt, D. A. Yphantis, J. Am. Chem. Soc, 84, 1283, 1288, 3770 (1962). 51. J. Dale, K. Titlestad, Chem. Commun., 656 (1969). 52. N. C. Davis, E. L. Smith, J. Biol. Chem., 200, 373 (1953). 53. M. Rothe, K.-D. Steffen, I. Rothe, Angew. Chem., 77, 347 (1965). 54. J. Kapfhammer, A. Mathes, Hoppe-Seyler's Z. Physiol. Chem., 223, 43 (1934).
55. E. Abderhalden, H. Nienburg, Fermentforsch., 13, 573 (1933). 56. C. Toniolo, Bipolymers, 10, 1707 (1971). 57. U. Widmer, G. P. Lorenzi, Chimia, 25, 236 (1971). 58. J. E. Shields, S. T. McDowell, J. Pavlos, G. R. Gray, J. Am. Chem. Soc, 90, 3549 (1968). 59. M. Kajtar, M. Hollosi, Acta Chim. Acad. Sci. Hung., 65,403 (1970); M. Kajtar, V. Bruckner, Tetrahedron Lett., 4813 (1966). 60. M. Hollosi, M. Kajtar, Acta Chim. Acad. Sci. Hung., 73,247 (1972); M. Kajtar, M. Hollosi, G. Snatzke, Tetrahedron, 27, 5659 (1971). 61. S. M. McElvain, P. M. Laughton, J. Am. Chem. Soc, 73,448 (1951). 62. M. Rothe, R. Theyson, K.-D. Steffen, Tetrahedron Lett., 4063 (1970). 63. S. Sakakibara, M. Shin, M. Fujino, Y. Shimonishi, S. Inoue, N. Inukai, Bull. Chem. Soc. Japan, 38, 1522 (1965). 64. M. Miyoshi, T. Kimura, S. Sakakibara, Bull. Chem. Soc. Japan, 43, 2941 (1970). 65. T. Isemura, H. Okabayashi, S. Sakakibara, Biopolymers, 6, 307 (1968). 66. H. Okabayashi, T. Isemura, S. Sakakibara, Biopolymers, 6, 323 (1968). 67. H. Okabayashi, T. Isemura, Bull. Chem. Soc. Japan, 43, 20 (1970). 68. H. Okabayashi, T. Isemura, Bull. Chem. Soc. Japan, 43, 359 (1970). 69. M. Rothe, J. Mazanek, Tetrahedron Lett., 3795 (1972). 70. M. Rothe, H. Rott, J. Mazanek, Peptides 1976, Proc. 14th Europ. Peptide Symp., A. Loffet (Ed.), Edition de l'Universite de Bruxelles, p. 309. 71. J. Meienhofer, P. M. Jacobs, H. A. Godwin, I. H. Rosenberg, J. Org. Chem., 35, 4137 (1970). 72. E. Schnabel, Ann. Chem., 702, 188 (1967). 73. A. K. Mitra, I. Ostashevsky, C. F. Brewer, Int. J. Peptide Protein Res., 22, 502 (1983). 74. F. C. Carpenter, D. T. Gish, J. Am. Chem. Soc, 74, 3818 (1952). 75. A. Nakamura, O. Jardetzky, Biochemistry, 7, 1226 (1968); Proc. Natl. Acad. Sci. USA, 58, 2212 (1967). 76. M. Kajtar, M. Hollosi, Zs. Riedl, Acta Chim. Acad. Sci. Hung., 88, 301 (1976). 77. M. Rothe, D. Muhlhausen, Angew. Chem., 88, 338 (1976); Angew. Chem. Int. Ed. Engl., 15, 307 (1976). 78. Y. A. Bara, A. Friedrich, W. Hehlein, H. Kessler, P. Kondor, M. Molter, H.-J. Veith, Chem. Ber., I l l , 1029 (1978); Y. A. Bara, A. Friedrich, H. Kessler, M. Molter, ibid., I l l , 1045 (1978). 79. M. Rothe, E. Frank, G. Schmidtberg, in: K. Brunfeldt (Ed.), "Peptides 1980", Proc. 16th Eur. Peptide Symp., Scriptor, Copenhagen 1981, p. 258. 80. M. Rothe, Hj. Schaeffer, unpublished data. 81. M. Goodman, R. Rupp, F. Naider, Bioorg. Chem., 1, 294, 310 (1971). 82. M. Goodman, M. Langsam, Biopolymers, 4, 275 (1966). 83. M. Goodman, M. Langsam, I. G. Rosen, Biopolymers, 4, 305 (1966).
84. M. Goodman, N. Ueyama, F. Naider, Biopolymers, 14, 901 (1975). 85. I. Schechter, A. Berger, Biochemistry, 5, 3362 (1966). 86. G. M. Bonora, D. Nisato, C. Toniolo, Makromol. Chem., 176,2535 (1975); C. Toniolo, G. M. Bonora, ibid., 176,2547 (1975); J. Polym. Sci., Polym. Chem. Ed., 14, 515 (1976). 87. U. Narayanan, T. A. Keiderling, G. M. Bonora, C. Toniolo, Biopolymers, 24, 1257 (1985). 88. D. S. Jones, G. W. Kenner, J. Preston, R. C. Sheppard, J. Chem. Soc, 6227 (1965). 89. M. Y. AIi, J. Dale, K. Titlestad, Acta Chem. Scand., 27,1509 (1973). 90. D. Leibfritz, E. Haupt, N. Dubischar, H. Lachmann, R. Oekonomopulos, G. Jung, Tetrahedron, 38, 2165 (1982). 91. C. Toniolo, G. M. Bonora, V. Barone, A. Bavoso, E. Benedetti, B. Di Blasio, P. Grimaldi, F. LeIj, V. Pavone, C. Pedone, Macromolecules, 18, 895 (1985). 92. E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, M. Crisma, G. M. Bonora, C. Toniolo, J. Am. Chem. Soc, 104, 2437 (1982). 93. G. M. Bonora, C. Mapelli, C. Toniolo, R. R. Wilkening, E. S. Stevens, Int. J. Biol. Macromol., 6, 179 (1984). 94. R. R. Wilkening, E. S. Stevens, G. M. Bonora, C. Toniolo, J. Am. Chem. Soc, 105, 2560 (1983). 95. C. Toniolo, G. M. Bonora, M. Crisma, F. Bertanzon, E. S. Stevens, Makromol. Chem., 182, 3149 (1981). 96. C. Toniolo, G. M. Bonora, A. Fontana, Int. J. Peptide Protein Res., 6, 371 (1974). 97. C. Toniolo, G. M. Bonora, A. Fontana, Bull. Soc. Chim. BeIg., 84, 305 (1975). 98. G. M. Bonora, A. Maglione, A. Fontana, C. Toniolo, Bull. Soc. Chim. BeIg., 84, 299 (1975). 99. P. Spadon, A. Del Pra, Int. J. Peptide Protein Res., 15, 54 (1980). 100. G. M. Bonora, A. Maglione, C. Toniolo, Polymer, 15, 767 (1974). 101. M. Goodman, F. Naider, C. Toniolo, Biopolymers, 10, 1719 (1971). 102. M. Palumbo, S. Da Rin, G. M. Bonora, C. Toniolo, Makromol. Chem., 177, 1477 (1976). 103. J. S. Balcerski, E. S. Pysh, G. M. Bonora, C. Toniolo, J. Am. Chem. Soc, 98, 3470 (1976). 104. M. M. Kelly, E. S. Pysh, G. M. Bonora, C. Toniolo, J. Am. Chem. Soc, 99, 3264 (1977). 105. E. S. Pysh, C. Toniolo, J. Am. Chem. Soc, 99, 6211 (1977). 106. G. M. Bonora, C. Toniolo, Makromol. Chem., 179, 1453 (1978). 107. C. Toniolo, G. M. Bonora, Gazz. Chim. Ital., 104, 843 (1974). 108. E. Peggion, M. Palumbo, G. M. Bonora, C. Toniolo, Bioorg. Chem., 3, 125 (1974). 109. C. Toniolo, G. M. Bonora, Bioorg. Chem., 3, 114 (1974). 110. G. M. Bonora, C. Toniolo, Gazz. Chim. Ital., 107, 195 (1977). 111. C. Toniolo, G. M. Bonora, M. Palumbo, E. Peggion, E. S. Stevens, Biopolymers, 17, 1713 (1978). 112. M. H. Baron, C. De Loze, C. Toniolo, G. D. Fasman, Biopolymers, 17, 2225 (1978); 18, 411 (1979).
113. C. Toniolo, G. M. Bonora, G. R. Sullivan, W. H. Bearden, J. D. Roberts, J. Org. Chem., 45, 288 (1980). 114. D. R. Rueda, R Spadon, G. Zanotti, Gazz. Chim. Ital., 109, 389 (1979). 115. C. Toniolo, G. M. Bonora, S. Salardi, Int. J. Biol. Macromol., 3, 377 (1981). 116. U. Widmer, G. P. Lorenzi, P. Pino, Biopolymers, 18, 239 (1979). 117. G. P. Lorenzi, L. Tomasic, H. Jaeckle, Makromol. Chem., Rapid Commun., 1, 729 (1980). 118. L. Tomasic, A. Stefani, G. R Lorenzi, HeIv. Chim. Acta, 63, 2000 (1980). 119. R. Katakai, J. Chem. Soc, Perkin Trans. I, 905 (1979). 120. J. Semb, J. H. Boothe, R. B. Angier, C. W. Waller, J. H. Mowat, B. L. Hutchings, Y. Subbarow, J. Am. Chem. Soc, 71, 2310 (1949). 121. G. M. Bonora, A. Maglione, C. Toniolo, Gazz. Chim. Ital., 105, 1055 (1975). 122. R. T. Coffey, E. S. Stevens, C. Toniolo, G. M. Bonora, Makromol. Chem., 182, 941 (1981). 123. F. Naider, J. M. Becker, Biopolymers, 13,1011,1747 (1974). 124. G. M. Bonora, C. Toniolo, Biopolymers, 13, 2179 (1974). 125. M. Goodman, A. A. Ribeiro, F. Naider, Proc. Natl. Acad. Sci. USA, 75, 4647 (1978). 126. F. Naider, J. M. Becker, A. Ribeiro, M. Goodman, Biopolymers, 17, 2213 (1978). 127. A. A. Ribeiro, M. Goodman, F. Naider, J. Am. Chem. Soc, 100, 3903 (1978); Int. J. Peptide Protein Res., 14, 414 (1979). 128. F. Naider, A. A. Ribeiro, M. Goodman, Biopolymers, 19, 1799 (1980). 129. D. J. Paskowski, E. S. Stevens, G. M. Bonora, C. Toniolo, Biochim. Biophys. Acta, 535, 188 (1978). 130. C. Bismara, G. M. Bonora, C. Toniolo, E. L. Becker, R. J. Freer, Int. J. Peptide Protein Res., 26, 482 (1985). 131. M. Rothe, F. Wehowsky, H. Ott, unpublished data. 132. A. Sakurai, Y. Okumura, Bull. Chem. Soc Japan, 52, 540 (1979). 133. C. Toniolo, G. M. Bonora, A. Scatturin, Gazz. Chim. Ital., 105, 1063 (1975). 134. M. Fridkin, A. Patchornik, E. Katchalski, J. Am. Chem. Soc, 87, 4646 (1965). 135. B. V. Rozynov, V. M. Burikov, V. V. Shilin, A. A. Kiryushkin, Zh. Obsh. Khim., 38,2690 (1968); J. Gen. Chem. USSR, 38, 2602 (1968). 136. V. T. Ivanov, V. V. Shilin, Y. Bernat, Y A. Ovchinnikov, Zh. Obsh. Khim., 41, 2318 (1971); J. Gen. Chem. USSR, 41, 2341 (1971). 137. S. L. Portnova, T. A. Balashova, V. F. Bystrov, V. V. Shilin, Y Bernat, V. T. Ivanov, Y. A. Ovchinnikov, Chem. Nat. Compd., 7, 307 (1971). 138. P. Sutton, J. L. Koenig, Biopolymers, 9, 615 (1970). 139. J. Beacham, V. T. Ivanov, P. M. Scopes, D. R. Sparrow, J. Chem. Soc. C, 1449 (1966); J. Beacham, V. T Ivanov, G. W. Kenner, R. C. Sheppard, J. Chem. Soc, Chem. Commun., 386 (1965). 140. M. Ueki, S. Ikeda, T. Handa, Bull. Chem. Soc. Japan, 54, 3865 (1981).
141. P. A. Temussi, M. Goodman, Proc. Natl. Acad. Sci. USA, 68, 1767 (1971). 142. M. Goodman, I. G. Rosen, M. Safdy, Biopolymers, 2, 503 (1964); M. Goodman, I. G. Rosen, Biopolymers, 2, 537 (1964). 143. M. Goodman, Y. Masuda, A. S. Verdini, Biopolymers, 10, 1031 (1971). 144. A. Ribeiro, R. P. Saltman, M. Goodman, Biopolymers, 19, 1771 (1980). 145. M. Goodman, A. S. Verdini, C. Toniolo, W. D. Phillips, F. A. Bovey, Proc Natl. Acad. Sci. USA, 64, 444 (1969). 146. M. Goodman, I. Listowsky, Y Masuda, F. Boardman, Biopolymers, 1, 33 (1963). 147. K. Okahashi, S. Ikeda, Int. J. Peptide Protein Res., 13, 462 (1979); K. Okahashi, S. Ikeda, Biopolymers, 18, 2105 (1979). 148. S. Ikeda, K. Okahashi, Biopolymers, 18, 2115 (1979); T. Imae, K. Okahashi, S. Ikeda, Biopolymers, 20, 2553 (1981). 149. T. Ozaki, A. Shoji, M. Furukawa, Makromol. Chem., 183, 771 (1982). 150. M. Rothe, P. Grauer, unpublished data. 151. M. T. Leplawy, D. S. Jones, G. W. Kenner, R. C. Sheppard, Tetrahedron, 11, 39 (1960). 152. W. J. McGahren, M. Goodman, Tetrahedron, 23, 2017 (1963). 153. U. Narayanan, T. A. Keiderling, G. M. Bonora, C. Toniolo, J. Am. Chem. Soc, 108, 2431 (1986). 154. M. Rothe, R. Theysohn, K.-D. Steffen, M. Kostrzewa, M. Zamani, in: E. Scoffone, (Ed.) "Peptides 1969", Proc 10th Europ. Peptides Symp., North-Holland, Amsterdam, 1971, p. 179. 155. R. Deslauriers, J. C. P. Smith, M. Rothe, Proc. 4th Amer. Peptide Symp., Ed. R. Walter, J. Meienhofer, Ann Arbor Sci. Publ., 1975, p. 91. 156. G. Kartha, G. Ambady, R V. Shankar, Nature, 247, 204 (1974); M. E. Druyan, C. L. Coulter in: R. Walter, J. Meienhofer (Eds.), Proc 4th Amer. Peptide Symp, Ann Arbor Sci. Publ., 1975, p. 85; M. E. Druyan, C. L. Coulter, R. Walter, G. Kartha, G. K. Ambady, J. Am. Chem. Soc, 98, 5496 (1976). 157. H. Kessler, A. Friedrich, W. E. Hull, J. Org. Chem., 46, 3892 (1981). 158. M. Rothe, W. Maestle, unpublished data. 159. M. Rothe, W. Maestle, Angew. Chem., 94, 223 (1982); Angew. Chem. Int. Ed. Engl., 21,220 (1982); Angew. Chem. Suppl., 533 (1982). 160. J. W. Bats, A. Friedrich, H. Fuess, H. Kessler, W. Maestle, M. Rothe, Angew. Chem., 91, 573 (1979); Angew. Chem. Int. Ed. Engl., 18, 538 (1979). 161. J. W Bats, H. Fuess, J. Am. Chem. Soc, 102, 2065 (1980). 162. H. Kessler, W. Bermel, A. Friedrich, G. Krack, W. E. Hull, J. Am. Chem. Soc, 104, 6297 (1982); H. Kessler, W. Bermel, H. Forster, Angew. Chem., 94, 703 (1982); Angew. Chem. Int. Ed. Engl., 21, 689 (1982). 163. W. Maestle, M. Rothe, in: J. Z. Siemion, G. Kupryszewski (Eds.), "Peptides 1978", Proc 15th Eur. Peptide Symp., Wroclaw Univ. Press, Wroclaw, p. 179. 164. M. Maestle, T. Weber, M. Rothe, unpublished data.
165. E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora, Macromolecules, 13, 1454 (1980). 166. T. Sugihara, Y. Imanishi, T. Higashimura, Biopolymers, 14, 723 (1975). 167. C. M. Deber, F. A. Bovey, J. P. Carver, E. R. Blout, J. Am. Chem. Soc, 92, 6191 (1970). 168. C. M. Deber, D. A. Torchia, E. R. Blout, J. Am. Chem. Soc, 93, 4893 (1971). 169. E. Benedetti, M. R. Ciajolo, A. Maisto, Acta Cryst. B, 30, 1783 (1974). 170. E. Benedetti, A. Ciajolo, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora, Int. J. Peptide Protein Res., 14, 130 (1979). 171. M. Rothe, H. Rott, Angew. Chem., 88, 844 (1976); Angew. Chem. Int. Ed. Engl., 15, 770 (1976). 172. Y.-Y. H. Chao, R. Bersohn, Biopolymers, 17, 2761 (1978). 173. A. E. Tonelli, J. Am. Chem. Soc, 92, 6187 (1970). 174. A. Chemizard, S. David, Bull. Soc Chim. France, 184 (1966). 175. R. Boni, A. S. Verdini, C. M. Deber, E. R. Blout, Biopolymers, 17, 2385 (1978); J.-P. Meraldi, E. R. Blout, R. Boni, A. S. Verdini, ibid., 17, 2401 (1978). 176. J. Vicar, P. Malon, A. Trka, J. Smolikova, J. Fric, K. Blaha, Coll. Czech. Chem. Commun., 42, 2701 (1977). 177. K. Blaha, J. Fric, Coll. Czech. Chem. Commun., 35, 619 (1970); K. Blaha, J. Smolikova, A. Vitek, ibid., 31, 4296 (1966); K. Blaha, Z. Samek, ibid., 32, 3780 (1967). 178. H.-J. Burkhardt, H. K. Mitchell, Arch. Biochem. Biophys., 94, 32 (1961). 179. E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora, Biopolymers, 22, 305 (1983). 180. I. Vicar, J. Smolikova, K. Blaha, Coll. Czech. Chem. Commun., 37, 4060 (1972); J. Z. Siemion, Ann. Chem., 748, 88 (1971). 181. M. E. Kamwaya, O. Oster, H. Bradaczek, Acta Cryst. B, 37, 1564 (1981). 182. G. Kartha, T. Ashida, M. Kakudo, Acta Cryst. B, 30, 1861 (1974). 183. H. Brockmann, H. Musso, Chem. Ber., 89, 241 (1956). 184. W. Pickenhagen, P. Dietrich, B. Keil, J. Polonski, F. Nonaille, E. Lederer, HeIv. Chim. Acta, 58, 1078 (1975). 185. C. Eguchi, A. Kakuta, Bull. Chem. Soc. Japan, 47, 2277 (1974). 186. P. E. Young, V. Madison, E. R. Blout, J. Am. Chem. Soc, 48, 5365 (1976). 187. T. Sugihara, Y. Imanishi, T. Higashimura, Biopolymers, 12, 2823 (1973). 188. D. E. Nitecki, B. Halpern, J. W. Westley, J. Org. Chem., 33, 864 (1968). 189. M. Rothe, I. Rothe, T. Toth, K.-D. Steffen, in: H. C. Beyerman, A. van de Linde, W. Maassen van den Brink (Eds.), "Peptides 1966", Proc. 8th Eur. Peptide Symp., NorthHolland Publ. Co., Amsterdam, 1967, p. 8. 190. M. Rothe, R. They son, D. Muhlhausen, F. Eisenbeiss, W. Schindler, in: J. Meienhofer (Ed.), "Chemistry and Biology of Peptides", Proc 3rd Amer. Peptide Symp., Ann Arbor Sci. Publ., Ann Arbor, 1972, p. 51. 191. K. Titlestad, Acta Chem. Scand. B, 29, 153 (1975).
192. J. Dale, K. Titlestad, Acta Chem. Scand. B, 29, 353 (1975). 193. J. Dale, P. Groth, K. Titlestad, Acta Chem. Scand. B, 31, 523 (1977). 194. J. Dale, K. Titlestad, J. Chem. Soc, Chem. Commun., 1403 (1970). 195. J. Dale, K. Titlestad, J. Chem. Soc, Chem. Commun., 255 (1972). 196. K. Titlestad, P. Groth, J. Dale, M. Y. AIi, J. Chem. Soc, Chem. Commun., 346 (1973). 197. P. Groth, Acta. Scand. A, 30, 838 (1976). 198. P. Groth, Acta. Scand. 24, 780 (1970). 199. P. Groth, Acta. Scand. 27, 3419 (1973); K. Titlestad, P. Groth, J. Dale, J. Chem. Soc, Chem. Commun., 646 (1973). 200. P. Groth, Acta. Scand. A, 31, 232 (1977). 201. P. Groth, Acta. Scand. A, 29, 38 (1975). 202. P. Groth, Acta. Scand. 27, 3217 (1973). 203. P. Groth, Acta. Scand. A, 30, 840 (1976). 204. P. Groth, Acta. Scand. 23, 3155 (1969). 205. J. Dale, K. Titlestad, Tetrahedron Lett., 379 (1978). 206. K. Titlestad, Acta Chem. Scand. B, 31, 641 (1977). 207. K. Suzuki, Y. Sasaki, N. Endo, Y Mihara, Chem. Pharm. Bull, 29, 233 (1981). 208. H. Eckstein, Ann. Chem., 2145 (1976). 209. A. Yaron, M. C. Otey, H. A. Sober, E. Katchalski, S. EhrlichRogozinski, A. Berger, Biopolymers, 11, 607 (1972); A. Yaron, E. Katchalski, A. Berger, G. D. Fasman, H. A. Sober, Biopolymers, 10, 1107 (1971). 210. J. W. Stewart, M. A. Stahmann, J. Chromatogr., 9, 233 (1962); in: M. A. Stahmann (Ed.), "Polyamino Acids, Polypeptides, and Proteins", The University of Wisconsin Press, Madison, 1962, p. 95; H. A. Sober, in: M. A. Stahmann (Ed.), "Polyamino Acis, Polypeptides, and Proteins", The University of Wisconsin Press, Madison, 1962, p. 105. 211. O. Grahl-Nielsen, G. L. Trisch, Biochemistry, 8,187 (1969). 212. N. Yu. Kozhevnikova, G. R Vlasov, Zh. Obshch, Khim., 49, 924 (1979); J. Gen. Chem. USSR, 49, 800 (1979). 213. E. Schnabel, Hoppe-Seyler's Z. Physiol. Chem., 357, 1365 (1976). 214. G. P. Vlasov, V R. Glushenkova, T. N. Prokopyuk, Zh. Obshch. Khim., 41, 430 (1971); J. Gen. Chem. USSR, 41, 422 (1971). 215. L. B. Nadezhdina, T. A. Komogorova, G. P. Vlasov, Zh. Obshch, Khim., 51, 214 (1981); J. Gen. Chem. USSR, 51, 187 (1981). 216. H. Ito, I. Ichikizaki, T. Ando, Int. J. Protein Res., 1, 59 (1970). 217. W. L. Mattice, W. H. Harrison, III, Biopolymers, 14, 2025 (1975). 218. H. Yajima, K. Kawasaki, H. Minami, H. Kawatani, N. Mizokami, Y. Kiso, F. Tamura, Chem. Pharm. Bull., 18, 1394 (1970). 219. R. Schwyzer, W. Rittel, HeIv. Chim. Acta, 44, 159 (1961). 220. I. Geczy, Acta Chim. Acad. Sci. Hung., 115, 345 (1984); H. A. Van der Schee, G. I. Tesser, unpublished data. 221. G. I. Tesser, J. T. Buis, Rec Trav. Chim. Pays-Bas, 90, 444 (1971).
222. F. Marchiori, G. Bonn, B. Filippi, V. Moretto, G. M. Bonora, C. Toniolo, Int. J. Peptide Protein Res., 14, 143 (1979); F. Marchiori, G. Bonn, D. Stivanello, V. Moreto, G. Chessa, Hoppe-Seyler's Z. Physiol. Chem., 363, 1483 (1982). 223. G. M. Bonora, C. Toniolo, J. H. Jones, K. N. Rajasekharan, Int. J. Peptide Protein Res., 27, 1 (1986); K. N. Rajshekharan, J. H. Jones, G. M. Bonora, C. Toniolo, Int. J. Peptide Protein Res., 26, 605 (1985). 224. C. Toniolo, G. M. Bonora, I. F. Liischer, C. H. Schneider, Int. J. Peptide Protein Res., 23, 47 (1984). 225. M. Wilchek, A. Patchornik, J. Org. Chem., 28, 1874 (1963). 226. M. Rinaudo, A. Domard, G. Spach, Biopolymers, 12, 2199 (1973); M. Rinaudo, A. Domard, ibid., 12, 2211 (1973).
227. M. Rinaudo, A. Domard, Biopolymers, 14, 2035 (1975); J. Am. Chem. Soc, 98, 6360 (1976). 228. C. Bosso, A. Domard, F. M. Devienne, R. Combarieu, Spectros. Int. J., 3, 81 (1984). 229. R. Guarnaccia, G. R Lorenzi, V. Rizzo, P. L. Luisi, Biopolymers, 14,2329 (1975); R L. Luisi, V. Rizzo, G. P. Lorenzi, B. Straub, U. Suter, R. Guarnaccia, ibid., 14, 2347 (1975). 230. R. Deslauriers, Z. Gronka, K. Schaumburg, T. Shiba, R. Walter, J. Am. Chem. Soc, 97, 5093 (1975). 231. N. Go, H. A. Scheraga, Macromolecules, 6, 525 (1973). 232. H. Edelhoch, R. E. Lippoldt, M. Wilchek, J. Biol. Chem., 243,4799 (1968); H. Edelhoch, R. S. Bernstein, M. Wilchek, ibid., 243, 5985 (1968).
8.3. OLIGO(IMINES) 8.3.1. LINEAR OLIGO(IMINES) 8.3.1.1. Linear Oligo(ethylene imines) H[NHCH2CH2LNH2 n
MoI. wt.
1 2 3 4 7 9
60.1 103.1 146.2 189.2 318.5 404.7
m.p. (0C)
b.p. (°C/mbar)
11.0
116.5/1013 207.1/1013 277.9/1013 333/1013 109-110/11 199-200/1
12.0
d1^ (g/cm3)
jiff
0.8994 0.9586 0.9839 0.9994
1.4536 1.4810 1.4951 1.5015 1.5132 1.5161
Refs. 1,2 1-3 1-4 1-3 2,5 2,5
8.3.1.2. Linear Oligo(alkylene imines) R-[NH(CH ^ 6 NH(CH 2 )Io] n -R' R7
R H
OH
(CH2)ioOH
OH
H
NH(CH2)6NH2
n
MoI. wt.
m.p. (0C)
1 2 3 1 2 3 1 2 3
272.5 526.9 781.4 428.8 683.2 937.7 370.7 625.1 879.6
64-67 70-72 85-86 99-100 90-93 80-84 70-72 86-88 81-85
Ref. 6 6 6 6 6 6 6 6 6
8.3.2. CYCLIC OLIGO(IMINES) [-[NH(CH 2 )J n -I x 2
3 4 5 6
n
MoI. wt.
1 2 4 1 2 1 2 1 2 1 2 3 4 5 6
43.1 86.1 172.3 57.1 114.2 71.1 142.2 85.2 170.3 99.2 198.2 297.5 396.7 495.9 595.1
m.p. (0C)
104 35 14-15
-9
72 42 59-60 45 67-68
b.p. (°C/mbar)
d4 (g/cm3)/°C
55-56/1013 145-146/1013 110/10" 4 63/1013 186-188/1013 88/1013 95/16 106/1013 108-110/16 138/1013
0.8321/24
0.8436/20 0.8520/22.5 0.9020/18 0.8606/20 0.9195/13 0.8864/21
Refs. 2,7,8 8,9 10 11 8,11-13 14 8,13 14 8 8,15,16 13,17,18 17 17 17 17
8.3.2. cont'd x 7 8 9 13
n
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
d4 (g/cm3)/°C
Refs.
1 2 1 2 1 2 1 2
113.1 226.2 127.2 254.5 141.3 282.5 197.4 394.7
-33 26
162/1013
0.8895/20 0.9012/30 0.9021/21
16,19 19 16 20 16 19 16 21
90/32 55
0.8982/21 38 50-51 52
REFERENCES 1. A. L. Wilson, Ind. Eng. Chem., 27, 870 (1935). 2. G. D. Jones, A. Langsjoen, M. M. Ch. Neumann, J. Zomlefer, J. Org. Chem., 9, 125 (1944). 3. H. B. Jonassen, T. B. Crumpler, T. D. O'Brien, J. Am. Chem. Soc, 67, 1709 (1945). 4. F. G. Mann, J. Chem. Soc, 461 (1934). 5. G. S. Whitby, N. Wellman, V. W. Floutz, L. H. Stephens, Ind. Eng. Chem., 42, 445 (1950). 6. H. Zahn, G. B. Gleitsmann, Makromol. Chem., 63, 129 (1963). 7. C. F. H. Allen, F. W. Spangler, E. R. Webster, Org. Syn., 30,38 (1950). 8. J. v. Braun, G. Blessing, F. Zobel, Chem. Ber., 57, 185 (1924). 9. A. Ladenburg, J. Abel, Chem. Ber., 21, 758 (1888). 10. H. Stetter, K.-H. Mayer, Chem. Ber., 94, 1410 (1961). 11. C C . Howard, W. Marckwald, Chem. Ber., 32, 2031, 2038 (1899).
12. E. L. Buhle, A. M. Moore, F. Y. Wiselogle, J. Am. Chem. Soc, 65, 29 (1943). 13. H. Stetter, J. Marx, Ann. Chem., 607, 59 (1958); H. Stetter, H. Spangenberger, Chem. Ber., 91, 1982 (1958). 14. T. S. Stevens, In E. R. Rodd (Ed.), "Chemistry of Carbon Compounds", Vol. IV, Part A, 1st ed., Elsevier, Amsterdam, 1953, p. 61; N. Campbell, ibid., p. 570. 15. K. Ziegler, Ph. Orth, Chem. Ber., 66, 1867 (1933). 16. L. Ruzicka, M. Kobelt, O. Haefliger, V. Prelog, HeIv. Chim. Acta, 32, 544 (1944). 17. H. Zahn, H. Spoor, Chem. Ber., 89, 1296 (1956); 92, 1375 (1959). 18. M. A. Th. Rogers, Nature (London), 177, 128 (1956). 19. A. Mueller, E. Srepel, E. Funder-Fritzsche, F. Dicher, Monatsh. Chem., 83, 386 (1952). 20. A. Mueller, L. Kindlmann, Chem. Ber., 74, 416 (1941). 21. A. Mueller, Chem. Ber., 67, 295 (1934).
8.4.
8.4.4. CYCLIC OLIGO(UREAS)
OLIGO(UREAS)
8.4.1. OLIGO(METHYLENE UREAS) H[NHCONHCH2] ^NHCONH2 n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 5
132.1 204.2 276.3 420.5
218 d 227 231-233 236 d
1,2 1 1,2 2
8.4.2. OLIGO(METHYLENE THIOUREAS) H[NHCSNHCH 2 ] nNHCSNH 2
zw
m.p. (0C)
MoI. wt.
1 2 3
164.3 252.4 340.5
n
MoI. wt.
m.p. (0C)
2
504.6
300-301
5
1 2
422.6 845.1
157-158 180-181
5 5
Refs.
Refs.
198 d 21Od 215 d
3,4 3 3
8.4.5. OLIGO(CARBONYLPIPERAZINES)
3.4.3. OLIGO(METHYLOLTHIOUREAS) R [ N H C S N H C H 2 L O H R
n
MoI. wt.
m.p. (0C)
H
1 2 1 2
106.2 194.3 136.2 224.3
104-105 190-192 d 92 132
CH 2 OH
Refs.
n
MoI. wt.
m.p. (0C)
3,4 3 3 3,4
0 1 2 3
196.3 308.4 420.5 532.7
42-43 177 267 337
Refs. 6,7 7,8 7 7
REFERENCES 1. A. A. Wanscheidt, S. K. Naumova, J. P. Melnikowa, Zh. Obshch. Khim., 10, 1968 (1940); through Chem. Zentralbl., II, 184 (1941). 2. H. Kadowaki, Bull. Chem. Soc. Japan, 11, 248 (1936). 3. H. J. Becher, R Griffel, Chem. Ber., 91, 691 (1958). 4. H. Staudinger, K. Wagner, Makromol. Chem., 12, 168 (1954).
D.
5. S. Foti, P. Maravigna, G. Montaudo, Macromolecules, 15, 883 (1982). 6. B. Ktihn, Chem. Ber., 33, 2900 (1900). 7. R. Schwalm, W. Heitz, Makromol. Chem., 187, 1415 (1986). 8. D. E. Rivett, J. F. K. Wilshire, Aust. J. Chem., 19, 869 (1966).
CARBON CHAIN OLIGOMERS CONTAINING MAIN CHAIN CYCLIC UNITS
TABLE 9. OLIGO(CYCLOPENTYLENES) n
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
df (g/cm3)
1 2 3 4 6
70.1 138.3 206.3 274.5 410.7
-93.9
42.3/1013 190/1013 293-294/1013 369-370/1013 235/0.13
0.7510 0.8646 0.9177 0.9564
TABLE 10.
OLIGO(SPIRANES)
143-146
R
n
MoI. wt.
CH2 (CH 2)2
5 3 5 7 3 5 7 9
216.3 244.4 324.5 406.6 272.5 352.6 432.7 512.8
(CH2)3
m.p. (0C)
Refs. 1,2 1,2 1,2 1
b.p. (°C/mbar)
Refs.
78/0.4 84/0.07 61 107-108 52.5 79.5 103-104 138-140
3 3 3 3 3 3 3 3
120-122/0.07
TABLE 11. OLIGO(XYLYLENES) 11.2. CYCLIC OLIGO(XYLYLENES)
11.1. LINEAR OLIGO(XYLYLENES)
n
MoL wt.
m.p. (0C)
b.p. (°C/mbar)
0-
106.2 210.3 106.2 210.3 106.2 210.3 314.5
-25 66.5 -47.4
144/1013 177-178/127 139/1013 296/1013 138/1013 178/24
1 2 m- 1 2 p1 2 3
13-14 82 141-142
Refs. 5-7 7,8 7,9-12,30 10,13
n
MoI. wt.
m.p. (0C)
0-
208.3 312.5 416.6 208.3 208.3 312.5 416.6
112-112.5 184.5 205 132-133 285-287 170-171 179-182
2 3 4 m- 2 p- 2 3 4
b.p. (°C/mbar)
290/1013
Refs. 5,6,14 5,6 15 10 8,11-13,19,30 10,,13,30 13
TABLE 16. OLIGO(p-PHENYLENE OXIDES)
TABLE 12. OLIGO(STILBENES) n
MoI. wt.
1 2 3 4 5 6 7
180.2 282.4 384.5 486.5 588.7 690.9 793.0
m.p. (0C) 124 265 350-352 360-374 395-400 415-420 425
Refs. 17 16-18 17 16,17 16,17 16,17 16,17
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 4
170.2 262.3 354.4 446.5
28 73 105 142
23,27 23,27 23,27
TABLE 17. OLIGO(p-PHENYLENE SULFIDES)
TABLE 13. OLIGO(BENZYLS) n
MoI. wt.
m.p. (0C)
1 2 3 4 5
168.2 258.3 348.4 438.6 528.7
25.1 82 90 120 153-156
Refs.
20,23 21,23 23 22,23
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 4
186.4 294.5 402.6 510.7
-21.5 80 110 150
23,28 23 23
TABLE 14. OLIGO-(2,5-DIMETHYL-BENZYLS) TABLE 18. OLIGO(p-PHENOXYPHENYLMETHANES)
n
MoI. wt.
1 2 4 6
224.3 342.5 578.8 815.1
m.p. (0C) 60-61 153-154 234-236 262-266
Refs. 22,24 22 22 22
n
MoI. wt.
m.p. (0C)
1 2
350.4 532.7
59 101
Refs. 23 23
TABLE 15. OLIGO(2,3,5,6-TETRAMETH YL-BENZYLS) TABLE 19. OLIGO(DIPHENYLMETHANES)
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 4
280.5 426.7 572.9 719.1
155-156 263-264 305-307 335-337
22,25 22,26 22 22
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 4
168.2 334.5 500.7 666.9
25.1 115 180 240
4,29 4 4
REFERENCES 1. 2. 3. 4. 5.
J. V. Braun, J. Reitz-Kopp, Chem. Ben, 74, 1105 (1941). G. E. Goheen, J. Am. Chem. Soc, 63, 744 (1941). E. Buchta, K. Geibel, Ann. Chem., 678, 53 (1964). M. Busch, W. Weber, J. Prakt. Chem., 146, 1 (1936). W. Baker, R. Banks, D. R. Lyon, F. G. Mann, J. Chem. Soc, 27 (1945). 6. A. C. Cope, S. W. Fenton, J. Am. Chem. Soc, 73, 1668 (1951).
7. G. H. Coleman, W. H. Hoist, R. D. Maxwell, J. Am. Chem. Soc, 58, 2310 (1936). 8. M. Swarcz, J. Chem. Phys., 16, 128 (1948). 9. T. Reichstein, R. Oppenauer, HeIv. Chim. Acta, 16, 1373 (1933). 10. W. Baker, J. F. W. McOmie, J. M. Norman, J. Chem. Soc, 1114(1951).
11. C. J. Brown, A. C. Farthing, Nature (London), 164, 915 (1949); J. Chem. Soc, 3261, 3265, 3270, (1953). 12. D. J. Cram, H. Steinberg, J. Am. Chem. Soc, 73, 5691 (1951). 13. L. A. Errede, R. S. Gregorian, J. M. Hoyt, J. Am. Chem. Soc, 82, 5218 (1960). 14. L. A. Errede, J. Am. Chem. Soc, 83, 949 (1961). 15. E. D. Bergmann, Z. P elchowicz, J. Am. Chem. Soc, 75,4281 (1953). 16. G. Drefahl, G. Ploetner, Chem. Ber., 94, 907 (1961); 91, 1274 (1958). 17. G. Drefahl, R. Kuehmstedt, H. Oswald, H.-H. Hoerhold, Makromol. Chem., 131, 89 (1970). 18. T. W. Campbell, R. N. McDonald, J. Org. Chem., 24, 1246 (1959). 19. H. E. Winberg, E S. Fawcett, W. E. Mochel, C. W. Theobald, J. Am. Chem. Soc, 82, 1428 (1960).
20. A. B. Galun, A. Kaluszymer, E. D. Bergmann, J. Org. Chem., 27, 1426 (1961). 21. E. Connerade, Bull. Soc Chim. Beiges, 44, 411 (1935). 22. G. Montaudo, F. Bottino, S. Caccamese, R Finocchiaro, G. Bruno, J. Polym. Sci. A-I, 8, 2453 (1970). 23. G. Montaudo, G. Bruno, P. Maravigna, P. Finocchiaro, G. Centineo, J. Polym. Sci., 11, 65 (1973). 24. R. C. Huston, D. T. Ewing, J. Am. Chem. Soc, 37, 2394 (1915). 25. C. M. Welch, H. A. Smith, J. Am. Chem. Soc, 73, 4391 (1951). 26. H. Kaemmerer, M. Harris, Makromol. Chem., 66, 215 (1963). 27. H. Staudinger, F. Staiger, Ann. Chem., 517, 67 (1935). 28. E. Bourgeois, A. Fonassin, Bull. Chim. France, 9, 941 (1911). 29. N. Wolf, Chem. Ber., 14, 2031 (1881). 30. J. R. Schaefgen, J. Polym. Sci., 15, 203 (1955).
TABLE 20. PHENOL-FORMALDEHYDE AND RELATED OLIGOMERS
20.1.2.2.
20.1. LINEAR PHENOL-FORMALDEHYDE OLIGOMERS 20.1.1. PHENOL-FORMALDEHYDE OLIGOMERS
0
n
MoI. wt.
m.p. ( C)
Refs.
1 2 3 4 5 6
200.2 306.4 412.5 518.6 624.7 730.8
119-120 158-159 161-162 148-150 203-204 213-214
1-4 2-6 3,4 4,7 4 4
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 4 5
136.1 256.3 376.5 496.7 616.9
70-72 148 183-184 204-205 152-154
61 11,13-16 11 11 61
20.1.2. /7-CRESOL-FORMALDEHYDE OLIGOMERS
20.1.3. p-tert BUTYLPHENOL-FORMALDEHYDE OLIGOMERS
20.1.2.1.
20.1.3.1.
n
MoI. wt.
m.p. (0C)
Refs.
2 3 4 5 6 7 8 9 11
228.3 348.4 468.6 588.7 708.9 829.1 949.2 1069.4 1189.5 1429.8
126 214-215 173 130 215-217 225-230 167-170 205-210 175-180 245
8-10,56-58 8-11,56-58 8,9,56,57 12,56,57 12 12 12 12 12 12
n 1 2 3 4 5 6 7 8 10
MoI. wt.
m.p. (0C)
Refs.
312.5 474.7 636.9 799.2 961.4 1123.6 1285.9 1448.1 1772.6
156 218-220 211 216-217 250 249-250 253-256 224-226 140
17,18,62 17,18,62 17,18,62 17,18,62 17,18,62 17,18 18 17 17
20.1.8. OLIGOMERS WITH CARBONYL AND SULFONYL BRIDGES
20.1.3.2.
20.1.8.1.
n
MoL wt.
m.p. (0C)
Refs.
0 1 2 4
220.4 340.5 460.7 701.0
70-71 125-130 82-84 188-190
61 61 61 61
/i
MoI. wt.
m.p. (0C)
Refs.
1 2
242.3 376.4
106-107 122-123
23,24,56-58 24,56,57
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3
347.2 517.4 687.6
179 238-240 246-252
25 25 25
20.1.4. 2,4,6-MESITOL-FORMALDEHYDE OLIGOMERS 20.1.8.2.
n
MoL wt.
m.p. (0C)
1 2
284.4 432.6
188 257
Refs. 19 19
20.1.5. 4-CARBOXY-PHENOL-FORMALDEHYDE OLIGOMERS
20.2.
OLIGOMERIC PHENOL ALCOHOLS
20.2.1. OLIGOMERICPHENOLALCOHOLS n
MoL wt.
1 2
288.3 438.4
0
m.p. ( C) 305-307 310
Refs. 59 59
20.1.6. 4-BROMO-PHENOL-FORMALDEHYDE OLIGOMERS
n
MoL wt.
m.p. (0C)
1 2
124.1 230.3
86-87 121.5-123
Refs. 3,26 3,27,28
20.2.2. PHENOL DIALCOHOLS
/i
MoL wt.
m.p. (0C)
Refs.
1 2
358.1 543.1
183-184 237-238
1,60 60
20.1.7. /7-CRESOL-ACETALDEHYDE OLIGOMERS
n
MoL wt.
m.p. (0C)
Refs.
1 2
154.2 260.3
101 126-127
29-32 28
20.2.3. /7-CRESOL MONOALCOHOLS R
n
MoI. wt.
m.p. (0C)
Refs.
H H CH3 CH3 CH3
1 2 1 2 3
241.3 373.5 270.4 404.6 538.7
141 214-215 135-135.5 154-155 204-205
20,21 21 22 63 63
n
M o L wt.
1 2 4
138.2 258.3 498.6
m.p. (0C) 107 148
Refs. 8,33,34 8,9,35 36
20.2.4. /7-CRESOL DIALCOHOLS 20.3.2.
n
MoL wt.
1 2 3
168.2 288.3 408.5
m.p. (0C)
Refs.
133-134 151.5 203
13,37 9,35,38,39 9,39,40
n
MoL wt.
m.p. (0C)
Ref.
2
540.7
325-330
46
n
MoL wt.
Refs.
2
916.2
1
1201.5
20.3.3.
20.2.5. p-tert BUTYLPHENOL DIALCOHOLS
n
MoL wt.
m.p. (0C)
Refs.
1 2
210.3 372.5
74-75 117-118
41 18
R
20.2.6. o-HYDROXYDIBENZYL ETHERS
47 43,47
20.4. BRANCHED PHENOL-FORMALDEHYDE OLIGOMERS n
MoI. wt.
m.p. (0C)
Refs. 20.4.1.
2
318.4
85
42
20.3. CYCLIC PHENOL-FORMALDEHYDE OLIGOMERS
MoL wt.
m.p. (0C)
Ref.
158
48
20.3.1. 376.5 X -CH 2 -
R -CH 3 -C(CH3)3
/i MoL wt. m.p. (0C) 4 4
480.6 648.9
300 344-346
5 6 8 -C 6 H 5 4 6 8 -C 6 Hn 4 -CH 2 C 6 H 5 4 -C(CH3)2CH2CH3 4 -C(CH3)2CH2C(CH3)2 4 -CH 2 OCH 2 - -CH 3 4 -C(CH3) 3 3
811.1 973.5 1298.0 728.9 1093.4 1457.8 753.1 785.0 705.0 813.2 600.7 576-8
310 380-381 411-412 407-409 408-410 421-423 330 330 280 333 264-266 245
Refs. 36,43 18,44, 65,66 68 65,66,68 65,66,68 18,66,67 66,67 66,67 18 18 18 18 42 45
20.4.2.
Ri
R2
MoL wt.
m.p. (0C)
Refs.
H H CH3
H CH3 CH3
411.5 453.6 495.6
184-187 185-186
49 30,50 51
20.4.3.
20.5. HYDROQUINONE OLIGOMERS 20.5.1.
Ri
R2
n
MoL w.t
m.p. (0C)
H CH3 CH3
H CH3 CH3
1 1 2
624.7 737.0 1217.5
185-187 207-208 190-191
n
MoI. wt.
m.p. (0C)
Refs.
1 2
300.4 462.5
97-98 146-147
64 64
Refs. 52,53 6,53,54 54
20.5.2.
R
n
MoL wt.
m.p. (0C)
Refs.
H
0 1 0 1 2 3 4
300.4 462.5 328.4 490.6 652.8 815.0 977.2
97-98 192-193 162-163 242-243 283-284 306-307 326-328
64 64 64 64 64 64 64
CH3
REFERENCES
1. C A . Buehler, D. E. Cooper, E. O. Scrudder, J. Org. Chem., 81, 316 (1943). 2. S. R. Finn, J. W. James, C. J. S. Standen, J. Appl. Chem., 4, 497 (1954); S. R. Finn, G. Lewis, N. J. L. Megson, J. Soc. Chem. Ind., 69, 551 (1950); S. R. Finn, G. Lewis, J. Appl. Chem., 1, 524 (1954). 3. D. A. Fraser, R. W. Hall, P. A. Jenkins, A. L. J. Raum, J. Appl. Chem., 7, 689 (1957). 4. H. Kaemmerer, H. Lenz, Makromol. Chem., 27, 162 (1958). 5. H. L. Bender, A. G. Franham, J. W. Guyer, F. N. Apel, T. B. Gibb, Jr., Ind. Eng. Chem., 44, 1619 (1952). 6. A. C. Davis, B. T. Hayes, R. F. Hunter, J. Appl. Chem., 3, 312 (1923). 7. S. Seto, H. Horiuchi, A. Takahashi, J. Chem. Soc. Japan, Ind. Chem. Sect., 58, 378 (1955). 8. H. Kaemmerer, W. Rausch, Makromol. Chem., 24, 152 (1957). 9. M. Koebner, Z. Angew. Chem., 46, 251 (1953). 10. N. J. L. Megson, A. A. Drummond, J. Soc. Chem. Ind., 49,251 T (1930). 11. E. Ziegler, I. Hontschik, L. Milowiz, Montash. Chem., 78,334 (1948). 12. H. Kaemmerer, W. Rausch, H. Schweikert, Makromol. Chem., 56, 123 (1962). 13. K. Auwers, Chem. Ber., 40, 2524 (1907). 14. K. Fries, K. Kann, Ann. Chem., 353, 335 (1907). 15. K. Hultzsch, Chem. Ber., 74, 989 (1941).
16. A. Zinke, E. Ziegler, Chem. Ber., 74, 541 (1941). 17. H. Kaemmerer, K. Haberer, Monatsh. Chem., 95,1589 (1964). 18. A. Zinke, R. Kretz, E. Leggewie, K. Hoessinger, Monatsh. Chem., 83, 1213 (1952). 19. S. R. Finn, J. W. G. Musty, J. Soc. Chem. Ind., 69 (Suppl. No. 1), S 3 (1950). 20. E. Adler, H. V. Euler, G. J. Gie, Arkiv Kemi, 16A, No. 12 (1943). 21. L. M. Debing, Trans. Electrochem. Soc, 90, 277 (1946). 22. H. V. Euler, E. Adler, J. O. Cedwall, Arkiv Kemi, 15A, No. 19 (1942). 23. A. V. Bayer, V. Frewsen, Ann. Chem., 212, 344 (1882). 24. H. Kaemmerer, G. Buesing, H.-G. Haub, Makromol. Chem., 66, 82 (1963). 25. H. Kaemmerer, M. Harris, Makromol. Chem., 62, 18 (1963); J. Polym. Sci. A, 2, 4003 (1964). 26. L. Lederer, J. Prakt. Chem., 50, 223 (1894). 27. S. R. Finn, J. W. James, C. J. S. Standen, Chem. Ind., 188, (1954); J. Appl. Chem., 4, 296 (1954). 28. A. T. Carpenter, R. F. Hunter, J. Appl. Chem., 3, 486 (1953). 29. S. R. Finn, J. W. G. Musty, J. Appl. Chem., 2, 88 (1952). 30. J. H. Freeman, J. Am. Chem. Soc, 74, 6257 (1952). 31. H. Kaemmerer, M. Grossmann, Chem. Ber., 86, 1492 (1953). 32. J. Reese, Angew. Chem., 64, 399 (1952). 33. H. V. Euler, E. Adler, G. Eklund, O. Toerngren, Arkiv Kemi, 15B, No. 9 (1942).
34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54.
O. Manasse, Chem. Ber., 27, 2409 (1894). P. Maitland, D. C. Pepper, J. Soc. Chem. Ind., 61, 66 (1942). B. T. Hayes, R. F. Hunter, J. Appl. Chem., 8, 743 (1958). F. Ullmann, K. Brittner, Chem. Ber., 42, 2539 (1909). F. Adler, Arkiv Kemi, 14B, No. 23 (1941). S. R. Finn, G. J. Lewis, J. Soc. Chem. Ind., 69, 132 (1950). S. Kyrning, Arkiv Kemi, 15A, No. 2 (1941). F. Hanus, E. Fuchs, J. Prakt. Chem., 153, 327 (1939). H. Kaemmerer, M. Dahm, Kunstst. Plast., 6, 1 (1959). B. T. Hayes, R. F. Hunter, Chem. Ind., 193, (1956). A. Zinke, E. Ziegler, Chem. Ber., 77, 264 (1944). K. Hultzsch, Kunststoffe, 52, 19 (1962). H. V. Euler, E. Adler, B. Bergstroem, Arkiv Kemi, 14B, No. 30 (1941). R. F. Hunter, C. Turner, Chem. Ind., 72, (1957). E. Ziegler, Monatsh. Chem., 79, 142 (1948). E. Ziegler, Oester, Chem. Ztg., 49, 92 (1948). A. T. Carpenter, R. F. Hunter, J. Appl. Chem., 1, 217 (1951). A. T. Carpenter, R. F. Hunter, J. Chem. Soc, 2731, (1954). H. Kaemmerer, H. Lenz, Kunststoffe, 51, 26 (1961). A. C. Davis, B. T. Hayes, R. F. Hunter, J. Appl. Chem., 7, 521 (1957). R. F. Hunter, C. Turner, J. Appl. Chem., 7, 528 (1957).
55. H. v. Euler, E. Adler, S. V. Kispeczy, A. M. Fagerlund, Arkiv Kemi, 14A, No. 10 (1940). 56. H.-J. Eichhoff, H. Kaemmerer, D. Weller, Makromol. Chem., 129, 109 (1969). 57. H.-J. Eichhoff, H. Kaemmerer, D. Weller, Makromol. Chem., 132, 163 (1970). 58. H. Kaemmerer, G. Gros, H. Schweikert, Makromol. Chem., 143, 135 (1971). 59. H. Kaemmerer, W. Lotz, Makromol. Chem., 145, 1 (1971). 60. H. Kaemmerer, G. Gros, Makromol. Chem., 149, 85 (1971). 61. M. B. Huglin, G. J. Knight, W. W. Wright, Makromol. Chem., 152, 67, 83 (1972). 62. T. Carins, G. Eglinton, Nature (London), 196, 535 (1962). 63. H. Kaemmerer, A. Kiegel, unpublished results. 64. G. Manecke, D. Zeipner, Makromol. Chem., 129, 183 (1969). 65. C. D. Gutsche, B. Dhawan, K. H. No, R. Muthukrishnan, J. Am. Chem. Soc, 103, 3782 (1981). 66. C. D. Gutsche, Top. Curr. Chem., 123, (1984); Ace. Chem. Res., 16, 161 (1983). 67. C. D. Gutcshe, K. H. No, J. Org. Chem., 47,2708 (1982); C. D. Gutsche, P. F. Pagoria, ibid., 50, 5795 (1985). 68. A. Ninagawa, H. Matsuda, Makromol. Chem., Rapid Commun., 3, 65 (1982).
TABLE 21. OLIGO(PHENYLENES)
21.2. /w-OLIGO(PHENYLENES)
21.1.
21.2.1. LINEARm-OLIGO(PHENYLENES)
0-OLIGO(PHENYLENES)
21.1.1. LINEAR o-OLIGO(PHENYLENES)
n
MoI. wt.
m.p. (0C)
b.p. (0C)
Refs.
3 4 6 8
230.3 306.4 458.6 610.8
59 119 217 320
332 420
1,2 1,3-6 3,5 5
n
MoI. wt.
m.p. (0C)
b.p. (0C)
3 4 5 6 8 9
230.3 306.4 382.5 458.6 610.8 689.9
89 86.5-87.5 117-117.5 148 129-131 195-200
365 419
12-14 3,6,15-17 12,15,16 3,15,17,18 15,17 18
Refs.
Refs.
21.2.2. CYCLIC m-OLIGO(PHENYLENES) n
MoI. wt.
m.p. (0C)
6 8
456.6 608.8
509.5-511 449-451
19 19
21.1.2. CYCLIC o-OLIGO(PHENYLENES)
n
MoI. wt.
m.p. (0C)
2 3 4 6 8
152.2 228.3 304.4 456.6 608.8
111 196.5 233 432 425
Refs. 4,5,7-9 10,11 4,5 5 5
21.2.3. OLIGO(3-METHYL-m-PHENYLENES)
n
MoI. wt.
m.p. (0C)
b.p. (°C)
Refs.
2 3
182.3 272.4
9-9.5 65
280
20-23 12
21.3.
/7-OLIGO(PHENYLENES)
21.3.1. /7-OLIGO(PHENYLENES)
n
MoL wt.
m.p. (0C)
b.p. (°C/mm)
1 2 3 4 5 6
78.1 154.2 230.3 306.4 382.5 458.6
5.5 71 215 322 395 465
80.1 156 376 428/10
Solubility (g/L toluene) oo 430 7.4 0.12 <0.005
n
MoL wt.
m.p. (0C)
b.p. (0C)
1 2 3
92.1 182.3 272.4
-95
110.6 273-274
43
Refs. 22,23,32 33
m.p. (0C)
b.p. (°C)
1 2 3 4 5
106.2 210.3 314.5 418.6 522.8
13.3 53-54 182-183 264-266 307-309
138.4
n
MoL wt.
m.p. (0C)
Solubility (g/L toluene)
1 2
182.3 362.5
24 96
490
Refs. 20,23,36 37
21.3.6. OLIGO(3,3 '-DIMETHYL-BIPHENYLENES)
21.3.3. OLIGO(2,5-DIMETHYL-/?-PHENYLENES)
MoL wt.
24 3,12,14,25,26 3,12,16,21,25,26 12,16,21,25,21,2K 3,29-31
21.3.5. OLIGO(2,2 '-DIMETHYL-BIPHENYLENES)
21.3.2. OLIGO(3-METHYL-/?-PHENYLENES)
n
Refs.
Solubility (g/L toluene) oc 700 28 1.1 0.24
Refs. 20,34 34 34 34
n
MoL wt.
m.p. (0C)
1 2 3 4 5 6
182.3 362.5 542.8 723.0 903.3 1083.5
9-9.5 76.5 142 273 285 298
b.p. (0C)
Solubility (g/L toluene)
280
oo 512 87 <6.5 ~2 <0.8
Refs. 20-23,38 27,37 39 39,40 39,40 39,40
21.3.4. 0 0 0 0 ( 2 , 3 , 5 , 6 - T E T R A M E T H Y L - P - P H E N Y L E N E S )
21.3.7. OLIGO(3,3 "-DIMETHYL-p-TERPHENYLENES)
n
MoL wt.
m.p. (0C)
1 2 3 4
134.2 266.4 398.6 530.8
79.2 136-137 270-272 270-272
b.p. (0C) 196-198
Solubility (g/L toluene) oc 365 24 3.4
Refs. 34,35 34 34
n
MoL wt.
m.p. (0C)
Solubility (g/L toluene)
Refs.
1 2
258.4 514.7
140-141 258
4.9 0.4
27,37 37
21.3.10. OLIGO(2',3''-DIMETHOXY-p-QUATERPHENYLENES)
21.3.8. OLIGO(2,5-DIMETHOXY-p-PHENYLENES)
n
MoI. wt.
m.p. (0C)
1 2 3 4
138.2 274.3 410.5 546.6
56 105 189 246
b.p. (0C)
Refs.
212.6 20,41 41 41
n
MoI. wt.
m.p. (0C)
Solubility (g/L toluene)
1 2
366.5 730.9
183-184 276-277
13 0.2
Refs. 43 43
21.3.9. OLIGO(3,3 '-DIMETHOXY-BIPHENYLENES) 21.4. OLIGO(p-QUINONES)
n
MoI. wt.
1 2
214.3 426.5
m.p. (0C)
36 158
b.p. (0C)
Solubility (g/L toluene)
328 22
Refs.
42 38,43
n
MoI. wt.
m.p. (0C)
Refs.
1 2 3 4
108.1 214.2 320.3 426.3
116.5 194 >230 230-270
41 41 41
REFERENCES 1. W. Bachmann, H. T. Clarke, J. Am. Chem. Soc, 49, 2089 (1927). 2. C. F. H. Allen, F. P. Pingert, J. Am. Chem. Soc, 64, 1365 (1942). 3. J. A. Cade, A. Pilbeam, Tetrahedron, 20,519 (1964); J. Chem. Soc, 114(1964). 4. W. S. Rapson, R. G. Shuttleworth, J. N. van Niekerk, J. Chem. Soc, 326 (1943). 5. G. Wittig, G. Lehmann, Chem. Ber., 90,875 (1957); G. Wittig, G. Klar, Ann. Chem., 704, 91 (1967). 6. S. T. Bowden, J. Chem. Soc, 1111 (1931). 7. W. Baker, M. P. V. Boarland, J. F. W. McOmie, J. Chem. Soc, 1476 (1954). 8. W. C. Lothrop, J. Am. Chem. Soc, 63, 1187 (1941). 9. G. Wittig, W. Herwig, Chem. Ber., 87, 1511 (1954). 10. C. Mannich, Chem. Ber., 40, 159 (1907). 11. P G . Copeland, R. E. Dean, D. McNeil, J. Chem. Soc, 1689 (1960). 12. M. Busch, W. Weber, J. Prakt. Chem., 146, 1 (1936). 13. A. E. Gillam, D. H. Hey, J. Chem. Soc, 1170 (1939); H. France, I. M. Heilbron, D. H. Hey, J. Chem. Soc, 1288 (1939); 1364 (1938). 14. G. F. Woods, J. W. Tucker, J. Am. Chem. Soc, 70, 2174 (1948). 15. R. L. Alexander, Jr., J. Org. Chem., 21, 1464 (1956). 16. G. F. Woods, F. T. Reed, J. Am. Chem. Soc, 71, 1348 (1949). 17. M. Bennett, N. B. Sunshine, G. F. Woods, J. Org. Chem., 28, 2514 (1963); W. Davey, D. H. Maass, J. Chem. Soc, 4386 (1963).
18. L. Silverman, W. Houk, Anal. Chem., 27, 1956 (1955). 19. H. A. Staab, F. Binnig, Tetrahedron Lett., 319 (1964); Chem. Ber., 100, 293 (1967); H. Braunling, F. Binnig, H. A. Staab, ibid., 100, 880 (1967). 20. F. Ullmann, G. M. Meyer, O. Loewenthal, E. Gilli, Ann. Chem., 332, 38 (1904). 21. E. Mueller, T. Toepel, Chem. Ber., 72, 273 (1939). 22. G. F. Woods, A. L. Van Artsdale, F. T. Reed, J. Am. Chem. Soc, 72, 3221 (1950). 23. E. A. Johnson, J. Chem. Soc, 4155 (1957). 24. E. Clar, "Polycyclic Hydrocarbons", Academic, New York, Springer, Berlin, 1964. 25. O. Gerngross, M. Dunkel, Chem. Ber., 57, 739 (1924); O. Gerngross, C. Schachnow, R. Jonas, Chem. Ber., 57, 747 (1954). 26. H. O. Wirth, K. H. Goenner, W. Kern, Makromol. Chem., 63, 53 (1963). 27. H. O. Wirth, K. H. Goenner, R. Stueck, W. Kern, Makromol. Chem., 63, 30 (1963). 28. T. W. Campbell, R. N. McDonald, J. Org. Chem., 24, 730 (1959). 29. P. Kovacic, R. M. Lange, J. Org. Chem., 29, 2416 (1964). 30. T. Nozaki, M. Tamura, Y. Harada, K. Saito, Bull. Chem. Soc Japan, 33, 1329 (1960). 31. R. Pummerer, K. Bittner, Chem. Ber., 57, 84 (1924); R. Pummerer, L. Seligsberger, Chem. Ber., 64, 2477 (1931). 32. F. Mayer, K. Freitag, Chem. Ber., 54, 347 (1921). 33. H. O. Wirth, H. Hefner, W. Kern, unpublished results. 34. H. O. Wirth, F. U. Herrmann, W. Kern, Makromol. Chem., 80, 120 (1964).
35. E. Marcus, W. M. Lauer, R. T. Arnold, J. Am. Chem. Soc, 80, 3742 (1958). 36. D. M. Hall, M. S. Lesslie, E. E. Turner, J. Chem. Soc, 711 (1950). 37. W. Kern, M. Seibel, H. O. Wirth, Makromol. Chem., 29, 164 (1959). 38. W. Schlenk, M. Brauns, Chem. Ber., 48, 661 (1914). 39. W. Kern, W. Gruber, H. O. Wirth, Makromol. Chem., 37, 198 (1960).
40. W. Heitz, R. Ullrich, W. Kern, Makromol. Chem., 98, 29 (1966). 41. H. Erdtmann, M. Granath, G. Schultz, Acta Chem. Scand., 8, 1442 (1954). 42. N. Kornblum, Org. Syn. Coll. Vol. Ill, 295 (1962). 43. W. Kern, H. W. Ebersbach, I. Ziegler, Makromol. Chem., 31, 154 (1959).
E. OLrGOMERS CONTAINING HETEROCYCLIC RINGS IN THE MAIN CHAIN
TABLE 22. 22.1.
HETEROCYCLIC OLIGOMERS
OLIGO(FURAN)DERIVATIVES
22.1.1. OLIGO(FURFURYL) ALCOHOLS
n 1 2 3
m.p. (0C)
MoL wt. 98.1 178.2 258.3
-2.5 62-62.5
b.p. (°C/mbar)
nj?
171/1000 141-143/12 192.5-295/8
1.4868 1.5290
Refs. 10,11 10-12,14 10-12,14
22.1.2. OLIGO(FURFURYL) FURANS Ri
R2
n
MoI. wt.
H
H
1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 1 2 3 1 2
148.2 228.2 308.3 388.4 162.2 256.3 350.4 176.2 284.3 392.5 500.6 608.7 190.2 312.4 434.6 204.3 340.4 476.6 216.3 364.5
H
CH3
CH3
CH3
CH3
C2H5
C2H5
C2H5
m.p. (0C)
b.p. (°C/mbar)
df (g/cm3)
nf
78/16 141-146/11
1.102
1.5048 1.5324
91/28 114-116/0.13 165-168/0.04 73-76/7-8 120-123/1.3 163-167/1.3
1.073
1.4993
1.043
1.4966
1.030
1.5172
1.033 1.045 1.046 1.023 1.028 1.034
1.4970 1.5094 1.5173 1.4978 1.5089 1.5199
1.018
1.5221
74-75 99-101
-12 47.0/47.5 Oil 83-85
-9 to-8 13-17 86.8-87.6
68-70/3 143-145/1.3 205-210/1.3 76-77/3 162-163/2 212-215/2 94-95/2 200-205/2
Refs. 10,12,14-15,39 10,12 10,12,14 10,14 16,17 17 16,17 17,18 17,18 17,18 17 17 18 19 19 20 20 20 21 21
22.1.4. FURANOPHANES R' H H CH 3 CH 3 CH 3 C2H5 H
R"
n
CH 3 4 r-2,c-7,c-12,c-17C2H5 4 r-2,c-7,c-12,c-17CH 3 4 CH 3 5 6 C2H5 4 C2H5 4 4
22.1.5. TETRAHYDROFURANOPHANES MoL wt.
m.p. (0C)
376.4
140-142 191.0-192.0 83-88 152.0-153.0 243 Oil 182 174 249-250 268-269
432.5 432.5 540.7 648.8 488.5 544.7 592.8
Refs.
n
16,17,22 22 22 22 18,23,24 17 17,18,24 18,19,22,24 18,20,24 21,24
4
m.p. (0C)
MoI. wt.
448.7 204-209 r-(lS, 3S, 6R, 8S, HR, 13R, 16S, 18R)- 218 r-(lS, 3R, 6S, 8R, HS, 13R, 16S, 18R)- 221 5 560.8 Oil 6 673.0 75-80
Refs. 17,18,20,21,23 25 25 17 17
22.2. OLIGO(THIOPHENE) DERIVATIVES 22.2.1. OLIGO(2.5-THIENYLENES) n
MoI. wt.
m.p. (0C)
b.p. (°C/mbar)
n™
1 2 3 4 5 6 7 8
84.1 166.3 248.4 330.5 412.5 494.8 576.9 659.0
-38.4 33-34 96-97 215-216 257-258 304-305 327-328 364
84.2/1013 125/16
1.5289
22.3.
Refs. 1,27,28,34,41,42,44,49 1,3,26,28,30-33,42,44,47,49 1,3,27-29,41,42,44,46,49 1,3,28,29,42,48 3,27,28,42,44,46 3,29,48 42,46
OLIGO(PYRROLE) DERIVATIVES
22.3.1. OLIGO(PYRROLE) DERIVATIVES
n
MoI. wt.
m.p. (0C)
1
2
214.3
105-106
2
2
174.2
59
3
4 4
428.6 588.8
291 272.0-272.5
No.
Oligomers
R
22.3.2. OLIGO[2,5-(N-METHYL)PYRROLENES]
b.p. (°C/mbar)
Refs. 21,43
125-126/4
35
36,37 21
22.4. OLIGO(PYRIDINE) DERIVATIVES 22.4.1. OLIGO(2,6-PYRIDYLENES)
n
MoI. wt.
1 2 4 5 6 8 16
81.1 160.2 318.4 397.5 476.6 634.8 1267.6
0
m.p. ( C) 14-15 134 145 160 178-182 240-256
b.p. (°C/mbar) 114-115/99.6 77-78/0.5
Refs. 13,42 42 42 42 42 42
n
MoI. wt. m.p. (0C)
1 2 3 4 5 6
79.1 156.2 233.3 310.4 387.5 464.5
-42 70.1 89-90 219-220 265 350
b.p. (°C/mbar)
n$
115.5/1013 273-275/1013 370/1013
1.5095
Refs. 4,5 2,4-6 5 5 5
22.4.2. OLIGO(3,5-PYRIDYLENES)
0
n
MoI. wt.
m.p. ( C)
b.p. (°C/mbar)
nf
1 2 3
79.1 156.2 233.3
-42 68 249-251
115.5 291-292/981
1.5095
3
264.2
233
42,45
4
328.5
255-256
42,45
5
492.7
420
42,45
6
328.5
300-301
42,45
7
528.7
410
45
8
312.3
355-360
45
Refs.
4,9 9
22.4.3. OLIGO(2,6-QUINOLYLENES)
n
MoI. wt.
m.p. (0C)
1 2 3 4
129.2 256.3 383.5 510.6
-15.6 144 267-269 348-350
b.p. (°C/mbar)
nj?
238.1/1013
Refs.
1.6268 7,8 8 8
22.5. CYCLIC OLIGO(HETEROCYCLICS) No.
MoI. wt.
m.p. (0C)
Refs.
1
188.2
189-190
38
2
220.3
194.5-196
38
REFERENCES
1. J. W. Sease, L. Zechmeister, J. Am. Chem. Soc, 69, 270 (1947). 2. Th. Kauffmann, J. Konig, A. Woltermann, Chem. Ber., 109, 3864 (1976). 3. W. Steinkopff, R. Leitsmann, K. H. Hoffmann, Ann. Chem., 546, 180 (1941). 4. G. T. Morgan, F. H. Burstall, J. Chem. Soc, 20 (1932). 5. F. H. Burstall, J. Chem. Soc, 1662 (1938). 6. F. H. Case, W. H. Butte, J. Org. Chem., 26, 4415 (1961). 7. H. Weidel, Monatsh. Chem., 8, 120, 141 (1887). 8. S. G. Waley, J. Chem. Soc, 2008 (1948). 9. M. Busch, W. Weber, J. Prakt. Chem., 146, 1 (1936). 10. J. T. Barr, S. B. Wallon, J. Appl. Polym. ScL, 15,1079 (1971). 11. A. R Dunlop, F. N. Peters, Ind. Eng. Chem., 34, 814 (1942). 12. A. H. Fawcett, W. Dadamba, Makromol. Chem., 183, 2799 (1982). 13. J. Gj0s, S. Gronowitz, Acta Chem. Scand., 25, 2596 (1971). 14. K. Takano, Nippon Kagaku Zasski, 79, 955 (1958); Chem. Abstr., 54,453Oe (1960); ibid., 80, 313 (1959); Chem. Abstr., 55, 5453g (1961).
15. H. Gilman, G. F. Wright, J. Am. Chem. Soc, 55, 3302 (1933). 16. W. H. Brown, H. Sanatzky, Can. J. Chem., 34, 1147 (1956). 17. Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, J. Furukawa, J. Am. Chem. Soc, 98, 7414 (1976). 18. R. G. Ackman, W. H. Brown, G. F. Wright, J. Org. Chem., 20, 1147(1955). 19. W. H. Brown, W. N. French, Can. J. Chem., 36, 537 (1958). 20. R. E. Beals, W. H. Brown, J. Org. Chem., 21, 447 (1956). 21. W. H. Brown, B. J. Hutchinson, M. H. MacKinnon, Can. J. Chem., 49, 4017 (1971). 22. A. G. S. Hogberg, M. Weber, Acta Chem. Scand. B, 37, 55 (1983). 23. M. Chastrette, F. Chastrette, J. Sabadie, Org. Synth., 57, 74 (1977). 24. M. De Sousa Healy, A. J. Rest, J. Chem. Soc, Chem. Commun., 149 (1981); J. Chem. Soc, Perkin Trans. I, 973 (1985). 25. M. Van Beylen, B. Roland, G. S. D. King, J. Aerts, J. Chem. Res. (S), 388 (1985); (M), 4201 (1985). 26. J. Kagan, S. K. Arora, Heterocycles, 20, 1941 (1983). 27. J. Kagan, S. K. Arora, Heterocycles, 20, 1937 (1983). 28. J. Kagan, S. K. Arora, Tetrahedron Lett., 24, 4043 (1983).
29. J. Kagan, S. K. Arora, J. Org. Chem., 48, 4317 (1983). 30. K. E. Schulte, J. Reisch, L. Homer, Chem. Ber., 95, 1943 (1962). 31. H. J. Kooreman, H. Wynberg, Rec. Trav. Chim. Pays-Bas, 86, 37 (1967). 32. T. Asano, S. Ito, N. Saito, K. Hatakeda, Heterocycles, 6, 317 (1977). 33. J.-P. Beny, S. N. Dhawan, J. Kagan, S. Sundless, J. Org. Chem., 47, 2201 (1982). 34. J.-P. Morizur, Bull. Soc. Chim. France, 1331 (1964); J.-P. Morizur, C. R., Ser. C, 254, 1093 (1962). 35. W. H. Brown, W. N. French, Can. J. Chem., 36, 371 (1958). 36. A. V. Baeyer, Chem. Ber., 19, 2184 (1886). 37. V. V. Chelintzev, B. V. Tronov, S. G. Karmanov, J. Russ. Phys. Chem., 48, 1210 (1916); Chem. Abstr. 11, 1418 (1917). 38. H. E. Winberg, F. S. Fawcett, W. E. Mochel, C. W. Theobald, J. Am. Chem. Soc, 82, 1428 (1960). 39. T. Reichstein, A. Griissner, H. Zschokke, HeIv. Chim. Acta, 15, 1066 (1932). 40. R. Grigg, J. A. Knight, M. V. Sargent, J. Chem. Soc. C, 976 (1966).
41. R. E. Atkinson, R. F. Curtis, G. T. Phillips, J. Chem. Soc. C, 2011 (1967). 42. Th. Kauffmann, Angew. Chem., 91, 1 (1979). Angew. Chem., Int. Ed. Engl., 18, 1 (1979). 43. D. Dolphin, R. Grigg, M. V. Sargent, D. H. Williams, J. A. Knight, Tetrahedron, 21, 3441 (1965). 44. D. D. Cunningham, L. Laguren-Davidson, H. B. Mark Jr., Ch. V. Pham, H. Zimmer, J. Chem. Soc, Chem. Commun., 1021 (1987). 45. Th. Kauffmann, B. Greving, R. Kriegesmann, A. Mitschker, A. Woltermann, Chem. Ber., I l l , 1330 (1978). 46. J. Nakayama, T. Konishi, S. Murabayashi, M. Hoshino, Heterocycles, 26, 1793 (1987). 47. J. Nakayama, Y. Nakamura, T. Tajiri, M. Hoshino, Heterocycles, 24, 637 (1986). 48. J. Nakayama, Y. Nakamura, S. Murabayashi, M. Hoshino, Heterocycles, 26, 939 (1987). 49. K. Tamao, S. Kodama, I. Nakajima, M. Kumada, A. Minato, K. Suzuki, Tetrahedron, 38, 3347 (1982).
TABLE 23. OLIGCKSACCHARIDES) 23.2. OLIGOMERIC HEXOSES 23.1. OLIGOMERIC PENTOSES 23.1.1. OLIGO(p-XYLOPYRANOSES)fl 23.2.1. MALTO-OLIGOfl
0
/I
MoI. wt.
m.p. ( C)
[a]|?inH 2 O
1 2 3 4 5 6 7
150.1 282.2 414.4 546.5 678.6 810.7 942.8
153 186-187 215-216 224-226 240-242 237-242 240-242
19.2 -25.6 -48.1 -61.9 -72.9 -78.5 -74.0
n
MoI. wt.
m.p. (0C)
1 2 3 4 5 6 7
180.2 342.3 504.4 666.6 828.7 990.9 1153.0
146 160-165
a
[a]£f in H 2 O 52.6 136.0 160.0 177.0 180.3 184.7 186.4
Refs. 4-6.
"Refs. 1-3.
23.1.2. OLIGO(p-XYLOPYRANOSE ACETATES)0
23.2.2. CYCLODEXTRINSa n
MoI. wt.
m.p. (0C)
[a] Jf
2 3 4 5 6
534.5 750.7 966.9 1183.1 1399.3
155.5-156 109-110 201-202 249-250 260-261
-74.5 -84.3 -93.7 -97.5 -102.0
fl
Refs. 1-3.
c in CHCl 3 0.9 0.6 0.8 1.1 1.5
n
MoI. wt.
6 7 8
972.8 1135.0 1297.1
a
Refs. 4-6.
[a] D (c = l, H 2 O) 149.0 158.8 170.0
23.2.6. GENTIO-OLIGOSES0
23.2.3. CELLO-OLIGOSES0
n
MoL wt.
m.p. (0C)
[<x]D in H 2 O
1 2 3 4
180.2 342.3 504.4 666.6
150 190-195
52.5 9.6 -10.5 -19.5
Specific rotation n
MoL wt.
m.p. ( 0 C)
[<x]D
( 0 C)
1 2 3 4 5 6 7
180.2 342.3 504.4 666.6 828.7 990.9 1153.0
150 225 d 238 d 253 d 267 d 278 d 286 d
52.5 34.6 21.6 16.5 11.0 10.0 7.3
20 20 26 23 30 30 30
a
c in H 2 O 4 8 4 3.4 4.1 1.2 0.1
a
Ref. 15.
23.2.7. GALACTO-OLIGOSESa
Refs. 7-14.
23.2.4. CELLO-OLIGOSE ACETATES a
n
MoL wt.
m.p. (0C)
[a] D in H 2 O
1 2 3 4
180.2 342.3 504.4 666.6
167 210-211 115-120
-52.5 173 58 53
a
Ref. 15.
23.2.8. MANNO-OLIGOSESa
Specific rotation
r „120-25 n
MoL wt.
1 2 3 4 5 6 7
390.4 678.6 966.9 1255.1 1543.4 1831.6 2119.8
fl
m.p. (0C) 113 229.5 223-224 230-234 240-241 252-255 263-266
(c = 5, in CHCl3) 101.6 41.0 22.6 13.4 4.2 -0.2 -4.4
n
MoL wt.
m.p. (0C)
[a] D
(0C)
c, H 2 O
1 2 3 4
180.2 342.3 504.4 666.6
132 193-194 137-137.5 232-234
-7.7 -23.3 -31
25
0.9 1.3 1.6
"Refs. 16,17. 23.3.
Refs. 7-14.
OLIGOMERIC AMINO SUGARS
23.3.1. N-ACETYL CHITO-OLIGOSESa
23.2.5. ISOMALTO-OLIGOSESa
Specific rotation
n
MoL wt.
1 2 3 4 5 6
180.2 342.3 504.4 666.6 828.7 990.9
fl
Ref. 15.
0
m.p. ( C) 146 225 d
n
MoL wt.
m.p. (0C)
1 2 3 4 5 6 7
221.2 424.4 627.6 830.8 1034.0 1237.2 1440.4
260-262 d 290-311 d 290-30Od 285-295 d
MD
C
in H 2 O
[<x]D in H 2 O 52.6
153 160 163
"Refs. 18,19.
17.2 2.2 -4.1 -9.1 -11.4 -12.6
0.5 0.9 1.0 1.0 0.8 0.3
REFERENCES 1. R. L. Whistler, C-C. Tu, J. Am. Chem. Soc, 74, 4334 (1952). 2. R. H. Marchessault, T. E. Timell, J. Polym. Sci. C, 2, 49 (1963). 3. C. T. Bishop, Can. J. Chem., 33, 1073 (1955). 4. W. J. Whelan, J. M. Bailey, P. J. P. Roberts, J. Chem. Soc, 1293 (1953). 5. J. M. Bailey, W. J. Whelan, S. Peart, J. Chem. Soc, 3692 (1950). 6. K. Freudenberg, F. Cramer, Chem. Ber., 83, 296 (1950). 7. E. E. Dickey, M. L. Wolfrom, J. Am. Chem. Soc, 71, 825 (1949). 8. M. L. Wolfrom, J. C. Dacons, J. Am. Chem. Soc, 74, 5331 (1952). 9. L. Zechmeister, G. Toth, Chem. Ber., 64, 854 (1931). 10. K. Hess, K. Dziengel, Chem. Ber., 68, 1594 (1935).
11. C. S. Hudson, J. M. Johnson, J. Am. Chem. Soc, 37, 1276 (1915). 12. R. Willstaetter, L. Zechmeister, Chem. Ber., 46, 2401 (1913); 62, 722 (1929). 13. K. Freudenberg, G. Blomquist, Chem. Ber., 68, 2070 (1935). 14. H. Staudinger, E. V. Leopold, Chem. Ber., 67, 479 (1934). 15. W. Walter, in: H. M. Rauen (Ed.), "Biochemisches Taschenbuch", part 1, 2nd ed., Springer, Berlin, 1954, p. 98. 16. R. L. Whistler, C. G. Smith, J. Am. Chem. Soc, 74, 3795 (1952). 17. R. L. Whistler, J. Z. Stein, J. Am. Chem. Soc, 73, 4187 (1951). 18. S. A. Barker, A. B. Foster, M. Stacey, J. M. Webber, J. Chem. Soc, 2218 (1958). 19. H. P. Lenk, M. Wenzel, E. Schuette, Hoppe-Seyler's Z. Physiol. Chem., 326, 116 (1961).
S E C T I O N
P H Y S I C A L S
O
M
E
I
M
P
O
C R
O T
N A
V
S N
T T
A
N
T
S
P
O
L
O Y
M
F E
R
S
P h y s i c a l
C o n s t a n t s
o f
R u b b e r y
P o l y m e r s
lsao Furuta, S h i n - l c h i K i m u r a , M a s a m i c h i I w a m a Yokkaichi Research Laboratories, Japan Synthetic Rubber Co. Ltd., Yokkaichi Mie, Japan
A. Introduction B. Tables Table 1. 1,4-c/s(96-98%)Poly(butadiene) Table 2. Poly(butadiene-coacrylonitrile) Table 3. Poly(butadiene-co-styrene) Table 4. Poly(chloroprene)(CR Neoprene) Table 5. Poly(isobutene)-coisoprene)Butyl Rubber (MR) Table 6. Polyisoprene, Natural Rubber Table 7. Ethylene-Propylene-DieneTerpolymer (EPDM) C. References A.
V-1 V-1 V-1 V-2 V-3 V-3 V-4 V-5 V-6 V-6
INTRODUCTION
Where a range is given, there are available several observations which differ. In most cases the differences are thought to be real, arising from differences in the rubber rather than from errors of observation. Where a single value
is given, it is either because no other observations are available or because there seems to be no significant disagreement among values within the errors of observation. Where values are not given, data have not been found. Where dashes are shown, either the physical measurement is impossible or the constant in question is not adequately defined under the given conditions. The values shown refer to specific vulcanizates cited in the corresponding references. Other vulcanizates may yield a broader range of values. The values are expressed in the International System of Units (SI), the modern metric system, described in National Bureau of Standards Special Publication 330, 1981 edition, and in American Society for Testing and Materials Metric Practice Guide E380-85. Values are given for constants at a temperature of 25°C (273.15 K) and a pressure of 1 normal atmosphere = 101.325 kPa.
B. TABLES TABLE 1. 1,4-c#s(96-98%)POLY(BUTADIENE) Property Density Coefficient of expansion Glass transition temperature Specific heat Thermal conductivity Thermal diffusivity Solubility parameter Polymer-solvent interaction parameter (25-30 0 C)
Units kg/m 3 K-1CxIO6) 0 C J/kg/K (x 103) W/m/K (x 10 ~3) m 2 /s (x 10~9) MPa 1 / 2
Unvulcanized 669 1.96
Refs.
Refs.
1.01
1
- 1 1 0 to - 95 1.960-1.970 200
3 1 5
2 4
17.0
6
0.51 0.53 0.45 0.44 0.36
7 7 8 7 7
Solvent n-Heptane n-Hexane Cyclohexane Benzene Toluene
Pure-gum vulcanizate
TABLE 1.
cont'd
Property
Units
Equilibrium melting temperature
K (0C)
Temperature of most rapid crystallization Heat of fusion of crystal
K (0C) J/kg (x 103)
Refractive index Molar polarizability Dielectric constant (50Hz) Dielectric loss factor (50Hz) Compressibility Young's modulus Shear modulus Storage modulus (1 Hz) Loss modulus Loss tangent
ND cm 3 (x 10~25)
TABLE 2.
Pa^(XlO"12) Pa (x 106) Pa (x 106) log Pa log Pa
Unvulcanized
Refs.
1.0 • 0 - 52 to - 57 47 169 1.526 71.4 2.3 0.8 500
10 11 3 11 10 12 12 3 3 2
Pure-gum vulcanizate
1.3 0.96 5.98 4.79 0.065
Refs.
9 9 9 9 9
POLY(BUTADIENE-CO-ACRYLONITRILE)
Property
Units
Density
kg/m3
Glass transition temperature
0
Specific heat Thermal conductivity Thermal diffusivity Solubility parameter
J/kg/K(xlO 3 ) W/m/K (x 10 ~3) m 2 s (x 10~9) MPa 1 / 2
Unvulcanized
Refs.
C
18.5-21.0 (18-39%)
Pure-gum vuicanizate
Refs.
0.95a (20%) 1.02 (45%) - 85 + A(20-40%) (A =AN%) 1.970(40%) 250 (18-35%)
3 3 3
1.519(20%) 1.521 (45%) 5.5 (27%) 4.8 (40%) 35 (27%) 42 (40%)
3 3 3 3 3 3
3 3
6
Polymer-solvent interaction parameter (25-300C) AN% Solvent n-Heptane rc-Hexane Dichloromethane Cyclohexane Benzene Toluene Refractive index Dielectric constant (10 6 Hz) Dielectric loss factor (10 6 Hz) a
Bound acrylonitrile content ( = AN%)).
N0
18 0.96 0.99 0.39 0.70 0.39 0.43
30 1.88 0.31 1.42 0.31 0.8
39 3.6 2.8 0.32 2.6 0.32 0.6
9 9 9 9 9 8
TABLE 3. POLY(BUTADIENE-co-STYRENE) (23.5-25% BOUND STYRENE CONTENT) Property Density Coefficient of expansion Glass transition temperature Specific heat Thermal conductivity Thermal diffusivity Solubility parameter Polymer-solvent interaction parameter (25-300C)
Units kg/m3 K- 1 CxIO 6 ) C J/kg/K(xlO 3 ) W/m/K (x 10 " 3 ) m2/s (x 10 ~9) MPa1/2
0
Unvulcanized
Refs.
933 (932.5-933.5) 660 - 64 to - 59 1.89
43 43 43 43 45
17.0
Pure-gum vulcanizate
Refs.
980 940-1000 660 - 52 1.83 190-250 90
17 17 17,18,44 21 24 46,47 48
6
Solvent n-Heptane n-Hexane Dichloromethane Cyclohexane Benzene Toluene Heat of combustion Refractive index
J/kg (x 106) ND
Molar polarizability Dielectric constant (1 kHz) Dielectric loss factor Electric conductivity Compressibility Bulk modulus (isothermal) Young's modulus
cm3 (x 10~25) Sm" 1 (x 10~15) Pa- 1 CxIO" 1 2 ) Pa(xlO 6 ) Pa (x 106)
Shear modulus
Pa(xlO 6 )
Shear compliance
Pa^(XlO"6)
Storage modulus
log Pa
Loss modulus
log Pa
Loss tangent Tensile strength Ultimate elongation
0.59 0.66 0.47 0.48 0.40 0.31 56.5 1.5345 (1.534-1.535) 2.5 0.0009 530 1890
5.82 (5.82-5.85) 4.94 (4.56-4.94) 0.13 (0.05-0.13)
9 9 9 9 9 13 43 43 43 33 33
2.66 0.0009
49 49
510 1960 1.6 1.0-2.0 0.53 0.3-0.7 7 3-10 5.88 5.64-6.20 4.92 4.73-5.04 0.11
50 49 21,35 35 21 35 21,35 21,35 64 64 64 64 64
1.4-3.0 400-600
19,42 19,42
40 40 40 40 40 40
MPa %
33 33
TABLE 4. POLY(CHLOROPRENE) (CR NEOPRENE) Property Density Coefficient of expansion Glass transition temperature Specific heat Thermal conductivity Thermal diffusivity Solubility parameter
Units kg/m3 K" 1 (x 106) 0 C J/kg/K(xl0 3 ) W/m/K (x 10~3) m2/s MPa1/2
Unvulcanized 1230 600 -45 2.2-2.2 192 10 ~9 18.5
Refs.
Pure-gum vulcanizate
43,51,58 46,58 60 46 58
1320 610-720 -45 2.1-2.2 192
Refs. 17 17,58,59 21,59,60,61 46 58
6
References page V- 6
TABLE 4. cont'd Property
Units
Unvulcanized
Refs.
Pure-gum vulcanizate
Refs.
Polymer-solvent interaction parameter (25-300C) Solvent n-Heptane n-Hexane Dicyclomethane Cyclohexane Benzene Toluene Equilibrium melting temperature Temperature of most rapid crystallization Heat of fusion of crystal Refractive index Dielectric constant Dielectric loss factor Electric conductivity Compressibility Bulk modulus (isothermal) Young's modulus Shear modulus Shear compliance Poisson's ratio Storage modulus Loss modulus Loss tangent Tensile strength Ultimate elongation
K (0C) K (0C) J/kg (x 103) ND
0.85 0.89 0.53 0.69 0.26 0.70 328-351 (55-78) 268 ( - 5) 95 1.558
Sm" 1 (x 10~15) Pa^(XlO"12) Pa (x 106) Pa(XlO 6 ) Pa (x 106) Pa^(XlO"6)
9 9 9 9 9 13 62,63 65 63 20
480 2080
49,50 50
Unvulcanized
Refs.
log Pa log Pa MPa %
261 (-12) 6.5-8.1 0.03/0.86 3-1400 440 2270 1.6 0.52 2.0 0.49974 5.81 5.04 0.17 25-38 800-1000
65,66 33 33 33 49,50 50 21,35 21 19,21,35 38 57,59 57,59 57,59 19,42 19,42
TABLE 5. POLY(ISOBUTENE-co-ISOPRENE) BUTYL RUBBER (NR) Property Density Coefficient of expansion Glass transition temperature Specific heat Thermal conductivity Thermal diffusivity Solubility parameter Polymer- solvent interaction parameter
Units kg/m" 3 K^(XlO6) C J/kg/K(xlO 3 ) W/m/K (x 10~3) m 2 /s (x 10 ~9) MPa 1/2
0
917 750 -71 1.95 16.0
51 53 53 23,24,29
Pure-gum vulcanizate 933 930-970 560 -63 1.85 130 70
Refs. 52 17 52,54 21 24 47 55
6
Solvent rc-Heptane /z-Hexane Dicyclomethane Cyclohexane Benzene Toluene Equilibrium melting temperature Temperature of most rapid crystallization Refractive index Dielectric constant (IkHz) Dielectric loss factor
K (0C) K (0C) ND
0.48 0.52 0.58 0.44 0.66 0.56 275 (1.5) 239 ( - 34) 1.5081 2.38 0.003
14 14 14 14 14 14 53 53 43 33 33
2.42 0.0054
33 33
TABLE 5.
cont'd
Property
Units
Compressibility Bulk modulus (isothermal) Young's modulus Shear modulus
Pa" 1 (x 1012) Pa(xlO6) Pa(xlO6) Pa(xlO6)
Shear compliance Strage modulus Loss modulus Loss tangent Tensile strength Ultimate elongation
Pa" 1 (x 10~6) log Pa log Pa
TABLE 6.
Unvulcanized
6.50 5.98 0.3
Refs.
56 56 56
MPa %
Pure-gum vulcanizate 508 1970 1.0 0.33 0.2-0.5 3.1 5.64 5.48 0.7 18-21 750-950
Refs. 54 54 21,35 21,35 19,21,35 21 57 57 57 19,42 19,42
POLYISOPRENE, NATURAL RUBBER
Property
Units
Density
kg/m3
Coefficient of expansion Glass transition temperature
0
Specific heat Thermal conductivity Thermal diffusivity Solubility parameter Polymer-Solvent interaction parameter (25-30 0 C)
K" 1 (x 106) C
J/kg/K(xl0 3 ) W/m/K (x 10 ~3) m 2 /s (x 10) MPa1/2
Unvulcanized 913 906-916 670 -72 (-74 to-69) 1.905 134 1.7
Refs.
Pure-gum vulcanizate
16 970 16 (920-1000) 16 660 2 0 - 6 3 20 (-72 to-61) 22,23 1.828 16 153 70 6
Refs. 17,18 19 16 21 21 24 25,26 27
Solvent ^-Heptane /i-Hexane Dichloromethane Cyclohexane Benzene Toluene Equilibrium melting temperature Temperature of most rapid crystallization Heat of fusion of crystal Heat of combustion Refractive index Molar polarizability Dielectric constant (1 kHz) Dielectric loss factor (1 kHz) Electric conductivity Compressibility Bulk modulus (isothermal) Young's modulus
K( 0 C) K (0C) J/kg (x 103) J/kg (x 106) NDK-1 cm 3 (x 10~25)
Shear modulus
Pa (x 106)
Shear compliance
Pa^(XlO"6)
Poisson's ratio Storage modulus
log Pa
Loss modulus
log Pa
Sm" 1 (x IO"15) Pa^(XlO"12) Pa(xlO6) Pa (x 106)
0.43 0.47 0.40 0.53 0.44 0.39
9 9 9 9 9 9
308.6(35.5) 248 ( - 25) 67.3 45.2 1.5191(25°C)
28 30 31 16 32
2.37-2.45 0.001-0.003 2.57 515 1940
16,33 33 16,33 34 34
5.61 5.53-5.75 4.46 (4.43_4.65)
40 40
313(40)
29
44.4 1.5264 2.68 0.002-0.04 2-100 514 1950 1.3 (1.0-2.0) 0.43 0.3-0.7 2.3 (1.5-3.5) 0.49989 5.61 5.49-5.78 3.80 3.72-4.48
16 16 33 33 16,33 34 34 35,36 19,35 21,36 21,37 21,36 21,37 34,38,39 41 41
References page V-6
TABLE 6. cont'd Property
Units
Loss tangent Tensile strength Ultimate elongation
Unvulcanized 0.09 0.07-0.13
Refs. 40
MPa %
Pure-gum vulcanizate 0.016 0.01-0.05 17-25 750-850
Refs. 41 19,42 19,42
TABLE 7. ETHYLENE-PROPYLENE-DIENE-TERPOLYMER (EPDM) Property Density Glass transition temperature Specific heat Thermal conductivity Thermal diffusivity Solubility parameter Polymer-Solvent interaction parameter (25-30 0 C)
Units kg/m3 C J/kg/K (x 103) W/m/K (x 10 ~3) m 2 /s (x 10~9) MPa 1/2
Unvulcanized
Refs.
Pure-gum vulcanizate 0.85 — 60 to — 69 2340
0
16.0-16.5
Refs. 3 1 3
6
Solvent n-Heptane w-Hexane Dichloromethane Cyclohexane Benzene Toluene Refractive index Young's modulus Shear modulus Storage modulus (IHz) Loss modulus (1 Hz) Loss tangent (1 Hz)
ND Pa(xlO6) Pa(xlO6) MPa MPa
0.44 0.49 0.32 0.35 0.58 0.49
15 16 16 15 15 15 1.48 2.0 1.59 1.59 0.12 0.077
3 13 13 13 13 13
C. REFERENCES 1. J. Brandrup, E. H. Immergut, (eds.) "Polymer Handbook", 3rd Edition, 1989. 2. J. W. Barlow, Polym. Eng. ScL, 18 (3), 238 (1978). 3. W. J. Roff, J. R. Scott, Fibers, Films, Plastics and Rubbers (A Handbook of Common Polymer). 4. J. Grebowicz, W. Aycock, B. Wunderlich, Polymer, 27 (4), 575 (1986). 5. "Hikinzokuzairyou Data Book", Nihon Kensa Kikaku Kyoukai. 6. "Kobunshi Data Handbook, Ouyouhen", Kobunnsi Gakkai ed. Baihukan. 7. A. F. M. Barton, CRC Handbook of Polymer-Liquid Interaction Parameter and Solubility Parameters, CRC Press, Inc, Boca Raton, FL, 1983. 8. A. G. Shvart, Kolloid Zh., 18, 755 (1953). 9. C. Shibuya, K. Ogino, T. Nakagawa, Chemical composition dependence of a polymer-solvent interaction parameter. 10. G. Natta, G. Moraglio, Makromol. Chem., 66, 218 (1963).
11. W. S. Bahary, D. I. Sapper, J. H. Lane, Rubber Chem. Technol., 40, 1529 (1967). 12. J. Furukawa, S. Yamasita, T. Kotani, M. Kawasima, J. Appl. Polym. ScL, 13, 2527 (1969). 13. "Gomu Kougyou Binran", Nihon Gomu Kyoukai, (1993). 14. G. M. Bristow, W. F. Watson, Trans. Faraday Soc, 59, 1731 (1958). 15. A. G. Shvart, E. K. Chefranova, L. A. Itokovskaya, Solubility parameters of resins based on dimethylvinylethylp- hydroxyphenylmethane, Kolloidn Zh., 32, 603 (1970); Colloid J. USSR, 32, 506 (1970). 16. L. A. Wood, "Values of the Physical Constants of Rubber", Proceedings of the Rubber Technology Conf. (Institution of the Rubber Industry, London), 1938, p. 933; Rubber Chem. Technol., 12, 130 (1939). 17. N. Bekkedahl, F. L. Roth, National Bureau of Standards, unpublished observations of density and expansivity, 1948. 18. A. J. Wildschut, "Technological and Physical Investigations on Natural and Synthetic Rubbers", Elsevier, New York, 1946.
19. B. B. S. T. Boonstra,"Properties of Elastomers", Chapter 4 of Vol. Ill in R. Houwink (Ed.), "Elastomers. Their Chemistry, Physics, and Technology", Elsevier, New York, 1948. 20. L. A. Wood, "Synthetic Rubbers: A Review of Their Compositions, Properties, and Uses," Natl. Bur. Std. Circ, C427 (1940); Rubber Chem. Tech., 13, 861 (1940); India Rubber World, 102, No. 433 (1940). 21. L. A. Wood, F. L. Roth, Proc. 4th Rubber Technology Conference, London, 1962, p. 328, Institution of the Rubber Industry, London, 1963; Rubber Chem. Technol., 36, 611 (1963). 22. S. S. Chang, A. B. Bestul, J. Res. Nat. Bur. Std., 75A, 113 (1971). 23. L. A. Wood, N. Bekkedahl, J. Polym. ScL, Part B, Polym. Lett, 5, 169 (1967). 24. W. H. Hamill, B. Mrowca, R. L. Anthony, Ind. Eng. Chem., 38, 106 (1946); Rubber Chem. Technol., 19, 622 (1946). 25. L. C. Carwile, H. J. Hoge, "Thermal Conductivity of Soft Vulcanized Natural Rubber, Selected Values", in: "Advances in Thermophysical Properties at Extreme Temperatures and Pressures", American Society of Mechanical Engineers, New York, 1965; Rubber Chem. Technol., 39, 126 (1966). 26. M. N. Pilsworth, Jr., H. J. Hoge, H. E. Robinson; J. Mater., 7 (4), 550 (1972). 27. D. Hands, Rubber Chem. Technol. (Rubber Rev.), 50, 480 (1977). 28. E. N. Dalai, K. D. Taylor, P. J. Phillips, Polymer, 24, 1623 (1983). 29. G. T. Furukawa, M. L. Reilly, J. Res. Nat. Bur. Std. 56, 285 (1956); RP 2676. 30. L. A. Wood, N. Bekkedahl, J. Res. Natl. Bur. Std., 36, 489 (1946); RP 1718; J. Appl. Phys., 17, 362 (1946); Rubber Chem. Technol., 19, 1145 (1946). 31. H. G. Kim, L. Mandelkern, J. Polym. Sci. A-2, 10, 1125 (1972). 32. L. A. Wood, L. W. Tilton, Proc. 2nd Rubber Technology Conference, London; 1948, p. 142, Institution of the Rubber Industry, London; J. Res. Natl. Bur. Std., 43, 57 (1949), RP 2004. 33. A. T. McPherson, Rubber Chem. Technol. (Rubber Rev.), 36, 1230 (1963). 34. L. A. Wood, G. M. Martin, J. Res. Natl. Bur. Std., 68A, 259 (1964); Rubber Chem. Technol., 37, 850 (1964). 35. G. M. Martin, F. L. Roth, R. D. Stieler, Trans. Inst, Rubber Ind., 32, 189 (1956); Rubber Chem. Technol., 30, 876 (1957). 36. F. L. Roth, G. W. Bullman, L. A. Wood, J. Res. Natl. Bur. Std., 29A, 347 (1965); Rubber Chem. Technol., 39, 397 (1966). 37. W. Philipoff, J. Appl. Phys., 24, 685 (1953). 38. B. P. Holownia, J. Inst. Rubber Ind. 8, 157 (1974); Rubber Chem. Technol., 48, 246 (1975). 39. G. K. Rightmire, Am. Soc. Mech. End. Trans. Series F, J. Lubrication Technol., 381. July 1970.
40. L. J. Zapas, S. L. Shufler, T. W deWitt, J. Polym. Sci., 18, 245 (1955); Rubber Chem. Technol., 29, 725 (1956). 41. J. D. Ferry, R. G. Mancke, E. Maekawa, Y. Oyanagi, R. A. Dickie; J. Phy. Chem., 68, 3414 (1964). 42. J. M. Ball, G. C. Maassen, Symp. Applications of Synthetic Rubbers, American Society for Testing Materials, March 2, 1944, p. 27. 43. L. A. Wood, "Physical Chemistry of Synthetic Rubbers", Chapter 10 in: G. S. Whitby (Ed.), "Synthetic Rubbers", J Wiley, New York 1954. 44. I. B. Prettyman, "Physical Properties of Natural and Synthetic Rubber Stocks", Handbook of Chemistry and Physics, Chemical Rubber Pub. Co., Cleveland, in: 1962, p. 1564. 45. R. D. Rands, Jr., W. J. Ferguson, G. Allen, Polymer, 10, 495 (1964). 46. A. R. Payne, J. R. Scott, "Engineering Design with Rubber". Interscience, New York, 1960. 47. H. Shilling, Kautschuk Gummi, 16, 84 (1963). 48. J. Rehner, Jr., J. Polym. Sci., 2, 263 (1947); Rubber Chem. Technol., 21, 82 (1948). 49. W. H. S. Naunton et al., "Rubber in Engineering," Ministry of Supply, London, 1945, or Chemical Publishing Co., Brooklyn, NY, p. 30. 50. W. S. Cramer, I. Silver, NSVORD Report 1778, Feb. 1951, US Naval Ordnance Lab., White Oak, MD. 51. L. A. Wood, N. Bekkedahl, F. L. Roth, J. Res. Natl. Bur. Std., 29, 391 (1942) RP 1507; Ind. Eng. Chem., 34, 1291 (1942); Rubber Chem. Technol., 16, 244 (1943). 52. N. Bekkdahl, J. Res. Natl. Bur. Std., 43, 145 (1949). 53. R. M. KeIl, B. Bennett, P. B. Stickney; Rubber Chem. Technol., 31, 499 (1958). 54. C. Price, J. Padget, M. C. Kirkham, G. Allen; Polymer, 10, 495 (1969). 55. D. R. MacRae, R. L. Zapp, Rubber Age, 82, 831 (1958). 56. L. Schmieder, K. WoIk, Kolloid-Z., 134, 149 (1953). 57. J. H. Dillon, I. B. Prettyman, G. L. Hall, J. Appl. Phys., 15, 309 (1944); Rubber Chem. Technol., 17, 597 (1944). 58. N. L. Catton,"The Neoprenes", Rubber Chemicals Division, E. I. DuPont de Numours and Company, Wilmington, DE, 1953. 59. T. P. Yin, R. Pariser, J. Appl. Polym. Sci., 7, 667 (1963). 60. R. M. KeIl, B. Bennett, P B. Stickney, J. Appl. Polym. Sci., 2, 8 (1959). 61. A. N. Gent, J. Polym. ScL, A3, 3787 (1965). 62. W. R. Krigbaum, J. V. Dawkins, G. H. Via, Y. I. Balta; J. Polym. Sci. A-2, 4, 475 (1966). 63. J. T. Maynard, W. E. Mochel, J. Polym. Sci., 13, 235 (1954). 64. W. P Fletcher, A. N. Gent, Brit. J. Appl. Phys., 8, 194 (1957). 65. R. M. Murray, J. D. Detenber, Rubber Chem. Technol., 34, 668 (1961). 66. P. R. Johnson, Rubber Chem. Technol., (Rubber Rev.), 49, 650 (1976).
P h y s i c a l
C o n s t a n t s
o f
P o l y ( e t h y l e n e ) *
L e i Z h u , F a n g - C h y o u C h i u , Q i a n g F u , R o d e r i c P. Q u i r k , S t e p h e n Z . D . C h e n g Maurice Morton Institute of Polymer Science, The University of Akron, Akron, O H 44325-3909, USA
A. Crystallographic Data and Crystallographic Modifications B. Molecular Parameters and Solution Properties C. Crystallinity, Crystal Size and Crystallization Kinetics D. Equilibrium Thermodynamic Properties
A.
E. Other General Physical Properties F. Effect of Chain Branching (Short) on Physical Properties G . Properties of a Series of Selected Poly(ethylene) Samples H . Properties of Typical Poly(ethylenes) |# References
V-9 V-9 V-10 V-11
V-12 V-15 V-16 V-17 V-17
CRYSTALLOGRAPHIC DATA A N D CRYSTALLOGRAPHIC MODIFICATIONS 0 Lattice constants (nm)
Crystal system
Space group
Orthorhombic stable form Pnam-D2h Monoclinic metastable form C2/m-C2h Hexagonal high-pressure form a b c
a
b
a, ft, or y (deg.)
c
0.7417 0.4945 0.809 f.a. = 0.253* 0.842 -
0.2547 0.479 f.a.c
Number of chains per unit cell 2 2
0=107.9
Molecular conformation Planar Zigzag (2/1) Planar Zigzag (2/1) -
Crystal density (g/cm3) 1.00 0.998
Refs. 3-7 4,8 9-11
Refs. 1,2. f.a. indicates fiber axis. Not determined.
Temperature Dependence of Crystallographic Data for Orthorhombic Poly(ethylene)a Lattice constants (nm) Temp. (K) 4b 10 77 77 90* 195 293 c 297 297 297 303
a
b
c
Specific volume (cm3/g)
0.712 0.716 0.718 0.715 0.716 0.727 0.740 (0.743) 0.742 0.740 0.736 0.741
0.485 0.486 0.488 0.490 0.487 0.491 0.495 (0.494) 0.496 0.493 0.492 0.494
0.2548 0.2534 0.2534 0.2547 0.2546 0.2534 0.2543 (0.2543) 0.2534 0.2534 0.2534 0.2547
0.945 0.947 0.953 0.959 0.953 0.971 0.999 (1.003) 1.001 0.993 0.985 1.002
Refs. 12 13 13 14 12 13 5 5 13 3 15 14
B. MOLECULAR PARAMETERS AND SOLUTION PROPERTIES Bond Angle and Bond Length Wide angle X-raya (Refs. 3,4,16)
Neutron scattering (Ref. 12)
Temp. (K)
107.7 108.1 109.0 110.0
4 90 4 90
0.158 0.157 0.106 0.107
4 90 4 90
BOND ANGLE (in degrees) C-C-C
112.0
H-C-H
107.0
a
Ref. 1. Data obtained by X-ray diffraction studies unless otherwise indicated. Data obtained by neutron diffraction. The data of nonoriented samples are given without parentheses and those of oriented samples are given with parentheses, both for high-density PE.
b c
* Based on a table in the third edition, by R. P. Quirk and M. A. A. Alsamarraie, The Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio.
BOND LENGTH (nm) C-C
0.153
C-H
0.107
a
Measurements taken at room temperature.
Dimensions
of Linear
Polyethylene
Molecules61
PED* Temperature (0C) c
23 (296.2) 150(423.2) 150(423.2)
PEH Matrix Mw(xl03)
M w (xlO 3 )
78 100 80
60 140 10
(S2)^f (nm)
(S2)J/2/3#w2* [nm/(g/mole) 1 ^]
State
13.3 21.5 4.38
0.046 0.046 0.044
Crystalline Molten Molten
Refs. 17 17 18
a
Effect of temperature and state, neutron scattering measurements. Deuterated polyethylene. Values in parentheses indicate temperature in kelvin. t (S2) 1J2 is the z-average value of the radius of gyration of the molecule. * (S2) 1J2 is the weight-average value of the radius of gyration of the molecule.
b c
Molecular Dimensions of Linear (Unperturbed)" M w (XlO5)
Poly(ethylene)
((r2) w /M w )!/2 [nmAg/mole)1/*]
1.25 2.69 4.65
{r20)jDrmax
0.192 0.215 0.190
7.80 9.86 7,73
a
In tetralin at 105°C_(378.2 K). (TQ) W is the weight-average mean-square end-toend distance in nm; Mw is the weight-average molecular weight; D is the diameter of a spherical segment of the lattice model chain; and rmax is the length of the fully extended chain (19); temperature dependence of (rfy (in long chain paraffinic hydrocarbon solvents) is given by -din (rfy/dT = 1.2 x 10~3 (20).
C.
Effect of Molecular
Weight
Molecular weight ^ of tagged molecules ^- = My, 3000 12000 60000 140000
on
Paraclusteringa
M o l e c u l a r w e i h t (neutrons)
— Molecular weight (g.p.c.)
<52) 1J2f ij2 Mw
73 ± 7 7±1 0.91 ±0.1 0.94 ±0.1
0.41 0.18 0.049 0.042
a
For deuterated poly(ethylene) in a protonated poly(ethylene) matrix with molecular weight ca. 100000 by neutron scattering measurements (21). All sample solution were blended in ortho-dichlorobenzene, quenched rapidly from the melt and measured at 25°C (298.2 K) (concentration of tagged molecules < 5%). t (S2) 1J2 the weight-average value of the radius of gyration of the molecule; values are in [nm/(g/mol)1/2].
CRYSTALLINITY, CRYSTAL SIZE A N D C R Y S T A L L I Z A T I O N KINETICS
Crystallinityab
Average molecular weight Marlex6015 HostalenGC Hostalen GF Hoechst PA-190 Alkathene HD EpoleneC-11 Lupolen KR 1051 BASFaWachs Lupolen KR 1032 EpoleneC-13 Lupolene 1810 H Hoechst PA-130 Epolene N-10 Epolene N-12 BASFaWachs Epolene N-Il Hoechst PA-560 Epolene C-10 Epolene C-101 Hoechst PA-520 Epolene. C-12 a b c
15.OxIO4 5.0 12.0 0.9 24.5 1.0 5.1 1.0 5.3 1.0 5.4 3.OxIO 3 2.5 1.5 5.6 1.5 6.0 7.0 3.2 2.0 3.7
Density p (g/cm3)
Melting point T (0C)
Degree of branching (CH3/100C)
Crystallinity (ap)
Crystal thickness / (nm)
0.980 0.969 0.968 0.954 0.952 0.947 0.943 0.933 0.931 0.919 0.928 0.957 0.925 0.941 0.936 0.934 0.914 0.919 0.936 0.917 0.906
131 (404.2)c 129(402.2) 128 (401.2) 124(397.2) 121 (394.2) 119(392.2) 120(393.2) 111(384.2) 115(388.2) 104(377.2) 106(379.2) 115(388.2) 105 (378.2) 108 (381.2) 106(379.2) 104(377.2) 101(374.2) 99(372.2) 104(377.2) 102(375.2) 83(356.2)
0.05 0.10 0.64 0.84 0.91 1.08 1.30 1.84 2.50 2.80 3.00 1.58 2.25 2.27 2.32 2.48 4.10 4.19 4.42 4.90 6.94
0.94 0.83 0.85 0.76 0.76 0.74 0.70 0.67 0.60 0.54 0.59 0.85 0.61 0.75 0.68 0.68 0.51 0.60 0.70 0.54 0.50
23.9 19.8 18.4 14.1 12.0 11.0 11.4 8.1 9.2 6.5 6.9 9.3 6.8 7.4 6.9 6.6 6.1 5.8 6.6 6.2 5.1
Depends upon chain branching; data given are representative values of typical commercial poly(ethylenes) (22). Crystallization from melt by rapid cooling at ambient temperature; crystallinity estimated from density. Values in parentheses indicate temperature in kelvin.
Single Crystal Lamella Thickness0 Solvent
Cryst. temp. (0C)
Cone. (%)
HIGH DENSITY, POLY(ETHYLENE) (PHILLIPS MARLEX 50) Tetrachloroethylene 50(323.2)* 60(333.2) p-Xylene 72(245.2) 78(351.2) Xylene 50(323.2) 60 (333.2) 70(343.2) 80 (353.2) 90 (363.2) 75(348.2) 80 (353.2) 85 (358.2) Melt 120(393.2) 125 (398.2) 130 (403.2) «-Butyl acetate 105 (378.2) 110(383.2) Diphenyl ether 120(393.2) 125 (398.2)
0.31 0.25 0.46 0.58 -
Long period (nm)
Refs.
11.2 10.8 11.0 14.0 9.25 10.2 11.15 12.05 15.0 11.5 12.5 13.3 19.0 22.3 35.5 14.7 16.2 20.2 17.3
0.1 0.1 0.1 100 100 100 0.45 0.57 0.47 0.37
24 25 26 24 23,26
27 28 25 24 24 25
L O W DENSITY POLY(ETHYLENE) (DUPONT ALATHON) Butyl stearate Squalene Glycol dipalmitate
Tripalmitin
111(384.2) 113.5(386.7) 155.5 (428.7) 155.4(428.6) 118(391.2) 121 (394.2) 121 (394.2)
0.25 0.25 0.25 0.25 0.25 0.25 0.25
12.6,15.5 16.6 17.6 15.1 16.4 20.6 18.8
23
° Long periods from small angle X-ray scattering, effect of crystallization temperature and solvents (23). b Values in parenthesis indicate temperature in kelvin.
Crystallization Kinetic Parameters See table "Rate of Crystallization of Polymer" in this Handbook, and Refs. 29-31.
Glass Transition Activation Energy 46-75 kJ/mol (42).
Heat Capacity, C9 (J/mol/K)a D. EQUILIBRIUM THERMODYNAMIC PROPERTIES Temperature (K)
Polymer
298.15 300
Crystalline Amorphous Branched
300
Linear
400
Molten
Entropy of Fusion at Equilibrium Melting Temperature 298.15 (J/mol/K) Value AS 11
At constant volume (AS u ) v
9.81 9.60 9.91 7.42 7.72
Refs. 32 33 34 33 35
Glass Transition Temperatureab (0C)
Cp
Refs.
21.70 30.81 32.55 32.68 32.86 23.93 24.14 24.24 34.48 35.22 35.36 36.04
43 44 45 46 47 46 48 44,49 50 48
a
Value
Refs.
- 3 0 ± 1 5 (243.2±15) c - 8 0 ±10 (193.2 ±10) - 1 2 8 ± 5 (145.2 ±5)
37,38 39 40,41
Ref. 2. For linear, amorphous, crystalline and molten poly(ethylene), (0-600 K), see Table "Heat Capacity of High Polymers" in this Handbook, and also Refs. 2,34.
a
Ref. 36. See also Transition and Relaxation Temperatures in Section E. * Considerable disagreement exists between different authors on the exact value of the transition which can be identified as the glass transition temperature. See Ref. 36 for a detailed discussion. c Values in parentheses indicate temperature in kelvin.
Heat Capacity in Liquid (2) For molten poly(ethylene) (390-600 K) Cp = 4.325 x 10~ 2 r+ 17.919 [±1.2% (RMS deviation)] References page V-17
Heat Capacity in Amorphous Glass (2) The heat capacity of amorphous poly(ethylene) obtained from crystallinity extrapolations was given in J/mol/K. From 0.5 to 2OK: Cp = exp[-0.135328(lnT)3 +0.393949(InT) 2 + 2.85597(InT)-7.84553] [±2.2% (RMS deviation)]
= = = =
1.0966333 9.3092851 x 10~3 1.5885817 x 10" 6 2.0248831 x 10"11
A1 A3 A5 A7
= = = =
Cp = exp[-1.07155 x 10" 2 (lnT) 3 +4.62622 x (InT) 2 + 2.89948(ln T) - 9.12864] [±5.8% (RMS deviation)] From 10 to 410K: 9
Cp = YlA"Tn A= lO
From 10 to 260K: 7 Cp = ^AnT" [±0.7% (RMS deviation)] A0 A2 A4 A6
From 0.4 to 20 K:
A0 A2 A4 A6 A8
-0.11209575 -1.7095906 x 10~4 -7.931924 x 10~9 -2.0616876 x 10~14
= = = =
[ ± L 2 % ( R M S d e v i a t i ° n )]
1.1504009 1.2786634 x 10~2 2.593176 x 10" 6 6.5926585 x IO"11 2.0474114 x 10~16
Heat of Fusion at Equilibrium Melting Temperatu 4.1 ± 0.2 kJ/mol (2,51) Residual Entropy of the Glassy State at OK S0 = 3.0 J/mol/K (2).
E. OTHER GENERAL PHYSICAL PROPERTIES Coefficient of Thermal Expansion61 Coefficient of expansion ( x 10 5 )
- 3 5 (238.2) c -20(253.2) 0(273.2) 20(293.2) 25 (298.2) 40 (313.2) 60(333.2) 80(353.2) 100(373.2) 110(383.2) 115(388.2) 115-150(388.2-423.2) 150(423.2) a b c
Linear 10.0 13.7 18.3 23.7 24.8 29.0 33.7 40.3 46.6 51.0 25.0 25.0 25.0
Specific volume ratio (VE/V25)b
Cubical 30 41 55 71 74 87 101 121 140 153 75 75 75
0.969 0.975 0.986 0.997 1.000 1.012 1.031 1.055 1.094 1.130 1.140 1.168
Branched polyethylene (52,53); for data on amorphous linear poly(ethylene), see Ref. 40. VE is relative excess volume, V25 is the volume at 25°C (273.2 K). Values in parentheses indicate temperature in kelvin.
Densitya (Mg/m3) = (g/cm3) Value Amorphous (from extrapolation of data above the melting point) Commercial high-pressure poly(ethylene) Experimental high-pressure poly(ethylene) Ziegler process (Refs. 56,57) poly(ethylene) Phillips process (Ref. 58) poly(ethylene) Crystal density (theoretical)
a
-0.19842302 -2.4474207 x 10" 4 1.6647891 x 10~8 -1.5679761 x 10" 13 -1.1252521 x 10~19
Heat Capacity Change at Glass Transition Tempera tures 10.5 J/mol/K at 237 K (2)
Heat Capacity in Crystalline Solid (2) The heat capacity of crystalline poly(ethylene) obtained from extrapolated values was given in J/mol/K.
Temp ( 0 C)
A1 = A3 = A5 = A7 = A9 =
0.855 0.915-0.935 0.940-0.970 0.940-0.965 0.960-0.970 See "Crystallographic Data and Crystallographic Modifications" in Section A
Unless otherwise stated, the values given are for 25°C (293.2 K); see also Sections G and H.
Refs. 54 55 55 55 55
Dielectric Constant At 100kHz and 23°C (296.2 K): 2.3 (59) Effect of Density on Dielectric Constant" 3
Density (g/cm )
Dielectric constant (ASTM D 150)
0.920
2.28
0.925 0.930 0.935 0.940
2.29 2.30 2.31 2.32
Dielectric Strength" Temperature ( 0 C)
Value ( x 10 6 ) ( V / c m ) ^
- 2 0 0 toO (73.2-273.2)d
1
50 (323.2) 100 (373.2)
5.3 1.8
a
Ref. 63. Short-time test value (ASTM D149) is 16000-24000 V/cm, and depends upon sample configuration and impurities (64). c Intrinsic dielectric strength of LDPE is of the order of 8.0 x 105 V/cm, if all chain end, surface and impurity effects are eliminated (64). d Values in parentheses indicate temperature in kelvin. b
u
Ref. 60. The relationship shown in this table is for pure poly(ethylene). Therefore, considerable divergence from this relationship is caused by the presence of impurities as well as addition of additives such as carbon black or other fillers.
Electrical Properties See also Section H (65).
Dielectric Loss tan « ( l x 1 0 ~ 4 - l x 10" 3 ) (61,62). The values of tan 6 depend on temperature and structure of poly(ethylene) (61).
Flash Ignition Temperature ASTM Method E136-58T: 3400C (613.2 K) (66).
Frictional Properties" Coefficient of friction (jt) Static (Ms) Kinetic (M K ) a
Steel sliding on polymer
Polymer sliding on steel
Polymer sliding on polymer
Polished
Abraded
Polished
Abraded
Polished
Abraded
0.60 0.60 0.50
0.33 0.33 0.25
0.60 0.60
0.33 0.33
0.60 0.60
0.33 0.33
Ref. 67.
Heat of Combustion"
Infrared
Absorption
Bands ( 7 2 - 7 9 ) .
Far Infrared (80). Density (Mg/m3) = (g/cm3)
Methyl groups per 1000 C atoms
Heat of combustion AE (kj/kg)
8.3 24.7 46.2
-46,412 - 46,492 -46,542
0.9391 0.9220 0.9053 a
Mechanical Properties See Section H. Ultra-drawn polyethylene. See Refs. 81-90.
Ref. 68.
Heat
of Fusion and Melting
Differential
Thermal
Poly(ethylene) type
Temperature
Analysis
Elastic Compliance See Section G.
From
Data"
Melting point (0C)
Elongation at Break (%) See Section H. Heat of fusion (kj/kg)
fl
Marlex 50 (Phillips, linear) 135 (408.2) Super-Dylan (Ziesler, linear) 130 (403.2) DYNH (Union Carbide, branched) 112(385.2) Linear poly(ethylene) from dilatometric measurements from calorimetric measurements a
Intrinsic Viscosity See Section G.
Refs.
245.3 218.6
69 69
Impact Strength, Izod See Section H.
140.6
69
Low Temperature Brittleness See Section H.
280.5 277.1
33 34,70
Values in parentheses indicate temperature in kelvin.
Ignition
Limiting
6500C (923.2 K)
2.8±0.1
Oxygen
Indices
Tensile Modulus See Section H. Also see Ref. 91 for Young's, shear and bulk moduli for more than 1,100 poly(ethylene) samples reported (within density range from 0.90 to 0.98 g/cm3).
(ILOI)"
6000C (873.2K)
3.5±0.1
Hardness, Shore D See Section H.
Tensile Strength See Section H. 550°C (823.2 K)
5.7±0.1
Melt Index See Section G.
a
Ref. 71. The method used (ASTM D2863-70) is defined as the minimum volume fraction of oxygen required for ignition to occur.
Melt Viscosity See Section G. References page V-17
Melting Temperatureab
( 0 C) Value 136.5 ± 0.5 (409.7 ± 0.5)c 137.5 (410.7) 138.5 (411.7) 141 ± 2.4 (414.2 ± 2.4) 141.4-145.5 ± 1 (414.6-418.7 ± 1)
Poly(methylene) Linear poly(ethylene) Linear poly(ethylene), high molecular weight fraction From extrapolation of MP of n-Paraffins T^ (oo MW) 6 a b c
Refs. 92 33 93 94 30
See also Section G and under Section F (Effect of chain branching on melting temperature). The estimated melting point of the infinite poly(ethylene) crystal is in dispute (see Refs. 30,95). Values in parentheses indicate temperature in kelvin.
Molecular
Properties
of Typical
Poly(ethylenes)a
Groups per 100 carbon atoms Polymer Ziegler Phillips Solution polymerization Phillips catalyst gas phase Low-density PE a
_ M w (xlO 3 )
Density (g/cm3)
CH 3 -
-CH 2 CH 3
-CH = CH2
-CH = CH-
=C = CH2
50-60 50-60 50-60 350
0.960 0.965 0.964 0.954 0.918-0.928
3.6 3.1 3.2 2.8 20-33
0.5 0.8 0.5 <0.2 6-9
0.09 1.58 0.42 0.65 0.08-0.25
<0.02 <0.02 <0.02 <0.02 <0.02-0.06
0.06 0.08 0.03 0.04 0.17-0.33
Ref. 74.
Dependence of Refractive Index on Chain Branchings Crystallinity and Density See Section F (Effect of Chain Branching on Physical Properties).
Neutron Scattering Spectra See Refs. 96-98. Nuclear Magnetic Resonance See Refs. 99-110. Solid State. See Ref. 111.
Specific Refractivity"
Permeability and Diffusion Constants See corresponding table in this Handbook, and also Refs. 112,113.
Temp. (0C)
a
Permeabilities at 30PC (293.2 K) of Poly(ethylene) ~ [(cm 3 STP)mm x IP 10 ] u .,., Permeability =—£ TT\ [ cm 2 s (cm Hg) J Crystallinity (%) 60 90 78 81 a b
N2
O2
1.9OxIO- 9 0.66 0.33 0.27
5.5 XlO" 9 2.1 1.1 1.06
CO 2 35.2 x 10~9 7.4 4.3 3.5
80xl0~9 13
LOW DENSITY POLY(ETHYLENE) (ALATHON-10) 90(363.2)* 1.159 1.4801 100 (373.2) 1.178 1.4693 108(381.2) 1.209 1.4575 113 (386.2) 1.239 1.4432 118(391.2) 1.250 1.4392 124.4 (397.6) 1.256 1.4368
HIGH DENSITY POLY(ETHYLENE) (MARLEX 50) 130(403.2) 1.261 1.4327 139.9(413.1) 1.270 1.4297 150.6(423.8) 1.281 1.4261
r
0.3293 0.3283 0.3297 0.3286 0.3289 0.3288 Av. 0.3290
0.3273 0.3297 0.3283
a
2 — l ) / ( n 2 + l ) , where v and n are specific volume and refractive index r = v{n respectively. Ref. 52. b Values in parentheses indicate temperature in kelvin.
Raman Spectra See Refs. 115-123.
Refractive Index Increment (dn/dc) See corresponding table in this Handbook, and also Refs. 126-133.
Refractive Index /ip5
a
n
H 2 O*
Ref. 114. 90% e.h. at 25°C.
LDPE MDPE HDPE (melt index above 0.1) Amorphous, nfA6l Crystal, a ^ f3a 7°
v (cm3/g)
Value
Refs.
1.51 1.52 1.54 1.49 1.520 1.582
124 124 124 125 125 122
a, (3 and 7 are refractive indices along the a, b and c crystallographic directions of the crystal, respectively.
Softening Temperature, Vicat See Section H. Solvent-Nonsolvent Systems for Fractionation Solvent Xylene /7-Xylene Tetralin
Nonsolvent Triethylene glycol Ethylene glycol monoethylene ether 2-Butoxyethanol Polyethylene oxide) [mol. wt. 200]
Refs. 134,135 136 137 138,139
Transition and Relaxation Temperatures" Approximate activation energy (kj/mol)
Designation
Temperature range (0C)
a f3 7
60-80(333.2-353.2)* - 20 to - 30 (253.2-243.2) - 80 to - 90 (193.2-183.2)c - 120 to - 130 (153.2 -143.2)
Refs.
>420 160-200 46-75 32
141
a
There is considerable disagreement in the literature on the phenomena associated with the various transition and relaxation temperatures observed. Transition temperatures and temperatures associated with peaks in dynamic loss are collected together under the above combined heading. The transition and relaxation temperatures associated with amorphous regions of branched and linear poly(ethylenes) are designated as a, (3, 7, etc. in the descending temperature order (140). b Values in parentheses indicate temperature in kelvin. c These frequently merge depending upon the crystallinity and frequency of the test method.
Frequency Loss
Dependence
of Relaxation
Temperatures
a Hz
P T(K)
Hz
HIGH PRESSURE, BRANCHED 0.3 340 1.2 327 39 333 150 355 200 360 600 385 4 XlO4 >360 1 x 10 5 > 320
2 xlO 6
Mechanical
360
y T(K)
Hz
POLY(ETHYLENES) 0.3 268 4.1 268 150 253 540 265 520 280 6000 320 4 xlO4 275 1 x 10 5 283 1 x 105 285 5 x 105 285 2 xlO 6 295 2 x 106 300
LOW PRESSURE, LINEAR POLY(ETHYLENES) 0.3 373 0.2 368 8 <460 >380 1.1 x 10 3 3000 420 a
in Dynamic
Measurements"
T(K)
1.25 8.6 324 1.2 x 10 3 1.15 x 10 3 1.9 x 10 4 4 x 10 4 1 x 10 5 Ix 105 5 x 105 2 x 106 2 xlO 6
140 166 158 165 165 <200 180 < 190 200 205 210 210
1.25 10 840 and 1.57 x 10 3 -
273 295
153 173 173 -
Ref. 142.
Viscosity-Molecular Weight Relationship See corresponding table in this Handbook, and Ref. 52.
F. EFFECT OF CHAIN BRANCHING (SHORT) ON PHYSICAL PROPERTIES Effect on Density and Refractive Index" Methyl groups per 1000C atoms 83 48 46 26 16 a
Refs. 143, 52.
Density (Mg/m3) = (g/cm3)
Refractive index n™
0.91 0.917 0.925 0.929 0.926
1.5060 1.5168 1.5152 1.5227 1.5260
Effect on Expansion Coefficient Volume of Crystalline Phase" Methyl groups per 1000 C atoms 0.3 2 17.5 23 37 a
(Mean)
and
Specific
I/V20 (-150 to 1000C)
(AF/AJ)(x 10 4 ) (0-1000C)
V2O
2.47 2.59 2.61 2.84 2.96
3.13 2.95 2.98 3.42 3.70
1.001 0.998 1.010 1.009 1.017
Ref. 52,144.
References page V-17
Effect on Long Period Spacings and Crystallinity of
Effect on Melting
Point
Observed"1
1
Completely Annealed Samples'
Melting point (0C)
Methyl groups per 1000 C atoms Methyl groups per Long period 1000 C spacing % atoms (nm) crystallinity
Poly(ethylene) Branched (high pressure)
Linear (Ziegler type catalysts) Linear (Phillips petroleum process)
60 45 35 28 20 15 10 7 5 2
22.0 20.0 21.0 22.0 23.0 25.0 26.0 32.0 36.0 42.0
21 48 50 53 56 59 62 77 79 88
87 28 28 8 0
Refs. 146
105 (378.2)* 113(386.2) 108 (381.2) 123 (396.2) 132 (405.2)
a Both the amount and randomness of branching affect the melting point. Experimental conditions used for the following data were not adequate for equilibrium crystallinity and accuracy of melting points (52). b Values in parentheses indicate temperature in kelvin.
143,144 58
° Ref. 52,145.
G.
PROPERTIES O F A SERIES O F SELECTED POLY(ETHYLENE) SAMPLES Infrared functional groups per 2000C
Sample No. PE PE PE PE PE PE PE PE PE PE PE
1 2 3 4 5 6 7 8 9 10 11
a
Optical melting point (0C)
Density (g/cm3)
per 100 C methyl
Vinyl
Trans-unsaturation
Vinylidene
104.2 (377.4/ 112.4(385.6) 112.2(385.4) 113.7(386.9) 114.0(387.2) 114.5(387.7) 113.5(386.7) 112.0(385.2) 121.5(394.7) 135.8 (409.0) -
0.9142 0.9225 0.9218 0.9232 0.9219 0.9228 0.9207 0.9188 0.9334 0.9549 0.9554
3.68 2.59 2.48 2.55 2.46 2.31 2.59 2.54 1.40 0.1 0.165
0.18 0.32 0.10 0.11 0.11 0.06 0.11 0.10 0.04 1.82 0.86
0.15 0.11 0.06 0.06 0.05 0.05 0.06 0.06 0.02 0.04 -
0.79 0.32 0.29 0.29 0.30 0.26 0.33 0.31 0.11 0.15 0.17
Intrinsic viscosity6 (ml/g)
Melt indexc
Melt viscosityd (Pas)
Carbonyl 0.13 0.02 0.05 n.d. 0.01 n.d. 0.02 n.d. 0.87 <0.005
Molecular weight Sample No.
Weight Av.
PEl PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 PE 8 PE 9 PE 10 PE 11
510000* 300000* 550000* 225000' 500000' 500000' 300000' 800000' 300000' 144000* -
a
Number Av. 1O7OO71 1330O* 19100* (16000)' (18000V (2200Oy (4500Oy (55000y (2700Oy 11500* 0
79.5 75.7 96.1 62 75 82 77 97 73 116 -
Samples annealed for 1 hour at about 100 C (373.2 K). a-Chloronaphthalene, 125°C (398.2 K). ASTM D-1238-57T. d Newtonian melt viscosity at 1500C (423.2 K) and 400Pa. e Steady-state elastic compliance from creep recovery at 15O0C (423.2 K) and 400Pa. f Values in parentheses indicate temperature in kelvin. 8 Light scattering after optical clarification by high temperature ultracentrifugation. h Cryoscopy. ' Preliminary value, subject to revision. 7 "Best guess", subject to drastic revision. k Measured by osmometry. b c
1.80 1.95 0.16 19.9 3.30 1.06 2.94 0.21 3.75 2.92 -
64 38 620 24 185 73 23 310 153 -
Elastic compliancee (MPa1) 63 x 10" 6 46 46 22 36 54 31 54 39xlO" 6
H.
PROPERTIES OF TYPICAL POLY(ETHYLENES)a
Property
Low density ASTM type Ib
Abrasion resistance, Taber (mg/1000 cycles) 10-15 Brittleness, low temperature (0C) < - 118 (155.2)c Coefficient of thermal expansion ( x 10 ~5) [D696] rf (K- ! ) 10 Density [D 792] (g/cm3) 0.910-0.925 Dielectric constant at 1 kHz [D 150] 2.28 Elongation at break [D 638] (%) 150-600 Hardness, Shore D [D 1706] 44-48 Impact strength, Izod [D 256] (ft/lb/in notch) > 16 Power factor at 1 kHz [D 150] < 0.0001 Heat capacity (kJ/kg/K) 1.916 Tensile modulus [D 638] (MPa)=(N/mm2) 55.1-172 Tensile strength [D 638] (MPa)=(N/mm2) 15.2-78.6 Vicat, softening temp. [D 1525] (0C) 88-100 (361.2-373.2) Volume resistivity [D 257] (cm) 6xlO15 a b c d
Medium density ASTM type II b
High density ASTM type IIIb
6-10 < - 118 (155.2)
2-5 < - 118 to - 73 (155.2-200.2)
0.926-0.940 100-150 45-60
13 0.941-0.965 2.32 12-700 55-70
>16 1.916 172-379 12.4-19.3 99-124 (372.2-39.2) -
0.8-14 < 0.0001 1.916 413-1034 17.9-33.1 112-132 (385.2-405.2) 6 x 105
Ref. 52, 147, 148. ASTM designation D1248-72, "Standard Specification for Polyethylene Plastics Molding and Extrusion Materials." Values in parentheses indicate temperature in kelvin. The numbers in square brackets refer to the ASTM Standards, American Society for Testing Materials.
I. REFERENCES 1. H. Tadokoro, "Structure of Crystalline Polymers," Wiley, New York, 1979, p. 375. 2. U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data., 10 (1), 119(1981). 3. C. W. Bunn, Trans. Faraday Soc, 35, 482 (1939). 4. S. Kavesh, J. M. Schultz, J. Polym. Sci. A-2, 8, 243 (1970). 5. Y. Chatani, Y Ueda, H. Tadokoro, Annual Meeting of the Society of Polymer Science, Japan, Tokyo, Preprint, p. 1326 (1977). 6. P. R. Swan, J. Polym. Sci., 56, 409 (1962). 7. A. Turner-Jones, A. J. Cobbold, J. Polym. Sci., B, 6, 539 (1968). 8. T. Seto, T. Hara, K. Tanaka, Jpn. J. Appl. Phys., 7, 31 (1968). 9. D. C. Bassett, S. Block, G. J. Piermarini, J. Appl. Phys., 45, 4146 (1974). 10. M. Yasuniwa, R. Enoshita, T. Takemura. Jpn. J. Appl. Phys., 15, 1421 (1976). 11. T. Yamamoto, H. Miyaji, K. Asai, Rep. Prog. Polym. Phys. Jpn., 19, 191 (1976). 12. G. Avitabile, R. Napolitano, B. Pirozzi, K. D. Rouse, M. W. Thomas, B. T. M. Willis, J. Polym. Sci. Polym. Lett. Ed., 13, 351 (1975). 13. M. Shen, W. N. Hansen, P. C. Romo, J. Chem. Phys., 51,425 (1969). 14. P. R. Swan, J. Polym. Sci., 56, 403 (1962). 15. E. R. Walter, E P. Reding, J. Polym. Sci., 21, 561 (1956). 16. H. M. M. Shearer, V. Vand, Acta Cryst., 9, 379 (1956); H. M. M. Shearer and P. W. Teare, ibid., 12, 294 (1959). 17. J. Schelten, D. G. H. Ballard, G. D. Wignall, G. Longman, W. Schmatz, Polymer, 17, 751 (1976). 18. G. Lieser, E. W. Fischer, K. Ibel, J. Polym. Sci. Polym. Lett. Ed., 13, 39 (1975).
19. Q. A. Trementozzi, J. Polym. Sci., 36, 113 (1959). 20. P. J. Flory, A. Citerri, R. Chiang, J. Am. Chem. Soc, 83, 1023 (1961). 21. J. Schelten, G. D. Wignall, D. G. H. Ballard, G. W. Longman, Polymer, 18, 1111 (1977). 22. F. J. Balta Calleja and D. R. Rueda, Polym. J., 6 (3), 216 (1974). 23. R H. Geil, "Polymer Single Crystals," Wiley Interscience, New York, 1963, p. 8611. 24. B. G. Ranby, H. Brumberger, Polymer, 1, 399 (1960). 25. B. G. Ranby, F. F. Morehead, N. M. Walter, J. Polym. Sci., 44, 349 (1960). 26. F. P. Price, J. Chem. Phys., 35, 1884 (1961). 27. D. C. Bassett, A. Keller, Phil. Mag., 7, 1553 (1962). 28. L. Mandelkern, A. S. Posner, A. F. Diorio, D. E. Roberts, J. Appl. Phys., 32, 1509 (1961). 29. W. M. Leung, R. St. John Manley, A. R. Panaras, Macromolecules, 18, 746, 753, and 760 (1985). 30. J. D. Hoffman, Polymer, 24, 3 (1983); ibid., 23, 656 (1982). 31. J. D. Hoffman, L. J. Frolen, G. S. Ross, J. I. Lauritzen, Jr. J. Res. Natl. Bur. Stand. 79A, 671 (1975). 32. H. W. Starkweather, Jr., R. H. Boyd, J. Phys. Chem., 64,410 (1960). 33. F. A. Quinn, L. Mandelkern, J. Am. Chem. Soc, 80, 3178 (1958). 34. B. Wunderlich, "Macromolecular Physics," Vol. 3, Crystal Melting, Academic, New York, 1980. 35. L. Mandelkern, "Crystallization of Polymers," McGrawHill, New York, 1964, p. 130. 36. R. F. Boyer, in: H. F. Mark and N. M. Bikales (Eds.), "Encyclopedia of Polymer Science and Technology," Supplement No. 2, 1977, p. 745. 37. G. T. Davis, R. K. Eby, J. Appl. Phys., 44, 4274 (1973).
38. S. S. Chang, J. Polym. Sci. Polym. Symp., 43, 43 (1973). 39. K. H. Illers, Kolloid-Z. Z. Polym., 231, 622 (1969); ibid., 252, 1 (1974); ibid., 251, 394 (1973); ibid., 190, 16 (1963). 40. F. C. Stehling, L. Mandelkern, Macromolecules, 3 (2), 242 (1970). 41. P. J. Hendra, H. P. Jobic, K. Holland-Moritz, J. Polym. Sci., Polym. Lett. Ed., 13, 365 (1975). 42. R. F. Boyer, Rubber Chem. Tech. (Rubber Reviews), 36 (5), 1303 (1963). 43. S. S. Chang, E. F. Westrum, H. G. Carlson, J. Res. Natl. Bur. Stand, Sect. A, 79, 437 (1975). 44. M. Dole, W. P. Hettinger, N. R. Larson, J. A. Wethington, Jr., J. Chem. Phys., 20, 718 (1952). 45. KS. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 3, 277 (1962). 46. F. Sakaguchi, L. Mandelkern, J. Maxfield, J. Polym. Sci., Polym. Phys. Ed., 14, 2137 (1976). 47. S. S. Chang, J. Res. Natl. Bur. Stand., Sect. A, 78, 387 (1974). 48. K. H. Hellwege, W. Knappe, W. Wetzel, Kolloid-Z., 180, 126 (1962). 49. M. J. Richardson, Trans. Faraday Soc, 61, 1876 (1965). 50. A. P. Gray and N. Brenner, Polym. Preprint, Am. Chem. Soc, Polym. Div., 6 (2), 956 (1965). 51. B. Wunderlich, G. Czornyj, Macromolecules, 10, 906 (1977). 52. J. Brandrup, E. H. Immergut, (Eds.), 'Tolymer Handbook," 3rd. ed., Wiley, 1989. 53. F. C. Hahn, M. L. Macht, D. A. Fletcher, Ind. Eng. Chem., 37, 526 (1945). 54. G. Allen, G. Gee, G. J. Wilson, Polymer, 1, 456 (1960). 55. K. W. Doak, A. Schrage, "Polymerization and Copolymerization Processes," in R. A. V. Raff and K. W. Doak (Eds.), "Crystalline Olefin Polymers," Part 1, Interscience, New York, 1965, p. 301 ff. 56. K. Ziegler, Angew. Chem., 64, 323 (1952). 57. K. Ziegler, E. Holzkamp, H. Breil, H. Martin, Angew. Chem., 67, 426, 541 (1955). 58. J. P. Hogan, R. L. Banks, US Patent 2,825,721 assigned to Phillips Petroleum Company, March 4, 1958. 59. V. L. Lanza, B. D. Herrmann, J. Polym. Sci., 28, 622 (1958). 60. H. C. Doepken, K. D. Kiss, D. Mangaraj, "Dielectric Strength of Crosslinked Polyethylene Insulation," Preprints, Organic Coatings and Plastics Chemistry, Vol. 38, American Chemical Society, 1978. 61. G. P. Mikhailov, S. P. Kabin, T. A. Krylova, Zh. Tekh. Fiz., 27, 2050 (1957). 62. H. D. Anspon, et al., "Polyethylene" in "Manufacture of Plastics," W. M. Smith (Ed.), Reinhold, New York, 1964, p. 150 ff. 63. K. H. Stark, C. G. Garton, Nature, 176, 1225 (1955). 64. P. Fisher, "The Short-Time Electrical Breakdown Behaviour of Polyethylene", Annual Report, Conference on Electrical Insulation and Dielectric Phenomenon, National Academy of Sciences Publication, 1974. 65. A. J. Bur, Polymer, 26, 963 (1985). 66. G. A. Patten, Mod. Plastics, 38 (11), 119 (1961).
67. R. A. V. Raff, J. B. Allison, "Polyethylene," Interscience, 1956, p. 353. 68. Reference 42, p. 160. 69. B. Ke, J. Polym. Sci., 42, 15 (1960). 70. B. Wunderlich, M. Dole, J. Polym. Sci., 24, 201 (1957). 71. T. Morimoto, T. Mori, S. Enomoto, J. Appl. Polym. Sci., 22, 1911 (1978). 72. A. R. Wedgewood, J. C. Seferis, Pure Appl. Chem., 55 (5), 873 (1983). 73. M. K. Tse, C. S. P. Sung, Org. Coat. Plast. Chem., 42, 734 (1980). 74. O. Fuchs, L. Bohn, M. Fleissner, G. Gann, H. H. Suhr, H. D. R. Schuddemage, "Ethylene and Propylene Polymers" in F. D. Snell and L. S. Ettre (Eds.), "Encyclopedia of Industrial Chemical Analysis," Vol. 12, Wiley, New York, 1971, pp. 350-358. 75. S. Krimm. Fortschr. Hochpolymer Forschung, 2, 51 (1960). 76. J. R. Nielsen, R. F. Holland, J. MoI. Spectrosc, 4, 488 (1960); ibid., 6, 394 (1961). 77. M. P. Groenewege, J. Schuyer, J. Smidt, C. A. F. Tuijnman, "Absorption and Relaxation Spectra of Polyolefins," in: R. A. V Raff and K. W. Doak (Eds.), "Crystalline Olefin Polymers," Part I, Interscience, New York, 1965, p. 762. 78. R. G. Snyder, J. Chem. Phys., 47, 1316 (1967). 79. B. E. Read, R. S. Stein, Macromolecules, 1, 116 (1968). 80. G. W. Chantry, "Submillimeter Spectroscopy," Academic, New York, 1971. 81. LM. Ward (Ed.), "Developments in Oriented Polymers," Elsevier Applied Science, England, 1982. 82. I. M. Ward (Ed.), "Structure and Properties of Oriented Polymers," Elsevier Applied Science, England, 1975. 83. A. Ciferri, I. M. Ward, (Eds.), "Ultra-High Modulus Polymers," Elsevier Applied Science, England, 1979. 84. F. -P. Wolf, V. H. Karl, Colloid Polym. Sci., 259, 29 (1981). 85. N. Capiati, S. Kojima, W. Perkins, R. S. Porter, J. Mater. Sci., 12, 334 (1977). 86. J. L. Kardos, S. Piccardo, J. C. Halpin, Polym. Eng. Sci., 18, 505 (1978). 87. A. J. Pennings, C. J. H. Schouteten, A. M. Kiel, J. Polym. Sci. C, 38, 167 (1972). 88. W. Wu, R G. Simpson, W. B. Black, J. Polym. Sci. Polym. Phys. Ed., 18, 751 (1980). 89. I. M. Ward, "Mechanical Properties of Solid Polymers," 2nd Ed., Wiley, New York, 1983. 90. P. Smith, R J. Lemstra, J. P. L. Pijpers, J. Polym. Sci. Polym. Phys. Ed., 20, 2229 (1982). 91. J. Janzen, Polym. Eng. Sci., 32 (17), 1242 (1992). 92. L. Mandelkern, M. Hellman, D. W. Brown, D. E. Roberts, F. A. Quinn, Jr., J. Am. Chem. Soc, 75, 4093 (1953). 93. R. F Chiang, P. J. Flory, J. Am. Chem. Soc, 83, 2857 (1961). 94. M, G. Broadhurst, J. Chem. Phys., 36, 2578 (1962). 95. See "A General Discussion on Organization of Macromolecules in the Condensed Phase", Faraday Disc. Chem. Soc, 68 (1979).
96. M.Stamm,J.Polym.Sci.,Polym.Phys.Ed.,20,235(1982). 97. G. D. Wignall, L. Mandelkem, C. Edwards, M. Glotin, J. Polym. Sci. Polym. Phys. Ed., 20, 245 (1982). 98. K. Swaminathan, S. P. Tewari, Nucl. Sci. Eng., 91 (1), 95 (1985). 99. F. A. Bovey, "High Resolution NMR of Macromolecules," Academic, New York, 1972. 100. R. Kitamaru, F. Horii, S. H. Hyon, J. Polym. Sci. Polym. Phys. Ed., 15, 821 (1977). 101. H. Fumitaka, R. Kitamaru, S. Maeda. A. Saika, T. Terao, Polym. Bull., 13, 179 (1985). 102. K. J. Packer, J. M. Pope, R. R. Yeung, M. E. A. Cudby, J. Polym. Sci. Polym. Phys. Ed., 22, 589 (1984). 103. D. E. Axelson, G. C. Levy, L. Mandelkern, Macromolecules, 12 (1), 41 (1979). 104. R. J. Havens, D. L. Vanderhart, J. Magn. Res., 61 (2), 389 (1985). 105. I. Kamel, A. Charlesby, J. Polym. Sci., Polym. Phys. Ed., 19 (5), 803 (1981). 106. B. Schroeter, A. Posern, Macromol. Chem. Phys., 182 (2), 675 (1981). 107. H. Schneider, G. Hempel, Wiss. Z. Tech. Hochsch. "Carl Schorlemmer" Leuna-Merseburg, 22 (3), 407 (1980). 108. H. Pranadi, A. J. Manuel, Polymer, 21 (3), 303 (1980). 109. D. L. Vanderhart, Macromolecules, 12 (6), 1232 (1979). 110. F. A. Bovey, F. C. Schilling, F. L. McCrackin, H. L. Wagner, Macromolecules, 9 (1), 76 (1976). 111. I. Ando, T. Sorita, T. Yamanobe, T. Komoto, H. Sato, K. Degochi, M. Imanari, Polymer, 26, (12), 1864 (1985). 112. S. Steingiser, S. R Nemphos, M. Salame, in KirkOthmer, "Encyclopedia of Chemical Technology", 3rd ed., Vol. 3, Wiley-Interscience, New York, 1978. 113. W. M. Lee, Polym. Eng. Sci., 20 (1), 65 (1980). 114. J. Comyn (Ed.), "Polymer Permeability", Elsevier, London, 1985. 115. L. B. Shih, R. G. Priest, Appl. Spectroscopy, 38, (5), 687 (1984). 116. D. L. Gerrard, W. F. Maddams, K. R J. Williams. Polym. Commun., 25 (6), 182 (1984). 117. M. Glotin, L. Mandelkern, J. Polym. Sci. Polym. Phys. Ed., 21, 29 (1983). 118. M. Glotin, L. Mandelkern, J. Polym. Sci. Polym. Lett. Ed., 21, 807 (1983). 119. Y. K. Wang, D. A. Waldman, R. S. Stein, S. L. Hsu, J. Appl. Phys., 53 (10), 6591 (1982). 120. I. S. Butler, A. Neppel, Spectroscopy Lett., 16 (6), 419 (1983). 121. J. E. Mark, A. Eisenberg, W. W. Graessley, L. Mandelkern, J. L. Koenig, "Physical Properties of Polymers," Am. Chem. Soc, Washington, DC, 1984; 2nd ed., 1993, p. 280..
122. M. Glotin, L. Mandelkern, Colloid Polym. Sci., 260, 182 (1982). 123. R. C. Domszy, M. Glotin, L. Mandelkern, J. Polym. Sci. Polym. Symp., 71, 151 (1984). 124. R. A. V. Raff, K. W. Doak, (Eds.), "Crystalline Olefin Polymers," No. 20 in High Polymer Series, Parts I and II, Wiley, New York, 1964 and 1965. 125. W. M. D. Bryant, J. Polym. Sci., 2, 556 (1947). 126. N. Ahmad, S. AIi, Colloid Polym. Sci., 256 (11), 1085 (1978). 127. J. Horska, J. Stejskal, P. Kratochvil, J. Appl. Polym. Sci., 24 (8), 1845 (1979); ibid., 28, 3873 (1983). 128. C. C. Han, P. H. Verdier, H. L. Wagner, J. Res. Natl. Bur. Stand., Sect. A., 83, 185 (1978). 129. L. F. Shalaeva, V V. Arefera, Vysokomol. Soedin., Ser. B, 16, 802 (1974). 130. H. L. Wagner, J. Res. Natl. Bur. Stand., Sect. A, 76, ,151 (1972). 131. A. Peyrouset, R. Prechner, R. Panaris, H. Benoit, J. Appl. Polym. Sci., 19, 1363 (1975). 132. E. Brauer, H. Wiegleb, M. Helmstedt, W. Eifert, Plaste Kautsch., 24, 463 (1977). 133. H. L. Wagner, C. A. J. Hoeve, J. Polym. Sci. A-2, 9, 1763 (1971). 134. L. H. Tung, J. Polym. Sci., 20, 495 (1956). 135. L. H. Tung, J. Polym. Sci., 24, 333 (1957). 136. P. S. Francis, R. C. Cooke, Jr., J. H. Elliot, J. Polym. Sci., 31, 453 (1958). 137. J. E. Guillet, R. L. Combs, D. F. Slonaker, H. W. Coover, J. Polym. Sci., 47, 307 (1960). 138. I. V. Mussa, J. Polym. Sci., 28, 587 (1958). 139. L. Nicolas, Compt. Rend., 242, 2720 (1956). 140. R. F. Boyer, "Transitions and Relaxations in Polymers," J. Polym. Sci. C, 14, 3 (1966). 141. Reference 45, p. 1409 ff. 142. A. E. Woodward, J. A. Sauer, Fortschr. Hochpolymer Forsch., 1, 136 (1958). Data summarized from various sources. 143. M. Baccaredda, G. Schiavinato, J. Polym. Sci., 12, 155 (1954). 144. E. A. Cole, D. R. Holmes, J. Polym. Sci., 46, 245 (1960). 145. C. Sella, Compt. Rend., 248, 1819 (1959). 146. W. D. Niegisch, P. R. Swan, J. Appl. Phys., 31, 1906 (1960). 147. P. D. Ritchie, Ed., "Vinyl and Allied Polymers," Vol. 1, Iliffe, London, 1968. 148. Trade literature published by Phillips Petroleum Company, Bartlesville, Oklahoma.
P h y s i c a l
C o n s t a n t s
o f
P o l y ( p r o p y l e n e ) *
F e n g B a i , F u m i n g L i , B r e t H . C a l h o u n , R o d e r i c P. Q u i r k , S t e p h e n Z . D . C h e n g The Maurice Morton Institute of Polymer Science, University of Akron, Akron, O H 4325-3909, USA A. Crystal lographic Data and Modifications of Isotactic Polypropylenes B. Crystal lographic Data and Modifications of Syndiotactic Polypropylenes C. Dimensions of Poly(propylene) Molecules D. Crystallinity and Crystallization Kinetics E. Equilibrium Thermodynamic Properties F. Other General Properties G. Properties of Typical Mainly Isotactic Poly(propylenes)
H. Properties of some Commercial Poly(propylene) Grades I. Mechanical Properties of Poly(propylene) Homopolymers J. Mechanical Properties of Poly(propylene) Random Copolymers K. Mechanical Properties of Poly(propylene) Impact Copolymers L. References
V-21 V-21 V-22 V-22 V-23 V-24
V-26 V-27 V-28 V-28 V-28
V-26
A. CRYSTALLOGRAPHIC DATA AND MODIFICATIONS OF ISOTACTIC POLYPROPYLENES Lattice dimensions (nm) Stereoisomeric form Isotactic
Crystal system Monoclinica Monoclinicai Monoclinica2 Hexagonal P Hexagonal Pi Hexagonal p 2 Triclincy
Space group C2/C C2/C P2i/C
a
b
c
0.665 0.666 0.666 1.274 0.636 1.908 0.654
2.096 2.078 2.078
0.650 0.6495 0.6495 0.635 0.635 0.649 0.650
2.14
a, /?, or y (3 = 9933° £ = 99.62° /3 = 99.62° 7=120° 7=120° 7=120° a = 89° (3 = 99.6° 7 = 99°
Number of chains per unit cell 4 4 4 9 9 9 2
Quenched "smectic" B.
Molecular conformation Helix(3/1) (TG)3 Helix(3/1) (TG)3 Helix(3/1) (TG)3
Crystal density (g/cm3) 0.936 0.946 0.946 0.921 0.921 0.922 0.954
Helix(3/1) (TG)3
Refs. 1 2-4 2-4 5,6 7 2,8 9 1,10-13
CRYSTALLOGRAPHIC DATA AND MODIFICATIONS OF SYNDIOTACTIC POLYPROPYLENES Lattice dimensions (nm)
Stereoisomeric form Syndiotactic
Crystal system
Space group
Orthorhombic C222i observed in fibers Orthorhombic Ibca high temp, form Orthorhombic low temp, form Triclinic Pl
a
Molecular conformation
Crystal density (g/cm3)
Refs.
b
c 0.740
2
Helix(4/1) (T2G2)2
0.90
14-16
1.450
0.580 or 0.560 1.120
0.740
2
0.90
17-19
0.522
1.117
0.506
2
0.945
20-22
0.572
0.764
1.16
Helix(4/1) (T 262)2 Planar Zigzag T6G2T2G2
0.939
23
1.450
* Based on a table in the third edition, by R. P. Quirk and M. A. A. Alsamarraie, The Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio.
a, p, or y
Number of chains per unit cell
« = 73.1° /3 = 88.8° 7=112.0°
1
C.
DIMENSIONS OF POLY(PROPYLENE) MOLECULES*
Effect of Molecular Weight on Radius of Gyration" PPD matrix* Method of Crystallization
PPH matrix M w ( x 103)
Rapidly quenched
— M w ( x 103)
M^fMn
34 140 340 575 1540 34 140 340 575 1540 34 140 340 575 1540
2.52 1.68 2.02 1.56 1.48 2.52 1.68 2.02 1.56 1.48 2.52 1.68 2.02 1.56 1.48
46 46 56 105 114 46 46 56 105 114 46 46 56 105 114
Rapidly quenched from melt and subsequently annealed at 137°C(410.2K) Isothermally crystallized at 139°C(412.2K)
(S2) 1J2 f (nm) 18.0 18.0 25.5 32.0 50.3 18.0 19.0 26.5 34.7 51.4 23.5 23.5 29.0 36.8 58.0
11.3 13.9 17.9 25.6 41.3 11.3 14.7 18.6 27.8 42.3 14.8 18.1 21.8 29.6 47.7
a Measured by neutron scattering. Polymer >97% isotactic; Ref. 26. * Deutrated poly(propylene). t ^y 2 ^ 1/2 anc j (s2) 1J2 are the z-average and weight-average values, respectively, of the radius of gyration of the molecule. * Innm/Cg/mol)1/2.
Neutron
Scattering
Measurements
(Si)1J2ZM1J2J Method of crystallization
Melt
Crystalline
Rapidly quenched Isothermally crystallized at 139°C (412.2 K) Rapidly quenched from melt and subsequently annealed at 137°C (410.2 K)
0.035 0.035 0.035
0.034 0.038 0.036
HS2) 1J2 is the weight-average value of the radius of gyration of the molecule; values are in nm/(g/mol)1/2. For further details and analysis, see Refs. 27-30. Neutron
D.
Scattering
See Refs. 2 4 - 3 0 .
CRYSTALLINITY A N D C R Y S T A L L I Z A T I O N KINETICS
Crystallinity
and Melting
Point of Samples
from Multiple
Solvent
Solubility of fractions in boiling solvents Soluble in
n-Octane 2-Ethylhexane w-Heptane rc-Hexane /z-Pentane a b
Fractionation1
Insoluble in
Tm (0C)
Wide angle X-ray crystallinity (%)
Trichloroethylene rc-Octane 2-Ethylhexane w-Heptane w-Hexane rc-Pentane Diethyl ether
176 (449.2)* 174-175 (447.2-448.2) 174-175 (447.2-448.2) 168-170 (441.2-443.2) 147-159(420.2-432.2) 110-135 (383.2-408.2) 106-114(379.2-387.2)
75-85 65-85 60-66 52-64 41-54 25-37 15-27
Refs. 31,32. Values in parenthesis indicate temperature in kelvin.
* See also corresponding table in this Handbook, and Refs. 24,25.
(S2) 1J2 f (nm)
(S2) lJ2/MxJ2\ 0.061 0.037 0.031 0.034 0.039 0.061 0.039 0.032 0.037 0.040 0.080 0.048 0.037 0.039 0.038
Crystallinities and Melting Temperatures of Mixtures of Amorphous" and lsotactic Poly(propylene)bc
Effect of Isotacticity Temperature^
on
Equilibrium
Equilibrium melting temperature (0C)
Crystallinity lsotactic fraction (%)
Calculated
Measured
Melting temperature ( 0 C)
67.7 60.3 49.8 40.2
174 (447.2) d 173 (446.2) 172-173 (445.3-446.2) 171-172(444.2-445.2)
Sample 100 87.5 75.8 60 a b c d
67.2 59.3 51.4 40.6
Ether extract. 2-Ethylhexane extraction residues. Refs. 33,34. Values in parenthesis indicate temperature in kelvin.
a b
Crystallinity in lsotactic Poly(propylenes)a Sample .
1. 2. 3. 4. a
Description and condition Heptane extract of crude polypropylene, "amorphous", highly atactic lsotactic, water quenched Same as 2, followed by annealing at 1050C for 1 hr Same as 2, followed by annealing at 1600C for 1/2 hr
Crystalline weight fraction 0.14 0.31 0.43
1. 2. 3. 4. 5. a
Mw Mw Mw Mw Mw
= = = = =
202000, Mw/Mn 159000, MW/Mn 189000, Mw/Mn 209000, M w /M n 190000, Mw/Mn
= 2.6, lsotacticity = 0.988 = 2.3, lsotacticity = 0.978 = 3.0, lsotacticity = 0.953 = 1.8, lsotacticity = 0.882 = 1.6, lsotacticity = 0.787
Mw Mw Mw Mw Mw
= 202000, Mw/Mn = 159000, M w /M n = 189000, Mw/Mn = 209000, Mw/Mn = 190000, Mw/Mn
= = = = =
2.6, Isotacticity = 0.988 2.3, Isotacticity = 0.978 3.0, Isotacticity = 0.953 1.8, Isotacticity = 0.882 1.6, Isotacticity = 0.787
183.8 (457.0)^ 182.8 (456.0) 180.2 (453.4) 173.0 (446.2) 163.0(436.2)
Ref. 37. Values in parenthesis indicate temperature in kelvin.
Syndiotactic poly(propylene) Equilibrium melting temperature is critically dependent upon the tacticity of the samples. For a sample with 95% of [r], 92% of [rr], and 86% of [rrr], and molecular weight higher than 40000, for example, the equilibrium melting temperature is 1600C (433.2K) (53,54). For a 99% dyad sample, an actual melting temperature of 163°C (436.2 K) can be observed (55). Equilibrium Enthalpy of Fusion, A Hf Isotactic poly(propylene) 8.7 ± 1.6kJ/mol (56) [reported data ranging from 2.65kJ/mol to 10.94 kJ/mol; for a detailed discussion see Ref. 56].
Effect of lsotacticity on Crystallinity61
Description and condition
Description and condition
0.65
Ref. 35,36.
Sample
1. 2. 3. 4. 5.
Melting
Crystalline weight fraction 0.42-0.75 0.40-0.75 0.38-0.60 0.30-0.45 0.20-0.25
Syndiotactic poly(propylene) Equilibrium enthalpy of fusion is determined for samples with 95% of [r], 92% of [rr], and 86% of [rrr], and molecular weight higher than 40000, and is 8.0kJ/mol (53). Equilibrium Entropy of Fusion, ASf
Isotactic poly(propylene) 18.9 ± 3.5 J/K/mol (56). Syndiotactic poly(propylene) No data is available.
Ref. 37.
Crystallization Kinetics See Table "Rate of Crystallization of Polymers" and Refs. 38-49 for isotactic poly(propylene), and Refs. 50-52 for syndiotactic poly(propylene). E. EQUILIBRIUM THERMODYNAMIC PROPERTIES
Equilibrium Melting Temperature/ Tm Isotactic poly(propylene) 187.5°C (460.7 K) for the crystal with an infinite size [reported data ranging from 183°C-220°C (456-493 K); for a detailed discussion, see Ref. 34]. It is also critically dependent upon the isotacticity in crystalline samples.
Glass Transition Temperature, Fg Isotactic poly(propylene) -3.2°C (270K) (56). The agreement of Tg values from various experimental methods [e.g., dilatometry, dynamic mechanical measurements (at low frequency), heat capacity and NMR (narrowing of line width)] is not very good, but ranges from about — 30 to + 200C. The glass transition temperature depends on thermal history (may also be tacticity) of the sample (5761). Activation energy, 117-152kJ/mol (57). Syndiotactic poly(propylene) May be close to the glass transition temperature of isotactic poly(propylene). Heat Capacity, C p (J/K/mol) See "Thermodynamic Properties" in this Handbook, and Ref. 62. References page V- 28
F. OTHER GENERAL PROPERTIES
lsotactic poly(propylene) in the liquid The amorphous liquid heat capacities above Tg are given in J/K/mol [±2.5% (RMS)] Cp = 0.151291 T + 42.956
Coefficients of Thermal Expansion (ASTM D 696) (K (Refs. 64-66) From - 300C (243.2K) to 0°C (273.2K) From 00C (273.2K) to 300C (303.2K) From 300C (303.2 K) to 600C (333.2K)
lsotactic poly(propylene) in the solid The heat capacities in the solid state are separately fitted to 100% crystalline in various temperature ranges, all in J/K/mol: 10-100K [±0.4% (RMS)]: Cp = exp[0.241028(ln T)3 - 3.01364(ln T)2 +13.5529(In T) -18.7621] 80-250K [±0.8% (RMS)]: Cp = exp[0.121683(ln T)3 - 1.90162(ln T)2 +10.727(In D-17.6875] 230-350 K [±1.7% (RMS)]: Cp = 1.5912 x 106 T2 + 0.3837 T - 64.551
Density at 25°C (298.2 K) (Mg/m3) = (g/cm3). See also Section G. Isotactic Crystalline 0.932-0.943 Amorphous (from extrapolation 0.850-0.854 of data above melting point) "Smectic" form 0.916 Syndiotactic Crystalline 0.989-0.91 Amorphous (from extrapolation 0.856 of data above melting point)
The 0% crystalline amorphous state heat capacities in various temperature ranges, all in J/K/mol. 10-60 K [±1.0% (RMS)]: Cp = exp[0.327068(ln T)3 - 3.688(ln T)2 +14.7469(In T) -18.4281] 50-180K [±0.7% (RMS)]: Cp = exp[0.00742669(ln T)3 -0.189318(ln T)2 +2.10843(In T) -3.0699] 160-260K[±l.l% (RMS)]: Cp = exp[0.0727139(ln T)3 -0.711627(ln T)2 +2.31907(InT)+ 0.77926]
Dielectric Constant See Section G.
Electrical Properties: Conductivity61 Electric field (kV/cm)
Syndiotactic poly(propylene) No data is available.
8.5 10.5
Heat Capacity Data in the Crystalline and Amorphous lsotactic Poly(propylene) Cp (J/K/mol) Temperature (K) 50 100 150 200 250 300 350
24
Crystalline
Amorphous
13.00 26.51 37.68 47.47 56.53 70.39 82.12
15.22 28.21 39.53 50.53 61.95 84.11 109.2
Refs. 53 53 53 53 53 53 53
Heat Capacity Changes at Glass Transition Temperatures (J/K/mol)
lsotactic poly(propylene) 19.2J/K/mol at (270K) (63).
6.5 x 10" 5 10.5 x IO"5 14.5 x 10" 3
-3.2°C
48 144
a
Conductivity at 72° C (mhos/cm)
75 45 78 50.5 81.2 39.7 78 50.5 78 81.2 39.7 78 50.5
I x 10~18 3.2 xl0~ 1 6 7.4 x 10 ~17 2.3 XlO- 18 1 x 10 - 18 2 XlO" 16 IxIO-16 2.2 xl0~ 1 8 1 x 10"18 3.2xl0~ 1 8 2.3 xlO" 1 8 1 x 10"14 1 x 10"14 2.8 XlO" 18 2 xlO" 1 8
G Values for Radiation Crosslinking Scission G(Breaks) M a x i m u m a n d M i n i m u m Values
G(c.L)
G(breaks) Maximum Minimum
Residual Entropy of the Glassy State at OK S0 (J/K/mol)Atactic Isotactic poly(propylene) 5.2 J/K/mol (58). Isotactic Isotactic a
Refs. 67 68 68 69 69 70 70 69 69 71 69 70 70 69 69
See also Section G.
Syndiotactic poly(propylene) May be close to that of isotactic poly(propylene).
Syndiotactic poly(propylene) No data is available.
Crystallinity (%)
Ref. 72.
film flake
0.24 0.21 0.27
0.10 0.10 0.10
and
Chain
G(c.l.) Maximum
Minimum
0.27 0.14 0.18
0.115 0.069 0.068
Far Infrared. See Ref. 88.
At Room Temperature and in Vacuum G(c.l.)
G(breaks)
Measured by
Solubility
Elasticity
Solubility or viscosity
Atactic Isotactic
0.12-0.27 0.07-0.25 0.6
0.6-1.3
0.10-0.24 0.10-0.24 0.9 5.0
a
Mechanical Properties: Elongation at Break See Sections G and H Hardness, Shore D See Sections G and H. Impact Strength, Izod See Sections G and H.
Ref. 72.
Low Temperature Brittleness See Sections G and H. G-Values in Terms of Radiolytic Gas Y i e l d s '
Irradiation T (0C)
Gas Atactic
H2 CH 4 H2 CH 4 H2 CH 4
Isotactic
a
G (gas)
25 25 -196 -196 25 25
2.34 0.095 2.55 0.058 2.78 0.072
Ref. 72.
Ignition Limiting Indices'7 650° C (923.2 K)
Molecular weight ( x 10 3 )
Melt index (2300C, 2.16 kg)
142 180 220 292 358
22.8 7.3 3.5 1.2 0.39
Molecular Parameters of Typical Poly(propylenes) (64)
600° C (873.2 K)
2.8±0.1
Melt Index (ASTM Method D J238-57T)
550° C (823.3 K)
3.5 ± 0 . 1
5.7±0.1
a
This method (ASTM D2803-70) is defined as the minimum volume of oxygen required for ignition to occur; Ref. 73.
Number of double bonds per 1000 C atoms Type of unsaturation Mw Mn Mw/Mn
<1 Vinylidene 220000-700000 38000-60000 5-12
Infrared Absorption Bands (36,74-85) Nuclear Magnetic Resonance See Refs. 80,89-94. Assignment in Infrared Spectrum Used for Crystallinity Measurements*^ Form Isotactic
Syndiotactic
Crystalline phase wave numbers (cm"1)
Amorphous phase wave numbers (cm"1)
809 842 894 997 866 977
Permeability* (cm3/24hr/100in.2/mil/atm) Film
1131 1199 1230
Unoriented Oriented
Used for tacticity measurements: ratio of absorption at 997 cm" 1 to that at 975 cm" 1 (80,84,86). b Ref. 36. Sequence-Sensitive V i b r a t i o n Band of Propylene Units'*
Type of regularity
998 973 841 977 962 867 936
Isotactic Isotactic Isotactic Syndiotactic Syndiotactic Syndiotactic -
a b
Permeability of Polypropylene Films to Various Gas
790 1158
a
Position of band (cm"1)
Permeability and Diffusion Coefficients See corresponding table in this Handbook and Refs. 95-97.
Classification Helix band Regularity band Helix band Helix band Regularity band Helix band Band of isolated propylene unit
Refs. 74,87. Number of the units in sequence for the bands to appear.
nb 10-12 3-4 12
a b
O2
CO 2
N2
250 105-150
800 300-500
40 10-25
Ref. 98. At 250C (298.2 K) adn 50% rh (ASTM D 1434-63).
Properties of Typical Poly(propylenes) See Sections G and H. Refractive Index n^5 = 1.49 (66,99). Refractive Index Increment (An/Ac) See corresponding table in this Handbook, and Refs. 30,100. Softening Temperature, Vicat See Sections G and H. Sound Velocity (m/s) (101-103). Unoriented: at 25°C (298.2 K) at 125°C (398.2 K)
2.5 x 103 125 x 103 References page V- 28
Transition and Relaxation Temperatures Associat with Peaks in Dynamic Lossa
Specific Heat See Heat Capacity. Specific Volume (cm3/g)a
T (0C)
Transition Form Isotactic Smectic Syndiotactic a
va (Amorphous)
v b (Crystalline)
1.176-1.172
10.73-1.060 1.092 1.114-1.10
1.165
Ref. 64.
a /3 (at 0.2Hz) 7 6 a b
Assignment and remarks
30-80 0 (273.2)^
Difficult to resolve Insensitive to changes in crystallinity; long chain motion in amorphous portion - 80 (193.2) In atactic poly(propylene); hindered movement of C-CH 3 units < - 200 (<73.2) Hindered rotation of CH3 groups
Designated as a, (3, 7, etc. in order of descending temperatures; Ref. 104. Values in parentheses indicate temperatures in kelvin.
Tensile Modulus See Sections G and H.
Ultra-Drawn Polypropylene See Refs. 105-108.
Tensile Strength See Sections G and H.
Viscosity-Molecular Weight Relationship See corresponding table in this Handbook.
G. PROPERTIES OF TYPICAL MAINLY ISOTACTIC POLY(PROPYLENES)">* Property
Value
Brittleness [D 746] (0C (K)) Deflection temperatures [D 648] (0C (K)) at 66 lb/in2 (4.64kg/cm2) at 264 lb/in2 (18.6kg/cm2) Density [D 792] (Mg/m3) = (g/cm3) Dielectric constant at 1 kHz [D 150] Dielectric strength [D 149] (V/mil) (V/cm) x 10- 3 Dissipation factor (6OHz-IOOMHz) [D 510] Elongation at break [D 638] (%) Environment stress cracking or F50 time [D 1693] Flexural modulus [D 790] (MPa) = (N/mm2) Hardness, shore D [D 1706] Heat capacity (kJ/kg/K) Izod impact strength [D 256] (ft lb/in of notch) (cm kg/cm notch) Power factor at 1 kHz Solvent resistance to hydrocarbons and chlorinated hydrocarbons Stiffness in flexure [D 747] (MPa) = (N/mm2) Tensile modulus [D 638] (MPa) - (N/mm2) Tensile strength [D 638] (MPa) = (N/mm2) Tensile yield elongation [D 638] (%) Thermal conductivity [C 177] (W/m/K) Vicat softening temperature [D 1525] (0C (K)) Volume resistivity [D 257] (Q cm)
25 (298.2) 96-110 (369.2-383.2) 57-63 (330.2-336.2) 0.90-0.91 2.2-2.3 610 [430 at 1200C (393.2K)] 240 [170 at 1200C (393.2K)] 3 x 10 ~4 - 1 x 10 ~3 500-900 [30 at - 400C (233.2 K)] Does not stress crack 1172 70-80 1.926 (see also Table I) 0.4-6.0 [0.1-0.7 at - 200C (253.2 K)] 2.2-12 [0.55-3.9 at - 200C (253.2K)] < 0.002-0.001 Resistant below about 8O0C (353.2 K) 1172 1032-1720 29.3-38.6 11-15 [11% at -40 0 C (233.2K)] 11.7 138-155 (411.2-428.2) 10 16 -10 17
a Properties at ambient room temperature, unless denoted otherwise. The numbers in square brackets in the first column refer to the ASTM (American Society for Testing Materials) Standards. b Refs. 64,66,99.
H.
PROPERTIES O F S O M E C O M M E R C I A L POLY(PROPYLENE) G R A D E S *
Grade Property^
Method0
Melt flow rate (g/lOmin) Intrinsic viscosity at 2300C (dl/g) Density (g/cm3) Crystallinity by X-ray (%)
D 1238L ME 15071 D 1505 ME 149/67
Pipes and sheets 0.25-0.35 2.6-3.0 0.900-0.905 58-59
Films 1.5-2.0 2.0-2.4 0.900-0.905 59-60
Injection molding 5-7 1.8-2.4 61-62
Cast and tubular film 7-10 1.5-1.9 0.900-0.905 62.5-64.0
Grade Propertyb
Methodc
Crystalline mp by dscd (0C (K)) ME 150702 Isotactic index ISO 873 Mw/Mn by gpc* ME 15627 Spiral flow at 2300C, 60 kg/cm (mm) ME 17544 Melt tension test swelling per 24 s ME 17115 drawing ratio ME 17115 Linear mold shrinkage (%) Tensile yield strength at 5 cm/mm D 638 (MPa/ Tensile yield elongation (%) D 638 Flexural modulus (GPa)* D 790 Impact, Izod at 23°C (J/m)*1 D 256 Hardness, Rockwell, C scale D 785B Deflection temperature (0C (K)) at 0.45MPa^ D 648 at 1.8MPa' D 648 Vicat point at 9.807 MPa' (0C (K)) D 1525 Yellow index on pellets (%) D 1925 Gloss on plate (%) D 523 Luminosity on plate D 1635 Coefficient of linear thermal expansion ( x 10 ~5) from - 300C (243.2 K) to 00C (273.2 K) from 0°C (273.2 K) to 300C (303.2 K) from 30°C (303.2 K) to 60°C (333.2 K) Water absorption at 24 h immersion (%) D 570 Environmental stress cracking1 D 1693 Dielectric constant D 1531 at 10 kHz at 1 MHz at 1 GHz Dissipation factor, h at 10 kHz at IMHz at IGHz Arc resistance, s D 495 a
b
d
e
Ref. 65. Differential scanning calorimetry. * To convert GPa to psi, multiply by 145,000.
I.
Compr. mold, pipe extrusion Sheet, strapping extrusion High clarity, stiffness General purpose injection molding Rapid cycle injection molding Rapid cycle, high stiffness Thin wall injection molding Thin wall, high stiffness Multi-cavity molding Extrusion coating Coextrusion Fibers b c d
Films
Injection molding
Cast and tubular film
161-163 (434-436) >96.0 8-10 390-450
161-163 (434-436) >96.0 7-9 525-550
162-164 (435-437) >95.0 6-8 700-750
163-165 (435-437) >94.0 5-7 800-850
1.57-1.60 500-700 < 1.9 29-31
1.60-1.63 1100-1300 < 1.9 32-34
1.63-1.64 1500-1700 < 1.9 33-35
1.63-1.64 >2000 < 1.9 33-35
10-12 1.1-1.3 1.5-2.0 55-60
10-12 1.3-1.4 0.5-0.7 55-60
8-10 1.5-1.6 0.3-0.5 60-65
8-10 1.6-1.7 0.2-0.3 60-65
88-90 (361-363) 50-55 (323-328) > 150 ( > 423) 8-15 48-50 68-70
90-92 (363-365) 50-55 (323-328) > 150 ( > 423) 4-8 48-50 >70
92-94 (365-367) 55-60 (328-333) > 150 ( > 423) 3-6 49-51 >70
>94 (>367) 55-60 (328-333) > 150 ( > 423) 3-6 49-51 >70
6.5 10.5 14.0 0.03 Does not break
6.5 10.5 14.0 0.03 Does not break
6.5 10.5 14.0 0.03 Does not break
6.5 10.5 14.0 0.03 Does not break
2.2-2.6 2.2-2.6 2.2-2.6
2.2-2.6 2.2-2.6 2.2-2.6
2.2-2.6 2.2-2.6 2.2-2.6
2.2-2.6 2.2-2.6 2.2-2.6
< 0.0005 < 0.0005 <0.0005-0.0018 136-185
0.0005 0.0005 0.0005-0.0018 136-185
0.0005 0.0005 0.0005-0.0018 136-185
0.0005 0.0005 0.0005-0.0018 136-185
Determined on Montedison Moplen poly(propylene). Gel-permeation chromatography. * To convert J/m to ft-lb/in., divide by 53.38.
c D = ASTM; ME = Montedison. f To convert MPa to psi, multiply by 145. ' Igepal = 100%.
M E C H A N I C A L PROPERTIES O F POLY(PROPYLENE) H O M O P O L Y M E R S *
T>pe
a
Pipes and sheets
Melt flow rates [ASTM: D 1238] (g/lOmin) 0.5 1.5 2 4 12 12 20 20 35 40 70 100
Flexural modulus [D 790] (MPa)
Izod impact [D 256] (J/m)
1585 (230)* 1480 (215) 1790(260) 1720 (250) 1655 (240) 1895 (295) 1720 (250) 2000(290) 1310(190) 1895 (275) 1515 (220) 1585 (230)
160 (3.0)c 70 (1.3) 140(2.6) 43 (0.8) 27 (0.5) 32 (0.6) 32 (0.6) 32(0.6) 32(0.6) 32 (0.6)
Heat deflection temp. 66 psi [D 648] (0C) 93 (366.2)J 87 (360.2) 110(383.2) 97 (370.2) 99 (372.2) 118 (391.2) 100 (373.2) 124(397.2) 90(363.2) 121 (394.2) 90 (363.2)
Hardness [D 785] (Rockwell R) 95 100 99 97 105 104 104 98 100
Ref. 109. Values in parenthesis in this column indicate Flexural modulus in K psi. Values in parenthesis in this column indicate Izod impact in ft-lb/in. Values in parenthesis in this column indicate temperature in kelvin.
References page V- 28
J.
MECHANICAL PROPERTIES OF POLY(PROPYLENE) RANDOM COPOLYMERS*
Melt flow rates [ASTM: D 1238] (g/lOmin)
Type Sheet extrusion Sheet extrusion Sheet extrusion Film extrusion Inj. molding, film, coextrusion Film extrusion Inj. molding, film, coextrusion Inj. molding, film, coextrusion Inj. molding, film, coextrusion Rapid injection molding Rapid injection molding Rapid injection molding
Flexural modulus [D 790] (MPa)
1 2.5 3 3 6 6 7 10 10 25 25 35
Izod impact [D 256] (J/m)
965(140)* 690 (100) 1515 (220) 260 (38) 825 (120) 495 (72) 585 (85) 860 (125) 1135(165) 895 (130) 1135 (165) 1135 (165)
Heat deflection temp. 66 psi [D 648] (0C)
Hardness [D 785] (Rockwell R)
80 (1.5)c 85 (1.6) 37 (7)
90 (363.2)d 70 (343.2) 102 (375.2)
80 65 95
48 (0.9)
85 (358.2)
80
80 (1.5) 37 (0.7) 54(1.0) 37 (0.7)
65 (338.2) 85 (358.2) 91(364.2) 85 (358.2) 98 (371.2) 87 (360.2)
65 80 88 80 94 80
43 (0.8)
a
Ref. 109. * Values in parenthesis in this column indicate Flexural modulus in K psi. c Values in parenthesis in this column indicate Izod impact in ft-lb/in. d Values in parenthesis in this column indicate temperature in kelvin.
K.
M E C H A N I C A L PROPERTIES O F POLY(PROPYLENE) I M P A C T C O P O L Y M E R S *
Type Compr. Mold, pipe extrusion Sheet extrusion Sheet extrusion General purpose inj. molding General purpose inj. molding General purpose inj. molding Blush resist., inj. molding Blush resist., inj. molding Blush resist., rapid inj. molding Blush resist., rapid inj. molding Blush resist, rapid inj. molding Blush resist, rapid inj. molding Blush resist, rapid inj. molding a b c d
Melt flow rates [ASTM: D 1238] (g/lOmin) 0.5 1 2 4 4 6 11 16 20 20 30 35 50
Flexural modulus [D 790] (MPa) 1240 (180)* 860(125) 965 (140) 1310 (190) 1035 (150) 930 (135) 1000 (145) 860 (125) 965 (140) 790(115) 965 (140) 1310(190) 1170(170)
Izod impact [D 256] (J/m) 540 (10)c 650(12) 650 (12) 135 (2.5) 540 (10) 650 (12) 135 (2.5) 650 (12) 185 (3.4) 540(10) 55 (1.0) 70(1.3) 55(1.0)
Heat deflection temp. 66 psi [D 648] (0C) 90 (363.2)rf 79(352.2) 72 (345.2) 81 (354.2) 75 (348.2) 90 (363.2) 77 (350.2) 80 (353.2) 77 (350.2) 85(358.2) 80 (353.2) 90(363.2) 117(390.2)
Hardness [D 785] (Rockwell R) 75 55 61 82 65 70 72 40 67 65 80 85 90
Ref. 109. Values in parenthesis in this column indicate Flexural modulus in K psi. Values in parenthesis in this column indicate Izod impact in ft-lb/in. Values in parenthesis in this column indicate temperature in kelvin.
L.
REFERENCES 1. G. Natta, P. Corradini, Nuovo Cimento. Suppl., 15, 40 (1960). 2. A. Turner-Jones, J. M. Aizlewood, D. R. Beckett, Makromol. Chem., 75, 134 (1964). 3. D. C. Bassett, S. Block, G. J. Piermarini, J. Appl. Phys., 45, 4146 (1974). 4. Y. Chatani, Y. Ueda, H. Tadokoro, Annual Meeting of the Society of Polymer Science, Japan, Tokyo, Preprint, 1977, p. 1326. 5. H. D. Keith, F. J. Padden, Jr., N. M. Walker, H. W. Wyckoff, J. Appl. Phys., 30, 1485 (1959). 6. R. J. Samuels, R. Y. Yee, J. Polym. Sci. A-2,10, 385 (1972).
7. E. J. Addink, J. Bientema, Polymer, 2, 185 (1961). 8. A. Turner-Jones, A. J. Cobbold, J. Polym. Sci. B, 6, 539 (1968). 9. D. R. Morrow, B. A. Newman, J. Appl. Phys., 39, 4944 (1968). 10. R. L. Miller, Polymer, 1, 135 (1960). 11. J. A. Gailey, R. H. Ralston, SPE Transactions, 4, 29 (1964). 12. D. M. Gezovich, P. H. Geil, Polym. Eng. Sci., 8, 202 (1968). 13. P. Corradini, V. Petraccone, C. De Rosa, G. Guerra, Macromolecules, 19, 2699 (1986). 14. G. Natta, I. Pasquon, R Corradini, et al., Atti dell'Accademia Nazionale dei Lincei. Rendiconti, 28, 539 (1960).
15. P. Corradini, G. Natta, P. Ganis, P. A. Temussi, J. Polym. Sci. C, 16, 2477 (1967). 16. T. Seto, T. Hara, K. Tanaki, Jpn. J. Appl, Phys., 7, 31 (1968). 17. B. Lotz, A. J. Lovinger, R. E. Cais, Macromolecules, 21, 2375(1988). 18. A. J. Lovinger, B. Lotz, D. Davis, Polymer, 31, 2253 (1990). 19. A. J. Lovinger, D. Davis, B. Lotz, Macromolecules, 24, 552 (1991). 20. G. Natta, M. Peraldo, G. Allegra, Makromol. Chem., 75,215 (1964). 21. H. Tadokaro, M. Kobayashi, S. Kobayashi, K. Yasufuku, K. Mori, Rep. Prog. Polym. Phys. Japan, 9, 181 (1966). 22. Y. Chatani, H. Maruyama, K. Noguchi, et al., J. Polym. Sci. Polym. Lett., 28, 393 (1990). 23. Y. Chatani, H. Maruyama, T. Asanuma, T. Shiomura, J. Polym. Sci., Polym. Phys. Ed., 29, 1649 (1991). 24. G. D. Wignall, L. Mandelkern, C. Edwards, M. Glotin, J. Polym. Sci., Polym. Phys. Ed., 20, 245 (1982). 25. J. E. Mark, A. Eisenberg, W. W. Graessley, L. Mandelkern, J. L. Koenig, "Physical Properties of Polymers", American Chemical Society, Washington DC, 1984. 26. D. G. H. Ballard, R Cheshire, G. W. Longman, J. Schelten, Polymer, 19, 379 (1978). 27. J. Schelton, D. G. H. Ballard, G. D. Wignall, G. W. Longman, W. Schmatz, Polymer, 17, 751 (1976). 28. D. Y. Yoon, P. J. Flory, Polymer, 18, 509 (1977). 29. M. Stamm, E. W. Fischer, M. Dettenmaier, Disc. Faraday Soc, 68, 263 (1979). 30. P. Parrini, F. Sebastiano, G. Messina, Makromol. Chem., 38, 27 (1960). 31. G. Natta, J. Polym. Sci., 34, 531 (1959). 32. Y. V. Kissin, "Isospecific Polymerization of Olefins with Heterogeneous Ziegler-Natta Catalysts", Springer, New York, 1985. 33. G. Natta, G. Mazzanti, O. Grespi, G. Noraglio, Chim. Ind., 39, 275 (1957). 34. B. Wunderlich, "Macromolecular Physics", Vol. 3: Crystal Melting, Academic Press, New York, 1980. 35. W. Ruland, Acta Cryst., 14, 1180 (1961). 36. B. Wunderlich, "Macromolecular Physics", Vol. 1: Crystal Structure, Morphology, Defects, Academic Press, New York, 1973. 37. S. Z. D. Cheng, J. J. Janimak, A. Zhang, E. T. Hsieh, Polymer, 32, 648 (1991). 38. B. von Falkai, H. A. Stuart, Kolloid Z., 162, 138 (1959). 39. B. von Falkai, Makromol. Chem., 41, 86 (1960). 40. F. L. Binsbergen, B. G. M. De Lange, Polymer, 11, 309 (1970). 41. A. Wlochowicz, M. Eder, Polymer, 22, 1285 (1981). 42. H. D. Keith, F. J. Padden, Jr., J. Appl. Phys., 35,1286 (1964). 43. A. J. Lovinger, J. O. Chua, C. C. Gryte, J. Polym. Sci., Polym. Phys. Ed., 15, 641 (1977). 44. L. Goldfarb, Makromol. Chem., 179, 2297 (1978). 45. E. Martuscelli, C. Silvestre, G. Abate, Polymer, 23, 229 (1982). 46. E. J. Clark, J. D. Hoffman, Macromolecules, 17, 878 (1984).
47. S. Z. D. Cheng, J. J. Janimak, A. Zhang, H. N. Cheng, Macromolecules, 23, 298 (1990). 48. J. J. Janimak, S. Z. D. Cheng, R A. Giusti, E. T. Hsieh, Macromolecules, 24, 2253 (1991). 49. J. J. Janimak, S. Z. D. Cheng, J. Polym. Eng., 10, 21 (1991). 50. R. L. Miller, E. G. Seeley, J. Polym. Sci., Polym. Phys. Ed., 20, 2297 (1982). 51. G. Balbontin, D. Dainelli, M. Galimberti, G. Paganetto, Makromol. Chem., 193, 693 (1993). 52. J. Rodriguez-Arnold, Z. Bu, S. Z. D. Cheng, E. T. Hsieh, T. W. Johnson, R. G. Geerts, S. J. Palackal, G. R. Hawley, M. B. Welch, Polymer, 36, 5194 (1994). 53. J. Rodriguez, S. Z. D. Cheng, A. J. Lovinger, E. T. Hsieh, P. Chu, T. W. Johnson, K. G. Honnell, R. G. Geerts, S. J. Palackal, G. R. Hawley, M. B. Welch, Polymer, 35, 1884(1994). 54. J. Rodriguez, S. Z. D. Cheng, Z. Bu, J. Macromol. Sci., C: Rev. Macromol. Chem. Phys., 35, 117 (1995). 55. A. J. Lovinger, B. Lotz, D. Davis, F. J. Padden, Jr., Macromolecules, 26, 3494 (1993). 56. H. Bu, S. Z. D. Cheng, B. Wunderlich, Makromol. Chem. Rapid Commun., 9, 75 (1988). 57. R. F. Boyer, in: H. F. Mark, N. M. Bikales, (Eds.), "Encyclopedia of Polymer Science and Technology", Supplement Number 2, Wiley, New York, 1977, p. 745. 58. D. L. Beck, A. A. Hiltz, J. R. Knox, SPE Trans., 3, 279 (1963). 59. W. P. Slichter, E. R. Mandell, J. Appl. Phys., 29, 1438 (1958). 60. R. F. Boyer, Plast. Polym., Part I, 41, 15 (1973); Parts II and III, p. 71; Parts I-IV published as Seventh Swinburne Award Address by the Plastics Institute, 11 Hobart Place, London. 61. S. C. Sharma, L. Mandelkern, F. C. Stehling, J. Polym. Sci., Polym. Lett., 10, 345 (1972). 62. U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10, 1051 (1981). 63. J. Grebowicz, S.-F. Lau, B. Wunderlich, J. Polym. Sci., Polym. Symp., 71, 19 (1984). 64. J. Brandrup, E. H. Immergut, (Eds.). "Polymer Handbook", 2nd ed., Wiley, New York, 1975. 65. G. Crespi and L. Luciana, in: Kirk-Othmer, (Ed.), "Encyclopedia of Chemical Technology", vol. 16, 3rd ed., Wiley, New York, 1981, p. 453. 66. H. R Frank, "Polypropylene", Gordon and Breach, New York, 1968. 67. M. Matsui, N. Murasaki, "Electrects, Charge Storage and Transport in Dielectrics", M. M. Perlman (Ed.), Electrochem. Soc. Inc., Princeton, 1972, p. 141. 68. R. A. Foss, W. Dannhauser, J. Appl. Polym. Sci., 7, 1015 (1963). 69. K. Ikezaki, T. Kaneko, T. Sakakibara, Jpn. J. Appl. Phys., 20(3), 609 (1981). 70. S. Ide, Kobunshi Kagaku, 23, 865 (1966). 71. D. K. Das Gupta, K. Joyner, J. Phys. D, 9, 2041 (1976). 72. M. Dole, "Mechanism of Chemical Effects in Irradiated Polymers", in: R. A. V. Raff, K. W. Doak, (Eds.), "Crystalline Olefin Polymers", Interscience, New York, 1965, p. 907.
73. T. Morimoto, T. Mori, S. Enomoto, J. Appl. Polym. Sci., 22, 1911 (1978). 74. J. L. Koening, "Chemical Microstructure of Polymer Chains", Wiley, New York, 1980. 75. D. W. Van Krevelen, "Properties of Polymers, Correlations with Chemical Structure", P. J. Hoftyzer, Collaborator, Elsevier, Amsterdam, 1972. 76. H. Tadokoro, T. Kitazawa, S. Nozakura, S. Murahashi, Bull. Chem. Soc. Japan, 34, 1209 (1961). 77. C. E. Schildknecht (with I. Skeist), "Polymerization Processes", vol. XXIX, Wiley, New York, 1977. 78. G. Gramsberg, Kolloid-Z., 175, 119 (1961). 79. C. Y. Liang, M. R. Lytton, C. J. Boone, J. Polym. Sci., 47, 139 (1960); ibid., 54, 523 (1961). 80. J. Boor, Jr., "Ziegler-Natta Catalysts and Polymerization", Academic Press, New York, 1979. 81. M. C. Tobin, J. Phys. Chem., 64, 216 (1960). 82. M. Peraldo, M. Farina, Chim. Ind. (Milan)., 42, 1349 (1960). 83. M. P. MacDonald, I. M. Ward, Polymer, 2, 341 (1961). 84. J. P. Luongo, J. Appl. Polym. Sci., 3, 302 (1960). 85. E. A. Youngman, J. Boor, Jr., Macromol. Rev., 2, 33 (1967). 86. R. H. Hughers, Polym. Preprints (Am. Chem. Soc. Polym. Div.), 4 (2), 697 (1963). 87. Y. V. Kissen, Adv. Polym. Sci., 15, 92 (1974). 88. G. W. Chantry, "Submillimetre Spectroscopy", Academic Press, London, 1971. 89. M. Moller, W. Ritter, H. J. Cantow, Polym. Bull., 4, 609 (1981). 90. T. Asakura, K. Omaki, S. N. Zhu, R. Chujo, Polym. J., 16 (9), 717 (1984). 91. K. J. Packer, J. M. Pope, R. R. Young, M. E. A. Cudby, J. Polym. Sci., Polym. Phys. Ed., 22, 589 (1984). 92. F. W. Wehrli, T. Wirthlin, "Interpretation of Carbon-13 NMR Spectra", Heyden and Son Ltd., 1980.
93. I. C. Randall, "Polymer Sequence Determination, Carbon13 NMR Method", Academic Press, New York, 1977. 94. R. Pino, R. Mulhaupt, in: R. P. Quirk, (Ed.), "Transition Metal Catalyzed Polymerizations, Alkenes and Dienes", vol. 4, Part A, Harwood, New York, Published for MMI Press, 1983. 95. S. Steingiser, S. P. Nemphos, M. Salame, in: Kirk-Othmer, (Ed.), "Encyclopedia of Chemical Technology", vol. 3, 3rd ed., Wiley, New York, 1978. 96. D. Jeschke, H. A. Stuart, Z. Naturforsch, 16a, 37 (1961). 97. V. Stannett, H. Yasuda, in: K. W. Doak (Ed.), "Crystalline Olefin Polymers", Part II, Wiley, New York, 1964, p. 139, p. 144. 98. Modern Plastics Encyclopedia, McGraw-Hill Book Co., Inc., New York, 1966, p. 530. 99. P. D. Ritchie Ed., "Vinyl and Allied Polymers", vol. 1, Illife, London, 1968, p. 143. 100. J. Horska, J. Stejskal, P. Kratochvil, J. Appl. Polym. Sci., 28, 3873 (1983). 101. N. M. Bikales (Ed.), "Encyclopedia of Polymer Science and Technology", vol. 12, Wiley, New York, 1985, p. 702. 102. T. H. Matim, Iron Age, 197, 88 (1966). 103. H. L. Price, SPE J., 24, 54 (1968). 104. M. P. Groenwege, J. Schnuzer, J. Smidt, C. A. F. Tuijnman, in: R. A. V. Raff, K. W. Doak (Eds.). "Crystalline Olefin Polymers", Part II, Wiley, New York. 1965, p. 798. 105. I. M. Ward, "Mechanical Properties of Solid Polymers", 2nd ed., Wiley, New York, 1983. 106. I. M. Ward (Ed.), "Developments in Oriented Polymers", Elsevier, England, 1982. 107. A. Citerri, I. M. Ward (Eds.), "Ultra-High Modulus Polymers", Elsevier, England, 1979. 108. I. M. Ward (Ed.), "Structure and Properties of Oriented Polymers", Elsevier, England, 1975. 109. International Plastics Selector, Plastics Digest, DATA Business, Englewood, CA 1994.
P h y s i c a l
C o n s t a n t s
o f
F l u o r o p o l y m e r s
D e w e y L. K e r b o w DuPont Fluoroproducts, Wilmington, DE 19880, USA C a r l e t o n A . Sperati Chemical Engineering Department, Ohio University, Athens, OH, USA
A. Introduction B. Physical Constants of Poly(tetrafluoroethylene) Notes Infrared Absorption Spectrum of Poly(tetrafluoroethylene) References C. Physical Constants of Melt Processible Fluorocarbon Polymers PFA and FEP Notes References D. Physical Constants of Modified Poly(ethylene-cotetrafluoroethylene) Notes References E. Physical Constants of Poly(vinylidene fluoride) Notes References F. Physical Constants of Amorphous Fluoropolymers Notes References G. Physical Constants of Poly(chlorotrifluoroethylene) Notes References
A.
V-31 V-31 V-37 V-38 V-39 V-41 V-44 V-45 V-45 V-48 V-48 V-48 V-51 V-52 V-52 V-54 V-54 V-55 V-57 V-58
INTRODUCTION
Fluoropolymers are divided into two sub-classes: (a) Fluorocarbon polymers, i.e., those that are made from perfluoromonomers, and (b) All the others that are made from monomers or comonomer systems that contain hydrogen, chlorine, or both, along with enough fluorine so that it contributes significantly to the properties and performance of the polymer. At times, the term fluoro-
carbon or fluorocarbon polymers, are used improperly to include all of the fluorine-containing polymers. The commercially important fluorocarbon polymers are poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylenectf-hexafluoropropylene) (FEP), poly[tetrafluoroethyleneco(perfluoroalkylvinyl ether)] (PFA), and amorphous fluoropolymer (AF), typically copolymers of tetrafluoroethylene and fluorinated dioxole. The second group of fluoropolymers includes modified poly(tetrafluoroethyleneco-ethylene) (ETFE), poly(vinylidene fluoride) (PVDF) (sometimes referred to as PVF2), and copolymers of vinylidene fluoride, poly(chlorotrifluoroethylene) (PCTFE), poly(chlorotrifluorethylene-'c<9-ethylene) (E/CTFE) and poly(vinyl fluoride) PVF. The wide range of fluorine content in the various fluoropolymers (from 76 down to 39 weight percent fluorine), details of crystallinity, conformation, molecular weight, and other aspects of structure result in ranges of properties so wide that a single table listing all the materials and their properties is very cumbersome to use. Tables on the various materials are separated, therefore, with a short general comment on each material or class, at the beginning of each table. Each table has its own notes and list of references. B. PHYSICAL CONSTANTS OF POLY(TETRAFLUOROETHYLENE) -(CF 2 CF 2 )-
Polytetrafluoroethylene (PTFE) was the first fluorocarbon polymer to be made and still retains the major part of the total business. The extremely high melt viscosity of PTFE having a molecular weight high enough for most applications precludes use of conventional methods of processing that require molten polymer. As a result, innovative procedures, quite different but not difficult, were devised to prepare useful objects. Some properties of PTFE reflect the unusual methods of processing.
Property*
Units
ASTM or other methods
Abrasion Resistance
D4894 D4895 D4441 D2686, D3293, D3308, D3369 D1675, D1710, D2902, D3295 D3294,D3297
A g/1
* See note 1.
ISO 13000-1
D1457 D1894
See Conformation 108
70
482 290-335
70 16
MPa MPa MPa MPa MPa MPa MPa
1.3-1.32 350-900 See Solvents 0.224 Wom
70 See Note 3 W is the load in grams, calculated from Ref. 2
D696
MPa" 1
Compressive Strength Properties Stress at 1% deformation MPa MPa Stress at 1% offset Yield strength At -251°C At -196°C At23°C At55°C At 1000C
ISO 12086-1
kJ/mol
Coefficient of Thermal Expansion Linear expansion K" 1 Average values for temperature range indicated 25 to - 1900C 25 to - 1500C 25 to -100°C 25 to -50 0 C 25-0°C 25-50 0 C 25-1000C 25-150°C 25-200°C 25-2500C 25-300°C Cohesive Energy Density Compressibility (calculated)
Refs.
See Note 2
ISO Standards Plastics - Fluoropolymer dispersions and molding and extrusion materials Part 1: Designation system and basis for specifications Plastics - Polytetrafluoroethylene (PTFE) Semi-finished products Part 1: Requirements and designations Bond Angle, C-C Deg. F-C-F
Bond Length, C-F Bulk Density of Molding Powder Chemical Resistance Coefficient of Friction
Remarks
See Wear Factor
ASTM Standards Material Granular products Coagulated dispersion products Dispersion Film and sheeting Rods, tubes, and pipe lining Molded basic shapes
Bond Energies C-F C-C
Value
D695 D695 D695 D695 D695 D695 D695
99 x 10 ~6
77
86 96 112 135 200 124 124 135 151 174 218
38
12.5 (est.); see also Solvent Absorption 28.8 x 10~17
79 8
4.2 47094 - 231295(%C) + 0.040(%C)2 - 0.0391(%C)3 7 190.4-0.862 (K) From 4 to 180 K 224 145 11.7 9 4.8
30 77 30 52 52 52 52 52
Property
Units
ASTM or other methods
Value
Conformation Energy barrier to rotation Gauche-fraws energy difference
kJ/mol
5.9 ±1.7
trans-trans Energy difference
kJ/mol
4.6 ± 2.9
Contact Angle Advancing Receding
Deg. Deg.
116 92
Continuous Use Temperature Mpa
Flexural creep modulus
MPa
D695
MPa Critical Shear Rate for Melt Fracture s~l Critical Surface Tension mN/m Crystal Structure Change Crystalline Content wt.% C
Density Completely amorphous (never observed) Crystalline (from X-ray and IR data) Phase II (triclinic at < 19°C) Phase IV (hexagonal at 20-400C) As polymerized After melting and recrystallization (void free polymer) Melt (3800C)
186
After 100 h at 0.6895 MPa at 23°C
10~5 18.6 See Figure 1 and Transitions 762.25 - (1524.5/Density)
Crystallographic Data Phase I
Deformation Under Load
6
34
2814 - 158.5(%C) + 2.919(%C)2 - 0.1638(%C)3 6.895 MPa for 100 h %C from 45 to 90 See Note 1 61 After 100 h at 6.895 MPa and 23°C
Tensile creep modulus
Phase IV: Hexagonal structure Repeat distance for 15 CF2 groups Separation of chain axis
C-C bond angle is at its minimum energy at 162° C
Refs.
See Service Temperature
Creep Compressive creep modulus
Separation of chain axis Phase II: Triclinic structure Repeat distance for 13CF2 groups Separation of chain axis Phase III: High pressure form Planar zig-zag structure Monoclinic space group Density
Remarks
See Figure 1 A A
S — 3.68 x 10 " 2 T+ 5888 16.9
A
5.62
g/cm3 A A A Deg.
B2/m 2.74 at 12 bar a = 9.59 /7 = 5.05 c = 2.62 7=105.5
A
19.5
A
5.55
At 3800C CaIc from Ref.
42,59
76 59
97 29 77
Hexagonal structure similar to Phase IV, but little or no lateral congruence T from 40 to 2200C 13,25,61,100 13 27
16,61
% Def.
g/cm3
D621
12.93 - 0.3303 (%C) - 0.002372 (%C)3
1000 psi for 24 h at 23°C; %C from 50 to 90
Depends on crystalline and void contents 2.0 at 230C 2.344 2.302 at 23°C 2.280-2.290 at 23°C 1524.5/(762.25 - %C) 1.46
76
See Note 1 See Note 5
77
See Note 1
100 67 77 77 49
Notes page V-37; References page V-39
Property
Units
ASTM or other methods
Depolymerization Rate Diffusion Electrical Properties Dielectric constant At 60Hz At 60Hz to 2GHz Dielectric Strength
Entanglement MW End Groups Entropy of Fusion Equation of State
Refs.
20 s
D150
kV/mm
D149
D150 s ohms/sq ohmcm
D495 D257 D257
(1 +0.238D)/(1 -0.119D), D is density 2.1 The exact value depends on the thickness of the test specimen as well as other test variables 15.7-19.7 400-500 See Note 6 <3xlO~4 700 See Note 7 3.6 x 106 1019 3.7 x 103
g/mol
See Note 8 See Melting (P+a) (V-b)=B (T-c) « = 405.2bar; b = 0.500cm3/g c= 114°C; 5 = 0.310cm3/g/K
Flammability Also see limiting oxygen index Flexural Modulus At 230C At -251°C At - 196°C At - 1010C At23°C At 55°C, At 100°C
Remarks
See Therrnal Degradation See Permeability
MV/m V/mil Dissipation factor 60Hz to 2GHz Surface arc resistance Surface resistivity, 100% RH Volume resistivity, dry at 50% RH
Value
UL94
Flexural Strength Fuel Value
D790
77 30 77 77 77 49 9 48,87
VE-O
See Note 9
29( 0 C)-1127 5.2 5 3.2 0.62 0.4 0.19
0
D790 MPa GPa GPa GPa GPa GPa GPa
24 30
76 C from 40 to 90 52 52 52 52 52 52
No break in flexure See Heat of Combustion
0
C
DSC
- 73 See Transitions, Alpha See Transitions, Gamma
45
Hardness Durometer Rockwell Scleroscope
Scale value Scale value
D2240 D785
D = 42 + 0.2(0C) J = 114.6 - 0.433(0C) S = 133 - 1.3(°C)
76
Heat Capacity
kJ/kg/K
Glass Transition Temperature Glass-I transition Glass-II transition
DSC At
10.0°K 100.0 K 200.0 K 300.0 K 400.0 K 500.0 K 600.0 K 605.0 K (Tm) 700.0 K
Heat Deflection Temperature At 0.455 MPa (66 psi) At 1.82MPa (264 psi)
J/mol/K
0
C
0.9324 + 1.05 x 10 ~3 T Crystalline Amorphous 1.228 (1.228) 19.37 19.37 34.47 (35.59) 45.09 51.42 53.81 59.24 61.62 66.05 67.58 69.37 67.88 69.54 73.300 72.69
D648
See Note 10
69,103 44
77 132 60
Property
Units
ASTM or other methods
MJ/kg
Value
Heat of Combustion Heat of Crystallization Heat of Formation Heat of Fusion Ignition Temperature Impact Strength Intrinsic Viscosity Infrared Spectra
0
Lamellar Thickness
um
0.02(%C) - 0.9
Lattice Energy (per recurrent unit; calculated)
kJ/mol
8.5 ± 2.5
C
ml/g
% Oxygen
Melt Viscosity By capillary rheometer By melt creep, Energy of activation for melt
5.1 See Melting - latent heat of fusion 813 See Melting - latent heat of fusion 494 See Toughness 300-2000 Also see Solvents See Table 1 See Note 1
kJ/mol
Limiting Oxygen Index Mechanical Loss
D2863 D2236
CaIc. from
flow
>95 See Note 11
1.62XlO-14M34 4 to 20 x 10 10 at 3600C 63-84
0
335-345 327 331.7 385 477 33.18 29% 0.095 82
C C 0 C 0 C J/K/mol J/K/mol Kcm 2 /kg kJ/kg
D4591
Molecular Weight
Phase Diagram Processing Temperature PV Limit Radiation, Effects of degradation in air
10,22 49 71,74 17,51,56 91,105 26,57,80
20 87
75,78 1,58 1,74
See Note 13
See Note 14
52 64 45,85 32,33 88 89 44
See Note 15 log M w =27.5345-12.1405D D is Density .18,40,77 log M w = 10.3068 - 5.1318 H is Heat of Crystallization log(4.184#) inJ/g 94
Particle Size (Average calculated diameter) um Dispersion polymer Coagulated dispersion polymer Granular polymer ASTM Type I ASTM Type IV Permeability to Gases Helium Carbon dioxide Nitrogen Hydrogen Energy of activation for diffusion Energy of activation for permeability
35
See Note 12
Pas Pas kJ/mol
0
Refs.
8
D2116
Melting Melting peak temperature Initial (irreversible) Second and subsequent (reversible) Equilibrium melting temperature For porous, expanded PTFE Entropy of melting Corrected to constant volume Volume expansion during melting Increase of melting point with pressure Heat of fusion
Recovery after deformation
Remarks
D1457 D1457 D1457
0.22 350-650
47
600-800 < 100
m 3 (STP) m/s/m 2 /Pa ( x 1015)
kJ/mol kJ/mol 0
C Pam/s Radicals/10 6 C atoms %
104 76 76 76 60 60 60
log PBe = 3.505 - 0.037(%C) log F C o 2 = 2.605 - 0.037(%C) log P N 2 = 2.44203 - 0.037(%C) 7.35 27.6 19.7
Dl 147
See Fig. 1 350-400 50-250 3.7 x 10" 5 D0.89
27,77,102 Derived from Ref.; D is dose in rads
% Recovery = 1 1 1 - 0.87(%C); % C from 40 to 90
1/4 inch penetrator; 5 Ib preload; 2501b major load
46 37 96
Notes page V- 37; References page V- 39
Property Refractive Index Resistivity Service Temperature Solid Viscosity
Units n%
ASTM or other methods D542
Pas
Solution Viscosity
Value 1.376 See Electrical Properties - 2 6 9 to 2600C 104 - 106
Perchloroethylene
% wt. increase
% wt. gain = 24.85 - 2.456 HSP 2
Methylene chloride
% wt. increase
0.7
Solvents Specific Gravity Specific Heat
21,95,96 54,81
See Note 17 HSP is Hildebrand solubility parameter 100Oh in boiling liquid, 60% cryst. 1000 h in boiling liquid, 60% cryst.
66
1 MHz, 25°C m/sec m/sec
Standard Specific Gravity (Relative molecular weight) Surface Tension at 293 K
mN/m
Thermal Degradation Enthalpy of depolymerization Rate of depolymerization Kinetic chain length (CL)
See Note 16 At 3000C, shear rate 0.1-lOs" 1
See Note 18
Longitudinal Shear
Thermal Conductivity 25°C 72°C
7
See Density See Heat Capacity
Speed of Sound
At 230C, Elongation at break At -251°C At -196°C At -129°C At -73°C At 23°C Plateau modulus, 38O°C
Refs.
See Intrinsic Viscosity
Solvent Absorption
Tensile Strength Properties Modulus At -251°C At - 1960C At - 129°C At -73°C At23°C At 100°C Yield Stress, At -251 0 C At -196°C At - 129°C At -73°C At -55 0 C AtO0C At 230C At 158°C At 25O0C Tensile strength At 23°C
Remarks
1410 730 D1457
Also see Molecular Weight 25.6
49 49 See Note 15
18 49
D638 GPa GPa GPa GPa MPa MPa
4.1 3.4 2.5 1.8 340 69
52 52 52 52 52 52
MPa MPa MPa MPa MPa MPa MPa MPa MPa
131 110 79 53 26 12 10 5.5 3.4
52 52 52 52 52 52 52 52 52
MPa
270 - 0.39(%C) - 9 9 . 3 D
MPa
17-34
% % % % % MPa
2 6 90 160 200-400 1.7
W/m/K W/m/K
C177
D from 2.170 to 2.280 Mg/m3; %C from 30 to 90 See Note 5
See Note 5
K = 4.86 x 10~4 7+0.253 0.25 0.34 AH = 156000 - 27.9 (7-360) J/mol See Ref. for details log CL = 8320/7 - 9.958 T in kelvin
52 52 52 52 52 52 49 69 49 49
69 73 28,98
Property Toughness Izod impact strength, notched -57 O C* 23°C 77°C Tensile impact strength Transitions Alpha (Glass I) Beta I (Crystalline transition, crystal disordering relaxation) Change with pressure Latent heat Volume expansion Kinetics of the transition Beta II Beta I + Beta II Entropy change, overall (19 + 30) Due to volume change (corrected to constant volume) Gamma (Glass II) Change of frequency (in Hz) of loss peak with temp. Alpha (Glass I) Beta (crystalline relaxation) Gamma (glass II) Effect of temperature on transition pressure Transition between phases IV and I Transition between phases II and IV
Units
J/m
kPa/m2 0
ASTM or other methods
Remarks
Refs.
D256
D1822
107 187 320 TIS = 3 379 - 45.1 (%C)
C 126 19
K/bar kJ/kg I/kg
See Note 1
21 52 52 52 75
See Note 19 At 1 Hz
23 53
0.0128 13.4 0.0058 See Note 20 30
kJ/kg/K kJ/kg/K
57
0.0452 0.028 - 80 at 1 Hz
53 23
log F = 48.3759 - 368 kJ/(2.303/?7) log F = 24.97 - 142 kJ/(2.303/?7) log F = 22.37 - 75 kJ/(2.303 RT) 50 P = ( - 91 - 57.8 T+ 1.99 T2) x 105 P = ( - 820 + 26.9 T + 0.68 T2) x 105
Pa Pa
Triple Point Unit Cell Viscosity
Water Absorption Wear Factor Weatherability
Value
See Figure 1, Crystallographic Data, and Transitions See Crystallographic Data See Melt Viscosity See Solid Viscosity See Solution Viscosity % Pa" 1
D570
0 3000 x 10~17 Excellent
See Note 21 See Note 22
77 46
NOTES
1. Many of the properties of PTFE are not constant but change systematically with crytalline content, molecular weight, void content, temperature, pressure, or some other independent variable. Where available, these inter-relationships are shown even though they are usually empirical rather than fundamental. Throughout the table, %C indicates percent crystallinity by weight. 2. American Society for Testing and Materials (ASTM) standards on the fluoropolymers provide a convenient source for information on details of the nature of a particular fluoropolymer, typical properties, methods of testing, and the like. For this reason, pertinent Standard numbers are included in the tables for each polymer. The fluoropolymer standards are the responsibility of the Fluoropolymers
Section of the Materials Subcommittee of the Technical Committee on Plastics. The numerical designation is D-20.15.12. More recently, the International Organization for Standardization (ISO) has issued materials standards which incorporate various aspects of the ASTM standards. 3. The exact value depends on the particular type or grade of polymer that is being used. 4. Equations based on time-temperature superposition are given in Ref. 42 for PTFE with a crystalline content of approximately 58%. These relationships permit calculation of tensile creep modulus at any stress, time, or temperature in the temperature range of 35-1000C and stress levels below the elastic limit. Ref. 41 provides similar data over a wider range of conditions. References page V- 39
5. Reference 83 gives a value of 2.060 for the amorphous density of PTFE. Internal inconsistencies in this paper, however, need clarification before this writer can accept the value given. 6. Precise measurements of dielectric loss (Ref. 71) show peaks that correspond to the gamma transition. The measured values of tan delta, however, were all less than 300 x 10 ~6 with some as low as 20 x 10~6. 7. No carbon track is formed. 8. Infrared methods show presence of carboxylic acid monomer and dimer, perfluorovinyl, and acid fluoride end groups in low molecular weight products (Ref. 9). The methods currently available are not sufficiently sensitive for quantitative work in polymers of commercially useful molecular weights, but the acid monomer and dimer ends have been found in commercial materials using FTIR procedures (Ref. 93). 9. This numerical rating for flame spread is not intended to reflect hazards presented by this or any other material under actual fire conditions. 10. The values given are selected from extensive tables and plots of data in Ref. 44. 11. The mechanical loss factor is related to the transition behavior. The value depends on temperature and frequency of the dynamic mechanical stress, values of the logarithmic decrement up to 0.55 have been observed (see Ref. 53). 12. This relationship is applicable only to PTFE, with molecular weights well below that required for the applications of plastics (see Ref. 78). 13. The temperature observed for the first (irreversible) melting point decreases with rate of heating. It also differs with the type of polymer. Evidence in Refs. 39 and 72 suggests that details of DSC scan for a first melting reflect aspects of molecular weight and molecular weight distribution. 14. Inconsistencies in the results from various laboratories for the heat of fusion of PTFE and FEP have not been resolved. Some aspects are discussed in Refs. 86, 89, and 90. 15. Standard Specific Gravity (SSG), described in ASTM D4894, D4895 and ISO 12086-1 (see Ref. 18 and 77), is a useful inverse measure of relative molecular weight for homopolymers of TFE. Many commercial polymers today, however, contain very small amounts of modifiers that affect the rate and extent of crystallization. With these materials, therefore, SSG is meaningful as a measure of relative molecular weight only within a given family of PTFE resins. Estimating actual values of the molecular weight of the highest molecular weight commercial polymers has, to date, involved assumptions and extrapolation. These relationships, therefore, are, at best, a first approximation. In addition, some references, such as Refs. 11 and 40, give
16.
17.
18.
19.
20.
21. 22.
relationships for molecular weight as a function of SSG with little or no documented basis for the equation. The recommended maximum service temperature is 2600C (Ref. 21). There are, however, examples of satisfactory use at higher temperatures. Gaskets in totally enclosed systems, for instance, are used repeatedly at 5000C and 15 000psi (103MPa) (see Ref. 19). PTFE also performs well at low temperatures. In compressive strength tests at 4 K, for example, the polymer has been shown to have ductile rather than brittle failure (Ref. 95). Weight gain is noted with some chlorinated and fluorinated liquids that contain no hydrogen (Ref. 82). The weight increase decreases with increasing crystallinity (Ref. 78). PTFE is inert to essentially all common chemicals (see Refs. 64 and 65). It is, however, attacked by molten alkali metals, elemental fluorine, and pure oxygen at elevated temperatures, it can also react under some conditions with alkaline earth oxides and finely divided metals such as aluminum or magnesium at elevated temperature. Sorption of solvents is mentioned in Note 13. Solutions containing 0.1-2% PTFE were obtained in perfluorokerosene C2iF44(FCX-412) in the temperature range 290-3100C (see Refs. 71 and 74). Clear evidence for a crystalline transition at about 900C is presented in a series of papers by Araki, Refs. 3-5. He also presents evidence for doublets in the transitions Ref. 4, and points out that the alpha and gamma transitions follow the so called 2/3 (Trouton) rule when compared with the first order crystalline transitions at 19 and 3270C, Ref. 3. See also evidence for a doublet in the freezing-point plot shown in Ref. 65. Data on the kinetics of the transitions not amenable to presentation in tabular form are available in Ref. 57. Incorporation of finely divided fillers decreases wear factor by as much as 500 to 1000 fold (Ref. 46). No change in appearance or properties has been observed after more than twenty years exposure in Florida (see Ref. 21).
INFRARED ABSORPTION SPECTRUM OF POLY(TETRAFLUOROETHYLENE) (cm1)
(fan)
Intensity0
3670 3570 3450 3090 2925 2620 2590
2.72 2.80 2.90 3.24 3.42 3.82 3.86
VW VW VW VW VW VW VW
(cm1)
(/im)
Intensity 0
(cm1)
2530 2450 2367 2300 1974 1935 1883 1859 1792 1703 1545 1451 1420 1242
3.95 4.08 4.22 4.35 5.07 5.17 5.31 5.38 5.58 5.87 6.47 6.90 7.04 8.05
VW VW M VW VW W W W M W M M M VS
1213 1152 932 850 778 738 718 703 638 553 553 516 384 a
(fim) 8.24 8.68 10.73 11.76 12.85 13.55 13.98 14.22 15.67 18.08 18.08 19.38 26.04
Intensity 0 VS VS M Amorphous Amorphous Amorphous Amorphous Amorphous S S S VS Amorphous
VS, very strong; S, strong; M, medium; W, weak; VW, very weak.
Pressure (Kbar)
Planar zig-zag crystal III Triclinic crystal Il
Pseudohexagonal crystal I Hexagonal crystal IV
Temperature (0C) Figure 1. Phase diagram for poly(tetrafluoroethylene). REFERENCES 1. G. Ajroldi, C. Garbuglio, M. Ragazzini, J. Appl. Polym. ScL, 14, 79 (1970). 2. A. J. G. Allan, Lubrication Eng., 14, 211 (1958). 3. Y. Araki, J. Appl. Polym. ScL, 9, 421 (1965). 4. Y. Araki, J. Appl. Polym. ScL, 9, 3575 (1965). 5. Y. Araki, J. Appl. Polym. ScL, 11, 953 (1967). 6. T. W. Bates, W. H. Stockmayer, Macromolecules, 1, 17 (1968). 7. R W. Billmeyer, Jr., J. Appl. Phys., 18, 431 (1947). 8. W. Brandt, J. Chem. Phys., 26, 262 (1957). 9. M. I. Bro, C. A. Sperati, J. Polym. ScL, 38, 289 (1959). 10. W. M. D. Bryant, J. Polym. ScL, 56, 277 (1962). 11. A. J. Cardinal, W. L. Edens, and J. W. Van Dyk, US Patent 3, 142, 665, July 28, 1964 to Du Pont. 12. E. S. Clark, L. T. Muus, Z. Krist., 117 (2/3), 108 (1962). 13. E. S. Clark, L. T. Muus, Z. Krist, 117 (2/3), 119 (1962). 14. E. S. Clark, L. T. Muus, J. Macromol. Sci. B, 1, 795 (1967). 15. E. S. Clark, Results cited previously in "Polymer Handbook", 2nd (ed.), page V-36. 16. T. L. Cottrell, "The Strengths of Chemical Bonds", 2nd ed., Butterworths, Washington, DC, 1958.
17. D. R Cutler, P. J. Hendra, R. R. Rahalkar, M. E. A. Cudby, Polymer, 22, 726-30 (1981). 18. R. C. Doban, A. C. Knight, J. H. Peterson, C. A. Sperati, Meeting Am. Chem. Soc, Atlantic City, Sept. 1956. 19. R. C. Doban, C. A. Sperati, B. W. Sandt, Soc. Plastics Eng. J., 11, 17 (1955). 20. DuPont Polymer Products Department, 21. DuPont Polymer Products Department, Technical Services Laboratory, Wilmington, DE, Personal Communication. 22. H. C. Duus, Ind. Eng. Chem., 47, 1445 (1955). 23. R. K. Eby, K. M. Sinnott, J. Appl. Phys., 32, 1765 (1961). 24. R Ehrlich, J. Res. Natl. Bur. Std., 51, 185 (1953). 25. B. L. Farmer, R. K. Eby, Polymer, 22, 1487 (1981). 26. S. Fischer, N. Brown, J. Appl. Phys., 44, 4322 (1973). 27. H. D. Flack, J. Polym. ScL A-2, 10, 1799 (1972). 28. R. E. Florin, M. S. Parker, L. A. Wall, J. Res. Natl. Bur. Std. A, 70(2), 115 (1966). 29. H. W. Fox, W. A. Zisman, J. Colloid Sci., 5, 514 (1950). 30. S. V. Gangal, in Kirk-Othmer: (with 104 references) "Encyclopedia of Chemical Technology", vol. no. 11, 3rd. ed., (1980) p. 24, Wiley, New York, 1980.
31. R. J. Good, J. A. Kvikstad, W. D. Bailey, J. Colloid Interface ScL, 35, 314 (1971). 32. R. W. Gore, US Patent 3, 953, 566, 4/27/76; US Patent 3, 962, 153, 6/8/76; and US Patent 4, 187, 390, 2/5/80 to W. L. Gore and Associates. 33. R. W. Gore, File history for prosecution of US Patent 4,187, 390, US Patent office. 34. Imperial Chemical Industries, Ltd. 35. R. L. Johnson, in: "Encyclopedia of Polymer Science and Technology", Supp. no. 1 (1976) p. 269. 36. E. D. Jones, G. R Koo, J. L. OToole, Mod. Plastics, 44 (11), 137 (1967). 37. H. S. Judekis, S. Siegel, IEEE Trans. Nuclear Sci., 14, 237 (1967). 38. R. E. Kirby, J. Res. Natl. Bur. Std., 57, 91 (1956). 39. S. Koizumi, S. Ichiba, T. Kadowaki, and K. Yamamoto, US Patent 4, 159, 370, June 26, 1979; RE 31, 341, Aug. 9, 1983 to Daikin Kogyo Co. 40. Y. Kometani, S. Koizumi, S. Fumoto, T. Nakajima, US Patent 3, 462, 401 (August 19, 1969). 41. G. P Koo, "Cold Drawing Behavior of Polytetrafluoroethylene" Thesis from Stevens Institute of Technology, Sc. D., University Microfilms Inc., Ann Arbor Michigan, 69-21, 294 (1969). 42. G. R Koo, E. D. Jones, J. M. Riddell, J. L. O'Toole, Soc. Plastics Eng. J., 21, 1100 (1965). 43. G. P. Koo, J. M. Riddell, J. L. O'Toole, Polym. Eng. Sci., 7, 182 (1967). 44. S-F. Lau, H. Suzuki, and B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 22, 379 (1984). 45. S-F. Lau, J. P Wesson, B. Wunderlich, Macromolecules, 17, 1102(1984). 46. R. B. Lewis, J. Eng. Ind., 1, 1 (1966). 47. J. F. Lontz, W. B. Happoldt, Jr., Ind. Eng. Chem., 44, 1800 (1952). 48. J. M. Lupton, Meeting Am. Chem. Soc, Chicago, Sept., 1958. 49. J. E. Mark (Ed), "Physical Properties of Polymers Handbook", AIP Press, Woodbury, NY, 1996. 50. C. M. Martin, R. K. Eby, J. Res. Natl. Bur. Std. A, 72, 467 (1968). 51. G. Masetti, F. Cabassi, G. Morelli, G. Zerbi, Macromolecules, 6, 700 (1973). 52. D. I. McCane (with 118 references), "Encyclopedia of Polymer Science and Technology", vol. no. 13, Wiley, New York, 1970, p. 623. 53. N. G. McCrum, B. E. Read, G. Williams, "Anelastic and Dielectric Effects in Polymeric Solids", Wiley, New York, 1967. 54. R. L. McGee, J. R. Collier, Polym. Eng. and Sci., 26, No. 3, 239 (1986). 55. K. Morokuma, J. Chem. Phys., 54, 962 (1971). 56. R. E. Moynihan, J. Am. Chem. Soc, 81, 1045 (1959). 57. R. Natarajan, T. Davidson, J. Polym. Sci., Polym. Phys. Ed., 10, 2209 (1972). 58. A. Nishioka, M. Watanabe, J. Polym. Sci., 24, 298 (1957). 59. J. L. O'Toole, "Modern Plastics Encyclopedia" 45, 48 (1968).
60. R. A. Pasternak, M. V. Christensen, J. Heller, Macromolecules, 3, 366 (1970). 61. R. H. H. Pierce, E. S. Clark, J. F. Whitney, W. M. D. Bryant, Meeting Am. Chem. Soc, Atlantic City, Sept., 1956. 62. C. M. Pooley, D. Tabor, Proc Roy. Soxc. (London), Ser. A, 329, 251 (1972). 63. F. J. Rahl, M. A. Evanco, R. J. Fredericks, and A. C. Reimschuessel, J. Polym. Sci. A-2, 10, 1337 (1972). 64. J. C. Reed, E. J. McMahon, J. R. Perkins, Insulation (Libertyville), 10 (5), 35 (1964). 65. M. M. Renfrew, E. E. Lewis, Ind. Eng. Chem., 38, 870 (1946). 66. E. Rydel, Thesis Univ. of Strassbourg, March 22, 1965. 67. A. L. Ryland, J. Chem. Educ, 35, 80 (1958). 68. T. Seguchi. T. Suwa, N. Tamura, and M. Takehisa, J. Polym. Sci., Polym. Phys. Ed., 12, 2567 (1974). 69. R H. Settlage, J. C. Siegle, Phys. Chem. Aerody. Space Flight, Proc Conf., Philadelphia, 1959, 73 (1961), Pergamon, New York. 70. W. A. Sheppard, C. M. Sharts, "Organic Fluorine Chemistry", W. A. Benjamin, New York, 1969. 71. S. Sherratt, Kirk-Othmer, (with 99 references) "Encyclopedia of Chemical Technology", 2nd ed., 9, 805 (1966). 72. T. Shimizu, Private Communication, Paper Presented at the Symposium on New Fluorine-Containing Materials, Tokyo Institute of Technology, 1985. 73. J. C. Siegle, L. T. Muus, Tung Po Lin, H. A. Larsen, J. Polym. Sci. A, 2, 391 (1964). 74. C. A. Sperati, Gordon Research Polymers Conference, July 7, (1955). 75. C. A. Sperati, Results cited previously in "Polymer Handbook", 2nd Edition, page V-36. 76. C. A. Sperati, J. L. McPherson, Meeting Am. Chem. Soc, Atlantic City, Sept. 1956. 77. C. A. Sperati, H. W. Starkweather, Jr. (with 114 references), Adv. Polym. Sci., 2, 465 (1961). 78. C. A. Sperati, "Polytetrafluoroethylene: History of its Development and Some Recent Advances" (with 67 references) in: Seymour and Kirshenbaum (Eds.), "History of High Performance Polymers", Marcel Dekker, New York, 1986. 79. H. W. Starkweather, Jr., Results cited previously in "Polymer Handbook", 2nd (ed.), page V-36. 80. H. W. Starkweather, Jr., Soc. Plastics Eng. Trans., 3, 1 (1963). 81. H. W. Starkweather, Jr., J. Polym. Sci., Polym. Phys. Ed., 17, 73 (1979). 82. H. W. Starkweather, Jr., Macromolecules, 10, 1161 (1977). 83. H. W. Starkweather, Jr., J. Polym. Sci., Polym. Phys. Ed., 20, 2159 (1982). 84. H. W. Starkweather, Jr., Macromolecules, 17, 1178 (1984). 85. H. W. Starkweather, Jr., J. Polym. Sci., Polym. Phys. Ed., 23, 1177(1985). 86. H. W. Starkweather, Jr., Macromolecules, 19, 1131 (1986). 87. H. W. Starkweather, Jr., Macromolecules, 19, 2541 (1986).
95. C. A. Swenson, Rev. Sci., Instr., 25, 834 (1954). 96. P. E. Thomas, J. F. Lontz, C. A. Sperati, J. L. McPherson, Soc. Plastics Eng. J., 11, 17 (1955). 97. J. P. Tordella, Trans. Soc. Rheo., 7, 231 (1963). 98. L. A. Wall (Ed.), "Fluoropolymers", Wiley Interscience, 1972. 99. J. J. Weeks, I. C. Sanchez, R. K. Eby, C. I. Poser, Polymer, 21, 325 (1980). 100. J. J. Weeks, E. S. Clark, R. K. Eby, Polymer, 22,1480 (1981). 101. J. J. Weeks, R. K. Eby, E. S. Clark, Polymer, 22,1496 (1981). 102. C. E. Weir, J. Res. Natl. Bur. Std., 50, 95 (1953). 103. B. Wunderlich, H. Baur, Adv. Polym. Sci., 7, 331 (1970). 104. N. Yi-Yan, R. N. Felder, W. J. Koros, J. of Appl. Polym. Sci., 25, 1755 (1980). 105. G. Zerbi, M. Sacci, Macromolecules, 6, 692 (1973).
88. H. W. Starkweather, Jr., R. H. Boyd, J. Phys. Chem., 64, 410 (1960). 89. H. W. Starkweather, Jr., P. Zoller, G. A. Jones, A. J. Vega, J. Polym. Sci. Poly. Phys. Ed., 20, 751 (1982). 90. H. W. Starkweather, Jr., P. Zoller, G. A. Jones, J. Polym. Sci., Poly. Phys. Ed., 22, 1431 (1984). 91. H. W. Starkweather, R. C. Ferguson, D. B. Chase, J. M. Minor, Macromolecules, 18, 1684 (1985). 92. H. W. Starkweather, Jr., P. Zoller, G. A. Jones, J. Polym. Sci., Poly. Phys. Ed., 22, 1431 (1984). 93. J. N.-P. Sun, Report for MS Degree, Ohio University, 1951. See also J. N.-P. Sun, P. R. Griffiths, and C. A. Sperati, Spectrochemica Acta., 39A, 587 (1983). 94. T. Suwa, M. Takehisa, S. Machi, J. Polym. Sci., 17, 3253 (1973). C.
PHYSICAL CONSTANTS OF MELT PROCESSIBLE FLUOROCARBON POLYMERS PFA AND FEP and FEP, poly(tetrafluoroethylene-c^-hexafluoropropylene), are included in this table. Various perfluoro(alkoxy vinyl ethers) can be used for PFA. It has been reported that one often used is perfluoro(propylvinyl ether) (14). Data available for PFA and FEP are not as extensive as for PTFE. In many respects, however, the properties of solid FEP and, especially, PFA, are very similar to those of PTFE. The values given in the table for PTFE, therefore, can often provide useful guidance for the properties of nonmolten PFA or FEP for which no values are included in this table.
Unlike poly(tetrafluoroethylene), copolymers of tetrafluoroethylene with perfluoro comonomers are made as relatively low molecular weight (i.e., low melt viscosity) products that can be processed by conventional melt procedures and still have properties in the solid state that are similar or superior to those of poly(tetrafluoroethylene). Both PFA, poly[tetrafluoroethylene-c-perfluoro(alkoxy vinyl ether)],
Property
ASTM or other methods
Units
PFA Value
Remarks
FEP Refs.
Abrasion Resistance
Bulk Density of molding powder Chemical Resistance Coefficient of Friction Coefficient of Thermal Expansion Linear expansion Average values for temperature indicated <23 >23 20-100 100-150 150-210
Remarks
Refs.
See Taber Abrasion
ASTM or ISO Standards Material Molding and extrusion powders Film and sheeting Rods, tubes, and pipe lining Bond Energies C - C adjoining pendant group
Value
See Note 1
See Note 1
D3307, ISO12086-1
D2116 D3368 D3296,F546
F781
kJ/mol g/1 D1894
335
See Note 2
1250 Excellent 0.25
See Note 3 See Note 4
15 7
167
See Note 2
1230-1250 Excellent 0.27-0.67
See Note 3 See Note 4
7 15 5,7,15
D696 K" 1 5.7 X l O " 5 9.3 X l O - 5 12 x l O - 5 17 x l O - 5 2OxIO-5
Cohesive Energy Density Comonomer Content
wt.%
IR
Compressive Strength Properties Modulus Strength
MPa MPa
D 695
11 11 11 36 10-15
23.7-25.8
9 9
See Note 3
24 See Note 4
11,10
7
Notes page V-44; References page V-45
Property
Units
ASTM or other methods
-2510C -1960C - 16O0C 23°C 55°C 100°C
Critical Shear Rate for Melt Fracture Critical Surface Tension Deformation Under Load Density Depolymerization Rate Electrical Properties Dielectric constant At 60Hz to 2GHz At IkHz to IGHz At 240 GHz Dielectric strength Dissipation factor 60Hz to IMHz AtIkHz At 100 kHz At 1 MHz At 10 MHz AtIGHz At 3 GHz At 10 GHz At 240 GHz Surface arc resistance Surface resistivity, 100% RH Volume resistivity, dry At 50% RH
Flex Life Flexural Strength Fuel Value Hardness Durometer Rockwell Heat Capacity
Remarks
FEP Refs.
Value
Remarks
Refs.
251
9
207 15 11 3.4
9 9 9 9
11
See Service Temperature
MPa 270 41 s" 1
3-50
% Def. D621 g/cm 3 =Mg/m 3
e
11 11 See Note 3
6
0.36-0.41 See Note 2 2.12-2.17 See Thermal Degradation
7 11
2-20 17.8-18.6 0.5 2.12-2.17
See Note 3 See Note 3
kV/mm V/mil
6 15 8 9
D150 2.1
D149
2.06 2.049 78.8 (on 0.25 mm 2000
film)
11 11 11 11
13-100 500-4000
9
See Note 6
15
D150 0.000027
11
0.00008
11
0.00115
11
s ohms/sq
D495 D257
0.00124 > 300 > 1017
ohm cm
D257
10 14
UL94
VE-O
Flammability Also see limiting oxygen index Flexural Modulus At -268 0 C At - 196°C At - l o r e At23°C At 55°C At 1000C At200°C
Value
414
Continuous Use Temperature Creep Tensile creep modulus 25°C 250°C
PFA
< 0.0001 < 0.0001 0.00025
15
0.0005 0.0011 0.0012 0.0007
15 15 15
11 See Note 7 10
> 300 10 16
10
>10 1 8
11
VE-O
655-690
11
55-69
11
5.31 4.69 3.24 655 345 110 41.4
See Note 8
See Note 7
9 9 9
See Note 8
6
D790 GPa GPa GPa MPa MPa MPa MPa Flexes
MIT D790
Scale value Scale value
D2240 D785
50000-500000 See Note 9 No break See Heat of Combustion
D63-65 J 60 See Specific Heat
11
5000-30000 No break
10
D55-66 R25
15
See Note 9
2
10,9
Property
Units
Heat Deflection Temperature At 0.455 MPa (66 psi) At 1.82 MPa (264 psi)
PFA
FEP
Value
Remarks
Refs.
63-80 48-50
See Note 3 See Note 3
7 7
Value
C 0 C MJ/kg
Melt flow rate
5.4
70-77 51-57
nm % Oxygen
D2863
kPa s
D2116
dg/min flow
D3307 D2116
kJ/mol
0
Volume expansion during melting Increase of melting point with pressure
C % Kftar
Latent heat of fusion
kJ/kg
DSC
Molecular Weight
Particle Size (average diameter) Dispersion Polymer
urn
Permeability to Gases Carbon dioxide Oxygen Nitrogen
ng cm/m2 -s
>95
33-53 95
11
4-27 1-18
See Note 3 See Note 3
6 11
43.1
See Note 10
6
302-306
See Note 3
11
See Note 3
3
1.62 x 10 ~13A/ ~3 4 8-50
See Note 3
18 6
0.8-18 46
See Note 3 See Note 10
6,1,12 6
See Note 11 See Note 3 See Note 12
3 9 9 9
See Note 13
20
See Note 3
17
21-26
7
253-282 8 0.725 to 1.74°C per MPa 24.3
Also see Melt Viscosity 200000-450000
17
250000-600000
0.1
0.1
273 637 91
0
C Pam-s psi ft/min
370-395
Radiation, Effects of degradation in air ng 0
D542
C
Solvents Specific Gravity kJ/kg/K
Taber Abrasion
g/MHz
6
5000 Maintains Tensile properties better than does PTFE
11 10
1.35 See Electrical Properties - 200 to 260
11
None See Density
Specific Heat 20 0 C 25°C 1000C 150°C 260°C
Tensile Strength Properties Modulus At 23 0 C Yield stress At 23 0 C At250°C
9,7 9,7
11
Melting Melting point
Refractive Index Resistivity Service Temperature
Refs.
See Melting See Toughness
Melt Viscosity By capillary rheometer
Phase Diagram Processing Temperature PV Limit
Remarks
D 648 0
Heat of Combustion Heat of Fusion Impact Strength Lamellar Thickness Limiting Oxygen Index
Energy of activation for melt
ASTM or other methods
See Note 4
22 6
320-380
10 to 100 times better than PTFE See Note 14
15
1.344
11
11,7 10
9 9 9
250 to 206 None
9,7 See Note 4
15
DSC
CS-17 wheel; 100 g load D638
1.09
9
1.17
9
1.3
9
7.5
9
MPa 4
See Note 3
9
12
See Note 3
9
MPa 13-15 3.5-4
See Note 3 See Note 3
11 11
Notes page V-44; References page V-45
Property Tensile strength At - 1 9 6 0 C At23°C At 2500C Elongation at break At -196°C At23°C At 2500C
Units
PFA Value
Remarks
129 28-31 12-14
See Note 3 See Note 15
FEP Refs.
Value
Remarks
11 11 11
14.5-21
See Note 3
9
11 11 11
24a-300
See Note 3
9
% 8 260-300 480-500 W/m/K
Cenco Fitch 1.4 2.4 0.209
C177
9 9 7
Similar to PTFE %/hr
log(%/h) = 10.08 -131kJ/(2.303/?7) See Note 16
Toughness Izod impact strength, notched -196 0 C -54°C 23°C Transitions Alpha (Glass I)
9
D256 J/m
0
64
11
No break
11
2.9 No break
15 9
70-126, 0-15 mol% HFP See Note 3 - 70 to - 1 0 See Note 3 -90
16 16 16
C
Beta Gamma (Glass II) Activation energy for change of frequency (in Hz) of loss peak with temp Alpha (Glass I) Beta (crystalline relaxation) Gamma (Glass II) Effect of temperature on the frequency of peak loss Gamma (Glass II)
Unit Cell Viscosity Water Absorption Wear Factor Weatherability
Refs.
MPa
Thermal Conductivity -253°C - 1 2 9 to 182°C 23°C Thermal Degradation Enthalpy of depolymerization Rate of depolymerization
ASTM or other methods
80
8
18
8
log F = 22.43-76kJ/(2.303 RT) calc from data in Ref.
8
Phase II is similar to PTFE % incr. in wt. D570 in3min/ft/lb/hr
See Melt Viscosity 0.004 700-1800 Excellent
7 10 10
23
<0.1
9
Excellent
9
NOTES
1. Comments on ASTM and ISO standards for fluoropolymers are in Note 2 for the table on PTFE. 2. The values are estimated based on high-spot work on degradation of the polymers. 3. The exact value depends on the type or grade of polymer that is being used. 4. PFA and FEP are insoluble in all common solvents and are highly resistant to essentially all common
chemicals (see Ref. 1, 2, and 15). They are however, attacked by molten alkali metals, elemental fluorine, and pure oxygen at elevated temperatures. Also, they can react, under some conditions, with alkaline earth oxides and finely divided metals such as aluminum or magnesium at elevated temperature. Solutions containing 0.1 to 2% FEP were obtained in perfluorokerosene
5.
6. 7. 8.
9. 10. 11.
C 2iF44 (FCX-412) in the temperature range 2903100C. Determined by 3.0x IR Ratio. The IR ratio is the absorbance at 980 cm" 1 (10.2 jam)/absorbance at 2350 cm" 1 (4.23 |im) (see Ref. 1, 2). Thickness is from 0.025 to 2.5 mm. The value decreases with increasing thickness. No carbon track is formed (see Ref. 7). This numerical rating for flame spread is not intended to reflect hazards presented by this or any other material under actual fire conditions. The MIT flex test is run with a thickness of 0.254 mm. Calculated from data in Ref. 6. The melt flow rate was determined using standard conditions at 372°C. Ref. 3 gives melting temperature, Tm, as a function of wt.% comonomer, X9 and lamellar thickness, L.
The equation is l / r m = 1.622 x 1(T3 + 2.52 x 10" 3 Z(I +X) + (1.92 x
\0-10/L)
12. The rate of increase of the melting point decreases with increasing pressure. 13. Inconsistencies in the results from various laboratories on heat of fusion of PTFE and FEP have not yet been resolved. This value is for a sample of FEP with a density of 2.148 Mg/m3. 14. Moderate crosslinking can occur to offset degradation (see Ref. 15). 15. Mechanical properties of PFA at elevated temperature but below its melting point generally are superior to those of PTFE at the same temperature. 16. Calculated from data in Ref. 9.
REFERENCES 1. Y. Akatsuka, M. Noshiro, Y. Jitsugiri, Reports Res. Lab. Ashai Glass Co., Ltd., 26 [2] 111 (1976); also, Paper Po-8 at the 8th International Symposium on Fluorine Chemistry, Kyoto, Japan, Aug. 26, 1976. 2. M. I. Bro, B. W. Sandt, US Patent 2, 946, 763. 3. J. R Colson, R. K. Eby, J. Applied Phys., 37, 3511, (1966). 4. DuPont Polymer Products Department, Technical Information on PFA, 7/19/85. 5. DuPont Polymer Products Department, Teflon® PFA Product Guide, Bulletin E-33272-2. 6. DuPont Polymer Products Department, Extrusion Guide for Melt Processible Copolymers and its Supplement, Bulletins E-41337-1 andE-41338-1. 7. DuPont Polymer Products Department, Technical Services Laboratory, Personal Communication. 8. R. K. Eby, F. C. Wilson, J. Applied Phys., 33,2951-55 (1962). 9. S. V. Gangal, (with 68 references), in: Kirk-Othmer (Ed.), Encyclopedia Chem. Tech., vol. 11, 3rd ed., Wiley, New York, 1980, p. 24. 10. R. L. Johnson (with 19 references), "Tetrafluoroethylene Copolymers with Perfluoroalkoxy Pendant Groups, in Encyclopedia of Polymer Science and Technology", Supp. No. 1 (1976). 11. R. L. Johnson (with 20 references) in: Kirk-Othmer (Ed.), Encyclopedia Chem. Tech., vol. 11, 3rd ed., Wiley, New York, 1980, p. 42.
D.
12. W. J. Koros, J. Wang, R. M. Felder, J. Appl. Polym. Sci., 26, 2805 (1981). 13. H. A. Larsen, G. R. Dehoff, N. W. Todd, "Modern Plastics", 36 (8), 89 August, 1959. 14. V. J. Leslie, and L. S. J. Shipp, "Structure Property Relationships of Fluoropolymers", IX Int. Symp. of Fluorine Chem., Avignon, Sept. 3-7, 1979. 15. D. I. McCane, (with 72 references), "Encyclopedia of Polymer Science and Technology", vol. 13, Wiley, New York, 1990, p. 654. 16. N. G. McCrum, B. E. Read, G. Williams, "Anelastic and Dielectric Effects in Polymeric Solids", Wiley, New York, 1967. 17. R. E. Putnam, (with 12 references), in: R. B. Seymour, G. S. Kirshenbaum (Eds.), "High Performance Polymers: Their Origin and Development", Elvesier, 1986, p. 279. 18. C. A. Sperati, Results cited previously in "Polymer Handbook", 2nd (Ed.), page V-36. 19. H. W. Starkweather, Jr., Macromolecules, 10, 1161 (1977). 20. Starkweather, H. W., Jr., Zoller, P. and Jones, G. A., J. Polym. Sci., Poly. Phys. Ed., 22, 1431 (1984). 21. H. W. Starkweather, Jr., J. Polym. Sci., Polym. Phys., Ed., 20, 2159 (1982). 22. J. J. Weeks, I. C . Sanchez, R. K. Eby, C. I. Poser, Polymer, 21, 325 (1980). 23. J. J. Weeks, R. K. Eby, E. S. Clark, Polymer, 22, 1496 (1981).
PHYSICAL CONSTANTS OF MODIFIED POLY(ETHYLENE-CO-TETRAFLUOROETHYLENE)
Commercially useful copolymers of ethylene and tetrafluoroethylene became feasible when it was discovered that the use of a small amount of a modifier, often a termonomer, resulted in polymers with properties
suitable for long term use (Ref. 7). One key requirement, for example, is the ability to withstand exposure at high temperature without rapid embrittlement. The amount of modifier is very low and the exact amount Notes page V-48; References page V-48
and nature of a modifier has been kept proprietary by each manufacturer, and may be different for different grades within a product line. The commercial modified poly (ETFE) materials are essentially alternating copolymers (Ref. 10). In molecular formula, they are isomeric with poly(vinylidene fluoride)(PVDF), and can be considered equivalent to a PVDF
Property
Units
ASTM or ISO Standards Molding and extrusion powders
Compressive Strength Properties Modulus Strength Stress at 1% deformation Yield strength
ASTM or other methods
Value
D3159, ISO12086-1
Chemical Resistance Coefficient of Friction Coefficient of Thermal Expansion Linear Expansion (average values for temperature indicated) 20-300C 50-900C 140-180°C
that has a head to head, tail to tail structure. Many important physical properties of modified ETFE copolymers, however, are very different from and superior to those of available PVDF materials. (These properties do not include the remarkable piezoelectric and pyroelectric performance of PVDF.)
D1894
Remarks
Refs.
See Note 1 Excellent 0.4
See Note 2
1,2,4 5
D696 K" 1
MPa MPa MPa MPa
D695
Continuous Use Temperature
9 XlO" 5 9.3 x l 0 ~ 5 14xlO- 5
5 5 5
860 50 10.3 19.3
5 1 1
See Service Temperature
Creep Flexural creep modulus
GPa
Critical Shear Rate
s" 1
D674
5.5 after 100 h
1
200-10000
See Note 3
3
4.11
See Note 4
5
For melt fracture Deformation Under Load
%
Density Crystalline (from X-ray and IR data) After melting and recrystallization Melt at processing temp. Dielectric Constant Dielectric Strength Dissipation Factor
g/cm3
Electrical Properties Dielectric constant AtTOHz to IMHz At 1 kHz Dielectric strength
e
D621
5 6 3
2.5 2.6
3 5
D150 D149
kv/mm kv/mm v/mil Dissipation factor At 1 kHz Surface arc resistance Surface resistivity, 100% RH Volume resistivity, dry At 50% RH
1.9 1.7 1.3 See Electrical Properties See Electrical Properties See Electrical Properties
59 at 0.25 mm thickness 16 to 80 400 to > 2000
See Note 5 See Note 5
3 4 4
D150 s ohms/sq
D495 D257
0.0008 75-110 >10 14
ohm cm
D 257
>10 16
See Note 3
5 1 4 5
Property
Units
ASTM or other methods
Value
Remarks
Refs.
Flame Rating Also see Limiting Oxygen Index Flex Life
flexes
Flexural Modulus At23°C
UL94
V-O
See Note 6
3
MIT
5500-12000
See Note 7
4
D790 MPa
827-1380
1,3
Hardness Durometer Rockwell
Scale value Scale value
Heat Deflection Temperature
D2240 D785
D70 R20
3 5
D 648
At 0.455 MPa (66 psi) At 1.82 MPa (264 psi)
0
C 0 C
104 74
5 5
Heat of Combustion Heat of Fusion Impact Strength Limiting Oxygen Index
MJ/kg
13.7 See Melting See Toughness 30
5
% Oxygen 0
Low Temperature Embrittlement
C
D2863
D746
5
< -100
4
Melt Viscosity By capillary rheometer Melt flow rate Melting Melting point Heat of fusion
Pas dg/min
D3159 D3159
(0.7-10) x l O 3 3.7-16
0
DSC
225-270 46.1
C kJ/kg
(5 -12) x 105
Molecular Weight Permeability to Gases Helium Carbon dioxide Oxygen Nitrogen Gas transmission rate Water vapor
Tensile Strength Properties Modulus At23°C Yield stress At 23°C Tensile strength At 23°C Elongation at break At 23°C
Thermal Conductivity
3 3
6 2 See Note 8
10
m 3 (STP) m/s/m 2 /Pa ( x 1015) 405 113 45 14
5 5 5 5
752
5
ngcm/m 2 /s E96 0
Processing Temperature PV Limit Radiation, Effects of Refractive Index Resistivity Service Temperature Specific Gravity Specific Heat
See Note 3 See Note 3
C
325-345
Pam/s
3
< 70000 See Note 9
ng 0
C
kJ/kg/K
D542 1.403 See Electrical Properties < - 1 0 0 to 150 See Density 1.9-2.0
1 6 2 6,5,8 5
D638 MPa
830
MPa
21.5
MPa %
38-48
See Note 10
3,6
100-350
See Note 10
3,6
W/m/K
C177
5
0.238
6
Toughness Izod impact strength (notched) — 54°C 23°C
N J/m
D256 106-190 No break
See Note 10
6 6
Notes page V-48; References page V-48
Property Transitions Alpha Gamma Unit Cell a b c 7 Viscosity Water Absorption Wear Factor
Units 0
ASTM or other methods
Value
C C
145 at 100 Hz - 1 2 0 at 1 Hz
A A A Degrees
9.6 9.25 5.0 96
0
% increase in wt. Pa1 in 3 min/ft/lb/hr
Remarks
10 10 See Note 11
See Melt Viscosity D 570 <0.02
Weatherability
6000 x IO" 10 Excellent
Refs.
5
3 See Note 12
5 1
NOTES
1. See additional comments in Note 2 for the table on PTFE. 2. Extensive tables with data on the resistance to a wide variety of chemicals are given in the references. 3. The exact value depends on the particular type or grade of polymer that is being used. 4. Tested at 13.8 MPa and 500C. 5. The value decreases with increasing thickness. 6. This numerical rating for flame spread is not intended to reflect hazards presented by this or any other material under actual fire conditions.
7. The film tested is 0.25 mm thick. 8. In dibutyl adipate at 2500C. 9. PoIy(ETFE) can be crosslinked by ionizing radiation. 10. The exact value depends on the particular type or grade of resin used as well as the method used to prepare the test specimen. 11. The unit cell is believed to be either orthorhombic or orthoclinic. 12. Wear factor is decreased to 16 x 1010 by use of glass fiber filled polymer.
REFERENCES 1. DuPont Polymer Products Department, Tefzel® "Design Handbook", Bulletin E-31301-1. 2. DuPont Polymer Products Department, Tefzel® "Chemical Use Temperature Guide", Bulletin E-18663-1. 3. DuPont Polymer Products Department, "Extrusion Guide for Melt Processible Copolymers and its Supplement", Bulletins E-41337-1 and E-41338-1. 4. DuPont Polymer Products Department, Tefzel® Product Bulletin, E-07229. 5. R. L. Johnson with 24 references, in "Encyclopedia of Polymer Science and Technology", Supp. no. 1 (1976) p. 269.
6. R. L. Johnson with 24 references, in: Kirk-Othmer (Ed.), "Ency. Chem. Tech." vol. no. 11, 3rd ed., Wiley, New York, 1980, p. 35. 7. R. E. Putnam "Development of Thermoplastic Fluoropolymers", in: (Eds.) R. B. Seymour, G. S. Kirshenbaum, "High Performance Polymers: Their Origin and Development", Elsevier 1986, p. 279. 8. J. C. Reed, J. R. Perkins, Presented at 21st International Wire and Cable Symposium, Atlantic City, NJ Dec. 6 1972. 9. H. W. Starkweather, J. Polym. ScL, Polym. Phys. Ed., 11, 587 (1973). 10. C. Wu, W. Buck, B. Chu, Macromolecules, 20, 98 (1987).
E. PHYSICAL CONSTANTS OF POLY(VINYLIDENE FLUORIDE)
Poly(vinylidene fluoride), PVDF, has been used since the early 1960s because of its chemical resistance combined with very good mechanical properties. In
addition, it is now known that PVDF has very unusual and valuable piezoelectric and pyroelectric properties (see Ref. 12).
Property Abrasion Resistance Sand Tabor
Units Urn"1 mg/1000 cycles
ASTM or other methods
D968
Value
Remarks
4.0 6-12; 7.0-9.0
Refs.
9 8,9
CS-17 wheel ASTM Standards Material Molding and extrusion powders Rods, tubes, and pipe lining
D3222 F491
Chemical Resistance Coefficient of Friction
D1894
Coefficient of Thermal Expansion Linear expansion K""1 25 to 50
9
1000-1400 55-100
12 12 See Note 3
0
C
See Service Temperature See Conformation 1.75-1.78 See Electrical Properties See Electrical Properties See Electrical Properties
g/cm3 = Mg/m3
e
kV/mm
12
12
D150
D149 D150
8.4-13.5 7.46-13.2 6.0-7.6 2.9 260-950
See Note 4
s
D495
0.049,0.012-0.019 0.013-0.019 0.15-0.22 0.110 50-60
ohm cm
D257
2xlO14
UL94
VO
12 12 12 5 9 9,12 12 12 9 9 9
See Note 5
1
D790 MPa
Flexural Strength Fuel Value Hardness Durometer Rockwell
6,9
Trans-gauche-trans-gauche All trans, i.e. "planar zig-zag"
Flammability Also see Limiting Oxygen Index Flexural Modulus At23°C
See Note 2
(7.9-14.I)XlO- 5
Conformation a-form (also termed Type II) p-form (also termed Type I) y-form (also termed Type III) 8-form
Electrical Properties Dielectric constant At 60Hz AtIkHz AtIMHz At 1 GHz Dielectric strength Dissipation factor 60Hz AtIkHz AtIMHz AtIGHz Surface arc resistance Volume resistivity, dry At 50% RH
Generally excellent 0.48; 0.14-0.17
D696
Compressive Strength Properties Modulus MPa Strength MPa
Continuous Use Temperature Crystal Forms Density Dielectric Constant Dielectric Strength Dissipation Factor
See Note 1
Scale value Scale value
1200-1800
9
D790
59-75 See Heat of Combustion
D2240 D785
70-80
See Note 6
9
9
Notes page V-51; References page V-52
Property Heat Capacity 100 K 150K 230K 250K Heat Deflection Temperature At 0.455MPa At 66psi At 1.82MPa At 264 psi Heat of Combustion
Units
ASTM or other methods
Value
J/kg/K
13
D648
0
C 0 C 0 C 0 C
112-140,150 112-140, 150 80-90, 100 80-90, 100
MJ/kg Btu/lb
14.9 6400 See Melting See Toughness
% oxygen
D2863
44
Melt Viscosity Melt flow rate
dg/min
D1238
5-180 at 265°C
Melting Melting point
0
D3418
154-184
Piezoelectric Coefficient
pC/N
Solution Viscosity Intrinsic viscosity
9,12 9,12
7 7 See Note 7 9,7 See Note 8
C
Polymorphic Phases See also Conformation
Refractive Index Resistivity Service Temperature
Refs.
443.5 618.5 891.8 785.6
Heat of Fusion Impact Strength Infrared Spectra Limiting Oxygen Index
Processing Temperature Pyroelectric Coefficient Radiation, Effects of
Remarks
0
C uC/K/m 2 rc25
0
D542
C
dl/g
5
^(31) = 21-28 d(32) = 2.3 d(33) = - 3 2
12
Four documented, others suspected
12
200-300 27-40 Exceptionally resistant to degradation 1.42 See Electrical Properties 150
12 5,12
0.9-1.6 in DMF at 125°C 3.03 x 1 0 ' 5 MW 0 7 0 , calc. from Ref. 1.93 x 10~ 4 MW 0 6 8 , in dimethyl acetamide
Solvent Absorption Solvents
12
See Note 9
5,12 2 2
See Note 10
12 7 5
See Notes 8 and 11
Specific Gravity
D792
Specific Heat 10K 100 K 200K 300 K 340K
kJ/kg/K
Speed of Sound Longitudinal Shear
m/s
DSC
Soluble in selected solvents; swells in acetone 1.75-1.80 1.26-1.42 0.85 28.4 50.3 80.6 93.1
1930 775
See Note 8
See Note 12
2,15
5 11
13 13
Property Tensile Strength Properties Modulus At 23°C Yield stress . At23°C. At 1000C Tensile strength At 230C At 100°C Elongation at break At23°C At 1000C Thermal Conductivity
Units
ASTM or other methods
Value
Remarks
Refs.
D638 MPa 1340-2000
See Note 6
5
MPa MPa
36-59 19-23
See Note 6 See Note 6
5 5
MPa MPa %
36-56 19-23
See Note 6 See Note 6
5
25-500 400-600
See Note 6 See Note 6
5 9
W/m/K W/m/K
C177
100-0.126 0.1-0.13
9 5 8 5
Toughness Izod impact strength (notched) 23°C Izod impact strength (unnotched)
J/m N/m
160-530 1700-3100
Transitions a P Y (Tg)
0
C C 0 C
130 at 100 kHz Oat 100 kHz - 40 - 3 0 at 100 kHz
14 14 5 14
See Melt Viscosity and Solution Viscosity 0.03-0.06 Superb
12 12
D 256
0
Dilatometry
Viscosity Water Absorption Weatherability
% increase in wt.
D570
NOTES
1. Comments on ASTM and ISO standards for fluoropolymers are in Note 2 for the table on PTFE. 2. PVDF is resistant to most inorganic and organic chemicals at room temperature. It is, however, especially sensitive to attack by amines (Ref. 3). References (6), (14), and (15) have many pages of tables with information on the specific effect of different chemicals. 3. Many of the useful properties of PVDF stem from its existence in various conformations. The topic is not amenable for detailed presentation in tabular form, but it is discussed in depth in Ref. (12). 4. The value decreases with increasing thickness of the specimen being tested. 5. This numerical rating for flame spread is not intended to reflect hazards presented by this or any other material under actual fire conditions.
6. The exact value depends on the particular type or grade of resin used as well as the details used to make the test specimen. 7. Each conformation has its characteristic infrared spectra. See Ref. (9) for a general spectra and Ref. (12) for a discussion and references to the extensive literature. 8. Good solvents are dimethyl acetamide, dimethyl formamide, hexamethyl phosphoramide, and dimethyl sulfoxide. Some highly polar solvents such as ketones and ethers, are absorbed. 9. PVDF can be crosslinked by ionizing radiation resulting in an increase in high temperature modulus and very little degradation. 10. Calculated from data in Ref. (12) at page 200. 11. Reference (14) has 23 pages of Tables with information on the effect of many different chemicals. 12. Reference (11) has extensive tables for PVDF at temperatures from 10 to 340K. References page V-52
REFERENCES 8. KF Polymer® Polyvinylidene Fluoride, Product Bulletin from Kureha Chemical Co., Ltd. 9. Kynar® Poly (vinylidene fluoride), Product Bulletin from Pennwalt Corporation. 10. Kynar® Piezo Film, Technical Manual, 10-M-l 1-83-M, Pennwalt Corporation. 11. W K . Lee, C. L. Choy, J. Polym. ScL, Polym. Phys. Ed., 13, 619 (1975). 12. A. J. Lovinger, Poly (vinylidene fluoride) (with 368 references), Chapter 5, in: Bassett, D. C. (Ed.), "Developments in Crystalline Polymers-1"; Applied Science Publishers, London, 1982. 13. J. E. Mark (Ed)., "Physical Properties of Polymers Handbook", AIP Press, Woodbury, NY, 1996. 14. Solef® Solvay PVDF, Product Bulletin from Solvay & Cie. 15. Tables of Chemical Resistance of Solef® PVDF, Bulletin from Solvay & Cie.
1. Machine Design, April 19 (1981) p. 128. 2. W. S. Barnhart, and N. T. Hall, Poly(vinylidene fluoride) with 18 references, in: Kirk-Othmer (Ed.) "Encyclopedia of Chemical Technology", Vol. 9, 2nd ed., Wiley, New York, 1966, p. 840. 3. M. I. Bro, J. Appl. Polym. ScL, 1, 319 (1959). 4. J. E. Dohany, A. A. Dukert, S. S. Preston III, Vinylidene Fluoride Polymers (with 109 references), in: "Encyclopedia of Polymer Science and Technology", 14, (1965) p. 600. 5. J. E. Dohany, and L. E. Robb, Poly (vinylidene fluoride) (with 147 references), in: Kirk-Othmer (Ed.) "Encyclopedia of Chemical Technology", vol. no. 11, 3rd ed., Wiley, New York, 1980, p. 64. 6. Foraflon® Polyvinylidene Fluoride, Product Bulletin from PCUK (with 68 references classified as to properties covered), Produits Chimiques Ugine Kuhlmann, now Atochem, Inc. 7. R. L. Johnson, in: "Encyclopedia of Polymer Science and Technology", Supp. No. 1 (1976) p. 269.
F. PHYSICAL CONSTANTS OF AMORPHOUS FLUOROPOLYMERS Two major families of amorphous fluoropolymers have been developed. Both rely on in-chain rings to reduce crystallinity in the homopolymer and in copolymers with aolefins such as tetrafluoroethylene and chlorotrifluoroethylene. One incorporates 2,2-bis-trifluoromethyl-4,5-difluoro1,3-dioxole (PDD) in copolymers with tetrafluoroethylene or chlorotrifluoroethylene (TEFLON® AF) and the other is based on monomers such as 5-oxaperfluoro-l,6-heptadiene, which when polymerized, produce the structure below (CYTOP®). Amorphous fluoropolymers are soluble in a
variety of fluorinated solvents and can be cast into thin films as well as conventionally melt processed. Optical properties are a significant market utility. Cost is a major consideration, however, compared to crystalline fluoropolymers. CYTOP®
TEFLON® AF
TEFLON ® AF
Property Melt viscosity 25O0C 3500C Chemical Properties Water absorptivity Chemical resistance Solubility Contact angle, water Critical surface energy Critical surface tension Yc
Units Pas
ASTM or other methods
Value 1600 grade
Remarks
CYTOP ® Refs.
D3835
10 2650 540
%
D570
<0.01
<0.01 See Note 1 See Note 2
Deg dynes/cm
104 15.6-15.7
105 15.6-15.7 11.9
4 4 11 3,10 10 3
<0.01
5
110
4
2.03
2
19 2.1-2.2
2 2
mN/M
12.1
mN/M
13.9
13.8
Density
g/cm 3
D792
1.78
1.67
1
kv/(0.1mm) kv/mm
D149
2.1
1.9
10
1.93 1.934 1.93 1.927
1.89 1.904 1.897 1.89
4,9 1 1 1
Dielectric constant IMHz IGHz 13.6GHz
Refs.
2400 grade
YGGF
Electrical Properties Dielectric strength
Value
D150
TEFLON® AF
Property Dissipation factor IMHz IGHz 13.6GHz Surface arc resistivity Volume resistivity Flammability, limiting oxygen index Fractional free volume Hardness Rockwell Durometer 23°C 1500C 2200C Optical Properties Refractive index dn/dt Below Tg Above Tg Weatherability Optical transmission Stress optical coefficient Infrared spectra Abbe number Permeability coefficients Oxygen Nitrogen Carbon dioxide Water vapor Helium Hydrogen Methane Ethane Ethylene
Units
D150
s ohm cm %C>2
Value 1600 grade (8-20) x 10 ~5 0.00012 0.00018 0.0002
Remarks
Refs.
Value
Refs.
2400 grade (8-30) x 10 ~5 0.00012 0.00024 0.00035
4 1 1 1
D495 D257
D785 D1706
95
95 0.327
4 8
103
97.5
10 10
77 70
75
7 x 10 ~4
180 >10 1 7
2 2
1.34
2
65
ng5 D542 °C~l ( x l O - 6 )
% B
D1003
1.31
1.29
- 77 - 329 Excellent >95 4.5
- 78 - 378 Excellent >95
92
113
34000 130000
99000 49000 280000 410000 270000 220000 340000 180000 350000
cB
117000
Tensile Properties Tensile strength, at break 230C 150°C 2200C Elongation, at break 230C 1500C 2200C
MPa
4 1
Excellent See See See See See
Note Note Note Note Note
3 4 5 6 7
D638 27 8
4,6 4 7 4 4,8
90 34000
4 4
10
35
2
1200 70 2000
2 2 2
108
2
>400
2
26 4
%
D638
10 17 89
8 8
Tensile Modulus Compressive strength Compressive modulus Tensile strength at yield Flexural modulus 230C 200°C 22O0C Thermal Properties Transition temperatures Tg y P 5 Thermal stability
ASTM or other methods
CYTOP ®
MPa MPa MPa psi MPa
D638
1550
1540
4
3900
3600
16 10
1800 1000
1600
D790
700
0
C
. AtIO 2 Hz 0
C
160 88 -203
240
360
See Note 8
1 9 9 4
Notes page V-54; References page V-54
TEFLON® AF
Property Upper use temperature Thermal expansion Linear Volume Weight loss in air after 1 hour at temp. 2600C 3600C 38O0C 400°C 4200C Thermal conductivity Deflection temperature 66psi 264 psi Specific volume Below T 8 Above Tg Radiation effects Charge storage effects
Units 0
C
0
C-1CxIO-6) C ^ 1 C x 10 ~6)
0
% % % % % W/m/K
ASTM or other methods
Value 1600 grade
Remarks
CYTOP ® Refs.
Value
Refs.
2400 grade 285
74 260
81 301
4 10
None 0.29 0.53 1.94 8.83 295 K D648
0.116 156 154
1 10 200 174 1
cm 3 /g cm Vg
0.548 + (1.22 x 10~4)T 0.570 + (1.37 x 10~A)T 0.476 + C5.64 x 10 ~4)T 0.428 + (7.75 x 10 ~4)T See Note 9 See Note 10
5
NOTES 1. See Refs. (2,3) for data on chemical resistance and physical property performance in various solvents. 2. See Ref. (15) for types of solvents and degree of solubility of amorphous fluoropolymers. 3. See Ref. (8) for optical transparency data. 4. Brewster = 10~13cm2/dyn. 5. See Ref. (10) for infrared spectral interpretation. 6. Abbe Number = (refractive index at sodium D line minus l)/(refractive index at hydrogen F line minus refractive index at hydrogen C line).
7. centiBarrier= 10~8 x (cm3(STP) cm/s/cm Hg/cm2. 8. r g of 2,2-bis(trifluoromethyl)-4,5-difluoro-l,3-dioxole homopolymer is 3300C. Glass transition temperature is a strong function of comonomer content. 9. See Ref. (5) for a discussion of radiation effects on optical and physical properties. 10. See Ref. (12) for charge storage data of amorphous fluoropolymers.
REFERENCES 1. W. H. Buck, R R. Resnick, Teflon Af Technical Information Bulletin H-52454-1, DuPont; Wilmington, DE, 1993. 2. CYTOP Technical Bulletin, Asahi Glass: Yokohama, Japan, 1988. 3. M. H. Hung, P. R. Resnick, B.E. Smart, W. H. Buck, in: (ed); J. C. Salamone, "Polymeric Material Encyclopedia", CRC Press, NY, 1996. 4. I. Pinnau, L. G. Toy, J. Membr. ScL, 109, No. 1, 125 (1996). 5. M. S. Jahan, D. R. Ermer, D. W. Cooke, Rad. Phys. Chem., 41 (1-2), 77 (1993). 6. H. W. Starkweather, Jr. P. Avakian, R. R. Matheson, Jr. J. J. Fontanella, M. C. Wintersgill, Macromolecules, 24 (13), 3853 (1991). 7. C. J. Drummond, G. Georgaklis, D. Y C. Chan, Langmuir, 12 (11), 2617(1996). 8. J. H. Lowry, J. S. Mendlowitz, N. S. Subramanion, Opt. Eng., 1992, 31 (9), p. 1962.
9. S. R Andersson, O. Andersson, G. Backstrom, Int. J. Thermophysics, 18 (1), 209 (1997). 10. T. C. Nason, T.-M. Lu, Thin Solid Films, 239 (1), 27 (1994). 11. P. Gunther, H. Ding, R. Gerhard-Multhaupt, Proceedings of the 1993 IEEE Conference on Electrical Insulation and Dielectric Phenomena, 197-202 (1993). 12. H. Ding, Proceedings of the 8th International Symposium on Electrets (ISE 8), 89-94 (1994). 13. A. N. Hammoud, E. D. Baumann, E. Overton, I. T. Myers, J. L. Suthar, W. Khachen, J. R. Laghari, IEEE Conference on Electrical Insulation and Dielectric Phenomena, 549-554 (1992). 14. Teflon AF Amorphous Fluoropolymer Product Information product brochure 2041038, Dupont Company, 10/92. 15. Teflon AF Amorphous Fluoropolymer Product Information product brochure 231577B, Dupont Company, 10/92. 16. CAS Subscription Database PLASPEC, accession nos. 400-11002 and 400-11003, (accessed Apr. 1977).
G. PHYSICAL CONSTANTS OF POLY(CHLOROTRIFLUOROETHYLENE) that materials with molecular weight suitable for plastics applications became available.
Poly(chlorotrifluoroethylene) (PCTFE) was the first of the fluoropolymers to be made (Ref. 3). It was not until the work of W. T. Miller and his colleagues during the research for the Manhattan (atom bomb) project (Ref. 8), however,
Property
Units
ASTM and ISO Standards Material Molding and extrusion powders Film and sheeting
ASTM or other methods
Value
D1430,12086 ^ 1 D3595
Chemical Resistance
Continuous Use Temperature Creep Deformation Under Load Density
Electrical Properties Dielectric constant At 60Hz, - 4 0 0 C At 60Hz, 25°C At 60Hz, 170°C At 100 kHz At 100 MHz Dielectric strength Dissipation factor 100 Hz At 1 kHz Surface arc resistance Surface resistivity, 100% RH [megohms], Volume resistivity, dry At 50% RH Flammability Also see Limiting Oxygen Index Flexural Modulus At 23 0 C At 23 0 C At 1000C
Refs.
See Note 1
See Note 2
Coefficient of Thermal Expansion Linear expansion K" 1 (average values for temperature indicated) - 8 0 to 2O0C 20-50 0 C Compressive Strength Properties Modulus Strength Stress at 1% deformation
Remarks
D696 4.5 x l O - 5 7 x 10" 5
4
MPa MPa MPa
1350 380 13.8
6 6
0
See Service Temperature Very low Creep 6.86
10 8
2.10 Amorphous 2.12 Crystalline 2.15
10 10 16
D695
C
% Def. g/cm3
8
kV/mm
D621 D792
See Note 3
D150
D149 D150
s ohms/sq
D 495 D 257
ohmcm
D 257
2.2 2.6 3.2 2.9 2.5 15-200 0.02-0.06 0.025-0.027 360 10 15
See Note 4 See Note 8 See Note 8
1.2 x l O 1 8 UL94
VEO
4 4 4 4 4 4 7 7 6 6
6 See Note 5
6
D790 MPa psi MPa
1250 180000 14420
6
Notes page V-57; References page V-58
Property Flexural Strength
Hardness Durometer Rockwell Heat Capacity 80K 200 300 320 Heat Deflection Temperature At 0.455 MPa (66 psi) At 1.82MPa (264 psi)
Units
Refs.
73.8 10700
1
Scale value Scale value
D2240 D785
D 75-80 S 85
6 1
J/kg/K
DSC
900 278.7 625.7 859.5 906.7
6 8 8 8 8
130 70
6 6
D648 0
C
Melt Viscosity By capillary rheometer
Pas
0
C kJ/kg cal/g
D2863
See Melting See Toughness 0.9-1.7 100
1-10 at 23O0C
DTA DSC
Molecular Weight See also Zero Strength Time
210-215 1.2 3.6-8.4
50000-100000 150000-190000 m 3 (STP) m/s/m2/Pa x 1015
See Note 11
4 6
See Note 6
4
See Note 7
6 6 4
See Note 8
5 7
See Note 9
6 6
21.7 1.4 0.4 0.05 9.8 0
Processing Temperature Radiation, Effects of Refractive Index Resistivity Service Temperature
Remarks
D790
ml/g % Oxygen
Permeability to Gases Helium Carbon dioxide Oxygen Nitrogen Hydrogen
Value
MPa psi
Heat of Fusion Impact Strength Intrinsic Viscosity Limiting Oxygen Index
Melting Melting point Latent heat of fusion
ASTM or other methods
C
r)g
280-305
D542
Little effect 1.435
10 See Note 10
6 6
See Electrical Properties 0
C
Solution Viscosity
- 200 to 200
6,10
See Intrinsic Viscosity
Solvent Absorption
Generally low
See Note 2
Solvents Specific Gravity
None at room temperature See Density
See Note 11
4
See Note 7
4 4 4
Specific Heat 00C 21 TC 2400C
kJ/kg/K kJ/kg/K kJ/kg/K
0.84 1.7-4.6 4.2
6,7,10
Property Tensile Strength Properties Modulus At25°C Tensile strength At 230C At 125°C Elongation at break At 23°C At 125°C
Units
ASTM or other methods
MPa
14000
MPa MPa
40 4
% %
150 400
W/m/K
C177
Thermal Degradation
Transitions a P Y Transmittance Properties Luminous transmittance Haze
Refs.
Degrades at temperatures above 260°C
J/m
D256
6
3.09 XlO" 4 3.23xlO- 4
4 4 See Note 12
4
267
6
0
C
% %
D1003 D1003
150 at IHz 90 at IHz - 3 7 at IHz
See Note 13 See Note 13 See Note 13
1 1 1
>90 <4
See Note 14
6
Viscosity Water Absorption Weatherability Zero Strength Time (ZST)
Remarks
D 638
Thermal Conductivity At3.5°C At 60.80C
Toughness Izod impact strength, notched 24°C
Value
See Melt Viscosity and Solution Viscosity % Increase in wt.
D570
s
D1430
0.00 Excellent 200-750
2 See Note 6 and Note 8
6,10
NOTES
1. Comments on ASTM and ISO standards for fluoropolymers are in Note 2 for the table on PTFE. 2. PCTFE is resistant to most inorganic and organic chemicals at room temperature and to most inorganic chemicals such as strong oxidizing agents over a wide range of temperature. It is especially useful in liquid oxygen service. References (4), (6), and (10) have many pages of tables with information on the specific effect of different chemicals. 3. The value is the stress at 0.3% deformation after 24 h. 4. The value decreases with increasing thickness of the test specimen. 5. This numerical rating for flame spread is not intended to reflect hazards presented by this or any other material under actual fire conditions. 6. The exact value depends on the particular type or grade of resin used.
7. The value increases with increasing crystallinity. 8. ZST is a measure of relative molecular weight of PCTFE. 9. PCTFE is noteworthy for its very low permeability. 10. PCTFE generally maintains properties when exposed up to about 18 Mrad of ionizing radiation. Further improvement in resistance can be obtained by incorporating small concentrations of vinylidene fluoride during polymerization. 11. Soluble at 1000C in 2,5-dichlorobenzotrifluoride. Another solvent is 1,2,3,4-tetrafluorohexachlorobutane. 12. The degradation involves random scission rather than "unzippering". 13. Specimens were 80% crystalline. 14. For amorphous polymers.
References page V-58
REFERENCES 1. A. J. Bur in: (Ed) L. A. Wall, "Fluoropolymers", Wiley, Interscience, New York, 1972. 2. S. Chandrasekaran, Chlorotrifluoroethylene Homopolymer (with 91 plus 2 general references), in: "Encyclopedia of Polymer Science and Engineering", Vol. 3, Wiley, New York, 1987, p. 463. 3. L G. Farbenindustrie, Brit. Pat. 465, 520, May 3 (1987). 4. F. J. Honn (with 32 references), in: Kirk-Othmer (Ed.) "Encyclopedia of Chemical Technology", 1st ed., Wiley, New York, p. 691. 5. H. S. Haufman, M. S. Muthana, J. Polym. Sci., 6, 252 (1951).
6. Kel-F®, Engineering Manual, 3M Company. 7. Kel-F®, Technical Information Manual, 3M Company. 8. J. E. Mark (Ed)., "Physical Properties of Polymers Handbook", AIP Press, Woodbury, NY, 1996. 9. W. T. Miller, US Patent 2, 564, 024, Aug. 14, 1951. 10. P. C. U. K. Bulletin on Voltalef® [PCTFE] Molding Powders. 11. A. C. West (with 57 references), in: Kirk-Othmer (Ed.) "Encyclopedia of Chemical Technology", vol. no. 11, 3rd ed., Wiley, New York, 1980, p. 49.
P h y s i c a l
C o n s t a n t s
o f
P o l y ( a c r y l o n i t r i l e ) *
Siegfried Korte Bayer AG, Leverkusen, FR Germany
A. Tables of Physical Constants Table 1. Crystallinity/Crystallization Behavior Table 2. Electric and Electronic Properties Table 3. Fiber Properties Table 4. Further Properties of Acrylic Fibers Table 5. Optical Properties A.
V-59 V-59 V-60 V-61 V-61 V-61
Table 6. Polymerization: Kinetic and Thermodynamic Data Table 7. Solubility/Solution Properties Table 8. Special Solid State Properties Table 9. Thermal and Thermodynamic Data B. References
V-62 V-62 V-63 V-64 V-64
Remarks
Refs.
TABLES OF PHYSICAL CONSTANTS
TABLE 1. CRYSTALLINITY/CRYSTALLIZATION BEHAVIOR Property
Value
Crystallographic data Unit cell dimensions*
See table See also corresponding chapter of this Handbook
With molecular modelling calculations of PAN References are made to unit cell parameter, crystal system, density, melting point, heat of fusion
1
Axis Tacticity
a (A)
b (A)
c (A)
Syndio Syndio Syndio Syndio Syndio Syndio Syndio Iso
5.99 21.18 10.6 10.2 10.55 21.0 10.7 4.74
5.99 11.60 11.60 6.10 5.8 11.9 12.1 4.74
5.1 5.04 5.10 5.08 5.04 5.1 2.55
Crystallinity (%)
See table
Crystal size L100 (A)
See table Molecular weight Mw(g/mol) 6 x 104 12 x 106
System
Refs.
Hexagonal Orthorhombic Orthorhombic Orthorhombic Orthorhombic Orthorhombic Orthorhombic Tetragonal
2 3 4 5 6 7 8 9
Samples: gel spun PAN-fibers. The role of macromolecular entanglements is discussed 10 Draw ratio (fiber)
Crystallinity (%)
2.0-7.0 2.0-6.0
18.5-32.0 27.5-39.5
See Ref.
*Based on a similar table in the third edition, by W. Fester, Hoechst AG, FR Germany.
Crystal size L 100 (A) 43.5-66.0 45.5-78.0
Degree of PAN-crystallinity as a function of crystallite thickness and polymer tacticity
11
Property
Value
Crystallization temperature Tc b ( 0 C)
95-100 153.6 1.15-1.18 1.17-1.19 See Ref.
Density (g/cm 3 ) Orientation factor
Remarks Determined in propylene carbonate Crystallization from PAN/H2O - melt under pressure Sample: flakes and films Sample: fiber Sample: stretched films X-ray diffraction studies Chain-orientation factors were measured by IR-dichroism.
Refs. 12,13 14 12,16,17 18
15
T h e reported unit cell dimensions, especially the c-dimension along the chain axis, can only be regarded as estimated because of the diffuse meridian and polar reflections in the X-ray diffraction studies. *The dissolution and crystallization temperatures given here are obtained from a free radical poly (aery lonitrile). They are sensitive to chain irregularities in the polymer. Samples of poly(acrylonitrile) obtained from different sources show marked differences in the dissolution and crystallization temperatures, although they have similar IRspectra, X-ray diffraction patterns and densities.
TABLE 2.
ELECTRIC AND ELECTRONIC PROPERTIES
Property
Value
Dielectric Constant e eRT £He e (T > 373 K)
4.2-6.5 (60-10 6 Hz) 5.68 ± 0.84 (293 K) 3.29 ± 0 . 1 7 (3.8K) See Ref.
Remarks
Sample: film Sample: film Temperature dependence: Arrhenius type behavior Sample: discs from powder Variation of e with temperature at various frequencies
Refs.
19,20 21 22,23
Dissipation factor tan 6 = — £
0.033-0.113 (60-10 6 Hz) See Ref.
tan£ (T > 373 K)
Piezoelectric constants Driver constant d3i (CfS) Generator constant g3X (V m/N) McGinnies parameter \ Conductivity (S/cm)
Radiation induced conductivity Dipole moments in solution Magnetic susceptibility (e m n/g) Photoelectric properties Photocurrent (A/cm 2 ) Electronic properties Ionization potential (eV) Electron affinity (eV) Surface work function (eV)
See Ref.
1.5 x 10 ~ 12 30.8 x 10" 3 0.963 4.8 x 10 ~14 (293K) 8.4 x 10 ~12 (373K) See Ref. See corresponding chapter of this Handbook See Ref. See Ref.
8.2 3.9 5.8
Sample: film (e", £f loss and storage dielectric constants) Comparison of the mechanical and dielectric values of tan 6 as function of temperature (10 2 Hz) Sample: discs from powder Variation of tan 8 with temperature at various frequencies
19,20 24 22
17,25 Sample: film (sandwich) Data from the current-voltage characteristics at various temperatures Sample: film (40 um) sandwich
26,31 27
Sample: PAN-foam Sample: thin film (plasma-polymerized)
28 29
Sample: thin film (plasma-polymerized)
30
TABLE 3. FIBER PROPERTIES Conventional acrylic fibers (>85% AN)fl (Refs. 18,32-36)
Property Fiber fineness (dtex) Density (g/cm3) Tenacity [21°C/65% RH] (cN/dtex) Tenacity [wet/dry ratio] (%) Elongation e [21°C/65% RH] (%) Elongation [wet/dry ratio] (%) Initial modulus [(Elongation e -> O)] (cN/dtex) Modulus in hot water [900C] (cN/dtex) Relative knot tenacity
(%)
0.6-19.0 1.14-1.19 1.8-4.5 75-95 30-60 100-120 30-100 1.0-5.5 (Ref. 37) 70-90
Relative loop tenacity
(%)
30-80
PAN-fiber Dralon T (100% AN) (Ref. 35)
High strength acrylic fibers* (Refs. 38,39)
3.3-17.0 1.17-1.19 3.5-6.0 80-100 25-40 « 100 95-160
Acrylic fibers from isotactic PANC (Ref. 40)
1.0-4.0 10-20
8.0-20.0
7-10 140-270 15.0-21.0
«70
4.5-6.5 (cN/dtex)
«60
a
The properties of acrylicfibersmanufactured by conventional processes of wet or dry spinning are dependent on spinning conditions and the monomer content in the polymer itself. Some trade names of acrylic fibers: Acrilan, Cashmilon, Courtelle, Dolan, Dralon, Euracryl, Leacryl. *Polyacrylonitrilefiberswith high tensile strength are prepared under special conditions: Use of polyacrylonitriles with high molecular weight (Mw > 5.0 x 105 g/mol), wet or dryjet/wet spinning and forming a fiber with a gel structure, afterwards stretching to high degrees (draw ratios 15-30). c Fibers are made from polyacrylonitriles with highly isotactic content (mm > 0.40). They are prepared by anionic polymerization with a special catalyst. TABLE 4.
FURTHER PROPERTIES OF ACRYLIC FIBERS
Property
Valuea
Elastic recovery [(IsxIe) x 100] (%) e = 2.0% e = 5.0%
90-95 50-90
Torsion modulus (cN/dtex)
10-17
Fiber shrinkage [in water, 95°C] (%) Drawn fiber Thermoset fiber Water absorption [(21°C/65% RH)] (%) Water retention (%) Glass transition temperature (0C) Dry Wet Melting/decomposition temperature (0C) Heat resistance in air (0C) Fire limiting oxygen index (LOI) (0C) a
Remarks Effects of acids and alkalis Good to excellent resistance to mineral acids, fair to good resistance to weak alkali, and moderate resistance to strong cold solutions of alkali
14-22 «1.0 1.0-1.5 4.0-12.0* 85-95 50-60 250-320 140 18
36,42
Effects of bleaches and solvents Good resistance to strong bleaches and common solvents; Unaffected by dry cleaning solvents; Can be bleached with sodium chlorite Resistance to mildew, aging, sunlight, abrasion Not attacked by mildew; Good resistance to aging, sunlight and abrasion
b
Refs. 18,21-36.
TABLE 5.
Refs.
41
Ref. 41.
OPTICAL PROPERTIES
Property Birefringence0 A n = n ,I - n J.
Refractive index nf «H /ii. Refractive index increments Polarizability P\\ P ji Optical anisotropy in solution
Value - 0.005 -0.0017 (skin) - 0.0047 (core) 1.158 1.50-1.53 1.51-1.53 See also corresponding chapter of this Handbook See Ref. See also corresponding chapter of this Handbook
Remarks
Refs.
Sample: PAN-fiber Sample: PAN-fiber (kidney-shaped)
32 44
45 19,32,44
Sample: PAN-fiber
Measured and calculated for different solvents (A = 546 nm)
0.0735 0.074 See corresponding chapter of this Handbook
46
44
a
n _L and n \\ are refractive indices measured with incident light having the vibration vector perpendicular and parallel to the fiber axis, respectively.
References page V/64
TABLE 6. POLYMERIZATION: KINETIC AND THERMODYNAMIC DATA Property
Value
Heat of polymerization (KJ/mol) Rate constants of free radical polymerization (propagation, termination and transfer constants) Heats and entropies of polymerization Activation energies of polymerization Activation enthalpies and entropies of stereo-control in free radical polymerization Stereoregularitya
Remarks
Ref.
- 72.4 ± 2.2 See corresponding chapter of this Handbook
43
See corresponding chapter of this Handbook See corresponding chapter of this Handbook See corresponding chapter of this Handbook See table Triad tacticity (%) +
Polymerization
MDMF Wl/g)
Radical Anionic Anionic Anionic Urea clathrate UV-irradiation 7-irradiation (post) 7-irradiation (in source)
^V(DMSO) (g/mol)
Iso
Hetero
Syndio
Refs.
5.3 x 104 0.2 x 10 4 -5.1 x 106
25-29 30-31 26.7 47-72
47-51 43-46 48.8 21-36
22-27 23-27 24,524 10-20
47 47,48 40 49,50,51
56-71 69-87 48-65
22-32 10-23 25-36
7-12 3-8 9-16
1.97-6.87 2.17-2.26
0.22-1.56 0.79-3.05 1.81-4.96
52 48 53
t Tacticity of PAN was determined by 1H-NMR, 2H-NMR and 13C-NMR, computing the spectra, and by decoupling techniques. Spectral dataa Nuclear magnetic resonance spectrum 1 H-NM^ 2 H-NMR 13 C-NMR Solid-state NMR
See Refs. See Refs. See Refs.
Infrared spectrum
See Refs.
a
Configuration of PAN Stereoregularity of PAN Chain conformation and phase structure of PAN
54-58 48,53,59-61 62-64 65-72
Stereoregularity and spectral data were properly provided with separate generic terms..
TABLE 7. SOLUBILITY/SOLUTION PROPERTIES Property
Remarks
Refs.
Dimethylformamide, dimethyl sulfoxide, dimethylacetamide, ethylene carbonate, propylene carbonate, malononitrile, succinonitrile, adiponitrile, y-butyrolactone, cone, sulfuric and nitric acid, cone, salt solutions: LiBr, NaCNS, ZnCl2;
See also corresponding chapter of this Handbook Solvents and Nonsolvents
73,74
Estimated values from empirical formulae of Hildebrand/Scott and Askadskii
75
Dissolution of highly isotactic PAN
31.5 (exp.); ~ 26.0 (estim.) See also corresponding chapter of this Handbook See Ref.
Solution temperature as function of isotacticity and molecular weight
76
Intrinsic viscosity (77) Solvent dependence
See Ref.
Data and factors which convert [77]values from one solvent into another
Solvents
Solubility Hildebrand parameter 82 [J/cm3] 1Z2
Value
77,78 79
Property
Value
Temperature dependence
Remarks
Ref.
See table
Solvent
T(0C)
Huggins' coefficients
25 35
34 33
AW-Dimethylformamide Ar,N-Dimethylacetamide Dimethyl sulfoxide 60% HNO 3 7-Butyrolactone
0.14-0.19 0.27 0.08 0.05 0.14 0.13-0.17 0.07
Hydroxyacetonitrile acetonitrile Viscosity-molecular weight relationship See corresponding Dilute solution properties Unperturbed dimensions of See corresponding linear chain molecules Partial specific volume See corresponding Huggins and Schulz-Blaschke coefficients Sedimentation and diffusion coefficients See corresponding Parameters of isotactic PAN See Ref.
Parameters of ultrahigh molecular weight PAN
Viscosity and related parameters
chapter in this Handbook
Mark-Houwink-Sakurada equation
chapter in this Handbook chapter in this Handbook See corresponding chapter in this Handbook chapter in this Handbook Effects of stereoregularity on Mark-Houwink-Sakurada equation for different solvents, further on the radius of gyration (S 2 ), the second virial coefficient A2 and the conformation parameter Dependence of molecular weight on radius of gyration (S2), second virial coefficient A2 and intrinsic viscosity [77] 77-values, activation parameters of viscous flow, voluminosity and shape factor at different temperatures (Solvent: DMF) Solvent: DMF A is defined by Kratky-Porod for random-coiled polymers In propylene carbonate
See Ref.
See Ref.
Flexibility parameter (A) (Theta conditions)
7.20-7.68
Dissolution temperature0 (0C)
125-130
- ( d In [tj]/dT)
80
81
82
83 12,13
a
The dissolution and crystallization temperatures given here are obtained from a free radical poly(acrylonitrile). They are sensitive to chain irregularities in the polymer. Samples of poly(acrylonitrile) obtained from different sources show marked differences in the dissolution and crystallization temperatures, although they have similar IRspectra, X-ray diffraction patterns and densities.
TABLE 8. SPECIAL SOLID STATE PROPERTIES Property
Value
Remarks
Refs.
Gas permeability (P) \—f2 * C " \ 1 Lcm x s x barJ O 2 (film, 25°C) (film, 25°C/65% RH)
2.15 x l 0 ~ 1 5 150-195 x 10 ~15
Relationship between published and CGS permeability units
CO 2 (film, 25»C)
11.8X10-
1
H 2 O (film, 250C)
18.4 x IO" 10
Where M is the molecular weight of the penetrant gas Calculated from cohesion parameters and refractometric data
Polymer surface energy 8 (m N/m) Critical surface tension j c (dyn/cm) Vickers microhardness Hv (kg/mm2)
58.8 49.9/54.1 See corresponding chapter of this Handbook 11 - 2 4
84,85,86
g ^ " = »8.82 cm»(SIP) x « , s x cm 2 x bar M s x cm 2 x cmHg
Hy is a function of load L(L = 20-60 g) Sample: film
87 88 89
References page V/64
TABLE 9. THERMAL AND THERMODYNAMIC DATA Property
Value
Heat capacity Cp Enthalpy function HT - H0 Entropy function Sj — So
See table See also corresponding chapter of this Handbook T (K)
HT - H0 (J/mol)
13.77 30.23 40.44 49.77 58.48 68.84 80.83 86.18
244.7 1388 3167 5410 8101 11277 15012 16681
Heat capacity C P (T > Tg)
See Ref.
Specific heat of combustion Ah0 (KJ/g)
30.6 (expt.) 31.5 (calc.) 250-310 248 238-299 530.9 See Ref.
Thermal decomposition temperature* (0C) Initial decomposition temperature (0C) JSxotherm decomposition range (0C) Heat of oligomerization AH (J/g)
Cp-data based on measurements in the solid state Enthalpy and entropy functions are calculated
Cp (J/mol/K)
50 100 150 200 250 300 350 370
Thermal decomposition activation energies and products Glass transition temperature r g (0C)
Remarks
Linear (1/V) x (dV/dT)P
91 92 33
See also corresponding chapter of this Handbook 85-104
Data from DSC and thermogravimetry analysis
93
Ranges of decomposition and activation energies for the thermal degradation in air and nitrogen
94
Various data cited in the 3/e of Polymer Handbook Sample: film Method: fluorescence probe technique Existence of two transition temperatures in thermomechanical analysis Effects of solvents and thermal treatment on Tg Chain-length dependence of Tg
See Ref.
Coefficient of expansion (K" 1 ) Volume (1/V) x (dV/dT)?
S x - S0 (J/mol/K)
Calculated heat capacity data for states above the Glass transition temperature Ah0 is related to other parameters, such as oxygen index and char residue
65/105
Thermal conductivity K (mW/cm/K)
90
7.546 22.73 37.02 49.87 61.84 73.40 84.89 89.53
110
Melting point Tm (0C) Tm (H2O) (0C)
Refs.
See Ref. See also corresponding chapter of this Handbook ~320 184.7
Normally PAN decomposes before melting Melting temperature in the wet state under self generated pressure
See also corresponding chapter of this Handbook 0.022 (5 K) 0.440 (20K) 1.600(100K)
Sample: discs from powder
2.8 x 10" 4 -3.8 x 10~4 (above T8) 1.4 x 10~4-1.6 x 10~4 (below T8) 1.6 x 10~4-2.0 x 10~4 (above T6) 1.0 XlO- 4 (below Tg)
95 96 97 97 98 99,100 14
101 45,102,103 104,105
a
The thermal decomposition temperature determined by thermogravimetric analysis ranges from 2500C for a PAN-sample prepared with an ionic catalyst, to 3100C for a commercial fiber. Pyrolysis of poly(acrylonitrile) carried out in the absence of oxygen at 500-8000C yields HCN and low molecular weight nitriles such as monomer, dimer and methacrylonitrile leaving a residue with a condensed ring structure.
B.
REFERENCES
1. R. J. Hobson, A. H. Windle, Polymer, 34, 3582 (1993). 2. G. Natta, G. Mazzanti, P. Corradini, Atti. Accad. Nazi. Lince., CL ScL Fis., Mat. Nat. Rend., 25, 3 (1958). 3. J. J. Klement, P. H. Geil, J. Polym. Sci. A-2, 6, 1381 (1968).
4. G. Hinrichsen, H. Orth, Kolloid Z. Z. Polym., 247, 844 (1971). 5. R. Stefani, M. Cherreton, M. Gamier, C. Eyroud, Compt. Rend., 251, 2174 (1960).
6. V. Holland, S. Mitchell, W. Hunter, P. Lindenmeyer, J. Polym. Sci., 62, 145 (1962). 7. F. Kumamaru, T. Kajiymama, M. Takayanagi, J. Cryst. Growth, 48, 202 (1980). 8. H. Yamazaki, S. Kajita, K. Kamide, Polym. J., 19, 995 (1987). 9. B. G. Colvin, P. Storr, Eur. Polym. J., 10, 377 (1974). 10. B. Qian, W. Lin et al., J. Polym. Eng., 15, 327 (1995). 11. R. J. Hobson, A. H. Windle, Macromolecules, 26, 6905 (1993). 12. R. Chiang, J. Polym. Sci. A, 3, 2109 (1965). 13. R. Chiang, J. H. Rhodes, V. F. Holland, J. Polym. Sci. A, 3, 479 (1965). 14. H. S. Kim, J. Polym. Sci. Part B; Polym. Phys., 34, 1181 (1996). 15. Z. Bashir, A. R. Tipping, S. P. Church, Polym. Intern., 33, 9 (1994). 16. R. Chiang, J. Polym. Sci. A, 1, 2765 (1963). 17. V. Mc Ginniss, Polymer, 36, 1127 (1995). 18. Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., Vol. AlO (Fibers), VCH-Verlag, Weinheim - Germany, 1987, pp. 463-474. 19. M. Harris, "Handbook of Textile Fibers", Harris Research Laboratories 1246 Washington, DC, 1954. 20. H. Kita, K. Okamoto, J. Appl. Polym. Sci., 31, 1383 (1986). 21. R. B. Altmann, I. Renge, L. Kador, D. Haarer, J. Chem. Phys., 97, 5316 (1992). 22. A. K. Gupta, R. P. Singhal et al., J. Appl. Polym. Sci., 26, 3599 (1981); 27, 4101 (1982). 23. A. K. Gupta, R. P. Singhal et al., J. Appl. Polym. Sci., 28, 1167 (1983); 28,2745 (1983). 24. D. Porter, Polymer, 28, 1652 (1987). 25. H. Ueda, S. H. Carr; Polymer J., 16, 661 (1984). 26. M. D. Migahed, A. Tawansi, N. A. Bakr, Eur. Polym. J., 18, 975 (1982). 27. A. P. Tyutnev et al., Phys. Status Solidi, 85 (2), 591 (1984). 28. V. M. Browning et al., Cryogenics, 36, 391 (1996). 29. A. H. Bhuijan, S. V. Bhoraskar. Indian J. Phys., 62A, 960 (1988). 30. A. H. Bhuijan et al., Thin Solid Films, 161, 187 (1988). 31. H. Griinewald, H. S. Munro. Mat. Sci. Eng. A-139, 356 (1991). 32. P. A. Koch, Ed., Faserstoff-Tabellen, 1969. DK 677 494 745 32. 33. J. Luenenschloss, E. Hummel, Fasertafel Textilpraxis, 1967. 34. T. Benton Sevison (Jr.), Man-Made Fiber Chart, Textile World, New York 1964. 35. B. von Falkai, Synthesefasern, Verlag Chemie,WeinheimGermany, 1981. 36. "Handbook of Fiber Science and Technology", Vol. IV, Marcel Dekker, New York/Basel, 1985. 37. F. Schulze - Gebhardt, Bayer AG, Chemiefasern/Texilindustrie, 43, 432 (1993). 38. J. Nishihara, J. Furutani, M. Toramaru. T. Jasunaga, Mitsubishi Rayon Co. LTD, European Patent 0255109 A2 (03.02.1988).
39. R. M. A. M. Schellekens, P. J. Lemstra, Stamicarbon B. V, European Patent 0144983 A2 (19.06.1985). 40. K. Hisatani, H. Yamazaki, Asahi Kasei, European Patent 0397394 A2 (14.11.1990). 41. H. Hahne, Chemiefasern, 33, 839 (1983). 42. H. Hahne, U. Schuster, Melliand. Textilberichte, 66, June 1985. 43. K. K. J. Tong, W. C. Kenyon, J. Am. Chem. Soc, 69, 2245 (1947). 44. I. M. Fonda et al., J. Text Inst., 5, 378 (1987). 45. R. B. Beevers, J. Polym. Sci. A, 2, 5257 (1964). 46. F. Francuskiewics, G. Glockner. P. Kratochvil, Angew., Makrom. Chem., 206, 121 (1993). 47. M. Minagawa, K. Miyano, T. Morita, F. Yoshii, Macromolecules, 22, 2054 (1989). 48. M. Minagawa, H. Yamada, K. Yamaguchi F. Yoshii, Macromolecules, 25, 503 (1992). 49. Y Nakano, K. Hisatani, K. Kamide. Polym. Int., 35, 249 (1994). 50. Y. Nakano, K. Hisatani, K. Kamide. Polym. Int., 35, 207 (1994). 51. Y. Nakano, K. Hisatani; K. Kamide. Polym. Int., 36, 87 (1995). 52. M. Minagawa, K. Nouchi, M. Tozuka, R. Chujo, F. Yoshii, J. Polym. Sci, Part A: Polym. Chem., 33, 665 (1995). 53. M. Minagawa, T. Takasu, S. Shinozaki, F. Yoshii, N. Morishita, Polymer, 36, 2343 (1995). 54. R. Yamadera, M. Murano, J. Polym. Sci. A-I, 5, 1059 (1967); J. Polym. Sci., Polym. Lett., 5, 333 (1967). 55. M. Murano, R. Yamadera, J. Polym. Sci. A-I, 6, 843 (1968). 56. K. Matsuzaki, M. Okada, T. Uryu, J. Polym. Sci., Polym. Chem. Ed., 9, 1701 (1971). 57. H. Balard, Dissertation, Universitat Strasbourg, 1975. 58. M. Minagawa et al., Macromolecules, 27, 3669 (1994). 59. K. Kamide, H. Yamazaki, K. Okayima, K. Hikichi, PoIm. J., 17, 1233 (1985). 60. K. Kamide, H. Yamazaki, K. Okayima, K. Hikichi, PoIm. J., 17, 1291 (1985). 61. K. Kamide, H. Yamazaki, Y Miyazaki, PoIm. J., 18, 819 (1986). 62. L. J. Mathias, R. F. Coletti, Macromolecules, 24, 5515 (1991). 63. J. Grobelung, P. Tekely, E. Turska, M. Sokol, Polymer, 22, 1649 (1981); Polymer, 25, 1415 (1984). 64. T. Thomsen, H. G. Zachmann, S. Korte, Macromolecules, 25, 6934 (1992). 65. R. Yamadera, H. Tadokoro, S. Murakashi, J. Chem. Phys., 41, 1233 (1964). 66. C. Y. Liang, G. Pearson, R. H. Marchessault, Spectrochim. Acta, 17, 568 (1961); C. Y. Liang, "Newer Methods of Polymer Characterization, Interscience", New York, 1964, p. 47. 67. D. O. Hummel, F. Scholl, "Atlas der Kunststoff-Analyse", Carl Hanser Verlag, Munchen, Verlag Chemie GmbH, 1968. 68. N. Grassie, J. N. Hay, J. Polym. Sci., 56, 189 (1962). 69. C. A. Levine, G. H. Harris, J. Polym. Sci., 62, 100 (1962).
70. A. Bernas, R. Bensasson, I. Rossi, P. Barchewitz, J. Chem. Phys., 59, 1442 (1962). 71. D. Mathien, M. Defranceschi, G. Lecayon, J. Delhalle, Chem. Phys., 171, 133 (1993); 188, 183 (1994). 72. M. Minagawa, F. Yoshii et al., Macromolecules, 21, 2387 (1988). 73. Houben - Weyl, Methoden der Organischen Chemie Makromolekulare Stoffe, Vol. E 20/2, Georg Thieme Verlag, Stuttgart, 1987, p. 1192. 74. C. E. Schildknecht, "Vinyl and Related Polymers", Wiley, New York, 1952, p. 270. 75. A. V. Rajulu, P. M. Sab, A. A. Askadskii, Ind. J. Chem., 33B, 1105 (1994). 76. M. Minagawa, K. Miyano, T. Morita, F. Yoshii, Macromolecules, 22, 2054 (1989). 77. M. L. Miller, J. Polym. ScL, 56, 203 (1962). 78. H. Kobayashi, J. Polym. Sci. B, 1, 299 (1963). 79. H. Kobayashi, Y. Fujisaki, Chem. High PoIm., (Japan) 19, 81 (1962). 80. K. Kamide., H. Yamazaki, Y. Miyazaki, Polym. J., 18, 819 (1986). 81. M. Bercea, S. loan, B. C. Simionescu, C. I. Simionescu, Polym. Bull, 27, 571 (1992). 82. R. Joseph et al., Polym. Int., 26, 89 (1991). 83. C. Gonzales, F. Zamora, G. M. Guzman, J. Macromol. Sci. Phys. B, 26, 257 (1987). 84. M. Salame, J. Polymer Sci., Symp., 45, 1 (1973). 85. H. Takahashi, T. Sugimori, K. Aoki, H. Itoh, Mitsubishi Rayon Co. LTD, European Patent 0363960 (18.04.1990).
86. S. A. Stern, J. Polym. Sci. A-2, 6, 1933 (1968). 87. S. M. Yagnyatinskaja et al., USSR. J. Phys. Chem., 44, 1445 (1970). 88. L. M. Pritykin, J. Colloid Interf. ScL, 112, 539 (1986). 89. R Parashar et al., Polymer Testing, 11, 185 (1992). 90. U. Gaur, S. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1065 (1982). 91. H. S. Bu, W. Aycock, B. Wunderlich, Polymer, 28, 1165 (1987). 92. S. C. Ng, K. K. Chee, Polymer, 34, 3870 (1993). 93. P. Bajaj, M. Padmanaban, Eur. Polym. J., 20, 513 (1984). 94. M. W. Sabaa et al., Polym. Degrad. Stab., 23, 257 (1989). 95. J. Brandrup, E. H. Immergut, "Polymer Handbook", 3rd. ed., Wiley, New York, 1989. 96. J. Appl. Polym. Sci., 54, 827 (1994). 97. M. R. Padhye, A. V. Karandikar, Appl. Polym. Sci., 33,1675 (1987). 98. K. O'Driskoll, R. A. Sanayei, Macromolecules, 24, 4479 (1991). 99. W. R. Krigbaum, N. Tokita, J. Polym. Sci., 43, 467 (1960). 100. G. Hinrichsen, Angew. Makrom. Chem., 20, 121 (1974). 101. N. S. Batty, D. Greig et al., Polymer, 24, 258 (1983). 102. H. J. KoIb, E. F. Izard, J. Appl. Phys., 20, 564 (1949). 103. G. P. Lanzl, quoted in Ref. 1. 104. W. H. Howard, J. Appl. PoIm. Sci., 5, 303 (1961). 105. C. E. Black, quoted in Ref. 1.
P h y s i c a l
C o n s t a n t s
o
f
E. A .
P o l y ( v i n y l
c h l o r i d e ) *
Collins
Consultant, A v o n Lake, O H , USA C. A .
Daniels
The G e o n C o m p a n y , A v o n Lake, O H , LJSA D.
E.
Witenhafer
Consultant, D u b l i n , O H , USA Compressibility ( M P a 1 ) ( x 10 6 )
Birefringence See Stress Optical Coefficient. Branching
Uniaxially
Branching Content (Branches per 1000 Monomer Units (Ci)) as a Function of Polymerization Temperature -CHI CH2Cl
PVC
Elongation (%) 85 125 160
-CCl-CClH/Cl I I I CH2CH2Cl CH 2 CHCICH 2 CH 2 CI - C - C - C -
^polym 0
Stretched
(11)
y^
y±
4.88 4.25 3.57
8.0 8.45 8.75
See also Refs. 12,13, and 36.
I
( C)
C
45 55 65 80 100
3.9 4.2 4.6 4.9 5.0
<0.1 0.2 0.2 0.3 1.4
0.5 0.6 0.8 1.3 2.1
Refs.
<0.1 0.2 0.3 0.3 0.8
la la 1° \a 2b
All data from 13C-NMR. a Extrapolated to 0 subsaturation, reduced with Bu 3 Sn as per Ref. 3. ^Reduced with Bu3Sn as per Ref. 4.
Brittle to Ductile Transition Pressure (kbar) Value of 0.2kbar, measured under tensile deformation of 10% per minute at 25°C. (5) Coefficient of Thermal Expansion (K1) < r g before annealing, 6.6-7.3 x 10~5 after annealing, 6.9 x 10~5 >Tg 17.0-17.5 x 1(T5 With plasticizer.
(6) (7)
Coefficient of Friction
(14,15)
Crystallinity
(%)
From Density Measurements TpCy1n (°C)
PVC on Steel 0
Creep
(8)
Plasticizer (%)
Static
Dynamic
25.9 31 35.5 39.4
0.350 0.495 0.645 0.797
0.719 0.787 0.857 0.925
a Di-2-ethylhexyl phthalate (DOP), di-iso-decyl phthalate (DIDP), n-octyl-n-decyl phthalate (DNODP). A value of 0.45-60 for unplasticized PVC with steel has been reported (9). For further data see Ref. (10).
*The authors wish to acknowledge contributions from L. A. Utracki, A. R. Berens, G. Pezzin, J. Lyngaae-Jorgensen, J. Runt, E. Baer, and T. Hjertberg.
(16) Crystallinity (%)
90 11.3a 55-60 11.3 50 13.2 20 15.0 -15 57.3 -75 84.2 a Assumes amorphous density equals 1.385 g/cm3 and crystalline density equals 1.44g/cm3 (19). Since the crystalline density for highly crystalline (e.g., single crystal) PVC is considerably greater than 1.44g/cm3; as shown in the table on crystallographic data, the above % crystallinity values for the low temperature polymerized PVCs are greatly overestimated. As pointed out by Kostyuchenko and co-workers (20), if a crystalline density of 1.497g/cm3 or greater is used, the calculated percent crystallinity values agree better with X-ray diffraction measurements.
Crystallinity cont'd From X-Ray Diffraction Measurements Tpoiym ( 0 C)
Crystallinity* (%) (17)
rpolym
90frac. 1 frac. 3 53 frac. 1 A B 25 - 60
10.4 5.4 10.4 6.5 8.2 12.2 23.7 34.7 c
50 - 20 -40 -60
Crystallinity * (%) (18,40)
13 c 17 20.5,20 23,25 33 c
polym. in propionaldehyde polym. in n-butyraldehyde
u
Values obtained using the X-ray diffraction method of Hermans and Weidinger (21) and a double hump amorphous curve. X-ray diffraction method with Lorentz-polarization and atomic scattering factor corrections. c Using a single hump amorphous X-ray curve and the method of Hermans and Weidinger (21), Lebedev and co-workers (22) (see also Ref. 17) report several commercial PVC crystallinites in the range 20-27%. In general, their method gives higher values than that of D'Amato and Strella (17). b
From IR Measurements
Crystallinity from IR measurements deemed (by the authors) to be less accurate than NMR are in references 42, 44-46 and 56. From Calorimetric Measurements (Unfractionated Polymers) (23) Mn
r p o l y m (°C)
23,200 38,700 53,500 66,700 136,000 155,000
Crystallinity (%)
75 65 52 52 25 25
18.4 15.5 15.3 14.4 11.9 11.8
Crystallographic Data See under Unit Cell.
90 55-60 50 20 -15 -75
(24) Density (2O0C)
History Original state Quenched from 2000C in ice water Quenched from 130 to - 700C Quenched from 130 to - 700C and kept at RT for 6.5 h Annealed at 65°C for 136h Annealed at 90°C for 136h and slowly cooled Annealed at 900C for 136 h and quenched to - 200C
1.3743 1.3656 1.3716 1.3743 1.3745 1.3834 1.3817
Effect of Temperature on Density
Density (g/cm3) Function of Polymerization Temperatures
0
(16)
Mn
Density (200C)
23,750 75,000 91,250 172,250 106,300 105,300
1.391 1.391 1.392 1.393 1.416 1.431
r p o l y m (°C)
Dependence on Thermal History
Dielectric Properties Dielectric Constant (sf)
(25,38)
T ( C)
Density
20 51 82 90.6 97
1.392 1.383 1.368 1.362 1.357
(26) T( 0 C)
60Hz IkHz 10 kHz
25
40
60
80
90
100
110
120
140
3.50 3.39 3.29
3.51 3.40 3.34
3.70 3.61 3.45
4.25 4.09 3.89
6.30 5.05 4.45
10.30 7.77 5.77
11.89 10.21 8.50
12.05 11.30 9.96
11.76 11.27 10.94
Dielectric Loss Factor (s") T ( 0 C) 25 60Hz IkHz 10kHz
0.110 0.081 0.058
40 0.116 0.081 0.058
60
80
90
100
110
120
140
0.125 0.080 0.050
0.172 0.120 0.110
0.410 0.500 0.920
1.20 1.415 1.37
0.675 1.645 1.35
0.481 0.630 1.22
1.65 0.319 0.490
^poiym = 5O0C; [rj\ = 1.17; Mn= 66,700; M w = 162,000. See also Ref. 27.
Dynamic Viscosity
(122,134)
Elongation at Break (%)
(28) 1
Strain rate ( s ) Tpoiym 0 ( C)
Test temp. 0 ( C)
70 65 56 50 70 65 56 50 70 70 a
25 25 25 25 60 60 60 60 80 100
№"
0.0026
0.020
0.20
2.0
20
200
68 75 91.3 116.9 68 75.0 91.3 116.9 68 68
171.5 194.5 196.7 210.7
18.5 20.0 21.0 23.0 71.6 160 207 243
13.5 14.2 18.0 16.5 20.0 23.8 26.0 27.0 168
16.5 21.0 21.0 17.0 20.0 22.5 25.0 26.5 82 240
17.0 19.5 19.5 18.5 16.5 22.5 22.0 22.5 60 168
13.3 16.0 16.0 17.0 24.0 27.5 30.0 35.0 41 157
0
Intrinsic viscosity (ml/g) in cyclohexanone, 30 C.
Enthalpy Entropy as a function of pressure and temperature. (29) Fatigue
Effect on Molecular Weight and Polymerization Temperature
(135,136)
First Normal Stress Difference
(118,119,145)
Flory-Huggins Parameter See Polymer-Solvent Interaction Parameter. Flow Activation Energy \Ey (kJ/mol) (30,31,32,33,34) Dependence on Temperature and Molecular Weight AE7
(39)
Intrinsic viscosity [tj]a Tpoiym ( 0 C) 70 50 40 30 20 5 -15
50
75
100
78.5
82
83
80 81 84 85 86 92
84 85 87 88 91 87
85 87 89 90 93 100
125
150
83.5*
84.5*
86 88.5 89 90.5 94.5 101.5
86.5 89 90 91 95.5 102*
"In cyclohexanone, 30°C (ml/g). * Extrapolated from experimental data.
(kj/mol)
-* polym
( 0 C)
LVN*
5 5 5 5 40 40 40 70 70
0.131 0.693 0.909 1.750 0.640 0.682 1.225 0.495 0.680
10 s
1
1
1000 s
150.7 119.7 103.1 30.5 102.8 105.2 57.7 97.0 84.3
134.9 60.2 54.2 30.4 54.0 45.0 34.6 52.4 43.6
100 s
92.1 165.5 43.4 178.4 157.4 108.6 147.7 126.9
1
Effect of P o l y m e r i z a t i o n T e m p e r a t u r e on T g a n d
(numbers give Refs.).
Tm
Tm (•C) T 9 IK)
"Limiting viscosity number in cyclohexanone, 300C.
D e p e n d e n c e on Shear Rate Shear rate (s x ) 0.3 3 30
> 220 0 C 95.6 -
190-220 0 C 363.7 244.8 159.6
< 190°C 152.4 145.7 121.7
Glass Transition Temperature See also corresponding chapter in this Handbook. Effect of Pressure: dTg/dP (°C/atm) 0.013
(35-38)
Polymerization Umptroturt T I0CJ
The lines through the data points represent the best least squares fit of the collective authors' data. References page V-74
Glass Transition Temperature confd Dependence on Polymerization Temperature
Heat
of Combustion
Heat
of Fusion
(kJ/kg)
-19000.
(53)
(47)
Tg (0C) Tp 0 Iy 1n ( 0 O 90 50 0 -20 -30 -40 -50 - 60 a
M(ml/g)a
Initial 80 85 97 100 100 101 105 107
80 108 103 125
90
(kJ/mol)
11.3 12.65 2.76 3.28 (most probable value according to Ref. 56) 3.56 3.91
Final* 78 83 88 90 91 90 91 95
(41) (54) (55) (16) (57) (58)
[ri] measured at 25°C in cyclohexanone. After thermal cycling to 230 0 C. See also Ref. 48.
fc
Heat Capacity See corresponding table in this Handbook and Refs. 49-52. Effect of Thermal Cycle on CP
Heat of Dilution 300C PVC-tetrahydrofuran
(47)
(23)
PVC-cyclohexanone
2
ACp(XlO ) (J/g/°C) TpoiymCC)
[fj](ml/g)«
90 50 80 0 108 -20 103 -30 125 -40 -50 -60 90 a [rj\ measured at 250C in cyclohexanone.
Initial
Final*
28.9 27.2 24.3 15.1 10.9 10.5
29.3 27.6 25.1 22.2 20.9 20.1 18.0 6.3 16.3 * After heating to 1400C.
Heat of Polymerization (kJ/mol)- 96 to -109 (59-61)
Huggins Coefficient
(62)
Intrinsic Viscosity - Molecular Weight Relationshi See corresponding chapter in this Handbook and Refs. 63-89.
Mark-Houwink Parameters for PVC as a Function of Temperature (115) Solvent
Temp, range (0C)
a
K (ml/g)
20-60 20-60 20-50
0.803 0.861 0.851
1.847 x 10~2-4.85 x 10~5 T 9.086 x 10" 5 -1.55 x 10~5 T 1.087 x 10" 2 -1.67 x 10~5 T
Cyclohexanone Cyclopentanone THF
k-values can be calculated for any temperature T ( 0 C) within the temperature range given.
Melt Viscosity See Appendix 1 and Refs. 31-34,118, 119,144.
Gas
IogioD (cmVs)
Permeability See chapter "Permeability Coefficients, Diffusion Constants, and Solubility Coefficients of Polymers" in this Handbook, and Refs. 24,92,93-99.
H2O
-7.6
41.8
Kr
- 9.4
62.8
Diffusion Constants in PVC
W-C4Hi0 W-C5Hi2 W-C6Hi4 C6H6 CH 3 OH C 2 H 5 OH W-C3H7OH W-C4H9OH CH 3 Cl CCl 4 C 2 H 3 Cl (CH 3 ) 2 CO SF 6
Gas
log I0D (cm 2/s)
(A) GASES, AT 25°C (92) He H2 Ne N2 Ar O2 CO 2 CH 4
-5.5 -6.3 -6.6 -8.4 -8.9 - 7.9 -8.6 -8.9
ED (kJ/mol)
20.7 34.5 31.5 62.0 51.5 54.4 64.5 70.3
ED (kj/mol)
0
(B) ORGANIC VAPORS, AT 30 C, LOW ACTIVITY (90) -13.6 -13.9 -14.9 -13.7 -10.4 -12.4 -13.2 -13.9 -11.3 -17.1 -11.7 -12.8 -16.1
81.6
59.9 108.4 71.2 100.0
Poisson Ratio 0.38.
(100)
Polymer-Solvent Interaction Parameter See corresponding chapter in this Handbook and Refs. 68,101-114. Refractive Index PVC (p = 1.384 g/cm3) Wave length (nm)
(14) Refractive index
486.1 589.3 656.3
1.54806 1.54151 1.53843
Reciprocal dispersive power V^ 59.3 Critical angle (A = 589.3 nm) 56.23 Temperature coefficient of refractive index 0.00011427°C. Specific Heat Capacity See chapter "Heat Capacity" in this Handbook, and Refs. 49,50. Second Virial Coefficient See corresponding chapter in this Handbook and Refs. 43,77,84,116,117. Shear Modulus
(120-122,134)
Dynamic Test Results for Rigid PVC Formulation at Frequencies =0.06-600 (rad/s) and at Temperatures 140-220 0 C* 220 0 C
210 0 C
19O 0 C
200°C
a) (rad/s)
G' (Pa)
G" (Pa)
G' (Pa)
G" (Pa)
G' (Pa)
G" (Pa)
G' (Pa)
G" (Pa)
5.9749 E - 2 9.4700 E - 2 1.5008 E - I 2.3787 E - I 3.7700 E - I 5.9749 E - I 9.4700 E - I 1.5008 EO 2.3787 EO 3.7700 EO 5.9749 EO 9.4700 EO 1.5008 El 2.3787 El 3.7700 El 5.9749 El 9.4700 El 1.5008 E2 2.3787 E2 3.7700 E2 5.9749 E2
3.669 E3 4.775 E3 6.028 E3 7.644 E3 1.012 E4 1.272 E4 1.606 E4 1.976 E4 2.506 E4 3.109E4 3.859 E4 4.652 E4 5.650 E4 6.862 E4 8.120 E4 9.904 E4 1.177 E5 1.461 E5 1.699 E5 2.136 E5 2.673 E5
3.442 E3 4.472 E3 5.736 E3 7.047 E3 8.847 E3 1.096 E4 1.302 E4 1.684 E4 2.060 E4 2.477 E4 3.031 E4 3.645 E4 4.001 E4 4.549 E4 5.219 E4 5.885 E4 6.552 E4 7.293 E5 8.475 E4 9.848 E4 1.189 E5
1.256 E4 1.493 E4 1.813 E4 2.201 E4 2.732 E4 3.177 E4 3.859 E4 4.488 E4 5.404 E4 6.340 E4 7.374 E4 8.515 E4 9.692 E4 1.103 E5 1.261 E5 1.473 E5 1.684 E5 1.934 E5 2.249 E5 2.560 E5 3.109 E5
9.933 E3 1.096 E4 1.285 E4 1.468 E4 1.706 E4 1.999 E4 2.283 E4 2.758 E4 3.205 E4 3.645 E4 4.309 E4 4.838 E4 5.166 E4 5.638 E4 6.142 E4 6.810 E4 7.139 E4 7.947 E4 9.039 E4 1.028 E5 1.236 E5
3.205 E4 3.586 E4 4.153 E4 4.727 E4 5.594 E4 6.340 E4 7.154 E4 7.935 E4 9.033 E4 9.976 E4 1.102 E5 1.218 E5 1.369 E5 1.512 E5 1.663 E5 1.893 E5 2.136 E5 2.400 E5 2.673 E5 3.109 E5 3.696 E5
1.684 E4 1.827 E4 1.998 E4 2.245 E4 2.530 E4 2.771 E4 3.031 E4 3.448 E4 3.805 E4 4.147 E4 4.859 E4 5.204 E4 5.391 E4 5.885 E4 6.413 E4 7.108 E4 7.618 E4 8.587 E4 9.435 E4 1.073 E5 1.444 E5
6.882 E4 7.470 E4 7.971 E4 8.955 E4 1.011 E5 1.111 E4 1.238 E5 1.304 E5 1.440 E5 1.510 E5 1.625 E5 1.751 E5 1.876 E5 2.050 E5 2.173 E5 2.431 E5 2.616 E5 2.852 E5 3.136 E5 3.539 E5 4.081 E5
2.711 E4 2.782 E4 2.941 E4 3.137 E4 3.389 E4 3.598 E4 3.772 E4 4.199 E4 4.517 E4 4.817 E4 5.432 E4 5.526 E4 5.885 E4 6.013 E4 6.552 E4 7.293 E4 7.957 E4 8.369 E4 9.848 E4 1.120 E5 1.594 E5
170 0 C
178° C co (rad/s)
G' (Pa)
G" (Pa)
G' (Pa)
G" (Pa)
G' (Pa)
5.9749 E - 2 9.4700 E - 2 1.5008 E - I 2.3787 E - I 3.7700 E - I 5.9749 E - I 9.4700 E - I 1.5008 EO 2.3787 EO 3.7700 EO 5.9749 EO 9.4700 EO 1.5008 El 2.3787 El 3.7700 El 5.9749 El 9.4700 El 1.5008 E2 2.3787 E2 3.7700 E2 5.9749 E2
1.055 E5 1.150 E5 1.201 E5 1.352 E5 1.471 E5 1.570 E5 1.675 E5 1.842 E5 1.948 E5 2.025 E5 2.198 E5 2.328 E5 2.452 E5 2.662 E5 2.791 E5 3.069 E5 3.177 E5 3.464 E5 3.744 E5 4.117 E5 _
3.137 E4 3.360 E4 3.507 E4 3.645 E4 3.821 E4 4.058 E4 4.199 E4 4.615 E4 4.817 E4 5.226 E4 5.769 E4 5.844 E4 6.217 E4 6.552 E4 7.139 E4 7.613 E4 8.296 E4 8.848 E4 1.015 E5 1.144 E5
1.484 E5 1.625 E5 1.697 E5 1.834 E5 1.965 E5 2.078 E5 2.198 E5 2.295 E5 2.417 E5 2.524 E5 2.635 E5 2.711 E5 2.816 E5 3.030 E5 3.177 E5 3.434 E5 3.617 E5 3.977 E5 4.261 E5 4.586 E5
3.724 E4 3.756 E4 3.821 E4 3.904 E4 4.075 E4 4.327 E4 4.365 E4 4.817 E4 5.029 E4 5.456 E4 6.021 E4 6.506 E4 6.523 E4 6.987 E4 7.452 E4 7.947 E4 8.585 E4 9.039 E4 1.028 E5 1.199 E5
1.802 E5 1.850 E5 1.949 E5 2.124 E5 2.256 E5 2.386 E5 2.449 E5 2.524 E5 2.751 E5 2.873 E5 2.987 E5 3.073 E5 3.177 E5 3.361 E5 3.434 E5 3.776 E5 4.029 E5 4.298 E5 4.606 E5 _
_
_
140 0 C
160° C G" (Pa) 3.971 E4 4.006 E4 4.058 E4 4.128 E4 4.291 E4 4.517 E4 4.615 E4 5.051 E4 5.386 E4 5.744 E4 6.205 E4 6.703 E4 6.865 E4 7.169 E4 7.712 E4 8.293 E4 9.049 E4 9.517 E4 1.079 E5 _ _
G' (Pa)
G" (Pa)
2.613 E5 2.658 E5 2.693 E5 2.751 E5 2.873 E5 3.000 E5 3.039 E5 3.118 E5 3.242 E5 3.356 E5 3.459 E5 3.468 E5 3.601 E5 3.809 E5 3.943 E5 4.170 E5 4.488 E5 4.893 E5 5.321 E5 _
4.236 E4 4.272 E4 4.291 E4 4.349 E4 4.537 E4 4.716 E4 4.903 E4 5.283 E4 5.621 E4 5.940 E4 6.357 E4 6.829 E4 6.939 E4 7.293 E4 7.959 E4 8.587 E4 9.354 E4 9.899 E4 1.111 E5 _
"Storage, G', and Loss, G", are in Pascal. Data from L. A. Utracki, SPE Techn. Papers 31, 1024 (1985); J. Vinyl. Technol. 7 (4), 150 (1985). Mw of PVC tested is 90.700 (GPC in THF), LVN 300C in 93 ml/g cyclohexanone.
References page V-74
Specific Refractive Index Increment See corresponding chapter in this Handbook. Specific Volume
As a function of temperature and pressure. Spectral Data a. Infrared absorption bands. b. Nuclear magnetic resonance (high resolution spectra). c. Carbon-13 magnetic resonance (chemical shift assignment)
(29) (123) (124-126) (127-129)
Stress Optical Coefficient (soc) - 2 0 0 t o +50 -6.5 (132,133) The value of the SOC becomes positive at Tg, but there is some arbitrariness associated with it because above Tg the plots of birefringence change with stress and have an S shape. Tacticity (Fraction of syndiotactic dyads) Dependence on Polymerization Temperature"7 Tpoiym ( 0 C)
55 50 25 0 -30 -50 -76
Tacticity*
0.55 0.55c 0.57 0.60 0.64 0.66 0.68
Refs.
130 129 130 130 130 130 130
a
Data based on 13C NMR measurements. 6 High tacticity data may be low due to insolubility during measurement as discussed in Ref. 131. c Bernoullian order. Tensile Modulus
(MPa) = ( N / m m 2 )
T (°C)
Value
Refs.
- 196°C - 1200C -75°C 200C 30°C 400C 500C 600C 700C
7584 5171 3861 2964 3000 2930 2427 1551 276
137* 137 137 137 14* 14 14 14 14
a
Stress-Strain measurements at strain rate of 0.00250 s" 1 . ^Measured in creep (100 s, 0.2% strain).
Thermal
Conductivity
(W/m/K)
T (0C)
(138,140)
Thermal conductivity
-170 -150 -125 -100 -75 -50 -25 0 20 30 40 50 60 70 80 90 100
0.129 0.134 0.139 0.144 0.148 0.152 0.155 0.158 0.160 0.161 0.162 0.163 0.164 0.164 0.165 0.165 0.165
Thermal conductivity of system PVC/di-2-ethylhexyl phthalte (see Ref. 139). Molecular weight, sample polymerization temperature and syndiotactivity do not influence the thermal conductivity of polymers appreciably, except in the case where tacticity leads to crystallization. Thermal Diffusivity T (K) 200 220 240 260 273 280 293 300 320 340 352 360 380 400 420 440 460 480
(140)
Density (g/cm3) 1.417 1.415 1.413 1.409 1.407 1.405 1.402 1.400 1.393 1.385 1.379 1.374 1.334 1.306 -
Thermal diffusivity ( x 10 4) (cm2Is) 14.40 13.95 13.46 12.96 12.60 12.42 11.92 11.83 11.13 10.14 9.22 8.41 7.65 7.30 7.13 7.04 6.99 7.06
Unit Cell Unit cell parameters (A) Crystal system
Space group
a
b
c
Monomers per unit cell
CaIc. density (g/cm 3 )
Orthorhombic
Pacm
10.6
5.40
5.10
2
1.44
19
Orthorhombic
Pacm
10.4
5.30
5.10
2
1.48
141
10.32"
5.32*
-
-
10.24
5.24
5.08
2
PVC sample type Commercial, polymerized at 50-60 0 C Solution blended high molecular weight, low crystallinity commercial polymer and low molecular weight, high crystallinity polymer Single crystals, polymerized at - 75°C Single crystals, low molecular weight, polymer made in rc-butyraldehyde
Orthorhombic Orthorhombic
Pacm
(1.49)* 1.53
Refs.
142 143
a
Calculated from published J-spacings of major diffraction peaks. ^Calculated density assuming c = 5.10 (A) and 2 monomers per unit cell.
Unperturbed Dimensions See corresponding chapter in this Handbook.
Viscosity-Molecular Weight Relationship See Intrinsic Viscosity. Zero Shear Viscosity (34)
APPENDIX 1: APPARENT MELT VISCOSITY OF UNMODIFIED PVCfl PREPARED AT VARIOUS POLYMERIZATION TEMPERATURES* (PAS) 4 (x10 ) S h e a r rate ( s 1 ) Tpoiym
L.V.N. C
(0C)
(ml/g)
110 110 70 d 70 70 70 70 70 70 70 70* 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 65 65 65 65 65 65 65
30.5 30.5 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 54.8 54.8 68 68 68 68 68 68 68 75.4 75.4 75.4 75.4 75.4 86 86
Melt temp.
(0C) 190 205 140 150 160 170 180 190 200 210 140 150 160 170 180 190 200 210 210 220 160 170 180 190 200 210 220 180 190 200 210 220 180 190
2.95
7.37
14.7
29.5
1128.3 639.83 281.4 100.9 32.12 11.95 9.03 2336.4 1433.6 839.9 398.4 146.6 55.34 22.1 12.7 16.23 2464.2 1196.9 562.8 244.2 94.2 48.1 19.4 976.7 545.1 271.1 95.6 52.6 930 686.2
573.1 332.2 153.9 62.08 21.2 7.22 3.82 5.31 1209.8 711.03 431.9 231.5 91.9 34.3 13.7 7.53 8.66 1172.2 599.14 320.5 144.9 62.1 29.5 15.5 522.7 254.7 128.5 56.7 33.2 448.5 381
340.7 200.6 97.1 42.2 15.5 5.94 2.02 2.71 721.6 424.5 258.9 142.9 58.7 25.5 11.3 5.54 8.12 705.5 359.27 205.9 100.8 46.6 23.5 13.2 318.4 158.9 85.3 43.7 25.9 273.3 243.6
1.18 0.63 202 120.8 62.4 28.7 11.42 5.15 1.86 1.38 423.5 223.0 155.3 89.6 43.2 19.4 9.5 4.54 7.31 5.26 389.9 218.53 125.6 69.8 35.0 19.6 11.7 195.6 101 59.8 33.1 21.4 198 148
73.7 0.72 0.39 97.85 60.5 34.4 16.9 7.85 4.03 2.02 0.89 191.6 119.92 76.6 47.8 26.1 13.4 7.36 3.99 6.71 4.29 173.66 113.21 64.7 40.1 23.7 14.6 9.34 103.5 53.6 36.3 22.1 14.9 84 82
147
295
737
1470
0.82 0.48 54.6 35.6 21.8 11.35 5.78 3.24 1.92 1.02 102.1 64.7 43.8 29.1 17.3 9.75 5.87 3.43 5.74 3.82 89.55 64.04 37.7 25.5 16.6 11.1 7.51 58.7 31.9 23.1 15.7 10.96 45.1 48.1
0.77 0.30 30.0 20.44 13.41 7.65 4.38 2.65 1.4 0.935 51.11 34.5 24.2 17.2 11.2 6.58 4.48 2.82 4.71 3.24 45.76 34.39 21.8 15.5 11.0 8.02 5.71 31.26 19.0 14.2 10.5 7.75 23.22 25.5
0.61 0.22 13.3 9.45 6.56 4.37 2.80 1.87 1.21 0.775 20.2 15.2 10.72 8.14 5.92 3.99 2.95 2.06 2.94 2.39 17.69 14.44 10.3 7.75 5.94 4.68 3.62 13.3 9.25 7.2 5.53 4.49 9.77 11.1
0.52 0.21 6.41 4.91 3.74 2.72 1.94 1.35 0.95 0.65 9.29 7.43 5.47 4.43 3.49 2.56 2.02 1.5 20.3 1.72 8.47 7.16 5.52 4.40 3.55 2.92 2.51 6.87 5.01 4.15 3.36 2.73 4.92 5.7
2950 0.40 0.20 3.08 2.47 20.4 1.62 1.27 0.95 0.68 0.504 4.24 3.50 2.71 2.32 1.98 1.52 1.33 1.04 1.31 1.18 4.01 3.49 2.92 2.44 2.07 1.73 1.57 3.46 2.63 2.32 2.02 1.64 2.46 2.93
References page V - 7 4
Shear rate (s"1) ^poiym
L.V.N.C
(0C)
(ml/g)
65 65 65 65 56 56 56 56 56 56 50 50 50 50 50 50 50 50 42 42 42 42 42 42 40 40 40 40 40 28 28 28 28 25 25 25 25 25 25 25
86 86 86 91.3 91.3 91.3 91.3 91.3 91.3 91.3 116.9 116.9 116.9 116.9 116.9 116.9 116.9 116.9 147.2 147.2 147.2 147.2 147.2 147.2 122.5 122.5 122.5 122.5 122.5 208 208 208 208 240.5 240.5 240.5 240.5 240.5 240.5 240.5
Melt temp.
(0C) 200 210 220 180 190 200 210 220 230 240 180 185 190 200 205 210 220 230 190 200 210 220 230 240 190 200 205 210 215 190 200 210 220 200 210 215 220 225 230 240
2.95
7.37
14.7
29.5
73.7
147
295
737
229.5 163.9 1898.2 1139.9 857.7 286.9 154.9 92.7 82.3 1884 1452.2 1062 783.2 584.1 424.8 265.5 1878.6 1626.9 1352.7 968.4 2041.3 1162 445.4 338.8 2050.0 1658.7 1104.9 665.6 1513.3 1503 1340.7 1355.7 958.4 -
138.7 94.96 902.1 584.7 350 155.0 90.8 60.5 11.9 933.9 730.1 633.6 410.7 318.4 226.0 147.5 132.9 897.0 703.2 567.6 415.3 299 243.6 867.8 244.5 185.6 916.5 740.6 493.4 332.5 647.4 603 562.5 572.6 421.3 409.8 426.4
100.6 71.05 573.1 373.8 207.1 112.0 55.9 48.7 54.7 562.5 464.3 398 257.4 209.6 156.0 106.12 79.7 537.1 420.8 319.7 231.5 164.5 199.3 511.0 323 170.5 133.4 543.5 452.3 282.4 214.7 387.4 343 311.5 332.2 250.9 222.0 223.2
67.75 53.3 26.25 292.0 250.4 130 79.2 49.5 37.7 44.6 304 284.1 251.7 177.9 131.4 105.1 75.4 58.1 276.7 252.1 206.3 142.5 106.2 157.7 285.6 111.5 98.4 94.0 284.9 239.6 167.7 138.4 223.0 200 180 190.9 159.3 136.1 132.3
38.75 33.1 17.13 124.2 113.5 74 45.7 31.3 24.6 31.0 126.3 126.8 116.2 87.02 78.9 59.43 44.4 36.0 113.5 108.5 93.3 73.5 60.2 89.7 117.9 80.8 64.4 53.5 53 117.8 102.8 85.5 69.3 94.98 90.2 80.44 83.3 75.35 67.7 64.2
34.02 21.4 11.8 65.3 60.1 43.3 28.5 18.5 17.0 24.1 67.12 66.1 59.96 45.1 43.5 39.3 28.02 23.2 58.4 55.9 48.9 39.9 35.2 53.2 58.5 41.5 36.6 28.7 35.7 63.7 52.2 46.9 39.5 49.08 46.6 41.76 43.9 40.33 37.5 36.5
13.67 13.5 7.88 35.7 31.5 23.4 18.7 13.1 11.1 20.1 36.11 34.25 30.8 24.03 22.83 21.64 18.8 14.7 31.8 28.2 25.3 21.2 19.0 33.5 29.2 21.0 19.4 14.76 20.2 33.55 27.4 25.03 22.1 26.55 23.5 21.4 22.5 21.03 19.7 20.2
6.77 7.23 4.22 14.86 13.5 10.2 9.08 7.21 6.0 10.0 14.86 14.22 13.16 10.61 9.87 9.29 8.49 8.34 13.3 12.3 10.7 9.19 8.44 12.7 9.09 8.35 6.28 8.73 14.92 11.94 10.44 9.96 11.67 10.4 9.49 9.63 9.23 8.86 8.53
1470
2950
3.77 4.37 2.56 7.43 6.87 5.45 4.81 4.27 3.98 6.367 7.32 7.0 6.58 5.57 5.25 4.93 4.62 4.67 6.36 6.15 5.52 4.93 4.55 6.45
2.01 2.47 1.56 3.66 3.53 2.85 2.54 2.37 2.48 3.611 3.39 3.4 3.24 2.92 2.79 2.60 2.51 2.57 3.04 3.07 2.77 2.85 2.48 3.14
4.37 3.28 4.56 7.25 6.07 5.33 5.33 5.84 5.4 5.2 5.07 4.92 4.62 4.52
2.25 1.72 2.39 3.35 2.87 2.66 2.73 2.81 2.7 2.6 2.57 2.60 2.46 2.53
a
Ref. original data, E. A. Collins, unpublished. ^MeIt viscosity data obtained using a capillary having a 90° entrance angle, length 1.0 in and diameter 0.05 in. No correction applied to the data. All samples contained 2.5 parts dibutyltin dioctylthioglycolate stabilizer per 100 parts resin. c Limiting viscosity number, determined in cyclohexanone 3O0C. rf Modified with 5 parts trichloroethylene/100 parts vinyl chloride monomer. e Modified with 3 parts trichloroethylene/100 parts vinyl chloride monomer.
REFERENCES 1. T. Hjertberg, E. M. Sorvik, ACS Symposium Series, vol. 280, Polymer Stabilization, 1985. 2. W. H. Starnes, F. C. Schilling, I. M. Plitz, R. E. Cais, D. J. Freed, R. L. Hartless, F. A. Bovey, Macromolecules, 16, 790 (1983). 3. T. Hjertberg, A. Wendel, Polymer, 23, 1641 (1982). 4. W. H. Starnes, R. L. Hartless, F. C. Schilling, E A. Bovey. Polym. Preprints, 18 (1), 499 (1977); Adv. Chem. Ser., 169, 234 (1978). 5. J. Yuan, A. Hiltner, E. Baer, J. Mater. ScL, 18, 3063 (1983). 6. M. L. Dannis, Mod. Plastics, 31 (7), 120 (1954). 7. L. Dunlap, J. Polym. Sci. C, 30, 561 (1970).
8. J. B. DeCoste, SPE Antec, 15, 232 (1969). 9. A. B. Glanvill, "The Plastics Engineer's Data Book", The Machinery Publishing Co., Ltd., Brighton, 1971, p. 181. 10. I. Klein, Plastics World, May 1980, p. 110. 11. J. Hennig, Kolloid-Z., 202 (2), 127 (1965). 12. Y. Yamaguchi, Y O. Yanagi, Kobunshi Kagaku, 28 (315), 623 (1971). 13. S. K. Bhateja, K. D. Pae, J. Macromol. Sci.: Revs. Macromol. Chem., C, 13 (1), 77 (1975). 14. R. M. Ogorkiewicz, "Engineering Properties of Thermoplastics", Wiley, New York, 1970, p. 251. 15. S. Turner, Brit. Plastics, 37, 682 (1964).
16. A. Nakajima, H. Hamada, S. Hayashi, Makromol. Chem., 95, 40 (1966). 17. R. J. D'Amato, S. Strella, Appl. Polym. Symp. 8,275 (1969). 18. E. Repko, M. Tureckova, J. Halamek, Petrochemia, 14 (1), 25 (1974). 19. G. Natta, P. Corradini, J. Polym. Sci. 20, 251 (1956). 20. A. N. Kostyuchenko, N. A. Okladnov, V. P. Lebedev, J. Polym. Sci. USSR, 10 (11), 3025 (1968). 21. PH. Hermans, A. Weidinger, Makromol. Chem., 44-46,24 (1961). 22. V. P. Lebedev, N. A. Okladnov, K. S. Minsker, B. P. Shtarkman, Vysokomol. Soedin., 7 (4), 655 (1965). 23. S. H. Maron, F. E. Filisko, J. Macromol. Sci. B, 6 (2), 413 (1972). 24. K. H. Illers, Makromol. Chem., 127, 1 (1969). 25. J. Malac, Sb. Prednasek, Makrotest, 4th Celostatni Konf. vol. 2, 345 (1976). 26. H. J. Dietrick, M. L. Dannis, B. F. Goodrich. Research Center, Brecksville, Ohio, unpublished data. 27. L. A. Utracki, J. A. Jukes, J. Vinyl Tech., 6 (2), 85 (1984). 28. H. H. Bowerman, Proceedings of Fourth Annual Plastics Conference, Eastern Michigan University, Sept. 24, 1969. H. H. Bowerman, unpublished data. 29. R. G. Griskey, C. A. Gellner, M. W. Din, Mod. Plastics, 43,119(1966). 30. E. A. Collins, Pure Appl. Chem. 49, 581 (1977). 31. E. A. Collins, C. A. Krier, Trans. Soc. Rheol. 11 (2), 225 (1967). 32. E. A. Collins, A. P. Metzger, Polym. Eng. Sci., 10 (2), 57 (1970). 33. L. A. Utracki, J. Polym. Sci. Polym. Phys. Ed., 12, 563 (1974). 34. J. Lyngaae-Jorgensen, J. Appl. Polym. Sci., 20,2497 (1976). 35. L. A. Chandler, E. A. Collins, B. F. Goodrich Chemical Company, Technical Center, Avon Lake, Ohio, unpublished data. 36. P. Heydemann, H. D. Guicking, Kolloid-Z., 193, 16 (1963). 37. U. Bianchi, A. Turturro, G. Basile, J. Phys. Chem., 71, 3555 (1967). 38. K. H. Hellwege, W. Knappe, P. Lehmann, Kolloid-Z., 183 (2), 110(1962). 39. E. A. Collins, L. A. Chandler, P. R. Kumler, B. F. Goodrich Chemical Company, Technical Center, Avon Lake, Ohio, unpublished data (DTA l°C/min, T% taken at inflection point, polymers unmodified). 40. G. A. Garbuglio, A. Rodella, G. C. Borsivi, E. Gallinella, Chem. Ind. (Milan), 46, 166 (1964). 41. D. Kockott, Kolloid-Z., Z. Polym., 198, 17 (1964). 42. G. Pezzin, Plastics Polym., 37 (130), 295 (1969). 43. A. J. de Vries, C. Bonnebat, M. Carrega, Pure Appl. Chem., 25, 209 (1971). 44. A. Michel, A. Guyot, J. Polym. Sci. C 33, 75 (1971). 45. D. E. Witenhafer, J. Macromol. Sci. B, 4 (4), 915 (1970). 46. F. P. Reding, E. R. Walter, F. J. Welch, J. Polym. Sci., 56, 225 (1962). 47. G. Ceccorulli, M. Pizzoli, G. Pezzin, J. Macromol. ScLPhys. B, 14 (4), 499 (1977).
48. C. A. Daniels, E. A. Collins, Polym. Eng. Sci., 19 (8), 585 (1979). 49. R. Hoffman, W. Knappe, Kolloid Z. -Z. Polym., 240, 784 (1970). 50. B. Wunderlich, W. Baur, Adv. Polym. Sci., 7, 151 (1970). 51. U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem., Ref. Data., 12 (1), 29 (1983). 52. S. Chang, J. Res. Natl. Bur. Std. (US) 82, 9 (1977). 53. E. A. Collins, unpublished data. 54. L. Nielson, "Mechanical Properties of Polymers", Reinhold Publishing Co., New York, 1962. 55. C. E. Anagnastopoulos, A. Y. Coran, H. R. Gamrath, J. Polym. Sci. 4, 181 (1960). 56. H. Wilski, Kolloid-Z. -Z. Polym., 238, 426 (1970). 57. J. A. Juijn, Thesis, Technische Hochschule, Delft (1972). 58. R. S. Colborne, J. Appl. Polym. Sci., 14, 127 (1970). 59. G. C. Sinke, D. R. Stull, J. Phys. Chem., 62, 397 (1958). 60. R. M. Joshi, Indian J. Chem., 2, 125 (1964). 61. R. M. Joshi & B. J. Zwolinski, J. Polym. Sci. B, 3, 779 (1965). 62. L. A. Utracki, Polym. J. (Japan), 3 (5) 551 (1972). 63. M. Fournier, Compt. Rend., 222, 1437 (1946). 64. H. Staudinger, J. Schneiders, Ann., 541, 151 (1939). 65. J. Breitenbach, E. Forster, A. Renner, Kolloid-Z., 127, 1 (1952). 66. T. Krasovec, Reports J. Stefan Inst., 3, 203 (1956). 67. Z. Mencik, Chem. Listy, 49, 1598 (1955). 68. W. R. Moore, R. J. Hutchinson, Nature, 200, 1095 (1963). 69. G. Bier, H. Kramer, Makromol. Chem., 18, 151 (1956). 70. J. Hengstenberg, Angew. Chem., 62, 26 (1950). 71. F. Danusso, G. Moraglio, S. Gazzera, Chem. Ind. (Milan), 36, 883 (1954). 72. A. Oth, Ind. Chim. Beige, 20, 423 (1955). 73. D. Harmon, B. F. Goodrich Research Center, unpublished results. 74. G. M. Guzman, J. M. Fatou, Anales Real. Soc. Espan. Fiz. Quim. (Madrid), 54B, 609 (1958). 75. G. Ciapa, H. Schwindt, Makromol. Chem., 21, 169 (1956). 76. G. Pezzin, N. Gligo, J. Appl. Polym. Sci., 10, 1 (1966). 77. M. Bohdanecky, K. Sole, P. Kratochvil, M. Kolinsky, M. Ryska, D. Lim, J. Polym. Sci. A-2, 5, 343 (1967). 78. M. Kolinsky, M. Fyska, M. Bohdanecky, P. Kratochvil, A. Soc, D. Lim, J. Polym. Sci. C, 16, 485 (1967). 79. R. M. Fuoss, D. J. Mead, J. Phys. Chem., 47, 59 (1943). 80. J. Vaura, J. Lapcek, J. Sabados, J. Polym. Sci. A-2, 5 (6), 1305 (1967). 81. R. Endo, Kobunshi Kagaku, 18, 143 (1961). 82. H. Batzer, A. Nisch, Makromol. Chem., 22, 131 (1957). 83. J. Lyngaae-Jorgensen, J. Polym. Sci. C, 33, 23 (1971). 84. T. Kobayashi, Bull. Chem. Soc. (Japan), 35, 726 (1962). 85. A. Takahashi, Kogyo Kagaku Zasshi, 66, 960 (1963). 86. M. Freeman, P. Manning, J. Polym. Sci. A, 2, 2017 (1964). 87. G. Pezzin, G. Talamini, N. Gligo, Chim. Ind. (Milan), 46, 648 (1964). 88. C. H. Lu, Theses, Virginia Polytech. Inst. (1962).
89. A. Nakazawa, P. Matsuo, H. Inagaki, Bull. Inst. Chem. Res., Koyoto Univ., 44 (4), 354 (1966). 90. A. R. Berens, H. S. Hopfenberg, J. Membrane ScL, 10, 283 (1982). 91. A. Lebovis, Mod. Plastics, 43, 139 (1966). 92. B. P. Takhomirov, H. B. Hopfenberg, V. Stannett, J. L. Williams, Macromol. Chem., 118, 177 (1968). 93. N. H. Reinkiny, A. E. Barnabeo, W. F. Hale, J. Appl. Polym. ScL, 7, 2135 (1963). 94. W. S. Penn, "PVC Technology", Wiley-Interscience, New York, 1971. 95. A. W. Myers, V. Tammela, V. Stannett, M. Szwarc, Mod. Plastics, 37 (10), 139 (1960). 96. P. M. Doty, W. H. Aiken, H. Mark, Ind. Eng. Chem. Int. Ed., 38, 788 (1946). 97. L. C. Grotz, J. Appl. Polym. ScL, 9, 207 (1965). 98. R. M. Barrer, R. Mallinder, P. S. L. Wong, Polymer, 8 (6), 321 (1967). 99. K. D. Laudenslogel, S. F. Roe, Mod. Packaging, 40, 139 (1967). 100. R. Raghova, R. M. Caddell, G. S. Y. Yeh, J. Mater. ScL, 8, 225 (1973). 101. J. L. Williams, H. B. Hopfenberg, V. Stannett, J. Macromol. ScL B, 3(4), 711 (1969). 102. A. Nakajima, Kobunshi Kagaku, 7, 309 (1950). 103. F. Mencik, Collect. Czech. Chem. Commun., 24, 3291 (1959). 104. R. Gautron, C. Wippler, J. Chim. Phys., 58, 754 (1961). 105. E. Schroder, Plaste Kautschuk, 15, 2 (1968). 106. E. J. Mouton, Thesis, Univ. Leiden, 1961. 107. J. Breitenbach, E. Forster, A. Renner, Koloid-Z., 127, 1 (1952). 108. P Doty, E. Mishuck, J. Am. Chem. Soc, 69, 1631 (1947). 109. P Doty, H. Zable, J. Polym. ScL, 1, 90 (1946). 110. W. R. Moore, R. J. Hutchinson, J. Appl. Polym. ScL, 8, 2619 (1964). 111. R. L. Adelman, J. M. Klein, J. Polym. ScL, 31, 77 (1958). 112. A. Oth, Compt. Pend., 27 Congress Intern. Chem. Ind., Bruxelles, Sept. 1954. 113. J. B. Haehn, B. F. Goodrich Chemical Company, Technological Center, Avon Lake, Ohio, unpublished results. 114. P. Kratochvil, Collect. Czech. Chem. Commun., 29, 2767 (1964). 115. S. H. Maron, M. S. Lee, J. Macromol. ScL B, 7 (1), 29 (1973); ibid. 7 (1), 47 (1973); ibid. 7 (1), 61 (1973).
116. C. A. Daniels, E. A. Collins, J. Macromol. ScL, Phys. B, 10 (2), 287 (1974). 117. A. Rudin, J. Beuschop, J. Appl. Polym. ScL, 45, 2881 (1971). 118. L. A. Utracki, SPE Tech. Papers, 19, 567 (1973). 119. L. A. Utracki, Polym. Eng. ScL, 14, 308 (1974). 120. L. A. Utracki, SPE Tech. Papers, 31, 1024 (1985). 121. L. A. Utracki, J. Vinyl Tech., 7 (4), 150 (1985). 122. C. Bonnebat, A. J. Devries, Polym. Eng. ScL, 18 (10) 824 (1978). 123. S. Krimm, V. L. FoIt, J. J. Shipman, A. R. Berens, J. Polym. Sci. A, 1, 2621 (1963). 124. F. Heatley, F. A. Bovey, Macromolecules, 2 (3), 241 (1969). 125. T. Yoshino, J. Komiyama, J. Polym. Sci. B, 3, 311 (1965). 126. U. Johnsen, K. Kolbe, Kolloid-Z., 221, 64 (1967). 127. C. J. Carman, A. R. Tarpley, Jr., J. H. Goldstein, J. Am. Chem. Soc, 93, 2864 (1971). 128. C. J. Carman, A. R. Tarpley, J. H. Goldstein, Macromolecules, 4, 445, (1971). 129. C. J. Carman, Macromolecules, 6 (5), 725 (1973). 130. Q. T. Pham, J. Millan, E. L. Madruga, Makromol. Chem., 175, 945 (1974). 131. C. E. Wilkes, Macromolecules, 4, 443 (1971). 132. R. D. Andrews, V. Chatre, J. Appl. Phys., 40, 4266 (1969). 133. R. D. Andrews, Y. Kazama, J. Appl. Phys., 39, 4891 (1968). 134. C. Rangel-Nafaile, A. Gargia Rejon, A. Gargia Leon, J. Vinyl Tech., 6 (2), 63 (1984). 135. M. D. Skibo, J. A. Manson, S. M. Webler, R. W. Hertzberg, E. A. Collins, in: R. K. Ely (Ed.), ACS Symposium Series 95 (1979), pp. 311-329, Ch. 22. 136. K. V Gotham, M. J. Hitch, Brit. Polym. J., 10, 47 (1978). 137. J. Dyment, H. Ziebland, J. Appl. Chem., 8, 203 (1958). 138. R. P. Sheldon, Sister K. Lane, Polymer, 6, 77 (1965). 139. K. Eierman, Kunststoffe, 51, 512 (1961). 140. C. Y Ho, P. D. Desai, K. Y Wu, T. N. Havill, T. Y Lee, NBS Report No. NBS-GCR-77-83 (1977). 141. G. Natta, I. W. Bassi, P. Corradini, Rend. Accad. Naz. Lincei, 31 (1,2), 1 (1961). 142. A. Nakajima, S. Hayashi, Kolloid-Z. -Z. Polym., 229 (1), 12 (1969). 143. C. E. Wilkes, V. L. FoIt, S. Krimm, Macromolecules, 6 (2), 235 (1973). 144. J. Brandrup, E. H. Immergut (Eds.), "Polymer Handbook" 3rd ed., Wiley, New York, 1975, p. V/61. 145. L. A. Utracki, Z. Bakerdjian, M. R. Kamal, Trans. Soc. Rheol., 19, 173 (1975).
Physical Constants of Poly(vinyl acetate) M. K. Ln idemann Consua tln,t Greenve li, SC, USA
Property Absorption of Water (%)
Adhesive Strength Lap shear (Mpa) Peel strength (N/cm) Chain Dimensions and Entanglement Spacings Cohesive Energy (J/mol) Cohesive Energy Density (J/cm3) Compressibility (cm3/g/atm) Isothermal (bar"1) ( x 10~5) At80°C At 100°C At 120°C
Value Approx. 3-6 4 6
At 200C for 24 to 144 h At 23°C At 700C
3.9 1.9
Aluminum Aluminum
See Refs. 26000-36000 3.69 x 102 1.8 x 10 ~5
Density (Mg/m3) = (g/cm3) At 200C At25°C At 500C At 1200C At 200°C At the melting point At 7=35-100°C A t T = - 3 0 to +20 0 C As a function of pressure
In the glassy state
6.2 6.6 7.1
Decomposition Temperature (0C) Degradation, Thermal
Remarks
Refs. 26 65,66
130 144-146 52 58 1 113
150 Tl/2 = 269°C; £act = 7 * kJ/mol; monomer yield: none
15 Temperature at which the polymer loses 50% of its weight, if heated in vacuum for 30 min
1.191 1.19 1.17 1.11 1.05 1.28 1.2124-8.62 x 10~4 7 + 0.223 x 10~6 T2 1.196-3.37 x 10" 4 T See Refs.
52
16,24,26
58 113 113 113,114,115 At 500C and 2 x 103 kHz At 1500C and 2 x 103 kHz
Of oligo PVAC As a function of MW
3.5 8.3 See Ref. See Ref.
Dielectric Dissipation Factor (tan 6)
1.5 x 102
At 50°C and 2 x 103 kHz
26 x 102
At 1200C and 2 x 103 kHz
Dielectric Loss Versus Frequency
See Ref.
At various temperatures
95
Dielectric Strength (V/cm) ( x 10 ~3)
394 307
At 300C At 600C
16
Dielectric Constant
34 59 96 34
Property
Value
Remarks
Refs.
Dielectric Relaxation Parameters
See Refs.
Dipole Moment (ESU (per monomer unit))
2.3 x 10 ~18 1.77 x 10"18
At 200C At 15O0C
4.8 D
For oligo PVAC, n = 5
59
Dynamic Mechanical Loss Peak ( C)
70
At 100 Hz
33
Elongation At Break (%)
10-20
At 200C, %RH
27
Gas Diffusivity Gas Permeability
See Ref. See Refs.
N 2 for PVAC below 7g(cm2/s/bar) N 2 for PVAC above Tg O2,73°dry film
6 x 10" 10 5 x 10- 10 2.7 x 10~9
For N 2 , O 2 , CO 2 , H 2 Diffusion and sorption of CO 2 (below and above 7 g )
Gas Solubility (cm3(STP)/cm3 bar)
N2 O2 H2
Gel Permeation Chromatography
See Refs.
(debye units) 0
Gel Properties Swelling pressure, elastic modulus and shear modulus parameters of PVAC networks in toluene and acetone Glass Transition Temperature (0C)
Pressure dependence (K/bar) As a function of MW Activation energy for the glass transition (J/mol)
121-129 22,23
52 53,94 52 100
0.02 0.04 0.023
At 298 K
Universal calibration
See Ref.
52
90,91,92 166
28-31 25.8 31.4 23.6 34-39 <30 11 0.022 See Refs.
25 Isotactic PVAC Mn ~ 1 0 5 Atactic PVAC Mn - 1.66 x 105 Atactic PVAC Mn - 3922 Dry Wet PVAC containing 4.20% water
AH a = 1.8 xlO 5
63 65 66 18 62,64 60
Hardness (Shore units)
L 80-85
At 20°C
27
Heat Capacity (kJ/kg)
1.465 Cp(iiquid) = 1.77
At 30°C At r g = 304 K
21 67
A C p = C p (i iquid ) - C p (g lass ) At Tg = 304 K
68
Cp(SIaSs) =
I ^
0-116" Cv(iiquid) = 1-51 Cv(glass) = 1-20
At T= 320 K At T= 370 K At T= 80 K At J=300K
Cp(liquid) = 1.8409 (kJ/kg); 158.48 (J/mol/K) Cp(liquid) = 1.898 (kJ/kg); 163.37 (J/mol/K) Cp(glass) = 0.323 (kJ/kg); 27.81 (J/mol/K); 53.7 (ACp, J/mol/K) Cp(gIass) = 1.183 (kJ/kg); 101.86(J/mol/K)
14,147
Heat Conductivity (J/s/m/K)
0.159
52
Heat Distortion Point (0C)
50
16
Heat of Polymerization (kJ/mol)
87.5
Index of Refraction (nD) At20°C At 200C At 20°C At 200C, medium acetate type At 200C, low acetate type
1.5013 1.5100 1.5174 1.4903 1.523-1.57
31,32
At 6563 A At 4861 A
28 104,105
Property
Value
At 200C, molding compound At 20.70C At 30.8°C At 52.10C At52.1°C At 800C At 142°C Spec, refraction index increment in various solvents
1.4685 1.4669 1.4657 1.4600 1.4600 1.4480 1.4317 See Ref.
Infrared Spectrum
Important bands (cm" 1 ): 606, 950, 1025, 1250, 1740, 2850, 2865, 2923, 2932, 2950 See Ref.
Temperature dependence of IR bands at 100-20°C At very low temperature Interfacia I Tension (mN/m)
See Ref. 7C = 37 14.5 8.4 9.9 4.2 10.5 11.0 9.8
Internal Pressure (J/m) AtO0C At 20 0 C At 28 0 C At 40 0 C At 60 0 C
2.554 XlO 8 2.847 XlO 8 3.978 x 108 4.313 XlO 8 4.187 XlO 8
Intrinsic Viscosity - Molecular Weight Relationship From moderately cone, solutions In 6-methyl-3-heptanone, at 66°C In 3-heptanone, at 26.8°C At 0 temperature, methanol, 6°C
See corresponding table in this Handbook and also Refs. See Ref. [rj] = 0.078 x M1I1 [rj] = 0.082 x M1Z2 [77] = 0.101 x M1I1
Mechanical Properties Modulus of elasticity (MPa) = (N/mm2) Rubbery shear modulus (N/mm2) Notched impact strength (cm kg/cm2)
1274-2255 13 >100
Molar Volume At 250C (cm3/mol)
74.25
Nuclear Magnetic Resonance Spectra Shift with Eu and Pr reagents, improved resolution Solvent and temperature effects Conformational information
See Refs. See Ref. See Ref. See Ref.
Remarks
Refs.
(dn/dc)
52
39,102,131,132 133 69
At 200C, with polyethylene At 200C, with poly(dimethylsiloxane) At 200C, with polyisobutene At 200C, with polystyrene With polyethylene Linear PVAC with polyethylene Branched PVAC with polyethylene
70 120 9 11 9 11 101 101 101
6,29,30
40-51,77 136-139 73 74 134,135
ASTM-D256
27 52 27 99 36,81,82 78
Syndiotactic PVAC
79 80
Optical Configuration Parameters (Aa) (A3) Acetone Benzene Bromobenzene Bromoform Carbon tetrachloride Carbon tetrachloride Chlorobenzene Chloroform Chloroform Cyclohexane Dichloroethane Dichloroethane Tetrabromoethane
- 20 4.0-5.9 9.4 - 20 -16 - 26 14 -34.9 -24 -23 -36 -39 -25
Wavelength of 6328 A
106 107 108 106 107 109 107 109 107 107 107 107 107
References page V- 83
Property
Value
Tetrabromoethane Toluene Toluene Toluene o-Xylene Chloroform Chloroform 1,3,5-Triethylbenzene /.-Radiation Effect Yields of crosslinking Yields of scission Raman Spectra
Remarks
- 33 10 13.5 19 2.0 81 - 2.68 -1.90
Temp. 500C; v2 = 1.0° Temp. 500C ; v2 = 0.6"
0.3 0.15 0.07 0.06
Oxygen atmosphere Nitrogen atmosphere Oxygen atmosphere Nitrogen atmosphere
See Ref. 0
Softening Temperature ( C)
106 107 112 109 107 107 110,111 110,111 164 165 37
35-50
7
Solubility
See Ref.
Solubility Parameter (5(MPa) 1Z2) At25°C At 500C At 125°C Sd <5P 6h S
18.6-19.9 21.07 1^4 17.9 19.0 10.2 8.2 23.1
Solvent-polymer activity in ethyl acetate, acetone, benzene In many solvents
Solution Properties Unperturbed radius of gyration (A 2 mol/g) Viscosity
See Ref. Q = 0.107 Log T]0 = log K+ a log c = j3 log M, where \o%K=-28.518, a = 5.599, and P = 3All See Ref. Acetone 0.37 Chlorobenzene 0.41 Chloroform 0.34 Methanol 0.47 Toluene 0.50 Benzene 0.37 Dioxane 0.34
See Refs.
rj Spec in various solvents Huggins constant, Ku
Refs.
Dispersion forces contribution Polar forces contribution Hydrogen bonding contribution Total 62 = 62 + 62p + 62 Linear PVAC Diethyl phthalate solution At c = 5-40g/100 cc
93 54,57 2,3,4,5 56,140 55 57 52,141
35 83 84 89 52
Solvent Interaction Parameters Solvent Acetaldehyde Acetone
Acetonitrile Allyl chloride Benzene
n-Butane 2-Butanol 2-Butanone
Temp. (0C) 125-140 25-29 30-40 30-50 100-140 125-140 40 5 20 30 35-62 30-50 80-140 125-145 100 135 10-45 100-140
Volume fraction, ^ 2
Interaction parameter, %
1 0 0.8 1 1 1 1 0.2 0 0.4-0.8 0 1 1 1 1 1 0 1
0.35-0.32 0.40 0.34 0.31-0.39 0.32-0.21 0.54-0.49 0.27 0.46 0.42 0.45-0.29 0.51-0.42 0.30-0.26 0.44-0.25 0.37-0.32 1.97 0.31 0.43 0.34-0.20
Refs. 150 151-153 154 154 148,150 150 154 155 162 156 157 154 148,150,158 149,159,160 148 159 151 148,150
Solvent Butyl acetate Butylbenzene Butylcyclohexane Carbon tetrachloride Chlorobenzene 1-Chlorobutane Chloroform Chloromethane 1-Chloropentane 1-Chloropropane Cycloheptane Cyclohexane Cyclohexene Cyclohexanol Cyclooctane Cyclopentane ds-Decahydronaphthalene n-Decane 1-Decanol 1,1-Dichloroethane 1,2-Dichloroethane Dichloromethane Dimethylphthalate 1,4-Dioxane n-Dodecane Ethanol Ethyl acetate Ethylbenzene H-Heptane 1-Heptanol H-Hexadecane n-Hexane 1-Hexanol Isopropylamine Methanol Methyl acetate 2-Methyl-2-propanol Nitroethane rt-Nonane n-Octane 1-Octanol 1-Octene H-Pentane 1-Pentanol 2-Pentanone Propane 1-Propanol 2-Propanol Propyl acetate Propylamine H-Tetradecane Tetrahydrofuran 1,2,3,4-Tetrahydronaphthalene 3,3,4,4-Tetramethylhexane Toluene 1,1,1-Trichloroethane Trichloroethylene 1,2,3-Trichloropropane 2,2,4-Trimethylpentane «-Undecane Vinyl acetate Water
Temp. (0C) 100 125-145 125-145 90-135 100-135 100-135 80-135 100 100 40 100 100-140 100 135 100 100 125-145 100-145 135 100 100-140 100 25 25 100-140 125-145 50 100 20 100 100-135 100-120 135 135 100-120 135 40 125-140 100 135 125-140 100-145 90-120 135 135 100 100-135 135 100 30-50 100-135 125-140 100 40 135 100-140 125-145 125-145 80-140 100 100 15-50 100-120 100-145 30 40
Volume fraction, 4>i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0.4-0.8 1
Interaction parameter, z 0.51 0.95-0.88 1.90-1.75 0.85-0.63 0.28-0.33 0.73-0.66 20.17-20.09 0.25 0.82 0.75 1.63 1.65-1.16 1.18 0.44 1.67 1.53 1.65-1.50 2.5-2.01 0.81 0.19 20.04-0.00 20.14 0.400 0.407 0.17-0.03 2.48-2.27 0.47 0.80 0.415 0.36 0.66-0.58 2.14-1.63 0.55 2.99 2.06-1.71 0.49 0.66 0.77-0.73 0.30 0.30 0.14-0.19 2.38-1.88 2.3-1.94 0.65 1.55 2.06 0.59-0.41 0.38 3.2 1.3-1.0 0.64-0.38 0.44-0.35 0.42 0.61 2.70 0.30-0.14 0.83-0.77 1.72-1.56 0.56-0.40 0.49 0.40 0.38 2.17-1.86 2.7-2.14 0.41-0.22 2.5
Refs. 148 160 160 148,149,158 148,149 148,149 148,149,158 148 148 154 148 148,149,150,158,160 148 149,159 148 148 160 148,149,159,160 159 148 148,150 148 151 151 148,150 159,160 157 148 162 148 148,159 148,150,158 159 159 148,158 159 154 150 148 159 150 148,149,159,160 148,158 159 149 148 148,159 149 148 154 148,159 150,159 148 154 159 148,150 160 160 148,150,158,159 148 148 151 158 148,159,160 156 161
References page V- 83
Property
Value
Specific Heat Conformational (dEcont/dT)
Remarks
See also Heat Capacity 1.3 1.8
Softening Point As a function of MW
Refs.
Syndiotactic Isotactic
85
See Refs.
116,117,118 4
Specific Volume (I/kg)
(1/mol) Stress Relaxation Curves Surface Resistance (ft/cm)
0.823 + 6.4 x 10~ x T 0.84 1.073 0.841 0.08774
T= 100-200 C At Tg Monomer Polymer One mole repeating unit
9,13 19,61 77
See Ref.
22-61.8°C
20,97
5 x 10~
Surface Tension (mN/m) At 200C At 1400C At 180°C At 150°C
0
103
n
15 9,10,11,12,86
36.5 28.6 25.9 27.9 - d 7 /d7 = 0.066 (mN/m) 7 ds = 27.4 ± 0.1 7 d s = 15.4 ±0.7 Tsoiid = 42.85 ± 0.8
58,87,101 58,119 85
Dispersive Polar Total
Tensile Strength (MPa) = (N/mm2)
29.4-49.0 See Table in Ref.
Thermal Conductivity (W/m/K) Pressure and temperature dependence
0.159 See Ref. 0.159
16 88 116
2.8 XlO" 4 2.8 XlO- 4 7.13 x 10 ~4 7.17 x l O ~ 4 7.2OxIO- 4 7.23 XlO" 4 6.7 XlO- 4 22 x 10 " 5 7 xlO-5
113
Thermal Expansion Coefficient (K" 1 ) AtO0C At 20 0C At 40 0C At 60 0C At 80 0C AtIOO 0 C Cubic Linear above Tg Below 7 g
At 20°C
16 96
15,25 17,27
Theta Temperatures
Polymer Poly (vinyl acetate) Linear
4
Mw(xl0 )
Dispersity
87-346
2.7-126.8
2.0
4.1-83 0.35-150 3.0-32
0.8-130 Branched
1.02-1.05
Solvent (MJMn) Methyl isopropyl ketoneM-heptane (73.2/26.8) rc-heptane/methyl isopropyl ketone (27.3/72.7) Ethyl n-butyl ketone Ethyl isoamyl ketone Methanol Ethyl /i-butyl ketone Carbon tetrachloride Ethanol 3-Heptanone Cetyl alcohol Ethanol 3-Heptanone
0 Temp. (0C)
K0 (x 104) [dl/g (g mol w t ) 1 / 2 ]
25
Refs. 151
30
9.2
152
29 66 6 29 46.4 19 29 123 12-15 26
9.29 8.20 10.1 9.55
153 154 155 163
5.37
156 163
Property
Value
Remarks
Ultraviolet Radiation ^(nm) Absorption, cut-off Quantum yields (mol/Einstein) (in air) at A = 254 Acetic acid formation Carbon dioxide formation Carbon monoxide formation Methane formation Chain scission Crosslinking
0.01 0.0065 0.0069 0.0038 0.05 (in air), 0.066 (in nitrogen) 0.0025 (in air), 0.047 (in nitrogen)
Ultraviolet Spectra
See Ref.
Young's Modulus (MPa) = (N/mm2)
600
Viscoelastic Response
See Refs.
X-Ray Diffraction
See Ref.
a
240
Refs. 142 143
30,38 At 25°C and 50% RH
8 167-171
Wide angle
98
Polymer volume fraction.
REFERENCES 1. M. M. Martynyuk, V. K. Semenchenko, Kolloid Zh., 26, 83 (1964). 2. H. Daoust, M. Rinfret, J. Colloid ScL, 7, 11 (1952). 3. D. Managaraj, S. Patra, P. C. Roy, S. K. Bhatnagar, Makromol. Chem., 84, 225 (1965). 4. P. A. Small, J. Appl. Chem., 3, 71 (1953). 5. G. Allen, Polymer, 2, 375 (1961). 6. D. R. Paul, A. T. DiBenedetto, J. Polym. Sci. C, 16, 1269 (1967). 7. K. Schmieder, K. Wolf, Kolloid Z., 134, 149 (1953). 8. J. Galperin, W. Arnheim, J. Appl. Polym. Sci., 11, 1259 (1967). 9. S. Wu, J. Colloid Interface Sci., 31, 153 (1969). 10. S. Wu, J. Phys. Chem., 74, 632 (1970). 11. S. Wu, J. Polym. Sci. C, 34, 19 (1971). 12. S. Wu, J. Phys. Chem., 72, 3332 (1968). 13. J. R. Collier, Ind. Eng. Chem., 61 (9), 50 (1969). 14. R. F. Boyer, J. Macromol. Sci. Phys. B, 7, 487 (1973). 15. Mowilith, Polyvinylacetat, Farbwerke Hoechst AG, Frankfurt, 1969, p. 214. 16. T. P. G. Shaw, "Encyclopedia of Chemical Technology", Vol. 14, Interscience, New York, 1955, p. 692. 17. R. F. Clash, L. M. Rynkiewicz, Ind. Eng. Chem., 36, 279 (1944). 18. J. M. O'Reilly, J. Polym. Sci., 57, 429 (1962). 19. A. A. Miller, Macromolecules, 4, 757 (1971). 20. G. Adam, Kolloid Z., 195, 1 (1964). 21. H. Wilski, Kolloid Z., 210, 37 (1966). 22. D. J. Meed, R. M. Fuoss, J. Am. Chem. Soc, 63, 2839 (1941). 23. O. Broens, F. H. Mueller, Kolloid Z., 141, 20 (1955). 24. M. K. Lindemann, "Encyclopedia of Polymer Science and Technology", vol. 15, Interscience, New York, 1971, p. 618. 25. S. Saito, Kolloid Z. -Z. Polym., 189, 116 (1963).
26. C. E. Schildknecht, "Vinyl and Related Polymers", Wiley, New York, 1952, p. 336. 27. H. R. Hacobi, "Ullmans Encyklopaedie der Technischen Chemie, vol. 11, 3rd ed., Verlag Chemie, Weinheim, Munich, 1960, p. 34. 28. O. Broens, E H, Mueller, Kolloid Z., 140, 121 (1955). 29. S. Fujimoto, Mem. Defense Acad. Math. Phys. Chem. Eng. (Yokosuka, Japan), 7, 1247 (1967). 30. G. Allen, D. Sims, G. J. Wilson, Polymer, 2, 375 (1961). 31. R. M. Joshi, Makromol. Chem., 66, 114 (1963). 32. R. M. Joshi, J. Polym. Sci., 56, 313 (1962). 33. H. Gramberg, Adhesion, 10, (3), 97 (1966). 34. H. Thurn, K. Wolf, Kolloid Z., 148, 16 (1956). 35. M. K. Lindemann, "Encyclopedia of Polymer Science and Technology", vol. 15, Interscience, New York, 1971, p. 633. 36. M. K. Lindemann, "Encyclopedia of Polymer Science and Technology", vol. 15, Interscience, New York, 1971, p. 551. 37. M. K. Lindemann, "Encyclopedia of Polymer Science and Technology", vol. 15, Interscience, New York, 1971, p. 548. 38. M. K. Lindemann, "Encyclopedia of Polymer Science and Technology", vol. 15, Interscience, New York, 1971, p. 550. 39. M. K. Lindemann, "Encyclopedia of Polymer Science and Technology", vol. 15, Interscience, New York, 1971, p. 547. 40. P. C. Scherer, A. Tannenbaum, D. W. Levi, J. Polym. Sci., 43, 531 (1960). 41. W. R. Moore, M. Murphy, J. Polym. Sci., 56, S19 (1962). 42. H.-G. Elias, Kunstoffe Plastics, 8, 441 (1961). 43. S. N. Chinai, P. C. Schere, D. W. Levi, J. Polym. Sci., 17,117 (1955). 44. M. Matsumoto, Y. Ohyanagi, J. Polym. Sci., 46, 441 (1960). 45. R. H. Wagner, J. Polym. Sci., 2, 21 (1947). 46. A. Nakajima, Kobunshi Kagaku, 11, 142 (1954). 47. M. R. Rao, V. Kalpagam, J. Polym. Sci., 49, S-14 (1961). 48. H.-G. Elias, F. Patat, Makromol. Chem., 25, 13 (1957).
49. E. Patrone, U. Bianchi, Makromol. Chem., 94, 52 (1966). 50. S. Gundiah, N. V. Viswanathan, S. L. Kapur, Indian J. Chem., 4, 344 (1966). 51. D. Goedhart, A. Opsehoor, J. Polym. Sci. A-2, 8, 1227 (1970). 52. D. W. Van Krevelen, "Properties of Polymers", Elsevier., New York, 1976. 53. K. Toi, Y. Maeda, T. Tokuda, J. Membr. Sci., 13, 15 (1983). 54. M. J. Fernandez-Berridi, G. M. Guzman, J. M. Elorza, L. Garijo, Eur. Polym. J., 19, 445 (1983). 55. M. T. Raetzsch, H. Freydank, G. Goebel, Faserforsch. Textiltech., 27, 425 (1976). 56. G. DiPaola-Baranyi, J. E. Guillet, Macromolecules, 11, 228 (1978). 57. W. Merk, R. N. Lichtenthaler, J. M. Prausnitz, J. Phys. Chem., 84, 1694 (1980). 58. H. G. Cho, S. C. Yoon, M. S. Jhon, J. Polym. Sci., Polym. Chem. Ed., 20, 1247 (1982). 59. E. Ikada, T. Sugimura, T. Aoyama, T. Watanabe, Polym., 16, 101 (1975). 60. S. M. Aharoni, J. Appl. Polym. Sci., 16, 3275 (1972). 61. J. E. McKinney, R. Simha, Macromolecules, 7, 894 (1974). 62. J. Janacek, J. Polym. Sci., Polym. Lett. Ed., 13, 409 (1975). 63. W. R. Brown, G. S. Park, Am. Chem. Soc, Div. Org. Coatings Plast. Chem., Pap., 34 (1), 505 (1974). 64. R. P. D'Amelia, H. Jacin, Am. Chem. Soc, Div. Org. Coatings Plast. Chem., Pap., 35 (1), 245 (1975). 65. Z. Miyagi, K. Tanaka, Colloid Polym. Sci., 257, 259 (1979). 66. G. E. Johnson, H. E. Bair, S. Matsuoka, J. E. Scott. ACS Symp. Ser., 127 (Water Polym.), 451 (1980). 67. J. E. McKinney, R. Simha, Macromolecules, 9, 430 (1976). 68. R. R Boyer, J. Macromol. Sci. B: Phys., 7, 487 (1973). 69. F. Jagodic, Spectrochim. Acta, Part, A, 29, 1556 (1973). 70. J. K. Haken, R. L. Werner, Brit. Polym. J., 5, 451 (1973). 71. W. S. Park, W. W. Graessley, J. Polym. Sci., Polym. Phys. Ed., 15, 71 (1977). 72. F. Cane, Eur. Polym. J., 14, 185 (1978). 73. K. K. Chee, J. Macromol. Sci. B: Phys., 19, 257 (1981). 74. K. K. Chee, J. Appl. Polym. Sci., 27, 1675 (1982). 75. D. Lecacheux, J. Lesec, C. Quivoron, R. Prechner, R. Panaras, J. Appl. Polym. Sci., 29, 1569 (1984). 76. L. Beltzung, C. Strazielle, Makromol. Chem., 185, 1155 (1984). 77. A. A. Tager, A. A. Askadskii, M. V. Tsilipotkina, Vysokomol. Soedin. A, 17, 1346 (1975). 78. A. R. Katritzky, A. Smith, Brit. Polym. J., 4, 199 (1972). 79. T. K. Wu, D. W. Ovenall, Macromolecules, 7, 776 (1974). 80. P. R. Sundararajan, Macromolecules, 11, 256 (1978). 81. H. N. Sung, J. H. Noggle, J. Polym. Sci., Polym. Phys. Ed., 19, 1593 (1981). 82. F. D. Blum, J. E. Dickson, W. G. Miller, J. Polym. Sci., Polym. Phys. Ed., 22, 211 (1984). 83. R. K. S. Chan, C. Worman, Polym. Eng. Sci., 12,437 (1972). 84. N. M. Chaurasia, Polym., 17, 570 (1976). 85. R.-J. Roe, A. Tonelli, Macromolecules, 11, 114 (1978). 86. E. Sacher, J. Colloid Interface Sci., 92, 275 (1983).
87. K. M. Hong, J. Noolandi, Macromolecules, 14, 1229 (1981). 88. O. Sandberg, G. Baeckstroem, J. Polym. Sci., Polym. Phys. Ed., 18, 2123 (1980). 89. E. Bapda, DEFAZET Dtsch. Farben-Z., 32, 372 (1978). 90. C. M. L. Atkinson, R. Dietz, Eur. Polym. J., 15, 21 (1979). 91. D. K. Gilding, Polymer, 22, 505 (1981). 92. J. Bouwma, R. Dietz, L. J. Maisey, B. Wright, Eur. Polym. J., 20, 471 (1984). 93. T. Oishi, J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 17, 333 (1978). 94. K. Toi, Y Maeda, T. Tokuda, J. Appl. Polym. Sci., 28, 3589 (1983). 95. H. Sasabe, C. T. Moynihan, J. Polym. Sci., Polym. Phys. Ed., 16, 1447 (1978). 96. S. Negami, R. J. Ruch, R. R. Myers, J. Colloid Interface Sci., 90, 117 (1982). 97. Kubat, L. A. Nisson, Mater, Sci. Eng., 52, 223 (1982). 98. A. T. Riga, Polym. Eng. Sci., 18, 1144 (1978). 99. H. Ahmad, M. Yassen, Polym. Eng. Sci., 19, 858 (1979). 100. M. Salame, Am. Chem. Soc, Div. Org. Coatings Plast. Chem., Pap., 36 (1), 488 (1976). 101. G. L. Games Jr., Polym. Eng. Sci., 12, 1 (1972). 102. N. K. Roy, Indian J. Phys., 51B, 65 (1977). 103. Z. Roszkowski, Makromol. Chem., 183, 669 (1982). 104. H. F. Mark, N. G. Gaylord, N. M. Bikales (Eds.), "Encyclopedia of Polymer Science and Technology: Plastics, Resins, Rubbers, Fibers", Interscience, New York, 1964. 105. G. M. Kline, Analytical Chemistry of Polymers, Part III, Interscience, New York, 1962. 106. E. V. Frisman, A. B. Chzu, Vysokomol. Soedin., 4, 1564 (1962). 107. E. V. Frisman, A. K. Dadivanyan, J. Polym. Sci. C, 16, 1001 (1967). 108. V. N. Tsvetkov, A. E. Grishchenko, L. E. De-Millo, E. N. Rostovskii, Vysokomol. Soedin., 6, 384 (1964). 109. E. V. Frisman, V. A. Andreichenko, Vysokomol. Soedin., 4, 1559 (1962). 110. E. Riande, E. Saiz, "Dipole Moments and Birefringence of Polymers" Prentice Hall, New Jersey, 1992, p. 288. 111. E. Riande, E. Saiz, and J. E. Mark, J. Polym. Sci. Polym. Phys. Ed., 22, 863 (1984). 112. V. N. Tsvetkov, N. N. Boitsova, M. G. Vitovskaja, Vysokomol. Soedin., 6, 297 (1964). 113. J. E. McKinney, M. Goldstein, J. Res. Nat. Bur. Stand., 78A, 331 (1974). 114. S. Beret, J. M. Prausnitz, Macromolecules, 8, 536 (1975). 115. J. E. McKinney, R. Simha, Macromolecules, 7, 894 (1974). 116. H. F. Mark, D. F. Othmer, C. G. Overberger, G. T. Seaborg, (Eds.) "Encyclopedia of Chemical Technology", vol. 23, 3rd ed., Wiley-Interscience, New York, 1978. p. 830. 117. H. Fikentscher, Cell. Chem., 13, 71 (1932). 118. E. O. Kraemer, Ind. Eng. Chem., 30, 1200 1938). 119. S. Wu, J. Colloid Interface Sci., 31, 153 (1969). 120. L.-H. Lee, in "Interaction of Liquids at Solid Substrates", Advances in Chemistry Series No. 87, American Chemical Society, Washington, DC, 1968, p. 106.
121. Y. Ishida, M. Matsuo, K. Yamafuje, Kolloid Z. Z. Polym. ScL, 180, 108 (1962). 122. M. Matsuo, Y. Ishida, K. Yamafugi, M. Takayanagi, F. Irie, Kolloid Z., 201, 7 (1965). 123. S. Mashima, R. Nozaki, S. Yagihara, S. Takeishi, J. Chem. Phys., 77, 6262 (1982). 124. S. Havriliak, Jr. D. G. Watts, Polymer, 27, 1509 (1986). 125. S. Negami, "Dielectric Properties of Polymers", Ph.D. Thesis, Kent University, 1969. 126. X. Von Broens, F. H. Muller, Kolloid Z., 140, 121 (1955). 127. W. Heinrich, B. Stoll, Colloid Polym. ScL, 263, 874 (1985). 128. D. E. Beuerger, R. H. Boyd, Macromolecules, 22, 2699 (1989). 129. X. Von Broens, F. H. Muller, Kolloid Z., 140, 121 (1955). (1941). 130. Y. Hatano, B. Tomita, H. Mizumachi, Holzforschung, 40, 255 (1986). 131. N. B. Colthup, L. H. Daly, S. E. Wiberley, "Introduction to Infrared and Raman Spectroscopy", 2nd ed., Academic, New York, 1975. 132. The Infrared Spectra Atlas of Monomers and Polymers Sadtler Res. Labs., Philadelphia, 1980. 133. D. O. Hummel, "Atlas of Polymer and Plastics Analysis", 2nd ed., Verlag Chemie, New York, 1978. 134. M. Ueda, K. Kajitani, Makromol. Chem., 108, 138 (1967). 135. R. Naito, Kobunshi Kagaku, Chem. High Polym. (Tokyo), 16, 7 (1959). 136. G. S. Misra, V. P. Gupta, Makromol. Chem., 71, 110 (1964). 137. M. R. Rao, V. Kalpagam, J. Polym. ScL, 49, S-14 (1961). 138. A. Nakajima, K. Kagaku, Chem. High Polym. Tokyo, 11, 142 (1954). 139. V. V. Varadiah, J. Polym. ScL, 19, 477 (1956). 140. A. T. DiBenedetto, J. Polym. Sci. A, 1, 3459 (1963). 141. C. M. Hansen, Skand. Tidskr. Farg Lack, 17, 69 (1971). 142. W. Schnabel, in: "Polymer Degradation - Principles and Practical Applications", Hanser Publishers, Munich, 1981, p. 98. 143. G. Geuskens, M. Borsu, C. David, Europ. Polym. J., 8, 883 (1972); ibid. 1347 (1972). 144. S. Wu, J. Polym. Sci. Polym. Phys. Ed., 27, 723 (1989). 145. J. Brandrup, E. H. Immergut (Eds.) "Polymer Handbook", 3rd ed., Wiley, New York, 1989, Sec. VII, p. 37. 146. S. Onogi, T. Masuda, T. Ibaragi, Kolloid Z. Z. Polym., 222, 110(1968).
147. U. Gaur, S. F. Lau, B. B. Wunderlich, et al., J. Phys. Chem. Ref. Data, 12, 29 (1983). 148. P. Munk, P Hattam, Q. Du, et al., J. Appl. Polym. Sci., Appl. Polym. Symp., 45, 289 (1990). 149. G. DiPaola-Baranyi, J. E. Guillet, H.-E. Jeberien, J. Klein, Makromol. Chem., 181, 215 (1980). 150. W. Merk, R. N. Lichtenthaler, J. M. Prausnitz, J. Phys. Chem., 84, 1694 (1980). 151. G. V. Browning, J. D. Ferry, J. Chem. Phys., 17, 1107 (1949). 152. R. E. Robertson, R. Mclntosh, W. E. Grummitt, Can. J. Res., 324, 150 (1956). 153. R. E. Wagner, J. Polym. ScL, 2, 27(1947). 154. R. J. Kokes, A. R. DiPietro, F. A. Long, J. Am. Chem. Soc, 75, 6319 (1953). 155. T. Kawai, J. Polym. Sci., 32, 425 (1958). 156. A. Nakajima, H. Yamakawa, I. Sakurada, J. Polym. Sci., 35, 489 (1959). 157. G. R. Cotton, A. F. Sirianni, I. E. Puddington, J. Polym. Sci., 32,115(1958). 158. D. D. Deshpande, O. S. Tyagi, Macromolecules, 11, 746 (1978). 159. R. C. Castells, G. D. Mazza, J. Appl. Polym. Sci., 32, 5917 (1986). 160. G. DiPaola-Baranyi, J. E. Guillet, J. Klein, et al., J. Chromatography, 166, 349 (1978). 161. L. J. Thompson, F. A. Long, J. Am. Chem. Soc, 76, 5886 (1954). 162. C. Masson, H. W. Melville, J. Polym. Sci., 4, 337 (1949). 163. F. Candau, C. Strazielle, H. Benoit, Makromol. Chem., 170, 165 (1973). 164. A. Charlesby, S. H. Pinner, Proc. Roy. Soc. A, 249, 367 (1959). 165. S. Miller, M. W. Spindler, R. L. Vale, Polym. Sci., Part A, 1, 2537 (1963). 166. F. Horkay, A. M. Hecht, E. Geissler, J. Chem. Phys., 91, 2706 (1989). 167. R. Nozaki, S. Mashimo, J. Chem. Phys., 84, 3575 (1986). 168. D. J. Plazek, Polym. J., 12, 43 (1980). 169. D. J. Plazek, J. Polym. Sci., Polym. Phys. Ed., 20, 729 (1982). 170. J. D. Ferry R. F. Landel, Kolloid-Z., 148,1 (1956). 171. M. L. Williams, J. D. Ferry, J. Colloid Sci., 9, 479 (1954).
P h y s i c a l
C o n s t a n t s
P o l y ( m e t h y l
o f
m e t h a c r y l a t e ) *
W . Wunderlich ROHM GmbH, Darmstadt, FR Germany
Property Birefringence (a\ - a2) (cm3) Segmental anisotropy Ceiling Temperature (K) Coefficient of Thermal Expansion (K " *) Linear Volume
Compressibility (MPa 1 ) (x 106)
Density (mg/m3) = (g/cm3)
Diffusion O 2 in PMMA (cm2/s) ( x 108)
H 2 O in PMMA (g cm/cm2/h) Dielectric Constant
Dissipation Factor (tan 6)
Elongation at Break (%)
Value 2xlO" 2 5 20 x 10 ~25 478
Remarks Benzene Benzene, isotactic
1 47
7xlO- 5 2.60xl0~ 4 2.55 xlO" 4 2.72 xlO" 4 2.25 xlO~ 4 5.80xl0~ 4 5.6OxIO"4 5.8OxIO"4 5.75 xlO- 4
0-50 0 C Tg >Tg >Tg >Tg
245 290 355 390 500 530 561 644 1.195 1.190 1.188 1.150 0.5 1.0 1.4 3.8 5.2 3.6 3.0 2.6 2.57 2.59 0.062 0.055 0.014 0.007 0.010 4 5.5
T = 200C 60 °C 100 °C 109.3 °C 119.8°C 129.7 0C 150°C 200 °C 00C 20°C 25°C Tg 0.21 bar, 250C 0.4 bar, 25 °C 1 bar, 25 °C 1 bar, 20°C Permeability 50Hz, 25 0C IKHz, 25 0C IMHz, 25 0C 30GHz, 25 0C 138GHz, 25 °C 50 Hz, 250C IKHz, 25 °C IMHz, 250C 30GHz, 25 °C 138GHz, 250C 105 < Mw < 2 x 105 2 x 106 < M w
*Data are valid for normal radical polymerized PMMA if no tacticities are given.
Refs.
2 3 4 5 6 3 4 5 6 7 7 7 7 7 7 8 8 9 10 11 12 13 13 13 14 15 16 16 16 17,18 18 16 16 16 17,18 18 48 48
Property Entanglement Molecular Weight Entropy of Polymerization (kJ/mol/K) * Extinction Modulus (mm"1) (x 104)
Flexural Strength (MPa) = (N/mm2) Glass Transition Temperature Tg (K)
Value
Remarks
7000 -117 -40.3 5.5 5 1.9 1 145 378 377
Refs.
25 0C to solid polymer - 6 3 0C 647 nm 633 nm 514 nm 400 nm DIN 53452 Dilatometric
49 19 19,20 21 2 21 2 48 6,12 5
Dependence on Tacticity Tacticity (triad analysis) Tg (0C) 41.5 54.3 61.6 104.0 114.2 119.0 120.0 125.6 134.0 Hardness (MPa) = (N/mm2) Heat Capacity (kJ/kg/K)
Heat Conductivity (W/m/K) Heat of Combustion (kJ/kg) Heat of Polymerization (kJ/mol) Impact Strength, Sharpy (kJ/m2) Modulus of Elasticity (MPa) = (N/mm2) Modulus of Shear (MPa) = (N/mm 2) Mechanical Loss Factor (tan 6) Optical Absorption (dB/km) Partial Specific Volume (cm3/g) Rate Constants of Polymerization Contraction constant e Monomer density d (g/cm3) Chain propagation kp (1/mol/s) Chain termination kt (1/mol/s) k2p/kt value Termination mode Relative contribution of combination TTC Thermal initiation rate /?i)th (mol/l/s) Transfer to monomer CM Transfer to polymer C P *mol: monomer unit.
Iso
Hetero
Syn
0.95 0.73 0.62 0.06 0.10 0.04 0.10 0.09 0.01
0.05 0.16 0.20 0.37 0.31 0.37 0.20 0.36 0.18
0.00 0.11 0.18 0.56 0.59 0.59 0.70 0.64 0.81
195 0.585 0.878 1.255 1.42 1.72 2.05 2.38 2.35 2.50 0.19 - 26.2 - 57.8 20 3300
DIN 53456 - 1 7 3 0C - 1000C 00C 25 0C 100 °C 1200C 1800C 2400C 300 °C
22 22 5 22 49 5 22 49 48 23 23 23 23 23 23 23 24 24 50 25 19 51 2
To solid polymer ISO 179/1 fU 25 °C Dynamic 250 C, 10 Hz 250 C, 10 Hz 514.5 nm 200C in monomer 200C in monomer 700C in monomer
2 26 52 10 27 10
0 < T < 1000C
28
O = T= 1300C 313 < T < 353 K 313 < T < 353 K
31 29 29 29
In TTC = -4.1 + 1160/7 In /? ith = 1.7 - 13100/7
313 < T < 353 K
34 31
In C M = -2.60 - 2855/7 1.5 - 2.5 x 10 " 4
313 < 7 < 353 K 313 < 7 < 353 K
31 30
1700 0.08 84 0.812 0.819 0.833 -e = 0.2256 + 4.81 x 10~4r + 4.1 x 10"2f2 d = 0.9659 - 1.2129 x 10"3r +1.6813 x 10~6r2 - 1.0164 x lO"8*3 In kp = 17.68 - 3762/7 In kt = 24.91 - 2536/7 In k\lkx = 10.45 - 4988/7
Property Pressure dependence of polymerization rate activation volume AVpol (cm3/mol) Refractive Index nD ne flg -dnD/dT(K~l) Abbe's number (rn) Resistivity (ohm cm) Solvents Thermal Conductivity (WVm/K) Theta Solvents and Temperatures Acetonitrile Heptanone-4 Isoamyl acetate /i-Butyl chloride Heptanone-3 rc-Propanol
Value
Remarks
-23.6 -19.0
20 0 C 3O0C
1.492 1.494 1.502 1.2 x 10"4 3.1 x 10~4 57.8 > 1015
=589 nm =546nm =436 nm Tg
Velocity of Sound (m/s) Vicat Temperature (K)
0.160 0.193 0.250 9 = 30.00C 9 = 40.40C 9 = 57.4 0C 9 = 35.00C 0 = 26.5°C 9 = 30.00C Q = 40.00C 9 = 75.9 0C Q = 84.4 0 C
See also corresponding chapter in this Handbook 2 MHz, 25 0C 5 MHz,-40°C M w = 1.2 x 105 M w > 5 x 106 See also chapter "ViscosityMolecular Weight Relationship" in this Handbook
2700 2850 385 393
Viscosity-Molecular Weight Relationship [77] = KMa (cm 3 /g)
Acetone Benzene THF n-Butyl chloride Chloroform Water Absorption (%)
2.0
2 2,10 22,10 53 53 50 2
Syndiotactic Isotactic Syndiotactic Isotactic Syndiotactic Isotactic See corresponding chapter in this Handbook
5.2 x 10~18
Solvent
32 33
See chapter on SolventsNonsolvents in this Handbook -20°C 0-50 0 C 100 °C
Unit Cell Unperturbed Dimensions KQ = rl/M (cm2mol/g)
Refs.
T( 0 C) 20 30 25 35 = 9 25
K (xlO3) 10 5.2 10.4 50 4.8
35 36,37 38 39 40 40 40,41 41 42 42 42 42
43,44 45 46 50 50
a 0.68 0.76 0.70 0.50 0.80 Saturation T = 23 0C
43 54 54 43 54 55
7. K. H. Hellwege, W. Knappe, P. Lehmann, Kolloid-Z., 183,110 (1962). 1. V. N. Tsetkov, N. N. Boitzkova, Vysokomol. Soedin, 3, 1176 8. B. P. Shtarkman, J. M. Monich, S. A. Arzhakov, N. Yu (1960). Averbakh, Vysokomol. Soedin A, 18, 1047 (1976). 2. G. Schreyer, "Konstruieren mit Kunststoffen", Carl Hanser, 9. H. J. KoIb, I.F. Izard, J. Appl. Phys., 20, 564 (1949). Miinchen, 1972. 10. D. Panke, W. Wunderlich, Rohm GmbH, Darmstadt, unpub3. P. Heydemann, D. H. Guicking, Kolloid-Z., 193, 16 (1963). lished results. 4. J. Hennig, Diplomarbeit TH, Darmstadt, 1961. 11. W. G. Gall, N. G. McCrum, J. Polym. Sci., 50, 489 (1961). 5. J. C. Wittmann, A. J. Kovacs, J. Polym. Sci. C. 16, 4443 12. S. S. Rogers, L. Mandelkern, J. Phys. Chem., 61, 945 (1957). (1969). 13. R. E. Barker, Jr., J. Polym. Sci., 58, 553 (1962). 6. S. Loshaek, J. Polym. Sci., 15, 391 (1955). 14. J. R. MacCallum, A. L. Rudkin, Eur. Polym. J., 14,655 (1978). * Molecular weights were determined by means of light scattering and sedimentation.
REFERENCES
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37.
F. Bueche, J. Polym. ScL, 14, 414 (1954). G. Schreyer, Kunststoffe, 55, 771 (1965). E. Amrhein, Kolloid-Z., 216-7, 38 (1967). W. Zeil, R. Sistig, W. Frank, V. Hoffman, Ber. Bunsenges. Phys. Chem., 74, 883 (1970). H. Sawade, J. Macromol. Sci. C, 3, 313 (1969). R. W. Warneld, M. C. Petree, J. Polym. Sci. A, 1,1701 (1963). B. Crist, M. E. Marhic, G. Ravio, M. Epstein, J. Appl. Phys., 51, 1160(1980). E. V. Thompson, J. Polym. Sd. A-2, 4, 199 (1966). R. Hoffmann, W. Knappe, Kolloid-Z., 247, 763 (1971). V. Bares, B. Wunderlich, J. Polym. Sci. A-2, 11, 861 (1973). K. Krekeler, P. M. Klinke, Kunststoffe, 55, 758 (1965). J. Heiboer, Kolloid-Z., 148, 36 (1956). G. V. Schulz, M. Hoffmann, Makromol. Chem., 22, 220 (1957). D. Panke, M. Stickler, W. Wunderlich, Makromol. Chem., 184, 175 (1983). M. Stickler, Internal Report Rohm GmbH, Darmstadt, 1978. T. Corner, Adv. Polym. Sci., 62, 97 (1984). M. Stickler, G. Meyerhoff, Makromol. Chem., 179, 2729 (1978). T. Sasuga, M. Takehisa, J. Makromol. Sci.-Chem. A, 12, 1307 (1978). M. Yokawa, Y. Ogo T. Imoto, Makromol. Chem., 175, 179 (1974). G. V. Schulz, G. Henrici-Olive, S. Olive, Z. Phys. Chem. (Frankfurt), 27, 1 (1960). R. E. Barker, R. Y. S. Chen, R. S. Frost, J. Polym. Sci., Polym. Phys. Ed., 15, 1199 (1977). E. Calvet, J. P. Bros, H. Pinelle, Compt. Rend, 260, 1164 (1965). K. Eiermann, Kolloid-Z., 198, 5 (1964).
38. A. B. Baschirow, J. W. Selenew, S. K. Achundow, Plaste Kautschuk, 23, 351 (1976). 39. E. Cohn-Gibsberg, T. G. Fox, H. Maron, Polymer, 3, 97 (1962). 40. R. G. Kirste, G. V. Schulz, Z. Phys. Chem. (Frankfurt), 27, 301 (1961). 41. G. V. Schulz, W. Wunderlich, R. G. Kirste, Makromol. Chem., 75, 22 (1964). 42. J. Sakurada, A. Nakajima, O. Yoshizaki, K. Nahamae, KolloidZ., 186, 41 (1962). 43. G. V. Schulz, R. G. Kirste, Z. Phys. Chem. (Frankfurt), 30, 171 (1961). 44. W. Wunderlich, Makromol. Chem., 182, 2465 (1981). 45. F. Pluemer, Kolloid-Z., 176, 108 (1961). 46. A. M. North, R. A. Pethrick, D. W. Phillips, Polymer, 18, 324 (1977). 47. H. Sawada, "Thermodynamics of Polymerization", Marcel Dekker, New York, 1976. 48. M. Buck, in: Kunststoff-Handbuch, vol. 9, Carl Hauser, Munchen, 1975. 49. K. Fuchs, Chr. Friedrich, J. Weese, Macro-molecules, 29, 5893 (1996). 50. G. Schreyer, J. Lehmann, in: Kunststoff-Hand-buch, vol. 1, Carl Hauser, Munchen, 1990. 51. Th. Arndt, Internal Report Rohm GmbH, Darmstadt, 1996. 52. P. Avakian, W. Y. Hsu, P. Meakin, H. L. Snyder, J. Polym. Sci., Polym. Phys. Ed., 21, 647 (1983). 53. J. M. Cariou, J. Dugas, L. Martin, P. Michel, Appl. Optics, 25, 334 (1986). 54. H. L. Wagner, J. Phys. Chem. Ref. Data, 16, 165 (1987). 55. J. Lehmann, Materialien in ihrer Umwelt, DWS, Karlsruhe (1996).
Physical Constants of Poly(styrene) Davd i Schrader Desg ined Thermopalscits Research, The Dow Chemcial Company,Md ialnd, Ml, USA Property Birefringence
Value
Remarks
Refs.
A + B/\2 + C/\A
A = 0.8905 5 = 0.275 XlO- 9 Cm 2 C = 0.153 x 10" 18 Cm 4
21
6 - 8 x 10 ~5 1.7-2.1 x 10" 4 5.1-6.0 x l O ~ 4 0.515 0.744 >2 0.25 2.65 See solubility parameter Toluene, perchloroethylene, carbon tetrachloride, carbon disulfide, tetralin, dioxane, MEK, pyridine, cyclohexanone, ethyl acetate 220 x 10 "6 3000 See Ref.
Tg 20-80 0 C 1000C 12O0C 100°C 110-120 0 C
Dispersion
^ y x "(546nm)
A A
Coefficient of Thermal Expansion (K" 1 ) Linear Volume Coefficient of Friction
Cohesive Energy Density Common Solvents
Creep strain (%)
Compressibility (MPa ! ) Compressive Modulus (MPa) = (N/mm 2 ) Creep/Stress Relaxation
Unoriented
3 7a 7a 7b,7c 7b 7b 7c 7c
34 3 18a 35
Decreasing stress
Time (min) Figure 1. Typical creep behavior for rubber-modified styrene polymers. Crystallographic Data Density (mg/m3) Amorphous Crystalline d p /dr(g/cm 3 /K) d p /dr(g/cm 3 /K)
See under Unit Cell 1.04-1.065 1.111 1.12 -2.65 xlO"4 -6.05 xlO"4
Tg
3,4 2 1,5 6 6
Property
Value
Dielectric Constant (s) Amorphous Crystalline Dissipation Factor Amorphous Crystalline Dynamic Mechanical Loss Peaks IHz 7 kHz Entanglement Molecular Weight Glass Transition Temperature, Tg (0C) Heat Capacity, CP (kJ/kg/K) dCP/dr(kJ/(kgK2)) Heat Capacity vs. Temperature
Remarks
Refs.
2.49-2.55 2.61
at 1 kHz (curve flat to 1 GHz) at 1 kHz (curve flat to 1 GHz)
3 16a
15 x 10 " 4 3 x 10~4
at 1 kHz (curve flat to 1 GHz) at 1 kHz (curve flat to 1 GHz)
3 16a
7> = 300 K T1 = 138 K T] = 48 K 19100 80 90 (100) 1.185 (1.139) 1.256(1.394) 1.838 (1.821) 4.04 x l O - 3 See Fig. 2
16b 16b 16c 43
6 Tg (K) = 373 - (1.0 x 10 5 /M v ) 00C 500C 1000C 50°C
8 9 3,12 3,12 3,12 3 36-37
Heat capacity (kJ/(kg K)
Poly(styrene)
Atactic Amorphous Isotactic annealed
Isotactic quenched
Temperature (K) Figure 2. Heat capacity vs. temperature curves for amorphous, atactic, and isotactic poly(styrenes).
- 4.33 x 103 8.37 ± 0.08 9.00 - 67.4 - 69.9 - 3.60
Heat of Combustion (kJ/mol) ° Heat of Fusion (kJ/mol)a Crystalline Heat of Polymerization (kJ/mol)a Heat of Solution (kJ/mol)a Infrared Spectrum Intrinsic Viscosity vs. MW Limiting Oxygen Index (%) Melting Point TM (0C) Melt Viscosity - Molecular Weight Relationship
Various solvents 18.1 240 (250) log rjr = 3.4 log M- k T(0C)
Atactic Isotactic
a
mol: Monomer unit.
To solid polymer To solid polymer In monomer See Ref. See Ref.
217 281
M range > 38,000 100000-600000
13a, 14 10 2 15 13a 13a 13b 38 44 10 11
k 13.04 14.42
31 32a 39
Property
Value
Remarks
Refs.
MW Distribution Curves (For representative poly(styrenes))
32b
Anionic
Wt.%
High heat Easy-flow
Suspensionmade
Mot. wt. Figure 3. Molecular weight distribution curves for representative poly(styrenes). Nuclear Magnetic Resonance
Line width (gauss) T (0C)
Optical Dispersion, tiF-qc Poisson's Ratio Refractive Index, #?D dnD/dT(K-1) Resistivity (Ohmcm) Solubility Parameter (J/m3) 1I2 x 10~3 Sonic velocity (m/s) Specific Gravity Stress-Optical Coefficient (brewsters) Stress-Strain Curves Surface tension, 293 K, mN/m ( = dyn/cm) (Ps/air) syndiotactic Tensile Modulus, E (MPa) = (N/mm2) d£/dr(N/mm 2 /K) = (MPa/K) Thermal Conductivity (W/m/K)
Value
0 50 100 150
6.7 6.5 5.0 1.0
peaks (ppm) at 3.0, 3.5 (aromatic), 8.4 (CH2) 1.92x10 2
Referred to tetramethylsilane as + 10.0
32c
A = 486.1nm A = 656.3 nm
3 3 3 20 3 3 17a 40 3 41 22 22 22 42 45
0.325 0.33 1.59-1.60 -1.42xlO- 4 10 20 -10 22 16.6-20.2 (8.1-9.9 (cal/cm3) 1 ^) 2100 1.04-1.06 10.1 9.5 8.3,8.7 See Figs. 4-6 (next page) 40.7 3200 3400 4200 -4.48 0.105 0.116 0.128
A = 589.3 nm
Monofilament Extruded sheet Compression molded
Unoriented Oriented monofilament 00C 500C 1000C
Thermogra vimetric Analysis In vacuo (100C min"1) Wt.loss(%) 0 5 10 20
7TC) 275 330 343 360
Wt. loss(%) 40 60 80 100
47 19 18a 18b, 18c 19 3 3 3 17b
7TC) 390 408 422 450 References page V-95
Potydisperse poly(styrene)
Log Er(t) (dynes/cm2)
Log Er(t) (dynes/cm2)
Monodisperse poty(styrene)
Log t (sec)
Log t (sec) Figure 4. Stress relaxation curves for monodisperse poly(styrene).
Figure 5. Stress relaxation curves for polydisperse poly (sty rene).
SAN
Stress (psi)
Stress (MPa)
PS ABS HIPS
Elongation (%) figure 6. Stress-strain curves for styrene-based polymers.
Property
Value
Unit Cell (A) a0 b0 C0
Remarks
Refs.
Rhombohedral system; 18 monomer units in cell 21.9 22.08 21.9 22.08 6.63 6.626
1 2 1 2 1 2
Property
Value
Ultraviolet Spectrum (in vacuo) Viscosity - Molecular Weight Relationship Water Absorption at Equilibrium (2TC, 50% RH)
Refs.
Absorption bands at 260, 194 and 80 nm See also corresponding chapter in this Handbook
33
0.05%
46
M Solvent
Remarks
M T( 0 C)
K ( x 103)
Solvent
Method Osmotic Osmotic Osmotic Light scattering Light scattering
ATACTIC Benzene Benzene Toluene Toluene Toluene
30 25 25 25 30
Benzene Toluene Toluene
30 30 25
Benzene Toluene Butanone Butanone Butanone-isopropyl Alcohol Toluene Toluene Cyclohexanone
ISOTACTIC Benzene Toluene Benzene Benzene Toluene
30 30 RT 25 25
Toluene Toluene Toluene Toluene Butanone
a
Refs.
9.7 11.3 13.4 17 9.23
0.74 0.73 0.71 0.69 0.72
23 24
Osmotic Osmotic Sedimentation velocity
10.6 11.0 9.77
0.735 0.725 0.73
27
Osmotic Osmotic Osmotic Osmotic Light scattering
10.6 11.0 9.5 9.79 17
0.735 0.725 0.77 0.744 0.69
27
25 26
28
29 30 25
Constants determined by the method and solvent given in these columns; [rj\ = KMa, in ml/g.
REFERENCES 1. G. Natta, Makromol. Chem., 35, 94 (1960). 2. R. L. Miller, L. E. Nielsen, J. Polym. ScL, 55, 643 (1961). 3. R. H. Boundy, R. F. Boyer (Eds.), "Styrene, Its Polymers, Copolymers and Derivatives", Reinhold, New York, 1952. 4. G. Natta, J. Polym. ScL, 16, 143 (1955). 5. G. Natta, P. Pino, P. Corradini, F. Danusso, E. Mantica, G. Mazzanti, G. Moraglio, J. Am. Chem. Soc, 77, 1708 (1955). 6. W. Patnode, W. J. Scheiber, J. Am. Chem. Soc, 61, 3449 (1939). 7a. R. S. Spencer, G. D. Gilmore, J. Appl. Phys., 20, 502 (1949). 7b. H. J. Karam, W. C. Sager, K. S. Hyun, The Dow Chemical Company, unpublished data. 7c. M. Lund, The Dow Chemical Company, unpublished data. 8. F. P. Reding, J. A. Faucher, R. D. Whitman, J. Polym. ScL, 57, 483 (1962). 9. T. G. Fox, P. J. Flory, J. Appl. Phys., 21, 581 (1950). (The effect of residual monomer, low-molecular-weight polymer, ethylbenzene, and plasticizers being to depress Tg, the value given by these authors represents the limiting glasstransition temperature at high molecular weights.) 10. R. Dedeurwaerder, J. F. M. Oth, J. Chim. Phys., 56, 940 (1959). 11. TW. Campbell, A. C. Haven, Jr., J. Appl. Polym. ScL, 1, 73 (1959).
12. K. Ueberreiter, E. Otto-Laupenmuhlen, Z. Naturforsch, 8A, 664 (1953). 13a. D. E. Roberts, W. W. Walton, R. S. Jessup, J. Polym. ScL, 2, 420 (1947). 13b. C. Y. Liang, S. Krimm, J. Polym. ScL, 27, 241 (1958). 14. J. W. Breitenbach, J. Derkosch, Monatsh., 81, 698 (1950). 15. L. K. J. Tong, W. O. Kenyon, J. Am. Chem. Soc, 69,1402 (1947). 16a. F. L. Saunders, R. C. Mildner, The Dow Chemical Company, unpublished data. 16b. K. -H. Illers, Z. Electrochem., 65, 679 (1961). 16c J. M. Crissman, A. E. Woodward, J. A. Sauer, J. Polym. Sci. A-3, 3, 2693 (1965). 17a. P. Woodland, The Dow Chemical Company, unpublished data. 17b. J. G. Cobler, The Dow Chemical Company, unpublished data. 18a. "Strength and Stiffness", in: Plastics Design Data, Dow Technical Chemical Publication, 1965 revision. 18b. L. Kin, The Dow Chemical Company, unpublished data. 18c R. D. Andrews, J. F. Rudd, J. Appl. Phys., 28, 1091 (1957). 19. J. F. Rudd, Gurnee, J. Appl. Phys., 28, 1096 (1957). 20. L. E. Nielsen, "Mechanical Properties of Polymers", Reinhold, New York, 1962. 21. E. F. Gurnee, J. Polym. Sci. A-2, 5, 817 (1967). 22. J. F. Rudd, R. D. Andrews, J. Appl. Phys., 31, 818 (1960).
23. R. H. Ewart, H. C. Tingey, Abstracts 111th Am. Chem. Soc. Meet., April 1947; quoted in Fox and Flory, J. Am. Chem. Soc, 73, 1915 (1951). 24. C. E. H. Bawn, R. F. J. Freeman, A. R. Kamaliddin, Trans. Faraday Soc, 46, 1107 (1950). 25. P. Outer, C. I. Carr, B. H. Zimm, J. Chem. Phys., 18, 830 (1950). 26. S. N. Chinai, P. C. Scherer, C. W. Bondurant, D. W. Levi, J. Polym. ScL, 22, 527 (1956). 27. F. Danusso, G. Moraglio, J. Polym. ScL, 24, 161 (1957). 28. H. W. McCormick, J. Polym. ScL, 36, 341 (1959). 29. F. Ang, J. Polym. ScL, 25, 126 (1957). 30. W. R. Krigbaum, D. K. Carpenter, S. Newman, J. Phys. Chem., 62, 1586 (1958). 31. T. G. Fox, P. J. Flory, J. Polym. ScL, 14, 315 (1954). 32a. J. Boon, G. Challa, P. H. Hermans, Makromol. Chem., 74, 129 (1964). 32b. R. Kosfeld, Kolloid-Z., 172, 182 (1960). 32c. F. A. Bovey, G. V. D. Tiers, G. Filipovich, J. Polym. ScL, 38, 73 (1959). 33. R. H. Partridge, J. Chem. Phys., 47, 4223 (1967). 34. Roff, Scott, Pacitti (Eds.), "Handbook of Common Polymers", CRC Press, Florida, 1971, p. 46.
35. Kirk-Othmer, "Encyclopedia of Chemical Technology", vol. 21, 3rd ed., 1978, p. 806. 36-37. "Polymer Handbook", 2nd ed., Wiley, New York, 1974, p. III/217; see also this edition. 38. "Polymer Handbook", 2nd ed., Wiley, New York, 1974, p. IVYl7; see also this edition. 39. Kirk-Othmer, "Encyclopedia of Chemical Technology", vol. 21, 3rd ed., 1978, p. 808. 40. Polymer Handbook, 2nd ed., 1974, p. IV/352; see also this edition. 41. Roff, Scott, Pacitti (Eds.), "Handbook of Common Polymers", CRC Press, Florida, 1971, p. 47. 42. Kirk-Othmer, "Encyclopedia of Chemical Technology", vol. 21, 3rd ed., 1978, p. 805. 43. J. T. Seitz, "Measurement of Entanglement length in Broad Molecular Weight Systems", 50th jubilee, Rheol. Soc, Boston, 1979. 44. H. Ohe, K. Matsura, Text. Res. J., 45, (11), 778 (1975). 45. S. Wu, "Polymer Interface and Adhesion", Marcel Dekker, New York, 1982, p. 88. 46. B. Mauer, Dow Chemical Co., Midland, 1988, unpublished water absorption data. 47. A. Sciutto, F. Ga-bassi, L. Meda, R. Po, L. Pozzi, Appl. surface ScL, 125 (3-4), 287 (1998).
Physical Constants of Poly(oxymethylene) K.-F. Muck Ticona, Kelsterbach, FR Germany Property
Value
Absorption Homopolymer (density 1.418-1.419 g/cm3) Equilibrium concentration, 600C Aniline (wt.%) m-Cresol (wt.%) Dimethylformamide (wt.%) Water (DIN 53 472, after 96 h), (mg) (wt.%) Gain in volume, 600C (vol.%) Aniline m-Cresol Dimethylformamide Average sorption coefficient, 25°C Water Activation Energy of Polymerization (kJ/mol) Of radiation induced trioxane In source polymerization Post polymerization > 500C <50°C 44-55°C 45-55°C Of cationic polymerization of trioxane In ethylene dichloride In the solid state Anisotropy of Solid State Extruded POM Arc Resistance (s) (ASTM D495) Homopolymer Copolymer DIN 53484, VDE 0303, part 5 Copolymer
Refs.
9.60 16.48 5.73 20 -30 -0.14-0.21
1 1 1 3
13.7 23.0 8.6
1 1 1
See Ref.
2
—21; 121 167 287 126 165; 174
72 72 72 72 72
79.5 36 See Ref. 129 (burns) 240 (burns)
81 81 127 73 73
L4
Ceiling Temperature (0C) Polymerization of formaldehyde (gas) —• poly(oxymethylene) (solid) A t I bar
119 127 116 120 137 126 133
At different pressures calculated from Ref. 66 P (bar)
tc(°C)
0.36 0.62 1.06 1.75 2.81 4.44 6.85 10.36
100 110 120 130 140 150 160 170
Polymerization of trioxane (gas) —• poly(oxymethylene) (solid)
36
66 25 9 22 90 94 95 67
94
Property Chemical Resistance Coefficient of Linear Thermal Expansion (K"1) 20-1000C (VDE 0304) Amorphous > Tg (ASTM D 696) Copolymer Homopolymer DIN 52328, ASTM 696 Copolymer Cohesive Energy, 25°C (kJ/mol) Cohesive Energy Density (J/m3)1/2 ( x 10~3) 25°C Liquid, 25°C, theroretical value
Value
Refs.
See Refs.
73,79
1.0-1.4 x 10 ~4 7.2 x 10" 4 0.85 x 10 ~4 0.81 x 10 ~4 1.1 x 10~4
3 6 73 73
9.88
4
22.8 20.9
1 4
Comonomer Distribution by Pyrolysis/GC Comparative Figure of Tracking Crystallinity (%) Homopolymer 200C, from density-data 25°C, from X-ray-data 135°C, from X-ray-data 140°C, from X-ray-data 145°C, from X-ray-data 150°C, from X-ray-data 155°C, from X-ray-data 157°C, from X-ray-data 160°C, from X-ray-data 177°C, from X-ray-data Delrin 150, 200C, from density data Delrin 550, 200C, from density data Copolymer 20°C Hostaform C2520, M w 80000 200C from density data Hostaform C9020, M w 58000 200C from density data Homo- and copolymers, from density data Trioxane/dioxolane copolymers with different comonomer content Dependence on irradiation Crystallographic Data Poly(oxymethylene) Crystal system Space group MoI. helix Unit cell axes (A) No. of units Pc(Mgm" 3 ) Packing density Phase transition Transition energy Orth -> Trig (kJ/mol) (-OCH2) Orth, two forms Cryst. packing density Pa (Mg/m3) Amorphous packing density Heat of fusion (kJ/mol) Glass transition temperature (K)
107 600
138
64-69 77 75 73.0 73.1 75.4 76.9 67 80.0 95.5 64.0 68.7
5 6 6 70 70 70 70 6 70 70 5 5
56-59
5
56.6
5
58.7 See Ref.
5 56
See Ref. See Ref.
71 98
Trig P3 or P32 2*9/5 4.471 4.471 17.39 9 1.491 0.65
Orth P222 2* 2/1 4.767 7.660 3.563 4 1.533
99
See Ref. +0.6 0.78 1.25 0.65 9.79 191
61
0.81 -
115 100 101 60,61 61
Property For trioxane-l,3-dioxolane copolymers Crystal structure of radiation induced polytrioxane and tetroxane Deformation Under Load (%) (ASTM D621, 13.8 Mpa at 500C, 24 hr) Homopolymer Copolymer Entanglement in Solid State
Value
Refs.
See Ref.
71
See Ref.
105
0.5 1.0 See Refs.
Density (\0~3 kg/m3) = (g/cm3) Homopolymer Delrin500 After annealing Delrin 150, 200C Delrin 550, 200C Copolymer, 200C Hostaform C2520, Mw 80000 Hostaform C9020, Mw 58000 Copolymers, 200C; after annealing; mol fraction of dioxolane comonomer 0.075 0.15 0.18 0.25 0.30 0.34 Poly(oxymethylene) Trigonal, amorphous Crystalline Orthorhombic, crystalline
73 73 128,129
1.420 ±0.005 1.434 ± 0.004 1.427 1.435
7 7 5 5
1.412 1.416
5 5 71
1.412 1.388 1.380 1.363 1.358 1.346 (average values) 1.25 1.491 1.533
Degradation (initial) Under N2 Homopolymer (0C) Copolymer (0C)
61 61 61 121
318 324
Depolymerization, Energy of Activation (kJ/mol) Poly(oxymethylene)diol thermal depolymerization 90-1500C 100-120°C 130-1500C 135-1900C 170-285°C 172-188°C Cationic depolymerization - 3 0 to +33 0 C 130-1500C Anionic depolymerization 130- 1500C 135-1700C Poly(oxymethylene)diacetate and dimethyl ether Thermal degradation, 240-3400C 280-350°C 199-331°C Autoxidative degradation, 1600C Thermooxidative degradation, 145-1600C Depolymerization Rate (min"1) Poly(oxymethylene)diol Vdepoi = Ktherm (POM) +khas (POM) (Amine)
T (0C)
135 150 160 170
42 113 82.9 ±12.6 83.8 109 71 ±10 80.0 ±9.6 87.5 ±12.6 27.2 ± 6.3 62.0 ±7.5
53 9 8 11 10 88 12 8 8 13
234 134 117 117,121 61
11 10 53 52 53
See Ref.
K therm (XlO3)
1.6 ±0.2 3.5 ±0.1 5.0±0.5 7.4 ±1.0
51
kbas (XlO3)
4.1 ±0.2 7.7 ±0.5 11.6±1.0 17.0 ±2.0 References page V-110
Property
Value
Dielectric Absorption (Homopolymer) a-Absorption p-Absorption y-Absorption
Near 10 Hz at about 1400C 1 kHz-1 MHz at 6 0 - 1000C 1 GHz
Dielectric Constant (10 3 Hz) DIN 53 483, ASTM D 150-59 T
3.6-4.0
Dielectric Loss, tan6 (103 Hz) DIN 53 493, ASTM D 150-59 T
(15-50) x 10~4; See also Ref.
Dielectric Strength (kV/mm) DIN 53 481 (50 Hz, 0.5 kV/s, film 0.2 mm) Homopolymer Copolymer Diffusion (films) Water Activation energy, apparent (kJ/mol) Copolymer 0-80 0 C Copolymer, branched, 500C Diffusion coefficient, average, 25°C (cm2/s) Copolymer Copolymer, branched Copolymer, linear and branched Carbon dioxide Activation energy (kJ/mol) Copolymer Copolymer, branched Diffusion coefficient (cm2/s) Copolymer Copolymer, branched Formaldehyde Diffusion coefficient (dc) (cm2/s)
Refs.
49
3,73 3 7,14,15,16,138
50-70 33 35
3 138 138
41.5 44.4
18 2
2.7 x 10~8 7.0 x 10 " 8 See Ref.
17 17 2
48.9 38.5
17 17
1.4xlO" 9 4.4 x 10 ~9
17 17 135
T (0C)
dc (cm2/s)
60 40 21
2.14 x l O " 9 1.34 XlO- 9 1.0 XlO- 9
Dissipation Factor At 10 3 Hz (ASTM D150) Homopolymer Copolymer
3 x 10 ~3 4 x 10 ~3
73 73
Elastic Modulus (N/mm2) DIN 53457 (1 mm/min)
2600 -3400
63
20 -40 35 -70
63 63
15-75 50-75
73 73
12 7
138 138
Elongation at Break (%) DIN 53455 (50 mm/min) Low molecular mass High molecular mass ASTM D638 (5 mm/min) Homopolymer Copolymer Elongation at Yield (%) Homopolymer Copolymer
Property
Value
Refs.
Enthalpy (kJ/kg) Homopolymer OK 50K 100 K 200K 300K Copolymer OK 50K 100 K 200K 300K
0 6.909 29.69 102.6 222.5 0 6.948 29.40 100.9 211.4
19 19 19 19 19 19 19 19 19 19
Entropy (kJ/kg/K) Homopolymer OK 5OK 100 K 200K 300K Copolymer OK 50K 100K 200K 300K
0 0.2097 0.5167 1.007 1.487 0 0.2123 0.5153 0.9974 1.439
19 19 19 19 19 19 19 19 19 19
8.21 x 10 ~3 4.98 x 10 ~3 10.70 x 10 ~3
20 20 57
- 175 ± 0.8 - 169.5 ± 2.9 -128.4 ±0.9 -175 -129 -183 - 1 3 6±17 86.7
19 66 25 9 19 21 90 96,94
At 323 K in dichloroethane Tetraoxane (solid) - • poly(oxymethylene) (solid) at 298 K
-156 -155 -106 0 - 49.0 - 6.7 + 18±16 See Ref. - 41 3.41 ± 0.06
22 96,94 96,94 96,94 96,94 96,94 66 65 92 66
Entropy of Trimerization (J/K/mol trioxane) Formaldehyde (gas) -+ trioxane (cryst.) at 298 K Formaldehyde (gas) -+ trioxane (gas) at 298 K
- 526 ± 13 - 375 ± 12
91 91
See Ref.
54
Entropy of Fusion (kJ/mol/K) Of homopolymer at constant pressure Of homopolymer at constant volume Poly(oxymethylene), equilibrium value Entropy of Polymerization (J/mol/K) Formaldehyde (gas, 1 bar, 298 K) —> poly(oxymethylene) (solid) From heat capacity data From equilibrium pressure data
Formaldehyde (liquid, 298 K) -+ poly(oxymethylene) (solid) Trioxane —> poly(oxymethylene) at 298 K Gas -> solid Gas -> liquid Liquid -+ liquid Liquid -> solid Solid -> solid
Fatigue Behavior Of acetal homopolymer Flammability
126 Radiant heat flux (kW/m2) 21 25 28 34
Ignition time (s) 248 184 138 79
J Ig (0C) 277 278 282 288
References page V-110
Property
Value
Refs.
Flammability UL 94 (1.5 mm sheet) Yellow card Class
2060 HB
Flexural Modulus (N/mm2) ASTM D790 at 23°C Homopolymer Copolymer
2830 2590
73 73
97 90
73 73
105-120
3
184 174
73 73
Flexural Strength at Yield (N/mm2) ASTM D790 Homopolymer Copolymer Flexural Stress at Conventional Deflection MPa = (N/mm2) DIN 53452 Flow Temperature (0C) ASTM 569 Homopolymer Copolymer Formaldehyde Melting point (0C) Boiling point (0C) Heat of vaporization at bp (kJ/mol) Heat of combustion at 23°C (gas) (kJ/mol) Density of liquid (g/cm3) at - 200C at - 80°C Explosive limits, % by vol. in air Standard enthalpy Formation of formaldehyde (kJ/mol)
Free Fnergy of Polymerization (kJ/mol) Formaldehyde (gas, 298 K) -». poly(oxymethylene) (solid) Trioxane (298 K) -> poly(oxymethylene) Gas -> solid Gas -> liquid Liquid -> liquid Liquid -> solid Solid -> solid In dichloroethane at 323 K Tetraoxane (solid, 298 K) -> poly(oxymethylene) (solid) Friction Coefficient Against rotating steel shaft, dry (roughness height ~ 2 um, loading pressure p = 0.05 N/mm 2 , sliding speed lOOmm/min) Dynamic Static GPC of Macrocyclic POM Glass Transition Temperature (K) Hardness Ball Indentation (MPa) = (N/mm2) DIN 53456 E/ISO 2039 after 30 s
138
-118 -19 700 - 562 -570.77 ±0.42 0.815 0.917 7-72 - 104.9 ± 1.4 -116 -108.57 -97.1
73,76 73,76 73,76 73,76 83 73,76 73,76 73 66 82 83 93
- 2.9 - 3.9 -17 - 1.8 -17.6 - 6.07 - 0.4 - 3.8 - 6.3 - 9.9 See Ref. - 5.4 - 4.4
19,94 68 93 82,65 96,94 96,94 96,94 96,94 96,94 66 65 92,94 66
0.15-0.25 0.20-0.30
63 63
See Ref. See Second-Order Transition Point 130-160
114 3
Property
Value
Heat Capacity (J/mol/K) Homopolymer OK 50K 100 K 200K 300K Copolymer OK 50K 100 K 200K 300K Molten poly(oxymethylene) 190.0 K (r g ) 200.0 K 273.15 K 298.15 K 300.0 K 400.0 K 457.0K(r m ) 500.0 K 600.0 K Crystalline poly(oxymethylene) OK 50K 100 K 200K 273.15 K 298.15 K 300K 390K For the temperature range T= 25-140 0 C At mole fractions of oxyethylene units X2 <0.16 For detailed information, see Ref. and corresponding table in this Handbook For the temperature range T= 205 K to melting point
Refs.
0 9.94 16.69 28.82 42.79 0 9.97 16.40 26.56 41.11
19,37
53.58 53.95 56.67 57.60 57.67 61.39 63.51 65.11 68.83
58
0 10.10 16.68 27.15 34.94 38.26 38.52 54.00
61
85 Cp(X2, T) = 36.75 +0.1425 ( r - 2 5 ) + 80X2 See Refs.
55,56,68 61,71 102,103,104
0
Heat Deflection Temperature Under Load ( C) Martens method (DIN 53 458)
65-70
63
120-130 160-170
63 63
124 110
73 73
-508.78 ± 1 0 -511.6±1.7
68 25
Heat of Degradation (kJ/mol) Needle-like poly(oxymethylene) crystals
55.05
62
Heat of Formation (kJ/mol) Homopolymer, 25°C (standard enthalpy)
- 171.4
68
181-192 236 390 315 -336 166 315 310 252
15 70 119 15 57 62 87 62
Heat Distortion A (ISO R 75) B (DIN 53 461) (ASTM D648) Homopolymer Copolymer Heat of Combustion (kJ/mol) Poly(oxymethylene)
Heat of Fusion (kJ/kg) Poly(oxymethylene), theoretical value for 100% crystallinity Homopolymer (acetyl end groups) Copolymer (trioxane/2% ethylene oxide) Poly(oxymethylene), at equilibrium Poly(oxymethylene), needle like crystals Poly(oxymethylene), extended chain crystals Poly(oxymethylene), fibrillar products
References page V-110
Property
Value
From solid state polymerization
264 234
Heat of Polymerization (kJ/mol) Formaldehyde (gas, 1 bar, 298 K) —> poly(oxymethylene) (solid) Values obtained from equilibrium data
353 K Value from combustion data Value from calorimetric data Trioxane —> poly(oxymethylene) at 298 K Gas -> solid Gas -+ liquid Liquid -> liquid Liquid -> solid Solid -> solid
Refs. 84 16
- 66.4 ± 1.0 -51.3 ±0.3 -54.4 - 59.8 69.9 -71.1 -72.0 -55.7 ±6.3 -68.2 — 55.4 — 66.2
59,66 25 25 26 59 21 22 90 27 68 80
- 63.6 -48.1 -41.5 - 0.4 - 22.6 - 8.4 - 4 . 6 ±3.9 See Ref.
94 65 59,94 59,94 59,94 59,94 66 65
Tetraoxane —» poly(oxymethylene) Solid -+ solid In dichloroethane At 329-333 K At 323 K
-3.32 ± 0.16
86
- 26.25 ± 0.25 -17.6
80 92
Heat of Solution (kJ/mol) Water in branched copolymer, 500C
19.3
2
Heat of Sublimation Heat of Trimerization (kJ/(mol trioxane)) Formaldehyde (gas) -> trioxane (gas), at 298 K Formaldehyde (gas) - • trioxane (solid), at 298 K
Huggins Coefficient
See Lattice Energy - 139.2 ± 2.1 - 194.0 ±2.5 -188 -187
91 91 69 80
See Viscosity - Molecular Weight Relationship
Impact Strength (charpy) (kJ/m2) + 230C -30 0 C
180 160
138 138
Impact Strength (charpy) (notched) (kJ/m2) Homopolymer +23 0 C Homopolymer - 300C Copolymer +23 0 C Copolymer - 300C
9 7 6.5 6.5
138 138 138 138
Infrared Spectra
See Refs.
IR Spectra Macrocyclic POM
937 c m 1 See Ref.
Interchain Distance (A) Poly(oxymethylene) Poly(l,3-dioxolane) Lattice Energy (kJ/mol) Heat of sublimation of poly(oxymethylene) at OK (theoretical value) Mechanical Properties Impact modified poly(oxymethylene) Homopolymer Copolymer
28,51,101, 110,136 97 110
4.47 4.54
71 71
15.9 ± 1.7
4
See Ref. See Ref.
50 77
Property
Value
Melt Index (Ml) - Molecular Weight (Mw) Relationship (dg/min) Mw = 6200-129000; 1900C Melting Data At equilibrium Melting Point (0C) Homopolymer DeMn 150 Extended chain fibers Folded chain spherulites As a function of crystallization temperature From solution polymerization of trioxane, ionically initiated Fibrous product Powdery product From vacuum sublimation of trioxane Poly(oxymethylene) dimethylethers Monomer Dimer Trimer Tetramer Pentamer Copolymer Hostaform C2520, Mw = 80000 Hostaform C9020, Mw = 58000 Various kinds and contents of comonomers Copolymers with 0/2/4/6/7 mol% dioxolane Trioxane-1,3-dioxolane copolymers (average values) Mole fraction of 1,3-Dioxolane 0.075 0.15 0.18 0.25 0.30 0.34 Poly(oxymethylene), homopolymer Equilibrium melting temperature
Refs.
MI= 1.30 x 1018 xM w ~ 3 - 55
29
See Ref.
57
181 182.5 ± 0.5 174 See Ref.
5 30 30 31
186-187 178-180 195-200
30 30 30
—105.0 - 69.7 -42.5 - 9.8 18.3
4 4 4 4 4
167 170 See Ref. See Ref.
5 5 32 32 71
166 156 154 147.5 141.5 134 184 ± 2 186.4 189.2
57 70 70
DIN 53 457
2600-3400
3
Morphology
See Ref.
78
0.021 0.020 See Refs. See Refs. See Refs.
73 73 79 33,34,114 106,112,116, 122 111,113,117,120
Modulus, Tensile (1 mm/min) (MPa) = (N/mm2)
Mould Shrinkage (cm/cm) ASTM D 95 Homopolymer Copolymer NMR-Spectra 2D Dipolar 13C Crystalline
13
C
Oligomers R-(OCH2)n-R Boiling points R = -OCH 3 (0C) n=2 #i = 3 n=A n=5 Density R = -0OC-CH 3 , 25°C (g/cm3) n=1 n=2 n=3 Poly(oxymethylene), liquid, 25°C, theoretical value
See Refs.
105.0 155.9 201.9 242.3
4 4 4 4
1.1283 1.1610 1.1823 1.328
35 35 35 4
References page V-110
Property Heat of vaporization Infrared data R = -OOCCH 3
Wave number (cm"1) n= 1 n=2 n=3
Melting points Oligo (oxymethylene) dimethyl ether n = 2-5 Vapor pressure Oligo (oxymethylene) dimethyl ether n = 2-5 Permeability Permeability, Apparent Activation Energy (kJ/mol) Water Homopolymer, melt index 2.3; 500C Copolymer, linear, melt index 2.5; 500C Copolymer, branched, melt index 3.9; 500C Copolymer, 25°C Copolymer, branched, 250C Carbon dioxide Copolymer, 25°C Copolymer, branched
Value
Refs.
See Ref.
4 35
Absorption (cm"1 x mol"1)
1760 1755 1755
395 330 330
See Ref.
4
See Ref.
4
See Refs. and corresponding chapter in this Handbook
73,79
23.0 29.7 25.1 13.0 6.3
2 2 2 17 17
31.4 25.1
17 17
Photoradical Ageing
See Ref.
134
Radiolysis (Gamma)
See Ref.
133
Raman Spectra
See Refs.
Powder/single crystal (cm" 1 )
110,136
909
97
Refractive Index (n^) Extended chain crystals (fibers), different samples n nx Poly(oxymethylene) at 250C DIN 53491
1.545-1.553 1.489 1.48
30 30 63
Rockwell Hardness Homopolymer Copolymer
M94, R120 M80
73 73
See Ref.
137
Rupture Behavior (Creep) for Medical Application Schulz-Blaschke Coefficient
Second-Order Transition Point Glass Transition Temperature (K) Homopolymer
a-Relaxation, activation energy (kJ/mol) For POM single crystal T<40°C 40°C90°C
See Viscosity - Molecular Weight Relationship See Ref.
55
191 198 188 190 199
61 6 23 23 24
155 105 159
36 36 36
Property
Value
Shear Strength (N/mm2) ASTM D732 Homopolymer Copolymer Shear Modulus (GPa) 5K 77 K 293 K Shrinkage of Fibers Solvents
Solvent
Refs.
66 53
73 73 118
5.0 4.7 1.5 See Ref.
Dissolving temp. (0C)
Gel temp. (0C)
109 130 145 132 150
58 70 102 112 117 119 119 120 135
Phenol o-Chlorophenol Aniline Cyclopentanone Ethylene carbonate Cyclohexanone Benzyl alcohol Acetic anhydride Formamide Specific Volumes (cm3/g) Homopolymer Delrin 150, at 200C Delrin 550, at 2O0C Crystalline phase Varying temperatures, t (0C) Amorphous phase Varying temperatures, t (0C) Copolymer Hostaform C2520 Hostaform C9020 Amorphous, phase (varying amount (X)) of copolymer, wt.% dioxolane, 200C Amorphous phase (varying temperatures, t (0C)) Stress-Strain Curves
109
Refs. 1 1 1 1 1 1 1 1 1
0.7008 0.6968
5 5
Vc = 0.669 + 7.85 x 10 ~5 t + 5.93 x 10 " 7 t ~2 Vc = 6.64 x 1 0 ^ + 2 . 1 6 X 10" 4 t Va = 0.792 + 3.07 x 10 ~4 t Va = 0.7553 + 5.78 x 10 " 4 (/- 20)
38 71 38 5
0.7082 0.7064 Vf = 0.7553 + 0.08674 X
5 5 5
Va = 0.7578 + 5.78 x 10 ~4 (J- 20) Va = 0.7437+ 5.78 x 10" 4 t
5 57
See Ref.
39
Surface Resistivity (ohm) Homopolymer (ASTM D257) Surface Tension, max (dyn/cm) Taber Abrasion ASTM D1044, 1000 g load, CS-17 wheel, mg per 1000 cycles Homopolymer Copolymer Tensile Modulus (MPa) DIN 53457 Homopolymer Copolymer Ultra high tensile moduli tubes from a tensile drawing process under dielectrical heating Dependence on molecular weight Tensile Creep Modulus (MPa) Homopolymer, Ih Homopolymer, 1000 h
2 x 10 13 46.5
73 130
20 14
73 73
2600-3400 3200 2900 63000
63 138 138 49
See Ref.
123
2800 1500
138 138
References page V-110
Property Copolymer 1 h (MPa) Copolymer 1000 h (MPa) Tensile Strength at Break (N/mm2) ASTM D638 Homopolymer Copolymer Fibers Dependence on molecular weight Thermal Conductivity at 200C (W/m/K) VDE 0304
Value
Refs.
2500 1300
139 139
69 59 See Ref. See Ref.
73 73 108 131
0.292
3,63
Thermal Expansion Dependent on irradiation
See Ref.
98
Thermal Expansion Dependent on structure
See Refs.
131,132
Thermo-Acoustic Properties At 298 K a (10^ 3 K" 1 ) S; B* A*
124,125 0.243 1.114 1.020 1.034
Thermodynamic Data Poly(oxymethylene), recommended values
See Refs.
58,61
Tracking Resistance DIN 53480 VDE 303
KA 3 b KC > 500
63 63
114.5 91.3 1.17 3.2-3.4 2.18 xlO 1 8
64 64 40 40 64
0 7.97 32.29 104.9 178.2 208.0
22
0 0.244 0.573 1.064 1.373 1.477 3.165±0.038 3.207 ±0.001 3.5-28.7 45 1492 56.6 55.39
22
Trioxane Boiling point (0C) Boiling point of azeotrope, 30% water, 70% trioxane (0C) Density, 65°C (g/cm3) Dielectric constant, 20°C, 1.6MHz Dipole moment Enthalpy (kJ/kg) OK 50K 100 K 200K 273.16 K 298.16 K Entropy (kJ/kg/K) OK 50K 100 K 200K 273.16 K 298.16 K 298.16K (gas, 1 bar) Explosive mixtures with air (vol.%) Flash point (0C) Heat of combustion, 23°C (kJ/mol) Heat of sublimation (kJ/mol) Heat of solution in dichloroethane at 5O0C: trioxane (cryst.) —> trioxane (soln.) (kJ/mol) Heat of vaporization at b.p. (kJ/mol) Melting point (0C) * Acoustic parameters.
15.0 ±0.1 41.5 40.6 62-64
22 65 64 64 73,89 73 65 80 73 65 38
Property
Value
Molecular weight Solubility in different solvents Solvents Specific heat (kJ/kg/K) OK 50K 100 K 200K 273.16K 298.16 K Vapor pressure at 25°C (kPa) Standard enthalpy, formation of trioxane (kJ/mol) Thermodynamic data, others Unit Cell Spacings
Refs.
90.08 See Ref. Water, alcohols and ethers
40 75
0 0.372 0.5767 0.8783 1.138 1.237 1.7 — 509 ± 5 -521±4 See Ref.
22
73 66 81 65
See Crystallographic Data
Vicat Softening Point (0C) DIN 53 460/ASTM D1525-65 T ASTM D1525 Homopolymer Copolymer
160-170
3
157 151 162
Viscosity - Molecular Weight Relationships [rj\ = K x Ma (ml/g)
138 138 73
See also corresponding chapter in this Handbook
FR*
WP*
Molecular weight range (xlO3)
0.66 0.724 0.81
? -
? 4 4
? 62-129 62-129
OS cited in Ref. LS LS
41 29 29
0.64 0.76 0.66 0.71 0.74
8 ? 7 7
4 -
1.1-92 ? 89-285 1.5-15 1.5-15
EG OS cited in Ref. LS EG EG
42 43 74 45 45
No. of samples Solvent p-Chlorophenol, 2% a-pinene IH, IH, 5H-octafluoropentanol-l Phenol - tetrachloroethane (25-75 wt.), 2% a-pinene Phenol Dimethylformamide Hexafluoroacetone sesquihydrate + triethylamine
t(°C)
K (xlO3)
130 60 110
54.3 41.3d 13.3
90 90 150 130 25
12.16 11.3 44.0 22.4 46.0
a
Method0
Refs.
a
Fractionated. ^Polymer unfractionated. C OS - Osmotic measurement; LS - Light scattering; EG - Viscosity measurement. "Winh-
Huggins coefficient fcH> ?7sp/c = V + ^nV2C Hexafluoroacetone hydrate 25°C Hexafluoroacetone-water mixtures Hexafluoroacetone-sesquihydrate 4-triethylamine, 25°C Hexafluoroacetone-water (1:1.7mol) +triethylamine, 25°C /?-Chlorophenol/2% a-pinene (600C)
0.41 See. Ref. 0.31 0.30±0.02 0.40
44 44 45 46 47
0.29 See Ref. 0.23 0.21
44 44 43 48
Volume Resistivity (ohm cm) Film 0.2 mm, DIN 53 482/ASTM D257-61
>1015
3
Water Absorption DIN 53472 (mg) After 96 h immersion
20-30
63
Schulz-Blaschke coefficient KSB, T?SP/C = KSB[V\
X
^hsp + [v]
Hexafluoroacetone hydrate, 25°C Hexafluoroacetone-water mixtures, 250C Phenol-tetrachloroethane, 1:3 (per weight), 900C
References page V-110
Property ASTM D570 (%) After 24 h immersion Homopolymer Copolymer Equilibrium, (50% r.h.) Homopolymer Copolymer Yield Stress (MPa) Homopolymer Copolymer
Value
Refs.
0.25 0.22
73 73
0.2 0.16
73 73
71 66
138 138
REFERENCES 1. R. G. Alsup, J. O. Punderson, G. R Leverett, J. Appl. Polym. ScL, 1, 185 (1959). 2. G. F. Hardy, J. Polym. Sci. A-2, 5, 671 (1967). 3. VDI, Richtlinien 2477, "Polyacetale fur die Feinwerktechnik", VDI-Verlag, Diisseldorf, Gruendruck Oktober (1973). 4. R. H. Boyd, J. Polym. Sci., 50, 133 (1961). 5. H. Wilski, Makromol. Chem., 150, 209 (1971). 6. Y. Aoki, A. Nobuta, A. Chiba, M. Kaneko, Polym. J., 2, 502 (1971). 7. B. E. Read, G. Williams, Polymer, 2, 239 (1961). 8. M. Raetzsch, G. Eckhardt, Plaste Kautschuk, 20,424 (1973). 9. Y. Iwasa, T. Imoto, Nippon Kagaku Zasshi, 84, 31 (1963). 10. L. A. Dudina, N. S. Enikolopyan, Polym. Sci. USSR, 5, 36 (1964). 11. N. Grassie, R. S. Roche, unpublished. 12. J. Mejzlik, Makromol. Chem., 59, 184 (1963). 13. H. Pennewiss, V. Jaacks, W. Kern, Makromol. Chem., 103, 285 (1967). 14. Y. Ishida, Kolloid-Z., 171, 149 (1960). 15. H. Wilski, Kolloid-Z., 248, 867 (1971). 16. A. Tanaka, S. Uemura, Y. Ishida, J. Polym. Sci. (Phys.), 10, 2093 (1972). 17. J. L. Williams, V. Stannett, J. Appl. Polym. Sci., 14, 1949 (1970). 18. M. Braden, J. Polym. Sci. A-I, 6, 1227 (1968). 19. F. S. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 3, 263 (1962). 20. H. W. Starkweather, Jr., R. H. Boyd, J. Phys. Chem., 64,410 (1960). 21. J. B. Thompson (see J. F. Walker, "Formaldehyde", 3rd Ed. p. 180, Reinhold, New York 1964). 22. G. A. Clegg, T. P. Melia, A. Tyson, Polymer, 9, 75 (1968). 23. F. S. Stehling, L. Mandelkern, J. Polym. Sci. B, 7, 255 (1969). 24. K. Miki, S. Yamane, M. Kaneko, "Proc. Fifth Intern. Congress Rheology", vol. 3, University of Tokyo Press, p. 335 (1970). 25. F. S. Dainton, K. J. Ivin, D. A. G. Walmsley, Trans. Faraday Soc, 55, 61 (1959). 26. J. F. Walker, "Formaldehyde", 3rd Ed., p. 180, Reinhold, New York, 1964.
27. Y. Iwasa, T. Imoto, J. Chem. Soc. Japan, Pure Chem. Sect., 84, 29 (1963). 28. A. Novak, E. Whalley, Trans. Faraday Soc, 55, 1484 (1959). 29. H. L. Wagner, K. F. Wissbrun, Makromol. Chem., 81, 14 (1965). 30. M. Jaffe, B. Wunderlich, Kolloid-Z., 216/217, 203 (1967). 31. K. F. Wissbrun, J. Polym. Sci. A-2, 4, 827 (1966). 32. M. Inoue, J. Appl. Polym. Sci., 8, 2225 (1964). 33. D. Fleischer, R. C. Schulz, Makromol. Chem., 166, 103 (1972). 34. Y. Yamashita, T. Asakura, M. Okada, K. Ito, Makromol. Chem., 129, 1 (1969). 35. J. Majer, Makromol. Chem., 82, 169 (1965). 36. K. Miki, Polym. J., 1, 432 (1970). 37. F. J. Boerio, D. D. Cornell, J. Polym. Sci. (Phys.), 11, 391 (1973). 38. J. Majer, O. Hainova, Kolloid-Z., 201, 23 (1965). 39. W. H. Linton, H. H. Goodman, J. Appl. Polym. Sci., 1, 179 (1959). 40. J. F. Walker, "Formaldehyde", 3rd Ed., p. 192, Reinhold, New York, 1964. 41. A. Tanaka, S. Uemura, Y. Ishida, J. Polym. Sci. A-2, 8,1585 (1970). 42. K. Doerffel, H. Friedrich, H. Grohn, D. Wimmers, PlasteKautschuk, 12, 524 (1965). 43. W. Thuemmler, Plaste-Kautschuk, 12, 582 (1965). 44. N. Grassie, R. S. Roche, J. Polym. Sci. C, 16, 4207 (1968). 45. L. Hohr. V. Jaacks, H. Cherdron, S. Iwabuchi, W. Kern, Makromol. Chem., 103, 279 (1967). 46. W. H. Stockmayer, L. L. Chan, J. Polym. Sci. A-2, 4, 437 (1966). 47. E. Kobayashi, S. Okamura, R. Signer, J. Appl. Polym. Sci., 12, 1661 (1968). 48. H. Grohn, H. Friedrich, J. Polym. Sci. C, 16, 3737 (1968). 49. K. Nakagawa, T. Konaka, S. Yamakawa Polymer, 26, 84 (1985). 50. E. A. Flexman, Jr. Modern Plastics, February 1985, 72. 51. M. Mucha, Colloid Polym. Sci., 262, 841 (1984). 52. M. Mucha, Colloid Polym. Sci., 262, 851 (1984). 53. W. Kern, H. Cherdron, Makromol. Chem., 40, 101 (1960).
54. R. Connolly, R. Gauvin, J. P. Chalifoux, Polym. Eng. ScL, 25, 548 (1985). 55. H. Suzuki, J. Grebowicz, B. Wunderlich, Br. Polym. J., 17, 1 (1985). 56. H. Suzuki, J. Grebowicz, B. Wunderlich, Makromol. Chem., 186, 1109(1985). 57. B. Wunderlich, Macromolecular Physics, vol. 3, "Crystal Melting", Academic Press, New York, 1980. 58. H. Suzuki, B. Wunderlich, J. Polym. Sci. Polym. Phys. Ed., 23, 1671, (1985). 59. B. Wunderlich, Macromolecular Physics, vol. 2 "Crystal Nucleation, Growth, Annealing", Academic Press, New York, 1976. 60. B. Wunderlich, Macromolecular Physics, vol. 1, "Crystal Structure, Morphology, Defects", Academic Press, New York 1973. 61. U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10, 1001 (1981). 62. M. Iguchi, Macromol. Chem., 177, 549 (1976). 63. Polyacetal-Formstoffe, VDI/VDE Richtlinie 2477, Nov. 1974, Beuth VIg., Berlin. 64. K. C. Frisch, "Cyclic Monomers", Wiley-Interscience, New York. 65. T. P. Melia, D, Bailey, A. Tyson, J. Appl. Chem., 17, 15 (1967). 66. W. K. Busfield, D. Merigold, Makromol. Chem., 138, 65 (1970). 67. G. Kirsch, Hoechst AG, unpublished. 68. G. S. Parks, H. P. Mosher, J. Polym. Sci. A, 1, 1979 (1963). 69. J. F. Walker, "Formaldehyde", 3rd ed., Reinhold, New York, (1964). 70. F. Salaris, A. Turturro, U. Bianchi, E. Martuscelli, Polymer, 19, 1163 (1978). 71. R J . Holdsworth, E. W. Fischer, Makromol. Chem., 175, 2635 (1974). 72. M. L. Sagu, K. M. Sharan, J. Swarup, K. K. Bhattacharyya, J. Polym. Sci. (Chem), 14, 1815 (1976). 73. "Encyclopedia of Polymer Science and Technology", vol. 1, Wiley, New York, 1964. 74. I. M. Belgovskii, N. S. Enikolopyan, L. S. Sakhonenko, Vysokomol. Soedin, 4, 1179 (1962); Polym. Sci. (USSR), 4, 367 (1963). 75. M. L. Sagu, J. Swarup, K. M. Sharan, K. K. Bhattacharyya, J. Chem. Eng. Data, 28, 81 (1983). 76. J. F. Walker, "Formaldehyde", 2nd ed., Reinhold, New York, 1953. 77. F. Kloos, E. Wolters, Kunststoffe, 75, 735 (1985). 78. O. Vogl, "Polyaldehydes", E. Arnold Ltd., London, 1967, p. 125. 79. R. B. Atkin, "Acetal Resins", Reinhold, New York (1962). 80. L. Leese, M. V. Baumber, Polymer, 6, 269 (1965). 81. S. Okamura, E. Kobayashi, M. Takeda, K. Tomikawa, T. Higashimura, J. Polym. Sci., 4, Pt. C, 827 (1963). 82. M. Delepine, M. Badoche, C. r. hebd. Seances, Acad. Sci., 214, 777 (1942). 83. R. A. Fletscher, G. Pilcher, Trans. Faraday. Soc, 66, 794 (1970).
84. A. Munoz-Escalona, E. W. Fischer, G. Wegner, International Symp. Macromolecules, Aug.-Sept. 1970, Leiden, reprint III, p. 56. 85. M. Droscher, Makromol. Chem., 178, 1195 (1977). 86. K. Nakatsuka, H. Suga, S. Seki, Polym. Lett., 7, 361 (1969). 87. M. Droscher, K. Hertwig, M. Rodriquez, G. Wegner, Makromol. Chem., 177, 2793 (1976). 88. G. Opitz, G. Burger, P. Steinmann, Plaste Kautschuk, 27,124 (1980). 89. G. F. Palfrey, E. I. du Pont De Nemours Co., Inc., unpublished communication, cit. in ref. 76, p. 149. 90. F. S. Dainton, K. J. Ivin, Trans. Faraday Soc, 46, 331 (1959). 91. W. K. Busfield, D. Merigold, J. Chem. Soc. A, 2975 (1969). 92. T. Miki, T. Higashimura, S. Okamura, J. Polym. Sci., 8, 157 (1970). 93. T. Miki, T. Higashimura, S. Okamura, J. Polym. Sci. A-I, 5, 2997 (1967). 94. H. Sawada, "Thermodynamics of Polymerization", Marcel Dekker, New York, 1976. 95. T. R Melia, Polymer, 7, 640 (1966). 96. A. A. Berlin, S. A. Volfson, E. F. Oleinik, N. S. Yenikolopyan, Vysokolmol. Soedin. A, 12, 443 (1970). 97. M. Kobayashi, H. Morishita, T. Ishioka, M. Igushi, M. Shimomura, T. Ikeda, J. MoI. Struct., 146, 155 (1986). 98. H. N. Subramanyam, S. V. Subramanyam, Euro. Polym. J., 23, 207 (1987). 99. F. Schultze-Gebhardt, Acta Polym., 38, 36 (1987). 100. M. Kobayashi, H. Morishita, M. Shimomura, M. Iguchi, Macromolecules, 20, 2453 (1987). 101. R Schmidt, B. Schneider, J. Baldrian, L. Terlemezyan, M. Mihailov, B. Ivanova, Polymer, 28, 217 (1987). 102. H. Suzuki, B. Wunderlich, J. Therm. Anal., 29, 1369 (1984). 103. H. Suzuki, J. Grebowicz, B. Wunderlich, Makromol. Chem., 186, 1109 (1985). 104. J. Grebowicz, H. Suzuki, B. Wunderlich, Polymer, 26, 561 (1985). 105. Y. Nakase, I. Kuriyama, A. Odajima, Adv. Polym. Sci., 65, 79 (1984). 106. W. E. J. R. Maas, A. P. M. Kentgens, W. S. Veeman, J. Chem. Phys., 87, 6854 (1987). 107. Y. Ishida, H.Oktani, K. Abe, S. Tsuge, K. Yamamoto, K. Kato, Macromolecules, 28, 6528 (1995). 108. T. Komatsu, S. Enoki, A. Aoshima, Polymer, 33, 2123 (1992). 109. T. Komatsu, S. Enoki, A. Aoshima, Polymer, 32, 2992 (1991). 110. M. Kobayashi, M. Sakashita, M. Hasegawa, Macromolekules, 24, 4796 (1991). 111. P. Tekely, D. Canet, J. J. Depuech, J. Violet, Magn. Reson. Chem., 28, SlO (1990). 112. A. Hagemeyer, D. Schafer, K. Schmidt-Rohr, B. Blumich, H. W. Spiess, MoI. Cryst. Liq. Cryst., 187, 223 (1990). 113. M. Kobayashi, M. Murano, A. Kaji, Macromolecules, 23, 3051 (1990). 114. M. Hasegawa, K. Yamamoto, T. Shiwaku, T. Hashimoto, Macromolecules, 23, 2629 (1990).
115. M. Kobayashi, H. Morishita, M. Shimomura, Macromolecules, 22, 3726 (1989). 116. Y. Yang, A. Hagemeyer, H. W. Spiess, Macromolecules, 22, 1004 (1989). 117. H. Kurosu, T. Komoto, I. Ando, J. MoI. Struct., 176, 279 (1988). 118. K. Ahlborn, Cryogenics, 28, 234 (1988). 119. H. W. Starkweather, G. A. Jones, P. Zoller, J. Polym. Sci. Part B, 26, 257 (1988). 120. H. Kurosu, T. Yamanobe, I. Ando, J. Chem. Phys., 89, 5216 (1988). 121. Y-Y. Fahn, W-Y Chiang, Engng. Plast, 3, 186 (1990). 122. H. W. Spiess, Bull. Magn. Reson., 11, 303 (1989). 123. C. J. G. Plummer, Ph. Beguelin, H.H. Kausch ESIS Publ., 19 265 (1995). 124. B. K. Sharma, J. Polymer Mater., 1, 193 (1984). 125. B. K. Sharma, R. R. Reddy, J. Polymer Mater., 1,178 (1984). 126. H. E. Thomson, D. R Drysdale, Fire and Materials, 11, 163 (1987). 127. A. M. Zihlif, Mater. Chem. Phys., 13, 21 (1985).
128. C. J. G. Plummer, N. Cudre-Mauroux, H. H. Kausch, Polym. Eng. Sci., 34, 318 (1994). 129. K. Tashiro, M. Kobayashi, H. Tadokoro, Polym. Eng. Sci., 34, 308 (1994). 130. T. Hata, Y. Kitazahi, T. Santo, J. Adhesion, 21, 177 (1987). 131. R. R. Zahran, A. A. Abolmagd, Poly. Eng. Sci., 34, 153 (1994). 132. R. R. Zahran, S. S. Shanouda, Y A. El-Tawil, A. El-Kayar, Poly. Eng. Sci., 36, 1377 (1996). 133. A. Faucitano, A. Buttafava, F. Martinotti, R Ferloni, A. Magistis, Radiat. Phys. Chem., 40, 347 (1992). 134. M. Y. Mel'Nikov, E. N. Seropegina, Radiat Phys. Chem., 33, 151 (1989). 135. P. Hennebert, Biomaterials, 9, 162 (1988). 136. M. Shimomura, Busshitsu Kogaku, 2, 451 (1994). 137. S. H. Teoh, ASTM Spez. Techn. Publ., STP 1173, 77 (1994). 138. Campus 4.0 (1996) CWF GmbH Frankfurt (contains also values of different grades and different sales products of different manufacturers)
P h y s i c a l
C o n s t a n t s
o f
P o l y ( o x y e t h y l e n e - o x y t e r e p h t h a l o y l ) ( P o l y ( e t h y l e n e
t e r e p h t h a l a t e ) )
M a r k Rule 1 Coca Cola Plaza N W , TEC 147, Atlanta, GA, USA
Properties of films are given for Mylar® Type A (DuPont) biaxially oriented and crystalline films. Properties of filaments are given for various products. Property
Value
1
Draw Ratio 0.040 0.092 0.167 0.193 2
Bursting Strength (g/cm ) 1 mil film, 23°C Brillouin Light Scattering
46 x 102
2,3
See Ref. 4
Coefficient of Friction (film) Kinetic, film to film 0.45 film to steel 0.14 Coefficient of Thermal Conductivity (film) (W/m/s/K) (See also Thermal Conductivity) 1000C 37.5 XlO" 3 Coefficient of Thermal Expansion (film) (K"1) 20°C-50°C 1.7 XlO" 5 Melt 6.55 x 10 " 4
2,3 6 2,3 2,3 5
Coefficient of Volume Expansion (K"1) Crystalline, below Tg 1.7 x 10 ~4 Crystalline, above Tg Compressibility (melt) (MPa) ( x 106)
3.94 x 10 ~4 6.99
5
Conductivity for Direct Current See Fig. 1 overleaf Crystallographic Data See Unit cell Density (Mg/m3) = (g/cm3) 0% Crystalline 1.333 100% Crystalline 1.455 Amorphous, non-oriented 1.335 * Value sensitive to semicrystalline morphology.
Partly cryst, non-oriented Partly cryst., oriented Highly cryst., non-oriented Calculated, crystal
Refs.
Birefringence of Filaments (sodium light) *
2.0 3.0 4.0 5.0
Property
1.385 1.390 1.420 1.515 (1.501)
Dielectric Strength (film) (V/cm) 23°C, 60Hz 1500C, 60Hz
2.95 xlO 6 2.75 xlO 6
Dielectric Constant (film) 23°C, 60Hz 23°C, 1 kHz 23°C, 1 MHz 23°C, 1 GHz 1500C, 60Hz
3.30 3.25 3.0 2.8 3.7
Dissipation Factor (film) 23°C, 60Hz 23°C, 1 kHz 23°C, 1 MHz 23°C, 1 GHz 1500C, 60Hz
0.0025 0.0050 0.016 0.003 0.00040
Entropy of Fusion (J/mol/K)
Refs. 9 9 10 11 12 2,3
2,3
2,3
Elastic Constants (filaments) (Pa"1) Oriented Sn transverse 16 x 10" 10 S 33 longitudinal 0.71 x 10" 10 7 S 44 torsional 14 x 10 " 10 512 -5.8 xl0~10 51 3 -0.3IxIO-10 Unoriented Sn or S 33 extensional 4.4 x 10~10 S 44 torsional 11 x IO" 10 Enthalpy of Fusion (kJ/mol)
81 82 9
Value
13
2.69 48.6
Folding Endurance (film) (cycles) 23°C 300 000
10 10
2,3
Amorphous
DEG (mol. %)
Crystalline Oriented & Crystalline
DEG (wt.%)
a (ohms/cm)
Melting point (0C)
Melting point (0C) Figure 2. Effect of diethylene glycol (DEG) content on melting point. Melting point (0C) = 271-273 (2,29).
T
j x io 3 (k"1)
Figure 1. Direct current conductivity at various temperatures and degrees of orientation and crystallinity (8).
Property
Value
Glass Transition Temperature* (0C) Amorphous 67 Crystalline 81 Crystalline and oriented 125
Refs. 7,14 14 15
Heat capacity See Specific heat Heat of Combustion (kJ/kg)
- 2.16 x 104
16
Heat of Sorption (film) (kJ/kg/mol) Carbon dioxide Methane
-3.IxIO4 -2.3xlO4
17
Solubility of Carbon Dioxide 25-1150C, 0-20 atm
83
Hygroscopic Coefficient of Expansion (film) (cm/cm%/RH) 20-92% RH, 1.1 x 10 ~5
2,3
Impact Strength (film) (J/m) 23°C
2,3
2.4 x 102
Infrared Spectra See Refs. 18-25 Insulation Resistance (film) (Mohm mfds) 100°C 5000 1300C 400 150°C 100 * Value sensitive to semicrystalline morphology.
Property Melting Point (0C) Equilibrium Commercial PET (metastable crystallites) Effect of diethylene glycol content
Refs.
280(310) 250-265
11(12) 2,3
See Fig. 2
29
Melt Viscosity vs. Intrinsic Viscosity Melt viscosity (Pa s) at 280°Ca
Intrinsic viscosity (ml/g), 300C in s-tetrachloroethane/ phenol (40/60)
0.45 4.5 25.0 95.0 115.0 145.0 800.0 1180.0 20000.0 a
26,27,28
Value
10 20 30 40 50 60 70 80 90
Taken from Fig. 14 of Ref. 2.
Moisture Absorption (%.)
Immersion in water at 25°C for 1 w
0.8
Nuclear Magnetic Resonance Spectrum See Refs. 13,30,31
27,28
Oligomers - acyclic Property Structure H(GA)1OH* H(GA)2OH H(GA)3OH H(GA)i-G-H H(GA) 2 -G-H H(GA) 3 -G-H H(GA) 4 -G-H H(GA) 5 -G-H HO-A-(GA) iOH HO-A-(GA) 2 OH HO-A-(GA) 3 OH HO-A-(GA) 4 OH HO-A-(GA) 5 OH
Molecular weight
Melting point (0C)
210.2 402.4 594.6
Refs.
178 200-205 219-223 179-183 186 109-110 173-174 200-205 213-216 218-220 >360 280-281 268-270 252-255 233-236
254.2 446.4 638.6 830.8 1023.0 358.3 550.5 742.7 934.9 1127.1
32 32 32 33 34 32 32 32 32 32 32 32 32 32 32
Value
Refractive Index (film), (Na Light) Amorphous, 25°C Crystalline and biaxially oriented, 23°C 80,90,1000C
Refs. 2
1.5760 1.64 85
Refractive Index Increment (specific) (cm3/g) (in hexafluoroisopropanol solution) 0.257 ± 0.004 Resistivity Surface (ohm/cm2) 23°C, 30% RH 23°C, 80% RH Volume (ohm cm) 23°C 150°C
47 2,3
2 xlO 1 5 2 xlO 1 1 1018 1014
Rheological Spectrum See Refs. 48,49
"G =
Service Temperature (0C) Property
Value
Shrinkage (film) (%) 1500C, 30min.
Oligomers - cyclic CYCLIC DIMER Melting point (0C) Unit cell (nm)
2,3 - 6 0 t o + 150
Refs.
175, 224 229 a = 0.858 b= 1.275 c -0.801 /3 = 90.7°
33 35 35
2-3
3
Solubility Constants (film) (cmVSTP cm3/Pa) ( x 107) 3 mil, 25°C Nitrogen 4.3 Oxygen 7.5 Methane 19.7 Argon 0.8
17
Solvents See chapter "Solvents-Nonsolvents" in this Handbook CYCLIC TRIMER (B-TYPE CRYSTAL) Melting point (0C) 319 317-320 321 Crystalline transition (0C) 199 (A-type -> B-type) 195 CYCLIC TETRAMER Melting point (0C)
33 36 37 37 38
326
33
256
33
CYCLIC PENTAMER Melting point (0C)
Solvent-Nonsolvent for Fractionation Solvent
Nonsolvent
o-Chlorophenol Phenol/tetrachloroethane (1:1) Phenol/chlorobenzene (1:1) Phenol/dichlorobenzene (2:3) Phenol Phenol
Hexane Gasoline Gasoline Benzene Cyclohexane Ethanol
50 51 52 53 54 55
Oligomers - Isolation See Ref. 39 Optical Haze* (ASTM D1003-61) See Ref. Permeability (film) See corresponding chapter in this Handbook. Water (cm2/s) (2.11-9.97) x 10"9
40
Sonic Velocity (filaments) (m/s) lOkHzunoriented Highly oriented
56 1400 5900
84
Photoacoustic Spectroscopy See Ref. 41 Poisson's Ratio (Oriented filament) Extensional Transverse
Specific Heat (kJ/kg/K) C p - 4.184 (A + (B x T)) 0.44 0.37
Raman Spectra
Frequency (cm" 1 )
13 Condition
21,42-46 1730 1618 1096 857 632 278
* Value sensitive to semicrystalline morphology.
of polymer Molten polymer Flake Yarn (undrawn) Yarn (drawn) Yarn (drawn + annealed)
A
B (x 104)
0.3243 0.2502 0.2469 0.2482 0.2431 0.2502
5.65 9.40 10.07 9.89 9.23 9.31
57 Effective temperature
T(0C)
270 to 290 - 2 0 to 60 - 5 to 60 - 1 0 to 55 - 10 to 80 100 to 200
References page V/117
Property
Value
1.2-40 K Below 1K
SeeRef. See Ref. 0
Stick Point Temperature ( C)
Refs.
230-240
58 59 4
Property
Value
Refs.
Transition Temperatures (0C) From second moment (NMR) measurements on fibers Unoriented 120 ± 5 Oriented 140 ± 10
13,31
Unit Cell (nm) Stress-Strain Curves for Filaments See Refs.
66,11,12
60,61 Previously accepted (Ref. 66)
Corrected (Ref. 11)
Corrected (Ref. 12)
Surface Tension (mN/m) = (dyn/cm) Solid/liquids, 250C Molten, 290°C
39.5 42.1 27 ± 3
62 63 64
Tear Strength (film (g/m) Initial, 23°C Propagating, 23°C
23.6 x 106 0.59 x 106
2,3
Tensile Strength (film) (Mpa) = (N/mm 2 ) 230C, 172
2,3
Thermal Conductivity (film) (W/m/K) 33°C 0.147 1.2-40 K SeeRef. Below 1 K See Ref.
65 58 59
Thermal Diffusivity (film) (cm 2 s) 33°C
65
9.29 x l O " 4
Torsional Modulus (MPa) = (N/mm2) Oriented filament 720
13
X-RAY DIFFRACTION (291 K) a 0.456 b 0.594 c 1.075 a 98.5° /3 118° 7 112°
0.448 0.585 1.075 99.5° 118.4° 111.2°
0.450 0.590 1.076 100.3° 118.6° 110.8°
ELECTRON DIFFRACTION (Ref. 67) a 0.452 b 0.598 c 1.077 a 101° (3 118° 7 111°
67
Viscocity-Molecular Weight Relationship See Sections I, II Young's Modulus (MPa) = (N/mm2) Oriented Filament - extensional - transverse Zero Strength Temperature (film) (0C)
1.4IxIO 4 0.063 x 104
13
248
68
Intrinsic Viscosity - Molecular Weight Relationships (Unfractionated)
Solvent
T (0C)
^(xl( )
a
Molecular weight range ( x 10 ~3)
Trifluoroacetic acid Tetrachloroethane/phenol (5:3) o-Chlorophenol tf-Chlorophenol Tetrachloroethane/phenol (1:1) Tetrachloroethane/phenol (1:1) Tetrachloroethane/phenol (1:1) Phenol/2,4,6-trichlorophenol (10:7) o-Chlorophenol
30 30 25 25 25 20 20 29.8 25
4.33 2.29 6.56 3.0 2.1 1.27 7.55 2.10 6.31
0.68 0.73 0.73 0.77 0.82 0.86 0.685 0.80 0.658
26-118 26-118 12-25 13-28 5-25 5-21 3-30 1-8 6-70
Phenol/Tetrachloroethane (3:2) Hexafluoroisopropanol Pentafluorophenol Hexafluoroisopropanol/pentafluorophenol (1:1) Methylene chloride/hexafluoroisopropanol (7:3)
25 25 25 25 -
7.44 5.20 3.85 4.50 4.03
0.648 0.695 0.723 0.705 0.691
6-70 6-70 6-70 6-70 -
o-Chlorophenol/chloroform (1:3)
25
1.49
0.56
9-100
a
(r]) = K x Ma.
Method Light scattering Light scattering Osmometry End group End group End group End group End group Size exclusion chromatography Light scattering Light scattering Light scattering Light scattering Light scattering Size exclusion chromatography Chromatography
Refs. 69 69 70 71 72 73 54 74
75 75 75 75 75 76 77
Intrinsic Viscosity - Molecular Weight Relationships (Fractionated)" Solvent o-Chlorophenol Dichloroacetic acid Trifluoroacetic acid Phenol/tetrachloroethane (2:3) o-Chlorophenol Tetrachloroethane/phenol (1:1) Phenol/dichloroethane (2:3) 0-Chlorophenol/chloroform (1:9)
T(0C) 25 25 25 25 25 20 20 25
K (x 104) 1.9 67 14 14 4.25 0.9 0.92 0.584
a
Molecular weight range ( x 10 3)
0.81 0.47 0.64 0.64 0.69 0.87 0.85 0.91
15-38 15-38 15-38 15-38 20-200 5-21 8-30 4-30
Method End group End group End group End group Sedimentation diffusion End group End group Size exclusion chromatography
Refs. 78 78 78 78 79 73 53 80
a
(r]) = KxMa.
REFERENCES 1. G. Farrow, J. Bagley, Textile Res. J., 32, 587 (1962). 2. C. J. Heffelfinger, K. L. Knox, in: O. J. Sweeting (Ed.), "Polyester Films", "The Science and Technology of Polymer Films", vol. 11, Wiley-Interscience, New York, 1971, p. 587. 3. J. M. Hawthorne, C. J. Heffelfinger, K. L. Knox, in: H. F. Mark and N. G. Gaylord (Eds.), "Polyester Films", in Encyclopedia of Polymer Science, vol. 11, Interscience, New York, 1969, p. 42. 4. D. B. Cavanaugh and C. H. Wang, J. Polym. ScL, Polym. Phys. Ed., 19, 1911 (1981). 5. H. W. Starkweather Jr., Paul Zoller, G. A. Jones, J. Polym. ScL, Polym. Phys. Ed., 21, 295 (1983). 6. Y. Yamada, K. Tanaka, Proc. ACS Div. Polym. Mater. Sci. Eng., 50, 462 (1984). 7. H. J. KoIb, E. F. Izard, J. Appl. Phys., 20, 564 (1949). 8. L. E. Amborski, J. Polym. Sci., 62, 331 (1962). 9. A. B. Thompson, D. W. Woods, Nature, 176, 78 (1955). 10. A. Mehta, U. Gaur, B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 16, 289 (1978). 11. S. Fakirov, E. W. Fisher, G. H. Schmidt, Makromol. Chem., 176, 2459 (1975). 12. Y. Kinoshita, R. Nakamura, Y Kitano, T. Ashida, Polymer Preprints, 20, 454 (1979). 13. I. M. Ward, J. Macromol. Sci. B, 1, 667 (1967). 14. O. B. Edgar, R. Hill, J. Polym. Sci., 8, 1 (1952). 15. D. W. Woods, Nature, 174, 753 (1954). 16. R. B. LeBlanc, J. Am. Assoc. Textile Chem. Color., 2, 123 (1970). 17. W. R. Vieth, H. H. Alcalay, A. J. Frabetti, J. Appl. Polym. Sci., 8, 2125 (1964). 18. S. Krimm, Fortschr. Hochpolymer Forsch., 2, 51 (1960). 19. J. L. Koenig, M. J. Hannon, J. Macromol. Sci. B, 1, 119 (1967). 20. T. R. Manley, D. A. Williams, J. Polym. Sci., C, 22, 1009 (1969). 21. F. J. Boerio, S. K. Bahl, G. E. McGraw, J. Polym. Sci., Polym. Phys. Ed., 14, 1029 (1976). 22. W. Frank, H. Fiedler, W. Strohmeier, J. Appl. Polym. Sci., Appl. Polym. Symp., 34, 75 (1978). 23. F. J. Boerio, J. L. Koenig, J. Polym. Sci. A-2, 7, 1517 (1971).
24. J. L. Koenig, D. Kormos, in: M. Shen (Ed.), "Fourier Transform Infrared Spectroscopy of the Polymeric Amorphous Phase", Contemporary Topics in Polymer Science, vol. 3, Plenum, New York, 1979. 25. W. F. X. Frank, W. Strohmeier, M. L. Hallensleben, Polymer, 22, 615 (1981). 26. DuPont Technical Bulletin No. 1-2-53. 27. DuPont Technical Bulletin No. M-IA. 28. D. D. Lanning, Prod. Eng., July, 1987 (1956). 29. R. Jannssen, H. Ruysschaert, R. Vroom, Makromol. Chem., 77, 153 (1964). 30. D. L. Vanderhart, G. G. A. Bohm, V. D. Mochel, Polym. Preprints, 22, 261 (1981). 31. S. Nohara, Chem. High Polym. (Japan), 14, 318 (1957). 32. H. Zahn, G. B. Gleitsmann, Angew. Chem., 75, 772 (1963). 33. L. H. Peebles Jr., M. W. Huffman, C. T. Ablett, J. Polym. ScL A-I, 7, 479 (1969). 34. H. Binder, US. Pat. 2,855,432. 35. H. Repin,E. Papanikolau, J. Polym. Sci. A-1,7,3426(1969). 36. F. L. Hamb, L. C. Trent, J. Polym. Sci. B, 5, 1057 (1967). 37. E. Ito, S. Okajima, J. Polym. Sci. B, 7, 583 (1966). 38. G. L. Binns, Polymer, 7, 583 (1966). 39. W. R. Hudgins, K. Theurer, T. Mariani, J. Appl. Polym. Sci.: Appl. Polym. Symposium, 34, 145 (1978). 40. S. A. Jabarin, Polym. Engineer. Sci., 22, 815 (1982). 41. E. Balizer, H. Talaat, J. Phys., 44, C6 (1983). 42. A. J. Melveger, J. Polym. Sci. A-2, 10, 317 (1972). 43. G. E. McGraw, Polym. Preprints, 11, 1122 (1970). 44. F. J. Beblase, M. L. McKenlvy, M. Lewin, B. J. Bulkin, J. Polym. Sci.: Polym. Lett. Ed., 23, 109 (1985). 45. J. Purvis, D. I. Bower, J. Polym. Sci.: Polym. Phys. Ed., 14, 1461 (1976). 46. J. Derouault, R J. Hendra, M. E. A. Cudby, G. Fraser, J. Walker, H. A. W. Willis, in: J. P. Mathieu (Ed.), Proceeding Third International Conference on Raman Spectroscopy, vol. I, Heydensons, 1973, p. 277. 47. S. A. Berkowitz, J. Liquid Chromatog., 6, 1359 (1983). 48. Y H. Park, M. S. Rhim, J. Korean Soc. Textile Eng. Chem., 35 (1983). 49. D. R. Gregory, J. Appl. Polym. Sci., 16, 1479 (1972). 50. W. R. Moore, R. P. Sheldon, J. Textile Inst, 50, T294 (1959).
51. A. Gordienko, Faserforsch. Textiltechn., 4, 199 (1953). 52. A. A. Geller, A. A. Konkin, V.A. Myagkov, Khim. Volokna, 3, 10 (1960). 53. Ye. V. Kuznetsova, A. O. Vizel, I. M. Shermergorn, S. S. Tyulenev, Vysokomolekul. Soedin., 2, 205 (1960). 54. M. M. Koepp, H. Werner, Makromol. Chem., 32, 79 (1959). 55. E. Turska-Kusmierz, T. Skwarski, Prace Inst. Wlokiennictwa, 2, 49 (1953). 56. W. W. Moseley, Jr., J. Appl. Polym. Sci., 3, 266 (1960). 57. C. W. Smith, M. Dole, J. Polym. Sci., 20, 37 (1956). 58. A. Assfalg, J. Phys. Chem. Solids, 36, 1389 (1975). 59. D. Grieg, M. S. Sahota, J Phys. C: Solid State Phys., 16, L1051 (1983). 60. A. B. Thompson, J. Polym. Sci., 34, 741 (1959). 61. Ludewig, "Polyester Fibers, Chemistry and Technology", Wiley-Interscience, New York 1964. 62. D. H. Kaelble, J. Adhesion, 2, 66 (1970). 63. S. Wu, Polym. Preprints, 11, 1291 (1970). 64. H. T. Patterson, K. H. Hu, T. H. Grindstaff, Polym. Preprints, 11, 1299 (1970). 65. R. C. Steere, J. Appl. Phys., 37, 3338 (1966). 66. R. De P. Daubeny, C. W. Bunn, C. J. Brown, Proc. Roy. Soc. (London) A, 226, 531 (1954). 67. Y. Y. Tomashpol'skii, G. S. Morkova, Polym. Sci. USSR, 6, 316 (1964). 68. B. V. Petukhov, "The Technology of Polyester Fibers", Macmillan, New York, 1963, p. 388.
69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85.
M. L. Wallach, Makromol. Chem., 103, 19 (1967). J. Marshall, A. Todd, Trans. Faraday Soc, 49, 67 (1953). I. M. Ward, Nature, 180, 141 (1957). A. Conix, Makromol. Chem., 26, 226 (1958). W. Griehl, S. Neve, Faserforsch. Textiletechn., 5, 423 (1954). N. G. Gaylord, S. Rosenbaum, J. Polym. Sci., 39, 545 (1959). S. Berkowitz, J. Appl. Polym. Sci., 29, 4353 (1984). J. R. Overton, H. L. Browning, Org. Coatings Appl. Polym. Sci. Proc, 48, 940 (1983). S. A. Jabarin, D. C. Balduff, J. Liquid Chromatogr., 5, 1825 (1982). W. R. Moore, D. Sanderson, Polymer, 9, 153 (1968). Von G. Meyerhoff, S. Shimotsuma, Makromol. Chem., 135, 195 (1970). M. Sang, N. Jin, J. Liquid Chromatogr., 5, 1665 (1982). C W . Bunn, R. R Daubeny, Proc. Roy. Soc, 226, 531 (1954). E. W. Fischer, S. Fakirov, J. Mater. Soc, 11, 104 (1976). W. J. Koros, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 16, 147 (1978). M. J. Kloppers, F. Bellucci, R. M. Latanision, J. E. Breuuan, J. Appl. Polym. Sci., 48(12), 2197 (1993). M. Cakmak, J. L. White, J. E. Spruiell Polym. Sci. Eng., 29(21), 1534(1989).
P h y s i c a l
C o n s t a n t s
o f
P o l y ( o x y t e t r a m e t h y l e n e - o x y t e r e p h t h a l o y l ) a n d
C o p o l y m e r s
O x i d e
w i t h
T e t r a m e t h y l e n e
T h e r m o p l a s t i c
E l a s t o m e r s *
K. B. W a g e n e r Department of Chemistry and Center for Macromolecular Science & Engineering, University of Florida, Gainesville, FL, USA
The literature gives different chemical abbreviations for this segmented polyester/polyether copolymer, such as PBT/ PTMO, PBT/PTHF (where PTHF abbreviates polytetrahydrofuran), and PBT/POTM (where POTM abbreviates polyoxy-tetramethylene). Occasionally, components of the
abbreviation are reversed (as in PTHF/PBT). All these abbreviations represent the same copolymer, which is available with different weight percentages of polyether being present.
Weight percentage polyether in copolymer a Property Hardness, shore D Density (mg/m 3 ) Coefficient of expansion (vol/K) @-20°C 2O0C 8O0C
0%b
10%
25%
35%
50%
60%
80 1.30
74 1.27
63 1.23
55 1.20
45 1.16
38 1.12
210 x 1 0 - 6 210 x 10 ~6
240 x 10 ~6 330 x 10 ~6 510 x 10 ~6
360 x 10 ~6 420 x 10 ~6 540 x 10 ~6
300 x 10 ~6 450 x 10 ~6 600 x 10 " 6
480 x 10 ~6
660 x 10 ~6
55 /48 C 1.35 223 54
44 /24 C 1.61 221 60
2 / - 28 C 1.72 210 41
- 23 / - 46 C 1.78 202 38
- 50 1.95 183 29
- 60 2.01 192 25
3.0 0.002 5.10 x 10 14
3.35 0.037 8.8 x 10 13
4.1 0.017 1.2 x 1 0 n
4.3 0.012 2.5 x 10 10
4.5 0.006
4.5 0.005
200 52
360 45
540 38
570 32
700 21
650 17
2600 2.74 0.78 0.011
830 2.70 1.58 0.076
300 2.17 0.96 0.062 40
170 1.94 0.48 0.035 53
90 1.60 0.08 0.03 60
53 1.25 -0.27 0.03 65
THERMAL PROPERTIES Glass transition temp. ( 0 C) Heat capacity, Cp (kJkg/K) @ 1000C Melting temperature (°C) Heat of fusion (kJ/kg) ELECTRICAL PROPERTIES Dielectric constant (1 kHz) Dissipation factor (1 kHz) Volume resistivity (ohm m) MECHANICAL PROPERTIES Ultimate elongation (%) (ASTM D 412) Tensile strength (MPa) (DIN 53504) Initial slope of stress-strain curve, Young's modulus (MPa) Storage modulus G' (log MPa) Loss modulus G" (log MPa) Loss tangent G "IG1 Resilience (rebound) (%) a b c d
Mn = 1000 for the polyether except for the 60 wt.% copolymer, in which Mn = 2000. 0% refers to the properties for pure poly(oxytetramethylene-oxyterephthaloyl) (poly(butylene terephthalate)). Two different measurement values are given, top tan <9/top G", 1 Hz. Top of highest peak.
* All data are unpublished results from the Akzo Fibers and Polymers Research Laboratories, Arnhem, The Netherlands.
P h y s i c a l
C o n s t a n t s
o f
V a r i o u s
P o l y a m i d e s :
P o l y [ i m i n o ( 1 - o x o h e x a m e t h y l e n e ) ] , ( P o l y a m i d e
6 )
P o l y ( i m i n o a d i p o y l - i m i n o h e x a m e t h y l e n e ) , ( P o l y a m i d e
6 6 )
P o l y ( i m i n o h e x a m e t h y l e n e - i m i n o s e b a c o y l ) , ( P o l y a m i d e
6 1 0 )
P o l y [ i m i n o ( 1 - o x o d o d e c a m e t h y l e n e ) ] , ( P o l y a m i d e
1 2 ) *
Rakesh H . M e h t a E.I. DuPont de Nemours & Co., DuPont Nylon, Chattanooga, Tennessee, USA
Property
Polyamide 6
Abrasion
See Wear Resistance
Absorption (%) Water, moldings 20-900C, saturation Ethanol, moldings 2O0C, saturation Butanol, moldings 200C, saturation Glycol, moldings 200C, saturation Methanol, moldings 200C, saturation Propanol, moldings 200C, saturation
9.5 ± 0.5 9-17 5-9 6-13 12-16 9-13
Adhesive Bond Strength, tensile (MPa) = (N/mm2) PA-aluminium PA-steel PA-copper Birefringence, n Ii nL
Polyamide 66
Polyamide 12
Ref. 13
8.5 ± 0.5 9-12 4-8 2-10 9-14 9-12
3.3 ± 0.3 8-13 8-12 2-4 16 10
1.6 ± 0.2 9 8,5
68 70 76
39 39 39
1.582 1.519
51 51 55
(An) 1.580 1.530
Polyamide 610
* This table includes data compiled by R. Pfliiger for the third edition of Polymer Handbook.
BHttleness Temperature, ASTM D746 (0C) PA-6 DAM
57-59
PA-66
50% RH
PA-610
DAM
50% RH
-80 -100
- 6 5 [Mn = 18000] - 8 5 [Mn =34000]
Bulk Modulus B (N/mm2) (Crystalline rods, dry)
a b c d
DAM
50% RH
-90 -
DAM
50% RH
-62 -
4400
Chemical Resistance of Nylons at 23° C Acetic acid (10%) Acetaldehyde (40%) Acetone (100%) Butanol (100%) Carbon tetrachloride (100%) Diesel oil (100%) Ethanol (96%) Formic acid (3%) (10%) Gasoline unleaded (100%) Heptane (100%) Hydrogen peroxide (2%) Dichloromethane (100%) Perchloroethylene (100%) Phenol (75%) Potassium hydroxide (10%) Sulfuric acid (10%) Toluene (100%) Transformer oil (100%)
PA-12
3300
2300
4000
57,59 3a 2 1 1 1 1 1 3 4d 1 1 4 2 1 3 1 4 1 1
3 2
1 1 1 1 1
-
3
-
4 1
1
-
4 2
1
-
3
1
-
4
1
-
1
2b V 1 1 2 1 1 1 1 1 2 3 2 3 1 2 1 1
Considerable absorption and/or attack; limited product life. Limited resistance, absorption causing dimensional changes and slight reduction in properties. Resistant, little or no absorption. Material is soluble or decomposes in short time.
Coefficient of Friction (dry) (a) Average depth of roughness R z in (urn) * 0.1 0.5 1.0 2.0 4.0 6.0
0.35 0.33 0.32 0.32 0.36 0.43
(b) Average surface pressure in (MPa) = (N/mm2) Rz Optimal Rz 1.5-3 um 0.02 0.40 0.05 0.36 0.1 0.35 0.15 0.38 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 0.43 1.2 5.0 0.48 15.0 0.48 R z <0.3um Stick-slip-motion
* Average surface pressure 0.1 MPa; surface temperature <40°C.
Coefficient
of Thermal
Expansion
( K 1 ) ( x1 0 4 )
0.5 0.43 0.38 0.35 0.38 0.46
0.55 0.45 0.38 0.35 0.37 0.40
Rx 1.5-3 jam 0.40 0.36 0.35 0.38
Rz 0.5-1 urn 0.40 0.36 0.35 0.38
0.44 0.50 0.51 Stick-slip-motion
0.4 0.32 0.29 0.26 0.24 0.23 0.22 0.21 0.19 0.18
13
13
0.44 0.50 0.51 Stick-slip-motion
13
Coefficient of Linear Thermal Expansion, ASTM D696 (10 ~5 mm/mm°C) PA-6 DAM
PA-66
50%RH
-
57,59
PA-610
DAM
50%RH
DAM
8.1
-
9
(a) Linear crystalline 200C 1000C Monoclinic a a ac ab Triclinic aa
PA-12 50%RH
DAM
50%RH
14.9
7-10 10-14 6.2 23.4 - 4.5
7-10 10-14
8-10
11 20-23 52
2.1
a c
52
22.0
0
1
4
(b) Volume, 20 C, cryst. (K" ) ( x 10 )
2.7
2.8
3.8
2.9
55
Cohesive Energy See Solubility Parameter Compressibility (MPa) (a) Dependence on temperature and pressure (calc. from PVT) 20 (0C) 50 (MPa) 100 150 300 120 50 100 150 300 200 >100
51 62 x 10 " 6 (50) 58 54 50 125 115 95 75 ->300(17)
200 x 10 ~6
(b) Dependence on water content < 1.5% >-2% melt
137 x 10" 6 (48) 226 x l O - 6 (48) 280 x 10 " 6
200 x 10~6
335 x 10 " 6
320xl0"6
650 x 10 ~6
Compressive Strength (MPa) = (N/mm2) Compressive Stress, 1% Deformation, ASTM D695 (MPa) 20 Temperature 200C strain: 1% (molded; 2.5% H2O) strain: 2% strain: 4% strain: 6%
57-59 34 14 28 56 70
21
2830
2070
91
73
13
Compressive Modulus, ASTM D695 (MPa)
58 2410
Compressive Yield Stress, 1% Offset, ASTM D695 (MPa) 83
58
Crystallographic Data See also Unit Cell Dimension Effect of Crystallinity on Solvent Absorption (% Weight Gain)
59
PA-6 Agent
b
Water 11 Methanol 19 Ethanol 17 Benzene 1 Toluene 1 Acetone 4 Benzoyl alcohol 55 Dichloromethane 20 Chloroform 34 b: low crystalline material, c: high crystalline material.
PA-66 c
b
9 3 3 0
10 14 12 1 1 2 38 16 27
0 3 11 8 19
PA-610 c 7.5 9 3 0 1 1 3 10 5
b 4 16 13 1 3 5 40 24 40
PA-12 c
b
3 9 8 1
1
1 11 13 21
c
— -
— -
References page V-132
Property
Polyamide 6
Polyamide 66
1.23 3.3
1.24 20
1.16
56.5
64.5
53.6
Crystallization Crystalline Density, X-ray (g/cm3) Max. linear growth rate of crystals
Polyamide 610
Polyamide 12
Ref.
-
65 51
V max (Hm/S)
Activation energy £a(kJ/mol) Density (Mg/m3) = (g/cm3) Crystalline a, monoclinic y, hexagonal Y, monoclinic y, pseudohexagonal a, triclinic a, triclinic P, triclinic Melt 2700C, 1 bar Moldings, amorphous crystalline
51
1.24 (53) 1.13 1.17 1.155 (42)
1.034 (9) 1.220 (47) 1.24 1.248 0.989 1.09 1.13-1.145
0.960 1.09 1.12-1.14
Correlation with crystallinity (moldings)
a = 950
0.913 1.05 1.09
830 densit
Deformation Under Load, ASTM D621 (%) 14MPa 28MPa
1.156 (8)
990 densit
?
0.840 1.01 1.04(15)
36 36
— ?
36
densit
y
58,59 1.6 1.8
1.4 1.5
Dielectric Constant e, Dielectric Loss, tan 8 ( x 10 4 ) f l FrCqUCnCy(S 1 ) PA
( 0 C)
102 er
tan 8
103 er
105
tan 8
&r
tan 8
er
tan 8
100 120 100 600 1650 1400
3.0 3.2 3.4 4.2 8.8 5.6
100 140 140 520 1500 1450
3.0 3.2 3.4 3.8 7.1 4.5
160 170 190 540 1900 1300
106 er
tan 8
107
108
109
sr
tan 8
&r
tan 8
er
tan 8
3.0 200 3.1 220 3.3 240 3.6 550 5.7 2100 3.8 920
3.0 3.1 3.2 3.4 4.4 3.5
180 230 300 550 1900 550
3.0 3.1 3.2 3.3 3.7 3.3
120 160 300 480 1250 320
3.0 3.0 3.1 3.2 3.4 3.2
55 100 200 260 550 190
6
-30 0 30 60 90 23°/50% R H *
66
-30 3.1 120 0 3.3 110 30 3.6 85 60 5.0 810 90 10 2000 23°/50%RH b 7.5 1100
3.1 3.3 3.5 4.6 8.9 5.9
105 120 125 590 1450 1020
3.1 3.2 3.4 4.3 7.6 4.8
105 135 180 460 1300 1000
3.0 3.2 3.4 4.0 6.2 4.1
130 160 215 390 1450 900
3.0 165 3.1 200 3.2 250 3.7 370 5.0 1600 3.7 700
3.0 160 3.0 200 3.1 255 3.5 360 4.0 1300 3.4 450
3.0 3.0 3.1 3.3 3.4 3.3
100 3.0 160 3.0 220 3.0 320 3.1 810 3.2 280 3.2
49 81 135 240 440 170
610 - 3 0 3.0 120 0 3.0 130 + 30 3.2 100 + 60 4.6 900 + 90 13 2500 2 0 7 6 5 % R H * 6.5 2000
3.0 3.0 3.2 4.2 10.5 5.4
110 130 150 650 1700 1500
3.0 3.0 3.1 3.9 8.5 4.5
100 130 170 570 1700 1300
3.0 3.0 3.0 3.5 6.5 4.0
110 140 200 540 1900 1000
3.0 150 3.0 170 3.0 210 3.4 540 5.2 1900 3.5 800
3.0 130 3.0 190 3.0 210 3.3 500 4.0 1500 3.2 550
3.0 3.0 3.0 3.1 3.5 3.1
80 3.0 160 3.0 170 3.0 360 3.0 800 3.1 350 3.0
55 100 130 250 350 200
12
3.0 3.1 3.5 8.5 15
160 200 500 2000 2000
2.9 3.0 3.3 6 13
100 190 450 2300 1600
2.9 3.0 3.1 4.5 10
a b
-30 0 30 60 90
3.1 140 3.1 3.2 120 3.2 3.5 65 3.5 5.2 840 4.6 15.9 2900 11.5 10.9 1450 7.3
104
30 170 3.1 200 4.0 700 11.5 2300 > 2 0 >5000
50 130 350 1300 2600
Ref. 5. Saturated
Dielectric Strength (V/cm) ( x 10 ~ 4 ) (VDE 0303, part 2; IEC-243, electrode K20/P50) Dry Dry 100°C Moist ISO-1110
100 40 60
120 40 80
100 60
90 25
Property
Polyamide 6
Polyamide 66
Diffusion See also table "Permeability Constants" in this Handbook Coefficient D H 2 O,20 0 C 0.4 (cm2/s) x 108 600C 5.5 1000C 55 Activation energy H 2 O 46 ED(kJ/mol) Elongation (ISO R527) ultimate (%) Molded (5 = 3 mm), dry Molded (s = 3 mm), moist ISO-1110 Molded at yield Dry film, NK 23/50, s = 25 urn Longitudinal Transverse Biaxially oriented Longitudinal Transverse
Polyamide 610
Polyamide 12
0.2 3.5 35 58
0.1 1.5 30 65
0.3 (16) 7 (16) 85 (16) 71 (16)
>50 >50
40 >50
>50 >50
>50 >50
10
6
Ref.
8
300 330 70 50
Enthalpy (kJ/kg) Temperature T (0C) (Ref. to 200C) 60 100 200 250 300 Pressure (MPa) = (N/mm 2 ) (r=25°C) 100 200 (T= 1500C) 0 100 200
60 135 380 585 750
Entropy of Fusion (J/mol/K) Crystalline
85 170 420 590 850
44-47.5
Equation of State* (melt) (p + Tr)(V- UJ) = RTIM11TT (bar) u (cm3/g) Mu
80 160 400 580 700
70 140
17 17
250 340 420
17 17 17
83-86
2040 (27), 2890 (18) 0.817 (27), 0.778 (18) 105 (27), 59 (18)
80 165 500 650 800
110-114
4590 (18) 0.735 (18) 35.4 (18)
540 (51) 0.77 (51)
51
3640 (18) 0.837 (18) 35.3 (18)
Flexural Strength, ASTM D790 (MPa)
51
57,59
PA-6
PA-66
Temp. (0C)
DAM
50%RH
-40 -30 23 24 80
145 113 23-20
40 -
DAM 117 -
PA-610
50%RH
DAM
42 -
-
PA-12 50%RH
-
DAM
50%RH
86 55-57 17
37-44 -
*Spencer and Gilmore; R = 82.06 (cm3bar/mol/K); v = specific volume (cm3/g) (51).
References page V-132
Glass Transition Temperature, 7 g (0C)
57-59,61-63,67-69 DAM
PA-6 PA-66 PA-610 PA-12 A: B: C: D:
A
B
56 82 56 29
65,67 65,67 46,50 25,32
50%RH C
D
59,65,75 66,78,80 65,67,70 54,62,-
100% RH
C
D
41,60 46,48 42,51 42,-
20 35 40 -
3 16
CD - 2 2 - 3 2 -15 -37 10 42 -
Estimated from melting temperature: Tg — 2/3 x Tm\ 9,10. Calculated from group contribution, 9,10. Dynamic measurements with torsion pendulum; 9,10,11,12. Static Measurement: DSC inflexion point of mechanical property versus temperature or method not identified; 9-18.
Gruneisen Parameter y%
0.58
0.49
0.45
0.64
Hardness Rockwell Hardness, ASTM D785
57-59
PA-6 DAM R116-119
51,55
PA-66
PA-610
50%RH
DAM
50% RH
DAM
R97-101
R118-121
R108
R110-111
50% RH -
Dry, 23°C MlOO M105 Moist ISO-1110,230C M 70 M 95 Ball Indentation Hardness H358/30 (MPa) = (N/mm2) (DIN 53 456), (ISO-2039) Dry, 23°C 150 160 Dry, nucleated, 23°C 160 170 Moist ISO-1110,230C 70 100-110 Heat Capacity See also corresponding table in this Handbook 200C, crystalline (J/mol/K) 204 Heat ofCombustion (kJ/kg) Heat of Crystallization (kJ/kg)
DAM
50% RH
R106-110
R 15 M 60
RUO
120
98
80
374
-31.400 -46.5
PA-12
502
354
55
-31.400 -54
51 25
Heat Distortion Temperature ASTM D648 (0C)
57,59
PA-6 Load MPa 0.5 1.8
DAM
PA-66 50%RH
55-75
(ISO-R 75) (0C) Molded, dry, 0.45(N/mm2) = (MPa) method B Molded, dry, 1.8(N/mm2) method A
DAM
PA-610 50% RH
235 90
PA-12
DAM
50% RH
DAM
50% RH
175 66
160 60
120 50
250
>160 55-90
>200 100-110
>160 65-85
150 55
190 (25) 230-278 240-260 (24) 45
196 (25)
215
95 (15)
Heat of Formation See Enthalpy Heat of Fusion (kJ/kg) Crystalline from AHm Crystalline from AHm for a-structure Amorphous, annealed 8 hat 500C Heat ofSorption (J/mol) H2O<150°C Melt
-45.6 XlO 3 (43) - 76.8 x 103 (14)
45(15)
- 58.5 x 103 (37)
** YG = (aBVm/Cp (55) where a is the coefficient of expansion (K" 1 ), B is the bulk modulus (N/mm2), Vm is the molar volume (cm3/mol), C p is the specific heat capacity (mJ/K/mol).
Property
Polyamide 6
Polyamide 66
400 440
390
Ignition Temperatures (ASTM D1929-1977) (0C) Flash-ignition temperature Self-ignition temperature
Polyamide 610
Polyamide 12
415
Impact Strength, Izod, notched, ASTM D256 (J/m)
57-59,62-64
PA-6 Temp. (C) -40 23
DAM
PA-66 50%RH
48 53
DAM
267
Ref.
PA-610 50%RH
43 53
DAM
107
PA-12 50%RH
43 53
DAM
85
50%RH
55 60
64
Tensile Impact Strength, ASTM D1822 (KJ/m2)
57-59
PA-6
PA-66
DAM
50%RH
Short
147-250
-
Long
-
Not broken
PA-610
DAM 158 [Mn = 18000] 504 [Mn = 18000] 535 [Mn = 34000]
Notched, Charpy, DIN 53453 (MPa) DAM (200C) Conditioned 4 months, 20°C and 65% RH Izod (ISO-180, method IA) (J/m) Dry, 23°C Dry,-40 0 C Moist, ISO-1110, 23°C
PA-12
50%RH
DAM
50%RH
231
168-200
-
1470
-
DAM
50%RH
Not broken
57-59 3-6 Not broken
2-3 12-30
4-10 13-15
50-100 30-50 120
40-60 30-50 110
50 35 75
Infrared Spectrum See Ref. 21 and DIN 53746 (draft) Magnetic Susceptibility (cm3/g) ( x 106) Mechanical Loss, tan<5 (ISO 537) (7 = 0.1-10 Hz) dry 20° dry 40° dry 60° dry 80° dry 100° (< 104Hz) dry 23° (10 3 Hz) 0.72% H 2 O (10 3 Hz) 120°
50-200
0.76/0.63
51
0.016 0.048 0.175 0.127 0.064
0.016 0.026 0.083 0.127 0.064 <0.02 (68) 0.12 (68) 0.2(68)
0.016 0.10 0.17 0.10 0.055
0.01 0.048 0.16 0.08 0.048
220 231 (32) 260 See Ref. (27)
262
220
178 187 (15)
270 See Ref. (45)
60 9.5 x 10" 14 (2500C)
60 7.2 x 10~ u (280°C)
60
60
Melting Point (ISO 3146, method C) (moldings) (0C) Equilibrium melting point oc-Crystalline Pressure dependence Melt Viscosity Flow activation energy* E 0 (kJ/mol) Coefficient K of zero-shear-ratemelt viscosity** (Pa s)
57,59
31 31
References page V-132
Property
Polyamide 6
Polyamide 66
Modulus (MPa) = (N/mm) Bulk modulus - See Compressibility and Bulk Modulus B Loss modulus G" See Mechanical Loss Elasticity modulus (Young) (ISO-R527) 23°, dry 3000 23°, moist ISO-1110 1500 100°, dry 500
Polyamide 610
3300 1700 600
Polyamide 12
2400 1500 400
1400 1200 200
Hexural modulus, ASTM D790 (MPa)
57-59
PA-6 Temp. (0C)
DAM 50% RH
-40 23 77
3010 2720 520
PA-66 100% RH
3650 970 340
3650 410 240
Shear modulus G (ISO 537) Dry, 23°C Dry, nucleated Dry, 1000C Dry, 200°C Apparent creep modulus (ISO-899) Ec/1000/20 (23°C, 50% RH) Nucleated
PA-610
DAM
50% RH
100% RH
3240 2830 690
3450 1210 570
480 -
DAM 50% RH 2240 1970 480
2520 1100
PA-12 100% RH
DAM
50% RH
690 -
1790 1410
1030
1100 1500 200 80
1300 1700 300 150
800
500
120
100
230 440
400 450
400
300
1.4
1.6
1.2
1.1
Moisture Absorption See Absorption Molecular Weight, (repeat unit)
113.2
226.3
282.4
197.3
Oxygen Index (ASTM-D2863) (%) Dry
25-27
28-29
24
26
0.3-0.4
0.3-0.4
0.3-0.4
Mold Shrinkage, (ASTM-D955) (%) (mold temp. 600C; 80 x 10 x 4 mm)
Ref.
100% RH
Permeability See table "Permeability Coefficients" in this Handbook Poisson Ratio (a) Moldings, 200C (b) Extruded rod; room temp. compressive axial strain 0.1 0.2 0.4 0.6
0.33
0.1-0.25 0.3-0.36 0.40-0.44 0.43-0.45 0.38
(c) Power factor at 103 Hz, dry 0.02-0.06 (d) vs. temperature: 1000C 0.46 Melt 0.50 (e) Limiting pressure velocity of nylon against steel (kPa x 0.5 m/s) 70 Refractive Index, rjD Single crystals ot, calc. P, calc. Y, obs. Moldings Resistance to Tracking (IEC-Publ. 112) Method CTI CTI-M
29 29 29 29 51
0.04 0.44 (51) 0.50
0.02 0.47 0.50
0.50
85
70
-
1.53
1.475 (8) 1.565 (8) 1.58 (8) 1.53
1.475 1.525 1.565 1.53
CTI600 CTI-M 600
CTI600 CTI-M 600
CTI600 CTI-M 600
CTI600
64
60
Shear Strength, ASTM D732 (MPa)
57-59
PA-6 DAM
PA-66 50%RH
59
-
DAM
PA-610 50%RH
66
DAM
57
PA-12 50%RH
58
DAM
50%RH
34
Shrinkage See Mold Shrinkage Solubility Parameter (J/cm3) 1I2 Amorphous, 25°C
27.8
Solvents See table "Solvents-Nonsolvents" in this Handbook Sonic Velocity, 200C (m/s) 1400-2300 (fibers)(26) Specific Heat (J/g-K) Effect of temperature (0C) 0 40 80 120 160 200 220 240 260 280
27.8
51
2770 (mouldings) (40)
1.7
1.7
1.7
1.38 1.67 1.97 2.30 2.68 -
1.30 1.55 1.97 2.30 2.68 2.72 2.76 3.35 11.51 3.14
1.38 1.76 2.13 2.22 2.47 2.89 8.16 3.10 2.64 2.68
1.26
57,59 58,59
Specific Volume, at varying pressures (MPa) and temperatures (cm3/g) At 25°C Atm 0.875 50 0.865 100 0.860 200 0.850 At 1000C Atm 0.895 50 0.885 100 0.875 200 0.860 At 200°C Atm 0.945 50 0.925 100 0.910 200 0.890 At 300 0 C Atm 1.055 50 1.020 100 0.995 200 0.960 Surface Tension, critical (mN/m) 23°C Melt, 265°C
26
40-47; 43 36
Taber Abrasion, D1044 (mg loss/1000 cycles); CS-17 wheel, 1000 g load 5
61 0.880 0.875 0.865 0.855
1.005 0.985 0.970 0.950
0.985 0.975 0.960 0.945
0.905 0.890 0.880 0.865
1.045 1.020 1.000 0.970
1.020 1.000 0.985 0.960
0.950 0.935 0.920 0.895
1.125 1.085 1.060 1.020
1.130 1.095 1.070 1.030
1.050 1.020 0.995 0.955
1.210 1.150 1.110 1.060
1.210 1.150 1.110 1.070
40; 44 36
37
31 25
38,51 22 57,59
7 [Mn = 18000] 4 [Mn = 34000]
Temperature Index/Thermal Endurance Profile: Typical Values (0C) Not stabilized 5000h 85 85 2000Oh 70 70 Heat stabilized 5000 130 130 20000 120 120
5-6
5
-
100
References page V-132
Tensile Strength
57-59
PA-6 Temp. (C)
DAM
PA-66 50%RH
DAM
PA-610 50%RH
DAM
PA-12 50%RH
DAM
50%RH
ASTM D638 (MPa) -40 120 23 81 69 77 68 59 Tensile Strength at Yield, ASTM D638 (MPa) -40 120 119 23 81 50 77 30 28
108 83 62
103 77 41
83 59 37
83 49 37
55 -
52
108 83 62
103 59 41
83 59
83 49
79 52 4
41
Tensile Elongation at Yield, ASTM D638 (%) -40 23 9 77 -
4 5 30
6 20 30
10 10 30
13 30 -
10 -
Tensile Elongation at Break ASTM D638 (%) -40 8 4 23 150 300 77 310 325
20 60 340
20 >200 350
20 100 300
30 220
250
(ISO-R 527) (MPa) = (N/mm2) Dry, 23°C Dry, 1000C Moist, 230C (% water) Moist, 230C (saturated in H 2 O) Monofilaments 23°C, 50% RH draw ratio 4.3:1 5.0:1 Thermal Conductivity (W/m/K) Moldings Crystalline (moist) 300C Amorphous (moist) 300C Melt 250°C 25°C, dependence on pressure
2
80, 90 (nucleated) 30 50 (2%) 22
90 40 60 (2%) 35
475-550 675-775
575-600 650-850
0.23 0.43 0.36 0.21 (33) 1.89
0.23 0.43 0.36 0.15 1.83
9
-
2
20
250
70 20 50 (1%)
50 17 30 (0.9%)
0.23
0.25 19 19 12 2
0.35 1.90
2.03
A(25kbar) Relative thermal index for 3 mm thickness Not stabilized Electrical Mechanical with impact without impact Heat stabilized Electrical Mechanical with impact without impact
57-59 125
125
-
65
75 85
75 85
-
65 65
130
130
-
110
105 110
105 110
-
75 95
Thermal Diffusivity (cm2/s) 1000C Melt 25O0C
1.8 x 10~3 1.4 x l O - 3 0.65 x 10 ~3
1.4 x 10~3
12
Unit Cell Dimensions Unit cell parameters (A) PA
Crystal system
6
a-Monoclinic a-Monoclinic a-Monoclinic (3-Monoclinic
Space group C2, C2,
Angles Units in
a 9.56 4.81 9.65 4.8
b 8.01 7.61 8.11 3.6-4.1
c 17.24 17.1 17.2
a
P
7 67.5 79.5 66.3
ceu<
8 4
Density (Mg/m 3 ) = (g/cm 3 ) Refs. 1.23 1.21
20
41
O Unit cell parameters (A)
Angles
Space
PA 66 610 12
Crystal system
group
7-Monoclinic a-Triclinic C} P-Triclinic CJ Pseudohexagonal a-Triclinic p-Triclinic Monoclinic P2i/c (Pseudohexagonal)
Units in
a
b
c
9.14 4.9 4.9
4.84 5.4 8.0
16.68 17.2 17.2
4.95 4.9 4.79
5.4 8.0 31.9 (fiber axis)
22.4 22.4 9.58
a
P
48.5 90
77 77
49 90 120
76.5 77
y
cell
Density
(Mg/m3) = (g/cm3) Refs.
121 4 63.5 1 67.5 2 60 (>160°C) 63.5 1 67.5 2 4 1.034
1.188 1.24 1.248 1.157 9
Melt Viscosity Coefficient K of Zero Shear Rate Melt-Viscosity (Pas) T)0(Mw) = K(M Jg mol) 34 9.5 x 10 ~4 (2500C) 7.2 x 10 " 4 (2800C)
70,71
Viscosity - Molecular-Weight Relationships Nylon
Solvent
PA-6
HCOOH (88% vol.) H 2 SO 4 (40% vol.) Trifluoroethanol m-cresol HCOOH (90% vol.) H 2 SO 4 (96% vol.) 0-Chlorophenol m-cresol m-cresol H 2 SO 4 (96% vol.)
PA-6,6
PA-6,10 PA-12
24 8,10 8 7,44 8 8
71-75
K (x 103) (mol/g) 22.6 59.2 53.6 240.0 35.3 115.0 168.0 13.5 46.3 69.4
a
M (x 104)
Refs.
0.820 0.690 0.750 0.610 0.786 0.670 0.620 0.960 0.750 0.640
0.6-12.0 0.3-1.3 1.3-10.0 1.4-5.0 0.6-6.5 1.4-5.0 1.4-5.0 0.8-2.4 1.3-13.0 1.0-13.0
1 1 1 0 0 0 0 3 2 2
Polyamide viscosity: r\ = K x Ma; see Melt Viscosity, and corresponding table in this Handbook. Volume, Specific (cm3/g) 200C, Amorphous 270°C,Melt 200C Change on melting Melt, 270°C, 1 bar Volume, Molar (cm3/mol) 20°C, Crystalline (rods) 200C, Amorphous 200C, Amorphous, calcd. from group contribution Volume Resistivity (Ohm cm) Relative humidity 0% (dry) Saturated at 50% RH, 200C 20°C (saturated) 100% RH Temperature 60°C, dry Dry, 1000C Dry, 1500C At 50% RH, 1000C
0.917 1.032 0.813 a-monoclinic 0.02-0.03 1.040
0.917 1.018 0.82 (47) a-triclinic 0.02-0.03 1.010
0.95 1.095 0.865 (8) 0.02-0.03
100 103 104.2
198 207.5 208.3
260 271
195 199.5
1 x 1015 2xlOn 4 x 108 8 x 10n 3 x 109
1 x 1015 3xl0n I x 109 6 x 10n 3 x 109 1079 4 x 107
1 x 1015 2x1012 3 x 10 10 5 x 10n 5 x 108
1015 1014 1013 1017 109
Wear Resistance (jam/km) Rz (urn) average roughness heighta 0.1 0.30 0.28 0.5 0.32 0.30 1.0 0.35 0.35 2.0 0.57 0.48 4.0 0.80 0.52 6.0 1.00 0.55 P (N/mm2) average surface pressure (Rz optimum, see also Coefficient of Friction) 0.02 0.11 0.10 0.05 0.29 0.24 0.10 0.57 0.48 0.25 1.40 1.20
0.99
36
0.966 (9) y-monoclmic 0.03 1.19 55 36
0.20 0.25 0.60 1.00 2.50 3.90
13
0.12 0.30 0.60 1.50
13
References page V-132
Property
Polyamide 6
Polyamide 66
1.00 5.00 15.00
5.70 28.00 86.00
4.80 24.00 72.00
Polyamide 610
Polyamide 12
Ref.
6.00 30.00 90.00
"Average surface pressure: 0.1N/mm2; surface temperature: <40°C
REFERENCES 1. As long as no other specific reference is cited, the values for varying polyamides were selected on the basis of the information from the technical manuals of the corresponding suppliers: PA66: ®Maranyl AlOO (ICI), ®Zytel 101 (DuPont). ®Ultramid A3K (BASF). Designation: ISO-1874-PA66, MR(H), 14-030. PA6: ®Capron 8200 (Allied Chemical), ®Durethan B31F (Bayer), ®Ultramid B3K (BASF). Designation: ISO-1874PA6. MRH, 14-030. PA610: ®Ultramid S3K (BASF). Designation: ISO-1874PA610, MRH, 14-020. PA12: ®Grilamid L20 (Ems-Chemie). ®Vestamid L1901 (Hiils). Designation: ISO-1874-PA12. G, 18-010. Preparation of test specimens and determination of properties according to ISO-1874-2 (1987) and ISO-DP294. Further property values were taken from the VDI/VDEWerkstoffblatt, No. 2479, Blatt 1 (1978). VDI-Verlag, D-4000 Diisseldorf (F. R. Germany) 'Tolyamid-Formstoffe, unverstarkt", a paper which was produced in cooperation with the above named suppliers. This leaflet contains also further approved values for other homopolyamides such as PAIl, PA612 and PA6-3-T. 2. P. Anderson, Makromol. Chem., 177, 271 (1976). 3. G. J. van Amerongen, J. Polym. ScL, 6, 471 (1951). 4. Bennewitz, R. Faserforschg., Textiltechn., 5 , 155 (1954). 5. K. Bergmann, in G. Schreyer "Konstruieren mit Kunststoffen", C. Hanser-Verl., Munchen 1972 and VDI/VDE-Werkstoffblatt 2479. Teil 1 1978. 6. E. M. Bradbury, L. Brown, A. Elliot, D. A. D. Parry, Polymer, 6, 465 (1965). 7. R. Brill, J. Prakt. Chem., 161, (1943), 49; Makromol. Chem., 18/19, 294 (1956). 8. C. W. Bunn, E. V. Garner, Proc. Roy. Soc. (London) A, 189, 39 (1947). 9. G. Cojazzi, A. Fichera, C. Garbuglio, V. Malta, R. Zannetti, Makromol. Chemie, 168, 289 (1973). 10. M. L. Colclough, R. Baker, J. Materials ScL, 73, 2531 (1978). 11. M. Dole, B. Wunderlich, Makromol. Chem., 34, 29 (1959). 12. W. Dietz. Colloid Polym. ScL, 255, 755 (1977). 13. G. Erhard, E. Strickle, Kunststoffe, 62, 2-9, 232, 283 (1972), and unpubl. measurements (BASF 1985). 14. O. Fukumoto, J. Polym. ScL, 22, S. 263 (1956). 15. S. Gogolewski, K. Gzerniawska, M. Gasiorek, Colloid & Polymer ScL, 258, 1130 (1980). 16. G. Goldbach, Angew. Makromol. Chem., 32, 37 (1973). 17. R. G. Griskey, J. K. P. Shou, Modern Plastics, 45,148 (1968).
18. F. Hafner, Th. Mietzner (BASF, Abt. Informatik; 1986), calc. from PVT-functions for ®Ultramid B4, A3K and ®Grilamid L 20. 19. K.-H. Hellwege, R. Hoffmann, W. Knappe, Kolloid-Z. Polymer, 226 (2), S109 (1968). 20. D. R. Holmes, C. W. Bunna, C. J. Smith, J. Polym. ScL, 17, 159 (1955). 21. Hummel/Scholl, "Atlas der Kunststoff -und Polymeranalyse", C. Hanser-Verl., Munchen/Verl. Chem. GmbH, Weinheim 1984 (2nd ed.). 22. F. Hybart, J. Appl. Polym. ScL, 3, 118 (1960). 23. K.-H. Illers, H. Haberkorn, Makromol. Chem., 146, 267 (1971). 24. K.-H. Illers, H. Haberkorn and P. Simak, Makromol. Chem., 158, 285 (1972); 179, 497 (1978). 25. M. Inoune, J. Polym. Sci. A, 1, 2697 (1963). 26. M. Jambrich, I. Diavik, I. Mitterpach, Faserf. Textiltechn., 23 (1), 28 (1972). 27. Y. Katayama, K. Yoneda, Rev. Electrical Comm. Lab. 20 (9/10), 921 (1972). 28. J. Kirshenbaum, J. Polym. Sci. A-3, 1869 (1965). 29. I. Krause, A. J. Segreto, H. Przirembel, L. Mach Materials Sci. Eng., 1, 239 (1966). 30. H. Kunze, Dissertation TH Aachen 1958. 31. H. M. Laun, Rheol. Acta, 18, 478 (1979). 32. F. N. Liberti, B. Wunderlich, J. Polym. Sci. A-2, 6, 833 (1968). 33. R Lohe, Kolloid-Z., 203 (2), Sl 15 (1965). 34. N. G. McCrum, B. E. Read, G. Williams, "Unelastic and Dielectric Effects in Polymer Solids", Wiley, London 1967. 35. R. W. Moncrieff, "Artificial Fibres", Wiley, New York, 1950. 36. A. Muller, R. Pfluger, Kunststoffe, 50 (4), S203 (1960). 37. N. Ogata, Makromol. Chem., 42, 52 (1960). 38. D. K. Owens, R. C. Nendt, J. Appl. Polym. Sci., 13, 1741 (1969). 39. J. Pellon, W. G. Carpenter, J. Polym. Sci. A, 1, 863 (1963). 40. F. Plurner, Kolloid-Z, 176 (2), 108 (1961). 41. A. Reichle, A. Prietzschk, Angew. Chem., 74, 562 (1962). 42. L. G. Roldan, H. S. Kaufman, J. Polym. Sci. B, 1, 603 (1963). 43. E.-O. Schmalz, Faserforschg., Textiltechnik, 20 (11), 533 (1969). 44. G. F. Schmidt, H. A. Stuart, Z. Naturforschg., 13a, 222 (1958). 45. J. E. Stamhuis, A. J. Pennings, Polymer 18, 667 (1977).
46. H. W. Starkweather, G. E. Moore, J. E. Hansen, Th. M. Roder, R. E. Brooks, J. Polym. Sci., 21, 189 (1956). 47. H. W. Starkweather, R. E. Moynihan, J. Polym. Sci., 22, 363 (1956). 48. H. W. Starkweather, J. Appl. Polym. Sci., 2 (5), 129 (1959). 49. H. W. Starkweather, J. F. Whitney, D. R. Johnson, J. Polym. Sci. A, 1, 715 (1963). 50. H. Tautz, L. Strobel, KoIl. Z., Z. f. Polym., 202 (1), S.33 (1965). 51. Van Krevelen, D. W., P. J. Hoftyzer: "Properties of Polymers-Correlation with Chemical Structure", (2nd ed.) Elsevier Publ. Comp., Amsterdam 1976. 52. J. H. Wakelin, A. Sutherland, L. R. Beck, J. Polym. Sci., 42 (139), 278 (1960). 53. L. G. Wallner, Makromol. Chem., 79, 279 (1948). 54. R. C. Wilhoit, M. Dole, J. Phys. Chem., 57, 14 (1953). 55. R. W. Warfield, E. G. Kayser, B. Hartmann, Makromol. Chem., 184, 1927 (1983). 56. A. Zosel, Colloid Polym. Sci., 263, 541 (1985). 57. Trade Literature (a) "Design Handbook for DuPont Engineering Plastics", DuPont, 1997, Module II, 232409E (b) "Ultramid® PA, Product Line, Properties, Processing", BASF Plastics, B568e, (9110) 9.91. (c) "Ultramid® T PA, Product Line, Properties, Processing", BASF Plastics, B605e, 8.90. (d) "Ultramid® PA, Range Chart", BASF Plastics, F568/le, 5.90. (e) "Product Sheet Nylon Resin 6,10", Monsanto Co. (f) "Rilsan®, Design Guide to a Versatile Engineering Plastic", Atochem Polymers, Inc., 4/84. (g) "Engineering Thermoplastics, Versamid®" HuIs America, Inc. (h) "A Guide to Properties and Uses of Nylon 12", HuIs America, Inc., Datasheets. (i) "Product Selection Chart, Grilamid®, Nylon 12", EMS Industries, GG5-805. (j) "Capron® Nylon Homopolymers for Molding and Extrusion", Allied Signal, ERG-02-6/91. (k) "Vydyne® Nylon", Monsanto Company, 1994, MPP-5210.
58.
59.
60.
61. 62. 63.
64. 65.
66. 67. 68. 69. 70. 71. 72. 73. 74. 75.
(1) "Technical Information, Rilsan®", Elf Atochem, North America, Inc.,Technical Polymers, 1998. R. M. Bonner, M. I. Kohan, E. M. Lacey, P. N. Richardson, T. M. Roder, L. T. Sherwood, in: M. I. Kohan (Ed.), "Nylon Plastics", Wiley, New York, 1973, p. 327. J. C. L. Williams, S. J. Watson, P. Boydell, in: M. I. Kohan, (Ed.), "Nylon Plastics Handbook", Hanser/Gardner Publications, Cincinnati, OH, USA, 1995, p. 291. D. M. Bigg, D. J. Walsh and Roder, T. M., in: M. I. Kohan (Ed.), "Nylon Plastics Handbook", Hanser/Gardner Publications, Inc., Cincinnati, OH, USA, 1995, p. 151. A. Dharia and S. J. Grossman, Antec 1987, 590. D. P. Garner and P. D. Pasulo, Polym. Mater. Sci. Eng., 57, 467 (1987). S. W. Shalaby, P. Moy, in "Engineering Materials Handbook", ASTM International: Metals Park, OH, Vol. 2, 1988, p. 447. J. A. Brydson, "Plastics Materials", Butterworth-Heinemann Ltd., Oxford, Great Britain, 1989. J. Zimmerman, in "Encyclopedia of Polymer Science and Engineering", Vol. 2, IInd Ed., Wiley, New York, 1988. "Recognized Component Directory", Underwriters Laboratories, Northbrook, IL, 1993: Vol. 2, p. 1786. M. I. Kohan, in: "Ullmann's Encyclopedia of Industrial Chemistry," Vol. A2, VCH: Weinheim, 1992, p. 195. E. S. Ong, Y. Kim, H. L. Williams, J. Appl. Polym. Sci., 31, 367 (1986). E. Roderdink, J. M. M. Warmer, Polymer, 26, 1582 (1985). H. M. Laun, Rheol. Acta., 18, 478 (1979). M. Eystatiev, in: O. Olabisi (Ed.), "Handbook of Thermoplastics", Marcel Dekker, New York, 1997. J. J. Burke, T. A. Orafino, J. Polym. Sci., 7, 1 (1969). A. Mattiussi, G. B. Gechele, R. Francesconi, J. Polym. Sci., 7,411 (1969). Z. Tuzar, M. Bohdanecky, R. Puffr, J. Sebenda, Eur. Polym. J., 11, 851 (1975). P. W. Morgan, S. L. Kwolek, J. Polym. Sci. A, 1, 1147 (1963).
Physical Constants of Cellulose* J.r G ap n sterP ,o iea krch, Teo Fraunhoe fr n Istiute fo Ap eild ylH m.-eP r.RF esn tlwS -eeho,f FR Gem r any A. Introduction B. Solid State Properties Table 1. Unit Cell Dimensions Table 2. Density Table 3. Average Ordered Fraction of Cotton and Linters Measured by Various Techniques Table 4. Average Ordered Fraction Measured by Various Techniques Table 5. Degree of Crystallinity Table 6. Crystallite Sizes Table 7. X-ray Orientation of Cellulose Fibers Table 8. Heat Capacity Table 9. Thermal Expansion Coefficient Table 10. Other Thermal Properties Table 11. Refractive Index and Birefringence Table 12. Resistivity Table 13. Dielectric Constant and Loss Factor at 1 kHz Table 14. Other Electrical Properties Table 15. Crystal Elastic Modulus E\ in Chain Direction Table 16. Fiber Strength, Elongation and Modulus C. Solution Properties Table 17. Typical Non-Aqueous Cellulose Solvents Table 18. Other Solvents Table 19. Viscosity - Molecular Weight Relationships Table 20. Second Virial Coefficients
V-135 V-136 V-136 V-136
V-136 V-137 V-137 V-138 V-140 V-140 V-141 V-141 V-144 V-144 V-145 V-146 V-146 V-147 V-147 V-147 V-148 V-148 V-150
Table 21. Sedimentation and Diffusion Coefficients Table 22. Partial Specific Volumes, v2 Table 23. Geometrical Chain Characteristics Table 24. Polymer-Solvent Interaction Parameters D. References A.
V-150 V-151 V-151 V-152 V-152
INTRODUCTION
For the present edition of Polymer Handbook the former chapter, "Properties of Cellulosic Materials" has been considerably shortened and restructured. Besides leaving out the infrared spectrum and some properties not considered genuinely physical, the main alteration is the omitting of the vast field of cellulose derivatives altogether. This is to be justified in view of the space given to the other polymers dealt with in the section, "Physical Constants of Some Important Polymers". Each of the cellulose derivatives (or at least each class), we think, would have required an entry of its own. Accordingly, we restricted ourselves to materials, the main component of which is native or regenerated cellulose. Therefore, we explicitly refer to the previous edition (1) for its wealth of data on cellulose derivatives, liquid crystals therefrom, nonglucose hydrocarbons and noncellulosic substances in cellulosic materials, and first order rate constants and energies of activation of homogeneous hydrolysis. Moreover, much useful and recent information can be found in the Proceedings of the Cellucon Conferences (2), the pertinent ACS volumes (3) and a number of monographs (4-9), whereas cellulose research before 1955 is well documented in Refs. (10,11).
* Based on the table in the third edition, by A. Grobe, Fraunhofer-Institut fur Grenzflachen-und Bioverfahrenstechnik, Stuttgart, Germany.
B. SOLID STATE PROPERTIES TABLE 1. UNIT CELL DIMENSIONS0 Modification
Space group
a (A)
b (A)
c (A)
a (°) fi (°)
y (°)
Ia
Pl
6.74
5.93
10.36
117
113
81
Ip II III
P2i P2i
7.85 8.01 10.25
8.14 9.04 7.78
10.34 10.36 10.34
90 90 90
90 90 90
96.6 117.1 122.4
8.01
8.12
10.34
90
90
90
IV
Remarks
Refs.
Natural occurrence 12,136c (algae, bacteria) Natural occurrence (higher plants) 14C,15*,16* Obtained by alkali treatment 17C,18* Obtained by liquid ammonia 19 treatment Obtained by heat treatment 20 of cellulose III
a Due to the very limited number of available X-ray reflections, atomic coordinates are difficult to determine. The question of chain orientation (parallel vs. anti-parallel packing) cannot be considered ultimately settled, although a parallel arrangement is widely accepted for Cellulose I, whereas Cellulose II is thought to crystallize in an antiparallel packing mode. In each of the five cells given in the table, the c axis is parallel to the chain axes. The I a cell contains a single chain with two glucose units, while all the other cells consist of two chains with two glucose units each. b References deal with the same modification. c Atomic coordinates given.
TABLE 2.
DENSITY
Density (g/cm3)
Type of cellulose Cellulose I Cellulose I a Cellulose Ip Cellulose II Cellulose IV Cotton Ramie Flax Hemp Jute Wood pulps Cuprammonium fibers Polynosics Viscose fibers (and films) (rayon and staple) High tenacity viscose fibers a Calculated from X-ray or electron diffraction data.
Refs.
1.582-1.630° 1.58° 1.62-1.64° 1.583-1.62° 1.61° 1.545 -1.585 ca. 1.55 1.541 1.541 1.532 1.535-1.547 1.519-1.531 1.489-1.528 1.508-1.548 1.498-1.524
21,22,23,24,25,26,27 12 14,16 22,24,28,26 22 29,30,31,32,33,34 26,35 36 36 36 26,31,37,25,38,39,33 31,32,34 40,41 31,32,38,42,43,44 42,45
TABLE 3. AVERAGE ORDERED FRACTION OF COTTON AND LINTERS MEASURED BY VARIOUS TECHNIQUES^
Technique PHYSICAL X-ray diffraction Density ABSORPTION AND "SWELLING" CHEMICAL Deuteration Moisture regain Hallwood-Horrobin Nonfreezing water Acid hydrolysis Alcoholysis Periodate oxidation Nitrogen tetroxide oxidation Formylation Iodine sorption "NONSWELLING" CHEMICAL Chromic acid oxidation Thallation a
Average crystallinity value for cotton and !inters (%)
Number of publications involved in the average crystallinity value
Approximate average crystallinity value Wood pulp
Regenerated cellulose
73 64
25 18
60 50
35 35
58 58 67 ca. 85 90 ca. 90 92 ca. 70 79 87
5 3 1 26 4 4 1 7 9
45 50 55
25 25 35 50 70
99.7 99.6
1 2
85 92 85
80 50 35 60
Ref. 46. Most of these values are general averages of several published values: the number of publications involved in each average is given in the third column. The term "crystallinity value" does not imply that any particular method measures crystallinity or order in any strictly defined sense, or that the various methods measure precisely the same type or level of order/disorder; with the chemical methods for instance, the value given is merely the fraction of the material that is not readily accessible to, and thus not able to, react with the particular reagent. b
TABLE 4. AVERAGE ORDERED FRACTION MEASURED BY VARIOUS TECHNIQUES0 Technique
Cotton
X-ray diffraction Density Deuteration or moisture regain Acid hydrolysis Periodate oxidation Iodine sorption Formylation
0.73 0.64 0.58 0.90 0.92 0.87 0.79
a
Mercerized cotton
Wood pulp
Regenerized cellulose
0.51 0.36 0.41 0.80 0.90 0.68 0.65
0.60 0.50 0.45 0.85 0.92 0.85 0.75
0.35 0.35 0.25 0.70 0.80 0.60 0.35
Ref. 46.
TABLE 5.
DEGREE OF CRYSTALLINITYa
Type of cellulose
\>Ch(%)
Natural Fibers Ramie
60-71
Ramie, mercerized
54-74 49
Refs.
xcc(%)
48,49,50,51
44-47 57
4
52 53
45 37-46
2.5-3
52 53
54 55
k (IO"2) (nm2)
Refs.
Flax Linen Hemp Manila hemp Sisal
Jute, Corchorus olitorius Jute, Corchorus capsularis Flax, bleached Cotton, different origins
67 66 ± 3 60 ± 3 42 ± 4 38 ± 2
58-66 Al-61 Average 67, range 64-69 69-71 71 Average 70, range 66-74
Cotton, linters, mercerized Algal Cellulose From Valonia ventricosa Bacterial Cellulose From Acetobacter xylinum Cellulose from Woody Plants Cellulose from different plant stems Cellulose from different woods Cellulose from Pinus radiata (5, 10, and 15 annual ring) Bagasse
49 63 60
Pulps Different wood pulps Different dissolving pulps Different wood pulps, mercerized
70 73 Average 48, range 41-55
49 63 60
Average 68, range 65-70
48
40
48
73-55
62-70 64 49
Refs.
56 57 57 57 58
59 59 60
Cotton, mercerized Cotton, linters
Crrf(%)
65 ± 3
58
56-59 47
2.4-3.9
61 52
70 79
62 64
57-60 42 64-65 56-63 43-49
3.4-4.2
51
62
3.1-3.2
57 68
66 56
2.1-2.6
61 52 67 65 65
73-79
3.3-3.9
68 49-58 62-64
56 56
58
56
56-68 62-65 49-77 52-66
70 56 71 72
69
48,49,60,51 63 55
43-56
67
References page V-152
TABLE 5. cont'd Type of cellulose
DC*(%)
Man-made Cellulosic Fibers Viscose rayon, normal grade
38-40
Viscose staple fibers, normal grade
Average 27, range 13-36 30-39
Viscose fibers, mercerized High tenacity viscose rayon High wet modulus (HWM) viscose fibers Polynosic-fiber Cuprammonium rayon Cuprammonium rayon, mercerized Saponified acetate fibers Fortisan Regenerated carbamate Lyocell-type Cellulosic Films Cellophane Cuprophane Blown films from NMMO solution Others "Amorphous" powder, obtained by dry-grinding viscose rayon "Amorphous" powder, obtained by dry grinding viscose rayon, recrystallized Different cellulose samples Regenerated cellulose precipitated from viscose as flake Precipitated p-cellulose
40-41 Average 27, range 30-52 40-52 23-56 27-44
*cc(%)
Refs.
48,49 50,75,76 60
k (10~2) (nm2)
27
1.58
CrJ(%)
67
48,49,76,78
50,55,75 48,49,50,75,76,80 48,49,75,76,78
35
74
33-36 34
77 79
38 42 48 48
81 79 81 79
52
50 57
79 79
36-44
73
47,48,50 63 55 49 49,76,78,82 83 fibers
fiber 30-40
Refs.
63 60
35.6 40-44 41 49 Average 38 39-54 43
Refs.
48,49,78
8
42
1.75
67
45 46 38-41
2.7 2.9 2.6-2.8
84 84 84
85,10
35-40
10
45-53
82
50-62
83
a
According to Hermans (49a) relative and absolute X-ray methods can be distinguished. DC and xc values are absolute ones as well as some of the Cr values. The RulandVonk-method provides additionally a lattice disorder factor k representing the amount of lattice distortions. The so-called crystallinity index or ratio values derived from relative methods as peak height ratios are omitted here. For these, the reader is referred to the third edition (1). b According to Hermans and Weidinger (47,48). c According to the method of Ruland (86) and Vonk (87). d According to other methods. TABLE 6.
CRYSTALLITE SIZES
Type of cellulose Cotton
Lateral dimensions (A)
Width and thickness (A)
50-60 50 155-230 100 40 58±3 60 64 50-100 100 146 150
Range of length (A)
500 128
62 x 49 64 x 50
Refs. 88 89 90 56 91 92 93 94 95 96 97 98 99 100
TABLE 6. cont'd Type of cellulose
Lateral dimensions (A)
Width and thickness (A)
Range of length (A)
93 x 32 110x25 MO x (69-72) 130 x 25 400-2550 Cotton linters
51 47-60 65 16-26 50-100 59 68 70 <400
Ramie
61 x 167 600-2500 48-55 46-55 47-66 62 46-50 44 44 49 ± 3 51.5 55 52 ± 3 55 49 x 4 <70 38 ± 2 38 ± 3
Hemp Flax Linen Jute Bamboo Manila hemp Sisal Algal cellulose (Valonia)
189 195 174 140 130 148 x 53
89-124 89-101 112 Bacterial cellulose (Acetobacter xylinum)
84 x 70 58-83 53-65 55
Chaetomorpha melagonium Tunicin Different wood samples Cellulose from different plant stems Bagasse Different wood pulps Different dissolving pulps
169 x 114 84 x 34 37-40 35-36 35 58-70 32-60
65-70
1400-2200* Normal viscose
fibers
HWM viscose
fibers
41-47 50-70 75-95 39-42 54 76 70-85
75-105 110-156 114
(80-100) x (30-40) (77-90) x (29-49)
154 120-140
42-51 High tenacity rayon Normal viscose rayon Polynosic
120 140 fibers
20-31 93 80-100
189 160
Refs. 101 102 52 103 46 104 105 56 106 107 94,99 97 108 109 52 46 72 110 111 112 105 91 97 58 97 56 58 97 58 88 58 58 113 110 105 91 99 110 105 91 99 99 56 56 56 56 72 67 105 77 90 104 67 77 90 115 79 104 115 115 116 77 90 115
* Mean cross-sectional area (A2). References page V-152
TABLE 6. cont'd Type of cellulose Tufcel-fibers Isotropic "Hermans" viscose Fortisan
Lateral dimensions (A)
Width and thickness (A)
Range of length (A)
35-47 50-200 100-160 43-57 49-51
fibers
112
110,117 118 90 110 111 115 79 79 67 84 84 84
160 160
Regenerated carbamate Lyocell-type
fibers fibers
(67-88) x (26-47) 70 x (25-46) 42 36-53 33-53 30-41
Cellophane Cuprophane Blown films from NMMO-solution
Refs.
143
TABLE 7. X-RAY ORIENTATION OF CELLULOSE FIBERS* Material Cotton Cotton, mercerized Ramie Ramie, mercerized without tension Ramie, mercerized and reoriented Hemp Flax Jute Sisal Coir Viscose rayon, normal grade Viscose staple fibers, normal grade Lilienfeld rayon High-tenacity viscose cord rayon Viscose tire cord High-wet modulus (HWM) viscose Modal fibers cond. Modal fibers wet Polynosic fibers (Tufcel) Isotropic viscose model fibers, without stretching Isotropic viscose model fibers, after intense stretching Cuprammonium rayon Fortisan Lyocell-type fibers cond.
# (°)
Refs.
/x
14.25-16.20 13.25-17.39 9.7-13.7 7.5
61 127 61 128
0.62-0.70
61
0.64-0.72 0.97 0.90 0.98
61 10 10 10
6.2 10 8.0 20.0 45
128 128 128 128 128
0.96-0.97
119
0.31-0.91 0.30-0.67 0.70-0.94 0.39-0.998 0.94-0.97 0.45-0.993 0.57 0.30 0.94 0.06-0.15 Up to 0.90 0.86 0.7-0.99 0.62-0.63 0.67-0.94 >0.9 0.94 0.33-0.35
76,120,10,121 76,78 76,10,121 50,76,122,121 123 76,122,120,121,78 124 124 123 125 125 10 76,122,120,78,121 124 126 67 123 124
fibers
Tencel Lyocell-type fibers wet
Refs.
a For native fibers the spiral angle 3> between cellulose microflbrils (crystallites) and fiber axis is filed. The degree of uniaxial orientation of crystallites is given for regenerated fibers and some of the native by the Hermans orientation factor,/x, according to Ref. (10). As existing data for regenerated fibers largely depend on spinning conditions, ranges of/x are given.
TABLE 8.
HEAT CAPACITY*
Type of cellulose
T0 (K)
Cp(J0) (J/g/K)
Amorphous Wood Jute Cotton 100% crystalline Wood
350 350 350 350 350 10
1.414 1.364 1.339 1.318 1.230 0.0205
a (x 103) (J/g/K2) 8.08 5.06 4.64 4.27 1.42 4.20
Tm (K) 435 435 435 435 435 300
Remarks
Extrapolated Independent of crystallinity
Refs. 129 129 129 129 129 130
TABLE 8. cont'd Type of cellulose
T0 (K)
CpCT0) (J/g/K)
a (x 103) (J/g/K2)
Tm (K)
Amorphous Wood (40% cryst.) Wood (65% cryst.) 100% crystalline Ramie Flax Hemp Jute Viscose rayon
300 300 300 300 273 273 273 273 273 273 273 273
1.266 1.240 1.226 1.238 1.775 1.344-1.348 1.327-1.352 1.357 1.357 1.415-1.595 1.357 1.17-1.32
6.0 5.5 4.9 4.2 0 0 0 0 0 0 0 0
400 400 400 400 373 373 373 373 373 373 373 373
Cuprammonium fibers Paper
Remarks Ball milled Ball milled Ball milled Extrapolated Average Average Average Average Average Average Average Average
Refs. 130 130 130 130 131 132 132 132 132 131 132 133
a The constant pressure specific heat capacity CP(T) as a function of temperature Tis expressed in linear approximation as Cp(T) = Cp(To) + a (T- To), To < Tm, a being the slope and Tm marking the interval of validity.
TABLE 9.
THERMAL EXPANSION COEFFICIENT
Type of cellulose Hydrogel Cellulose I
Cellulose II
Amorphous sulphate cellulose Cotton (Cellulose I) High strength cord a High strength polynosic High strength cord b Rayon Wood pulp Cotton linters Different papers Cotton, rayon Various celluloses Linters
T ( 0 C)
<xfl ( x 1 0 5 ) ( K 1 )
15-70 RTc-150 150-200 RT-150 150-200 RT-150 150-200 RT-150 150-200 RT-100 100-150 RT-100 100-150 RT-100 100-150 —45,-5 55, 80 - 1 5 0 to 225 105-150 105-150 105-150 - 4 to 25 - 4 to 25 - 4 to 25
Remarks
6.3-25 13 23 5.1 1.6 11 16 -0.64 1.6 -31 68 5.1 16 7.9 19 1/p ll/p 7.1-36.7 0.7 0.4 1.8
X-ray (101) reflexion (101) (10-1) (10-1) (002) (002) (040) (040) (101) (101) (10-1) (10-1) (002) (002) p = Cellulose density in g/cm3 p = Cellulose density in g/cm3 X-ray (002) reflexion
3.59 5.76 5.52 0.2-0.75 0.79-1.62 8
Machine direction Cross machine direction 51-60 40
- 30 to 25
Refs. 134 135 135 135 135 135 135 135 135 135 135 135 135 135 135 136 136 137 138 138 138 139 139 139 140 140 141 142 143
a
Linear expansion coefficient. * Cubic expansion coefficient d
TABLE 10.
OTHER THERMAL PROPERTIES
Property Decomposition point (0C) Start of thermal degradation (0C)
Type of cellulose Cellulose Cotton Viscose rayon Linters Bleached sulfite pulp Kraft pulp Filter paper
Value 200-270 150 180 225 225 240 220
Remarks
Refs.
Under nitrogen
144 145 145 146 146 146 147 References page V -152
TABLE 10. cont'd Property Fast endothermal degradation (0C) Flammability of fibers Ignition temperature (0C) Self ignition temperature (0C) External ignition temperature (0C) Maximum flame temperature (0C) Fast endothermal degradation (0C)
Heat of combustion (kJ/kg)
Rate of heat combustion (J/s/cm) Limiting oxygen index
Type of cellulose Linters Bleached sulfite pulp Cotton Viscose rayon Cotton Cotton Cotton Cotton fabric Linters Bleached sulfite pulp Cotton Cellulose powder Cotton fabric Cotton Cotton Cotton fabric
fleece
390,400 420 400 350 880 850-1050 812-945 «300 «330 290 300-500 15090 15540 18855 15452 14732 54.2 (J/cm2) 17179 17598 331
Cotton Viscose rayon Cotton
0.184 0.197 0.183 0.185 1.34 1.22 1.15-1.18 1.32 1.327-1.251 1.273-1.35 1.235 105.9 ± 5.0
Mercerized cotton Cellulose, extrapolated to 100% crystallinity Cellulose I Cellulose II Heat of recrystallization (kJ/kg) Amorphous cellulose-* Cellulose II Heat of transition (kJ/kg) Cellulose I -> cellulose II Heat of formation (kJ/kg) Cellulose Heat of solution (kJ/kg) of dry material Cotton in cuane Cotton in Et3PhNOH Rayon in cuane Rayon in Et3PhNOH Ball milled cellulose in Et3PhNOH Cellulose II in Et3PhNOH Cotton Differential heat of sorption of liquid water (kJ/kg) Cotton
Remarks
«300 «330
Regenerated cellulose Fabric Cellulose diacetate Cellulose triacetate Cotton fabric
Cellulose Cotton
Heat of crystallization (kJ/kg)
Value
121.8 134.8 41.9
146 146
19-25% O 2 Heating rates 169-225 K/s Under nitrogen Under nitrogen Under flowing nitrogen, char yields 89.4-8.7 wt.% Measured in air Bomb-calorimetric technique Measured in air, independent of fabric weight
In air, bomb calorimetric technique Fabric Fabric Twill weave fabric, 241 gm~2 Bleached and mercerized 0-34 0 C 0-100°C
By wetting
38.1 5949.7 108.0 142.5 95.5 138.3-153 243 182.7 1235,1194-1327 1090 1332
972-1040 964-1006 1047 Egyptian cotton 1214 Cotton, dried by solvent exchange 1047 Cotton, mercerized 1173 Linters 1143 Linters mercerized 1327
Refs.
148,149 148 150 150 150 151 152 146 146 150 153,154 155 155 150 156 156 157 156 156 158 149 149 159 152 160 161 133 133 162 132 161 163 164 164 85 165 166 163 167 163 168 167
At zero regain At zero regain, from sorption isotherm at zero regain, 27°C At zero regain At At At At At At
zero regain, 25°C zero regain, 26°C zero regain, 26°C zero regain zero regain zero regain
167 169,170,171 172 173 174,26 174,26 175 176 176 171 177 177
TABLE 10. cont'd Property
Ttype of cellulose
Value
Flax Wood pulps Fortisan Cuprammonium fibers Normal viscose fibers
1248,1206 1173-1256,1098 1235,1169 1214,1115 1173-1215 1050, 984, 917-1022, 1277 1549 1172
At At At At At
293 201-281 230 318 268-297 84
At At At At At
Viscose fiber Viscose fiber, dried by Solvent exchange Cotton Cotton, mercerized Viscose rayon Heat evolved by 1.0 g of fibers going from 40% RH to 70% RH in Joule
Cotton
Viscose rayon Integral heat of wetting of dry material Cotton (kJ/kg) wetting in water at zero regain
168 33.9-56.2 40.6 46.5 40.0, 39.0 62.0-78.8, 62.6 62.6
Cotton, average value Cotton, bleached Cotton, mercerized Cotton, mercerized, average value Cotton, ball milled Linters Ramie Flax Wood pulps Regenerated cellulose Fortisan Cuprammonium rayon Viscose fibers
Wetting in methanol Wetting in bases, acids and salt solution, A# s a U - A # H 2 O (kJ/kg)
Polynosic Cotton Cotton
fibers
Cotton, mercerized Ramie Wood pulp Wood pulp, different degrees of refining Dissolving pulp Different viscose
Cotton
Thermal conductivity (W/m/K)
Cotton Rayon Sulfite pulp, wet Sulfite pulp, dry Laminated kraft paper
fibers
Remarks zero zero zero zero zero
regain regain regain regain regain
At zero regain, 26°C At zero regain, 26°C 60% RH 65% RH 60% RH 60% RH 65% RH
At 20-25 0 C At 2O0C At 20-25 0 C At 20-25°C
20-25 0 C 20-25 0 C 20-25 0 C 20-25°C 20-25°C 20-25 0 C 20-25 0 C 20-25 0 C 20-25 0 C 20-25°C
75.2 90.5 44.8-57.8 34.4-48.6 39.4-54.4 49.4-71.2 83.8-106.4 76.2 93.8 68.2-105.5
At At At At At At At At At At
68.2-82.5 83.1-87.8 7.3 10.2 62.2 62.0 83.8 56.4 67 11.2 78.3
At20-25°C At 2O0C At 20-25 0C 5% NaOH 17.5% NaOH 18% NaOH 18% NaOH 18% NaOH 20% NaOH 5% NaOH 17.5% NaOH
67.0-81.0 ^68 25-47 31.8-36.4 62.8-67.8 4.6 3.5 3.1 5.4 3.8 0.071 0.054-0.07 0.8 0.067 0.13
20% NaOH, 25°C 18% NaOH, 2O0C 5% NaOH 5% NaOH 17.5% NaOH 0.1MH2SO4 3 M NaCl 3 M KCI 3 M MgCI2 3 M CaCl2 Density 0.5 g/ml
Refs. 169,174 177,178 171,174 171,174 171,174 171,174 171,174 176 176 169 145 171 169 169 145 145 169,171,26,175 177,179,180,181 182 46 182,183 171,177 181,184,182 46 185 163,177,185,186 26,181,180 169,180 177,179,181,180 177 171 169 163,169,171,177, 181,180,187,188 183 189 46 190 190 191 192 190 193 190 190 194 195 183 196 196 182 197 197 197 197 198 149 199 199 200
References page V-152
TABLE 10. cont'd Property
I^pc of cellulose
Value
Different papers Alkali cellulose Transition points (0C) Glass transition
0.029-0.17 0.0581 0.0465 0.0674
Cellulose
Secondary transitions
Cellulose Paper Cellulose Cotton Bleached linters Sulfite pulp Sulfatepulp Microcrystalline powder
Endothermal process
Remarks
230 220-245 19-23 25 - 2 0 , + 15, «35, « 6 0 «200 134 131 137 147 109, 131 114
Density 0.2 g/ml
# = 1 3 4 J/g H = 131 J/g H = 145 J/g //=124 J/g H = 120-143 J/g H=IlS J/g
Refs. 201 202 203 204 205 206 142 207 208,140,205 205 209 209 209 209 209 209
See also Table 17, Typical Non-Aqueous Cellulose Solvents.
TABLE 11. REFRACTIVE INDEX AND BIREFRINGENCE !type of cellulose
/in
n±
«n-«±
1.618 1.595-1.601 1.571-1.595 1.585-1.591 1.573-1.595 1.577
1.544 1.525-1.534 1.517-1.532 1.526-1.530 1.527-1.534 1.536
0.074 0.061-0.071 0.054-0.067 0.055-0.065 0.040-0.062 0.041
1.578
1.523
1.542-1.553 1.556-1.570
1.509-1.513 1.518-1.531
fibers
1.529-1.552
1.512-1.520
fibers
1.548-1.571
1.519-1.534
Ideally oriented native cellulose fiber (Cellulose I) Ramie Flax Hemp Cotton Jute Ideally oriented regenerated cellulose fiber (Cellulose II) Fortisan High tenacity rayon Polynosics Polynosics cord Normal viscose Viscose cord Cuprammonium Cellophane a b c
Refs.a 26 26,210,211,212,213,214,215 212,214,216 216,217 210,212,214,218,45,219,215 214
0.055* 220,(221) 0.043c 26 0.045 222 0.029-0.043 45,(212,223,224) 0.036-0.043 45,40,(221) 0.0410-0.0415 225 0.013-0.040 226,(212,45,223,224,40,227),215 0.0350-0.0370 225 0.018-0.037 26,212,218,222,(212,214) 0.011,0.0145,0.0044 228
References in parenthesis give additional data. Bone dry. Conditioned.
TABLE 12.
RESISTIVITY
Material Pure cellulose Cotton
Raw cotton
pa (item)
Rbs (O/gcm2)
1018 2 x 107 2.4 x 109 8 x 105 5 x 105
7 x 106
Remarks 52% RHC, 300C, moisture dependence investigated 65% RH, 200C 35% RH, 0.18 GPa static pressure 75% RH, 25°C
Refs. 229,230 231 231 232 233,234J 233,234^
TABLE 12. cont'd pfl(ft cm)
Material Cotton, washed Cotton, purified Ramie Ramie, purified Hemp Jute, purified Flax, purified Viscose rayon
R J(fl gem ~2)
12 x 106 - 37 x 106 9.3 x 105 6 x 104 - 1.8 x 106 5.7 x 106 1 x 107 2.5 x 108 6.6 x 106 1 x 106 - 3 x 106 6.75 x 10 10
Cuprammonium rayon Fortisan Mercerized cotton Regenerated cellulose Cellophane cuprophane Insulating paper
1017 10 - 3 x 1012 « 2 x 1014
108 - 109 2.6 x 108 3.5 x 107 6.6 x 106
10
5 xlO
Refs.
Me = 10%, 200C, moisture dependence investigated M = 10%, 200C, moisture dependence investigated M = 10%, 200C, moisture dependence investigated M = 10%, 200C, moisture dependence investigated M = 10%, 200C, moisture dependence investigated M = 10%, 200C, moisture dependence investigated M = 10%, 200C, moisture dependence investigated « 8 0 % RH, 300C, moisture dependence investigated M= 10%, 200C, moisture dependence investigated 35% RH, 0.18 GPa static pressure M= 10%, 200C, moisture dependence investigated M= 10%, 200C, moisture dependence investigated M= 10%, 200C, moisture dependence investigated 65% RH, 20°C Air dry
17
1012 1014 10 u 4 x 1017 1.2 xlO 1 7
Insulating kraft paper
Remarks
234 234 234 234 234 234 234 234 234 232 234 234 234 229 235 236
M<\%
237
M= 12% 200C, air dry 100°C, air dry 200C 100°C
237 238 238 239 239
a
Specific resistance (resistance of unit cross section per unit length). Mass specific resistance (product of p and density). Relative humidity. d These references give additional data. e Moisture content (wt.%). b
c
TABLE 13.
DIELECTRIC CONSTANT AND LOSS FACTOR AT 1 kHz°
Material Pure cellulose (from spruce) Cotton
Jute
Ramie Alpha wood pulp Bleached sulphite pulp Paper Viscose rayon
a b c d e
tan Sc
Range of \gd (v)e
Remarks
Refs.
7.2 3.2 6.1 2.76 2.85-3.05 4.6
0.02 <0.02
2-8
Bone dry, 200C Bone dry, 210C 25°C Unbeaten, density 1.0 g/cm3 Beaten, density 1.0 g/cm3 Dry, 00C, temperatures up to 600C investigated Along fiber Transverse to fiber Along fiber Transverse to fiber Along fiber Transverse to fiber 300C, vacuum dried at 300C Unbeaten, density 1.0 g/cm3 Beaten, density 1.0 g/cm3
240 241 242 243 243 244
105 16 50 11.2 45 7.9 6.15 2.9 3.03 1.2-4 3.0 6.7
Hemp
Regenerated cellulose Cellophane
sb
film
6.7-7.5 7.6
0.03
3-4 3-4 2-7
1.4 1.55 1.2 1.28 1.15 0.85
2-5 2-5 2-5 2-5 2-5 2-5 3-4 3-4
<0.02 0.18 0.01
1.7-5.3 2-7 1.8-6
Bone dry, 210C Dry, 00C, temperatures up to 600C investigated 20-70 0 C 22°C ( - 4 0 to 9O0C investigated)
245 245 245 245 245 245 192 243 243 299 241 244 246 247
More data for the frequency range indicated in the table and for other temperatures, humidities etc. are found in the references given. Real part of dielectric constant. Quotient of imaginary and real part of dielectric constant (loss factor). Decadic logarithm. Measuring frequency.
References page V-152
TABLE 14. OTHER ELECTRICAL PROPERTIES Property Dielectric strength (break down voltage) (kV/mm)
Isoelectric point (pH) Zeta-potential (mV)
Material
Value
Native cellulose fiber
50
Insulating paper
7.7-9.2
Condenser paper Cellophane Wood pulp Cotton Cellulose
4.7-12.1 30-50 2.75 2.5 21.0 30 21.1 28.5/26 21.1 9.3/126 -23.7
Cotton
Cotton linters Viscose
fiber
22/27 17.3 17.7 22.9 32.0 17-33 23.5-33.1 17.2-46.1
Acetate grade dissolving pulp Cross-Bevan cellulose Chlorite holocellulose Chemical pulps, bleached Chemical pulps, unbleached Mechanical and semi-mechanical pulps Beech kraft pulp Unbleached wood sulfite pulp Unbleached spruces sulfite pulp Unbleached sulfate pulp Bleached birch sulfate pulp Viscose rayon Spruce sulfite bleached
20.6 9 23 18 21 26 14.2 16.2 14.9 16.0 18.6 21.7 15.1 19.0
Spruce sulfite unbleached Beech sulfite bleached Birch sulfite unbleached a b
These references give additional data. More concentrations and/or media investigated.
TABLE 15. CRYSTAL ELASTIC MODULUS f, IN CHAIN DIRECTION
Modification I II IIIi IH n IVi
Ee (GPa)
Refs.
138 120-135 88 106-112 87 58 75
265 266 265 266 265 265 265
Remarks
Refs.
Dry
248
2O0C, 50 Hz, thickness 0.11-0.12 mm, 0.71-0.83 g/ml, RH = 65% Oven dry, DC Thickness 1 mm, 50 Hz
249
0.02 M HCl-KCl-buffer Fines from filter paper, Whatman No. 1 Fines In water In water, fines In 10~2 N KCl Poly (1,1 -dimethylpiperidinium3,5-diallymethylene chloride), Mn = 50000, monolayer, in 10 ~4 N KCl In water, fibers washed with distilled water InIO-4NNaCl In 10 " 5 N KCl Fines Fines from Eucalyptus reagnans Fines Fines Fines Oven dried at 1300C Distilled water, 200C Distilled water Distilled water Distilled water NaBH4-reduced sample, distilled water In water InIO-4NKCl In water InIO-4NKCl In water InIO-4NKCl In water InIO-4NKCl
250 235 251 252 253,254° 255 253,254° 253,254 253,254 256*,257fo 25 8 256^,257^ 259* 259* 253,254° 253,254° 253,254° 253,254° 253,254° 260 261 262 262 262 263 264 264 264 264 264 264 264 264
TABLE 16. FIBER STRENGTH, ELONGATION, AND MODULUS Breaking strength (cN/tex)a Type of cellulose
Dry
Wet
Breaking elongation (%) Dry
Cotton 26-43 26-47 8-10 Flax 40-80 41-85 2.5-3 Jute ~30 30-31 1.7-1.9 Hemp 47 2.2 Ramie 59 3.7 Sisal 36-43 3.6-5.1 Banana 53-58 2.4-3.6 Coir 9-15 17-47 Palmyrah 16-20 7-15 Talipot 17-30 2.7-5.2 Viscose rayon (normal) 14-22 2-5 25-30 Viscose rayon (high tenacity) 35-54 23-43 9-20 Viscose staple (high wet 16-26 7-17 14-30 modulus, normal) Viscose staple (high wet 26-53 18-42 7-15 modulus, polynosics) Lyocelltype 61 58 8 ZnCl2 type 15-25 7-10 15-25 LiCl-DMAc type 20-29 8-13 6 NaOH type 16-17 4-6 15-21 a To convert to MPa multiply value by ten times the density value when expressed in g/cm3. * Data taken from references 76,267-269.
C.
Modulus (cN/tex)fl
Wet
Dry
Wet
11 2.5-3 1.7-1.9
20-40 14-26 22-30
370-720 1760 1720 2170 1460 1170-1520 2000-2440 260-520 404-560 1045-1494 290-680 609-883 424-600
8-20
265-795
9 18-27 10-12 16-23
1950 450-1100
490
971-1290
25-63
Refs. lb lb lb 270 270 271 271 271 272 272 lb lb lb lb 273 274 275 276
S O L U T I O N PROPERTIES
TABLE 17.
TYPICAL NON-AQUEOUS CELLULOSE SOLVENTS"* c
Number of components
Substance group
Unicomponent
Af-Alkylpyridinium halogenides Oxides of tertiary amines
Bicomponent
Dimethyl sulfoxide (DMSO) containing solvents Liquid ammonia/sodium or ammonium salts
Dipolar aprotic solvents/LiCl
Pyridine or quinoline containing systems Tricomponent
Liquid SO3/secondary or tertiary amines NH3 or amine/salt/polar solvent NH3 or amine/SO2 or SOCl2 polar solvent
a A very extensive list including sketches of phase diagrams, b In most cases a preactivation of the cellulose is required. c
Examples Ethylpyridinium chloride N-Methylpiperidine-Af-oxide Af-Methylmorpholine-Af-oxide AW-Dimethylcyclohexylamine-N-oxide DMSO/methyl amine DMSO/CaCl2 NH3/NaI (NH 4I) NH3/NaSCN (NH4SCN) NH 3/NaNO3 NH3/N(C2H5)4Br iV,iV-Dimethyl acetamide (DMA)/LiCl N-Methylpyrrolidone/LiCl iV-Methylcaprolactam/LiCl Af-Hexamethyl phosphoric acid triamide/LiCl Dimethyl urea/LiCl Pyridine/resorcinol Quinoline/Ca(SCN)2 SO3/ triethyl amine NH3/NaCl/morpholine NH3/NaCl/DMSO Ethylene diamine/NaW,Af-dimethyl formamide Diethylamine/SO 2/DMSO
is given in Ref. (1).
Ref. 277.
References page V-152
TABLE 18. OTHER SOLVENTS* Substance group
Examples
Mineral acidsb
Inorganic salts in aqueous solution Inorganic salts in concentrated solutions or melts, single and/or multicomponent systems
Strong bases in aqueous solution Tetraalkyl bases (molecular weight >150)
Metal complex solutions
b
HCl, HBr H 2 SO 4 HNO3 H 3 PO 4 Trifluoroacetic acid LiCl ZnCl2 Ca(SCN) 2 Ca(SCN)2
279 280,281 282,283,284 280,285,281 286,287,288,289,290 291,292,293 281,294,295 296,297,298,299,300 298,301
LiCl, LiJ, LiSCN, CaBr2, Ca(SCN)2 Ca(SCN) 2/CH2O LiSCN- 2.5H2O KSCN + NaSCN + Ca(SCN)2 • 3H2O KSCN+ NaSCN+ DMSO Ca(SCN)2- 3H2O + CH2O LiSCN, NaSCN, LiJ, NaJ, KJ LiOH NaOH NaOH + ZnO NaOH + BeO Tetraethylammoniumhydroxide and some higher homologs Trimethylbenzylammoniumhydroxide ("Triton B") Dimethyldibenzylammoniumhydroxide ('Triton F") Tetraalkylphosphonium hydroxides Tetraalkylarsonium hydroxides Trialkylsulfonium hydroxides Trialkylselonium hydroxides [Cu(NH3)4](OH)2 ("Cuoxam", "Cuam") Modified cuoxam [Cu(en)2](OH)2 ("Cuprieethylenediamine", "Cuene", "CED") Cu: biuret: alkali [Co(en)3(OH)2 ("Cooxene") [Ni(NH3)6](OH)2 ("Nioxam") [Ni(en)3](OH)2 ("Nioxene") [Zn(en)3] (OH)2 ("Zincoxene") [Cd(en)3](OH)2 ("Cadoxene") Complex solution of the Na-salt of Fe-tartaric acid in diluted NaOH solution ("FeTNa")
Strong bases in aqueous solution
a
Refs.
302 303 304,305 304,305 304,305 304 306,46 307 307,81 307,308,309 307,308 310,311,312 313,311 313,311 314 144 315 292 316,317 170 318,319 320 321,322 323,324 323,325 323,325 323,326,327 323,328
Excerpt from the table in Ref. (1); cf. also (278) as a modern reference. Dissolution usually accompanied by strong degradation of the cellulose chains.
TABLE 19.
VISCOSITY - MOLECULAR WEIGHT RELATIONSHIPS0 Viscosity range, tj ( x 1 0 2 ) (ml/g)
Solvent*
Km ( x 10 2 ) (ml/g)
a
Cuoxam
0.308 11.3 10.1 56.4 0.85 1.70 0.268 0.70 0.545 0.33 0.099
1.0 0.657 0.661 0.523 0.81 0.77 1.0 0.9 0.9 1.15 10
0.9-9 0.2-4 0.2-4 4.7-16.8 4.7-16.8 4.7-16.8 1.75-19.7 4.8-28 1-28 4.7-16.8
3.3 0.18 0.237 1.30
0.76 1.0 1.0 0.81
>4.25 <4.25 1.2-5.05 0.3-6
G (s" 1 )
T ( 0 C)
20 25 25 20 20 20 500
25
Nature of sample
Fc F Ue U U U U U U F, U F, U F, U U F
Method of calibration
OS* (acet.) Compd Comp. SD^ SD SD SD (comp.) SD (CN)* SD(CN) SD SD, LS^ (CN) SD(CN) SD (CN) S' LS (CN)
Refs.
329 330 330 331 332 10 333 334 335 336 337 338 338 339 240
TABLE 19.
cont'd Viscosity range, i/ (x 10 2 ) (ml/g)
Solvent*
Km (xlO 2 )(ml/g)
Cuene
1.06 0.498 0.395 0.334 0.412 0.364 1.01 0.85 0.358 0.153 5.10 0.277 0.762 2.9 0.268 Mean: 0.575 5.47 0.315 0.235 0.124 4.13 0.225 0.427 0.593 9.33 3.56(3.38) 3.85 0.563 0.599 1.13
0.905 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0 1.0 0.76 1.0 0.936 0.8 1.0 0.96 0.75 1.01 1.0 1.0 0.76 1.0 0.94 0.94 0.72 0.77 0.76 1.0 1.0 0.9
1-21.4 1-2.4 2.4-21.4 < 10 <10 2.3-27.2 1.0-28 1.0-28 6-18
3.57 0.519 0.571 0.502 0.407 0.355 0.303 0.201 0.39-0.46 2.8 5.31 5.31 1.278 0.585 0.26
Cadoxene
FeTNa
LiCl/DMAc Zincoxene Tetraethylammonium hydroxide (2.3 M)
0.58 «0.34 «0.5 «1.3 1.71 H2SO4 (50%) solution 1.64 10% NaOH solution 0.43
LiOH solution Ca(SCN)2 solution H 3 PO 4
a
a
G(S'1)
T(0C)
G-+60 G ^ 60 G->60
25 25 25
500 G->60 G-^ 60
>600 <600 1.9-21.3 1.7-3.9 0.5-7.5 1.9-6.5 <18 2-11 2-11
20 20 20 25 20 25 20 20
Nature of sample F, U F, U F, U F
2.5-22
20 20 20 25 25 20 20 20
0.805
2.5-22
20
F, U
1.0 1.0 1.0 1.01 1.0 1.0 1.0 1.0 0.84 0.78* 0.775 1.19 0.936 1.0
3-16 3-16 3-16 6.6-20 <13 <16 <8
20 20 20 20 20 20 20
U U U U U U U
25 30 20 20
U U U U
20 20 20 20 25 20 20
U U U U U U
1.0 1.0 1.0 1.0 0.94 0.92 1.0
>5.3 <5.3 <10 > 10 <18 0.4-1.2
500 500
G-+ G-+ G-• G^
2.4-21.2 4.9-31.5 1.68-15.15 1.48-11.64
60 60 60 60
>400
2.4-12.2
>2.25 > 1.78
(49,72)
Refs.
Comp. 341,342 Comp. 341,342 Comp. 341,342 OS(CN) 335 Comp. 343 SD(CN) 344 SD(CN) 334 SD(CN) 335 SD 345 SD(CN) 337 SD(CN) 338 SD(CN) 338 SD, LS 346 Kj (OS) 347 Comp. 348 Comp. 349,350,351 SD 352 SD 351 SD 353 SD, LS 337 SD(CN) 338 SD(CN) 338 SD(CN) 338 SD(CN) 338 SD (CN) 338 LS 352 SD, LS 354 Comp. 355 Comp. 355 Comp. Calculated from 356 Comp. Calculated from 356 SD 357 SD 357 SD 357 SD 345,357 SD 353 SD 353 SD 353 Comp. 358 346 LS 359 LS 360 LS 361 OS 362 OS (via CN) 363
U F, U F, U U U F, U F, U U
F, U U U U F, U F, U F, U U F F U F U U F, U
500
Method of calibration
OS, comp. OS OS OS K K OS
364 363 363 363 365 366 363
a
The constants Km and a given in the table are defined by the equation [77] = KmM , [77] and M being intrinsic viscosity and molecular weight, respectively. G is the shear rate. Osmotic measurements. Fractionated. d Viscosimetric comparison. e Unfractionated. f Measurement by sedimentation-diffusion. 8 Cellulose nitrate used for calibration. h Measurement by light scattering. ' Measurement by sedimentation. j From kinetic data. * See also Table 17, Typical Non-Aqueous Cellulose Solvents. b c
References page V-152
TABLE 20. SECOND VIRIAL COEFFICIENT The second virial coefficient listed in the table below is defined by the equation TT/C = RT[1/M -h A2C + A3C2 + • • •] where TT is the osmotic pressure, C the concentrations R the gas constant, Solvent0
T the temperature, M the molar mass, and A 3 the third virial coefficient.
T (0C)
DP a range
Range of A2 ( x 103) (cm3mol/g2)
20 25 25 30
195-12500 175-5820 230-3950 770-4320
0.8-3.0 1.1-1.8 3.0-4.4 3.5-5.3
Cuoxam Cadoxene FeTNa LiCl/DMAc
Remarks
Refs.
No trend, Vb = 12 No trend, V=9 No trend, V= 10 Monotonous decrease (one outlier), V= 9
367 352 360 361
a
Degree of polymerization. * Number of single values given. c See also Table 17, Typical Non-Aqueous Cellulose Solvents.
TABLE 21.
SEDIMENTATION AND DIFFUSION COEFFICIENTS
The sedimentation and diffusion coefficients for non-vanishing concentrations s and D, respectively, are calculated from s" 1 = S Q 1 (\+ksc) D = D 0 (I +kDc), respectively, with S0, D0, ^s and fcD listed in the table, where c is the cellulose concentration. Solvent0
T (0C)
Cuoxam
20 20 20 20 20 20 20.7 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 25 25 12 12 12 12 25 25 25 25 25 25 25
Cuene Cadoxene
Mb (x 10 3 ) (g/mol) S0 (x 1013) (s) 19 21 27 35 44 45 53 75 115 137 150 160 185 230 320 340 354 400 490 500 535 569 570 680 1200 1275 1500 1750 1900 2000 5900 9.5 175 10.1 18.8 24.5 33.6 43 115 155 210 275 435 745
ks (cm3/g)
1.6
50
1.9
20
4.6 2.6
50
3.8
110
4.1 6.3 7.2
170 390
6.5 7.2 6.3
390 520 380
6.3 6.5 9.2
320 690
10.3 10.4 14.0 10.8 17.5 8.3 5.5 0.74 1.04 1.13 1.25 1.80 2.87 2.75 3.17 3.80 4.53 5.49
600 900 1000 860 1700
153 367 370 465 7100 1000 1410
D 0 (x 10 7 ) (cm2/s) 2.85 2.75 1.97 1.87 1.54 1.57 5.4 1.04 0.97 0.72 0.84 0.63 0.59 0.54 0.66 0.72 0.50 0.54 0.43 0.45 0.37 0.37 0.37 0.32 0.26 0.29 0.23 0.2 0.25 0.18 0.1 0.95 1.2
1.77 1.06 0.75 0.64 0.58 0.44 0.31
kd (cm3/g) 9.7 10.6 50 109 45 113 0 149 144 30 201 149 75 165 145 143 105 130 115 264 218 190 295 250 854 320 350 320 250 1200
and
Refs. 367 367 173 367 173 367 368 173 367 367 173 367 367 173 173 173 367 173 173 173 367 367 173 173 173 367 173 173 173 173 173 369 369 354 354 354 354 352 352 352 352 352 352 352
TABLE 21. Solvent FeTNa
LiCl/DMAc
a b
T( 0 C) 20 20 20 20 30 30 30 30 30 30 30 30 30
Ma ( x 10~ 3 ) (g/mol) s 0 ( x l 0 1 3 ) ( s ) 111 201 364 539 125 152 162 178 182 320 354 463 700
A:s (cm 3 /g)
D 0 ( x 10 7 ) (cm 2 /s)
1.75 2.17 2.98 3.35
kd (cm 3 /g)
0.89 0.60 0.46 0.35 0.318 0.293 0.287 0.248 0.250 0.175 0.145 0.124 0.092
Refs. 345 345 345 345 361 361 361 361 361 361 361 361 361
See also Table 17, Typical Non-Aqueous Cellulose Solvents. Cellulose molecular weight.
TABLE 22. Solvent 0 Cuoxam Cuene Cadoxene FeTNa a
cont'd
PARTIAL SPECIFIC VOLUMES, V2 V2 (cm 3 /g) 0.664 0.642 0.65 0.50 0.654
T ( 0 C)
Refs.
20 19.8 25 25 20
173 368 352 352 370
See also Table 17, Typical Non-Aqueous Cellulose Solvents.
TABLE 23. GEOMETRICAL CHAIN CHARACTERISTICS Listed properties: Characteristic ratio C00 = (R2) 0/(nl2) Unperturbed chain dimension A = {(R2)Q/M}1/ Conformation parameter a — (R2)0/(R2)Q{ Persistence length q = lim{(Rl\)}/l with nl —> oo Linear expansion coefficient a s = {(s 2 ) / (s 2 ) 0 } l / 2 where (R2)0 - Averaged squared chain end-to-end vector in unperturbed state n - Degree of polymerization / - Monomer unit length (5.18 A) M - Molar mass (R2)OfSame as (R2)0, but for freely rotating chain (Rli) - Averaged projection of chain end-to-end vector onto first bond-vector (s 2 ) - Averaged squared radius of gyration ( s 2 ) 0 - Same as (s 2 ) for the unperturbed state. Property C00
A (A)
a
q (A)
as a
Solvent 0
T( 0 C)
Cuoxam Cadoxene FeTNa LiCl/DMAc Cadoxene LiCl/DMAc
25 25 30 20 30
15.8 45.2 91.9 48-60 1.18-1.92 2.74-4.12
Cadoxene FeTNa LiCl/DMAc Cadoxene FeTNa LiCl/DMAc LiCl/DMAc Cuoxam LiCl/DMAc
25 25 30 25 25 30 25 20 30
2.78 4.70 6.71 42 123 252 110-160 «1 1.03-1.07
Value
Remarks
Monotonous M-dependence
Gaussian coil limit Gaussian coil limit Gaussian coil limit Various methods
Refs. 361 361 361 367 371 361 361 361 361 361 361 361 372 367 361
See also Table 17, Typical Non-Aqueous Cellulose Solvents.
References page V-152
TABLE 24. POLYMER-SOLVENT INTERACTION PARAMETERS This parameter \ (Flory-Huggins parameter) figures in the equation for the reduced partial molar Gibbs energy of mixing of the solvent AG\/RT (R - gas constant, T - temperature) in the following way: AG1ZRT = In(I -
tp2 being the volume fraction of the polymer (cf. the corresponding chapter in this Handbook). Solvent Water
Concentration (wt.% cellulose) Saturated with water
NMMOlH 2 O 0
5-15
NMMO NMMO with 13-15 wt.% water
3-15
a
%
Remarks
0.124 0.435-0.44 0.528 -3 0.5 0.35-0.40 <-20
Refs.
25 0C, cotton fiber 25°C, viscose rayon 25°C, cellophane Melting point depression
373 373 373 374
DP ~450, concept not applicable
375 376
NMMO-AT-methylmorpholine-Af-oxide.
D.
REFERENCES
1. J. Brandrup, E. H. Immergut (Eds.), " Polymer Handbook", 3rd edition, V/117, Wiley, New York, 1989. 2. J. F. Kenedy, G. O. Phillips, P. A. Williams (Eds.), "Cellulose - structural and functional aspects", Ellis Horwood Ser. in Polym. Sci. Technol., Ellis Horwood, Chichester 1989, "Cellulosics-Chemical, Biochemical and Material Aspects", and "Cellulosics-pulp, fiber and envrionmental aspects", Ellis Horwood Ser. in Polym. Sci. Tehnol., Ellis Horwood, Chichester 1993; "Cellulose and Cellulose Derivatives: Physico-Chemical Aspects and Industrial Applications", Woodhead, Cambridge, 1995. 3. R. H. Atalla (Ed.), "The Structures of Cellulose", ACS Symp. Ser. 340, Washington DC 1987; Th. Heinze, W. G. Glasser (Eds.), "Cellulose Derivatives: Modification, Characterization, and Nanostructure", ASC Symp. Ser. 688, 1998. 4. D. Klemm, B. Philipp, Th. Heinze, U. Heinze, W. Wagenknecht, "Comprehensive Cellulose Chemistry", WileyVCH, Weinheim 1998. 5. R. D. Gilbert, (Ed.), "Cellulosic Polymers, Blends and Composites", Hanser, Munich, 1994. 6. D. Fengel, G. Wegener, "Wood: Chemistry, Ultrastructure, Reactions", De Gruyter, Berlin, 1989. 7. H. A. Krassig, "Cellulose - Structure, Accessibility and Reactivity", Polymer Monographs, 11, Gordon and Breach, London, 1993. 8. I. A. Tarchevsky, G. N. Marchenko, "Cellulose Biosynthesis and Structure", Springer, Berlin, 1991. 9. R. T. O. Connor, "Instrumental Analysis of Cotton Cellulose and Modified Cotton Cellulose", Marcel Dekker, New York, 1972. 10. P. H. Hermans, "Physics and Chemistry and Cellulose Fibers", Elsevier, New York, 1949. 11. E. Ott, H. M. Spurlin, M. W. Grafflin (Eds.) "Cellulose and Cellulose Derivatives", "High Polymers", vol. V, Part I, II (1954), Part III (1955), Interscience, New York. 12. J. Sugiyama, R. Vuong, H. Chanzy, Macromolecules, 24, 4168 (1991). 13. A. Aabloo, A. D. French, Macromol. Theory Simul. 3, 185 (1994).
14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41.
A. Sarko, R. Muggli, Macromolecules, 7, 486 (1974). K. H. Garnder, J. Blackwell, Biopolymers, 13,1975 (1974). C. Woodcock, A. Sarko, Macromolecules, 13, 1183 (1980). F. J. Kolpak, J. Blackwell, Macromolecules, 9, 273 (1976). A. J. Stipanovic, A. Sarko, Macromolecules, 9, 851 (1976). A. Sarko, J. Southwick, J. Hayashi, Macromolecules, 9, 857 (1976). A. Sarko, Tappi, 61 (2), 59 (1978). W. Kast, R. Schwarz, Z. Electrochem., 56, 288 (1952). E. Treiber, "Die Chemie der Pflanzenzellwand", Springer, Berlin, 1957. Ch. Legrand, Thesis, Paris, 1953. A. Burgeni, O. Kratky, Z. Phys. Chem. (Leipzig) B, 4, 401 (1929). N. V. Klenkova, O. M. Kulakova, I. A. Volkova, Zh. Prikl. Khim., 36, 166 (1963). P. H. Hermans, "Contribution to the Physics of Cellulose Fibers", Elsevier, New York, 1946. W. J. Lyons, J. Chem. Phys., 9, 377 (1941). W. Kast, Z. Elektrochem., 57, 525 (1953). A. J. Stamm, L. A. Hansen, J. Phys. Chem., 41,1007 (1937). H. Wakeham, Textile Res. J., 19, 595 (1949). W. Moll, Z. Ver. Deut. Chem. Beih. Nr., 47, 105 (1973). G. F. Davidson, J. Textile Inst., 18, T175 (1927). B. Alince, L. Kuniak, Papri Celulosa, 19, 87 (1964). P. H. Hermans, J. J. Hermans, D. Vermaas, Kolliod-Z., 109,9 (1944); J. Polym. Sci., 1, 149, 156, 162 (1946). J. M. Preston, M. V. Nimkar, J. Textile Inst., 41, T446 (1950). V. I. Sharkov, V. P. Levanova, Vyskomol. Soedin., 1, 1027 (1959). J. A. Howsmon, Textile Res. J., 19, 152 (1949). K. Lauer, U. Westerman, Kollid-Z., 107, 89 (1944). F. C. Brenner, V. Frilette, H. Mark, J. Am. Chem. Soc, 70, 877 (1948). E. Klein, K. Bosarge, J. Polym. Sci. C, 2, 515 (1963). Centre Recherches Ind. Texitle de Roven, Bull. Inst. Textile France, 945, (1962).
42. N. V. Mikhailov, E. Z. Fainberg, M. Kozler, Vysokomol. Soedin., 2, 1044 (1960). 43. N. V. Mikhailov, E. Z. Zav'yalova, V. O. Gorbacheva, Khim. Volokna, 1, 19, (1960). 44. J. Juilfs, Forschungsber. Wirtsch. Verkehrsminist. Nordrhein-Westfalen, Nr. 381, 38, 44 (1957). 45. J. Jacquemart, Bull. Inst. Textile, France, 963 (1962). 46. J. Q. Warwicker, R. Jeffries, R. L. Colbram, R. N. Robinson, "A Review of the Literature on the Effect of Caustic Soda and Other Swelling Agents on the Fine Structure of Cotton", Shirely Inst. Pamphlet No. 93, Altrincham, 1966. 47. P. H. Hermans, A. Weidinger, Kolloid-Z., 115, 103 (1949); 120, 3 (1951). 48. P. H. Hermans, A. Weidinger, J. Polym. Sd., 4, 135 (1949). 49. P. H. Hermans, Makromol. Chem., 6, 25 (1951); P. H. Hermans, Separatum Experientia, 19, 553 (1963). 50. P. H. Hermans, A. Weidinger, Textile Res. J., 31, 558, 571 (1961). 51. G. Jayme, H. Knolle, Papier, 18, 249 (1964). 52. A. Viswanathan, V. Venkatakrishnan, J. Appl. Polym. Sci., 13, 571, 785 (1969). 53. D. Chang, K. Miyasaka, K. Ishikawa, Sen-i Gakkaishi, 30, 63 (1974). 54. P. K. Ray, Textile Res. J., 37, 434 (1967). 55. P. H. Hermans, A. Weidinger, J. Polym. Sci., 6, 533 (1951). 56. M. Ioelovitch, Acta Polymerica, 43, 110 (1992). 57. H. J. Wellard, J. Polym. Sci., 13, 471 (1954). 58. A. Wlochowicz, Przegl. Wlok., 22, 471 (1968). 59. P. K. Ray, J. Appl. Polym. Sci., 13, 2593 (1969). 60. O. Ant-Wuorinen, Paperi ja Puu, 37, 335 (1955). 61. S. G. Shenouda, A. Viswanathan, J. Appl. Polym. Sci., 15, 2259 (1971). 62. J. H. Wakelin, H. S. Virgin, E. Crystal, J. Appl. Phys., 30, 1654 (1959). 63. O. Kratky, A. KrauB, Kolloid-Z., 151, 14 (1957). 64. L. Segal, J. J. Creely, A. E. Martin, C. M. Conrad, Textile Res. J., 29, 786 (1959). 65. H.-R Fink, D. Fanter, B. Philipp, Acta Polymerica, 36, 1 (1985). 66. O. Ellefsen, K. Kringstad, B. A. T0nnesen, Norsk. Skogind, 18, 419 (1964). 67. H.-P. Fink, E. Walenta, Das Papier, 48, 739 (1994). 68. D. C. Dan, H.-P. Fink, H. J. Purz, B. Philipp, Acta Polymerica, 33, 742 (1982). 69. R. D. Preston, P. H. Hermans, A. Weidinger, J. Exptl. Botany, 1, 344 (1950). 70. G. L. Clark, H. C. Terford, Anal. Chem., 27, 888 (1952). 71. M. Ahtee, T. Hattula, J. Maugs, T. Paakkari, Paperi ja PuuPapper och Tra, 65, 475 (1983). 72. J. Schurz, A. Janospi, P. Zipper, Das Papier, 41, 673 (1987). 73. H. Ruck, H. Krassig, Norelco Reptr., 7, 71 (1960). 74. L. S. Bolontnikova, T. L. Samsonova, Zh. Prikl. Khim., 38, 2299 (1965). 75. A. Lude, Ann. Sci. Textiles Beiges, 2, 36 (1961). 76. E. Treiber, Chemiefasern, 14, 25 (1964). 77. R. Segula, Melliand Textilber., 51, 743 (1970).
78. J. K. Smith, W. J. Kitchen, D. B. Mutton, J. Polym. Sci. C, 2, 499 (1963). 79. J. Lenz, J. Schurz, Cellulose Chem. Technol., 24, 3 (1990). 80. A. Bartovics, H. Mark, J. Am. Chem. Soc, 65, 1901 (1943); H. J. Philipp, C. F. Bjoerk, J. Polym. Sci., 6,383,549 (1951). 81. U. Roesner, Deut. Textiltech., 16, 304 (1966). 82. R H. Hermans, A. Weidinger, J. Polym. Sci, 5, 565 (1950). 83. E. Treiber, W. Berndt, M. Ruck, H. Toplak, Chem. Ing. Technik, 26, 687 (1954). 84. H.-P. Fink, P. Weigel, A. Bohn, Lenzinger Berichte, 76, 115 (1997). 85. P. H. Hermans, A. Weidinger, J. Am. Chem. Sci., 68, 2547 (1946). 86. W. Ruland, Acta Cryst., 14, 1180 (1961). 87. C. G. Vonk, J. Appl. Cryst., 6, 148 (1973). 88. A. Frey-Wyssling, Protoplasma, 27, 372 (1937). 89. H. H. Dolmetsch, Melliand Textilber., 48, 1449 (1967). 90. H. Krassig, Das Papier, 38, 571 (1984). 91. E. K. Boylston, J. J. Hebert, J. Appl. Polym. Sci., 25, 2105 (1980). 92. S. G. Shenouda, A. Viswanathan, J. Appl. Polym. Sci., 16, 395 (1972). 93. E. Husemann, A. Carmap, J. Makromol. Chem., 1, 16 (1943); J. Gjonnes, N. Norman, Acta Chem. Scand., 12, 2028 (1958). 94. C. Sterling, B. J. Spit, Am. J. Botany, 44, 851 (1957). 95. B. G. Ranby, Makromol. Chem., 13,40 (1954); B. G. Ranby, E. Ribi, Experientia, 6, 12 (1950). 96. G. Porod, loc. cit. E. Treiber, "Die Chemie der Pflanzenzellwand", Springer, Berlin, 1957. 97. A. N. J. Heyn, Textile Res. J., 19, 163 (1949); J. Am. Chem. Soc, 70, 3138 (1948). 98. C. W. Hock, J. Polym. Sci., 8, 425 (1952). 99. L. Nieduszynski, R. D. Preston, Nature, 225, 273 (1970). 100. F. F. Morehead, Textile. Res. J., 20, 549 (1950). 101. O. Kratky, H. Sembach, Angew. Chem., 67, 603 (1955). 102. S. M. Betrabet, E. Daruwalla, H. T. Lokhande, Textile Res. J., 36, 684 (1966). 103. S. M. Mukherjee, J. Sikorski, H. J. Woods, J. Textile Inst., 43, T196 (1952). 104. D. Hofmann, H.-P. Fink, B. Philipp, Polymer, 30, 237 (1989). 105. H.-P. Fink, D. Hofmann, B. Philipp, Cellulose, 2, 51 (1995). 106. M. Oberlin, J. Mering, Compt. Rend. (Paris), 238, 1046 (1954). 107. J. Hengstenberg, H. Mark, Z. Krist., 69, 271 (1928). 108. O. Kratky, Kolloid Z., 120, 24 (1951). 109. R. Hosemann, Z. Physik, 114, 133 (1939). 110. J. Haase, R. Hosemann, B. Renwanz, Colloid & Polymer Sci., 252, 712 (1974). 111. A. M. Hindeleh, D. J. Johnson, Polymer, 13, 423 (1972). 112. H. Nishimura, A. Sarko, J. Appl. Polym. Sci., 33, 855 (1987). 113. V. Balashov, R. D. Preston, Nature, 176, 64 (1955); R. D. Preston, A. B. Wardop, E. Nokolai, Nature, 162, 957 (1948).
114. J. Lenz, J. Schurz, E. Wrentschur, W. Geymayer, Angew. Macromol. Chem., 138, 1 (1986). 115. S. Watanabe, J. Hayashi, T. Akahori, J. Polym. ScL, 12,1065 (1974). 116. A. M. Hindeleh, D. J. Johnson, Polymer, 15, 697 (1974). 117. J. Haase, B. Renwanz, Colliod & Polymer ScL, 250, 503 (1972). 118. E. Treiber, Protoplasma, 40, 166 (1951). 119. P. K. Ray, Text. Res. J., 48, 573 (1978). 120. H. Krassig, W. Kitchen, J. Polym. ScL, 51, 123 (1961). 121. H. Vosters, Svensk Papperstid., 65, 65 (1962). 122. D. S. Jackson, A. Sandig, Textile Res. J., 31, 421 (1961). 123. H. Coulsey, Proceedings of the 34th Int. Man-made Fibers Congress, Dornbirn, Austria, Sept. 20, 1995. 124. J. Lenz, J. Schurz, E. Wrentschur, Colloid & Polymer ScL, 271, 460 (1993). 125. P. H. Hermans, J. J. Hermans, D. Vermaas, A. Weidinger, J. Polym. ScL, 1, 393 (1946); 2, 632 (1947). 126. S. A. Mortimer, A. A. Peguy, R. C. Ball, Cellulose Chem. TechnoL, 30, 251 (1996). 127. A. R. Kalyanaraman, J. Appl. Polym. ScL, 25, 2523 (1980). 128. P. S. Mukherjee, K. G. Satyanarayana, J. Materials ScL, 21, 4162 (1986). 129. T. Hatakeyama, K. Nakamura, H. Hatekeyama, Polymer, 23, 1801 (1982). 130. A. N. Mochalov, T. B. Khlynstova, M. Ya. Ioelovich, I. Kaimins, Khim. Drev., 4, 66, (1982). 131. N. V. Mikhailov, E. Z. Fainberg, Vysokomol. Soed., 4, 230 (1962). 132. W. Goetze, F. Winkler, Faserforsch. Textiltechn. 18, 119, (1967). 133. K. Melzer, Thesis, TH Darmstadt, 1928. 134. L. E. Bromberg, B. S. El'tsefon, Kolloidn. Zh., 50, 813 (1988). 135. M. Takahashi, H. Takenaka, Polym. J., 14, 675 (1982). 136. I. F. Kaimins, Vysokomol. Soedin., Ser. B, 21, 331 (1979). 137. S. Seitsonen, I. Mikkonen, Polymer J., 5, 263 (1973). 138. L. M. Granschuk, E. Z. Fainberg, N. V. Mikhailov, Khim. Volokna, 15, 31 (1973). 139. J. L. Neal, D. A. I. Goring, J. Polym. Sci. C, 28, 103 (1969). 140. J. Kubat, S. Martin-Loef, Ch. Soeremark, Svensk. Papperstidn., 72, 763 (1969). 141. E. Wuenneberg, W. Fischer, A. Sapper, Z. Phys. Chem. A, 151, 1 (1930). 142. M. V. Ramiah, D. A. Goring, J. Polym. ScL C, 11, 27 (1965). 143. M. V. Tsilipotkina, A. A. Tager, R. S. Petrov, G. Pustobaeva, Vysokomol. Soed., 4, 1844 (1962). 144. Th. Lieser, "Kurzes Lehrbuch der Cellulosechemie", Borntraeger, Berlin, 1953. 145. W. E. Morton, J. W. S. Hearle, "Physical Properties of Textile Fibers", Butterworths, London, 1962. 146. R. Schneider, O. Zoeppel, Papier, 25, 849 (1971). 147. A. Broido, Pyrodynamics, 4, 243 (1966). 148. DuPont de Nemours Bull., X-45 "The Flammability of Textile Fibres", Wilmington, 1955.
149. H. Goerlach, Chemiefasern, 22, 611 (1972). 150. U. Einsele, Melliand Textilber., 52, 1395 (1972). 151. B. Miller, J. R. Martin, Ch. H. Meiser, M. Garguillo, Textile Res. J., 46, 531 (1976). 152. Y. L. Hsieh, J. R. Hardin, Textile Res. J., 54, 171 (1984). 153. Y. Sekiguchi, R Shafizadeh, J. Appl. Polym. Sci., 29, 1267 (1984). 154. R Shafizadeh, Y. Sekiguchi, Carbon, 21, 511 (1983). 155. U. Einsele, H. Koch, H. Herlinger, Melliand Textilber, 65, 200 (1984). 156. M. M. Birky, K. H. Yeh, J. Appl Polym. Sci., 17, 239 (1973). 157. B. V. Hettich, Textile Res. J., 84, 389 (1984). 158. K. N. Yeh, M. M. Birky, C. Huggett, J. Appl. Polym. Sci., 17, 255 (1973). 159. M. A. Hammons, W. A. Reeves, Textile Chem. Colourists, 14, 26/210 (1982). 160. "International Critical Tables", vol. II, p. 237. 161. F. C. Magne, H. J. Portas, H. Wakeham, J. Am. Chem. Soc, 69, 1986 (1947). 162. H. Sommer, F. Winkler, in: H. Sommer (Ed.), "Handbuch der Werkstoffpriifung", vol. V, Springer, Berlin, 1960. 163. E. Calvet, R H. Hermans, J. Polym. Sci., 6, 33 (1951). 164. H. A. Stuart, " Die Physik der Hochpolymeren", vol. IL, Springer, Berlin, 1955. 165. K. Lauer, Kolloid-Z., 121, 139 (1951). 166. R. S. Jessup, E. I. Proser, J. Res. Natl. Bur. Std., 44, 385 (1950). 167. S. M. Lipatov, D. V. Zharkovskii, J. M. Zagraevskaya, Kolloidn. Zh., 21, 526 (1959). 168. N. V. Mikhailov, E. Z. Fainberg, Dokl. Akad. Nauk. SSSR, 109, 1160 (1956); J. Polym. Sci., 30, 259 (1958). 169. J. C. Guthrie, J. Textile Inst., 40, T489 (1949). 170. S. M. Neale, W. A. Stringfellow, Trans. Faraday Soc, 37, 525 (1941). 171. W. H. Rees, J. Textile Inst, 39, T351 (1948). 172. J. B. Tailor, J. Textile Inst., 43, T489 (1952). 173. M. Gralen, Thesis, Uppsala (1944). 174. D. K. Ashpole, Nature, 169, 37 (1952). 175. D. H. Argue, O. Maass, Can. J. Res. B, 12, 564 (1935). 176. S. R. Sivaraja Iyer, N. T. Baddi, Cell. Chem. Techn., 3, 561 (1969). 177. E. Balcerzyk, K. Hempel, Przegl. Papiern., 20, 309 (1964). 178. W. Morrow, Tappi, 42, 167 (1959). 179. M. M. Chilikin, Zh. Prikl. Khim., 3, 221 (1930); W. B. Champbell, Ind. Eng. Chem., 26, 218 (1934); W. G. MacMillan, R. R. Mukherjee, M. K. Sen, J. Textile Inst., 37, T 13 (1946); S. M. Lipatov, D. V. Zharkovskii, J. M. Zagraevskaya, Kolloidn. Zh., 21, 526 (1959); K. P. Mishchenko, S. L. Talmud, V. L. Yakimova, Vysokomol. Soedin., 1, 662 (1959); D. V. Zharkovskii, Dokl. Akad. Nauk. Belorussk. SSR, 3, 429 (1959); through Chem. Zentr. (1961), 17966; Kh. U. Usmanov, I. Kh. Khakimov, Uzbeksk. Khim. Zh., 1959 (5), 30; Kh. Usmanov, A. A. Yul'chibaev, Sh. Nadzhimutdinov, Vysokomol. Soedin. 3, 1217 (1961). 180. A. V. Dumanskii, E. F. Nekryach, Kolloidn. Zh., 17, 171 (1955).
181. K. Lauer, R. Doederlein, C. Jackel, O. Wilde, J. Makromol. Chem., 1, 76 (1943). 182. V. Marcokova, M. Pasteka, Faserforsch. Textiltech., 19, 164 (1968). 183. H. Ruck, Papier, 23, 872 (1969). 184. J. L. Morrison, W. R. Chambell, O. Maass, Can. J. Res. B, 18, 168 (1940). 185. M. Wabba, J. Colloid. Chem., 52, 1197 (1948). 186. E. F. Nekryach, F. Semchenko, Ukr. Khim. Zh., 26, 700 (1960). 187. M. Wabba, J. Phys. Colloid. Chem., 54, 1148 (1950). 188. Ya. V. Pak, Kh. U. Usmanov, Kolloidn. Zh., 18, 233 (1956). 189. J. Chabert, Bull. Inst. Textile France, 20, 335 (1966). 190. L. Kuniak, B. Alince, Papier, 21, 248 (1967). 191. T. Barratt, J. W. Lewis, J. Textile Inst., 13, T113 (1922). 192. N. E. Karasev, N. P. Dymarchuk, K. P. Mishchenko, Zh. Prikl. Khim., 39, 2301 (1966). 193. I. Okamura, Naturwissenschaften, 21, 393 (1923). 194. K. Schwabe, U. Trobisch, Zellstoff Papier, 5, 55 (1956). 195. L. Waengberg, E. Treiber, loc. cit. I. Czajlik, E. Treiber, Holzforschung, 23, 133 (1969). 196. V. Jancarik, L. Kuniak, Faserforsch. Textiltech., 20, 491 (1969). 197. N. E. Karasev, N. P. Dymarchuk, K. P. Mishchenko, J. Appl. Chem. USSR, 40 (5), 1032 (1967). 198. E. Talpay, R. Talpay, "Der Baumwolltest", 2 ed. Bachmann, Bremen. 199. S. T. Han, T. Ulmanen, Tappi, 41, 185 (1958). 200. T. Terada, N. Ito, Y. Goto, KAMI Pa Gikyoshi, 23, 191 (1969). 201. K. Terasaki, K. Matsuura, Japan Tappi, 26, 511 (1972). 202. E. Treiber, Mittlg. Fachausschuesse, 20, 15 (1972). 203. F. Endres, Chem. Ing. Techn., 23, 265 (1959). 204. A. J. Barry, F. C. Peterson, A. King, J. Am. Chem. Soc, 58, 333 (1936). 205. E. L. Back, E. I. E. Didriksson, Svensk. Papperstidn., 72,687 (1969). 206. D. A. I. Goring, Pulp Paper Mag. Can., 64, T517 (1963); V. A. Kargin, P. V. Koslov, Want Nai-Chang, Dokl. Akad. Nauk SSSR, 130, 356 (1960). 207. M. Wabba, S. Nasbed, K. Axix, J. Textile Inst., 49, T519 (1958). 208. J. Kubat, C. Pattyranie, Nature, 215, 390 (1967). 209. A. Horbach, Cellulose Chem. Technol., 22, 561 (1988). 210. A. Frey-Wyssling, HeIv. Chem. Acta, 19, 911, 981 (1936). 211. K. Kanamaru, HeIv. Chem. Acta, 17, 1037, 1425 (1934). 212. J. M. Preston, Trans. Faraday Soc, 29, 65 (1933). 213. A. Atsuki, S. Okajima, J. Soc. Chem. Ind. (Japan), 40, 360B (1937). 214. A. Frey-Wyssling, Kolloidchem. Beihefte, 23, 40 (1927). 215. K. R. Krishna Iyer, P. Neelakanthan, T. Radhakrishnan, J. Polym. Sci., A-2, 7, 983 (1969). 216. A. Herzog, Textile Forsch., 4, 58 (1922). 217. A. Frey-Wyssling, Jahrb. Wiss. Botanik, 65, 201 (1926). 218. A. Herzog "Die Unterscheidung von natiirlichen und ku'nstlichen Seiden", Th. Steinkopf, Dresden (1920), p. 59;
219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235.
236. 237. 238. 239. 240. 241. 242. 243. 244.
245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255.
A. Herzog "Die mikroskopische Untersuchung der Seide und Kunstseide", Springer, Berlin (1924), p. 66. R. Meredith, J. Textile Inst., 37, T205 (1946). P. H. Hermans, A. Weidinger, J. Am. Chem. Soc, 68, 198 (1946). R. E. Bingham, Makromol. Chem., 77, 139 (1964). A. N. J. Heyn, Textile Res. J., 22, 513 (1952). E. Treiber, Lecture at 2nd Intern. Man-Made Fiber Conference, Dornbirn, July 15, 1963. V. A. Berestnev, N. I. Grechushkina, M. B. Lytkina, V. A. Kargin, Khim. Volokna 3, 45 (1962). S. A. Novikova, R. S. Ivanova, Khim. Volokna, 5, 32 (1970). L. Rose, J. D. Griffiths, J. Textile Inst., 39, 265 (1948). N. Barakat, A. M. Hindeleh,Textilte Res. J., 34, 581 (1964). K. R. Krishna Iyer, S. Sreenivasan, N. B. Patil, Textile Res. J., 53, 442 (1983). G. T. Kohmann, Ind. Eng. Chem., 31, 807 (1939). E. J. Murphy, Can. J. Phys., 41, 1022 (1963). S. P. Hersh, D. J. Montgomery, Textile Res. J., 22, 805 (1952). B. E. Davidov, A. V. Kuchmenko, B. P. Morin, I. Yu. Tsarevskaya, Khim. Volokna, 14, 71 (1972). A. C. Walker, M. H. Quell, J. Textile Inst., 24, T123 (1933). J. W. S. Hearle, J. Textile Inst., 44 Tl 17 (1953). W. Claussnitzer, in: Landolt-Boernstein (Ed.), "Zahlenwerte und Funktionen", 6th ed., vol. IV (Technik), part 3, Springer, Berlin, 1957. H. F. Chruch, J. Soc Chem. Ind. (London), 66, 221 (1947). H. Keith, Frequenz, 3, 165, 216 (1949). H. Liander, E. Bjoerkman, Svensk. Paperstidn., 55, 597 (1952). A. Walraff, Elekrotech. Z., 63, 539 (1942). W. Trapp, L. Pungs, Holzforsch., 10, 65 (1956). J. W. S. Hearle, Textile Res. J., 24, 307 (1954). H. A. de Luca, W. B. Campbell, O. Maas, Can. J. Res. B, 16, 273 (1938). A. Wenkateswaran, J. Appl. Polym. Sci., 9, 1127 (1965). M. M. A. Moteleb, M. M. Naoum, H. G. Shinouda, H. A. Rizk, J. Polym. Sci., Polym. Chem. Ed., 20, 765 (1982). P. S. Mukherjee, Polymer/Polymer Commun., 25, 382 (1984). A. Campbell, Proc Roy. Soc (London) A, 78, 196 (1907). W. N. Stoops, J. Am. Chem. Soc, 56, 1480 (1934). K. Meyer, H. Mark, "Makromolekulare Chemie", Akad. Verlag, Leipzig, 1950. H. Hoering, in E. v. Rzika "Starkstromtechnik", "Taschenbuch fur Elektrotechniker." Part I, Berlin, 1951. K. Meien "Elektrische Eigenschaften von Starkstromkondensatoren", SEV-BuIl. 49, 1958. G. Sarret, Thesis, University of Grenoble, France (1967). M. Harris, A. Sookne, in: Matthews-Mauersberger (Eds)., "Textile Fibers", 5, Interscience, New York, 1947. A. W. McKenzie, Appita, 22, 82 (1968). J. Melzer, Papier, 26, 305 (1972). G. Rabinov, E. Heymann, J. Phys. Chem., 47, 655 (1943).
256. H. Jacobasch "Oberflachenchemie Faserbildender Polymere", Akademie Verlag, Berlin (1984). 257. M. V. Stackelberg. W. Kling, W. Benzel, F. Wilke, KolloidZ, 135, 67 (1954). 258. F. Onabe, J. Appl. Polym. Sd., 22, 3495 (1978); 23, 2909, 2999 (1979). 259. H. J. Flath, H. Salek, Acta Polymer., 31, 510 (1980). 260. G. Jacquelin, H. Bourlas, Tech. Rech. Papet, 3, 49 (1964). 261. T. E. Khripunova, V. I. Yurev, S. S. Pozin, Probl. Fiz. Khim. Mekh. Volok., 473 (1967). 262. C. Heinegrad, private communication. 263. C. Heinegrad, E. Treiben, private communication. 264. A. Schausberger, J. Schruz, Das Papier, 33, 148 (1979). 265. T. Nishino, K. Takano, K. Nakamae, J. Polym. Sci. B: Polym. Phys., 33, 1647 (1995). 266. M. Matsuo, C. Sawatari, Y. Iwai, F. Ozaki, Macromolcules, 23, 3266 (1990). 267. R. S. Govil, Man-Made Textiles, 41 (9), 45 (1964). 268. N. S. Wonding, L. W. S. Hearle, (Ed.) in: "Fiber Structure", Butterworth, London, 1963, p. 460, p. 466. 269. W. Wegner, H. Sommer (Ed.), in: "Handbuch der Werkstoffprufung", vol. V, Springer, Berlin 1960, p. 394, p. 428. 270. W. E. Morton, J. W. S. Hearle, "Physical Properties of Textile Fibers", Butterworths, London, 1962, p. 288. 271. R S. Mukherjee, K. G. Satyanarayana, J. Mat. Sci., 19, 3925 (1984). 272. K. G. Satyanarayana, K. K. Ravikumar, K. Sukumaran, P. S. Mukherjee, S. G. K. Pillai, A. G. Kulkarni, J. Mat. Sci., 21, 57 (1986). 273. H. Coulsey, S. Smith, "Formation and Structure of a New Cellulosic Fiber", 34th International Man-Made Fibers Conference, Dornbirn, Austria, September 20-22 (1995). 274. H. Schleicher, H.-R Fink Lenzinger Berichte 74, 5 (1994). 275. W. Berger, Lenzinger Berichte 74, 11 (1994). 276. Ch. Yamane, M. Mori, M. Satio, K. Okajima, Polymer J., 28, 1039 (1996). 277. Th. Heinze, T. Liebert, Cell. Chem. Technol. (1997), (in press). 278. B. Philipp, Polymer News, 15, 170 (1990). 279. R. Willstaetter, I. Zechmeister, Chem. Ber., 46, 2401 (1913); A. af Ekenstam, "Uber die Celluloseosungen in Mineralsauren", Lund (1936); L. P. Vyrodova, V. I. Sharkov, Zh. Prikl. Khim. 39 (3), 682 (1966). 280. A. af Ekenstam, Chem. Ber., 69, p. 549, p. 553 (1936); R. Haller, Textilrundschau, 2, 39 (1947). 281. D. M. MacDonald, ACS-Symposium Series, 58, 25 (1977). 282. A. F. Turbak, R. B. Hammer, R. E. Davies, H. L. Hergert, Chemtech. Jan., 51 (1980). 283. S. M. Hudson, J. A. Cuculo, J Macromol. Sci. - Rev. Macromol. Chem. C, 18 (1), 1 (1980). 284. C. Trogus, Cellulos. Chem., 15, 104 (1934). 285. A. af Ekenstam, Svenk. Papperstidn., 45, 81 (1942). 286. M. Valdemar, R. Dunlap, Am. Chem. Soc. Meeting, Atlantic City NJ, 14-19. Sept, 1952. 287. A. K. Khripunov, et al., Vysokomol. Soed. Ser, B, 17, (8), 600 (1975); Ref. from Chem. Abstr., 83, 194208f.
288. A. K. Khripunov, Tezisy Dokl. Vses, Konk. Khim. Fiz. Tsyllyul, 1st, 2, 183 (1975); Ref. from Chem. Abstr, 85, 179236. 289. A. L. Geddes, J. Polym. Sci., 22, 31 (1956). 290. D. L. Patel. R. D. Gilbert, J. Polym. Sci., Polym. Phys. Ed., 19, 1231 (1981). 291. Th. Tailor, Brit. Patent, 787 (1859). 292. K. Letters, Kolloid-Z., 58, 229 (1932); N. M. Bikales, L. Segal "Cellulose and Cellulose Derivatives", vol. V, Part IV, Wiley Interscience, New York, 1971. 293. Th. Taylor, Brit. Patent 787 (1859); (from Ref. 295). 294. Brit. Patent 1.6805 (1884), (from Ref. 295). 295. K. Letters, Kolloid-Z., 58 (2), 229 (1932). 296. H. Erbing, H. Geinitz , Kolloid-Z., 84, 25 (1938). 297. H. Rath, H. Agster, Klepzigs Textil-Zeitschrift, 40, 617 (1937). 298. F. Beck, DRP 353662, 22 May 1922. 299. P. P. von Weimarn, Kolloid-Z., 11, 41 (1912). 300. W. Honsch, Melliand-Textilber., 13, 84 (1932). 301. S. J. Kuga, Colloid Interface Sci., 77, 2, 413 (1980). 302. P. P. von Weimarn, DRP 275882, 30.6. 1914. 303. The Koppers Company, DRP 590326, 14. 12. 1933. 304. B. Lukanoff, H. Schleicher, B. Philipp, Cell. Chem. Technol., 17, 593 (1983). 305. DWP (GDR) 156608, 08.09.82. 306. I. R. Katz. I. Seiberlich Paper Trade J., 110 (7), 37 (1940). 307. G. F. Davidson, J. Textile Inst., 25, T174 (1934); 27, Tl 12 (1936); 28, T27 (1937). 308. E. Treiber, B. Abrahamson, Papier., 13, 253 (1959). 309. T. N. Kleinert, V. Moessmer, W. Wincor, Monatsh. Chem., 87, 82 (1956); T. N. Kleinert, O. Dioszegi, R. M. Dlouhy, Svensk Papperstidn., 62, 834 (1959). 310. A. Dehnert, W. Koenig, Cellulose Chem., 6, 1 (1925). 311. Th. Lieser, E. Leckzyck. Ann. Chem., 522, 56 (1936). 312. Th. Lieser, Ann. Chem., 528, 276 (1937). 313. T. Brownsett, D. A. Clibbens, J. Textile Inst., 32, T57 (1941). 314. C. T. Liang, R. H. Marchessault, J. Polym. Sci., 35, 529 (1959); 37, 385 (1959). 315. R. S. Stutt, US Patent 2, 371, 389. 316. E. Schweizer, J. Prakt. Chem., 72, 109 (1857). 317. O. Ellefsen, Norelco Repr., 7, 104 (1960). 318. W. Traube, Chem. Ber. 44, 3319 (1911); ibid. 54, 3220 (1921); ibid. 55, 1899 (1922). 319. K. Hess, W. Weltzien, E. Messmer, Ann. Chem. 435, 1 (1924); F. L. Straus, R. M. Levy, Paper Trade J., 114, 23 (1942). 320. G. Jayme, F. Lang, Kolloid-Z., 150, 5 (1957). 321. G. Jayme, Papier, 5, 244 (1951). 322. N. Iso, D. Yamamoto, Bull. Chem. Soc. (Japan), 41, 1064 (1968). 323. G. Jayme, N. M. Bikales, L. Segal, in: "Cellulose and Cellulose Derivatives", Wiley Interscience, New York, 1971. 324. G. Jayme, K. Neuschaeffer, Papier, 9, 563 (1955). 325. G. Jayme, K. Neuschaeffer, Papier, 11, 47 (1957).
326. G. Jayme, K. Neuschaeffer, Makromol. Chem., 23, 71 (1957); Naturwissenschaften, 44, 62 (1957). 327. D. Henley, Svensk Papperstidn., 63, 143 (1960); A. Donetxhuber, Svensk Papperstidn 63, 447 (1960); H. Reimers, Papier, 16, 566 (1962). 328. G. Jayme, V. Verburg, Rayon, Zellwolle, Chemiefasern, 32, 193,257 (1954); L. Valtasaari, Paperi Puu, 39, 243, 250,252 (1957); G. Jayme, G. El-Kodski, Papier, 22, 120 (1968); G. Jayme, Zellcheming, Mitt. Fachaussch, 19, 17 (1971). 329. H. Staudinger, G. Daumiller, Ann. Chem., 529, 219 (1937). 330. R. J. E. Cumberbirch, W. G. Harland, J. Textile Inst., 49, T679 (1958); W. G. Harland, J. Textile Inst., 49, T478 (1958). 331. N Gralen, J. Linderot, Svensk Papperstidn., 59, 14 (1956). 332. W. Badgley, B. L. Frilette, H. Mark, Ind. Eng. Chem., 37, 227 (1945). 333. S. Newman, L. Loeb, C. M. Conrad, J. Polym. Sci., 54, 343 (1961). 334. M. Marx, Makromol. Chem., 16, 157 (1955). 335. M. Marx, Papier, 10, 135 (1956). 336. M. I. Arkhipov, Izv. Vysskykh Uchebn. Zavedenii Khim. I Khim. Tekhnol., 3, 1109 (1960). 337. G. Meyerhoff, Fortschr. Hochpolym. Forsch., 3, 59 (1961). 338. M. Marx-Figini, Papier, 16, 551 (1962). 339. E. O. Kraemer, Ind. Eng. Chem., 30, 1200 (1938). 340. R. J. C. Mitchie, Polymer, 2, 446 (1961). 341. E. H. Immergut, J. Schurz, H. Mark, Monatsh. Chem., 84, 219 (1953). 342. E. H. Immergut, B. G. Ranby, H. E Mark, Ind. Eng. Chem., 45, 2483 (1953). 343. G. Prati, Tinctoria, 59, 233, 279, 329 (1962). 344. S. Newman, L. Loeb, C. M. Conrad, J. Polym. Sci., 10, 463 (1953). 345. S. Claesson, W. Bergmann, G. Jayme, Svensk Papperstidn., 62, 141 (1959). 346. M. Rinaudo, Papetrie, 90, 479 (1968). 347. H. Vink, Arkiv Kemi, 14, 195 (1959). 348. D. K. Smith, R. F. Bampton, W. J. Alexander, Ind. Eng. Chem. Process Design Div., 2, 57 (1963).
349. H. Nadziakiewicz, H. Jedlinska, Polimery, 7, 131 (1962). 350. H. Sihtola, B. Kyrklund, L. Laamanen, I. Palenius, Paperi Puu, 45, 225 (1963). 351. G. Jayme, P Kleppe, Papier, 15, 6 (1961). 352. D. Henley, Arkiv Kemi, 18, 327 (1961). 353. G. Jayme, R Kleppe, Papier, 15, 492 (1961). 354. W. Brown, R. Wikstroem, Eur. Polym. J., 1, 1 (1965). 355. G. Jayme, J. Troeften, Melliand Textilber., 47, 1432 (1966). 356. G. Jayme, G. El-Kodski, Papier, 34, 410, 501 (1970). 357. W. Bergmann, Thesis, TH Darmstadt, 1958. 358. W. B. Achwal, T. V. Narayan, U. M. Paro, Tappi, 50 (6), 9OA (1967). 359. L. Valtasaari, Tappi, 48, 627 (1965). 360. L. Valtasaari, Makromol. Chem., 151, 127 (1971). 361. C. L. McCormick, P. A. Callais, B. H. Hutchinson, Jr., Macromolecules, 18, 2394 (1985). 362. V. R Saxena, H. L. Bhatnagar, A. B. Biswas, J. Appl. Polym. ScL, 7, 181 (1963). 363. H. Staudinger, G. Daumiller, Chem. Ber., 70, 2508 (1937). 364. H. Krassig, E. Seifert, Makromol. Chem., 14, 1 (1954). 365. H. Vink, Svensk Papperstidn., 70, 734 (1967). 366. H. Vink, Makromol. Chem., 94, 1 (1966). 367. B. Seger, W. Burchard, Macromol. Symp., 83, 291 (1994). 368. J. Stamm, J. Am. Chem. Soc, 52, 3047 (1930). 369. H. Vink, Arkiv Kemi, 14, 29 (1957). 370. Ch. Legrand, Compt. Rend., 227, 529 (1948). 371. K. Kamide, M. Saito, Adv. Polym. Sci., 83, 1 (1987). 372. E. Bianchi, A. Ciferri, G. Conio, A. Cosani, M. Terbojevich, Macromolecules, 18, 646 (1985). 373. T. Kawai, J. Polym. Sci., 37, 181 (1959). 374. H. Chanzy, S. Nawrot, A. Peguy, P. Smith, J. Chevalier, J. Polymer Sci., Polym. Phys. Ed., 20, 1909 (1982). 375. A. M. Bochek, L. M. Kalyuzhnaya, G. A. Petropavlovskii, S. Ya. Frenkel, Zh. Prikl. Khim. (S.-Petersburg), 65, 2764 (1992). 376. M. M. Jovleva, V. N. Smirnova, Yu. Ya. Belousov, S. R Papkov, Vysokomol. Soedin., A, 28, 749 (1986).
P h y s i c a l
a n d
S o m e
M e c h a n i c a l I m p o r t a n t
P r o p e r t i e s
o f
P o l y m e r s
P h i l l i p T. DeLassus, N i c o l e F. W h i t e m a n The Dow Chemical Company Freeport, TX 77541, USA
A. Introduction B. Narrative Descriptions 1. Multipurpose Polymers 2. Polyolefins and Barrier Polymers 3. Styrenics and Engineering Thermoplastics 4. Elastomers C. Properties of Commercial Polymers Table 1. Multipurpose Thermoplastics Table 2. Polyolefins and Barrier Polymers Table 3. Styrenics and Engineering Thermoplastics Table 4. Elastomers A.
V-159 V-159 V-159 V-160 V-160 V-161 V-162 V-162 V-164
ranges or subclassifications. Often the sources of data on polymer properties disagree. We have assumed that the disagreements were honest results of subtle differences in the polymer or the test. In some cases we report averages, in some cases we report the "best" value, and in other cases we report ranges. The reader is advised to refer to the specific product literature and to consult the technical service representatives of the suppliers. Standard or typical abbreviations for each polymer are also included.
V-166 V-168
B.
INTRODUCTION
This section of Polymer Handbook focuses on critical polymers in the commercial world. The polymers were chosen because they already have a large economic impact or are likely to have an economic impact during the lifetime of this Handbook. Hundreds of polymers are the subjects of study and application in the world. Many of these have commercial status. However, including all of them would compromise the utility of this chapter. Properties for all the polymers of this section plus many others are included with more details in various chapters of this Handbook. Because of their cost and properties, polymers in this section often get first consideration for applications, or are the benchmarks against which alternative materials are compared. The data in the tables of this section can be used for rapid comparison against performance requirements. Brief narrative descriptions of the polymers are given in the next section. More complete descriptions can be found in other places; the Handbook of Plastic Materials and Technology (I. I. Rubin (Ed.), Wiley Interscience, 1990) is an excellent resource. A common set of properties are given in Section C. In many cases, the data are not available or are not relevant. In some cases, we have chosen to highlight a specific example of a family of polymers. However, in some cases, selecting a single member of a family did not represent the range of applications and properties available, so we included the
NARRATIVE DESCRIPTIONS
1. Multipurpose Polymers
Poly(ethylene terephthalate) (PET) This polymer is usually made by a two-step condensation polymerization of the dimethyl ester of terephthalic acid and ethylene glycol. Articles made with this polymer can be either semicrystalline or amorphous. Applications include fibers for carpeting and clothing, bottles (especially for soft drinks), and films for food packaging and magnetic tapes. Poly(ethylene terephthalate, 1,4~cyclohexane dimethanol) (PETG) This polymer substitutes enough 1,4-cyclohexane dimethanol for ethylene glycol in the backbone (to prohibit crystallization). Applications include food packaging and injection molded parts. Poly(vinyl chloride) (PVC) Applications for this polymer fall into two broad categories depending upon formulation. The name for this polymer is often freely abbreviated as "vinyl". Flexible poly(vinyl chloride) This type typically contains 30-40 wt.% additives, especially plasticizers, to lower the glass-transition temperature. Applications include hoses, films, flooring, and automotive interiors. Rigid poly (vinyl chloride) This glassy polymer is used for molding and profile extrusions with less additives. Typical applications include pipe, house siding, window frames, and bottles. Ethylene-methacrylic acid copolymers, partially neutralized with sodium or zinc (lonomer) The most important applications are for food packaging as films or sheets. They adhere to nylon in coextrusion, and they heat seal well.
Ethylene-acrylic acid copolymers (EAA) These adhesive copolymers typically have between 3 and 20wt.% acrylic acid. They are often used in extrusion coating to provide a heat seal layer for packaging, especially when good flavor/ aroma retention is needed. Ethylene-vinyl acetate copolymers (EVA) The range of compositions can be from 2-50 wt.% vinyl acetate. Tough, clear films are made with copolymers having low levels of vinyl acetate (2-7 wt.%). Hot melt adhesives are an application for higher levels of vinyl acetate (18-40 wt.%). Polytetrafluoroethylene (PTFE) This homopolymer of tetrafluoroethene has a wide range of valuable properties. Applications often rely on the very low surface energy (useful for non-stick coatings), the chemical resistance to many liquids (useful for gaskets and liners), and the wide range of service temperatures. Ethylene-styrene interpolymers (ESI) These copolymers exhibit a very wide range of properties depending on composition. At low levels of styrene, the copolymers are crystalline, flexible, thermoplastics. At intermediate levels of styrene, the copolymers are amorphous and highly elastomeric. At high levels of styrene, the copolymers have a mixture of glassy and rubbery properties with a glasstransition temperature ranging to above room temperature. Applications vary as widely as the properties, including new areas for thermoplastics. PolyOactic acid) (PLA) This compostible polymer is synthesized from renewable resources. The properties vary according to the composition (D- and L- conformations). Applications include food packaging as film or molded cups. 2. Polyolefins and Barrier Polymers
Polyethylene familyThe total usage of all members of this family is the greatest of all thermoplastics. Most members of the family are easy to fabricate and have low cost. The properties vary widely across the family. Food packaging is a frequent application. High density polyethylene (HDPE): This set of highly crystalline polymers is used in molding and film applications, with milk jugs being a prime example. These polymers are less flexible than other polyethylenes. Low density polyethylene (LDPE): This set of branched polymers is less crystalline than HDPE. Members are flexible and clear, with moderate toughness. Linear low density polyethylene (LLDPE): These are copolymers of ethylene with modest amounts of butene, hexene, or octene linear oc-olefins. Grades are available for films and for molding. Films typically show good toughness. Some grades are suitable for fibers. Very low density polyethylene or ultra-low density polyethylene (VLDPE or ULDPE): These are also copolymers of ethylene and linear a-olefins; however, they have densities less than 0.915 g/cm3. They have improved toughness and sealability compared to LLDPE. Polyolefin plastomer (POP): New catalyst technologies allow synthesis of these materials which include these with
lower densities. Copolymers over a wide range of composition yield a wide range of properties for films, fibers, and molding applications. Polypropylene (PP) Most applications use the isotactic form. Oriented (OPP) and unoriented films are used often for food packaging, sometimes in combination with vinylidene chloride copolymers. Polypropylene fibers are used for webbing in outdoor furniture, carpets, and both woven and non-woven fabrics. Polypropylene is also an important engineering thermoplastic. Vinylidene chloride copolymers (PVDC) This set of polymers includes resins for extrusion and molding, resins for solution coating, and latexes for coating. A variety of comonomers are used to achieve different properties. The barrier properties are important for food packaging. Typically, these polymers are used with other polymers such as polyethylene or polypropylene in multi-layer structures. Ethylene-vinyl alcohol copolymers (EVOH) These polymers are actually hydrolyzed copolymers of ethylene and vinyl acetate. They are excellent barriers to mass transport, especially when dry. They find applications in both flexible and rigid packaging for food, typically as part of a multi-layer structure. 3. Styrenics and Engineering Thermoplastics
Polystyrene family These inexpensive polymers span the range of engineering thermoplastics. They are easy to fabricate by either extrusion or molding. Typically, small amounts of additives are used, including extrusion aids, mold releases, FR agents, UV stabilizers, and plasticizers. General purpose polystyrene (GPPS): This homopolymer is transparent and glossy. It quickly sets after molding to give stiff parts. Polystyrene can be made into foam articles such as insulating board or cups, using extrusion techniques or by expanding beads. Other applications include food packaging and molded parts in appliances. High impact polystyrene (HIPS): This rubber-modified composite typically contains 1-10 wt.% rubber, generally polybutadiene, to give added toughness. It is also used in many applications including food packaging and molded parts. Styrene-Acrylonitrile copolymers (SAN): A typical copolymer has 70 wt.% styrene and 30 wt.% acrylonitrile. These clear polymers have excellent dimensional stability and long-term toughness. Furthermore they are resistant to a wide range of solvents. Rubber-modified styrene-acrylonitrile copolymers (ABS): This material has a continuous SAN phase with about 15 wt.% rubber modification, generally polybutadiene. In most applications, impact resistance is the reason for the selection of ABS. Applications include housings and covers for appliances and tools, plus a variety of automotive moldings. Syndiotactic polystyrene (SPS): This semi-crystalline polymer can be used at higher temperatures. Applica-
tions include molded parts that must maintain close tolerances. Polycarbonate (PC) This polymer is usually made in large scale by the condensation of phosgene and bisphenol A. It has great impact strength and excellent optical properties; hence, it is used for lenses, compact discs, glazing, instrument panels, and high-volume food services wares. It can be modified with reinforcing fibers, FR agents, and stabilizers. Development of new applications is intense. Nylon family These are polyamides resulting from the condensation reaction of an amine function and an acid function. As a family, they are tough and hard. They are resistant to many liquids and have low coefficients of thermal expansion. They can be reinforced with glass fibers, carbon, and minerals. Applications include molded parts for electrical power transmission, molded parts for a wide range of automotive functions, pulleys, bearings and items which need good abrasion resistance and toughness. Nylon 6: This homopolymer of caprolactam is in the middle of the range of nylons for toughness, hardness, and heat distortion. Nylon 6,6: This copolymer of hexamethylene diamine and adipic acid has the greatest hardness and highest resistance to heat deformation and lowest toughness of the nylon family. Polyfmethyl methacrylate) (PMMA) This important member of the acrylate family is often freely abbreviated "acrylate". It has moderate toughness and excellent optical properties. It is hard. Hence, applications include glazing, fibers for transporting light, instrument panels, and packaging. Polyoxymethylene (Acetal) Acetal resins are derived primarily from formaldehyde although copolymers are common. Endcapping is done to reduce the rate of degradation. These polymers are strong, tough, and stiff, and they have a low coefficient of friction against many materials. They are creep resistant and are extremely resistant to
fatigue. Applications are often based upon dimensional stability and solvent resistance. 4. Elastomers
Poly(organosiloxanes) (silicone polymers) Most silicone polymers are either homopolymers or copolymers of dimethylsiloxane. They have high flexibility over a wide range of temperatures. They "repel" water strongly. Membranes are an important application for elastomeric grades. Other applications include stopcock grease, car polishes, and anti-stick formulations. Chlorinated polyethylene (CPE) After a starting polyethylene has been chlorinated, the resulting material is typically 25-50 wt.% chlorine. The properties range from thermoplastic to elastomeric. Applications for CPE include automotive hoses, tubing, and wire jacketing plus extensive membranes for roofing. It can be an impact modifier for PVC. Polyolefin elastomers (POE) These copolymers of ethylene and an a-olefin are made with single-site catalysts. They have very low densities. Materials can be designed for a wide range of applications. Polyurethane elastomers (some TUP, thermoplastic polyurethane) These terpolymers can be used uncured for most applications; however, selected grades can be cross-linked to enhance properties. As a family these elastomers are tough and wear resistant. They have excellent chemical resistance and flexibility. They can have excellent clearity. Applications include cable jackets, Automotive fascia, connectors, fittings, and many, many more. Ethylene-Propylene-Diene Terpolymers (EPDM) These terpolymers typically contain a few percent of a diene such as hexadiene. This material is easy to fabricate and then is usually heat-treated at 125°C to 175°C to induce crosslinking. The physical properties are much different after crosslinking. Commonly, they are heavily formulated for applications which include wire jacketing systems, automotive hoses, and roof sheeting.
C.
PROPERTIES OF COMMERCIAL POLYMERS
TABLE 1. MULTIPURPOSE THERMOPLASTICS
PETfl
PETG
Rigid PVC
Flexible PVC*
1.4 Hoop-172 axial-69 Hoop-4275 axial-2206
1.27 50
1.39 55
1.18-1.70 5.5-26.2
1724
2800
4.8-12.4
D638 D638
2000 180
40-80
150-450
D256 D785
90 R105
Shore D 65-85
D648
63
Property
Unit
Test method
MECHANICAL Density Tensile strength
g/cm3 MPa
D792 D638
Tensile modulus
MPa
D638
Flexural modulus Elongation to break Notched Izod at room temp. Hardness
MPa % J/m
THERMAL 0 Deflection C T @ 264 psi 0 Deflection T @ 66 psi C 0 Vicat softening point C 0 UL temp. Index C UL flammability code rating Linear coefficient mm/mm/°C of thermal expansion ENVIRONMENTAL Water absorption 24 h Clarity
D648 D1525 UL746B UL94
79
D696
71 180
66-77 63-82
HB
V-O
Varies Varies Varies
9.1 x 10" 5
9-18 x 10~ 6
13-45 xlO" 6
<0.5 Transparent Opaque
Varies Clear, translucent,
% % Transmission
D570 D1003
<0.1 88
0.5 90
%
D1435
Not suggested Yes
Not suggested Yes
Outdoor weathering FDA approval
Varies
Special formula available
Varies Possible
CHEMICAL RESISTANCE TO: Weak acid Strong acid
D543 D543
Good Fair
Fair Poor
Weak alkali Strong alkali
D543 D543
Fair
Fair Poor
Low molecular weight solvents Alcohols
D543
Fair
Fair
D543
Good
Fair
Resists
Ketones, chlorinated hydrocarbons attack Minimally attacked
D149
26
10-50
9.9-15.8
D150 D150
3.3 0.03
1/8"-15.7 1/16"-22.I 3.2
32-40 0.007-0.020
3.3-4.5 0.04-0.14
D3418 D3418
245-265 80
175 81
Varies Varies
ELECTRICAL Dielectric strength
kV/mm
Dielectric constant Power factor OTHERS Melting point Glass transition temp. Special
a e
Bottle grade. 9.5% acrylic acid, extrusion coating resin.
0 0
C C
None 81
Not attacked Not to slightly attacked Not attacked Not to slightly attacked
b Range includes plasticizers and fillers. f High styrene content.
Not attacked Not attacked Not attacked Not attacked
Polymer name Ethylene-methacrylic acid copolymerc
EVA^
EAA*
PTFE
ESl'
PLA*
0.94
0.93-0.957
0.938
2.2
0.950-1.050
1.25
33
6.2-28
17.6
21
12-41
53
410
3-12
3450
410 40 No break D55-D70
200-500 Shore A 60-100
4.1 16
220 400 608 Shore D 60
6.9-110 650-950 No break A: 73-98 D:24-47
600
55.6 44 73
121 36-82
137
76 VE-O
18-30 x l 0 ~ 5
9.9
6
0.1 Transparent to translucent
<0.05 Opaque
<0.5
Yes
Yes
Not attacked Slow attacked
Not attacked Not attacked
Good Good
Not attacked Not attacked
Not attacked Attacked by sulfuric acid Not attacked Not attacked
Not attacked Not attacked
Good Good
Slight swell
Soluble
Not attacked
Varies
Slight swell
Not attacked
Not attacked
Good
Superb Yes
Yes
Yes
0.04
25.4
2.4 0.003
2 <0.0002
2.2-2.6
93
327 -100 Surface energy at 200C ~ 20 erg/cm2
0.001-0.008 - 2 0 t o +35 Has "Dead Fold"
Neck in is 6.6 cm at 25 um; minimum coating weight is 10 g/m2 c Ionomer; partially neutralized with sodium. * Sheet extrusion grade, low D isomer, semi-cyrstalline.
d
Properties range for family.
Not resistant
Varies
178 63 Combustible; amorphous grades are transparent
TABLE 2. POLYOLEFINS AND BARRIER POLYMERS
Property
Unit
Test method
HDPEa
LDPE*
LDPEc
LLDPE^ 0.92 MD 56.5 CD 37.0 MD 183 CD 169
MECHANICAL Density Tensile strength
g/cm3 MPa
D792 D638
0.941-0.967 19-30
0.921 10.3
0.923 9.6
Tensile modulus
MPa
D638
800-1400
165.5
248
Flexural modulus Elongation to break
MPa %
D638 D638
700-1700 10-1000
620
270
Notched izod at room temp. Hardness
J/m
D256 D785
27-160
42.7 at - 500C
48 at - 500C
0
65-95 120-130
41 91
93
66 106
mm/mm/°C
D648 D648 D1525 UL7468 UL94 D696
100-200 x 10 " 6
-25OxIO-6
- 250 x 10 ~6
160-200 x 10 " 6
% %Transmission %
D570 D1003 D1435
<0.01
<0.01 Translucent
<0.01
Yes
Yes
Yes
THERMAL Deflection T @ 264 psi Deflection T @ 66 psi Vicat softening point UL temp, index UL flammability code rating Linear coefficient of thermal expansion ENVIRONMENTAL Water absorption 24 h Clarity Outdoor weathering
C C °C °C
0
FDA approval
MD 600 CD 750
Yes
CHEMICAL RESISTANCE TO: Weak acid Strong acid
D543 D543
Not attacked Minimally attacked
Not attacked Minimally attacked
Weak alkali
D543
Not attacked
Not attacked
Not attacked
Not attacked
Strong alkali
D543
Not attacked
Not attacked
Not attacked
Not attacked
Low molecular weight solvents Alcohols
D543
Minimally attacked
Minimally attacked
Minimally attacked
Not soluble
D543
Not attacked
Not attacked
Not attacked
Not soluble
D149 D150 D150
16-24 2.2-3.0 0.00005-0.003
2.2 0.0003
2.2 0.0003
2.3 <0.0005
D3418 D3418
130-137 Not measurable
- 3 5 inferred
- 3 5 inferred Minimum heat seal; temperature: 132°C
ELECTRICAL Dielectric strength Dielectric constant Power factor OTHERS Melting point Glass transition temp. Special
a
Properties of range. For injection molding. ' 38 mol% ethylene
e
KV/mm
0
C C
0
Not attacked Not attacked Minimally attacked Minimally attacked
b General purpose, for film & molding. f Blown film grade, film properties reported.
125 - 3 5 inferred
Polymer name LLDPE*
VLDPE(OrULDPE/
POPg
PP
PVDC1
EVOH1
0.917 15.9
0.912 MD 57.9 CD 49.6 MD 122 CD 135
0.896 MD 49 CD 43
0.903 35.5
1.7 34.5
1.17 60
1380
516.8
MD 575 CD 700
MD 600 CD 710
221 283 850
1690 Depends on specimen molding, history 37 100
40 at - 50 0 C
96
55 101 154 115 HB 90 x 10 ~6
80
160-200 x 1 0 - 6
- 2 5 0 x 10 ~6
<0.01
<0.01
Yes
Yes
Not attacked Minimally attacked
Not attacked Minimally attacked
Not attacked Minimally attacked
Not attacked
Not attacked
Not attacked
Excellent Varies with acid Excellent
Not attacked
Not attacked
Not attacked
Good
Not soluble
Minimally attacked
Not soluble
Not attacked
Minimally attacked Not attacked
Nonpolar swells; polar excellent Excellent
2.3 < 0.0005
-2.2 -0.0003
- 35 inferred
- 38 inferred Seal initiation temperature: 102 0 C; Oxygen permeability at 23°C: 1900nmol/m.s.GPa; Toughness (D882) - M D 97 J/cm 3 -CD127J/cm3
c 8
For extrusion coating. Homogeneous catalyst, blown film grade, film properties reported.
<0.01
<0.03
21 CFR 177.1520 (c) 1.1
25
240
37.4 60
49 135 V-O 34 x 10 " 5
0.1 85 moderate discoloration Yes
>1.0
Yes
Not attacked Not attacked Minimally to badly attacked Minimally to badly attacked Not attacked Not attacked
24-28 2.25 0.0003
164 - 20
- 45
Oxygen permeability at 23°C: 3200nmol/m.s. GPa d h
160 - 4 Oxygen permeability at 23°C: 0.2 nmol/ m.s. GPa; WVTR (37.8°C, 90% RH): 0.06gmil/ 100 in. 2 day
175 62 (Dynamic) Oxygen permeability at 23°C 65% RH = 0.08 nmol/m.s. GPa; WVTR at 40 0 C 90%RH= 1.4 g.mil/lOOin.2 day
For blown film, mechanical properties for blown film with blow up ratio 2:3. Extrusion grade.
TABLE 3. STYRENICS AND ENGINEERING THERMOPLASTICS
Property
Unit
Test method
GPPSa
HIPS*
SANc
ABS^
MECHANICAL Density Tensile strength
g/cm3 MPa
D792 D638
1.04 46
1.04 24
1.08 82
1.04 40
Tensile modulus
MPa
D638
2890
1650
3860
2140
Flexural modulus
MPa
D638
3180
1910
4070
2580
%
D638
1.5
52
3
25
J/m
D256
93
112
27
72
D785
M60-M84
M29
M80
R104
D648 D648 D1525 UL746B UL94
86 95 107 50 NA to V-O
74 87 101 50 NA to V-O
103 108 111 60 HB
103 - 107 111 -60 HB
mm/mm/°C
D696
9.0 x 10" 5
9.0 x 105
6.7 x 10" 5
6.7 x 10" 6
% %Transmission %
D570 D1003 D1435
0.05-0.07
0.05-0.07
0.05-0.40 87-89 Yellows
0.20-0.45 Opaque Fair
Yes
Yes
No
Possible
Not attacked Minimally attacked Not attacked Minimally attacked Minimally attacked
Not attacked Minimally attacked Not attacked Minimally attacked Minimally attacked
Minimally attacked
Minimally attacked
Elongation to break Notched izod at room temp. Hardness THERMAL Deflection T @ 264 psi Deflection T @ 66 psi Vicat softening point UL temp index UL flammability code rating Linear coefficient of thermal expansion ENVIRONMENTAL Water absorption 24h Clarity Outdoor weathering
0
C C 0 C 0 C 0
FDA approval CHEMICAL RESISTANCE TO: Weak acid Strong acid
D543 b543
Weak alkali Strong alkali
D543 D543
Low molecular weight solvents
D543
Alcohols
D543
ELECTRICAL Dielectric strength
kV/mm
Attacked by Hydrocarbons, Aromatic Amines, Ketones, Aldehydes
Attacked by Hydrocarbons, Aromatic Amines, Ketones, Aldehydes
D149
19.7
11.8-19.7
- 14
16-31
Dielectric constant
D150
2.54
2.50-2.52
-2.8
-3.1
Power factor
D150
2 x 10" 4
6xlO~4
-0.009
0.007-0.015
D3418 D3418
74-110
93-105
115
-110 Other grades include high impact, high gloss, and heat-resistant
OTHERS Melting point Glass transition temp. Special
a e 1
General purpose. 30% Glass-filled, ignition resistant. General purpose grade.
0 0
C C
b f j
Rubber modified, extrusion grade. General purpose grade. General purpose grade.
Polymer name SPS*
PCf
Nylon 68
Nylon 6.6^
PMMA'
ACETAL^
1.44 95.1
1.2 72
1.41 61
2480
2400-3100
2829
9600
2410
2800-3400
2588
1.8
150
2-5
40-75
70
961
1.14 90 65 3400 1700 2896 2206 20 80 37 64 M-90
1.17-1.20 55-76
9600
1.13 80 50 3000 1500 2414 966 50-100 200 53 96 M-86
16-32
53-80
M80-100
M78-M80
110 157
R118/M74
221 263 263
132 138 158
55-75 >160
104 >200
71-102 74-113 95-110
V-O
V-2
V-2
V-2
HB
105 94HB
30.5 x l O - 6
6.84 x l O - 5
8IxIO-6
8IxIO-6
5-9xl0~5
8.5 x 10~5
0.01
0.15 87-91
3 ±0.4
2.8 ±0.3
0.2-0.4 91 Very slight yellowing at 3 years Yes; for less than 8% alcohol
0.22 Opaque
Not attacked Minimally attacked to soluble Not attacked Not attacked soluble to Not attacked
Consult supplier Badly attacked
Possible
Good Good
Attacked
Not resistant Not resistant
Not resistant Not resistant
Good Good
Attacked Attaked
Good resistance Good resistance
Resistant Resistant
Varies
Varies
Good resistance
Resistant
Yes
Not attacked Not attacked
Not attacked
Good
c 8
Good resistance
Resistant
Not attacked to badly attacked
Not attacked
100 60 3.5 7.0
120 80 3.2 5.0
~20
20
2.8
3.7
0.02-0.03
0.006
23.6
17
3.1
2.93
0.001
0.005
0.023 0.3
0.025 0.2
270
(230) 150 Index of refraction: 1.586
220
255
Injection molding grade. For injection molding, heat stabilized.
165 105
d
Solution, low gloss. * General purpose.
TABLE 4. ELASTOMERS
Property MECHANICAL Density Tensile strength Tensile modulus Flexural modulus Elongation to break Notched izod at room temp. Hardness THERMAL Deflection T @ 264 psi Deflection T @ 66 psi Vicat softening point UL temp, index UL flammability code rating Linear coefficient thermal expansion ENVIRONMENTAL Water absorption 24 h Clarity Outdoor weathering FDA approval
Unit g/cm3 MPa MPa MPa % J/m
0
C C 0 C 0 C
OTHERS Melting point Glass transition temp. Special a b c d e
Flexible casting resins, e.g RTV. Range for elastomeric grades, 25-36 wt.% chlorine. Homogeneous catalyst, molding grade. Polyester Polycaprolactone Resin. Fully formulated.
D792 D638 D638 D638 D638 D256 D785
mm/mm/°C
D648 D648 D1525 UL746B UL94 D696
% % Transmission %
D570 D1003 D1435
0
CHEMICAL RESISTANCE TO: Weak acid Strong acid Weak alkali Strong alkali Low molecular weight solvents Alcohols ELECTRICAL Dielectric strength Dielectric constant Power factor
Test method
D543 D543 D543 D543 D543 D543 kV/mm
0 0
C C
D149 D150 D150 D3418 D3418
Silicone* 0.97, greater when filled 1.0-5.5 200-850 Shore A 20-60
10-19 x 10 ~6 0.1
Fair Fair Varies
16-22 3.0-3.5 0.001-0.01
Polymer name CPE*
POEc
TPud
EPDMe
1.10-1.16 21-Sep At 200% elongation 1.2-11.7
0.87 18 22 >1000
1.20 42 8 83 425
0.86, Polymer 6-16 1.2-5.6 at 50% elongation
Shore A 72
Shore A 93A
300-800 No break Shore A > 60 Flexible Flexible Flexible
Varies 41 Medium
<0.01
Not attacked Not attacked to badly attacked Not attacked to badly attacked Not attacked to badly attacked Not attacked to badly attacked Not attacked to minimally attacked
Varies
0.3
Varies
Possible
Opaque Excellent Some
Not attacked Minimally attacked Not attacked Not attacked Minimally attacked Not attacked
Stable Medium Stable Medium No effect to attacked No effect
Excellent Excellent, Varies Excellent Excellent, Varies Fair, Varies Good
14.8-19.7 4.3-5.1 0.1
- 20
100 Shore A 57-93
900 3.0-3.5 0.004-0.008 60 - 55
Varies -15 Taber Abrasion resistance 10 mg
Most Grades Amorpnous
S E C T I O N
S
O
L
I
D
S T A T E
V l
P R O P E R T I E S
C r y s t a l l o g r a p h i c f o r
D a t a
V a r i o u s
a n d
M e l t i n g
P o i n t s
P o l y m e r s
R o b e r t L. M i l l e r Michigan Molecular Institute, 1910 West St. Andrew Rd., Midland, Ml 48640, USA
A. Introduction 1. Nomenclature 2. Examples of Polymer Names 2.1. Polymer Names Based on Source 2.2. Polymer Names Based on Structure References for Introduction B. Crystallographic Data for Various Polymers Table 1. Poly(olefins) Table 2. Poly(vinyls) and Poly(vinylidenes) Table 3. Poly(aromatics) and Poly(imides) Table 4. Poly(dienes) and Poly(diynes) Table 5. Poly(peptides) Table 6. Poly(amides) Table 7. Poly(esters) Table 8. Poly(urethanes) and Poly(ureas) Table 9. Poly(ethers) Table 10. Poly(oxides) Table 11. Poly(sulfides) and Poly(sulfones) Table 12. Poly(saccharides) Table 13. Other Polymers C. Melting Points of Polymers D. Appendix: Formula Index to the Tables E. References
A.
Vl-I Vl-I VI-2 VI-2 VI-3 VI-5 VI-5 VI-6 Vl-13 Vl-15 VI-22 VI-26 VI-33 VI-40 VI-49 VI-51 VI-52 VI-57 VI-59 VI-64 VI-71 Vl-113 VI-159
INTRODUCTION
These tables contain data for approximately 2700 polymers. In general, the format and organization of the tables follows that used in the 2nd edition of the "Polymer Handbook" (Section B: Crystallographic Data; Section C: Melting Points; Section D: Formula Index and Section E: References). The Formula Index is included as an aid to the searcher: it permits one to determine the polymer name used in these tables from the structural line formula for the polymer of interest. To avoid the duplication of data for polymers appearing in both the Crystallographic Data and Melting Point tables, the entry in the Melting Point table has been flagged with an asterisk (*).
1. Nomenclature
Contrary to the rest of the Polymer Handbook, the ACSIUPAC nomenclature proposals (1,2) for naming regular single-strand organic polymers have not been adopted for these tables. Basically, the nomenclature used in this portion of the Polymer Handbook is that of the 1st and 2nd editions and of the 1967 recommendations of the IUPAC Nomenclature Committee (3). The majority of polymers were named as the bivalent radical(s) comprising the constitutional repeating unit (CRU), with priority in naming given to (a) incorporation of important structural features (amide, ester, oxide, etc.) and (b) emphasis on symmetry of the CRU (when present). As in the past, many common polymers (poly(styrene), poly(vinyl chloride), etc.) were named according to source names. In the majority of cases, the polymer was named according to its structure, particularly when the CRU was composed of two or more subunits following each other in a regular fashion. An example is poly(ethylene terephthalate). With more complicated structures, the CRU was divided into its possible subunits, each of which was treated as a bivalent radical and so named. One of the subunits was treated as the parent compound, for example, the "terephthalic acid" of the above example. For poly(amides) and poly(esters), the acid was chosen as the parent compound; for poly(urethanes) it was the isocyanate. Whenever the CRU (or a portion thereof) exhibited a center of symmetry, naming began with the central subunit using Chemical Abstracts/IUPAC names for the constituent bivalent radicals (see under examples). Conjunctive names were used as needed in constructing names. For symmetrical units, this process of naming could be continued indefinitely. Unsymmetrical bivalent units were named with replacement nomenclature, or from end to end, depending upon the complexity of the bivalent radical and the ease of naming by the alternative choices. Replacement nomenclature was used, for example, to name poly(hexamethylene 6-oxaheptadecanediamide). The polymer from the symmetrical oxyacid would be named poly(hexamethylene oxydicaprylamide).
More complicated structures without symmetry were named end to end. This method was particularly appropriate for the poly(oxides) of the form -(R-O-R'-O^ (and for the analogous sulfides, sulfones, ureas, and anhydrides) and for the poly(co-amino acids) and for the poly (G)-hydroxy acids). The constitutional hydrocarbon subunits were ordered alphabetically in naming the polymer as, for example, in poly(methyleneoxy pentamethylene oxide). For silicon-containing polymers, bivalent radical names replaced the source-based silane/siloxane names. For
example, the source-named polymer, poly[(tetramethylsilphenylene) siloxane], appears in these tables as poly(/?phenylene tetramethyldisiloxanylene). For the regular polymers of multipeptides, a cyclic permutation of the individual peptide residues in the constitutional base unit was performed to permit alphabetical ordering without loss of directional or sequential sense. Thus, poly(alanylglycyl-proline) is the name given to polymers prepared form (ala-gly-pro), (gly-pro-ala), and (pro-ala-gly), but not from (ala-pro-gly) or from either of its cyclic permutations.
2. Examples of Polymer Names 2.1. Polymer Names Based on Source Olefin, Vinyl, and Acyclic Polymers [-CH 2 -CH 2 -J n
Poly(ethylene)
[-CH-CH2-Jn
PoIy(I-butene)
I
CH 2 -CH 3 [-CH-CH 2 -] n
Poly(acrylonitrile)
I
CN [-CH-CH 2 -J n
Poly(vinyl chloride)
I
Cl
[-CH-CH2-Jn
Poly(methyl acrylate)
I
COOCH3 Poly(amides)l [-NH-CH 2 -COO-J n
Poly(glycine)
[-NH-(CH 2 ) 2 -COO-] n
Poly(3-aminopropionic acid) (poly (|3-alanine))
[-NH-(CH 2 ) 3 -COO-] n
Poly(4-aminobuyric acid)
[-NH-(CH 2 ) 4 -COO-] n
Poly(5-aminovaleric acid)
[-NH-(CH 2 ) 5 -COO-] n
Poly(6-aminocaproic acid)
[-NH-(CH 2 ) 6 -COO-] n
Poly(7-aminoenanthic acid)
[-NH-(CH 2 ) 7 -COO-] n
Poly(8-aminocaprylic acid)
[-NH-(CH 2 ) 8 -COO-L
Poly(9-aminopelargonic acid)
[-NH-(CH 2 ) 9 -COO-] n
Poly(10-aminocapric acid)
[-NH-(CH 2 ) lo-COO-] „
PoIy(11-aminoundecanoic acid)
[-NH-(CH2)n-C00-]n
PoIy(12-aminolauric acid)
Poly(oxides) [-CH 2 -O-J n
Poly(oxymethylene)
[-CHO-Jn
Poly(acetaldehyde)
I
CH3 1
Poly(esters) are treated similarly.
Poly(ethylene oxide) Poly(propylene oxide)
Poly(trimethylene oxide)
2.2.
Polymer Names Based on Structure
(a) Linking Radicals Ethylene Trimethylene Oxydiethylene Ethylenedioxy-diethylene Sulfonyldiethylene
methylphosphinidene-ditrimethylene /?-Phenylenediethylene 4,4/-Biphenylenediethylene 4,4 '-Methylenediphenylene 4,4 '-Ethylidenediphenylene
4,4 '-Isopropylidenediphenylene
4,4 '-Butylidenediphenylene
4,4'-(2,2-Butylidene)diphenylene 4,4 '-Oxydiphenylene
4,4 '-Sulfonyldiphenylene
(b) Parent Compounds Oxalate (oxamide) Malonate (malonamide) Succinate (succinamide) Glutarate (glutaramide)
References page VI-159
Adipate (adipamide) Pimelate (pimelamide) Suberate (suberamide) Azelaate (azelaamide) Sebacate (sebacamide) Nonanedioate (nonanediamide) Oxydipropionate p-Phenylene diacetate /7-Phenylenedipropionate 4,4'-DIbCnZOaIe 4,4 '-Methylenedibenzoate 4,4 '-Oxydibenzoate
4,4' -Sulfonyldibenzoate
4,4' -Oxy dipheny lenediacetate 4,4 /-(Ethylenedioxy)dibenzoate /?-(Phenylenedioxy)diacetate (p-Carboxyphenoxy)acetate 1,4-Piperazinediacetate (c) Polymer Names
Poly(esters)2 Poly(ethylene terephthalate) Poly(ethylene 4,4'-dibenzoate) Poly(ethylenep-phenylenediacetate)
Poly(ethylene 4,4 '-isopropylidenedibenzoate)
Poly(ethylene 4,4 '-sulfonyldibenzoate)
Poly(urethanes) Poly(trimethylene ethylene-urethane) 2
Poly(amides) are treated similarly.
Poly(oxides), Poly(sulfides), Poly(amines) Poly(ethylene trimethylene oxide) Poly(ethylene trimethylene sulfide) Poly(ethylene trimethylene amine)
REFERENCES FOR INTRODUCTION 1. ACS Structure-based Nomenclature for Linear Polymers, Macromolecules, 1, 193 (1968). 2. IUPAC Appendices on Tentative Nomenclature, Symbols, Units, and Standards - Number 29, Nomenclature of Regular Single-strand Organic Polymers, November 1972 - Macromolecules, 6, 149 (1973). 3. 1967 IUPAC Report on Nomenclature, J. Polym. Sci. B, 6, 257 (1968). B. CRYSTALLOGRAPHIC DATA FOR VARIOUS POLYMERS
The following table presents crystallographic data for about 750 polymers (and for their many polymorphs) grouped, according to the generic structure of the constitutional base unit, into poly(olefins), poly(vinyls) and poly(vinylidenes), poly(aromatics) and poly(imides), poly(dienes) and poly(diynes), poly(peptides), poly(amides), poly(esters), poly(urethanes) and poly(ureas), poly(ethers), poly(oxides), poly(sulfides) and poly(sulfones), poly(saccharides), and other polymers. Where a polymer might be included in more than one group the following group definitions were used: 1. Poly(olefins): those olefin polymers not containing aromatic rings; all substituted derivatives of these, excluding the vinyl and vinylidene polymers. For example, poly(ethylene), poly(tetrafluoroethylene), and poly(cyclopentene), but not poly(styrene) or poly(vinyl chloride). 2. Poly(vinyls) and Poly(vinylidenes): those vinyl and vinylidene polymers containing atoms other than carbon and hydrogen, excepting the poly(ethers). Thus, poly(vinyl chloride) but not poly(methylvinyl ether). 3. Poly(aromatics) and Poly(imides): those hydrocarbon polymers containing aromatic rings, including heterocyclic ones. Thus, poly(styrene), poly(p-xylylene), and poly(p-phenylene pyromellitimide). 4. Poly(peptides): those polymers whose basic structure, ignoring substituents, is poly(2-aminoacetic acid), that is, poly(glycine). This group contains mainly the synthetic poly(oc-amino acids). 5. Poly(amides): all amide polymers except the poly(ocamino acids), which are separately grouped under poly(peptides). 6. The remaining categories contain polymers according to functional groups as, for example, the poly(esters). Poly(ethers) and poly(oxides) are differentiated accord-
ing to whether the ether linkage is in the side-group or in the chain backbone, respectively. For example, poly(l-butoxy-2-chloroethylene) is a poly (ether) and poly(oxymethylene) is a poly(oxide). 7. Those polymers not otherwise categorized, such as the poly(phosphazenes) and the poly(siloxanes), are grouped in the "other" category. Within each group, polymers are listed alphabetically according to the basic structure, ignoring substituents (excepting the polypeptides, all of which have the same base structure). Substituted polymers are listed alphabetically according to the substituent under the entry for the unsubstituted polymer. Thus, poly(tetrafluoroethylene) and poly(4-methyl-l-pentene) appear, respectively, under polyethylene) and poly(l-pentene). Included as part of the polymer name column is the molecular weight of the chemical repeat unit of the chain, that is, of the constitutional base unit. This is given in parentheses just below the polymer name. The values reported are in grams per mole. Unless otherwise indicated, the reference cited in the last column applies to all of the data in that line of the tables. Where an entry in a line has been taken from a source different from that listed in the reference column, a solidus (/) separates the value of the entry from the reference citation. For example, one value of the melting point of poly(l-butene) is given as "126/12" which is to be read as "126°C according to Ref. 12". The crystal system, where known, is given in column 2 of the table, using the abbreviations given later. The next column contains the space group symbol (the Schoenflies notation is used because of the limitations of common printers at mainframe installations) with the subscript portion of the symbol preceding the superscript portion. Thus, according to Ref. 14, the poly(ethylene) unit cell is orthorhombic (Ortho) with space group D ^ (D2h-16). For a fuller discussion of space group symbols, see "International Tables for X-Ray Crystallography", Vol. I, Kynoch Press, Birmingham, England, 1952. The dimensions of the unit cell (a, b, c) are given next, in Angstroms (1 A = 0.1nm). c is the fiber axis. Unless otherwise indicated, the unit cell angles are all 90°. Where only one angle differs from 90°, its value is given. When all three angles differ from 90°, their values are listed in the order a, /3, 7. The next column contains the number of constitutional base units in the unit cell described. Columns 9 and 10 contain the densities of the completely crystalline and of the completely amorphous polymer, respectively. The values given, normally approReferences page VI-159
priate to room temperature, are in grams per cubic centimeter (lg/cm 3 = 103kg/m3). For uniformity crystallographic densities (column 9) have been recalculated on the basis of the 1969 IUPAC atomic weight values. Melting points in degrees Celsius and heats of fusion in kilojoules per mole are listed in the next two columns. The heats of fusion correspond to the amount of substance represented by the molecular weight associated with each polymer name. Column 13 of the tables indicate briefly the conformation of the polymer chain in the crystal (in a helical notation) either as reported in the reference cited or as inferred from the value of the fiber axis. The designation n *p/q specifies the number (n) of skeletal atoms in the asymmetric unit of the chain and the number of such asymmetric units (p) per q turns of the helix in the crystallographic repeat. Thus, poly(ethylene), as listed, has two carbon atoms in the backbone with one such unit per turn in the repeat - it is designated as a 2*1/1 helix. Alternatively, poly(ethylene) considered a poly(methylene) would be designated as a 1*2/1 helix - an entirely equivalent description of the conformation. Note that n may differ from the number of chain atoms in the constitutional base unit. On the one hand, isotactic poly(propene) has two skeletal atoms in the asymmetric unit and three units per turn (2*3/1). On the other hand, syndiotactic poly(propene) with the same constitutional base unit as isotactic
poly(propene) has four skeletal atoms in the asymmetric unit and two units per turn (4 * 2/1). In this case, n signifies the number of skeletal atoms in the stereobase unit. A fuller discussion of this helical notation is given in Hughes and Lauer, J. Chem. Phys., 30, 1165 (1959) and in Nagai and Kobayashi, J. Chem. Phys., 36, 1268 (1961). This list of polymers and data is not considered to be exhaustive. The compiler expands it as new information is unearthed and he is quite receptive to notification of omissions and/or corrections and to submission of unpublished data. AU of the data in this table cannot be considered to have the same validity - the number of polymers for which detailed, accurate, and reliable crystal structure analyses have been conducted is still quite limited. The reader may find it desirable to refer to the original literature cited so as to gain a fuller appreciation of the reasons for apparent discrepancies within the tables. The following abbrevaitions have been used in the tables. Tri Mono Ortho Tet Rho Hex P Phex
Triclinic Monoclinic Orthorhombic Tetragonal Rhombohedral (trigonal) Hexagonal Pseudo Pseudohexagonal
TABLE 1. POLY(OLEFINS) (-HCH-CHR-) Density (g/cm3)
Unit cell parameters Polymer Poly(acetylene) transI. (26.04)
II. c/s-transoid
Cryst syst.
Phex Mono Ortho Ortho Ortho Mono Port Ortho Ortho Ortho Ortho
Space group
D2h-16
C2h-5 C2h-5
Ortho Mono
D2h-16
Ortho Ortho Ortho Ortho Ortho
D2h-16
Orhto
D2h-16
D2h-16
a
b
c
4.2 4.26 7.32 7.37 5.62 4.24 7.41 3.99 7.20 7.31 7.26 7.46 7.38 7.330 3.73
4.2 7.33 4.24 4.065 4.92 7.32 4.08 7.29 4.15 4.06 4.24 4.08 4.09 4.090 3.73
2.43 2.46 2.46 2.45 2.592 2.46 2.48 2.51 2.44 2.45 2.47 2.46 2.457 2.457 2.44
7.61 7.74 7.68 7.45 7.62 7.61 7.66 7.62
4.39 4.32 4.46 4.30 4.46 4.39 4.42 4.44
5.12
5.12
Angles
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
z
Crystal.
1 2 2 2 2 2 2 2 2 2 2 2 2 2 1
1.16 1.126 1.33 1.178 1.207 1.133 1.153 1.184 1.186 1.189 1.137 1.155 1.166 1.174 1.286
2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1
69 982 981 979 980 1213 1228 1229 1281 1282 1283 1323 1324 1369 980
4.47* 4.47 4.38 4.40* 4.38 4.36* 4.384 4.384
4 4 4 4 4 4 4 4
1.158 1.157 1.153 1.227 1.162 1.187 1.165 1.166
2*2/1 2*2/1 2*2/1 2*2/1 2*2/1 2*2/1 2*2/1 2*2/1
945 976 978 1229 1282 1323 1324 1369
4.84
3
1.180
2*3/1
977
/3 = 91.4
(3 = 91.5
7 = 98
Amorph."
Melting point (0C)*
czs-cisoid Hex
TABLE 1. cont'd Density (g/cm3)
Unit cell parameters Polymer -, difluorotrans(62.02) cis-, complex with: alkali metals Cs I. K I. II. Na I. Rb I. II. SbF6 and Poly(allene) 1.(40.06) II.
Cryst syst.
Space group
c
Ortho
7.58
4.29
Ortho
8.03
4.47
Tet
9.09
9.09
1230
Tet Ortho
8.46 5.94
8.46 16.37
1230 1231
Tet
8.5
8.5
1230
Tet Ortho
8.75 6.16
8.75 16.68
1230 1231
Mono Hex
8.66 9.8
7.36 9.8
2.4 5.4
8.20 6.37
7.81 5.12
3.88 3.88*
D2h-6 C2-2 or C2h-2
z
Crystal.
2.48
2
2.554
2*1/1
1385
4.64
4
2.473
2*2/1
1385
7 = 101
7 = 96.6
1261 1261 4 2
1.071 1.058
122/536
3.88
C4-2 or D4-3 Poly(allylbenzene), see Poly(propene) 3-phenylPoIy(I-butene) isotactic I. Rho D3d-6 (56.11) Hex Rho
II.
Chain conform. (n*p/q) Refs.
b
III. -, tetrafluoro(112.03)
Amorph.a
Heat of fusion kj/mola
a
Ortho Mono
Angles
Melting point (°C)a
Tet
Tet Tet Tet Tet Tet
S4-1 S4-1
D2d-7
6.88
6.88
17.7 17.3 17.70
17.7 17.3 17.70
15.4
8
6.50 6.7 6.51
18 18 18
2.042
0.951 0.96 0.950 0.950 0.95 0.95/12
126
0.87 0.868 0.860
0.819 0.886 0.902 0.888
126/12 132/250 133 136/277 139 135/320
15.42 14.89 14.85 14.91 14.5
15.42 14.89 18.85 14.91 14.5
21.05 20.87 20.6 20.76 21.1
44 44 44 44 44
130/380 124/277 126/313 120 122/320
8.96 8.88 8.92
(7.6) 7.56 7.45 7.6
8 8 8
(0.876) 0.897 0.906
106/277 110/984
8 8 22
0.937 0.946 0.964?
45
4 8 16 16 64 16
0.933 0.933 0.890 0.918 0.925 0.948
300/48 306/632 310/90 300/282
13.9/82 6.07/277 7.57 8.0/1285 7.01 6.92/320 138/380 142/984 142/313 4.06/320 6.28/277 6.9/1285 8.16
2*2/1 2*2/1
497 497
2*2/1
497
2*8/1
38
2*3/1 2*3/1 2*3/1
35 45 1284 252 983 391
2*11/3 2*11/3 2*11/3 2*11/3 *40//ll
866 207 350 1284 914 1195 207 876 531 461
0.868 III.
syndiotactic I. II. - , 3-methyl(70.14)
Ortho Ortho
D2-4
12.49 12.38 12.38
Ortho Ortho Mono
D2-5 D2-5 C2-2
16.9 16.81 9.94
6.05 6.06 13.9
7.78 7.73 20.4 20.0
9.55 9.55 19.1 19.25 34.3 19.25
8.54 17.08 17.8 17.20 34.3 17.20
6.84 6.84 6.85 6.85 6.85 6.63
Mono Mono Mono Port Tet Mono
C2h-5
C4v-12
7 =116.5 7-116.5 7=116 7=116.5 7 = 116.5
6.49/277 2*4/1 2*4/1 2*4/1
17.3/82
4*2/1 4*2/1 4*5/3
1435 1449 1435 1449
2*4/1 2*4/1 2*4/1 2*4/1 2*4/1 2*4/1
9 549 231 355 431 280
References page VI-159
TABLE 1. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
- , 3-methyl- [1,3-via hydride shift] (70.14) - , 4-phenyl(132.21)
Port
CS-2
a
b
5.4
10.4
c
Angles
z
Crystal.
Amorph.a
7.8
18.0
6.61 6.55
Poly( 1,3-cyclobutylene) - , 1-cyano(79.10) Poly (1,2-cycloheptylene-a/f-ethylene) (124.23) Poly (1,2-cyclopentylene-afr-ethylene) (96.17) Ortho Ortho D2h-17 or D2h-14 Poly( 1,3-cyclopentylene-a/Mnethylene) (82.15) Ortho Ortho Poly(decenamer) transIll. Tri Ci-I (138.25) IV. Mono C2h-5 PoIy(I-decene) 1.(140.27) PoIy(I-docosene) 1.(308.59) II. III. Poly(dodecenamer) transIll. (166.31) IV.
10.97
20.02
6.46
10.92
7.73
9.10
9.86
9.86
5.02 5
6
1.064
0.962
single crystal II.
a = 130
6
0.901
4
0.950
3
1.703
0.87
206
2*3/1
772
135
4*2/1
324
4*1/1
635 637
4.36
18.8 13.30
847
9.0
74
9*1/1
259
7.83 8.05
9.02 9.00
4 4
1.032 1.006
185
4*2/1 4*2/1
247 412
7.69 13.30
6.21 15.52
4.80 4.80
2 8
1.190 1.101
146 128
4*1/1 4*1/1
267 340
4.40
5.39
12.30
66,104,118
1
0.985
10*1/1
477
7.42
5.00
12.40
/9 = 94.2
2
1.001
32.9/562 10*1/1
530
80/562
13.2
6.7
Mono
5.3
108
7.7
8
0.93
/3 = 94
8
0.93
Tri
Ci-I
4.40
5.39
14.78
66,104,118
1
0.986
Mono
C2h-5
7.43
5.00
14.85
/3 = 93.5
2
1.003
7.40 7.428 7.36 7.418 7.406 7.407
7.84 4.05
4.93 4.934 4.94 4.946 4.939 4.949
5.56 4.85
2*
150
90 91/872 83 75/949
2*4/1
949
2*4/1 2*
949
12*1/1
477
41.2/562 12*1/1
530
45/48 49/872 49/250
2.534 2.532 2.534 2.546 2.547 2.551
120 2.54
34/250 40/537
80/439 84/562
13.2
Tri Pmono
483 67 1195
3*8/
88
D2h-16
2*3/1 2*3/1
262 264
4.6
370
7.5
D2h-16
158 160/90 159/282 168/187
332
25.3
Ortho
Ortho Ortho Ortho Ortho Ortho Ortho
Chain conform. (n*p/q) Refs.
8.76 8.76
PoIy(I-dodecene) 1.(168.32)
Poly(ethylene) 1.(28.05)
Heat of fusion kj/mola
55 68/319
1.041 - , 4-trimethylsilyl(128.29) Ortho Poly(2-butene-fl/f-ethylene) (84.16) Mono C2h-5 Poly(chlorotrifluoroethylene-tf/f-ethylene) (144.52) Hex
Melting point ( 0 C) a
63,71,82 7 = 105
2 2 2 2 2 2
1.008 1.004 1.011 0.997 1.000 0.9961
96 1
0.999 0.991 1.003 1.004 0.966
0.855 0.887 0.811 0.852
2*
137/85 142/315 141/206 145/351 141/286
8.03/85 8.12/262 7.70/86 8.67/700 7.79/156
146/362
7.62/343 8.37/260
141
8.2
2*1/1 2*1/1 2*1/1 2*1/1 2*1/1 2*1/1
2*1/1 2*1/1
150
14 892 15 535 311 1421 138 363 406 939 72 58
TABLE 1. cont'd Density (g/cm3)
Unit cell parameters Polymer
III. (hi press.) -, chlorotrifluoro(116.47)
-, ethylsilylisotactic (86.21) -, tetrafluoro11.(50.01)
I and IV. (>20°C)
III. (hi press.)
Cryst syst. Pmono Mono Tri Ortho Tet
Space group
C2h-3
Hex Hex Hex Hex Hex
Hex
Phex Tri Tri Mono
C3I-2
a
b
c
7.11 8.09 4.285 8.46 4.26
5.46 4.79 4.820 4.88 4.26
2.534 2.53* 2.54 2.45 8.52
6.34 6.5 6.438 6.385 6.4
6.34 6.5 6.438 6.385 6.4
21.60
21.60
35 35 41.5 42 42.5 43
5.54 4.875 5.59 9.76 5.648 5.61 5.59 5.61 5.66 5.65 5.67
16.8 5.105 16.88 16.88 1.3**
9.50 8.73 8.53
5.05 5.69 5.72
2.62 2.62 2.62
5.59 5.63 5.61
5.59 5.63 5.61
14.34
Hex Ortho Ortho
C2-2
Phex Tri Hex Hex Hex Hex Mono Ortho Ortho
C2h-3 D2h-16 D2h-16
-, trifluoro(82.02)
Hex Hex Hex Poly(ethylene), complexes with: -, perhydrotriphenylene Hex
C6-6 or C6h-2
z
Crystal.
- 96.5 7 = 107.9 90,110,108
2 2 1 2 4
0.953 0.998 1.002 0.920 1.20
14 14 17 17 17 16
2.222 2.11 2.18 2.217 2.18
2.08/49
2.19/49 2.192
1.925 2.032
7
Approx.
6.50
5.54 4.882 5.59 5.59 9.649 5.61 9.52 5.61 5.66 5.65 5.67
17.06 16.8 19.50 19.54
Amorph.a
Angles
18
0.981
7 = 119.5 13 90,87,87 4 7' = 119.3 13 /3 = 90 26 7 2 7=119.3 88,90,92 26 13 15 15
2.406 2.744 2.347 2.344 2.344 2.381 2.358 2.302 2.306
Melting point (°C)a
220/49 210/46 222/341
5.02/88
Chain conform. (n*p/q) Refs. 2*1/1 2*1/1 2*1/1 2*1/1 2*4/1
557 253 254 792 946
2*14/1 2*14/1
208 21 777 296 629 205 139 116
2*17/ 2*17/1 2*16/1 215 2*3/1
2.0/1195
327/46
2.060
330 330/101 346 332/89 334/1357
4 4 4
2.304 2.742 2.552 2.598
2.50 6.75
1 3
2.013 2.205
222/726 213/985
14.34
4.78
2
1.071
181
8.22 8.30
8.22 13.81
11.02 11.00
12.38
6.28
2.5
7 = 105.5
Heat of fusion kj/mola
3.4/1195 1*13/1 1*4/ 1*13/6 1*13/ Irreg 1*13/6 1*13/1 2.87/91 1*13/1 4.10/989 1*15/7 4.64 1*15/ 1*15/7 1*2/1 1*2/1 1*2/1
489
11 266 209 602 987 1286 1321 11 209 988 1286 66 681 857 986
5.4/726 2*1/1 5.44/985 2*3/1
389 854 1192
4*1/1
1124
-, urea (at 83 K) Poly(ethylidene) (28.05)
992 993 4
0.958
100/617
1*2/1
178
51/439
7*2/1
97
17/250
2*3/1 2*3/1
150 359
52/129
2*3/1 2*3/1 2*19/6
67 685 685
195/619 200/618
Poly(heptenamer) transI. (96.17) PoIy(I-heptene) 1.(98.19)
Ortho
D2h-16 orC2v-9
7.40
-, 5-methyl(112.22) (S) Mono C2-2 18.40 (S), (R) Tet S4-1 20.00 PoIy(I-hexadecene) 11.(224.43) Ortho 7.5 Poly(hexafluoroisobutylene-a/f-vinylidene fluoride) (228.08) Ortho C2v-21 10.64
5.00
17.10
4
1.010
6.45
10.62 20.00
6.40 6.36 38.76
63.2 18.37
/? = 90
6 76
0.900 0.913
6.6
8
0.95
68/250
2*4/1
150
7.83
8
1.980
327
4*2/1
947
References page VI-159
TABLE 1. cont'd Density (g/cm3)
Unit cell parameters Polymer PoIy(I-hexene) (84.16) -, 4-methyl(98.19) -, 5-methyl(98.19) Poly(isobutene) (56.11)
Cryst syst.
Space group
Mono Ortho
a
b
c
22.2 11.7
8.89 26.9
13.7 13.7
7 = 94.5
z
Crystal.
-55/48
2*7/2 2*7/2
150 150
28 28
0.845 0.858
200/9 190/632
2*7/2 2*7/1
67 569
3 6
0.835 0.862
130 110/282
2*3/1 2*3/1
9 685
2*8/5 2*8/3
34 801 139
2*4/1
150
2*
493
8*
639
19.64 19.85
19.64 19.85
14.00 13.50
Hex Mono
C2-2
10.2 17.62
10.2 10.17
6.50 6.33
Ortho Ortho
D2-4 D2-4
6.94 6.88
11.96 11.91
18.63 18.60
16 16
0.964 0.978
70.4
6.6
8
0.96
Hex
4.24
0.915 0.912/53 0.842
cis-
44/66
4.24
Tri
Ci-I
4.34
5.41
9.78 9.78
64,105,119
1
1.008
Mono
C2h-5
7.43
5.00
9.90
/3 = 95.2
2
0.999
Mono
C2h-6
4.58
9.50
17.11
(3 = 98
4
0.993
-5
10.9
67/439 73/284 76 77/562 62/439
20.1/284
38 PoIy(I-octene) (at 90K) (112.22) Poly(pentenamer) transI. (68.12) PoIy(I-pentene) isotactic Ia. (70.13)
Mono
Ortho
5.6
C2v-9 orD2h-16
Mono Mono
38
7.28
4.97
11.35 21.15 22.4
20.85 11.20 21.2
Ib. Mono
24.3
19.3
Mono Port
35.65 19.30
20.2 16.90
19.60 21.20
16.75 11.48
Ha.
lib. III. syndiotactic
Port Ortho
D2-4
7.6
0 = 97
11.90
6.49 6.49 6.49* 6.5 6.50* 6.60 7.13* 7.08 7.08 14.39
/3 = 99.6 /3 = 99.6 7 = 91
S4-1
20.3 20.35
20.3 20.35
8*1/1 25.3 23.8/562 8*1/1
126 476 1377 530
8*2/1
905 1376
2*4/1
1209
21.0
8
0.93
5 10-38/48 10/872
4
1.051
23 34/682
12.0/682 5*2/1
147
12 12 24
0.923 0.922 0.907 0.96
130/276 130/380 111/501
6.28/501 2*3/1 2*3/1 2*3/1
2*4/1 2*4/1
355 355 931 408 355 931 152 818 355
2*4/1 2*7/2
355 834
7 = 96
24
0.922
7 = 91 7 = 116
40 16
0.907 0.898
7=115.3
16 28
0.887 0.931
0.85 2*3/1 2*3/1 75/48 78/282 80/9 79/501
42 -, 5-amino-, -, Af,iV-diisobutyl(197.37) -, -, Af,Af-diisopropyl(169.31) - , 4,4-dimethyl(98.19) Tet Tet
12.0/82
80/6 100/90
0.867 IV.
Chain conform. (n*p/q) Refs.
0.726 0.908
Cl-I
(3 = 90
Amorph.a
Heat of fusion kj/mola
14 28
Tet Tet
Poly(norbornene), see PoIy(I -vinylene-3-methylene) Poly (1 -octadecene) 11.(252.49) Ortho 7.5 III. Poly(octamethylene) -, 1-methyl(126.24) Poly(octenamer) transIll. (110.20)
Angles
Melting point (°C)a
4.00/501
2.94
1452
6.85
112
2*
191
7.32
130
2*
191
231/282 350/90 380/441
2*7/2 2*4/1
431 442
13.8 7.01
28 16
0.803 0.899
TABLE 1. cont'd Density (g/cm3)
Unit cell parameters Polymer - , 5-hydroxy(86.13) - , 3-methyl(84.16)
- , 4-methylisotactic I. (84.16)
Cryst syst.
Space group
III.
quenched syndiotactic I.
II. III.
Angles
z
Crystal.
C4-6
13.35
13.35
6.80
8
0.922
Tet Tet Tet Tet Tet Tet Tet Tet Tet
S4-1
18.66 18.70 18.53 18.54 18.50 18.60 18.63 18.70 18.66
18.66 18.70 18.53 18.54 18.50 18.60 18.63 18.70 18.66
13.80 13.54 13.76 13.84 13.76 13.85 13.85 13.68 13.65
28 28 28 28 28 28 28 28 28
19.16 19.36 19.38 19.46
19.16 19.36 19.38 19.46
16 16 16 16
0.814 0.826 0.828 0.822 0.831 0.817 0.814 0.818 0.823 0.828 0.855 0.846 0.853 0.8408
16.88 22.17
16.88 22.17
18 18
0.808 0.883?
18.03
18.03
48
0.880
S4-1 D2d-7
C4-6
Hex Hex Tet
II.
c
Tet
Tet Tet
- , 5-trimethylsilyl(142.32) Poly(propene) isotactic I. (42.08)
b
Amorph.a
Heat of fusion kj/mol a
6.5
II. III.
IV. (hi press) V. syndiotactic
a
Melting point (°C)a
S4-1
7.12 7.05 6.98 7.022 6.5 6.31 6.69 46.91
362/632 273/129 200/441
>0.835
Hex Rho Rho Ortho Hex Rho Ortho Rho Tri Tri Ortho Tet Ortho Ortho Ortho Phex Ortho
C2h-6 Ci-I C2h-5
C2h-5 C2h-3 C2h-5
D3-4
C3-2
D2h-24
D2-2 D2-5 D2h-27
C2v-9
6.65 6.66 13.36 6.65 6.63 6.64 6.69
20.96 20.78 11.00 20.73 20.78 20.88 20.98
6.50 6.495 6.502* 6.50 6.504 6.51 6.504
/3 = 99.3 /3 = 99.62 93,81,108 /3-99.7 (3 = 99.5 /3 = 98.7 /3 = 99.5
12 12 12 12 12 12 12
0.938 0.946 0.935 0.947 0.949 0.940 0.931
6.65
20.80
6.50
/3 = 99.33
12
0.945
12.74 19.08 6.38 19.08 22.03 19.08 11.03 11 6.47 6.54 8.54 5.97
12.74 19.08 6.38 11.01 22.03 19.08 19.08 11 10.71 21.40 9.93 5.97
6.35 6.49 6.33 6.490 6.490 (6.49) 6.49 6.5
0.939 0.922 0.939 0.922 0.922 0.922 0.921 0.92
6.50 42.41 6
12 27 3 18 36 27 18 9 6 12 48
14.5 14.50 14.50
5.8 5.60 11.20
7.4 7.40 7.40
8 8 16
0.898 0.930 0.930 0.898
11.17
5.05 5.06 11.8
5.22
7 ; = 99.07 89,100,99
4
0.85/45
0.854
0.907/112
0.946 0.935 0.88/167
0.947
19.7/82 11.9/370 9.9/1195 5.2/1288 5.5/1331
2*
191
2*4/1
622
2*7/2 2*7/2 2*7/2 2*7/2 Irreg. 2*7/2 2*7/2 2*7/2 2*7/2
125 75
2*4/1 2*4/1 2*4/1 2*4/1 2* 2*3/1 2*3/1?
55 936 894 452 333 67 689 1177 1198 94 8 8 1197 1453 845 1454 990
210
4*12/7
1455
133/71
2*3/1
67
176/10 9.92/82 2*3/1 189/392 7.96/478 2*3/1 186/394 8.8/394 2*3/1 208/676 5.80/676 2*3/1 165/282 10.5/474 2*3/1 178/349 10.0/358 2*3/1 183/380 6.16/182 2*3/1 180/250 7.91/251 2*3/1 220/974 10.9/83 2*3/1 220/975 6.9/1195 186/1003 9.3/1212 147/789 4.22/789 2*3/1 200/975 8.2/1212 2*3/1 170/974 4.0/1404 2*3/1 192/1212 2*3/1 183/1404 2*3/1 2*3/1 2*3/1 3*3/1 2*3/1 2*3/1 cf ref 2*3/1
127 308 170 519 626 131 136 330 991
0.838
6.55
Mono Mono Tri Mono Mono Mono Mono Mono Mono
235/48 228/282 238/632 250/94
Chain conform. (n*p/q) Refs.
0.858/393
161/415 138/545
0.858
160/1459
1.88/545 4*2/1 2.1/1195 4*2/1 8.3/1458 4*2/1 8.0/1459 4*1/1 4*/l 4*
166 485 196 308 308 1456 1457 1642 308 592 1408 943 169 430 1330 409 306 1430 845
References page VI-159
TABLE 1. cont'd Density (g/cm3)
Unit cell parameters Polymer (hi press.) IV. (252.48) -, 3-cyclohexyl1.(124.23)
II. -, 3-cyclopentyl(110.20)
Cryst syst.
Space group
a
b
Tri
Cl-I
5.72
7.64
11.60
Tet
C4-5 or S4-2
21.06
21.06
Rho
C4-3 or C3i-2
19.12
Tet
C4-5 or S4-2
Tet - , hexafluoro(150.02) -, 3-phenyl- [allylbenzene] (118.18)
-, 3-silyl(72.18) -, trimethylsilyl(114.26) Poly(propene-alt-ethylene) syndiotactic (70.14) Mono Poly (1 -tetradecene) 11.(196.38) Ortho
II.
Tet
Poly(vinylcyclopentane) 1.(96.17) Tet II.
Tet
III.
Tet
Poly(vinylcyclopropane) I. (68.12) Rho
b
z
Crystal.
73,89,112
1
0.942
20.09
40
0.926
19.12
6.33
9
0.926
20.34
20.34
47.49
96
0.894
20.30
20.30
47.40
96
0.899
Amorph."
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
12*1/1
1460
2*10/3
431
2*3/1
431
2*24/7
431
2*24/7
625
160
2*4/1
268
6.40
230/90 208/187 185/282
2*3/1
67
6.45
128/71
2*3/1
67
6.50
360/71
2*3/1
67
11.62
9.00
7.5
56.0
6.6
9.6 8.57 9.46
9.25 11.20 5.81
5.0 5.04
34.12
34.12
C4h-6
23.4
C4h-6
230/90 215/282 214/328
210/328 225/90
7 = 67.03
55 8
0.94
4 4
1.93 1.758
6.6
64
23.4
6.5
21.99 21.76
21.99 21.76
C4-5 or S4-2
20.48
C4h-6 C4-5 or S4-2 D4h-1 or D4h-7
C3-2 or C3-3 II. Tet S4-2 PoIy(I-vinylene-3-cyclopentylene) [norbornene] trans(94.16) Mono CWMono a
Angles
11.19
Poly(tetrafluoroethylene-aZf-ethylene) (128.07) Mono Ortho Poly(vinylcyclobutane) (82.15) Tet Poly(vinylcycloheptane) (124.23) Tet Poly(vinylcyclohexane) 1.(110.20) Tet Tet
c
Melting point (0C)"
2*4/1
150
267
4*1/1 4*1/1
722 1287 1321
1.14
228/437
2*4/1
431
16
0.927
>300/437
2*4/1
431
6.43 6.50
16 16
0.942 0.951
305/90 300/282 372/441 383/328
2*4/1 2*4/1
431 67
20.48
44.58
96
0.940
2*24/7
431
20.14
20.14
6.50
16
0.969
2*4/7
431
20.14
20.14
19.5
48
0.969
2*12/3
431
37.3
37.3
19.8
0.927
2*10/3
431
13.6
13.6
6.5 6.48
9
0.981
2*3/1
175 526
15.21
15.21
20.85
40
0.938
2*10/3
526
5.13 4.64
4.78 4.22
11.8 11.56 9.84
2 2
1.150 1.749
5*2/ 5*2/1 5*2/1
620 1451 1451
7 = 96
57/250 57/872
1450
1.684
270/441 292/328
230
202 7 = 73.5 7 = 68.1
The numbers after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 2. POLY(VINYLS) AND POLY(VINYLIDENES) (-HCH-CHR- and -HCH-RCR-) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Poly(acrylamide) - , WV-dibutyl(183.30)
Hex
Space group
-, N-isopropyl(113.16) Poly(acrylic acid) -, allyl ester (112.13) -, biphenyloxyhexamethylene ester (324.42) Phex -, sec-butyl ester (128.17) Ortho -, tert-butyl ester (128.17) Ortho -, p-carboxyphenyl ester (192.17) Mono -, isobutyl ester (128.17) Ortho -, isopropyl ester isotactic (114.14)
a
b
c
26.3
26.3
6.3
Angles
z
12
Crystal.
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
0.97 (1.06) 1.118
Chain conform. (n*p/q) Refs.
2*3/1
1.070
6.5
93
200
2*
102
90
2*3/1
278
2*3/1
1122
23.5
23.5
6.48
6
1.043
17.92
10.34
6.49
6
1.062
130
2*3/1
401
17.92
10.50
6.45 6.48
6
1.047
193/16 200
2*3/1 2*3/1
67 401
21.50
7.42
6.68fc
4
1.445
2*
865
17.92
17.92
6.42
12
1.239
81
2*3/1
401
6.5 6.32
162/120 162 178/541
2*3/1
1.08
67 149
5.18
1.18
115
4*1/1
113
4.86/775.23/77 4*1/1 4*1/1 4*1/1 4*1/1 4*1/1 4*1/1 4*1/1 4*1/1
76 486 575 133 162 210 322 1001 1332 1631 804 1631
/3=124
5.9/541
syndiotactic Poly(acrylonitrile) syndiotactic (53.06)
II?
Hex Ortho Ortho Ortho Ortho Ortho Phex Ortho Ortho
C2v-16
C2v-9
Ortho
5.99 21.18 10.6 10.20 18.1 10.55 6.1 21.0 10.7 9.03 21.48 21.18
5.99 11.60 11.6 6.10 6.12 5.80 6.11 11.9 12.1 5.24 11.55 11.71
4.74 11.4 15.08
(5.1) 5.04 5.10 5.00 5.08 (5.1) 5.04 (5.1)
317/77 341/499
16 8 4 8 4 2 16 8
1.125 1.137 1.111 1.273 1.134 1.07 1.119 1.07
7.096
24
1.201
2*4/
4.74 11.4
2.55 8.2
1 16
1.538 1.32
2*1/1 2*4/1
133 1461
15.08
8.54
16
1.151
2*4/1
347
5.02/871 2*5/2 2*5/1 vi ref * 10/1 * 10/1 4*5/2
30 520 868 1002 1462 30
*9/l *30/4
1397 1005
4*37/4
1004
7=120
isotactic Tet (gel) Tet Poly(isopropenylmethyl ketone) (84.12) Tet
240
240/255 200/379 Poly(methacrylic acid) -, methyl ester isotactic (100.12) Port Ortho Ortho Tri Ortho syndiotactic it-st stereocomplex (1:2) Mono -, - , chloroacetone complex syndiotactic Mono
D2h-24
21.08 21.08 20.98 20.57 41.96
21.5
43.5
12.17 12.17 12.06 12.49 24.34
16.5
43.5
10.55 10.50 10.40 10.56 10.50
93,88,91
18.4 73.6
7=112
35.4
7=107
20 20 20 20 80
1.228 1.234 1.264 1.228 1.240
1.22/31
160/31 220/855
1.19/31
200/31
260/1006
References page VI-159
TABLE 2. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
-, octadecyl ester syndiotactic (338.58) Hex Poly(methacrylontirile) 1.(67.09) Phex II. Mono Poly(thiolacrylic acid) -, sec-b\xty\ ester (144.23) Rho -, isobutyl ester (144.23) Mono -, isopropyl ester (130.20) Rho -, propyl ester (130.20) Mono Poly(vinyl acetate) -, trifluoro(140.06) Ortho Poly(vinyl alcohol) (44.05) Mono Mono Mono
quenched single crystal 12 complex Poly(vinyl bromide) (106.95) Poly(vinyl chloride) (62.50)
single crystal Poly(vinyl fluoride) (46.04)
Poly(vinyl formate) isotactic (72.06)
a
b
4.73
4.73
9.03 7.87 13.5
9.03 8.97 7.71
c
Angles
30.2 6.87 6.87 7.62
(3 = 91.1
z
Crystal.
1
0.961
36
4 4 8
0.918 0.918 1.134
250/436
Chain conform. (n*p/q) Refs.
500 2* 2*4/1
427 729 427
6.35
2*3/1
401
Cs-2
6.42
2*
401
C3-2
6.42
2*
401
Cs-2
6.4
2*3/1
401
2*
638
9.54
12.44
4.8
4
1.633 1.350 1.34/410 1.350 1.345 1.352 1.343 1.490 1.133
7.81 7.81 7.805
5.51 5.43 5.485
2.52*
7-91.7 7 = 91.5 2.533* 7 - 92.2
2 2 2
Mono Mono Ortho Hex Mono
C2h-2
7.81 7.84 7.42 5.45 7.87
5.50 5.52 5.25 5.45 5.53
2.52* 7 = 92 2.52* 7 = 93 2.52* 2.51 2.525* 7 = 93.3
2 2 2 1 2
Ortho
D2h-ll
11.0
5.6
5.1
4
2.26
Ortho Ortho Ortho Mono Ortho
D2h-ll D2h-ll
10.6 10.40 10.11 10.65 10.24
5.4 5.30 5.27 5.20 5.24
5.1 5.10 5.12 5.15* 5.08
4 4 4 4 4
1.42 1.477 1.522 1.456 1.523
4.93 4.95 4.938
2.53 2.52 2.518
1 2 1
1.436 1.430 1.4377
18
1.502
Rho
Heat of fusion kj/mola
C3-2
C2h-2
Hex Ortho Mono
Amorph.a
Melting point (°C)a
C2v-20
D2h-ll
C2v-14
C3v-6D3d-6
4.93 8.57 4.938
15.9
15.9
7 = 90
y = 120
6.55
175/821 1.291/1 1.27/410 1.26/53 1.269
232/310 243/480 265/323 228/433 267/450
6.87/433 2*1/1 6.99/480 2*1/1 7.1/1195 2*1/1
117 1.41/413
2*1/1 2*1/1 2*1/1 2*1/1 2*1/1
29 316 132 184 261 1441 261 151 1424
4*1/1
772
273/372 310/423 212/143
11/372 4.9/835 2.8/145 3.3/423
4*1/1 4*1/1 4*1/1 4*1/1 4*1/1
7 235 64 140 718
200/79 230/434
7.54/79
2*1/1 2*1/1 2*1/1
62 236 1463
2*3/1
232
4*1/1
232
syndiotactic 5.0 Poly(vinylidene bromide) (185.85) Mono Poly(vinylidene chloride) (96.94) Mono Mono Mono Mono
C2h-2
C2-2
25.88
13.87
4.77*
7=109.8
16
3.065
6.71 13.69 22.54 6.73
12.51 6.296 12.53 12.54
4.68* 4.67* 4.68* 4.68*
7=123 7=124.8 7 = 95.8 7=123.6
4 4 16 4
1.954 1.948 1.958 1.957
33 1.66/43
200/721 190/46 195
4*1/1 4*1/1 5.68 2*2/1
1.7754 Poly(vinylidene fluoride) a (II) Mono (64.04) Ortho Mono Ortho Mono Mono
C2v-4 C2-2 C2v-9 C2h-5 C2-2,l
5.02 4.96 17.72 9.66 4.96 9.64
25.4 9.64 11.68 4.96 9.64 5.02
4.62 4.62 4.57* 4.64 4.62 4.64*
/3=107 7 = 92.7 /3 = 90 7 = 91.1
10 4 16 4 4 4
1.888 1.925 1.801 1.913 1.925 1.895
1.68/776 1.67/770
185/434 170/995 220/443 171/373 178 178/726
6.7/823 6.2/886 4*1/1 5.96/726 4*1/1 2*2/1 4*1/1 4*1/1
915 32 33 245 231 462 171 994 417 418 604 168
TABLE 2. cont'd Density (g/cm3)
Unit cell parameters Polymer
P(I)
Y (HI)
Cryst syst.
Space group
Port Ortho
C2-2
Ortho Ortho Ortho Ortho Mono Mono Ortho Mono
C2v-14 C2v-14 C2v-14
8(IV) (polar alpha) Ortho Poly(vinylmethyl ketone) (70.09) Tet Tet
Cs-4 C2-3 C2v-16
C2v-9 S4-1
a
b
c
5.02 9.60 9.80 8.45 8.58 8.47 8.60 4.96 8.66 4.97 4.96 4.96 4.96
9.63 5.00 5.05 4.88 4.91 4.90 4.97 9.58 4.93 9.66 9.67 9.64 9.64
4.62 4.655
14.52 14.56
14.52 14.56
Chain conform. (n*p/q) Refs.
Crystal.
4 4 4 2 2 2 2 8 2 8 8
1.904 1.904
188/846 213/1464
2*2/1
2.022 1.972 2.002 1.936 1.942 1.945 1.930 1.930
212/443 191 207/942
2*1/1 2*1/1 2*1/1
218/846 197 184/995 231/1464
4.62
4
1.925
8*1/1 2*1/1 8*1/1 8*1/1 4*1/1 4*1/1
563 597 750 417 604 418 597 996 604 997 998 999 1000
14.40 14.10
28 28
1.073 1.090
2*7/2 2*7/2
164 379
/3 = 92.9 /3 = 91 /3 = 93
Amorph.*
Heat of fusion kj/mola
z
2.55 2.56 2.56 2.57 9.23 2.58 9.18 9.20
Angles
Melting point (°C)a
170
a The numbers after the solidus (/) are reference citations. * The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 3.
POLY(AROMATICS) AND POLY(IMIDES) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
Poly(4,4 '-benzobisthiazole-diphenylene pyromellitimide) (556.57) Ortho D2-3 5.70 8.11 Poly(2,6-benzothiazole) (133.17) Port 6.044 3.417 Poly(2,5(6)-benzoxazole) (117.11) Port 6.061 3.384 Poly(4,4 '-biphenylene 3,3' ,4,4 '-biphenylenetetracarboximide) (442.43) - , 2,2'-bis(trifluoromethyl)(578.43) Mono 15.40 9.90 Mono 15.40 9.918 -, 2,2'-dimethyl(470.48) Tri 20.49 15.30 - , 3,3'-dimethyl(470.48) Ortho 16.7 13.0 Poly(4,4 '-biphenylene 4,4 '-carbonyl(3,3 ;-dicarboxy)-dibenzamide) (506.47) Poly(4,4 '-biphenylene 3,3 ',4,4'-carbonyldiphenylenetetracarboximide) (470.44) Poly(4,4'-biphenylenedioxy-3,3 '-biphenylene pyromellitimide) (550.53) Ortho 7.89 6.29 Ortho 7.85 6.37 Poly[2,2 '-(4,4 '-biphenylene) 6,6 '-diquinoline] -, di-/?-phenyl(558.63) Ortho 16.2 5.31 Poly(4,4'-biphenylene 4,4'-oxy(3,3 '-dicarboxy)-dibenzamide) (494.46) Poly(4,4 '-biphenylene 3,3 ',4,4 '-oxydiphenylenetetracarboximide) (458.43) Poly(4,4 '-biphenylene 1,4-pyromellitamide) (402.36) Poly(4,4 '-biphenylene pyromellitimide) (366.33) 8.58 5.48 Ortho D2h-9 8.57 5.51
c
Angles
Amorph.a
Melting point (0C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
z
Crystal.
24.8
2
1.612
22*1/1
1433
12.19
2
1.756
5*2/1
1235
11.58
2
1.638
5*2/1
1235
1.480 20.25 20.21
7 = 56 7 = 56.2
4 4
1.501 1.4977
40.0
62,52,80
16
1.443
8
1.404
1335 18*1/1 18*1/1
1494 1495
18*2/1
1584
18*1/1
1289
21.2
21*1/1
1178
21.6
19*1/1
1178
23*1/1 34*1/1
1475 1498
20*1/1
1500
21*1/1
1178
19*1/1
1178
16*1/1
1178
15*1/1 15*1/1
908 928 1476
20.5
25.11 25.31
2 2
1.467 1.444
21.4
2
1.008
1.341
388
21.0 21.3
900/1018
16.1 16.6 16.6 16.78
2 2
1.559 1.535
827/1018
References page VI-159
TABLE 3. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
Poly(2,2 '-bithiophene) -, 3,3'didecyl(444.78) Ortho 17.6 4.5 -, 3,3'-dihexyl(332.56) Ortho 11.8 4.5 -, 3,3'-dioctyl(388.67) Mono C2h-4 14.6 4.42 Ortho 14.5 4.5 Ortho 14.6 4.42 Poly(4,4 '-carbonyldiphenylene pyromellitimide) (394.34) Ortho 7.9 6.65 Poly(decamethylene 3,3 ',4,4'-oxydiphenylenetetracarboximide) (446.50) Poly(decamethylene pyromellitimide) (354.40) Mono 19.8 4.61
c
Amorph.a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
z
Crystal.
15.6
2
1.20
6*2/1
1485
15.6*
2
1.33
6*2/1
1485
2 2 2
1.36 1.27 1.27
6*2/1 6*2/1 6*2/1
1484 1485 1486
4
1.520
16*2/1
908 1013
21*1/1
896
14.73 15.6* 15.70
Angles
Melting point (°C)a
/3 = 90
31.0fe 32.8 23.5 19.2
7 = 96
4
1.350
318 323/1267
17*1/1
1395
19.1
90,111,100
1
1.409
308
20*1/1
1015
18.9 7=108.4 1 18.96 Mono 18.95 4.54 21.5 7=101.3 4 21.43 Y 22.05 5 20.95 Poly(3,4 '-ethylenedioxydiethylenedioxydiphenylene 3,3 ',4,4 '-oxydiphenylenetetracarboximide) (606.59) Poly(3,4'-ethylenedioxydiphenylene 3,3 ',4,4'-oxydiphenylenetetracarboximide) (518.48) Poly(2,7-fluorenylene 1,4-pyromellitamide) (414.37) 15.9 Poly(2,7-fluoenylene pyromellitimide) (378.34) 16.3 Poly(hexamethylene 3,3 ',4,4'-oxydiphenylenetetracarboximide) (390.40) 19.5 Tri 8.34 9.18 19.6 90,134,117 2 Poly(hexamethylene pyromellitimide) (298.30) 24.88 Poly[4,4 '-(isophthaloyldiamino)-diphenylene 3,3 ',4,4 '-oxydiphenylenetetracarboximide] (620.58) Ortho 9.84 4.95 28.5 2 Poly [4,4' -(isophthaloyldiamino)-diphenylene /7-phenyleneditrimellitatediimide] (768.69) Ortho 6.03 7.58 73.6 4 Poly[4,4 '-(isophthaloyldiamino)-diphenylene pyromellitimide] (528.48) 24.2
1.289
19*1/1
1395 1371 1015 1371 1371 1371
Poly(dodecamethylene (432.52) Poly(dodecamethylene a (382.46) P
1,4,5,8-naphthalenetetracarboximide) Tri 6.23 pyromellitimide) Mono 5.58
4.68 4.89
1.401
(1.462)
297 305/1267
19*1/1
268
88.0
1493
340
72.5
1493
238
15*1/1
1178
14*1/1
1178
17*1/1
896 1015
430 1.485
320
1.518
1395 26*1/1
1190
33*2/1
1191
22*1/1
1191 1335
34*1/1
1498
16*2/1
908 1013 1014
1.382 Poly[isophthaloy 1-4,4 '-diphenylenedioxy-4,4 '-diphenylene 3,3 ',4,4'-carbonyldiphenylenetetracarboximide] (786.75) Ortho 8.07 6.135 37.50 2 1.07 Poly(4,4 '-methylenediphenylene pyromellitimide) (380.36) 29.1 Ortho 8.20 6.55 32.4 4 1.452 14.1 Poly(methylene-/?-phenylene) (90.12) Ortho 8.16 6.32 9.90 4 1.172 - , oc-methyl(104.15) Ortho 10.42 Poly (methy lene-3,5 -toluene) - , 2,6-diamino(134.18) Ortho 12.82 Poly(2,6-naphthalene 2,4-cyclobutylenedicarboxylic acid) - , bis(2,4-dichlorophenyl) ester (558.24) Tri Ci-I 6.00
350
170 142/744
5*2/1
745
219/1007
5*2/1
848
5.97
9.62
4
1.156
13.83
9.69
8
1.037
4*2/1
1351
8.93
13.48
1
1.396
9*1/1
950
70,94,101
TABLE 3. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
be
Angles
Poly(4,4 '-neopentylenedioxydiphenylene 3,3 ',4,4 '-carbonyldiphenylenetetracarboximide) (572.57) Mono 9.60 5.82 24.6 7 = 81.1 Poly(nonamethylene 3,3 ',4,4'-oxydiphenylenetetracarboximide) (432.48) 21.3 Poly(nonamethylene pyromellitimide) (340.38) 32.0 Poly(octamethylene 3,3 ',4,4 '-oxydiphenylenetetracarboximide) (418.45) Tri 8.37 4.95 Tri 8.37 4.95 Poly(octamethylene pyromellitimide) (326.35) Mono 20.8 4.76
z
Crystal.
2
1.400
Amorph."
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
24*1/1
1499
20*1/1
1015
303 >350
1395 1267 19*1/1
21.5 21.5
90,38,104 90,38,104
1 1
1.372 1.396
16.9
7 = 95.5
4
1.301
Poly(3,4'-oxydiethylenedioxdiphenylene 3,3 ',4,4'-oxydiphenylenetetracarboximide) (562.34) Poly(3,4 '-oxydiphenylene 3,3',4,4'-biphenylenetetracarboximide) (458.43) Mono 14.8 8.20 20.6 7 = 56 Poly [4,4 '"-((4 ',4 "-oxydiphenylene)-dioxy)-diphenylene /?-phenyleneditrimellitatediimide] (806.74) 5.68 8.09 78.6 Poly[4,4 '"-((4 ',4 "-oxydiphenylene)-dioxy)-diphenylene pyromellitimide] (566.53) 8.44 5.66 53.4 53.4 Poly(4,4 '-oxydiphenylene 3,3 ',4,4'-oxydiphenylenetetracarboximide) (474.43) Mono 5.17 10.85 38.2 7=103.7 Poly[4,4'-oxydiphenylene 3,3 '-(/?-phenylene)-ditrimellitatediamide] (658.58) 26.3 Poly(4,4 '-oxydiphenylene p-phenyleneditrimellitatediimide) A. (622.54) Mono 5.56 7.94 58.0 7 = 86 5.56 7.94 59.0 /3 = 86 28.7
1.30 202
19*1/1
896 1015
362 383/1267
15*1/1
1395
304
80.2
1493
4
1.469
18*1/1
1289
4
1.484
37*2/1
963
4
1.475
547/1018
26*2/1
963 908
4
1.514
427/1018
20*2/1
684
26*2/1
1178
27*2/1 27*2/1
658 963 1178 1335 963
4 4
1.619 1.591
8
1.410
1.366 B. Poly (4,4' -oxydiphenylene 1,4-pyromellitamide) (418.36)
13.12
7.84
57.0
27*2/1
15.2
17*1/1
1178 1335
15*2/1 15*2/1
1477 1478
16*2/1 16*2/1
642 684 877 1477 1478 1178 1477
1.410 Poly(3,4 '-oxydiphenylene pyromellitimide) (382.33) Ortho Ortho D2-9 Poly(4,4 '-oxydiphenylene pyromellitimide) 1.(382.33) Ortho Ortho Ortho C2-2 Ortho Mono C2-2 II. Poly(m-phenylene) (76.10) Poly(/7-phenylene) (76.10)
- , complex with: K (l/2K/unit) SbCl5 (l/2Sb/unit) SbF5 (l/3Sb/unit)
Ortho
8.48 5.75
5.62 8.48
33.65 33.2
4 4
1.583 1.569
6.35 6.31 4.66 8.36 6.45
4.05 3.97 5.96 5.63 4.01
2 2 2 4 2
1.514 1.58 1.411 1.633 1.507
5.93
4.70
32.6 32 32.9* 33.03 32.58 15.9 33.00
2
1.380
7 = 100 7 = 90
597/1018
16*2/1 16*2/1 16*2/1 790/964
Ortho Ortho Mono Ortho Ortho
pgg
7.81 7.80 8.06 7.82 7.79
Ortho
D2h-9
6.04
5.53 5.56 5.55 5.60 5.51
4.20 4.20 4.30 4.20 (4.20)
/3=100
2 2 2 2 2
1.393 1.388 1.334 1.374 1.402
6.90/964 3*
<550/735 15.0/964 4*1/1 1400/964 4*1/1 4*1/1 4*1/1 4*1/1 4*2/1
475 1290 1334 1448 1466 508
15.6
4.35
4
4*1/1
1231
Ortho
15.6
6.2
4.2
2
4*1/1
1393
Hex
12.0
12.0
4.2
3
4*1/1
1393
References page VI-159
TABLE 3. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
c
Angles
z
Crystal.
Amorph.a
Poly(p-phenylene benzobisoxazole) [PBO] (234.21) Mono 5.64 3.58 12.07 7=100.4 1 1.622 Mono 11.20 3.540 12.050 7=101.3 2 1.660 Mono Cs-2 11.20 3.54 12.05 7=101.3 2 1.660 Port 11.8 3.54 12.1 2 1.55 - , complex with poly (phosphoric acid) I. Mono 12.6 11.6 12.2 7 = 98 II. Mono 7.0 5.8 12.0 7 = 99 Poly(p-phenylene benzobisthiazole) [PBT] (266.34) Mono 5.83 3.54 12.35 7 = 96 1 1.745 Mono 11.96 3.555 12.35 7=100.9 2 1.716 Mono 11.79 3.539 12.514 7 = 94.0 2 1.698 - , complex with poly (phosphoric acid) Ortho 15.9 20.6 36.9 Mono 8.15 24.49 37.2 7 = 94.5 2.15 Poly(p-phenylenecyclobutylene) - , 2,4-dipyridyl(284.36) Ortho D2h-15 19.16 10.69 7.45 4 1.238 Ortho D2h-15 18.9 10.5 7.53 4 1.26 Poly(p-phenylene 2,4-cyclobutylenedicarboxylic acid) - , diethyl ester (274.32) Mono C2h-5 8.62 9.98 8.16* /9=102 2 1.327 - , dimethyl ester (246.26) Tri Ci-I 6.04 7.42 7.82* 101,106,72 1 1.284 -, diphenyl ester (370.40) Mono C2h-5 7.50 17.3 7.50* (3 = 102 2 1.292 -, dipropyl ester -, - , 2,4-dicyano(352.39) Mono C2h-2 6.19 20.1 7.58 /9 = 96 2 1.248 Poly [4,4 '"-((4 ',4 "-(p-phenylenedioxy)-diphenylene)-dioxy)-diphenylene p-phenyleneditrimellitatediimide] (898.84) 5.66 8.14 43.5 2 1.489 Poly[4,4 '"-((4',4"-(p-phenylenedioxy)-diphenylene)-dioxy)-diphenylene pyromellitimide] (658.62) 8.44 5.66 31.3 2 1.463 31.3 Poly[4,4'-(/?-phenylenedioxy)-diphenylene 4,4'-oxy(3,3 '-dicarboxy)-dibenzamide] (602.56) 24.6 Poly[4,4'-(>-phenylenedioxy)-diphenylene 3,3 ',4,4 '-oxydiphenylenetetracarboximide] (566.52) Tri 10.52 9.45 26.1 90,95,98 4 1.472 26.0
Melting point (°C)fl
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
11*1/1 11*1/1 11*1/1 11*1/1
1492 1492 11*1/1 11*1/1 11*1/1
1016 1017 1488
250
11*3/1
1316 1491
340
7*1/1 7*1/1
202 723
347/723
7*1/1
893
415/723
7*1/1
893
420/723
7*1/1
893
335/723
7*1/1
893
42*1/1
963
31*1/1
963 908
27*1/1
1178
25*1/1
684 1178 1335
32*1/1
658
21*1/1
1178
22*1/1
1178
1.341 Poly[4,4/-(p-phenylenedioxy)-diphenylenep-phenyleneditrimellitatediimide] (714.64) Ortho 5.64 8.05 34.5 Poly [4,4 '-(m-phenylenedioxy)-diphenylene 1,4-pyromellitamide] (510.46) 19.8 Poly [4,4 '-(p-phenylenedioxy)-diphenylene 1,4-pyromellitamide] (510.46) 19.6 Poly [4,4'-(m-phenylenedioxy)-diphenylene pyromellitimide] (474.43) 8.76 5.47 43.4 43.4 21.7 Poly [4,4 '-(p-phenylenedioxy)-diphenylene pyromellitimide] (474.43) Mono 5.64 8.30 21.8 Ortho 8.23 5.58 22.09 21.0 Poly(/?-phenylene-1,3,4-oxadizaole) a Ortho D2-4 12.35 6.55 14.0 (144.13) Poly[p-phenylene 4,4'-oxy(3,3 /-dicarboxy)-dibenzamide] (418.36) 16.6 Poly(p-phenylene 3,3', 4,4'-oxydiphenylenetetracarboximide) (382.33) 16.9 Poly(p-phenylene 1,4-pyromellitamide) (326.26) 12.2
2
/3 = 98.7
1.515
1263 1488 1489 1490
4
1.515
20*2/1
963 908 1178
2 2
1.562 1.553
21*1/1 21*1/1
684 1477 1178
8
1.69
7*2/1
1496
17*1/1
1178
15*1/1
1178
12*1/1
1178
TABLE 3. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(ra-phenylene pyromellitimide) (290.23) Ortho Poly(p-phenylene pyromellitimide) (290.23)
b
c
Angles
z
Crystal.
21.5
4
1.618
10*2/1
1013
8.58
5.48
12.3 12.3
2
1.667
11*1/1
908 928
7.90 8.1
6.05 6.1
6.58 6.6
2 2
1.286 1.24
6*1/1 6*1/1
1236 1465
10.10 9.40 10.80 10.45 10.32
6.60 6.60 6.70 6.60 6.60
6.58 6.58 6.6 6.58 6.58
2 2 2 2 2
6*1/1 6*1/1 6*1/1 6*1/1 6*1/1
1399 1399 1465 1399 1399
D2h-15 C2v-5
10.8 18.36 18.36 18.40
18.4 10.88 10.88 10.89
7.4 7.52 7.52 73.45
4 4 4 4
1.28 1.257 1.257 1.265
7*2/1 7*2/1 7*2/1 7*2/1
558 564 950 1238
D3d-6 D3d-6 D3d-6
22.08 21.9 22.08
22.08 21.9 22.08
18 18 18
1.113 1.127 1.118
240/10 9.00/89 2*3/1 250/90 8.37/174 2*3/1 242/1415 8.5/1415 2*3/1
4*6/1 4*6/1
6 128 1388 139 411 1008 1009
8.6/1407 4*1/1 4*1/1 4*1/1 4*1/1 4*1/1 4*1/1 4*2/1 4*2/1
1418 1388 1470 1291 1370 1418 1401 1419
4*2/1 4*2/1 4*2/1 4*2/1 4*2/1
1370 1419 1436 1474 1473
gel Ortho
P y - , complex with: CH 2 Cl 2 C7H8 I2 - , p-tert-butyl- , - , isotactic (160.26) - , 0-fluoro- , - , isotactic (122.14) - , p-fluoro- , - , isotactic (122.14) - , a-methyl- , - , isotactic (118.18) - , - , (p-methyl- , - , - , isotactic (132.21)
Mono Hex Hex
C2h-5 D3h-4
21.0
16.4
19.84 26.26 26.3
12.90 26.26 26.3
Ortho
D2h-16
Ortho
D2h-10
21.4
17.1
Mono Mono Mono
C2h-5 C2h-5 C2h-5
17.48 17.58 17.29
13.27 13.26 12.85
a = 123 a =123
6.626 6.65 6.594
8.81
28.82
30.6 30.6 5.06 5.045 5.1 5.06 5.08 5.06 7.5 7.7 7.5 7.7 7.71 7.71 7.79
321 343/723
1.041.065/17 1.024 1.052
235/282
10/1121
48 7 - 95
8 18 18
1.072 1.033 1.02
266/1372 269/1407 270 286/1417
7 = 122 7 =121.2 7 = 120.3
8
1.077
16
1.01
8 8 8
1.114 1.100 2.054
0.950
Rho
C3v-6
22.15
22.15
6.63
18
1.296
Port
D2-4
17.6
12.1
8.30 8.25
8
0.924
Rho
Chain conform. (n*p/q) Refs.
7.18
1.114
syndiotactic a
Amorph.a
Heat of fusion kj/mola
7.72
Poly(p-phenylenevinylene) (102.14) Mono - , complex with: AsF5 Ortho CIO4 Ortho FeCl3 Ortho H 2 SO 4 Ortho SbF5 Ortho Poly (2,5 -pyrazinecyclobutylene) - , 2,4-diphenyl(284.36) Ortho Ortho Ortho Ortho Poly(styrene) isotactic (104.15) Rho Rho Rho
a
Melting point (°C)a
300 308/1372
198
270/75
2*3/1
123
265/75
2*4/1 2*4/1
67 791
2*3/1
357
6.6
224/888
10.0/888
References page VI-159
TABLE 3. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
- , m-methyl- , -, isotactic (118.18)
Tet
-, o-methyl- , - , isotactic (118.18) - , - , /7-fluoro- , - , - , isotactic (136.17) -, p-methyl-, -, isotactic (118.18) - , - , syndiotactic I.
a
b
c
Angles
z
S4-1
19.81
19.81
44
Tet
C4-5 orS4-2
19.9
19.9
21.74 57.1 78.9 57.0
Tet
C4v-12
19.01
19.01
8.10
16
Crystal.
Amorph."
1.012
1.073
12.9
1.04/67
~7.8
Heat of fusion kj/mol*
Chain conform. (n*p/q) Refs.
215 215/74
2*11/3 2*29/8 2*40/ 11
80 163 431 103
360/74
2*4/1
125
360/75
2*4/1
67
205/1402
2*
1.005
8.05
II. ~7.8 III. Ortho D2h-16 13.36 23.21 5.12 IV. ~5.1 (mesomorphic) V. ~5.1 -, trimethylsilyl-, - , isotactic (176.34) 60.4 Poly[4,4 '-(terephthaloyldiamino)-diphenylene pyromellitimide] (528.48) Mono C2h-5 8.64 5.18 25.38 Poly [4,4' -(terephthaloy ldiamino)-dipheny lene p-pheny leneditrimellitatediimide] (768.69) 37.63 Poly(p-terphenylene pyromellitimide) (442.43) 20.9 8.58 5.48 20.9 Poly(2,2 ':5 ',2 "-terthiophene) - , 3,3"-dioctyl(470.79) Ortho 14.7 4.33 23.55 Poly (4,4' -thiodiphenylene p-pheny leneditrimellitatediimide) (638.61) Ortho 6.61 8.02 53.6 Poly(4,4 '-thiodiphenylene pyromellitimide) (398.39) 29.4 Ortho 8.57 6.37 61.5 Poly(2,5-thiophene) (82.12) Ortho 7.80 5.55 8.03 Mono 7.83 5.55 8.20 7.79 5.53 7.7 Ortho 7.80 5.55 8.03 -, 3-decyla Mono 22.32 16.76 7.77 (222.39) (at 12O0C) Mono 22.08 16.72 7.76 p Mono C2-2 22.36 17.40 7.77 Ortho 23.9 3.8 15.6 Mono 51.9 7.74 7.8* (at 173K) Mono C2-2 22.54 17.17 7.749 (at 12O0C) Mono 21.54 17.17 7.750 -, 3-dodecyl1.(250.44) Ortho 25.83 7.75 7.77 Ortho 51.9 7.74 8.0 Ortho 21.71 3.97 7.8 II. Mono 19.8 9.37 8.07 - , 3-hexadecyl(306.55) Ortho 24.74 4.21 7.8
Melting point (°C)fl
180/1472 173/1372 200/1472 8
0.977
103 1471
4*1/1
1471 1471 1471 1471
284 (3 = 90
2
1.545
103 23*2/1
1191
34*2/1
1191 908 928
2
1.495
19*1/1
2
1.04
9*2/1
1486
4
1.493
27*2/1
808
8
1.576
16*4/1
908 1013
4 4 4 4
1.569 1.539 1.64 1.569
3*2/1 3*2/1 3*2/1 3*2/1
1276 1276 1336 1448
7 = 95.5
8
1.021
3*2/1
1630
7 = 95.6 7 = 90.5 7 = 86 = 90.3 7 = 90.3
8 8 4 9 8 8
1.036 0.977 1.042 0.94 0.985 1.0310
3*2/1 3*2/1 3*4/1 3*2/1 3*2/1 3*2/1
1630 1447 1482 1487 1447 1630
7 = 77
4 8 2 4
1.069 1.04 1.24 1/140
3*2/1 3*2/1 3*2/1 3*2/1
1479 1481 1483 1623
2
1.25
3*2/1
1483
/3 = 96
7
TABLE 3. cont'6 Density (g/cm3)
Unit cell parameters Polymer -, 3-hexyl(166.28)
Cryst syst.
Space group
Ortho Ortho
a
b
c
16.63 33.6
7.75 7.66
37.25
23.15
19
19
Angles
Amorph."
Melting point (°C)fl
Heat of fusion kj/molfl
Chain conform. (n*p/q) Refs.
z
Crystal.
7.77 7.7
4 8
1.069 1.11
3*2/1 3*2/1
1479 1481
7.77
24
1.932
3*2/1
1480
22
1.63
6*11/1
1259
8 2 2 8 4
1.06 1.32 1.063 1.03 1.166
3*2/1 3*2/1 3*2/1 3*2/1 3*2/1
1481 1483 1486 1487 1623
-, - , iodine doped Ortho -, 3-methyl- (with 50% CF3SO3-) (96.15) Hex -, 3-octyl1.(194.34) Ortho Ortho Ortho Mono II. Mono - , 3-phenyl-, -, 4'-octyl(270.43) Ortho -, 3-tetradecyl(278.50) Ortho Poly(tridecamethylene pyromellitimide) (396.49) Poly(undecamethylene pyromellitimide) (368.43) Poly(N-vinyl carbazole) (193.25) Hex Hex Ortho Phex Rho PoIy(I-vinyl naphthalene) (154.21) Tet C4v-12 Poly(2-vinylpyridine) (105.14) Rho C3-2 Poly(/?-xylylene) a Mono (104.15) Ortho Mono Mono
12.2
41.3 17.40 20.3 42.0 15.3
7.63 3.61 3.81 7.67 9.43
7.7 7.8 7.85 7.8 8.07
28.4
5.06
7.44
2
0.840
3*2/1
1637
24.73
3.82
7.8
2
1.26
3*2/1
1483
7 = 87 7 = 72
39.2
263
1395
32.0
292
1395
12.30 12.00 21.6 12.3 12.00
12.30 12.00 12.5 12.3 12.00
7.44 6.47 7.44
0.988 1.193 0.958
6.39
3 3 6 3 3
21.20
21.20
8.10
16
1.125
15.49
15.49
6.7 6.56
9
1.153
11.68 21.3 5.92 5.9
6.10 33.6 10.64 10.64
9.16 6.58 6.55 6.55
4 31 2 2
1.086 1.138 1.179 1.19
> 320/228
2*3/1 2*3/1 2*3/1 2*3/1 2*3/1
126 825 1010 607 813
360/75
2*4/1
122
2*3/1
185 861
425/142 30.2/82 6*2/1 420/219 6*1/1 375/82 6*1/1 435/1187 6*1/1
223 426 595 1181
1.208
212
/3=102.5 /3=134.7 /3=135
1.05
400/395 440/546 P
- , chloro(138.60) -, ethyl(132.21) - , isopropyl(146.23) a b
Mono Rho Hex
8.10 20.52 20.52
5.25 20.52 20.52
6.53 6.55 6.58 6.55
/3 = 95
Tri Mono
5.92 5.9
12.8 12.8
6.55 6.55
Mono
5.9
13.4
Mono
5.9
14.1
C3-1
2 16 16
1.250 1.158 1.153
90,90,135 /3=135
2 2
1.312 1.32
6.55
/3=135
2
1.20
6.55
/3=135
2
1.26
6*1/1 6*1/1 6*1/1
223 1011 426 224
290/395
6*1/1 6*1/1
1012 1181
170/395
6*1/1
1181
6*1/1
1181
420 412
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
References page VI-159
TABLE 4. POLY(DIENES) AND POLY(DIYNES) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
1,4-Poly(2,3-azabutadiene) - , 1,4-diethyltrans(112.18) 1,2-Poly( 1,3-butadiene) syndiotactic (54.09) Ortho isotactic Rho 1,4-Poly( 1,3-butadiene) transI. Phex (54.09) Mono
Space group
a
b
c
Angles
z
Crystal.
Amorph.fl
Heat of fusion kj/molfl
4.72
D2h-ll
10.98
D3d-6
17.3
C2h-5
6.60 17.3
Phex Hex
Chain conform. (n*p/q) Refs.
4*1/1
1504
5.14
4
0.964
154
4*1/1
7
6.5
18
0.96
120
2*3/1
12
1 4
1.03 1.036
1 1
0.930 0.908
100/352 96/451 55/624 141/352 148/44 145/451 142/624
10.0/352 4*1/1 13.8/4514*1/1 6.31/624 4.61/352 4*1/1 5.99/342 4*1/1 4.61/451 3.62/624
37 496 1195 154 550
8 4
0.821 1.011
6.3/335 1 12/1121
9.2/353 8*1/1
60 124 1195
4*11/3
367
4.54 8.63
4.54 9.11
4.9 4.83
4.88 4.95
4.88 4.95
4.68 4.66
8.53 4.60
8.16 9.50
12.66 8.60
/3=114
0.891 II. (>65°C)
Melting point (0C)"
cisMono Mono or - , 2-tert-butylcis(110.20) Tri - , chlorinated c/s-threo-disyndiotactic (125.00) Mono ?ra«s-erythro-diisotactic Mono - , 2-chloro- [chloroprene] trans(88.54) Ortho Ortho cis-
C2h-5 Cs-4 C2h-6
/2 = 83.33 /3=109
0.902
13.95
20.78
15.3
C2h-4
7.37
5.30
10.10
C2h-5
7.05
8.05
5.10
D2-4
8.84 9.0
10.24 8.23
4.79 4.79
22
0.908
106
/3=134
2
1.463
4*2/1
768
/3=100
2
1.456
4*1/1
768
4 4
1.356 1.658
4*1/1 4*1/1
40 109
4*1/1
275
4*1/1 4*1/1
221 565 699
115/229 80/81
8.37/81
70/1157 - , 1-cyano trans(79.10) - , 2,3-dichlorotransI. (122.98) Mono II. Ortho - , - , thiourea complex Mono Mono - , 2,3-dimethyltrans(82.15) Ortho cis-
4.8
C2h-5 C2v-9
5.34 8.81
9.95 12.34
4.86 4.80 4.80
/3 = 93.5
C2Hh5 C2h-5
9.87 9.91
15.83 15.85
12.53 12.5
/3=114.1 /3=114.1
C2v-9
9.13
13.00
4.35 4.70
2 4
1.604 1.565 1.44 1.44
4
565 803
260 272/221
0.978
7.0 - , - , thiourea complex Mono - , 2-methyl- [isoprene] transot (68.12) Mono
C2h-5
10.40
15.47
12.5
C2h-5
7.98
6.29
8.70 8.76 8.77
D2-4
7.78 7.85
11.78 11.9
4.72 4.8*
4*1/1
198 /3=114.4
(3 = 102
220
1.22
4
1.051
4 4
1.046 1.009
803
80/1121
13/1121 4*2/1 10/1128
65/46 64/81
8.0/1128 4*1/1 10.6/287 4*1/1
0.905 P(LM)
Ortho Ortho
104 699
288 502 715 1127 40 288
TABLE 4.
cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Ortho
a
b
7.83
11.87
c
Angles
4.75
z
Crystal.
4
1.025
Amorph.a
0.906
8(HM)
Mono
e cisMono
C2h-5
Ortho Mono Ortho
D2h-15
-, -, 3-chlorotrans(102.56) -, - , hydrochlorinated (104.58) Port C2h-5 Ortho -, 2-methylacetoxytrans(126.15) Ortho -, perhydrotriphenylene complex trans2 phtp/monomer Hex C6h-2 cis-, 2-propyltrans(96.17)
5.9 7.84
7.9 5.99
9.2
7 = 94
4 4
1.06
7.80
6.29
12.46 25.2
8.89 8.97
8.10 8.20*
/3 = 92
8 16
1.009 0.976
26.3 12.4
8.9 8.9
8.15* 8.15*
7=109.5
16 8
1.01 1.101
Melting point (°C)a
Heat of fusion kj/mola
82/287 78/630 78/568 80/1170 74/81 80/287 87/568 89/1170
12.7/81
Chain conform. (n*p/q) Refs. 4*1/1
502 1195
4*2/1
502 492
492 0.906/53 0.910/47
28/81 36/50 14/287 36/1169
4.9 5.83 11.9
10.38 10.4
8.95 9.1*
16.2
9.3
14.26
/3 = 90
4.40/81 8*1/1 4.6/1195 8*1/1 8*1/1
40 288 124 1019 1019
4*1/1
165
4 8
1.282 1.23
115 110
4*2/1 4*2/1
229 70
4.75
4
1.17
135
4*1/1
165
14.26
4.78
1
1.079
183/1124
10.95
6.65
9.2
4
0.95
42 42/368
8.22
8.22
11.01
23.12 20.8
7.87 8.0
9.69 9.7
13.25
7.63
9.17
9.92
5.33 53.86
54.36 10.98
4.88 4.880
18.30 18.13 19.93 18.9
10.78 10.81 9.58 10.89
4.89* 4.89* 4.83* 4.83*
7= 7= 7= 7=
39.03 39.16 6.11 6.02
798
8*1/1
368
- , urea complex Hex D6-2 1,4-Poly( 1,3-butadiyne) - , 1,4-(4,4 '-diphenyleneglutarate)(330.34) Mono C2h-6 Mono C2h-6 Poly(chloroprene), see Poly(butadiene), 2-chloro1,12-PoIy(U 1-dodecadiyne) macromonomer Mono C2h-5 (160.26) cross-polymer Mono C2h-5 5,8-Poly(5,7-dodecadiynediol) - , l,12-bisOV-butoxycarbonyl)methylurethane(508.61) Ortho D2-3 -,1,12-bis(ethylurethane)(336.43) Mono C2h-5 Mono (hi temp) Mono C2h-5 Mono -,1,12-bis(phenylurethane)(432.52) Mono C2h-5 Mono C2h-5 -, l,12-bis(p-toluylsulfonyl)(502.64) Tri Ci-I (HOK) Tri Ci-I 10,13-Poly(10,12-heptacosadiynoic acid) (as Li salt) (400.65)
6.229 6.205 20.13 20.01 65
827
/3 = 111.29 /3=106
4 4
1.336 1.41
4*2/1 4*2/1
948 913
14.15*
7=118.5
4
0.847
12*1/1
12.2
7=123.5
4
1.146
2 4
1.195 1.170
4*1/1 4*1/1
1319 1329
95 94 91 91
2 2 2 2
1.163 1.169 1.212 1.124
4*1/1 4*1/1 4*1/1 4*1/1
1318 1320 1318 1320
4.909 4.90*
/3=106.85 /3=106.42
2 2
1.258 1.259
4*1/1 4*1/1
95 1353
4.91 4.91
95,94,89 95,94,89
1 1
1.391 1.420
4*1/1 4*1/1
381 381
1022 1022
1268
References page VI-159
TABLE 4. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
1,4-PoIy(1,3-heptadiene) transisotactic (96.17) Mono - , 6-methyltransisotactic (110.20) 1,4-PoIy (1,3-hexadiene) transisotactic (82.15) Ortho --, 5-methyltransisotactic (96.17) 2,5-Poly(2,4-hexadiene) frajw-erythro-diisotactic (82.15) - , 2,5-dimethyltrans(110.20)
Space group
a
b
c
Angles
z
Crystal.
C2-2
8.62
7.95
4.85
/9 = 99
2
0.973
2,5-Poly(2,4-hexadienedioic acid) tazns-erythro-diisotactic - , diisopropyl ester (226.27) Ortho 2,5-Poly(2,4-hexadienoic acid) /rans-erythro-diisotactic - , 6-amino0.5 CdCl4/unit Tri Ci-I (254.25) Tri Ci-I - , - , hydrochloride (163.60) - , butyl ester (168.24) Ortho - , ethyl ester (140.18) - , isoamyl ester (182.26) - , isobutyl ester (168.24) - , isopropyl ester (154.21) - , methyl ester (126.16) frans-threo-diisotactic -methyl ester (126.16) 2,5-Poly(2,4-hexadiyne) - , l,6-di(AT-carbazoyl)(408.50) Mono Mono Mono - , - , hexabromoMono 2,5-Poly(2,4-hexadiynediol) (50mrad) Mono (" annld) Mono (110.11) Mono - , l,6-bis(ethylurethane)(252.27) Mono
C2h-5 C2h-5 C2h-5
C2h-5 C2h-5
C2h-5
14.02
14.16
9.67* 7.214
8.02
Heat of fusion kj/molfl
Chain conform. (n*p/q) Refs.
85/371
4*1/1
375
119
4*1/1
371
82/371
4*1/1
274
4.85
88
4*1/1
371
2.3
84
2*1/1
525
4.8
265 265/376
4*1/1
183
4.85
D2-4
Amorph."
Melting point (°C)a
4.85
10.28
9.70
10.70 7.245
17.79 18.59
4
93,90,90 104,97,96
1.000
4
1.064
230/420
8*1/1
420
8 4
1.838 1.823
347
4*2/1 8*1/1
1123 1188
334 11.36
9.70
4.80
2
4*1/1
384
4.80
4*1/1
384
4.80
4*1/1
384
4.80
4*1/1
384
4.80
4*1/1
384
4.80 4.8
4*1/1 4*1/1
384 1208
9.4
4*2/1
1208
4*1/1 4*1/1 4*1/1
951 611 830
4*1/1
1503
13.03 12.82 12.87
17.55 17.33 17.40
4.92* 4.886* 4.907*
7=108.7 7=108.3 7 = 108.3
14.21
20.67
4.75*
7=106.8
15.78 16.05 16.09
4.703 4.819 4.793
/3=110.34 /3=106.08 /3=106.4
2 2 2
1.258 1.196 1.203
4*1/1 4*1/1 4*1/1
903 903 904
17.96
4.88
7 = 98.42
4
1.277
4*1/1
1240
4.176 4.115 4.109 15.14
2 2 2
1.056
1123
1.273 1.316 1.300
TABLE 4. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
- , l,6-bis(phenylsulfonyl)- , - , di-/?-fluoro(426.41) Mono C2h-5 Mono C2h-5 Mono C2h-5 - , - , di-/?-methoxy(450.48) Tri Ci-I - , l,6-bis(phenylurethane)1.(348.36) Tri Ci-I (5 dioxane/unit) II. III. - , 1,6-bis-(/?-toluylsulfonyl)1.(418.48) Mono C2h-5 Mono C2h-5 Mono C2h-5 II. (120K) Mono C2h-5 - , 1 -(p-toluylsulfonyl)-6-(/7-fluorophenylsulfonyl)1.(422.44) Mono II. (143K) Mono Poly(isoprene), see Poly(butadiene), 2-methyl10, 13-Poly(10,12-nonacosadiynoic acid) (as Li salt) Ortho (428.70) 1,9-Poly( 1,8-nonadiyne) macromonomer Mono C2-2 (118.18) cross-polymer Mono C2h-5 1,4-PoIy (1,3-octadiene) transisotactic (110.20) 2,5-Poly(2,4,6-octatriynediol) (134.14) Mono C2h-5 - , l,8-bis(phenylurethane)(372.38) Mono C2h-5 10,13-Poly(10,12-pentacosadiynoic acid) (as Li salt) (372.59) 1,2-PoIy (1,3-pentadiene) transsyndiotactic (68.12) - , 4-methylisotactic II. Tet D2d-10 (82.15) syndiotactic I. II. 1,4-Poly( 1,3-pentadiene) transisotactic (68.12) Ortho Ortho D2-4 cisisotactic Ortho D2-4
a
b
13.93 13.89 13.96
14.06 14.10 14.10
12.72 16.78
8.543 12.53
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
— Angles
z
Crystal.
4.90* 4.91* 4.914*
7=113.3 7=113.2 7 = 113.56
2 2 2
1.606 1.602 1.597
4*1/1 4*1/1 4*1/1
1378 1379 1380
4.902*
110,103,79
1
1.542
4*1/1
1021
4.89* 4.9 4.9 4.9
84,83,69
2
1.340
4*1/1 4*1/1 4*1/1
716 749 749 749
35/1020 4*1/1 4*1/1 4*1/1 4*1/1
898 1277 1381 899
c
Amorph."
14.49 14.53 14.91 14.93
14.94 14.96 14.48 25.56
4.910* 4.912* 4.93 4.910*
7 =118.14 7=118.21 7=118.0 7 = 92
2 2 2 4
1.482 1.477 1.479 1.484
14.22 14.10
14.52 14.43
4.909* 4.906*
7=116.1 7=116.3
2 2
1.541 1.566
4*1/1 4*1/1
1337 1337
4
1.04
4*1/1
1268
7 = 90.8
4
0.837
9*2/1
1023
/9=101.71
4
1.016
9*2/1
1023
4*1/1
371
70
7.88 9.30
8.11
4.89
5.67
21.00*
17.5
4.85
4.85
102/1020
87
4.11
19.59
4.80
(3 = 109
2
1.219
4*1/1
780
24.65
30.74
4.89
(3 = 92.2
8
1.336
4*1/1
780
60
1268
5.1
17.80
17.80
36.50
72
0.849
10
4*1/1
230
167/707
2*18/5
488
12*1/1 4*1/1
1502 1502
11.73 5.05
19.73 19.80
4.85 4.86
4.8 4.85
4 4
0.98 0.969
9.47
5.97
8.15 8.15
4
0.982
95 104/1126
4*1/1 4*1/1
189 200
44
4*2/1 4*2/1
844 263
53
8*1/1 8*1/1
1431 234
syndiotactic Mono
C2h-5
6.34
9.12
8.50 8.50
/3=
105.9
4
0.957
References page VI-159
TABLE 4. cont'd Density (g/cm3)
Unit cell parameters Polymer - , 2-methyltransisotactic (RT) (82.15) (153K) cisisotactic a (-130) P(RT)
Cryst syst.
Space group
a
Mono
C2h-5
Mono
Ortho Ortho
b
c
12.89
9.186
C2h-5
12.78
9.084
D2h-15 D2-4
10.74 9.30
- , 3-methylcisisotactic (82.15)1. II. syndiotactic II. 1,4-PoIy (1,3-pentadiynol) - , 1-N-carbazoly(245.28) Mono C2h-5 2,5-Poly(5-phenyl-2,4-pentadienoic acid) frans-erythro-diisotactic - , butyl ester (230.31) -methyl ester (188.23) 1,24-Poly( 1,11,13,23-tetracostetrayne) cross-polymer Mono C2h-4 (322.54)
16.49
26.8*
13.04 7.73
19.51
8.254
Angles
z
Crystal.
4.820* /3 = 93.5
4
0.958
4.824* /3 = 93.6
4
0.977
7.87 7.90
8 4
0.990 0.961
Amorph."
Melting point (°C)a
Heat of fusion kj/mola
4*1/1
1317
4*1/1
1317
4*2/1 4*2/1
1364 1364
8.02 6.97
*2/l *3/l
1497 1497
8.6
8*1/1
1501
4*1/1
1354
4.80
4*1/1
384
4.80
4*1/1
384
4.873* 7=124.27
4.91*
7=119.6
4
2
195/1365
Chain conform. (n*p/q) Refs.
175 165 165/1365
1.257
1.136
1264
a
The number after the solidus (/) are reference citations. * The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 5.
POLY(PEPTIDES) -(NH-CHR-COK Density (g/cm3)
Unit cell parameters Polymer Poly(L-alanine) a helix (71.08) P - , phenyla helix (147.18) co helix
Cryst syst.
Space group
a
b
hex
8.55
8.55
Ortho Ortho
4.79 4.734
10.7 10.54
Hex
11.55
11.55
Tet 11.28 Tet 12.86 Poly(p-alanine), see Poly(3-aminopropionic acid) Poly(L-alanyl-D-alanyl-L-alanyl-D-valine) (312.37) Ortho 9.5 Poly(L-alanyl-L-alanylglycine) (200.22) Ortho 9.44 -phenyl- [2nd alanyl] (275.31) Poly(L-alanyl-L-alanylglycyl-L-prolyl-L-prolylglycine) (450.49) Ortho 10.5 Poly(L-alanyl-D-alanyl-L-valyl-D-valine) (340.42) Ortho 9.5
11.28 12.86
31.0 9.96
34.1
c
70.3 6.88 6.89
5.91 5.59
Angles
z
Crystal.
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
47
1.246
3*47/13
507
4 4
1.339 1.373
3*2/1 3*2/1
507 509
3*18/5
1025
4 4
1.300 1.057
3*4/1 3*4/1
1024 1025
11.0
8
1.281
12*1/1
1046
20.94*
8
1.351
9*2/1
753
15
9*
774
29.5
18*
755
11.0
8
1.269
12*1/1
1046
TABLE 5. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
c
Angles
z
Crystal.
Poly(L-alanyl-4-aminobutyric acid) (156.18) Ortho 9.4 9.9 9.2 4 1.21 Poly(L-alanyl-6-aminocaproic acid) (184.24) Ortho 9.4 9.8 11.5* 4 1.16 Poly(L-alanyl-3-aminopropionic acid) (142.16) Ortho 9.4 9.8 16.1* 8 1.27 Poly(L-alanyl-l 1-aminoundecanoic acid) (254.37) Ortho D2-5 4.79 10.35 29.8 4 1.144 Poly(L-alanyl-5-aminovaleric acid) (170.21) Ortho 9.4 10.7 20.7* 8 1.09 Poly(L-alanyl-L-glutamylglycine) - , y-ethyl(285.30) Mono 9.54 8.54 21.36* 7 = 106 4 1.133 Poly(L-alanylglycine) 1.(128.13) Ortho 9.42 8.87 6.95* 4 1.466 Ortho 9.44 8.96 6.94* 4 1.450 II. Ortho 4.72 14.4 9.6 4 1.30 Poly(L-alanylglycyl-L-alanylglycyl-L-alanylglycyl-L-alanylglycyl-L-alanylglycyl-L-alanylglycyl-L-glutamylglycine) (990.98) Ortho 9.64 9.62 48.65 4 1.459 Poly(L-alanylglycyl-L-alanylglyclyl-L-alanylglycyl-L-alanylglycyl-L-alanylglycyl-L-glutamylglycine) (850.84) Ortho 9.57 9.70 41.70 4 1.460 Poly(L-alanylglycyl-L-alanylglycyl-L-alanylglycyl-L-alanylglycyl-L-glutamylglycine) (710.70) Ortho 9.48 10.28 34.75 4 1.394 Poly(L-alanylglycyl-L-alanylglycyl-L-alanylglycyl-L-glutamylglycine) 1.(570.56) Ortho 9.48 17.34 18.8 4 1.226 II. Ortho 9.48 10.60 27.80 4 1.356 Poly(L-alanylglycyl-L-alanylglycyl-L-serylglycine) (400.39) Ortho 9.39 9.05 20.55* 4 1.522 Poly(L-alanylglycyl-L-alanyl-L-prolyglycyl-L-proline) (450.49) Ortho 10.5 29.5 Poly(L-alanylglycylglycine) 11.(185.18) Mono 8.86 22.0 9.42 (3 = 90 9 1.507 (monohydrate) Mono C2-2 11.0 4.8 9.45 /9 = 90 2 1.35 Poly(L-alanylglycylglycylglycine) 11.(242.24) Hex 4.89 4.89 36.60 3 1.592 Poly(L-alanylglycyl-L-proline) dry Hex 11.9 11.9 28.8 10 1.06 wet Hex 11.4 11.4 9.3 3 1.07 (225.25) Poly(L-alanylglycyl-L-prolyl-L-prolyglycyl-L-proline) (476.53) Ortho 10.6 28.7 Poly(L-alanyl-L-prolyglycine) with H 2 O Mono C2-2 8.6 7.2 9.4 (3 = 90 2 1.4 (225.25) Poly(L-alanyl-L-prolylglycyl-L-prolyl-L-prolylglycine) (476.53) Hex 11.9 11.9 29.5 5 1.093 Poly(L-alanyl-D-valine) (170.21) Port 9.7 14.7 6.2 4 1.28 Ortho 9.5 29.4 11.1 16 1.459? Poly(2-aminoisobutyric acid) (85.11) Hex 8.7 8.7 5.96 3 1.08 - , dichloroacetic acid complex (106.60) Hex C3v-6 21.8 21.8 5.95 18 1.301 (1 DCA/6 residues) Poly(L-arginine) - , hydrochloride a helix Hex 14.7 14.7 27.0 18 1.406 (2.5 H2O/residue) (192.65) J3 Mono 9.26 22.05 6.76 7-108.9 4 1.438 (>5 H2O/residue)
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
8*1/1
969
10*1/1
969
7*2/1
969
15*2/1
1619
9*2/1
969
9*2/1
756
6*1/1 6*1/1 6*2/1
591 754 741
42*1/1
1648
36*1/1
1648
30*1/1
1648
24*1/1 24*1/1
1633 1648
18*
754
18*
755
9*1/1 9*1/1
596 740
12*3/1
740
9*10/3 9*3/1
614 614
18*
755
9*1/1
18*
616
755
6*1/1 6*2/1
1176 1046
3*3/1
967
3*3/1
1053
3*18/
641
3*2/1
641
References page VI-159
TABLE 5. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Poly(L-aspartic acid) -, P-benzyl© helix Tet (205.21) Tet Tet racemic Ortho -, - , /?-chloroa helix Hex (239.66) Hex ©helix Tet Mono - , - , /7-methyla helix Hex (219.24) ©helix Mono - , a-n-butyl1.(171.20) Hex Phex II. Tet - , a-ethyl- , - , 2-methoxy(173.17) Phex - , P-ethyl-, -, 2-phenyla helix Tet (219.24) P Ortho 71 helix Ortho >200°C Hex ? Hex -, a-isobutyl1.(171.20) Ortho Hex II. Tet Tet - , P-n-propyl P Mono (157.17) - , - , 3-phenyl(232.26) Hex (at 1400C) Ortho Poly(L-cysteine) - , s-benzyloxycarbonylP I. Ortho (237.27) II. Ortho - , 5-benzylthio© helix Tet (225.32) Poly(2,4-diaminobutyric acid) - , Af-benzyloxycarbonyl(234.26) Rho Poly(D-glutamic acid) -, y-benzyl- , -, chlorometa Phex (253.68) ortho Phex para Ortho Hex
Space group
5.30 5.42 5.3 5.68
4 4 4 2
1.341 1.320 1.34 1.310
3*4/1 3*4/1 3*4/1 3*2/1
582 703 837 1026
14.9 14.8 23.3 13.4
27.0 27 5.20 5.2
18 4 8 18
1.380 1.40 1.128 1.41
3*18/5 3*18/5 3*4/1 3*4/1
606 1505 606 1505
14.9
14.9
27
4
1.26
3*18/5
1505
16.6
13.4
5.28
7 = 108
4
1.304
3*4/1
1505
C2-2 C4-2
13.5 13.45 14.15
13.5 13.45 14.15
19.9 20.6 4.90
7=120
13 13 4
1.177 1.145 1.338
4*13/4 4*13/4 4*4/1
1507 1508 1508
C2-2
12.40
12.40
20.74
7 = 120
13
1.354
4*13/4
1508
13.2
13.2
27.0
18
1.393
3*18/5
1027
17.7 20.3 17.1 23.4
4.76 11.7 17.1 23.4
6.83 19.89 19.89
2 17 17
1.265 1.310 1.229
3*2/1 3*17/4 3*17/4
1027 1028 1028 1027
13.5 13.5 14.0 13.98
23.4 13.5 14.0 13.98
19.9 19.9 4.95 4.94
26 13 4 4
1.176 1.177 1.172 1.178
4*13/4 4*13/4 4*4/1 4*4/1
1312 1506 1312 1506
9.57
25.08
8
1.288
3*2/1
579
7 14
1.220 1.141
3*7/2 3*7/2
1628 1628
C2-2
13.85 13.80 13.88 21.4
13.85 13.80 13.88 4.28
14.9 14.8 23.3 16.4
15.6 28.0
C4-2
15.6 16.1
c
6.79b
Angles
7 = 99
7 = 96
10.5 10.5
Amorph."
Chain conform. (n*p/q) Refs.
Crystal.
D4-4
b
Heat of fusion kj/mola
z
D6-3
a
Melting point (0C)a
286/1310
4.76
32.4
6.95*
4
1.470
3*2/1
578
4.89
32.8
6.89*
4
1.426
3*2/1
578
14.28
14.28
5.55
4
1.322
3*4/1
1029
27.5
27.5
27.0
56
1.232
3*18/5
720
15.30
15.30
26.99
7 = 60.23
18
1.382
3*18/5
932
15.07 15.24 15.24
15.07 26.40 15.24
27.15 10.68 10.67
7 = 60.03
18 14 7
1.420 1.372 1.374
3*18/5 3*7/2 3*7/2
932 932 1033
TABLE 5. cont'd Density (g/cm3)
Unit cell parameters Polymer -, y-rt-hexyla helix (213.27) - , y-methyla helix (143.14) P
Cryst syst.
a
b
Hex
15.89
15.89
Hex
12.0
12.0
Ortho
Poly(L-glutamic acid) P I. Mono (129.12) Mono II. Mono Ortho -, y-w-amyl(199.25) Hex Hex -, y-benzyla helix A. Mono (219.24) Hex B. Tri Mono Mono (dry) Ortho Mono C. Hex (racemic) Hex Mono Hex D. Hex E. Hex single crystal Mono racemic mixture I. Ortho II. Mono -, -, chlorometa Hex (racemic) Hex (253.68) ortho Ortho (racemic) Hex para Ortho (racemic) Ortho - , y-w-butyl(185.22) Phex (at 1000C) Ortho -, y-calcium P (wet) Mono -, y-w-dodecyl(297.44) Hex -, y-ethyla helix I. Phex (157.17) Phex T. III. H. -, -, 2-chloro(191.61) -, -, 2-phenyl(233.27)
Space group
C2-2
c
Angles
27
9.49 9.44
19.09 23.37
7.07 6.81
9.66 9.79 9.75 4.95
9.10 9.35 8.06 15.6
6.98* 6.82* 6.84* 6.90
7 = 90
7=105 7=105 7 =104
Crystal.
18
1.08
Amorph."
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs. 3*18/5
859
3*18/5
1162
8 8
1.484 1.266
3*2/1
954 812
4 4 4 4
1.447 1.422 1.644 1.610
3*2/1 3*2/1 3*2/1 3*2/1
585 966 966 836
18 18
1.12 1.13
3*18/5 3*18/5
1040 1279
3*18/5 3*18/5 3*18/5 3*18/5 3*18/5 *43/12 3*18/5 3*18/5 * 71/20 3*18/5 3*7/2 3*7/ 3*7/2
1030 952 587 702 952 757 1030 584 584 1030 1030 953 1030 926
15.1 15
15.1 15
15.3 30 15.25 25.2 15.88 14.76 29.06 14.95 14.95 15.05 14.8 39.05 64.36 5.52
14.6 30 15.25 15.0 13.00 25.40 13.20 14.95 14.95 14.78 14.8 39.05 64.36 5.11
24.4 25.6
15.4 15.6
15.50 15.49
15.50 15.49
27.10 26.84
18 18
1.345 1.360
3*18/5 3*18/5
1032 1035
26.50 15.24 15.24 15.12
30.60 15.24 26.40 26.09
27.02 27.23 10.67 10.72
72 18 14 14
1.384 1.384 1.374 1.394
3*18/5 3*18/5 3*7/2 3*7/2
1032 1034 1032 932
14.1 25.4
14.1 14.66
(27) 27
18 36
1.13 1.101
3*18/5 3*18/5
1040 1040
9.40
12.82
27.6
27.6
12.5 12.16
12.5 12.16
Tet Phex Ortho
11.72 12.9 22.95
11.72 12.9 13.25
Phex
11.7
11.7
Hex Ortho
15.60 15.38
15.60 26.65
(27) 27
z
Melting point (0C)*
7=121.7 27.0 26.8 27.1 64.11 27.27 27.1 106 27 10.50 10.58 10.5 22.25
84,84,122 7=122.5 7=113.7 (3 = 96 = 56
7
7 = 119.4
/3 = 97.8
72 18 30 18 86 36 18 71 18 7 49 2
1.257 1.278 1.279 1.303 1.260 1.305 1.260 1.252 1.279 1.277 1.285 1.171
1031 1031
7=107.7
6.83*
7 = 114
7=100.3
585 1292
27.0 108.9 16.4 108.9 108.9 108.9 16.56 (27) 54.4
7=110 7=109.5
18 73
1.18 1.255 1.274 1.25 1.151
3*18/5 *73/20 3*11/3 3*73/20 3*73/20 3*73/20
826 955 1036 955 955 955
7=123
73 73
7=118.7
11
1.760
3*11/3
1036
72
1.225 1.251
3*18/5 3*18/5
1038 1039
References page VI-159
TABLE 5. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
c
Angles
z
Crystal.
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
- , y-n-hexyl-
(213.28)
Hex Hex
15.8 15.5
15.8 15.5
27 27
18 18
1.09 1.14
3*18/5 1040 3*18/5 1279
11.96 11.95 11.79
11.96 27.0 11.79
27.5
11.95 11.82 11.58
20.70 11.82 11.58
18 18 18 65 58 69 18
1.256 1.281 1.321 (1.284) 1.290 1.316 1.399
3*18/5 3*18/5 3*18/5 * 65/18 3*29/8 * 69/19 3*18/5
588 576 858 583 589 1204 1650
12.75 12.75 21.27 4.725 4.70
12.75 12.75 21.27
18 18
1.282 1.287 1.210
21
4
1.410
3*18/5 3*18/5 117/32 3*2/1 3*2/1
1293 1338 1204 702 1037
27.6 23.9
27.6 24.9
27
72 72
1.248
3*18/5 3*18/5
1041 1041
17.1
17.1
27
18
1.06
3*18/5
1279
14.4 24.6 24.3
14.4 14.2 24.3
(27) 60.0 60.0
18 80 120
1.19 1.085 1.112
3*18/5 * 40/11 *40/ll
1040 1040 1533
16.30
16.30
(27)
18
1.190
3*18/5
1038
15.9
15.9
-, y-methyla helix (143.14)
Hex Hex Hex
11.95
Ortho Hex Hex precursor to a (3 chloroform/18 mers) Hex Hex (at 17O0C) Rho P Ortho - , - , dimethyl phthalate complex 25% Hex extracted Phex - , y-n-octyl(241.33) Hex - , y-ft-propyl(171.20) Phex (at 1500C) Ortho Rho - , - , 3-phenyl(247.29) Hex - , y-sodium a helix Hex (hydrated) P (wet) Port Poly(L-glutamine) - , Af5-(4-hydroxybutyl)(200.24) Ortho - , //5-(2-hydroxyethyl)(172.18) Ptet - , N5-(3-hydroxypropyl)(186.21) Ortho Poly(D-glutamyl-L-glutamic acid) - , y-benzyla helix Hex (219.24) Hex Hex P Hex Ortho co helix Ortho Ortho Tc helix Hex Hex Ti-Ti 5.6 Hex Tt-Tt 7.2 Hex Tt-Tt 9.0 Mono Tt-Tt 10.8 Mono - , y-ethyl- , - , 2-phenyla helix Hex (233.27) Hex P Hex Tt helix Hex Poly(glycine) 1.(57.05) Mono C2h-5
14.4
7.0*
26.9 97.26 43.2 103.0 26.33 27.0 26.9 176.0 6.83 6.83
7 = 121.4
7 = 130
794 4.7
794
14.8
12.4
60.4
40
1.200
3*40/11
935
12.1
12.1
27
18
1.30
3*18/5
968
14.6
12.3
43.2
29
1.156
3*29/8
924
15.2 14.9 26.0 22.9 9.52 27 26.92 27.1 17.0 17.0 18.2 22.6 25.3 26.4
15.2 14.9 26.0 22.9 22.5 15.8 15.54 15.5 17.0 17.0 18.2 22.6 24.4 25.6
28 26.6 32.4 9.46
19 18 66 16
1.235 1.281 1.267 1.356
3*19/5 6*9/5 6*11/6 6*1/1
5.40 5.40 25.6 25.6 56.3 53.1 20.2 50.0
8 8 22 22 56 72 36
1.289 1.284 1.250 1.250 1.262 1.116 1.180 1.318
6*2/1 6*2/1 6*11/5 6*11/5 6*14/5 6*18/5 6*9/2 6*27/5
885 1042 1272 1042 1215 885 1042 1272 885 1272 1214 1214 1214 1214
15.9 27.5 24.2 17.6
15.9 27.5 24.2 17.6
26.5 32.4 4.75 25.7
18 66 8 22
1.204 1.205 1.286 1.236
6*9/5 6*11/6 6*1/1 6*11/5
1042 1272 1042 1272
2 4
1.30 1.669
3*2/1 3*2/1
581 1239
4.77 9.54
4.77 3.67
7.0 7.044*
7=117 7=118
7-66 7 = 113
365/795
TABLE 5.
cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
II. Hex C3-2 4.8 Poly(glycyl-6-aminocaproic acid) 1.(170.21) Hex 4.79 II. Mono 4.76 Poly(glycyl-12-aminododecanoic acid) 11.(254.37) Hex 4.79 Poly(glycyl-3-aminopropionic acid) 1.(128.13) Ortho 9.51 II. Hex 4.79 Poly(glycyl-3-aminopropionic acid-3-aminopropionic acid) (199.21) Hex 4.79 Poly(glycyl-11-aminoundecanoic acid) 1.(240.35) Ortho 9.60 II. Hex 4.79 Poly(glycylglycyl-L-proline) with H 2 O Mono C2-2 12.2 w/formicacid Mono C2-2 13.5 (211.22) Poly(glycylprolylhydroxyproline) (267.28) Hex 13.7 Poly(glycyl-L-prolyl-L-proline) dry Hex 12.5 (251.29) - , a-phenyl-(glycyl) (327.38) Ortho D2-4 14.3 Poly(L-histidine) -, 1-benzyl(227.27) Phex 17.4 - , hydrochloride (1 H2O/residue) Mono 14.95 (190.61) Poly(L-isoleucine) P Ortho 4.80 (113.16) Ortho 4.8 Poly(L-leucine) a helix Hex 13.22 (113.16) p Ortho 4.80 Poly(L-lysine) a helix Hex 19.55 (128.18) P Ortho 9.44 - , Zs-benzyloxycarbonyla helix Hex 16.69 (262.31) - , hydrobromide (1.4 H2O/residue) Ortho D2-3 9.52 (234.31) -, hydrochloride a helix Hex 16.80 >84%RH (164.64) P dry Ortho 4.62 65% RH Ortho 4.71 Poly(L-lysyl-L-lysyl-L-valine) a helix Hex 15.87 (355.48) P Ortho 9.35 (with 2HC1) - , di-benzyloxycarbonylP Ortho 9.38 (623.75)
b
c
4.8
9.3
4.79
35.1 3.96
4.79 15.20 4.79 4.79
Angles
16.95* 22.2 35.2
z
Crystal.
3
1.53
3
1.216
276/1524
10*3/1
1311 1311
6
1.131
230/1524
6*16/1
1512
16 3
1.389 1.447
7*2/1 7*3/1
1294 1294
3
1.419
11*3/4
1313
15*2/1 15*
1391 1391
37.5* 4.79 9.3 9.3
13.7
Heat of Chain fusion conform. kj/mol" (n*p/q) Refs. 3*3/1
/?=113
112.8
4.9 4.9
Amorph.a
Melting point (0C)"
2 2
1.4
9*1/1 9*1/1
615 615
28.2
10
0.97
9*10/
612
12.5
28.7
10
1.07
9*10/
613
13.5
9.4
4
1.198
9*1/1
965
17.4
27.0
7=130
18
1.085
3*18/5
719
14.95
45.0
7=116.5
45
1.582
3*15/4
1295
4 4
1.018 1.032
3*2/1 3*2/1
806 1025
22.36 23
6.88 6.6
/? = 90 /? = 94
273
13.22 23.56
6.88
4
0.966
19.55
3*
806
3*2/1
806
3*
586
17.16
6.8b
6
1.16
3*2/1
586
16.69
26.90
18
1.208
3*18/5
577
16.44
6.80
4
1.46
3*2/1
923
16.80
15.20 16.67
666
6.66 6.66
4 4
2.338
15.87
666 666 9*
1047
15.04
20.88
4
0.969
9*2/1
1047
28.24
20.22
8
1.547
9*2/1
1048
References page VI-159
TABLE 5. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Poly(L-methionine) a helix Hex (131.19) Poly(D-methionyl-L-methionine) P Mono (131.19) Poly(L-ornithine) -, iV-benzoyla helix Hex (218.26) -, -, /7-bromoco helix Ortho 8297.15* -, -, /7-chloroo) helix Ortho (252.70) -, -, />-fluoroco helix Ortho (236.25) - , iV-benzyloxycarbonyl1.(248.28) Mono Phex Hex II. Ortho Tet III. Ortho -, hydrobromide a helix Hex (>86% RH) P (wet) Ortho (to 85% RH) Poly(L-proline) 1.(97.12) Hex II. Rho Rho Rho -, acid complexes -,acetic Tet -,formic Tet • - , propionic Tet highly solvated Ortho - , hydroxyA. (113.12) Hex B. >66%RH Phex - , - , O-acetyl11.(155.15) Hex Poly(L-serine) -, O-acetylP Ortho (129.12) Poly(L-tyrosine) -, (9-benzyloxycarbonyl(297.31) Mono Poly(L-valine) a helix Hex (99.13) P Ortho Ortho a b
Space group
a
b
c
11.49
11.49
70.5
18.05
4.71
15.0
D2-4
14.66*
15.0
26.5
24.6
18.4
Angles
/3=110.4
5.68
z
Crystal.
Amorph.*
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
47
1.270
3*47/13
867
8
1.492
6*2/1
850
18
1.263
3*18/5
1373
8
1.535
3*4/1
1373
D2-4
24.1
18.5
5.68
8
1.326
3*4/1
1373
D2-4
23.8
18.7
5.68
8
1.241
3*4/1
1373
23.3 23.0 22.8 29.40 20.8 22.09
22.7 22.6 22.8 14.70 20.8 19.95
22 22 22 36 80 80
1.213 1.238 1.228 1.272 1.270 1.247
3*11/3 3*11/3 3*11/3 3*18/5 3*40/1 3*40/1
720 1043 1296 1043 1296 1296
16.2 (16) 16.4 27.0 60.00 60.00
7=119.2 7 = 119.5
15.0 4.60
C2-2 C3-3 C3-3 C3-3
C3-3
30.2
6.64
8
9.05 6.62 6.62 6.68
9.05 6.62 6.62 6.68
19.0 9.36 9.31 9.36
10 3 3 3
9.13 8.92 9.13 9.00
9.13 8.92 9.13 25.1
19.0 19.0 19.0 19.0
10 10 10
12.3 15.75
12.3 15.75
9.15 22.88
11.4
11.4
9.71
D2-4
784
6.48
18.0
18.0
11.43
11.43
4.79 4.80
19.00 19.14
1.197 1.362 1.369 1.338
3*2/1
784
3*10/3 3*3/1 3*3/1 3*3/1
590 510 512 511
3*10/3 3*10/3 3*10/3
701 701 701 701
9
1.410
3* 3*8/3
580 1044
9.3
6
1.48
3*3/1
737
9.6*
3
1.065
3*3/1
706
11
1.20
3*11/3
849
18
0.970
3*18/5
1025
4 4
1.052 1.088
3*2/1 3*2/1
806 1045
16.5 (27) 6.88 6.59
7 =120.47
7=122
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 6. POLY(AMIDES) (-NH-X-NH-CO-Y-CO- or -NH-X-CO-) see also POLY(PEPTIDES) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(2-aminoacetic acid), see Polyglycine Poly(/?-aminobenzoic acid) (119.12) Ortho D2-4 Ortho D2-4 Ortho D2-4 Poly(3-amino-2-butenoic acid) irrad. in vacuum (83.09) Mono irrad. in air Mono Poly(3-aminobutyric acid) (85.11) Ortho Poly(4-aminobutyric acid) a Mono (85.11) Mono C2-2 Mono P Mono 5 Hex -, 4-benzyloxycarbonyl-(L) 1.(219.24) Mono II. Hex - , 4-methyloxycarbonyl-(L) (143.14) Hex PoIy(10-aminocapric acid) a Tri (169.27) y Phex C2h-5 Hex Poly(6-aminocaproic acid) [caprolactam] a Mono C2-2 (113.16) Mono C2-2 Mono Mono C2-2 Mono Mono Mono C2-2
P Y
>150°C
Hex Hex Mono Mono Hex Ortho Mono Ortho Rho Mono
C2h-5 C2h-5
a
b
c
7.71 7.71 7.75
5.14 5.14 5.30
12.9 12.8 12.87
19.11
8.54
10.665
21.90
10.13
12.461
10.9
9.6
4.6
9.44 9.29 9.79
8.22 7.97 8.31
4.65
4.65
9.62 13.14
Angles
z
Crystal.
4 4 4
1.548 1.560 1.497
Amorph."
Melting point (°C)a
Heat of fusion kj/mol*
550/735
Chain conform. (n*p/q) Refs.
6*2/1 6*2/1 6*2/1
811 902 1434
/3 = 91.6
4*
1530
/3 = 96.8
4*
1530
4
1.17
330
4*1/1
503
260/337 260/244
5*2/1 5*2/1 5*2/1 5*2/1
272 457 1509 458 458
12.1* 12.24* 12.25 12.24*
7=116 7=114.5 7=117
8 8 8
1.340 1.375 1.273
19.30 13.14
12.30 10.0
(3 = 11.1
8 5
1.35 1.22
5*2/1 5*5/2
1359 1359
10.90
10.90
10.0
5
1.16
5*5/2
1359
9.80
5.12
27.54
54,90,110
4
1.110
11*2/1
1237
4.78 4.9
9.56 4.9
26.9 26.5
7=120
4 2
1.056 1.02
11*2/1 11*2/1
971 61
9.56 4.81 9.65 9.45 9.66 4.77 9.71
8.01 7.61 8.11 8.02 8.32 4.06 8.19
17.24* 17.10* 17.2* 17.08 17.0 17.25 17.40
7 = 67.5 7 = 79.5 7 = 66.3 7 = 68 7 = 65 7 = 66.5 7=115
8 4 8 8 8 2 8
1.232 1.221 1.220 1.252 1.214 1.224 1.199
1 1 4 4 2 4 4 4 4 2
1.250 1.23 1.10 1.10 1.162 1.165 1.132 1.194 1.188 1.191 1.146 1.138
4.8 4.85 9.35 9.33 4.79 4.82 9.14 4.83 4.90 4.86
4.8 4.85 4.81 4.78 4.79 7.82 4.84 7.83 16.28 4.65
8.6 8.4 16.60* 16.88* 16.7 16.70 16.68 16.68 8.22 16.87
17.9
16.2*
7 = 59.7
16.96*
7 = 90
7=120 7=121
7=121
7 = 60
188/337 177/146 1.09/839
0.917 1.114 1.10
1.09/839
215 223/153 223/244 226/293 214/304 272/839 260/1051 228/346 250/532
272/839
20.8/155 18.1/216 23.0/405 21.6/343 26/1121 19.4/839 27/1050 27.3 24.1/697 18.5/534
7*2/1 7*2/1 7*2/1 7*2/1 7*2/1 7*2/1 7*2/1
7*1/1 7*1/1 15.6/839 7*2/1 27/1050 7*2/1 7*2/1 7*2/1 7*2/1 7*2/1 7*1/1 7*2/1
3 26 135 212 334 891 1049 1050 449 213 222 1052 336 246 272 279 697 697 26 891
-, complex with 12
-, D-(-)-3-methyl(127.19)
Mono or
C2h-5 C2-2
9.13
Mono
C2-2
9.15
4.84
Poly(6-aminocaproic acid-a/f-11-aminoundecanoic acid) (296.46) Poly(6-aminocaproyl-5-aminovaleryl-3-aminopropionic acid) (297.40) Tri 4.9 10.7 Poly(8-aminocaprylic acid) a Mono C2-2 9.8 8.3 (141.21)
1510
4
1.125
22.5 21.6
51,77,62
2
1.28
22.4*
7=115
8
1.14 1.18
225/19 226/36
7*2/1
440
184
19*1/1
714
18*1/1
1437
185/146 202
30/1195 9*2/1
272 153
200/244 218/838
References page VI-159
TABLE 6.
cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
P y
Mono Hex Hex Phex C2h-5 Poly(2-aminocyclopentylenecarboxy acid) (111.14) Poly(7-aminoenanthic acid) (127.19) Tri Cl-I Tri Ci-I
a
b
c
4.79 4.9 4.77
4.79 4.9 9.54
21.7 21.7 21.9
8.25
4.54
7.8
9.8 4.9
10.0 5.4
9.8 9.85
Angles
z
Crystal.
Amorph."
1.088 1.04 1.087
1.04/495
7 = 120
2 2 4 2
1.26
4 1
1.18 1.21
56,90,69 49,77,63
Melting point (°C)a
13.3 Poly(peptide) Section
C2h-5
Ci-I Cl-I
Poly(2-aminopropionic acid), see Poly(alanine) Poly(3-aminopropionic acid) [P alanine] a Mono C2-2 (71.08) Mono P Ortho - , 2-butyl-2-methyl(141.21) - , 2,2-dimethyl1.(99.13) II. Ortho
13.3
Chain conform. (n*p/q) Refs.
18/1121 9*2/1 9*2/1 9*2/1
121 272 61 971
4*2/1
1059
8*1/1 8*1/1
918 61 153
233/215 225/146 217
1.20 -, (R)-3-methyl(141.21) - , (S)-4-methyl(141.21) -, (R)-5-methyl(141.21) - , (R)-6-methyl(141.21) Poly(aminoformic acid) - , N-butyl(99.13) Phex Poly(2-aminoisobutyric acid), see PoIy(12-aminolauric acid) Y Hex (197.32) Hex Phex Mono Mono Mono formed during planar extrusion Tri Poly(9-aminopelargonic acid) (155.24) Tri Tri
Heat of fusion kj/mola
223/291
9.24
179
479
9.43
176
479
9.11
182
479
9.57
188
479
15.4
16
1.12
1.023 1.10 1.034 1.045 1.048 1.126
2*8/3
522
208/1172 179/177
13*2/1 13*2/1 13*2/1 13*2/1 13*2/1 13*2/1
895 660 680 759 1054 1511
13*2/1
1511
4.80 4.70 4.79 4.87 4.90 9.28
4.80 4.70 9.58 9.38 4.67 4.85
32.1 31 31.9* 32.2* 32.1 31.35
7 = 120 7 = 121.5 7=121.7 7=124.4
2 2 4 4 2 4
9.28
5.29
31.35
59,90,60
4
1.223
4.9 9.7
5.4 9.7
12.5 12.6
49,77,64 64,90,67
1 4
1.15 1.07
210 194/146 198/292 209/177
10*1/1 10*1/1
421 918
9.33 9.60
8.73 8.96
4.78* 4.78*
7=120 7=122.5
4 4
1.400 1.361
340 330/337 357/1403
4*1/1 4*1/1
491 1265
9.56
7.56
4.78 a
4
1.366
4*1/1
1265
4*2/1
1093
11.57
-, 2-ethyl-2-methyl(113.16) -, 3-methyl-, see Poly(3-aminobutyric acid) -, 2-methyl-2-propyl(127.19) Poly(3-aminopropyl-5-aminovaleryl-6-aminocaproic acid) (297.40) Tri 4.9 PoIy(18-aminostearic acid) y Mono 4.76 (281.48) Poly(2-aminotetrahydropyran-6-carboxcylic acid) (127.14) Mono C2-1 11.79
10.95
10.7
0.972
175/528
0.99
8.3
72
8.4 8.39
189/73 273 268 270/402
8
1.239
4* 13 4*2/1
73 1093
8.5
76
4*2/1
1093
8.4
74
4*2/1
1093
21.6
51,77,62
2
1.28
18*1/1
1437
9.52
46.9
7 = 120
4
1.016
19*2/1
1055
14.40
19.43
7 = 98
20
1.292
5*10/3
1333
Double
305
TABLE 6. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
PoIy(11-aminoundecanoic acid) a Tri (183.30) Tri Tri Tri Tri
II. y
Space group
Cl-I Ci-I
Mono Mono
a
b
c
9.5 4.78 4.9 9.6 4.78 4.78
10.0 4.13 5.4 4.2 4.13
9.75 9.48
Poly(5-aminovaleric acid) a Tri Cl-I 9.5 (99.13) Poly(4,4 '-benzanilidylene terephthalamide) (357.37) Poly(1,3-cyclohexylenedimethylene adipamide) cis(252.36) Tri 4.8 Poly( 1,3-cyclohexylenedimethylene dodecanediamide) cis(336.52) Tri 4.8 Poly(1,3-cyclohexylenedimethylene suberamide) cis(280.41) Tri 4.8 Poly(decamethylene adipamide) [10.6] (282.43)
Angles
z
Crystal.
15.0 13.1 14.9 15.0 14.9 14.1
60,90,67 90,75,66 49,77,63 72,90,64 82,75,66 a = 63.5
4 1 1 2 1
1.10 1.343 1.15 1.19 1.174
8.02 4.5 7.68
15.0& 29.4^ 14.78
7=115 7 = 118.5
4 4
1.145 1.10
5.6
7.5
48,90,67
2
1.30
Chain conform. (n*p/q) Refs.
183/292 220 182/146 194/101 186 188/444 226/1161
27/1161 41/343
12*1/1 12*1/1 12*1/1 12*1/1 12*1/1 12*1/1
918 365 61 59 263 1057
12*1/1 12*1/1
529 529 1056
258/402
6*1/1
18*1/1
1425
13*2/1
1058
29.6
26,85,75
2
1.19
19.0
44.6
16,90,83
2
1.12
19*2/1
1058
14.5
34.8
22,85,76
2
1.15
15*2/1
1058
18*1/1
110
20.0
253/1201
918
12.6
230 236/244 240/544 214/137
y Phex Poly(4,4 '-decamethy lenedipiperazine sebacamide) (476.75)
Poly (decamethy lene succinamide) [10.4] (254.37) Tri 4.9 Poly(dodecamethylene oxamide) [12.2] (254.37) Poly(dodecamethylene phosphinylidenedipropionamide) - , methyl-(diacid) (372.49) Poly(dodecamethylene malonamide) [12.3] (268.40) Mono 8.48 Poly(dodecamethylene sebacamide) [12.10] a Tri 5.0 (366.59) P Tri 5.0 Poly(dodecamethylene succinamide) [12.4] (282.43) Tri 4.9
1.01
Heat of fusion kj/mol a
18.63
Poly(decamethylene azelamide) [10.9] (324.51)
Poly(decamethylene 4-octenediamide) trans(308.47) Poly(decamethylene phosphinylidenedipropionamide) - , methyl-(diacid) (344.44) Poly(decamethylene sebacamide) [10.10] (338.54) Tri 4.9
Amorph.a
Melting point (°C)a
68.2/405 2 1 * 36.7/159
2
65 130/159 129/402
69.1/159 28*
24.1
243
20*1/1
657
20
173
19*1/1
831
51.1/118 22*1/1 34.7/159 * 1/1 72.0/405 32.7/160
1412 110
5.4
27.8 25.6
49,76,63
1
1.14
203/244 197 198/454 216/137
5.5
19.8
49,77,63
1
1.18
242
16*1/1
1626
19.5
230
16*1/1
743
21.55
180
4.71
41.30
/5=101
4
1.101
5.25
29.2
51,75,63
1
1.15
8.16
29.2
90,75,68
1
1.15
5.5
22.3
49,77,63
1
1.17
173/339
237
831 17*2/1
1523
24*1/1
1513
24*1/1
1513
18*1/1
1626
References page VI-159
TABLE 6.
cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
Poly[4,4 '-(ethylenedioxydiphenylene)-ditrimethylene adipamide] (438.57) Poly(ethylene-L-tartaramide) - , di-O-methyl(202.21) Tri 4.95 6.87 Poly(heptamethylene adipamide) [7.6] Y Phex C2-2 (240.35) Poly(heptamethylene y (282.43) Poly(heptamethylene (254.37)
c
Angles
4.82
Crystal.
Amorph."
Heat of fusion kj/mola
26.3
9.10
59,90,106
azelamide) [7.9] Phex pimelamide) [7.7] Phex Cs-I
z
Melting point (°C)a
18.95*
7=120
1
1.337
312
Chain conform. (n*p/q) Refs.
25*1/1
516
8*1/1
1629
2
209/291 226/339 250/244
65
1
201/244
65
1
1.105
214/244
16*1/1
63
16*1/1
65
205/2 196/339 228/1625
Y Phex Poly(heptamethylene sebacamide) [7.10] Y Phex C2-2 (296.46) Poly(heptamethylene suberamide) [7.8] Y Phex C2-2 (268.40) Poly(hexamethylene adipamide) [6.6] a I. Tri Ci-I (226.32) Mono Tri Tri Tri Tri
II.
Tri
P
4.9 15.7 5.00 4.87 4.97 4.96
glutaramide) [6.5] Mono C2h-6 Mono malonamide) [6.3] Mono 4-octenediamide)
5.4 10.5 4.17 5.26 5.47 5.52
187/339 208/244
65
2
230/244
65
8.0 5.9 5.87
17.2 16.23 16.50
90,77,67 57,80,60 56,81,60
2 1 1
7.8
5.3
40.15*
7 = 87
4
1.08
4.60 5.23
8.62 8.50
30.95* 30.55
/3=114 /3=110
4 4
8.60
4.62
25.70
/3=100.4
4
17.12
48,77,63 0 = 73 81,76,63 50,76,64 48,77,62 48,76,62
2
4.9 5 4.91
5.45
17.2 17.3 17.3 17.15 17.29 17.41
1
1.24 1.240 1.204 1.241 1.214 1.208 1.225 1.220 1.152 1.165 1.25 1.10 1.119
4.95
P Tri Ci-I high temp. Tri (17O0C) Tri Poly(hexamethylene azelamide) [6.9] (268.40) Mono Poly(hexamethylene (212.29) (at 19O0C) Poly(hexamethylene (184.24) Poly(hexamethylene trans(252.36) Poly[hexamethylene (170.21) Poly(hexamethylene (318.41) Poly(hexamethylene a (282.43)
18.95
52,80,63
1 9 1 1 1 1
1
1.09/52 1.12/495
14*1/1 14*1/1 14*1/1
25 402 407 891 1180 1409 1179 54 1180 1179 25 1060 1409
Tri
Ci-I
46.5/82 40/155 36.8/216 68/1121 58/1166 46.9/405 53.2
14*1/1 14*1/1 14*1/1 14*1/1 14*1/1 14*1/1
269.5
43.4 41.9
14*1/1
226/244 185/339
17*2/1
402
1.258 1.105
241/402
13*2/1 13*2/1
1514 1514
1.218
241/1524
11*2/1
1523
259
16*1/1
657
1.095 1.069 1.095 1.09/495
19.1 oxamide) [6.2] Tri Ci-I /n-phenylenedisulfonamide) Mono C2h-3 sebacamide) [6.10] Tri Ci-I Tri
265/2 270/289 301/1166 280/1121
5.15
7.54
12.39
32,74,62
1
1.280
320/402
10*1/1
956
7.70
7.76
14.1
/3=117
2
1.409
170
13*1/1
1384
4.95 4.86
5.4 5.05
22.4 22.35
49,76,63 55,76,62
1 1
1.16 1.189 1.152 1.189 1.17 1.20
228/51 215/291 233/244 225/454 216
30.6/160 18*1/1 56.5/137 18*1/1 58.6/405
25 891 54 52 153 25
4.9
8.0
22.4
90,77,67
2
1.041
18*1/1
TABLE 6. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(hexamethylene suberamide) [6.8] (254.37) Tri Mono quenched Phex Poly(hexamethylene succinamide) [6.4] (198.26) Tri
a
b
9.60
8.26
9.7
9.7
4.9
5.3
c
Angles
z
Crystal.
19.7
7 = 115
1 4
1.193
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
232/244 235/291 241/1202
Chain conform. (n*p/q) Refs.
16*1/1
7=120 14.8
51,77,62
65 1515 1515
1
1.25
275
12*1/1
1626
230
12*1/1
1629
371 371/829 D350/291
14*1/1
828
285/1524 306/402
9*2/1
1522
212/402 Poly(hexamethylene-L-tartaramide) - , di-O-methyl(252.32) Tri Poly(hexamethylene terephthalamide) [6.T] (246.31)
Poly(methylene adipamide) [1.6] (156.18) Mono
C2h-6
5.00
13.20
62,90,112
1
1.191
15.6
8.04
4
1.333
39.5
4
1.06
20*2/1
1315
6.06 6.1 5.22
45.0 45.5 52.6
4 4 4
1.060 1.03 1.037
23*2/1 23*2/1 23*2/1
1315 1315 1315
6.1
35.8
4
1.08
18*2/1
1315
5.32
40.5
4
1.093
18*2/1
1315
6.1
41.4
4
1.05
21*2/1
1315
6.1
37.6
4
1.07
19*2/1
1315
6.1
49.4
4
1.02
25*2/1
1315
6.1
47.4
4
1.02
24*2/1
1315
6.1
43.5
4
1.04
22*2/1
1315
4.96
44.7
4
1.059
23*2/1
1440
10.52 9.64
4.96 4.96
44.7 44.7
4 4
1.118 1.220
23*2/1 23*2/1
1440 1440
8.12
4.79
35.2*
3
1.166
15*2/1
1522
4.79
4.79
26.1
3
1.366
8*3/1
1522
4.79
4.79
18.0
3
1.589
6*3/2
1313
4.79
4.79
34.5
3
1.237
10*3/1
1522
8.10
4.79
30.0*
4
1.211
13*2/1
1522
Poly (4,4'-methylenedicyclohexylene azelamide) trans-, trans (362.56) Ortho 9.4 Poly(4,4 '-methylenedicyclohexylene dodecanediamide) trans-, transI. Ortho C2v-5 9.30 (404.64) Ortho 9.4 II. Mono 9.50 Poly(4,4 '-methylenedicyclohexylene pimelamide) trans-, transit Ortho 9.4 (334.50) II. Mono 9.57 Poly(4,4 '-methylenedicyclohexylene sebacamide) trans-, trans(376.58) Ortho 9.4 Poly(4,4 '-methylenedicyclohexylene suberamide) trans-, trans(348.53) Ortho 9.4 Poly(4,4'-methylenedicyclohexylene tetradecanediamide) trans-, trans(432.60) Ortho 9.4 Poly(4,4 '-methylenedicyclohexylene tridecanediamide) trans-, trans(418.66) Ortho 9.4 Poly(4,4 '-methylenedicyclohexylene undecandediamide) trans-, trans(390.61) Ortho 9.4 Poly(4,4 '-methylenediphenylene dodecanediamide) 1.(392.54) Ortho 11.10 II. Ortho III. Ortho Poly(methylene dodecanediamide) [1.12] (240.35) Mono C2h-6 Poly(methylene glutaramide) [1.5] (142.16) Rho D3-5 Poly(methylene malonamide) [1.3] (114.10) Hex Poly(methylene pimelamide) [1.7] (170.21) Rho D3-5 Poly(methylene sebacamide) [1.10] (212.29) Mono C2h-6
6.84
4.79
20.2*
6.1
7 = 90
7 = 96.6
7 = 99.6
7
= 90
7 = 90
290 256/1443
259/1524
260/4024
266/1524 268/1537
References page VI-159
TABLE 6. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(methylene suberamide) [1.8] (184.24) Mono C2h-6 Poly(nonamethylene azelamide) [9.9] (310.48)
y Phex Poly(nonamethylene malonamide) [9.3] (226.32) Ortho Poly(octamethylene azelamide) [8.9] Y Phex (296.46) Poly(octamethylene malonamide) [8.3] (212.29) Mono Poly(octamethylene suberamide) [8.8] (282.43) Tri Poly(octamethylene succinamide) [8.4] (226.32) Tri Poly(octamethylene-L-tartaramide) - , di-O-methyl(286.37) Tri Poly(octamethylene terephthalamide) [8.T] (274.36) Poly(pentamethylene azelamide) [5.9] (254.37) Poly(pentamethylene glutaramide) [5.5] (198.26) Mono C2-3 Poly(pentamethylene malonamide) [5.3] (170.21) Ortho Poly(pentamethylene pimelamide) [5.7] y Mono Cs-2 (226.32) Poly(pentamethylene terephthalamide) [5.T] (232.28) - , 2-methyl-(diamine) (246.31) Ortho Poly(3,8-phenanthridinonediyl terephthalamide) (355.35) Mono Poly(m-phenylene adipamide) (218.26) Poly(p-phenylene dodecanediamide) (302.42) Poly(m-phenylene isophthalamide) (238.25) Ortho Tri Cl-I Tri Cl-I Ortho - , hexamethylphosphorictriamide complex (596.66) Mono (2 HMPT/monomer) Poly(/?-phenylene phthalamide) (238.25) Ortho D2h-14 Poly(p-phenylene pimelamide) (232.28) Poly(m-phenylene sebacamide) (274.36) Poly(/7-phenylene sebacamide) (274.36)
a
8.08
b
4.79
c
25.2^
Angles
z
Crystal.
= 90
4
1.255
7
24.0
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
276/1524
11*2/1
1522
177 189/2 165/339
20*1/1
110
1 8.32
4.71
32.70
4
65 1.173
2
8.50
4.71
30.70
/5=101.7
4
14*2/1 206/244
1.172
1
233/1524
1523 65
13*2/1
216/291 225/244
1523 65
4.9
5.4
17.3
51,77,62
1
1.20
254
14*1/1
1626
5.00
6.82
15.7
57,90,111
1
1.175
208
14*1/1
1629
17.9
335
16*1/1
828
19.5
179/291
16*1/1
2
8.30
4.79
13.8
8.47
4.62
22.40
4.83
9.35
16.62
7
7
= 90
= 58.9
2
1.200
198/291 247/1625
12*1/1
1624
4
1.290
195/402 248/1524
10*2/1
1523
2
1.169
228 183/291
14*1/1
1210
354 353/829
13*1/1
828
1.460
13*2/1
1529
1.50
16*1/1
1063
11*1/1
828
19*1/1
828
10*1/1 10*1/1 10*1/1 10*2/1
735 856 878 1062
14.1
4.61
36.7
26.5
8.1
6.5
17.2
16 7
= 60
2
11.8
344 296/402
21.2 6.7 5.27 5.36 5.1
4.71 5.25 5.36 5
11.0 11.3 11.3 23.2
112,111,88 113,113,88
1 1 1 2
1.14 1.470 1.443 1.34
9.43
16.94
11.3
/3-123.4
2
1.315
5.5
8.1
4
1.56
22.8
375/735 390/748 1.33
957
10*1/1
396
14.7
372
14*1/1
828
14.9
258
17*1/1
828
18.5
334
18*1/1
828
TABLE 6. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(m-phenylene suberamide) (246.31) Poly(p-phenylene suberamide) (246.31) Poly(m-phenylene terephthalamide) (238.25) - , 4-methyl-(diamine) (252.27) Mono Poly(/?-phenylene terephthalamide) 1.(238.25) Port Cs-I Mono Mono C2h-5 Ortho Mono Port Cs-2 Ortho II.
a
b
c
Angles
z
Crystal.
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
13.0
302
15*1/1
828
16.3
374
16*1/1
828
11*2/1
1398
12*1/1 12*1/1 12*1/1 12*1/1 12*1/1 12*1/1 12*1/1
761 1061 902 1525 1527 1620 1638 1526 958 1526
500/748 8.57
7.54
22.11
/3=116.3
4
1.308
7.87 7.728 7.80 7.78 7.79 7.88 7.60
5.18 5.184 5.19 5.28 5.18 5.22 5.04 4.8 5.1 4.8
12.9 12.81 12.9 12.9 12.89 12.9 12.78 12.7 12.9 12.7
7 = 90 7 = 90.04 7 = 90
2 2 2 2 2 2 2
1.504 1.542 1.515 1.493 1.522 1.491 1.616
2
1.50
8.0
7 = 92.2
500/748 600/735
a = 88 12*1/1
a = 88
single crystals & spherulites 11.5 - , 2,2'-difluoro(274.23) Port 8.6 5.0 Poly(/?-phenylene 2,5-thiophenediamide) (272.46) Mono 4.29 5.09 Poly(piperazine adipamide) (196.25) Poly( 1,4-piperazine 1,3-cyclobutylenedicarboximide) - , 2,4-diphenyl-(diacid) trans(346.43) Ortho 8.74 5.93 Poly( 1,4-piperazine 4-octenediamide) trans(222.29) Mono C2h-5 4.54 10.00 Poly(piperazine sebacamide) (252.36) Poly(2,5-pyrimidine terephthalamide) (240.22) Ortho 7.3 5.1 Poly(4,4 '-sulfonyldiphenylene terephthalamide) (378.40) Poly(terephthaloyldihydrazo-di(p-aminobenzoyl) terephthalamide) (562.54) Port 8.5 4.9 Poly(tetramethylene adipamide) [4.6] (198.26) Tri Cl-I 4.95 5.47 Mono 9.6 8.26 Tri 4.9 5.5 Poly(tetramethylene Y (240.35) Poly(tetramethylene 156.18* Poly(tetramethylene trans(224.30) Poly(tetramethylene (170.21)
1297
13.0 25.2
7 = 98
1.63
12*1/1
1528
2
1.489
11*2/1
1532
10*1/1
386
9*1/1
934
12*1/1
873
9.2
355
9.22
13.50
/?=110.2
1
1.204
2
1.283
12.8
2
4.62
Poly(tetramethylene-L-tartaramide) - , di-O-methyl(230.26) Tri
16* 12*1/1
15.45 29.69 14.66 14.7 14.8
20.40
1531 1203
48,78,64 7=115 46,78,64
2
1.51
1 4 1
1.245 1.246 1.29
/?= 102.5
4
295/291 308/51 350 41.6 319/1518
28*1/1
760
12*1/1 12*1/1 12*1/1
1516 1517 1655
223/339 253/402 1.303
17.0 succinamide) [4.4] Tri
26.0/81
1.67
2
8.65
252/657 180/81
azelamide) [4.9] Phex malonamide) [4.3] Mono 4-octenediamide)
2
65
277/1524
9*2/1
1523
294
14*1/1
657
4.9
5.5
12.3
49,77,62
1
1.29
d 287/402
10*1/1
1626
5.00
7.06
10.80
59,90,110
1
1.270
266
10*1/1
1629
References page VI-159
Next Page
TABLE 6. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(tridecamethylene tridecanediamide) [13.13] y Mono (422.70) Mono Poly(m-xylylene adipamide) (246.31) Mono Tri Ci-I Poly(/7-xylylene sebacamide) (302.42) Tri
a b
a
b
c
9.22 4.88
4.94 4.73
34.47 34.0
5.10 12.01
4.70 4.83
15.2 29.8
5.74
4.87
20.6
Angles
z
Crystal.
Amorph."
/3=121.1 7=121
2 1
1.044 1.043
1.01
' = 69.6 75,26,65
1 2
76,55,65
1
7
Melting point ( 0 C) a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
> 183 97.2 172/1521
28*1/1 28*1/1
1519 1520
1.198 1.250
246/326 244/544
13*1/1 13*2/1
84 459
1.168
300/290 281/385 291/454 268/291
18*1/1
204
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 7.
POLY(ESTERS) ( - O - X - O - C O - Y - C O - or - O - X - C O - ) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
Poly(4,4 '-bicyclohexylene sebacate) - , trans-, trans(364.53) Mono 11.16 smectic Mono 11.98 Poly(4,4'-bicyclohexylene undecanedioate) - , trans-, trans(378.55) Mono 12.4 smectic Mono 12.3 Poly(4,4 '-biphenylene 4,4'-biphenylenedicarboxylate) (392.11) Ortho 7.83 Poly(4,4 '-biphenylene terephthalate) (316.31) Ortho 7.20 Poly(3,4 '-carbonyldiphenylene terephthalate) (344.32) Ortho C2v-17 12.51 Poly(l,3-cyclobutylene carbonate) - , 2,2,4,4-tetramethyltrans(170.21) Tri 9.25 cisOrtho 9.16 Poly(l,4-cyclohexylene adipate) trans(226.27) PoIy(1,4-cyclohexylenedimethylene adipate) transI. Mono C2h-5 6.938 (254.33) cis-
b
Amorph.a
Melting point ( 0 C) 0
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
c
Angles
z
Crystal.
5.27 5.48
19.48 19.76
/3 = 49.0 /3 = 52.5
2 2
1.400 1.176
20*1/1 20*1/1
1636 1636
5.21 5.55
23.0 20.6
/3 = 43.5 /3 = 51.4
2 2
1.229 1.144
21*1/1 21*1/1
1636 1636
5.50
20.66
2
1.464
20*1/1
1622
16*
1622
16*4/1
1562
5.23 7.561
67.66
8.28
(6.9)
8.22
12.9
16
7
= 96.5 4
1.4292
1.08
360
6*1/1
364
1.164
253
6*2/1
364
225/762
12*1/1
763
124/547
14*1/1
1262
12*1/1
1193
13.5
9.761
15.97
/3 = 41.4
2
1.181
55/547 PoIy(1,4-cyclohexylenedimethylene succinate) trans(226.27) Mono C2h-5 cis-
6.486
9.482
13.51
/3 = 45.9
2
1.259
147/547 62/547
Poly(1,4-cyclohexylenedimethylene terephthalate) trans(274.32) Tri Tri Ci-I cisTri
6.37 6.46
6.63 6.65
14.2 14.2
89,47,114 89,47,115
1 1
1.266 1.260
318/547
14*1/1 14*1/1
199 1077
6.02
6.01
13.7
89,53,112
1
1.319
256/547
14*1/1
199
Previous Page
TABLE 6. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(tridecamethylene tridecanediamide) [13.13] y Mono (422.70) Mono Poly(m-xylylene adipamide) (246.31) Mono Tri Ci-I Poly(/7-xylylene sebacamide) (302.42) Tri
a b
a
b
c
9.22 4.88
4.94 4.73
34.47 34.0
5.10 12.01
4.70 4.83
15.2 29.8
5.74
4.87
20.6
Angles
z
Crystal.
Amorph."
/3=121.1 7=121
2 1
1.044 1.043
1.01
' = 69.6 75,26,65
1 2
76,55,65
1
7
Melting point ( 0 C) a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
> 183 97.2 172/1521
28*1/1 28*1/1
1519 1520
1.198 1.250
246/326 244/544
13*1/1 13*2/1
84 459
1.168
300/290 281/385 291/454 268/291
18*1/1
204
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 7.
POLY(ESTERS) ( - O - X - O - C O - Y - C O - or - O - X - C O - ) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
Poly(4,4 '-bicyclohexylene sebacate) - , trans-, trans(364.53) Mono 11.16 smectic Mono 11.98 Poly(4,4'-bicyclohexylene undecanedioate) - , trans-, trans(378.55) Mono 12.4 smectic Mono 12.3 Poly(4,4 '-biphenylene 4,4'-biphenylenedicarboxylate) (392.11) Ortho 7.83 Poly(4,4 '-biphenylene terephthalate) (316.31) Ortho 7.20 Poly(3,4 '-carbonyldiphenylene terephthalate) (344.32) Ortho C2v-17 12.51 Poly(l,3-cyclobutylene carbonate) - , 2,2,4,4-tetramethyltrans(170.21) Tri 9.25 cisOrtho 9.16 Poly(l,4-cyclohexylene adipate) trans(226.27) PoIy(1,4-cyclohexylenedimethylene adipate) transI. Mono C2h-5 6.938 (254.33) cis-
b
Amorph.a
Melting point ( 0 C) 0
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
c
Angles
z
Crystal.
5.27 5.48
19.48 19.76
/3 = 49.0 /3 = 52.5
2 2
1.400 1.176
20*1/1 20*1/1
1636 1636
5.21 5.55
23.0 20.6
/3 = 43.5 /3 = 51.4
2 2
1.229 1.144
21*1/1 21*1/1
1636 1636
5.50
20.66
2
1.464
20*1/1
1622
16*
1622
16*4/1
1562
5.23 7.561
67.66
8.28
(6.9)
8.22
12.9
16
7
= 96.5 4
1.4292
1.08
360
6*1/1
364
1.164
253
6*2/1
364
225/762
12*1/1
763
124/547
14*1/1
1262
12*1/1
1193
13.5
9.761
15.97
/3 = 41.4
2
1.181
55/547 PoIy(1,4-cyclohexylenedimethylene succinate) trans(226.27) Mono C2h-5 cis-
6.486
9.482
13.51
/3 = 45.9
2
1.259
147/547 62/547
Poly(1,4-cyclohexylenedimethylene terephthalate) trans(274.32) Tri Tri Ci-I cisTri
6.37 6.46
6.63 6.65
14.2 14.2
89,47,114 89,47,115
1 1
1.266 1.260
318/547
14*1/1 14*1/1
199 1077
6.02
6.01
13.7
89,53,112
1
1.319
256/547
14*1/1
199
TABLE 7. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(l,4-cyclohexylene sebacate) trans(282.38) Poly(decamethylene adipate) [10.6] (284.40) Mono
a
b
c
Angles
z
Crystal.
Amorph.a
18.5
Melting point (°C)a
Heat of fusion kj/mola
151/762
Chain conform. (n*p/q) Refs.
16*1/1
763
5.0 5.11
7.4 7.43
22.1
2
1.16
80/81 74 77/300
42.7/81 18*1/1 44 45.6/405
106 1079
5.0
7.4
51.7
4
1.13
69/137
41.9/81 21*2/1 50.7/405
106
5.0
7.4
41.6
4
1.17
58/764
17*2/1
106
4.94
7.65
5.47
7.38
4.74
4.05
5.28 6.75
7.00 7.05
17.0 17.0
5.0
7.4
5.0 5.07
Poly(decamethylene succinate) [10.4] (256.34) Mono Poly(decamethylene terephthalate) [10.T] (304.39) Tri
Poly(decamethylene azelate) [10.9] (326.48) Mono Poly(decamethylene (270.37) Poly(decamethylene (282.38) Poly(decamethylene (452.72) Poly(decamethylene (310.44) Poly(decamethylene (228.29)
glutarate) [10.5] Mono 3-hexenedioate) octadecanedioate) [10.18] Mono 4-octenedioate)
oxalate) [10.2] Mono Mono Poly(decamethylene sebacate) [10.10] (340.50) Mono
Poly(decamethylene suberate) [10.8] (312.45) Mono
66 37.5
/9=115
2
1.096
36
93
7 ' = 109
53
18* 30*1/1
44
521
20*
1079
2 2
1.207 1.206
79/305
14*1/1 14*1/1
106 1171
27.1
2
1.13
80/137 77/767 73/291
50.2/81 22*1/1 56.5/405 30.2/301 51.5/160
106
7.4 7.50
24.6
2
1.14
75/764 77
20*1/1
106 1079
5.0
7.4
19.6
16*1/1
106
4.62
6.30
20.10
46.1/81 18*1/1 44.0/405
68
30*2/1
1352
20*
1079
Poly(decamethylene 4,4 '-terephthaloyldioxydibenzoate) (544.60) Ortho 53.7 39.9 Poly(dodecamethylene adipate) [12.6] 5.04 7.42 Poly(dodecamethylene NJV' -dodecamethylenediterephthalamate) (662.91) Tri 5.01 6.93
/3=129
107,96,113
2
1.17
68/290 73/764
1
1.022
138/81 129/99 131/453
57.7
46.77
57
1.287
130,55,130
1
1.213
78
52
197/782
140/782 40*1/1
874 1195
77
46
20*
1079
57
55
22*
1079
80
68
22*
1079
52/27 54/291 47/265 50/46 55/543 65/571
15.9/265 10*1/1 21.0/571 10*1/1 10*1/1 10*1/1 21.7
1.124 Poly(dodecamethylene 3-hexenedioate) (310.44) Poly(dodecamethylene 4-octenedioate) (338.49) Poly(dodecamethylene suberate) [12.8] (340.50) Poly(ethylene adipate) [2.6] (172.18) Mono Mono C2h-5 Mono Mono
1079
4.94
7.64
4.74
4.07
5.03
7.52
25.7 5.47 7.26 5.47
30.7 7.23 5.40 7.24
Poly(ethylene iV-iV'-azelaoyldi(p-aminobenzoate)) (452.52) Polyethylene azelate) [2.9] (214.26) Ortho 7.45 Mono 25.7 Ortho 5.0
7=109
11.71 11.72 10.85 11.55
/?= 103.8 /5=113.5 a = 67.7 0=113.5
40 2 2 2
1.275 1.345 1.453 1.363 1.302
1.204 1.219
26.3 4.97 30.7 7.4
31.5 31.2 31.2
105 203 211 523 1074 1195 1386
(3= 103.8
4 80 4
1.220 1.190 1.23 1.233
46/543
1.119
47
13*2/1 13*2/1 13*2/1 43.7
108 105 109 1074
References page VI-159
TABLE 7. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Poly(ethylene 4,4'-dibenzoate) (268.27) Tri
Space group
Ci-I
a
5.73
b
3.77
c
14.73
Angles
z
Crystal.
90,90,79
1
1.426
Amorph.°
Melting point (°C)a
Heat of Chain fusion conform. kj/mol° (n*p/q) Refs.
346/291 333/1552
Poly(ethylene A^N'-dodecamethylenediterephthalamate) (522.64)
14*1/1
1551
244
102.6
30*
782 1195
288 240/290 240/291
26.2
18*1/1
1078
1.210 Poly(ethylene 4,4 /-(ethylenedioxy)-dibenzoate) a Mono (328.32)
7.83
10.33
18.68
P Ortho 7.28 Poly(ethylene 2,5-furandicarboxylate) (182.13) Tri 5.75 Poly(ethylene N,W-hexadecanedioyldi(p-aminobenzoate)) (550.70) Polyethylene isophthalate) [2.1] 1.(192.17) Tri Ci-I 5.20
5.65
18.64
5.35
20.1
/3 = 83.1
134,90,112
4
1.454
2
1.422
18*1/1
2
1.575
9*2/1
34.6 7.08
14.8 14.8
1386 109,136,96
2
2.034
Tri Poly(ethylene 2,6-naphthalate) (242.23) Tri Polyethylene oxalate) [2.2] (116.07) Ortho Poly(ethylene p-oxybenzoate) a Ortho (164.16) Ortho
116,136,84
2
1.478
9*2/1
81,114,100 ' = 96
1 1
1.406 1.400
260/291 12*1/1 337/1342 25/1342 12*1/1
920 1555
11.93
4
1.613
172/678
6*2/1
675
15.68 15.60
4 4
1.392 1.403
203/327 224/345
9*2/1 9*2/1
494 901
Ci-I
5.41
6.35
21.0 21.2
Ci-I
6.51 3.825
5.75 5.72
13.2 13.2
6.44
6.22
10.52 10.49
4.75 4.75
D2h-14 D2-4 D2-4
9*2/1 398 111 398 572
1.358 II.
7
1.346
143 240
220/354 215/1174 (3 Mono C2h-5 Polyethylene pimelate) [2.7] (186.21) Poly(ethylene 1,4-piperazinedicarboxylate) (200.19) Polyethylene sebacate) [2.10] 1.(228.29) Mono Mono C2h-5 Mono Mono Mono
11.2 8.19
14.7 11.07
18.99 19.05
/3=114.8
16 8
4.278
9*2/1 9*2/1 1.162
10.4 15 7.31 7.30 7.4 30.7
16.9 16.76 16.65 16.9 16.67
(3 = 65 /3=115.5 /3=115.0 /3 = 65 /3=103.8
Ci-I
5.39
7.60
16.76
C2h-5
5.51 5.0 5.50
7.25 7.4 7.25
14.28 14.1 14.10
5.0 9.05 7.60
7.4 11.09 10.75
8.32 8.32 8.33 9.50
4.56 5.54 4.52 4.48 4.48 4.50
5.94 4.14 5.98 5.85 5.80 5.90
10.75 10.86 10.77 10.75 10.71 10.76
29/764
29.8
245
5.5 5.58 5.52 5.52 25.7
Poly(ethylene succinate) [2.4] a Mono (144.13) Mono Ortho D2h-10 P Polyethylene terephthalate) [2.T] (192.17) Tri Ci-I Tri Tri Tri Tri Tri
356
1.395 1.391
4 2 2 2 40
1.20 1.229 1.247 1.21 1.187
105,112,72
2
1.264
/3=114.5
2 2 2
1.281 1.27 1.300 1.249
1.086 II. Tri Polyethylene suberate) [2.8] (200.23) Mono Mono Mono
742
/3=114.5
/3=102.8
2 4 4
1.55 1.176 1.407
98,118,112 107,112,92 101,118,111 100,118,111 100,118,111 100,119,111
1 1 1 1 1 1
1.457 1.472 1.477 1.515 1.530 1.503
72/265 79/46 73/539 76/137 78/302 83/571
13.8/265 35/405 32.0/571 29.1/137 25.6/158
11*
1.140
63 1.147
386
14*1/1 14*1/1 14*1/1 14*1/1 14*1/1
100 521 523 109 105 1195 1072
26.5/571 12*1/1 12*1/1 12*1/1 26.2
203 108 523 1074 1195
8*1/1 8*1/1 8*1/1 8*1/1
108 105 675 1539
10*1/1 10*1/1 10*1/1 10*1/1 10*1/1 10*1/1
27 195 400 853 1061 1075
108/290 103/302
1.335 1.337
265 284/264 267/265 270/374 265/290 310
1074
10*1/1
14*1/1 75/571 55/27
494 919
24.1/87 22.6/157 9:2/265 25/405 16.7/155 32/1071
TABLE 7. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Tri Tri Tri
a 4.44 4.52 4.53 4.01 4.62
b 5.91 5.92 5.87 5.83 5.92
Tri Poly(glycolic acid), see Poly(2-hydroxyacetic acid) Poly(heptamethylene sebacate) [7.10] (298.42) Poly(heptamethylene terephthalate) [7.T] (262.31) Poly[heptamethylene (4,4;-terephthaloyldioxy)-4,4 '-dibenzoate] (502.52) Poly(hexadecamethylene adipate) [16.6] (368.56) 5.05 7.46 Poly(hexadecamethylene 3-hexenedioate) (366.54) 4.93 7.59 Poly(hexadecamethylene 4-octenedioate) trans(394.60) 4.87 4.03 Poly(hexadecamethylene suberate) [16.8] (396.61) Mono
c 10.67 10.70 10.73 10.75 10.68
Crystal.
100,117,112 100,118,111 100,119,111 y1 = 120 100,128,105
1 1 1 1 1
1.515 1.480 1.501 1.466 1.58
Amorph.0
15.0
280/960 245/472 278/724
26.9/960 10*1/1 27.8/472 10*1/1 23.3/887 10*1/1 10*1/1 10*1/1
98/453
49.2
7=109
7.38 7.40
37
10.08
7.32
16.83
10.98
11.47
19.62
P Mono 13.39 12.84 y Mono C2-2 9.70 9.20 Poly(hexamethylenedi(6-hydroxycaproamide) adipate) (454.61) Poly(hexamethylene Af-Af'-dodecamethylenediterephthalamate) (578.75) Tri 5.02 6.87
39.19 19.39
Poly(hexamethylene 4,4 '-dibenzoate) a Mono C2-2 (324.38)
z
Heat of fusion kj/molfl
25/301
6.47 5.00
Poly(hexamethylene adipate) [6.6] (228.29) Ortho
Angles
Melting point (°C)a
/3=115
39.27
1174
27*2/1
1561 1079
87
56
24*
1079
70 85/879
54 26* 54.5/879
1079
109 87
66.4 66
26*1/1 26*
879 1079
38.1 32/1079
14*1/1
1119
18*1/1
1556
18*2/1 18*1/1
1556 1556
26*
1105
1.221
1.096
56/290 58/1079 57/539 58/764 61/807
/3 = 89.7
6
1.308
1.22
214/291 200/1552 230/1566
/3 = 84.7 /3 = 83.0
16 4
1.284 1.254 142 1.252
13*1/1
24*
4
1
19*
63
0.823?
128,54,131
214/782
116/782 34*1/1
874 1195
253/782 265/781
92.9/782 28*1/1
874 1195
61
21
14*
1079
20
22
16*
1079
10*1/1
1171
521
1.167 Poly(hexamethylene A^Af'-hexamethylenediterephthalamate) (494.59) Tri Ci-I 5.07
6.87
31.78
127,53,132
1
1.314 1.236
Poly(hexamethylene 3-hexenedioate) (226.27) Poly(hexamethylene 4-octenedioate) (254.33) Poly(hexamethylene oxalate) [6.2] (172.18) Mono
6.75
6.85
11.95
/3=129
2
1.332
66/305 72/764
Poly(hexamethylene sebacate) [6.10] (284.40) Mono
5.52
7.40
22.15
/3=115
2
1.152
78 67/290
38/809 22/301
18*1/1
67 58/291 65/764
34
16*
160/81 161/405 154/99
34.8/81 14*1/1 33.5/405 14*1/1 35.3/159 14*1/1 14*1/1
Poly(hexamethylene suberate) [6.8] (256.34)
Poly(hexamethylene terephthalate) [6.T] (248.28) Tri Tri Ci-I a
Mono Mono
4.57 9.98
6.10 9.52
15.40 15.40
105,98,114 120,98,95
1 4
1.146 1.133
9.1 9.100
17.2 17.56
15.5 15.74
a =127.3 a= 127.8
6 6
1.28 1.245
1.225
1158 1159 1543 1555 1644
86
2
37.50
Chain conform. (n*p/q) Refs.
1079
68 814 1070 1184
References page VI-159
TABLE 7.
cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
c
Angles
z
Crystal.
104,161,108 103,118,109 129,98,96 105,114,109 104,116,106 129,98,96 124,130,88
1 1 1 2 1 2 2
1.25 1.285 1.277 1.279 1.227 1.277 1.30
4 4 2
1.678 1.700 1.69 1.707
Amorph.a
Melting point (°C)°
Heat of fusion kj/mol"
Chain conform. (n*p/q) Refs.
P I.
(at 135°C) II.
Tri Tri Tri Tri Tri Tri Tri
Ci-I Ci-I Ci-I
y (from soln.) Poly(2-hydroxyacetic acid) [glycolic acid] (58.04) Ortho D2-4 Ortho D2h-16
Poly(/7-hydroxybenzoic acid) 1.(120.11) Hex Ortho Ortho Ortho Ortho II. Ortho III. Ortho (high temp.) Ortho - , 3-n-decyl(260.38) Ortho -, 3-n-hexyl(204.27) Ortho -, 3-n-pentyl(190.24) Ortho -, 3-n-propylIa. Tet (162.19) Ib. Tet II. Ortho Poly(4,4/-hydroxybibenzoic acid) 1.(196.20) Ortho Ortho Ortho Ortho (at 28O0C) Ortho II. III. Ortho Ortho - , 3-bromo(275.10) Tri Poly(3-hydroxy-3-butenoic acid) (82.07) Mono Ortho Poly(3-hydroxybutyric acid) 1.(86.09) Ortho Ortho Ortho Ortho Ortho
D3-7 D2-4 D2-4
4.8 4.91 5.217 4.68 4.84 5.217 5.3
5.7 5.68 5.284 11.57 5.74 10.57 13.9
15.7 15.44 15.74 15.51 15.53 15.74 15.5
6.36 5.22
5.13 6.19
7.04 7.02 7
11.1 9.2 9.24 9.11
3.7 5.3 5.28 5.26
26.80
1.50
312 490 605 465 880 1065 1182 1340 1545 1065 1545 1065 1340 1545
230
1.422 1.490 1.462 1.501 1.48
4 4 4
1.54 1.32 1.308
vi ref 6*2/1 6*2/1 6*2/1 6*2/1 6*2/1 6*2/1 6*2/1 6*2/1
9.6
12.6
8
1.07
6*2/1
1646
19.80
9.6
12.6
8
1.13
6*2/1
1646
17.80
9.6
12.6
8
1.17
6*2/1
1646
16.95
16.95
12.36
16
1.213
6*2/1
1646
16.95 14.20
16.95 9.60
12.86 12.48
16 8
1.166 1.266
6*2/1 6*2/1
1646 1646
7.8 7.44 7.32 7.5 9.18 15.6 9.0 8.86
5.55 5.79 5.35 5.7 5.30 3.6 5.2 5.12
10.8 10.90 10.44 10.9 10.90
2 2 2 2 2
1.39 1.388 1.594 1.40 1.229
10*1/1 10*1/1 10*1/1 10*1/1 10*1/1
10.8 10.90
2 2
1.29 1.318
10*1/1 10*1/1
1546 1550 1554 1622 1550 1546 1546 1550
Ci-I
12.71
3.85
10.50
90,90,90
2
1.778
10*1/1
1639
5.50 5.43
9.06 8.94
7.78* 7.75
= 92
D2-3
4 4
1.441 1.484
115 115/190
5.76 5.76 5.71 5.73 5.73
13.20 13.20 13.06 13.14 13.15
5.96 5.96 5.89 5.93 5.96
4 4 4 4 4
1.262 1.262 1.302 1.281 1.273
176/422 168/570 170/900
7
>320/881 >350/882
294
585
1.177 II. Poly(10-hydroxycapric acid) (170.25) Ortho Poly(6-hydroxycaproic acid) (114.14) Ortho Ortho
11/1121 3*2/1 12/464 3*2/1 3*2/1
36 4 4 4 4
D2-4
17.8 5.70 5.70 5.67 5.7
223/305 233
1070 1160 1184 1544 1544 1184 1070
18.4 12.49 12.56 12.55 12.6 12.6 12.6 12.4 12.50
D2-4 D2-4
17.8 7.52 7.62 7.47 7.5
174
14*1/1 14*1/1 14*1/1 14*1/1 14*1/1 14*1/1 14*1/1
4*2/1 4*2/1
217 862
13/1216 4*2/1 4*2/1 4*2/1 4*2/1 203/1535 4*2/1 197
419 771 698 1382 1534 1216 771
4.70
D2-4 D2-4
7.45
4.96
27.1
4
1.129
7.496 7.47
4.974 4.98
17.30 17.05
4 4
1.175 1.195
80/309 1.09/712
55/560 64/623
11*2/1 15.4/623 7*2/1 7*2/1
108 559 561
TABLE 7. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
Ortho
D2-4
7.48
4.98
c
Angles
17.26
z
Crystal.
4
1.179
Amorph."
Melting point (°C)a
Heat of fusion kj/mola
69/1368
Chain conform. (n*p/q) Refs. 7*2/1
16.4 Poly(5-hydroxy-2-( 1,3-dioxane)-caprylic acid) trans(228.29) Ortho 7.487 cisMono 7.842 Poly(4-hydroxymethylene-2-(l,3-dioxolane)-caprylic acid) cis-/trans(228.29) Ortho 7.367 Poly(2,6-hydroxynaphthoic acid) I. Mono 7.8 (170.17) Ortho C2v-5 7.66 (at 3700C) Ortho C2v-21 9.28 II. 11.6 -, 5-bromo(249.06) Mono C2h-5 13.02 Poly(2-hydroxypropionic acid) [lactic acid] a Port 10.7 (72.06) Ortho 10.34 Ortho
10.37
5.117
13.56
5.476
12.34
5.186
13.52
7 = 96.45
2
1.459
1.093
150/797
13*1/1
796
2
1.440
1.093
120/797
13*1/1
796
2
1.468
1.093
53/797
13*1/1
796
12.3 5.98 5.64 3.85
17.4 17.12 17.04
/? = 97
8 4 4
1.36 1.441 1.267
8*2/1 8*2/1 8*2/1
1547 1548 1548 1547
4.06
17.15
/?= 101
4
1.859
8*2/1
1639
6.45 5.97
27.8
20
1.247
3*10/3
5.98
28.0
3*3/1
663 1064 1175 1557 1367 1557
3*3/1
1557
9.1/1121 4*2/1 8.6/623 4*1/1 4*1/1 4*1/1
314 1195 314 689 840
215 20
1.290 1.378
1.248
6.69 3*10/3 184
P D,L-stereocomplex 9.16
-, 2-ethyl-2-methylisotactic P (114.14) Port -, D,L-2-ethyl-2-methylOrtho
9.16
8.70
109,109,110
6
1.274
7.02 1.360 7.76 7.73
-, 3-chloromethylisotactic (120.54) - , 3-dichloromethylisotactic (154.98) syndiotactic (319.96) - 2,2-diethyla Ortho (128.17) P -, 2,2-dimethyl-[pivalolactone] a (100.12) Mono Mono Mono P y Ortho Ortho - , 3-ethyl-[3-hydroxyvaleric acid] isotactic (100.12) Ortho (racemic) Ortho
14.6
8.8
Tri Cl-I Poly(3-hydroxypropionic acid) [propiolactone] a (72.06) P
4.50 4.48
4.82 4.76 4.77
7'=90
2 2
1.440 1.449
146 275/1195
7.89 5.77 11.55
10.2
122/317 84/623
120
6.19
8.3
4*1/1
4.5
C2h-5 C2h-5 C2h-5
9.02 9.05 9.03
11.64 11.58 11.62
D2-4 D2-4
8.23 8.23
11.27 11.28
6.02 6.03 6.01* 4.76 6.04 6.02
D2-4
9.52 9.32
10.08 10.02
5.56 5.56
C2-1
9.10
7.44
4.75 4.75
34.2
7.1
900
8*1/1
1090 900 1090
258/1088 21/1088 4*1/1
1087
4*1/1
1087
240/551 14.9/551 4*2/1 268/1085 4*2/1 269/1411 4*2/1 234 4*1/1 4*2/1 4*2/1
321 683 23 816 1092 1390
110/900 108 130/1538
4*2/1 4*2/1
1183 810
120 164/1211
4*1/1 4*1/1
1089 1536
4*2/1
1536
146
2
1.12
4.63
11.8
1420 1368
7 = 121.5 7=121.5 7=121.5
/3 = 90
4 4 4
1.234 1.234 1.237
4 4
1.187 1.190
4 4
1.246 1.281
2
1.179
16
1.06
1.10/551
References page VI-159
TABLE 7. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
- , 3-isopropylisotactic (114.14)
Ortho
Space group
a
be
10.63
18.13
Angles
6.49
- , 2-methylopt. active racemic (86.09) - , 3-methyl-, see Poly(3-hydroxybutyric acid) - , 2-methyl-2-propylisotactic (128.17) Ortho D2-3 10.6 11.1 6.7 orD2-4 - , D,L-2-methyl-2-propyl1.(128.17) 5.9 Ortho 17.9 13.5 12.0 II. Ortho 7.48 10.1 4.74 - , 3-trichloromethylisotactic Mono 11.79 10.99 11.24 (189.42) 11.27 Poly(3-hydroxyvaleric acid), see Poly(3-hydroxypropionic acid), 3-ethylPoly(4,4 '-isopropylidenediphenylene adipate) - , 3,3', 5,5'-tetrachloro(476.18) Poly(4,4 '-isopropylidenediphenylene carbonate) (254.28) Ortho D2-2 11.9 10.1 21.5 Mono 12.3 10.1 20.8 Ortho 12.1 10.1 22.0
Poly (lactic acid), see Poly(2-hydroxypropionic acid) Poly(4,4 '-methylenediphenylene carbonate) (226.23) Ortho C2v-9 5.0
10.5
Polyfnonamethylene Af,iV/-adipolydi(/?-aminobenzoate)] (508.62) Polyfnonamethylene AUV;-azelaoyldi(/?-aminobenzoate)] (550.70) Poly(nonamethylene azelate) [9.9] (312.45) Poly[nonamethylene (494.59) Polytnonamethylene (648.88) Poly[nonamethylene (564.72) Poly(nonamethylene (290.36)
22.0
z
Crystal.
8
1.212
4
7 = 108.0
Amorph.a
Melting point (°C)a
89 79/900 5.2 4.8
152
14.6
1.08
16 2
1.174 1.19
8
1.817
8 8 8
4
1.307 1.314 1.256 1.30
1.301
1.20 1.20
1.240
Chain conform. (n*p/q) Refs.
4*2/1
95 100
698
1341 1341
4*2/1
1536 1651
110 97/959
4*2/1 8*2/1 4*1/1
785 1086 785
275/1199
4*2/1
1091 1090
283
7 = 84
Heat of fusion kj/mola
33.9
17*
267/57 27.9/566 12*2/1 230 36.8/299 12*2/1 263/370 12*2/1 317/930 230/438 260/736 295/1121 302/1233 335/1066
240 300/438 278/736
12*2/1
713 5 435 1549 283
435
31.0
1386
33.3
1386 65/405
43.1/159 20* 49.0/405
A^W-glutaryldKj^-aininobenzoate)] 29.8
1386
41.0
1386
34.3
1386
AyV'-hexadecanedioyldi(/?-aminobenzoate)] iVyV'-sebacoyldi(p-aminobenzoate)] terephthalate) [9.T]
Poly[nonamethylene TVyV'-tetradecanedioyldi^-aminobenzoate)] (620.83) Poly[nonamethylene A^W-tridecanedioyldi^-aminobenzoate)] (606.80) Poly(octamethylene adipate) [8.6] (256.34) 5.10 7.42 Poly(octamethylene 3-hexenedioate) (254.33)
17.6
85/99 90/453
17*1/1
1174
38.6
1386
37.5
1386 67
41
16*
1079
66
36
16*
1079
TABLE 7. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(octamethylene 4-octenedioate) (282.38) Poly(octamethylene suberate) [8.8] (284.40) Poly(octamethylene terephthalate) [8.T] (276.33) Poly(oxydiethylene sebacate) (272.34) Tet
a
b
4.81
4.07
5.05
7.44
c
Angles
z
Crystal.
Amorph."
7=109
18.1 17.6
17.6
38.0
32
1.229
Poly(oxydiethylene terephthalate) (236.22) Polytpentamethylene (592.78) Poly(pentamethylene (228.29) Poly(pentamethylene a (234.25)
Melting point (0C)"
Heat of fusion kj/molfl
Chain conform. (n*p/q) Refs.
39
34
18*
1079
70
42
18*
1079
132/99
16*1/1
1174
44/325 47/767 46/765
17*2/1
105
100 44.4 139/1654
13*
1653
N,W-hexadecanedioyldi(p-aminobenzoate)] 35.6 pimelate) [5.7] Mono terephthalate) [5.T] Tri Ci-I Tri Tri
1386
6.14
7.37
17.16
/3 = 54.6
2
1.198
43/1120
14*1/1
1119
6.21 4.69 4.68
4.56 5.79 5.77
12.50 24.66 24.42
89,114,116 112,94,105 114,87,106
1 2 2
1.354 1.318 1.341
116/291 134/99 140/815 142/807
13*1/1 13*2/1 13*2/1
814 1069 1160
p Tri 4.96 5.82 28.16 126,74,120 Polyfpentamethylene Af,Af'-tridecanedioyldi(/?-aminobenzoate)] (550.70) 32.0 Poly(/?-phenylene adipate) (220.22) Tri 14.37 13.55 10.24 125,44,111 Poly(p-phenylene 4,4 '-dibenzoxy terephthalate) (480.43) Mono 7.83 5.64 26.37 /? = 97.9 Poly(p-phenylene m-carboranedicarboxylate) (306.32) Ortho 11.4 7.7 18.0 Poly(p-phenylene isophthalate) 1.(240.22) Mono 6.97 6.92 24.32 a = 95 II. Ortho 5.58 3.92 24.32 Poly(m-phenylene terephthalate) (240.22) Ortho 5.61 3.96 23.90 PolyO-phenylene terephthalate) (240.22) Mono 7.98 5.33 12.64 /9 = 98.98 Mono 7.85 5.48 25.38 /? = 98.6 (at475°C) Ortho 9.25 5.40 12.56 - , 2,5-di-/i-hexadecyl-(diacid) (721.08) Mono 26.2 7.3 12.6 a =130 Ortho 25.6 7.2 12.734* - , phenyl- (diol) (316.31) Mono C2-2 12.77 10.08 12.58 7 = 90 Mono 28.0 4.89 12.48 7=114.8 - , chloro- (diol) (274.66) Ortho 7.88 5.27 12.62 Poly [(phenyl-/?-phenylene terephthalate)-co-( 1 -phenylethyl-p-phenylene terephthalate)]
2
1.358
13*2/1
1069
(330.34) Ortho C2-2 as spun Mono annealed Mono Poly(p-phenylene thioterephthalate)
12.77 13.04 13.31
10.18 9.514 9.732
12.58 12.24 12.15
- , phenyl- (dithio acid) (348.43) Mono 29.9 4.81 12.57 Poly(pivalolactone, see Poly(3-hydroxypropionic acid), 2,2-dimethylPoly(propiolactone), see Poly(3-hydroxypropionic acid) Poly(terephthalic anhydride) (148.12) Ortho 6.04 3.97 Mono 6.02 3.76 13.49
1386 4
1.283
2
1.383
4
1.29
4 2
1.365 1.500
2
1.502
2 4 2
1.502 1.478 1.272
2 2
1.30 1.02
4 4
1.297 1.354
2
7 = 80.87 7 = 81.01
20.8
1.172
12*1/1
869
24*1/1
1621
280
832
425
11*2/1 11*2/1
1553 " 1553
11*2/1
1553
12*1/1 12*2/1 12*1/1
1406 1621 1406
12*1/1 12*1/1
1641
12*1/1 12*1/1
1374 1558
1.740
12*1/1
1429
4 4 4
1.342 1.463 1.411
12*1/1 12*1/1 12*1/1
1389 1426 1426
7=110.7
4
1.368
12*1/1
1558
a = 90
2 2
1.611
7*2/1 7*2/1
1563 1645
600/1375
340/1375
410/1564 400/1565
References page VI-159
TABLE 7. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(tetradecamethylene adipate) [14.6] (340.50) Poly(tetradecamethylene 3-hexenedioate) (338.49) Poly(tetradecamethylene 4-octenedioate) (366.54) Poly(tetradecamethylene suberate) [14.8] (368.56) Poly(tetramethylene adipate) [4.6] a Mono (200.23)
a
b
c
Angles
z
Crystal.
Amorph.°
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
5.00
7.40
80
59
22*
1079
4.94
7.64
80
49
22*
1079
4.91
4.05
63
55
24*
1079
5.03
7.46
82
66
24*
1079
6.73
7.94
7 ' = 109
14.20
/3 = 45.5
2
1.229
48/325 54/539
12*1/1
1073
12*1/1
1073
60/766 45/696
P Ortho 5.062 7.325 Poly[tetramethylene MN'-azelaoyldi (p-aminobenzoate)] (480.56) Poly[tetramethylene Af,W-hexadecanedioyldi(/?-aminobenzoate)] (578.75) Poly(tetramethylene isophthalate) [4.1] (220.22)
14.67
2
1.222
26.6
1386
35.2
1386 1.309
1.268
26.0 Poly(tetramethylene sebacate) [4.10] (256.34)
Poly(tetramethylene succinate) [4.4] (172.18) Mono C2h-5 Mono
10.94 10.79 10.90 11.90
/?=124 /5=123.9
5.953 4.87 5.99 4.83 6.05 5.94 5.95 5.93
11.67 11.71 11.67 11.62 11.45 11.59 11.67 11.74
100,64,69 116,100,110 100,116,111 115,100,111 100,117,111 100,115,111 98,116,110 100,116,111
1 1 1 1 1 1 1 1
Tri 4.703 6.738 Tri Ci-I 4.95 5.67 Tri 4.7 5.8 Tri 4.73 5.83 Tri 4.73 5.75 Tri 4.73 5.88 Poly[tetramethylene (4,4/-terephthaloyldioxy)-4,4 '-dibenzoate] (460.44) Mono C2-2 8.42 5.79 Poly(4,4 '-thiodiphenylene carbonate) (244.27) Ortho C2v-9 5.6 8.7
13.12 12.95 13.0 12.90 13.11 13.06
55,58,56 102,122,100 102,121,105 102,119,105 104,121,101 103,120,104
1 1 1 1 1 1
1.395 1.394 1.392 1.406 1.440 1.403 1.36 1.404 1.08/111 1.355 1.283 1.37 1.332 1.330 1.320
24.83
/?=101.8
2
1.290
22.2
4
1.50
21.5
4
1.55
P Poly(tetramethylene terephthalate) [4.T] a Tri (220.22) Tri Ci-I Tri Tri Ci-I Tri Tri Ci-I Tri Tri
5.21 5.23
4.830 5.96 4.87 5.96 4.83 4.83 4.89 4.82
9.14 9.08
P
Poly(trimethylene adipate) [3.6] (186.21) Mono
5.0
Poly[trimethylene iV,W-adipolyldi(p-aminobenzoate)] (424.45) Poly [trimethylene N,N' -azelaoyldi(/?-aminobenzoate)] (466.53) Poly(trimethylene azelate) [3.9] (228.29) Mono 5.0
7.4
2 2
1.324 1.344
152.5 150
42.3
60//325 62/425 67/766
17/301 16* 2.08/425
34/696 114/766
11*2/1
10*1/1 10*1/1 10*1/1
1.28/824
234/807 31/405 232/99 32/111 221/453 245/1362
14*1/1 14*1/1 14*1/1 14*1/1 14*1/1 14*1/1 24*1/1
1559
220 240/540
12*2/1
435
38 45/300 46/609
11*2/1
107
1.256
1.35
689 1540 1541 1541 786 814 933 851 860 864 883 1158 1071 786 864 883 933 1160 1339
224
12*1/1 12*1/1 12*1/1 12*1/1 12*1/1 12*1/1 12*1/1 12*1/1
111 807
30.8
22.6
1386
26.4 7.4
27.7
4
1.48
50 60/609
14*2/1
107
TABLE 7. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(trimethylene dodecanediote) [3.12] (270.37) Mono Poly(trimethylene glutarate) [3.5] (172.18) Mono Poly[trimethylene (410.43) Poly[trimethylene (564.72) Poly[trimethylene (382.37) Poly(trimethylene (354.53)
a
b
c
5.0
7.4
5.0
7.4
Angles
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
z
Crystal.
35.8
4
1.36
61
17*2/1
107
15.4
2
1.00
39 53/609
10*1/1
107
A^AT'-glutaryldi^-aminobenzoate)] 21.3 MAf'-hexadecandioyldi(>-aminobenzoate)] 35.0
1386
18.5
1386
A^Af'-malonyldi^-aminobenzoate)] octadecanedioate) [3.18] Mono
Poly(trimethylene pimelate) [3.7] (200.23) Mono Poly(trimethylene sebacate) [3.10] (242.32) Mono Ptet Ortho D2-4
5.0
7.4
51.6
4
1.23
76 76/307
23*2/1
107
5.0
7.4
23.6
4
1.52
37 51/609
12*2/1
107
5.0 31.2 5.032
7.4 31.2 7.532
31.3 33.5 31.33
1.39 1.184 1.3554
53 56/305 58/609 49/696
15*2/1 15*2/1 15*2/1
107 105 1542
7
= 90
4 96 4
Poly [trimethylene N,N' -sebacoyldi(/?-aminobenzoate)] (480.56) Poly (trimethylene suberate) [3.8] (214.26) Mono 5.0
7.4
26.1
4
1.47
41 52/609
13*2/1
107
Poly (trimethylene succinate) [3.4] (158.15) Mono
7.4
15.2
4
1.87
47 52/300 52/609
9*2/1
107
6.22 6.266 6.21 6.27
18.12 18.64 18.31 18.64
2 2 2 2
1.432 1.379 1.428 1.377
233/99 227/453 221/291
11*2/1 11*2/1 11*2/1 11*2/1
917 >
27.8
5.0
Poly (trimethylene terephthalate) [3.T] (206.20) Tri Ci-I 4.58 Tri Ci-I 4.637 Tri 4.59 Tri 4.64 Poly[trimethylene Af,Af'-tridecanedioyldi(>-aminobenzoate)] (522.64) Poly (trimethylene undecanedioate) [3.11] (256.34) Ortho 5.0 Poly(4,4 '-vinylenediphenylene dodecanedioate) -, methylIS (420.55) Mono 11.1 IM Mono 13.4 2 (at 1510C) Mono 14.5 3 (at 1720C) Mono 14.6 Mono C2h-5 13.83 a b
1386
97,89,111 98,93,111 98,90,112 98,93,111
31.7 7.4
32.4
7.9 4.94 5.17 5.20 5.28
27.8 27.8 27.5 27.5 27.3
1068 1080 1386
/? = 84 (3 = 40 /3 = 40 /3 = 40 /3=138.6
4
1.42
4 2 2 2 2
1.15 1.81 1.054 1.041 1.059
59
16*2/1
107
24*1/1 24*1/1 24*1/1 24*1/1 24*1/1
1076 1076 1076 1076 1560
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 8. POLY(URETHANES) AND POLY(UREAS) ( - O - X - O - C O - N H - Y - N H - C O - or - O - X - N H - C O ) and ( - N H - X - N H - C O - N H - Y - N H - C O - or - N H - X - N H - C O - ) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(decamethylene hexamethylenediurethane) (342.48)
a
b
c
Angles
z
Crystal.
Amorph.*
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. {n*p/q) Refs.
154 148.634 161/473
56.5
22*
1653
References page VI-159
TABLE 8. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
c
Angles
z
Crystal.
Poly(decamethylene 4,4 '-methylenediphenylenediurethane) (424.54)
Poly(ethylene decamethylenediurethane) a (286.37) p Poly(ethylene 4,4 '-ethylenediphenylenediurethane) (326.35) Tri Poly(ethylene hexamethylenediurethane) a Tri Ci-I 4.93 (230.26) 7 Tri Ci-I 4.59 Poly(ethylene 4,4 '-methylenediphenylenediurethane) (312.32) Hex
21.8
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
192 166/634 194/473
69.0
25*
174
414
18*1/1
414
18*1/1
414
42/1653 14*1/1
627
14*1/1
627
15.7 15.0
239 237/1653 48/1653 17*1/1
414 1125
36.2
168
19.7
312
4.58
16.8
113,103,109
1
1.266
5.14
13.9
7=119
1
1.333
170 184/402 166/473 170
146 151/473
Poly(heptamethylene 4,4 '-methylenediphenylenediurethane) (382.46)
1653
18*1/1
18.9
Poly(ethylene nonamethylenediurethane) (272.34) Poly(heptamethylene hexamethylenediurethane) (300.40)
Poly(heptamethyleneurea) (156.23) Poly(hexamethylene hexamethylenediurethane) (286.36) Tri Ci-I
Amorph.a
Melting point (°C)fl
20.7
198/473 191
17*2/1 48.5
414
19*
1653
22*1/1
1125 1653
50.6 10.6/404 10*
5.05
Poly(hexamethylene 4,4 '-methylenediphenylenediurethane) 1.(368.43) Tri 4.99 Tri 5.1 II. Poly(hexamethylene trimethylenediurethane) (244.29) Tri Ci-I 5.04 Poly(hexamethyleneurea) (142.20)
4.54
21.9
112,108,108
1
1.226
5.1
41.5 41.6 19.2
114,114,84 116,116,85
2 2
1.41
5.04
34.65
111,111,111
2
1.275
165 171/473 164/634 150/291
52/1653 18*1/1
627
179/634 200/473
52/1653 21*2/1 20*2/1
1125 1627 1637
15*2/1
1081
300/402 13.9/404 9* >300/291 268/634
Poly(4,4'-methylenedicyclohexylenethiourea) trans-, trans-
(252.42) Ortho Poly(4,4'-methylenedicyclohexyleneurea)
9.67
6.17
24.6
4
1.142
12*2/1
1315
6.22
23.8
4
1.153
12*2/1
1315
2
1.337
12*1/1
1084
trans-, trans-
(236.36) Ortho 9.20 Poly(4,4'-methylenediphenyleneurea) (224.26) Mono Cs-2 4.72 Poly(nonamethylene hexamethylenediurethane) (328.45) Poly(nonamethylene 4,4 '-methylenediphenylenediurethane) (410.51)
11.33
11.64
Poly(octamethylene hexamethylenediurethane) (314.43)
Poly(octamethylene 4,4' -methylenediphenylenediurethane) (396.49)
22.8
7=116.5
147
523
21*
1653
190 194/473
58.6
24*
1653
157 152/634 162/473
55.2
20*
1653
172/634 201/473
59/1653 23*1/1
1125
TABLE 8. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
c
Poly(oxydiethylenedioxydiethylenedioxydiethylene hexamethylenediurethane) (534.69) 28.1 Poly(pentamethylene hexamethylenediurethane) (272.34) Mono C2h-3 4.70 8.36 39.0
Poly(pentamethylene 4,4 '-methylenediphenylenediurethane) (354.41) Poly(pentamethyleneurethane) (129.16)
Poly(tetramethylene hexamethylenediurethane) (258.32) Tri Tri Tri Ci-I
4.95 9.05 4.98
Angles
7=115
z
4
Crystal.
Amorph."
1.302
18.6
8.65 8.38 4.71
19.17 19.1 19.4
90,104,60 90,115,63 116,105,109
2 4 1
1.248 1.510 1.258
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
29*1/1
875
158 157/473 235/402 151/633
42/1653 17*2/1
627
192/473
51/1653 20*1/1
1125
189/944 150/291 155/444
33.7/944 8*
180/291 173/101 184
48/1653 16*1/1 16*1/1
662 334 627
182/473 184/402
Poly(tetramethylene 4,4 '-methylenedicyclohexylenediurethane) trans-, trans 1.(352.48) Tri 5.1 10.2 37.5 II. 41.3 Poly(tetramethylene 4,4' -methylenediphenylenediphenylenediurethane) 1.(340.38) Tri Ci-I 5.31 5.26 38.61 II. Tri Ci-I 5.06 5.06 36.97 17.0 III. Tri 5.05 4.67 37.9 Tri 4.92 5.66 38.35 19.2 Poly(tetramethylene trimethylenediurethane) (216.24) Tri Ci-I 5.06 5.04 30.10 Poly(trimethylene hexamethylenediurethane) (244.29) Mono C2h-3 4.70 8.36 33.9
Poly(trimethylene 4,4 '-methylenediphenylenediurethane) 1.(326.35) II. a b
115,85,94
4
1.33
19*2/1 19*2/1
1643 1643
114,115,96 115,108,95
2 2
1.438 1.340
19*2/1 19*2/1
1567 1567
116,116,84 124,104,86
2 2
1.523 1.324
194/634 19*2/1 248/473 19*2/1 232/1653 53/1653
1082 1083 1273
112,113,110
2
1.337
13*2/1
1081
y = 115
4
1.344
42/1653 15*2/1
627
227/1653 47/1653 18*1/1 241/473 18*1/1
1627 1125
168 167/633 163/473
17.6 16.2
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 9.
POLY(ETHERS) ( - H C H - C H O R - ) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Poly(benzylvinyl ether) (134.18) Poly(butylvinyl ether) (100.16) Rho -, 2-methyl(114.19)
Space group
a
b
c
Angles
z
Crystal.
Amorph.a
6.30 C3i-2
23.7
23.7
Poly (sec-butyl vinyl ether), see Poly (propyl vinyl ether), 1-methy 1Poly(tert-butylvinyl ether) (100.16) Tet C4h-6 18.84 18.84
6.50
18
0.947
6.50
7.65
16
0.980
0.92
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
162/114
2*3/1
253
64/114
2*3/1
360
140 128/608
2*3/1
382
160
2*4/1
269
260/114 238/281
References page VI-159
TABLE 9. cont'd Density (g/cm3)
Unit cell parameters Cryst syst.
Polymer
Space group
a
b
Poly(ethylene) - , l-butoxy-2-chlorotrans(134.61) cis- , l-chloro-2-isobutoxytrans(134.61) - , l-isobutoxy-2-methyltrans(114.19)
c
Angles
z
Crystal.
Amorph."
16.8
Poly(isopropylvinyl ether) (86.13) Tet
Poly(methylvinyl ether) (58.08) Rho D3d-6 Rho D3d-6 Poly(a-methylvinyl methyl ether) syndiotactic Tet (72.11) Phex Hex Poly(neopentylvinyl ether) (114.19) Ortho
Poly(propylvinyl ether) - , 1-methyl(100.16) Tet
9.70
17.2
17.2
16.20 16.25
16.20 16.25
15.2 9.02 9.02
15.2 9.02 9.02
18.2
10.51
18.25
35.5
b
Chain conform. (n*p/q) Refs.
2*3/1
242
8.6
2*4/1
242
20.8
2*10/3
242
2*7/2 2*7/2
67 141
2*3/1
161 269
2*3/1
152
226
6.50
6
35.5
6.50 6.50 16.4 16.0 16.6 6.50
0.942 0.94
117 117 165/114 170/281 115/46
68
0.926 0.93
191/281 98 190/114
2*17/5
161 269
18 18
1.175 1.168
144/114
2*3/1 2*3/1
176 429
32 10 10
1.011 1.062 1.024
2*8/3 4*5/2 4*5/2
383 514 554
6
0.915 0.91
216/281 155 216/114
2*3/1
161 269
68
0.956
177/608 170
2*17/5 2*17/5
424 382
35.3 a
Heat of fusion kj/mol*
6.5
13.77 13.8
Poly(isobutylvinyl ether) (100.16) Ortho
Melting point (°C)a
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 10.
POLY(OXIDES) ( - X - O - Y - O - or - R - O - ) Density (g/cm3)
Unit cell parameters Polymer Poly(acetaldehyde) (44.05) -, 2-chloro(78.50) - 2,2-dichloro(112.94) - , 2,2,2-trichloro(147.39) Poly(2-butene oxide) trans(72.11)
Cryst syst.
Space group
a
b
Tet
C4h-6
14.63
14.63
Tet
C4h-6
Tet
c
4.79
Angles
z
16
Crystal.
1.142
Amorph."
Melting point (°C)a
165/329
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
2*4/1
92
4.80
2*4/1
387
C4h-6
5.22
2*4/1
387
Tet
C4h-6
6.45
>220/338
2*4/1
387
Orhto Ortho
D2-4 D2-4
13.72 13.79
4.60 4.65
6.90 6.96
4 4
41.100 1.073
114/399 100/527
3*2/1 3*2/1
397 800
11.20
10.44
7.01
8
1.169
162/399
3*2/1
397
cisOrtho
TABLE 10. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(butyraldehyde) (72.11) Tet C4h-6 Poly( 1,3-cyclobutyleneoxymethylene oxide) - , 2,2,4,4-tetramethyltransa (156.23) (3 cisa
a
b
20.01
20.01
Tri
Ci-I
Tet
D2d-8
Angles
4.78
z
16
Crystal.
Amorph."
1.001
Heat of fusion kj/mol"
225/329
11.5
Chain conform. (n*p/q) Refs.
2*4/1
260 260/369 6*
11.5
92
361
5.75
P Poly(decamethylene oxide) (156.27) Ortho 7.40 4.94 Ortho D2h-16 7.40 4.93 PoIy(1,3-dioxolane), see Poly(ethyleneoxymethylene oxide) PoIy(1,3-dioxolane), see Poly(methyleneoxytetramethylene oxide) Poly(dodecamethylene oxide) (184.32) Ortho 7.40 4.94 Poly(epichlorohydrin), see Poly(ethylene oxide), chloromethylPoIy(4,4 '-ethylenediphenyleneoxyheptamethylene oxide) -, 3-methyl(324.46) Mono 11.4 10.4 Poly(4,4 '-ethylenediphenyleneoxynonamethylene oxide) - , 3-methyl(352.52) Mono 20.1 28.3 Poly(4,4 '-ethylenediphenyleneoxypentamethylene oxide) -, 3-methyl(296.41) Tri 12.7 9.61 Poly(4,4 '-ethylenediphenyleneoxyundecamethylene oxide) -, 3-methyl(380.57) Mono 20.8 27.4 Poly(ethylene oxide) 1.(44.05) Mono 9.5 12.0 Mono C2h-5 8.05 13.04 Mono Cs-2 8.03 13.09 Mono 7.95 13.11 Mono 8.02 13.4 Mono 8.16 12.99 Mono 7.51 13.35
II. -, tert-butylisotactic (100.16)
c
Melting point (0C)"
285 285/369
361 361
5.75
361
11*2/1 11*2/1
482 689
27.49 27.29
4 4
1.033 1.042
32.53
4
1.030
13*2/1
482
6
1.450
19*1/1
1574
vi. ref.
21*1/1
1574
1.495
17*3/1
1574
vi. ref.
23*1/1
1574
3*7/2 3*7/2 3*7/2 3*7/2 3*7/2 3*7/2 3*7/2
3*2/1
109 303 194 188 227 460 1164 190 390 790
3*9/4
717
3*2/1
119 194
18.9
7 = 84.1
22.3
7 = 88.6
47.3
44,96,100
25.5
7 = 84.1
19.5* 19.48 19.52 19.39 19.25 19.30 19.90
7=101 /3= 125.4 /9=125.1 /3=124.6 /3=126.9 /3=126.1 (3 = 118.6
4.71
4.44
7.12
15.42
15.42
24.65
63,93,111
12
36 28 28 28 28 28 28
2
1.207 1.229 1.220 1.231 1.238 1.239 1.169 1.227 1.235 1.197
36
1.022
79 79/181 72/180
6*
1.13/366
1.123 1.124
66/81 70/538 62/180 72/318 69/728 75/964 76/567 75/665 70/1189
8.29/81 9.5/665 8.04/498 11.7/466 9.41/728 7.86/964 8.7/1195 7.33
135/691 140/692 150/693 152/527
syndiotactic 63/691 -, chloromethyl- [epichlorohydrin] (92.52) Ortho D2-4 orC2v-9 Ortho C2v-9 Ortho ortho D2-4
12.14
4.90
7.05 7.07
4
1.461
12.16 12.24 12.15
4.90 4.92 4.86
7.03 6.96 7.07
4 4 4
1.467 1.466 1.472
117 121 135/318
116 -, isopropyl(86.13)
Ortho
D2-4
12.85
7.52
5.55
4
1.067
53
3*2/1 3*2/1 3*2/1
555 601 800 1280
3*2/1
802
10.6
References page VI-159
TABLE 10. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
Poly(ethylene oxide), complexes with: -, p-bromochlorobenzene (3 per 10 residues) Ortho C2v-12 -, /7-bromofluorobenzene (3 per 10 residues) Ortho C2v-12 -, p-chloroiodobenzene (3 per 10 residues) Ortho C2v-12 -, p-chlorotoluene (3 per 10 residues) Ortho -, p-dibromobenzene (3 per 10 residues) Ortho Ortho C2v-12 -, p-dichlorobenzene (3 per 10 residues) Ortho C2v-12 -, mercuric compounds -, -, HgBr2 I. Ortho (1 Hg/4 residues) - , - , HgC12 I. Ortho (1 Hg/4 residues) Ortho II. Ortho (1 Hg/residue) -, -, HgI2 -, p-nitrophenol Tri Ci-I -, perhydrotriphenylene
a
b
c
Angles
z
Crystal.
16.58
9.58
28.10
40
1.510
16.38
9.46
28.56
40
1.449
16.78
9.73
28.24
40
1.665
8.63
9.27
28.41
20
1.199
8.37 16.74
4.84 9.68
27.98 27.98
10 40
1.682 1.682
16.48
9.51
27.86
40
1.341
13.73
8.66
11.80
16
2.540
13.5 13.55 7.75
17.1 8.58 12.09
11.6 11.75 5.88
32 16 4
2.22 2.177 3.804
Amorph."
Melting point ( 0 C) a
Heat of fusion kj/molfl
91/1232
3*10/3
1278
3*10/3
1278
3*10/3
1278
3*10/3
1232
96.5 98/1232
3*10/3 3*10/3
1207 1278
83/1232
3*10/3
1278
82/1232
732
6*2/1 6*1/1
13.52 11.72
5.55
15.57
II. Ortho D2H-15 III. Hex Poly(formaldehyde), see Poly(oxymethylene) Poly(heptaldehyde) (114.19) Tet C4H-6
731 732 733 732
91,87,104
6
1.389
6.87 -, resorcinol a Mono C2h-5 (1 R/2 residues) Ortho C2v-9 P -, sodium iodide (lNaI/3EO) Mono C2h-5 -, sodium perchlorate (lNa/3EO) Mono C2h-5 -, thiocyanates -, -, potassium lsalt:4EO Tri (dble. helix) -, -, sodium 1 salt: 1 EO Mono C2h-5 lsalt:3EO Mono C2h-5 lsalt:4EO Tri (dble. helix) -, trifluoromethane sulfonate (1 salt/3 EO) Mono C2h-5 -, urea (9 urea/4 R) Rho Rho D3-4 Poly(ethyleneoxymethylene oxide) [1,3-dioxolane] 1.(74.08) Tri Cl-I
Chain conform. (n*p/q) Refs.
16.05 10.50
14.25 10.18
9.84 9.776
/?=112
18.15
8.41
7.98
18.32
8.578
11.37
9*2/1
1570
3*2/1
1173
3*4/1 3*4/1
1099 1568
16 8
1.262 1.260
7 = 122.3
12
1.819
9*2/1
1343
8.346*
7=123.1
6
1.540
9*2/1
1571
8.18
8.10
80,66,89
8
1.343
3*4/1
1100
7.55 16.83 10.25
12.10 10.64 8.43
5.83 7.19 7.23
/? = 97.5 7 = 125.5 91,61,104
4 12 8
1.574 1.351 1.616
6*1/1 9*2/1 3*4/1
1432 1432 1100
16.77
10.07
8.613* 7=121.0
6
1.5355
9*2/1
1572
10.43 10.52
10.43 10.52
9.12 9.259
4
1.3408
3*4/1
730 1569
12.32
4.66
24.7 36.6
9.07 8.07
7.79 8.07
25.9
25.9
93 71/1568
143/734
7 = 100.9
15
1.325
55/506
17.1/973 5*5/1
8 18
1.414 1.331
93 55/937 60/937
15.5
9.85 29.5
4.52
16
1.000
0.880
147 150/329
5*2/1 5*6/1
690 505 1163 688 690
2*4/1
970
TABLE 10. cont'd Density (g/cm3)
Unit cell parameters Cryst syst.
Space group
a
Poly(hexamethylene oxide) (100.16) Mono Mono
C2h-6 C2h-6
5.65 5.64
Polymer
b
9.01 8.98
c
17.28 17.32
Angles
z
Crystal.
/3=134.5 /3=134.5
4 4
1.060 1.063
Amorph."
0.932 Poly(hexamethyleneoxymethylene (130.19) Ortho Poly(isobutylene oxide) (72.11) Ortho Ortho
oxide) C2v-9
8.4
4.85
D2-4 D2-4
10.76 10.80
5.76 5.88
18.8 7.00 7.05
Melting point (°C)a
Heat of fusion kj/mola
58 58/181 73.3 62/542
Chain conform. (n*p/q) Refs.
7*2/1 7*2/1
482 689 941
23.8
4
1.13
38/695
9*2/1
783
4 4
1.104 1.070
158/593 175
3*2/1 3*2/1
594 775
2*4/1
96
177/548 160/664 155/318 Poly(isobutyraldehyde) (72.11) Tet Poly(4,4 '-isopropylidenediphenyleneoxytrimethylene oxide) -, 2-hydroxy- (alkyl) (284.36) Ortho D2h-24 16.31 19.34 Poly(isopropylidene oxide) (58.08) Tet S4-1 14.65 14.65 Poly(isovaleraldehyde) (86.13) Tet 20.6 20.6 Poly(4,4 '-methylenediphenylene oxide) (182.22) Ortho 8.10 5.60 Poly(methyleneoxypentamethylene oxide) [1,3-dioxocane] (116.16) tri Ci-I 8.36 4.84 Poly(methyleneoxytetramethylene oxide) [1,3-dioxepane] (102.13) Ortho C2v-9 8.50 Poly(nonaldehyde) (142.24) Tet Poly(nonamethylene oxide) (142.24) Ortho Poly(octamethylene oxide) 1.(128.22) Mono
C2h-6
II. Ortho Poly(oxacyclobutane) [trimethylene oxide] I. (hydrate) Mono C2h-3 (58.08)
II. Rho III. Ortho IV. -, 3,3-bisazidomethyl(152.16) - , 3,3-bischloromethyloc Ortho (155.02) Ortho Ortho Ortho
P
Mono Mono Ortho
C3v-6 D2-5
D2h D2h-16 C2v-9
Cs-I or Cs-2 Cs-3 C2v-12
4.79
5.2
>260/329
7.90
8
1.515
10.22
28
1.231
5.2
16
1.04
10.00
2
1.334
140
2
1.70
39/695 46
7.74
30
14.5
8.15
90,90,90
13.50
4
14*1/1 60
10*1/1
482
9*2/1
482
9*2/1
482
4*1/1
446
50/1328
8*1/1 8.8/1328 8*1/1 4*1/1
446 446 1096
128
53.6
1269
190/173 180/148
32.2/271 4*1/1 23.0/343 4*1/1 4*1/1 4*1/1 19.5 4*1/1
344 378 689 1094 1195 343 172
4*1/1 4*1/1
378 689
4.94
12.45
2
1.044
73
5.67
9.04
22.45
4
1.038
67 74/727 74/799 83/1167
12.3
7.27
4.80
14.13 9.23
14.13 4.82
8.41 7.21 4.79
17.85 8.16 17.85 17.85
8.16 17.85 8.16 8.15
/3 = 91
4.8 4.82 4.67 4.78
4
1.178
18 4
1.194 1.203
4 4 4 4
1.47 1.466 1.514 1.481
6.85
11.42
4.75
/3=109.8
2
1.47 1.472
11.42 13.01
7.06 11.71
4.82 4.67
7=114.5
2 4
1.456 1.447
29.8/727 29.3/799 32/1167
36/180 34/181 35/447
1.371 1.39
745
1098
7.36
1.046
10*1/1
2*4/1
0.895
4
96
686 1165
16
22.43
2*4/1
14*1/1
1.234
4.52
4.93
214
783 1410
30.56
7.36
2*7/2
8*1/1
30.56
/3=134.5
1118
203
References page VI-159
TABLE 10. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
-, 3,3-bisethoxymethyl(174.24) Hex -, 3,3-bishydroxymethyl(86.13) Mono -, 2,2-bistrifluoromethyl(194.08) Ortho -, 3-tert-butyl(114.19) -, 3,3-diethyl1.(114.19) Mono Mono II. Ortho
D2-4
C2-2 D2-5
a
b
c
5.24
5.24
6.46
11.85
10.39
4.79
10.63
8.00
8.01
13.33 20.36
5.77 5.58
4.74
Angles
7 = 90
7 = 91.1
6.67 6.7
z
Crystal.
Amorph.a
III.
Mono
Ortho
-, 3-ethyl-3-methyl(100.16) Ortho
C2h-5
D2-5
D2-2
-, 3-methyl-3-hydroxymethyl(86.13) Mono Poly(oxymethylene) [formaldehyde] 1.(30.03) Rho C3-2 orC3-3 Rho Rho D6h-1 Rho Ortho
8.93
15.60
18.46
7.48
5.74
5.66
4.83 8.35
4.70
4.46
4.46
4.43 4.471 4.470 7.75
4.43 4.471 4.470 4.46
125 83/1271
9.41
4*2/1?
1209
4
0.970
4*1/1
1385
4
1.892
4*2/1
921
2
1.040
77
5.0
47/1271 100
10.46
80
10.04
4
1097 1298 1299 1097 1298
4*1/1 8*1/1
1095 1095
4*2/1
1095
4*2/1 4*2/1
1299 1300
4*1/1
1385
2*9/5 2*9/5 2*9/5 2*9/5 * 29/16 2*9/
2*2/1 2*2/1
42 134 258 513 270 249 1195 1344 270 817
298 262/773
7.83/773 5*2/1
487
287
3.2
793
261 272/471 307 262/484
5.86/524 5* 3.8/471 5*4/1 5.95 5.0/484 5.73/972 5.08/574 5.38/940 5.40/598
226 621 1200
12.2/2015*4/1
57
1.001
4
4
1.036
64 75/1328 80/1394 66 56/1328
0.981
4
1.016
17.30
9
1.506
17.25 17.39 56.00 17.30
9 9 29 18
1.531 1.491 1.492 1.501
7
= 89.4
9.2/1328
7.4/1328
0.969 0.927
1.25 1.32/640
1358 4*1/1 4*1/1 4*2/1 4*2/1 4*2/1
47/447 /3 = 97.9
6.57 6.5
10.25
Chain conform. (n*p/q) Refs.
1.25?
4
6.51
11.69
Heat of fusion kj/mola
6?
Ortho -, 3,3-dimethyl1.(86.13) II.
Melting point (°C)a
60
181 198/217 178/329 215/964 200/455
6.28
7.45/91 6.66/186 7.37/343 10.0/628 9.8/1121 5.65/964
1.215 11.67 II. Ortho III. Ortho (at 14 kbar) Poly(p-phenylene oxide) (92.10) Ortho - , 2,6-dimethoxy(152.15) -, 2,6-dimethyl(120.15) Tet
D2-4
4.767 4.57
7.660 7.41
3.563 3.49
4 4
1.533 1.688
D2h-14
8.07
5.54
9.72
4
1.408
8.45 11.92
- , 2,6-diphenyl1.(244.29) Tet D4-4 12.51 Poly(m-phenyleneoxy-2-cyano-1,3-phenylene oxide) (209.20) Mono C2h-5 8.62 Poly(propionaldehyde) (58.08) Tet C4h-6 17.52 -, 3-methoxycarbonyl(116.12) -, 3-cyano(83.09) Tri 9.44
7 = 91
1.27
5*
6.02 11.92
17.10
16
1.314
12.51
17.08
8
1.214
484/201
13.07
9.03
4
1.383
340
8*1/1
1427
17.52
4.78
16
1.052
185/329
2*4/1
92
150
2*
704
176
2*2/1
240
/3 = 99
4.56 5.32
4.95
7=102
2
1.135
TABLE 10. cont'd Density (g/cm3)
Unit cell parameters Cryst syst.
Polymer
z
Crystal.
Amorph.a
7.16
4
1.097
0.998/139
4.69 4.68 4.64 4.66
7.09 7.10 6.92 7.03
4 4 4 4
1.104 1.104 1.155 1.126
17.0
8.2
5.48
4
1.30
Ortho
12.6
9.90
6.93
4
1.418
Ortho D2-4 [tetramethylene oxide] Mono C2h-6 Mono C2h-6
11.42
6.26
6.26
4
1.663
5.48 5.59
8.73 8.90 8.89 8.75 8.92
12.07 12.07 12.15 12.25* 12.25
0 = 34.2 /3=134.2
4 4
0=134.5
8 4
1.157 1.112 1.116 1.238 1.095
8.199
11.032
5.55
10.20
b
c
10.52
4.67
10.51 10.52 10.40 10.46
Ortho
Poly(propylene oxide) (58.08) Ortho Ortho Ortho Ortho Ortho -, 3-phenoxy(150.18)
-, -, o-chloro(184.62) -, 3,3,3-trifluoro(112.05) Poly(tetrahydrofuran) (72.11)
Space group
Ortho Mono
C2v-9 or D2-4 D2-4 D2-4 D2-4 D2-4
D2-4 C2h-6
a
7.22 5.61
-, complex with: -, -, urea (6 urea: 1.8 EO) Hex C6-1 8.199 Poly(4,4 '-thiodiphenylene oxide) (200.26) Ortho 8.16 Poly(trimethylene oxide), see Poly(oxacyclobutane) a b
Angles
1.27
Melting point (°C)a
Heat of fusion kj/molfl
Chain conform. (n*p/q) Refs.
75/18 75/377 72/664 73/285 80/1649
8.4/498 8.4/377
3*2/1
13
3*2/1 3*2/1 8.4/1649 3*2/1 3*2/1
800 41 78 448
215 210/297 208/318 203/833 203/527
3*2/1
238
200
3*2/1
445
3*2/1
0.982
35 43 60/366 37/180
12.6/425 5*2/1 12.4/600 5*2/1 14.4 5*2/1 5*2/1 5*2/1
1.267 2
348 460 599 533 403
1573
1.440
340
10*1/1
745
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 11.
POLY(SULFIDES) AND POLY(SULFONES) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Polymer of selenium (78.96) Rho Polymer of sulfur (32.06)
Mono Ortho Mono
Space group
D3-6
C2h-2 C2-1
a
4.355
26.4 8.11. 17.6
b
c
4.355
4.949
12.32 9.20 9.25
9.26* 13.8
Angles
z
Crystal.
3
4.839
7 = 100.75 0=113
Amorph.a
Melting point (°C)a
4.289
219/752 5.20/752 1*3/1 221/1121 6.2/1121
2.30 80
2.059
Poly(ethylene sulfide) (60.11) Hex Ortho Ortho -, terf-butylopt. active Rho (116.22) inactive Port
8.8 8.8
D2h-6 D2-4
4.92 8.50 8.508
4.92 4.95 4.938
Chain conform. (n*p/q) Refs.
1*8 Indet. 1*10/3 1.92
Poly(ethylene disulfide) (92.17)
Heat of fusion kj/mola
250 130/294 113/295 145/725
751 1195 288 469 192 1195
4*3/1
134 468
6.74 6.70 6.686
2 4 4
1.413 1.416 1.421
210 3*2/1 190/181 3*2/1 216/1104 14/1104 3*2/1
241 504 922
9
1.079
162
3*3/1
906
12
1.106
210 205/694
3*3/1
906
C3-2
16.91
16.91
6.50
C2h-5
16.67
19.27
6.52
0 = 90
References page VI-159
TABLE 11. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
- , isopropylisotactic (102,20) Ortho Poly(ethylene tetrasulfide) (156.29) Ortho Mono
Space group
a
b
C2v-21
17.92
17.92
7.20
8.57 8.68
5.0 5.03
4.27 4.32 4.32
c
Angles
7 = 87
z
Crystal.
Amorph.*
1.174
3*2/1
1 1
1.42 1.378
4*1/1 4*1/1 4*1/1 90.3 79/181 68/295
Poly(hexamethylene sulfone) (148.22) Mono 9.88 Poly(hexamethylenesulfonylpentamethylene sulfone) (282.42) Mono 9.88 Poly(hexamethylenesulfonyltetramethylene sulfone) (268.39) Mono 9.88 Poly(methylene disulfide) (78.15) Poly(methylene selenide) 1.(92.99) Hex 5.22 II. Ortho D2-4 5.37 Poly(methylene sulfide) (46.09) Ortho 12.7 Hex 5.07 Poly(pentamethylene sulfide) (102.20) Mono C2h-5 9.61 Poly(pentamethylene sulfone) (134.19) Mono 9.88 Poly(pentamethylenesulfonyltetramethylene sulfone) (254.36) Mono 9.88 Poly(p-phenylene sulfide) (108.16) Ortho D2h-14 8.67 Ortho 8.68 Ortho 8.57
19.8
256 257 134 1322
9.26
18.24
0=121.7
8
1.387
220
7*2/1
39
9.26
34.00
/9=121.7
8
1.418
223
13*2/1
39
0=121.7
4
1.460
246
12*1/1
39
9.2615.68 4.18
3*2/1
467
5.22 9.03
46.25 4.27
21 4
2.971 2.983
190 170
2*21/11 2*2/1
416 463
12.0 5.07
5.10 36.52
16 17
1.575 1.600
260 245/181 260/298
2*2/1 2*17/9
237 331
9.78
7.84
0=131
4
1.221
65/295
6*1/1
687
9.26
7.76
0=121.7
4
1.476
243
6*1/1
39
9.26
28.33
0=121.7
8
1.532
247
11*2/1
39
5.61 5.66 5.59
10.26 10.26 10.33
4 4 4
1.440 1.425 1.452
295 290/679 315/1234 12.1 320 8.65
5*2/1 5*2/1 5*2/1
677 1345 1575 1362
8.20
4
1.234
3*2/1
515
15*2/1
D2-4
9.95
4.89
Ci-I
4.81
9.61
38.8
123,89,106
4
1.058
C2h-6
5.73
9.15
13.26
0=135.7
4
1.206
C2h-5 C2h-5 C2h-5 C2h-5 C2h-5 D2-4 D2-4 D2-4
4.153 4.12 4.15 4.04 4.040 6.251 4.81 9.20 6.80 13.92
7.637 7.64 7.64 7.86 7.849 4.807 6.25 10.72
4.439* 4.43 4.44 4.43* 4.429* 4.429* 4.43 4.93 5.24 5.81
7=109.7 7=109.5 7=110 7 = 109 7=109.3
4 4 4 4 4 4 4 16
2.308 2.328 2.313 2.300 2.308 2.299 2.298 2.517
Cs-2
5.16
10.33
4.06*
7 =120.5
2
1.320
- , 3,3-dimethyl(102.20) a
Heat of Chain fusion conform. kj/mola (n*p/q) Refs.
16
Poly(hexamethylene sulfide) (116.22)
Poly(propylene sulfide) isotactic (74.14) Ortho Poly(tetradecamethylene sulfide) 1.(228.44) Tri Poly(tetramethylene sulfide) 1.(88.17) Mono Poly(thiazyl) 1.(46.07) Mono Mono Mono I'. Mono Mono II. Ortho Ortho III. Ortho IV. V. Poly(trimethylene sulfide) (74.14) Mono
Melting point (°C)a
The number after the solidus (/) are reference citations. * The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
1.319
67/181
5*5*2/1
1422 961
2*2/1 2*2/1 2*2/1 2*2/1 2*2/1 2*2/1 2*2/1 2*
910 912 1102 911 925 925 1102 1102 1103 1103
4*1/1
100/81 90
10.4
916 1346
19
5.23
1363
TABLE 12.
POLY(SACCHARIDES) Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
Poly (2,1 -P-D-fructofuran) (hemihydrate) Ortho D2-4 16.70 9.65 (162.14) (monohydrate) Ortho D2-4 16.70 9.80 Poly(l,4-p-D-galacto-l,4-|3-D-mannose) (1:2) [guar galactomannan] dry 13.5 8.66 (486.42) 16.5% H2O Mono C2-2 15.45 8.65 Poly( 1,4-a-D-galactosamine) anhydride Ortho 5.2 30.8 (161.16) Poly(l,3-|3-D-galactosamine-a/r-l,4-P-D-glucuronic acid) -, Af-acetyl- [chondroitin] -, -, 4-sulfate free acid Ortho (459.38) -, -, -, as Ca salt 7H 2 O/unit Ortho D2-3 7.45 17.81 (497.44) Hex 12.8 12.8 -, -, -, as Na salt I. (@ 93% RH) Hex 14.5 14.5 10H 2 O Hex D3-6 14.52 14.52 (503.34) II. Ortho 16.0 26.0 -, -, -, as K salt (535.57) Hex D3-4 13.85 13.85 -, -, 6-sulfate free acid (459.38) -, -, -, as Na salt 1.(503.34) Ortho 12.1 14.4 or Mono 12.1 9.3 Rho 14.3 14.3 II. Tet 13.8 13.8 Poly(1,4- p-D-glucosamine) [chitosan] 1.(161.16) Ortho 8.9 17.0 Ortho 7.76 10.91 Ortho D2-4 8.28 8.62 (anhydrous) Ortho D2-4 8.07 8.44 II. 4.4 10.0 III. Ortho 8.24 16.48 IV. Mono 13.8 16.3 -, N-acetyl- [chitin] a Ortho D2-4 4.76 18.85 (203.19) Ortho D2-4 4.69 19.13 Ortho D2-3 9.25 19.25 Ortho D2-4 4.74 18.86
c
Angles
z
Crystal.
Amorph.*
Melting point (°C)fl
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
14.4
12
1.470
3*6/1
1634
14.7
12
1.492
3*6/1
1634
10.3*
2
1.34
10*
10.3*
7 = 90
8.7
6 8
643 643
1.54
19.6
5*2/1
1327
9*2/1
819
19.64 27.4
4 6
9*2/1 9*3/1
1242 1258
28.8 28.32 28.5 24.1*
6 6 18
9*3/1 9*3/1 9*3/1 9*3/1?
819 1241 1254 1139
27.76
6
9*3/1
1223
9*2/1
705
9*3/1 9*3/1 9*3/1 9*8/1
705 705 769 769
18.6*
28.5* 28.5* 28.7 78.2 10.25* 10.30 10.43 10.34 10.3 10.39 40.7
7 = 93
9? 6? 9? 32 8 4 4 4 2 8 48?
1.38 1.228 1.44 1.520 1.18 1.517 1.412
5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*8/5
1135 1137 1579 1580 1137 1138 1581
4 4 8 4
1.463 1.442 1.449 1.463
5*2/1 5*2/1 5*2/1 5*2/1
652 669 1135 1222
= 97 = 97
2 8 2 2 8 2 2
1.460 1.477 1.495 1.39 1.400 1.41 1.44
5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1
778 1136 1253 653 670 778 778
7 = 99.5 7 = 94 7 = 90
8 4 6
1.47
5*2/1 5*2/1 5*2/1
778 778 779
5*2/1
1135
a = 96.5
10.28* 10.43 10.46* 10.32
P a-phase (anhydrous)
Mono Ortho Mono (hemihydrate) Mono (monohydrate) Ortho Mono (dihydrate) Mono p-phase (hydrated) I. Mono II. Mono y Mono -, -, nitrate Ortho
C2-2
C2-2 C2-2
4.85 4.82 4.80 4.7 9.32 4.8 4.8
9.26 36.7 9.83 10.5 22.15 10.5 11.1
10.38 10.33 10.32* 10.3 10.17* 10.4* 10.4*
C2-2
9.67 4.78 4.7
21.1 23.3 28.4
10.4* 10.1* 10.3*
9.2
23
10.3*
C2-2 C2-2
7 = 97.5 7=112 (3 = 90 7 7
8
References page VI-159
TABLE 12. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
Poly( 1,3-P-D-ghicosamine-a/f-1,4-p-D-glucuronic acid) - , N-acetyl- [hyaluronic acid] (379.32) II. -, -, as Na salt (401.30) Ortho 11.4 Tet 9.9 dry Tet D4-8 9.89 wet Ortho D2-4 11.53 -, -, as K salt (417.41) Ortho 11.0 Tet D4-10 17.14 Ortho D2-4 11.73 III. K salt Ortho 10.4 K salt Tet D4-8 9.96 IV. Na salt Hex D3-6 11.7 Na salt Hex D3-6 11.70 Ca salt Hex 15.4 Ca salt Hex 20.4 V. Na salt Hex 18.7 dry Ca salt Hex D3-3 18.32 wet Ca salt Hex D3-3 20.93 VI. Na salt Ortho 34.4 VII. free acid Mono Poly( 1,3-a-D-glucose) I. (native) Mono 5.81 (162.14) II. (dihydrate) Ortho 5.02 III. (dry) Ortho 4.57 IV. Ortho D2-4 16.46 PoIy(1,3-p-D-glucose) [curdlan] (anhydrous) Hex C6-6 14.41 (162.14) Hex C6-6 14.38 (hydrate) Ortho 26.4 Hex 17.01 (dihydrate) Hex C3-1 15.56 -, triacetate [pachyman] 1.(288.25) Ortho D2-4 11.0 Hex C6-2 10.99 II. Ortho 11.49 Poly(l,4-a-r>glucose) [amylose] A. (162.14) Ortho 11.90 (3H 2 /4g.) Mono 21.24 B. Ortho D2-1 16.0 (anhydrous) Mono 12.0 (monohydrate) Ortho 15.6 (trihydrate?) Ortho 18.33 (trihydrate) Hex 18.50 (tetrahydrate?) Ortho 15.9 V-A. "anhydrous" (monohydrate) (dehydrate) Ortho D2-4 12.92 Ortho D2-4 12.97 Ortho D2-4 13.0 13.2 V-H. "hydrate" (dihydrate?) Ortho D2-4 13.61 Ortho D2-4 13.65
b
c
Angles
Amorph.a
Melting point (°C)a
Heat of Chain fusion conform. kj/molfl (n*p/q) Refs.
z
Crystal.
8 8 8 8
1.42 1.60 1.61 1.50
9*4/1 9*4/1 9*4/1 18*2/1
710 769 1227 1227
8 16 8
1.54 1.55 1.50
9*4/1 9*4/1 18*2/1
711 1225 1226
9.8 9.9 9.89 9.89
33.7 33.9 33.94 33.86
9.9 17.14 9.25
33.0 32.80 35.42
9.0 9.96
37.1 37.87
8 8
1.60 1.54
9*4/1 9*4/1
711 1224
11.7 11.70 15.4 20.4
28.5 28.50 28.5 28.5
6 6 9 9
1.50 1.40 1.43 1.53
9*3/1 9*3/1 9*3/1 9*3/1
659 1256 659 659
18.7 18.32 20.93
28.5 28.47 28.30
18 18 18
1.58 1.57 1.46
9*3/1 9*3/1 9*3/1
659 1257 1257
11.7
28.5
24
1.58
9*3/1
659
9*2/1
659
Double
19.6 10.0
8.35
7 = 96
2
1.116
4*2/1
1130
2 2 8
1.630 1.631 1.623
4*2/1 4*2/1 4*2/1
1130 1130 1131
6 6 14 28 18
1.530 1.550 1.473 1.476
4*6/1 4*6/1 4*7/1 4*7/1 4*6/1
1132 1168 1133 1168 1132
12 6 12
1.228 1.198 1.335
4*6/1 4*6/1 4*6/1
1140 1582 1140
12 12 8 12 8 12 12 12
1.580 1.457 1.38 1.591 1.61 1.422 1.397 1.55
5*6/1 5*6/1 5*2/1 5*4/1 5*6/1 5*6/1 5*6/1
1146 1347 644 1145 645 1143 1144 1219
9.63 8.65 9.55
8.35 8.35 8.44
14.41 14.38 16.4 17.01 15.56
5.87 5.82 22.65 22.70 18.78
19.0 10.99 20.13
22.38 22.91 18.60
17.70 11.72 9.2 16.25 9.0 15.87 18.50 18.2
10.52 10.68 10.6* 10.48 10.6* 10.41 10.40 10.4
22.40 22.46 22.5 23.3
7.95 7.91 7.90
12 12 12
1.560 1.558 1.554
5*6/1 5*6/1 5*6/1 5*6/1
843 1243 20 647
23.60 23.70
8.01 8.05
12 12
1.535 1.516
5*6/1 5*6/1
1244 20
Triple Triple Triple Triple
Double 7=123.48 7 = 96.5
Double
TABLE 12. cont'd Density (g/cm3)
Unit cell parameters Polymer
-, triacetate 1.(288.25) II. -, tributyrate (372.42) - , triethyl1.(246.30)
Cryst syst.
Space group
Ortho Phex
D2-4
13.7 14.94
23.8 14.94
8.05 7.93
12 7
1.504 1.503
5*6/1 5*7/1
646 668
Ortho Ortho
10.87 29.04
18.83 20.97
52.33 34.00
28 54
1.251 1.248
5*14/3 5*9/2
648 1301
Ortho
22.04
38.18
18.45
30
1.195
5*5/1
1301
16.13 15.36
11.66 12.18
15.48 15.48 15.48
8 8
1.124 1.130
5*4/1 5*4/1 5*4/1
1142 1221 1220
D2-4
16.76 14.70
14.28 14.70
16.02 15.48
8 8
1.267 1.215
5*4/1 5*4/1
1142 1142
D2-4
16.52 14.70
13.95 14.70
16.02 15.48
8 8
1.192 1.099
5*4/1 5*4/1
1142 1142
14.70
14.70
15.48
8
1.147
5*4/1
1142
32.38
32.38
16.10
32
1.172
5*4/1
1301
15.64
8
1.156
5*4/1
820
3. -, -, complexes with: chloroform (1:2) Ortho (1:1) Ptet dichloromethane (1:2) Ortho (1:1) Ptet nitromethane (1:1) Ptet -, triisobutyrate (372.42) Ortho -, trimethyl(204.22) Ortho -, -, complexes with chloroform (1:1) Ortho dicloromethane (1:1) Ptet -, tripropionate (330.34) Ortho -, trivalerate (414.50) Ortho Poly(l,4-a-D-glucose), complexes -, alcohols butanol Ortho (V-A) Ortho (V-H) Ortho 1-naphthol Tet -, DMSO (8DMSO/cell) Tet Ptet Ortho - , ethylenediamine (1:2) Ptet -,fatty acids Ortho - , hydroxides C(NH2)3OH LiOH NaOH KOH Ortho NH4OH CSOH -,iodine Hex (204.44) (1 1/3 residues) - , potassium salts dry bromide Tet formate Tet iodide Tet wet (10% H2O) acetate Tet bicarbonate Tet
8.704
z
Crystal.
Amorph."
Chain conform. (n*p/q) Refs.
b
D2-4 D2-4 D2-4
Angles
Heat of fusion kj/mola
a
Ortho Ortho Ortho
c
Melting point (°C)a
D2-4
17.24
D2-4
14.57
13.28
15.96
8
1.392
5*4/1
1302
D2-4
13.92
13.92
15.80
8
1.255
5*4/1
1302
20.26
35.10
18.46
30
1.254
5*5/1
1301
23.44
27.85
18.80
20
1.122
5*5/1
1301
D2-4 D2-4 D2-4 D4-4
27.0 13.20 13.70 22.9
26.4 27.00 25.80 22.9
7.92 8.10 7.8
24 12 12 16
5*6/1 5*6/1 5*6/1 5*8/1
1156 1246 1246 1247
D2-4 D2-4
19.17 19.21 30.23
19.17 19.21 28.18
24.39 8.12 7.91
36 12 14
5*18/ 5*6/1 5*7/1
649 667 1245
D2-4 D2-4
18.87 13.0
18.87 23.0
7.99 8.05
12 12
5*6/1 5*6/1
1248 646
D2-4
13.1 12.1 12.3 12.7 12.7 12.4 12.97
22.6 22.6 22.6 22.6 22.6 22.6 12.97
9.0 8.8 8.9 9.0 9.0 8.9 7.91
12 12 12 12 12 12 6
D4-8 D4-8 D4-8
10.2 10.2 10.5
10.2 10.2 10.5
16.4 16.4 15.9
8 8 8
5*4/1 5*4/1 5*4/1
661 661 661
D4-8 D4-8
10.8 10.8
10.8 10.8
16.1 15.8
8 8
5*4/1 5*4/1
661 661
with:
650 650 650 650 650 650 651
1.77
References page VI-159
TABLE 12. cont'd Density (g/cm3)
Unit cell parameters Polymer bromide formate iodide atm. dried acetate propionate PoIy(1,4-(3-D-glucose) 1.(162.14)
(a) (P) II.
(monohydrate)
III.
IV.
X. -, dinitrate (252.14) -, sodium 1.(1:1:2) (238.17) IV. (2:2:1) (171.15) -, triacetate 1.(288.25) II.
Cryst syst.
Space group
Tet Tet Tet
D4-8 D4-8 D4-8
Ortho Ortho [cellulose] Mono Mono Mono Mono Mono Mono Tri Mono Mono Mono Mono Tri Mono Mono Mono Mono Tri Mono Mono Mono Mono Mono Mono Mono Mono Mono Mono Mono Mono
C2-2 Cl-I C2-2
C2-2 C2-2 C2-2 C2-2 C2-2 C2-2
Mono Ortho Mono Mono
b
c
10.7 10.8 10.7
10.7 10.8 10.7
16.1 16.1 16.1
8 8 8
11.0 11.4
18.1 18.0
17.9 17.6
16 16
8.35 8.20 16.78 8.171 10.85 16.78 9.41 16.34 7.78 16.43 8.34 6.74 8.01 8.14 8.02 7.917 8.97 8.02 15.7 9.09 4.46 7.94 9.04 15.92 8.00 7.74 10.25 7.78 8.12 7.9 8.068 8.01 8.10 8.12
7.9 7.90 15.88 7.846 12.08 15.88 8.15 15.72 8.20 15.70 7.71 5.93 8.17 9.14 9.03 9.083 7.31 8.99 18.4 7.96 7.25 9.12 9.63 18.22 9.05 9.9 7.78 9.92 7.99
10.3* 10.3* 10.58* 10.34* 10.3 * 10.3* 10.34 10.38 10.34 * 10.33 10.37 10.36 10.36 10.3* 10.3* 10.34* 10.34* 10.36* 10.3* 10.31 10.34* 10.30* 10.34 10.31 10.38 10.3* 10.34 10.30* 10.3* 10.3* 10.3* 10.34 10.3* 10.3*
7.946 8.12 8.16 7.99
13.9 Port
C2-2
Mono
Ortho Ortho Ortho Port
dry -, -, nitromethane complex Tet -, tributyrate (372.41) Ortho -, tricaprylate (540.74) -, tricarbanilate (519.51)
C2-2 C2-2
a
Ortho
C2-2 D2-4 C2-2
7 = 96 7 = 96.7 7 = 98 7 = 96.4 7 =1.59 7 = 98 90,58,96 /?= 97 7 = 96.5 7 = 97.0 7 = 97.6 117,113,81 7 = 97.3 7=118 7 = 117.2 7=117.3 7 = 99.4 7 = 116.6 7 = 117 7=117.3 7 = 98.6 7=116.33 7=116 7=117 7=116.8 7=122 7=122.4 7=122 7 = 90 7 = 90 7 = 101.7 7 = 90
z
Crystal.
Amorph.a
Heat of Chain fusion conform. kj/mola {n*p/q) Refs. 5*4/1 5*4/1 5*4/1
25.28
10.29
9.57
8.72
10.35
44.3 23.63 24.68 24.5 24.6
13.45 6.27 11.52 11.56 11.4
10.47 10.43 10.54 10.43
21.15
21.15
41.36
31.3
25.6
10.36
16.7
15.25
661 661 661 661 661
4 4 16 4 8 16 4 16 4 16 4 2 4 4 4 4 4 4 16 4 2 4 4 16 4 4 4 4 4
1.59 1.625 1.543 1.635 1.598 1.585 1.624 1.628 1.643 1.629 1.629 1.586 1.601 1.592 1.623 1.630 1.610 1.612 1.625 1.624 1.629 1.611 1.479 1.617 1.605 1.61 1.547 1.597 1.612
4 4 4 4
1.63 1.601 1.615 1.612
5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1 5*2/1
8.0
8.83
28.6
Angles
Melting point (°C)a
22 98 1249 28 709 805 841 852 1149 1250 1576 1577 1577 22 98 28 708 842 884 889 1150 1151 1152 1303 1578 28 890 1151 98 239 28 1153 98 218 24
7=122.0
8
1.377
5*2/1
1445
4
1.552
5*2/1
1446
16 4 8 8
1.228 1.239 1.278 1.296
5*2/1 5*2/1 5*2/1 5*2/1
1148 938 962 4 1251
306/114
1252 16
6
1.192
1.105
207/118 206/46
12.6/118 5*2/1
116/117
13.0/117 5* 5*3/1
1148
1148
TABLE 12. cont'd Density (g/cm3)
Unit cell parameters Polymer (4 MEK/residue) -, triethyl(246.30) - , trimethyl1.(204.22) II. - , trinitrate (297.13) -, tripropionate (330.34)
Cryst syst.
Space group
b
c
15.64
27.09
15.0
18
1.158
5*3/1
1148
4.64 4.64
43.2 43.2
10.43 10.42
8 8
1.298 1.299
5*2/1 5*2/1 5*3/1
1136 1148 1148
Ortho Ortho
12.25 9.0
9.0 14.6
25.4* 25.4
10 10
1.762 1.48
697/77 700/81
5*5/1 5*5/2
24 1147
Ortho
31.6 11.0
22.1 15.4
15.0
24
1.257
234/144
5*3/1
1148 1348
Ortho Port
C2-2
- , 2.44-nitrate PoIy(1,4-p-D-glucose), complexes with: - , dimethyl-1,3-propanediamine (1:2) Mono - , ethylenediamine 1.(1:1) Mono C2-2 (1:2) -, heptamethylenediamine (1:2) - , hexamethylenediamine (1:2) -, hydrazine 11.(1:1) Mono C2-2 (1:2) - , octamethylenediamine (1:2) -, pentamethylenediamine (1:2) -, NaOH/H2O 11.(1:1) Hex -, trimethylenediamine (1:2) Poly(l,6-a-D-glucose) [dextran] (162.14) Mono C2-2 (high temp.) Poly(l,4-a-L-guluronic acid) (176.12) Ortho D2-4 (monohydrate) Ortho D2-4 Poly( 1,3-a-D-mannose) (dihydrate) Mono C2-2 (162.14) Poly (1,4- p-D-mannose) 1.(162.14) Ortho D2-4 Ortho II. Mono (4H2O/cell) Ortho D2-8 - , triacetate (288.25) -, trimethylOrtho Poly(1,4- p-D-mannuronic acid) (176.12) Ortho D2-4 PoIy(1,3-P-D-xylose) [xylan] (132.12) Hex (monohydrate) Hex C6-4 PoIy(1,4-P-D-xylose) [hardwood xylan] I. dry Hex (132.12)
z
Crystal.
Amorph."
Heat of Chain fusion conform. kj/mol" (n*p/q) Refs.
a
Ortho
Angles
Melting point (0C)"
617/81
3.86.3/77
5.65/81
33.64
30.40
10.26*
7 = 32.74
16
1.00
5*2/1
1255
12.87 12.2
9.52 12.3
10.35 10.3*
7=118.8 7 = 43.23
4 4
1.328 1.394
5*2/1 5*2/1
1154 1270
18.4
17.4
7 = 29.23
4
1.20
5*2/1
1270
17.2
15.9
10.3*
= 32.35
4
1.226
5*2/1
1270
19.88 9.96
10.39 (10)*
7 = 120 7 = 54.80
8 4
1.539 1.59
5*2/1 5*2/1
1154 1270
19.1
17.9
(10)*
7 = 28.52
4
1.21
5*2/1
1270
16.6
15.3
10.1*
7 = 32.92
4
1.259
5*2/1
1270
10.0
10.0
15.1
6
1.677
5*3/1
1155
9.37 9.68
(10)*
7
10.2* 9.22
9.22
7.78
7.75 8.6
10.6 10.74
11.29
7.21 8.92 8.87 18.8 8.91
1270 /? = 91.3
4
1.631
5*2/1
1129
8.7* 8.72*
4 4
1.64 1.60
5*2/1 5*2/1
674 673
18.12
8.40
8
1.560
4*2/1
1356
8.82 7.21 7.29 18.7 16.46
10.27* 10.21 10.19 10.2* 10.3
4 4 4 16 8
1.65 1.640 1.634 1.43 1.505
5*2/1 5*2/1 5*2/1 5*2/1 5*2/1
636 1141 1355 636 1583
5*3/1
672
7=122.5
15.24 4.75 7.58
40.1 8.58
10.30
8
1.383
5*2/1
1304
10.35*
4
1.738
5*2/1
673
13.7 15.4
13.7 15.4
5.85* 6.12
6 6
1.384 1.190
4*
654 788
8.8
8.8
14.85*
6
1.32
5*3/1
671
References page VI-159
TABLE 12. cont'd
c
Angles
z
Density (g/cm3) — Crystal. Amorph.a
14.85 14.84 14.95
7 = 120
6 6 6
1.386 1.387 1.392
Unit cell parameters Polymer (monohydrate) (150.13) (dihydrate) (168.15) II. -, diacetate (216.19) a b
Cryst syst.
Space group
Hex Phex Hex
D3db Cl-I
Ortho Mono
a 9.16 9.16 9.64 11.5
C2-2
7.64
b 9.16 9.16 9.64
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs. 5*3/1 5*3/1 5*3/1
14.4 12.44
671 655 671 1134
10.31
7 = 85
4
1.471
5*2/1
656
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
TABLE 13.
OTHERPOLYMERS Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
Polyaniline, see Poly(p-phenylene amine) Poly(barium sebacate) (337.58) Tet 8.04 8.04 Poly(barium suberate) (309.52) Tet 7.88 7.88 Poly (4,4'-biphenylenedioxy 4,4/-diphenylene ketone) [PEDEK] (364.40) Ortho 7.72 5.94 Poly [4,4' -biphenylenedioxy)-diphenylene-m-phenylene diketone] (468.51) Ortho 7.85 6.05 Poly(cadmium sebacate) (312.64) Tet 10.16 10.16 Poly(cadmium suberate) (284.58) Tet 8.32 8.32 Poly(calcium sebacate) (240.32) Tet 8.20 8.20 Poly(calcium suberate) (212.26) Tet 7.72 7.72 Poly (carbon monoxide-a/f-ethylene) [Poly(propanone-l)] a Ortho D26-16 6.91 5.12 (56.06) P Ortho D2h-16 7.97 4.76 (at 1400C) Ortho D2h-16 8.24 4.74
c
Angles
Amorph.a
Melting point (°C)a
Chain conform. (n*p/q) Refs.
z
Crystal.
15.24
4
2.276
13*1/1
1186
11.53
4
2.871
11*1/1
1186
37.5
4
1.407
19*2/1
1596
47.7
4
1.374
23*2/1
1594
15.59
4
1.290
13*1/1
1186
12.16
4
2.246
11*1/1
1186
15.59
4
1.523
13*1/1
1186
12.16
4
1.945
11*1/1
1186
7.60
4
1.383
3*2/1
1586
3*2/1 3*2/1
193 1586
10*1/1
1439
425
278 12.6/1587
7.57 7.58
4 4
1.296 1.256
185 244/929
Poly [4,4 '-(carbonyldiphenylenedioxy)-diphenylene 2/5 repeat Ortho (198.61) Poly(decamethylene amine) -, Af,yV-dimethyl-, -, salt with ("Ionene") FeCl4 Hex SbF6 Hex Poly(dimethyl ketene) I. (ketone) a Ortho C2v-9 (70.09) (3 II. (ester) (140.18) Poly(ethylene amine) anhydrate Ortho D2h-24 (43.07) hemihydrate Mono C2h-6 (52.08) sesquihydrate Mono C2h-6 (70.09)
Heat of fusion kj/mola
p-phenylene diketone] 7.74 6.04 10.05
2
1.404
370
9.71 9.71
9.71 9.71
11.04 11.04
2 2
1.548 1.548
274 274
12.85
6.53
8.80 8.8 4.40
8
1.261
255/130 250
7.49/929
1405 1405
8*1/1 2*2/1
432 179 456
3*5/1
1107
170/179 180/248 29.8
17.2
4.79
Double
40
1.165
58/738
10.89
9.52
7.31
/9=127.6
8
1.152
3*2/1
1108
11.55
9.93
7.36
/3=104.5
8
1.139
3*2/1
1106
TABLE 13. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
dihydrate Mono C2h-6 (79.10) -, iV-benzoyl(147.18) - , - , p-chloro(181.62) Tri -, Af-butyryl(113.16) -, -, 4-(4-methylthiophenoxy)(251.34) Tri -, N-heptanoyl(155.24) Tri -, Af-hexanoyl(141.21) Tri -, N-isobutyryl(113.16) -, AMsovaleryl(127.19) Tri -, iV-octanoyl(169.27) Tri -, iV-p-toluoyl(161.20) Tri -, Af-valeryl(127.19) Tri Poly(ethylene amine), complexes with: -, acetic acid (1:1) (103.12) Mono C2h-2 -, HCl (1:1) (79.53) Ptet -, oxalic acid and water (2:1:2) (105.09) Ortho D2h-7 Poly(ethylisocyanide) -, a-phenyl(131.18) Phex Poly(germylene) -, di-n-hexyl(242.93) Ortho Poly(germoxane) - , phthalocyaninato(601.12) Tet C4h-1 - , -, iodine complex (1:1.12) Tet D4h-2 Poly(hexamethylene amine) - , iV,W-diethyl-, - , salt with ("Ionene") ZnBr4 Tet -, N,N-dimethy\-, -, salt with ("Ionene") BF 4 Hex CdI4 Tet CF 3 O 3 Hex FeCl4 Hex HgI 4 Tet PF 6 Hex SbF 6 Hex ZnBr4 Tet Zncl4 Tet ZnI 4 Tet Poly(hydroxymethylene) (30.03) Poly (1 -hydroxy trimethylene) (58.08)
a 13.26
4.74
b
c
Angles
z
Crystal.
4.61
7.36
0= 101.0
4
1.190
14.8
6.55
88,86,99
2
1.334
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs. 3*2/1
210/747
3*
285/747
3*2/1
155/747
3*
1106
746
4.35
24.0
12.7
90,90,90
4
1.259
105
3*4/1
739
5.0
17.7
6.4
85,62,98
2
1.06
175/747
3*2/1
746
4.9
15.9
6.4
87,64,95
2
1.06
175/747
3*2/1
746
210/747
3*
746
6.4 4.7
13.0
6.4
80,82,88
2
1.11
210/747
3*2/1
746
5.03
19.9
6.3
91,60,97
2
1.04
165/747
3*2/1
746
4.84
14.8
6.61
91,78,99
2
1.172
260/747
3*2/1
746
4.7
14.4
6.4
86,73,97
2
1.03
172/747
3*2/1
746
7
= 95
2
1.302
135
3*2/1
1392
5.76
6.20
7.39
5.06
5.06
7.57
2
1.362
265/1423
3*2/1
1366
6.65
10.05
7.32
4
1.427
240
3*2/1
1428
14.92
14.92
10.33
10
1.078
1*10/
863
15.65
21.46
4.06
4
1.183
1*2/1
1635
13.27
13.27
3.53
1
1.606
2*1/1
1205
13.96
13.96
6.96
2
1.820
2*2/1
1206
9.81
9.81
13.88
4
1.734
7.54 9.78 7.90 8.04 9.82 7.75 7.90 9.52 9.36 9.64
7.54 9.78 7.90 8.04 9.82 7.75 7.90 9.52 9.36 9.64
11.95 13.75 13.06 13.10 13.54 11.96 12.58 13.46 13.07 13.89
2 4 2 2 4 2 2 4 4 4
1.214 2.213 1.305 1.476 2.454 1.458 1.807 1.746 1.345 2.134
93,90,118
1405
276 261 207 220 242 233 235
1405 1405 1405 1405 1405 1405 1405 1405 1405 1405
233
2.5
1*2/1
338
6.89
3*
758
References page VI-159
TABLE 13. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
c
Angles
z
Poly(lead sebacate) (407.44) Tet 7.73 7.73 17.42 4 Poly(lead suberate) (379.38) Tet 7.64 7.64 13.66 4 Poly(magnesium sebacate) (224.54) Tet 8.26 8.26 13.11 4 Poly(magnesium suberate) (196.49) Tet 8.76 8.76 11.23 4 Poly(manganese sebacate) (255.17) Tet 7.92 7.92 14.56 4 Poly(manganese suberate) (227.12) Tet 7.52 7.52 11.83 4 Poly(6-mercaptocaproic acid) (130.21) 17.8 Poly(octamethylene-5,5'-dibenzimidazole) (344.46) 21 Poly(2,5-octamethylene-1,3,4-triazole) - , 1-amino- (triazole) (194.28) 25.5 Poly(oxybisdimethylsilylene) 11.(102.24) Ortho 8.66 11.94 3.9 2 III. Ortho 7.92 13.72 3.9 2 Poly(4,4'-oxydiphenylene 4,4'-biphenylene diketone) [PEKDK] (376.41) Ortho 7.64 6.09 38.00 4 Poly(4,4'-oxydiphenylene ketone) [PEK] (196.20) Ortho 7.63 5.96 10.0 2 Ortho D2h-4 7.65 5.97 10.09 2 Ortho 7.76 6.00 10.01 2 Poly(4,4'-oxydiphenylene m-phenylene diketone) [PEKK(I)] (300.31) Ortho 7.66 6.11 15.76 2 Poly(4,4'-oxydiphenylene p-phenylene diketone) [PEKK] I. 2/3 repeat Ortho 7.69 6.06 10.16 2 (200.21) Ortho 7.67 6.06 10.08 2 II. Ortho 4.17 11.34 10.08 2 Ortho 3.93 5.75 10.16 1 Ortho 4.2 11.3 10.1 2 Poly[(4,4'-oxydiphenylene p-phenylene diketone)-a/f-(4,4'-oxydiphenylene m-phenylene diketone)] 1.(600.62) Ortho 7.78 6.10 31.13 2 II. Ortho 4.17 11.08 31.13 2 III. Ortho 6.41 6.10 35.04 2 Poly(/?-phenylene amine) [aniline] -, emeraldine base 11.(181.22) Ortho 7.80 5.75 10.05 2 Ortho 11.34 5.75 7.56 2 -, -, complex with doecylbenzenesulfonate Ortho D2h-13 11.78 17.91 7.16 2 -, emeraldine salt (HCl) 1.(217.68) Port 4.3 5.9 9.6 1 II. Ortho 7.0 8.6 10.4 2 Poly [4,4 '-(p-phenylenedioxy)-diphenylene diketone] 2/3 repeat Ortho D2h-14 9.96 4.78 10.7 2 (210.88) Poly [4,4'-(/?-phenylenedioxy)-diphenylene ketone] [PEEK] 2/3 repeat Ortho 7.75 5.86 10.0 2 (192.20) Ortho D2h-14 7.75 5.89 9.883 2 Ortho D2h-14 7.781 5.922 10.06 2 Ortho D2h-14 7.83 5.94 9.86 2 Mono 7.767 5.911 9.878 2 Ortho 7.76 5.89 9.95 2 full repeat Ortho D2h-14 7.88 5.94 30.50 4 (288.30) Ortho D2h-14 7.83 5.94 29.58 4 (at291°C)
Ortho
8.048
5.975
9.856
2
Crystal.
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
2.600
13*1/1
1186
3.160
11*1/1
1186
1.667
13*1/1
1186
1.514
11*1/1
1186
1.856
13*1/1
1186
2.255
11*1/1
1186
106
7*2/1
428
18*1/1
470
258/610
11*2/1
610
52
3*1/1 3*1/1
1618 1618
19*2/1
1595
10*1/1 10*1/1 10*1/1
1113 1274 1439
1.352
14*1/1
1592
1.404 1.419 1.395 1.448 1.39
10*1/1 10*1/1 10*1/1 10*1/1 10*1/1
1590 1591 1439 1590 1591
1.350 1.387 1.456
29*1/1 29*1/1 29*1/1
1597 1597 1597
1.335 1.221
10*1/1 10*1/1
1612 1613
1.114
10*1/1
1613
1.48 1.15
10*1/1 10*1/1
1612 1612
1.375
10*1/1
1444
10*1/1 10*1/1 10*1/1 10*1/1 10*1/1 335 10*1/1 338/1383 46/1383 15*2/1 351589 15*2/1 395 37.5 10*1/1
1113 1114 1115 1305 1438 1439 1194 1305 1116 1438
0.80 0.84 1.413 1.433 1.414 1.398
1.405 1.415 1.378 1.392 1.407 1.404 1.341 1.392 1.401 1.347
1.272
367 367/1117 365
385
1.265 1.264
1.263
335 384/1117
TABLE 13. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
c
Angles
- , methyl- (dioxy) (302.33) Poly [4,4'-(/?-phenylenedioxy)-diphenylene 4,4'-oxydiphenylene diketone] [PEEKEK] 2/5 repeat Ortho 7.79 5.94 9.96 (193.80) Poly[4,4 '-(/?-phenylenedioxy)-diphenylene m-phenylene diketone] [PEEKmK] (392.41) Ortho 7.71 6.05 39.9 Ortho D2h-14 7.747 6.086 19.87 Poly [4,4 '-(/?-phenylenedioxy)-diphenylene p-phenylene diketone] [PEEKK] 1/2 repeat Ortho 7.80 6.01 10.01 (196.20) Ortho 7.79 6.025 10.08 Poly(p-phenylene disiloxyanylene) - , tetramethyl(208.41) Tet 9.08 9.08 15.38 Tet D4-8 9.02 9.02 15.43 Poly(phosphazene) - , bis(P-naphthoxy)(331.31) 22.4 13.9 7 = 93 - , bis(4-n-butylphenyl)azophenoxyethoxy(639.74) Ortho 35.7 17.85 9.85 - , bis(2,2,3,3,4,4,4-heptafluorobutoxy)(443.08) Ortho 27 12.85 9.48 - , bis(2,2,3,3,3-pentafluoropropoxy)1.(343.06) Mono 20.75 15.22 4.74 7 = 44.6 II. Ortho 23.96 10.77 4.64 - , bis(phenoxy)oc 4.9 (231.19) Mono 16.6 13.8 9.70 7-83 Y 19.2 11.5 9.70 5 Phex 12.9 12.9 - , - , di-m-bromooc Mono 23.7 10.0 4.85 7 = 86 (388.98) Y Ortho 23.7 11.0 4.85 - , - , di-/?-bromo Y Ortho 21.7 12.9 4.90 (388.98) - , - , di-m-chlorooc Mono 23.8 10.3 4.85 7 = 86 (at 18O0C) Phex 14.2 14.2 (300.08) - , - , di-p-chloroY Ortho D2-4 13.08 20.23 4.90 (300.08) Ortho 20.5 13.1 4.80 (at 1800C) Phex - , - , di-2,4-dichloro(368.97) Mono - , - , di-3,4-dimethyl(287.30) Port Ortho - , - , di-p-ethyl(287.30) Mono - , - , di-ra-fluorooc Mono (267.17) Y Ortho - , - , di-p-fluorooc Mono (267.17) P Mono
14.2
14.2
21.6
16.5
4.86
C2-2 D2h-14
15.85 20.5
19.43 14.9
9.85 9.98
C2-2
30.1
22.1
9.88
7=111.5
26.2
20.1
4.85
7 = 86
25.7
20.2
4.85
26.4
19.2
4.91
18.9
13.2
4.90
z
Crystal.
Amorph.a
Melting point (°C)fl
Heat of fusion kj/mola
1.348 2
1.396
4 2
1.400 1.3911
2 2
1.388 1.378
4 4
1.092 1.103
Chain conform. (n*p/q) Refs.
22.3 340
360
0.985/787
148/225 160/787
1588 10*1/1
1439
19*2/1 19*1/1
1593 1640
10*1/1 10*1/1
1439 1640
18.2/225 7*2/1 11.3/787 7*2/1
1387 8
1.354
2*4/21
1442
8
1.79
4*2/1
1611
4 4
2.168 1.903
2*2/1 2*2/1
1610 1610
8 8
1.392 1.434
2*4/1 2*4/1
552 1314 1314 1314
4
2.253
2*2/1
1607
4
2.043
2*2/1
1607
4
1.884
420
2*2/1
1607
4
1.808
290
2*2/1 2*
1607 870
4 4
1.537 1.546
405/553 390 360/1387
2*2/1 2*2/1
822 1607
390/909
320
2* 7 = 94
115 897
4
1.418
8 8
210/553
870
2*2/1
1185
1.258 1.252
2*4/1 4*2/1
1111 1600
16
1.248
4*2/1
1604
8
1.393
2*2/1
1607
8
1.410
2*2/1
1607
7 = 86
8
1.430
2*2/1
1360
7 = 77
4
1.490
2*2/1
1306
260
365/1387
References page VI-159
TABLE 13. cont'd Density (g/cm3)
Unit cell parameters Polymer y
Cryst syst.
Space group
a
b
27.3 13.5 26.4
19.5 13.5 19.2
C2-2
24.55
19.56
5.56
D2-4
33.24 31.4
22.69 11.4
9.80 9.92
23.9
17.9
9.83
24.7 22.1 14.4
19.8 20.1 14.4
9.83 9.63
D2h-15
14.52 28.9
18.62 18.6
C2v-9
41.8
18.3
Ortho Hex Ortho
- , -, di-jp-isopropyla Mono (315.35) P Mono Ortho - , - , di-p-methoxya Ortho (291.24) P Mono Y Ortho 5 - , - , di-p-methyl(259.24) Ortho Ortho -, -, di-p-phenyl(383.39) Ortho
-, bis(2,2,3,3-tetrafluoropropoxy)1.(307.08) Mono - , bis(2,2,2-trifluoroethoxy)ot Ortho (243.04) p Mono Mono Y Ortho Ortho 5 Hex -, dichloro(115.89) Ortho C2v-9 Ortho Ortho Mono C2h-5 - , difluoroa Ortho (83.04) Ortho p Ortho C2v-12 -, dimethylex Ortho (75.05) Ortho Mono C2h-5 p -, diphenyla Ortho (199.19) Mono P Y Ortho 5 Hex Poly (1,4-piperidinediyl-trimethylene) - , 2,6-dioxo(153.18) Tri Poly(siloxane) - , diethyla-1 Mono (at 193 K) (102.21) a-2 Mono (at 230K) P-I Tet
c
Angles
z
Crystal.
4.75
8
1.404
4.85
8
1.444
7=101.0
6
1.199
7=109.2
16 8
1.200 1.180
12
Amorph.a
Melting point (°C)a
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs. 2*2/1 2* 2*2/1
1387 1306 1607
2*3/1
1307
2*4/1 4*2/1
1307 1606
1.380
4*2/1
1605
12 12
1.234 1.357
4*2/1 4*2/1
1605 1605 1605
4.87 9.95
4 16
1.308 1.288
417/1387
2*2/1 4*2/1
1110 1598
9.57
16
1.391
205 398/553
2*4/1
1349
4
2.018
2*2/1
1609
2
1.748
2*2/1
2 2 4 4 3?
1.767 1.764 1.715 1.732 2.031?
2*2/1 2*2/1 2*2/1 2*2/1 2*2/1
1185 552 1112 1608 1217 1608 1217
8 8 8 4
2.222 2.168 2.169 2.168
2*2/1 2*2/1 2*2/1 2*2/1
56 1109 1109 1326
2*3/1 2*3/1 2*2/1
1218 1218 1218
2*2/1 2*2/1 2*2/1
1349 1599 1603
1601 1602 1602 1602 1602
7=102
370
120
7=120
24.4
9.96
4.96
10.16
9.35
10.03 10.17 20.60 20.64 11.90
9.37 9.26 9.40 9.29 11.90
4.86 4.8 4.86 4.86 4.86 4.86 4.86
12.72 12.99 13.01 5.98
11.07 11.11 11.09 12.99
4.92* 4.92 4.92 4.92
21.43 11.75 8.69
5.83 11.25 5.38
6.49 6.49 4.86
12 12 4
2.041 1.929 2.427
13.9 13.90 6.345
5.98 5.98 13.80
4.9 4.73 4.887 5.85
/?= 110.4
4 8 4
1.22 1.268 1.2427
9.9 10.1
12.5 10.1
7=101
4 4
1.09 1.328
4*2/1 4*2/1
19.9 12.8
10.5 12.8
8
1.273
4*2/1
9.8 9.95 12.5 9.95
7=123
7 = 91 7 = 91
/J= 111.7
9.64
11.32
15.80
98,98,114
8
1.326
14.15
8.75
4.72
7 = 29.8
2
1.169
14.59
8.90
4.75
7 = 29.66
2
1.112
7.83
7.83
4.72
2
1.173
240/553
1.91
146/1387 143/1350 146 76
281
0.99
7 7
7*2/1
481
2*2/1
1266
2*2/1
1266 1196 1266
1.74 2*2/1
TABLE 13. cont'd Density (g/cm3)
Unit cell parameters Polymer
Cryst syst.
Space group
a
b
c
7.90
7.90
4.72
Mono
14.75
8.89
4.88
Mono
13.0
7.75
8.3*
Tet Ortho Mono
C2-1
10.2 20.10 21.33
10.2 10.51 9.91
9.9 10.24 20.3
Tet
C4-2
9.52
9.52
21.06
Angles
Amorph."
Melting point (0C)*
Heat of fusion kj/mola
Chain conform. (n*p/q) Refs.
17/518 17 57
2.64/518 2*2/1 2.15 2*2/1
1266 1196 1266
-40/517 -40/631
2.72/517 2*3/1
197
230/907 1.300
8.0/907
2*4/1 2*4/1 4*2/1
1656 1275
2*4/1
518 1195
z
Crystal.
2
1.152
7 = 31.24
2
1.023
7=120
6
1.02
4 8
1.279 1.218 16
9.40
4
1.016
10.53
10.36
8
1.172
2*4/1
1275
21.04
10.86
9.97
8
1.238
2*4/1
1275
13.80
27.59
6.66
4
1.458
2*2/1
1205
13.97
13.97
6.60
2
1.666
2*2/1
1206
13.97
13.97
6.60
2
1.802
2*2/1
1206
13.23 13.4
22.92 13.4
13.88
14
0.864
1*7/3
1614 1614
12.84 13.3
22.24 13.3
13.9
14
0.828
1*7/3
1396 1617
21.4 19.1
24.9 19.1
7.8
8
0.99
4*1/1
1617 1617
22.0 20.8
25.8 20.8
7.8
8
1.10
4*1/1
1617 1617
11.08 10.9 10.7
12.10 11.6 12.4
3.99 3.86 3.87
4 4 4
1.070 1.173 1.115
1*2/1 1*2/1 1*2/1
1400 1632 1632
14.68 16.2
27.38 16.2
4.02
4
0.931
1*2/1
1414 1617
13.75 13.76
21.82 23.86
4.07 3.99 4.00
7 = 88
4 4
1.080 1.006
1*2/1 1*2/1
15.5
15.5
1309 1615 1308 1617
3.88 3.88
7 = 91
4 2
1.022 0.947
1*2/1 1*2/1
1413 1413
(at 193K) (3-2 (at 233 K) mesomorphic (at 290 K) -, dimethyl(74.16) - , diphenyl1.(198.30) II. - , dipropyl(130.26)
Tet
- , pentaphenyl-p-toluyltri- (averaged) (202.77) Ortho -, phenyl-p-toluyl(212.32) Ortho -, phthalocyaninato(556.62) Ortho D2h-26 - , - , bromine complex (1:1.12) Tet D4h-2 -, - , iodine complex (1:1.12) Tet D4h-2 Poly(silylene) -, n-butyl-fl-pentyl1.(156.34) Ortho II. (at 1000C) Hex -, di-n-butyl1.(142.32) Ortho II. Phex - , di-n-decyl1.(310.64) Ortho II. Phex - , di-n-dodecyl1.(366.75) Ortho II. Phex - , diethyl(86.21) Ortho (at-2O 0 C) Ortho (at 6O0C) Ortho - , di-/z-heptyl1.(226.48) Ortho II. Phex -, di-n-hexylL(RT) Mono (198.43) Ortho C2v-9 Mono II. Phex - , dimethyl(58.16) Mono (at 1600C) Hex - , di-/*-nonyl1.(282.59) Ortho II. Phex - , di-n-octyl1.(254.53) Ortho II. Ortho III. Phex
12.18 7.79
8.00 7.79
7 = 108.9
0.98
74 3.03 148 5.8 206/1260
387/1416
20.5 18.4
25.1 18.4
7.8
8
0.94
4*1/1
1617 1617
16.4 20.1 17.9
26.4 21.7 17.9
4.0 7.8
4 8
0.98 0.99
1*2/1 4*1/1
1617 1617 1617
References page VI-159
Next Page
TABLE 13. cont'd Density (g/cm3)
Unit cell parameters Polymer - , di-n-pentyl1.(170.37)
II. III. - , diphenyl(182.30) - , di-n-propyl(114.26) - , di-«-tetradecyl(422.86)
Cryst syst.
Space group
b
Chain conform. (n*p/q) Refs.
b
c
Angles
z
Phex Mono
13.76 13.9
23.83 24.5
13.8 13.9 13.8
7=120 7-120
14 14
1.011 0.966
1*7/3 1*7/3 1*7/3
Hex Ortho
14.3 13.7
14.3 21.4
4.0
4
0.96
1*2/1
1414 1616 1325 1616 1616
Ptet
22.96
22.96
7.02
16
1.309
1*4/1
927
Tet
9.80
9.80
3.99
2
0.990
1*2/1
1400
29.78 21.5
21.37 29.5
7.84 7.9
8 8
1.126 1.12
4*1/1 4*1/1
1414 1617
21.6 20.5
25.0 20.5
7.8
8
1.07
4*1/1
1617 1617
14.1 15.3
25.0 15.3
4.0
4
1.00
4*1/1
1617 1617
9.6
13.1
4.0
4
1.14
1*2/1
1617
14.7 14.9
25.4 14.9
4.0
4
0.95
1*2/1
1617 1617
12.2
12.2
- , di-n-undecyl1.(338.79) Ortho II. Phex - , n-hexyl-tt-heptyl1.(212.45) Ortho II. Phex - , methyl-n-propyl(86.21) Ortho - , n-pentyl-n-hexyl1.(184.40) Mono II. Phex - , rt-propyl-n-pentyl(142.32) Hex Poly(stannous sebacate) (318.92) Tet Poly(stannous suberate) (290.87) Tet Poly(stannyloxane) - , phthalocyaninato(647.22) Tet C4h-1 Poly(styrene-
Amorph.fl
Heat of fusion kj/molfl
a
Ortho Ortho
7=120
Crystal.
Melting point (°C)a
>221
1614
8.92
8.92
13.62
4
1.955
13*1/1
1186
7.78
7.78
11.53
4
2.768
11*1/1
1186
12.81
12.81
3.82
1
1.714
2*1/1
1205
3*2/1
1469
8.367
5.47
7.574*
7=110
2
1.347
15.5 15.20
6.15 6.166
7.56 7.59
/3=105 /3=102.5
4 4
1.261 1.264
1.200
3*2/1 3*2/1
1467 1468
15.59
6.168
7.551
/3 = 98.8
4
1.3900
1.306
3*2/1
1468
16.14
6.816
7.580
/3= 100.3
4
1.1835
1.150
3*2/1
1468
35.54
6.262
7.536
/3= 96.0
8
1.1642
1.133
3*2/1
1468
7.92
7.92
13.25
4
2.122
13*1/1
1186
8.68
8.68
10.69
4
1.959
11*1/1
1186
The number after the solidus (/) are reference citations. The unit cell parameter assignment has been changed from that published so as to make c the fiber axis.
Previous Page
C. MELTING POINTS OF POLYMERS In the following table of melting points, entries are alphabetical according to the basic structure of the polymer, ignoring substituents. Substituted polymers are listed alphabetically (according to the substituent) under the entry for the unsubstituted polymer. The molecular weight is that of the chemical repeat (the constitutional base unit) in the polymer. Melting points (in 0C) are taken
Polymer Cellulose, see Poly (1,4-P-D-glucose) Poly(acetaldehyde) -, 2,2,2-trichloroPoly(acrylamide) -, JV-docosyl- , N-dodecyl- , N-hexadecyl- , N-isopropyl- , W-octadecyl- , N-tetradecylPoly(acrylic acid) - , allyl ester -,butyl ester - , sec-butyl ester -, tert-butyl ester - , decyl ester -, - 1,1-dihydroperfluoro-, docosyl ester -, dodecyl ester -, hexadecyl ester -, isobutyl ester - , isopropyl ester - , octadecyl ester - , octyl ester - , - , 1,1-dihydroperfluoro- , tetradecyl ester Poly(acrylonitrile) - , a-ethyl- , a-isopropyl- , a-propylPoly(2,2/-adipamidodibenzoic isophthalic anhydride) Poly (4,4'-adipamidodibenzoic isophthalic anhydride) Poly(2,2/-adipamidodibenzoic terephthalic anhydride) Poly(4,4/-adipamidodibenzoic terephthalic anhydride) Poly(adipic anhydride) Poly(adipoyl dithionisophthaloyldihydrazide) Poly(adipoyl ethylenediurea) Poly(adipoyl octamethylenediurea) Poly(adipoyl pentamethylenediurea) Poly((3-alanine), see poly(3-aminopropionic acid) Poly(allene) - , tetrafluoroPoly(allylbenzene), see Poly(propene), 3-phenylPoly(2-aminoacetic acid), see Poly(glycine) Poly(m-aminobenzoic acid) Poly(p-aminobenzoic acid) Poly(3-aminobutyric acid) Poly(4-aminobutyric acid) PoIy(10-aminocapric acid) Poly(6-aminocaproic acid) [caprolactam] - , D-(-)-3-methyl- , 6-methyl-
from the reference cited. Melting points are presented in this table only for those polymers without (as yet) available crystallographic data: an asterisk (*) in the reference column signifies that the relevant melting point data is contained within the "Crystallographic Data" table of Section B.
Molecular weight
Melting point
Refs. * *
71.08 379.67 239.40 295.51
68 -8 45
323.56 267.46 72.06
68 18
128.17
47
212.33 554.15 380.66 240.39 296.50
100 72 12 43
324.55 184.28 454.14 268.44 81.12 95.14 95.14 514.49 514.49 514.49 514.49 128.13
56 35 32
336.43 256.26 340.42 298.34
200 310 210 225 273 235 285 85 98 77 280 241 290 222
119.12
425
127.19
185
1906 1906 1906 * 1906 1906 * 401 * * 1898 1906 1906 1906 * * 1906 1898 1906 * 436 436 436 1871 1871 1871 1871 1840 1841 1564 1889 402 402 402 * * * * * 735 * * * * * * 402
References page VI-159
Polymer Poly(6-aminocaproic acid-a/Ml-aminoundecanoic acid) Poly(8-aminocaprylic acid) Poly(3-aminocyclobutylene)-propionic acid) - , 2,2-dimethylPoly(4-aminocyclohexyleneacetic acid) Poly(aminodihexamethylene suberamide) Poly(aminoditrimethylene oxamide -, N-methyl Poly(22-aminodocosanoic acid) Poly(7-aminoenanthic acid) -, (/0-3-methyl-, (S)-4-methyl-, (/?)-5-methyl-, (/?)-6-methyl- , Af-methylPoly[p-(aminoethylene)-phenyleneacetic acid] Poly[/?-(aminoethylene)-phenylenebutyric acid] Poly[p-(aminoethylene)-phenylenepropionic acid] Poly[p-(aminoethylene)-phenylenevaleric acid] Poly(2-aminoethylenesulfonic acid) Poly(17-aminoheptadecanoic acid) Poly(aminoformic acid) - , N- butyl- , - , 2-methyl- , N-phenylPoly(/7-aminohydrocinnamic acid) PoIy(12-aminolauric acid) -,TV-methylPoly[(3-aminomethylene)-cyclohexyleneacetic acid] - , 1,3-dimethylPoly[/7-(aminomethylene)-phenyleneacetic acid] Poly[p-(aminomethylene)-phenylenebutyric acid] Poly[p-(aminomethylene)-phenylenepropionic acid] Poly[p-(aminomethylene)-phenylenevaleric acid] Poly(6-amino-4-oxacaproic acid) - , 3,5-dimethylPoly(5-amino-3-oxavaleric acid) Poly(9-aminopelargonic acid) Poly(3-aminopropionic acid) [p-alanine] - , 2-butyl-2-methyl- , 2,2-dimethyl - , 2,3-dimethylerythro threo - , 3,3-dimethyl- , 2-ethyl-2-methyl- , N-isopropyl- , Ar-methyl-, 3-methyl-, see Poly(3-aminobutyric acid) - , 2-methyl-2-propyl- , N-phenylPoIy(18-aminostearic acid) Poly(2-aminotetrahydropyran-6-carboxylic acid) Poly(13-amino-ll-thiatridecanoic acid) PoIy(13-amino-12-thiatridecanoic acid) Poly(6-aminothiocaproic acid) Poly(7-aminothioenanthic acid) Poly(a-aminotoluic acid) PoIy(13-aminotridecanoic acid) Poly(3-aminotrimethylenesulfonic acid) PoIy(11-aminoundecanoic acid) -,tf-allyl-, /V-ethyl-
Molecular weight
Melting point
Refs. * *
125.17 153.22 139.20 353.55 185.23 199.25 337.59
358 400 160
1816 402 402
202 145
291 177 *
141.21 161.20 189.26 175.23 203.28 107.13 267.46 43.02
65 283 224 382 275 275 150
1828 402 402 402 402 1938 292
113.16 119.12 147.18
220 275 310 360
211.35 153.22 181.28 147.18 175.23 161.20 189.26 115.13 143.19 101.10
52
1909 528 402 1911 * 1929
297 355 267 300 233
1816 402 402 402 402
210 148
1902 402 * * *
405 355 296
503 503 503 * 1869 1863 1869 * * 1869 * * 402 402 402 402 444 177 1932 * 402 402
99.13 99.13 113.16 85.11
130 225 202
147.18
205
229.38 229.38 129.22 143.25 133.15 211.35 107.15
150 150 120 235 300 183 260
223.36 212.36
350 -30
Polymer - , 2-methyl- , TV-methyl- , N-phenyl- , iV-piperazinylPoly(5-aminovaleric acid) Poly(L-aspartic acid) - , oc-isobutyl ester Poly(azelaic anhydride) Poly(azelaoyl oxalodihydrazide) Poly (benzaldehyde-a/f-dimethylketene) -,p-chloro- , p-methoxy- , m-nitroPoly(benzylidenethiodecamethylene sulfide) Poly(benzylidenethiohexamethylene sulfide) -,p-methoxyPoly(benzylvinyl ether) Poly(4,4'-biphenyldicarboxaldehyde) Poly(4,4/-biphenylene adipamide) Poly(4,4/-biphenylene adipate) Poly(4,4'-biphenylene carbodiimine) - , 3,3'-dimethoxyPoly (4,4 '-biphenylene-4",4 "'-dibenzylidenimino adipate) - , 3",3'"-dimethoxyPoly(4,4'-biphenylene-4",4'''-dibenzylidenimino sebacate) - , 3",3'"-dimethoxy Poly[4,4/-(4,4/-biphenylenedioxy)-diphenylene carbonate] Poly(4,4/-biphenylenedioxy 4,4'-diphenylene ketone) Poly(4,4'-biphenylene disiloxanylenedipropionamide) - , tetramethyl- (Si) Poly [4,4 '-(2,2 '-2,2 /-biphenylenedithiazole)-oxy-/?-phenylene] Poly [4,4 '-(2,2 '-2,2 '-biphenylenedithiazole)-/?-phenylene] Poly(4,4/-biphenylene dithiolisophthalate) Poly(4,4/-biphenylene dithiolterephthalate) Poly (4,4 '-biphenylenegermylene) Poly(biphenylene 3,3/,4,4/-oxydiphenylenetetracarboximide) Poly (4,4'-biphenylene pyromellitimide) Poly(4,4'-biphenylene sebacamide) Poly(4,4 '-biphenylene terephthalamide) - , 3,3'-dimethyl- , - , AW-diethyl- , - , JV,AT'-diethylPoly(4,4'-biphenylene terephthalate) - , 2,2'-dipropylPoly[4,4'-biphenylene 4",4'"-(thiodiphenylene)-dioxy-3,3 ',4,4'-diphenylenetetracarboximide] PoIy(1,3-butadiene), 1,2PoIy(1,3-butadiene), 1,4- , 2-tert-butyl - , 2-chloro- [chloroprene] - , 2,3-dimethyl- , 1-methoxytrans- , 2-methyl- [isoprene] - , - , hydrochlorinated - , 2-methylacetoxy- , 2-propylPoly( 1,3-butadiene( 1,4-)-a/Mnethacrylonitrile] - , 1,1,4,4-tetradeuteroPoly[l,3-butadiene(l,4-)-a/Mnethyl methacrylate] Poly(butadiene oxide) Poly(butenamer) I. II. PoIy(I-butene) - , 4-cyclohexyl-
Molecular weight 197.32 197.32 259.39 267.42
Melting point 130 80 -30 142
Refs. 402 402 402 402 *
115.09 170.21 270.29 176.22 210.66 206.24 221.21 294.52 238.42 268.44
54 260 290 260 240 240 135 115 130
210.23 294.35 296.32 192.22 220.27 502.57 562.62 558.68 618.73 396.40
250 400 300 >300 190
* 1823 402 1817 1817 1817 1817 1923 1923 1923 * 1801 402 1901 1907 1907
220
1893
230 250
1893 1915 *
370.56 426.66 486.61 394.51 348.44 348.44 224.79
300 240 250 340 >460 295
350.46 314.34 342.40 398.51 370.45
435 500 440 254 316
400.47 658.68
350 483
402 1810 1810 1922 1922 1777 * * 402 402 402 1870 1870 * 1901 1771 * * *
84.12
121.18 125.22 154.21 70.09 54.09
138.25
118
1803 * * * *
75 56 74
1825 1849 1809
210 150
1864 1864
170 138
282 328
References page VI-159
Polymer - , 4-n-tt-diisopropylamino- , 3,3-dimethyl- , 3-methyl- , 3-methyl- (1,3-via hydride shift) - , 3-phenyl- , 4-phenyl- , 4-o-tolyl- , 4-/?-tolyl_, 4,4,4-trifluoro- , 3-trifluoromethyl- , 4-trimethylsilylPoly(2-butene-«/r-ethylene) Poly(2-butene 4-octenediamide) trans-, transPoly(2-butene oxide) -,2-methylPoly(2-butene sulfide) cistransPoly(2-butenylene hexamethylenediurethane) cistransPoly (4,4'-butylidenediphenylene carbonate) Poly[4,4'-(2,2-butylidene)-diphenylene carbonate] Poly(butylvinyl ether) - , 2-methylPoly(sec-butylvinyl ether), see Poly(propylvinyl ether), methylPoly(te7t-butylvinyl ether) Poly(butyraldehyde) Poly(caprolactam), see Poly(6-aminocaproic acid) Poly(caprylaldehyde) Poly(carbon monoxide-a/f-ethylene) [ketone] Poly[m-(carboxyphenoxy)-acetic anhydride] Poly[/7-(carboxyphenoxy)-acetic anhydride] - , 3-bromoPoly(chloroprene), see PoIy(1,3-butadiene), chloroPoly(chlorotrifluoroethylene-tf/?-ethylene) Poly (1,3-cyclobutylene) - , 1-cyanoPoly( 1,3-cyclobutylene carbonate) - , 2,2,4,4-tetramethylPoly( 1,3-cyclobutyleneoxymethylene oxide) - , 2,2,4,4-tetramethylPoIy (1,2-cycloheptylene-0//-ethylene) Poly (1,4-poly-1,3-cy clohexadiene) transPoly(cyclohexene oxide) PoIy(1,3-cyclohexylene adipamide) cwtransPoly(l,4-cyclohexylene adipamide) PoIy(1,4-cyclohexylene adipate) PoIy(1,3-cyclohexylene azelamide) cistransPoIy(1,4-cyclohexylene 3,3/-dibenzamide) PoIy(1,3-cyclohexylenedimethylene adipamide) PoIy(1,4-cyclohexylenedimethylene adipamide) cistrans-
PoIy(1,4-cyclohexylenedimethylene adipate)
Molecular weight
Melting point
Refs.
155.28 84.16
315 260
191 282
132.21
360
146.23 146.23 110.08 124.11
239 196 263 300
* 90 * 187 187 1813 1813 * *
222.29 301 86.13 88.17
196
657 * 1879
156 192
548 548
136 111 170 222
402 402 438 438 *
256.30
268.31 268.31
* * * * 329 *
128.22
35
178.14 178.14 257.04
134
1565
179
1565 * *
54.09 * 114.10 110.12 * 80.13 98.14 224.30
224.30
380 126
221 527
170 300 400
402 402 402 *
125 300 390
402 402 402 *
246 225 345 342 347
385 1878 385 1806 1878 *
266.38
320.39 252.36
Molecular weight
Polymer PoIy(1,4-cyclohexylenedimethylene cistransPoIy(1,4-cyclohexylenedimethylene cistransPoly( 1,4-cyclohexylenedimethylene 1,4-cyclohexylenedicarboxylate) cis-, transtrans-, transPoly(1,4-cyclohexylenedimethylene trans-, transPoIy(1,4-cyclohexylenedimethylene cis-
azelamide)
azelate)
Refs.
195 275
385 385
41 50
547 547
205 246
547 547
310
1922
215 190 278 280
385 1878 385 1878
46 85
547 547
121
1897
167 290
385 385
50
547
124
1897
310
385
197
547
287 341
547 547
160 160
402 291
215
547
78 86
369 1945
102
1897
55
547
191 293
385 385
42
547
208 200 300 296 292
385 1878 385 1878 1769
50 78
547 547
215 311
385 385
294.44
296.41
280.36
dithiol-1,4-cyclohexylenedicarboxylate)
312.49
dodecanediamide)
336.52
transPoIy(1,4-cyclohexylenedimethylene cistransPoly[ 1,4-cyclohexylenedimethylene transPoly(1,4-cyclohexylenedimethylene cistransPoIy(1,4-cyclohexylenedimethylene transPoly[ 1,4-cyclohexylenedimethylene transPoIy(1,4-cyclohexylenedimethylene transPoly(1,4-cyclohexylenedimethylene transPoIy(1,4-cyclohexylenedimethylene cwtransPoly( 1,4-cyclohexylenedimethylene trans-
Melting point
dodecanedioate)
338.49
(ethylenedithio)-diethylenediurethane]
376.53
glutaramide)
238.33
glutarate)
240.30
(hexamethylenedithio)-diethylenediurethane]
432.64
isophthalamide)
272.35
isophthalate)
274.32
2,6-naphthalate)
324.38
octamethylenediurethane)
PoIy(1,4-cyclohexylenedimethylene oxalate) transPoIy(1,4-cyclohexylenedimethylene)-oxymethylene oxide) transPoly[l,4-cylohexylenedimethylene (pentamethylenedithio)-diethylenediurethane] transPoIy(1,4-cyclohexylenedimethylene /?-phenylenediacetate) CWPoly(1,4-cyclohexylenedimethylene pimelamide) cistransPoIy(1,4-cyclohexylenedimethylene pimelate) transPoly(1,4-cyclohexylenedimethylene sebacamide) cis-
340.46
198.22 156.22
418.61 302.37 266.3 8
268.35 308.47
trans-
Poly(1,4-cyclohexylenedimethylene sebacate) cistransPoIy(1,4-cyclohexylenedimethylene suberamide) cistrans-
310.43
280.41
References page VI-159
Polymer Poly(l,4-cyclohexylenedimethylene suberate) cistransPoIy(1,4-cyclohexylenedimethylene succinate) PoIy(1,4-cyclohexylenedimethylene terephthalate) Poly[ 1,4-cyclohexylenedimethylene (tetramethylenedithio)-diethylenediurethane] transPoly[ 1,4-cyclohexylenedimethylene (trimethylenedithio)-diethylenediurethane] transPoly[(l,4-cyclohexylenedioxy)-ditrimethylene adipamide] Poly[(l,4-cyclohexylenedioxy)-ditrimethylene 4,4/-(ethylenedioxy)-dibenzamide] Poly[(l,4-cyclohexylenedioxy)-ditrimethylene 4,4'-(hexamethylenedioxy)-dibenzamide] Poly[(l,4-cyclohexylenedioxy)-ditrimethylene oxamide] Poly[(l,4-cyclohexylenedioxy)-ditrimethylene 4,4/-(oxydiethylenedioxy)-dibenzamide] Poly[(l,4-cyclohexylenedioxy)-ditrimethylene (/?-phenylenedioxy)-diacetamide] Poly[(l,4-cyclohexylenedioxy)-ditrimethylene terephthalamide Poly[(l,4-cyclohexylenedioxy)-ditrimethylene 4,4/-(tetramethylenedioxy)-dibenzamide] PoIy(1,4-cyclohexylene dithiolsuccinate) transPoly[ 1,4-cyclohexylene (ethylenedithio)-diethylenediurethane] transPoly[ 1,4-cyclohexylene (hexamethylenedithio)-diethylene-diurethane] transPoIy(1,4-cyclohexylene 3,3'-methylenedibenzamide) PoIy(1,4-cyclohexylene octamethylenediurethane) transPoly(l,4-cyclohexyleneoxymethylene oxide) transPoly[ 1,4-cyclohexylene (pentamethylenedithio)-diethylene-diurethane] transPoly(l,3-cyclohexylene sebacamide) cistransPoIy(1,4-cyclohexylene sebacate) PoIy(1,4-cyclohexylene suberate) transPoIy(1,2-cyclohexylene sulfide) PoIy(1,3-cyclohexylene sulfide) PoIy(1,2-cyclohexylene sulfone) Poly(l,3-cyclohexylene sulfone) Poly[ 1,4-cyclohexylene (tetramethylenedithio)-diethylene-diurethane] transPoly[ 1,4-cyclohexylene (trimethylenedithio)-diethylene-diurethane] transPoly(l,4-cylclohexylene urethane) Poly(cyclohexylidenedimethylene oxide) - , 3,4-dihydro- , - , 4-methyl- , 4-methylPoly(4,4/cyclohexylidenediphenylene carbonate) - , 2,2'-dimethyl- , 3,3/,5,5'-tetrachloroPoly(cyclohexylidenethiohexamethylene sulfide) PoIy(1,2-cyclopentylene-a/f-ethylene) PoIy(1,3-cyclopentylene-tf/Mnethylene) [1,5-hexadiene] Poly(4,4'-cyclopentylidenediphenylene carbonate) Poly(cyclopropylene cyclopropylenedicarboxamide) Poly[cyclopropylene (cyclopropylenedicarboxoyl)-diurethane] trans-, transPoly(cyclopropylenedimethylene cyclopropylenedicarboxamide) Poly(cyclopropylenedimethylene cyclopropylenediurethane) cistrans-
Molecular weight
Melting point
Refs.
282.38 50 96
547 547 * *
129
1897
105 196 250 215 246 125 160 384 224
1897 402 402 402 402 402 402 402 402
302
1922
214
1897
204 174
1897 402
255 255 221
633 402 291
209
369
189
1897
120 290
402 402 *
181 130 139 284 309
1174 1917 1917 1917 1917
214
1897
202 >355 152 102 155 165 260 200 270 75 250 285
1897 444 1935 1935 1935 1935 438 1915 540 1923 * * 438 1865
245 220
1865 1865
175 210
1865 1865
404.58 390.56 340.46 496.60 552.71 284.36 540.66 420.51 360.45 524.66 230.35 348.48 404.58 334.42 312.41
128.17 390.56 280.41
254.33 114.21 114.21 146.21 146.21 376.53 362.50 141.17 126.20 124.18 138.21 140.23 294.35 322.40 427.09 230.44 280.32 166.18 254.20 194.23 226.23
Polymer Poly(cyclopropylenedimethylene hexamethylenediurethane) cistransPoly(cyclopropylenedimethylene isophthalamide) Poly(cyclopropylenedimethylene isophthalate) Poly[cyclopropylenedimethylene 4,4 /-(methylenediphenylene)-diurethane] cistransPoly(cyclopropylenedimethylene piperazinediurethane) cistransPoly (cyclopropylenedimethylene sebacamide) Poly(cyclopropylenedimethylene terephthalate) Poly(cyclopropylenedimethylene toluylenediurethane) cistransPoly(cyclopropylene hexamethylenediurea) Poly(cyclopropylene isophthalamide) Poly(cyclopropylene piperazinediurea) Poly(cyclopropylene sebacamide) Poly(cyclopropylidenedimethylene oxide) Poly(decamethylene) -, 1,2-dichlorotransPoly(decamethylene adipamide) Poly(decamethylene adipate) - , 3-methyl-(diacid) Poly[decamethylene WV-adipolyldi(6-aminocaproate)] Poly(decamethylene adipoyldiurethane) Poly(decamethyleneaminohexamethylene amine) Poly(decamethylene azelamide) Poly(decamethylene azelate) Poly(decamethylene 4,4 '-biphenylenediurethane) -, 3,3'-dimethyl- (diisocyanate) Poly (decamethylene carbonate) Poly(decamethylene m-carboxycarbanilate) Poly(decamethylene p-carboxycarbanilate) Poly[decamethylene (decamethylenedisulfonyl)-dicaproamide] Poly(decamethylene decamethylenediurethane)
Molecular weight
Melting point
Refs.
120 165 220 100
1860 1860 1865 1860
230 290
1860 1860
70 100 223 130
1860 1860 1865 1860
170 200 180 250 260 220 45
1860 1860 1865 1865 1865 1865 1935
47
1925 * * 1796 1792 402 1829 * *
270.33 230.27 232.24 352.39 240.26 266.38 232.24 276.29 240.31 202.21 210.24 238.33 84.12 140.27 209.16
298.42 510.72 370.45 254.46 410.51 438.57 200.28 319.40 319.40 634.98 398.59
Poly (decamethylene 2,2'-dibenzoate) Poly(decamethylene 3,3'-dibenzoate) Poly(decamethylene 4,4'-dibenzoate) Poly[(decamethylenedioxy)-dihexamethylene oxide] Poly[4,4'"-(4'A//-(decamethylenedioxy)-diphenylenedioxy)-diphenylene terephthalate] Poly[4,4/-(decamethylenedioxy)-diphenyleneoxy-p-xylylene oxide] Poly[3,3/-(decamethylenedioxy)-diphenylene terephthalate] Poly[4,4'-(decamethylenedioxy)-diphenylene terephthalate] - , dichloro-(diol) Poly(4,4/-decamethylenediphenylene carbonate)
380.48 380.48 380.48 356.59 672.78 460.62 488.58 488.58 557.47 352.47
Poly(4,4/-decamethylenedipiperazine sebacamide) Poly(decamethylene disiloxanylenedipropionamide) - , tetramethyl- (silicone) Poly (decamethylene disulfide)
358.63 414.74 204.39
Poly(decamethylenedithioethylene disulfide) Poly(decamethylenedithiohexamethylene disulfide) Poly(decamethylene dithioladipate) Poly(decamethylene dithiolsebacate) Poly(decamethylene dithiolterephthalate) Poly(decamethylenedithiotetramethylene disulfide)
296.56 352.67 316.53 372.63 336.52 324.62
Poly(decamethylene docosanediamide) Poly (decamethylene dodecamethylenediurea)
506.86 424.67
-2 137 164 102
219 55 127 158 207 145 142 -3 90 132 68 242 211 108 259 160 110 150
633 1820 1891 1891 402 291 634 1552 1552 1552 542 1773 1789 1773 1773 1773 1915 1174 *
50 45 65 80 46 75 103 201 56 58 169 190
402 1868 725 1837 1784 1922 1922 1922 1837 1784 454 634
References page VI-159
Molecular weight
Polymer Poly(decamethylene -, methyl- (P) Poly(decamethylene Poly(decamethylene Poly(decamethylene
phosphinylidenedipropionamide)
330.41
phthalamide) pimelate) dodecanediamide)
302.42 298.42 366.59
Poly[decamethylene ^,A^'-dodecanedioyldiQ^-aminobenzoate)] Poly(decamethylene eicosanediamide) Poly[decamethylene 4,4/-(ethylenedioxy)-dibenzoate] Poly[decamethylene 4,4/-(ethylenediphenylene)-dioxydiacetamide] Poly(decamethylene WV-ethylenediterephthalamate) Poly(decamethylene 4,4/-ethylidenedibenzamide) Poly(decamethylene fumaramide) - , 2,3-dimethyl- (diacid) trans-, methyl- (diacid) Poly(decamethylene 2,5-furandicarboxamide) Poly(decamethylene 2,5-furandipropionamide) Poly(decamethylene glutaramide) - , 3-carboxyl- (diacid) Poly(decamethylene glutarate) Poly[decamethylene (hexamethylenedisulfonyl)-dicapromide] Poly(decamethylene WV'-hexamethylenediterephthalamate) Poly(decamethylene hexamethylenediurea) Poly(decamethylene hexamethylenediurethane) Poly(decamethylene 3-hexenedioate) Poly(decamethylene isophthalamide) Poly(decamethylene isophthalate) Poly[decamethylene 4,4/-(isopropylidenediphenylene)-dioxy-diacetamide] Poly(decamethylene malonamide) -, dodecyl-(diacid) Poly(decamethylene malonate) Poly(decamethylene 3,3'-methylenedibeiizamide) Poly(decamethylene 4,4'-methylenedibenzamide) Poly(decamethylene 4,4/-methylenediphenylenediurea) Poly(decamethylene 4,4'-methylenediphenylenediurethane) Poly[decamethylene (methylene-2,5-furan)-dicarboxamide] Poly[decamethylene (methylene-2,5-tetrahydrofuran)-dicarboxamide] Poly[decamethylene octadecamethylenediurea) Poly(decamethylene ocatadecanediamide) Poly[decamethylene octadecanedioate) Poly[decamethylene octamethylenediurea) Poly[decamethylene octamethylenediurethane) Poly(decamethylene 4-octenediamide) Poly(decamethylene 4-octenedioate) Poly(2,5-decamethylene-l,3,4-oxadiazole) Poly(decamethylene oxalate) Poly(decamethylene oxamide)
606.80 478.80 440.54 466.62 494.59 406.57 252.36 280.41 266.38 292.38 348.49 268.40 312.41
Melting point
Refs.
115 66 191 192 171 171 135 220 277 150 50
1868 764 244 454 1792 244 290 402 781 402 402
267 166 130 140
1931 1931 1905 402
70
402 * 402 781 402 634 * * 1868 1794 402
578.87 550.70 340.51
218 235 210 216
302.42 304.39 480.65 240.35 408.67 242.32 392.54 392.54 422.57
186 36 105 123 34 65 100 246
306.41 310.44 508.84 450.75
111 85 172 170
368.57 370.53
201 146
208.30
100
226.32
229 252 290 231
Poly(decamethylene oxamide-a/f-decamethylene sebacamide) Poly(decamethylene oxide) Poly(decamethylene oxydiacetate) Poly(decamethyleneoxymethylene oxide) Poly(decamethyleneoxy-/7-phenylene oxide) Poly[decamethylene (pentamethylenedisulfonyl)-dicaproamide] Poly(decamethylene A^N'-pentamethylenediterephthalamate) Poly(decamethylene /?-phenylenediacetamide)
564.86 272.34 186.30 248.37 564.84 536.67 330.47
Poly[decamethylene (p-phenylenedioxy)-diacetamide] Poly(decamethylene /?-phenylenedipropionamide)
362.47 358.53
Poly(decamethylene S^'-phosphinylidenedibenzamide) -, methyl- (P)
426.50 440.52
64 57 < 100 223 205 242 265 188 265 271
1774 764 402 402 634 * 402 402 634 454 * 634 402 * * 1921 * 291 743 402 1781 * 1798 695 1868 402 781 291 454 402 402 454
155
402
Molecular weight
Polymer Poly(decamethylene 4,4/-phosphinylidenedibenzamide) - , methyl- (P) - , phenyl-(P) Poly(decamethylene 2,4-pyridinedicarboxamide) Poly(decamethylene 2,5-pyridinedicarboxamide) Poly(decamethylene 2,6-pyridinedicarboxamide) - , l,4-dihydro-4-0jcoPoly(decamethylene 3,5-pyridinedicarboxamide) Poly(decamethylene pyromelltimide) -, 3-bromo- (imide) Poly(decamethylene sebacamide) Poly(decamethylene sebacate) Poly(decamethylene sebacoyldiurethane) Poly(decamethylene suberamide) Poly(decamethylene Poly(decamethylene Poly(decamethylene - , D-l,2-dihydroxyPoly(decamethylene
suberate) succinamide) succinate) (diacid) sulfide)
Poly(decamethylene sulfonyldivalerate) Poly(decamethylene terephthalamide) Poly(decamethylene terephthalate) Poly[decamethylene N,Af'-terephthaloyldi(6-aminocaproate)] Poly(decamethylene tetradecamethylenediurea) Poly(decamethylene tetradecanediamide) Poly(decamethylene 2,5-tetrahydrofurandipropionamide) Poly[decamethylene (tetramethylenedisulfonyl)-dicaproamide] Poly(decamethylene AW'-tetramethylenediterephthalamate) Poly(decamethylene tetramethylenediurethane) Poly(decamethylene thiodivalerate) Poly(decamethylenethiohexamethylene sulfide) Poly(decamethylene 2,5-thiophenedicarboxamide) Poly(2,5-decamethylene-l,3,4-triazole) - , 1-amino- (triazole) Poly(decamethylenetridecanediamide) Poly(decamethylene AW'-trimethylenediterephthalamate) Poly(decamethylene urea) Poly(decamethylene /7-xylylenediurea) Poly(decamethylene /?-xylylenediurethane) Poly(decenamer) PoIy(I-decene) Poly(decylvinyl ether) Poly [2,7-( 1,6-diazanthrylene)-4,4 '-biphenylene] - , 4,9-diphenylPoly [2,8-( 1,9-diazanthrylene)-4,4 '-biphenylene] - 4,6-diphenyl Poly [2,7-( 1,6-diazanthrylene)-4,4 '-oxydiphenylene] -,4,9-diphenylPoly [2,8-( 1,9-diazanthrylene)-4,4 '-oxydiphenylene] -,4,6-diphenylPoly(dimethyl ketene) Poly(di-l,4-naphthyleneoxyethylene oxide) Poly(di-l,4-naphthyleneoxyheptamethylene oxide) Poly(di-l,4-naphthyleneoxyhexamethylene oxide) Poly(di-l,4-naphthyleneoxypentamethylene oxide) Poly(di-l,4-naphthyleneoxytetramethylene oxide) Poly(di-l,4-naphthyleneoxytrimethylene oxide) PoIy(1,4-dioxanylene-2,5-dimethylene adipamide) transPoIy(1,4-dioxanylene-2,5-dimethylene sebacamide) trans-
Melting point
426.50 440.52 502.59 303.41 303.41 303.41 319.41 303.41
186 192 190 232 200 137 210
433.30
291
426.55 310.48
153 217 208
288.34 172.33
66 78 91 101 276
404.56 302.42 530.71 452.73 394.64 352.52 550.81 522.64 314.43 372.56 288.55 308.44 207.32 222.34 380.62 508.61 198.31 360.50 362.47 184.32 330.39 482.58 330.39 482.52 346.39 498.58 346.39 498.58 312.37 382.50 368.48 354.45 340.42 326.40 256.30
166 180 189 178 236 261 171 57 78 250
Refs. 402 402 1905 1905 1905 1905 1905 * 1267 * * 402 244 291 * * * 609 1819 181 1797 1868 * 1792 634 2 402 402 781 633 767 1819 1905
242 175 222 200 197 210 260 147
610 339 781 402 634 291 634 634 *
7
1900
498
1778
513
1778
490
1778
502 291 239 280 196 324 278
1778 * 1787 1787 1787 1787 1787 1787
291
1769
262
1769
312.41
References page VI-159
Polymer PoIy(I, 3-dioxolane), see Poly(ethyleneoxymethylene oxide) PoIy(1,3-dioxopane), see Poly(methyleneoxytetramethylene oxide) Poly(dithiodiethylene sebacamide) Poly(4,4/-dithiodiphenylene hexamethylenediurea) Poly(divinylbenzal) - , 2-methyl- , 4-methylPoly(divinylfurfural) PoIy(I-docosene) Poly(dodecamethylene) -, 1,2-dichlorotrans- , 1-methylPoly(dodecamethylene adipamide) Poly(dodecamethylene adipate) Poly[dodecamethylene AW-adipoyldi(6-aminocaproate)] Poly(dodecamethylene 4,4'-biphenylenediurethane) - , 3,3'-dimethyl- (diisocyanate) Poly(dodecamethylene decamethylenediurethane) Poly[4,4;-(dodecamethylenedioxy)-diphenyleneoxy-/7-xylylene oxide] Poly(dodecamethylene docosanediamide) Poly(dodecamethylene A^AT'-dodecamethylenediterephthalamate) Poly(dodecamethylene dodecamethylenediurethane) Poly(dodecamethylene dodecanediamide) Poly[dodecamethylene AW'-dodecanedioyldi(p-aminobenzoate)] Poly(dodecamethylene AW-ethylenediterephthalamate) Poly(dodecamethylene AW-hexamethylenediterephthalamate) Poly(dodecamethylene hexamethylenediurea) Poly(dodecamethylene hexamethylenediurethane) Poly(dodecamethylene 3-hexenedioate) Poly(dodecamethylene 4,4/-methylenediphenylenediurea) Poly(dodecamethylene 4,4'-methylenediphenylenediurethane) Poly(dodecamethylene 1,4,5,8-naphthalenetetracarboximide) Poly(dodecamethylene octadecanediamide) Poly(dodecamethylene 4-octenedioate) Poly(dodecamethylene oxamide) Poly(dodecamethylene oxamide-a/f-dodecamethylene sebacamide) Poly(dodecamethylene AW-pentamethylenediterephthalamate) Poly(dodecamethylene p-phenylenediacetamide) Poly(dodecamethylene/?-phenylenedipropionamide) Poly(dodecamethylene phosphinylidenedipropionamide) -, methyl- (P) Poly(dodecamethylene pyromellitimide) - , 3-bromo-(imide) Poly(dodecamethylene sebacamide) Poly(dodecamethylene suberate) Poly(dodecamethylene succinamide) Poly(dodecamethylene terephthalamide) Poly[dodecamethylene AW'-terephthaloyldi(6-aminocaproate)] Poly(dodecamethylene AW-tetramethylenediterephthalamate) Poly(dodecamethylene AW-trimethylenediterephthalamate) Poly(dodecamethylene p-xylylenediurea) Poly(dodecamethylene p-xylylenediurethane) Poly(dodecanedioic anhydride) Poly(dodecenamer) PoIy(I-dodecene) Poly(dodecylvinyl ether) Poly(eicosamethylene adipate) - , 3-methyl-(diacid) Poly(eicosamethylene azelate) Poly(eicosamethylene 3,3'-dibenzoate) Poly(eicosamethylene 4,4 '-dibenzoate)
Molecular weight
318.49 416.56 176.22 190.24 190.24 166.18
Melting point
155 262 100 95 115 145
Refs. * * 402 402 1830 1830 1830 1830 *
168.32 237.21 182.35 310.48 538.77 438.57 466.62 426.64 488.67 534.92 454.70 394.64 634.86 522.64 578.75 368.57
40 30 210 230 134 219 133 207 164
370.53
128 183 167 264 231 205 238 139
450.63 452.59
240 164
478.80
167
620.96 564.72 358.53 386.58 358.46
217 206 256 263
461.36
238
330.47 558.76 550.70 536.67 388.56 390.52 212.29
296 301 163 258 216 258 178 87
212.38 424.67 438.69 466.75 520.76 520.76
30 87 60 87 91 115
1925 1926 339 544 * 1792 402 634 1789 454 * 633 454 1792 781 781 634 1892 634 * 634 634 * 454 * * 1781 781 454 454 * 1267 * * * 454 544 1792 781 781 634 634 1823 * * 1900 1790 1796 1790 1552 1552
Polymer
Molecular weight
Poly(eicosamethylene glutarate) - , 3-(p-nitrophenyl)- (diacid) Poly(eicosamethylene isophthalate) Poly(eicosamethylene malonate)
410.64 531.74 444.66 382.58
Poly(eicosamethylene oxalate) Poly(eicosamethylene oxydiacetate) Poly(eicosamethylene phthalate) Poly(eicosamethylene pimelate) Poly(eicosamethylene sebacate) Poly(eicosamethylene suberate) Poly(eicosamethylene succinate) Poly(eicosamethylene sulfonyldivalerate) Poly(eicosamethylene terephthalate) Poly(eicosamethylene thiodivalerate) Poly(enanthaldehyde, see Poly(heptaldehyde) Poly(epichlorohydrin), see Poly(ethylene oxide), chloromethylPoly(ethylene) - , chlorotrifluoro-, l-butoxy-2-methylcis- (erythro-di-isotactic) trans- (threo-di-isotactic) -, l-tert-butoxy-2-methylcis- (erythro-di-isotactic) - , l-ethoxy-2-methoxytrans-, l-ethoxy-2-methylcis- (erythro-di-isotactic) trans- (threo-di-isotactic)
368.56 412.61 444.66 438.69 480.78 452.72 396.61 544.83 444.66 512.84
-, isobutoxy-2-methyl-, l-isopropoxy-2-methylcis- (erythro-di-isotactic) trans- (threo-di-isotactic) - , l-methoxy-2-methylcis- or trans- (threo-di-isotactic) - , l-methyl-2-propoxytrans- , tetrafluoro- , trifluoroPolyethylene adipamide) Polyethylene adipamide-a/f-ethylene oxamide) Poly(ethylene adipate) - , methyl-(diol) Polyethylene A^V'-adipoyldi(6-aminocaproate)] Polyethylene adipoyldiurethane) Poly(ethylene amine) -, AT-acetyl-, Af-benzoyl- , - , /7-chloro-, Af-butyryl-, - , 4-(4-methylthiophenyoxy)-, N-cyclohexanecarbonyl-, N-dodecanoyl-, Af-heptanoyl- , Af-hexanoyl- , Af-isobutyryl-, Af-isovaleryl- , JV-2-naphthoyl- , Af-octadecanoyl- , iV-octanoyl- , A^-perfluorooctanoyl-
Melting point 80 46 49 69 69 90 89 52 84 92 88 89 117 113 79
Refs. 1790 1796 1794 1868 1790 1790 1798 1794 1790 1790 1790 1790 1797 1794 767 * * *
114.19 100 100
1880 1880
>250
1880
217
141
191 207 230 243
1880 1880 1804 141 *
204 211
1880 1880
230 287 210
1880 1804 141
168
1804 * * 402 1781 * 765 1792 402 * 747 * * * * 747 747 * * * * 747 747 * 747
114.19 102.13 86.13
100.16 72.11
100.16
170.21 284.32
310 D359
186.21 398.50 258.23
-20 163 210
85.11
200
153.22 225.38
285 155
197.24 309.54
258 145
439.12
245
References page VI-159
Polymer
Molecular weight
Melting point
- , N-perfluoropropionyl- , JV-pivaloyl- , iV-P-toluoyl- , Af-valerylPoly(ethylene azelamide-tf/f-ethylene oxamide) Poly(ethylene azelate) - , methyl- (diol) Poly(4,4 '-ethylenebiphenylene) Polyethylene p-(carboxyphenoxy)-acetate] Polyethylene /?-(carboxyphenoxy)-butyrate] Polyethylene /?-(carboxyphenoxy)-caproate] Polyethylene p-(carboxyphenoxy)-heptanoate] Polyethylene p-(carboxyphenoxy)-undecanoate] Polyethylene /?-(carboxyphenoxy)-valerate] Polyethylene p-(carboxyphenylene)-acetamide] Poly(ethylene 1,4-cyclohexylenedicarboxylate) cistransPoly(ethylene cyclopropylenedicarboxamide) transPoly(ethylene decamethylenediurethane) Polyethylene 2,2'-dibenzoate) - , methyl-(diol) Polyethylene 3,3 '-dibenzoate) - , methyl-(diol) Polyethylene 4,4'-dibenzoate) -, methyl- (diol) Poly(4,4'-ethylenedibenzoic anhydride) Poly(4,4'-ethylenedicyclohexylene dodecanediamide) Poly(4,4/-ethylenedicyclohexylene sebacamide) Poly[3,3/-(ethylenedioxy)-dibenzoic anhydride] Poly[4,4'-(ethylenedioxy)-dibenzoic anhydride]
268.27 282.30 268.27 282.30
130 55 122 97
282.30 252.27 418.66 390.61 284.27 284.27
- , 3,3/-dimethoxyPoly[4,4/-(ethylenedioxy)-dibenzoic isophthalic anhydride] Poly[4,4/-(ethylenedioxy)-dibenzoic phthalic anhydride] Poly[4,4'-(ethylenedioxy)-dibenzoic terephthalic anhydride] Poly[(ethylenedioxy)-diethylene adipamide]
344.32 432.38 432.38 432.38 258.32
Poly[(ethylenedioxy)-diethylene adipate] Poly[(ethylenedioxy)-diethylene azelate] Poly[(ethylenedioxy)-diethylene 2,2'-dibenzoate] Poly[(ethylenedioxy)-diethylene 3,3'-dibenzoate] Poly[(ethylenedioxy)-diethylene 4,4'-dibenzoate] Poly [4,4'-(ethylenedioxydiethylenedioxy)-diphenylene 3,3',4,4'-(carbonyldiphenylene)tetracarboximide] Poly[3,4 /-(ethylenedioxydiethylenedioxy)-diphenylene 3,3 ',4,4/-(oxydiphenylene)tetracarboximide] Poly[(ethylenedioxy)-diethylene glutarate] Poly[(ethylenedioxy)-diethylene isophthalate] Poly[(ethylenedioxy)-diethylene malonate] Poly[(ethylenedioxy)-diethylene oxalate] Poly[(ethylenedioxy)-diethylene pimelate] Poly[(ethylenedioxy)-diethylene 1,4-piperazinediacetamide] Poly[(ethylenedioxy)-diethylene sebacate]
260.29 302.37 356.37 356.37 356.37 616.58
140 340 316 333 237 208 215 222 220 140 185 209 160 190 - 30 - 40 41 46 93 405
Poly[(ethylenedioxy)-diethylene suberate] Poly[(ethylenedioxy)-diethylene succinate] Poly[(ethylenedioxy)-diethylene sulfonyldivalerate Poly[(ethylenedioxy)-diethylene terephthalate] Poly[(ethylenedioxy)-diethylene thiodivalerate] Poly[(ethylenedioxy)-diethylene undecanediamide] - , 6-hydroxy-(diacid) Poly[4,4/-(ethylenedioxy)-diphenylene 3,3',4,4'-(carbonyl-diphenylene)-tetracarboximide] Poly[3,4/-(ethylenedioxy)-diphenylene 3,3 /,4,4/-(oxy-diphenylene)-tetracarboximide] Poly[(ethylenedioxy)-ditrimethylene adipamide]
288.34 232.23 348.39 280.28 348.46 328.45 344.45 528.48
Refs.
189.08 127.19
216 320
326.40
343
228.29 180.25 222.20 250.25 278.30 292.33 348.44 264.28 204.23 198.22
-38 > 550 140 85 45 55 65 55 221
747 747 * * 1781 * 765 1187 290 290 290 290 290 290 1904
<30 120
1912 1912
350
1860 * 1654 1552 1552 1552 * 1552 1854 1926 1926 1854 1854 1565 1872 1855 1871 1872 1871 291 402 765 765 1552 1552 1552 1808 * 765 1794 765 765 765 291 696 767 765 765 1797 1794 767
154.17
246.26 280.28 218.21 204.18 274.32 314.39 316.39
286.37
- 28 65 -28 -10 - 37 115 29 35 - 36 -18 27 65 - 37 156 470 180
402 1808 * 1791
Molecular weight
Polymer
Melting point
Refs.
Poly[(ethylenedioxy)-ditrimethylene azelamide] Poly[(ethylenedioxy)-ditrimethylene sebacamide] Poly[(ethylenedioxy)-ditrimethylene terephthalamide] Poly (4,4'-ethylenediphenylene adipamide) Poly(4,4/-ethylenediphenylene carbonate) Poly(4,4/-(ethylenediphenylene)-methylene] Poly(4,4/-ethylenediphenylene sebacamide) Poly(ethylene disiloxanylenedipropionamide) - , tetramethyl- (silicone) Polyethylene disulfide) Poiy[(ethylenedisulfonyl)-diacetic anhydride] Poly[(ethylenedisulfonyl)-dipropionic anhydride] Poly [4,4 '-(2,2 '-ethylenedithiazole)-/?-phenylene] Poly[(ethylenedithio)-diacetic anhydride] Poly[(ethylenedithio)-dipropionic anhydride] Poly(ethylenedithiohexamethylene disulfide)
328.45 342.48 306.36 322.41 240.26 194.28 378.52 246.42 302.52
130 160 240 400 300 255 360
1791 1791 1791 402 438 1187 402
55
402
256.24 284.30 270.37 192.25 220.30 240.56
Polyethylene Polyethylene Polyethylene Polyethylene Polyethylene Polyethylene
204.31 224.30 252.29 224.29 224.29 212.40
185 255 265 83 75 102 107 125 185 280 340 80 96 88
1856 1856 1810 1565 1565 1837 1784 1922 1922 1922 1922 1889 1837 1784 * 244 1792
dithioladipate) dithiolisophthalate) dithiol-2,5-pyridinedicarboxylate) dithiolterephthalate) dithionisophthalate) dithiotetramethylene disulfide)
Polyethylene MA^-dodecamethylenediterephthalamate) Polyethylene dodecanediamide) Polyethylene WV'-dodecanedioyldi(p-aminobenzoate)] Poly[ethylene (ethylenediamino)-dipropionamide] - , WV'-diisopropyl-, A^V'-dimethylPoly(ethylene 4,4/-ethylenedibenzoate) Polyethylene ethylenedioxy)-diacetamide] Polyethylene 3,3 /-(ethylenedioxy)-dibenzoate] Poly[ethylene 4,4'-(ethylenedioxy)-dibenzoate] - , 3,3'-dimethoxyPolyethylene 4,4/-(ethylenedioxydimethylene)-dibenzoate] Poly[ethylene 4,4/-(ethylenediphenylene)-diurethane] Poly[ethylene 4,4/-(ethylenedithio)-dibenzoate] Polyethylene (ethylenedithio)-diethylenediurethane] Polyethylene fumaramide) Polyethylene ghitarate) - , methyl-(diol) - , 3-(p-nitro)Polyethylene 2,4-hexadienediamide) Poly(ethylene 4,4'-hexamethylenedibenzoate) Poly[ethylene (hexamethylenedithio)-diethylene-diurethane] Poly(ethylene hexamethylenediurea) Polyethylene hexamethylenediurethane) Polyethylene isophthalate) - , methyl- (diol) Polyethylene WV'-lysyldiurea) - , methyl ester Polyethylene 4,4'-methylenedibenzoate) Poly[ethylene 4,4/-(methylenediphenylene)-diurethane] Polyethylene 1,5-naphthalate) Polyethylene 2,6-naphthalate) Polyethylene 2,7-naphthalate) Poly(ethylene nonamethylenediurethane) Poly(ethylene oxalate) Polyethylene oxamide-a/f-ethylene sebacamide) Polyethylene oxamide-aft-ethylene suberamide) Poly(ethylene oxide) - , 1,1-bischloromethyl-
254.37 494.59 228.30 340.51 296.32
261 242
202.21 328.32
102 212 >320 168 141
388.37 356.38
210 135
360.44 294.38 140.14 158.15 172.18 279.25 166.18 352.43 350.49 228.30
190 168 50
206.20 258.28 272.30 282.30
-18 76 61 160 130 293 240
87 160 220 >320
242.23
230
242.23
270
340.42 312.37
323 348
141.00
180
1875 1566 1654 1894 111 * 1914 1174 * 291 1897 402 765 1796 402 1174 1897 1892 1768 * * 1794 1768 291 1654 * 291 1911 * * 1781 1781 * 1816
References page VI-159
Molecular weight
Polymer -, -, -, -,
bromomethyl-[epibromohydrin] tert-butylchloromethyl- [epichlorohydrin] 1,2-dichloromethylcistrans-
-, - , isopropyl- , neopentyl- , p-nitrophenol complex - , resorcinol complex - , tetrafluoro-, tetramethyl- , urea complex Poly(ethylene-p-oxybenzoate) - , m-chloro- , o-chloro- , m-mehthyl-, 0-methylPolyethylene oxydiacetate) - , methyl-(diol) Polyethylene 4,4/-oxydibenzoate)
136.98
Melting point
Refs.
112
1809 * *
76.07
235 145 68
114.19
82
116.02 100.16
42 300
198.61 198.61 178.19 178.19 160.13 174.15 284.27
285 153 292 157 20 21 152 134
1779 1779 119 * 527 * * 1858 664 * * 1174 1174 1174 1174 1798 1798 291 1939
141.00 fluoromethyl-[epifluorohydrin]
Poly[ethylene 4,4/-(oxydiethylene)-dioxydibenzoate] -, 3,3/-dimethoxyPolyethylene 4,4/-oxydimethylene)-di-2-(l,3-dioxolane)-caprylate] Poly(ethyleneoxymethylene oxide) [1,3-dioxolane] Polyethylene p-oxyphenyleneacetate) Poly(ethyleneoxy-/?-phenylene oxide) Polyethylene 4,4'-(pentamethylenedioxy)-dibenzoate] Polyethylene (pentamethylenedithio)-diethylenediurethane] Polyethylene /?-phenylenediacetate)
372.37 432.42 500.63
Polyethylene m-phenylenedisulfonamide) Polyethylene phthalamide) Polyethylene phthalate) -, methyl-(diol) Polyethylene pimelate) -, methyl- (diol) Polyethylene 1,4-piperazinedicarboxylate) Polyethylene 1,4-piperazinedipropionamide) - , A^V'-diisopropylPolyethylene 1,4-piperazinedipropionate) Polyethylene sebacamide)
262.30 190.20 192.17 206.20
172 270 150 126 107 137 182 250 104 50
200.24
-30
254.33 338.50 256.30 226.32
D231 210 93 276 254 280
242.32 312.37 314.34
- 26 228 198
214.26
-34
158.15
0
330.36 292.35 306.38 174.16
380 86 68
1914 797 * 1841 1868 1912 1897 325 341 1384 1833 1654 1794 * 765 * 1875 1875 1875 244 291 402 * 765 402 402 * 765 * 765 * * 1835 1797 1797
190.20 218.26
455 379
* 829 829
226.62
92
1913
Polyethylene sebacate) - , methyl (diol) Polyethylene sebacoyldiurea) Polyethylene sebacoyldiurethane) Polyethylene suberate) - , methyl-(diol) Poly(ethylene succinate) - , methyl- (diol) Poly(ethylene sulfide) -, Polyethylene 4,4/-sulfonyldibenzamide) Polyethylene sulfonyldivalerate) - , methyl- (diol) Polyethylene L-tartaramide) - , di-O-methylPolyethylene terephthalamide) - , AW-dimethylPolyethylene terephthalate) - , chloro- (diacid)
178.19 136.15 370.40 336.46 220.22
118 19
terf-butyl-
Polymer - , 2,5-dichloro- , 2,5-dimethyl-, methyl- (diacid) - , methyl-(diol) Polyethylene MA^/-terephthaloyldi(6-aminocaproate)] Polyethylene 2,5-tetrahydrofurandipropionamide) Polyethylene 4,4/-tetramethylenedibenzoate) Poly[ethylene 3,3'-(tetramethylenedioxy)-dibenzoate] Polyethylene 4,4/-(tetramethylenedioxy)-dibenzoate] -, 3,3/-dimethoxyPolyethylene 4,4/-(tetramethylenediphenylene)-diurethane] Poly[ethylene (tetramethylenedithio)-diethylene-diurethane] Polyethylene 2,4,8,10-tetraoxa-3,9-spiro(5.5)hendecane-dicaprylate] Polyethylene 4,4'-AiOdIbCnZOaIe) Polyethylene thiodienanthamide) Polyethylene thiodivaleramide) Polyethylene thiodivalerate) - , methyl- (diol) Poly(ethylenethiohexamethylene sulfide) Poly(ethylenethiotetramethylene sulfide) Poly(2,5-ethylene-1,3,4-triazole) - , 1 -amino- (triazole) Polyethylene 4,4/-(trimethylenedioxy)-dibenzoate] - , 3,3'-dimethoxyPolyethylene 4,4/-(trimethylenediphenylene)-diurethane] Polyethylene WV'-trimethylenediterephthalamate) Polyethylene urea) Poly(ethylidene) Poly(4,4/-ethylidenediphenylene carbonate) -, phenylPolyethylidene p-phenylene) Poly(ethylvinyl ether) -, 2-chloro- , 2-methoxy-, 2,2,2-trifluoroPoly(formaldehyde), see Poly(oxymethylene) Poly(2,5-furandipropionic anhydride) Poly(furfural-«/r-dimethylketene) Poly(l,4-P-D-glucose) [cellulose] - , triacetate - , tributyrate - , tricaprate - , tricaproate - , tricaprylate - , triheptylate - , trilaurate - , trimyristate - , trinitrate - , tripalmitate -, tripropionate -, trivalerate - , 2.44-nitrate Poly(glycine) Poly(glycolic acid), see Poly(2-hydroxyacetic acid) Poly(glycyl-12-aminododecanoic acid) Poly(l,3-heptadiene), 1,4- , 5-methyltransisotactic - , 6-methylPoly(heptaldehyde) Poly(heptamethylene) - , 1,2-dichlorotransPoly(heptamethylene adipamide)
Molecular weight
Melting point
Refs.
261.06 220.22 206.20 206.20 418.49 240.30 324.38 356.37 356.37 416.43 354.41 322.44 470.60 300.33 314.49 258.38 260.35 274.38 176.34 148.29 95.10 110.12 342.35 403.00 340.38 396.40 86.09
165 180 70 111 204 218 170 100 252 117 274 126 85 200 210 220 28 - 34 86 89
1913 1913 1913 1794 1792 402 291 111 1841 1914 414 1897 797 291 402 402 1797 767 1819 181
360 190 105 207 205 400
610 1912 1914 414 781 402
240.26 316.36 104.15 72.11 106.55 102.13 126.08
195 230 205 86 150 73 128
194.19 166.18 162.14
67 180
438 438 1876 114 114 114 114 * 1565 1817
624.90 456.58
88 94
498.66 709.06 793.22
88 91 106
877.38
105
414.50
122
* * 144 144 * 144 144 144 * 144 * 144 * * * *
110.20 180
1896 *
53
1925 *
98.19 167.08
References page VI-159
Molecular weight
Polymer Poly(heptamethylene azelamide) Poly[4,4/-(heptamethylenedioxy)-diphenyleneoxy-/7-xylylene oxide] Poly(heptamethylene disulfide) Poly(heptamethylene AyV'-ethylenediterephthalamate) Poly(heptamethylene A^N'-hexamethylenediterephthalamate) Poly(heptamethylene hexamethylenediurea) Poly(heptamethylene malonamide) - , dodecyl-(diacid) Poly[heptamethylene 4,4/-(methylenediphenylene)diurethane] Poly(heptamethylene 4-octenediamide) trans-I. IL Poly(heptamethylene oxamide-«/?-heptamethylene sebacamide) Poly(heptamethylene A^AT'-pentamethylenediterephthalamate) Poly(heptamethylene p-phenylenediacetamide) Poly(heptamethylene pimelamide) Poly(heptamethylene sebacamide) Poly(heptamethylene sebacate) Poly(heptamethylene suberamide) Poly(heptamethylene 4,4/-sulfonyldibenzamide) - , 4,4-dimethylPoly(heptamethylene terephthalamide) Poly(heptamethylene terephthalate) Poly(heptamethylene 2,5-tetrahydrofurandipropionamide) Poly(heptamethylene AW'-tetramethylenediterephthalamate) Poly(2,5-heptamethylene-l,3,4-triazole) -, 1-aminoPoly(heptamethylene MN'-trimethylenediterephthalamate) Poly(heptametylene undecanediamide) Poly(heptenamer) PoIy(I -heptene) - , 6,6-dimethyl-, 5-methylPoly[4,4/-heptylidene)-diphenylene carbonate] Poly(hexadecamethylene adipate) Poly(hexadecamethylene decamethylenediurethane) Poly(hexadecamethylene hexamethylenediurethane) Poly(hexadecamethylene 3-hexenedioate) Poly(hexadecamethylene 4,4/-(methylenediphenylene)-diurethane] Poly(hexadecamethylene 4-octenedioate) Poly(hexadecamethylene suberate) Poly(hexadecamethylene/?-xylylenediurethane) PoIy(I-hexadecene) PoIy(1,5-hexadiene), see Poly(cyclopentylene-a/Mnethylene) PoIy(1,3-hexadiene), 1,4-, 5-methylPoly(2,4-hexadiene), 2,5- , 2,5-dimethylPoly(2,4-hexadienedioic acid), 2,5- , diisopropyl ester Poly(2,4-hexadienoic acid), 2,5-, 6-aminoPoly(2,4-hexadiyne adipate) Poly(2,4-hexadiynediol), 2,5- , l,6-bis(/7-methoxyphenylsulfonyl)Poly(2,4-hexadiyne hexamethylenediurethane) Poly[2,4-hexadiyne (4,4/-methylenediphenylene)-diurethane] Poly(hexafluoroisobutylene-tf/?-vinylidene Poly(hexamethylene adipamide) - , 2,5-dihydroxy- (diacid) - , WV'-dimethyl- , 3-methyl- (diacid)
418.54 162.31 452.51 508.61 298.43 198.26 366.59
Melting point
Refs.
207 130 275 227 243
* 1789 1868 781 781 1892
147
1774 *
261 249 248 199 234
657 657 1781 781 402 * * * *
268 328 330 341
1835 1775 828 829 * 402 781
266.38 480.69 494.59 288.39
400.49 428.55 260.34
310.44 480.56 165.24 180.26 466.53 310.48
148 269 237 222 195
610 781 2 *
126.24
104
310.39
200
482.75 426.64
128 134
508.70
152
446.63
168
282 * 438 * 634 634 * 634 * * 634 * *
142.11 * 112.13 220.22 110.11
130
278.31 360.37
149 150
258.32 254.37 240.35
163 75 216 230
fluoride)
* 1782 * 1782 1782 * * 402 402 291 1859
Molecular weight
Polymer - , 3-methyl-(diamine) -,/!-methylPoly(hexamethylene adipamide-a/f-hexamethylene oxamide) Poly(hexamethylene adipate) Poly[hexamethylene Af,7V'-adipoyldi(6-aminocaproate)] Poly(hexamethylene adipoyldiurethane) Poly(hexamethylene azelamide) Poly(hexamethylene azelamide-a/f-hexamethylene oxamide) Poly(hexamethylene azelate)
180 145 268
454.61 314.34
147 206
438.61 270.37
254 53 55 60 96 50 60 72 60 227 255
291 291 1781 * 1792 402 * 1781 539 764 1820 1891 290 290 290 290 1904 402
242
402
312
402
360
402
120
1174
432.45 376.34 404.40 348.29 214.26 342.48 536.66 522.76
180 20 5 20 30 34 105 186 222
406.60
106
246.31
220 200 210 140 80 180 350 180
1860 402 402 402 402 764 402 1174 402 * 1897 * * 402 828 402 111 1794 402 402 402
144.17 263.29 278.30 334.41 404.55 320.38 260.34 280.41 252.36
- , 5-terf-butyl- (diacid) Poly(hexamethylene isophthalate)
302.42 248.28
4,4/-isopropylidenedibenzamide) 4,4'-ketodibenzamide) ketodipropionamide) N,Ar'-rysyldiurea)
Refs.
240.35 240.35 396.53
Poly(hexamethylene carbonate) Poly(hexamethylene m-carboxycarbanilate) Poly[hexamethylene/?-(carboxyphenoxy)-acetate] Poly[hexamethylene /?-(carboxyphenoxy)-caproate] Poly[hexamethylene/?-(carboxyphenoxy)-undecanoate] Poly[hexamethylene p-(carboxyphenoxy)-valerate] Poly[hexamethylene p-(carboxyphenylene)-acetamide] Poly(hexamethylene 1,2-cyclohexylenediacetamide) Poly(hexamethylene 1,2-cyclohexylenedicarboxamide) transPoly(hexamethylene 1,3-cyclohexylenedicarboxamide) transPoly(hexamethylene 1,4-cyclohexylenedicarboxamide) transPoly(hexamethylene 1,4-cyclohexylenedicarboxylate) transPoly(hexamethylene cyclopropylenedicarboxamide) cis-, - , AUV'-dibutyl -, - , JV,iV'-diethyl- , - , WV'-diisopropyl- , - , AW-dimethylPoly(hexamethylene glutarate) Poly [hexamethy lene (hexamethylenedioxy)-dipropionamide] Poly[hexamethylene 4,4'-(hexamethylenedisulfonyl)-dibenzoate] Poly[hexamethylene (hexamethylenedisulfonyl)-dicaproamide] Poly(hexamethylene Af,Af'-hexamethylenediterephthalamate) Poly [hexamethy lene (hexamethylenedithio)-diethylene-diurethane] Poly(hexamethylene hexamethylenediurethane) Poly(hexamethylene 3-hexenedioate) Poly(hexamethylene isophthalamide)
Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene - , methyl ester Poly(hexamethylene - , butyl- (diacid)
Melting point
252.36 252.36 254.33 210.28
364.49 350.42 254.33 314.38 328.41
180 161 160 133 134 117 134 132
1768 * 1783 1774 1783 1774 402 1783 1774
166 135 164 160 145 144 137
1774 1774 1783 1774 1783 1774 1774
malonamide) 240.35
- , decyl- (diacid)
324.51
-, dimethyl-(diacid) -, dodecyl- (diacid)
212.19 352.56
-, heptadecyl- (diacid) -, heptyl-(diacid) -, hexadecyl-(diacid)
422.70 282.43 408.67
-, hexyl-(diacid)
268.40
-, nonyl- (diacid)
310.48
References page VI-159
Molecular weight
Polymer - , octadecyl- (diacid)
436.72
-, octyl-(diacid)
296.45
-, -, -, -,
394.64 254.37 226.32 380.62
pentadecyl- (diacid) pentyl- (diacid) propyl- (diacid) tetradecyl- (diacid)
115 220 226 204 78 200 243 192 192 172 52 160 239 253 255
1892 402
342.48
153
312.45 382.59 368.56
149 160 159
228.29 410.56 452.64 424.58 354.53 284.40 340.51 298.43
240 259 257 260 154 160 155 152
214.26
633 * * 1847 1847 1847 * * 402 1781 1781 1781 1847 1847 1847 1847 * 402 1894 1798 1791 1939 1847 1847 1847 797 1847 402 * 1847 *
366.59 338.54 336.44 336.44 396.49 366.46 394.52 450.63 478.68
Poly[hexamethylene Poly[hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene -, 9,10-dihydroxy-, AW-dimethylPoly(hexamethylene Poly(hexamethylene
283.39 254.33 298.39 326.48 452.73 394.64 426.64 422.70 344.58 312.46
Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene - , 3-oxypropylPoly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene Poly(hexamethylene
octamethylenedithiourea) octamethylenediurea) octamethylenediurethane) 4-octenediamide) 4-octenedioate) 5-oxadodecanediamide) 6-oxaheptadecanediamide) 5-oxahexadecanediamide) oxalate) oxamide) oxamide-tf/f-hexamethylene pimelamide) oxamide-
250.30 304.39
167 163 133 131 164 151 163 152 148 133 133 113 132 174 250 290 120 90
Refs. 1783 1774 1783 1774 1774 1774 1774 1783 1774 1774 1774 402 402 402 402 402 402 402 * 402 402 1202 1202 402 402 1892 634 454 402 1877 402 634
- , tridecyl- (diacid) -, undecyl-(diacid) Poly(hexamethylene 3,3 '-methylenedibenzamide) Poly(hexamethylene 4,4/-methylenediphenylene) Poly[hexamethylene 4,4/-(methylenediphenylene)-dioxy-diacetamide] Poly[hexamethylene 4,4/-(methylenediphenylene)-diurea] -, 3,3'-dimethyl-, - , AW'-diethyl- , - , WV'-dipropylPoly[hexamethylene 4,4/-(methylenediphenylene)-diurethane] Poly[hexamethylene (methylene-2,5-furan)-dicarboxamide] Poly[hexamethylene (p-methylenephenoxy)-diacetamide] (p-methylenephenylene)-diacetamide] (methylene-2,5-tetrahydrofuran)-dicarboxamide] naphthalenedicarboxamide) nonamethylenediurea) octadecamethylenediurea) octadecanediamide)
Melting point
Poly(hexamethylene oxydiacetate)
216.23
Poly(hexamethylene 4,4'-oxydibenzoate) Poly(hexamethylene oxydibutyramide) Poly(hexamethylene oxydicaproamide) Poly(hexamethylene oxydienanthamide) Poly[hexamethylene 4,4/-(oxydimethylene)-di-2-(l,3-dioxolane)-caprylamide] Poly(hexamethylene oxydipelarqonamide) Poly[hexamethylene 4,4'-(oxydiphenylene)-dioxydiacetamide] Poly(hexamethylene 3,3/,4,4/-oxydiphenylenetetracarboximide) Poly(hexamethyelene oxydivaleramide) Poly(hexamethyleneoxymethylene oxide)
340.38 270.37 326.48 354.53 554.77 410.64 398.46
143 172 51 78 74 187 175 170 145 158 220
298.43
180
Molecular weight
Polymer Poly(hexamethyleneoxy-/?-phenylene oxide) Poly[hexamethylene (pentamethylenedisulfonyl)-dicaproamide] Poly(hexamethylene N,iV'-pentamethylenediterephthalamate) Poly[hexamethylene (pentamethylenedithio)-diethylene-diurethane] Poly(hexamethylene pentamethylenediurea) Poly[hexamethylene (p-phenoxy)-diacetamide]
192.26 508.73 480.56 392.57 270.38 290.36
Poly(hexamethylene m-phenylenediacetamide) Poly(hexamethylene/7-phenylenediacetamide) Poly(hexamethylene 3,3'-/?-phenylenedibutyramide) -, 3,3'-dimethyl- (diacid) Poly[hexamethylene (/?-phenylenedioxy)-diacetamide]
274.36 274.36 330.47 358.52 306.36
Poly(hexamethylene/?-phenylenedipropionamide)
302.42
-, 3-methyl- (diacid) Poly(hexamethylene Poly(hexamethylene m-phenylenediurea) -, 4-methyl- (diisocyanate) Poly(hexamethylene S^'-phosphinylidenedibenzamide) -, methyl- (P) Poly(hexamethylene 4,4/-phosphinylidenedibenzamide) - , hydroxy- (P) -,methyl- (P) -, phenyl-(P) Poly(hexamethylene phthalamide) Poly(hexamethylene phthalate) Poly(hexamethylene pimelamide)
316.44
Melting point 170 226 238 98 251 86 180 182 300 196 193 237 239 290 295 298 300 227
1868 402 781 1897 1892 402 1202 402 454 1895 1895 402 1202 291 402 1202 1895 1895 *
235
402
172
402
245 213 231 150 2 228 202 50 55 168 255 144 245 265
402 402 402 1833 1794 244 339 539 764 291 1174 1934 402 1838
230
1768
77 140 271 103 220 272 220 178 101 257 140
1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 1905 *
ra-phenylenedisulfonamide) 276.34 290.37 370.39 384.42 370.39 386.39 384.42 445.48 246.31 248.28 240.35
Poly(hexamethylene pimelate)
242.32
Poly(hexamethylene Poly(hexamethylene Poly[hexamethylene Poly(hexamethylene
1,4-piperazinediacetamide) Af,W-piperazinediterephthalamate) (l,4-piperazinedithio)-dicarboxylate] piperazinediurea)
282.39 464.52 322.44 254.33
Poly(hexamethylene propylenediurea) racemic Poly(hexamethylene 4(H)-pyran-2,6-dicarboxamide) - , 4-oxo- (diacid) Poly(hexamethylene 2,3-pyrazoledicarboxamide) Poly(hexamethylene 2,4-pyrazoledicarboxamide) Poly(hexamethylene 2,3-pyridinedicarboxamide) Poly(hexamethylene 2,4-pyridinedicarboxamide) Poly(hexamethylene 2,5-pyridinedicarboxamide) Poly(hexamethylene 2,6-pyridinedicarboxamide) - , l,4-dihydro-4-oxoPoly(hexamethylene 3,4-pyridinedicarboxamide) Poly(hexamethylene 3,5-pyridinedicarboxamide) -, 2,6-dimethyl- (diacid) Poly(hexamethylene pyromellitimide) Poly(hexamethylene 2,5-pyrroledipropionamide) -, 1-methyl- (diacid) Poly(hexamethylene 2,5-pyrrolidinedipropionamide) - , 1-methyl- (diacid) Poly(hexamethylene 5-pyrrolidonylidenedipropionamide) Poly(hexamethylene sebacamide) - , 3-methyl- (diamine) Poly(hexamethylene sebacate) Poly(hexamethylene sebacoyldiurethane) Poly(hexamethylene 4,4'-silylenedibenzamide) - , dimethyl- (Si) Poly(hexamethylene suberamide)
270.33 250.30 264.28 238.29 238.29 247.30 247.30 247.30 247.30 263.30 247.30 247.30 275.35
Refs.
291.40 305.42 295.43 309.45 295.40
180
402
200 250
296.46
153
370.45 352.51 380.56
158
402 402 * 402 * 402
190
402 *
References page VI-159
Polymer Poly(hexamethylene suberate) Poly[hexamethylene A^V'-suberoyldi(/?-aminobenzoate)] Poly(hexamethylene succinamide) Poly(hexamethylene succinate) Poly(hexamethylene sulfide) Poly(hexamethylene sulfone) Poly(hexamethylene 4,4'-sulfonyldibenzamide) Poly(hexamethylene 4,4'-sulfonyldibenzoate) Poly[hexamethylene 4,4/-(sulfonyldimethylene)-dibenzoate] Poly(hexamethylene sulfonyldivaleramide) Poly(hexamethylene sulfonyldivalerate) Poly(hexamethylenesulfonylpentamethylene sulfone) Poly(hexamethylenesulfonyltetramethylene sulfone) Poly (hexamethylene L-tartaramide) - , di-O-methylPoly(hexamethylene terephthalamide) - , 2,5-dihydroxy- (diacid) - , 2,5-dimethyl- (diacid) - , WV'-dimethyl- , methyl- (diacid) Poly(hexamethylene terephthalate) Poly[hexamethylene N,Ar'-terephthaloyldi(6-aminocaproate)] Poly(hexamethylene tetradecamethylenediurea) Poly(hexamethylene tetradecanediamide) Poly(hexamethylene 2,5-tetrahydrofurandipropionamide) Poly[hexamethylene (tetramethylenedioxy)-dipropionamide] Poly [hexamethylene (tetramethylenedisulfonyl)-dicaproamide] Poly(hexamethylene MN'-tetramethylenediterephthalamate) Poly [hexamethylene (tetramethylenedithio)-diethylene-diurethane] Poly(hexamethylene tetramethylenediurea) Poly[hexamethylene 2,4,8,10-tetraoxa-3,9-spiro(5.5)hendecane-dicaprylamide] Poly(hexamethylene 4,4/-tetrasiloxanylenedibenzamide) -, tetramethyl-tetraphenyl- (Si) Poly(hexamethylene thiodibutyramide) Poly (hexamethylene thiodienanthamide) Poly(hexamethylene thiodipropionamide)
Molecular weight
Melting point
494.59
250
200.23
57
386.46 388.44 416.49 346.49 348.46
310 280 252 215 92
Refs. * 1174 * 305 * * 1835 1174 1174 402 1797 * *
230.26 * 278.31 274.36 274.36 260.34 474.60 396.62 338.54 296.41 314.43 494.70 466.53 378.55 256.35 524.74 490.81 847.28 286.43 370.60 258.38
Poly(hexamethylene thiodivaleramide)
314.49
Poly (hexamethylene thiodivalerate) Poly[hexamethylenethio-4,4 /-(methylenediphenylene)-diethylene sulfide] Poly(hexamethylenethiopentamethylene sulfide) Poly(hexamethylene 2,5-thiophenediacetamide) Poly(hexamethylene 2,5-thiophenedicarboxamide) Poly(hexamethylene 2,5-thiophenedipropionamide)
316.46 370.61 218.42 280.39 252.33 308.44
Poly(hexamethylenethiotetramethylene sulfide)
204.39
Poly(hexamethylenethioundecamethylene sulfide) Poly(hexamethylene thiourea) Poly (2,5-hexamethylene-1,3,4-triazole) - , 1-amino- (triazole) Poly [hexamethylene 4,4/-(trimethylenediphenylene)-dioxy-diacetamide] Poly[hexamethylene(trimethylenedisulfonyl)-diimino-dicaproamide] Poly(hexamethylene MN'-trimethylenediterephthalamate) Poly(hexamethylene trimethylenediurea) Poly (hexamethylene undecanediamide) - , 6-hydroxy- (diacid) Poly(hexamethylene urea) Poly(hexamethylene 4,4/-vinylenedibenzamide) -, methyl- (diacid) Poly[hexamethylene 4,4'-(p-xylylenedisulfonyl)-dibutyrate] Poly[hexamethylene AW-p-xylylenediterephthalamate) Poly(hexamethylene /7-xylylenediurea) Poly(hexamethylene /?-xylylenediurethane)
302.59 158.26 151.21 166.23 424.54 446.59 452.51 242.32 296.46 312.45 348.44 362.47 488.61 514.58 304.39 306.36
* 334 143 260 248 177 198 209 182 110 241 290 120 283 186
402 402 829 402 * 1792 634 2 402 402 402 781 1897 1892 797
140 200 170 216 219 180 185 46 88 65 230 315 232 210 67 75 78 160
402 291 402 1859 402 402 1853 767 1819 1819 1905 1905 402 1905 1819 181 1923 402
275 80 185 256 266
610 402 402 781 1892
165
402 *
160 196 285 306 209
402 1174 1174 634 634
Polymer PoIy(1,3,5-hexatriene), 1,6Poly(hexenamer) PoIy(I-hexene) - , 4,4-dimethyl- , 4-ethyl- , 3-methyl- , 4-methyl - , 5-methylPoly[4,4/-(2,2-hexylidene)-diphenylene carbonate] Poly(hydrazo adipamide) Poly(hydrazo azelamide) Poly(hydrazo docosanediamide) Poly(hydrazo dodecanediamide) Poly(hydrazo glutaramide) Poly(hydrazo pimelamide) Poly(hydrazo sebacamide) Poly(hydrazo suberamide) Poly(hydrazo succinamide) Poly(hydrazo thiodivaleramide) Poly(2-hydroxyacetic acid) [glycolic acid] - , diethyl-,dimethyl- , isopropylPoly(m-hydroxybenzoic acid) Poly(p-hydroxybenzoic acid) - , 3,5-di-tert-butyl- , 3-rc-propylPoIy(4,4 '-hydroxybibenzoic acid) Poly(3-hydroxy-3-butenoic acid) Poly(3-hydroxybutyric acid) PoIy(I O-hydroxycapric acid) Poly(6-hydroxycaproic acid) Poly[5-hydroxy-2-(l,3-dioxane)-caprylic acid] Poly(7-hydroxyenanthic acid) - , 4-methyl- (R + ) Poly[4-hydroxymethylene-2-(l,3-dioxolane)-caprylic acid] Poly[5-hydroxymethylene-5-methyl-2-(l,3-dioxane)-caprylic acid] Poly(5-hydroxy-3-oxavaleric acid) Poly[(p-hydroxyphenylene)-acetic acid] Poly[3-(/?-hydroxyphenylene)-propenoic acid] transPoly(2-hydroxypropionic acid) [lactic acid] Poly(3-hydroxypropionic acid) [propiolactone] - , 2,2-bischloromethyl- , 3-chloromethyl- , 2,2-dibutyl- , 3-dichloromethyl- , 2,2-diethyl- , 2,2-dimethyl- [pivalolactone] - , 3-ethyl- [3-hydroxyvaleric acid] - , - , 1,1-dichloro- , 2-ethyl-2-methyl- , 3-isopropyl- , 2-methyl- , 3-methyl-, see Poly(3-hydroxybutyric acid) - , 2-methyl-2-propylPoly[4-hydroxytetramethylene-2-( 1,3-dioxolane)-caprylic acid] cistransPoly(3-hydroxyvaleric acid), see poly(hydroxypropionic acid), 3-ethylPoly(5-hydroxyvaleric acid) - , 2,3,4-trimethoxyPoly(2-imino-1,3-dithiapentamethylene) - , A^-ethyl-
Molecular weight
Melting point
80.13 82.15
250 61
112.22 112.22 98.19
350 234 285
296.36 142.16 184.24 366.59 226.32 128.13 156.18 198.27 170.21 114.10 230.33
200 320 237 210 242 140 260 260 275 360 180
114.14 86.09 100.12 120.11
200 190 205 176
232.32
480
Refs. 1848 439 * 90 632 441 * 438 402 402 402 402 402 402 402 402 402 402 * 1928 1174 1930 1799 * 1814 * * *
* 128.17 142.20 256.34 102.09 134.13 146.14
36 81 89 280 313
169.01
302
184.28
245
1836 * 797 305 1174 1943 * * 1174 * 1174 * *
169.01
235
1199 * * *
270.37 23 23 100.12 190.20 119.20 147.25
55 53 138
797 797 * 1844 305 305
68
1927
References page VI-159
Polymer -,W-methyl-, N-phenyl- , -209.32 Poly(isobutene) Poly(isobutylene oxide) Poly(isobutylene sulfide) Poly(4,4'-isobutylidenediphenylene carbonate) Poly(isobutylvinyl ether) Poly(isobutyraldehyde) Poly(isophthalaldehyde) Poly(isophthalic anhydride) Poly[isophthalic 2,2/-(isophthaloyldiamino)-dibenzoic anhydride] Poly[isophthalic (4,4/-isopropylidenediphenylenedioxy)-diacetic anhydride] Poly[isophthalic 4,4;-(methylenedioxy)-dibenzoic anhydride] - , 3,3'-dimethoxyPoly[isophthalic (p-phenylenedioxy)-diacetic anhydride] Poly[isophthalic 2,2'-(terephthaloyldiamino)-dibenzoic anhydride] Poly[isophthalic 4,4/-(tetramethylenedioxy)-dibenzoic anhydride] Poly[isophthalic 4,4'-(trimethylenedioxy)-dibenzoic anhydride] - , 3,3'-dimethoxyPoly[isophthaloyl (m-carboxyphenoxyacetyl)-dihydrazide] Poly[isophthaloyl (m-carboxyphenoxybutyryl)-dihydrazide] Poly[isophthaloyl (m-carboxyphenoxycapryl)-dihydrazide] Poly[isophthaloyl (m-carboxyphenoxypropionyl)-dihydrazide] Poly[2,2 '-(isophthaloyldiamino)-dibenzoic terephthalic anhydride] Poly(isophthaloyl dithionisophthaloyldihydrazide) Poly(isoprene), see PoIy(1,3-butadiene), 2-methylPoly(isopropenylmethyl ketone) Poly(4,4/-isopropylidenedibenzoic anhydride)
Molecular weight 133.23 195.30 89
Melting point 89 128 1927
88.17 268.31
187 180
134.13 148.12 534.48 474.46 418.36 478.41 356.29 534.48 460.44 446.41 506.46 354.32 382.38 410.43 368.35 534.48 356.42
80 259 259 65
266.30
Polypsopropylidenedimethylene, 4,4/-(methylenediphenylene)-diurethane] Poly[isopropylidenedimethylene (1,4-piperazinedithio)-dicarboxylate] -, 2,5-dimethylPoly(4,4/-isopropylidenediphenylene adipate) - , 3,3',5,5'-tetrachloroPoly(4,4/-isopropylidenediphenylene carbonate) - , 3,3;-dichloro-
354.41 306.40 334.45 338.40
- , 3,3'-diisopropyl- , 3,3'-dimethyl- , 3,3',5,5'-tetrabromo-
338.45 282.34 569.87
-, 3,3',5,5'-ICtTaChIOrO-
392.06
Poly(4,4'-isopropylidenediphenylene cyclopropylene-dicarboxylate) cwtrans- , 1-methyl- (diacid) trans- , 3-methyl- (diacid) transPoly[(4,4'-isopropylidenediphenylenedioxy)-diacetic anhydride] Poly[(4,4'-isoproylidenediphenylenedioxy)-diacetic /?-phenylenedioxydiacetic anhydride] Poly[(4,4'-isopropylidenediphenylenedioxy)-diacetic 4-pyridinedicarboxylic anhydride] Poly[(4,4'-isopropylidenediphenylenedioxy)-diacetic terephthalic anhydride] Poly(4,4'-isopropylidenediphenylene dithioladipate) Poly(4,4 '-isopropylidenediphenylene dithiol-1,3-cyclohexylenedicarboxylate) Poly(4,4'-isopropylidenediphenylene dithionisophthalate) Poly(4,4'-isopropylidenediphenylene hexamethylenediurethane) Poly(4,4'-isopropylidenediphenylene isophthalamide) Poly(4,4'-isopropylidenediphenylene malonate) Poly(4,4'-isopropylidenediphenylene 4,4'-(methylenediphenylene)-diurethane) Poly(4,4'-isopropylidenediphenylene 1,4-piperazinedipropionate) Poly(isopropylidene oxide) Poly(isopropylidene sulfide)
322.36
323.18
228 297 291 100 165 216 125 265 249 238 264 324
Refs. 1927 1927 * * 548 438 * * 1801 1565 1871 1871
235 240 190
1871 1871 1871 1871 1871 1871 1833 1833 1833 1833 1871 1889 * * 1854 1855 402
135
1934
210 230 110 170 260 267 260 275
* 540 736 1915 540 540 736 540 736
130 180
1860 1860
90
1860
130 202 230 120 270 198 220 152 130 424 96 193 145
1860 1855 1872 1872 1871 1922 1922 1889 402 1886 1868 402 1875 * 1882 1800
336.39 336.39 326.35 502.52 475.45 474.47 370.53 396.57 390.52 396.49 356.42 296.32 478.55 422.52 74.14
125 124
Next Page
Polymer Poly(isopropylvinyl ether) Poly(ketone), see Poly(carbon monoxide-a/f-ethylene) Poly(lactic acid), see Poly(2-hydroxypropionic acid) Poly(Af,Af'-lysyl nonamethylenediurea) - , methyl ester PoIy(WVMySyI pentamethylenediurea) - , methyl ester PoIy(WVMySyI propylenediurea) - , methyl ester racemic Poly(WV;-lysyl tetramethylenediurea) - , methyl ester Poly(WV'-lysyl trimethylenediurea) - , methyl ester Poly(WV'-lysylurea) - , methyl ester Poly(2-mercaptoacetic acid) -, 2-methylPoly(6-mercaptocaproic acid) - , 4-methylPoly(3-mercaptopropionic acid) -, 2-phthalimido-, 2-(p-toluenesulfonamido)Poly(methacrylic acid) - , tert-butyl ester isotactic syndiotactic - , hexadecyl ester - , methyl ester - , octadecyl ester Poly(methacrylonitrile) Poly(methylene) (see also Poly(ethylene)) - , diphenyl- , di-/?-tolylPoly(methylene adipamide) Poly (4,4'-methylenedibenzoic anhydride) Poly[4,4 '-(methylenedioxy)-dibenzoic anhydride] Poly[4,4/-(methylenedioxy)-dibenzoic terephthalic anhydride] - , 3,3'-dimethoxyPory(4,4'-metriylenediphenylene adipamide) - , 3,3'-dimethyl- (diamine) - , - , WV'-dibutyl- , - , WV'-diethyl- , - , AW-dihexyl- , - , AW'-diisoamyl- , - , WV'-diisopropyl- , WV'-diethyl- , A^V'-dimethylPoly(4,4/-methylenediphenylene adipate) Poly(4,4/-methylenediphenylene azelamide)
Molecular weight
Melting point
Refs. * * *
356.47 370.49 300.36 314.38 272.30 286.33 286.33 300.36 272.30 286.33 172.18 186.21 74.10 88.13 144.24 88.13 233.24 257.33 86.09 142.12
185
1768
175
1768
175
1768
185
1768
205
1768
175 169 152
1768 1922 1922 * 1922 1922 1922 1922
62 145 260 250
310.52
104 165 22
1851 1851 1900 * * *
14.03 166.22 194.28
220 180
1831 1831 * 1854 1854
238.24 270.24 418.36 478.41 308.38 336.44 448.65 392.54 504.76 476.70 420.60 364.49 336.44 310.35 350.46
- , WV'-diethyl406.57 - , WV'-dimethyl378.52 Poly(4,4/-methylenediphenylene carbonate) -,3,3'-dimethyl254.29 -,diphenyl378.43 - , phenyl302.33 Poly[4,4/-(methylenediphenylene)-diethylene sulfide] 254.39 Poly(4,4'-methylenediphenylene disiloxanylenedipropionamide) 384.58 -, tetramethyl- (Si) 440.69 - , - , 3,3'-dimethyl- (diamine) 454.72 Poly[3,3'-(4,4/-methylenediphenylene-A^,A^/-disuccinimidediyl)-imino-4,4/- methylenediphenylene amine] 556.62 Poly(4,4/-methylenediphenylene dodecanediamide) Poly(4,4'-methylenediphenylene isophthalamide) 328.37
332 220 267 356 326 57 79 45 45 61 62 120 140 275 268 290 41 58 250 230 215 108 90 265 295 416
1871 402 402 402 402 402 402 402 402 402 1901 402 1443 1946 402 402 * 736 540 438 1819 402 402 1876 * 1886
References page VI-159
Previous Page Molecular weight
Polymer Poly (4,4'-methylenediphenylene Poly(4,4/-methylenediphenylene Poly(4,4/-methylenediphenylene Poly(4,4/-methylenediphenylene -, 3,3'-dimethyl-, 4-methylPoly(4,4/-methylenediphenylene Poly (4,4'-rnethylenediphenylene
octadecamethylenediurea) octamethylenediurea) oxide) ra-phenylenediurea) pyromellitimide) sebacamide)
-, WV'-diethyl -, 3,3'-dimethyl- (diamine) -, WV'-dimethylPoly(4,4'-methylenediphenylene terephthalamide) -, WV'-dibutyl- , WV'-diethyl- 3,3'-dimethyl-(diamine) _., _, iV^v'-dibutyl- , - , W-diethyl_, _, A^V'-dimethyl- , - , WV'-dipropyl- , AW-dimethyl- , W-dipropylPoly(4,4'-methylenediphenylene tetradecamethylenediurea) PolyWAT-methylenediterephthalamic anhydride) Poly(methyleneoxynonamethylene oxide) Poly(methyleneoxyoctadecamethylene oxide) Poly(methylene oxypentamethylene oxide) Poly(methyleneoxytetradecamethylene oxide) Poly(methyleneoxytetramethylene oxide) [1,3-dioxopane] Poly(methylene p-phenylene) - , 2,5-dimethyl- , a-methylPoly(methylene sebacamide) Poly(methylene selenide) Poly(methylene sulfide) - , difluoroPoly(methylenethiotetramethylene sulfide) Poly(methylvinyl ether) PoIy(1,5-naphthalene-4 ',4''-dibenzylidenimino isophthalate) - , 3/,3//-dimethoxyPoly (l,5-naphthalene-4',4''-dibenzylidenimino sebacate) -, 3',3"-dimethoxyPoly(l,5-naphthalene-4/,4//-dibenzylidenimino terephthalate) -, 3',3"-dimethoxyPoly(neopentylvinyl ether) Poly(nonamethylene adipamide) Poly(nonamethylene azelamide) Poly(nonamethylene azelate) Poly[4,4'-(nonamethylenedioxy)-diphenyleneoxy-p-xylylene oxide] Poly(nonamethylene disiloxanylenedipropionamide) - , diethyl-dimethyl- (Si) - , tetraethyl- (Si) Poly(nonamethylene disulfide) Poly(nonamethylenedithiotetramethylene disulfide) Poly(nonamethylene 7V,W-ethylenediterephthalamate) Poly(nonamethylene AW-hexamethylene diterephthalamate) Poly(nonamethylene hexamethylenediurethane) Poly(nonamethylene malonamide) -, dodecyl- (diacid) Poly[nonamethylene 4,4/-methylenediphenylenediurethane] Poly(nonamethylene 4-octenediamide) trans- II. Poly(2,5-nonamethlene-l,3,4-oxadiazole) Poly(nonamethylene oxamide-a/f-nonamethylene sebacamide)
Melting point
Refs.
534.79 394.52
225 263
634 634 *
358.40 400.48
307
402 * 402 1443 402 402 402 402 1870 1870 402 1870 1870 1870 1870 1870 1870 634 1565 695 695 * 695 * * 744 * * * * 1842 181 *
364.49 420.60 392.54 392.54 328.37 440.59 384.48 356.42 468.64 412.53 384.48 440.59 356.42 412.53 478.68 324.29 172.27 298.51
280 270 32 227 55 420 195 182 380 159 178 229 190 264 156 229 330 55 72
242.40
69
118.18
300
82.07 134.26
35 73
496.52 556.58 532.64 592.69 496.52 556.58 268.40 242
205 1818
446.59 344.60 428.76 456.82 190.36
220
1893
180
1893
230
1893 * 339
200
310.59 480.56 536.67
10 10 55 60 48 267 219
394.64
127
* * 1789 402 402 1868 725 1784 781 781 * * 1774 *
29'4.44 194.28 536.80
248 82 234
657 1921 1781
Molecular weight
Polymer Poly(nonamethylene oxide) Poly(nonamethylene WV'-pentamethylenediterephthalamate) Poly(nonamethylene 3,3 '-phosphinylidenedibenzamide) - , methyl- (P) Poly(nonamethylene 4,4/-phosphinylidenedibenzamide) - , methyl- (P) - , phenyl- (P) Poly(nonamethylene pimelamide) Poly(nonmethylene pyromellitimide) - , 3-bromo- (imide) Poly(nonamethylene sebacamide) Poly(nonamethylene Poly(nonamethylene Poly(nonamethylene Poly(nonamethylene Poly(nonamethylene Poly(nonamethylene Poly(nonamethylene Poly(l-nonene)
terephthalate) 2,5-tetrahydrofiirandipropionamide) JV,iV'-tetramethylenediterephthalamate) tridecanediamide) AW-trimethylenediterephthalamate) undecanediamide) urea)
Poly[4,4/-(2,2-nonylidene)-diphenylene carbonate] Poly(norbornene), see Poly(l-vinylene-3-cyclopentylene) Poly(octadecamethylene docosanediamide) Poly(octadecamethylene dodecanediamide) Poly(octadecamethylene 4,4/-(ethylenedixy)-dibenzoate] Poly(octadecamethylene octadecanediamide) Poly(octadecamethylenep-phenylenediacetamide) Poly(octadecamethylene/?-phenylenedipropionamide) Poly(octadecamethylene sebacamide) Poly(octadecamethylene terephthalamide) Poly(octadecamethylene terephthalate) Poly(octadecamethylene /?-xylylenediurea) Poly(octadecamethylene anhydride) PoIy(I-octadecene) PoIy(1,3-octadiene), 1,4Poly (octamethylene) - , 1-methylPoly(octamethylene adipamide) Poly(octamethylene adipate) Poly [octamethylene 7V,iV'-adipoyldi(6-aminocaproate)] Poly(octamethylene azelamide) Poly(octamethylene 4,4'-biphenylenedicarboxylate) Poly (octamethylene decamethylenediurethane) Poly[4,4/-(octamethylenedicarbonyl)-diphenylene carbonate] Poly [4,4'-(octamethylenedioxy)-diphenyleneoxy-/?-xylylene oxide] Poly(octamethylene disiloxanylenedipropionamide) -,tetramethyl- (Si) Poly(octamethylene disulfide) Poly[4,4/-(2,2/-octamethylenedithiazole)-/?-phenylene] Poly(octamethylenedithiotetramethylene disulfide) Poly(octamethylene docosanediamide) Poly(octamethylene dodecanediamide) Poly (octamethylene dodecanedioate) Poly[octamethylene AW-dodecanedioyldi(p-aminobenzoate)] Poly(octamethylene eicosanediamide) Poly(octamethylene AT,iV-ethylenediterephthalamate) Poly(octamethylene 2,5-furandicarboxamide) Poly(octamethylene WV'-hexamethylenediterephthalamate) Poly(octamethylene hexamethylenediurethane) Poly(octamethylene 3-hexenedioate)
Melting point
Refs.
522.64 412.47 426.50 All Al 426.50 488.57 282.43
194
* 781
141
402
167 179 196
419.27 324.51
287 176 202
338.49 508.61 366.59 494.59 338.54 184.28 126.24 338.47
149 259 183 211 196 220 19 22 190
619.08 478.80 552.77 562.97 442.69 470.74 450.75 414.63 416.60 472.72 296.45
146 170 122 152 225 232 171 255 116 226 95
402 402 2 * 1267 339 402 * 402 781 2 781 2 1776 250 872 438 * 454 454 290 454 454 454 454 454 290 634 1823 * *
112.22 254.37
250 235 254
482.66
140
352.43 370.53 380.44 432.56 330.58 386.68 176.34 354.53 296.56 478.80 338.54
197 137 175 220
340.50 578.75 450.75 466.53 264.32 522.64
95 58 164 45 175 202 200 194 73 188 179 282 125 238
244 291 544 * 1792 * 1174 634 1174 1789 402 725 1810 1784 454 244 454 291 291 1792 244 781 1905 781 * *
References page VI-159
Polymer Poly(octamethylene isophthalamide) Poly(octamethylene malonamide) -, dodecyl-(diacid) Poly[octamethylene 4,4/-(methylenediphenylene)-diurethane] Poly(octamethylene octadecanediamide) Poly(octamethylene octamethylenedithiourea) Poly(octamethylene octamethylenediurethane) Poly(octamethylene 4-octenediamide) transPoly(octamethylene 4-octenedioate) Poly(2,5-octamethylene-l,3,4-oxadiazole) Poly(octamethylene oxamide) Poly(octamethylene oxamide-a/f-octamethylene sebacamide) Poly(octamethylene oxide) Poly(octamethylene S^'^^'-oxydiphenylenetetracarboximide) Poly(octamethylene AW,'-pentamethylenediterephthalamate) Poly(octamethylene p-phenylenediacetamide) Poly(octamethylene /?-phenylenedipropionamide) Poly(octamethylene 3,3'-phosphinylidenedibenzamide) - , methyl- (P) Poly(octamethylene 4,4/-phosphinylidenedibenzamide) - , methyl- (P) -phenyl-(P) Poly(octamethylene phthalamide) Poly(octamethylene 2,4-pyridinedicarboxamide) Poly(octamethylene 2,5-pyridinedicarboxamide) Poly(octamethylene 2,6-pyridinedicarboxamide) - , l,4-dihydro-4-oxoPoly(octamethylene 3,5-pyridinedicarboxiamide) Poly(octamethylene pyromellitimide) - , 3-bromo- (imide) Poly(octamethylene sebacamide) Poly(octamethylene sebacoyldiurea) Poly(octamethylene suberamide) Poly(octamethylene suberate) Poly(octamethylene succinamide) Poly(octamethylene L-tartaramide) - , di-O-methylPoly(octamethylene terephthalamide) Poly(octamethylene terephthalate) Poly[octamethylene N,N'-terephthaloyldi(6-aminocaproate)] Poly(octamethylene tetradecanediamide) Poly(octamethylene 2,5-tetrahydrofurandipropionamide) Poly(octamethylene AUV'-tetramethylenediterephthalamate) Poly(octamethylene tetramethylenedithiourea) Poly(octamethylene 2,5-thiophenedicarboxamide) Poly(2,5-octamethylene-1,3,4-triazole) -, 1-amino- (triazole) Poly(octamethylene AW-trimethylenediterephthalamate) Poly(octamethylene urea) Poly(octamethylene/7-xylylenediurea) Poly(octamethylenep-xylylenediurethane) Poly(octenamer) PoIy(I-octene) Poly(oxacyclobutane) [trimethylene oxide] -, 3,3-bisazidomethyl- , 3,3-bisbromomethyl- , 3,3-bischloromethyl- , 3,3-bisethoxymethyl- , 3,3-bisfluoromethyl-, 3,3-bishydroxymethyl- , 3,3-bisiodomethyl-
Molecular weight
Melting point
274.36
186
380.62
125
422.70 372.63 342.48 280.41
179 190 144 256
Refs. 1868 * 1774 * 454 402 402
508.61 302.42 330.47 398.44 412.47 398.44 412.47 474.54 274.36 275.35 275.35 275.35 291.35 275.35
207 280 289
657 * 1921 1862 743 1781 * * 781 454 454
158
402
172 202 123 190 232 192 86 214
405.25 310.48
320 207 206 210 212
402 402 1868 1905 1905 1905 1905 1905 * 1267 153 454 244 402 * * *
180.25 198.27 508.75
396.53
110 100 276 244
258.32
502.65 366.59 324.46 494.59 316.53 280.39 179.27 194.28 480.56 170.26 332.45 334.42
167 196 180 276 160 304 258 231 260 278 196
243.93
220
122.12 118.13 337.93
135 D280 290
* * 1792 2 402 781 402 1905 610 781 291 634 634 * * * 1807 * * 1805 1271 1807
Polymer - , 3-tert-butyl-, 3,3-diethyl-, 3,3-dimethyl- , 3-hydroxyPoly(oxybisdimethylsilylene) Poly(4,4'-oxydibenzoic anhydride) Poly(oxydiethylene adipate) Poly(oxydiethylene azelate) Poly(oxydiethylene 2,2'-dibenzoate) Poly(oxydiethylene 3,3'-dibenzoate) Poly(oxydiethylene 4,4'-dibenzoate) Poly[(oxydiethylene)-dioxydibenzoic anhydride] Poly[4,4/-(oxydiethylenedioxydiethylenedioxy)-diphenylene 3,3',4,4'-(carbonyldiphenylene)tetracarboximide] Poly[4,4'-(oxydiethylenedioxy)-diphenylene 3,3',4,4/-(carbonyldiphenylene)-tetracarboximide] Poly[3,4/-(oxydiethylenedioxy)-diphenylene] 3,3 ',4,4'-(oxydiphenylene)-tetracarboximide] Poly(oxydiethylene 4,4'-ethylenedibenzoate) Poly(oxydiethylene glutarate) Poly(oxydiethylene hexamethylenediurethane) Poly(oxydiethylene isophthalate) Poly(oxydiethylene malonate) Poly(oxydiethylene 4,4'-methylenedibenzoate) Poly(oxydiethylene oxalate) Poly(oxydiethylene oxydiacetate) Poly[(oxydiethylene)-oxy-/?-phenylene oxide] Poly(oxydiethylene phthalate) Poly(oxydiethylene pimelate) Poly(oxydiethylene sebacate) Poly(oxydiethylene suberate) Poly(oxydiethylene succinate) Poly(oxydiethylene sulfonyldivalerate) Poly(oxydiethylene terephthalate) Poly(oxydiethylene thiodivalerate) Poly[(oxydimethylenedioxy)-dibenzoic anhydride] Poly(oxydipentamethylene 5-oxadodecanediamide) Poly(oxydipentamethylene 6-oxadodecanediamide) Poly(oxydipentamethylene 6-oxaheptadecanediamide) Poly(oxydipentamethylene 5-oxahexadecanediamide) Poly(oxydipentamethylene 6-oxapentadecanediamide) Poly(oxydipentamethylene 5-oxasebacamide) Poly(oxydipentamethylene 5-oxatetradecanediamide) Poly(oxydipentamethylene 6-oxatridecanediamide) Poly(oxydipentamethylene 5-oxaundecanediamide) Poly(oxydipentamethylene oxydibutyramide) Poly(oxydipentamethylene oxydicaproamide) Poly(oxydipentamethylene oxydienanthamide) Poly(oxydipentamethylene oxydipelargonamide) Poly(oxydipentamethylene oxydivaleramide) Poly(3,4'-oxydiphenylene adipamide) Poly (4,4'-oxydiphenylene adipamide) Poly(3,4/-oxydiphenylene azelamide) Poly(4,4/-oxydiphenylene azelamide) Poly(4,4;-oxydiphenylene carbonate) Poly(4,4 '-oxydiphenylene-4 ",4'"-dibenzylidenimino adipate) - , 3",3'"-dimethoxyPoly(4,4 '-oxydiphenylene-4",4'"-dibenzylidenimino isophthalate) - , 3",3'"-dimethoxyPoly(4,4'-oxydiphenylene-4",4'"-dibenzylidenimino sebacate) - , 3 ",3 '"-dimethoxyPoly(4,4 '"((4 ',4//-oxydiphenylene)-dioxy-diphenylene pyromellitimide) Poly(2,2 '-(4,4 '-oxydiphenylene-4,4 '-diquinoline)-4,4 '-biphenylene) - , 3,3'-diphenylPoly(4,4'-oxydiphenylenedithiodecamethylene disulfide) Poly(4,4'-oxydiphenylenedithioethylene disulfide) Poly(4,4;-oxydiphenylenedithiotetramethylene disulfide)
Molecular weight
Melting point
Refs. * * 1944 * 1854 765 696 1654 1552 1654 1854 1808
74.08
166
240.21 216.23 258.31 312.32 312.32 312.32 328.32 660.64
296 -24 0 95 75 170 190 360
572.53
402
340.38 202.21 274.32 236.22 174.15 326.35 160.13 204.18 180.20 236.22 230.26
105 -22 120 90 —11 145 10 6 136 11 - 26
244.29 188.18 304.34
35 -8 66
304.40 300.27 384.56 384.56 454.70 440.67 426.64 356.51 412.61 398.59 370.53 342.48 398.59 426.64 482.75 370.53 310.35 310.35 352.43 352.43 228.20 518.57 578.62 538.56 598.61 574.68 634.73
- 35 192 102 100 128 122 117 127 118 106 108 138 128 129 129 134 225 360 150 300 235
1808 * 1654 765 633 1654 765 1654 765 1798 1868 1794 765 * 765 765 1797 * 767 1854 1847 1847 1847 1847 1847 1847 1847 1847 1847 1847 1847 1847 1847 1847 1832 1832 1832 1832 540
135
1893
185
1893
140
574.68 726.88 436.70 324.49 352.54
475 500 80 158 94
1893 * 1778 1778 1837 1837 1837
References page VI-159
Polymer Poly(3,4'-oxydiphenylene dodecanediamide) Poly(4,4/-oxydiphenylene dodecanediamide) Poly(4,4/-oxydiphenylene ketone) Poly(4,4/-oxydiphenylene 3,3 ',4,4'-oxydiphenylene-tetracarboximide) Poly(4,4/-oxydiphenylene m-phenylenediketone) - , 2,2'-diethyl- , 2,6-diisopropyl- , 2-ethyl-2/-isopropyl- , 2-isopropyl-2/-methylPoly(4,4 '-oxydiphenylene /?-phenylenediketone) - , 2-isopropyl-2'-methylPoly(3,4'-oxydiphenylene pimelamide) Poly(4,4'-oxydiphenylene pimelamide) Poly(4,4/-oxydiphenylene pyromellitimide) Poly(3,4/-oxydiphenylene sebacamide) Poly(4,4'-oxydiphenylene sebacamide) Poly(3,4'-oxydiphenylene suberamide) Poly(4,4'-oxydiphenylene suberamide) Poly(3,4'-oxydiphenylene undecanediamide) Poly(4,4'-oxydiphenylene undecanediamide) Poly [2,2 '-(6,6 /-oxydiquinoline)-4,4 '-biphenylene] - , 4,4/-diphenyl- , 3,3',4,4'-tetraphenylPoly [2,2 '-(6,6 /-oxydiquinoline)-4,4 '-oxydiphenylene] - , 4,4'-diphenyl-, 3,3/,4,4/-tetraphenylPoly [2,2 '-(6,6 '-oxydiquinoline)-/?-phenylene] - , 4,4'-diphenyl- , 3,3/,4,4/-tetraphenylPoly(oxydisilyleneditrimethylene pyromellitimide) - , tetramethyl- (Si) Poly(oxyditetramethylene hexamethylenediurethane) Poly(oxyditrimethylene adipamide)
Molecular weight 394.52 394.52 300.31 356.42 384.48 370.45 356.42 300.31 356.42 324.38 324.38 366.46 366.46 338.41 338.41 380.49 380.49 422.49 574.68 726.88 438.49 590.68 742.88 346.39 498.58 650.78 374.50 430.61 330.42 242.32
Melting point
Refs.
150 290
1832 1832 * *
242 185 228 220
1767 1767 1767 1767
262 170 315 165 310 175 310 140 270
1767 1832 1832 * 1832 1832 1832 1832 1832 1832
480 480
1778 1778
448 476
1778 1778
455 475
1778 1778 1361 633 291 1775 1775 * 872
Poly(oxyditrimethylene terephthalamide) Poly(oxymethylene) [formaldehyde] Poly(l-pentadecene) Poly(l,3-pentadiene), 1,2- , 4-methylPoIy(1,3-pentadiene), 1,4- , 2-methylPoly(pentamethylene) - , 1,2-dichlorotransPoly(pnetamethylene adipamide)
262.31
210 124 190 213 281
210.40
54
- , (L)-l-carboxy-(diamine) - , (L-1-carboxy- (diamine) - , 2,2,3,3,4,4-hexafluoro- (diamine) - , - , WV'-dibutyl- , - , WV'-diethyl- , - , WV-diisopropyl- , - , WV'-dimethylPoly(pentamethylene adipamide-a/r-pentamethylene oxamide) Poly(pentamethylene adipate) - , 2,2,3,3,4,4-hexafluoro- (diamine) Poly(pentamethylene azelamide) Poly(pentamethylene azelamide-^//-pentamethylene oxamide) Poly(pentamethylene azelate)
256.30 512.60 320.24 432.45 376.34 404.40 348.29 368.48 214.26 322.20
Poly(pentamethylene carbonate) Poly(pentamethylene m-carboxycarbanilate) Poly(pentamethylene/7-carboxycarbanilate)
130.14 249.27 249.27
* * * 70.14 139.02 212.29
410.56 256.34
75 223 225 251 258 113 102
1925 339 402 1852 1818 1883 1883
15 20 35 30 281 40 34
402 402 402 402 1781 1120 1933 * 1781 696 1120 1820 1891 1891
268 41 50 46 80 160
Polymer Poly[pentamethylenep-(carboxyphenylene)-acetamide] Poly[pentamethylene (cyclopropylenedicarboxoyl)-diurethane] transPolyCpentamethylene cyclopropylenediurethane) Poly[pentamethylene (decamethylenedisulfonyl)-dicaproamide] PolyCpentamethylene 2,2'-dibenzoate) PolyCpentamethylene 3,3'-dibenzoate) PolyCpentamethylene 4,4'-dibenzoate) Poly(4,4 / -pentamethylenedibenzoic anhydride) Poly[3,3 / -(pentamethylenedioxy)-dibenzoic anhydride] Poly [4,4'-(pentamethylenedioxy)-dibenzoic anhydride] Poly[(pentamethylenedioxy)-didecamethylene oxide] Poly[(pentamethylenedioxy)-dihexamethylene oxide] Poly(pentamethylene disulfide) Poly(pentamethylene dithiolisophthalate) PolyCpentamethylene dithiolterephthalate) Poly(pentamethylene dodecanedioate) PolyCpentamethylene A^V'-ethylenbediterephthalamate) Poly[pentamethylene (ethylenedithio)-diethylenediuethane] PolyCpentamethylene glutaramide) PolyCpentamethylene glutarate) Poly[pentamethylene (hexamethylenedisulfonyl)-dicaproamide] PolyCpentamethylene A^N'-hexamethylenediterephthalamate) Poly[pentamethylene (hexamethylenedithio)-diethylene-diurethane] PolyCpentamethylene hexamethylenediurethane) PolyCpentamethylene isophthalate) PolyCpentamethylene malonamide) - , dodecyl- (diacid) Poly[pentamethylene 4,4 / -(methylenediphenylene)-diurethane] PolyCpentamethylene octadecanediamide) PolyCpentamethylene 4-octenediamide) trans- II. PolyCpentamethylene oxalate) PolyCpentamethylene oxamide-a/r-pentamethylene pimelamide) PolyCpentamethylene oxamide-a/r-pentamethylene sebacamide) PolyCpentamethylene oxamide-tf/f-pentamethylene suberamide) PolyCpentamethylene oxydiacetamide) PolyCpentamethylene oxydiacetate) PolyCpentamethylene 4,4'-oxydibenzoate) Poly(pentamethyleneoxy-/7-phenylene oxide) Poly[pentamethylene (pentamethylenedisulfonyl)-dicaproamide] PolyCpentamethylene MN'-pentamethylenediterephthalamate) Poly[pentamethylene Cpentamethylenedithio)-diethylene-diurethane] PolyCpentamethylene m-phenylenedisulfonamide) PolyCpentamethylene phthalate) PolyCpentamethylene pimelamide) PolyCpentamethylene pimelate) PolyCpentamethylene sebacamide) PolyCpentamethylene sebacate) PolyCpentamethylene sebacoyldiurea) PolyCpentamethylene suberamide) PolyCpentamethylene suberate) PolyCpentamethylene succinate) PolyCpentamethylene sulflde) PolyCpentamethylene sulfone) PolyCpentamethylene sulfonyldivalerate) PolyCpentamethylenesulfonyltetramethylene sulfone) PolyCpentamethylene terephthalamide) PolyCpentamethylene terephthalate) PolyCpentamethylene tetradecanediamide) PolyCpentamethylene 2,5-tetrahydrofurandipropionamide) PolyCpentamethylene A^AT'-tetramethylenediterephthalamate) PolyCpentamethylene Ctetramethylenedithio)-diethylene-diurethane] PolyCpentamethylene thiodivalerate)
Molecular weight
Melting point
Refs.
216
1904
228.25 564.84 310.35 310.35 310.35 294.35 326.35 326.35 398.67 286.46 134.26 266.38 266.38 298.42 424.45 336.46
250 170 202 13 60 170 118 176 188 72 46 44 175 232 60 312 130
200.23 508.73 480.56 392.57
25 210 255 94
234.25
82
338.54
208
380.62 238.33
167
1865 1865 402 1552 1552 1552 1854 1854 1854 542 542 295 1922 1922 1792 781 1897 * 1120 402 781 1897 * 1794 * 1774 * 339
246.31 284.27
158.15 382.50 424.58 396.53 200.24 202.21 326.35 178.23 494.70 466.53 378.55 304.38 234.25
268.40 270.37
258 54 273 258 273 130 33 70 164 212 198 87 160 9
354.45 240.35 242.32 186.21
195 51 57 205 202 46 35
334.43
86
324.51 282.38 452.51 364.52 302.43
178 153 284 95 42
657 1120 1781 1781 1781 291 1798 1939 1868 402 781 1897 1384 1794 * * 339 696 1120 402 339 1120 1120 * * 1797 * * * 339 402 781 1897 767
References page VI-159
Polymer
Molecular weight
Melting point
Refs.
Poly(pentamethylenethiotetramethylene sulfide) Poly(2,5-pentamethylene-1,3,4-triazole) - , 1-aminoPoly(pentamethylene tridecanediamide) PolyCpentamethylene A^-trimethylenediterephthalamate) Poly(pentamethylene undecamethylenediurethane) PolyCpentamethylene undecanediamide) PolyCpentamethylene urethane) PolyCpentenamer) PoIyC 1-pentene) - , 5-cyclohexyl- , 5-diisobutylamino- , 5-diisopropylamino- , 4,4-dimethyl- , 3-ethyl- , 3-methyl-, 4-methyl- , 5,5,5-trifluoro- , 4-trifluoromethyl- , 5-trimethylsilylPoly[4,4'-(2,2-pentylidene)-diphenylene carbonate] -,4-methylPoly[4,4/-(3,3-pentylidene)-diphenylene carbonate] - , 2,4-dimethylPoly [4,4 '-perfluorodiphenyleneoxyperfluoropentamethylene oxide) - , 1,1,5,5-tetrahydro- (pentamethylene) Poly(m-phenylene) Poly(/?-phenylene) Poly(m-phenylene adipamide)
190.37 137.19 152.20 310.48 438.48 342.48 282.43
67
181
260 176 235 123 176
152.28
123
610 339 781 633 291 * * * 328 * *
98.19
425
124.11 138.13
225 255
282.34 296.37 282.34 310.39 578.16 506.19
220 220 195 220
218.26
- , 3-methyl- (diamine) Poly(o-phenylene adipamide) Poly(m-phenylene adipamide) Poly(p-phenylene azelamide) Poly(p-phenylene azelate) Poly(/?-phenylene m-carboranedicarboxylate) Poly(p-phenylene cyclobutylene) -, dipyridylPoly(p-phenylene cyclobutylenedicarboxamide) Poly(p-phenylene cyclobutylenedicarboxylic acid) - , dibutyl ester - , - , dicyano- , diethyl ester -, - , dicyano- , diisopropyl ester - , - , dicyano- , dimethyl ester - , - , dicyano- , diphenyl ester - , dipropyl ester - , - , dicyanoPoly(m-phenylene cyclopropylenedi(carboxylate) cistransPoly(p-phenylene cyclopropylenedicarboxylate) cistransPoly(p-phenylenediacetic anhydride)
232.28 218.26
296 344 225 179
260.34 262.31
345 135
Poly(m-phenylene-3,3'-dibenzamido isophthalamide) Poly(m-phenylene-4,4'-dibenzamido isophthalamide) Pory(p-phenylene-3,3'-dibenzamido isophthalamide) Poly(/?-phenylene-4,4'-dibenzamido isophthalamide) Poly(m-phenylene-3,3/-dibenzamido terephthalamide) Poly(m-phenylene-4,4'-dibenzamido terephthalamide)
476.49 476.49 476.49 476.49 476.49 476.49
145
632 * * 1813 1813 * 438 438 1915 1915 1908 * * 402 828 402 1868 * 828 1174 *
130.19 216.24 218.21 330.42 380.44
405
324.34 302.37 352.39
340 320 320
296.28
290
330
* 723 723 * 723 723 723 * 723 *
302.37 * 204.18 65 105
1860 1860
160 280 92 152 410 450 475 490 460 467
1860 1860 1565 1855 1788 1788 1788 1788 1788 1788
204.18 176.17
Molecular weight
Polymer Poly(/?-phenylene-3,3'-dibenzamido terephthalamide) Poly(p-phenylene-4,4'-dibenzamido terephthalamide) Poly(p-phenylene-4',4//-dibenzylidenimino adipate) - , 3',3"-dimethoxyPoly(/7-phenylene-4/,4//-dibenzylidenimino isophthalate) -, 3/,3"-dimethoxyPoly(p-phenylene-4;,4';-dibenzylidenimino sebacate) - , 3',3"-dimethoxyPoly(p-phenylenediethylene adipamide) Poly(/?-phenylenediethylene azelamide)
476.49 476.49 426.47 486.52 446.46 506.52 482.58 542.63 274.36 316.44
Poly(p-phenylenediethylene Poly(/?-phenylenediethylene Poly(/?-phenylenediethylene Poly(/?-phenylenediethylene Poly(p-phenylenediethylene Poly(p-phenylenediethylene
docosanediamide) dodecanediamide) heptadecanediamide) hexadecanediamide) octadecanediamide) octamethylenediurethane)
498.80 358.53 428.66 414.63 442.69 362.47
Poly(/?-phenylenediethylene Poly(p-phenylenediethylene Poly[/?-phenylenediethylene Poly(p-phenylenediethylene
pentadecanediamide) m-phenylenediacetamide) 3,3'-(p-phenylene)-dipropionate] sebacamide)
400.61 322.41 352.43 330.47
Poly(p-phenylenediethylene terephthalate) PolyO-phenylenediethylene tetradecanediamide) Poly(/?-phenylenediethylene thiodicaproamide) Poly(p-phenylenediethylene thiodienanthamide) Poly(p-phenylenediethylene thiodipelargonamide) Poly(p-phenylenediethylene thiodiundecanoamide) Poly(p-phenylenediethylene thiodivaleramide) Poly(p-phenylenediethylene tridecanediamide) Poly(p-phenylenediethylene undecandiamide) Poly[(m-phenylenedioxy)-diacetic anhydride] Poly[(p-phenylenedioxy)-diacetic anhydride]
296.32 386.58 390.58 418.64 474.75 530.86 362.53 372.55 344.50 208.17 208.17
Poly[(p-phenylenedioxy)-diacetic 3,4-pyridinedicarboxylic anhydride] Poly[(p-phenylenedioxy)-diacetic terephthalic anhydride] Poly[(p-phenylenedioxy)-diacetic 4,4/-(trimethylenedioxy)-dibenzoic anhydride] Poly[(p-phenylenedioxy)-diethylene octamethylenediurethane]
357.27 356.29 506.46 394.47
Poly [4,4'-(/?-phenylenedioxy)-diphenylene carbonate] Poly [4,4'-(/?-phenylenedioxy)-diphenylene ketone] Poly[4,4/-(/?-phenylenedioxy)-diphenylene 3,3/,4,4/-(p-phenylenedioxy)-diphenylenetetracarboximide] Poly(p-phenylenedipentamethylene terephthalate) Poly(p-phenylenedipropionic anhydride) Poly(p-phenylene disiloxanylene) - , tetramethyl- (Si) Poly(m-phenylene disiloxanylenedipropionamide) - , 4-methyl- (diamine) - , - , diethyl-dimethyl- (Si) - , - , tetraethyl- (Si) - , - , tetramethyl- (Si) - , tetraethyl-(Si) -, tetramethyl- (Si) Poly(o-phenylene disiloxanylenedipropionamide) - , diethyl-diemthyl- (Si) - , tetraethyl-(Si) - , tetramethyl- (Si) Poly(p-phenylene disiloxanylenedipropionamide) - , diethyl-dimethyl- (Si) - , tetraethyl- (Si) - , tetramethyl- (Si)
320.30 658.62 380.48 204.22 152.30
Melting point
Refs.
480 555
1788 1788
135
1893
230
1893
120 310 250 290 230 280 249 258 248 212 212 248 222 219 285 285 300 330 267 251 234 222 207 252 262 275 130 158 152 160 312 324 260 212 212 215
1893 402 402 454 454 454 454 454 454 402 291 454 402 1174 1841 402 454 1881 454 1824 1824 1824 1824 1824 454 454 1565 1855 1565 1872 1872 1871 1872 633 402 1915 * 1018 1881 1565
660 116 92
* 294.46 308.49 392.65 420.70 364.59 406.67 350.57 294.46 378.62 406.67 350.57 294.46 378.62 406.67 350.57
50 90 70 70 90
402 402 402 402 402
40 40 40
402 402 402
300 290 300
402 402 402
References page VI-159
Polymer
Molecular weight
Poly(p-phenyleneditetramethylene terephthalate)
352.43
Poly [4,4 '-(2,2 '-m-phenylenedithiazole)-oxy-/?-diphenylene] Poly[(/?-phenylenedithio)-dipropionic anhydride]
410.51 268.34
Poly(p-phenyleneditrimethylene hexamethylenediurethane)
362.47
Poly(p-phenyleneditrimethylene terephthalate) Poly(p-phenyleneethylene adipamide) - , 1,1-dimethyl- (diamine) Polyfp-phenylene 4,4/-(ethylenedioxy)-dibenzoate] -, methyl- (diol) Poly(p-phenyleneethylene sebacamide) -, 1,1-dimethyl- (diamine) Poly(p-phenyleneethylene succinamide) - , 1,1-dimethyl- (diamine) Poly(p-phenyleneethylene terephthalamide) - , 1,1-dimethyl- (diamine) Poly(p-phenylene glutaramide) Poly(m-phenylene hexamethylenediurethane) Poly(p-phenylene hexamethylenediurethane) Poly(m-phenylene isophthalamide) Poly(p-phenylene isophthalamide) Poly(m-phenylene isophthalate) Poly(/?-phenylene isophthalate) Poly(p-phenylene malonate) Poly(p-phenylene oxide) - , 2,6-dimethoxy-, 2,6-dimethyl-, 2,6-diphenylPoly(p-phenyleneoxytrimethylene oxide) Poly(m-phenylene 3,3'-phosphinylidenedibenzamide) -, methyl- (P) -, - , 4-methyl- (diamine) Poly(m-phenylene 4,4'-phosphinylidenedibenzamide) -, methyl- (P) -, -, 4-methyl- (diamine) -, phenyl-(P) - , - , 4-methyl- (diamine) Poly(o-phenylene S^'-phosphinylidenedibenzamide) - , methyl- (P) Poly(o-phenylene 4,4/-phosphinylidenedibenzamide) -, methyl- (P) -, phenyl- (P) Poly(p-phenylene 3,3/-phosphinylidenedibenzamide) - , methyl- (P) Poly(p-phenylene 4,4'-phosphinylidenedibenzamide) - , methyl- (P) -, phenyl- (P) Poly(p-phenylene pimelamide) Poly(/?-phenylene 1,4-piperazinedipropionate) - , methyl- (diacid) Poly(m-phenylene sebacamide) -, 3-methyl- (diamine) Poly(o-phenylene sebacamide) Poly(p-phenylene sebacamide) Poly(m-phenylene suberamide) Poly(o-phenylene suberamide) Poly(p-phenylene suberamide) Poly(m-phenylene succinate) Poly(p-phenylene succinate) Poly(p-phenylene sulfide) -, 2-methylPoly(p-phenylene sulfonate) Poly(m-phenylene terephthalamide)
324.38 246.31 274.36 376.37 390.39 302.42 330.47 218.26 246.31 266.30 294.35 204.23 278.31 278.31
Melting point
Refs.
217 220 340 55 50 158 240 162
1881 1174 1810 1565 1857 633 291 1881
235
1802
316
1375
205
1802
250
1802
360 398 150 150
238.25 240.21
500 245
178.14
233
150.18 362.32 376.35 390.38 362.32 376.35 390.38 438.42 452.45 362.32 376.35 362.32 376.35 438.42 362.32 376.35 362.32 376.35 438.42
166
1802 828 402 402 * 748 1837 * 1868 * * * * 1868
260 244
402 402
340 252 340 280
402 402 402 402
181
402
193 207
402 402
264
402
340 340
402 402 * 1875 1875 * 402 1868 * * 1868 * 1174 1841 * 679 1785 *
304.35 318.37
189 164
288.39 274.36
200 125
246.31
150
192.17 192.17
260 300
122.18 156.16
100 276
Polymer Poly(p-phenylene terephthalamide) Poly(p-phenylene terephthalate) - , tert-butyl- (diol) - , phenyl- (diol) Poly[p-phenylene 4,4/-(tetramethylene dioxy)-dibenzoate] - , methyl-(diol) Poly[p-phenylene 4",4///-(thiodiphenylene)-dioxy-3,3 ',4,4'diphenylenetetracarboximide] Poly(m-phenylene urea) -, 4-methylPoly(phosphazene) - , bis-P-naphthoxy-, bis-phenoxy-, - , di-m-bromo- , - , di-/?-bromo- , - , di-m-chloro-, - , di-/?-chloro- , - , di-2,4-dichloro- , - , di-m-fluoro-, - , di-p-fluoro-, - , di-isopropyl-, - , di-/?-phenyl- , - , di-m-trifluoromethyl- , ,bis-2,2,2-trifluoroethoxy- , dimethylPoly(phosphinideneditrimethylene adipamide) - , octylPoly(pimelic anhydride) Poly(piperazine adipamide) - , 3-methyl-(diacid) Poly(piperazine azelamide) Poly(piperazine cyclopropylenedicarboxamide) trans- , 1-methyl- (diacid) trans-, 3-methyl- (diacid) transPoly[(piperazinedicarbamoyl)-dithiohexamethylene disulfide] Poly[(piperazinedicarbamoyl)-dithiotetramethylene disulfide] Poly(l,4-piperazinediethylene hexamethylenediurethane) Poly(l,4-piperazinediethylene sulfone) Poly[piperazine (ethylenediamino)-dipropionamide] - , WV'-diisopropyl- , iV,JV'-diemthylPoly[piperazine (ethylenedixoy)-diacetamide] Poly(piperazine isophthalamide) - , 2,5-dimethyl- (diamine) - , methyl-(diamine) Poly(piperazine 4-octenediamide) Poly(piperazine oxydiacetamide) Poly(piperazine phthalamide) -, 2,5-dimethyl- (diamine) -, methyl- (diamine) Poly(piperazine 1,4-piperazinedipropionamide) -, methyl- (diacid) - , methyl- (diamine) Poly(piperazine sebacamide) Poly(piperazine suberamide) Poly(piperazine terephthalamide) - , 2,5-dimethyl- (diamine) - , methyl-(diamine) Poly[piperazine (trimethylenedithio)-dipropionamide] Poly( 1,4-piperidinediyltrimethylene) - , 2,6-dioxo-
Molecular weight
Melting point
Refs.
296.32
444
* * 1375
404.42 418.45
212
1375
426
1771
582.59 134.14 148.16 47.00 331.31
284
402
>350
367.19
330
553 * * * * * * * * * * 553 * *
258.30 370.52 142.15 210.28 238.33 180.21
135 55 * 300 148
1859 1823
330
1860
130
1860
280 196 204 165 200
1860 1793 1793 291 1875
97 113 165 340 315 280
1875 1875 1894 1833 1833 1833 * 1894 1833 1833 1833 1875 1875 1875 * 402 1833 402 1833 1833 402
402 402
194.23 194.23 352.54 324.49 342.44 204.29 254.33 338.50 282.39 228.25 216.24 244.28 230.27 184.20 216.24 244.29 230.27 280.37 294.40 294.40
258 325 >350 350 D270 218 217
224.30 216.24
300 350 380 350 350 100
244.29 230.27 302.45 125.22
*
References page VI-159
Polymer
Molecular weight
Melting point
Poly(l,4-piperidene urethane) Poly(pivalolactone), see Poly(3-hydroxypropionic acid), 2,2-dimethylPoly(propene) - , 3-cyclohexyl- , 3-cyclopentyl- , hexafluoro- , 3-phenyl- [allylbenzene] - , - , 2,5-dimethyl- , - , 3,4-dimethyl- , - , 3,5-dimethyl- , 3-silyl- , 3-m-tolyl- , 3-o-tolyl- , 3-p-tolyl- , 3-trimethylsilylPoly(propiolactone), see Poly(3-hydroxypropionic acid) Poly(propionaldehyde) - , 3-cyano- , 3-methoxycarbonylPolypropylene oxalate) Poly(propylene oxide) - , 2-chloromethyl-
127.14
270
146.23 146.23 146.23
338 275 252
132.21 132.21 132.21
180 290 240
130.10
180
106.55
-, -, -, -, -,
3-(l-naphthoxy)3-(2-naphthoxy)3-phenoxy- , o-chloro- , /7-chloro-
200.24 200.24
126 126 235 297
-, -, -, -, -, -,
-, -, -, -, -, -,
178.23 192.26 180.20 164.20 164.20 164.20
dimethylo-isopropylp-methoxym-methylo-methyl/7-methyl-
- , - , -phenyl-, - , 2,4,6-trichloroPolypropylene 4,4/-sulfonyldibenzamide) Poly(propylidene) Poly(propylvinyl ether) - , 1-methylPoly(2,5-pyrazinecyclobutylene) - , 2,4-diphenylPoly(2,5-pyrroledipropionic anhydride) - , N-methylPoly(2,6-quinoline) - , 4-phenylPoly(sebacic anhydride) Poly(sebacoyl dithionisophthaloyldihydrazide) Poly(selenium) Poly(siloxane) - , diethyl- , dimethyl- , diphenyl- , dipropylPoly(silylene) - , dimethyl- , diphenylPoly[4,4'-(silylenediphenylene)-dimethylene 4,4/-disiloxanylenedibenzamide] - , dimethyl- (diamine), tetramethyl- (Si) Poly[4,4/-(silylenediphenylene)-dimethylene 4,4'-silylenedibenzamide] - , dimethyl- (diamine), dimethyl- (Si)
184.62
226.28 253.51 344.38 42.08 86.13
176 192 125 128 200 169 191 212 205 293 130 335 90
Refs. 444 * * * * * * 187 187 187 187 187 187 * * * * * 305 * 1816 593 445 445 * * 445 833 833 445 833 445 445 445 833 445 445 1835 617 *
132.16 * 193.20 207.223 1127.2 203.24 184.24 392.54
188
1565
552 80 82 294
1778 1564 1822 1889 *
46.10 * * * * 28.09 * * 524.80 608.96 478.70 550.81
165
402
215
402
Polymer Poly[4,4 /-(silylenediphenylene)-dimethylene 4,4'-tetrasiloxanylenedibenzamide] - , dimethyl- (diamine) - , - , tetramethyl-tetraphenyl- (Si) Poly(4,4/-stilbenediyloxyheptamethylene oxide) - , a-methylPoly(4,4 '-stilbenediyloxyhexamethylene oxide) - , a-methylPoly(4,4/-stilbenediyloxymethylene oxide) - , a-methylPoly(4,4'-stilbenediyloxyoctamethylene oxide) -,a-methylPoly(4,4/-stilbenediyloxypentamethylene oxide) -,a-methylPoly(4,4/-stilbenediyloxytetramethylene oxide) -,a-methylPoly(4,4/-stilbenediyltrimethylene oxide) -,a-methylPoly(styrene) - , p-tert-buty\- , - , isotactic - , - , syndiotactic - , m-chloro- , - , isotactic - , - , syndiotactic - , /7-chloro- , - , isotactic - , - , syndiotactic - , 2,4-dimethyl- , - , isotactic - , 2,5-dimethyl- , - , isotactic - , 3,4-dimethyl- , isotactic - , 3,5-dimethyl- , - , isotactic - , o-fluoro- , - , isotactic - , m-fluoro- , - , isotactic - , - , syndiotactic - , p-fluoro- , - , isotactic - , - , syndiotactic - , a-methyl- , - , p-isopropyl- , - , - , isotactic - , - , p-methyl- , - , - , isotactic - , o-methyl- , - , isotactic - , - , p-fluoro- , - , - , isotactic - , ra-methyl- , - , isotactic -,-,syndiotactic - , p-methyl- , - , isotactic - , - , syndiotactic - , P-nitro- , - , isotactic - , /7-trifluoroacetyl- , - , isotactic
Molecular weight
Melting point
Refs.
150
402
93
1772
617.00 645.06 1001.5 308.42 322.45 294.40 308.42 224.46 238.29 322.45 336.48 280.37 294.40 266.34 280.37 252.31 266.34
166
1772
254
1772
114
1772
116
1772
182
1772
128
1772 *
160.26
310
* 1372
138.60 138.60
124 192
1372 1372
138.60 138.60
165 299
1372 1372
132.21
310 350
75 74
132.21
330 340
75 74
132.21
240
75
132.21
290
75 *
122.14 122.14
250 275
1910 1372
122.14
322
* 1372 *
160.26
203
888 * * *
118.18
206
* 1372 * *
149.15
285
1937
200.16
178
1834
References page VI-159
Molecular weight
Polymer
Melting point
- , p-trimethylsilyl- , - , isotactic Poly(styrene-fl/r-carbon monoxide) - , o-hydroxyPolystyrene oxide)
148.16 120.15
Polystyrene sulfone) Poly(styryl pyridine-a/f-vinyl pyridine) Poly(suberic anhydride) Poly(4,4'-sulfinyldiphenylene carbonate) Poly(4,4/-sulfonyldiphenylene carbonate) Poly(sulfonyldipropionic anhydride) Poly(/?-sulfonylphenylene sebacamide) Poly(sulfur trioxide) Poly(terephthalaldehyde)
168.21 286.38 156.18 260.26 276.26 192.18 338.42 80.06 134.13
- , 2,5-dimethylPoly(terephthalic anhydride) Poly[terephthalic 2,2'-(terephthaloyldiamino)-dibenzoic anhydride] Poly[terephthalic 4,4/-(tetramethylenedioxy)-dibenzoic anhydride] Poly[terephthalic 4,4/-(trimethylenedioxy)-dibenzoic anhydride] - , 3,3'-dimethoxyPoly[terephthaloyl (m-carboxyphenoxyacetyl)-dihydrazide] Poly(terephthaloyl dithionisophthaloyldihydrazide) Poly(tetradecamethylene adipate) Poly(tetradecamethylene docosanediamide) Poly(tetradecamethylene dodecanediamide) Poly(tetradecamethylene AW-ethylenediterephthalamate) Poly(tetradecamethylene AW'-hexamethylenediterephthalamate) Poly(tetradecamethylene 3-hexenedioate) Poly(tetradecamethylene octadecanediamide) Poly(tetradecamethylene 4-octenedioate) Poly(tetradecamethylene Af,Ar'-pentamethylenediterephthalamate) Poly(tetradecamethylene p-phenylenediacetamide) Poly(tetradecamethylenep-phenylenedipropionamide) Poly(tetradecamethylene sebacamide) Poly(tetradecamethylene suberate) Poly(tetradecamethylene terephthalamide) Poly(tetradecamethylene AW'-tetramethylenediterephthalamate) Poly(tetradecamethylene A^A^-trimethylenediterephthalamate) Poly(tetradecamethylene p-xylylenediurea) Poly(tetradecanedioic anhydride) PoIy(I-tetradecene) Poly(tetrahydrofuran) [tetramethylene oxide] Poly(2,5-tetrahydrofurandipropionic anhydride) Poly(2,5-tetrahydropyrroledipropionic anhydride) - , W-methylPoly(tetramethylene adipamide) Poly(tetramethylene adipamide-
162.19
195 149 140 162 215 350 66 250 210 237 117 32 120 240 140
534.48 460.44 446.41 506.46 354.32 356.42
312 215 285 255 218 309
562.97 422.70 550.70 606.80
153 175 249 222
506.36
158
592.78 386.58 414.63 394.64
200 235 246 175
358.53 578.75 564.72 416.61 240.34
265 248 208 248 91
198.22 197.23 211.26
135 103
340.42
325
426.55
156
382.50 242.32
300 37 39 51 59 60 186 221 260 226 180 219
Poly(tetramethylene Poly(tetramethylene Poly (tetramethylene Poly[tetramethylene Poly(tetramethylene Poly[tetramethylene Poly(tetramethylene Poly [tetramethylene
carbonate) m-carboxycarbanilate) p-carboxycarbanilate) p-(carboxyphenylene)-acetamide] 1,4-cyclohexylenediurethane) (cyclopropylenedicarboxoyl)-diurethane] cyclopropylenediurethane) (decamethylenedisulfonyl)-dicapromide]
116.12 235.24 235.24 232.28 256.30 270.24 214.22 550.81
Refs.
* * 1884 1809 318 693 1916 1920 1823 540 540 1856 1267 288 1801 1174 1801 * 1871 1871 1871 1871 1833 1889 * 454 454 781 781 * 454 * 781 454 454 454 * 454 781 781 634 1823 *' * 1565 1565 * 1781 * 1792 * 1781 325 696 766 1820 1891 1891 1904 633 1865 1865 402
Polymer
Molecular weight
Melting point
Refs.
36 66 280 260 328 263 242 199 204 172 73 50 160 167
1552 1552 1566 1552 1174 1854 1174 1854 1854 1855 542 542 291 402
Poly(tetramethylene 2,2/-dibenzoate) PolyCtetramethylene 3,3/-dibenzoate) Poly(tetramethylene 4,4'-dibenzoate)
296.32 296.32 296.32
Poly(4,4/-tetramethylenedibenzoic anhydride) Poly [4,4'-(tetramethylenedicarbonyO-diphenylene succinate] Poly[3,3/-(tetramethylenedioxy)-dibenzoic anhydride] Poly[4,4/-(tetramethylenedioxy)-dibenzoic anhydride] -, 3,3/-dimethoxyPoly[(tetramethylenedioxy)-didecamethylene oxide] Poly[(tetramethylenedioxy)-dihexamethylene oxide] Poly[(tetramethyleneoxy)-ditrimethylene oxamide]
280.32 380.40 312.32 312.32 372.37 384.64 272.43 258.32
Poly(tetramethylene disiloxanylenedipropionamide) - , tetramethyl- (Si) -, - , WV'-dimethylPoly(tetramethylene disulfide)
274.47 330.58 358.63 120.23
Poly [4,4 '-(2,2 /-tetramethylenedithiazole)-/?-phenylene] Poly [4,4'-(tetramethylenedithio)-dibenzoic anhydride] Poly(tetramethylene dithiodicarboxylate) Poly(tetramethylene dithioladipate) Poly(tetramethylene dithiolisophthalate) Poly(tetramethylene dithiolsebacate) Poly(tetramethylene dithiolterephthalate) Poly(tetramethylene dithionisophthalate) Poly(tetramethylenedithiotrimethylene disulfide) Poly(tetramethylene dodecanediamide) Poly[tetramethylene A^N'-dodecanedioyldiCp-aminobenzoate)] Poly[tetramethylene 4,4'-(ethylenedioxy)dibenzoate] Poly[tetramethylene (ethylenedithio)-diethylenediurethane] Poly(tetramethylene glutarate) Poly[tetramethylene (hexamethylenedisulfonyl)-dicaproamide] Poly(tetramethylene AW-hexamethylenediterephthalamate) Poly[tetramethylene (hexamethylenedithio)-diethylene-diurethane] Poly(tetramethylene hexamethylenediurethane) -, 1,4-dimethyl- (diol) Poly(tetramethylene isophthalamide) Poly(tetramethylene isophthalate) Poly(tetramethylene malonamide) -, dodecyl- (diacid) Poly(tetramethylene malonate) Poly[tetramethylene 4,4/-(methylenediphenylene)-diamino-dithiodicarboxylate] Poly[tetramethylene 4,4/-(methylenediphenylene)-diurethane] Poly(tetramethylene nonamethylenediurethane) Poly(tetramethylene octamethylenediurethane) Poly(tetramethylene 4-octenediamide) Poly(tetramethylene oxalate) Poly(tetramethylene oxamide-tf/Metramethylene pimelamide) Poly(tetramethylene oxamide-a/f-tetramethylene sebacamide) Poly(tetramethylene oxamide-^/Metramethylene suberamide) Poly(tetramethylene oxide), see Poly(tetrahydrofuran) PolyCtetramethylene oxydiacetate) Poly(tetramethylene 4,4'-oxydibenzoate) Poly(tetramethylene S^'^^'-oxydiphenylenetetracarboximide) Poly[tetramethylene (pentamethylenedisulfonyl)-dicaproamide] Poly[tetramethylene (pentamethylenedithio)-diethylene-diurethane] Poly(tetramethylene pentamethylenediurethane) Poly(tetramethylene p-phenylenediacetate) Poly(tetramethylene m-phenylenedisulfonamide) Poly(tetramethylene 4,4'-phosphinylidenedibenzamide) -,methyl-(P) - , phenyl- (P) PolyCtetramethylene phthalate)
298.42 344.44 208.25 232.36 252.35 288.47 252.35 252.35 226.43 282.43 522.64 356.37 322.44 186.21 494.70 466.53 378.55
120 39 44 250 206 115 128 174 98 310 118 53 245 192 180 177 38 228 300 117
286.37 218.26
104 262
324.51 158.15 404.50
201 -24 104
300.40 286.37
140 160
144.13 354.45 396.53 368.48
105 301 290 310
188.18 312.32 362.34 480.68 364.52 244.29 248.28 290.35 342.34 356.36 418.43 220.22
70 881 352 232 113 159 63 215
402 295 725 1810 1854 1936 1922 1922 1922 1922 1889 1784 153 1792 290 1897 766 402 781 1897 * 633 828 * * 1774 766 1934 * 633 633 * 766 1781 1781 1781 * 1798 939 1015 402 1897 633 325 1384
208 230 18
402 402 11794
References page VI-159
Molecular weight
Polymer Poly(tetramethylene pimelamide)
212.29
Poly(tetramethylene Polyftetramethylene - , 2,5-dimethylPoly(tetramethylene Poly[tetramethylene Poly(tetramethylene
214.26 294.38 322.44 336.44 368.43 254.33
pimelate) (l,4-piperazinedithio)-dicarboxylate] 4,4/-propylenedibenzamide) 4,4'-(propylenedioxy)-dibenzamide] sebacamide)
Poly(tetramethylene sebacate) Poly(tetramethylene suberamide) Poly(tetramethylene suberate) Poly(tetramethylene succinamide) - , JV,JV'-dimethylPoly(tetramethylene succinate) - , D-l,2-dimethoxy- (diacid) Poly(tetramethylene sulfide) Poly(tetramethylene sulfone)
Melting point 233 238 41 188 113 180 140 254 239
226.32 228.29
250 56
198.27
123
232.23
92
120.17
100 >271 358 88
Poly(tetramethylene Poly(tetramethylene Poly(tetramethylene - , di-O-methylPoly(tetramethylene
4,4/-sulfonyldibenzamide) sulfonyldivalerate) L-tartaramide)
358.41 320.40 202.21
terephthalamide)
218.26
- , WV'-dimethylPoly(tetramethylene Poly[tetramethylene Poly(tetramethylene Poly[tetramethylene Poly(tetramethylene
terephthalate) Af,iV-terephthaloyldi(6-aminocaproate)] 2,5-tetrahydrofurandipropionamide) (tetramethylenedithio)-diethylene-diurethane] tetramethylenediurethane)
246.31 446.54 268.36 350.49 230.26
436 475 272 190 210 119 193 193 92 90 133 38 64 213
Poly(tetramethylene tetrathiodicarboxylate) Poly(tetramethylene thiodicarboxylate) Poly(tetramethylene thioditrimethylenediurethane) Poly(tetramethylene thiodivalerate) Poly(tetramethylenethiotrimethylene sulfide) Poly(tetramethylene thiourea) Poly(2,5-tetramethylene-l,3,4-triazole) - , 1-aminoPoly[tetramethylene l,r-(4,4/-trimethylenedipiperidine)-dithiodicarboxylate] Poly(tetramethylene AW-trimethylenediterephthalamate) Poly(tetramethylene trithiodicarboxylate) Poly(tetramethylene undecamethylenediurethane) Poly(tetramethylene undecanediamide)
272.37 176.19 290.38 288.40 162.32 130.21 123.16 138.17 418.61 424.45 240.31 328.45 268.40
Poly(tetramethylene urea) Poly(tetramethylene/?-xylylenediurethane) Poly(tetramethyl-/?-silphenylene siloxane), see Poly(/?-phenylene disiloxanylene), tetramethylPoly(3,6,13,16-tetraoxa-8,10-octadecadiyne hexamethylenediurethane) Poly(3,6,13,16-tetraoxa-8,10-octadecadiyne (4,4'-methylenediphenylene)-diurethane) Poly(thiodiethylene dithioladipate) Poly(thiodiethylene dithiolterephthalate) Poly(thiodiethylene hexamethylenediurethane) Poly(thiodiphenylene carbonate) Poly(4,4/-thiodiphenylene oxide) Poly(thiodipropionic anhydride) Poly(thioditetramethylene hexamethylenediurethane) Poly(2,5-thiophenedipropionic anhydride) Poly(tridecamethylene iV,iV'-ethylenediterephthalamate) Poly(tridecamethylene A^,A^'-hexamethylenediterephthalamate) Poly(tridecamethylene N,iV'-pentamethylenediterephthalamate) Poly(tridecamethylene pyromellitimide) Poly(tridecamethylene AW-tetramethylenediterephthalamate) Poly(tridecamethylene tridecanediamide)
114.15 278.31
300 80 193 66 146 208 208 400 227
454.52 536.58 264.43 284.42 290.38
138 130 70 146 134
160.19 346.49 210.25 536.67 592.78 578.75
55 125 78 257 222 194
564.72
248
Refs. 339 402 766 1934 1934 402 402 153 291 * 291 291 * 402 * 609 * 1845 39 1835 1797 829 1940 829 * 1792 402 1897 291 633 1936 1936 633 767 181 402 610 1934 781 1936 633 339 402 402 634 * 1782 1782 1922 1922 633 * * 1857 633 1565 781 781 781 * 781 *
Polymer
Molecular weight
Melting point
Refs.
Poly(tridecamethylene A^N'-trimethylenediterephthalamate) Poly(tridecanedioic anhydride) Poly(l-tridecene) Poly(trimethylene adipamide-tf/Mrimethylene oxamide) Poly(trimethylene adipate) - , 2,2-bisbromomethyl- (diol) - , 2,2-bischloromethyl- (diol) - , 2-bromomethyl-2-chloromethyl- (diol) - , 2,2-diemthyl- (diol) Poly(trimethylene adipoyldiurethane) - , 2-hydroxy- (diol) Poly(trimethylene amine) Poly(trimethylene azelamide-a/Mrimethylene oxamide) Poly(trimethylene azelate) - , 2,2-dimethyl- (diol) Poly (poly-trimethylenebiphenylene) - , a,a,a / ,a // ,a // ,a // -hexafluoroPoly[trimethylene/?-(carboxyphenylene)-acetamide] Poly(trimethylene 1,4-cyclohexylenedicarboxylate) transPoly(trimethylene cyclopropylenedicarboxamide) transPoly(trimethylene cyclopropylenediurethane) Poly(trimethylene 2,2'-dibenzoate) - , 1-methyl- (diol) Poly(trimethylene 3,3/-dibenzoate) -, 1-methyl- (diol) Poly(trimethylene 4,4/-dibenzoate) -, 1-methyl- (diol) Poly(4,4/-trimethylenedibenzoic anhydride) Poly[3,3/-(trimethylenedioxy)-dibenzoic anhydride] Poly[4,4/-(trimethylenedioxy)-dibenzoic anhydride]
550.70 226.32 182.35 312.37
206 78 48 303
372.05 283.15 327.60 214.26 272.26 288.26 57.10 354.45
120 108 111 37
781 1823 872 1781 * 1874 1874 1874 609
208 126 290
402 1786 1781
0
609
155 281
1780 1904
HO
1918
- , 3,3'-dimethoxyPoly[(4,4'-trimethylenedipiperidinediyO-dicarbamoyldithio-tetramethylene disulfide] Poly(trimethylene disulfide)
358.35 448.72 106.20
310 170 78 38 78 87 249 135 215 197 267 263 175 150 67 88
1860 1865 1552 1552 1552 1552 1552 1552 1854 1854 1854 1872 1855 1793 295 725
308.41
157
364.52
115
314.43 272.35 258.32 206.20 220.22 144.13 172.18
60 120 50 132 55 33 67
410.51 382.46 396.49
120 150 140
1897 * 1897 * 402 402 402 111 1794 609 609 * 402 402 402 *
Poly(trimethylene dodecanedioate) Poly[trimethylene (ethylenedithio)-diethylenediurethane] Poly(trimethylene glutarate) Poly[trimethylene (hexamethylenedithio)-diethylenediurethane] Poly(trimethylene hexamethylenediurethane) - , 2-butyl-2-ethyl- (diol) -, 2,2-dimethyl-(diol) - , 2-methyl- (diol) Poly(trimethylene isophthalate) - , 1-methyl- (diol) Poly(trimethylene malonate) - , 2,2-dimethyl- (diol) Poly[trimethylene 4,4'-(methylenediphenylene)-diurethane] - , 2-butyl-2-ethyl- (diol) - , 2,2-diethyl- (diol) - , l-ethyl-2-propyl- (diol) Poly(trimethylene octadecanedioate) Poly(trimethylene octamethylenediurethane) - , 1-methyl- (diol)
256.34 194.28 302.20 218.26 212.24 168.20 200.19 282.30 296.32 282.30 296.32 282.30 296.32 266.30 298.29 298.29
272.35 286.37
Poly(trimethylene 4-octenediamide) transPoly(trimethylene oxalate)
210.28
- , 2,2-bischloromethyl-,2,2-dimethylPoly(trimethylene oxamide-a/f-trimethylene sebacamide)
227.04 158.15 368.48
130.10
82 82
633 402
271 86 88 89 122 111 276
657 678 305 609 1874 609 1781
References page VI-159
Polymer
Molecular weight
Melting point
Poly(trimethylene oxamide-fl/Mrimethylene suberamide) Poly(trimethylene oxide), see Poly(oxacyclobutane) Poly(trimethylene-/?-oxybenzoate)
340.42
295
178.19
Poly(trimethylene oxydiacetate) - , 1-methyl- (diol) Poly(trimethylene 4,4/-oxydibenzoate) Poly[trimethylene (pentamethylenedithio)-diethylene-diurethane] Poly(trimethylene /?-phenylenediacetate) Poly(trimethylene m-phenylenedisulfonamide) Poly(trimethylene phthalate) - , 1-methyl- (diol) Poly(trimethylene pimelate) Poly(trimethylene sebacate) - , 2,2-dimethyl- (diol) Poly(trimethylene sebacoyldiurethane) - , 2-hydroxy- (diol) Poly(trimethylene suberate) - , 2,2-dimethyl- (diol) Poly(trimethylene succinate) - , 2,2-bischloromethyl- (diol) - , 2,2-dimethyl- (diol) Poly(trimethylene sulfide) - , 3,3-diethyl- , 3,3-dimethylPoly(trimethylene sulfone) -,3,3-diethyl- , 3,3-dimethyl-
174.15 188.18 298.30 350.49 234.25 276.33 206.20 220.22
185 211 32 8 90 112 58 157
- , 3,3-dipentylPoly(trimethylene 4,4'-sulfonyldibenzamide) - , 2,2-dimethyl- (diamine) - , 1-methyl- (diamine) Poly(trimethylene sulfonyldivalerate) - , 1-methyl- (diol) Poly(trimethylene terephthalamide) - , AyV'-dimethyl- (diamine) Poly(trimethylene terephthalate) -,2,2-dimethyl- , 1-methyl- (diol) Poly(trimethylene tetradecanedioate) Poly[trimethylene (tetramethylenedithio)-diethylene-diurethane] Poly(trimethylene thiodivalerate) - , methyl-(diol) Poly(trimethylene A^'-trimethylenediterephthalamate) Poly(trimethylene undecanedioate) Poly(undecamethylene adipamide) Poly [4,4'-(imdecamethylenedioxy)-diphenyleneoxy-/?-xylylene oxide] Poly(undecamethylene A^Af'-ethylenediterephthalamate) Poly(undecamethylene A^Af'-hexamethylenediterephthalamate) Poly(undecamethylene oxamide-a/Mindecamethylene sebacamide) Poly(undecamethylene A^N'-pentamethylenediterephthalamate) Poly(undecamethylene pyromellitimide) Poly(undecamethylene sebacamide) Poly(undecamethylene terephthalamide) Poly(undecamethylene AW'-tetramethylenediterephthalamate) Poly(undecamethylene A^N'-trimethylenediterephthalamate) Poly(undecanedioic anhydride) PoIy(I -undecene) Poly(valeraldehyde) Poly(vinyl acetate) - , trifluoroPoly(vinyl alcohol) - , 2-methyl-
0
270.37 328.36 344.36
189
242.32
17
255.10 186.21
74 86
130.25
85
106.14 162.25 134.19
300 364 266 303 385 298 284 272
246.41 344.38 372.44 358.41 306.38 320.40 204.23 232.28
26
1781 * 1841 327 1798 1798 1939 1897 1918 1384 1794 * * 609 402 * 609 * 1874 609 * 1770 * 1890 1890 1890 1917 1890 1835 1835 1835
234.25 220.22 298.42 336.46 274.38 288.40 410.43
140 87 66 113 - 36 -36 235
296.46 Al4.64 508.61 564.72 592.91 550.70
218 193 251 217 221 199
352.56 316.44 536.67 522.64 198.26 154.30 86.13 86.09
169 292 248 198 70 36 155
1797 829 829 * 291 1794 1792 1897 767 767 781 * 544 1789 781 781 1781 781 * 339 544 781 781 1823 872 329
140
* * 1885
58.08
35 399 220
Refs.
Molecular weight
Polymer Poly(vinyl benzoate) - , p-tert-buty\Poly(vinyl bromide) Poly(vinyl-f-butyl ketone) Poly(AT-vinyl carbazole) Poly(vinyl chloride) Poly(vinylcyclobutane) Poly(vinylcycloheptane) Poly(vinylcyclohexane) -, 0-methoxy- , 3-methyl- , 4-methylPoly(vinylcyclohexene) Poly(vinylcyclohexyl ketone) Poly(vinylcyclopentane) Poly(vinylcyclopropane) Poly(iV-vinyldiphenylamine) PoIy(I -vinylene-3-cyclopentylene) [norbornene] Poly(vinyl Poly(vinylidene chloride) Poly(vinylidene Poly(vinylisopropyl ketone) Poly(vinyl laurate) Poly(vinylmethyl ketone) Poly(vinyl myristate) PoIy(I-vinyl naphthalene) Poly(vinyl palmitate)
148.16 204.27
Melting point 327
112.17
150 >240
140.23 124.23 124.23 108.18 138.21
195 355 250 418 >240
195.26
320
98.14 226.36
220 16
254.41
28
282.47
41 46 214
fluoride) fluoride)
Poly(3-vinyl pyrene) Poly(2-vinylpyridine) Poly(vinyl stearate)
228.39
Poly(m-xylylene) - , 4,6-dimethylPoly(p-xylylene) - , bromo- , chloro- , cyano- , 2,5-dichloro-
104.15 132.21
54 52 58 80 135
183.05
270
129.16 173.04
- , 2,5-dimethyl- , ethyl- , methyl-
132.21
270 183 >300 350
- , a,a,oe',a'-tetrafluoroPoly(m-xylylene adipamide) Poly(p-xylylene adipamide)
176.11 246.31
Poly(p-xylylene adipate)
248.28
Poly(m-xylylene azelamide) Poly(p-xylylene azelamide)
288.39 288.39
Poly(p-xylylene azelate)
290.36
Poly(/?-xylylene carbonate) Poly(p-xylylene 1,4-cyclohexylenedicarboxylate) transPoly(p-xylylene disulfide) Poly[(p-xylylenedisulfonyl)-diacetic anhydride] Poly[(/?-xylylenedisulfonyl)-dipropionic anhydride]
164.16 274.32
310.52
118.18
168.27 332.34 360.40
210 230 500
Refs. 1821 * 1812 1843 * * * * * 1815 1867 1867 1850 1843 * * 1811 * * * * 1843 1906 * 1888 * 1888 1906 1873 * 1846 1888 1906 546 1187 * 395 * 395 1831 395 1187
333 340 70 80 81 172 263 282 59 74 79 185
395 142 1794 * 385 402 325 547 1919 402 385 454 325 547 1919 1820
106 175 170 260
547 1861 1856 1856
References page VI-159
Polymer
Molecular weight
Poly[(p-xylylenedithio)-diacetic anhydride]
268.34
Poly[(/?-xylylenedithio)-dipropionic anhydride]
296.40
Poly(p-xylylene dithioladipate) - , 2,3,5,6-tetramethylPoly(p-xylylene dithiolisophthalate) Poly(/?-xylylene dithiol-4,4'-methylenedibenzoate) Poly(p-xylylene dithiol-p-phenylenediacetate) - , 2,3,5,6-tetramethyl- (diol) Poly(p-xylylene dithiolsebacate) - , 2,3,5,6-tetramethyl- (diol) Poly(p-xylylene docosanediamide)
280.41 336.52 300.40 390.52 328.45 384.56 336.52 392.62 470.74
Poly(/7-xylylene dodecanediamide)
330.47
Poly(p-xylylene dodecanedioate) Poly(p-xylylene glutaramide) Poly(/?-xylylene glutarate) Poly(p-xylylene heptadecanediamide) Poly(p-xylylene hexadecanediamide) - , WV'-dimethylPoly(m-xylylene isophthalamide) Poly(p-xylylene isophthalamide) Poly(p-xylylene isophthalate) Poly(p-xylylene malonamide) Poly(p-xylylene octadecanediamide)
332.44 232.28 206.20 400.61 386.58 414.63 266.30 266.30 268.27 204.23 414.63
- , AW'-diethyl- , AW'-dimethylPoly(p-xylyleneoctamethylenediurethane) Poly(p-xylylene 5-oxadodecanediamide) Poly(/?-xylylene 6-oxadodecanediamide) Poly(p-xylylene 6-oxaheptadecanediamide) Poly(p-xylylene 5-oxahexadecanediamide) Poly(p-xylylene oxalate) Poly(p-xylylene 6-oxapentadecanediamide) Poly(/?-xylylene 5-oxasebacamide) Poly(p-xylylene 5-oxatetradecanediamide) Poly(p-xylylene 6-oxatridecanediamide) Poly(p-xylylene 5-oxaundecanediamide) Poly(p-xylylene oxydibutyramide)
470.74 442.69 334.42 332.44 332.44 402.58 388.55 164.12 374.52 304.39 360.50 346.47 318.42 290.36
Poly(p-xylylene oxydicaproamide) Poly(/?-xylylene oxydienanthamide) Poly(p-xylylene oxydipelargonamide) Poly(p-xylylene oxydivaleramide) Poly(/?-xylylene pentadecanediamide) Poly(p-xylylene /?-phenylenediacetate) Poly(p-xylylene phthalamide) Poly(m-xylylene pimelamide) Poly(p-xylylene pimelamide) Poly(p-xylylene pimelate)
346.47 374.52 430.63 318.42 372.55 296.32 266.30 260.34 260.34 262.30
Poly(m-xylylene sebacamide) Poly(p-xylylene sebacamide) Poly(p-xylylene sebacate)
302.42
Poly(m-xylylene suberamide) Poly(p-xylylene suberamide) Poly(p-xylylene suberate) Poly(p-xylylene succinamide) Poly(p-xylylene succinate) Poly(m-xylylene terephthalamide)
274.36 274.36 276.33 218.26 220.22 266.30
304.39
Melting point
Refs.
88 87 91 55 170 255 210 274
1565 1857 1565 1857 1922 1922 1922 1922
262
1922
180 240 225 272 270 94 280 58 239 248 85 225 290 100 110 235 242 50 80 168 200 206 223 220 214 217 234 215 207 190 241 243 234 229 215 243 241 146 230 192 284 67 66 193
1922 402 454 385 454 547 402 1919 454 454 1877 402 385 547 402 402 454 1877 1877 402 1847 1847 1847 1847 1919 1847 1847 1847 1847 1847 1847 1853 1847 1847 1847 1847 454 291 402 402 385 547 1919 402 * 325 1919 547 402 385 547 402 547 402
84 88 93 213 305 82 360 115 300
Next Page
Polymer
Molecular weight
Poly(p-xylylene terephthalamide) Poly(p-xylylene terephthalate)
266.30 268.27
Poly(m-xylylene tetradecanediamide) PolyO-xylylene tetradecanediamide) Poly(p-xylylene thiodicaproamide) Poly(p-xylylene thiodienanthamide) Poly(/?-xylylene thiodipelargonamide) Poly(p-xylylene thiodiundecanoamide) Poly(p-xylylene thiodivaleramide) Poly(p-xylylene tridecanediamide) Poly(p-xylylene undecanediamide)
358.53 358.53 362.53 390.58 446.69 502.80 334.48 344.50 316.44
D.
Melting point
Refs.
350 242 267 192 257 236 228 214 200 242 247 264
402 547 1881 402 454 1853 1853 1824 1824 1853 454 454
APPENDIX: FORMULA INDEX TO THE TABLES
As the number of crystallizable polymers and their complexity increased, it became necessary to devise a simple, reasonably unambiguous scheme to relate polymer structure to the specific name given to that polymer. Some time ago, the compiler designed a shorthand notation to represent the structure of linear polymers which has proved to be useful. This scheme requires one to write the line formula for the constitutional base unit (without concern for priority or direction rules) and to count the groups/atoms comprising the unit in a specified order. In a sense, this scheme is analogous to the Chemical Abstracts Formula Index, but emphasizes groups commonly occuring in linear organic polymers rather than atoms exclusively. This scheme has the additional advantage of ensuring that data for a given polymer are not entered in the tables under differing polymer names. The rules of this scheme are simple - count the number of groups/atoms in the constitutional base unit in the following order: 1. -CH 2- (methylene as such, but not the -CH 2- portion of a -CH3 group). 2. - C O - (carbonyls). 3. -C6H4- (disubstituted benzenes; phenylenes; monosubstituted benzenes with the fifth proton counted under point 5 below). 4. Carbon atoms not already counted (as in -CH 3 , -CH=, -C 6 H 3 =, etc.). 5. Protons (-H) not already counted (as in -CH 3 , -NH-, etc.). 6. Oxygen atoms (exclusive of those in carbonyls). 7. Nitrogen atoms.
8. Sulfur atoms. 9. Other atoms (F, Cl, Br, Si, etc.). The string of nine integers thus generated, arranged in the above order, is the required structure code. By looking up this code in the Formula Index Table one can find the name under which the polymer in question appears in the data tables or, alternatively, by its absence, that no data has been found for the polymer in question. The Formula Index Table is arranged in ascending order of the structural code in columns 2-10 with the assigned polymer name in column 1. Note that some very long, complicated names have been truncated. This should cause little difficulty in the use of this table. Examples of the application of this scheme are shown below. Experience has shown that this scheme generates unique codes for the vast majority of linear polymers capable of crystallizing. Where two or more polymers do have the same structural code, the choice of correct name is usually obvious from the structure. Of course, certain classes of polymers do tend to generate many members all having a single code - for example, all of the condensation poly(amides) having a given total number of methylene groups and differing only in the proportioning of these between the diol and diacid constituents. Again, no ambiguities arise. An advantage of this structural coding scheme is its adaptability to electronic data processing equipment. The logical step beyond this scheme could be a strict sequential notation detailing each group and its position (similar to the ACS-IUPAC Nomenclature Recommendation) in a short-hand notation for conciseness and for computer compatibility. References page VI-159
Previous Page
Polymer
Molecular weight
Poly(p-xylylene terephthalamide) Poly(p-xylylene terephthalate)
266.30 268.27
Poly(m-xylylene tetradecanediamide) PolyO-xylylene tetradecanediamide) Poly(p-xylylene thiodicaproamide) Poly(p-xylylene thiodienanthamide) Poly(/?-xylylene thiodipelargonamide) Poly(p-xylylene thiodiundecanoamide) Poly(p-xylylene thiodivaleramide) Poly(p-xylylene tridecanediamide) Poly(p-xylylene undecanediamide)
358.53 358.53 362.53 390.58 446.69 502.80 334.48 344.50 316.44
D.
Melting point
Refs.
350 242 267 192 257 236 228 214 200 242 247 264
402 547 1881 402 454 1853 1853 1824 1824 1853 454 454
APPENDIX: FORMULA INDEX TO THE TABLES
As the number of crystallizable polymers and their complexity increased, it became necessary to devise a simple, reasonably unambiguous scheme to relate polymer structure to the specific name given to that polymer. Some time ago, the compiler designed a shorthand notation to represent the structure of linear polymers which has proved to be useful. This scheme requires one to write the line formula for the constitutional base unit (without concern for priority or direction rules) and to count the groups/atoms comprising the unit in a specified order. In a sense, this scheme is analogous to the Chemical Abstracts Formula Index, but emphasizes groups commonly occuring in linear organic polymers rather than atoms exclusively. This scheme has the additional advantage of ensuring that data for a given polymer are not entered in the tables under differing polymer names. The rules of this scheme are simple - count the number of groups/atoms in the constitutional base unit in the following order: 1. -CH 2- (methylene as such, but not the -CH 2- portion of a -CH3 group). 2. - C O - (carbonyls). 3. -C6H4- (disubstituted benzenes; phenylenes; monosubstituted benzenes with the fifth proton counted under point 5 below). 4. Carbon atoms not already counted (as in -CH 3 , -CH=, -C 6 H 3 =, etc.). 5. Protons (-H) not already counted (as in -CH 3 , -NH-, etc.). 6. Oxygen atoms (exclusive of those in carbonyls). 7. Nitrogen atoms.
8. Sulfur atoms. 9. Other atoms (F, Cl, Br, Si, etc.). The string of nine integers thus generated, arranged in the above order, is the required structure code. By looking up this code in the Formula Index Table one can find the name under which the polymer in question appears in the data tables or, alternatively, by its absence, that no data has been found for the polymer in question. The Formula Index Table is arranged in ascending order of the structural code in columns 2-10 with the assigned polymer name in column 1. Note that some very long, complicated names have been truncated. This should cause little difficulty in the use of this table. Examples of the application of this scheme are shown below. Experience has shown that this scheme generates unique codes for the vast majority of linear polymers capable of crystallizing. Where two or more polymers do have the same structural code, the choice of correct name is usually obvious from the structure. Of course, certain classes of polymers do tend to generate many members all having a single code - for example, all of the condensation poly(amides) having a given total number of methylene groups and differing only in the proportioning of these between the diol and diacid constituents. Again, no ambiguities arise. An advantage of this structural coding scheme is its adaptability to electronic data processing equipment. The logical step beyond this scheme could be a strict sequential notation detailing each group and its position (similar to the ACS-IUPAC Nomenclature Recommendation) in a short-hand notation for conciseness and for computer compatibility. References page VI-159
Examples*
Structure
Poly(styrene)
other
1.0.1.1.1.0.0.0.1
Poly(p-fluorostyrene)
1.0.0.7.4.0.0.0.2
Poly(3,5-difluorostyrene)
5.1.0.0.1.0.1.0.0
Poly(6-aminocaproic acid)
In the first example, there is one methylene, one phenylene, one carbon atom not otherwise counted (in -CH=), and two protons not otherwise counted (one in -CH= and one in -C6H4H-). In the second example, the fluorine atom replaces a proton from the substituted benzene ring - no other change in code occurs. In the third example, the trisubstituted benzene ring is removed from categdry 3 ( -
Constitutional Base Unit PolyO Selenium Silylene Sulfur Dichlorophosphazene Thiazyl Difluorophosphazene Sulfur trioxide Phosphazene Germoxane Siloxane Stannyloxane Difluoromethylene sulfide Hydroxymethylene Difluoroacetylene Chlorotrifluoroethylene Tetrafluoroethylene Tetrafluoroethylene oxide Trifluoroethylene 2,2,2-Trichloroacetaldehyde Acetylene 2,2-Dichloroacetaldehyde Ethylidene Acetaldehyde Dimethylsilylene Dimethylphosphazene Dimethylsiloxane Oxybisdimethylsilylene * Periods (•) are used to delineate the structural code integers generated.
C6H4-) and is placed in category 4 Carbon atoms not otherwise counted) as 6 carbon atoms and in category 5 (protons) as 3 protons. In the last example, there are five methylene groups, one carbonyl, no other carbons, one proton (from -NH-), no uncounted oxygens, and one nitrogen. The approximately 2700 entries in the Formula Index Table were generated in a similar fashion.
CH2
CO C 6 H 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
C 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
H 0
0 0
0 0
0 0 0
0 0
0 0 0 2 2 2 2 0 2 0 0 0 0 1 1 2 2 4 4 6 6 6 6
N 0
0 0
0 0
0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
O
0 0 0 1 1 3 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
S 0 0 0 1 0
X
0 1 1 0 3 1 0 0 3 1 0 0 1 0 1 0 1 0 1 1 2 0 0 0 2 0 4 0 4 0 4 0 3 0 0 3 0 0 0 2 0 0 0 0 01 0 1 0 1 0 2
Constitutional B a s e Unit Poly-
Tetrafluoroallene Hexafluoropropene Isopropylidene sulfide Isopropylidene oxide 2-Methylvinylalcohol 1,3-Butadiyne, 1,42,5-Thiophene 2-Butene sulfide 2-Butene oxide Isobutyraldehyde l-Methoxy-2-methylethylene 3-Methyl-2,5-thiophene 2-Methyl-2-butene oxide 2,4-Hexadiyne, 2,52,4-Hexadiene, 2,5l-Isopropoxy-2-methyethylene Tetramethylethylene oxide 2,6-Benzothiazole 2,5-Benzoxazole 2-Methyl-/7-phenylene sulfide l-tert-Butoxy-2-methylethylene Tetrafluoro-p-xylylene 2,2 / -Bithiophene 2,6-Dimethyl-l,4-phenylene oxide 2,6-Dimethoxy-l,4-phenylene oxide 2,5-Dimethyl-2,4-hexadiene, 2,52,6-Quinoline Terthiophene Bis(2,4-dichlorophenoxy)phosphazene 3,3 / -Dimethoxy-4,4 / -biphenylenecarbodiimine Bis(3,4-dimethylphenoxy)phosphazene 4,4'-Perfluorodiphenyleneoxyperfluoropentamethylene oxide Bis-P-naphthoxyphosphazene ra-Phenylene p-Phenylene p-Phenylene sulfide /?-Phenylene oxide p-Phenylene sulfonate Phenylenedisiloxanylene /?-Phenylene-l,3,4-oxadiazole /7-Phenylenevinylene p-Nitrostyrene Ethylidene /?-phenylene oc-Methylmethylene-/?-phenylene a-Phenylethylisocyanide /7-Phenylene tetramethyldisiloxanylene m-Phenyleneoxy-2-cyano-l,3-phenylene oxide /7-Phenylenebenzobisthiazole p-Phenylenebenzobisoxazole 4-Phenyl-2,6-quinoline (/?-Phenylenedipyridyl)cyclobutylene 6,6'-Oxydiquinolene-/?-phenylene 4,4 / -Biphenylenegermylene 4,4'-Thiodiphenylene oxide Bis(m-bromophenoxy)phosphazene Bis(p-bromophenoxy)phosphazene Bis(m-chlorophenoxy)phosphazene Bis(/?-chlorophenoxy)phosphazene Bis(m-fluorophenoxy)phosphazene Bis(/?-fluorophenoxy)phosphazene p-Phenylene amine, emeraldine base Diphenylsilylene Diphenylphosphazene Diphenylsiloxane Bisphenoxyphosphazene
CH
2
CO C6H4
O 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0
C
H
3 3 3 3 3 0 0 0 0 0 0
0
0 0 6 6 6
4
2 4 4 4 4 4
5 0 5 0 0 0 0 0 0 0 0
O
10 6 6 6 1 6 12 6 12 7 3 7 3 7 6 7 14 0 8 0 8 0 8 0 8 0 8 1 0 9 0 12 0 1 2 6 0 15 12 0 16 18 0 1 7 0 0 20 14 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 4 1 2 0 1 2 1 2 3 1 2 1 2 1 3 5 1 4 12 1 7 3 1 8 1 8 1 9 5 1 14 12 1 18 10 2 0 2 0 0 2 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 2 0 2 0 2 2 0 2 2 0 2
0 0 0 1 1
N
S
0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 1
X
4 6 0 0 0 0 0 0 2 0 0 0 8 0 0 0 8 1 0 0 8 1 0 0 8 1 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 4 0 0 0 4 4 0 0 2 0 8 1 0 0 0 8 3 0 0 0 4 0 0 0 0 5 0 1 0 0 6 0 0 3 0 2 1 0 5 0 2 0 0 2 1 0 1 2 0 0 8 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 3 0 1 0 1 0 0 2 1 2 0 0 2 0 0 0 0 2 1 0 0 4 0 0 0 0 4 0 0 0 0 0 1 0 0 1 0 0 2 2 1 0 0 2 0 2 2 0 2 2 2 0 0 0 1 0 0 0 2 0 0 1 2 0 0 0 0 0 0 1 1 0 1 0 0 2 1 0 3 0 2 1 0 3 2 1 0 3 0 2 1 0 3 2 1 0 3 0 2 1 0 3 1 0 2 0 0 2 0 0 0 1 0 1 0 1 1 0 0 1 2 1 0 1
References page VI-159
Constitutional Base Unit Poly4,4'-Biphenylene carbodiimine Diphenylmethylene Phenyl-/?-toluylsiloxane Bis(m-trifluoromethylphenoxy)phosphazene Bis(/?-methylphenoxy)phosphazene Bis(p-methoxyphenoxy)phosphazene Hexafluorotrimethylenebiphenylene Di-p-tolylmethylene 2,6-Diphenyl-l,4-phenylene oxide Bis(/?-isopropylphenoxy)phosphazene 2,5-Pyrazine-2,4-diphenylcyclobutylene l,6-Diazanthrylene-4,4'-biphenylene l,9-Diazanthrylene-4,4'-biphenylene l,6-Diazanthrylene-4,4'-oxydiphenylene l,9-Diazanthrylene-4,4'-oxydiphenylene 6,6'-Oxydiquinoline-4,4'-biphenylene 6,6/-Oxydiquinoline-4,4/-oxydiphenylene 4,4/-Isopropylidenediphenylene dithionisophthalate 2,2/-Biphenylenedithiazole-/?-phenylene m-Phenylenedithiazole-oxy-p-diphenylene 4,4/-Diphenyl-2,2/-(6,6/-oxydiquinolene)-/?-phenylene Bis(/?-phenylphenoxy)phosphazene 2,2/-Biphenylenedithiazole-oxy-/7-diphenylene Phthalocyaninatogermoxane Phthalocyaninatosiloxane Phthalocyaninatostannyloxane 4,6-Diphenyl-2,8-(l,9-diazanthrylene)-4,4'-biphenylene 4,9-Diphenyl-2,7-(l,6-diazanthrylene)-4,4'-biphenylene 4,6-Diphenyl-2,8-(l,9-diazanthrylene)-4,4/-oxydiphenylene 4,9-Diphenyl-2,7-(l,6-diazanthrylene)-4,4/-oxydiphenylene 2,2/-Biphenylene6,6/-bis(4-phenylquinoline) 4,4/-Diphenyl-2,2/-(6,6/-oxydiquinoline)-4,4/-biphenylene 4,4'-Oxydiphenylene-4,4'-diquinoline-4,4'-biphenylene 4,4/-Diphenyl-2,2/-(6,6'-oxydiquinoline)-4,4/-oxydiphenylene Tetraphenyl-2,2/-(6,6/-oxydiquinolene)-p-phenylene Pentaphenyl-/?-toluyltrisiloxane 3,3/-Diphenyl-2,2/-(4,4/-oxydiphenylene-4,4/-diquinoline)-biphenylene Tetraphenyl-2,2/-(6,6/-oxydiquinoline)-4,4/-biphenylene Tetraphenyl-2,2/-(6,6'-oxydiquinoline)-4,4/-oxydiphenylene Aminoformic acid 2-Mercapto-2-methylacetic acid 2-Hydroxypropionic acid (lactic acid) Alanine 3-Amino-2-butenoic acid Dimethyl ketene (ketone) I. Dimethyl-2-hydroxyacetic acid 2-Aminoisobutyric acid Isopropylhydroxyacetic acid 2,3-Dimethyl-3-aminopropionic acid Valine 2,4-Hexadienoic acid, 2,5a-L-Guluronic acid, 1,4P-D-Mannuronic acid, 1,4Methyl-2,4-hexadienoate, 2,54-Methyl-l,3-phenyleneurea Dimethyl ketene (ester) IL Furfural-a/r-dimethylketene Isopropyl-2,4-hexadienoate, 2,5Tetramethylcyclobutylene carbonate 5-Bromo-6-hydroxy-2-naphthoic acid 2,6-Hydroxynaphthoic acid Di-te/t-butyl-4-hydroxybenzoic acid 4,4'-Isopropylidene-3,3 ',5,5 '-tetrabromodiphenylene carbonate 4,4/-Isopropylidene-3,3/,5,5/-tetrachlorodiphenylene carbonate 4,4/-Isopropylidene-3,3/-dichlorodiphenylene carbonate
CH2 CO C 6 H 4 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 2 0 0 2 0 0 0 2 0 2 0 2 0 0 2 0 0 0 0 0 0 03 03 0 0 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2
2
C 1 1 1 2 2 2 3 3 6 6 8
H 0 2 4 0 6 6 0 6 4 14
8 1 2 6 12 6 1 2 6 1 2 6 18 10 18 10 5 6 6 2 3 6 2 3 18 10 0 2 6 2 8 0 4 8 0 4 8 0 4 12 6 4 1 2 60 4 12 6 4 1 2 6 4 18 10 4 18 10 4 18 10 4 18 10 5 18 10 1 8 6 18 10 6 1 8 10 6 18 10 0 0 1 0 2 4 0 2 4 0 2 5 0 3 5 0 3 6 0 3 6 0 3 7 4 8 0 4 9 0 4 9 0 5 8 0 5 8 0 5 8 0 6 10 0 7 8 0 7 12 0 8 1 0 0 8 14 0 8 1 4 0 10 5 0 10 6 0 14 20 0 15 10 0 15 10 0 15 12 2 2 2 2 2 2
O
N
0 0 1 2 2 4 0 0 1 2 0 0 0 1 1 1 2 2 0 1 1 2 1 1 1 1 0
2 0 0 1 1 1 0 0 0 1 2 2 2 2 2 2 2 0 2 2 2 1 2 8 8 8 2 2 2 2 2 2 2 2 2 0 2 2 2 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 2 0 0 0
1 1 0 1 1 2 1 3 1 1 2 0 0 1 0 0 0 1 0 1 0 0 1 5 5 1 0 1
2 1 2 0 1 0 1 0 1 0 2 0 2 0 2 0
S
X
0 0 0 0 0 1 0 7 0 1 0 1 0 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 0 0 0 1 2 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 4 0 4 0 2
Constitutional Base Unit Poly4,4/-Isopropylidene-3,3/-dimethyldiphenylene carbonate ^,^-Cyclohexylidene-S^'^^-tetrachlorodiphenylene carbonate 4,4'-IsOPrOPyHdCnC-S, 3 '-diisopropyldiphenylene carbonate m-Hydroxybenzoic acid p-Hydroxybenzoic acid m-Aminobenzoic acid /7-Aminobenzoic acid Ar-Phenylaminoformic acid m-Phenylene urea 3-(/?-Hydroxyphenylene)-propenoic acid 5-Phenyl-2,4-pentadienoic acid, 2,5/7-Chlorobenzaldehyde-a/f-dimethylketene ra-Nitrobenzaldehyde-a/f-dimethylketene Benzaldehyde-tf/r-dimethylketene 2,5-Methyl-5-phenyl-2,4-pentadienoate /7-Methoxybenzaldehyde-co-dimethylketene 3-Bromo-4,4/-hydroxybibenzoic acid 4,4/-Hydroxybibenzoic acid 4,4/-Oxydiphenylene ketone 4,4;-Thiodiphenylene carbonate 4,4/-Oxydiphenylene carbonate 4,4/-Sulfinyldiphenylene carbonate 4,4'-Sulfonyldiphenylene carbonate 4,4/-Ethylidenediphenylene carbonate 4,4'-Isopropylidenediphenylene carbonate 4,4/-Isobutylidenediphenylene carbonate 4,4'-(Methyl-/?-phenylenedioxy)-diphenylene ketone 4,4/-(2,4-Dimethyl-3,3-pentylidene)diphenylene carbonate (p-Phenylenedioxy)diphenylene ketone (p-Phenylenedioxy)diphenylene carbonate 4,4'-(Phenylmethylene)diphenylene carbonate 4,4'-Phenylethylidenediphenylene carbonate 4,4/-Biphenylenedioxy 4,4/-phenylene ketone 4,4'-Biphenylenedioxy-diphenylene carbonate 4,4/-(Diphenylmethylene)diphenylene carbonate 2,4-Hexadienedioic acid, 2,5Alanylvaline 2,5-Diisopropyl-2,4-hexadienedioate 2-Fluoro-/?-phenylene 2-fluoroterephthalamide 2,6-Naphthalene-2,4-cyclobutylenedicarboxylic acid 2,6-Naphthalene-2,4-bisdichlorophenylcyclobutylenedicarboxylate Isophthalic anhydride Terephthalic anhydride p-Xylylene oxalate /?-Phenylene m-carboranedicarboxylate p-Phenylene 2,5-thiopheneamide 2,5-Pyrimidine terephthalamide p-Phenylene cyclobutylenedicarboxylic acid p-Phenylene cyclobutylenedicarboxamide Chloro-p-phenylene Terephthalate p-Phenylene dimethy Icy clobutylenedicarboxy late 4-Methyl-m-phenylene terephthalamide /7-Phenylene dicyanodimethylcyclobutylenedicarboxylate terf-butyl-/?-phenylene terephthalate p-Phenylene diisopropylcyclobutylenedicarboxylate p-Phenylene dicyanodiisopropylcyclobutylenedicarboxylate 3,3 '-Dimethyl-4,4'-biphenylene terephthalamide 2/-Isopropyl-2-methyl-4,4/-oxydiphenylene m-phenylenediketone 2'-Isopropyl-2-methyl-4,4'-oxydiphenylene/?-phenylenediketone l,5-Naphthalene-4/,4//-(dimethoxy)dibenzylidenimino isophthalate l,5-Naphthalene-4/,4//-(dimethoxy)dibenzylidenimino terephthalate 4,4/-Oxydibenzoic anhydride ra-Phenylene terephthalate ra-Phenylene isophthalate /7-Phenylene isophthalate
C H 2 CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0
0
2
C6H4
C
H
O
0 17 18 0 18 9 021 26 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 2 1 2 2 1 4 6 1 4 7 1 4 7 1 4 8 1 5 8 1 5 10 1 6 3 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 2 4 2 3 6 2 4 8 2 7 6 2 7 1 4 1 3 0 0 3 0 0 3 1 2 3 2 4 4 0 0 4 0 0 4 1 2 0 4 6 0 6 1 4 0 10 18 0 1 28 0 14 12 0 26 16 1 0 0 1 0 0 1 0 0 1 2 10 1 4 4 1 4 4 1 4 6 1 4 8 1 6 3 1 6 10 1 7 8 1 8 8 1 10 12 1 10 18 1 12 16 1 14 14 1 16 16 1 16 16 1 26 20 1 26 20 2 0 0 2 0 0 2 2 0 0 2 0 0
N
2 2 2 1 1 0 0 0 0 1 1 1 3 1 1 2 1 1 1 2 3 3 4 2 2 2 2 2 2 4 2 2 2 4 2 2 0 2 0 2 2 1 1 2 2 0 0 2 0 2 2 0 2 2 2 2 0 1 1 4 4 2 2 2 2
S X
0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 0 4 0 0 0 0 0 2 0 0 0 0 1 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
References page VI-159
Constitutional B a s e Unit Poly-
m-Phenylene terephthalate /7-Phenylene terephthalate m-Phenylene isophthalamide /7-Phenylene isophthalamide /7-Phenylene phthalamide m-Phenylene terephthalamide /7-Phenylene terephthalamide Isophthaloyl (dithionisophthaloyl)dihydrazide Terephthaloyl dithionisophthaloyldihydrazide 4,4 / -Isopropylidenedibenzoic anhydride /7-Phenylene phenylthioterephthalate Phenyl-/?-phenylene terephthalate 4,4 / -Isopropylidenediphenylene 3-methylcyclopropylenedicarboxylate 4-Methyl-l,3-phenylene S^'-methylphosphinylidenedibenzamide 4-Methyl-l,3-phenylene 4,4 / -methylphosphinylidenedibenzamide 2,6-Diisopropyl-4,4 / -oxydiphenylene m-phenylenediketone /7-Phenylene-4 / ,4 // -(dimethoxy)dibenzylidenimino isophthalate 4,4 / -Biphenylene dithiolisophthalate 4,4 / -Biphenylene dithiolterephthalate 4,4'-Oxydiphenylene m-phenylene diketone 4,4 / -Oxydiphenylene m-phenylene ketone 4,4'-Oxydiphenylene/7-phenylene diketone 4,4'-Biphenylene terephthalate (p-Phenylenedioxy)diphenylene diketone 4,4'-Biphenylene terephthalamide 4,4'-Sulfonyldiphenylene terephthalamide m-Phenylene 3,3'-phosphinylidenedibenzamide o-Phenylene 3,3 / -phosphinylidenedibenzamide p-Phenylene 3,3'-phosphinylidenedibenzamide m-Phenylene 4,4 / -phosphinylidenedibenzamide o-Phenylene 4,4'-phosphinylidenedibenzamide /7-Phenylene 4,4 / -phosphinylidenedibenzamide m-Phenylene 3,3 / -(methylphosphinylidene)dibenzamide o-Phenylene 3,3 / -(methylphosphinylidene)dibenzamide /7-Phenylene 3,3 / -(methylphosphinylidene)dibenzamide m-Phenylene 4,4 / -(methylphosphinylidene)dibenzamide o-Phenylene 4,4 / -(methylphosphinylidene)dibenzamide /7-Phenylene 4,4'-(methylphosphinylidene)dibenzamide 4,4'-Isopropylidenediphenylene isophthalamide /7-Phenylene diphenylcyclobutylenedicarboxylate 4-Methyl-l,3-phenylene 4,4 / -phenylphosphinylidenedibenzamide l,5-Naphthalene-4',4 // -dibenzylidenimino isophthalate l,5-Naphmalene^4"-dibenzylidenimino terephthalate 4,4 / -Oxydiphenylene-4 // ,4 /// -(dimethoxy)dibenzylidenimino isophthalate 4,4'-Oxydiphenylene 4,4-biphenylene diketone 4,4'-Biphenylene 4,4 / -biphenylenedicarboxylate (4,4'-Phenylenedioxy)diphenylene m-phenylene diketone (4,4 / -Phenylenedioxy)diphenylene/7-phenylene diketone m-Phenylene 4,4 / -(phenylphosphinylidene)dibenzamide o-Phenylene 4,4 / -(phenylphosphinylidene)dibenzamide /7-Phenylene 4,4'-(phenylphosphinylidene)dibenzamide /7-Phenylene-4 / ,4 // -dibenzylidenimino isophthalate 4,4'-Biphenylenedioxy-diphenylene m-phenylene diketone (/7-Phenylenedioxy)diphenylene oxydiphenylenediketone 4,4 / -Oxydiphenylene-4 // ,4 /// -dibenzylidenimino isophthalate 3,8-Phenanthridinonediyl terephthalamide 3,4'-Carbonyldiphenylene terephthalate 4,4 ; -Benzanilidylene terephthalamide 4,4/-(Carbonyldiphenylenedioxy)-diphenylene-/?-phenylene diketone Alanylalanylalanylvaline Alanylalanylvalylvaline 3,3/-Bis(trifluoromethyl)biphenylene 33^4,4'-biphenylenetetracarboximide 3,3'-Dimethyl-4,4'-biphenylene3,3 / ,4,4 / -biphenylenetetracarboximide m-Phenylene pyromellitimide /7-Phenylene pyromellitimide
CH
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2
CO C6H4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4
C
H
0 0 0 0 0 0 0
0 0 2 2 2 2 2 4 4 6 4 4
2 2 2 2 2 2 2 2
2 2
2
2
3 2 2 2 2 2 2 2
7 8 8 12 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 3 4 7 12 1 2 16
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4
6 6 12 11 11 16 14
0 0 0 0 0 0 0 2 2 3 3 3 3 3 3 5 5 5 5 5 5 8 6 9 8 8 14 0 0
0 4
0
4 4 4 4
0 0 0 2 0 0 2
5 5 5 1 3
1
2 0
3 5 0 0 0 0 1 1
0 0 10 12 26 26 6 6
O
0 0 0 0 3 3 3 2 0 0 2 9 0 3
0 24 28 12 18 2 2
2 2 0 0 0 0 0 0 0 1 0 2 2 1 1 1
N
0 0 2 2 2 2 2 4 4 0 0 0 0 2 2 0 4 2 0 0 0 0 1 0 1 0 1 0 2 0 2 0 0 2 21 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 2 2 0 1 2 2 2 2 2 5 2 1 0 2 0 2 0 2 0 1 2 1 2 1 2 2 2 2 0 3 0 3 2 0 3 2 0 0 3 2 0 0 4 0 4 0 2 0 2 0 2 0 2
S
0 0 0 0 0 0 0 2 2 0 2 0
X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 6 0 0 0 0 0 0
Constitutional Base Unit Polyp-Phenylene 1,4-pyromellitamide p-Phenylene 3,3',4,4'-oxydiphenylenetetracarboximide p-Phenylene 4,4'-oxy(3,3'-dicarboxy)dibenzamide 4,4/-Biphenylene pyromellitimide 4,4/-Thiodiphenylene pyromellitimide 3,4'-Oxydiphenylene pyromellitimide 4,4/-Oxydiphenylene pyromellitimide 4,4'-Biphenylene 1,4-pyromellitimide 4,4/-Oxydiphenylene 1,4-pyromellitimide 4,4/-Biphenylene 3,3',4,4'-biphenylenetetracarboximide 4,4/-Biphenylene 3,3',4,4'-oxydiphenylenetetracarboximide 3,4/-Oxydiphenylene 3,3',4,4'-biphenylenetetracarboximide 4,4'-Oxydiphenylene 3,3',4,4'-oxydiphenylenetetracarboximide 4,4/-Biphenylene4,4/-oxy(3,3/-dicarboxy)dibenzamide 4,4/-Benzobisthiazole-diphenylene pyromellitimide /?-Terphenylene pyromellitimide (m-Phenylenedioxy)diphenylene pyromellitimide (p-Phenylenedioxy)diphenylene pyromellitimide (m-Phenylenedioxy)diphenylene 1,4-pyromellitamide (p-Phenylenedioxy)diphenylene 1,4-pyromellitamide p-Phenylene thiodiphenylenedioxy-diphenylenetetracarboximide (p-Phenylenedioxy)diphenylene oxydiphenylenetetracarboximide (p-Phenylenedioxy)diphenylene 4,4'-oxy(3,3'-dicarboxy)dibenzamide /7-Phenylene 4,4/-dibenzoxyterephthalate m-Phenylene-3,3'-dibenzamido isophthalamide /j-Phenylene-3,3 '-dibenzamido isophthalamide m-Phenylene-4,4/-dibenzamido isophthalamide /?-Phenylene-4,4'-dibenzamido isophthalamide m-Phenylene-3,3 '-dibenzamido terephthalamide p-Phenylene-3,3 '-dibenzamido terephthalamide m-Phenylene-4,4'-dibenzamido terephthalamide /?-Phenylene-4,4'-dibenzamido terephthalamide 4,4'-Biphenylenedioxy-3,3'-diphenylene pyromellitimide (Oxydiphenylenedioxy)diphenylene pyromellitimide 4,4'-Biphenylene thiodiphenylenedioxydiphenylenetetracarboximide (p-Phenylenedioxy)diphenylene p-phenylenedioxydiphenylenetetracarboximide (/?-Phenylenedioxy)diphenylenedioxydiphenylene pyromellitimide 4,4'-Carbonyldiphenylene pyromellitimide 4,4'-Biphenylene 3,3',4,4'-carbonyldiphenylenetetracarboximide 4,4'-Biphenylene4,4'-carbonyl(3,3/-dicarboxy)dibenzamide 4,4'-(Isophthaloyldiamino)diphenylene pyromellitimide 4,4'-(Terephthaloyldiamino)diphenylene pyromellitimide 4,4'-Thiodiphenylene/7-phenyleneditrimellitatediimide 4,4/-Oxydiphenylene/7-phenyleneditrimellitatediimide 4,4'-(Isophthaloyldiamino)diphenylene oxydiphenylenetetracarboximide 4,4'-Oxydiphenylene 5,5'-(p-phenylene)ditrimellitatediamide Isophthalic 2,2'-(isophthaloyldiamino)dibenzoic anhydride Isophthalic 2,2'-(terephthaloyldiamino)dibenzoic anhydride 2,2'-(Isophthaloyldiamino)dibenzoic terephthalic anhydride Terephthalic 2,2'-(terephthaloyldiamino)dibenzoic anhydride Terephthaloyldihydrazodi (p-aminobenzoyl) terephthalamide (p-Phenylenedioxy)diphenylene p-phenyleneditrimellitatediimide (Oxydiphenylenedioxy)diphenylene p-phenyleneditrimellitatediimide (p-Phenylenedioxy)diphenylenedioxydiphenylene /7-phenyleneditrimellitamide Isophthaloyldiphenylenedioxdiphenylene carbonyldiphenylenetetracarboximide 4,4'-(Isophthaloyldiamino)diphenylene p-phenyleneditrimellitatediimide 4,4'-(Terephthaloyldiamino)diphenylene/?-phenyleneditrimellitate 1 Methylene Methylene selenide Methylene sulfide Methylene disulfide Oxymethylene Vinylidene bromide Vinylidene chloride
CH 2 CO C 6 H 4 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 8 8 1
1 1 1 1 1 1 1
0 0 0 0 0 0 0
1 1 1
C 6 12 12 6
H
O 6
N
S
X
2 0 0 2 0 0 2 0 0 2 2 0 2 0 0 2 6 2 0 2 1 0 2 6 2 1 2 0 0 2 6 2 1 2 0 0 2 6 6 2 2 0 0 2 6 6 3 2 0 0 2 12 6 0 2 0 0 2 12 6 1 2 0 0 2 1 2 6 1 2 0 0 2 12 6 2 2 0 0 2 12 10 3 2 0 0 2 14 4 0 4 2 0 3 6 2 0 2 0 0 3 6 2 2 2 0 0 3 6 2 2 2 0 0 3 6 6 4 2 0 0 3 6 6 4 2 0 0 3 12 6 2 2 1 0 3 12 6 3 2 0 0 3 12 10 5 2 0 0 4 4 0 0 4 0 0 0 4 0 4 0 4 0 0 4 0 4 0 4 0 0 4 0 4 0 4 0 0 4 0 4 0 4 0 0 4 0 4 0 4 0 0 4 0 4 0 4 0 0 4 0 4 0 4 0 0 4 0 4 0 4 0 0 4 6 2 2 2 0 0 4 6 2 3 2 0 0 4 12 6 2 2 1 0 4 12 6 4 2 0 0 5 6 2 4 2 0 0 2 6 2 0 2 0 0 2 12 6 0 2 0 0 2 12 10 2 2 0 0 3 6 4 0 4 0 0 3 6 4 0 4 0 0 3 1 2 6 2 2 10 3 12 6 3 2 0 0 3 12 8 1 4 0 0 3 12 10 5 2 0 0 4 0 2 2 2 0 0 4 0 2 2 2 0 0 4 0 2 2 2 0 0 4 0 2 2 2 0 0 4 0 6 0 6 0 0 4 12 6 4 2 0 0 5 12 6 5 2 0 0 6 12 6 6 2 0 0 5 12 6 2 2 0 0 4 12 8 2 4 0 0 4 12 8 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2 0 1 0 0 0 0 2 6 10
2
1 3
References page VI-159
Constitutional Base Unit PolyVinylidene fluoride Vinyl bromide Vinyl chloride Vinyl fluoride 2-Chloroacetaldehyde Vinyl alcohol Acrylonitrile 3,33-Trifluoropropylene oxide Ethyl isocyanide Propene Propylidene Propylene sulfide Methyl vinyl ether Propionaldehyde Propylene oxide Methacrylonitrile Isobutene Isobutylene sulfide Isobutylene oxide oc-Methylvinylmethyl ether l-Cyano-l,3-butadiene, 1,43-Trifluoromethyl-l-butene 1,3-Pentadiene, 1,21,3-Pentadiene, 1,4l-Methoxy-l,3-butadiene, 1,4P-D-Xylose, l,3-(xylan) p-D-Xylose, l,4-(hardwood xylan) 3-Methyl-l-butene Isopropylethylene sulfide l-Ethoxy-2-methylethylene Isopropylethylene oxide Isopropylvinyl ether Isovaleraldehyde l-Ethoxy-2-methoxyethylene p-D-Glucotrinitrate, 1,4(3-D-Glucodinitrate, 1,4oc-Isopropylacrylonitrile 4-Methyl-l,3-pentadiene, 1,22-Methyl-l,3-pentadiene, 1,43-Methyl-l,3-pentadiene, 1,4a-D-Glucose, 1,3P-D-Glucose, 1,3- (curdlan) a-D-Glucose, 1,4- (amylose) P-D-Glucose, 1,4- (cellulose) a-D-Glucose, 1,6- (dextran) a-D-Mannose, 1,3P-D-Mannose, 1,4l-Chloro-2-isobutoxyethylene a-D-Galactosamine, 1,4P-D-Glucosamine, 1,4- (chitosan) 3,3-Dimethyl-l-butene tert-Butylethylene sulfide terf-Butylethylene oxide tert-Butylvinyl ether 2-Vinyl pyridine 5-Methyl-l,3-hexadiene, 1,4l-Isobutoxy-2-methylethylene 1,4-Tetradeuterobutadiene-a/Mnethacrylonitrile Methylene 3,5-toluene Methylene 2,6-diamino-3,5-toluene /7-Fluoro-o-methylstyrene Methylene 2,5-dimethyl-p-phenylene Tetramethylcyclobutyleneoxymethylene oxide a-D-Trimethylglucose, 1,4p-D-Trimethylglucose, 1,4-
CH2
CO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C6H4
OO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H
O
1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 2 1 2 1 0 2 1 1 0 2 3 0 2 4 0 2 4 0 2 4 0 2 4 1 2 4 1 2 4 1 3 3 0 3 6 0 3 6 0 3 6 1 3 6 1 4 3 0 4 5 0 4 6 0 4 56 0 4 56 1 4 6 4 4 6 4 4 8 0 4 8 0 4 8 1 4 8 1 4 8 1 4 8 1 4 8 2 5 5 1 5 6 9 5 7 0 5 8 0 5 8 0 5 8 0 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 8 5 5 9 1 5 9 4 5 9 4 5 1 0 0 5 10 0 5 10 1 5 10 1 6 5 0 6 10 0 6 12 1 7 5 0 7 6 0 7 8 0 8 7 0 8 8 0 8 14 2 8 14 5 8 1 4 5
N 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 2 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
X 2 1 1 1 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 1 0 0 0 0
Constitutional Base Unit Poly-
(3-D~Trimethylmannose, 1,42,4-Dimethylstyrene 2,5-Dimethylstyrene 3,4-Dimethylstyrene 3,5-Dimethylstyrene 1-Vinyl naphthalene 3-Vinyl pyrene Methyl-tf/f-/?-phenylene m-Chlorostyrene p-Chlorostyrene m-Fluorostyrene o-Fluorostyrene p-Fluorostyrene Styrene Styrene oxide Styrene sulfone a-Methylstyrene m-Methylstyrene 0-Methylstyrene p-Methylstyrene N-Phenyl-2-imino-l,3-dithia-4-methylpentamethylene p-Methyl-a-methylstyrene 3-Phenyl-l-butene /7-Trimethylsilylstyrene terf-Butylstyrene /7-Isopropyl-a-methylstyrene Styryl pyridine-a/f-vinyl pyridine 4,4'-Methylenediphenylene oxide N-Vinyl carbazole N-Vinyl diphenylamine 4,4'-Stilbenediyloxymethylene oxide a-methyl-4,4'-stilbenediyloxymethylene oxide l-A^-Carbazoyl-l,3-pentadiynol 2-Mercaptoacetic acid 2-Hydroxyacetic acid (glycolic acid) Glycine Thiolacrylic acid Acrylic acid Vinyl formate Acrylamide Cysteine Serine 3-Trichloromethyl-3-hydroxypropionic acid Vinyl trifluoroacetate 3-Dichloromethyl-3-hydroxypropionic acid Vinylmethyl ketone 3-Hydroxybutyric acid Methacrylic acid 2-Methyl-3-hydroxypropionic acid Vinyl acetate 3-Aminobutyric acid 2,4-Pentadienoic acid, 2,53-Dichloroethyl-3-hydroxypropionic acid Isopropenylmethyl ketone 2,2-Dimethyl-3-hydroxypropionic acid Methylmethacrylate 2,2-Dimethyl-3-aminopropionic acid 3,3-Dimethyl-3-aminopropionic acid Histidine Histidine hydrochloride 6-Amino-2,4-hexadienoic acid, 2,5Vinyl isopropyl ketone Isopropyl thiolacrylate Isopropyl acrylate 3-Isopropyl-3-hydroxypropionic acid
CH2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CO C 6 H 4
O O 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 103 103 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 4
C
8 9 9 9 9 11 17 0 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 5 5 13 0 1 1 2 3 4 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4
1 1 1 1
H
O
14 0 0 0 0 8 10 0 1 1 1 1 1 2 2 2 4 4 4 4 5 6 6 10 10 10 12 0 1 3 2 4 1 0 0 1 2 2 2 3 3 3 1 1 2 4 4 4 4 4 5 4 4 6 6 6 7 7 5 6 7 8 8 8 8
N
5
S
O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 1 0 2 0 0 2 0 0 1 01 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 3 0 0 3 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
X
O 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0
References page VI-159
Constitutional Base Unit Poly-
6-Amino-2,4-hexadienoic acid hydrochloride, 2,5Isoleucine N-Isopropyl acrylamide Leucine Vinyl-tert-butyl ketone tert-Butyl acrylate Ethyl-2,4-hexadienoate, 2,5N-P-D-Acetylglucosamine, 1,4- (chitin) tert-Butylmethacrylate 2,3,4-trimethoxy-5-hydroxyvaleric acid 2,5-Dimethylterephthalaldehyde Isobutyl-2,4-hexadienoate, 2,5P-D-Galactosamine-a/r-l,4-P-D-glucuronic acid, 1,3P-D-Glucosamine-a/M,4-P-D-glucuronic acid, 1,33,3/-Dimethyl-4,4/-methylenediphenylene carbonate (p-Hydroxyphenylene)acetic acid Isophthalaldehyde Terephthalaldehyde a-Amino-/?-toluic acid p-Fluorostyrene-a/f-carbon monoxide Styrene-fl/f-carbon monoxide 0-Hydroxystyrene-tf/£-carbon monoxide Vinyl benzoate Phenylalanine Tyrosine /7-Trifluoroacetylstyrene m-Methylstyrene-a/f-carbon monoxide /7-Methylstyrene-a/r-carbon monoxide 3-Mercapto-2-(/?-toluenesulfonamide)propionic acid Vinyl-/?-tert-butylbenzoate 4,4'-Biphenyldicarboxaldehyde 4,4'-Methylenediphenyl carbonate 4,4/-Methylenediphenylene urea 4,4'-Butylidenediphenylene carbonate 4,4/-(Methyl-2,2-pentylidene)diphenylene carbonate Aspartic acid Propylene oxalate O-Acetylserine Alanylglycine (3-Bromo-4-carboxyphenoxy)acetic anhydride p-D-Xylodiacetate, 1,4A^-P-D-Acetylgalactosamine-«//-l,4-P-D-glucuronic acid, 1,3N-P-D-Acetylglucosamine-a//-l,4-P-D-glucuronic acid, 1,3A^-P-D-Acetylgalactosamine-4-sulfate-^/r-l,4-p-D-glucuronic acid A^-p-D-Acetylgalactosamine-6-sulfate-«/?-l,4-P-D-glucuronic acid 3,3 '-Dimethyl-4,4'-methylenediphenylene methyl- 1,3-phenylenediurea (m-Carboxyphenoxy)acetic anhydride (p-Carboxyphenoxy)acetic anhydride p-Phenylene malonate p-Carboxyphenylacrylate m-Phenylene cyclopropylenedicarboxylate p-Phenylene cyclopropylenedicarboxylate Cyclopropylene isophthalamide Methylethylene isophthalate Methylethylene phthalate Methylethylene terephthalate 3,3/-Dimethyl-4,4/-methylenediphenylene terephthalamide 2-ethyl-2/-Isopropyl-4,4/-oxydiphenylene m-phenylenediketone Ar,N/-Dimethyl-4,4/-(dimethylmethylene)diphenylene terephthalamide 4,4'-Methylenedibenzoic anhydride 4,4'-(Methylenedioxy)dibenzoic anhydride Methylethylene 2,2'-dibenzoate Methylethylene 3,3'-dibenzoate Methylethylene 4,4'-dibenzoate Propylene 4,4'-sulfonyldibenzamide
CH 2
CO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2
C6H4
1 O 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 123 1 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2
C
4 4 4 4 5 5 6 6 6 6 8 8 10 10 14
H
8 9 9 9 10 10 10 11 12 12 8 14 17 17 12 0 0 0
0 0 0
0 0 0 0 1 1 4 1 4 1 1 9 9 2 1 1 1
0
1 1
1 1 1 1
2 2 3 1
10 0 0 2
5 1
10 3
6 6 11
3 10 19
11 11 2 1 0 0 0 1 2 2 2 2 2 2 14 16 16 0 2 2
6
0 2 0 0 1
0 0
1 2
0 0
0 0 1
0
9
1
12 12 0 2 2 2 2
1 1 4 0 0 0 0 2
0
2 0
0 0
0
0
0 0 0 0 0 0
2 2 2 2 0 1 0 1
0 4 4 4
2 2
0
2 4 9
2
0 0 0 2 0 0 0 0 0 0
0 0 1 0
1
19 19 22 0 0 0 2
0
0 0
2
19
2 4 4 4 4 14 16 18 0
1 1
2
6
11
0 0
2 1
2
0
0
0
4 5
1 0
0 0 2
6
2
0 0 0 0 0
1 1 2 0
2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0
1
0 4 4 5
X
0 0 0
0
1 0 1
3
S
1 1 1 1 0 0 0 1 0 0
0 2
2 2 2 2 5 0 0 0
N
1
1
1
O
0 0 0 2 0 2 0 3 2 2 2
2
0 0 0 0
0 0 0 0 2
0 0 0 0 0
O l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1 0
Constitutional B a s e Unit Poly-
4,4 / -Isopropylidenediphenylene malonate /?-Phenylene(l,l-dimethyl)ethylene terephthalamide 4,4 / -Isopropylidenediphenylene cyclopropylenedicarboxylate 4,4'-Isopropylidenediphenylene 1-methylcyclopropylenedicarboxylate 4,4 / -Methylenediphenylene isophthalamide 4,4 / -Methylenediphenylene terephthalamide 4,4'-Methylenediphenylene m-phenylenediurea MN'-Dimethyl^^'-methylenediphenylene terephthalamide 4,4 / -Isopropylidenediphenylene (methylenediphenylene)diurethane Alanylalanylglycine P-D-Glucotriacetate, 1,3oc-D-Glucotriacetate, 1,4P-D-Glucotriacetate, 1,4P-D-Mannotriacetate, 1,4a-D-Glucotriisobutyrate, 1,43-Mercapto-2-phthalimidopropionic acid p-D-Glucotricarbanilate, 1,42,7-Fluorenylene pyromellitimide 2,7-Fluorenylene 1,4-pyromellitamide Isophthalic 4,4 / -methylenedioxy-3,3 / -dimethoxydibenzoic anhydride 4,4 / -(Methylenedioxy)-3,3 / -dimethoxydibenzoic terephthalic anhydride MN'-Methylenediterephthalamic anhydride Isophthaloyl (m-carboxyphenoxyacetyl)dihydrazide Terephthaloyl (m-carboxyphenoxyacetyl)dihydrazide 4,4'-Methylenediphenylene pyromellitimide Isophthalic 4,4'-(methylenedioxy)dibenzoic anhydride 4,4 / -(Methylenedioxy)dibenzoic terephthalic anhydride 2 Ethylene Ethylene sulfide Ethylene disulfide Ethylene tetrasulfide Ethylene oxide Ethylene amine 2-Aminoethylenesulfonic acid Ethyleneamine-HCl complex Allene 2-Imino-l,3-dithiapentamethylene Bromomethylethylene oxide Chloromethylethylene oxide (epichlorohydrin) Fluoromethylethylene oxide 1-Hydroxytrimethylene 3-Hydroxyoxacyclobutane 3-Silylpropene 2,3-Dichloro-l,3-butadiene, 1,4Chlorotrifluoroethylene-a/r-ethylene Tetrafluoroethylene-tf/f-ethylene Bis(2,2,2-trifluoroethoxy)phosphazene 2-Chloro-l,3-butadiene, 1,4- (chloroprene) 4,4,4-Trifluoro-l-butene 2,5-Ethylene-l,3,4-triazole 2,2,2-Trifluoroethylvinyl ether 3-Cyanopropionaldehyde 1,3-Butadiene, 1,21,3-Butadiene, 1,41,3-Cyclobutylene Chlorinated 1,3-butadiene, 1,42,5-Ethylene-l-amino-l,3,4-triazole Butadiene oxide 1,2-Dichloromethylethylene oxide Ar-Methyl-2-imino-l,3-dithiapentamethylene 2-Chloromethylpropylene oxide 1-Butene Butyraldehyde Ethylvinyl ether
CH
2
CO C6H4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 3 2 3 2 2 3 2 4 3 3 3 3 3 3 3 3 4 4 4 4 4 4 2 4 2 4 4 4 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C
3 3 5 6 0 0 0 2 3 4 8 8 8 8 14
2
3
0 0 0 0 0 0 1 3 0 0 1 1 2
2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0
H
O
6 8 8
N
S
X
2 0 2
0 0 0 2 0 0 0 0 0 10 2 0 0 0 2 0 2 0 0 2 0 2 0 0 4 0 4 0 0 6 0 2 0 0 8 2 2 0 0 12 0 3 0 0 1 4 5 0 0 0 14 5 0 0 0 14 5 0 0 0 14 5 0 0 0 26 5 0 0 0 1 1 0 1 1 0 5 1 1 5 3 0 0 1 8 8 0 2 0 18 12 2 2 0 0 1 4 12 6 0 0 0 14 12 6 0 0 0 0 2 1 2 0 0 0 4 1 4 0 0 0 4 1 4 0 0 6 2 0 2 0 0 0 0 4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 4 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 2 1 1 0 2 0 1 0 1 1 0 0 0 0 0 1 1 0 1 2 0 1 1 1 0 0 1 1 1 1 00 1 1 1 1 00 1 1 2 1 0 0 0 1 2 2 0 0 0 1 4 0 0 0 1 2 0 0 0 0 2 2 0 0 0 0 4 2 0 0 0 0 4 2 0 2 1 0 7 2 1 0 0 0 1 2 1 0 0 0 3 2 1 0 3 0 0 2 1 1 00 3 2 1 1 1 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 2 2 2 0 4 0 0 2 2 1 0 0 0 2 2 1 0 0 2 2 3 0 1 2 0 2 3 1 0 0 1 2 4 0 0 0 0 2 4 1 0 0 0 2 4 1 0 0 0
References page VI-159
0
Constitutional Base Unit Poly-
Diethylsilylene Ethylsilylethylene Methyl-w-propylsilylene Diethylsiloxane 2,2-Bistrifluoromethyloxacyclobutane l-Cyano-l,3-cyclobutylene 3-Chloro-2-methyl-l,3-butadiene, 1,4oc-Ethylacrylonitrile 2-Methyl-l,3-butadiene, 1,4- (isoprene) 3-Methyl-l-butene, 1,33,3-Dimethyltrimethylene sulfide 3,3-Dimethyloxacyclobutane 3,3-Dimethyltrimethylene sulfone Hexafluoroisobutylene-a/f-vinylidene fluoride Bis(2,2,3,3,3-pentafluoropropoxy)phosphazene 2,4-Hexadiyne-l,6-diol, 2,5Bis(2,2,3,3-tetrafluoropropoxy)phosphazene 1,3-Cyclohexadiene, 1,41,3,5-Hexatriene, 1,64-Trifluoromethyl-l-pentene 2,3-Dimethyl-l,3-butadiene, 1,41,3-Hexadiene, 1,4P-D-Fructofuran 2-Butene-a/f-ethylene 3-Methyl-l-pentene 4-Methyl-l-pentene l,4-Diethyl-2,3-azabutadiene, 1,4Isobutylvinyl ether l-Methyl-2-propoxyethylene 1-Methylpropylvinyl ether 3-Trimethylsilylpropene 4,4-Dimethyl-l-pentene 3-tert-Butyloxacylobutane Neopentylethylene oxide Neopentylvinyl ether Bis(2,2,3,3,4,4,4-heptafluorobutoxy)phosphazene 2,5-Dichloro-/?-xylyene 2,4,6-Octatriynediol, 2,5Bromo-/?-xylylene Chloro-p-xylylene 2,5-Pyrazinecyclobutylene 2-terf-Butyl-l,3-butadiene, 1,45-Methyl-l,3-heptadiene, 1,46-Methyl-l,3-heptadiene, 1,4Cyano-/?-xylylene 2,4,6-Trichloro-3-phenoxypropylene oxide Methyl-p-xylylene Divinyl furfural 4,6-Dimethyl-m-xylyene 2,5-Dimethyl-/7-xylyene 2,5-Dimethyl-3-phenylpropene 3,4-Dimethyl-3-phenylpropene 3,5-Dimethyl-3-phenylpropene Isopropyl-/?-xylylene 2,6-Dimethyl-3-phenoxypropylene oxide 3-(l-Naphthoxy)propylene oxide 3-(2-Naphthoxy)propylene oxide 4,4'-perfluorodiphenyleneoxytetrahydroperfluoropentamethylene oxide Di-l,4-naphthaleneoxyethylene oxide m-Xylylene p-Xylylene /7-Xylylene disulfide Ethyleneoxy-/?-phenylene oxide Ethylene m-phenylenedisulfonamide N-Phenyl-2-imino-l,3-dithiapentamethylene
CH 2
CO
2 2 2 2 2 2
0 0 0 0 0 0 2
2 2 2
0 0 0 0 0 0 0 2 2
2
0 0 0 0 0 0 0 0 0 0
0 0 0 0
6
4 4 4
4
0 0 0 0 0 0 0 0 0
0 1 2 0
5 6 6 6 6 6 6 6 6 6 7 7 7 7 8 8 9 9 9 9 9
0 0 0 0 0 0 1 1 0 1 1 0 1 5 0 20 1 0 1 0 1 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0
0
2 1 1 1 0 0 1
0 1 0 2
0 10 10
1 1
0 0 0 0 0 0 0 0
0 2 0 0 0
0 0 0 0 2 0
0 0 0 3 3 6 6 8 8
0 0 0 0 10 8 8 0 12
0 0 0 2 0 3 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 2 0 0
0 1
0 1
5 0 0 0
2 2 3 3 4
1 1 1 1
1
0 0 0 0 0
1 0 1 0 5 1 1 0 5 1 0
1
0 0 0 0
2 2
8 8 8 4 5
0 0
2
8
4 4 4 0 0 0 0 0
0
6 8 8 8
0
0 1 0 1
0
4 4 5 6 6
0 0 0 0 0 0 0
0 0 2 0
0 0 0 0 0
0
0 0
0
S
0 0 0
1
6 6 6 0
4 4 4 4
0 0 0
1 0 0 4
4 4
0 0 0 0 0 0
0 0 0 0 0 0
3
N
0 0 0
2 2
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3
1 3 3
4 4 0
O
6
3 3 3 4 4
0 0
H
6 6 6
3 3 0
0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0
0
2 2 2 2
2 2 2 2 3 3
0
0 0
2 2
C
0 0 0
0 0 0
2 2 2 2 2 2 2
C6H4
0 0 0
2 4
0 2 1
X
1 1 1 1 6 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 8 0 11 0 0 0 9 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 15 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 2 0 0 0 2 0 2 0
Constitutional Base Unit Polyo-Chloro-3-phenoxypropylene oxide /?-Chloro-3-phenoxypropylene oxide 3-Phenylpropene (allylbenzene) Benzylvinyl ether 3-Phenoxypropylene oxide Ethylene dithionisophthalate p-Phenylenecyclobutylene 3-ra-Tolylpropene 3-o-Tolylpropene 3-/?-Tolylpropene m-Methyl-3-phenoxypropylene oxide o-Methyl-3-phenoxypropylene oxide /?-Methyl-3-phenoxypropylene oxide /?-Methoxy-3-phenoxypropylene oxide Divinylbenzal 2-Methyldivinylbenzal 4-Methyldivinylbenzal o-Isopropyl-3-phenoxypropylene oxide 2,2'-Ethylenedithiazole-/?-phenylene 4,4/-Ethylenebiphenylene 4,4/-(Oxydiphenylene)dithioethylene disulfide o-Phenyl-3-phenoxypropylene oxide Bis(p-ethylphenoxy)phosphazene l,6-Bis(p-fluorophenylsulfonyl)-2,4-hexadiynediol, 2,54,4/-Isopropylidenediphenyleneoxy(2-hydroxy)trimethylene oxide l-(p-Toluylsulfonyl)-6-(p-fluorobenzylsulfonyl)-hexadiynediol l,6-Bis(/?-toluylsulfonyl)-2,4-hexadiynediol, 2,5l,6-Bis(p-methoxyphenylsufonyl)-2,4-hexadiynediol, 2,5l,6-Di(N-carbazoyl)-2,4-hexadiyne, 2,5Carbon monoxide-a/f-ethylene 3-Mercaptopropionic acid 3-Hydroxypropionic acid (propiolactone) 3-Aminopropionic acid (p-alanine) Ethylene urea Ethyleneamine-oxalic acid-water complex (2:1:2) 3-Hydroxy-3-butenoic acid 3-chloromethyl-3-hydroxypropionic acid Af-Acetylethylene amine 7V-Methyl-3-aminopropionic acid 2,4-Diaminobutyric acid Ethyleneamine-acetic acid complex (1:1) AKPerfluoropropionyl)ethylene amine 1,3-Cyclobutylene carbonate Hydroxyproline 3-Ethyl-3-hydroxypropionic acid 3-Methoxycarbonylpropionaldehyde Methionine Diethyl-2-hydroxyacetic acid 2-Ethyl-2-methyl-3-hydroxypropionic acid 2-Ethyl-2-methyl-3-aminopropionic acid N-Isobutyrylethylene amine N-Isopropyl-3-aminopropionic acid 2-Methyl-N-butylaminoformic acid sec-butylthiolacrylate Isobutylthiolacrylate sec-butyl acrylate Isobutyl acrylate N-Pivaloylethylene amine 3,5-Dimethyl-6-amino-4-oxacaproic acid Ethylene m-chloro-p-oxybenzoate Ethylene-o-chloro-p-oxybenzoate AHPerfluorooctanoyl)ethylene amine 3-n-Propylhydroxybenzoic acid Ethylene m-methyl-/?-oxybenzoate Ethylene omethyl-/?-oxybenzoate
CH 2 CO C 6 H 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 4 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 2 1 0 1 0 1 0 1 0 1 0 1 0 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 7 1 0 2 1 0 1 0 7
C 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 4 4 4 4 6 0 0 1 2 4 4 5 6 6 4 0 0
0 1 1 1 1 1 1 2
H
O 1 1
2 2 2 0 2 4 4 4 4 4 4 4 6 6 8 2 0 0 2 6 0 8 3 6 6 0 0 0 0 1 2 3 0 3 3 4 5 0 2
2 2
3 4
2 3 3 3 3
5 6 6 7 7
3 4 4 4 4 4 4 6 6
7 8 8 8 8 9 9 3 3
7 7
6 6
4
7
0 6
N
S X
2 2 0 1 2 2 0 0 0 0 2 2 2 3 2 2 2 2 0 0 1 2 2 6 3 6 6 8 0 0 0 1 0 0 2 1
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 4 0 0 0 0 1 0 1 0 2 2 0 0 0 0 2 1 0 2 0 0 2 0 2 0 0 0 0 0 1 0 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 2 0 0 1 1 0 0 0 1 0 2 0 0 0 1 1 0 0 1 0 0 0 2 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 2 0 0 1 2 0 0 1 0 1 0 5 1 0 0 0 2 0 0 0 2 0 0 0
References page VI-159
0
5
0 0
0
0
Constitutional B a s e Unit Poly-
1,1-Dihydroperfluorooctyl aery late Isoamyl-2,4-hexadienoate, 2,51,1-Dihydroperfluorodecyl acrylate N-2-Naphthoylethylene amine N-(/?-Chlorobenzoyl)ethylene amine Ethylene-p-oxybenzoate /7-Xylylene carbonate p-Aminohydrocinnamic acid /7-(Aminomethylene)phenyleneacetic acid Af-Benzoylethylene amine Af-Phenyl-3-aminopropionic acid N-(p-Toluoyl)ethylene amine S-Benzylthiocysteine 1-Benzylhistidine 4,4'-Ethylenediphenylene carbonate 4,4 / -Butylidenediphenylene carbonate 4,4 / -Pentylidenediphenylene carbonate Ethylene oxalate Hydrazo succinamide Methylene malonamide Glutamic acid Glutamine Ethylene fumaramide Ethylasparate Methyl glutamate 4-Methyloxycarbonyl-4-aminobutyric acid Alanyl-3-aminopropionic acid Ethylene -L-tartaramide O-Acetylhydroxyproline 2,2-dimethyltrimethylene oxalate Ethylene 2,5-furandicarboxylate Cyclopropylene cyclopropylenedicarboxamide Ethylene 2,4-hexadienediamide Isobutyl aspartate Ethylene di-O-methyl-L-tartaramide Ethylene dithiol-2,5-pyridinedicarboxylate Ethylene 2,5-dichloroterephthalate Ethylene chloroterephthalate Ethylene methylterephthalate Ethylene 2,5-dimethylterephthalate Ethylene 1,5-naphthalate Ethylene 2,6-naphthalate Ethylene 2,7-naphthalate 4,4 / -Ethylenedioxy-3,3 / -dimethoxydibenzoic anhydride 2,5-Dimethylterephthalaldehyde Ethylene dithiolisophthalate Ethylene dithiolterephthalate p-Phenylenediacetic anhydride Ethylene isophthalate Ethylene phthalate Ethylene terephthalate m-Phenylene succinate p-Phenylene succinate (m-Phenylenedioxy)diacetic anhydride (p-Phenylenedioxy)diacetic anhydride Ethylene phthalamide Ethylene terephthalamide p-Chlorobenzylasparate Benzyl aspartate 5-Benzyloxycarbonylcysteine 1-Methyltrimethylene isophthalate 1-Methyltrimethylene phthalate 1-Methyltrimethylene terephthalate Methylbenzyl aspartate AUV'-Dimethylethylene terephthalamide
CH
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2
CO C6H4
C
H
1 0 8 1 1 0 8 14 1 0 10 1 1 0 10 7 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 3 1 1 1 3 1 1 4 5 1 2 0 1 2 2 1 2 3 2 0 0 2 0 0 2 0 0 2 0 1 3 20 1 2 0 2 2 0 2 5 2 0 2 5 2 0 2 2 0 2 2 2 0 2 6 2 2 0 3 5 2 2 0 3 2 2 0 4 2 2 0 4 2 2 0 4 2 2 0 4 9 2 2 0 4 10 2 2 0 5 2 2 0 6 2 2 0 6 2 2 0 7 2 2 0 8 2 2 0 1 0 6 2 2 0 10 2 2 0 10 2 2 0 14 12 2 2 0 16 16 2 2 1 0 2 2 1 0 2 2 1 0 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 0 2 2 1 0 2 2 1 0 0 2 2 1 0 2 2 1 0 2 2 2 1 0 2 2 1 1 2 2 2 1 1 3 2 2 1 1 2 2 1 2 22 1 2 4 2 2 1 2 2 2 1 2 5 2 2 1 2
O
N
S
1 1
00 0 00 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 1
0 0 2 2 1 1
1 1 0 0 1 1 1 1 1 1 3 0 0 0 0 2 2
0 0 0
1
0 0 0 0
0 4 6 0 2 2
2 2 2 2 0 0 1
4 4
1
1 1 5 6
0 0 0 0 0 2
3 4 4 6
1 2 2 1
2 3 0 0 1 2
0 0
0 0
1 0
6 2 6 6
6 6
2 2 1 1
2 1
3 2 3 6 8
0
0 0
0 0 0 2 2
1
0 2 0 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 5 0 2 0 0 0 0 0 1 0 2 0 2 0 2 0 2 0 2 0 3 0 3 0 0 2 0 2 1 1 0 1 1 1 1 2 0 2 0 2 0 1 1 0 0 2
X
5 0 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 00 0 0 0 0 0
Constitutional Base Unit Poly2,2-Dimethyltrimethylene terephthalate 2,5-Dimethylpiperazine isophthalamide 2,5-Dimethylpiperazine phthalamide 2,5-Dimethylpiperazine terephthalamide p-Phenylene diethylcyclobutylenedicarboxylate /7-Phenylene dicyanodiethylcyclobutylenedicarboxylate 2,2'-Diethyl-4,4'-oxydiphenylene m-phenylenediketone MAr'-Diethyl-3,3'-dimethylbiphenylene terephthalamide /7-Xylylene dithiolisophthalate 4,4/-Ethylenedibenzoic anhydride Ethylene 2,2'-dibenzoate Ethylene 3,3'-dibenzoate Ethylene 4,4'-dibenzoate Isophthalaldehyde Terephthalaldehyde /7-Xylylene isophthalate /7-Xylylene terephthalate Ethylene 4,4'-thiodibenzoate 3,3 /-(Ethylenedioxy)dibenzoic anhydride 4,4/-(Ethylenedioxy)dibenzoic anhydride Ethylene 4,4'-oxydibenzoate 4,4/-(Oxydimethylene)dioxydibenzoic anhydride p-Phenyleneethylene terephthalamide m-Xylylene isophthalamide /7-Xylylene isophthalamide p-Xylylene phthalamide m-Xylylene terephthalamide /7-Xylylene terephthalamide Ethylene 4,4'-sulfonyldibenzamide O-Benzyloxycarbonyltyrosine 1-Methyltrimethylene 2,2'-dibenzoate 1-Methyltrimethylene 3,3'-dibenzoate 1-Methyltrimethylene 4,4'-dibenzoate 1-Methyltrimethylene 4,4 '-sulfonyldibenzamide (4,4/-Isopropylidenediphenylene)dioxydiacetic anhydride 2,2-Dimethyltrimethylene sulfonyldibenzamide l,6-Bis(phenylurethane)-2,4-hexadiynediol, 2,5l,8-Bis(phenylurethane)-2,4,6-octatriynediol, 2,5Methyl-/7-phenylene 4,4/-ethylenedioxydibenzoate /7-Phenylene 4,4/-(ethylenedioxy)dibenzoate AW-Diethylbiphenylene terephthalamide 4,4'-Biphenyldicarboxaldehyde 4,4/-(Silylenediphenylene)dimethylene 4,4/-silylenedibenzamide 4,4/-(Silylenediphenylene)dimethylene 4,4'-disiloxanylenedibenzamide 4,4'-(Silylenediphenylene)dimethylene 4,4/-tetrasiloxanylenedibenzamide 4,4/-Dimethylsilylenediphenylenedimethylene tetrasiloxanylenedibenzamide 4,4/-Dimethylsilylenediphenylenedimethylene dimethylsilylenedibenzamide 4,4/-Dimethylsilylenediphenylenedimethylene tetramethyldisiloxanylenedi 4,4'-Dimethylsilylenediphenylenedimethylene tetramethyltetraphenyltetra Alanylglycylglycine Alanyl(phenylalanyl)glycine) Cyclopropylene (cyclopropylenedicarboxoyl)diurethane (/7-Phenylenedioxy)diacetic 3,4-pyridinedicarboxylic anhydride Isophthalic (p-phenylenedioxy)diacetic anhydride (/?-Phenylenedioxy)diacetic terephthalic anhydride Isophthaloyl (m-carboxyphenoxypropionyl)dihydrazide 4,4/-(Isopropylidenediphenylene)dioxydiacetic pyridinedicarboxylic anhydride 3,4/-(Ethylenedioxy)diphenylene 3,3',4,4'-Oxydiphenylenetetracarboximide 4,4/-(Ethylenedioxy)dibenzoic isophthalic anhydride 4,4/-(Ethylenedioxy)dibenzoic phthalic anhydride 4,4'-(Ethylenedioxy)dibenzoic terephthalic anhydride Isophthalic (isopropylidenediphenylene)diacetic anhydride 4,4/-(Isopropylidenediphenylene(dioxydiacetic terephthalic anhydride 4,4/-(Ethylenedioxy)diphenylene carbonyldiphenylenetetracarboximide Neopentylene-4,4'-diphenylene 3,3',4,4'-carbonyldiphenylenetetracarbox
C H 2 CO C 6 H 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2" 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5
C
1 1 1 1 1 1 1 1
3 4 4 4 6 8 14 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2
H 6 8 8 8 10 8
12 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 2 2 2
0 0 0 1
2 2 2
4 4 4 6 6 8 4 4 6 0
2
2
2 3
2 2 2
3 4 6 7
2 3 3 4 4 4 4 4 4 4 8
0 2 0 0 0 0 2 4 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
3 2 2
2
O
6 0 6 8
12 16 14 2 0 2 0 0 2 7 1 3 9 0 4 6 1 5 3 2 0 0 2 0 0 2 0 4 2 8 9 2 12 6 3 0 0 3 0 0 3 0 0 3 3 6 3 3 6 2 1 2 4 2 15 12
N 2 0 0 0
S
X
0 2 2 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 1 0 0 0 2 0 2 2 2 0 0
0 0 0 0 0 0 0 0 2 0 0 2 0 0 1 0 0 0 0 0 0 2 0 1 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 1 0 3 0 0 3 0 0 3 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 2 0 0 2 0 0 2 0 0 2 0 0 2 1 0 3 0 0 2 1 0 2 0 0 2 0 0 4 0 0 4 0 0 0 2 0 2 0 0 0 0 2 0 2 1 2 0 3 3 2 0 5 3 2 0 5 1 2 0 2 1 2 0 3 3 2 0 5 0 3 0 0 0 3 0 0 2 2 0 0 4 1 0 0 4 0 0 0 4 0 0 0 1 4 0 0 4 1 0 0 3 2 0 0 4 0 00 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 2 2 0 0 2 2 0 0
References page VI-159
Constitutional Base Unit Poly3 Trimethylene sulfide Trimethylene disulfide Oxacyclobutane (trimethylene oxide) Ethyleneoxymethylene oxide (dioxolane) Trimethylene sulfone Trimethylene amine 3-Aminotrimethylenesulfonic acid 1,1-Bischloromethylethylene oxide 2-Chloroethylvinylether 5,5,5-Trifluoro-l-pentene Pentenamer Vinyl cyclopropane 1,2-Dichloropentamethylene 1,3-Cyclobutyleneoxymethylene oxide Hydrochlorinated 2-methyl-l,3-butadiene, 1,4Af-Ethyl-2-imino-l,3-dithiapentamethylene 1-Pentene Propene-a/r-ethylene 3-Methyl-3-hydroxymethyloxacyclobutane Propylvinyl ether Valeraldehyde 2-Methoxyethylvinyl ether a-Propylacrylonitrile l-Butoxy-2-chloroethylene 3-Ethyl-3-methyloxacyclobutane l-Vinylene-3-cyclopentylene 1,3-Heptadiene, 1,43-Ethyl-l-pentene 3-Methyl-l-hexene 4-Methyl-l-hexene 5-Methyl-l-hexene l-Butoxy-2-methylethylene 2-Methylbutylvinyl ether 4-Trimethylsilylbutene 1,4-Butadiene-tf/Mnethacrylonitrile 4,4-Dimethyl-l-hexene Ethyl-/?-xylylene 4-Diisopropylamino-l-butene p-D-Galacto-l,4-p-D-mannose, 1,4- (1:2) (guar gallactomannan) Di-1,4-naphthaleneoxy trimethylene oxide /7-Phenyleneoxytrimethylene oxide Trimethylene m-phenylenedisulfonamide 4-Phenyl-l-butene 4-0-Tolyl-l-butene 4-p-Tolyl- 1-butene 4,4'-(Ethylenediphenylene)methylene Trimethylene biphenylene 4,4'-Stilbenediyloxytrimethylene oxide a-Methyl-4,4/-stilbenediyloxytrimethylene oxide 4,4 '-Isopropylidenediphenyleneoxy trimethylene oxide 5-Hydroxy-3-oxavaleric acid 4-Aminobutyric acid 5-Amino-3-oxavaleric acid 2,2-Bischloromethyl-3-hydroxypropionic acid Proline N-Butylaminoformic acid Ornithine Ornithine hydrobromide Allyl acrylate 2-Aminocyclopentylenecarboxy acid 2,6-Aminotetrahydropyran carboxylic acid Propylthiolacrylate Arginine Arginine hydrochloride
C H 2 CO 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
C6H4 0
0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
H 0
O
N
S
X
0 0 0 0 0 1 0 0 0 2 0 1 0 0 0 2 0 0 0 0 0 2 0 1 0 0 1 0 1 0 0 1 2 0 1 0 0 0 1 0 0 2 0 1 1 00 1 0 1 0 0 0 3 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 2 0 2 2 0 0 0 3 0 0 3 0 0 0 1 0 0 3 0 1 2 0 0 0 4 0 0 0 0 0 0 4 0 0 0 0 0 0 4 1 0 0 0 0 0 4 1 0 0 0 0 0 4 1 0 0 0 0 0 4 2 0 0 0 0 0 3 0 1 0 0 0 0 5 1 0 0 1 0 0 6 1 0 0 0 0 0 4 4 0 0 0 0 0 0 4 6 0 0 0 0 0 0 4 8 0 0 0 0 0 0 4 8 0 0 0 0 0 0 4 8 0 0 0 0 0 0 4 8 0 0 0 0 0 0 4 8 1 0 0 0 0 0 4 8 1 0 0 0 0 0 4 1 0 0 0 0 1 0 0 5 5 0 1 0 0 0 0 5 1 0 0 0 0 0 0 0 7 6 0 0 0 0 0 0 7 1 5 0 1 0 0 0 0 15 24 5 0 0 0 0 0 20 12 2 0 0 0 0 1 0 0 2 0 0 0 0 1 0 2 4 2 2 0 0 1 1 2 0 0 0 0 0 1 2 4 0 0 0 0 0 1 2 4 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 2 3 4 2 0 0 0 0 2 3 6 2 0 00 1 0 0 0 2 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 2 1 0 1 1 0 1 0 1 0 1 3 0 1 0 1 0 1 4 0 2 0 0 1 0 1 5 0 2 0 1 1 0 2 2 1 0 0 0 1 0 2 3 0 1 0 0 1 0 2 3 1 1 0 0 1 0 2 4 0 0 1 0 1 0 2 6 0 4 0 0 1 0 2 7 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0
C
0
0 0 0 0
0
0
0 0
Constitutional Base Unit Poly-
2-Methylacetoxy-l,3-butadiene 2,2-Diethyl-3-hydroxypropionic acid 2-Methyl-2-propyl-3-hydroxpropionic acid JV-Isovalerylethylene amine 2-Methyl-2-propyl-3-aminopropionic acid 1,4-Butadiene-a/Mnethyl methacrylate (2,2-Dimethyl-3-aminocyclobutylene)propionic acid Butyl-2,4-hexadienoate, 2,5Ethylene/7-oxyphenyleneacetate Trimethylene/?-oxybenzoate p-(Aminoethylene)phenyleneacetic acid /7-(Aminomethylene)phenylenepropionic acid 2,5-Butyl-5-phenyl-2,4-pentadienoate 4,4/-Hexylidenediphenylene carbonate Trimethylene oxalate Glycyl-3-aminopropionic acid Hydrazo glutaramide Ethylene cyclopropylenedicarboxamide Methylethylene succinate Methylethylene oxydiacetate Ethyl glutamate n-Propyl aspartate 2-Methoxyethyl aspartate Alanyl-4-aminobutyric acid 2,2-Dimethyltrimethylene malonate Cyclopropylenedimethylene toluylenediurethane 4,4'-Trimethylenedioxy-3,3'-dimethoxydibenzoic anhydride Trimethylene isophthalate Trimethylene phthalate Trimethylene terephthalate p-Xylylene glutarate Ethylene /?-(carboxyphenoxy)acetate Ethylene-/?-(carboxyphenylene)acetamide p-Phenylene glutaramide Trimethylene terephthalamide p-Xylylene malonamide m-Chlorobenzylglutamate oChlorobenzylglutamate p-Chlorobenzylglutamate A^(p-Bromobenzoyl)-L-ornithine N-(/?-Chlorobenzoyl)-L-ornithine N-(p-Fluorobenzoyl)-L-ornithine Benzyl glutamate 4-Benzyloxycarbonyl-4-aminobutyric acid Phenethylasparate N-Benzoyl-L-ornithine A^Benzyloxycarbonyl-2,4-diaminobutyric acid Cyclopropylenedimethylene isophthalate Cyclopropylenedimethylene terephthalate Cyclopropylenedimethylene isophthalamide Methylpiperazine isophthalamide Methylpiperazine phthalamide Methylpiperazine terephthalamide AUV'-Dimethyltrimethylene terephthalamide /?-Phenylene(l,l-dimethyl)ethylene succinamide ^,A^'-Diethyl^^'-dimethyKmethylenediphenylene) terephthalamide 4,4/-Trimethylenedibenzoic anhydride Ethylene 4,4/-methylenedibenzoate Trimethylene 2,2'-dibenzoate Trimethylene 3,3'-dibenzoate Trimethylene 4,4 '-dibenzoate 3,3'-(Trimethylenedioxy)dibenzoic anhydride 4,4'-(Trimethylenedioxy)dibenzoic anhydride Trimethylene 4,4 '-oxydibenzoate Ethylene 4,4'-(methylenediphenylene)diurethane
CH2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
CO C 6 H 4
1 0 1 0 1 0 1 0 1 0 3 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 2 3 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2
C
H
3 3 3 3
4 6 6 7
5 5 6 0
8 9 10
O
1 1 1 0 7
0 1 0 1
0 0 0
0 0 5
2 2
1 1 8 6 0 2 2 4 4 4
0 0 0 2 2 2 2 2 2 2 3 9 14 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 16 0
0 0 1
5 5
1 12
2 2 0 0 0 2 3 1 1
5 6 6 0
2 0 2
0 0 0 0 0 2 2 2 2 2 2 2 3 3 3 3
1 1 1 0 0 0 1 3
3 4
1 0 4 2 2 4 4 4 4 6 8
18 0 0
0
0 1 0
0 0 0 0 0 0
2 0 0 0 0
0 0
3 2
1 1
N
S
0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 2 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
1 2 0 2 2 5 0 2 0 2 0 2 0 2 0 3 0 0 2 0 2 0 2 0 2 1 0 1 0 1 0 2 2 2 1 0 1 1 1 0 2 1 2 2 0 2 0 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 0 0 2 0 2 0 3 0 3 0 0 2 2
X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0
References page VI-159
Constitutional Base Unit PolyTrimethylene4,4'-sulfonyldibenzamide Isopropylidenedimethylene methylenediphenylenediurethane 4,4/-Diphenyleneglutarate-butadiyne, 1,42,4-Hexadiyne (4,4/-methylenediphenylene)diurethane /?-Xylylene dithiol-4,4'-methylenedibenzoate AUV'-Diethyl(methylenediphenylene) terephthalamide Alanylglycylglycylglycine Alanylglutamylglycine Isophthalic 4,4/-trimethylenedioxy-3,3/-dimethoxydibenzoic anhydride Terephthalic 4,4/-trimethylenedioxy-3,3/-dimethoxydibenzoic anhydride Isophthaloyl (m-carboxyphenoxybutyryl)dihydrazide Isophthalic 4,4/-(trimethylenedioxy)dibenzoic anhydride Terephthalic 4,4/-(trimethylenedioxy)dibenzoic anhydride 4 Tetramethylene sulfide Tetramethylene disulfide Tetrahydrofuran (tetramethylene oxide) Tetramethylene sulfone 3,3-Bisazidomethyloxacylobutane cyclopropylidenedimethylene oxide 3,3-Bisbromomethyloxacyclobutane 3,3-Bischloromethyloxacyclobutane 3,3-Bisfluoromethyloxacyclobutane 3,3-Bisiodomethyloxacyclobutane Tetramethylene thiourea 3,3-Bishydroxyoxacyclobutane 5-Hydroxy-l-pentene 3,3-Bishydroxymethyloxacyclobutane 5-Amino-l-pentene 2,5-Tetramethylene-l,3,4-triazole 1,3-Cyclopenylene-a/Mnethylene Vinyl cyclobutane 1,2-Cyclohexylene sulfide 1,3-Cyclohexylene sulfide 2,5-Tetramethylene-l-amino-l,3,4-triazole 1,2-Cyclohexene oxide 1,2-Cyclohexylene sulfone 1,3-Cyclohexylene sulfone 1-Hexene n-Butylvinyl ether Di-rc-propylsilylene Di-H-propylsiloxane 2-Propyl-l,3-butadiene, 1,43,3-Diethyltrimethylene sulfide 3,3-Diethyloxacyclobutane 3,3-Diethyltrimethylene sulfone 1,3-Octadiene, 1,44-Ethyl-l-hexene 5-Methyl-l-heptene 5-Trimethylsilyl-l-pentene 6,6-Dimethyl-l-heptene 5-Diisopropylamino-l-pentene ot-D-Triethylglucose, 1,4P-D-Trie'thylglucose, 1,4Di-1,4-naphthaleneoxy tetramethylene oxide Oxydiethyleneoxy-/?-phenylene oxide Tetramethylene m-phenylenedisulfonamide Tetramethylene dithionisophthalate 2,2'-Tetramemylenedithiazole-p-phenylene 4,4/-(Oxydiphenylene)dithiotetramethylene disulfide 4,4/-Stilbenediyloxytetramethylene oxide a-Methyl-4,4'-stilbenediyloxytetramethylene oxide 5-Hydroxyvaleric acid
C H 2 CO C6H4 3 3
2 2 3
3 3 3 3 3 3
2 2 2 4 4 4
3
4
3 3 3
4 4 4 4
C 2
2 2
2 2
O
N
2 8
2 2
0 3 4
0
1
12
1
14
12
6
2 3 3
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 5 7 88 20 0 0 2 6 3 0
2 0 6 8 9
4 0 0
SX 2 2 2 0 2 4 3 0
1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0
0 0
0
0 2 2 3 14
3 3 0 0
4
2 2 0 0 0 1 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 1 4 0 1 4 0 1 4 0 1 4 0 2 4 0 2 4 0 2 4 1 0
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H
1 4 4
4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 1 0 0 0 0 0 2 0 1 0 0 0 6 0 0 0 1 0 0 0 0 1 0 0 2 0 1 0 0 2 0 1 0 0 2 0 1 0 0 2 2 0 2 1 0 2 1 0 0 0 2 1 0 0 0 2 3 0 0 0 3 0 1 0 0 1 0 3 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 1 0 2 0 0 1 0 2 0 4 0 0 2 1 0 0 0 2 2 0 1 0 2 2 2 0 1 0 4 0 0 00 4 1 0 0 0 6 0 0 0 1 6 1 0 0 1 4 0 0 0 0 6 0 0 1 0 6 1 0 0 0 6 2 0 1 0 6 0 0 0 0 4 8 0 0 0 0 4 8 0 0 0 0 1 00 0 0 1 10 0 0 0 0 15 0 1 0 0 14 5 0 0 0 14 5 0 0 0 12 2 0 0 0 0 3 0 0 0 2 4 2 20 0 2 0 2 0 20 2 2 0 0 0 1 0 4 0 2 2 2 0 0 0 4 2 0 0 0 0 1 0 0 0
Constitutional B a s e Unit Poly-
Tetramethylene carbonate 5-Aminovaleric acid 6-Amino-4-oxacaproic acid Tetramethylene urea 1,4-Piperidine urethane N-Butyrylethylene amine Lysine Lysine hydrobromide Lysine hydrochloride 3-Aminocyclobutylenepropionic acid 1,4-Cyclohexylene urethane 6-Mercapto-4-methylcaproic acid Butyl acrylate 3-Methyl-6-aminocaproic acid 6-Methyl-6-aminocaproic acid 2-n-Butyl-2-methyl-3-aminopropionic acid 3-«-Pentylhydroxybenzoic acid /?-(Aminoethylene)phenylenepropionic acid /?-(Aminomethylene)phenylenebutyric acid 4,4'-Cyclopentylidenediphenylene carbonate 4,4 / -Heptylidenediphenylene carbonate Adipic anhydride Thiodipropionic anhydride (Ethylenedithio)diacetic anhydride Ethylene succinate Tetramethylene oxalate Trimethylene malonate Tetramethylene thiodicarboxylate Tetramethylene dithiodicarboxylate Tetramethylene Trithiodicarboxylate Tetramethylene tetrathiodicarboxylate Ethylene oxydiacetate Oxydiethylene oxalate Sulfonyldipropionic anhydride (Ethylenedisulfonyl)diacetic anhydride Hydrazo adipamide Methylene glutaramide 2,2-Bischloromethyltrimethylene oxalate 2-Chloroethylglutamate 7V5-(2-Hydroxyethyl)glutamine WV-Lysylurea Trimethylene cyclopropylenedicarboxamide Methylethylene glutarate Trimethylene cyclopropylenediurethane 1-Methyltrimethylene oxydiacetate n-Butyl aspartate rc-Propylglutamate Alanyl-5-aminovaleric acid Methyl-A^V'-lysylurea Tetramethylene-L-tartaramide 2,2-Dimethyltrimethylene succinate 2,5-Thiophenedipropionic anhydride 2,5-Furandipropionic anhydride 2,5-Pyrroledipropionic anhydride Cyclopropylenedimethylene cyclopropylenedicarboxamide Piperazine (3-methylcyclopropylene)dicarboxamide Cyclopropylenedimethylene cyclopropylenediurethane Tetramethylene 1,2-dimethoxy succinate D-Methionyl-L-methionine Tetramethylene di-O-methyl-L-tartaramide Af-Methyl-2,5-pyrroledipropionic anhydride l,6-Bis(ethylurethane)-2,4-hexadiynediol, 2,53-Methyl-m-phenylene adipamide 4-Methyl-m-phenylene disiloxanylenedipropionamide Isopropylidenedimethylene dimethylpiperazinedithiodicarboxylate
CH
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 42 4 4 4 4 4 4 4
2
CO C6H4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C
H
0 0
O
0 0 0
0 0
1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 1 2 2 3
1 1 1 1 1 2 2 2 2 2 2
0
0 0 0 0 0 0 0
0 0
0 0 0 0 0 0
1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
3 4 4 4 4 4 4 4 4 4 5 6 7 7 7
0 0 1 2 2 2 1
0 1 0 1 0
1
1 0 1
0
0 2
6 0 0
2 1 1
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 2 0 2 4 4 4 4 4 4 5 5 6 2 6 2 6 6 2 2 3 6 6 6 8 1 0 1 0 5 8 8 12 14
1 2 2 2 2 2 2 3 3 3 5 0 0 2 1 1 1
0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0
0 0
1
0 2 3 1 1
1 1 0 1 2
0 2 2 2 0 2 0
2
X
0 0
2 1
0 0 0 0
0 0
0
1
0 0 0 0
6 1
S
0 1
0
5 7
0
0
1 2 1
3
0
0 0 0 0
2 0
3 4 4 5
7 0 0 1 0
0 0 0 0
1 3 4 5 5
N
0 0
2 2 2 2 0 1 0 2 0 1 1 0 0 2 0 2 2 2 40 0 0 2 2 2 1 1 2 2 0 2 1 2 2 2
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 1 0 2 0 3 0 40 0 0 0 0 1 0 2 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 20 0 0 0 0 0 0 0 0 0 2 2 0
References page VI-159
0
Constitutional Base Unit Poly4-Methyl-l,3-phenylene tetramethyldisiloxanylenedipropionamide 4,4'-Tetramethylenedioxy-3,3'-dimethoxydibenzoic anhydride Ethylene 3,3 / -dimethoxy-4,4 / -(ethylenedioxy)dibenzoate 4,4 / -Tetrachloroisopropylidenediphenylene adipate 3,3'-Dimethylmethylenediphenylene tetramethyldisiloxanylenedipropionamide Tetramethylene dithiolisophthalate Tetramethylene dithiolterephthalate Thiodiethylenedithiolterephthalate Piperazine isophthalamide Piperazine phthalamide Piperazine terephthalamide /7-Phenylenedipropionic anhydride (p-Phenylenedithio)dipropionic anhydride 0?-Xylyleneditnio)diacetic anhydride Ethylene/7-phenylenediacetate /7-Phenylene adipate Tetramethylene isophthalate Tetramethylene phthalate Tetramethylene terephthalate p-Xylylene succinate Oxydiethylene isophthalate Oxydiethylene phthalate Oxydiethylene terephthalate (p-Xylylenedisulfonyl)diacetic anhydride Tetramethylene m-carboxycarbanilate Tetramethylene/7-carboxycarbanilate m-Phenylene adipamide o-Phenylene adipamide /7-Phenylene adipamide p-Phenyleneethylene succinamide Tetramethylene isophthalamide Tetramethylene terephthalamide Trimethylene /?-(carboxyphenylene)acetamide /7-Xylylene succinamide m-Phenylene disiloxanylenedipropionamide o-Phenylene disiloxanylenedipropionamide /7-Phenylene disiloxanylenedipropionamide Ethylene 3-(/7-nitro)glutarate Phenylpropyl-L-aspartate Phenethylglutamate Af-benzyloxycarbonylornithine Adipoyl dithionisophthaloyldihydrazide WV'-Dimethyltetramethylene terephthalamide 2-Methylpentamethylene terephthalamide m-Phenylene (tetramethyldisiloxanylene)dipropionamide o-Phenylene (tetramethyldisiloxanylene)dipropionamide /7-Phenylene (tetramethyldisiloxanylene)dipropionamide p-Phenylene dipropylcyclobutylenedicarboxylate p-Phenylene dicyanodipropylcyclobutylenedicarboxylate Tetramethyl-/7-xylylene dithiol-/?-phenylenediacetate 2,2 / -Dipropyl-4,4 / -biphenylene terephthalate /7-Phenylene-4',4"-(3',3 // -dimethoxy)dibenzylidenimino adipate /7-Xylylene dithiol-/?-phenylenediacetate 4,4 / -Tetramethylenedibenzoic anhydride 4,4 / -(Tetramethylenedithio)dibenzoic anhydride 4,4 / -Biphenylene adipate Ethylene 4,4 / -ethylenedibenzoate /7-Phenylenediethylene terephthalate Tetramethylene 2,2 '-dibenzoate Tetramethylene 3,3'-dibenzoate Tetramethylene 4,4'-dibenzoate p-Xylylene/7-phenylenediacetate Ethylene 4,4 / -(ethylenedithio)dibenzoate Oxydiethylene 2,2'-dibenzoate Oxydiethylene 3,3'-dibenzoate
CH 2
CO
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2 2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 42 4 4 4
C6H4 O 0
11 14 14 15 18 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0
1 0
0
1
1 1
1 1
0 0
2 2 2
0 0 0 2
2 2
0
2 2 2
0 0 0 0 0 0 0 0 0 0 1
2
1 4
2
0 0 0 0 0 0
2 0 0 2
0 1 1 2 2 2 2 2
0 0 0 0 0 0 0 0 0
2 3 3
0 0 0
2
0
2 2 2 2 2 0
0 2 4
0
0 2
0 0
8
0 1
1
1 1 1 2
12 12 14
2 2 2 2 2 2 2 2 2 1
0
14 14 14 10
0 2
1
0 0 0
0 0 0
0 2 2 2 2 2 2 3 3 3 5 2
0 0 0 0 0 0 1 1 1
6 6
0 0
0 0 0 2 2 2 0 0
1
4
0
0 0 0 0 0 0 1 1
0
2 0 0 0
X 0 0 0 0 0
1
4 2
2 2 4 4 4 6 8 10 14 16
S
2 0 0 0 2
0
2 2 2 2 2 2 6 6 6 4 2
3 1
2 2
1 0 0 0 0 0 0 0 0 0 0 1 2 2
2 0 0 0 0 0 0 0 0 0
N
1 5 6 2 1
0
0
1 1 1 1 1 1 1 1 1 1
O
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
2 2 2 2
H 20 12 12 10 26
0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C
0
2 0 0 4 2 2 0 2 0 3 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 0 0 0 0 0 2 0 0 0 0 0 02 02 02 0 0 0 0 2 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
Next Page
Constitutional Base Unit Poly-
Oxydiethylene 4,4'-dibenzoate 3,3'-(Tetramethylenedioxy)dibenzoic anhydride 4,4'-(Tetramethylenedioxy)dibenzoic anhydride Tetramethylene 4,4'-oxydibenzoate Ethylene 3,3/-(ethylenedioxy)dibenzoate Ethylene 4,4/-(ethylenedioxy)dibenzoate (Oxydiethylenedioxy)dibenzoic anhydride 4,4'-Biphenylene adipamide 3,4'-Oxydiphenylene adipamide 4,4/-Oxydiphenylene adipamide Ethylene 4,4'-(ethylenediphenylene)diurethan Trimethylene 4,4/-(methylenediphenylene)diurethan Tetramethylene 4,4/-sulfonyldibenzamide Tetramethylene 4,4/-phosphinylidenedibenzamide 4,4;-Biphenylene disiloxanylenedipropionamide Tetramethylene 4,4/-(methylphosphinylidene)dibenzamide l,4-Cyclohexylene3,3'-dibenzamide Cyclopropylenedimethylene 4,4'-methylenediphenylenediurethane 4,4/-Isopropylidenediphenylene dithioladipate 4,4'-Isopropylidenediphenylene adipate Piperazine 2,4-diphenyl-l,3-cyclobutylenedicarboxamide 4,4/-Biphenylene (tetramethyldisiloxanylene)dipropionamide 4,4'-Isopropylidenediphenylene dithiol-l,3-cyclohexylenedicarboxylate Methyl /7-phenylene 4,4 '-tetramethylenedioxydibenzoate 4,4/-Biphenylene-4//,4///-(dimethoxy)dibenzylidenimino adipate 4,4/-Oxydiphenylene-4//,4w-(dimethoxy)dibenzylidenimino adipate p-Phenylene 4,4'-tetramethylenedioxydibenzoate Tetramethylene 4,4'-(phenylphosphinylidene)dibenzamide /?-Phenylene-4,4'-dibenzylidenimino adipate 4,4/-Biphenylene-4//,4w-dibenzylidenimino adipate 4,4/-Oxydiphenylene-4",4"/-dibenzylidenimino adipate Alanylglycylproline Alanylprolylglycine oc-D-Glucotripropionate, 1,4p-D-Glucotripropionate, 1,4Alanyl(ethylglutamyl)glycine Tetramethylene 3,3',4,4'-oxydiphenylenetetracarboximide Trimethylene WV'-malonyldi(p-aminobenzoate) 3,4'-Oxydiethylenedioxydiphenylene 3,3',4,4'-oxydiphenylenetetracarboximide Isophthalic 4,4/-(tetramethylenedioxy)dibenzoic anhydride Terephthalic 4,4/-(tetramethylenedioxy)dibenzoic anhydride Tetramethylene (4,4/-terephthaloyldioxy)-dibenzoate 4,4/-(Isopropylidenediphenylene)dioxydiacetic p-phenylenedioxydiacetic an Methylenediphenylenedisuccinimidediyliminomethylenediphenyleneamine 4,4/-(Oxydiphenylenedioxy)diphenylene carbonyldiphenylenetetracarboximide Alanylglycylalanylglycylserylglycine 2,2/-Adipamidodibenzoic isophthalic anhydride 4,4/-Adipamidodibenzoic isophthalic anhydride 2,2/-Adipamidodibenzoic terephthalic anhydride 4,4'-Adipamidodibenzoic terephthalic anhydride 5 Pentamethylene Pentamethylene sulflde Methylenethiotetramethylene sulflde Pentamethylene disulfide Methyleneoxytetramethylene oxide Pentamethylene sulfone 6-Aminothiocaproic acid 2,5-Pentamethylene-l,3,4-triazole 1,2-Cyclopentylene-tf/f-ethylene Heptenamer Vinyl cyclopentane 1,2-Dichloroheptamethylene
CH2
CO C 6 H 4
4 4 4
2 2 2 4
4 4 4 4 4 4 4 4 4 4 42 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2
4
4 4 4 4 4 4
4 4 4 4 4 6
4 4 4 4 4
6 6 6 6 6
0 0 1 2
2
2 3 3 4 4 5 7 16 16 0 0 2 2 2
2 2 2 2 2 2 2 2 3 3 3 4 4 0 0 3
3 4 4 4 4
0 0
2 2 2
0 0 0 0 2 2 3 3 3 3 4 2 0 3
3 3 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0
H
0 0 0
2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5
2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
C
8 8 4 12 0 12
0 0 0
3 3 3
0 0 0
0 0 0 6 4
4 4 4 4 0
0 0 0 0 4 2
4
5 0 0 0 0 0 0
3
16
1
2 2 2 2 0 0 0 0
0 0 0
0 0 1 2 2 2 2
N
S
X
0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 4 0 0 0 0 4 0 0 0 0 2 0 2 0 0 0 2 1 2 0 0 0 2 1 2 0 0 0 2 2 2 0 0 0 2 2 2 0 0 0 2 2 2 1 0 3 1 2 0 1 6 1 2 0 2 5 1 2 0 1 2 4 0 2 0 0 4 2 2 0 0 6 0 0 2 0 6 2 0 0 0 6 0 2 0 0 14 1 2 0 2 8 0 0 2 0 6 4 0 0 0 14 4 2 0 0 14 5 2 0 0 0 4 0 0 0 3 1 2 0 1 2 2 2 0 0 2 2 2 0 0 2 3 2 0 0 3 7 0 3 0 0 3 7 0 3 0 0 1 4 5 0 0 0 14 5 0 0 0 11 1 3 0 0 6 1 2 0 0 2 2 2 0 0 6 4 2 0 0
0 0 0 3 2 12
0 0 0 1 2 2 2 2
O
2
6 2 2 2 2 0 0 0 0 0 0 0 0 0 0 2 0 2 0 1 0 1 0 3 0 0 0 0 0 0 0 0 2 2 2 2
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 10 1 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 1 2
References page VI-159
Previous Page
Constitutional Base Unit Poly-
Oxydiethylene 4,4'-dibenzoate 3,3'-(Tetramethylenedioxy)dibenzoic anhydride 4,4'-(Tetramethylenedioxy)dibenzoic anhydride Tetramethylene 4,4'-oxydibenzoate Ethylene 3,3/-(ethylenedioxy)dibenzoate Ethylene 4,4/-(ethylenedioxy)dibenzoate (Oxydiethylenedioxy)dibenzoic anhydride 4,4'-Biphenylene adipamide 3,4'-Oxydiphenylene adipamide 4,4/-Oxydiphenylene adipamide Ethylene 4,4'-(ethylenediphenylene)diurethan Trimethylene 4,4/-(methylenediphenylene)diurethan Tetramethylene 4,4/-sulfonyldibenzamide Tetramethylene 4,4/-phosphinylidenedibenzamide 4,4;-Biphenylene disiloxanylenedipropionamide Tetramethylene 4,4/-(methylphosphinylidene)dibenzamide l,4-Cyclohexylene3,3'-dibenzamide Cyclopropylenedimethylene 4,4'-methylenediphenylenediurethane 4,4/-Isopropylidenediphenylene dithioladipate 4,4'-Isopropylidenediphenylene adipate Piperazine 2,4-diphenyl-l,3-cyclobutylenedicarboxamide 4,4/-Biphenylene (tetramethyldisiloxanylene)dipropionamide 4,4'-Isopropylidenediphenylene dithiol-l,3-cyclohexylenedicarboxylate Methyl /7-phenylene 4,4 '-tetramethylenedioxydibenzoate 4,4/-Biphenylene-4//,4///-(dimethoxy)dibenzylidenimino adipate 4,4/-Oxydiphenylene-4//,4w-(dimethoxy)dibenzylidenimino adipate p-Phenylene 4,4'-tetramethylenedioxydibenzoate Tetramethylene 4,4'-(phenylphosphinylidene)dibenzamide /?-Phenylene-4,4'-dibenzylidenimino adipate 4,4/-Biphenylene-4//,4w-dibenzylidenimino adipate 4,4/-Oxydiphenylene-4",4"/-dibenzylidenimino adipate Alanylglycylproline Alanylprolylglycine oc-D-Glucotripropionate, 1,4p-D-Glucotripropionate, 1,4Alanyl(ethylglutamyl)glycine Tetramethylene 3,3',4,4'-oxydiphenylenetetracarboximide Trimethylene WV'-malonyldi(p-aminobenzoate) 3,4'-Oxydiethylenedioxydiphenylene 3,3',4,4'-oxydiphenylenetetracarboximide Isophthalic 4,4/-(tetramethylenedioxy)dibenzoic anhydride Terephthalic 4,4/-(tetramethylenedioxy)dibenzoic anhydride Tetramethylene (4,4/-terephthaloyldioxy)-dibenzoate 4,4/-(Isopropylidenediphenylene)dioxydiacetic p-phenylenedioxydiacetic an Methylenediphenylenedisuccinimidediyliminomethylenediphenyleneamine 4,4/-(Oxydiphenylenedioxy)diphenylene carbonyldiphenylenetetracarboximide Alanylglycylalanylglycylserylglycine 2,2/-Adipamidodibenzoic isophthalic anhydride 4,4/-Adipamidodibenzoic isophthalic anhydride 2,2/-Adipamidodibenzoic terephthalic anhydride 4,4'-Adipamidodibenzoic terephthalic anhydride 5 Pentamethylene Pentamethylene sulflde Methylenethiotetramethylene sulflde Pentamethylene disulfide Methyleneoxytetramethylene oxide Pentamethylene sulfone 6-Aminothiocaproic acid 2,5-Pentamethylene-l,3,4-triazole 1,2-Cyclopentylene-tf/f-ethylene Heptenamer Vinyl cyclopentane 1,2-Dichloroheptamethylene
CH2
CO C 6 H 4
4 4 4
2 2 2 4
4 4 4 4 4 4 4 4 4 4 42 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2
4
4 4 4 4 4 4
4 4 4 4 4 6
4 4 4 4 4
6 6 6 6 6
0 0 1 2
2
2 3 3 4 4 5 7 16 16 0 0 2 2 2
2 2 2 2 2 2 2 2 3 3 3 4 4 0 0 3
3 4 4 4 4
0 0
2 2 2
0 0 0 0 2 2 3 3 3 3 4 2 0 3
3 3 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0
H
0 0 0
2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5
2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
C
8 8 4 12 0 12
0 0 0
3 3 3
0 0 0
0 0 0 6 4
4 4 4 4 0
0 0 0 0 4 2
4
5 0 0 0 0 0 0
3
16
1
2 2 2 2 0 0 0 0
0 0 0
0 0 1 2 2 2 2
N
S
X
0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 4 0 0 0 0 4 0 0 0 0 2 0 2 0 0 0 2 1 2 0 0 0 2 1 2 0 0 0 2 2 2 0 0 0 2 2 2 0 0 0 2 2 2 1 0 3 1 2 0 1 6 1 2 0 2 5 1 2 0 1 2 4 0 2 0 0 4 2 2 0 0 6 0 0 2 0 6 2 0 0 0 6 0 2 0 0 14 1 2 0 2 8 0 0 2 0 6 4 0 0 0 14 4 2 0 0 14 5 2 0 0 0 4 0 0 0 3 1 2 0 1 2 2 2 0 0 2 2 2 0 0 2 3 2 0 0 3 7 0 3 0 0 3 7 0 3 0 0 1 4 5 0 0 0 14 5 0 0 0 11 1 3 0 0 6 1 2 0 0 2 2 2 0 0 6 4 2 0 0
0 0 0 3 2 12
0 0 0 1 2 2 2 2
O
2
6 2 2 2 2 0 0 0 0 0 0 0 0 0 0 2 0 2 0 1 0 1 0 3 0 0 0 0 0 0 0 0 2 2 2 2
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 10 1 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 1 2
References page VI-159
Constitutional B a s e U n i t Poly-
2,5-Pentamethylene-l-amino-l,3,4-triazole 1,4-Cyclohexyleneoxymethylene oxide 1-Heptene /i-Heptaldehyde Vinyl cyclohexene 3,4-Dihydrocyclohexylidenedimethylene oxide 1,8-Nonadiyne, 1,93,4-Dihydro-4-methylcyclohexylidenedimethylene oxide 3-Methylvinyl cyclohexane 4-Methylvinyl cyclohexane 2-Methoxyvinyl cyclohexane 3-Hexyl-2,5-thiophene Di-l,4-naphthaleneoxypentamethylene oxide Pentamethyleneoxy-/?-phenylene oxide Pentamethylene m-phenylenedisulfonamide 4,4 / -(Methylenediphenylene)diethylene sulfide 4,4'-Stilbenediyloxypentamethylene oxide a-methyl-4,4 / -stilbenediyloxypentamethylene oxide 6-Mercaptocaproic acid 6-Hydroxycaproic acid Pentamethylene carbonate 6-Aminocaproic acid (caprolactam) Pentamethylene urethane N-Valerylethylene amine 4-Aminocyclohexyleneacetic acid 4-Methyl-7-hydroxyenanthic acid 3-Methyl-7-aminoenanthic acid 4-Methyl-7-aminoenanthic acid 5-Methyl-7-aminoenanthic acid 6-Methyl-7-aminoenanthic acid 3-w-Hexylhydroxybenzoic acid 4,4 '-Cyclohexylidene-2,2'-dimethyldiphenylene carbonate /?-(Aminoethylene)phenylenebutyric acid p-(Aminomethylene)phenylenevaleric acid Af-4-(Methylthiophenoxy)butyrylethylene amine 4,4'-Cyclohexylidenediphenylene carbonate Pimelic anhydride Ethylene glutarate Pentamethylene oxalate Tetramethylene malonate Trimethylene succinate Oxydiethylene malonate Trimethylene oxydiacetate Hydrazo pimelamide Methylene adipamide Tetramethylene malonamide (2,6-Dioxo-l,4-piperidinediyl)trimethylene AA5-(3-Hydroxypropyl)glutamine Piperazine cyclopropylenedicarboxamide Cyclopropylene piperazinediurea Methylethylene adipate Tetramethylene cyclopropylenediurethane ft-Butylglutamate Alanyl-6-Aminocaproic acid Piperazine (l-methylcyclopropylene)dicarboxamide Ethylene 3,3 / -dimethoxy-4,4'-(trimethylenedioxy)dibenzoate 3,3 '-Dimethyl-4,4'-methylenediphenylene adipamide MAr'-Diisopropyl-S^'-dimethyl-methylenediphenylene adipamide Pentamethylene dithiolisophthalate Pentamethylene dithiolterephthalate Pentamethylene isophthalate Pentamethylene phthalate Pentamethylene terephthalate Trimethylene p-phenylenediacetate Ethylene p- (carboxyphenoxy)butyrate
CH
2
CO C6H4
5 5 5 5 5 5
0 0 0 0 0 0 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 52 5 5 5
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0
C
H
2 2 2 2 3 3 0
2 2 4 4 2 2 4
0
4 0
0 0 0
2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 1 1 1 2
0 2 3
4
0
0
0 1 2 2 2 2
1 3
7 15 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0
0 0
6 12
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1
4 5 5
1 1 2 2 2 2 2
0 0 0
0
12
1 4
5 2
3 14 14 20 0 0 0 0 0 0 0
12 14 26 0
0
0 2 0 1 0 1 0
4 6 6 6 4
4 4 4 5 20 0 0
0 1 1
O
N
S
4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 1 0 0 1 0 0 0
0 1 0 0 1 0
0 0 0 0 0 2 0 0 2 0 2 4 2 0 0 0 2 2 0 2 0 0 0 0 1 0 0 2 0 1 0 1 1 1 0 0 1 3 0 1 1 0 0 1 0 1 5 0 1 5 0 1 1 0 2 0 1 0 1 1 0 1 3 1 1 2 0 0 1 0 0 2 0 0 2 0 0 2 0 0 2 0 0 3 0 0 3 0 2 0 2 2 0 2 2 0 2 0 1 1 2 2 0 2 4 0 4 4 2 0 4 2 2 1 1 0 6 0 2 4 0 2 6 0 0 2 0 2 0 0 0 0 0 0 2 0 2 0 0 2 0 0 2 0 0 3 0
X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 2 0 0 0 0 0 0 0 0 0 0
Constitutional Base Unit PolyPentamethylene m-carboxycarbanilate Pentamethylene/7-carboxycarbanilate Pentamethylene terephthalamide /7-Phenylene pimelamide Tetramethylene /?-(carboxyphenylene)acetamide /?-Xylylene glutaramide 3-Phenylpropylglutamate N-Benzyloxycarbonyllysine /?-Phenylene(l,l-dimethyl)ethylene adipamide A^N'-Dipropylmethylene-4,4'-dimethyldiphenylene terephthalamide 4,4'-Pentamethylenedibenzoic anhydride 4,4/-Methylenediphenylene adipate Pentamethylene 2,2/-dibenzoate Pentamethylene 3,3'-dibenzoate Pentamethylene 4,4'-dibenzoate Oxydiethylene4,4'-methylenedibenzoate 3,3 /-(Pentamethylenedioxy)dibenzoic anhydride 4,4/-(Pentamethylenedioxy)dibenzoic anhydride Pentamethylene 4,4'-oxydibenzoate Ethylene 4,4'-(trimethylenedioxy)dibenzoate 4,4'-Methylenediphenylene adipamide 3,4'-Oxydiphenylene pimelamide 4,4/-Oxydiphenylene pimelamide Ethylene 4,4/-(trimethylenediphenylene)diurethane Tetramethylene 4,4'-(methylenediphenylene)diurethane Tetramethylene methylenediphenylenediaminodithiodicarboxylate 4,4'-Methylenediphenylene disiloxanylenedipropionamide 1,4-Cyclohexylene 3,3'-methylenedibenzamide AW'-Dimethyl-4,4'-methylenediphenylene adipamide Tetramethylene 4,4 '-propylenedibenzamide Tetramethylene 4,4'-(propylenedioxy)dibenzamide 2,2-Diethyltrimethylene 4,4/-(methylenediphenylene)diurethane l-Ethyl-2-propyltrimethylene (methylenediphenylene)diurethane 4,4;-Methylenediphenylene tetramethyldisiloxanylenedipropionamide N,Af'-Dipropyl-4,4'-methylenediphenylene terephthalamide Glycyl-3-aminopropionic acid-3-aminopropionic acid Glycylglycylproline AW-Lysyl propylenediurea Methyl-AyV'-lysylpropylenediurea Tetramethylene (cyclopropylenedicarboxoyl)diurethane Ethylene MN'-trimethylenediterephthalamate Isophthaloyl (m-carboxyphenoxycapryl)dihydrazide (/?-Phenylenedioxy)diacetic trimethylenedioxydibenzoic anhydride 6 Hexamethylene sulfide Ethylenethiotetramethylene sulfide Hexamethylene disulfide (Ethylenedithio)tetramethylene disulfide hexamethylene oxide Methyleneoxypentamethylene oxide Hexamethylene sulfone Hexamethylene amine 7-Aminothioenanthic acid Hexamethylene thiourea 2,5-Hexamethylene-l,3,4-triazole 3-Cyclopentylpropene Octenamer Vinyl cyclohexane 2,5-Hexamethylene-l-amino-l,3,4-triazole 1-Octene Caprylaldehyde Di-w-butylsilylene rc-Propyl-tt-pentylsilylene 4-Methylcyclohexylidenedimethylene oxide 3,3-Bisethoxymethyloxacyclobutane
CH 2 CO C 6 H 4 5 5 5
2 2 2 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 6
6 6 6 6 6
0 0 0 0 0 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 6
C 1
H
0 0 0 0 0 1 1 3 16 0
1
N
2 1 2 1 2 0 2 2 1 2 0 2 1 2 0 2 1 2 0 2 1 3 1 1 0 1 4 1 2 1 8 0 2 1 18 0 2 2 0 1 0 2 0 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 0 3 0 2 0 0 3 0 2 0 0 3 0 2 0 0 3 0 2 0 0 4 0 2 0 2 0 2 2 0 2 1 2 2 0 2 1 2 2 0 2 2 2 2 0 2 2 2 2 0 2 2 2 2 0 6 1 2 2 2 4 0 2 2 2 6 0 2 2 2 6 0 2 2 2 6 2 2 2 3 8 2 2 2 4 10 2 2 2 4 1 4 1 2 3 2 6 0 2 0 0 3 0 3 0 1 3 0 3 0 3 1 0 1 4 0 4 12 1 4 0 2 4 2 2 2 0 2 2 2 2 0 4 1 4 3 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 2 0 0 0 1 0 1 0 1 1 0 1 0 1 2 0 2 0 2 1 0 3 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 4 0 2 4 0 0 0 2 4 1 0 0 2 6 0 0 0 2 6 0 0 0 3 4 1 0 0 0 3 6 3 0 1 1
0
O
1
S X 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0 4 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 00 0 0 00 0 0 0 0 0 1 0 1 0 0 0 0
References page VI-159
Constitutional Base Unit Poly-
5-Diisobutylamino-l-pentene Di-l,4-naphthaleneoxyhexamethylene oxide Hexamethyleneoxy-/7-phenylene oxide Hexamethylene m-phenylenedisulfonamide Benzylidenethiohexamethylene sulfide Hexamethylene dithioterephthalamide p-Methoxybenzylidenethiohexamethylene sulfide 4,4/-Stilbenediyloxyhexamethylene oxide a-Methyl-4,4'-stilbenediyloxyhexamethylene oxide 7-Hydroxyenanthic acid Hexamethylene carbonate 7-Aminoenanthic acid Hexamethylene urea AT-Hexanoylethylene amine N-Methyl-7-aminoenanthic acid Vinylcyclohexyl ketone (3-Aminomethylene)cyclohexyleneacetic acid (l,3-Dimethyl-3-aminomethylene)cyclohexyleneacetic ^C\d. /?-(Aminoethylene)phenylenevaleric acid 4,4/-Nonylidenediphenylene carbonate Ethylene dithioladipate Suberic anhydride (Ethylenedithio)dipropionic anhydride Piperazine oxydiacetamide Ethylene adipate Hexamethylene oxalate Tetramethylene succinate Trimethylene glutarate Barium suberate Cadmium suberate Calcium suberate Lead suberate Magnesium suberate Manganese suberate Stannous suberate Zinc suberate Hexamethylene dithiodicarboxylate Ethylene 1,4-piperazinedicarboxylate Oxydiethylene succinate Tetramethylene oxydiacetate (Ethylenedioxy)diethylene oxalate Oxydiethylene oxydiacetate (Ethylenedisulfonyl)dipropionic anhydride Ethylene adipamide Glycyl-6-aminocaproic acid Hexamethylene oxamide Hydrazo suberamide Methylene pimelamide Pentamethylene malonamide Tetramethylene succinamide Ethylene (ethylenedioxy)diacetamide Aminoditrimethylene oxamide Ethylene disiloxanylenedipropionamide 2,2-Bischloromethyltrimethylene succinate A^5-(4-Hydroxybutyl)glutamine (Methylamino)ditrimethylene oxamide 1,4-Cyclohexylene dithiolsuccinate Piperazine 1,3-cyclobutylenedicarboxamide 1,4-Cyclohexylenedimethylene oxalate Ethylene 1,4-cyclohexylenedicarboxylate Hexamethylene fumarate 2,5-Tetrahydrofurandipropionic anhydride 2,5-Tetrahydropyrroledipropionic anhydride Methylethylene pimelate Pentamethylene cyclopropylenediurethane
C H 2 CO C 6 H 4
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 62 6 6 6
O 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
O 0 1 1 1 1 1
C
H
7 15 20 12 0 0 0 2 1 2 2 2 2 4 2 2 2 2 3 4 0 0 0 0 0 0 0 0 1 0 0 2 0 1 3 0 1 3 0 2 2 0 2 3 0 4 7 1 0 1 2 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 3 0 0 6 0 1 0 0 1 4 0 1 5 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 0 2 3 2 0 2 4 2 0 2 4
O
N
S
X
O 1 O O 2 0 0 0 2 0 0 0 4 2 2 0 0 0 2 0 0 2 2 0 1 0 2 0 2 0 0 0 2 0 0 0 1 0 0 0 2 0 0 0 0 1 0 0 2 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 2 0 0 0 0 0 2 0 1 0 0 0 1 0 2 0 1 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 2 0 2 2 0 0 3 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0 5 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 2 2 0 0 0 3 0 0 1 2 0 2 2 0 0 2 1 2 0 0 0 3 0 0 0 0 2 0 0 2 0 0 2 0 00 2 0 0 0 2 0 0 0 2 0 0 0 1 1 0 0 2 0 0 0 2 2 0 0
0
0 0
Constitutional Base Unit Polyrc-Amylglutamate AW'-Dimethyltetramethylene succinamide Hexamethylene L-tartaramide Hexafluoropentamethylene adipate Hexafluoropentamethylene adipamide Hexamethylene perfluoroglutaramide A^Methyl-2,5-tetrahydropyrroledipropionic anhydride 2,2-Dimethyltrimethylene adipate Isopropylidenedimethylene piperazinedithiodicarboxylate Hexamethylene 2,2-dimethylmalonamide 2,4-Hexadiyne adipate Hexamethylene 2,5-thiophenedicarboxamide Hexamethylene 2,5-furandicarboxamide 2-Butene 4-octenediamide Hexamethylene (3-methylcyclopropylene)dicarboxamide Hexamethylene di-O-methyl-L-tartaramide Tetramethylene (2,5-dimethylpiperazine)dithiodicarboxylate Ethylene (Tetramethyldisiloxanylene)dipropionamide Hexamethylene 2,3-pyridinedicarboxamide Hexamethylene 2,4-pyridinedicarboxamide Hexamethylene 2,5-pyridinedicarboxamide Hexamethylene 2,6-pyridinedicarboxamide Hexamethylene 3,4-pyridinedicarboxamide Hexamethylene 3,5-pyridinedicarboxamide AW'-DimethyKhexafluoropentamethylene) adipamide AyV'-Dimethylhexamethylene perfluoroglutaramide Hexamethylene 2,5-dihydroxyterephthalamide Hexamethylene methylterephthalamide Hexamethylene 2,6-dimethyl-3,5-pyridinedicarboxamide Hexamethylene 4-methyl-1,3-phenylenediurea Hexamethylene 2,5-dimethylterephthalamide A^AT'-DiisopropyKhexafluoropentamethylene) adipamide WV'-Diisopropylhexamethylene perfluoroglutaramide Tetramethyl-p-xylylene dithioladipate Hexamethylene 5-tert-butylisophthalamide 4-Methylphenylene diethyldimethyldisiloxanylenedipropionamide 1,4-Cyclohexylenedimethylene 2,6-naphthalate Ethylene 3,3/-dimethoxy-4,4/-(tetramethylenedioxy)dibenzoate Ethylene 3,3 '-dimethoxy-4,4'-(oxydiethylene)dioxydibenzoate Hexamethylene dithiolisophthalate Hexamethylene dithiolterephthalate /r-Xylylene dithioladipate (/?-Xylylenedithio)dipropionic anhydride Hexamethylene isophthalate Hexamethylene phthalate Hexamethylene terephthalate Tetramethylene/?-phenylenediacetate p-Xylylene adipate Ethylene /?-(carboxyphenoxy)valerate (Ethylenedioxy)diethylene isophthalate (Ethylenedioxy)diethylene terephthalate (p-Xylylenedisulfonyl)dipropionic anhydride Hexamethylene m-carboxycarbanilate Hexamethylene isophthalamide Hexamethylene phthalamide Hexamethylene terephthalamide Pentamethylene/?-(carboxyphenylene)acetamide p-Phenyleneethylene adipamide m-Phenylene suberamide 0-Phenylene suberamide /7-Phenylene suberamide m-Xylylene adipamide /7-Xylylene adipamide Oxyditrimethylene terephthalamide m-Phenylene hexamethylenediurethane
CH 2 CO C 6 H 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 62 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0
C 2 2 2 3 3 3 3
0 0 0 0 0 0 0 0
4 4
0 0 0 0 0 0
4 4 4 4 4 4 5 5 5 5 5 5 5 5 6
N
1 6 6 0 2 2 5 6 6 8 0 4 4 6
3
0
O
5
3 3
0
0 0 0 0 0
H
8 10 10 14
1 0 2 2 0 0 1 2 2 0 2 0 1 0
0 2 2 1
5 5 5 5 5 0 5 0 0 6 0 6 0 6 2 0 7 8 0 7 9 0 7 10 0 8 1 0 0 9 14 0 9 14 0 10 12 0 10 14 0 11 20 0 1 2 8 0 14 12 0 14 12 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 I 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 2 6 7 0 0 0 1 2 2
2 2 0 2 2 1 0 2 2 0 2 2 2 2 2 2 2 3 3 3 3 3 3 2 2 2 2 3 4 2 2 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2
2 2 2 3 4 4 5 2 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 2 2
S 0
X
0 0 0 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 00 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 6 0 6 2 0 0 0 0 2 0 0 0 0 0 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 00 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0
References page VI-159
Constitutional Base Unit Poly-
/7-Phenylene hexamethylenediurethane Tetramethylene/?-xylylenediurethane Hexamethylene m-phenylenediurea 1,4-Cyclohexylenedimethylene isophthalate 1,4-Cyclohexylenedimethylene terephthalate />-Xylylene 1,4-cyclohexylenedicarboxylate 1,4-Cyclohexylenedimethylene isophthalamide AW-Dimethylhexamethylene terephthalamide Hexamethylene naphthalenedicarboxamide o-Phenylene (diethyldimethyldisiloxanylene)dipropionamide p-Phenylene (diethyldimethyldisiloxanylene)dipropionamide /7-Phenylene dibutylcyclobutylenedicarboxylate /7-Phenylene dicyanodibutylcyclobutylenedicarboxylate 4,4'-Hexamethylenedibenzoic anhydride Ethylene 4,4'-tetramethylenedibenzoate Hexamethylene 2,2/-dibenzoate Hexamethylene 3,3'-dibenzoate Hexamethylene 4,4 '-dibenzoate /7-Phenyleneditrimethylene terephthalate Hexamethylene dithiol-4,4'-sulfonyldibenzoate 3,3'-(Hexamethylenedioxy)dibenzoic anhydride 4,4/-(Hexamethylenedioxy)dibenzoic anhydride Hexamethylene 4,4/-oxydibenzoate Oxydiethylene 4,4/-ethylenedibenzoate (Ethylenedioxy)diethylene 2,2'-dibenzoate (Ethylenedioxy)diethylene 3,3'-dibenzoate (Ethylenedioxy)diethylene 4,4'-dibenzoate Ethylene 4,4'-(ethylenedioxydimethylene)dibenzoate Ethylene 3,3 '-(tetramethylenedioxy)dibenzoate Ethylene 4,4'-(tetramethylenedioxy)dibenzoate Tetramethylene 4,4'-(ethylenedioxy)dibenzoate Hexamethylene 4,4'-sulfonyldibenzoate Ethylene 4,4'-(oxydiethylene)dioxydibenzoate 4,4'-Ethylenediphenylene adipamide Hexamethylene 3,3 '-dibenzamide Hexamethylene 3,4'-dibenzamide Hexamethylene 4,4'-dibenzamide Hexamethylene 2,2'-dibenzamide /7-Phenylenediethylene m-phenylenediacetamide 3,4'-Oxydiphenylene suberamide 4,4'-Oxydiphenylene suberamide Ethylene 4,4'-(tetramethylenediphenylene)diurethane Pentamethylene 4,4'-(methylenediphenylene)diurethane Hexamethylene 4,4'-sulfonyldibenzamide Hexamethylene 3,3'-phosphinylidenedibenzamide Hexamethylene 4,4'-phosphinylidenedibenzamide Hexamethylene 4,4'-(hydroxyphosphinylidene)dibenzamide Hexamethylene 4,4'-silylenedibenzamide 4,4'-Dithiodiphenylene hexamethylenediurea Hexamethylene 4,4'-disiloxanylenedibenzamide Hexamethylene 4,4'-tetrasiloxanylenedibenzamide Hexamethylene 3,3'-(methylphosphinylidene)dibenzamide Hexamethylene 4,4'-(methylphosphinylidene)dibenzamide Hexamethylene 4,4'-vinylenedibenzamide 2-Ethylhexamethylene dithiol-4,4'-sulfonyldibenzoate Hexamethylene 4,4'-ethylidenedibenzamide Hexamethylene 4,4'-(dimethylsilylene)dibenzamide Hexamethylene 4,4'-(methylvinylene)dibenzamide Hexamethylene 4,4/-isopropylidenedibenzamide 4,4'-Isopropylidenediphenylene hexamethylenediurethane 4,4/-Dimethylheptamethylene sulfonyldibenzamide Hexamethylene 4,4'-(tetramethyldisiloxanylene)dibenzamide Hexamethylene 4,4'-(phenylphosphinylidene)dibenzamide Hexamethylene tetramethyltetraphenyltetrasiloxanylenedibenzamide Ethylene AW'-lysyldiurea
CH2
CO C 6 H 4
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 62 6 6 6 6
C
1 1 1 1 1 1 1 1 1 1 1 1 1
O 0 0 2 2 2 2 2 4 4 4 6 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 6 3 0
H
2 2 4 2 2 2 4 6 6 14 14 10
0
1 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
10 5 2 2 2 2
2 1 2 2 2 2 2 2 3 3 3 3
0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 6
0
N
2 2 0 2 2 2 0 0 0
8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
3 3 3 3 4 0 4 1
O
4 4 4 4 4 4 4 4 5 0 0 0 0 0 0 1 1 2 2 2 1 1 2 0 0 1 3 1 5
4 4 6 8 6
0 2 0 0 0 8 0 2 8 2 8 2 14 1 2 1 14 3 6 1
2 2 4 0 0 0 2 2 2 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 1 2 2 0 2 2 2 2 2 2 2 2 4
S
0 0 0 0 0 0 0 0 0
X
0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 2 0 0 2 0 4 0 1 0 1 0 0 3 0 0 0 0 1 0 0 00 0 0 1 0 0 2 0 1 0 4 0 0
Constitutional Base Unit PolyEthylene methyl-AyV'-lysyldiurea Glycylprolylhydroxyproline Hexamethylene 4-oxo-4(H)-pyran-2,6-dicarboxamide Hexamethylene l,4-dihydro-4-oxo-2,6-pyridinedicarboxamide (Phenylglycyl)prolylproline Hexamethylene 4,4 '-ketodibenzamide Ethylene adipoyldiurethane Adipoyl ethylenediurea 2-Hydroxytrimethylene adipoyldiurethane Pentamethylene (cyclopropylenedicarboxoyl)diurethane Hexamethylene pyromellitimide Oxydisilyleneditrimethylene pyromellitimide Tetramethyloxydisilyleneditrimethylene pyromellitimide Hexamethylene 3,3 / ,4,4 / -(oxydiphenylene)tetracarboximide 4,4/-(Tetramethylenedicarbonyl)diphenylene succinate Trimethylene A^'-glutaryldi(/?-arninobenzoate) Trimethylene AW'-trimethylenediterephthalamate D-Benzylglutamyl-L-benzylglutamate 3,4 / -Ethylenedioxydiethylenedioxydiphenylene 3,3 / 4,4 / -oxydiphenylenetet 4,4 ; -(Ethylenedioxydiethylenedioxy)diphenylene carbonyldiphenylenetetrac Alanylglycylalanylglycylalanylglycylglutamylglycine 7 Heptamethylene Heptamethylene disulfide Tetramethylenethiotrimethylene sulfide (Tetramethylenedithio)trimethylene disulfide Hexamethyleneoxymethylene oxide Cyclohexylidenedimethylene oxide 1,4-Piperidinediyltrimethylene 2,5-Heptamethylene-l,3,4-triazole 1,2-Cycloheptylene-fl/r-ethylene 3-Cyclohexylpropene Vinyl cycloheptane 2,5-Heptamethylene-l-amino-l,3,4-triazole 1,4-Cyclohexylenedimethyleneoxymethylene oxide 1-Methyloctamethylene 1-Nonene rc-Nonaldehyde rc-Butyl-rc-pentylsilylene 3-Octyl-2,5-thiophene Di-l,4-naphthaleneoxyheptamethylene oxide 3-(4/-Octylphenyl)thiophene 4,4 / -Ethylene-3-methyldiphenyleneoxypentamethylene oxide 4,4'-Stilbenediyloxyheptamethylene oxide a-Methyl-4,4'-stilbenediyloxyheptamethylene oxide 8-Aminocaprylic acid Heptamethylene urea TV-Cyclohexanecarbonylethylene amine Af-Heptanoylethylene amine 2,2-Dibutyl-3-hydroxypropionic acid WV-Dibutylacrylamide Biphenyloxyhexamethylene acrylate Azelaic anhydride Ethylene pimelate Pentamethylene succinate Tetramethylene glutarate Trimethylene adipate Oxydiethylene glutarate Pentamethylene oxydiacetate (Ethylenedioxy)diethylene malonate Hexamethylene malonamide Hydrazo azelamide Methylene suberamide Pentamethylene oxydiacetamide Tetramethylene trimethylenediurethane
C H 2 CO C 6 H 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 5 9 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
C 0
0 0 0 1
2 3 4
4 3 2 0 0
0 0
1 2 6 6 10 12 0
0 0 0 0 2 2 2 2 2 2 0
H
2 12 12 7 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 5 0 0 20 0 1 5 0 1 7 0 2 2 0 2 3 1 0 0 1 0 0 1 0 1 1 0 1 1 0 3 1 0 3 1 2 1 2 0 2 0 2 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 7 2 0 0 2 0
O 8 5 4 5 5 2 2 4 4 4 2 6
N 1 1 1 0 0 0 2 0 3 2 0 1
4 3 2 3 3 0 2 0 2 0 4 2 2 2 2 14 1 2 6 1 2 0 2 0 0 2 2 2 0 2 2 2 6 2 2 6 5 2 4 4 2 2 2 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 0 1 1 0 3 2 0 0 2 2 0 0 2 0 0 2 2 0 4 2 2 0 4 0 0 4 0 0 4 1 0 6 0 0 4 0 0 12 2 0 4 0 0 6 2 0 2 2 0 4 2 0 1 0 1 2 0 2 1 0 1 3 0 1 6 1 0 7 0 1 2 2 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 2 0 0 2 0 0 0 3 0 0 3 0 0 0 4 0 2 0 2 0 2 0 2 0 2 0 2 2 1 2 0 2 2 2
S X 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0
References page VI-159
Constitutional Base Unit Poly-
Trimethylene 1,4-cyclohexylenedicarboxylate Cyclopropylenedimethylene piperazinediurethane Hexamethylene cyclopropylenedicarboxamide Piperazine 3-methyladipamide Trimethylene 4-octenediamide Hexamethylene 2,3-pyrazoledicarboxamide Hexamethylene 2,4-pyrazoledicarboxamide Methylethylene suberate «-Hexylglutamate Cyclopropylene hexamethylenediurea 3-Oxypropylhexamethylene oxamide Hexamethylene (l-methylcyclopropylene)dicarboxamide Hexamethylene (methylene-2,5-furan)dicarboxamide Hexamethylene 4(H)-pyran-2,6-dicarboxamide Hexamethylene 3,3 '-dimethyl-4,4'-methylenediphenylenediurea A^^V'-diethyl-S^'-dimethyl^^^'-methylenediphenyleneadipamide Heptamethylene terephthalate p-Phenylene azelate p-Xylylene pimelate Ethylene /?-(carboxyphenoxy)caproate Hexamethylene /?-(carboxyphenoxy)acetate Heptamethylene terephthalamide Hexamethylene /?-(carboxyphenylene)acetamide /7-Phenylene azelamide m-Xylylene pimelamide /?-Xylylene pimelamide p-Phenylene (methyl-l,4-piperazine)dipropionate MA^/-Dibutyl-4,4/-(dimethylmethylene)diphenylene terephthalamide Ethylene 4,4/-(pentamethylenedioxy)dibenzoate Hexamethylene 3,3'-methylenedibenzamide Hexamethylene 4,4/-methylenedibenzamide 3,4'-Oxydiphenylene azelamide 4,4'-Oxydiphenylene azelamide Hexamethylene 4,4/-(methylenediphenylene)diurethane Heptamethylene 4,4/-sulfonyldibenzamide Hexamethylene 4,4/-(methylenediphenylene)diurea N,iV'-Diethyl(inethylenediphenylene) adipamide 2-Butyl-2-ethyltrimethylene methylenediphenylenediurethane WV'-Dibutyl(methylenediphenylene) terephthalamide WV'-Lysyl trimethylenediurea Glycylprolylproline Hexamethylene propylenediurea Methyl-AgV'-lysyl trimethylenediurea ot-D-Glucotributyrate, 1,4P-D-Glucotributyrate, 1,4Trimethylene adipoyldiurethane Azelaoyl oxalodihydrazide Pentamethylene AyV'-ethylenediterephthalamate Tetramethylene A^-trimethylenediterephthalamate Trimethylene AW-adipoyldi(p-benzoate) Heptamethylene (4,4'-terephthaloyldioxy)dibenzoate 8 Octamethylene Ethylenethiohexamethylene sulfide Octamethylene disulfide (Ethylenedithio)hexamethylene disulfide Octamethylene oxide 1,4-Piperazinediethylene sulfone 2,5-Octamethylene-l,3,4-oxadiazole 2,5-Octamethylene-l,3,4-triazole 4-CyclohexyM-butene Decenamer 1,2-Dichlorodecamethylene 2,5-Octamethylene-l-amino-l,3,4-triazole 1-Decene
CH2
CO C 6 H 4
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 80 8 8 8
0 0
0 0
1 1 1 1 1
0
2 2 4 18 0 2 2 2 2 2 2 4 6 8 6 6 2
0 0 0
3 8 8
2 8 8 0
0
14 14
0 2
2 4 2 2 2
0 0
2 2 3 0 0
0
0 0 0 0
0 0 0
0 0 0 0 0 0
0 0 0
0 0
0 0 0 0 2 2 2 2
0 0 0 0 0 0
2
2
0 0 0 0
0 0 0 0 0 2 2
0 0 0 0 0 0 0 0 2
0
4 0 0 0 0 0 0 0 0 0 0
16 18
3 2 1
0
6 6 6 4 4
4 14 16 0 0 0 0 0 0 0 0 0 0 2 16
2 2 2 2 2 2 2 2 2 2 3
4 4 4 4 5
0 0 0 1 1 1 1 1 1 1
2 2 4
2 2 2 2 3 4
0 0 0 0
0 1 2 2 2
2 2
O
4
0 0
H
2 2 2 2 2 2 2
0 0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4
C
2 2 4
N
2 0 2 2 0 2 02 0 0 2 0 4 0 4 2 0 1 1 0 0 4 1 2 0 2 1 2 1 2 0 4 0 2 2 0 2 0 2 0 3 0 3 0 0 2 0 2 0 2 0 2 0 2 2 2 0 2 4 0 0 2 0 2 1 2 1 2 2 2 2 2 0 4 0 2 2 2 0 2 1 4 0 3 0 4 1 4 5 0 5 0 2 2 0 4 2 2 2 2 2 2 4 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 1 2 0 3 0 0 0 0 0 0 0 4 0 0
S
0 0 0
X
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
Constitutional Base Unit Poly-
Di-rc-pentylsilylene •1,11-Dodecadiyne, 1,125,7-Dodecadiynediol, 5,8Octamethylene 5,5'-dibenzimidazole 2,2'-Octamethylenedithiazole-/?-phenylene 4,4/-Stilbenediyloxyoctamethylene oxide a-methyl-4,4'-stilbenediyloxy octamethylene oxide l,12-Bis(>-toluylsulfonyl)-5,7-dodecadiynediol, 5,89-Aminopelargonic acid Octamethylene urea N-Octanoylethylene amine Octyl acrylate Tetramethylene dithioladipate Thiodiethylene dithioladipate Piperazine adipamide (Piperazinedicarbamoyl)dithiotetramethylene disulfide Sebacic anhydride Ethylene suberate Hexamethylene succinate Pentamethylene glutarate Tetramethylene adipate Trimethylene pimelate Barium sebacate Cadmium sebacate Calcium sebacate Lead sebacate Magnesium sebacate Manganese sebacate Stannous sebacate Zinc sebacate Piperazine (ethylenedioxy)diacetamide Hexamethylene oxydiacetate Oxydiethylene adipate (Ethylenedioxy)diethylene succinate Heptamethylene malonamide Hexamethylene succinamide Hydrazo sebacamide Octamethylene oxamide Pentamethylene glutaramide Tetramethylene adipamide Hydrazo thiodivaleramide Hexamethylene oxydiacetamide Ethylene hexamethylenediuirethane Tetramethylene tetramethylenediurethane Ethylene (ethylenedithio)diethylenediurethane Tetramethylene (l,4-piperazinedithio)dicarboxylate Ethylene (ethylenediamino)dipropionamide Ethylene hexamethylenediurea Tetramethylene disiloxanylenedipropionamide 2,2-Bisbromomethyltrimethylene adipate 2,2-Bischloromethyltrimethylene adipate 2,2-(Bromomethylchloromethyl)trimethylene adipate Piperazine 4-octenediamide 1,4-Cyclohexylene adipate 1,4-Cyclohexylenedimethylene succinate Hexamethylene 3-hexenedioate 1,3-Cyclohexylene adipamide 1,4-Cyclohexylene adipamide Tetramethylene 4-octenediamide Ethylene 2,5-tetrahydrofurandipropionamide Methylethylene azelate 2-Butenylenehexamethylenediurethane l,4-Dioxanylene-2,5-dimethylene adipamide Hexamethylene l,4-dioxanylene-2,5-dicarboxamide Tetramethylene 1,4-cyclohexylenediurethane
C H 2 CO C 6 H 4
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
C
H
O
N
0 0 2 6 0 0 0 0 4 0 0 0 0 0 4 2 2 0 0 0 14 8 0 4 0 1 6 2 0 2 0 2 2 2 2 0 0 2 3 4 2 0 0 2 6 6 6 0 1 0 0 1 0 1 1 0 0 2 0 2 1 0 1 3 0 1 1 0 2 4 1 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 2 2 0 0 0 0 2 2 0 0 0 1 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 2 2 0 0 0 3 0 2 0 0 0 3 0 2 0 0 0 4 0 2 0 0 2 0 2 2 0 0 2 0 2 2 0 0 2 0 2 2 0 0 2 0 2 2 0 0 2 0 2 2 0 0 2 0 2 2 0 0 2 0 2 2 0 0 2 1 2 2 0 0 2 2 2 2 0 0 2 2 2 2 0 0 2 2 2 2 0 0 2 2 2 2 0 0 4 0 4 2 0 0 4 0 4 2 0 0 6 1 2 2 0 1 0 2 0 2 0 1 0 2 0 2 0 1 0 2 0 2 0 2 2 0 2 2 0 2 2 2 0 2 0 2 2 2 0 8 2 0 2 2 2 0 2 0 2 4 0 2 2 0 2 4 0 2 2 0 2 4 0 2 2 0 2 4 1 2 2 0 2 4 2 0 2 0 2 4 2 2 2 0 2 4 2 2 2 0 2 4 2 2 2 0 2 4 2 2
S
X
0 0 0 0 2 0 0 2
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 00 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0
0
References page VI-159
Constitutional Base Unit Poly-
Hexamethylene propylmalonamide Hexamethylene 2,5-dihydroxyadipamide 2-Methltrimethylene hexamethylenediurethane Octamethylene L-tartaramide 2,2-Dimethyltrimethylene suberate 2,2-Dimethyltrimethylene hexamethylenediurethane 2,4-Hexadiyne hexamethylene diurethane Hexamethylene 2,5-thiophenediacetamide Octamethylene 2,5-thiophenedicarboxamide Octamethylene 2,5-furandicarboxamide 1,4-Dimethyltetramethylene hexamethylenediurethane Octamethylene di-O-methyl-L-tartaramide Tetramethylene tetramethyldisiloxanylenedipropionamide Octamethylene 2,4-pyridinedicarboxamide Octamethylene 2,5-pyridinedicarboxamide Octamethylene 2,6-pyridinedicarboxamide Octamethylene 3,5-pyridinedicarboxamide N,iV-Diethyl(hexafluoropentamethylene) adipamide Af9A^7-Diethylhexamethyelne perfluoroglutaramide WV'-Dimethyltetramethylene tetramethyldisiloxanylenedipropionamide 3-Methyl-m-phenylene sebacamide WV'-Diisopropylethylene dimethyl(ethylenediamino)dipropionamide 4-Methyl-l,3-phenylene tetraethyldisiloxanylenedipropionamide l,5-Naphthalene-4 / ,4 // -(dimethoxy)dibenzylidenimino sebacate Hexamethylene dithiol-p-phenylenediacetate Octamethylene terephthalate /7-Xylylene suberate p-Phenylene 1,4-piperazinedipropionate Ethylene /?-(carboxyphenoxy)heptanoate Hexamethylene m-phenylenediacetamide Hexamethylene p-phenylenediacetamide Octamethylene isophthalamide Octamethylene phthalamide Octamethylene terephthalamide p-Phenylenediethylene adipamide m-Phenylene sebacamide o-Phenylene sebacamide p-Phenylene sebacamide m-Xylylene suberamide /7-Xylylene suberamide Hexamethylene /?-phenoxydiacetamide /7-Xylylene oxydibutyramide (Ethylenedioxy)ditrimethylene terephthalamide Hexamethylene (/?-phenylenedioxy)diacetamide Hexamethylene/7-xylylenediurethane ^-Sulfonylphenylene sebacamide Hexamethylene /?-xylylenediurea l,4-Cyclohexylenedimethylene/?-phenylenediacetate Sebacoyl dithionisophthaloyldihydrazide Hexamethylene 3,3 '-/7-phenylenedibutyramide m-Phenylene (tetraethyldisiloxanylene)dipropionamide oPhenylene (tetraethyldisiloxanylene)dipropionamide p-Phenylene (tetraethyldisiloxanylene)dipropionamide Hexamethylene 3,3/-dimethyl-3,3/-/?-phenylenedibutyramide /7-Phenylene-4 / ,4 // -(3',3 // -dimethoxy)dibenzylidenimino sebacate Ethylene 4,4 / -hexamethylenedibenzoate 4,4 / -Hexamethylenediphenylenesuccinate Octamethylene 4,4 ; -biphenylenedicarboxylate p-Phenylenediethylene 3,3 / -(p-phenylene)dipropionate p-Phenyleneditetramethylene terephthalate Hexamethylene 4,4 / -(ethylenedioxy)dibenzoate Hexamethylene 4,4 / -(sulfonyldimethylene)dibenzoate 4,4'-Biphenylene sebacamide 4,4 / -Methylenediphenylene azelamide 3,4'-Oxydiphenylene sebacamide
CH
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2
CO C6H4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C
0
2 0
0 0 0
2 2 2 3 3 8
0 0 0 0 0
4 4 4 4 5 5 5 5 5 5 6
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
O
6 6 6 6 6
0 2 2 2 2 2
4 4 4
0 0 0
H
2 4 4 4
10 1 0 14 5 5 5 5 6 6 18 7 8 8 2 11 20 26 20 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 4 2 2 2 4 4 10 4 14 4 14 4 14 6 14 16 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2
2 0 0 1 2 2 1 0 0 0 0 0 0 1 0 0 1
0 4 0 2 2 2 3 0 0 0 0 0 0 0 0 0 0 0 1
1 2 2 2 2 0 2 0 0 1 1 1 0 4 2 2 2 2 0 2 4 4 0 0 1
N
S
2 2 2 2 0 2 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 4 2 2 0 0 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 0 4 2 2 2 2 2 2 0 0 0
0 0 0 0 0
0 0 0 2 2 2
X
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 6 0 6 0 2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0
Constitutional Base Unit Poly4,4'-Oxydiphenylene sebacamide Heptamethylene 4,4/-(methylenediphenylene)diurethane Hexamethylene 4,4/-(oxydiphenylene)dioxydiacetamide Octamethylene 3,3'-phosphinylidenedibenzamide Octamethylene 4,4/-phosphinylidenedibenzamide Octamethylene 3,3/-(methylphosphinylidene)dibenzamide Octamethylene 4,4/-(methylphosphinylidene)dibenzamide WV'-Diemthyl^^'-methylenediphenylene azelamide 4,4/-Isopropylidenediphenylene 1,4-piperazinedipropionate l,12-Bis(phenylurethane)-5,7-dodecadiynediol, 5,8l,5-Naphthalene^4Mibenzylidenimino sebacate 4,4/-Biphenylene-4//,4///-(dimethoxy)dibenzylidenimino sebacate 4,4/-Oxydiphenylene-4//,4///-(dimethoxy)dibenzylidenimino sebacate Octamethylene 4,4'-(phenylphosphinylidene)dibenzamide /?-Phenylene-4,4',4"-dibenzylidenimino sebacate 4,4/-Biphenylene-4//,4///-dibezylidenimino sebacate 4,4'-Oxydiphenylene-4",4"'-dibenzylidenimino sebacate 1-1-Carboxypentamethylene adipamide A^V'-Lysyl tetramethylenediurea Methyl-7V,iV-lysyltetramethylenedmrea Octamethylene l,4-dihydro-4-ax0-2,6-pyridinedicarboxamide Lysyllysylvaline 4,4/-(Octamethylenedicarbonyl)diphenylene carbonate Ethylene adipamide-a/f-ethylene oxamide Octamethylene bromopyromellitimide Octamethylene pyromellitimide Octamethylene 3,3',4,4'-oxydiphenylenetetracarboximide Hexamethylene MA^-ethylenediterephthlamate Pentamethylene A^Af'-trimethylenediterephthalamate Hexamethylene A^,A^/-(p-xylylene)diterephthalamate 4,4/-(Oxydiethyleneoxydiethylenedioxy)diphenylene carbonyldiphenylenet Alanylalanylglycylprolylprolylglycine Alanylglycylalanylprolylglycylproline (Alanylglycyl)4-glutamylglycine 9 Nonamethylene disulfide Pentamethylenethiotetramethylenesulfide Nonamethylene oxide Pentamethylenesulfonyltetramethylene sulfone 2,5-Nonamethylene-l,3,4-oxadiazole 5-Cyclohexyl-l-pentene 1-Undecene H-Pentyl-n-hexylsilylene 3-Decylthiophene 4,4/-Methylenedicyclohexylenethiourea 4,4/-Ethylene-3-methyldiphenyleneoxyheptamethylene oxide 4,4'-Heptamethylenedioxydiphenyleneoxy/?-xylylene oxide 10-Hydroxycapric acid 10-Aminocapric acid Nonamethylene urea 5-Hydroxy-2-(l,3-dioxane)caprylic acid 4-Hydroxymethylene-2-(l,3-dioxolane)caprylic acid 2-Methyl-ll-aminoundecanoic acid 4,4'-Methylenedicyclohexyleneurea 3-rc-Decylhydroxybenzoic acid Undecanedioic anhydride Ethylene azelate Hexamethylene glutarate Pentamethylene adipate Tetramethylene pimelate Trimethylene suberate Oxydiethylene pimelate (Ethylenedioxy)diethylene glutarate hexamethylene glutaramide Methylene sebacamide
CH 2 CO C 6 H 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
C
H
O
2 2 0 2 2 2 0 2 2 2 0 2 2 2 0 3 2 2 0 3 2 2 1 5 2 2 1 5 2 2 2 6 2 2 3 6 2 2 4 4 2 2 1 2 8 2 2 16 14 2 2 16 14 2 3 0 3 2 3 2 2 2 4 2 2 2 4 2 2 3 0 1 4 3 0 1 6 3 0 2 8 3 0 4 5 3 0 6 1 7 3 2 0 0 4 0 0 4 4 0 6 1 8 4 0 6 2 4 0 12 6 4 2 0 2 4 2 0 2 4 3 0 2 5 2 12 4 6 0 6 14 6 0 6 14 ? 0 9 26 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 2 0 0 2 4 0 0 2 6 0 0 5 4 0 0 5 6 0 1 7 6 0 3 0 0 1 0 0 0 1 0 0 1 1 0 0 2 1 0 2 2 1 0 2 2 1 0 2 5 1 0 4 6 1 0 7 6 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 2 2 0 0 2
N
S X
1 2 3 1 1 1 1 0 2 2
2 0 0 2 0 0 2 0 0 2 0 1 2 0 1 2 0 1 2 0 2 0 0 2 0 0 2 0 0 2 2 0 0 4 2 0 0 5 2 0 0 1 2 0 1 2 2 0 0 2 2 0 0 3 2 0 0 1 2 0 0 1 4 0 0 1 4 0 0 0 3 0 0 0 5 0 0 2 0 0 0 0 4 0 0 0 2 0 1 0 2 0 0 1 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 5 2 0 0 0 6 0 0 0 6 0 0 1 10 0 0 0 0 0 0 0 0 2 0 0 0 2 0 1 0 0 0 4 0 2 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2 1 0 2 0 0 0 4 0 0 0 1 0 0 0 0 1 0 0 0 2 0 0 3 0 0 0 3 0 0 0 0 1 0 0 0 2 0 0 1 0 0 0 1 0 0 0 2 0 00 2 0 0 0 2 0 00 2 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 0 2 0 0 0 2 0 0
References page VI-159
Constitutional Base Unit Poly-
Octamethylene malonamide Pentamethylene adipamide Tetramethylene pimelamide Hexamethylene trimethylenediurethane Tetramethylene pentamethylenediurethane Trimethylene hexamethylenediurethane Trimethylene (ethylenedithio)diethylenediurethane Hexamethylene trimethylenediurea 1,4-Cyclohexylenedimethylene glutarate 1,4-Cyclohexylenedimethylene glutaramide Cyclopropylene sebacamide Pentamethylene 4-octenediamide Hexamethylene (methylene-2,5-tetrahydrofuran)dicarboxamide Methylethylene sebacate Methylethylene thiodivalerate Cyclopropylenedimethylene hexamethylenediurethane Methylethylene sulfonyldivalerate rt-Octylglutamate Hexamethylene 2-butylmalonamide Hexamethylene 3-methyladipamide 3-Methylehexamethylene adipamide 2,2-Dimethyltrimethylene azelate 3,3'-Dimethyl-4,4'-methylenediphenylene sebacamide Hexamethylene (diethyldimethyl)methylenediphenylenediurea iV^'-Diisoamyl^^'-diemthyl^^'-methylenediphenylene adipamide Nonamethylene terephthalate p-Xylylene azelate Heptamethylene/7-Phenylenediacetamide Hexamethyelene (p-methylenephenylene)-diacetamide m-Xylylene azelamide /7-Xylylene azelamide Hexamethylene (methylene-p-phenoxy)diacetamide p-Xylylene 5-oxasebacamide Hexamethylene 3-Methyl-3,3'-p-phenylenedipropionamide p-Phenylene(l,l-dimethyl)ethylene sebacamide 4,4/-Methylenediphenylene sebacamide 3,4'-Oxydiphenylene undecanediamide 4,4'-Oxydiphenylene undecanediamide Hexamethylene 4,4'-(methylenediphenylene)dioxydiacetamide Octamethylene 4,4/-(methylenediphenylene)diurethane Nonamethylene 3,3/-phosphinylidenedibenzamide Nonamethylene 4,4/-phosphinylidenedibenzamide 4,4'-Methylenediphenylene octamethylenediurea Nonamethylene 3,3/-(methylphosphinylidene)dibenzamide Nonamethylene 4,4/-(methylphosphinylidene)dibenzamide A^N'-Dimethyl-4,4'-methylenediphenylene sebacamide Nonamethylene 4,4'-(phenylphosphinylidene)dibenzamide iV,JV'-Lysyl pentamethylenediurea Methyl-MN'-lysyl pentamethylenediurea Adipoyl Pentamethylenediurea Nonamethylene bromopyromellitimide Nonamethylene pyromellitimide Nonamethylene 3,3',4,4/-oxydiphenylenetetracarboximide Ethylene Af,Ar'-azelaoyldi(p-aminobenzoate) Heptamethylene AW-ethylenediterephthalamate Hexamethylene MA^-trimethylenediterephthalamate Pentamethylene Af,Af'-tetramethylenediterephthlalamate 10 Decamethylene Decamethylene sulfide Decamethylene disulfide Hexamethylenethiotetramethylene sulfide (Hexamethylenedithio)tetramethylene disulfide Decamethylene oxide Methyleneoxynonamethylene oxide
CH2
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10
CO C 6 H 4
C
H
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 4 2 0 2 2 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 5 2 0 2 6 2 0 2 6 2 0 2 6 2 0 3 6 2 0 1 4 14 2 0 16 20 2 0 20 26 2 1 0 0 2 1 0 0 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 2 6 2 1 3 8 2 2 0 2 2 2 0 2 2 2 0 2 2 2 0 2 2 2 0 2 2 2 0 3 2 2 0 3 2 2 0 4 2 2 1 5 2 2 1 5 1 2 2 2 6 2 3 0 3 3 0 1 6 3 0 2 8 4 0 0 4 4 0 6 1 4 0 6 2 0 4 0 12 6 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O
0 0 0 2 2 2
N
S
X
2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 2 2 0 0 4 0 0 2 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 1 2 0 0 2 0 0 0 2 0 1 0 2 2 0 0 4 0 1 0 1 1 0 0 0 2 0 0 0 2 0 0 0 2 0 0 2 0 0 0 0 2 0 0 0 4 0 0 0 2 0 0 2 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 1 2 0 0 1 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 1 2 0 0 1 2 0 0 2 2 0 0 2 2 0 0 1 2 0 1 1 2 0 1 0 4 0 0 1 2 0 1 2 0 1 0 2 0 0 1 2 0 1 1 4 0 0 1 4 0 0 0 4 0 0 0 2 0 1 2 00 1 20 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 2 0 0 0 2 0 0 4 0 1 0 0 0 2 0 0 0
Constitutional Base Unit Poly-
Hexamethylenesulfonyltetramethyloene sulfone Decamethylene amine 2,5-Decamethylene-l,3,4-oxadiazole 2,5-Decamethylene-l,3,4-triazole Dodecenamer 1,2-Dichlorododecamethylene 2,5-Decamethylene-l-amino-l,3,4-triazole 1-Dodecene Decylvinyl ether Di-rc-hexylgermylene Di-rc-hexylsilyene 3,3-Dipentyltrimethylene sulfone 3,3/-Dihexyl-2,2/-bithiophene Decamethyleneoxy-/?-phenylene oxide Benzylidenethiodecamethylene sulfide 4,4/-(Oxydiphenylene)dithiodecamethylene disulfide 4,4/-Octamethylenedioxydiphenyleneoxy-/?-xylylene oxide Bis-(Butylphenyl)azophenoxyethoxy phosphazene Decamethylene carbonate 11-Aminoundecanoic acid Decamethylene urea AMMethyl-ll-aminoundecanoic acid Decyl acrylate 5-Hydroxymethylene-5-methyl-2-(l,3-dioxane)caprylic acid N-Phenyl-11-aminoundecanoic acid 4,4'-decamethylenediphenylene carbonate Hexamethylene dithioladipate Piperazine suberamide (Piperazinedicarbamoyl)dithiohexamethylene disulfide Dodecanedioic anhydride Decamethylene oxalate Ethylene sebacate Hexamethylene adipate Pentamethylene pimelate Tetramethylene suberate Trimethylene azelate Ethylene thiodivalerate Ethylene 1,4-piperazinedipropionate Oxydiethylene suberate (Ethylenedioxy)diethylene adipate Ethylene sulfonyldivalerate Decamethylene oxamide Ethylene sebacamide Hexamethylene adipamide Hydrazo dodecanediamide Nonamethylene malonamide Octamethylene succinamide Pentamethylene pimelamide Tetramethylene suberamide Ethylene thiodivaleramide Hexamethylene thiodipropionamide (Hexamethylenedicarbamoyl)dithiotetramethylene disulfide Ethylene 1,4-piperazinedipropionamide Hexamethylene piperazinediurea Piperazine (ethylenediamino)dipropionamide Oxyditrimethylene adipamide (Ethylenedioxy)diethylene adipamide Hexamethylene (ethylenedioxy)diacetamide (Tetramethylenedioxy)ditrimethylene oxamide Tetramethylene Hexamethylenediurethane Tetramethylene (thioditrimethylene)diurethane Thiodiethylene hexamethylenediurethane Ethylene (tetramethylenedithio)diethylenediurethane Hexamethylene (l,4-piperazinedithio)dicarboxylate Tetramethylene (ethylenedithio)diethylenediurethane
CH2
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
CO C 6 H 4
C
H
O
N
S
X
0 0 0 0 4 0 20 0 0 0 1 0 1 0 0 0 0 2 0 1 2 0 0 0 0 2 1 0 3 0 0 0 0 2 2 0 0 0 0 0 0 2 2 0 0 0 2 0 0 2 2 0 4 0 0 0 0 2 4 0 0 0 0 0 0 2 4 1 0 0 0 0 0 2 6 0 0 01 0 0 2 6 0 0 0 1 0 0 3 6 2 0 1 0 0 0 10 8 0 0 2 0 0 1 0 0 20 0 0 0 1 1 2 0 0 2 0 0 2 0 0 1 0 4 0 0 3 0 0 4 0 00 0 4 2 6 4 5 0 1 1 0 0 0 2 0 0 0 1 0 0 1 0 1 0 0 1 0 0 2 0 2 0 0 1 0 1 3 0 1 0 0 1 0 2 4 1 0 0 0 1 0 3 4 3 0 0 0 1 1 0 2 0 1 0 0 1 2 0 0 20 0 0 2 0 0 0 0 0 2 2 0 0 0 0 2 0 0 2 0 0 0 0 2 4 0 2 0 0 0 1 0 0 0 2 0 0 0 20 0 0 2 0 0 0 2 0 0 0 2 0 0 0 20 0 0 2 0 0 0 2 0 0 0 2 0 0 0 20 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 1 0 2 0 0 0 2 2 0 0 2 0 0 0 3 0 0 0 2 0 0 0 4 0 0 2 0 0 0 4 0 1 0 2 0 0 0 0 2 0 0 2 0 0 2 0 2 0 0 2 0 0 2 0 2 0 0 2 0 0 2 0 2 0 0 2 0 0 2 0 2 00 2 0 0 2 0 2 0 0 2 0 0 2 0 2 0 0 2 0 0 2 0 2 0 2 0 0 2 0 2 1 0 2 0 0 2 0 2 1 0 2 0 0 2 0 2 4 0 2 0 0 2 0 4 00 2 0 0 2 0 4 00 2 0 0 2 0 4 0 0 2 0 0 2 1 2 0 0 2 0 0 2 2 2 00 2 0 0 2 2 2 0 0 2 0 0 2 2 2 00 2 0 0 2 22 0 0 2 0 0 2 2 2 1 0 2 0 0 2 2 2 1 0 2 0 0 2 2 2 2 0 2 0 0 2 2 2 2 2 0 0 2 2 2 2 0
References page VI-159
0
0
Constitutional Base Unit PolyOxydiethylene hexamethylenediurethane Phosphinideneditrimethylene adipamide Hexamethylene tetramethylenediurea Hexamethylene disiloxanylenedipropionamide N-Methylhexamethylene adipamide Hexamethylene dithiol-l,4-cyclohexylenedicarboxylate 1,4-Cyclohexylenedimethylene adipate 1,4-Cyclohexylene suberate Hexamethylene 1,4-cyclohexylenedicarboxylate hexamethylene 4-octenedioate Octamethylene 3-hexenedioate 1,3-cyclohexylenedimethylene adipamide Decamethylene fumaramide Hexamethylene 1,4-cyclohexylenedicarboxamide Hexamethylene 1,2-cyclohexylenedicarboxamide Hexamethylene 1,3-cyclohexylenedicarboxamide Hexamethylene 4-octenediamide Tetramethylene 2,5-tetrahydrofurandipropionamide 1-Methyltrimethylene thiodivalerate (1,4-Cyclohexylenedioxy)ditrimethylene oxamide Hexamethylene l,4-dioxanylene-2,5-diacetamide 1,4-Cyclohexylene (ethylenedithio)diethylenediurethane Decamethylene 1,2-dihydroxysuccinate 1-Methyltrimethylene sulfonyldivalerate Alanyl-11-Aminoundecanoic acid Af-N'-Dimethylhexamethylene adipamide Hexamethylene pentylmalonamide Piperazine MiV/-dimethyl(ethylenediamino)dipropionamide 1-Methyltrimethylene octamethylenediurethane Decamethylene methylfumaramide 2,2-Dimethyltrimethylene sebacate 1,4-Cyclohexylenedimethylene dithiol-1,4-cyclohexylenedicarboxylate Decamethylene 2,5-thiophenedicarboxamide Hexamethylene 2,5-thiophenedipropionamide Decamethylene 2,5-furandicarboxamide Hexamethylene 2,5-furandipropionamide 1,4-Cyclohexylenedimethylene 1,4-Cyclohexylenedicarboxylate Hexamethylene 2,5-pyrroledipropionamide Decamethylene 2,3-dimethylfumaramide Hexamethylene (tetramethyldisiloxanylene)dipropionamide Decamethylene 2,4-pyridine dicarboxamide Decamethylene 2,5-pyridine dicarboxamide Decamethylene 2,6-pyridine dicarboxamide Decamethylene 3,5-pyridine dicarboxamide Hexamethylene (A^-methyl-2,5-pyrrole)dipropionamide l,12-Bis(ethylurethane)-5,7-dodecadiynediol, 5,8AyV'-diisopropylethylene 1,4-piperazinedipropionamide Piperazine AyV'-diisopropyl(ethylenediamino)dipropionamide Tetramethyl-/?-xylylenedithiol sebacate Decamethylene 3,3'-dimethyl-4,4'-biphenylenediurethane Decamethylene dithiolterephthalate p-Xylylene dithiolsebacate Decamethylene isophthalate Decamethylene terephthalate p-Xylylene sebacate Hexamethylene /?-(carboxyphenoxy)valerate Decamethylene m-carboxycarbanilate Decamethylene /?-carboxycarbanilate Decamethylene isophthalamide Decamethylene phthalamide Decamethylene terephthalamide Hexamethylene 3,3'-p-phenylenedipropionamide Octamethylene p-phenylenediacetamide p-Phenylene dodecanediamide p-Phenyleneethylene sebacamide
CH 2 CO C 6 H 4 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 102 10 10 10
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1
C 0 0
H
O
2 3 0
0 1 2 2 2 2 2
4 4 2 2 2 2
2 2 2 4 0 2 4 2 4 0 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 6 2 6 2 6 2 6 2 6 3 6 3 6 4 4 0 4 4 4 4 4 4 4 4 4 4 4 5 4 8 4 14 5 5 5 5 5 5 5 5 5 7 6 8 6 14 6 14 10 12 14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 0 2
S
X
2 0 0 2 0 1 0 4 0 0 1 2 0 2 0 2 0 0 0 0 2 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 00 0 2 0 0 2 00 0 2 0 0 0 2 0 0 0 2 0 0 1 2 0 0 2 0 1 0 2 2 0 0 2 2 0 0 2 2 2 0 4 0 0 0 4 0 1 0 0 2 0 0 0 2 0 0 0 2 0 0 0 4 0 0 2 2 0 0 0 2 00 2 0 0 0 0 20 0 2 1 0 0 2 1 0 1 2 0 0 1 2 0 0 2 0 0 0 0 3 00 0 2 0 0 1 2 0 2 0 3 0 0 0 3 00 0 3 0 0 0 3 0 0 0 3 0 0 2 2 0 0 0 4 0 0 0 4 0 0 0 0 2 0 2 2 0 0 0 0 2 0 0 0 2 0 2 0 0 0 20 0 0 2 0 0 0 3 0 0 0 2 1 0 0 2 1 0 0 0 2 00 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 2 00 0 2 00
0
6
2
3
N
Constitutional Base Unit Polym-Xylylene sebacamide /?-Xylylene sebacamide /?-Xylylene thiodivaleramide /?-Xylylene 5-oxaundecanediamide /7-Xylylene oxydivaleramide Octamethylene/?-xylylenediurethane /?-Xylylene octamethylenediurethane Octamethylene /?-xylylenediurea (1,4-Cyclohexylenedioxy)ditrimethylene terephthalamide 4,4 / -(Decamethylenedioxy)dichlorodiphenylene terephthalate Decamethylene 2,2'-dibenzoate Decamethylene 3,3'-debenzoate Decamethylene 4,4'-debenzoate p-Phenylenedipentamethylene terephthalate 4,4 / -Ethylenediphenylene sebacamide 3,4'-Oxydiphenylene dodecanediamide 4,4 / -Oxydiphenylene dodecanediamide Decamethylene 4,4 / -biphenylenediurethane Hexamethylene 4,4 / -(ethylenediphenylene)dioxydiacetamide Nonamethylene 4,4 / -(methylenediphenylene)diurethane Decamethylene 3,3'-phosphinylidenedibenzamide Decamethylene 4,4 / -phosphinylidenedibenzamide Decamethylene 3,3 / -(methylphosphinylidene)dibenzamide Decamethylene 4,4 / -(methylphosphinylidene)dibenzamide 4,4 / -Vinylenediphenylene dodecanedioate Decamethylene 4,4 / -ethylidenedibenzamide WV'-Diethyl(methylenediphenylene)azelamide 4,4 / -Methylvinylene)diphenylene dodecanedioate 3,3 / -(Decamethylenedioxy)diphenylene terephthalate 4,4'-(Decamethylenedioxy)diphenylene terephthalate Decamethylene 4,4 / -(phenylphosphinylidene)dibenzamide (Decamethylenedioxy)diphenylenedioxydiphenylene terephthalate Hexamethylene ketodipropionamide Hexamethylene WV'-lysyldiurea Hexamethylene methyl-AyV'-lysyldiurea Decamethylene l,4-dihydro-4-oxo-2,6-pyridinedicarboxamide a-D-Glucotrivalerate, 1,4p-D-Glucotrivalerate, 1,4Ethylene sebacoyldiurethane Hexamethylene adipoyldiurethane Ethylene oxamide-a/J-ethylene suberamide Ethylene sebacoyldiurea Trimethylene adipamide-tf/Mrimethylene oxamide 2-Hydroxytrimethylene sebacoyldiurethane Decamethylene bromopyromellitimide Decamethylene pyromellitimide Decamethylene 3,3 / ,4,4 / -oxydiphenylenetetracarboximide Hexamethylene AyV'-piperazinediterephthalamate Heptamethylene MN'-trimethylenediterephthalamate Hexamethylene MN'-tetramethylenediterephthalamate Octamethylene A^Af'-ethylenediterephthalamate Pentamethylene A^Af'-pentamethylenediterephthalamate Tetramethylene MN'-hexamethylenediterephthalamate Trimethylene WV'-azelaoyldiO-aminobenzoate) Decamethylene 4,4 / -terephthaloyldioxydibenzoate (Benzyloxycarbonyllysyl)(benzyloxycarbonyllysyl)valine Alanylglycyl)5-glutamylglycine 11 Hexamethylenethiopentamethylene sulfide Decamethyleneoxymethylene oxide Hexamethylenesulfonylpentamethylenesulfone Cyclohexylidenethiohexamethylene sulfide 1-Methyldodecamethylene 1-Tridecene rc-Hexyl-rc-heptylsirylene
C H 2 CO C 6 H 4 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11
C
H
O
2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 4 2 1 2 4 2 1 1 2 6 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 2 2 2 0 2 2 2 0 2 2 2 0 2 2 2 0 2 2 2 0 2 2 2 0 3 2 2 0 3 22 1 5 2 2 1 5 2 2 2 2 2 2 2 6 2 2 2 6 2 2 3 4 2 3 0 0 2 3 0 0 2 3 0 3 2 5 0 0 3 0 0 2 3 0 1 6 3 0 2 8 3 0 4 5 3 0 8 14 0 3 0 8 1 4 4 0 0 2 4 0 0 2 4 0 0 4 4 0 0 4 4 0 0 4 4 0 1 4 4 0 6 1 4 0 6 2 4 0 12 6 4 2 0 0 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 4 2 0 2 4 3 0 0 5 2 6 17 ? 0 11 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 0 0 2 4 0 0 2 4 0 0 2 6
N
S X
0 0
2 0 0 2 0 0 0 2 1 0 1 2 0 0 1 2 0 0 2 2 0 2 2 0 0 0 4 0 0 2 2 0 4 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 1 2 0 0 1 2 0 0 2 2 0 0 2 2 0 2 2 0 0 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 2 0 0 0 0 2 0 0 0 2 0 0 2 0 0 0 4 0 0 0 4 0 0 0 1 2 0 1 6 0 0 0 2 00 1 4 0 0 1 4 0 0 0 3 0 5 0 0 0 5 0 0 0 2 2 0 0 2 2 0 0 4 00 0 4 00 0 4 0 3 2 0 0 2 0 1 0 2 0 0 1 2 0 0 2 2 0 2 2 0 2 2 0 0 2 2 0 2 2 0 2 2 0 0 2 2 0 4 0 0 0 2 5 0 0 1 12 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 20 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1
References page VI-159
0
0 2
0
0
0
0
0
0 0
0 0
0
Constitutional Base Unit Poly3-Dodecyl-2,5-thiophene 4,4/-Ethylene-3-methyldiphenyleneoxynonamethylene oxide Hexamemylenethio-4,4'-memylenediphenylenediethylenesulfide 4,4'-Nonamethylenedioxydiphenyleneoxy p-xylylene oxide 12-Aminolauric acid 13-Amino-ll-thiatridecanoic acid 13-Amino-12-thiatridecanoic acid iV-Methyl-12-aminolauric acid Af-Ethyl-11-aminoundecanoic acid Vinyl laurate Hexamethylene dithiolpimelate Piperazine azelamide Piperazine (trimethylenedithio)dipropionamide Tridecanedioic anhydride Decamethylene malonate Hexamethylene pimelate Pentamethylene suberate Tetramethylene azelate Trimethylene sebacate Trimethylene thiodivalerate Oxydiethylene azelate (Ethylenedioxy)diethylene pimelate Trimethylene sulfonyldivalerate Decamethylene malonamide Glycyl-11-aminoundecanoic acid Heptamethylene adipamide Hexamethylene pimelamide Methylene dodecanediamide Pentamethylene suberamide Tetramethylene azelamide Ethylene nonamethylenediurethane Pentamethylene hexamethylenediurethane Trimethylene octamethylenediurethane Ethylene (pentamethylenedithio)diethylenediurethane Pentamethylene (ethylenedithio)diethylenediurethane Trimethylene (tetamethylenedithio)diethylenediurethane Hexamethylene pentamethylenediurea 1,4-Cyclohexylenedimethylene pimelate 1,3-Cyclohexylene azelamide 1,4-Cyclohexylenedimethylene pimelamide Cyclopropylenedimethylene sebacamide Heptamethylene 4-octenediamide Methylpiperazine 1,4-piperazinedipropionamide Piperazine (methyl-l,4-piperazine)dipropionamide Pentamethylene 2,5-tetrahydrofurandipropionamide 1,4-Cyclohexylene (trimethylenedithio)diethylenediurethane Hexamethylene 2-hexylmalonamide 2-Butyl-2-ethyltrimethylene hexamethylenediurethane Decamethylene (methylene-2,5-furan)dicarboxamide MA^'-dibutyl-S^'-dimethyl^^'-methylenediphenylene adipamide iVW-dipropylhexamethylene dimethylmethylenediphenylenediurea Hexamethylene (diemthyldipropyl)methylenediphenylenediurea Hexamethylene p-(carboxyphenoxy)caproate p-Phenylenediethylene azelamide Undecamethylene terephthalamide p-Xylylene undecanediamide p-Xylylene 5-oxadodecanediamide p-Xylylene 6-oxadodecanediamide Decamethylene 3,3'-methylenedibenzamide Decamethylene 4,4'-methylenedibenzamide 4,4'-Methylenediphenylene dodecanediamide Decamethylene 4,4/-(methylenediphenylene)diurethane Hexamethylene 4,4/-(trimethylenediphenylene)dioxydiacetamide Decamethylene 4,4'-(methylenediphenylene)diurea N,Ar'-diethyl(methylenediphenylene) sebacamide
CH 2
CO
C6H4
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
O 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
O 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2
1 1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1 1 11 11 11
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C 5 7 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 3 4 16 16 16 0 0 0 0 0 0 0 0 0 0 0 0 2
H 4 6 0 0 1 1 1 3 4 4
O 0 2
0
0 0 0 0
1 1 1 1
0 4
1
0 0 0
0 2 2 0
1 2
0
0 0 0 0 0 0 0 0 2 2 2
2 2 2
0 0 0
2 2 3
0 0 0 0
4 4 02
0
0 0
2 2
2 2
0 0 2
2
0
2 2 2
2
2
02 2 2 2 2 2
2 4 2 4 40 40 4
2 2 2 2
2 2
2 04 2 0
2 0 2 2 2
0 4 4
4 42
2 0 0
4 4
1 6 8
4 18 20 20 0 2 2 2 2 2 2 2
2 2 0 2
1 0 0 0 3 0 0 0 1
2 2 2 2 4 4 0 2 2 2 2 1
2
02 0 2
2 2 4 6
0 1
0
00 0 0
2 2
S 0 0 0
0 0
0 0
N
2 0
2
2 2
2 2 0
0
4 2
X
1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 2 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 2 0 2 0 2 0 00 0 0 0 0 00 00 0 0 0 0 0 0 00 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 0 0 2 0 0
Constitutional Base Unit PolyTetraoxa-8,10-octadecadiyne (4,4/-methylenediphenylene)diurethane Trimethylene sebacoyldiurethane Ethylene azelamide-a/f-ethylene oxamide Undecamethylene pyromellitimide Heptamethylene AW'-tetramethylenediterephthalamate Hexamethylene N,N'-pentamethylenediterephthalamate Nonmethylene WV'-ethylenediterephthalamate Octamethylene MN'-trimethylenediterephthalamate Pentamethylene A^-hexamthylenediterephthalamate Tetramethylene WV'-azelaoyldi(/?- aminobenzoate) Trimethylene WV'-sebacoyldi(p-aminobenzoate) Alanylglycylprolylprolylglycylproline Alanylprolylglycylprolylprolylglycine 12 Dodecamethylene (Decamethylenedithio)ethylene disulfide (Octamethylenedithio)tetramethylene disulfide Dodecamethylene oxide 1-Tetradecene Octamethylene tetramethylenedithiourea Dodecylvinyl ether Di-rc-heptylsilylene 4,4/-decamethylenedioxydiphenyleneoxy p-xy Iy lene oxide 13-Aminotridecanoic acid N-Allyl-ll-aminoundecanoic acid Af-Dodecanoylethylene amine 4-Hydroxytetramethyelne-2-(l,3-dioxolane)caprylic acid Dodecyl acrylate rc-Dodecyl acrylamide Hexamethylene dithiolsuberate Tetramethylene dithiolsebacate Piperazine sebacamide Piperazine 1,4-piperazinedipropionamide Tetradecanedioic anhydride Decamethylene succinate Hexamethylene suberate Octamethylene adipate Pentamethylene azelate Tetramethylene sebacate Trimethylene undecanedioate Tetramethylene thiodivalerate Decamethylene oxydiacetate Oxydiethylene sebacate Oxydiethylene thiodivalerate (Ethylenedioxy)diethylene suberate Tetramethylene sulfonyldivalerate Oxydiethylene sulfonyldivalerate Decamethylene succinamide Dodecamethylene oxamide Ethylene doecanediamide Glycyl-12-aminododecanoic acid Heptamethylene pimelamide Hexamethylene suberamide Octamethylene adipamide Pentamethylene azelamide Tetramethylene sebacamide Hexamethylene thiodibutyramide Dithiodiethylene sebacamide (Hexamethylenedicarbamoyl)dithiohexamethylene disulfide Hexamethylene 1,4-piperazinediacetamide Hexamethylene oxydibutyramide Ethylene decamethylenediurethane (Ethylenedioxy)ditrimethylene adipamide Hexamethylene hexamethylenediurethane Tetramethylene octamethylenediurethane
CH 2 CO C 6 H 4 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
2 4 4 4 4 4 4 4 4 4 4 6 6
2 0 0 0 2 2 2 2 2
0 0
2 2
0
0 0 0 0 4 4 4 6 0 1 1 3 2 4 5 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 10 10 0
0
0 3 0 0 0 0 0 0
6 2
2
0 0 0 0 2 2 2 2 0 0 1 1 2 2 2
0
O
4 2
0
0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
H 2 2
0 0 5 5
0 0 0 0 0
2 2 2 2 2 2 2 2
4 0 0 6 0 02 0 0
2 2 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
12 12 12 12 12 12 12
C
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2
0 0 22 2 22 2 2 2 22 0 0 0 0 00 0 1 0 0 1 0 4 0 0 0 30 1 0 0 0 02 1 20 2 20 20 2 20 2 3 3 3 4 4 5 02 02 0 0 0 02 02 02 02 0 0 02 0 4 1 22 2 22 2
N
S
X
2 2 4 2
O O 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 2 0 0 2 0 0 0 0 6 0 0 6 0 0 0 0 0 0 0 0 4 0 0 4 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 2 0 0 2 0 0 0 4 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 2 1 0 2 2 0 4 0 00 2 0 0 0 0 2 0 0 0 0 2 0 0
References page VI-159
Constitutional Base Unit PolyEthylene (hexamethylenedithio)diethylenediurethane Hexamethylene (ethylenedithio)diethylenediurethane Tetramethylene (tetramethylenedithio)diethylenediurethane Triemthylene (pentamethylenedithio)diethylenediurethane (Ethylenedioxy)diethylene 1,4-piperazinediacetamide Octamethylene disiloxanylenedipropionamide 1,4-Cyclohexylenedimethylene suberate 1,4-Cyclohexylene sebacate Decamethylene 3-hexenedioate Octamethylene 4-octenedioate 1,3-Cyclohexylenedimethylene suberamide 1,4-Cyclohexylenedimethylene suberamide 1,3-Cyclohexylene sebacamide Hexamethylene 1,2-cyclohexylenediacetamide Octamethylene 4-octenediamide Hexamethylene 2,5-tetrahydrofurandipropionamide 1,4-Cyclohexylene octamethylenediurethane l,4-Dioxanylene-2,5-dimethylene sebacamide 1,4-Cyclohexylenedimethylene ethylenedithiodiethylenediurethane 1,4-Cyclohexylene (tetramethylenedithio)diethylenediurethane Hexamthylene 2,5-pyrrolidinedipropionamide Hexamethylene heptylmalonamide Hexamethylene (7V-methyl-2,5-pyrrolidine)dipropionamide Hexamethylene (diethyldimethyldisiloxanylene)dipropionamid Octamethylene (tetramethyldisiloxanylene)dipropionamide MAr'-Dibutyl(hexafluoropentamethylene) adipamide WV'-Dibutylhexamethylene perfluoroglutaramide Dodecamethylene 3,3'-dimethyl-4,4'-biphenylenediurethane /7-Xylylene Dodecanedioate Ethylene p-(carboxyphenoxy)undecanoate Decamethylene/7-phenylenediacetamide Dodecamethylene terephthalamide Ocatmethylene/7-phenylenedipropionamide p-Phenylenediethylene sebacamide p-Xylylene dodecanediamide /?-Phenylenediethylene thiodivaleramide /?-Xylylene thiodicaproamide /?-Xylylene 6-oxatridecanediamide /?-Xylylene oxydicaproamide Decamethylene (p-phenylenedioxy)diacetamide Decamethylene p-xylylenediurethane /?-Phenylenediethylene octamethylenediurethane ^-Phenyleneditrimethylene hexamethylenediurethane (/7-Phenylenedioxy)diethylene octamethylenediurethane Decamethylene p-xylylenediurea (1,4-Cyclohexylenedixoy)ditrimethylene p-phenylenedioxydiacetamide Decamethylene 4,4 / -(ethylenedioxy)dibenzoate Hexamethylene 4,4/-(hexamethylenedisulfonyl)dibenzoate Dodecamethylene 4,4 / -biphenylenediurethane 4,4 / -(Ethylenedioxydiphenylene)ditrimethylene adipamide (1,4-Cyclohexylenedioxy)ditrimethylene ethylenedioxydibenzamide Decamethylene isopropylidenedi-p-phenylenedioxydiacetamide 6-Aminocaproyl-5-aminovaleryl-3-aminopropionic acid 3-Aminopropyl-5-aminovaleryl-6-aminocaproic acid Hexamethylene 5-pyrrolidonylidenedipropionamide Decamethylene 3-carboxylglutaramide Adipoyl octamethylenediurea Ethylene oxamide-a/r-ethylene sebacamide Tetramethylene adipamide-a/f- tetramethylene oxamide Trimethylene oxamide-a/Mrimethylene suberamide Dodecamethylene bromopyromellitimide Dodecamethylene pyromellitimide Dodecamethylene 1,4,5,8-naphthalenetetracarboximide Ethylene AW-terephthaloyldi(6-aminocaproate) Decamethylene WV'-ethylenediterephthalamate
CH 2
CO
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 124 12 12 12
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4
C6H4 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 1 2
C O 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 5 5 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 3 0 0 1 1 0 0 0 0 6 6 10 0 0
H
O 2
2 2 2 6 2 2 2 2 40 4 4 4 40 4 4 4 4 4 5 6 14 14 6 6 14 0 0 2 2
N 2
2
2 2 2
S 2
2 2
2 2 4
2 1 2 2 2 2
2 0 0 0 0 2
0
2 0 0
2 2 2 2
1 2 2
2 2
2 2
2 2 0
0 7
3 2 0
3
1 1
2 2
0 0
2 2 2 2 3
0 0 2 0 0
2 2 2 2 2 2 2 2 2 2 24 4 4 4 0 4 0 2 2 4 4 8 3 3 3 4 4 4 4 4 1 2 4 2 2
2 0 0 2 2 0
2 2 2
0 0 1 1 2 2 2
2 2 2 2 2 2 2 2
2 2
0
4 2
0 6 2
0 2
2
2 2
2
2 0
0 02 1 04 04 04 0 0 0 0 2 2
3 3 2
4 2 2 2 2 2
X
0 2 0 2 0 2 0 0 0 02 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 00 0 0 0 0 2 0 2 0 0 0 0 0 0 0 02 02 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 00 00 00 0 0 0 1 00 0 0 0 0 0 0
Constitutional Base Unit PolyEthylene AyV'-dodecanedioyldi(p-aminobenzoate) Heptamethylene MA^-pentamethylenediterephthalamate Hexamethylene A^Af'-hexamethylenediterephthalamate Hexamethylene AW-suberoyldi(p-aminobenzoate) Nonamethylene MN'-glutaiyldi(p-aminobenzoate) Nonamethylene A^N'-trimethylenediterephthalamate Octamethylene A^-tetramethylenediterephthalamate (Alanylglycyl)6-glutamylglycine 13 (Nonamethylenedithio)tetramethylene disulfide 1-Pentadecene 3-Tetradecyl-2,5-thiophene 4,4'-Ethylene-3-methyldiphenyleneoxyundecamethylene oxide 4,4 / -Undecamethylenedioxydiphenyleneoxy p-xy Iy lene oxide Vinyl myristate Hexamethylene dithiolazelate Decamethylene glutarate Hexamethylene azelate Pentamethylene sebacate Trimethylene dodecandioate Pentamethylene thiodivalerate (Ethylenedioxy)diethylene azelate Pentamethylene sulfonyldivalerate Deamethylene glutaramide Dodecamethylene malonamide Heptamethylene suberamide Hexamethylene azelamide Nonamethylene adipamide Pentamethylene sebacamide Tetramethylene undecanediamide Hexamethylene 5-oxasebacamide Heptamethylene hexamethylenediurethane Tetramethylene nonamethylenediurethane Pentamethylene (tetramethylenedithio)diethylenediurethane Tetramethylene (pentamethylenedithio)diethylenediurethane Trimethylene (hexamethylenedithio)diethylenediurethane Heptamethylene hexamethylenediurea Nonamethylene disiloxanylenedipropionamide 1,4-Cyclohexylenedimethylene azelate 1,4-Cyclohexylenedimethylene azelamide Nonamethylene 4-octenediamide Decamethylene (methylene-2,5-tetrahydrofuran)dicarboxamide Heptamethylene 2,5-tetrahydrofurandipropionamide Decamethylene 3-methyladipate 1,4-Cyclohexylenedimethylene trimethylenedithiodiethylenediurethane 1,4-Cyclohexylene (pentamethylenedithio)diethylenediurethane Dodecyl glutamate Hexamethylene 2-octylmalonamide 3-Methylhexamethylene sebacamide Tetramethylene 4,4'-methylenedicyclohexylenediurethane /7-Phenylenediethylene undecanediamide /7-Xylylene tridecanediamide p-Xylylene 5-oxatetradecanediamide Dodecamethylene 4,4 / -(methylenediphenylene)diurethane Dodecamethylene 4,4 / -(methylenediphenylene)diurea N,iV'-Lysyl nonamethylenediurea Methyl-MAf'-rysyl nonamethylenediurea p-D-Glucotricaproate, 1,4Pentamethylene sebacoyldiurea Tetramethylene oxamide-a/r-tetramethylene pimelamide Trimethylene azelamide-a/Mrimethylene oxamide Tridecamethylene pyromellitimide Decamethylene N,Af'-trimethylenediterephthalamate Heptamethylene N, Af'-hexamethylenediterephthalamate Nonamethylene AW-adipoyldi(p-aminobenzoate)
CH 2
CO
12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
4 4 4 4 4 4 4 ?
C6H4 2 2 2 2 2 2
H
O 0 0 0 0
2 2 2 2 2
0 13
2 34
0
0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 0 0 0 0 0 0 0 2 2 2
O
N
2 2 2 2 2 2
2 0 0
0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4
C
2 2 2 2 2 2
2 1 0 0 0
S
0 0 0 0 2 4 5 4 0 0 7 6 2 0 0 4 2 4 1 0 0 0 00 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 4 0 0 4 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 1 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 4 0 0 6 1 2 2 2 2 4 0 2 4 0 2 2 4 1 2 4 1 2 4 2 2 42 2 42 2 5 1 2 60 2 6 0 4 6 2 0 2 0 0 2 0 0 2 1 2 0 2 2 0 4 0 1 6 1 4 2 8 1 8 1 4 5 0 4 0 0 4 0 0 4 0 6 2 0 0 2 2 0 2 2 0 2 2
2 2 14 0 0 0 0 0
0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 0 2 2 2 0 2 2 1 2 2 2 2 2 2 4 4 0 4 4 4 2 2 2 2
X
OO 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 2 0 2 0 2 0 0 0 02 0 0 0 0 0 0 00 00 0 0 20 20 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
References page VI-159
Constitutional Base Unit Poly-
Nonamethylene A^-tetramethylenediterephthalamate Octamethylene AW'-pentamethylenediterephthalamate Undecamethylene AW'-ethylenediterephthalamate 14 Tetradecamethylene sulfide (Decamethylenedithio)tetramethylene disulfide (Hexamethylenedithio)ocatamethylene disulfide 1-Hexadecene Hexamethylene octamethylenedithiourea Di-«-octylsilylene 3,3'-Dioctyl-2,2'-bithiophene 3,3"-DiOCtYl-WrS',2 "-terthiophene 4,4'-Dodecamethylenedioxydiphenyleneoxy/?-xylylene oxide Af-Piperazinyl-11-aminoundecanoic acid Tetradecyl acrylate rc-Tetradecyl acrylamide Decamethylene dithioladipate Hexamethylene dithiolsebacate Decamethylene adipate Hexamethylene sebacate Octamethylene suberate Hexamethylene thiodivalerate (Ethylenedioxy)diethylene sebacate (Ethylenedioxy)diethylene thiodivalerate Hexamethylene sulfonyldivalerate (Ethylenedioxy)diethylene sulfonyldivalerate Decamethylene adipamide Dodecamethylene succinamide Heptamethylene azelamide Hexamethylene sebacamide Nonamethylene pimelamide Octamethylene suberamide Pentamethylene undercanediamide Tetramethylene dodecanediamide Ethylene thiodienanthamide Hexamethylene thiodivaleramide Hexamethylene 5-oxaundecanediamide Hexamethylene oxydivaleramide Decamethylene tetramethylenediurethane Hexamethylene (tetramethylenedioxy)dipropionamide Octamethylene hexamethylenediurethane Hexamethylene sulfonyldivaleramide Thioditetramethylene hexamethylenediurethane Hexamethylene (tetramethylenedithio)diethylenediurethane Pentamethylene (pentamethylenedithio)diethylenediurethane Tetramethylene (hexamethylenedithio)diethylenediurethane 1,4-Piperazinediethylene hexamethylenediurethane Oxyditetramethylene hexamethylenediurethane Decamethylene phosphinylidenedipropionamide Hexamethylene octamethylenediurea Decamethylene disiloxanylenedipropionamide Hexamethylene 6-hydroxyundecanediamide (Ethylenedioxy)diethylene 6-hydroxyundecanediamide Decamethylene (methylphosphinylidene)dipropionamide 1,4-Cyclohexylenedimethylene sebacate Decamethylene 4-octenedioate Dodecamethylene 3-hexenedioate 1,4-Cyclohexylenedimethylene sebacamide Decamethylene 4-octenediamide Octamethylene 2,5-tetrahydrofurandipropionamide 1,4-Cyclohexylenedimethylene octamethylenediurethane (1,4-Cyclohexylenedioxy)ditrimethylene adipamide 1,4-Cyclohexylenedimethylene tetramethylenedithiodiethylenediurethane 1,4-Cyclohexylene (hexamethylenedithio)diethylenediurethane Hexamethylene nonylmalonamide
CH2
13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 142 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
CO C 6 H 4
4 4 4
2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
C
O
H
2 2 2 0
O
2 2 2 0
N
S
X
2 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 0 4 0 2 4 0 0 0 0 2 4 0 4 2 0 2 6 0 0 0 1 10 8 0 0 2 0 14 10 0 0 3 0 0 0 4 0 0 0 0 1 0 3 0 0 2 4 1 0 0 0 2 5 0 1 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0 1 0 0 0 4 0 0 0 0 0 4 0 1 0 0 0 4 0 1 0 0 0 6 0 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 0 2 0 2 0 0 2 0 2 1 0 0 2 0 2 1 0 0 2 1 2 0 0 0 2 1 2 0 0 0 2 2 2 0 0 0 2 2 2 0 0 0 2 2 2 0 0 0 2 2 2 1 0 0 2 2 2 1 0 0 2 2 2 2 0 2 2 2 2 0 2 2 2 2 0 0 2 24 0 0 0 2 3 2 0 0 0 3 1 2 0 1 0 4 0 4 00 0 6 1 2 0 2 1 4 1 2 0 0 1 4 32 0 0 1 5 1 2 0 1 2 2 2 0 0 0 2 2 20 0 0 2 2 2 0 0 0 2 4 0 2 0 2 4 0 2 0 2 4 1 2 0 0 2 4 2 2 0 0 2 4 2 2 0 0 2 4 2 2 2 0 2 4 2 2 20 2 6 0 2 0 0
0
0
0 0
Constitutional Base Unit PolyHexamethylene octamethylenediurethane Decamethylene 2,5-Furandipropionamide 4,4 / -Methylenedicyclohexylene pimelamide Decamethylene (tetramethyldisiloxanylene)dipropionamide Hexamethylene (tetraethyldisiloxanylene)dipropionamide Hexamethylene 4,4 / -(p-xylylenedisulfonyl)dibutyrate Decamethylene /?-phenylenedipropionamide Dodecamethylene p-phenylenediacetamide /?-Phenylenediethylene dodecanediamide Tetradecamethylene terephthalamide m-Xylylene tetradecanediamide /?-Xylylene tetradecanediamide p-Phenylenediethylene thiodicaproamide /7-Xylylene thiodienanthamide p-Xylylene 6-oxapentadecanediamide p-Xylylene oxydienanthamide Dodecamethylene p-xylylenediurethane Dodecamethylene /?-xylylenediurea Decamethylene 4,4 / -(ethylenediphenylene)dioxydiacetamide (1,4-Cyclohexylenedioxy)ditrimethylene tetramethylenedioxydibenzamide (1,4-Cyclohexylenedioxy)ditrimethylene oxydiethylenedioxydibenzamide Decamethylene adipoyldiurethan Hexamethylene sebacoyldiurethane Pentamethylene adipamide-<2//-pentamethylene oxamide Tetramethylene oxamide-fl/Metramethylene suberamide Trimethylene oxamide-tf/Mrimethylene sebacamide Tetramethylene A^,A^/-terephthaloyldi(6-aminocaproate) Decamethylene ^,A^'-tetramethylenediterephthalamate Dodecamethylene ArW-ethylenediterephthalamate Ethylene AW'-dodecamethylenediterephthalamate Nonamethylene A^-pentamethylenediterephthalamate Octamethylene N,N'-hexamethylenediterephthalamate Tetramethylene N, W-dodecanedioyldi(/?-aminobenzoate) Trimethylene AW-tridecanedioyldi(p-aminobenzoate) Undecamethylene MN'-trimethylenediterephthalamate 15 (Hexamethylenedithio)nonamethylene disulfide Methyleneoxytetradecamethylene oxide 3-Hexadecyl-2,5-thiophene Vinyl palmitate Decamethylene pimelate Heptamethylene sebacate Pentamethylene dodecanedioate Trimethylene tetradecanedioate 6-Aminocaproic acid-a/Ml-aminoundecanoic acid Heptamethylene sebacamide Hexamethylene undecanediamide Octamethylene azelamide Undecamethylene adipamide Hexamethylene 5-oxadodecanediamide (Ethylenedioxy)diethylene undecanediamide (Ethylenedioxy)ditrimethylene azelamide Nonamethylene hexamethylenediurethane Nonamethylene hexamethylenediurethane Tetramethylene undecamethylenediurethane Hexamethylene (pentamethylenedithio)diethylenediurethane Pentamethylene (hexamethylenedithio)diethylenediurethane Hexamethylene nonamethylenediurea 4,4/-(Trimethylenedipiperidenediyl)dicarbamoyldithiotetramethylene disul Nonamethylene 2,5-tetrahydrofurandipropionamide 1,4-Cyclohexylenedimethylene pentamethylenedithiodiethylenediurethane Tetramethylene (trimethylenedipiperidene)dithiodicarboxylate Hexamethylene 2-decylmalonamide Tetramethylene dodecylmalonamide 4,4 / -Methylenedicyclohexylene suberamide
CH 2
CO
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
2 2 20 2 2 2 2 2 2 2
C
O 0
2
2 2 2 2 2
0
2
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 5 2 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 4
0 0 2 2
2
2
0
2 0
1 1 60
2
2 2 2
2 2 0 0
2 2
0 2 02 0 2 0 2 1 2 1 2 2 2 2 4 0 4 2 2 2 4 4 2 4 5 2 2 2 2 2 2 2 4 0 4 4 0 4 4 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 2 0 4 0 0 4 1 0 0 2 0 0 2 0 0 2 0 2 0 20 2 2 0 2 2 0 2 20 2 2 0 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 4 0 4 2 02 4 1 2 4 2 2 4 2 2 60 2 6 0 2 6 0 2 2 2 2 2 2
0 0 0 0 0
SX 2
6
0 0 0 0
2
N
1
14 14 0 2 2
0 0 0 0 1
O 6 4
0 0 0 0 0 0 0 0 2 2 0
2 2 0
5 2
1 1 1 1 1 1 1 1
0
H
2 4 4 4 4 0 0 0 0 0
0 0 1 1 1 1 1
2 2 2 2 2 2 2 22 2 2 4 4 4 4 4 4 4 4 4 4 4 4 42 4 00 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
15
C6H4
0 00 0 0 02 02 20 0 0 0 0 0 0 0 0 0 0 00 1 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 00 00 0 0 0 0 00 0 0 00 0 0 0 0 0 0 0 0 0 0 2 0 20 0 0 40 00 2 0 2 0 00 0 0 0 0
References page VI-159
Constitutional Base Unit PolyNonamethylene (diethyldimethyldisiloxanylene)dipropionamide .V^'-dihexyl-S^'-diniethyl^^'-methylenediphenylene adipamide p-Phenylenediethylene tridecanediamide /7-Xylylene pentadecanediamide p-Xylylene 5-oxahexadecanediamide 4,4'Methylenediphenylene tetradecamethylenediurea Pentamethylene oxamide-a//-Pentamethylene pimelamide Tetramethylene azelamide-tf/Metramethylene oxamide Decamethylene Af,N'-pentamethylenediterephthalamate Dodecamethylene A^-trimethylenediterephthalamate Nonamethylene N, W-hexamethylenediterephthalamate Tridecamethylene A^-ethylenediterephthalamate Undecamethylene MAf-tetramethylenediterephthalamate 16 (Decamethylenethio)hexamethylene sulfide (Decamethylenedithio)hexamethylene disulfide (Tetramethylenedioxy)dihexamethylene oxide Decamethyleneaminohexamethylene amine 1-Octadecene Octamethylene octamethylenedithiourea Di-rc-nonylsilylene Tetracosatetrayne 17-Aminoheptadecanoic acid Hexadecyl acrylate n-Hexadecyl acrylamide Hexadecyl methacrylate Octadecanedioic anhydride Decamethylene suberate Dodecamethylene adipate Nonamethylene azelate Decamethylene suberamide Dodecamethylene adipamide Heptamethylene undecanediamide Hexamethylene dodecanediamide Nonamethylene azelamide Octamethylene sebacamide Pentamethylene tridecanediamide Hexamethylene oxydicaproamide Decamethylene hexamethylenediurethane (Ethylenedioxy)ditrimethylene sebacamide Hexamethylene decamethylenediurethane Hexamethylene (hexamethylenedioxy)dipropionamide Octamethylene octamethylenediurethane Oxydipentamethylene oxydibutyramide Pentamethylene undecamethylenediurethane Hexamethylene (hexamethylenedithio)diethylenediurethane Dodecamethylene phosphinylidenedipropionamide Decamethylene hexamethylenediurea Dodecamethylene (methylphosphinylidene)dipropionamide 1,4-Cyclohexylenedimethylene dodecanedioate Dodecamethylene 4-octenedioate Tetradecamethylene 3-hexenedioate 1,3-Cyclohexylenedimethylene dodecanediamide Decamethylene 2,5-tetrahydrofurandipropionamide 1,4-Cyclohexylenedimethylene hexamethylenedithiodiethylenediurethane Hexamethylene undecylmalonamide Pentamethylene dodecylmalonamide Tetraoxa-8,10-octadecadiyne hexamethylenediurethane 4,4'-Bicyclohexylene sebacate 4,4/-Methylenedicyclohexylene azelamide Hexamethylene /?-(carboxyphenoxy)undecanoate Dodecamethylene p-phenylenedipropionamide p-Phenylenediethylene tetradecanediamide Tetradecamethylene/?-phenylenediacetamide p-Xylylene hexadecanediamide
CH 2
CO
15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
2 2 2 2 2 2 4 4 4 4 4 4 4
C6H4
C
O 0 1 1 1 2 0 0 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2 1 2 1 2 1
4 16 0 0 0 04 0 0 0 0 0 0 0 0
O
14 18 2
0 0 0 0 2 2 2 2 2 0
0
0 0 3 0
4
0
0 04 0 0
0 1 0 1 1 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 4 4 4 0 0 0 0 0
0 2 2 2 2 2 2 2 2 2
0 2
0 2 2
0 0 02 0 02 0 1 2
2 2
2
2 2
2
2 2
2 1 0 1 2 2 2 4
4 4 6 60 2 4 6 0 2
0 1 2 2 02 6 20 02 3 0
2 2 2
0
2
2 2 2 3 4 5 2 2 2
2 2
1 0
4 4 2 2 2 2 2 0 0 0 0 2 4 6 2 1 4 5 6 0 0
N
1 0 2 2
0 0 0 0 0 2 2 2 8 0 2 2 3 0 0
H
0 02 0
S
X
02 0 0 2 0 0 2 0 0 2 00 4 00 4 0 0 4 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0 0 2 0 0 4 0 0 0 0 2 0 0 0 0 0 20 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 00 2 0 0 00 2 0 0 2 00 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 2 0 2 0 1 4 0 0 2 0 1 0 0 0 0 0 0 0 0 0 2 0 0 00 2 2 0 00 2 00 2 0 0 00 00 0 0 0 2 0 0 2 0 0 00 2 0 0
Constitutional Base Unit Polyp-Phenylenediethylene thiodienanthamide p-Xylylene 6-oxaheptadecanediamide Tetradecamethylene /?-xylylenediurea AW-Dimethyl-/?-xylylene hexadecanediamide (1,4-Cyclohexylenedioxy)ditrimethylene hexamethylenedioxydibenzamide p-D-Glucotriheptylate, 1,4Ethylene7V,W-adipoyldi(6-aminocaproate) Hexamethylene adipamide-
CH 2
CO
C6H4
16 16 16 16 16
2 2 2 2 2
1 1 1 1 2 3 0 0 0 0 0
1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
6 4 4 4 4 4 40 4 4 4 4 4 4 4 4 4 4 6
2
0
8
0
0 0 0 0 0 0 0 0 0 0 0 1 1 2
0 0 0 0 2 0 0 0 0 0 0 1 2 4 4 4 0 0
0
0 0 0 2
2
0 0 0 0
2 2
0 0
2 2
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 10 1 2 2 3 0 0 0 0 0 0 0 0
44 1 2 4 4 4 4 2 2 2 2
N
0 1
4
5 2 0 04 04 0 4 2
2 2 2 2 2
2 2 2 2 8 0 0 0 1 0 4 0 2 2 0 2 2 1 2 5 6 0 4 6 14 2 0 2 0 2 4 4 2 2 2 2 2 2 0 6 8 3 4 5 6 0 0 0 0 0 0 0 4 2
S
2
2 0 0
8
0 0 0 0 2
0 0
O
6
0 0 0 0 0 6 0 0 0 0 0
2 2 2 2 0
H 2 2 4
0
0 0 0 1 1 1 1 2 2 2 2 2 2 2 2
O 0 0 2 2
1 2 2 2 2
0 0 0 1 1 2 2 2 2 2 2 2 2 2 20 2 2 2 2 4 4 4 4 4 4 4 4
C
2 2 2 2 2 2 2 0 0 3 1 2
0 0
0 2 0 2 0 1
2 0 04 2 2 2 2 2 2 0 0 00 0 1 0 1 0 0 20 2 2 2 2 0 0
X 1
0 0 4 0 2 0 2 0 0 0 2 0 0 4 0 0 00 00 4 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 4 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 2 00 2 0 0 2 0 1 2 0 0 0 0 0 2 0 0 2 02 2 0 0 2 0 0 2 0 0 4 0 0 00 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 1 20 1 0 0 0 0 0 1 0 0 0 0 0 2 0 00 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0
References page VI-159
Constitutional Base Unit Poly-
CH 2 CO C 6 H 4
Hexamethylene tetradecanediamide Nonamethylene undecanediamide Octamethylene dodecanediamide Hexamethylene thiodienanthamide Hexamethylene 6-oxapentadecanediamide Hexamethylene oxydienanthamide Decamethylene octamethylenediurethane Dodecamethylene hexamethylenediurethane Octamethylene decamethylenediurethane Oxydipentamethylene 5-oxaundecanediamide Oxydiepentamethylene oxydivaleramide Aminodihexamethylene suberamide Decamethylene octamethylenediurea Dodecamethylene hexamethylenediurea Hexadecamethylene 3-hexenedioate Tetradecamethylene 4-octenedioate Heptamethylene dodecylmalonamide Hexamethylene tridecylmalonamide 4,4/-Ethylenedicyclohexylene sebacamide 4,4'-Methylenedicyclohexylene undecanediamide Octadecamethylene terephthalate Octadecamethylene terephthalamide /7-Phenylenediethylene hexadecanediamide Tetradecamethylene p-phenylenedipropionamide p-Xylylene octadecanediamide /7-Xylylene thiodipelargonamide /7-Xylylene oxydipelargonamide Hexadecamethylene p-xy Iy lenediurethane AW-Dimethyl-/?-xylylene octadecanediamide Decamethylene sebacoyldiurethane Tetramethylene N,iV'-adipoyldi(6-aminocaproate) Hexamethylene oxamide-a//-hexamethylene suberamide Pentamethylene oxamide-a/r-pentamethylene sebacamide Octamethylene N,N'-terephthaloyldi(6-aminocaproate) Dodecamethylene AW-hexamethylenediterephthalamate Hexamethylene Af,Ar'-dodecamethylenediterephthalamate Octamethylene N, iV'-dodecanedioyldi(p-aminobenzoate) Tetradecamethylene N, JV'-tetramethylenediterephthalamate Tetramethylene N,7V'-hexadecanedioyldi(p-aminobenzoate) Tridecamethylene Af,Af'-pentamethylenediterephthalamate 19 Methyleneoxyoctadecamethylene oxide 10,12-Pentacosadiynoic acid, 10,13Trimethyiene octadecanedioate Undecamethylene sebacamide Hexamethylene 5-oxahexadecanediamide Oxydipentamethylene 5-oxadodecanediamide Oxydipentamethylene 6-oxadodecanediamide Tetramethylene (pentamethylenedisulfonyl)dicaproamide Hexamethylene (trimethylenedisulfonyl)diaminodicaproamide Hexamethylene 2-tetradecylmalonamide Octamethylene dodecylmalonamide 4,4/-Methylenedicyclohexylene dodecanediamide /7-Phenylenediethylene heptadecanediamide 4,4'-Methylenediphenylene octadecamethylenediurea P-D-Glucotricaprylate, 1,4Hexamethylene azelamide-a/r-hexamethylene oxamide Pentamethylene WV'-hexadecanedioyldi(p-aminobenzoate) Tetradecamethylene N,Af'-pentamethylenediterephthalamate Tridecamethylene A^-hexamethylenediterephthalamate 20 1-Docosene Di-rc-undecylsilylene Eicosamethylene oxalate Hexadecamethylene adipate
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 2 0 20 20 20 20
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 40 4 4 4 4 4 4 4
C
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 2 2 2 2 2 2 0
0 1 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 . 0 0 2
O 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 4 4 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 2 2 4 0
0 1 2 0 0
8 0 2
2 2 0 0 0 0 2
0 0 0 2 2 0 0
H
O 2
2 2 2 2 2 2 2 2 2 2 3 4 4 2 2 6 6 6 6 0 2 2 2 0 2 2 2 2 6 2 2 4 4 2 2 2 2 2 2 2 0 0 0 2 0 2 2 2 2 2 2 4 6 6 6 2 0 0 4 1 4 4 0 2 2 2 0 4 6 0 0 0 0
0 02 0 0 1 1 2 22 2 22 22 0 0 4 0 20 20 0 02 02 02 2 02 02 0 0 1 22 02 2 2 04 0 22 22 22 22 22 22 22 0 20 1 02 1 2 2 4 4 4 02 02 0 0 5 0 4 2 2 2 22 0 0 0 2 2
N
S
2
0
X
0 0 2 0 0 2 1 0 2 0 0 2 0 0 2 0 0 0 0 2 0 0 0 0 0 0 3 0 0 00 4 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 00 2 0 0 2 1 0 2 0 0 0 0 0 0 2 0 0 2 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 2 0 0 2 0 0 2 0 0 2 2 0 00 0 0 0 0 2 0 0 2 00 4 0 0 0 0 0 00 2 0 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Constitutional Base Unit PolyTetradecamethylene suberate Decamethylene dodecandiamide Dodecamethylene sebacamide Hydrazo docosanediamide Nonamethylene tridecanediamide Octamethylene tetradecanediamide Hexamethylene 6-oxaheptadecanediamide Decamethylene decamethylenediurethane Oxydipentamethylene 6-oxatridecanediamide Oxydipentamethylene oxydicaproamide Hexamethylene (tetramethylenedisulfonyl)dicaproamide Pentamethylene (pentamethylenedisulfonyl)dicaproamide Tetramethylene (hexamethylenedisulfonyl)dicaproamide Hexamethylene tetradecamethylenediurea Hexadecamethylene 4-octenedioate Hexamethylene pentadecylmalonamide Nonamethylene dodecylmalonamide Hexamethylene 9,10-dihydroxyoctadecanediamide Ethylene tetraoxa-3,9-spiro(5.5)hendecanedicaprylate Ethylene 4,4/-(oxydimethylene)di-2-(l,3-dioxolane)caprylate 4,4'-Ethylenedicyclohexylene dodecanediamide 4,4/-Methylenedicyclohexylene tridecanediamide Eicosamethylene isophthalate Eicosamethylene phthalate Eicosamethylene terephthalate Octadecamethylenep-phenylenediacetamide /?-Phenylenediethylene octadecanediamide p-Phenylenediethylene thiodipelargonamide Octadecamethylenep-xylylenediurea N,iV'-Diethyl-p-xylylene octadecanediamide Eicosamethylene 3,3 '-dibenzoate Eicosamethylene 4,4'-dibenzoate Octadecamethylene 4,4/-(ethylenedioxy)dibenzoate Hexamethylene AA,A/^/-adipoyldi(6-aminocaproate) Hexamethylenedi(6-hydroxycaproamide) adipate Hexamethylene oxamide-a/f-hexamethylene sebacamide Decamethylene Af,Ar'-terephthaloyldi(6-aminocaproate) Decamethylene Af,W-dodecanedioyldi(/?-aminobenzoate) Nonamethylene A/,N'-tridecanedioyldi(/?-aminobenzoate) Tetradecamethylene MN'-hexamethylenediterephthalamate 21 22-Aminodocosanoic acid 10,12-Heptacosadiynoic acid, 10,13Eicosamethylene malonate Decamethylene tridecanediamide Pentamethylene octadecanediamide Oxydipentamethylene 5-Oxatetradecanediamide Hexamethylene (pentamethylenedisulfonyl)dicaproamide Pentamethylene (hexamethylenedisulfonyl)dicaproamide Decamethylene dodecylmalonamide Hexamethylene 2-hexadecylmalonamide 4,4/-Methylenedicyclohexylene tetradecanediamide Nonamethylene N, N'-tetradecanedioyldi(/?-aminobenzoate) 22 (Decamethylenedioxy)dihexamethylene oxide Di-n-dodecylsilylene Docosyl acrylate Af-Docosyl acrylamide Eicosamethylene succinate Hexadecamethylene suberate Eicosamethylene oxydiacetate Decamethylene tetradecanediamide Dodecamethylene dodecanediamide Hexamethylene octadecanediamide Tetradecamethylene sebacamide
C H 2 CO 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 21 22 22 22 22 22 22 22
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4
C6H4
0 0 1 1 2 2 2 2 2 2
H
0 0 0
0 0 0
0
0 0 0 0
0 0 0
0
0 0
0 0
0
0
0 0
0 0 0
0 0
0
2 2 2 2 3
0 0 0 0 0
4
0 0
4 4 0 0 0 0 0 0 0 2
1 1 1 1 1 1 1 1
O
N
0 2 2 2 2 2 2 2 2 2 2 2 2 4 2 6 6 6 2 4 6 6 0 0 0 2 2
2 0 0 0 0 0 1 2 2 2 4 4 4 0 2 0 0 2 6 7 0 0 2 2 2 0 0
2
0 4 6 0 0 0 2 2 4 2 2 2 2
0 0 2 2 4 2 2 0 2 2 2 2
0 1 2 0 2 2 2 2 4 2 4 6 6 6 2 0 0 0 0 0 0 0 0 2 6 0 2 4 0 2 5 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 2 0 0 2 0 0 2
0 0 1 2 0 02 2
2 2 2
0 0 0
0 0
0 0 0 0 0
0 1 2 2 2 0
1 1 2 2 2 2 2 2 2 2 2 4
C
0 0 0
0 0 0 0 0 0 0 0 0 0 0 2
0
0 5 0 0 0 0 0 0 2 2 4 0
0 0 0 22 0 3 0 1 0 2 20 3 0 0 0 0
SX 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 2 0 2 2 0 2 2 0 4 0 0 0 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 1 0 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 4 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 2 0 0 2 20 2 20 2 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0
References page VI-159
0
Constitutional B a s e Unit Poly-
Hexamethylene oxydipelargonamide Dodecamethylene decamethylenediurethane Hexadecamethylene hexamethylenediurethane Oxydipentamethylene 6-oxapentadecanediamide Oxydipentamethylene oxydienanthamide Hexamethylene (hexamethylenedisulfonyl)dicaproamide Decamethylene dodecamethylenediurea A^TV'-Dimethylhexamethylene octadecanediamide Hexamethylene heptadecylmalonamide Octadecamethylene /?-phenylenedipropionamide /?-Xylylene docosanediamide p-Xylylene thiodiundecanoamide Eicosamethylene 3-(p-nitrophenyl)glutarate Octamethylene N,N'-adipoyldi(6-aminocaproate) Heptamethylene oxamide-a/f-heptamethylene sebacamide Hexamethylene oxamide-a/r-hexamethylene sebacamide Dodecamethylene iV,A^/-terephthaloyldi(6-aminocaproate) Dodecamethylene N,N'-dodecanedioyldi(p-a.minobmzo3Lte) 23 10,12-Nonacosadiynoic acid, 10,13Eicosamethylene glutarate Oxydipentamethylene 5-oxahexadecanediamide Eicosamethylene 3-methyladipate Hexamethylene 2-octadecylmalonamide Nonamethylene N, A^-hexadecanedioyldi^-aminobenzoate) 24 (Tetramethylenedioxy)didecamethylene oxide Eicosamethylene adipate Hexamethylene eicosanediamide Octamethylene octadecanediamide Tetradecamethylene dodecanediamide Tridecamethylene tridecanediamide Dodecamethylene dodecamethylenediurethane Oxydipentamethylene 6-oxaheptadecanediamide Decamethylene (tetramethylenedisulfonyl)dicaproamide Tetramethylene (decamethylenedisulfonyl)dicaproamide Oxydiethylenedioxydiethylenedioxydiethylene hexamethylenediurethane Decamethylene tetradecamethylenediurea Hexamethylene octadecamethylenediurea Hexamethylene tetraoxa-3,9-spiro(5.5)hendecanedicaprylamide Hexamethylene 4,4 / -(oxydimethylene)di-dioxolanecaprylamide /7-Phenylenediethylene docosanediamide /?-Phenylenediethylene thiodiundecanoamide Decamethylene NX-adipoyldi(6-aminocaproate) Octamethylene oxamide-a/r-octamethylene sebacamide Dodecamethylene N,N'-dodecamethylenediterephthalamate 25 (Pentamethylenedioxy)didecamethylene oxide Eicosamethylene pimelate Decamethylene (pentamethylenedisulfonyl)dicaproamide Pentamethylene (decamethylenedisulfonyl)dicaproamide P-D-Glucotricaprate 26 (Hexamethylenedioxy)didecamethylene oxide Di-n-tetradecylsilylene 4,4 / -Decamethylenedipiperazine sebacamide Decamethylene octadecanedioate Eicosamethylene suberate Decamethylene octadecanediamide Hexamethylene docosanediamide Octadecamethylene sebacamide Octamethylene eicosanediamide Hexadecamethylene decamethylenediurethane Oxydipentamethylene oxydipelargonamide Decamethylene (hexamethylenedisulfonyl)dicaproamide
CH
22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
2
CO C6H4
2 2 0 2 2 0 2 0 2 0 2 2 0 2 0 2 2 2 2 4 4 0 4 0 4 4 0 1 2 2 2 2 4 0 0 0 2 2 0 2 0 2 2 0 2 2 0 2 2 0 2 0 2 2 0 2 0 2 0 2 2 4 4 4 2 0 0 0 2 2 0 2 3 0 0 0 0 2 0 2 2 2 2 2 2 0 2 2 2 0
C
0
H
0
2 2 2 2
0 0
0 0 0 0 0 2 2 0 0 0 1
0
1 1 1 1
2
2 2
0
0 0 0 0
1 2
0 0
0
0
0 2
5 0
0
0
0 0 0
2 2
2
0 0
0
0
0 0 0 0
0
0
0
0 0
0
0 0 0 0 0 0 0 3 4 0 0
0
0
1 1 0 0
0
2
0
0
0 0 0 0 0
0 0 0 8
0 0 0
1 0
0
0 0
2 0 0
0 0 0 0
0 0 0
2
0
0 0 0
0 0
0 0
2
O
N
S
1 2 2 2 22 4 0 0 0 0 0 0 4 2 0 0 2 2 0 1 2 2 2 0 2 0 3 2 0 0 0 0 2 2 4 4 7 0 0 4 5 0 0 2 0 2 0 3 2 4 4
2 2 2 2
0 0 0 0
X
0 0 0 0 0 0 2 2 2 0 4 4 0 0 6 2 0 0 6 2 0 0 2 2 0 0 2 0 0 2 1 0 1 1 0 0 2 2 0 0 4 4 0 0 4 4 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 4 0 0 0 6 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 2 0 2 2 2 0 2 2 0 0 4 4 0 0 4 4 0 0 4 2 0 0 6 2 0 0 2 2 0 0 2 2 1 0 2 0 0 4 4 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 2 2 2 0 4 5 0 0 0 0 0 0 0 0 3 0 0 0 6 0 0 0 1 0 0 4 0 0 0 2 0 0 0 0 2 0 0 0 0 2 00 2 0 2 0 0 2 0 2 0 0 2 0 2 0 0 2 2 2 0 0 2 2 0 0 2 4 2 2 0
Next Page
Constitutional Base Unit Poly-
Hexamethylene (decamethylenedisulfonyl)dicaproamide Dodecamethylene A^,A^/-adipoyldi(6-aminocaproate) Nonamethylene oxamide-tf/f-nonamethylene sebacamide 27 Eicosamethylene azelate 28 Eicosamethylene sebacate Eicosamethylene thiodivalerate Eicosamethylene sulfonyldivalerate Decamethylene eicosanediamide Dodecamethylene octadecanediamide Octamecamethylene dodecanediamide Octamethylene docosanediamide Decamethylene octadecamethylenediurea Decamethylene oxamide-a/f-decamethylene sebacamide 30 Decamethylene docosanediamide Tetradecamethylene octadecanediamide Decamethylene (decamethylenedisulfonyl)dicaproamide p-Phenylene 2,5-di-w-hexadecyloxyterephthalate Undecamethylene oxamide-fl/Mmdecamethylene sebacamide P-D-Glucotrilaurate Dodecamethylene docosanediamide Dodecamethylene oxamide-a/f-dodecamethylene sebacamide Octadecamethylene octadecanediamide Tetradecamethylene docosanediamide P-D-Glucotrimyristate Octadecamethylene docosanediamide P-D-Glucotripalmitate
E.
CH 2
CO
26 26 26 27 27 28 28 28 28 28 28 28 28 28 28 30 30 30 30 30 30 31 32 32 34 34 37 38 43
2 4 4 2 2 2 2 2 2 2 2 2 4 2 2 2 2 4 3 2 4 2 2 3 2 3
C6H4
C
0
H
0 0
2 2 4
0
0 0 0 0 0 0 0 0
0 0
0
0
0 0
0 0
0
0
0 0 0 0
0 0 0
0 0
0
0 0
0 0 0
0 0 0 0
8 0 8
1 1
2 0 0 0 0 0 0 0 4 4 0
2 2 2 0 4
5
0
2 4 2 2
0 0 0 0
2
0
4 4
2 2 4 4
0
14
0
0 0 0 2
0
2 2 2 8 4
0 8 0 8
1 0
0
0 0 2 4 0
2 2 4 4
0 0
0
0
0
2
0 0
0
0 2
2 0 0 2
0
2 2 4
0
0
0
N
4 2 0
0
0
0 0
O
5 5
2 4 2 2 0 2 0
S
X
2 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
REFERENCES
1. H. Tadokoro, K. Kozai, S. Seki, I. Nitta, J. Polym. ScL, 26, 379 (1957). 2. W. R Slichter, J. Polym. Sci., 35, 77 (1959). 3. D. R. Holmes, C. W. Bunn, D. J. Smith, J. Polym. Sci., 17, 159 (1955). 4. W. J. Dulmage, J. Polym. Sci., 26, 277 (1957). 5. A. Prietzschk, Kolloid Z., 156, 8 (1958). 6. R. L. Miller, unpublished results. 7. G. Natta, P. Corradini, Atti Accad, Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 19, 229 (1955); J. Polym. Sci., 20, 251 (1956). 8. Y. Tanada, K. Imada, M. Takayanagi, Kogyo Kagaku Zasshi, 69, 1971 (1966). 9. G. Natta, P. Corradini, I. W. Bassi, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 19, 404 (1955). 10. G. Natta, SPE J. 15, 373 (1959). 11. C W . Bunn, E. R. Howells, Nature (London), 174, 549 (1954). 12. G. Natta, L. Porri, P. Corradini, D. Morero, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 20, 560 (1956). 13. G. Natta, P. Corradini, G. DaIl'Asta, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 20, 408 (1956). 14. C. W. Bunn, Trans. Faraday Soc, 35, 482 (1939). 15. E. R. Walter, F. P. Reding, J. Polym. Sci., 21, 561 (1956). 16. M. L. Miller, C. E. Rauhut, J. Polym. Sci., 38, 63 (1959). 17. G. Natta, J. Polym. Sci., 16, 143 (1955).
18. C. C. Price, M. Osgan, R. E. Hughes, C. Shambelan, J. Am. Chem. Soc, 78, 690 (1956). 19. C. G. Overberger, H. Jabloner, J. Am. Chem. Soc, 85, 3431 (1963). 20. H. F. Zobel, A. D. French, M. E. Hinkle, Biopolymers, 5, 837 (1967). 21. H. S. Kaufman, J. Am. Chem. Soc, 75, 1477 (1953). 22. P. H. Hermans, "Physics and Chemistry of Cellulose Fibres", Elsevier, New York, 1949. 23. S. Bruckner, S. V. Meille, W. Porzio, Polymer, 29, 1586 (1988). 24. H. S. Peiser, H. P. Rooksby, A. J. C. Wilson, "X-Ray Diffraction by Poly-Crystalline Materials", Chapman and Hall, London, 1955. 25. C. W. Bunn, E. V. Garner, Proc. R. Soc. London, Ser. A, 189, 39 (1947). 26. A. Okada, K. Fuchino, Kobunshi Kagaku, 7, 122 (1950). 27. R. de P. Daubeny, C. W. Bunn, C. J. Brown, Proc. R. Soc London, Ser. A, 226, 531 (1954). 28. H. J. Wellard, J. Polym. Sci., 13, 471 (1954). 29. C. W. Bunn, Nature (London), 161, 929 (1948). 30. J. D. Stroupe, R. E. Hughes, J. Am. Chem. Soc, 80, 1768 (1958). 31. T. G. Fox, B. S. Garrett, W. E. Goode, S. Gratch, J. F. Kincaid, A. Spell, J. D. Stroupe, J. Am. Chem. Soc, 80, 1768 (1958).
Previous Page
Constitutional Base Unit Poly-
Hexamethylene (decamethylenedisulfonyl)dicaproamide Dodecamethylene A^,A^/-adipoyldi(6-aminocaproate) Nonamethylene oxamide-tf/f-nonamethylene sebacamide 27 Eicosamethylene azelate 28 Eicosamethylene sebacate Eicosamethylene thiodivalerate Eicosamethylene sulfonyldivalerate Decamethylene eicosanediamide Dodecamethylene octadecanediamide Octamecamethylene dodecanediamide Octamethylene docosanediamide Decamethylene octadecamethylenediurea Decamethylene oxamide-a/f-decamethylene sebacamide 30 Decamethylene docosanediamide Tetradecamethylene octadecanediamide Decamethylene (decamethylenedisulfonyl)dicaproamide p-Phenylene 2,5-di-w-hexadecyloxyterephthalate Undecamethylene oxamide-fl/Mmdecamethylene sebacamide P-D-Glucotrilaurate Dodecamethylene docosanediamide Dodecamethylene oxamide-a/f-dodecamethylene sebacamide Octadecamethylene octadecanediamide Tetradecamethylene docosanediamide P-D-Glucotrimyristate Octadecamethylene docosanediamide P-D-Glucotripalmitate
E.
CH 2
CO
26 26 26 27 27 28 28 28 28 28 28 28 28 28 28 30 30 30 30 30 30 31 32 32 34 34 37 38 43
2 4 4 2 2 2 2 2 2 2 2 2 4 2 2 2 2 4 3 2 4 2 2 3 2 3
C6H4
C
0
H
0 0
2 2 4
0
0 0 0 0 0 0 0 0
0 0
0
0
0 0
0 0
0
0
0 0 0 0
0 0 0
0 0
0
0 0
0 0 0
0 0 0 0
8 0 8
1 1
2 0 0 0 0 0 0 0 4 4 0
2 2 2 0 4
5
0
2 4 2 2
0 0 0 0
2
0
4 4
2 2 4 4
0
14
0
0 0 0 2
0
2 2 2 8 4
0 8 0 8
1 0
0
0 0 2 4 0
2 2 4 4
0 0
0
0
0
2
0 0
0
0 2
2 0 0 2
0
2 2 4
0
0
0
N
4 2 0
0
0
0 0
O
5 5
2 4 2 2 0 2 0
S
X
2 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
REFERENCES
1. H. Tadokoro, K. Kozai, S. Seki, I. Nitta, J. Polym. ScL, 26, 379 (1957). 2. W. R Slichter, J. Polym. Sci., 35, 77 (1959). 3. D. R. Holmes, C. W. Bunn, D. J. Smith, J. Polym. Sci., 17, 159 (1955). 4. W. J. Dulmage, J. Polym. Sci., 26, 277 (1957). 5. A. Prietzschk, Kolloid Z., 156, 8 (1958). 6. R. L. Miller, unpublished results. 7. G. Natta, P. Corradini, Atti Accad, Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 19, 229 (1955); J. Polym. Sci., 20, 251 (1956). 8. Y. Tanada, K. Imada, M. Takayanagi, Kogyo Kagaku Zasshi, 69, 1971 (1966). 9. G. Natta, P. Corradini, I. W. Bassi, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 19, 404 (1955). 10. G. Natta, SPE J. 15, 373 (1959). 11. C W . Bunn, E. R. Howells, Nature (London), 174, 549 (1954). 12. G. Natta, L. Porri, P. Corradini, D. Morero, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 20, 560 (1956). 13. G. Natta, P. Corradini, G. DaIl'Asta, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 20, 408 (1956). 14. C. W. Bunn, Trans. Faraday Soc, 35, 482 (1939). 15. E. R. Walter, F. P. Reding, J. Polym. Sci., 21, 561 (1956). 16. M. L. Miller, C. E. Rauhut, J. Polym. Sci., 38, 63 (1959). 17. G. Natta, J. Polym. Sci., 16, 143 (1955).
18. C. C. Price, M. Osgan, R. E. Hughes, C. Shambelan, J. Am. Chem. Soc, 78, 690 (1956). 19. C. G. Overberger, H. Jabloner, J. Am. Chem. Soc, 85, 3431 (1963). 20. H. F. Zobel, A. D. French, M. E. Hinkle, Biopolymers, 5, 837 (1967). 21. H. S. Kaufman, J. Am. Chem. Soc, 75, 1477 (1953). 22. P. H. Hermans, "Physics and Chemistry of Cellulose Fibres", Elsevier, New York, 1949. 23. S. Bruckner, S. V. Meille, W. Porzio, Polymer, 29, 1586 (1988). 24. H. S. Peiser, H. P. Rooksby, A. J. C. Wilson, "X-Ray Diffraction by Poly-Crystalline Materials", Chapman and Hall, London, 1955. 25. C. W. Bunn, E. V. Garner, Proc. R. Soc. London, Ser. A, 189, 39 (1947). 26. A. Okada, K. Fuchino, Kobunshi Kagaku, 7, 122 (1950). 27. R. de P. Daubeny, C. W. Bunn, C. J. Brown, Proc. R. Soc London, Ser. A, 226, 531 (1954). 28. H. J. Wellard, J. Polym. Sci., 13, 471 (1954). 29. C. W. Bunn, Nature (London), 161, 929 (1948). 30. J. D. Stroupe, R. E. Hughes, J. Am. Chem. Soc, 80, 1768 (1958). 31. T. G. Fox, B. S. Garrett, W. E. Goode, S. Gratch, J. F. Kincaid, A. Spell, J. D. Stroupe, J. Am. Chem. Soc, 80, 1768 (1958).
32. R. C. Reinhardt, Ind. Eng. Chem., 35, 422 (1943). 33. S. Narita, K. Okuda, J. Polym. ScL, 38, 270 (1959). 34. C. S. Fuller, C. J. Frosch, N. R. Pape, J. Am. Chem. Soc, 62, 1905 (1940); A. M. Liquori, Acta Crystallogr., 8, 345 (1955). 35. G. Natta, R Corradini, I. W. Bassi, Makromol. Chem., 21, 240 (1956); Nuovo Cimento, Suppl., 15, 52 (1960). 36. V. M. Coiro, P. de Santis, L. Mazzarella, L. Picozzi, Chim. Ind. (Milan), 47, 1236 (1965). 37. G. Natta, P. Corradini, L. Porri, Atti Accad. Nazi. Lincei, Cl. ScL Fis., Mat. Nat., Rend., 20, 728 (1956). 38. J. D. McCullough, R. S. Bauer, T. L. Jacobs, Chem. Ind. (London), 706, (1957). 39. H. D. Noether, J. Polym. ScL, 25, 217 (1957); Text. Res. J., 28, 533 (1958). 40. C. W. Bunn, Proc. R. Soc. London, Ser. A, 180, 40 (1942). 41. C. Shambelan, Ph.D. Thesis, Univ. of Penna., 1959; Diss. Abstr., 20, 120 (1959); M. Fujisaka, K. Imada, M. Takayanagi, Rep. Progr. Polym. Phys. Japan, 11, 169 (1968). 42. C. F. Hammer, T. A. Koch, J. F. Whitney, J. Appl. Polym. ScL, 1, 169 (1959). 43. W. Goggin, R. Lowry, Ind. Eng. Chem., 34, 327 (1942). 44. G. Natta. Chem. Ind. (London), 1520, (1957). 45. G. Natta, P Pino, P. Corradini, F. Danusso, E. Mantica, G. Mazzanti, G. Moraglio, J. Am. Chem. Soc, 77, 1708 (1955). 46. R. Boyer, Compt. rend., de Ia 2e reunion de chimie physique (2-7 Juin 1952, Paris) R 383. 47. D. E. Roberts, L. Mandelkern, J. Am. Chem. Soc, 80,1289 (1958). 48. F. R Reding, J. Polym. ScL, 21, 547 (1956). 49. J. D. Hoffman, J. J. Weeks, J. Res. Natl. Bur. Stand., 60,465 (1958). 50. L. Wood, N. Bekkedahl, R. E. Gibson, J. Chem. Phys., 13, 475 (1945). 51. R. Beaman, F. Cramer, J. Polym. ScL, 21, 223 (1956). 52. H. Starkweather, Jr., G. Moore, J. Hansen, T. Roder, R. Brooks, J., Polym. Sci. 21, 189 (1956). 53. R. Wiley, Ind. Eng. Chem., 38, 959 (1946). 54. H. W. Starkweather, Jr., R. E. Moynihan, J. Polym. Sci., 22, 363 (1956). 55. F. C. Frank, A. Keller, A. O'connor, Philos. Mag., 4, 200 (1959). 56. K. H. Meyer, W. Lotmar, G. W. Pankow, HeIv. Chim. Acta, 19, 930 (1936); E. Giglio, F. Pompa, A. Ripamonti, J. Polym. Sci., 59, 293 (1960). 57. J. Boon, E. P. Magre', Makromol. Chem., 136, 267 (1970). 58. P. W. Teare, D. R. Holmes, J. Polym. ScL, 24, 496 (1957). 59. K. Little, Br. J. Appl. Phys., 10, 225 (1959). 60. C. J. B. Clews, "Proc Rubber Technology Conference", W. Heffer and Sons, Cambridge, p. 955, (1938). 61. W. P. Slichter, J. Polym. Sci., 36, 259 (1959). 62. R. C. Golike, J. Polym. Sci., 42, 583 (1960). 63. Y. Kinoshita, Makromol. Chem., 33, 21 (1959). 64. P. H. Burleigh, J. Am. Chem. Soc, 82, 749 (1960). 65. Y. Kinoshita, Makromol. Chem., 33, 1 (1959).
66. R. E. Moynihan, J. Am. Chem. Soc, 81, 1045 (1959). 67. G. Natta, Makromol. Chem., 35, 93 (1960). 68. J. Bateman, R. E. Richards, G. Farrow, I. M. Ward, Polymer, 1, 63 (1960). 69. R Corradini, Atti Accad, Nazi. Lincei, Cl. Sci. Fis., Mat. Nat, Rend., 25, 517 (1958). 70. S. D. Gehman, J. E. Field, R. P. Dinsmore, Proc. Rubber Technology Conference, W. Heffer and Sons, Cambridge, p. 961 (1938). 71. G. Natta, G. Mazzanti, P. Longi, F. Bernardini, Chim. Ind. (Milan), 40, 813 (1958). 72. W. D. Niegisch, P. R. Swan, J. Appl. Phys., 31, 1906 (1960). 73. E. Martuscelli, R. Gallo, G. Paiaro, Makromol. Chem., 103, 295 (1967). 74. D. Sianesi, G. Natta, P. Corradini, Gazz. Chim. ItaL, 89,775 (1959). 75. G. Natta, F. Danusso, D. Sianesi, Makromol. Chem., 28, 253 (1958); D. Sianesi, M. Rampichini, F. Danusso, Chim. Ind. (Milan), 41, 287 (1959). 76. G. Natta, G. Mazzanti, P. Corradini, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 25, 3 (1958). 77. W. R. Krigbaum, N. Tokita J. Polym. ScL, 43, 467 (1960). 78. E. Stanley, M. Litt, J. Polym. Sci., 43, 453 (1960). 79. D. I. Sapper, J. Polym. Sci., 43, 383 (1960). 80. R Corradini, P. Ganis, J. Polym. Sci., 43, 311 (1960). 81. L. Mandelkern, Chem. Rev., 56, 903 (1956). 82. J. R. Schaefgen, J. Polym. Sci., 38, 549 (1959). 83. F. Danusso, G. Moraglio, E. Flores, Atti Accad. Nazi. Lincei, Cl. ScL Fis., Mat. Nat., Rend., 25, 520 (1958). 84. N. Yoda, I. Matsubara, J. Polym. Sci., Part A, 2, 253 (1964). (Unit cell constants given refer to a projected base). 85. F. A. Quinn, Jr., L. Mandelkern, J. Am. Chem. Soc, 80, 3178 (1958); Erratum: J. Am. Chem. Soc, 81, 6533 (1959). 86. F. W. Billmeyer, Jr., J. Appl. Phys., 28, 1114 (1957). 87. M. Dole, J. Polym. Sci., 19, 347 (1956). 88. A. M. Bueche, J. Am. Chem. Soc, 74, 65 (1952). 89. F. Danusso, G. Moraglio, Atti Accad. Nazi. Lincei, Cl. ScL Fis., Mat. Nat., Rend., 27, 381 (1959). 90. T. W. Campbell, A. C. Haven, Jr., J. Appl. Polym. Sci., 1,73 (1959). 91. H. W. Starkweather, Jr., R. H. Boyd, J. Phys. Chem., 64,410 (1960). 92. G. Natta, G. mazzanti, P. Corradini, P. Chini, I. W. Bassi, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 28, 8 (1960); G. Natta, G. Mazzanti, P. Corradini, I. W. bassi, Makromol. Chem., 37, 156 (1960); I. W. Bassi, Rend., 1st. Lomb. Accad. Sci. Lett. A, 94, 579 (1960); G. Natta, P. Corradini, I. W. Bassi, J. Polym. Sci., 51, 505 (1961). 93. D. V. Badami, Polymer, 1, 273 (1960). 94. J. H. Griffith, B. G. Ranby, J. Polym. Sci., 44, 369 (1960). 95. J. B. Lando, D. Day, V. Enkelmann, J. Polym. Sci., Polym. Symp., 65, 73 (1978); V. Enkelmann, J. B. Lando, Acta Cryst., Sect. B: Struct. Crystallogr. Cryst. Chem., 34, 2352 (1978).
96. G. Natta, G. Mazzanti, R Corradini, A. Valvassori, I. W. Bassi, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 28, 18 (1960). 97. G. Natta, I. W. Bassi, Eur. Polym. J., 3, 33 (1967). 98. O. Ellefsen, Norelco Rep., 7, 104 (1960). 99. G. Farrow, J. Mclntosh, I. M. Ward, Makromol. Chem., 38, 147 (1960). 100. N. G. Esipova, L. Pan-Tun, N. S. Andreeva, P. V. Kozlov, Vysokomol. Soedin., 2, 1109 (1960). 101. A. G. M. Last, J. Polym. Sci., 39, 543 (1959). 102. D. J. Shields, H. W. Coover, Jr., J. Polym. Sci., 39, 532 (1959). 103. S. Murahashi, S. Nozakura, H. Tadokoro, Bull. Chem. Soc. Japan, 32, 534 (1959). 104. T. F. Yen, J. Polym. Sci., 38, 272 (1959). 105. C. S. Fuller, C. L. Erickson, J. Am. Chem. Soc, 59, 344 (1937). 106. C. S. Fuller, C. J. Frosch, J. Am. Chem. Soc, 61, 2575 (1939). (Except for poly(decamethylene oxalate), unit cell constants given refer to a projected base). 107. C. S. Fuller, C. J. Frosch, N. R. Pape, J. Am. Chem. Soc, 64, 154 (1942). (Unit cell constants given refer to a projected base). 108. C. S. Fuller, C. J. Frosch, J. Phys. Chem., 43, 323 (1939). 109. C. S. Fuller, Chem. Rev., 26, 143 (1940). 110. W. O. Baker, C. S. Fuller, J. Am. Chem. Soc, 64, 2399 (1942). 111. A. Conix, R. Van Kerpl, J. Polym. Sci., 40, 521 (1959). 112. J. A. Gailey, R. H. Ralston, SPE Trans. 4, 29 (1964). 113. H. S. Yani, Quoted in C. F. Ryan, J. J. Gormley, Macromol. Synth. 1, 30 (1963). 114. E. J. Vandenberg, R. F. Heck, D. S. Breslow, J. Polym. Sci., 41, 519 (1960). 115. J. H. Magill, J. Polym. Sci., Part A-2, 5, 89 (1967). 116. S. Furuya, M. Honda, J. Polym. Sci., 28, 232 (1958). 117. P. Goodman, J. Polym. Sci., 24, 307 (1960). 118. L. Mandelkern, P. J. Flory, J. Am. Chem. Soc, 73, 3206 (1951). 119. S. Ishida, S. Murahashi, J. Polym. Sci., 40, 571 (1959). 120. B. S. Garrett, W. E. Goode, S. Gratch, J. F. Kincaid, C. L. Levesque, A. Spell, J. D. Stroupe, W. H. Watanabe, J. Am. Chem. Soc, 81, 1007 (1959). 121. D. C. Vogelsong, E. M. Pearce, J. Polym. Sci. 45, 546 (1960). 122. P. Corradini, P. Ganis, Nuovo Cimento, Suppl., 15, 104 (1960). 123. G. Natta, P. Corradini, I. W. Bassi, Nuovo Cimento, Suppl., 15, 83 (1960). 124. G. Natta, R Corradini, Angew. Chem., 68, 615 (1956); Nuovo Cimento, Suppl., 15, 111 (1960). 125. P. Corradini, R Ganis, Nuovo Cimento, Suppl., 15, 96 (1960). 126. R. G. Crystal, Macromolecules 4, 379 (1971). 127. G. Natta, R Corradini, Nuovo Cimento, Suppl., 15, 40 (1960). 128. G. Natta, R Corradini, I. W. Bassi, Nuovo Cimento, Suppl., 15, 68 (1960).
129. R Pino, G. R Lorenzi, J. Am. Chem. Soc, 82, 4745 (1960). 130. G. Natta. G. Mazzanti, G. Preglia, M. Binaghi, M. Peraldo, J. Am. Chem. Soc 82, 4742 (1960). 131. Z. W. Wilchinsky, J. Appl. Phys., 31, 1969 (1960). 132. T. Mochizuki, Nippon Kagaku Zasshi 81, 15 (1960). 133. R. Stefani, M. Chevreton, M. Gamier, C. Eyraud, C. R. Hebd. Seances Acad. Sci., 251, 2174 (1960). 134. M. L. Huggins, J. Chem. Phys., 13, 37 (1945). 135. C. Ruscher, H. J. Schroder, Faserforsch. Textiltech., 11,165 (1960). 136. Z. Mencik, Chem. Prumysl, 10, 377 (1960). 137. M. Dole, B. Wunderlich, Makromol. Chem., 34, 29 (1959). 138. G. Allen, G. Gee, G. J. Wilson, Polymer, 1, 456 (1960). 139. G. Allen, G. Gee, D. Mangaraj, D. Sims, G. J. Wilson, Polymer, 1, 466 (1960). 140. M. Asahina, K. Okuda, Kobunshi Kagaku 17, 607 (1960). 141. G. Natta, M. Farina, M. Peraldo, R Corradini, G. Bressan, R Ganis, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 28, 442 (1960). 142. L. A. Auspos, C. W. Burnham, L. Hall, J. K. Hubbard, W. Kirk, J. R. Schaefgen, S. B. Speck, J. Polym. Sci., 15, 9 (1955). 143. A. T. Walter, J. Polym. Sci., 13, 207 (1954). 144. C. J. Malm, J. W. Mench, D. L. Kendall, G. D. Hiatt, Ind. Eng. Chem., 43, 688 (1951). 145. C. E. Anagnostopoulos, A. Y. Coran, H. R. Gamrath, J. Appl. Polym. Sci., 4, 181 (1960). 146. C. F. Horn, B. T. Freure, H. Vineyard, H. J. Decker, Angew. Chem. 74, 531 (1962). 147. G. Natta, G. DaIl'Asta, G. Mazzanti, Angew. Chem., 76, 765 (1964) - Angew. Chem., Int. Ed. Engl., 3, 723 (1964); G. Natta, I. W. Bassi, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 38, 315 (1965); G. Natta, I. W. Bassi, J. Polym. Sci., Part C, 16 2551 (1967). 148. A. C. Farthing, W. J. Reynolds, J. Polym. Sci., 12, 503 (1954). 149. H. S. Yanai, quoted in W. E. Goode, R. R Fellman, F. H. Owens, Macromol. Synth., 1, 25 (1963). 150. A. Turner-Jones, Makromol. Chem., 71, 1 (1964). (The monoclinic cell is preferred by the author). 151. M. Niinomi, T. Fukuda, M. Takayanagi, private communication. 152. G. Natta, Angew. Chem., 68, 393 (1956). 153. G. F. Schmidt, H. A. Stuart, Z. Naturforsch. 13A, 222 (1958). 154. G. Natta, R Corradini, Nuovo Cimento, Suppl., 15, 9 (1960). 155. F. Rybnikar, Chem. Listy, 52, 1042 (1958). 156. B. Wunderlich, M. Dole, J. Polym. Sci., 24, 201 (1957). 157. C. W. Smith, M. Dole, J. Polym. Sci., 20, 37 (1956). 158. B. Wunderlich, M. Dole, J. Polym. Sci., 32, 125 (1958). 159. R J. Flory, H. D. Bedon, E. H. Keefer, J. Polym. Sci., 28, 151 (1958). 160. R. D. Evans, M. R. Mighton, R J. Flory, J. Am. Chem. Soc, 72, 2018 (1950).
161. G. Dall'Asta, N. Oddo, Chim. Ind. (Milan), 42, 1234 (1960). 162. Z. Mencik, Vysokomol. Soedin., 2, 1635 (1960). 163. Y. Chatani, J. Polym. ScL, 47, 491 (1960). 164. G. Wasai, T. Tsuruta, J. Furukawa, Kogyo Kagaku Zasshi 66, 1339 (1963). 165. M. Cesari, private communication. 166. H. D. Keith, F. J. Padden, Jr., N. M. Walter, H. W. Wyckoff, J. Appl. Phys., 30, 1485 (1959). 167. G. Natta, M. Peraldo, P. Corradini, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 26, 14 (1959). 168. K. Okuda, T. Yoshida, M. Sugita, M. Asahina, J. Polym. Sci., Part B, 5, 465 (1967). 169. G. Natta, I. Pasquon, P. Corradini, M. Peraldo, M. Pegoraro, A. Zambelli, Atti Acad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 28, 539 (1960). 170. N. M. Walter, quoted in C. Y. Liang, F. G. Pearson, J. MoI. Spectrosc, 5, 290 (1960). 171. S. S. Leshchenko, V. L. Karpov, V. A. Kargin, Vysokomol. Soedin., 1, 1538 (1959); ibid., 5, 953 (1963) - Polym. Sci. USSR (Engl. Transl.), 5, 1 (1964). 172. D. J. H. Sandiford, J. Appl. Chem., 8, 188 (1958). 173. M. Hatano, S. Kambara, Polymer, 2, 1 (1961). 174. R. Dedeurwaerder, J. F. M. Oth, Bull. Soc. Chim. BeIg., 70, 37 (1961). 175. G. Natta, D. Sianesi, D. Morero, I. W. Bassi, G. Caporiccio, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 28, 551 (1960). 176. I. W. Bassi, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 29, 193 (1960). 177. G. Champetier, M. Laualov, J. R Pied, Bull. Soc. Chim. Fr., 708 (1958). 178. A. G. Nasini, L. Trossarelli, G. Saini, Makromol. Chem., 44/46, 550 (1961). 179. G. Natta, G. Mazzanti, G. F. Pregaglia, M. Binaghi, Makromol. Chem., 44/46, 537 (1961). 180. J. C. Swallow, Proc. R. Soc. London, Ser. A, 238, 1 (1956). 181. J. LaI, G. S. Trick, J. Polym. Sci., 50, 13 (1961). 182. R. J. Wilkinson, M. Dole, J. Polym. Sci., 58, 1089 (1962). 183. F. B. Moody, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 2, 285 (1961). 184. I. Sakurada, Y. Nukushina, Y. Sone, Kobunshi Kagaku, 12, 506 (1955). 185. G. Natta, G. Mazzanti, P. Longi, G. Dall'Asta, F. Bernardini, J. Polym. Sci., 51, 487 (1961). 186. M. Inoue, J. Polym. Sci., 51, S18 (1961). 187. J. A. Price, M. R. Lytton, B. G. Ranby, J. Polym. Sci., 51, 541 (1961). 188. F. P. Price, R. W. KiIb, J. Polym. Sci., 57, 395 (1962). 189. G. Natta, L. Porri, P. Corradini, G. Zanini, F. Ciampelli, J. Polym. Sci., 51, 463 (1961). 190. J. R Arlie, A. Skoulios, C. R. Hebd. Seances Acad. Sci., 258, 2570 (1964); J. P. Arlie, P. Spegt, A., Skoulios, Makromol. Chem., 104, 212 (1967). 191. U. Giannini, G. Bruckner, E. Pellino, A. Cassata, J. Polym. Sci., Part B, 5, 527 (1967).
192. S. Geller, Science 152, 644 (1966); M. D. Lind, S. Geller, J. Chem. Phys., 51, 348 (1969). 193. Y. Chatani, T. Takizawa, S. Murahashi, Y. Sakata, Y Nishimura, J. Polym. ScL, 55, 811 (1961). 194. J. R. Richards, Ph.D. Thesis, Univ. of Penna., 1961, Diss. Abstr. 22, 1029 (1961). 195. H. G. Kilian, H. Haboth, E. Jenckel, Kolloid Z., 172 166 (1960). 196. E. J. Addink, J. Beintema, Polymer 2, 185 (1961). 197. G. Damaschun, Kolloid Z., 180, 65 (1962). 198. F. L. Saunders, J. Polym. Sci., Part A-I, 5, 2187 (1967). 199. C. A. Boye, J. Polym. Sci., 55, 275 (1961). 200. I. W. Bassi, G. Allegra, R. Scordamaglia, Macromolecules, 4, 575 (1971). 201. W. Wrasidlo, Macromolecules 4, 642 (1971). 202. R. H. Baughman, J. Appl. Phys., 42, 4579 (1971). 203. A. Turner-Jones, C. W. Bunn, Acta Crystallogr., 15, 105 (1962). 204. D. C. Vogelsong, J. Polym. Sci., 57, 895 (1962). 205. C. Y. Liang, S. Krimm, J. Chem. Phys., 25, 563 (1956). 206. M. G. Broadhurst, J. Res. Natl. Bur. Stand., Sect. A, 66, 241 (1962); J. Chem. Phys., 36, 2578 (1962). 207. R. L. Miller, V. F. Holland, J. Polym. Sci., Part B, 2, 519 (1964); V. F. Holland, R. L. Miller, J. Appl. Phys. 35, 3241 (1964). 208. A. V. Ermolina, G. S. Markova, V. A. Kargin, Kristallografiya, 2, 623 (1957). 209. E. S. Clark, L. T. Muus, Z. Kristallogr., 117, 119 (1962). (Unit cell constants for form II refer to a projected base). 210. V. F. Holland, S. B. Mitchell, W. L. Hunter, R H. Lindenmeyer, J. Polym. Sci., 62, 145 (1962). 211. J. J. Point, Bull. Cl. Sci. Acad. R. BeIg., 30, 435 (1953). 212. L. G. Wallner, Montash. Chem., 79, 279 (1948). 213. H. Hendus, K. Schmieder, G. Schnerl, K. A. Wolf. Festschrift Carl Wurster der BASF vom, 2, 12 1960. 214. J. Furukawa, T. Saegusa, T. Tsuruta, S. Otha, G. Wasai, Makromol. Chem., 52, 230 (1962). 215. G. Champetier, J. R Pied, Makromol. Chem., 44/46, 64 (1961). 216. F. Rybnikar, Collect. Czech. Chem. Commun., 24, 2861 (1959). 217. S. Okamura, K. Hayashi, Y. Kitanishi, J. Polym. Sci., 58, 925 (1962). 218. O. Ellefsen, N. Norman, J. Polym. Sci., 58, 769 (1962). 219. L. A. Errede, R. S. Gregorian, J. Polym. Sci., 60, 21 (1962). 220. T. F. Yen, J. Polym. Sci., 35, 533 (1959). 221. J. F. Brown, Jr., D. M. White, J. Am. Chem. Soc, 82, 5671 (1960). 222. A. Ziabicki, Kolloid Z., 167, 132 (1959). 223. C. J. Brown, A. C. Farthing, J. Chem. Soc, 3270 (1953). 224. M. H. Kaufman, H. F. Mark, R. R. Mesrobian, J. Polym. Sci., 13, 3 (1954). 225. R. L. Merker, M. J. Scott, J. Polym. Sci., Part A, 2, 15 (1964). 226. W. A. Butte, C. C. Price, R. E. Hughes, J. Polym. Sci., 61, S28 (1962).
227. E. R. Walter, F. R Reding, 133RD Natl. Am. Chem. Soc. Meeting, San Francisco, April, (1958). 228. O. F. Solomon, M. Dimonie, K. Ambrozh, M. Tomesku, J. Polym. ScL, 52, 205 (1961). 229. C. W. Bunn, E. V. Garner, J. Chem. Soc, 654 (1942). 230. G. Natta, L. Porri, G. Sovarzi, Eur. Polym. J., 1, 81 (1965). 231. F. Sakaguchi, R. Kitamaru, W. Tsuji, Bull. Inst. Chem. Res., Kyoto Univ., 44, 155 (1966). 232. K. Fujii, T. Mochizuki, S. Imoto, J. Ukida, M. Matsumoto, Makromol. Chem., 51, 225 (1962). 233. K. Tanaka, T. Seto, T. Hara, J. Phys. Soc. Japan., 17, 873 (1962); T. Seto, T. Hara, K. Tanaka, Jpn. J. Appl. Phys., 7, 31 (1968). 234. G. Natta, L. Porri, A. Carbonaro, F. Ciampelli, G. Allegra, Makromol. Chem., 51, 229 (1962). 235. G. Natta, I. W. Bassi, P. Corradini, Atti Accad. Nazi. Lincei, Cl. ScL Fis., Mat. Nat, Rend., 31, 17 (1961). 236. G. Natta, I. W. Bassi, G. Allegra, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat, Rend., 31, 350 (1961). 237. J. B. Lando, V. Stannett, J. Polym. Sci., Part B., 2, 375 (1964); Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 5, 969 (1964). 238. A. Takahashi, S. Kambara, Makromol. Chem., 72, 92 (1964). 239. T. Petitpas, J. Mering, C. R. Hebd. Seances Acad. Sci., 244, 2611 (1962). 240. H. Sumitomo, K. Kobayashi, J. Polym. Sci., Part A-I, 5, 2247 (1967). (Unit cell constants given refer to a projected base). 241. S. Boileau, J. Coste, J.-M. Raynal, P. Sigwalt, C. R. Hebd. Seances Acad. Sci., 254, 2774 (1962). 242. G. Natta, M. Peraldo, M. Farina, G. Bressan, Makromol. Chem., 55, 139 (1962). 243. R. Aelion, Ann. Chim. (Paris), 3, 5 (1948). 244. K. Dachs, E. Schwartz, Angew. Chem., 74, 540 (1962); Angew. Chem., Int. Ed. EngL, 1, 430 (1962). 245. K. Okuda, J. Polym. Sci., Part A, 2, 1749 (1964). 246. H. Arimoto, J. Polym. Sci., Part A, 2, 2283 (1964). 247. G. Natta, P. Corradini, P. Ganis, I. W. Bassi, G. Allegra, Chim. Ind. (Milan), 44, 532 (1962); G. Natta, G. Allegra, I. W. Bassi, P. Corradini, P. Ganis, Makromol. Chem., 58, 242 (1962). 248. Y. Yamashita, S. Nunomoto, Makromol. Chem., 58, 244 (1962). 249. L. Becker, Wiss. Z. Karl-Marx-Univ. Leipzig, Math.Naturwiss. Reihe, 11, 3 (1962). 250. K. J. Clark, A. Turner-Jones, D. J. H. Sandiford, Chem. Ind. (London), 2010 (1962). 251. E. Passaglia, H. R. Kevorkian, J. Appl. Phys., 34, 90 (1963). 252. A. Nishioka, K. Yanigisawa, Kobunshi Kagaku, 19, 667 (1962). 253. S. Murahashi, J. Yuki, T. Sano, U. Yonemura, H. Tadokoro, Y. Chatani, J. Polym. Sci., 62, S77 (1962). 254. A. Turner-Jones, J. Polym. ScL, 62, S53 (1962). 255. H. Watanabe, R. Koyama, H. Nagai, A. Nishioka, J. Polym. Sci., 62, S74 (1962).
256. J.-J. Trillat, R. Tertian, C. R. Hebd. Seances Acad. Sci., 219, 395 (1944). 257. L. Ulicky, Chem. Zvesti, 16, 818 (1962). 258. E. Sauter, Z. Phys. Chem., Abt. B, 18, 417 (1932). 259. G. Natta, G. DaIl'Asta, G. Mazzanti, Chim. Ind. (Milan), 44, 1212 (1962). 260. M. G. Broadhurst, J. Res. Natl. Bur. Stand., Sect. A, 67,233 (1963). 261. L. Becker, Plaste Kautsch., 8, 557 (1961). 262. B. Wunderlich, C. M. Cormier, J. Polym. Sci., Part A-2, 5, 987 (1967). 263. G. Natta, L. Porri, G. Stoppa, G. Allegra, F. Ciampelli, J. Polym. Sci., Part B, 1, 67 (1963). 264. G. W. Taylor, Polymer, 3, 543 (1962). 265. O. B. Edgar, E. Ellery, J. Chem. Soc, 2633 (1952). 266. H.-G. Kilian, Kolloid Z. Z. Polym., 185, 13 (1962). 267. H. S. Makowski, K. C. Shim, Z. W. Wilchinsky, J. Polym. Sci., Part A, 2, (1964). 268. D. Sianesi, G. Caporiccio, Makromol. Chem., 60, 213 (1963). 269. I. W. Bassi, G. DaIl'Asta, U. Campigli, E. Strepparola, Makromol. Chem., 60, 202 (1963). 270. G. Carazzolo, Gazz. Chim. Ital., 92, 1345 (1962); G. Carazzolo, G. Putti, Chim. Ind. (Milan), 45, 771 (1963); G. Carazzolo, M. Mammi, J. Polym. Sci., Part A, 1, 965 (1963); G. A. Carazzolo, J. Polym. Sci., Part A, 1, 1573 (1963); G. Carazzolo, S. Leghissa, M. Mammi, Makromol. Chem., 63, 171 (1963). 271. E. Baer, J. R. Collier, D. R. Carter, SPE Trans., 5,22 (1965). 272. D. C. Vogelsong, J. Polym. Sci., Part A, 1, 1055 (1963). 273. F. H. C. Crick, A. Rich, Nature (London) 176, 780 (1955). 274. G. Perego, I. W. Bassi, Makromol. Chem., 61, 198 (1963). 275. U. Giannini, M. Cambini, A. Cassata, Makromol. Chem., 61, 246 (1963). 276. F. Danusso, G. Giannotti, Makromol. Chem., 61, 164 (1963). 277. F. Danusso, G. Giannotti, Makromol. Chem., 61, 139 (1963). 278. M. Donati, M. Farina, Makromol. Chem., 60, 233 (1963). 279. E. M. Bradbury, A. Elliott, Polymer, 4, 47 (1963). 280. H. Utsunomiya, N. Kawasaki, M. Niinomi, M. Takayanagi, J. Polym. Sci., Part B, 5, 907 (1967). 281. E. J. Vandenberg, J. Polym. ScL, Part C, 1, 207 (1963). 282. K. R. Dunham, J. Vandenberghe, J. W. H. Faber, L. E. Contois, J. Polym. Sci., Part A, 1, 751 (1963). 283. M. Tomika, Kobunshi Kagaku, 20, 145 (1963). 284. N. Calderon, M. C. Morris, J. Polym. Sci., Part A-2,5, 1283 (1967). 285. N. S. Chu, C. C. Price, J. Polym. Sci., Part A, 1, 1105 (1963). 286. K. H. Meyer, A. van der Wyk, HeIv. Chim. Acta., 20, 1313 (1937). 287. R. D. Flanagan, A. M. Rijke, J. Polym. Sci., Part A-2, 10, 1207 (1972). 288. K. H. Meyer, Natural and Synthetic High Polymers, Interscience, New York (1950). 289. J. R. Whinfield, Nature (London), 158, 930 (1946).
290. E. F. Izard, J. Polym. ScL, 8, 503 (1952). 291. R. Hill, E. E. Walker, J. Polym. ScL, 3, 609 (1948). 292. D. D. Coffman, M. L. Cox, F. L. Martin, W. E. Mochel, F. J. van Natta, J. Polym. ScL, 3, 85 (1948). 293. J. R. Schaefgen, P. J. Flory, J. Am. Chem. Soc, 70, 2709 (1948). 294. J. C. Patrick, Trans. Faraday Soc, 32, 347 (1936). 295. C. W. Bunn, J. Polym. ScL, 16, 323 (1955). 296. Ye. L. Gal'Perlin, S. S. Dubov, E. V. Volkova, M. R Mlenik, Kristallografiya, 9, 102 (1964); Sov. Phys. Crystallogr. (Engl. TransL), 9, 81 (1964). 297. A. Noshay, C. C. Price, J. Polym. ScL, 34, 165 (1959). 298. E. Gipstein, E. Wellisch, O. J. Sweeting, J. Polym. ScL, Part B, 1, 237 (1963). 299. L. D. Jones, F. E. Karasz, J. Polym. ScL, Part B, 4, 803 (1966). 300. W. J. Carothers, J. A. Arvin, J. Am. Chem. Soc, 51, 2560 (1929). 301. K. Ueberreiter, N. Steiner, Makromol. Chem., 74, 158 (1964). 302. W. H. Carothers, G. L. Dorough, J. Am. Chem. Soc, 52, 711 (1930). 303. Y. Takahashi, H. Tadokoro, macromolecules, 6,672 (1973). 304. W. H. Carothers, G. J. Berchet, J. Am. Chem. Soc, 52,5289 (1930). 305. W. H. Carothers, Chem. Rev., 8, 353 (1931). 306. G. Natta, M. Peraldo, G. Allegra, Makromol. Chem., 75, 215 (1964). 307. W. H. Carothers, J. W. Hill, J. Am. Chem. Soc, 54, 1559 (1932). 308. A. Turner-Jones, J. M. Aizlewood, D. R. Beckett, Makromol. Chem., 75, 134 (1964). (Unit cell constants given for poly(propene)-form III refer to a projected base). 309. W. H. Carothers, J. Am. Chem. Soc, 55, 4714 (1933). 310. M. I. Bessonov, A. R Rudakov, Fiz. Tverd. TeIa (Leningrad), 6, 1333 (1964), through Chem. Abstr., 61, 5793D (1964). 311. P. R. Swan, J. Polym. ScL, 56, 403 (1962). 312. K. Hirono, G. Wasai, T. Saegusa, J. Furukawa, Kogyo Kagaku Zasshi, 67, 604 (1964). 313. J. Boor, Jr., J. C. Mitchell, J. Polym. ScL, Part A, 1, 59 (1963). 314. G. Wasai, T. Saegusa, J. Furukawa, Kogyo Kaguku Zasshi, 67, 601 (1964). 315. B. Wunderlich, T. Arakawa, J. Polym. ScL, Part A, 2, 3697 (1964). 316. K. Tsuboi, T. Mochizuki, J. Polym. ScL, Part B, 1, 531 (1963); Kobunshi Kagaku, 23, 645 (1966). 317. K. Hayashi, Y. Kitanishi, M. Nishii, S. Okamura, Makromol. Chem., 47, 237 (1961). 318. S. Kambara, A. Takahashi, Makromol. Chem., 63, 89 (1963). 319. J. R Kennedy, J. J. Elliott, B. Groten, Makromol. Chem., 77, 26 (1964); J. J. Elliott, J. R Kennedy, J. Polym. ScL, Polym. Chem. Ed., 11, 2991 (1973). 320. J. Wilsky, T. Grewer, J. Polym. ScL, Part C, 6, 33 (1964). 321. G. Carazzolo, Chim. Ind. (Milan), 46, 525 (1964).
322. G. W. Urbanczyk, Zest. Nauk. Politech. Lodz, Wlok., 9, 79 (1962), through chem. Abstr., 61, 5836B (1964). 323. K. Fujii, T. Mochizuki, S. Imoto, J. Ukida, M. Matsumoto, J. Polym. ScL, Part A, 2, 2327 (1964). 324. G. Natta, G. DaIl'Asta, G. Mazzanti, I. Pasquon, A. VaIvassori, A. Zambelli, J. Am. Chem. Soc, 83, 3343 (1961); P. Corradini, R Ganis, Makromol. Chem., 62, 97 (1963). 325. E. N. Zilberman, A. E. Kulikova, N. M. Teplyakov, J. Polym. ScL, 56, 417 (1962). 326. G. Allegra, A. Ponoglio, I. Pasquon, Rend. 1st. Lomb. Accad. Sci. Lett. A, 95, 335 (1961). 327. M. Ishibashi, J. Polym. Sci., Part A, 2, 4361 (1964). 328. A. D. Ketley, R. J. Ehrig, J. Polym. Sci., Part A, 2, 4461 (1964). 329. O. Vogl, J. Polym. Sci., Part A, 2, 4621 (1964). 330. A. Chiba, H. Futama, J. Furuichi, Rep. Progr. Polym. Phys. Japan, 7, 51 (1964). 331. G. Carazzolo, M. Mammi, J. Polym. Sci., Part B, 2, 1057 (1964); G. Carazzolo, G. Valle, Makromol. Chem., 90, 66 (1966). 332. J. P. Kennedy, R. M. Thomas, Makromol. Chem., 64, 1 (1963). 333. M. Litt, J. Polym. Sci., Part A, 1, 2219 (1963). 334. R. Brill, Z. Phys. Chem., Abt. B, 53, 61 (1943). 335. J. C. Mitchell, J. Polym. Sci., Part B, 1, 285 (1963). 336. M. Ogawa, T. Ota, O. Yoshizaki, E. Nagai, J. Polym. Sci., Part B, 1, 57 (1963); T. Ota, O. Yoshizaki, E. Nagai, Kobunshi Kagaku, 20, 225 (1963). 337. E. Mueller, Melliand Textilber, 44, 484 (1963). 338. J. R. Schaefgen, R. Zbinden, J. Polym. Sci., Part A, 2, 4865 (1964). 339. D. D. Coffman, G. J. Berchet, U. R. Peterson, E. W. Spanagel, J. Polym. Sci., 2, 306 (1947). 340. H. S. MakowskI, B. K. C. Shim, Z. W. Wilchinsky, J. Polym. Sci., Part A, 2, 4973 (1964). 341. F. Rybnikar, Colllect. Czech. Chem. Commun., 27, 2864 (1962). 342. L. Mandelkern, M. Tryon, F. A. Quinn, Jr., J. Polym. Sci., 19, 77 (1956). 343. M. Inoue, J. Polym. Sci., Part A, 1, 2697 (1963). 344. I. Heber, Kolloid Z. Z. Polym., 189, 110 (1963). 345. K. Mihara, Angew. Makromol. Chem., 40/41, 41 (1974). 346. G. B. Gechele, L. Crescentini, J. Appl. Polym. Sci., 7,1349 (1963). 347. R. Koyama, Bull. Inst. Chem. Res., Kyoto Univ., 41, 207 (1963); A. Nishioka, H. Watanabe, R. Koyama, H. Nagai, Rep. Progr. Polym. Phys. Japan, 6, 311 (1963). 348. H. Tadokoro, Y. Chatani, M. Kobayashi, T. Yoshihara, S. Murahashi, Rep. Progr. Polym. Phys. Japan, 6, 303 (1963); K. Imada, T. Miyaka, Y. Chatani, H. Tadokoro, S. Murahashi, Makromol. Chem., 83, 113 (1965). 349. H. W. Wyckoff, J. Polym. Sci., 62, 83 (1962). 350. A. Turner-Jones, J. Polym. Sci., Part B, 1, 455 (1963). 351. M. G. Broadhurst, J. Res. Natl. Bur. Stand., Sect. A, 70,481 (1966). 352. G. Natta, G. Moraglio, Rubber Plast. Age, 44, 42 (1962).
353. G. Natta, G. Moraglio, Makromol. Chem., 66, 218 (1963). 354. M. Ishibashi, Polymer, 5, 305 (1964). 355. A. Turner-Jones, J. M. Aizlewood, J. Polym. Sci., Part B, 1, 471 (1963). 356. M. Ishibashi, J. Polym. Sci., Part B, 1, 629 (1963). 357. Y. Sakurada, M. Matsumoto, K. Imai, A. Nishioda, Y. Kato, J. Polym. Sci., Part B, 1, 633, (1963). 358. I. Kirshenbaum, Z. W. Wilchinsky, B. Groten, J. Appl. Polym. Sci., 8, 2723 (1964). 359. N. P. Borisova, T. M. Birshtein, Vysokomol. Soedin., 5,279 (1963) - Polym. Sci. (USSR) (Engl. TransL), 5, 907 (1963). 360. G. Dall'Asta, I. W. Bassi, Chim. Ind. (Milan), 43, 999 (1961). 361. C. A. Boye, Bull. Am. Phys. Soc, 8, 266 (1963). 362. P. J. Flory, A. Vrij, J. Am. Chem. Soc, 85, 3548 (1963). 363. P. R. Swan, J. Polym. Sci., 42, 525 (1960). 364. A. Turner-Jones, R. P. Palmer, Polymer 4, 525 (1963). 365. M. Genas, Angew. Chem. 74, 535 (1962). 366. N. G. Gaylord, Ed., Polyethers IL, Interscience, New York, (1963). 367. M. Cesari, J. Polym. Sci., PartB, 2,453 (1964); W. Marconi, A, Mazzei, S. Cucinella, M. Cesari, J. Polym. Sci., Part A, 2, 4261 (1964). (a and b obtained from equatiorial reflections alone - true cell is probably triclinic). 368. W. Marconi, A. Mazzei, A. Cucinella, M. Cesari, E. Paulezzi, J. Polym. Sci., Part A, 3, 123 (1965). (Unit cell constants refer to a projected base). 369. W. J. Jackson, Jr., J. R. Caldwell, J. Appl. Polym. Sci., 7, 1975 (1963). 370. R. B. Isaacson, I. Kirshenbaum, W. C. Feist, J. Appl. Polym. Sci., 8, 2789 (1964). 371. G. Natta, L. Porri, M. C. Gallazzi, Chim. Ind. (Milan), 46, 1158 (1964). 372. D. Kockott, Kolloid Z. Z. Polym., 198, 17 (1964). 373. F. S. Ingraham, D. F. Wooley, Jr., Ind. Eng. Chem., 56, No. 9, 53 (1964). 374. R. Janssen, H. Ruysschaert, R. Vroom, Makromol. Chem., 77, 153 (1964). 375. G. Natta, L W. Bassi, G. Perego, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 36, 291 (1964). 376. F. B. Moody, Macromol. Synth., 1, 67 (1963). 377. G. Allen, C. Booth, M. N. Jones, D. J. Marks, W. D. Taylor, Polymer, 5, 547 (1964). 378. G. Wasai, T. Saegusa, J. Furukawa, Kogyo Kagaku Zasshi, 67, 1428 (1964). 379. T. Tsuruta, R. Fujio, J. Furukawa, Makromol. Chem., 80, 172 (1964). 380. F. Danusso, G. Gianotti, Makromol. Chem., 80, 1 (1964). 381. D. Siegl, H. Sixl, V. Enkelmann, G. Wenz, Chem. Phys., 72, 201 (1982). 382. G. P. Lorenzi, E. Benedetti, F. Chiellini, Chim. Ind. (Milan), 46, 1474 (1964). 383. M. Goodman, Y-L. Fan, J. Am. Chem. Soc, 86, 4922 (1964). 384. G. Natta, P. Corradini, P. Ganis, J. Polym. Sci., Part A, 3,11 (1965).
385. A. Bell, J. G. Smith, C. J. Kibler, J. Polym. Sci., Part A, 3, 19 (1965). 386. E. L. Wittbecker, W. S. Spliethoff, G. R. Stine, J. Appl. Polym. Sci., 9, 213 (1965). 387. G. Wasai, T. Iwata, K. Hirono, M. Kuragano, T. Saegusa, J. Furukawa, Kogyo Kagaku Zasshi, 67, 1920 (1964). 388. D. E. Ilyina, B. A. Krentsel, G. E. Semenido, J. Polym. Sci., Part C, 4, 999 (1964). 389. Ye. L. Gal'Perlin, Yu. V. Strogalin, Vysokomol. Soedin., 7, 16 (1965); Polym. Sci. (USSR) (Engl. TransL), 7, 15 (1965). 390. F. T. Simon, J. M. Rutherford, Jr., J. Appl. Phys., 35, 82 (1964). 391. J. Powers, J. D. Hoffman, J. J. Weeks, F. A. Quinn, Jr., J. Res. Natl. Bur. Stand., Sect. A, 69, 335 (1965). 392. G. Farrow, Polymer, 4, 191 (1963). 393. F. Danusso, G. Moraglio, W. Chiglia, L. Motto, G. TaIamini, Chim. Ind. (Milan), 41, 748 (1959). 394. W. R. Krigbaum, I. Uematsu, J. Polym. Sci., Part A, 3, 767 (1965). 395. W. F. Gorham, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 6, 73 (1965). 396. H. Morawetz, S. Z. Jakabhazy, J. B. Lando, J. Shafer, Proc Natl. Acad. Sci. U.S.A., 49, 789 (1963). 397. M. Barlow, J. Polym. Sci., Part A-2, 4, 121 (1966). 398. R. Yamadera, C. Sonoda, J. Polym. Sci., Part B, 3, 411 (1965). 399. E. J. Vandenberg, J. Polym. Sci., 47, 489 (1960). 400. Yu. Ya. Tomashpol'skii, G. S. Markova, Vysokomol. Soedin., 6, 27 (1964), - Polym. Sci., USSR (Engl. TransL), 6, 316 (1964). 401. A. Kawasaki, J. Furukawa, T. Tsuruta, Y. Nakayama, G. Wasai, Makromol. Chem., 49, 112 (1961); ibid., p. 136; T. Makimoto, T. Tsuruta, J. Furukawa, ibid., 50, 116 (1961); G. Wasai, J. Furukawa, A. Kawasaki, Kogyo Kagaku Zasshi, 68, 210 (1965). 402. V. V. Korshak, T. M. Frunze, Synthetic Hetero-Chain Polyamides, translated by N. Kaner, Daniel Davey and Co., New York, 1964, Tables I, II, XXI, XXVIII, AND XXX. 403. M. Cesari, G. Perego, A. Mazzei, Makromol. Chem., 83, 196 (1965). 404. H. Iiyama, M. Asakura, K. Kimoto, Kogyo Kagaku Zasshi, 68, 243 (1965). 405. I. Krishenbaum, J. Polym. Sci., Part A, 3, 1869 (1965). 406. H. Kojima, K. Yamaguchi, Kobunshi Kagaku, 19, 715 (1962). 407. E. Echochard, J. Chim. Phys. Phys.-Chim. BioL, 43, 113 (1946), through Ref., 402, p. 363. 408. F. A. Quinn, Jr., J. Powers, J. Polym. Sci., Part B, 1, 341 (1963). 409. G. Natta, M. Pegoraro, Atti Accad. Nazi. Lincei, CL Sci. Fis., Mat. Nat., Rend., 34, 110 (1963). 410. H. Tadokoro, S. Seki, I. Nitta, Bull. Chem. Soc. Japan., 28, 559 (1955). 411. G. Natta, F. Danusso, G. Moraglio, Makromol. Chem., 28, 166 (1958).
412. G. Natta, G. DaIl'Asta, G. Mazzanti, I. Pasquon, a. VaIvassori, A. Zambelli, Makromol. Chem., 54, 95 (1962); G. Natta, G. Allegra, I. W. Bassi, R Corradini, P. Ganis, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 36,433 (1964). 413. V. P. Lebedev, N. A. Okladnov, K. S. Minsker, B. R Shtarkman, Vysokomol. Soedin., 7, 655 (1965). 414. D. J. Lyman, J. Heller, M. Barlow, Makromol. Chem., 84, 64 (1965). 415. J. Boor, Jr., E. A. Youngman, J. Polym. Sci., Part B, 3, 577 (1965). 416. G. Carazzolo, L. Mortillaro, L. Credali, S. Bezzi, J. Polym. Sci., Part B, 2, 997 (1964); L. Mortillaro, L. credali, M. Russo, C. de Cheechi, J. Polym. Sci., Part B, 3, 581 (1965); G. Carazzolo, G. Valle, J. Polym. Sci., Part A, 3, 4013 (1965). 417. Ye. L. Gal'Perin, Yu. V. Strogalin, M. R Mlenik, Vysokomol. Soedin., 7, 933 (1965); Polym. Sci. USSR (Engl. Transl.), 7, 1031 (1965). 418. J. B. Lando, H. G. Olf, A. Peterlin, J. Polym. Sci., Part A-I, 4, 941 (1966). 419. K. Okamura, R. H. Marchessault, in G. N. Ramachandran, Ed., Conformation of Biopolymers, V. 2, Academic, New York, (1967), p. 709; J. Cornibert, R. H. Marchessault, J. MoI. Biol., 71, 735 (1972); K. Okamura, Kobunshi, 21, 525 (1972). 420. M. Donati, G. Perego, M. Farina, Makromol. Chem., 85, 301 (1965). 421. H. Komoto, K. Saotome, Kobunshi Kagaku, 22,337 (1965). 422. W. G. C. Forsyth, A. C. Hayward, J. B. Roberts, Nature (London), 182, 800 (1958). 423. A. Nakajima, H. Hamada, S. Hayashi, Makromol. Chem., 95, 40 (1966). 424. G. Natta, I. W. Bassi, G. Allegra, Makromol. Chem., 89, 81 (1965). 425. K. Miki, R. Nakatsuka, Rep. Progr. Polym. Phys. Japan., 8, 115 (1963). 426. W. D. Niegisch, J. Appl. Phys., 37, 4041 (1966); J. Polym. Sci., Part B, 4, 531 (1966). 427. Y Joh, T. Yoshihara, Y Kotake, F Ide, K. Nakatsuka, J. Polym. Sci., Part B, 3, 933 (1965); T. Yoshihara, Y Kotake, Y Joh, ibid., 5, 459 (1967). 428. C. G. Overberger, J. K. Weise, J. Polym. Sci., Part B, 2, 329 (1964); J. Am. Chem. Soc, 90, 3533 (1968). 429. R Corradini, I. W. Bassi, J. Polym. Sci., Part C, 16, 3233 (1968). 430. G. Natta, P. Corradini, R Ganis, R A. Temussi, J. Polym. Sci., Part C, 16, 2477 (1967). 431. M. G. Huguet, Makromol. Chem., 94, 205 (1966); H. D. Noether, J. Polym. Sci., Part C, 16, 725 (1967). 432. I. W. Bassi, R Ganis, R A. Temussi, J. Polym. Sci., Part C, 16, 2867 (1967). 433. R. K. Tubbs, J. Polym. Sci., Part A, 3, 4181 (1965). 434. G. Natta, G. Allegra, I. W. Bassi, D. Sianesi, G. Caporiccio, E. Torti, J. Polym. Sci., Part A, 3, 4263 (1965). 435. R. Bonart, Makromol. Chem., 92, 149 (1966). 436. G. Natta, G. DaIl'Asta, Chim. Ind. (Milan), 46, 1429 (1964).
437. C. G. Overberger, H. Kaye, G. Walsh, J. Polym. Sci., Part A, 2, 755 (1964). 438. H. Schnell, Angew. Chem., 68, 633 (1956). 439. G. Natta, G. Dall'Asta, I. W. Bassi, G. Carella, Makromol. Chem., 91, 87 (1966). 440. V. M. Coiro, R de Santis, L. Mazzarella, L. Picozzi, J Polym. Sci., Part A, 3, 4001 (1965). 441. J. A. Faucher, F. R Reding, in R. A. V. Raff, K. W. Doak, Eds., Crystalline Olefin Polymers, Part I, Interscience, New York, 1965, p. 677. 442. A. Turner-Jones, Polymer, 7, 23 (1966). 443. N. I. Makarevich, Zh. Prikl. Spektroskopii, 2, 341 (1965), through Chem. Abstr., 63, 8509a (1965). 444. J. R. Schaefgen, F. H. Koontz, R. F. Tietz, J. Polym. Sci., 40, 377 (1959). 445. T. B. Gibb, Jr., R. A. Clendinning, W. D. Niegisch, J. Polym. Sci., Part A-I, 4, 917 (1966). 446. H. Tadokoro, Y. Takahashi, Y Chatani, H. Kakida, Makromol. Chem., 109, 96 (1967); H. Kakida, D. Makino, Y Chatani, M. Kobayashi, H. Tadokoro, Macromolecules, 3, 569 (1970). 447. J. B. Rose, J. Chem. Soc, 542, ibid., 546 (1956). 448. M. Cesari, G. Perego, W. Marconi, Makromol. Chem., 94, 194 (1966). 449. I. I. Novak, V. I. Vettegren, Vysokomol. Soedin., 7, 1027 (1965); Polym. Sci. USSR (Engl. Transl.), 7, 1136 (1965). 450. F. Hamada, A. Nakajima, Kobunshi Kagaku, 23, 395 (1966). 451. G. Moraglio, G. Polizzotti, F. Danusso, Eur. Polym. J., 1, 183 (1965). 452. K.-S. Chan, Ph.D. Thesis, State Univ. College of Forestry at Syracuse Univ., Diss. Abstr., 26, 4260 (1966). 453. J. G. Smith, C. J. Kibler, B. J. Sublett, J. Polym. Sci., Part A-I, 4, 1851 (1966). 454. K. Saotome, H. Komoto, J. Polym. Sci., Part A-I, 4, 1463 (1966). 455. K. F. Wissbrun, J. Polym. Sci., Part A-2, 4, 827 (1966). 456. R Ganis, R A. Temussi, Eur. Polym. J., 2, 401 (1966). 457. R. J. Fredericks, T. H. Doyne, R. S. Spraque, J. Polym. Sci., Part A-2, 4, 899 (1966). 458. R. J. Fredericks, T. H. Doyne, R. S. Spraque, J. Polym. Sci., Part A-2, 4, 913 (1966). 459. T. Ota, M. Yamashita, O. Yoshizaki, E. Nagai, J. Polym. Sci., Part A-2, 4, 959 (1966). 460. H. Tadokoro, J. Polym. Sci., Part C, 15, 1 (1966). 461. H. Yasuda, Y. Tanada, M. Takayanagi, Kogyo Kagaku Zasshi, 69, 304 (1966). 462. R. W. Eykamp, A. M. Schneider, E. W. Merrill, J. Polym. Sci., Part A-2, 4, 1025 (1966). 463. G. Carazzolo, M. Mammi, J. Polym. Sci., Part C, 16, 1521 (1967); Makromol. Chem., 100, 28 (1967). 464. K. Chujo, H. Kobayashi, J. Suzuki, S. Tokuhara, M. Tanabe, Makromol. Chem., 100, 262 (1967). 465. K. Chujo, H. Kobayashi, J. Suzuki, S. Tokuhara, Makromol. Chem., 100, 267 (1967). 466. W. Braun, K.-H. Hellwege, W. Knappe, Kolloid Z. Z. Polym., 215, 10 (1967).
467. M. Hayashi, Y. Shiro, H. Murata, Bull. Chem. Soc. Japan, 39, 1857 (1966). 468. M. Hayashi, Y. Shiro, H. Murata, Bull. Chem. Soc. Japan., 39, 1861 (1966). 469. F. Tuinstra, Acta Crystallogr., 20, 341 (1966). 470. B. M. Ginzburg, L. N. Korzhavin, S. Ya. Frenkel', L. A. laius, M. B. Adrova, Vysokomol. Soledin., 8, 278 (1966); Polym. Sci. USSR (Engl. TransL), 8, 302 (1966). 471. F. E. Karasz, J. M. O'Reilly, H. E. Bair, R. A. Kluge, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 9, 822 (1968). 472. P. E. Slade, T. A. Orofino, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 9, 825 (1968). 473. W. J. MacKnight, M. Yang, T. Kajima, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 9, 860 (1968). 474. V. G. Baranov, Bu. Zhu-Chan, T. I. Volkov, S. Ya. Frenkel', Vysokomol. Soedin., Ser. A, 9, 81 (1967); Polym. Sci. USSR (Engl. TransL), 9, 87 (1967). 475. P. Kovacic, M. B. Feldman, J. P. Kovacic, J. B. Lando, J. Appl. Polym. Sci., 12, 1735 (1968). 476. I. W. Bassi, G. Fagherazzi, Eur. Polym. J., 4, 123 (1968). 477. G. Fagherazzi, I. W. Bassi, Eur. Polym. J., 4, 151 (1968). 478. F. Danusso, G. Gianotti, Eur. Polym. J., 4, 165 (1968). 479. C. G. Overberger, T. Takekoshi, Macromolecules, 1, 7 (1968). 480. K. Kikukawa, S. Nozakura, S. Murahashi, Kobunshi Kagaku, 25, 19 (1968). 481. H. K. Reimschuessel, L. G. Roldan, J. P. Sibilia, J. Polym. Sci., Part A-2, 6, 559 (1968); H. K. Reimschuessel, Trans. N. Y Acad. Sci., 33, 219 (1971). 482. S. Kobayashi, H. Tadokoro, Y. Chatani, Makromol. Chem., 112, 225 (1968). 483. F. J. Golemba, J. E. Guillet, S. C. Nyburg, J. Polym. Sci., Part A-I, 6, 1341 (1968). 484. E E. Karasz, H. E. Bair, J. M. O'Reilly, J. Polym. Sci., Part A-2, 6, 1141 (1968). 485. A. Turner-Jones, A. J. Cobbold, J. Polym. Sci., Part B, 6, 538 (1968); R. J. Samuels, R. H. Yee, J. Polym. Sci., Part A2, 10, 385 (1972). 486. J. J. Klement, R H. Geil, J. Polym. Sci., Part A-2, 6, 1381 (1968). 487. H. M. van Doit, C. A. M. Hoefs, E. P. Magre', A. J. Schopf, K. Yntema, Eur. Polym. J., 4, 275 (1968); J. Boon, E. P. Magre', Makromol. Chem., 126, 130 (1969). 488. G. Natta, P. Corradini, I. W. Bassi, G. Fagherazzi, Eur. Polym. J., 4, 297 (1968). 489. A. Carbonaro, A. Greco, I. W. Bassi, Eur. Polym. J., 4, 445 (1968); I. W. Bassi, G. Chioccola, ibid., 5, 163 (1969). 490. Y. Chatani, K. Suehiro, Y. Okita, H. Tadokoro, K. Chujo, Makromol. Chem., 113, 215 (1968). 491. J. Masamoto, K. Sasaguri, C. Ohizumi, H. Kobayashi, J. Polym. Sci., Part A-2, 8, 1703 (1970); J. Masamoto, H. Kobayashi, Kobunshi Kagaku 27, 220 (1970). 492. H. Utsunomiya, T. Mori, K. Imada, M. Takayanagi, Rep. Progr. Polym. Phys. Japan, 11, 153 (1968). 493. S. Minami, S. Manabe, M. Takayanagi, Rep. Progr. Polym. Phys. Japan., 11, 155 (1968); S. Manabe, S. Minami, M. Takayanagi, Kogyo Kagaku Zasshi, 73, 1577 (1970).
494. S. Takamuku, K. Imada, M. Takayanagi, Rep. Progr. Polym. Phys. Japan, 11, 159 (1968); M. Kuroishi, M. Fujisaki, T. Kajiyama, M. Takayanagi, Nippon Kagaku Kaishi, 1281 (1972). 495. K.-H. Illers, H. Haberkorn, Makromol. Chem., 146, 267 (1971). 496. S. Iwayanagi, I. Sakurai, T. Sakurai, T. Seto, Rep. Propgr. Polym. Phys. Japan, 10, 167 (1967); J. Macromol. Sci. B: Phys., 2, 163 (1968). 497. H. Tadokoro, Y Takahashi, S. Otsuka, K. Mori, F. Imaisumi, J. Polym. Sci., Part B, 3, 697 (1965); H. Tadokoro, M. Kobayashi, K. Mori, Y. Takahashi, S. Taniyan, Rep. Progr. Polym. Phys. Japan., 10, 181 (1967); idem., J. Polym. Sci., Part C, 22, 1031 (1969). 498. C. Booth, C. J. Devoy, G. Gee, Polymer, 12, 327 (1971). 499. T. Yubayashi, H. Sato, N. Yamada, Rep. Progr. Polym. Phys. Japan, 10, 271 (1967). 500. H. Ailhaud, Y Gallot, A. Skoulios, C. R. Hebd. Seances Acad. Sci., Ser. C, 267, 139 (1968). 501. G. Giannotti, A. Capizzi, Eur. Polym. J., 4, 677 (1968). 502. D. Fisher, Proc Phys. Soc. London, Sect. B, 66, 7 (1953). 503. Unpublished work of H. Scherer, in H. Bestian, Angew. Chem., Int. Ed. Engl., 7, 278 (1968). 504. Y Takahashi, H. Tadokoro, Y Chatani, J. Macromol. Sci. B: Phys., 2, 361 (1968). 505. E. F. Oleinik, N. S. Yenikolopyan, Vysokomol. Soedin., Ser. A, 9,2609 (1967); Polym. Sci. USSR (Engl. TransL), 9, 2951 (1967). 506. M. Okada, Y. Yamashita, Y. Ishii, Makromol. Chem., 80, 196 (1964). 507. C. H. Bamford, L. Brown, A. Elliott, W. E. Hanby, I. F. Trotter, Nature (London), 173, 27 (1954); L. Brown, I. F. Trotter, Trans. Faraday Soc, 52, 537 (1956); A. Elliott, B. R. Malcolm, Proc R. Soc. London, Ser. A, 249, 30 (1959). 508. C. S. Marvel, G. E. Hartzell, J. Am. Chem. Sco., 81, 448 (1959). 509. S. Arnott, S. D. Dover, A. Elliott, J. MoL BioL, 30, 201 (1967). 510. P. M. Cowan, S. McGavin, Nature (London), 176, 501 (1955). 511. V. Sasisekharan, Acta Crystallogr., 12, 897 (1959). 512. S. Arnott, S. D. Dover, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 24, 599 (1968). 513. T. Uchida, H. Tadokoro, J. Polym. Sci., Part A-2, 5, 63 (1967). 514. M. Goodman, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 10, 36 (1969). (Pseudohexagonal cell based on equatiorial reflections). 515. H. Sakakihara, Y. Takahashi, H. Tadokoro, R Sigwalt, N. Spassky, Macromolecules, 2, 515 (1969). 516. N. Yasuoka, N. Kasai, M. Kakudo, T. Ando, S. Kuribayashi, Japan Rep. Progr. Polym. Phys. Jpn., 11, 149 (1968). 517. C. L. Lee, O. K. Johannson, O. L. Flaningam, P. Hahn, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 10, 1311 (1969).
518. C. L. Lee, O. K. Johannson, O. L. Flaningam, P. Hahn, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 10, 1319 (1969); D. R. Peterson, D. R. Carter, C. L. Lee, J. Macromol. Sci. B: Phys., 3, 519 (1969). 519. M. Hikosaka, T. Seto, Rep. Progr. Polym. Phys. Japan, 12, 153 (1969); Polym. J. (Tokoyo), 5, 111 (1973). 520. H. Tadokoro, Kobunshi, 19, 775 (1970); H. Tadokoro, Y. Chatani, H. Kusanagi, M. Yokayama, Macromolecules, 3, 441 (1970). 521. T. Kanamoto, H. Nagai, K. Tanaka, Rep. Progr. Polym. Phys. Japan, 9, 135 (1966); T. Kanamoto, K. Tanaka, H. Nagai, J. Polym. Sci., Part A-2, 9, 2043 (1971); T. Kanamoto, J. Polym. Sci., Polym. Phys. Ed., 12, 2535 (1974). 522. U. Schmueli, W. Traub, K. Rosenheck, J. Polym. Sci., Part A-2, 7, 515 (1969). 523. S. Y. Hobbs, F. W. Billmeyer, Jr., J. Polym. Sci., Part A-2,7, 1119(1969). 524. A. R. Schultz, C. R. McCullough, J. Polym. Sci., Part A-2, 7, 1577 (1969). 525. S. Murahashi, M. Kamachi, N. Wakabayashi, J. Polym. Sci., Part B, 7, 135 (1969). 526. H. D. Noether, C. G. Overberger, G. Halek, J. Polym. Sci., Part A-I, 7, 201 (1969). 527. E. J. Vandenberg, J. Polym. Sci., Part A-I, 7, 525 (1969). 528. G. Natta, J. di Pietro, M. Cambini, Makromol. Chem., 56, 200 (1962). 529. A. Kawaguchi, T. Ikawa, Y. Fujiwara, K. Monobe, Rep. Progr. Polym. Phys. Japan, 9, 157 (1966); A. Kawaguchi, T. Ikawa, Y. Fujiwara, M. Tabuchi, K. Monobe, J. Macromol. Sci. B: Phys., 20, 1 (1981). 530. G. Natta, I. W. Bassi, Eur. Polym. J., 3,43 (1967); G. Natta, I. W. Bassi, G. Fagherazzi, ibid., 339, G. Natta, I. W. Bassi, G. Fagherazzi, ibid., 5, 239 (1969). 531. E. W. Fischer, F. Kloos, G. Lieser, J. Polym. Sci., Part B, 7, 845 (1969). 532. K. Ishikawa, K. Miyasaka, T. Okabe, Makromol. Chem., 122, 123 (1969). 533. E. F. Vainshtein, M. Ya. Kusherev, A. A. Popov, S. G. Entelis, Vysokomol. Soedin., Ser. A, 11, 1606 (1969); Polym. Sci. USSR (Engl. Transl.), 11, 1820 (1969). 534. A. Mattiussi, G. B. Gechele, M. A. Paresi, A. Rondanelli, Chim. Ind. (Milan), 51, 376 (1969). 535. P. Zugenmaier, H.-J. Cantow, Kolloid Z. Z. Polym., 230, 229 (1969). 536. W. P. Baker, Jr., J. Polym. Sci., Part A, 1, 655 (1963). 537. A. Turner-Jones, Polymer, 6, 249 (1965). 538. A. Kovacs, private comminucation. 539. P. W. T. Willmott, F. W. Billmeyer, Jr., Off. Dig. Fed. Soc. Paint Technol. Eng., 35, 847 (1963). 540. H. Schnell, Ind. Eng. Chem., 51, 157 (1959). 541. R. A. Wessling, J. E. Mark, R. E. Hughes, J. Phys. Chem., 70, 1909 (1966). 542. T. P Hobin, Polymer, 7, 367 (1966). 543. Y. Iwakura, Y. Taneda, S. Uchida, J. Appl. Polym. Sci., 5, 108 (1961). 544. A. J. Yu, R. D. Evans, J. Polym. Sci., 62, 249 (1960).
545. J. Boor, Jr., E. A. Youngman, J. Polym. Sci., Part A-I, 4, 1861 (1966). 546. H. E. Lunk, E. A. Youngman, J. Polym. Sci., Part A, 3,2983 (1965). 547. C. J. Kibler, A. Bell, J. G. Smith, J. Polym. Sci., Part A, 2, 2115 (1964). 548. E. J. Vandenberg, J. Polym. Sci., Part A-I, 10, 329 (1972). 549. P. Corradini, P. Ganis, V. Petraccone, Eur. Polym. J., 6, 281 (1970). 550. K. Suehiro, M. Takayanagi, J. Macromol. Sci. B: Phys., 4, 39 (1970). 551. C. Borri, S. Bruckner, V. Crescenzi, G. Delia Fortuna, A. Mariano, R Scarazzoto, Eur. Polym. J., 7, 1515 (1971). 552. H. R. Allcock, R. L. Kugel, K. J. Valan, Inorg. Chem., 5, 1709 (1966). 553. G. Allen, C. J. Lewis, S. M. Todd, Polymer, 11, 44 (1970). 554. V. Y. Chen, G. Allegra, P. Corradini, M. Goodman, Macromolecules, 3, 274 (1970). 555. G. Perego, M. Cesari, Makromol. Chem., 133, 133 (1970). 556. W. R. Krigbaum, J. H. O'Mara, J. Polym. Sci., Part A-2, 8, 1011 (1970). 557. C. Gieniewski, R. S. Moore, Macromolecules, 3, 97 (1970). 558. H. Kanetsuna, M. Hasegawa, S. Mitsuhashi, T. Kurita, K. Sasaki, K. Maeda, H. Obata, T. Hatakeyama, J. Polym. Sci., Part A-2, 8, 1027 (1970). 559. H. Bittiger, R. H. Marchessault, W. D. Niegisch, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 26, 1923 (1970). 560. F. J. Van Natta, J. W. Hill, W. H. Carothers, J. Am. Chem. Soc, 56, 455 (1934). 561. Y. Chatani, Y. Okita, H. Tadokoro, Y. Yamashita, Polym. J. (Tokyo), 1, 555 (1970). 562. G. Gianotti, A. Capizzi, Eur. Polym. J., 6, 743 (1970). 563. W. W. Doll, J. B. Lando, J. Macromol. Sci. B: Phys., 4, 309 (1970). 564. H. Nakanishi, N. Nakano, M. Hasegawa, J. Polym. Sci., Part B, 8, 755 (1970); H. Nakanishi, M. Hasegawa, Y. Sasada, J. Polym. Sci., Part A-2, 10, 1537 (1972); H. Nakanishi, M. Hasegawa, Y. Sasada, J. Polym. Sci., Polym. Lett. Ed., 17, 459 (1979). 565. Y. Chatani, S. Nakatani, H. Tadokoro, Macromolecules, 3, 481 (1970). 566. J. P. Mercier, R. Legras, J. Polym. Sci., Part B, 8, 645 (1970). 567. D. R. Beech, C. Booth, J. Polym. Sci., Part B, 8, 731 (1970). 568. E. G. Lovering, D. C. Wooden, J. Polym. Sci., Part A-2, 9, 175 (1971). 569. I. W. Bassi, O. Bonsignori, G. P. Lorenzi, P. Pino, P. Corradini, R A. Temussi, J. Polym. Sci., Part A-2, 9, 193 (1971). 570. J. R. Shelton, J. B. Lando, D. E. Agostini, J. Polym. Sci., Part B, 9, 173 (1971). 571. S. Y. Hobbs, F. W. Billmeyer, Jr., J. Polym. Sci., Part A-2,8, 1387 (1970).
572. M. Hachiboshi, T. Fukuda, S. Kobayashi, J. Macromol. Sci. B: Phys., 3,525 (1969); S. Kobayashi, M. Hachiboshi, Rep. Progr. Polym. Phys. Japan, 13, 157 (1970). 573. S. Kobayashi, M. Hachiboshi, Rep. Progr. Polym. Phys. Japan, 13, 161 (1970). 574. A. R. Shultz, C. R. McCullough, J. Polym. Sci., Part A-2, 10, 307 (1972). 575. G. Hinrichsen, H. Orth, Kolloid Z. Z. Polym., 247, 844 (1971). 576. C. H. Bamford, L. Brown, A. Elliott, W. E. Hanby, I. F. Trotter, Nature (London), 169, 357 (1952). 577. H. L. Yakel, Acta Crystallogr., 6, 724 (1953). 578. A. Elliott, R. D. B. Fraser, T. P. Macrae, I. W. Stapleton, E. Suzuki, J. MoI. Biol., 9, 10 (1964). 579. E. M. Bradbury, L. Brown, A. R. Downie, A. Elliott, W. E. Hanby, T. R. R. McDonald, J. MoI. Biol., 2, 276 (1960). 580. V. Sasisekharan, Acta Crystallogr., 12, 903 (1959). 581. W. J. Astbury, Nature (London), 163, 722 (1949). 582. E. M. Bradbury, L. Brown, A. R. Downie, A. Elliott, W. E. Hanby, J. MoI. Biol., 5, 230 (1962). 583. Y. Mitsui, Acta Crystallogr., 20, 694 (1966). 584. A. Elliott, R. D. B. Fraser, T. P. Macrae, J. MoI. Biol., 11, 821 (1965). 585. H. D. Keith, F. J. Padden, Jr., G. Giannoni, J. MoI. Biol., 43, 423 (1969). 586. F. J. Padden, Jr., H. D. Keith, G. Giannoni, Biopolymers, 7, 793 (1969). 587. C. H. Bamford, A. Elliott, W. E. Hanby, Synthetic PoIyPeptides. Preparation, Structure, Properties, Academic, New York, p. 272, (1956). 588. L. Pauling, R. B. Corey, Proc. Natl. Acad. Sci. USA, 37,241 (1951). 589. C. H. Bamford, L. Brown, A. Elliott, W. E. Hanby, I. F. Trotter, Proc. R. Soc. London, Ser. B, 141, 49 (1953). 590. W. Traub, U. Shmueli, Nature (London), 198, 1165 (1963). 591. R. D. B. Fraser, T. P. macrae, F. H. C. Stewart, E. Suzuki, J. MoI. Biol., 11, 706 (1965). 592. D. R. Morrow, B. A. Newman, J. Appl. Phys., 39, 4944 (1968). 593. S. Kambara, A. Takahashi, Makromol. Chem., 58, 226 (1962). 594. K. Kaji, Thesis, Dept. of Polymer Chem., Kyoto Univ., 1970; K. Kaji, I. Sakurada, Makromol. Chem., 148, 261 (1971); K. Kaji, Kyoto Daigaku Nippon Kagakuseni Kenkyusho Koenshu, 28, 1 (1971); through Chem. Abstr., 78, 136889q (1973). 595. S. Kubo, B. Wunderlich, J. Appl. Phys., 42, 4565 (1971); J. Polym. Sci., Polym. Chem. Ed., 10, 1949 (1972); Makromol. Chem., 162, 1 (1972); R. Iwamoto, B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 11, 2403 (1973). 596. J. C. Andries, J. M. Anderson, A. G. Walton, Biopolymers, 10, 1049 (1971). 597. Ye. L. Gal'Perin, B. P. Kosmynin, Vysokomol. Soedin., Ser. A, 11,1432 (1969) - Polym. Sci. USSR (Engl. Transl.), 11, 1624 (1969). 598. F. E. Karasz, D. Mangaraj, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 12, 317 (1971).
599. I. Bowman, D. S. Brown, R. E. Wetton, Polymer, 10, 715 (1969). 600. G. A. Clegg, D. R. Gee, T. P. Melia, A. Tyson, Polymer, 9, 501 (1968). 601. S. Mitsuhashi, Kogyo Kagaku Zasshi, 72, 2160 (1969). 602. F. J. Boerio, J. L. Koenig, J. Chem. Phys., 54, 3667 (1971). 603. I. V. Kumpanenko, K. S. Kazanskii, N. V. Ptitsyna, M. Ya. Kushnerev, Vysokomol. Soedin., Ser. A, 12, 822 (1970); Polym. Sci., USSR (Engl. Transl.), 12, 930 (1970). 604. R. Hasegawa, M. Kobayashi, H. Tadokoro, Polym. J. (Tokyo), 3, 591 (1972); R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, ibid., 600, Y. Takahashi, Y. Matsubara, H. Tadokoro, Macromolecules, 16, 1588 (1983). 605. D. G. Graber, Microscope, 18, 203 (1970). 606. Y. Takeda, Y. Iitaka, M. Tsuboi, J. MoI. Biol., 51, 101 (1970). 607. A. Kimura, S. Yoshimoto, Y. Akana, H. Hirata, S. Kusabayashi, H. Mikawa, N. Nasai, J. Polym. Sci., Part A-2, 8, 643 (1970). 608. P. Pino, G. P. Lorenzi, E. Chiellini, Ric. Sci., 34, 193 (1964). 609. K. W. Doak, H. N. Campbell, J. Polym. Sci., 18, 215 (1955). 610. J. W. Fisher, J. Appl. Chem., 4, 212 (1954). 611. V. Enkelmann, G. Schleier, in V. Enkelmann, Adv. Polym. Sci., 63, 92 (1984). 612. V. N. Rogulenkova, M. I. Millionova, N. S. Andreeva, J. MoI. Biol., 9, 253 (1964). 613. W. Traub, A. Yonath, J. MoI. Biol., 16, 404 (1966); A. Yonath, W. Traub, ibid., 43, 461 (1969). 614. W. Traub, A. Yonath, J. MoI. Biol., 25, 351 (1967). 615. W. Traub, J. MoI. Biol., 43, 479 (1969). 616. D. M. Segal, W. Traub, J. MoI. Biol., 43, 487 (1969). 617. G. D. Buckley, L. H. Cross, N. H. Ray, J. Chem. Soc, 2714, (1950). 618. G. Saini, E. Campi, S. Parodi, Gazz. Chim. Ital., 87, 342 (1957). 619. A. Nasini, J. Polym. Sci., 34, 106 (1959). 620. W. L. Truett, D. R. Johnson, I. M. Robinson, B. A. Montague, J. Am. Chem. Soc, 82, 2337 (1960). 621. S. Horikiri, J. Polym. Sci., Part A-2, 10, 1167 (1972). 622. V. Petraccone, P. Ganis, P. Corradini, G. Montagnoli, Eur. Polym. J. 8, 99 (1972). 623. V. Crescenzi, G. Manzini, G. Calzolari, C. Borri, Eur. Polym. J., 8, 449 (1972). 624. S. F. Bermudez, J. M. G. Fatou, Eur. Polym. J., 8,575 (1972). 625. V. Petraccone, B. Pirozzi, R Corradini, Eur. Polym. J., 8, 107 (1972). 626. Z. Mencik, J. Macromol., Sci. B: Phys., 6, 101 (1972). 627. Y. Saito, S. Nansai, S. Kinoshita, Polym. J. (Tokyo), 3, 113 (1972). 628. H. Wilski, Kolloid Z. Z. Polym., 248, 867 (1971). 629. Y Miyamoto, C. Nakafuku, T. Takemura, Polym. J. (Tokyo), 3, 122 (1972). 630. E. Martuscelli, Makromol. Chem., 151, 159 (1972).
631. K. A. Andrianov, G. L. Slonimskii, A. A. Zhdanov, V. Yu. Levin, Yu. K. Godovskii, V. A. Moskalenko, J. Polym. ScL, Part A-I, 10, 1 (1972). 632. R. Backsai, J. E. Goodrich, J. B. Wilkes, J. Polym. ScL, Part A-I, 10, 1529 (1972). 633. O. Bayer, Angew. Chem. A, 59, 257 (1947). 634. K. Saotome, H. Komoto, J. Polym. ScL, Part A-I, 5, 119 (1967). 635. J. P. Sibilia, L. G. Roldan, S. Chandrasekaran, J. Polym. ScL, Part A-2, 10, 549 (1972). 636. H. Bittiger, E. Husemann, J. Polym. ScL, Part B, 10, 367 (1972). 637. M. Ragazzini, C. Garbuglio, D. Carcano, B. Minasso, G. Cevidalli, Eur. Polym. J., 3, 129 (1967); C. Garbuglio, M. Ragazzini, O. Pilati, D. Carcano, G. Cevidalli, ibid., 137. 638. T. Takizawa, T. Sano, Y. Chatani, I. Taguchi, Preprints of the 6th Polymer Symp., Polymer Phys. Div. (Nagoyan), p. 83, Oct. 1957; Y. Chatani, I. Taguchi, T. Sano, T. Takizawa, Annu. Rept. Inst. Textile ScL Japan, 13, 37 (1960), through K. fujii, J. Polym. ScL, Part D, 5, 431 (1971). 639. G. Gianotti, G. Dall'Asta, A. Valvassori, V. Zamboni, Makromol. Chem., 149, 117 (1971); G. Dall'Asta, ibid., 154, 1 (1972). 640. H. Wilski, Makromol. Chem., 150, 209 (1971). 641. M. Suwalsky, W. Traub, Biopolymers, 11, 623 (1972). 642. L. G. Kazaryan, Ye. G. Lur'e, L. A. Igonin, Vysokomol. Soedin., Ser. B, 11, 779 (1969); Ye. G. Lur'e, L. G. Kazaryan, E. L. Uchastkina, V. V. Kovriga, K. N. Vlasova, M. L. Dobrokhotova, L. M. Yemel'Yanova, Vysokomol. Soedin., Ser. A, 13, 606 (1971); Polym. ScL, USSR (Engl. Transl.), 13, 685 (1971). 643. K. J. Palmer, M. Ballantyne, J. Am. Chem. Soc, 72, 736 (1950). 644. R. E. Rundle, L. Daasch, D. French, J. Am. Chem. Soc, 66, 130 (1944). 645. D. R. Kreger, Biochim. Biophys. Acta, 6, 406 (1951); L. C. Spark, ibid., 8, 101 (1952). 646. R. E. Rundle, F. C. Edwards, J. Am. Chem. Soc, 65, 2200 (1943); F. F. Mikus, R. M. Hixon, R. E. Rundle, ibid., 68, 1115 (1946). 647. R. S. J. Manley, J. Polym. ScL, Part A-2, 2, 4503 (1964). 648. A. Sarko, R. H. Marchessault, J. Am. Chem. Soc, 89, 6454 (1967). 649. W. T. Winter, A. Sarko, Biopolymers, 11, 849 (1972); ibid., 13, 1461 (1974). 650. F. R. Senti, L. P. Witnauer, J. Am. Chem. Soc, 70, 1438 (1948). 651. R. E. Rundle, D. French, J. Am. Chem. Soc, 65, 1707 (1943). 652. D. Carlstrom, J. Biophys. Biochem. Cytol., 3, 699 (1957), quoted in R. H. Marchessault, A. Sarko, Adv. Carbohydr. Chem., 22, 421 (1967). 653. N. E. Dweltz, Biochim. Biophys. Acta, 51, 283 (1961). 654. I. M. Mackie, E. E. Percival, J. Chem. Soc, 1151 (1959). quoted in R. H. Marchessault, A. Sarko, Adv. Carbohydr. Chem., 22 421 (1967).
655. R. H. Marchessault, W. Settineri, J. Polym. ScL, Part B, 2, 1047 (1964); W. Settineri, R. H. Marchessault, J. Polym. ScL, Part C, 11, 253 (1965). 656. S. M. Gabbay, P. R. Sundararajan, R. H. Marchessault, Biopolymers, 11, 79 (1972). 657. N. Lanzetta, G. Maglio, C. Marchetta, R. Palumbo, Preprint 111-36, IUPAC Symposium on Macromolecules, Helsinkii, July 2-7, 1972; G. Maglio, C. marchetta, R. Palumbo, F. Riva, M. de Simone, Makromol. Chem., 156, 321 (1972); N. Lanzetta, G. Maglio, C. Marchetta, R. Palumbo, J. Polym. ScL, Polym. Chem. Ed., 11, 913 (1973). 658. A. I. Koltsov, Yu. G. Baklagina, B. M. Ginzburg, L. N. Korzhavin, M. M. Koton, N. V. Mikhailova, V. N. Nikitin, A. V. Sidorovich, J. Polym. ScL, Polym. Symp., 42, 867 (1973); N. A. Adrova, A. I. Artyukhov, Yu. G. Baklagina, T. I. Borisova, M. M. Koton, N. V. Mikhailova, V. N. Nikitin, A. V. Sidorovich, Vysokomol. Soedin., Ser. A, 15, 153 (1973); Polym. ScL, USSR (Engl. Trans.) 15, 175 (1973); Yu. G. Baklagina, N. V. Mikhailova, V. N. Nikitin, A. V. Sidorovich, L. N. Korzhavin, Vysokomol. Soedin., Ser. A, 15, 2738 (1973); Polym. ScL, USSR (Engl. Transl.), 15, 3109 (1973). 659. E. D. T. Atkins, C. F. Phelps, J. K. Sheehan, Biochem. J., 128, 1255 (1972); E. D. T. Atkins J. K. Sheehan, Nature (London), New Biol., 235,253 (1972); J. K. Sheehan, E. D. T. Atkins, I. A. Nieduszynski, J. MoI. Biol., 91,153 (1975). 660. M. G. Northolt, B. J. Tabor, J. J. van Aartsen, J. Polym. ScL, Part A-2, 10, 191 (1972). 661. F. R. Senti, L. P. Witnauer, J. Polym. ScL, 9, 115 (1952). 662. W. Z. Borchert, Angew. Chem., 63, 31 (1951). 663. P. de Santis, A. Kovacs, Biopolymers, 6, 299 (1968). 664. S. Ishida, Bull. Chem. Soc. Japan, 33, 924 (1960). 665. A. M. Afifi-Effat, J. N. Hay, J. Chem. Soc, Faraday Trans. 2, 68,656 (1972). 666. U. Shmueli, W. Traub, J. MoI. Biol., 12, 205 (1965). 667. A. D. French, H. F. Zobel, Biopolymers, 5, 457 (1967). 668. B. Zaslow, Biopolymers, 1, 165 (1963). 669. N. E. Dweltz, Biochim. Biophys. Acta, 44, 416 (1960). 670. W. Lotmar, L. E. R. Picken, Experientia, 6, 58 (1950). 671. I. A. Nieduszynski, R. H. Marchessault, Nature (London), 232, (46 (1971); Biopolymers, 11, 1335 (1972). 672. H. Bittiger, R. H. Marchessault, Carbohydr. Res., 18, 469 (1971). 673. E. D. T. Atkins, W. Mackie, E. E. Smolko, Nature (London), 225, 626 (1970); E. D. T. Atkins, W. Mackie, K. D. Parker, E. E. Smolko, J. Polym. ScL, Part B, 9, 311 (1971); E. D. T. Atkins, I. A. Nieduszynski, W. Mackie, K. D. Parker, E. E. Smolko, Biopolymers, 12, 1865 (1973). 674. W. T. Astbury, Nature, (London), 155, 667 (1945). 675. A. S. Ueda, Y Chatani, H. Tadokoro, Polym. J. (Tokyo), 2 387 (1971). 676. J. G. Fatou, Eur. Polym. J., 7, 1057 (1971). 677. B. J. Tabor, E. R Magre', J. Boon, Eur. Polym. J., 7, 1127 (1971). 678. W. H. Carothers, J. A. Arvin, G. L. Dorough, J. Am. Chem. Soc, 5, 3292 (1930). 679. S. Tsunawaki, C. C. Price, J. Polym. ScL, Part A, 2, 1511 (1964).
680. G. Cojazzi, A. Fichera, C. Garbuglio, V. Malta, R. Zannetti, Chim. Ind. (Milan), 54, 40 (1972); Makromol. Chem, 168, 289 (1973). 681. H. D. Flack, J. Polym. ScL, Part A-2, 10, 1799 (1972). 682. A. Capizzi, G. Gianotti, Makromol. Chem., 157, 123 (1972). 683. G. Perego, A. Melis, M. Cesari, Makromol. Chem., 157, 269 (1972). 684. L. G. Kazaryan, D. Ya. Tsvankin, B. M. Ginzburg, S. Taychiev, L. N. Korzhavin, S. Ya. Frenkel', Vysokomol. Soedin., Ser. A, 14,1199 (1972) - Polym. ScL USSR (Engl. Transl.), 14,1344 (1972); Yu. G. Baklagina, V. P. Sklzkova, V. V. Kudryavtsev, N. D. Kozhurnikova, V. V Klechkovskaya, L. G. Yanusova, N. D. Stepina, L. A. Feigin, Polym. ScL, Ser. A, 37, 847 (1995). 685. P. Corradini, E. Martuscelli, G. Montagnoli, V. Petraccone, Eur. Polym. J., 6, 1201 (1970). 686. S. Sasaki, Y Takahashi, H. Tadokoro, Polym. J. (Tokyo), 4, 172 (1973). 687. Y. Gotoh, H. Sakakihara, H. Tadokoro, Polym. J. (Tokyo), 4, 68 (1973). 688. S. Sasaki, Y. Takahashi, H. Tadokoro, J. Polym. ScL, Polym. Phys. Ed., 10, 2363 (1972). 689. H. Tadokoro, in G. Allen, Ed. Molecular Structure and Properties (Physical Chemistry, Series One, V.2) (MTP International Review of Science) Butterworths, London, p. 45 (1972). 690. H. Tadokoro, private communication, 30 September 1972. 691. N. Doddi, W. C. Forsman, C. C. Price Macromolecules, 4, 648 (1971). 692. H. Tani, N. Oguni, J. Polym. ScL, Part B, 7, 803 (1969). 693. G. Allen, C. Booth, S. J. Hurst, C. Price, F. Vernon, R. E Warren, Polymer, 8, 406 (1967). 694. P. Dumas, N. Spassky, P. Sigwalt, Makromol. chem., 156, 55 (1972). 695. J. W. Hill, W. H. Carothers, J. Am. Chem. Soc, 57, 925 (1935). 696. R. Nakatsuka, Bull. Chem. Soc. Japan, 36, 1294 (1963). 697. H. K. Illers, H. Haberkorn, P. Simak, Makromol. Chem., 158, 285 (1972). 698. K. Teranishi, T. Araki, H. Tani, Macromolecules, 5, 660 (1972). 699. Y. Chatani, quoted in Y Chatani, S. Nakatani, Macromolecules, 5, 597 (1972). 700. M. J. Richardson, J. Polym. ScL, Part C, 38, 251 (1972). 701. W. Traub, U. Shmueli, M. Suwalsky, A. Yonath, in: G. N. Ramachandran, (Ed.), "Conformation of Biopolymers", vol. 2, Academic, New York, p. 449 (1967). 702. B. K. Vainshtein, L. I. Tatarinova, in: G. N. Ramachandran (Ed.), "Conformation of Biopolymers", vol. 2, Academic, New York, p. 569 (1967). 703. D. B. Green, F. Happey, B. M. Watson, in: G. N. Ramachandran (Ed.), "Conformation of Biopolymers", vol. 2, Academic, New York, p. 617 (1967) Eur. Polym. J., 6, (1970). 704. H. Sumitomo, K. Kobayashi, T. Saji, J. Polym. ScL, Polym Chem. Ed., 10, 3421 (1972).
705. E. D. T. Atkins, R. Gaussen, D. H. Isaac, V. Nandanwar, J. K. Sheehan, J. Polym. ScL, Polym. Lett. Ed., 10, 863 (1972). 706. I. Yahara, K. Imahori, Y. Iitaka, M. Tsuboi, J. Polym. ScL, Part B, 1, 47 (1963). 707. L. Porri, M. C. Gallazzi, Eur. Polym. J., 2, 189 (1966). 708. B. J. Poppleton, A. M. Mathieson, Nature (London), 219, 1046 (1968). 709. K. C. Ellis, J. O. Warwicker, J. Polym. ScL, 56, 339 (1962). 710. I. C. M. Dea, R. Moorhouse, D. A. Rees, S. Arnott, J. M. Guss, E. A. Balazs, Science, 179, 560 (1973). 711. E. D. T. Atkins, J. K. Sheehan, Science, 179, 562 (1973). 712. R. Perret, A. Skoulios, Makromol. Chem., 156, 157 (1972). 713. E. Lanza, H. Berghmans, G. Smets, J. Polym. ScL, Polym. Phys. Ed., 11, 75 (1973). 714. J. Pisanchyn, J. Polym. ScL, Polym. Chem. Ed., 11, 135 (1973). 715. Y Takahashi, T. Sato, H. Tadokoro, Y. Tanaka, J. Polym. ScL, Polym. Phys. Ed., 11, 233 (1973). 716. E. Hadicke, E. C. Mez, C. H. Krauch, G. Wegner, J. Kaiser, Angew. Chem., 83, 253 (1971); Anew. Chem., Int. Ed. Engl., 10, 226 (1971). 717. H. Sakakihara, Y Takahashi, H. Tadokoro, N. Oguni, H. Tani, Macromolecules, 6, 205 (1973). 718. C. E. Wilkes, V. L. FoIt, S. Krimm, Macromolecules, 6, 235 (1973). 719. A. Del Pra, M. Mammi, E. Peggion, Biopolymers, 12, 937 (1973). 720. A, Del Pra, P. Spadon, G. Valle, Biopolymers, 12, 941 (1973). 721. R. A. Wessling, J. H. Oswald, I. R. Harrison, J. Polym. ScL, Polym. Phys. Ed., 11, 875 (1973). 722. F. C. Wilson, H. W. Starkweather, Jr., J. Polym. ScL, Polym. Phys. Ed., 11, 919 (1973). 723. M. Hasegawa, Y. Suzuki, H. Nakanishi, F. Nakanishi, in: K. Imahori, S. Murahashi (Eds.), "Progress in Polykmer Science", Japan, vol. 5, Halsted (Wiley), New York, p. 143 (1973). 724. A. Wlochowicz, W. Przygocki, J. Appl. Polym. ScL, 17, 1197(1973). 725. N. Kobayashi, A. Osawa, T. Fujisawa, J. Polym. ScL, Polym. Lett. Ed., 11, 225 (1973); J. Polym. ScL, Polym. Chem. Ed., 13, 2863 (1975). 726. G. J. Welch, R. L. Miller, J. Polym. ScL, Polym. Phys. Ed., 14, 1683 (1976). 727. M. Ikeda, H. Suga, S. Seki, Rep. Progr. Polym. Phys. Japan, 15, 255 (1972). 728. M. Ikeda, H. Suga, S. Seki, Rep. Progr. Polym. Phys. Japan, 15, 257 (1972). 729. S. Minami, K. Murase, T. Yoshihara, Rep. Progr. Polym. Phys. Japan, 15, 339 (1972). 730. H. Tadokoro, T. Yoshihara, Y Chatani, S. Murahashi, J. Polym. ScL, Part B, 2, 363 (1964). 731. A. A. Blumberg, S. S. Pollack, C. A. J. Hoeve, J. Polym. ScL, Part A, 2, 2499 (1964). 732. R. Iwamoto, Y Saito, H. Ishihara, H. Tadokoro, J. Polym. ScL, Part A 2, 6, 1509 (1968).
733. M. Yokoyama, H. Ishihara, R. Iwamoto, H. Tadokoro, Macromolecules, 2, 184 (1969). 734. F. E. Bailey, Jr., H. G. France, J. Polym. ScL, 49, 397 (1961). 735. H. Herlinger, H. -P. Homer, F. Druschke, H. Knoell, F. Haiber, Angew. Makromol. Chem., 29/30, 229 (1973); H. Herlinger, H. Knoell, H. Menzel, J. Schlaefer, Appl. Polym. Symp., 21, 215 (1973). 736. P. V. Kozlov, A. N. Perepelkin, Vysokomol. Soedin., Ser. A, 9, 370 (1967); Polym. Sci. USSR (Engl. TransL), 9, 414 (1967). 737. J. C. Andries, A. G. Walton, Biopolymers, 8, 465 (1969). 738. T. Saegusa, H. Ikeda, H. Fujii, Macromolecules, 5, 108 (1972). 739. J. W. Summers, M. H. Litt, J. Polym. Sci., Polym. chem., Ed., 11, 1353 (1973). 740. B. Lotz, H. D. Keith, J. MoI. Biol., 61, 195 (1971). The authors report c = 9.15 A for three peptide residues in a "glycine II" 3/1 helix. Crystallographic identity occurs at four times this. 741. B. Lotz, H. D. Keith, J. MoL Biol., 61, 201 (1971). 742. L. G. Kazaryan, F. M. Medvedeva, Vysokomol. Soedin., Ser. B, 10, 305 (1968). 743. S. W. Shalaby, E. M. Pearce, R. J. Fredericks, E. A. Turi, J. Polym. ScL, Polym. Chem. Ed., 11, 1 (1973). 744. J. P. Kennedy, R. B. Isaacson, J. Macromol. Chem., 1, 541 (1966). 745. G. Montaudo, G. Bruno, R Maravigna, P. Finocchiaro, R Centineo, J. Polym. Sci., Polym. Chem. Ed., 11, 65 (1973). 746. M. Litt, F. Rahl, L. G. Roldan, J. Polym. Sci., Part A-2, 7, 463 (1969). 747. T. G. Bassiri, A. Levy, M. Litt, J. Polym. Sci., Part B, 5, 871 (1967). 748. H. F. Mark, S. M. Atlas, N. Ogata, J. Polym. Sci., 61, S49 (1962). 749. J. Kaiser, G. Wegner, E. W. Fischer, Kolloid Z. Z. Polym., 250, 1158 (1972). 750. K. Sakaoku, A. Peterloin, J. Macromol. Sci., Phys., 1, 401 (1967). 751. M. Straumanis, Z. Kristallogr., 102, 432 (1940). 752. R. G. Crystal, J. Polym. Sci., Part A-2, 8, 1755 (1970). 753. B. B. Doyle, W. Traub, G. P. Lorenzi R R. Brown III, E. R. Blout, J. MoI. BIoL, 51, 47 (1970). The authors report b = 6.98 A for two peptide residues in an "antiparallel pleated sheet" structure. Crystallographic identitiy occurs at three times this. 754. R. D. B. Fraser, T. P. Macrae, F. H. C. Stewart, J. MoL Biol., 19, 580 (1966). The authors report b = 6.85 A for two peptide residues. Crystallographic identity occurs at three times this. 755. D. M. Segal, W. Traub, A. Yonath, J. MoL Biol., 43, 519 (1969). 756. J. C. Andries, A. G. Walton, J. MoL Biol., 56, 515 (1971). 757. J. M. Squire, A. Elliott, J. MoL Biol., 65, 291 (1972). 758. Y. Morishima, T. Takizawa, S. Murahashi, Eur. Polym. J., 9, 669 (1973).
759. K. Inoue, S. Hoshino, J. Polym. Sci., Polym. Phys. Ed., 11, 1077 (1973). 760. V. F. Holland, J. Macromol., Chem. A, 7, 173 (1973); R. L. Miller, J. Macromol. Sci., Chem. A, 7, 183 (1973). Both papers are also contained in "High-Modulus Wholly Aromatic Fibers", W. B. Black, J. Preston, Eds., Dekker, New York, (1973). 761. M. G. Northolt, J. J. Aartsen, J. Polym. ScL, Polym. Lett. Ed., 11, 333 (1973); M. G. Northolt, Eur. Polym. J., 10, 799 (1974). 762. M. Takahaishi, Kobunshi Kagaku, 15, 273 (1958), through Chem. Abstr., 54, 2802f (1960). 763. M. Takahaisihi, Sen-I Gakkaishi, 14, 374 (1958), through Chem. Abstr., 52, 21217b (1958). 764. V. V. Korshak, S. V. Vinogradova, E. S. Vlasova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1089 (1954); Bull. Acad. ScL USSR, Div. Chem. Sci. (Engl. TransL), 949 (1954). 765. V. V. Korshak, S. V. Vinogradova, E. S. Vlasova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1097 (1954); Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. TransL), 957, (1954). 766. V. V. Korshak, S. V. Vinogradova, Zh. Obshch. Khim., 26, 539 (1956); J. Gen. Chem. USSR (Engl. TransL), 26, 575 (1956). 767. V. V. Korshak, S. V. Vinogradova, Zh. Obshch. Khim., 26, 732 (1956); J. Gen. Chem. USSR (Engl. TransL), 26, 841 (1956). 768. I. W. Bassi, R. Scordamaglia, Makromol. Chem., 166, 283 (1973). 769. S. Arnott, J. M. Guss, D. W. L. Hukins, M. B. Mathews, Science, 180, 743 (1973). 770. K. Nakagawa, Y. Ishida, Kolloid Z. Z. Polym., 251, 103 (1973). 771. M. Yokouchi, Y. Chatani, H. Tadokoro, K. Teranishi, H. Tani, Polymer, 14, 267 (1973). 772. Quoted in H. Tadokoro, Kobunshi, 8, 223 (1959). 773. W. Wrasidlo, J. Polym. ScL, Part A-2, 10, 1719 (1972). 774. A. Del Pra, A. M. Tamburro, A. Scatturin, M. Mammi, Ric. Sci., 36, 1330 (1966). 775. S. Mitsuhashi, Kgoyo Kagaku Zasshi, 72, 1169 (1969). 776. Ye. L. Gal'Perin, B. P. Kosmynin, V K. Smirnov, Vysokomol. Soedin., Ser. A, 12,1880 (1970); Polym. Sci. USSR (Engl. TransL), 12, 2133 (1970). 777. Z. Mencik, J. Polym. Sci., Polym. Phys. Ed., 11, 1585 (1973). 778. J. Blackwell, Biopolymers, 7, 281 (1969); K. H. Gardner, J. Blackwell, Biopolymers, 14, 1581 (1975). 779. K. M. Rudall, Adv. Insect PhysioL, 1, 257 (1963), through A. G. Walton, J. Blackwell, Biopolymers, Academic, New York, (1973). 780. J. Kiji, J. Kaiser, G. Wegner, R. C. Schulz, Polymer, 14,433 (1973). 781. J. L. R. Williams, T. M. Laakso, L. E. Contois, J. Polym. ScL, 61, 353 (1962). 782. G. Manzini, V Crescenzi, A. Ciana, L. Ciceri, G. Delia Fortuna, L. Zotteri, Eur. Polym. J., 9, 941 (1973). 783. S. Sasaki, H. Tadokoro, J. Polym. Sci., Polym. Phys. Ed., 11, 1985 (1973).
Next Page
784. M. Suwalsky, L. Hoz, Biopolymers, 12, 1997 (1973). 785. J. Cornibert, R. H. Marchessault, A. E. Allegrezza, Jr., R. W. Lenz, Macromolecules, 6, 676 (1973). 786. C. A. Boye, Jr., Bull. Am. Phys. Soc, 19, 352 (1974). 787. N. Okui, H. M. Li, J. H. Magill, Polymer, 19, 411 (1978). 788. E. D. T. Atkins, K. D. Parker, R. D. Preston, Proc. R. Soc. London, Ser. B, 173, 209 (1969); E. D. T. Atkins, K. D. Parker, J. Polym. ScL, Part C, 28, 69 (1969). 789. K. Kamide, K. Nakamura, Sen-I, Gakkaishi, 25, 53 (1969). 790. Y. Takahashi, I. Sumita, H. Tadokoro, J. Polym. ScL, Polym. Phys. Ed., 11, 2113 (1973). 791. B. L. Farmer, J. B. Lando, J. Macromol. Sci. B: Phys., 10, 403 (1974). 792. D. C. Bassett, B. Turner, Philos. Mag., 29,923 (1974); D. C. Bassett, S. Block, G. J. Piermarini, J. Appl. Phys., 45,4146 (1974). 793. A. Savolainen, Eur. Polym. J., 10, 9 (1974). 794. Y. Mitsui, Biopolymers, 12, 1781 (1973). 795. U. Haberthur, H.-G. Elias, Makromol. Chem., 144, 183 (1971). 796. R. W. Lenz, B. W. DeIf, J. Polym. Sci., Polym. Lett., Ed., 11, 609 (1973). 797. R. W. Lenz, J. Neloson, P. Guimond, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 9, 1301 (1968). 798. A. Colombo, G. Allegra, Macromolecules, 4, 579 (1971). 799. S. Yoshida, H. Suga, S. Seki, Polym. J. (Tokyo), 5, 33 (1973). 800. R. E. Hughes, R. J. Cella, Jr., Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 15(1), 137 (1974). 801. T. Tanaka, Y Chatani, H. Tadokoro, J. Polym. ScL, Polym. Phys. Ed., 12, 515 (1974). 802. Y Takahashi, H. Tadokoro, T. Hirano, A. Sato, T. Tsuruta, J. Polym. ScL, Polym. Phys. Ed., 13, 285 (1975). 803. Y Chatani, H. Tadokoro, J. Macromol. Sci. B: Phys., 8,203 (1973). 804. B. G. Colvin, P. Storr, Eur. Polym. J., 10, 377 (1974). 805. M. M. Beg, J. Aslam, Q. H. Khan, N. M. Butt, S. Rolandson, A. U. Ahmed, J. Polym. Sci., Polym. Lett. Ed., 12, 311 (1974). 806. T. Komoto, K. Y Kim, M. Oya, T. Kawai, Makromol. Chem., 175, 283 (1974). 807. M. Gilbert, F. J. Hybart, Polymer, 13,327 (1972); ibid., 407. 808. A. V. Sidorovich, M. M. Koton, E. V. Kuvshinsky, V. V. Nikitin, N. A. Adrova, Yu. G. Baklagina, N. V. Mikhailova, J. Polym. Sci., Polym. Chem. Ed., 12, 375 (1974). 809. J. J. O'Malley, W. J. Staufer, J. Polym. Sci., Polym. Chem. Ed., 12, 865 (1974). 810. M. Yokouchi, Y Chatani, H. Tadokoro, H. Tani, Polym. J. (Tokyo), 6, 248 (1974). 811. R. K. Hasegawa, Y Chatani, H. Tadokoro, Rep. Progr. Polym. Phys. Japan, 16, 217 (1973). 812. T. Kajiyama, M. Tanaka, M. Kuroishi, M. Takayanagi, Chem. Lett. 1159(1973). 813. C. H. Griffiths, M. S. Walker, Madrid IUPAC, Preprint III, 2-3 (1974).
814. A. M. JoIy, G. Nemoz, A. Douillard, G. Vallet, Makromol. Chem., 176, 479 (1975). 815. V. V. Korshak, S. V. Vinogradova, M. BeIyakov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 730, (1957); Bull. Acad. Sci. USSR, Div. Chem. ScL (Engl. Transl.), 749 (1957). 816. R. E. Prud'homme, R. H. Marchessault, Makromol. Chem., 175, 2705 (1974); Macromolecules, 7, 541 (1974). 817. H. Miyaji, K. Asai, J. Phys. Soc. Japan, 36, 1497 (1974). 818. J. Y Decroix, M. Moser, M. Boudeulle, Eur. Polym. J., 11, 357 (1975). (The true cell is 5 times as long (b = 35.65 A) and contains 200 units). 819. D. H. Isaac, E. D. T. Atkins, Nature (London), New Biol., 244, 252 (1973) 820. A. Kuppel and E. Husemann, Colloid. Polym. Sci. 252, 1005 (1974); P. Zugenmaier, A. Kuppel, E. Husemann, in: J. C. Arthur (Ed.), "Cellulose Chemistry and Technology" (ACS Symp. Ser. No. 48), Am. Chem. Soc, Washington, 1977, p. 115. 821. C. R. Bohn, J. R. Schaefgen, W. O. Statton, J. Polym. Sci., 55, 531 (1961). 822. S. M. Bishop, I. H. Hall, Br. Polym. J., 6, 193 (1974). 823. K. Nakagawa, Y Ishida, J. Polym. Sci., Polym. Phys. Ed., 11, 2153 (1973). 824. S. Y Hobbs, C. F. Pratt, Am. Phys. Soc Meeting, Denver, CO., March 31, 1975 paper EElO. 825. C. H. Griffiths, J. Polym. ScL, Polym. Phys. Ed., 13, 1167 (1975). 826. G. Valle, A. Del Pra, P. Spadon M. Mammi, Biopolymers, 14, 437 (1975). 827. Y Chatani, S. Kuwata, Macromolecules, 8, 12 (1975). 828. P W. Morgan, S. L. Kwolek, Macromolecules, 8, 104 (1975). 829. V. E. Shashoua, W. M. Eareckson III, J. Polym. Sci., 40,343 (1959). 830. R A. Apgar, K. C. Yee, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 34, 957 (1978). 831. S. W. Shalaby, E. A. Turi, M. H. Riggi, P. J. Harget, J. Polym. Sci., Polym Chem. Ed., 13, 669 (1975). 832. V. P. Lebedev, T. M. Babchinitser, N. I. Bekasova, L. G. Komarova, D. Ya. Tsvankin, V. V. Korshak, Vysokomol. Soedin., Ser. A, 16, 987 (1974); Polym. Sci. USSR (Engl. Transl.), 16, 1140(1974). 833. C. C. Price, M. K. Akkapeddi, B. T. Debona, B. C. Furie, J. Macromol. Sci. A: Chem., 7, 1469 (1973). 834. M. Moser, M. Boudeulle, H. Chanzy, J. Polym. Sci., Polym. Phys. Ed., 14, 1161 (1976). 835. E. V. Gouinlock, J. Polym. Sci., Polym. Phys. Ed., 13, 1533 (1975). 836. S. S. Zimmerman, J. C. Clark, L. Mandelkern, Biopolymers, 14, 585 (1975). 837. J. P. Baldwin, E. M. Bradbury, I. F. McLuckie, R. M. Stephens, Macromolecules, 6, 83 (1973). 838. G. Ceccorulli, F. Manescalchi, M. Pizzoli, Makromol. Chem., 176, 1163 (1975). 839. T. Itoh, H. Miyaji, K. Asai, Japan. Appl. Phys., 14, 206 (1975).
Previous Page
840. K. Suehiro, Y. Chatani, H. Tadokoro, Polym. J. (Tokyo), 7, 352 (1975). The basal dimensions were determined from equatorial reflections alone. 841. A. Sarko, R. Muggli, Macromolecules, 7, 486 (1974). 842. F. J. Kolpak, J. Blackwell, Macromolecules, 8, 563 (1975); idem., 9, 273 (1976); F. J. Kolpak, M. Weih, J. Blackwell, Polymer, 19, 123 (1978). 843. V. G. Murphy, B. Zaslow, A. D. French, Biopolymers, 14, 1487 (1975). 844. R. Napolitano, Makromol. Chem., 191, 355 (1990). Values of the basal unit cell parameters, a and b, were estimated from energy calculations. 845. R. Hasegawa, Y. Tanabe, M. Kobayashi, H. Tadokoro, A. Sawaoka, N. Kawai, J. Polym. Sci., Part A-2, 8, 1073 (1970). 846. S. Osaki, Y Ishida, Rep. Progr. Polym. Phys. Japan, 17, 253 (1974); J. Polym. Sci., Polym. Phys. Ed., 13, 1071 (1975). 847. H. K. Hall, Jr., Br. Polym. J., 4, 37 (1972). 848. G. Bruno, G. Montaudo, N. V. Hien, R. H. Marchessault, P. R. Sundararajan, J. E. Chandler, R. W. Lenz, J. Polym. Sci., Polym. Lett. Ed., 13, 559 (1975). 849. A. Del Pra, G. Gilli, Bipolymers, 14, 1769 (1975). 850. E. Dellacherie, J. Neel, F. Colonna-Cesari, Biopolymers, 14, 1447 (1975). 851. Z. Mencik, J. Polym. Sci., Polym. Phys. Ed., 13, 2173 (1975). 852. K. H. Gardner, J. Blackwell, Biopolymers, 13,1975 (1974); K. H. Gardner, J. Blackwell, Biochim. Biophys. Acta, 343, 232 (1974); W. Claffey, J. Blackwell, Biopolymers, 15, 1903 (1976). 853. S. Fakirov, E. W. Fischer, G. F. Schmidt, Makromol. Chem., 176, 2459 (1975). 854. R. R. Kolda, J. B. Lando, J. Macromol. Sci. B: Phys., 11, 21 (1975). 855. A. de Boer, G. O. R. A. van Ekenstein, G. Challa, Polymer, 16, 930 (1975). 856. H. Kakida, Y. Chatani, H. Tadokoro, Rep. Progr. Polym. Phys. Japan, 18, 197 (1975); J. Polym. Sci., Polym. Phys. Ed., 14, 427 (1976). 857. C. Nakafuku, T. Takemura Jpn. J. Appl. Phys., 14, 599 (1975). 858. K. Hikichi, N. Sawatari, A. Tsutsumi, M. Kaneko, Rep. Progr. Polym. Phys. Japan, 18, 523 (1975). 859. K. Ito, H. Tanizaki, T. Kajiyama, M. Takayanagi, Rep. Progr. Polym. Phys. Japan, 18, 583 (1975); K. Ito, T. Kajiyama, M. Takayanagi, Polym. J. (Tokyo), 9, 355 (1977). 860. U. Alter, R. Bonart, private communication, March 1976. 861. M. Puterman, F. J. Kolpak, J. Blackwell, J. B. Lando, J. Polym. Sci., Polym. Phys. Ed., 15, 805 (1977). 862. M. Yokouchi, Y Chatani, H. Tadokoro, J. Polym. Sci., Polym. Phys. Ed., 14, 81 (1976). 863. F. Millich, Adv. Polym. Sci., 19, 117 (1975). 864. M. Yokouchi, Y Sakakibara, Y Chatani, H. Tadokoro, T. Tanaka, K. Yoda, Macromolecules, 9, 266 (1976). 865. A. Blumstein, S. B. Clough L. Patel, R. B. Blumstein, E. C. Hsu, Macromolecules, 9, 243 (1976). (Chain axis is not identified).
866. V. Petraccone, B. Pirozzi, A. Frasci, P. Corradini, Eur. Polym. J., 12, 323 (1976). 867. F. Colonna-Cesari, S. Premilat, Polymer, 17, 267 (1976). 868. H. Kusanagi, H. Tadokoro, Y Chatani, Macromolecules, 9, 531 (1976). A double-stranded helix is proposed, each strand of which has a 2*10/1 conformation (C = 20.80 A). The fiber repeat is one-half of this. 869. M. Takayanagi, K. Yamaguchi, Kogyo kagaku Zasshi, 59, 182 (1956), through Chem. Abstr., 51, 9247c (1957). 870. C. R. Desper, N. S. Schneider, Macromolecules, 9, 424 (1976). 871. R. R Kusy, J. Polym. Sci., Polym. Chem. Ed., 14, 1527 (1976). 872. I. Modric, K. Holland-Moritz, D. O. Hummel, Colloid Polym. Sci., 254, 342 (1976). 873. R Corradini, V. Petraccone, F. Riva, G. Maglio, Eur. Polym. J., 12, 463 (1976). 874. M. Cesari, G. Perego, A. Melis, Eur. Polym. J., 12, 585 (1976). 875. L. R Gul'ko, T. M. Gritsenko, Vysokomol. Soedin., Ser. A, 17, 1309 (1975) - Polym. Sci., USSR (Engl. Transl.), 17, 1503 (1975). 876. G. Cojazzi, V. Malta, G. Celotti, R. Zannetti, Makromol. Chem., 177, 915 (1976). 877. G. Conte, L. D'llario, N. V. Pavel, E. Giglio, J. Polym. Sci., Polym. Phys. Ed., 14, 1553 (1976). 878. L. G. Kazaryan, D. Ya. Tsvankin, V. A. Vasil'ev, M. A. Dakhis, Yu. A. Tolkachev, Vysokomol. Soedin., Ser. A, 17, 1560 (1975); Polym. Sci. USSR (Engl. Transl.), 17, 1797 (1975). 879. A. di Meo, G. Maglio, E. Martuscelli, R. Palumbo, Polymer, 17, 802 (1976). The unit cell parameters, a and c, reported are inconsistent with values tabulated for other linear aliphatic polyesters. 880. J. Economy, R. S. Storm, V. I. Matkovich, S. G. Cottis, B. E. Nowak, J. Polym. Sci., Polym. Chem. Ed., 14, 2207 (1976). A double-stranded helix is proposed with the chains in a reversed head-to-tail order, each strand has a 2*3/1 conformation. 881. J. R. Caldwell, R. Gilkey, 134th National American Chemical Society Meeting, Chicago, September 1958. 882. R. E. Wilfong, J. Polym. Sci., 54, 385 (1961). 883. I. H. Hall, M. G. Pass, Polymer, 17, 807 (1976). 884. A. U. Ahmed, N. Ahmed, J. Aslam, N. M. Butt, Q. H. Khan, M. A. Atta, J. Polym. Sci., Polym. Lett. Ed., 14,561 (1976). 885. G. Spach, F. Heitz, C. R. Hebd. Seances Acad. Sci., Ser. C, 276, 1373 (1973); F. Heitz, B. Lotz, G. Spach, J. MoI. Biol., 92, 1 (1975). 886. T. Nishi, T. T. Wang, Macromolecules, 8, 909 (1975). 887. R. C. Robert, Polymer, 10, 113 (1969). 888. R. W. Lenz, J. E. Sutherland, L. C. Westfelt, Makromol. Chem., 177, 653 (1976). 889. A. J. Stipanovich, A. Sarko, Macromolecules, 9, 851 (1976). 890. A. Sarko, J. Southwick, J. Hayashi, Macromolecules, 9, 857 (1976). 891. T. Itoh, Jpn. J. Appl. Phys., 15, 2295 (1976). Poly (6-aminocaproic acid) values appear to be halved.
892. A. Charlesby, Proc. Phys. Soc. London, 57, 496 (1945). 893. H. Nakanishi, M. Hasegawa, Y. Sasada, J. Polym. ScL, Polym. Phys. Ed., 15, 173 (1977). 894. K. Kaji, I. Sakurada, K. Nakamae, T. Shintaku, E. Shikata, Bull. Inst. Chem. Res., Kyoto Univ., 52, 308 (1974). 895. T. M. Frunze, A. Sh. Cherdabayev, R. B. Shleifman, V. V. Kurashev, D. Ya. Tsvankin, Vysokomol. Soedin., Ser. A, 18,696 (1976) - Polym. Sci. USSR (Engl. Transl.), 18,793 (1976). 896. V. V. Korshak, D. Ya. Tsvankin, T. M. Babchinitser, L. G. Kazaryan, Ya. V. Genin, Ya. S. Vygodskii, N. A. Churochkina, S. V. Vinogradova, Vysokomol. Soedin., Ser. A, 18, 40 (1976); Polym. Sci. USSR (Engl. Transl.), 18, 46 (1976). 897. K. H. Gardner, J. H. Magill, E. D. T. Atkins, Polymer, 19, 370 (1978). 898. D. Kobelt, E Paulus, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 30, 231 (1974). 899. V. Enkelmann, G. Wegner, Makromol. Chem., 178, 635 (1977); V. Enkelmann, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 33, 2842 (1977). 900. M. Iida, T. Araki, K. Teranishi, H. Tani, Macromolecules, 10, 275 (1977). 901. H. Kusanagi, H. Tadokoro, Y. Chatani, K. Suehiro, Macromolecules, 10, 405 (1977). 902. K. Tashiro, M. Kobayashi, H. Tadokoro, Macromolecules, 10, 413 (1977). 903. R. H. Baughman, J. Appl. Phys., 43, 4362 (1972). 904. D. Bloor, G. C. Stevens, J. Polym. Sci., Polym. Phys. Ed., 15, 703 (1977). 905. I. W. Bassi, P. Corradini, V. Petraccone, B. Pirozzi, Eur. Polym. J, 13, 265 (1977). 906. H. Matsubayashi, Y. Chatani, H. Tadokoro, P. Dumas, N. Spassky, P. Sigwalt, Macromolecules, 10, 996 (1977). 907. J. R. Fallender, G. S. Y. Yeh, D. S. Chiu, J. E. Mark, J. Polym. Sci., Polym. Phys. Ed., 18, 389 (1980). 908. L. N. Korzhavin, N. R. Prokopchuk, Yu. G. Baklagina, F. S. Florinskii, N. V. Yefanova, A. M. Dubnova, S. Ya. Frenkel, M. M. Koton, Vysokomol. Soedin. Ser. A, 18, 707 (1976); Polym. Sci. USSR (Engl. Transl.), 18, 807 (1976). 909. R. E. Singler, N. S. Schneider, G. L. Hagnauer, Polym. Eng. Sci., 15, 321 (1975). 910. C. M. Mikulski, P. J. Russo, M. S. Saran, A. G. MacDiarmid, A. F. Garito, A. J. Heeger, J. Am. Chem. Soc, 97,6358 (1975); M. J. Cohen, A. F. Garito, A. J. Heeger, A. G. MacDiarmid, C. M. Mikulski, M. S. Saran, J. Kleppinger, ibid, 98, 3844 (1976). 911. M. Boudeulle, Ph. D. Thesis, Univ. of Lyon, 1974 - from R. H. Baughman, R. R. Chance, J. Polym. Sci., Polym. Phys. Ed., 14, 2019 (1976). 912. M. Boudeulle, Cryst. Struct. Commun., 4, 9 (1975) - from R. H. Baughman, R. R. Chance, J. Polym. Sci., Polym. Phys. Ed., 14, 2019 (1976). 913. R. H. Baughman, K. C. Yee, J. Polym. Sci., Polym. Chem. Ed., 12, 2467 (1974). 914. T. Miyashita, M. Yokouchi, M. Chatani, H. Tadokoro, Annu. Meeting Soc. Polym. Sci., Japan, Tokyo, Preprints (1974) p. 453.
915. T. Takahagi, Y. Chatani, T. Kusumoto, H. Tadokoro, Polym. J., 20, 883 (1988). 916. H. Sakakihara, Y Takahashi, H. Tadokoro, Disc. Meeting Soc. Polym. Sci., Japan, Tokyo, Preprints (1969) p. 407. 917. Y Chatani, N. Higashibata, M. Takase, H. Tadokoro, T. Hirahara, Annu. Meeting Soc. Polym. Sci., Japan, Kyoto, Preprints p. 427 (1977). 918. R. K. Hasegawa, K. Kimoto, Y. Chatani, H. Tadokoro, H. Sekiguchi, Disc. Meeting Soc. Polym. Sci., Japan, Tokyo, Preprints p. 713 (1974). 919. Y. Takahashi, T. Kurumizawa, H. Kusanagi, H. Tadokoro, J. Polym. Sci., Polym. Phys. Ed., 16, (1978). 920. Z. Mencik, Chem. Prumysl., 17, 78 (1967), through Chem. Abstr., 67, 15849r (1967). 921. H. Matsubayashi, Y Chatani, H. Tadokoro, Y Tabata, W. Ito, Polym. J. (Tokyo), 9, 145 (1977). 922. H. Hasegawa, W. Claffey, R H. Geil, J. Macromol. Sci. B: Phys., 13, 89 (1977). 923. M. Suwalsky, A. Llanos, Biopolymers, 16, 403 (1977). 924. D. R. Rueda, A. S. Verdini, A. Del Pra, Macromolecules, 10, 715 (1977). 925. R. H. Baughman, P. A. Apgar, R. R. Chance, A. G. MacDiarmid, A. F Garito, J. Chem. Phys., 66, 401 (1977). 926. A. Shoji, Y. Yamamoto, T. Ozaki, M. Ida, Y Saito, Macromolecules, 10, 723 (1977). 927. C. J. Lee, B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 15, 355 (1977). 928. Yu. G. Baklagina, I. S. Milevskaya, N. V. Yefanova, A. V. Sidorovich, V. A. Zubkov, Vysokomol. Soedin., Ser. A, 18, 1235 (1976) - Polym. Sci. USSR (Engl. Transl.), 18, 1417 (1976). 929. H. W. Starkweather, Jr., J. Polym. Sci., Polym. Phys. Ed., 15, 247 (1977). 930. R. Legras, J. P. Mercier, J. Polym. Sci., Polym. Phys. Ed., 15, 1283 (1977). 931. M. Moser, M. Boudeulle, J. Polym. Sci., Polym. Phys. Ed., 16, 971 (1978). 932. M. Osanai, A. Tsutsumi, K. Hikichi, M. Kaneko, Y. Konishi, M. Hatano, Rep. Progr. Polym. Phys. Japan, 19, 517 (1976); M. Osanai, A. Tsutsumi, K. Hikichi, Y. Konishi, M. Hatano, ibid., 20, 589 (1977). 933. I. J. Desborough, Ph. D. Thesis, Victoria Univ. of Manchester (1976), in I. J. Desborough, I. H. Hall, Polymer, 18, 825 (1977). 934. G. Bruno, S. Caccamese, P. Maravigna, G. Montaudo, A. Recca, J. Polym. Sci., Polym. Lett. Ed., 15, 481 (1977). 935. D. R. Rueda, R Spadon, A. S. Verdini, A. Del Pra, Biopolymers, 16, 2347 (1977). 936. P. Zoller, J. Appl. Polym. Sci., 21, 3129 (1977). 937. R. E. Prud'homme, J. Polym. Sci., Polym. Phys. Ed., 15, 1619 (1977). 938. A. J. Stipanovic, A. Sarko, Polymer, 19, 3 (1978). 939. B. Wunderlich, G. Czornyj, Macromolecules, 10, 906 (1977). 940. H. Janeczek, E. Turska, T. Szekely, M. Lengyel, F Till, Polymer, 19, 85 (1978).
941. C. Marco, J. G. Fatou, A. Bello, Polymer, 18, 1100 (1977); C. Marco, A. Bello, J. G. Fatou, Makromol. Chem., 179, 1333 (1978). 942. K. Matsushige, T. Takemura, J. Polym. Sci., Polym. Phys. Ed., 18, 1665 (1980). 943. P. B. McAllister, T. J. Carter, R. M. Hinde, J. Polym. Sci., Polym. Phys. Ed., 16, 49 (1978). 944. J. N. Hay, Makromol. Chem., 178, 1601 (1977). 945. R. H. Baughman, S. L. Hsu, G. P. Pez, A. J. Signorelli, J. Chem. Phys., 68, 5405 (1978). 946. G. T. Fekete, W. A. Basset, C. L. Beatty, Bull. Am. Phys. Soc, 23, 408 (1978). 947. S. Weinhold, M. H. Litt, J. B. Lando, J. Polym. Sci., Polym. Phys. Ed., 20, 535 (1982). 948. D. Day, J. B. Lando, J. Polym. Sci., Polym. Phys. Ed., 16, 1009 (1978). 949. G. Trafara, R. Koch, E. Sausen, Makromol. Chem., 179, 1837 (1978). 950. W. Meyer, G. Lieser, G. Wegner, J. Polym. Sci., Polym. Phys. Ed., 16, 1365 (1978). 951. K. C. Yee, R. R. Chance, J. Polym. Sci., Polym. Phys. Ed., 16, 431 (1978). 952. A. J. McKinnon, A. V. Tobolsky, J. Phys. Chem., 72, 1157 (1968). 953. S. Sasaki, M. Watanabe, I. Uematsu, Rep. Progr. Polym. Phys. Japan, 20, 613 (1977). 954. K. Koga, T. Kajiyama, M. Takayanagi, Rep. Progr. Polym. Phys. Japan, 20, 655 (1977). 955. S. Sasaki, M. Miyamoto, T. Nakamura, I. Uematsu, Biopolymers, 17, 2715 (1978). 956. Y. Chatani, Y. Ueda, H. Tadokoro, H. Deits, O. Vogl, Macromolecules, 11, 636 (1978). 957. H. Kakida, J. Nakauchi, T. Yoshihara, S. Minami, Rep. Progr. Polym. Phys. Japan, 20, 183 (1977). 958. K. Haraguchi, T. Kajiyama, M. Takayanagi, Rep. Progr. Polym. Phys. Japan, 20, 191 (1977); J. Appl. Polym. Sci., 23, 915 (1979). 959. N. Spassky, A. Leborgne, M. Reix, R. E. Prud'homme, E. Bigdeli, R. W. Lenz, Macromolecules, 11, 716 (1978). 960. A. Mehta, U. Gaur, B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 16, 289 (1978). 961. S. Kobayashi, H. Nakazawa, S. Iwayanagi, Rep. Progr. Polym. Phys. Japan, 20, 163 (1977). 962. E. Roche, H. Chanzy, M. Boudeulle, R. H. Marchessault, P. Sundararajan, Macromolecules, 11, 86 (1978). 963. A. V. Sidorovich, Yu. G. Baklagina, A. V. Kenarov, Yu. S. Nadezhin, N. A. Adrova, F. S. Florinsky, J. Polym. Sci., Polym. Symp., 58, 359 (1977). 964. J. N. Hay, J. Polym. Sci., Polym. Chem. Ed., 14, 2845 (1976). 965. A. Del Pra, M. Palumbo, M. Goodman, Biopolymers, 15, 503 (1976). 966. K. Itoh, B. M. Foxman, G. D. Fasman, Biopolymers, 15, 419 (1976). 967. B. R. Malcolm, Biopolymers, 16, 2591 (1977). 968. P. Spadon, A. S. Verdini, A. Del Pra, Biopolymers, 17,2029 (1978).
969. A. Del Pra, P. Spadon, R. Boni, G. M. Bonara, A. Scatturin, Makromol. Chem., 179, 2707 (1978). 970. J. S. Wood, I. Negulescu, O. Vogl, J. Macromol. Sci. A: Chem., 11, 171 (1977). 971. G. Cojazzi, A. Fichera, V. Malta, R. Zannetti, Makromol. Chem., 179, 509 (1978). 972. R T. van Emmerick, C. A. Smolders, Eur. Polym. J., 9, 293 (1973). 973. G. A. Clegg, T. P. Melia, Polymer, 10, 912 (1969). 974. R. J. Samuels, J. Polym. Sci., Polym. Phys. Ed., 13, 1417 (1975). 975. A. J. Lovinger, J. O. Chua, C. C. Gryte, J. Polym. Sci., Polym. Phys. Ed., 15, 641 (1977). 976. G. Lieser, G. Wegner, W. Muller, V. Enkelmann, Makromol. Chem., Rapid Commun., 1, 621 (1980). 977. F. S. Bates, G. L. Baker, Macromolecules, 16, 1013 (1983). 978. J. C. W. Chien, F. E. Karasz, K. Shimamura, Macromolecules, 15, 1012 (1982). 979. T. Akaishi, K. Miyasaka, K. Ishikawa, H. Shirakawa, S. Ikeda, Rep. Progr. Polym. Phys. Japan, 22, 125 (1979). 980. G. Lieser, G. Wegner, W. Muller, V. Enkelmann, W. H. Meyer, Makromol. Chem., Rapid Commun., 1, 627 (1980). 981. K. Shimamura, F. E. Karasz, J. A. Hirsch, J. C. W. Chien, Makromol. Chem., Rapid Commun., 2, 473 (1981). 982. G. Lieser, Polym. Commun., 25, 201 (1984). 983. J. Haase, R. Hosemann, S. Kohler, Polymer, 19, 1358 (1978); J. Haase, S. Kohler, R. Hosemann, Z. Naturforsch., 33A, 1472 (1978). 984. R. M. Gohil, R. D. Patel, Angew. Makromol. Chem., 64,43 (1977). 985. T. Yagi, Polym. J. (Tokyo), 12, 9 (1980). 986. E. S. Clark, G. J. Mauer, R. K. Eby, S. Block, Bull. Am. Phys. Soc, 25, 316 (1980). 987. E. S. Clark, J. J. Weeks, R. K. Eby, in A. D. French, K. H. Gardner, Eds., Fiber Diffraction Methods (ACS Symp. Ser. No. 141), Am. Chem. Soc, Washington, 1980, p. 183, J. J. Weeks, E. S. Clark, R. K. Eby, Polymer, 22, 1480 (1981). Irrational helix of 0.1300nm/CF2 group with helix designated by 1*948/439 or greater. 988. H. W. Starkweather, Jr., P. Zoller, G. A. Jones, A. J. Vega, J. Polym. Sci., Polym. Phys. Ed., 20, 751 (1982); H. W. Starkweather, Jr., ibid., 20, 2159 (1982). 989. S. F. Lau, H. Suzuki, B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 22, 379 (1984). 990. G. Charlet, G. Delmas, Polym. Bull. (Berlin), 6,367 (1982). 991. P. Corradini, V. Petraccone, B. Pirozzi, Eur. Polym. J., 19, 299 (1983). 992. K. Monobe, F. Yokoyama, J. Macromol. Sci. B: Phys., 8, 277 (1973); F. Yokoyama, K. Monobe, Polymer, 21, 968 (1980). 993. E. Yokoyama, K. Monobe, J. Polym. Sci., Polym. Lett. Ed., 19, 91 (1981). 994. M. A. Bachmann, J. B. Lando, Macromolecules, 14, 40 (1981). 995. D. T. Grubb, K. W. Choi, J. Appl. Phys., 52, 5908 (1981).
996. Y. Takahashi, H. Tadokoro, Macromolecules, 13, 1317 (1980); Y. Takahashi, M. Kohyama, Y. Matsubara, H. Iwane, H. Tadokoro, Macromolecules, 14, 1841 (1981). 997. S. Weinhold, M. H. Litt, J. B. Lando, J. Polym. Sci., Polym. Lett. Ed., 17, 585 (1979); Macromolecules, 13, 1178 (1980). 998. A. J. Lovinger, Macromolecules, 14, 322 (1981). 999. D. Naegele, D. Y. Yoon, M. G. Broadhurst, Macromolecules, 11, 1297 (1978). 1000. M. Bachmann, W. L. Gordon, S. Weinhold, J. B. Lando, J. Appl. Phys., 51, 5095 (1980). 1001. F. Kumamaru, T. Kajiyama, M. Takayanagi, J. Cryst. Growth, 48, 202 (1980). 1002. F. Bosscher, G. ten Brinke, A. Eshuis, G. Challa, Macromolecules, 15, 1364 (1982). 1003. V. Petraccone, G. Guerra, C. De Rosa, A. Tuzi, Macromolecules, 18, 813 (1985). 1004. H. Kusuyama, M. Takase, Y Higashihata, H.-T. Tseng, Y. Chatani, H. Tadokoro, Polymer, 23, 1256 (1982); H. Kusuyama, M. Miyamoto, Y. Chatani, H. Tadokoro, Polym. Commun., 24, 119 (1983). 1005. F. Bosscher, G. ten Brinke, G. Challa, Macromolecules, 15, 1442 (1982). 1006. E. J. Vorenkamp, F. Bosscher, G. Challa, Polymer, 20, 59 (1979). 1007. J. Kuo, R. W. Lenz, J. Polym. Sci., Polym. Chem. Ed., 15, 119(1977). 1008. E. D. T. Atkins, D. H. Isaac, A. Keller, K. Miyasaka, J. Polym. Sci., Polym. Phys. Ed., 15, 211 (1977); E. D. T. Atkins, A. Keller, J. S. Shapiro, P. J. Lemstra, Polymer, 22, 1161 (1981). 1009. P. R. Sundararajan, N. J. Tyrer, Macromolecules, 15, 1004 (1982); Polym. Bull. (Berlin), 6, 359 (1982). 1010. P. R. Sundararajan, J. Zamin, Polymer, 20, 1567 (1979). 1011. S. Isoda, M. Tsuji, M. Ohara, A. Kawaguchi, K. Katayama, Polymer, 24, 1155 (1983). 1012. S. Isoda, A. Kawaguchi, K. Katayama, J. Polym. Sci., Polym. Phys. Ed., 22, 669 (1984). 1013. N. R. Prokopchuk, Yu. G. Baklagina, L. N. Korzhavin, A. V. Sidorovich, M. M. Koton, Vysokomol. Soedin., Ser. A, 19, 1126 (1977) - Polym. Sci. USSR (Engl. Transl.), 19, 1297 (1977). 1014. R. N. Goel, A. Hepworth, B. L. Deopura, I. K. Varma, D. S. Varma, J. Appl. Polym. Sci., 23, 3541 (1979). 1015. V. V. Korshak, T. M. Babchinitser, L. G. Kazaryan, V. A. Vasilyev, Ya. V. Genin, A. Ye. Azriel, Ya. S. Vygodsky, N. A. Churochkina, S. V. Vinogradova, D. Ya. Tsvankin, J. Polym. Sci., Polym. Phys. Ed., 18, 247 (1980). Errors in author's parameters: values in their table I cannot be replicated. 1016. E. J. Roche, T. Takahashi, E. L. Thomas, in: A. D. French, K. H. Gardner (Eds.), "Fiber Diffraction Methods" (ACS Symp. Ser. No. 141), Am. Chem. Soc, Washington, p. 303 (1980). 1017. J. A. Odell, A. Keller, E. D. T. Atkins, M. J. Miles, J. Mater. ScL, 16, 3309 (1981). 1018. M. I. Bessonov, N. P. Kuznetsov, M. M. Koton, Vysokomol. Soedin., Ser. A, 20, 347 (1978); Polym. Sci. USSR (Engl. Transl.), 20, 391 (1978).
1019. H. A. Morss, Jr., J. Am. Chem. Soc, 60, 237 (1938). 1020. E. M. Barrall, II, T. C. Clarke, A. R. Gregges, J. Polym. Sci., Polym. Phys. Ed., 16, 1355 (1978). 1021. R. L. Williams, D. J. Ando, D. Bloor, M. B. Hurshouse, Polymer, 21, 1269 (1980). 1022. M. Thakur, J. B. Lando, in A. Hiltner, Ed., StructureProperty Relationships of Polymeric Solids (Polymer Science and Technology, V. 22), Plenum, New York, 1983, p. 85; Macromolecules, 16, 143 (1983). The crosspolymer has two "fiber" axes, b and c. 1023. M. Thakur, J. B. Lando, J. Appl. Phys., 54, 5554 (1983). The cross-polymer has two "fiber" axes, b and c. 1024. T. Komoto, M. Kodaka, T. Kawai, Makromol. Chem., 180, 819 (1979). 1025. O. Yamashita, T. Yamane, T. Ashida, S. Yamashita, T. Yamashita, Polym. J., 11, 763 (1979). 1026. J. Watanabe, E. Kawasaki, I. Uematsu, Rep. Progr. Polym. Phys. Japan, 24, 559 (1981). 1027. S. Sasaki, Y. Yasumoto, J. Watanabe, I. Uematsu, Rep. Progr. Polym. Phys. Japan, 22, 611 (1979). 1028. S. Sasaki, Y. Yasumoto, I. Uematsu, Macromolecules, 14, 1797 (1981). 1029. R. D. B. Fraser, T. P. Macrae, I. W. Stapleton, Nature, 193, 573 (1962). 1030. J. Watanabe, K. Imai, I. Uematsu, Rep. Progr. Polym. Phys. Japan, 21, 565 (1970); J. Watanabe, I. Uematsu, Rep. Progr. Polym. Phys. Japan, 22, 603 (1979); J. Watanabe, K. Imai, R. Gehani, I. Uematsu, J. Polym. Sci., Polym. Phys. Ed., 19, 653 (1981); J. Watanabe, I. Uematsu, Polymer 25, 1711 (1984); J. Watanabe, K. Imai, I. Uematsu, Macromolecules, 19, 1489 (1986). 1031. J. Watanabe, K. Imai, I. Uematsu, Rep. Progr. Polym. Phys. Japan, 23, 671 (1980). 1032. M. Osani, K. Hikichi, Polym. J. (Tokyo), 14, 411 (1982). 1033. M. Osani, K. Hikichi, Biopolymers, 19, 1099 (1980). 1034. M. Osani, K. Hikichi, Rep. Progr. Polym. Phys. Japan, 21, 507 (1978). 1035. M. Osani, K. Hikichi, Rep. Progr. Polym. Phys. Japan, 22, 567 (1979). 1036. K. Ichikawa, K. Hikichi, Rep. Progr. Polym. Phys. Japan, 24, 535 (1981); Polym. J. (Tokyo), 14, 753 (1982); Rep. Progr. Polym. Phys. Japan, 25, 661 (1982). 1037. A. Nakajima, T. Fujiwara, T. Hayashi, K. Kaji, Biopolymers, 12, 2681 (1973). 1038. M. Nagao, J. Watanabe, I. Uematsu, Rep. Progr. Polym. Phys. Japan, 23, 675 (1980). 1039. J. A. Lefelar, J. R. Knox, E. T. Samulski, Biopolymers, 22, 1071 (1983). 1040. S. Sasaki, T. Nakamura, I. Uematsu, J. Polym. Sci., Polym. Phys. Ed., 17, 825 (1979). 1041. J. Watanabe, Y. Sasanuma, A. Endo, I. Uematsu, Polymer, 25, 698 (1984). 1042. M. Nagao, T. Suzuki, S. Sasaki, I. Uematsu, Polym. Bull. (Berlin), 11, 565 (1984). 1043. S. Sasaki, H. Ban, I. Uematsu, J. Polym. Sci., Polym. Phys. Ed., 21, 413 (1983). For cell I, a value for the c axis was calculated from the reported helical parameters and is so indicated by placing it in parentheses.
1044. S. K. Brahmachari, M. Bansal, V. S. Ananthanarayanan, V. Sasisekharan, Macromolecules, 12, 23 (1979). 1045. O. Yamashita, T. Ashida, Polym. J. (Tokyo), 15,899 (1983). 1046. F. Heitz, G. Detriche, F. Vovelle, G. Spach, Macromolecules, 14, 47 (1981). 1047. R. Ciaschi, M. D'Alagni, G. Mignucci, Makromol. Chem., 180, 2883 (1979). 1048. R. Ciaschi, M. D'Alagni, Makromol. Chem., 180, 2893 (1979). 1049. V. Malta, G. Cojazzi, A. Fichera, D. Ajo, R. Zannetti, Eur. Polym. J., 15, 765 (1979). 1050. K.-H. Illers, Makromol. Chem., 179, 497 (1978). 1051. S. Gogolewski, M. Gasiorek, K. Czerniawska, A. J. Pennings, Colloid Polym. ScL, 260, 859 (1982). 1052. N. Avramova, S. Fakirov, Polym. Commun., 25, 27 (1984). 1053. B. R. Malcolm, Biopolymers, 22, 319 (1983); B. R. Malcolm, M. D. Walkinshaw, Biopolymers, 25, 607 (1986). 1054. A. J. Owen, P. Kollross, Polym. Commun., 24, 303 (1983). 1055. G. Cojazzi, A. M. Drusiani, A. Fichera, V. Malta, F. Pilati, R. Zannetti, Eur. Polym. J., 17, 1241 (1981). 1056. M. Macchi, A. A. Giorgi, Makromol. Chem., Rapid Commun., 1, 563 (1980). 1057. B. A. Newman, T. P. Sham, K. D. Pae, J. Appl. Phys., 48, 4092 (1977). 1058. K. Inoue, S. Hoshino, J. Polym. ScL, Polym. Phys. Ed., 18, 697 (1980). 1059. E. M. Macchi, F. M. B. Coutinho, A. S. Gomes, J. Polym. ScL, Polym. Lett. Ed., 22, 209 (1984). 1060. M. L. Colclough, R. Baker, J. Mater. ScL, 13, 2531 (1978). 1061. M. G. Northolt, H. A. Stuut, J. Polym. ScL, Polym. Phys. Ed., 16, 939 (1978). 1062. K. Sakaoku, T. Itoh, K. Kitamura, Rep. Progr. Polym. Phys. Japan, 24, 139 (1981). 1063. T. Kaneda, S. Ishikawa, H. Daimon, T. Katsura, M. Ueda, K. Oda, M. Horio, Makromol. Chem., 183, 417 (1981). 1064. B. KaIb, A. J. Pennings, Polymer, 21, 607 (1980). 1065. G. Lieser, J. Polym. ScL, Polym. Phys. Ed., 21, 1611 (1983). 1066. J. M. Jonza, R. S. Porter, J. Polym. ScL, Part B: Polym. Phys., 24, 2459 (1986). 1067. S. Poulin-Dandurand, S. Perez, J.-F. Revol, F. Brisse, Polymer, 20, 419 (1979). 1068. I. J. Desborough, I. H. Hall, J. Z. Neisser, Polymer, 20, 545 (1979). 1069. I. H. Hall, M. G. Pass, N. N. Rammo, J. Polym. ScL, Polym. Phys. Ed., 16, 1409 (1978); I. H. Hall, N. N. Rammo, ibid., 16, 2189 (1978). 1070. I. H. Hall, B. A. Ibrahim, Polymer, 23, 805 (1982). 1071. K.-H. Illers, Colloid Polym. ScL, 258, 117 (1980). 1072. H. D. Keith, Macromolecules, 15, 122 (1982). 1073. R. Minke, J. Blackwell, J. Macromol. Sci. B: Phys., 16,407 (1979); ibid., 18, 233 (1980). 1074. K. Ueberreiter, V.-H. Karl, A. Altmeyer, Eur. Polym. J., 14, 1045 (1978). 1075. Y. Kinoshita, R. Nakamura, Y. Kitano, T. Ashida, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 20 (1), 454
1076. 1077. 1078. 1079. 1080.
1081. 1082.
1083. 1084. 1085. 1086. 1087. 1088. 1089. 1090. 1091.
1092. 1093. 1094. 1095. 1096. 1097.
1098. 1099. 1100. 1101.
(1979); Y. Kitano, Y Kinoshita, T. Ashida, Polymer, 36, 1947 (1995). V. Petraccone, A. Roviello, A. Sirigu, A. Tuzi, E. Martuscelli, M. Pracella, Eur. Polym. J., 16, 261 (1980). B. Remillard, F. Brisse, Polymer, 23, 1960 (1982). J. Shimizu, N. Okui, Y Imai, S. Nishide, A. Takaku, J. Polym. Sci., Polym. Phys. Ed., 21, 275 (1983). G. Maglio, C. Marchetta, A. Botta, R. Palumbo, M. Pracella, Eur. Polym. J., 15, 695 (1979). D. L. Dorset, B. Moss, in: C. D. Craver (Ed.), "Polymer Characterization" (Adv. Chem. Series 203), Am. Chem. Soc, Washington, p. 409 (1983). Y Saito, K. Hara, S. Kinoshita, Polym. J. (Tokyo), 14, 19 (1982). J. Blackwell, K. H. Gardner, Polymer, 20, 13 (1979); J. Blackwell, M. Ross, J. Polym. Sci., Polym. Lett. Ed., 17, 447 (1979). L. Born, J. Crone, H. Hespe, E. H. Muller, K. H. Wolf, J. Polym. Sci., Polym. Phys. Ed., 22, 163 (1984). H. Ishihara, I. Kimura, N. Yoshihara, J. Macromol. Sci. B: Phys., 22, 713 (1983-1984). J. Noah, R. E. Prud'homme, Eur. Polym. J., 17, 353 (1981). R. H. Marchessault, J. St.-Pierre, M. Duval, S. Perez, Macromolecules, 11, 1281 (1978). J. Noah, R. E. Prud'homme, Eur. Polym. J., 16, 1027 (1980). Y Normand, M. Aubin, R. E. Prud'homme, Makromol. Chem., 180, 769 (1979). D. Duchesne, R. E. Prud'homme, Polymer, 20, 1199 (1979). Y. Chatani, M. Yokouchi, H. Tadokoro, Macromolecules, 12, 822 (1979). O. Setokuchi, Y. Chatani, H. Tadokoro, Polym. Prepr. Japan, 28, (1962) (1979), cited in K. Nakamae, F. Yokoyama, T. Nishino, M. Yosikawa, T. Matsumoto, J. Macromol. Sci. B: Phys., 22, 591 (1983). S. V. Meille, T. Konishi, P H. Geil, Polymer, 25, 773 (1984). C. D. Eisenbach, R. W. Lenz, M. Duval, R. H. Marchessault, Makromol. Chem., 180, 429 (1979). W. Claffey, K. Gardner, J. Blackwell, J. Lando, P. H. Geil, Philos. Mag., 30, 1223 (1974). Y Takahashi, Y Osaki, H. Tadokoro, J. Polym. Sci., Polym. Phys. Ed., 18, 1863 (1980). Y Takahashi, Y Osaki, H. Tadokoro, J. Polym. Sci., Polym. Phys. Ed., 19, 1153 (1981). E. Perez, M. A. Gomez, A. Bello, J. G. Fatou, Colloid Polym. Sci. 1097B, 261,571 (1983); M. A. Gomez, E. D. T. Atkins, C. Upstill, A. Bello, 1097C J. G. Fatou, Polymer, 29, 224 (1988). J. Starr, O. Vogl, J. Polym. Sci., Polym. Chem. Ed., 17,1923 (1979). R. M. Myasnikova, E. F. Titova, E. S. Obolonkova, Polymer, 21, 403 (1980). J. M. Parker, P. V. Wright, C. C. Lee, Polymer, 22, 1305 (1981). H. Tadokoro, Makromol. Chem., Suppl., 4, 129 (1981).
1102. S. E. Rickert, J. B. Lando, A. J. Hopfinger, E. Baer, Macromolecules, 12, 1053 (1979). 1103. S. E. Rickert, H. Ishida, J. B. Lando, J. L. Koenig, E. Baer, J. Appl. Phys., 51, 5194 (1980). 1104. D. Bhaumik, J. E. Mark, Macromolecules, 14, 162 (1981). 1105. S. Katayama, T. Murakami, Y. Takahashi, H. Serita, Y. Obuchi, T. Ito, J. Appl. Polym. ScL, 20, 975 (1976). 1106. Y Chatani, H. Tadokoro, T. Saegusa, H. Ikeda, Macromolecules, 14, 315 (1981). 1107. Y. Chatani, T. Kobatake, H. Tadokoro, R. Tanaka, Macromolecules, 15, 170 (1982). 1108. Y Chatani, T. Kobatake, H. Tadokoro, Macromolecules, 16, 199 (1983). 1109. H. R. Allcock, R. A. Arcus, E. G. Stroh, Macromolecules, 13, 919 (1980). 1110. J. J. Beres, N. S. Schneider, C. R. Desper, R. E. Singler, Macromolecules, 12, 566 (1979). 1111. C W . Burkhart, P. C. Gillette, J. B. Lando, J. B. Beres, J. Polym. ScL, Polym. Phys. Ed., 21, 2349 (1983). 1112. M. Kojima, J. H. Magill, Polym. Commun., 24, 329 (1983). 1113. P. C. Dawson, D. J. Blundell, Polymer, 21, 577 (1980). 1114. D. R. Rueda, F. Ania, A. Richardson, I. M. Ward, F. J. BaltaCalleja, Polym. Commun., 24, 258 (1983). 1115. J. N. Hay, D. J. Kemmish, J. I. Langford, A. I. M. Rae, Polym. Commun., 25, 175 (1984). 1116. D. J. Blundell, B. N. Osborn, Polymer, 24, 953 (1983). 1117. T. E. Atwood, R C. Dawson, J. L. Freeman, L. R. J. Hoy, J. B. Rose, P. A. Staniland, Polymer, 22, 1096 (1981). 1118. S. M. Aharoni, P. A. Apgar, J. H. Dunsmuir, J. Polym. ScL, Polym. Phys. Ed., 15, 2055 (1977). 1119. P. E. Aylwin, R. H. Boyd, Polymer, 25, 323 (1984). 1120. V. V. Korshak, S. V. Vinogradova, Zh. Obshch. Khim., 26, 544 (1956); J. Gen. Chem. USSR (Engl. Transl.), 26, 581 (1956). 1121. B. Wunderlich, U. Gaur, Pure Appl. Chem., 52, 445 (1980). 1122. D. Lupinacci, W. T. Winter, J. Polym. ScL, Polym. Phys. Ed., 20, 1013 (1982). 1123. B. Tieke, J. Polym. ScL, Polym. Chem. Ed., 22, 391 (1984). 1124. M. Farina, G. Allegra, G. Natta, J. Am. Chem. Soc, 86, 516 (1964). 1125. J. Blackwell, M. R. Nagarajan, T. B. Hoitink, Polymer, 22, 1534 (1981); ibid., 23, 950 (1982). 1126. M. Farina, G. di Silvestro, Makromol. Chem., 183, 241 (1982). 1127. W. Cooper, G. Vaughan, Polymer, 4, 329 (1963). 1128. S. Mukherji, A. E. Woodward, J. Polym. ScL, Polym. Phys. Ed., 22, 793 (1984). 1129. C. Guizard, H. Chanzy, A. Sarko, Macromolecules, 17,100 (1984). 1130. J. Jelsma, D. R. Kreger, in: A. D. French, K. H. Gardner (Eds.), "Fiber, Diffraction Methods" (ACS Symp. Ser. No. 141), Am. Chem. Soc, Washington, p. 351 (1980). 1131. K. Ogawa, A. Misaki, S. Oka, K. Okamura, Carbohydr. Res., 75, C13 (1979); K. Ogawa, K. Okamura, S. Oka, A. Misaki, in: A. D. French, K. H. Gardner (Eds.), "Fiber
1132.
1133. 1134. 1135. 1136. 1137. 1138. 1139. 1140. 1141.
1142. 1143. 1144. 1145.
1146. 1147. 1148. 1149. 1150. 1151. 1152. 1153. 1154.
1155. 1156. 1157. 1158.
Diffraction Methods" (ACS Symp. Ser. No. 141), Am. Chem. Soc, Washington, p. 353 (1980). R. H. Marchessault, Y. Deslandes, K. Ogawa, P. R. Sundararajan, Can. J. Chem., 55, 300 (1977); Y Deslandes, R. H. Marchessault, A. Sarko, Macromolecules, 13,1466 (1980); C. T. Chuah, A. Sarko, Y Deslandes, R. H. Marchessault, Macromolecules, 16, 1375 (1983). H. Takeda, N. Yasuoka, N. Kasai, T. Harada, Polym. J. (Tokyo), 10, 365 (1978). H. Chanzy, M. Dube, R. H. Marchessault, Polymer, 20, 1037 (1979). G. L. Clark, A. F. Smith, J. Phys. Chem., 40, 863 (1937). P. Zugenmaier, W. Herth, G. Lieser, Colloid Polym. ScL, 259, 472 (1981). R. J. Samuels, J. Polym. ScL, Polym. Phys. Ed., 19, 1081 (1981). K. Ogawa, S. Hirano, T. Miyanishi, T. Yui, T. Watanabe, Macromolecules, 17, 975 (1984). K. Tanaka, N. Katsura, Biopolymers, 18, 257 (1979). T. L. Bluhm, A. Sarko, Biopolymers, 14,2639 (1975); ibid., 16, 2067 (1977). H. Chanzy, M. Dube, R. H. Marchessault, J. F. Revol, Biopolymers, 18, 887 (1979); H. Chanzy, S. Perez, D. P. Miller, G. Paradossi, W. T. Winter, Macromolecules, 20, 2407 (1987). T. L. Bluhm, P. Zugenmaier, Progr. Colloid. Polym. ScL, 64, 132 (1978); Polymer, 20, 23 (1979). P. Zugenmaier, A. Sarko, Biopolymers, 12, 435 (1973). H.-C. H. Wu, A. Sarko, Carbohydr. Res., 61, 7 (1978). N. C. Schieltz, Quart. Colo. School Mines, 60 (4), 55 (1965), cited in H.-C. Wu, A. Sarko, Carbohydr. Res., 61, 7 (1978). H.-C. Wu, A. Sarko, Carbohydr. Res., 54, C3 (1977); ibid., 61, 27 (1978). D. Meader, E. D. T. Atkins, F. Happey, Polymer, 19, 1371 (1978). P. Zugenmaier, Appl. Polym. Symp., 37, 223 (1983). C. Woodcock, A. Sarko, Macromolecules, 13, 1183 (1980). R. E. Hunter, N. E. Dweltz, J. Appl. Polym. ScL, 23, 249 (1979). D. M Lee, J. Blackwell, Biopolymers, 20, 2165 (1981). K. M. Paralikar, S. M. Batrabet, J. Polym. ScL, Polym. Lett. Ed., 19, 555 (1981). E. S. Gardiner, A. Sarko, Appl. Polym. Symp., 37, 303 (1983). D. M. Lee, J. Blackwell, M. H. Litt, Biopolymers, 22, 1383 (1983); J. Blackwell, D. M. Lee, Appl. Polym. Symp., 37, 283 (1983). P. M. Whitaker, L A. Nieduszynski, E. D. T. Atkins, Polymer, 15, 125 (1974). F. B. Booy, H. Chanzy, A. Sarko, Biopolymers, 18, 2261 (1979). C. A. Aufdermarsh, R. Pariser, J. Polym. ScL, Part A, 2, 4727 (1964). E. Bornschlegl, R., Bonart, Colloid Polym. ScL, 258, 319 (1980).
1159. I. H. Hall, cited in I. H. Hall, Ed., Structure of Crystalline Polymers, Elsevier, New York, p. 58 (1984). 1160. H. Tadokoro, cited in: I. H. Hall (Ed.), "Structure of Crystalline Polymers", Elsevier, New York, p. 59, (1984). 1161. S. Gogelewski, A. J. Pennings, Polymer, 18, 660 (1977). 1162. F. Kumamaru, T. Kajiyama, M. Takayanagi, Rep. Progr. Polym. Phys. Japan, 19, 581 (1976). 1163. R. Alamo, J. G. Fatou, J. Guzman, Polymer, 23, 374 (1982). 1164. E. Bortel, S. Hodorowicz, R. Lamot, Makromol. Chem., 180, 2491 (1979). 1165. J. Garza, C. Marco, J. G. Fatou, A. Bello, Polymer, 22, 477 (1981). 1166. J. H. Magill, M. Girolamo, A. Keller, Polymer, 22, 43 (1981). 1167. C. Marco, J. G. Fatou, A. Bello, A. Blanco, Makromol. Chem., 181, 1357 (1980). 1168. W. S. Fulton, E. D. T. Atkins, in: A. D. French, K. H. Gardner (Eds.), "Fiber Diffraction Methods" (ACS Symp. Ser. No. 141), Am. Chem. Soc, Washington, p. 385 (1980). 1169. E. N. Dalai, K. D. Taylor, P. J. Phillips, Polymer, 24, 1623 (1983). 1170. C. K. L. Davies, O. E. Long, J. Mater. Sci., 14, 2529 (1979). 1171. J. C. Wittamann, B. Lotz, J. Polym. Sci., Polym. Phys. Ed., 19, 1853 (1981). 1172. M. Kyotani, J. Polym. Sci., Polym. Phys. Ed., 20, 345 (1982). 1173. M. Farina, G. Natta, G. Allegra, M. Loffelholz, J. Polym. Sci., Part C, 16, 2517 (1967). 1174. I. Goodman, Angew. Chem., 74, 606 (1962). 1175. E. W. Fischer, H. J. Sterzel, G. Wegner, Kolloid Z. Z. Polym., 251, 980 (1973). 1176. F. Ascoli, G. de Angelis, F. del Bianco, P. de Santis, Biopolymers, 14, 1109 (1975). 1177. H. Kusanagi, M. Takase, Y. Chatani, H. Tadokoro, J. Polym. Sci., Polym. Phys. Ed., 16, 131 (1978). 1178. B. M. Ginzburg, V. N. Volosatov, Ye. T. Magdalev, Sh. Tuichiyev, Vysokomol. Soedin., Ser. A, 20, 900 (1978); Polym. Sci. USSR (Engl. TransL), 20, 1017 (1978). 1179. H. Haberkorn K. H. fliers, P. Simak, Polym. Bull. (Berlin), 1, 485 (1979). 1180. H. W. Starkweather, Jr., P. Zoller, G. A. Jones, J. Polym. Sci., Polym. Phys. Ed., 22, 1615 (1984). 1181. N. S. Murthy, H. Kim, Polymer, 25, 1093 (1984). 1182. R. Geiss, W. Volksen, J. Tsay, J. Economy, J. Polym. Sci., Polym. Lett. Ed., 22, 433 (1984). 1183. R. H. Marchessault, H. Morikawa, J. -F Revol, T. L. Bluhm, Macromolecules, 17, 1882 (1984). 1184. A. Palmer, S. Poulin-Dandurand, J.-F. Revol, F. Brisse, Eur. Polym. J., 20, 783 (1984); F. Brisse, A. Palmer, B. Moss, D. Dorset, W. A. Roughead, D. P Miller, ibid., 791 (1984). 1185. M. Kojima, W. Kluge, J. H. Magill, Macromolecules, 17, 1421 (1984). 1186. T. A. Ibidapo, D. J. Johnson, Polymer, 24, 271 (1983). 1187. E. R Melnikova, A. A. Vansheidt, M. G. Krakovyak, L. V. Kukhareva, Vysokomol. Soedin., 2, 1817 (1960); Polym. Sci., USSR (Engl. TransL), 3, 494 (1962).
1188. B. Tieke, G. Chapuis, J. Polym. Sci., Polym. Chem. Ed., 22, 2895 (1984). 1189. O. V. Romankevich, S. Ya Frenkel', Vysokomol. Soedin., Ser. A, 22, 2416 (1980); Polym. Sci. USSR (Engl. TransL), 22, 2647 (1980). 1190. A. V. Sidorovich, Yu. G. Baklagina, N. V. Mikhailova, L. K. Prokhorova, L. M. Shcherbakova, M. M. Koton, Vysokomol. Soedin., Ser. A, 25, 2096 (1983); Polym. Sci. USSR (Engl. TransL), 25, 2433 (1983). 1191. Yu. G. Baklagina, I. S. Milevskaya, N. V Mikhailova, A. V Sidorovich, L. K. Prokhorova, Vysokomol. Soedin., Ser. A, 23, 337 (1981); Polym. Sci. USSR (Engl. TransL), 23, 376 (1981). 1192. A. J. Lovinger, R. E. Cais, Macromolecules, 17, 1939 (1984). 1193. F. Brisse, B. Remillard, H. Chanzy, Macromolecules, 17, 1980 (1984). 1194. N. T. Wakelyn, Polym. Commun., 25, 306 (1984). 1195. B. Wunderlich, Macromolecular Physics, Academic, New York, vol. 1, Table IVl (1973); vol. 3, Table VIII.6 (1980). 1196. V. S. Papkov, Yu. K. Godovsky, V S. Svistunov, V. M. Litvinov, A. A. Zhdanov, J. Polym. Sci., Polym. Chem. Ed., 22, 3617 (1984). 1197. G. Charlet, G. Delmas, J. F. Revol, R. S. J. Manley, Polymer, 25, 1613 (1984). 1198. G. Charlet,, G. Delmas, Polymer, 25, 1619 (1984). 1199. C. Lavallee, G. Lemay, A. Leborgne, N. Spassky, R. E. Prud'homme, Macromolecules, 17, 2457 (1984). 1200. D. M. Koenhen, A. Bakker, L. Broens, J. W. A. van den Berg, C. A. Smolders, J. Polym. Sci., Polym. Phys. Ed., 22, 2145 (1984). 1201. K. Inoue, S. Hoshino, J. Polym. Sci., Polym. Phys. Ed., 22, 1969 (1984). 1202. M. Scandola, M. Pizzoli, A. Drusiani, G. Garbuglio, Eur. Polym. J., 10, 101 (1974). 1203. B. M. Ginzburg, Ye. T. Magdalev, V N. Volosatov, R. G. Fedorova, S. Ya. Frenkel', Vysokomol. Soedin., Ser. A, 22, 2200 (1980); Polym. Sci. USSR (Engl. TransL), 22, 2410 (1980). 1204. S. Sasaki, I. Uematsu, J. Polym. Sci., Polym. Phys. Ed., 23, 263 (1985). 1205. C. W. Dirk, T. Inabe, K. F. Schoch, Jr., T. J. Marks, J. Am. Chem. Soc, 105, 1539 (1983); X. Zhou, T. J. Marks, S. H. Carr, J. Polym. Sci., Polym. Phys. Ed., 23, 305 (1985). 1206. B. N. Diel, T. Inabe, J. W. Lyding, K. F. Schoch, Jr., C. R. Kannewurf, T. J. Marks, J. Am. Chem. Soc, 105, 1551 (1983). 1207. J. J. Point, C. Coutelier, J. Polym. Sci., Polym. Phys. Ed., 23, 231 (1985). 1208. P. Corradini, R. Napolitano, V. Petraccone, B. Pirozzi, A. Tuzi, Eur. Polym. J., 21, 65 (1985). 1209. G. Trafara, J. Polym. Sci., Polym. Chem. Ed., 18, 321 (1980). 1210. J.-C. Lin, M. H. Litt, G. Froyer, J. Polym. Sci., Polym. Chem. Ed., 19, 165 (1981). 1211. D. Grenier, R. E. Prud'homme, A. Leborgne, N. Spassky, J. Polym. Sci., Polym. Chem. Ed., 19, 1781 (1981).
1212. G.-Y. Shi, B. Huang, J.-Y. Zhang, Makromol. Chem., Rapid Commun., 5, 573 (1984). 1213. C. R. Fincher, Jr., C-E. Chen, A. J. Heeger, A. G. MacDiarmid, J. B. Hastings, Phys. Rev. Lett., 48, 100 (1982). 1214. B. Lotz, F. Colonna-Cesari, F. Heitz, G. Spach, J. MoI. Biol., 106, 915 (1976). 1215. B. Lotz, F. Heitz, G. Spach, C. R. Hebd. Seances Acad. ScL, Ser. C, 276, 1715 (1973). 1216. RJ. Barham, A. Keller, E. L. Otun, R A. Holmes, J. Mater. ScL, 19, 2781 (1984). 1217. M. Kojima, J. H. Magill, Makromol. Chem., 186, 649 (1985). 1218. H. R. Allcock, R. L. Kugel, E. G. Stroh, Inorg. Chem., 11, 1120(1972). 1219. J. Blackwell, A. Sarko, R. H. Marchessault, J. MoL Biol., 42, 379 (1969). 1220. T. L. Bluhm, P. Zugenmaier, Carbohydr. Res., 68, 15 (1979). 1221. T. L. Bluhm, G. Rappenecker, P. Zugenmaier, Carbohydr. Res. 60, 241 (1978). 1222. R. Minke, J. Blackwell, J. MoL Biol., 120, 167 (1978). 1223. R. P. Millane, A. K. Mitra, S. Arnott, J. MoL Biol., 169, 903 (1983). 1224. A. K. Mitra, S. Arnott, J. K. Sheehan, J. MoI. Biol., 169, 813 (1983). 1225. J. K. Sheehan, K. H. Gardner, E. D. T. Atkins, J. MoL Biol., 117, 113 (1977); S. Arnott, A. K. Mitra, S. Raghunathan, ibid., 169, 861 (1983). 1226. A. K. Mitra, S. Raghunathan, J. K. Sheehan, S. Arnott, J. MoL Biol., 169, 829 (1983). 1227. J. M. Guss, D. W. L. Hukins, P. J. C. Smith, W. T. Winter, S. Arnott, R. Moorhouse, D. A. Rees, J. MoL Biol., 95, 359 (1975). 1228. R. H. Baughman, S. L. Hsu, L. R. Anderson, G. P. Pez, A. J. Singnorelli, in W. E. Hatfield, Ed., Molecular Metals (NATO Conference Series), Plenum, New York, p. 187 (1979). 1229. C. Riekel, H. W. Hasslin, K. Menke, S. Roth, J. Chem. Phys., 77, 4254 (1982). 1230. R. H. Baughman, N. S. Murthy, G. G. Miller, J. Chem. Phys., 79, 515 (1983). 1231. R. H. Baughman, L. W. Shacklette, N. S. Murthy, G. G. Miller, R. L. Elsenbaumer, MoL Cryst. Liq. Cryst., 118,253 (1985). 1232. J. J. Point, private communication, 14 March 1985. 1233. J. M. Jonza, R. S. Porter, Bull. Am. Phys. Soc, 30, 249 (1985). 1234. A. J. Lovinger, D. D. Davis, F. J. Padden, Jr., Polymer, 26, 1595 (1985). 1235. A. V. Fratini, E. M. Cross, J. F. O'Brien, W. W. Adams, J. Macromol. Sci. B: Phys., 24, 159 (1985-1986). 1236. T. Granier, E. L. Thomas, D. R. Gagnon, F. E. Karasz, R. W. Lenz, J. Polym. Sci., Polym. Phys. Ed., 24, 2793 (1986). 1237. G. Cojazzi, A. M. Fichera, V. Malta, R. Zannetti, Eur. Polym. J., 21, 309 (1985). 1238. H.-G. Braun, G. Wegner, Makromol. Chem., 184, 1103 (1983).
1239. B. Lotz, J. MoL Biol., 87, 169 (1974). 1240. C. Galiotis, R. J. Young, D. J. Ando, D. Bloor, Makromol. Chem., 184, 1083 (1983). 1241. W. T. Winter, S. Arnott, D. H. Isaac, E. D. T. Atkins, J. MoL Biol., 125, 1 (1978). 1242. J. J. Cael, W. T. Winter, S. Arnott, J. MoL Biol., 125, 21 (1978). 1243. W. T. Winter, A. Sarko, Biopolymers, 13, 1447 (1974). 1244. B. Zaslow, V. G. Murphy, A. D. French, Biopolymers, 13, 779 (1974). 1245. T. D. Simpson, F. R. Dintzis, N. W. Taylor, Biopolymers, 11, 2591 (1972). 1246. M. E. Hinkle, H. F. Zobel, Biopolymers, 6, 1119 (1968). 1247. Y. Yamashita, K. Monobe, J. Polym. Sci., Part A-2,9,1471 (1971). 1248. T. D. Simpson, Biopolymers, 9, 1039 (1970). 1249. G. Honjo, M. Watanabe, Nature (London) 181, 326 (1958). 1250. I. A. Nieduszynski, E. D. T. Atkins, Biochim. Biophys. Acta, 222, 109 (1970). 1251. S. Sasaki, E. Fukada, J. Polym. Sci., Polym. Phys. Ed., 14, 565 (1976). 1252. A. Kuppel, H. Bittiger, E. Husemann, Kolloid, Z. Z. Polym., 250, 623 (1972). 1253. N. E. Dweltz, J. R. Colvin, A. G. Mclnnes, Can. J. Chem., 46, 1513 (1968). 1254. E. D. T. Atkins, T. C. Laurent, Biochem. J., 133, 605 (1973). 1255. J. J. Creely, R. H. Wade, A. D. French, Text. Res. J., 48, 37 (1978). 1256. W. T. Winter, P. J. C. Smith, S. Arnott, J. MoL Biol., 99, 219 (1975). 1257. W. T. Winter, S. Arnott, J. MoL Biol., 117, 761 (1977). 1258. K. Tanaka, J. Biochem., 83, 325 (1978). 1259. F. Gamier, G. Tourillon, J. Y. Barraud, H. Dexpert, J. Mater. Sci., 20, 2687 (1985). 1260. Yu. K. Godovsky, N. N. Makarova, V. S. Papkov, N. N. Kuzmin, Makromol. Chem., Rapid Commun., 6, 443 (1985). 1261. G. Wieners, R. Weizenhofer, M. Monkenbusch, M. Stamm, G. Lieser, V. Enkelmann, G. Wegner, Makromol. Chem., Rapid Commun., 6,425, (1985). The authors conclude that the crystal structure consists of two mutually incommensurate sublattices of polymer chains and counterions. 1262. B. Remillard, F. Brisse, Polymer, 26, 1029 (1985). 1263. A. V. Fratini, W. W. Adams, Abstract PD15, Am. Crystallogr. Assoc. Meeting, Stanford Univ., 18-29 August 1985, Ser., 2, V. 13. 1264. J. B. Lando, M. K. Thakur, Synth. Met., 9, 317 (1984). The cross-polymer has two "fiber" axes, a and c. 1265. S. Munoz-Guerra, J. M. Fernandez-Santin, A. RodriguezGalan, J. A. Subirana, J. Polym. Sci., Polym. Phys. Ed., 23, 733 (1985). 1266. D. Ya. Tsvankin, V. S. Papkov, V. P. Zhukov, Yu. K. Godovsky, V. S. Svistunov, A. A. Zhdanov, J. Polym. Sci., Polym. Chem. Ed., 23, 1043 (1985). 1267. J. R. Evans, R. A. Orwoll, S. S. Tang, J. Polym. Sci., Polym. Chem. Ed., 23, 971 (1985).
1268. D. Day, J. B. Lando, Macromolecules, 13, 1483 (1980); D. R. Day, J. B. Lando, J. Polym. Sci., Polym. Phys. Ed., 19, 165 (1981). 1269. K. E. Hardenstine, G. V. S. Henderson, Jr., L. H. Sperling, C. J. Murphy, G. E. Manser, J. Polym. Sci., Polym. Phys. Ed., 23, 1597 (1985); G. V. S. Henderson, Jr., K. E. Hardenstine, C J . Murphy, L. H. Sperling, Polym. Mater. Sci. Eng., 53, 801 (1985). Structural parameters quoted for Poly (3,3-bis(ethoxymethyl) oxacyclobutane) are incompatible. 1270. J. J. Creely, L. Segal, L. Loeb, J. Polym. Sci., 36, 205 (1959). Fiber axis taken as 10.3 A where not explicitly reported. 1271. A. C. Farthing, J. Chem. Soc. 1955, 3648. 1272. M. Nagao, T. Suzuki, S. Sasaki, I. Uematsu, Polym. J. (Tokyo), 17, 787 (1985). 1273. R. M. Briber, E. L. Thomas, J. Polym. Sci., Polym. Phys. Ed., 23, 1915 (1985). 1274. J. N. Hay, D. J. Kemmish, J. I. Langford, A. I. M. Rae, Polym. Commun., 26, 283 (1985). 1275. T. M. Babchinitser, L. G. Kazaryan, L. M. Tartakovskaya, N. G. Vasilenko, A. A. Zhdanov, V. V. Korshak, Polymer, 26, 1527 (1985); I. L. Dubchak, T. M. Babchinitser, L. G. Kazaryan, L. M. Tartakovskaya, N. G. Vasilenko, A. A. Zhdanov, V. V. Korshak, Vysokomol. Soedin., Ser. A, 31, 65 (1989); Polym. Sci. USSR (Engl. Transl.), 31, 70 (1989). 1276. Z. Mo, K.-B. Lee, Y. B. Moon, M. Kobayashi, A. J. Heeger, F. Wudl, Macromolecules, 18, 1972 (1985). 1277. D. Bloor, R. J. Day, D. J. Ando, M. Motevalli, Br. Polym. J., 17, 287 (1985). 1278. J. J. Point, C. Coutelier, D. Villers, J. Phys. Chem., 90, 3277 (1986); J. J. Point, P. Damman, Macromolecules, 24, 2019 (1991). 1279. J. Watanabe, H. Ono, I. Uematsu, A. Abe, Macromolecules, 18, 2141 (1985). 1280. H. Wu, B. Wang, F. Hu, S. Li, Gaofenzi Tongxun 1985, 46, Chem. Abstr., 103, 178856s (1985). 1281. G. Wegner, Makromol. Chem., Makromol. Symp., 1, 151 (1986). 1282. Y. Yamashita, S. Nishimura, K. Shimamura, K. Monobe, Makromol. Chem., 187, 1757 (1986). 1283. M. M. Sokolowski, E. A. Marseglia, R. H. Friend, Polymer, 27, 1714 (1986). 1284. H. W. Starkweather, Jr., G. A. Jones, J. Polym. Sci., Polym. Phys. Ed., 24, 1509 (1986). 1285. U. Leute, W. Dollhopf, Colloid Polym. Sci., 261, 299 (1983). 1286. T. Yamamoto, T. Hara, Polymer, 27, 986 (1986). 1287. T. Tanigami, K. Yamaura, S. Matsuzawa, M. Ishikawa, K. Mizoguchi, K. Miyasaka, Polymer, 27, 999 (1986). 1288. R Zoller, H. W. Starkweather, Jr., G. A. Jones, J. Polym. Sci., Polym. Phys. Ed., 24, 1451 (1986). 1289. T.Kaneda, T. Katsura, K. Nakagawa, H. Makino, M. Horio, J. Appl. Polym. Sci., 32, 3151 (1986). 1290. M. Komakine, T. Namikawa, Y. Yamazaki, Makromol. Chem., Rapid Commun., 7, 139 (1986). 1291. N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi, Macromolecules, 19, 2464 (1986).
1292. J. Watanabe, H. Ono, Macromolecules, 19, 1079 (1986). 1293. S. Sasaki, J. Polym. Sci., Polym. Phys. Ed., 24, 2821 (1986). 1294. J. Puiggali, S. Munoz-Guerra, B. Lotz, Macromolecules, 19, 1119 (1986). 1295. R. Oshima, J. Kumanotani, Macromolecules, 19, 938 (1986). 1296. S. Sasaki, Polymer, 27, 849 (1986). 1297. L.-S. Li, J. Macromol. Sci. B: Phys., 25, 215 (1986). 1298. M. A. Gomez, J. G. Fatou, A. Bello, Eur. Polym. J., 22, 43 (1986); ibid., 661. 1299. M. A. Gomez, E. Perez, A. Bello, J. G. Fatou, Polym. Commun., 27, 166 (1986). 1300. A. Bello, E. Perez, J. M. G. Fatou, Macromolecules, 19, 2497 (1986). 1301. P. Zugenmaier, H. Steinmeier, Polymer, 27, 1601 (1986). An apparent misprint for amylose triacetate II had b = 29.97 A instead of 20.97 A. 1302. Ch. Buchele, P. Zugenmaier, Colloid Polym. Sci., 258, 768 (1980). 1303. W. A. Roughead, D. P. Miller, A. D. French, J. Macromol. Sci. B: Phys., 24, 229 (1985-1986). 1304. R Zugenmaier, A. Kuppel, Colloid Polym. Sci., 264, 231 (1986). 1305. A. V. Fratini, E. M. Cross, R. B. Whitaker, W. W. Adams, Polymer, 27, 861 (1986). 1306. S. Matsuzawa, K. Yamaura, T. Tanigami, M. Higuchi, Colloid Polym. Sci., 263, 888 (1985). 1307. S. V. Meille, W. Porzio, G. Allegra, G. Audisio, M. Gleria, Makromol. Chem., Rapid Commun., 7, 217 (1986); S. V. Meille, W. Porzio, A. Bolognesi, M. Gleria, ibid., 8, 43 (1987). 1308. A. J. Lovinger, F. C. Schilling, F. A. Bovey, J. M. Ziegler, Macromolecules, 19, 2657 (1986). 1309. H. Kuzmany, J. F. Rabolt, B. L. Farmer, R. D. Miller, J. Chem. Phys., 85, 7413 (1986). 1310. H. Yuki, Y. Taketani, J. Polym. Sci., Part B, 10, 373 (1972). 1311. J. Puiggali, S. Munoz-Guerra, J. A. Subirana, Polymer, 28, 209 (1987). 1312. J. M. Fernandez-Santin, J. Aymami, A. Rodriguez-Galan, S. Munoz-Guerra, J. A. Subirana, Nature, 311, 53 (1984); J. M. Fernandez-Santin, S. Munoz-Guerra, A. RodriguezGalan, J. Aymami, J. Lloveras, J. A. Subirana, E. Giralt, M. Ptak, Macromolecules, 20,62 (1987); S. Munoz-Guerra, J. M. Fernandez-Santin, C. Alegre, J. A. Subirana, Macromolecules, 22, 1540 (1989). 1313. J. Puiggali, S. Munoz-Guerra, J. Polym. Sci., Polym. Phys. Ed., 25, 513 (1987). 1314. M. Kojima, H. Satake, T. Masuko, J. H. Magill, J. Mater. Sci. Lett., 6, 775 (1987). 1315. R. Barton, Jr., Bull. Am. Phys. Soc, 32, 701 (1987). Also, private communication 14 April 1987. The second set of constants for Poly(4,4'-methylenedicyclohexylene dodecanediamide) is included for comparison with the values for homologs. 1316. Y. Cohen, E. L. Thomas, W. W. Adams, Bull. Am. Phys. Soc, 32, 700 (1987).
1317. S. Bruckner, S. Luzzati, W. Porzio, P. Sozzani, Macromolecules, 20, 585 (1987). 1318. R. R. Chance, R. H. Baughman, H. Muller, C. J. Eckhardt, J. Chem. Phys., 67, 3616 (1977). 1319. H. Ohnuma, K. Inoue, K. Se, T. Kotaka, Macromolecules, 17, 1285 (1984). Unit cell constants refer to a projected base. 1320. M. J. Downey, G. P. Hamill, M. Rubner, D. J. Sandeman, C. S. Velazquez, Makromol. Chem., 189, 1199 (1988). 1321. K. Scheerer, W. Wilke, Colloid Polym. Sri., 265, 206 (1987). 1322. A. Sanchez, C. Marco, J. G. Fatou, A. Bello, Makromol. Chem., 188, 1205 (1987). 1323. P Robin, J. P. Pouget, R. Comes, H. W. Gibson, A. J. Epstein, J. Phys. (Orsay, Fr.), 44, Suppl. No. 6, C3-77 (1983). 1324. G. Perego, G. Lugli, U. Pedretti, E. Cernia, J. Phys. (Orsay, Fr.), 44, Suppl. No. 6, C3-93 (1983). 1325. R. D. Miller, B. L. Farmer, W. Fleming, R. Sooriyakumaran, J. Rabolt, J. Am. Chem. Soc, 109, 2509 (1987). 1326. Y. Chatani, K. Yatsuyanagi, Macromolecules, 20, 1042 (1987). 1327. K. Ogawa, F. Tanaka, J. Tamura, K. Kadowaki, K. Okamura, Macromolecules, 20, 1172 (1987). 1328. E. Perez, A. Bello, J. G. Fatou, Makromol. Chem., 186,439 (1985); E. Perez, J. G. Fatou, A. Bello, Eur. Polym. J., 23, 469 (1987). 1329. C. Brouty, P. Spinat, M. -C. Sichere, A. Whuler, Z. Kristallogr., 176, 13 (1986). 1330. B. Lotz, A. J. Lovinger, R. E. Cais, Macromolecules, 21, 2375 (1988); A. J. Lovinger, B. Lotz, D. D. Davis, Macromolecules, 31, 2253 (1990). 1331. G. Charlet, G. Delmas, J. Polym. ScL, Polym. Phys. Ed., 26, 1111 (1988). 1332. H. Yamazaki, S. Kajita, K. Kamide, Polym. J. (Tokyo), 19, 995 (1987). 1333. Z. Zheng, T. Yamane, T. Ashida, K. Hashimoto, H. Sumitomo, Polym. J. (Tokyo), 18, 973 (1986). 1334. R Pradere, A. Boudet, J. Mater. ScL, 22, 4240 (1987). 1335. N. P. Kuznetsov, M. I. Bessonov, Vysokomol. Soedin., Ser. A, 28, 100 (1986); Polymer Sci. USSR (Engl. Transl.), 28, 113(1986). 1336. S. Bruckner, W. Porzio, Makromol. Chem., 189, 961 (1988). 1337. M. Bertault, L. Toupet, J. Canceill, A. Collet, Makromol. Chem., Rapid Commun., 8, 443 (1987). 1338. S. Sasaki, S. Takigawa, Polym. J. (Tokyo), 19,1081 (1987). 1339. R. R Grasso, B. C. Perry, J. L. Koenig, J. B. Lando, Macromolecules, 22, 1267 (1989). 1340. D. Y Yoon, N. Masciocchi, L. E. Depero, C. Viney, W. Parrish, Macromolecules, 23, 1793 (1990). 1341. M. Hamamouchi, R. E. Prud'homme, J. Polym. Sci., Polym. Chem. Ed., 26, 1593 (1988). 1342. S. Z. D. Cheng, B. Wunderlich, Macromolecules, 21, 789 (1988). 1343. Y. Chatani, S. Okamura, Polymer, 28, 1815 (1987). 1344. H. W. Starkweather, Jr., G. A. Jones, P. Zoller, J. Polym. Sci., Polym. Phys. Ed., 26, 257 (1988).
1345. A. J. Lovinger, F J. Padden, Jr., D. D. Davis, Polymer, 29, 229 (1988). 1346. A. Sanchez, C. Marco, J. G. Fatou, A. Bello, Eur. Polym. J., 24, 355 (1988). 1347. A. Imberty, H. Chanzy, S. Perez, A. Buleon, V. Tran, Macromolecules, 20, 2634 (1987). 1348. Y. Shuto, J. Sugiyama, H. Harada, K. Okamura, Macromolecules, 20, 2317 (1987). 1349. M. Kojima, J. H. Magill, Sixth Meeting on Inorganic Polymers, 26-27 Nov. 1987, Tokyo, Japan. 1350. U. Rieck, J. H. Magill, Polym. Commun., 28, 107 (1987). 1351. J. Z. Ruan, M. H. Litt, Macromolecules, 21, 876 (1988). 1352. Yu. S. Lipatov, A. Sh. Goikhman, L. R Zhelevskaya, N. V. Dmitrak, V. Y. Shilov, A. Yu. Bilibin, S. S. Skorokhodov, Vysokomol. Soedin., Ser. A, 29, 1136 (1987); Polym. Sci. USSR (Eng. Transl.), 29, 1256 (1987). 1353. A. Kobayashi, H. Kobayashi, Y Tokura, T. Kanetake, T. Koda, J. Chem. Phys., 87, 4962 (1987). 1354. H. Matsuda, H. Nakanishi, T. Hosomi, M. Kato, Macromolecules, 21, 1238 (1988). 1355. E. D. T. Atkins, S. Farnell, C. Burden, W. Mackie, B. Sheldrick, Biopolymers, 27, 1097 (1988). 1356. K. Ogawa, T. Miyanishi, T. Yui, C. Hara, T. Kiho, S. Ukai, A. Sarko, Carbohydr. Res., 148, 115 (1986). 1357. Y. P. Hanna, J. Mater. Sci. Lett., 7, 817 (1988). 1358. A. Bello, E. Perez, J. G. Fatou, Makromol. Chem., Makromol. Symp., 20/21, 159 (1988). 1359. J. Puiggali, S. Munoz-Guerra, A. Rodriguez-Galan, C. Alegre, J. A. Subirana, Makromol. Chem., Makromol. Symp., 20/21, 167 (1988). 1360. M. Kojima, T. Masuko, J. H. Magill, Makromol. Chem., Rapid Commun., 9, 565 (1988); T. Masuko, M. Hoshi, J. Kitami, K. Yonetake, J. Mater. Sci. Lett., 7, 1241 (1988). 1361. N. Tsutsumi, A. Tsuji, C. Horie, T. Kiyotsukuri, Eur. Polym. J., 24, 837 (1988). 1362. S. Z. D. Cheng, R. Pan, H. S. Bu, M. -Y. Cao, B. Wunderlich, Makromol. Chem., 189, 1579 (1988). 1363. A. Bello, S. Lazcano, C. Marco, J. G. Fatou, J. Polym. Sci., Polym. Chem. Ed., 22,1197 (1984); S. Lazcano, C. Marco, J. G. Fatou, A. Bello, Eur. Polym. J., 24, 991 (1988). 1364. F. Cabassi, W. Porzio, G. Ricci, S. Bruckner, S. V. Meille, L. Porri, Makromol. Chem., 189,2135 (1988); S. Bruckner, S. V. Meille, W. Porzio, G. Ricci, ibid., 2145 (1988). 1365. D. Cuzin, Y Chauvin, G. Lefebvre, Eur. Polym. J., 5, 283 (1969). 1366. Y. Chatani, T. Me, Polymer, 29, 2126 (1988). 1367. K. Jamshidi, S.-H. Hyon, Y Ikada, Polymer, 29, 2229 (1988). 1368. B. V. Lebedev, A. A. Yevstropov, N. K. Lebedev, Ye. A. Karpova, Ye. B. Lyudvig, B. G. Belen'kaya, Vysokomol. Soedin., Ser. A, 20, 1974 (1978); Polym. Sci. USSR (Engl. Transl.), 20, 2219 (1978). 1369. G. Perego, G. Lugli, U. Pedretti, M. Cesari, Makromol. Chem., 189, 2657 (1988). 1370. A. Immirzi, F. de Candia, P. Iannelli, A. Zambelli, V. Vittoria, Makromol. Chem., Rapid Commun., 9, 761 (1988).
1371. Sh. Tuichiev, A. M. Kuznetsova, A. M. Mukhammadieva, Vysokomol. Soedin., Ser. A, 29, 1756 (1987); Polym. Sci. USSR (Engl. Transl.), 29, 1930 (1987). 1372. N. Ishihara, M. Kuramoto, M. Uoi, Macromolecules, 21, 3356 (1988). 1373. S. Sasaki, Y. Iwanami, Macromolecules, 21, 3389 (1988). 1374. S.-K. Hong, J. Blackwell, Polymer, 30, 225 (1989). 1375. W. J. Jackson, Jr., Appl. Polym. Symp., 41, 25 (1985). 1376. G. Gianotti, A. Capizzi, L. Del Giudice, Rubber Chem. Technol., 49, 170 (1976). 1377. W. A. Schneider, M. F. Muller, Makromol. Chem., 189, 2823 (1988). 1378. K. C. Yee, J. Org. Chem., 44, 2571 (1979). 1379. V. Enkelmann, Makromol. Chem., 184, 1945 (1983). 1380. J. P. Aime, M. Schott, M. Bertault, L. Toupet, Acta Crystallogr., Sect. B: Struct. Sci., 44, 617 (1988). 1381. D. Bloor, L. Koski, G. C. Stevens, F. H. Preston, D. J. Ando, J. Mater. Sci., 10, 1678 (1975). 1382. S. Bruckner, S. V. Meille, L. Malpezzi, A. Cesaro, L. Navarini, R. Tombolini, Macromolecules, 21, 967 (1988). 1383. P. Zoller, T. A. Kehl, H. W. Starkweather, Jr., G. A. Jones, J. Polym. Sci., Part B: Polym. Phys., 27, 993 (1989). 1384. S. Sasaki, S. Takigawa, J. Polym. Sci., Part B: Polym. Phys., 27, 1077 (1989). 1385. M. G. Botros, J. B. Lando, S. Rickert, Bull. Am. Phys. Soc, 34, 981 (1989). 1386. S. M. Aharoni, S. T. Correale, W. B. Hammond, G. R. Hatfield, N. S. Murthy, Macromolecules, 22, 1137 (1989). 1387. M. Kojima, J. H. Magill, Polymer, 30, 579 (1989). 1388. O. Greis, T. Asano, J. Xu, J. Petermann, Z. Kristallogr., 182, 58 (1988); O. Greis, Y. Xu, T. Asano, J. Peterman, Polymer, 30, 590 (1989). 1389. S.-K. Hong, J. Blackwell, Polymer, 30, 780 (1989). 1390. S. V. Meille, S. Bruckner, J. B. Lando, Polymer, 30, 786 (1989). 1391. J. Puiggali, S. Munoz-Guerra, J. Polym. Sci., PartB: Polym. Phys., 27, 1563 (1989). 1392. Y. Chatani, Y Yakura, T. Ishioka, Polymer, 31, 208 (1990). 1393. D. R. Rueda, M. E. Cagiao, F. J. Balta Calleja, Polym. Bull., 21, 635 (1989). 1394. E. Perez, A. Bello, J. G. Fatou, J. A. Rausell-Colom, Makromol. Chem., 190, 613 (1989). 1395. L. G. Kazaryan, A. Ye. Azriel', V. A. Vasil'ev, N. G. Annenkova, N. K. Pinayeva, A. G. Chernova, Vysokomol. Soed., Ser. A, 30, 644 (1988); Polym. Sci. USSR (Engl. Transl.), 30, 645 (1988). 1396. F. C. Schilling, A. J. Lovinger, J. M. Ziegler, D. D. Davis, F. A. Bovey, Macromolecules, 22, 3055 (1989). 1397. E. Schomaker, G. Challa, Macromolecules, 22, 3337 (1989). 1398. K. Okuyama, H. Hidaka, H. Ichige, M. Osawa, Macromolecules, 22, 3776 (1989). 1399. M. A. Masse, J. B. Schlenoff, F. E. Karasz, E. L. Thomas, J. Polym. Sci., Part B: Polym. Phys., 27, 2045 (1989).
1400. A. J. Lovinger, D. D. Davis, F. C. Schilling, F. A. Bovey, Polym. Commun., 30, 356 (1989). 1401. M. Kobayashi, T. Nakaoki, N. Ishihara, Macromolecules, 22, 4377 (1989). 1402. B. Gunesin, R. J. Gustafson, J. Polym. Sci., Part A: Polym. Chem., 27, 4439 (1989). 1403. U. Haberthur, H.-G. Elias, Makromol. Chem., 144, 213 (1971). 1404. Y Fujiwara, Colloid Polym. Sci., 265, 1027 (1987). 1405. L. Dominguez, V. Enkelmann, W. H. Meyer, G. Wegner, Polymer, 30, 2030 (1989). 1406. P. Coulter, S. Hanna, A. H. Windle, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 30(2), 49 (1989). 1407. G. Gianotti, A. Valvassori, Polymer, 31, 473 (1990). 1408. S. Bruckner, S. V. Meille, Nature, 340, 455 (1989); S. V. Meille, S. Bruckner, W. Porzio, Macromolecules, 23, 4114 (1990). Note that chains lie parallel to both diagonals in the a-b plane. 1409. J. Hirschinger, H. Miura, K. H. Gardner, A. D. English, Macromolecules, 23, 2153 (1990). 1410. R. G. Alamo, A. Bello, J. G. Fatou, C. Obrador, J. Polym. Sci., Part B: Polym. Phys., 28, 907 (1990). 1411. H. Marand, J. D. Hoffman, Macromolecules, 23, 3682 (1990). 1412. M. Zhishen, Z. Hongfang, M. Qingbo, X. Xiaofu, Z. Lihua, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 31 (2), 153 (1990). The authors apparently adopted the unit cell angle values of poly(hexamethylene sebacamide). 1413. A. J. Lovinger, D. D. Davis, F. C. Schilling, F. J. Padden, Jr., F. A. Bovey, J. M. Ziegler, Macromolecules, 24,132 (1991). 1414. E. K. Karikari, B. L. Farmer, R. D. Miller, J. F. Rabolt, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 31 (2), 290 (1990). 1415. T. Suzuki, A. J. Kovacs, Polym. J., 1, 82 (1970). 1416. J. P. Wesson, T. C. Williams, J. Polym. Sci., Polym. Chem. Ed., 17, 2833 (1979). 1417. J. Arnauts, H. Berghmans, Polym. Commun., 31, 343 (1990). 1418. Y Chatani, Y Fujii, Y Shimane, J. Ijitsu, Polym. Prepr. Japan, 37, 1179 (1988); Y Chatani, Y Shimane, T. Ijitsu, T. Yukinari, Polymer, 34, 1625 (1993). 1419. G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone, P. Corradini, Macromolecules, 23, 1539 (1990). 1420. H. Hu, D. L. Dorset, Macromolecules, 23, 4604 (1990). 1421. W. R. Busing, Macromolecules, 23, 4608 (1990). 1422. S. Kobayashi, M. Ode, T. Ikawa, Polym. Prepr. Japan (Engl. Ed.), 37 (1-4), E435 (1988). 1423. T. Irie, Y Yakura, T. Ishioka, Y Chatani, Polym. Prepr. Japan (Engl. Ed.), 37 (5-10), E453 (1988). 1424. Y-S. Choi, Y Oishi, K. Miyasaka, Polym. J., 22, 601 (1990). 1425. S. J. Picken, J. Aerts, R. Visser, M. G. Northolt, Macromolecules, 23, 3849 (1990). 1426. S. Z. D. Cheng, Z. Wu, A. Zhang, R. L. Johnson, H. H. Wu, Polymer, 31, 1763 (1990). 1427. Y Ichikawa, Y Chatani, H. Ichige, Polym. Prepr. Japan (Engl. Ed.), 38 (5-12), E862 (1989); Polymer, 35, 18 (1994).
1428. T. Yoneda, Y. Chatani, Polym. Prepr. Japan (Engl. Ed.), 38 (5-12), E863 (1989). 1429. D. J. Johnson, I. Karacan, P. E. P. Maj, J. G. Tomka, Polymer, 31, 1991 (1990). 1430. Y. Chatani, H. Murayama, K. Noguchi, T. Asanuma, T. Shiomura, J. Polym. ScI, Part C: Polym. Lett., 28, 393 (1990). 1431. R. Napolitano, Makromol. Chem., 191, 2435 (1990). Values of the unit cell parameters, a and b, were estimated from energy calculations. 1432. Y. Chatani, Y Fujii, T. Takayanagi, A. Honma, Polymer, 31, 2238 (1990). 1433. R. Takagi, H. Tanaka, M. Kimura, S. Mukai, S. Nozawa, Polym. Prepr. Japan (Engl. Ed.) 39 (1-4), E497 (1990). 1434. Y Ozaki, Y. Takahashi, M. Takse, W. R. Krigbaum, Polym. Prepr. Japan (Engl. Ed.), 39 (1-4), E497 (1990); Y. Takahashi, Y. Ozaki, M. Takase, W. R. Krigbaum, J. Polym. ScL, Part B: Polym. Phys., 31, 1135 (1993). 1435. K. Noguchi, Y Chatani, Polym. Prepr. Japan (Engl. Ed.), 39 (1-4), E515 (1990). 1436. Y Shimane, Y Inoue, T. Inagaki, T. Ishioka, Y Chatani, T. Yukinari, Polym. Prepr. Japan (Engl. Ed.), 39 (5-11), E1508 (1990). [see also reference 1473a]. 1437. A. Prieto, B. Coutin, H. Sekiguchi, J. A. Subirana, S. M. Guerra, Makromol. Chem., 191, 2587 (1990). 1438. D. J. Blundell, J. D'Mello, Polymer, 32, 304 (1991). 1439. D. J. Blundell, A. B. Newton, Polymer, 32, 308 (1991). 1440. L. S. Li, P. H. Geil, Polymer, 32, 374 (1991). 1441. A. H. Kusanagi, A. Ishimoto, Polym. Prepr. Japan (Engl. Ed.), 39(5-11), E1509 (1990). 1442. R. E. Singler, R. A. Willingham, C. Noel, C. Friedrich, L. Bosio, E. Atkins, Macromolecules, 24, 510 (1991). 1443. D. A. Holmer, O. A. Pickett, Jr., J. H. Saunders, J. Polym. Sci., Part A-I, 10, 1547 (1972). 1444. V. Petraccone, B. Pirozzi, R Corradini, G. Giunchi, Polymer, 32, 396 (1991). 1445. H. Nishimura, T. Okano, A. Sarko, Macromolecules, 24, 759 (1991). 1446. H. Nishimura, A. Sarko, Macromolecules, 24, 771 (1991). 1447. A. Bolognesi, M. Catellani, S. Destri, W. Porzio, Makromol. Chem., Rapid. Commun., 12, 9 (1991). 1448. T. Yamamoto, T. Kanbara, C. Mori, Synth. Met., 38, 399 (1990). 1449. C. De Rosa, V. Venditto, G. Guerra, B. Pirozzi, P. Corradini, Macromolecules, 24,5645 (1991); C. De Rosa, V. Venditto, G. Guerra, P. Corradini, Makromol. Chem., 193, 1351 (1992). 1450. D. Mclntyre, H. Chien, R. Kozulla, Bull. Am. Phys. Soc, 40 (1), 350, 1995; Abstr. G31 7. 1451. K. Sakurai, T. Kashiwagi, T. Takahashi, J. Appl. Polym. Sci., 47, 937 (1993). 1452. M. Galimberti, G. Balbontin, I. Camurati, G. Paganetto, Macromol. Rapid Commun., 15, 633 (1994). 1453. C. De Rosa, F. Auriemma, A. Bordello, P. Corradini, Polymer, 36, 4723 (1995). 1454. S. Rastogi, M. Newman, A. Keller, J. Polym. Sci., Part B: Polym. Phys., 31, 125 (1993).
1455. C. De Rosa, V Venditto, G. Guerra, P. Corradini Macromolecules, 25, 6938 (1992); Polymer, 36, 3619 (1995). 1456. S. Kopp, D. L. Dorset, B. Lotz, Bull. Am. Phys. Soc, 39 (1), 108 (1994); Abstr A'33 3. 1457. S. V. Meille, D. R. Ferro, S. Bruckner, A. J. Lovinger, F. J. Padden, Macromolecules, 27, 2615 (1994). 1458. S. Haftka, K. Konnecke, J. Macromol. Sci. B: Phys., 30, 319 (1991). 1459. J. Rodriguez-Arnold, A. Zhang, S. Z. D. Cheng, A. J. Lovinger, E. T. Hsieh, P. Chu, T. W. Johnson, K. G. Honnell, R. G. Geerts, S. J. Palackal, G. R. Hawley, M. B. Welch, Polymer, 35, 1884 (1994). 1460. H. Maruyama, Y. Chatani, T. Asanuma, T. Shiomura, Polym. Prepr. Japan (Engl. Ed.), 40 (1-4), E476 (1991); Y Chatani, H. Maruyama, T. Asanuma, T. Shiomura, J. Polym. Sci., Part B: Polym. Phys., 29, 1649 (1991). 1461. K. Minagawa, T. Tamura, Y. Okada, K. Hatanaka, M. Matsuo, F. Yoshii, K. Makuuchi, Polym. Prepr. Japan. (Engl. Ed.), 42 (5-11), El 138 (1993). 1462. H. Kusanagi, Y Chatani, H. Tadokoro, Polymer, 35, 2028 (1994). 1463. J. B. Lando, M. D. Hanes, Macromolecules, 28, 1142 (1995). 1464. A. K. Nandi, L. Mandelkern, J. Polym. Sci., Part B: Polym. Phys., 29, 1287 (1991). 1465. X. B. Zhang, G. Van Tendeloo, J. Van Landuyt, D. Van Dijck, Macromolecules, 29, 1554 (1996). 1466. S. Sasaki, T. Yamamoto, T. Kanbara, A. Morita, T. Yamamoto, J. Polym. Sci., Part B: Polym. Phys., 30, 293 (1992). 1467. P. Corradini, C. De Rosa, A. Panunzi, G. Petrucci, P. Pino, Chimia, 44, 52 (1990); C. De Rosa, P. Corradini, Eur. Polym. J., 29, 163 (1993). 1468. M. Trifuoggi, C. De Rosa, F. Auriemma, P. Corradini, S. Bruckner, Macromolecules, 27, 3553 (1994). 1469. S. Bruckner, C. De Rosa, P. Corradini, W. Porzio, A. Musco, Macromolecules, 29, 1535 (1996). 1470. Z. Sun, R. L. Miller, Polymer, 34, 1963 (1993). 1471. C. De Rosa, V. Petraccone, D. Dal Poggetto, G. Guerra, B. Pirozzi, M. L. De Lorenzo, P. Corradini, Macromolecules, 28, 5507 (1995). 1472. M. Iuliano, G. Guerra, V. Pettracone, P. Corradini, C. Pellecchia, New Polymeric Mater., 3, 133 (1992). 1473. Y Shimane, U. Inoue, T. Inagaki, K. Orihara, T. Ishioka, Y. Chatani, Polym. Prepr. Japan (Engl. Ed.), 40 (5-11), E1478 (1991); Y Chatani, T. Inagaki, Y Shimane, H. Shikuma, Polymer, 34, 4841 (1993). 1474. Y Chatani, Y. Shimane, T. Inagaki, T. Ijitsu, T. Yukinari, H. Shikuma, Polymer, 34, 1620 (1993). 1475. K. Sakaitani, K. Okuyama, H. Arikawa, Polym. Prepr. Japan (Engl. Ed.), 40 (1-4), E478 (1991); K. Okuyama, H. Sakaitani, H. Arikawa, Macromolecules, 25, 7261 (1992). 1476. Y. Obata, L. Okuyama, S. Kurihara, Y Kitano, T. Jinda, Macromolecules, 28, 1547 (1995); Y. Kitano, I. Usami, Y. Obata, K. Okuyama, Polymer, 36,1123 (1995). 1477. J. Liu, D. Kim, F. W. Harris, S. Z. D. Cheng, J. Polym. Sci., Part B: Polym. Phys., 32, 2705 (1994); Polymer, 35, 4048 (1994).
1478. K. H. Gardner, R. S. Irwin, Am. Cryst. Assoc. Annual Meeting, 23-28 May 1993, Albuquerque, NM, Abstr. L003. 1479. K. Tashiro, K. Ono, Y. Minagawa, M. Kobayashi, T. Kawai, K. Yoshino, J. Polym. ScL, Part B: Polym. Phys., 29, 1223 (1991). 1480. K. Tashiro, Y. Minagawa, M. Kobayashi, S. Morita, T. Kawai, K. Yoshino, Polym. Prepr. Japan. (Engl. Ed.), 41 (5-11), E1648 (1992). 1481. T. J. Prosa, M. J. Winokur, J. Moulton, P. Smith, A. J. Heeger, Macromolecules, 25, 4364 (1992). 1482. W. Luzny, Acta Cryst., Sect. B: Struct. ScL, B51, 255 (1995). 1483. W. -P. Hsu, K. Levon, K. -S. Ho, A. S. Myerson, T. K. Kwei, Macromolecules, 26, 1318 (1993). 1484. H. J. Fell, E. J. Samuelson, J. Mardalen, E. Bakken, P. H. J. Carlsen, Synth. Met., 69, 301 (1995). 1485. W. Luzny, P. Rokita, R. Zareba, I. Kulszewicz-Bajer, Synth. Met., 75, 49 (1995). 1486. J. Mardalen, H. J. Fell, E. J. Samuelson, E. Bakken, R H. J. Carlsen, M. R. Andersson, Macromol. Chem. Phys., 196, 553 (1995). 1487. M. J. Winokur, P. Walmsey, J. Moulton, R Smith, A. J. Heeger, Macromolecules, 24, 3812 (1991). 1488. A. V. Fratini, R G. Lenhert, T. J. Resch, W. W. Adams, in: W. W. Adams, R. K. Eby, D. E. McLemore (Eds.), 'The Materials Science and Engineering of Rigid-Rod Polymers," Materials Research Society Symposia Proceedings, 134, p. 431 (1989). 1489. D. C. Martin, E. L. Thomas, Macromolecules, 24, 2450 (1991). 1490. S. J. Bai, J. Polym. ScL, Part B: Polym. Phys., 32, 2575 (1994). 1491. Y. Cohen, Y. Suruyama, E. L. Thomas, Macromolecules, 24, 1161 (1991). 1492. Y. Cohen in "The Materials Science and Engineering of Rigid-Rod Polymers," W. W. Adams, R. K. Eby, D. E. McLemore, Eds., Materials Research Society Symposia Proceedings, 134, p. 195 (1989) Y Cohen, W. W. Adams, Polymer, 37, 2767 (1996). 1493. S. Z. D. Cheng, D. R Heberer, H.-S. Lien, F. W. Harris, J. Polym. ScL, Part B: Polym. Phys., 28, 655 (1990). 1494. S. Z. D. Cheng, Z. Wu, M. Eashoo, S. L. C. Hsu, F. W. Harris, Polymer, 32, 1803 (1991). 1495. S. Z. D. Cheng, F. E. Arnold, Jr., A. Zhang, S. L.-C. Hsu, F. W. Harris, Macromolecules, 24, 5856 (1991). 1496. D. Hoffmann, R. Leonhardt, P. Weigel, J. Appl. Polym. ScL, 46, 1025 (1992). 1497. S. V. Meille, S. Capelli, G. Allegra, G. Ricci, Macromol. Rapid Commun., 16, 329 (1995). 1498. M. V. Brillhart, P. Cebe, J. Polym. ScL, Part B: Polym. Phys., 33, 927 (1995). 1499. S. Z. D. Cheng, M. L. Mittleman, J. J. Janimak, D. Shen, T. M. Chalmers, H.-S. Lien, C. C. Tso, R A. Gabori, F. W. Harris, Polym. International, 29, 201 (1992). 1500. C. W. Burkhart, J. B. Lando, J. K. Stille, in: W. W. Adams, R. K. Eby, D. E. McLemore (Eds.), "The Materials Science and Engineering of Rigid-Rod Polymers", Materials
1501. 1502. 1503.
1504. 1505. 1506. 1507. 1508. 1509. 1510. 1511. 1512. 1513. 1514. 1515. 1516. 1517. 1518.
1519. 1520. 1521.
1522. 1523. 1524. 1525. 1526. 1527. 1528.
Research Society Symposia Proceedings, 134, p. 475, (1989). V. Venditto, C. De Rosa, G. Guerra, R. Napolitano, Polymer, 33, 3547 (1992). S. V. Meille, S. Capelli, G. Ricci, Macromol. Rapid Commun., 16, 891 (1995). D. J. Sandman, C. S. Velazquez, G. R Hammill, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 33 (1), 284 (1992). A. Harada, H. Fujii, M. Kamachi, Macromolecules, 24, 5504 (1991). S. Sasaki, H. Ogawa, S. Kimura, Polym. J., 23, 1325 (1991); S. Sasaki, S. Kimura, Polym. J., 24, 1251 (1992). J. Bella, C. Aleman, J. M. Fernandez-Santin, C. Alegre, J. A. Subirana, Macromolecules, 25, 5225 (1992). F. Lopez-Carrasquero, M. Garcia-Alvarez, S. MunozGuerra, Polymer, 35, 4502 (1994). J. J. Navas, C. Aleman, F. Lopez-Carrasquero, S. MunozGuerra, Macromolecules, 28, 4487 (1995). M. A. Bellinger, A. J. Waddon, E. D. T. Atkins, W. J. MacKnight, Macromolecules, 27, 2130 (1994). A. Kawaguchi, Polymer, 33, 3981 (1992). M. Dosiere, Polymer, 34, 3160 (1993). M. Bermudez, J. Puiggali, S. Munoz-Guerra, Macromolecules, 27, 6325 (1994). L. Franco, J. Puiggali, J. Polym. ScL, Part B: Polym. Phys., 33, 2065 (1995). E. Navarro, L. Franco, J. A. Subirana, J. Puiggali, Macromolecules, 28, 8742 (1995). M. J. Hill, E. D. T. Atkins, Macromolecules, 28, 604 (1995). M. Kashima, H. Kusanagi, A. Ishimoto, Polym. Prepr. Japan (Engl. Ed.), 40 (5-11), E1488 (1991). E. D. T. Atkins, M. Hill, S. K. Hong, A. Keller, S. Organ, Macromolecules, 25, 917 (1992). R. J. Gaymans, T. E. C. van Utteren, J. W. A. van den Berge, J. Schuyer, J. Polym. ScL, Polym. Chem. Ed., 15, 537 (1977). L.-H. Wang, F. J. Balta Calleja, T. Kanamoto, R. S. Porter, Polymer, 34, 4688 (1993). A. Prieto, I. Iribarren, S. Munoz-Guerra, J. Mater. ScL, 28, 4059 (1993). J. L. Greene, Jr., E. L. Huffman, R. E. Burks, Jr., W. C. Sheehan, I. A. Wolff, J. Polym. ScL, Part A-I, 5, 391 (1967). L. Franco, E. Navarro, J. A. Subirana, J. Puiggali, Macromolecules, 27, 4284 (1994). J. E. Aceituno, V. Tereshko, B. Lotz, J. A. Subirana, Macromolecules, 29, 1886 (1996). A. Xenopoulos, B. Wunderlich, J. A. Subirana, Eur. Polym. J., 29, 927 (1993). L. Penn, F. Larsen, J. Appl. Polym. ScL, 23, 59 (1979). D. Snetivy, G. J. Vancso, G. C. Rutledge, Macromolecules, 25, 7037 (1992). Y. Fu, B. Wunderlich, Bull. Am. Phys. Soc, 40 (1), 614 (1995), Abstr. M3534. B. H. Glomm, M. C. Grob, P. Neuenschwander, U. W. Suter, D. Snetivy, G. J. Vancso, Polym., 35, 878 (1994).
1529. A. Heroux, F. Brisse, Am. Crystallogr. Assoc. Abstr. Ser 2, V. 23, Montreal, 23-28 July 1995, Abstr. M123, p. 125. 1530. A. Usanmaz, O. K. Melad, J. Polym. Sci., Part A: Polym. Chem., 34, 1087 (1996). 1531. G. C. Rutledge, A. G. Oertli, Makromol. Chem., 192, 2993 (1991). 1532. K. H. Gardner, B. S. Hsiao, H. Shih, S. Stompel, E. T. Samulski, J. Preston, Am. Crystallogr. Assoc. Abstr. Ser. 2, vol. 23, Montreal, 23-28 July 1995, Abstr. la.5.F, p. 50. 1533. S. Sasaki, J. Polym. Sci., Part B: Polym. Phys., 29, 527 (1991). 1534. R. Pearce, G. R. Brown, R. H. Marchessault, Polymer, 35, 3984 (1994). 1535. M. Scandola, G. Ceccorulli, M. Pizzoli, M. Gazzano, Macromolecules, 25, 1405 (1992). 1536. A. M. Ritcey, J. Brisson, R. E. Prud'homme, Macromolecules, 25, 2705 (1992). 1537. A. Cannepin, G. Champetier, A. Parisot, J. Polym. Sci., 8, 35 (1952). 1538. R. P. Pearce, R. H. Marchessault, Macromolecules, 27, 3869 (1994). 1539. Y. Ichikawa, J. Washiyama, Y. Moteki, K. Noguchi, K. Okuyama, Polym. J., 27, 1264 (1995). 1540. K. J. Ihn, E. S. Yoo, S. S. Im, Macromolecules, 28, 2460 (1995). 1541. Y. Ichikawa, J. Suzuki, J. Washiyama, Y. Moteki, K. Noguchi, K. Okuyama, Polymer, 35, 3338 (1994). 1542. N. Jourdan, S. Deguire, F. Brisse, Macromolecules, 28, 8086 (1995). 1543. T. Thistlethwaite, R. Jakeways, I. M. Ward, Polymer, 29,61 (1988). 1544. K. Inomata, K. Yamanaka, S. Sasaki, Polym. Prepr. Japan (Engl. Ed.), 41 (1-4), E609 (1992); K. Inomata, S. Sasaki, ibid., 42 (1-4), E597 (1993); K. Inomata, S. Sasaki, J. Polym. Sci., Part B: Polym. Phys., 34, 83 (1996). 1545. F. Rynikar, J. Liu, R H. Geil, Macromol. Chem. Phys., 195, 81 (1994). 1546. J. Liu, F. Rybnikar, A. J. East, R H. Geil, J. Polym. Sci., Part B: Polym. Phys., 31, 1923 (1993). 1547. J. Liu, F. Rybnikar, P. H. Geil, J. Polym. Sci., Part B: Polym. Phys., 30, 1469 (1992). Note that the cell dimensions listed for form II were deduced from the reciprocal lattice values reported. 1548. R Iannelli, D. Y. Yoon, W. Parrish, Macromolecules, 27, 3295 (1994). 1549. S. Radhakrishnan, V. S. Iyer, S. Sivaram, Polymer, 35, 3790 (1994). 1550. G. Schwartz, H. R. Kricheldorf, Macromolecules, 28, 3911 (1995). 1551. X. Li, F. Brisse, Macromolecules, 27, 2276 (1994). 1552. V. V. Korshak, S. V. Vinogradova, V. M. Belyakov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 737 (1957); Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 757 (1957). 1553. D. J. Johnson, I. Karacan, J. G. Tomka, Polymer, 34, 1749 (1993); J. Cao, I. Karacan, J. G. Tomka, Polymer, 36, 2133 (1995). 1554. K. Kimura, S. Endo, Y. Kato, T. Inaba, Y. Yamashita, Macromolecules, 28, 255 (1995).
1555. X. Lu, A. H. Windle, Polymer, 36,451 (1995). Note that the parameters listed are for the cell projected onto a plane normal to the chain axis. 1556. F. Brisse, X. Li, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 33, 282 (1992); X. Li, F. Brisse, Macromolecules, 27, 7725 (1994). 1557. T. Okihara, M. Tsuji, A. Kawaguchi, K. Katayama, J. Macromol. Sci. B: Phys., 30, 119 (1991). 1558. S. Chvalun, M. Ishaq, J. Blackwell, Bull Am. Phys. Soc, 39 (1), 633 (1994). 1559. W. P. Zhang, S. P. Gido, F. Ignatious, S. W. Kantor, R. W. Lenz, Bull. Am. Phys. Soc, 39 (1), 108 (1944). 1560. M. Carotenuto, P. Iannelli, Macromolecules, 25, 4373 (1992). 1561. S. D. Hudson, A. J. Lovinger, M. A. Gomez, J. Lorente, C. Marco, J. G. Fatou, Macromolecules, 27, 3357 (1994). 1562. K. H. Gardner, R. S. Irwin, W. Sweeny, Abstract D07, Am. Crystallogr. Assoc Meeting, U. of Toledo, OH, 21-26 July 1991. 1563. T. C. Long, J. Liu, B. -L. Yuan, P. H. Geil, Bull. Am. Phys. Soc, 40 (1), 616 (1995), Abstr. M35 42. 1564. N. Yoda, A. Miyake, Bull. Chem. Soc Japan 32, 1120 (1959). 1565. N. Yoda, J. Polym. Sci., Part A, 1, 1323 (1963). 1566. E. F. Izard, J. Polym. Sci., 9, 35 (1952). 1567. Y. Saito, T. Okano, Y Yamamoto, Polym. Prepr. Japan. (Engl. Ed.), 42 (1-4), E591 (1993). 1568. E. Delaite, J. -J. Point, P. Damman, M. Dosiere, Macromolecules, 25, 4768 (1992). 1569. A. Chenite, F. Brisse, Macromolecules, 24, 2221 (1991). 1570. J. J. Point, R Damman, Macromolecules, 25, 1184 (1992); P. Damman, J. J. Point, Polym. International, 36, 117 (1995); L. Paternostre, P. Damman, M. Dosiere, C. Bourgaux, Macromolecules, 29, 2046 (1996). 1571. P. Lightfoot, M. A. Mehta, P. G. Bruce, J. Mater. Chem., 2, 379 (1992). 1572. P. Lightfoot, M. A. Mehta, R G. Bruce, Science, 262, 883 (1993). 1573. A. Chenite, F. Brisse, Macromolecules, 25, 776 (1992). 1574. J. Chen, A. Zhang, M. A. Yandrasites, S. Z. D. Cheng, V. Percec, Makromol. Chem., 194, 3135 (1993). The value of z for each polymer was obtained through a private communication from Prof. Cheng. 1575. J. S. Chung, J. Bodziuch, R Cebe, J. Mater. Sci., 27, 5609 (1992). 1576. Y. Takahashi, H. Matsunaga, Macromolecules, 24, 3968 (1991). 1577. J. Sugiyama, R. Vuong, H. Chanzi, Macromolecules, 24, 3968 (1991). 1578. S. Raymond, A. Kvick, H. Chanzy, Macromolecules, 28, 8422 (1995). 1579. T. Yui, K. Imada, K. Okuyama, Y. Obata, K. Suzuki, K. Ogawa, Macromolecules, 27, 7601 (1994). 1580. K. Mazeau, W. T Winter, H. Chanzy, Macromolecules, 27, 7606 (1994). 1581. R Cairns, M. J. Miles, V. J. Morris, M. J. Ridout, G. J. Brownsey, W. T. Winter, Carbohydr. Res., 235, 23 1992).
1582. T. Kusaba, Y. Obata, K. Okuyama, Polym. Prepr. (Engl. Ed.), 42(1-4), E599 (1993). 1583. T. L. Hendrixson, R. P. Millane, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 33 (1), 329 (1992). 1584. M. Eashoo, Z. Wu, A. Zhang, D. Shen, C. Tse, F. W. Harris, S. Z. D. Cheng, K. H. Gardner, B. S. Hsiao, Macromol. Chem. Phys., 195, 2207 (1994). 1585. J. M. Parris, R. H. Marchessault, E. J. Vandenberg, J. C. Mullis, J. Polym. ScL, Part B: Polym. Phys., 32,749 (1994). 1586. B. J. Lommerts, E. A. Klop, J. Aerts, J. Polym. ScL, Part B: Polym. Phys., 31,1319 (1993); E. A. Klop, B. J. Lommerts, J. Veurink, J. Aerts, R. R. Van Puijenbroek, J. Polym. ScL, Part B: Polym. Phys., 33, 315 (1995); V. Grayer, B. J. Lommerts, P. Smith, B. Lotz, J. C. Wittman, Polymer, 36, 1915 (1995). 1587. J. M. Machado, J. E. Flood, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 36 (1), 291 (1995). 1588. Y. P. Handa, J. Roovers, F. Wang, Macromolecules, 27, 5511 (1994). 1589. A. A. Mehmet-Alkan, J. N. Hay, Polymer, 33, 3527 (1992). 1590. K. H. Gardner, B. S. Hsiao, R. R. Matheson, Jr., B. A. Wood, Polymer, 33, 2483 (1992). 1591. R.-M. Ho, S. Z. D. Cheng, B. S. Hsiao, K. H. Gardner, Macromolecules, 27, 2136 (1994). 1592. R.-M. Ho, S. Z. D. Cheng, H. P. Fisher, R. K. Eby, B. S. Hsiao, K. H. Gardner, Macromolecules, 27, 5787 (1994). 1593. D. J. Blundell, Polymer, 33, 3773 (1992). 1594. D. J. Blundell, J. J. Liggat, A. Flory, Polymer, 33, 2475 (1992). 1595. H. M. Colquhoun, C. C. Dudman, D. J. Blundell, A. Bunn, P. D. Mackenzie, P. T. McGrail, E. Nield, J. B. Rose, D. J. Williams, Macromolecules, 26, 107 (1993). 1596. D. J. Blundell, V. Bayon, Polymer, 34, 1354 (1993). 1597. R.-M. Ho, S. Z. D. Cheng, R.-M. Ho, B. S. Hsiao, K. H. Gardner, Macromol. Chem. Phys., 197, 185 (1996). 1598. H. Hozumi, K. Yonetake, T. Masuko, Polym. Prepr. Japan (Engl. Ed.), 40 (1-4), E477 (1991); H. Hozumi, C. Kohama, Y. Yonetake, T. Masuko, J. Mater. Sci. Lett., 10, 1187(1991). 1599. M. Kojima, J. H. Magill, Makromol. Chem., 193, 2731 (1992). 1600. T. Masuko, T. Miyata, H. Hozumi, K. Yonetake, J. Mater. Sci. Lett., 11, 157 (1992); T. Miyata, K. Yonetake, T. Masuko, J. Mater. Sci., 29, 2467 (1994). 1601. M. Cypryk, K. Matyjaszewski, M. Kojima, J. H. Magill, Makromol. Chem., Rapid Commun., 13, 39 (1992). 1602. M. Kojima, J. H. Magill, M. Cypryk, M. L. White, U. Franz, K. Matyjaszewski, Macromol. Chem. Phys., 195, 1823 (1994). 1603. S. V. Meille, A. R. Poletti, M. C. Gallazzi, M. Gleria, S. Bruckner, Polymer, 33, 2364 (1992). 1604. T. Anzai, H. Nakamura, T. Miyata, K. Yonetake, T. Masuko, J. Mater. Sci. Lett., 12, 1803 (1993). 1605. T. Miyata, T. Masuko, M. Kojima, J. H. Magill, Macromol. Chem. Phys., 195, 253 (1994). 1606. H. Nakamura, T. Miyata, K. Yonetake, T. Masuko, M. Kojima, Polym. Prepr. Japan (Engl. Ed.), 41 (1-4), E622 (1992); Macromol. Rapid Commun., 16, 189 (1995).
1607. M. Kojima, S. G. Young, J. H. Magill, Polymer, 33, 4538 (1992). 1608. S. A. Kuptsov, L. K. Golova, A. N. Zadorin, N. P. Kruchinin, N. V. Vasil'eva, G. Ya. Rudinskaya, D. R. Tur, E. M. Antipov, Vysokomol. Soedin., Ser. A, 35, 541 (1993) Polym. ScL, 35, 635 (1993). 1609. D. Ya Tsvankin, M. V. Gerasimov, V. P. Zhukov, I. I. Dubovik, D. R. Tur, V. S. Papkov, J. Polym. ScL, Part B: Polym. Phys., 30, 851 (1992). 1610. A. N. Zadorin, E. M. Antipov, V. G. Kulichikhin, D. R. Tur, Vysokomol. Soedin., Ser. A, 35, 676 (1993); Polym. Sci., 35, 796 (1993). 1611. E. M. Antipov, A. N. Zadorin, S. A. Kuptsov, N. P. Tsukanova, D. R. Tur, V. G. Kulichikhin, Vysokomol. Soedin., Ser. B, 35, 1540 (1993) - Polym. Sci., 35, 1286 (1993). 1612. J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, A. G. MacDiarmid, Macromolecules, 24, 779 (1991). 1613. C. Y. Yang, P. Smith, A. J. Heeger, Y Cao, J. E. Osterholm, Polymer, 35, 1142(1994). 1614. B. Klemann, R. West, J. A. Koustsky, Macromolecules, 26, 1042 (1993). 1615. S. S. Patnaik, B. L. Farmer, Polymer, 33, 4443 (1992). 1616. E. E. Karikari, B. L. Farmer, C. L. Hoffmann, J. F. Rabolt, Macromolecules, 27, 7185 (1994). 1617. E. E. Karikari, A. J. Greso, B. L. Farmer, R. D. Miller, J. F. Rabolt, Macromolecules, 26, 3937 (1993). 1618. M. Pluta, T. Pakula, M. Kryszewski, J. Kurjata, J. Chojnowski, Macromol. Chem. Phys., 196, 1607 (1995). 1619. N. Paredes, A. Rodriguez-Galan, J. Puiggali, Polymer, 37, 4175 (1996). 1620. J. Liu, S. Z. D. Cheng, P. H. Geil, Polymer, 37,1413 (1996). 1621. D. Jehnichen, J. Tobisch, R Friedel, Doris Pospiech, Polymer, 37, 1463 (1996). 1622. H. R. Kricheldorf, O. Struve, G. Schwarz, Polymer, 37, 4311 (1996). 1623. T. J. Prosa, M. J. Winokur, R. D. McCullough, Macromolecules, 29, 3654 (1996). 1624. E. Navarro, C. Aleman, J. A. Subirana, J. Puiggali, Macromolecules, 29, 5406 (1996). 1625. J. H. Magill, J. Polym. Sci., Part A-2, 9, 815 (1971). 1626. N. A. Jones, E. D. T. Atkins, M. J. Hill, S. J. Cooper, L. Franco, Macromolecules, 29, 6011 (1996). 1627. J. Blackwell, C. D. Lee, J. Polym. ScL, Polym. Phys. Ed., 22, 759 (1984). 1628. J. Watanabe, S. Okamoto, K. Satoh, K. Sakajiri, H. Furuya, A. Abe, Macromolecules, 29, 7084 (1996). 1629. I. Iribarren, C. Aleman, J. J. Bou, S. Munoz-Guerra, Macromolecules, 29, 4397 (1996). 1630. A. Bolognesi, W. Porzio, F. Provasoli, T. Ezquerra, Makromol. Chem., 194, 817 (1993). 1631. Yu. A. Zubov, D. K. Polyakov, V. I. Selikhova, E. A. Pakshver, V. S. Shirets, Vysokomol. Soedin., Ser. A, 38, 1527 (1996); Polym. Sci., Ser. A, 38, 1004 (1996). 1632. L. A. Leites, S. S. Bukalov, M. V. Gerasimov, 1.1. Dubovik, V. S. Papkov, Vysokomol. Soedin., Ser. B, 38, 924 (1996); Polym. Sci., Ser. B, 235, (1996).
1633. M. T. Krejchi, E. D. T. Atkins, M. J. Fournier, T. L. Mason, D. A. Tirrell, J. Macromol. Sci., Pure Appl. Chem., A33, 1389 (1996). Note that the c-axis value has been doubled to correspond to a repeat containing one complete octapeptide. 1634. I. Andre, K. Mazeau, I. Tvaroska, J.-L. Putaux, W. T. Winter, F. R. taravel, H. Chanzy, Macromolecules, 29, 4626 (1996). 1635. S. S. Patnaik, A. J. Greso, B. L. Farmer, Polymer, 33, 5115 (1992). 1636. A. Coassolo, M. Foa, D. Dainelli, R. Scordamaglia, L. Barino, L. L. Chapoy, F. Rustichelli, B. Yang, G. Torquati, Macromolecules, 24, 1701 (1991). 1637. H. J. Fell, E. J. Samuelson, J. Mardalen, M. R. Andersson, Synth. Met., 69, 283 (1995). 1638. A. M. Hindeleh, A. A. A. Obaid, Acta Polym., 47, 55 (1996). 1639. J. Liu, P. H. Geil, S.-M. Huh, J.-L Lin, Acta Polym., 47, 290 (1996). 1640. Y.-C. Ke, Z.-J. Fang, J.-Z. Wang, Z.-W. Wu, J. Appl. Sci., 61, 1293 (1996). 1641. A. Biswas, J. Blackwell, K. Deutscher, G. Wegner, Acta Polym., 45, 182 (1994). 1642. B. Lotz, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Sci.), 37 (2), 430 (1996). 1643. M. Nigar, J. Blackwell, S. N. Chvalun, S. D. Seneker, H. G. Schmeltzer, Bull. Am. Phys. Soc, 41 (1), 105 (1996), Abstr. B28 11. 1644. P. H. Geil, J. Liu, Bull. Am. Phys. Soc, 41 (1), 395 (1996), Abstr. 128 9. 1645. F. Rybnikar, J. Liu, P. H. Geil, Bull. Am. Phys. Soc, 41 (1), 444 (1996), Abstr. J'32 1. 1646. R. Stern, M. Ballauff, G. Lieser, G. Wegner, Polymer, 32, 2096 (1991). 1647. L. Cervinka, M. Ballauff, Colloid Polym. Sci., 270, 859 (1992). 1648. M. T. Krejchi, E. D. T. Atkins, A. J. Waddon, M. J. Fournier, T. L. Mason, D. A. Tirrell, Science, 265, 1427 (1994). Values for the c axis have been increased from those published in order to correspond to one chemical repeat along the chain. 1649. C. Booth, C. J. Devoy, D. V. Dodgson, I. H. Hillier, J. Polym. Sci., Part A-2, 8, 519 (1970). 1650. H. L. Yakel, Jr., L. Pauling, R. B. Corey, Nature, 169, 920 (1952). 1651. D. Grenier, A. Leborgne, N. Spassky, R. E. Prud'homme, J. Polym. Sci., Polym. Phys. Ed., 19, 33 (1981). 1652. J. Guzman, J. G. Fatou, Eur. Polym. J., 14, 943 (1978). 1653. T. Kajiyama, W. J. MacKnight, Polym. J., 1, 548 (1970). 1654. V. V. Korshak, T. A. Soboleva, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1952,526 - Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1952, 505. 1655. R. J. Gaymans, D. K. Doeksen, S. Harkema, in: L. A. Kleintjens, P. J. Lemstra (Eds.), "Integration of Fundamental Polymer Science and Technology", Elsevier Appl. Sci., New York, 1986, p. 573. 1656. V. S. Papkov, M. V. Gerasimov, M. I. Buzin, M. N. Il'ina, L. G. Kazaryan, Vysokomol. Soedin., Ser. A, 38, 1687 (1996); Polym. Sci., Ser. A, 1097 (1996).
1767. J. Lee, C. S. Marvel, J. Polym. Sci., Polym. Phys. Ed., 21, 2189 (1983). 1768. T. Yasuzawa, H. Yamaguchi, Y. Minoura, J. Polym. Sci., Polym. Chem. Ed., 17, 3387 (1979). 1769. M. K. Akkapeddi, J. Polym. Sci., Polym. Chem. Ed., 17, 2989 (1979). 1770. C. Marco, S. Lazcano, J. G. Fatou, Makromol. Chem., 191, 1151 (1990). 1771. T. L. St. Clair, A. K. St. Clair, J. Polym. Sci., Polym. Chem. Ed., 15, 1529 (1977). 1772. V. Percec, T. D. Shaffer, H. Nava, J. Polym. Sci., Polym. Lett. Ed., 22, 637 (1984). 1773. G. Chen, R. W. Lenz, J. Polym. Sci., Polym. Chem. Ed., 22, 3189 (1984). 1774. P. Corradini, N. Lanzetta, G. Maglio, R. Plaumbo, F. Riva, J. Polym. Sci., Polym. Chem. Ed., 13, 1107 (1975). 1775. F. B. Cramer, R. G. Beaman, J. Polym. Sci., 21, 237 (1956). 1776. N. G. Gaylord, Ed., Macromolecular Syntheses, vol. 3, Wiley, New York, 1969. 1777. E. S. W. Kong, B. Wunderlich, Makromol. Chem., 182, 81 (1981). 1778. W. Wrasidlo, S. O. Norris, J. F. Wolfe, T. Katto, J. K. Stille, Macromolecules, 9, 512 (1976). 1779. E. J. Vandenberg, Carl Marvel Symposium, Tucson, Ariz., Jan. 13-14, 1975, J. Polym. Sci., Polym. Chem. Ed., 13, 2221 (1975). 1780. W. A. Lee, R. A. Rutherford, Polymer Transition Temperature Data Sheets. Fluoropolymers. 1. Carbon-Chain, RAPRA Data Sheet 8:1, May, 1973. 1781. H. J. Chang, O. Vogl, J. Polym. Sci., Polym. Chem. Ed., 15, 1043 (1977). 1782. G. Wegner, Makromol. Chem., 134, 219 (1970). 1783. G. Maglio, E. Musco, R. Palumbo, F. Riva, J. Polym. Sci., Polym. Lett. Ed., 12, 129 (1974). 1784. N. Kobayashi, A. Osawa, T. Fujisawa, J. Polym. Sci., Polym. Lett. Ed., 11, 679 (1973). 1785. R. W. Campbell, H. W. Hill, Jr., Macromolecules, 6, 492 (1973). 1786. T. Saegusa, Y. Nagura, S. Kobayashi, Macromolecules, 6, 495 (1973). 1787. R. G. Feasey, A. Turner-Jones, P. C. Daffurn, J. L. Freeman, Polymer, 14, 241 (1973). 1788. J. Preston, J. Polym. Sci., Part A-I, 4, 529 (1966). 1789. H. Jonsson, R -E. Werner, U. W. Gedde, A. HuIt, Macromolecules, 22, 1683 (1989). 1790. V. V. Korshak, S. V. Vinogradova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk p. 1121 (1953); Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) p. 995 (1953). 1791. V. V. Korshak, G. N. Chelnokova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk p. 103 (1956); Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) p. 97 (1956). 1792. F. de Candia, G. Maglio, R. Palumbo, Polym. Bull. (Berlin), 8, 109 (1982). 1793. N. Kobayashi, A. Osawa, T. Fujisawa, J. Polym. Sci., Polym. Chem. Ed., 11, 553 (1973). 1794. S. W. Chow, W. E. Loeb, C. E. White, J. Appl. Polym. Sci., 13, 2325 (1969).
1796. V. V. Korshak, S. V. Vinogradova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk p. 746 (1957); (Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) p. 765 (1957)). 1797. V. V. Korshak, S. V. Vinogradova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk p. 863 (1957); (Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) p. 885 (1957)). 1798. V. V. Korshak, S. V. Vinogradova, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk p. 863 (1957); (Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) p. 889(1957)). 1799. R. Gilkey, J. R. Caldwell, J. Appl. Polym. Sci., 2, 198 (1959). 1800. V. C. E. Burnop, K. G. Latham, Polymer, 8, 589 (1967). 1801. Yu. V. Mitikin, Yu. N. Sazanov, G. P. Vlasov, M. M. Koton, Vysokomol. Soedin., 2, 716 (1960); Polym. Sci. USSR (Engl. Transl.), 2, 423 (1961). 1802. L. T. C. Lee, J. Polym. Sci., Polym. Chem. Ed., 16, 2025 (1978). 1803. R. E Heck, D. S. Breslow, J. Polym. Sci., 41, 521 (1960). 1804. R. F. Heck, D. S. Breslow, J. Polym. Sci., 41, 520 (1960). 1805. Y. Etienne, Ind. Plast. Mod. (Parts), 9, 37 (1957). 1806. T. I. Shein, G. I. Kudryavtsew, G. P. Lyubimtseva, Vysokomol. Soedin., 7, 1447 (1965); Polym. Sci. USSR (Engl. Transl.), 7, 1603 (1965). 1807. T. W. Campbell, J. Org. Chem., 22, 1029 (1957). 1808. F. W. Harris, A. J. Karnavas, C. N. Cucuras, S. Das, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 26 (2), 287 (1985). 1809. E. J. Vandenberg, J. Polym. Sci., 47, 486 (1960). 1810. W. C. Sheehan, T. B. Cole, L. G. Picklesimer, J. Polym. Sci., Part A, 3, 1443 (1965). 1811. P. Longi, Atti Accad. Nazi. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., Rend., 31, 273 (1961). 1812. C. G. Overberger, A. M. Schiller, J. Polym. Sci., 54, S30 (1961). 1813. C. G. Overberger, E. B. Davidson, J. Polym. Sci., 62, 23 (1962). 1814. D. R. Stevenson, J. E. Mulvaney, J. Polym. Sci., Part A-I, 10, 2713 (1972). 1815. G. Natta, G. Dall'Asta, G. Mazzanti, A. Casale, Makromol. Chem., 58, 217 (1962). 1816. H. K. Hall, Jr., J. Org. Chem., 28, 3213 (1963). 1817. G. Natta, G. Mazzanti, G. F. Pregaglia, G. Pozzi, J. Polym. Sci., 58, 1201 (1962). 1818. J. H. Magill, J. Polym. Sci., Part A, 3, 1195 (1965). 1819. C. S. Marvel, R. R. Chambers, J. Am. Chem. Soc, 70, 993 (1948). 1820. W. H. Carothers, F. J. van Natta, J. Am. Chem. Soc, 52,314 (1930). 1821. M. A. Osman, H. -G. Elias, J. Macromol. Sci. A: Chem., 5, 805 (1971). 1822. J. W. Hill, W. H. Carothers, J. Am. Chem. Soc, 54, 1569 (1932). 1823. J. W. Hill, W. H. Carothers, J. Am. Chem. Soc, 55, 5023 (1933). 1824. H. Komoto, Rev. Phys. Chem. Japan, 37, 112 (1967). 1825. T. L. Ang, R. C. Chang, E. R. Santee, Jr., H. J. Harwood, J. Polym. Sci., Polym. Lett. Ed., 10, 791 (1972).
1828. R. S. Muromova, A. A. Strepikheyev, Z. A. Rogovin, Vysokomol. Soedin., 5, 1096 (1963); Polym. Sci. USSR (Engl. Transl.), 5, 157 (1964). 1829. H. Zahn, G. B. Gleitsmann, Makromol. Chem., 63, 129 (1963). 1830. S. G. Matsoyan, L. M. Akopyan, Vysokomol. Soedin., 3, 1311 (1961); Polym. Sci. USSR (Engl. Transl.), 3, 915 (1962). 1831. V V Korshak, S. L. Sosin, V P. Alekseyeva, Vysokomol. Soedin., 3,1332 (1961) - Polym. Sci. USSR (Engl. Transl.), 3, 925 (1962). 1832. Y. Imai, M. Kajiyama, S. Ogata, M. Kakimoto, J. Polym. Sci., Polym. Chem. Ed., 22, 3183 (1984). 1833. N. Ogata, K. Sanui, K. Shiraishi, Kobunshi Kagaku, 30, 51 (1973). 1834. S.-C. Chu, E. M. Pearce, J. Polym. Sci., Polym. Lett. Ed., 14, 375 (1976). 1835. C. W. Stephens, J. Polym. Sci., 40, 359 (1959). 1836. C. G. Overgerger, S. Ozaki, D. M. Braunstein, Makromol. Chem., 93, 13 (1966). 1837. N. Kobayashi, T. Fujisawa, J. Polym. Sci., Polym. Chem. Ed., 11, 545 (1973). 1838. D. J. Lyman, S. L. Jung, J. Polym. Sci., 40, 407 (1959). 1839. R. J. Gaymans, T. E. C. van Utteren, J. W. A. van den Berge, J. Schuyer, J. Polym. Sci., Polym. Chem. Ed., 15, 537 (1977). 1840. J. W. Hill, J. Am. Chem. Soc, 52, 4110 (1930). 1841. O. B. Edgar, R. Hill, J. Polym. Sci., 8, 1 (1952). 1842. W. J. Middleton, H. W. Jacobson, R. E. Putnam, H. C. Walter, D. G. Pye, W. H. Sharkey, J. Polym. Sci., Part A, 3, 4115 (1965); A. L. Barney, J. M. Bruce, Jr., J. N. Coker, H. W. Jacobson, W. H. Sharkey, ibid., 4, 2617 (1966). 1843. P. R. Thomas, G. J. Tyler, T. E. Edwards, A. T. Radcliffe, R. C. P. Cubbon, Polymer, 5, 525 (1964). 1844. W. H. Carothers, G. L. Dorough, F. J. van Natta, J. Am. Chem. Soc, 54, 761 (1932). 1845. E. Wellisch, E. Gipstein, O. J. Sweeting, J. Polym. Sci., Part B, 2, 35 (1964). 1846. D. A. Lutz, L. P. Witnauer, J. Polym. Sci., Part B, 2, 31 (1964). 1847. K. Saotome, K. Sato, J. Polym. Sci., Part A-I, 4, 1303 (1966). 1848. V. L. Bell, J. Polym. Sci., Part A, 2, 5291 (1964). 1849. F. Shepherd, H. J. Harwood, J. Polym. Sci., Polym. Lett. Ed., 10, 799 (1972). 1850. W. Marconi, S. Cesca, G. D. Fortuna, J. Polym. Sci., Part B, 2, 301 (1964). 1851. K. Matsuzaki, T. Okamoto, A. Ishida, H. Sobue, J. Polym. ScL, Part A, 2, 1105 (1964). 1852. B. Ke, A. W. Sisko, J. Polym. Sci., 50, 87 (1961). 1853. K. Saotome, H. Komoto, J. Polym. Sci., Part A-I, 4, 1475 (1966). 1854. A. Conix, J. Polym. Sci., 29, 343 (1958). 1855. N. Yoda, Makromol. Chem., 32, 1 (1959). 1856. N. Yoda, Kobunshi Kagaku, 19, 495 (1962). 1857. N. Yoda, Kobunshi Kagaku, 19, 553 (1962).
1858. P. Barnaba, D. Cordischi, M. Lenzi, A. MeIe, Chim. Ind. (Milan), 47, 1060 (1965). 1859. J. Pellon, J. Polym. Sci., Part A, 1, 3561 (1963). 1860. R. Oda, T. Shono, A. Oku, H. Takao, Makromol. Chem., 67, 124 (1963). 1861. K. Murayama, S. Morimoto, Chem. Ind. (London) p. 402 (1967). 1862. M. Hasegawa, T. Unishi, J. Polym. Sci., Part B, 2, 237 (1964). 1863. T. Kagiya, H. Kishimoto, S. Narisawa, K. Fukui, J. Polym. Sci., Part A, 3, 145 (1965). 1864. G. Natta, G. DaIl'Asta, G. Mazzanti, G. Motroni, Makromol. Chem., 69, 163 (1963). 1865. T. Shono, T. Morikawa, R. -I. Okayama, R. Oda, Makromol. Chem., 81, 142 (1965). 1866. D. A. Holmer, O. A. Pickett, Jr., J. H. Saunders, J. Polym. Sci., Part A-I, 10, 1547 (1972). 1867. C. G. Overberger, J. E. Mulvaney, J. Am. Chem. Soc, 81, 4697 (1959). 1868. P. W. Morgan, Condensation Polymers, by Interfacial and Solution Methods (Polymer Reviews, vol. 10), Interscience, New York, 1965 (pp. 243, 366, 418, 424, and 427). 1869. A. Leoni, M. Guaita, G. Saini, Chim. Ind. (Milan), 47, 373 (1965). 1870. O. Ya. Fedotova, M. L. Kerber, I. P. Losev, Vysokomol. Soedin., 6, 452 (1964); Polym. Sci. USSR (Engl. Transl.), 6, 502 (1964). 1871. H. Sawada, A. Yasue, Kogyo Kagaku Zasshi, 67, 1444 (1964), through Chem. Abstr., 62, 10525b (1965). 1872. H. Sawada, A. Yasue, Kogyo Kagaku Zasshi, 67, 1449 (1964), through Chem. Abstr., 62, 10525f (1965). 1873. K. Tanikawa, S. Kusabayashi, H. Hirata, H. Mikawa, J. Polym. Sci., Part B, 6, 275 (1968). 1874. H. Miyake, K. Hayashi, S. Okamura, J. Polym. Sci., Part A, 3, 2731 (1965). 1875. F. Danusso, P. Ferruti, G. Ferroni, Chim. Ind. (Milan), 49, 453 (1967); F. Danusso, P. Ferruti, Polymer, 11, 88 (1970). 1876. J. V. Crivello, J. Polym. Sci., Polym. Chem. Ed., 11, 1185 (1973). 1877. K. Saotome, H. Komoto, J. Polym. Sci., Part A-I, 5, 107 (1967). 1878. F. R. Prince, E. A. Turi, E. M. Pearce, J. Polym. Sci., Part A1, 10, 465 (1972). 1879. N. D. Field, J. A. Kieras, A. E. Borchert, J. Polym. Sci., Part A-I, 5, 2179 (1967). 1880. T. Higashimura, S. Kusudo, Y. Ohsumi, A. Mizote, S. Okamura, J. Polym. Sci., Part A-I, 6, 2511 (1968); A. Mizote, T. Higashimura, S. Okamura, Pure Appl. Chem., 16, 457 (1968). 1881. A. A. Nishimura, Polymer, 8, 446 (1967). 1882. V. C. E. Burnop, K. G. Latham, Polymer, 8, 589 (1967). 1883. K. Saotome, R. C. Schulz, Makromol. Chem., 109, 239 (1967). 1884. M. M. Koton, I. V. Andreeva, A. I. Turbina, V. G. Sinyauskii, Dokl. Akad. Nauk SSSR, 159, 602 (1964). 1885. V. B. Luskchik, S. S. Skorokhodov, Vysokomol. Soedin., Ser. B, 9, 797 (1967).
1886. F. J. Serna, J. de Abajo, J. G. de Ia Campa, J. Appl. Polym. Sci., 30, 61 (1985). 1888. W. S. Port, J. E. Hansen, E. F. Jordan, Jr., T. T. Dietz, D. Swern, J. Polym. Sci., 7, 207 (1951). 1889. Y Kishimoto, K. Sanui, N. Ogata, Polym. J., 4, 18 (1973). 1890. V. S. Foldi, W. Sweeney, Makromol. Chem., 72, 208 (1964). 1891. Y Iwakura, K. Hayashi, S. Kang, K. Inagaki, Makromol. Chem., 95, 205 (1966). 1892. H. V. Boenig, N. Walker, E. H. Myers, J. Appl. Polym. Sci., 5, 384 (1961). 1893. D. Sek, Eur. Polym. J., 20, 805 (1984). 1894. W. J. Peppel, J. Polym. Sci., 51, S64 (1961). 1895. F. Manescalchi, M. Pizzoli, A. Drusiani, F. Zanetti, Makromol. Chem., 178, 863 (1977). 1896. L. Porri, D. Pini, Chim. Ind. (Milan), 55, 196 (1973). 1897. Y Iwakura, M. Sakamoto, J. Polym. Sci., 47, 277 (1960); Y Iwakura, M. Sakamoto, Y Awata, ibid., Part A, 2, 881 (1964). 1898. F. A. Bovey, J. F. Abere, G. B. Rathmann, C. L. Sandberg, J. Polym. Sci., 15, 520 (1955). 1899. J. L. Greene, Jr., E. L. Huffman, R. E. Burks, Jr., W. C. Sheehan, I. A. Wolff, J. Polym. Sci., Part A-I, 5, 391 (1967). 1900. J. LaI, G. S. Trick, J. Polym. Sci., Part A, 2, 4559 (1964). 1901. M. Levine, S. C. Temin, J. Polym. Sci., 28, 179 (1958). 1902. N. Ogata, T. Asahara, S. Tohyama, J. Polym. Sci., Part A-I, 4, 1359 (1966). 1904. D. A. Holmer, J. Polym. Sci., Part A-I, 6, 3177 (1968). 1905. H. Hopff, A. Krieger, Makromol. Chem., 47, 93 (1961). 1906. E. F. Jordan, Jr., D. W. Feldeisen, A. N. Wrigley, J. Polym. Sci., Part A-I, 9, 1835 (1971). (Side chain crystallization only). 1907. T. W. Campbell, K. Z. Smeltz, J. Org. Chem., 28, 2069 (1963). 1908. P. Johncock, M. A. Hewins, A. V. Cunliffe, J. Polym. Sci., Polym. Chem. Ed., 14, 365 (1976). 1909. M. Goodman, S.-C. Chen, Macromolecules, 5, 625 (1971). 1910. W. C. Wooten, H. W. Coover, J. Polym. Sci., 37,560 (1959). 1911. S. W. Shalaby, E. A. Turi, P. J. Harget, J. Polym. Sci., Polym. Chem. Ed., 14, 2407 (1976). 1912. A. S. Carpenter, J. Soc. Dyers Colour., 65, 469 (1949), through S. W. Shalaby et al, J. Polym. Sci., Polym. Chem. Ed., 14, 2407 (1976). 1913. P. M. Cachia, Ann. Chim. Paris, 4, 5 (1959), through S. W. Shalaby et al, J. Polym. Sci., Polym. Chem. Ed., 14, 2407 (1976). 1914. L. H. Bock, J. K. Anderson, J. Polym. Sci., 17, 553 (1955). 1915. W. F. Christopher, D. W. Fox, Polycarbonates, Reinhold, New York, 1962. 1916. A. Noshay, C. C. Price, J. Polym. Sci., 54, 533 (1961). 1917. J. K. Stille, J. A. Empen, J. Polym. Sci., Part A-I, 5, 273 (1967). 1918. V. V. Korshak, S. V. Vinogradova, V. M. Belyakov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1957, 1029, through C. J. Kibler et al, J. Polym. Sci., Part A, 2, 2115 (1964).
1919. V. V. Korshak, S. V. Vinogradova, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1959, 138, through C. J. Kibler et al, J. Polym. Sci., Part A, 2, 2115 (1964). 1920. G. Natta, P. Longi, V. Nordio, Makromol. Chem., 83, 161 (1965). 1921. T. Unishi, M. Hasegawa, J. Polym. Sci., Part A, 3, 3191 (1965). 1922. H. G. Buhrer, H.-G. Elias, in N. A. J. Platzer, Ed., Polymerization Reactions and New Polymers (Adv. Chem. Ser. No. 129), Am. Chem. Soc, Washington, 1973, p. 105. 1923. N. G. Gay lord, Polyethers, Part III, Interscience, New York, 1962. 1925. G. Dall'Asta, P. Meneghini, U. Gennard, Makromol. Chem., 154, 279 (1972). 1926. H. Komoto, F. Hayano, T. Takami, S. Yamato, J. Polym. Sci., Part A-I, 9, 2983 (1971). 1927. G. Belonovskaya, Zh. Tchernova, B. Dolgoplosk, Eur. Polym. J., 8, 35 (1972). 1928. G. P. Blackburn, B. J. tighe, J. Polym. Sci., Part A-1,8,3591 (1970). 1929. S. W. Shalaby, R. J. Fredericks, E. M. Pearce, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 13, 316 (1971). 1930. Y. Iwakura, K. Iwata, S. Matsuo, A. Tohara, Makromol. Chem., 146, 21 (1971). 1931. V. Guidotti, M. Russo, L. Mortillaro, Makromol. Chem., 147, 111 (1971).
1932. A. D. Bliss, W. K. Cline, C. E. Hamilton, O. J. Sweeting, J. Org. Chem., 28, 3537 (1963). 1933. E. V. Gouinlock, Jr., C. J. Verbanic, G. C. Schweiker, J. Appl. Polym. Sci., 1, 361 (1959). 1934. N. Kobayashi, T. Fujisawa, J. Polym. Sci., Polym. Chem. Ed., 10, 3165 (1972). 1935. T. W. Campbell, V. S. Foldi, J. Org. Chem., 26, 4654 (1961). 1936. N. Kobayashi, T. Fujisawa, J. Polym. Sci., Polym. Chem. Ed., 10, 3317 (1972). 1937. R. W. H. Berry, R. J. Mazza, Polymer, 14, 172 (1973). 1938. H. Hirukawa, Y. Imai, J. Polym. Sci., Polym. Lett. Ed., 11, 271 (1973). 1939. S. Nishizaki, S. Eto, T. Moriwaki, Kogyo Kagaku Zasshi, 71, 265 (1968). 1940. R. J. Gaymans, J. Polym. Sci., Polym. Chem. Ed., 23, 1599 (1985). 1942. H. Batzer, Makromol. Chem., 10, 13 (1953). 1943. H.-G. Elias, J.-H. Tsao, J. A. Palacios, Makromol. Chem., 186, 893 (1985). 1944. E. J. Vandenberg, J. Polym. Sci., Polym. Chem. Ed., 23,915 (1985). 1945. E. Riande, J. Guzman, E. Siaz, Polymer, 22, 465 (1981). 1946. K. Onder, A. T. Chen, Polym. Eng. Sci., 25, 942 (1985).
G l a s s
T r a n s i t i o n
T e m p e r a t u r e s
o f
P o l y m e r s
R o d n e y J. A n d r e w s , Eric A . G r u l k e Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA
A. Introduction VI-194 1. Example of a Property Change at 7"g Vl-194 2. 7g: A "Non-Equilibrium" Transition VI-195 B. Ta Measurement Methods VI-195 1. Data Interpretation Vl-195 2. Oscillating Load Methods VI-196 C. Other Factors Affecting 7g VI-196 1. Structure VI-196 2. Crystallinity/Crosslinking Vl-196 3. Diluents VI-197 4. Molecular Weight VI-197 5. Thermal History VI-197 6. Pressure VI-197 D. Estimation Methods for the Glass Transition Temperature VI-197 E. Classification, Nomenclature, and Abbreviations VI-197 1. Naming Conventions VI-198 2. Abbreviations VI-198 F. Tables of Glass Transition Temperatures of Polymers VI-198 Table 1. Main-Chain Acyclic Carbon Polymers VI-198 1.1. Poly(acrylics) and Poly(methacrylics) Vl-198 1.1.1. Poly(acrylic acid) and Poly(acrylic acid esters) VI-198 1.1.2. Poly(acrylamides) VI-201 1.1.3. Poly(methacrylic acid) and Poly(methacrylic acid esters) VI-201 1.1.4. Poly(methacrylamides) VI-205 1.1.5. Other oc- and P-Substituted Poly(acrylics) and Poly(methacry I ics) VI-205 1.2. Poly(alkenes) VI-205 1.3. Poly(dienes) VI-207 1.4. Poly(styrenes) VI-209 1.5. Poly(vinyl alcohol) and Poly(vinyl ketones) VI-212 1.6. PoIy(VinyI esters) VI-213 1.7. Poly(vinyl ethers) and Poly(vinyl thioethers) VI-214
1.8.
Poly(vinyl halides) and Poly(vinyl nitriles) VI-215 1.9. Others VI-216 Table 2. Main-Chain Carbocyclic Polymers VI-218 2.1. Poly(phenylenes) VI-218 2.2. Others VI-218 Table 3. Main-Chain Acyclic Heteroatom Polymers VI-219 3.1. Main-Chain - C - O - C Polymers VI-219 3.1.1. Poly(anhydrides) VI-219 3.1.2. Poly(carbonates) VI-219 3.1.3. Poly(esters) VI-221 3.1.4. Poly(ether ketones) VI-226 3.1.5. Poly(oxides) VI-226 3.1.6. Poly(urethanes) VI-229 3.2. Main-Chain O-Heteroatom Polymers VI-231 3.2.1. Nitroso-polymers VI-231 3.2.2. PoIy(Siloxanes) VI-231 3.2.3. Poly(sulfonates) VI-233 3.3. Main-Chain -C-(S) n -C- and - C - S - N - Polymers VI-233 3.3.1. Poly(su If ides) VI-233 3.3.2. Poly(sulfones) and Poly(sulfonamides) VI-234 3.3.3. Poly(thioesters) VI-235 3.4. Main-Chain - C - N - C Polymers VI-235 3.4.1. Poly(amides) VI-235 3.4.2. Poly(anilines) VI-241 3.4.3. Polyimides VI-241 3.4.4. Poly(imines) VI-241 3.4.5. Poly(ureas) VI-242 3.5. Poly(phosphazenes) VI-242 3.6. Poly(silanes) and PoIy(Si lazanes) VI-243 Table 4. Main-Chain Heterocyclic Polymers VI-243 4.1. Carbohydrates VI-243 4.2. Liquid Crystals VI-244 4.3. Natural Polymers VI-244 4.4. Poly(acetals) VI-244
Poly(anhydrides) Poly(benzimidazoles) Poly(benzothiazinophenothiazines) 4.8. Poly(benzothiazoles) 4.9. Poly(benzoxazlnes) 4.10. Poly(benzoxazoles) 4.11. Poly(carboranes) 4.12. Poly(dibenzofurans) 4.13. Poly(dioxoisoindolines) 4.14. Poly(fluoresceins) 4.15. Poly(furan tetracarboxylic acid diimides) 4.16. Poly(oxabicyclononanes) 4.17. Poly(oxadiazoles) 4.18. Poly(oxindoles) 4.19. Poly(oxoisoindolines) 4.20. Poly(phthalazines) 4.21. Poly(phthalides) 4.22. Poly(piperazines) 4.23. Poly(piperidines) 4.24. Poly(pyrazinoquinoxalines) 4.25. Poly(pyrazoles) 4.26. Poly(pyridazines) 4.27. Poly(pyridines) 4.28. Poly(pyromellitimides) 4.29. Poly(pyrrolidines) 4.30. Poly(quinones) 4.31. Poly(quinoxalines) 4.32. Poly(triazines) 4.33. Poly(triazoles) Table 5. Copolymers G. References
A.
VI-244 VI-245 VI-245 VI-245 VI-245 VI-245 VI-245 VI-246 VI-246 VI-247 VI-247 VI-247 VI-248 VI-248 VI-248 VI-248 VI-248 VI-248 VI-249 VI-249 VI-249 VI-249 VI-249 VI-249 VI-250 VI-250 VI-250 VI-252 VI-252 VI-252 VI-253
INTRODUCTION
Amorphous (noncrystalline) polymeric solids are either glasses or rubbers. A glassy polymer lacks long range order, and is below the temperature at which molecular motions take place on the time scale of the experiment. A rubbery polymer is above the temperature at which molecular motions take place on the time scale of the experiment. The glass transition temperature, Tg, is the critical temperature that separates glassy behavior from rubbery behavior. Many amorphous solids, including polymers, organic liquids, biomaterials, some metals and alloys, and inorganic oxide glasses, exhibit glass transition temperatures. The dramatic change in the local movement of polymer chains at Tg leads to large changes in a host of physical properties. These properties include density, specific heat, mechanical modulus, mechanical energy absorption, dielectric coefficients, acoustical properties, viscosity, and the rate of gas or liquid diffusion through the polymer, to name a few. Any of these properties can be used, at least in a crude manner, to determine Tg.
Liquid Specific volume
4.5. 4.6. 4.7.
Super-cooled liquid
Crystallization volume change
Glass
Crystal
Temperature Figure 1.
1.
Example of a Property Change at Tg
A classic method for determining Tg is dilatometry, in which the specific volume of the polymer is measured as a function of temperature. Figure 1 compares the specific volume vs. temperature curves for two idealized samples: a 100% amorphous material and a 100% crystalline material. Both materials follow the same path as their liquids are cooled from the melt. At the melting temperature, Tm, the crystallizing material orders into its crystal habit and exhibits a discontinuous decrease in specific volume. Below r m , this solid has a reduction in specific volume with decreasing temperature, but the slope of this line, the volumetric thermal expansion coefficient, is less than the slope of the liquid line. The amorphous material does not crystallize as the temperature falls below Tm, but continues to contract with a thermal expansion coefficient similar to the molten liquid: it acts as a supercooled liquid. At Tg, large-scale molecular motion (often considered to be the movement of 20-50 carbon atoms along a chain) becomes greatly reduced, the chain segments no longer rearrange rapidly in experimental time, and further cooling does not result in a similar volume change. Below Tg, the thermal expansion coefficient is similar to that of the crystalline solid. Tg can be defined as the temperature at the intersection of the two line segments. The specific volume is not discontinuous at Tg, as would be the case for the melting point, but the slope dV/dT, is. Therefore, Tg is sometimes referred to as a second-order transition, as compared to the melting point, which is a first-order transition. Both the primary property, specific volume, and its differential, the volumetric thermal expansion coefficient, change at Tg and can be used to identify the event. Most polymer samples are either completely amorphous or partially crystalline. Figure 2 shows the specific volume vs. temperature curve for a semicrystalline polymer. The crystallizable fraction becomes ordered as it cools to Tm. Below the melting point, the amorphous material continues to contract as though it were a subcooled liquid, while the crystalline portion has a smaller thermal
B.
Specific volume
Liquid
Crystallization volume change
Glass
Temperature Figure 2.
expansion coefficient and contributes less to the volumetric decrease. Rapid amorphous phase motion stops at the glass transition temperature, and both solid components have similar thermal expansion coefficients below this temperature. 2.
7g: A "Non-Equilibrium" Transition
The glass transition temperature is not a fundamental thermodynamic property like the melting point because it is not thermodynamically stable, it is not defined by state variables, and its measurement is highly dependent on the time scale of the experiment used to determine its value. For example, experiments in which temperature or a deforming force is changed rapidly give higher Tg values than experiments in which conditions are changed slowly. Sample age and history affect the measurements as well. The thermodynamic transition issue has been studied by a number of researchers. Staverman (1210) and Breuer and Rehage (1211) have concluded that Tg is not a true secondorder transition because the glassy state is not completely defined by the normal state variables, p, V and T. Ehrenfest (1212) derived the following relationship that should hold for a true second-order transition:
where Tg is the glass transition temperature, p is the pressure, V(Tg) is the molar volume at Tg, Aa is the thermal expansion coefficient difference (rubber to glass) at r g , ACp is the molar heat capacity difference, and AK, is the compressibility difference. Available data for a number of polymer systems show large deviations from the above equation for well-studied polymers, including polystyrene (1211), poly(isobutylene), poly(vinyl acetate), poly(vinyl chloride) and poly(methyl methacrylate) (1213,1214). The glass transition temperature is thought to be a kinetically controlled phenomenon (1215-1218).
7g MEASUREMENT METHODS
The classical method of mercury dilatometer requires moderate amounts of sample, and time to permit thermal equilibrium to be achieved. Instruments that are easier to use and require only milligram quantities of sample are the thermal mechanical analyzer (TMA), the dynamic mechanical analyzer (DMA), and the differential scanning calorimeter (DSC). A TMA deforms a sample under a static load as the temperature is changed. At very low loads, it measures the specific volume change of the sample. A DMA measures the response of the material to an oscillating deformation. A DSC measures the change in sample enthalpy with time, dH/dt, for a known temperature program, dT/dt. The ratio of these two quantities gives dH/dT (also the specific heat capacity), which is a derivative measurement for Tg. (Experimental heat capacity curves of amorphous and semicrystalline polymers are given in the Heat Capacity chapter of this Handbook.) DSC is the most commonly used method for measuring the glass transition temperature of non-crosslinked polymers. All of these instruments can be interfaced to computers for data acquisition, test control, data reduction, and analysis. The interpretation of Tg data can be controversial (1069-1071). The rate at which the sample is cooled or heated will affect the result. If the specific volume experiment of Fig. 2 was repeated for various cooling rates, Tg would occur at lower temperatures as the cooling rate is lowered, the transition region would become sharper, and a denser polymer would be produced. When a sample is allowed to remain below its glass transition temperature over a long period of time (aging), its density will increase. This process is called annealing; the rate of densification increases with annealing temperature. 1.
Data Interpretation
The previous history of a sample will affect the measurement of r g , unless the material's "memory" is erased by heating it well above the transition. The sample is heated well above its expected Tg, cooled to the original temperature, and reheated along a temperature profile to find the glass transition temperature of the material with minimal history. Some information can be inferred from the first heat, including residual stresses in the material, the presence of low-boiling diluents, etc. The process of heating a polymer solid to find Tg often gives a curve similar to Fig. 1 and will produce a melt with the same density as that of the cooling experiment. However, in heating experiments, chain motions dominate the change in properties, and sudden property changes can occur near the transition temperature. At temperatures much higher than Tg, the property response once again becomes linear with temperature. In DSC measurements, sudden expansions can lead to an endothermic peak past the r g . This endothermic peak has also been called enthalpy overshoot, and is thought to relate to the difference between the rate of temperature increase and the rate of increase of References page VI - 253
chain mobility around Tg. The size of this overshoot depends on the annealing of the sample and the heating rate. In a direct property measurement experiment (Fig. 1 is an example), it is common practice to ignore the kinetic effects of the transition region and to define Tg as the intersection of the two straight lines. For this case, the same Tg is found both on heating and cooling at a given polymer density. In an experiment that measures the differential of a property (DSC for example), integrating the curve gives the change in enthalpy from before to after the transition region, to which the simple intersection method of Fig. 1 can be applied, giving a Tg that is independent of heating rate (1079-1081). This method is well-known with inorganic glasses. In DSC experiments, Tg is usually determined either by the onset point, the intersection of the initial straight line and the transition region straight line, or by the midpoint of the transition region (inflection point). The integration method's Tg is the same as the midpoint Tg if there is no endotherm, and is closer to the onset Tg if there is an endotherm. Moreover, it is common to measure Tg upon heating without any mention of previous thermal history or the heating rate. Because of these practices, the Tg values reported in this article should be considered as approximate by the reader. Authors reporting Tg should describe the thermal history of their measurements and also consider the integration method of determining Tg. The classical methods of Tg measurement discussed previously can be quite insensitive for some polymers, e.g., highly crosslinked polymers. A penetration probe, on the other hand, is very sensitive and can determine Tg even on a thin film. But this method depends on the force of the penetrator and does not measure Tg in a fundamental way. Softening temperature methods are popular and are part of various ASTM standards. 2.
Oscillating Load Methods
The measurement of the material response to an oscillating load gives a direct measure of the sample's modulus. The measurement of the lag of the material response (phase shift) to the mechanical forcing function gives a measure of the damping, or loss factor, of the sample. This last quantity is called the tan 6 peak value. Dielectric thermal analysis is done by using an oscillating electric field as the forcing function. At Tg, there is often an order of magnitude change in the modulus and a large maximum in tan 6. This octransition is distinguished from other thermal transitions (P, y, etc.) by being the most dominant and occurring at the highest temperature. An onset point, a midpoint, or a change in modulus by a certain amount have all been used to mark the glass transition temperature. The tan 6 maximum clearly specifies a thermal transition. However, it is necessary to independently determine that it is a glass transition and not another of the many transitions that appear in oscillating deformation methods. A classical Tg measured at a low programmed temperature rate (1 deg/
min) may correspond to a tan 6 measurement at a low frequency of measurement (1 Hz). The "loading rate" of a DMA experiment is the oscillating frequency, and Tg increases with frequency (analogous to the increase in Tg with heating rate in a DSC experiment). It is possible to measure a tan 6 maximum at constant temperature while the frequency is being scanned and there is an inverse relationship between temperature and frequency. Even at a reasonably low frequency (10 Hz), a tan 6 Tg can easily be 20-30 0 C greater than a classical one. C.
OTHER FACTORS AFFECTING 7g
Though the factors that govern Tg have been known for some years, there is still a wide variation in values for particular polymers. Polymer Tgs are sensitive to parameters which may or may not have been evaluated by the authors. Published values should be reviewed considering all the factors which affect Ta. The main factors affecting Tg values are polymer structure, sample crystallinity, diluent types and concentrations, molecular weight distributions, previous thermal history of the sample, and system pressure. More detailed treatments are given in reviews (6,48,49,1241-1249). 1.
Structure
Within families of similar polymers, increasing chain stiffness and interchain cohesion increase the glass transition temperature. Copolymers may have one or multiple Tg 's, depending on the ordering of monomers along the chain. The glass transition temperatures of copolymers may be higher, lower, or in between those of the homopolymers of their comonomers. Most polymer structures are idealized and presumed from the characteristics of the reactants rather than proven by chemical and structural analysis. Structural uncertainties can arise both from the multiplicity of chemical reactions occurring during polymerization (especially those taken to high conversions), downstream processing, and from the structure of the reactants themselves. For example, a polymer with an asymmetric in-chain tetravalent atom can produce several stereoregular forms. Alternatively, a polymer containing a residual double bond in the repeating unit could be in a cis, or trans conformation. Polymers of 1,3-dienes can have various combinations of cis, trans, 1,2- or 1,4-structures. Variations in these structural features can greatly effect the Tg values. Despite these uncertainties, the data are often useful if they can be regarded as pertaining to a polymer with reproducible properties. 2.
Crystallinity/Crosslinking
Some workers suggest that the presence of crystallinity does not appreciably affect Tg. However, steric constraints imposed by crystalline regions on neighbouring amorphous polymer segments might result in an increase in Tg because
of the reduced mobility of these segments. In samples with crystallinity and moderate fractions of high molecular weight chains, tie molecules (long chains that have segments in more than one crystallite) provide physical crosslinking and increase Tg. Some polymer families, such as the methacrylates and a-chloroacrylates, show high dependencies of Tg on tacticity. Intermolecular bonding can affect Tg either by increasing the cohesive energy of chain segments, or by decreasing the backbone degrees of freedom of chain segments. This last concept has been used (1240) to aid group contribution models. As crystallinity increases, polymer Tg's may be little affected (50), may increase (51,52) (at least for isothermal crystallization (53)) or may decrease (51,54). Tg values selected in this work are the highest quoted on the sample with the lowest degree of crystallinity, other factors being equal. In general, the presence of crosslinks in a sample increases its Tg relative to an uncrosslinked sample. This effect can be independent of the chemical composition of the crosslinking agent, caused by the restricted motion of chain segments near crosslinking sites. However, the crosslinking agent can behave similarly to a second monomer, inducing either an increase or a decrease in Tg due to the copolymer effect. 3.
Diluents
Much of the variation in published Tg data is caused by the use of impure samples. Common impurities are unpolymerized monomer, low molecular weight polymer, solvents, and water. Great care should be taken to remove such impurities. Their presence in small concentrations can lead to a shift (48,98-103) in Tg of over 400C and sometimes the occurrence of "diluent transitions", for example "water peaks". Preferred values are from publications that describe the precautions taken to exclude diluents and the residual levels of these diluents. Few references contain this information and most values should be regarded as only provisional. 4.
Molecular Weight
The Tg of a homopolymer generally increases with increasing molecular weight up to a limiting value, known as the limiting or persistent Tg value (48,104,105). The reverse may hold for polymers with particular end-groups (106), or where crystallinity decreases with increasing molecular weight (107). For some polymers, Tgs are independent of molecular weight (108). Many data, especially on condensation polymers, are for polymers of rather low molecular weight and it seems likely that higher Tg values would be obtained if higher molecular weight samples were tested. Many polymers are not properly characterized with respect to molecular weight and few have reported molecular weight distributions. In many cases, the only measure of molecular weight is a
viscosity value, which itself can be very dependent on solvent-polymer interactions and, to some extent on the temperature. Usually, the highest viscosities and the highest molecular weight polymers are associated with the most reliable data. The classical model for the effect of molecular weight on Tg is (1219-1226)
This model suggests that the glass transition temperature reaches a limiting value when the number average molecular weight of the polymer is large. Cowie and Toporowski (1220) have shown that there is no further increase in Tg when the molecular weight is above a critical value, which is similar to the critical molecular weight for viscosity. 5.
Thermal History
We have previously discussed in detail how thermal history (cooling rate, annealing time, and temperature), as well as the method of Tg measurement affects the reported Tg. 6.
Pressure
Increasing pressure increases Tg in a linear relationship. A simple model is (Refs. 1227-1230)
where Tg(p) is the glass transition temperature as a function of pressure, p is pressure, and s is the linear pressure coefficient. This coefficient is 0.2K/MPa for flexible aliphatic chains, and 0.55K/MPa for semirigid aromatic chains (1231-1233). The effect of pressure on Tg can be important in some processing applications, such as injection molding. A different method for modeling the effect of temperature takes into account pVT data near Tg (12351237), giving an equation that includes the bulk modulus of the polymer glass. D. ESTIMATION METHODS FOR THE GLASS TRANSITION TEMPERATURE
Several researchers have developed group contribution methods for correlating polymer properties, including the glass transition temperature (1238-1240). These techniques emphasize quantitative modeling of the various effects of polymer structure on Tg, and are a valuable aid to interpreting experimental data and estimating glass transition temperatures for new materials. E. CLASSIFICATION, NOMENCLATURE, AND ABBREVIATIONS
Over 10000 papers contain glass transition data (43). This section of Polymer Handbook represents a fraction of these References page VI - 253
data. Most of the data in the tables are for linear homopolymers. In general, the polymers contain no additives or diluents, and are thought to have low or no branching. Polymers are subdivided into principle classes by the composition of their repeating chain segment: acyclic carbon polymers, carbocyclic polymers, acyclic heteroatom polymers, heterocyclic polymers, and copolymers. All entries are placed in the most senior class their structure commands (109,110) and appear in only one class. The subclasses and their entries are organized in alphabetical order. 1. Naming Conventions With the exception of common polymers with accepted trivial names, the polymers are named substantially according to the ACS recommendations for polymer nomenclature (110) in conjunction with IUPAC rules (109); less common polymers are cross-referenced from the trivial to the systematic name. Systematic names are not given for all the polymers in order to save space. Substitutive nomenclature is generally used for simple radicals, but for long combinations of radicals replacement nomenclature has been used to provide a much shorter name (as for some fluorocrylates with ether side chains). When sequences of radicals have repeated, the repeating sequence has been written once and prefixed "di", "tri", etc. as appropriate, for example, di(oxyethylene) for the sequence - 0 - C H 2 - C H 2 - O - C H 2 - C H 2 - . Note that the diradical "di(oxyethylene)" must be distinguished from the diradical "dioxyethylene" which has the structure, - O - O C H 2 - C H 2 - , and also the diradical "ethylenedioxy" which has the structure, - 0 - C H 2 - C H 2 - O - (IUPAC rule C205.2). The principle underlying the last-named diradical has not generally been extended to the naming of polymers in this section, i.e., diradicals of structure - X - Y - X - are not named YdiX, with the exception of alkanedioyl diradicals, because of the difficulty of locating indexed polymer names in which the diradicals are not named from left to right. Many polymers are derivatives of the diradical "propylene" -CH(CH 3 )-CH 2 -; the substituted diradical
"propylene" is used in naming polymers instead of " 1 methylethylene" which could be preferred. Polymer names are tabulated in alphabetical order within each subsection, but 1. prefixes like sec-, tert-, including designated atoms and the numbers showing locations of substituents are ignored except as secondary and tertiary indicators of order. For example, poly(ethylene 2,6-naphthalate) appears before poly(ethylene 1,4-terephthalate); poly(4-/?-anisoylstyrene) appears before poly(4-benzoylstyrene). 2. multiplying prefixes for various substituents, such as dimethyl or trimethyl, are observed in alphabetical ordering rather than being grouped together as in the 3rd edition of this Handbook. 3. the locations of substituents in otherwise identical polymers are taken as tertiary indicators of order: the numbers are arranged in increasing order at the first point of difference. Thus, 2,3,8- comes before 2,4,1-. Comments may include information as to the instrument of measurement and, whenever possible, information regarding the method of DSC measurement (e.g., onset), conditions of measurement, thermal history, and whether measurements were made as a function of a particular variable such as molecular weight (/(MW)). 2. Abbreviations HR CR OCR Xp TH DSC TMA DTA DMA MW /( ) Mdpt Intg
Heating rate Cooling rate Zero cooling rate Extrapolate Thermal history Differential scanning calorimeter Thermal mechanical analyzer Differential thermal analysis Dynamic mechanical analyzer Molecular weight Function of a variable Midpoint Integration
F. TABLES OF GLASS TRANSITION TEMPERATURES OF POLYMERS TABLE 1. MAIN-CHAIN ACYCLIC CARBON POLYMERS Polymer
CAS No.
Tg (K)
Remarks
Refs.
1.1. POLY(ACRYLICS) AND POLY(METHACRYLICS) 1.1.1. POLY(ACRYLIC ACID) AND POLY(ACRYLIC ACID ESTERS) Poly(acrylic acid) PoIy(I-adamantyl acrylate) Poly(adamantyl crotonate) Poly(adamantyl sorbate) Poly(benzyl acrylate)
9003-01-4
379 348 426 507 388 279
720,811-818 1293 1401,1349 1349 1349 746,1447
TABLE 1. cont'd Polymer
CAS No.
Poly(4-biphenylyl acrylate) Poly(4-butoxycarbonylphenyl acrylate) Poly(butyl acrylate)
9003-49-0
Tg (K) ~383 286 219
Poly(2-tert-butylphenyl acrylate) Poly(4-teJt-butylphenyl acrylate) Poly (cesium acrylate)
224 251 253 253 250 380, 316 346 304 345 344 447
Poly[3-chloro-2,2-bis(chloromethyl)propyl acrylate] Poly(2-chlorophenyl acrylate) Poly(4-chlorophenyl acrylate) Poly(2,4-dichlorophenyl acrylate) Poly(4-cyanobenzyl acrylate) Poly(2-cyanobutyl acrylate)
319 326 331 333 317 384-396
PolyO
Poly(2-cyanoisobutyl acrylate) Poly(4-cyanobutyl acrylate) Poly(2-cyanoethyl acrylate) Poly(2-cyanoheptyl acrylate) Poly(2-cyanohexyl acrylate) Poly(cyanomethyl acrylate) Poly(2-cyanomethyl acrylate) Poly(5-cyano-3-oxapentyl acrylate) Poly(4-cyanophenyl acrylate) Poly(2-cyanoisopropyl acrylate) Poly(4-cyano-3-thiabutyl acrylate) Poly(6-cyano-3-thiahexyl acrylate) Poly(6-cyano-4-thiahexyl acrylate) Poly(8-cyano-7-thiaoctyl acrylate) Poly(5-cyano-3-thiapentyl acrylate) Poly(cyclododecyl acrylate)
25154-80-7 26809-38-1 25067-30-5 26936-29-8 26877-39-4
25931-02-6
56710-66-8
Poly(cyclohexyl acrylate) conventional syndiotactic isotactic PoIy(1,2:3,4-di-O-isopropylidene-a-D-galactopyranos6-O-yl acrylate) Poly(3,5-dimethyladamantyl acrylate)
296 250 363 339 249 215 215 214 223 310
Refs.
379 378 432 320 258 275
9003-32-1
270 303 297 310 223 218 249 251 249 248
819 746 1, 23,634,775, 802-822 1401 823,824 1401
Mechanical method
Conflicting data
746,824,825,1401
Extrapolated from DSC data on water plasticized samples
Dilatomer, lOdeg/minHR, DTA, /(polymerization) Dilatomer, 10 deg/min HR No experimental details Dilatomer, 10 deg/min HR DTA Dilatomer, 10 deg/min HR Dilatomer, 10 deg/min HR, DTA, /(polymerization) No experimental details No experimental details Dilatomer, 10 deg/min HR
DSC, onset, HR, 32 deg/min, quenched
292 289 285 371
Poly(3,5-dimethyladamantyl crotonate) Poly(3-dimethylaminophenyl acrylate) PoIy(1,3-dimethylbutyl acrylate) Poly[2,2-difluoro-2-(2-heptafluorotetrahydrofuranyl) ethyl acrylate] Poly(dodecyl acrylate) Poly(2-ethoxycarbonylphenyl acrylate) Poly(3-ethoxycarbonylphenyl acrylate) Poly(4-ethoxycarbonylphenyl acrylate) Poly(2-ethoxyethyl acrylate) Poly(3-ethoxypropyl acrylate) Poly(ethyl acrylate) conventional syndiotactic isotactic
324 233-238 277 388 389 358 433
Remarks
1432 826 826 817 746 746 826 746 746 1088 1089 827 746,820 1090 1092 1093 1087 820 820 746 1091 828 828 828 828 828 1086 824 11,842
DSC heating rate; data corrected (sci)
Brittle point Brittle temperature Brittle point
849,850 1401,1349 1349 746 823 830 821,829 746 746 746 830 830,831 23,634,775 1401 820,821,824 832, 833
References page VI-253
TABLE 1. cont'd Polymer
CAS No.
Poly(2-ethylbutyl acrylate) Poly(2-ethylhexyl acrylate) Poly(ferrocenylethyl acrylate) Poly(ferrocenylmethyl acrylate) Poly(3-fluoroalkyl a-fluoroacrylate) Poly(4-fluoroalkyl a-fluoroacrylate) Poly(5-fluoroalkyl a-fluoroacrylate) Poly(8-fluoroalkyl a-fluoroacrylate) PoIy(17-fluoroalkyl a-fluoroacrylate) Poly(fluoromethyl acrylate) Poly(furfuryl acrylate) PoIy(IH, lH-heptafluorobutyl acrylate) Poly(5,5,6,6,7,7,7-heptafluoro-3-oxaheptyl acrylate) Poly(2,2,3,3,5,5,5-heptafluoro-4-oxapentyl acrylate) Poly(heptafluoro-2-propyl acrylate)
9003-77-4
Poly(heptyl acrylate) Poly(2-heptyl acrylate) Poly(hexadecyl acrylate) Poly(lH,lH,3H-hexafluorobutyl acrylate) Poly(hexyl acrylate)
9003-21-8
head to tail head to head Poly(2-methylbutyl acrylate) Poly(3-methylbutyl acrylate) Poly(2-methyl-7-ethyl-4-undecyl acrylate) Poly(2-methylpentyl acrylate) Poly(2-naphthyl acrylate) Poly(neopentyl acrylate) PoIy(I H, lH-nonafluoro-4-oxahexyl acrylate) PoIy(I H, lH-nonafluoropentyl acrylate) Poly(nonyl acrylate) Poly(octyl acrylate) Poly(2-octyl acrylate) Poly(lH,lH,5H-octafluoropentyl acrylate) Poly(pentabromobenzyl acrylate) Poly(pentachlorophenyl acrylate) PoIy(I H, lH-pentadecafluorooctyl acrylate) Poly(lH,lH-pentafluoropropyl acrylate) Poly(/2-pentyl acrylate)
Remarks
223 223 430 470-483 398 368 374 338 388 288 321 243 228 218 278-283
Brittle point Brittle point No experimental details DSC heating rate
213 235 308 251 216
Poly(3-hydroxyalkanoate) Poly(isobornyl acrylate) conventional syndiotactic isotactic Poly(isobutyl acrylate) Poly(isopropyl acrylate) conventional syndiotactic isotactic Poly (magnesium acrylate) Poly(3-methoxybutyl acrylate) Poly(2-methoxycarbonylphenyl acrylate) Poly(3-methoxycarbonylphenyl acrylate) Poly(4-methoxycarbonylphenyl acrylate) Poly(2-methoxyethyl acrylate) Poly(4-methoxyphenyl acrylate) Poly(3-methoxypropyl acrylate) Poly(methyl acrylate) conventional
Tg (K)
25266-13-1
293 367 369 363 249 230 267-270 271-284 262 673 217 319 311 340 223 324 198 283 284 290 282 278 304 241 228 253 235 358 295 224 236 215 184 208 228 238 453 420 256 247 216
Refs. 823 821 834 835 1263 1263 1263 1263 1263 838 1279 155,836,837 830 830,837 839
Estimated Tg
No details on sample or measurement Brittle point Brittle point Brittle point Brittle point
821,1401 823 23,821,840,841 836 823 1401 1451 824
Brittle point
823 1401 746,823,824
Estimated from copolymer data
Dilatomer
Brittle Brittle Brittle Brittle
point point point point
Brittle point Brittle point Brittle point
Crystalline
843 844 746 746 746 830 826 830 18,22,23,81 1094 1343 1401,1432 576,720,775-777 821,824,831,841, 845-848 823,1401 823 823 823 826 746,1401 830 836 821 1401 821,841,1401 823 836 1447 746 836 836 1401
TABLE 1. cont'd Polymer
CAS No.
Tg (K)
Poly(3-pentyl acrylate) Poly(phenyl ethyl)acrylate Poly(phenyl acrylate) Poly(potassium acrylate)
267 270 330 467
Poly(propyl acrylate)
236
Poly (sodium acrylate)
228 503
Poly(tertural acrylate) Poly(tetradecyl acrylate)
321 297
Poly(7,7,8,8-tetrafluoro-3,6-dioxaoctyl acrylate) Poly(4,4,5,5-tetrafluoro-3-oxapentyl acrylate) Poly(3-thiabutyl acrylate) Poly(4-thiahexyl acrylate) Poly(5-thiahexyl acrylate) Poly(3-thiapentyl acrylate) Poly(4-thiapentyl acrylate) Poly(m-tolyl acrylate) Poly(o-tolyl acrylate) Poly(/?-tolyl acrylate) Poly(2,2,2-trifluoroethyl acrylate) Poly(5,5,5-trifluoro-3-oxapentyl acrylate) Poly(3,3,5-trimethylcyclohexyl acrylate) PoIy(I H, lH-tridecafluoro-4-oxaoctyl acrylate) PoIy(IH,lH-undecafluorohexyl acrylate) Poly(lH,lH-undecafluoro-4-oxahexyl acrylate) Poly (zinc acrylate)
233 251 213 197 203 202 208 298 325 316 263 235 288 205 234 205 694
Remarks
Refs. 746,823 746 746,826 817
Extrapolated from data on water plasticized samples Brittle point 23,592,832,836, 851, 852 1401 Estimated from 817,843 copolymer data 1279 Brittle point; probably 23,821 1st order transition 830 830 831 831 831 831 831 826 826 826 836 830 1401 830 836 830 1261
1.1.2. POLY(ACRYLAMIDES) Poly(acrylamide) Poly(A/r-butylacrylamide) Pory(Ar-seobutylacrylamide) Poly(A^-^rr-butylacrylamide) Poly(AyV-dibutylacrylamide) Poly(7V,7V-diisopropylacrylamide) PolyWiV-dimethylacrylamide) Poly(N-dodecylacrylamide) Poly(isodecylacrylamide) Poly(isohexylacrylamide) Poly(isononylacrylamide) Poly(isooctylacrylamide) Poly(AMsopropylacrylamide) Poly([AKl-methylbutyl)acrylamide) Poly(Af-methyl-Af-phenylacrylamide) Poly(morpholylacryamide), [Poly(morpholinocarbonylethylene)] Poly(A^-octadecylacrylamide) Poly(N-octylacrylamide) Poly(piperidylacrylamide)
9003-05-8
26793-34-0
25189-55-3
438 319 390 401 333 ~ 393 362 198-320 313 344 325 339 358, 403 380 ~ 453 420 162 220 381
No experimental details Mechanical method No experimental details No experimental details Softening point, amorphous Softening point, almost amorphous Conflicting data, 198 K more probable in amorphous sample No experimental details No experimental details No experimental details No experimental details Conflicting data No experimental details Softening point, amorphous Mechanical method
820 853 820 820 854 854 746 820,853 820 820 820 820 820,855 820 854 9,856 853 853 9,856
1.1.3. POLY(METHACRYLIC ACID) AND POLY(METHACRYLIC ACID ESTERS) Poly(acrylonitrile methacrylate) Poly(adamantyl methacrylate) Poly(benzyl methacrylate) Poly(2-bromoethyl methacrylate) Poly(2-tert-butylaminoethyl methacrylate)
25085-83-0
383 414 456 456/532 327 325 306
DSC heating rate
1362 849 1349 1401 746 746 746,857
References page VI - 253
TABLE 1. cont'd Polymer
CAS No.
Poly(4-tert-butylcyclohexyl methacrylate)
34903-89-4
Poly(butyl methacrylate)
9003-63-8
isotactic syndiotactic Polype-butyl methacrylate) Pory(te/t-butyl methacrylate) atactic syndiotactic isotactic Poly(4-terr-butylphenyl methacrylate) Poly(2-chloroethyl methacrylate) Poly(2-cyanoethyl methacrylate) Poly(4-cyanomethylphenyl methacrylate) Poly(4-cyanophenyl methacrylate) Poly(cyclobutyl methacrylate) Poly(cyclodecyl methacrylate) Poly(cyclododecyl methacrylate) Poly(cyclohexyl methacrylate) atactic
29696-27-3
25768-50-7 isotactic Poly(cyclooctyl methacrylate) Poly(cyclooctylmethyl methacrylate) Poly(cyclopentyl methacrylate) Poly(2-decanhydronapthyl methacrylate) Poly(decyl methacrylate) Poly(diethylaminoethyl methacrylate) PoIy(1,2:3,4-di-O-isopropylidene-a-D-galactopyranos6-0-yl methacrylate) Poly(3,5-dimethyladamantyl methacrylate)
300 307 328 297 294 299 249 328 333 391 395 380 387 280 371 ~ 365 364 ~401 428 351 331 329 356 377 406 324 346 326 348 418 203 ~ 289-297 399
467 292 - 318 318 —381 381 286 277 208
Poly(3,3-dimethyl-2-butyl methacrylate) Poly(lH,lH,7H-dodecafluoroheptyl methacrylate) Poly(dodecanidiol dimethacrylate) Poly(dodecyl methacrylate)
atactic
356 403-451 293
469
Poly(dimethylaminoethyl methacrylate) Poly(3,3-dimethylbutyl methacrylate)
Poly(2-ethylhexyl methacrylate) Poly(ethyl methacrylate)
Tg (K)
25719-51-1 9003-42-3
263 338
339 352 362
Remarks DSC,/(HR) - 2 8 6 to 308 K
298 K elsewhere
Maximum value
Refs. 1096 1286 22,69,272,695, 720,775,822,824, 847,858-862, 1359,1367 1272 1254 1342 1401 1255 1413 824 1342,1555 746,863,1401 746,847,864 1254 1401
Maximum value DSC, /(HR) Likely to be slightly high
Temperature reported as corrected
1104 262 746,865 746 746 1401 1401 1401 263,353,820,824 1401 1254 847,862 1401 1401 1401 1401 23,821,840,846 857 11,842 849,850
1401,1349 746 Vicat softening point 332 K 863 1401 Vicat softening poing 396 K 863 1401 Mechanical method 876 1528 Conflicting data 1,821,858,866, 867 Brittle point 821 DSC, onset, 16deg/min HR, 1095 quenched,/(MW) Data covers range 22,69,286,352, 320-343 K 353,521,695,821, 824,857,858,860, 862,868-874, 1342,1401,1363, 1545,1432 1315 1552 1254
TABLE 1. cont'd Polymer
CAS No.
Tg (K) 331 330 344 359 378
Poly( 1H, lH-heptafluorobutyl methacrylate) syndiotactic PoIy(I H, lH,9H-hexadecafluorononyl methacrylate) Poly(hexadecyl methacrylate)
25986-80-5
348 347 285 339 298 482 ~ 458-468 355 353 350 320 310 347 336 ~330 258 288
Poly(hexyl methacrylate)
25087-17-6
268
isotactic syndiotactic Poly(2-ethylsulfinylethyl methacrylate) Poly(ferrocenylethyl methacrylate) Poly(ferrocenylmethyl methacrylate) Poly(3-fluoroalkyl methacrylate) Poly(4-fluoroalkyl methacrylate) Poly(5-fluoroalkyl methacrylate) Poly(8-fluoroalkyl methacrylate) Poly(17-fluoroalkyl methacrylate) Poly(glycidyl methacrylate)
Remarks
Refs.
with 25% wt. of chromaphore I-doped polymer with 25% wt. of chromaphore II-doped polymer DSC
No experimental details DSC heating rate
Mechanical method Brittle point, sample probably crystalline-may be Tm
DSC
Poly(2-hydropropyl methacrylate) 80% isotactic 58% syndiotactic Poly(2-hydropropyl methacrylate) Poly(2-hydroxyethyl methacrylate) Poly(D,L-isobornyl methacrylate) Poly(isobornyl methacrylate) Poly(isobutyl methacrylate) random isotactic 80% syndiotactic, 20% isotactic Poly(isobutyl methacrylate)
25249-16-5
64114-51-8
9011-15-8
Poly(isopropyl methacrylate) atactic 26655-94-7 isotactic syndiotactic Poly(2,3-O-isopropylidene-D,L-glyceritol-l-O-yl methacrylate) Poly(magnesium methacrylate) Poly(methacrylic acid) Poly(methacrylic anhydride) see Section 4.27 Poly(4-methoxycarbonylphenyl methacrylate) Poly(methacrylate) Poly(methyl methacrylate)
54193-36-1
9003-21-8 9011-14-7
~ 763 501
379 273
378
1418 1438 1484 824 847 746 834 835 1263 1263 1263 1263 1263 1269 1360 875 876 821,866 695,846, 858,877, 1251,1443 1401 1484 1416 1413 746,878-880 1098 1199 846,878 1279 1401 824 1508 746,821,824 846,881
273 270 274 328, 359 311 393 349 358 396/464/443 383 423 326 281 326 326 337 354 358 300 358 335
1359 1360 1413 1418
Conflicting data DSC, dry Xp DSC, dry Xp
1401 1438 746,824,862 1401
Heating rate: 20K/min
842
Xp value Xp data from plasticized samples
843 882
746 1255 1102,1112,1101, 1107,1108 DSC, onset, 16deg/min HR, 1101 quenched,/(MW) Dilatomer, CR 3 deg/h; 1109 creep relaxation, quenched 1432,1315, 1401,1288,1318
References page VI - 253
TABLE 1. cont'd Polymer
CAS No.
Tg (K) 379 400 387
atactic
391 384 373 390 367 382 423 395 378
isotactic
379 380 311
syndiotactic
323 325 319 373 378
heterotactic
414 403 372
plasticized with 5% dibutylphthalate plasticized with 10% dibutylphthalate plasticized with 25% dibutylphthalate with bis(2-ethylhexyl phthalate) Poly[(2-nitrosoethyl) methacrylate] Poly(octadecyl methacrylate) PoIy(I H, lH,5H-octafluoropentyl methacrylate) Poly(octyl methacrylate)
25639-21-8
253 289 278-280 268
Poly(3-oxabutyl methacrylate) Poly(3-oxa-5-hydroxypentyl methacrylate) Poly(pentyl methacrylate) Poly(neopentyl methacrylate) Poly(phenethyl methacrylate) Poly(phenyl methacrylate) Poly(propyl methacrylate)
363 355 373 200-398 252-373 328 173 309 203, 253
34903-87-2
299-312 299 299 383 407 308
308 332
Remarks
Refs.
1320,1300 1343 1365 Aldrich chemicals 1547 1552 DSC 1277 1359,1508,1531 1363,1545 1413,1457 DSC 1489 1533 1254 1106 1,17,22,25-27, 69,78,79,81,190, 201,263,286,287, 317,318,352-354, 400,614,684,698, 720,775,777-779, 789,804,821,824, 846,858,860,862, 880,883-895 1271 1255 6,122,720,824, 847,884,886,890, 895-901 1255 1271 1432 1254 122,720,824,847, 890,895,896,898, 900,901 1256 1254 DSC, rapid cooling, 10 deg/min 1103 HR, onset point, M™ 1254 1254 1254 DS 1557 PCS 1557 903 1,720,904 Mechanical method 876 Conflicting data 23,695,821,840, 846,858 1401 846,857 Mechanical method 880 Brittle point 821 1401 DSC,/(HR) 1105 1401 746 353,746,820,847, 863,875,1334 1254 Conflicting data, 22,262,272,821, 308-345 K reported 847,857, 858,860, 1432 1401 1254
TABLE 1. cont'd Polymer
CAS No.
Tg (K)
Remarks
Refs.
319 Poly(sodium methacrylate) Poly(3-tetracyclododecyl methacrylate) Poly(tetradecyl methacrylate) Poly(l,l,l-trifluoro-2-propyl methacrylate) Poly(3,3,5-trimethylcyclohexyl methacrylate) Poly(3,5,5-trimethylhexyl methacrylate) Poly(trimethylsilyl methacrylate) isotactic syndiotactic
~583 477 201-264 354 398 274 341 400
Poly(2,3-xylenyl methacrylate) Poly(2,6-xylenyl methacrylate)
DSC Xp value Conflicting data Vicat softening temperature Heating rate: 15 K/min Weak Tg for syndiotactic polymer
398 440
1413 1484 410,547,616 1401 843 863 1401 867 902 1334 1334
1.1.4. POLY(METHACRYLAMIDES) Poly(4-butoxycarbonylphenylmethacrylamide) Poly(Af-te7t-butylmethacrylamide) Poly(4-carboxyphenylmethacrylamide) Poly(4-ethoxycarbonylphenylmethacrylamide) Poly(4-methoxycarbonylphenylmethacrylamide)
401 433 473 441 453
Softening point No experimental details Softening point Softening point Softening point
905 820 905 905 905
1.1.5. OTHER a-AND ^-SUBSTITUTED POLY(ACRYLICS) AND POLY(METHACRYLICS) Poly(butyl butoxycarbonylmethacrylate) Poly(butyl chloroacrylate) Poly(seobutyl chloroacrylate) Poly (butyl cyanoacrylate) Poly(cyclohexyl chloroacrylate) Poly(dibutyl itaconate) see Poly(butylbutoxycarbonylmethacrylate) Poly(ethyl chloroacrylate)
298 330 347 358 387
Vicat softening point Vicat softening point Vicat softening point
366
Vicat softening point
10% isotactic
308
100% syndiotactic
404
Calculated for infinite Mn; heating rate: 20 K/min Calculated for infinite M n ; heating rate: 20 K/min Intrinsic vicosity only 0.24 dL/g
Poly(ethyl ethoxycarbonylmethacrylate) Poly(ethyl ethacrylate) Poly (ethyl fluoromethacrylate) Poly(hexyl hexyloxycarbonylmethacrylate) Poly[(l-heptoxycarbonyl-lheptoxycarbonylmethylene)ethylene] Poly(isobutyl chloroacrylate) Poly(isopropyl chloroacrylate) Poly[(l-methoxycarbonyl-lmethoxycarbonylmethylene)ethylene] Poly(methyl chloroacrylate) Poly (methyl p-chloroacrylate) Poly (methyl fluoroacrylate) Poly (methyl Poly(methyl phenylacrylate) atactic isotactic Poly(propyl chloroacrylate)
28451-56-1
325 300 316 269 188, 250 363 363 372 413 416 404
fluoromethacrylate)
357 391 397 344
Intrinsic vicosity only 0.24 dL/g DSC, onset, 20deg/min HR Vicat softening point DSC, onset, 20 deg/min HR
906 863 863 907 863 832,863, 908,909
906 746 910 906 1110 832,911 832,863 1110
Vicat softening point No measurement details No details on samples or measurement No experimental details
863 820 820,912
Vicat softening point
832,863
820,910 913
1.2. POLY(ALKENES) Poly(butene-l) see Poly(ethylethylene) Poly(butylethylene)
9003-28-5 223
Pory(teTt-butylethylene)
337
Poly(cyclohexylethylene) atactic isotactic Poly(2-cyclohexylethylene)
393 406 313
Softening point, highly crystalline sample Dynamic method Mechanical method
1,272,574, 629-633 631 634-639 640 634
References page VI-253
TABLE 1. cont'd Polymer
CAS No.
Tg (K)
Poly[(cyclohexylmethyl)ethylene] Poly(3-cyclohexylpropylethylene)
348 248
Poly(cyclopentylethylene) Poly[(cyclopentylmethyl)ethylene] Poly(decylethylene), poly(l-decene) Poly(3,3-dimethylbutylethylene) Poly(U-dimethylethylene), poly(isobutane)
348 333 237 326 200
25189-70-2 9003-27-4
205 195 202 170-370 203 199 Poly(4,4-dimethylpentene-l) see Poly(neopentylethylene) Poly(4,4-dimethylpentylethylene) Poly(l,l-dimethyltetramethylene) PoIy(1,1-dimethyltrimethylene) Poly(dodecylethylene), poly(l-dodecene) Poly(ethylene)
313
25067-08-7 9002-88-4
253 263 241 195 275 190 148
-C- C - and - C - C Poly(ethylene) [Poly(methylene)]
9002-88-4
Poly(ethyl ethylene)
Poly(1 -ethyl-1 -methyltetramethylene) Poly(ethyl-2-propylene) Poly(furylene ethylene) Poly(heptylethylene), poly(l-heptene) PoIy(I-hexene) Poly(hexyldecylethylene)
235-240 249
25511-64-2 25067-06-5
Poly(hexylethylene) Poly(hydroxymethylene) Poly(isobutylene) see PoIy(1,1-dimethylethylene) Poly(isobutylethylene)
About 148 222-240 163 248 155
522 ~ 250 268 293 226 About 215 328
208-228 407
Remarks
Refs.
Mechanical method Softening point, comparative data reported Dynamic method Mechanical method
634 631
Softening point, crystalline sample Dynamic method Dynamic method
631
634 634 629,632,641 Softening point 631 1,23,24,58,61, 216,223,695-704 Volumetric measurements 1252 1255 1288 1540 1549 1432
706 706-709 629,632,641,1078
1255 1254 1287 Conflicting interpretations 1,6,16,28, of data; branch point 61,80,191, transition at 252 K 223,238,261, 262,272,317, 318,344,349, 395,396,469, 521-523,574, 589,592,608,629, 641-676 DSC,10/deg/minHR 1080 WLF fit of volume relaxation 1076 1432 1432 489,897,598,574, 694 Calorimeter 1073 Wide spread in 1,61,67,273,349, reported values 395,397,574,629, 632,641,645,646, 677-680 1541 DTA heating rate 681 Dynamic method 682 1477 Dynamic method 629 Calorimeter 1072 Dynamic method, 629,641,683 stereoregular sample; may be first-order transition Conflicting data 1,574,629,632 DSC, onset, 6deg/min HR, 1085 dry, /(water)
9003-27-4 302 313 300 ± 1 302 573
Reported values 1,51,675,684-692 range from 297 to 333 K 1330 1356 1432 1451
TABLE 1. cont'd Polymer
CAS No.
Poly(isohexylethylene) Poly(isopentylethylene) Poly(isopropylethylene) atactic
239 259 323
isotactic
367
PoIy(I-methyloctamethylene) Poly(4-methylpentene-l) see Poly(isobutylethylene) Poly(neopentylethylene)
25068-26-2
Poly(nonylethylene) Poly(octylethylene), poly(l-octene) Poly(pentene-l)
25511-67-5
Poly(pentylethylene) Poly(propylene) atactic
Tg (K)
215 332
9003-07-0
236 232 238 511 242 238 -260
25085-53-4
syndiotactic (c) Poly(propylethylene) Poly(propyl-2-propylene) Poly(tetradecylethylene) Poly(2,5-thienylene ethylene) Poly (1,1,2-trimethyltrimethylene)
Refs.
Softening point Softening point Dynamic method
631 631 634,641,685,691, 692 Dilatometry; suggested 693 transition crystal/crystal type Heating rate: 4-8K/min 705 Softening point, crystalline sample
631
300 246 298 353 310
632 629,632,641 1356 1541 Dynamic method 629 1084 1320 Conflicting data; 1,6,15,80,122, most values reported 191,223, range 258 to 270 K 261,272, 273,282,318,326, 394_397,469,574, 615,629,632,641, 645,640,659,666, 668,675,677,678, 684,710-726,1255 DSC, onset,/(MW) 1082 1271 Light scattering under terminal 1452 mode Light scattering under 1452 segmental mode 1540 1432 1499 1083 Most values range 238 to 260 K DSC, onset, quenched,/(MW) 1081 Most values range 263 to 267 K Conflicting data 1,272,574,595, 629,630,632,645, 685,727 Dynamic method 682 629,632,641 1477 1477 682
236
1455
266 253 267
isotactic
Remarks
170-370 243 263 ~ 265 272 ~ 265 ~233
1.3. POLY(DIENES) EPDM, maleated Natural rubber see Poly(isoprene) cis Neoprene see PoIy(I-chloro-1-butenylene) PoIy(I-bromo-1-butenylene) Poly(butadiene)s see PoIy(I-butylene)s and Poly(vinylethylene) PoIy(1,2-butadiene) ionically-terminated Poly(l,3-butadiene) cis Poly(l,4-butadiene) cw PoIy(I-butenylene) cis
241
9903-17-2
293 258 273 170-370 218 170 164 171
DSC, annealed
1077
DSC, onset, HR 20deg/min, quenched
1432 1337 1337 1540 1432 1285 1075 26,61,574-597
References page VI - 253
TABLE 1. cont'd Polymer
CAS No. trans
PoIy(I-butyl- 1-butenylene) Poly (1 -terf-butyl-1 -butenylene) Poly(2-chloro-l,3-butadiene) see PoIy(I-chloro1-butenylene) PoIy(I-chloro- 1-butenylene) a s trans Poly(2-chloro-l,4,4-trifluoro-1-butenylene) Poly(chloroprene) PoIy(I-decyl- 1-butenylene) Poly(endo-dicyclopentadiene) Poly(exo-dicyclopentadiene) Poly (1,2-dimethyl-1 -butenylene) Poly(l-ethyl-l-butenylene) Poly (1 -heptyl-1 -butenylene) Poly(isoprene) cis
trans
protonated Poly(isoprene), gutta percha Poly (1 -isopropyl-1 -butenylene) Poly(4-methoxy-1-butenylene) Poly(4-methoxycarbonyl-3-methyl-1-butenylene) Poly(methyl sorbate) see Poly(4-methoxycarbonyl3-methyl-1 -butenylene) Poly(norbornene)
9010-98-4
9003-31-0, 104389-31-3
104389-32-4
25038-76-0
9003-17-2
low protonated PVE-O
Remarks
Refs.
215
Wide spread in published data
192 293
Dynamic method
580,583,585-587, 589,594,595,598, 599 600 80,348,601,602
253 233 256 227 220 370 339 262 197 190 200
603 1,24,604-611 No experimental details 587 1360 1 1486 1486 576 600,612 80,601 349,388,394,464, 469,574,591,594, 595,613-623 1255,1271 1432,1309 1255 DSC, Mdpt,/(HR9TH) 1079 DSC, onset, 20deg/min HR 1074 514,581,589,594, 608,617,624,1329 1495 1323 600,601,612 591 Dynamic method 625
203 204 266 206-218 207 215 215 311 221 256 326
Poly(octafluoro-4-methyl-1-butenylene) PoIy(I-pentenylene) cis trans PoIy(I-phenyl- 1-butenylene) PoIy(I-propyl- 1-butenylene) Poly[5-(l,l,3,3-tetramethyl-l,3-disilabutyl)norbornene] Poly(1,4,4-trifluoro-1-butenylene) Poly(5-trimethylsilylnorbornene) Poly(vinylethylene) atactic
cis deuterated diol diol (crosslinked) diol 50%, Polypropylene oxide) diol 50% diol 80%, Polypropylene oxide) diol 20% high
Tg (K)
40022-03-5
304 337-313 270 159 183 ~283 196 297 238 386 269 304-294 258 249 ± 1 261 276 171 186 205 199 211 213 250 258 264 274 268 261 182 272
1295 1405 97 626 594 584 600 1295 Slightly crystalline 587 1295 Published values 585,586,592,597, range from 245 to 283 K 627,628 With increase in spacer length 1405 DSC 1354 1356 Volumetric measurements 1252 1329 1255 1495 1258 1326 1258 1258 DSC 1559 DSC 1559 DSC 1559 DSC 1354,1559 DSC 1354,1559 DSC 1559 1495 1550 With increase in spacer length DSC heating rate Heating rate: 16 K/min DTA heating rate Low molecular weight
TABLE 1. cont'd Polymer PVE-5 PVE-Il PVE-22 PVE-44 PVE-66 trans
CAS No.
25038-44-2
Tg (K)
Remarks
Refs.
276 279 282 285 287 215
1550 1550 1550 1550 1550 1255
1.4. POLY(STYRENES) Poly(4-acetylstyrene) Poly(4-/?-anisoylstyrene) Poly(4-benzoylstyrene) Poly[(2-benzoyloxymethyl)styrene] Poly[3-(4-biphenylyl)styrene] poly[4-(4-biphenylyl)styrene] Poly(5-bromo-2-butoxystyrene) Poly(5-bromo-2-ethoxystyrene) Poly(5-bromo-2-isopentyloxystyrene)
389 376 371 345 ~ 471 593 320 353 310
Poly(5-bromo-2-isopropoxystyrene) Poly(5-bromo-2-methoxystyrene) Poly(5-bromo-2-pentyloxystyrene)
308 359 322
Poly(5-bromo-2-propoxystyrene)
327
Poly(4-bromostyrene) Poly(2-butoxycarbonylstyrene) Poly(4-butoxycarbonylstyrene) Poly(-[(2-butoxyethoxy)methyl]styrene) Poly(2-butoxymethylstyrene) Poly(4-butoxymethylstyrene) Poly[4-(sec-butoxymethyl)styrene] Poly(4-butoxystyrene) Poly(5-tert-butyl-2-methylstyrene) Poly(4-butylstyrene) Poly(4-^c-butylstyrene) Poly(tert-butylstyrene) Poly(4-tert-butylstyrene) Poly(4-butyrylstyrene) Poly(2-carboxystyrene) Poly(4-carboxystyrene) Poly(4-chloro-3-fluorostyrene) Poly(4-chloro-2-methylstyrene) Poly(4-chloro-3-methylstyrene) Poly(2-chlorostyrene) Poly(3-chlorostyrene) Poly(4-chlorostyrene) Poly(4-cyanostyrene) Poly(4-decylstyrene) Poly(2,4-dichlorostyrene) Poly(2,5-dichlorostyrene) Poly(2,6-dichlorostyrene) Poly(3,4-dichlorostyrene) Poly[4-(2-diethylaminoethoxycarbonyl)styrene hydrochloride] Poly(4-diethylcarbamoylstyrene) Poly(2,5-difluorostyrene) Poly(2,4-diisopropylstyrene) Poly(2,5-diisopropylstyrene)
24936-50-3
26009-55-2
24991-47-7
391 414-430 339 349 < 235 340 < 283 313 ~ 320 360 279 359 422 399-404 347 450 386 395 418 387 392 363 383 388-401 298 393 208 406 379 440 401 347 375 374 ~ 435 441
Mechanical method Mechanical method Mechanical method Mechanical method Softening point Softening point Mechanical method Mechanical method Mechanical method; low viscosity Mechanical method Mechanical method Mechanical method; low viscosity Mechanical method; low viscosity
728 728 728 729 730 730 731 731 731 731 731 731 731
732-734 1124 735 728 736 Mechanical method 729 736 Dynamic method 736 Mechanical method 736,737 732 736,738,739 Softening point 739 1523 DSC, Mdpt, X. 1 deg/min,/(CR) 1122 Mechanical method 728 Mechanical method 742 Mechanical method 728 732 732 732 732 732 83,732-734 DSC, Mdpt,/(TH) 1123 1423 Sample thought to be 746 crosslinked 738 732,743 44,732,744 83,569,745 732,744 Mechanical method 728
DSC, Mdpt,/(TH) Mechanical method Mechanical method
Mechanical method Softening point Softening point Softening point
728 83 83 83
References page VI - 253
TABLE 1. cont'd Polymer
CAS No.
Tg (K)
Poly(2-dimethylaminocarbonylstyrene)
463
Poly(4-dimethylaminocarbonylstyrene) Poly[2-(2-dimethylaminoethoxycarbonyl)styrene] Poly[4-(2-dimethylaminoethoxycarbonyl)styrene] Poly[4-(2-dimethylaminoethoxycarbonyl)styrene hydrochloride] Poly(2,4-dimethylstyrene)
398 342 373 355
Poly(2,5-dimethylstyrene) Poly(3,4-dimethylstyrene) Poly(3,5-dimethylstyrene) Poly(4-dodecylstyrene) Poly(2-ethoxycarbonylstyrene) Poly(4-ethoxycarbonylstyrene) Poly[4-(2-ethoxymethyl)styrene] Poly(2-ethoxymethylstyrene)
416 384 377 221 391 367 273 347
Poly(4-ethoxystyrene) Poly [4-( 1 -ethylhexyloxymethyl)styrene] Poly(2-ethylstyrene) Poly(3-ethylstyrene) Poly(4-ethylstyrene) Poly(2-fluoro-5-methylstyrene) Poly(4-fluorostyrene) Poly(4-hexadecylstyrene) Poly(4-hexanoylstyrene) Poly(2-hexyloxycarbonylstyrene) Poly(4-hexyloxycarbonylstyrene) Poly(4-hexyloxymethylstyrene) Poly(4-hexylstyrene) Poly[4-(4-hydroxybutoxymethyl)styrene] Poly[4-(2-hydroxybutoxymethyl)styrene] Poly[4-(l-hydroxyiminoethyl)styrene] Poly(4-[(l-hydroxyimino)-2-phenethyl]styrene) Poly[4-(l-hydroxy-3-dimethylaminopropyl)styrene] Poly[4-(l-hydroxy-l-methylbutyl)styrene] Poly[4-(l-hydroxy-l-methylethyl)styrene] Poly[4-(l-hydroxy-l-methylhexyl)styrene] Poly[4-(l-hydroxy-l-methylpentyl)styrene] Poly[4-(l-hydroxy-l-methylpropyl)styrene] Poly(2-hydroxymethylstyrene) Poly(3-hydroxymethylstyrene) Poly(4-hydroxymethylstyrene) Poly[4-(l-hydroxy-3-morpholinopropyl)styrene]
Mechanical method; low viscosity Mechanical method Mechanical method Mechanical method Mechanical method
385
~ 359 250 376 ~ 303 300, <351 384 368 278 339 318 339 253 246 293 319 407 384 316 ~ 403 ~438 ~364 ~356 ~459 433 398 413 323
Poly[4-(l-hydroxy-3-piperidinopropyl)styrene]
327
Poly(4-hydroxystyrene) Poly(4-iodostyrene) Poly(2-isobutoxycarbonylstyrene) Poly(4-isobutoxycarbonylstyrene) Poly(2-isopentyloxycarbonylstyrene) Poly(2-isopentyloxymethylstyrene)
433 429 400 363 341 351
Poly(4-isopentyloxystyrene) Poly(2-isopropoxycarbonylstyrene) Poly(4-isopropoxycarbonylstyrene) Poly(2-isopropoxymethylstyrene)
Remarks
~ 330 419 368 361
Poly(4-isopropylstyrene) Poly(2-methoxycarbonylstyrene)
306 403
Poly(4-methoxycarbonylstyrene)
386
DTA heating rate DTA heating rate Mechanical method Mechanical method Dynamic method Mechanical method; low viscosity Mechanical method Softening point Softening point Conflicting data Mechanical method Mechanical method Mechanical method Mechanical method Dynamic method Dynamic method Dynamic method Mechanical method Mechanical method Mechanical method; low viscosity Softening point Softening point Softening point Softening point Softening point Dynamic method Mechanical method; low viscosity Mechanical method; low viscosity Mechanical method Mechanical method Mechanical method Mechanical method; low viscosity Mechanical method Mechanical method Mechanical method Mechanical method; low viscosity Softening point Mechanical method; low viscosity Mechanical method
Refs. 742 728 735 728 728 122,732,739,749, 768 732 732 749 738 735 728 736 729 737 736 739 739 736,738,739 748 732-734,749-751 738 728 735 728 736 738 736 736 728 728 754 754 754 754 754 754 1 1 1 754 754 1423 733,734 735 728 735 729 737 735 728 729 739 742 728
TABLE 1. cont'd Polymer
CAS No.
Poly(2-methoxymethylstyrene) Poly(4-methoxymethylstyrene) Poly(4-methoxy-2-methylstyrene) Poly(2-methoxystyrene) Poly(4-methoxystyrene) Poly(2-methylaminocarbonylstyrene) Poly(oc-methylstyrene)
Tg (K) 362
25014-31-7
Poly(2-methylstyrene) Poly(3-methylstyrene) Poly(4-methylstyrene)
24936-41-2
Poly(4-methoxystyrene)
24936-44-5
350 ~ 358 ~ 348 ~362 462 293 371-375 453 443 455 409 370 366, 374 382 386
Poly(4-morpholinocarbonylstyrene) Poly[4-(3-morpholinopropionyl)styrene] Poly(4-nonadecylstyrene) Poly(4-nonylstyrene) Poly(4-octadecylstyrene) Poly(4-octanoylstyrene) Poly[4-(octyloxymethyl)styrene] Poly(2-octyloxystyrene) Poly(4-octylstyrene) Poly[4-(pentadexafluoroheptyl)styrene] Poly(2,3,4,5,6-pentafluorostyrene) Poly(2-pentyloxycarbonylstyrene) Poly(2-pentyoxymethylstyrene) Poly(perfluorostyrene) Poly(2-phenethyloxymethylstyrene)
400 314 305 220 305 323 231 286 228 320 378 365 320 467 336
Poly(2-phenoxycarbonylstyrene)
397
Poly(4-phenoxystyrene) Poly(4-phenylacetylstyrene) Poly(2-phenylaminocarbonylstyrene)
~ 373 351 464
Poly(4-phenylstyrene) Poly(4-piperidinocarbonylstyrene) Poly[4-(3-piperidinopropionyl)styrene] Poly(4-propionylstyrene) Poly(2-propoxycarbonylstyrene) Poly(4-propoxycarbonylstyrene) Poly(2-propoxymethylstyrene)
434 387 311 375 381 365 370
• Poly(4-propoxymethylstyrene) Poly(4-propoxystyrene) Poly(4-propoxysulfonylstyrene) isotactic Poly(styrene) alkylated amorphous crosslinked deuterated PS isotactic and atactic
295 343 490 356 373 373 378 373
9003-53-6
Remarks
Refs.
Mechanical method; low viscosity Dynamic method Softening point Softening point Mechanical method Mechanical method DSC, onset, 20 deg/min HR DSC, Mdpt, 20 deg/min HR, /(TH)
729 736 755 755 737,755-757 742 1130 1135
1549,1432 1324 DSC 1277 63,732,739,749,755 DTA heating rate 732,739,749,766 Conflicting data 732,739,756,766,767 1423 DSC, Mdpt, 320 deg/min CR, 1 1140 deg/min HR, /(TH, HR, M n ) Mechanical method 728 Mechanical method 754 1 738 738 Mechanical method 728 Dynamic method 736 769 738 Heating rate 32 K/min, /(TH) 747 Heating rate: 5-20K/min 97 Mechanical method 735 Mechanical method 729 Heating rate: 5-20 K/min 97 Mechanical method; 729 low viscosity Mechanical method; 742 low viscosity Softening point 83 Mechanical method 728 Mechanical method; 742 low viscosity Extrapolated to zero rate 763, 770 Mechanical method 728 Mechanical method 754 Mechanical method 728 Mechanical method 735 Mechanical method 728 Mechanical method; 729 low viscosity Dynamic method 736 Mechanical method 737 DTA heating rate 771 1521 1506 1352 1495 9,17,21,22,25,47,51, 57,63,64,72,78,79,188, 190,191,261,263,317,318, 344,350-352,394,397, 399,469,524,569,576,619, 628,630,635,637,640,646, 647,684,699,731-734, 746,750,766,768,
References page VI - 253
TABLE 1. cont'd Polymer
CAS No.
T% (K)
368 371 371 371-377 373 376 377 382 364 374 377 378 380 374
p-cyanobenzyl /7-cyanobiphenyl sulfonated syndiotactic Poly(4-tetradecylstyrene) Poly(4-/?-toluoylstyrene) Poly(a, p, P-trifluorostyrene)
400 401 170-370 365 370 433-463 237 372 475
Poly{3-[bis(trimethylsiloxy)boryl]styrene} Poly{4-[bis(trimethylsiloxy)boryl]styrene} Poly(2,4,5-trimethylstyrene) Poly(2,4,6-trimethylstyrene) Poly (4- [bis(trimethylstannyl)methyl] styrene) Poly(4-valerylstyrene)
308 357 ~ 409 ~435 413 343
Remarks
Refs.
772-810,1125, 1133,1138,1139,1141, 1254,1276,1288, 1308,1318,1324,1423, 1432,1523,1549,1255 DSC 1489 DSC, onset, 16deg/min HR, 1126 quenched, /(MW) DSC, Mdpt, 20 deg/min HR, 1129 /(MW) DSC, Intg, /(HR, CR, MW) 1143 DSC, Intg,/(HR, CR) 1144 Dilatometer, CR 3 deg/h; creep 1148 relaxation, quenched Dilatometer, 2.5 deg/min CR 1145 DSC, onset, HR 32 deg/min, 1132 quenched DTA, DSC, onset, 1 deg/min 1147 HR,/(HR) DSC, penetration, onset MP, 1146 zero HR DSC, Intg, OHR, 10 deg/min 1142 CR DSC, Mdpt, 1 deg/min X HR, 1128 TH,/(MW) DSC, onset, 20 deg/min HR 1149 after similar cool, /(MW) DSC, onset, 20 deg/min HR 1130 1271 GPC PCS N R and SE
1284 1309 1319 1433 1437
1530 1530 1540 1253 1253 1322 738 Mechanical method 728 Heating rate: 83,97,114,752, 5-20K/min; values up to 753 513 K reported Refractive index 1136 Refractive index 1136 Softening point 83 Softening point 83 1556,1347 Mechanical method 728 DSC
1.5. POLY(VINYL ALCOHOL) AND POLY(VINYL KETONES) Poly( 1 -acetyl-1 -fluoroethylene) Poly(benzoylethylene) Poly(4-bromo-3-methoxybenzoylethylene) Poly(4-terf-butylbenzoylethylene) Poly(4-chlorobenzoylethylene) Poly(3,4-dimethylbenzoylethylene) Poly(4-ethylbenzoylethylene) Poly(4-isopropylbenzoylethylene) Poly(4-methoxybenzoylethylene) Poly(phenyl vinyl ketone) see Poly(benzoylethylene) Poly (4-propy lbenzoy lethylene)
415 314, 347 317 377 310, 362 315 325 336 319
Conflicting data Mechanical data Conflicting data Mechanical data Mechanical data
923 924,925 924 925 924,925 924 924,925 925 924
26742-84-7 317
925
TABLE 1. cont'd Polymer Poly(p-toluoylethylene) Poly(vinyl alcohol) [Poly(hydroxyethylene)]
CAS No.
9002-89-5
Tg (K) 344 358
308 350
Remarks
Refs.
924,925 1,191,202,216, 230,261,573,926, 927 From hydrolysis of poly(vinyl 1424 acetate) 1498 1513
Dynamic method
1.6. POLY(VINYL ESTERS) Poly[(2-acetoxybenzoyloxy)ethylene] Poly(4-acetoxybenzoyloxyethylene) Poly(acetoxyethylene) [Poly(vinyl acetate)]
9003-20-7
333 ~ 349 305
Poly[(l-acetylindazol-3-ylcarbonyloxy)ethylene]
302 590 315 304 303 311 313 423
Poly(4-benzoylbutyryloxyethylene) Poly(benzoyloxyethylene)
318 344
Poly(3-bromobenzoyloxyethylene) Poly(4-bromobenzoyloxyethylene) Poly[(^rf-butoxycarbonylamino)ethylene] Poly(4-tert-butylbenzoyloxyethylene) Poly(4-butyryloxybenzoyloxyethylene) Poly(2-chlorobenzoyloxyethylene) Poly(3-chlorobenzoyloxyethylene) Poly(4-chlorobenzoyloxyethylene) Poly(cyclohexanoyloxyethylene)
331 365 393 374 334 335 338 357 349
Poly(cyclohexylacetoxyethylene)
298
Poly(4-cyclohexylbutyryloxyethylene)
~ 263
Poly(cyclopentanoyloxyethylene)
309
Poly(cyclopentylacetoxyethylene)
270
Poly(3,3-dimethyl-3-phenylpropionyloxyethylene)
293
Poly[(2,2-dimethylvaleryloxy)ethylene] Poly(4-ethoxybenzoyloxyethylene) Poly(4-ethylbenzoyloxyethylene) Poly(2-ethyl-2-methylpropylene terephthalate) Poly[(2-ethyl-2,3,3-trimethylbutyryloxy)ethylene] Poly(formyloxyethylene) Poly[(heptafluorobutyryloxy)ethylene] Poly(3-hydroxybutyrate)
283 343 326 340 328-338 388 310 306 300 277 278 ± 2 223
29,925 29,925 1,9,12,19,22,62, 187,216,223,230, 286,352,354,399, 400,573,593,695, 775,777,792,816, 840,845,888,926, 928,932,1016, 1034-1044,1121, 1302,1320,1288 1432 1317 1339,1516 1513 1255 1437,1468 DSC 1489 Heating rate: 20 K/min-"onset" 1045 value DTA heating rate 1046 29,354,755,820, 925,1047,1048 29,925 29,925,1047,1048 DTA heating rate 1049 29,925,1050 29,925 29,925,1048 29,925,1048 29,925,1047,1048 Mechanical method, heating 1043 rate: 30K/h Mechanical method, heating 1043 rate: 30K/h Mechanical method, heating 1043 rate: 30K/h Mechanical method, heating 1043 rate: 30K/h Mechanical method, heating 1043 rate: 30K/h Mechanical method, heating 1043 rate: 30K/h Mechanical method 1043 29,925 29,925 1532 1532 Mechanical method 1043 ~ 60% syndiotactic diads 593 50% syndiotactic diads 1051 1262 1536 1494
References page VI - 253
TABLE 1.
cont'd
Polymer
CAS No.
Poly(isonicotinoyloxyethylene) Poly(4-isopropylbenzoyloxyethylene) Poly[(2-isopropyl-2,3-dimethylbutyryloxy)ethylene] Poly[(2-methoxybenzoyloxy)ethylene] Poly[(3-methoxybenzoyloxy)ethylene] Poly[(4-methoxybenzoyloxy)ethylene]
372 342 393 338 ~ 317 360
Poly[(2-methylbenzoyloxy)ethylene] Poly[(3-methylbenzoyloxy)ethylene] Poly[(4-methylbenzoyloxy)ethylene] Poly[(1-methyIcyclohexanoyloxy)ethylene] Poly(nicotinoyloxyethylene) Poly(nitratoethylene) Poly[(3-nitrobenzoyloxy)ethylene] Poly[(4-nitrobenzoyloxy)ethylene] Poly(nonadecafluorodecanoyloxy)ethylene] Poly[(nonafluorovaleryloxy)ethylene] Poly (octamethylene/?,/?'-dibenzoate) Poly[(pentadecafluorooctanyloxy)ethylene] Poly[(pentafluoropropionyloxy)ethylene] Poly[(4-phenylbenzoyloxy)ethylene] Polyl(pivaloyloxyethylene) Poly[(4-propionyloxybenzoyloxy)ethylene] Poly(propionyloxyethylene) Poly[(2,2,3,3-tetramethylvaleryloxy)ethylene] Poly[(2,2,3,4-tetramethylvaleryloxy)ethylene] Poly[(2,2,4,4-tetramethylvaleryloxy)ethylene] Poy[(4-/?-toluoylbutyryloxy)ethylene] Poly(triethylene glycol/?,/?'-dibenzoate) Poly[(trifluoroacetoxy)ethylene] Poly[(3-trimethylsilylbenzoyloxy)ethylene] Poly[(4-trimethylsilylbenzoyloxy)ethylene] Poly[(undecafluorocyclohexylcarbonyloxy)ethylene] Poly[(undecafluorohexanoyloxy)ethylene] Poly (vinyl acetate) see Poly(acetoxyethylene) Poly(vinyl formate) see Poly(formyloxyethylene) Poly(vinyl-4-isopropylbenzoate) see Poly(4-isopropyl benzoyloxyethylene) Poly (4-( 11 -(vinyloxy)undecyloxy)-4-cyanophenylbenzoate) Poly(4-(1 l-(vinyloxy)undecyloxy)-4-ethoxyphenylbenzoate)
Tg (K)
321 324 343 359 360 307 366 395 253-255 288-293 315 258-263 315 358 359 346 283 363 323 328 313 293 ~319, <348 353 408 327 264
Remarks
Refs.
From polyvinyl alcohol
29,288,1053 29,925 Mechanical method 1043 29,925 29,925 29,757,925, 1047,1048 29,820,925,1048 29,925,1048 29,925,1047,1048 Mechanical method, heating 1043 rate: 30K/h From polyvinyl alcohol 29,1053 903 29,925 29,925 1051 1051 1519 1051 1051 29,925 Mechanical method 1043 29,925 Mechanical method 1043 Mechanical method 1043 Mechanical method 1043 Mechanical method 1043 DTA heating rate 1046 Annealed 1505 Conflicting data 1051,1052 DTA heating rate 1054 DTA heating rate 1054,1055 1051 Plasticizer may be present 1051
9003-20-7
310 310
1548 1548
218 217 253 361 253
1,832,866,914-918 1432 866,914 1,918 866
1.7. POLY(VINYL ETHERS) AND POLY(VINYL THIOETHERS) Poly(butoxyethylene) Poly(seobutoxyethylene) Poly(tert-butoxyethylene) Poly(butylthioethylene) Poly(butyl vinyl ether) see Poly(butoxyethylene) Poly(chlorotrifluoroethylene) Poly(cyclohexyloxyethylene) Poly(decyloxyethylene)
9002-83-9
Poly(2,2-dimethylbutoxyethylene) Poly(l,l-difluoro-2-trifluoromethoxyethylene) Poly(l,2-difluoro-l-trifluoromethoxyethylene) Poly(dodecafluorobutoxyethylene)
282 263-273 263-273 263-273
Poly(ethoxyethylene)
230 25104-37-4
Poly [(2-ethylhexyloxy)ethylene] Poly(ethylthioethylene)
325 354 ~ 183, 211
240 207 266
1470 Softening point 918 Conflicting data, 866,914,916,917 independent DSC data supports higher value Mechanical method 918 Estimated from copolymer data 457 Estimated from copolymer data 457 Tg estimated from copolymer 457 data 1,223,521,573, 832,866,914-920 1432 866,915 Viscosity only 0.2 dl/g 866
TABLE 1. cont'd Polymer
CAS No.
Poly(2-furyloxirane) Poly[(heptafluoro-2-propoxy)ethylene] Poly(hexafluoromethoxyethylene) Poly (hexyloxyethylene) Poly(isobutoxyethylene)
288 ~ 328-338 268 199 254
Poly(isopropenyl methyl ether) see Poly(2-methoxy propylene) Poly (isopropoxyethylene)
Remarks
Refs. 1419 839 457 866,914-918,1432 1,223,573,832, 866,914,916-918, 920,922
DTA heating rate
270 261 242
Poly(methoxyethylene)
246 228 245 248 251 191 199 247 340 272 ~424 194 207 224 308 213
Poly(2-methoxypropylene) Poly(methylthioethylene) Poly(neopentyloxyethylene) Poly(octyloxyethylene) Poly(pentyloxyethylene) Poly(propoxyethylene) Poly(2,2,2-trifluoroethoxytrifluoroethylene) PoIy[I,l-bis(trifluoromethoxy)difluoroethylene] Poly(vinyl methyl ether) see Poly(methoxyethylene) Poly(4-vinyl phenol) Poly(p-vinyl phenol)
Tg (K)
9003-09-2 24979-70-2
NR and SE GPC
Softening point
DTA heating rate Poorly defined DTA endotherms
429 428
832,866,914,918 1432 1,223,805,866, 914-918,920,1255 1319 1284 1300 1308 1348 1495,1432 1502 1502 1516 866 866 918 866,914-917 866,915 832,915 457,921 457 1457 1552
1.8. POLY(VINYL HALIDES) AND POLY(VINYL NITRILES) PoIy(I-acetoxy-1-cyanoethylene) Poly(acrylonitrile) [poly(cyanoethylene)]
Poly(chlorotrifluoroethylene)
25014-41-9
9002-83-9
PoIy(1,1-dichloroethylene), poly(vinylidene chloride) Poly(1,1 -dichloro-2-fluoroethylene) Poly( 1,2-dichloro-1,2-difluoroethylene) Poly( 1,1 -difluoroethylene), poly(vinylidene fluoride)
Poly(hexafluoropropylene) Poly[(heptafluoropropyl)ethylene]
355-413 -325
24937-79-9
9002-84-0 63231-66-3, 110028-31-4
Heating rate: 8 K/min Dielectric, 1 Hz,/(Hz)
By "static" methods
255 1113 1,7,26,80,191, 202,393,400,521, 525,576,752,772, 779,787,928-941 1382 66,80,191,261, 349,355 396,401,521,647, 893,945-961
373
By mechanical methods even at low frequencies
255
1,6,62,80,216,521, 524,648,942-944 [77] only 0.035 dl/g 962 Heating rate: 5-20 K/min, high 97 pressure, radiation synthesis 1118 401,963-970 1321 DSC 1333 DTA heating rate 114,457,971 1287 48 wt.% Cl 1325
~ 320 350
Poly( 1,2-difluoroethylene) Poly(ethylene), chlorinated
420 398 370
~233 223 235 371 200 281 425 331
Heating rate: 5-20 K/min 97,984,1006 Heating rate: 5-20 K/min, high 97 pressure, radiation synthesis
References page VI - 253
TABLE 1. cont'd Polymer
CAS No.
Poly(2-iodoethylethylene) Poly(9-iodononylethylene) Poly(3-iodopropylethylene) Poly(methacrylonitrile) Poly[(pentafluoroethyl)ethylene]
343 267 ~ 303 393 314
Poly(tetradecafluoropentylethylene) Poly(tetrafluoroethylene) [poly(difluoromethylene)]
Tg (K)
503? 9002-84-0
390 160, 400
Poly(2,3,3,3-tetrafluoropropylene)
315
Poly(trifluoroethylene) Poly(3,3,3-trifluoropropylene) Poly (vinyl chlorate) Poly(vinyl chloride)
304 300 347 -
9002-86-2
chlorinated with Poly(butyl methacrylate) (30/70) with Poly(butyl methacrylate) (50/50) with Poly (butyl methacrylate) (50/50) with Poly(ethyl methacrylate) (30/70) with Poly(ethyl methacrylate) (50/50) with Poly(ethyl methacrylate) (50/50) with Poly(methyl methacrylate) (30/70) with Poly(methyl methacrylate) (50/50) with Poly(methyl methacrylate) (50/50) with Poly(methyl methacrylate) (80/20) H-H Poly(vinyl chloride)
68648-82-8
Poly(vinyl fluoride) Poly(vinylidene chloride) see PoIy(1,1-dichloroethylene)
24981-14-4 9002-85-1
1.9.
Remarks
Refs.
Dynamic method Dynamic method Dynamic method
1009 1009 1009 1 97
Heating rate: 5-20K/min, high pressure, radiation synthesis Heating rate: 5-20 K/min, high pressure, radiation synthesis, value uncertain
1117 1,6,66,190,191, 253,261,355,256, 296,521,522,641, 651,659,891,893, 914,921,952, 972-1005 Heating rate: 5-20 K/min, high 97 pressure, radiation synthesis Quoted value, DTA? 457 97,914,1007,1008 1271 1112,1115,1116 Dilatometer, CR 3 deg/h; creep 1119 relaxation, quenched
Much data, some conflicting
354
Increasing syndiotactic content increases Tg to 371 K
366 371
Dekryptonation, /(MW) DSC, 20 deg/min HR, Mn infinity, onset, varied annealing
359 357 363 342 353 347 361 408 313 315 323 343 325 343 370 363 366 364 348 352 314
97
67 wt.% Cl Semi-IPNs Blend Semi-IPNs Semi-IPNs Blend Semi-IPNs Semi-IPNs Blend Semi-IPNs DSC DMA Mechanical method
1,21,52,78,80, 104,188,191, 230,286,349, 353,354,356, 469,608,696, 720,772,777, 787,798,861, 926,942,944, 972,1010-1031 1114 1120 1325 1335 1432 1398 1255 1288 1489 1325 1359 1359 1359 1359 1359 1359 1359 1359 1359 1446 1299 1299 521,1032,1033
OTHERS
Poly( 1,1 -bis[( 1 -adamantyloxy)carbonyl]-2-vinylcyclopropane) Poly(benzylethylene)
307 333
1492 631,634,1056
TABLE 1. cont'd Polymer
CAS No.
Poly(N-carbazolylethylene)
25067-59-8
Tg (K) 500 500 357,423, 481 305 300 365 380, 438 350 453 457-467 257 262 331, 298
Poly[dimethylamino(ethoxy)phosphinylethylene] Poly[dimethylamino(phenoxy)phosphinylethylene] Poly(4,4-dimethyl-oxazolonylethylene) Poly(4,4-dimethyl-oxazolonyl-2-propylene) Poly(2,4-dimethyl-1,3,5-triazinylethylene) Poly(diphenylphosphinylethylene) Poly(ferrocenylethylene) Poly(P-hydroxyvalerate) Poly(indazol-2-ylethylene) Poly(isopropyl benzene) Poly(indene) Poly(3-methyl hexane) Poly(3-methyl pentane) Poly(2-methyl pentane) Poly[(2-methyl-5-pyridyl)ethylene] Poly[(2-methyl-6-pyridyl)ethylene] PoIy(I-naphthylethylene)
126 473 90 80 76 403 365 432
Poly(2-naphthylethylene)
424
Poly(phenethylethylene) Poly(phenethylmethylethylene) PoIy(I, l-bis(phenoxycarbonyl)-2-vinylcyclopropane) Poly(phenylacetylene) see Poly(phenylvinylene) Poly(phenylvinylene) Poly(phthalimidoethylene) Poly(2-pyridylethylene) Poly (4-pyridylethylene) Poly(N-pyrrolidinylethylene) Poly(tf-terphenyl) Poly(m-tolylmethylethylene) Pory(otolylmethylethylene) Poly(/?-tolylmethylethylene) Poly(2,4,6-tribromophenyl acetate) Poly(vinyl carbazole) see Poly(iV-carbazolylethylene) Poly(vinyltrimethylgermanium) Poly(vinylpyridine) see Poly(pyridylethylene) Poly(vinyl pyrrolidine) see Poly(iV-pyrrolidinylethylene)
283 245 349-357
9017-40-7 9003-39-8
393 497 377 415 433 456 327 359 448 233 243 313 353 338 423 463
Remarks
Refs.
DSC, lOdeg/min HR, X to infinite MW Conflicting values reported
1127 1330 1,272,573,845
DTA heating rate; low viscosity Conflicting data DSC heating rate Two values for different preparations, heating rate: 20K/min
1057 1057 1058 1058,1059 820 1065 835 1355 1355 1045 1271 1501 1271 1271 1271 1060-1062 1061 83,755, 763,1063 770
Mechanical method Heating rate 20K/min Values range from 323 to 453 K Extrapolated to zero heating rate Crystalline sample 631,634,1056,1064 Softening point 631 1535 Crystalline No experimental details Molar concentration 5% Molar concentration 10% DSC, onset, Xp to dry Crystalline sample Crystalline sample Crystalline sample Mechanical method
1066 820 1061,1062,1067 1061,1062,1272 1305 1305 573 1,4,907 1150 1271 1271 1056 1056 1056 1269 1068
References page VI - 253
TABLE 2. MAIN-CHAIN CARBOCYCLIC POLYMERS Polymer 2.1.
CAS No.
Tg (K)
Refs.
POLY(PHENYLENES)
Poly(3,3'-biphenylylenehexafluorotrimethylene)
324
Poly(2-bromo-l,4-phenylene ethylene) Poly(2-chloro-l,4-phenylene ethylene)
353 343
Poly(2-cyano-l,4-phenylene ethylene) Poly(2,5-dichloro-l,4-phenylene ethylene)
363 613
Poly(2,5-dimethyl-l,4-phenylene ethylene)
373
Poly(2-ethyl-l,4-phenylene ethylene) Poly(2 ',3 ',6 ',2 '",3 '",5 '"-hexaphenyl/?,p,m,p,/?-quinquephenyrylenedecamethylene)
298 453
Poly(2',3',6',2'",3'",5'"-hexaphenyl4, 4""-/?-quinquephenylylenedecamethylene)
508
Poly(2',3 ',6',2"',3 '",5 '"-hexaphenylp,p,m,p,p, quinquephenylylenehexamethylene)
488
Poly(2',3',6/,2"',3'",5"'-hexaphenyl4, 4""-/?-quinquephenylylenehexamethylene)
523
Poly(2',3',6',2'",3'",5'"-hexaphenyl/?,/?,m,/?,/?-quinquephenylylenetetradecamethylene)
433
Poly(2',3',6',2'",3'",5'"-hexaphenyl4,4""-/?-quinquephenylylenetetradecamethylene)
458
Poly(2',3 ',6',2'",3 '",5 "'-hexaphenyl/?,/?,m,p,/?-quinquephenylylenetetramethylene)
453
Poly(2',3',6',2'",3'",5'"-hexaphenyl4, 4'"-/?-quinquephenylylenetetramethylene)
478
Poly(2 ',3 ',6',2'",3 '",5 '"-hexaphenyl/?,p,m,p,/?-quinquephenylylenetrimethylene)
513
Poly(2',3',6',2'",3'",5'"-hexaphenyl4,4"'-quinquephenylylenetrimethylene)
563
Poly(2-methyl-l,4-phenylene ethylene)
328
Poly(l,4-phenylenetrichloroethylene)
433
Poly(l,4-phenylene ethylene)
~353
PoIy(1,3-phenylenehexafluorotrimethylene)
303
Poly(l,4-phenylene-l-phenylethylene)
428
Poly(trimethyl-phenylene ether)
483
2.2.
Remarks
Heating rate: 32 K/min, ?7inh only 563 0.05 dl/g Mechanical method 564 Mechanical method, 300,564,565 heating rate: 1.5 K/min Mechanical method 564 Softening point, no 565 measurement details Mechanical method, heating 566 rate: 1.5 K/min Mechanical method 564 Heating rate: 20 K/min, 568 structure may contain more m-links Heating rate: 20K/min, 568 structure may contain more m-links Heating rate: 20 K/min, 568 structure may contain more m-links Heating rate: 20K/min, 568 structure may contain more m-links Heating rate: 20K/min, 568 structure may contain more m-links Heating rate: 20K/min, 568 structure may contain more m-links Heating rate: 20 K/min, 568 structure may contain more m-links Heating rate: 20K/min, 568 structure may contain more m-links Heating rate: 20 K/min, 568 structure may contain more m-links Heating rate: 20K/min, 568 structure may contain more m-links Mechanical method, 564,565 heating rate: 1.5K/min Polymer contains small amount 565 of different structure, mechanical method; heating rate: 1.5 K/min Mechanical method, 300,564, variable data 565,567 Heating rate: 32K/min, 77inh only 148 0.1 dl/g Softening point, no 565 experimental details 1432
OTHERS
Poly(acenaphthylene)
25036-01-5
487-618 628-649
Poly(5-chlorononafluoro-l,3-cyclohexylenedifluoromethylene)
420
Conflicting data reported DSC, onset, 32 deg/min HR after cooling from above Tg Heating rate: 5-20K/min, high pressure, radiation synthesis, ring structure unproven
31,83,566, 569-571 1151 97
Next Page
TABLE 2. cont'd Polymer
CAS No.
Tg (K)
Poly(cyclobutene) erythro di-isotactic erythro di-syndiotactic Poly(decafluoro-l,3-cyclohexylenedifluoromethylene) Poly(dodecafluoro-l,3-cycloheptylenedifluoromethylene)
293 273 374? 471?
Poly(hexafluoro-l,3-cyclobutylenedifluoromethylene)
395
Poly(indenylene) Poly(octafluoro-l,3-cyclohexylenedifluoromethylene)
358 390
Poly(l,4-naphthyleneethylene)
433
Remarks
Refs.
Degree of polymerization 150 Degree of polymerization 15 Heating rate: 5-20K/min Heating rate: 5-20K/min, high pressure, radiation synthesis, data queried in original paper, ring structure unproven Heating rate: 5-20K/min, high pressure, radiation synthesis, ring structure unproven; [77] only 0.03 dl/g Heating rate: 5-20K/min, high pressure, radiation synthesis, ring structure unproven Mechanical method
572 97 97
97
573 97 565
TABLE 3. MAIN-CHAIN ACYCLIC HETEROATOM POLYMERS Polymer
CAS No.
Tg (K)
Remarks
Refs.
3.1. MAIN-CHAIN - C - O - C - POLYMERS 3.1.1. POLY(ANHYDRIDES) Poly (oxy carbonyl-1,4-phenylenehexafluorotrimethylene1,4-phenylenecarbonyl) Poly(oxycarbonyl-l,4-phenyleneisopropylidene1,4-phenylenecarbonyl) Poly(oxycarbonyl-l,4-phenylenemethylene1,4-phenylenecarbonyl) Poly (oxy carbonyl-1,4-phenylenepentamethylene1,4-phenylenecarbonyl) Poly (oxycarbonyl-1,4-phenylenetetramethylene1,4-phenylenecarbonyl) Poly (oxycarbonyl-1,4-phenylenethiotetramethy lenethio1,4-phenylenecarbonyl) Poly(oxyisophthaloyl)
271
433
333
247
395
247
321
Amorphous
319 319
Crystalline
247 247
335 403
247 Dynamic mechanical method
398,444
3.1.2. POLY(CARBONATES) Bisphenol A + 2,2-(fm-biphenyl carboxylate) Bisphenol A + Carboxylate Bisphenol A + Terephthalate + Isophthalate 50/50 Bisphenol A of 4,4/-(2,2/-propylidene)-diphenol Bisphenol AP + 2,2-(fm-biphenyl carboxylate) Bisphenol AP + Carboxylate Bisphenol AP + Terephthalate + Isophthalate Bisphenol A-based homopoly(formal) Bisphenol AF-based homopoly(formal) Cyclohexane-bisphenol-poly (carbonate) Norbanane-bisphenol-poly(carbonate) Poly(l,4-cyclohexanecarbonate) Poly(2-hydroxypropyl ether Bisphenol A) Polyarylate of Bisphenol A (1 mol), isophthalic acid (0.5 mol) and terephthalic acid (0.5 mol) Polyarylate of Bisphenol A(I mol), isophthalic acid (0.7 mol) and terephthalic acid (0.3 mol) Polyarylate of Bisphenol A and isophthalic acid
421 420 468 313 445 460 516 361 396 458 506 411 370 472
Elsewhere 367 K
1432 1432 1432 1431 1432 1432 1432 1311 1311 1353 1353 1393 1516 1254
466
1254
457
1254
References page VI - 253
Previous Page
TABLE 2. cont'd Polymer
CAS No.
Tg (K)
Poly(cyclobutene) erythro di-isotactic erythro di-syndiotactic Poly(decafluoro-l,3-cyclohexylenedifluoromethylene) Poly(dodecafluoro-l,3-cycloheptylenedifluoromethylene)
293 273 374? 471?
Poly(hexafluoro-l,3-cyclobutylenedifluoromethylene)
395
Poly(indenylene) Poly(octafluoro-l,3-cyclohexylenedifluoromethylene)
358 390
Poly(l,4-naphthyleneethylene)
433
Remarks
Refs.
Degree of polymerization 150 Degree of polymerization 15 Heating rate: 5-20K/min Heating rate: 5-20K/min, high pressure, radiation synthesis, data queried in original paper, ring structure unproven Heating rate: 5-20K/min, high pressure, radiation synthesis, ring structure unproven; [77] only 0.03 dl/g Heating rate: 5-20K/min, high pressure, radiation synthesis, ring structure unproven Mechanical method
572 97 97
97
573 97 565
TABLE 3. MAIN-CHAIN ACYCLIC HETEROATOM POLYMERS Polymer
CAS No.
Tg (K)
Remarks
Refs.
3.1. MAIN-CHAIN - C - O - C - POLYMERS 3.1.1. POLY(ANHYDRIDES) Poly (oxy carbonyl-1,4-phenylenehexafluorotrimethylene1,4-phenylenecarbonyl) Poly(oxycarbonyl-l,4-phenyleneisopropylidene1,4-phenylenecarbonyl) Poly(oxycarbonyl-l,4-phenylenemethylene1,4-phenylenecarbonyl) Poly (oxy carbonyl-1,4-phenylenepentamethylene1,4-phenylenecarbonyl) Poly (oxycarbonyl-1,4-phenylenetetramethylene1,4-phenylenecarbonyl) Poly (oxycarbonyl-1,4-phenylenethiotetramethy lenethio1,4-phenylenecarbonyl) Poly(oxyisophthaloyl)
271
433
333
247
395
247
321
Amorphous
319 319
Crystalline
247 247
335 403
247 Dynamic mechanical method
398,444
3.1.2. POLY(CARBONATES) Bisphenol A + 2,2-(fm-biphenyl carboxylate) Bisphenol A + Carboxylate Bisphenol A + Terephthalate + Isophthalate 50/50 Bisphenol A of 4,4/-(2,2/-propylidene)-diphenol Bisphenol AP + 2,2-(fm-biphenyl carboxylate) Bisphenol AP + Carboxylate Bisphenol AP + Terephthalate + Isophthalate Bisphenol A-based homopoly(formal) Bisphenol AF-based homopoly(formal) Cyclohexane-bisphenol-poly (carbonate) Norbanane-bisphenol-poly(carbonate) Poly(l,4-cyclohexanecarbonate) Poly(2-hydroxypropyl ether Bisphenol A) Polyarylate of Bisphenol A (1 mol), isophthalic acid (0.5 mol) and terephthalic acid (0.5 mol) Polyarylate of Bisphenol A(I mol), isophthalic acid (0.7 mol) and terephthalic acid (0.3 mol) Polyarylate of Bisphenol A and isophthalic acid
421 420 468 313 445 460 516 361 396 458 506 411 370 472
Elsewhere 367 K
1432 1432 1432 1431 1432 1432 1432 1311 1311 1353 1353 1393 1516 1254
466
1254
457
1254
References page VI - 253
TABLE 3. cont'd Polymer
CAS No.
Polycarbonate
Polycarbonate of Bisphenol A see Poly(oxycarbonyloxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly(2-methoxycyanurate) of Bisphenols F and A Poly(oxycarbonyloxy-2,6-dibromo-l,4-phenyleneisopropylidene-3,5-dibromo-1,4-phenylene) Poly(oxycarbonyloxy-2-chloro-6-methyl-l,4-phenyleneisopropylidene-3-chloro-5-methyl-l, 4-phenylene) Poly(oxycarbonyloxy-2-chloro-l,4-phenylenecyclohexylidene-3-chloro-l,4-phenylene) Poly (oxycarbonyloxy-2-chloro-l,4-phenyleneisopropylidene-3-chloro-1,4-phenylene) Poly(oxycarbonyloxy-2-cyclohexyl-l,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxycarbonyloxy-2,6-dichloro-l, 4-phenylenecyclohexylidene-3,5-dichloro-1,4-phenylene) Poly(oxycarbonyloxy-2,6-dichloro-l,4-phenylene isopropylidene-3,5-dichloro-1,4-phenylene) Poly(oxycarbonyloxyhexamethylene) Poly(oxycarbonyloxy-2-isopropyl-l,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxycarbonyloxy-2-methoxy-l,4-phenylene isopropylidene-1,4-phenylene) Poly(oxycarbonyloxy2,2,3,3,4,4,5,5-octafluorohexamethylene) Poly[oxycarbonyloxy-l,3-(2,2,4,4-tetramethylcyclobutylene)] Poly(oxycarbonyloxy-2-methyl-l,4-phenylenecyclohexylidene-3-methyl-1,4-phenylene) Poly(oxycarbonyloxy-2-methyl-l,4-phenyleneisopropylidene-3-methyl-l,4-phenylene) Poly(oxycarbonyloxy-2-methyl-1,4phenyleneisopropylidene-1,4-phenylene) Poly(oxycarbonyloxy-2-methyl-l,4-phenylenemethylene3-methyl-1,4-phenylene) Poly[oxycarbonyloxy-4,6-dimethyl-l,2-phenylenemethylene-3,5-dimethyl-1,2-phenylene] Poly(oxycarbonyloxy-3-methyl-l,4-phenylenebenzylidene2-methyl-1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenylenebenzylidene1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenylene-l,l-butylidene1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenylene-2,2-butylidene1,4-phenylene) Poly[oxycarbonyloxy-l,4-phenylene(cyano) phenylmethylene-1,4-phenylene] Poly(oxycarbonyloxy-1,4-phenylenecyclohexylidene1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenylenecyclopentylidene1,4-phenylene) Poly(oxycarbonyloxy-1,4-phenylene-1,3-dichloro1,1,3,3-tetrafluoro-2,2-propylidene-1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenyleneethylidene1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenylenefluoren-9-ylidene1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenylenehexafluoro2,2-propylidene-1,4-phenylene) Poly(oxycarbonyloxy-l,3-phenylenehexafluorotrimethylene1,3-phenylene)
Tg (K) 423 420 297 418 420
Remarks
In vacuum of 297 K DSC DSC
Refs. 1250,1340,1353 1432 1442 1442 1489
24936-68-3 433 430 427 443-452 420
1546 333,334 Mechanical method, heating rate: 1 K/min Mechanical method, heating rate: 1 K/min Mechanical method
335 335 334,335
405
338
436
334
453,493, 504 230 385
Conflicting data
334,336,337
Low molecular weight sample No experimental details
339 338
418
No experimental details
338
232
DTA heating rate
339
~500, <433, 418 408
Conflicting data
368, 373, 418, 363-383 413
Mechanical method Conflicting data
340-342 335,343 334-336,343 338
324
Mechanical method
335
410
No experimental details
338
455
Mechanical method
335
394
335,338
396
344
407
335,344
411
345
448
334,335,344
440
334,346
456
DTA heating rate
403
337 344
653
Heating rate: 10K/min
347
449
DTA heating rate
337
319
148
TABLE 3. cont'd Polymer Poly(oxycarbonyloxy-l,4-phenylene-4,4-heptylidene1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenyleneisobutylidene1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenyleneisopropylidene1,3-phenyleneisopropylidene-1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenyleneisopropylidene1,4-phenylene)
CAS No.
Tg (K)
Refs.
421
334
422
344
393
No experimental details
24936-68-3
338 1162
About 417 418
Dielectric DSC, onset, HR lOdeg/min
1163 1161
428 417 421 420 435 420
78,102,131,145, 230,233,262,263, 287,317-319,321, 335-337, 344, 348-378 DSC, Mdpt, 10 deg/min HR, 1164 TSD, 2deg/minHR, /(crystallinity) 1254 1259 1297 DSC 1264 No experimental details 338 No experimental details 338,367
449
334,336
318
247
394
334
410
334
314
247
357
247
419-420
Poly(oxycarbonyloxy-l,4-phenylenemethylene1,4-phenylene) Poly [oxycarbonyloxy-1,4-phenylene (methyl)phenylmethylene-1,4-phenylene] Poly(oxycarbonyloxy-l,4-phenylenecarbonyl-oxycarbonyl1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenylenediphenylmethylene1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenylene-2,2-pentylidene1,4-phenylene) Poly [di(oxyethy lene)oxy-1,4-pheny lenecarbonyloxycarbonyl-1,4-phenylene] Poly (oxymethy leneoxy-1,4-pheny lenecarbonyloxycarbonyl-1,4-phenylene) Poly[di(oxymethylene)oxy-l,4-phenylenecarbonyloxycarbonyl-1,4-phenylene] Poly(oxypentamethy leneoxy- 1,4-phenylenecarbonyloxycarbonyl-1,4-phenylene) Poly(oxy-l,3-phenylenecarbonyloxycarbonyl1,3-phenyleneoxypentamethylene) Poly(oxy-l,3-phenylenecarbonyloxycarbonyl1,3-phenyleneoxytetramethylene) 3,3,5-trimethyl cyclohexane-1-polycarbonate Poly(oxytetramethyleneoxy- 1,4-phenylenecarbonyloxycarbonyl-1,4-phenylene) Poly(oxytrimethyleneoxy-1,3-phenylenecarbonyloxycarbonyl-1,3-phenylene) Poly(oxytrimethyleneoxy-1,4-phenylenecarbonyloxycarbonyl-1,4-phenylene)
Remarks
325
Amorphous
247
326
247
334
247
<293
247
508 348
1353 247
326
247
368
247
3.1.3. POLY(ESTERS) Polyarylate of terephthalic acid 471 Poly(bisphenol A terephthalate) see Poly(oxyterephthaloyloxy-l,4-phenyleneisopropylidene-l,4-phenylene) Poly(butylene adipate) 223 Poly(butylene isophthalate) 291 Poly(butylene 2,6-naphthalate) 321 Poly(butylene naphthalate) 512
1254 1331 1331 1542 1461
References page VI - 253
TABLE 3. cont'd Polymer Poly(butylene 1,4-terephthalate) Poly(butylene terephthalate) Poly(diethyl phthalate) Poly[(l,2-diethoxycarbonyl)ethylene] Poly[(l,2-dimethoxycarbonyl)ethylene] Poly(dimethyl phthalate) Poly[di(oxyethylene)oxyadipoyl] Poly [di(oxy ethylene)oxy azelaoy 1] Poly[di(oxyethylene)oxydodecanedioyl]) Poly[di(oxyethylene)oxyglutary] Poly[di(oxyethylene)oxyheptylmalonyl] Poly[di(oxyethylene)oxymalonyl] Poly[di(oxyethylene)oxymethylmalonyl] Poly[di(oxyethylene)oxynonylmalonyl] Poly[di(oxyethylene)oxyoctadecanedioyl] Poly[di(oxyethylene)oxyoxalyl] Poly[di(oxyethylene)oxypentylmalony] Poly[di(oxyethylene)oxypimeloyl] Poly[di(oxyethylene)oxypropylmalonyl] Poly[di(oxyethylene)oxysebacoyl] Poly[di(oxyethylene)oxysuberoyl] Poly[di(oxyethylene)oxysuccinyl] Poly[di(oxy-l,4-phenylene)oxyisophthaloyl] Poly[di(oxy-l,4-phenylene)oxy-5-pentyloxyisophthaloyl] Poly[(l,2-dipropoxycarbonyl)ethylene] Poly(oxy-2,6-diphenyl-1,4-phenylenemethylene3,5-diphenyl-1,4-phenyleneoxysebacoyl) Polyesters of 3-phenyl-4,4'-biphenyl dicarboxylic acid, aromatic Polyethylene adipate) see Poly(oxyethyleneoxyadipoyl) Poly(ethylene naphthalate) Polyethylene 2,6-naphthalate) Poly(ethylene 2,6-naphthalene-dicarboxylate) Poly(ethylene 1,4-terephthalate) Polyethylene terephthalate) see Poly(oxyethyleneoxyterephthaloyl) Poly(lactic acid) Poly(oxyadipoyloxy-2,6-dichloro-1,4-phenyleneisopropylidene-3,5-dichloro-1,4-phenylene) PolyCoxyadipoyloxy-S^'^^'-tetramethyl4,4 '-biphenylylene) Poly(oxyadipoyloxydecamethylene) Poly(oxyadipoyloxy-2,6-dimethyl-l,4-phenylene isopropylidene-3,5-dimethyl-1,4-phenylene) Poly(oxyadipoyloxy-1,4-phenyleneisopropylidene1,4-phenylene) Poly(oxyadipoyloxy-2,6-diphenyl-1,4-phenylenemethylene3,5-diphenyl-1,4-phenylene) Poly(oxy-2-butenyleneoxysebacoyl) cis trans Poly(oxy-5-butyl-l,3-phenyleneoxyisophthaloyl) Poly(oxy-2-butynyleneoxysebacoyl) Poly(oxycarbonyl-3,3'-biphenylylenecarbonyloxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxycarbonyl-l,4-cyclohexylenecarbonyloxy1,4-phenyleneisopropylidene-1,4-phenylene) trans Poly(oxycarbonyl-l,5-dimethylpentamethylene) Poly(oxycarbonyl-3-methylpentamethylene) Poly(oxycarbonyl-2,6-naphthylenecarbonyloxydecamethylene) Poly(oxycarbonylpentamethylene) Poly(oxycarbonyl-l,3-phenyleneoxy1,3-phenylenecarbonyloxy2,2,3,3,4,4-hexafluoropentamethylene)
CAS No.
Tg (K) 499 304 180 286 367 192 227 205 202 226 215 244 244 214 205 265 226 213 235 199 212 244 446 399 262 365
Remarks
Dilatomer Dilatomer
Heating rate: 20K/min Heating rate: 20K/min Dilatomer Heating rate: 8 K/min
398-443
Refs. 1461 1331 1271 1158 1159 1271
96 96 96 96 96 96 96 96 96 96 96 96 96 96 313 313 1160 371 1409
24938-37-2 534 398 398 526
1461 1542 1341,1554 1461
25038-59-9 327 383
No measurement details
1427 380
381
Heating rate: 8 K/min
371
217 366
Heating rate: 8 K/min
96,381 371
341
382
388
305,371
232 233 359 246 460
383
Heating rate: 8 K/min
423
Heating rate: 20K/min
240 220 287
Torsion pendulum Torsion pendulum No measurement details
1173 1172 387
213 293
Torsion pendulum
1170 148
384 383,429 386 42
TABLE 3. cont'd Polymer
CAS No.
Poly(oxydibutyltinoxyadipoyl) Poly(oxydibutyltinoxyfurnaroyl) Poly(oxydibutyltinoxyterephthaloyl) Poly(oxy-2,6-dimethyl-l,4-phenyleneisopropylidene3,5-dimethyl-1,4-phenyleneoxysebacoyl) Poly(oxy-2,5-dimethylterephthaloyloxy1,4-phenylenisopropylidene-1,4-phenylene) Poly(oxyethyleneoxycarbonyl-l,4-cyclohexylenecarbonyl) trans Poly(oxyethyleneoxycarbonyl-2,2'-dimethyl4,4 '-biphenylylenecarbonyl) Poly(oxyethyleneoxycarbonyl-l,4-naphthylenecarbonyl) Poly(oxyethyleneoxycarbonyl-l,5-naphthylenecarbonyl) Poly(oxyethyleneoxycarbonyl-2,6-naphthylenecarbonyl) Poly(oxyethyleneoxycarbonyl-2,7-naphthylenecarbonyl) Poly (oxyethyleneoxycarbonyl-1,4-phenyleneseobutylidene-1,4-phenylenecarbonyl) Poly(oxyethyleneoxycarbonyl-l,l,3-trimethylindan3,5-ylene-1,4-phenylenecarbonyl) Poly(oxyethyleneoxyisophthaloyl) Poly(oxyethyleneoxyterephthaloyl)
Tg (K) Heating Heating Heating Heating
457
Mechanical method
366
291 346
Heating rate: 20K/min
42 391
337 344 351 386 392 ~380 427
rate: rate: rate: rate:
Refs.
383 459 588 318
20K/min 20K/min 20K/min 8 K/min
385 385 385 371
393 393
Amorphous Crystalline
387,393 393 165 DTA heating rate
392
324
393 1166 1165 1168
25038-59-9 333-358 334 335-350 342
amorphous Poly(oxy-5-ethyl-l,3-phenyleneoxyisophthaloyl) Poly(oxyglutaryloxy2,2,3,3,4,4-hexafluoropentamethylene) Poly(oxyglutaryloxy2,2,3,3,4,4,5,5-octafluorohexamethylene) Poly(oxy-3-heptafluoropropylglutaryloxy2,2,3,3,4,4-hexafluoropentamethylene) Poly(oxy-2,2,3,3,4,4-hexafluoropentamethyleneoxyadipoyl) Poly(oxy-2,2,3,3,4,4-hexafluoropentamethyleneoxycarbonyl3,3 '-biphenylylenecarbonyl) Poly(oxy-2,2,3,3,4,4-hexafluoropentamethyleneoxycarbonyl1,3-phenylenedecafluoropentamethylene1,3-phenylenecarbonyl) Poly(oxy-2,2,3,3,4,4-hexafluoropentamethyleneoxycarbonyl1,3-phenylenehexafluorotrimethylene1,3-phenylenecarbonyl) Poly(oxy-2,2,3,3,4,4-hexafluoropentamethyleneoxy3,6-dithiaoctanedioyl) Poly(oxy-3-heptafluoropropylglutaryloxy2,2,3,3,4,4,5,5-octafluorohexamethylene) Poly(oxyhexamethyleneoxycarbonyl2,6-naphthylenecarbonyl) Poly(oxy-5-hexyl-l,3-phenyleneoxyisophthaloyl) Poly(3-hydroxybutyrate) Poly(4-hydroxybutyrate) Poly(oxyisophthaloyloxy-4,4/-biphenylylene)
Remarks
Dielectric,/(annealing) DSC, onset, Xp zero HR, f(annealing) DSC, onset, /(HR, draw ratio)
359 355 355-357 337 333-349 395 218-223
Brittle point
1167 1,42,61,78,94, 183,202,233,261, 262,272,319,344, 349,352-354,360, 362,371,381,388, 389,393-418 1169 1254 1338 1432 1383 384 422
218-223
Brittle point
422
243-248
Brittle point
422
DSC
216
419-423
318
148
301
Heating rate: 32 K/min; r/inh low
290
148
148
~ 233
Brittle point
422
~ 248
Brittle point
422
No measurement details
387
317 335 233 223 437, 583
NMR Conflicting data
384 1278 1494 131,424
References page VI - 253
TABLE 3. cont'd Polymer Poly(oxyisophthaloyloxy2,2,3,3,4,4-hexafluoropentamethylene) Poly(oxyisophthaloyloxy-2-methyl-l,4-phenylene isopropylidene-3-methyl-1,4-phenylene) Poly(oxyisophthaloyloxy-2,6-dimethyl-1,4-phenylene isopropylidene-3,5-dimethyl-1,4-phenylene) Poly(oxyisophthaloyloxy-2-methyl-l,4-phenylene methylene-3-methyl-1,4-phenylene) Poly(oxyisophthaloyloxy-2,6-dimethyl-1,4-phenylene methylene-3,5-dimethyl-1,4-phenylene) Poly(oxyisophthaloyloxy-l,4-phenylenebenzylidene1,4-phenylene) Poly(oxyisophthaloyloxy-l,4-phenylenecyclohexylidene1,4-phenylene) Poly(oxyisophthaloyloxy-l,4-phenyleneisopropylidene1,4-phenylene) Poly(oxyisophthaloyloxy-l,4-phenylenemethylene1,4-phenylene) Poly(oxymethylene-1,4-cyclohexylenemethyleneoxycarbonyl-f rans-1,4-cyclohexylenecarbonyl) Poly(oxy-5-methyl-l,3-phenyleneoxyisophthaloyl) Poly(oxyneopentyleneoxycarbonyl1,4-cyclohexylenecarbonyl) trans Poly(oxyneopentyleneoxyterephthaloyl) Poly(oxy-5-nonyl-l,3-phenyleneoxy-2-fluoroisophthaloyl) Poly(oxy-5-nonyl-l,3-phenyleneoxy-5-fluoroisophthaloyl) Poly(oxy-5-nonyl-l,3-phenyleneoxyisophthaloyl) Poly(oxy-2,2,3,3,4,4,5,5-octafluorohexamethyleneoxy3,6-dithiaoctanedioyl) Poly(oxy-5-octyl-l,3-phenyleneoxyisophthaloyl) Poly[oxy-5-(pentadecafluoroheptyl)isophthaloyloxy2,2,3,3,4,4-hexafluoropentamethylene] Poly(oxypentamethyleneoxyadipoyl) Poly(oxypentamethyleneoxycarbonyl2,6-naphthylenecarbonyl) Poly(oxypentamethyleneoxyterephthaloyl) Polyfaxy-S-pentyloxyisophthaloyloxy^^'-biphenylene) Poly(oxy-2-pentyloxyisophthaloyloxy2,2,3,3,4,4-hexafluoropentamethylene) Poly(oxy-4-pentyloxyisophthaloyloxy2,2,3,3,4,4-hexafluoropentamethylene) Poly(oxy-5-pentyloxyisophthaloyloxy2,2,3,3,4,4-hexafluoropentamethylene) Poly(oxy-5-pentyloxyisophthaloyloxy1,4-phenylenemethylene-1,4-phenylene) Poly(oxy-l,4-phenylenefluoren-9-ylidene1,4-phenyleneoxysebacoyl) Poly(oxy-l,3-phenylenehexafluorotrimethylene1,3-phenyleneoxycarbonyl-1,3-phenylenehexafluorotrimethylene-1,3-phenylenecarbonyl) Poly(oxy-l,4-phenyleneisopropylidene1,4-phenyleneoxycarbonyl-1,4-phenylene-seobutylidene1,4-phenylenecarbonyl) Poly (oxy-1,4-phenyleneisopropy lidene1,4-phenyleneoxycarbonyl-1,3-phenylenehexafluorotrimethylene-1,3-phenylenecarbonyl) Poly(oxy-1,4-phenyleneisopropy lidene1,4-phenyleneoxysebacoyl) Poly [oxy-l,3-phenyleneoxy-5-(10H-eicosafluorodecyl) isophthaloyl] Poly[oxy-l,3-phenyleneoxy5-(pentadecafluoroheptyl)isophthaloyl] Poly(oxy-l,3-phenyleneoxy-2-fluoroisophthaloyl)
CAS No.
Tg (K)
Remarks
Refs.
298 438
Heating rate: 32 K/min; 77inh 0.14dl/g only Dynamic method
498
Heating rate: 8 K/min
371
418
Mechanical method
369
461
Mechanical method
369
386,425 366
433
426
400
145
462
Heating rate: 8 K/min
423
Heating rate: 20K/min
313
325
Heating rate: 20 K/min
42
426 303
Heating rate: 20 K/min
384 42
341 307 293 304 ~235 314 300 204 311 283 411 290 282 243 383 424
145,369,371,427
Heating rate: 20 K/min
Brittle point Heating rate: 32 K/min; 7/inh only 0.10 dl/g No measurement details DTA heating rate Heating rate: 20 K/min DTA heating rate; 77^ only 0.12 dl/g DTA heating rate; 77^ only 0.25 dl/g DTA heating rate Heating rate: 20 K/min; 77^ only 0.13 Heating rate: 10K/min
42 432 255 384 422 384 386 96 387 411 313 425 425 425 313 347
345
148
~480
165
389
433
280
Heating rate: 8 K/min
363,371,409
356
432
374
432
393
Heating rate: 32K/min
255
TABLE 3. cont'd Polymer
CAS No.
Tg (K)
Remarks
Refs.
Poly[oxy-1,3-phenyleneoxy5-(heptafluoropropyl)isophthaloyl] Poly(oxy- 1,3-phenyleneoxyisophthaloyl)
394
Sample of low 77^
411
Poly(oxy-l,3-phenyleneoxy-5-pentyloxyisophthaloyl)
269
Poly(oxypimeloyloxy-3,3/,5,5/-tetramethyl4,4 '-biphenylylene) Poly(oxypimeloyloxy-2,6-dimethyl-l,4-phenyleneisopropylidene-3,5-dimethyl-1,4-phenylene) Poly(oxypimeloyloxy-2,6-diphenyl-l,4-phenylenemethylene-3,5-diphenyl-1,4-phenylene) Poly(oxypropyleneoxycarbonyl-2,6-naphthylenecarbonyl) Poly(oxypropyleneoxyterephthaloyl) Poly(oxy-5-propyl-1,3-phenyleneoxyisophthaloyl) Poly(oxyterephthaloyloxy-2-buty 1-1,4-phenylene isopropylidene-3-butyl-1,4-phenylene) Poly(oxyterephthaloyloxy-2-5^c-butyl-l,4-phenyleneisopropylidene-3-seobutyl-1,4-phenylene) Poly(oxyterephthloyloxy-2-chloro-l,4-phenyleneisopropylidene-3-chloro-1,4-phenylene) Poly(oxyterephthloyloxy-2-isopropyl-l,4-phenyleneisopropylidene-3-isopropyl-1,4-phenylene) Poly(oxyterephthaloyloxydecamethylene) Poly(oxyterephthaloyloxyheptamethylene) Poly(oxyterephthaloyloxyhexamethylene) Poly(oxyterephthaloyloxynonamethylene) Poly(oxyterephthaloyloxyoctamethylene) Poly(oxyterephthaloyloxypentamethylene) Poly(oxyterephthaloyloxymethylene1,4-cyclohexylenemethylene) 70% trans Poly(oxyterephthaloyloxy-2-methyl-l,4-phenyleneisopropylidene-3-methyl-1,4-phenylene)
369
Values range from 411 to 463 K Heating rate: 20K/min; ?7inh only 0.13 Heating rate: 8K/min
357
Heating rate: 8 K/min
371
384
Heating rate: 8 K/min
371
361 341 394 433
No measurement details
387 389 384 439
373
Mechanical method
439
463
Mechanical method
439
Poly(oxyterephthaloyloxy-2,6-dimethyl-l,4-phenyleneisopropylidene-3,5-dimethyl-1,4-phenylene) Poly(oxyterephthaloyloxy-1,4-phenylene) 9,9-anthronylidene-1,4-phenylene) Poly(oxy terephthaloyloxy-1,4-phenylenebenzylidene1,4-phenylene) Poly(oxyterephthaloyloxy-1,4-phenylenecyclohexylmethylene-1,4-phenylene) Poly(oxyterephthaloyloxy-l,4-phenylenefluoren-9-ylidene1,4-phenylene) Poly(oxyterephthaloyloxy-1,4-phenylenehexafluoroisopropylidene-1,4-phenylene) Poly (oxyterephthaloyloxy-1,4-phenylene-1,1-indanylidene1,4-phenylene) Poly(oxyterephthaloyloxy-l,4-phenyleneisoproplyidene1,4-phenylene) Poly(oxy-3,3',5,5'-tetramethyl4,4 '-biphenylyleneoxysebacoyl) Poly(oxy-2,2,4,4-tetramethyl-l,3-cyclobutyleneoxycarbonyltrans-1,4-cyclohexylenecarbonyl) Poly(oxy-2,2,4,4-tetramethyl-l,3-cyclobutylene oxyterephthaloyl) 60-68% trans Poly(oxytetramethyleneoxyadipoyl) Poly(oxytetramethyleneoxycarbonyl1,4-cyclohexylenecarbonyl) Poly(oxytetramethyleneoxycarbonyl2,6-naphthylenecarbonyl) Poly(oxytrimethyleneoxycarbonyl1,4-cyclohexylenecarbonyl) trans
434
403
313,384,427, 435-437 313 371
439
298, 268 276 318,264 308,270 318 318 358
Conflicting data DTA heating rate Conflicting data Conflicting data Dynamic method Dynamic method Heating rate: 20 K/min
~428
Dilatometric method
6,403,411 411 6,403,411 6,403,411 403 6,403 42,440 366,439,411
461 498
Dynamic method Heating rate: 8 K/min
371
570
Heating rate: 10 K/min
347
473
426
543
No measurement details
442
654
Heating rate: 10K/min
347
534
Softening point
443
608
Heating rate: 10 K/min
347
478
DTA heating rate
330
Heating rate: 8 K/min
442
Heating rate: 20K/min
42
457
Heating rate: 20K/min
42,319,428
155 263
Transition at 194-206 K, 1st order (Ref. 243), rate: 10 K/min Heating rate: 20 K/min
349
No measurement details
387
267
Heating rate: 20 K/min
42
363,369,371,382, 427,439,441,443 371
80,96,243 42
References page VI - 253
TABLE 3. cont'd Polymer Poly(oxytrimethyleneoxycarbonyl2,6-naphthylenecarbonyl) Poly(oxytetramethyleneoxysebacoyl) Poly(oxytetramethyleneoxyterephthaloyl) Poly(oxy-3,3 ',5,5 '-tetraphenyl-4,4'-biphenylylenesebacoyl) Poly(oxytrimethyleneoxyadipoyl) Poly(oxytrimethyleneoxyterephthaloyl) Poly(oxy-5-tridecyl-l,3-phenyleneoxyisophthaloyl) Poly(oxy-5-undecyl-l,3-phenyleneoxyisophthaloyl) Poly(resorcinol isophthalate) see Poly(oxy1,3-phenyleneoxyisophthaloyl) Poly(trifluoro-chloroethylene) Poly(l,4,7-trioxy-3,3,5,5-tetrafluoroheptamethylenecarbonyl-1,3-phenylenehexafluorotrimethylene-1,3-phenylenecarbonyl) Poly(l,4,7-trioxy-3,3,5,5-tetrafluoroheptamethyleneisophthaloyl) PoIy(1,4,7-trioxy-3,3,5,5-tetrafluoroheptamethylene5-pentyloxyisophthaloyl)
CAS No.
Tg (K)
Remarks
Refs.
346
No measurement details
387
216
Tg decreases as intrinsic viscosity increases Conflicting data Heating rate: 8 K/min
1,383,429
290, 353 371 214 368, 308 291 295 352 303 301 287
Conflicting data
6,42,403,411 371 96 42,183,403,411 384 384
Heating rate: 32K/min Heating rate: 32K/min; 77inh 0.23 only Heating rate: 32K/min; [rj] only 0.24 dl/g
1432 218 218 218
3.1.4. POLY(ETHER KETONES) Biphenylene-ether-ketone Methyl poly(aryl ether ether ketone) Poly(aryl ether ether ketone) Poly(aryl ether ketone) Poly(aryl ether ketone) of l,8-bis(4-fluorobenzoyl) naphthalene and aromatic bisphenols Poly (ether ether ketone)
Poly(ether ketone),fluorinated Poly(phenylene ether ether ketone), isopropyl subs Poly(phosphene oxide ether ketone)
454 418 423 429 491 495 487-543
1375 1551 1291 1291 1406 1507 1525
420 425 418 430 405 431 428-496 418 473
1344 1472 1332 1332 1260 1432 1385 1399 1368
DSC with 10% crystallinity DSC with 28% crystallinity
3.1.5. POLY(OXIDES) Poly(acetaldehyde) see Poly(oxyethylidene) Poly[3,3-bis(chloromethyl)oxacyclobutane] see Poly[oxy-2,2-bis(chloromethyl)trimethylene] Poly(l,2-dihydroxypropane) 25322-69-4 200 Br-Poly(2,6-dimethyl-l,4-phenylene oxide), linear 481 Poly(2,6-dimethyl-l,4-phenylene oxide) [PPO] see 25134-01-4 Poly(oxy-2,6-dimethyl-1,4-phenylene) Poly[di(oxymethylene)oxy218 2,2,3,3,4,4-hexafluoropentamethylene] Poly[di(oxy-l,4-phenylene)carbony 1-1,4-phenylene] 433 Poly(epichlorohydrin) see Poly[oxy(chloromethyl)ethylene] 24969-06-0 Poly(ethylene oxide)s see Poly(oxyethylene)s 25322-68-3 Polyethylene oxide) 1000 209 Polyethylene oxide) 400 210 Polyethylene oxide) 600 210 Poly(formaldehyde) see Poly(oxymethylene) 9002-81-7 Poly(methylene oxide) see Poly(oxymethylene) Poly(4,4-(2,7-napthalenedioxy) dibenzoic acid) 471 Poly(oxacyclobutane) see Poly(oxytrimethylene) Poly(oxetane)s see Poly(oxytrimethylene)s Poly(oxy-2-acetoxytrimethyleneoxy-2,6-dichloro373 1,4-phenyleneisopropylidene-3,5-dichloro-1,4-phenylene) Poly (oxy-2-acetoxy trimethyleneoxy-1,4-pheylene) 322
1281 1326 285 Mechanical method
116 1266 1266 1266 1374 219 219
TABLE 3. cont'd Polymer
CAS No.
Poly (oxy-2-acetoxy trimethyleneoxy-1,4-phenylene-1 -ethyl1,3-cyclohexylene-1,4-phenylene) Poly(oxy-2-acetoxytrimethyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly [oxy-2-acetoxy trimethyleneoxy1,4-phenylenemethyl(phenyl)methylene-1,4-phenylene] Poly[oxy(allyloxymethyl)ethylene] Poly (oxy-2-benzoyloxy trimethyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly[oxy-2-benzoyloxytrimethyleneoxy1,4-phenylenemethyl(phenyl)methylene-1,4-phenylene] Poly[oxy-2-(2-biphenylyl)-6-phenyl-l,4-phenylene] Poly[oxy(bromomethyl)ethylene] Poly(oxybutadiene) Poly[oxy(butoxymethyl)ethylene] Poly(oxybutylene) Poly(oxybutylethylene) Poly(oxy-tert-butylethylene) Poly[oxy-2-(4-terf-butylphenyl)-6-phenyl-l,4-phenylene] Poly[oxy-2-(chloroacetoxy)trimethyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene] Poly[oxy-2-(2-chlorobenzoyloxy)trimethyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene] Poly[oxy(chloromethyl)ethylene] Poly[oxy-2,2-bis(chloromethyl)trimethylene] Poly(oxydecylethylene) Poly (oxy-2,6-dimethoxy-l, 4-phenylene) Poly(oxy-1,1 -dimethylethylene) Poly(oxy-l,2,dimethylethylene) trans Poly [oxy(2,6-dimethyl-l, 4-phenylene)]
Tg (K)
219
333
219
383
219
195 338
220 219
399
219
484 259 198 194 185 203 308 513 338
Poly[oxy-l-(heptafluoro-2-propoxymethyl)ethylene] Poly(oxy-2,2,3,3,4,4-hexafluoropentamethyleneoxy4,4 '-octafluorobiphenylylene)
DSC heating rate; low viscosity Heating rate: 20 K/min Structure not given Heating rate: 10 K/min Heating rate: 10 K/min DSC heating rate
339 251 248 265 232 440 264 277
219
493 483 469 385 398 365
DSC heating rate
25134-01-4
25322-68-3, 9004-74-4
221 222 223,224 220 1432 220 223,225-227 221 219
222 1345 1,122,230-236 220,223 260 223 223 1156 102,114,202,262, 286-300 DSCDTA, confused by large 1155 endotherm, /(TH, filler) 1254 1276 1326 DSC heating rate 379 DSC heating rate 379
483-507
with dipivaloyl methane with neodymium nitrate Poly(oxyethylethylene) Poly(oxyethylidene)
Refs.
380
482
crosslinked Poly(oxydiphenoxymethyleneoxy-4,4/-biphenylene) Poly(oxydiphenoxymethyleneoxy-3,3 '-dimethyl4,4 '-biphenylylene) Poly(oxydiphenoxymethyleneoxy-1,4phenyleneisopropylidene-1,4-phenylene) Poly[oxy(ethoxymethyl)ethylene] Poly(oxy-2-ethyl-2-chloromethyltrimethylene) Poly(oxyethylene)
Remarks
212 ~ 293 232?
206 340 165 373 220 340 222 203 243 253 ~230 314
Heating rate: 20 K/min
379
Dynamic method Conflicting data, values range from 158 to 223 K
DTA heating rate Heating rate: 32 K/min
220 237 107,223,234, 238-244 1153 1154 1432,1287 1316 1255 1422 1271,1478 1316 1316 220 250,251 1304 258 255
References page VI-253
TABLE 3. cont'd Polymer Poly(oxy-2,2,3,3,4,4-hexafluoropentamethyleneoxymethylene1,4-phenylenemethylene) Poly(oxyhexylethylene) Poly[oxy(hexyloxymethyl)ethylene] Poly(oxy-2-hydroxytrimethyleneoxy-2-chloro1,4-phenyleneisopropylidene-3-chloro-1,4-phenylene) Poly(oxy-2-hydroxytrimethyleneoxy-2,6-dichloro1,4-phenyleneisopropylidene3,5-dichloro-1,4-phenylene) Poly(oxy-2-hydroxytrimethyleneoxy-l, 4-phenylene) Poly(oxy-2-hydroxytrimethyleneoxy-l, 4-phenylene-1 -ethyl1,4-cyclohexylene-1,4-phenylene) Poly(oxy-2-hydroxytrimethyleneoxy1,4-phenyleneisobutylidene-1,4-phenylene) Poly(oxy-2-hydroxytrimethyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxy-2-hydroxytrimethyleneoxy-l,4-phenylene5-isopropyl-2-methyl-1,2-cyclohexylene-1,4-phenylene) Poly(oxy-2-hydroxytrimethyleneoxy-1,4-phenylene-1 -methyl1,4-cyclohexyleneisopropylidene-1,4-phenylene) Poly(oxy-2-hydroxytrimethyleneoxy-1,4phenylenemethylene-1,4-phenylene) Poly(oxy-2-hydroxytrimethyleneoxy-l, 4-phenylene3,3-dimethyl-1,6-indanylene) Poly(oxy-2-hydroxytrimethyleneoxy-l,4-phenylene1,3,3-trimethyltrimethylene-1,4-phenylene) Poly (oxy-2-hydroxy trimethyleneoxy1,4-phenylenemethyl(phenyl)methylene-1,4-phenylene) Poly[oxy(methoxymethyl)ethylene] Poly(oxymethylene)
Poly(oxypropylene)
CAS No.
Remarks
25322-69-4
Heating rate: 32K/min
256
206 190 358
Heating rate: 10 K/min
220 220 259
388
259
333 413
259 259
368
259
373
259
448
259
408
259
353
259
393
259
348
259
388
219
211
Heating rate: 10 K/min
200 260 183 190 205 200 202 225 220
Heating rate: 32 K/min
220 1152 1,6,68,191,230, 233,238,239, 261-271 1432 1254 1304 1287 1304 1394 1314 1258 284
191
Values range from 188 to 263 K
220
Heating rate: 32 K/min
284
238 279 428 223 218 507 423 ~208 ~ 318 9041-80-9
Refs.
247
9002-81-7
diol diol-based urethane prepolymer Poly(oxymethyleneoxy2,2,3,3,4,4-hexafluoropentamethylene) Poly(oxymethyleneoxy2,2,3,3,4,4,5,5-octafluorohexamethylene) Poly(oxymethylene-l,3-phenylenemethyleneoxy2,2,3,3,4,4-hexafluoropentamethylene) Poly(oxymethylene-l,4-phenyleneoxy1,4-phenylenemethyleneoxy2,2,3,3,4,4-hexafluoropentamethylene) Poly (oxy-2-methyl-6-phenyl-1,4-phenylene) Poly(oxy-1-methyltrimethylene) Poly(oxy-2-methyltrimethylene) Poly[oxy-2-(l-naphthyl)-6-phenyl-l,4-phenylene] Poly(oxy-3-nitro-l,3-phenyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxyoctafluorotetramethylene) Poly(oxy-1,3-phenylene) Poly(oxy-1,4-phenylene) Poly(oxyphenylene) Poly(oxy-1,4-phenylenecarbony 1-1,4-phenyleneoxy1,4-phenyleneisopropylidene-4-methyl-1,4-cyclohexylene1,4-phenylene)
Tg (K)
358 363 493
256 Heating rate: 32K/min; high rate effect Dynamic method Dynamic method DSC heating rate; low viscosity Mechanical method Heating rate: 10 K/min DTA heating rate; low viscosity DTA heating rate Mechanical method
256 299 281 281 221 116 254,257 114,295 288,305-307 1432 116
TABLE 3. confd Polymer
CAS No.
Poly(oxy-1,4-phenylenecarbonyl-1,4-phenyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxy-l,4-phenylene-2,2-dicyanotrimethylene1,4-phenylene) Poly[oxy-l,4-phenylene-(2-cyano)-2-phenyltrimethylene1,4-phenylene] Poly[oxy-l,4-phenylene-2,2di(ethoxycarbonyl)trimethylene-1,4-phenylene] Poly(oxy-l,4-phenylenehexafluoro-2,2-propylidene1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene] Poly(oxy-l,4-phenyleneisopropylidene-l,4-phenyleneoxy1,4-phenyleneazo-1,4-phenylene) Poly(oxy-l,4-phenyleneisopropylidene-l,4-phenyleneoxy1,4-phenyleneterephthaloyl-1,4-phenylene) Poly(oxy-l,4-phenylenemethylenefluoroen9-ylidenemethylene-l,4-phenylene) Poly(oxyphenylethylene)
Poly[oxy-6-phenyl-2-(3/-o-terphenylyl)-l,4-phenylene] Poly[oxy-6-phenyl-2-(m-tolyl)-l,4-phenylene] Poly[oxy-6-phenyl-2-(p-tolyl)-l,4-phenylene] Poly(oxy-2-propionyloxytrimethyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxypropylene)
Refs.
428
Mechanical method
116
420
DTA heating rate
310
416
310
327
Proposed structure; DTA heating rate DTA heating rate
448
Mechanical method
116
448
Mechanical method
116
438
Mechanical method
116
411
Proposed structure; DTA heating rate
310
493 498 485 492 491 331
DSC DSC DSC DSC
198
Conflicting data
201 248
Poly[oxy-l-(2,2,3,3-tetrafluorocyclobutyl)ethylene]
25190-06-1
225 189 178 271 195
Poly(oxy-2,2,2-trichloroethylethylene) Poly(oxytrimethylene) Poly(perfluorotrimethylene oxide) Poly(phenylene oxide)s see Poly(oxyphenylene)s Poly(tetrahydrofuran) see Poly(oxytetramethylene) Poly(trihydroxypropane) Poly[tri(oxy-l,4-phenylene)carbony 1-1,4-phenylene]
Remarks
313
Poly(oxy-2,6-diphenyl-1,4-phenylene)
Poly(oxytetrafluoroethylene) Poly(oxytetramethylene)
Tg (K)
heating heating heating heating
rate; rate; rate; rate;
low low low low
zero HR viscosity viscosity viscosity
Mechanical method, heating rate: 2K/min Low molecular weight
No measurement details
172
310
220,223, 225,324 464,730,477 1157 221 221 221 219 220,223,243, 251,269,273, 276,281, 326-332,1432 1271 252 253,254 237,238,243, 272-278,1287 1304 229 238,272,273, 278-281,1287 1287
9041-80-9 25190-06-1 347 423
1271 116
Mechanical method
3.1.6. POLY(URETHANES) Poly (oxy-2-butenylene oxycarbonyliminohexamethylene iminocarbonyl) cis~trans Poly(oxycarbonyliminodecamethylene iminocarbonyloxyhexadecamethylene) Poly(oxycarbonyliminohexamethylene iminocarbonyloxydecamethylene) Poly (oxycarbonyliminohexamethylene iminocarbonyloxyhexadecamethylene) Poly(oxycarbonyliminomethylene-1,4-phenylene methyleneiminocarbonyloxydecamethylene) Poly (oxy carbonyliminomethylene-1,4-phenylene methyleneiminocarbonyloxydodecamethylene) Poly(oxycarbonyliminomethylene-1,4-phenylene methyleneiminocarbonyloxyhexadecamethylene) Poly(oxycarbonylimino-4-methyl-l,3-phenylene iminocarbonyloxydecamethylene) Poly(oxycarbonylimino-4-methyl-l,3-phenylene iminocarbonyloxynonamethylene)
234
383
228 307
Heating rate: 1 K/min
429 445
309
Heating rate: 1 K/min
445
312
Heating rate: 1 K/min
445
322
Heating rate: 1 K/min
445
318
Heating rate: 1 K/min
445
320
Heating rate: 1 K/min
445
291
Heating rate: 10K/min
446
335
Heating rate: 10K/min
446
References page VI - 253
TABLE 3. cont'd Polymer Poly(oxycarbonylimino-4-methyl-l,3-phenylene iminocarbonyloxyoctamethylene) Poly(oxycarbonylimino-1,4-phenylenemethylene1,4-phenylene iminocarbonyloxyhexadecamethylene) Poly(oxydecamethyleneoxycarbonyliminohexamethyleneiminocarbonyl) Poly(oxy-2,2-diethyltrimethyleneoxycarbonylimino4-methyl-l ,3-phenylene iminocarbonyl) Poly(oxydodecamethyleneoxycarbonyliminodecamethylene iminocarbonyl) Poly(oxyethyleneoxycarbonyliminodecamethylene iminocarbonyl) Poly(oxyethyleneoxycarbonyliminohexamethylene iminocarbonyl) Poly(oxyethyleneoxycarbonyliminononamethylene iminocarbonyl) Poly(oxyethyleneoxycarbonylimino-4-methyl1,3-phenylene iminocarbonyl) Poly(oxyethyleneoxycarbonylimino-1,4-phenylene ethylene1,4-phenyleneiminocarbonyl) Poly(oxyethyleneoxycarbonylimino-1,4-phenylene methylene-1,4-phenyleneiminocarbonyl) Poly(oxyethyleneoxycarbonylimino-1,4-phenylene tetramethylene-1,4-phenyleneiminocarbonyl) Poly(oxyethyleneoxycarbonylimino-1,4-phenylene trimethylene-1,4-phenyleneiminocarbonyl) Poly(oxyheptamethyleneoxycarbonyliminohexamethylene iminocarbonyl) Poly(oxy-2,2,3,3,4,4-hexafluoropentamethylene oxycarbonyliminohexamethyleneiminocarbonyl) Poly(oxy-2,2,3,3,4,4-hexafluoropentamethylene oxycarbonylimino-2,2,3,3,4,4,5,5-octafluoro hexamethyleneiminocarbonyl) Poly(oxydecamethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxydodecamethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxyheptamethyleneoxycarbonylimino-4-methyl1,3-phenyleneiminocarbonyl) Poly(oxyheptamethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxyhexamethyleneoxycarbonylimino-4-methyl1,3-phenyleneiminocarbonyl) Poly(oxyhexamethyleneoxycarbonliminomethylene1,4-phenylenemethyleneiminocarbonyl) Poly(oxyhexamethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxymethylene-5-^rf-butyl-l,3-phenylenemethylene oxycarbonylimino-1,4-phenylenemethylene1,4-phenyleneiminocarbonyl) Poly(oxymethylene-1,3phenylenemethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxyneopentyleneoxycarbonylimino-4-methyl1,3-phenyleneiminocarbonyl) Poly(oxynonamethyleneoxycarbonyliminohexamethylene iminocarbonyl) Poly(oxynonamethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxyhexamethyleneoxycarbonyliminohexamethylene iminocarbonyl) Poly(oxyhexamethyleneoxycarbonylimino2,2,3,3,4,4,5,5-octafluorohexamethyleneiminocarbonyl) Poly(oxy-2,2,3,3,4,4,5,5-octafluorohexamethylene oxycarbonyliminohexamethyleneiminocarbonyl)
CAS No.
Tg (K)
Remarks
Refs.
337
Heating rate: 10K/min
446
313
Heating rate: 1 K/min
445
328
Heating rate: 10 K/min
446
213 307
448 Heating rate: 1 K/min
334 329
447 Heating rate: 10 K/min
317 326
446 447
Heating rate: 10 K/min
390 412, 366
445
446,448 447
Conflicting data
446,447
379
447
347
447
328
Heating rate: 10 K/min
446
289
DTA heating rate
449
298
DTA heating rate
449
321
Heating rate: 1 K/min
445,446
316
Heating rate: 1 K/min
445
334
Heating rate: 10 K/min
446
357
Heating rate: 10 K/min
446
305
Heating rate: 10 K/min
446
329
Heating rate: 1 K/min
445
324
Heating rate: 1 K/min
445,446
387
DTA heating rate
453
379
Viscosity only 0.20
453
241
DTA heating rate
448
331
Heating rate: 10 K/min
446
345
Heating rate: 10 K/min
446
332
Heating rate: 10 K/min
446
278 271
DTA heating rate DTA heating rate
451,452 451,452
TABLE 3. cont'd Polymer
CAS No.
Poly(oxy-2,2,3,3,4,4,5,5-octafluorohexamethylene oxycarbonylimino-2,2,3,3,4,4,5,5-octafluorohexamethyleneiminocarbonyl) Poly(oxyoctamethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxypentamethyleneoxycarbonyliminohexamethylene iminocarbonyl) Poly(oxypentamethyleneoxycarbonylimino-4-methyl1,3-phenyleneiminocarbonyl) Poly(oxypentamethyleneoxycarbonylimino2,2,3,3,4,4,5,5-octafluorohexamethyleneiminocarbonyl) Poly(oxypentamethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxy-2,2,3,3-tetrafluorotetramethylene oxycarbonyliminohexamethyleneiminocarbonyl) Poly(oxy-2,2,3,3-tetrafluorotetramethylene oxycarbonylimino-2,2,3,3,4,4,5,5-octafluorohexamethyleneiminocarbonyl) Poly(oxytetramethyleneoxycarbonyliminohexamethylene iminocarbonyl) Poly(oxytetramethyleneoxycarbonylimino-4-methyl1,3-phenyleneiminocarbonyl) Poly(oxytetramethyleneoxycarbonylimino2,2,3,3,4,4,5,5-octafluorohexamethyleneiminocarbonyl) Poly(oxytetramethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxytrimethyleneoxycarbonyliminohexamethyleneimino carbonyl) Poly(oxytrimethyleneoxycarbonylimino-4-methyl1,3-phenyleneiminocarbonyl) Poly(oxytrimethyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl)
Tg (K)
Remarks
Refs.
293
DTA heating rate
449
352
Heating rate: 10 K/min
446
331,281
Conflicting data
446,449
325
Heating rate: 10 K/min
446
306
DTA heating rate
449
368
Heating rate: 10 K/min
446
282
DTA heating rate
450
311
DTA heating rate
450
215, 253, 303, 273, 332 315
Conflicting data Heating rate: 10 K/min
160,261,344,429, 446 446,454
306
DTA heating rate
450
382
Heating rate: 10 K/min
446
328
Heating rate: 10 K/min
446
345, 213
Conflicting data
446,448
392
Heating rate: 10 K/min
256 238 219 276
Heating rate: 15 K/min No measurement details
446
3.2. MAIN-CHAIN O-HETEROATOM POLYMERS 3.2.1. NITROSO-POLYMERS Poly(2-bromotetrafluoroethyliminotetrafluoroethylene) Poly(oxy-l,l-difluoroethyliminotetrafluoroethylene) Poly (oxy trifluoromethyliminotetrafluoroethylene) Polymer from trifluoronitrosomethane and bromotrifluoroethylene Polymer from trifluoronitrosomethane and chlorotrifluoroethylene Polymer from trifluoronitrosomethane and perfluorobutadiene Polymer from trifluoronitrosomethane and 1,1,2-trifluorobutadiene Polymer from trifluoronitrosomethane and trifluoromethyl trifluorovinyl ether Polymer from trifluoronitrosomethane and trifluoromethyl trifluorovinyl sulfide Polymer from trifluoronitrosomethane and hexafluoropropylene
Heating rate: 15 K/min
248-253 266, 230
455 456 423,457 -462 455,461 423
218
Heating rate: 15 K/min conflicting data No measuremetnt details
455,461
268
DSC heating rate
457
225
No measurement details
461
264
No measurement details
456
456
3.2.2. POLY(SILOXANES) Poly(ethylene) - poly(dimethylsiloxane) 50:50, linear Poly(dimethylsiloxane)-1 Poly(dimethylsiloxane)-3 Poly(dimethylsiloxane)-5 Poly(dimethylsiloxane)-7 Poly(dimethylsiloxane) see Poly (oxy dimethylsilylene) Poly[di(oxydimethylsilylene)1,4-phenylenedimethylsilylene]
154 150 150 150 150
1327 1320 1320 1320 1320
9016-00-6 210
DSC heating rate
478
References page VI - 253
TABLE 3. cont'd Polymer
CAS No.
Tg (K)
9016-00-6
269 331 301 146
Poly(disiloxane) Poly(methylphenylsilylenemethylene) Poly(oxydimethylsilylene)
Poly(oxydimethylsilylene2,4,5,6-tetrafluorophenylenedimethylsilylene) Poly(oxy dimethylsilyleneoxypentylene oxyisophthaloyloxyneopentylenedimethylsilylene) Poly (oxy dimethylsilyleneoxypentylene oxyterephthaloyloxyneopentylenedimethylsilylene) Poly(oxydimethylsilyleneoxydimethylsilylene2,4,5,6-tetrafluorophenylenedimethylsilylene) Poly(oxydimethylsilyleneoxy-l,4-phenylene) Poly (oxy dimethylsilyleneoxy-l,4-phenyleneisopropylidene1,4-phenylene) Poly(oxydimethylsilylene1,3-phenylenehexafluorotrimethylene1,3-phenylenedimethylsilylene) Poly(oxydimethylsilylene-l,3-phenylenetetrafluoroethylene1,3-phenylenedimethylsilylene) Poly(oxydimethylsilylene-l,4-phenyleneoxy1,4-phenylenedimethylsilylene) Poly[oxydi(pentafluorophenyl)silylenedi(oxydimethylsilylene)] Poly(oxydiphenylsilyleneoxydimethylsilylene1,4-phenylenedimethylsilylene) Poly (oxy diphenylsilylene-l,3-phenylene) Poly[oxymethylchlorotetrafluorophenylsilylenedi(oxydimethylsilylene)] Poly(oxymethylpentafluorophenylsilylene) Poly[oxymethylpentafluorophenylsilylenedi(oxydimethylsilylene)] Poly(oxymethylpentafluorophenylsilyleneoxydimethylsilylene) Poly [oxy (methyl)phenylsilylene] Poly (oxymethyl-3,3,3-trifluoropropylsilylene) Poly[oxy(methyl)-3,3,3-trifluoropropylsilylene3,3-difluoropentamethylene(methyl)3,3,3-trifluoropropylsilylene] Poly[oxy(methyl)-3,3,3-trifluoropropylsilylene ethyldodecafluorohexamethyleneethylene(methyl)3,3,3 - trifluoropropy lsily lene] Poly[oxy(methyl)-3,3,3-trifluoropropylsilylene ethyleneeicosafluorodecamethyleneethylene(methyl)3,3,3-trifluoropropylsilylene] Poly[oxy(methyl)-3,3,3-trifluoropropylsilylene ethylenehexadecafluorooctamethyleneethylene-(methyl)3,3,3-trifluoropropylsilylene] Poly[oxy(methyl)-3,3,3-trifluoropropylsilylene ethyleneoctafluorotetramethyleneethylene(methyl)3,3,3-trifluoropropylsilylene] Poly[oxy(methyl)-3,3,3-trifluoropropysilylene3,3,4,4-tetrafluorohexamethylene(methyl)3,3,3-trifluoropropylsilylene] Poly [oxy (methyl)pheny lsilyleneoxy-1,4-phenylene] Poly[oxy(methyl)phenylsilyleneoxy 1,4-phenyleneisopropylidene-1,4-phenylene] Poly [oxy-1,3-phenyleneoxy5-(triphenylsiloxydimethylsilyl)isophthaloyl]
129-150 150 143 245
Remarks
No measurement details
Refs. 1313 1313 1417 1,6,223,243,467, 469-474,1478 1476 1255 1441 463
221
430
238
431
212
No measurement details
363 318
Mechanical method Mechanical method
265
Heating rate: 32 K/min
148
271
477
293
Heating rate: 32K/min; crystalline samples Heating rate: 8 K/min
231
No experimental details
463
~ 273
DSC heating rate
478
~331 198
DTA heating rate No experimental details
114 463
No measurement details; [77] only 0.2dl/g No measurement details
463
248 190 208
No measurement details; [77] only 0.24 dl/g
187 < 193
463 468,476 468,476
301
463 463
235
DSC heating rate
467 421,423,464,465, 466 466
249
DSC heating rate
466
262
DSC heating rate
466
245
DSC heating rate
466
248
DSC heating rate
466
246
DSC heating rate
466
368 331
Low viscosity Low viscosity
468 468
376
Heating rate: 32 K/min
438
TABLE 3. cont'd Polymer
CAS No.
Poly[oxytri(dimethylsilylenoxy)(methyl)phenylsilylenel,3-phenylene(methyl)phenylsilylene] Poly[penta(oxydiethylsilylene)1,4-phenylenedimethylsilylene] Poly[penta(oxydiethylsilylene)-l,4-phenyleneoxy1,4-phenylenedimethylsilylene] Poly[tetra(oxydimethylsilylene)-l,4-phenyleneoxy1,4-phenylenedimethylsilylene] Poly[tetra(oxydimethylsilylene)1,3-phenylenedimethylsilylene] Poly[tetra(oxydimethylsilylene)1,4-phenylenedimethylsilylene] Poly(tetrasiloxane) Poly (1 -trimethylsily 1-1 -propane) Poly[tri(oxydimethylsilylene)oxy(methyl)2-phenylethylsilylene] Poly[tri(oxydimethylsilylene)oxy(methyl)phenylsilylene] Poly[tri(oxydimethylsilylene)oxy(methyl)trimethylsiloxysilylene] Poly[tri(oxydimethylsilylene)1,4-phenylenedimethylsilylene] Poly[tri(oxydimethylsilylene-l,4-phenyleneoxy)1,4-phenylenedimethylsilylene] Poly(trisiloxane)
Tg (K)
Remarks
Refs.
231
DTA heating rate
302
193
DSC heating rate
302
208
DTA heating rate
302
221
DTA heating rate
302
198
DSC heating rate
302
201
DSC heating rate
302
257 623 171
1313 1538 475
201 148 211
DSC heating rate
475 475 302
236
DTA heating rate
302
287
1313
407
1407
3.2.3. POLY(SULFONATES) Poly (4,4'-cyclopentylidene diphenylene toluene2,4-disulfonate) Poly(oxysulfonyl-l,3-phenylenecarbonyl1,3-phenylenesulfonyloxy-1,4-phenyleneisopropylidene1,4-phenylene) Poly(oxysulfonyl-1,3-phenylenesulfonyloxy1,4-phenyleneisoproplyidene-1,4-phenylene)
395 ~385
Mechanical method
361
Not well defined; mechanical method
361
3.3. MAIN-CHAIN - C - ( S ) n - C - AND - C - S - N - POLYMERS 3.3.1. POLY(SULHDES) Poly(dithiodecamethylene) Poly(dithioethylene) Poly(dithiohexamethylene) Poly(dithiomethylene-l,4-phenylenemethylene) Poly(dithiopentamethylene) Poly(oxycarbonyloxy-2-methyl-l,4-phenylenethio-3-methyl1,4-phenylene) Poly(oxycarbonyloxy-l,4-phenylenethio-l,4-phenylene) Poly(oxyethylenedithioethylene) Poly(oxyethylenetetrathioethylene) Poly(oxymethyleneoxyethylenedithioethylene) Poly(oxymethyleneoxytetramethylenedithiotetramethylene) Poly(oxytetramethylenedithiotetramethylene) Poly(phenylene sulfide) 10% m-phenylene Poly(p-phenylene sulfide)
Poly(p-phenylene sulfide) + HX1000,amorphous LCP Poly(/?-phenylene sulfide) + HX4000, amorphous LCP Poly(tetrathiodecamethylene) Poly(tetrathioethylene) Poly(tetrathiomethylene-l,4-phenylenemethylene) Poly [thio-1 -(allyloxymethyl)ethylene] Poly(thiocarbonyl fluoride) see Poly(thiodifluoromethylene)
208 246 199 296 201 340
DTA heating rate Mechanical method
~383 220 233 214 197 197 359 383 347 353 365
DTA heating rate Mechanical method
363 445 433 197 249 276 213
DTA heating rate No experimental details
Under reactants (diiodobenzene and phenyl ethylene)
DTA heating rate DTA heating rate
489 248,249 248 249,489 248 338 367 248,249 248 248,249,283 248 248,249 1497 1432 1497 1290 1454 1488 1396 1396 489 248,249 489 220
References page VI - 253
TABLE 3. cont'd Polymer Poly(thio-1,2-cyclohexylene) Poly(thio-l,3-cyclohexylene) Poly(thioethylene) Poly(thiodifluoromethylene) Poly(thio-2,2-dimethylene) Poly(thioisobutylene) Poly(thio-l-ethylethylene) Poly(thio-2-ethyl-2-methyltrimethylene) Poly(thiomethylene) Poly(thio-l-methyltrimethylene) Poly(thioneopentylene) Poly(thio-l,4-phenylene) Poly(thiopropylene) Poly(thiotrimethylene) Poly(trithiodecamethylene) Poly(trithiomethylene-l,4-phenylenemethylene) Thiokols see Poly(thiomethylene)s
CAS No.
24936-67-2 26373-01-3
Tg (K) ~ 256, ~ 228 221 223 ~ 253 155 259 218 ~223 218 214 233 370
Remarks Conflicting data DTA heating rate DTA, quenched possibly Interrelation difficult DTA, quenched No measurement details DSC heating rate Heating rate: 20K/min DSC heating rate
226 ^ 228 203 291
Conflicting data DTA heating rate DTA heating rate
Refs. 479,480 480 1174 481 -483 484-486 1175 220 160 482 490 160,480 305,307, 493,494 220,482,483, 495,496 480,487,488 489 489
3.3.2. POLY(SULFONES) AND POLY(SULFONAMIDES) Camphorquinone in poly(sulfone) Poly(aryl ether sulfone) Poly[di(oxy-l,4-phenylene)sulfonyl-l,4-phenylene] Poly(ether ether sulfone) Poly(ether sulfone) Poly (ether sulfone ketone), aromatic Poly(oxy-2-acetoxytrimethyleneoxy-l,4-phenylenesulfonyl1,4-phenylene) Poly(oxy-4,4/-biphenylyleneoxy-l,4-phenylenesulfonyl1,4-phenylene) Poly[oxycarbonyldi(oxy-l,4-phenylene)sulfonyl1,4-phenyleneoxy-1,4-phenylene] Poly(oxycarbonylneopentylenesulfonylneopentylene) Poly (oxy-2-hydroxy trimethyleneoxy-1,4-phenylenesulfonyl1,4-phenylene) Poly (oxyneopentylenesulfonylneopentyleneoxycarbonylimino hexamethyleneiminocarbonyl) Poly(oxy-5-pentyloxyisophthaloyloxy1,4-phenylenesulfonyl-1,4-phenylene) Poly(oxy-1,4-phenyleneisopropylidene-1,4-phenyleneoxy1,4-phenylene-sulfonylmethyliminotetramethylenemethyliminosulfonyl-1,4-phenylene) Poly(oxy-1,4-phenylenesulfinyl-1,4-phenyleneoxy1,4-phenylenecarbonyl-1,4-phenylene) Poly (oxy-1,4-phenylenesulfinyl-1,4-phenyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-4,4 '-biphenylylenesulfonyl1,4-phenylene) Poly(oxy-l,4-phenylenesulfonyl-2,7-naphthylenesulfonyl1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-l,4-phenyleneoxy-2-chloro1,4-phenyleneisopropylidene-3-chloro-1,4-phenylene) Poly(oxy-l,4-phenylenesulfony 1-1,4-phenyleneoxy2,6-dimethyl-1,4-phenyleneisopropylidene-3,5-dimethyl1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenylenecarbonyl-1,4-phenylene) Poly (oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenylenecyclohexylidene-1,4-phenylene)
458 520 393-433 483 483 498 440-479 403
Mechanical method
1316 1507 1378 116 1270 1432,1487 1514 219
503
Mechanical method
116
~478
Mechanical method
228
323 428
160 219
303
160
443
313
393
Heating rate: 20 K/min; 77inh only 0.11 Mechanical method
478
Mechanical method
116
438
Mechanical method
116
116
533
184
523
184
487 478
Calculated Tg for infinite molecular weight: 511K(Ref. 316) Mechanical method
116,184, 314-316
508
Mechanical method
116
478
Mechanical method
116
47 8
Mechanical method
116
116
TABLE 3.
cont'd
Polymer
CAS No.
Poly(oxy-l,4-phenylenesulfonyl-l,4-phenyleneoxy1,4-phenyleneethylidene-1,3-cyclohexylene-1,4-phenylene) Poly(oxy-l,4-phenylenesulfonyl-l,4-phenyl (1,4-phenylene)neoxy-1,4-phenylenehexafluoro -2,2-propylidene-1,4-phenylene) Poly(oxy-l,4-phenylenesulfonyl-l,4-phenyleneoxy1,4-phenyleneisobutylidene-1,4-phenylene) Poly (oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly (oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenylenemethylene-1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenylenemethylphenylmethylene-1,4-phenylene) Poly (oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenylene-2,2-norbornylene-1,4-phenylene) Poly (oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenylenediphenylmethylene-1,4-phenylene) Poly (oxy- 1,4-phenylenesulfonyl-l, 4-phenyleneoxy1,4-phenylenethio-1,4-phenylene) Poly(oxy-1,4-phenylenesulfonyl1,4-phenyleneoxy terephthaloyl) Poly(oxyterephthaloyloxyneopentylene sulfonylneopentylene) Poly(oxytetramethyleneoxy-1,4-phenyleneisopropylidene1,4-phenyleneoxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenyleneisopropylidene-1,4-phenylene) Poly(sulfone) 25135-51-7
Tg (K)
Remarks
Refs.
503
Mechanical method
116
478
Mechanical method
116
473
Mechanical method
116
453
Mechanical method
102,116,262, 287,316-323 116
473
Mechanical method
116
523
Mechanical method
116
503
Mechanical method
116
448
Mechanical method
116
522
Heating rate: 20 K/min
313
378
? DTA heating rate; 77 low
160
413
Mechanical method
116
449
Polysulfone of Bisphenol A and diphenylene sulfone Poly(sulfonyl-l,2-cyclohexylene) Poly(sulfonyl-1,3-cyclohexylene) Poly(sulfonylneopentylene) Poly(sulfonyl-1,4-phenylenemethylene-1,4-phenylene)
459 460 459 401 381 386 497
Poly[tri(oxy-l,4-phenylene)sulfonyl-l,4-phenylene]
453
Heating rate: 20K/min Heating rate: 20 K/min Heating rate: 20 K/min Heating rate: 40 K/min calculated Tg at infinite molecular weight; 511 K Mechanical method
1320 1432 1254 480 480 160,480 316 116
3.3.3. POLY(THIOESTERS) Poly(thio-3-methyl-6-oxohexamethylene) Poly (thio-1 -methyl-3-oxotrimethylene) Poly(thio-6-oxohexamethylene)
293 285 292
DTA heating rate
497 498 499
DTA heating rate
3.4. MAIN-CHAIN - C - N - C - POLYMERS 3.4.1. POLY(AMIDES) Nylon Nylon Nylon Nylon Nylon
3 [Poly(imino-l-oxotrimethylene)] 4,6 [Poly(iminotetramethyleneiminoadipoyl)] 5,6 [Poly(iminopentamethyleneiminoadipoyl)] 6 [Poly(imino-1 -oxohexamethylene)]
27% crys. Nylon 6,2 [Poly(iminooxalyliminohexamethylene)] Nylon 6,6 [Poly(iminoadipoyliminohexamethylene)]
50327-22-5 25038-54-4
32131-17-2
323 384 316 318 373 313-360
228 326-327 427-432 ~323
Crystalline, DTA heating rate Dynamic method Heating rate: 2 K/min Dilatomer, dry Conflicting data, values -313-325 K
DSC, torsion tester, TH DSC, TMA, DTA, annealed Conflicting data, most values about 323 K
1320 502 503 504,505 1181,1193 1187 1,75,101,122, 187,191,261, 262,318,394, 396,399,416, 506-520 1366 1176 1188 6,75,78,161, 170,171,191, 234,261,262, 272,317,326, 344,381,388,
References page VI - 253
TABLE 3. cont'd Polymer
CAS No.
27% crys. Nylon Nylon Nylon Nylon
6,7 [Poly(iminohexamethyleneiminopimeloyl)] 6,8 [Poly(iminohexamethyleneiminosuberoyl)] 6,9 [Poly(iminohexamethyleneiminoazelaoyl)] 6,10 [Poly(iminohexamethyleneiminosebacoyl)]
19% crys. Nylon 6,12 [Poly(iminohexamethyleneiminododecanedioyl)] Nylon 7 [Poly(imino-l-oxoheptamethylene)] Nylon Nylon Nylon Nylon
7,6 [Poly(iminoadipoyliminoheptamethylene)] 7,7 [Poly(iminopimeloyliminoheptamethylene)] 8 [Poly(imino-1-oxooctamethylene)] 8,2 Poly[(iminooxalyliminooctamethylene)]46% crys.
Nylon Nylon Nylon Nylon Nylon
8,6 [Poly(iminoadipoyliminooctamethylene)] 8,10 [Poly(iminooctamethyleneiminodecanedioyI)] 8,12 [Poly(iminoctamethyleneiminododecanedioyl)] 8,22 [Poly(iminooctamethyleneiminodocosanedioyl)] 9 [Poly(imino-l-oxononamethylene)]
28757-63-3 9008-66-6
24936-74-1
25035-03-4, 25748-72-5
Nylon 9,6 [Poly(iminoadipoyliminononamethylene)] Nylon 10 [Poly(imino-l-oxodecamethylene)] Nylon 10,2 54% crys. Nylon 10,6 [Poly(iminoadipoyliminodecamethylene)] Nylon 10,10 [Poly(iminosebacoyliminodecamethylene)] Nylon 10,12 [Poly(iminodecamethyleneiminododecanedioyl)] Nylon 11 [Poly(imino-l-oxoundecamethylene)] 25035-04-5 19% crys.
Nylon 12 [Poly(imino-l-oxododecamethylene)] 26% crys.
24937-16-4
Nylon 12,2 33% crys. Nylon 12,18 [Poly(iminododecamethyleneiminooctadecanedioyl)] Nylon 13 [Poly(imino-l-oxotridecamethylene)] Nylon 14,18 [Poly(iminotetradecamethyleneiminooctadecanedioyl)] Nylon 18,18 [Poly(iminooctadecanedioyliminooctadecamethylene)] Poly amide of l,7-bis(aminophenoxy)napthalene and dicarboxylic acid Polyamide of 2,4 '-biphenyldiamine Polyamide of bis(4-carboxyphenyl)phenylphosphene oxide Poly(amide-sulfonamide) PoIy(AW-bis(4'-amino-4-biphenylene isophthalamide)) Poly(y-benzyl L-glutamate) Poly(butyliminohexafluoroglutaryl butyliminohexamethylene) Poly(butylimino-2,2,3,3,4,4hexafluoropentamethylenebutyliminoadipoyl) Poly(e-caprolactam) see Nylon 6 25038-54-4 Poly(3,4-dibenzyl terephthalamide) Poly[di(oxyethylene)oxycarbonyliminohexamethyleneimino carbonyl] Poly(ethyliminohexafluoroglutarylethyliminohexamethylene)
Tg (K)
Remarks
330-331 341 331 330 331 323
DSC, torsion tester, TH
318 319 325 318, 333 328 323 373 359 318 333 323 321 -
DSC, torsion tester, TH Heating rate: 0.5 K/min
319 318 315 330 313 333, 319 322 315 316, 365 333-343 313-316 314 330-333 323 314 321 323 412-536
Heating rate: 0.5 K/min Variable data below 323 K
Conflicting data Heating rate: 0.5 K/min Penetration, quenched Penetration, annealed Heating rate: 2 K/min Heating rate: 2 K/min Dynamic method Dynamic method
DSC, TMA, annealed Heating rate: 2 K/min Conflicting data Dynamic method DSC, torsion tester, TH Transitions affected by thermal history and relaxation effects DSC, torsion tester, TH Affected by thermal history and relaxation effects DSC, TMA Dynamic method Dynamic method Dynamic method
Dynamic method Brittle point
283-288
Brittle point
~ 278
394,396,399, 506,510,521, 522-533 1177 1254 492,506 506 521 75,161,167,191, 399,503,505,506, 528,534,535 1178 506,535,536 1183 191,506,537,538 282,492,505,506 506 1184,538 1190 1189 505 505 535 535 1182
Estimated
521-557 498-527 >523 498-508 ~ 288 ~ 293
476 518-600 272
Refs.
Heating rate: 1-2 K/min Brittle point
506,537,538 504 538 1191 505 505,506 535 1185 1179 538 1483 1186 1180 75,520,538 1192 535 538 535 535,536 1491 1511 1445 1510 1392 273 539 539 1408 1429 245 539
TABLE 3. cont'd Polymer
CAS No.
Poly(ethylimino-2,2,3,3,4,4hexafluoropentamethyleneethyliminoadipoyl) Poly(hexamethylene adipamide) see Nylon 6,6 32131-17-2 Poly(hydroxyamide ether) Poly(iminoadipoylimino-l,4-cyclohexylenemethylene) 1,4-cyclohexylene) 98% trans/trans, 2% cisltrans Poly(iminoadipoyliminomethylene-2,5-dimethyl1,4-phenylenemethylene) Poly(iminoadipoyliminotrimethylenefluoren9-ylidenetrimethylene) Poly(iminoadipoyliminotrimethyleneisobutylphosphinidene trimethylene) Poly(iminoadipoyliminotrimethylenemethyliminotrimethylene) Poly(iminoadipoyliminotrimethylenemethylphosphinylidenetetramethylene) Poly(iminoadipoyliminotrimethylenemethylphosphinylidene trimethylene) Poly(iminoadipoyliminotrimethyleneoctylphosphinylidene trimethylene) Poly[iminoadipoyliminotrimethylene(phenylphosphinidene)trimethylene] Poly[iminoadipoyliminotrimethylene(phenylphosphinylidene)trimethylene] Poly[imino-5-^rr-butylisophthaloylimino(2,5-dimethylhexamethylene)] Poly[imino-5-te7t-butylisophthaloylimino(3,4-dimethylhexamethylene)] Poly(imino-5-^rr-butylisophthaloyliminohexamethylene) Poly(imino-5-te^butylisophthaloyliminomethylene1,4-cyclohexylenemethylene) Poly(imino-5-^rf-butylisophthaloyliminomethylene1,3-phenylenemethylene) Poly(imino-5-^rf-butylisophthaloyliminomethylene1,4-phenylenemethylene) Poly(iminocarbonyl-1,3adamantylenecarbonyliminohexamethylene) Poly(iminocarbonyl-2,2biphenylylenecarbonyliminotrimethylenefluoroen9-ylidenetrimethylene) Poly(iminocarbonyl-1,4-cyclohexylenemethylene) Poly(iminocarbonyl-l,4-phenylene2-oxoethyleneiminohexamethylene) Poly(imino-1,4-cyclohexylenemethylene1,4-cyclohexyleneiminododecanedioyl) 98% trans/trans, 2% cisltrans Poly(imino-1,4-cyclohexylenemethylene1,4-cyclohexyleneiminosebacoyl) 98% trans/trans, 2% cisltrans Poly(imino-2,2-dimethylpentamethyleneiminoadipoyl) Poly(imino-2,2-dimethylpentamethyleneiminoazelaoyl) Poly(imino-2,2-dimethylpentamethyleneiminopimeloyl) Poly(imino-2,2dimethylpentamethyleneiminoterephthaloyl) Poly(iminoethylene-1,4-phenyleneethyleneimino1,16-dioxohexadecamethylene) Poly(iminoethylene-1,4-phenyleneethyleneimino1,18-dioxooctadecamethylene) Poly (iminoethylene-1,4-phenyleneethyleneimino1,14-dioxotetradecamethylene) Poly(iminoethylene-1,4-phenyleneethyleneimino1,11 -dioxoundecamethylene) Poly(iminoethylene-l,4-phenyleneethyleneiminosebacoyl) Poly(iminoglutarylimino-2,2-dimethylpentamethylene) Poly(iminohexamethyleneiminocarbonyl2,2/-biphenylenecarbonyl)
Tg (K) 293 363-406 458 343 393
Remarks
Refs.
Brittle point
539
Tg depends on cisltrans isomer content DTA heating rate
1439 540 303
344
Mechanical method, heating rate: 1 K/min DTA heating rate
78,161
278 332
DTA heating rate
492 492
332
DTA heating rate
492
285
DTA heating rate
492
492
322
492
328
492
422
DTA heating rate
453
446
DTA heating rate
453
436 509
DTA heating rate DTA heating rate
453 453
465
DTA heating rate
453
477
DTA heating rate
453
Values from 378 to 393 K obtained Mechanical method, heating rate: 1 K/min
255
~385 438
78,161
466 377
DTA heating rate Heating rate: 20K/min
517 541
408
Tg depends on cisltrans isomer content
540
417
Tg depends on cisltrans isomer content
540
350 336 344 430
DTA heating DTA heating DTA heating DTA heating
rate rate rate rate
542 542 542 308
358
Dynamic method
536
348
Dynamic method
536
366
Dynamic method
536
369
Dynamic method
536
378 355 400
Dynamic method DTA heating rate Mechanical method, heating rate: 1 K/min
536 542 78,161
References page VI - 253
TABLE 3. cont'd Polymer Poly(iminohexamethyleneiminocarbonyl-l,4-phenylene2,2-butylidene-1,4-phenylenecarbonyl) Poly(iminohexamethyleneimino-4-methylpimeloyl) Poly(iminohexamethyleneimino-l-oxotrimethylenefluoren9-ylidene-3-oxotrimethylene) Poly (iminohexamethyleneimino-1 -oxotrimethylenephenylphosphinothioylidene-3-oxotrimethylene) Poly(iminohexamethyleneimino-1oxotrimethylenephenylphosphinylidene-3-oxotrimethylene) Poly^minoisophthaloylimino^^'-biphenylylene) Poly(iminoisophthaloylimino-3,4-dimethylhexamethylene) Poly(iminoisophthaloylimino-2,2-dimethylpentamethylene) Poly(iminoisophthaloyliminohexamethylene) Poly(immoisophthaloyliminomethylene1,4-cyclohexylenemethylene) Poly(iminoisophthaloyliminomethylene1,3-phenylenemethylene) Poly(iminoisophthaloyliminooctamethylene) Poly(iminoisophthaloylimino-1,4-phenylenemethylene1,4-phenylene) Poly(iminoisophthaloyliminotrimethylenefluoren9-ylidenetrimethylene) Poly(iminomesaconoyliminodecamethylene) Poly(iminomesaconoyliminohexamethylene) Poly(iminomesaconoyliminomethylene1,3-phenylenemethylene) Poly(imino-3-methyladipoyliminohexamethylene) Poly(iminomethylene-5-terr-butyl1,3-cyclohexylenemethyleneiminoisophthaloyl) Poly(iminomethylene-5-te7t-butyl1,3 -phenylenemethyleneiminoadipoyl) Poly(iminomethylene-5-te?t-butyl1,3-phenylenemethyleneiminoisophthaloyl) Poly(iminomethylene-1,3-cyclohexylenemethyleneimino5-ter/-butylisophthaloyl) Poly(iminomethylene1,3-cyclohexylenemethyleneiminoisophthaloyl) Poly[iminomethylene(2,5-dimethyll,4-phenylene)methyleneiminosuberoyl] Poly(iminomethylene1,3-phenylenemethyleneiminoadipoyl) Poly(iminomethylene1,3-phenylenemethyleneiminocarbonyl2,2 '-biphenylenecarbonyl) Poly[iminomethylene-1,4phenylenemethyleneiminocarbonyl (l,3,3-trimethyl-5-oxopentamethyl)] Poly(iminomethylene1,4-phenylenemethyleneiminododecanedioyl) Poly (iminomethylene1,4-phenylenemethyleneiminooctadecanedioyl) Poly(iminomethylene-l,3-phenylenemethyleneiminol-oxotrimethylenefluoren-9-ylidene-3-oxotrimethylene) Poly(iminomethylene1,4-phenylenemethyleneiminopentadecanedioyl) Poly(iminomethylene1,4-phenylenemethyleneiminosebacoyl) Poly(iminomethylene1,4-phenylenemethyleneiminotridecanedioyl) Poly(iminomethylene1,4-phenylenemethyleneiminoundecanedioyl) Poly(iminomethylene-l,3,3-trimethyl1,5-cyclohexyleneiminoadipoyl) Poly (iminomethylene-1,3,3-trimethylcyclohexyleneiminoterephthaloyl)
CAS No.
Tg (K)
Remarks
427-437 323 395
Refs. 165
Mechanical method, heating rate: 1 K/min
521 78,161
316
492
302
492
558 398 426 390 481
DTA heating rate DSC heating rate DTA heating rate
438
Mechanical method, heating rate: 1 K/min Dynamic method Dynamic method
388 < 500
DSC heating rate
311,312 453 308 78,161,255,543 453 78,161,453 544 311
448
Mechanical method
347 367 408
Heating rate: 16 K/min Heating rate: 16 K/min Heating rate: 16 K/min
545 545 545
290 482
DTA heating rate DSC heating rate
492 453
382
DTA heating rate
453
461
DSC heating rate
453
473
DTA heating rate
453
453
DSC heating rate
453
351
DTA heating rate
303
346
Mechanical method, heating rate: 1 K/min Mechanical method, heating rate: 1 K/min
432 398
No experimental details
378
78,161
78 78 381 491,536
348
Dynamic method
423 363
Mechanical method, heating rate: 1 K/min Dynamic method
388
Dynamic method
536
373
Dynamic method
536
380
536 78,161 536
491,536
433
No experimental details
381
473
No experimental details
381
TABLE 3. cont'd Polymer
CAS No.
Poly(imino-5-methylisophthaloyliminohexamethylene) Poly(imino-l-methyl-3-oxotrimethylene) Poly(imino-l,5-naphthyleneiminoisophthaloyl) Poly(imino-l,5-naphthyleneiminoterephthaloyl) Poly(iminooctamethyleneimino-l-oxoethylene1,4-phenylene-2-oxoethylene) Poly(iminooxalylimino-2,2-dimethylpentamethylene) Poly(imino-l-oxoethylene-l,4-phenylene2-oxoethyleneiminooctadecamethylene) Poly(imino-l-oxotrimethylenefluoren-9-ylidene3-oxotrimethyleneiminotrimethylenefluoren9-ylidenetrimethylene) Poly(imino-l-oxotrimethylene-l,4-phenylene3-oxotrimethyleneiminododecamethylene) Poly(imino-l-oxotrimethylene-l,4-phenylene3-oxotrimethyleneiminooctadecamethylene) Poly(iminopentamethyleneiminocarbonyl-l,4-phenylene2-oxoethylene) Poly(iminopentamethyleneiminoterephthaloyl) Poly(imino-l,3-phenyleneiminocarbonyl1,3-adamantylenecarbonyl) Poly(imino-l,3-phenyleneiminoisophthaloyl) Poly(imino-l,4-phenyleneiminoisophthaloyl) Poly(imino-l,3-phenyleneimino-5-methylisophthaloyl) Poly(imino-l,3-phenyleneiminosebacoyl) Poly(imino-l,3-phenyleneiminoterephthaloyl) Poly(imino-l,4-phenyleneiminoterephthaloyl) Poly(iminoterephthaloylimino4,4 '-biphenylylene) Poly(iminoterephthaloylimino-3-ethylhexamethylene) Poly(iminoterephthaloylimino-3-isopropylhexamethylene) Poly(iminoterephthaloyliminododecamethylene) Poly(iminoterephthaloyliminoheptamethylene) Poly(iminoterephthaloyliminohexamethylene) Poly(iminoterephthaloyliminononamethylene) Poly(iminoterephthaloyliminomethylene-2,5-dimethyl1,4-phenylenemethylene) Poly(iminoterephthaloylimino4,4-dimethylheptamethylene) Poly(iminoterephthaloylimino1,4,4-trimethylheptamethylene) Poly(iminoterephthaloylimino2,2,4-trimethylheptamethylene) Poly(iminoterephthaloylimino2,4,4-trimethylheptamethylene) Poly(iminoterephthaloylimino-1,4-phenylenemethylene1,4-phenylene) Poly[imino(tetrachloroterephthaloyl)iminohexamethylene] Poly(iminotetramethyleneiminocarbonyl-1,4-phenylene2,2-butylidene-1,4-phenylenecarbonyl) Poly(iminotetramethyleneiminocarbonyl-1,4-phenylene2-oxoethylene) Poly(iminotrimethylenefluoren-9ylidenetrimethyleneiminosebacoyl) Poly(iminotrimethyleneiminocarbony 1-1,4-phenylene2-oxoethylene) Poly(imino-2,2,4-trimethylpentamethyleneiminoadipoyl) Poly(isopropyliminohexafluoroglutarylisopropyliminohexamethylene) Poly(isopropylimino-2,2,3,3,4,4-hexafluoropentamethyleneisopropyliminoadipoyl) Poly(methyliminohexafluoroglutarylmethyliminohexamethylene)
Tg (K)
Refs.
393 369 598 578 383
Crystalline; DTA heating rate DTA heating rate Heating rate: 10K/min Dynamic method
255 502 312 312 536
382 351
DTA heating rate Dyamic method
542 536
438
Mechanical method, heating rate: 1 K/min
358
Dynamic method
536
338
Dynamic method
536
376
Heating rate: 20 K/min
78
541
~500 580
Dynamic method Heating rate: 32 K/min
518 255
553
311,518,546
<500 578 383 <500 618 613
Mechanical method, heating rate: 2 K/min Dynamic method Heating rate: 32K/min Dynamic method Dynamic method Heating rate: 10K/min DTA heating rate
403 416 393 470 413 388 498
DSC heating rate DSC heating rate Dynamic method Dynamic method No experimental details No experimental details DTA heating rate
381 381 543,547 518 381 381 303
425
No experimental details
381
423
DTA heating rate
548
418
DSC heating rate
262,381
421, 432 <500 71164-49-3
Remarks
569 446-455
Two different samples; DSC heating rate Dynamic method
381
DSC, HR 16deg/min,/(MW)
1194 165
357
Heating rate: 20 K/min
358
Mechanical method, heating rate: 1 K/min Heating rate: 20 K/min
382
311 255 544 311 311,312 311,312
311
541 78, 161 541
338 ~ 293
No measurement details Brittle point
381 539
303-308
Brittle point
539
298- 303
Brittle point
539
References page VI - 253
TABLE 3. cont'd Polymer Poly(methylimino-2,2,3,3,4,4-hexafluoropentamethylenemethyliminoadipoyl) Poly(2-methylpentamethylene terephthalamide) amorphous crystalline drawn fiber PoIy(1,3,4-oxidiazole-amide) Poly(oxytrimethyleneiminoadipoyliminotrimethylene) Poly(oxy-3-oxotrimethyleneiminomethylene-2,5-dimethyl1,4-phenylenemethyleneimino-1 -oxotrimethylene) Poly(oxy-5-oxopentamethyleneiminomethylene1,4-phenylenemethyleneimino-1 -oxopentamethylene) Poly(oxy-l,4-phenylenecarbonylimino-2,2-dimethylpentamethyleneiminocarbonyl-1,4-phenylene) Poly(oxy-l,4-phenylenecarbonylimino1,4-phenylenesulfonyl-1,4-phenyleneiminocarbonyl1,4-phenylene) Poly(oxy-l,4-phenyleneiminoisophthaloylimino1,4-phenylene) Poly(oxy-l,4-phenyleneiminoterephthaloylimino1,4-phenylene) Poly(p-phenylene terephthalamide) Kevlar Poly(7V-phenyl-2-hydroxytrimethylene amine) Poly(phenylquinoxaline-imide-amide) Poly(sulfonyl-l,3-phenyleneiminoadipoylimino1,3-phenylene) Poly(sulfonyl-l,3-phenyleneiminoadipoylimino1,4-phenylene) Poly(sulfonyl-l,3-phenyleneiminoazelaoylimino1,3-phenylene) Poly(sulfonyl-l,4-phenyleneiminoazelaoylimino1,4-phenylene) Poly(sulfonyl-l,3-phenyleneiminocarbonyl1,4-naphthylenecarbonylimino-1,3-phenylene) Poly(sulfonyl-l,4-phenyleneiminocarbonyl1,4-naphthylenecarbonylimino-1,4-phenylene) Poly(sulfonyl-l,4-phenyleneiminocarbonyl1,4-phenylenemethylene-1,4-phenylenecarbonylimino1,4-phenylene) Poly(sulfonyl-l,3-phenyleneiminododecanedioylimino1,3-phenylene) Poly(sulfonyl-l,4-phenyleneiminododecanedioylimino1,4-phenylene) Poly(sulfonyl-l,3-phenyleneiminoisophthaloylimino1,3-phenylene) Poly(sulfonyl-l,4-phenyleneimino-2-methoxyisophthaloylimino-1,4-phenylene) Poly(sulfonyl-l,4-phenyleneiminopimeloylimino1,4-phenylene) Poly(sulfonyl-l,3-phenyleneiminosebacoylimino1,3-phenylene) Poly(sulfonyl-l,4-phenyleneiminosebacoylimino1,4-phenylene) Poly(sulfonyl-l,3-phenyleneiminosuberoylimino1,3-phenylene) Poly(sulfonyl-l,4-phenyleneiminosuberoylimino1,4-phenylene) Poly(sulfonyl-l,4-phenyleneiminoterephthaloyl1,4-phenylenecarbonylimino-1,4-phenylene) Poly(terephthalamide), pendant ester Poly(thio-ll-oxoundecamethyleneiminoethylene1,4-phenyleneethyleneimino-1 -oxoundecamethylene) Poly(thio-3-oxotrimethyleneiminohexamethyleneimino1 -oxotrimethylene)
CAS No.
Tg (K) 298-303 416 424 453 498-545 307 353
Remarks Brittle point
DTA heating rate
Refs. 539 435 1435 1435 1388 282 303
343
Estimated from copolymer data
304
428
DTA heating rate
308
571
Softening point
309
463, 554
Conflicting data
130,311,312
613
Heating rate: 10K/min
311,312
508 343 557-581 413
DTA heating rate
1432 1400 1389 500,501
467
DTA heating rate
500,501
398
DTA heating rate
500,501
451
DTA heating rate
500,501
<573 <573 <573
Softening point; mechanical method Softening point; mechanical method Softening point
309 309 309
380
DTA heating point
500,501
433
DTA heating point
500,501
573-593 568-583
Softening point; mechanical method Softening point
309 309
436
DTA heating point
500,501
385
DTA heating point
500,501
444
DTA heating point
500,501
398
DTA heating point
500,501
453
Softening point
500,501
590
Softening point; mechanical method
451-490 331 287-300
Dynamic method; low viscosity
309 1462 491 492
TABLE 3. cont'd Polymer Poly(thio-7-oxoheptamethyleneiminomethylene1,4-phenylenemethyleneimino-1 -oxoheptamethylene) Poly(thio-5-oxopentamethyleneiminomethylene1,4-phenylenemethyleneimino-1 -oxopentamethylene) Poly (tridecanolactone) Poly[tri(oxyethylene)oxycarbonyliminohexamethyleneimino carbonyl]
CAS No.
Tg (K)
Remarks
Refs.
338
Dynamic method
491
343
Dynamic method
491
237 260
1361,1544 246
373 471 585 318 371 410
1298 1526 1526 1526 1280 1280
404 394
1280 1280
398
1280
522 491 540-595
1458 1458 1493
373-403 364 473 538 485 > 713 570 451
1467 1534 1432 1376 1254 1303 1558 1280
495 515-571 >673 613 533-593 571
1432 1373 1372 1453 1466 1434
> 423 543
1397 1448
3.4.2. POLY(ANILINES) Poly(aniline) Poly(4-(methacryloyloxy)acetanilide) Poly(4-(2-methacryloyloxy)ethyloxy)acetanilide) Poly (4-(6-methacryloyloxy)hexyloxy)acetanilide) Poly(2-methyl-4-nitro-[MA^-bis(2-hydroxyethyl)]-aniline) Poly(2/-methyl-4/-nitrophenylazo)-[MA^-bis(2-hydroxyethyl)]aniline) Poly(4/-nitrophenylazo)-[A^,A^-bis(2-hydroxyethyl)]-aniline) Poly([2(4/-nitrophenylethylenyl)]-[MA^-bis(2-hydroxyethyl)]aniline) Poly(4-tricyanovinyl-[A^bis(2-hydroxyethyl)]-aniline) 3.4.3. POLY(IMIDES) Phenylethynyl-terminated imide, cured Phenylethynyl-terminated imide, uncured oligomer (6300 Mw) Poly(imide) of 3,3-bis [4-(4/-aminophenoxy)phenyl]phthalimidime with bis(trimellitimide) Poly(ester-amide-imide) of phenyltrimellitimide Poly(ester imide) Poly(ether imide) Poly(bis(/?-ethynylphenyl)pyromellitimide) Poly(4-(4-fluorobenzoyl)-AH4-hydroxyphenyl)phthalimide) Poly([4-(A^,A^-bis(2-hydroxyethyl)amino)-benzylidene] imidazolidine-2-dione) Poly(imide) Poly(imide), di-/-butyl subs nanofoam PMR-15 Poly(imides) of 4,4'-diaminotriphenylmethane, aromatic Poly(imide) of 4,4/-oxidiphthalic anhydride and 2,2'-dimethyl4-4/-diaminobiphenyl diamine Poly (methacryl-methyl-imide) Poly [4,4'-oxydiphenylene oxydiphthalimide) 3.4.4. POLY(IMINES) Poly(acetyliminoethylene) Poly(acetyliminotrimethylene)
~ 353 ~ 303
Poly(benzoyliminoethylene) Poly(benzoyliminotrimethylene) Poly(butyryliminoethylene) Poly(dodecanoyliminoethylene) Poly[(pentadecafluorooctanoylimino)trimethylene] Poly(heptanoyliminoethylene) Poly(hexanoyliminoethylene) Poly(hexanoyliminotrimethylene) Poly(isobutyryliminoethylene) Poly(isovaleryliminoethylene) Poly(3-methoxycarbonylpropyionyliminoethylene) Poly(2-naphthyliminoethylene) Poly(octadecanoyliminoethylene)
378 345 ~ 303 ~ 283 298 ~ 283 ~ 283 257 ~ 303 ~ 303 304 403 ~ 283
Mechanical Mechanical viscosity Mechanical Mechanical Mechanical Mechanical Mechanical Mechanical Mechanical Mechanical Mechanical Mechanical Mechanical Mechanical Mechanical
method method; low
549 550
method method method method-apparent method method-apparent method-apparent method method method method method method-apparent
549 550 549 549 550 549 549 550 549 549 551 549 549
Tg Tg Tg
Tg
References page VI - 253
TABLE 3. cont'd Polymer
CAS No.
Tg (K)
Poly(octanoyliminoethylene) Poly(propionyliminoethylene) Poly(propionyliminotrimethylene)
~ 283 ~ 343 281
Poly(valeryliminoethylene)
~ 286
Remarks Mechanical Mechanical Mechanical viscosity Mechanical
Refs.
method-apparent Tg method method; low
549 549 550
method
549
3.4.5. POLY(UREAS) Poly(di(aminophenyl)acetylene diurea) Poly(urethane), hemicyanine dye PU-30
508-583 394 233 364 230 356 230 353 232 351 239 346 283-323 328
PU-40 PU-50 PU-60 PU-70 Poly(urethane)s, shape-memory Poly(ureylenemethylene1,4-phenylenemethyleneureylenedecamethylene) Poly(ureylenemethylene1,4-phenylenemethyleneureylenehexamethylene) Poly(ureylenemethylene1,4-phenylenemethyleneureyleneoctadecamethylene) Poly(ureylenemethylene1,4-phenylenemethyleneureyleneoctamethylene) Poly(ureylenemethylene1,4-phenylenemethyleneureylenetetradecamethylene) Poly(ureylenedecamethyleneureylenetetradecamethylene) Poly(ureylenehexamethyleneureylenedodecamethylene) Poly(ureylenehexamethyleneureylene1,4-phenylenemethylene-1,4-phenylene) Poly(ureylenehexamethyleneureylenetetradecamethylene) Poly(ureyleneoctamethyleneureylene1,4-phenylenemethylene-1,4-phenylene) Poly(ureylene-1,4-phenylenemethylene1,4-phenyleneureylenedecamethylene) Poly(ureylene-1,4-phenylenemethylene1,4-phenyleneureylenedodecamethylene) Poly(ureylene-1,4-phenylenemethylene1,4-phenyleneureyleneoctadecamethylene) 3.5.
Heating rate: 1 K/min
1421 1456 1268 1268 1268 1268 1268 1268 1268 1268 1268 1268 1496 445
345
Heating rate: 1 K/min
445
325
Heating rate: 1 K/min
445
341
Heating rate: 1 K/min
445
327
Heating rate: 1 K/min
445
313 322 328
Heating rate: 1 K/min Heating rate: 1 K/min Heating rate: 1 K/min
445 445 445
320 323
Heating rate: 1 K/min Heating rate: 1 K/min
445 445
319
Heating rate: 1 K/min
445
324
Heating rate: 1 K/min
445
321
Heating rate: 1 K/min
445
Soft microphase Hard microphase Soft microphase Hard microphase Soft microphase Hard microphase Soft microphase Hard microphase Soft microphase Hard microphase
POLY(PHOSPHAZENES)
Aminoorganosiloxane poly(phosphazene) Poly[(amino)thionylphosphazene] Poly[bis(4-benzylphenoxy)phosphazene] Poly[bis(2,3-bis(2-w-butoxyethoxy)propoxy)phosphazene] Poly(bis(f-butyl-/?-phenoxyphosphazene)) Poly(chloro-2,2,2-trifluoroethoxyphosphazene) (average structure) Poly(dichlorophosphazene) Poly(diethoxyphosphazene) Poly[bis(dimethylamino)phosphazene] Poly(dimethoxyphosphazene) Poly[bis(2,3-dimethoxypropoxy)phosphazene] Poly[bis(dimethylamino)phosphazene] Poly(diphenoxyphosphazene) Poly[bis(ethylamino)phosphazene] Poly[bis(4-fluorophenoxy)phosphazene] Poly[bis(lH,lH-pentafluoropropoxy)phosphazene] Poly[bis(2-methoxyethoxy)phosphazene] Poly[bis((methoxyethoxy)ethoxy)phosphazene]
190-251 233-355 286 187 323 213 26085-02-9
210 189 233 197 194 269 265 303 259 198, 218 192 189
Heating rate: 20 K/min; probably branched structure DTA heating rate DTA heating rate Heating rate: 20 K/min DTA heating rate Dynamic mechanical method DTA heating rate DTA heating rate Heating rate: 20 K/min
1441 1450 1518 1422 1296 552 553 553 552 553 1422 554 553 554 552 557 1422 1449,1441
TABLE 3. cont'd Polymer
CAS No.
Poly[bis(methylphenoxy)phosphazene] Poly[bis(2-(2-(2-(2-(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)ethoxy)ethoxy)ethoxy)ethoxy)phosphazene] Poly[bis(2-(2-(2-(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)ethoxy)ethoxy)ethoxy)phosphazene] Poly[bis(2-(2-(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)ethoxy)ethoxy)phosphazene] Poly[bis(2-(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)ethoxy)phosphazene] Poly[bis(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)phosphazene] Poly[bis(2,3-bis(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)propoxy)phosphazene] Poly[bis(2-(2/-methoxyethoxy)ethoxy)phosphazene] Poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene] Poly[bis(2,3-bis(2-(2-methoxyethoxy) ethoxy)propoxy)phosphazene] Poly[bis(2,3-bis(2-methoxyethoxy)propoxy)phosphazene] Poly(organophosphazene), ethyleneoxy subs Poly[bis(2,3-bis(2-sec-propoxyethoxy) propoxy)phosphazene] Poly[bis(phenylamino)phosphazene] Poly(phosphazene)s fluorinated Poly[bis(piperidino)phosphazene] Poly[bis(trifluoroethoxy)phosphazene] Poly[bis(2,2,2-trifluoroethoxy)phosphazene] Poly[bis(3-trifluoromethylphenoxy)phosphazene] 3.6.
Remarks
Refs.
269
1441
198
1422
197
1422
194
1422
193
1422
193
1422
191
1422
189 189 192
1422 1422 1422
192 203-217 196
1422 1449 1422
364 168 311-367 292 210 203 238
DTA heating rate
Heating rate: 20 K/min
554 1441 1512 554 1441 552,555,556 552
POLY(SILANES) AND POLY(SILAZANES)
Poly(carbosilazanes) Poly(di-rc-butylsilylenemethylene) Poly(di-n-hexylsilylenemethylene) Poly[(4-dimethylaminophenyl)methylsilylenetrimethylene] Poly[(4-dimethylaminophenyl)phenylsilylenetrimethylene] Poly (1,1 -dimethylsilazane) Poly(dimethylsilylenemethylene)
198-253 243 217 267 325 191 173 186 203 218 323 311 243 328 204 220-373 >653 378-417
Poly(dimethylsilylenetrimethylene) Pory(di-rc-pentylsirylenemethylene) Poly(di-rc-propylsirylenemethylene) Poly(di-p-tolysilylenetrimethylene) Poly[(methyl)phenylsilylenetrimethylene] Poly(silethylene) Poly(silethylene glycol) Poly(siloxyethylene glycol) Poly(silylethylene) Poly(vinyl trimethyl silane)
TABLE 4.
No measurement details
Mechanical method No measurement details
Increases with Si content
1370 1440 1440 558 558 560,561 562 1440 559 1440 1440 558 559 1313 1478 1478 1395 1295
MAIN-CHAIN HETEROCYCLIC POLYMERS
Polymer 4.1.
Tg (K)
CAS No.
Tg (K)
Remarks
Refs.
CARBOHYDRATES
Acetoxypropyl cellulose Amylose hexanoate (2.9) Amylose triacetate Amylose tributyrate Amylose tripropionate Amylose valerate: (2.8) Cellulose
9004-39-1
9004-34-6
257 315 440 365 406 330 243-433
Heating rate: 5-10 Heating rate: 5-10 Heating rate: 5-10 Heating rate: 5-10 Heating rate: 5-10 Conflicting data
K/min K/min K/min K/min K/min
1358 189 189 189 189 189 190-200
References page VI - 253
TABLE 4. cont'd Polymer Cellulose Cellulose Cellulose Cellulose
acetate eicosanoate laurate triacetate
Cellulose Cellulose Cellulose Cellulose Cellulose
tributyrate tridecanoate triheptanoate trihexanoate nitrate
CAS No.
Tg (K)
9004-35-7
473 407 367 322-751
9012-09-3
39320-16-6
9004-70-0
Cellulose tripropionate Cellulose trivalerate Cyanoethyl cellulose Ethyl cellulose Methyl cellulose Poly(l,4-butanediol succinate) Starch acetate, dry humid Triphenylmethyl cellulose
9004-41-5 9004-57-3 9004-67-5
388 321 320 237 326, 339 400 338 453 316 423 346 438-458 368-408 426
Remarks
Conflicting data; depend on acetate and water content and degree of crystallinity
Conflicting data
Dynamic method Dynamic method
Dynamic method
Refs. 1320 388,1464 1464 1,21,93,143,188, 191,197,201-214 1,206,215 215 215 215 18,21,188,201, 216,217 215 215 197 1,201 197 1527 1469 1469 197
4.2. LIQUID CRYSTALS LC Poly(acrylate) LC Poly (butadiene)+p-nitrostilbene LC Poly(hydroquinone terephthalate), r-butyl LC Poly(norborene)+/?-nitrostilbene LC Polylster
294 287-304 458 317-337 333
1463 1405 1480 1405 1499
453 308 343
1364 1498 1498
378 322 345 329 355
1,187 1,188 1 1 1
327
1524
493-563 597 616 597
1404 1350 1350 1350
4.3. NATURALPOLYMERS Amorphous silk Collagen Gelatin
fibroinchains
4.4. POLY(ACETALS) Poly( 1,3-dioxa-4,6-cyclohexylenemethylene) PoIy(1,3-dioxa-2-propyl-4,6-cyclohexylenemethylene) Poly(2-ethyl-l,3-dioxa-4,6-cyclohexylenemethylene) Poly(2-isopropyl-l,3-dioxa-4,6-cyclohexylenemethylene) Poly(2-methyl-l,3-dioxa-4,6-cyclohexylenemethylene) Poly(vinyl acetal) see Poly(2-methyl-l,3-dioxa4,6-cyclohexylenemethylene) Poly(vinyl butyral) see PoIy(1,3-dioxa-2-propyl4,6-cyclohexylenemethylene) Poly(vinyl pentanal acetal)
63148-65-2
63148-65-2
4.5. POLY(ANHYDRIDES) Poly (amide imide) of biphenyltetracarboxylic dianhydride Poly(3,3/,4,4/-benzophene tetracarboxylic dianhydride) Poly(3,3',4,4'-biphenyl tetracarboxylic dianhydride) Poly(2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride) Poly(methacrylic anhydride) Poly(3,3/,4,4/-oxydiphthalic anyhydride) Poly(pyromellitic dianhydride) Kapton Poly(N,N,N',N/-tetraglycidyl-4-4'-diaminodiphenylmethane hexahydrophthalic anhydride) Poly(N,N,N ',N '-tetraglycidyl-4-4 '-diaminodiphenylmethane tetrahydrophthalic anhydride)
432 536 635 693 479 457
Vicat softening point
186 1350 1350 1320 1381 1381
TABLE 4. cont'd Polymer 4.6.
Refs.
507
No experimental details
112
463
Heating rate: 2 K/min
142
703
Tg increased after storage at 773 K Heating rate: 2 K/min; 77inh only 0.21 dl/g
143
No experimental details
112
DTA heating rate
114
663
Mechanical method
144
483
Dynamic method
117
511
No method
112
768
Dynamic method
118
602 548 ~560
142
POLY(BENZOTHIAZOLES)
Poly(2,6-benzothiazolediyl6,2-benzothiazolediyloctamethylene) Poly(2,6-benzothiazolediyl-6,2-benzothiazolediyl1,3-phenylene) 4.9.
Remarks
POLY(BENZOTHIAZINOPHENOTHIAZINES)
Poly(7,7'-[lM"-dihydro-(2,3H)benzothiazino (2 ',3/-b)hexahydro( 1,2,3,4H)phenothiazine]diyl) 4.8.
Tg (K)
POLY(BENZIMIDAZOLES)
Poly(2,6-benzimidazolediyl6,2-benzimidazolediylocatamethylene) Poly(2,5-benzimidazolediyl6,2-benzimidazolediylpentamethyleneimino4-diethylamino-1,3,5-triazinediyliminopentamethylene) Poly(2,5-benzimidazolediyl-5,2-benzimidazolediyl1,3-phenylene) Poly(2,5-benzimidazolediyl-6,2-benzimidazolediyll,4-phenyleneimino-4-diphenylamino1,3,5-triazinediylimino-1,4-phenylene) Poly(2,6-benzimidazolediyl6,2-benzimidazolediyltrimethylene) Poly(2,6-benzimidazole-diylsulfonyl-5,2-benzimidazolediyl1,3-phenylene) Poly(5,5/-bibenzimidazole-2,2/-biphenylylene) 4.7.
CAS No.
POLY(BENZOXAZINES)
Polybenzoxazine B-b Polybenzoxazine B-e Polybenzoxazine B-ip Polybenzoxazine B-m Polybenzoxazine B-p
408 453 413 453 403
1410 1410 1410 1410 1410
>573 328-370 326
1539 1346 112
4.10. POLY(BENZOXAZOLES) Poly(arylene ether benzoxazole) Poly(benzoxazole) Poly(2,6-benzoxazolediyl-6,2benzoxazolediyloctamethylene) Poly(benzoxazole-5,2-diylhexamethylenebenzoxazole2,5-diyliminosebacoylimino) Poly(benzoxazole-5,2-diylhexamethylenebenzoxazole2,5-diyliminosuberoylimino) Poly(benzoxazole-5,2-diyloctamethylenebenzoxazole2,5-diyliminoadipoylimino) Poly(benzoxazole-5,2-diyloctamethylenebenzoxazole2,5-diyliminosebacoylimino) Poly(benzoxazole-5,2-diyl-l,3-phenylenebenzoxazole2,5-diyliminosebacoylimino) Poly(ra-phenylene),0,m-2-benzoxazole Poly(m-phenylene),o,ra-5-methyl-2-benzoxazole 4.11.
No method
359
Heating rate: 20 K/min
113
350
Heating rate: 20 K/min
113
358
Heating rate: 20 K/min
113
366
Heating rate: 20 K/min
113
393
Heating rate: 20 K/min
113
494-523 494-523
1474 1474
POLY(CARBORANES)
PoIy(C 2B5H 5-carboranylenedi(dimethylsilyleneoxy) dimethylsilylene) PoIy(C2B5H5-carboranylenedimethylsilyleneoxydimethylsilylene) PoIy(C2B I0H 10-carboranylenedimethylsilyleneoxydimethylsilylene) PoIy(C2 BI 0 H io-carboranylenedi(dimethylsilyleneoxy) dimethylsilylene)
< 188
Dynamic method
277, 211
Conflicting data
298 239
Mechanical method
180 178,179 181 180-182
References page VI - 253
TABLE 4. COHf7Cf Polymer Poly(C 2 Bi 0 Hiocarboranylenedi(dimethylsilyleneoxy)dimethylsilylene) 4.12.
Tg (K) 213
Remarks Mechanical method
Refs. 180-182
POLY(DIBENZOFURANS)
Poly(3,6-dibenzofurandiylsulfonyl) Poly(3,6-dibenzofurandiylsulfonyl-l,4-phenyleneoxy1,4-phenylenesulfonyl) 4.13.
CAS No.
633 563
184 184
POLY(DIOXOISOINDOLINES)
PoIy(1,3-dioxoisoindoline-2,5-diylcarbonyl1,3-dioxoisoindoline-5,2-diyl-1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diylcarbonyl1,3-dioxoisoindoline-5,2-diyl1,3-phenylenedecafluoropentamethylene-1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diylcarbonyl1,3-dioxoisoindoline-5,2-diyl1,3-phenylenehexafluorotrimethylene-1,3-phenylene) Poly(l,3-dioxoisoindoline-2,5-diylcarbonyl1,3-dioxoisoindoline-5,2-diyl-1,4-phenyleneoxy-1,4-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diylcarbonylimino1,4-phenyleneiminocarbonyl-1,3-dioxoisoindoline-5,2-diyl1,4-phenylenesulfonyl-1,4-phenylene) PoIy(1,3-dioxoisoindoline2,5-diyldodecafluorohexamethylene-1,3-dioxoisoindoline5,2-diyl-1,4-phenyleneoxy-1,4-phenylene) Poly(l,3-dioxoisoindoline-2,5-diylhexafluorotrimethylene1,3-dioxoisoindoline-5,2-diyl1,3-phenylenedecafluoropentamethylene-1,3-phenylene) Poly( 1,3-dioxoisoindoline-2,5-diylhexafluorotrimethylene1,3-dioxoisoindoline-5,2-diyl1,3-phenylenehexafluorotrimethylene-1,3-phenylene) Poly(l,3-dioxoisoindoline-2,5-diylhexafluorotrimethylene1,3-dioxoisoindoline-5,2-diyl-1,4-phenylenemethylene1,4-phenylene) Poly( 1,3-dioxoisoindoline-2,5-diylhexafluorotrimethylenel,3-dioxoisoindoline-5,2-diyl-l,3-phenyleneoxy1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diylhexafluorotrimethylenel,3-dioxoisoindoline-5,2-diyl-1,4-phenyleneoxy1,4-phenylene) Poly(l,3-dioxoisoindoline-2,5diylhexadecafluorooctamethylene-1,3-dioxoisoindoline5,2-diyl-1,4-phenyleneoxy-1,4-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diylhexafluorotrimethylene1,3-dioxoisoindoline-5,2-diyl-1,4-phenylenesulfonyl1,4-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloctafluorotetramethylene1,3-dioxoisoindoline-5,2-diyl1,3-phenylenedecafluoropentamethylene-1,3-phenylene) Poly(l,3-dioxoisoindoline-2,5-diyloctafluorotetramethylene1,3-dioxoisoindoline-5,2-diyl1,3-phenylenehexafluorotrimethylene-1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloctafluorotetramethylene1,3-dioxoisoindoline-5,2-diyl-1,4-phenyleneoxy1,4-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyltetradecafluoroheptamethylene-1,3-dioxoisoindoline5,2-diyl-1,3-phenylene-decafluoropentamethylene1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyltetradecafluoroheptamethylene-1,3-dioxoisoindoline5,2-diyl-1,3-phenylene-hexafluorotrimethylene1,3-phenylene)
~638 533-543
Dynamic method
428,905,437
Softening point; viscosity only 0.11 dl/g
148
~393
Sample hygroscopic
149
<469
Heating rate: 32K/min
124,125,150
641
Dynamic method
151
458
Heating rate: 32K/min
153
371
Heating rate: 32K/min
148
418
148
498
Heating rate: 32K/min
152
451
Heating rate: 32K/min
148
483
148
457
Heating rate: 32K/min; highly crystalline
152
533
Heating rate: 32K/min
154
417
Heating rate: 32K/min
148
432
Heating rate: 32K/min
148
485
Heating rate: 32 K/min
148
385
Heating rate: 32K/min
148
406
Heating rate: 32K/min
148
TABLE 4. cont'd Polymer
CAS No.
PoIy(1,3-dioxoisoindoline-2,5-diyltetradecafluoroheptamethylene-1,3-dioxoisoindoline5,2-diyl-1,4-phenyleneoxy-1,4-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloxy-1,3-dioxoisoindoline5,2-diyl-1,3-phenylenedecafluoropentamethylene-1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloxy-l,3-dioxoisoindoline5,2-diyl-1,3-phenylenehexafluorotrimethylene-1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloxy-l,3-dioxoisoindoline5,2-diyl-1,3-phenyleneimino-4-dimethylamino1,3,5-triazinediylimino-1,3-phenylene) Poly(l,3-dioxoisoindoline-2,5-diyloxy-l,3-dioxoisoindoline5,2-diyl-1,3-phenyleneimino-4-diphenylamino1,3,5-triazinediylimino-1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloxy-l,3-dioxoisoindoline5,2-diyl-1,3-phenyleneimino-4-phenyl1,3,5-triazinediylimino-1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloxy-l,3-dioxoisoindoline5,2-diyl-1,3-phenyleneimino-1,3,5-triazinediylimino-1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloxy-l,3-dioxoisoindoline5,2-diyl-1,3-phenyleneoxy-1,3-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloxy-l,3-dioxoisoindoline5,2-diyl-1,4-phenyleneoxy-1,4-phenylene) PoIy(1,3-dioxoisoindoline-2,5-diyloxy-l,3-dioxoisoindoline5,2-diyl-1,4-phenylene-4-phenyl-1,3,5-triazinediyl1,4-phenylene) Poly(l,3-dioxoisoindoline-5,2-diyl-1,4-phenylenesulfonyl1,4-phenylene-1,3-dioxoisoindoline-2,5-diylcarbonylimino4,4 '-biphenylyleneiminocarbonyl) Poly(l,3-dioxoisoindoline-5,2-diyl-1,4-phenylenesulfonyl1,4-phenylene-1,3-dioxoisoindoline-2,5-diylcarbonylimino1,3-phenyleneiminocarbonyl) PoIy(1,3-dioxoisoindoline-5,2-diyl- 1,4-phenylenesulfonyl1,4-phenylene-1,3-dioxoisoindoline-2,5-diylcarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(l,3-dioxoisoindoline-5,2-diyl-1,4-phenylenesulfonyl1,4-phenylene-1,3-dioxoisoindoline-2,5-diylcarbonylimino1,4-phenyleneoxy-1,4-phenylene-iminocarbonyl) PoIy(1,3-dioxoisoindoline-5,2-diyl- 1,4-phenylenesulfonyl1,4-phenylene-1,3-dioxoisoindoline-2,5-diylcarbonylimino1,4-phenylenesulfonyl-1,4-phenyleneiminocarbonyl) 4.14.
Tg (K) 460
Remarks
Refs.
Heating rate: 32K/min
393
148 148
457
Heating rate: 32K/min
148
567
Heating rate: 2K/min
142
563
Heating rate: 2K/min
142
565
Heating rate: 2K/min
142
563
Heating rate: 2 K/min
142
480
Heating rate: 32K/min
148
523
Heating rate: 2 K/min
129
628
Heating rate: 2K/min
142
643
Dynamic method
151
584
Dynamic method
151
597
Dynamic method
151
583
Dynamic method
151
580
Dynamic method
151
POLY(FLUORESCEINS)
Poly(fluorescein-3/,6/-diyloxyisophthaloyloxy)
549
183
4.15. POLY(FURAN TETRACARBOXYLIC ACID DIIMIDES) Poly(4,5,6,8,9,10-hexahydro-l,3,6,8-tetraoxofuro[3,2-c:4,5-c'] dipyrrole-2,7[lH,3H]-diyl-l,4-phenylene3-phenylquinoxaline-2,7-diylcarbonyl3-phenylquinoxaline-7,2-diyl-1,4-phenylene) Poly(4,5,6,8,9,10-hexahydro-l,3,6,8-tetraoxofuro[3,2-c:4,5-c'] dipyrrole-2,7[lH,3H]-diyl-l,4-phenylene3-phenylquinoxaline-2,7-diyloxy-3-phenylquinoxaline7,2-diyl-1,4-phenylene) Poly(4,5,6,8,9,10-hexahydro-l,3,6,8-tetraoxofuro[3,2-c:4,5-c/] dipyrrole-2,7[lH,3H]-diyl-l,4-phenylene3-phenylquinoxaline-2,7-diyl-3-phenylquinoxaline7,2-diyl-1,4-phenylene) 4.16.
528
Dynamic method
111
583
Dynamic method
111
503
Dynamic method
111
494
DTA heating rate
164
POLY(OXABICYCLONONANES)
Poly[9-oxabicyclo(3,3,l)nonane-2,6-diyloxycarbonylimino1,4-cyclohexylenemethylene1,4-cyclohexyleneiminocarbonyloxy] 53% trans, trans 70% trans, trans
502
164
References page VI - 253
TABLE 4. cont'd Polymer
CAS No.
Poly[9-oxabicyclo(3,3, l)nonane-2,6-diyloxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyloxy] Poly[9-oxabicyclo(3,3,l)nonane-2,6-diyloxycarbonyloxy1,4-phenyleneisopropylidene-1,4-phenylenecarbonyloxy] 4.17.
164
535-551 551
DTA heating rate
1490 114
513
Mechanical method
115
453
Mechanical method
116
653
Mechanical method
115
370-415
1371
543
145
529
145
~ 558
Transition indistinct
145
~ 555
Transition indistinct
145
598
145
600
145
551-603 560-607 570-636
1460 1460 1479
552
145
POLY(PHTHALIDES)
Poly(3,3-phthalidylidene-l,4-phenyleneoxy5-tert-butylisophthaloyloxy-1,4-phenylene) Poly(3,3-phthalidylidene-l,4-phenyleneoxycarbonyloxy1,4-phenylene) Poly(3,3-phthalidylidene-1,4-phenyleneoxy5-chloroisophthaloyloxy-1,4-phenylene) Poly (3,3-phthalidylidene-1,4-phenyleneoxyisophthaloyloxy1,4-phenylene) 4.22.
DTA heating rate
POLY(PHTHALAZINE)
Poly(aryl ether phthalazine) Poly(aryl ether phthalazine), 2-napthalenyl Poly(aryl ether phthalazinium) 4.21.
467
164
POLY(OXOISOINDOLINES)
Poly(A^-methyl-3,3-oxoisoindolylidene1,4-phenyleneoxyisophthaloyloxy-1,4-phenylene) Poly(N-methyl-3,3-oxoisoindolylidene1,4-phenyleneoxy terephthaloyloxy-1,4-phenylene) Poly(3,3-oxoisoindolylidene1,4-phenyleneoxyisophthaloyloxy-1,4-phenylene) Poly(3,3-oxoisoindolylidene-1,4phenyleneoxy terephthaloyloxy-1,4-phenylene) 4.20.
473
Refs.
POLY(OXINDOLES)
Poly(5,7-dichloro-3,3-oxindolylidene1,4-phenyleneoxyisophthaloyl-1,4-phenylene) Poly(3,3-oxindolylidene-1,4-phenyleneoxyisophthaloyloxy1,4-phenylene) 4.19.
Remarks
POLY(OXADIAZOLES)
Poly(arylene-1,3,4-oxadiazole) PoIy(1,3,4-oxadiazolediyl-l,3-pnenylene1,3,4-oxadiazolediyl-1,4-phenylene) PoIy(1,3,4-oxadiazolediyl-l,4-phenyleneoxy1,4-phenylene) PoIy(1,3,4-oxadiazolediyl-1,4-phenyleneoxy1,4-phenyleneisopropylidene-1,4-phenyleneoxy1,4-phenylene) PoIy(1,3,4-oxadiazolediyl-l,4-phenylene3,3-phthalidylidene-1,4-phenylene) Starburst oxadiazole 4.18.
Tg (K)
513, 538
Conflicting data
145,185
586
145
591
145
358
160
313
160
POLY(PIPERAZINES)
Poly(2,5-dimethyl-1,4-piperazinediylcarbonyloxyneopentylenesulfonylneopentyleneoxycarbonyl) Poly(2,5-dimethyl-l,4-piperazinediylcarbonyloxyneopentylenethioneopentyleneoxycarbonyl) PoIy(1,4-piperazinediyladipoyl) Poly(l,4-piperazinediylcarbonyl2,2'-biphenylylenecarbonyl) Poly(l,4-piperazinediylcarbonyloxyethyleneoxycarbonyl) Poly (1,4-piperazinediy lcarbony loxyneopenty leneoxy carbonyl) Poly(l,4-piperazinediylcarbonyloxy-9-oxabicylco[3,3,1 ]nonan-2,6-yleneoxycarbonyl)
399 466 333 343 386
No experimental details Mechanical method, heating rate: 1 K/min; low viscosity DTA heating rate
161,162 78,161 163 160 164
TABLE 4. cont'd Polymer
CAS No.
Poly(l,4-piperazinediylcarbonyl-l,4-phenylene2,2-butylidene-1,4-phenylenecarbonyl) Poly(l,4-piperazinediylisophthaloyl) Poly(l,4-piperazinediyl-l-oxotrimethylenefluoren-9-ylidene3-oxotrimethylene) Poly(l,4-piperazinediylsebacoyl) 4.23.
Tg (K)
Remarks
Refs.
492-505 465 418 ~355
165 Mechanical method, heating rate: 1 K/min Mechanical method, heating rate: 1 K/min Rather ill-defined transition
78,161 78,161 161,166-168
POLY(PIPERIDINES)
Poly(2,6-dioxopiperidine-l,4-diyltrimethylene) 4.24. POLY(PYRAZINOQUINOXALINES) Poly[3,7-diphenylpyrazino(2,3-g)quinoxaline-2,8-diyl1,3-phenylene] Poly[3,7-diphenylpyrazino(2,3-g)quinoxaline-2,8-diyl1,4-phenylene] Poly[pyrazino(2,3-g)quinoxaline-2,8-diyl-l,4-phenylene] Poly[pyrazino(2,3-g)quinoxaline-2,8-diyl-l,4-phenyleneoxy1,4-phenylene]
363
Heating rate: 10 K/min
172
638
Heating rate: 20 K/min
119
668
Heating rate: 20 K/min
119
665 626
Heating rate: 20K/min Heating rate: 20K/min
119 119
4.25. POLY(PYRAZOLES) Poly(arylene ether pyrazole) PoIy(1,3-pyrazolediyl-l,3-phenylene3,1 -pyrazolediylhexamethylene) PoIy(1,3-pyrazolediyl- 1,4-phenylene3,1-pyrazolediylhexamethylene) PoIy(1,3-pyrazolediyl-l,3-phenylene-3,l-pyrazolediyl1,4-phenylene) PoIy(1,3-pyrazolediyl-l,4-phenylene-3,l-pyrazolediyl1,4-phenylene) Poly(pyrrole), p-toluene sulfonated
463-566 343 353 353 373
DTA heating rate; high crystallinity DTA heating rate; high crystallinity DTA heating rate; high crystallinity
438 428
4.26. POLY(PYRIDAZINES) Poly(3,6-pyridazinediyloxy-l,4-phenyleneisopropylidene1,4-phenyleneoxy)
453
4.27. POLY(PYRIDINES) Poly (2,5-pyridinediylcarbonyliminohexamethyleneiminocarbonyl) Poly(2,3,5-trifluoropyridinediyloxy2,2,3,3,4,4-hexafluoropentamethyleneoxy)
322 260
4.28.
DTA heating rate; low viscosity
1390 175 175 175 175 1328 1529
Mechanical method
116
Polymer structure may contain olinkage
170 169
POLY(PYROMELLITIMIDES)
Poly(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c/] dipyrrole-2,6[ 1 H,3H]-diyl-4,4-dimethylheptamethylene) Pory(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c'] dipyrrole-2,6[lH,3H]-diyl-2,7-fluorenylene) Poly(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c'] dipyrrole-2,6[lH,3H]diyl-3-methylheptamethylene) Poly(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c'] dipyrrole-2,6[lH,3H]-diylnonamethylene) Poly(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c/] dipyrrole-2,6[lH,3H]-diyl-l,4-phenyleneoxy1,4-phenylene) Pory(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c'] dipyrrole-2,6-[lH,3H]-diyl-l,4-phenylene3-phenylquinoxaline-2,7-diylcarbonyl3-phenylquinoxaline-7,2-diyl-1,4-phenylene) Poly(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c']dipyrrol2,6[ lH,3H]-diyl-1,4-phenylene-3-phenylquinoxaline2,7-diyloxy-3-phenylquinoxaline-7,2-diyl-1,4-phenylene)
408
No experimental details
121
Heating rate: 3 K/min
120
408
No experimental details
121
383
No experimental details
121
~623
Probably ~773 513
547
Conflicting data, 119,120,122-131 transitions from 523 K upwards reported as Tg Dynamic method, heating rate 132 5 K/min Dynamic method, heating rate 5 K/min
132
References page VI - 253
TABLE 4. cont'd Polymer
CAS No.
Tg (K)
Remarks
Poly(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c'] 490 Dynamic method, heating rate dipyrrole-2,6[lH,3]-diyl-l,4-phenylene5 K/min 3-phenylquinoxaline-2,7-diyl-3-phenylquinoxaline7,2-diyl-1,4-phenylene) Pory(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c'] 459 Dynamic method, heating rate dipyrrole-2,6[lH,3H]-diyl-l,4-phenylene5 K/min 3-phenylquinoxaline-2,7-diylsulfonyl-3-phenylquinoxaline7,2-diyl-1,4-phenylene) Poly(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c'] 618 Dynamic method dipyrrole-2,6[lH,3H]-diyl-l,4-phenylenethio1,4-phenylene) Poly([N,N/(/7,p/-oxydiphenylene)pyromellitimeide] see Pory(5,7-dihydro-l,3,5,7-tetraoxobenzo[l,2-c:4,5-c'] dipyrrole-2,6[ 1 H,3H]-diyl-1,4-phenyleneoxy-1,4-phenylene) 4.29.
461 368-370
Poly(2,5-dioxo-l,3-pyrrolidinediylethylene) Poly(dodecyl-2,5-diazo-3,4-pyrrolidinediyl) Poly(l-ethyl-2,5-diazo-3,4-pyrrolidinediyl) Poly(l-hexadecyl-2,5-diazo-3,4-pyrrolidinediyl) Poly( 1 -hexyl-2,5-diazo-3,4-pyrrolidinediyl) PoIy(I-octadecyl-2,5-diazo-3,4-pyrrolidinediyl) Poly(l-octyl-2,5-diazo-3,4-pyrrolidinediyl)
408 255 523 348 422 348 393-395
Poly(l-tetradecyl-2,5-diazo-3,4-pyrrolidinediyl)
351
132
125
DSC, Mdpt, Xp zero HR DSC, Mdpt, Xp zero HR, dilatomer Heating rate: 20K/min Dilatomer DSC, Mdpt, Xp zero HR Dilatomer DSC, Mdpt, Xp zero HR Dilatomer DSC, Mdpt, Xp zero HR, dilatomer Dilatomer
1196 1196 176,177 1196 1196 1196 1196 1196 1196 1196
POLY(QUINONES)
Poly(2-acrylaminoanthraquinone) Poly(f-butylhydroquinone) Poly(methylhydroquinone) Poly(phenylhydroquinone) 4.31.
132
POLY(PYRROLIDINES)
Poly(l-butyl-2,5-diazo-3,4-pyrrolidinediyl) Poly(l-decyl-2,5-diazo-3,4-pyrrolidinediyl)
4.30.
Refs.
401 450 426 430
1294 1312 1312 1312
POLY(QUINOXALINES)
Poly(3-phenylquinoxaline-2,6-diylcarbonyl3-phenylquinoxaline-7,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,7-diylcarbonyl3-phenylquinoxaline-7,2-diyl-l,4-phenylene) Poly(3-phenylquinoxaline-2,7-diylcarbonyl3-phenylquinoxaline-7,2-diyl-1,4-phenylene1,3-dioxoisoindoline-2,5-diylcarbonyl-1,3-dioxoisoindoline5,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,7-diylcarbonyl3-phenylquinoxaline-7,2-diyl-1,4-phenyleneoxy1,4-phenylene) Poly(3-phenylquinoxaline-2,6-diyloxy-3-phenylquinoxaline6,2-diyl-4,4 '-biphenylene) Poly(3-phenylquinoxaline-2,6-diyloxy-3-phenylquinoxaline7,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,7-diyloxy-3-phenylquinoxaline7,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,7-diyloxy-3-phenylquinoxaline7,2-diyl-l,4-phenylene) Poly(3-phenylquinoxaline-2,7-diyloxy-3-phenylquinoxaline7,2-diyl-1,4-phenylene-1,3-dioxoisoindoline-2,5diylcarbonyl-1,3-dioxoisoindoline-5,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,6-diyloxy-3-phenylquinoxaline6,2-diyl-1,4-phenyleneoxy-1,4-phenylene)
583
Dynamic method
595
Values range from 531 to 651 K Dynamic method, heating rate: 5 K/min
528
133 119,134,135 111
516,544
Conflicting data
683
Dynamic method
136
565
Dynamic method
133
526, 543
119,134
571
Conflicting data possibly arising from different rate effects Dynamic method
119,134,137
527
Dynamic method
111
710
Dynamic method
136
119,134,137-139
TABLE 4. cont'd Polymer Poly(3-phenylquinoxaline-2,6-diyloxy-3-phenylquinoxaline7,2-diyl-1,4-phenyleneoxy-1,4-pheny lene) Poly(3-phenylquinoxaline-2,7-diyloxy-3-phenylquinoxaline7,2-diyl-1,4-phenyleneoxy-1,4-phenylene) Poly(3-phenylquinoxaline-2,6-diyl-3-phenylquinoxaline6,2-diyl-4,4 '-biphenylylene) Poly(3-phenylquinoxaline-2,6-diyl-3-phenylquinoxaline7,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,7-diyl-3-phenylquinoxaline7,2-diyl-1,3-phenylene) Poly(3-phenylquinoxaline-2,7-diyl-3-phenylquinoxaline7,2-diyl-l,4-pheny lene) Poly(3-phenylquinoxaline-2,7-diyl-3-phenylquinoxaline7,2-diyl-l,4-phenylene-l,3-dioxoisoindoline-2,5-diylcarbonyl1,3-dioxoisoindoline-5,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,6-diyl-3-phenylquinoxaline6,2-diyl-l,4-phenyleneoxy-1,4-phenylene) Poly(3-phenylquinoxaline-2,6-diyl-3-phenylquinoxaline7,2-diyl-1,4-phenyleneoxy-1,4-phenylene) Poly(3-phenylquinoxaline-2,7-diyl-3-phenylquinoxaline7,2-diyl-1,4-phenyleneoxy-1,4-phenylene) Poly(3-phenylquinoxaline-2,6-diylsulfonyl3-phenylquinoxaline-7,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,7-diylsulfonyl3-phenylquinoxaline-7,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,7-diylsulfonyl3-phenylquinoxaline-7,2-diyl-1,4-pheny lene1,3-dioxoisoindoline-2,5-diylcarbonyl-1,3-dioxoisiondoline5,2-diyl-1,4-phenylene) Poly(3-phenylquinoxaline-2,7-diylsulfonyl3-phenylquinoxaline-7,2-diyl-1,4-pheyleneoxy1,4-pheny lene) Poly(quinoxaline-2,7-diylcarbonylquinoxaline-7,2-diyl1,4-phenylene) Poly(quinoxaline-2,6-diyloxyquinoxaline-6,2-diyl4,4'-bipheny lene) Poly(quinoxaline-2,7-diyloxyquinoxaline-7,2-diyl1,4-phenylene) Poly(quinoxaline-2,6-diyloxyquinoxaline-6,2-diyl1,4-phenyleneoxy-1,4-phenylene) Poly(quinoxaline-2,6-diyloxyquinoxaline-7,2-diyl1,4-phenyleneoxy-1,4-phenylene) Poly(quinoxaline-2,6-diylquinoxaline-6,2-diyl-4-4 '-biphenylylene) Poly[quinoxaline-2,6-diylquinoxaline-6,2-diyldi( 1,4-phenyleneoxy)-1,4-phenylene] Poly[quinoxaline-2,7-diylquinoxaline-7,2-diyldi( 1,4-phenyleneoxy)-1,4-phenylene] Poly(quinoxaline-2,6-diylquinoxaline-6,2-diyl1,4-phenylene) Poly (quinoxaline-2,7-diylquinoxaline-7,2-diy 1-1,4-pheny lene) Poly(quinoxaline-2,6-diylquinoxaline-6,2-diyl1,4-phenyleneoxy-4,4 '-biphenylyleneoxy-1,4-phenylene) Poly(quinoxaline-2,6-diylquinoxaline-6,2-diyl1,4-phenyleneoxy-1,4-phenylene) Poly(quinoxaline-2,7-diylquinoxaline-7,2-diyl1,4-phenyleneoxy-1,4-phenylene) Poly(quinoxaline-2,7-diylquinoxaline-7,2-diyl-p-terphenyl4,4'-ylene) Poly[quinoxaline-2,6-diylquinoxaline-6,2-diyltri-( 1,4-phenyleneoxy)-1,4-phenylene] Poly[quinoxaline-2,7-diylquinoxaline-7,2-diyltri-( 1,4-phenyleneoxy)-1,4-phenylene] Poly(quinoxaline-2,7-diylsulfonylquinoxaline-7,2-diyl1,4-phenylene)
CAS No.
Tg (K) 516
Remarks
Refs.
Dynamic method
133
541
119,134,137
677
Dynamic method
136
639-698
Dynamic method
133
593
Dynamic method
134,137
590-638 533 567 558
Conflicting data; dilatometric Tg 638 K Dynamic method, heating rate: 5 K/min Values range from 558 to 693 K Dynamic method
561,533
Conflicting data
543
Dynamic method
485-618
Conflicting data
513
468, 563
119,134,139 111 119,134,136,140 133 119,134 133 119,134,135
Dynamic method, heating rate: 5 K/min Conflicting data
111
119,134
591
Heating rate: 20 K/min
119
663
Dynamic method
136
579
Heating rate: 20 K/min
119
655
Dynamic method
136
543
137
659
Dynamic method
136,141
468
Dynamic method
141
508
Heating rate: 20 K/min
119
623
Dynamic method
141
649 486
Heating rate: 20 K/min Dynamic method
119 141
661, 553
Dynamic method, conflicting data
136,137,141
580 578
119 Heating rate: 20 K/min
119
406
Dynamic method
141
489
Heating rate: 20 K/min
119
615
Heating rate: 20 K/min
119
References page VI - 253
TABLE 4. cont'd Polymer
CAS No.
Tg (K)
Remarks
Refs.
4.32. POLY(TRIAZINES) Poly(heptafluoropropyl-l,3,5-triazinediyltrimethylene) Poly[(4-H-octafluorobutyl)-l,3,5-triazinediyltrimethylene] Poly(pentafluoroethyl-l,3,5-triazinediyltrimethylene) Poly[perfluoro(propyl-l,3,5-triazinediylhexamethylene)] Poly (6-phenyl-l,3,5-triazinediylphenylimino1,3,5-triazinediylphenylimino) Poly(6-phenyl-l,2,4-triazine-5,3-diyl-2,6-pyridinediyl6-phenyl-l,2,4-triazine-3,5-diyl-l,4-phenylene)
253-255 253-255 253-255 261 541-552 533
Poly(6-phenyl-l,2,4-triazine-5,3-diyl-2,6-pyridinediyl6-phenyl-l,2,4-triazine-3,5-diyl-l,4-phenylenemethylene1,4-phenylene) Poly(6-phenyl-l,2,4-triazine-5,3-diyl-2,6-pyridinediyl6-phenyl-l,2,4-triazine-3,5-diyl-l,4-phenyleneoxy1,4-phenylene) Poly(2-H-tetrafluoroethyl-l,3,5-triazinediyltrimethylene) Poly(l,2,4-triazine-5,3-diyl-2,6-pyridinediyl-l,2,4-triazine3,6-diyl-1,4-phenyleneoxy-1,4-phenylene)
478 488 253-255 496
No measurement details No measurement details No measurement details DTA heating rate DTA heating rate
155 155 155 156 114
Dynamic method; different structural isomers may be present Dynamic method; different structural isomers may be present Dynamic method; different structural isomers may be present No measurement details Heating rate: 20K/min
157 157 157,158 155 159
4.33. POLY(TRIAZOLES) Poly(4-phenyl-l,2,4-triazolediyl-l,3-phenyleneiminoterephthaloylimino-1,3-phenylene) Poly(4-phenyl-l,2,4-triazolediyl-l,3-phenylene-4-phenyl1,2,4-triazolediyl-1,4-phenylene)
623
DTA heating rate
538
173 174
TABLE 5. COPOLYMERS Polymer Copolyester (p-hydroxybenzoic acid-isophthalic acidhydroquinone) 40:30:30 Copolyester, aromatic Copolyester, aromatic Poly (alky lene /?,/?'-bibenzoate-b-tetramethylene ether) Poly(aryl ether sulfone-&-aryl ether ketone) Poly(r-butyl methacrylate-co-styrene-co-butadiene-costyrene-co-/-butyl methacrylate) Poly(e-caprolactone-b-1,5-dioxepen-2-one- p-e-caprolactone) Poly(carbonate-co-butylene terephthalate) 0.5/0.5 Poly(3-carboxyphenyl maleimide-co-styrene) Poly(4-carboxyphenyl maleimide-costyrene) Pory(2-chloro-l,3-butadiene-co-ethyl methacrylate) Pory(2-chloro-l,3-butadiene-co-glycidyl methacrylate) Poly(chloroprene-co-ethyl methacrylate) Poly(chloroprene-co-glycidyl methacrylate) Poly(chloroprene-g-ethyl methacrylate) Poly(chloroprene-g-glycidyl methacrylate) Poly(iV-cyclohexylmaleimide-a/r-isobutene) Poly(ethylene oxide-b-dimethyl siloxane-b-ethylene oxide) Polyethylene oxide-co-epychloridrine) Poly(ethylene terephthalate-co-p-hydroxybenzoic acid) Poly(ethylene-co-methacrylate) Poly(ethylene-co-methacrylic acid) ionomer Poly(ethyl methacryate-co-methyl methacrylate, 40:60) Poly(ethyl methacrylate-co-methyl methacrylate, 30:70) Poly(furfuryl acrylate-a/r-2-hydroxyethyl methacrylate) 50:50 Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-18 Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-69 Poly(P-hydroxybutyrate-co-hydroxyvalerate)
CAS No.
25103-74-6 25053-53-6
Tg (K)
Remarks
Refs.
398-414
1436
403-433 377 205 >473 423
1509 1269 1485 1425 1377
235 363 493 493 238 257 238 256 230 243 465 156 233 333 237 330 377 365 326 269 237 257
DSC
NMR NMR
1515 1386 1273 1273 1360 1360 1543,1360 1543,1360 1360 1360 1465 1500 1415 1517 1307 1265 1552 1552 1279 1494 1494 1560
Next Page
TABLE 5. cont'd Polymer Poly (A^-(4-hydroxyphenyl)maleimide-co-allytrimethylsilane) Poly( 1,4-isoprene-b-styrene) Poly(L-lactic acid-co-DL-maleic acid) 0-45 mol% Poly(maleimide-a/r-p-trimethylsilyl-a-methylstyrene) Poly(maleimide-tf//-/?-trimethylsilylstyrene) Poly(methyl methacrylate-co styrene) Poly(methyl methacrylate-co-styrene-co-butadiene-costyrene-co-methyl methacrylate) Poly(norbornene-co-ethylene) Poly (styrene-b-isoprene) Poly(styrene-b-methylphenylsiloxane) 58% styrene Poly(styrene-c0-acrylonotrile-c0-chromium acrylate) Poly(styrene-co-maleic anhydride) Poly [styrene-b-(ethylene-ctf-butylene)-b-styrene] PoIy(Af-vinyl carbazole-co-pyrrole) Poly(vinyl chloride-co-vinyl acetate) Resorcinol-Bisphenol A copolymer, o-adamantyl
CAS No.
9003-22-9
Tg (K)
Remarks
Refs.
499 286 306-329 499 503 375 433
1289 1283 1412 1324 1324 1318 1377
428 378/213 303 369 381 233 453-473 342 373
1403 1472 1282 1537 1348 1321 1328 1359 1369
G. REFERENCES 1. L. E. Nielsen, "Mechanical Properties of Polymers", Reinhold, New York, 1962. 2. C. A. Kumins, J. Roteman, J. Polym. Sci. A, 1, 527 (1963). 3. K. Kanamaru, M. Sugiura, Kolloid Z. -Z. Polym., 194, 110 (1964). 4. M. Suguira, E. Fujii, Toyko Kogyo Shikensho Hokoku, 58, 534 (1963). 5. K. Kanamaru, M. Suguira, J. Chem. Soc. Japan, 65, 1434 (1962). 6. R. F. Boyer, Rubber Chem. Technol., 63, 1303 (1963). 7. T. M. A. Hossain, T. Iijima, S. Morita, H. Maeda, J. Appl. Polym. Sci., 13, 541 (1969). 8. T. R. Manley, Polymer, 10, 148 (1969). 9. A. J. Kovacs, J. Polym, Sci., 30, 131 (1958). 10. N. Bekkedahl, J. Res. Nat. Bur. Std., 43, 145 (1949). 11. J. H. Sewell, Royal Aircraft Establishment, Farnborough, Hants. UK, Unpublished report. 12. T. Holleman, Rheol. Acta, 10, No. 2, (1971). 13. A. Eisenberg, A. V. Tolbolsky, J. Polym. Sci., 61, 483 (1962). 14. S. Nakamura, A. V. Tolbolsky, Rept. Progr. Polym. Phys. Japan, 12, 303 (1969). 15. J. J. Maurer, H. C. Tsein, J. Appl. Polym. Sci., 8, 1719 (1964). 16. F. C. Stehling, L. Mandelkern, Macromolecules, 3, 242 (1970). 17. G. M. Martin, S. S. Rogers, L. Mandelkern, J. Polym. Sci., 20, 579 (1956). 18. R. F. Boyer, R. S. Spencer, "Advances in Colloid Science", vol. II, Interscience, New York, 1946, p.l. 19. R. H. Wiley, J. Polym. Sci., 2, 10 (1947). 20. L. Turunen, Kunststoffe, 52, 672 (1962). 21. B. S. Sully, "Science of Surface Coatings", Ernest Benn, 1962, p. 281. 22. R. H. Wiley, G. M. Brauer, J. Polym. Sci., 3, 455 (1948).
23. R. H. Wiley, G. M. Brauer, J. Polym. Sci., 3, 647 (1948). 24. R. H. Wiley, G. M. Brauer, A. R. Bennett, J. Polym. Sci., 5, 609 (1950). 25. R. B. Beevers, Trans. Faraday Soc, 58, 1465 (1962). 26. R. B. Beevers, E. F. T. White, Trans. Faraday Soc, 56,1529 (1960). 27. R. B. Beevers, E. F. T. White, Trans. Faraday Soc, 56, 744 (1960). 28. K. H. Illers, Kolloid Z. -Z. Polym., 190, 16 (1963). 29. P. L. Magagnini, Chim. Ind. (Milan), 49, 1041 (1967). 30. R. Kaneko, Chem. High Polym. (Toyko), 24, 272 (1967). 31. K. R. Dunham, J. Vandenberghe, J. W. H. Faber, W. F. Fowler, J. Appl. Polym. Sci., 7, 143 (1963). 32. B. Maxwell, L. F. Rahm, SPE. J., 6, No. 9, 7 (1950). 33. S. Newman, S. Strella, J. Appl. Polym. Sci., 9,2297 (1965). 34. S. L. Rosen, Polym. Eng. Sci., 7, 115 (1967). 35. R. J. Seward, Rubber Chem. Techno., 43, 1 (1970). 36. I. Momiyama, H. Iwai, S. Matsuzaki, Shikizai Kyokaishi, 43, 427 (1970); CA 74, 4067c (1971). 37. G. Salee, J. Appl. Polym Sci., 15, 2049 (1971) 38. L. E. Nielsen, R. Buchdahl, R. Levreault, J. Appl. Phys., 21, 607 (1950). 39. F. S. Conant, J. W. Liska, J. Appl. Phys., 15, 767 (1944). 40. F. S. Owens, US pat. 3,514,427, 26 May 1970. 41. J. A. Gorbatkina, V. G. Ivanova-Mumjieva, IUPAC Preprints, Intern, Symp, Macromol. Chem. Toronto, Section A9.9 (1968). 42. W. J. Jackson, T. F. Gray, J. R. Caldwell, J. Appl. Polym. Sci., 14, 685 (1970). 43. "RAPRA Data Handbook Series on Transition Temperatures" (1973) by Rubber and Plastics Research Association of Great Britain, Shawbury, Shrewsbury, SY4 4NR, England. 44. O. G. Lewis, "Physical Constants of Linear Homopolymers", Springer-Verlag, 1968.
Previous Page
TABLE 5. cont'd Polymer Poly (A^-(4-hydroxyphenyl)maleimide-co-allytrimethylsilane) Poly( 1,4-isoprene-b-styrene) Poly(L-lactic acid-co-DL-maleic acid) 0-45 mol% Poly(maleimide-a/r-p-trimethylsilyl-a-methylstyrene) Poly(maleimide-tf//-/?-trimethylsilylstyrene) Poly(methyl methacrylate-co styrene) Poly(methyl methacrylate-co-styrene-co-butadiene-costyrene-co-methyl methacrylate) Poly(norbornene-co-ethylene) Poly (styrene-b-isoprene) Poly(styrene-b-methylphenylsiloxane) 58% styrene Poly(styrene-c0-acrylonotrile-c0-chromium acrylate) Poly(styrene-co-maleic anhydride) Poly [styrene-b-(ethylene-ctf-butylene)-b-styrene] PoIy(Af-vinyl carbazole-co-pyrrole) Poly(vinyl chloride-co-vinyl acetate) Resorcinol-Bisphenol A copolymer, o-adamantyl
CAS No.
9003-22-9
Tg (K)
Remarks
Refs.
499 286 306-329 499 503 375 433
1289 1283 1412 1324 1324 1318 1377
428 378/213 303 369 381 233 453-473 342 373
1403 1472 1282 1537 1348 1321 1328 1359 1369
G. REFERENCES 1. L. E. Nielsen, "Mechanical Properties of Polymers", Reinhold, New York, 1962. 2. C. A. Kumins, J. Roteman, J. Polym. Sci. A, 1, 527 (1963). 3. K. Kanamaru, M. Sugiura, Kolloid Z. -Z. Polym., 194, 110 (1964). 4. M. Suguira, E. Fujii, Toyko Kogyo Shikensho Hokoku, 58, 534 (1963). 5. K. Kanamaru, M. Suguira, J. Chem. Soc. Japan, 65, 1434 (1962). 6. R. F. Boyer, Rubber Chem. Technol., 63, 1303 (1963). 7. T. M. A. Hossain, T. Iijima, S. Morita, H. Maeda, J. Appl. Polym. Sci., 13, 541 (1969). 8. T. R. Manley, Polymer, 10, 148 (1969). 9. A. J. Kovacs, J. Polym, Sci., 30, 131 (1958). 10. N. Bekkedahl, J. Res. Nat. Bur. Std., 43, 145 (1949). 11. J. H. Sewell, Royal Aircraft Establishment, Farnborough, Hants. UK, Unpublished report. 12. T. Holleman, Rheol. Acta, 10, No. 2, (1971). 13. A. Eisenberg, A. V. Tolbolsky, J. Polym. Sci., 61, 483 (1962). 14. S. Nakamura, A. V. Tolbolsky, Rept. Progr. Polym. Phys. Japan, 12, 303 (1969). 15. J. J. Maurer, H. C. Tsein, J. Appl. Polym. Sci., 8, 1719 (1964). 16. F. C. Stehling, L. Mandelkern, Macromolecules, 3, 242 (1970). 17. G. M. Martin, S. S. Rogers, L. Mandelkern, J. Polym. Sci., 20, 579 (1956). 18. R. F. Boyer, R. S. Spencer, "Advances in Colloid Science", vol. II, Interscience, New York, 1946, p.l. 19. R. H. Wiley, J. Polym. Sci., 2, 10 (1947). 20. L. Turunen, Kunststoffe, 52, 672 (1962). 21. B. S. Sully, "Science of Surface Coatings", Ernest Benn, 1962, p. 281. 22. R. H. Wiley, G. M. Brauer, J. Polym. Sci., 3, 455 (1948).
23. R. H. Wiley, G. M. Brauer, J. Polym. Sci., 3, 647 (1948). 24. R. H. Wiley, G. M. Brauer, A. R. Bennett, J. Polym. Sci., 5, 609 (1950). 25. R. B. Beevers, Trans. Faraday Soc, 58, 1465 (1962). 26. R. B. Beevers, E. F. T. White, Trans. Faraday Soc, 56,1529 (1960). 27. R. B. Beevers, E. F. T. White, Trans. Faraday Soc, 56, 744 (1960). 28. K. H. Illers, Kolloid Z. -Z. Polym., 190, 16 (1963). 29. P. L. Magagnini, Chim. Ind. (Milan), 49, 1041 (1967). 30. R. Kaneko, Chem. High Polym. (Toyko), 24, 272 (1967). 31. K. R. Dunham, J. Vandenberghe, J. W. H. Faber, W. F. Fowler, J. Appl. Polym. Sci., 7, 143 (1963). 32. B. Maxwell, L. F. Rahm, SPE. J., 6, No. 9, 7 (1950). 33. S. Newman, S. Strella, J. Appl. Polym. Sci., 9,2297 (1965). 34. S. L. Rosen, Polym. Eng. Sci., 7, 115 (1967). 35. R. J. Seward, Rubber Chem. Techno., 43, 1 (1970). 36. I. Momiyama, H. Iwai, S. Matsuzaki, Shikizai Kyokaishi, 43, 427 (1970); CA 74, 4067c (1971). 37. G. Salee, J. Appl. Polym Sci., 15, 2049 (1971) 38. L. E. Nielsen, R. Buchdahl, R. Levreault, J. Appl. Phys., 21, 607 (1950). 39. F. S. Conant, J. W. Liska, J. Appl. Phys., 15, 767 (1944). 40. F. S. Owens, US pat. 3,514,427, 26 May 1970. 41. J. A. Gorbatkina, V. G. Ivanova-Mumjieva, IUPAC Preprints, Intern, Symp, Macromol. Chem. Toronto, Section A9.9 (1968). 42. W. J. Jackson, T. F. Gray, J. R. Caldwell, J. Appl. Polym. Sci., 14, 685 (1970). 43. "RAPRA Data Handbook Series on Transition Temperatures" (1973) by Rubber and Plastics Research Association of Great Britain, Shawbury, Shrewsbury, SY4 4NR, England. 44. O. G. Lewis, "Physical Constants of Linear Homopolymers", Springer-Verlag, 1968.
45. W. A. Lee, J. Polym. Sci. A-2, 8, No. 4, 444 (1970). 46. J. H. Gibbs, in: J. D. Mackenzie (Ed.), "Modern Aspects of the Vitreous State", Butterworths, London, 1960, p.152. 47. S. Krimm, A. V. Tobolsky, J. Polym. Sci., 6, 667 (1951). 48. M. C. Shen, A. Eisenberg, in: H. Reiss (Ed.), "Progress in Solid State Chemistry", vol. 3, Pergamon Press, NY, 1966, p. 407; reprint in Rubber Chem. Technol., 43, 95 (1970). 49. A. Eisenberg, M. Shen, Rubber Chem. Technol., 43, 156 (1970). 50. G. Allen, SCI Plastics Polymer Group Symp., London, Sept. 1962. 51. B. G. Ranby, K. S. Chan, H. Brumberger, J. Polym. Sci., 58, 545 (1962). 52. S. A. Iobst, J. A. Manson, ACS Polymer Preprints, 11, 765 (1970). 53. W. Schemann, H. G. Zachmann, Kolloid Z. -Z. Polym., 241, 921 (1970). 54. V. P. Roshchupkin, V. V. Kochervinskii, Vysokomol. Soedin. B, 13, 194 (1971). 55. J. M. Barton, Polymer, 10, 151 (1969). 56. W. Wrasidlo, Macromolecules, 4, 642, (1971). 57. G. W. Miller, J. Appl. Polym. Sci., 15, 2335 (1971). 58. M. L. Williams, R. F. Landel, J. D. Ferry, J. Am. Chem. Soc, 77, 3701 (1955). 59. A. F. Lewis, J. Polym. Sci. B, 1, 649 (1963). 60. Y. V. Zelenev, V. I. Vysokomol. Soedin. A, 11, 920 (1969); (transl'n in Polymer Sci. USSR, 11, 1040 (1969)). 61. R. Zannetti, P. Manaresi, L. Baldi, J. Polym. Sci., 62, S33 (1962). 62. J. Heller, D. J. Lyman, J. Polym. Sci. B, 1, 317 (1963). 63. A. Quach, R. Shima, J. Appl. Phys., 42, 4592 (1971). 64. S. Ichihara, A. Komatsu, Y. Tsujita, T. Noe, T. Hata, Polym. J. (Japan), 2, 530 (1971). 65. A. J. Kovacs, S. Y. Hobbs, J. Appl. Polym. Sci., 16, 301, (1972). 66. H. G. Killian, E. Jenckel, in: K. A. Wolf (Ed.), "Struktur und Physikalisches Verhalten der Kunststoffe", SpringerVerlag, 1962, p. 176. 67. E. W. Fischer, F. Kloos, G. Lieser, J. Polym. Sci. B, 7, 845 (1969). 68. Y. Aoki, A. Nobuta, A. Chiba, M. Kaneko, Polym. J. (Japan), 2, 502 (1971). 69. A. B. Romberger, D. P. Eastman, J. L. Hunt, J. Chem. Phys., 51, 3723 (1963). 70. G. A. Clegg, T. R Melia, Polymer, 11, 245 (1970). 71. R. Hoffman, W. Knappe, Kolloid -Z. -Z Polym., 247, 763 (1971). 72. A. Lambert, Polymer, 10, 319 (1969). 73. J. J. Maurer, Rubber Chem. Technol., 42, 110 (1969). 74. S. M. Wolpert, A. Weitz, B. Wunderlich, J. Polym. Sci. A-2, 9, 1887 (1971). 75. G. A. Gordon, J. Polym. Sci. A-2, 9, 1693 (1971). 76. R. W. Warfield, SPE J., 15, 625 (1959). 77. A. Rembaum, J. Polym. Sci. C, 157, (1970). 78. S. C. Temin, J. Polym. Sci., 9, 471 (1965). 79. J. Periad, A. Banderet, G. Reiss, Angew. Makromol. Chem., 15, 37 (1971).
80. R. F. Boyer, Changements de Phases, Soc. Chim. Phys., Paris, 1952, p. 383. 81. E. H. Riddle, Monomeric Acrylic Esters, Reinhold, New York, 1954, p. 59. 82. A. L. Machek, J. Elastoplastics, 1, 213 (1969). 83. W. G. Barb, J. Polym. Sci., 37, 515 (1959). 84. H. Aida, M. Urushizaki, H. Takeuchi, Fukui Daigaku Kogakubu Kenyu Hokoku, 18, 173 (1970); Chem. Abstr., 74, 42806a (1971). 85. M. Tsuge, S. Tanimoto, S. Tanaka, Kogyo Kagaku Zasshi, 73, 440 (1970); Chem. Abstr., 72, 133340u (1970). 86. A. Charlesby, R. H. Partridge, Proc. Roy. Soc. A, 271, 170 (1963). 87. M. Mosiesk, Intern. J. Appl. Radiat. Isotopes, 21,11 (1970). 88. J. R. Stevens, A. C. Mao, J. Appl. Phys., 41, 4273 (1970). 89. S. Y. Chuang, S. J. Tao, J. M. Wilkenfeld, J. Appl. Phys., 43, 737 (1972). 90. J. E. Guillet, E. Dan, R. S. Mitchell, J. P. Valleau, Nature Phys. Sci., 234, 135 (1971). 91. J. N. Gayles, W. L. Peticolas, Light Scattering Spectr. Solids, Proc. Intern. Conf., 1968, Ed. G.B. Wright, Springer-Verlag, New York, p. 715 (1969); Chem. Abstr., 72, 22089z (1970). 92. A. Lavoie, J. E. Guillet, Macromolecules, 2, 443 (1963). 93. S. Nakamura, S. Shindo, K. Matsuzaki, J. Polym. Sci. B, 9, 591 (1971). 94. E. Sacher, J. Macromol. Sci. B, 4, 449 (1970). 95. T. Takamatsu, E. Fukada, Rika Gaku Kenkyusho Hokoku, 46, 47 (1970); CA, 74, 23281J (1971). 96. B. M. Grieveson, Polymer, 1, 499 (1960). 97. D. W. Brown, L. A. Wall, J. Polym. Sci. A-2, 7, 601 (1969). 98. E. Jenckel, R. Heusch, Kolloid -Z., 130, 89 (1953). 99. H. Jacobs, E. Jenckel, Makromol. Chem., 47, 72 (1961). 100. E. A. DiMarsio, J. H. Gibbs, J. Polym. Sci. A, 1, 1417 (1963). 101. J. Kolarik, J. Janacek, J. Polym. Sci. C, 16, Pt. 1,441 (1967). 102. G. Allen, J. McAinsh, G.M. Jeffs, Polymer, 12, 85 (1971). 103. R. D. McCammon, R. G. Saba, R. N. Work, J. Polym. Sci. A-2, 7, 1721 (1969). 104. G. Pezzin, F. Zilio-Grandi, P. Sanmartin, Euro. Polym. J., 6, 1053 (1970). 105. F. M. Smekhov, A. I. Nepomnyashchii, A. T. Sanzharovskii, S.V. Yakubovich, Vysokomol. Soedin. A., 13, 2012 (1971); (transl'n in Polym. Sci., USSR, 13, 2362 (1971)). 106. K. Ueberreiter, U. Rohde-Liebenau, Makromol. Chem., 49, 164 (1961). 107. J. A. Faucher, J. V Koleske, E. R. Santee, J. J Stratta, C. W. Wilson, J. Appl. Phys., 37, 3962 (1966). 108. J. A. Faucher, J. Polym. Sci. B, 3, 143 (1965). 109. IUPAC, "Nomenclature of Organic Chemistry", Sections A & B, Third Edit., Sect. C, Second Edit., London, Butterworths, 1969. 110. Macromolecules, 1, 193, (1968) and IUPAC Information Bulletin Appendix No. 29, 1972. 111. J. M. Augl, J. V. Duffy, J. Polym. Sci. A-I, 9, 1343 (1971). 112. F. D. Trischler, K. J. Kjoller, H. H. Levine, ACS Org. Coatings Plast. Chem., 27, 381 (1967).
113. W. De Winter, R. Stein, H. Unwents, C. Masquelier, J. Polym. Sci. A-I, 8, 1955 (1970). 114. G. F. L. Ehlers, K. R. Fisch, Appl. Polym. Symp., 8, 171 (1969). 115. V. V. Korshak, V. M. Mamedov, G. E. Golubkov, D. R. Tur, Vysokomol. Soedin. B, 12, 57 (1970). 116. R. N. Johnson, A. G. Farnham, R. A. Glendinning, W. F. Hale, C. N. Merriam, J. Polym. Sci. A-I, 5, 2375 (1967). 117. J. M. Augl, W. J. Wrasidlo, J. Polym. Sci. A-1,8,63 (1970). 118. P. M. Hergenrother, H. H. Levine, J. Polym. Sci. A-I, 4, 2341 (1966). 119. W. Wrasidlo, AD 718834 (1971); in part in ACS Polym. Preprints, 12, 755 (1971). 120. J. K. Gilham, M. B. Roller, Polym. Eng. Sci., 11, 295 (1971). 121. W. M. Edwards, I. M. Robinson, US pat. 2,710,853,14 June 1955, via Ref. 128. 122. K. W. Doak, Modern Plastics Encyclopedia, 45, IA, 14 (1967). 123. J. M. Barton, J. P. Critchley, Polymer, 11, 212 (1970). 124. S. L. Cooper, A. D. Mair, A. V. Tobolsky, Textile Res. J., 35, 1110(1965). 125. J. H. Freeman, L. W. Frost, G. M. Bower, E. J. Traynor, Conf. Structural Plastics, Adhesives, Filament Wound Composites, WPAFB, Dayton, Ohio, 1, 30 (1962). 126. G. A. Bernier, D. E. Kline, J. Appl. Polym. Sci., 12, 593 (1968). 127. A. D. Mair, M. C. Shen, A. V. Tobolsky, AD 604010 (1964) "High temperature polymers: H-FiIm and SP-Polymer", ONR Tech. Rept. RLT-83; via Ref. 126. 128. C. E. Sroog, J. Polym. Sci. C, 16,1191 (1967); data quoted from W. E. Tatum, L. E. Amborski, C. W. Gerow, J. F. Heacock, R. S. Mallouk, Electrical Insulation Conf., Chicago, 1963. 129. A. V. Sidorovich, Ye. V. Kuvshinskii, Polym. Sci. USSR, 10, 1627 (1968); (transl'n of Vysokomol. Soedin. A, 10, 1401 (1968). 130. W. Wrasidlo, J.M. Augl, J. Polym. Sci. A-I, 7, 321 (1969). 131. G. A. Progany, Polymer, 11, 66 (1970). 132. J. M. Augl, Polym. Sci. A-I, 8, 3145 (1970). 133. W. Wrasidlo, ACS Org. Coatings Plast. Chem., 30, 97 (1970). 134. P. M. Hergenrother, AD 710504 (1970). Includes values of N. J. Johnston and W. J. Wrasidlo. 135. W. Wrasidlo, J. M. Augl, Macromolecules, 3, 544 (1970). 136. P. M. Hergenrother, H. H. Levine, J. Polym. Sci. A-I, 5, 1453 (1967). 137. W. Wrasidlo, J. Polym. Sci. A-I, 8, 1107 (1970). 138. W. Wrasidlo, J. M. Augl, J. Polym. Sci. B, 7, 281 (1969). 139. W. Wrasidlo, J. M. Augl, J. Polym. Sci. A-I, 7, 3393 (1969). 140. P. M. Hergenrother, SAMPE Quarterly, 3, 1 (1971). 141. P. M. Hergenrother, D. E. Kiyohara, Macromolecules, 3, 387 (1970). 142. R. J. Kray, R. Seltzer, R. A. E. Winter, ACS Org. Coatings Plast. Chem., 31, 569 (1971).
143. 144. 145. 146.
147.
148. 149. 150. 151. 152. 153.
154. 155. 156.
157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169.
170.
171. 172. 173.
J. K. Gilham, Polym. Eng. Sci., 7, 225 (1967). J. K. Gilham, Science, 139, 494 (1963). P. W. Morgan, J. Polym. Sci. A, 2, 437 (1964). G. M. Bower, J. H. Freeman, E. J. Traynor, L. W. Frost, H. A. Burgman, C. R. Ruffing, J. Polym. Sci. A-I, 6, 877 (1968). J. H. Freeman, L. W. Frost, G. M. Bower, E. J. Traynor, H. A. Burgman, C. R. Ruffing, Polymer. Eng. Sci., 9, 56 (1969). J. P. Critchley, V. C. R. McLoughlin, J. Thrower, I. M. White, Brit. Polym. J., 2, 288 (1970). R. Dine-Hart, W. W. Wright, Royal Aircraft Establishment, Farnborough, Hants., UK, Unpublished results. J. Thrower, W. A. Lee, Royal Aircraft Establishment, Farnsborough, Hants., UK, Unpublished results. W. Wrasidlo, J. M. Augl, J. Polym. Sci. A-1,7,1589 (1969). J. P. Critchely, M. A. White, Royal Aircraft Establishment, Farnsborough, Hants., UK, Unpublished results. J. P. Critchley, M. A. White, Royal Aircraft Establishment, Farnsborough, Hants., UK, J. Polym. Sci. A-I, 10, 1809 (1972). J. P. Critchley, Royal Aircraft Establishment, Farnsborough, Hants., UK, Unpublished results. I. M. Dolgopol'skii, Kauch. I Rezina, 30, No. 2, 31 (1971), (transl'n in Soviet Rubber Technol., 30, No. 2, 28 (1971). E. Dorfman, W. E. Emerson, R. J. Gruber, A. A. Lemper, B. M. Rushton, T. L. Graham, Angew. Makromol. Chem., 16/17, 75 (1971). P. M. Hergenrother, D. E. Kiyohara, J. Macromol. Sci. A, 5, 365 (1971). W. H. Wrasidlo, P. M. Hergenrother, Macromolecules, 3, 548 (1970). W. Wrasidlo, J. Polym. Sci., A-2, 9, 1603 (1971). G. L. Brode, ACS Polym. Preprints, 6, 626 (1965). R. G. Beaman, J. Appl. Polym. Sci., 9, 3949 (1965). W. W. Moseley, R. G. Parrish; private communication to Ref. 161. E. L. Wittbecker, Chem. Eng. News, 41, 41 (1963). A. H. Frazer, Macromolecules, 1, 199 (1968). A. Schiller, J. C. Petropoulos, C. S. H. Chen, J. Appl. Polym. Sci., 8, 1699 (1964). M. E. Baird, G. T. Goldsworthy, C. J. Creasey, J. Polym. Sci. B, 6, 737 (1968). M. E. Baird, J. Polym. Sci. A-2, 8, 739 (1970). R J. Flory, L. Mandelkern, H. K. Hall, J. Am. Chem. Soc, 73, 2532 (1951). P. Johncock, R A. Grattan, M. A. H. Hewins, Royal Aircraft Establishment, Farnsborough, Hants., UK -Unpublished report. O. Ishizuka, A. Okada, S. Ueda, T. Muroi, I. Ikoma, Chem. High Polymers (Tokyo), 17, 143 (1960); Chem. Abstr., 55, 15997c (1961). F. D. Hartley, F. W. Lord, L. B. Morgan, Intern. Symp. Macromol. Chem., Ric. Sci., 25, 577 (1955). H. K. Reimschuessel, L. G. Roldan, J. P. Sibilia, J. Polym. Sci. A-2, 6, 559 (1968). J. Preston, US pat. 3,376,28, 2 April, 1968.
174. M. R. Lilyquist, J. R. Holden, J. Polym. Sci. C, 19, 77 (1967). 175. J. K. Stille, M. A. Bedford, J. Polym. Sci. A-I, 6, 2331 (1968). 176. H. K. Reimschuessel, K. P. Klein, G. J. Schmitt, Macromolecules, 2, 567 (1969). 177. H. K. Reimschuessel, K. P. Klein, J. Polym. Sci. A-I, 9, 3071 (1971). 178. R. E. Kesting, K. F. Jackson, E. B. Klusmann, F. J. Gerhart, J. Appl. Polym. Sci., 14, 2525 (1970). 179. R. E. Kesting, K. F. Jackson, J. M. Newman, J. Appl. Polym. Sci., 15, 1527 (1971). 180. J. M. Augl, AD 718329 (1970). 181. E. J. Zaganiaris, L. H. Sperling, A. V. Tobolsky, J. Macromol. Sci. A-I, 6, 1111 (1967). 182. L. H. Sperling, S. L. Cooper, A. V. Tobolsky, J. Appl. Polym. Sci., 10, 1725 (1966). 183. A. B. Thompson, D. W. Woods, Trans. Faraday Soc, 52, 1383 (1956). 184. H. A. Vogel, J. Polym. Sci. A-I, 8, 2035 (1970). 185. Z. Dobkowski, B. Krajewski, Z. Weilgosz, Polim. Tworz. Wielk., 15, 428 (1970). 186. J. C. H. Hwa, W. A. Fleming, L. Miller, J. Polym. Sci. A, 2, 2385 (1964). 187. K. Kanamura, M. Hirata, Kolloid-Z. -Z. Polym., 230, 206 (1969). 188. R. F. Clash, L. M. Runkieweiz, Ind. Eng. Chem., 36, 279 (1944). 189. J. M. G. Cowie, R M. Toporowski, E Costaschuk, Makromol. Chem., 121, 51 (1969). 190. C. Klason, J. Kubat, A. de Ruvo, Rheol. Acta, 6,390 (1967). 191. K. E. Perepelkin, Mekh. Polim., 5, 790 (1971). 192. T. Hatakeyama, H. Kanetsuna, Chem. High Polymer (Tokyo), 26, 76 (1969). 193. J. Kubat, C. Pattyranie, Nature, 215, 390 (1967). 194. E. Fukada, M. Date, N. Hirai, J. Polym. Sci. C, 23, Pt. 2,509 (1968). 195. V. A. Kargin, R V. Kozlov, Nai-Ch'ang Wang, Dokl. Akad. Nauk SSSR, 130, 356 (1960); Chem. Abstr., 56, 605b (1962). 196. K. Tsuge, Y. Wada, J. Phys. Soc. (Japan), 17, 156 (1962); via Ref. 199. 197. G. R Mikhailov, A. I. Artyukhov, V. A. Shevelev, Polym. Sci. USSR, 11, 553 (1969)(transl'n of Vysokomol. Seodin. A, 11, 553 (1969)). 198. E. L. Back, I. E. Dioriksson, Svensk Paperstid., 72, 687 (1969); via Chem. Titles, No. 26 (1969). 199. Y. Ogiwara, H. Kubota, S. Hayashi, N. Mitomo, J. Appl. Polym. Sci., 14, 303 (1970). 200. Y. Nakamura, J. C. Arthur, M. Negishi, K. Doi, E. Kageyama, K. Kudo, J. Appl. Polym. Sci., 14, 929 (1970). 201. F. E. Wiley, Ind. Eng. Chem., 34, 1052 (1942). 202. J. K. Gillham, R. F. Schwenker, Appl. Polym. Symp., 2, 59 (1966). 203. A. Sharpies, F. L. Swinton, J. Polym. Sci., 50, 53 (1961).
204. J. H. Daane, R. E. Barker, J. Polym. Sci. B, 2, 343 (1964). 205. K. Nakamura, Chem. High Polym. (Tokyo), 13, 47 (1956). 206. L. Mandelkern, P. J. Flory, J. Am. Chem. Soc, 73, 3206 (1951). 207. J. Russell, R. G. Van Kerpel, J. Polym. Sci., 25, 77 (1957). 208. R. E. Barker, C. R. Thomas, J. Appl. Phys., 35, 87 (1964). 209. B. S. Sprague, J. Polym. Sci. C, 20, 159 (1967); via ref. 7. 210. N. N. Druzhinina, M. P. Pen'kova, R. M. Livshits, Z. A. Rogovin, Polym. Sci. USSR, 10,3181 (1968) (transl'n of Vysokomol. Soedin. A, 10, 2743 (1968)). 211. K. S. Patel, K. C. Patel, R. D. Patel, Makromol. Chem., 132, 7 (1970). 212. J. K. Gillham, Appl. Polym. Symp., 2, 45 (1966). 213. J. M. G. Cowie, R. J. Ranson, Makromol. Chem., 143, 105 (1971). 214. K. Ueberreiter, Z. Physik. Chem. B, 48, 197 (1941); Chem. Abstr., 36, 1489 (1942). 215. A. F. Klarman, A. V. Galanti, L. H. Sperling, J. Polym. Sci. A-2, 7, 1513 (1969). 216. R. Houwink, "Fundamentals of Synthetic Polymer Technology", Elsevier, New York, 1949, p. 49. 217. G. A. Sorokin, I. V. Tishunin, E. N. Forminykh, Vysokomol. Soedin. B, 11, 522 (1969). 218. W. J. Feast, W. K. R. Musgrave, N. Reeves, J. Polym. Sci. A-I, 9, 2733 (1971). 219. N. H. Reinking, A. E. Bamabeo, W. F. Hale, J. Appl. Polymer. Sci., 7, 2153 (1963). 220. J. LaI, G. S. Trick, J. Polym. Sci. A-I, 8, 2339 (1970). 221. A. S. Hay, R. F. Clark, Macromolecules, 3, 533 (1970). 222. A. R. Blythe, G. M. Jeffs, J. Macromol. Sci. B, 3, 141 (1969). 223. D. J. Marks, Thesis, Manchester, Univ, 1961. 224. G. Allen, J. Hurst, Unpublished work. 225. G. Allen, C. Booth, S. J. Hunt, C. Price, F. Vernon, R. F. Warren, Polymer, 8, 406 (1967). 226. P. G. Wapner, (supervisor: W. C. Forsman), PhD. Thesis, Univ. Pennsylvania 1971; via Diss. Abstr. Intern. B, 32, 2332 (1971). 227. N. Doddi, W. C. Forsman, C. C. Price, Macromolecules, 4, 648 (1971). 228. H. Schnell, L. Bottenbruch, G. Darsow, K. Weirauch, Brit. 1,400,00, 15. Jan. 1969. 229. P. E. Wei, P. E. Butler, J. Polym. Sci. A-I, 6, 2461 (1968). 230. V. Frosini, E. Butta, M. Calamia, J. Appl. Polym. Sci., 11, 527 (1967). 231. F. S. Dainton, D. M. Evans, F. E. Hoare, T. P. Meila, Polymer, 3, 271 (1962). 232. D. J. H. Sandiford, J. Appl. Chem., 8, 188 (1958). 233. K. -H. Helwege, J. Hennig, W. Knappe, Kolloid Z. -Z. Polym., 186, 29 (1962). 234. K. -H. Helwege, R. Hoffman, W. Knappe, Kolloid Z.-Z. Polym., 226, 109 (1968). 235. M. Barccaredda, E. Butta, V. Frosini, Eur. Polym. J., 2, 423 (1966). 236. A. Nagai, T. Ishibashi, M. Takayanagi, Rept. Progr. Polym. Phys. Japan, 10, 341 (1967).
237. A. I. Marei, Ye. A. Sidorovich, G. Ye. Novikova, E. I. Rodina, Polym. Sci. USSR, 10, 630 (1968) (transl'n of Vysokomol. Soedin. A, 10, 542 (1968)). 238. J. A. Faucher, J. V. Koleske, Polymer, 9, 44 (1968). 239. J. C. Swallow, Proc. Roy. Soc, (London) A, 238, 1 (1957). 240. L. Mandelkern, N. L. Jain, H. Kim, J. Polym. Sci., A-2, 6, 165 (1968); from results of Ref. 241. 241. Y. Ishida, M. Matsuo, M. Takayanagi, J. Polym. Sci. B, 3, 321 (1965). 242. A. AoIo, S. Sawada, Repts. Progr. Polym. Phys. (Japan), 10, 261,509 (1967). 243. W. G. Miller, J. H. Saunders, J. Appl. Polym. Sci., 13, 1277 (1969). 244. E. J. Vandenberg, R. H. Ralston, B. J. Kocher, Rubber Age, 102, 47 (1970). 245. Yu. K. Godovskii, Yu. S. Lipatov, Polym. Sci. USSR, 10, 34 (1968) (transl'n of Vysokomol. Soedin. A, 10, 32 (1968)). 246. Yu. K. Govodskii, Yu. S. Lipatov, Vysokomol. Soedin. B, 10, 323 (1968). 247. A. Conix, J. Polym. Sci., 29, 343 (1958). 248. R. H. Gobran, M. B. Berenbaum, ACS Meeting 133, April 1958; via E.R. Bertozzi, Rubber Chem. Technol., 41, 114 (1968). 249. A. V. Tobolsky, W. J. MacKnight, in: H. F. Mark, E. H. Immergut (Eds.), "Polymer Reviews", vol. 13: Polymeric Sulfur and Related Polymer, Interscience, 1965, p. 35. 250. G. Williams, Trans. Faraday Soc, 59, 1397 (1963). 251. B. E. Read, Polymer, 3, 529 (1962). 252. V. A. Ponomarenko, N. M. Khomutova, Izv. Akad. Nauk USSR, Ser. Khim., 5, 1153 (1969). 253. A. MeIe, A. Delle Site, C. Bettinali, A. Di Domenico, J. Chem. Phys., 49, 3297 (1968). 254. J. L. Zollinger, J. R. Throckmorton, S. T. Ting, R. A. Mitsch, D. E. Elrick, J. Macromol. Sci. A, 3, 1443 (1969). 255. W. A. Lee, Royal Aircraft Establishment, Farnsborough, Hants., UK-Unpublished results. 256. P. Johncock, M. A. H. Hewins, Royal Aircraft Establishment, Farnsborough, Hants., UK-Unpublished report. 257. D. E. Rice, J. Polym. Sci. B, 6, 335 (1968). 258. A. G. Pittman, D. L. Sharp, J. Polym. Sci. B, 3, 379 (1965). 259. N. H. Reinking, A. E. Barnabeo, W. F. Hale, J. Appl. Polym. Sci., 7, 2135 (1963). 260. H. M. Van Doit, C. R. H. I. De Jonge, W. J. Mijs, J. Polym. Sci. C, 22, 431 (1968). 261. K. Fujimoto, Chem. High Polym. (Japan), 18, 415 (1961). 262. J. Heijboer, Brit. Polym. J., 1, 3 (1969). 263. S. G. Turley, ACS Org. Coatings Plast. Chem., 27, 453 (1967); ACS Polymer Preprints, 8, 1524 (1967). 264. B. E. Read, G. Williams, Polymer, 2, 239 (1961). 265. W. H. Linton, H.H. Goodman, J. Appl. Polym. Sci., 1, 179 (1959). 266. N. G. McCrum, J. Polym. Sci., 54, 561 (1961). 267. F. S. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 3, 263 (1962). 268. G. Williams, Polymer, 4, 27 (1963). 269. R. E. Wetton, G. Allen, Polymer, 7, 331 (1966).
270. H. Fischer, W. Langbein, Kolloid Z.-Z. Polym., 216/217, 329 (1967). 271. L. Bonn, Kolloid Z.-Z. Polym., 201, 20 (1965). 272. A. H. Willbourn, Trans. Faraday Soc, 54, 717 (1958). 273. R. G. Saba, J. A. Sauer, A. E. Woodward, J. Polym. Sci. A, I, 1483 (1963). 274. D. Simms; private communication: Ministry of Aviation E.R.D.E., Waltham Abbey, Essex, UK. 275. G. A. Clegg, D. R. Gee, T. P. Melia, A. Tyson, Polymer, 9, 501 (1968). 276. J. A. Faucher, J. Polym. Sci. B, 3, 143 (1965). 277. R. E. Wetton, G. Williams, Trans. Faraday Soc, 61, 2132 (1965). 278. R. E. Wetton, G. S. Fielding-Russell, K. U. Fulcher, J. Polym. Sci. C, 30, 219 (1968). 279. S. Yoshida, M. Sakiyama, S. Seki, Rept. Progr. Polym. Phys. (Japan), 12, 247 (1969). 280. S. Yoshida, M. Sakiyama, S. Seki, Polym. J. (Japan), 1, 573 (1970). 281. J. J. Stratta, F. P. Reding, J. A. Faucher, J. Polym. Sci. A, 2, 5017 (1964). 282. F. B. Cramer, R. G. Beaman, J. Polym. Sci., 21,237 (1956). 283. W. W. Schartz, R. D. Lowrey, J. Appl. Polym. Sci., 11, 553 (1967). 284. P. Johncock, P. A. Grattan, Royal Aircraft Establishment, Farnsborough, Hants., UK-Unpublished report. 285. P Johncock, J.D. Lee, Royal Aircraft Establishment, Farnsborough, Hants., UK-Unpublished report. 286. O. G. Lewis, L. V. Gallagher, AD 649869 (1966). 287. A. T. DiBenedetto, K. L. Trachte, J. Appl. Polym. Sci., 14, 2249 (1970). 288. E. Butta, Mater, Plastics Elastomers, 35, 1411 (1969). 289. S. de Petris, V. Frosini, E. Butta, M. Baccaredda, Makromol. Chem., 109, 54 (1967). 290. F. E. Karasz, J. M. O'Reilly, J. Polym. Sci. B, 3,561 (1965). 291. F. E. Karasz, H. E. Bair, J. M. O'Reilly, J. Polym. Sci. A-2, 6, 1141 (1968). 292. G. A. Bernier, R. P. Kambour, Macromolecules, 1, 393 (1968). 293. M. H. Litt, A. V. Tobolsky, J. Macromol. Sci. Bl, 3, 433 (1967). 294. A. J. Chalk, A. S. Hay, J. Polym. Sci. A-I, 7, 691 (1969). 295. G. F. L. Ehlres, K. R. Fisch, W. R. Powell, J. Polym. Sci. A-I, 7, 2931 (1969). 296. G. Allen, M. W. Coville, R. M. John, R. F. Warren, Polymer, II, 492 (1970). 297. F. E. Karasz, W. J. MacKnight, J. Stoelting, J. Appl. Phys., 41, 4357 (1970). 298. J. M. Barrales-Rienda, J. M. G. Fatou, Kolloid Z.-Z. Polym., 244, 317 (1971). 299. A. Eisenberg, B. Cayrol, J. Polym. Sci. C, 35, 129 (1971). 300. C. I. Chung, J. A. Sauer, J. Polym. Sci. A-2,9,1097 (1971); r g values mostly from manufacturers' data. 301. P. A. Gratten, V. C. R. McLoughlin, W. A. Lee, Royal Aircraft Establishment, Farnsborough, Hants., UKUnpublished data.
302. L. W. Breed, R. L. Elliot, M. E. Whitehead, J. Polym. Sci. A-I, 5, 2745 (1967). 303. L. T. C. Lee, E. M. Pearce, J. Polym. Sci. A-1,9,557 (1971). 304. K. Saotome, H. Komoto, J. Polym. Sci. A-1,4,1475 (1966). 305. H. G. Weyland, P. J. Hoftyzer, D. W. van Krevelen, Polymer, 11, 79 (1970). 306. H. M. van Dort, C. A. M. Hoefs, E. P. Magre, A. J. Schopf, K. Yntema, Eur. Polym. J., 4, 275 (1968). 307. B. J. Tabor, E. P. Magre, J. Boon, Eur. Polym. J., 7, 1127 (1971). 308. J. C. Mileo, B. Sillion, G. De Gaudemaris, Compt. Rend. C, 268, 1949 (1969). 309. M. E. B. Jones, I. Goodman, Brit. Pat. 1,128,807, 2. Oct. 1968. 310. D. Brown, M. E. B. Jones, W. R. Maltman, J. Polym. Sci. B, 6, 635 (1968). 311. V. Frosini, M. Pasquini, E. Butta, Chim. Ind., 53, 140 (1971). 312. E. Butta, S. de Petris, V. Frosini, M. Pasquini, Eur. Polym. J., 7, 387 (1971). 313. G. F. L. Ehlers, R. C. Evers, K. R. Fisch, J. Polym. Sci. A-I, 7, 3413 (1969). 314. B. E. Jennings, M. E. B. Jones, J. B. Rose, J. Polym. Sci. C, 16, 715 (1967). 315. M. E. A. Cudby, R. G. Feasey, B. E. Jennings, M. E. B. Jones, J. B. Rose, Polymer, 6, 589 (1965). 316. J. E. Kurz, J. C. Woodbrey, M. Ohta, J. Polym. Sci. A-2, 8, 1169 (1970). 317. G. W. Miller, ACS Polymer Preprints, 8, 1072 (1967). 318. G. W. Miller, "Thermal Analysis", Academic Press Inc., New York, Vol. I, 1969, p. 435. 319. T. F. Gray, R. L. Combs, D. F. Slonaker, W. C. Wooten, SPE Tech. Papers, 13, 370 (1967). 320. M. Baccaredda, E. Butta, V. Frosini, S. de Petris, J. Polym. Sci. A-2, 5, 1296 (1967). 321. L. M. Robeson, J. A. Faucher, J. Polym. Sci. B, 7,35 (1969). 322. G. E L. Ehlers, K. R. Fisch, W. R. Powell, J. Polym. Sci. A-I, 7, 2955 (1969). 323. N. J. Mills, A. Nevin, J. McAinsh, J. Macromol. Sci. B, 4, 863 (1970). 324. E. J. Vandenberg, J. Polym. Sci., 47, 486,489a (1960). 325. A. S. Hay, Macromolecules, 2, 107 (1969). 326. J. M. Crissman, J. A. Sauer, A. E. Woodward, J. Polym. Sci., A. E. Woodward, J. Polym. Sci. A, 2, 5075 (1964). 327. W. P. Slichter, Makromol. Chem., 34, 67 (1959). 328. L. E. St. Pierre, C. C. Price, J. Am. Chem. Soc, 78, 3432 (1956). 329. T. M. Connor, A. Hartland, Polymer, 9, 591 (1968). 330. G. Williams, Trans. Faraday Soc, 61, 1564 (1965); data used by ref. 329. 331. G. Allen, C. Booth, M. N. Jones, D. J. Marks, W. D. Taylor, Polymer, 5, 547 (1964). 332. I. Kuntz, C. Cozewith, H. T. Oakley, G. Via, H. T. White, Z. W. Wilchinsky, Macromolecules, 4, 4 (1971). 333. I. P. Losev, O. V. Smimova, Ye. V. Korovina, Vysokomol. Soedin., 5, 1603 (1963); (transl'n in Polymer Sci. USSR, 5, 707 (1964)).
334. H. Schnell, Ind. Eng. Chem., 51, 157 (1959). 335. A. N. Perepelkin, P. V. Kozlov, Polymer Sci. USSR, 8, 57 (1966); (transl'n of Vysokomol. Soedin., 8, 56 (1966)). 336. F. P. Reding, J. A. Faucher, R. D. Whitman, J. Polym. Sci., 54, S56 (1961). 337. L. J. Garfield, J. Polym. Sci. C, 30, 561 (1970). 338. H. Schnell, "Chemistry and Physics of Polycarbonates", Interscience, New York, 1964, Chap. III. 339. B. F. Malichenko, V. I. Feoktistova, A. E. Nesterov, Vysokomol, Soedin. B, 11, 543 (1969). 340. E. N. Elam, J. C. Martin, R. Gilkey, US pat. 3,313,777, 11. April 1967 (Brit. 962,913). 341. W. Gawlak, R. P. Palmer, J. B. Rose, D. J. Sandford, A. Turner-Jones, Chem. Ind., 25, 1148 (1962). 342. A. A. D'Onofrio, Brit. pat. 1,011,283, 24. Nov. 1965. 343. O. V. Smirnova, El Said AIi Kasan, I. P. Losev, G. S. Kolesnikov, Polymer Sci. USSR, 7, 557 (1965); (transl'n of Vysokomol. Soedin., 7, 503 (1965)). 344. H. Schnell, Angew. Chem., 68, 633 (1956). 345. H. Schnell, Plastics Intst. Trans. J., 28, 143 (1960). 346. O. V. Smirnova, Ye. V. Korovina, G. S. Kolesnikov, A. M. Lipkin, S. I. Kuzina, Polym. Sci. USSR, 8, 776 (1966); translation of Vysokomol. Soedin., 8, 708 (1966). 347. US Patent 3,546,165, Dec. 8, 1970, assigned to P. W. Morgan. 348. D. Stefan, H. L. Williams, D. R. Renton, M. M. Pintar, J. Macromol. Sci. B, 4, 853 (1970). 349. D. W. McCaIl, D. R. Falcone, Trans. Faraday Soc, 66, 262 (1970). 350. R. E. Robertson, General Electric Co., R & D Center, Schenectady, N. Y, Gen Chem. Lab Report No. 67 C353, 1967; also Appl. Polym. Symp., 7, 201 (1968). 351. W. G. Miller, Appl. Polym. Symp., 10, 35 (1969). 352. M. S. AIi, R. P. Shelson, J. Appl. Polym. Sci., 14, 2619, (1970). 353. J. van Turnhout, Polym. J. (Japan), 2, 173 (1971). 354. S. Matsuoka, Y. Ishida, J. Polym. Sci. C, 14, 247 (1966). 355. F. Krum, F. H. Muller, Kolloid Z., 164, 81 (1959). 356. I. I. Perepechko, L. A. Bodrova, Soviet Plastics, 7, 58 (1967); translation of Plasticheskie Massy, 7, 56 (1967). 357. J. P. Mercier, J. J. Aklonis, A. V. Tobolsky, AD 410922 (1963), The Viscoelastic Behavior of Polycarbonates of Bisphenol A, ONR Tech. Report RLT 60. 358. J. H. Golden, B. L. Hammant, E. A. Hazell, J. Appl. Polym. Sci., 11, 1571 (1967). 359. J. P Mercier, J. J. Aklonis, M. Litt, A. V. Tobolsky, J. Appl. Polym. Sci., 9, 447 (1965). 360. W. J. Jackson, J. R Caldwell, Ind. Eng. Chem. Prod. Res. Develop., 2, 246 (1963). 361. J. L. Work, J. E. Herweh, J. Polym. Sci. A-I, 6, 2022 (1968). 363. G. P. Mikhailov, M. P. Eidel'nant, Vysokomol. Soedin., 2, 287 (1960). 364. J. M. O'Reilly, E E. Karasz, H. E. Bair, J. Polym. Sci. C, 6, 109 (1964). 365. A. Conix, L. Jeurissen, Adv. Chem. Ser., 48, 172 (1964).
366. J. Bussink, J. Heijboer, J. A. Prins (Ed.), "Physics of NonCrystalline Solids", Proc. Intern. Conf. Delft, 1964, p. 388, North Holland Publishing Co., Amsterdam, 1965. 367. B. von Falkai, W. Rellensmann, Makromol. Chem., 75, 112 (1964). 368. T. Sulzberg, R. J. Cotter, Macromolecules, 2, 146, (1969). 369. E. V. Gouinlock, E. J. Quinn, H. W. Marciniak, R. R. Hindersinn, IUPAC Preprints, Intern. Symp. Macromol. Chem., Toronto, Sect. A13.3 (1968). 370. Du Pont trade literature, A 49783: 940 Thermomechanical Analyzer. 371. H. G. Weyland, C. A. M. Hoefs, K. Yntema, W. J. Mijs, Eur. Polym. J., 6, 1339 (1970). 372. P. W. Morgan, Macromolecules, 3, 536 (1970). 373. I. V. Yannas, A. C. Lunn, J. Macromol. Sci. B, 4, 603 (1970). 374. I. I. Perepechko, L. A. Kvacheva, I. I. Levantovskaya, Vysokomol. Soedin. A, 13, 702 (1971), translation of Polym. Sci. USSR, 13, 796 (1971). 375. Y. Yamaoto, S. Tsuge, T. Takeuchi, Bull. Chem. Soc. (Japan), 44, 1145 (1971). 376. A. Conix, J. Polym. Sci. C, 16, 3821 (1968). 377. H. van Hoorn, J. Appl. Polym. Sci., 12, 871, (1968). 378. 1.1. Perepechko, L. A. Kvacheva, Soviet Plastics, 8, (1971), translation of Plasticheskie Massy, 8, 42 (1971). 379. T. Takekoshi, ACS Polym. Preprints, 10, 103 (1969). 380. Brit. Pat. 1,052,757, Dec. 30, 1966. 381. G. Bier, Adv. Chem. Ser., 91, 612 (1969). 382. A. Conix, IUPAC Preprints, Intern. Symp. Macromol. Chem., Montreal, Sect. D39 (1961); via ref. 44. 383. C. S. Marvel, C. H. Young, J. Am. Chem. Soc, 73, 1066 (1951). 384. W. A. Lee, B. Stag, Royal Aircraft Establishment, Farnborough, Hants, UK, TR 71223 (1971). 385. S. D. Bruck, J. Polym. Sci. B, 4, 933 (1966). 386. V. C. R. McLoughlin, J. Thrower, M. A. H. Hewins, J. S. Pippett, M. A. White, Royal Aircraft Establishment, Farnborough, Hants, UK, TR 70160 (1970). 387. I. N. Duling, US Pat. 3,436,376, April 1, 1969. 388. R. G. Beaman, J. Polym. Sci., 9, 470 (1952). 389. O. B. Edgar, J. Chem. Soc, 2638 (1952). 390. O. B. Edgar, R. Hill, J. Polym. Sci., 8, 1 (1952). 391. E. F. Izard, J. Polym. Sci., 9, 35 (1952). 392. A. Steitz, J. O. Knobloch, J. Paint Technol., 40, 384 (1968). 393. H. J. KoIb, E. F. Izard, J. Appl. Phys., 20, 564 (1949). 394. H. Mark, Kolloid Z.-Z. Polym., 216/217, 126 (1967). 395. N. G. Gay lord, H. F. Mark, "Linear and Stereoregular Addition Polymers", Interscience, New York, 1959. 396. Y. Wada, J. Phys. Soc (Japan), 16, 1226 (1961). 397. R. Zannetti, P. Manaresi, L. Baldi, Shim. Ind., 43, 1310 (1961). 398. I. M. Ward, Textile Res. J., 13, 650 (1961). 399. A. Anton, J. Appl. Polym. Sci., 12, 2117 (1968). 400. S. Saito, T. Nakajim, J. Appl. Polym. Sci., 2, 93 (1959). 401. L Mandelkern, G. M. Martin, F. A. Quinn, J. Res. Nat. Bur. Std., 58, 137 (1957).
402. I. M. Ward, Polymer, 5, 59 (1964). 403. G. Farrow, J. Mclntosh, I. M. Ward, Makromol. Chem., 38, 147 (1960). 404. J. Bateman, R. E. Richards, G. Farrow, I. M. Ward, Polymer, 1, 63 (1960). 405. B. Ke, J. Appl. Polym. Sci., 6, 624 (1962). 406. J. H. Dumbleton, T. Murayama, Kolloid Z.-Z., Polym., 220, 41 (1967). 407. W. R. Vieth, E. X. Matulevicius, S. R. Mitchell, Kolloid Z.Z. Polym., 220, 49 (1967). 408. G. S. Y Yeh, R H. Geil, J. Macromol. Sci. B, 1, 235 (1967). 409. G. P. Michailov, V. A. Shevelev, Polym. Sci., USSR 8, 840 (1966), translation of Vysokomol. Soedin., 8, 763 (1966). 410. J. H. Dumbleton, J. P. Bell, T. Murayama, J. Appl. Polym. Sci., 12, 2491 (1968). 411. J. G. Smith, C. J. Kibler, B. J. Sublett, J. Polym. Sci. A-I, 4, 1851 (1966), values from Ref. 412. 412. R. M. Schulken, R. E. Boy, R. H. Cox, J. Polym. Sci. C, 6, 17 (1964). 413. I. Ito, S. Okajima, F. Shibata, J. Appl. Polym. Sci., 14, 551 (1970). 414. J. B. Jackson, G. W. Longman, Polymer, 10, 873 (1969). 415. J. H. Dumbleton, T. Murayama, J. Appl. Polym. Sci., 14, 2912 (1970). 416. E. A. Egorov, V. V. Zhizhenkov, Mekh. Polim., 192, 24 (1971). 417. T. R. Manley, J. Thermal Anal., 2, 411 (1970). 418. H. Sasabe, K. Sawamura, S. Salto, K. Yoda, Polymer J. (Japan), 2, 518 (1971). 419. I. M. Dolgopol'skii, Kh. A. Dobina, V. S. Fikhtengol'ts, S. A. Kamysheva, M. I. Sinaiskaya, L. G. Balashova, R. V. Zollotareva, Polymer Sci. USSR, 9, 1723 (1967), translation of Vysokomol. Soedin. A, 9, 1536 (1967). 420. E. V. Gouinlick, C. J. Verbanic, G. C. Schweiker, J. Appl. Polym. Sci., 1, 361 (1959). 421. W. R. Griffin, Rubber World, 136, 687 (1957). 422. G. C. Schweiker, P. Robitschek, J. Polym. Sci., 24, 33 (1957). 423. J. H. Sewell, Royal Aircraft Establishment, Farnborough, Hants, UK, unpublished results. 424. I. J. Goldfarb, R. McGuchan, AD 697987 (1987). 425. R. C. Evers, G. F. L. Ehlers, J. Polym. Sci. A-I, 7, 3020 (1969). 426. A. Conix, Ind. Eng. Chem., 51, 147 (1959). 427. V. Frosini, G. Vallebona, Chim. Ind., 52, 499 (1970). 428. N. H. Shearer, SPE Tech. Papers, 12, 22nd ANTEC, Montreal, 1966, Session XIV, paper 1. 429. C. S. Marvel, J. H. Johnson, J. Am. Chem. Soc, 72, 1674 (1950). 430. S. M. Somerville, I. M. White, Royal Aircraft Establishment, Farnborough, Hants, UK, TR 66345 (1966). 431. I. M. White, M. A. H. Hewins, S. M. Somerville, paper presented at 2nd Intern. Sump. Organosilicon Chem., Univ. Bordeaux, 9-12 July, 1968. 432. W. A. Lee, I. H. Sewell, Royal Aircraft Establishment, Farnborough, Hants, UK, unpublished results.
433. J. H. Sewell, B. Stagg, Royal Aircraft Establishment, Farnborough, Hants, UK, unpublished results. 434. W. A. Lee, F. Pinchin, Royal Aircraft Establishment, Farnborough, Hants, UK, unpublished results. 435. French pat. 1,175,362 (1959); Brit. pat. 863,704 (1961), via Ref. 313. 436. W. M. Eareckson, J. Polym. ScL, 40, 399 (1959). 437. V. V. Korshak, S. V. Vinogradova, C. L. Slonimskii, Ya. S. Vygodskii, S. N. Salazkin, A. A. Askadskii, A. I. Mzhel'skii, V. P. Sidorova, Polym. Sci. USSR, 10, 2395 (1968), translation of Vysokomol Soedin. A, 10, 2058 (1968). 438. W. A. Lee, I. M. White, F. Pinchin, Royal Aircraft Establishment, Farnborough, Hants, UK, unpublished results. 439. K. A. Gol'dgammer, G. G. Pimenov, A. I. Maklakov, V. V. Korshak, S. V. Vinogradova, P. M. Valetskii, A. N. Baskakov, Vysokomol. Soedin. A, 10, 821 (1968), translation of Polym. Sci. USSR, 10, 953 (1968). 440. R. L. Combs, R. G Nations, J. Polym. Sci. C, 30,407 (1970). unpublished results of T. F. Gray. 441. V. V. Korshak, G. L. Berestneva, S. V Vinogradova, A. N. Baskakov, P. M. Valetskii, Polymer Sci. USSR, 10, 2300 (1968), translation of Vysokomol. Soedin. A, 10,1984 (1968). 442. W. J. Jackson, J. R. Caldwell, Brit. pat. 956,206, April 22, 1964. 443. S. S. Karapetyan, A. Ya. Yakubovich, I. L. Knunyants, Polym. Sci. USSR, 1718 (1964), translation of Vysokomol. Soedin., 6, 1550 (1964). 444. J. E. Mclntyre, E. C. Pugh, Brit. pat. 838,986, 1960. 445. K. Saotome, H. Komoto, J. Polym. Sci. A-I, 5, 119 (1967). 446. W. J. MacKnight, M. Yang, T. Kajiyama, ACS Polym. Preprints, 9, 860 (1968). 447. D. J. Lyman, J. Heller, M. Barlow, Makromol. Chem., 84, 64 (1965). 448. A. Anton, H. C. Beachel, J. Polym. Sci. B, 7, 215 (1969). 449. F. Malichenko, E. V. Shelud'ko, Yu. Yu. Kercha, R. L. Savchenko, Vysokomol. Soedin. A, 11, 377 (1969), translation in Polym. Sci. USSR, 11, 423 (1969). 450. B. F. Malichenko, E. V. Shelud'ko, Yu. Yu. Kercha, R. L. Savchenko, Vysokomol. Soedin. A, 11 (1969), translation in Polym. Sci. USSR, 11, 1721 (1969). 451. B. F. Malichenko, E. V. Shelud'ko, Yu. Yu. Kercha, Vysokomol. Soedin. A, 9, 2482 (1967), translation in Polym. Sci., USSR, 9, 2808 (1967). 452. Yu. Yu. Kercha, L. I. Ryabokon, B. F. Malichenko, in: Yu. S. Lipatov, (Ed.), "Synthesis and Physico-Chemistry of PoIyurethanes", Naukova Dumka, Kiev, 1968, p. 198. 453. M. A. McCaIl, J. R. Caldwell, H. G. Morre, H. M. Beard, J. Macromol. Sci., A, 3, 911 (1969). 454. A. Ye. Nesterov, Yu. Yu. Kercha, Yu. S. Lipatov, L. M. Sushko, L. I. Ryabokon, Polym. Sci. USSR, 9, 2782 (1967), translation of Vysokomol. Soedin. A, 9, 2459 (1967). 455. C. B Griffis, C. W. Shurtleff, AD 635114 (1966). 456. M. C. Henry, C. B. Griffis, AD 632196 (1966). 457. P. D. Schumann, E. C. Stump, G. Westmoreland, J. Macromol. Sci. B, 1, 815 (1967).
458. D. A. Barr, R. N. Haszeldine, C. J. Willis, J. Chem. Soc, 1351 (1961). 459. G. H. Crawford, D. E. Rice, Chem. Eng. News, 38, 107 (1960). 460. A. Hesling, Plastica, 21, 206 (1968). 461. E. C. Stump, C. D. Padgett, AD 666801 (1967). 462. G. L. Ball, I. O. Salyer, J. V. Pustinger, H. S. Wilson, AD 672523 (1967). 463. Yu. A. Yuzhelevskii, E. G. Kagan, A. L. Klebanskii, I. A. Zevakin, A. V. Kharlamova, Vysokomol. Soedin. B, II, 854 (1969). 464. M. S. Paterson, J. Appl. Phys., 35, 176 (1964). 465. J. B. Alexopoulos, J. A. Barrie, J. C. Tye, M. Fredrickson, Polymer, 9, 56 (1968). 466. O. R. Pierce, Y. K. Kim, J. Elastoplastics, 3, 82 (1971). 467. K. E. Polmanteer, M. J. Hunter, J. Appl. Polym. Sci., 1, 3 (1959). 468. K. A. Andrianov, T. K. Dzhashiashvili, V. V. Astakin, G. N. Shumakavo, Vysokomol. Soedin. B, 10, 766 (1968). 469. W. R Gergen, T. L. Keelan, 11th Annual Meeting Proc. Intern. Inst. Synth. Rubber Producers, Inc., 1970, p. 81. 470. C. E. Weir, W. H. Leser, L. A. Wood, J. Res. Nat. Bur. Std., 44, 367 (1950). 471. L. A. Wood, J. Polym. Sci., 28, 319 (1958). 472. M. Sh. Yagfarov, V. S. Ionkin, Polym. Sci. USSR, 10, 1867 (1968), translation of Vysokomol. Soedin. A, 10, 1613 (1968). 473. A. Yi, L. E. St. Pierre, J. Polym.Sci. B, 7, 237 (1969). 474. J. D. Helmer, K. E. Polmanteer, J. Appl. Polym. ScI, 13, 2113 (1969). 475. K. A. Andrianov, S. E. Yakushkina, Vysokomol. Soedin., 4, 1193 (1962). 476. K. A. Andrianov, T. K. Dzhashiashvili, V. V. Astakin, G. N. Shumakova, Soviet Plastics, 2,47 (1968), translations of Plasticheskie Massy, 2, 44 (1968). 477. V C R . McLoughlin, P. A. Grattan, Royal Aircraft Establishment, Farnborough, Hants, UK, TR 71224 (1971). 478. R. E. Burks, J. L. Greene, N68-16509; Southern Res. Inst. Rept. 25 (1967). 479. J. A. Empen, J. K. Stille, in: N. G. Gaylord (Ed.), "Macromolecular Synthesis", 3, Wiley, New York, 1969, p. 56. 481. E. H. Catsiff, J. Appl. Polym. Sci., 15, 1641 (1971). 482. A. Nicco, J. P. Machon, H. Fremaux, J. Ph. Pied, B. Zindy, M. Thiery, Eur. Polym. J., 6, 1427 (1970). 483. R. S. Nevin, E. M. Pearce, J. Polym. Sci. B, 3, 487 (1965). 484. W. J. Middleton, H. W. Jacobson, R. E. Putnam, H. C. Walter, D. G. Pye, W. H. Sharkey, J. Polym. Sci. A, 3, 4115 (1965). 485. V A. Engelhardt; report in Chem. Eng. News, 43, 80 (1965). 486. W. H. Sharkey, W. J. Middleton, H. W. Jacobson, O. S. Acker, H. C. Walter, Chem. Eng. News, 41,46 (1963). 487. J. A. Empen, J. K. Stille, in: N. G. Gaylord (Ed.), "Macromolecular Synthesis", 3, Wiley, New York, 1969, p. 53. 488. C. C. Price, E. A. Blair, J. Polym. Sci. A-I, 5, 171 (1967). 489. R. M. Fitch, D. C. Helgeson, J. Polym. Sci. C, 22, 1101 (1969).
490. M. Morton, R. F. Kammereck, L. J. Fetters, Brit. Polym. J., 3, 120 (1971). 491. H. Komoto, Rev. Phys. Chem. Japan, 37, 112 (1967). 492. J. Pellon, J. Polym. Sci. A, 1, 3561 (1963). 493. R. L. Fyans; private communication to Ref. 114. 494. M. Russo, Mater. Plastics Elastomers, 34, 61 (1968); via RAPRA abstr. 1968, abstr. 4571. 495. E. A. Peterson; private communication to Ref. 481. 496. S. Adamek, B. B. J. Wood, R. T. Woodhams, Rubber Plastics Age Intern., 46, 56 (1965); Rubber Age, 96, 581 (1965). 497. C. G. Overberger, J. K. Weise, J. Am. Chem. Soc, 90, 3538 (1968). 498. H. G. Buhrer. H.-G. Elias, Makromol. Chem., 140, 41 (1970). 499. C. G. Overberger, J. K. Weise, J. Am. Chem. Soc, 90, 3533 (1968). 500. M. E. B. Jones, SPE Tech. Papers, 15, 27th ANTEC, Chicago 1969, p. 453. 501. G. Jarrett, M. E. B. Jones, Brit. Polym. J., 2, 229 (1970). 502. H. Wexler, Makromol. Chem., 115, 262 (1968). 503. R. G. Beaman, F. B. Cramer, J. Polym. Sci., 21, 223 (1956). 504. J. H. Magill, J. Polym. Sci. A, 3, 1195 (1965). 505. B. Ke, A. W. Sisko, J. Polym. Sci., 50, 87 (1961). 506. Y. Nishijima, J. Selki, T. Kawai, Rept. Progr. Polym. Phys. (Japan), 10, 473 (1967). 507. M. J. Forster, Textile Res. J., 38, 474 (1968). 508. K. Neki, M. Takayanagi, Rept. Progr. Polym. Phys. (Japan), 8, 281 (1965). 509. W. H. Charch, W. W. Moseley, Textile Res. J., 29, 552 (1959); via Ref. 507. 510. F. Rybnikar, J. Polym. Sci., 28, 633 (1958). 511. M. Takayanagi, Memoirs Faculty Eng. Kyushu Univ., 23, 2 (1963); via Ref. 507. 512. S. R. Urzendowski, A. H. Guenther, J. R. Asay, ACS Polym. Preprints, 9, 878 (1968). 513. J. Rubin, R. D. Andrews, Polym. Eng. Sci., 8, 302 (1968). 514. E. R. Neuhausl, Plastics Polym., 36, 93 (1968). 515. D. R. Gee, T. P. Melia, Polymer, 11, 192 (1970). 516. T. Shibusawa, J. Appl. Polym. Sci., 14, 1553 (1970). 517. F. R. Prince, E. M. Pearce, R. J. Fredericks, J. Polym. Sci. A-I, 8, 3533 (1970). 518. V. Frosini, E. Butta, J. Polym. Sci. B, 9, 253 (1971). 519. V. Zilvar, I. Boukal, J. Hell, Plastics Inst. Trans. J., 35, 402 (1967). 520. D. C. Prevorsek, R. H. Butler, K. H. Reimschuessel, J. Polym. Sci. A-2, 9, 867 (1971). 521. K. Schmieder, K. Wolf, Kolloid Z., 134, 149 (1953). 522. K. H. Illers, H. G. Kilian, R. Kosfeld, Ann. Rev. Phys. Chem., 12, 49 (1961). 523. K. C. Dao, J. H. Percy, Inst. Physics and Physical Soc, Proc Conf. on the Science of Materials, p. 151, Aug. 1969; New Zealand, DSIR, Information Series 71. 524. R. F. Boyer, R. S. Spencer, J. Appl. Phys., 15, 398 (1944). 525. R. Meredith, B. Hsu. Polym. Sd., 61, 271 (1962).
526. G. F. D'Alelio, "Fundamental Principles of Polymerization", Wiley, New York, 1952, p. 124. 527. D. W. McCaIl, E. W. Anderson, J. Chem. Phys., 32, 237 (1960). 528. A. E. Woodward, J. M. Crissman, J. A. Sauer, J. Polym. Sci., 44, 23 (1960). 529. A. M. Thomas, Nature, 179, 862 (1957). 530. F. P. Chappel, M. F. Culpin, R. G. Gosden, T. C. Tranter, Conference on Adv. Polym. Sci. Technol., London, 1963. 531. J. S. Ridgeway, J. Polym. Sci. A-I, 7, 2195 (1969). 532. J. S. Ridgeway, J. Polym. Sci. A-I, 8, 3089 (1970). 533. J. P Bell, J. Appl. Polym. Sci., 12, 627 (1968). 534. E. A. Tippetts, J. Zimmerman, J. Appl. Polym. Sci., 8, 2465 (1964). 535. H. Komoto, Rev. Phys. Chem. (Japan), 37, 105 (1967). 536. K. Saotome, H. Komoto, J. Polym. Sci. A-1,4,1463 (1966). 537. H. Komoto, K. Saotome, Chem. High Polymers (Japan), 22, 337 (1965); Chem. Abstr., 63, 15045f (1965). 538. G. Champetier, J. P. Pied, Makromol. Chem., 44/46, 64 (1961); Chem. Abstr., 56, 1584c (1962). 539. B. S. Marks, G. C. Schweiker, J. Polym. Sci., 43, 229 (1960). 540. F. R. Prince, E. M. Pearce, Macromolecules, 4, 347 (1971). 541. D. A. Holmer, J. Polym. Sci. A-I, 6, 3177 (1968). 542. J. C. Mileo, B. Sillion, G. De Gaudemaris, Compt. Rend. C, 268, 2007 (1969). 543. J. B. Jackson, Polymer, 10, 159 (1969). 544. L. C. Glover, B. J. Lyons, ACS Polymer Preprints, 9, 243 (1968). 545. V. Guidotti, M. Russo, L. Mortillaro, Makromol. Chem., 147, 111 (1971). 546. G. A. Kuznetsov, V. D. Gerasimov, L. N. Fomenko, A. I. Maklakov, G. G. Pimenov, L. B. Sokolov, Polym. Sci. USSR, 7,1763 (1965) (transl'n of Vysokomol. Soedin., 7, 1592 (1965)). 547. G. S. Kolesnikov, O. Ya. Fedotova, V. V. Trezov, V. N. Kuz'micheva, Polym. Sci. USSR, 10, 2612 (1968), (transl'n of Vysokomol. Soedin. A, 10, 2248 (1968)). 548. E. Bessler, G. Bier, Makromol. Chem., 122, 30 (1969). 549. T. G. Bassiri, A. Levy, M. Litt, J. Polym. Sci. B, 5, 871 (1967). 550. A. Levy, M. Litt, J. Polym. Sci. B, 5, 881 (1967). 551. A. Levy, M. Litt, J. Polym. Sci. A-I, 6, 1883 (1968). 552. G. Allen, C. J. Lewis, S. M. Todd, Polymer, 11, 44 (1970). 553. H. R. Allcock, R. L. Kugel, K. J. Valan, Inorg. Chem., 5, 1709 (1966). 554. H. R. Allcock, R. L. Kugel, Inorg. Chem., 5, 1716 (1966). 555. G. Allen, Brit. Polym. J., 1, 168 (1969). 556. H. R. Allcock, R. L. Kugel, J. Am. Chem. Soc, 87, 4216 (1965). 557. S. H. Rose, K. A. Reynard, J. R. Cable, AD 704332 (1970). 558. N. S. Nametkin, N. V. Ushakov, V. M. Vdovin, Polym. Sci. USSR, 13, 31 (1971) (transl'n of Vysokomol. Soedin. A, 13, 29 (1971)). 559. N. S. Nametkin, V. M. Vdovin, V. I. Zav'yalov, Dokl. Akad. Nauk SSSR, 162, 824 (1965).
560. F. S. Model, G. Redl, E.-G. Rochow, J. Polym. Sci. A-I, 4, 639 (1966). 561. F. S. Model, E. G. Rochow, J. Polym. Sci. A-2, 8, 999 (1970). 562. N. S. Nametkin, V. M. Vdovin, V. I. Zav'yalov, Polym. Sci. USSR, 7, 836 (1965) (transl'n of Vysokomol. Soedin., 7, 757 (1965)). 563. V. C. R. McLoughlin, J. Thrower, P. A. Grattan, M. A. H. Hewins, Royal Aircraft Establishment, Farnborough, Hants, UK, TR 71111 (1971). 564. W. F. Gorham, J. Polym. Sci. A4, 4, 3027 (1966). 565. H. G. Gilch, W. L. Wheelwright, J. Polym. Sci. A-1,4,1337 (1966). 566. I. N. Markevich, S. I. Beilin, M. P. Teterina, G. P. Karpacheva, B. A. Dolgoplosk, DoId. Akad. SSSR, 191, 362 (1970). 567. L. A. Auspos, C. W. Burnham, L. A. R. Hal'l, J. K. Hubbard, W. Kirk, J. R. Schaefgen, S. B. Speck, J. Polym. Sci., 15,19 (1955). 568. J. K. Stille, R. O. Rakutis, K. Mukamal, F. W. Harris, Macromolecules, 1, 431 (1968). 569. M. Morton, J. Elastoplastics, 3, 112 (1971). 570. R. J. Schaffhauser, M. G. Shen, A. V. Tobolsky, J. Appl. Polym. Sci., 8, 2825 (1964). 571. M. Kaufman, A. F. Williams, J. Appl. Chem., 1, 489 (1951). 572. A. Chierico, G. Del Nero, G. Lanzi, E. R. Mognaschi, Eur. Polym. J., 3, 245 (1967). 573. E. Jenckel, Kolloid Z., 100, 163 (1942). 574. M. L. Dannis, J. Appl. Polym. Sci., 1, 121 (1959). 575. M. L. Dannis, J. Appl. Polym. Sci., 7, 231 (1963). 576. R. H. Gerke, J. Polym. Sci., 13, 295 (1954). 577. M. Baccaredda, E. Butta, Chim. Ind. (Milan), 42, 978 (1960). 578. E. Pedemonte, U. Bianchi, J. Polym. Sci. B, 2, 1025 (1964). 579. A. W. Meyer, R. R. Hampton, J. A. Davison, J. Am. Chem. Soc, 74, 2294 (1952). 580. F. S. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 3, 297 (1962). 581. R. J. Morgan, L. E. Nielson, R. Buchdahl, J. Appl. Phys., 42, 4653 (1971). 582. R. N. Kienle, E. S. Dizon, T. J. Brett, C. F. Eckert, Rubber Chem. Technol., 44, 996 (1971). 583. G. Dall'asta, G. Motroni, Angew. Makromol. Chem., 16/17, 51 (1971). 584. W. Marconi, A. Mazzel, G. Lugli, M. Bruzzone, J. Polym. Sci. C, 16, 805 (1967). 585. W. S. Bahary, D. I. Sapper, J. H. Lane, Rubber Chem. Technol., 40, 1529 (1967). 586. G. Kraus, C. W. Childers, J. T. Gruver, J. Appl. Polym. Sci., 11, 1581 (1967); reprint in Rubber Chem. Technol., 42, 520 (1969). 587. D. I. Relyea, H. R Smith, A. N. Johnson, AD 657675 (1967). 588. K. A. Wolf, Z. Electrochem., 65, 604 (1961); via R. Havinga, A. Schors, J. Macromol. Sci. A, 2, 12 (1968) and Sci. Abstr., A, 65, No. 773, abs. 8141 (1962).
589. E. N. Tinyakova, B. A. Dolgoplosk, T. G. Zhuravleva, R. N. Kovalevskaya, T. N. Kuren'gina, J. Polym. Sci., 52, 159 (1961). 590. M. Sh. Yagfarov, Polym. Sci. USSR, 10, 1465 (1968); (transl'n of Vysokomol. Soedin. A, 10, 1264 (1968)). 591. G. S. Trick, J. Appl. Polym. Sci.., 3, 253 (1960). 592. K.-H. Illers, Eur. Polym. J. (Suppl.) 133 (Aug. 1969). 593. W. R. Brown, G. S. Park, J. Paint Technol., 42, 16 (1970). 594. F. Haas, K. Nutzel, G. Pampus, D. Theisen, Rubber Chem. Technol., 43, 1116 (1970). See also Kautschuk Gummi Kunststoffe, 23, 502 (1970). 595. M. Takeda, K. Tanaka, R. Nagao, J. Polym. Sci., 57, 517 (1962). 596. Shell Chem. Bull., RB/70/14. 597. N. K. Kalfoglou, H. L. Williams, J. Appl. Polym. Sci., 14, 2481 (1970). 598. M. Baccaredda, E. Butta, J. Polym. Sci., 51, S39 (1961). 599. R. Nagao, Nippon Gomu Kyokaishi, 41, 509 (1968). 600. I. A. Livshits, L. M. Korobova, E. A. Sidorovich, Mekh. Polim., 4, 596 (1967). 601. C. G. Overberger, L. H. Arond, R. H. Wiley, R. R. Garrett, J. Polym. Sci., 7, 431 (1951). 602. W. Marconi, A. Mazzei, S. Cucinella, M. Cesari, J. Polym. Sci. A, 2, 4261 (1964). 603. C. A. Aufdermarsh, R. Parsier, J. Polym. Sci. A, 2, 4727 (1964). 604. R. M. KeIl, B. Bennett, P. B. Stickney, J. Appl. Polym. Sci., 2, 8 (1959). 605. J. B. Campbell, Science, 141, 329 (1963). 606. B. L. Dolgoplosk, S. P. Erusalimskii, A. V. Merkur'eva, Vysokomol. Soedin., 4, 1333 (1962); Chem. Abstr., 59, 4045d (1963). 607. R. R. Garrett, Unpublished results quoted by C. A. Aufdermarsh, R. Parsier, J. Polym. Sci. A, 2, 4727 (1964) 608. R. Nagao, Polymer, 9, 517 (1968). 609. R. F. Robbins, R. P. Reed, Adv. Cryogenic Eng., 13, 252 (1968). 610. U. Eisele, Kautschuk Gummi Kunststoffe, 23, 486 (1970). 611. R. R. Garrett, C. A. Hargreaves, D. N. Robinson, J. Macromol. Sci. A, 4, 1679 (1970). 612. I. A. Livshits, L. M. Korobova, Dokl. Akad. Nauk USSR, 121, 474 (1958). 613. N. V Zakharenko, R. A. Gavrilina, Soviet Rubber Technol., 25, No. 11,44 (1966) (transl'n of Kauchuk i Rezina, 25, No. 11,47 (1966)). 614. J. P. Mercier, Rev. Gen. Caoutchouc, Edn. Plast., 5, 25 (1968). 615. J. J. Maurer, ACS Polymer Preprints, 9, 866 (1968). 616. D. Heinze, K. Schmieder, G. Schnell, K. A. Wolf, Kautschuk Gummi, 14, WT208 (1961) (transl'n in Rubber Chem. Technol., 35,776 (1962)); via R. Havinga, A. Schors, J. Macromol. Sci. A, 2, 12 (1968), and Ref. 262. 617. H. S. Gutowsky, A. Saika, M. Takeda, D. E. Woessner, J. Chem. Phys., 27, 534 (1957). 618. W. V C. van Beek, W. F. Koch, B. F. Steggerda, O. F. K. Bussemaker, Assoc. Francaise Ing. Caoutchouc,
619. 620. 621. 622. 623. 624. 625. 626. 627. 628.
629. 630. 631. 632. 633. 634. 635. 636. 637. 638.
639. 640. 641. 642. 643. 644. 645. 646. 647. 648. 649.
Plastiques Conf. Intern. Caoutchouc, Paris, June 1970, paper 55; also Rev. Gen. Caoutchouc, 48, 929 (1971). M. Girolamo, J. R. Urwin, Eur. Polym. J., 7, 225 (1971). D. Reichenbach, W. Eckelmann, Angew. Makromol. Chem., 16/17, 157 (1971). S. S. Chang, A. B. Bestul, J. Res. Nat. Bur. Std., 75A, 113 (1971). R. T. Humpidge, A. Maclean, S. H. Morrell, Rubber Chem. Technol., 44, 479 (1971). Z. R. Glaser, F. R. Eirich, J. Polym. Sci. C, 31, 275 (1970). K. Ueberreiter, Z. Physik. Chem. B, 45, 361 (1940). E. R. Mognaschi, A. Chierico, Trans. Faraday Soc, 66, 86 (1970). G. Dall'asta, R Scaglione, Rubber Chem. Technol., 42, 1235 (1969). J. N. Short, G. Kraus, R. P. Zelinski, F. E. Naylor, Rubber Chem. Technol., 23, 614 (1959). R. M. Ikeda, M. L Wallach, R. J. Angelo, in: S. L. Aggarwal (Ed.), "Block Copolymers", Plenum Press, New York, 1970, p 43; ACS Polym. Preprints, 10, 1446 (1969). K. J. Clark, A. T. Jones, D. H. Sandford, Chem. Ind., 47, 2010 (1962). G. Natta, F. Danusso, G. Moraglio, J. Polym. Sci., 25, 119 (1957). K. R. Dunham, J. Vandenberghe, J. W. H. Faber, L. E. Contois, J. Polym. Sci. A, 1, 751 (1963). G. Natta, Rend. Accad. Nazi. Lincei. Ser., 8, 24 (1958); via Ref. 223. S. F. Kurath, E. Passaglia, R. Pariser, J. Appl. Phys., 28,499 (1957). F. P. Reding, J. A. Faucher, R. D. Whitman, J. Polym. Sci., 57, 483 (1962). H.-G. Elias, Or Etter, J. Macromol. Sci. A, 1, 943 (1967). W. H. McCarty, G. Parravano, J. Polym. Sci. A, 3, 4029 (1965). G. L. Taylor, S. Davison, J. Polym. Sci. B, 699, (1968). S. T. Barsamyan, A. S. Apresyan, V. I. Kleiner, L. L. Stotskaya, Soviet Plastics, 3, 17 (1968) (transl'n of Plasticheskie Massy, 3, 13 (1968)). R. E. Kelchner, J. J. Aklonis, J. Polym. Sci. A-2, 8, 799 (1970). A. Abe, T. Hama, J. Polym. Sci. B, 7, 427 (1969). M. Takayanagi, Pure Appl. Chem., 23, 151 (1970). P. R. Swan, J. Polym. Sci., 42, 525 (I960). T. Shibukawa, V. D. Gupta, R. Turner, J. H. Dillon, A. V. Tobolsky, Textile Res. J., 32, 910 (1962). F. S. Dainton, D. M. Evans, F. E. Hoare, T. R Melia, Polymer, 3, 277 (1962). M. Baccaredda, E. Butta, Chim. Ind. (Milan), 44, 1228 (1962). F. S. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 3, 286 (1962). A. V Tobolsky, "Properties and Structure of Polymers", Wiley, New York, 1960. N. L. Zutty, S. J. Whitworth, J. Polym. Sci. B, 2,709 (1964). F. Danusso, G. Moraglio, G. Talamini, J. Polym. Sci., 21, 139 (1956).
650. H. Thurn, Kolloid Z., 173, 72 (1960). 651. R. Simha, R. F. Boyer, J. Chem. Phys., 37, 1003 (1962). 652. A. Odajima, J. A. Sauer, A. E. Woodward, J. Phys. Chem., 66, 718 (1962). 653. W. G. Oakes, D. W. Robinson, J. Polym. Sci., 14, 505 (1954). 654. O. D. Frampton, J. F. Nobis, Ind. Eng. Chem., 45, 404 (1953). 655. K. Wolf, K. Schmieder, Intern. Symp. Macromol. Chem., Ric. Sci., 25, 732 (1955). 656. F. Wuerstlin, Kunststoffe Plastiks, 40, 158 (1950). 657. A. E. Woodward, J. A. Sauer, Adv. Polym. Sci., 1, 114 (1958). 658. B. Wunderlich, J. Polym. Sci. C, 1, 41 (1963). 659. N. G. McCrum, Makromol. Chem., 34, 50 (1959). 660. P. Manaresi, V. Giannela, J. Appl. Polym. Sci., 4, 251 (1960). 661. R. Nakane, J. Appl. Polym. Sci., 3, 125 (1960). 662. E. Hunter, E. W. Oakes, Trans. Faraday Soc, 41,49 (1945). 663. F. A. Quinn, L. Mandelkern, J. Am. Chem. Soc, 80, 3178 (1958). 664. D. E. Kline, J. A. Sauer, A. E. Woodward, J. Polym. Sci., 22, 455 (1956). 665. G. Kontos, W. P. Slichter, J. Polym. Sci., 61, 61 (1962). 666. H. A. Floeck, Kolloid Z.-Z. Polym., 180, 118 (1962). 667. W. Pechhold, S. Blasenbrye, S. Woemer, Kolloid Z. Polym., 189, 14 (1963). 668. C. A. F. Tuijnman, J. Polym. Sci. C, 16, 2379 (1967). 669. J. Heijboer, J. Polym. Sci. C, 16, 3755 (1968). 670. H. Schlein, M. Shen, Rev. Sci. Instrum., 40, 587 (1969). 671. Perepechko, L. A. Kvacheva, Vysokomol. Soedin. B, 12, 484 (1970). 672. B. Wunderlich, J. Chem. Phys., 37, 1203 (1962). 673. E. W. Fischer, F. Kloos, J. Polym. Sci. B, 8, 685 (1970). 674. S. Matsuoka, J. H. Daane, H. E. Blair, T. K. Kwei, J. Polym. Sci. B, 6, 87 (1968). 675. R. A. Jackson, S. R. D. Oldland, A. Pajaczkowski, J. Appl. Polym. Sci., 12, 1297 (1968). 676. T. K. Kwei, T. T. Wang, H. E. Bair, J. Polym. Sci. C, 31, 87 (1970). 677. G. Natta, Angew. Chem., 68, 393 (1956). 678. F. R Reding, J. Polym. Sci., 21, 547 (1956). 679. R. W. Warfield, R. Brown, J. Polym. Sci. A-2,5,791 (1967). 680. G. Vidotto, A. J. Kovacs, Kolloid Z.-Z. Polym., 220, 1 (1967). 681. J. P. Kennedy, W. Naegele, J. J. Elliott, J. Polym. Sci. B, 3, 729 (1965). 682. O. E. Van Lohuizen, K. S. De Vries, J. Polym. Sci. C, 16, 3943 (1968). 683. D. W. Aubrey, A. Bamatt, J. Polym. Sci. A-2,6, 241 (1968). 684. A. E. Woodward, Trans. N. Y. Acad. Sci., 24, 250 (1962). 685. A. E. Woodward, J. A. Sauer, R. A. Wall, J. Polym. Sci., 50, 117(1961). 686. J. H. Griffith, B. G. Ranby, J. Polym. Sci., 44, 369 (1960). 687. R. W. Penn, Trans. Soc. Rheol., 3, 416 (1963). 688. W. A. Hewett, F. E. Weir, J. Polym. Sci. A, 1, 1239 (1963).
689. F. E. Karasz, H. E. Bair, J. M. O'Reilly, Polymer, 8, 547 (1967). 690. T. P. Melia, A. Tyson, Makromol. Chem., 109, 87 (1967). 691. I. Kirshenbaum, R. B. Isaacson, M. Druin, J. Polym. Sci. B, 3, 525 (1965). 692. N. Kawasaki, M. Takayanagi, Rept. Progr. Polym. Phys. (Japan), 10, 337 (1967). 693. R. G. Quynn, B. S. Sprague, J. Polym. Sci. A-2, 8, 1971 (1970). 694. A. A. Miller, J. Polym. Sci. A-2, 6, 249 (1968). 695. J, D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1961. 696. N. Hirai, H. Eyring, J. Polym. Sci., 37, 51 (1959). 697. J. D. Ferry, G. S. Parks, J. Chem. Phys., 4, 70 (1936). 698. T. G. Fox, S. Loshaek, J. Polym. Sci., 15, 371 (1955). 699. L. A. Wood, in: G. S. Wiley (Ed.), "Synthetic Rubber", Wiley, New York, 1954, Chap. 10. 700. G. T. Furukawa, R. E. McCoskey, M. L. Reilly, J. Res. Nat. Bur. Std., 55, 127 (1955). 701. G. M. Zhidomirov, U. D. Tsvetkov, Y. S. Lebedev, Zh. Strukt. Khim., 2, 696 (1961). 702. E. Butta, P. Giusti, Ric. Sci. Rend. Sec. A, 2, 362 (1962). 703. T. L. Smith, J. Polym. Sci. C, 16, 841 (1967). 704. J. J. Maurer, ACS Division of Rubber Chem., Spring Meeting, May 1967, paper 26 (33). 705. G. Gianotti, G. DaIl'asta, A. Valvassori, V. Zamboni, Makromol. Chem., 149, 117 (1971). 706. A. Turner, F. E. Bailey, J. Polym. Sci. B, 1, 601 (1963). 707. J. P. Kennedy, R. M. Thomas, Makromol. Chem., 64, 1 (1963). 708. J. P. Kennedy, R. M. Thomas, Makromol. Chem., 53, 28 (1962). 709. J. P. Kennedy, J. J. Elliott, B. Groten, Makromol. Chem., 77, 26 (1964). 710. D. L. Beck, A. A. Hiltz, J. R. Knox, SPE Trans., 3, 279 (1963). 711. B. Ke, J. Polym. Sci. B, 1, 167 (1963). 712. L. T. Muus, N. G. McCrum, F. C. McGrew, SPE J., 15, 368 (1959). 713. N. G. McCrum, J. Polym. Sci. B, 2, 495 (1964). 714. R. W. Wilkinson, M. Dole, J. Polym. Sci., 58, 1089 (1962). 715. H. Wilski, Kuntstoffe, 54, 90 (1964). 716. J. A. Sauer, R. A. Wall, N. Fuschillo, A. E. Woodward, J. Appl. Phys., 29, 1385 (1958). 717. V. A. Kargin, I. Yu. Marchenko, Polym. Sci. USSR, 2, 370 (1961); (transl'n of Vysokomol. Soedin., 2, 549 (I960)). 718. E. Passaglia, G. M. Martin, J. Res. Nat. Bur. Std., 68A, 273 (1964). 719. S. Nara, H. Kashiwabara, J. Sohma, J. Polym. Sci. A-2, 5, 929 (1967). 720. J. P. Mercier, Ind. Chim. Beige, 30, 813 (1965). 721. D. R. Gee, T. P. Melia, Makromol. Chem., 116, 122 (1968). 722. D. R. Gee, T. R Melia, Polymer, 10, 239 (1969). 723. D. R. Gee, T. P. Melia, Makromol. Chem., 132, 195 (1970). 724. I. Abu-Isa, V. A. Crawford, A. R. HaIy, M. Dole, J. Polym. Sci. C, 6, 149 (1964).
725. E. Passaglia. H. K. Kevorkian, J. Appl. Phys., 34,90 (1963). 726. M. S. Akutin, Z. I. Salina, L. Yu. Ziatkevich, B. V. Andrianov, L. E. Vlaskina, Soviet Plastics, No. 2, p. 19 (1971). 727. G. Gianotti, A. Capizzi, Eur. Polym. J., 4, 677 (1968). 728. G. M. Pogosyan, G. A. Zhamkochyan, S. G. Matsoyan, Arm. Khim. Zh., 22, 364 (1969). 729. G. M. Pogosyan, L. M. Akopyan, E. V. Vanyan, S. G. Matsoyan, Vysokomol. Soedin. B, 13, 242 (1971). 730. W. Kern, W. Heitz, M. Jager, K. Pfitzner, H. O. Wirth, Makromol. Chem., 126, 73 (1969). 731. G. M. Pogosyan, L. M. Akopyan, E. V. Vanyan, S. G. Matsoyan, Vysokomol. Soedin. B, 12, 142 (1970). 732. K. R. Dunham, J. W. H. Faber, J. Vandenberghe, W. F. Fowler, J. Appl. Polym. Sci., 7, 897 (1963). 733. R. Kosfeld, Kolloid Z., 172, 182 (1960). 734. K. H. Illers, Z. Elektrochen, 65, 679 (1961). 735. G. M. Pogosyan, T. G. Karapetyan, S. G. Matsoyan, Vysokomol. Soedin. B, 13, 228 (1971). 736. E. C. Chapin, J. G. Abrams, V. L. Lyons, J. Org. Chem., 27, 2595 (1962). 737. G. S. Kolesnikov, G. M. Pogosyan, Izv. Akad. Nauk SSSR Otd. Khim. Nauk, 2, 227 (1958). 738. C. G. Overberger, C. Frazier, J. Mandelman, H. F. Smith, J. Am. Chem. Soc, 75, 3326 (1953). 739. T. E. Davies, British Plastics, 32, 283 (1959). 740. US pat. 2,723,261, 8. Nov. 1955. 741. L. L. Ferstandig, J. C. Butler, A. E. Straus, J. Am. Chem. Soc, 76, 5779 (1954). 742. G. M. Pogosyan, T. G. Karapetyan, S. G. Matsoyan, Vysokomol. Soedin. B, 12, 463 (1970). 743. G. S. Kolesnikov, Izv. Akad. Nauk USSR, Otd. Khim. Nauk, 1333 (1959). 744. K. R. Dunham, J. Vandenberghe, J. W. H. Faber, W. F. Fowler, J. Appl. Polym. Sci., 7, 1531 (1963). 745. Brit. Pat. 609,482, 1 Oct. 1948. 746. S. Krause, J. J. Gormley, N. Roman, J. A. Shetter, W. H. Watanabe, J. Polym. Sci. A, 3, 3573 (1965). 747. J. Thrower, M. A. H. Hewins, Royal Aircraft Aircraft Establishment, Farnborough, Hants, UK, TR 70056 (1970). 748. R. A. Abdrashitov, N. M. Bazhenov, M. V. Vol'kenshtein, A. I. Kol'tsov, A. S. Khachaturov, Vysokomol. Soedin., 5, 405 (1963); (transl'n in Polymer Sci. USSR, 4, 1066 (1963)); Z. Phys. Chem., 220, 413 (1962). 749. F. Danusso, G. Polizzotti, Makromol. Chem., 61, 157 (1963). 750. K. Tanaka, O. Yano, S. Maru, R. Nagao, Rept. Progr. Polym. Phys. (Japan), 12, 379 (1969). 751. R. A. Abdrashitov, N. M. Bazhenov, M. V Vol'kenshtein, A. I. Kol'tsov, A. S. Khachaturov, Polym. Sci. USSR, 6, 2074 (1964); (transl'n of Vysokomol. Soedin., 6, 1871 (1964)). 752. US Pat 2,651,627, 8 Sept. 1953. 753. D. I. Livingstone, P. M. Kamath, R. S. Corley, J. Polym. Sci., 20, 485 (1956). 754. G. M. Pogosyan, G. A. Zhamkochyan, R. A. Stepanyan, S. G. Matsoyan, Arm. Khim. Zh., 22, 915 (1969).
755. Polaroid Corp., Offic. Sci. Res. Dev. Rept. No. 4417, p. 246, Feb. 1945. 756. V. Frosini, R L. Magagini, Eur. Polym. J., 2, 129 (1966) 757. V. Frosini, E. Butta, Mater, Sci. Eng., 6, 274 (1970). 758. T. Fujimoto, N. Ozaki, M. Nagasawa, J. Polym. Sci. A-2, 6, 129 (1968). 759. H.-G. Elias, V. S. Kamat, Makromol. Chem., 61 (1968). 760. J. M. G. Cowie, P. M. Toporowski, Eur. Polym. J., 4, 621 (1968). 761. M. Baccaredda, E. Butta, V Frosini, P. Magagnini, F. Andruzzi, J. Polym. Sci. C, 16, 3581 (1968). 762. J. M. G. Cowie, P. M. Toporowski, J. Macromol. Sci., B3, 81 (1969). 763. E. Rovira, A. Eisenberg, Unpublished results quoted by Ref. 48. 764. H. Endo, T. Fujimoto, M. Nagasawa, J. Polym. Sci. A-2, 7, 1669 (1969). 765. S. Ichihara, A. Komatsu, T. Hata, Polym. J. (Japan), 2, 650 (1971). 766. G. T. Kennedy, F. Morton, J. Chem. Soc, 2383 (1949). 767. L. C. Corrado, J. Chem. Phys., 50, 2260 (1969). 768. W. Hodes, American Cyanamid Co. Unpublished results quoted by Ref. 44. 769. G. S. Kolesnikov, G. M. Pogosyan, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 2098 (1962); Chem. Abstr., 58, 8047a (1963). 770. L. A. Utracki, R. Simha, Makromol. Chem., 117, 94 (1968). 771. N. N. Aylward, J. Polym. Sci. B, 8, 337 (1970). 772. J. J. Keavney, E. C. Eberlin, J. Appl. Polym. Sci., 3, 47 (1960). 773. R. S. Spencer, J. Colloid Sci., 4, 229 (1949). 774. T. G. Fox, P. J. Flory, J. Appl. Phys., 21, 581 (1950). 775. L. J. Hughes, G. L. Brown, J. Appl. Polym. Sci., 5, 580 (1961). 776. E. Jenckel, K. Ueberreiter, Z. Physik. Chem. (Leipzig) A, 182, 361 (1938). 777. F. Wuerstlin, H. Thurn, in: H. A. Stuart (Ed.), "Die Physik der Hochpolymeren", Springer, Berlin, 1956. 778. H. A. Stuart, (Ed.), "Die Physik der Hochpolymeren", vol. Ill, Springer, Berlin, 1955. 779. R. B. Beevers, E. F. T. White, J. Polym. Sci. B, 1, 171 (1963). 780. S. Newman, W. P. Cox, J. Polym. Sci., 46, 29 (1960). 781. R. S. Spencer, R. F. Boyer, J. Appl. Phys., 17, 398 (1946). 782. T. G. Fox, R J. Flory, J. Polym. Sci., 14, 315 (1954). 783. T. G. Fox, R J. Flory, J. Am. Chem. Soc, 70, 2384 (1948). 784. T. G. Fox, R J. Flory, J. Phys. Colloid Chem., 55, 221 (1951). 785. R. H. Boundy, R. F. Boyer, "Styrene", Reinhold, New York, 1952. 786. W. Patnode, W. J. Scheiber, J. Am. Chem. Soc, 61, 3449 (1939). 787. W. J. Roff, "Fibres, Plastics and Rubbers", Academic Press, New York, 1956, 788. Yu. V. Zelenev, Vysokomol. Soedin., 4, 1486 (1962); (transl'n in Polym. Sci. USSR, 4, 457 (1963))
789. M. S. Parker, V. J. Krasnansky, B. G. Achbarnmer, J. Appl. Poly. Sci., 8, 1825 (1964). 790. A. D. Pasquino, M. N. Pilsworth, J. Polym. Sci. B, 2, 253 (1964). 791. A. E. Martin, H. F. Rase, IEC Prod, Res. Dev., 6,104 (1967). 792. S. N. Kolesov, Vysokomol. Soedin. A, 9, 1860 (1967); (transl'n in Polym. Sci. USSR, 9, 2098 (1967)). 793. G. Rehage, H. Breuer, J. Polym. Sci. C, 16, 2299 (1967). 794. W. Simpson, Chem. Ind., 5, 215 (1965). 795. S. G. Turley, Appl. Polym. Symp., 7, 237 (1968). 796. K. C. Rusch, J. Macromol. Sci. B, 2, 421 (1968). 797. J. Stoelting, F. E. Karasz, W. J. McKnight, Polym. Eng. Sci., 10, 133 (1970). 798. K. Thinius, B. Hoesselbarth, Plaste Kautschuk, 17, 653 (1970). 799. N. Nemoto, Polym. J. (Japan), 1, 485 (1970). 800. F. E. Karasz, H. E. Bair, J. M. O'Reilly, J. Phys. Chem., 69, 2657 (1965). 801. L Abu-Isa, M. Dole, J. Phys. Chem., 69, 2668 (1965). 802. E. H. Merz, L. E. Nielsen, R. Buchdahl, Ind. Eng. Chem., 43, 1396 (1951). 803. D. J. Plazek, V. M. O'Rourke, J. Polym, Sci. A-2, 9, 209 (1971). 804. C. H. Bamford, G. C. Eastmond, D. Whittle, Polymer, 12, 247 (1971). 805. M. Bank, J. Leffingwell, C. Thies, Macromolecules, 4, 43 (1971). 806. S. Hozumi, T. Wakabayashi, K. Sugihara, Polym. J. (Japan), 1, 632 (1970). 807. G. V. Vinogradov, E. A. Dzyura, A. Ya. Malkin, V. A. Grechanovskii, J. Polym. Sci. A-2, 9, 1153 (1971). 808. R. A. Wallace, J. Polym. Sci. A-2, 9, 1325 (1971). 809. S. Ichihara, A. Komatsu, T. Hata, Polym. J. (Japan), 2, 644 (1971). 810. O. Yamamoto, H. Kambe, Polym. J. (Japan), 2, 623 (1971). 811. E. Jenckel, E. Braucker, Z. Physik. Chem. (Leipzig) A, 185, 465 (1940). 812. L. J. T. Hughes, D. B. Fordyce, J. Polym. Sci., 22, 509 (1956). 813. K. H. Illers, Z. Elektrochem., 70, 353 (1966); via Ref. 815. 814. L. E. Nielsen, ACS Polym. Preprints, 9, 596 (1968). 815. A. Eisenberg, T. Yokoyama, E. Sambalido, J. Polym. Sci. A-I, 7, 1717 (1969). 816. A. Chifor, Mater, Plast., 7, 575 (1970). 817. A. Eisenberg, H. Matsuura, T. Yokoyama, AD 715093 (1970). 818. M. Pegoraro, L. Szilagyi, A. Penati, G. Alessandrini, Eur. Polym. J., 7, 1709 (1971). 819. M. Baccaredda, R L. Magagnini, G. Pizzirani, R Giusti, J. Polym. Sci. B, 9, 303 (1971). 820. E. C. Eberlin,-Unpublished values quoted by Ref. 44. 821. C. E. Rehberg, C. H. Fisher, Ind. Eng. Chem., 40, 1429 (1948). 822. J. Hrouz, J. Janacek, J. Macromol. Sci. B, 5, 245 (1971). 823. C. E. Rehberg, W. A. Faucette, C. H. Fisher, J. Am. Chem. Soc, 66, 1723 (1944).
824. J. A. Shetter, J. Polym. Sci. B, 1, 209 (1963). 825. A. R. Monahan, J. Polym. Sci. A-I, 4, 2381 (1966). 826. G. Pizzirani, P. L. Magagnini, Chim. Ind. (Milan), 50, 1218 (1968). 827. B. Vollmert, H. Haas, Brit. Pat. 1,116,933, 12. June 1968. 828. J. H. Prager, R. M. McCurdy, C. B. Rathmann, J. Polym. Sci. A, 2, 1941 (1964). 829. V. P. Shibayev, B. S. Petrukhin, Yu. A. Zubov, N. A. Plate, V A. Kargin, Polym. Sci. USSR, 10, 258 (1968). 830. F. A. Boyer, J. F. Abere, J. Polym. Sci., 15, 537 (1955). 831. R. M. McCurdy, J. H. Prager, J. Polym. Sci. A, 2, 1185 (1964). 832. G. P. Mikhailov, V. A. Shevelev, Polym. Sci. USSR, 9, 2762 (1967). (transl'n of Vysokomol. Soedin. A, 9,2442 (1967)). 833. J. Lawler, D. C. Chalmers, J. Timar, ACS Div. Rubber Chem., Spring Meeting, May 1967, paper 42. (10). 834. C. U. Pittman, R. L. Voges-Unpublished results quoted by Ref. 835. 835. C. U. Pittman, J. C. Lai, D. P. Vanderpool, M. Good, R. Prado, Macromolecules, 3, 746 (1970). 836. F. A. Bovey, J. F. Abere, G. B. Rathmann, C. L. Sandberg, J. Polym. Sci., 15, 520 (1955). 837. A. S. Khachaturov, N. M. Bazhenov, M. V. Vol'kenshtein, I. M. Dolgopol'skii, A. I. Kol'tsov, Soviet Rubber TechnoL, 24, No. 12, 9 (1965); (transl'n of Kaucbuk i Rezina, 24, No. 12, 6 (1965)). 838. G. K. Dyvik, Polymer, 2, 449 (1961). 839. A. G. Pittman, B. A. Ludwig, D. L. Sharp, J. Polym. Sci. A-I, 6, 1741 (1968). 840. R. H. Wiley, G. M. Brauer, J. Polym. Sci., 4, 351 (1949). 841. W. R. Sorenson, T. W. Campbell, "Preparative Methods of Polymer Chemistry", 2nd ed., 1968, p. 248. 842. W. A. R Black, J. A. Colquhoun, E. T. Dewar, Makromol. Chem., 122, 244 (1969). 843. E. R Otocka, T. K. Kwei, Macromolecules, 1, 401 (1968). 844. J. R. Constanza, J. A. Vona, J. Polym. Sci. A-I, 4, 2659 (1966). 845. F. Wuerstlin, in: H. A. Stuart (Ed.), "Die Physik der Hochpolymeren", Springer, Berlin 1955, Chap. 11. 846. R. A. Haldon, R. Simha, J. Appl. Phys., 39, 1890 (1968). 847. J. Heijboer, in: J. A. Prins (Ed.)," Physics of Non-Crystalline Solids", Proc. Intern. Conf., Delft 1964, p. 231, North Holland Publishing Co., Amsterdam, 1965. 848. T. Otsu, S. Aoki, R. Nakatani, Makromol. Chem., 134, 331 (1970). 849. M. E. Hoagland, I. N. Duling, ACS Div. Petrol. Chem. Preprints, 15, B85 (1970). 850. I. N. Duling, A. Schneider, R. E. Moore, US Pat. 3,518,241, 30. June 1970. 851. C. E. Rehberg, C. H. Fisher, J. Am. Chem. Soc, 66, 1203 (1944). 852. P. Weitz, Paint Varn. Prod., 57, 99 (1967). 853. E. F. Jordan, G. R. Riser, B. Artymyshyn, W. E. Parker, J. W. Pensabene, A. N. Wrigley, J. Appl. Polym. Sci., 13, 1777 (1969). 854. K. Butler, P. R. Thomas, G. J. Tyler, J. Polym. Sci., 48, 357 (1960).
855. O. Smidsrod, J. E. Guillet, Macromolecules, 2, 272 (1969). 856. J. Elles, Chim. Mod., 4, 53 (1959). 857. A. V. Tobolsky, M. C. Shen, J. Phys. Chem., 67, 1886 (1963). 858. S. S. Rogers, L. Mandelkern, J. Phys. Chem., 61, 985 (1957). 859. A. F. Wilde, J. J. Ricca, AD 675463, Proc. Army Symp. on Solid Mechanics, p. 39 (1968). 860. T. Hata, T. Nose, J. Polym. Sci. C, 16, 2019 (1967). 861. N. W. Johnston, ACS Polym. Preprints, 10, 608 (1969). 862. Z. G. Gardlund, J. J. Laverty, J. Polym. Sci. B, 7, 719 (1969). 863. E. A. W Hoff, D. W. Robinson, A. H. Willbourn, J. Polym. Sci., 18, 161 (1955). 864. Z. A. Azimov, S. R Mitsengendler, A. A. Korotkov, Vysokomol. Soedin., 7, 843 (1965); (transl'n in Polym. Sci. USSR, 7, 929 (1965)). 865. G. R Mikhailov, A. I. Artyukhov, T. I. Borisova, Vysokomol. Soedin. A, 10, 1755 (1968); (transl'n in Polym. Sci. USSR, 10, 2033 (1968)). 866. J. LaI, G. S. Trick, J. Polym. Sci. A, 2, 4559 (1964). 867. G. Williams, D. C. Watts, Trans. Faraday Soc, 67, 2793 (1971). 868. K. M. Sinnott, SPE Trans., 2, 65 (1962). 869. M.O. Samsoen, Ann. Phys., 9, 35 (1928). 870. E. Baer, Offic. Dig. J. Paint Technol. Eng., 36, 464 (1964). 871. L. de Brouckere, G. Offergeld, Bull. Soc. Chim. Beiges, 67, 96 (1958). 872. J. D. Ferry, W. C. Child, R. Zard, D. M. Stem, M. L. Williams, R. F. Landel, J. Colloid Sci., 12, 53 (1957). 873. S. Saito, Kolloid Z.-Z. Polym., 189, 116 (1963) and Res. Electrotech. Lab. (Toyoko), No. 648 (1964); via Ref. 286. 874. W. L. Peticolas, G. I. A. Stegeman, B. R Stoicheff, Phys. Rev. Lett., 18, 1130(1967). 875. W. M. Lee, (advisers: F. R. Eirich, B. R. McGarvey), Dissertation, Polytechnic. Inst., Brooklyn 1967: via Diss. Abs., B, 28, 1897 (1967). 876. E. N. Rostovskii, L. D. Rubinovich, Vysokomol. Soedin. Karb. Vys. Soedin. Sb. Statei, p. 140 (1963). 877. M. Ilavsky, G. L. Slonimskii, J. Janacek, J. Polym. Sci. C, 16, 329 (1967). 878. M. C. Shen, J. D. Strong, F. J. Matusik, J. Macromol. Sci. B, 1, 15 (1967). 879. J. Janacek, J. D. Ferry, J. Macromol. Sci. B, 5, 219 (1971). 880. F. Lednicky, J. Janacek, J. Macromol. Sci. B, 5, 335 (1971). 881. H. Ochiai, H. Shindo, H. Yamamura, J. Polym. Sci. A-2, 9, 431 (1971). 882. I. N. Razinskaya, N. E. Kharitonova, B. R Shtarkman, Vysokomol. Soedin. B, 11, 892 (1969). 883. R. W. Warfield, M. C. Petree, R Donovan, SPE J., 15, 1055 (1959). 884. T. G. Fox, B. S. Garrett, W. E. Goode, S. Gratch, J. F. Kincaid, A. Spell, J. D. Stroupe, J. Am. Chem. Soc, 80, 1768 (1958). 885. S. Loshaek, J. Polym. Sci., 15, 391 (1955). 886. A. Odajima, A. E. Woodward, J. A. Sauer, J. Polym. Sci., 55, 181 (1961).
Next Page
887. 888. 889. 890. 891. 892.
893. 894. 895. 896. 897.
898. 899. 900. 901. 902. 903. 904. 905.
906. 907. 908. 909. 910. 911. 912. 913. 914. 915. 916. 917. 918.
W. G. Gall, N. G. McCrum, J. Polym. ScL, 50, 489 (1961). G. Allen, D. Sims, G. J. Wilson, Polymer, 2, 375 (1961). B. E. Read, J. Polym. ScL C, 16, 1887 (1967). M. F. Margaritova, S. D. Stavrova, S. N. Trubitsyna, S. D. Medvedev, J. Polym. ScL C, 16, 2251 (1967). S. R. Urzendowski, A. H. Guenther, J. R. Asay, ACS Polym. Preprints, 9, 878 (1968). A. A. Berlin, E. F. Samarin, R. V. Kronman, I. G. Sumin, Soviet Plastics, 2, 11 (1971); (transl'n of Plasticheskie Massy, 2, 26 (1971)). A. K. Schulz, J. Chim. Phys., 53, 933 (1956). F. R Wolf, K. Ueberreiter, Kolloid Z.-A. Polym., 245, 399 (1971). S. Bywater, P. M. Toporowski, Polymer, 13, 94 (1972). G. V. Schulz, W. Wunderlich, R. Kirste, Makromol. Chem., 75, 23 (1964). J. P. Mercier, H. Berghmans, G. Smets, Paper given at VIII FATIPEC Congress, Scheveningen (The Hague), p. 26 (1966). E. V. Thompson, J. Polym. Sci. A-2, 4, 199 (1966). E. V. Thompson, J. Polym. Sci. A-2, 6, 433 (1968). S. Havriliak, Polymer, 9, 289 (1968). H. Shindo, I. Murakami, H. Yamamura, J. Polym. Sci. A-I, 7, 297 (1969). N. N. Aylward, J. Polym. ScL A-I, 8, 319 (1970). T. I. Borisova, Vysokomol. Soedin. A, 12, 932 (1970); (trans'n in Polymer Sci. USSR, 12, 1060 (1970)). M. J. Bowden, J. H. O'Donnell, J. Polym. ScL A-I, 7, 1665 (1969). G. M. Chetyrkina, T. A. Sokolova, M. M. Koton, Vysokomol. Soedin., Vsesoyuz. Khim. Obshchestvo im. D. I. Mendeleeva, 1, 248 (1959); Chem. Abstr., 53, 23059i (1959). B. E. Tate, Adv. Polym. ScL, 5, 214 (1967)-Unpublished results of Charles Pfizer and Co. Inc. J. B. Kinsinger, J. R. Panchak, R. L. Kelso, J. S. Bartlett, R. K. Graham, J. Appl. Polym. Sci., 9, 429 (1965). B. Wesslen, R. W. Lenz, ACS Polym. Preprints, 11, 105 (1970). B. Wesslen, R. W. Lenz, W. J. McKnight, F. E. Karasz, Macromolecules, 4, 24 (1971). J. A. Powell, R. K. Graham, J. Polym. Sci. A, 3, 3451 (1965). V. A. Kargin, T. I. Sogolova, Zh. Fiz. Khim., 23,540 (1949). H. D. Anspon, J. J. Baron, WADC Tech' 1 Report 57-24, Pt. 1, 1957, Pt. 11, 1958; via ref. 910. H. Yuki, K. Hatada, T. Nijnomi, M. Hashimoto, J. Ohshima, Polym. J. (Japan), 2, 629 (1971). R. A. Haldon, W. J. Schell, R. Simha, J. Macromol. Sci. B, 1, 759 (1967). D. S. Otto, Vinyl Technol. Newsletter, 5, 20 (1968). W. J. Schell, R. Simha, J. J. Aklonis, J. Macromol. Sci., A3, 1297 (1969). W. J. Schell, Thesis, Univ. S. California 1969; via Diss. I Abstr. Intern. B, 30, 2120 (1969). L. Fishbein, B. F. Crowe, Makromol. Chem., 48, 221 (1961).
919. H. Thurn, K. Wolf, Kolloid-Z., 148, 16 (1956). 920. E. J. Vandenberg, R. F. Heck, D. S. Breslow, J. Polym. ScL, 41, 519 (1959). 921. W. S. Durrell, E. C. Stump, P. D. Schuman, J. Polym. Sci. B, 3, 831 (1965). 922. C. E. Schildknecht, S. T. Gross, H. R. Davidson, J. M. Lambert, A. O. Zoss, Ind. Eng. Chem., 40, 2104 (1948). 923. J. A. Sedlak, K. Matsuda, J. Polym. Sci. A, 3, 2329 (1965). 924. G. M. Pogosyan, E. S. Avanesyan, S. G. Matsoyan, Arm. Khim. Zh., 24, 694 (1971). 925. G. Pizzirani, P. Magagnini, P. Giusti, J. Polym. ScL A-2, 9, 1133 (1971). 926. J. B. Clark, Polym. Eng. Sci., 7, 137 (1967). 927. T. N. Kalinina, G. N. Afanas'eva, L. A. Vol'f, A. I. Meos, E. B. Kremer, S. Ya. Frenkel', S. S. Mnatsakanov, Vysokomol. Soedin. B, 12, 661 (1970). 928. W. H. Howard, J. Appl. Polym. Sci., 5, 303 (1961). 929. L. V. Holroyd, R. S. Codrington, B. A. Mrowca, E. Guth, Rubber Chem. Technol., 25, 767 (1952). 930. W. R. Krigbaum, N. Tokita, J. Polym. Sci., 43, 467 (1960). 931. T. G. Fox, Bull. Am. Phys. Soc, 1, 123 (1956). 932. R. J. Kokes, F. A. Long, J. L. Hoard, J. Chem. Phys., 20, 1711 (1952). 933. Rohm and Haas Co., Philadelphia. Leaflet SP-251 (1/66) of Spec. Prod. Dept. 934. S. Okajima, A. Takeuchi, J. Polym. Sci. A-2, 5, 1317 (1967). 935. K.-H. Illers, Makromol. Chem., 124, 278 (1969). 936. R. D. Andrews, R. M. Kimmel, J. Polym. Sci. B, 3, 167 (1965). 937. S. H. Ronel, D. H. Kohn, J. Polym. ScL A-I, 2221 (1969). 938. C. R. Bohn, J. R. Schaefgen, W. O. Statton, J. Polym. Sci., 55, 531 (1961). 939. R. B. Beevers, J. Polym. Sci. A, 2, 5257 (1964). 940. T. M. A. Hossain, H. Maeda, T. Iijima, Z. Morita, J. Polym. Sci. B, 5, 1069 (1967). 941. K. Ogura, S. Kawamura, H. Sobue, Macromolecules, 4, 79 (1971). 942. H. Kakutani, M. Asahina, J. Polym. Sci. A-I, 5, 1717 (1967). 943. M. Kyrszewski, M. Mucha, J. Appl. Polym. Sci., 15, 2687 (1971). 944. V Heidingsfeld, J. Zelinger, V Kuska, J. Appl. Polym. Sci., 15, 2447 (1971). 945. J. D. Hoffman, J. Am. Chem. Soc, 74, 1696 (1952). 946. R. F. Boyer, J. Appl. Phys., 25, 825 (1954). 947. F. P. Reding; private communication to ref. 946. 948. J. D. Hoffman, J. J. Weeks, J. Polym. Sci., 28,472 (1958); J. Res. Nat. Bur. Std., 60, 465 (1958). 949. T. Nakajima, S. Saito, J. Polym. Sci., 31, 423 (1958). 950. A. Nishioka, J. Polym. Sci., 37, 163 (1959). 951. F. Krum, Kolloid-Z., 165, 77 (1959). 952. K.-H. Illers, E. Jenckel, Kolloid-Z., 165, 84 (1959). 953. M. Baccaredda, E. Butta, J. Polym. Sci., 44, 421 (1960).
Previous Page
954. A. W. Meyers, V. Tammela, V. Stannett, M. Szwarc, Mod. Plast, 37, 139 (1960). 955. N. G. McCrum, J. Polym. ScL, 60, 53 (1962). 956. A. H. Scott, D. J. Scheiber, A. J. Curtis, J. L. Lauritzen, J. D. Hoffman, J. Res. Nat. Bur. Std., 66A, 269 (1962). 957. E. Passaglia, J. M. Crissman, R. R. Stromberg, ACS Polym. Preprints, 6, 590 (1965). 958. J. D. Hoffman, G. Williams, E. Passagilia, J. Polym. Sci. C, 14, 173 (1966). 959. J. M. Crissman, E. Passaglia, J. Polym. Sci. C, 14, 237 (1966). 960. 1.1. Perepechko, L. A. Bodrova, Vysokomol. Soedin. B, 10, 148 (1968). 961. I. I. Perepechko, L. A. Kvacheva, L. A. Ushakov, A. Ya. Svetov, V. A. Grechishkin, Soviet Plastics, 8, 39 (1970); (transl'n of Plasticheskie Massy, 8, 43 (1970)). 962. G. S. Kolesnikov, M. G. Avetyan, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 331 (1959). 963. L. A. Wood, Army Elastomer Conference 1955. 964. R. N. Haszeldine, U. M. I. S. T., Manchester, U.K.; private communication. 965. A. Peterlin, J. D. Holbrook, Kolloid Z.-Z. Polym., 203, 68 (1965). 966. N. Koizumi, S. Yano, K. Tsunashima, J. Polym. Sci., B, 7, 59 (1969). 967. H. Sasabe, S. Saito, M. Asahina, H. Kakutani, J. Polym. Sci. A-2, 7, 1405 (1969). 968. A. Miglierina, G. Ceccato, SRS 4 (4th Intern. Synth. Rubber Symp. London 1969), 2, 65 (1969). 969. S. Yano, J. Polym. Sci. A-2, 8, 1057 (1970). 970. H. Kakutani, J. Polym. Sci. A-2, 8, 1177 (1970). 971. W. S. Durrell, G. Westmoreland, M. G. Moshonas, J. Polym. Sci. A, 3, 2975 (1965). 972. G. T. Furukawa, R. E. McCoskey, G. J. King, J. Res. Nat. Bur. Std., 49, 273 (1952). 973. A. J. Warner; private communication to Ref. 80. 974. H. Sack; private communication to Ref. 946. 975. J. A. S. Smith, Diss. Faraday Soc, 19, 207 (1955). 976. S. Nobara, Chem. High Polym. (Japan), 14, 318 (1957). 977. S. R Kabin, Zh. Tekh. Fiz., 26, 2628 (1956); (transl'n in Soviet Phys.-Tech. Phys., 1, 2542 (1957)). 978. Y. Maeda, Chem. High Polym. (Japan), 14, 442 (1957); Chem. Abstr., 52, 5022f (1958). 979. K. Nagamatsu, T. Yoshitomi, T. Takemoto, J. Colloid. Sci., 13, 257 (1958). 980. M. Baccaredda, E. Butta, J. Polym. ScL, 31, 189 (1958). 981. K. H. Illers, E. Jenckel, Kolloid-Z., 160, 97 (1958). 982. N. G. McCrum, J. Polym. Sci., 27, 555 (1958). 983. N. G. McCrum, J. Polym. Sci., 34, 355 (1959). 984. A. V Tobolsky, J. Polym. Sci., 35, 555 (1959). 985. L. Mandelkern; private communication to Ref. 659. 986. G. W. Becker, Kolloid-Z., 167, 44 (1959). 987. M. Baccaredda, E. Butta, Ann. Chim. (Rome), 49, 559 (1959); Chem. Abstr., 53, 18538a (1959). 988. J. A. Sauer, A. E. Woodward, Rev. Mod. Phys., 32, 88 (1960).
989. C. A. Sperati, H. W. Starkweather, Adv. Polym. Sci., 2, 465 (1961). 990. R. K. Eby, K. M. Sinnott, J. Appl. Phys., 32, 1765 (1961). 991. T. Satokawa, S. Koisumi, Kogyo Kagaku Zasshi, 65, 1211 (1962); Chem. Abstr., 58, 1544h (1963). 992. A. V. Tobolsky, D. Katz, M. Takahashi, J. Polym. Sci. A, 1, 483 (1963). 993. Y. Ohzawa, Y. Wada, Rept. Progr. Polyrn. Phys. (Japan), 6, 147 (1963). 994. Y. Ohzawa, Y Wada, Japan J. Appl. Phys., 3, 436 (1964). 995. Y. Araki, J. Appl. Polym. Sci., 9, 421 (1965). 996. Y. Araki, J. Appl. Polym. Sci., 9, 1515 (1965). 997. K. L. Hsu, D. E. Kline, J. N. Tomlinson, J. Appl. Polym. Sci., 9, 3567 (1965). 998. Y. Araki, J. Appl. Polym. ScL, 9, 3575 (1965). 999. Y. Araki, J. Appl. Polym. Sci., 9, 3585 (1965). 1000. Y Araki, J. Appl. Polym. Sci., 11, 953 (1967). 1001. E. G. Howard, P. B. Sargeant, J. Macromol. Sci. A-I, 1011 (1967). 1002. K. Frigge, G. Dube, H. Kriegsman, Plaste Kautschuk, 15, 470 (1968). 1003. S. Miyakawa, T. Takemura, Japan J. Appl. Phys., 7, 814 (1968); via ref. 641. 1004. A. W. Neumann, W. Tanner, J. Colloid Interface Sci., 34, 1 (1970). 1005. D. W. Brown, L. A. Wall, ACS Polym. Preprints, 12, 302 (1971). 1006. H. S. Eleuterio, E. P. Moore, Chem. Eng. News, 40, 44 (1962). 1007. D. W. Brown, L. A. Wall, ACS Polym. Preprints, 7, 1116 (1966). 1008. E. M. Sullivan, E. W. Wise, F. P. Reding, US Pat. 3,110,705, 12. Nov. 1962. 1009. J. A. E. Kail, Polymer, 6, 535 (1965). 1010. F. R Reding, E. R. Walter, F. J. Welch, J. Polym. Sci., 56, 225 (1962). 1011. L. Bohn, Kunststoffe Plastiks, 53, 93 (1963). 1012. F. E. Bailey, J. P. Henry, R. D. Lundberg, J. M. Whelan, J. Polym. Sci. B, 2, 447 (1964). 1013. R. M. Barrer, R. Mallinder, P. S. L. Wong, Polymer, 8, 321 (1967). 1014. G. Pezzin, G. Sanmartin, F. Zilio-Grandi, J. Appl. Polym. ScL, 11, 1539 (1967). 1015. K. S. Minsker, Yu. A. Sangalov, G. A. Razuwayev, J. Polym. ScL C, 16, 1489 (1967). 1016. U. Bianchi, A. Turturro, G. Basile, J. Phys. Chem., 71, 3555 (1967). 1017. K. Nakamura, T. Nakagawa, Rept. Progr. Polym. Phys. (Japan), 10, 277 (1967). 1018. A. M. Jendrychowska-Bonamour, Eur. Polym. J., 4, 627 (1968). 1019. A. M. Sharetskii, S. V. Svetozarskii, I. B. Kotlyar, E. N. Zil'berman, Soviet Plastics, 3, 10 (1968); (transl'n of Plasticheskie Massy, 3, 6 (1968)). 1020. I. I. Perepechko, L. I. Trepelkova, L. A. Bodrova, E. K. Kosikova, L. O. Bunina, Soviet Plastics, 5, 7 (1968); (transl'n of Plasticheskie Massy, 5, 11 (1968)).
1021. J. Zelinger, J. Polym. Sci. C, 16, 4259 (1969). 1022. J. V Koleske, R. D. Lundberg, J. Polym. Sci. A-2, 795 (1969). 1023. J. Petersen, B. Ranby, Makromol. Chem., 133, 251 (1970). 1024. M. Kryszewski, M. Mucha, J. Polym. Sci. B, 5, 1095 (1967). 1025. D. E. Witenhafer, J. Macromol. Sci. B, 4, 915 (1970). 1026. G. Pezzin, G. Ajroldi, C. Garbuglio, J. Appl. Polym. Sci., 11, 2553 (1967). 1027. S. A. Liebman, C. R. Foltz, J. F. Reuwer, R. J. Obremski, Macromolecules, 4, 134 (1971). 1028. J. Barton, M. Pegoraro, L. Szilagyi, G. Pagani, Makromol. Chem., 144, 245 (1971). 1029. Kh. U. Usmanov, A. A. Yulchibaev, M. K. Asamov, A. Valiev, J. Polym. Sci. A-I, 9, 1459 (1971). 1030. J. Furukawa, Pure Appl. Chem., 26, 153 (1971). 1031. A. M. Sharetskii, S. V. Svetozarskii, E. N. Zil'berman, I. B. Kotlyar, Soviet Plastics, 9, 1 (1971); (transl'n of Plasticheskie Massy, 9, 5 (1971)). 1032. E. Sacher, J. Polym. Sci. A-2, 6, 1813 (1968). 1033. Kh. U. Usmanov, A. A. Yulchibaev, T. Sirlibaev, J. Polym. Sci. A-I, 9, 1779 (1971). 1034. J. M. O'Reilly, J. Polym. Sci., 57, 429 (1962). 1035. D. M. Chackraburtty, J. Chem. Phys., 26, 427 (1957). 1036. E. W. Merrill, D. A. Gibbs, Chem. Eng. News, 41, 41 (1963). 1037. R Meares, Trans. Faraday Soc, 53, 31 (1957). 1038. P. L. Magagnini, F. Sardelli, G. Pizzirani, Ann. Chem. (Rome), 57, 805 (1967). 1039. S. Saito, Denki Sikense Kenkyu Khakoku, Res. Electrotech. Lab., 1: 648 (1964); via Ref. 792. 1040. M. Scatena, P. Samnartin, F. Zilio-Grandi, FATIPEC Congr., 9, Section 3, p. 68 (1968), also Ind. Vernice, 23(2), 17 (1969); Chem. Abstr., 71, 50752h (1969). 1041. R. M. Holsworth, J. Paint Technol., 41, 167 (1969). 1042. J. M. Carcamo, F. Arranz, Rev. Plast. Mod., 185, 1683 (1971). 1043. H. van Hoorn, Rheol. Acta, 10, 208 (1971). 1044. S. Ichihara, A. Komatsu, T. Hata, Polym. J. (Japan), 2, 640 (1971). 1045. H. Hopff, P. Perlstein, Makromol. Chem., 125, 247 (1969). 1046. H. Hopff, M. A. Osman, Angew. Makromol. Chem., 6, 39 (1969). 1047. M. Kinoshita, T. Me, M. Imoto, Makromol. Chem., 110, 47 (1967). 1048. P. L. Magagnini, V. Frosini, Eur. Polym. J., 2, 139 (1966). 1049. A. R. Monahan, Macromolecules, 1, 408 (1968). 1050. M. A. Osman, H. -G. Elias, J. Macromol. Sci. A, 5, 805 (1971). 1051. T. S. Reid, D. W. Codding, F. A. Bovey, J. Polym. Sci., 18, 417 (1955). 1052. H. C. Haas, E. S. Emerson, N. W. Schuler, J. Polym. Sci., 22, 291 (1956). 1053. G. Pizzirani, P. L. Magagnini, J. Appl. Polym. Sci., 11,1173 (1967). 1054. H. Hopff, M. A. Osman, Makromol. Chem., 135, 175 (1970).
1055. H. Hopff, M. A. Osman, Makromol. Chem., 143, 289 (1971). 1056. J. A. Price, M. R. Lytton, B. G. Ranby, J. Polym. Sci., 51, 541 (1961). 1057. G-S. Kolesnikov, E. F. Rodionova, L. S. Fedorova, T. Ya. Medved, M. I. Kabacknik, Vysokomol. Soedin., 4, 1385 (1962); Chem. Abstr., 58, 14108e (1963). 1058. L. D. Taylor, C. K. Chiklis, T. E. Platt, J. Polym. Sci. B, 9, 187 (1971). 1059. K. Hubner, F. Kollinsky, G. Markert, H. Pennewiss, Angew. Makromol. Chem., 11, 109 (1970). 1060. L. D. Lovyagina, N. V. Meiya, A. F. Nikolaev, Zb. Prikl. Khim., 44, 2056 (1971). 1061. C. Noel, L. Monnerie, J. Chim. Phys. Phys.-Chim. Biol., 65, 2089 (1968). 1062. V. Frosini, S. de Petris, Chim. Ind. (Milan), 49,1178 (1967). 1063. L. A. Utracki, R. Simha, Makromol. Chem., 117,94 (1968). 1064. F. J. Golemba, J. E. Guillet, S. C. Nyburg, J. Polym. Sci. A1, 6, 1341 (1968). 1065. B. L. Tsetlin, T. Ya. Medved, Yu. G. Chikishev, Yu. M. Polikarpov, S. R. Rafikov, M. I. Kabuchnik, Vysokomol. Soedin., 3, 1117 (1961); Chem. Abstr., 56, 2568h (1962). 1066. P. Ehrlich, R. J. Kern, E. D. Pierron, T. Provder, J. Polym. Sci. B, 5, 911 (1967). 1067. C. Noel, Compt. Rend., 258, 3702 (1964). 1068. N. S. Nametkin, S. G. Durgar'yan, L. I. Tikhonova, V. G. Fillippova, Vysokomol. Soedin. A, 13,672 (1971); (transl'n in Polym. Sci. USSR, 13, 75 (1971)). 1069. J. H. Flynn, Thermochim. Acta, 8, 69 (1974). 1070. P. Peyser, W. D. Bascom, J. Macromol. Sci, B: Phys., 13 (4), 597, (1977). 1071. M. J. Richardson, N. G. Savill, Polymer, 16, 753 (1975). 1072. J. Bourdariat, R. Isnard, J. Odin, J. Polym. Sci., Polym. Phys. Ed., 11 (9), 1817 (1973). 1073. S. S. Chang, Polym. Prep., ACS, Div. Polym. Chem., 13 (1), 322 (1972). 1074. J. M. G. Cowie, Eur. Polym. J., 11 (4), 297 (1975). 1075. J. M. G. Cowie, I. J. McEwen, Macromolecules, 10 (5), 1124(1977). 1076. G. T. Davis, R. K. Eby, J. Appl. Phys., 44 (10), 4274 (1973). 1077. K. A. Movsisyan, G. T. Ovanesov, K. A. Gasparyan, Uch. Zap. Erevan. Un-t. Estestv. N., 2, 140 (1980). 1078. A. N. Paauvve, J. R. Knox, Polym. Eng. Sci., 16 (1), 36 (1976). 1079. J. Prud'homme, P. Goursot, A. Laramee, Makromol. Chem., 178 (5), 1561 (1977). 1080. J. Simon, C. L. Beatty, F. E. Karasaz, J. Therm. Anal., 7(1), 187 (1975). 1081. J. M. G. Cowie, Eur. Polym. J., 9 (10), 1041 (1973). 1082. Same as Ref. 1081. 1083. M. Jarigeon, B. Chabert, D. Chatain, C. Lacabanne, G. Nenoz, J. Macromol. Sci. B: Phys., 17.(1), 1 (1980). 1084. I. V. Kuleshov, Zh. Fiz. Khim., 49 (3), 803 (1975). 1085. H. K. Reimschuessel, E. A. Turi, M. K. Akkapeddi, J. Polym. Sci., Polym. Chem. Ed., 17 (9), 2769 (1979). 1086. H. Daimon, H. Okitsu, J. Kumanotani, Polym. J., 7 (4), 460 (1975).
1087. R. K. Kulkarni, H. J. Porter, F. Leonard, J. Appl. Polym. ScL, 17(11), 3509 (1973). 1088. Same as Ref. 1087. 1089. Same as Ref. 1087. 1090. R. K. Kulkarni, H. J. Porter, F. Leonard, J. Appl. Polym. ScL, 17(11), 3509 (1973). 1091. Same as Ref. 1090. 1092. Same as Ref. 1090. 1093. Same as Ref. 1090. 1094. H. Aida, H. Senda, Fukui Daigaku Kogakubu Kenkyu Hokoku, 28 (1), 95 (1980). 1095. M. S. AIi, R. P. Sheldon, Bangladesh, J. ScL, Ind. Res., 10 (3-4), 197 (1975). 1096. L. Gargallo, M. Russo, Makromol. Chem., 176 (9), 2735 (1975). 1097. Y. S. Lipatov, VA. Vilenskii, Vysokomol. Soedin., Ser. A, 17 (9), 2069 (1975). 1098. Y. K. Sung, D. E. Gregonis, G. A. Russell, J. D. Andrade, Polymer, 19 (11), 1362 (1978). 1099. Same as Ref. 1098. 1100. A. M. Abushihada, F. E. Shunbo, F. Al-Hajjar, Y. Y. AlSultan, HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun., 2 (8), 512 (1979). 1101. M. S. AIi, R. P. Sheldon, Bangladesh J. ScL, Ind. Res., 10 (3-4), 197 (1975). 1102. J. Ballesteros, G. J. Howard, L. Teasdale, J. Macromol. Sci. A, Chem., 11 (1), 39 (1977). 1103. F. Feranadez-Martin, I. Ferdanadez-Pierola, A. Horta, J. Polym. Sci., Polym. Phys. Ed., 19 (9), 1353 (1981). 1104. L. Gargallo, M. Russo, Makromol. Chem., 176 (9), 2735 (1975). 1105. Same as Ref. 1104. 1106. W. Knappe, H. J. Ott, Colloid Polym. Sci., 255 (9), 837 (1977). 1107. R. P. Kusy, W. F. Simmons, A. R. Greenberg, Polymer, 22 (2), 268 (1981). 1108. Y. S. Lipatov, V. A. Vilenskii, Vysokomol. Soedin., Ser. A, 17 (9), 2069 (1975). 1109. F. R. Schwarzl, Rheol., [Proc. Int. Congr], 8th, vol. 1, 243. Edited by Astarita, Giovanni et al., Plenum, NY. 1110. J. M. G. Cowie, Z. Haq, I. J. McEwen, J. Polym. Sci., Polym. Lett. Ed., 17 (12), 771 (1979). 1111. Same as Ref. 1110 1112. A. M. Abushihada, F. E. Shunbo, F. Al-Hajjar, Y. Y. AlSultan, HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun., 2 (8), 512 (1979). 1113. A. K. Gupta, N. Vhand, J. Polym. Sci., Polym. Phys. Ed., 18 (5), 1125 (1980). 1114. P. Lukac, L. Lapcik, Radiochem. Radioanal. Lett., 29 (5), 227 (1977). 1115. W. Mischok, B. Hoesselbarth, Plaste Kautsch., 23 (7), 491 (1976). 1116. Z. Petrik, Sb. Prednasek, 'MAKROTEST 1973', 1, 231 (1973). 1117. V. P. Privalko, Vysokomol. Soedin., Ser. A, 18 (6), 1213 (1976).
1118. A. A. Remizova, I. V. Kuleshov, N. A. Novikov, Zh. Fiz. Khim., 50 (3), 787 (1976). 1119. ER. Schwarzi, Rheol. [Proc. Int. Congr], 8th, vol. 1, 243. Edited by Astarita, Giovanni et al., Plenum, NY. 1120. P. Singh, J. Lyngaae-Joergensen, J. Macromol. Sci. B: Phys., 19 (2), 177 (1981). 1121. A. De Ruvo, E. Alfthan, Polymer, 19 (8), 872 (1978). 1122. S. L. Malholtra, P. Lessard, L. P. Blanchard, J. Macromol. Sci. A: Chem., 15 (1), 121 (1981). 1123. S. L. Malhotra, P. Lessard, L. P. Blanchard, J. Macromol. Sci. A: Chem., 15 (2), 279 (1981). 1124. S. L. Malhotra, R Lessard, L. P. Blanchard, J. Macromol. ScL A: Chem., 15 (8), 1125,1577 (1981). 1125. A. M. Abusbihada, F. E. Shunbo, F. Al-Hajjar, Y. Y. AlSultan, HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun., 2 (8), 512 (1979). 1126. M. S. AIi, R. P. Sheldon, Bangladesh J. Sci., Ind. Res., 10 (3-4), 197 (1975). 1127. J. A. Bergfjord, R. C. Penwell, M. Stolka, J. Polym. Sci., Polym. Phys. Ed., 17 (4), 711 (1979). 1128. L. P. Blanchard, J. Hesse, S. L. Malhotra, Can. J. Chem., 52 (18), 3170 (1974). 1129. P. R. Couchman, Polym. Eng. ScL, 2 (17), 377 (1981). J. M. G. Cowie, Eur. Polym. J., 11 (4), 297 (1975). 1133. A. De Ruvo, E. Alfthan, Polymer, 19 (8), 872 (1978). 1134. P. D. Garn, O. Menis, J. Macromol. Sci., Phys. B, 13 (4), 611 (1977). 1135. U. Gaur, B. Wunderlich, Macromolecules, 13 (6), 1618 (1980). 1136. M. Hartmann, H. Carlsohn, F. Rudolf, Faserforsch. Textiltech., 28 (2), 59 (1977). 1137. Same as Ref. 1136. 1138. G. Hentze, Thermochim. Acta, 15 (2), 139 (1976). 1139. H. Lee, A. M. Jamieson, R. Simha, Macromolecules, 12 (2), 329 (1979). 1140. S. L. Malhotra, P. Lessard, L. P. Blanchard, J. Macromol. Sci., Chem., A15 (2), 301 (1981). 1141. W. Mischok, B. Hoesselbarth, Plaste Kautsch., 23 (7), 491 (1976). 1142. P. Peyser, W. D. Bascom, J. Macromol. Sci. B: Phys., 13 (4), 597 (1977). 1143. M. J. Richardson, Plastics and Rubber: Materials and Applications, Sept., 162-167, 1976. 1144. M. J. Richardson, N. G. Savill, Polymer, 16, 753 (1975). 1145. M. J. Richardson, N. G. Savill, Polymer, 18, 3 (1977). 1146. J. E. L. Roovers, P. M. Toporowski, J. Appl. Polym. Sci., 18 (6), 1685 (1974). 1147. A. Rudin, D. Burgin, Polymer, 16 (4), 291 (1975). 1148. F. R. Schwarzt, Rheol., [Proc. Int. Congr.], 8th vol. 1, 243. Edited by Astarita, Giovanni, et al., Plenum, NY. 1149. L. A. Wall, Roestamsjah, M. H. Aldridge, J. Res. Natl. Bur. Stand., Sect. A, 78 (4), 447 (1974). 1150. Y. Y. Tan, G. Challa, Polymer, 17 (8), 739 (1976). 1151. J. Ballesteros, G. J. Howard, L. Teasdale, J. Macromol. ScL, Chem. A, 11 (1), 39 (1977). 1152. V. P. Privalko, Vysokomol. Soedin., Ser. A, 18 (6), 1213 (1976).
1153. V. R Privalko, A. R Lobodina, Eur. Polym. J., 10 (11), 1033 (1974). 1154. P. Tormala, Eur. Polym. J., 10 (6), 519 (1974). 1155. L. Nicolais, R. F. Landel, R Giordano-Orsini, Polym. J., 7 (2), 259 (1975). 1156. L. M. Panova, 1. S. Filatov, B. I. Sazhin, B. I. Yudkin, Plast. Massy, 5, 75 (1974). 1157. W. Wrasidlo, Macromolecules, 4 (5), 642 (1971). 1158. H. Aida, H. Senda, Fukui Daigaku Kogakubu Kenkyu Hokoku, 28 (1), 95 (1980). 1159. SameasRef. 1158. 1160. SameasRef. 1158. 1161. E. Ito, T. Hatakeyama, J. Polym. ScL, Polym. Phys. Ed., 13 (12), 2313 (1975). 1162. Y. S. Lipatov, V. A. Vilenskii, Vysokomol. Soedin., Ser. A, 17 (9), 2069 (1975). 1163. J. M. Pochan, D. F. Pochan, Macromolecules, 13 (6), 1577 (1980). 1164. G. E. Wissler, B. Crist Jr., J. Polym. ScL, Phys. Ed., 18 (6), 1257 (1980). 1165. P. Dobbert, F. Fabry, V. Koos, W. Mischok, Plaste Kautsch., 26 (1), 18 (1979). 1166. G. Hentze, Thermochim. Acta, 15 (2), 139 (1976). 1167. E. Ito, T. Hatakeyama, J. Polym. ScL, Polym. Phys. Ed., 12 (7), 1477 (1974). 1168. E. Ito, K. Yamamoto, Y. Kobayashi, T. Hatakeyama, Polymer, 19 (1), 39 (1978). 1169. C. Otto, Faserforsch. Textiltech., 28 (8), 347 (1974). 1170. C. G. Seefried Jr., J. V. Koleske, J. Polym. ScL, Polym. Phys. Ed., 13 (4), 851 (1975). 1171. SameasRef 1170. 1172. SameasRef. 1170. 1173. SameasRef. 1170. 1174. E. Sorta, A. De Chirico, Polymer, 17 (4), 348 (1976). 1175. SameasRef. 1174. 1176. SameasRef. 1174. 1177. SameasRef. 1174. 1178. SameasRef. 1174. 1179. SameasRef. 1174. 1180. SameasRef. 1174. 1181. K. H. Illers, Polymer, 18 (6), 551 (1977). 1182. Same as Ref. 1181. 1183. Same as Ref. 1181. 1184. SameasRef. 1181. 1185. Same as Ref. 1181. 1186. SameasRef. 1181. 1187. G. J. Kettle, Polymer, 18 (7), 742 (1977). 1188. S. W. Shalaby, E. A. Turi, W. M. Wenner, Therm. Methods Polym. Anal., East. Anal. Symp., 17, 35, (1978). 1189. SameasRef. 1188. 1190. SameasRef. 1188. 1191. SameasRef. 1188. 1192. SameasRef. 1188. 1193. A. Siegrmann, Z. Baraam, Makromol. Chem., Rapid Commun., 1 (2), 113 (1980).
1194. R. Larrain, L. H. Tagle, F. R. Diaz, Polym. Bull. (Berlin), 4 (8), 487 (1981). 1195. W. Wrasidlo, J. K. Stille, Macromolecules, 9 (3), 505 (1976). 1196. J. M. Barrales-Rienda, Ramos J. Gonzalez, M. Sanchez. 1197. SameasRef. 1196. 1198. SameasRef. 1196. 1199. SameasRef. 1196. 1200. SameasRef. 1196. 1201. SameasRef. 1196. 1202. SameasRef. 1196. 1203. SameasRef. 1196. 1204. SameasRef. 1196. 1210. J. Staverman, Rheologica Acta, 5, 283 (1966). 1211. H. Breuer and G. Rehage, Kolloid Z., 216/217, 158 (1967). 1212. P. Ehrenfest, Proc. Kon. Akad. Wetensch, Amsterdam, 36, 153 (1933). 1213. U. Bianchi, J. Phys. Chem., 69, 1497 (1965). 1214. A. J. Kovacs, Fortschr. Hochpolym. Forschung, 3, 394 (1963). 1215. M. V. Volkenstein, O. B. Ptitsyn, Sov. Phys.-Tekhn. Phys., 1, 2138 (1957). 1216. B. Wunderlich et al., J. Polym. ScL C, 6, 173 (1963); J. Appl. Phys., 35, 95 (1964); Adv. Polym. ScL, 7,151 (1970); J. Polymer ScL A-2, 9, 1887 (1971); A2, 12, 2473 (1974). 1217. C. T. Moynihan, J. Phys. Chem., 78, 2673 (1974); J. Am. Chem. Soc, 59, 12 (1976). 1218. C. T. Vijayakumar, H. Kothandaraman, Thermochim. Acta, 115, 159 (1987). 1219. T. G. Fox and R J. Flory, J. Appl. Phys., 21, 581 (1950). 1220. J. M. G. Cowie, P. M. Toporowski, Eur. Polym. J., 4, 621 (1968). 1221. F. E. Karasz, W. J. MacKnight, Macromolecules, 1, 537 (1968). 1222. G. A. Adam, J. N. Hay, I. W. Parsons, R. N. Haward, Polymer, 17, 51 (1976). 1223. G. P. Johari, A. Hallbrucker, E. Mayer, J. Polym. ScL, Part B: Polym. Phys., 26, 1923 (1988). 1224. Styrene Polymers, in: "Encyclopedia of Polymer Science and Engineering", 16, 1-246 (1989). 1225. S. J. Clarson, J. A. Semlyen, K. Dodgson, Polymer, 32,2823 (1991). 1226. K. O'Driscoll, R. A. Sanayei, Macromolecules, 24, 4479 (1991). 1227. E. A. DiMarzio, J. A. Gibbs, P. D. Flemming, I. C. Sanchez, Macromolecules, 9, 763 (1976). 1228. G. Gee, Polymer, 7, 177 (1966). 1229. S. Ichihara, A. Komatsu, Y Tsujita, T. Nose, T. Hata, Polymer J., 2, 530(1971). 1230. G. Rehage, J. Macromol. Sci. B: Phys., 18, 423 (1980). 1231. P. Zoller, J. Polymer Sci., Polymer Physi. Ed., 16, 1261 (1978). 1232. P. Zoller, J. Polym. Sci., Polym. Phys. Ed., 20, 1453 (1982). 1233. H. W. Starkweather, G. A. Jones, R Zoller, J. Polym. Sci., Part B: Polym. Phys., 26, 257 (1988).
1234. P. Zoller, T. A. Kehl, H. W. Starkweather, G. A. Jones, J. Polym. ScL, Part B: Polym. Phys., 27, 993 (1989). 1235. T. Ougizawa, G. D. Dee, D. J. Walsh, Polymer, 30, 1675 (1989). 1236. J. Tatibouet, L. Pichet, Polymer, 32, 3147 (1991). 1237. K. H. Hellwege, W. Knappe, P. Lehmann, Kolloidzschr., 183, 110(1962). 1238. D. W. van Krevelen, "Properties of Polymers"., 3rd ed., Elsevier, New York, 1990, Chapter 6. 1239. J. Bicerano, "Prediction of Polymer Properties", 2nd ed., Marcel Dekker, Inc., New York, 1996, Chapter 6. 1240. D. Porter, "Group Interaction Modelling of Polymer Properties", Marcel Dekker, Inc., New York, 1995, Part 3. 1241. C. J. Lee, J. Macromol. Sci. C: Rev. Macromol. Chem. Phys., 29, 431 (1989). 1242. A. Bondi, "Physical Properties of Molecular Crystals, Liquids and Glasses", Wiley, Inc., New York, 1968. 1243. R. Zallen, "The Physics of Amorphous Solids", Wiley, Inc., New York, 1983. 1244. D. Meier, Ed., "Molecular Basis of Transitions and Relaxations", Gordon and Breach, New York, 1978. 1245. G. B. McKenna, in: G. Allen (Ed.), "Glass Formation and Glassy Behavior in Comprehensive Polymer Science", Vol. 2, Pergamon Press, Oxford, 1987. 1246. E. A. Turi, Ed., "Thermal Characterization of Polymeric Materials", Academic Press, New York, 1981. 1247. J. A. Bryson, "The Glass Transition, Melting Point and Structure", in: A. D. Jenkins (Ed.), "Polymer Science", North Holland, Amsterdam, 1972. 1248. M. C. Shen, A. Eisenberg, "Glass Transtions in Polymers", Progress Solid State Chem., 3, 407 (1966). 1249. "Encyclopedia of Polymer Science and Engineering", vol. 17, "Transitions and Relaxations", Wiley, New York, 1989. 1250. I. A. Barbari, R. M. Conforti, J. Polym. Sci., Part B: Polym. Phys., 30, 1261 (1992). 1251. L. Giebel, G. Meier, G. Fytas, E. W. Fischer, J. Polym. Sci., Part B: Polym. Phys., 30, 1291 (1992). 1252. K. J. McGrath, K. L. Ngai, C. M. Roland, Macromolecules, 25,4911 (1992). 1253. A. A. Mansour, R. Junge, B. Stoll, W. Pechhold, Colloid Polym. Sci., 270, 325 (1992). 1254. S. Wu, J. Appl. Polym. Sci., 46, 619 (1992). 1255. R. F. Boyer, Macromolecules, 25, 5326 (1992). 1256. T. Kitayama, E. Masuda, M. Yamaguchi, T. Nishiura, K. Hatada, Polymer Journal, 24, 817 (1992). 1257. Y. Oishi, S. Nakata, M. Kajiyama, M. Kakimoto, Y. Imai, J. Polym. Sci., Part A: Polym. Chem., 30, 2357 (1992). 1258. H. D. Kim, S. G. Kang, C. S. Ha, J. Appl. Polym. Sci., 46, 1339 (1992). 1259. S. Vleeshouwers, J.-E. Kluin, J. D. McGervey, A. M. Jamieson, R. Simha, J. Polym. Sci., Part B: Polym. Phys., 30, 1429 (1992). 1260. S. J. Bai, M. Dotrong, R. C. Evers, J. Polym. Sci., Part B: Polym. Phys., 30, 1515 (1992). 1261. B. P. Agrawal, A. K. Srivastava, J. Macromol. Sci. A: Chem., 29, 325 (1992).
1262. M. Scandola, G. Ceccorulli, M. Pizzoli, Macromolecules, 25, 6441 (1992). 1263. S. Koizumi, K. Tadano, Y Tanaka, T. Shimidzu, S. Kutsumizu, S. Yano, Macromolecules, 25, 6563 (1992). 1264. T. Inoue, H. Okamoto, K. Osaki, Macromolecules, 25, 7069 (1992). 1265. S. Kutsumizu, N. Nagao, K. Tadano, H. Tachino, E. Hirasawa, S. Yano, Macromolecules, 25, 6829 (1992). 1266. L. Lestel, P. Guegan, S. Boileau, H. Cheradame, F. Laupretre, Macromolecules, 25, 6024 (1992). 1267. J. A. Puertolas, P J. Alonso, L. Oriol, J. L. Serrano, Macromolecules, 25, 6018 (1992). 1268. J. T. Koberstein, L. M. Leung, Macromolecules, 25, 6205 (1992). 1269. T. Narasimhaswamy, S. C. Sumathi, B. S. R. Reddy, J. Polym. Sci., Part A: Polym. Chem., 30, 2165 (1992). 1270. Y. Oishi, S. Nakata, M.-A. Kakimoto, Y. Imai, J. Polym. Sci., Part A: Polym. Chem., 30, 2217 (1992). 1271. S. S. N. Murthy, J. Polym. Sci., Part B: Polym. Phys., 31, 475 (1993). 1272. J. Scheirs, S. W. Bigger, E. T. H. Then, N. C. Billingham, J. Polym. Sci., Part B: Polym. Phys., 31, 287 (1993). 1273. J.-L. Liang, J. R Bell, J. O. Iroh, A. Mehta, J. Appl. Polym. Sci., 48, 465 (1993). 1274. S. KoIe, A. Bhattacharya, D. K. Tripathy, A. K. Bhowmick, J. Appl. Polym. Sci., 48, 529 (1993). 1275. S. L. Simon, J. K. Gillham, J. Appl. Polym. Sci., 47, 461 (1993). 1276. Y. H. Chin, C. Zhang, P. Wang, P. T. Inglefleld, A. A. Jones, R. R Kambour, J. T. Bendler, D. M. White, Macromolecules, 25, 3031 (1992). 1277. J. M. G. Cowie, S. Miachon, Macromolecules, 25, 3295 (1992). 1278. G. Ceccorulli, M. Pizzoli, M. Scandola, Macromolecules, 25, 3304 (1992). 1279. D. Zaldivar, C. Peniche, A. Bulay, J. San Roman, J. Polym. Sci., Part A: Polym. Chem., 31, 625 (1993). 1280. P. Kitipichai, R. La Peruta, G. M. Korenowski, G. E. Wnek, J. Polym. Sci., Part A: Polym. Chem., 31, 1365 (1993). 1281. D. L. Sidebottom, R. Bergman, L. Borjesson, L. M. Torell, Prog. Colloid Polym. Sci., 91, 43 (1993). 1282. B. Gerharz, S. Vogt, E. W. Fischer, G. Fytas, Prog. Colloid Polym. Sci., 91, 58 (1993). 1283. A. K. Rizos, G. Fytas, J. E. L. Roovers, K. L. Ngai, Prog. Colloid Polym. Sci., 91, 72 (1993). 1284. E. Jabbari, N. A. Peppas, Macromolecules, 26, 2175 (1993). 1285. T. Kanaya, T. Kawaguchi, K. Kaji, Physica B: Condensed Matter, 182, 403 (1992). 1286. A. Matsumoto, K. Mizuta, T. Otsu, Macromolecules, 26, 1659 (1993). 1287. G. Marchionni, G. Ajroldi, M. C. Righetti, G. Pezzin, Macromolecules, 26, 1751 (1993). 1288. P. Goldstein, L. F. del Castillo, L. S. Garcia-Colin, Macromolecules, 26, 655 (1993). 1289. W-Y Chiang, J.-Y Lu, Eur. Polym. J., 29, 837 (1993). 1290. E. M. Cavalcante, M. Campos, Synth. Met., 57, 4918 (1993).
1291. B. S. Hsiao, B. B. Sauer, J. Polym. Sci., Part B: Polym. Phys., 31, 901 (1993). 1292. B. K. Coltrain, W. T. Ferrar, J. M. Salva, J. Polym. Sci., Part A: Polym. Chem., 31, 2261 (1993). 1293. C-H. Chu, B. Berner, J. Appl. Polym. Sci., 47,1083 (1993). 1294. N. S. Allen, J. P. Hurley, A. Rahman, G. W. Follows, I. Weddell, Eur. Polym. J., 29, 1155 (1993). 1295. V. I. Bondar, Yu. M. Kukharskii, Y. P. Yampol'skii, E. Sh. Finkelshtein, K. L. Makovetskii, J. Polym. Sci., Part B: Polym. Phys., 31, 1273 (1993). 1296. Y. P. Yampol'skij, S. M. Shishatskij, V. I. Bondar', S. A. Kuptsov, E. M. Antipov, V. A. Gubanov, D. Golemme, E. Drioli, N. A. Plate, Vysokomolekularnye Soedineniya. Seriya A, 35, 1486 (1993). 1297. T. Kyu, C-C. Ko, D.-S. Lim, S. D. Smith, I. Noda, J. Polym. Sci., Part B: Polym. Phys., 31, 1641 (1993). 1298. A. J. Milton, A. P. Monkman, J. Phys. D: Appl. Phys., 26, 1468 (1993). 1299. S. F. Hahn, M. P. Dreyfuss, J. Polym. Sci., Part A: Polym. Chem., 31, 3039 (1993). 1300. E. Espi, M. Alberdi, J. J. Iruin, Macromolecules, 26, 4586 (1993). 1301. R. W. Venderbosch, J. G. L. Nelissen, A. A. J. M. Peijs, P. J. Lemstra, 837 (1993). 1302. P. Krishnan, H. Le, S. H. Lee, E. Gelerinter, J. Polym. Sci., Part B: Polym. Phys., 31, 1885 (1993). 1303. A. R Melissaris, M. H. Litt, Macromolecules, 26, 6734 (1993). 1304. K. L. Ngai, C M. Roland, Macromolecules, 26, 6824 (1993). 1305. L. A. Belfiore, M. P. McCurdie, E. Ueda, Macromolecules, 26, 6908 (1993). 1306. H. W. J. Starkweather, P. Avakian, J. J. Fontanella, M. C Wintersgill, Macromolecules, 26, 5084 (1993). 1307. S.-I. Chen, C-C Yang, Polymer Journal, 25, 1015 (1993). 1308. A. R. Khokhlov, I. Ya. Erukhimovich, Macromolecules, 26, 7195 (1993). 1309. A. Hoffmann, T. Koch, B. Stuhn, Macromolecules, 26,7288 (1993). 1310. P. J. Burchill, J. Polym. Sci., Part A: Polym. Chem., 32, 1 (1994). 1311. Y. Saegusa, M. Kuriki, A. Kawai, S. Nakamura, J. Polym. Sci., Part A: Polym. Chem., 32, 57 (1994). 1312. G. S. Bennett, R. J. Farris, J. Polym. Sci., Part A: Polym. Chem., 32, 73 (1994). 1313. S. A. Nye, S. A. Swint, J. Polym. Sci., Part A: Polym. Chem., 32, 131 (1994). 1314. W. Hu, J. T. Koberstein, J. Polym. Sci., Part B: Polym. Phys., 32, 437 (1994). 1315. R D. Condo, K. R Johnston, J. Polym. Sci., Part B: Polym. Phys., 32, 523 (1994). 1316. C J. Twomey, S. H. Chen, T. N. Blanton, A. Schmid, K. L. Marshall, J. Polym. Sci., Part B: Polym. Phys., 32, 551 (1994). 1317. P. J. Scott, A. Penlidis, G. L. Rempel, A. D. Lawrence, J. Polym. Sci., Part A: Polym. Chem., 32, 539 (1994). 1318. RD. Condo, D. R. Paul, K. P. Johnston, Macromolecules, 27, 365 (1994).
1319. B. B. Sauer, D. J. Walsh, Macromolecules, 27, 432 (1994). 1320. A. Higuchi, T. Nakagawa, J. Polym. Sci., Part B: Polym. Phys., 32, 149 (1994). 1321. Anon, J. Polym. Sci., Part B: Polym. Phys., 32, 201 (1994). 1322. Z. Su, X. Li, S. L. Hsu, Macromolecules, 27, 287 (1994). 1323. I. Arvanitoyannis, I. Kolokuris, J. M. V. Blanshard, C Robinson, J. Appl. Polym. Sci., 48, 987 (1993). 1324. W.-Y. Chiang, J.-Y. Lu, J. Appl. Polym. Sci., 49, 893 (1993). 1325. M. F. Champagne, R. E. Prud'Homme, J. Polym. Sci., Part B: Polym. Phys., 32, 615 (1994). 1326. Y. Xue, H. L. Frisch, J. Polym. Sci., Part A: Polym. Chem., 32, 257 (1994). 1327. R. N. Santra, B. K. Samantaray, A. K. Bhowmick, G. B. Nando, J. Appl. Polym. Sci., 49, 1145 (1993). 1328. M. Biswas, A. Roy, J. Appl. Polym. Sci., 49, 2189 (1993). 1329. G. C Chung, J. A. Kornfield, S. D. Smith, Macromolecules, 27, 964 (1994). 1330. H. Kumazawa, J.-S. Wang, K. Naito, B. Messaoudi, E. Sada, J. Appl. Polym. Sci., 51, 1015 (1994). 1331. S.-J. Chang, H.-B. Tsai, J. Appl. Polym. Sci., 51, 999 (1994). 1332. M. Mourgues-Martin, A. Bernes, C Lacabanne, J. Therm. Anal., 40, 697 (1993). 1333. G. Teyssedre, A. Bernes, C Lacabanne, J. Therm. Anal., 40, 711 (1993). 1334. D. M. Petrovic-Djakov, J. M. Filipovic, Lj. P. Vrhovac, J. S. Velickovic, J. Therm. Anal., 40, 741 (1993). 1335. J. J. Del VaI, J. Colmenero, G. Martinez, J. L. Millan, J. Polym. Sci., Part B: Polym. Phys., 32, 871 (1994). 1336. P. J. A. In't Veld, Z.-R. Shen, G. A. J. Takens, P. J. Dijkstra, J. Feijen, J. Polym. Sci., Part A: Polym. Chem., 32, 1063 (1994). 1337. S. A. M. AIi, D. J. Hourston, J. Appl. Polym. Sci., 52, 1129 (1994). 1338. L. Parravicini, B. Leone, F. Auriemma, G. Guerra, V. Petraccone, G. D. Dino, R. Bianchi, R. Vosa, J. Appl. Polym. Sci., 52, 875 (1994). 1339. A. B. Dias, N. T. Correia, J. J. Moura-Ramos, A. C Fernandes, Polym. Int., 33, 293 (1994). 1340. G. Pollock, S. Nazarenko, A. Hiltner, E. Bear, J. Appl. Polym. Sci., 52, 163 (1994). 1341. R. A. Huijts, A. J. De Vries, International Journal Of Polymeric Materials, 22, 231 (1993). 1342. G. D. Patterson, P. K. Jue, D. J. Ramsay, J. R. Stevens, J. Polym. Sci., Part B: Polym. Phys., 32, 1137 (1994). 1343. M. Fernandez-Garcia, M. M. C Lopez-Gonzalez, J. M. Barrales-Rienda, E. L. Madruga, C. Arias, J. Polym. Sci., Part B: Polym. Phys., 32, 1191 (1994). 1344. C L. Choy, K. W. Kwok, W. P. Leung, F. P. Lau, J. Polym. Sci., Part B: Polym. Phys., 32, 1389 (1994). 1345. X. Zhang, M. Shimoda, A. Toyoda, J. Polym. Sci., Part B: Polym. Phys., 32, 1399 (1994). 1346. K. Itoya, M. Arata, M. Kakimoto, Y. Imai, J. Maeda, T. Kurosaki, J. Macromol. Sci. A: Chem., 31, 817 (1994). 1347. N. Kato, N. Yamazaki, Y. Nagasaki, M. Kato, Polym. Bull. (Berlin), 32, 55 (1994). 1348. G. Muller, R. Stadler, Macromolecules, 27, 1555 (1994).
1349. A. Matsumoto, K. Shimizu, K. Mizuta, T. Otsu, J. Polym. ScL, Part A: Polym. Chem., 32, 1957 (1994). 1350. T. M. Moy, J. E. McGrath, J. Polym. ScL, Part A: Polym. Chem., 32, 1903 (1994). 1351. M. T. DeMeuse, J. Polym. ScL, Part B: Polym. Phys., 32, 1749 (1994). 1352. D. Kim, J. M. Caruthers, N. A. Peppas, J. Polym. ScL, Part B: Polym. Phys., 32, 1593 (1994). 1353. M.-B. Hagg, W. J. Koros, J. C. Schmidhauser, J. Polym. ScL, Part B: Polym. Phys., 32, 1625 (1994). 1354. P. G. Santangelo, K. L. Ngai, C. M. Roland, Macromolecules, 27, 3859 (1994). 1355. R. P. Pearce, R. H. Marchessault, Macromolecules, 27,3869 (1994). 1356. B. V. Lebedev, L. Ya. Tsvetkova, N. N. Smirnova, J. Therm. Anal., 41, 1371 (1994). 1357. C. He, A. C. Griffin, A. H. Windle, J. Appl. Polym. ScL, 53, 561 (1994). 1358. I. Rusig, M. H. Godinho, L. Varichon, P. Sixou, J. Dedier, C. Filliatre, A. F. Martins, J. Polym. ScL, Part B: Polym. Phys., 32, 1907 (1994). 1359. A. Mathew, P. C. Deb, J. Appl. Polym. ScL, 53,1103 (1994). 1360. C. K. Park, C. S. Ha, J. K. Lee, W. J. Cho, J. Appl. Polym. ScL, 53, 967 (1994). 1361. P. Skoglund, A. Fransson, J. Polym. ScL, Part B: Polym. Phys., 32, 1999 (1994). 1362. M. D. Migahed, M. Ishra, A. El-Khodary, T. Fahmy, J. Appl. Polym. ScL, 53, 1315 (1994). 1363. A. S. Kulik, H. W. Beckham, K. Schmidt-Rohr, D. Radloff, U. Pawelzik, C. Boeffel, H. W. Spiess, Macromolecules, 27, 4746 (1994). 1364. M. Tsukada, Y. Gotoh, M. Nagura, N. Minoura, N. Kasai, G. Freddi, J. Polym. ScL, Part B: Polym. Phys., 32, 961 (1994). 1365. O. Prucker, S. Christian, H. Bock, C. W. Frank, W. Knoll, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 38, 918 (1997). 1366. K. Nagapudi, H. W. Beckham, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 38,790 (1997). 1367. J. J. Schwab, J. D. Lichtenhan, K. R Chaffee, J. C. Gordon, Y. A. Otonari, M. J. Carr, A. G. BoIf, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 38, 518 (1997). 1368. J. W. Fitch, V. S. Reddy, P. W. Youngman, G. A. Wohlfahrt, P. E. Cassidy, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 37, 290 (1996). 1369. C. M. Lewis, L. J. Mathias, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 37, 243 (1996). 1370. C. Brochon, E. Duguet, M. Schappacher, A. F. Mingotaud, A. Soum, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 37, 807 (1996). 1371. J. Bettenhausen, P. Strohriegl, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 37,504 (1996). 1372. J. E. McGrath, S. K. Jayaraman, P. Lakshmanan, J. C. Abed, F. Afchar-Taromi, Polymer Preprints, Division of
1373. 1374. 1375.
1376.
1377. 1378.
1379.
1380. 1381. 1382. 1383. 1384.
1385. 1386. 1387. 1388. 1389. 1390. 1391. 1392.
1393. 1394. 1395. 1396. 1397.
Polymer Chemistry, American Chemical Society, 37, 136 (1996). D.-J. Liaw, B.-Y. Liaw, J. Polym. ScL, Part A: Polym. Chem., 35, 1527 (1997). S.-H. Hsiao, C-P. Yang, K.-Y. Chu, J. Polym. ScL, Part A: Polym. Chem., 35, 1469 (1997). S. Shirouzu, S. Chino, M. Hayashi, T. Ishii, T. Iga, M. Yoshida, N. Senda, Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 36, 260 (1997). J. E. McGrath, B. Tan, V. Vasudevan, G. W. Meyer, A. C. Loos, T. Bullions, International SAMPE Technical Conference, 28, 29 (1996). Y S. Yu, Ph. Dubois, R. Jerome, Ph. Teyssie, J. Polym. ScL, Part A: Polym. Chem., 34, 2221 (1996). V. Vasudevan, S. J. Mecham, S. Liu, S. Srinivasan, S. Claus, A. C. Loos, J. E. McGrath, International SAMPE Symposium and Exhibition (Proceedings), 41, 1092 (1996). S. B. Sastri, J. P. Armistead, T. M. Keller, International SAMPE Symposium and Exhibition (Proceedings), 41, 171 (1996). W. K. Shu, Proceedings - Electronic Components and Technology Conference, 219 (1996). M. A. Corcuera, I. Mondragon, C. C. Riccardi, R. J. J. Williams, J. Appl. Polym. ScL, 64, 157 (1997). X.-P. Hu, Y-L. Hsieh, Polymer, 38, 1491 (1997). J. S. Zaroulis, M. C. Boyce, Polymer, 38, 1303 (1997). J.-O. Choi, R. Kirsten, S. Rojstaczer, D. Riordan, Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces, 56 (1997). F. W. Mercer, M. M. Fone, V. N. Reddy, A. A. Goodwin, Polymer, 38, 1989 (1997). A. N. Wilkinson, S. B. Tattum, A. J. Ryan, Polymer, 38, 1923 (1997). J. R Habas, J. Peyrelasse, M. F. Grenier-Loustalot, High Performance Polymers, 8, 515 (1996). C. Hamciuc, E. Hamciuc, M. Bruma, High Performance Polymers, 8, 507 (1996). C. Hamciuc, E. Hamciuc, F. W. Mercer, N. M. Belomoina, M. Bruma, High Performance Polymers, 8, 445 (1996). K. R. Srinivasan, R. G. Bass, J. G. Jr. Smith, High Performance Polymers, 8, 381 (1996). C. M. Rocha, M. A. Gomez, J. G. Fatou, P. Evans, J. Cronauer, H. G. Zachmann, Polymer, 38, 1601 (1997). O. Ozarslan, T. Yilmaz, E. Yildiz, U. Fiedeldei, A. Kuyulu, A. Gungor, J. Polym. ScL, Part A: Polym. Chem., 35, 1149 (1997). D. H. Bolton, K. L. Wooley, J. Polym. ScL, Part A: Polym. Chem., 35, 1133(1997). S. W. Smith, B. D. Freeman, C. K. Hall, Macromolecules, 30, 2052 (1997). X. Wan, H. S. Kwok, B. Z. Tang, Proceedings of the Asian Symposium on Information Display, 187 (1997). G. Gabellini, R. E. S. Bretas, Journal De Physique. IV: JP, 6, 575 (1996). D. M. Rueck, J. Schulz, W. F. Frank, Proc. SPIE-Int. Soc. Opt. Eng., 2851, 118 (1996).
1398. J. Reyes Romero, M. D. Chipara, V. Mihai, M. L Chipara, Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report, 2, 679 (1996). 1399. M. Ueda, T. Nakayama, T. Mitsuhashi, J. Polym. ScL, Part A: Polym. Chem., 35, 371 (1997). 1400. Q. Guo, S. Zheng, J. Li, Y. Mi, J. Polym. ScL, Part A: Polym. Chem., 35, 211 (1997). 1401. C. C. Cypcar, P. Camelio, V. Lazzeri, L. J. Mathias, B. Waegell, Macromolecules, 29, 8954 (1996). 1402. K. Hiltunen, M. Harkonen, J. V. Seppala, T. Vaananen, Macromolecules, 29, 8677 (1996). 1403. C. H. Bergstrom, J. V. Seppala, J. Appl. Polym. ScL, 63, 1063 (1997). 1404. A. Shiotani, M. Kohda, J. Appl. Polym. ScL, 63, 865 (1997). 1405. B. R. Maughon, M. Week, B. Mohr, R. H. Grubbs, Macromolecules, 30, 257 (1997). 1406. Z. Wang, T. Chen, J. Xu, J. Appl. Polym. ScL, 63, 1127 (1997). 1407. K. M. Rajkotia, M. M. Kamani, P. H. Parsania, Polymer, 38, 715 (1997). 1408. K. Inoue, Y. Imai, Kobunshi Ronbunshu/Japanese Journal of Polymer Science and Technology, 53, 869 (1996). 1409. T.-G. Choi, Y-K. Yun, J. Jin, Polymer-Plastics Technology and Engineering, 36, 135 (1997). 1410. H. Ishida, H. Y Low, Macromolecules, 30, 1099 (1997). 1411. S. Srinivas, F. E. Caputo, M. Graham, S. Gardner, R. M. Davis, J. E. McGrath, G. L. Wilkes, Macromolecules, 30, 1012 (1997). 1412. J. Kylma, M. Harkonen, J. V. Seppala, J. Appl. Polym. ScL, 63, 1865 (1997). 1413. E. Donth, M. Beiner, S. Reissig, J. Korus, F. Garwe, S. Vieweg, S. Kahle, E. Hempel, K. Schroeter, Macromolecules, 29, 6589 (1996). 1414. A. Gu, G. Liang, L. Lan, J. Appl. Polym. ScL, 62, 799 (1996). 1415. A. E. Wolfenson, R. M. Torresi, T. J. Bonagamba, M.-A. De Paoli, H. Panepucci, Solid State Ionics, 85, 219 (1996). 1416. Y Hwang, G. D. Patterson, J. R. Stevens, J. Polym. ScL, Part B: Polym. Phys., 34, 2291 (1996). 1417. F. Koopmann, A. Burgath, R. Knischka, J. Leukel, H. Frey, Acta Polym., 47, 377 (1996). 1418. M. A. Pauley, C. H. Wang, A. K. Y. Jen, Macromolecules, 29, 7064 (1996). 1419. H. Amri, M. N. Belgacem, A. Gandini, Polymer, 37, 4815 (1996). 1420. T. S. Haddad, E. Choe, J. D. Lichtenhan, Materials Research Society Symposium Proceedings, 435, 25 (1996). 1421. J. A. Mikroyannidis, J. Polym. ScL, Part A: Polym. Chem., 34, 3389 (1996). 1422. H. R. Allcock, S. J. M. O'Connor, D. L. Olmeijer, M. E. Napierala, C. G. Cameron, Macromolecules, 29, 7544 (1996). 1423. A. Brunacci, J. M. G. Cowie, R. Ferguson, J. L. G. Ribelles, A. V. Garayo, Macromolecules, 29, 7976 (1996). 1424. R. M. Hodge, T. J. Bastow, G. H. Edward, G. P. Simon, A. J. Hill, Macromolecules, 29, 8137 (1996). 1425. Y. Bourgeois, Y Charlier, J. Devaux, R. Legras, Polymer, 37, 5503 (1996).
1426. 1427. 1428. 1429.
1430.
1431. 1432. 1433. 1434. 1435. 1436. 1437. 1438. 1439.
1440. 1441. 1442. 1443. 1444. 1445. 1446. 1447. 1448.
1449. 1450. 1451. 1452. 1453. 1454.
A. H. Tsou, D. L. DelleFave, Polymer, 37, 5381 (1996). S. Jacobsen, H. G. Fritz, Polym. Eng. ScL, 36, 2799 (1996). Ch. R. Davis, J. Appl. Polym. ScL, 62, 2237 (1996). C. Hamciuc, E. Hamciuc, I. Sava, A. Stoleriu, F. W. Mercer, M. Bruma, Polymers for Advanced Technologies, 7, 847 (1996). O. Schaefer, A. Greiner, J. Pommerehne, W. Guss, H. Vestweber, H. Y Tak, H. Baessler, C. Schmidt, G. Luessem, B. Schartel, V. Stuempflen, J. H. Wendorff, S. Spiegel, C. Moeller, H. W. Spiess, Synth. Met., 82, 1 (1996). J. S. Grebowicz, J. Therm. Anal., 46, 1151 (1996). S. Matsuoka, J. Therm. Anal., 46, 985 (1996). J. Rieger, J. Therm. Anal., 46, 965 (1996). Y H. Kim, B. S. Moon, F. W. Harris, S. Z. D. Cheng, J. Therm. Anal., 46, 921 (1996). J. D. Menczel, M. Jaffe, C. K. Saw, T. P. Bruno, J. Therm. Anal., 46, 753 (1996). J. D. Menczel, M. Jaffe, C. K. Saw, J. Therm. Anal., 46, 733 (1996). S. Reissig, M. Beiner, S. Vieweg, K. Schroeter, E. Donth, Macromolecules, 29, 3996 (1996). D. D. Deppe, A. Dhinojwala, J. M. Torkelson, Macromolecules, 29, 3898 (1996). D. J. Brennan, J. E. White, A. P. Haag, S. L. Kram, M. N. Mang, S. Pikulin, C. N. Brown, Macromolecules, 29, 3707 (1996). F. Koopmann, H. Frey, Macromolecules, 29, 3701 (1996). H. R. Allcock, S. E. Kuharcik, C. J. Nelson, Macromolecules, 29, 3686 (1996). L. M. Weldon, M. J. Pomeroy, S. Hampshire, Key Eng. Mater., 118/119, 241 (1996). G. Meier, F. Kremer, G. Fytas, A. Rizos, J. Polym. ScL, Part B: Polym. Phys., 34, 1391 (1996). X. Meng, A. Natansohn, P. Rochon, J. Polym. ScL, Part B: Polym. Phys., 34, 1461 (1996). Y Zhang, J. C. Tebby, J. W. Wheeler, J. Polym. ScL, Part A: Polym. Chem., 34, 1561 (1996). R. Flores, J. Perez, P. Cassagnau, A. Michel, J. Y. Cavaille, J. Appl. Polym. ScL, 60, 1439 (1996). Y Yuan, A. Siegmann, M. Narkis, J. Appl. Polym. ScL, 60, 1475 (1996). N. C. Stoffel, M. Hsieh, E. J. Kramer, W. Volksen, IEEE Transactions on Components, Packaging, and Manufacturing Technology Part B: Advanced Packaging, 19, 417 (1996). H. R. Allcock, S. E. Kuharcik, C. S. Reed, M. E. Napierala, Macromolecules, 29, 3384 (1996). Y Ni, P. Park, M. Liang, J. Massey, C. Waddling, I. Manners, Macromolecules, 29, 3401 (1996). Y. Kim, Y H. Rhee, S.-H. Han, G. S. Heo, J. S. Kim, Macromolecules, 29, 3432 (1996). P. G. Santangelo, K. L. Ngai, C. M. Roland, Macromolecules, 29, 3651 (1996). J. A. Dugger, D. E. Hirt, Polymer Composites, 17, 492 (1996). Y Ding, A. S. Hay, Macromolecules, 29, 4811 (1996).
1455. S. Datta, A. K. Bhattacharya, S. K. De, E. G. Kontos, J. M. Wefer, Polymer, 37, 2581 (1996). 1456. K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, P. N. Prasad, Macromolecules, 29, 861 (1996). 1457. D. Li, J. Brisson, Macromolecules, 29, 868 (1996). 1458. R. G. Bryant, B. J. Jensen, P. M. Hergenrother, J. Appl. Polym. Sci., 59, 1249 (1996). 1459. Y.-H. Kuo, L.-W. Chen, Polym. Int., 40, 93 (1996). 1460. E. Elce, A. S. Hay, J. Polym. Sci., Part A: Polym. Chem., 34, 1897 (1996). 1461. Y.-M. Sun, C-S. Wang, J. Polym. Sci., Part A: Polym. Chem., 34, 1783 (1996). 1462. I. K. Spiliopoulos, J. A. Mikroyannidis, J. Polym. Sci., Part A: Polym. Chem., 34, 1703 (1996). 1463. R. Sadamoto, A. Uedono, T. Kawano, S. Tanigawa, Y Kosaka, T. Uryu, J. Polym. Sci., Part B: Polym. Phys., 34, 1659 (1996). 1464. J. E. Sealey, G. Samaranayake, J. G. Todd, W. G. Glasser, J. Polym. Sci., Part B: Polym. Phys., 34, 1613 (1996). 1465. T. Doi, N. Ishikawa, A. Akimoto, J. Appl. Polym. Sci., 61, 859 (1996). 1466. D. Likhatchev, L. Alexanrova, M. Tlenkopatchev, A. Martinez-Richa, R. Vera-Graziano, J. Appl. Polym. Sci., 61, 815 (1996). 1467. H. Reinecke, J. G. de Ia Campa, J. de Abajo, H. R. Kricheldorf, G. Schwarz, Polymer, 37, 3101 (1996). 1468. M. Beiner, J. Korus, H. Lockwenz, K. Schroeter, E. Donth, Macromolecules, 29, 5183 (1996). 1469. R. L. Shogren, Carbohydr. Polym., 29, 57 (1996). 1470. P. Ramachandra, R. Ramani, T. S. G. Ravichandran, G. Ramgopal, S. Gopal, C. Ranganathaiah, N. S. Murthy, Polymer, 37, 3233 (1996). 1471. Y. Zhang, U. Wiesner, Y. Yang, T. Pakula, H. W. Spiess, Macromolecules, 29, 5427 (1996). 1472. M. Chen, H. W. Gibson, Macromolecules, 29, 5502 (1996). 1473. B. L. Weick, B. Bhushan, IEEE Trans. Magn., 32, 3319 (1996). 1474. L. J. Mathias, G. L. Tullos, Polymer, 37, 3771 (1996). 1475. K. Nawa, M. Ohkita, Circuit World, 22, 16 (1996). 1476. C. M. Roland, K. L. Nagi, Macromolecules, 29, 5747 (1996). 1477. Y-H. Lu, C-S. Hsu, C-H. Chou, T.-H. Chou, Macromolecules, 29, 5546 (1996). 1478. Y Nagasaki, F. Matsukura, M. Kato, H. Aoki, T. Tokuda, Macromolecules, 29, 5859 (1996). 1479. H. Yang, A. S. Hay, J. Polym. Sci., Part A: Polym. Chem., 34, 2621 (1996). 1480. P. Avakian, J. C Coburn, M. S. Connolly, B. B. Sauer, Polymer, 37, 3843 (1996). 1481. D. E. Maurer, E. M. O'Brien, International SAMPE Electronics Conference, 7, 188 (1994). 1482. M. A. Del Nobile, G. Mensitieri, A. Sommazzi, Polymer, 36, 4943 (1995). 1483. L. F. Brown, J. I. Scheinbeim, B. A. Newman, Ferroelectrics, 171, 321 (1995). 1484. F. Garwe, A. Schoenhals, H. Lockwenz, M. Beiner, K. Schroeter, E. Donth, Macromolecules, 29, 247 (1996).
1485. H.-B. Tsai, D.-K. Lee, J.-L. Liu, Y-S. Tsao, R.-S. Tsai, J. Appl. Polym. Sci., 59, 1027 (1996). 1486. J. Kodemura, T. Natsuume, Polymer Journal, 27, 1167 (1995). 1487. E. J. Kim, T. Takeda, Y. Ohki, Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report, 492 (1995). 1488. M. Campos, E. M. Cavalcante, J. Kalinowski, J. Polym. Sci., Part B: Polym. Phys., 34, 623 (1996). 1489. P. Kaatz, P. Pretre, U. Meier, U. Stalder, C Bosshard, P. Gunter, B. Zysset, M. Stahelin, M. Ahlheim, F. Lehr, Macromolecules, 29, 1666 (1996). 1490. I. Sava, B. Schulz, S. Zhu, M. Bruma, High Performance Polymers, 7, 493 (1995). 1491. C-R Yang, J.-H. Lin, J. Polym. Sci., Part A: Polym. Chem., 34, 341 (1996). 1492. J. Sugiyama, N. Kanamori, S. Shimada, Macromolecules, 29, 1943 (1996). 1493. J.-H. Lin, C-P. Yang, J. Polym. Sci., Part A: Polym. Chem., 34, 747 (1996). 1494. A. Spyros, R. H. Marchessault, Macromolecules; 29, 2479 (1996). 1495. H. Takeno, S. Koizumi, H. Hasegawa, T. Hashimoto, Macromolecules, 29, 2440 (1996). 1496. T. Takahashi, N. Hayashi, S. Hayashi, J. Appl. Polym. Sci., 60, 1061 (1996). 1497. S. S. Wu, D. S. Kalika, R. R. Lamonte, S. Makhija, J. Macromol. Sci. B: Phys., 35, 157 (1996). 1498. B. Sarti, M. Scandola, Biomaterials, 16, 785 (1995). 1499. M. Kawagoe, W. Mizuno, J. Qiu, M. Morita, Kobunshi Ronbunshu/Japanese Journal of Polymer Science and Technology, 52, 335 (1995). 1500. H.-Y. Shih, W. F. Kuo, E. M. Pearce, T. K. Kwei, Polymers for Advanced Technologies, 6, 413 (1995). 1501. D. Li, R. Faust, Macromolecules, 28, 4893 (1995). 1502. H. Maeda, Macromolecules, 28, 5156 (1995). 1503. Y Zhang, L. Wang, T. Wada, H. Sasabe, Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid Crystals, 267, 65 (1995). 1504. M. S. Ho, A. Natansohn, P. Rochon, Macromolecules, 28, 6124 (1995). 1505. E. Perez, R. Benavente, A. Bello, J. M. Perena, D. L. VanderHart, Macromolecules, 28, 6211 (1995). 1506. T. Kawaguchi, T. Kanaya, K. Kaji, Physica B: Condensed Matter, 213/214, 510 (1995). 1507. Y Di, A. D'Amore, G. Marino, L. Nicolais, B. Li, J. Appl. Polym. Sci., 57, 989 (1995). 1508. F. Alvarez, J. Colmenero, C H. Wang, J. L. Xia, G. Fytas, Macromolecules, 28, 6488 (1995). 1509. N. Khan, Z. Bashir, D. M. Price, J. Appl. Polym. Sci., 58, 1509 (1995). 1510. W.-H. Chan, S. Y Lam-Leung, C-F. Ng, J. Ding, S. Xi, Polymer, 36, 4503 (1995). 1511. F. Akutsu, N. Sugiyama, N. Ando, Y Kasashima, M. Inoki, K. Naruchi, Polymer Journal, 27, 1025 (1995). 1512. P. Wisian-Neilson, G.-F Xu, T. Wang, Macromolecules, 28, 8657 (1995).
1513. D. Dibbern-Brunelli, T. D. Z. Atvars, J. Appl. Polym. ScL, 55, 889 (1995). 1514. Y-K. Han, S. D. Chi, Y. H. Kim, B. K. Park, J.-I. Jin, Macromolecules, 28, 916 (1995). 1515. A. Lofgren, R. Renstad, A.-C. Albertsson, J. Appl. Polym. ScL, 55, 1589 (1995). 1516. A. Alegria, E. Guerrica-Echevarria, L. Goitiandia, I. Telleria, J. Colmenero, Macromolecules, 28, 1516 (1995). 1517. A. Uedono, R. Sadamoto, T. Kawano, S. Tanigawa, T. Uryu, J. Polym. ScL, Part B: Polym. Phys., 33, 891 (1995). 1518. L. Fambri, A. Pegoretti, M. Gleria, F. Minto, Polymer, 35, 4813 (1994). 1519. E. Perez, Z. Zhen, A. Bello, R. Benavente, Polymer, 35, 4794 (1994). 1520. G. Consolati, T. Genco, M. Pegoraro, L. Zanderighi, Mater. ScL Forum, 175/178, 335 (1995). 1521. M. Coskun, K. Demirelli, E. Ozdemir, Polym. Degrad. Stab., 47, 251 (1995). 1522. J. M. I. McKillen, International SAMPE Technical Conference, 26, 423 (1994). 1523. M. Takenaka, K. Linliu, Q. Ying, B. Chu, D. Peiffer, Macromolecules, 28, 2700 (1995). 1524. S. Ito, K. Kawano, M. Yamamoto, H. Hasegawa, T. Hashimoto, Macromolecules, 28, 3736 (1995). 1525. Z. Y Wang, A. Le Guen, Macromolecules, 28, 3728 (1995). 1526. B. Levenfeld, J. San Roman, Macromolecules, 28, 3650 (1995). 1527. D. K. Song, Y K. Sung, J. Appl. Polym. ScL, 56, 1381 (1995). 1528. J. Huang, Y Hu, I. E. Ruyter, J. Appl. Polym. ScL, 56, 1253 (1995). 1529. V.-T. Truong, B. C. Ennis, M. Forsyth, Polymer, 36, 1933 (1995). 1530. J. Zhao, Y H. Chin, Y Liu, A. A. Jones, P. T. Inglefleld, R. P. Kambour, D. M. White, Macromolecules, 28, 3881 (1995). 1531. X. Ma, J. A. Sauer, M. Hara, Macromolecules, 28, 3953 (1995). 1532. J. S. Kollodge, R. S. Porter, Macromolecules, 28, 4089 (1995). 1533. G. B. Blanchet, Macromolecules, 28, 4603 (1995). 1534. R. Pardey, S. S. Wu, J. Chen, F. W. Harris, S. Z. D. Cheng, A. Keller, J. Aducci, J. V. Facinelli, R. W. Lenz, Macromolecules, 27, 5794 (1994). 1535. J. Sugiyama, K. Ohashi, M. Ueda, Macromolecules, 27, 5543 (1994).
1536. H. Abe, I. Matsubara, Y Doi, Y Hori, A. Yamaguchi, Macromolecules, 27, 6018 (1994). 1537. R Shukla, A. K. Srivastava, Polymer, 35, 4665 (1994). 1538. K. Nagai, A. Higuchi, T. Nakagawa, J. Appl. Polym. ScL, 54, 1207 (1994). 1539. W. D. Joseph, J. C. Abed, R. Mercier, J. E. McGrath, Polymer, 35, 5046 (1994). 1540. J. Han, R. H. Gee, R. H. Boyd, Macromolecules, 27, 7781 (1994). 1541. B. V. Lebedev, L. Ya. Tsvetkova, N. N. Smirnova, J. Therm. Anal., 41, 1371 (1994). 1542. K. H. Yoon, S. C. Lee, O. O. Park, Polymer Journal, 26, 816 (1994). 1543. C. K. Park, C. S. Ha, J. K. Lee, W. J. Cho, J. Appl. Polym. ScL, 53, 967 (1994). 1544. R Skoglund, A. Fransson, J. Polym. ScL, Part B: Polym. Phys., 32, 1999 (1994). 1545. A. S. Kulik, H. W. Beckham, K. Schmidt-Rohr, D. Radloff, U. Pawelzik, C. Boeffel, H. W. Spiess, Macromolecules, 27, 4746 (1994). 1546. S. Kansara, G. M. Patel, N. K. Patel, J. Macromol. Sci. A: Chem., 31, 525 (1994). 1547. X. Zhang, D. H. Solomon, Macromolecules, 27, 4919 (1994). 1548. F. Sahlen, A. HuIt, U. W. Gedde, F. Ania, J. MartinezSalazar, Polymer, 35, 4041 (1994). 1549. K. Osaki, T. Inoue, E.-J. Hwang, H. Okamoto, O. Takiguchi, J. Non-Cryst. Solids, 172/177, 838 (1994). 1550. C. M. Roland, Macromolecules, 27, 4242 (1994). 1551. Y R Handa, J. Roovers, F. Wang, Macromolecules, 27, 5511 (1994). 1552. J. A. Pomposo, I. Eguiazabal, E. Calahorra, M. Cortazar, Polymer, 34, 95 (1993). 1553. R. Storbeck, M. Ballauff, Polymer, 34, 5003 (1993). 1554. R. A. Huijts, A. J. De Vries, "International Journal of Polymeric Materials", 22, 231 (1993). 1555. G. D. Patterson, R K. Jue, D. J. Ramsay, J. R. Stevens, J. Polym. Sci., Part B: Polym. Phys., 32, 1137 (1994). 1556. N. Kato, N. Yamazaki, Y Nagasaki, M. Kato, Polym. Bull. (Berlin), 32, 55 (1994). 1557. G. Floudas, A. Rizos, W. Brown, K. L. Ngai, Macromolecules, 27, 2719 (1994). 1558. S. Matsuo, K. Mitsuhashi, J. Polym. Sci., Part A: Polym. Chem., 32, 1969 (1994). 1559. P. G. Santangelo, K. L. Ngai, C. M. Roland, Macromolecules, 27, 3859 (1994). 1560. R. P. Pearce, R. H. Marchessault, Macromolecules, 27,3869 (1994).
R a t e s
o f
C r y s t a l l i z a t i o n
o f
P o l y m e r s
J. H . M a g i l l School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
A. Introduction VI-280 1. Background VI-280 1.1. General Remarks VI-280 1.2. Background VI-280 1.3. Morphological Outline/Growth Features VI-281 2. General Principles and Techniques Involved in Crystallization Rate Studies VI-282 2.1. Kinetics of Bulk Transformations VI-282 2.2. Thermodynamic Crystallization Models VI-284 2.3. Growth Kinetics of Lamellar Structures: Crystals and Spherulites VI-284 3. Other Significant Aspects of Crystallization VI-286 3.1. Nonisothermal Crystallization VI-286 3.2. Crystallization of Blends VI-287 3.3. Solvent and Pressure-Induced Crystallization VI-288 3.4. Crystallization of Mesophases VI-288 3.5. Flow Induced Crystallization VI-289 3.6. Epitaxial Crystallization VI-289 3.7. Orientational Crystallization VI-289 3.8. Crystallization of Copolymers VI-290 3.9. Computer Simulations VI-290 B. Tables of Rates of Crystallization of Various Polymers VI-291 1. Rates of Crystal Growth VI-291 Table 1. Poly(alkenes), Poly(dienes), Poly(vinyls) VI-291 1.1. Homopolymer Melts VI-291 1.2. Solutions VI-296 Table 2. Poly(oxides) VI-300 2. Rates of Radial Spherulitic Growth VI-304 Table 3. Poly(dienes), Poly(alkenes), Poly(vinyls) VI-304 3.1. Homopolymer Melts VI-304 3.2. Blends VI-312 Table 4. Poly(oxides) VI-315 4.1. Homopolymer Melts VI-315
4.2. Complexes 4.3. Blends Table 5. Poly(carbonates) Table 6. Poly(esters) 6.1. Homopolymer melts 6.2. Blends 6.3. Copolymers Table 7. Poly(amides) Table 8. Poly(siloxanes) 8.1. Homopolymer melts 8.2. Copolymers Table 9. Others 9.1. Homopolymers melts 9.2. lonomers 3. Rates of Bulk Crystallization (Avrami Constants) Table 10. Poly(dienes), Poly(alkenes), Poly(vinyls) 10.1. Melts and Solutions 10.2. Blends and Copolymers Table 11. Poly(oxides) 11.1. Homopolymer melts 11.2. Blends Table 12. Poly(carbonates) Table 13. Poly(esters) 13.1. Homopolymer melts 13.2. Blends and Copolymers Table 14. Poly(amides) 14.1. Blends of Poly(amides) Table 15. Poly(urethanes) 15.1. Blends of Poly(urethanes) Table 16. Poly(siloxanes) Table 17. Poly(phosphazenes) Table 18. Others Table 19. Composites 19.1. Composites of Blends C. References
VI-318 VI-319 VI-326 VI-327 VI-327 VI-329 VI-331 VI-331 VI-334 VI-334 VI-334 VI-336 VI-336 VI-340 VI-341 VI-341 VI-341 VI-353 VI-365 VI-365 VI-371 VI-372 VI-373 VI-373 VI-377 VI-379 VI-382 VI-383 VI-383 VI-384 VI-384 VI-385 VI-389 VI-390 VI-391
A.
INTRODUCTION
1.
Background
1.1. General Remarks This chapter is intended to serve as a useful compendium of crystallization data for many types of polymers and polymeric systems. Some information ;s also provided on the fundamentals of crystallization (nucleation and growth) of these materials, with appropriate references relating to the techniques that are usually employed to study phase transformation processes in polymers. Controversial issues on growth and morphology will be mentioned briefly so that the reader who is new to this field will gain some perspective on the theoretical and experimental developments that have evolved over many decades, although this has little bearing on the numerical data presented here. This presentation serves not only as a guide to the data, but as a timely attempt to alert the vigilant reader to some difficulties, and some intricacies and problems of polymer crystallization that may be encountered in the literature (1-5). The third edition of this Handbook reported the rates of crystallization for homopolymers (1-5), polymer blends (6,7), and copolymers (8). This edition updates this information, adds polymeric mesophases, and factors other than temperature that effect crystallization behavior. Within the past decade, crystallization of polymer blends have become increasingly important industrially. Besides the property-synergism provided through blending, there is a further economical incentive to use available materials rather than attempt to develop new polymers. Solid-state multiphase systems provide challenging academic research problems because polymer compatibility, per se, dominates morphology, whatever the crystallinity content of the system. The phase transformation depends upon the polymer type, monomer size and placement of the monomer units comprising the macromolecules (10). Sequence length and blockiness often feature strongly in determining rates of crystallization and levels of crystallinity. Related monotonic changes sometimes occur in physical parameters such as melting points and glass temperatures, crystalUnities, and heats of fusion (11). The usefulness of a material depends upon the magnitude of these parameter changes. Polymer blending can often provide dispersions with overall properties that are superior to those of the respective components in the system, whether they crystallize or not. Blended mixtures frequently phase separate, but others maintain their morphological and physical integrity in practical applications (12). Cocrystallization may occur sometimes if there is lattice matching of the crystallographic chain axis repeat dimension and direction, and packing in the lateral directions within the crystallites is not too disruptive. In these circumstances the property changes may be striking. A fundamental knowledge of the kinetics of crystallization helps one to modify and improve properties (15). The crystallization and morphology of lyotropic and thermotropic phases have only been developed compara-
tively recently, though liquid crystal polymers were recognized experimentally (13) and theoretically (14) a long time ago. The guidelines established for smallmolecule liquid crystals (15) have been helpful for macromolecules, but they too may be misleading at times, particularly for polydisperse high-molecular-weight polymeric mesophases (16) and where their structural features are submicroscopic. Kinetic information for liquid crystal polymer systems is growing but still sparse (17,18). Synchrotron radiation sources and rapid monitoring techniques (19,20) are now available nationally and internationally for measuring isothermal and nonisothermal changes (21) and these simplify the monitoring of in situ transformations. Spectroscopic procedures (22) are now more capable than ever for sensing and tracking rapid and specific motions that have escaped detection by conventional means until the present. In addition to high intensity X-ray and light (laser) sources (23), deuterium NMR methods (24) are being used and developed for studying molecular dynamics, structural, or orientational changes (25). These new classes of nondestructive experiments are essential for improving our understanding of polymer behavior in the condensed state. 1.2. Background Over the years, two parallel themes describing aspects of crystallization of synthetic polymers have been developed. The oldest of these (26,27,30) uses a thermodynamic approach and provides a statistical description of morphology related to polymer crystallization, morphology, and properties. The other approach (28-29) is about half a century old and prefers a kinetic description of the development of lamellar structures that are basic to nucleation, growth, and stability in this context. Each has its merits and shortcomings but neither model is a panacea. Now, there is a consensus over the molecular dimensions that characterize macromolecules in the condensed state (4), but controversy remains over the intricacies of crystallization and its role in determining structure-property relationships. However, with new techniques now available for surface investigations and data processing, the time may not be too far away for an atomic view of matter in real space. For information on this topic, the reader should consult the current literature (15,31). Whenever a polymer melt (liquid) or solution is sufficiently cooled, it may spontaneously crystallize. For instance, a supersaturated dilute solution produces tiny single1 crystals (32). Spherulites are formed from concentrated polymer solutions, and these most frequently grow from the supercooled molten state. These growth patterns only occur from "privileged" nuclei, i.e., those that are capable of growing with a decrease in free energy (i.e., enhanced stability) to form ordered structures. If the supercooled melt (liquid) does not undergo this discontinuous transformation, then it is destined to form a glass, a disordered condensed phase. The crystalline texture and 1
More appropriately described here as solution-grown crystals.
morphology, as well as degree of crystallinity, depends to some degree upon experimental conditions (33,34). "Single" crystals are comprised of thin lamellae with diverse habits. These morphological forms are discussed later in this article. Lamellae are basic crystal structures, although their intricate morphology is still open to debate (15,16). The next steps in the hierarchical level of structure are many different kinds of spherulites that are polycrystalline. The exact morphology of these moieties is still unsettled though they were discovered about a century ago. Several factors may be involved, namely: (a) monomeric chemical repeat unit, (b) crystallization temperature, (c) molecular weight and molecular weight distribution, (d) degree of branching and crosslinking, (e) tacticity, (f) degree of supersaturation, and (g) environmental factors (stereochemical defects, stress, solvent, impurities, etc.) and so on. These items are not placed in order of importance. Morphology is often dictated by other circumstances. Merely by changing the concentration of polymer in solution or its solvent, it is often possible to cover the "morphological spectrum" of crystalline polymeric forms, ranging from the monocrystal (formed in very dilute solution) to spherulites (formed in relatively concentrated solutions or from the polymer melt) under quiescent conditions. Other external factors such as pressure or stress and orientation can also alter the morphology (5). This article deals mainly with isothermal crystallization conditions, but kinetic results obtained under constrained conditions are also listed. These are in the minority but the literature is growing. Although nonisothermal transformations (35) dominate in industrial operations, the data are frequently proprietary and often peculiar to specific process conditions. For example, molding processes (36) and fiber extrusion (37) operations create complex crystallization patterns, but the literature and even patents are still sparse on kinetic details. Most manufacturing procedures actually originated in industry. Still, some aspects of the topic have been examined theoretically (38). Again, the influences of nucleants or additives on crystallization behavior have made considerable inroads in the scientific and patent2 literature (39), but the importance of shear rates (40,41) on crystallization kinetics is beginning to receive more attention in the literature (42). In the field of "single crystal" growth many new results have been added to older kinetic data (43,44) tabulated in previous editions of "Polymer Handbook". The most recent are concerned with the crystallization of oligomers of polyethylene, polyethylene oxide and so on. Many aspects of crystallization are reported in some recent reviews (45,45a,45b) and later in this article. 1.3. Morphological quiescent conditions, and in self-seeding "single" crystals are 2
Outline/Growth Features Under most often in very dilute solutions, procedures, crystalline lamellae or formed. They are seldom more than
Patents are excluded from this article.
85% crystalline even for annealed samples. Within these crystals, the chain macromolecules are disposed with their chain axis (c axis) more or less perpendicular to the flat faces of the thin lamellar crystals. However, angles of inclination as large as 48° have been reported in polyamides (5). Lamellar thickness (45-48) is controlled by nucleation/ growth conditions. Electron microscopy (48) and other studies (49) have shown that crystallization (growth) proceeds outward from a primary center (a nucleation site) until growth is arrested or slowed to an imperceptible level at very low supersaturations. Screw dislocations (50) that often grow perpendicular to the basal plane of the crystal have an unusually large Burger's vector (equivalent to the lamellar thickness). Growth rates perpendicular on the basal plane of the crystal have not been reported, but a knowledge of this process should provide a better understanding of morphology and mechanistic relationships in high polymers and copolymers as they interrelate to each other and determine properties. Crystallization from more concentrated solution(s) or from the supercooled molten state produces spherulites that seem to have nucleated similarly, and the high supersaturations encountered lead to polycrystalline spherical arrays. These arrays are comprised of radiating platelets or lamellae (often splayed and branched) in which the polymer chains are also folded to varying degrees, dependent upon polymer molecular weight and experimental conditions. The chains are usually oriented tangentially to their growth direction. Because of this morphology, most spherulites show a negative birefringence since the polarizability along the molecular chain axis is much greater than it is transverse to it, except in polymers with highly polar side groups or in hydrogen bonded polyamides. A variety of textural/optical features are associated with changes in crystallite orientation. The literature (51,52,5a) is replete with details of spherulite morphology, but no unique growth mechanism has been reported. Indeed, one might question its uniqueness in materials science! It is appropriate to mention that many classes of other materials also form spherulites; see for example, sulfur (53) selenium (54), antimony (55), proteins and carbohydrates (56), graphite (57), silicates (58), and inorganic (59) and polar and nonpolar low-molecular-weight organic molecules (60), to cite some examples. Spherulites are almost ubiquitous given suitable growth conditions and their forms are diverse, but it is important to realize that other morphological forms exist. Polygonized structures are produced when spherulites impinge upon each other, limiting further outward radial growth. Growth rate is extremely temperature-sensitive and it is nucleation-controlled but this has been questioned recently (61). Even so, it is generally agreed that polymer transformations from solutions and melts are nucleation controlled. There has been confusion sometimes over the terms used to describe (a) primary and (b) secondary processes. Nucleation is termed primary for the onset of crystallization; the propagation of lamellae/spherulites (i.e., growth) is named secondary crystallization. Crystallization References page VI-391
that occurs after the radial growth ceases, i.e., "filling-in" or densification behavior in spherulites, is sometimes termed secondary crystallization. However, kineticists often restrict the term primary crystallization to the nucleation step (creation) of the phase transformation process, and secondary is given to that stage in the transformation where significant deviations from Avrami3 kinetics may take place. Several in situ experiments have been made with synchrotron radiation to monitor intricacies of nucleation and growth with time using WAXS and SAXS modes (62). During the secondary stage, densification takes place (63) and improvements in crystallinity have been reported by dilatometry (64). Even so, it must be recognized that the density and perfection of a spherulite decreases as it grows outwards from its center. Changes in crystallite thickness that may occur with annealing are another matter that is still unsettled. The temperature dependencies of spherulitic and crystal growth rate have been claimed to correspond closely (65) under comparable conditions of undercooling, but there are results to the contrary. In monodisperse poly(oxyethylene) (66) and poly(ethylene)s (67,68), the rate of growth of single crystals in the melt depends on the crystal thickness, determined primarily by the undercooling temperature. Chain ends have been reported to reside sometimes inside (67) but more often outside (68, 68a) the crystalline core of low-molecular-weight poly(ethylene)s below 400 CIVs per molecule4. 2. General Principles and Techniques Involved in Crystallization Rate Studies 2.1. Kinetics of Bulk Transformations Whenever a polymer crystallizes, the extent of the phase transformation depends upon the crystallizing species and the experimental conditions. High molecular weight polymers do not crystallize completely (9,69) because of topological constraints that lower crystallinity considerably. The classical isothermal transformation kinetics, initially formulated by Kolmogorov (70) and Goler et al. (71) were extended later by the Avrami theory that was initially formulated for metals and later modified, for example, by Evans (72) and others, for polymers. The Avrami (73) equation (Al) relates the fraction or amount of uncrystallized material that remains after time /, during an isothermal transformation to its growth rate parameter, k, and nucleation parameter, n. As formulated by Avrami, crystallization was presumed to 3
The basic concepts in this model are hardly commensurate with the known crystallization behavior of polymers; see for example, Ref. 5, p. 250. 4 The most recent in situ synchrotron studies made with monodisperse n-alkanes (C246H494) have indicated that once folded chains have considerable ciliated disorder as formed at first, but they undergo a slower improvement in crystallinity as chains equilibrate (adjust) to twice folded lamellae of much higher crystallinity (68a).
take place under isovolume conditions.5 Modifications have been made to equation (Al) to correct for incomplete crystallization (74). The mode of nucleation, n, is an integer that varies from 1 to 4, reflecting the geometry and dimensionality of the growth process, under ideal conditions. The different forms are summarized in the following table. AVRAMI EXPONENT AND MORPHOLOGY Exponent 1 2 3 4
Nucleation Type
Crystallite Shape
Instantaneous Rod Instantaneous Homogeneous Discoid/ Rod Instantaneous Homogeneous Sphere/ Discoid Homogeneous Sphere
Constant Constant Constant Constant
There are also classical growth conditions where the diffusion limited rate proceeds as tl//2 and n exhibits 1/2, I^ and 2 | values. These examples have been addressed in detail in other texts (31). Still, it is worthwhile pointing out that other terminology has been used to describe the mode of nucleation. For example, n — 3 may be termed sporadic or predetermined in time where the form of growth is disklike (2D) or spherulitic, respectively. Anyhow, it happens that in polymer phase transformation the growth velocity proceeds linearly with time. Now that mesophase crystallization is receiving more attention (75), rod-like morphologies with n — 1 resemble those found in welloriented fibrous homopolymer systems (76). Some nonintegral values of n correspond to heterogeneous transformations for n — 2 and 3. Other values of n determined in kinetic experiments may arise from many factors connected with the morphological complexity of the polymeric system. Computer simulations (77-79) have been conducted to model the bulk phase transformation, but the analysis is seldom free of ambiguity for many reasons, except in the early stages of crystallization. Note that in a recent paper, Levine et al. (80) have pointed out that the Avrami-Kolmogorov isothermal growth equation should not be applied to nonisothermal transformations without proper concern for the microstructural features that are inherent in the sample itself. Again, they claim that measurements employing small samples are subject to error whenever anisotropicity features in this mean field theory. They obtained a modified equation from extensive computer simulations. Polymeric materials are likely to be subjected to these criticisms though they were mainly concerned with metallic and related systems. Polymers exhibit more serious side-effects6 such as mixed types of nucleation (that causes more than one type of spherulite morphology), nucleation on impurities, severe volume shrinkage upon crystallization and variations in spherulite 5
In polymer crystallization experiments this situation is never realized, but large single polymer crystals accompanied by small volume changes, have been produced in some solid state polymerizations. So far, kinetic measurements have not been made on these systems. 6 These are intrinsic factors that are known to influence the Avrami exponent.
density (crystallinity) within and between the spherulite(s) all of which may contribute to nonintegral values of n. In view of these complexities, it is surprising that Avrami n values are taken seriously in practice, except for making comparative rate studies. It is even claimed (81) that the mechanical properties of spherulitic samples may be related to internal morphological defects, such as tie-molecules, and even voids created between confined spherulites during melt crystallization. Laser microbeam and X-ray microdiffraction has also been used to examine the internal morphology of spherulites (82,83). The kinetics of the embryonic nuclei and subsequent stages of spherulitic developments (84,85) from a sheaf-like morphology to a spherical entity (spherulite) have been studied using lowangle light scattering. Of course, electron microscopy (86,87) has recorded more detailed morphological changes at higher resolution, and atomic force microscopy (AFM) investigations have probed even further in this respect (88,89,89a). In principle, any technique that can follow unambiguously the amorphous —> crystalline transformation with time, under isothermal or non-isothermal conditions, can be employed as a bonafide method to detect and monitor the crystallization rate(s) that occur. Many experimental techniques exist, such as calorimetry (90), dilatometry (91), density balance (92) and density gradient (93), light depolarization (or transmission) technique (94,95) and/or small-angle light scattering (96) (for average spherulite growth rate measurements), infrared spectra (97), X-ray (98), nuclear magnetic resonance (99,102), electrical resistivity (100), and small-angle X-ray scattering (101), neutron scattering (103), atomic force microscopy (103a) and more. The Avrami 9 may involve any property parameters, /Ys, that are relevant in the transformation time domain. In this respect, specific volume changes are related to 6 by the equation (A2) Here va, vt, and V00 correspond to the initial, intermediate, and final stages of the isothermal crystallization (71,104) and the other /Ys may be similarly incorporated. Wood and Bekkedahl (104) were the first to show that the overall isothermal transformation rate of rubber expressed as (t\/2)~l passes through a maximum as its crystallization temperature was lowered. It was later shown experimentally and theoretically that the spherulitic growth rate also proceeded similarly, as related by Eq. (A3). Simply expressed (105), k may be written as in Eq. (Al): (A3) where a is a geometric parameter that is three for spherulites, and it may take on other values for other geometrical shapes. Another formulation (106) obtained experimentally, at constant crystallization temperature, is (A4)
since it was observed that nucleation rate, ft, and spherulitic growth rate, G, are each dependent on molecular weight, molecular weight distribution and time.7 The type of property, P, being monitored (107) depends upon the amorphous contribution, Pa, and crystalline portion, Pc, where each phase can be expressed as a weight fraction or a volume fraction in the simple twophase model expressed as (A5) If P is specific volume then a weight fraction xc(w) is obtained, whereas a volume fraction xc(v) results whenever the sensing is made (for example) by X-ray or dilatometry. The relationship then becomes (A6) where pa and p c represent the amorphous and crystalline densities, respectively. This model is an oversimplification (109) in that it does not allow for the increasing interdependence of the properties of each phase with changes in crystallinity. Other complications also arise because (i) crystallinity is molecular weight dependent (9,45,64) and (ii) for oriented systems, accurate determinations of crystallinity can be difficult (110,111). It strongly depends upon morphology. Bulk crystallization rates are of some practical value in a relative sense (112) and depend markedly on the concentration of impurity nuclei (of adventitious origin or from additives or nucleants introduced deliberately for property or process control). No satisfactory way (other than counting primary nuclei, i.e., spherulites) exists to quantify their concentration. Generally, spherulitic growth rate (after nucleation) is independent of how the spherulite originated (94.113) (i.e., whether the nucleation is homogeneous, heterogeneous, or pseudo-homogeneous). On the other hand, it must also be recognized that bulk transformations can be greatly influenced by impurities. Adequate fusion conditions and sample purification (94.114) must always be established for best results in a given system to suppress or eliminate adventitious heterogeneous nuclei in crystallization. Homogeneous nucleation is seldom encountered at small undercoolings (115); although it may be mimicked in the earlier stages of crystallization (116). Because of these complications, it is always advisable to combine complementary techniques; for example, optical microscope studies with dilatometric or other rate measurement. Reliable nucleation rates may only be deduced from independent measurements of 7
On this account bulk rate measurements are intrinically controlled by two convoluted independent factors or parameters. Only a unique insight into interfacial growth mechanisms is obtained from spherulitic or lamellar ("single crystal-like") interfacial tranformations per se from the polymer melt or solution growth respectively, and not from a composite of G and Af contained in (4) above.
References page VI-391
(i) spherulitic growth rate and (ii) nucleation counts made over relatively long transformation times. Investigations of liquid—>solid phase transformations with SAXS and WAXS techniques now employ rotating anode X-ray (117) or the more intense synchrotron radiation sources for real time kinetic measurements. Normally, good policy to check samples for radiation damage after each experiment. Even so, it has been reported that the development of two or more crystal modifications may be identified and monitored in situ by synchrotron WAXS and SAXS investigations (118,119). Dilatometry, and/or DSC measurements for example, may be usefully combined with SAXS investigations where the absolute integrated scattering intensity Q was expressed (21) as (A7) and later modified to read: (A8) In this equation K is an instrumental constant, pQ and p a being the densities of the crystalline and amorphous regions, respectively, <> / is the volume fraction crystallinity, and vs is the spherulitic volume. Note that Q increases with crystallinity, reaching a maximum around = 0.5 as Sheldon had shown earlier. Rate profiles for poly(tetramethyl-p-silphenylene siloxane) [poly(TMPS)] fractions (21) of high and low molecular weights differ in some respects from measurements made by other techniques. Strangely, changes in Q for relatively long isothermal transformation times show no signs of the secondary crystallization often encountered in isothermal dilatometry for the same high molecular weight samples. Long period thickening becomes invariant with the time of crystallization in some polymers, but not in poly(ethylene) (25,117,121). Interestingly, synchrotron SAXS work on poly((3-hydroxybutyrate) (20) has shown that the long period is unaltered with time during isothermal crystallization from the melt even though crystals of this polymer have been found in another study (122) to thicken isothermally upon annealing. Elsewhere (123) in oriented poly(ethylene) the long periods are found to change reversibly between 300C (217 A) and 1000C (252 A). Upon cooling of poly(TMPS) fractions, following isothermal crystallization, under quiescent conditions and reheating crystallized sample(s), a reversal of the long period,that is dependent upon molecular weight is observed (21). Concomitantly, the crystallinity increases upon cooling specimens from the crystallization temperature to room temperature (125), More detailed measurements have been made recently (62) where it was demonstrated that the increase in the degree of crystallinity by WAXS and SAXS cannot be correlated with the long period. Clearly, more investigations of this kind are needed. 2.2. Thermodynamic Crystallization Models Thermodynamic and statistical theories of morphology (124,126)
do not provide rate data but only important crystalline/ amorphous information, i.e., morphological features consistent with thermodynamic quantities predicated to change with crystallization temperature or undercooling. Kinetically, these models hardly merit a place in this article on rate measurements except that they do provide information on the "equilibrium" crystallite size lc in relation to its melting temperature Tm of the finite crystal, from the general expression of the form
(A9) that may be simplified for very long chains when the last term vanishes. In Eq. (A9), xc is the molecular chain length, R, the gas constant, and AHn, the ideal enthalpy of fusion per mole of repeat units comprising the crystallites of end interfacial energy, <je. T^ = AH0/AS0 is the thermodynamic temperature of the infinite crystal with enthalpy and entropy, AH0 and AS 0 , respectively. Theories of melting of polymers have been the subject of much discussion (127) over the years. For example, the reported thermodynamic melting temperatures of poly(ethylene) range from 414 to 419 K and from poly(oxyethylene) from 342 to 348 K are in dispute based upon theory and experiment. At best, T^1 is only reasonably well established for a few well-characterized polymers, yet so much morphological, growth kinetics and structural interpretations are based upon T^1. Only a fraction (<70%) of the chains are folded into the end surfaces of the crystallite (126) but the quality and even the extent of the re-entry adjacency is still disputed. The crystal fold surface of poly(ethylene) crystals and interfaces have been studied more than any other polymer (126-130). This dispute is likely to continue until the "crystal" surface morphology in real space (88,89) can be resolved and the corresponding surface(s) chemically analyzed by the newer experimental techniques of the last decade or more (131,132,133). It should be realized that the thermodynamic model, unlike the kinetic one, does not require a chain-folded nucleus, nor does it provide kinetic information. 2.3. Growth Kinetics of Lamellar Structures: Crystals and Spherulites Growth rate depends primarily upon the degree of undercooling rather than on the crystallization temperature, but the influence of chemical and physical structure and molecular weight and molecular weight distribution are also important factors in linear chain polymers. Without impurities, growth occurs isothermally at a constant rate, and the temperature dependence of these rates are typical of a nucleation controlled process (134), whatever the model employed to describe it. Theories for isothermal growth rate-temperature, G(T), in polymeric and other less complex systems can be formulated simply by (AlO)
which is often approximated by (All) It is frequently assumed that the temperature dependence of the diffusive term D(T) is reciprocally related via the Stokes-Einstein relationship8 to the zero shear viscosity Yj(T) which is more readily available than D(T). The f(T) term in equations (AlO) or (Al 1) differentiates between the growth geometries introduced in various growth rate models. Different formalisms (l(a),4,15,61,119-121,134137) invoking chain folding and diverse nucleus/growth geometries have been used to simulate crystallization. One of the most elaborate and widely used kinetic descriptions9 is the modified multiparameter model of the original Hoffman-Lauritzen theory (1). Another salient model is that to Point (137), who first predicted the correct crystal thickness temperature up to large undercooling, that is accordance with experimental evidence (138-140). Point and others (137), have disputed some of the basic ideas in Hoffman's model, that pertain to a stable nucleus and to surface energy and other related features connected with growth Regimes that are now postulated to describe interface roughness and interfacial energy assigned to three stages of undercooling (see below in text). Point's test of Regime theory (141) questions its validity, though there is much experimental evidence (142) pro and con for "transitional breaks" in growth rate with undercooling. The matter is still unsettled. The Hoffman-Lauritzen spherulitic growth rate equation (Al) is similar in principle to the Becker-Doring model (except for the complexions that are invoked to incorporate chain folding). The basic equation can be represented formally by (A12) In which Go is a constant for a given molecular weight, AE* is the activation barrier to molecular chain transport, and AG* is the free energy barrier to nucleation.10 8
Only valid for spherical molecules, but it has been used indiscriminately. Questions have been posed (61) that challenge the mechanistic nature of the nucleation processes per se. Recent AFM work has shown (68a) that growing polymer lamellae at the melt-crystal interface exhibited sporadic behavior with time, suggesting that stress may be a significant influence. Interestingly, reports on asymmetric aromatic hydrocarbons (60) have cited and demonstrated stress related growth behavior at faceted spherulitic interfaces. In this paper it was stated that this could complicate growth rate measurements unless proper care was exercised. The implications of this commonality in the behavior of polymers and small molecules may lead to further interesting investigations into materials, generally. 10 Recently it was reported (144a) that the (3-relaxation process is responsible for nucleation from the quenched state but this seems to be irrevalent to isothermal crystalliztion that takes place directly from the supercooled molten state well above the glass transition temperature. Crystallization from the supercooled melt and from glassy polymers (see Ref.5, p.258 and elsewhere) and small molecules were investigated (60) in some detail a long time ago and explained along conventional lines by the writer. 9
However, the L-H model differs in several important macromolecular details that distinguish it from small molecule morphology. Following the ad hoc assumption that the first exponential in the crystallization equation (Al2) may be approximated by a Vogel or modified11 Williams-Landel-Ferry (WLF) type of term,12, Eq. (A12) becomes (A13) Here T0 lies at least 30° below the glass transition temperature Tg, at a temperature where growth enabling motions vanish. A is an activation energy for such segmental transport, usually ^5kcal/mol. The nucleation term is often expressed as (A14) Here the undercooling AT = (7*° - T) and r ° is the melting temperature of the perfect polymer crystal, most often obtained by extrapolation. The term AT~{ implies two-dimensional surface nucleation (growth) but it has been claimed (143) that a AT'2 dependence provides an equally valid fit to experimental growth rate data. The geometric parameter B may be expressed as (A15) where bo is the inter planar distance in the growth direction, a and cre are the lateral and end surface (interfacial) free energy of the growing crystal or lamella13, k is Boltzmann's constant, and AAf is the heat of fusion of the crystal. The adjustable parameter/(O < / < 1) accounts for the temperature dependence of the heat of fusion away from the melting point. Another fitting parameter i/>, (0 < i/> < 1) is an "apportionment factor" of the bulk free energy associated with nucleation and growth away from the melting point. This has been troublesome in the past, amounting to serious discrepancies between theoretical and experimental values of lamellar thickness, Z, with undercooling and it was referred to (by Hoffman et al.) as the "8I catastrophe" (1). Now, in a recent paper by Snyder et al., (146), claim to have resolved this problem. This integer n, (is not to be confused with the Avrami, n, in equation (I)). The Hoffman parameter, n, is both morphology and growth rate related and is claimed to coincide with nucleation Regime changes at the growth front with undercooling in some polymers 11 The writer (60,144) pointed out decades ago that it differed in magnitude, from the macroscopic viscosity (or fluidity) temperature dependence by fitting experimental data for asymmetric aromatic hydrocarbons. 12 JuSt recently (145), further considerations of Eq. (Al3) concludes that a better "fit" to transport data is obtained by compromising the C i and C 2 parameters in the classical WLF type formulation for transport in the melt. 13 This geometry is consistent with many polymer morphological habits.
References page VI - 391
(1,147,148). It alters for a smooth interface (n — 1) to a rough one (n = 3); n = 2 corresponds to an intermediate morphology. Several "transitions" in growth rates (149152) are claimed to be consistent with Hoffman's predictions. Before this theory, "breaks" in the growth rate with undercooling were assigned to morphological changes, but now it is accepted by many investigators though the entire issue is still under discussion. The concept of reptation14 (7,152(a)) is another process that has been claimed facilitate chain folding15 of lamellae, and to circumvent chain entanglements at the melt-crystal interface during crystallization. Experimental evidence (see for example 30, 45,69,144,153-155) questions its validity in interfacial growth kinetics, whenever spherulitic growth over a wide span of molecular weight fractions is investigated. For example, the dependence of the interfacial surface energy of crystallites on molecular weight is contrary to expectations if reptation was indeed functional. Clearly, it does not override topological constraints and multiple nucleation events that suppress chain folding and seriously diminish sample crystallinity in poly(TMPS) and polyethylene - see for example (Ref. 155). It is well known that low molecular weight crystalline fractions are mostly chain folded and brittle because of the lack of tie-molecules. On the other hand high molecular weight fractions are tough due to the existence of disordered regions as well as the presence of tie molecules. Hikosaka (156) has proposed another kinetic model for crystallization that simultaneously deals with lateral lamellar growth (chainfolding) coupled with crystal thickening for extended chain growth. Hikosaka and co-workers (157) believe this theory accounts for pressure crystallized polymers (158) and chain extended polymeric mesophases (159). Now, an allencompassing crystallization scenario involving both of these features is claimed to be relevant in all polymer transformation kinetics (157). Although interesting, this model is open to question because other investigations dealing with in situ real time monitoring of "solid" phase transformations (1162) points out that melting per se precedes chain extension. Another model termed Molecular Nucleation has been emphasized by Cheng and Wunderlich (160a) as a significant factor in the crystallization of PEO fractions and mixtures but it is not readily amenable to experimental testing yet, although it has received favorable mention from Point (159a). So far, all theories of polymer crystallization and morphological models formulated, do not have a priori predictive capability whether they invoke chain folding implicitly or not. The formation of lamellar structures is 14
A recent review (45b) still insists on this process even though it is unable to facilitate chain folding in high molecular weight polymers, nor is it required to account for crystallization behavior below the entanglement molar mass, Mc. 15 If folding is a consequence of kinetics, it is an inherent surface defect that compromises the attainment of high degrees of crystallinity even under the most favorable circumstances. Multiple nucleation and topological contraints worsens this flawed situation even more as physical measurements have shown (eg. see situation summary in Ref. 155). Another publication is in press.
amply backed by electron and X-ray diffraction evidence (4,47,160) but real surface details are still lacking. Studies of well-defined oligomers of poly (ethylene) (67,68) and poly(oxy-ethylene)'s (66) support chain folding in shortchain polymers crystallized from the melt, yet the latest WAXS and SAXS measurements indicate that there are conflicting details too (68a, 160).At this stage, it appears that the evidence is insufficient to take a polarized stance on this problem bearing in mind the balance of existing evidence and not opinion. 3. Other Significant Aspects of Crystallization In the preceding sections, some of the following items have been mentioned, but the writer believes that they deserve more attention as many of these areas have grown since the publication of the third edition of this Handbook. For example, there have been developments in: (I) (II) (III) (IV) (V) (VI) (VII)
Non-isothermal crystallization Crystallization of blends Solvent and pressure induced crystallization Mesophase crystallization Flow induced crystallization Epitaxial crystallization Orientational crystallization from the melts and solutions (VIII) Crystallization of copolymers (IX) Computer simulations A brief foreword is given by way of introduction in these important areas. Rate measurements in all of these fields except for epitaxial crystallization appears in the tabulated data in this chapter. In some respect, the growth experienced on a given topic is connected with practical developments and manufacturing and that often provides the opportunities for further investigations. 3.1. Nonisothermal Crystallization This important aspect of polymer crystallization is responsible for the morphology and properties of processed polymers that are crystallizable (ie. polymers, blends, mesophases or any combination of these ingredients in a plastic product) to whatever extent, in the developments. There are many complex events responsible for polymer properties. Several approaches have been used to gain a better representation and understanding of non-isothermal crystallization processes, since the quality of manufactured plastics goods depends upon it. Processing induced structures are never homogeneous even when the materials are thin films or fibers. Because of their complexity, years ago fundamental knowledge was gained through experiments, but now computer modeling has increased in popularity. Several approaches to this problem exist. The techniques of Ozawa (162) Nakamura et al. (163) are still popular. In essence, they have been usually modeled as an extension of
Avrami theory (A16) where the phase change over the crystallization range is considered to be comprised of many incremental isothermal parts so that where/ = 1 to k involves all the types of nuclei (i.e., homogeneous, heterogeneous, pseudo homogeneous, thermal, athermal and so on). The nucleation rates ft(t) and growth rates G(O has been patterned as (AH) Simplifying assumptions lead to a more general equation. After some manipulations, it becomes: (A18) where x{t) is the fraction of material transformed at T and /3 is the cooling rate, k(T) is the cooling rate function and n is the Avrami exponent. From plots of log{—In[I — x(t)]} vs. log P a straight line is obtained if Osawa's method is valid. From this plot, k(T) and n respectively can be obtained. Harnisch and Muschik (164) derived the Avrami equation from non-isothermal crystallization thermograms where (A19) A plot of log {-Zn[I - x(t)}} vs. logt for each cooling rate is linear, providing the adjustable parameter kn and n that are needed. Two parameters are different from the isothermal values. Besides this, it is important to realize that the heat of fusion of the 100% crystalline polymer is needed for the data analysis. Ziabicki (165) developed a procedure where he assumed that crystallization in polymers may be represented by first order kinetics, i.e., (A20) wherein overlap of growing moieties is neglected and k(T) is a temperature dependent rate constant. Plots of rate constant vs. T is Gaussian-like; so that the kinetic crystallizability C, may be expressed in terms of D9 the width of the crystallization exotherm at half-height and k max equals k at the top of the exotherm
(A21)
Depending upon the polymer and its crystallizability (fast vs. slow kinetically), C varies more than three or more orders of magnitude (polymer to polymer) but kinetic parameters obtained from Ziabicki's method do not always
compare well with other methods. Except for tests on blended systems in recent literature (164) others were reasonable. A generalized theory by Ziabicki (165), containing the thermodynamics and kinetics of phase transitions, while sound in concepts, appears complex and not readily amenable to testing. Whenever polymer melts or solutions are sheared (166) the nucleation rate can often be drastically enhanced so that the overall transformation rate becomes accelerated, if the conditions are conducive to crystallization (167,168). If the external cooling is sufficiently rapid, the level of crystalUnity may be compromised for instance in molded parts that may subsequently crystallize slowly (ie. age in storage) causing serious changes in dimensions that could cause distortion in the workpiece. Moisture conditioning of polyamides, for example, is a well practised industrial procedure that is used to stabilize fibers "on-line" and as processed molded parts. Network systems undergo nonisothermal crystallization or isothermal crystallization when they are oriented uniaxially (169) or biaxially (170). Some of them have been analyzed from the viewpoint of kinetics and/or thermodynamics as further alluded to in the next section. Non-isothermal crystallization at varying cooling rates is representative of actual polymer processing situations. Integral methods have been developed (171) for simulating the material fraction of transformed material under arbitrary cooling rates but the widespread use of Avrami theory has been criticized (see Computer Modeling section). In industrial processes rapid sample cooling and monitoring has been a problem. Years ago, the writer introduced the light depolarization intensity method (LDI) to follow rapid changes taking place "on the spin line" and in laboratory tests (94). This procedure is now widely used and has just been further developed (95) to cope with average cooling rates as high as 5000°C/min. for the investigation of non isothermal crystallization generally (i.e., with constant and varying cooling rates) as Spruiell and coworkers have demonstrated for polyolefins. Over the years, Janeschitz-Kriegl and coworkers (see for example, (38)) have investigated the theoretical and experimental difficulties associated with transport and transformation processes encountered in polymer crystallization. In recent papers, they have detailed their findings. 3.2. Crystallization of Blends The first polymer blend was made from two polymeric rubbers in 1846, but polymer blend technology and a scientific understanding of the underlying principles controlling the compatibility (or lack of) in polymer mixtures (alloys as they have been named recently) has taken place only in the latter part of the current century. Many blends are non-crystalline but our interest in this document is focused on the kinetics of phase transformations of binary and ternary systems that receives more attention annually. Some of these systems can be very complicated, often comprised of multiple phases that may involve homopolymers, copolymers, mesophases and the like. Polymorphism and even isomorphism may occur References page VI-391
because of inherent chemical interactions, imposed temperature and pressure conditions and so on. Despite these complexities, blends comprise a significant part of industrial production where synergism among materials is often exploited through various processing techniques. The lattice theory of Flory-Huggins captures the essential features of mixing and demixing and the magnitudes of their corresponding entropic and enthalpic changes have provided a basis of understanding for some fifty years ago (172). Since then, experimental practice and more subtle theoretical developments, including computer simulations, have advanced our understanding of homopolymer and copolymer blends (see for example, Binder (173)). With mesophases the situation becomes more complex but it is still beneficial in practical ways. On the technological side, Utracki (174,175) has provided informative overviews of the processing science and technology of blends or alloys in detailed accounts of processingmorphology-property relationships. Crystallization always involves phase changes and often insufficient attention is given to transformation rates that may correlate strongly with structural and morphological details. For polymer mixtures/blends and copolymers with one or more random components, certain generalizations may be made when they are crystallizable. For instance in bulk crystallization, the Avrami or a related theory has often been employed to analyze bulk kinetics in blends to demonstrate the strong effect of molecular weight and composition on transformations rates. There is an analogy here with homopolymers in that crystallization rate is usually suppressed by the non-crystallizable component(s) in the system. Consequently transformation curves are moved to lower temperatures, although their transformation isothermals are seldom superposable (as they are in most homopolymer transformations). Spherulitic growth rates are usually attenuated too and shifted toward lower temperatures as the results compiled in this article show. The crystallization of blends has been modeled by thermodynamic or kinetic type equations employing computer simulations. 3.3. Solvent and Pressure-Induced Crystallization Diluent or solvent in a polymer system, alters its crystallizability and often its crystallinity is enhanced. Solventinduced morphological changes (176) may occur and mechanical properties and deform ability including aging behavior (177) of systems can be affected so that the topic is of considerable importance technologically. Plasticizers (178), nucleants (179), and chain length (180) may attenuate or sometimes accelerate the phase transformation kinetics. Several types of investigations and analysis have been employed. Mandelkern and others have adopted a thermodynamic approach where the focus is on the overall Gibbs free energy for nucleus formation, while crystallization kinetics has been investigated by using the Avrami theory as a basis for detecting mechanistic changes with time, temperature, and diluent concentration. For spherulitic growth kinetics the effect of diluent on morphology
and crystallization kinetics has been formulated (74) according to (A22) where AG* is the free energy contribution from the solvent (diluent), the other terms having been defined before. Equation (A22) may be modified to take care of crystal geometry and polymer diluent interaction. These effects are very marked in many polymers, especially where plasticizers that modify physical behavior are involved, as for instance moisture in polyamides. In these circumstances the defining parameters A', G'Q, T'Q are altered (usually decreased in magnitude compared with homopolymers). In non-compatible polymer blends (181) this is often a rare event, and changes in morphology and crystallization behavior have not always been documented even when rates have been measured. Copolymer systems are being studied more extensively (181), and spherulitic growth rates (181,182) are receiving some attention as later tabulated results illustrate. Pressure induced crystallization has been documented for a few systems (183), poly(ethylenes) (31,46,184) in especially being the most extensively investigated materials from a morphological and properties viewpoint. Conformational constraints are responsible for gauche bond formation in polyethylene, for example, lead to the formation of the higher entropy hexagonal phase as a morphological highpressure intermediary that is essential to the overall thermodynamic picture of its melting temperature-pressure phase diagram. Other kinetics data (185-190) are also listed in this article. Pressure is a significant processing parameter. In the past, experimentation was the "yard stick" rather than theory for optimization of polymer processing conditions. Crystallization kinetics made by dilatometry at small undercoolings (190a) has moved the focus to the process rather than on the product itself for nylon 66, polypropylene and poly(ethylene terephthalate). According to Zoller (190a), the Malkin modification of the Avrami equation best describes the kinetic data in this investigation. Other systems such as polypropylene behave likewise, and PVT modeling studies have been published (190b,190c). 3.4. Crystallization of Mesophases Although polymeric mesophases were discovered more than one century ago (191), their exploitation has only been developed within the recent decades. Synthesis, properties and applications have been the focus of most studies because of the technological potential of these systems. Now that it is known that mesophases form supermolecular structures through self-organization, this discovery has lead researchers to investigate the criteria underlying liquid crystalline formation. The morphology and structure of these polymers have been the subject of theories (14,192,193) and experiments (194). Molecular design vis a vis properties (somewhat analogous to activities in drug chemistry/
industry) has become an attractive research topic. The molecular requirements for liquid crystallinity have been featured in papers and reviews (195) that have also covered lyotropic and thermotropic phases. Structure in these types of phases have sometimes been tailored to ease processing and/or to facilitate or even to reduce rates of crystallization. Blending has been tackled through processing and modeling, including phase separation dynamics (196); yet crystallization kinetics, despite its importance, has had a low profile until comparatively recently, kinetic measurements on mesophases are still sparse. Most results known to the writer, are tabulated in this article. Rate data have been analyzed along the conventional lines normally used for homopolymers in Section B. Insufficient research has been devoted to the development of a new theory and to examine the influence of crystallization rate on morphology-processing-property relationships; viscosity and diffusion considerations notwithstanding. Crystallization of some thermotropic copolymers cannot be explained on the Flory model (192) through homopolymer segregation. However, Windle and coworkers (197), by means of computer modeling have demonstrated that 3D ordered regions, described as non-periodic layers (NPL) are possible. Structurally, NPL crystallites agree with experimental X-ray observations even when random intramolecular statistical sequencing exists. This ongoing project is of interest as the NPL model may also be explained by a paracrystalline lattice (PCL) model, that does not require explicit sequence matching (198). 3.5. Flow-Induced Crystallization This topic covers polymer solutions and melts (199,200) generally and may be further categorized into (a) flow induced Poiseuille flow (201), (b) elongational flow (199), (c) shear induced transformations (202,203), and there are others. Polymers, other than homopolymers (i.e., blends, copolymers, mesophases) have been listed according to processing characteristics. Rates of crystallization in these categories are sparse compared with synthesis, structure, morphology, properties, processing and even computer simulation (the latter being a rapidly growing field), with some information on the factors/forces that modify behavior. An exception is the work of McHugh and coworkers (204,205) who have reported the strain induced crystallization rates of swollen poly(ethylene) networks by using dynamometry coupled with in situ fiber videoimaging with birefringence measurements in order to obtain one dimensional heterogeneous growth rates. However, the deformation rates encountered in these experiments are much lower than the values encountered in commercial fiber melt spinning and molding processes.Still, modeling is now underway to link transient deformation histories with flow induced shear results (205). These authors have just developed a continuum model for flow
induced crystallization that embodies strain induced crystallization by employing an irreversible thermodynamic formalism based upon principles set forth by Beris and Edwards (206) for describing non equilibrium irreversible thermodynamics of flowing systems. The Hoffman has developed a kinetic model for fibrous crystal growth from solutions (207). It is patterned after the well established pioneering solution spinning "shishkebab" textures, and properties by Pennings and coworkers (see for example 208,208a) and others (208b) especially for UHMWPE and their blends. In this model, "shish's" comprise a well-oriented central core fibrils (~15-50nm) flanked by chain-folded "kebab" overgrowths off the core. The "shish" cores are interconnected by highly strained amorphous regions. They (core regions) contain many defects. Here again, the paucity of experimental rate data hampers testing of the theoretical model. 3.6. Epitaxial Crystallization This aspect of crystallization deserves to be mentioned. Polymer-polymer epitaxy (209-210) involving mutual interactions between different macromolecules where crystallinity, crystal structure, lattice matching, molecular conformation and chemistry have been considered. The kinetics of epitaxial processes have been largely ignored despite their plausible significance in surface bonding that has practical implications. Recent experiments (211) have shown that the lamellar thickness of poly(ethylene), PE, on oriented isotactic poly(propylene), changes from 16 to 39 nm upon annealing. This thickening is attributed to dimensional matching and secondary nucleation with the requirement (212) that the PE crystal(s) are thinner than the l PP dimension along the chain-row matching direction. However, no detailed kinetic measurements were reported on the rate of epitaxial growth here, or elsewhere in the literature. 3.7. Orientational Crystallization Strain, shear, and elongational flow under isothermal or nonisothermal conditions promote crystallization. The problem is of long-standing commercial importance in fiber manufacturing, injection molding (213) and other important processes. On the academic side, the problem has been recognized for a long time, but it has been studied only sporadically until now (203). Although published data are still sparse, useful behavioral trends have been established. Crystallization of c/s-l^-polybutadiene between rollers during shearing has been modeled (214) using a novel procedure in which the influences of shear flow on lateral heat conduction is approximately avoided. This technique permits the crystalline layer build-up to be determined as a function of time, temperature, and shear rates in on-line processing. The morphology created under these conditions was studied. This is not an easy "kinetic" problem to handle theoretically. Crystallization in polymer networks has received some attention (169) since Flory proposed the basic principles many years ago (215). Gaylord (216) modified this theory References page VI-391
for finite chains while others studied and determined the interrelation between elongation, melting, and crystallinity. Calculated strain dependence of the melting temperatures (max), average crystallite sizes and crystallinity extension ratios, Xfs, as high as four for crosslinked rubber networks have been correlated, but rates of crystallization were not included in this kind of work that is further addressed by Negahban in Section IX. 3.8. Crystallization of Copolymers In this category, the focus has been on morphology and properties though Flory (215) developed an equilibrium thermodynamic description of the semi crystalline state of these materials almost half a century ago. Fusion of copolymers is expected to occur over a wider range of temperature in contrast to homopolymers. Random and block copolymers have been studied and melting theories are widely used to describe them. Whenever one species of a copolymer is crystallizable and is dependent upon its sequence probability, /?, and not on composition, its melting behavior has been described16. The technological importance of copolymers has developed over the years, but kinetic descriptions of the phase changes observed (often multiple) have been mostly patterned after models for blends that are analogously related to equation (A22) whenever crystallization proceeds according to a spherulitic morphology. The noncrystallizable component(s) affects crystallization parameters in accordance with their degree of compatibility and interfacial transport that often constrains and usually suppresses growth rate. Even so, the morphological features that determine the overall crystallization kinetics and properties do change with molecular weight and co-unit content and rates have been monitored and analyzed mostly according to procedures outlined in Section A. Morphology varies with molecular weight akin to the behavior encountered in homopolymers. Avrami type transformations and spherulitic growth rates tabulated in this article indicate that the time scale of the transformation is strongly influenced here (more so than it is in blends of the same composition) for species with similar compositions. Other copolymers behave similarly even though the range of molecular weights for these random copolymers of ethylene is not extensive (216,217). Other kinetic theories of copolymer crystallization have been formulated (218) and tested. Modeling of copolymers with short crystallizable sequences using a Monte Carlo approach (219) has been aimed to reveal the 3D morphology of A-B type crystallites such as ethylene-propylene with high propylene content and low crystallinity. This work shows promise. GoldbeckWood (220,221) has written an informative overview of 16
Goldbeck-Wood [Polymer 33, 778 (1992)] has developed a new melting point equation that is comparable with Eq. (A23) (see below) for copolymer melting point depression, but it predicts a much steeper dependence on composition than the Flory model which states (A23) where p is the sequence probalility [P. J. Flory, Trans. Farad Soc, 51, 848 (1955)].
computer simulations where the focus has been on molecular dynamics and Monte Carlo simulations pertaining to classical lamellar crystallization and 3D models. The reader should consult the original texts for details. 3.9. Computer Simulations On this topic, there have been a number of developments that have a kinetics basis, apparently connected with assumptions used in the Avrami theory that only provides analytic solutions. In simulations, the approach has been used to model bulk transformations for: (a) volume shrinkage, non-random nucleation and crystallinity variability (222), (b) spherulite impingement in two dimensions on SALS patterns (223), (c) the morphology of spherulites (thermally and athermally nucleated) (224) and the implications of various nucleation modes, as well as density changes and size distribution effects, (d) isothermal kinetics in thin films, including the influence of surface nucleation on morphology (225,226), and (e) simulation of crystallization in polymeric composites in two dimensions with some representation of the three dimensional situation (227), and for several other criteria too. Simulation of phase transformations in these examples have some predictive capability. For composite systems, the Avrami model as such, is claimed not to apply because nucleation is constrained by fiber loading and surface sites. For instance, factors such as fiber fraction and diameter, spherulitic growth (normal and transcrystalline) must all figure in the overall composite morphology. Another different, but recent approach by Negahban and coworkers (228-230) to crystallization kinetics involves modeling: (a) thermo-mechanical effects that occur during the phase transformation in "simple" homogeneous processes, (b) simulation of the thermo-mechanical effects of crystallization in non-homogeneous processes and, (c) developments of models for the prediction and verification of material responses. There are other criticisms of the Avrami method here. Negahban points out that modeling of crystallization kinetics using Avrarni-type equations "is incompatible with the entropy production inequality" (i.e., Clausius Duhem inequality) that is basic to the termination of crystallization in real situations. Much of his work has concentrated on the crystallization of rubber (literature results) with all its ancillary effects/property-wise material functions that are amenable to simulation. In the same manner, the kinetic theory of crystallization, based upon concepts of molecular chain-folding and it's related parameters,at the same time recognizing some of the shortcomings involved. An attempt has been made to keep
this section relevant to crystallization kinetics even though modeling/simulation procedures are becoming widely applied now, on account of growing availability of computers. In this regard one of the more recent practical computer simulations that has been developed for injection molding,embodies nonisothermal and stress-induced crystallization kinetics in poly(phenylenesulfide) during processing (232). The authors claim to be able to "predict" the thermomechanical history and crystallinity developments in PPS in reasonable agreement with experiment. Undoubtedly, there will be further developments in this field,because of its technological and economic relevance.
ADDENDUM This chapter on "Rate of Crystallization of Polymers" is incomplete for several reasons. Sometimes original data were not available. Where the deconvolution of complex graphical kinetic scenarios was unnecessarily tedious and resulted in questionable accuracy, these data were omitted. However, results are listed for rate plots that could be deciphered and digitized satisfactorily. Original data provided directly by authors are included and gratefully acknowledged by the writer.
B. TABLE OF RATES OF CRYSTALLIZATION OF VARIOUS POLYMERS 1. Rates of Crystal Growth TABLE 1. POLY(ALKENES), POLY(DIENES), POLY(VINYLS) Polymer
Tf (0C)
Tc (0C)
G (nm/s)
118 119 119.6 120 120.6 121.1 121.5 122 122.5 123.1 123.5 124.0 124.6 125.1 118 119 120 121 122 123 123.5 124 124.5 125 126 127 128 129 118 119 120 120.5 121 121.8 122 122.5 123 124 125 126 127 128
680 638 137 124 67 138 103 138 142 159 103 75 67 25 1100 840 960 530 260 170 120 20 2.1 2 4 4 2 2 4310 3000 2250 2430 910 30 60 100 150 220 230 200 130 70
Remarks
Refs.
1.1. HOMOPOLYMER MELTS Poly(ethylene) oligomers C246 (alkane)
Poly(ethylene) oligomers C294 (monodisperse)
Poly(ethylene) oligomers C246
Melt crystallization as thin film; phase contrast hot stage microscopy; lAo.i. transformation rates for C198 follow a similar pattern with Tc
233
Optical and electron microscopy, melt crystallized banded and and lamellar spherulites
234
234
References page VI-391
TABLE 1. cont'd Polymer C198
Poly(ethylene) Mn- 32000 Mw = 119000
Poly(isoprene) cis
Poly (isoprene) cis with 2-2.5% trans (a) growth in Hevea M w /M n = 4.81 M w /M n = 16.93 (a) growth in Natsyn M w /Af n =4.12 Mw/Mn = 10.17
(a) growth in Natsyn
cis with 2-2.5% trans (a) growth in Hevea
(a) growth in Natsyn
Tf (0C)
Tc( 0 C)
G (nm/s)
118
1330
119 120 121.8 122 122.2 122.5 123 123.5 124
1440 1330 1140 1340 1180 970 1040 1020 980
125 125.5 -45 —30 -15 0 10 24.5 39.5 - 40.2 -25.1 -18.2 -13.0 0.2 -38.4 - 32.8 - 26.3 -15.7 4.2
590 500 3.2 13 20 800 1000 20000 2000000 0.023 0.125 0.138 0.098 0.019 0.011 0.020 0.030 0.024 0.006 0.001 0.027 0.118 0.138 0.110 0.027 0.007 0.014 0.025 0.034 0.024 0.010 0.014 0.009 0.003 0.004 0.007 0.013 0.019 0.016 0.012 0.009 0.005 0.071 0.206 0.370 0.432 0.233 0.069 0.017 0.021 0.123 0.117 0.051 0.036
- 39.2 - 25.3 -19.4 -11.3 -0.4 - 39.3 - 34.3 -29.5 -25.2 -19.3 -14.5 -9.6 -4.9 0.6 - 39.2 - 34.3 -29.7 - 25.3 -19.6 -14.4 -10.1 -5.1 -10
-10
Remarks
Refs. 234
Crystallization from quenched droplets upon heating; lamellar thickness over the same range; 45 < 1 < 75 nm cited; crystallization measured upon heating
235
Electron microscopy; thin films
238
Electron microscopy; thin
films
Electron microscopy after staining; for further details see text
238
186
186
O.Okbar 0.5 kbar 0.7 kbar 1.0 kbar 1.5 kbar 1.7 kbar O.Okbar 0.5 kbar 0.7 kbar 1.0 kbar 1.3 kbar 1.5 kbar
186
186
TABLE 1. conVd Tf (0C)
Tc (0C)
G (nm/s)
(a) growth in Hevea
0
(a) growth in Natsyn
0
— 42 - 36.5 - 31 -27.3 - 20.8 - 16.1 -10.6 - 5.6 -2.5 -0.9 1.4 3.1
0.009 0.028 0.156 0.698 0.731 0.124 0.003 0.006 0.011 0.186 0.141 0.021 0.049 0.068 0.113 0.093 0.065 0.036 0.014 0.013 0.011 0.0055 0.005{
O.Okbar 0.5kbar l.Okbar 1.5kbar 1.7kbar 2.0kbar O.Okbar 0.5kbar l.Okbar 1.5kbar 2.0kbar Electron microscopy of thin films ( ~ 80.0 nm); growth (lamellar) arrested by OsO4
- 41.2 - 36.5 - 33.4 -31.3 -27.1 -21.1 -16.4 -15.3 -13.2 -10.3 - 8.3 - 6.0 -4.1 -1.6 -0.0 1.1 2.7 - 36 -27.5 -21.5 - 16.7 - 11.8 - 5.0 - 35.5 - 27.0 -22.0 -16.8 -11.7 - 5.0
0.040 0.061 0.074 0.082 0.145 0.117 0.096 0.091 0.085 0.076 0.070 0.060 0.029 0.0098 0.0046 0.0038 0.00335 0.080 0.104 0.144 0.114 0.093 0.069 0.063 0.093 0.111 0.094 0.067 0.041
Electron microscopy of thin film (~ 80 nm) growth; stained with OsO4; lamellar growth rates reported
239
Electron microscopy with OsO4 staining; a and p spherulitic morphologies studied in quayle rubber extracts as (a) fresh extract GR-F and (b) aged specimen GR-AP
240
41.7 44.3 46.5 47.5 49.0 41.7 44.3 46.5 47.5 49.0
4.2 2.1 0.95 0.50 0.23 7.0 4.7 2.35 1.90 1.21
Polymer
Poly(isoprene)ds Mw = 543000
Poly(isoprene)cis (from Hevea rubber) Mw = 313000
Poly(isoprene)c/s GR-F a-lamellar
GR-AP a-lamellar
GR-AP P-lamellar Poly(isoprene)fronj-1,4 (low melting crystals) LMF
(high melting crystals) HMF
Remarks
Refs. 186
186
239
240
Optical hot stage microscopy Tm (LMF) = 64°C <7e = 23 erg/cm2 (negative spherulites) rm(HMF) = 74°C <7e = 35 erg/cm2 (dendritic spherulites)
241
241
References page VI-391
TABLE 1. cont'd Polymer Poly(isoprene)*rans-1,4 (high molecular weight fraction)
Tf (0C)
Tc (0C)
G (nm/s)
-10.2 -5.3 — 0.6 4.3 9.9 14.7 47.3 49.3 51.3 54 55.3 60 -0.7 4.8 9.4 14.7 19.3 55.6 58.6 60.5 62 64.3 68.0 4.5 9.8 14.3 19.5 25.6 57.5 61.5 63.5 66.0 68.4 14.2 19.3 24.4 68 68.3 71.6 76 29.3 34.5 39.5 44.6 49.2 54 59.5 63.7 70 75 79.3 82 84.5 87 49.3 59 64.5 74 79.3 84.7 89 92.5 94.6 100 102.7
0.096 0.154 0.42 0.80 1.43 2.08 1.47 1.09 0.77 0.44 0.30 0.052 0.11 0.22 0.44 0.82 1.38 1.25 0.77 0.55 0.374 0.14 0.079 0.102 0.26 0.49 0.89 1.58 1.29 0.80 0.57 0.31 0.14 0.23 0.44 0.79 0.64 0.46 0.23 0.11 0.104 0.202 0.39 0.69 1.10 1.46 1.75 1.80 1.67 1.17 0.58 0.35 0.206 0.103 0.104 0.44 0.66 1.06 1.11 1.01 0.63 0.50 0.27 0.15 0.085
Remarks
Refs.
Electron microscopy with OsO 4 187,242 staining; thin film ~ 100 nm thick spherulitic growth pressure = 1 bar
0.5kbar
187,242
0.7kbar
187,242
l.Okbar
187,242
2.0kbar
187,242
3.0kbar
187,242
TABLE 1. cont'd Polymer
Poly(isoprene)/rans-l,4 (low molecular weight fraction)
Tf (0C)
Tc (0C)
G (nm/s)
59.5 63.7 69.3 74 79.2 85 89.7 95 100 103 105 107.7 -5.3 —0.6 4.4 9.8 14.7 39.4 41.3 44.7 47.7 49.5 51.3 54.0 55.8 4.4 9.5 14.5 19.5 25 50.5 55.3 57.6 59.5 62.3 9.5 14.8 20 25 51.5 56 57.6 60 61 64 14.4 19.4 24 29.5 36.6 56 57.7 59.8 63.5 69 35 39.5 45 49.7 54.5 59.8 64 70 75 84.7
0.124 0.23 0.38 0.53 0.73 0.90 0.83 0.683 0.45 0.254 0.15 0.095 0.099 0.197 0.385 0.630 0.915 1.81 1.33 0.90 0.62 0.41 0.26 0.12 0.063 0.11 0.19 0.32 0.59 0.98 0.96 0.51 0.33 0.20 0.073 0.088 0.22 0.40 0.63 1.08 0.78 0.57 0.42 0.24 0.082 0.089 0.180 0.303 0.57 1.02 0.98 0.83 0.66 0.39 0.16 0.104 0.154 0.31 0.46 0.64 0.79 0.794 0.72 0.46 0.072
Remarks
Refs.
3.5kbar
187,242
Pressure, 1 bar
187,242
0.5kbar
187,242
0.7kbar
187,242
lkbar
187,242
References page VI-391
TABLE 1. cont'd Polymer
Poly(isoprene)/epoxide cis 100/0, w/w
95.8/4.2, w/w
90.3/9.7, w/w
87.8/12.2, w/w
Tf (0C)
Tc (0C)
G (nm/s)
34.5 40 45 50 54.5 60 64 70 74.4 85 59 64.5 70 74.5 80 84.7 89.5 92.4 94.7 67 70 74.7 79.5 84.5 89.5 94.5 98.2 99.5 102.7
0.096 0.15 0.32 0.48 0.64 0.77 0.82 0.72 0.47 0.085 0.08 0.195 0.33 0.42 0.48 0.40 0.26 0.14 0.052 0.091 0.15 0.18 0.29 0.35 0.36 0.29 0.19 0.14 0.062
- 30.2 -20.8 -20 -10.6 -5.7 - 30.2 -24.8 -20.0 -15 -5.7 - 30.2 -24.8 -20 -5.7 - 30.2 -24.8 -20 -15 -5.7
8.5 x 10 " 3 30 x 10~3 10 x l O - 3 6.3 xlO" 3 4.5 x l O - 3
Remarks
Refs.
2kbar
187,242
3kbar
187,242
3.5kbar
187,242
242
292
1.8 xlO" 3 2.3 x 10~3 4.5 XlO" 3 2.4 x 10 ~3 5.5 x 10 ~3
292
0.5 xlO" 3 0.75 x 10' 3 0.10 xlO~ 3 0.53 xlO~ 3
292
0.12 XlO' 3
1.2. SOLUTIONS Poly(ethylene) Mw = 3.1 x 103 Mn =2.9 x 103 T5 = 365.9 K 7 d = 367.4 K
70.45 72.93 76.10 77.00 74.05 78.25 81.00 83.00 84.00 85.00 86.25
7.67 6.53 4.41 4.40 5.27 2.93 1.25 0.72 0.62 0.36 0.18
Electron microscopy; temperature control ± 0.010C; data for [1 10] faces; 0.05 wt.% in xylene; crystallized from stock solution prepared at 75°C seeded growth used
42
TABLE 1. cont'd Polymer Mw = 3.1 xlO 3 Mn =2.9 x 103 T5 = 365.9 K T6 = 361A K
Mw = 4.05 x JO3 Mn = 3.90 x 103 Ts = 367.6 K T6 = 371.5 K
Mw = 4.05 xlO 3 Mn = 3.90 x 103 T,= 367.6 K T6 = 371.5 K
Mw = 3.1 x 103 Mn - 2 . 9 x 103 Ts = 365.9 K T6 = 361A K
Mw = 3.1 xlO 3 Mn =2.9 x 103 Ts = 365.9 K T6 = 361A K
Mw = 4.05 x 103 Mw = 3.90 x 103 r s = 367.6 K T6 = 371.5 K
T( (0C)
Tc (0C)
G (nrn/s)
68.90 70.45 72.10 74.05 77.00 79.80 81.00 84.00 85.00 86.25 87.70 70.85 74.85 77.00 77.50 78.05 80.00 82.00 83.00 84.10 85.00 86.10 88.00 68.90 69.90 70.85 72.10 74.00 77.00 78.05 80.00 81.60 82.40 85.00 87.70 68.90 69.90 71.20 74.05 74.95 76.10 77.00 78.40 80.30 83.20 84.00 86.25 87.70 70.45 71.20 72.93 74.05 77.00 78.25 79.80 81.00 83.00 85.00 86.40 68.90 69.10 70.85 73.06 75.00 76.00
5.77 5.11 4.83 3.98 2.03 0.88 0.71 0.35 0.25 0.13 0.06 9.93 5.41 3.21 2.91 2.18 1.88 1.22 0.72 0.52 0.30 0.24 0.07 6.04 5.80 4.62 4.80 3.01 1.42 0.97 0.79 0.63 0.59 0.26 0.05 3.93 3.57 2.88 1.68 1.27 1.20 1.11 0.96 0.54 0.34 0.21 0.10 0.03 1.06 1.01 0.89 0.69 0.48 0.47 0.32 0.20 0.17 0.10 0.05 4.43 4.29 3.63 2.71 1.52 1.17
Remarks
Refs.
Temperature control ±0.01 0 C; data for [110] faces; 0.01 wt.% in xylene
42
Data for [1 10] faces; 0.05 wt.% in xylene
42
Data for [1 10] faces; 0.01 wt.% in xylene
42
Temperature control db0.010C; data for [110] faces 0.005 wt.% in xylene
42
Temperature control ±0.01 0 C; data for [1 10] faces 0.001 wt.% in xylene
42
Data for [110] faces; 0.005 wt.% in xylene
42
References page VI - 391
TABLE 1.
cont'd Tf ( 0 C)
Polymer
M w - 4 . 0 5 XlO 3 M w = 3.90xl0 3 r s = 367.6 K r d = 371.5 K
M w = 6.75 x 103 M n = 6.10xl0 3 r s = 367.8 K r d = 368.4 K
M w > 104 solution cone. 2.7 x 10~4 wt.%
2.5 x l O " 5 wt.% 4.5 x l O " 5 wt.% 8.OxIO" 5 wt.% 1.5 x l O ' 4 wt.% 2.7 XlO" 4 wt.% 5.OxIO" 4 wt.% 9.0 XlO" 4 wt.%
67 68 69 70 71 71 71.8 72.6 73.3 74.1 75.4 76.7 77.8 77.8 79.0 79.0 69.0
Tc ( 0 C)
G (nm/s)
77.00 78.40 78.90 80.30 82.00 83.20 84.10 85.00 86.70 87.70 69.10 71.00 73.40 75.00 77.00 77.60 78.90 80.00 82.00 82.95 85.00 86.70 75.50 77.80 78.95 81.60 83.60 86.00 88.10 75.50 77.80 81.60 83.60 86.00 88.10 75.50 77.80 78.95 81.60 83.60 86.00 88.10 133
1.13 0.70 0.67 0.57 0.38 0.28 0.17 0.13 0.06 0.03 1.21 1.16 0.82 0.58 0.30 0.30 0.22 0.21 0.13 0.12 0.05 0.03 21.60 13.10 11.33 3.33 1.08 0.25 0.07 11.25 5.55 1.09 0.36 0.13 0.04 3.40 1.50 0.96 0.35 0.13 0.05 0.02 232 180 163 127 125 102 113
75 41 41 29 21 16 11 6 2.9 1.5 1.33 0.70 0.58 12.0 20.8 33.3 53.3 75 105 142
78
Remarks
Data for [1 10] faces; 0.001 wt.% inxylene
42
Data for [110] faces; 0.05 wt.% inxylene
42
Data for [1 10] faces; 0.01 wt.% in xylene
42
Data for [1 10] faces; 0.001 wt.% inxylene
0 = 9.6° Growth rates from dilute # = 8.0° tetrachloroethylene; 0 = 6.9° single crystal and [1 101 0 = 7.0° twins measured, G~Cl/3 0 = 4.8° without [100] sectors; 0 = 3.8° G
33 8.5
20 35 65 87 163 260 488
Refs.
0=10° 0-8.5° 0-8.5° 0 = 8.0° 0 = 7.5° 0-7.6° 0 = 7.2°
236
TABLE 1. cont'd T1 (0C)
Polymer 2.5xlO~ 5 wt.% 8.0xl0~ 5 wt.% 2.7xlO~ 4 wt.% 9.0xl0~ 4 wt.% 4.5xlO~ 3 wt.% 8.Ox 10~5wt.% 2.7 x 10~4wt.% 9.0xl0~ 4 wt.% 4.5xl(T 3 wt.%
7 x 10 ~6 wt. % 1.3xl0- 5 wt.% 2.5xl0~ 5 wt.% M w = 120000 M w /M n = 1.19
M w = 32000 Afw/Afn = l.ll
73.3
Tc (0C)
O (nm/s)
3.5 7.8 15.8 31.7 75
7.2
Remarks
Refs.
78.3 167
75.4 32 61 123 317 54.5 58.4 61.7 50.0
82 83 84 85 86 86.5 87.2 87.6 87.6 88 88.5 89 89.5
15.5 32.5 71.7 43 37 27 28 48 105 450 340 208 125 58 51 35 27 24 18 7.3 5.5 2.9
85
530
85.9 86.1 86.8 85.5 85.9 86.1 86.8 86.9 87.0 87.4 88.2 88.7 89.2 89.6 90.2 90.6 91
463 403 260 530 463 403 260 250 214 178 109 76 58 37 28 20 13
86.8 87.1
2710 2130
87.8 88.5 89.0 89.5 90 90.3 91 91.3 91.7 92.1 92.4 92.8 93 88.3
1810 1016 734 570 420 335 213 178 110 80 68 40 33 1186
0 = 7.3°; 6 is oblique angle with 0 = 5.9°; with respect to [11 0] faces; 0 = 4.8°; see Fig. 3 of text
Growth rates G measured by Dynamic Light Scattering (DLS) from self-seeded crystals in p-xy\ene. G~M? where 0.6 < a < 0.8 for the molecular weights studied; surface energies reported as crcTe erg 2 /cm 4
246
246 M w = 13600 M w /M n = 1.19
References page VI-391
TABLE 1. cont'd Polymer
Tt (0C)
PoIy(I-cyanoethylene); poly (aery lonitrile) Mw =668 x 103
Tc (0C)
G (nm/s)
Remarks
Refs.
105 115 130
5.56 x 10~8 7.18 x 10~8 9.84 x 10" 8
237
140 155 160
2.0OxIO" 7 3.20 xlO~ 7 2.89 xlO" 8
Crystallized from propylene carbonate; 0.06wt./vol% solution 0.25 wt./vol% solution
Tc (0C)
G (nm/s)
Remarks
Refs.
13.5 14.0 14.4 14.9 15.3 15.7 16.4 16.6 17.4 17.7 18.3 18.6 19.6 20.5 21.1 21.6 22.0 22.5 23.6 16.3 17.1
18330 14968 11045 8730 9344 6022 4920 2865 2680 2422 1915 1193 567 252 174 19.4 77.3 9.24 19.4 19060 12722
17.6 18.2 18.8 19.1 19.6 20.2 20.7 21.2 21.7 22.1 22.5 23.0 23.5 24.0 24.5 24.9
6692 5658 4782 4000 2980 2912 1625 1013 625 435 221 125 67.8 37.6 16.9 10.9
14.7 15.1
42570 34983
15.7 16.8 17.3 17.8 18.2 18.8 19.2 19.7 20.2 20.7 21.2 22.7
33865 19745 15070 13178 10060 6486 5480 4184 3089 1990 1327 321
TABLE 2. POLY(OXIDES) Polymer Poly(oxyethylene) M n = 5.6 x 104 M w /M n = 1.05
Mn = 1.05 XlO 5 M w /M n = 1.03
Mn = 1.60 x l O 5 Mw/Mn = 1.05
Tf (0C)
Growth rates made from self-seeded polymer crystal stocks; dynamic light scattering measurements; 71* = 69°C; 25.4 erg/cm < (Te < 81 erg/cm2; Ts° solution temperatures reported for each fraction
243
243
243
TABLE 2. cont'd Polymer
T1 (0C)
Mn = 3.25 x 105 Af w /Af n =1.06
Mn = 7.70 x 10 5 Afw/Afn = 1.12
Poly(oxyethylene) Mw = 3.5 x 103 Mw /Mn < 1.2
Tc (0C)
G (nm/s)
23.0 23.5 24.0 24.5 25.0 25.5 16.3 17.3 17.6 18.6 19.2 19.8 20.2 20.8 21.0 22.0 22.6 23.6 24.2 24.6 25.2 25.6 26.0 26.6
194 117 53.1 48.4 23 14.3 40156 31750 24235 18520 13672 11173 10450 7715 6517 5514 2904 1207 860 752 468 215 159 34.7
16.3 17.8 19.3 19.7 20.2 20.7 21.2 22.1 23.2 23.8 24.1 24.7 25.2 25.6 26.0 26.6 27.2 27.6 28.1 28.6 29.1 69(15min)
Remarks
Refs.
243
54469 36396 20538 15674 14813 10463 8262 4500 3682 3220 2025 1639 1056 955 807 520 384 209 134 69.0 19.6
35.0 39.3 40.0
58900 48900 46800
40.4 41.7 42.0 43.5 44 44.4 45.3 46.0 46.4 47.0 48.0 49.0 50.0 51.0 52.0 54.0 55.0
43700 38000 36300 26300 23400 19900 19500 10700 8910 7590 4680 2400 1260 436 141 42.7 8.51
243
Interference optical microscopy for linear growth measurements
160(a)
References page VI - 391
TABLE 2. cont'6 Polymer
T( (0C)
Mw = 4.5 x 103 Mw/Mn < 1.04
69 (15min)
M w = 7.0 x 10 3 M w / M n < 1.2
69 (15min)
M w = 9.0 x 10 3 M^/Mn < 1.07
69 (15min)
M w = 20.0 x 10 3 MjMn < 1.3
69 (15 min)
Tc (0C)
G (nm/s)
35.0 37.0 39.0 39.8 40.4 42.8 42.7 43.4 43.8 45.0 45.8 46.8 47.8 49.8 50.8 51.8 52.8 53.8
53700 50100 47900 45700 42600 33100 28800 24800 23400 16600 12900 9550 5010 1120 575 275 107 14.8
54.8 35.0 39.8 40.0 41.2 43.4 44.9 45.0 47.0 49.0 49.4 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 40.1 40.8 42.8 43.4 45.8 48.4 48.8 49.6 49.6 50.8 51.8 52.8 53.8 55.8 56.8 57.8 58.8 59.8 40.0 42.0 44.4 45.0 46.0 46.3 47.0 48.0 48.4
4.89 70800 60200 55000 53700 43600 33100 34700 21900 13500 13800 9120 4890 2820 1580 871 389 145 45.7 12.6 38900 38900 32600 30200 20400 11200 10200 7940 7410 7410 1900 1200 589 214 91.2 38.0 13.8 49.0 22400 17400 14500 13800 11700 11000 9120 7760 6920
Remarks
Refs. 160(a)
160(a)
160(a)
160(a)
TABLE 2. cont'd Polymer
Mw = 100.0 x 103 Mw/Mn is unknown
Mw = 3.5 xlO 3 Mw = IOOxIO3 Blend with mole fraction of Mw = 100 x 103 at 0.279 mol fraction
Poly(oxyethylene)
F f (0C)
69 (15min)
Tc (0C) 49.0 50.0 51.0 51.7 52.0 53.0 53.2 54.0 55.0 56.0 57.0 58.0 39.8 40.0 42.0 43.4 44.0 46,0 47.3 48.0 49.4 51.5 52.0 53.0 53.9 54.0 56.0 57.0 39.5 40.0 45.6 46.8 47.9 48.9 50.0 51.3 51.9 54.4 55.2 45.6 46.8 47.9 48.9 50.0 51.3 51.9 54.4 55.2 34 36 38.5 40.5 42.7 45 46.7 48 49 50.5 51 51.5 52.5 53.5 54.0 56.0 56.6
G (nm/s) 5250 4470 3240 2570 2290 1170 1150 631 219 97.7 32.4 92.1 26300 24000 19100 19100 19100 17000 15100 10700 7240 3470 2950 2340 1380 1380 724 389 35600 27700 17000 12400 10300 6550 3730 2450 1010 221 80.5 14100 7210 4590 2310 3470(?) 384 113 424 125 129628 110640 65120 44545 22615 9183 2952 1052 625 189 83.2 18.8 17.3 17.3 16.0 8.8 6.03
Remarks
Refs.
160(a)
Interference optical microscopy
160(a)
245
References page VI-391
Next Page
TABLE 2. cont'd Polymer
T{ (0C)
Tc (0C)
G (nm/s)
57.7 34 36.3 38.2 40 42.5 45 47 48.6 55.8 55.8 57.2 57.5 52.5 51.4 53.7 55.8 57.2 57.5
1.46 217920 200355 137060 93780 68980 19280 68975 2968 23.1 23.1 8.72 4.15 294 130 31.6 23.1 8.72 4.15
28 30 32 34 36 38 39.5 40.3 41.9 43 44 45 46 47 45 60 78 86 95 105 60 78 86 95 105 86 95 105 112
46989 40180 21412 25292 13842 7034 3857 1969 515 125 25.9 9.90 2.07 1.14 7.000 3.830 2.160 2.160 1.170 0.333 4.500 3.500 2.000 1.500 0.330 3.670 2.830 0.670 0.333
Tt (0C)
Tc (0C)
G (nm/s)
Remarks
Refs.
160(10min)
90.0 96.0 100.0 105.0
338.0 168.0 60.4 19.6
Supercooled liquid, form II
249
Poly(oxymethyoxyethylene) M w = 3000
Poly(oxy-1,4-phenoxyethylene) M w = 3000
Poly(oxy-2,2-bischloromethyl-trimethylene) 139 Mn = 5.0-10.0 x 103
2.
Remarks
Refs.
245
In situ synchrotron rate studies; optical microscopy and DSC runs made
245
High resolution NMR; experiment in m-xylene 0.1-0.001 wt.%, nucleation densities listed initial concentration 2xlO~ 4 g/cm 3
244
Initial concentration 5xlO~ 4 g/cm 3
244
Initial concentration 2xl0-3g/cm3
244
Rates of Radial Spherulitic Growth
TABLE 3. POLY(DIENES), POLY(ALKENES), POLY(VINYLS) Polymer 3.1.
HOMOPOLYMER MELTS
PoIy(I-butene)
Previous Page
TABLE 2. cont'd Polymer
T{ (0C)
Tc (0C)
G (nm/s)
57.7 34 36.3 38.2 40 42.5 45 47 48.6 55.8 55.8 57.2 57.5 52.5 51.4 53.7 55.8 57.2 57.5
1.46 217920 200355 137060 93780 68980 19280 68975 2968 23.1 23.1 8.72 4.15 294 130 31.6 23.1 8.72 4.15
28 30 32 34 36 38 39.5 40.3 41.9 43 44 45 46 47 45 60 78 86 95 105 60 78 86 95 105 86 95 105 112
46989 40180 21412 25292 13842 7034 3857 1969 515 125 25.9 9.90 2.07 1.14 7.000 3.830 2.160 2.160 1.170 0.333 4.500 3.500 2.000 1.500 0.330 3.670 2.830 0.670 0.333
Tt (0C)
Tc (0C)
G (nm/s)
Remarks
Refs.
160(10min)
90.0 96.0 100.0 105.0
338.0 168.0 60.4 19.6
Supercooled liquid, form II
249
Poly(oxymethyoxyethylene) M w = 3000
Poly(oxy-1,4-phenoxyethylene) M w = 3000
Poly(oxy-2,2-bischloromethyl-trimethylene) 139 Mn = 5.0-10.0 x 103
2.
Remarks
Refs.
245
In situ synchrotron rate studies; optical microscopy and DSC runs made
245
High resolution NMR; experiment in m-xylene 0.1-0.001 wt.%, nucleation densities listed initial concentration 2xlO~ 4 g/cm 3
244
Initial concentration 5xlO~ 4 g/cm 3
244
Initial concentration 2xl0-3g/cm3
244
Rates of Radial Spherulitic Growth
TABLE 3. POLY(DIENES), POLY(ALKENES), POLY(VINYLS) Polymer 3.1.
HOMOPOLYMER MELTS
PoIy(I-butene)
TABLE 3. cont'd Tf (0C)
Polymer 95
100
105
94% Isotactic Shell Chem. Co.
18O(5min)
Mn = 73 XlO 3 Mw = 7 5 0 x l 0 3
Poly(chlorotrifluoroethylene)
305 277 305 277 277 267 267
KeI-F NST 300
270 (lOmin)
Poly(l-difluoroethylene) Kureha KF-1100 M w = 525 x 10 3 ; Afv = 348 x 10 3 (a)-spherulites
mixed spherulites (a and y)
Kynar881 M w =555 XlO 3 ; M n = 375 XlO 3 (a)-spherulites
mixed spherulites (a and y)
Poly(ethylene) Sinclair 2907
Tc (0C)
G (nm/s)
100 100 94 92 23 27 25 23 3.2 3.1 3.3 3.3 4.1 65 70 80 85 90 95 100 163 169 169 172 180 185 191 195 197 170 175 180 185 190
0 0.23 0.46 0.9 0 0.23 0.66 1.0 0 0.23 0.5 1.0 2.2 1192 1082 675 449 244 111 32.6 450.1 440.1 430.1 360.1 195.0 110.0 40.0 7.25 2.50 406.7 310.0 216.7 124.2 36.3
154.7 159.5 165.3 167.2 170.2 174.0 157.5 161.4 165.2 167.3 170.1 174.1 151.6 155.7 159.9 162.2 165.1 168.8 153.3 159.3 162.3 165.1 167.4 168.9
120 36.2 7.2 3.4 0.82 0.07 13.5 4.26 1.68 0.86 0.39 0.10 57.2 20.3 4.51 1.60 0.33 0.03 6.13 1.20 0.56 0.26 0.12 0.07
Hot stage microscopy
123 122 121 120 119
300 500 750 1100 1700
Spherulitic growth rates by laser light scattering; at atmospheric pressure
Remarks
Refs.
Parallel plate shearing device; shear rate (s" 1 )
200
Hot stage optical microscopy; crystallinity values listed
251
Hot stage microscopy
121,252
121,252
253
253
253
253
254
References page VI - 391
TABLE 3. cont'd Polymer
M w = 3.60 x 103 M w /M n = 1.13
Tf (0C)
155
M w = 4.20 x l O 3 M w /M n = 1.26 M w = 6.15 x l O 3 M w /M n = 1.09 Mw = 6.29 x l O 3 M w /M n = 1.17 M w = 8.56 x l O 3 M-/M-=1.09 M w = 8.59 x l O 3 M w /M n = l.ll Mw-17.0 xlO3 M w /M n = 1.08 M w = 266 x l O 3 Mw/Mn = 1 81 Mw = 210 x l O 3 M w /M n = 1.43
Mw = 500 x l O 3 M w /M n = 1.60 Mw = 807 x l O 3 Mw/Mn=2.9
155
Tc (0C)
G (nm/s)
118 132 130.9 129.5 128.5 127.7 148.5 147.5 146.5 145.5 144.5 157.5 156.5 155.5 153.5 151.5 169.6 168.6 168.0
2000 310 490 820 1170 1410 140 200 370 590 820 300 520 810 1820 2420 150 310 540
166.6 166.2 165.5
910 1220 1560
118.3 119.6 120.8 122.0 118.9 119.3 121.4 123.7 122.3 123.6 124.2 124.9 122.7 124.0 124.6 125.1 123.5 124.8 125.4 126.1 124.6 125.1 126.0 126.8 125.1 125.7 126.9 127.5 122.7 123.8 125.4 127.7 122.5 126.1 127.4 128.5 124.9 126.2 127.7 128.9 123.1 125.5
2265.2 271.3 24.2 1.44 5350.6 3389.2 70.8 0.35 3043.7 68.9 7.03 0.47 2146.8 87.8 23.5 3.5 11663 575.6 114.8 7.03 1641 623.9 52.7 3.90 4678 1435 108.8 14.5 80.7 29.0 5.6 0.2 124.3 6.9 1.7 0.5 52.4 18.1 3.0 0.6 233.0 50.4
Remarks
Refs.
Pressure = 0.5 kbar
Pressure= 1.0 kbar
254
Pressure = 2.0 kbar
254
Hot stage microscopy; selected values only listed for axialites
255
255
255
255
255
255
Hot stage microscopy; irregular shaped spherulites
255
255
255
255
TABLE 3. cont'd Polymer
T1 (0C)
Tc (0C)
G (nm/s)
292 192
127.5 129.3 125.6 126.3 127.6 128.5 128.9 129.6 130.1 130.6 123.2 124.5 125.2 125.5 125.6 126.7 128.0 128.7 124.7 125.8 126.7 127.1 127.5 128.1 128.5 130.0 120.7 122.9
8.1 0.7 22.95 13.8 4.86 2.54 1.53 0.41 0.12 0.04 542.1 199.1 108.3 98.2 63.7 10.1 0.78 0.14 242.33 90.76 48.41 32.68 17.78 5.16 1.59 0.05 117 103.4
193 196 168 153 195 195 195 195 195
125.1 127.0 122.4 122.5 118.9 113.1 115.8 117.8 100.0
195 195 195 200 (20min)
100.0 101.8 104.0 125.0 126.0 127.0 128.0 81.0 83.0 85.0 88.0 91.0 93.0 95.2 97.0 98.0 92.0 93.0 95.0 97.0 98.0 90.3 92.0 98.0 100.3
SRM 1475 Mw = 74.4 x 103 Mw/Mn = 1.12
155
Mw = 18.1 x 103 M w / M n = 1.39
Mw = 30.6 x 103 M w /M n = 1.19
£> = 0MR*
D = 40MR*
D=IOOMR*
Mw = 19 x 103
Mw = 4 . 0 x l 0 3
Mw =7.0 XlO 3
Mw = 10.0xl0 3
Mw = 12.0xl0 3
Remarks
Refs.
Hot stage microscopy; axialites above 129°C approx.
255
Axialites above 125°C approx.
255
Axialites above 127°C approx.
255
Hot stage optical microscopy
256
18.2 1.08 88.4 100.4 41.68 291.7 65.0 2.33 71.7 61.68 31.67 7.84 126.7 36.67 16.67 3.33 510.0 256.7 143.4 63.4 215.0 86.7 35.0 14.0 7.84 175.0 101.2 40.01 20.01 11.50 316.7 185.0 12.2 3.33
256
256
257
# CH3/100CH2 = 5.3
258
# CH3/100CH2 = 5
258
# CH3/100CH2 =4.7
258
CH3/100CH2 =4.5
258
* D: Radiation does; MR: megarad.
References page VI - 391
TABLE 3. cont'd Polymer Poly(ethylene) Mn = 5.14 x 103 Mw = 6.29 x 103 M2 = 7.62 x 103 Mn = 10.51 x 103 Mw = 11.74 x 103 M2 = 13.22 xlO 3 Mn = 56.35 x 103 Mw = 68.57 x 103 M2 = 83.93 XlO 3 Mn = 76.76 x 103 Mw = 134.30 x 103 M2 = 276.00 xlO 3 Mn = 195.00 x 103 Mw = 323.20 x 103 M2 = 500.80 XlO 3 Poly(isoprene), unfractionated
ds-Poly(isoprene) Mv = 313 x 103
Mv = 351 x 103
Mv _ 543 x io 3
J f (0C)
Tc (0C)
G (nm/s)
Remarks
Refs.
160 (30min)
121.39 125.12
422.1 1.069
Fractionated samples; NBS material SRM 1475
259
125.32 127.81
93.39 0.433
Fractionated samples; NBS material SRM 1475
259
234.46 128.65
25.10 0.377
Fractionated samples; NBS material SRM 1475
259
123.07 127.74
117.3 1.039
Fractionated samples; NBS material SRM 1475
259
120.25 126.30
196.3 1.062
Fractionated samples; NBS material SRM 1475
259
-10 0 10 -10 0 8 0 10 21 25 0 10 21 25 0 10 25 25 29 35
210.8 x 10~3 27.8 XlO" 3 2.11 XlO" 3 392.5 x l 0 ~ 3 156.1 x l O " 3 11.9 x l 0 ~ 3 782.8 xlO" 3 98.6 xlO" 3 4.44 x l 0 ~ 3 3.89 x l O " 3 124.2 x l O " 3 554.2 x l 0 ~ 3 43.9 XlO" 3 35xl0~3 19.72 x l 0 ~ 3 392.5 xlO" 3 110.6 xlO~ 3 554.2 xlO~ 3 175.3 XlO" 3 31.IxIO- 3
Optical microscopy 0.5kbar
283
l.Okbar
283
1.5kbar
283
2.0kbar
283
2.5kbar
283
3.0kbar
283
- 40 - 26 - 15 - 12 -5 -1 0.8 1.8 3.0 -40 - 32 -26 - 20 -12 -7.3 1.0 - 40 - 35 - 30 -26 -20 -15 -10 -5 -2.2 -0.6 1.4 2.2
39.7 x 10" 3 146.1 x 10 ~3 92.5 x 10 " 3 82.2 x 10 " 3 55.6 XlO" 3 9.17 XlO" 3 4.08 X l O ' 3 3.64 x l O ' 3 2.92 XlO" 3 33.3 x 10" 3 66.7 x 10 ~3 138.9 x 10 ~3 100 x 10 ~3 72.5 XlO" 3 47.5 x l O ' 3 10.0 XlO" 3 20.83 x 10" 3 50.83 x 10 ~3 69.4 x 10 " 3 111.1 x 10~3 97.2 XlO" 3 64.4 X l O ' 3 34.7 xlO~ 3 12.8 x l O " 3 13.6 xlO~ 3 10.6 xlO~ 3 5.39 x l O ' 3 5.OxIO" 3
Optical microscopy; rates I to Il at - 80C; lamellar thickness and surface energy data are listed
239,240
Optical microscopy; rates I to II at - 8°C; lamellar thickness and surface energy data are listed
239,240
Optical microscopy; rates I to II at - 8°C; lamellar thickness and surface energy data are listed
239,240
TABLE 3, cont'd Polymer
Tf (0C)
Mv = 897 x 103
Mv = 1421 x 103
Tc (0C)
G (nm/s)
Remarks
- 40 - 35 - 26 - 20 -8.0 - 40 - 30 -26 - 20 -5.0
38.20 x 10~3 51.7 x 10~3 104.2 x 10"3 83.3 x 10~3 48.4 x l 0 ~ 3 11.1 x 10~3 47.2 x 10" 3 61.1 x 10 ~3 50.0 x 10 ~3 6.94 xlO" 3
Optical microscopy; rates I to II at - 8°C; lamellar thickness and surface energy data are listed
239,240
Optical microscopy; rates I to II at - 8°C; lamellar thickness and surface energy data are listed
239,240
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8.37 xlO" 3 15.74 XlO" 3 28.02 XlO" 3 55.37 xlO" 3 179.3 xl0~ 3 783 xlO~ 3 118.3XlO"3 16.38 XlO" 3 13.60 xlO" 3
33.6 35.6 37.5 37.6 40.4 43.0 37.6 39.5 43.0 45.6 34.0 38.0 40.0 43.0 46.0 34.0 38.0 40.0 43.0 46.0 38.0 40.0 43.0 46.0 34.0 38.0 40.0 43.0 46.0 25.8 29.6 33.6 37.6 43.0 26.0 30.0 34.0 38.0 40.0 43.0 26.0 30.0 34.0 38.0
72.18 63.01 48.01 53.18 39.01 22.67 44.01 36.01 21.34 14.34 24.67 11.67 9.34 5.67 2.83 16.50 7.92 5.85 3.52 1.71 5.83 4.25 2.10 1.05 14.00 6.67 4.38 2.33 0.95 173.37 111.69 66.68 34.01 9.17 51.01 34.84 16.50 8.17 4.83 1.83 36.01 20.83 11.16 4.33
cw-Poly(isoprene)
frans-Poly(isoprene) My =7.0 x 103
100
Mv = 12.0 xlO 3
100
Mv =45.0 x 103
100
Mv = 91.0 x 103
100
Mv = 165.0 xlO 3
100
Mv = 400.0 x 103
100
Mv =12.0 xlO 3
100
Mv =45.0 xlO 3
100
Mv = 91.0xl0
100
Refs.
Electron microscopy with OsO 4 staining O.Okbar OJkbar 0.5kbar 0.8kbar l.Okbar 1.5kbar 2.0kbar 2.5kbar 3.0kbar
272
Hot stage optical microscopy
286
Hot stage optical microscopy
286
Hot stage optical microscopy
286
Hot stage optical microscopy
286
Hot stage optical microscopy
286
Hot stage optical microscopy
286
287
287
287
References page VI - 391
TABLE 3. cont'd Polymer
Tf (0C)
My = 30 x 103 High melting form
Low melting form
Mn = 30 x 103 High melting form
Low melting form
Poly(propylene)
191-195
180(15min)
Tc (0C)
G (nm/s)
40.0 43.0 - 9.5 -4.6 0.4 5.3 9.5 14.6 47.1 49.4 51.3 53.4 55.4 59.3 -5.1 0.0 5.5 9.9 14.3 38.3 42.0 45.0 47.5 49.4 51.7 54.2 55.7
2.50 1.17 0.080 0.125 0.401 0.811 1.390 2.067 1.470 1.123 0.775 0.481 0.330 0.134 0.071 0.196 0.383 0.650 0.900 1.791 1.337 0.909 0.624 0.446 0.294 0.169 0.107
29.8 34.6 39.9 45.0 49.6 55.1 59.7 64.1 69.3 74.6 79.4 80.8 84.0 86.3 34.2 39.3 44.7 49.4 54.6 59.4 63.8 69.5 73.2 78.7 84.0 125 130 134 138 140 122.0 125.0 130.0 135.0 140.0 145.0
0.096 0.213 0.426 0.714 1.086 1.470 1.740 1.800 1.651 1.179 0.589 0.366 0.209 0.114 0.092 0.170 0.323 0.490 0.653 0.785 0.802 0.714 0.465 0.305 0.075 87.52 61.51 28.67 8.668 4.501 300.1 200.1 71.68 26.67 9.835 4.501
Remarks
Refs.
Electron microscopy with OsO 4 staining; pressure @ I bar
187
Electron microscopy with OsO 4 staining; pressure @ I bar
187
Electron microscopy and OsO4 staining; pressure @ 2kbar
187
Electron microscopy and OsO 4 staining; pressure @ 2kabr
187
Hot stage optical microscopy
260
Hot stage optical microscopy
261
TABLE 3. cont'd Polymer
7> (0C)
Mv = 178.0 x 103
220
Hostalen PPN 106OF (Hoechst AG) Tm = 1800C
r m = 190°C rm=200°C
164.6 164.8 165.3 165.8 166.8 167.5 170.1 164.8 167.5 164.8 167.5
M w = 289 x 103 Mn = 51 x 103 (KSlO from Petrochemica Danubia)
(heterotactic/isotactic/syndiotactic = 0.145/0.211/0.644; from 13 C NMR analysis)
Poly( 1 -phenylethylene) Mv = 60 x 103
M v = 190 x l O 3
270
M v = 330 x 103 M n = 185 x l O 3
250
Tc (0C)
G (nm/s)
Remarks
Refs.
120 125 131 135 120.5 129 145 121 132 145 127.5 130.0 132.5 135.0 138.0 140.0 145.0 130.0 140.0 130.0 140.0 93.2 98.6 104.0 108.7 113.2 122.9 131.8 136.1 145.4 97.4 101.4 104.4 105.4 109.4 113.4 117.4 121.4 125.4 129.4 133.4 137.3
490.1 216.7 64.68 27.17 480.1 120.0 4.501 408.4 46.67 2.334 116.7 71.7 43.3 26.7 143.3 98.3 45.0 65.0 83.3 63.3 78.3 1733 3363 8531 7505 1794 470.9 69.9 23.1 3.7 122.0 123.7 82.0 71.3 70.3 30.5 26.9 15.6 7.4 4.4 1.7 0.3
Hot stage optical microscopy
262
Pro-fax 6513E
263
Pro-fax 6501
263
Hot stage microscopy; rate constants also listed; crystallinity also provided
264
140 155 177 190 200 210 140 150 170 180 190 120 130 140 150 160 170 180 190 200 210
0.333 1.500 4.334 3.667 1.667 0.500 0.83 0.333 1.334 334 0.500 0.040 0.162 0.600 1.43 2.50 3.42 3.42 2.50 1.43 0.45
264
Optical microscopy; linear crystallization under unilateral quench, modeled and measured; comparisons made with literature spherulitic growth rates
264 264 265
Hot stage microscopy
149
Hot stage optical microscopy
262
268
269
References page VI-391
TABLE 3. cont'd Polymer
T1 (0C)
M v -1250 XlO 3
Mv = 1380 XlO 3
270
Mv = 2200 XlO 3
260
Isotactic Mv = 220 x 103
Mv = 2100 x 103 (DowChem.)
260
250 (30min)
Poly(methyl methacrylate) isotactic 180 (5 min) M - 2 1 3 XlO 3 (heterotactic/isotactic/syndiotactic = 5/94/1) Poly(2-vinyl pyridine) isotactic Mv = 400 XlO 3
230 (1 min)
Tc (0C)
G (nm/s)
155 170 184 200 210 130 150 170 180 190 112.01 119.62 129.70 150.26 159.22 172.15 179.70 195.06 200.52 113.3 121.9 133.0 143.8 154.9 174.8 180.0 190.6 203.6 203.4 202.4 208.3 212.2 212.5 111.1 123.2 144.7 161.6 180.0 192.2 206.3 215.2 215.2 220.7 90 100 110 120 13 100 HO 120 130 140 150 160 170 180
2.167 4.834 4.501 2.167 0.666 0.333 1.834 4.501 7.502 3.167 0.00454 0.02582 0.1518 1.526 2.532 3.844 3.980 2.529 1.832 0.005 0.040 0.158 0.582 1.343 3.063 3.380 3.063 1.872 1.279 0.821 0.582 0.422 0.611 0.004 0.069 0.498 2.009 3.711 3.529 1.738 0.404 0.355 0.037 0.072 0.018 0.444 0.606 4.80 100 79 413 1524 4163 8574 13058 13565 7707
Remarks
Refs. 270
268
270
Hot stage microscopy; average of many literature results
Electron microscopy; thin (80-100 nm) solution cast and then melt crystallized
271
films
272
Hot stage microscopy
273
Hot stage microscopy
274
3.2. BLENDS Poly(isoprene) Blend of cistftrans
5% trans 20 40 60
40
0A
1 1.6 2.1
H o t sta
S e °P t l c a l microscopy; other results in this paper including crystallinities
Ref
- 6 ' P'
49
TABLE 3. cont'd Polymer 80 100 Poly(ethylene)/isotactic poly(propylene) PE: M w = 16.6 x 10 3 Mn = 10.2 x 10 3 /-PP: M w = 307 x 10 3 M n - 1 5 . 6 x 10 3
Poly(propylene)/poly(isobutene) Med. Mw. 100/0; PP/PIB
90/10
80/20
60/40
High Mw. 100/0; PP/PiB:
T( ( 0 C)
Tc ( 0 C)
G (nm/s)
125.4 129.3 131.2 135.1
3.6 7.7 265.4 114.9 71.7 27.3
Hot stage optical microscopy growth rates of PP spherulites in blends of 0, 10, 20, and 50 wt.%; DSC rates listed
275
137.1 125.6 127.5 129.5 131.4 133.4 135.3 137.3
19.0 267.9 175.4 116.9 74.7 47.9 29.3 20.3
Hot stage microscopy *average values cited for blends of i-PP/LDPE: 100/0 90/10 70/30 50/150
276
121.0 123.0 125.0 127.0 131.0 121.0 123.0 125.0 127.0 131.0 121.0 123.0 125.0 127.0 131.0 121.0 123,0 125.0 127.0 131.0
550.0 366.7 250.0 166.7 83.3 400.0 300.0 216.7 150.0 66.7 333.3 266.7 166.7 116.7 33.3 316.7 200.0 150.0 83.3 50.0
121.0 123.0 125.0 127.0 131.0 90/10 121.0 123.0 125.0 127.0 131.0 80/20 121.0 123.0 125.0 127.0 131.0 60/40 121.0 123.0 125.0 127.0 13 LQ Poly( 1 -phenylethylene)/poly(1 -phenylethylene); isotactic/atactic polystyrene /-PS, M w = 550 x 10 3 ; a-PS, M w = (900-1800) x 10 3 i-PS/a-PS; 100/0 140 160 170 180
550.0 366.7 250.0 166.7 83.3 250.0 166.7 116.7 66.7 33.3 300.0 216.7 133.3 100.0 50.0 316.7 166.7 150.0 100.0 50.0
1.56 3.43 4.27 4.65
Remarks
Refs.
Hot stage microscopy
6,277
Hot stage microscopy
6,277
Hot stage microscopy
6,277
Hot stage microscopy
6,277
Hot stage microscopy
278
Hot stage microscopy
278
Hot stage microscopy
278
Hot stage microscopy
278
279
References page VI-391
TABLE 3. cont'd Tf (0C)
Polymer
80/20
60/40
PoIy(I-phenylethylene)(polystyrene)/poly(vinyl methyl ether) M v = 134 x l O 3 ; M v = 971 x 10 3 PS/PVMe; 100/0 90/110 80/20 Poly(propylene)/poly(propylene) isotactic/atactic I'-PP: M w = 3.07 x 10 5 ; M n = 1.56 x 10 4
a-PP: M w = 2.4 x 10 4
Tc (0C)
G (nm/s)
190 200 140 160 170 180 190 200 140 160 170 180 190
3.42 1.76 1.14 2.67 3.50 3.56 2.46 0.92 0.56 1.77 2.30 2.50 1.72
150.0 180.0 150.0 180.0 150.0 180.0 121.3
0.8 2.5 1.3 3.0 1.5 3.2 503
123.4
337
125.4 127.4 129.1 131.4 121.3 123.4 125.4 127.4 129.1 131.4 121.4 123.4 125.4 127.4 129.1 131.4 212.4 123.4 125.4 127.4 129.1 131.4 Poly(propylene)/poly(ethylene); isotactic/linear low density poly(ethylene) 100/0, w/w 126 90/10, w/w 126 80/20, w/w 126 50/50, w/w 126 180.0 90/110, w/w 150.0 180.0 80/20, w/w 150.0 180.0
235 175 113 83.3 433 308 218 132 97 67 392 263 180 130 70 50 358 247 163 117 67 33 240 243 242 248 2.5 1.3 3.0 1.5 3.2
Remarks
Refs.
279
279
Hot stage microscopy
277
Hot stage microscopy
277
Hot stage microscopy
277
Interpolated i-PP
280
i-PP/a-PP = 9 : l
280
i-PP/a-PP = 8:2.
280
i-PP:fl-PP = 7 : 3 .
280 281
Hot stage microscopy; t0 5 values are also listed microscopy
282
Hot stage microscopy; fo.5 values are also listed microscopy Hot stage microscopy; r 0 5 values are also listed microscopy
282 282
TABLE 4. POLY(OXIDES) Polymer
Tf (0C)
Tc (0C)
G (nm/s)
180 185 190 192.5 195 197.5 200.0 202.5 205.0 207.5 210.0 213.0 215.0 218.0 75 80 90 100 110 120 130 140 25.2 29.1 33.2 36.8 40.5 42.2 44.0 44.3 42.0 44.2 45.2 47.2 47.2 48.8 51.2 55.2 47.6 48.2 51.0 53.8 56.4 156.0 157.0 158.0 159.8 160.8 163.0 163.9 164.5 166.1 169.1
7.93 x 103 3.60 x 103 1.37 x 103 7.25 x 102 3.65 x 102 1.9OxIO2 95.0 40.2 23.5 12.2 6.38 3.88 2.18 0.99 208.4 183.4 150.0 125.0 100.0 66.68 33.34 25.01 2.11 1.38 0.73 0.35 0.14 0.08 0.05 0.04 12169A 4734.2 2217.1 395.1 11752.3 6034.5 1514.0 55.51 1784.0 1516.9 421.8 94.19 1.60 346.7 180.0 99.19 77.02 56.61 20.84 14.25 4.801 2.951 0.475
Spherulitic growth; hot stage, photographic method; regime growth; a phase
308
Hot stage optical microscopy
289
Hot stage microscopy; average of several molecular weights cited
290
Hot stage optical microscopy
291
Hot stage optical microscopy
291
Hot stage optical microscopy
291
Hot stage optical microscopy
292-294
352.2 194.3 111.4 54.0 25.5 36.5 x 103 18.2 x 103 6.91xl03 1.82 x l O 3
Hot stage microscopy
Remarks
Refs.
4.1. HOMOPOLYMER MELTS Poly[oxy(l-oxo-2,2-dimethyltrimethylene)] Poly(pivalolactone); PPVL
Poly(oxy-2,2-bischloromethyltrimethylene) 210(25min)
Poly(oxy-2,2-dimethyltrimethylene) Af w = (18.5 x 103 - 130 x 103)
80(15min)
Poly(oxyethylene) Mv = 5.47 XlO 3 M v = 12.4 x 103
M v = 33.1 x 103
M v =45.0 x 103
Poly(oxyethylene); Polyox WRS-205, Union Carbide M v = 920 x 103 120 (45 min)
M n = 1.6 x 103 M w /M n = 1.6 [rj] =0.062
100 (min)
53.7 54.7 55.7 56.6 57.5 44.8 45.4 45.9 46.5
Hot stage optical microscopy; selected molecular weights only are listed
11
295
References page VI - 391
TABLE 4. cont'd Polymer Mn =4.3 XlO 3 AfW/Af n = 1.07
Mn = 20 x 103 M w /M n = 1.2 M = 0.374
Mn = 600 x 103 Mw/'Af w = 1.2 [Tj] = 3.65
Poly(oxymethylene) Mn = 66 x 103
Poly(oxymethylene) Mw = 2 x 103
Mw = 3x 103
Mw = 4 x 103
Mw = 6 x 103
Tf (0C)
Tc (0C)
G (nm/s)
48.0 50.0 51.0 52.0 53.0 54.0 55.0 53.6 55.1 55.9 56.8 57.8 58.7 51.7 52.5 53.6 54.3 55.1 56.8 57.8 59.1
30.33 XlO 3 19.33 x 103 6.06 xlO 3 4.33 x 103 1.53 x l O 3 0.55 x 103 0.078 x 103 40.0 x 103 8.00 x 103 4.00 x 103 1.67 XiO 3 0.433 x 103 0.145 x l O 3 31.00 x 103 25.50 x 103 21.83 xlO 3 11.67 xlO 3 7.8OxIO 3 1.67 xlO 3 0.233 x 103 0.163 x 103
137.3 142.1 145.2 147.0 150.0 152.0 153.4 155.0 156.5
19.82 x 104 63.83 x 103 26.80 x 103 18.37 x 103 81.5OxIO2 40.08 x 102 17.58 x 102 8633 359.0
29.6 32.6 37.2 40.1 41.8 44.1 48.0 50.4 51.2 32.9 36.8 40.4 45.2 47.8 48.5 49.7 51.8 54.5 55.5 34.6 37.7
84275 51892 17195 3908 841 678 231 19 1 86579 50513 21913 3324 319 100 17 16 6 1 96427 57796
42.5 45.7 48.3 50.6 52.2 53.3 54.0 54.4 56.9
22511 6013 1072 121 52 16 4 2 1
36.4 41.5 45.7
73655 37558 14240
Remarks
Refs.
Hot stage optical microscopy; selected molecular weights only are listed
295
Hot stage optical microscopy; selected molecular weights only are listed
295
Optical hot stage microscopy; Regime III crystallization
Melt crystallized; data interpolated from original plots
296
Melt crystallized; data interpolated from original plots
296
Melt crystallized; data interpolated from original plots
296
Melt crystallized; data interpolated from original plots
296
TABLE 4. cont'd T{ (0C)
Polymer
Mw = 10 x 103
Mw = 150 x 103
Poly(oxymethylene oxyethylene) Mv = 9.4 x 103
Poly(oxypropylene)
80
120(2~5min)
85
Mn = 10.3 x 103
120 (5 min)
Tc (0C)
G (nm/s)
49.0 51.9 54.1 55.4 57.2 39.3 43.8 47.0 50.2 52.2 55.4 56.9 58.3 59.6 30.2 34.6
3415 407 43 6 2 57796 29471 15438 5399 1227 109 15 4 1 64372 54765
39.1 43.6 46.8
355 21913 10877
49.8 52.9 55.2 57.6 59.8 61.1 -18 - 9.8 3.0 8.5 14.0 16.0 17.0 19.0 22.0 25.0 28.0 31.0 34.0 22.0 25.0 28.0 31.0 34.0 42.3 46.3 46.7 51.0 40.5 42.3 44.2 46.3 39.0 40.5 42.3 44.2 45 50 55 38 43 48 0 5 10 15
4471 1404 465 74 7 1 1840 3980 4680 5650 5410 2450 2630 1730 385 255 94.5 29.1 21 370 240 90 10 9 325.8 132.5 39.1 16.7 165.8 104.1 66.7 73.3 8.3 40 33.3 8.3 1.37 0.175 0.14 1.00 0.42 0.15 500.1 746.8 723.4 838.5
Remarks
Refs.
Melt crystallized; data interpolated from original plots
296
Melt crystallized; data interpolated from original plots
296
Hot stage microscopy; 2 crystal modifications; form I
297
Form II
297
Hot stage optical microscopy
299
Mean isotactic sequence length = 122
300
Mean isotactic sequence length =14 Optically active hot stage optical microscopy
301
References page VI - 391
TABLE 4. cont'd Polymer
Mn = 135 x 103
Poly(oxypropylene) isotactic Mv = 86.0 x 103 (Dow Chem.)
4.2.
T( (0C)
120 (5 min)
120 (20 min)
Tc (0C)
G (nm/s)
25 30 35 40 45 50 60 25 30 35 40 45 50 55 60 45.3 47.7 50.2 52.6 55.0
476.8 403.4 240.0 145.7 56.68 23.50 2.050 255.2 157.5 103.3 41.7 23.6 6.01 2.02 0.467 162.9 109.2 63.2 38.3 20.0
25 30 35 40 45 50 55 60 62 65 67 69.5 71 72.3 72.8 72.7 25.1 27.3 30.2 32.5 35 37.5 40 42.4 44.9 47.5 50 52.5 54.7 57.5 26 30.3 35 42.5 47.2 52. 57.5 62.5 67.4 71.4 74.2 78
3030 4440 7110 10800 15550 21230 27500 33170 34240 32900 31100 22540 16060 11050 720 8047 1490 1740 2430 2740 3320 4020 4950 6020 6530 7490 6950 6230 5200 3270 15990 27680 139700 391110 784000 1459150 2711400 3478600 4145700 3961000 3269600 1928000
Remarks
Optically active hot stage optical microscopy
Hot stage optical microscopy; nucleation rates listed in text
Refs.
301
11
COMPLEXES
Poly(oxyethylene)/resorcinol stoichiometry, 2:1 complex PEO; Mw = 6000
PEO; M w = 35000
Hot stage optical microscopy; unhanded spherulites
303
Banded spherulites
303
Unbanded spherulites
302
TABLE 4. cont'd Tf (0C)
Polymer
Poly(oxyethylene)/resorcinol stoichometry 2:1 complex
4.3.
Tc (0C)
G (nm/s)
80 82 82.5 84.0 85 25 28 30 32 35.5 37.7
1141300 481000 117200 43100 14650 2160 2400 3000 3580 4270 4940
42.4 45.7 50 54 57.3 60 62.5 64 65 66 67
5670 6530 7240 8020 8580 8220 6310 4170 3460 2660 1460
Remarks
Refs.
Unhanded spherulites
302
Unhanded spherulites
302
45 47.5 50 52.5 55 57.5 60 62.5 65 45 47.5 50 52.5 55 57.5 60 60
15.34 x 103 17.96 20.10 24.0 27.1 30.7 32.8 34.2 35.5 4.35 XlO 3 4.21 6.03 7.14 8.6 11.40 12.51 14.32
Optical hot stage microscopy; two sphemlitic form of PEO: a and P; other growth features were established a-type
303
P-type
303
49.0 50.0 51.0 52.0 53.0 54.0 55.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 47.0 48.0 49.0 50.0
3333 1950 1183 600 333 167 33 3300 2300 1583 1067 683 433 250 150 33 1883 916 650 483
Hot stage microscopy
6
Hot stage microscopy
6
Hot stage microscopy
6
BLENDS
Poly (oxyethy lene)/poly[ 1 -(methoxycarbonyl)-1 -methylethylene] Mw = 2 0 x l 0 3 " PEO/PMMA 100/0 80
95/5
80
90/10
80
References page VI-391
TABLE 4. cont'd Polymer
Tf (0C)
Tc (0C)
51.0 52.0 53.0 54.0 55.0 80/20 80 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 70/30 80 49.0 M w - 1 1 6 XlO 3 50.0 0/100 51.0 52.0 53.0 Poly(oxyethylene)/Poly[l-(methoxycarbonyI)-l-methylene] PEO/PMMA 100/0 47.6 Mw =2.0 XlO 3 49.0 48.5 49.4 49.9 51.4 52.5 53.3 54.2 90/10 46.3 47.3 48.5 49.3 50.4 51.4 52.4 53.4 54.3 80/20 46.3 47.3 48.4 49.3 50.5 51.4 52.5 53.4 54.3 70/30 46.3 47.3 48.2 49.3 50.3 51.4 53.4 Poly(oxyethylene)/poly[l-methylcarbonyl)-l-methy(ethylene] Mw = 10 x 103 PEO/PMMA 48.7 IQQ/Q 49.7 50.3 53.2 55.5 9O/io 47.2 47.8 48.8 50.0 50.8
G (nm/s) 283 216 116 50 17 800 600 367 233 200 100 33 17 167 177 100 67 17
Remarks
Refs.
Hot stage microscopy
6
Hot stage microscopy
6
10189 6793 6203 5333 4771 2386 1094 477.2 252.6 3200 2189 2049 1319 1263 701.8 421.1 252.6 140.4 926.3 729.8 561.4 477.2 449.1 252.6 252.6 84.2 56.1 364.9 280.7 280.7 168.4 140.4 0.0 0.0
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy; homopolymer and blends
278
2570 1583 1106 153 0. 689 536.2 374.5 255.3 187.2
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy; homopolymer and blends
278
TABLE 4. cont'd Tf (0C)
Polymer
80/20
70/30
60/40
Poly(oxyethylene)/poly([l-(methoxycarbonyl)-l-methylethylene] MW(PEO) - 100000; MW(PMMA) = 110000 PEO/PMMA wt.% ratio: 100/0
90/10
80/20
70/30
60/40
Tc (0C)
G (nm/s)
51.8 53.0 42.9 45.0 45.9 46.8 47.8 48.8 50.4 41.1 42.0 43.0 44.1 45.0 45.8 46.8 47.7 48.9 39.2 41.1 42.9 44.0 45.0 45.8 46.7 54 53 52
76.6 42 740.4 434.0 331.9 280.8 221.3 119.1 59.6 417.0 280.8 246.8 195.7 153.2 136.2 110.6 68.1 51.1 119.1 93.6 76.6 68.1 42.6 25.5 17.0
51 50 49 48 47
483 1134 1600 2550
167
53
67
52 51 50 49 48 47 46
117 217 275 357 547 667
50 49 48 47 46 45 43 42 49 48 47 46 45 44 43 42 41 40 39 47 46 45 44 43
133 900 300 333 433 734 63 102 102 140 163 190 250 267 305 37 43 57 80 98
Remarks
Refs.
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy;
278
homopolymer and blends
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy; homopolymer and blends
278
Hot stage microscopy; homopolymer and blends
278
References page VI- 391
TABLE 4. cont'd Polymer
T( (0C)
Poly(oxyethylene)/poly[l-(methoxycarbonyl)-l-methylethylene] MW(PEO)100000; Mw(PMMA)110000 PEO/PMMA 100/0
90/10
80/20
70/30
60/40
Poly(oxyethylene)/poly(l-acetoxyethylene) PEO; M w = 2.0 x l O 3 PEO/PVA 100/0
90/10
Tc (0C)
G (nm/s)
42 41 40 39 38 54 53 52 51 50 49 48 47 53 52 51
257 1278 546 348 186 108 120 48 1998 996 744
50 49 48 47 46
324 258 186 120 84
50 49 48
2356 1986 1752
47 46 45 43 42
1149 744 606 192 204
49 48 47
4344 2292 1992
46 45 44 43 42 41 40 39
1470 1308 1008 1044 684 564 432 342
47 46 45
4776 3906 3222
44 43 42 41
2562 2082 1932 1542
40 39 38 48.6 49.5 50.9 51.7 52.7 53.6 54.6 55.5 46.0
1368 1140 1020 6167 5325 2690 1976 1116 530 164 73 4630
46.9 47.8 48.6 49.7 50.6
3879 3550 2214 2086 1537
Remarks
Refs.
102 125 DSC measurements; rate constants in text, Avrami exponents 2.3
305
DSC measurements; rate constants in text, Avrami exponents 2.3 < n < 3.2 respectively
305
DSC measurements; rate constants in text, Avrami exponents 2.3
305
DSC measurements; rate constants in text, Avrami exponents 2.3
305
DSC measurements; rate constants in text, Avrami exponents 2.3 < n < 3.2 respectively
305
278
278
TABLE 4. cont'd Polymer
T{ (0C)
80/20
60/40
Poly (oxyethylene)/poly ([ 1 -(methoxycarbonyl)-1 -methy lethylene] PEO; Afw = 990000; PMMA, Mw = 525000 PEO/PMMA 100/0
92/8
85/15
70/30
PEO = 990000; P P M A = 125000 100/0
Tc (0C) 51.7 52.7 53.5 54.5 45.9 46.8 48.6 49.7 50.6 51.5 52.5 53.6 54.6 45.7 46.5 47.6 48.5 49.5 50.5 51.5 52.6
G (nm/s) 1262 549.0 347.7 91.5 3824 3001 1738 1281 878.4 622.2 237.9 183.0 0.0 1756 1354 969.9 768.6 512.4 274.5 201.3 73
Remarks
Refs.
278
278
307 11 18 22.5 26 30.7 36 41.7 45 50 55 57 15.5 22.5 26 31 36 41 49 53 55 60 50 51 52.5 54 56 58 60 35 40 45 48 51 54 56 58 16 22 28 31 36
67.3 78 56.5 56.6 37 24 9 5.2 1.72 0.041 0.018 450 272 217 130 75 23 11 1.3 0.43 0.014 22 11.5 7.2 3.2 0.82 0.18 0.014 550 381 200 96 35 9.5 2.6 0.50 23 16.8 11.5 10 8.6
307
307
307
307
References page VI-391
TABLE 4. cont'd Polymer
92/8
85/15
70/30
Tt (0C)
Tc (0C) 41 43.5 46.5 49.5 51.5 54.5 56.5 57.5 58.5 23 30 35 42 46 49 51 54 56 58 60 48.5 50 54 57.6 58.2 58.3 59.3 60 35 40 45 48 50 52 54 56 57.3 58 59.5
G (nm/s)
Remarks
5.2 3.0 2.4 1.4 0.83 0.42 0.17 0.10 0.06 108 58 52 70 11 12 5.4 2.0 0.66 0.19 0.064 7.7 3.7 9.05 3.8 0.46 0.19 0.10 0.041 611 446 229 110 52 17 11 2.93 1.46 0.56 0.22
Poly[oxy(l-oxo-2,2-dimethyltrimethylene)] poly(l ,1-difluoroethylene); (poly(pivalolactone)/poly(vinylidene fluoride) PPVL/PVF2; Mv = 250 x 103/Afn = 45 x 103; Afw = 140 x 103 100/0, w/w 260(3min) 180 6.2 x 103 DSC isothermal rates, selected 184 3.17 x 103 values; consult reference for more 186 2.40 x 103 details on Regime growth 189 1.22 x l O 3 192 0.60xl03 197 0.157 x l O 3 200 0.066 x l O 3 205 2.0 x 103 207 1.35 x 103 210 7.45 x 103 215.5 2.2 x l O 3 70/30, w/w 169 3.52 x 10 3 DSC isothermal rates, selected 174 2.08 x 103 values; consult reference for 177 1.49 x 103 more details on Regime growth 183 6.86 x l O 2 190 2.65 x 102 195 8.90 x 10 200 3.00 x 10 205 8.5 210 3.25 215 1.55 20/80, w/w 260 (3min) 165 2.21 x 102 DSC isothermal rates, selected 170 1.47 x 102 values; consult reference for 174 1.24 x 102 more details on Regime growth
Refs.
307
307
307
308
308
308
TABLE 4. cont'd Polymer
T1 (0C)
10/90, w/w
50/50, w/w
260(3min)
30/70, w/w
Poly (l,l-difluoroethylene)/poly(butylene succinate) PVF2, Mw = 140 x 103; PBSU, Mn = 54 x 103 wt.% :PVF2 / PBSU 190 (5 min) 100 /° 8
°/20
60/40
40/60 Poly(butylene succinate)/poly (1,1-difluoroethylene) PBSU, A/w = 54 x 103; PVF2, Mw = 140 x 103 wt.% PBSU / PVF2 190 (5 min) 100 /°
Tc (0C)
G (nm/s)
178 182 186 189 192 196 199 202 204 160 166 170.1 174
8.84 x 10 5.87 x 10 3.60 x 10 2.32x10 1.54x10 8.08 x 10 4.22 2.81 1.57 9.4 x 10 7.01 x 10 5.99 x 10 4.38 x 10
179 184 190 196 200 205 206
3.22 x 10 1.81 x 10 9.52 4.13 2.39 1.11 0.72
170 174 178 182 185 190 195 200 205 210 215 164 168 172 182 188 192 197 200 205 210
1.53 x 103 1.11 x 103 6.35 x 102 4.19 XlO 2 2.69 x 102 1.27 XlO 2 4.00 x 10 1.10x10 4.73 2.15 0.75 6.99 x 102 5.21 x 102 3.93 x 102 1.25 x 102 5.80 x 10 2.62 x 10 1.00x10 6.6 3.3 1.0
Remarks
Refs.
DSC isothermal rates, selected values; consult reference for more details on Regime growth
308
DSC isothermal rates, selected values; consult reference for more details on Regime growth
308
DSC isothermal rates, selected values; consult reference for more details on Regime growth
308
413
150 155 160 145 150 155 140 145 150 155 140 145 150
197 61.1 10.8 185 116 36 222 110 44.3 13.0 133 65 17.4
80 85 90 100
1943 980 456 73.2
Hot-stage microscopy DSC Tm and T^ and enthalpy values listed in Ref. 413. Spherulitic morphology in all blends
Hot-stage microscopy DSC, Tm and r £ and enthalpy values listed in Ref. 413. Spherulitic morphology in all blends
413
References page VI-391
TABLE 4. cont'd Tf (0C)
Polymer
Tc (0C)
G (nm/s)
80/20
80
1842
60/40
85 90 95 80
969 434 169 1470
Remarks
85 710 90 248 95 130 Poly(oxyethylene); PEO/poly(octafluoropentoxytrifluoroethoxyphosphazene); PPZ/poly[oxy(l-chloromethyl)ethylene]; PECH 6 PEO, Mw = 5 XlO 53.8 609 Hot stage microscopy; bulk PPZ, -unlisted 55.1 400 crystallization and morphology PECH, Mw = 7 x 106 56 286 also recorded PEO/PPZ: 100/0 57.1 215 58 166 58.8 142 75/25 52.3 1100 Hot stage microscopy; bulk 54 563 crystallization and morphology
50/50
PEO/PECH: 75/25
53.5 PEO/PPZ/PECH: 66/17/17
PEO/PPZ/PECH: 50/25/25
Refs.
309
309
55.1 56 57 57.9
429 286 239 193
49.3 50.6 57.9 53.2 54.2 55.2 49.2 50.5 51.5 52.5 321 54.3 49.7 50.7 51.7 52.7 53.6 54.5 48.9 50 51 51.8 52.7 53.6
1402 1045 770 536 426 302 905 693 526 435
Tc (0C)
G (nm/s)
Remarks
Refs.
190 195 175 180 185 190 145 150 160 170 180
0.0833 0.042 16.67 10.00 5.00 3.33 20.0 15.00 8.33 5.85 4.17
Hot stage optical microscopy
310
Hot stage optical microscopy
310
Hot stage optical microscopy
310
271 633 528 405 336 279 242 600 477 422 370 313 266
also recorded
Hot stage microscopy; bulk crystallization and morphology also recorded
309
Hot stage microscopy; bulk crystallization and morphology also recorded
309
Hot stage microscopy; bulk crystallization and morphology also recorded
309
Hot stage microscopy; bulk crystallization and morphology also recorded
TABLE 5. POLY(CARBONATES) Polymer Poly(oxycarbonyloxy-l,4-phenylene-isopropylidene-l-4-phenylene) Poly(oxycarbonyloxy-l,4-phenylenemethylene-l,4-phenylene)
Poly(oxycarbonyloxy-l,4-phenylenethio-l,4-phenylene)
TABLE 6. POLY(ESTERS) Polymer
T1 (0C)
Tc (0C)
G (nm/s)
23 30 33 38 42 45.4 55 67.4 80 100 107 115 119.5 127 129.5
21.2 52.3 78.6 134 283 425 995 4117 3930 3239 1787 902 425 150 86
Measurements by Atomic Force Microscopy in thin polymer films; lamellar growth noted from sphemlitic-melt interfaces; polymer characterization given in Ref. 103(a)
103
67.1 68.1 69.1 70.1 71.1 72.0
87.35 21.67 6.451 1.884 0.583 0.083
Hot stage optical microscopy; nucleation densities given in text
105
20 40 44 47 123 140 145 161 170 190 200 210 !20 130 140 150 160 170 180 190 200 210 220 140 150 160 170 150
66.346 18.00 13.169 9.002 4.0 17.5 34.0 56.0 70.0 64.5 42.0 21.8 7 18 37 61 105 140 151 100 140 151 6 13 21 23 41 2.5
160 170 180 160 170 180 190 39.6 40.9 42.3 50.3
8 16 30 2 9.5 24 34 147.0 140.0 158.5 166.0
Remarks
Refs.
6.1. HOMOPOLYMER MELTS Poly(hydroxybutyrate)
Poly(oxydecamethyleneoxysebacoyl) M v = 10.3 x 103
Poly(oxyethyleneoxyadipoyl) M v = 10.3 x l O 3
Poly(oxyethyleneoxyterephthaloyl)
Poly(oxyethyleneoxyterephthaloyl)
100
311
Hot stage optical microscopy; crystallization from the glassy state at T%
185
Linear growth rates by laser light scattering; nucleation densities are provided in the test
312
0.5kbar
312
1.5kbar
2kbar
Hot stage optical microscopy
313
References page VI - 391
TABLE 6. cont'd Polymer
Mn = 16.8 xlO 3 Mn == 19.0 x 103
Mn = 27.4 x 103
Mn = 39.1 x 103
Poly(oxymethyleneoxysuccinyl) Mw = 5.98 xlO 3
Tf (0C)
294
Tc (0C)
G (nm/s)
53.4 57.0 57.6 58.7 61.4 67.6 72.0 75.2 81.8 58.0 220 240 120 130 140 150 160 170 180 190 200 120
150.2 153.4 120.0 116.0 76.81 74.18 51.34 26.17 5.801 3.001 41.08 3.100 6.84 15.0 47.4 75.2 93.2 112.2 112.8 117.4 85.0 3.28
130 140 150 160 180 190 200
8.50 19.9 36.8 56.2 72.1 63.6 43.9
210 120
20.2 1.54
130 140 150 160 170 180 190 200
4.40 8.26 14.2 18.0 27.8 26.6 19.1 13.4
16.4 23.0 26.3 28.5 35.6 36.3 Poly(oxytetramethylene oxysuccinyl); PTMS Mw = 1.14 x 105 Mn/Mn — 3.1 200(10 min) 89 90 91 92 93 94 Showa High Polymer Co., Japan 95 97 100 102 105 Poly(oxy- l-oxo-2-methylethylene)/poly(L-lactic acid) Mv = 150 x 103 115.2 120.2 126.0 130.3 134.4 139.0 143.8
Remarks
Refs.
314 Hot stage optical microscopy
315
Hot stage optical microscopy
315
Hot stage optical microscopy
315
12.00 31.17 62.34 44.18 91.35 91.83
Hot stage optical microscopy
316
162.7 146.4 119.5 102.3 82.1 71.6 54.0 35.7 19.2 7.7 3.85
Rate of spherulite growth; hot stage microscopy; 7^ = 132°C; r g = - 38°C; DSC, 1HNMR
405
62.2 71.1 83.2 82.8 63.8 57.4 49.3
IR characterization of polymer; Density-Temp, results listed
Hot stage microscopy; Regimes I and II crystallization ranges cited
316
TABLE 6.
cont'd
Polymer
T1 (0C)
M v = 260 x 103
Mv = 350 x l O 3
M v = 690 x 103
Poly(oxyterephthalaloyloxydecamethylene) 160 (5min) M n = 10.0 x 103
Tc (0C)
G (nm/s)
119.5 128.9 134.7 138.3 114.2 119.0 125.0 129.4 133.5 143.1 150.1 113.5 119.0 128.4 134.4 138.1 143.1 147.7 149.9 154.9 156.8 120.0 121.0 123.0 125.0 126.0
49.9 61.8 55.2 48.3 27.9 43.2 49.7 55.2 46.1 34.5 20.8 11.9 27.7 41.4 38.8 30.9 19.0 15.6 15.1 6.1 4.8 5.534 3.451 1.592 0.6217 0.2550
25 30 35 20 25 30 35 20 25 30 35 20 25 30 35 20 25 30 35 20 25 30 35
696.6 533.3 381.7 50 39.5 29.2 19.5 23.7 21.6 13.2 8.5 8.3 7.4 5.4 3.3 2.75 2.2 1.7 1.2 0.22 0.24 0.20 0.14
Remarks
Refs.
Hot stage microscopy; Regimes I and II crystallization ranges cited
316
Hot stage microscopy; Regimes I and II crystallization ranges cited
316
Hot stage microscopy; Regimes I and II crystallization ranges cited
316
Hot stage optical microscopy; nucleation densities listed
317
Hot stage optical microscopy
318
Hot stage optical microscopy
318
Hot stage optical microscopy
318
Hot stage optical microscopy
318
Hot stage optical microscopy
318
Optical hot stage microscopy; DSC melting characterization also made
319
6.2. BLENDS Poly(oxy-1 -oxohexamethylene)/poly(1 -chloroethylene) PCL/PVC 10 °/° 100(5min)
75/25 70 30
/
65/35
60 40
/
5O 50
/
Poly (P-hydroxybutyrate) isotactic/atactic isotactic: M w = 445000 M n -137000 atactic: M w = 21000 Mw = IlOOO isotactic/actactic 100/0
35 50 60 65 70 76 84 87.5 90 95 100
382
405 907 1103 1958 2582 3162 3435 3533 3322 2980
References page VI-391
TABLE 6. cont'd Tf (0C)
Polymer
90/10
75/25
60/40
Tc (0C)
G (nm/s)
110
1778
114 120 124 130 134.5
1348 763 454 199 86.9
140 35 45 55 60 65 70 74 77 80 83.5 87 90 94 97 100 108 105.5 107 110 112 117 126 130 142 34.4 48.3 52 58 70 74 77.5 84 87.5 90.5 100 105 110 115.5 120.5 130 35.5 49.7 55 60 65 70 77 80 84 90 94.5 97 100 104 107 110 115 120
18.9 27.0 200 469 797 1096 1508 1814 2000 2196 2382 2480 2489 2425 2365 2155 1980 1747 1592 1371 1184 753 332 177 29 16.4 154 295 468 936 1177 1526 1612 1699 1797 1595 1439 1206 875 521 155 37.9 131.2 272 402 630 750 1044 1174 1250 1347 1410 1398 1276 1132 1032 910 644 642
Remarks
Refs.
Optical hot stage microscopy; DSC melting characterization also made
319
Optical hot stage microscopy; DSC melting characterization also made
319
Optical hot stage microscopy; DSC melting characterization also made
319
TABLE 6. cont'd Tf (0C)
Polymer
50/50
Tc (0C)
G (nm/s)
130 137 40.4 50 61 65
143 309 2.96 12.00 291.6 433.0
70.4 75 80.5 84.5 90.0 97 100 105.0 135 6.3.
Remarks
Refs,
Optical hot stage microscopy; DSC melting characterization also made
617.6 769.4 921.3 985.7 1126 1126 1067 901.0 318.1
COPOLYMERS
Poly(oxyethyleneoxyterephthalate)/poly(l,4-cyclohexane dimethylene terephthalate) (random copolymers) 100/0, mol% 160 50 Hot stage optical microscopy 165 54 Tm = 2800C; Tg = 76°C 170 76 180 85 185 79.9 190 79 195 78.1 200 63 205 57 210 40.7 215 35 220 22 225 14 230 10 95/5, mol/mol 160 38 Hot stage optical microscopy; 165 48 Tm = 269°C; Tg = 75.5°C 170 54.5 175 56.6 180 52 185 50 190 40.7 195 39 200 31.6 205 24.4 210 15.3 215 9.2 220 6
320
TABLE 7. POLY(AMIDES) Polymer
T1 (0C)
Poly(iminopentamethylene iminoadipoyl) Nylon 5,6 282(30min)
Tc (0C)
G (nm/s)
220.5 222 224.5 226 230
1742 1385 1210 1090 476
235 236 239 240 242
161.7 160.0 121.7 96.7 55.0
Remarks
Refs.
Hot stage optical microscopy; morphology depends upon crystallization temperature and and is illustrated in text
321
References page VI - 391
TABLE 7. cont'd Polymer
Tf (0C)
Poly(iminomethyleneiminoadipoyl) Nylon 96 positive spherulites 282 (30min)
Poly(iminohexamethylene) iminoadipoyl) Nylon 66 positive spherulites 295 (30min) Mn = 12.7 x 103
Poly(iminohexamethyleneiminoadipoyl) Nylon 66 Mn = 11.6 x 103 295 295 295 295 285 262(10min)
Poly(iminohexamethyleneirninoadipoyl) Nylon 66 Mn = 12.9 x l O 3 3OO(3Omin) Mn = 13.7 xlO 3
300(3Os)
Afn = 14.6 xlO 3
280
Poly(iminohexamethyleneiminoadipoyl) Nylon 66 300
315
Tc (0C)
G (nm/s)
200 203 205 207.5 213 215 218 225 230 231 234
1684 1334 1134 897 532 500 257 80.8 10.84 8.00 2.67
Hot stage optical microscopy; spherulitic morphology depends upon crytallization temperature and is illustrated in text
321
150 175 180 190 200 210 220 230
22000 18000 16500 13000 9500 6,000 3,200 1,500
Hot stage optical microscopy; spherulitic growth
322
241 247 250 252 247 251 256 257 259 261 263 265
166.7 58.35 13.84 10.50 66.08 14.24 83.35 13.34 9.168 6.668 4.167 2.500
Hot stage optical microscopy; nucleation densities cited in text
323,325
Negative spherulites
326,327
246 248 253 141 160 180 199 215 230 234 237 239 241 244 241 243 245 248 252
106.68 56.34 10.84 13503 13669 12119 8901 5167 2117 1530 920 765 471 368 283 230 180 33
241.5 243 245 248 252 241.5 243 245 248
204 175 128 58.34 5.50 280.0 168.4 113.4 56.6
Remarks
Refs.
328 329
Nucleation densities listed in text
330
322
322
TABLE 7. cont'd Polymer
Tx (0C)
M w = 17.2 x 103
M n = 25.5 x 103
300 (30s)
Poly(iminohexamethyleneiminosebacoyl) Nylon 6,10 Mn = U.6 and 26.3 x 103
Poly(imino(l-oxohexamethylene)) Nylon 6 Mn = 27.4 x 103 300 (30s)
My = 24.7 x 103
M w = 49 x 103
M w = 15 x 103
Tc (0C)
G (nm/s)
252 50 100 142 160 178 198 200 228 180.0 200.0 211.0 220.0 230.0 235.5 240
6.33 3650.7 4706.6 6751.3 6101.2 5201.0 3700.7 12900.6 466.7 1435.6 7951.5 5284.4 2733.8 1615.3 680.13 483.4
200.0 205.0 212.0 217.0 205.0
253.4 120.0 36.67 13.34 186
212.0 217.0
130 7
102.3 112.5 122.0 130.0 140.5 150.5 159.0 170.0 180.0 182.0 90 95 101 107 117 124.5 135 141 148 157 172 184 40 41 42 43 44 45 46 47 48 49 50 51 39 40 41 42 43
900 1478 2033 2767 3133 2933 2450 1431 710 610 375 610 640 1108 1571 1933 2438 2438 2105 1790 983 305 80 60 50 38 27 20 15 10 5.8 4.2 2.8 1.8 162 138 102 100 81
Remarks
Refs.
Positive spherulites
331
Positive spherulites
329
Hot stage optical microscopy
331
Negative spherulites
Positive spherulites
329
Positive spherulites
322
Hot stage optical microscopy; positive spherulites
312
Hot stage optical microscopy; positive spherulites
312
References page VI -391
TABLE 7. cont'd Polymer
T{ (0C)
Mw = 7 x 103
J c (0C)
G (nm/s)
44 45 46 47 48 49 50 51
62 35 27 21 15 8 6 1.7
40 41 42 43 44 45 46 47 48 49 50
197 15 100 75 58 42 28 18 13 6.7 4.2
Tc (0C)
G (nm/s)
23 30 40 50 60 70 80 90 100 110 120 130 24 30 40 60 70 80 90 100 110 130 134 24 40 51 60 70 80 90 100 110
316 530 900 1450 1640 1740 1460 959 417 161 14.5 0.593 80.0 113.0 166 328 342.0 246 146 65.0 20.0 0.124 0.0365 41.5 165 280 328 302 240 146 70.6 23.4
Remarks
Hot stage optical microscopy; positive spherulites
Refs.
312
TABLE 8. POLY(SILOXANES) Polymer
T{ (0C)
8.1. HOMOPOLYMER MELTS Poly (oxydimethylsilylene-1,4-phenylenedimethylsilylene) TMPS 200(5min) My = 8.7 x 103
Mv = 372 x 103
200 (5 min)
Mv = 1400 x 103
200 (5 min)
Remarks
Refs.
Hot stage optical microscopy; selected molecular weights; see text
333
Hot stage optical microscopy; selected molecular weights; see text
333
Hot stage optical microscopy; selected molecular weights; see text
333,388
Hot stage optical microscopy; crystallinites and densities
182
8.2. COPOLYMERS Poly(oxydimethylsilylene-l,4-phenylenedimethylsilylene-block-poly(oxydimethylsilylene) TMPS/DMS 21.5 5.25 100/0 200 (5 min) 22.5 5.92
TABLE 8. cont'd Polymer M w = 141 x 103
90/10
80/20
50/50
Tf (0C)
Tc (0C)
G (nm/s)
23.0 24.0 40.0 60.0 70.0 79.0 82.0 90.0 105.0 110.0 116.0 119.0 120.0 121.0 125.0 130.0 - 20.0 —10.0 0.0 10.0 20.0 30.0 40.0 45.0 50.0 55.0 60.0 70.0 80.0 90.0 100.0 110.0 115.0 - 20.0 — 10.0 0.0 10.0 20.0 30.0 35.0 40.0 42.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 90.0 95.0 100.0 105.0 110.0 115.0 120.0 - 20.0 --10.0 0.0 10.0 20.0 25.0 30.0 38.0
7.87 7.63 24.75 41.00 40.00 30.28 30.33 21.53 6.03 3.17 14.17 5.75 5.28 4.30 0.21 0.44 2.58 17.67 75.33 240.00 531.6 851.6 1420.0 1645.0 1850.0 1883.4 1700.0 1515.0 970.0 418.3 120.2 13.52 2.70 33.5 142.2 360.0 643.3 1041.7 1346.7 1498.4 1613.4 1630.0 1636.7 1625.0 1541.7 1396.7 1225.0 1018.4 798.3 585.0 241.7 129.7 58.8 21.3 5.62 0.925 0.177 501.6 558.3 550.0 351.6 260.0 215.0 173.3 111.6
Remarks
Refs.
also listed
Hot stage optical microscopy; crystallinites and densities also listed
182
Hot stage optical microscopy; crystallinites and densities also listed
182
Hot stage optical microscopy; crystallinites and densities also listed
182
References page VI-391
TABLE 8. cont'd Tt ( 0 C)
Tc ( 0 C)
G (nm/s)
42.0 45.0 50.0 55.0 62.5 70.0 -20.0 —15.0 10.0 0.0 10.0 20.0 23.5 30.0 35.0 40.0 45.0 50.0 55.0 58.5 67.5 -20.0 — 10.0 0.0 10.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
86.8 69.3 45.2 26.8 9.58 2.18 278.3 283.3 280.0 235.0 165.0 109.83 94.83 75.00 51.33 35.33 22.83 12.17 8.17 3.25 0.32 261.7 188.3 119.84 66.50 35.67 24.00 15.83 9.250 5.133 3.067 0.558
Tc (°C)
G (nm/s)
176 179 193 210 228 247 263 285 296
1350 1627 1840 1900 1850 1693 1540 1607 1515
313 327
1055 773
338 335 183 188 204 224 242 272.5 Poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) PEEK Tm — 340 0 C 240 r g = 144°C 260 277 287
718 189 1862 2042 2217 2050 2017 1833
Polymer
40/60
30/70
Remarks
Refs.
Hot stage optical microscopy; crystallinites and desnsities also listed
182
Hot stage optical microcopy; crystallinites and densities also listed
182
TABLE 9. OTHERS T{ ( 0 C)
Polymer 9.1.
Remarks
Refs.
HOMOPOLYMERMELTS
Poly(aryl ether ketone ether ketone ketone) PEKEKK; 100/0, w/w
(repeat unit)
980 540 264 161
Stage I spherulite growth conventional microbeam SALS; synchrotron time resolved SAXS
335
Stage II spherulite aggregates (higher rate)
Hot stage microscopy; crystallinity, lamellar dimensions, tx/2 values also given in text
402
TABLE 9. cont'd Polymer
Tf (0C)
Tc (0C)
G (nm/s)
Poly(oxy-l^-phenyleneoxy-l^-phenylenecarbonyl-l^-phen^lene) PEEK ICIjrade 15OP 400 (15min) 270 14.60 x 102 275 12.88 x 102 280 9.91 x 102 285 6.95 x 102 290 5.26 x 102 295 3.60 x 102 298 2.90 x 102 300 2.42 x 102 305 1.91 x 102 310 1.05 XlO 2 315 0.627 XlO 2 320 0.364 x 102 325 0.171 x 102 415 (15 min) 270 12.0 x IO2 275 10.4 x 102 280 7.94 x 102 285 5.37 x 102 290 3.97 x 102 295 2.97 x 102 298 2.50 x 102 300 1.97 XlO 2 305 1.54 x l O 2 310 0.845 x l O 2 315 0.384 x l O 2 320 0.275 x 102 325 0.119 x l O 2 Poly(thio-l,4-phenylene) Ryton 330 (2 min) 220 74.5 225 54.4 230 37.6 235 23.2 240 13.59 Poly(thio-l,4-phenylene) Fortran 345 (2min) 250 7.81 255 4.92 260 2.48 265 0.95 Poly(thio-l,4-phenylene) 84 1387 M w = 24000 79 1243 Mw/Mn = 1.4 74 995 69 783 64 557 59 429 54 276 48.7 148 M w = 49000 88 490 83 410 78 300 73 232 68 244 63 100 58 67 52.5 20.5 A/w = 63000 92 414 M w /M n = 1.5 87 356 81.8 244 76.7 159 71.8 130 67 79 62 41 56.6 20 255.3 Poly(thio-1,4-phenylene) M w = 56000 225 230 235
Remarks
Refs.
Hot stage microscopy with video accessories; T% ~395°C
267
Note decrease for higher fusion condition
267
Hot stage and video micrometer assembly with optical microscope; DSC measurements; computer modeling
227
Bulk nucleation density; density measured Avrami exponent ~ 3
227
Hot stage microscopy; DSC rates listed in text Avrami 2 < n < 3 values
227
227
227
Growth rates measured as function of polymer end group
337
References page VI - 391
TABLE 9. cont'd Polymer
Tf (0C)
Tc (0C)
G (nm/s)
Remarks
Refs.
240 245
N a + washed
Mn 2+ washed
250 255 225 235 240 245
337
250 225
230 235 245 250 255 Acid washed
260 225
230 240 250 255 260 Poly(thio-l,4-phenylene) Phillips Pet. Mw = 15 x 103
Mw = 5 I x I O 3 Phillips Pet. Co.
Poly(thio-l,4-phenylene)
100 110 120 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 115 120 125 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 102 106 110 114 118 120 235
0.87 10.0 91.0 680.0 1200.0 1200.0 2300.0 2300.0 2200.0 1700.0 1200.0 710.0 390.0 160.0 53.0 12.0 1.30 0.094 1.40 5.2 10.0 25.0 73.0 160.0 250.0 300.0 280.0 260.0 240.0 180.0 98.0 48.0 21.00 7.90 1.80 0.13 8.5 3.0 1.5 0.9 0.71 0.54 0.36
Hot stage microscopy; Regimes 1 and II crystallization noted
152
Hot stage microscopy; Regimes I and II crystallization noted
152
Crystallization rates from DSC peak 338 time (mins); measurements below Tmax were made by upquenching from the amorphous state; T^ ~ 33O°C using Hoffman-Weeks plot
TABLE 9. cont'd Polymer
Tf (0C)
Random copolymer with 5% metamethylene linkages
Random copolymer with 8% metamethylene linkages
Random copolymer with 10% metamethylene linkages
Poly(thio-l,4-phenylene) Mw = 63000 TCB, 0mol%
Mw = 75000 TCB, 0.13 mol%
Mw =65000
Tc (0C) 240 245 250 255 260 265 270 110 115 120 125 130 135 140 145 200 210 220 230 235 240 245 105 110 120 130 140 150 190 200 205 210 215 220 225 105 110 120 130 140 150 160 170 180 190 200 205 210 215 220 219.7 225 230 235 240 245 250 220 225 230 235 245 250 255 220
G (mn/s) 0.53 0.82 1.30 2.40 5.20 8.00 17.5 6.71 3.16 1.90 1.23 0.88 0.70 0.53 0.46 0.39 0.59 1.2 2.30 2.81 5.01 9.47 14.93 5.80 1.97 1.09 0.67 0.47 1.75 2.52 4.19 5.26 7.40 9.62 23.02 13.4 7.10 2.65 1.34 0.845 0.620 0.520 0.490 0.760 1.11 1.80 2.54 3.81 6.21 10.2 120 102 75 50 33 22 14 104 76 54 38 16 11.4 5.7 89
Remarks
Refs.
7° ~ 2900C
338
F£~283°C
338
7"° ~273°C
338
Optical hot stage microscopy
338
Optical hot stage microscopy
338
Optical hot stage microscopy
338
References page VI - 391
TABLE 9. cont'd Tf (0C)
Polymer TCB, 0.2mol%
catena-Poly(selenium) Selenium (Gallard Schlesinger Chemical Manufacturing Co.)
Selenium (Yokozawa Co.) 99.999%
9.2.
600 (2h) and ice water quenched
230 (1 hr) and quenched
Tc (0C)
G (nm/s)
225 230 235 240 245 250 255
64 44 30 22 20 8.8 4.3
80 90 100 110 120 130 140 150 80.0 87 90 100 105 110 120
0.171 0.808 1.535 2.383 3.083 5.834 4.884 2.85 0.27 0.50 0.65 1.70 2.72 4.10 7.68
225 230 235 240 245 250 255 225 230 235 240 245 250 255 225 230 235 240 245 250 255 225 230 235 240 245 250 245 158.3 159.0 161.3 165.2 166.2 170.0 175.0 175.1
175 129 92 62 43 52 14 142 106 71 49 81 16 28 123 93 63 42 28 15.6 9.0 107 79 53 36 22 10 43 113.0 72.95 32.13 15.70 3.22 0.74 0.07 0.144
Remarks
Refs.
Hot stage optical microscopy; purity = 99.9999%
Spherulitic structures; growth rates of chlorinated polymer listed in text
54
414
IONOMERS
Poiy(thio-1,4-phenylene) ionomers PPS/Na+
PPS/Ca2+
PPS/Zn2+
PPS/Zn2+ PPS/H +
Poly(oxyethylene) complex with />-nitrophenol (Mw =6000)
PPS with end-group counterions; growth 338 rates in order PPSCa 2+ >PPSH + > PPSZn 2+ > PPSNa + ; Growth rates obtained by hot stage optical microscopy; rate constants documented 338
338
338 338
Regime II crystallization; Transition II to III at 1600C approx.
340
3
28 30.5 34
6660 8470 11310
Hot stage optical microscopy
^
Next Page
TABLE 9. cont'd T< (0C)
Polymer
Poly(oxyethylene)/poly(oxypropylene) Blend composition M w = 5 x 10 6 /1.5 x 106 353 (lOmin) 100/0
G (nm/s)
36.8 41 45 49 53 60 63 65 67.2 69.2
11860 12760 10820 7940 3870 1174 237 76.6 65.0 30.4
Remarks
Refs.
341
30/20
60/40
40/60
20/80
3.
Tc( 0 C)
53 54 55 56 57 58 59 52
450 217 122 52 23 12 4.5 833
53 54 55 56 57 58 51 52 53 54 55 56 57 50 51 52 53 54 55 52 53 54 56 57 58
500 300 120 55 25 8.5 1417 850 517 250 117 80 33 1967 1317 967 517 300 115 617 383 300 57 17 12
Rates measured on hot-stage microscope; blends were prepared by solution casting from acetonitrile; two crystallization regimes II and IH were reported along with interfaced energy values 341
341
341
341
Rates of Bulk Crystallization (Avrami Constants)
TABLE 10. POLY(DIENES), POLY(ALKANES), POLY(VINYLS) Polymer
F f (0C)
Tc (0C)
* 05 (s)
72.6 73 74.2 74.7 75 75.2 76.2 76.5
18 25 62 101 112 123 410 516
n
k (s~n)
Remarks
Refs.
10.1. MELTS AND SOLUTIONS C198alkane
Half-time, listed as J 0 1, i•, 10% transformation not 50% as cited here in column
233
References page VI-391
Previous Page
TABLE 9. cont'd T< (0C)
Polymer
Poly(oxyethylene)/poly(oxypropylene) Blend composition M w = 5 x 10 6 /1.5 x 106 353 (lOmin) 100/0
G (nm/s)
36.8 41 45 49 53 60 63 65 67.2 69.2
11860 12760 10820 7940 3870 1174 237 76.6 65.0 30.4
Remarks
Refs.
341
30/20
60/40
40/60
20/80
3.
Tc( 0 C)
53 54 55 56 57 58 59 52
450 217 122 52 23 12 4.5 833
53 54 55 56 57 58 51 52 53 54 55 56 57 50 51 52 53 54 55 52 53 54 56 57 58
500 300 120 55 25 8.5 1417 850 517 250 117 80 33 1967 1317 967 517 300 115 617 383 300 57 17 12
Rates measured on hot-stage microscope; blends were prepared by solution casting from acetonitrile; two crystallization regimes II and IH were reported along with interfaced energy values 341
341
341
341
Rates of Bulk Crystallization (Avrami Constants)
TABLE 10. POLY(DIENES), POLY(ALKANES), POLY(VINYLS) Polymer
F f (0C)
Tc (0C)
* 05 (s)
72.6 73 74.2 74.7 75 75.2 76.2 76.5
18 25 62 101 112 123 410 516
n
k (s~n)
Remarks
Refs.
10.1. MELTS AND SOLUTIONS C198alkane
Half-time, listed as J 0 1, i•, 10% transformation not 50% as cited here in column
233
References page VI-391
TABLE 10. cont'd Polymer
PoIy(I-butenylene) cis-1,4-Poly(butadiene) Mw = 3.15xl0 5 Mw/Mn = 3 ± 0.4 cis content - 96.5%
Poly(l-butene) M n =73 x 103 Mw = 750 x l O 3
Poly(l-butene); unfractionated
M v = 409 XlO 3
PoIy(I-butene) isotactic; unfractionated Solution concn. 0.5 g/dl l.Og/dl 2.0 g/dl Poly(l-butene) M v = 964 x l O 3 Mv = 679 x l O 3
Mv = 349 x l O 3
M v = 289 xlO 3
Tf(0C)
Tc (0C)
tOs (s)
76.7 78.3
605 973
79.2 80.3 81.4 82.3 83.4
2063 571 1538 539 3893
n
k (s~n)
Refs.
Molecular chain extension starts here
2.8 < n < 5.4 4.8 x 10~16 3.4 x 10 ~l4 2.2xlO" 1 2 3.25 x 10 " 9 7.45 x 10 ~9 3.97 xlO~ 8 3.74 X l O ' 9 4.5 XlO" 11 6.IxIO" 1 3
0 (30min)
Remarks
- 80 - 70 -60 - 50 - 40 -30 -25 -20 -15 65 70 80 85 90 92 95 100 95 98 102 105 80 78 74 72 170 (30min) 95 98 102 105
7500 15000 60000 189600 43 32 25 22 750 15000 60000 189600
3.05 3.10 3.43 3.80 1.9 2.0 1.9 2.0 3.05 3.10 3.43 3.80
58 58 58 90 88 80 78 86 84 82 78 76 72 70 84 82 80 78 76 70 66 80 78 76 70 68 66 62
27000 12600 9600 55 37 15 12 80 65 44 29 22 18 14 99 73 58 45 38 24 17 101 86 62 43 38 33 26
~ 2.4 -2.4 -2.4 1.9 2.0 2.0 1.9 1.9 2.0 1.9 2.2 2.1 2.2 2.0 2.0 2.0 2.1 2.1 2.3 2.1 2.1 1.9 1.9 1.9 2.0 2.0 2.2 2.0
57.6 60 96 222 456 708 1572 1.59 XlO" 6 2.98 xlO~ 7 2.51 x 10 ~9 2.0OxIO" 13 5.1OxIO- 4 6.89 XlO" 4 16.3 XlO" 4 14.0xl0~ 4
Measured by 1HFT-NMR; 105 values not listed
342
Nucleation densities cited in text
251
Dilatometry
251
Calorimetry; DSC
121
Dilatometric rate constants expressed in text in min~"
306
Crystallized from amyl acetate solution; k values listed in min~" 3.2OxIO" 4 5.64 x 1 0 ' 4 18.0xl0" 4 50.2 XlO" 4 1.55 x l O " 4 1.98 XlO" 4 4.37 x 10 ~4 4.48 XlO" 4 9.84 xlO~ 4 11.3 XlO" 4 33.3 XlO" 4 0.708 x 10 " 4 1.62 XlO" 4 1.08 XlO" 4 2.04 XlO" 4 1.80 xlO~ 4 9.15 XlO" 4 20.8 x l O ' 4 1.03 x 10~4 1.28 xlO~ 4 2.19 XlO" 4 3.12 XlO" 4 4.17 xlO~ 4 3.64 xlO~ 4 11.1 XlO" 4
121
121
121
121
TABLE 10. cont'd Polymer M v - 9 6 xlO3
PoIy(I-butenylene); hydrogenaed Phillips Pet Co. M w = 5.10 x 103
Mw = 13.3 x 103
M w = 60.7 x 103
M w = 340.0 x 103
Poly( 1 -butenylene) trans
Mn = 49 x 103 (GPC) Mn = 59 x 103
M n = 70 x 103
^f( 0 C)
Tc (0C)
68 66 62 60 58 97.0 99.0 100.0 101.0 102.0 103.0 104.0 95.0 97.0 99.0 100.0 101.0 102.0 89.0 91.0 92.0 93.0 94.0 95.0 96.0 89.5 91.5 92.5 93.5 94.5 95.5 96.5 157 120 119 117 115 113 108 120 119 117 115 113 108 105 55 54 53 52 49 45 55 54 100 (15 min) 30.0 35.0 40.0 45.0 30.0 35.0 40.0 45.0 30.0 35.0 40.0 45.0
t0.5 (s)
n
k (s~n)
136 101 52 33 25 40 44 66 78 98 126 186 34 40 64 73 89 135 59 92 125 173 262 427 876 68 135 180 282 498 1056 2334
1.9 2.0 2.0 2.0 1.8
0.54 x 10~4 0.86 x l O " 4 2.43 x l O " 4 6.85 x 10~4 19.4 xlO~ 4
420 1200 3300 1200 180 450 3360 16800 174 456 3300 14400
1.26 1.13 0.62 0.47 0.41 0.35 0.32 0.22 0.19 0.21 0.19 0.14 0.08 1.74 1.41 1.10 0.74 0.28 0.15 0.12 0.08 2.6 2.6 2.6 2.6 4.4 4.5 3.2 2.6 5.0 4.0 2.9 2.8
0.064 0.77 27.4 119 3010 8050 28.7 96.6 310 543 1090 1340 0.052 0.922 10.2 273 1490 930 68.4 360
Remarks
Refs.
DSC; for sample details consult text; crystallinity, Tm listed in tables
344
DSC; for sample details consult text; crystallinity, Tm listed in tables
344
DSC; for sample details consult text; crystallinity, Tm listed in tables
344
DSC; for sample details consult text; crystallinity, Tm listed in tables
344
DSC; melt to condis crystal; transformation I: two "Avrami" regions exist; nucleation time and crystallinities are listed
18
Transformation region II
DSC, condis to rigid crystal transformation; region II
Dilatometry; values of k in original text
185
Dilatometry; values of * in original text
185
Dilatometry; values of k in oritinal text
185
References page VI-391
TABLE 10. cont'd Polymer M n =77 x 103
M n = 94 x 103
M n = 106 x 103 PoIy(I-butenylene) trans My = 30 x 103
PoIy(I-butenylene) cis 1,4 M n = 740000 M w /M n = 1.25; v 2 = 1.0 ^ 2 = 0.79
Tf (0C)
Tc (0C)
30.0 35.0 40.0 45.0 30.0 35.0 40.0 45.0 30.0 35.0 40.0 45.0 lOO(lSmin) 45.0 42.0 40.0 37.5 35.0 32.5 27.5 213.0 214.3 214.8
t05 (s)
n
210 246 3300 9600 216 660 3900 14400 420 1560 5160 19200 12840 5100 2280 1050 600 360 192 13 x 10 2 18 x 102 22 x 102
3.6 3.1 3.1 2.0
5.5 XlO 2 9.9 x 102 14 x 102 5.OxIO 2 14 XlO 2 23 x 102 11 XlO 2 30 x 102 44 x l O 2 18 x l O 2 22 x 102 49 x 102 180 480 1500 2820 4200 5220 8580 11160 2.4 5.4 19.2 102.0
Polyethylene) fraction n-Hexadecane M = 3xlO5 V2 = 0.540
204.7 205.7 207.3 199.2 201.7 203.0 198.3 200.5 201.7 197.8 198.5 200.0 180 186 191 94 195 196 197 197 105.75 107.5 108.5 110.5
Polyethylene fractions a-Chloronaphthalene Mn-4000 V2 = I
120 121 122
0.13 0.17 0.21
123 124 125 109 110 111 112 113 114 101 102 103 104
0.52 1.56 9.60 0.14 0.16 0.18 0.25 0.72 2.22 0.14 0.17 0.24 0.30
V2 = 0.59 V2 =0.42 V2 = 0.32 Poly(chlorotrifluoroethylene)
^2 = OJO
V2
= 0.46
3.2 2.2 2.1 3.1 2.6 2.4 2.6 2.8 2.7 2.8 2.8 2.2 2.2
k (s~n)
Remarks
Refs.
Dilatometry; values of k in original text
185
Dilatometry; values of k in original text
185
Dilatometry; values of k in original text
185
kn values listed in text
343
1
HFT-NMR measurements from 345 toluene solution @ 0.32 < v 2 < 1.0 volume fractions; / 0 5 (s) is replaced by J0. i (s) m column 4
345 345 345 Dilatometry 3 3 3 3 3 3 3 4
4
346
Crystallization measurements 167 carried out in solution by dilatometry rate data from transformation plots; V2 = polymer volume, fraction used in solution 324
324
324
TABLE 10.
cont'd
Polymer
V2 = 0.30
M n = IOOOO V2-= 1
M n = IOOOO ^ 2 =0.70
M n = IOOOO V2 = 0.46 M n = IOOOO V2 =0.30 M n = IOOOOO V2-I
M n = IOOOOO ^ 2 = 0.70
M n = IOOOOO ^ 2 = 0.46 M n = IOOOOO ^2 = 0.30
M n = 250000 V2 = 1
M n =250000 ^2 = 0.70 M n = 250000 V2 = 0.46 M n = 250000 ^2 = 0.30
Poly(ethylene) fractions a-Chloronaphthalene
Tf (0C)
Tc (0C)
t05 (s)
105 98 100 101 102 103 124 125 126 127 128 109 110 111 113 116 106 108 109 111 102 103 104 105 122 123 124 125 126 127 128 113 115 116 117 118 105 107 108 110 102 103 104 105 106 124 125 126 127 128 113 114 115 116 105 107 108 110 102 103 104 105 106
0.54 0.20 0.36 0.5 0.81 1.82 0.13 0.16 0.34 0.72 3.30 0.78 0.10 8 0.15 0.30 0.81 0.20 0.36 0.54 1.80 0.35 0.47 0.84 1.14 0.09 0.10 4 0.138 0.16 0.27 0.54 1.62 0.08 4 0.22 0 27 0.36 0.72 0.26 0.54 0.84 1.80 0.33 0.42 0.57 0.72 2.16 0.19 2 0.39 0.66 1.33 4.19 0.16 0.25 0.36 0.57 0.30 0.66 0.90 3.12 0.18 0.21 0.27 0.38 4 0.54
98.0
0.26
n
k (sn)
Remarks
Refs.
4
324
3
324
3
324
3
324
3
324
3
324
3
324 324
3
324
324
3
324
3
324
3
324
3
324
4
Diiatometry:
336
References page VI - 391
TABLE 10. cont'd Polymer M n = 14000 V2 = 0.003 M n =20000 V2 = 0.003 M n = 47000 v2 = 0.003
M n = 190000 V2 -0.003
M 2 = 1200000 V2 = 0.003 Poly(ethylene) fractions Decalin M n = IOOOOO V2 = 0.003
Xylene M n = IOOOOO V2 =0.003 Tetralin M n = IOOOOO v2 = 0.003
a-Chloronaphthalene M n = IOOOOO V2 =0.003 Poly(ethylene) Marlex 50
T1 (0C)
Tc (0C)
t05 (s)
n
98.9 100.1 100.9 101.9 98.0 99.0 99.9 100.9 98.25 99.2 100.1 100.9 101.8 98.1 98.9 100.0 100.9 102.0 96.4 98.4 99.4 100.4
5.40 14.70 48.60 156.00 2.40 6.48 16.20 42.00 492 9.60 27.60 69.00 186.00 9.60 28.20 36.00 84.00 420.00 2.55 9.60 25.50 66.00
4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3
81.8 82.8 83.7 85.2 86.4 87.2 87.2 88.1 89.0 90.0 87.9 89.4 90.5 91.5 92.4 93.7 98.9 100.0 100.9 102.0 122
2.40 3.90 6.30 19.80 60.30 126.00 3.00 5.10 12.00 24.00 2.16 3.72 10.20 21.00 45.00 156.00 90.00 270.00 780.00 3720.0 528
4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3
123 124 125 126 127 128 129 130
k (s~n)
Remarks
Refs.
crystallinity = 8 5 %
Crystallinity =90%
336
336
Crystallinity = 9 5 %
336
Crystallinity = 7 5 %
336
Dilatometry; crystallinity = 9 5 %
334
Crystallinity =90%
334
Crystallinity =90%
334
334
Dilatometry
347
Pulsed NMR; pressure = 1 kbar
348
2 kbar
348
750 1080 1560 3420 11400 34800 198000 1140000
Poly(ethylenes) M n = 1.69 XlO 3 M w = 120 x l O 3 M v = 90.5 XlO 3 M1 =599 XlO 3
151.7 151.0 153.0 154.3 154.3 155.0 155.3 157.0 173.0 173.8 175.0 177.0
328 364 571 969 930 1380 1610 7210 295 322 485 895
1.3 1.3 1.5 1.6 1.6 1.6 1.6 1.7 1.2 1.3 1.5 1.5
TABLE 10. cont'd Polymer
Poly(ethylene) HDPE
Dow 08064N Dow 10062N Phillips Marlex EHM 6006
Philips Marlex EHM 6030
Phillips Marlex TR-855 DuPont Alathon 7480
Soltex T60-1000
Soltex T60-2000
A R C O Super Dylan 5503A
ARCO Super Dylan 5503B
Sinclair 2907
T( (0C)
200 (2min)
Tc (0C)
t05 (s)
n
177.3 179.0 195.0 197.0 197.3 199.0 199.3 201.0 217.0 219.0 221.0 221.3 223.0 227 124 124 125 126 127 120 121 122 120 121 122 123 124 125 120 121 122 123 124 122 123 124 122 123 124 125 120 121 122 123 105 123 124 125 126 120 121 121.5 122 120 121 122 125 123 120 117 1 5 ^ 113 112
989 3580 384 521 594 785 950 1800 260 367 670 806 2880 350 165 165 338 750 1920 51 81 162 42 46 60 136
1.5 1.7 1.3 1.4 1.4 1.5 1.6 1.7 1.6 1.7 1.7 1.7 1.7 1.5 2.32 2.35 2.29 2.05 2.24 2.53 2.44 2.60
143
141
351 36 56 108 222 308 66 78 156 165 263 510 998 54 100 222 496 240 480 518 1500 45 96 150 261 48 81 252 714 370 250 62.5 31.3 19.2 7.14 1429 476
k(s~n)
Remarks
Refs.
3kbar
348
4kbar
348
5kbar Bulk rates by DSC; crystallinity melting points and density data are given inthe original references; r, is proportional to tn (see original text)
348 349
349 349
2.46 2.20 2.25 2.72 2.76 2.56 2.48 3.18 2.46 2.58 1.89 1.93 1.96 1.85 2.36 2.61 2.63 2.18 2.26 2.32 2.50 2.25 2.47 1.96 2.28 2.23 2.60 2.07 1.98 2.62
349
349 349
349
349
349
349
Transmitted light intensity; (a) atmospheric pressure (b)0.5kbar
256
256
References page VI-391
TABLE 10. cont'd Polymer
My = 166 x 103
Tf( 0 C)
Tc (0C)
tos (s)
138 137 135 133 157 156 153 151 149 147 145 167 165 163 161 159 157 156 155 177 176 174 172.5 170 168 167 166
189 137 62.6 28.8 154 769 250 115 75 42.9 19.2 2000 769 303 149 107 57.8 44.1 33.3 1250 769 500 189 88.5 50.0 34.1 25.6
160 (15min) 127.6 126.6 126.1 125.6 125.1 124.1 170 (30min) 95 98 102 105
6780 3000 2190 1500 1080 420 7500 15000 60000 189600
3.05 3.10 3.43 3.80
12000 3600 90 24000
Varies between 1 and 3339 with pressure
357.0 1200.0 10242.0 76.3 586.0 2100.0 46.3 55.2 99.0 100.0
1.9 0.9 20.0 1.7 2.1 2.1 1.3 1.3 1.6 1.7 1.0 1.0 1.1 1.2 1.2 1.2 1.2 1.3 1.3 2.8 2.7 2.9
Poly(ethylene) I: Mn =52 x 10" 3 M w /M n =2.7 II: Mn = 54 x 10" 3 M*/Mn = 3.0
10(11) 12(11) 17(11) 6(11)
Poly(ethylene), unfractionated Mw = 64000 Mn = 14000
Poly(ethylene) fractions Mw = 15500
220.3 222.7 225.2 227.6 229.1 226.6 228.6 230.5 232.4 196.6 198.8 186.6
150.6 152.1 153.6 171.6 175.6 177.5 193.4 195.8 197.3 199.2 18.7 19.4 22.3 47.2 52.4 21.6 25.4 47.5 67.8
n
k (s~n)
1.6 1.6 1.6 1.4 1.2
Remarks
Refs.
(c) 1 kbar
256
(d) 1.5 kbar
256
(e) 2.0 kbar
256
DSC; rates are also given in text after quenching; some 343 dilatometry results also available; kn values are also cited Dilatometry from amyl acetate solution; kn values listed in text
306
Dilatometry; pressure 1000kg/cm2; A7C (0C) is cited; not tc\ see text 2000kg/cm2; pressures up to 5000 kg/cm2 reported
188
Pressure = 840 kg/cm2
339
1950kg/cm2
339
3400kg/cm2
339
5100 kg/cm2
339
5300 kg/cm2
2.8
Avrami exponent of extended chain crystallization in
263
TABLE 10. cont'd Polymer Afw/Afn = 1.2-1.3 . Mw = 150000 M w / M n = 1.2-1.3
Poly(ethylene), fractionated Mv = 18.5 x l O 3
Mv-7.3 xlO3
Mv = 1.8 x l O 3
Poly(ethylene) fractions Mn = 25.0 ATn =41.0 M w /M n = 1.6
Poly(ethylene), fractions M n = 5.9 x 103
Mn = H x I O 3
Mn =20 x l O 3
M n =47 xlO 3
M n = 122 x l O 3
Tf( 0 C)
Tc (0C)
.*0.5 (s)
187.5 188.5 183.6 185.3 186.3 187.3
k(s~n)
2.9 3.2 3.3 3.0 3.2 3.3
125.4 125.8 126.9 127.6 127.8 128.5 128.6 126.6 127.5 128.5 129.5 130.5 131.0 128.6 128.7 129.5 130.0 130.3 124.5 125.5 126.5 127.5
n
906 1212 3216 5826 8220 18180 21300
96 174 282 636 128.0 129.0 130.5
810 2100 4200
125.1 126.1 127.1 128.1 126.1 127.1 128.1 129.1 130.1 125
53 280 1500 5000 4.2 20 130 1050 5600 2.3
126 127 128 129 130 125 126 127 128 129 130
4 6.8 18 76 220 2.5 4 6.5 12 35 190
125
4.7
127 128 129 130 131 132
9.5 17 36 130 670 10700
Refs.
parentheses; calorimetry (DTA) @ 2.44kg/cm2
3.1 3.1 3.1 3.0 3.0 2.8 2.7 3.5
6000 1080 114 60 1.45 x l O " 4 5.51 x 10~5 3.27 x l O " 6 8.68 x 10 " 7 3.30xl0~ 7 1.04 x 10~7 9.01 x 10~8 4.69 x l 0 ~ 6
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.9 3.8 2.6 2.3 2.2 2.6 2.9 2.4 3
5.62 x l O " 7 3.66 XlO" 8 1.18 x l O " 9 3.42 xlO~ 1 2 5.62 xlO~ 1 4 7.48 x l O " 6 1.86 x l O " 6 8.30xl0" 8 5.65 xlO~ 1 0 9.52 x l O ~ n 2.4OxIO- 11 6.00 x 10 ~2 2.3 x 10~2 1.5 x 10~3 3.6 xlO~ 4 1.4 xlO~ 4 2.0xl0~6
4
Remarks
Dilatometry; col. #5 lists primary process; 4 lists time (min""1)
304 304
304
304
Calorimetry; fractions from Marlex 60; column 5 listed as time (min""*1)
284
Dilatometry; column 4 gives values of to\(min); note: n is independent of T0 for each fraction
344
3
344
3
344
3
344
3
344
References page VI-391
TABLE 10. cont'd Polymer Mn = 200 XlO 3
Mn = 284 xlO 3
Mn=600xl03
Mn = 1.2 xlO 6
Mn =-8.0 xlO 6
Mn-5.0 xlO6
M n = 3.0 xlO 6
Tf (0C)
Tc (0C)
n 3
344
3
344
3
344
3
344
3
344
125
3.4
126 127 128 129 130
4.8 7.5 15 35 75
125.1 126.1 127.1 128.1 129.1 130.1 131.1 132.1 125.1 126.1 127.1 128.1 129.1 130.1 131.1 132.1 125.1 126.1 127.1 128.1 129.1 130.1 125.1 126.1 127.1 128.1 129.1 130.1 116 117 118
6.5 13 23 45 100 320 1600 17000 9 16 32 65 180 460 2000 21000 17 37 120 390 1400 7500 20 62 260 1020 4600 36000 0.053 0.080 0.14
118 119 120 121 122 123 124 125 125.5 126
0.14 0.21 0.51 0.91 2.00 4.35 10.5 31.3
116
117 118 119 120 121 122 123 124 125 126 116 117 118 119 120 121 122
k(s~n)
tos(s)
2
Remarks
Calorimetry (DSC); column 4 gives ro.25 (min), not the halftime listed in column 4
Refs.
332
83.3 0.048
0.091 0.13 0.26 0.43 1.02 2.17 4.17 10.9 27.8 90.9 0.05 0.077 0.12 0.25 0.42 0.87 2.38
2
332
2
332
TABLE 10. cont'd Polymer
Mn = 8.0 x l O 5
M n =4.25xl0 5
Mn = 1.07 xlO 5
Mn = 1.95 x l O 4
Mn = 11.4 x l O 3
T{ (0C)
TC(°Q
tos(s)
123 124 125 126 116 117 118 119 120 121 122 123 124 125 126 127 127.5 116 117 118 119 120 121 122 123 124 125 126 126.5 127 127.5 116 117 118 119 120 121 122 123 124 125 126 127 127.5 128
4.76 10.0 29.4 76.9 0.041 0.08 0.14 0.26 0.49 0.99 1.85 4.0 8.3 21.7 55.5 133.3 227.3 0.047 0.07 0.13 0.26 0.40 0.63 1.49 2.38 5.0 10.3 29.3 38.5 66.7 102.0 0.055 0.083 0.16 0.28 0.44 0.76 1.28 2.50 4.2 8.3 18.2 33.3 66.7 156.3
116
117 118 119 120 121 122 123 124 125 125.5 126 127 117 118 119 120 121 121.5 122
0.043
0.063 0.13 0.19 0.30 0.47 0.71 1.20 1.92 3.3 5.9 15.6 71.4 0.045 0.067 0.11 0.20 0.33
n
k (s~n)
Remarks
Refs.
3
332
3
332
3
332
3
332
3
332
0.53 References page VI-391
TABLE 10. cont'd Polymer
Mn = 8.0 x l O 3
M n = 5600
Mn = 3.9 x l O 3
Mn = 2.9 x l O 3
Poly(ethylenes) Mw = 51.5 x 10 3 Mw/Mn = 1.5 0 branches/1000 CH2's
Tf( 0 C)
Tc (0C) 122.5 123 123.5 124 124.5 125 125.5 126 126.5 127 118 119 120 121 122 123 124 124.5 125 125.5 126 113 114 115 116 117 118 119 120 121 121.5 122 122.5 123 123.5 124 111 112 113 114 115 116 117 118 119 120 121 122 123 111 112 113 114 115 116 117 118 119 120
155 (15min) 123.4 124.5 125.5 126.5 127.5
^ 05 (s)
n
Ms")
Remarks
Refs.
0.71 1.54 4.0 5.9 11.5 25.0 66.7 0.043 0.077 0.13 0.24 0.40 0.77 2.4 4.8 10.9 28.6 83.3 0.063 0.093 0.13 0.16 0.22 0.26 0.38 0.67 1.4 2.2 4.8 13.5 27.0 55.6 196.0 0.034 0.076 0.10 0.14 0.19 0.24 0.38 0.71 1.79 6.67 52.6 357 2000 0.054 0.085 0.12 0.16 0.21 0.30 0.50 1.16 4.35 25.0 28.5 45.0 96.5 188 323
4
332
4
332
332
332
332
Not listed Expressed as /0.5 only
LDI techniques see Ref. 94; SAXS dimensions and a e values tabulated and regimes cited
350
TABLE 10. cont'd Polymer
Tt (0C)
Tc (0C)
J95 (s)
127.8 129.0 130.0 131.2 155 (15min) 119.6 120.5 121.5 122.7 123.8 125.0 155 (15 min) 116.5 117.5 118.5 120.0 120.8 121.8 122.6 123.7 127.7 155 (15 min) 111.5
439 993 8130 4330 76.5 133 188 358 636 1453 60 137 243 389 680 1239 2778 3985 4167 76.5
112.5
98.0
113.5 144.5 115.5 116.7 118.5 119.7 121.0 115 (15 min) 97.5 98.3 99.3
133 173 263 330 873 1686 6710 58 98 182
100.3 101.2 102.5 103.3 104.4 105.3 106.3
304 573 840 1570 1908 3310 3345
107.3
3378
122 123 124 125 126 Rigidex 50/Carinex SR61 122 50/50, w/w 123 124 125 126 Poly(ethylene-co-l-acetoxyethylene) Hostalen, GC 6400 0wt.%VA 126.9 MI = 4.5 g/10 min 125.9
126 144 264 540 1140 96 125 228 444 9000
125.1 124.1 123.2
367 138 90.5
102.2 101.2
1628 878
100.4 99.4 98.4 97.5 96.5
589.5 318 158 92 60
M w = 89.9 x 103 Mw/Mn = 1.53 6.67 branches/1000 CH2 's
M w = 41.8 x 103 AfW/Afn —1.17 15.5 branches/1000 CH 2 's
Mw = 54.7 x 103
Mw/Mn~l.69 13.64 branches/1000 CH 2 's
M w = 65.5 x 103 A#w/Afn = 2.1 32 branches/1000 CH 2 's
10.2.
n
k (s~w)
Remarks
Refs.
Not listed Expressed as /0.5 only
LDI techniques see Ref. 94; SAXS dimensions and <7e values tabulated and regimes cited
350
Not listed Expressed as 10.5 only
LDI techniques see Ref. 94; SAXS dimensions and <jt values tabulated and regimes cited
350
Not listed Expressed as
LDI techniques see Ref. 94; SAXS
350
/0.5 only
dimensions and ae values tabulated and regimes cited
350
BLENDS AND COPOLYMERS
Poly(ethylene)/poly( 1 -phenylethylene) PE/PS 175
5.5wt.%VA MI = 1.6 g/10 min
1071 704
1.57 1.86 2.29 2.44 2.26 1.88 1.94 2.32 2.59 2.36
Listed in text; DSC, mech. properties text crystallinity and morphology
351
351
Calorimetry: data interpolated from original plots
356
356
References page VI-391
TABLE 10. cont'd Polymer
7V ( 0 C)
14.0wt.%VA MI^6.5g/10min
17wt.%VA MI=108g/10min
19wt.%VA MI = 98g/10min
19wt.%VA MI = 2.7g/10min
24 wt.% VA MI=19g/10min Polypropylene/ethylene-propylene rubber 230(2min)
Tc (0C)
i0 .5 (s)
87.6 86.6 85.7 84.8 83.9 80.1 89.1 78.3 77.4 76.4 75.6 74.6 73.7 72.6 71.7 70.7 81.0 80.2 79.3 78.3 77.3 76.5 75.5 74.5 73.5 81.1 80.3 79.3 78.4 77.4 68.6 67.8 66.8 65.9
1334 770 553.0 353 241 2444 1735 1098 731 467.5 297 183 120 83.5 55.5 35.6 2200 1560 900 605 389.4 246.6 155 97.2 62.4 904 689 508 302 169.2 716 639 438,6 343.2
126 128 130 132 PP/EPR 134 100/0, w/w 136 Melt flow index = 15; Montell Polyolefins G. Natta Res. Centre, PP/EPR 230(2min) 120 122 124 126 128 130 132 PP/EPR 230(2min) 120 40/60, w/w 122 124 126 128 130 PoIy(I-hexadecene), PHD isotactic 36 Mv = 7800 38 isotacticity = 43% 40 41 42 43 Mv =2800 36 isotacticity = 62% 38 40 41 42
188 268 455 774 1169 1892 Ferrara, Italy 188 288 431 678 1068 1693 2700 123 244 376 596 1045 1780
n
k (s~n)
Remarks
Refs.
356
356 356
356
356
356
2.45 2.55 2.72 2.78 2.51 2.58 2.48 2.36 2.24 2.30 2.34 2.40 2.38 2.68 2.79 2.59 2.52 2.57 2.56 4.3
3.7 ±0.6
3.58 x 10~6 8.8OxlO~8 7.60xl0~ 9
Rates by DSC; spherulite growth rates also reported (see Section 2)
403
Measurements by DSC; SAXS data included; units of k are (min"") not (s~n) and independent of Tc for these comb-like polymers; Tm = 58°C
352
4.20 x 10~9 1.95 x 10~6 8.38 xlO~ 7 6.57 x l 0 ~ 8 5.83 x 10 ~9 1.77 x 10 ~6 2.15 x 10~7 1.04 x 10 ~7 5.37 x 10 ~9 7.30 x 10~4 2.45 x 10 ~3 5.70 x 10~3 1.32 x 10~2 7.64 x 10 ~2 4.10 x 10"* 8.05x10° 9.60 x 10 ~l 1.49XlO"1 6.49 xlO~ 2 2.65 xlO~ 2
352
TABLE 10. cont'd Polymer
My = 1800 isotacticity = 91%
Poly(isoprene) cis room temperature; crosslinked at 0.5 MR; 20% gel
Poly(isoprene) cis Natural Rubber
trans Gutta Percha
[rj] = 2.8 in toluene at 30°
Poly(isoprene) trans-lA LMF Spalding Co. R-308
T{ (0C)
Tc (0C) 43 44 45 36 38 40 41 42 43 44 45 0 -10 -15 -20 0 -10 -15 -20 0 -10 -15 -20 0 -10 -15 -20 0 -10 -15 -20 0 -10 -15 -20
t05 (s)
3.3 db 0.4
188160 30480 14820 10560
9060 4668 21240 4896 3186 1896 2107 654
- 5 -11
55200 19800
- 16 -17 - 22 - 27 - 33
12000 10200 9000 9000 14400
- 38 35 40 45 47 49 51 53 55 57 59 100 (30 min) 20.5 26.5 30.5 36.5 40.5 45.0 100 (30min) 20.5 26.5 30.5 36.5 40.5
n
23400 768 1260 6780 11700 19800 31800 64500 129000 291000 720000 475 641 919 2160 3995 11417
k (s~n)
Remarks
Refs.
9.95 x l O ' 3 3.45 xlO~ 3 8.86 xlO~ 4 2.5IxIO 1 2.89 x 10° 3.57XlO 1 1.36XlO- 1 5.46 x l O " 2 1.22 xlO~ 2 2.96 x l O " 3 2.46 x 10 ~4
3.6 3.6 3.5 3.5 2.45 2.90 2.95 2.85 2.10 2.15 2.15 2.10 1.65 1.60 1.57 1.55 1.40 1.55 1.37 1.40 1.35 1.30 1.35 1.13
352
Dynamometer for *o.i(s); 10% transformation elongation ratio; Ot=I <x = 2
166,353
a=3
a=4
a=5
a=6
104,354,355
109 359 355
6.25 x 10 ~9 3.20xl0~ 9 9.44 x l O " 1 1 7.5OxIO- 11 1.22xlO- n 9.30 x l O " 3 3.6 x 10~8 1.84 XlO" 8 3.12 x 10~9 6.40 x l 0 ~ n
Dilatometry; other grades 109,359,355 of polymer are presented
Rate results from dilatometry measurements
242
References page VI- 391
TABLE 10. cont'd Polymer
Tf (0C)
HMF Spalding Co.
Balta
Poly(isoprene) trans-1,4 Mn = 49 x 103
100(5min)
Mn = 5 9 x l 0 3
Mn = 70 XlO 3
Mn = 77 xlO 3
100(5min)
Mn = 9 4 x l 0 3
100(5min)
Mn = 106 xlO 3
100(5min)
Vulcanized rubber Extension ratios: 1 x 1 1.5 x 1.5 2x2 2.5x2.5 3x3 Poly (1-phenylethylene) isotactic (90%) Mw = 4 x l 0 5
Tc (0C) 45.0 20.5 26.5 30.5 36.5 40.5 45.0 20.5 26.5 30.5 36.5 40.5 45.0 30.0 32.5 35.0 37.5 40.0 42.5 45.0 30.0 32.5 35.0 37.5 40.0 42.5 45.0 30.0 32.5 35.0 37.5 40.0 42.5 45.0 30.0 35.0 37.5 40.0 42.5 45.0 32.5 35.0 37.5 40.0 42.5 45.0 30.0 32.5 35.0 37.5 40.0 42.5 45.0 45.0 -27
50 55 60 65 70
t&s (s)
n
fc(s~n) 2.2IxIO- 1 1 6.25 x 10 " 8 3.20 xlO~ 8 9.44 x 10 ~10 7.5OxIO" 10 1.22 XlO" 10 5.56 xlO~ 12 9.26 x 10 ~8 3.60xl0~ 8 1.84 xlO" 8 1.89 XlO" 9 2.12 XlO" 10 2.73 x 10~12 240 x 10 ~3 108 x 10 ~3 462 x 10 ~3 57OxIO- 4 102 xlO" 5 216 XlO" 6 474 x 10 ~7 36OxIO" 3 78 x l O - 3 156 x l 0 ~ 5 60xl0"5 96 xlO~ 6 498 xlO" 7 168 XlO" 7 74.3 x 10~3 169 x l O " 3 21OxIO- 4 84 x l O - 4 330xl0~ 6 252 xlO" 7 126 xlO" 7 198 x l O ' 2 102 x l O " 3 36OxIO- 5 384 xlO~ 6 474 xlO" 7 6OxIO- 7 12OxIO- 3 174 x l O " 4 558 x l O " 5 420xl0~ 5 114 x l O " 5 45OxIO' 6 15OxIO' 3 276 xlO" 4 12OxIO- 5 414xlO~ 5 78 x l O ' 5 234 XlO" 6 144 XlO" 7 5.56 xlO 1 3
11417 3.0 2.4 1.7 1.1 0.7
10 " 9 2.7 x l 0 ~ 5 2.6 XlO" 3 3.97 x 10 ~* 3.63 x 10~5 5.75 XlO" 5 5.74 x l O " 5 6.67 x 10 " 5
Remarks
Refs.
242
242
Transformation rates by DSC; heat of fusion and melting points also provided
357
357
357
357
357
Biaxial crystallization X-ray kinetics; Avrami analysis
358
Solvent, dimethyl phthalate, (DMP); 400 DMSO &TP solvents; T m a x = ~70°C in DMP; polymer-solvent interaction is DMP > DMSO > TP
TABLE 10. cont'd Polymer
PoIy(I-phenylethylene) isotactic M n = 850 x 103
M w = 850 x 103
Tf (0C)
75 80 90 228.0 (1 min) 180 230.0 (1 min) 234.0(1 min) 237.0(1 min) 227.5(1 min) 240.0(1 min) 243.0 (1 min) 229.5 (1 min) 233.0 (1 min) 170.0 180.0 160.0 150.0 190.0
PoIy(I-phenylethylene); syndiotactic M w = 803000 300(1 min)
M w = 562000
M w = 348000
Tc (0C)
110 115 120 125 135 145 155 170 180 190 207 220 225 230 235 240 246 250 300(1 min) 110 115 120.5 130 150 160 175 188 202 215 220 230 235 240 250 300 (1 min) 110 115 120 125 134.5 146 156 166 175 182.5 190 200 212 230 235
tos (s)
n
k(s'n)
Remarks
Refs.
DSC measurements; see text
359
DSC
359
Rate values listed in text in s" 1 vs. 7 C ; rate is MW dependent; Tm ~ 543K; Tg ~ 373 K
398
5.72 x l O - 5 4.67 x l O " 5 1.46 xlO~ 5 168.0 198.0 222.0 282.0 372 414 594 780 210 210 288 330 4200 15343 4783 1972 988 326 144 78 43 32 25 22 23 25 29 37 49 79 164 2440 1005 504 187 56 36 26 21.3 21 24.5 27.5 40 56 87.8 485 920 436 237 144.5 70.7 42.0 29.6 22 18.8 17.9 16.6 18.2 19.5 35.7 54.5
3.00
2.88
398
398
References page VI-391
TABLE 10. confd T1 (0C)
Polymer
PoIy(I-phenylethylene), PS (syndiotactic) M w = 609000; 1.5mol% 330 (3min) neutralized with various counterions cations Na + ions
K + ions
R b + ions
C s + ions
C s + ions
Tc (0C)
tos (s)
239 245.5 250
87.8 167.6 472
149 155 160 165 170 175 181 189 200 204 210
19 11 6.8 5.1 4.1 4.0 3.97 6.1 13.4 21.3 30.3
154.5 160 165 170 175
10.4 6.5 4.8 3.9 3.6
181 190 200 205 209.5 215 219.5 154.5 160 165 170 175 182 190 200 204 210 215 220 225 150 165 170 175 182 185 200 209.5 214.5 220 225
3.6 5.0 8.1 11.8 16.8 244.4 35.7 9.7 5.9 4.1 3.3 2.9 3.05 3.9 6.0 8.5 10.6 15.1 20.1 30.2 6.0 4.5 3.6 3.1 2.9 2.9 3.3 5.6 7.0 9.9 14.0
232 210 214 220 225 231.5 PoIy(I -phenylethylene)/poly[oxy(2,6-dimethyl-1,4-phenylene)] syndiotactic 245 M w = 129000 244 SPS/PPO; 100/0, w/w 243 242 241 240 H + ions
n
k (s'n)
Remarks
DSC measurements for fo.s values; T g identical for all materials; the counterion affects rate as Na +
360 360
360
360
360
27.7 1.4 1.8 2.8 4.5 11.9 1360 1210 925 676 571 489
Refs.
360 360
DSC measurements; hot stage microscopy spherulitic growth rates listed
361
TABLE 10. cont'd Polymer
Ff( 0 C)
Tc (0C)
t0.5 (s)
n
k (s~n)
Remarks
Refs.
239 437 237 257 236 219 235 137 Mn = 32000 240 1289 361 Afw = 244000 239 1154 SPS/PPO; 90/10 238 905 236 695 235 560 234 462 SPS/PPO; 80/20 240 1923 361 239 1450 238 1294 236 1042 235 824 Poly( 1 -phenylethylene)/poly( 1 -methoxyethylene) PVME SPS/PVME; 90/10 237 1502 361 236 1450 235 1065 233 719 232 645 231 486 SPS/PVME; 80/20 237 2060 361 236 1850 235 1602 234 1444 232 1165 231 1113 Poly( 1 -pheny lethylene)(S)/polyOzms- 1-butylene) (B)/poly(imino-1 -oxohexamethylene)(C)-c0-poly(e-caprolactam) Poly(e-caprolactam) (100%) 250(3min) 37 64 2.63 ±0.10 DSC measurement under nitrogen; 362 39 125 rate constants given in min~"; 40 177 also spherulitic growth rates listed; 41 223 nucleation dependent upon block 43 518 size and type 45 923 47 2374 Wt.% composition ratios: 39 170 2.31 dbO.ll 362 35S/15B/50C 40 359 43 719 45 1564 27S/15B/58C 37 86 2.54 ±0.08 362 38 115 39 151 40 200 41 269 43 549 33S/06B/61C 37 76 2.34 ±0.15 362 39 151 40 169 41 213 43 420 45 858 205/15B/65C 38 96 2.03 ±0.03 362 39 132 40 175 43 572 44 691 9S/14B/77C 36 76 1.92 ±0.06 362 37 94 38 113 39 165 41 317 42 398 43 581 Poly(propylene)
References page VI-391
TABLE 10. cont'd Polymer
Tf [0C)
M v = 50.5 XlO 3
Mv = 9 6 . 8 x l 0 3
M v = 307 XlO 3
M v =447 x l O 3
M v = 447 x 103
M v = 447 x 103 (nucleated with 1 wt.% indigo)
Poly(propylene) M w = 300 x l O 3
Poly(propylene) isotactic 200(5min) M w = 947000; Mw/Mn = 8.7 Tacticity = 96.5%; [77] = 3.48dl/g
t95 (s)
135 140 145 150 155 133
474 1524 6870 26400 117000 636
134 135 136 137 138
894 1356 2124 3564 5256
139 140 141
8094 11154 16320
135 140 145 150 155 190 (lOmin) 137.1 134.1 133.0 130.2 190 (lOmin) 140.0 137.5 135.0 132.5 130.0 127.5 125.0 122.5 120.0 117.0 190 (lOmin) 145.0 143.5 142.5 141.5 140.5
Poly(propylene) Shell Carlona White Mn = 196 x l O 3 270(30min)
M w = 129000; M w /M n = 11
Tc (0C)
642 2280 11400 32400 152400 6600 2820 2220 780 8280 5340 2400 1344 756 486 378 288 222 168 990 720 612 498 438
n
k (s"")
Remarks Dilatometry
Refs. 363
363
363
2.9 2.9 2.9 3.1 2 2 2 2 2 2 2 2
Hot stage optical microscopy
343
DSC; rates are also given in test after quenching; results also available; kn values are also cited
343
2 2 2 2 2
DSC; Rates are also given in 343 text after quenching, some dilatometry results also available; kn, n values are also cited
4 4 4 3
DLI (depolarized light intensity) rate measurements
75 100 110 125
3.0 6.7 11.1 100.0
47
2045
50 51 52 53 54
3296 3952 4528 5494 6740
4 4 4 4 4
65 67
2068 2892
4 4
69 70 71 72
3863 4685 5717 7339
4 4 4 4
120 123 125 128 130 132 120
91 161 267 427 825 1508 56
0.3g/100ml decalin
94(b)
364
0.3g/100ml tetralin
DSC measurements to give rate data; interfacial energy a e - 92 erg/cm2; average rate constant listed; T° = 184.3°C; ^ e = 77 erg/cm2; average rate constant listed; Tm = 178.7°C
365
TABLE 10. cont'd Tf( 0 C)
Polymer Tactidty =97%;M=0.66dl/g
Poly(propylene) isotactic Tacticity[m] = 99.8; [mm] = 99.7; [mmm] = 99.4 Mv = 44350; [77] = 53 dl/g
Tacticity[m] = 99.77; [mm] = 99.7; [mmm] = 99.4 M v = l 6940; [77] = 26 dl/g
Poly(propylene), unfractionated M v = 4.47 x 105
Poly(propylene), unfractionated
Poly(propylene), unfractionated Profax, P -=2300
P =1200
P = 7300
200 (5 min)
Tc (0C)
tos (s)
123 125 128 130 132 135 124 125 126 127
100 165 256 599 1271 1789 24 30 52 64
128 129 130 132 134 135 136
99 137 192 512 749 1621 2041
125 126 127 128 130 132 133 135 138 140 137.5 135.0 132.5 130.0 127.5 125 122.5 120 117 95 100 105 110 115 117 120 122 125 127 130 132 135 133 134 135 136 137 138 139 140 141 135 140 145 150 155 135 140
29 42 50 67 154 276 610 638 1729 8280 5340 2400 1344 756 486 378 288 222 168 38 48 66 78 115 130 181 242 407 561 917 1529 2073 636 894 1356 2,124 3564 5256 8094 11148 16320 474 1524 6870 26400 117000 642 2280
n
k (s~n)
Remarks
Refs.
Hot stage microscopy; T° = 186.4°C; a e = 125erg/cm2
365
r ° = 177.0°C; ae =69erg/cm 2
365 365
2 2 2 2 2 2 2 2.96 3.05 3.05 3.05 3.03 2.96 3.08 3.12 3.03 2.97 3.05 3.03 2.98 5.82 x 10~4 2.10 x 10 ~4 6.01 x 10" 5 1.56 x 10~5 3.31 x 10" 6 1.03 XlO" 6 2.82 x l 0 ~ 7 1.08 xlO~ 7 3.45 x l 0 ~ 8 1.43x10 ^3 4.23 XlO" 5 4.62 x i O " 7 8.14 XlO" 9 9.35 x l O " u 5.66xlO" 4 1.26 XlO" 5
3.50xl0"5 9.52 x 10~5 4.02 x 10~4 1.35 x 10~3 5.39 x l 0 ~ 3 1.05 x 10 " 2 1.8OxIO- 2 3.16 x 10~2
Calorimetry (DSC): values in column 5 in min-"
179
Values for log k are reported; isotactic index 95-97%; [77] = 1.64 in decalin at 135°C
200
Dilatometry: k for n = 3 (min) in column 6
364
394
394
References page VI-391
TABLE 10. cont'd Tf( 0 C)
Polymer
Poly(propylenes) isotactic metallocene type M w = 678-288 K
Poly(propylene)/poly(ethylene) PE: M w = 307 x 10~3; M n = 10.2 x 103 M w = 307 x 10 3 ; M n = 15.6 x 103 /-PP/HDPE: 100/0
90/10
70/30
60/40
50/50
40/60 30/70
10/90
Tc (0C)
t0 5 (s)
145 150 155 114 116.5 118 120.5 123 126 128.8 130.7 132.5
11400 32400 152400 670 870 1090 1500 2445 4315 8430 14520 27130
n
k (s~n)
Remarks
Refs.
1.01 x l O " 7 4.40xl0~ 9 4.23 xlO" 1 1 Isothermal crystallizations measured by DSC; times @ 20% not 50% conversion are listed; average curve, digitized values
122
152
3
123 124 125 127 130 131 132 123 124 125 126 127 128 130 132 123 124 125 126 127 128 130 131 125 126 126 127 122 123 124 125
187 237 305 456 981 1320 1763 138 210 309 354 675 668 1140 1863 124 215 355 450 675 850 1210 2040 420 566 647 763 119 163 242 330
3 3 3 3 3 3 3 5 4 4 3 3 3 3 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3
125 125.5 126 122
558 847 1285 91
3 3 3 3
123 124 125 125 126 126 122 123 124 124.5 125 125.5 126
110 230 523 614 940 1777 110 190 441 730 1260 1650 2880
3 3 3 3 3 3 3 3 3 3 3 3 3
366
DSC
6
DSC
6
DSC
6
DSC
6
DSC
6
DSC
6
DSC
6
DSC
6
TABLE 10. conl'd T{ (0C)
Polymer
Tc (0C)
J05 (s)
n
122 91 2 123 120 2 124 223 2 125 354 2 122.5 548 2 126 900 2 126.5 1415 2 127 3750 2 PP/LDPE: 100/0 127.8 573.1 125.8 349.0 122.8 189.6 90/10 127.8 704.8 125.8 401.6 122.8 207 80/20 127.8 848.2 125.8 439 122.8 231.6 60/40 125.8 788.1 122.8 219.8 127.8 1130.0 122.8 355.1 40/60 127.8 1440.6 125.8 805.6 122.8 340.2 Poly(propylene)/poly(ethylene) low density; melt flow indices 2.9/6.7 g/min wt.% J-PP/LDPE 100/0 200(10min) 125 137 130 479 132 856 135 2001 95/5 125 133 130 415 132 594 135 1441 90/10 125 217 130 709 132 1123 135 2257 85/15 125 193 130 559 132 1254 135 1849 80/20 125 241 130 747 138 1212 135 2684 Poly(propylene-c0-etnylethylene) isotactic; 0wt.% 1-butene 120 130 3.4 121 175 3.5 122 230 3.3 123 295 3.0 124 380 2.9 125 460 3.0 126 550 3.0 127 750 2.9 128 1010 2.7 129 1300 2.7 13.5 wt.% 1-butene 113 175 2.6 114 190 2.4 115 250 2.4 116 295 2.5 117 430 2.4 118 503 2.3 119 642 2.4 120 750 2.4 121 1070 2.4
k (s~n)
0/100
Remarks DSC
Refs. 6
DSC measurements
277
DSC measurements
277
DSC measurements
277
DSC measurements
277
DSC measurements
277
Two roll mill-blended; DSC 367 measurements radial spherulitic growth rates also measured; Avrami exponent 1.09 < n < 3.86; log kn tabulated for various n's 367
367
367
367
2.16 2.29 2.41 2.52 2.63 2.72 2.79 2.93 3.06 3.17 1.93 1.95 2.05 2.11 2.25 2.30 2.39 2.45 2.58
Calorimetry; values in column 6 tabulated here as - 1 / 3 log A:
298
298
References page VI-391
TABLE 10. cont'd T1 (0C)
Polymer 29.8 wt.% 1-butene
34.5 wt.% 1-butene
53.3 wt.% 1-butene
Poly(propylene-staf-ethylene) ethylene content; 2.7 mol%
Tc (0C)
t05 (s)
n
k (s~n)
122 100
1190 355
2.6 2.2
2.62 2.02
101 102 103 104 105
535 640 720 960 1050
2.3 2.2 2.3 2.4 2.3
2.05 2.11 2.15 2.24 2.27
103
270
2.7
2.24
104 105 106 107 108
330 360 420 500 660
2.7 2.7 2.7 2.7 2.7
2.32 2.35 2.41 2.48 2.59
76 77 78 79 80 81
390 420 560 670 810 1100
2.3 2.3 2.3 2.3 2.3 2.4
2.04 2.06 2.16 2.22 2.28 2.49
Remarks
Refs. 298
298
298
100 78 Crystallization rates measured by 368 105 252 DSC; linear growth rate 110 654 measurements also listed 115 2460 125 7865 5.7mol% 100 64 368 105 133 110 369 115 1203 120 2453 6.9mol% 100 49 368 105 87 UO 245 115 816 120 2453 8.7mol% 100 44 368 105 72 110 153 120 958 11.0mol% 100 23 368 105 35 110 69 115 216 120 750 Poly(propylene) 120 161 3 Poly(propylene) crystallinity 61%; 368 121 199 3 this polymer is basic to the 122 242 3 blend study immediately below it 123 299 3 124 366 3 125 443 3 126 554 3 127 688 3 128 845 3 129 992 3 Poly(propylene)'in poly(propylene) poly[imino(l-oxohexamethylene)] Nylon 6 124 60 3 Poly(propylene) crystallinity 368 125 72 3 72.6%, polyamide 6, 23.1% 126 92 3 127 117 3 128 156 3 129 182 3 Poly(propylene) in poly(propylene)/poly(imino(l-oxohexamethylene)]/nylon 6 poly(propylene) modified with 10% maleic acid 122 100 4 Poly(propylene) crystallinity 368 123 125 4 82.2% 124 155 4
TABLE 10. cont'd Polymer
T1 (0C)
Tc (0C)
* 05 (s)
n
125 196 126 245 127 304 128 357 129 466 190 0.016 Poly (propylene)/poly[imino(l-oxo-hexamethylene)]; PP in PP/PA 70/30 wt.%; 0% anhydride 124 60 125 72 126 92 127 117 128 156 129 182 70/30 wt.%; 10% PP modified 122 100 with anhydride 123 125
4 4 4 4 4
DSC studies
3 3 3 3 3 3 4 4
Compatabilizing agent: maleic anhydride used at 1-10 wt.% levels. Only DSC rates listed; PP, 0%, used as reference
124 125 126 127 128 129
155 196 245 304 357 446
k (s"")
Refs.
250
250
4 4 4 4 4 4
Poly [imino (l-oxo-hexamethylene)]/poly (propylene) PA in PP/PA wt.%: 0% compatabilizer 203 170 3 204 203 3 205 276 3 206 329 3 207 419 3 208 636 3 10% compatabilizer 203 213 3
204 205 206
Remarks
252 324 499
3 3 3
Tc (0C)
t05 (s)
n
54.7 55.6 57.0 58.1 59.4 54.7 55.6 57.0 58.1 59.4
432 780 2640 7200
Maleic acid compatabilizer 250 in PP: 0-10 wt.%; reference PA rates in text DSC rate studies, thermal and mechanical properties in text 250
TABLE 11. POLYOXIDES Polymer
Tf (0C)
k (s~n)
Remarks
Refs.
11.1. HOMOPOLYMER MELTS Poly(oxyethylene) Mv = 2 3 x 103 Mw/Mn = 1.2 (GPC) Mv = 4 2 x l 0 3 M w /M n = 1.3
M v = 84 XlO 3 Mv/Mn = 1.21
M v = 130 x l O 3 M w /M n = 1.35
M v = 240 x l O 3 M w /M n = 1.22
100 (lOmin)
lOO(lOmin)
100(10min)
lOO(lOmin)
54.7 55.6 57.0 58.1 59.4 54.7 55.6 57.0 58.1 59.4 54.7 55.6
Dilatometry/crystallinity values cited for t0A transformation
369
369 960 2940 16200 960 1440 3600
369
369 462 1200 4620
Dilatometry/crystallinity values cited for fo.i transformation
369 369 369
References page VI-391
TABLE 11. cont'd Polymer
Mv = 5 4 0 x l 0 3 M w /M n = 1.53
Mv = 1.570 xlO 3 M w /M n = 1.85
Mw =0.3 x 103
Mw = 0.4 x l O 3
Mw = 0 . 6 x l 0 3
M w = 1.0xl03
Mw = 1.5 xlO 3
M w = 2.0 xlO 3
M w = 3.0xl0 3
M w = 4.0xl0 3
M w = 6.0xl0 3
M w = 15 xlO 3
M w = 20xl03
Tf( 0 C)
T 0 ( 0 C)
57.0 58.1 59.4 100(10min) 54.7 55.6 57.0 58.1 59.4 100(10min) 54.7 55.6 57.0 58.1 59.4 88 (15min) -13.0 -14.0 -15.0 - 20.0 +0.3 -1.0 -1.9 - 3.9 -5.4 - 6.4 -7.1 16.9 14.9 14.1 12.9 30.4 30.1 26.8 25.0 45.1 44.5 43.5 42.4 39.8 30.4 49.3 48.2 48.0 46.5 45.5 43.1 49.4 48.5 46.9 45.5 44.5 51.0 49.9 48.5 46.9 44.5 55.7 52.2 49.9 48.5 46.9 58.1 57.4 55.7 53.2 52.2 59.3
*os (s)
n
k (s~n)
Remarks
Refs.
780 1380
522 660
558 960 558 1146 888 600 354 360 270 1140 720 660 600 240 3870 600 564 378 2460 1170 600 444 14400 7380 3210 2280 1020 240 12120 6000 3540 2340 1506 1380 12540 3360 1560 990 660 24480 3060 1440 1044 456 19860 1344 642 480 426 15120 6720 2520 900 672 13140
Dilatometry/crystallinity
Dilatometry/crystallinity values cited for fo.i transformation 2.3 2.5 1.7
See text
DSC and dilatometry; polymer sources listed in text
369 369 369
370
2.3 2.2 2.2 2.2 2.3
370
2.1 1.2 1.2
370
1.9 1.7 1.8
370
2.1 2.1 2.2 2.0 1.7
370
2.0 1.8 2.3 2.3 1.7 2.7 1.9 1.7 1.7 1.7 1.5 1.8 1.7 1.5 1.4
370
1.8 1.7 1.5 1.4
370
2.1 2.2 1.9 1.4 1.4 2.2
370
370
370
370
TABLE 11. cont'd Polymer
Afw = 12.6 x 10 3 Carbowax 6000
Mw=72.2xl03 WSR-NlO Union Carbide
Tf (0C)
Tc (0C)
t05 (s)
n
59.0 58.1 57.1 56.0 55.0
6900 4884 1476 1200 612
2.5 2.1 2.0 1.9 1.8
k (s~n)
Tm + 25 (60min)
r m + 25 (60rnin)
55.6 56.7 56.7 56.7 56.8 56.5 56.3 56.9 56.6 58.1 58.0 58.1 58.1 58.2 58.2 58.1 58.1 58.5 59.0 59.8 59.5 59.4 59.0 59.0 59.4 59.6 59.0 50.0 59.1 59.6 60.0
2.9 3.2 3.7 5.0 5.1 4.8 6.1 6.2 6.4 2.6 3.7 4.0 5.0 4.7 5.0 6.7 6.6 6.2 2.2 2.9 4.4 4.3 5.2 5.2 5.6 5.8 6.0 6.3 6.1 6.7 6.6
10 " 6 Kr6 10 " 9 10 ~10 10~ 10 10 " 7 10 " 8 10 ~9 10 ~9 10~ 8 10 ~9 10 ~9 10~ 10 10 " 10 10" 8 10- 1 0 10" 1 0 10" 1 0 10 " 7 10" 1 0 10 ~13 10 ~n 10~n 10" 1 1 10" 1 4 10~ 14 10 ~12 10" 1 2 10" 1 2 10 ~14 10 " 14
58.5 58.0 57.8 58.6 58.8 59.1 59.2 57.8 59.2 59.6 59.8 59.5 59.6 59.6 59.5 59.2 59.6 59.6 59.6 59.9 59.6 59.8 61.1 61.0 61.0 60.9
3.2 3.0 3.3 3.9 5.2 5.3 6.7 5.5 5.8 3.2 2.9 3.0 3.9 3.3 3.5 4.5 4.4 3.5 5.9 5.0 4.1 3.9 2.9 3.1 4.1 4.8
10~ 6 10 " 5 10~ 5 10~8 10- 9 10~8 10~ 10 10~7 10~ 10 10~7 10 " 6 10 " 7 10~8 10~7 10~8 10 " 9 10 ~8 10 ~8 10~ 12 10~8 10~8 10" 7 10- 8 10" 8 10~9 10" 10
Remarks
Refs.
Shear dilatometer; couette, geometry; shear rate (s" 1 ) 0 0 1.4 5.4 10.9 28.0 45.7 56.1 93.4 0 1.3 5.3 10.8 11.0 19.4 32.5 54.8 84.1 0 0 3.0 5.3 8.6 9.3 10.8 11.0 20.2 35.7 40.0 44.6 68.9 Shear rate (s" 1 ) 0 O O 5.4 7.6 17.0 25.2 37.6 36.5 O O O 1.4 3.0 5.4 8.4 9.6 10.8 17.1 19.8 27.1 38.9 O O 1.4 3.1
167
167
References page VI-391
TABLE 11. cont'd Polymer
Tf (0C)
Tc (0C)
tos (s)
61.0 61.0 61.8 61.3 Mw = 3.5 x 103 M w /M n < 1.2
69 (15 min)
Mw = 4.5xl0~ 3 M w /M n < 1.04
Mw =7.0 XlO 3 A#w/Afn<1.2
Mw = 9.0 xlO 3 M w /M n = 1.07 Mw = 20.0 x 103 M w /M n = 1.3
Mw = 100.0 x 103 Mw/Mn is unknown
Mv = 23 x 103 M w /M n = 1.2 (GPC)
Mv = 42 x 103 M w /M n = 1.3
100 (10 min) 54.7 5.6 57.0 58.1 59.4 100 (10min) 54.7 55.6
39.3 40.4 41.7 43.5 44.4 45.3 46.4 35.0 37.0 39.0 40.4 42.7 43.4 45.0 39.8 41.2 43.4 44.9 47.0 49.4 40.1 43.4 48.4 49.6 44.4 46.3 48.4 51.7 53.2 39.8 43.4 47.3 49.4 51.5 53.9 39.5 40.0 45.6 46.8 47.9 48.9 50.0 51.3 51.9 54.4 55.2 45.6 46.8 47.9 48.9 50.0 51.3 51.9 54.4 55.2 432 780 2640 7200
n
k (s")
Remarks
4.9 5.0 5.1 5.1 2.7 2.9 2.6 2.5 2.6 2.6 2.9 3.0 3.1 3.1 3.1 3.0 2.8 2.9 2.4 2.4 2.1 2.1 2.4 2.4 1.9 2.0 2.3 2.1 2.5 2.7 2.4 2.4 2.1 2.2 2.2 2.3 2.3 2.1 2.1 2.47 2.50 3.00 2.68 2.87 3.08 3.04 2.85 3.46 3.33 3.22 0.95 1.12 1.06 1.02 0.95 0.98 1.02 0.86 0.79
10"11 KT 10 10~ n 10~9 0.11 4.5 x 10"1 1.6 x 10 ~2 3.3 x 10~3 3.OxIO" 4 8.0xl0~ 5 2.3 x 10 ~6 1.99 0.93 0.34 0.19 2.6 x 102 4.2 x 103 2.5 x 104 2.1 1.2 0.23 7.7 x l O - 2 8.2 x l O " 3 3.8 x l O ' 4 1.85 0.68 2.6 XlO" 2 8.3 x l O - 4 0.49 0.13 2.2x10 ^2 7.4 xlO" 4 3.1 x 10~6 6.7 2.7 0.58 0.15 1.6 xlO" 2 LOxIO 3 8.23 2.96 0.90 0.50 0.20 3.65 x 10" 2 3.71 x 10" 3 1.95 x 10~4 1.14 XlO" 6 4.38 XlO" 9 2.4OxIO" 11 1.16 0.82 0.56 0.30 0.14 4.21 x 10~2 1.04 xlO~ 2 3.88 x l O 3 1.06 x l O " 3
5.4 9.1 9.2 28.5 Slightly degraded after the determinations; DSC measurements
Refs.
60(a)
60(a)
60(a)
DSC
60(a)
60(a)
60(a)
DSC used for bulk rate constants; two stage Avrami rates cited; Stage I
Stage Il
Dilatometry; crystallinity values cited as *o.i(s). not fo.s
60(a)
Dilatometry; crystallinity values cited as /o.i(s). n o t '0.5
60(a)
TABLE 11. cont'd Polymer
Mv = 84 x 103
Tf (0C)
100 (lOmin)
M*/Mn = 1.21
Mv = 130 x 103 Mw/Mn = 1.35
Mv = 240 x 103 M^fMn = 1.22
Mv = 540 x 103 M w /M n = 1.53
Mv = 1570 x 103 M w /M n = 185
Mv = 20 x 103
Mn = 1.6 x 103 M^ZMn = 1.05 Af n -4.1 XlO 3 M w /M n = 1.05 Mn =20 xlO 3 M»/Mn =--1.2 M-0.374 Mn = 200 xlO 3 M w /M n = 1.2 [T)) -1.92 Mn = 600 xlO 3 Mv/Mn = 1.2 [Tj] = 3.65
Poly(oxyethylene) 0% silica
100 (lOmin)
Tc (0C)
* 0 s (s)
57.0 58.1 59.4 54.7
960 2940 16200 960
55.6 57.0 58.1 59.4 54.7 55.6 57.0 58.1 59.4 54.7
1440 3600
n
k (s~n)
Remarks
Dilatometry; crystallinity values cited as ro.i(s), not J 05 Dilatometry; crystallinity values cited as tOA($), not J 05
Refs.
160(a) 160(a)
Diiatometry; crystallinity values cited as *0.i(s), not to.s
160(a)
Dilatometry; crystallinity values cited as *o.i(s), not fo.s Dilatometry; crystallinity values cited as fo.i(s), not fo.s
160(a)
462 1200 4620
55.6 57.0 58.1 59.4 100 (lOmin) 54.7 55.6 57.0 58.1 59.4 100 (lOmin) 54.7 55.6 57.0 58.1 59.4 88 (15 min) 59.3 59.0 58.1 57.1 56.0 55.0 54.0 52.0 48.2 100 (15 min) 43.3 44.8 45.9 49.2 50.9 53.4 54.8 56.3 57.0 57.5 58.2 55.9 57.8 58.2 58.9 59.7 55.0 57.2 58.2 58.9 59.4 60.2
558 960 558 12960 6900 4884 1476 1206 612 540 492 300 600 3120 73200 2760 9600 277200 1140 2640 8100 17940 33360 840 3360 3492 12180 27840 1140 5760 6540 18900 25680 91200
120 (45 min) 53.7 54.7 55.8
2334 3873 7381
780 1380
160(a)
Dilatometry; crystallinity values cited as fo.i(s), not r 05
160(a)
Dilatometry; crystallinity values citedas fo.i(s), notf<>5
160(a)
522 660
2.21 2.5 2.1 2.0 1. 1.8
DSC; rates are also given in text 343 after quenching; some dilatometry results also available; kn values are also cited
Dilatometry; selected values only listed
295 295 295
295
295
Dilatometry; Me3SiCltreated silica
11
References page VI - 391
TABLE 11.
cont'd
Polymer
Tf( 0 C)
2% silica
5% silica
10% silica
Poly(oxymethylene) Mw=66xl03 A/w =41 x 103 M w =35 x 103
Poly (oxy methy lene - oxyethy lene) Mv = 9 . 4 x l 0 3
80 (4h)
Unfractioned Mv = 6.7 x 103
M v =--10xl0 3
M v = 30 x l O 3
Poly(oxypropylene) M v - 3 0 0 XlO 3
125(10min)
M - 300 x 103 Lvi v - JIA/ x Lu
125 (lOmin) K
T 0 ( 0 C)
t0s (s)
56.8 57.8 53.7 54.7 55.8 56.8 57.8 53.7 54.7 55.8 56.8 53.6 54.7 55.7 56.8 57.8
15071 32221 1941 3533 6888 14065 31488 1770 3297 6578 13432 1282 2128 3873 8093 17707
140.0 142.5 145.0 147.5 150.0 152.5 155.0 157.5 160.0
36 48 72 90 185 420 1800 6000 24900
19.5 22 25 28 35 19.5 22 25 28 35 0 2 4 6 8 10 12 14 15 0 2 4 8 10 14 16 19 21 49.7 48.5 47.5 46.7 45.5 42.8 40.3 38.7 50.0
4.0 5.7 10.5 22 1400 240 342 630 13200 84000 26 28 25 28 26 34 75 126 135 16 16 14 31 25 39 34 101 290 12600 10680 8580 6600 3540 2520 1650 1200 15660
4? 5
8640
45 0
4500
n
k (s~n)
Remarks
Refs.
11
11
11
DSC measurements of rate, average 340 ^o5 values interpolated from mean line of data of 3 samples; lamellar thickness and spherulitic growth rates listed in text
2.8 2.8 4.1 4.1 3.0 2.8 2.8 4.1 4.1 3.0 2.07 2.93 2.19 2.65 2.34 2.40 2.00 2.00 1.90 2.03 2.05 1.90 2.26 1.90 1.90 2.12 1.95 2.00 3.1 3.0 3.0 3.6 3.3 3.1 3.0 2.7 2.1 2.1 2.2
10 8.8 11 8.8 10 6.0 1.2 0.43 0.38 27 27 35 7.2 11 4.5 6.0 0.67 0.085
Rate constants also listed in text
297
Dilatometry; two crystal modifications
372
DSC
372
DSC
372
Hot stage optical microscopy
343
DSC; rates are also given in text 343 after quenching; some diletometry results also available
TABLE 11. cont'd Polymer
Tf( 0 C)
After quenching Poly(oxytetramethylene) Mn -13.4 x 103
Poly(oxytrimethylene) Mn =79 XlO 3
11.2.
260
Tc (0C)
t05 (s)
n
42.5 40.0 38.5 35.0 -53.5 - 52.0 -50.0
2580 1620 1200 2.0 1920 990 480
2.0 2.0 2.1
208.8 209.8 211.1 212.0 212.7 212.9 213.5
80(l5min) -50.2 - 44.4 - 39.3 - 36.7 - 33.8 -28.7 -26.5 - 23.6 -18.9 - 14.5 -10.2 -6.9 -4.0 -0.4
k (s~n)
Remarks
Refs.
2.2 2.3 2.1 2.6
579.7 333.5 242.4 224.6 200.6 189.4 201.8 208.0 276.1 369.9 658.6 1195.2 2371.5 8000.0
8.8 x 10~8 2.8 x 10 ~8 7.4 xlO" 9 3.IxIO-9 1.5 XlO" 9 9.2 xlO" 1 0 5.6 x l 0 ~ 1 0
DSC; polymerization method; catalyst and 7m(optical) given in text
373
DSC
290
BLENDS
Poly(oxyethylene)/Poly([l-(methoxycarbonyl)-l-methylethylene] PEO10/PMMA (isotactic) 100/0 46.6 49.1 49.3 114.1 50.1 213.7 51.0 417.8 52.0 766.3 53.0 2631 53.9 3076 90/10 46.4 85.9 47.3 125.9 48.1 206.5 49.2 317.0 50.1 382.9 51.0 1671 52.0 3681 53.0 4615 80/20 43.2 202.0 44.2 251.8 45.2 798.9 46.2 967.7 47.1 2047 48.1 3681 49.1 4615 50.1 6185 60/40 39.2 346.8 40.1 417.8 41.1 540.5 42.1 656.5 43.1 1312 44.2 1312 45.2 2298 46.1 3076 47.2 9230
219
219
219
219
References page VI-391
TABLE 11. cont'd Polymer
Tf( 0 C)
Tc (0C)
tos (s)
n
k (s~n)
48.1 3681 49.0 6185 Poly(oxyethylene)/poly(octafluoropentoxytrifluoroethoxyphosphazene)/poly[oxy(l-(chloromethyl)ethylene] PEO, Mw = 5 x 106; PPZ, Unlisted Mw; PECH, Mw = 7 x 105 PEO/PPZ: 100/0 100(5min) 52 2.1 2.51 x 10 '2 53 2.0 5.25 x 10 ~2 54 2.1 2.34 x 10 ~2 PEO/PPZ: 75/25 52 1.6 2.09 x 10 " 2 53 1.7 0.93 x 10 ~2 54 1.7 0.30 x 10 ~2 PEO/PPZ: 50/50 52 1.5 1.07 x 10 ~2 53 54 52 53 54 50 51 52 52 53 54 50 51 52
PEO/PECH: 75/25 PEO/PECH: 50/50 PEO/PPZ/PECH: 66/17/17 PEO/PPZ/PECH: 50/25/25
1.6 1.7 2.0 2.3 2.1 1.8 1.9 2.1 2.0 2.1 1.9 1.9 2.0 2.1
0.58 x l O " 2 0.27 x l O " 2 0.3OxIO" 3 0.15 xlO" 3 0.85 x l O " 3 0.15 x 10~3 0.85 x l 0 ~ 3 0.43 x l 0 ~ 3 1.66 x 10~2 0.5OxIO- 2 0.28 xlO~ 2 2.29 x 10 ~2 0.72 x l O " 2 0.17 XlO" 2
n
k (s~n)
Remarks
Measurements made by DSC and optical hot stage microscopy; Tm values and morphology documented units of k are unspecified in text-assumed to be in seconds
Refs.
309
309
309 309 309 309
TABLE 12. POLY(CARBONATES) Polymer
Tf( 0 C)
Tc (0C)
t05 (s)
Poly(oxycarbonyloxy-1,4-phenyleneisopropylidene-1,4-phenylene) Bistan AF 35 598.5 Mv = 62.5 x l O 3 40 268.9 25 2308.5 40 2964.1 Poly(oxydecamethyleneoxysebacoyl) 135 (15min) 73.7 35400 Mn = 14.4 xlO 3 73.2 16560 Mv = 28.6 x l O 3 72.8 13140 72.0 6780 71.8 6120 70.8 2100 69.2 900 68.2 678 67.2 444 66.6 396 65.8 324 Poly(oxyethyleneoxyadipoyl) 125(15min) 39.0 28800 Mw = 20 x 103 37.5 10800 36.8 8580 36.1 7800 35.6 6000
34.2 33.2 32.1 29-9 27.8 25.7
2880 1020 2052 1090 756 438
23.5
336
21.6 18.5
252 120
Remarks
Refs.
3 3 3 3 2.7 2.6 2.6 2.6 2.9 2.2 1.6 1.6 1.5
DSC; solvent induced crystallization 374 in CCl 4 and acetone; crystallinity cited; film thickness; 20000 & lOOOOnm kn values listed in text 343
2.4 2.5 2.4 2.4 2.4
kn values listed in text DSC; rates are also given in text after quenching some dilatometry; results also available
2.7 2.4 2.7 2.4 2.4 19
343
Table 12. cont'd Tf (0C)
Polymer Poly(oxyethyleneoxysebacoyl) Mn = 14.4 x 103
135(15min)
0.5% soln. in tricresol of0.74dl/g
Tc (0C)
t0
5
(s)
n
71.4 70.9 70.1 69.6 68.6 67.6 65.7 64.7 63.5 62.5
10440 7020 3960 3540 2220 1440 648 510 408 294
2.8 2.5 2.6 2.6 2.5 2.5 2.2 2.0 2.0 1.9
Tc (0C)
*05 №
«
k (s~tt)
Remarks
Refs.
DSC rates are also given in text 343 after quenching; some dilatometry resultsavailable; kn values are also cited
TABLE 13. POLY(ESTERS) T{ (0C)
Polymer 13.1.
* (s~ n )
Remarks
Refs.
HOMOPOLYMER MELTS
Poly (ethylene-2,6-naphthalate) PEN (5); intrinsic viscosity ~ 0.6 dl/g
PEN (6); intrinsic viscosity -0.7 dl/g
280 (10 min) 230 235 240 250 320 230 235 240 250 280 230 235 240
320
Poly(oxyethyleneoxyterephthaloyl) M = 6.65 x 103
M = 11.75 x 10 3
M = 8.10 x l O 3
M = 7.10 x l O
3
M = 5.35 x 103
M w = 81.7 x 103
M w = 69.7 x 10
3
110 170 358 1104 107 254 395 1042 147 223 374
250 230 235 240
799 165 338 527
250
1232
227 230
72 111 .6
235 227 230 232 235 227 230 232 235 227 230 232 235 225 227 232 235 270 (30min) 225
DSC measurements. Column 4 412 contains Tm (time to attain max.heat flow and crystallinity, Xc); proportional to t 0 5 Range of crystalline order 0.4 <XC< 0.45. Non-isothermal data are listed in text; spherulitic morphology is discussed
2.6 3.1
349.2 73.2 133.2 177.0 297.0 46.2 88.2 126.0
3.4 2.6 3.4 3.4 3.9 2.4 3.4 3.9
244.8 58.2 112.2 163.8 328.2 81.0 138.6
4.0 2.6 3.1 3.8 4.0 2.0 3.3 3.5
441.0
DSC; k (min"'1) listed in text; crystallinities also cited
375
375
375
375
230 235
1812 4536
906
0.0288mol% Sb 2 O 3
376
240 270 (30min) 225
9816 486
0.0288mol% Sb 2 O 3
376
230 235 240
1392 3348 8418
References page VI - 391
TABLE 13. cont'd Tf (0C)
Polymer M w = 49.0 XlO 3
Mw = 30.6 x 103 oriented
fibers
DuPont, Type A Mylar M w =35.5 x 103 [rj] =0.580
Poly(oxyethylene oxyterephthaloyl) (Various data compiled by author)
J 05 (s)
270 (30min) 235 240
1398 3498
242 270 (30min) 235 240
4158 978 2340
RT quench
277
Intrinsic viscosity [rj] = 0.573
Mn = 12.2 x 103
Tc (0C)
295.0
242 95 100 105 110 115 95 100 105 110 115 95 100 105 110 95 100 105 110 230 235 240 95 100 105 110 230 235 240 95 100 105 110 230 235 240 228.3 230.2 232.6 233.7 234.6 236.8 237.2 239.8 107 108 110 112 116 125 205 216 227 232
3408 17190 7020 4800 900 600 14400 3540 840 660 300 1920 480 360 180 1380 720 240 150 360 780 210 2400 1200 480 240 600 1260 5400 1080 450 234 132 240 600 1620
236 237 113 114 117 124
734 937 1110 862 655 342
n
Remarks
Refs.
0.0288 mol% Ca(OOCCH 3 ) 2
376
376 Fibers,/ a = 0.032*; crystallinity and density listed
377
/ a = 0.044; crystallinity and density listed
/ a = 0.123; crystallinity and density listed DSC; crosslinked with 1 mrad y-radiation
378
2 mrad y-radiation
3 mrad y-radiation
2.0
120 100 80 564 371 139 59 173 393 549
k (s~n)
3.3 x 10~6 1.6 x 10 ~6 5.1xlO~ 7 5.4 x l O - 7 3.3 x 10 ~7 1.2 x l 0 ~ 7 1.5 XlO" 7 4.8 x l 0 ~ 8
DSC; polymerization method, catalyst and 7"m (optical) given in text
373
Crystallized from glassy state; average tQ5 values, interpolated
379
Nucleated with low mol. wt. poly(propylene)
Nonnucleated polymer
TABLE 13. cont'd Polymer
Poly(oxyhexamethyleneterephthaloyl) PET
T1 (0C)
285
Poly(oxyhexamethyleneoxyterephthaloyl) Mn = 11.8 x l O 3 186
Poly(oxy-1 -oxo-2,2-dimethylethyIene) Mn = 71 x l O 3 250(5min) M w = 163 x 103
Poly(oxy-1 -oxyethylene) Af w = 20-145 x 103
Poly(oxy-1 -oxohexamethylene) Mw =9.4 x l O 3 Tm-h 24 (60min)
Tc (0C)
* 05 (s)
133 202 215 226 231 233 235 172 188 203 215 220 224
175 72 213 444 607 810 1044 77 83 144 258 390 566
227 229 231 232
706 868 994 1134
215 219 223
362 538 700
224 226 227 228
809 953 1080 1259
26.6 26.9 27.6 25.5 25.1
84 162 192 492 582
201 203 205 207
27.8 38.4 52.2 66.2
Remarks
Refs.
Nucleated with LLDPE
Nonnucleated polymer; these constitute rO5(s) averages compiled from the literature
10 50 100 125 150
2.9
186.0 188.5 191.0 194.0 197.0
k (s'n)
Nucleated with poly(propylene)
222 243 439 444 720
131.5 132.7 134.0 135.2 136.6 138.0
48.1 48.0 48.0 48.3 48.1 48.1 48.6 48.4 49.8 49.8 49.8 49.8 49.8 49.8
n
1.2 x 10~8 6.1xl0~9 1.4 xlO~ 9 5.3 XlO" 1 0 1.6 X l O ' 1 0 3.1xl0~ 1 1
2.7 2.5 2.4 2.3 2.3
373
Dilatometry, DSC thermograms and t0A values also given; higher fractions up to Mn = 241 x 103 are measured 4 (approx.)
3.0 3.7 3.9 3.7 3.7 4.0 5.0 5.5 2.9 2.9 3.1 4.5 4.2 4.3
Avrami equation does not fit data; Malkin equation was used (see Ref.); crystallization temp, expressed as Tm - Tc (0C); Pressure MPa; Tm = 264.2 - 0.5058P; dTjdP = 0.506/MPa; Tc = 234.6- 0.5330P; @ 10MPa; dr/dr = 2.5
10
10 ~ 10 - 10 10 ~9 10 ~9 10 ~7 10 " 8 10- l 0 10 - 11 10 ~9 10 ~8 10 ~8 10- 1 1 10-l0 10-9
DSC
380
371
Shear dilatometer, shear rate(s ~1) 0 1.4 2.9 5.2 10.9 14.6 16.0 26.9 0 1.3 2.8 5.1 8.9 10.8
167
References page VI - 391
TABLE 13. cont'd Polymer
Tf( 0 C)
Tc (0C)
fo.5 (s)
49.5 49.8 49.8 49.9 50.9 50.9 50.9 50.8 50.8 50.8 50.9 50.9
n
4.7 4.9 5.1 5.0 2.9 3.2 4.0 4.1 4.8 4.8 5.0 4.1
k (s~n)
10 -ll 10 -11 10 - u 10 ~n 10 ~8 10 ~9 10 ~10 1010 10 ~12 10 " n 10 -" 10 "10
Remarks
Refs.
11.2 14.9 26.6 48.0 3.0 5.5 11.0 14.3 16.0 24.9 47.2 15.3 Crystallinity with time of transformation cited
Poly(oxypentamethyleneoxyterephthaloyl) Mn = 13.4 x l O 3 260*
210.1 211.7 212.1 213.6 214.3 214.7 214.9 Poly(decamethylene-4,4 '-diphenoxyterephthaloyl) PDDPT 265* 234 235 236 238 239 240 246 241 280* 237 238 239 240 241 300* 237 238 239 240 Poly(hexamethylene-4,4 '-diphenoxyterephthaloyl) PHDPT 190* 171.5 172 172.5 173 173.5 200* 171 171.5 172.5 173 173.5 174 174.5 240* 170 171 171.5 173 173.5
174 174.5 175
* Denotes mesophase conditioning temperature; not Tf.
2.8
3 3 3 3 3
7.1 x 10 ~9 2.1 x HT 9 1.5 x l O - 9 3.7 xlO" 1 0 2.6 x 10- i 0 1.5 x 10~10 8.9 x l O ' 1 1
Dilatometry
343
DSC studies; transformation after conditioning @265°C from the nematic state
247
30 48 60 108 144 2 324 72 90 156 264 486 84 132 258 522
2 3 3 3 2 2 3 2 2 2
57 78 102 144
3 3 3 3
DSC rate; transformation from nematic state after conditioning @190°C
54 54 78 102 144 192 264 42 42 48 78 90
3 3 3 3 3 3 3 2 2 2 2 2
Transformation from nematic state after conditioning @200°C
114 174 288
2 2 2
Transformation from the nematic state after conditioning @280°C Transformation from the isotropic state after conditioning @300°C
Transformation from the isotopic state after conditioning @240°C
248
TABLE 13. cont'd Polymer
T{ (0C)
T 0 ( 0 C)
Poly(hexamethyiene-4,4 '-diphenoxy terephthaloyl PHXDPT 280* 262 262.5 263 263.5 264 264.5 285* 262 262.5 263 263.5 264.5 265 265.5
t0 5 (s)
n
60 60 78 90 102 120 30 36 48 66 90 96 138
2 2 2 2 2 2 2 2 2 2 2 2 2
k (s~ n )
Remarks
DSC studies transformation from the nematic state after conditioning @280°C
Refs.
248
Transformation from nematic state after conditioning @285°C
13.2. BLENDS AND COPOLYMERS Poly(oxy-1 -oxohexamethylene)/poly( 1 -chloroethylene) PCL/PVC: 70/30 100(5min) 5 216 3 15 372 25 1200 65/35 5 600 3 15 900 25 2220 60/40 5 2760 3 15 2100 25 3480 50/50 5 37800 3 15 28800 25 35700 Poly (oxyethyleneoxyterephthaloyl)/poly (ethylene-1,2-diphenoxyethane-1,2-dicarboxylate) PET/PC: 0/100, w/w 80 0.164 90 0.159 100 0.154 120 0.123 130 0.109 140 0.089 150 0.078 170 0.064 33/67, w/w 80 0.105 90 0.109 100 0.108 110 0.095 120 0.083 130 0.064 150 0.045 170 0.004 50/50, w/w 80 0.078 90 0.081 95 0.083 100 0.083 110 0.077 120 0.074 130 0.062 140 0.06 150 0.055 170 0.051 67/33, w/w 80 0.07 90 0.072 100 0.077 105 0.076 110 0.072 120 0.061
4.36 x l O " 2 1.41 x 10" 2 1.95 x l O " 3 1.99 x 10~3 7.6OxIO" 4 7.57 x 10 ~5 4.57 x 10 ~6 8.50xl0"6 2.62 xlO~ 6 2.45 x 10 ~9 3.98 x l 0 ~ 3 3.16 x 10~9
318
DSC used; rates expressed in s" 1 ; Tm = 288°C; Tg = 72°C
Tm = 284°C; Tg =71°C
Tm = 274°C; Tg - 71°C
Tm = 276°C; Tg = 700C
* Denotes mesophase conditioning temperature, not Tf.
References page VI-391
TABLE 13. cont'd T{ (0C)
Polymer
Tc (0C)
t05 (s)
130 0.049 140 0.045 150 0.04 0/100, w/w 100 0.018 110 0.02 120 0.027 130 0.031 140 0.03 160 0.02 170 0.018 PolyCoxyethyleneoxyterephthaloyiypolyCoxybutyleneoxyterephthaloyl) PET/PBT: 100/0, w/w 280(5min) 119 129 940 139 423 150 234 159 183 169 169 195 247
90/10, w/w
75/25, w/w
205 216 224 229 100 105 110 195 221 120 125 130 135 210 216 223 225 230 75 80 85 90 94 100 105 110 115 120 125 185 206 210 215 217 218 222 227
n
k (s~n)
Remarks
Refs.
T m -280°C
2920
DSC measurement; tc values are listed in text; relation to k (s~") is not specified
334 693 1256 2098 2017 615 500 133 115 157 131 107 83 282 369 1016 1290 3105 2000 494 485 327 176 161 110 107 88 54 51 119 232 337 515 587 602 805 1888
Poly (oxyethyleneoxy terephthaloyl)/Poly(oxycarbonyloxy-1,4-phenylene-isopropylidene-1,4-phenylene) PET/PC 285 (5min) 210 13.10 x 103 Mn = 16000 215 9.76 x 103 Mw = 57000 220 5.74 x 103 Mn -24000 225 3.42 x 103 100/0, w/w 230 2.14 XlO 3 Additive modified 220 22.26 x 103 225 11.82 xlO 3 230 6.68 x l O 3 235 3.42 x 103
382
382
382
DSC measurements; Avrami n variable; optical micrographs included on text
With antioxidant Itganox, 2ppm
395
TABLE 13. cont'd Polymer
Tt (0C)
80/20, w/w
Tc (0C)
f05 (s)
«
20.62 x l O 3 10.92 x l O 3 6.25 x 103 2.9OxIO 3 24.46 x 103 13.77 x l O 3 8.13 x l O 3 3.5OxIO 3 23.96 x l O 3 14.90 x 103 8.83 x l O 3 4.88 x 103 18.9OxIO 3 17.05 x 103 13.94 x l O 3 12.22 x IO3 8.77 x 103 6.65 x 103 7.26 x 103 5.5OxIO 3 2.46 x l O 3 1.23 x 103 0.08 x 103
220 225 230 235 220 225 230 235 215 220 225 230 230
60/40, w/w
40/60, w/w
60/40, w/w
280(lmin) (5 min) (lOmin) (15min) (20min) (30min) 300 (1 min) 230 (5min) (10 min) (20 min) (30 min) Poly(butylene naphthalate terephthalate)-o?-poly(hydroxybutylnaphthalate) BHBT/PHBN: 100/0, w/w Tm -f 40 (6 min) 161 65 62.9/37.1, w/w 164 91 167 133 170 204 100/0, w/w 161 85 55.5/44.5, w/w 164 27 167 201 170 336 100/0, w/w 161 97 45.6/54.5, w/w 164 151 167 250 170 471 Poly(butylene naphthalate terephthalate)-co-poly(hydroxybutylnaphthalate) BHBT/PHBN: 100/0, w/w Tm 4-40 (6min) 161 65 62.9/37.1, w/w 164 91 167 133 170 204 100/0, w/w 161 85 55.5/44.5, w/w 164 27 167 201 170 336 100/0, w/w 161 97 45.6/54.5, w/w 164 151 167 250 170 471
k (s~n)
Remarks
Refs. 395
395
395
Effect of fusion on rate
395
Effect of fusion on rate
395
2.5 2.7 2.9 3.0 2.5 2.8 2.8 2.9 2.7 2.9 2.9 3.0
2.91 x 10 ~5 7.52x10-° 1.49x10"° 3.12 x 10~8 9.30 xlO~ 4 1.41 x 10 ~4 6.23 x l O " 7 1.08 XlO" 7 6.19x10-° 9.61 x 10~7 2.33 xlO~ 7 2.10xi0~ 8
DSC measurements DSC measurements
2.5 2.7 2.9 3.0 2.5 2.8 2.8 2.9 2.7 2.9 2.9 3.0
2.91 x 10~5 7.52x10-° 1.49x10"° 3.12 x l 0 ~ 8 9.3OxIO" 4 1.41 x 10~4 6.23 X l O ' 7 1.08 x l O ' 7 6.19x10'° 9.61 x 10~7 2.33 x l O - 7 2.10xl0~ 8
DSC measurements DSC measurements
404 404
DSC measurements DSC measurements
404 404
DSC measurements DSC measurements
404 404
n
k (s")
Remarks
Refs.
DSC measurements DSC measurements DSC measurements DSC measurements
TABLE 14. POLY(AMIDES) Polymer
T{ (0C)
Poly(imino(l-oxo-hexamethylene)) Nylon 6 Mn = 14.6 x 103
Polytimino(l-oxohexamethylene)] Nylon 6
TC(°C)
tOs (s)
205 207 209 210 212 215 48 49 49.5
1080 2040 3600 4980 6000 12600 1848 1608 1230
~2
Dilatometry
289
DSC rate measurements from the glassy state; rate constants listed for non-integer n values
401
References page VI-391
TABLE 14.
cont'd
Polymer
Tf( 0 C)
Poly[imino(l-oxohexamethylene)] Mn = 11.6 x l O 3
A/n = 17 x 103
Poly[imino(l-oxohexamethylene)] Nylon 6
Poly[imino(l-oxohexamethylene)] Nylon 6
TC(°C)
t*s(s)
51.5 52.5 57.6 60.2 62.9 241 247 250 252 243 247 250 252 253 247 250 252 253 254 247 250 252 255 257 178.0 182.1
750 493 93 45 21.6
186.1 189.2 193.2 195.3 199.3 203.3 210.4
160 262 400 560 960 3000 13100
98 122
n
k (s")
3 3 3 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 2.3 2.1
1.48 x 10 ~9 1.71 x 10" 10 1.39 XlO" 11 6.71 x 10~16 3.06 x l O " 9 7.40xl0~ 1 0 7.40xl0~u 3.52 XlO' 1 1 5.71 x 10~16 1.53 x 10~9 6.50xl0~ 1 0 6.0OxIO- 11
Remarks
Rate constants in (min~n)
Refs.
323
5.48 xlO~ 1 6 1.90xl0" 9 5.10xl0~ 1 0 3.75 xlO~ 1 0 2.70xl0~ 1 4 Values cited in DSC; induction times cited in text text in (min-")
383
2.0 2.0 19 1.8 2.05 1.9 2.35
176.0
24
4.5
178.0 182.1 184.1 186.1 189.2 191.2 193.2
30 42 53 60 120 186 304
4.7 4.7 4.6 4.8 4.4 3.6 3.3
195.3 197.3 199.3 203.3 184.1 186.1 191.2 195.3 199.3 201.3 203.3 205.3 207.3 204 205
325 600 920 2100 32 36 76 120 192 340 475 760 1230 107 166
3.4 3.0 3.1 2.7 3.2 3.25 4.15 4.4 4.6 5.4 5.4 5.6 6.1 3 3
207 208 209
255 271 398
3 3 3
203
170
3
204 205 206 207 208
203 276 329 419 636
3 3 3 3 3
With 0.1% kaolin
With 0.01-0.5% talc
This polyamide is used in the blend below; see text
250
250
TABLE 14. cont'd Polymer
Tf( 0 C)
Poly[imino(l-oxohexamethylene)] Nylon 6 linear 240 (lOmin) Mn = 16000 Mw = 29000 DP = 270 3-arm branched "dendrimers"
240 (lOmin)
M n = 19000 M w = 36000
DP = 300 6-arm branched "dendrimers" M n = 21000 M w = 42000
TC(°C)
*0.5 (s)
29.5 33.4 35,6 38.5 41.2 45.0 26.5 30.6
77.2 665 560 432 605 280 384 605
32.3 35
493 385
41 23 28.3
278 868 646
30.8 33.1
510 416
37 Poly[imino(l-oxo-dodecamethylene)] Nylon 10 Mv = 15.7 x 103 220 (15 min) 163 fa] = 1.34dl/g 164
n
309
M v = 29.6 XlO 3
330 498 600 996 1200 192 240 348 546 750 996
4.9 5.2 5.3 4.9 4.7 5.2 5.3 5.0 5.3 5.5 5.6
Mv =41.2 XlO 3 W = 1.70dl/g
161 162
348 426
4.9 4.9
163 164 165
666 858 996
5.6 5.9 5.0
162 165 167 169 162 165 167 169 162 165 167 169
360 696 1128 3000 522 1110 2070 3750 396 720 1332 2400
4.4 4.9 4.2 5.7 5.0 5.6 4.7 4.5 4.7 4.4 4.7 4.6
Poly(iminoadipoyl iminohexamethylene) Nylon 66 M n = 12.7 x 10 3 162 175 187 200 212 224 238 20 29 34 ^O 44 60 7 O 80
1.4 1.85 3.03 4.0 9.1 16.7 40.0 10000 6600 1000 500 380 33 6.3 4.3
M v = 23.9 x l O 3 fo] = 1.80dl/g M v = 23.9 x 10 3 M = 1.80dl/g
384
384
165 166 167 168 169 164 165 166 167 168 169
220 (2h)
Refs.
384
4.3 4.9
M v = 9.5 x 10 3 fa] = 0.92dl/g (m-cresol at 20°C)
Remarks DSC measurements of /05 and k; morphological study reported
168 240
(m-cresol at 200C)
k (sn)
DSC; k values listed in text
385
385
385
Dilatometry; k values also cited in (min ~n)
385
385
Contains 0.1% kaolin
Light depolarization technique; spherulite growth from the melt
385
94
Growth from glassy state; spin line 94 quenched and subsequently crystallized; fiber birefringence development using LDT on hot stage assembly between erossedpolars.Amorphous condition verified X-ray diffraction
References page VI - 391
TABLE 14. cont'd Polymer 14.1.
Tf (0C)
TC(°C)
tos (s)
n
k (sn)
Remarks
Refs.
BLENDS OF POLY(AMIDES)
Poly(iminohexamethyleneaminoadipoyl)/poly[2-2'-bis(3,4-dicarboxy-phenoxy)phenylpropane-2-phenylene bisimide] 300 (5min) 237 29 2.4 < n < 3.0 k values DSC studies under nitrogen; (Nylon 66/PEI) listed in text textures are spherulitic wt% as miir " 7° = 295 C 100/0 238.5 34 240 44 242 79 244 105 95/5 237 38 7° unlisted 238.5 50 240 55 242 94 244 158 90/10 237 39 7° =287 C 238.5 58 240 69 242 100 244 165 246 300 85/15 236 32 7° unlisted 237 40 238.5 40 240 71 242 111 244 198 246 294 75/25 237 29 7° =281 C 238.5 40 240 52 242 69 244 100 50/50 237 34 7° = 273 C 238.5 42 240 65 242 94 244 120 Poly [imino( 1 -oxo-hexamethylene)]/poly(iminohexamethyleneimioadipoyl)/[imino( 1 -oxohexamethylene)] Nylon 6/Nylon 66/caprolactam (mol/mol/mol) 6/6.6/4.4 7° + 30(10-20 min) 207 12.3 DSC rate measurements; 209 22.7 Polymers characterized by pyrolysis, 210.5 42.1 NMR; r ° using Flory copolymer 212 76.3 theory (see Ref. 215) 6/6.6/8.2 7° 4- 30 (10-20 min) 205 14.8 206.5 26.4 208 52.7 210 84.7 6/6.6/17.5 7° 4- 30 (10-20 min) 205 19.6 206.5 34.6 208 52.3
6/66-4,4
6/PXD.6-4.1
6/MXD.6-3.4
194 T°m -f 30 (10-20 min) 195 198 201 204 7° 4- 30 (10-20 min) 182 186 189 192 T^ + 30 (10-20 min) 189.5 193 199 202.5
93.4 12.3 22.7 40.8 74.4 12.4 23.9 46.5 71.0 13.2 27.0 53.8 128
410
386
386
386
386
386
386
TABLE 14. cont'd Polymer 6/1-3.8
6/MXD.I-3.9 6/6.T-4.5
rf(°C)
TC(°C)
7"°+30 (10-20min) 182 185 188 191 194 r ° + 3 0 (10-20 min) 175 187 T° + 30(10-2OmIn) 168 171 174 177 180
f05 (s)
n
k (s")
Remarks
27.0 53.8 75.9 194 190.4 30.8 110.6 53.5 69.5 96.0 142.6 198.2
Refs. 386
386 386
TABLE 15. POLY(URETHANES) Polymer
Tf (0C)
TC(°C)
tos (s)
Poly(oxycarbonyliminotetramethylene iminocarbonyl oxyhexamethylene) M w = I O x 103 195 (lOmin) 169 3540 167 1650 165 1110 163 630 162 360 Poly(oxycarbonyliminohexamethylene iminocarbonyl-bis(oxyethylene) 150(10min) 109 17280 107 8880 [//1 = 0.81 in 105 4860 0.5% m-cresol 103.5 3060 100 960 95 630 After quenching 14.2 5580 16.2 3960 17.8 3000 20.3 1950 22.3 1320 25.6 600 27.2 432 28.2 330 Poly(oxycarbonyliminohexamethylene iminocarbonyl-tris(oxyethylene)) 140(10min) 85 4260 81 2160 78 1350 75 930 72 630 69 420 After quenching 14.7 3960 16.1 2940 19.0 1320 22.0 960 24.5 630 26.0 390
n
k (s")
Remarks
Refs.
2.1 2.1 2.0 1.9 2.0
Jkn values listed in text
343
3 3 3 3 3 3
k n values listed in text
343
2 2 2 2 2 2
k„ values listed in text
343
15.1. BLENDS OF POLY(URETHANES) Poly[imino(l-oxohexamethylene)] Nylon 6; 70/30 blend with 10% polypropylene with maleic anhydride 203 213 3 204 252 3 205 324 3 206 497 3 28.0 300
References page VI-391
TABLE 16. POLY(SILOXANES) Polymer
Tf (0C)
Poly(oxydimethylsilylene) DMS
20
TC(°C)
- 55.6 -6.7 Mv = 400 xlO 3 -58.0 -59.6 -60.5 - 63.0 -65.0 -67.0 -115 After quenching -109 Poly(oxydimethylsilylene-1,4-phenylenedimethylsilylene) TMPS Mw = 15.8 xlO 3 200(5min) 100 110 115 120 126.5 Mw = 37.5 x 103 100 110 115 120 126.5 Mw = 109 x 103 100 110 115 120 126.5 Mw =245 x 103 100 110 115 120 126.5 Mw = 380 xlO 3 100 110 115 120 126.5 Poly(oxydimethylsilylene) 20 -55.6 - 56.7 Mv = 400 x 103 - 58.0 -59.6 -60.5 - 63.0 -65.0 -67.0 -115 After quenching -109
tos (s)
n
900 660 480 420 318 228 174 138 1080 108
2.2 2.1 2.0 2.1 2.1 2.0 2.0
k (sn)
Remarks
Refs. 343
2.0
82 2553 6383 24000 111540 54 1580 4110 10000 55050 105 2857 5405 15000 56075 316 8571 13636 30000 120000 3191 20000 35294 99174 272727 900 660 480 420 318 228 174 138 1080 108
Other bulk transformation 387,388 methods DSC and SAXS have been used on these same fractions 387,388
387,388
387,388
387,388
2.2 2.1 2.0 2.1 2.1 2.0 2.0
343
2.0
TABLE 17. POLY(PHOSPHAZENES) Polymer
Tf (0C)
Poly[bis(4-fluorophenoxy) phenylphosphazene] Mn = 0.16 x 106 215 (5 min) Mw = 1.18 x 106
rc(°C)
120 122.5 125 127.5 129.5
*0.s W
4 6.5 15 63 2200
»
* (s")
~ 2.0
Remarks
Refs.
DLI technique cross-polars with 389 Chino controller and accessories; textures recorded
Poly[bis(trifluoroethoxy) phosphazene)] 229.8 230.2 230.5
~ 2.0 ±0.1
1810 913 644
DSC isotropic thermotropie (2D) transformation rates: 10 7 ks~ 2
406
TABLE 17. cont'd Polymer
T1 (0C)
T0(0C)
t05 (s)
231.0 231.5 228.6 229.6 230.6
«
~ 2.0 ± 0.1
231.1 231.6 232.6 233.6
* (s") 477 186 8760 3410 1030
Remarks
Refs.
DLI isotropic -> 2D transformation rates: 10 7 ks" 2
707 289 60.8 17.0
234.6 73.0 73.3 73.6 73.9 74.2
2.97 ~ 2.0 ±0.1 40600 18000 6270 2210 927
Poly[bis(phenylphenoxy) phosphazene] 290 (10 min) 237.5 237.9 238.3 238.7
~ 2.0 ± 0.1 49300 16600 4080 1630
239.1 239.5 239.9 240.3 240.7
~ 2.0 ±0.1
198.5 198.9 199.6 200.0 200.4 200.9 201.4
~ 2.0 ± 0.1 48000 29200 10700 5210 1750 450 71.1
DSC thermotropic (2D) -> 3D crystalline transformation rates: 10 7 ks~ 2 Small birefringence changes negated the DLI measurement DLI method for isotropic -* 2D thermotropic transition rate: 10 7 ks~ 2
407
776 199 53.0 27.6 10.7 DLI method for 2D thermotropic -4 3D crystalline transformation rate: 10 7 ks" 2
Poly[di(p-methylphenoxy) phosphazene] 101 107 112 112.5 117.5 118.5 129 132.5
7.2 54 89 104 150 154 263 984
rc(°C)
* 05 M
in situ SAXS synchrotron radiation 17 rate measurements; induction times by WAXS and SAXS are listed in text
TABLE 18. OTHERS Polymer
Tt (0C)
Poly(oxy- 1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) PEEK Poly(etheretherketone) 188.8° 5.1 182.3 5.7 175.2 4.7 171.3 6.9 167.1 7.5 164.4 7.8 Poly(oxy-1,4-phenyleneoxy-1,4-pheny lenecarbony 1-1,4-phenylene) PEEK Poly(etheretherketone) 160 126 original polymer 164 54 Mn = 14000 168 24 172 18 Melt crystallized 290 21.6 300 40.2 310 136.2
n
k (s")
Remarks
Refs.
1.8 x l O " 7 50* 4.7xlO~ 10 20 1.6 XlO" 8 10 6.6 xlO~ 16 5 7.7 XlO" 19 2 2.9 x l O " 4 1
DSC; Nonisothermal rates from glassy state; crystallinity, density listed
380
2.5-2.6
DSC; k values in text in min ~"
408
2.3-2.4
408
References page VI-391
TABLE 18. confd Polymer
T( (0C)
T0(0C)
Solvent treated and desorbed
168 172 176 180 184 190 194 Poly[oxy-l-methyl-2-oxyethylene]; poly(L-lactic acid) 200 (20min) 80 90 100 110 120 Poly[oxy- l-methyl-2-oxyethylene]; poly(L-lactic acid) M v = 700000 220(10min) 70 75 80 85 90 95 100 109.5 115 120 125 130 134.5 140 145 149.5 155 159 165 Poly(L-lactide-co-meso-lactide) 85 Mn = 10.1 x 10 3 ; wt. (0% meso) 90 95 100 105 110 115 120 125 130 135 M n = 15.7 x 103; wt. (0% meso) 90 100 110 120 130 Mn == 8.8 x 103; wt. (3% meso) 85 90
Poly(L-lactide) M n = 11.4 x 103; wt. (3% meso)
M n = 5.8 x 103; wt. (6% meso)
* 05 (s) 570 522 450 330 276 222 180
n
95 100 105 110 115 120 25
486 564 516 360 414 492 690
100
1668
Remarks
1.1 -1.2
2.62 2.73 2.82 2.66 3.24
88 420 270 228 174 114 210 240 306 522 374 684 288 240 342 804 1434 660
k (s")
2.5 2.5 2.7 2.4
Refs. 408
1.25 x 10 ~3 1.19 x 10 ~3 2.97 x l O " 3 2.81xl0"3 1.88 XlO- 3
DSC measurements; various analysis of kinetic data are presented
5.79 XlO" 6 3.96 x 10 ~5 1.33 x 10" 4 4.44 x 10 ~4 1.49 x l O " 3 3.35 XlO" 3 6.79 x l O " 3 4.48 x l 0 ~ 3 4.10xl0~ 3 2.81xl0"3 1.73 x l 0 ~ 3 6.61 x 10" 4 4.29 xlO~ 4 2.37 XlO" 4 1.01 x 10 " 4 5.30 x l O " 5 2.14 x l 0 ~ 5 1.85 x l O " 5 1.41 x 10~5
Light depolarization technique; 390 morphology and X-ray diffraction reported; k expressed t "1S by the authors; values are not listed
Kinetics made using DSC
145
391
2.7 3.4 3.2 2.4 391
391
391
105 110 115 100 110
1176 1182 1332 684 648
391
TABLE 18. cont'd Polymer Mn = 11.4 x 103; wt. (6% meso) Poly(L-lactide-a?-meso-lactide) Mn = 12.3 x IO3; (wt. 0% meso); wt. 6% talc additive Mn = 10.5 x IO3; (wt. 3% meso); wt. 6% talc additive Mn = 12.2 XlO 3 ; (wt. 6% meso); wt. 6% talc additive Mw = 8.1 xlO 3 (wt. 9% meso) wt. 6% talc additive Poly(L-lactide-co-meso-lactide) (wt. 9% meso) Mn = 3.9 XlO 3 ; wt. 2% talc additive Mn =4.6 XlO 3 ; wt. 6% talc additive Mn = 5.5 XlO 3 ; wt. 11% talc additive Mn = 5.3xl9 3 ; wt. 2% talc additive wt. 2% talc additive wt. 6% talc wt 11% talc wt. 21% talc Poly(thio-1,4-phenylene)
T{ (0C)
TC(°Q
/ 0 5 (s)
120 110
696 2640
90 100 110 120
<60 <60 <60 <60
90 100 110 120 90 100 110 120 90 100 110 120
120 84 <60 126 342 180 234 882 528 360 600 > 900
n
k (s")
Remarks
391 Kinetics measured by DSC
208.8 218.3 217.3 227 235.8 245.1 254.1 263.3 272.7 Poly(thio-1,4-phenylene) 250 Phillips Pet. Co. research grade R-4 245 M w = 51 XlO 3 240 235 230 220 215 Phillips Pet. Co. Resin grade V-I 250 Mw = 15 XlO 3 245 240 235 Mw = 15 x IO3 220 215 Poly(thio-1,4-phenylene) Ryton V-I (Phillips Pet. Co.) 320 240 243 245 249 255 5-irradiated polymer 320 240 243 245
391
391
391
2.3
391
Kinetics measured by DSC 900C
Refs.
391
1134
2.7
391
762
2.3
391
600
2.3
391
444 1176 876 732 732 215.5 163.6 144.8 92.9 43.4 19.5 7.41 1.68 0.125 170 100 48 34 26 17 14 240 140 60 40 22 17
2.2
391 391 391 391 391
97.3 101 142 207 601 76.6 120 137
2.6 2.9 2.3 2.3 2.6 2.5 2.6 2.0 2.4 2.2 2.1 2.5 2.2
DSC
392
392
392 64.8 x 10 ~6 59.1 x 10~6 29.8 x l O ' 6 12.6 XlO" 6 1.1 xlO~ 6 170xl0~ 6 98 xlO~ 6 7OxIO- 6
DSC measurement
392
DSC measurement
392
References page VI -391
TABLE 18. cont'd Polymer
Poly (thio-l,4-phenylene) (PPS homopolymer) 0% metamethylene linkages
Random copolymer with 5% metamethylene linkages
Random copolymer with 8% metamethylene linkages
Random copolymer with 10% metamethylene linkages
T1 (0C)
TC(°C)
t05 (s)
251 255 102 106 110 114 118 120 235 240
329 507 8.5 3.0 1.5 0.9 0.71 0.55 0.36 0.53
250 245 255 260 265 270
1.30 0.82 2.40 5.20 8.00 17.5
110 115
6.71 3.16
120 125 130 135 140 145 200 210 220 230 235 240 245 250
1.90 1.23 0.88 0.77 0.53 0.46 0.39 0.59 1.20 2.30 2.81 5.01 9.47 23.5
105 110 120 130 140 150 190 200 205 210 215 220 225 105 110 120 130 140 150 160 170 180 190 200 205 210 215 220
14.93 5.80 1.97 1.09 0.670 0.470 1.75 2.52 4.19 5.26 7.40 9.62 23.02 13.4 7.10 2.65 1.34 0.845 0.620 0.520 0.490 0.760 1.11 1.80 2.54 3.81 6.21 10.20
n
k (s")
Remarks
Refs.
5.7 XlO- 6 1.7 x l O " 6 Crystallization rates listed as DSC 411 peak times (mins); measurements below Tmax were made by upquenching from the amorphous state (T^ ~ 33O°C using HoffmanWeeks plot)
r ° ~ 290° C
r ° ~ 283° C
J ° ~ 273° C
TABLE 19. COMPOSITES Polymer
T{ (0C)
Poly(thio-l,4-phenylene) unreinforced
With commercial glass (70% wt.)
Unsized glass (35% wt.)
Sized glass
Commercial carbon (66% wt.)
Unsized AS4 (36% wt.)
Sized AS4 (39% wt.)
Graphitized Thornel (35% wt.)
Poly(thio-l,4-phenylene) Unreinforced
Unsized AS4, 54 wt.%
Sized AS4, 6 4 %
Graphitized Thornel, 6 5 %
Phillips prepreg 66 wt.%
Tc(0C)
i 0 5 (s)
n
220 225 230 235 240 220 225 230 235
6.89 x 107 4.19 4.11 1.35 1.10 11.23 x 107 7.24 5.78 5.72
2.2 < n < 2.7
240 220 225 230 235 240 220 225 230 235
3.14 163 x 107 7.14 5.46 3.17 0.81 17.0 x 107 12.1 9.11 4.9
240 220 225 230 235
1.84 38.4 x 107 14.1 7.83 5.61
240 220 225 230 235
6.87 2.54 x 107 1.55 6.67 0.93
240 220 225 230 235 240 220 225 230 235 240 220 225 230 235
0.37 204.8 x 107 165.3 75.3 28.3 15.8 158.3 x 105 79.3 28.90 13.95 6.08 176 258 438 800
240 220 225 230 235 240 220 225 230 235 240 220 225 230 235 240 220 225 230 235 240
1409 209 317 395 516 718 294 311 540 457 700 232 195 183 198 222 294 413 540 457 700
k
(«")
Remarks Modeled from rate data; fI/2 values are graphical; Avrami n variable
Refs. 393
2.1 < n < 2.5
393
2.3 < n < 2.5
393
2.2 < n < 2.5
393
2.3 < n < 2.5
393
2.1 < n < 2.4
393
2.0 < n < 2.4
393
1.6 < n < 1.7
393
394
394
394
394
394
References page VI-391
TABLE 19. cont'd Polymer
Tf (0C)
Poly(oxyethyleneoxyterephthaloyl) modified
Modified/unsized Kevlar Modified/unsized glass
rc(°C) 220 225 230 235 225 230 235 220 225 230 235
J05 (s)
n
k (sn) 22.OxIO 3 12.0 x 103 6.5 x 103 3.37 x 103 17.60 x 103 9.14 XlO 3 4.23 x 103 17.25 x 102 10.45 x 102 5.53 x 102 2.34 x 102
Remarks DSC measurements; fibers enhanced rate of crystallization
Refs. 395
395 395
19.1. COMPOSITES OF BLENDS PolyCoxyethyleneoxyterephthoy^/PolyCoxycarbonyloxy-1,4-phenylene-isopropylidene-1,4-phenylene) PET/PC Poly(carbonate) 80/20, w/w 220 20.4 x 103 DSC measurements Unreinforced 220 20.4 x 103 36% wt. Kevlar 220 13.1xl0 3 49% wt. Kevlar 220 11.4 x 103 68% wt. Kevlar 220 5.96 x 103 Unreinforced 230 6.09 x 103 36% wt. Kevlar 230 3.82 x 103 68% wt. Kevlar 230 0.77 Poly(oxyethyleneoxyterephtholy)/Poly(oxycarbonyloxy-1,4-phenylene-isopropylidene-1,4-phenylene) PET/PC 220 24.4 x 103 225 13.9 XlO 3 60/40, w/w 230 8.3 x 103 235 3.4 XlO 3 Unsized Kevlar 215 11.4 xlO 3 220 6.8 xlO 3 225 4.5 x 103 230 2.3 x 103 Unsized glass 215 10.9 x 103 220 6.35 x 103 225 3.9 x 103 230 2.02 x 103 Poly(oxyethyleneoxyterephthoyl)/Poly(oxycarbonyloxy-1,4-phenylene-isopropylidene-1,4-phenylene) terephthalate) 220 20.7 x 103 Poly(carbonate) 80/20, w/w 225 11.3 x 103 230 6.03 235 3.1 80/20 unsized Kevlar 215 17.7 x 103 220 11.5 xlO 3 225 6.8 x 103 230 4.OxIO 3 80/20 unsized glass 215 15.6 x 103 220 9.5 x 103 225 5.5 x 103 230 3.12 xlO 3 Poly(thio-1,4-phenylene) unreinforced 205 124 DSC measurements; optical 210 215 microscopy of composites 215 356 220 513 225 914 230 1022 235 2350 240 2760 Unsized AS4 36 and 38 wt.% 220 171 225 246 230 435 235 788 240 1400 Sized AS4 39 wt.% 220 122 225 197 230 289 235 511
396
397
397
397
396
396
396
394
394
394
Next Page TABLE 19.
cont'd
Polymer
Tf (0C)
Poly(thio-l,4-phenylene) unreinforced
TC{°C)
t05 (s)
n
k (s")
Remarks
220 225 230
176 258 438
235 240 UnsizedKevlar58wt.% 220 225 230 235 240 Phillips prepreg 55 wt.% 220 225 230 235 240 Sized Kevlar 53% wt.% 220 225 230 235 240 Poly(thio-l,4-phenylene) poly(phenylene sulfide) (PPS) 100/0, w/w 250
799 1409 116 172 232 335 570 43 60 86 163 327 26 52 69 126 253 58.6
257 263 268 269
106.3 215.3 497.1 558.4
251 257 263 268 220 225 230 235 240 220 230 240
58.5 110.7 242.0 558.4 167 261 440 796 1391 167 440 988
227
1. J. D. Hoffman, G. T. Davies, J. I. Lauritzen Jr., in: N. B. Hannay (Ed.), "Treatise on Solid State Chemistry", vol. 3, Plenum, New York, 1976, p. 497. l(a) K. Armistead, G. Goldbeck-Wood, Ad. Polym. ScL, 100, 219 (1992). 2. L. Mandelkern, in: Chap. 4, "Physical Properties of Polymers", Am. Chem. Soc. Publication, 1984. 3. I. C. Sanchez, J. Macromol. Sci. C: Rev. Macromol. Chem., 10, 113 (1974). 4. See, for example, Faraday Disc. Chem. Soc, "Organization of Macromolecules in the Condensed State", 68 (1979); Faraday Disc. Chem. Soc, 95 (1993). 5. J. H. Magill in: Part A, J. M. Schultz (Ed.) "Treatise on Materials Science and Technology", vol. 10, Academic Press, New York, 1977. 6. See, for example Martuscelli et al., E. Martuscelli, R. Palumbo, M. Kriszewski (Ed.), "Polymer Blends: Proces-
sing, Morphology and Properties", Plenum, New York, 1981. X. Li, S.L. Hsu, J. Polym. Sci., Polym. Phys. Ed., 22, 1331 (1984). J. Roovers in "Methods of Experimental Physics", 16c, Chap. 16, Academic Press, New York, 1980, p. 275. J. H. Magill, Makromol. Chem., 187, 455 (1985). H. Tadokoro, Polymer, 25, 147 (1984). J. H. Cole, L. E. St. Pierre, J. Polym. Sci., Polym. Symp., 63, 205 (1978). G. E. Molau in: S. L. Aggarwal (Ed)., "Block Copolymers", Plenum, New York, 1970, p. 102. C. Robinson, Trans. Faraday Soc, 52, 571 (1956). P. J. Flory, Proc Roy. Soc A, 234, 73 (1956). M. Dosiere (Ed.), "Crystallization of Polymers", NATO ASI Series C, vol. 405, Klumer Academic, Dordrecht, 1993.
PPS/Fortron glass
Poly(thio-l,4-phenylene) (unreinforced) 100/0, w/w
With sized glass 35/65, w/w
D.
DSC measurements Avrami variable; optical microscopy of composites
Refs. 394
394
394
394
DSC measurements
227
397
397
REFERENCES
7. 8. 9. 10. 11. 12. 13. 14. 15.
Previous Page TABLE 19.
cont'd
Polymer
Tf (0C)
Poly(thio-l,4-phenylene) unreinforced
TC{°C)
t05 (s)
n
k (s")
Remarks
220 225 230
176 258 438
235 240 UnsizedKevlar58wt.% 220 225 230 235 240 Phillips prepreg 55 wt.% 220 225 230 235 240 Sized Kevlar 53% wt.% 220 225 230 235 240 Poly(thio-l,4-phenylene) poly(phenylene sulfide) (PPS) 100/0, w/w 250
799 1409 116 172 232 335 570 43 60 86 163 327 26 52 69 126 253 58.6
257 263 268 269
106.3 215.3 497.1 558.4
251 257 263 268 220 225 230 235 240 220 230 240
58.5 110.7 242.0 558.4 167 261 440 796 1391 167 440 988
227
1. J. D. Hoffman, G. T. Davies, J. I. Lauritzen Jr., in: N. B. Hannay (Ed.), "Treatise on Solid State Chemistry", vol. 3, Plenum, New York, 1976, p. 497. l(a) K. Armistead, G. Goldbeck-Wood, Ad. Polym. ScL, 100, 219 (1992). 2. L. Mandelkern, in: Chap. 4, "Physical Properties of Polymers", Am. Chem. Soc. Publication, 1984. 3. I. C. Sanchez, J. Macromol. Sci. C: Rev. Macromol. Chem., 10, 113 (1974). 4. See, for example, Faraday Disc. Chem. Soc, "Organization of Macromolecules in the Condensed State", 68 (1979); Faraday Disc. Chem. Soc, 95 (1993). 5. J. H. Magill in: Part A, J. M. Schultz (Ed.) "Treatise on Materials Science and Technology", vol. 10, Academic Press, New York, 1977. 6. See, for example Martuscelli et al., E. Martuscelli, R. Palumbo, M. Kriszewski (Ed.), "Polymer Blends: Proces-
sing, Morphology and Properties", Plenum, New York, 1981. X. Li, S.L. Hsu, J. Polym. Sci., Polym. Phys. Ed., 22, 1331 (1984). J. Roovers in "Methods of Experimental Physics", 16c, Chap. 16, Academic Press, New York, 1980, p. 275. J. H. Magill, Makromol. Chem., 187, 455 (1985). H. Tadokoro, Polymer, 25, 147 (1984). J. H. Cole, L. E. St. Pierre, J. Polym. Sci., Polym. Symp., 63, 205 (1978). G. E. Molau in: S. L. Aggarwal (Ed)., "Block Copolymers", Plenum, New York, 1970, p. 102. C. Robinson, Trans. Faraday Soc, 52, 571 (1956). P. J. Flory, Proc Roy. Soc A, 234, 73 (1956). M. Dosiere (Ed.), "Crystallization of Polymers", NATO ASI Series C, vol. 405, Klumer Academic, Dordrecht, 1993.
PPS/Fortron glass
Poly(thio-l,4-phenylene) (unreinforced) 100/0, w/w
With sized glass 35/65, w/w
D.
DSC measurements Avrami variable; optical microscopy of composites
Refs. 394
394
394
394
DSC measurements
227
397
397
REFERENCES
7. 8. 9. 10. 11. 12. 13. 14. 15.
16. See, for example, "Polymer Liquid Crystals", Faraday Disc. Chem. Soc, 79 (1984). 17. J. H. Magill, C. Riekel, Makromol. Chem. Rapid Comm., 7, 186 (1986). 18. J. Grebowicz, S. Z. D. Cheng, B. Wunderlich, J. Polym. ScL, Part B (Polym. Phys.), 24, 675 (1986). 19. See, for example, M. Biume and D. E. Moncton, Phys. Today, 38, 69 (1985). 20. G. Eisner, C. Riekel, H. G. Zachmann, Adv. Polym. Sci., 67, 3 (1985). 21. J. H. Magill, J. M. Schultz, J. S. Lin, Colloid Polym. Sci., 264, 193 (1986). 22. R. Kimmich, R. Bachus, Colloid Polym. Sci., 260, 911 (1982). 23. W. Prieske, C. Riekel, M. H. J. Koch, H. G. Zachmann, Nuclear Instr. Meth., 208, 435 (1983). 24. H. W. Spiess, J. Adv. Polym. Sci., 66, 23 (1985). 25. D. T. Grubb, J. J-H. Liu, M. Gaffrey, D. H. Bildrback, J. Polym. Sci., Polym. Phys. Ed., 22, 367 (1984). 26. L. Mandelkern, "Crystallization of Polymers," McGraw Hill, New York, 1961. 27. R J. Flory, J. Am. Chem. Soc, 84, 2857 (1962). 28. A. Keller, Rep. Prog. Phys., 31, 623 (1968). 29. J. J. Point, A. J. Kovacs, Macromolecules, 13, 399 (1980). 30. G. M. Stack, L. Mandelkern, I. G. Voigt-Martin, Macromolecules, 17, 321 (1984). 31. B. Wunderlich "Macromolecular Physics," vol. 2, Academic, New York, 1976 and other volumes in this series. 32. R H. Geil, "Polymer Single Crystals", Wiley-Interscience, New York, 1962. 33. See, for example, Ref. 5. 34. B. Wunderlich, "Macromolecular Physics", vol. 1, Academic, New York, 1973. 35. See, for example, Ref. 5, Section F, p. 264, et. seq. 36. Z. Tadmor, C. G. Gogos, "Principles of Polymer Processing", Wiley, New York, 1979. 37. A. Ziabicki, "Fundamentals of Fiber Formation", Chap. 3, Wiley, New York, 1976, p. 149. 38. E. Ratajski and H. Janeschitz-Kriegl, Colloid Polym. Sci., 274, 938 (1996). 39. R. Gachter, H. Muller (Ed.) "Plastic Additives HandbookStabilizers, Processing Aids, Fillers Reinforcements, Colorants for Thermoplastics", Carl Hanser Verlag, Munchen, 1985. 40. A. K. Fritzsche, F. P. Price in: S. L. Aggarwal (Ed.) "Block Copolymers", Plenum, New York, 1969, p. 252. 41. G. Eder, H. Janeschitz-Kriegel, Colloid Polym. Sci., 226, 1087 (1988). 42. W. M. Leung, R. St. J. Manley, A. R. Panaras, Macromolecules, 18, 760 (1984). 43. M. Cooper, R. St. John Manley, Polym. Lett., 11, 363 (1973). 44. V. F. Holland, P. H. Lindenmeyer, J. Polym. Sci., 57, 589 (1962). 45. J. G. Fatou, in Encyl. Polym. Sci. and Eng., Suppl. vol. (2nd Ed., J. Wiley and Sons, Inc. (1989).
45a. A. Keller, G. Goldbeck-Wood in "Comprehensive Polymer Sci., 2nd Suppl." Chap. 7,241 (S. L. Aggarwal and S, Russo, Eds.) Elsevier, New York, 1996. 45b. D. H. Hoffman and R. L. Miller, Polymer, 38, 3151 (1997). 46. A. S. Vaughan, D. C. Bassett in: C. Booth and C. Price, Eds., "Comprehensive Polym. Sci." vol. 2, Chap. 12, 413, Pergamon Press, 1989. 47. I. G. Voigt Martin, E. W. Fischer, L. Mandelkern, J. Polym. Sci., Polym. Phys. Ed., 18, 2347 (1980). 48. F. Khoury, E. Passaglia, in: N. B. Hannay (Ed.) "Treatise on Solid State Chemistry", Plenum, vol. 3, Chap. 6, New York, 1976. 49. W. Dietz, Colloid Polym. Sci., 259, 413 (1981). 50. A. Keller, A. O'Connor, Disc. Faraday Soc, 25, 114 (1958). 51. D. C. Bassett, A. M. Hodge, Proc. Roy. Soc. A, 377, 61 (1981). 52. H. D. Keith, F. J. Padden, Jr., Polymer, 25, 28 (1983); J. Appl. Phys., 30, 1479 (1959), 53. C. Briske, N. H. Hawthorne, Trans. Faraday Soc, 63, 1546 (1967). 54. R. G. Crystal, J. Polym. Sci. A-2, 8, 1755, 2153 (1970). 55. I. Ye. Bolotov, S. B. Fischeleva, Phys. Metals Metallog. USSR (Eng. trans.), 20, 147 (1965). 56. P. J. Barnham, E. D. T. Atkins, I. A. Nieduszynski, Polymer, 15, 762 (1974). 57. I. Ezek, I. Korritta, K. Leble, Soc Phys. Crystallogr., 2, 653 (1957). 58. J. G. Morley, Glass Technol, 6, 69, 77 (1965). 59. H. W. Morse, J. D. H. Donnay, Am. Mineral, 21, 391 (1932). 60. J. H. Magill, D. J. Plazek, J. Chem. Phys., 46, 3757 (1967); J. H. Magill, H.M. Li, J. Crystal Growth, 20, 135 (1973). 61. D. M. Sadler, Polymer, 24, 140 (1983); Polym. Comm., 27, 140 (1986); Nature, 326, 147 (1987). 62. M. Bark, H. G. Zachmann, R. Alamo, L. Mandelkern, Makromol, Chemie, 193, 2363 (1992). 63. C. Santa Cruz, N. Stribeck, H. G. Zachmann, F. J. BaItCalleja, Macromolecules, 24, 5980 (1991). 64. E. Ergoz, J. G. Fatou, L. Mandelkern, Macromolecules, 5, 147 (1972). 65. See, for example, Ref. 1, Fig. 17; N. Okui et al. (to be published). 66. A. H. Kovacs, A. Gonthier, Kolloid Z. U. Z. Polym., 250,530 (1972); A. J. Kovacs, A. Gonthier, C. Straupe, J. PoIm. Sci., Symp., 50, 283 (1875). 67. K. S. Lee, G. Wegner, Makromol. Chem. Rapid Comm., 6, 203 (1985). 68. G. Ungar, J. Stejny, A. Keller, 1. Bidd, M. C. Whiting, Science, 229, 386 (1985). 68a. G. Ungar, X. Zeng, G. M. Brooke, S. Mohammed, Macromolecules, 31, 1875 (1998). 69. L. Mandelkern in: C. Booth and C. Price (Eds.), "Comprehensive Poiym. Sci.," vol. 2, chap. 11, Pergamon Press, 1989, p. 363. 70. A. N. Kolmogorov, Isz. Akad. Nauk SSSR, Ser. Math., 1, Fig. 3, 355 (1937). 71. V. Goler, F. Sacks, G. Sacks, Z. Phys., 77, 281 (1932).
72. U. R. Evans, Trans. Faraday Soc., 41, 365 (1945). 73. M. Avrami, J. Chem. Phys., 7,1103 (1939); 8,212 (1940); 9, 177 (1941). 74. L. Mandelkern, "Crystallization of Polymers", Chap. 8, McGraw Hill, New York, 1964. 75. M. G. Dobb, J. E. Mclntyre, Ad. Polym. ScL, 60/61, 61 (1984). 76. G. Broza, J. Petermann, Praktische Metallographic, 17, 175 (1987). 77. F. L. Binsbergen, J. Crystal Growth, 16, 249 (1972). 78. J. N. Hay, Z. J. Prezekop, J. Polym. ScL, Polym., Phys. Ed., 17, 951 (1979). 79. A.Galeski,J.Polym.,Sci.,Polym.Phys.Ed.,19,721 (1981). 80. L. E. Levine, K. Lakshmi Narayan and K. F. Kelton, J. Mat. ScL, 12, 124 (1997). 81. A. Galeski, E. Piorkowska, J. Polym. ScL, Polym. Phys. Ed., 21, 1313 (1983). 82. M. Birnboim, J. H. Magill, G. C. Berry, in: R. Lenz, R. S. Stein (Ed.), "Electromagnetic Scattering" Gordon and Breach, New York, 1967, p. 413. 83. A. Misra, R. S. Stein, Polym. Lett. B, 10, 473 (1972). 84. S. Go, D. Peiffer D., Mandelkern, R. S. Stein, J. Polym. ScL, Polym. Phys. Ed., 15, 1189 (1977). 85. See, for example, Ref. 34, Chap. 3, p. 322. 86. D. C. Martin, E. L. Thomas, Polymer, 36, 1743 (1995). 87. B. Lotz, J. C. Wittmann, A. J. Lovinger, Polymer, 37, 4979 (1996). 88. Q. Zong, D. Innis, K. Kjoller, V. B. Elings, Surf. Sci. Lett., 290, L688 (1993). 89. S. N. Magonov, V. Elings, V. S. Papkov, Polymer, 38, 297 (1997). 89a. S. N. Magonov, Polymer Sci., Series B, 38, 34 (1996). 90. F. H. Mueller, H. Martin, J. Polym. Sci. C, 6, 83 (1964). 91. N. Bekkedahl, Rubber Chem. Technol., 40 (3), 35 (1967). 92. J. H. Magill, Res. Dev. (London), 11, 30 (1962). 93. A. Keller, G. R. Lester, L. D. Morgan, Phil. Trans. Roy. Soc. London, 247, 1 (1954). 94. J. H. Magill, Polymer, 2, 221 (1961), See also ref. 5, p.322; (b) Polymer, 3, 35 (1962). 95. Z. Ding, J. E. Spruiell, J. Polym. Sci., Part B: Polym. Phy., 34, 2783 (1996); P. Supaphol, J. E. Spruiell, ibid, indem., 36,681 (1998). 96. V. G. Baranov, Disc. Faraday Soc, 49, 137 (1970). 97. W. H. Cobb, R. L. Burton, J. Polym. Sci., 10, 276 (1953). 98. K. P. Mamedov, A. D. Nurieve, Soviet Phys. Crystallog. (Eng. Trans.), 12, 605 (1968). 99. A. Peterlin, E. Roechl, J. Appl. Phys., 34, 102 (1963). 100. R. W. Warfield, Makromol. Chem., 89, 269 (1965). 101. R. Vignaud, J. M. Schultz, Polymer, 27, 651 (1986). 102. R. C. Hirst, H. Y. Chen, Rubber Chem. Technol., 46, 22 (1973). 103. See, for example, P. J. Barharn, in Ref. 15, p. 153. 103a. J. K. Hobbs, T. J. McMaster, M. J. Miles, P. J. Barham, Polymer, 39, 2437 (1998). 104. L. A. Wood, N. Bekkdahl, J. Res. Natl. Bur. Std., 36, 487 (1946).
105. P. J. Flory, A. D. Mclntyre, J. Polym. Sci., 18, 592 (1955). 106. J. H. Magill, S. V. Peddada, G. McManus, Polym. Sci. Eng., 21, 1 (1981). 107. R. P. Sheldon, J. Polym. Sci. B, 1, 655 (1963). 108. See, for example, L. E. Alexander, "X-ray Diffraction Methods in Polymer Science", Chap. 3, Wiley Interscience, NY, 1969. 109. R. L. Miller, Encycl. Polym. Sci. Technol., 4, 459 (1966). 110. L. Alexander, S. Oldberg, G. R. Taylor, J. Appl. Phys., 26, 1068 (1955). 111. G. Farrow, I. M. Ward, Polymer, 1, 330 (1960). 112. F. L. Binsbergen, Doctoral Thesis, "Nucleation in the Crystallization of Polyolefins", Univ. Groningen, 1969. 113. F. P. Price, Encycl. Polym. Sci. Technol., 8, 63 (1969). 114. A. J. Kovacs, Ric. Sci., 25, 668 (1955). 115. R. L. Cormia, F. P. Price, D. Turnbull, J. Chem. Phys., 37, 1333 (1962). 116. A. Sharpies, Polymer, 3A, 250 (1962). 117. J. M. Schultz, R. W. Hendricks, J. Appl. Cryst., 11, 551 (1978). 118. H. G. Zachmann, G. Wutz, in Ref. 15, p. 403. 119. A. Ryan, J. L. Stanford, W. Bass, T. M. W. Nye, Polymer, 38, 759 (1997). 120. H. G. Zachmann, R. Gehrke, W. Prieske, C. Riekel, Proc. Symp. Natl. Lab., DESY, Hamburg, October 28-31, 1984. 121. J. D. Hoffman, J. J. Weeks, J. Chem. Phys., 37, 1723 (1962). 122. P. J. Barham, A. Keller, E. L. Otun, P. A. Holmes, J. Mat. Sci., 19, 2781 (1985). 123. W. Fronk. B. Heise, H. R. Schubach, W. Wilke, Colloid Polym. Sci., 262, 99 (1984). 124. L. Mandelkern, Polym. Sci. Eng., 7, 232 (1967). 125. J. M. Schultz, E. W. Fischer, O. Schaumberg, H. A. Zachmann, J. Polym. Sci., Polym. Phys. Ed., 18, 239 (1980). 126. P. J. Flory, D. Y. Yoon, K. A. Dill, Macromolecules, 17, 862 (1984). 127. J. F. Nagle, P. D. Gujrati, M. Goldstein, J. Phys. Chem., 88, 4599 (1984). 128. R. C. Domszy, M. Glotin, L. Mandelkern, J. Polym. Sci., Polym. Symp., 71, 151 (1984). 129. C. G. Vonk, J. Polym. Sci., C. Polym. Lett., 24, 305 (1986). 130. CM.Guttman,E. A.DiMarzio, J. D. Hoffman,Polymer,22, 1466 (1981). 131. J. Gardella, Jr., J. S. Chen., J. H. Magill, D. M. Hercules, J. Am. Chem. Soc, 105, 4536 (1983). 132. R. L. Schmitt, J. A. Gardella, J. H. Magill, R. L. Chin, Polymer, 28, 1243 (1987). 133. T. W. Ebbesen, Physics Today, 49 (6), 26 (1996). 134. See, for example, review by F. P. Price in: A. C. Zettlemoyer (Ed.), "Nucleation", Chap. 8, Dekker, New York, 1969. 135. F. C. Frank, M. Tosi, Proc. Roy Soc. A (London), 263, 323 (1960). 136. F. P. Price, J. Polym. Sci., 42, 49 (1960). 137. J. J. Point, Macromolecules, 12,770 (1974); J. J. Point, M. C. Colet, Am. Chim, Fr., 15, 221 (1990). 138. S. S. Pollack. J. H. Magill, J. Polym. Sci. A-2,7, 551 (1969). 139. R. L. Miller, Kolloid Z. Z. Polym., 225, 62 (1968).
140. D. H. Jones, A. J. Latham, A. Keller, M. Girolamo, J. Polym. ScL, Polym. Phys. Ed., 11, 1759 (1973). 141. J. J. Point, J. J. Janimak, J. Crystal Growth, 131, 50 (1993). 142. P. J. Phillips in Ref. 15, p. 201 and others. 143. C. Devoy, L. Mandelkern, L. Bouland, J. Polym. Sci. A-2,7, 869 (1970). 144. J. H. Magill, J. Appl. Phys., 35, 3249 (1964); J. H. Magill in: L. A. Kleintjens, P. J. Lemstra (Ed.), "Integration of Fundamental Polymer Science and Technology'1, Elsevier, New York, 1986, p. 480. 144a. N. Okamato, M. Orguni, Solid State Comm., 99, 1 (1996). 145. E. Urbanovici, H. A. Schneider and H. J. Cantow, J. Polym. Sci. Part B: Polym. Phys. Ed., 35, 359 (1997). 146. C. R. Snyder, H. Marand, M. L. Mansfield, Macromolecules, 29, 7508 (1996). 147. J. D. Hoffman, Polymer, 24, 3 (1983). 148. E. Passaglia, E. A. DiMarzio, Polymer, 27, 510 (1986). 149. R. L. Miller, E. G. Seeley, J. Polym. Sci., Polym. Phys. Ed., 20, 2297 (1982). 150. G. J. Rensch, P. J. Phillips, N. M. Vatansever, and V. A. Gonzalez, J. Polym. Sci., Polym. Phys. Ed., 24,1943 (1986). 151. D. Roitman, H. Marand, R. L. Miller, J. D. Hoffman, J. Phys. Chem., 93, 6919 (1989). 152. A. J. Lovinger, D. D. Davies, F. J. Padden, Jr., Polymer, 26, 1595 (1985). 152a. J. D. Hoffman, R. L. Miller, Macromolecules, 21, 3038 (1988). 153. J. M. Schultz, W. H. Robinson, G. M. Pound, J. Polym. Sci., Part: A-2, 5, 511 (1967). 154. L. Mandelkern, J. M. Price, M. Goplan, J. G. Fatou, J. Polym. Sci, A-2, 4, 385 (1966). 155. J. H. Magill, Macromol. Rapid Comm., 19, 65 (1998); (also Macromol. Chem. and Phys., 11, 2365 (1998). 156. M. Hikosaka, Polymer, 31, 458 (1990). 157. A. Keller, M. Hikosaka, S. Rastogi, A. Toda, R J. Barham, G. Goldbeck-Wood, J. Mat. Sci., 29, 2579 (1994). 158. D. C. Bassett, B. Turner, Phil. Mag., 29, 285, 295 (1974). 159. J. H. Magill, J. Inorganometallic Polym., 2, 213 (1992). 159a. J. J. Point, Macromolecules, 30, 1375 (1997). 160. A. Keller, J. Polym. Sci., Symp., 51, 7 (1975). 160a. S. Z. D. Cheng, B. Wunderlich, J. Polym. Sci. Part B: Polym. Phys. Ed., 24, 595 (1986). 161. T. Kajiyama, I. Ohki, A. Takahara, Macromolecules, 28, 4768 (1995). 162. T. Ozawa, Polymer, 12,150 (1971); Thermochim. Acta, 100, 109 (1986). 163. K. Nakamura, K. Imada, M. Takanayangi, Int. J. Polym. Mat., 2, 71 (1972). 164. K. Harnisch and H. Muschik, Colloid Polym. Sci., 261, 208 (1983). 165. A. Ziabicki, Appl. Polym. Symp., 6, 1 (1967). 166. M. R. Mackley, A. Keller, Phil. Trans. Roy. Soc, 278, 29 (1975). 167. C. H. Sherwood, F. P Price, R. S. Stein, J. Polym. Sci., Polym., 63, 77 (1978). 168. H. H. George, A. Holt, A. Buckley, Polym. Engrg. Sci., 23, 95 (1983).
169. H. G. Kim, L. Mandelkern, J. Polym. Sci. A-2, 6, 181 (1968). 170. R. Ono, K. Miyasaka, K. Ishikawa, J. Polym. Sci., Polym. Phys. Ed., 11, 1477 (1973). 171. Y. Long, R. A. Shanks, Z. H. Stachurski, Prog. Polym., 20, 651 (1995). 172. See for example, P. J. Flory, "Principles of Polymer Chemistry," Chapter 12, Cornell Univ. Press, Ithaca, 1953, p. 495. 173. K. Binder, Advances in Polymer Sci., 112, 181 (1994). 174. L. A. Utracki, "Polymer Alloys and Blends" (Thermodynamics and Rheology) Carl-Hauser Verlag, Munich, 1989. 175. L. A. Utracki, "Encyclopedic Dictionary of Commercial Polymer Blends," Chem-Tec Publishing, Toronto, 1996. 176. A. B. Desia, G. L. Wilkes, J. Polym. Sci., Symp., 46, 291 (1974). 177. N. K. Dvoyashkin, A. L. Maklakov, V. S. Smirnov, Poiym. Sci. (USSR), (Engl. Trans.), 21, 2985 (1979). 178. R. Legras, J. M. Dekoninck, A. Vanzieleghem, J. P. Mercier, E. Nield, Polymer, 27, 109 (1986). 179. F. L. Binsbergen, J. Polym. Sci. C, 59, 11 (1977). 180. J. Rault, E. Robelin, J. Phys., 43, 1437 (1982). 181. H. A. Battaerd, J. Polym. Sci., Symp., 49, 149 (1975). 182. H. M. Li, J. H. Magill, J. Polym. Sci., Polym. Phys. Ed., 16, 1059 (1978). 183. H. W. Starkweather, P. Zoller, J. Polym. Sci. Polym. Phys. Ed., 29, 751 (1982); see also R Zoller, VI/475, "Polymer Handbook", 3rd Edition, Wiley NY, 1989. 184. M. Hikosaka, Jap. J. Appl. Phys., 20, 617, (1981). 185. L. H. Palys, P. J. Phillips, J. Polym. Sci., Polym. Phys. Ed., 18, 829 (1980). 186. B. C. Edwards, P. J. Phillips, D. Sorenson, J. Polym. Sci., Polym. Phys. Ed., 18, 1737 (1980). 187. G. K. L. Davies, M. C. M. Cucarella, J. Mat. Sci., 15, 1557 (1980). 188. T. Hatakeyama, H. Kanetsuna, H. Kaneda, T. Hashimoto, J. Macromol. Sci.-Phys. B, 10, 359 (1974). 189. M. R. Kamal, R G. Lafleur, Polym. Eng. Sci., 24,692 (1984). 190. R. Thomann, J. Kressler, B. Rudolf, R., Miilhaupt, Polymer, 37, 2635 (1996). 190a. J. He, P. Zoller, J. Polym. Sci., Polym. Phys. Ed., 32, 1049 (1994). 190b. C. A. Hieber, Int. Polym. Processing, 12, 249 (1997). 190c. H. Ito, Y. Tsutsumi, K. Minagawa, J. Takimoto, K. Koyama, Colloid Poly. Sci., 273, 811 (1995). 191. R. Reinitzer, Monatsh Chem., 9, 421 (1888). 192. P. J. Flory, G. Ronca, MoI. Cryst. Liq. Cryst., 54, 311 (1979). 193. P. G. DeGennes, "The Physics of Liquid Crystals" Clarendon Press, Oxford, 1974. 194. D. Acierno, A. A. Collyer (Eds.) "Rheology and Processing of Liquid Crystalline Polymers," Chapman and Hall, London, 1996. 195. See for example: Prog. Polym. Sci. (Reviews) 21, pps. 7751211(1996). 196. L. A. Utracki, Ad. Chem. Series, 239, 77 (1994). 197. S. Hanna, T. Lemmon, R. J. Spontak, A. H. Windle, Polymer, 33, 3 (1992).
198. H. C. Langelaan, A. Posthuma de Boer, Polymer, 37, 5667 (1996). 199. M. R. Mackley, A. Keller, J. Polymer ScL, Part B, Polym. Phys., 30, 335 (1992); J. Mat. Sci., 10, 1501 (1975). 200. M. D. Wolkowicz, J. Polym. Sci: Polym. Symp., 63, 365 (1978). 201. J. Rietveld, A. J. McHugh, J. Polym. Sci., Polym. Letters, 21, 919 (1983). 202. S. Liedauer, G. Eder, H. Janeschitz-Kriegl, P. Jerschow, W. Geymayer, E. Ingolic, Int. Polym. Processing, 8, 236 (1993). 203. G. Eder, H. Janeschitz-Kriegl, G. Krobath, Progr. Colloid and Polym. Sci., 80, 1 (1989). 204. A. J. McHugh and W. S. Yung, J. Polym. Sci., Part B: Polym. Phys., 27, 431 (1989). 205. A. C. Bushman and A. J. McHugh, J. Polym. Sci., Part B: Polym. Phys., 34, 2393 (1996). 206. A. N. Beris, B. J. Edwards, "Thermodynamics of Flowing Systems," Oxford Press, NY, 1994. 207. J. D. Hoffman, Polymer, 20, 1071 (1979). 208. A. J. Pennings, A. M. Kiel, Koiloid Z. u. Z. Polym., 205, 160 (1965). 208a. See for example, Jan Smook, Ph D Thesis, "Preparation and Properties of Ultra-High Strength Polyethylene Fibers", University of Groningen, June 1984. 208b. M. Kunz, M. Dreshler, M. Moller, Polymer, 36,1331 (1995). 209. T. Takashi, M. Ishamura, I. Ishimoto, Polym. Lett., 8, 651 (1970). 210. J. C. Whittmann, B. Lotz, J. Polym. Sci., Polym. Phys. Ed., 23, 205 (1985). 211. S. Yan, J. Petermann and D. Yang, Polym. Bull., 38, 87 (1997). 212. A. J. Greso, P. J. Phillips, Polymer, 35, 3373 (1994). 213. T. W. Owen, D. Hull, Plast. Polym., 42, 19 (1974). 214. J. K. Su, J. Mark, Macromotecules, 10, 120 (1977). 215. P. J. Flory, J. Chem. Phys., 15, 3976 (1947). 216. R. Gaylord, J. Polym. Sci., Polym. Phys. Ed., 14, 1827 (1976). 217. R. G. Alamo, E. K. M. Chan, L. Mandelkern, I. G. VoigtMartin, Macromolecules, 25, 6381 (1992). 218. I. C. Sanchez, J. Polym. Sci., Part C, 59, 109 (1977). 219. J. VanRuiten, F. vanDieren, V. B. F. Mathot, in Ref. 15, p. 481. 220. G. Goldbeck-Wood in Ref. 15, p. 249. 221. G. Goldbeck-Wood in: E. A. Colbourn (Ed.) "Computer Simulation of Polymers," Longman, London, 1994. 222. J. N. Hay, Z. J. Przekop, J. Polym. Sci., Polym. Phys. Ed., 17, 951 (1979). 223. R. J. Tabar, A. Wasiak, S. D. Hong, T. Yuana, R. S. Stein, J. Polym. Sci., Polym. Phys. Ed., 19, 49 (1981). 224. K. W. Mahin, K. Hanson, J. W. Morris, Acta. Metall., 28,443 (1980). 225. N. Billon, J. M. Escleine, J. M. Haudin, Colloid Polym. Sci., 267, 668 (1989). 226. N. Billon, J. M. Haudin, Ann. Chim., 15, 1 (1990). 227. N. A. Mehl, L. Rebenfeld, J. Polym. Sci., Part B: Polym. Phys., 31, 1677, 1687 (1993); 57, 187 (1995).
228. M. Negahban, ASME, AMD-VoI. 203: "Current Research in the Thermo-Mechanics of Polymers in the Rubbery-Glassy State", 1995, p. 45. 229. M. Negahban, J. Eng. Sci., 35 (3), 277 (1997). 230. M. Negahban, A. S. Wineman, R-J. Ma, Int. J. Engrng. Sci., 31, 93 (1993). 231. A. Stevenson (1989) in: N. P. Cheremisinoff, (Ed.), "Crystallization of Elastomers" vol. 2, Marcel Dekker, NY, p. 61. 232. C. M. Hsuing, M. Cakmak, Polym. Eng. Sci., 31, 1372 (1991). 233. S. J. Organ, A. Keller, G. Ungar, Ref. 15, p. 81. 234. S. J. Sutton, A. S. Vaughan, D. C. Bassett, Polym. Comm., 37, 5735 (1996). 235. B. J. Barham, Amer. Chem. Soc, Polym. Preprints, April, 36, 301 (1995). 236. A. Toda, H. Kiko, J. Polym. Sci., Part B: Polym. Phys., 27, 53 (1989). 237. R. M. Gohil, K. C. Patel, R. D. Patel, Polymer, 15, 402 (1974). 238. E. H. Andrews, P. J. Owens, A. Singh, Proc. Soc. A (Lond.), 234, 79 (1971). 239. P. J. Phillips, N. Vatansever, Macromolecules, 20, 2138 (1987). 240. G. J. Rensch, P. J. Phillips and N. Vatansever, J. Polym. Sci., Part B: Polym. Phys., 24, 1943 (1986). 241. E. Fischer, J. F. Henderson, J. Polym. Sci. A-2,5,377 (1967). 242. C. K. L. Davies, A. J. Carter, M. C. M. Cucarella, Ong. Eng. Long, K. M. Pickard and S. V. Wolfe, Progress in Rubber and Plastics Technology, 5 (2), 112 (1989). 243. Ni Ding, E. J. Amis, Macromolecules, 24, 3906 (1991). 244. M. Johnsen, J. Lehmann, KolloidZ. Z. Polym., 230, 317,325 (1969). 245. S. Z. D. Cheng, J. Chen, S. X. Wu, A. Zhang, M. A. Yandrasits, Q. Zhuo, R. P. Quirk, A. Habenschuss and P. R. Zschak, Ref. 15, p. 51. 246. X. Gao, E. J. Amis, Amer. Chem. Soc. Polymer Preprints, April, 36, 329 (1995). 247. I. Campoy, C. Marco, M. A. Gomez, J. G. Fatou, Macromolecules, 25, 4392 (1992). 248. I. Campoy, M. A. Gomez, C. Marco, J. G. Fatou, Eur. Polym. J., 29, 1161 (1993). 249. J. Powers, J. D. Hoffman, J. J. Weeks, F. A. Quinn Jr., J. Res. Natl. Bur. Std., 69A, 335 (1965). 250. I. Campoy, J. M. Arribas, M. A. Zapoita, C. Marco, M. A. Gomez, J. G. Fatou, Eur. Polym. J., 31, 475 (1995). 251. R. D. Icenogle, J. Polym. Sci., Polym. Phys. Ed., 23, 1369 (1985). 252. F. P. Price, J. Chem. Soc, 74, 311 (1952). 253. A. J. Lovinger, J. Polym. Sci., Polym. Phys. Ed., 18, 793 (1980). 254. H. T. Tseng, P. J. Phillips, Macromolecules, 18, 1565 (1985). 255. J. D. Hoffman, L. T. Frolen, G. S. Ross, J. I. Lauritzen Jr., J. Res. Nat. Bur. Std., 79a, 671 (1975). 256. F. P. Price, J. Phys. Chem., 64, 169 (1960). 257. W. Banks, J. N. Hay, A, Sharpies, G. Thompson, Polymer, 5, 163 (1964).
258. T. Naono, J. Sci. A, (Hiroshima Univ.), 24, 653 (1960). 259. J. D. Hoffman, G. S. Ross, L. J. Frolen, private communication. 260. S. Hoshino, F. Meineek, J. Powers, R. S. Stein, J. Polym. Sci. A, 3, 3041 (1965). 261. B. von Falkai, H. A. Stuart, Kolloid-Z., 162, 138 (1959). 262. H. D. Keith, F. J. Padden Jr., J. Appl. Phys., 35, 1270, 1286 (1964). 263. L. Marker, P. M. Hays, G. RTilley, R. M. Early, O. J. Sweeting, J. Polym. Sci., 38, 107 (1959). 264. S. Z. D. Cheng, B. Wunderlich, J. Polym. Sci. B, Polym. Phys, 24, 577 (1986). 265. E. Ratajski, PhD Thesis, Linz University, Linz, Austria, 1993; H. Janeschitz-Kriegel, E. Fleischmann, W. Geymayer in: J. Karger-Kocsis (Ed.), "Polypropylene: Structure, Blends and Composites A", Chapman and Hall, London, 1995, p. 295. 266. See Ref. #6, p.49. 267. M. Chen, J-Y. Chen, J. Polym. Sci., Polymer Phys., 36,1335 (1998). 268. A. S. Kenyon, R. C. Gross, L. Wurstner, J. Polym. Sci., 40, 159 (1959). 269. J. Boon, G. Challa, D. W. van Krevelen, J. Polym. Sci. A-2, 6, 1835 (1968). 270. T. Suzuki, A. J. Kovacs, Polym. J., 1, 82 (1970). 271. T. Suzuki, A. Kovacs, Polym. J., 1, 82 (1970); see also R. L. Miller (Ed.), "Flow Induced Crystallization", Breach Science Pub. Ltd., London, 1979, p. 31. 272. B. C. Edwards, P. J. Phillips, Polymer, 15, 351 (1974). 273. A. de Boer, G. O. R. Alberda van Ekenstein, G. Challa, Polymer, 16, 930 (1975). 274. G. O. R. Alverda van Ekenstein, Y. Y. Tan, G. Challa, Polymer, 26, 283 (1985). 275. Z. Bartczak, A. Geleski, M. Pracella, Polymer, 27, 537 (1986). 276. E. Martuscelli, C. Sellitti, C. Silvestre, Makromol. Chem., Rapid Comm., 6, 125 (1985). 277. E. Martuscelli, Polym. Eng. Sci., 24, 563 (1984) 278. E.Martuscelli, Polymer, 25, 1099 (1984). 279. G. S. Y. Yeh, S. L. Lambert, J. Polym. Sci. A-2, 10, 1183 (1972). 280. Z. Bartczak, A. Galeski, Polymer, 31, 2027 (1990). 281. J. Petermann, H. Gleiter, J. Polym. Sci. Phys. Ed., 11, 359 (1973). 282. Y Long, Z. H. Stachurski and R. A. Shanks, Polymer. Internat., 26, 143 (1991). 283. P. J. Phillips, B. C. Edwards, J. Polym. Sci., Polym. Phys. Ed., 13, 1819 (1975). 284. J. N. Hay, P. A. Fitzgerald, M. Wiles, Polymer, 17, 1015 (1976). 285. B. C. Edwards, P. J. Phillips, Polymer, 15, 491 (1974). 286. E. G. Lovering, J. Polym. Sci. C, 30, 329 (1970). 287. E. G. Lovering, J. Polym. Sci. A-2, 8, 747 (1970). 288. J. Huang, H. Marand, Macromolecules, 30, 1069 (1997). 289. M. Inoue, J. Polym. Sci., 61, 343 (1962). 290. E. Perez, A. Bello, J. G. Fatou, Makromol. Chem., 186, 439 (1985).
291. W. J. Barnes, W. G. Luetzel, F. P. Price, J. Phys. Chem., 65, 80 (1961). 292. S. F. Dzhaliov, J. Phys. Chem. (USSR), 39, 10,1376 (1965). 293. F. Rybnikar, Coll. Czech. Chem. Commun., 31, 4080 (1966). 294. F. De Candia, V. Vittoria, Makromol. Chem., 155,17 (1972). 295. D. R. Beech, C. Booth, I. H. Hillier, C. J. Pickles, Eur. Polym. J., 8, 799 (1972). 296. A. J. Kovacs, C. Straupe, A. Gonthier, J. Polym. Sci. (Polym. Symp.), 59, 31 (1977). 297. R. Archambault, R. E. Prud'homme, J. Polym. Sci. Polym. Phys. Ed., 18, 35 (1980); 27, 537 (1986). 298. L. Crispino, E. Martuscelli, M. Pracella, Macromol. Chemie, 181, 1747 (1980); See also J.G. Fatou in Ref. 332. 299. C. Booth, D. V. Dodgson, I. H. Hillier, Polymer, 11, 11 (1970). 300. S. Aggarwal, L. Marker, W. L. Kollar, R. Geroch, J. Polym. Sci. A-2, 4, 715 (1966). 301. J. H. Magill, Makromol. Chem., 86, 283 (1965). 302. L. Paternostre, M. Dosiere, D. Villiers, P Damman, Cl. Bourgaux in Ref. 15, p. 549. 303 P. Damman and J. J, Point, Ref 15, p. 539. 304. W. Banks, M. Gordon, A. Sharpies, Polymer, 4, 61 (1963). 305. E. Martuscelli, Polymer, 25, 1099 (1984). 306. K. S. Sastry, R. D. Patel, Eur. Polym. J., 8, 63 (1972). 307. G. C. Alfonso, T. P. Russell, Macromolecules, 19, 1143 (1986). 308. J. Huang, A. Prasad, H. Marand, Polymer, 35, 1896 (1994). 309. C. del Rio, J. L. Acosta, Polym., Bull, 38, 63 (1997). 310. B. von Falkai, W. Rellensmann, Makromol. Chem., 75, 112 (1964). 311. M. Takayanagi, Mem. Fac. Eng. Kyushu. Univ., 16 (3), 111 (1957). 312. P. J. Phillips, H. T. Tseng (private communication). 313. M. Takayanagi, N. Kusumoto, J. Chem. Soc. Japan (Ind. Chem. Sect.), 62, 587 (1959). 314. F. D. Hartley, F. W. Lord, L. B. Morgan, Proc. Roy. Soc. A (London), 247, 23 (1954). 315. F. van Antwerpen, Doctoral Thesis, "Kinetics of Crystallization Phenomena of Spheruiites in Polyethyleneterephthalate", Delft Technical Univ. 1971. 316. R. Vasanthakumari, A. J. Pennings, Polymer, 24, 175 (1983). 317. A. Sharpies, F. L. Swinton, Polymer, 4, 119 (1963). 318. C. J. Ong, F. P. Price, J. Polym. Sci., Polym. Symp., 63, 59 (1978). 319. R. Pearce, G. R. Brown, R. H. Marchessauit, Polymer, 35, 3984 (1994). 320. N. Okui (private communication). 321. J. H. Magill, J. Polym. Sci., Part A, 3, 1995 (1965). 322. J. H. Magill, Polymer, 6, 367 (1965). 323. F. D. Hartley, F. W. Lord, L. B. Morgan, Ric. Sci. Suppl. A, 25, 577 (1955). 324. J. G. Fatou, E. Riande, R. Garcia Valdecasas, J. Polym. Sci., 13, 2103 (1975). 325. R P. Price, "Fundamental Phenomena in the Materials Sciences", Surface Phenomena Chem. Biol., 3, 85 (1966).
326. E. H. Boasson, J. M. Woestenenk, J. Polym. Sci., 24, 57 (1957). 327. F. Khoury, J. Polym. Sci., 33, 389 (1958). 328. J. V. McLaren, Polymer, 4, 175 (1963). 329. B. B. Burnett, W. F. McDevit, J. Appl. Phys., 28, 1101 (1957). 330. J. V. McLaren, Polymer, 4, 175 (1963). 331. C. R. Lindegren, J. Polym. Sci., 50, 181 (1961). 332. J. G. Fatou, C. Marco, L. Mandelkern, Polymer, 31, 1685 (1976); See also J. G. Fatou, "Morphology and Crystallization of Polyolefins", Chap.8, in Handbook of Polyoleflns, M. Dekker, New York, 1993, p. 155. 333. J. H. Magill, J. Appl. Phys., 35, 3249 (1964). 334. E. Riande, J. G. Fatou, Polymer, 17, 795 (1976). 335. W. Wang, J. M. Schultz and B. S. Hsiao, J. Polym. Sci., Part B: Polymer Phys., 34, 3095 (1996). 336. E. Riande, J. G. Fatou, Polymer, 17, 99 (1976). 337. B. G. Risch, S. Srivavas, G. L. Wilkes, J. F. Geibal, C. Ash, S. White, M. Hicks, Polymer, 37, 3623 (1996). 338. L. C. Lopez, G. L. Wilkes, J. E. Giebel, Polymer, 30, 147 (1989). 339. M. Kyotani, H. Kanestuna, J. Poly. Sci., Phys. Ed., 12, 231 (1974). 340. C. J. Plummer, P. Menu, N. Cudre-Mauroux, H. H. Kausch, J. Appl. Polym. Sci., 55, 489 (1995). 341. E. Morales, M. Salmeron, J. L. Costa, J. Polym. Sci., Part B: Polym. Phys., 34, 2715 (1996). 342. G. Feio, J. P. Cohen-Addad, J. Polym. Sci., Part B: Polym. Phys., 26, 389 (1988). 343. Yu K. Godovsky, G. L. Slonimsky, J. Polym. Sci., Polym. Phys. Ed., 12, 1053 (1974). 344. J. C. Hser, S. H. Carr, Polym. Eng. Sci., 19, 436 (1979). 345. G. Feio, G. Buntinx, J. P. Cohen-Addad, J. Polym. Sci., Part B: Polym. Phys., 27, 1 (1989). 346. F. Rybnikar, Coll. Czech. Chem. Commun., 27,2307 (1962). 347. L. Mandelkern, in: R. H. Doremus, B. W. Roberts, D. Turnbull (Eds.), "Growth and Perfection of Crystals", Wiley, New York, 1958, p. 467. 348. D. R. Brown, J. Jones, J. Polym. Sci., Polym. Phys. Ed., 22, 655 (1984). 349. D. M. Hoffman, B. M. McKinley, Polym. Eng. Sci., 25, 567 (1985). 350. W. S. Lambert, P. J. Phillips, Polymer, 37, 3585 (1996). 351. A. Aref-Azar, J. N. Hay, J. Marsden, N. Walker, J. Polym. Sci., Polym. Phys. Ed., 18, 637 (1980). 352. B. Pena, J. A. Delgado, A. Bello, E. Perez, Polymer, 35,3039 (1994). 353. J. F. Oth, P. J. Flory, J. Am. Chem. Soc, 80, 1927 (1958). 354. L. Mandelkern, F. A. Quinn, Jr., D. E. Roberts, J. Am. Chem. Soc, 78, 926 (1956). 355. W. Cooper, G. Vaughan, Polymer, 4, 329 (1963). 356. M. Johnsen, G. Nachtrieb, H. G. Zachmann, Kolloid Z. u Z. Polymere, 240, 756 (1970). 357. E. G. Lovering J. Polym. Sci. A, 2, 2197d (1970). 358. R. Ono, K. Miyasaka and K. Ishikawa, J. Polym. Sci., Polym. Phys. Ed., 11, 1477 (1973).
359. N. Overbergh, D. Sadler, A. Keller, J. Polym. Sci., 15, 1485 (1977). 360. E. B. Orler, B. H. Calhoun, R. B. Moore, Macromolecules, 29, 5965 (1996). 361. S. Cimmino, E. DiPace, E. Martuscelli, C. Silvestre in Ref. 15, p. 527. 362. V. Balsamo, F. von Gyldenfeldt, R. Stadler, Macromol. Chem. Phys., 197, 3317 (1996). 363. J. H. Griffith, B. G. Ranby, J. Polym. Sci., 38, 107 (1959). 364. J. K. Shah, L. E. Lahti, Ind. Eng. Chem. Prod. Res. Dev., 12, 304 (1973). 365. A. Celli, E. D. Zanotto, Thermochimica Acta, 260/270, 191 (1995); Data courtesy of A. Celli (in 1997), "Montell G. Natta Research Center", 44100 Ferrara, Italy. 366. M. J. Galante, L. Mandelkern, R. G. Alamo, A. Lehtinen, R. Paukkeri, J. Thermal Analysis, 47, 913 (1996). 367. F. Avalos, M. A. Lopez-Manchado, M. Arroyo, Polymer, 37, 5681 (1996). 368. S. Laihonen, U. W. Gedde, P. E. Werner and J. MartinezSalazar, Polymer, 38, 361 (1997). 369. J. Q. G. MacLaine, C. Booth, Polymer, 16, 680 (1975). 370. Yu K. Godovsky, G. L. Slonimsky, N. M. Garbar, J. Polym. Sci. C, 38, 1 (1972). 371. C. C. Chu, Polymer, 21, 1480 (1980). 372. M. Neron, A. Tardif, R. E. Prudhomme, Eur. Polym. J., 12, 605 (1976). 373. M. Gilbert, F. J. Hybart, Polymer, 13, 327 (1972). 374. E. Turska, H. Janeczek, Polymer, 20, 855 (1979). 375. P. C. Vilanova, S. M. Rivas, G. M. Guzman, Polymer, 26, 423 (1985). 376. B. Gunther, H. G. Zachmann, Polymer, 24, 1008 (1983). 377. G. C. Alfonso, M. P. Verdona, A.Wasiak, Polymer, 19, 711 (1978). 378. G. S. Fielding-Russell, P. S. Pillai, Kolloid Z., Z. Polymer, 250, 2 (1972). 379. L. Bouland, Plast. Eng., 43, 39 (1987). 380. C. Borri, S. Brucker, V. Creseenzi, G. Delia Fortuna, A. Mariano, P. Scarazzato, Eur.Polym. J., 7, 515 (1971). 381. R. C. Domszy, M. Glotin, L. Mandelkern, J. Polym. Sci., Polym. Symp., 71, 151 (1984). 382. Y. Yu, K-J. Choi, Polym. Eng. Sci., 37, 91 (1997). 383. G. Gurato, D. Gaidano, R. Zannetti, Makromol. Chem., 79, 231 (1978). 384. B. G. Risch, G. L. Wilkes, J. M. Warakomski, Polymer, 34, 2328 (1993). 385. F. Maneschalchi, R. Rossi, A. Mathussi, Eur. Polym. J., 9, 601 (1973). 386. W. H. Jo, D. H. Baik, J. Polym. Sci., Part B: Polym. Phys., 27, 673 (1989). 387. J. H. Magill, Polym. Lett., 6, 853 (1968). 388. J. H. Magill, J. Polym. Sci. A-2, 5, 89 (1967). 389. T. Masuko, R. Okuizumi, K. Yonetake, J. H. Magill, Macromolecules, 22, 4636 (1989). 390. C. Marega, A. Marigo, V. D. Noto, R. Zannetti, Macromol. Chem., 193, 1599 (1992). 391. J. J. Kolstad, J. Appl. Polym., Sci., 62, 1079 (1996).
392. N. Bulakh, J. P. Jog, J. Macromol. Sci. B: Phys., 34, 15 (1995). 393. G. D. Desio, L. Rebenfeld, J. Appl. Polym. Sci., 45, 2005 (1992). 394. G. P. Desio, L. Rebenfeld, J. Appl. Polym. Sci., 44, 1989 (1992). 395. V. E. Reinsch, L. Rebenfeld, J. Appl. Polym. Sci., 59, 1913 (1996). 396. V. E. Reinsch, L. Rebenfeld, J. Appl. Polym. Sci., 59, 1929 (1996). 397. V. E. Reinsch, L. Rebenfeld, J. Appl. Polym. Sci., 59, 1939 (1966). 398. R. D. Wesson, Polym. Eng. Sci., 34, 1157 (1994). 399. Y. F. Wang, D. R. Lloyd, Polymer, 34, 2324 (1993). 400. T. Sasaki, M. Kurita, T. Yabu, T. Takahashi, Macromolecules, 28, 8528 (1995). 401. W. Kozlowski, J. Polym. Sci., Part C, #38, 47 (1972). 402. D. J. Blundell, B. N. Orbon, Polymer, 24, 953 (1983). 403. Y. Yokoyama, T. Ricco, J. Applied Polym. Sci., 66, 1007 (1997).
404. C-S. Wang, C-S. Lin, - Lai, Polymer Bull., 39, 185 (1997). 405. T. Miyata, T. Masuko, Polymer, 38, 4003 (1997). 406. R. J. Ciora, Jr., J. H. Magill, Macromolecules, 23, 2350 (1990). 407. R. J. Ciora. Jr., J. H. Magill, Macromolecules, 23, 2359 (1990). 408. E. M. Woo, W. J. Chang, C-H. Hong, C-Y, Chen, Macromol. Chem. Phys., 197, 2359 (1996). 409. E. Martuscelli, M. Pracella, W. P. Yue, Polymer, 25, 1099 (1984). 410. J. H. Lee, S.-G. Lee, K.-Y Choi, J. Liu, Polymer J. 30, 531 (1998). 411. S. S. Wu, D. S. Kalika, R. R. Lamonte, S. Makhija, J. Macromol, Sci. B: Phys., 35, 157 (1996). 412. S. W. Lee, M. Cakmak, J. Macromol. Sci. B, 37, 501 (1998). 413. J.-C. Lee, H. Tazawa, T. Ikehara, T. Nishi, Polymer J., 30, 327 (1998). 414. S. Hamada, T. Sato, T. Shirai, Bull. Chem. Soc. Japan, 40, 864 (1967).
l s o m o r p h o u s
P o l y m e r
P a i r s
G . Allegra, S. V. M e i l l e Dipartimento di Chimica del Politecnico, Milano, Italy W . Porzio lstituto di Chimica delle Macromolecole del CN.R., Milano, Italy
A. Introduction B. Techniques C. Tables of lsomorphous Pairs of Monomer Units Table 1. lsomorphous Units Within the Same Macromolecules (Copolymers) 1.1. lsomorphous Units with Different Chemical Constitution 1.2. lsomorphous Units with Different Configurations and/or with Head-toHead, Head-to-Tail Constitutional Disorder Table 2. Isomorphism of Macromolecules D. References A.
VI-399 VI-400 VI-401 VI-401 VI-401
VI-405 VI-405 VI-406
INTRODUCTION
This chapter is intended to provide a list of known pairs of isomorphous monomeric units in synthetic crystalline polymer systems; we shall regard as "isomorphism" the statistical copresence of different units within the crystallites. Additional information will be also given, namely: (a) the approximate range of relative concentrations where isomorphism is observed; (b) the chain conformation in the crystalline state, the type of isomorphism (see below); (c) the physicochemical techniques used in the investigation (see Section B); and (d) the references to the scientific contributions wherein the isomorphism is demonstrated, implied, or claimed. Systems in which the molar fraction of either type of monomeric units does not exceed about 5% have been disregarded. Cocrystallization of hydrogenated and deuterated units has not been considered as relevant in this context either.
Although we are aware of the growing expansion and importance of copolymer systems producing mesophases (92), we have chosen to limit our list to isomorphism in the classical crystallographic sense. In particular, polymer systems were regarded as crystalline either (i) when offmeridional X-ray reflections appear on the nonequatorial layers, or (ii) if the sample is shown to undergo a transition to a mesophase system before melting, as may be revealed by DSC methods. Sometimes distinctions between real crystalline systems and mesophases may be difficult, such as in the case of several polyesters. In all instances in which some degree of uncertainty is implied, an asterisk has been inserted. The isomorphous polymer pairs are subdivided according to the scheme already proposed in a review article on the subject (2). Two basic classes of macromolecular isomorphism were distinguished, namely isomorphism of whole homopolymer chains (Class 1) and isomorphism of monomeric units within copolymer chains (Class 2) (2,62,63). Class 1 may be further subdivided into three different subclasses: subclass 1.1, where the monomeric units differ in chemical constitution (copolymers in the usual sense) (Table 1.1); subclass 1.2, where the monomeric units have randomly opposite, nonsuperimposable configurations (Table 1.2); and subclass 1.3, where the monomeric units, although stereochemically identical, assume different conformations at random. In spite of the scientific relevance of the last subclass in the context of polymer structure, we have preferred to omit the corresponding table, in view of both, the relatively low relevance of the issue for many people interested in polymer isomorphism, and of the wide ensemble of polymers that are presumably affected by this crystallographic disorder under appropriate circumstances. Also, for the sake of greater generality, we have included in subclass 1.2 (Table 1.2) all the cases where the isomorphous units are related either by geometrical stereoisomerism or by random head-to-head, head-to-tail enchainment. Concerning Class 2, the subclass consisting of stereochemically identical chains with randomly opposite orientations of their axes within the crystal is not
reported for the same reasons given above for subclass L3. Consequently, only isomorphous systems consisting of stereochemically different homopolymer chains are reported. In each case, the two units of the isomorphous pair are separated by a slash. From a crystallographic viewpoint the following two types of polymer isomorphism may be distinguished (the different monomeric units will be designated as A and B). Type 1: Homopolymers AN and B M have a similar crystal structure, with sufficiently small differences in unit cell dimensions. Binary systems, whether copolymers or homopolymer mixtures, display the same structure at any intermediate composition, except for a continuous change in cell dimensions (isomorphism in a true sense). The homopolymer chains may possess helical conformations with slightly different ratios of monomeric units per helix pitch, in which case intermediate helix conformations should appear at intermediate compositions. Type 2: The two homopolymers have different crystal structures and in each of them some amount of monomeric units of the other may be accommodated. Accordingly, the structure of the homopolymer corresponding to the monomeric units with prevailing amount is observed, and an abrupt change in the structure of the second homopolymer may take place at a suitable composition. The simultaneous presence of both structures may also be observed within some intermediate composition range, in analogy with lowmolecular weight systems (isodimorphism). These types correspond to the first two types of polymer isomorphism suggested by Natta (62,63), who also proposed a third type whenever one of the two homopolymers is unable to crystallize by itself. We have thought it expedient to include these caseswithin Type 2, particularly in view of the difficulty in ascertaining the complete inability of either homopolymer to crystallize. It should be added in this context that no assumption concerning thermodynamic stability of the following isomorphous systems is implicit here; on the other hand, the crystal packing and friction forces may well be strong enough in most cases as to prevent any appreciable solid-solid transformation. Concerning the partition of the data within each separate heading (1.1, 1.2, etc.), we tried to conform to the standard criteria adopted in this book. Each monomeric unit is assigned to the class corresponding to the higher ranking monomer. Whenever a crystallizable copolymer is constituted by a regularly repeating sequence of monomeric units, isomorphism is usually ruled out in view of the very presence of constitutionally repeating units, i.e.., of an effective homopolymer.
Several vinyl copolymers show macromolecular isomorphism when the side groups are sterically ordered. If, as it always happens in the examples known hitherto, the order is of the isotactic type, we have called them "isotactic" (copolymers). Several cases are known of polymers having long, regular side groups (comb-like copolymers or the like) that may promote crystallization in spite of lack of configurational order in the main chain. These systems are not considered as belonging to the present list if crystallization is basically due to regular packing of the side chains only. Whenever the conformation of the chain skeleton may be described as a regular helix, we have used the symbolism recommended by the document "Terminology Relating to Crystalline Polymers" of IUPAC (1984) and adopted, e.g., by R. L. Miller in the chapter "Crystallographic Data for Various Polymers" of this book. As an example, the helical conformation of the crystalline isotactic copolymers of 3methyl-1-butene and 4-methyl-l-pentene (see Ref. 14), corresponding to four monomeric units in one turn, each unit having two skeletal atoms, is designated as 2*4/1. However, referring to the general notation p/q, we have not considered as helical those conformations where both p and q are equal to unity (i.e., one repetitive unit in one turn). In these instances, qualifications such as "extended", "planar zig-zag", etc. are used to characterize the conformation. Also, whenever the helix structure is not explicitly reported by the author, the general term "helical" is adopted. It may happen that, for a given concentration of the two monomeric units, more than one crystalline phase is observed. Under these circumstances, the corresponding chain conformations are reported. For a discussion of macromolecular isomorphism, see Refs. 2,90,91, and some of the papers quoted therein. B. TECHNIQUES XR
Qualitative evaluation of crystallinity by diffraction methods XRl Structural analysis by diffraction methods (including observation of continuous changes of lattice spacings) MP Optically determined melting point TA Thermal analysis (DSC, DTA, etc.) DM Dynamical-mechanical measurements (e.g., mechanical and dielectric relaxation experiments) MA Morphological analysis (electron microscopy, SAXS etc.) D Density determination by flotation techniques IR Infrared spectroscopy ED Electron diffraction CA Conformational analysis
C. TABLES OF ISOMORPHOUS PAIRS OF MONOMER UNITS TABLE 1. ISOMORPHOUS UNITS WITHIN THE SAME MACROMOLECULES (COPOLYMERS) MoI % of Monomer giving isomorphous copolymers
first
component
Type of
isomorphism
Chain conformation
Techniques
Refs.
1.1. ISOMORPHOUS UNITS WITH DIFFERENT CHEMICAL CONSTITUTION 1.1.1. MAIN-CHAIN CARBON COPOLYMERS CopoJy(alkenamers) trans-\~Pentenamer/trans-l-octenamer frarcs-1-Pentenamer/frans-l-heptenamer trans-l-Octenamer/frans-l-dodecenamer Copoly(alkenes) Ethylene/propylene Propylene/n-l-hexene Propylene/n-1-butene n-l-Butene/3-methyl-l-butene n-1-Butene/rc-l-pentene n-1-ButeneM-l-hexene n-l-Butene/4-methyl-l-pentene /2-1-Butene/rc-l-octene n-1-Butene n-1-Butene/n-l-decene n-l-Butene/«-l-dodecene 3-Methyl-l-butene/4-methyl-l-pentene 4-Methyl-pentene/l-pentene 4-Methyl-l-pentene/n-l-hexene 4-Methyl-l-pentene/4-methyl-l-hexene 4-Methyl-l-pentene/rc-l-octene 4-Methyl-l-pentene/n-l-decene Copoly(vinyls) (nonhalogenated) Ethylene/vinyl alcohol Ethylene/(ethylene + CO) Isopropyl vinyl ether/sec-butyl vinyl ether Copoly(vinyls) (halogenated) Ethylene/tetrafluoroethylene
Vinyl Vinyl Vinylidene
Vinylidene
fluoride/vinylidene fluoride fluoride/tetrafluoroethylene fluoride/trifluoroethylene
fluoride/tetrafluoroethylene
Vinylidene fluoride/chlorotrifluoroethylene Vinylidene fluoride/bromotrifluoroethylene Trifluoroethylene/tetrafluoroethylene Tetrafluoroethylene/chlorotrifluoroethylene Tetrafluoroethylene/bromotrifluoroethylene Tetrafluoroethylene/hexafluoropropylene Vinyl chloride/vinylidene chloride
100-0 100-0 100-0
1 1 1
Extended, planar zig-zag Extended, planar zig-zag Extended, planar zig-zag
XRl XRl XRl
100-70
2
Planar zig-zag
100-50 89-3 100-0 100-0 94-16 100-30 100-75 75-50 50-0 100-50
2 2 2 1 1 2 2 2 2 2
100-90 100-90 100-50 50-0 50-100
2 2 2 2 2
0-50 100-20 100-0 100-70 100-85
2 2 1 2 2
Isotactic (2*3/1)* Isotactic (2*3/1) Isotactic (2*3/1) Isotactic (2*4/1) and (2*29/8) Isotactic (2*3/1) Isotactic (2*3/1) and (2*29/8) Isotactic (2*3/1) and (2*29/8) Isotactic (2*3/1) and (2*7/2) Isotactic (2*7/2) Isotactic (2*3/1) and (2*29/8) Isotactic (2*3/1) and (2*29/8) Isotactic (2*3/1) and (2*29/8) Isotactic (2*4/1) Isotactic (2*4/1) and (2*7/2) Isotactic (2*4/1) (2*4/1) Isotactic (2*7/2) Isotactic (2*7/2) Isotactic (2*7/2) Isotactic (2*7/2) Isotactic (2*7/2)
MP, XRl, XR, TA XR, TA, DM XRl, MP XRl, MP, MA XRl XRl 5 MP XRl, MP XRl 5 MP
100-0
2
Planar zig-zag
100-50 100-0
1 1
Planar zig-zag Isotactic (2*17/5)
100-0
2
Planar zig-zag
100-0 100-20 100-90 88-15 15-0 52 55 100-0 100-0
1 2
2
Planar zig-zag Planar zig-zag Planar zig-zag (TGTG'),, Helical Planar zig-zag, (2*3/1) Planar zig-zag, (TGTG')* Planar zig-zag, (TGTG ')„ Planar zig-zag
100-0 100-10 100-0 100-0 100-55 100-93 100-85, 44-0
2 2 2 1 2 2 2
Planar zig-zag, (2*17/1) Planar zig-zag Helical, planar zig-zag Helical Helical Helical Planar zig-zag, (TGTG'),,
2
20,57,60 20,57,60 20,57,60 5,6,71,77, 8,93, 77 67 84 41 83 84 84 84
XRl 5 MP
84
XRl, MP XRl5 MP XRl, MP
84 84 70
XRl1MP5 XRl TA, DM TA5DM XRl5 MP XRl 5 MP XRl, MP
85 15 41 41 3 85 85
XRl XRl5 DM XRl ED5MA XR, MP
12 58 11,17,18 1 3
XRl, TA, MA XRl CA XRl, MP XRl, MP XR, TA, DM
34 88,55 29 61 61 94
XRl XRl, IR XRl XRl, TA, MA XRl XRl XRl XRl, TA, MA XRI5 TA XRl5 TA XRl, TA XRl, TA, MA
53 80 52 34 55 55 55 34 56 56 87 65
References page VI - 406
TABLE 1. cont'd
Monomer giving isomorphous copolymers
MoI % of first Type of component isomorphism Chain conformation
Copoly(styrenes) Styrene/p-methylstyrene Styrene/o-methylstyrene Styrene/o-fluorostyrene Styrene/p-fluorostyrene
100-50 100-80 100-0 100-50 50-0 100-85 100-85 100-85
2 2 2
Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic
100-84
2
(2*9/5)*
100-0 100-0 100-0 100-0 100-0 100-0
1 1 1 1 1 1
Isotactic Isotactic Isotactic Isotactic Isotactic Isotactic
100-0 100-0
1 1
Equirnolar proportion of the three acids 100-90,40-0
Styrene/p-ethylstyrene Styrene/p-chlorostyrene Styrene/p-bromostyrene
2 2 1 2
(2*3/1) (2*3/1) (2*3/1) (2*3/1) (2*4/1) (2*3/1) (2*3/1)
Techniques
XRl, XRl, XRl, XRl,
Refs.
MP MP MP MP
62,63 62,63 62,63 62,63
XRl, MP XRl, MP XRl, MP
62,63 62,63 62,63
XRl, TA, D
21,22
1.1.2. MAIN-CHAIN HETEROATOM COPOLYMERS Copoly(ethers) Trioxane/l,3-dioxolane Copoly(aldehydes) Acetaldehyde/propionaldehyde Acetaldehyde/w-butyraldehyde Acetaldehyde/isobutyraldehyde Propionaldehyde/n-butyraldehyde w-Butyraldehyde/isobutyraldehyde n-Butyraldehyde/n-heptanal Copoly(carbonates) Hydroquinone/chlorohydroquinone/COCl2 Toluenehydroquinone/chlorohydroquinone/COCl2 Copoly(esters) Ethylene glycol, sebacic acid/undecanedioic acid/dodecanedioic acid Ethylene glycol, terephthalic acid/p-hydroxybenzoic acid Ethylene glycol, terephthalic acid/isophthalic acid Ethylene glycol, terephthalic acid/p-hydroxyoxypropoxybenzoic acid Ethylene glycol, terephthalic acid/l,4-bis-(pcarboxyphenoxy)butane Ethylene glycol, l,4-bis-(p-carboxyphenoxy) butane/p-y-hydroxypropoxybenzoic acid Tetramethylene glycol/decamethylene glycol, adipic acid Pentamethylene glycol/decamethylene glycol, adipic acid Hexamethylene glycol, adipic acid/decamethylene glycol, sebacic acid Hexamethylene glycol, sebacic acid/decamethylene glycol, adipic acid Decamethylene glycol, adipic acid/sebacic acid Decamethylene glycol/hydroquinone, adipic acid Decamethylene glycol/diethylene glycol, adipic acid 4,4'-Dihydroxybiphenyl, pimelic acid/azelaic acid 4,4/~Dihydroxybiphenyl, azelaic acid/ decanedioic acid 4,4'-Dihydroxybiphenyl, decanedioic acid/ tetradecanedioic acid 4,4/-Dihydroxybiphenyl, dodecanedioic acid/ tetradecanedioic acid Lactic acid R/S Copoly(amides) Hexamethylenediamine, adipic acid/sebacic acid Hexamethylenediamine, adipic acid/cyclohexanedicarboxylic acid
copolymer copolymer copolymer copolymer copolymer copolymer
(2*4/1) (2*4/1) (2*4/1) (2*4/1) (2*4/1) (2*4/1)
XRl XRl XRl XRl XRl XRl
78 78 78 78 78 78
Extended, planar zig-zag Extended, planar zig-zag
XR, MP XR, MP
73 73
2
Extended, planar zig-zag
XR
31
2
Extended, distorted planar
XR, TA, D
100-70, 30-0
2
Extended, distorted planar
XR, TA, ED, MA
50 48 39
100-0
2
Extended, distorted planar
only 50
2
Extended, distorted planar
D XR XR, MP XR
48 43 44 45
only 50
2
Extended, distorted planar
XR
46
30-0
2
Extended, planar zig-zag
MP
28
40-0
2
Extended, planar zig-zag
MP
28
100-0
2
Extended, planar zig-zag
XRl, TA
42
100-0
2
Extended, planar zig-zag
XRl, TA
42
100-70 100-70 100-70
2 2 2
Extended, planar zig-zag Extended, planar zig-zag Extended, planar zig-zag
MP MP MP
28 28 28
100-0 100-60, 25-0
2 2
Extended, planar zig-zag Extended, planar zig-zag
XRl, TA XRl, TA
86 86
100-0
2
Extended, planar zig-zag
XRl, TA
86
100-0
2
Extended, planar zig-zag
XRl, TA
86
100-85
2*
Extended, planar zig-zag *
XR, MA, TA
30
100-60,50-0 100-70
2* 2
Extended, planar zig-zag Extended, planar zig-zag
XR MP
7 72
TABLE 1. cont'd
Monomer giving isomorphous copolymers Hexamethylenediamine, adipic acid/terephthalic acid
MoI % of first Type of component isomorphism 100-0
Hexamethylenediamine, adipic acid/ 100-60, 50-0 nonamethylene diamine, azelaic acid Hexamethylenediamine/decamethylene100-70, 60-0 diamine, adipic acid Hexamethylenediamine, adipic acid/deca100-65, 50-0 methylene diamine, sebacic acid Hexamethylenediamine/fram-l,4-cyclohexanebis100-70* methylamine, adipic acid Hexamethylenediamine, suberic acid/4-benzene40-0* diacetic acid Hexamethylenediamine/decamethylene100-0 diamine, adipic acid Hexamethylenediamine/decamethylenediarnine, 100-0 sebacic acid Hexamethylenediamine, sebacic acid//?-phenylene100-0 dipropionic acid Hexamethylenediamine, sebacic acid/ 100-0 3-(/?-carboxy-methyleneoxy) phenylpropionic acid Hexamethylenediamine, sebacic acid/ 100-0 4-(p-carboxy-methylene)phenylbutyric acid Hexamethylenediamine/WV'-diisobutyl100-0 hexamethylene diamine, sebacic acid Hexamethylenediamine, sebacic acid/1,4100-0 (dicarboxy-methyleneoxy)phenylene Hexamethylenediamine, undecanedioic acid/ 100-0 6-oxa-hendecanedioic acid Hexamethylenediamine, undecanedioic acid/ 100-0 6-thio-hendecanedioic acid Hexamethylenediamine/o^a'-p-xylenediamine, 50-0* sebacic acid Hexamethylenediamine,/7-phenylenedipropionic 100-0 acid/4-(/?-carboxymethylene)phenylbutyric acid Hexamethylenediamine,/>phenylene100-0 dipropionic acid/3-(p-carboxymethyleneoxy)phenylpropionic acid Hexamethylenediamine, /7-phenylene100-0 dipropionic acid//?-bis-(carboxymethyleneoxy)phenylene Hexamethylenediamine, 3-(/?-carboxymethyleneoxy) 100-0 phenylpropionic acid//?-bis-(carboxymethyleneoxy) phenylene Heptamethylenediamine, adipic acid/terephthalic 100-0 acid Heptamethylenediamine/4-oxa-heptamethylene75, 50, 25 diamine, adipic acid Heptamethylenediamine, adipic acid/4-oxa-hepta75, 50, 25 methylenediamine, terephthalic acid Heptamethylenediamine, terephthalic acid/4-oxa75, 50, 25 heptamethylenediamine, adipic acid Heptamethylenediamine/4-oxa-heptamethylene75, 50, 25 diamine terephthalic acid Octamethylenediamine, adipic acid/terephthalic 100-0 acid Octamethylenediamine/2,2'-/>phenylene-bis100-0*(100-60) ethylamine, adipic acid Octamethylenediamine/2,2'-/?-phenylene100-0*(100-10) bis-ethylamine, azelaic acid Octamethylenediamine, sebacic acid/ 100-0 4-benzenedipropionic acid
Chain conformation
2
Extended, planar zig-zag
2
Techniques
Refs.
Extended, planar zig-zag
MP XR TA XR
96,66,72 23 40 7
2*
Extended, planar zig-zag
XR
7
2*
Extended, planar zig-zag
XR
7
2
Extended, planar zig-zag
MP
72
2
Extended, planar zig-zag
MP
95
2
Extended, planar zig-zag
XR
7
2
Extended, planar zig-zag
2
Extended, planar zig-zag
XR MP XR, MP
7 28 81
2
Extended, planar zig-zag
XR, MP,
81
2
Extended, planar zig-zag
MP
81
2
Extended, planar zig-zag
XR, MP
89
2
Extended, planar zig-zag
XR, MP
81
1
Extended, planar zig-zag
MP
74
1
Extended, planar zig-zag
MP
74
2
Extended, planar zig-zag
MP
95
2
Extended, planar zig-zag
XR, MP
81
2
Extended, planar zig-zag
XR, MP
81
2
Extended, planar zig-zag
XR, MP
81
2
Extended, planar zig-zag
MP
81
2
Extended, planar zig-zag
1
Extended, planar zig-zag
MP XR, MP, DM XR, MP, DM
96 19 19
2
Extended, planar zig-zag
XR, MP, DM
19
2
Extended, planar zig-zag
XR, MP, DM
19
2
Extended, planar zig-zag
XR, MP, DM
19
2
Extended, planar zig-zag
MP
96
2
Extended, planar zig-zag
MP
95
2
Extended, planar zig-zag
MP
95
2
Extended, planar zig-zag
MP
95
References page VI - 406
TABLEI. cont'd
Monomer giving isomorphous copolymers
MoI % of first Type of component isomorphism
Octamethylenediamine^'-^-phenylenebis-ethylamine, sebacic acid Octamethylenediamine^'-p-phenylenebis-ethylamine, suberic acid Octamethylenediamine/bis(4-aminocyclohexyl) methane, dodecanedioic acid Nonamethylenediamine, adipic acid/terephthalic acid Nonamethylenediamine/bis(4-aminocyclohexyl) methane, octanedioic acid Nonamethylenediamine/bis(4-aminocyclohexyl) methane, dodecanedioic acid 5-Methyl-nonamethylenediamine/bis-(4-aminocyclohexyl)methane, dodecanedioic acid Decamethylenediamine, adipic acid/sebacic acid Decamethylenediamine, adipic acid/terephthalic acid Decamethylenediamine/bis(4-aminocyclohexyl) methane, dodecanedioic acid Undecamethylenediamine, adipic acid/terephthalic acid Dodecamethylenediamine, adipic acid/terephthalic acid Dodecamethylenediamine/bis(4-aminocyclohexyl) methane, dodecanedioic acid 1,4-Bis(aminomethyl)cyclohexane (cisftrans), adipic acid 1,4-Bis(aminomethyl)cyclohexane (cis/trans), sebacic acid 1,4~Bis(aminomethyl)cyclohexane (cis/trans), dodecanedioic acid a,a'-p-Xylenediamine, nonanedioic acid/5-oxanonanedioic acid a,a'-/?-Xylenediamine, nonanedioic acid/5thio-nonanedioic acid a,a'-p-Xylenediamine, undecanedioic acid/ 6-oxa-undecanedioic acid/6-thio-undecanedioic acid ocaVXylenediamine, triadecanedioic acid/7-oxa-triadecanedioic acid/6-oxatriadecanedioic acid a,a'-/?-Xylenediamine, triadecanedioic acid/7-thio-triadecanedioic acid a,oc'-/7-Xylenediamine, pentadecanedioic acid/6-oxa-pentadecanedioic acid oca'-p-Xylenediamine, pentadecanedioic acid/8-tia-pentadecanedioic acid a,a7-/7-Xylenediamine, 7-oxa-triadecanedioic acid/7-thio-triadecanedioic 4-Oxa-heptamethylenediamine, adipic acid/terephthalic acid Caprolactam/4(-aminomethylcyclohexyl) carboxylic acid Caprolactam/4(-aminomethyl)benzoic acid Caprolactam/Y-4(-aminomethyl)propionic acid Caprolactam-co-laurolactam
Chain conformation
Refs.
100-0* (100-10)
2
Extended, planar zig-zag
MP
95
100-0*(100-30)
2
Extended, planar zig-zag
MP
95
100-0* (90, 50)
2
Extended, planar zig-zag
TA
16
100-0
2
Extended, planar zig-zag
MP
96
100-0
2
Extended, planar zig-zag
TA
16
100-0
2
Extended, planar zig-zag
XR, TA
16
100-0* (90, 50)
2
Extended, planar zig-zag
XR, TA
16
100-0 100-0
2 2
Extended, planar zig-zag Extended, planar zig-zag
XR MP
7 96
100-0* (90, 50)
2
Extended, planar zig-zag
TA
16
100-0
2
Extended, planar zig-zag
MP
96
100-0
2
Extended, planar zig-zag
MP
96
100-0*(90, 50)
2
Extended, planar zig-zag
XR, TA
16
100-0
2
Twist boat, planar zig-zag
XRl
69
100-0
2
Twist boat, planar zig-zag
XRl
69
100-0 100-0
2 1
Twist boat, planar zig-zag Extended, planar zig-zag
XRl MP
69 74
100-0
1
Extended, planar zig-zag
MP
74
All proportions of the three acids
1
Extended, planar zig-zag
XR, MP, D
74
All proportions of the three acids
1
Extended, planar zig-zag
MP
74
100-0
1
Extended, planar zig-zag
MP
74
100-0
1
Extended, planar zig-zag
MP
74
100-0
1
Extended, planar zig-zag
MP
74
100-0
1
Extended, planar zig-zag
MP
74
75, 580,25
2
Extended, planar zig-zag
XR, MP, DM
19
100-70,50-0
2
Extended, planar zig-zag
51 f. 51 75 74 36 38
100-70 100-80, 15-0 100-70,30-0
2 2 2
Extended, planar zig-zag Extended, planar zig-zag Extended, planar zig-zag
MP ' MP XR, TA, IR XRl, TA, D, IR TA DM
100-0 100-0 80 87-0
2 2 2* 1
a-helix, a-helix, a-helix, a-helix,
XRl XRl, IR MA ED XRl, TA, IR, DM
XR MP
F
Copoly(peptides) a-Methyl-5-glutamate/Y-benzyl-5-glutamate a-Methyl-S-glutamate/Y-methyl-/?-glutamate a-Benzyl-S-glutamate/S-phenylalanine Butyl-5 aspartate/benzyl-5-aspartate
Techniques
(3*18/5) (3*18/5) (3*18/5) (3*4/1)
35,4/ 59 /¥ 82
TABLE 1. cont'd
Monomer giving isomorphous copolymers Copoly(diacetylenes)
Mol% of first Type of component isomorphism Chain conformation
Techniques
Refs.
R R' I I (Generalformula K = C - C = C-C=),, ( = C - C = C-C=) 1 _ X )] II R
R R' p-Tolylsulfonyloxymethyl//7-fluorosulfonyloxymethyl /?-Tolylsulfonyloxymethyl//7-chlorosulfonyloxymethyl /7-Tolylsulfonyloxymethyl/p-bromosulfonyloxymethyl /7-Tolylsulfonyloxymethyl//?-naphthylsulfonyloxymethyl /7-Tolylsulfonyloxymethyl//?-methoxysulfonyloxymethyl Methylcarbazolyl/methylcarbazolyl, methylanthryl Copoly(phosphazenes) (General formula [(RO),(R'O) 2-,PN]J R R' Phenyl/^-ethylphenylene 4-Chlorophenylene/4-methylphenylene 4-Chlorophenylene/4-ethylphenylene 4-Chlorophenylene/phenyl 4-Chlorophenylene/3-methylphenylene 4-Chlorophenylene/3-chlorophenylene 4-Methylphenylene/3-rnethylphenylene 3-Chlorophenylene/4-methylphenylene 3-Chlorophenylene/3-methylphenylene
R'
100-0
1
fra/u-Planar
XRl
26
100-80
1
trans-Planar
XRl
24,25
100-93
1
trans-Planar
XRl
25
100-90
1
trans-Planar
XRl
4
100-90
1
trans-Planar
XRl
4
100-94
1
trans-Planar
XRl
27
100-85/15-0 50 only 50 only 50 only 50 only 50 only 50 only 50 only 50 only
2 1* 1* 2 2* 2 2 2 1*
(cis-trans)2 (cis-trans) 2 (cis-trans) 2 (cis-trans)2 (cis-trans) 2 (cis-trans)2 (cis-trans)2 (cis-trans)2 (cis-trans)2
XRl, TA XRl, TA TA XRl, TA TA TA TA TA TA
33 9 9 9 9 9 9 9 9
1.2. ISOMORPHOUS UNITS WITH DIFFERENT CONFIGURATIONS AND/OR WITH HEAD-TO-HEAD, OR HEAD-TO-TAIL CONSTITUTIONAL DISORDER Poly (vinyl alcohol) Poly (vinyl fluoride) Poly(vinylidene fluoride) Poly(chlorotrifluoroethylene)
Atactic polymer Atactic polymer with constitutional disorder Constitutional disorder Atactic polymer
Poly(ethylene-a/rchlorotrifluoroethylene) Poly(p-carboxyphenyl methacrylate) Poly(butadiene-#//-acrylonitrile)
Atactic polymer with constitutional disorder Atactic polymer Atactic polymer
Planar zig-zag Planar zig-zag
XRl XRl
12,13,14 64
Planar zig-zag (2*14/1) (2*16/1) Extended, distorted planar
XRl, CA XRl XRl XRl
29 13 54 76
Extended, distorted planar Extended, distorted planar
XRl, ED, MA, TA XR, IR
10 32
TABLE 2. ISOMORPHISM OF MACROMOLECULES
Monomer giving isomorphous copolymers
MoI % of first Type of component isomorphism
Poly(propylene)/poly(l-butene) 100-80 and 20-0 Poly(4-methylpentene)/poly(4-methylhexene) 100-75 and 20-0 Poly(1-propylvinyl ether)/poly(^c-butyl 100-0 vinyl ether) Poly(styrene)/poly(styrene-co-/?-methyl styrene) 50 (70/30, mol/mol) Poly(oxy-4,4'-biphenylene oxy dodecanoyl)/ 100-0 poly(oxy-4,4 '-biphenylene oxy-tetradecanedioyl)
Chain conformation
Techniques
Refs.
2 1 1
Isotactic polymers (2*3/1) Isotactic polymers (2*7/2) Isotactic polymers (2*17/5)
DM, MA, TA, ED XRl, MP XRl, MP
37 3 3
1
Isotactic polymers (2*3/1)
XRl, IR
63
2
Planar zig-zag
XRl, TA, MA
86
References page VI - 406
D.
REFERENCES
1. G. C. Alfonso, L. Fiorina, E. Martuscelli, E. Pedemonte, S. Russo, Polymer, 14, 373 (1973). 2. G. Allegra, I. W. Bassi, Adv. Polym. ScL, 6, 549 (1969). 3. G. Allegra, I. W. Bassi, C. Carlini, E. Chiellini, G. Montagnoli, Macromolecules, 2, 311 (1969). 4. D. J. Ando, D. Bloor, Makromol. Chem. Rapid Commun., 1, 385 (1980). 5. C. H. Baker, L. Mandelkern, Polymer, 7, 7 (1966). 6. C. H. Baker, L. Mandelkern, Polymer, 7, 71 (1966). 7. W. O. Baker, C. S. Fuller, J. Am. Chem. Soc., 64, 2399 (1942). 8. LW. Bassi, P. Corradini, G. Fagherazzi, A. Valvassori, Eur. Polym. J., 6, 709 (1970). 9. J. J. Beres, N. S. Schneider, C. R. Desper, R. E. Singler, Macromolecules, 12, 566 (1979). 10. A. Blumstein, S. B. Clough, L. Patel, R. B. Blumstein, E. C. Hsu, Macromolecules, 9, 243 (1976). 11. M. M. Brubaker, D. D. Coffman, H. H. Hochn, J. Am. Chem. Soc, 74, 1509 (1952). 12. C. W. Bunn, S. Peiser, Nature, 159, 161 (1947). 13. C. W. Bunn, J. Appl. Phys., 25, 820 (1954). 14. C. W. Bunn, Nature, 161, 929 (1948). 15. T. W. Campbell, J. Appl. Polym. ScL, 5, 184 (1961). 16. R. W. Campbell, H. W. Hill, Jr., Macromolecules, 8, 238 (1975). 17. Y. Chatani, T. Takizawa, S. Murahashi, Y. Sakata, Y. Nishimura, J. Polym. ScL, 55, 811 (1961). 18. Y. Chatani, T. Takizawa, S. Murahashi, J. Polym. ScL, 62, 527 (1962). 19. F. B. Cramer, R. G. Beaman, J. Polym. ScL, 21, 237 (1956). 20. G. Dall'Asta, G. Motroni, G. Carella, It. Pat., 773, 657 (1966). 21. M. Droscher, Makromol. Chem., 178, 1195 (1977). 22. M. Droscher, K. Hertwig, H. Reimann, G. Wegner, Makromol. Chem., 177, 1695 (1976). 23. O. B. Edgar, R. H. Hill, J. Polym. ScL, 8, 1 (1952). 24. V. Enkelmann, Makromol. Chem., 179, 2811 (1978). 25. V. Enkelmann, J. Mat. ScL, 15, 951 (1980). 26. V. Enkelmann, Makromol. Chem., 184, 1945 (1983). 27. V. Enkelmann, G. Schleicr, H. Heichele, J. Mat. ScL, 17,533 (1982). 28. R. D. Evans, H. R. Mighton, P. J. Flory, J. Am. Chem. Soc, 72, 2018 (1950). 29. B. L. Farmer, J. B. Lando, J. Macromol. Sci. Phys. B, 11, 89 (1975). 30. E. W. Fischer, H. J. Sterzel, G. Wegner, Kolloid Z. Z. Polym., 251, 980 (1973). 31. C S . Fuller, J. Am. Chem. Soc, 70, 421 (1948). 32. J. Furukawa, E. Kobayashi, K. Uratani, Y. Iseda, J. Umemura, T. Takenaka, Polym. J., 4, 358 (1973). 33. S. Futamura, J. K. Valaitis, K. R. Lucas, J. W. Fieldhouse, T. C. Cheng, D. P. Tate, J. Polym. Sci., Polym. Phys. EdM 18, 767 (1980).
34. Y. L. Gal'perin, D. Y. Tsvankin, Vysokomol. Soedin. A, 18, 2691 (1976). 35. R. Gehani, J. Watanabe, S. Kasuya, I. Uematsu, Polym. J., 12, 871 (1980). 36. Yu. K. Godovskii, I. I. Dubovik, S. L. Ivanova, V. V. Kurashev, T. Frunze, G. L. Slonimskii, Vysokomol. Soedin. A, 19, 392 (1977). 37. R. M. Gohil, J. Petermann, J. Makromol. Sci. B: Phys., 18, 217 (1980). 38. J. Goodman, A. H. Kehayoglou, Eur. Polym. J., 19, 321 (1983). 39. M. Hachiboshi, T. Fukuda, S. Kobayashi, J. Macromol. Sci. Phys., 3, 525 (1969). 40. E. D. Harvey, F. J. Hybart, Polymer, 12, 711 (1971). 41. W. A. Hewett, F. E. Weir, J. Polym. Sci. A, 1, 1239 (1963). 42. G. J. Howard, S. Knutton, Polymer, 9, 527 (1968). 43. M. Ishibashi, Polymer, 5, 103 (1964). 44. M. Ishibashi, J. Polym. Sci. A, 2, 4361 (1964). 45. M. Ishibashi, J. Polym. Sci. B, 2, 791 (1964). 46. M. Ishibashi, J. Polym. Sci. B, 2, 789 (1964). 47. T. Kanamori, K. Itoh, A. Nakajima, Polym. J., 1, 524 (1970). 48. T. Kawaguchi, Y. Nukushina, Kobunshi Kagaku, 20, 529 (1963). 49. A. H. Kehayoglou, Eur. Polym. J., 19, 183 (1983). 50. R. W. Lenz, J. Jin, K. A. Feichtinger, Polymer, 24, 327 (1983). 51. M. Levine, S. C. Temin, J. Polym. Sci., 49, 241 (1961). 52. A. J. Lovinger, T. Furukawa, G. T. Davis, M. G. Broadhurst, Polymer, 24, 1225 (1983). 53. A. J. Lovinger, G. T. Davis, T. Furukawa, M. G. Broadhurst, Macromolecules, 15, 323 (1982). 54. Y. Miyamoto, C. Nakafuku, T. Takemura, Polym. J., 3, 122 (1972). 55. G. Moggi, P. Bonardelli, J. C. J. Bart, J. Polym. Sci., Polym, Phys. Ed., 22, 357 (1984). 56. G. Moggi, P. Bonardelli, C. Monti, J. C. J. Bart, J. Polym. Sci., Polym. Phys. Ed., 23, 1099 (1985). 57. G. Motroni, G. Dall'Asta, I. W. Bassi, Eur. Polym. J., 9, 257 (1973). 58. K. Nakame, M. Kameyama, T. Matsumoto, Polym. Eng. Sci., 19, 579 (1979). 59. A. Nakajime, T. Hayashi, K. Itoh, T. Fujiwara, Polym. J., 4, 10(1979). 60. G. Natta, I. W. Bassi, G. Fagherazzi, Eur. Polym. J., 5, 239 (1969). 61. G. Natta, G. Allegra, I. W. Bassi, D. Sianesi, G. Caporiccio, E. Torti, J. Polym. Sci. A, 3, 4263 (1965). 62. G. Natta, Makromol. Chem., 35, 93 (1960). 63. G. Natta, P. Corradini, D. Sianesi, D. Morero, J. Polym. Sci., 51, 527 (1961). 64. G. Natta, I. W. Bassi, G. Allegra, Ace Naz. Lincei Rend., 31, 350 (1961). 65. K. Okuda, J. Polym. Sci. A, 2, 1749 (1964). 66. H. Plimmer, R. J. W. Reynolds, L. Wood, H. Hargreaves, I. C. I. Ltd. British Pat. Appl., 604/49.
67. A. Piloz, A. DouiJlard, J. Y. Decroix, J. P. May, G. Vallet, Polym. J., 6, 506 (1974). 68. F. R. Prince, E. M. Pearce, R. J. Fredericks, J. Polym. Sci. A-I, 8, 3533 (1970). 69. F. R. Prince, R. J. Fredericks, Macromolecules, 5, 168 (1972). 70. F. P. Roding, E. R. Walter, J. Polym. Sci., 37, 555 (1959). 71. M. J. Richardson, P. J. Flory, J. B. Jackson, Polymer, 4, 221 (1963). 72. J. Ridgway, J. Polym. Sci. A-I, 8, 3089 (1970). 73. J. D. Rubin, J. Polym. Sci. A, 1, 1645 (1963). 74. K. Saotome, H. Komoto, J. Polym. Sci. A-I, 4, 1475 (1966). 75. S. W. Shalaby, E. A. Turi, P. J. Harget, J. Polym. Sci., Polym. Chem. Ed., 14, 2407 (1976). 76. J. P. Sibilia, L. G. Roldan, S. Chandrasekaran, J. Polym. Sci. A, 10, 549 (1972). 77. H. W. Starkweather Jr., F. A. Van Catledge, R. N. MacDonald, Macromolecules, 15, 1600 (1982). 78. A. Tanaka, Y. Ozumi, K. Hatada, S. Endo, R. Fujishije, Polymer Lett., 2, 181 (1964). 79. Y. Tajima, M. Anderson, P. H. Geil, Int. J. Biol. Macromol., 1, 98 (1979). 80. K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, H. Tadokoro, Polymer, 22, 1312 (1981).
81. T. C. Tranter, J. Polym. Sci. A, 2, 4289 (1964). 82. Y. Tsujita, M. Fukagawa, I. Uematsu, Polym. J., 14, 773 (1982). 83. A. Turner Jones, Polym. Lett., 3, 591 (1965). 84. A. Turner Jones, Polymer, 7, 23 (1966). 85. A. Turner Jones, Polymer, 6, 249 (1965). 86. J. Watanabe, W. R. Krigbaum, Macromolecules, 17, 2288 (1984). 87. J. J. Woeks, R. K. Eby, E. S. Clark, Polymer, 22, 1496 (1981). 88. F. C. Wilson, H. W. Starkweather, Jr., J. Polym. Sci., Polym. Phys. Ed., 11,919(1973). 89. E. L. Wittbecker, R. C. Houtz, W. W. Watkins, Ind. Eng. Chem., 40, 875 (1948). 90. B. Wunderlich, "Macromolecular Physics", Academic Press, New York, 1973, Ch. 2, p. 147. 91. B. Wunderlich, "Macromolecular Physics", Academic Press, New York, 1980, Ch. 10, p. 255. 92. B. Wunderlich, J. Grelowicz, Adv. Polym. Sci., "Liquid Crystal Polymers II/III", Springer-Verlag, Berlin, 1984, Ch. 1, p. 4. 93. B. Wunderlich, D. Poland, J. Polym. Sci. A, 1, 357 (1963). 94. T. Yagi, M. Tatemoto, J. Sako, Polym. J., 12, 209 (1980). 95. A. J. Yu, R. D. Evans, J. Am. Chem. Soc, 81, 5361 (1959). 96. A. J. Yu, R. D. Evans, J. Polym. Sci., 42, 249 (1960).
M i s c i b l e
P o l y m e r s
Sonja Krause Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York, USA S. H . G o h Department of Chemistry, National University of Singapore. 119260, Singapore A. B. C. D.
Definition of Miscibility VI-409 Data Collection VI-410 Arrangement of the Tables VI-410 Tables VI-411 Table 1. Chemically Dissimilar Polymer Pairs Miscible in the Amorphous State at Room Temperature VI-411 Table 2. Polymer Pairs Containing One Monomer in Common, Miscible in the Amorphous State at Room Temperature VI-444 Table 3. Chemically Dissimilar Polymer Triads (and Tetrads) Miscible in the Amorphous State at Room Temperature VI-448 Table 4. Polymer Pairs Miscible in the Amorphous State at Room Temperature; Molecular Weight Dependence Investigated VI-450 Table 5. Polymer Pairs that Appear to Have High Temperature Miscibility Although Immiscible at or Below Room Temperature VI-452 Table 6. Polymer Pairs Miscible at Room Temperature that Appear to Have a Lower Critical Solution Temperature (LCST) Above Room Temperature VI-454 Table 7. Polymer Pairs that Appear to Have Both a Lower Critical Solution Temperature and a Upper Critical Solution Temperature VI-458 Table 8. Polymer Pairs that Cocrystallize VI-459 E. References VI-461
A.
DEFINITION OF MISCIBILITY
A rigorous definition of miscibility is used in the following tables. In order to be classified as miscible polymers, there must be some evidence in the literature that the polymers are miscible on a submolecular (segmental) scale. If the polymer mixture contains several phases, the polymers will be listed as miscible even if segmental miscibility data
exists in only one of these phases, but this is noted under Comments in the Tables. Tables 1-7 list miscibility in the amorphous state. A polymer pair will be listed as miscible even if one or both of the polymers forms a singlecomponent crystalline phase in the mixture; a note about the existence of crystallinity, however, is made under Comments. Evidence for miscibility of a polymer with only one microphase in a microphase separated block copolymer is also noted. In other cases, literature data indicated miscibility with a known block copolymer, but no data were shown which indicate whether the mixture still contained the second microphase. In those cases, no comments are made in these Tables, and readers will have to make judgements of their own. Since miscibility on a submolecular or segmental scale includes cocrystallization, some mixtures that have proven cocrystallization behavior are shown in Table 8. There is some controversy in the literature about the dimensions of the submolecular scale of segment mixing that indicates true miscibility in the amorphous state of polymers. Followers of one school of thought feel that every segment of polymer A must be surrounded by the numbers of segments of polymers A and B whose fraction is governed by the volume fraction of the two polymers present in that phase. This is the random mixing assumption implicit in the Flory-Huggins theory of polymer solutions and mixtures. These ideas are much too rigorous for real solutions, even solutions of small molecules. It is well known that clustering occurs in real solutions, so that volume elements containing an unexpectedly large number of one of the solution components (in solutions of small molecules) or segments of one of the polymers (in polymer mixtures) can and do occur. Thus, data generated by some solid state NMR techniques and some fluorescence techniques that can show the proximity of two polymers over a distance of 1-2 nm have often been misinterpreted to show immiscibility in a miscible polymer system. In fact, data showing that a large proportion of the nearest neighbor segments of a particular polymer belong to the same polymer could simply indicate clustering in a homogeneous phase.
B.
DATA COLLECTION
The following tables include information from the third edition of "Polymer Handbook", additional information from an incomplete polymer-polymer miscibility database compiled by one of us (SK), and the data from papers (but not patents) published in the English language and listed in "CA Selects-Polymer Blends" and Science Citation Index through December 1995 as compiled by one of us (SHG). Note that Table 8 contains less complete information for the earlier years than the other tables because most of the information in this table comes from the incomplete database. The inclusion of patents and papers in languages other than English by SHG would have necessitated a great deal more time and additional data compilers. C. ARRANGEMENT OF THE TABLES The following eight tables have essentially the same format as those compiled for the third edition of "Polymer Handbook". Each table contains a particular mixture only once. The column labeled "Polymer I of" is an alphabetical listing. The column labeled "Polymer II of" is an alphabetical listing of the polymers miscible with the appropriate polymer from the first column. The common names of polymers were used whenever possible; sometimes the Chemical Abstracts or IUPAC names of polymers also appear. Unfortunately, we could not cross-list the many possible names of the polymers. Thus, it may be necessary to look for a particular polymer under several names in these tables. The column labeled Methods very briefly indicates the method(s) used by the experimenters to determine miscibility in amorphous phases. A large number of such methods exist, but two of these are most commonly used. One of these involves the determination of glass transition temperatures (Tg\s) by methods such as DSC, DTA, dynamic mechanical measurements, dilatometry, or other methods. The observation of a single T% for the amorphous portion of a polymer mixture, especially if it is intermediate between those of the constituent polymers and varies monotonically between these values as the mixture composition changes, has generally been considered a reliable indication of a miscible polymer pair. This method is difficult to use when the 7 g 's of the constituent polymers are close together, perhaps within 100C of each other. Furthermore, the glass transition region of a miscible polymer pair is often broader than that of the unmixed polymers. Some experimenters have interpreted this as an indication of two overlapping glass transition regions, but we have taken the existence of such a broad glass transition region as an indication of miscibility. We feel that a broad glass transition region probably indicates the existence of composition fluctuations rather than two overlapping Tg's. The criterion of sample clarity has often been used as an indication of miscibility. This criterion will not work if the constituent polymers have the same refractive index or if they are so immiscible that they form phases so large that they do not scatter light appreciably. Furthermore, semi-
crystalline mixtures are always turbid, even if their amorphous phases are completely miscible. In addition, on at least one occasion, a set of polymers was turbid at low temperatures, clear at intermediate temperatures, and turbid again at high temperatures only because their refractive indices became almost identical at the intermediate temperatures. All single methods, not all of them described here, of determining polymer-polymer miscibility sometimes give ambiguous results. Unless many experimenters have used a variety of methods to determine miscibility, the inferences drawn from the data may be wrong. This is one of the reasons for listing the methods used and the references that describe the experiments, results, and interpretation. Some of the mixtures listed in these tables, especially when only a single mixture has been reported in a single reference, may turn out to be less miscible than stated. This is especially possible because some of the methods that were used in the original investigations do not necessarily probe miscibility as such. For example, a negative volume change on mixing, that is, a shrinkage on mixing, could possibly be observed if each of the coexisting phases contains both polymers, though in different proportions, and if each of the coexisting phases has a negative volume change on mixing. Also, FTR methods generally involve the observation of absorption band shifts due to hydrogen bonding between polymers; however, this hydrogen bonding could conceivably occur on phase boundaries or within coexisting phases each of which contains both polymers, but in different proportions. The Comments column in the Tables indicates compositions of copolymers, whether the samples were semicrystalline, and other relevant data. The eight tables are: 1. Chemically dissimilar polymer pairs miscible in the amorphous state at room temperature. Some of these polymers may be copolymers, but the polymer pairs may not have any monomer units in common. One or both of the polymers may be semicrystalline. 2. Polymer pairs containing one monomer in common (at least one of these must be a copolymer), miscible in the amorphous state at room temperature. One or both of the polymers may be semicrystalline. 3 Chemically, dissimilar polymer triads and tetrads miscible in the amorphous state at room temperature. It seemed reasonable to place mixtures of three or four polymers that were miscible in a separate table. 4. Polymer pairs miscible in the amorphous state at room temperature. Molecular weight dependence investigated. These are usually polymer pairs that are miscible when the molecular weights are low and immiscible as when the molecular weights are increased. 5. Polymer pairs that appear to have high temperature miscibility although immiscible at or below room temperature (Upper Critical Solution Temperature [UCST] behavior).
Next Page
6. Polymer pairs miscible at room temperature that appear to have a lower critical solution temperature (LCST) above room temperature. These polymer pairs are also listed in one of the earlier tables, usually Table 1 or 2. 7. Polymer pairs that appear to have both lower and upper critical solution temperatures. 8. Polymer pairs that cocrystallize and form mixed crystals. These blends are generally composed of polymers with similar subunits that can substitute for each other in the same unit cells; this is generally called "isomorphous replacement'*. This Table is probably incomplete even though cocrystallization is expected to be rare.
Abbreviations DSC FTIR
Differential scanning calorimetry Fourier-transform infrared spectroscopy
IGC LS MW Mn Mw NMR NRET PALS SAXS SALS SANS SEM rg Tm WAXD
Inverse gas chromatography Light scattering Molecular weight (unspecified) Number-average molecular weight Weight-average molecular weight Nuclear magnetic resonance spectroscopy Nonradiative energy transfer fluorospectroscopy Positron annihilation lifetime spectroscopy Small-angle X-ray scattering Small-angle light scattering Small-angle neutron scattering Scanning electron microscopy Glass transition temperature Melting temperature Wide-angle X-ray diffraction
D. TABLES TABLE 1. CHEMICALLY DISSIMILAR POLYMER PAIRS MISCIBLE IN THE AMORPHOUS STATE AT ROOM TEMPERATURE Polymer I of 2-Acrylamido-2-methylpropanesulfonic acid Acrylic acid
Acrylic acid-co-ethylene Acrylic acid-c^-styrene
Acrylonitrile-ctf-butadiene
Polymer II of
Method
Comments
Refs.
Vinylpyridine
Single Tg
Acrylamide Acrylarnide-c0-W,/V-dirnethylacrylamide Caprolactam (nylon 6) /V,/V-dimethylacrylamide Ethylene glycol
NMR Fluorescence study Single 7 g ; WAXD Fluorescence study Single Tg; FTIR; NMR
Vinyl alcohol Vinyl methyl ether Af-vinyl pyrrol idone Caprolactam (nylon 6) Caprolactone Ester
FTIR; Tm-depression; NMR Single Tg NMR Single Tg Single Tg Single Tg
Ethyl methacrylate Ethyl methacrylate-co4-vinylpyridine Ethylene glycol Isobutyl methacrylate-a?4-vinylpyridine Methyl methacrylate /7-Propyl methacrylate Vinyl methyl ether Cellulose acetate-butyrate
Single Tg, IGC Single Tg; IGC
II was 2- or 4-vinylpyridine 354 (2 blend systems); formed complexes Formed complexes 1012 Formed complexes; II had 6.0-55 859 mol% acrylamide Semicrystalline 1140 Formed complexes 859 Semicrystalline when >50% II 374,712,953, 1115,1128 Semicrystafline 197,1211,1255,1256,1257 Formed 1:1 complexes 160 Formed complexes 1128 I had 19 wt.% acrylic acid 564 I had 11.4-20.8 wt.% acrylic acid 383 I had 20% acrylic acid; II was nylon 6, 471,884 nylon 11 or nylon 12 (3 miscible blend systems) I had 2.65-20 wt.% acrylic acid 72,1001 I had 20 mol% acrylic acid 1001
Single Tg Single Tg; IGC
I had 21 wt.% acrylic acid I had 20 mol% acrylic acid
Single Tg Single 7g Single Tg Some compositions appeared homogeneous Single Tg when I had 18% acrylonitrile; sorption of solvent vapors
I had 8-20 wt.% acrylic acid I had 2.65-8.84 wt.% acrylic acid I had 8-20 wt.% acrylic acid -
Chloroprene
Epichlorohydrin Nitrocellulose Vinyl acetate-covinyl chloride
384 1001 72,382,384 70 576 30,249,452,651
Two phases in electron micrograph 93,797 when I had 18% acrylonitrile may indicate a crystalline phase; two torsional transitions when I had > 28% acrylonitrile Single Tg II had 26-54 wt.% acrylonitrile 966 Transparent films when I had Immiscible when I had 18.4% 93,296,398,399 28.6-44.4% acrylonitrile acrylonitrile 452 Single loss peak when < 40% Two loss peaks when > 50% vinyl 296,452 vinyl acetate in II; clear films acetate in II 539,651 for some mixtures of commercial polymers
References page VI -461
Previous Page
6. Polymer pairs miscible at room temperature that appear to have a lower critical solution temperature (LCST) above room temperature. These polymer pairs are also listed in one of the earlier tables, usually Table 1 or 2. 7. Polymer pairs that appear to have both lower and upper critical solution temperatures. 8. Polymer pairs that cocrystallize and form mixed crystals. These blends are generally composed of polymers with similar subunits that can substitute for each other in the same unit cells; this is generally called "isomorphous replacement'*. This Table is probably incomplete even though cocrystallization is expected to be rare.
Abbreviations DSC FTIR
Differential scanning calorimetry Fourier-transform infrared spectroscopy
IGC LS MW Mn Mw NMR NRET PALS SAXS SALS SANS SEM rg Tm WAXD
Inverse gas chromatography Light scattering Molecular weight (unspecified) Number-average molecular weight Weight-average molecular weight Nuclear magnetic resonance spectroscopy Nonradiative energy transfer fluorospectroscopy Positron annihilation lifetime spectroscopy Small-angle X-ray scattering Small-angle light scattering Small-angle neutron scattering Scanning electron microscopy Glass transition temperature Melting temperature Wide-angle X-ray diffraction
D. TABLES TABLE 1. CHEMICALLY DISSIMILAR POLYMER PAIRS MISCIBLE IN THE AMORPHOUS STATE AT ROOM TEMPERATURE Polymer I of 2-Acrylamido-2-methylpropanesulfonic acid Acrylic acid
Acrylic acid-co-ethylene Acrylic acid-c^-styrene
Acrylonitrile-ctf-butadiene
Polymer II of
Method
Comments
Refs.
Vinylpyridine
Single Tg
Acrylamide Acrylarnide-c0-W,/V-dirnethylacrylamide Caprolactam (nylon 6) /V,/V-dimethylacrylamide Ethylene glycol
NMR Fluorescence study Single 7 g ; WAXD Fluorescence study Single Tg; FTIR; NMR
Vinyl alcohol Vinyl methyl ether Af-vinyl pyrrol idone Caprolactam (nylon 6) Caprolactone Ester
FTIR; Tm-depression; NMR Single Tg NMR Single Tg Single Tg Single Tg
Ethyl methacrylate Ethyl methacrylate-co4-vinylpyridine Ethylene glycol Isobutyl methacrylate-a?4-vinylpyridine Methyl methacrylate /7-Propyl methacrylate Vinyl methyl ether Cellulose acetate-butyrate
Single Tg, IGC Single Tg; IGC
II was 2- or 4-vinylpyridine 354 (2 blend systems); formed complexes Formed complexes 1012 Formed complexes; II had 6.0-55 859 mol% acrylamide Semicrystalline 1140 Formed complexes 859 Semicrystalline when >50% II 374,712,953, 1115,1128 Semicrystafline 197,1211,1255,1256,1257 Formed 1:1 complexes 160 Formed complexes 1128 I had 19 wt.% acrylic acid 564 I had 11.4-20.8 wt.% acrylic acid 383 I had 20% acrylic acid; II was nylon 6, 471,884 nylon 11 or nylon 12 (3 miscible blend systems) I had 2.65-20 wt.% acrylic acid 72,1001 I had 20 mol% acrylic acid 1001
Single Tg Single Tg; IGC
I had 21 wt.% acrylic acid I had 20 mol% acrylic acid
Single Tg Single 7g Single Tg Some compositions appeared homogeneous Single Tg when I had 18% acrylonitrile; sorption of solvent vapors
I had 8-20 wt.% acrylic acid I had 2.65-8.84 wt.% acrylic acid I had 8-20 wt.% acrylic acid -
Chloroprene
Epichlorohydrin Nitrocellulose Vinyl acetate-covinyl chloride
384 1001 72,382,384 70 576 30,249,452,651
Two phases in electron micrograph 93,797 when I had 18% acrylonitrile may indicate a crystalline phase; two torsional transitions when I had > 28% acrylonitrile Single Tg II had 26-54 wt.% acrylonitrile 966 Transparent films when I had Immiscible when I had 18.4% 93,296,398,399 28.6-44.4% acrylonitrile acrylonitrile 452 Single loss peak when < 40% Two loss peaks when > 50% vinyl 296,452 vinyl acetate in II; clear films acetate in II 539,651 for some mixtures of commercial polymers
References page VI -461
TABLE 1. cont'd Polymer I of
Polymer II of
Method
Comments
Vinyl chloride
Single Tg; IGC
Vinyl chloride
Single Tg\ microscopy
Vinyl chloride, head-to-head Ethylene-a/f-maleic anhydride
Single Tg Single Tg\ microscopy
Acrylonitrile-co-butadiene-costyrene
Propylene-co-vinyl chloride
Single Tg
Acrylonitrile-co-methyl methacrylate
MiV-dimethylacrylamide
Single Tg; transparency
Maleic anhydride Vinyl chloride N-vinylpyrrolidone Vinyl chloride
Single Single Single Single
AIkyl methacrylate
Single Tg; transparency
rc-Butyl methacrylate rc-Butyl methacrylate-comethyl methacrylate Ethyl methacrylate Ethyl methacrylate-cfl-methyl methacrylate Ethylene, chlorinated Maleic anhydride-co-styrene
Single Tg Single Tg; transparency
Single Tg Single Tg
Methyl methacrylate
Single 7 g
Methyl methacrylate-co-2,2,6,6tetramethyl-piperidinyl methacrylate n-Propyl methacrylate Vinyl chloride
Single Tg, transparency
Single Tg Single Tg
Acetonyl methacrylate
Single Tg\ transparency
I had 17-20 wt.% AN I had 30 wt.% AN; miscible when melt blended or cast from methyl ethyl ketone; immiscible when cast from tetrahydrofuran; I had 11.9-30 wt.% AN (Ref. 1010) I had 43-61 wt.% AN
2-Bromoethyl methacrylate rt-Butyl methacrylate 2-Chloroethyl methacrylate Chloromethyl methacrylate Cyclohexyl methacrylate 2,6-Dimethyl-l,4-phenylene ether Ethyl methacrylate Methyl methacrylate Methylthiomethyl methacrylate H-Propyl methacrylate Tetrahydrofurfuryl methacrylate Tetrahydropyranyl-2-methyl methacrylate
Single Single Single Single Single Single Single Single Single Single Single Single
I had I had I had I had 1 had I had I had I had I had I had I had I had
Acrylonitrile-ctf-biitadiene-o?methyl acrylate
Acrylonitrile-co-methyl methacrylate-co-amethylstyrene Acrylonitrile-co-a-methylstyrene
Acrylonitrile-a?-/?methylstyrene
Tg; transparency Tg\ transparency Tg; transparency Tg
Single Tg Single 7 g ; transparency
Tg; transparency J g ; transparency Tg\ transparency T g ; transparency Tg\ transparency Tg\ transparency T g ; transparency Tg\ transparency Tg\ transparency Tg\ transparency Tg, transparency Tg; transparency
Refs.
I had 29-45 wt.% acrylonitrile
9,79,85,161,196, 452,484,520,561, 614,615,632,682,755 799,860,867,885,1186 I was hydrogenated; I had 38 wt.% 1191 acrylonitrile I had 23.5-56.6 wt.% acrylonitrile 158 I was made from a copolymer of 1156 AN/MA (75/25) grafted onto BD/AN (70/30) copolymer I was Blendex 701; II had 3.2 or 3.8% 107 propylene; electron micrographs may indicate two phases I had 70 wt.% acrylonitrile (AN) 648 I had 70 wt.% AN 648 II had 2-17 wt.% AN 1091 I had 70 wt.% "AN 648 I had 8/58/34 or 32.3/8.1/59.6/ 93,1078 acrylonitrile/methyl methacrylate/ a-methylstyrene I had 30 wt.% acrylonitrile (AN); II 266,268,279 had an alkyl group of acetonyl, chloromethyl, 2-chloroethyl, 2hydroxyethyl, 2-hydroxypropyl, methoxymethyl, methylthiomethyl or tetrahydrofurfuryl (8 miscible blend systems) I had 12 wt.% AN 152 I had 30 wt.% AN; II had 70 wt.% 289 methyl methacrylate I had 10-28 wt.% AN 152,277 I had 30 wt.% AN; II had 30 or 60 287 wt.% methyl methacrylate Depended on AN and Cl contents 154 Region of miscibility was sensitive 1011 to MW I had 10-37 wt.% AN; I had 30 wt.% 152,277, AN and II was atactic or isotactic 1010 (Ref. 277); I had 6.5-30 wt.% AN (Ref. 1010) I had 30 wt.% AN; II had > 76.2 wt.% 272,274 methyl methacrylate
14-61 wt.% AN 13.6 wt.% AN 18.3-46 wt.% AN 13-42 wt.% AN <22wt.%AN <5.0wt.%AN 12-33 wt.% AN 12-34 wt.% AN 19-34 wt.% AN 6-28 wt.% AN 12-48 wt.% AN 5-29 wt.% AN
152 435,684, 1010
118 608 285 613 263 120 275 285 285 269 285 286 119
TABLE 1. cont'd Polymer I of Acrylonitrile-cfl-styrene
Polymer II of
Method
Acetonyl methacrylate Arylate
Single T g ; transparency Single Tg
Arylate of tetramethylbisphenol-A Benzyl methacrylate 2-Bromoethyl methacrylate Butylene adipate Butylene sebacate n-Butyl methacrylate-cc>-methyt methacrylate tert-Buty\ methacrylate-co-methyl methacrylate Caprolactone
Single Single Single Single Single Single
2-Chloroethyl methacrylate Chloromethyl methacrylate Copolyarylate of Tetramethylbisphenol-A and tetrabromobisphenol-A Copolycarbonate of bisphenol-A and tetramethylbisphenol-A CyclohexyI methacrylate Cyclohexyl methacrylate-co-methyl methacrylate 2,6-Dimethyl-l,4-phenylene ether 2,6-Dimethyl-l,4-phenylene ether, benzoylated Ethylene adipate Ethyl methacrylate Ethyl methacrylate-a?-methyl methacrylate Ethyl methacrylate-co-2,2,6,6tetramethyl-piperidinyl methacrylate Ethyloxazoline
Tg TJ Tg; transparency Tg 7g T g ; transparency
Single T g Single LS Single Single Single
Tg, FTIR; microscopy; * Tg, transparency Tg; transparency Tg
Single Tg Single 7 g ; transparency Single Tg Single Tg Single Tg Single Tg Single Tg; transparency Single Tg\ transparency Single Tg\ transparency
Single 7 g ; transparency
Hexamethylene sebacate 2-Hydroxyethyl methacrylate 2-Hydroxypropyl methacrylate Itaconic anhydride-co-methyl methacrylate Methoxymethyl methacrylate Methyl methacrylate
Single Tg Transparency Single Tg, transparency Single Tg
Methyl methacrylate-co-
Single Tg
Single Tg; transparency Transparency
/V-phenylitaconimide Methyl methacrylate-co-phenyl Single Tg methacrylate Methyl methacrylate-co-2,2,6,6Single T g ; transparency tetramethyl-piperidinyl methacrylate Methylthiomethyl methacrylate Novolac
Single Tg\ transparency Single Tg
Oxy-1,4-phenylene-sulfonylModulus-temperature 1,4-phenylene oxy-2,6-diisopropyl1,4-phenylene isopropylidene 3,5-diisopropyl-1,4-phenylene Phenyl acrylate Single Tg
Comments
Refs.
I had 33-58 wt.% AN 121 Miscibility the greatest when 7 AN = 25% I had 4-13 wt.% AN 1048 I had 7.8-24.3 wt.% AN 1180 I had 10-58 wt.% AN 608 I had 13-32.3 wt.% AN 228 I had 13-20 wt.% AN 228 I had 22 wt.% AN; II had 70 wt.% 289,405 methyl methacrylate Miscibility depended on compositions 621 of I and II I had 13-30 wt.% AN 228,295,458,565,729, 1021,1047,1097,1145,1185 I had 12.5-43 wt.% AN 613 I had 12-37 wt.% AN 262 Miscibility depended on compositions of I and II I had < 18 wt.% acrylonitrile; II had < 22 431 wt.% bisphenol-A I had < 20 wt.% AN 119 Miscibility depended on compositions 621 of I and II I had < 10.5 wt.% AN 457,1022 I had 18 mol% AN; II had 35 or 776 86% benzoylated units I had 25-28 wt.% AN 228 I had 5.5-28.0 wt.% AN (Ref. 229); 112,229,489 I had 9-34 wt.% AN (Ref. 112) I had 22 wt.% AN; II had 30 or 50 288 wt.% methyl methacrylate I had 30 wt.% AN; II had < 13.3 wt.% 274 2,2,6,6-tetramethyl-piperidinyl methacrylate I had 25-40 wt.% AN; two 7 g 's when 426,652 I had 8, 23.5 or 70% AN I had 16.2 wt.% AN 228 I had 22 wt.% AN 277 I had 22 wt.% AN 279 Miscibility depended on compositions 920 of I and II I had 30 wt.% AN 269 I had 9.4-34.4 wt.% AN (Ref. 789); 56,164,229, I had 9.5-28 wt.% AN (Ref. 229); 392,566, I had 9-39 wt.% AN 598,651,670,741, (Ref. 164) 782,789 Miscibility depended on compositions 169 of I and II Miscibility depended on compositions of I and II I had 22 or 30 wt.% AN; II had < 31.4 wt.% 2,2,6,6-tetramethyl-piperidinyI methacrylate I had 9-36 wt.% AN I had 25 wt.% AN; II was formaldehyde + 13/17/70 mol% /?-terf-butylphenol/ m-cresol/o-cresol I had 13-16% AN
I had 14.6-34.1 wt.% AN (Ref. 717) or 11.5-32 wt.% AN (Ref. 1171)
621 212,214
267 221
685
717,1171, 1180
References page VI-461
TABLE 1. cont'd Polymer I of
Polymer II of
Method
n-Propyl methacrylate
Single Tg
Tetrahydrofurfuryl methacrylate Tetrahydropyranyl-2-methyl methacrylate Vinyl chloride Caprolactone
Single T g ; transparency Single T g ; transparency
Hexamethylene terephthalate
Single T%
Allyl alcohol-a?-styrene
Ester
Single Tg
Amic acid
3,3/-Diamino-4,4/-benzidine isophthalamide Phenol-formaldehyde
Transparency; FTIR
Imide
Single Tg
Novolac Resol
Single Tg Single Tg
Shellac
Single Tg
Vinyl chloride Vinyl chloride, chlorinated Vinyl chloride-co-vinylidene chloride Amide
Single 7 g ; transparency Single Tg; transparency Single Tg\ transparency
Butylene terephthalate Caprolactam-co-laurolactam
Single Tg Single Tg
Caprolactam-co-2-pyrrolidinone
Single Tg
Copolyester
Single Tg
Cycloaliphatic amide
Single Tg
Aramide
Ethylene terephthalate Amide
Single Tg Single Tg
Aramide
Cycloaliphatic amide Amide
Single Tg Single Tg; Tm-depression
Acrylonitrile-co-vinylidene chloride
Amideimide
n-Amyl methacrylate
Aramide
Single Tg Single Tg
Clear before and after curing
Single Tg
Comments
Refs.
I had 5.7-19.5 wt.% AN (Ref. 229) or 9-24 229, wt.% AN (Ref. 1090) 1090 I had 9-48 wt.% AN 281,286 I had < 31 wt.% AN 116 I had 11.5-26 wt.% AN 437 I was usually Saran F (80% vinylidene 31,825,887 chloride); semicrystalline when < 70 wt.% 1 Probably semicrystalline; I was Saran 36 F(80% vinylidene chloride) I had A/ w -1.4-2.1 kg/mol and had 46,869 1.3-7.7 wt.% OH groups; 11 was butylene adipate, butylene sebacate, caprolactone, 1,4-cyclohexane dimethylene succinate, decamethylene sebacate, 2,2-dimethyl1,3-propylene adipate or hexamethylene sebacate (7 blend systems); high OH content of I favored miscibility I was PARC-TPI 1071 I was made from 4,4/-methylene1 dianiline and pyromellitic dianhydride II was Polyimide P84; miscible over 538 certain composition range I was made from rosin 466 I was made from rosin maleic anhydride 468 Diels-Alder adduct with 4,4'-diaminodiphenylmethane I was made from rosin-imidoamino 469 acid with 4,4/-diaminodiphenylmethane 319,649,812,850 II had 65 or 68 wt.% Cl 319,810 II was Saran, > 80% vinylidene chloride 407,812 I was made from 2,2,4-trimethyl1,6-hexanediamine and terephthalic acid (Trigamid T); semicrystalline; II was nylon 6, nylon 6,6, nylon 6,12, nylon 6,9 or nylon 6,10 (5 miscible blend systems) I was Trogamid T; semicrystalline I was Trogamid T; II had 43.8-55.6 mol% caprolactam; semicrystalline I was Trogamid T; II had 93.5 mol% caprolactam; semicrystalline I was Trogamid T; II was made from 1,4-cyclohexanedimethanol/ethylene glycol/terephthalic acid (PETG 6763) I was Trogamid T; II was made from 1,4- and 1,3-benzenedicarboxylic acids and a mixture of 1,6-hexanediamine and bis(4-aminocydohexyl)methane (Bexloy AP C-803) I was Trogamid T; semicrystalline I was made from 1,6-hexanediamine and a mixture of isophthalic and terephthalic acids (Zytel 330); semicrystalline; II was nylon 6, nylon 6,6, nylon 6,9 or nylon 4,6 (4 miscible blend systems) I was Zytel 330; II was Bexloy AP C-803 I was poly[2,2'-bis(trifluoromethyl)-4,4'biphenylene dicarboxamide]; II was nylon 6, nylon 4,6, nylon 6,6, nylon
211,212, 595
596 213,214 213,214 596
212
596 212,213
212 1013
TABLEI. cont'd Polymer I of
Arylate
Polymer II of
Method
Aramide
Single Tg
Aramide-S
Single Tg
Aramide-M
Single T g
Aramide Aramide-S Aramide-M
Single Tg Single Tg Single Tg
Aramide Aramide-S Aramide
Single Tg Single Tg Single Tg
Aramide Carbonate of bisphenol-A
Single Tg Single Tg
Copolyester
Single Tg
Copolyester
Single Tg
Ethyiene terephthalate
Single Tg
Hydroxyether of bisphenol-A (Phenoxy) Butylene sebacate
Single Tg Single Tg
Hexamethylene sebacate Etherimide
Single Tg Single T g
Etherimide
Single T%
Aryl sulfone Y-Benzyl glutamate
Imide y-Butyl glutamate
Bis(methyoxyethoxyethoxy) phosphazene
Acrylic acid-c^-methyl methacrylate
Arylate of tetramethylbisphenol-A Aryl ether ketone
Methacrylic acid-co-methyl methacrylate Styrene-co-styrene-4-carboxylic acid
Comments
Refs.
6,9, nylon 6,10 or nylon 11 (6 blend systems) I was made from bisphenol-A and a 188 mixture of terephthalic acid/isophthalic acid/5-terf-butyl-isophthalic acid = 44/ 44/12 (Polyarylate C); II was Trogamid T I was Polyarylate C; II was made from 189 5-terf-butylisophthalic acid/isophthalic acid 90/10 and 1,12-diaminododecane (Aramide-S) I was made from bisphenol-A and a 189 mixture of terephthalic acid/isophthalic acid/5-terf-butyl-isophthalic acid = 42.5/ 42.5/15 (Polyarylate D); II was made from adipic acid and ra-xylene-diamine/ hexamethylene diamine 80/20 (Aramide-M) I was Polyarylate D; II was Trogamid T 189 I was Polyarylate D; II was Aramide-S 189 I was made from bisphenol-A and a 189 mixture of terephthalic acid/isophthalic acid/5-terf-butyl-isophthalic acid = 37.5/ 37.5/25 (Poiyarylate E); II was Aramide-M I was Polyarylate E; II was Trogamid T 189 I was Polyarylate E; II was Aramide-S 189 I was made from bisphenol-A and a 189 mixture of terephthalic acid/5-terf-butylisophthalic acid 50/50 (Polyarylate F); II was Trogamid T I was Polyarylate F; II was Aramide-S 189 I was made from bisphenol-A and a 687 mixture of terephthalic acid/isophthalic acid 50/50 (Ardel DlOO); miscibility arised from transesterification I was Ardel D-100; II was made 687 from cyclohexane dimethanol and terephthalic acid/isophthalic acid (80-87% tere) (Kodar A-150) and another copolymer with tere/iso ratio of 70/30 I was Ardel D-100; II was made from 291,687 cyclohexane dimethanol, ethylene glycol and terephthalic acid (molar ratio 1:2:3, PETG-6763) I was Ardel D-100; miscibility arised 687 from transesterification I was Ardel D-100; miscibility arised 687 from transesterification Semicrystalline 907
Single T% Dynamic mechanical methods; DSC Single Tg; transparency
Semicrystalline I was made from 4,4'difluoro-benzophenone and hydroquinone; II was Ul tern 1000 I was made from p-phenoxybenzoyl chloride; II was Ultem 1000 I was Radel A; II was XU-218 Miscible as random coils but not as a-helics II had 10, 20 or 30 mol% acrylic acid
906 334
1087
Single 7 g ; transparency
II had 20 mol% methacrylic acid
1087
Single 7 g ; transparency
II had 75 mol% styrene
1087
334 375 813
References page VI-461
TABLE 1. cont'cl Polymer I of
Bis(methoxyethoxyethoxyethoxy)phosphazene 3-Bromo-2,6-dimethyl1,4-phenylene ether 3-Bromo-2,6-dimethyl1,4-phenylene oxide-co2,6-dimethy 1-1,4-phenylene ether
Polymer II of
p-Bromostyrene
Single T g ; microscopy
-
402
p-Bromostyrene-co-styrene p-Bromostyrene
Single T g ; microscopy Single T g ; microscopy
II had < 85 mol% styrene I had <22 mol% 2,6-dimethyl-l,4-phenylene ether
402 402
Styrene
Single Tg\ microscopy
Tetrahydrofurfuryl methacrylate 2,6-Dimethyl-l,4-phenylene ether Butadiene Diene-co-ethylene-co-propylene Isoprene
tert-Butylstyrene Glycerol ester of hydrogenated rosin 1-Pentene Propylene Ethylene, chlorinated 4-Hydroxystyrene-co-styrene Vinyl chloride
Butyl acrylate-co-methyl methacrylate Butyl methacrylate
Vinyl chloride-co-vinylidene chloride Vinyl chloride
p-(2-Hydroxy-hexafluoroisopropyl) styrene-co-styrene p-(2-Hydroxy-hexafluoroisopropyl)oc-methylstyrene-c-styrene Vinyl chloride
rt-Butyl methacrylate-comethacrylic acid /7-Butyl methacrylate-co4-vinylpyridine /V-Butyl-3-hydroxymethyl carbazoyl methacrylate ferf-Butylstyrene
1087 1087 1087
II had 78 mol% styrene -
p-Bromostyrene-co-styrene Butadiene
Butyl aery late
Refs.
Single T g ; transparency Single Tg\ transparency Single Tg; transparency
Ester
1-Butene
Comments
Styrene-co-p-vinylphenol p-Vinylphenol p-Vinylphenol
2-Bromoethyl methacrylate
Butadiene-co-styrene
Method
Vinyl chloride-co-vinylidene chloride Styrene-co-4-vinylpyridine Styrene-c-methacrylic acid
0)-Hydroxybutyl-3,5-dinitrobenzoyl methacrylate Cyclohexyl acrylate Cyclohexyl methacrylate
Miscible up to full bromination of I 402,530 when I had MW < 40 kg/mol and II had MW < 30 kg/mol Single Tg Semicrystalline; II was butylene adipate, 1137 caprolactone, 2,2-dimethyl-1,3 propylene adipate, 2,2-dimethyl-1,3-propylene succinate, ethylene adipate, or hexamethylene sebacate (6 miscible blend systems) Single Tg\ transparency 606 Single T g ; microscopy I had > 53 mol% styrene 402 Single Tg I was 1,4-polybutadiene; II had 63% 1,2701 Single Tg Commercial samples; many mixtures 92,440,451 had two Tg's Single Tg\ microscopy; light Depended on microstructure; 47,80,149,237,249, scattering; NMR immiscible when I and II 335,520,542,548,549, were both highly cis; 757,770,771,787,854, I was deuterated (Ref. 335) 901,1032,1063 Single dynamic mechanical I had 25% styrene; II had 138 loss peak Mw — 0.835 kg/mol Single dynamic mechanical I had 25% styrene; II had 139 loss peak Mw = 0.5 kg/mol Single Tg 190 Single Tg Semicrystalline 190,502,657 Single Tg\ transparency II had 49.8 or 62.1% Cl; immiscible 100 when II had 48.0% Cl Single Tg I was terf-butyl; II had 28-66 mol% 897 4-hydroxystyrene Single T g ; transparency Some papers showed two T g 's 425,655,812,845, (Refs. 812, 866) or phase separation 846,850,851 in solution (Ref. 425) 866 Single Tg\ transparency II was Saran ( > 80% vinylidene 812 chloride) Single Tg; electron microscopy I was Degalan V26(90% methyl 654,886 methacrylate) (Ref. 886); I had 75% butyl acrylate) (Ref. 654) Single T g ; transparency II had 83.3-98.25 mol% styrene; 103,572,646, immiscible when II had 99.0 mol% 807 styrene NMR II had 1.5 mol% OH-containing 89 monomer Single Tg; transparency; I was «-butyl, isobutyl or sec-butyl 319,425,649, miscible in solution 653,846,810,850 Single T g ; transparency II was Saran, >80% vinylidene; I was 409,812 rc-butyl, isobutyl or sec-butyl Single Tg\ FIlR I had 8 or 18 rnol% methacrylic acid; II 985 had 15, 22 or 28 mol% 4-vinylpyridine Single Tg; FTIR 1 had 10.6, 18.9 or 26 mol% 4-vinyl198,985 pyridine; II had 12, 24 or 29 mol% methacrylic acid Single Tg 693 Single Tg, transparency Single Tg\ transparency
-
765 765
TABLEI. cont'd Polymer I of
Polymer II of Isoprene
Butylene adipate
Butylene dodecamethylene dicarboxylate Butylene 2,6-naphthalene dicarboxylate Butylene sebacate Butylene terephthalate
Caprolactam
Caprolactone
Method
Comments
Refs.
3,3,5-Trimethyl-cyclohexyl methacrylate Epichlorohydrin Hydroxyether of bisphenol-A (Phenoxy) Vinyl acetate-co-vinylidene chloride
Single dynamic mechanical loss peak Single Tg\ transparency
I had Mw =0.835 kJ/mol II was natural rubber -
Single Tg Single 7 g ; melt transparent; IGC Single Tg
Semicrystalline Semicrystalline when < 60 wt.% II
223 332,1205
II was Saran C ( > 80% vinylidene chloride); semicrystalline
31
Vinyl bromide Vinyl chloride Vinyl chloride
Single Tg Single Tg Single Tg
Semicrystalline when < 70 wt.% II Semicrystalline
Ethylene 2,6-naphthalene dicarboxylate Epichlorohydrin Vinyl chloride Arylate Butylene oxide-y-butylene terephthalate Copolyester
Single Tg
Blend had > 80 wt.% I
Single Tg Single Tg Single Tg\ X-ray scattering Single Tg; dielectric loss measurements; microscopy Single Tg
Semicrystalline Semicrystalline Semicrystalline II had 84 wt.% butylene terephthalate
Copolyester
Single Tg
Decamethylene-4,4'-terephthaloyldioxydibenzoate Ethylene terephthalate Hydroxyether of bisphenol-A (Phenoxy) Vinyl acetate-co-vinylidene chloride Vinyl chloride Vinyl chloride, chlorinated Acrylic acid Hexamethylene adipamide
Single Tg, microscopy; Tm -depression Single Tg Single Tg\ melt transparent
Methacrylic acid Styrene, sulfonated and Li-neutralized Styrene, sulfonated and Mn-neutralized Styrene, sulfonated and Zn-neutralized AcryIonitrile-c0-tert-butylstyrene 3,3-Bis(chloromethyl)oxetane Chlorostyrene
Single Tg Single Tg Single Tg Single Tg Single Tg; enthalpy recovery kinetics SAXS Single Tg Single T g ; Tn,-depression Single Tg\ Tm-depression Single Tg\ SALS; microscopy Single Tg Single Tg
Epichlorohydrin Ester
Single Tg DSC; SALS; X-ray diffraction; microscopy
Ethylene, chlorinated
Single Tg
Hydroxyether of bisphenol-A (Phenoxy) Nitrocellulose
Single Tg; melt transparent; IGC Single Tg
Propylene, chlorinated
Single Tg
Vinyl acetate-a?-vinylidene chloride
Single T1
Vinyl bromide
Single Tg
138 765
150 900 872 1238 223 872 1040 554,703
Semicrystalline when > 25 wt.% I; II 768 was CP-350(bisphenol-A-neopentyl glycol terephthalate) Semicrystalline; II was made from 438,439 bisphenol-A and 1/1 or 1/3 terephthaloyl chloride/isophthaloyl chloride 0-50% II in blend 660,661,662 Semicrystalline Semicrystalline
219,220,916 688,689,735
II had > 80% vinylidene chloride Semicrystalline Semicrystalline Semicrystalline Semicrystalline
36 36,686 36 378 215,830
Semicrystalline 371 II had 9.8 mol% sulfonated groups; 583,584 semicrystalline II had 10.2 mol% sulfonated groups; 523 Semicrystalline II had 10.1 mol% sulfonated groups; 524 semicrystalline II had 19.8-39.6 wt.% acrylonitrile 1175 Semicrystalline; II was Pen ton 301,445 II was o-chlorostyrene or mixed o18,32 and p-isomers; semicrystalline when > 2 1 % I Semicrystalline 82,223 II was made from terephthaloyl chloride 821 and 4,4'-bis(6-hydroxy-hexyloxy) biphenyl Semicrystalline when < 90% II; II had 32,55,191 > 30% Cl; two r g ' s when II had 295 25% Cl Semicrystalline when >50 wt.% I 82,193,332,982 > 50% I; semicrystalline when 82,352,353 > 50% I I had 66 wt.% Cl; semicrystalline when 18,32 > 50 wt.% I II was Saran C ( > 80 mol% vinylidene 31,887 chloride); semicrystalline Semicrystalline when > 30% I 147
References page VI-461
TABLE 1. cont'd Polymer I of
Caprolactone-co-ethylene terephthalate
Carbon monoxide-co-ethyl acrylate-coethylene
Carbon monoxide-co2-ethylhexyl acrylate-coethylene Carbon monoxide-eo-ethyleneco-vinyl acetate
Carbonate of bisphenol-A
Polymer II of
Method
Vinyl chloride
Single T 8 ; NMR
Vinyl chloride, chlorinated
Single Tg
Vinyl chloride-cc-vinylidene chloride
Single Tg
Vinylidene fluoride Vinyl methyl ether Ethylene, chlorinated
Tm-depression Single Tg Single Tg
Hydroxyether of bisphenol-A (Phenoxy) Vinyl chloride
Single 7 g ; FTIR
Vinyl chloride, chlorinated Vinyl chloride
Single Tg Single Tg
Vinyl chloride
Single Tg
Chlorostyrene
Single Tg
Propylene, chlorinated Vinyl chloride
Single Tg Single Tg
Alkylene terephthalate
Single Tg
Bipheny 1-4,4'ylene sebacate Butylene adipate Butylene terephthalate p-terf-Butylphenol formaldehyde Caprolactone
Single Tg Single F g Single Tg; FTIR Single Tg Single T g ; SANS; SAXS; FTIR; NMR Single Tg; FTIR
Caprolactone-co-ethylene terephthalate Carbonate
Single Tg
Single Tg\ transparency
Copolyester
Single Tg\ melt transparent
Copolyester
Single Tg
Copolyester
Single Tg; melt transparent
Copolyester
Single Tg
Comments Semicrystalline when > 30% I
Refs.
82,352,353,446 628,635,872,900, 1082 II had 67.2 wt.% Cl; semicrystalline 54 when > 50 wt.% I Semicrystalline; II had 79% or 88% 31,825,868, vinylidene chloride; some samples 873,887 of II were Saran B Semicrystalline 386 1145 I had 33-89 wt.% ethylene tereph525,892 thalate; II had 67.2 wt.% Cl II had 48-82 wt.% ethylene tereph1243 thalate I had 33 or 44 wt.% ethylene tereph525 thalate I had 33 wt.% ethylene terephthalate 525 Semicrystalline when I had > 60% 692 ethylene; I had 4.0-19.6% carbon monoxide, 5.5-35.4% ethyl acrylate, and 34.2-79.6% ethylene I had 17.8/34.2/47.9 or 18.6/39.6/41.8 = 692 carbon monoxide/2-ethylhexyl acrylate/ethylene I was ElvaJoy 741; II was a mixture of 18 o- and p- isomers I was Elvaloy 741 18 Semicrystalline when I had > 60% 21,40,92 ethylene; I was Elvaloy 741 or 10.5/66.7/22.8 or 10.2/58.2/31.5 = carbon monoxide/ethylene/vinyl acetate II had an alkylene group of 2-ethyl1074 2-methylpropylene, 1,7-heptylene, 1,9-nonylene or 1,5-pentylene (4 blend systems); miscibility arised from /rans-esterification Up to 40 wt.% II in blend 387 Semicrystalline 174,176 1132 1Q 57 Semicrystalline, especially when > 174,176,645 25 wt.% II 948,949,950 II had 48 or 58 wt.% ethylene 1120,1242 terephthalate II was carbonate of bisphenol-E, 427 bisphenol-F, bisphenol-Z, bisphenol chloral, dimethylbisphenol-A, dimethylbisphenol-Z, norborane, or tetramethylbisphenol-F (8 miscible blend systems) Semicrystalline when cast from solvent 585 up to 80 wt.% II; II was prepared from bisphenol-A and 1/1 ^ terephthalic/ isophthalic acid II was made from terephthalic acid 23,1093 and 1,4-cyclohexane-dimethanol and up to 60 mol% ethylene glycol Semicrystalline; II was KODAR A150, 174,556 made from 1,4-cyclohexanedime581,1251 thanol and l/4 = isophthalic/terephthalic acid H was Hytrel 5556, a multiblock 248 copolymer with poly(tetramethylene ether)glycol terephthalate soft segment
TABLE 1. cont'd Polymer I of
Polymer II of
Method
1,4-Cyclohexane-dimethylene succinate 1,4-Cyclohexane-dimethylene terephthalate Cyclohexyl methacrylate-co-methyl methacrylate Ethylene adipate Ethylene succinate Ethylene terephthalate
Single 7 g Single Tg\ melt transparent
Semicrystalline
Single Tg
/?-(2-Hydroxy-hexafluoroisopropyl) styrene-cc-styrene Maleic anhydride-co-styrene Methacrylic acid-co-styrene Methyl methacrylate
Single Tg; transparency
Single Tg
II had 6.1-43.8 wt.% cyclohexyl 574,622,1039 methacrylate Semicrystalline 174,176 Semicrystalline 174,176 Semicrystalline; > 50 or 75% II; two T g 's 337,593 when < 60% II 603,1151 II had 29-78 mol% styrene; immiscible 571,646, when II had 83 mol% styrene 807 II had 8% maleic anhydride 712 II had 2-23 wt.% methacrylic acid 10,11 Blends prepared by precipitation of THF 29,109, solutions in w-heptane or cast from 481,486,715 hot THF solutions II had > 70 wt.% methyl methacrylate 357
Single Tg
II had > 7 0 wt.% methyl methacrylate
357
Single Tg
II had 16-63 wt.% phenyl methacrylate
622
Single Tg Single Tg
II had < 14 wt.% styrene II had M W = 1 kg/mol and was made from formaldehyde and 13/17/70 mol% = /?-fe/t-butylpheny 1/m-cresol/ 0-cresol Blend had 7% II II had 13.5 wt.% vinyl chloride; semicrystalline when <25 wt.% I II had an alkyl group of methyl, ethyl or (3 miscible blend systems) < 70 wt.% I in blend II had 81 or 95 wt.% methyl methacrylate
Single Tg Single Tg Single Tg
Light scattering Single Tg Single Tg
Phenyl methacrylate Single Tg Pyrrole Single Tg Vinylidene chloride-ca-vinyl chloride Single Tg Alkyl methacrylate Isopropyl methacrylate Methyl methacrylate-coa-methylstyrene Carbonate of tetramethylbisphenol-A
Refs.
and tetramethylene terephthalate hard segment Semicrystalline
Methyl methacrylate-co/7-methylstyrene Methyl methacrylate-co/V-phenylrnaleimide Methyl methacrylate-cophenyl methacrylate Methyl methacrylate-co-styrene Novolac
Carbonate of hexafluorobisphenol-A
Comments
Acrylonitrile-co-a-methylstyrene Acrylonitrile-co-styrene AHyI alcohol-a?-styrene Butylene sebacate Caprolactone Carbonate of bisphenol-A
Single Tg\ transparency rc-propyl Single Tg; transparency Single Tg
Carbonate
Single Tg Single Tg; FTIR Single T% Single Tg Single Tg Single 7 g ; transparency; dielectric spectroscopy Single Tg, transparency
Ester
Single Tg
Maleic anhydride-co-styrene Methyl methacrylate-co-styrene
Single Tg Single Tg
oc-Methylstyrene p-Methylstyrene-co-tetrahydrofurfuryl methacrylate
Single Tg Single Tg
174,175 174,486,581
II had 4-16.5 wt.% acrylonitrile II had < 13% acrylonitrile II had < 19.1 wt.% allyl alcohol Semicrystalline Semicrystalline -
577,930 221
480,622 856 871 225,430 430 930
1010 8,225,1069 225 227 227 51,427,1124
II was carbonate of bisphenol-AP, 427 bisphenol-E, bisphenol-F, bisphenol-S, bisphenol-Z, bisphenol chloral, dimethylbisphenol-A, dimethylbisphenol-Z, norbonane, tetramethylbisphenol-F or tetramethylbisphenol-P (11 miscible blend systems) II was decamethylene decamethylene 227 dicarboxylate, decamethylene sebacate, ethylene adipate, hexamethylene decamethylene dicarboxylate, or hexamethylene sebacate (5 miscible blend systems) II had 8% maleic anhydride 225 II had <50 wt.% methyl 575,884,1194 methacrylate ~ 227 II had < 50 mol% tetrahydrofurfuryl 270 methacrylate
References page VI-461
TABLE 1. cont'd Polymer I of
Cellulose
Cellulose acetate
Polymer II of Styrene-co-tetrahydrofurfuryl methacrylate Acrylonitrile Caprolactone Ethylene glycol Vinyl acetate Vinyl alcohol 4-Vinylpyridine 2,6-Dimethyl-l,4-phenylene ether, phosphonate derivative 2,6-Dimethyl-3-bromo-l,4-phenylene ether, phosphonate derivative Styrene, phosphonate derivative Styrene, phosphorylated Styrenephosphonate ester
styrene-co-vinylidene chloride phosphonylated, chloromethylated styrene-co-inylidene chloride phosphonylated 4-Vinylpyridine
Method Single Tg
> 70% I in blend II had 9 5% P
Single Tg
II had 10.5% P
Single T g ; WAXD; NMR
Cellulose acetate propionate
Alkylene glutarate
Single Tg
Cellulose triacetate
Highly subsitituted cyanoethyl cellulose N-Vinylpyrrolidone Vinyl alcohol Vinyl chloride Ethylene oxide Ethylene oxide p-Methoxy-(6-ethenoxyhexyl) cinnamate p-Methoxy-(6-ethenoxypropyl) cinnamate /?-Methyl-(3-ethenoxypropyl) cinnamate Alkyl methacrylate
Single Tg; FTIR; microscopy
1-Chloroethyl methacrylate
2-Chloroethyl methacrylate
560,627,1208 556 625,1075
626 560,623,744,1075 559,1208 87
II had 8.0% P II had more than 1 phosphoryl group per 4 styrene units Single Tg Blend initially prepared was heterogeneous, became miscible when annealed above Tg Single Tg; electron microscopy I was Eastman 394-45; II had 7% P, 14.5% CI Single Tg II had 8.6% P
Hydroxybutyrate-co-valerate
Chitosan Chitosan acetate /7-Chloro-(3-ethenoxypropyl) cinnamate
-
270
Single T g Single Tg
Ethylene-a?-vinyl acetate
Chitin Chitin-£-2-methyl-2-oxazoline
Refs.
II had < 53 mol% tetrahydrofurfuryl methacrylate -
NMR; single Tg\ microscopy; WAXD NMR Single Tg\ FTIR Single Tg NMR; FTIR; Tm-depression Single Tg, NMR Single Tg
Single Tg\ cast films transparent Single Tg; transparent films
Cellulose acetate-butyrate
Comments
87 87 550 792
88 87
Semicrystalline; I had 39.4% acetyl content 27,86 or had 10H/2 glucose I had 18.5/45 = acetic acid/butyric acid 93,452 and II had 80% vinyl acetate; two r g ' s when II had 70% vinyl acetate II had 10 mol% valerate; miscible when 84 blend had 20-50% II, and partially miscible when blend had 60-80% II The alkylene group was ethylene, 927 diethylene, hexamethylene, pentamethylene, tetramethylene or trimethylene (6 miscible blend systems) 1026
Single T g ; FTIR Single T g ; FTIR Sinlge Tg; FTIR Tm depression FTIR; microscopy Single Tg
Blend had < 10 wt.% II ~ ~
1133 913 914 1245 1227 515
Single Tg
-
515
Single Tg
-
515
Single Tg; transparency
The alkyl group of II was methyl, ethyl, rc-propyl, isopropyl, K-butyl or tetrahydrofurfuryl (6 miscible blend systems)
1152
Ester
Single Tg; transparent melt
1154
Alkyl methacrylate
Single Tg\ transparency
Ester
Single T1; transparent melt
Af-vinylpyrrolidone
Single Tg
II was butylene adipate, caprolactone, 2,2-dimethyl- 1,3-propylene adipate, 2,2-dimethyl-1,3-propylene sebacate, 2,2-dimethyl-1,3-propylene succinate or hexamethylene sebacate (6 miscible blend systems) The alkyl group of II was methyl, ethyl or tetrahydrofurfuryl (3 miscible blend systems) II was butylene adipate, caprolactone, 2,2-dimethyl-1,3-propylene adipate, 2,2-dimethyl-1,3-propylene sebacate, ethylene adipate or hexamethylene sebacate (6 miscible blend systems) -
612
609,611
607
TABLE 1. cont'd Polymer I of Chloromethyl methacrylate
Polymer II of
Method
Comments
Alkyl methacrylate
Single Tg
Carbonate of bisphenol-A
Single Tg
Ester
Single Tg; transparent melt
N-vinylpyrrolidone Ethylene-c-methyl acrylate Isoprene, epoxidized Acrylonitrile-co-p-methylstyrene Acrylonitrile-co-styrene Ester
Single Tg Single Tg\ phase contrast microscopy Single Tg\ FTIR Single Tg Single Tg Single T1
Tetrahydrofurfuryl methacrylate Styrene 2,6-Dimethyl-1,4-phenylene ether
Single Tg Single Tg Single Tg\ transparency
Styrene
Single Tg
tf-Chlorostyrene-co-ofluorostyrene
2,6-Dimethyl-1,4-phenylene ether
Single Tg\ transparency; NMR
/7-Chlorostyrene-co-c>fluorostyrene
2,6-Dimethyl-1,4-phenylene ether
Single Tg\ transparency; NMR
/7-Chlorostyrene-co-styrene
2,6-Dimethyl-1,4-phenylene ether
Single Tg
Collagen hydrolyzate Copolyester
Ethyl acrylate Hydroxyether of bisphenol-A (Phenoxy) p-(2-Hydroxy-hexafluoroisopropyl) styrene-cc-styrene
Single Tg Single Tg
Chloroprene
3-Chloropropyl methacrylate
0-Chlorostyrene o-Chlorostyrene-co/7-chlorostyrene
Single T g ; clear
films
Single T g ; clear
films
Single Tg
Copolyester-carbonate
Vinyl chloride
Single Tg for II with soft segments of I
Vinyl chloride
Single Tg
Ethylene terephthalate
Single Tg
Refs.
II had an alkyl group of methyl, ethyl, 123,273 n-propyl, isopropyl, acetonyl or tetrahydrofurfuryl (6 miscible blend systems) Miscibility depended on method of 271 preparation II was butylene adipate, caprolactone, 609,611 2,2-dimethy 1-1,3-propylene adipate, 2,2-dimethyl-1,3-propylene sebacate, 2,2-dimethyl-1,3-propylene succinate, ethylene adipate, ethylene succinate or hexamethylene sebacate (8 miscible blend systems) 607 Semicrystalline 396
II had 15-33 wt.% AN II had 12-35 wt.% AN II was butylene adipate, caprolactone, 2,2-dimethyl-1,3-propylene adipate or hexamethylene sebacate (4 miscible blend systems) I had 23-64% /?-chlorostyrene
597 1105 1105 1111
1104 396 16
After quenching from 1450C; I had 131,803 71-92 mol% o-chlorostyrene; two T g 's when I had < 62 mol% o-chlorostyrene I had 14-40 mol% o-chlorostyrene; two 22,840, Tg 's when I had >36 mol% 843 o-chlorostyrene I had 13-74 mol% p-chlorostyrene; two 22,840, r g ' s when I had >74 mol% 843 /7-chlorostyrene I had >34.7 mol% styrene; two 243,413, Tgs when I had <34.7 mol% styrene 749 ~ 578 I was cyclohexylene dimethylene 689 tere/isophthalate I was KODAR PETG (made from 571,646 terephthalic and isophthalic acid and ethylene glycol and 1,4-dihydroxymethyl cyclohexane; II had 60 mol% styrene; immiscible when II had > 83 mol% styrene I was VITEL PE-307; II had 83-90.3 646 mol% styrene I was VITEL VPE-5545; II had 83 mol% 646 styrene; immiscible when II had 90.3 mol% styrene I was Hytrel, a multiblock copolymer 343,344, with poly(tetramethylene ether) glycol 617 terephthalate soft segments and tetramethylene terephthalate hard segments; hard segments crystalline; two Tg 's after 1300C annealing; Refs. 343, 344 showed single Tg to 50 or 60 wt.% I I was made from adipic acid, hexane331 1,6-diol and neopentanediol and had Mn = 2 kg/mol I was from 1 /2 = terephthalate/ 3 bisphenol-A with ester and carbonate linkages
References page VI-461
TABLE 1. cont'd Polymer I of
Polymer II of
Method
Vinyl chloride
Single Tg
Copolyether-amide
N-vinylpyrrolidone
Single T g ; transparency
Copolymer of bromohydroquinone and 4,4'-(decamethylenedioxy) bibenzoic acid
Gopolymer of /3-hydroxybenzoic acid and 3-methyl-l,6-hexanediolterephthalic acid
Single Tg; microscopy
Copolymer of 4,4'-(decamethylenedioxy)-bibenzoic acid and 4,4'(ethylenedioxy)diphenol
Single T g ; microscopy
Alkyl methacrylate
Single 7*g
2-Ethyl-2-oxazoline 2-Hydroxyethyl methacrylate 2-Hydroxypropyl methacrylate Tertiary amide
Single Single Single Single
Alkyl methacrylate
Single F g ; FTIR
2-Ethyl-2-oxazoline Tertiary amide
Single 7'g Single Tg
Epichlorohydrin
Single T g
2-Cyanoethyl methacrylate
Cyanomethyl methacrylate
1,4-Cyclohexanedimethylene succinate
1,4-Cyclohexanedimethylene 1,4-Cyclohexanedicarboxylate Cyclohexyl methacrylate
Tg T g ; FTIR T g ; FTIR Tg
Hydroxyether of bisphenol-A Single T 8 ; transparent melt (Phenoxy) Vinyl chloride-co-vinylidene chloride Transparent melt; large Tm -depression Vinyl chloride Single Tg Arylate Single Tg; PALS Carbonate of bisphenol-A Single T'% PALS Vinyl chloride Single T g ; NMR Vinyl chloride-a?-vinylidene chloride Single Tg 2-Vinylnaphthalene Vinyl chloride
Single Tg; excimer fluorescence Single Tg
Epichlorohydrin Dianhydrosorbityl dicarboxylate
Single Tg Single Tg; microscopy
Single T%
2,2-Dichloroethyl methacrylate
Ethyl acrylate-co-glycidyl methacrylate Alkyl methacrylate
Single T%\ transparency
2,6-Diethyl-l,4-phenylene ether Af,/V-dimethylacrylamide
Styrene AUyI alcohol-co-styrene
Single 7 g . Single T g ; FTIR
Alkyl methacrylate
Single Tg; FTIR
Decamethylene decamethylene dicarboxylate Decamethylene sebacate Dianhydrosorbityl dicarboxylate
2,3-Dichloro-l-propyl acrylate
Comments I was made from adipic acid and hexane-l,6-diol and neopentane-diol and diphenyl carbonate Studied up to 30% II; I was made from isophthaloyl chloride and cw-4,4'diamino-dibenzo-18-crown-6 Transition temperature from a mesophase to an isotopic phase changed continously and smoothly depending on the composition Transition temperature from a mesophase to an isotopic phase changed continously and smoothly depending on the composition II had an alkyl group of methyl, acetonyl or tetrahydrofurfuryl (3 miscible blend system) Blend had > 80 wt.% I Blend had < 50 wt.% I II was /V,/V-dimethylacrylamide, /V-methylN-vinylacetamide or /V-vinyl2-pyrrolidone (3 blend systems); formed complexes II had an alkyl group of acetonyl, 2-hydroxyethyl or 2-hydroxypropyl (3 miscible blend systems) Blend had > 60 wt.% I Complexation formation; II was Af-vinylpyrrolidone, Af,N-dimethylacrylamide or /V-methyl-N-vinylacetamide (3 miscible blend system) Semicrystalline
Refs. 333
720
380
380
1234
1236 1235 1235 1236
1233, 1235 1236 1236
223
Semicrystalline > 50 wt.% I
332
II was Saran (86.5% vinylidene chloride)
868
Semicrystalline < 30 wt.% II II was Ardel DlOO II was Ardel DlOO Semicrystalline >75% II; II had 86.5 wt.% vinylidene chloride I had low MW; II had MW - 70 kg/mol
898 1251 1251 641 409,870 231
Semicrystalline
872
Semicrystalline 6 Miscible blend systems based on different polyesters; the dicarboxylate was adipate, oxalate, sebacate, suberate or succinate II had 65% ethyl acrylate
223 925
The alkyl group of II was methyl, ethyl, n-propyl, isopropyl, rc-butyl, isoamyl, cyclohexyl or tetrahydrofurfuryl (8 miscible blend systems) Formed complexes; II had 4.5 or 6.5 wt.% OH groups II had an alkyl of chloromethyl, 2-chloroethyl, 3-chloropropyl,
181 1110
134 974 1108
TABLE 1.
conVd
Polymer I of
Polymer II of
Vinylidene fluoride MN-DimethylacrylamideVinyl chloride ctf-ethylene 2,6-Dimethyl- 1,4-phenylene ethei Acrylic acid-co-styrene /7-Bromostyrene-co-fluorostyrene Cyclohexylmaleimide-co-styrene oFluorostyrene-co-p-fluorostyrene 0-Fluorostyrene-o?-styrene p-Fluorostyrene-co-styrene p (2 Hydroxy-hexafluoroisopropyl) styrene-ca-styrene Luoloylmeleimide-c^-styrene Maleic anhydride-co-styrene Methacrylic acid-co-styrene 2-Methyl-6-benzyl-1,4-phenylene ether Methyl methacrylate-co-styrene 2-Methyl-6-phenyl-1,4-phenylene ether a-Methylstyrene a-Methylstyrene-costyrene 0-Methylstyrene
Single Tg Single T g ; FTIR Light scattering Single Tg\ transparency Single Tg; transparency Single T g ; transparency Single 7 g
Refs.
2-bromoethyl or 2-iodoethyl (5 miscible blend systems) Semicrystalline > 6 0 wt.% II 241 I had 71.4 or 73.1 wt.% ethylene; two 563 T g 's when I had > 75.1 wt.% ethylene II had 4.7-8.5 wt.% acrylic acid 921,1022 II had 11-73 mol% p-bromostyrene 547,834 I had 83 wt.% styrene 712 II had 10-38% para isomer; two 7"g's 412,835 when II had 5 or > 43% para isomer II had > 9 mol% styrene 836,839,842 II had > 44 mol% styrene 531,532,836,839,842 II had 77.9-90.3 mol% styrene 571,572,646,807
Light scattering Single Tv transparency; microscopy Single Tg Single Tg, transparency
712 232,233, 1022,1026 II had 5.9 or 7.8 mol% methacrylic acid 917,921 751
Single Tg
II had 2-20 wt.% methyl methacrylate -
Single Tg
II had 81 wt.% styrene II had 5.9-12.5 wt.% maleic anhydride
258,461,1022 752,753
Cellulose acetate
Epichlorohydrin, modified
Single Tg
Acrylonitrile-co-styrene
Single Tg
p-Bromostyrene 0-Bromostyrene-c0-/?-bromostyrene
Single Tg Single Tg
p-Chlorostyrene 0-Chlorostyrene-o?-/7-chlorostyrene
Single Tg Single Tg
0-Chlorostyrene-a?-0-fluorostyrene
Single Tg
Styrene, head-to-head Styrene, iodinated Styrene, sulfonated and metal-neutralized
Styrene, syndiotactic Styrene-fc-isoprene-/?-styrene
2,6-Dimethyl-1,4-phenylene ether, brominated phosphony lated 2,6-Dimethyl-1,4-phenylene ether, modified 2,6-Dimethyl-1,4-phenylene ether, sulfonylated
Single Tg Single T%
Comments
134,459,691 All compositions of II 459,754 NMR showed heterogeneity on a 195 3-nm scale Single Tg 195,235,788 Single Tg II had <22 mol% nitrostyrene 155,158 Single T%\ light scattering II had 84 or 90 wt.% styrene 712,1102 Single T%\ transparency; NMR 39,201,526,589,663, 750,753,784,1207 Single Tg 463 Single Tg II had < 47% iodination 261 Single T& II had up to 7.8 mol% sulfonation (Ref. 677); 677, II had 2.8 mol% sulfonation and was 1200 neutralized by Na, Zn, Ni or Mn, and miscible when blend had <40 wt.% I (Ref. 1200) Single Tg 954 Single Tg for mixed with II had block MW 15-51-17 and 568 styrene blocks of II 78-52-80 kg/mol Single Tg II had <24 wt.% 2,2,6,6-tetramethylpiperi257 dinyl methacrylate Single 7 g ; FTIR I and II formed interpenetrating network 567 Single Tg U .8 mol% of repeat units in I carboxy874 lated; two r g ' s when 35.0 mol% repeat units in I carboxylated Single Tg; electron microscopy II was Eastman 394-45 88
p-Methylstyrene /7-Nitrostyrene-cc-styrene /V-phenylmaleimide-co-styrene Styrene
2,6-Dimethyl-1,4-phenylene ether, carboxylated
Method
Styrene-a?-2,2,6,6-tetramethylpiperidinyl methacrylate Urethane acrylate Styrene
Single Tg Single Tg NMR
Both I and II had at least 25% carbazolyl or 3,5-dinitrobenzoyl groups I had 20-26 wt.% sulfonylation I had > 12 mol% sulfonylation High p-bromostyrene content and high degree of sulfonylation favored miscibility II had >9 mol% sulfonylation Miscibility depended on compositions of I and II Miscibility depended on compositions of I and II
664 410 1216,1220 1216
1217,1220 1217 1218
References page VI-461
TABLE 1.
cont'd
Polymer I of
a,a-Dimethyl-|3-propiolactone (pivalolactone) Dimethylsiloxane Dimethylsiloxane, modified
2,6-Dipropyl-l,4-phenylene ether Dodecamethylene adipamide, Af,Af-dimethyl substituted Dodecamethylene adipate Dodecamethylene decamethylene dicarboxylate Dodecamethylene dodecamethylene dicarboxylate Enaminonitrile
Epichlorohydrin
Epichlorohydrin-co-ethylene glycol Ester
Polymer II of
Method
Comments
Refs.
p-Chlorostyrene-ctf-0-fluorostyrene
Single Tg
o-Fluorostyrene /7-Fluorostyrene o-Fluorostyrene-cc-/7-fluorostyrene
Single Tg Single Tg Single Tg
/?-Fluorostyrene-c-styrene Phenylvinyl sec-butyl ether-a/rN-phenylmaleimide Phenylvinyl ethyl ether-a/fiV-phenylmaleimide Styrene Vinyl chloride
Single Tg Single Tg
Miscibility depended on compositions of I and II I had 4-17 mol% sulfonylation I had 17-66 mol% sulfonylation Miscibility depended on compositions of I and II I had 20-26 wt.% sulfonylation I had 68-87 mol% sulfonylation
Single T g
I had 61-91 mol% sulfonylation
1219
Single Tg Tm-depression
I had < 31 wt.% sulfonylation Semicrystalline
410 32,33
Ethylene-co-methyl acrylate
Single Tg; FTIR
Butyl methacrylate
Single Tg\ FTIR
Ethylene glycol
Single T g ; FTIR
Styrene p-(2-Hydroxy-hexafluoroisopropyl) styrene-co-styrene Epichlorohydrin Vinyl chloride Vinyl chloride
Single Tg Single Tg Single Tg Single T% Single Tg
I had a small amount of vinyl groups; II had 21 wt.% methyl acrylate One of the methyl groups in the repeating unit of 1 was changed to 4-hydroxy4,4-bis (trifluoromethyl) butyl group One of the methyl groups in the repeating unit of I was changed to 4-hydroxy4,4-bis(trifluoromethyl) butyl group Semicrystalline when < 50% substitution on I Semicrystalline Semicrystalline Semicrystalline
Vinyl chloride
Single Tg
Semicrystalline
Ethylene glycol Tertiary amide
Single T Single Tg
4-Vinylpyridine Acrylonitrile-co-styrene Alkyl acrylate
Single Tg Single Tg Single Tg
Alkyl methacrylate
Single Tg
Butyl acrylate rubber Ethyl acrylate rubber Ester
Single Tg Single Tg Single Tg
Glycidyl methacrylate Glycidyl methacrylate-co-methyl methacrylate Hexamethylene sebacate Methacrylonitrile-co-methyl methacrylate Methyl methacrylate
Single Tg Single 7 g
II was M/V-dimethylacrylamide, 2-ethyl2-oxazoline or /V-vinyl-2-pyrroIidone (3 miscible blend systems) II had 18 or 25 wt.% acrylonitrile II had an alkyl group of ethyl or n-propyl (2 miscible blend systems) II had an alkyl group of ethyl, n-propyl, n-butyl or cyclohexyl (4 miscible blend systems) II was Hycar 4043 II was Hycar 405IEP II was ethylene adipate, ethylene sebacate or 2,2-dimethyl-l,3-propylene adipate (3 miscible blend systems) II had 76% glycidyl methacrylate
Single Tg Single Tg
II had 30-40 mol% methacrylonitrile
Single T g
Broad 7"g might due to separate phases with differing Tg's within the mixture
Vinyl acetate Neopentyl glycol adipate
Single Tg Transparency
Ester
Single T g ; microscopy
Ester
Melting behavior
I was Hydrin 200; refractive indices not e u a I in m e te 9 m p e r a t u r e range investigated 13 Miscible blend systems based on different linear aliphatic polyesters Both polymers I and II were liquid crystalline; II had one more ethylene unit in the main chain
1
-
1218 1220 1220 1215 410 1219
1182 127
127
134 454 223 872 872 872 587 587
587 305 224,226 224
226 226 223,278
864 864 864
864 135,224 3O3
288
925 979
TABLE 1. cont'd Polymer I of
Polymer II of
Ester, hyperbranched and Aramide 3,5 -dihydroxyphenyl- terminated Amide Butylene adipate Copolyester
Ester, hyperbranched and Butylene terephthalate 3,5-diacetoxyphenyl-terminated Copolyester
Ether ether ketone
Method
Comments
Refs.
Single Tg
II was Trogamid T or MXD-6
1125
Single 7 g Single Tg Single Tg
II was nylon-6 II was made from terephthalic acid and a mixture of ethylene glycol and 1,4-cyclohexane dimethanol -
1125 1125 965
Single Tg Single Tg
Arylketone Etherketone
Single Tg Single Tg
Etherimide
1125
II was made from terephthalic acid and 1125 a mixture of ethylene glycol and 1,4-cyclohexane dimethanol II had 25, 50 or 57% ketone content 333 I was oxy-l,4-phenyleneoxy-l,4739 phenylenecarbonyl-1,4-phenylene; II was oxy-l,4-phenylenecarbonyl1,4-phenylene; semicrystalline I was Victrex 450G; II was Ultem 172,946,1037 1000; semicrystailine 1178 883 I had degree of sulfamidation of 1.33; 1061 II was Torlon 4000T I had degree of sulfonation of 0.42, 0.53 414,1061 or 1.00; II was Torlon 4000T II was Ultem 1000 414,1061 Miscible when II was cured by amine; 1023 immiscible when II was cured by anhydride I was Ultem 10000; II was Torion 1147 4203L I was Ultem 1000 942,1054,1127
Ether ether ketone, sulfamidated
Ether sulfone Amideimide
Single 7 g ; microscopy; WAXD; rm-depression Single T g Single 7«; FTIR
Ether ether ketone, sulfonated
Amideimide
Single Tg; FTIR
Etherimide Epoxy
Single Tg\ FTIR Single Tg, microscopy
Amideimide
Single Tg
Ethylene terephthalate Imide
Single T g ; microscopy; Tm -depression Single Tg
Etherimide ether
Thioetherimide ether
NMR
Ether ketone ketone Ether sulfone
Etherimide Aramid
Tm-depression Single Tg Single Tg, NMR Single 7 g Single Tg Single Tg Single Tg Single Tg
-
1184 1184 1184
Single Tg
-
1184
Ether urethane
Imide Imide /V,/V'-(oxydi-/?-phenylene) isophthalamide Phenylene ether ether ketone Phenylene ether sulfone ketone Phenylene sulfone ether sulfone ketone Phenylene thioether ether ether ketone m-Phenylene isophthalamide Vinyl chloride
I was Ultem 1000; II was based on diphenylpyromellitic dianhydride (DPPMDA) (3 different imides) I was made from 4,4'-oxydianiline (ODA) and 4,4 '-(1,4-phenylenedioxy)diphthalic acid; II was made from ODA and 4,4'-thio-diphthalic anhydride II was Ultem 1000 II was made from isophthaloyl chloride and bis(4-aminophenyl) ether II was Poly imide XU218 II was Matrimide 5218 -
Single Tg Single Tg
1030 344
/?-Methyl-(3~ethenoxypropyl) cinnamate Novolac
Single Tg
Prepared by in situ blending 20 or 40 wt.% II; I was Adiprene L-100 and 4,4'-methylene-bis2-chloroaniline -
Ether ether sulfone, phenolphthalein Etherimide
3-Ethenoxypropyl cinnarnate Ethyl acrylate
Single Tg
H had MW about 1 kg/mol; II was formaldehyde and 13/17/70 mol% = p-terf-butylphenol/m-cresol/o-cresol or formaldehyde and 15/17/68 mol% = 2-terf-butylphenol/m-cresol/0-cresol
240
1000
946 562,600 372 510,940 1031
515 221
References page VI - 461
TABLE 1. cont'd Polymer I of
Polymer II of
Method
Ethyl acrylate-co-methyl methacrylate Ethyl acrylate-co-4-vinylpyridine
(N-ethylcarbozol-3-yl)methyl aery late (N-ethylcarbozol-3-yl)methyl methacrylate Ethyl methacrylate
Single Tg
II had 8 mol% vinylidene
Single Tg; FTIR
II had 7.2 mol% sulfonated units
Styrene-a?-p-vinylphenol Vinyl chloride
Single Tg; FTIR Single Tg
Vinylidene Vinyl chloride
fluoride
Single T g ; Single Tg\
Vinyl chloride
Single Tg\
Styrene-co-styrene sulfonic acid
Single Tg\
Vinyl chloride Vinyl chloride, sulfonated
Single Tg Single Tg
2-(3,5-Dinitrobenzoyl) oxyethyl methacrylate 2-(3,5-Dinitrobenzoyl) oxyethyl methacrylate Novolac
Single Tg;
Single 7 g ; FTIR
II had MW about 1 kg/mol and was 221,434 formaldehyde and 13/17/70 mol% = p-terf-butylphenol/ra-cresol/tf-cresol 156 II had 90.3-98.9 mol% styrene 103,571,646
Single Tg Single Tg, transparency
Vinyl chloride
Single Tf transparency
Single Tg
Acrylonitrile-co-butadiene
Single 7"g
Hexamethylene terephthalate
Single Tg
Methyl methacrylate Neopentyl glycol adipate
Single T g ; transparency; electron microscopy Single Tg
Vinyl chloride, chlorinated
Single Tg
Ethylene, chlorosulfonated
Vinyl chloride
Single Tg
Ethylene adipate
Hydroxyether of bisphenol-A (Phenoxy) Ethylene glycol Ethylene glycol-co-propylene glycol
Single Tg\ transparent melt
2-Ethyl-2-oxazoline Styrene-a?-2*-vinylpyridine
FTIR FTIR
Ethylene-co-methacrylic acid
1198
-
Transparency
fluoride
411,1059
Single T g ; NMR
Ethyl acrylate p-(2-Hydroxy-hexafluoroisopropyl)styrene-co-styrene Vinyl acetate
Vinylidene
fluoride
II had >4.46 mol% vinylphenol 1198 In situ polymerized II; other mixtures 846 formed two phases (Refs. 296, 426 for example) transparency II was Saran ( > 80% vinylidene chloride); 812,870 I had MW = 50 kg/mol; two T g 's when I had MW = 140 kg/mol and II was Saran (86.5 wt.% vinylidene chloride) transparency Semicrystalline >25 wt.% II 56,80,844 transparency I had 2/40/58 = ethyl acrylate/meth422,424 acrylonitrile/a-methylstyrene or unknown composition electron microscopy I was Polaroid K120N (95% methyl 886 methacrylate) transparency I and II both > 5 % of second 210,773 monomer (data obtained < 10% substitution) I had 2-14 mol% 4-vinylpyridine 137 I had 6.2 mol% 4-vinylpyridine; II 137 had 3.7 mol% sulfonic acid NMR 760
Vinyl chloride-co-vinylidene chloride Single Tg; transparency
Ethylene, chlorinated
Refs.
Hexafluoroacetone-covinylidene fluoride Styrene, sulfonated
Vinyl chloride-co-vinylidene chloride Single Tg:
Ethyl acrylate-a?-methacrylonitrile-co-ot-methylstyrene
Comments
FTIR Single T g ; FTIR
761
Transparent film when I <25 wt.% or 634 when content of I toward 100 wt.% 234,319,649, 812,846 II was Saran ( > 80% vinylidene chloride) 409,812, or 86.5 wt.% vinylidene chloride; 870 semicrystalline < 30% I Semicrystalline when > 40% II; two 244,361,476 r g ' s when > 60% II 630,695 Depended on Cl content and acrylo96,161 nitrile content I had 48% Cl; immiscible with I had 36 36% Cl I had >50 wt.% Cl; II was atactic, 99,296,812 isotactic or syndiotactic (Ref. 1204) 848,1204 I had 42 or 48 wt.% Cl; immiscible 288 when I had < 36 wt.% Cl I and II with identical chlorine 818 content were immiscible I had 1% S as SO2Cl and 42 wt.% 200 Cl; stated immiscible when I had 30 wt.% Cl in Ref. 296 Semicrystalline when > 50 wt.% I 332 I had 55 wt.% methacrylic acid I had 18, 32, 44 or 55 wt.% methacrylic acid; II had 70 wt.% ethylene oxide I had 44 wt.% methacrylic acid I had 32 wt.% methacrylic acid; II had 70 wt.% 2-vinylpyridine
287 494 512 495
TABLE 1. cont'd Polymer I of
Ethylene-co-methacrylic acid, zinc neutralized
Ethylene-co-methyl acrylate co-unspecified acid Ethylene orthophthalate Ethylene glycol
Ethylene-co-sulfur dioxideco-vinyl acetate
Polymer II of
Method
Tetramethylene glycol Vinyl ethyl ether Vinyl methyl ether
FTIR FTIR Single Tg; FTIR
2-Vinylpyridine
FTIR
Vinyl methyl ether
FTIR
4-Vinylpyridine
NMR
Vinyl chloride
Single Tg
Vinyl acetate Copolyester-polyurethane Epoxy resin
Single Tg Single Tg Single Tg
Ethersulfone Ethyl methacrylate Ethylene-co-vinyl acetate
Single Tg; light scattering Single Tg Single T$
Hydroxyether of bisphenol-A (Phenoxy) p-(2-Hydroxy-hexafluoroisopropyl) styrene-co-styrene
Single Tg\ NMR Single Tg
Methacrylic acid
Single 7"g; NMR
Methacrylic acid-co-styrene, Na-neutralized Methyl methacrylate
FTIR
Resorcinol . Styrene, sulfonated and Na-neutralized Styrene-co-p-vinylphenol
NMR Single Tg
Styrene-co-vinylphenol trifluoromethyl carbinol
Single Tg
Sulfone
Transparency; light scattering
Vinyl acetate
Single T g
Vinyl chloride Vinylnapthalene
Single Tg; Tn-depression; NMR; IGC Single T g
/7-Vinylphenol
FTIR, NMR; X-ray diffraction
Vinyl chloride
Single 7"g; transparency
Single Tg\ FTIR; NMR
Single Tg
Comments
Refs.
I had 55 wt.% methacrylic acid I had 55 wt.% methacrylic acid I had 18, 32, 44 or 55 wt.% methacrylic acid Miscible when I had 18 wt.% methacrylic acid and formed complexes when I had 44 or 55 wt.% methacrylic acid; formed complexes when I had 32 wt.% methacrylic acid and was < 35% I in blend I had 44 wt.% methacrylic acid I had 15 wt.% methacrylic acid and 60% zinc-neutralized I was Vamac N-123
496 496 494 494
732 52 395
829 ~ 363 Miscible when II was uncured; immiscible 313, when II was cured (Ref. 313) 1118,1119 317,534,743 130 II had 87.1 wt.% vinyl acetate (Ref. 132); 132, II had 73.4 wt.% vinyl acetate, miscible 328 with I of M w = 20 and 100 kg/mol (Ref. 328) Semicrystalline when >40% I 363,364,690 II had 77.9 mol% styrene and I/II was 1/8-1/2; semicrystalline and no amorphous phase Formed complexes in water and dimethylsulfoxide I had 5.6-17.9 mol% acid
806
374,1128 1098
I was miscible with atactic or syndio- 124,389,511 tactic II and immiscible with isotatic 552,759, II; semicrystalline when > 20 wt.% I 1192 51 II had 2.9-8.8 mol% sulfonation; miscible 498 when blend had low I content II had 13.1 mol% styrene and I/II was 806 1/8-1/1; semicrystalline at higher I content and no amorphous phase miscibility II had 84.4 mol% styrene and I/II was 806 1/8-1/4 or II had 54.5 mol% styrene and I/II was 1/8-1/2; semicrystalline at higher I content and no amorphous phase miscibility I had Mn — 3.5- 4.0 kg/mol; immiscible 796 when I had Mn = 200 kg/mol Ref. 397 stated miscible when > 40 wt.% 311,397, II in blend; Ref. 311 stated completely 553 miscible if I had M w = 20 kg/mol, and miscible up to 50 wt.% II if I had Mw = 100 kg/mol Semicrystalline 418,1126,994 Semicrystalline when >50% I; two 178,580,679 amorphous phases when 25-50% I Semicrystalline 668,888,1150, 1149 I had 72.7/8.8/18.5 = ethylene/sulfur 339 dioxide/vinyl acetate; immiscible when
References page VI-461
TABLE 1. cont'd Polymer I of
Ethylene terephthalate
Polymer II of
Hydroxyether of bisphenol-A (Phenoxy) Liquid crystalline copolyester
Method
Single Tg Single Tg
Ethylene-2,6-naphthalene dicarboxylate Acrylic acid-co-alkyl acrylate
Single Tg
3-Alkyl thiophene
Microscopy
Aniline, N-octadecylated
Microscopy
Chloroprene Hexafluoroacetone-co-vinylidene fluoride Novolac Propylene, chlorinated
Single T g ; microscopy Single T g Single r g ; FTIR Single Tg
Vinyl chloride
Single T g
Vinyl chloride, chlorinated
Single Tg
Vinyl chloride
Single Tg
Alkyl methacrylate
Single T g ; FTIR
Amide
Single Tg
Copolyamide
Single Tg
2-Ethylhexyl methacrylate
4-Vinylpyridine Styrene-co-hexyl methacrylate
Single Tg Single Tg
Af-ethyl-3-hydroxymethylcarbazoyl methacrylate 2-Ethyl-2-oxazoline
co-Hydroxyalkyl-3,5-dinitrobenzoyl methacrylate Acrylic acid
Single Tg
Ethylene-c-vinyl acetate
Ethylene-co-vinyl acetate-co-unnamed monomer Ethylene-co-vinyl alcohol
Acrylic acid-a?-styrene Allyl alcohol-co-styrene Aramid
Single Tg
Single Tg Single Tg Single F g ; FTIR Optical microscopy; light scattering Light scattering, transparency Single Tg; transparency
Ether sulfone Hydroxyether of bisphenol-A (Phenoxy) Maleimide-o?-styrene Novolac
Single Tg Single Tg
Sulfone, carboxylated
Single Tg
Comments
Refs.
I had 89.0/3.2/7.8 = ethylene/sulfur dioxide/vinyl acetate Tgs of I and II were close; semi689 crystalline II was copolymer of ethylene terephthalate 898, (40%) and hydroxybenzoic acid (60%) 1099 (Ref. 898) or a segmental block copolyester (Ref. 1099) Miscibility arised from trans912 esterification II had an alkyl group of /i-butyl, ethyl, 924 ethylhexyl or methyl (4 blend systems); miscibility depended on compositions of I and II I had 20 wt.% of vinyl acetate; II had 1033,1095 an alkyl group of dodecyl or octyl; blend had <30 wt.% II I had 20 wt.% vinyl acetate; II was 1246 60.2 mol% alkylated I had 28 wt.% vinyl acetate 1081 I had > 70% vinyl acetate; II had 336 8.9 mol% hexafluoroacetone I had 14-50 wt.% vinyl acetate 1130 I had 40, 44.3 or 45 wt.% vinyl acetate; 499,500 II had 40 or 50 wt.% Cl I had 65-75 wt.% vinyl acetate; two 216,222, Tgs when I had 40-45 wt.% vinyl 325,330, acetate; ambiguous when I had 45-65 452,541, wt.% vinyl acetate 672,756 Stated that there was a miscible region 747 when I had 0.4-0.75 mol% ethylene and II had 0.4-0.8 mol% vinyl chloride Semicrystalline; I was du Pont de 41 Nemours PB3041 (>60% ethylene) II had an alkyl group of methyl, n-octyl 1054 or /i-decyl (3 miscible blend systems); I had 21 mol% vinyl alcohol I had 33 mol% vinyl alcohol; II was 4 nylon 12 or nylon 6,12 (2 miscible blend systems) II had 60 mol% nylon 6 units and 40 mol% 909 nylon 12 units; I had 59 mol% vinyl alcohol I had 68 mol% vinyl alcohol 1045 I had 3-5% acrylic acid; II had 30% 766 styrene and 5-15% 3-(dimethylamino)-2,2-dimethylpropyl methacrylate II had an alkyl group of butyl, hexyl, 694 pentyl or propyl (4 blend systems) Formed complexes in water, methanol 517 or dioxane II had 74 mol% acrylic acid 517 II had 4.5 or 6.5 wt.% of hydroxyl group 974 533 -
599 426
II had 9.5-48.2 mol% maleimide Formed complexes in methanol or acetone II had > 0.93 degree of carboxylation
188 517 254
TABLE 1. cont'd Polymer I of
2-Ethyl-6-propyl1,4-phenylene ether 2-Fluoroethyl methacrylate 3-Fluoropropyl methacrylate
Glycidyl methacrylate
Polymer II of p-Vinylphenol Vinylidene Styrene
Method
Comments
Refs.
Single Tg Single T g Single T1
Formed complexes in dioxane >50wt.%II
Alkyl methacrylate
Single Tg
1153
Alkyl methacrylate
Single Tg
Ester
Single r g
Acrylonitrile-co-styrene Methyl methacrylate a-Methylstyrene Acrylonitrile-co-styrene
Single Single Single Single
Tg Tg Tg Tg
Single Single Single Single
Tg Tg Tg Tg
II had an alkyl group of methyl or ethyl (2 miscible blend systems) II had an alkyl group of methyl or tetrahydrofurfuryl (2 miscible blend systems) II was butylene adipate or 2,2-dimethyl1,3-propylene adipate (2 miscible blend systems) II had 32.3-58.8 wt.% AN II had M w < 4.25 kg/mol II had Mw = 3.5 kg/mol Miscibility depended on compositions of I and II I had 1.6-37.1 wt.% GMA I had 1.6-18.6 wt.% GMA I had < 35.7 wt.% GMA Semicrystalline II had an alkyl group of methyl or ethyl (2 miscible blend systems) Blends prepared by coprecipitation; blends prepared by melt blending showed no sign of hydrogen-bonding II was butylene sebacate or butylene succinate (2 miscible blend systems) Polymer II was nylon 6,5, nylon 6,7, nylon 6,8 or nylon 6,9 (4 miscible blend systems) Semicrystalline; II was Saran C ( > 80% vinylidene chloride)
1153
fluoride
Glycidyl methacrylateco-methyl methacrylate Glycidyl methacrylate-co-styrene Carbonate of tetramethylbisphenol-A 2,6-Dimethyl-l,4-phenylene ether Vinylidene fluoride Hexadecamethylene dodecaVinyl chloride methylene dicarboxylate Hexafluoroisopropyl methacrylate Alkyl methacrylate
Single Tg
517,857 243 134
1155
1155
1007 1007 1009 1007 1007 1007 1009 872
Hexamethylene adipamide (nylon 6,6)
Ethylene terephthalate
FTIR; NMR
Hexamethylene adipate
Ester
Single Tg\ microscopy
Hexamethylene isophthalate
Amide
Single Tg
Hexamethylene sebacate
Vinyl acetate-co-vinylidene chloride
Single Tg
Hexamethylene terephthalate
Vinyl bromide Vinyl chloride Hydroxyether of bisphenol-A (Phenoxy) Vinyl chloride
Single Tg Single T g Single Tg Single T%
Semicrystalline; deposited from some solvents as two phases
1-Pentene Vinyl chloride
Single Tg Single 7 g ; transparency
Vinyl chloride-covinylidene chloride Cellulose acetate-butyrate Cellulose acetate-proprionate Cellulose tributyrate Epichlorohydrin
Single T 8 ; transparency Single Tg Single Tg; microscopy Single T g ; microscopy Single T g ; microscopy; Tm depression Single T* Single Tg Single Tg\ microscopy Single Tg Single Tg NMR Single Tg, FTIR Single Tg\ Tm -depression Single T1
190 Especially when II was polymerized 812,846, in situ (Ref. 846); stated as immiscible 850 in Ref. 812 H was Saran ( > 80% vinylidene chloride) 409,812 Semicrystalline 719,933,1183 Semicrystalline 719,1183 Semicrystalline 1183 Semicrystalline 987,1183,1201
1-Hexene Hexyl methacrylate
3-Hydroxybutyrate
Ethylene glycol Ethylene glycol-colactide Lactide Methyl methacrylate Vinyl acetate Vinyl alcohol p-Vinylphenol Vinylidene fluoride 3-Hydroxybutyrate-co3-hydroxyvalerate Hydroxyether of bisphenol-A (Phenoxy)
Acrylonitrile-co-butadiene-co-styrene Vinyl chloride 2,2-Dichloroethyl methacrylate 2,2-Dichloroethyl methacrylate-comethyl methacrylate
Single Tg Single Tg\ FTIR Single T%\ FTIR
925 962
31 150 872,900 735
Semicrystalline when > 50% I Semicrystalline when > 75% I
Semicrystalline II had 15 wt.% ethylene glycol Blend had < 20 wt.% I Semicrystalline Blend had a large amount of I Semicrystalline
656
36
37,464,1237 1241 923,1079 1103,1183,1189 292,465 1239 1043 407,414
I had 16% hydroxyvalerate I had 16 or 18% hydroxyvalerate II had <62 wt.% methyl methacrylate
180 180,952 1017 1017
References page VI - 461
TABLE 1. cont'd Polymer I of
Hydroxyether of bisphenol-A, benzoylated Hydroxyether of bisphenol-A, modified Hydroxyether of phenolphthalein
j3-Hydroxyethyl-3,5-dinitrobenzoyl methacrylate
Polymer II of Ether sulfone Ethylene oxide-co-propylene oxide
Light scattering Single Tg
Methyl methacrylate
Single T g ; NMR
Vinyl methyl ether Vinylpyridine
Single T g ; IGC Single T%\ FTIR
Af-vinylpyrrolidone Urethane
Single T g ; transparency: FTIR Single T%
Af-vinylpyrrolidone
Single T 8 ; FTIR
2-Vinylpyridine
Single T g ; FTIR
Butylene terephthalate Carbonate of bisphenol-A Ether sulfone Ethylene glycol /V-alkyl-3-hydroxymethylcarbazoyl methacrylate
Single Single Single Single Single
/V-(2-hydroxyethyl)carbazoyl methacrylate 2-Hydroxyethyl methacrylate Acrylamide-costyrene /?-(2-Hydroxy-hexafluoroisopropyl) Butyl acrylate -a-methylstyrene-co-styrene Butyl methacrylate
p-(2-Hydroxy-hexafluoroisopropyl)styrene-c-styrene
Method
Tg 7g T g ; FTIR Tg Tg
Single Tu Single 7 g ; NRET Single Tg Single Tg
Methyl methacrylate
Single TB
Methyl methacrylate-co2-vinylpyridine Aramide
Single Tz Single T g ; transparency
Butyl methacrylate
Single T g ; NRET
a,co-Decanedicarboxylic-c0hexanediamine acid (nylon 6,12) Hydroxypropyl L-glutamate
Single Tg
Methyl methacrylate
Single T g ; light scattering; microscopy Single T g ; transparency; NMR; FTIR; WAXD; NRET
2-Hydroxypropyl methacrylate
Vinyl acetate Vinyl methyl ether Vinyl methyl ketone Tertiary amide
Single T g ; transparency Single T g ; transparency Transparency Single 7~g; FTIR
Imide
Ether ketone ketone
Single Tg
Ether ketone
Single Ts
Imide
X-ray diffraction
Comments
Refs.
II had >22 mol% ethylene oxide II was atactic, isotactic or syndiotactic
714 1025
112,218, 775,910 690,819,820,996 981
II was 2- or 4-vinylpyridine (2 miscible blend systems) II was made from 1/1/2 = polycaprolactone diol (Mn = 2.1 kg/mol)/ M-butanediolM^'-diphenylmethane diisocyanate -
OH groups in I was converted to benzoate, acetate or methoxy group II had an alkyl group of butyl, decyl, dodecyl, ethyl, hexadecyl, hexyl, methyl, octyl or tetradecyl (9 miscible blend systems) -
1253 730
1002 989 310 310 306 309 693
693
II had 40, 47 or 52 mol% acrylamide 955,1248 I had > 1.2 mol% OH-containing 90 monomer I had >2.8 mol% OH-containing 1166 monomer I had > 1.9 mol% OH-containing 90 monomer I had > 6 mol% OH-containing monomer 377 I had 60 mol% styrene; two Tg5S when I had 83 mol% styrene; II was iminotrimethylhexamethyleneiminoterephthaloyl I had >1 mol% OH-containing monomer; formed complexes when I had 18 mol% OH Semicrystalline Blend had <50 vol% II
571,646
1166 454 971
I had > 8 mol% OH; formed complexes 571,646, when I had 24 mol% OH; II was 1021,1116, isotactic or syndiotactic 1117,1241 (Ref. 1116,1117) I had 90.3 mol% styrene 571,646 I had 83.3-99.9 mol% styrene 571,572,646 I had 90.3 mol% styrene 567 Formed complexes; II was dimethyl975 acrylamide, Af-methyl -N-vinylacetamide or ethyloxazoline (3 blend systems) I was made from pyromellitic dianhydride 1179 (PMDA) and 4,4'-bis(3-aminophenoxy) biphenyl I was the same as the previous system; II 1179 was Victrex 220P; blend had <50 wt.% I I was made from PMDA and 391 oxydianiline; II was made from
TABLE 1. cont'd Polymer I of
2-Iodoethyl methacrylate
ds-Isoprene
Isoprene, chlorinated Isoprene, modified by hexafluoroisopropanol group
Polymer II of
Method
Imide
Single Tg
Imide
Single Tg
Imide
Single Tg
Imide
Single Tg
Imide
Single Tg
Imide
Single T g
Imide
Single Tg
Imide
Single Tg\ WADX; SAXS
Imide
Single Tg
Imide
Single Tg
Imide
Single Tg
Acrylonitrile-co-p-methylstyrene Acrylonitrile-co-styrene Ester
Single Tg Single Tg Single Tg
Tetrahydrofurfuryl methacrylate Butadiene-ctf-1,2-vinylbutadiene cis-Pentenamer Vinylethylene Ethylene-co-vinyl acetate Alkyl methacrylate Ethylene-a?-methyl aery late
Single Single Single Single Single Single rc-butyl Single
Tg Tg Tg 7 g ; NMR T 8 ; transparency Tg\ FTIR Tg; FTIR
Comments
Refs.
PMDA and p-phenylenediamine; <90% II in blend I was made from 2,2'-bis(3,4'-dicarboxy130 phenyl)hexafluoro-propane dianhydride (6FDA) and 2,2'-bis(3-aminophenyl)hexafluoropropane (3,3 '-6F-diamine); II was made from 6FDA and 2,2'-bis (4-aminophenyl)hexafluoropropane (4,4'-6F-diamine) I was made from 4,4/-biphthalic anhydride 130 (BPDA) and 3,3'-6F-diamine; II was made from BPDA and 4,4'-6F-diamine I was made from 3,3/4,4/-benzophenone130 tetracarboxylic dianhydride (BTDA) and 3,3'-6F-diamine; II was made from BTDA and 4,4'-6Fdiamine I was made from 3,3',4,4'-diphenyl130 ethercarboxylic dianhydride (OPDA) and 3,3'-6F-diamine; II was made from OPDA and 4,4'-6F-diamine I was made from PMDA/BPDA/ 130 3,3'-6F-diamine = 25/25/50; II was made from PMDA/BPDA/4,4'-6Fdiamine = 25/25/50 I was made from PMDA/BTDA/3,3'130 6F-diamine = 25/25/50; II was made from PMDA/BTDA/4,4'-6Fdiamine = 25/25/50 I was made from PMDA/OPDA/ 130 3,3 '-6F-diamine = 25/25/50; II was made from PMDA/BTDA/4,4 '-6Fdiamine = 25/25/50 I was made from 3,3',4,4'-diphenyltetra1244 carboxylic dianhydride (DBTA) and oxydianiline (DOA); II was made from 4,4 '-thiodiphthalic anhydride and ODA I was made from DBTA and 3,3'-hexa957 fluoroisopropyiidene dianiline (3,3'-HIPD); II was made from DPTA and 4,4/-hexafluoroisopropylidene dianiline (4,4'-HIPD) I was made from 5,5'-[2,2,2-trifluoro957 I -(trifluoromethyl)ethylidene] bis-l,3-isobenzofuranedione (A) and HIPD; II was made from A and 4,4-HIPD I was made from BTDA and 3,3'-HIPD; 957 II was made from BTDA and 4,4'-HIPD II had 21-42 wt.% AN 1106 II had 13-51 wt.% AN 1106 II was butylene adipate, caprolactone, IUl 2,2-dimethyl-1,3-propylene adipate or hexamethylene sebacate (4 miscible blend systems) ~ 1107 II had > 32.3% vinylbutadiene 420 77 II had 86% 1,2-butadiene 570,697,700,810,811 Semicrystalline; commercial samples 503,665 II had an alkyl group of methyl or 959 (2 miscible blend systems) II had 40 or 75 wt.% methyl acrylate 959
References page VI-461
TABLE 1. cont'd Polymer I of
Isoprene-ste/-//-(2-hydroxyethyl) carbazole methacrylate Isoprene-^-methyl methacrylate
Isopropenyl methyl ketone Isopropyl acrylate Maleic acid-co-styrene Maleic anhydride-a//ot-methylstyrene Maleic anhydride-co-styrene
Polymer II of
Method
Ethylene-co-methyl methacrylate Ethylene-co-vinyl acetate Methyl acrylate Methyl acrylate-co-styrene Styrene-jtaf-AMtaconimidyl3,5-dinitrobenzoate
Single Single Single Single Single
Acrylonitrile-co-styrene p-(2-Hydroxy-hexafluoroisopropyl)a-methylstyrene-co-styrene p-Vinylphenol Isopropyl methacrylate Vinyl butyral 2,6-Dimethyl-1,4-phenylene ether. sulfonylated Caprolactone
Tg\ Tg, Tg; Tg; Tg
Comments FTIR FTIR FTIR FTIR
Single Tg microscopy
II had 50 wt.% methyl methacrylate II had 35 or 70 wt.% vinyl acetate II had 28 wt.% methylacrylate Polymer had at least 20 mol% of electron-donor or electron acceptor group II had 22 wt.% acrylonitrile II had > 1.6 mol% OH groups
1049 1254
Single T g ; NMR; FTIR Single T g ; transparency Transparency Single Tg
I was Daidou Kogyo Styrite HS-2 II had <55 mol% sulfonylation
1035 453 452 838
Single Tg
I had 14 or 25 wt.% maleic anhydride; semicrystalline I had < 12% maleic anhydride I had < 10% maleic anhydride I was alternating copolymer and had <55 mol% sulfonylation I had 0-33 wt.% maleic anhydride I had 8-33 wt.% maleic anhydride I had 0-18.1 wt.% maleic anhydride I had 4.7 wt.% maleic anhydride Depended on degree of sulfonylation of II I had electron-donating (carbazolyl methylene)aniline groups; II had electron-accepting groups I had 50.6 mol% methacrylic acid (MA); II had 18 or 26 mol% vinylpyridine (VP) I had 50.6 mol% MA; Il had 23 mol% VP I had 50.6 mol% MA; Il had 8 mol% VP Miscible when cast from toluene or dioxane; immiscible when cast from chloroform; I had 93.4-96.7 mol% styrene Miscible when cast from toluene; immiscible when cast from chloroform; I had 93.8-97.2 mol% styrene I was azeotropic
Carbonate of tetramethylbisphenol-A 2,6-Dimethyl-l,4-phenylene ether
Single Tg Single Tg Single Tg
Methacrylate, liquid crystalline
2,6-Dimethyl-l,4-phenylene ether, sulfonylated Ethyl methacrylate Methyl methacrylate n-Propyl methacrylate Vinyl methyl ether 2,6-Dimethyl-l,4-phenylene ether, sulfonylated Methacrylate, liquid crystalline
Methacrylic acid-co-amethylstyrene
Butyl methacrylate-a?4-vinylpyridine
Single T g ; FTIR
Single 7 g ; FTIR
Methacrylic acid-co-styrene
Ethyl methacrylate-co4-vinylpyridine Methyl methacrylate-co4-vinylpyridine Ethyl methacrylate
Single 7 g ; fluorescence study
Methacryloyl glycine-cc-styrene
Ethyl methacrylate
Fluorescence study
Methacrylonitrile-coa-methylstyrene Methacrylonitrile-a?p-methylstyrene
Vinyl chloride
Single T g
/?-Butyl methacrylate
Single Tg
Ethyl methacrylate Methyl methacrylate Isopropyl methacrylate
Single Tg Single Tg Single Tg
/z-Propyl methacrylate f-Butyl methacrylate-comethyl methacrylate Cyclohexyl methacrylate-a?methyl methacrylate Ethyl methacrylate
Single Tg Single T g
Maleimide-a/f-a-methylstyrene
Metnacrylonitrile-c0-styrene
Methyl methacrylate
Refs.
Single Single Single Single Single
Tg T g ; NMR; FTIR Tg Tg Tg
Single T g ; microscopy
Single Tg, FTIR
Single Tg Single Tg Single Tg\ transparency;
II had 12-28 wt.% of methacrylonitrile (MAN) II had 12-55 wt.% MAN II had 19-70 wt.% MAN I had 19-34 wt.% MAN when II had Mn = 161 kg/mol; I had 16-34 wt.% MAN when II had Mn = 41.6 kg/mol I had 12-43 wt.% MAN Miscibility depended on composition of I and II Miscibility depended on composition of I and II I had 4.5-44 wt.% methacrylonitrile (MAN) Miscibility range varied in various fluorescence spectroscopy studies especially at the low MAN end
959 959 959 959 963
192 1008 1008 838 73 73,999 73 862 837 1077
1131
1131 1131 103
103
423 944 944 944 944
944 1139 1139 943 970,986, 1018, 1139
TABLE 1. cont'd Polymer I of
Polymer II of Isopropyl methacrylate
/i-Propyl methacrylate 4-[[6-(Methacryloyloxy)hexyl]4-[[6-(Methacryloyloxy)hexyll oxy]-A/r-[(9-methyl-2-carbazolyl) oxy]-Af-(4 '-nitrobenzylidene) methylene]aniline aniline 4-[[l-[4(-Methoxyphenyl)azo] 4-[[l-[(4-cyanobiphenyl)-4/)oxy]phenyl]-4-oxy]-3-propyl] 3-propyl]oxy]styrene oxy]styrene /7-Methoxystyrene-cc-p-vinylAlkyl acrylate phenol
Methyl acrylate
Method Single T1, transparency
Single Tz\ transparency Single Tg
Refs.
I had 12-38 wt.% MAN when II had Mn = 161 kg/mol; I had 8-43 wt.% MAN when II had M n =41.6kg/mol I had 2-32 wt.% MAN Polymer I and polymer II were liquid crystalline
943
943 1076
Single Tg
Blend showed liquid crystallinity
Single T%\ FTIR
II had an alkyl group of methyl or ethyl 1177 (2 miscible blend systems); I had 33-63 mol% vinylphenol I had 33-63 mol% vinylphenol 1177 226 I had 50 mol% epichlorohydrin 226 (Hydrin 200) ~ 226 416 Probably formed two phases when 453,601,615 deposited from some solvents 1196 (Refs. 601) II was Saran ( > 80% vinylidene chloride); 812,870 I had MW = 1.0 kg/mol; two T g 's when I had MW = 576 kg/mol in Ref. 870 Semicrystalline 844,1122 Both I and II had >27 mol% monomer 705 with interactive groups
Vinyl acetate Epichlorohydrin Epichlorohydrin-co-ethylene glycol
Single Tg; FTIR Single Tg Single Tg
Ethylene glycol Nitrocellulose Vinyl acetate
Single Tg Single T g Single Tg; transparency; NMR
Vinyl chloride-co-vinylidene chloride Single Tg; transparency
Vinylidene fluoride Methyl acrylate-co-vinylcarbazole Methyl methacrylate-co-2(3,5dinitrobenzoyl)oxyethyl methacrylate Styrene-a?-2(3,5-dinitrobenzoyl) oxyethyl methacrylate Methyl 1-bicyclobutaneAcrylonitrile-co-styrene carboxylate Ethylene glycol 2-Methyl-6-ethyl-l,4-phenylene Styrene ether a-Methyl-a-ethyl (3-propiolactone Vinyl chloride Methyl methacrylate Acrylonitrile-co-methyl methacrylate-a?~styrene
Comments
Single Tg, transparent melt Single 7 g
Single T1
1042
Single T g ; transparency
Both I and II had > 12 mol% monomer with interactive groups II had 24-38 wt.% acrylonitrile
173 202
Single T g ; transparency Single Tg
< 2 0 wt.% II -
202 134
Single Tg Single Tg
33 620
1228 1228
4'-[[2-(Acryloyloxy)ethyllethylamino]-4-nitroazobenzene 4/-[[2-(Acryioyloxy)ethyl]ethylamino]-4-chloro-4-nitroazobenzene p-rerf-Butylphenol-co-formaldehyde Carbon monoxide-a/r-propylene Carbonate
Single Tg\ NMR
Semicrystalline when blend had 75% I II had 40/39.1/20.9 or 61.1/19.6/19.3 = styrene/methyl methacrylate/ acrylonitrile -
Single Tg\ NMR
-
Single T g ; FTIR; WAXD Single T g ; FTIR; NMR Single T1; transparency
Carbonate of bisphenol chloral Copolycarbonate of bisphenol-A and hexafluorobisphenol-A /?-Chlorophenol-c-formaldehyde Epichlorohydrin-co-ethylene glycol Ethyl acrylate Ethyl methacrylate
Single T g ; NMR Single T1; transparency
647,1056 1229 II was carbonate of bisphenol-F or 426 bisphenol-AF (2 miscible blend systems) 110.426,673,983 II had 4.5-14.0 wt.% hexafluoro430 bisphenol-A 647 224 156 Made from slurries of polyethyl 763 methacrylate and methyl methacrylate; inherently unstable, phase separation upon heating 647 647 443
Formaldehyde-co-p-nitrophenol Formaldehyde-co-phenol Hexafluoroacetone-co-vinylidene fluoride
Single Single Single Single
Tg\ FTIR Tg Tg T%
Single 7 g ; FTIR Single Tg\ FTIR Single T1
References page VI-461
TABLE 1. cont'd Polymer I of
Polymer II of N-Maleimide-co-styrene Methoxymethyl methacrylate Methyl aery late ot-Methylstyrene Nitrocellulose
Method
Comments
Novolac
Single 7 g ; FTIR Single TK Single TB Single T g No phase separation in solution or films Single Tg; FOR
Propylene glycol
Single Tg; SAXS
Tetrafluoroethylene-covinylidene fluoride Trifluoroethylene-co-vinylidene fluoride Vinyl acetate
Single T g ; Tm-depression Light scattering; FTIR; Tm -depression Single T%\ FTIR; LS; microscopy
Vinyl acetate-co-vinyl chloride
Single T g ; transparency
Vinyl chloride
Single Tg; transparency
Vinyl chloride, chlorinated
Single T g ; FTIR
Vinyl chloride-co-vinylidene chloride Single T g ; transparency
Methyl methacrylate, imidized
Methyl methacrylate-costyrene
Methyl methacrylate-covinylpyridine 2-Methyl-2-oxazoline
2-Methyl-l-pentene sulfone
Vinyl chloroacetate Vinylidene fluoride
Single T 1 Single 7 g ; NMR
Acrylonitrile-co-styrene
Single T g
Vinyl chloride Copolycarbonate of bisphenol-A and tetramethylbisphenol-A Copolycarbonate of hexafluorobisphenol-A and tetramethylbisphenol-A Acrylic acid-co-butyl acrylate
Single Tg Single T%\ transparency
Single T g ; FTIR
Allyl alcohol-co-styrene Hydroxyether of bisphenol-A 2-Hydroxypropyl methacrylate Vinyl alcohol Vinyl chloride Vinyl fluoride p-Vinylphenol Novolac
Single Single Single Single Single Single Single Single
Single Tg
Tg; Tg\ Tg; 7g; T1 7g Tg; Tg
FTIR FTIR FTIR FTIR
FTIR
-
Refs.
II had 8, 14 or 21 wt.% N-maleimide -
1213 264 156 167,765 199,296,452,651
II had MW about 1.0 kg/mol and was 221,434,473 formaldehyde and 13/17/70 mol% = /?-?er?-butylphenol/ra-cresol/0-cresol or formaldehyde and 15/17/68 mol% = 2-f-butylphenol/ra-cresol/o-cresol; I was isotactic, atactic or syndiotactic I had MW = 550 kg/mol; II had MW = 527 1.0-3.9 kg/mol II had 80 mol% vinylidene fluoride 113,324 II had 58 or 75 mol% vinylidene fluoride Miscible when cast from chloroform or cyclohexanone; immiscible when cast from tetrahydrofuran or melt blended
713,1066
302,602, 726,777, 778,928, 1092 II had 5.9-15.1 vol% vinyl acetate 236,296,452, 497,651 Especially when II was polymerized 66,338,368, in situ (Ref. 846); I of all tacticities 641,642,653, miscible with II (Ref. 338); increase 812,846,850, in isotactic content and mol. wt. of I 892,893,895 reduced miscibility with II (Ref. 893) II had 63-68 wt.% Cl; 1 was atactic, 506,833,1204 isotactic of syndiotactic (1204) II was Saran (>80% vinylidene chloride) 409,506, or 86.5 wt.% vinylidene chloride; 812,870 semicrystalline when > 20% II and I was isotactic, and when > 75% II and I was atactic for the second II 119 Semicrystalline when >35-65% II; I 124,293, was isotactic, atactic or syndiotactic 320,342,361, 569,618,630, 643,644,696 I had 53-91 wt.% imidized units; II had 230,1123 5.7-33 wt.% acrylonitrile; miscibility depended on extent of imidization of I and acrylonitrile content of II I had 53-85 wt.% imidized units 230 I had < 33 wt.% methyl methacrylate; 431 II had < 15 wt.% bisphenol-A I had 9, 20 or 33 wt.% methyl methacrylate; 1194 II had 20 wt.% hexafluorobisphenol-A I had 13-20 mol% vinylpyridine; II had 13-20 mol% acrylic acid II had 6.5 wt.% OH group I <50 wt.% in blend I < 50 wt.% in blend II had MW = 1.0 kg/mol and was formaldehyde and 13/17/70 mol%=/?-tert-butylphenol/m-cresol/-cresol or formaldehyde and 15/17/68 mol% = 2-terf-butylphenol/ m-cresol/0-cresol
385 978 978 978 913 442 442 978 221
TABLE 1. cont'd Polymer I of 2-Methyl-6-propyl-l, 4-phenylene ether a-Methyl-a-rc-propyl(3-propiolactone ot-Methylstyrene
Polymer II of
Method
Comments
Refs.
Styrene
-
-
Vinyl chloride
Single Tg
Semicrystalline when > 50% I
Alkyl methacrylate
Single Tg: transparency
Cyclohexyl acrylate Cyclohexyl acrylate Cyclohexyl methacrylate 2,6-Dimethyl-l,4-phenylene ether, bromobenzylated Alkyl acrylate
Single Single Single Single
II had an alkyl group of cyclohexyl, ethyl or tt-propyl (3 miscible blend systems) II had 9, 16 or 37% bromination
Alkyl methacrylate
Single Tg
Dialkyl itaconate
Single Tg
Vinyl acetate
Single Tg
4-Vinylpyridine
Single 7 g
N-Vinyl pyrrolidone
Single Tg
Alkyl acrylate
Single T,
Alkyl methacrylate
Single Tg
Dialkyl itaconate
Single Tg
Vinyl acetate
Single Tg
4-Vinylpyridine
Single Tg
N-Vinyl pyrrolidone
Single Tg
AMVIethyl-/V~vinylacetamide
Allyl alcohol-co-styrene
Single J g ; FTlR
Monomethyl itaconate
Thiocarboate
Single Tg
Natural rubber, epoxidized
Acrylic acid -co -ethylene
Single Tg
/?-Methylstyrene
oc-Methylstyrene-a?4-(2-hydroxyethyl)a-methylstyrene
a-Methylstyrene-a?-[4-( 1,1,1trifluoro-2-hydroxyethyl)a-methylstyrene
Te; Tg\ 7"g; 7g;
transparency transparency transparency transparency
Single Tg
Alkyl acrylate-co-vinylidene chloride Single Tg Chloroprene Ethylene, chlorinated
Single Tg Single Tg
Ethylene, chlorosulfonated
Single Tg
Novoiac Propylene, chlorinated Vinyl chloride Vinyl chloride, plasticized
Single Single Single Single
7g Tg Tg 7g
134 32,33 116,765
765 765 116,765 261
I had 6, 41, 72 or 89 mol% a-methyl968 styrene; II had an alkyl group of ethyl, tert-buty\ or methyl (3 blend systems) I had 6, 41, 72 or 89 mol% 968 a- methylstyrene; II had an alkyl group of ethyl, tert-buiyl or methyl (3 blend systems) I had 6, 41, 72, or 89 mol% 968 a-methylstyrene; II had a dialkyl group of dimethyl, diethyl, di-(ert-buty\ or di-w-propyl (4 blend systems) I had 6, 41, 72 or 89 mol% 969 a-methylstyrene I had 6, 41, 72 or 89 mol% 969 a-methylstyrene I had 6, 41, 72 or 89 mol% 969 a-methylstyrene I had 23, 47, 60, 84 or 93 mol% a-methyl968 styrene; II had an alkyl group of methyl, ethyl or ter/-butyl (3 blend systems) I had 23, 47, 60, 84 or 93 mol% 968 a-methylstyrene; II had an alkyl group of methyl, ethyl or terf-butyl (3 blend systems) I had 23, 47, 60, 84 or 93 mol% 968 a-methylstyrene; II had a dialkyl group of dimethyl, diethyl, di-n-propyl or di-terf-butyl (4 blend systems) I had 23, 47, 60, 84 or 93 mol% 969 a-methylstyrene I had 23, 47, 60, 84 or 93 mol% 969 a-methylstyrene I had 23, 47, 60T 84 or 93 mol% 969 a-methylstyrene II had 4.5 or 6.5 wt.% OH group; formed 973 complexes in 2-butanone II had methyl, ethyl or propyl side 669 groups I had 50 mol% epoxidation; II had 1134 6 mol% acrylic acid; blend had > 50 wt.% II I had 50 mol% epoxidation; II had 10% 400 alkyl acrylate I had 50 mol% epoxidation 1065 I had 50 mol% epoxidation; II had 25 543 or 48% CI I had 25 mol% epoxidation; II was 590 Hypalon 40 I had 50 mol% epoxidation 401 I had 50 mol% epoxidation 400 I had 50 mol% epoxidation 507,827,828 I had 50 mol% epoxidation; II had 826 40 phr dioctyl phthalate
References page VI-461
TABLE 1. cont'd Polymer I of Neopentyl glycol adipate (2,2-dimethyl-1,3-propylene adipate)
Polymer II of
Method
Hydroxyether of bisphenol-A (Phenoxy)
Comments
Single T g ; transparency
Vinyl acetate-co-vinyl chloride Single T g ; transparency Vinyl chloride Single T g ; transparency Vinyl chloride-co-vinylidene chloride Single Tg Vinylidene
Neopentyl glycol succinate (2,2-dimethyl-1,3-propylene succinate)
fluoride
Epichlorohydrin
Clear melt although refractive indices very different; Tm -depression Single Tg\ transparency
Hydroxyether of bisphenol-A Single Tg\ transparency (phenoxy) Vinyl chloride Single Tg; transparency Vinyl chloride-co-vinylidene chloride Single Tg
Refs.
-
332
II had 2 or 17 wt.% vinyl acetate Semicrystalline; II was Saran (86.5 wt.% vinylidene chloride) Semicrystalline
276 277 868
-
223
Semicrystalline < 20 wt.% II
332
287
Nitrocellulose
Ester
Single Tg; FTIR
Novolac
Vinyl acetate «-Butyl methacrylate Vinyl acetate
Single T g ; clear Single Tg, FTIR Single Tg
Vinyl methyl ether
Single Tg
Epoxy
Single Tg
900 < 60 wt.% I; possible second Tg when 868 >60 wt.% I; semicrystalline I had 12.62 or 13.42% N; II was 393 butylene adipate, caprolactone, ethylene adipate or valerolactone (4 miscible blend systems) 236,421,452 434 I had MW about 1.0 kg/mol and was 221 formaldehyde and 15/17/68 mol% = 2-tert-butylphenol/m-cresol/o-cresol I had MW about 1.0 kg/mol and was 221 formaldehyde and 13/17/70 mol% = jp-terf-butylphenol/m-cresol/tf-cresol 312
Single Tg
-
308,312
Phenolphthalein polyether ether sulfone Phenol-formaldehyde
Hydroxyether of bisphenol-A (phenoxy) Sulfone N-Vinylpyrrolidone /V-Vinylpyrrolidone
Single Tg Single Tg Single Tg
-
308,311 307 307
Af.AT-Dimethylacrylamide
Single Tg
Phenyl acrylate Phenylene, sulfonated /?-Phenylene benzobisoxazole
Methyl methacrylate-co-styrene Vinyl benzoate Ethyl acrylate-a?-4-vinylpyridine Amide
Arylate
Single Tg Single Tg\ transparency Single T% Single Tg; dielectric measurements; WAXS; LS Single Tg\ microscopy; dielectric measurements Single T 1
Formed complexes from acetone, dioxane and ethyl acetate II had >20 wt.% methyl methacrylate II was Zytel 330 (Du Pont)
Carbonate of bisphenol-A Imide
FTIR Single Tg\ FTIR
Imide
Single Tg\ FTIR
Imide
Single T%\ FTIR
Imide
Single Tg; FTIR
Phenolphthalein polyether ether ketone
Amide 2,2-(m-Phenylene)5,5' -bibenzimidazole
films
II was nylon-6,6; semicrystalline
881 433 535 592 945
1084 125
594 II was made from 3,3',4,4;-benzo299 phenonetetracarboxylic dianhydride and 3,3/-diaminobenzophenone (LARC TPI) II was 2,2'-bis(3,4-dicarboxy507,509,748, phenoxy)phenylpropane-2-phenylene 823 bisimide(Ultem 1000) II was made from 3,3',4,4'-benzophenone- 115,507, tetracarboxylic dianhydride and 748 5,6-amino-1-(4 ^aminophenyl)-1,3,3 'trimethylindam (XU 218) II was made from benzophenone507,781 tetracarboxylic dianhydride and 4/1 mixture of 2,4-toluenediisocyanate
TABLE 1. cont'd Polymer I of
Polymer II of
Method
Imide sulfone
Single Tg\ FTIR
Imide sulfone, fluorinated Siloxaneimide, segmental copolymer
Single T g ; FTIR Single loss tangent peak
ra-Phenylene isophthalamide
Aramide
Single T g
Phenylene sulfide /7-Phenylene terephthalamide
Hexamethylene isophthalamide Heptamethylene isophthalamide m-Xylene adipamide Phenylene sulfide ether Amide
Single Single Single Single Single
n-Propyl acrylate n-Propyl methacrylate
p-Phenylene 1,3,4-oxadizole Vinyl chloride Vinyl chloride Vinyl chloride-o?-vinylidene chloride
Miscroscopy; FTIR Single Tg\ transparency Single 7 g ; transparency Single Tg\ transparency
Propyloxazoline Propylene
Styrene Hydrogenated oligocyclopentadiene
Propylene, chlorinated Rubber, chlorinated Styrene
2,2-Dimethyl-1,3-propylene adipate Vinyl methyl ether Carbonate of tetramethylbisphenol-A
Single Tg Melting point depression; WAXS; SANS Single Tg\ transparency Phase diagram Single Tg\ light scattering; NMR; PALS Negative volume change of mixing Single Tg\ transparency
2-Chlorostyrene Copolycarbonate of bisphenol-A and tetramethylbisphenol-A Cyclohexyl acrylate Cyclohexyl methacrylate Cyclohexyl methacrylate-cc?-methyl methacrylate 2,6-Dimethyl-l,4-phenylene ether, bromobenzylated 2,6-Dimethyl-l,4-phenylene ether, sulfonated 2,6-Dimethyl-l,4-phenylene ether-co2,3,6-trimethyl-l,4-phenylene oxide Ethyl methacrylate -Fluorostyrene-a?-/?-fluorostyrene a-Methylstyrene n-Propyl methacrylate Vinyl methyl ether
Vinyl methyl ether
Styrene, sulfonated
Vinyl methyl ether Alkylene glycol amine-terminated Af,Af-Dimethylacrylamide 2,6-Dimethyl-l,4-phenylene ether 10,12-Docosadiynylene diisonicotinate Ethylene oxide
T% Tg T% Tg Tg\ FTIR
Comments
Refs.
and 4,4'-diphenylmethanediiso~ cyanate(PI 2080) II was made from 3,3',4,4'~benzophenone- 105,369, tetracarboxylic dianhydride and 492 3,3/-diaminodiphenyl sulfone > 80% I 369 II was 3,3',4,4'-benzophenone-tetra105 carboxylic dianhydride and 3,3'diaminodiphenylsulfone based polyimide and dimethylsiloxane segmental copolymer II was a copolyamide of 1,6-hexane993 diamine, caprolactam and terephthalic acid (BASF Ultramid T) or Selar 3426 (Du Pont) (2 blend systems) Semicrystalline 81,993 Semicrystalline 81 Semicrystalline 993 Semicrystalline 926 Semicrystalline; II was nylon 6 or 477 nylon 6,6 (2 miscible blend systems) 1080 850 319,649,812,850 Semicrystalline when > 6 5 % II; II was 409,812, Saran ( > 80% vinylidene chloride) 870 or 86.6 wt.% vinylidene chloride < 25 wt.% I in blend 442 550 I had 67 wt.% Cl 287 250 Semicrystalline after long annealing 316,359,428, 741,1100,1230,1231 814
Single Tg
II had > 85 wt.% tetramethylbisphenol-A ~ II had >21.6% cyclohexyl methacrylate II had < 76% bromination
Single 7 g
II had < 1.9% sulfonation
Single Tg
I was atactic or isotactic; II had <20 638 mol% 2,3,6-trimethyl-l,4-phenylene oxide Miscible when melt blended 72 II had 10 or 23 mol% /7-fluorostyrene 1144 710,722,822,865,875 Miscible when melt blended 72 Two phases when deposited from 43,44,62,126,475, some solvents 565,616,964
Single Tg Single T%\ transparency Single T g
Single Tg Single T1 Single T% Single Tg Single Tg\ transparency; NMR; attenuated total reflectance IR Single Tg SANS; NMR FTIR Transparency; NMR Single Tg Single Tg; FTIR Single Tg
431 765 116,621,765 621 259 345
I was syndiotactic; blend had <20 954 wt.% I I was atactic or isotactic 915,918,1199 I had 4.5 mol% sulfonation; II 246 had Mn = 0.9 kg/mol (Jeffamine ED-900) I had 12 mol% sulfonation 487,1064 I had <2.6% sulfonation 345 I had 9 mol% sulfonation 990,991 I had 1.35 or 4.51 mol% SO3H; II 861 end-capped with propylamine groups
References page VI-461
TABLE 1. cont'd Polymer I of
Styrene, sulfonated and metal-neutralized
Styrene-c-styrene4-carboxylic acid
Polymer II of Bis[2-[2-(2-methoxyethoxy)ethoxy] ethyl itaconate Methyl methacrylate Methyl methacrylate-a?4-vinylpyridine Urethane Amide
Method Single 7 g ; FTIR
FTIR Single Tg; Single T g ;
Amide
Single Tg
Amide
Single Tg,
Amide
Single Tg\
Ethyl acrylate-co-4-vinylpyridine
FTIR
/V,Af-Dimethylacryiamide
Single Tg;
Styrene-co-p-vinyiphenol
Single T%; FTIR
M/V'-Sulfo-/7-phenylene terephthalamide
Single T% Single Tg, FTIR
I had 26 mol% acid group
Single Tg; FTIR
I had 9-34 mol% silanol group
Single Tg, FTIR
I had > 4 mol% silanol group; formed complex when II had > 34 mol% silanol group II had 22 mol% vinylphenol
1086
I had 8, 25, 43 or 75 wt.% vinylphenol
103,876
Vinyl alcohol
Single Tg
4-Vinylpyridine W-Vinylpyrrolidone Sulfone of hexafluorobisphenol-A Methyl methacrylate
Single Tg NMR Single To
Sulfone of tetramethylbisphenol-A Acrylonitrile-co-a-methylstyrene
Single 7 g
Acrylonitrile-cc?-styrene
1086
I had 25 mol% acid units Both I and II had 7.5 or 13.3 mol% phosphorus moiety I had 26 mol% acid group
Vinyl butyl ether 4-Vinylpyridine Isoprene, sulfonated
rc-Hexyl methacrylate Methyl methacrylate
Styrene-a?-4-vinylpyridine
Single 7 g ; transparency Single Tg
Transparency; FTIR; fluorescence study Single Te Transparency; FTIR; single Tg; NMR Transparency; fluorescence study FTIR; LS Single Tg\ transparency; fluorescence study; FTIR; NMR FTIR Single T g Single Tg\ transparency
Ethyl methacrylate
I had 14 mol% sulfonation
I had 12 mol% sulfonation 487 I had 9.9% sulfonation; II had 1J. 1 % 604 vinylpyridine I had 7.9 mol% sulfonation 801 FTIR; SAXS I was lightly sulfonated and Mg- or 1038 Mn-neutralized; II was nylon 6 FITR; SAXS I had 9.7 mol% sulfonation and Li1138 neutralized; II was nylon 4 I had 9.8 mol% sulfonation and Li1135 neutralized; II was nylon 6,6 or nylon 6,10(2 blend systems) FTIR; SAXS I had 5.4 or 9.8 mol% sulfonation and 1168,1223 Li-neutralized; II was nylon 6 NMR; FTIR; SAXS I had 6.5-9.0 mol% sulfonation and 1083,1223 Zn-neutralized; II was nylon 6 I had 2.1-7.3 mol% sulfonation and 1176 Zn-neutralized; II had 2.4-10.6 mol% vinylpyridine transparency I had 25 or 54 mol% acid groups 487
Methyl methacrylate Styrene-co-4-vinylbenzene Styrene-co-4-vinylbenzene phosphonic acid phosphonic acid diethyl ester Styrene-c0-4-vinylbenzoic acid, 5,7-Dodecadiyne-l,12-dicarboxylic K-neutralized acid, K-neutralized Styrene-cc-4-vinylbenzoic acid, 5,7-Dodecadiyne-l,12-dicarboxylic triethylammonium ionomer acid, triethylammonium ionomer Styrene-co-4-vinylphenylrc-Butyl methacrylate dimethylsilanol Af-Vinyl-2-pyrrolidone
Caprolactone N,N-Dimethylacrylamide
Refs.
Single Tg, transparency NMR
Amide
Bis[2-[2-(2-methoxyethoxy) ethoxy]ethyl] itaconate K-Butyl methacrylate
Comments
Single Tg
I had 10-20.4 wt.% vinylphenol I had 22, 42 or 82 mol% vinylphenol I had >0.93 mol% vinylphenol
487 1250 990 990,991 1112,1114 1113
905,1206 487,1064 103
I had 8, 25 or 43 wt.% vinylphenol 876,922 I had >0.93 mol% vinylphenol; II 103,487,1055 was atactic, isotactic or syndiotactic I had 48 wt.% vinylphenol I had 50 mol% vinylphenol II had 5-10% substituted and partly cyclized; immiscible when II had 2% substituted -
734 832 210,896
972
972 972 I had M w = 27 kg/mol and II had 931 M w = 1.21 kg/mol; blends of polymers of higher MW showed LCST II had 9-19 wt.% AN when I had M w = 908,931 4.8 kg/mol; II had 16-19 wt.% AN when I had M w = 12.4 kg/mol II had 11-25 wt.% AN when I had 931 M w =--4.8kg/mol; II had 13-20 wt.%
TABLE 1. cont'd Polymer I of
Tetrafluoroethylene, sulfonated Tetrafluoroethylene-tf/f-vinyl alcohol
Polymer II of
Method
Maleic anhydride-co-styrene
Single Tg
Ethyl acrylate-o?4-vinylpyridine Alkyl methacrylate
Single Tg
Methyl acrylate Vinyl acetate AUyI alcohol-a>styrene Epichtorohydrin Hydroxyether of bisphenol-A (phenoxy) Vinyl chloride Vinyl chloride-o?-vinylidene chloride AUyI alcohol-a?-styrene
Refs.
AN when I had M w = 12.4kg/mol II had 17 or 18 wt.% maleic anhydride when I had Mw — 4.8 kg/mol I had equivalent weight of i.155kg/mol
931 591 961
Single Tg\ FTIR Single T g ; FTIR Transparency Single 7 g ; transparency Single T g ; transparency
II had an alkyl group of methyl or ethyl (2 miscible blend systems) II had 5.4-6.0% OH -
Single Tg; transparency Single T% Transparency
II had 88% vinylidene chloride II had 5.4-6.0 wt.% OH
281 117 118
Epichlorohydrin Hydroxyether of bisphenol-A (phenoxy) Vinyl chloride Vinyl chloride-cY?-vinylidene chloride p-Vinylphenol 2,2,2-Trichloroethyl methacrylate Alkyl methacrylate
Single Tg\ transparency Single T g ; transparency
-
117 118
Single Single Single Single
3,3,5-Trimethyl cyclohexyl methacrylate Trifluoroethylene Trimethylene adipate Urethane
3,3,5-Trimethyl-cyclohexyl acrylate
Single Tg\ transparency
II had 88% vinylidene chloride II had an alkyl group of methyl, ethyl, n-propyl, isopropyl, cyclohexyl or tetrahydrofurfuryl (6 miscible blend systems) -
Vinylidene fluoride Vinyl chloride Carbonate of bisphenol-A
Single Tg Single Tg\ transparency Single 7 g
Ethylene glycol
FTIR
Ethylene-co-methyl acrylate
Single Tg\ FTIR
Ethylene glycol-co-propylene glycol
Single 7 g ; FTIR
Methacrylic acid-co-styrene
Single Tg
Urethane
Single Tg
Vinyl chloride /V-vinylpyrrolidone
Single Tg Single Tg for II with hard segments of I; soft segment p s also observed; clear films Single loss peak; microscopy
Tetrahydrofurfuryl methacrylate
Tetrahydropyranyl-2-methyl methacrylate
Urethane, functionalized
Acrylic acid-co-styrene
2-Methyl-5-vinylpyridine -co-styrene
Single 7 g ; FTIR
Comments
Tg\ transparency Tg Tg\ transparency T g ; transparency
Single Tg
Semicrystalline When > 75% II I was based on polycarbonate diols and/or polypropylene glycol; miscible when blend had 10-20 wt.% I I was made from a mixture of 2,4and 2,6-tolyldiisocyanate and 1,4-butanediol I was Estane 58311; II had 21 wt.% methyl acrylate I was made from a mixture of 2,4and 2,6-tolyldiisocyanate and 1,4-butanediol; II had 70 wt.% ethylene glycol I had polyether segment with MW = 1.0 or 2.0 kg/mol; II had 10.5% methacrylic acid, Li-neutralized I and II were separate polymers; I was 4,4/-diisocyanate diphenyl methane (MDI)/dipropylene glycol = 9/10 mol ratio; II was poly G55-56 polyoxyethylene-co-oxypropylene, 45% ethylene oxide, MW = 2.0 kg/mol/ MDI/1/1 Blend had < 30 wt.% I I was segmented, made from methylene bis(4-phenyl isocyanate) and poly(ethylene glycol) and c/\y-2-butene1,4-diol and butane-1,4-diol I had tertiary amine group; II had 15 or 30 mol% acrylic acid; linear blend of I and II or inteipenetrating polymer network of I and II I carried pendant carboxylated groups neutralized by ammonium ion
961 961 253 117 253
117 117 118 1110
765 252 872 997
141,347
1181 145
707
521
1029 206
346
706
References page VI-461
TABLE 1. cont'd Polymer I of
Polymer II of
Method
Comments
Valerolactone
Vinyl acetate-a?-vinylidene chloride
Single Tg
Vinyl acetate
Vinyl bromide Vinyl chloride 2-Bromoethyl methacrylate
Single T 1 Single Tg Single Tg\ transparency
Chloroalkyl methacrylate
Single Tg; transparency
Hexafluoroacetone-co-vinylidene fluoride Maleic anhydride-co-styrene hydrolyzed Vinyl nitrate
Single Tg
Semicrystalline when > 50% I Miscible when cast from methyl ethyl ketone; immiscible when cast from tetrahydrofuran II had chloromethyl or 2-chloroethyl group (2 blend systems) II had 8.9 mol% hexafluoroacetone
Single Tg
1.8-43% hydrolyzed
67
Single Tg, phase contrast microscopy Single Tg Single Tg
-
12
Vinyl acetate-co-vinyl chloride
Vinylidene fluoride n-Butyl methacrylate-co-isobutyl methacrylate Hexyl acrylate-co-methyl acrylate
Single Tg
n-Butyl methacrylate Ethylene imine Methacrylic acid Vinyl alkanoate
Single T% Single T% NMR Single Tg; microscopy
Vinyl butyral
Af-Vinylpyrrolidone Urethane elastomer
Single T%\ transparency Single T%
Vinyl chloride
Acetonyl methacrylate Acrylic acid-co-carbitylacrylateco-oc-methylstyrene-co-styrene Acrylonitrile-co-n-butyl acrylate Alkyl acrylate
Single T g ; transparency Single Tg Optical microscopy Single Tg
Alkyl methacrylate
Single Tg
Butadiene, epoxidized Butadiene-co-styrene, epoxidized
Single Tg Single Tg
Butyl acrylate-co-ethyl acrylate
Single Tg
Butyl acrylate-co-hexyl acrylate Butyl acrylate-co-methyl acrylate Butyl methacrylate-co-methyl methacrylate Caprolactone-C0-L-lactide Caprolactone-co-lignin
Single Tg Single Tg Single Tg
Caprolactone-ctf-methylcaprolactone 2,2-Dimethyl-l,3-propylene sebacate Ethyl acrylate-c-hexyl acrylate Ethyl acrylate-co-methyl methacrylate Ethylene-cc-vinyl acetate
Single Tg Single T g ; transparency Single Tg Single Tg Permittivity measurements
Methyl acrylate-c-hexyi acrylate Methyl methacrylate-fc-styrene
Single Tg -
Vinyl alcohol Vinyl alcohol Vinyl alkanoate
Single Tg Single T g ; microscopy
Semicrystalline; Il was Saran C ( > 80% vinylidene chloride)
Refs. 31 150 32,34,35 610
610 748,1073
Semicrystalline 53,57 Miscibility range depended on composi748 tions of I and II; I had > 81 wt.% vinyl chloride I had 5-23.7 vol% vinyl acetate; II had 379 15-88 vol% hexyl acrylate; miscibility depended on compositions of I and II I had 5.9-15.1 wt.% vinyl acetate 497 Semicrystalline 1024 1255,1256,1257 The alkanoate was butyrate, caprate, 925 caproate, caprylate or laurate (5 miscible blend systems) < 50% II 209 II from methylene bisdiphenyl diurethane 762 and polytetramethylene ether glycol; miscible with hard segment 123 II was an oligomer with Mn —1.07 and 683 A/w = 3.32 kg/mol II had 53, 67 or 84 mol% butyl acrylate 655 II had pentyl or propyl group 851 (2 blend systems) II had cyclohexyl or isopropyl group 319 (2 blend systems) II had 50 mol% epoxidation 546 II had 45 wt.% styrene; epoxidation > 544 40 mol% II had 22.9, 43.5 or 52.8% butyl 851 acrylate II had 47.8% butyl acrylate 851 II had 44.6% butyl acrylate 851 II had 30 or 70% methyl methacrylate 880 II had <40 wt.% lactide II was a 7-armed starlike polymer containing 20 wt.% lignin derivative Whatever composition of II II had 41.7 or 43.2% ethyl acrylate II had 10% ethyl acrylate II had 70% vinyl acetate; composition dependent; miscible when blend contained > 25% II II had 9.7% methyl acrylate No gross phase separation when I had M n = 4 3 kg/mol; PMMA and PS block had the same Mn = 4 0 kg/mol in II
831 984 831 611 851 875 678
851 376
TABLE 1. cont'd Polymer I of
Polymer II of
Vinyl chloride, chlorinated
Vinyl chloride-o?-vinylidene chloride
Vinyl
fluoride
Vinyl p-methoxycinnamate
Vinyl p-methylcinnamate
Vinyl methyl ether
Method
Nitrite rubber, carboxylated Pentyl acrylate-o?-propyl acrylate Vinyl acetate
Single Tg Single T1 Single Tg
Alkyl methacrylate
Single Tg; transparency
Butadiene, epoxidized Butadiene-co-acrylonitrile
Single Tg Single Tg
Ethylene terephthalate Hexamethylene sebacate
Single Tg Single Tg
Hexamethylene terephthalate Maleic anhydride-rarc-styrene
Single Tg Single 7 g
a-Methyl-a-/i-propyl-Ppropiolactone Urethane
Single Tg Single Tg
Valerolactone Alkyl methacrylate
Single Tg Single T g
Butylene adipate
Single Tg
Butylene sebacate
Single Tg
Dodecamethylene adipate
Single Tg
Dodecamethylene decamethylene dicarboxylate Dodecamethylene dodecamethylene dicarboxylate Hexadecamethylene dodecamethylene dicarboxylate Hexamethylene sebacate
Single Tg
Vinylidene
fluoride
Single Tg
/?~Chloro-(3-ethenoxypropyl) cinnamate Vinyl p-chlorocinnamate Vinyl cinnamate />-Chloro-(3-ethenoxypropyl) cinnamate p-Cyano-(3-ethenoxypropyl) cinnamate 3-Ethyoxypropyl cinnamate Vinyl p-chlorocinnamate Vinyl cinnamate Acrylonitrile-o?-styrene Alkyl acrylate
Single Tg
2-Chlorostyrene Epichlorohydrin Maleic anhydride-co-styrene Methyl methacrylate-co-styrene a-Methylstyrene a-Methylstyrene-co-4(2-hydroxyethyl)-a-methylstyrene
Single T%\ FTIR; SAXS NMR, dielectric spectroscopy Single Tg Single 7 g Light scattering Single Tg
Single Tg Single Tg Single T8
Comments
Refs.
II was Krynac-221 1170 II had 48.1% propyl acrylate 851 Ref. 59 stated miscible when cast from 59,183 methyl ethyl ketone and immiscible when cast from tetrahydrofuran; Ref. 183 stated blends cast from both THF and MEK were immiscible I had 65 or 68 wt.% Cl; II had n-butyl, 319,812 cyclohexyl, ethyl, rc-hexyl, n-propyl or isopropyl group (6 blend systems) II had 20 or 43 mol% epoxidation 779 Depended on Cl-content and acrylo- 96,152,355,356 nitrile content Probably semicrystalline 36 I had 67.2 wt.% Cl; semicrystalline 54 when > 50 wt.% II Semicrystalline 36 I was Goodrich CPVC 3010; II had 68,69 86% styrene I had 67.2 wt.% Cl 54 I had 67 wt.% Cl; II had a soft poly 246 (tetramethylene adipate) segment capped with 2-hydroxyethyl acrylate I had 67.2 wt.% Cl 54 I had 12% vinyl chloride; II had phenyl 409 or isopropyl group (2 blend systems) I had 13.5 wt.% vinyl chloride; 873 semicrystalline I had 13.5 wt.% vinyl chloride; 873 semicrystalline I had 13.5 wt.% vinyl chloride; 873 semicrystalline I had 13.5 wt.% vinyl 873 chloride; semicrystalline I had 13.5 wt.% vinyl chloride; 873 semicrystalline I had 13.5 wt.% vinyl chloride; 873 semicrystalline I had 13.5 wt.% vinyl chloride; 873 semicrystalline Semicrystalline; later work found the 252,298 blends immiscible (Ref. 298) ~ 515
Single T g Single Tg Single Tg
~
515 515 515
Single Tg
~
515
Single Single Single Single Single
~ ~ II had < 10-11% acrylonitrile II had an alkyl group of ethyl, n-propyl or rc-butyl (3 miscible blend systems) II had 15% maleic anhydride II had <60 mol% methyl methacrylate II had 6-89 mol% oc-methylstyrene
515 515 515 576 941
Tg T% T% T% 7g
1203 911,1129 576 108,321 318 170
References page VI-461
TABLE 1. cont'd Polymer I of
Polymer II of a-Methylstyrene-a?-4-( 1,1,1trifluoro-2-hydroxyethyl)a-methylstyrene a-Methylstyrene-co-styrene m-Methylstyrene-co-styrene o-Methylstyrene-co-styrene /?-Methylstyrene-c-styrene Nitrostyrene-co-styrene Styrene-co-l-vinylnaphthalene Styrene-co-2-vinylnapthaiene
Vinyl methyl ketone /7-Vinylphenol
Method
Comments
Single Tg
II had 0-96 mol% a-methylstyrene
Light scattering FTIR; light scattering FTIR; light scattering Light scattering Single T g Light scattering
II II II II II II
Refs. 170
had 77.5 or 88 wt.% styrene 318 had 76.5 or 87.5 wt.% styrene 1028 had 76 2 or 86.8 wt.% styrene 1028 had > 61 mol% styrene 318,1016 had < 25.6 mol% nitrostyrene 158,166,192 had 17.4, 23, 50 or 80 wt.% styrene; 381,406 depended on composition of blend II had 19.2, 51 or 84 wt.% styrene 318,1175
Vinyl alkanoate
Single T g ; FTIR; light scattering Single T g ; IGC
1-Vinylnaphthalene
Single Tg; FTIR
Vinylidene fluoride Vinylidene fluoride Acetonyl methacrylate 4-Acetoxystyrene Amide
Single Single Single Single Single
Tg; Tg; Tg; Tg; Tg
Butyl acrylate~co-/-butyl acrylate Butylene adipate Butylene terephthalate Caprolactone Cellulose tripropionate Copolyester Dialkyl itaconate
Single Single Single Single Single Single Single
Tg 7y, 7V, T\\ Tg Tg; 7g;
/VyV-dimethylacrylamide
Single Tg
2,2-Dimethylpropylene terephthalate Ethyl acrylate y-Ethyl L-glutamate Ethyl methacrylate Ethyl methacrylate-co-methyl methacrylate Ethylene adipate Ethylene 2,6-naphthalene dicarboxylate Ethylene succinate Ethylene terephthalate Ethylene-co-vinyl acetate Hexamethylene sebacate K-Hexyl methacrylate-co-methyl methacrylate Hexylene-m-xylene dicarboxamide 2-(2-Methoxyethoxy)ethyl methacrylate y-Methyl L-glutamate Methyl acrylate Methyl methacrylate rt-Propyl acrylate H-Propyl methacrylate Isopropyl methacrylate Styrene-co-4-vinylbenzenephosphonic acid diethyl ester Styrene-co-4-vinylpyridine Styrene-co-2-vinylpyridine
Single Tg; FTIR FTIR FTIR; microscopy Single T g ; FTIR Single Tg\ FTIR
The alkanoate was butyrate or propionate 988 (2 miscible blend systems) II had Mn = 5.4 kg/mol; blend contained 407 65-85 wt.% II Semicrystalline 58 Semicrystalline 58 118 340 Polymer II was nylon 6, nylon 6,6 or 1088 nylon 11 (3 miscible systems); semicrystalline II had 64 mol% butyl acrylate 897 Semicrystalline 667,919,1088,1089 Semicrystalline 1088,1089 Semicrystalline 143,667,1088,1096 1088 II was live different copolyesters 1089 II had a dialkyl group or methyl, ethyl, 1034,1086 bis[2-[2-(2-methoxyethoxy)ethoxy] ethyl or bis[2-(2-methoxyethoxy)ethyl (4 miscible blend systems) Formed complexes in dioxane or 487,795,857, acetone 1088,1089 1088,1089 143 639,902 146,282,733,1164 II had 30, 60 or 70 wt.% MMA 1162,1164
Single Tg; NMR Single T 2 ; FTIR
Semicrystalline -
Single Single Single Single Single
Single Tg Single Tg; FIlR
Semicrystalline Semicrystalline II had 70% vinyl acetate Semicrystalline II had 20, 38 or 48 wt.% N-hexyl methacrylate -
FTIR; microscopy FTIR; NMR Single Tg; FTIR; NMR FTIR FTIR; single 7 g Single Tg Single T\; FTIR; NMR
639,902 143,889,894,1195,1224 146,282,487,733,1164,1224 143,641 146,282,733 280 II had >7.5 mol% phosphorus groups 1249
Single Tg Single 7 g ; FTIR
II had 50 mol% 4-vinylpyridine Formed complexes in ethanol; II had 70 mol% 2-vinylpyridine -
Tetrahydrofuran
transparent melt transparent melt transparency FTIR
FTIR; NMR FTIR FTIR; IGC FTIR FTIR
Tg Tg\ FTIR Tg; FTIR Tg T g ; FTIR
FTIR; transparency
667,919,1089 1088,1089 919 1089 143,144,588 667 958 1088 1086
832 976 734
TABLE 1. cont'd Polymer I of
Vinyl propionate /V-vinylpyrrolidone
Vinylidene fluoride
Vinylpyridine
Polymer II of
Method
Tetrahydrofurfuryl methacrylate 2,2,5-Trimethylene terephthalamide Vinyl acetate Vinyl methyl ether Viriylpyridine
Single Single Single Single Single
Tg Tg Tg\ FTIR 7 g ; FTIR 7 g ; FTIR
N-vinylpyrrolidone Ethyl acrylate Alkyl methacrylate
Single Tg Single T g ; transparency; IGC Single T^
Allyl alcohol-co-styrene Aramide
Single 7"g, transparency Single T%\ transparency
Benzimidazole /7-Butyl methacrylate-co-2hydroxyethyl methacrylate Haioalkyl methacrylate
Single 7 g ; transparency Single 7 g ; transparency Single 7 g ; FTIR
Copolyamide
Single T1
Dialkyl itaconate
Single 7"g
Epoxy resin Ethersulfone Ethylene glycol
Single T%; FTIR Single Tg Single Tg
Epichlorohydrin Ethyl methacrylate-co-2hydroxyethyl methacrylate 2-Hydroxyethyl methacrylate 2-Hydroxyethyl methacrylate-comethyl methacrylate 2-Hydroxypropyl methacrylate Methacrylie acid Monoalkyl itaconate
Single F g Single T g ; transparency Single T g ; transparency Single T%\ transparency Single T g ; transparency NMR * FTIR
Sulfone Sulfone, carboxylated
Single 7 g ; transparency Single 7"g; transparency
Vinyl alcohol Vinyl aicohol-co-vinyl acetate Vinyl chloride Vinyl formal Acetonyl methacrylate /V,/V-Dimethylacrylamide Ethyl methacrylate-co-methyl methacrylate Methacrylic acid-co-methyl methacrylate Methyl methacrylate-co-styrene /V-Methyl-/V-vinylacetamide Methoxymethyl methacrylate Pivalolactone N-Vinylpyrrolidone Hydroxyalkyl methacrylate
Single T g ; NMR Single T% Single Tg Single T g : FTIR Single T% Single Tg rm-depression Single T g ; Tm-depression Single 7 g Single Tg Single 7 g Im-depression Single 7 g Single 7 g ; FTIR
Comments
Refs.
282 1088 143,144,588 1150 Formed complexes; II was 2- or 832,976 4-vinylpyridine (2 miscible systems) Formed complexes from methanol 857 60,61 II had an alkyl group or methyl or 607,1141 ethyl; miscible when cast from chloroform (Ref. 1141); immiscible when cast from DMF (Ref. 607) II had 5.4-6.0 or 7.3-8.0 wt.% OH 284,977 Polymer II was five different types of 947 aramides 947 II had >20.9 mol% 2-hydroxyethyl 501 methacrylate II had a haloalkyl group of 607,1109,1141 chloromethyl, 2-chloroethyl, 3-chloropropyl, 2-bromoethyl or 2-iodoethyl (5 miscible blend systems) II had 1 /1 /1 = caprolactam/hexa315 methylene adipamide/hexamethylene sebacamide structural unit II had an dialkyl group of dimethyl, 1141 di-2-chloroethyl or di-3-chloropropyl (3 miscible blend systems) 370 307 I had MW = 360 kg/rnol; II had MW = 780 0.3 kg/mol 300 II had > 7.5 mol% 2-hydroxyethyl 265 methacrylate 284 II had > 1.9 mol% 2-hydroxyethyl 501 methacrylate 284,977 Formed complexes 1128 II had an alkyl group of benzyl or 95,938 ethyl (2 blend systems); formed complexes 255 II had degree of carboxylation 255 0.43-1.93 Semicrystalline 624,659,805,856,890,998 II had > 70% vinyl alcohol 207 300 349,1044 Semicrystalline 122 Semicrystalline 242 II had 16-80 wt.% methyl 283 methacrylate Semicrystalline; II had 2.2-9.5 mol% 1094 methacrylic acid II had < 13 vol% styrene 388 Semicrystalline 242 Semicrystalline 267 Semicrystalline 1038 Semicrystalline 17,94,241,408 I was 2- or 4-vinylpyridine; II had an 937 alkyl group of 2-hydroxyethyl or 3-hydroxypropyl (4 miscible systems)
References page VI-461
Next Page TABLE 1. cont'd Polymer I of
Polymer II of
Method
Monoalkyl itaconate
Single T g ; FTIR
Vinyl acetate-co-vinyl alcohol
Single Tg; FTIR
Vinyl butyral
SALS
2-Vinylpyridine
Aramide
Single Tg\ FTIR
4-Vinylpyridine
Methylocellulose Sulfone, carboxylated
Single 7 g ; NMR Single Tg; transparency
p-Phenylene terephthalamide 2,6-Xylenyl methacrylate
Transparency; microscopy Single Tg
2,3-Xylenyl methacrylate
Comments
Refs.
I was 2- or 4-vinylpyridine; II had an 939,1014, alkyl group or methyl or ethyl 1212 (4 miscible systems); formed complexes I was 2- or 4-vinylpyridine (2 miscible 934,935,991 systems); II had 29-88 mol% vinyl alcohol I was 2- or 4-vinylpyridine (2 miscible 1003 systems) II was made from hexamethylene767 diamine and a mixture of terephthaloyl and isophthaloy] dichlorides 559 II had degree of carboxylation 256 0.43-1.93 ~ 329 1158
TABLE 2, POLYMER PAIRS CONTAINING ONE MONOMER IN COMMON, MISCIBLE IN THE AMORPHOUS STATE AT ROOM TEMPERATURE
Polymer I of
Polymer II of
Method
Acrylic acid-co-styrene
Methyl methacrylate-co-styrene
Single Tg
Acrylonitrile-co-butadiene
Acrylonitrile-co-butadiene Acrylonitrile-co-styrene Acrylonitrile-co-vinylidene chloride
Single T 8 ; clear films; electron microscopy Single ^ g Single T g
Acrylonitrile-co-styrene
Single T%
Maleic anhydride-co-styrene
Single Tg
Acrylonitrile-co-Af-phenylitaconimide
Single Tg
Itaconic anhydride-co-methyl methacrylate Methyl methacrylate-coN-phenylitaconimide Methyl methacrylate
Single Tg
Styrene-co-maleic anhydride~co-acrylonitrile
Acrylonitrile-co-methyl methacrylate
Acrylonitrile-co-methyl methacrylate-coa-methylstyrene Acrylonitrile-co-methyl methacrylate-co-styrene Acrylonitrile-co-a-methylstyrene
Acrylonitrile-co-a-methylstyreneco-styrene Acrylonitrile-co-styrene
Comments
-
Refs.
Miscibility depended on compositions 72 of I and II Difference in composition between 19,47,101,106, I and II < 2 2 % acrylonitnle 149,390,452 162 I had 23.6-49.6 vol% AN; II had 19 966 wt.% AN Miscibility depended on compositions 965 of I and II Miscibility depended on compositions 965 of I and II 168 Miscibility depended on compositions of I and II -
920
Single TB
I had 20/20/60 = aerylonitrile/methyl methacrylate/a-methylstyrene
633
Acrylonitrile-co-styrene
Light scattering
-
358
Methyl methacrylate Acrylonitrile-co-methyl methacrylate Acrylonitrile-co-styrene
Light scattering Single Tg Single Tg
-
358
Acrylonitrile-co-a-methyl styrene-co-styrene Acrylic acid-co-styrene Acrylonitrile-co-benzyl methacrylate Acrylonitrile-co-fumaronitrileco-styrene Acrylonitrile-co-methyl methacrylate Acrylonitrile-co-Af-phenylitaconimide Acrylonitrile-co-styrene
Clear films
p-(2-Hydroxy-hexafluoroisopropyl)styrene-co-styrene Maleic anhydride-co-styrene
Single Tz
Single Tg Single Tg Single Tg Single T% Single Tg Single Tg; no visible phase separation Single Tg; clear film Single Tg
168
152
I had 32.3 wt.% acrylonitrile; II had 27 wt.% acrylonitrile Difference in composition between I and II < 12% acrylonitrile I had 32-40 wt.% AN; II had 11-17 wt.% fumaronitrile Difference in composition between I and II <3.5% acrylonitrile I had 70% styrene; II had 90.3% styrene I had 44.4-94.6 wt.% styrene; II had 50-91.5 wt.% styrene
155,684 769 380 I180 1222 164,620 168 485,582 571,646 25,462,554, 745,1008
Previous Page TABLE 1. cont'd Polymer I of
Polymer II of
Method
Monoalkyl itaconate
Single T g ; FTIR
Vinyl acetate-co-vinyl alcohol
Single Tg; FTIR
Vinyl butyral
SALS
2-Vinylpyridine
Aramide
Single Tg\ FTIR
4-Vinylpyridine
Methylocellulose Sulfone, carboxylated
Single 7 g ; NMR Single Tg; transparency
p-Phenylene terephthalamide 2,6-Xylenyl methacrylate
Transparency; microscopy Single Tg
2,3-Xylenyl methacrylate
Comments
Refs.
I was 2- or 4-vinylpyridine; II had an 939,1014, alkyl group or methyl or ethyl 1212 (4 miscible systems); formed complexes I was 2- or 4-vinylpyridine (2 miscible 934,935,991 systems); II had 29-88 mol% vinyl alcohol I was 2- or 4-vinylpyridine (2 miscible 1003 systems) II was made from hexamethylene767 diamine and a mixture of terephthaloyl and isophthaloy] dichlorides 559 II had degree of carboxylation 256 0.43-1.93 ~ 329 1158
TABLE 2, POLYMER PAIRS CONTAINING ONE MONOMER IN COMMON, MISCIBLE IN THE AMORPHOUS STATE AT ROOM TEMPERATURE
Polymer I of
Polymer II of
Method
Acrylic acid-co-styrene
Methyl methacrylate-co-styrene
Single Tg
Acrylonitrile-co-butadiene
Acrylonitrile-co-butadiene Acrylonitrile-co-styrene Acrylonitrile-co-vinylidene chloride
Single T 8 ; clear films; electron microscopy Single ^ g Single T g
Acrylonitrile-co-styrene
Single T%
Maleic anhydride-co-styrene
Single Tg
Acrylonitrile-co-Af-phenylitaconimide
Single Tg
Itaconic anhydride-co-methyl methacrylate Methyl methacrylate-coN-phenylitaconimide Methyl methacrylate
Single Tg
Styrene-co-maleic anhydride~co-acrylonitrile
Acrylonitrile-co-methyl methacrylate
Acrylonitrile-co-methyl methacrylate-coa-methylstyrene Acrylonitrile-co-methyl methacrylate-co-styrene Acrylonitrile-co-a-methylstyrene
Acrylonitrile-co-a-methylstyreneco-styrene Acrylonitrile-co-styrene
Comments
-
Refs.
Miscibility depended on compositions 72 of I and II Difference in composition between 19,47,101,106, I and II < 2 2 % acrylonitnle 149,390,452 162 I had 23.6-49.6 vol% AN; II had 19 966 wt.% AN Miscibility depended on compositions 965 of I and II Miscibility depended on compositions 965 of I and II 168 Miscibility depended on compositions of I and II -
920
Single TB
I had 20/20/60 = aerylonitrile/methyl methacrylate/a-methylstyrene
633
Acrylonitrile-co-styrene
Light scattering
-
358
Methyl methacrylate Acrylonitrile-co-methyl methacrylate Acrylonitrile-co-styrene
Light scattering Single Tg Single Tg
-
358
Acrylonitrile-co-a-methyl styrene-co-styrene Acrylic acid-co-styrene Acrylonitrile-co-benzyl methacrylate Acrylonitrile-co-fumaronitrileco-styrene Acrylonitrile-co-methyl methacrylate Acrylonitrile-co-Af-phenylitaconimide Acrylonitrile-co-styrene
Clear films
p-(2-Hydroxy-hexafluoroisopropyl)styrene-co-styrene Maleic anhydride-co-styrene
Single Tz
Single Tg Single Tg Single Tg Single T% Single Tg Single Tg; no visible phase separation Single Tg; clear film Single Tg
168
152
I had 32.3 wt.% acrylonitrile; II had 27 wt.% acrylonitrile Difference in composition between I and II < 12% acrylonitrile I had 32-40 wt.% AN; II had 11-17 wt.% fumaronitrile Difference in composition between I and II <3.5% acrylonitrile I had 70% styrene; II had 90.3% styrene I had 44.4-94.6 wt.% styrene; II had 50-91.5 wt.% styrene
155,684 769 380 I180 1222 164,620 168 485,582 571,646 25,462,554, 745,1008
TABLE 2. cont'd Polymer I of
Polymer II of
Method
Comments
/V-phenylitaconimide-co-styrene j/V-phenylmaleimide-co-styrene 3-Bromo-2,6-dimethyl-l,4-phenylene ether-co-2,6-dimethyl1,4-phenylene ether 2,6-dimethyl-1,4-phenylene ether
Single T g ; microscopy
I had > 6 2 mol% 2,6-dimethyl1,4-phenylene ether
Styrene Butadiene
Single T g Single Tg
Butadiene-cc-styrene
Single Tg
Butadiene-co-styrene
Single T g ; microscopy
Styrene
Single dynamic mechanical loss peak
Butyl acrylate-co-butyl methacrylate
Butyl acrylate-co-butyl methacrylate
Clear
Butyl acrylate-co/V-hydroxyethylcarbozolyl acrylate
Butyl acrylate-co-P-hydroxyethyl3,5-dinitrobenzoyl acrylate
Single To
Butyl acrylate-co-ethyl acrylate
Butyl acrylate-co-ethyl acrylate
Clear
films
Ethyl acrylate
Clear
films
Butyl acrylate-co~methyl methacrylate n-Butyl methacrylate H-Butyl methacrylate-co-pchlorostyrene «-Butyl methacryiate-co-Nhydroxyethylcarbazoyl acrylate Butyl methacrylate-co-methyl methacrylate
Butyl acrylate-co-methyl methacrylate ;?-Butyl methacrylate-co-styrene /r-Butyl methacrylate-cop-chlorostyrene n-Butyl methacrylate-coP-hydroxyethyl-3,5-dinitrobenzoyl acrylate Butyl methacrylate-a?-methyl methacrylate
Single 7 g ; clear
I had > 90 mol% styrene 402,785 Semicrystalline; I was SKD (87% cis-lA) 251,736 and II was SKBM (Ref. 251); I had 50% vinyl-1,2, 35% m-1,4 and 15% trans1,4, and II had 98% cw-1,4 (Ref. 736); I had 50% vinyl-1,2, 35% cw-1,4 and 15% trans-1,4, and II had 55% trans1,4, 35% cw-1,4 and 10% vinyl-1,2 (Ref. 736) II had > 70% butadiene; immiscible 92,149,182, when II had <60% butadiene 237,238,520,548, 549,737,770,771, 787,882 Difference in composition between I 182,519,520, and II <20% styrene; two T g 's 455,757,771 when composition difference > 20% I had 25% styrene; II had M w < 917; 138,139 < 50% II; two loss peaks when 75% II Difference in composition between I 453 and II 25% butyl aery late; immiscible when composition difference 50% butyl acrylate I had 6 or 48 mol% electron donating 723 carbozoyl groups; II had 10 or 63 mol% electron withdrawing dinitrobenzoyl groups Difference in composition between I 453 and II 25% ethyl acrylate; immiscible when composition difference 50% ethyl acrylate I had 75% ethyl acrylate; immiscible 453 when I had < 50% ethyl acrylate Difference in composition between I 447,448 and II < 10% methyl methacrylate II had > 90 wt.% K-butyl methacrylate 238 76
n-Butyl methacrylate-co-styrene Caprolactam-co-caprolactone Caprolactam-co-caprolactone-coIaurolactam 2,6-Dimethyl-l,4-phenylene ether, sulfonylated
;?-Butyl methacrylate-co-styrene Styrene Caprolactone-co-laurolactam Caprolactam-co-laurolactam
Single Single Single Single
2,6-Dimethyl-l,4-phenylene ether, sulfonylated
Single Tg
Dimethylsiloxane, functionalized
Dimethylsiloxane, functionalized
Single T1
3-Bromo-2,6-dimethyl1,4-phenylene ether 3-Bromo-2,6-dimethyl1,4-phenylene ether-co2,6-dimethyl-1,4-phenylene ether p-Bromostyrene-co-styrene Butadiene
Butadiene-c0-styrene
Single Tg Single Tg Single Tg; microscopy
Refs.
films
films
Single T g ; clear films Single T g ; microscopy Single Tg
Clear
II had > 48 mol% 3-bromo2,6-dimethyl-l,4-phenylene oxide
I had 9 mol% carbazoyl groups; II had 9 mol% dinitrobenzoyl groups films
T g ; microscopy T g ; clear films Tg Tg
Difference in composition between I and II < 20-30% butyl methacrylate, depending on compositions of I and II I had > 90 wt.% styrene I and II had various compositions I and II had various compositions Difference in degree of sulfonylation between I and II in the range of 20-26 wt.% I had 4-15 mol% electron-donating carbazoyl or /V-methylaniline groups; II had 4-15 mol% electron-accepting
164 25,26 402
402
723
76,447
76 239 1126 992 410
723
References page VI-461
TABLE 2. cont'd Polymer I of
Polymer II of
Method
Comments
Refs.
Vinyl chloride Ethylene naphthalene2,6-dicarboxylate-co4-hydroxybenzoate Ethyl methacrylate-co-methyl Ethyl methacrylate-co-methyl methacrylate methacrylate o-Fluorostyrene-co-p-fluorostyrene o-Fluorostyrene-co-p-fluorostyrene
Single Tg NMR
dinitrobenzoyl groups; donor/ acceptor = 1 /1 I was Hydrin 100; II was Hydrin 200 I and II had 25, 50 or 75% ethyl acrylate I had 75 wt.% ethyl methacrylate; immiscible when I had < 50 wt.% ethyl methacrylate Difference in composition between I and II < 20-27% ethyl acrylate depending on compositions of I and II Difference in composition between I and II < 1.2-13.3 wt.% Cl depending on compositions of I and II SemicrystalUne when I had 25 wt.% Cl; I had 25 or 48 wt.% Cl I had 35.4-52.6 wt.% Cl; II had 50-60 wt.% ethylene 1:11 = 50:50 I and II had 7-100 wt.% vinyl acetate I had 21 mol% vinyl acetate; II had 21 mol% vinyl alcohol Difference in vinyl chloride or ethylene content of I and II < 15 mol% I had > 80 mol% vinyl chloride II had 20 mol% 4-hydroxybenzoate
Single Tg
-
Single Tg
o-Fluorostyrene-co-styrene
o-Fluorostyrene-co-styrene
Single Tg
Styrene
Single Tg
p-Fluorostyrene-co-styrene
Styrene
Single Tg
Hydrocarbon polymer, chlorinated
Hydrocarbon polymer, chlorinated
Clear
p-Hydroxybenzoic acid-co6-hydroxy-2-naphthoic acidco-terephthalic acid-cohydroquinone Hydroxybutyrate
p-Hydroxy ben zoic acid-co6-hydroxy-2-naphthoic acid
Single T g ; X-ray diffraction
I and II had 10 and 23 mol% 1144 p-fluorostyrene, respectively I had 18 or 49% o-fluorostyrene; II had 716,1144 40 or 77% o-fluorostyrene I had 18, 40 or 49% o-fluorostyrene 716,1144 and II had Mn = 15 kg/mol I had 18% o-fluorostyrene and II had Mn = 110 kg/mol I had 8 or 16 mol% p-fluorostyrene; II 1144 had Mn = 4 0 or 326 kg/mol One series derived from reduction of 75 polyvinyl chloride and one series derived from chlorination of polyethylene X-ray diffraction showed no significant 92 transesterification occurred in the mixture
Isoprene
Hydroxybutyrate Hydroxybutyrate-co-hydroxyvalerate Isoprene-styrene block copolymer
Microscopy; SAXS Microscopy; melting behavior Electron microscopy
Maleic anhydride-co-styrene
Acrylonitrile-co-styrene
Single T g , transparency, microscopy
Maleic anhydride-co-styrene
Single Tg
Methyl methacrylate-co-styrene
Single Tg
Styrene-co-2-vinylpyridine
Single Tg\ FTIR
Epichlorohydrin Ethyl acrylate-co-ethyl methacrylate
Epichlorohydrin-co-ethylene glycol Ethyl acrylate-co-ethyl methacrylate
Single Tg Clear
films
Ethyl methacrylate
Clear
films
Ethyl acrylate-co-methyl methacrylate
Ethyl acrylate-co-methyl methacrylate Clear
films
Ethylene, chlorinated
Ethylene, chlorinated
Single Tg; clear
Ethylene-co-methyl acrylate Ethylene-co-vinyl acetate
Single Tg; phase contrast microscopy Single 7V, microscopy
Ethylene, low density Ethylene-co-vinyl acetate Ethylene-co-vinyl alcohol
Single Tg Single 7 g ; microscopy Single Tg\ FTlR
Vinyl acetate-co-vinyl chloride Ethylene-co-vinyl chloride
Single Tg Single Tg
Ethylene-co-vinyl acetate
Ethylene-co-vinyl chloride
Ethylene naphthalene2,6-dicarboxylate
Maleimide-co-styrene
films
films
373 453 453
447
97,98, 636,817 396 849 1172 925 960 745,746 70,71 70 1027
98
I was isotactic; II was atactic 903 II had 3.8-22.3 mol% hydroxyvalerate 1142,1143 I had Mn = 6.5-53.9 kg/mol; II was diblock, 378 triblock or four-arm star copolymer having total Mn = 26-622 kg/mol I had 15.3 wt.% maleic anhydride; II 436,555 had 15.0, 19.5 or 25.0 wt.% acrylonitrile Miscibility occurred when difference in 1159 MA contents between I and II was <2.5 vol% Miscibility depended on compositions 1008 of I and II I had 86 wt.% styrene; IH had 30 wt.% 1214 styrene
TABLE 2. cont'd Polymer I of
Polymer II of
Method
Methacrylic acid-co-methyl methacrylate
Methyl methacrylate-co4-vinylpyridine
Phase diagram
Methacrylic acid-co-styrene
Butyl methacrylate-comethacrylic acid
Single T%
Styrene-co-4-vinylpyridine
Phase diagram
Methacrylonitrile-a?-methyl methacrylate Methacrylonitrile-co-styrene
Single Tg
Methacrylonitrile-costyrene
[4-(Methacryloyloxy)-butyl]pentamethyldisiloxane [4-(Methacryloyloxy)-butyljpentamethyldisiloxane-a?methyl methacrylate Methyl acrylate Methyl acrylate-co-methyl methacrylate
[4-(Methacryloyloxy)-butyl}pentamethyldisiloxane-comethyl methacrylate Methyl methacrylate
Comments
Single T g ; clear films
films
Methyl acrylate-a?-vinyl acetate Methyl acrylate-co-methyl methacrylate
Clear Clear
films films
Vinyl acetate Ethyl methacrylate-comethyl methacrylate Methyl methacrylate Methyl methacrylate-a/f-styrene
Clear Single Tg
films
Single Tg
/?-Nitrostyrene-c-styrene Novolac resin
Methyl methacrylate-co-2-[(3,5dinitrobenzoyl)oxy]ethyl methacrylate Acrylonitrile-co-styrene Maleic anhydride-co-styrene Methyl methacrylate-c-/Vphenylitaconimide Methyl methacrylate-co-styrene A^-Phenylitaconimide-co-styrene p-Nitrostyrene-o?-styrene Novolac resin
A^Phenylmaleimide-a?-styrene
4-Cyanostyrene-co-styrene
Methyl acrylate-co-vinyl acetate Methyl methacrylate
Methyl methacrylate-o?C/V-ethylcarbazol-3-yl)methyl methacrylate Methyl methacrylate-co-styrene
2-Cyanostyrene-co-4-cyanostyrenectf-styrene Styrene
Styrene
Styrene-co-styrenesulfonic acid
Styrene, iodinated Styrene-co-p-vinylphenol Styrene-co-4-vinylphenol
Styrene-co-vinylphenol Sulfone Vinyl acetate-c-vinyl chloride
Styrene-co-vinylphenol Vinylphenol Sulfone, carboxylated Vinyl chloride Vinyl chloride, chlorinated
I had 91.48 or 77.7 mol% methyl methacrylate; II had 80.2 mol% methyl methacrylate I and II had 13.7 and 20.2 mol% methacrylic acid, respectively; both were Na-neutralized I had 89.5 mol% styrene; II had 83.9 mol% styrene Miscibility depended on compositions of I and II Miscibility depended on compositions of I and II II had 67% methyl methacrylate
Single Tg
Single T g ; clear
I had 67 or 75% methyl methacrylate
II had 25-75% methyl acrylate Difference in composition between I and II28-48% methyl acrylate when I and II had degree of polymerization = 400 and 20-35% methyl acrylate when I and II had degree of polymerization = 3000, depending on compositions of I and II I had 25-75% vinyl acetate I was isotactic; II had < 45% ethyl methacrylate I was isotactic; II was sydiotactic Deuterated blends were miscible; miscibility affected by deuteration of I I and II had similar acceptor or donor content
Single T g Single Tg; microscopy
Single Tg Single Tg Single T% Single Single Single Single
Refs.
Tg; microscopy ^ g Tg Tg
-
198
1051
198 970 970 64
64
453 447
453 727 727 1006
1160
~ -
164,404 404 168
-
76,444 168 158 221
I was formaldehyde and 13/17/70 mol% = p-tert-buty\ phenol/m-cresol/ o-cresol; II was formaldehyde and 15/85 mol% = 2-terf-butyl phenol/o-cresol; I and II had MW 0.8-1.6kg/mol Single T g I had 39 wt.% styrene; II had 58.5-83.1 187 mol% styrene Single T g II had 23.5 or 22.7 mol% styrene; ratios 187 of 2-cyanostyrene/4-cyano-styrene were 25:75 or 78:22 Single Tg I had MW = 0.8 kg/mol; II had 102 MW = 8420 kg/mol; 1/11 = 31.7/68.5 Transparency II had degree of iodination of 6 or 15% 261 Single T%\ FTIR I had 86 mol% styrene; II had 22 mol% 1086 vinylphenol FTIR I had 1.8-9.9 mol% acid; II had 1190 1.9-9.9 mol% pyridine FTIR 349 Single 7"g; FTIR I had > 11 mol% OH groups 1247,1088 Single Tg Degree of carboxylation of II < 1.3 1258 Single T g ; microscopy of fibers I had 78 or 86 wt.% vinyl chloride 449 Single Tg ~745
References page VI - 461
TABLE 2. cont'd Polymer I of
Polymer II of
Method
Comments
Vinyl acetate-co-vinyl sterate
Vinyl acetate-co-vinyl sterate
Single Tg, microscopy
Vinyl chloride Vinyl chloride, chlorinated
Propylene-co-vinyl chloride Vinyl chloride
Single Tg, microscopy of fibers II had 89 or 91 wt.% vinyl chloride Single Tg Up to 61.3 or 65.2% Cl in I with dependence on mol% CCl 2 groups Single Tg Difference in composition between I and II < 3-4% Cl depending on composition of I and II with dependence on number of CCl 2 groups
Vinyl chloride, chlorinated
Refs.
I and II had 21-98 wt.% vinyl acetate
925 449 91,504,505 98,504
TABLE 3. CHEMICALLY DISSIMILAR POLYMER TRIADS (AND TETRADS) MISCIBLE IN THE AMORPHOUS STATE AT ROOM TEMPERATURE
Polymer I of
Polymer II of
Acrylic acid-co-styrene
Ethylene glycol
Methyl methacrylate
Single Tg
Acrylonitrile-co-butadiene
Vinyl chloride
Vinyl chloride-co-vinylidene chloride
Single Tz
Acrylonitrile-co-butadieneco-styrene
Carbonate of bisphenol-A Propylene-co-vinyl chloride
Single Tg
Acrylonitrile-co-methyl methacrylate
Acrylonitrile-co-styrene
Maleic anhydride-co-styrene
Single Tg
Acrylonitrile-co-styrene
Methyl methacrylate-co-/V-phenylitaconimide
Single Tg
Acrylonitrile-co-styrene
Methyl methacrylate-co-styrene
Single Tg
Acrylonitrile-co-styrene
Vinyl chloride
Single Tg
Ethyl methacrylate Acrylonitrile-co-styrene
Methyl methacrylate N-phenylitaconimide~co-styrene
Single Tg Single Tg
Butylene adipate Caprolactone Caprolactone
Single Tg Single Tg Single Tg
Caprolactone
Carbonate of bisphenol-A Carbonate of bisphenol-A Hydroxyether of bisphenol-A (phenoxy resin) Maleic anhydride-co-styrene
Single Tg
Caprolactone
Vinyl chloride
Single Tg
Acrylonitrile-coa-methylstyrene
Acrylonitrile-coN-phenylitaconimide
Acrylonitrile-co-styrene
Polymer III of (and Polymer IV of)
Method
Carbonate of bisphenol-A Cyclohexane dimethylene succinate Ethyl methacrylate Maleic anhydride-co-styrene
Single Tg Single Tg
Ethyl methacrylate
Methyl methacrylate
Single Tg
Methyl methacrylate
Vinyl chloride
Single Tg
Comments
Refs.
I had 12.2, 20.8 or 33.1 mol% 384 acrylic acid Semicrystalline; I had 30 or 40 860 wt.% acrylonitrile; III had 65 wt.% vinylidene chloride I was Blendex 701; II was 107 Merlon M39, M-60; III had 3.2 or 3.8% propylene; I/II/ni= 1/1/2; two r g ' s when 1/11/111 = 3/7/10 I had 12% acrylonitrile; II 74 had 25% acrylonitrile; III had 25% maleic anhydride I had 68 or 95 vol% MMA; II 967 had 63 or 70 vol% styrene; III had 12 or 45 vol% MMA; three miscible binary pairs; there was an immiscibility loop I had 2.7-7.4 vol% acrylo163,165 nitrile; II had 14.5-49.5 vol% acrylonitrile; III had 11.2-16.0 vol% styrene I had 32.3 wt.% acrylonitrile; 684 II had 27 wt.% acrylonitrile; >25%I I had 30 wt.% acrylonitrile 290 I had 6 or 9 vol% acrylonitrile; 157 II had 22, 44 or 65 vol% acrylonitrile; III had 12 or 42 vol% styrene I had 12 or 25% acrylonitrile 738 738 I had 5.7-30 wt.% AN 1209,1052 I had 15 wt.% AN; III had 14 wt.% maleic anhydride Miscible when I/II/III = 68/ 16/16 I had 25% acrylonitrile; III had 14-25% acrylonitrile I had 30 wt.% acrylonitrile; some blends showed LCST I had 23 wt.% acrylonitrile
1210 351 738 74 280 349
TABLE 3. cont'd Polymer I of w-Amyl methacrylate Arylate
Polymer II of rc-Butyl methacrylate /z-Propyl methacrylate Butylene therphthalate
3-Bromo-2,6-dimethyl1,4-phenylene ether-co2,6-dimethyl1,4-phenylene ether
/?-Bromostyrene-ctf-styrene Butylene terephthalate
Caprolactone
Polymer III of (and Polymer IV of)
Method
Vinyl chloride Vinyl chloride Hydroxyether of bisphenol-A (phenoxy)
Single T% Single 7 g Single Tg
/?-Bromostyrene-cc>styrene
2,6-dimethyl-l,4-phenylene ether
Single Tg\ microscopy
p-Bromostyrene-costyrene 2,6-Dimethyl-l,4phenylene ether p-Bromostyrene-costyrene 2,6-dimethyl-l,4phenylene ether Carbonate of bisphenol-A Hydroxyether of bisphenol-A (Phenoxy) Carbonate of bisphenol-A Carbonate of bisphenol-A
Styrene
Single Tg\ microscopy Single Tg\ microscopy Single Tg; microscopy Single Tg\ microscopy Single Tg Single Tg, microscopy Single Tg Single Tg
Styrene 2,6-Dimethyl-1,4-phenylene ether (polymer IV of styrene) Styrene Hydroxyether of bisphenol-A (phenoxy) Methyl methacrylate Carbonate of tetramethylbisphenol-A Hydroxyether of bisphenol-A (phenoxy)
Comments
Refs.
Blend had >70 wt.% HI 1157 Blend had > 70 wt.% III 1157 I was Arilef U-100; 7,208,366 IH > 30 wt.% < 37 mol% brominated monomer 402 in I and in II
< 16 mol% brominated monomer in I and in II < 45 mol% brominated monomer in I < 26 mol% brominated monomer in I and in II < 29 mol% /7-bromostyrene in I Blend had >50 wt.% II
402 402 402 402
608,681 1053
Carbonate of bisphenol chloral Carbonate of tetramethyl bisphenol-A Carbonate of tetramethylbisphenol-A Carbonate of tetramethylbisphenol-A Methyl methacrylate
Methyl methacrylate
Single Tg
Miscible at all compositions Generally miscible when >60 wt.% I in blend Miscible at all compositions; all blends showed LCST II had 67.2 wt.% Cl; generally miscible when I >40% at high II/III ratio and miscible when I > 26% at low II/III ratio -
Acrylonitrile-co-styrene
Single Tg
III had 2.7-19.7 wt.% AN
1068
Methyl methacrylate-co-styrene
Single Tg
III had 4.5-58.5 wt.% MMA
1068
Styrene
Single Tg
-
488,1068
Methyl methacrylate-co-styrene
Single Tg
-
884
Cyclohexyl acrylate
Styrene
Single Tg\ light scattering
Copolyester
Epoxy
Hydroxyether of bisphenol-A (phenoxy)
Single T g , microscopy
Epichlorohydrin
Ethylene glycol Methyl methacrylate
Methyl methacrylate Vinyl acetate
Single Tg Single Tg
Etherimide
Amideimide
Ether ether ketone, sulfonated
Single Tg
Ether ether ketone
Liquid crystalline polymer
Single Tg
Oxytetramethylene-a?oxyditetramethyleneco-terephthalic acid
Vinyl chloride
Single Tg
Three miscible binary pairs; there was an immiscibility loop in the phase diagram II/III= 1/1; I was made from 65/30/5 = terephthalate/ isophthalate/sebacate and 70/20/10 = ethylene glycol/ resorcinal di((3-hydroxy ethyl )ether/poly(tetramethylene ether)glycol; II was 4/1 by wt. = Araldite 6099/Araldite 6010 Miscible at all compositions Miscible at all compositions; all blends showed LCST I was Ultem 1000; II was Torlon 4000T; III had degree of sulfonation of 0.53 or 1.00 I was Ultem 1000; II was Victrex 450G; III was HX4000 I was Adiprene LlOO and 4,4'-methylene-bis-2-chloroaniline: I/II/III = 1 / 1 / 2 ; two r g ' s whenl/II/HI = 1/2/1 and 1/1/1
Hydroxyether of Vinyl methyl ether bisphenol-A (Phenoxy) Vinyl chloride Vinyl chloride, chlorinated
Carbonate of bisphenol-A
Carbonate of tetramethylbisphenol-A 2-Chlorostyrene
Ether urethane
Single Tg Single Tg
1070 125 303 20
427
1167
2
573 304 415
78 344
References page VI-461
TABLE 3. cont'd Polymer I of
Polymer II of
Ethyl methacrylate
Methyl rnethacrylate
Ethylene, chlorinated Ethylene, chlorosulfonated
Methyl methacrylate Vinylidene fluoride Natural rubber, epoxidized Vinyl chloride Natural rubber, Nitrile rubber, carboxylated epoxidized
Ethylene glycol
Vinyl acetate
p-Vinyl phenol
Single Tg\ FTIR
HexafluoroacetoneCo-vinylidene Methyl acrylate Methyl acrylate-co-styrene Methyl methacrylate Natural rubber, epoxidized
Methyl methacrylate
Vinyl acetate fluoride p-Vinylphenol p-Vinylphenol Vinylidene Chloroprene
Single Tg
Neopentyl glycol adipate Styrene-co-4-vinylpyridine
Polymer III of (and Polymer IV of)
Vinyl acetate Vinyl acetate Vinyl acetate Nitrile rubber, carboxylated Vinyl chloride Vinyl acetate
p-Vinylphenol
Vinylidene /?-Vinylphenol
fluoride
fluoride
Method Single Tg, FTIR; microscopy Single Tg Single Tg Single Tg
Single Single Single Single
Tg Tg Tg Tg
Single Tg Single Tg
Comments Blend had > 60 wt.% III
Refs. 1161,1163
Blend had 30-80 wt.% III 474 II was 50 mol% epoxidized 394 I had 35% Cl and 1% S 702 (Hypalon-40); II was 50 mol% epoxidized; IH was Krynac-211 Three miscible binary pairs; 491,1240 there was an immiscibility loop in the phase diagram I had 9 mol% hexafluoro1073 acetone Miscible at all compositions 1240 I had 28 wt.% styrene 1240 956 I was 50 mol% epoxidized; 14 II was Krynac-211; I/II/III = 1/1/1 III <50 wt.% 490 I had 30 wt.% styrene 1240
TABLE 4. POLYMER PAIRS MISCIBLE IN THE AMORPHOUS STATE AT ROOM TEMPERATURE, MOLECULAR WEIGHT DEPENDENCE INVESTIGATED Polymer I of
Polymer II of
Method
Acrylonitrile-co-a-methylstyrene
Carbonate of bisphenol-A
Single Tg\ transparency
Acrylonitrile-co-styrene
Carbonate of bisphenol-A
Single Tg\ transparency
3-Bromo-2,6-dimethyl1,4-phenylene ether n-Butyl methacrylate
Styrene
Single T g ; transparency
Styrene
Single Tg\ transparency
Carbonate of bisphenol-A
Ester
Single Tg
2,6-Dimethyl-1,4-phenylene ether
Alkylstyrene
Transparency
p-Bromostyrene
Transparency
p-tert-Butylstyrene
Transparency
Comments
Refs.
I had 9-12 wt.% AN; miscible when 930 II had M w = 3.8kg/mol; immiscible when II had M w = 9.9kg/mol I had 24.6 wt.% AN and II had M w — 932 3.8kg/mol; miscible when I had M w — 3.137 kg/mol and immiscible with I had M w = 6.085 kg/mol I had MW < 40kg/mol; II had MW 529 < 30 kg/mol I had M w = 320 kg/mol: II had M W = 193 171 kg/mol; two 7 g 's when II had MW= 1100 kg/mol II was made from 4,4'-(2-norbornyl1232 idene)di-phenol and a mixture of terephthalic acid and azelaic acid; miscible with I had M w =28.1 kg/mol; immiscible when I had Mw = 73.2 kg/mol I had M w = 5-500 kg/mol and II was 403 a ring-alkyl (with various carbon atoms) styrene. Raising MW of II eventually produced a transition from clear to hazy or cloudy films in each system except that containing poly-a-methylstyrene. With this resin, clear single-r g films were obtained even with M w of I = 500 kg/mol and M w of II = 800 kg/mol II had Mn = 29.1 kg/mol and M w = 32 kg/mol; 403 M w limit for miscibility in 50/50 blend of I with II was 6.2 ± 2.4 kg/mol. When II had Mn = 6.4kg/mol and M w = 7.04kg/mol, Mw limit for miscibility of I was 14 ± 4 kg/mol II had M n = 113 kg/mol and Mw = 289 kg/mol; 403 M w limit for miscibility in 50/50 blend of I with II was 4.5 kg/mol ± 0.7 kg/mol
TABLE 4. cont'd Polymer I of
Polymer II of
Method
4-Ethylstyrene
Transparency
4-Methoxystyrene
Transparency
4-Methylstyrene
Transparency
4-/7-Propylstyrene
Transparency
Vinylbenzylchloride
Transparency
4~Vinylbiphenyl
Transparency
Vinylnaphthalene
Transparency
Vinyltoluene
Transparency
Ethylene
Dimethylsiloxane
Cloud point curve
Ethylene glycol
Propylene glycol Vinyl acetate
Miscibility stated Single J g
Sulfone
Scattering turbidimetry
Hydroxybutyrate
Lactide
Microscopy
ds-Isoprene
Styrene
Single loss Single loss Single
Vinyl cyclohexane Methyl methacrylate
Carbonate of bisphenol-A
dynamic mechanical peak dynamic mechanical peak fg; transparency
Carbonate of hexafluorobisphenolA-ca-carbonate of tetramethylbisphenol-A
Single T g ; transparency
Styrene
Single T g , transparency
a-Styrene
Single T g ; transparency
Sulfone
Single 7 g ; transparency
Comments
Refs.
II had M n — 139kg/mol and Afw = 158kg/mol; 403 MW limit for miscibility in 50/50 blend of I with II was 22.4kg/mol II had M n =282kg/mol and M w = 457 kg/mol; 403 MW limit for miscibility in 50/50 blend of I with II was 3.6kg/mol II had Mn = 118 kg/mol and M w — 265 kg/mol; 403 M w limit for miscibility in 50/50 blend of I with II was 35.5 kg/mol II had M n = 128 kg/mol and M w = 267 kg/mol; 403 Mw limit for miscibility in 50/50 blend of I with II was 14 ± 4 kg/mol II had Mn = 16.8 kg/mol and Mvv = 29.3 kg/mol; 403 Mw limit for miscibility in 50/50 blend of I with II was 14 ± 4 kg/mol II had M n = 79 kg/mol and M w = 153 kg/mol; 403 Mvv limit for miscibility in 50/50 blend of I with II was 7 dz 1.6 kg/mol II had M n = 13 kg/mol and M w = 32.6 kg/mol; 403 Mu, limit for miscibility in 50/50 blend of I with II was 10.2 kg/mol II had M n = 20.7 kg/mol and Mw - 40.4 kg/mol; 403 Mw limit for miscibility in 50/50 blend of I with II was 69 ± 25 kg/mol I was oligomeric polyethylene with 584 Mw = 0.254 to 2.234 kg/mol and II was oligomeric polydimethylsiloxane with Afw =0.505 to 4.5 kg/mol I and II both had MW < 1 kg/mol 65 I had Mvv = 20 kg/mol miscible with II; 328 I had M w = 100 kg/mol miscible with II when blend had < 50% II Blends with II >40 wt.% were homo796 geneous when I had MW = 3.5-4.5 kg/mol and II had MW = 35.6 kg/mol. Blends were heterogeneous at all compositions when I had MW = 200 kg/mol Miscible when II had M n = 1.759kg/mol; 923 immiscible when II had M n = 159.4 kg/mol I was natural rubber; II had Mvv < 0.375 kg/mol; 140 two peaks when II had M w > 0.6 kg/mol I was natural rubber; II had M w < 0.375 kg/mol; 140 two peaks when II had Mw > 0.65 kg/mol Miscible when M w of I/II were 2.4 kg/mol/ 930 38 kg/mol, 10.55 kg/mol, 38 kg/mol, 60 kg/mol/9.9 kg/mol, 105 kg/mol;/9.9 kg/mol; immiscible when M w of I/II were 20.3 kg/mol;/38 kg/mol, 33.5 kg/mol;/25.9 kg/mol, 33.5kg/mol;/38 kg/mol and 60kg/mol;/38kg/mol II had 60 wt.% HFPC and Mvv = 33 kg/mol, 1194 and miscible when I had M w = 4-9.9 kg/mol; when II had M w 103 kg/mol, it was miscible with I having Mw = 4 kg/mol and 11 kg/mol only Miscible when I had M w =2.4kg/mol and 640,804, II had Mw = 2.95 kg/mol; blends showed 929 UCST when I and II had higher Afw (Ref. 929) Immiscible when I had M w =6.7 kg/mol 929 and II had Mvv — 105.5kg/mol; miscible when I and II had lower M w Miscible when I had Mw = 1.21 kg/mol or and 931 2.4 kg/mol and II had M w = 12 kg/mol; immiscible when I had Mvv =4.25 kg/mol and II had M w = 34 or 44 kg/mol
References page VI-461
TABLE 4. cont'd Polymer I of
Polymer II of
Method
Methyl methacrylate-co-styrene
Styrene
Single T g ; transparency
a-Methylstyrene
Styrene
Single 7 g ; transparency; neutron scattering
Styrene, deuterated
Single T%
a-Methylstyrene-co-styrene
Styrene
Single 7 g
Propylene
Ethylene-co-propylene
Single Tg
Styrene
Carbonate of bisphenol-A
Single 7 g ; transparency
Carbonate of dimethylbisphenol-A
Single T g ; transparency
Carbonate of tetramethylbisphenol
Single 7"g; transparency
0-Chlorostyrene-c^p-chlorostyrene
Single Tg
Vinyl methyl ether
Single Tg
2-Vinyl naphthalene Diethyl itaconate
Single Tg Single Tg
p-Vinylphenol
Comments
Refs.
I had 26% styrene and II had MW = 0.6 kg/mol or I 557,804 had 62.6% styrene and II had MW < 2.1 kg/mol or I had 80% styrene and II had MW < 4 kg/mol Miscible when I had Mw = 55 kg/mol and 38,42,63, II had M w - 2 2 or 52kg/mol; immiscible 159,203, when II had M w = 341 kg/mol (Ref.929) 691,710, 721,822, 865,929 I had Mn =25.8-78.3kg/mol; II had M n = 671 36.1-84.1 kg/mol I had Mn =59-818 kg/mol; II had 159 3-79 mol% a-methylstyrene Miscible when I had M w == 33 kg/mol and 1101 II had M w =44.5 kg/mol; immiscible when I and II had higher Mw I had M w =0.58,0.68,0.95 or 930 II had M w = 3.8, 9, 25.9 or 38 kg/mol; miscibility depended on Mw and composition of blend II had M w = 30 kg/mol; miscible when I had 930 M w =0.58, 0.68 or 0.95 kg/mol; immiscible when I had M w = 2.95 kg/mol II had M w = 31 kg/mol; miscible when I had 930 M w =2.95 kg/mol; partially miscible when I had M w =9.2 or 17.5 kg/mol; immiscible when I had M w = 341 kg/mol I had M n = 2.2-93 kg/mol; II had 7~ 100 131 mol% -chlorostyrene I had mol. wt. 0.8-233 kg/mol; II had 878,724 mol. wt. 1.0-97.5 kg/mol I had MW = 2.2 kg/mol; II had MW < 70 kg/mol 731 II had M w = 9.4 kg/mol and was miscible 1034 with I having M w = 1.5-7 kg/mol, 9-11 kg/mol;, 22 or 30 kg/mol; II had M w = 61 kg/mol and was miscible with I having M w = 1.5-7kg/mol and 9-11 kg/mol
TABLE 5. POLYMER PAIRS THAT APPEAR TO HAVE HIGH TEMPERATURE MISCIBILITY, ALTHOUGH IMMISCIBLE AT OR BELOW ROOM TEMPERATURE (UCST BEHAVIOR) Polymer I of
Polymer II of
Acrylonitrile-co-styrene
Sulfone of tetramethylbisphenol-A
Aramide Butadiene
Imide Butadiene Butadiene, perdeuterated Butadiene-co-styrene Styrene
Butadiene-co-styrene
Terpene resin, hydrogenated Styrene
Comments
References
I had 9 wt.% AN and II had M w =4.8 kg/mol; I had 11 wt.% 931 AN and II had M w = 12.4 kg/mol I was Aramid 341; II was Polyimide UR 1136 I had 98% as-1,4; II had 71% vinyl-1,2 and 19% 736 trans-1,4 49 Both I and II were cis-lA I was cis-1,4; II had 23-30 wt.% styrene 362,650,737, 797,1121 II was hydrogenated or partly deuterated, I and II had 516,808 MW = 2.0kg/mol (Ref. 516); I had M w =0.96kg/mol and II had M w =9.0 kg/mol (Ref. 808) I had 10-70.4% 1,2-content 1062 II was hydrogenated or partly deuterated; II was 68.4 wt.% 516 styrene and had MW of 10 kg/mol and II had MW of 100 kg/mol
TABLE 5. cont'd Polymer I of
Polymer II of
Caprolactone
Ester
Carbonate of bisphenol-A
Methacrylic acid-co-styrene Liquid crystalline polymer of biphenyl-4,4'-ylene sebacate Segmented copolyetherester
Chlorostyrene-ca-styrene 2,6-dimethyl-l,4-phenylene oxide Cyclohexyl methacrylate Cyclohexyl acrylate 2,2-Dimethyl-l,3-pi"opylene sebacate Haloalkyl methacrylate Dimethylsiloxane Epoxy
Ether ether sulfone Etherimide Ethyl methacrylate Ethylene Ethylene, chlorinated Hemicellulose Isophthalamide-6I (imtnoisophthaloyl-iminohexamethylene) Isoprene Maleic anhydride ~o?-styrene Methyl methacrylate
Methyl ethyl siloxane Phenyl methyl siloxane Acrylonitrile-cobutadiene, carboxyl terminated 2,6-Dimethyl-l,4-phenylene oxide Ether ether ketone-co-ether ether sulfone Ethylene terephthalate-co-ethylene naphthalate Ethyl acrylate Propylene Ethylene, chlorinated Lignin Hexamethylene adipamide (nylon 6,6) Vinylethylene Sulfone of tetramethylbisphenol-A Carbonate of dimethylbisphenol-A Carbonate of tetrachlorobisphenoi-A Carbonate of tetramethylbisphenol-P Hydroxybutyrate Styrene Sulfone of tetramethylbisphenol-A
1,3-Pnenylene adipamide Styrene
Vinyl chloride Vinylidene fluoride Vinylidene fluoride-cotetrafluoroethylene
Sulfone of tetramethylhexafluoro-bisphenol-A Sulfone of tetramethylbisphenol-P Vinyl chloride Hexamethylene adipamide (nylon 6,6) Caprolactone Carbonate of bisphenol chloral ot-Methylstyrene 0-Methylstyrene /7-Methylstyrene m-Methylstyrene Styrene, brominated Styrene, deuterated Sulfone of tetramethylbisphenol-A Sulfone of tetramethylbisphenol-P Sulfone of tetrarnethylhexafluorobisphenol-A Vinyl methyl ether Acrylonitrile-co-methyl methacrylate-coa-methylstyrene Methyl methacrylate Vinylidene fluoride-co-hexafluoroacetone
Comments
References
II was made from adipoyl chloride and 4,4 '-bis(6-hydrohexyloxy)biphenyl II had 4-23 wt.% methacrylic acid Blend had 50-80 wt.% II
821 10 387
I had a hard tetramethylene terephthalate segment 1015 and a soft polytetramethylene-ether-glycol terephthalate segment I had 32.9 mol% styrene 234,863 765 II had a haloalkyl group of 2-bromoethyl, 2-chloroethyl, 611,1137,1111 3-chloropropyl or 2-iodoethyl (4 blend systems) 341 469 I was Epon 828, M n = 0.38 kg/mol; II had 17 wt.% acrylonitrile, 492 M n = 3.5 kg/mol II was diglycidyl ether of bisphenol-A 1148 II had 50% ether ether sulfone 740 The higher the ethylene naphthalate content in II, the 1072 lower the UCST 766 II was atactic; no UCST when II was isotactic; from 452 high temperature phase diagrams Cl contents =40-50 wt.% 816 Blend had 10, 80 or 90 vol% of II 1188 Interchange reaction slow 899 II was syndiotactic and had 92% vinyl-1,2363 I had 14 wt.% maleic anhydride; II had M w =4.8 kg/mol 931 I had M w = 1.21 or 2.4kg/mol; II had M w = 33 kg/mol 930 I had M w = 1.21 kg/mol; II had M w = 4 1 kg/mol 930 I had M w = 1.21 or 2.4 kg/mol; II had M w = 31 kg/mol 930 1189 I had M w =2.03-6.0kg/mol; II had M w = 558,929,1146 1.95-9.2 kg/mol I had Afw = 1.21 or 2.4kg/mol; II had Afw = 4.8 931 or 12.4 kg/mol I had M w = 1.21 kg/mol; II had M w = 40 kg/mol 931 I had M w = 1.21 kg/mol; II had M w = 40kg/mol 931 674 I was made from m-phenylenediamine and adipic 899 acid; interchange reaction slow I had Mn =0.95 kg/mol 629 I had M w = 0.58 or 0.68 kg/mol; II had M w = 30 kg/mol 930 UCST increased with molecular weight 514 24 24,786 24 II had 27 or 29 mol% brominated units 784 48,879 I had M w = 1.21 or 2.4kg/mol; II had M w = 4.8 or 12.4kg/mol 931 I had M w = 1.21 kg/mol; II had M w = 40kg/mol 931 I had M w = 1.21 kg/mol; II had M w = 40 kg/mol 931 By extrapolation of solution data 168 II had 32.3 wt.% AN, 8.1 wt.% MMA and 59.6 wt.% ct-MS; 1078 blend had 50-80 wt.% II 809 I had 80 mol% vinylidene fluoride; II had 92 mol% 951 vinylidene fluoride
References page VI - 461
TABLE 6. POLYMER PAIRS MiSCIBLE AT ROOM TEMPERATURE THAT APPEAR TO HAVE A LOWER CRITICAL SOLUTION TEMPERATURE (LCST) ABOVE ROOM TEMPERATURE Polymer I of Acrylic acid, Li-neutralized Acrylic acid-co-styrene
Acrylonitrile-cc-butadiene-co-methyl acrylate Acrylonitrile-co-oc-methyl styrene
Polymer II of Ethylene oxide Ethyl methacrylate Methyl methacrylate /t-Propyl methacrylate Ethylene-a/f-maleic anhydride
0.1-0.4 mole fraction of I was neutralized I had 8.84 wt.% acrylic acid I had 2.65-20.0 wt.% acrylic acid I had 2.65-8.84 wt.% acrylic acid I was Barex 210
Acetonyl methacrylate n-Butyl methacrylate /t-Butyl methacrylate-co-methyl methacrylate Carbonate of tetramethylbisphenol-A Ethyl methacrylate
I I I I I
Ethyl methacrylate-c0-methyl methacrylate Methoxymethyl methacrylate Methyl methacrylate
Acrylonitrile-a?-p-methylstyrene
Acrylonitrile-co-styrene
Aniline, /V-octadecylated Aramide Arylsulfone 2-Bromoethyl methacrylate Butadiene
Methyl methacrylate-co-2,2,6,6-tetramethylpiperidinyl methacrylate Methylthiomethyl methacrylate r?-Propyl methacrylate Tetrahydrofurfuryl methacrylate Vinyl chloride Acetonyl methacrylate >?-Butyl methacrylate Cyclohexyl methacrylate Ethyl methacrylate K-Propyl methacrylate Tetrahydrofurfuryl methacrylate Tetrahydropyranyl-2-methyl methacrylate Acetonyl methacrylate Acrylonitrile-co-methyl methacrylate Butyl methacrylate-co-methyl methacrylate Caprolactone Copolycarbonate of bisphenol-A and tetramethylbisphenol-A Cyclohexyl methacrylate 2,6-Dimethyl-1,4-phenylene ether, benzoylated Ethyl methacrylate Maleic anhydride-co-styrene Methoxymethyl methacrylate Methyl methacrylate Methyl methacrylate-co-2,2,6,6-tetramethylpiperidinyl methacrylate Methyl methacrylate-co-iV-phenylrnaleimide Methylthiomethyl methacrylate Phenyl acrylate n-Propyl methacrylate Tetrahydrofurfuryl methacrylate Tetrahydropyranyl-2-methyl methacrylate Vinyl chloride Ethylene-co-vinyl acetate Caprolactam-cc-laurolactam Imide Vinyl acetate Butadiene Isoprene
Butyl acrylate
Comments
Ethylene, chlorinated Vinyl chloride
Refs. 1115 72 384,856 856 1156
had 30 wt.% acrylonitrile (AN) 266 had 12 wt.% AN 152 had 30 wt.% AN; II had 70 wt.% methyl methacrylate 289 had 4-16.5 wt.% AN 1010 had 30 wt.% AN (Ref. 277); II had 10-28 wt.% AN 152,277 (Ref. 152) I had 30 wt.% AN; II had 60 wt.% methyl methacrylate 289 I had 30 wt.% AN 266 I had 30 wt.% AN and II was atactic or isotactic 152,277,790, (Ref. 277); I had 31.3, 33.1, 34.8 or 41.3 wt.% AN 1010 (Ref. 790); I had 10-37 wt.% AN (Ref. 152) I had 30 wt.% AN; II had > 76.2 wt.% methyl 272,274 methacrylate) I had 30 wt.% AN 268 I had 17-20 wt.% AN 152 I had 30 wt.% AN 281 I had 11.9-30 wt.% AN 1010 I had 43.0-61.0 wt.% AN 121 I had 13.6 wt.% AN 285 I had 15.8-21.3 wt.% AN 120 I had 26.5-32.3 wt.% AN 285 I had 21.3-26.5 wt.% AN 285 I had 32.3-46.5 wt.% AN 285 I had 23.8-26.5 wt.% AN 119 I had 33-58 wt.% AN 121 Some blends showed LCST 620 Some blends showed LCST 405 I had 24-28 wt.% AN 565,1145 Some blends showed LCST, depending on compositions 431 of I and II I had 13.4-19.8 wt.% AN 120 I and 18 mol% AN; II had 35% benzoylated unit 776 I had 5.5-28 wt.% AN 229,489 Some blends showed LCST 436,462,555 I had 30 wt.% AN 258 I had 9.4, 9.8, 27.0, 28.2, 30.5 or 34.4 wt.% AN 56,164, (Ref. 506); I had 29.4-39.3 wt.% AN (Ref. 164) 460,506,566 I had 22 or 30 wt.% AN; II had 69, 74 or 85.5 wt.% 272,274 methyl methacrylate I had 24.6 wt.% AN; II had 23.5 wt.% /V-phenylmaleimide 185 I had 34.5 wt.% AN 269 I had 14.6, 29.9 or 34.1 wt.% AN 717 I had 5.7-19.5 wt.% AN 229,1090 I had 34.5-46.6 wt.% AN 286 I had 2.2 or 22-30.5 wt.% AN 119 1 had 11.5-26 wt.% AN 437 I was 60.2% alkylated; II had 20 wt.% vinyl acetate 1246 I was Trogmid T; II had 43.8 mol% caprolactam 213 I was Radel A; II was XU 218 375 Blends cast from methyl ethyl ketone 610 I had 50% vinyl-1,2, 35% cis-1,4 and 15% trans-1,4; 736 II had 55% trans-XA 35% cis-lA and 10% vinyl-1,2 I had < 59% 1,4 content and II was as-1,4 isomer 335,810 (Ref. 810); I was deuterated and II was protonated (Ref. 335) 100 655,845,850,851
TABLE 6.
cont'd
Polymer I of Butyl methacrylate /V-butyl-3-hydroxymethylcarbazoyl methacrylate p-terf-Butylstyrene
Polymer II of /7-(2-Hydroxy-hexafiuoroisopropyl)styreneco-styrene co-Hydroxybutyl-3,5-dinitrobenzoyl methacrylate
Comments
Refs.
II had 90.3-90.8 mol% styrene
646
-
298
Cyclohexyl acryiate Cyclohexyl methacrylate Ethylene, chlorinated Vinylidene fluoride Vinyl chloride
765 765 Caprolactone II had 30 or 42.1 wt.% Cl 53,191 Blends rich in I showed LCST 386 Carbon monoxide-coethyl I had 13.8/7.41/78.8 —carbon monoxide/ethyl 692 acrylate-co-ethylene acrylate/ethylene Carbonate of bisphenol-A Caprolactone 56,177,645 Cyclohexyl methacrylate-comethyl methacrylate II had < 3.3 wt.% cyclohexyl methacrylate (Ref. 574); 81,574 II had 14.7-34.3 wt.% cyclohexyl methacrylate (Ref. 81) Methyl methacrylate Blends prepared by precipitation of tetrahydrofuran 109,481,486 solutions by rc-heptane; or by solution casting from tetrahydrofuran at high temperature Methyl methacrylate-ctf-p-methylstyrene II had > 70 wt.% methyl methacrylate 357 Methyl methacrylate-ctf-iV-phenylmaleimide II had > 70 wt.% methyl methacrylate 357 Methyl methacrylate-cc-phenyl methacrylate II had 16-63 wt.% phenyl methacrylate 81 Methyl methacrylate-co-styrene II had < 14 wt.% styrene 577 Carbonate of hexafluorobisphenol-A Alkyl methacrylate II had an alkyl group of ethyl, n-propyl or isopropyl 427,430 (3 blend systems) Carbonate of tetramethylbisphenol-A Aerylomtrile-co-styrene II had 2 or 11.5% acrylonitrile 225 Methyl methacrylate-co-styrene II had 4.5, 32.5, 33.5 or 35 wt.% methyl methacrylate 429,575,884 (Ref. 575); II had 4.5-33.5 wt.% methyl methacrylate (Ref. 429) Styrene I had M w = 341 kg/mol; II had M w = 33 kg/mol 359,428,741,930 Carbonate of tetramethylbisphenol-P Styrene I had M w - 9.2kg/mol; II had M w = 31 kg/mol 930 Caprolactone Styrene-cY?-p-vinylphenol II had 10 wt.% vinylphenol 905 Vinyl methyl ether 1145 Cellulose acetate 4-VinyIpyridine I was 10H/2 glucose 86 1-Chloroethyl methacrylate Alkyl methacrylate II had an alkyl group of ethyl, w-propyl, isopropyl or 1152 /?-butyl (4 blend systems) 2-Chloroethyl methacrylate Ethyl methacrylate 612 Chloromethyl methacrylate Alkyl methacrylate II had an alkyl group of ethyl, isopropyl or >?-propyl 273 (3 blend systems) o-Chlorostyrene Styrene 15 tf-Chlorostyrene-C0-p-cnlorostyrene Styrene I had 71-92 mol% o-chlorostyrene 803 2,2-Dichloroethyl methacrylate Alkyl methacrylate II had an alkyl group of /i-propyl, isopropyl, rc-butyl or 1110 isoamyl (4 blend systems) 2,6-Dimethyl-l,4-phenylene ether Acrylic acid-co-styrene II had 6.3 or 8.5 wt.% acrylic acid 1022 Acrylonitrile-co-styrene II had 6.3 wt.% acrylonitrile 1022 o-Chlorostyrene-co-p-chlorostyrene 16 0-Chlorostyrene-ctf-0-fluorostyrene II had about 14-40 rnol% o-chlorostyrene 840,841 p-Chlorostyrene-co-o-fluorostyrene II had 66-74 mol% /?-chlorostyrene 840,841 fl-Fluorostyrene-co-p-fluorostyrene II had 10-38% /7-fluorostyrene 835 tf-Fluorostyrene-C0-/?-bromostyrene II had 68 or 73 mol% brornostyrene 834 o-Fluorostyrene-co-styrene H had 9-20 mol% styrene 839,842 p-Fluorostyrene-co-styrene II had about 22-54 mol% styrene 531,839,842 Maleic anhydride-co-styrene II had 4.6-9.9 wt.% MA (Ref. 1226); II had 7.3-12.5 1022,1226 wt.% MA (Ref. 1022) Methyl methacrylate-co-styrene II had 12.5-20 wt.% methyl methacrylate 1022 2,6-dimethyl-1,4-phenylene o-Fluorostyrene I had 4-17 mol% sulfonylated units 1220 ether, sulfonylated p-Fluorostyrene I had 17-66 mol% sulfonylated units 1220 Phenylvinyl sec-butyl ether-a/f-/V-phenylI had 87 mol% sulfonylated units 1219 maleimide Phenylvinyl ethyl ether-«/r-A^-phenylmaleimide I had 87 or 91 mol% sulfonylated units 1219 Dodecamethylene decamethylene Vinyl chloride §72 dicarboxylate Dodecamethylene dodecamethylene Vinyl chloride g72 dicarboxylate Vinyl chloride-cc?-vinylidene chloride II had 13.5 wt.% vinyl chloride 873
References page VI-461
TABLE 6. cont'd Polymer I of Epichlorohydrin
Polymer II of Alkyl acrylate Alkyl methacrylate
Ether sulfone Ethyl acrylate 2-Ethylhexyl methacrylate, modified
/V-ethyl-3-hydroxymethylcarbazoyl methacrylate Ethyl methacrylate
Ethyloxazoline Ethylene, chlorinated
Ethylene orthophthalate Ethylene ether
Ethylene-co-vinyl acetate
2-Fluoroethyl methacrylate 3-Fluoropropyl methacrylate Hexadecamethylene dodecamethylene dicarboxylate w-Hexyl methacrylate Hydroxyether of bisphenol-A (phenoxy)
Hydroxyether of phenolphthalein
(3-Hydroxyethyl-3,5-dinitrobenzoyl methacrylate 2-(Hydroxyhexafluoroisopropyl) styrene-co-styrene Hydroxypropyl Glutamine 2-Iodoethyl methacrylate Isoprene Maleic anhydride-co-styrene
Methacrylonitrile-co-p-methylstyrene
Methacrylonitrile-ce-styrene
Ethyl acrylate rubber Vinyl acetate N-vinylpyrrolidone Imide Hexafluoroacetone-c<9-vinylidene fluoride Vinylidene fluoride Hexyl methacrylate-co-styrene, modified
co-Hydroxyalkyl-3,5-dinitrobenzoyl methacrylate /?-(2-hydroxy-hexafluoroisopropyl)styreneco-styrene Vinyl chloride-co-vinylidene chloride Vinylidene fluoride Aramid Ether sulfone Ethylene-a?-vinyl acetate Methyl methacrylate Vinyl acetate Enaminonitrile Ether sulfone Ethylene-co-vinyl acetate Sulfone Hexafluoroacetone-co-vinylidene fluoride Vinyl chloride Alkyl methacrylate Methyl methacrylate Vinyl chloride Styrene-co-p-vinylphenol Alkyl methacrylate Ether sulfone Ethylene oxide-co-propylene oxide Vinyl methyl ether Butylene terephthalate Ether sulfone Ethylene glycol Af-alkyl-3-hydroxymethylcarbazoyl methacrylate Methyl methacrylate Vinyl methyl ether Styrene-co-p-(hexafluoro-2-hydroxy-2-propyl)a-methylstyrene Tetrahydrofurfuryl methacrylate ds-Butadiene-co-l,2-vinylbutadiene Ethyl methacrylate Methyl methacrylate rc-Propyl methacrylate «-Butyl methacrylate Ethyl methacrylate Methyl methacrylate Isopropyl methacrylate K-Propyl methacrylate Ethyl methacrylate
Comments
Refs.
II had an alkyl group of ethyl or n-propyl (2 blend systems) II had an alkyl group of methyl, ethyl, rc-propyl, n-butyl or cyclohexyl (5 blend systems) II was Matrimide 5218 II had 8 mol% hexafluoroacetone I had 3-5% acrylic acid; II had 30% styrene and 5-15% 3-(dimethylamino) 2,2-dimethylpropyl methacrylate II had an alkyl group of butyl, hexyl, pentyl or propyl (4 blend systems) II had 90.3-98.8 mol% styrene
224 224 226 305 300 510 411,1059 56,844 766
694 646
II had 86.5 wt.% vinylidene fluoride 870 I was syndiotactic or atactic; LCST below Tm of II if 56,695,802 I had high MW isotactic 532 599 I had 35.4-52.6 wt.% Cl; II had 40-45 wt.% 849 vinyl acetate I had 50-52 wt.% Cl 99,848 I had Af n = 9.5 kg/mol; no LCST when I had Mn = 5.1 kg/mol 829 585 317,534,743,853 129 Mn of I = 3.5-4.5 kg/mol; II was Udel P1700 796 I had 70% vinyl acetate; II had 8.9 mol% 336 hexafluoroacetone I had 30 or 37 wt.% ethylene 631,678 II had an alkyl group of methyl or ethyl (2 blend systems) 1153 1155 ~ 872 II had 7 or 9 wt.% vinylphenol II had an alkyl group of methyl, tetrahydrofurfuryl or tetrahydropyranyl-2-methyl (3 blend systems) II had 22, 50 or 66 mol% ethylene oxide II had an alkyl group of butyl, decyl, dodecyl, ethyl, hexadecyl, hexyl, octyl or tetradecyl I had 90.3-96.1 mol% styrene
922 111,118,253
I had 90.3-99.9 mol% styrene II had 98.5 mol% styrene; blend had <50 vol% I II had < 24.3% vinylbutadiene I had 0-33 wt.% maleic anhydride I had 8, 10, 13 or 33 wt.% maleic anhydride I had 0-18.1 wt.% maleic anhydride I had 15-25 wt.% MAN I had 40, 46 or 53 wt.% MAN I had 34, 53, 56 or 68 wt.% MAN I had 22-31 wt.% MAN and I had Mn - 161 kg/mol; II had 17-31 wt.% MAN and I had M n =41.6kg/mol I had 37 or 40 wt.% MAN I had 5.6, 35.4 or 40.1 wt.% MAN
714,764 1025 818 310 306 309 693 646 646 971 1107 420 73 73 73 944 944 944 944 944 943
TABLE 6. cont'd Polymer I of
Methyl acrylate Methyl methacrylate
Polymer II of
Comments
Methyl methacrylate K-Propyl methacrylate Vinylidene fluoride Acrylonitrile-co-methyl methacrylate-co-styrene Carbonate of bisphenol chloral Copolycarbonate of bisphenol-A and hexafluorobisphenol-A Epichlorohydrin-co-ethylene glycol Ethylene, chlorinated Ethylene glycol Hexafluoroacetone-co-vinylidene Af-maleimide-co-styrene Styrene-co-p-vinylphenol Sulfone of hexafluorobisphenol-A
fluoride
Tetrafluoroethylene-co-vinylidene fluoride Vinyl acetate Vinyl chloride Vinyl chloride, chlorinated Vinyl chloride-co-vinylidene chloride
Methyl methacrylate, imidized oc-Methylstyrene
a-Methylstyrene-rafl-4(2-hydroxyethyl)-a-methylstyrene
Vinylidene Acrylonitrile-cc-styrene
fluoride
Carbonate of tetramethylbisphenol-A Carbonate of tetramethylbisphenol-P Ethyl methacrylate Methyl methacrylate tt-Propyl methacrylate Styrene Tetrahydropyranyl-2-methyl methacrylate Alkyl acrylate Alkyl methacrylate Dialkyl itaconate
a-Methylstyrene-jmr-[4-( 1,1,1trifluoro-2-hydroxyethyl)oc-methylstyrene
Vinyl acetate Vinyl pyrrol idone 4-Vinylpyridine Alkyl acrylate
Alkyl methacrylate
I had 46.6-62.8 wt.% MAN I had 2-32 wt.% MAN II had 40.0/39.1/20.9 or 61.1/19.6/19.3 of S/MMA/AN II had 5.3-14 wt.% hexafluorobisphenol-A
1018 943 56,844 620 110,930 430
II had 50 mol% ethylene glycol 224 II had 56-68 wt.% Cl; I was atactic, isotactic or 1204 syndiotactic 224 443 II had 8, 14 or 21 wt.% 7V-maleimide 1213 I was syndiotactic; II had 5 mol% vinylphenol 1055 I had Mw = 2.4kg/mol;, 1.21 or 4.25kg/mol; II had 931 Mw = 27 kg/mol or 56kg/mol II had 80 rnol% vinylidene fluoride 324 Blends cast from chloroform or cyclohexanone 302,777,778,1092 368,506,653,742 II had 63, 65 or 68 wt.% Cl 506,833 I was atactic or isotactic; II had 86.5 wt.% vinylidene 506,870 chloride LCST above decomposition temperature of I 55 I had 53-91 wt.% imidized unit; II had 5.7-33 wt.% 230 acrylonitriie; some blends showed LCST I had Mw - 3.5 or 6.7 kg/mol; II had Mw - 33 kg/mol 930 I had M w = 3.5 or 6.7 kg/mol; II had M w = 31 kg/mol 930 765 167,765 765 710,722,865,929 116 II had an alkyl group of methyl, ethyl or tert-buty\ 968 (3 blend systems) H had an alkyl group of methyl, ethyl or tert-butyl 968 (3 blend systems) II had an alkyl group of methyl, ethyl, n-propyl, 968 /7-butyl or tert-butyl (5 blend systems) 969 969 969 II had an alkyl group of methyl, ethyl or r-butyl 968 (3 blend systems)
Vinyl acetate Vinyl pyrrol idone 4-Vinylpyridine Hydroxyether of bisphenol-A (phenoxy)
II had an alkyl group of methyl, ethyl or /-butyl (3 blend systems) II had an alkyl group of methyl, ethyl, /i-propyl, /7-butyl or f-butyl (4 systems) -
Hydroxyether of bisphenol-A (phenoxy)
-
332
Vinyl chloride-co-vinylidene chloride
II was Saran, 86.5 wt.% vinylidene chloride; LCST above 7 m when < 50 wt.% I II had 30.4-83.5% MMA II was Zytel 330 (Du Pont) or nylon 6,6 (2 blend systems) II was Ultem 1000 or XU218 (2 blend systems)
868
Dialkyl itaconate
Neopentyl glycol adipate (2,2-dimethyl-1,3-propylene adipate) Neopentyl glycol succinate (2,2-dimethyl-1,3-propylene succinate)
Refs.
Oxymethylene Phenol-formaldehyde p-Phenylene benzobisoxazole
Novolac Methyl methacrylate-c-styrene Nylon
2,2'-(m-Phenylene)-5,5'bibenzimidazole
Imide
968 968 969 969 969 332
858 433 945 114
References page VI - 461
TABLE 6. cont'd Polymer I of
Polymer II of
Comments
Refs.
n-Propyl methacrylate
Vinyl chloride-co-vinylidene chloride
II had 86.5 wt.% vinylidene chloride
870
Styrene
Copolycarbonate of bisphenol-A and tetramethylbisphenol-A 0-Fluorostyrene-co-/?-fluorostyrene Caprolactam (nylon 6)
II had > 85 wt.% tetramethylbisphenol-A
431
Styrene, sulfonated and Zn-neutralized Styrene, sulfonated and neutralized Vinyl acetate
Vinyl acetate-co-vinyl chloride
Caprolactam (nylon 6) Hexafluoroacetone-co-vinylidene fluoride Maleic anhydride-a/f-styrene, hydrolyzed n-Butyl methacrylate Hexyl acrylate-co-methyl acrylate Methyl methacrylate Vinylpyridine Acrylonitrile-cow-butyl acrylate Alkyl acrylate
Vinyl butyral Vinyl chloride
Alkyl methacrylate Butyl acrylate-co-ethyl acrylate Butyl aerylate-co-hexyl acrylate Butyl acrylate-co-methyl acrylate Butyl acrylate-cfl-methyl methacrylate Butyl methacrylate-co-methyl methacrylate Ethyl acrylate-co-hexyl acrylate Methyl acrylate co-hexyl acrylate Pentyl acrylate-co-propyl acrylate Acrylonitrile-co-styrene Alkyl acrylate
Vinyl methyl ether
Vinyl methyl ketone
2-Chlorostyrene Hydrogeneous styrene-b-deuterated styrene Maleic anhydride-co-styrene oc-Methylstyrene a-Methylstyrene-co-4-(2-hydroxyethyl)a-methylstyrene a-Methylstyrene-C0-4-(l,l,l-trifluoro2-hydroxyethyl)-a-methylstyrene a-Methylstyrene-co-styrene m-Methylstyrene-co-styrene 0-Methylstyrene-o?-styrene p-Methylstyrene-co-styrene Methyl methacrylate-costyrene Nitrostyrene-co-styrene Styrene-co-1-vinyl naphthalene Styrene-co-2-vinyl naphthalene Styrene-co-4-vinylstilbene
p-Vinylphenol 2-Vinylpyridine
4-Acetoxystyrene Aramide
4-Vinylpyridine Vinylidene
2-Hydroxyethyl methacrylate Vinyl acetate-co-vinyl alcohol Methoxymethyl methacrylate
fluoride
I had Mn -1 kg/mol; II had 10 or 33 mol% p-fluorostyrene I had 6.5, 8.1 or 9.0 mol% sulfonated units
1144 1083
I was neutralized by Li, Mg or Zn II was 1.8-43% hydrolyzed; LCST increased with increasing degree of hydrolysis I had 5.9-15.1 vol% vinyl acetate I had 5-23.7 vol% vinyl acetate; II had 15-88 vol% hexyl acrylate; some blends showed LCST I had 5.9-15.1 vol% vinyl acetate II was 2- or 4-vinylpyridine (2 blend systems) II had 53, 67 or 84 mol% butyl acrylate II had an alkyl group of «-propyl or rc-amyl (2 blend systems) II had an alkyl group of rc-butyl or rc-amyl (2 blend systems) II had 22.9, 43.5 or 52.8% butyl acrylate II had 47.8% butyl acrylate II had 44.6% butyl acrylate II had 75% butyl acrylate II had 30 or 70% methyl methacrylate II had 41,7 or 43.2% ethyl acrylate II had 9.7% methyl acrylate II had 48.1% propyl acrylate Il had < 10-11% aerylonitrile II had an alkyl group of ethyl or n- butyl (2 blend systems) II had < 15% maleic anhydride II had 6-89 mol% a-methylstyrene
1223 1073 67 497 379 497 1003 655 851 649,653 851 851 851 654 653 851 851 851 575 941 1203 1019 575 318 170
II had 0-93 mol% oc-methylstyrene II had 77.5 or 88 wt.% styrene II had 76.5 or 87.5 wt.% styrene Il had 76.2 or 86.8 wt.% styrene II had 61-95 wt.% styrene II had <60 mol% methyl methacrylate II had < 25.6 mol% Nitrostyrene II had 17.4 wt.% styrene II had 19.2 wt.% styrene Cloud point was sensitive to the cis- fraction of 4-stilbenzyl groups II made from hexamethylenediamine and a mixture of isomers of phthalic acid II had 32-55 mol% vinyl alcohol -
170 318 1028 1028 318,1016,1028 108 165,192 318 318 365 340 767 937 1046 267
TABLE 7. POLYMER PAIRS THAT APPEAR TO HAVE BOTH A LOWER CRITICAL SOLUTION TEMPERATURE AND A UPPER CRITICAL SOLUTION TEMPERATURE
Polymer I of
Polymer II of
Comments
Refs.
Acrylonitrile-co-styrene Butadiene Caprolactone
Acrylonitrile-co-butadiene Butadiene-co-styrene Acrylonitrile-co-slyrene
I had 25 wt.% aery lonitrile, II had 40 wt.% acrylonitrile II had 45 wt.% styrene II had 12.4-26.4 wt.% acrylonitrile
636 797 1193
Table 7. cont'd Polymer I of
Polymer II of
Comments
Carbonate of bisphenol-A Dimethylsiloxane 2-Hydroxyethyl Acrylate-co-liquid crystalline acrylate
Methyl methacrylate Methylphenylsiloxane 2-Hydroxyethyl acrylate-co-liquid crystalline acrylate
o-Methylated phenol formaldehyde
Methyl methacrylate Methyl methacrylate-co-styrene
Styrene
2,6-Dimethyl-l,4~phenylene ether, carboxylated
TABLE 8.
Refs.
Blends showed a LCST-UCST loop Both I and II had 6% 2-hydroxyethyl acrylate; the liquid crystalline polyacrylates had different spacer groups I had 20 or 50% of OH group methylated I had 20 or 50% of OH group methylated; II had 50 or 60% methyl methacrylate II had 8.0-10.3 mol% carboxyl group
72,479,1085 467 1252
432 432 148
POLYMER PAIRS THAT CO-CRYSTALLIZE
Polymer I of Butylene terephthalate
Polymer II of
Method
Butylene glycol-b-butylene terephthalate
T g and Tm by DSC, dielectric loss measurements
Butylene glycol-b-butylene terephthalate
Tg and Tm by DSC, dielectric loss measurements, microscopy
Ester-ether segmented polymer Dielectric loss peak and Tm by DSC
Ether ether ketone
Ether ether ether ketone
Tg and Tm by DSC
Ether ether ketone ketone
Tg and 7*m by DSC
Ether ketone
T% and Tm by DSC
Ether ketone
Tg and Tm by DSC; WAXD
Ether-co-ketone
T% and Tm by DSC
Comments
Refs.
Two T g 's when I was Valox 310 (General Electric) having Mn ~ 20 kg/mol and II contained 44-67 wt.% butylene terephthalate; single Tg and single Tm when II contained 85 wt.% butylene terephthalate; single Tm indicated that only one type of crystal was present Single Tg and single Tm when I was Valox 310 (General Electric) with Mn = 3 3 kg/ mol, II contained 84 wt.% butylene terephthalate and I/II = 1/3 to 3/1; thermal analysis and morphological evidence pointed to extensive co-crystallization in this mixture; two Tg's when II contained 50 wt.% butylene terephthalate I was Valox 310 (General Electric) with Mn = 20 kg/mol; II was comprised of a poly(butylene oxide) soft segment and a hard segment 4GT-butylene terephthalate, and had total MW = 25 to 30 kg/mol; single beta dielectric loss peak and single Tm were found when II was 44 or 67 wt.% 4GT; single Tm between the T1n5S of the pure components indicated co-crystallization; two dielectric loss peaks and two Tm when II was 84 wt.% 4GT Single Tg and single Tm when I contained 33% ketone linkages and had melt flow = 3.0 dg/min at 4000C and II had melt flow = 10 dg/min; 1/11= 1/1 Single Tg and single Tm when I contained 33% ketone linkages and had melt flow = 3.0 dg/min at 4000C and II contained 50% ketone linkages and had melt flow = 4.0 dg/min; 1/11=1/1 Single Tg and single Tm when I contained 33% ketone linkages and had melt flow = 3.0 dg/min and II contained 50% ketone linkages and had melt flow= 1.5 dg/min;
554
703
704
333
333
333
1/11=1/1 Single composition-dependent melting endotherms obtained upon quenching when I had intrinsic viscosity= 1.124 dl/g in sulfuric acid at 300C and II had intrinsic viscosity =1.107 dl/g in sulfuric acid at 300C, but it did not happen when other thermal histories were imposed Single Tg and single Tm when I contained 33% ketone linkages and had melt flow = 3.0
739
333
References page VI-461
TABLE 8. cont'd Polymer I of
Ethylene
Polymer II of
Method
Ether ketone (polymer II), etherimide (polymer III)
T% and Tm by DSC
Butadiene, hydrogenated
DSC, SALS and SEM
Ethylene
DSC and SALS
DSC, SAXS and X-ray diffraction
Ethylene, deuterated
Tm by DSC
Ethylene
Ethylene-co-vinyl acetate
DSC, SALS and SEM
Ethylene-co-vinyl acetate
Ethylene-co-vinyl acetate
DSC, SALS and SEM
Comments dg/min and II contained 57% ketone linkages and had melt flow = 1.5 dg/min; 1/11=1/1 I had reduced viscosity = 1.05 dl/g in 1 wt.% cone, sulfuric acid at 23°C; II had reduced viscosity = 1.9 dl/g in the same condition as for I; III was Ultem 1000 from GE with reduced viscosity = 0.5 dl/g in 0.2 wt.% chloroform at 25°C; single T% and single Tm for 1/11/111 = 25/25/50 I was narrow MW fraction with M w = 113 kg/mol and Mn — 105 kg/mol; II contained 2.2-5.5 mol% ethyl branches and had M w = 103-420 kg/mol and Mn = 83-156 kg/mol; stated that I and II co-crystallized upon rapid crystallization from the melt when II contained up to 2 mol% of ethyl branches I was polyethylene and II was UHMWPE with MW-5,000 kg/mol; I was LLDPE (GRSN-7047 from Union Carbide with M w = 134 kg/mol and MJMn = 4), or I was HDPE (Chemplex 6186 with M w = 134.8 kg/mol and MJMn - 7 . 4 ) ; only a single composition dependent Tm was observed; SALS showed the co-crystallization took place; but when I was LDPE (Mw = 114 kg/mol and MJMn = 5.2), separate crystals were formed I was linear LLDPE and II was HDPE; co-crystallization was evidenced by a single Tn, by DSC; stated that X-ray diffraction peak width, SAXS and Raman spectra were all consistent with a single crystallizing species; but for HDPE/LDPE and LLDPE/ LDPE, separate crystals were seen with two 7Vs being found by DSC I was HDPE with M w = 100 kg/mol and M n = 11 kg/mol and II was LLDPE with M w = 350 kg/mol and M n = 16 kg/mol; after the blend with 1/11 = 25/75 by weight was crosslinked either by irradiation or by peroxides in the liquid state above a critical degree of cross-linkage, the DSC curve of the blend showed only one single melting point on heating and only one single crystallization peak on cooling; Refs. 45, 348, 478, 579 and 676 also discussed the miscibility of PE/PE blends Single Tm varying smoothly with composition and no gross segregation occurred I was narrow MW fraction with M w = 113 kg/mol and Mn = 105 kg/mol; II contained 1.12-6.6 mol% of acetate branches and had M w =60,3-105 kg/mol and M n = 23.5-43.6 kg/mol; stated that I and II co-crystallized upon rapid crystallization from the melt contained up to 2 mol% of acetate branches I and II had M w = 60.3- 105 kg/mol, M n = 23.5-43.6 kg/mol, and they were different in the content of acetate branches; stated that these copolymers containing about 1-2 mol% of acetate branches were found to co-crystallize with one another
Refs.
334
13
483
783
360
217 13
13
Next Page
TABLE 8. cont'd Polymer I of
Polymer II of
Method
Comments
Glutamate
Glutamate
Dynamic mechanical measurements, X-ray diffraction
Isopropyl vinyl ether, isotactic
sec-Butyl vinyl ether, isotactic
Unit cell dimension from
4-Methyl-l-hexene, isotactic Tetrafluoroethyiene Trifluoroethylene-o?vinylidene
4-Methyl-l-pentene, isotactic
Tetrafluoroethylene-coperfluoroalkyl vinyl ether Trifluoroethylene-co-vinylidene fluoride fluoride
Vinyl alcohol
Vinyl alcohol
Vinylidene fluoride-a?tetrafluoroethylene
Vinylidene Hexafluoroacetone-o?vinylidene
E.
X-ray diffraction Unit cell dimensions from X-ray diffraction Dynamic mechanical measurements DSC, X-ray and phase-contrast microscopy
DSC fluoride DSC fluoride
Refs.
I or II was poly(L-glutamate) or poly(D-glutamate) having m number of methylene group in the ester group of a general formula as -CH 2 CH 2 COO-(CH 2 ),,,C6H5-, m might be 1, 2 or 3 so the component polymer would be represented as Lm or Dm; the MW of both components were 135 to 380 kg/mol and M w /M n = 1.1 to 1.2; stated that binary blends of L2, D2, L3 and D3 were miscible and formed isomorphous mixed crystals at all compositions, whereas other pairs, with the exception of Ll/Dl, were immiscible Co-crystallization at all compositions
717
Co-crystallization only below 25 wt.% I and above 75 wt.% I II had 98-99 mol% tetrafluoroethylene; single a-transition from DMA No phase separation by phase-contrast microscopy, a sharp single X-ray peak, intermediate in spacing between those of the individual copolymers, and clearly different from their superposition, and only one ferroelectric transition and only one melting point by DSC, indicated co-crystallization within the same lattice when I was 52/48 mol% vinylidene fluoride (VDF)/trifluoroethylene (TFE), II was 65/35 mol% VDF/TFE, or I was 65/35 mol% VDF/TFE, and II was 73/27 mol% VDF/TFE; but two X-ray peaks and two ferroelectric transitions and two melting points when I was 52/48 and II was 73/27 mol% VDF/TFE I and II had a diad syndiotacticity of 54 and 58 mol%, respectively I had 9.1, 14.3 or 17.6 mol% tetrafluoroethylene
605
I had 80 mol% vinylidene fluoride; II had 92 mol% vinylidene fluoride; single melting peak
605
1173 800
1197 980 951
REFERENCES
1. J. Adduci, D. K. Dandge, J. Kops, Am. Chem. Soc., Polym. Prepr., 22 (2), 109 (1981). 2. S. M. Aharoni, Macromolecules, 11, 277 (1978). 3. S. M. Aharoni, J. Macromol. Sci. B: Phys., 22, 813 (1983). 4. T. O. Ahn, H. M. Jeong, Pollimo, 11, 112 (1987). 5. T. O. Ahn, S. Lee, H. M. Jeong, Eur. Polym. J., 25, 95 (1989). 6. T. O. Ahn, S. Lee, H. M. Jeong, K. Cho, Angew. Makromol. Chem., 192, 133 (1991). 7. T. O. Ahn, Y. J. Lee, S. M. Lee, H. M. Jeong, J. Macromol. Sci. B: Phys., 29, 91 (1990). 8. T. O. Ahn, B. V. Nam, S. Lee, H. M. Jeong, Polym. Commun., 32, 415 (1991). 9. A. B. Aivazov, K. G. Mindiyarov, Y. V. Zelenev, Y. G. Oganesov, V. G. Raevskii, Vyosokomol. Soedin. Ser. B., 12, 10 (1970).
10. S. Akiyama, K. Ishikawa, H. Fujiishi, Polymer, 32, 1673 (1991). 11. S. Akiyama, W. J. MacKnight, F. E. Karasz, J. Nambu, Polym. Commun., 28, 236 (1987). 12. S. Akiyama, N. Inaba, R. Kaneko, Chem. High Polym. Japan, 26, 529 (1969). 13. R. G. Alamo, R. H. Glaser, L. Mendelkern, J. Polym. Sci., Polym. Phys. Ed., 26, 2169 (1988). 14. R. Alex, P P. De, S. K. De, Polym. Commun., 31, 366 (1990). 15. P. S. Alexandrovich, F. E. Karasz, W. J. MacKnight, J. Macromol. Sci. B: Phys., 17, 501 (1980). 16. R S. Alexandrovich, F. E. Karasz, W. J. MacKnight, Polymer, 18, 1022 (1977). 17. G. C. Alfonso, A. Turturro, M. Pizzoli, M. Scandola, G. Ceccorulli, J. Polym. Sci., Polym. Phys. Ed., 27, 1195 (1989).
Previous Page
TABLE 8. cont'd Polymer I of
Polymer II of
Method
Comments
Glutamate
Glutamate
Dynamic mechanical measurements, X-ray diffraction
Isopropyl vinyl ether, isotactic
sec-Butyl vinyl ether, isotactic
Unit cell dimension from
4-Methyl-l-hexene, isotactic Tetrafluoroethyiene Trifluoroethylene-o?vinylidene
4-Methyl-l-pentene, isotactic
Tetrafluoroethylene-coperfluoroalkyl vinyl ether Trifluoroethylene-co-vinylidene fluoride fluoride
Vinyl alcohol
Vinyl alcohol
Vinylidene fluoride-a?tetrafluoroethylene
Vinylidene Hexafluoroacetone-o?vinylidene
E.
X-ray diffraction Unit cell dimensions from X-ray diffraction Dynamic mechanical measurements DSC, X-ray and phase-contrast microscopy
DSC fluoride DSC fluoride
Refs.
I or II was poly(L-glutamate) or poly(D-glutamate) having m number of methylene group in the ester group of a general formula as -CH 2 CH 2 COO-(CH 2 ),,,C6H5-, m might be 1, 2 or 3 so the component polymer would be represented as Lm or Dm; the MW of both components were 135 to 380 kg/mol and M w /M n = 1.1 to 1.2; stated that binary blends of L2, D2, L3 and D3 were miscible and formed isomorphous mixed crystals at all compositions, whereas other pairs, with the exception of Ll/Dl, were immiscible Co-crystallization at all compositions
717
Co-crystallization only below 25 wt.% I and above 75 wt.% I II had 98-99 mol% tetrafluoroethylene; single a-transition from DMA No phase separation by phase-contrast microscopy, a sharp single X-ray peak, intermediate in spacing between those of the individual copolymers, and clearly different from their superposition, and only one ferroelectric transition and only one melting point by DSC, indicated co-crystallization within the same lattice when I was 52/48 mol% vinylidene fluoride (VDF)/trifluoroethylene (TFE), II was 65/35 mol% VDF/TFE, or I was 65/35 mol% VDF/TFE, and II was 73/27 mol% VDF/TFE; but two X-ray peaks and two ferroelectric transitions and two melting points when I was 52/48 and II was 73/27 mol% VDF/TFE I and II had a diad syndiotacticity of 54 and 58 mol%, respectively I had 9.1, 14.3 or 17.6 mol% tetrafluoroethylene
605
I had 80 mol% vinylidene fluoride; II had 92 mol% vinylidene fluoride; single melting peak
605
1173 800
1197 980 951
REFERENCES
1. J. Adduci, D. K. Dandge, J. Kops, Am. Chem. Soc., Polym. Prepr., 22 (2), 109 (1981). 2. S. M. Aharoni, Macromolecules, 11, 277 (1978). 3. S. M. Aharoni, J. Macromol. Sci. B: Phys., 22, 813 (1983). 4. T. O. Ahn, H. M. Jeong, Pollimo, 11, 112 (1987). 5. T. O. Ahn, S. Lee, H. M. Jeong, Eur. Polym. J., 25, 95 (1989). 6. T. O. Ahn, S. Lee, H. M. Jeong, K. Cho, Angew. Makromol. Chem., 192, 133 (1991). 7. T. O. Ahn, Y. J. Lee, S. M. Lee, H. M. Jeong, J. Macromol. Sci. B: Phys., 29, 91 (1990). 8. T. O. Ahn, B. V. Nam, S. Lee, H. M. Jeong, Polym. Commun., 32, 415 (1991). 9. A. B. Aivazov, K. G. Mindiyarov, Y. V. Zelenev, Y. G. Oganesov, V. G. Raevskii, Vyosokomol. Soedin. Ser. B., 12, 10 (1970).
10. S. Akiyama, K. Ishikawa, H. Fujiishi, Polymer, 32, 1673 (1991). 11. S. Akiyama, W. J. MacKnight, F. E. Karasz, J. Nambu, Polym. Commun., 28, 236 (1987). 12. S. Akiyama, N. Inaba, R. Kaneko, Chem. High Polym. Japan, 26, 529 (1969). 13. R. G. Alamo, R. H. Glaser, L. Mendelkern, J. Polym. Sci., Polym. Phys. Ed., 26, 2169 (1988). 14. R. Alex, P P. De, S. K. De, Polym. Commun., 31, 366 (1990). 15. P. S. Alexandrovich, F. E. Karasz, W. J. MacKnight, J. Macromol. Sci. B: Phys., 17, 501 (1980). 16. R S. Alexandrovich, F. E. Karasz, W. J. MacKnight, Polymer, 18, 1022 (1977). 17. G. C. Alfonso, A. Turturro, M. Pizzoli, M. Scandola, G. Ceccorulli, J. Polym. Sci., Polym. Phys. Ed., 27, 1195 (1989).
18. D. Allard, R. E. Prud'hoinme, J. Appl. Polym. Sci., 27,559 (1982). 19. A. M. Ambler, J. Polym. Sci., Polym. Chem. Ed., 11, 1505 (1973). 20. B. Ameduri, R. E. Prud'homme, Polymer, 29, 1052 (1988). 21. E. W. Anderson, H. E. Bair, G. E. Johnson, T. K. Kwei, F. J. Padden Jr., D. Williams, in: S. L. Cooper and G. M. Estes, (Eds.), "Multiphase Polymers", Am. Chem. Soc, Adv. Chem. Ser., vol. 176, Washington, DC, 1979. 22. M. Andreis, Z. Veksli, R. Vukovic, New Polym. Mater., 3, 197 (1992). 23. Anonymous, Res. Disci., 229, 182 (1983). 24. M. Antonietti, S. Lang, H. Sillescu, Makromol. Chem., Rapid Commun., 7, 415 (1986). 25. Y. Aoki, Macromolecules, 21, 1277 (1988). 26. Y. Aoki, Macromolecules, 23, 2309 (1990). 27. P. Aptel, I. Cabasso, J. Appl. Polym. Sci., 25, 1969 (1980). 28. C. A. Arnold, D. H. Chen, Y. P Chen, R. A. Waldbauer, M. E. Rogers, J. E. McGrath, High Performance Polym., 2, 83 (1990). 29. A. Asano, K. Takegoshi, K. Hikichi, Polym. J., 24, 555 (1992). 30. R. M. Asimova, P. V. Kozlov, V. A. Kargin, S. M. Vtorygin, Vysokomol. Soedin., 4, 544 (1962). 31. M. Aubin, Y. Bedard, M. F. Morrissette, R. E. Prud'homme, J. Polym. Sci., Polym. Phys. Ed., 21, 233 (1983). 32. M. Aubin, D. Bussieres, D. Duchesne, R. E. Prud'homme, in: K. Sole, (Ed.), "Polymer Compatibility and Incompatibility - Principles and Practices", MMI Press, Harwood 1982. 33. M. Aubin, R. E. Prud'homme, Macromolecules, 13, 365 (1980). 34. M. Aubin, R. E. Prud'homme, J. Polym. Sci., Polym. Phys. Ed., 19, 1245 (1981). 35. M. Aubin, R. E. Prud'homme, Polymer, 22, 1223 (1981). 36. M. Aubin, R. E. Prud'homme, Polym. Eng. Sci., 24, 350 (1984). 37. M. Avella, E. Martuscelli, Polymer, 29, 1731 (1988). 38. M. Baer, J. Poiym. Sci. A, 2, 417 (1964). 39. H. E. Bair, Polym. Eng. Sci., 10, 247 (1970). 40. H. E. Bair, E. W. Anderson, G. E. Johnson, T. K. Kwei, Am. Chem. Soc. Polym. Prepr., 19, 143 (1978). 41. H. E. Bair, D. Williams, T. K. Kwei, F. J. Padden Jr. Org. Coatings Plastics Chem. Prepr., 37, 240 (1977). 42. D. G. H. Ballard, M. G. Rayner, J. Schelten, Polymer, 17, 640 (1976). 43. M. Bank, J. Leffingwell, C. Thies, Macromolecules, 4, 43 (1971). 44. M. Bank, J. Leffingwell, C. Thies, J. Polym. Sci. A, 2,1097 (1972). 45. P J. Barham, M. J. Hill, A. Keller, C. C. A. Rosney, J. Mater. Sci. Lett., 7, 1271 (1988). 46. R. S. Barnum, S. H. Goh, D. R. Paul, J. W. Barlow, J. Appl. Polym. Sci., 26, 3917 (1981). 47. G. M. Bartenev, G. S. Kongarov, Rubber Chem. Technol., 36, 668 (1963).
48. F. S. Bates, G. D. Wignall, Macromolecules, 19, 269 (1968). 49. F. S. Bates, G. D. Wignall, S. B. Dierker, Macromolecules, 19, 1938 (1986). 50. G. Beaucage, R. S. Stein, T. Hashimoto, H. Hasegawa, Macromolecules, 24, 3443 (1991). 51. C. Belaribi, G. Marin, R Monge, Eur. Polym. J., 22, 481 (1986). 52. L. A. Belfiore, Am. Chem. Soc, Polym. Prepr., 29 (1), 17 (1988). 53. R. E. Belke, I. Cabasso, Polymer, 29, 1831 (1988). 54. G. Belorgey, M. Aubin, R. E. Prud'homme, Polymer, 23, 1051 (1982). 55. G. Belorgey, R. E. Prud'homme, J. Polym. Sci., Polym. Phys. Ed., 20, 191 (1982). 56. R. E. Bernstein, C. A. Cruz, D. R. Paul, J. W. Barlow, Macromolecules, 10, 681 (1977). 57. R. E. Bernstein, D. R. Paul, J. W Barlow, Polym. Eng. Sci., 18, 683 (1978). 58. R. E. Bernstein, D. C. Wahrmund, J. W. Barlow, D. R. Paul, Polym. Eng. Sci., 18, 1220 (1978). 59. D. E. Bhagwagar, C. J. Serman, P. C. Painter, M. M. Coleman, Macromolecules, 22, 4654 (1989). 60. C. Bhattacharyya, S. N. Bhattacharyya, B. M. Mendal, J. Indian Chem. Soc, 63, 157 (1986). 61. C. Bhattacharyya, M. Maiti, B. M. Mandai, S. N. Bhattacharyya, Macromolecules, 22, 4062 (1989). 62. A. K. Bhowmick, C. C. Kuo, A. Manzur, A. MacArthur, D. Mclntyre, J. Macromol. Sci., B: Phys., 25, 283 (1986). 63. P. Black, D. J. Worsfold, J. Appl. Polym. Sci., 18, 2307 (1974). 64. T. F. Blahovici, G. R. Brown, L. E. St. Pierre, Polym. Eng. Sci., 22, 1123 (1982). 65. C. Booth, C. J. Pickles, J. Poiym. Sci., Polym. Phys. Ed., 11, 595 (1973). 66. M. Bosma, G. ten Brinke, T. S. Ellis, Macromolecules, 21, 1465 (1988). 67. M. Bosma, E. J. Voremkamp, G. Ten Brinke, G. Challa, Polymer, 29, 1694 (1988). 68. L. G. Bourland, J. Vinyl Technol., 10, 183 (1988). 69. L. G. Bowlard, D. M. Braunstein, J. Appl. Polym. Sci., 32, 6151 (1986). 70. T. N. Bowmer, A. E. Tonelli, Macromolecules, 19, 498 (1986). 71. T N . Bowmer, A. E. Tonelli, J. Vinyl Technol., 8, 98 (1986). 72. G. R. Brannock, J. W. Barlow, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 28, 871 (1990). 73. G. R. Brannock, J. W. Barlow, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 29, 413 (1991). 74. G. R. Brannock, D. R. Paul, Macromolecules, 23, 5240 (1990). 75. D. Braun, J. Herth, G. P. Hellmann, Angew. Makromol. Chem., 171, 53 (1989). 76. D. Braun, D. Yu, P. R. Kohl, X. Gao, L. N. Andradi, E. Manager, G. P. Hellmann, J. Polym. Sci., Polym. Phys. Ed., 30, 577 (1992).
77. H. G. Braun, G. Rehage, Angew. Makromol. Chem., 131, 107 (1985). 78. R. E. S. Bretas, D. G. Baird, Polymer, 33, 5233 (1992). 79. W. Breuers, W. HiId, H. Wolff, W. Burmeister, H. Hoyer, Plast. Katusch., 1, 170 (1954). 80. R. M. Briber, R Khoury, Polymer, 28, 38 (1987). 81. J. Brisson, B. Breault, Macromolecules, 24, 495 (1991). 82. G. L. Brode, J. V. Koleske, J. Macromol. Sci. A: Chem., 6, 109 (1972). 83. N. Y. Buben, V. J. Goldanskii, L. Y. Zlatkevich, V. G. Nikolskii, V. G. Raevskii, Polym. Sci. USSR, 9, 2575 (1967). 84. C. M. Buchannan, S. C. Gedon, A. W. White, M. D. Wood, Macromolecules, 25, 7373 (1992). 85. R. Buchdahl, L. E. Nielson, J. Polym. Sci., 15, 1 (1955). 86. I. Cabasso, Am. Chem. Soc, Org. Coatings Chem. Prepr., 45, 359 (1981). 87. I. Cabasso, J. Jagur-Gordinski, D. Vofsi, in: K. C. (Eds.), "Polymer Alloys, Blends, Blocks, Grafts and IPN's, Klempner, D., and Frisch", Plenum Press, New York, 1977. 88. I. Cabasso, J. Jagur-Gordinski, D. Vofsi, J. Appl. Polym. Sci., 18, 1969 (1974). 89. G. C. Campbell, D. L. Vanderhart, Y Feng, C. C. Han, Macromolecutes, 25, 2107 (1992). 90. X. Cao, M. Jiang, T. Yu, Makromol. Chem., 190, 117 (1989). 91. B. Carmoin, G. Villoutreix, R. Berlot, J. Macromol. Sci., B: Phys., 14, 307 (1977). 92. R. Caspary, Kautschuk Gummi Kunst, 25, 249 (1972). 93. R. Casper, L. Morbitzer, Angew. Makromol. Chem., 58/59, 1 (1977). 94. G. Ceccorulli, M. Pizzoli, M. Scandola, G. C. Alfonso, A. Turturro, Polymer, 30, 1251 (1989). 95. L. C- Cesteros, J. M. Rego, J. J. Vazquez, I. Katime, Polym. Commun., 31, 152 (1990). 96. Z. Chai, F. E. Karasz, Macromolecules, 25, 4716 (1992). 97. Z. Chai, R. Sun, Polymer, 24, 1279 (1983). 98. Z. Chai, R. Sun, F. E. Karasz, Macromolecules, 25, 6113 (1992). 99. Z. Chai, R. Sun, D. J. Walsh, J. S. Higgins, Polymer, 24, 263 (1983). 100. Z. Chai, D. J. Walsh, Makromol. Chem., 184, 1459 (1983). 101. L. A. Chandler, E. A. Collins, J. Appl. Polym. Sci., 13, 1585 (1969). 102. S. S. Chang, Polym. Commun., 29, 33 (1988). 103. C. T. Chen, H. Morawetz, Macromolecules, 22, 159 (1989). 104. F. L. Chen, E. M. Pearce, T. K. Kwei, Polymer, 29, 2285 (1988). 105. Y. P. Chen, D. H. Chen, C. A. Arnole, D. A. Lewis, J. F. Pollard, J. S. Graubeal, T. C. Ward, J. E. McGrath, Am. Chem. Soc, Polym. Prepr., 29 (2), 370 (1988). 106. F. S. Cheng, J. L. Kardos, Am. Chem. Soc, Polym. Prepr., 10, 615 (1969).
107. J. T. Cheng, G. J. Mantell, J. Appl. Polym. Sci., 23, 1733 (1979). 108. Y. Y. Chien, E. M. Pearce, T. K. Kwei, Macromolecules, 21, 1616 (1988). 109. J. S. Chiou, J. W. Barlow, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 25, 1459 (1987). 110. J. S. Chiou, D. R. Paul, J. Appl. Polym. Sci., 33, 2935 (1987). 111. J. S. Chiou, D. R. Paul, J. Appl. Polym. Sci., 42, 279 (1991). 112. J. S. Chiou, D. R. Paul, J. W. Barlow, Polymer, 23, 1543 (1982). 113. J. W. Cho, Polym. Int., 24, 173 (1991). 114. S. Choe, W. J. MacKnight, F. E. Karasz, Am. Chem. Soc, Polym. Mater. Sci. Eng., 59, 702 (1988). 115. S. Choe, D. J. Williams, W. J. MacKnight, F. E. Karasz, Polym. Mater. Sci. Eng., 56, 827 (1987). 116. Y. F. Chong, S. H. Goh, Eur. Polym. J., 27, 501 (1991). 117. Y F. Chong, S. H. Goh, J. Appl. Polym. Sci., 43, 437 (1991). 118. Y. F. Chong, S. H. Goh, J. Appl. Polym. Sci., 44, 633 (1992). 119. Y. F. Chong, S. H. Goh, Polymer, 33, 127 (1992). 120. Y. F. Chong, S. H. Goh, Polymer, 33, 132 (1992). 121. Y F. Chong, S. H. Goh, Polymer, 33, 1289 (1992). 122. Y E Chong, S. Y Lee, S. H. Goh, Eur. Polym. J., 26, 1145 (1990). 123. Y. F. Chong, S. Y. Lee, S. H. Goh, Eur. Polym. J., 26, 1207 (1990). 124. T. S. Chow, Macromolecules, 23, 333 (1990). 125. W. H. Christiansen,D. R. Paul, J. W. Barlow, J. Appl. Polym. Sci., 34, 537 (1987). 126. C. W. Chu, L. C. Dickinson, J. C. W. Chien, Polym. Bull., 19, 265 (1988). 127. E. Y Chu, E. M. Pearce, T. K. Kwei, T. F. Yeh, Y. Okamoto, Makromol. Chem., Rapid Commun., 12, 1 (1991). 128. H. H. Chuah, T. Kyu, T. Helminiak, Polym. Mater. Sci. Eng., 56, 58 (1987). 129. T. S. Chung, P. N. Chen, Sr., J. Appl. Polym. Sci., 40, 1209 (1990). 130. T. S. Chung, R. H. Vora, M. Jaffe, J. Polym. Sci., Polym. Chem. Ed., 29, 1207 (1991). 131. S. Cimmino, F. E. Karasz, W. J. MacKnight, J. Polym. Sci., Polym. Phys. Ed., 30, 49 (1992). 132. S. Cimmino, E. Martuscelli, M. Saviano, C. Silvestre, Polymer, 32, 1461 (1991). 133. S. Cimmino, E. Martuscelli, C. Silvestre, M. Canetti, C. Dedalla, A. Seves, J. Polym. Sci., Polym. Phys. Ed., 27, 1781 (1989). 134. E. P. Cizek, US Pat., 3,383,435 (1968) to General Electric Co. 135. J. N. Clark, J. S. Higgins, C. K. Kim, D. R. Paul, Polymer, 33, 3137 (1992). 136. M. B. Clark Jr., C. A. Burkhardt, J. A. Gardella, Jr., Macromolecules, 22, 4495 (1989). 137. S. D. Clas, A. Eisenberg, J. Polym. Sci., Polym. Phys. Ed., 22, 1529 (1984).
138. J. B. Class, S. G. Chu, J. Appl. Polym. ScL, 30,805 (1985). 139. J. B. Class, S. G. Chu, J. Appl. Polym. Sd., 30,825 (1985). 140. J. B. Class, S. G. Chu, J. Appl. Polym. Sd., 30, 815 (1985). 141. M. M. Coleman, J. Hu, Y. Park, P. C. Painter, Macromolecules, 29, 1659 (1988). 142. M. M. Coleman, J. Y. Lee, C. J. Serman, Z. Wang, P. C. Painter, Polymer, 30, 1298 (1989). 143. M. M. Coleman, A. M. Lichkus, P. C. Painter, Macromolecules, 22, 586 (1989). 144. M. M. Coleman, C. J. Serman, P. C. Painter, Macromolecules, 20, 226 (1987). 145. M. M. Coleman, P. J. Shrovanek, P. C. Painter, Macromolecules, 21, 59 (1988). 146. M. M. Coleman, Y. Xu, P. C. Painter, Am. Chem. Soc, Polym. Mater. Sci. Eng., 64, 28 (1991). 147. M. M. Coleman, H. Zhang, Y. Xu, P. C. Painter, Am. Chem. Soc, Polym. Prepr., 32 (2), 44 (1991). 148. G. Cong, Y. Huang, W. J. MacKnight, F. E. Karasz, Macromolecules, 19, 2675 (1986). 149. P. J. Corish, Rubber Chem. TechnoL, 40, 324 (1967). 150. P. Cousin, R. E. Prud'homme, Eur. Polym. J., 18,957 (1982). 151. P. Cousin, R. E. Prud'homme, in: D. R. Paul, L. H. Sperling, (Eds.), "Multicomponent Polymer Materials", Am. Chem. Soc, Adv. Chem. Ser., vol. 211, Washington, DC, 1986. 152. J. M. G. Cowie, E. M. Elexpuru, Eur. Polym. J., 28, 623 (1992). 153. J. M. G. Cowie, E. M. Elexpuru, J. H. Harris, I. J. McEwen, Makromol. Chem., Rapid Commun., 10, 691 (1989). 154. J. M. G. Cowie, E. M. Elexpuru, I. J. McEwen, J. Polym. Sci., Polym. Phys. Ed., 29, 407 (1991). 155. J. M. G. Cowie, E. M. Elexpuru, I. J. McEwen, Polymer, 33, 1993 (1992). 156. J. M. G. Cowie, R. Ferguson, M. D. Fernandez, M. J. Fernandez, I. J. McEwen, Macromolecules, 25, 3170 (1992). 157. J. M. G. Cowie, R. Ferguson, I. J. McEwen, Polym. Commun., 32, 293 (1991). 158. J. M. G. Cowie, M. D. Fernandez, M. J. Fernandez, I. J. McEwen, Eur. Polym. J., 28, 145 (1992). 159. J. M. G. Cowie, M. D. Fernandez, M. J. Fernandez, I. J. McEwen, Polymer, 33, 2744 (1992). 160. J. M. G. Cowie, M. T. Garay, D. Lath, I. J. McEwen, Brit. Polym. J., 21, 81 (1989). 161. J. M. G. Cowie, J. H. Harris, Polymer, 33, 4592 (1992). 162. J. M. G. Cowie, J. H. Harris, I. J. McEwen, Macromolecules, 25, 5287 (1992). 163. J. M. G. Cowie, D. Lath, Polym. Commun., 28,300 (1987). 164. J. M. G. Cowie, D. Lath, Makromol. Chem., Macromol. Symp., 16, 103 (1988). 165. J. M. G. Cowie, G. Li, R. Ferguson, I. J. McEwen, J. Polym. Sci., Polym. Phys. Ed, 30, 1351 (1992). 166. J. M. G. Cowie, I. J. McEwen, L. Nadvornik, Macromolecules, 23, 5106 (1990). 167. J. M. G. Cowie, S. Miachon, Macromolecules, 25, 3295 (1992).
168. J. M. G. Cowie, V. M. C. Reid, I. J. McEwen, Polymer, 31, 905 (1990). 169. J. M. G. Cowie, V. M. C. Reid, I. J. McEwen, Polymer, 31, 486 (1990). 170. J. M. G. Cowie, A. A. N. Reilly, Polymer, 33, 4814 (1992). 171. J. M. G. Cowie, S. Saeki, Polym. Bull., 6, 75 (1981). 172. G. Crevecoeur, G. Groeninckx, Macromolecules, 24, 1190 (1991). 173. G. Crone, A. Natansohn, Polym. Bull., 27, 73 (1991). 174. C. A. Cruz, J. W. Barlow, D. R. Paul, Macromoiecules, 12, 726 (1979). 175. C. A. Cruz, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci., 25, 1549 (1980). 176. C. A. Cruz, D. R. Paul, J. W. Barlow, J. Appl. Poiym. ScI, 24, 2101 (1979). 177. C. A. Cruz, D. R. Paul, J. W. Barlow, J. Appl. Polym. Sci., 23, 589 (1979). 178. E. Cuddkhy, J. Moacanin, A. Rembaum, J. Appl. Polym. Sci., 9, 1385 (1965). 179. S. Das, F. Rodriguez, Am. Chem. Soc, Polym. Prepr., 28 (2), 140 (1987). 180. P. B. Dave, N. J. Ashar, R. A. Gross, S. P. McCarthy, Am. Chem. Soc, Polym. Prepr, 31 (1), 442 (1990). 181. D. D. Davis, G. H. Taylor, T. K. Kwei, J. Appl. Polym. Sci., 26, 2001 (1981). 182. H. K. de Decker, D. J. Sabatine, Rubber Age, 99 (4), 73 (1967). 183. H. de Jager, G. ten Brinke, Macromolecules, 24, 3454 (1991). 184. M. T. DeMeuse, E. C. Chenevey, Z. H. Ophir, J. J. Rafalko, M. I. Haider, Am. Chem. Soc, Polym. Mater. Sci. Eng., 59, 1714 (1988). 185. M. T. DeMeuse, M. Jaffe, Am. Chem. Soc, Polym. Prepr, 30 (2), 540 (1989). 186. B. D. Dean, J. Appl. Polym. Sci., 30, 4193 (1985). 187. B. D. Dean, J. Appl. Polym. Sci., 33, 2259 (1987). 188. B. D. Dean, J. Appl. Polym. Sci., 34, 887 (1987). 189. B. D. Dean, J. E. Harris, J. Appl. Polym. Sci, 46, 745 (1992). 190. J. Y. Decroix, A. Piloz, Rev. Caoutsch. Plast, 54, 91 (1977). 191. G. Defieuw, G. Groeninckx, H. Reynaers, Polymer, 30,595 (1989). 192. G. Defieuw, G. Groeninckx, H. Reynaers, Polymer, 30, 2158 (1989). 193. G. Defieuw, G. Groeninckx, H. Reynaers, Polymer, 30, 2164 (1989). 194. G. DiPaola-Baranyi, R Degre, Macromolecules, 14, 1456 (1981). 195. L. C. Dickinson, H. Yang, C. W. Chu, R. S. Stein, J. C. W. Chien, Macromolecules, 20, 1757 (1987). 196. D. Dimitrova, A. Aivazov, Y. Zelenev, God. Vissh. Khim. Tekhnol. Inst, Burgas. BuIg, 8, 57 (1971) [Chem. Abstr, 79, 127188d (1973)]. 197. L. Dinililuc, C. DeKesel, C. David, Eur. Polym. J, 28,1365 (1992).
198.
S. Djadoun, Polym. Bull., 9, 313 (1983).
231.
(Eds.), "Photophysics of Polymers", Am. Chem. Soc,
199. A. Dobry, F. Boyer-Kawenoki, J. Polym. ScL, 2,90 (1974). 200. 201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220.
221. 222. 223. 224. 225. 226. 227. 228. 229. 230.
C. P. Doube, D. J. Walsh, Polymer, 20, 1115 (1979). E. Drioli, A. Apicella, H. B. Hopfenberg, E. Martuscelli, L. Nicolais, Chim. Ind. (Milan), 60, 975 (1978). X. Drujon, G. Reiss, H. K. Hall, Jr., New Polym. Mater., 3, 283 (1992). D. J. Dunn, S. Krause, J. Polym. Sci., Polym. Lett. Ed., 12, 591 (1974). M. Ebert, R. W. Garbella, J. H. Wendroff, Makromol. Chem., Rapid Commun., 7, 65 (1986). S. L. Edie, H. Marand, Am. Chem. Soc, Polym. Prepr., 32 (3), 329 (1991). S. H. Egboh, Am. Chem. Soc, Polym. Mater. Sci. Eng., 49, 45 (1983). J. I. Eguiazabal, E. Calahorra, M. Cortazar, G. M. Guzman, Makromol. Chem., 187, 2439 (1986). J. I. Eguiazabal, J. J. Iruin, M. Cortazar, J. Appl. Polym. Sci., 32, 5945 (1986). J. I. Eguiazabal, J. J. Iruin, M. Cortazar, G. M. Guzman, Makromol. Chem., 185, 1761 (1984). A. Eisenberg, P. Smith, Z. L. Zhou, Polym. Eng. Sci., 22, 1117 (1982). T. S. Ellis, Polymer, 29, 2015 (1988). T. S. Ellis, Macromolecules, 22, 742 (1989). T. S. Ellis, Polymer, 31, 1058 (1990). T. S. Ellis, Polym. Eng. Sci., 30, 998 (1990). T. S. Ellis, Polymer, 33, 1469 (1992). C. Elmqvist, S. E. Svanson, Eur. Polym. J., 11,789 (1975). A. D. English, P. Smith, D. E. Avelson, Polymer, 26, 1523 (1985). R. Erro, M. Gaztelumendi, J. Nazabal, New Polym. Mater., 3, 87 (1992). A. Escala, E. Balitzer, R. S. Stein, Am. Chem. Soc, Polym. Prepr., 19 (1), 152 (1978). A. Escala, R. S. Stein, in: S. L. Cooper, G. M. Estes, (Eds.), "Multiphase Polymers", Am. Chem. Soc, Adv. Chem. Sen, vol. 176, Washington, DC, 1979. S. R. Fahrenhlotz, T. K. Kwei, Macromolecules, 14, 1076 (1981). D. Feldman, M. Rusu, Eur. Polym. J., 10, 41 (1974). A. C. Fernandes, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci., 29, 1971 (1984). A. C. Fernandes, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci., 32, 5481 (1986). A. C. Fernandes, J. W. Barlow, D. R. Paul, Polymer, 27, 1788 (1986). A. C. Femandes, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci., 32, 6073 (1986). A. C. Fernandes, J. W. Barlow, D. R. Paul, Polymer, 27, 1799 (1986). A. C. Fernandes, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci., 32, 5357 (1986). M. E. Fowler, J. W. Barlow, D. R. Paul, Polymer, 28, 1177 (1987). M. E. Fowler, D. R. Paul, L. A. Cohen, W. T. Freed, J. Appl. Polym. Sci., 37, 513 (1989).
C. W. Frank, W. Zin, in: C. E. Hoyle, J. M. Torkelson,
232. 233.
234. 235. 236. 237. 238.
239.
240. 241. 242. 243. 244. 245. 246. 247. 248. 249.
250. 251. 252.
253. 254. 255. 256. 257. 258. 259. 260.
Symp. Sen, vol. 358, Washington, DC, 1987. J. R. Fried, G. A. Hanna, Polym. Eng. Sci., 22, 705 (1982). J. R. Fried, G. A. Hanna, H. Kalkanoglu, in: K. Sole, (Ed.), "Polymer Compatibility and Incompatibility - Principles and Practices", MMI Press, Harwood, 1982. J. R. Fried, F. E. Karasz, W. J. MacKnight, Macromolecules, 11, 150 (1978). J. R. Fried, T. Lorenz, A. Ramdas, Polym. Eng. Sci., 25, 104 (1985). F. Friese, Plaste Kautsch., 15, 646 (1968). K. Fujimoto, N. Yoshimiya, Nippon Gomu Kyokaishi, 38, 284 (1965); Rubber Chem. Technol., 41, 669 (1968). K. Fujimoto, N. Yoshimura, Nippon Gomu Kyokaishi, 39, 919 (1966); Rubber Chem. Technol., 41, 1109 (1968). K. Fujioka, N. Noethiger, C. L. Beatty, Y. Baba, A. Kagemoto, in: C. D. Han (Ed.), "Polymer Blends and Composites in Multiphase Systems", Am. Chem. Soc, Adv. Chem. Ser., vol. 206, Washington, DC, 1984. T. Fukai, J. C. Yang, T. Kyu, S. Z. D. Cheng, S. K. Lee, S. L. Hsu, F. W. Harris, Polymer, 33, 3621 (1992). M. Galin, Makromol. Chem., Rapid Commun., 5, 119 (1984). M. Galin, Makromol. Chem., 188, 1391 (1987). M. Galin, Makromol. Chem., Rapid Commun., 8, 411 (1987). M. Galin, L. Maslinko, Eur. Polym. J., 23, 923 (1987). M. E. Galvin, Macromolecules, 24, 6354 (1991). D. Gracia, J. Polym. Sci., Polym. Phys. Ed., 24, 1577 (1986). A. Garton, S. Wang, R. A. Weiss, J. Polym. Sci., Polym. Phys. Ed., 26, 1545 (1988). M. Gaztelumendi, I. Mondragon, J. Nazabal, Makromol. Chem., Macromol. Symp., 20/21, 269 (1988). B. D. Gesner, in: N. M. Bikales, (Ed.), "Encyclopedia of Polymer Science and Technology", Wiley-Interscience, New York, vol. 10, 694 (1969). A. V. Gevorkyan, M. E. Ovsepyan, A. S. Safarov, Arm. Khim. Zh., 31, 107 (1978). Y. K. Godovskii, N. P. Bessonova, Vysokomol. Soedin. A, 21, 2293 (1979); Polym. Sci. USSR, 21, 2531 (1979). Y. K. Godovskii, Z. F. Zharikova, Y. M. Malinskii, Vysokomol. Soedin. A, 23, 133 (1981); Polym. Sci. USSR, 23, 149 (1981). S. H. Goh, Polym. Bull., 17, 221 (1987). S. H. Goh, W. W. Y. Lau, C. S. Lee, Polym. Commun., 32, 202 (1991). S. H. Goh, W. W. Y Lau, C. S. Lee, Polym. Bull., 26, 319 (1991). S. H. Goh, W. W. Y. Lau, C. S. Lee, Polym. Bull., 29, 524 (1992). S. H. Goh, S. Y. Lee, Eur. Polym. J., 23, 315 (1987). S. H. Goh, S. Y. Lee, Thermochim. Acta, 123, 3 (1988). S. H. Goh, S. Y. Lee, Eur. Polym. J., 24, 923 (1988). S. H. Goh, S. Y. Lee, Eur. Polym. J., 25, 571 (1989).
261. S. H. Goh, S. Y. Lee, Eur. Polym. J., 25, 997 (1989). 262. S. H. Goh, S. Y. Lee, J. Appl. Polym. ScL, 41, 1391 (1990). 263. S. H. Goh, S. Y Lee, Eur. Polym. J., 26, 715 (1990). 264. S. H. Goh, S. Y Lee, Polym. Bull., 23, 643 (1990). 265. S. H. Goh, S. Y. Lee, Makromol. Chem., 191, 3081 (1990). 266. S. H. Goh, S. Y. Lee, Polym. Commun., 31, 463 (1990). 267. S. H. Goh, S, Y. Lee, Y. F. Chong, Polym. Bull., 25, 257 (1991). 268. S. H. Goh, S. Y. Lee, Y F. Chong, M. K. Neo, C. L. Leong, Macromolecules, 24, 806 (1991). 269. S. H. Goh, S. Y Lee, C. L. Leong, J. Appl. Polym. ScL, 44, 199 (1992). 270. S. H. Goh, S. Y. Lee, S. M. Low, Eur. Polym. J., 28, 661 (1992). 271. S. H. Goh, S. Y Lee, M. K. Neo, J. Appl. Polym. ScL, 40, 2243 (1990). 272. S. H. Goh, S. Y. Lee, K. S. Siow, J. Appl. Polym. ScL, 31, 2055 (1986). 273. S. H. Goh, S. Y. Lee, K. S. Siow, M. K. Neo, Polymer, 31, 1065 (1990). 274. S. H. Goh, S. Y. Lee, K. S. Siow, C. L. Pua, J. Appl. Polym. ScL, 33, 353 (1987). 275. S. H. Goh, L. S. Lim, Eur. Polym. J., 26, 711 (1990). 276. S. H. Goh, T. T. Nguyen, K. S. Siow, J. Appl. Polym. ScL, 29, 1463 (1984). 277. S. H. Goh, D. R. Paul, J. W. Barlow, Polym. Eng. ScL, 22, 34 (1982). 278. S. H. Goh, D. R. Paul, J. W. Barlow, J. Appl. Polym. ScL, 27, 1091 (1982). 279. S. H. Goh, K. S. Siow, J. Appl. Polym. ScL, 32, 3407 (1986). 280. S. H. Goh, K. S. Siow, Thermochim. Acta, 105,191 (1986). 281. S. H. Goh, K. S. Siow, J. Appl. Polym. ScL, 33, 1849 (1987). 282. S. H. Goh, K. S. Siow, Polym. Bull., 17, 453 (1988). 283. S. H. Goh, K. S. Siow, Polym. Bull., 20, 393 (1988). 284. S. H. Goh, K. S. Siow, Poiym. Bull., 23, 205 (1990). 285. S. H. Goh, K. S. Siow, S. Y Lee, Eur. Polym. J., 27, 921 (1991). 286. S. H. Goh, K. S. Siow, K. S., S. Y. Lee, Eur. Polym. J., 28, 657 (1992). 287. S. H. Goh, K. S. Siow, Y. H. Leong, Eur. Polym. J., 21,915 (1985). 288. S. H. Goh, K. S. Siow, T. T. Nguyen, A. Nam, Eur. Polym. J., 20, 65 (1984). 289. S. H. Goh, K. S. Siow, K. S. Yap, J. Appl. Polym. ScL, 29, 99 (1984). 290. S. H. Goh, K. S. Siow, K. S. Yap, Thermochim. Acta, 102, 281 (1986). 291. A. Goiovoy, M. F. Cheung, Polym. Eng. ScL, 29,85 (1989). 292. P. Grece, E. Martuscelli, Polymer, 30, 1475 (1989). 293. R. A. Grinsted, J. L. Koenig, J. Polym. ScL, Polym. Phys. Ed., 28, 177 (1990). 294. J. Grobelny, D. M. Rice, F. E. Karasz, W. J. MacKnight, Macromolecules, 23, 2139 (1990).
295. G. Groeninckx, M. Vandermaliene, G. Defieuw, H. Reynaers, H., Am. Chem. Soc, Polym. Prepr., 29 (1), 438 (1988). 296. G. Grose, K. Friese, quoted in K. Friese, Plaste Kaut., 12, 90 (1965). 297. G. Guerra, S. Choe, D. J. Williams, F. E. Karasz, W. J. MacKnight, Macromolecules, 21, 231 (1988). 298. G. Guerra, F. E. Karasz, W. J. MacKnight, Macromolecules, 19, 1935 (1986). 299. G. Guerra, D. J. Williams, F. E. Karasz, W. J. MacKnight, J. Polym. ScL, Polym. Phys. Ed., 26, 301 (1988). 300. Q. Guo, Makromol. Chem., Rapid Commun., 11, 279 (1990). 301. Q. Guo, Makromol. Chem., 191, 2639 (1990). 302. Q. Guo, Polym. Commun., 31, 217 (1990). 303. Q. Guo, Eur. Polym. J., 26, 1329 (1990). 304. Q. Guo, Eur. Polym. J., 26, 1333 (1990). 305. Q. Guo, Polym. Commun., 32, 62 (1991). 306. Q. Guo, Eur. Polym. J., 28, 1395 (1992). 307. Q. Guo, Eur. Polym. J., 28, 1049 (1992). 308. Q. Guo, J. Huang, T. Chen, Polym. Bull., 20, 517 (1988). 309. Q. Guo, J. Huang, T. Chen, Polym. Commun., 31, 115 (1990). 310. Q. Guo, J. Huang, T. Chen, Z. Feng, Polym. Commun., 31, 240 (1990). 311. Q. Guo, J. Huang, T. Chen, H. Zhang, Y. Yang, C. Hou, Z. Feng, Polym. Eng. ScL, 30, 44 (1990). 312. Q. Guo, J. Huang, B. Li, T. Chen, H. Zhang, Z. Feng, Polymer, 32, 58 (1991). 313. Q. Guo, X. Peng, Z. Wang, Polymer, 32, 53 (1991). 314. Q. Guo, H. Xu, D. Ma, S. Wang, Eur. Polym. J., 26, 67 (1990). 315. Q. Guo, M. Yu, Z. Feng, Polymer, 33, 893 (1992). 316. W. Guo, J. S. Higgins, Polymer, 31, 699 (1990). 317. W. Guo, J. S. Higgins, Polymer, 32, 2115 (1991). 318. C. S. Ha, W. J. Cho, R. J. Roe, Pollimo, 14, 322 (1990). 319. C. S. Ha, R. E. Prud'homme, W. J. Cho, Pollimo, 14, 506 (1990). 320. B. R. Hahn, J. H. Wendroff, Polymer, 26, 1619 (1985). 321. J. L. Halary, M. H. Leviet, T. K. Kwei, E. M. Pearce, Macromolecules, 24, 5939 (1991). 322. J. L. Halary, J. M. Ubrich, L. Monnerie, H. Yang, R. S. Stein, Polym. Commun., 26, 73 (1985). 323. J. L. Halary, J. M. Ubrich, J. M. Nunzi, L. Monnerie, R. S. Stein, Polymer, 25, 956 (1984). 324. N. Hamazaki, J. W. Cho, S. Miyata, Polymer J., 23, 333 (1991). 325. C. F. Hammer, Macromolecules, 4, 69 (1971). 326. C. C. Han, M. Okada, Y. Muroga, B. J. Bauer, Q. TranCong, Polym. Eng. ScL, 26, 1208 (1986). 327. C. C. Han, H. H. Yang, J. Appl. Polym. ScL, 33, 1199 (1987). 328. C. D. Han, H. S. Chung, J. K. Kim, Polymer, 33, 546 (1992). 329. M. Hara, G. J. Parker, Polymer, 33, 4650 (1992).
330. D. Hardt, Brit. Polym. J., 1, 225 (1969). 331. D. Hardt, C. Sliding, C. Linder, L. Morbitzer, Angew. Chem. Int. Ed., 21, 174(1982). 332. J. E. Harris, S. H. Goh, D. R. Paul, J. W. Barlow, J. Appl. Polym. Sci., 27, 839 (1982). 333. J. E. Harris, L. M. Robeson, J. Polym. Sci., Polym. Phys. Ed., 25, 311 (1987). 334. J. E. Harris, L. M. Robeson, J. Appl. Polym. Sci., 35, 1877 (1988). 335. M. Hasegawa, S. Sakurai, M. Takenaka, T. Hashimoto, C. C Han, Macromolecules, 24, 1813 (1991). 336. M. Hasegawa, S. Akiyama, Polymer J., 20, 471 (1988). 337. P. M. Hendrichs, J. Tribone, D. J. Massa, J. M. Hewitts, Macromolecules, 21, 1282 (1988). 338. M. Hendrioulle-Granville, K. Kyuda, R. Jerome, Ph. Teyssie, F. C. de Schryver, Macromolecules, 23, 1202 (1990). 339. J. J. Hickman, R. M. Ikeda, J. Polym. Sci., Polym. Phys. Ed., 11, 1713 (1973). 340. S. Himuro, N. Sakamoto, S. Arichi, Polym. J., 24, 1371 (1992). 341. H. Horiuchi, S. Irie, T. Nose, Polymer, 32, 1970 (1991). 342. D. J. Hourston, I. D. Hughes, Polymer, 18, 1175 (1977). 343. D. J. Hourston, I. D. Hughes, J. Appl. Polym. Sci., 21, 3099 (1977). 344. D. J. Hourston, 1. D. Hughes, J. Appl. Polym. Sci., 26, 3467 (1981). 345. D. T. Hsieh, D. G. Peiffer, Polymer, 33, 1210 (1992). 346. K. H. Hsieh, L. M. Chou, J. Appl. Polym. Sci., 38, 645 (1989). 347. J. Hu, Y. Park, P. C. Painter, M. M. Coleman, Am. Chem. Soc, Polym. Prepr., 29 (1), 321 (1988). 348. S. R. Hu, T. Kyu, R. S. Stein, J. Polym. Sci., Polym. Phys. Ed., 25, 71 (1987). 349. J. Huang, Q. Guo, Makromol. Chem., Rapid Commun., 11, 613 (1990). 350. J. C. Huarng, K. Min, J. L. White, Polym. Eng. Sci., 28, 1085 (1988). 351. J. C. Huarng, K. Min, J. L. White, Polym. Eng. Sci., 28, 1590 (1988). 352. D. S. Hubbell, S. L. Copper, J. Appl. Polym. Sci., 21, 303 (1977). 353. D. S. Hubbell, S. L. Copper, in: S. L. Cooper, G. M. Estes, (Eds.), "Multiphase Polymers", Am. Chem. Soc, Adv. Chem. Ser., vol. 176, Washington, DC, 1979. 354. M. B. Huglin, J. M. Rego, Polymer, 31, 1269 (1990). 355. W. Huh, F. E. Karasz, Polym. Mater. Sci. Eng., 60, 792 (1989). 356. W. Huh, F. E. Karasz, Macromolecules, 25, 1057 (1992). 357. K. Ikawa, S. Hosoda, Polym. Networks Blends, 1, 103 (1991). 358. K. Ikawa, S. Hosoda, Polym. J., 22, 643 (1990). 359. K. H. Iller, W. Heckmann, J. Hambrecht, Colloid Polym. Sci., 262, 557 (1984). 360. K. H. Illers, E. Koehnlein, Makromol. Chem., 187, 2725 (1986).
361. R. L. Imken, D. R. Paul, J. W. Barlow, Polym. Eng. Sci., 16, 593 (1976). 362. T. Inoue, F. Shomura, T. Ougizawa, K. Miyasaka, Rubber Chem. Technol., 58, 873 (1985). 363. M. Iriarte, E. Espi, A. Etxeberria, M. Valero, M. J. Fernandez-Berridi, Macromolecules, 24, 5546 (1991). 364. M. Iriarte, J. I. Iribarreu, A. Etxeberria, J. J. Iruin, Polymer, 30, 1160(1989). 365. M. Irie, R. Iga, Makromol. Chem., Rapid Commun., 7,751 (1986). 366. J. J. Iruin, J. I. Eguiazabal, G. M. Guzman, Eur. Polym. J., 25, 1169(1989). 367. K. Ishikawa, S. Kawahara, S. Akiyama, Polym. Networks Blends, 1, 1 (1991). 368. H. Jager, E. J. Vorenkamp, G. Challa, Polym. Commun., 24, 290 (1983). 369. V. Janarthanan, F. E. Karasz, W. J. MacKnight, Polymer, 33, 3388 (1992). 370. V. Janarthanan, G. Thyagarajan, Polymer, 33, 3593 (1992). 371. J. Janicke, A. Wlochowicz, Angew. Makromol. Chem., 168, 9 (1989). 372. J. Grobelny, D. M. Rice, E E. Karasz, W. J. MacKnight, Polym. Commun., 31, 86 (1990). 373. D. Jaroszynska, R. Gaczynski, Plaste Kautsch., 23, 581 (1976). 374. S. H. Jeon, T. Ree, J. Polym. Sci., Polym. Chem. Ed., 26, 1419 (1988). 375. K. Jeremic, F. E. Karasz, W. J. MacKnight, New Polym. Mater., 3, 163 (1992). 376. R. J. Jerome, Albert, Ph. Teyssie, Am. Chem. Soc, Polym. Prepr., 27 (1), 72 (1986). 377. M. Jiang, X. Cao, W. Chen, T. Yu, Polym. Bull., 21, 599 (1989). 378. M. Jiang, X. Cao, T. Yu, Polymer, 27, 1923 (1986). 379. B. S. Jin, S. C. Kim, D. S. Lee, Polym. J., 24, 1189 (1992). 380. J. L Jin, E. J. Choi, K. Y Lee, Polym. J., 18, 99 (1986). 381. Y. Jin, R. Y. M. Huang, J. Appl. Polym. Sci., 36, 1799 (1988). 382. W. H. Jo, C. A. Cruz, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 27, 1057 (1989). 383. W. H. Jo, H. G. Kim, J. Polym. Sci., Polym. Phys. Ed., 29, 1579(1991). 384. W. H. Jo, Y. K. Kwon, I. H. Kwon, Macromolecules, 24, 4708 (1991). 385. W. H. Jo, S. C. Lee, M. S. Lee, Polym. Bull, 21, 183 (1989). 386. W. H. Jo, S. J. Park, I. H. Kwon, Polym. Int., 29, 173 (1992). 387. W. H. Jo, H. Yim, I. H. Kwon, T. W. Son, Polym. J., 24, 519 (1992). 388. W. H. Jo, J. T. Yoon, S. C. Lee, Polym. J., 23, 1243 (1991). 389. E. John, T. Ree, J. Polym. Sci., Polym. Chem. Ed., 28, 385 (1990). 390. A. H. Jorgenson, L. A. Chandler, E. A. Collins, Rubber Chem. Technol., 46, 1087 (1973). 391. J. H. Jou, P. T. Huang, Polym. J., 22, 909 (1990).
392. R. H. Jung, D. J. Stein, Prepr. IUPAC Symp. Aberdeen, 411 (1973). 393. J. J. Jutier, E. Lemieaux, R. E. Prud'homme, J. Polym. Sci., Polym. Phys. Ed., 26, 1313 (1988). 394. S. N. Kaklas, D. D. Sotiropoulou, J. K. Kallitsis, N. K. Kalfoglou, Polymer, 32, 66 (1991). 395. N. K. Kalfoglou, Angew. Makromol. Chem., 118, 19 (1983). 396. N. K. Kalfoglou, A. G. Margaritis, Angew. Makromol. Chem., 125, 135 (1984). 397. N. K. Kalfoglou, D. D. Sotiropoulu, A. G. Margartis, Eur. Polym. J., 24, 389 (1988). 398. L. E. Kalinina, V. I. Alekseenko, S. S. Voyutskii, Kolloid. Zh., 18, 691 (1956); Colloid J. USSR, 18, 689 (1956). 399. L. E. Kalinina, V. L Alekseenko, S. S. Voyutskii, Kolloid. Zh., 18, 180 (1956); Colloid J. USSR, 18, 171 (1956). 400. J. K. Kallistsis, N. K. Kalfoglou, Angew. Makromol. Chem., 148, 103 (1987). 401. J. K. Kallistsis, N. K. Kalfoglou, J. Appl. Polym. Sci., 37, 453 (1989). 402. R. P Kambour, J. T. Bendler, R. C. Bopp, Macromolecules, 16, 753 (1983). 403. R. P. Kambour, R E. Gundlach, I. C. W. Wang, D. M. White, G. W. Yeager, Polym. Commun., 29, 170 (1988). 404. H. W. Kammer, J. Kressler, B. Kressler, D. Scheller, H. Kroschwitz, G. Schmidt-Naake, Acta Polym., 40, 75 (1989). 405. H. W. Kammer, J. Piglowski, Acta Polym., 40, 363 (1989). 406. P. Kanakalatha, K. Vijayan, M. K. Sridhar, A. K. Singh, Polymer, 24, 621 (1983). 407. D. P Kang, W. J. Cho, Pollimo, 13, 638 (1989). 408. D. P Kang, C. S. Ha, W. J. Cho, J. Polym. Sci., Polym. Chem. Ed., 27, 1401 (1989). 409. D. P Kang, C. S. Ha, R. E. Prud'homme, W. J. Cho, Pollimo, 12, 634 (1988). 410. H. S. Kang, W. J. MacKnight, F. E. Karasz, Am. Chem. Soc, Polym. Prepr., 28 (2), 134 (1987). 411. Y. Kano, S. Akiyama, Polym. Bull, 29, 97 (1992). 412. F. E. Karasz, W. J. MacKnight, J. Appl. Polym. Sci., 32, 4423 (1986). 413. F. E. Karasz, W. J. MacKnight, J. J. Tkacik, Am. Chem. Soc, Polym Prepr., 15, 415 (1974). 414. R. J. Karcha,R. S. Porter, J. Polym. Sci., Polym. Phys. Ed., 27, 2153 (1989). 415. R. J. Karcha, R. S. Porter, Polymer, 33, 4866 (1992). 416. V. A. Kargin, J. Polym. Sci., Part C, 4, 1601 (1963). 417. I. A. Katime, M. S. Anasagasti, M. C. Peleteiro, R. Valenciano, Eur. Polym. J., 23, 907 (1987). 418. J. D. Katsaros, M. F. Malone, H. H. Winter, Polym. Bull., 16, 83 (1986). 419. S, Kawahara, S. Akiyama, Polym. J., 22, 361 (1990). 420. S. Kawahara, S. Akiyama, K. Ueda, Polym. J., 21, 221 (1989). 421. T. Kawai, Kogyo Kagaka Zasshi, 59, 779 (1956). 422. J. F. Kenney, J. Polym. Sci., Chem. Ed., 14, 123 (1976).
423. J. F. Kenney, in: L. H. Sperling (Ed.), "Recent Advances in Polymer Blends, Grafts, and Blocks", Plenum Press, New York, 1974, p. 117. 424. J. F. Kenny, Org. Coatings Plastics Chem. Prepr. Am. Chem. Soc, 37, 615 (1977). 425. R. J. Kern, J. Polym. Sci., 33, 524 (1958). 426. H. Keskkula, D. R. Paul, J. Appl. Polym. Sci., 31, 1189 (1986). 427. C. K. Kim, D. R. Paul, Macromolecules, 25, 3097 (1992). 428. C. K. Kim, D. R. Paul, Polymer, 33, 1630 (1992). 429. C. K. Kim, D. R. Paul, Polymer, 33, 2089 (1992). 430. C. K. Kim, D. R. Paul, Polymer, 33, 4929 (1992). 431. C. K. Kim, D. R. Paul, Polymer, 33, 4941 (1992). 432. H. I. Kim, E. M. Pearce, T. K. Kwei, Macromolecules, 22, 3498 (1989). 433. H. L Kim, E. M. Pearce, T. K. Kwei, Macromolecules, 22, 3374 (1989). 434. H. I. Kim, J. R. Pennachia, T. K. Kwei, E. M. Pearce, E. M., Am. Chem. Soc, Polym. Prepr., 32 (3), 343 (1991). 435. J. H. Kim, J. W. Barlow, D. R. Paul, Polym. Eng. Sci., 29, 581 (1989). 436. J. H. Kim, J. W. Barlow, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 27, 223 (1989). 437. J. H. Kim, J. W. Barlow, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 27, 2211 (1989). 438. M. Kimura, R. S. Porter, Org. Coatings, Plastics Chem. Prepr. Am. Chem. Soc, 45, 84 (1981). 439. M. Kimura, R. S. Porter, G. Salee, J. Polym. Sci., Polym. Phys. Ed., 21, 367 (1983). 440. L. A. Kleintjens, unpublished results, quoted in Ref. K58. 441. S. Klotz, R. H. Schuster, H. J. Cantow, Makromol. Chem., 187, 1491 (1986). 442. S. Kobayashi, M. Kaku, T. Saegusa, Macromolecules, 21, 334 (1988). 443. S. Kobayashi, S. Tasaka, S. Miyata, Kobunshi Ronbunshu, 44, 695 (1987). 444. P. R. Kohl, A. M. Seifert, G. P. Hellmann, J. Polym. Sci., Polym. Phys. Ed., 28, 1309 (1990). 445. J. V. Koleske, in: D. R. Paul, S. Newman (Eds.), "Polymer Blends; (Vol. 2)", Academic Press, New York, Chap. 22 (1978). 446. J. V Koteske, R. D. Lundberg, X Polym. Sci. A-2, 7, 795 (1969). 447. F. Kollinsky, G. Markert, Makromol. Chem., 121, 117 (1969). 448. F. Kollinsky, G. Markert, in: N. A. J. Platzer (Ed.), "Multicomponent Polymer Systems", Am. Chem. Soc, Adv. Chem. Ser., vol. 99, Washington, DC, 1971. 449. M. Kolowski, W. Laskawski, Angew. Makromol. Chem., 91, 29 (1980). 450. R. Koningsveld, H. A. G. Chermin, M. Gordon, Proc Royal Soc. A, 319, 331 (1970). 451. R. Koningsveld, L. A. Kleintjens, H. M. Schoffeleers, Pure Appl. Chem., 39, 1 (1974). 452. K. Kosai, T. Higashino, Nippon Setchaku Kyokai Shi, 11,2 (1975).
453. K. Kosai, T. Higashino, N. Nishioka, Shikizai Kyokaishi, 50, 76 (1977). 454. D. L. Kotzev, E. M. Pearce, T. K. Kwei, J. Appl. Polym. ScL, 29, 4443 (1984). 455. G. Kraus, K. W. Rollman, in: N. A. J. Platzer (Ed.), "Multicomponent Polymer Systems", Am. Chem. Soc, Adv. Chem. Ser., vol. 99, Washington, DC, 1971. 456. S. Krause, N. Roman, J. Polym. Sci., Part: A, 3, 1631 (1965). 457. J. Kressler, H. W. Kammer, Acta Polym., 38, 600 (1987). 458. J. Kressler, H. W. Kammer, Polym. Bull., 19, 283 (1988). 459. J. Kressler, H. W. Kammer, Herzog, H. Heyde, Acta Polym., 41, 1 (1990). 460. J. Kressler, H. W. Kammer, K. Klostermann, Polym. Bull., 15, 113(1986). 461. J. Kressler, H. W. Kammer, U. Morgenstern, B. Litauszki, W. Berger, Makromol. Chem., 191, 243 (1990). 462. J. Kressler, H. W. Kammer, G. Schmidt-Naake, K. Herzog, Polymer, 29, 686 (1988). 463. M. Kryszewski, J. Jachowciz, M. Malanga, O. Vogl, Polymer, 23, 271 (1982). 464. Y. Kumagai, Y. Doi, Polym. Deg. Stab., 35, 87 (1992). 465. Y Kumagai, Y Doi, Polym. Deg. Stab., 36, 241 (1992). 466. A. K. Kundu, S. S. Ray, B. Adhikari, S. Maiti, Eur. Polym. J., 22, 369 (1986). 467. A. K. Kundu, S. S. Ray, S. Maiti, S., Eur. Polym. J., 22, 821 (1986). 468. A. K. Kundu, S. S. Ray, R. N. Mukherjea, S. Maiti, Angew. Makromol. Chem., 143, 197 (1986). 469. C. M. Kuo, S. J. Clarson, Am. Chem. Soc, Polym. Prepr., 31, 550 (1990). 470. C. M. Kuo, S. J. Clarson, Macromoleeules, 25, 2192 (1992). 471. J. A. Kuphal, L. H. Sperling, L. M. Robeson, J. Appl. Polym. Sci., 42, 1525 (1991). 472. N. Kuwahara, M. Ishizawa, S. Saeki, M. Kaneko, Rept. Prog. Polym. Phys. Japan, 19, 9 (1976). 473. T. K. Kwei, J. Polym. Sci., Polym. Lett. Ed., 22, 307 (1984). 474. T. K. Kwei, H. L. Frisch, W. Radigan, S. Vogel, Macromolecules, 10, 157 (1977). 475. T. K. Kwei, T. Nishi, R. R Roberts, Macromoleeules, 7, 667 (1974). 476. T. K. Kwei, G. D. Patterson, T. T. Wang, Macromoleeules, 9. 780 (1976). 477. T. Kyu, T. J. Chen, H. S. Park, J. L. White, J. Appl. Polym. Sci., 37, 201 (1989). 478. T. Kyu, S. R. Hu, R. S. Stein, J. Polym. Sci., Polym. Phys. Ed., 25, 89 (1987). 479. T. Kyu, D. S. Lim, J. Polym. Sci., Polym. Lett. Ed., 27,421 (1989). 480. T. Kyu, D. Park, W. Cho, J. Appl. Polym. Sci., 44, 2233 (1992). 481. T. Kyu, J. M. Saldanha, J. Polym. Sci., Polym. Lett. Ed., 26, 33 (1988).
482. T. Kyu, J. M. Saldanha, J. Polym. Sci., Polym. Phys. Ed., 28, 97 (1990). 483. T. Kyu, P. Vadhar, J. Appl. Polym. ScL, 32, 5575 (1986). 484. V. Landi, Appl. Polym. Symp., 25, 223 (1974). 485. V. Landi, Rubber Chem. Technol., 45, 222 (1972). 486. C. J. T. Landry, P. M. Hendrichs, Macromoleeules, 22, 2157 (1989). 487. C. J. T. Landry, D. M. Teegarden, Macromoleeules, 24, 4310 (1991). 488. C. J. T. Landry, H. Yang, J. S. Machell, Polymer, 32, 44 (1991). 489. D. Lath, J. M. G. Cowie, E. Lathova, Polym. Bull., 28, 361 (1992). 490. W W. Y Lau, S. H. Teoh, S. H. Goh, Brit. Polym. J., 20, 323 (1988). 491. C. Le Menestrel, D. E. Bhagwagar, P. C. Painter, M. M. Coleman, M. M., J. F. Graf, Macromoleeules, 25, 7107 (1992). 492. D. S. Lee, G. Quin, Polym. J., 21, 751 (1989). 493. H. S. Lee, T. Kyu, Am. Chem. Soc, Polym. Prepr., 30 (1), 308 (1989). 494. J. Y. Lee, P. C. Painter, M. M. Coleman, Macromoleeules, 21, 346 (1988). 495. J. Y. Lee, P. C. Painter, M. M. Coleman, Macromoleeules, 21, 954 (1988). 496. J. Y Lee, P. C. Painter, M. M. Coleman, Am. Chem. Soc, Polym. Prepr., 29 (1), 313 (1988). 497. M. S. Lee, S. C. Lee, S. H. Chae, W. H. Jo, Macromoleeules, 25, 4339 (1992). 498. S. C. Lee, M. S. Lee, W. H. Jo, J. Polym. Sci., Polym. Phys. Ed., 29, 759 (1991). 499. S. S. Lee, K. H. Chung, K. S. Kim, J. C. Jung, Angew. Makromol. Chem., 164, 171 (1988). 500. S. S. Lee, K. H. Chung, K. S. Kim, J. C. Jung, Angew. Makromol. Chem., 165, 89 (1989). 501. S. Y Lee, M. Y Low, S. H. Goh, Eur. Polym. J., 27, 1379 (1991). 502. T. H. Lee, H. Marand, Am. Chem. Soc, Polym. Prepr., 32 (3), 316 (1991). 503. J. Leffingwell, C. Thies, H. Gertzman, Am. Chem. Soc, Polym. Prepr., 14, 596 (1973). 504. M. H. Lehr, Polym. Eng. Sci., 25, 1056 (1985). 505. M. H. Lehr, Polym. Eng. Sci., 26, 947 (1986). 506. E. Lemieux, R. E. Prud'homme, R. Forte, R. Jerome, Ph. Teyssie, Macromoleeules, 21, 2148 (1988). 507. L. Leung, D. J. Williams, F. E. Karasz, W. J. MacKnight, Polym. Bull., 16, 457 (1986). 508. W. Li, L. Shi, D. Shen, Y Wu, J. Zheng, Polymer, 30, 604 (1989). 509. K. Liang, G. Banhegyi, R E. Karasz, W. J. MacKnight, J. Polym. Sci., Polym. Phys. Ed., 29, 649 (1991). 510. K. Liang, J. Grebowicz, R E. Karasz, W. J. MacKnight, J. Polym. Sci., Polym. Phys. Ed., 30, 465 (1992). 511. S. A. Liberman, A. de S. Gomes, E. M. Macchi, J. Polym. Sci., Polym. Chem. Ed., 22, 2809 (1984). 512. A. M. Lichkus, R C. Painter, M. M. Coleman, Macromolecules, 21, 2636 (1988).
513. D. S. Lim, T. Kyu, J. Chem. Phys., 92, 3944 (1990). 514. J. L. Lim, R. J. Roe, Polymer, 29, 1227 (1988). 515. A. A. Lin, T. K. Kwei, A. Reiser, Macromolecules, 22, 4112(1989). 516. J. L. Lin, D. Rigby, R. J. Roe, Macromolecules, 18, 1609 (1985). 517. P. Lin, C. Clash, E. M. Pearce, T. K. Kwei, M. A. Aponte, J. Polym. Sci., Polym. Phys. Ed., 26, 603 (1988). 518. B. Litauszki, G. Schmidt-Naake, J. Kressler, H. W. Kammer, Polym. Commun, 30, 359 (1989). 519. D. I. Livingston, J. E. Brown Jr., Proc. Int. Congr. Rheol. 1968, 4, 25 (1970). 520. D. I. Livingston, R. L. Rongone, Proc. 5th Int. Rubber Technol. Conf. Brighton, 337 (1967); Chem. Abstr., 72, 67965y (1970). 521. R. J. Lockwood, L. M. Alberino, in: K. N. Edwards, W. F. Gum (Eds.), "Urethane Chemistry and Applications", Am. Chem. Soc, Symp. Ser., vol. 172, Washington, DC, 1981. 522. D. J. Lohse, Polym. Eng. Sci., 26, 1500 (1986). 523. X. Lu, R. A. Weiss, Macromolecules, 24, 4381 (1991). 524. X. Lu, R. A. Weiss, Macromolecules, 25, 6185 (1992). 525. D. Ma, R. E. Prud'homme, Polymer, 31, 917 (1990). 526. W. J. MacKnight, J. Stoelting, F. E. Karasz, in: N. A. J. Platzer (Ed.), "Multicomponent Polymer Systems", Am. Chem. Soc, Adv. Chem. Ser., vol. 99, Washington, DC, 1971. 527. E. M. Macchi, S. A. Liberman, A. S. Gomes, Makromol. Chem., 187, 573 (1986). 528. J. M. Machado, R. N. French, Polymer, 33, 439 (1992). 529. J. M. Machoda, R. N. French, Polymer, 33, 760 (1992). 530. A. Maconnachie, R. P Kambour, R. C. Bopp, Polymer, 25, 357 (1984). 531. Y. Maeda, F. E. Karasz, W. J. MacKnight, Netsu Sokutei, 16, 65 (1989). 532. Y. Maeda, F. E. Karasz, W. J. MacKnight, R. Vukovic, J. Polym. Sci., Polym. Phys. Ed., 24, 2345 (1986). 533. M. Maejima, H. Nakamura, T. Inoue, T. Sakai, Sen'i Gakkaishu, 45, 516 (1989). 534. M. Maejima, Y. Takeda, T. Inoue, T. Sakai, Sen'i Gakkaishu, 44, 444 (1988). 535. N. Maiti, S. Dutta, S. N. Bhattacharyya, B. M. Mandel, Polym. Commun., 29, 363 (1988). 536. S. Makhija, E. M. Pearce, T. K. Kwei, Polym. Mater. Sci. Eng., 63, 498 (1990). 537. S. Makhija, E. M. Pearce, T. K. Kwei, F. Liu, Polym. Eng. Sci., 30, 798 (1990). 538. S. Makhija, E. M. Pearce, T. K. Kwei, J. Appl. Polym. Sci., 44, 917 (1992). 539. S. Manabe, P. Murakami, M. Takayanagi, Mem. Faculty Eng. Kyushu Univ., 28, 295 (1969). 540. H. Marand, M. Collins, Am. Chem. Soc, Polym. Prepr., 31 (1), 552 (1990). 541. K. Marcincin, A. Ramonov, V. Pollak, J. Appl. Polym. Sci., 16, 2239 (1972). 542. A. I. Marei, E. A. Sidorovich, Polym. Mechanics, 1 (5), 55 (1965).
543. A. G. Margaritis, J. K. Kallitisis, N. K. Kalfoglou, Polymer, 28, 2122 (1987). 544. A. G. Margaritis, J. K. Kallitisis, N. K. Kalfoglou, Polymer, 30, 2253 (1989). 545. A. G. Margaritis, N. K. Kalfoglou, Polymer, 28, 497 (1987). 546. A. G. Margaritis, N. K. Kalfoglou, Eur. Polym. J., 29, 1043 (1988). 547. Y. H. Mariam, K. P. W. Pemawansa, K. B. Bota, Am. Chem. Soc, Polym. Prepr., 27 (1), 271 (1986). 548. P. A. Marsh, A. Voet, L. D. Price, Rubber Chem. Technol., 40, 359 (1967). 549. P. A. Marsh, A. Voet, L. D. Price, T. J. Mullens, Rubber Chem. Technol., 41, 344 (1968). 550. E. Martuscelli, M. Canetti, A. M. Bonfatti, A. Seves, Polymer, 32, 641 (1991). 551. E. Martuscelli, G. B. Demma, in: E. Martuscelli, R. Palumbo, M. Kryszewski, (Eds.), "Polymer Blends: Processing, Morphology and Properties", Plenum, New York, 1980, p. 101. 552. E. Martuscelli, C. Silvestre, M. L. Addonizio, L. Amelino, Makromol. Chem., 187, 1557 (1986). 553. E. Martuscelli, C. Silvestre, C. Gismondi, Makromol. Chem., 186, 2161 (1985). 554. L. M. Martynowicz-Hans, J. Runt, J., Am. Chem. Soc, Polym. Prepr., 27 (1), 269 (1986). 555. J. Maruta, T. Ougizawa, T. Inoue, Polymer, 29, 2056 (1988). 556. R Masi, D. R. Paul, J. W. Barlow, Rheol. Proc, 3, 315 (1980). 557. D. J. Massa, in: S. L. Cooper, G. M. Estes (Eds.), "Multiphase Polymers", Am. Chem. Soc, Adv. Chem. Ser., vol. 176, Washington, DC, 1979, p. 433. 558. D. J. Massa, Am. Chem. Soc, Polym. Prepr., 29 (1), 434 (1988). 559. J. F. Masson, R. St. J. Manley, Macromolecules, 24, 5914 (1991). 560. J. F. Masson, R. St. J. Manley, Macromolecules, 25, 589 (1992). 561. M. Matsuo, C. Nozaki, Y. Jyo, Polym. Eng. Sci., 9, 197 (1969). 562. M. Matsuura, H. Saito, S. Nakata, Y. Imai, T. Inoue, Polymer, 33, 3210 (1992). 563. M. Matzner, L. M. Robeson, E. W. Wise, J. E. McGrath, Makromol. Chem., 183, 2871 (1982). 564. M. Matzner, D. L. Schoher, R. N. Johnson, L. M. Robeson, J. E. McGrath, in: H. B. Hopfenberg (Ed.)., "Permeability of Plastic Films and Coatings to Gases, Vapors, and Liquids", Plenum, New York, 1979, p. 125. 565. L. R McMaster, Macromolecules, 6, 760 (1973). 566. L. P. McMaster, in: N. A. J. Platzer, (Ed.), "Copolymers, Polyblends and Composites", Am. Chem. Soc, Adv. Chem. Ser., vol. 142, Washington, DC 1975, p. 43. 567. P. C. Mengujoh, H. L. Frisch, J. Polym. Sci., Polym. Chem. Ed., 27, 3363 (1989). 568. G. C. Meyer, G. E. Tritscher, J. Appl. Polym. Sci., 22, 719 (1978).
569. J. Mijovic, H. L. Luo, C. D. Han, Polym. Eng. ScL, 22,234 (1982). 570. J. B. Miller, K. J. McGrath, C. M. Roland, C. A. Trask, Macromolecules, 23, 4543 (1990). 571. B. Y. Min, E. M. Pearce, Org. Coatings, Plastics Chem. Prepr., (Am. Chem. Soc), 45, 58 (1981). 572. B. Y. Min, E. M. Pearce, T. K. Kwei, Am. Chem. Soc, Polym. Prepr., 24 (2), 441 (1983). 573. K. E. Min, J. S. Chiou, J. W. Barlow, D. R. Paul, Polymer, 28, 1721 (1987). 574. K. E. Min, D. H. Lee, H. M. Jung, Polym. Bull., 24, 221 (1990). 575. K. E. Min, D. R. Paul, Macromolecules, 20, 2828 (1987). 576. K. E. Min, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 26, 2257 (1988). 577. K. E. Min, D. R. Paul, J. Appl. Polym. Sci., 37, 1153 (1989). 578. I. Mindru, M. Olteanu, L. Dehe, V. Trandafir, Rev. Roum. Chim., 28, 683 (1983). 579. L. Minkova, M. Mikhailov, Colloid Polym. Sci., 265, 1 (1987). 580. J. Moacanin, E. Cuddihy, A. Rembaum, in: N. A. J. Platzer (Ed.), "Plasticization and Plasticizer Processes", Am. Chem. Soc, Adv. Chem. Ser., Vol. 48, Washington, DC, 1965 p. 159. 581. R. N. Mohn, D. R. Paul, J. W. Barlow, C. A. Cruz, J. Appl. Polym. Sci., 23, 575 (1979). 582. G. E. Molau, J. Polym. Sci., Part B, 3, 1007 (1965). 583. A. Molnar, A. Eisenberg, Polym. Commun., 32, 370 (1991). 584. A. Molnar, A. Eisenberg, Macromolecules, 25, 5774 (1992). 585. I. Mondragon, M. Cortazar, G. M. Guzman, Makromol. Chem., 184, 1741 (1983). 586. I. Mondragon, M. Gaztelumendi, J. Nazabal, Polym. Eng. Sci., 28, 1126(1988). 587. J. A. Moore, J. H. Kim, Macromolecules, 25, 1427 (1992). 588. E. J. Moskala, J. P. Runt, M. M. Coleman, in: D. R. Paul, L. H. Sperling (Eds.), "Multicomponent Polymer Materials", Am. Chem. Soc, Adv. Chem. Ser., vol. 211, Washington, DC, 1986, p. 77. 589. M. Mucha, J. Jachowicz, M. Kryszewski, Acta Polym., 32, 156 (1981). 590. S. Mukhopadhyay, S. K. De, J. Mater. Sci., 25, 4027 (1990). 591. R. Murali, A. Eisenberg, J. Polym. Sci., Polym. Phys. Ed., 26, 1385 (1988). 592. R. Murali, A. Eisenberg, R. K. Gupta, F. W. Harris, Am. Chem. Soc, Polym. Prepr., 27 (1), 343 (1986). 593. S. R. Murff, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci., 29, 3231 (1984). 594. P. Musto, L. Wu, F. E. Karasz, W. J. MacKnight, Polymer, 32, 3 (1991). 595. M. E. Myers, A. M. Wims, T. S. Ellis, J. Barnes, Macromolecules, 23, 2807 (1990). 596. V. M. Nadkarni, V. L. Shingankuli, J. P. Jog, Polym. Eng. Sci., 28, 1326 (1988). 597. J. B. Nagode, C. M. Roland, Polymer, 32, 505 (1991).
598. K. Naito, G. E. Johnson, D. L. Allara, T. K. Kwei, Macromolecules, 11, 1260 (1978). 599. H. Nakamura, J. Maruta, T. Ohnaga, T. Inoue, Polymer, 31, 303 (1990). 600. S. Nakata, M. Kakimoto, Y. Imai, T. Inoue, T., Polym. J., 22, 80 (1990). 601. A. K. Nandi, B. M. Mandal, S. N. Bhattacharyya, Macromolecules, 18, 1454 (1985). 602. A. K. Nandi, B. M. Mandal, S. N. Bhattacharyya, S. K. Roy, Polym. Commun., 27, 151 (1986). 603. T. R. Nassar, D. R. Paul, J. W. Barlow, J. Appl. Polym. Sci., 23, 85 (1979). 604. A. Natansohn, A. Eisenberg, Am. Chem. Soc, Polym. Prepr., 27 (1), 349 (1986). 605. G. Natta, G. Allegra, I. W. Bassi, C. Carlini, E. Chiellini, Montagnoli, Macromolecules, 2, 311 (1969). 606. M. K. Neo, S. H. Goh, Macromolecules, 24, 2564 (1991). 607. M. K. Neo, S. H. Goh, Polym. Commun., 32, 200 (1991). 608. M. K. Neo, S. H. Goh, Eur. Polym. J., 27, 915 (1991). 609. M. K. Neo, S. H. Goh, Eur. Polym. J., 27, 927 (1991). 610. M. K. Neo, S. H. Goh, Polymer, 33, 2012 (1992). 611. M. K. Neo, S. H. Goh, Polymer, 33, 3203 (1992). 612. M. K. Neo, S. Y. Lee, S. H. Goh, J. Appl. Polym. Sci., 43, 1301 (1991). 613. M. K. Neo, S. Y. Lee, S. H. Goh, Eur. Polym. J., 27, 831 (1991). 614. L. E. Nielson, J. Am. Chem. Soc, 75, 1435 (1955). 615. L. E. Nielson, S. N. Chinai, unpublished work, quoted in: L. E. Nielson, "Mechanical Properties of Polymers", Reinhold, New York, 1962, p. 173. 616. T. Nishi, T. K. Kwei, Polymer, 16, 285 (1975). 617. T. Nishi, T. K. Kwei, T. T. Wang, J. Appl. Phys., 46, 4157 (1975). 618. T. Nishi, T. T. Wang, Macromolecules, 8, 909 (1975). 619. T. Nishi, T. T. Wang, T. K. Kwei, Macromolecules, 8, 227 (1975). 620. M. Nishimoto, H. Keskkula, D. R. Paul, Polymer, 30, 1279 (1989). 621. M. Nishimoto, H. Keskkula, D. R. Paul, Macromolecules, 23, 3633 (1990). 622. M. Nishimoto, H. Keskkula, D. R. Paul, Polymer, 32,1274 (1991). 623. Y. Nishio, T. Haratani, T. Takahashi, R. St. J. Manley, Macromolecules, 22, 2547 (1989). 624. Y. Nishio, T. Haratari, T. Takahashi, J. Polym. Sci., Polym. Phys. Ed., 28, 355 (1990). 625. Y. Nishio, N. Hirose, T. Takahashi, Polym. J., 21, 347 (1989). 626. Y. Nishio, R. St. J. Manley, Macromolecules, 21, 1270 (1988). 627. Y. Nishio, S. K. Roy, R. St. J. Manley, Polymer, 28, 1385 (1987). 628. S. Nojima, H. Tsutsui, M. Urushihara, W. Kosaka, N. Kato, T. Ashida, Polym. J., 18, 451 (1986). 629. S. Nojima, Y. Terashima, T. Ashida, Polymer, 27, 1007 (1986).
630. J. S. Noland, N. N. Hsu, R. Saxon, J. M. Schmitt, in: N. A. J. Platzer (Ed.), "Multicomponent Polymer Systems", Am. Chem. Soc, Adv. Chem. Ser., vol. 99, Washington, DC, 1971, p. 15. 631. E. Nolley, D. R. Paul, J. W. Barlow, J. Appl. Polym. Sci., 23, 623 (1979). 632. Y. G. Oganesov, V. S. Osipchuk, K. G. Mindiyarov, V. G. Rayevskii, S. S. Voyutskii, Vysokomol. Soedin. Ser. A, 11, 896 (1969); Polym. Sci. USSR, 11, 1012 (1969). 633. O. Olabisi, A. G. Farnham, in: S. L. Copper, G. M. Estes, (Eds.), "Multiphase Polymers", Am. Chem. Soc, Adv. Chem. Ser., vol. 176, Washington, DC, 1979, p. 559. 634. J. Y. Olayemi, M. K. Ibiyeye, J. Appl. Polym. Sci., 31, 237 (1986). 635. C. J. Ong, R P. Price, J. Polym. Sci., Symp., 63,45 (1978). 636. H. J. Oswald, E. T. Kubu, SPE Trans, 3, 168 (1963). 637. T. Ougizawa, T. Inoue, Polym. J., 18, 521 (1986). 638. P Padunchewit, D. R. Paul, J. W. Barlow, in: L. A. Utracki, R. A. Weiss (Eds.), "Multiphase Polymers: Blends and Ionomers", Am. Chem. Soc., Symp. Ser., vol. 395, Washington, DC, 1989, p. 84. 639. P. C. Painter, W. L. Tang, J. F. Graf, B. Thomson, M. M. Coleman, Macromolecules, 24, 3929 (1991). 640. R. R. Parent, E. V. Thompson, J. Polym. Sci., Polym. Phys. Ed., 16, 1829 (1978). 641. J. F. Parmer, L. C. Dickinson, J. C. W. Chien, R. S. Porter, Am. Chem. Soc, Polym. Prepr., 29 (1), 476 (1988). 642. J. F. Parmer, L. C. Dickinson, R. S. Porter, Am. Chem. Soc, Polym. Prepr., 27(1), 295 (1986). 643. G. D. Patterson, T. Nishi, T. T Wang, Macromolecules, 9, 603 (1976). 644. D. R. Paul, J. O. Altamirano, in: N. A. J. Platzer (Ed.), "Copolymers, Polyblends and Composites", Am. Chem. Soc, Adv. Chem. Ser., vol. 142, Washington, DC, 1975, p. 371. 645. D. R. Paul, J. W. Barlow, C. A. Cruz, R. N. Mohn, T. R. Nassar, D. C. Wahrmund, D. C, Am. Chem. Soc, Org. Coatings. Plastics Chem. Prepr., 37 (1), 130 (1977). 646. E. M. Pearce, T. K. Kwei, B. Y. Min, J. Macromol. Sci., Chem. A, 21, 1181 (1984). 647. J. R. Pennacchia, E. M. Pearce, T. K. Kwei, B. J. Bulkin, J. P. Chen, Macromolecules, 19, 973 (1986). 648. S. Percec, L. Melamud, J. Appl. Polym. Sci., 41, 1853 (1990). 649. P. Perrin, R. E. Prud'homme, Polymer, 32, 1468 (1991). 650. S. S. Pestov, V. N. Kuleznev, V. A. Shershnew, Kolloid. Zh., 40, 705 (1978); Colloid J. USSR, 40, 581 (1978). 651. R. J. Peterson, R. D. Corneliussen, L. T. Rozelle, Polym. Prepr., 10, 385 (1969). 652. J. L. Pfennig, H. Keskkula, D. R. Paul, J. Appl. Polym. Sci., 32, 3657 (1986). 653. J. Piglowski, Eur. Polym. J., 24, 905 (1988). 654. J. Piglowski, Acta Polym., 41, 518 (1990). 655. J. Piglowski, K. H. Kammer, Acta Polym., 41,431 (1990). 656. L. Z. Pillon, L. A. Utracki, D. W. Pillon, Polym. Eng. Sci., 27, 562 (1987). 657. A. Piloz, J. Y. Decroix, J. F. May, Angew. Makromol. Chem., 54, 77 (1976).
658. Z. H. Ping, Q. T. Nguyen, J. Neel, Makromol. Chem., 190, 437 (1989). 659. Z. H. Ping, Q. T. Nguyen, J. Neel, Makromol. Chem., 191, 185 (1990). 660. M. Pracella, E. Chielline, D. Dainelli, Makromol. Chem., 190, 175 (1989). 661. M. Pracella, E. Chiellini, G. Gralli, D. Dainelli, MoI. Cryst. Liq. Cryst., 153(A), 525 (1987). 662. M. Pracella, D. Dainelli, G. Gralli, E. Chielline, Makromol. Chem., 187, 2387 (1986). 663. W. M. Prest, R. S. Porter, J. Polym. Sci., Part A-2,10,1639 (1972). 664. C. Pugh, V. Percec, Macromolecules, 19, 65 (1986). 665. A. Purcell, C. Thies, Am. Chem. Soc, Polym. Prepr., 9, 115 (1968). 666. R. Qian, X. Gu, Angew. Makromol. Chem., 141, 1 (1986). 667. C. Qin, L. A. Belfiore, Am. Chem. Soc, Polym. Prepr., 31 (1), 263 (1990). 668. C. Qin, C, A. T. N. Pires, L. A. Belfiore, Polym. Commun., 31, 177 (1990). 669. D. Radic, L. Gargallo, Thermochim. Acta, 180, 241 (1991). 670. V. Ramaswamy, H. P. Weber, Appl. Optics, 12, 1581 (1973). 671. A. Rameau, Y Gallot, P. Marie, B. Farnoux, Polymer, 30, 386 (1989). 672. B. G. Ranby, J. Polym. Sci., Polym. Symp., 51, 89 (1975). 673. P. C. Raymond, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 28, 2103 (1990). 674. I. N. Razinskaya, B. P. Shtarkman, A. E. Chalykh, 1. N. Sapozhnikova, Vysokomol. Soedin, Ser. B, 27, 871 (1985). 675. I. N. Razinskaya, L. 1. Vidyakina, T. I. Radbil', B. P. Shtarkman, Vysokomol. Soedin. Ser. A, 14, 968 (1974); Polym. Sci. USSR, 14, 1079 (1972). 676. M. Ree, T. Kyu, R. S. Stein, J. Polym. Sci., Poiym. Phys. Ed., 25, 105 (1987). 677. R. A. Register, T. R. Bell, J. Polym. Sci., Polym. Phys. Ed., 30, 569 (1992). 678. G. S. Rellick, J. P. Runt, J. Polym. Sci., Polym. Phys. Ed., 24, 279 (1986). 679. A. Rembaum, J. Mocanin, E. Cuddihy, J. Polym. Sci., Part C, 4, 529 (1963). 680. P. M. Remiro, J. Nazabal, J. Appl. Polym. Sci., 42, 1639 (1991). 681. P. M. Remiro, J. Nazabal, J. Appl. Polym. Sci., 42, 1475 (1991). 682. R. A. Reznikova, A. D. Zaionchkovskii, S. S. Voyutskii, Zh. Tekh. Fiz., 25, 1045 (1955). 683. P. B. Rim, E. B. Orler, Macromolecules, 20, 433 (1987). 684. M. Rink, L. Monfrini, P. Gasparini, A. Pavan, Rubber Process. Appl., 3, 145 (1983). 685. L. M. Robeson, quoted in reference S32. 686. L. M. Robeson, J. Polym. Sci., Polym. Lett. Ed., 16, 261 (1978). 687. L. M. Robeson, J. Appl. Polym. Sci., 30, 4081 (1985).
688. L. M. Robeson, A. B. Furtek, Am. Chem. Soc, Org. Coatings Plastics Chem. Prepr., 37, 136 (1977). 689. L. M. Robeson, A. B. Furtek, J. AppL Polym. ScL, 23, 645 (1979). 690. L. M. Robeson, W. F. Hale, C. N. Merriman, Macromolecules, 14, 1644 (1981). 691. L. M. Robeson, M. Matzner, L. J. Fetters, J. E. McGrath, in: L. H. Sperling (Ed.), "Recent Advances in Blends, Grafts and Blocks", Plenum, New York, 1974, p. 281. 692. L. M. Robeson, J. E. McGrath, Polym. Eng. ScL, 17, 300 (1977). 693. J. Rodriguez-Parada, V. Percec, Macromolecules, 19, 55 (1986). 694. J. Rodriguez-Parada, V. Percec, J. Polym. ScL, Polym. Chem. Ed., 24, 579 (1986). 695. E. Roerdink, G. Challa, Polymer, 21, 1161 (1980). 696. E. Roerdink, G. Challa, Polymer, 19, 173 (1978). 697. C. M. Roland, Macromoiecuies, 20, 2557 (1987). 698. C. M. Roland, Rubber Chem. Technol., 61, 866 (1988). 699. C. M. Roland, J. Polym. ScL, Polym. Phys. Ed., 26, 839 (1988). 700. C. M. Roland, C. A. Trask, Rubber Chem. Technol., 62, 896 (1989). 701. J. Roovers, P. M. Toporowski, Macromolecules, 25, 1096 (1992). 702. A. Roychoudhury, P. P. De, A. K. Bhowmick, S. K. De, Polymer, 33, 4737 (1992). 703. J. Runt, L. Du, L. M. Martynowicz, D. M. Brezny, M. Mayo, Macromolecules, 22, 3908 (1989). 704. J. Runt, L. M. Martynowicz-Hans, L. Du, M. Mayo, Am. Chem. Soc, Polym. Prepr., 28 (2), 153 (1987). 705. E. Russell, G. Crone, A. Natansohn, Polym. Bull., 27, 67 (1991). 706. M. Rutkowska, J. Appl. Polym. ScL, 42, 1695 (1991). 707. M. Rutkowska, A. Eisenberg, Macromolecules, 17, 821 (1984). 708. M. Rutkowska, A. Eisenberg, J. Appl. Polym. ScL, 33, 2833 (1987). 709. J. H. Ryou, H. D. Kim, D. S. Lim, C. S. Ha, W. J. Cho, Pollimo, 16, 225 (1992). 710. S. Saeki, J. M. G. Cowie, I. J. McEwen, Polymer, 24, 60 (1983). 711. H. Saito, Y. Fujita, T. Inoue, Polym. J., 19, 405 (1987). 712. H. Saito, T. Inoue, J. Polym. ScL, Polym. Phys. Ed., 25, 1629 (1987). 713. H. Saito, M. Takahashi, T. Inoue, J. Polym. ScL, Polym. Phys. Ed., 26, 1761 (1988). 714. H. Saito, D. Tsutsumi, T. Inoue, Polym. J., 22, 128 (1990). 715. J. M. Saldanha, T. Kyu, Macromolecules, 20, 2840 (1987). 716. W. Salomons, G. ten Brinke, F. E. Karasz, Polym. Commun., 32, 185 (1991). 717. M. Sankarapandian, K. Kishore, Macromolecules, 24, 3090 (1991). 718. S. Sasaki, M. Nagao, M. Gotoh, J. Polym. ScL, Polym. Phys. Ed., 26, 637 (1988).
719. M. Scandola, G. Ceccorulli, M. Pizzoli, Macromolecules, 25, 6441 (1992). 720. E. Schchori, J. Jagur-Grodzinski, J. Appl. Polym. ScL, 20, 1665 (1976). 721. J. Schelten, W. Schamtz, D. G. H. Ballard, G. W. Longman, M. G. Rayner, G. D. Wignail, Prepr. Int. Microsymp. Crystal. Fusion Polym., Louvain-la-Neuve, 1 (1976). 722. H. A. Schneider, P. Dilger, Polym. Bull., 21, 265 (1989). 723. H. A. Schneider, U. Epple, B. Leikauf, H. N. Neto, New Polym. Mater., 3, 115 (1992). 724. H. A. Schneider, B. Leikauf, Thermochim. Acta, 114, 165 (1987). 725. I. A. Schneider, E. M. Calugaru, Eur. Polym. J., 11, 861 (1975). 726. W. Schnek, D. Reichert, H. Schneider, Polymer, 31, 329 (1990). 727. J. A. Schroeder, F. E. Karasz, W. J. MacKnight, Polymer, 26, 1795 (1985). 728. J. W. Schurer, A. DeBoer, G. Challa, Polymer, 16, 201 (1975). 729. C. G. Seefried Jr., J. V. Koleske, J. Testing Eval., 4, 220 (1976). 730. C. G. Seefried Jr., J. V. Koleske, F. E. Critchfield, Polym. Eng. ScL, 16, 771 (1976). 731. S. N. Semerek, C. W. Frank, in: Han, C. D. (Ed.), "Polymer Blends and Composites in Multiphase Systems", Am. Chem. Soc, Adv. Chem. Sen, vol. 206, Washington, DC, 1984, p. 77. 732. C. J. Serman, P. C. Painter, M. M. Coleman, Am. Chem. Soc, Polym. Prepr,, 29 (1), 315 (1988). 733. C. J. Serman, P. C. Painter, M. M. Coleman, Polymer, 32, 1049 (1991). 734. C. J. Serman, X. Xu, P. C. Painter, M. M. Coleman, Polymer, 32, 516 (1991). 735. R. W. Seymour, B. E. Zehner, J. Polym. ScL, Polym. Phys. Ed., 18, 2299 (1980). 736. K. Shah, K. Min, J. L. White, Polym. Eng. ScL, 28, 1277 (1988). 737. K. Shah, J. L. White, K. Min, Polym. Eng. ScL, 29, 586 (1989). 738. V. S. Shah, J. D. Keitz, D. R. Paul, J. W. Barlow, J. Appl. Polym. ScL, 32, 3863 (1986). 739. C. K. Sham, G. Guerra, F. E. Karasz, W. J. MacKnight, Polymer, 29, 1016 (1988). 740. C. K. Sham, C. H. Lau, D. J. Williams, F. E. Karasz, W. J. MacKnight, Brit. Polym. J., 20, 149 (1988). 741. M. T. Shaw, J. AppL Poiym. ScL, 18, 449 (1974). 742. S. Shen, J. M. Torkelson, Macromolecules, 25, 721 (1992). 743. Y. D. Shibanov, T. M. Radzhabov, Vysokomol. Soedin., Ser. B, 30, 281 (1988). 744. M. Shibayama, T. Yamamoto, C. F. Xiao, S. Sakurai, A. Hayami, S. Nomura, Polymer, 32, 1010 (1991). 745. T. Shiomi, F. E. Karasz, W. J. MacKnight, Macromolecules, 19, 2274 (1986). 746. T. Shiomi, T. Eguchi, I. Ishimatsu, K. Imai, Macromolecules, 23, 4978 (1990). 747. T. Shiomi, F. E. Karasz, W. J. MacKnight, Macromolecules, 19, 2644 (1986).
748. T. Shiomi, M. Suzuki, M. Tohyama, K. Imai, Macromolecules, 22, 3578 (1989). 749. A. R. Shultz, B. M. Beach, Macromolecules, 7,902 (1974). 750. A. R. Shultz, B. M. Gendron, J. Appl. Polym. ScL, 16, 461 (1972). 751. A. R. Shultz, B. M. Gendron, J. Polym. ScL1 Symp. Ed., 43, 89 (1973). 752. A. R. Shultz, B. M. Gendron, in: J. Chiu, (Ed.), "Polymer Characterization by Thermal Methods of Analysis", Dekker, New York, 1974, p. 175. 753. A. R. Shultz, B. M. Gendron, J. Macromol. ScL, Chem. A, 8, 175 (1974). 754. A. R. Shultz, A. L. Young, J. Appl. Polym. ScL, 28, 1677 (1983). 755. Y. J. Shur, B. Ranby, J. Appl. Polym. Sci., 19,2143 (1975). 756. Y. J. Shur, B. Ranby, J. Appl. Polym. Sci., 19,1337 (1975). 757. Y R Shutilin, Vysokomol. Soedin., Ser. B, 23,708 (1991). 758. A. Siegmann, G. Gohen, Z. Baraam, J. Appl. Polym. Sci., 37, 1481 (1989). 759. C. Silvestre, S. Cimmino, E. Martuscelli, F. E. Karasz, W. J. MacKnight, Polymer, 28, 1190 (1987). 760. A. Simmons, A. Natansohn, Macromolecules, 25, 1272 (1992). 761. A. Simmons, A. Natansohn, Macromolecules, 25, 3881 (1992). 762. T. R Sincock, D. J. David, Polymer, 33, 4515 (1992). 763. D. P. Singh, S. Kalachandra, D. T. Turner, J. Polym. Sci., Polym. Phys. Ed., 26, 1795 (1988). 764. V. B. Singh, D. J. Walsh, J. Macromol. Sci., Phys. B, 25,65 (1986). 765. W. Siol, Makromol. Chem., Macromol. Symp., 44, 47 (1991). 766. W. Siol, U. Terbrack, Angew. Makromol. Chem., 185/186, 259 (1991). 767. D. J. Skrovanek, M. M. Coleman, Polym. Eng. Sci., 27, 857 (1987). 768. E. L. Slagowski, E. R Chang, J. J. Tkacik, Polym. Eng. Sci., 21, 513 (1981). 769. R. J. Slocombe, J. Polym. Sci., 26, 9 (1957). 770. G. L. Slonimskii, J. Polym. Sci., 30, 625 (1958). 771. G. L. Slonimskii, N. K. Komskaia, Zhur. Fiz. Khim., 30, 1746 (1956). 772. K. L. Smith, A. E. Winslow, D. E. Peterson, Ind. Eng. Chem., 51, 1361 (1959). 773. P. Smith, A. Eisenberg, J. Polym. Sci., Polym. Lett. Ed., 21, 223 (1983). 774. S. Y. Soh, J. Appl. Polym. Sci., 44, 371 (1992). 775. S. Y Soh, J. Appl. Polym. Sci., 45, 1831 (1992). 776. M. Song, Y Huang, G. Cong, Polym. Commun., 32, 155 (1991). 777. M. Song, H. Liang, B. Jiang, Polym. Bull., 23, 615 (1990). 778. M. Song, F. Long, Eur. Polym. J., 27, 983 (1991). 779. D. D. Sotiropoulou, K. G. Gravalos, N. K. Kalfoglou, J. Appl. Polym. Sci., 45, 273 (1992). 780. R. Spindler, D. F. Shriver, Macromolecules, 19, 347 (1986).
781. S. Stankovic, G. Guerra, D. J. Williams, F. E. Karasz, W. J. MacKnight, Polym. Commun., 29, 14 (1988). 782. D. J. Stein, R. H. Jung, K. H. Iller, H. Hendus, Angew. Makromol. Chem., 36, 89 (1974). 783. R. S. Stein, S. McGuire, M. Satkowski, D. Esnault, Am. Chem. Soc, Polym. Prepr., 30 (2), 270 (1989). 784. J. Stoelting, F E. Karasz, W. J. MacKnight, Polym. Eng. Sci., 10, 133 (1970). 785. G. R. Strobl, J. T. Bendler, R. P. Kambour, A. R. Shultz, Macromolecules, 19, 2683 (1986). 786. A. Stroeks, R. Paquail, E. Nies, Polymer, 32, 2653 (1991). 787. G. V. Struminskii, G. L. Slonimskii, Zhur. Fiz. Khim., 30, 1941 (1956). 788. A. C. Su, J. R. Fried, in: D. R. Paul, L. H. Sperling, "Multkomponent Polymer Materials", Am. Chem. Soc, Adv. Chem. Ser., vol. 211, Washington, DC, 1986, p. 59. 789. M. Suess, J. Kressler, H. W. Kammer, Polymer, 28, 957 (1987). 790. M. Suess, J. Kressler, H. W. Kammer, K. Heinemann, Polym. Bull., 16, 371 (1986). 791. J. Sun, I. Cabasso, Macromolecules, 24, 3603 (1991). 792. J. Sun, H. L. Frisch, I. Cabasso, J. Polym. Sci., Polym. Phys. Ed., 27, 2657 (1989). 793. Z. Sun, H. Li, Y. Zhuang, M. Ding, Z. Feng, Polym. Bull, 26, 557 (1991). 794. L. Suspene, T. M. Lam, J. P. Pascault, J. Appl. Polym. Sci., 39, 1347 (1990). 795. T. Suzuki, E. M. Pearce, T. K. Kwei, Polymer, 33, 198 (1992). 796. B. T. Swinyard, J. A. Barrie, D. J. Walsh, Polym. Commun., 28, 331 (1987). 797. A. A. Tager, L. V. Adamova, V. S. Blinov, N. Ye. Klimova, Ye. N. Racheiskova, T. Ye. Chudinovskikh, T. V. Litvinova, L. A. Mazyrina, Vysokomol. Soedin., Ser. A, 29, 2327 (1987); Polym. Sci. USSR, 29, 2557 (1987). 798. Y. Takagi, T. Ougizawa, T. Inoue, Polymer, 28, 103 (1987). 799. M. Takayanagi, H. Harima, Y. Iwata, Mem. Faculty Eng. Kyushu Univ., 23, 1 (1963). 800. H. Tanaka, A. J. Lovinger, Macromolecules, 20, 2638 (1987). 801. R. Tannanbaum, M. Rutkowska, A. Eisenberg, Am. Chem. Soc, Polym. Prepr., 27 (1), 345 (1986). 802. G. ten Brinke, E. Roerdink, G. Challa, in: K. Sole (Ed.), "Polymer Compatibility and Incompatibility: Principles and Practices", MMI Press, Harwood, 1982, p. 77. 803. G. ten Brinke, E. Rubinstein, F. E. Karasz, W. J. MacKnight, R. Vukovic, J. Appl. Phys., 56, 2440 (1984). 804. E. V. Thompson, in: D. Klempner, K. C. Frisch (Eds.), "Polymer Alloys II: Blends, Blcoks, Grafts and IPN's", Plenum, New York, 1980, p. 1. 805. G. Thyagarajan, V. Janarthanan, Polymer, 30, 1797 (1989). 806. S. P. Ting, B. J. Bulkin, E. M. Pearce, T. K. Kwei, J. Polym. Sci., Polym. Chem., 19, 1451 (1981). 807. S. P. Ting, E. M. Pearce, T. K. Kwei, J. Polyrn. Sci., Polym. Lett. Ed., 18, 201 (1980). 808. P E. Tomlins, J. S. Higgins, J. Chem. Phys., 90, 6691 (1989).
809. H. Tomura, H. Saito, T. Inoue, Macromolecules, 25, 1161 (1992). 810. C. A. Trask, C. M. Roland, Polym. Commun., 29, 332 (1988). 811. C. A. Trask, C. M. Roland, Macromolecules, 22, 256 (1989). 812. C. Tremblay, R. E. Prud'homme, J. Polym. ScL, Polym. Phys. Ed., 22, 1857 (1984). 813. Y. Tsujita, T. Higaki, A. Takizawa, T. Kiroshita, J. Polym. Sci., Polym. Chem. Ed., 23, 1255 (1985). 814. Y. Tsujita, K. Iwakiri, T. Kiroshita, A. Takizawa, W. J. MacKnight, J. Potym. Sci., Polym. Phys. Ed., 25, 415 (1987). 815. J. M. Ubrich, F. B. C. Larbi, J. L. Halary, L. Monnerie, B. Bauer, C. C. Han, Macromolecules, 19, 810 (1986). 816. H. Ueda, F. E. Karasz, Macromolecuies, 18, 2719 (1985). 817. H. Ueda, F. E. Karasz, J. Macromol. Sci., Chem. A, 27, 1693 (1990). 818. H. Ueda, F. E. Karasz, Polym. J., 24, 1363 (1992). 819. C. Uriarte, 1. J. Eguiazabal, M. Llanos, J. I. Iribarren, J. J. Iruin, Macromolecules, 20, 3038 (1987). 820. C. Uriarte, J. J. Iruin, M. J. Fernandez-Berridi, J. M. Elorza, Polymer, 30, 1155 (1989). 821. P. van Ende, G. Groeninckx, H. Reynaers, C. Samyn, Polymer, 33, 3598 (1992). 822. Van Tarn Bui, D. Baril, Thanh Long Vu, Makromol. Chem., Macromol. Symp., 16, 267 (1988). 823. D. L. Vanderhart, G. C. Campbell, R. M. Briber, Macromolecules, 25, 4734 (1992). 824. J. Vanderschueren, A. Janssens, M. Ladang, J. Niezette, Polymer, 23, 395 (1982). 825. D. F. Varnell, J. P. Runt, M. M. Coleman, Polymer, 24, 37 (1983). 826. K. T. Varughese, J. Appl. Polym. Sci., 39, 205 (1990). 827. K. T. Varughese, P. P. De, S. K. Sanyal, S. K. De, J. Appl. Polym. Sci., 37, 2537 (1989). 828. K. T. Varughese, G. B. Nando, P. P. De, S. K. De, J. Mater. Sci., 23, 3894 (1986). 829. H. Vazquez-Torres, C. A. Cruz-Ramos, J. Appl. Polym. Sci., 32, 6095 (1986). 830. A. Verma, B. L. Deopura, A. K. Sengupta, J. Appl. Polym. Sci., 31, 747 (1986). 831. J. M. Vion, R. Jerome, Ph. Teyssie, M. Aubin, R. E. Prud'homme, Macromolecules, 19, 1828 (1986). 832. M. Vivas de Meftahi, J. M. J. Frechet, Polymer, 29, 477 (1988). 833. E. J. Voremkamp, G. Challa, Polymer, 29, 86 (1988). 834. R. Vukovic, G. Bogdanic, V. Kuresevic, F. E. Karasz, W. J. MacKnight, Eur. Polym. J., 24, 123 (1988). 835. R. Vukovic, F. E. Karasz, W. J. MacKnight, Polymer, 24, 529 (1983). 836. R. Vukovic, F. E. Karasz, W. J. MacKnight, J. Appl. Polym. Sci., 28, 219 (1983). 837. R. Vukovic, V. Kuresevic, G. Bogdanic, D. Fles, Thermochim. Acta, 195, 351 (1992). 838. R. Vukovic, V. Kuresevic, G. Bogdanic, N. Segudovic, Polym. Bull., 28, 473 (1992).
839. R. Vukovic, V. Kuresevic, F. E. Karasz, W. J. MacKnight, Thermochim. Acta, 54, 349 (1982). 840. R. Vukovic, V. Kuresevic, F. E. Karasz, W. J. MacKnight, Proc. 7th Int. Conf. Thermal Analysis, 2, 1078 (1982) [Chem. Abstr., 99, 176649b (1983)]. 841. R. Vukovic, V. Kuresevic, F. E. Karasz, W. J. MacKnight, J. Appl. Polym. Sci., 30, 317 (1985). 842. R. Vukovic, V. Kuresevic, F. E. Karasz, W. J. MacKnight, Proc. 2nd Eur. Symp. Thermal Analysis, 243 (1981) [Chem. Abstr., 96, 36064v (1982)]. 843. R. Vukovic, V. Kuresevic, N. Segudovic, F. E. Karasz, W. J. MacKnight, J. Appl. Polym. Sci., 28, 1379 (1983). 844. Wahrmund, D. C, R. E. Bernstein, J. W. Barlow, D. R. Paul, Polym. Eng. Sci., 18, 677 (1978). 845. D. J. Walsh, G. L. Cheng, Polymer, 23, 1965 (1982). 846. D. J. Walsh, G. L. Cheng, Polymer, 25, 495 (1984). 847. D. J. Walsh, G. T. Dee, J. T. Halary, Macromolecules, 22, 3385 (1989). 848. D. J. Walsh, J. S. Higgins, Z. Chai, Polymer, 23, 336 (1982). 849. D. J. Walsh, J. S. Higgins, S. Rostami, Macromolecules, 16, 388 (1983). 850. D. J. Walsh, J. G. McKeown, Polymer, 21, 1330 (1980). 851. D. J. Walsh, C. K. Sham, Macromolecules, 22, 3799 (1989). 852. D. J. Walsh, L. Shi, Z. Chai, Polymer, 22, 1005 (1981). 853. D. J. Walsh, V. B. Singh, Makromol. Chem., 185, 1979 (1984). 854. M. H. Walters, D. N. Keyte, Rubber Chem. Technol., 38,62 (1965). 855. C. B. Wang, S. L. Cooper, J. Polym. Sci., Polym. Phys. Ed., 21, 11 (1983). 856. H. L. Wang, L. Toppare, J. E. Fernandez, Macromolecules, 23, 1053 (1990). 857. L. F. Wang, E. M. Pearce, T. K. Kwei, J. Polym. Sci., Polym. Phys. Ed., 29, 619 (1991). 858. X. Wang, H. Saito, T. Inoue, Kobunshi Ronbushu, 48, 443 (1991). 859. Y. Wang, H. Morawetz, Macromolecules, 22, 164 (1989). 860. Y. Y. Wang, S. A. Chen, Polym. Eng., Sci., 21, 47 (1981). 861. R. A. Weiss, C. Beretta, S. Sasongko, A. Garton, J. Appl. Polym. Sci., 41, 91 (1990). 862. C. Wendland, S. Klotz, V Krieger, H. J. Cantow, Am. Chem. Soc, Polym. Prepr., 30 (2), 109 (1989). 863. R. E. Wetton, W. J. MacKnight, J. R. Fried, F. E. Karasz, Macromolecules, 11, 158 (1978). 864. R. E. Wetton, P. J. Williams, Polym. Mater. Sci. Eng., 59, 846(1988). 865. J. M. Widmaier, G. Mignard, Eur. Polym. J., 23, 989 (1987). 866. K. A. Wolf, J. Polym. Sci., Part C, 4, 1626 (1963). 867. H. Wolff, Plast. Kautsch., 4, 244 (1957). 868. E. M. Woo, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci., 28, 1347 (1983). 869. E. M. Woo, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci., 29, 3837 (1984).
870. E. M. Woo, J. W. Barlow, D. R. Paul, J. Polym. ScL, Polym. Symp., 71, 137 (1984). 871. E. M. Woo, J. W. Barlow, D. R. Paul, J. Appl. Polym. ScL, 30, 4243 (1985). 872. E. M. Woo, J. W. Barlow, D. R. Paul, Polymer, 26, 763 (1985). 873. E. M. Woo, J. W. Barlow, D. R. Paul, J. Appl. Polym. ScL, 32, 3889 (1986). 874. S. Xie, W. J. MacKnight, F. E. Karasz, J. Appl. Polym. ScL, 29, 2679 (1984). 875. X. Xu, L. Zhang, H. Li, Polym. Eng. ScL, 27, 398 (1987). 876. Y. Xu, J. F. Graf, P. C. Painter, M. M. Coleman, Polymer, 31, 3103 (1991). 877. H. Yang, G. Hadziioannou, R. S. Stein, J. Polym. ScL, Polym. Phys. Ed., 21, 159 (1983). 878. H. Yang, S. Ricci, M. Collins, Macromolecules, 24, 5218 (1991). 879. H. Yang, S. Richard, C. C. Han, B. J. Bauer, E. J. Kramer, Polym. Commun., 27, 132 (1986). 880. H. Yang, M. Shibayama, R. S. Stein, N. Shimizu, T. Hashimoto, Macromolecules, 19, 1667 (1986). 881. T. P. Yang, E. M. Pearce, T. K. Kwei, N. L. Yang, Macromolecules, 22, 1813 (1989). 882. N. Yoshimura, K. Fujimoto, Nippon Gomu Kyokaishi, 41, 161 (1968); Rubber Chem. Techno!., 42, 1009 (1968). 883. D. Yu, Y. Zheng, Z. Wu, X. Tang, B. Jiang, J. Appl. Polym. ScL, 41, 2649 (1990). 884. D. Yu, E. H. Hellmann, G. P. Hellmann, Makromol. Chem., 192, 2749 (1991). 885. G. A. Zakrzewski, Polymer, 14, 347 (1973). 886. J. Zelinger, E. Volfova, H. Zahraknikova, Z. Pelzbauer, Int. J. Polym. Mater., 5, 99 (1976). 887. H. Zhang, R. E. Prud'homme, J. Polym. ScL, Polym. Phys. Ed., 25, 723 (1987). 888. X. Zhang, K. Hikichi, Macromolecules, 25, 2336 (1992). 889. X. Zhang, K. Takegoshi, K. Hikichi, Macromolecules, 24, 5756 (1991). 890. X. Zhang, K. Takegoshi, K. Hikichi, Polymer, 33, 712 (1992). 891. X. Zhang, K. Takegoshi, K. Hikichi, Polym. J., 24, 1403 (1992). 892. Y. Zhao, D. Ma, R. E. Prud'homme, Polymer, 32, 791 (1991). 893. Y. Zhao, R. E. Prud'homme, Macromolecules, 23, 713 (1990). 894. Y. Zhao, R. E. Prud'homme, Polym. Bull., 26, 101 (1991). 895. J. Q. Zheng, T. Kyu, Polym. Eng. ScL, 32, 1004 (1992). 896. Z. L. Zhou, A. Eisenberg, J. Polym. ScL, Polym. Phys. Ed., 21, 595 (1983). 897. K. J. Zhu, S. F. Chen, T. Ho, E. M. Pearce, T. K. Kwei, Macromolecules, 23, 150 (1990). 898. P. Zhuang, T. Kyu, J. L. White, Polym. Eng. ScL, 28,1095 (1988). 899. J. Zimmerman, E. M. Pearce, I. K. Miller, J. A. Muzzio, I. E. Epstein, E. A. Hosegood, J. Appl. Polym. ScL, 17,849 (1973).
900. J. J. Ziska, J. W. Barlow, D. R. Paul, Polymer, 22, 918 (1981). 901. L. Y. Zlatkevich, V. G. Nikolskii, Rubber Chem. Technol., 46, 1210 (1973). 902. P. Zucco, P. C. Painter, Am. Chem. Soc, Polym. Prepr., 29 (1), 341 (1988). 903. H. Abe, Y. Doi, M. M. Satkowski, I. Noda, Macromolecules, 27, 50 (1994). 904. D. Acierno, C. Naddeo, Polymer, 35, 1994 (1994). 905. T. O. Ahn, H. S. Eum, H. M. Jeong, J. Y. Park, Polym. Bull., 30, 461 (1993). 906. T. O. Ahn, M. Lee, H. M. Jeong, K. Cho, Pollimo, 17, 242 (1993). 907. T. O. Ahn, M. Lee, H. M. Jeong, K. Cho, J. Polym. ScL, Part B: Polym. Phys., 33, 327 (1995). 908. T. O. Ahn, C. Y. Ryu, J. H. Sunwoo, H. M. Jeong, Macromol. Rapid Commun., 15, 265 (1994). 909. I. Akiba, S. Akiyama, Polym. J., 26, 873 (1994). 910. M. Alberdi, E. Espi, M. J. Fernandez-Berridi, J. J. Iruin, Polym. J., 26, 1037 (1994). 911. A. Alegria, I. Telleria, J. Colmenero, J. Non-Cryst. Solid, 172, 961 (1994). 912. E. Andresen, H. G. Zechmann, Colloid Polym. ScL, 272, 1352 (1994). 913. K. Aoi, A. Takasu, M. Okada, Macromol. Rapid Commun., 16, 757 (1995). 914. K. Aoi, A. Takasu, M. Okada, Macromol. Rapid Commun., 16, 53 (1995). 915. A. Asano, K. Takegoshi, K. Hikichi, Polymer, 35, 5630 (1994). 916. A. Avramova, Polymer, 36, 801 (1995). 917. C. G. Bazuin, L. Rancourt, S. Villeneuve, A. Soldera, J. Polym. ScL, Part B: Polym. Phys., 31, 1431 (1993). 918. G. Beaucage, R. S. Stein, Macromolecules, 26, 1617 (1993). 919. L. A. Belfiore, C. Qin, E. Ueda, A. T. N. Pires, J. Polym. ScL, Part B: Polym. Phys., 31, 409 (1993). 920. S. Y. Bell, J. M. G. Cowie, I. J. McEwen, Polymer, 35, 786 (1994). 921. Z. Benabdelghani, R. Belkhiri, S. Djadoun, Polym. Bull., 35, 329 (1995). 922. D. E. Bhagwagar, P. C. Painter, M. M. Coleman, Macromolecules, 27, 7139 (1994). 923. E. Blumm, A. J. Owen, Polymer, 36, 4077 (1995). 924. R. H. Bott, J. A. Kuphal, L. M. Robeson, D. Sagl, J. Appl. Polym. ScL, 58, 1593 (1995). 925. D. Braun, D. Leiss, M. J. Bergmann, G. P. Hellmann, Eur. Polym. J., 29, 225 (1993). 926. W. Brostow, K. H. Seo, J. B. Back, J. C. Lim, Polym. Eng. ScL, 35, 1016 (1995). 927. C. M. Buchanan, S. C. Gedon, B. G. Pearcy, A. W. White, M. D. Wood, Macromolecutes, 26, 5704 (1993). 928. A. B. Burdin, A. A. Tager, Vysokomol. Soedin, Ser. A., 35, 1290(1993). 929. T. A. Callaghan, D. R. Paul, Macromolecules, 26, 2439 (1993).
930. T. A. Callaghan, D. R. Paul, J. Polym. ScL, Part B: Polym. Phys., 32, 1813 (1994). 931. T. A. Callaghan, D. R. Paul, J. Polym. ScL, Part B: Polym. Phys., 32, 1847 (1994). 932. T. A. Callaghan, K. Takakuwa, D. R. Paul, A. R. Padwa, Polymer, 34, 3796 (1993). 933. G. Ceccorulli, M. Pizzoli, M. Scandola, Macromolecules, 26, 6722 (1993). 934. L. C. Cesteros, J. R. Isasi, I. Katime, Macromolecules, 26, 7256 (1993). 935. L. C. Cesteros, J. R. Isasi, I. Katime, J. Polym. ScL, Part B: Polym. Phys., 32, 223 (1994). 936. L. C. Cesteros, J. R. Isasi, I. Katime, Macromolecules, 27, 7887 (1994). 937. L. C. Cesteros, E. Meaurio, I. Katime, Macromolecules, 26, 2323 (1993). 938. L. C. Cesteros, E. Meaurio, I. Katime, Polym. Int., 34, 97 (1994). 939. L. C. Cesteros, J. L. Velada, I. Katime, Polymer, 36, 3183 (1995). 940. Y. T. Cha, E. T. Kim, T. K. Ann, S. Choe, Polym. J., 26, 1227 (1994). 941. S. S. Chakraborty, N. Maiti, B. M. Mandai, S. N. Bhattacharyya, Polymer, 34, 111 (1993). 942. H. L. Chen, Macromolecules, 28, 2845 (1995). 943. J. Chen, S. H. Goh, S. Y. Lee, K. S. Siow, Polymer, 35, 1477 (1994). 944. J. Chen, S. H. Goh, S. Y. Lee, K. S. Siow, J. Appl. Polym. ScL, 56, 761 (1995). 945. S. S. Chen, T. Kyu, J. Macromol. Sci. B: Phys., 32, 63 (1993). 946. H. L. Chen, R. S. Porter, J. Polym. Sci., Part B: Polym. Phys., 31, 1845 (1993). 947. H. Cherdron, M. Haubs, F. Herold, A. Schneller, O. Herrmann-Schonherr, R. Wagener, J. Appl. Polym. Sci., 53, 507 (1994). 948. Y. W. Cheung, R. S. Stein, Macromolecules, 27, 2512 (1994). 949. Y. W. Cheung, R. S. Stein, J. S. Lin, G. D. Wignall, Macromolecules, 27, 2520 (1994). 950. Y. W. Cheung, R. S. Stein, G. D. Wignall, H. E. Yang, Macromolecules, 26, 5365 (1993). 951. J. W. Cho, J. Tasaka, S. Miyata, Polym. J., 25, 1267 (1993). 952. S. Choe, Y. J. Cha, H. S. Lee, J. S. Yoon, H. J. Choi, Polymer, 36, 4977 (1995). 953. C. H. Chu, B. Beraer, J. Appl. Polym. Sci., 47, 1083 (1993). 954. S. Cimmino, E. Dipace, E. Martuscelli, C. Silvestre, Polymer, 34, 2799 (1993). 955. K. J. Chu, W. Ji, Makromol. Chem. Phys., 196,479 (1995). 956. S. Classen, M. Vogt, J. H. Wendorff, Polym. Adv. TechnoL, 6, 616 (1995). 957. M. R. Coleman, R. Kohn, W. J. Koros, J. Appl. Polym. Sci., 50, 1059 (1993). 958. M. M. Colemen, Y. Xu, S. R. Macio, P. C. Painter, Macromolecules, 26, 3457 (1993).
959. M. M. Colemen, X. Yang, P. C. Painter, Y. H. Kim, J. Polym. Sci., Part A: Polym. Chem., 32, 1817 (1994). 960. M. M. Colemen, X. Yang, H. Zhang, P. C. Painter, J. Macromol. ScL-Phys., 32, 295 (1993). 961. M. M. Colemen, X. Yang, H. Zhang, P. C. Painter, K. V. Scherer. Jr, J. Polym. Sci., Part A: Polym. Chem., 31,2039 (1993). 962. P. Cote, J. Brisson, Macromolecules, 27, 7329 (1994). 963. J. M. G. Cowie, A. Demaude, Polym. Adv. TechnoL, 5,178 (1994). 964. J. M. G. Cowie, B. G. Devlin, I. J. McEwen, Polymer, 34, 501 (1993). 965. J. M. G. Cowie, R. Ferguson, I. J. McEwen, V. M. C. Reid, Polymer, 35, 1473 (1994). 966. J. M. G. Cowie, J. H. Harris, Eur. Polym. J., 30,707 (1994). 967. J. M. G. Cowie, G. Li, I. J. McEwen, Polymer, 35, 5518 (1994). 968. J. M. G. Cowie, A. A. N. Reilly, Eur. Polym. J., 29, 455 (1993). 969. J. M. G. Cowie, A. A. N. Reilly, J. Appl. Polym. Sci., 47, 1155 (1993). 970. J. M. G. Cowie, L. M. Watson, I. J. McEwen, Polym. Bull., 32, 729 (1993). 971. M. D. Dadmun, C. C. Han, Mat. Res. Soc. Symp. Proc, 305, 171 (1993). 972. Y K. Dai, E. Y. Chu, Z. S. Xu, E. M. Pearce, Y. Okamoto, T. K. Kwei, J. Polym. Sci., Part A: Polym. Chem., 32, 397 (1994). 973. J. Dai, S. H. Goh, S. Y. Lee, K. S. Siow, Polymer, 34, 4314 (1993). 974. J. Dai, S. H. Goh, S. Y. Lee, K. S. Siow, Polymer, 35, 2174 (1994). 975. J. Dai, S. H. Goh, S. Y. Lee, K. S. Siow, J. Appl. Polym. Sci., 53, 837 (1994). 976. J. Dai, S. H. Goh, S. Y. Lee, K. S. Siow, Polym. J., 26, 905 (1994). 977. J. Dai, S. H. Goh, S. Y. Lee, K. S. Siow, Polym. J., 27, 558 (1995). 978. J. Dai, S. H. Goh, S. Y. Lee, K. S. Siow, J. Polym. Res., 2, 209 (1995). 979. K. Darragas, G. Groeninckx, H. Reynaers, C. Samyn, Eur. Polym. J., 30, 1165 (1994). 980. J. Datta, A. K. Nandi, Polymer, 35, 4804 (1994). 981. A. M. de Ilarduya, J. L. Eguiburu, E. Espi, J. J. Iruin, M. J. Fernandez-Berridi, Makro. Chem., 194, 501 (1993). 982. R. De Juann, A. Etxeberria, M. Cortazar, J. J. Iruin, Macromolecules, 27, 1395 (1994). 983. H. de los Santos Jones, Y. Liu, P. T. Inglefield, A. A. Jones, C. K. Kim, D. R. Paul, Polymer, 35, 57 (1994). 984. W. de Oliveira, W. G. Glasser, J. Appl. Polym. Sci., 51,563 (1994). 985. S. Dadoun, F E. Karasz, F. Metref, Maromol. Symp., 78, 155 (1994). 986. L. Dong, D. J. T. Hill, A. K. Whittaker, K. P. Ghiggino, Macromolecules, 27, 5912 (1994). 987. E. Dubini Paglia, P. L. Beltrame, M. Canetti, A. Seves, B. Marcandalli, E. Martuscelli, Polymer, 34, 996 (1993).
988. S. Dutta, S. S. Chakraborty, B. M. Mandal, S. N. Bhattacharyya, Polymer, 34, 3499 (1993). 989. J. L. Eguiburu,, A. M. de Ilarduya, J. J. Iruin, M. J. Fernandez-Berridi, Polym. Int., 33, 393 (1994). 990. C. D. Eisenbach, J. Hofmann, K. Fischer, Macromol Rapid Commun., 15, 117 (1994). 991. C. D. Eisenbach, J. Hofmann, W. J. MacKnight, Macromolecules, 27, 3162 (1994). 992. T. S. Ellis, J. Polym. Sci., Part B: Polym. Phys., 31, 1109 (1993). 993. T. S. Ellis, Polymer, 36, 3919 (1995). 994. A. Etxeberria, J. M. Elorza, J. J. Iruin, C. Macro, M. A. Gomez, J. G. Faton, Eur. Polym. J., 29, 1483 (1993). 995. A. Etxeberria, M. Iriarte, C. Uriarte, J. J. Iruin, Macromolecules, 28, 7188 (1995). 996. A. Etxeberria, C. Uriarte, M. J. Fernandez-Berridi, J. J. Iruin, Polymer, 35, 2128 (1994). 997. L. Fambri, A. Penati, J. Kolarik, Angew. Makromol. Chem., 209, 119 (1993). 998. H. Feng, Z. Feng, L. Shen, Polymer, 34, 2516 (1993). 999. H. Q. Feng, L. F Shen, Z. L. Feng, Eur. Polym. J., 31, 243 (1995). 1000. H. Feng, C. Ye, P. Zhang, Z. Sun, Z. Feng, Macromoi. Chem. Phys., 196, 2587 (1995). 1001. F. Feraz, A. S. H. Hamou, S. Djadoun, Eur. Polym. J., 31, 665 (1995). 1002. M. J. Feranadez-Berridi, M. Valero, A. M. de Ilarduya, E. Espi, J. J. Iruin, Polymer, 34, 38 (1993). 1003. M. L. Franzen, J. R. Elliott, Jr., T. Kyu, Macromolecules, 28,5147(1995). 1004. M. Gada, R. A. Gross, S. P McCarthy, Stud. Polym. Sci., 12, 177 (1994). 1005. K. P Gallagher, X. Zhang, J. R Runt, G. Huynh-ba, J. S. Lin, Macromolecules, 26, 588 (1993). 1006. M. E. Galvin, S. Heffner, K. I. Winey, Macromolecules, 27, 3520 (1994). 1007. P. P. Gan, D. R. Paul, Polymer, 35, 3513 (1994). 1008. R P. Gan, D. R. Paul, J. Appl. Polym. Sci., 54, 317 (1994). 1009. R P. Gan, D. R. Paul, J. Polym. Sci., Part B: Polym. Phys., 33, 1693 (1995). 1010. P. P. Gan, D. R. Paul, A. R. Padwa, Polymer, 35, 1487 (1994). 1011. R P. Gan, D. R. Paul, A. R. Padwa, Polymer, 35, 3351 (1994). 1012. F. O. Garces, K. Sivadasan, P. Somasundaran, N. J. Turro, Macromolecules, 27, 272 (1994). 1013. Z. G. Gardlund, Polymer, 34, 1850 (1993). 1014. L. Gargallo, N. Gatica, D. Radic, Int. J. Polym. Mater., 27, 107 (1994). 1015. M. Gaztelumendi, J. Nazabal, J. Polym. Sci., Part B: Polym. Phys., 33, 603 (1995). 1016. S. H. Goh, S. Y. Lee, A. S. H. Ho, Bull. Singapore Natl. Inst. Chem., 22, 47 (1994). 1017. S. H. Goh, S. Y. Lee, S. M. Low, Macromolecules, 27,6736 (1994).
1018. S. H. Goh, S. Y. Lee, K. S. Siow, J. Chen, Polymer, 34, 2898 (1993). 1019. J. M. Gomez-Elvira, J. L. Halary, L. Monnerie, L. J. Fetters, Macromolecules, 27, 3370 (1994). 1020. D. Goncalves, A. Waddon, F. E. Karasz, L. Akcelrud, Synth. Metal., 74, 197 (1995). 1021. K. R. Gorda, D. J. Peiffer, J. Appl. Polym. Sci., 50, 1977 (1993). 1022. A. Gottschalk, K. Muhlbach, F. Seitz, R. Stadler, C. Auschra, Macromol. Symp., 83, 127 (1994). 1023. Q. Guo, Polymer, 34, 70 (1993). 1024. Q. Guo, Macromol. Rapid Commun., 16, 785 (1995). 1025. Q. Guo, K. Sun, T. Fang, Y Qi, Z. Feng, J. Appl. Polym. Sci., 48, 547 (1993). 1026. Q. H. Guo, X. J. Yuan, L. K. Chen, N. Sun, Cellul. Chem. Technol., 27, 369 (1993). 1027. M. Guo, H. G. Zachmann, Polymer, 34, 2503 (1993). 1028. C. S. Ha, W. J. Cho, J. H. Ryou, R. J. Roe, Polymer, 34, 505 (1993). 1029. J. T. Haponiuk, A. Balas, J. Therm. Anal., 43, 215 (1995). 1030. H. Hayashi, M. Kakimoto, Y Imai, Polymer, 36, 2797 (1995). 1031. H. Hayashi, S. Nakata, M. Kakimoto, Y Imai, J. Appl. Polym. Sci., 49, 1241 (1993). 1032. S. A. Heffner, P. A. Mirau, Macromolecules, 27, 7283 (1994). 1033. K. S. Ho, K. Levon, J. Mao, W. Y Zheng, J. Laakso, Synth. Met., 57, 3591 (1993). 1034. J. Hong, S. H. Goh, S. Y Lee, K. S. Siow, Polymer, 36, 143 (1995). 1035. J. Hong, S. H. Goh, S. Y Lee, K. S. Siow, Polym. Networks Blends, 5, 101 (1995). 1036. D. T. Hseih, D. G. Peiffer, J. Appl. Polym. Sci., 47, 1469 (1993). 1037. B. S. Hsiao, B. B. Sauer, J. Polym. Sci., Part B: Polym. Phys., 31, 901 (1993). 1038. J. Huang, A. Prasad, H. Marand, Polymer, 35, 1896 (1994). 1039. C. C. Hung, W. G. Carson, S. R Bohan, J. Polym. Sci., Part B: Polym. Phys., 32, 141 (1994). 1040. P. P. Huo, R Cebe, M. Capel, Macromolecules, 26, 4275 (1993). 1041. K. Ikawa, S. Tanaka, K. Ueno, Polym. Networks Blends, 3, 31 (1993). 1042. C. T. Imrie, B. J. A. Paterson, Macromolecules, 27, 6673 (1994). 1043. P. Iriondo, J. J. Iruin, M. J. Fernandez-Berridi, Polymer, 36, 3235 (1995). 1044. J. R. Isasi, L. C. Cesteros, I. Katime, Polymer, 34, 2374 (1993). 1045. J. R. Isasi, L. C. Cesteros, I. Katime, Macromol. Rapid Commun., 15, 903 (1994). 1046. J. R. Isasi, L. C. Cesteros, I. Katime, Polymer, 36, 1235 (1995). 1047. V. Janarthanan, J. Kresssler, F. E. Karasz, W. J. MacKnight, J. Polym. Sci., B: Polym. Phys., 31, 1013 (1993).
1048. S. C. Jeong, H. M. Jeong, M. H. Oh, B. K. Kim, Polym. Bull., 33, 237 (1994). 1049. M. Jiang, T. Huang, J. Xie, Macromol. Chem. Phys., 196, 803 (1995). 1050. M. Jiang, X. Qiu, W. Qin, L. Fei, Macromolecules, 28,730 (1995). 1051. M. Jiang, C. Zhou,, Z. Zhang, Polym. Bull, 30,449 (1993). 1052. W. H. Jo, J. Y. Kim, M. S. Lee, J. Polym. ScL, Part B: Polym. Phys., 32, 1321 (1994). 1053. W. H. Jo, J. Y. Kim, M. S. Lee, Polym. J., 26, 465 (1994). 1054. W. H. Jo, M. R. Lee, B. G. Min, M. S. Lee, Polym. Bull., 33,113(1994). 1055. L. Jong, E. M. Pearce, T. K. Kwei, Polymer, 34,48 (1993). 1056. A. K. Kalkar, P. S. Parkhi, J. Appl. Polym. ScL, 57, 233 (1995). 1057. A. K. Kalkar, N. K. Roy, Eur. Polym. J., 29, 1391 (1993). 1058. R. P. Kambour, W. L. Nachlis, J. D. Carbeck, Polymer, 35, 209 (1994). 1059. Y. Kano, S. Akiyama, T. Kasemura, Int. J. Adhesion and Adhesives, 15, 219 (1995). 1060. Y. Kano, S. Kawahara, S. Akiyama, J. Adhes., 41, 25 (1993). 1061. R. J. Karcha, R. S. Porter, J. Polym. ScL, Part B: Polym. Phys., 31, 821 (1993). 1062. S. Kawahara, S. Akiyama, Macromolecules, 26, 2428 (1993). 1063. S. Kawahara, K. Sato, S. Akiyama, J. Polym. ScL, Part B: Polym. Phys., 32, 15 (1994). 1064. L. W. Kelts, C. J. T. Landry, D. M. Teegarden, Macromolecules, 29, 2941 (1993). 1065. B. K. Kim, I. H. Kim, Polym. Plast. Technol. Eng., 32,167 (1993). 1066. K. J. Kim, G. B. Kim, S. H. Han, J. Appl. Polym. ScL, 49,7 (1993). 1067. S. J. Kim, B. K. Kim, H. M. Jeong, J. Appl. Polym. ScL, 51, 2187 (1994). 1068. C. K. Kim, J. J. Lim, D. R. Paul, Polym. Eng. ScL, 34,1788 (1994). 1069. J. H. Kim, C. J. Lim, K. E. Min, Pollimo, 17, 654 (1993). 1070. C. K. Kim, D. R. Paul, Polym. Eng. ScL, 34, 24 (1994). 1071. S. H. Kim, E. M. Pearce, T. K. Kwei, J. Polym. ScL, Part A: Polym. Chem., 31, 3167 (1993). 1072. N. Kinami, T. Okuyama, M. Okamoto, T. Inone, Polymer, 36, 4449 (1995). 1073. S. Kobayashi, J. W. Cho, S. Miyata, Polym. J., 26, 235 (1994). 1074. J. S. Kollodge, R. S. Porter, Polymer, 34, 4990 (1993). 1075. T. Kondo, C. Sawatari, R. St. J. Manley, D. G. Gray, Macromolecules, 27, 210 (1994). 1076. Y. Kosaka, T. Uryu, Macromolecules, 27, 6286 (1994). 1077. Y. Kosaka, T. Uryu, J. Polym. ScL, Part A: Polym. Chem., 33, 2221 (1995). 1078. T. Kovacic, B. Baric, I. Klaric, Thermochim. Acta, 231, 215 (1994). 1079. N. Koyama, Y. Doi, Can. J. Microbiol., 41 (Suppl. 1), 316 (1995).
1080. C. Kummerlowe, H. W. Kammer, M. Malinconico, E. Martuscelli, Polymer, 34, 1677 (1993). 1081. P. R Kundu, D. K. Tripathy, B. K. Samanthroy, Polym. Networks Blends, 5, 11 (1995). 1082. S. Y Kwak, J. Appl. Polym. ScL, 53, 1823 (1994) 94-81. 1083. T. K, Kwei, Y. K. Dai, X. Lu, R. A. Weiss, Macromolecules, 26, 6583 (1993). 1084. T. Kyu, S. S. Chen, J. Macromol. Sci. Phys. B, 32, 55 (1993). 1085. T. Kyu, C. C. Ko, D. S. Lim, S. D. Smith, I. Noda, J. Polym. Sci., Part B: Polym. Phys., 31, 1641 (1993). 1086. C. J. T. Landry, B. K. Coltrain, D. M. Teegarden, W. T. Ferrar, Macromolecules, 26, 5543 (1993). 1087. C. J. T. Landry, W. T. Ferrar, D. M. Teegarden, B. K. Coltrain, Macromolecules, 26, 35 (1993). 1088. M. R. Landry, D. J. Massa, C. J. T. Landry, D. M. Teegarden, R. H. Colby, T. E. Long, P. M. Henrichs, J. Appl. Polym. Sci., 54, 991 (1994). 1089. C. J. T. Landry, D. J. Massa, D. M. Teegarden, M. R. Landry, P. M. Henrichs, R. H. Colby, T E. Long, Macromolecules, 26, 6299 (1993). 1090. D. Lath, E. Lathova, Chem. Papers, 48, 226 (1994). 1091. D. Lath, E. Lathova, J. M. G. Cowie, Makromol. Chem., 194, 3087 (1993). 1092. W. K. Lee, C. S. Ha, Pollimo, 18, 935 (1994). 1093. J. S. Lee, H. J. Kim, D. S. Lee, Polym. Bull., 30, 229 (1993). 1094. L. M. Leung, K. K. C. Lo, Polym. Int., 36, 339 (1995). 1095. K. Levon, E. Chu, K. S. Ho, T. K. Kwei, J. Mao, W. Y Zheng, J. Laakso, J. Polym. Sci., Part B: Polym. Phys., 33, 537 (1995). 1096. E. G. Lezcano, M. G. Prolongo, C. S. Coll, Polymer, 36, 595 (1995). 1097. W. Li, R. E. Prudhomne, J. Polym. Sci., Part B: Polym. Phys., 31, 719 (1993). 1098. J. C. Lim, J. K. Park, H. Y Song, J. Polym. Sci. Polym. Phys., 32, 29 (1994). 1099. Y. G. Lin, H. W. Lee, H. H. Winter, S. Dashevsky, K. S. Kim, Polymer, 34, 4703 (1993). 1100. J. Liu, Y. C Jean, H. Yang, Macromolecules, 28, 5774 (1995). 1101. D. J. Lohse, L. J. Fetters, M. J. Doyle, H. C. Wang, C. Kow, Macromolecules, 26, 3444 (1993). 1102. J. Lokaj, A. Sikora, Z. Pientka, M. Bleha, J. Appl. Polym. Sci., 58, 1485 (1995). 1103. N. Lotti, M. Pizzoli, G. Ceccorulli, M. Scandola, Polymer, 34, 4935 (1993). 1104. S. M. Low, S. Y. Lee, S. H. Goh, Eur. Polym. J., 29, 909 (1993). 1105. S. M. Low, S. Y. Lee, S. H. Goh, Eur. Polym. J., 29, 1075 (1993). 1106. S. M. Low, S. Y Lee, S. H. Goh, Eur. Polym. J., 29, 1543 (1993). 1107. S. M. Low, S. Y. Lee, S. H. Goh, Macromolecules, 26,2631 (1993). 1108. S. M. Low, S. Y. Lee, S. H. Goh, Eur. Polym. J., 30, 139 (1994).
1109. S. M. Low, S. H. Goh, S. Y. Lee, M. K. Neo, Polym. Bull., 32, 187 (1994). 1110. S. M. Low, S. H. Goh, S. Y. Lee, Macromolecuies, 27,3764 (1994). 1111. S. M. Low, S. H. Goh, S. Y Lee, Polymer, 35,3290 (1994). 1112. S. Lu, E. M. Pearce, T. K. Kwei, J. Polym. Sci., Part A: Polym. Chem., 32, 2607 (1994). 1113. S. Lu, E. M. Pearce, T. K. Kwei, Polymer, 36,2435 (1995). 1114. S. Lu, E. M. Pearce, T. K. Kwei, Polym. Eng. Sci., 35,1113 (1995). 1115. X. Lu, R. A. Weiss, Macromolecuies, 28, 3022 (1995). 1116. D. Luo, T. K. Kwei, E. M. Pearce, Macromol. Symp., 98, 769 (1995). 1117. D. Luo, E. M. Pearce, T. K. Kwei, Macromolecuies, 26, 6220 (1993). 1118. X. Luo, S. Zheng, D. Ma, K. Hu, Chin. J. Polym. Sci., 13, 144 (1995). 1119. X. Luo, S. Zheng, N. Zhang, D. Ma, Polymer, 35, 2619 (1994). 1120. D. Ma, R. Zhang, X. Luo, Polymer, 36, 3963 (1995). 1121. T. R. Maier, A. M. Jamieson, R. Simha, J. Appl. Polym. Sci., 51, 1053 (1994). 1122. P. Maiti, A. K. Nandi, Macromolecules, 28, 8511 (1995). 1123. B. Majumdar, H. Keskkula, D. R. Paul, N. G. Harvey, Polymer, 35, 4263 (1994). 1124. A. A. Mansour, S. A. Madbouly, Polym. Int., 36, 269 (1995). 1125. D. J. Massa, K. A. Shriner, S. R. Turner, B. I. Voit, Macromolecuies, 28, 3214 (1995). 1126. C. Marco, M. A. Gomez, J. G. Fatou, A. Etxeberria, M. M. Elorza, J. J. Iruin, Eur. Polym. J., 29, 1477 (1993). 1127. J. M. Martinez, J. I. Eguiazabai, J. Nazabal, J. Appl. Polym. Sci., 48, 935 (1993). 1128. S. L. Maunu, J. Kinnunen, K. Soljamo, F. Sundholm, Polymer, 34, 1141 (1993). 1129. K. G. McGrath, C. M. Roland, Rubber Chem. TechnoL, 67, 629 (1994). 1130. N. Mekhilef, P. Hadjiandreou, Polymer, 36, 2165 (1995). 1131. F. Metref, S. Djadoun, Polym. Bull., 34, 485 (1995). 1132. S. P. Mishra, P. Venkidusamy, J. Appl. Polym. Sci., 58, 2229 (1995). 1133. Y Miyashita, Y Yamada, N. Kimura, Y. Nishio, H. Suzuki, Seni Gakkaishi, 51, 396 (1995). 1134. S. Mohanty, S. Roy, R. N. Santra, G. B. Nando, J. Appl. Polym. Sci., 58, 1947 (1995). 1135. A. Molnar, A. Eisenberg, Polymer, 34, 1918 (1993). 1136. S. Nakata, M. Kakimoto, Y Imai, Polym. J., 25, 569 (1993). 1137. M. K. Neo, S. H. Goh, Polym. Networks Blends, 3, 131 (1993). 1138. C. W. A. Ng, M. A. Bellinger, W. J. MacKnight, Macromolecules, 27, 6942 (1994). 1139. M. Nishimoto, Y. Takami, A. Tohara, H. Kasahara, Polymer, 36, 1441 (1995). 1140. Y Nishio, H. Suzuki, K. Morisaki, Polym. Int., 31, 15 (1993).
1141. A. Opazo, L. Gargallo, D. Radic, Int. J. Polym. Mater., 27, 117 (1994). 1142. S. J. Organ, Polymer, 35, 86 (1994). 1143. S. J. Organ, P. J. Barham, Polymer, 34, 459 (1993). 1144. A. A. C. M. Oudhuis, G. ten Brinke, F. E. Karasz, Polymer, 34, 1991 (1993). 1145. A. A. C. M. Oudhuis, H. J. Thiewes, P. F. van Hutten, G. ten Brinke, Polymer, 35, 3936 (1994). 1146. T. Ougizawa, D. J. Walsh, Polym. J., 25, 1315 (1993). 1147. S. Palsule, J. M. G. Cowie, Polym. Bull., 33, 241 (1994). 1148. R. A. Pearson, A. F. Yee, J. Appl. Polym. Sci., 48, 1051 (1993). 1149. P. Pedrosa, J. A. Pomposo, E. Calahorra, M. Cortazar, Polymer, 36, 3889 (1995). 1150. P. Pedrosa, J. A. Pomposo, E. Calahorra, M. Cortazar, Macromolecules, 27, 102 (1994). 1151. M. V. Pellow-Jarman, P. J. Hendra, M. J. J. Hetem, Spectrochim. Acta, Part A, 51 A, 2107 (1995). 1152. J. Peng, S. H. Goh, S. Y. Lee, K. S. Siow, Polymer, 34,4930 (1993). 1153. J. Peng, S. H. Goh, S. Y. Lee, K. S. Siow, Polymer, 35, 1482 (1994). 1154. J. Peng, S. H. Goh, S. Y. Lee, K. S. Siow, Polym. Networks Blends, 4, 139 (1994). 1155. J. Peng, S. H. Goh, S. Y Lee, K. S. Siow, Polym. Networks Blends, 5, 19 (1995). 1156. S. Percec, L. Melamud, J. Appl. Polym. Sci., 47, 723 (1993). 1157. P. Perrin, R. E. Prud'homme, Acta Polym., 44, 307 (1993). 1158. D. M. Petrovic-Djakov, J. M. Filipovic, Lj. P. Vrhovac, J. S. Velickovic, J. Therm. Anal, 40, 741 (1993). 1159. J. Pionteck, V. Reid, W. J. MacKnight, Acta Polym., 46, 156 (1995). 1160. M. C. Piton, A. Natansohn, Macromolecules, 28, 1197 (1995). 1161. J. A. Pomposo, E. Calahorra, I. Eguiazabai, M. Cortazar, Macromolecules, 26, 2104 (1993). 1162. J. A. Pomposo, M. Cortazar, E. Calahorra, Macromolecules, 27, 245 (1994). 1163. J. A. Pomposo, M. Cortazar, E. Calahorra, Macromolecules, 27, 252 (1994). 1164. J. A. Pomposo, I. Eguiazabai, E. Calahorra, M. Cortazar, Polymer, 34, 95 (1993). 1165. X. Qiu, M. Jiang, Polymer, 35, 5084 (1994). 1166. X. Qiu, M. Jiang, Polymer, 36, 3601 (1995). 1167. M. Rabeony, D. B. Siano, D. G. Peiffer, E. Siakali-Koulafa, N. Hadjichristidis, Polymer, 35, 1033 (1994). 1168. P. Rajagopalan, J. S. Kim, H. P. Brack, X. Lu, A. Eisenberg, R. A. Weiss, W. M. Risen. Jr, J. Polym. Sci., Part B: Polym. Phys., 33, 495 (1995). 1169. P. Ramesh, S. K. De, J. Appl. Polym. Sci., 50,1369 (1993). 1170. P. Ramesh, D. Khastgir, S. K. De, Plast. Rubber Compos. Process Appl., 20, 35 (1993). 1171. D. Rana, B. M. Mandal, S. N. Bhattacharyya, Polymer, 34, 1454 (1993). 1172. I. Ray, S. Roy, D. Khastgir, Polym. Bull., 30, 685 (1993).
1173. J. Runt, L. Jin, S. Talibuddin, C. R. Davis, Macromolecules, 28, 2781 (1995). 1174. J. Runt, D. M. Miley, K. P. Gallagher, X. Zhang, C. A. Barron, S. K. Kumar, Polym. Adv. Technol., 5, 333 (1994). 1175. J. H. Ryou, C. S. Ha, W. J. Cho, J. Polym. ScL, Part A: Polym. Chem., 31, 325 (1993). 1176. K. Sakurai, E. Douglas, W. J. MacKnight, Macromolecules, 26, 208 (1993). 1177. A. Sanchis, M. G. Prolongo, R. G. Rubio, R. M. Masegosa, Polym. J., 27, 10 (1995). 1178. B. B. Sauer, B. S. Hsiao, J. Polym. ScL, Part B: Polym. Phys., 31, 917 (93). 1179. B. B. Sauer, B. S. Hsiao, Polymer, 34, 3315 (1993). 1180. M. Sankarapandian, K. Kishore, Macromolecules, 27, 7278 (1994). 1181. R. N. Santra, T. K. Chaki, S. Roy, G. B. Nando, Angew. Makromol. Chem., 213, 7 (1993). 1182. R. N. Santra, S. Roy, A. K. Bhowmick, G. B. Nando, Polym. Eng. ScL, 33, 1352 (1993). 1183. M. Scandola, Can. J. Microbiol., 41 (Suppl. 1), 310 (1995). 1184. H. A. Schneider, R Glatz, R. Mulhaupt, New Polym. Mater., 4, 289 (1995). 1185. K. Schulze, J. Kressler, H. W. Kammer, Polymer, 34, 3704 (1993). 1186. A. K. Sen, G. S. Mukherjee, Polymer, 34, 2386 (1993). 1187. M. Shibayama, K. Uenoyama, J. Oura, S. Nomura, T. Iwamoto, Polymer, 36, 4811 (1995). 1188. M. Shiyematsu, M. Morita, I. Sakata, Macromol. Chem. Phys., 195, 2827 (1994). 1189. A. Siciliano, A. Seves, T. De Marco, S. Cimmino, E. Martuscelli, C. Silvestre, Macromolecules, 28, 8065 (1995). 1190. P. Smith, A. Eisenberg, Macromolecules, 27, 545 (1994). 1191. D. D. Sotiropoulou, O. E. Avramidou, N. K. Kalfoglou, Polymer, 34, 2297 (1993). 1192. J. Straka, R Schmidt, J. Dybal, B. Schneider, J. Speracek, Polymer, 36, 1147 (1995). 1193. P Svoboda, J. Kressler, T. Chiba, T. Inoue, H. W. Kammer, Macromolecules, 27, 1154 (1994). 1194. K. Takakuwa, S. Gupta, D. R. Paul, J. Polym. ScL, Part B: Polym. Phys, 32, 1719 (1994). 1195. K. Takegoshi, K. Hikichi, Polym. J., 26, 1377 (1994). 1196. K. Takegoshi, K. Tsuchiya, K. Hikichi, Polym. J., 27, 284 (1995). 1197. T. Tanigami, Y. Shirai, K. Yamaura, S. Matsuzawa, Polymer, 35, 1970 (1994). 1198. R. E. Taylor-Smith, R. A. Register, Macromolecules, 26, 2802 (1993). 1199. A. Tezuka, K. Takegoshi, K. Hikichi, J. MoI. Struct., 355,9 (1995). 1200. H. Tomita, R. A. Register, Macromolecules, 26, 2796 (1993). 1201. M. Tsukada, M. Romano, A. Seves, Acta Polym., 43, 327 (1992). 1202. Y. Tsukahara, J. Inoue, Y Ohta, S. Kohjiya, Polymer, 35, 5785 (1994).
1203. Q. Tran-Cong, H. Nakano, J. Okinaka, R. Kawakubo, Polymer, 35, 1242 (1994). 1204. H. Ueda, F. E. Karasz, Polym. J., 26, 771 (1994). 1205. C. Uriarte, J. Alfageme, A. Etxeberria, J. J. Iruin, Eur. Polym. J., 31, 609 (1995). 1206. M. M. Vaidya, K. Levon, E. M. Pearce, J. Polym. ScL, Part B: Polym. Phys., 33, 2093 (1995). 1207. D. L. VanderHart, Macromolecules, 27, 2837 (1994). 1208. D. L. VanderHart, R. St. J. Manley, J. D. Barnes, Macromolecules, 27, 2826 (1994). 1209. M. Vanneste, G. Groeninckx, Polymer, 35, 1051 (1994). 1210. M. Vanneste, G. Groeninekx, Polymer, 36, 4253 (1995). 1211. H. Vazquez-Torres, J. V. Canich-Rodriguez, C. A. CruzRamos, J. Appl. Polym. ScL, 50, 777 (1993). 1212. J. L. Velada, L. C. Cesteros, E. Meaurio, I. Katime, Polymer, 36, 2765 (1995). 1213. I. M. Vermeesch, G. Groeninckx, Polymer, 36, 1039 (1995). 1214. LM. Vermeesch, G. Groeninckx, M. M. Coleman, Macromolecules, 26, 6643 (1993). 1215. R. Vukovic, G. Bogdanic, V. Kuresevic, N. Segudovic, F. E. Karasz, W. J. MacKnight, Polymer, 35, 3055 (1994). 1216. R. Vukovic, G. Bogdanic, V. Kuresevic, V. Srica, F. E. Karasz, W. J. MacKnight, J. Appl. Polym. ScL, 52, 1499 (1994). 1217. R. Vukovic, G. Bogdanic, V. Kuresevic, M. Tomaskovic, F. E. Karasz, W. J. MacKnight, J. Polym. ScL, Part B: Polym. Phys., 32, 1079 (1994). 1218. R. Vukovic, G. Bogdanic, N. Segudovic, D. Fles, F. E. Karasz, W. J. MacKnight, Thermochim. Acta, 264, 125 (1995). 1219. R. Vukovic, V Kureseric, G. Bogdanic, D. Fles, Thermochim. Acta, 233, 75 (1994). 1220. R. Vukovic, M. Zuanic, G. Bogdanic, F. E. Karasz, W. J. MacKnight, Polymer, 34, 1449 (1993). 1221. H. L. Wang, J. E. Fernandez, Macromolecules, 26, 3336 (1993). 1222. J. M. Warakomski, R. R Dion, J. Appl. Polym. ScL, 46, 1057 (1992). 1223. R. A. Weiss, X. Lu, Polymer, 35, 1963 (1994). 1224. J. L. White, P. A. Mirau, Macromolecules, 27,1648 (1994). 1225. G. D. Wignall, J. D. Londono, J. S. Lin, L. G. Alamo, M. J. Galante, L. Mandelkern, Macromolecules, 28, 3156 (1995). 1226. H. Witteler, G. Lieser, M. Droscher, Makro. Chem. Rapid Commun, 14, 401 (1993). 1227. A. Wrzyszczynski, X. Qu, L. Szosland, E. Adamczak, L. A. Linden, J. F. Rabek, Polym. Bull., 34, 493 (1995). 1228. S. Xie, A. Natansohn, P. Rochon, Macromolecules, 27, 1489 (1994). 1229. F. Y Xu, J. C. W. Chien, Macromolecules, 27, 6589 (1994). 1230. H. Yang, T. K. Kwei, Y Dai, Macromolecuies, 26, 842 (1993). 1231. H. Yang, E. Y. Ni, W. McKenna, Composite Interfaces, 1, 439 (1993). 1232. H. Yang, W. Yetter, Polymer, 35, 2417 (1994).
1233. Y. T. Yeo, S. Y. Lee, S. H. Goh, Eur. Polym. J., 30, 495 (1994). 1234. Y T. Yeo, S. Y Lee, S. H. Goh, Eur. Polym. J., 30, 1117 (1994). 1235. Y T. Yeo, S. Y Lee, S. H. Goh, Eur. Polym. J., 31, 39 (1995). 1236. Y T. Yeo, S. Y Lee, S. H. Goh, J. Appl. Polym. Sci, 55, 1651 (1995). 1237. J. S. Yoon. C. S. Choi, S. J. Maing, H. J. Choi, H. S. Lee, S. J. Choi, Eur. Polym. J., 29, 1359 (1993). 1238. K. H. Yoon, S. C. Lee, O. O. Park, Polym. J., 26, 816 (1994). 1239. N. Yoshie, Y Azuma, M. Sakurai, Y Inoue, J. Appl. Polym. Sci., 56, 17 (1995). 1240. H. Zhang, D. E. Bhagwagar, J. E Graf, R C. Painter, M. M. Coleman, Polymer, 35, 5379 (1994). 1241. L. Zhang, C. Xiong, X. Deng, J. Appl. Polym. Sci., 56,105 (1995). 1242. R. Zhang, X. Luo, D. Ma, J. Appl. Polym. Sci., 55, 455 (1995). 1243. R. Zhang, X. Luo, D. Ma, Eur. Polym. J., 31, 1011 (1995). 1244. P Zhang, Z. Sun, G. Li, Y Zhuang, M. Ding, Z. Feng, MakromoL Chem., 194, 1871 (1993). 1245. W. Zhao, L. Yu, X. Zhong, Y Zhang, J. Sun, J. Macromol. Sci. B: Phys., 34, 231 (1995).
1246. W. Zheng, K. Levon, T. Taka, J. Lankso, J. E. Osterholm, J. Polym. Sci., Part B: Polym. Phys., 33, 1289 (1995). 1247. K. J. Zhu, L. Wang, J. Wang, S. Yang, Macromol. Chem. Phys., 195, 1965 (1994). 1248. K. J. Zhu, L. Wang, S. Yang, Polym. Int., 36, 293 (1995). 1249. H. Zhuang, E. M. Pearce, T. K. Kwei, Macromolecules, 27, 6398 (1994). 1250. H. Zhuang, E. M. Pearce, T. K. Kwei, Polymer, 36, 2237 (1995). 1251. M. D. Zipper, G. P. Simon, M. R. Tant, J. D. Small, G. M. Stack, A. J. Hill, Polym. Int., 36, 127 (1995). 1252. W. Guo, G. R. Mitchell, Polymer, 35, 3706 (1994). 1253. A. M. de Ilarduya, J. J. Iruin, M. J. Fernandez-Berridi, Macromolecules, 28, 3707 (1995). 1254. M. Jiang, T. Huang, J. Xie, Macromol. Chem. Phys., 196, 787 (1995). 1255. X. Zhang, K. Takegoshi, K. Hikichi, Polym. J., 23, 79 (1991). 1256. X. Zhang, K. Takegoshi, K. Hikichi, Polym. J., 23, 87 (1991). 1257. X. Zhang, K. Takegoshi, K. Hikichi, Polymer, 33, 718 (1992). 1258. W. W. Y Lau, Y. Q. Jiang, P. P. K. Tan, Polym. Int., 31,163 (1993).
H e a t
C a p a c i t i e s
o f
H i g h
P o l y m e r s *
**
M . Pyda a n d B. W u n d e r l i c h Department of Chemistry, The University of Tennessee, Knoxville, TN 37996-1600, USA Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6197, USA A. Introduction B. Experimental Curves C. Data Tables for Solids and Liquids Table 1. c/s-1,4-Poly(butadiene) (PBDcV Table 2. trans- 1,4-Poly(butadiene) (PBDf) Table 3. c/s-1/4-Poly(2-methylbutadiene) (PMBD) Table 4. Poly(ethylene) (PE) Table 5. Poly(propylene) (PP) Table 6. PoIy(I-butene) (PB) Table 7. PoIy(I-pentene) (PPE) Table 8. PoIy(I -hexene) (PHE) Table 9. Poly(isobutene) (PIB) Table 10. Poly(4-methyl-1-pentene) (P4MPE) Table 11. Poly(tetrafluoroethylene) (PTFE) Table 12. Poly(vinyl fluoride) (PVF) Table 13. Poly(vinylidene fluoride) (PVF2) Table 14. Poly(trifluoroethylene) (P3FE) Table 15. Poly(vinyl chloride) (PVC) Table 16. Poly(vinylidene chloride) (PVC2) Table 17. Poly(chlorotrifluoroethylene) (PC3FE) Table 18. Poly(vinyl alcohol) (PVA) Table 19. Poly(vinyl acetate) (PVAc) Table 20. Poly(styrene) (PS) Table 21. Poly(a-methylstyrene) (PMS) Table 22. Poly(vinyl benzoate) (PVBZ) Table 23. Poly(methyl acrylate) (PMA)
VI-483 VI-485 VI-486 VI-486 VI-487 VI-488 VI-488 VI-489 VI-490 VI-490 VI-491 VI-492 VI-492 VI-493 VI-494 VI-494 VI-495 VI-496 VI-496 VI-497 VI-498 VI-498 VI-499 VI-500 VI-500 VI-501
* The submitted manuscript has been authored by a contractor of the US Government under the contract No. DE-AC05-96OR22464. Accordingly, the US Government retains a non-exclusive, royalty-free license to publish, or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. ** The work on the data bank mentioned in this chapter involved (in prior years) in particular Dr. U. Gaur, Dr. A. Mehta, Dr. S. F. Lau, and Dr. M. Varma-Nair. Financial support from the National Science Foundation, presently under Grant # DMR-9703692 (Polymers Program) was essential for the completion of the work. The present work is also supported by the Division of Materials Sciences, Office of Basic Energy Sciences, US Department of Energy at Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the US Department of Energy, under contract number DE-AC05-96OR22464. General Note: The letters in parenthesis (after polymer names) correspond to the author's file number in Ref. 40, and are not necessarily the accepted abbreviation.
Table Table Table Table Table Table Table Table Table Table Table Table Table Table
24. Poly(ethyl acrylate) (PEA) VI-502 25. Po!y(n-buty! acrylate) (PnBA) VI-502 26. Poly(iso-butyl acrylate) (PIBA) VI-503 27. Poly(methacrylic acid) (PMAA) VI-504 28. Poly(methyl methacrylate) (PMMA) VI-504 29. Poly(ethyl methacrylate) (PEMA) VI-505 30. Poly(n-butyl methacrylate) (PnBMA) VI-506 3 1 . PolyOsobutyl methacrylate) (PIBMA) VI-506 32. Poly(hexyl methacrylate) (PHMA) VI-507 33. Poly(acrylonitrile) (PAN) VI-508 34. Poly(methacrylamide) (PMAM) VI-508 35. Poly(oxy-i-oxoethylene) (PCL) VI-509 36. Poly(oxy-i-oxohexamethylene) (PCL)VI-510 37. Poly(oxyethyleneoxyterephthaloyl) (PET) VI-510 Table 38. PolyOmino-1-oxohexamethylene) (Nylon 6) VI-511 Table 39. PolyOminoadipoyliminohexamethylene) (Nylon 66) VI-512 Table 40. PolyOminoadipoyliminododecamethylene) (Nylon 612) VI-512 Table 4 1 . Poly(oxymethylene) (POM) VI-513 Table 42. Poly(oxyethylene) VI-514 Table 43. Poly(oxytrimethylene) (PO3M) VI-514 Table 44. Poly(oxytetramethylene) (PO4M) VI-515 Table 45. Poly(oxypropylene) (POPr) VI-515 Table 46. Poly(oxy-1,4-phenylene) (POPh) VI-516 Table 47. Poly(oxy-2,6-dimethyl1,4-phenylene) (PPO) VI-517 Table 48. Poly(oxy-2,6-diphenyl1,4-phenylene) (POPPO) VI-517 Table 49. Poly(oxycarbonyloxy1,4-phenylene-isopropylidene1,4-phenylene) (PC) VI-518 Table 50. Trigonal Selenium (SeT) VI-519 D. References VI-519 A. INTRODUCTION
The molar heat capacity at constant pressure, C p , is defined as the amount of heat, Q, needed to raise the temperature, Ty of one mole of substance at constant (atmospheric) pressure by one kelvin in the absence of latent heat effects, such as heats of fusion, crystallization,
reaction, etc. In differential form, one writes: C p = AQjAT — (dH/dT)pn, [ — heat capacity at constant pressure p, and number of moles, n (for polymers usually expressed per mole of repeating unit, i.e. for poly(propylene) per 0.04208kg); H= enthalpy= U+pV (U = total energy, V=molar volume)]. Frequently, one makes use of the specific heat capacity, c p , which refers commonly to the heat capacity of one gram of material (Cp = Cp/'M, where M represents the molar mass of the repeating unit in Da). The heat capacity is not only of theoretical interest, but has also considerable importance for practical applications, e.g., for calculation of enthalpy differences between two temperatures or as the basis for interpretation of differential scanning calorimetry (DSC) curves. Furthermore, Cp is a basic quantity of thermodynamics. All integral functions can be derived from the data on C p : the enthalpy, H = J Cp dT, equal to the total heat content when integrated from OK to the temperature of interest and adding all intervening heats of transition, AH, at their equilibrium transition temperatures (energy and enthalpy are conserved as expressed by the first law of thermodynamics); the entropy, S = J (Cp/T) dT, a measure of the degree of disorder of the sample, also to be integrated from 0 K to the temperature of interest and to be corrected by the intervening entropies of transition, AS (5 = 0 J/K/mol for equilibrium crystals at OK and positive for all other temperatures and states-third law of thermodynamics; and the free enthalpy, G = H — TS, a measure of the stability of the sample (the state with the lowest free enthalpy is most stable - second law of thermodynamics). Figure 1 displays these integral functions for the example of polyethylene (PE, see Table 4) (34). A representative experimental heat capacity measured by differential scanning calorimetry (DSC) is given in Fig. 2 for semicrystalline poly(oxyethyleneoxyterephthaloyl) (PET, see Table 37) (35). It can be seen that the heat capacity, Cp, given in J/K/mol, is not a single-valued function of temperature. It depends on the state of the polymer [crystalline, amorphous (solid or liquid), or semicrystalline]. The common semicrystalline samples, characterized by their weight fraction (or percentage) crystallinity wc, are not in equilibrium, and their heat capacity depends on the thermal history since different cooling or annealing conditions may lead to different values of wc. In addition, particularly in the melting region, the method of measurement, such as DSC or temperaturemodulated DSC (TMDSC), may also yield different experimental answers (35). The TMDSC (heavy curve) is a measure of the limited reversibility of the melting of polymers, while the DSC curve is a measure of the breadth of the melting which arises from crystallite sizedistributions and reorganization during melting (36). In case of amorphous polymers (or the amorphous portion of a semicrystalline polymer) the heat capacity changes at the glass transition temperature, Tg, by ACP, proportional to the weight fraction of amorphous material present, as shown in Fig. 3. In addition, the value of AC P is
often proportional to the number of flexible parts (beads) into which the repeating unit can be divided [^ 11 J/K (mol of beads)"1 (34)]. The detailed apparent heat-capacity response of the sample in the glass-transition region is dependent on the thermal history of the substance under investigation and also on the heating rate of measurement. A maximum of heat capacity may be caused by enthalpy relaxation and may easily be confused with a melting process, as illustrated in Fig. 3, for atactic poly(styrene) (PS, see Table 20.). A number of other non-equilibrium processes that change the appearance of the heat capacity are (34): minima (exotherms) caused by stress relaxation that may be confused with a crystallization process, crystal perfection, annealing or fusion that add to or subtract from the heat capacity. Positive (endothermic) effects are usually indicative of disordering, negative (exothermic) effects are usually indicative of ordering (36). Plotting AC P versus AH allows extrapolation of data of semicrystalline samples to the completely amorphous and crystalline states, as shown in Fig. 4 (37). Negative deviations from the straight line exist for many stiffer polymers and indicate the presence of a rigid-amorphous fraction, i.e. a third phase in a semicrystalline sample that does not become mobile at the glass transition, but is not crystalline (three-phase model with the third phase most likely placed at the surfaces of the crystals where molecules continue into the amorphous phase). The effect of a rigidamorphous phase on the heat capacity of poly(oxymethylene) is shown in Fig. 5 (38). The heat capacity tables of this chapter contain mean values of the best data available in the literature. To make the tables universal, effects of broad glass transitions, thermal history, rigid-amorphous fractions, and effects of fusion, annealing, or crystallization were eliminated by appropriate extrapolation. Data for the 44SoHd" refer to crystals as well as glasses. Only in the temperature range from 0 to perhaps 70 K are the heat capacities of glasses slightly higher than that for crystals. For semicrystalline samples between glass transition and melting, the crystallinity must be known. The heat capacity is then the sum of the heat capacities of the crystalline weight fraction and the melt weight fraction, as shown in Fig. 6. Fusion, annealing and crystallization, as well as glass transition broadening, must be added from additional experimental information, as illustrated above. The tables given in this chapter are based on the ATHAS Data Bank of experimental heat capacities and its update for 1990 [U. Gaur, H. C. Shu, A. Mehta, S. F. Lau, B. B. Wunderlich, M. Varma-Nair, and B. Wunderlich, J. Phys. Chem. Ref. Data, 10, 89, 119, 1001, 1051, (1981), 11, 313, 1065, (1982), 12, 29, 65, 91 (1983), and 20, 349, (1991)]. The term "NA" in the value-column indicates that no recommendation of experimental data can be made at present; "NA" in the index-column is a reminder that the data point is gained by extrapolation of the experimental data due to transition effect. The experimental data bank, as presented in this chapter, has been interpreted in terms of the molecular motion of the
polymers (39). The results of this extended data bank can be accessed over the World Wide Web (40). It contains data tables for over 200 polymer and polymer-related materials, including all poly(amino acids) and some proteins. In addition to the experimental data as shown in Tables 1-50, the ATHAS Data Bank contains a link of the solid heat capacity to approximate vibrational spectra as illustrated in Fig. 7 for poly(ethylene). Also, empirical addition schemes for the heat capacity of liquid and solid polymers have been developed, based on the molecular structure (41). An example is given in Fig. 8, for a series of aliphatic nylons (see also Tables 38-40).
Melt
Glass Cp
Temperature Polystyrene healed at 5 K/min C
P T(K)
B. EXPERIMENTAL CURVES
H9 G9 TS (kJ/mol)
Figure 3. Schematic of the change of the heat capacity at the glass transition (top) and experimental data by DSC for polystyrene after cooling at different rates (bottom). The five characteristic temperatures of the glass transition (Tb, T1, Tg/ T2, Te) are marked and apply to a given time scale only. The experimental data display an enthalpy relaxation (endothermic peak if the cooling rate that sets the thermal history is less than the heating rate). The samples 1 -7 were cooled at 0.084, 0.20, 0.52, UO, 2.50, 5.00, and 30.0K/min, respectively.
414.6 K Temperature (K)
,7Vn
PET melt crystallized quasi-isothermal (60 s/1.0 K) standard DSC (10 K/min) computed trace (wc = 44%) 7
Q
melt heat capacity crystal heat capacity Temperature
(K)
Figure 2. Experimental heat capacities of PET. The glasstransition region is marked by 7"g/ the melting region by 7"m. The solid, thin lines indicate the data of Table 37, the dashed line indicates the crystal I inity-corrected heat capacity for the semicrystalline sample, 44% crystalline, 56% amorphous. The quasiisothermal data were measured by TMDSC at 2 K intervals with a sinusoidal temperature modulation of ± 1.0K and a modulation period of 60s (Ref. 35).
ACp at Glass Transition (J/K/mol)
Cp (J/K/mol)
Figure 1. The integral thermodynamic functions H1 G1 and TS — H - G for PE. The subscripts "a" refer to the amorphous, "c" to the crystalline samples; the equilibrium melting occurs at Tm; H° is set arbitrarily to zero, it can also be adjusted to the heat of formation AHf(T) by adding the integral of Cp from 298.15 to OKto AH f (298.15) (Ref. 34).
14.4 H e a t of Fusion (kJ/mol) Figure 4. Change of the heat capacity of poly(oxymethylenecarbonyloxyethylene) (poly-p-dioxanone) at the glass transition with heat of fusion. (Ref. 37).
References page VI - 519
^c = 67% exp.
data (67%)
80%
Cp (J/K/inol)
Heat Capacity (J/K/mol)
Liquid
total Cp
experimental heat capacity
roo uns p vibgrati
total Cv
skeletal vibrations T e m p e r a t u r e (K)
Crystal
Temperature (K)
Figure 7. The contributions of skeletal and group vibrations to the heat capacity of polyethylene at constant volume, C v . Note that, once established, the vibrational heat capacity can be extended safely beyond the range oi measurement and deviations from the calculated heat capacity can be interpreted in terms of large-amplitude motion and ordering or disordering.
Cp (J/K/mot)
Figure 5. Effect of a rigid-amorphous fraction on the heat capacity of semicrystalline poly(oxymethylene). The measured Cp of a 67% crystalline sample (as determined from its heat of fusion) shows the heat capacity expected for an 80% crystalline sample. The 13% difference from wc is attributed to the rigidamorphous phase (Ref. 38).
Temperature (K) Figure 8. Heat capacity of various aliphatic nylons as measured (heavy lines) and computed from the equation (thin lines) (Nc— number of carbon atoms, N N number of nitrogen atoms per repeating unit).
T = 2 5 0K
C.
DATA TABLES FOR SOLIDS AND LIQUIDS
Heat Capacity (J/K/mol)
TABLE 1. c/s-1,4-POLY(BUTADIENE) (PBDc)
Solid T(K)
Crystallinity wc Figure 6. Heat capacity of poly(ethylene) as a function of crystallinity above the glass transition temperature (7~g — 237K). The extrapolated data for zero crystallinity are entered into Table 4 for the amorphous (melt) state, for crystallinity one, for the solid.
10 20 30 40 50 60 70 80 90
Index NA NA
Melt Value 1.18 6.52 11.79 16.15 19.98 23.18 26.16 29.07 31.87
Index
Value
NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA
TABLE 2. transA, 4POLY(BUTAD1ENE) (PBDf)
TABLE 1. cont'd Solid T(K)
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
34.63 37.34 40.05 42.82 45.62 48.50 53.93 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 104.20 106.00 107.70 109.50 111.30 113.10 114.90 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Solid 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes References: 1. U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1), 41 (1983). 2. J. Grebowicz, W. Aycock, B. Wunderlich, Polymer, 27, 575 (1986). T8: 171.0K (ACp =29.10) rm: 284.0K (C p = 86.78-103.1) Solid: 10-20 K Calculated C p value by fitting experimental data above 22 K to the Debye function (Data Bank, 1980) 30-160 K Experimental C9 data (Data Bank, 1980) 170-600 K Cp data are not available Melt: 10-280 K Melt unstable 290-350 K Experimental C p data (Data Bank, 1985) 360-600K Cp data are not available
T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Index NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value 0.80 4.82 9.70 14.39 18.74 22.56 25.89 29.00 32.02 34.98 37.86 40.70 43.53 46.26 48.99 51.71 54.52 57.88 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 116.60 118.40 120.20 122.00 123.70 125.50 127.30 129.10 130.90 132.60 134.40 136.20 138.00 139.00 141.50 NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA
References page VI-519
TABLE 2. cont'd
TABLE 3. cont'd
Notes References: 1. U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Data, 12(1), 41 (1983). 2. J. Grebowicz, W. Ayock, B. Wunderlich, Polymer, 27, 575 (1986). T0: 180.0K (ACp =28.20) Tcm : 356.0K (Cp = 107.5-115.9) (Crystal — Condis Crystal) 437.0 K (Condis Crystal -> Melt) Solid: 10 -20K Calculated C p value by fitting C p data above 22 K into the Debye function (Data Bank, 1980) 30-180 K Experimental C p data (Data Bank, 1980) 190-600 K C p data are not available Melt: 10-350 K Melt unstable 360-430 K Extrapolated data from C p in the region of 440-500 K (Condis Cryst. Region; Ref. 2) 440-500K Experimental C p data (Data Bank, 1985) 510-600 K Cp data are not available
TABLE 3.
c/s-1,4-POLY(2-METHYLBUTADIENE) (PMBD)
Solid JT(K)
Index
Melt Value
Index
Value
10
2.41
NA
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400
8.32 14.24 19.54 24.34 28.83 33.06 37.07 40.90 44.58 48.12 51.57 54.93 58.23 61.48 64.70 67.89 71.06 74.85 78.03 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 108.90 111.00 112.80 114.70 116.70 118.70 120.90 123.20 125.40 127.80 130.20 132.60 135.00 137.50 139.90 142.40 144.80 NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA
Solid
Melt
T(K)
Index
Value
Index
Value
410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes References: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1), 41 (1983). Tf 200.0K (ACp = 78.03-108.9) Solid: 10-190 K Experimental C p data (Data Bank, 1980) 200K Extrapolated value from C p in the region of 170- 190K (Data Bank, 1980) 210-600K Cp data are not available Melt: 10-190 K Melt unstable 200K Extrapolated data from C p in the region of 210-360 K (Data Bank, 1980) 210-360K Experimental C p data (Data Bank, 1980) 370-600 K Cp data are not available
TABLE 4.
POLY(ETHYLENE) (PE)
Solid T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130
Index
Melt Value
Index
Value
0.10 0.73 1.84 3.19 4.52 5.74 6.83 7.79 8.66 9.45 10.20 10.92 11.60
NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA
TABLE 4. cont'd
TABLE 5.
Solid T(K)
POLY(PROPYLENE) (PP)
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA
12.25 12.87 13.45 14.00 14.53 15.05 15.57 16.10 16.66 17.25 17.88 18.55 19.23 19.91 20.58 21.21 21.81 22.38 22.95 23.56 24.30 25.25 26.51 28.13 30.12 32.36 34.19 36.19 38.27 40.44 42.68 44.98 47.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA 28.30 28.73 29.16 29.60 30.03 30.46 30.89 31.33 31.76 32.19 32.62 33.06 33.49 33.92 34.35 34.79 35.22 35.65 36.08 36.52 36.95 37.38 37.81 38.25 38.68 39.11 39.54 39.98 40.41 40.84 41.27 41.71 42.14 42.57 43.00 43.44 43.87
Solid 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA
Notes References: U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (I), 119 (1981). T$: 252.0K (Cp = 18.69-28.79) Tm: 414.6K (C p - 37.13-35.85) Glass: 10-70 K Experimental glass C9 data shows a slightly higher value than cryst. C p data from 10K to 7OK, respectively: 0.371, 1.40, 2.60, 3.90, 5.14, 6.26, 7.25 (Data Bank, 1980) Melt: 10-230 K Melt unstable 240-260 K Cp obtained from crystallinity extrapolation and molten PE, match at 252 K (Data Bank, 1980) 270-380 K Extrapolated value from C p in the region of 390-600K 390-600 K Experimental C p data (Data Bank, 1980) Crystal: 10-460 K Experimental C p data (Data Bank, 1980) 470-600 K C p data are not available
T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Index
NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value 0.55 3.57 7.07 10.20 13.02 15.67 18.27 20.90 23.65 26.25 28.69 31.03 33.28 35.45 37.57 39.64 41.68 43.68 45.66 47.63 49.59 51.54 53.50 55.16 56.83 58.75 60.87 63.18 65.64 68.24 70.95 73.77 76.68 79.67 82.73 85.86 89.04 92.27 95.55 98.97 102.20 105.60 109.00 112.50 116.00 119.50 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 82.29 83.80 85.32 86.83 88.34 89.86 91.37 92.88 94.39 95.91 97.42 98.93 100.45 101.96 103.47 104.99 106.50 108.01 109.52 111.04 112.55 114.06 115.58 117.09 118.60 120.11 121.63 123.14 124.65 126.17 127.68 129.19 130.70 132.22 133.73
NA NA NA NA NA NA NA NA NA NA NA
References page VI - 519
TABLE 5. cont'd
TABLE 6.
Notes References: U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (4), 1051 (1981). 7g: 260.0 K (C9 = 64.92-82.29) Tm: 460.7K (C p = 119.7-112.7) Glass: 10-250K Experimental glass C9 data shows a slightly higher value than cryst. C9 data from 10K to 250K, respectively: 1.876, 5.077, 8.721, 11.89, 15.01, 18.36, 20.91, 23.54, 26.07, 28.51, 30.85, 33.11, 35.30, 37.42, 39.48, 41.48, 43,43, 45.35, 47.44, 49.63, 51.92, 54.31, 56.80, 59.40, 62.10. (Data Bank, 1980) Melt: 10-250 K Melt unstable 260-270 K Extrapolated value from C9 in the region of 280-300 K and region of 420-600 K (Data Bank, 1980) 280-300 K Cp of amorphous PP obtained from crystallinity extrapolation of experimental C9 data of semicrystalline samples (Data Bank, 1980) 310-410 K Extrapolated value from C9 in the region of 420-600 K (Data Bank, 1980) 420-600 K Experimental C9 data (Data Bank, 1980) Crystal: 10-460K Experimental C9 data (Data Bank, 1980) 470-600 K Cp data are not available
TABLE 6.
POLY(I-BUTENE) (PB)
Solid T(K)
Index
Melt Value
Index
Value
10
0.96
NA
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330
5.42 10.20 14.86 19.26 23.27 27.01 30.69 34.30 37.78 41.16 44.35 47.47 50.48 53.38 56.22 59.08 62.06 65.14 68.40 71.88 75.05 78.32 81.59 NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 107.81 109.65 111.49 113.33 115.18 117.02 118.86 120.71 122.55
NA NA NA NA NA NA NA NA NA NA NA NA
cont'd Solid
T(K) 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA
124.39 126.24 128.08 129.02 131.76 133.61 135.45 137.29 139.14 140.98 142.82 144.67 146.51 148.35 150.19 152.04 153.88 155.72 157.57 159.41 161.25 163.10 164.94 166.78 168.62 170.47 172.31
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich. J. Phys. Chem. Ref. Data, 12(1),34(1983). Tg: 249.0K (C9 = 84.54-107.6) Tm: 411.2K Solid: 10-210 K Experimental C p data of semicrystalline sample (Data Bank, 1980) 220-240 K Extrapolated value from C p in the region of 180-210 K (Data Bank, 1980) 250-600 K Cp data are not available Melt: 10-230 K Melt unstable 240-380 K Extrapolated value from C p in the region of 390-630K 390-600 K Experimental C p data (Data Bank, 1980)
TABLE 7.
POLY(I-PENTENE) (PPE)
Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100
Melt Value
Index
Value
NA
NA
NA
NA
NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA
TABLE 8.
TABLE 7. cont'd Solid
POLY(I-HEXENE) (PHE)
Melt
T(K)
Index
Value
Index
Value
110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA 87.90 90.86 93.82 96.78 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA 126.70 129.64 132.58 135.52 138.46 141.40 144.34 147.28 150.22 153.16 156.10 159.04 161.98 164.92 167.86 170.80 173.74 176.68 179.62 182.56 185.50 188.44 191.38 194.32 NA NA NA NA NA NA NA NA NA NA NA NA NA
Solid
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1), 36 (1983). T1: 233.0K (C p = 97.67-124.7) Tm: 403.2 K Solid: 10-190 K C p data are not available 200-230 K Experimental Cp data of semicrystalline isotactic sample agree with amorphous atactic sample (Data Bank, 1980) 240-600 K Cp data are not available Melt: 10-230K Melt unstable 240-470 K Experimental C p data from atactic sample above T$ and isotatic sample above Tn, (Data Bank, 1980) 480-600 K Cp data are not available
T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value NA 9.09 16.42 24.00 30.16 36.71 42.67 48.33 53.74 59.08 64.30 69.61 74.68 79.88 84.96 89.69 95.11 100.90 106.45 112.09 117.74 123.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 152.77 156.47 160.18 163.88 167.58 171.28 174.98 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
References page VI-519
TABLE 8. cont'd
TABLE 9. cont'd
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1), 37 (1983). Tg: 233.0K (C9 = 125.1-150.2) Solid: 20-190 K Experimental C p data of total amorphous sample (Data Bank, 1980) 200-220 K Extrapolated value from C p in the region of 170-190 K (Data Bank, 1980) 230-600 K Cp data are not available Melt: 10-220 K Melt unstable 230-290 K Experimental C p data from amorphous sample above Tg (Data Bank, 1980) 300-600 K Cp data are not available outside the region of 223-290K
TABLE 9.
POLY(ISOBUTENE) (PIB)
Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390
NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value NA 4.66 7.84 10.76 13.69 16.78 20.10 23.65 27.34 30.97 34.58 38.15 41.72 45.20 48.59 51.82 55.01 58.07 61.22 63.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 85.63 88.08 90.52 92.97 95.41 97.86 100.31 102.75 105.20 107.64 110.09 112.54 114.98 117.43 119.87 122.32 124.77 127.21 129.66 NA
NA
Solid
Melt
T(K)
Index
Value
Index
Value
400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1), 38 (1983). 7g: 200.0 K (C9 = 63.34-85.63) Tm: 317.0K Solid: 20-180 K Experimental C p data of glassy amorphous sample (Data Bank, 1980) 190-200 K Extrapolated value from Cp in the region of 160-180 K (Data Bank, 1980) 210-600 K Cp data are not available Melt: 10-190 K Melt unstable 200K Extrapolated value from Cp in the region of 210-380K 210-380 K Experimental C p data from amorphous sample above T% (Data Bank, 1980) 390-600 K Cp data are not available
TABLE 10. POLY(4-METHYL-1 -PENTENE) (P4MPE)
Solid T(K)
Index
10 20 30 40 50 60 70 80 90
NA NA NA NA NA NA NA
Melt Value
NA NA NA NA NA NA NA 47.21 52.54
Index
Value
NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA
TABLE 10. cont'd
TABLE 11. POLY(TETRAFLUOROETHYLENE) (PTFE)
Solid T(K) 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Index
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value 57.52 62.22 66.72 71.06 75.29 79.45 83.57 87.66 91.75 95.87 100.00 104.20 108.40 112.80 117.10 121.60 126.20 130.80 135.60 140.40 145.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem Ref. Data 12(1), 39(1983). TB: 3O3.OK (C9 = 147.0-180.7) Tm: 523.2 K Solid: 10-70 K C9 data are not available 80-300 K Experimental C p data (Data Bank, 1980) 310-600 K Cp data are not available Melt: 10-600 K C p data are not available
Solid J(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580
Index
Melt Value 1.23 3.92 6.30 8.44 10.31 12.27 14.17 16.02 17.75 19.37 21.20 22.90 24.53 26.13 27.65 29.13 30.62 31.98 33.24 34.47 35.67 36.82 37.94 39.03 40.10 41.13 42.15 43.15 44.13 45.09 46.02 46.95 47.86 48.76 49.63 50.49 51.35 52.17 52.99 53.81 54.60 55.39 56.15 56.91 57.65 58.39 59.10 59.82 60.51 61.20 61.88 62.55 63.20 63.86 64.48 65.12 65.75 66.36
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 46.85 47.61 48.36 49.12 49.89 50.65 51.42 52.19 52.96 53.74 54.52 55.30 56.08 56.87 57.66 58.45 59.24 60.04 60.84 61.64 62.44 63.25 64.06 64.87 65.39 65.72 66.05 66.38 66.72 67.05 67.38 67.71 68.04 68.38 68.71
References page VI-519
TABLE 11. cont'd
TABLE 12. Solid
T(K)
Index
Melt Value
590 600
Index
Solid Value
66.96 67.58
69.04 69.37
Notes Reference: S. F. Lau, H. Suzuki, B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 22, 379 (1984). Tg: 240.0K (C p = 39.03-46.85) Tm: 605.0K (C p = 67.88-69.54) Solid: 10-600 K All data are taken from the experimental C9 data of cryst. PTFE (Recommended Data, 1984) Melt: 10-230K Melt unstable 240-470 K Extrapolated value from C p in the region of 480-700K 480-600 K Experimental C9 data, preliminary recommended data, 1984, based on experiments from 560 to 700K and crystallinity extrapolation at low temperature (Eqs. 4 and 4' of reference)
TABLE 12.
cont'd
POLY(VlNYL FLUORIDE) (PVF)
Solid
Melt
T(K) 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes T(K)
Index
Value
Index
Value
10
NA
0.47
NA
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330
NA NA NA NA NA NA
2.80 5.70 8.50 11.80 14.50 17.10 20.27 22.18 23.96 25.64 27.25 28.83 30.39 31.95 33.51 35.09 36.70 38.34 40.02 41.75 43.52 45.34 47.23 49.17 51.18 53.25 55.40 57.62 59.91 62.29 NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA
Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J Phys. Chem. Ref. Data, 12(1), 43 (1983). 7V. 314.0K (Cp-63.27-81.07) 7V 503.2 K Solid: 10-70K C p data are calculated from the Tarasov eq. (Data Bank, 1980) 80-310 K Experimental C p data (Data Bank, 1980) 320-600 K Cp data are not available Melt: 10-600 K C p data are not available
TABLE 13.
POLY(VINYLIDENE FLUORIDE) (PVF2)
Solid T (K) 10 20 30 40 50 60
Index
Melt Value
Index
Value
1.28 5.25 9.10 12.20 15.00 17.90
NA NA NA NA NA NA
NA NA NA NA NA NA
TABLE 13. cont'd
TABLE 14. Solid
T(K) 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
POLY(TRIFLUOROETHYLENE) (P3FE)
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
20.90 23.80 26.10 28.40 30.90 33.00 35.20 37.50 39.60 41.80 44.00 46.10 48.30 50.30 52.80 54.90 57.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes " ~~~ Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data 12(0,45(1983). T%: 233.0K (C9 = 57.80-80.60) Tm: 483.2 K Solid: 10-230K Experimental C p data (Data Bank, 1980) 240-600 K Cp data are not available Melt: 10-600K C p data are not available
Solid T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580
Melt
Index
Value
Index
Value
NA NA
NA NA 12.29 15.24 17.61 20.28 23.65 26.43 29.99 33.21 36.15 38.89 41.48 43.97 46.39 48.78 51.16 53.56 55.99 58.46 61.00 63.61 66.31 69.11 72.01 75.02 78.16 81.43 84.84 88.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
References page VI-519
TABLE 14. cont'd
TABLE 15. Solid
T(K)
Melt
Solid
Index
Value
Index
Value
590
NA
NA
NA
NA
600
NA
NA
NA
NA
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1), 46 (1983). Tg: 304.0K (C9 = 89.87-110.87) Tm: 495.2 K Solid: 30-300 K Experimental C p data (Data Bank, 1980) 310-600 K Cp data are not available Melt: 10-600 K C p data are not available
TABLE 15. POLY(VINYL CHLORIDE) (PVC)
Solid T(K)
cont'd
Melt
Index
Value
Index
Value
10
1.81
NA
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380
NA NA NA NA NA NA NA NA
5.91 9.95 1338 16.28 18.77 20.99 23.05 24.98 26.82 28.59 30.29 31.94 33.56 35.15 36.73 38.31 39.88 41.45 43.03 44.61 46.21 47.79 49.37 50.99 52.63 54.29 55.95 57.64 59.35 61.11 62.94 64.88 66.96 68.85 NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 91.08 94.56 98.05
T(K) 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference. U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12(1), 49(1983). fg: 354.0K (C9 - 69.62-88.99) Tm. 546.0K Solid: 10-350K All data are taken from the experimental C9 of glass (Data Bank, 1980) 360-600 K Cp data are not available Melt: 10-350 K Melt unstable 360-380 K Experimental C p data (Data Bank, 1980) 390-600 K Cp data are not available
TABLE 16. POLY(VINYLIDENE CHLORIDE) (PVC2)
Solid
Melt
T(K)
Index
Value
Index
Value
10
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150
NA NA NA NA
NA
NA
NA
NA 7.32 12.53 17.38 21.49 26.08 30.01 33.38 36.31 38.91 41.26 43.45 45.53 47.53
NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TABLE 16. cont'd
TABLE 17.
Solid T(K) 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 Notes
P O L Y ( C H L O R O T R I F L U O R O E T H Y L E N E ) (PC3FE)
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
49.50 51.46 53.44 55.45 57.51 59.64 61.84 64.12 66.50 69.98 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12(1), 52 (1983). Tg: 255.0K (Cp =70.26) Tm: 463.0K Solid: 30-50 K C p data are calculated from the Tarasov eq. (Data Bank, 1980) 60-250 K Experimental C p data (Data Bank, 1980) 260-600 K Cp data are not available Melt: 30-600 K C p data are not available
Solid T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580
Index NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value NA NA NA NA NA NA NA 32.46 36.77 40.81 44.63 48.24 51.69 55.00 58.18 61.26 64.26 67.18 70.05 72.87 75.66 78.41 81.15 83.87 86.57 89.27 91.98 94.68 97.39 100.10 102.90 105.60 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
References page VI-519
TABLE 17. cont'd
TABLE 18. cont'd Solid
Melt
Solid
Melt
T(K)
Index
Value
Index
Value
T(K)
Index
Value
Index
Value
590 600
NA NA
NA NA
NA NA
NA NA
360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12(1), 54(1983). rg: 325.0K (Cp = 107.0) 7V 493.0K Solid; 10-70 K C p data are not available 80-300 K Experimental C p data (Data Bank, 1980) 310-320 K Extrapolated value from C p in the region of 80-300 K (Data Bank, 1980) 330-600 K Cp data are not available Melt: 30-600 K C p data are not available
TABLE 18.
POLY(VINYLALCOHOL)(PVA)
Solid T(K)
Index
Melt Value
Index
Value
10
NA
NA
NA
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350
NA NA NA NA
NA NA NA NA 11.78 15.05 17.94 20.46 22.69 24.69 26.54 28.29 29.98 31.66 33.34 35.06 36.84 38.69 40.64 42.69 44.85 47.16 49.60 52.21 54.99 57.95 61.12 64.50 68.11 NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1), 56 (1983). Solid: 10-50 K C p data are not available 60-300 K Experimental C p data (Data Bank, 1980) 310-600 K C p data are not available Melt: 30-600K C p data are not available
TABLE 19.
POLY(VINYL ACETATE) (PVAc)
Solid T(K)
Index
Melt Value
Index
Value
10
NA
NA
NA
NA
20 30 40 50 60 70 80 90 100 110 120 130
NA NA NA NA NA NA
NA NA NA NA NA NA 27.81 31.17 34.54 37.91 41.27 44.64
NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
TABLE 19. cont'd
TABLE 20.
Solid T(K)
Index
POLY(STYRENE) (PS)
Melt Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 157.50 158.48 159.45 160.43 161.41 162.39 163.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Solid 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
48.00 51.37 54.74 58.10 61.47 64.83 68.20 71.57 74.93 78.30 81.66 85.03 88.40 91.76 95.13 98.49 101.86 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12(1), 56(1983). Tg: 304.0 K (C9 = 103.2-156.9) Solid: 10-70K C p data are not available 80-300 K Experimental C9 data (Data Bank, 1980) 310-600 K Cp data are not available Melt: 10-300 K Melt unstable 310-370K Experimental C9 data (Data Bank, 1980) 380-600 K Cp data are not available
J(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
3.33 10.77 17.47 23.13 28.01 32.37 36.38 40.17 43.81 47.37 50.88 57.38 57.89 61.43 65.01 68.65 72.36 76.14 80.01 83.97 88.03 92.19 96.01 100.16 104.45 108.85 113.36 117.96 122.64 127.38 132.18 137.02 141.92 146.85 151.82 156.81 161.84 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 195.93 198.59 201.24 203.89 206.55 209.20 211.85 214.51 217.16 219.81 222.46 225.12 227.77 230.42 233.08 235.73 238.38 241.04 243.69 246.34 248.99 251.65 254.30
References page VI - 519
TABLE 20. cont'd
TABLE 21. cont'd
Notes Reference: U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (2), 313 (1982). Tg: 373.0K (C p = 163.4-194.1) Tm : 516.2 K Solid: 10-70 K Experimental C p data of glassy samples (Data Bank, 1980) 80-370 K C9 data of glassy samples agree with C9 data of semi-crystalline samples. (Data Bank, 1980) 380-600 K Cp data are not available Melt: 10-370K Melt unstable 380-600 K Experimental C9 data (Data Bank, 1980)
TABLE 21. POLY(a-METHYLSTYRENE) (PMS)
Solid T (K)
Index
10
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420
NA NA NA NA
Melt Value
Index
Value
0.18
NA
NA
1.47 4.61 11.10 19.50 28.97 38.52 45.22 51.84 55.69 61.13 66.16 70.89 75.09 79.38 83.77 88.23 92.76 97.36 102.01 106.71 111.46 116.26 121.09 125.95 130.85 135.78 140.73 145.70 150.70 155.71 160.74 165.79 170.84 175.91 180.98 186.06 191.15 196.24 201.33 206.42 211.52
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Solid T(K) 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Melt
Index
Value
Index
Value
NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
216.61 221.69 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA 252.68 258.44 264.20 269.96 275.72 NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1), 58 (1983). Tg: 441.0 K (Cp = 222.2-247.5) Solid: 10-50 K Cp data are calculated from the Tarasov equation (Data Bank, 1980) 60-440 K Experimental C p data of glassy samples (Data Bank, 1980) 450-600K C p data are not available Melt: 10-440 K Melt unstable 450-490 K Experimental C p data (Data Bank, 1980) 500-600 K C p data are not available
TABLE 22.
POLY(VINYL BENZOATE) (PVBZ)
Solid
Melt
T(K)
Index
Value
Index
Value
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TABLE 22. cont'd
TABLE 23.
Solid T(K) 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
106.39 111.57 116.75 121.93 127.10 132.28 137.46 142.64 147.82 152.99 158.17 163.35 168.53 173.71 178.88 184.06 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 258.08 260.96 263.84 266.71 269.59 272.47 275.35 278.23 281.10 283.98 286.86 289.74 292.62 295.49 298.37 301.25 NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12 (1), 59 (1983). rg: 347.0K Solid:
Melt:
10-180 K 190-300 K 310-340 K 350-600 K 10-340 K 350-360 K 370-500 K 510-600 K
POLY(METHYL ACRYLATE) (PMA)
C p data are not available Experimental Cp data (Data Bank, 1980) Extrapolated value from C p in the region of 190-300K Cp data are not available Melt unstable Extrapolated value from C p in the region of 370-500K Experimental C p data (Data Bank, 1980) Cp data are not available
Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570
NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value 0.46 4.64 11.70 19.35 26.57 33.09 38.90 44.08 48.75 52.98 56.88 60.50 63.91 67.14 70.23 73.21 76.12 78.95 81.75 84.51 87.25 89.99 92.72 95.46 98.21 100.98 103.77 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 148.74 150.37 151.99 153.62 155.24 156.87 158.49 160.12 161.74 163.37 164.99 166.62 168.24 169.87 171.49 173.12 174.14 176.37 177.99 179.62 181.24 182.87 184.49 NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
References page VI - 519
TABLE 23.
TABLE 24. cont'd
cont'd Solid
Solid
Melt
Melt
T(K)
Index
Value
Index
Value
T(K)
Index
Value
580 590 600
NA NA NA
NA NA NA
NA NA NA
NA NA NA
340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderiich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). rg: 279.0K (AC p = 42.30) Solid: 10-40 K Extrapolated value from C p in the region of 50-270 K (Data Bank, 1982) 50-270 K Experimental C p data (Data Bank, 1982) 280-600 K Cp data are not available Melt: 10-270K Melt unstable 280-500 K Experimental C p data (Data Bank, 1982) 510-600 K C p data are not available
TABLE 24.
POLY(ETHYL ACRYLATE) (PEA)
Solid
Melt
T(K)
Index
Value
Index
Value
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330
NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA 57.99 62.50 66.83 71.06 75.20 79.28 83.31 87.32 91.30 95.26 99.20 103.13 107.05 110.96 114.87 118.76 NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 168.06 170.22 172.39 174.55 176.72 178.88 181.04 183.21 185.37
NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA
187.54 189.70 191.86 194.03 196.19 198.36 200.52 202.68 204.85 207.01 209.18 211.34 213.50 215.67 217.83 220.00 222.16 NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). fg: 249.0K (ACP = 45 60) Solid: 10-80 K C p data are not available 90-240 K Experimental C p data (Data Bank, 1982) 250-600 K Cp data are not available Melt: 10-240 K Melt unstable 250-500 K Experimental Cp data (Data Bank, 1982) 510-600 K Cp data are not available
TABLE 25.
POLY(n-BUTYL ACRYLATE) (PnBA)
Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100 110
NA NA NA NA NA NA NA
Melt Value NA NA NA NA NA NA NA 71.75 78.20 84.65 91.10
Index
Value
NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA
TABLE 25. cont'd
TABLE 26.
Solid T(K) 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
POLY(ISO-BUTYL ACRYLATE) (PIBA)
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
97.55 104.01 110.46 116.91 123.36 129.81 136.27 142.72 149.17 155.62 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA 206.90 210.19 213.49 216.79 220.09 223.39 226.68 229.98 233.28 236.58 239.88 243.17 246.47 249.77 253.07 256.37 259.66 262.96 266.26 269.56 272.86 276.15 279.45 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chern. Ref. Data, 11 (4), 1074 (1982). Tg: 218.0K (ACp =45.40) Solid: 10-70 K C p data are not available 80-210 K Experimental C p data (Data Bank, 1982) 220-600 K Cp data are not available Melt: 10-210K Melt unstable 220-440 K Experimental C p data (Data Bank, 1982) 450-600 K C p data are not available
Solid T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 155.80 163.50 171.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 215.17 218.55 221.94 225.32 228.71 232.09 235.47 238.86 242.24 245.63 248.01 252.39 255.78 259.16 262.55 265.93 269.31 272.70 276.08 279.47 282.85 286.23 289.62 293.00 296.39 299.77 NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
References page VI-519
TABLE 26. cont'd
TABLE 27. cont'd Solid
T(K)
Index
Melt Value
Index
Solid Value
580
NA
NA
NA
NA
590 600
NA NA
NA NA
NA NA
NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). Tf 249.0K (ACp = 36.60) Solid: 10-210K C9 data are not available 220-240 K Experimental C9 data (Data Bank, 1982) 250-600 K Cp data are not available Melt: 10-240 K Melt unstable 250-500 K Experimental C p data (Data Bank, 1982) 510-600 K C p data are not available
TABLE 27. POLY(METHACRYLIC ACID) (PMAA)
Solid T(K)
Index
Melt Value
Index
Value
10
1.23
NA
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340
5.50 10.85 16.38 21.76 26.90 31.80 36.46 40.91 45.18 49.27 53.23 57.06 60.77 64.39 67.93 71.39 74.78 78.12 81.41 84.65 87.85 91.02 94.16 97.27 100.40 103.40 106.50 109.50 112.50 NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA
T(K) 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). Solid: 10-300 K Experimental C9 data (Data Bank, 1982) 310-600 K Cp data are not available Melt: 10-600 K C p data are not available
TABLE 28. POLY(METHYL METHACRYLATE) (PMMA)
Solid T (K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Index
Melt Value 1.67 7.97 14.67 21.38 27.67 34.53 41.30 47.29 52.64 57.49 61.97 66.18 70.20 74.10
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TABLE 29.
TABLE 29. cont'd Solid T(K) 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Index
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
POLY(ETHYL METHACRYLATE) (PEMA)
Melt Value 77.94 81.74 85.55 89.40 93.52 97.52 101.52 105.53 109.54 113.56 117.58 121.60 125.63 129.66 133.69 137.72 141.75 145.78 149.82 153.85 157.89 161.93 165.97 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA
Value NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 203.16 205.54 207.91 210.28 212.66 215.03 217.41 219.78 222.15 224.53 226.90 229.28 231.65 234.02 236.40 238.77 241.15 243.52 NA NA NA NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1068 (1982). Tf 378.0K (Cp = 169.2-202.7) Solid: 10-370 K Experimental C p data (Data Bank, 1982) 380-600 K Cp data are not available Melt: 10-370 K Melt unstable 380-550 K Experimental C p data (Data Bank, 1982) 560-600 K Cp data are not available
Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value NA NA NA NA NA NA NA 58.84 63.60 68.42 73.28 78.17 83.08 88.01 92.94 97.88 102.83 107.79 112.75 117.71 122.67 127.64 132.61 137.58 142.55 147.52 152.49 157.47 162.44 167.42 172.39 177.37 182.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Value NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 218.77 222.47 226.17 229.87 233.57 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
References page VI-519
TABLE 29. cont'd
TABLE 30. cont'd Solid
T(K) 570 580 590 600
Solid
Melt
Index
Value
Index
Value
r(K)
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). Tg: 338.0K (ACP = 31.70) Solid: 10-70 K C p data are not available 80-330 K Experimental C p data (Data Bank, 1982) 340-600 K Cp data are not available Melt: 10-330K Melt unstable 340-380 K Experimental C p data (Data Bank, 1982) 390-600 K Cp data are not available
TABLE 30. POLY(n-BUTYL METHACRYLATE) (PnBMA)
Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320
Melt Value
Index
NA
NA
NA
NA
NA NA NA NA NA NA
NA NA NA NA NA NA 77.81 84.85 91.96 99.13 106.32 113.54 120.77 128.01 135.27 142.53 149.80 157.07 164.34 171.62 178.90 186.18 193.47 200.75 208.04 215.33 222.62 229.91 NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 263.41 268.29 273.17
NA NA NA
Value
Melt
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value 278.05 282.93 287.82 292.70 297.58 302.46 307.34 312.22 317.10 321.98 326.86 331.74 336.63 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). rg: 293.0K (AC p = 29.70) Solid: 10-70K C9 data are not available 80-290 K Experimental C p data (Data Bank, 1982) 300-600 K Cp data are not available Melt: 10-290 K Melt unstable 300-450 K Experimental CP data (Data Bank, 1982) 460-600 K Cp data are not available
TABLE 31. POLY(ISOBUTYL-METHACRYLATE) (PIBMA)
Solid
Melt
T(K)
Index
Value
Index
Value
10
NA
NA
NA
NA
20 30 40 50 60 70 80
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
TABLE 32. cont'd
TABLE 3 2 .
Solid
Melt
T(K)
Index
Value
Index
90
NA
NA
NA
NA
100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA 173.90 181.00 188.00 195.10 202.20 209.20 216.30 223.40 230.40 237.50 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 281.77 284.43 287.10 289.77 292.43 295.10 297.76 300.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
POLY(HEXYL METHACRYLATE) ( P H M A )
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Value
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). Tf 326.0K (ACp = 39.00) Solid: 10-220 K C p data are not available 230-320 K Experimental C p data (Data Bank, 1982) 330-600 K Cp data are not available Melt: 10-320K Melt unstable 330-400 K Experimental C p data (Data Bank, 1982) 410-600 K C p data are not available
Solid
Melt
T(K)
Index
Value
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Value NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 310.77 315.46 320.14 324.83 329.52 334.20 338.89 343.57 348.26 352.95 357.63 362.32 367.00 371.69 376.38 381.06 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
References page VI - 519
TABLE 32. cont'd
TABLE 33. cont'd Solid
T(K) 570 580 590 600
Melt
Solid
Index
Value
Index
Value
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). Solid: 10-600 K C9 data are not available Melt: 10-260 K Melt unstable 270-420 K Experimental C p data (Data Bank, 1982) 430-600 K Cp data are not available
TABLE 33. POLY(ACRYLONITRILE) (PAN)
Solid
Melt
T(K)
Index
10
NA
1.17
NA
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380
NA NA NA NA
1.93 4.94 9.55 13.77 18.09 21.69 24.87 27.69 30.22 32.54 34.67 36.68 38.59 40.44 42.23 44.00 45.75 47.51 49.27 51.04 52.85 54.68 56.56 58.47 60.43 62.45 64.51 66.64 68.83 71.08 73.41 75.80 78.27 80.82 83.45 86.16 NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA
Value
Index
Value
T(K) 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). T8: 378.0K Tm: 593.2 K Solid: 10-50K C p value are calculated from the Tarasov equation (Data Bank, 1982) 60-370 K Experimental C p data (Data Bank, 1982) 380-600 K C9 data are not available Melt: 10-600 K C p data are not available
TABLE 34. POLY(METHACRYLAMIDE) (PMAM)
Solid T(K)
Index
10
NA
20 30 40 50 60 70 80 90 100 110 120 130 140 150
NA NA NA NA
Melt Value
Index
Value
0.21
NA
NA
2.81 8.14 14.70 21.50 28.07 34.25 39.99 45.31 50.25 54.86 59.20 63.29 67.18 70.90
NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TABLE 34. cont'd
TABLE 35.
Solid T(K)
Index
POLY(OXY-I -OXOETHYLENE) (PGL)
Melt Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Solid 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
74.48 77.94 81.30 84.59 87.81 90.98 94.11 97.21 100.30 103.30 106.40 109.50 112.50 115.60 118.70 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 11 (4), 1074 (1982). Solid: 10-50 K C p value are calculated from the Tarasov equation (Data Bank, 1982) 60-300 K Experimental C p data (Data Bank, 1982) 310-600 K Cp data are not available Melt: 10 -600 K C9 data are not available
T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Index
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value 0.78 3.98 8.02 12.12 16.04 19.57 22.72 25.55 28.11 30.47 32.67 34.74 36.69 38.53 40.28 41.96 43.58 45.15 46.69 48.22 49.99 51.71 53.42 55.14 56.85 58.57 60.28 62.00 63.71 65.42 67.14 68.85 70.57 72.28 74.00 75.71 77.43 79.14 80.86 82.57 84.29 86.00 87.72 89.43 91.15 92.86 94.58 96.29 98.01 99.72 NA NA NA NA NA NA NA NA NA NA
Index NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA
Value NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 114.13 114.51 114.90 115.28 115.66 116.04 116.42 116.80 117.18 117.56 117.94 118.32 118.70 119.09 119.47 119.85 120.23 120.61 120.99 121.37 121.75 NA NA NA NA NA
References page VI - 519
TABLE 35.
TABLE 36. cont'd
cont'd
Notes References: i. B. Lebedev, A. Yevstropov, Makromol. Chem., 185 (6), 1235 (1984). 2. R. Pan, Master Thesis, Dept. of Chemistry, Rensselaer Polytechnic Institute, Dec. 1986. T0: 318.0K (AC P = 44.7) Tl: 501.OK (ACp = 20.0) Solid: 10-290 K Experimental C p data interpolated by Spline function (Data Bank, 1985) 300-500 K Linear extrapolated data from the region of 200-290 K (Data Bank, 1985) 510-600K Cp data are not available Melt: 10-310K Melt unstable 350-500 K Linear extrapolated data from the region of 500-550 K (Data Bank, 1985) 510-550 K Experimental C p data (Data Bank, 1985) 560-600 K Cp data are not available
TABLE 36.
POLY(OXY-I-OXOHEXAMETHYLENE) (PCL)
Solid T(K)
Melt
Index
Value
Index
Value
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400
2.42
NA
NA
10.72 20.66 30.17 37.95 45.74 53.02 59.61 65.62 71.14 76.25 81.02 85.55 89.91 94.19 98.73 103.28 107.83 112.38 116.92 121.47 126.02 130.57 135.12 139.67 144.22 148.77 153.32 157.87 162.42 166.97 171.51 176.06 180.61 NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 180.81 183.72 186.64 189.55 192.47 195.38 198.30 201.21 204.13 207.04 209.96 212.87 215.79 218.70 221.62 NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA
Solid
Melt
T(K)
Index
Value
Index
Value
410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes References: 1. B. Lebedev, A. Yevstropov, Makromol. Chem., 185 (6), 1235 (1984). 2. R. Pan, Master Thesis, Dept. of Chemistry, Rensselaer Polytechnic Institute, Dec. 1986. Tg: 209.0 K (AC P = 60.0) Tm: 342.0K (AC P = 38.0) Solid: 10-200 K Experimental C p data interpolated by Spline function (Data Bank, 1985) 210-340 K Lineai extrapolated data from the region of 150-200 K (Data Bank, 1985) 350-600 K Cp data are not available Melt: 10-200 K Melt unstable 210-300 K Linear extrapolated data from the region of 342-350 K (Data Bank, 1985) 340-350K Experimental C p data (Data Bank, 1985) 360-600 K Cp data are not available
TABLE 37.
POLY(OXYETHYLENEOXYTEREPHTHALOYL) (PET)
Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140
NA
Melt Value
Index
Value
12.43
NA
NA
NA 22.91 36.18 48.24 56.68 63.92 69.95 77.18 84.42 91.70 100.10 105.90 112.60
NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA
TABLE 37. cont'd
TABLE 38.
Solid T(K)
Index
POLY(IMINO-(1-OXOHEXAMETHYLENE)) (NYLON 6)
Melt Value
Index
Value Solid
150 119.40 NA NA 160 126.20 NA NA 170 133.10 NA NA 180 140.10 NA NA 190 147.10 NA NA 200 154.10 NA NA 210 161.20 NA NA 220 168.20 NA NA 230 175.30 NA NA 240 182.40 NA NA 250 189.50 NA NA 260 196.70 NA NA 270 203.80 NA NA 280 210.90 NA NA 290 218.10 NA NA 300 225.20 NA NA 310 232.40 NA NA 320 239.60 NA NA 330 246.70 NA NA 340 253.90 NA NA 350 NA NA 335.70 360 NA NA 338.50 370 NA NA 341.30 380 NA NA 344.10 390 NA NA 346.90 400 NA NA 349.80 410 NA NA 352.60 420 NA NA 355.40 430 NA NA 358.20 440 NA NA 361.00 450 NA NA 363.90 460 NA NA 366,70 470 NA NA 369.50 480 NA NA 372.30 490 NA NA 375.10 500 NA NA 378.00 510 NA NA 380.80 520 NA NA 383.60 530 NA NA 386.40 540 NA NA 389.20 550 NA NA 392.10 560 NA NA 394.90 570 NA NA 397.70 580 NA NA 400.50 590 NA NA 403.30 600 NA NA NA 406.15 Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12, (1), 70 (1983). rg: Tm: Solid: Melt:
342.0 K 553.0K 10-340 K 350-600 K 10-340 K 350-590 K 600 K
(C p = 255.6-333.4) Experimental C p (Data Bank, 1983) Cp data are not available Melt unstable Experimental C p data (Data Bank, 1983) Linear extrapolated data from C p in the region of 350-590 K (Data Bank, 1985)
T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value NA NA NA NA NA NA 49.78 56.40 62.45 68.06 73.34 78.38 83.26 88.01 92.70 97.35 102.00 106.70 111.40 116.20 121.00 126.00 131.00 136.20 141.40 146.90 152.40 158.10 164.00 170.00 176.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 272.80 274.30 275.80 277.40 278.90 280.40 281.90 283.50 285.00 286.50 288.00 289.60 291.10 292.60 294.10 295.70 297.20 298.70 300.20 301.80 303.30 304.80 306.30 307.90 309.40 310.90 312.40 314.00 315.50
References page VI -519
TABLE 39. cont'd
TABLE 38. cont'd Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chein. Ref. Data, 12, (1), 83 (1983). Tg: 313.0K (Cp-178.1-271.7) Tm: 553.0K Solid: 10-60 K C p data are not available 70-310 K Experimental C9 data (Data Bank, 1983) 320-600 K Cp data are not available Melt: 10-310K Melt unstable 320-600 K Experimental C p data (Data Bank, 1983)
TABLE 39.
POLY(IMINOADIPOYLIMINOHEXAMETHYLENE)
(NYLON 66)
Solid T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440
Index NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value
Index
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 252.10 263.40 274.70 286.00 297.30 308.60 320.00 331.30 342.60 354.00 NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Value NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 505.70 510.40 515.00 519.70 524.40 529.70 533.80 538.50 543.10 547.80 552.50 557.20
Solid T(K)
Melt
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Index
Value 561.90 566.50 571.20 575.90 580.60 585.30 590.00 594.60 599.30 604.00 608.70 613.40 618.10 622.70 627.40 632.10
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderlich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12, (1), 84(1983). rg: 323.0K (C p = 357.4-502.4) Tm: 553.0K Solid: 10-220 K C p data are not available 230-320 K Experimental C p data (Data Bank, 1983) 330-600 K Cp data are not available Melt: 10-320 K Melt unstable 330- 600 K Experimental C p data (Data Bank, 1983)
TABLE 40.
POLY(IMINOADIPOYLIMINODODECAMETHYLENE)
(NYLON 612)
Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 362.40 378.70
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Next Page TABLE 41. cont'd
TABLE 40. cont'd Solid T(K) 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Index
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Solid
Melt Value
Index
Value
T(K)
395.00 411.20 427.50 443.80 460.10 476.30 492.60 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA 723.00 729.10 735.10 741.10 747.20 753.20 759.30 765.30 771.30 777.40 783.40 789.50 795.50 801.50 807.60 831.60 819.60 825.70 831.70 837.80 843.80 849.80 855.90 861.90 867.90 874.00 880.00 886.10 892.10
110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Notes Reference: U. Gaur, S. F. Lau, B. B. Wunderiich, B. Wunderlich, J. Phys. Chem. Ref. Data, 12, (1), 87 (1983). Tg: 319.0K (Cp = 507.3-722.1) Solid: 10-220 K C p data are not available 230-310 K Experimental C p data (Data Bank, 1983) 330-600 K Cp data are not available Melt: 10-320K Melt unstable 320-600 K Experimental C p data (Data Bank, 1983) TABLE 4 1 . POLY(OXYMETHYLENE) (POM)
Solid F(K) 10 20 30 40 50 60 70 80 90 100
Index
Melt Value
Index
Value
0.42 2.46 5.41 7.97 10.10 11.85 13.30 14.54 15.65 16.68
NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA
Index
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value 17.68 18.68 19.71 20.75 21.82 22.89 23.97 25.05 26.11 27.15 28.18 29.20 30.21 31.24 32.29 33.39 34.55 35.79 37.11 38.52 40.02 41.61 43.27 45.00 46.77 48.57 50.38 52.20 54.00 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA 53.58 53.95 54.32 54.69 55.07 55.44 55.81 56.18 56.55 56.93 57.30 57.67 58.04 58.41 58.79 59.16 59.53 59.90 60.27 60.65 61.02 61.39 61.76 62.13 62.51 62.88 63.25 63.62 63.99 64.37 64.74 65.11 65.48 65.85 66.23 66.60 66.97 67.34 67.71 68.09 68.46 68.83
NA NA NA NA NA NA
Notes References: 1. U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (4), 1005 (1981). 2. H. Suzuki, B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 23, 1671 (1985). T8: 190.0K (Cp = 26.11-53.58) Tm: 457.2 K Solid: 10-390 K Experimental C p data (Data Bank, 1981) 400-600 K Cp data are not available Melt: 10-180 K C p data are not available 190-420 K Extrapolated value from C p in the region of 430-540 K (Data Bank, 1985) 430-540 K Experimental C p data (Data Bank, 1985) 550-600 K Extrapolated value from C p in the region of 430-540 K (Data Bank, 1985)
References page VI-519
Previous Page
TABLE 42. POLY(OXYETHYLENE)
TABLE 42. cont'd
Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value 0.51 3.18 7.24 11.16 14.62 17.60 20.13 22.33 24.90 26.93 28.78 30.44 32.10 33.57 35.05 36.53 37.80 39.11 40.40 41.88 43.17 44.64 45.91 47.26 48.61 49.96 51.31 52.66 54.01 55.36 56.71 58.06 59.41 60.76 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Index NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Value NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 81.88 82.55 83.21 83.88 84.55 85.22 85.89 86.55 87.22 87.89 88.56 89.23 89.89 90.56 91.23 91.90 92.57 93.23 93.90 94.57 95.24 95.91 96.57 97.24 97.91 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes References: 1. U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (4), 1010 (1981). 2. H. Suzuki, B. Wunderlich, J. Poiym. Sci., Polym. Phys. Ed., 23, 1671 (1985). Tg: 260.0K (Cp = 42.65-81.61) Tm: 342.0K (C p = 61.03-90.70) Solid: 10-80 K Value estimated by additivity (Data Bank, 1981) 90-220 K Experimental C p data (Data Bank, 1981) 230-340 K Extrapolated value from Cp in the region of 160-220 K (Data Bank, 1981) 350-600 K Cp data are not available Melt: 10-200 K C p data are not available 210-320 K Extrapolated value from C p in the region of 430-540 K (Data Bank, 1985) 330-450K Experimental C p data (Data Bank, 1985) 460-600 K C p data are not available
TABLE 43. POLY(OXYTRIMETHYLENE) (PO3M)
Solid T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410
Index
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt Value
Index
Value
0.86 4,68 9.31 13.65 17.64 21.37 25.82 29.59 32.90 35.87 38.58 41.11 43.51 45.83 48.11 50.37 52.65 54.97 57.33 59.01 61.08 63.15 65.23 67.30 69.37 71.44 73.51 75.59 77.66 79.73 NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 109.24 110.25 111.26 112.27 113.28 114.29 115.30 116.31 117.32 118.33 119.34 120.35 121.36 122.37 NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA
TABLE 43. cont'd
TABLE 44. cont'd Solid
Solid
Melt
T(K)
Index
Value
Index
Value
T(K)
420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Notes Reference: U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (4), 1015 (1981). T9: 195.0 K (C p = 57.97-108.7) Tm: 3O8.OK (Cp = 81.39-120.1) Solid: 10-180 K Experimental C p data (Data Bank, 1981) 190-300 K Extrapolated value from C p in the region of 150-180 K (Data Bank, 1981) 310-600 K Cp data are not available Melt: 10-190 K Melt unstable 200-330 K Experimental C p data (Data Bank, 1981) 340-600 K Cp data are not available
TABLE 44. POLY(OXYTETRAMETHYLENE) (PO4M)
Solid T(K) 10 20 30 40 50 60 70 80 90 100 HO 120 130 140 150 160 170 180 190 200 210 220 230 240 250
Index
NA NA NA NA NA NA NA NA NA
Melt Value 1.47 6.59 12.42 18.32 24.63 29.74 34.61 39.41 43.67 47.27 50.72 54.70 57.99 61.12 64.46 67.96 71.20 74.52 NA NA NA NA NA NA NA
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 124.20 125.92 127.64 129.36 131.09 132.81 134.53
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA
136.26 137.98 139.70 141.42 143.15 144.87 146.59 148.32 150.04 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (4), 1023 (1981). Tf 189.0K (Cp =77.51-124.0) T~m: 330.0 K Solid: 10-160K Experimental C p data (Data Bank, 1981) 170-180 K Extrapolated value from C p in the region of 130-160 K (Data Bank, 1981) 190-600 K Cp data are not available Melt: 10-180 K Melt unstable 190-270 K Extrapolated value from C p in the region of 280-340K (Data Bank, 1981) 280-340 K Experimental C p data (Data Bank. 1981) 350-600 K Cp data are not available
TABLE 45. POLY(OXYPROPYLENE) (POPr)
Solid
Melt
T(K)
Index
Value
Index
Value
10 20 30 40 50 60
NA NA NA NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
NA NA NA NA NA NA
References page VI-519
TABLE 45. cont'd
TABLE 46. Solid
POLY(OXY-1,4-PHENYLENE) (POPh)
Melt
T(K)
Index
Value
Index
Value
70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA 31.21 34.33 37.37 40.34 43.22 46.03 48.76 51.41 53.98 56.48 58.89 61.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA 95.46 97.04 98.61 100,19 101.77 103.35 104.92 106.50 108.08 109.65 111.23 112.81 114.38 115.96 117.54 119.12 120.69 122.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Solid
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (4), 1033 (1981). Tg: 198.0 K (Cp = 63.05-95.20) Tm: 348.0K Solid: 10-70 K C9 data are not available 80-190 K Experimental C p data (Data Bank, 1981) 200-600 K Cp data are not available Melt: 10-190 K Melt unstable 200-370 K Experimental C p data (Data Bank, 1981) 380-600 K Cp data are not available
Melt
T(K)
Index
Value
Index
Value
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 109.10 112.40 115.80 119.20 122.50 125.90 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 150.30 151.70 153.10 154.60 156.00 157.40 158.80 160.30 161.70 163.10 164.50 166.00 167.40 168.80 170.20 171.70 173.10 174.50 175.90 177.40 178.80 180.20 181.60 183.10 184.50
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
TABLE 47. cont'd
TABLE 46. cont'd Notes Reference: U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (4), 1033 (1981). rg: 358.0K (C9 = 128.6-150.0) Tm: 535.0K Solid: 10-290 K C9 data are not available 300-350 K Experimental C9 data (Data Bank, 1981) 360-600 K C9 data are not available Melt: 10-350 K Melt unstable 360-380K Experimental C9 data (Data Bank, 1981) 390-580 K Extrapolated value from C9 in the region of 360-380 K & 590-620 K (Data Bank, 1981) 590-600 K Experimental C p data (Data Bank, 1981)
TABLE 47.
POLY(OXY-2,6-DIMETHYL-1,4-PHENYLENE) (PPO)
Solid T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410
Index
Melt Value 4.05 11.52 19.12 26.45 33.44 40.12 46.49 52.50 57.80 63.01 68.07 72.91 77.45 82.04 86.42 89.74 94.14 98.48 102.80 107.00 111.20 115.33 119,57 123.81 128.04 132.33 136.60 140.91 145.27 149.66 154.08 158.58 162.10 166.20 170.20 174.50 178.60 182.70 186.80 190.50 194.50
Index
Value
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Solid T(K) 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA
198.20 201.30 204.70 208.10 211.60 215.00 218.40 NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA 252.80 255.10 257.30 259.60 261.90 264.20 266.50 268.70 271.00 NA NA NA
NA NA NA
Notes References: 1. U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10, 1036 (1981). 2. B. V. Lebedev, V. G. Vasil'ev, T. A. Bykova, E. G. Kiparisova, and B. Wunderlich, Vysokomol. Soedin. A, 38, 216; Engl. Translat., Polym. Sci. Ser. A, 38 (2), 104 (1996) TB: 482.0K (C p = 219.1-251.0) Tm: 545.0K Solid: 10-70 K Experimental C p data from Ref. 2 80-320 K Average experimental C9 data from Ref. 1 and 2 320-480 K Experimental C9 data from Ref. 1 490-600 K C9 data are not available Melt: 10-480 K Melt metastable 490-570 K Experimental C9 data from Ref. 1 580-600 K Cp data are not available
TABLE 48.
POLY(OXY-2,6-DIPHENYL-1,4-PHENYLENE) (POPPO)
Solid
Melt
7(K)
Index
Value
Index
Value
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
References page VI-519
TABLE 48.
cont'd
TABLE 49. POLY(OXYCARBONYLOXY-1,4-PHENYLENEISOPROPYLIDENE-1,4-PHENYLENE) (PC) Solid
Melt
T(K)
Index
Value
Index
Value
160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
NA NA
NA NA 180.60 189.20 198.20 207.30 215.90 223.10 229.40 235.90 243.30 251.20 259.30 267.00 274.10 280.50 287.00 294.50 302.50 309.50 315.00 320.20 326.30 333.00 339.40 344.80 350.10 356.30 363.00 369.50 375.20 380:30 387.20 393.30 NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 476.50 483.40 490.30 497.30 504.10 510.90 517.80 524.70 531.60 538.50 545.40
NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA
Notes Reference: U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10, (4) 1036 (1981). 7g: 493.0K (C p = 395.1-471.7) Tm: 735.0K Solid: 10-170 K C9 data are not available 180-470 K Experimental C9 data (Data Bank, 1981) 480-490 K Extrapolated value from C9 in the region of 420-470 K (Data Bank, 1981) 500-600K Cp data are not available Melt: 10-490 K Melt unstable 500-530 K Experimental C9 data (Data Bank, 1981) 540-600 K Extrapolated value from C9 in the region of 500-530 K & 780-820 K
Solid T(K) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560
Index
Melt Value
Index
Value
5.95 25.38 39.85 52.46 63.75 73.72 82.62 91.39 100.40 109.70 118.80 128.90 139.00 148.90 158.80 168.70 178.50 188.30 198.00 207.80 217.60 227.30 237.10 247.00 256.80 266.70 276.70 286.70 296.70 306.80 316.90 327.10 337.40 347.70 358.10 368.50 379.10 389.70 400.30 411.10 421.90 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 480.30 486.00 491.80 497.60 503.40 509.20 515.00 520.80 526.60 532.40 538.20 543.90 549.70 555.50 561.30
TABLE 49.
TABLE 50. cont'd
cont'd Solid
T(K)
Index
570 580 590 600
Solid
Melt Value
Index
Value
T(K)
NA NA NA NA
NA NA NA NA
NA NA NA NA
220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600
Notes Reference: U. Gaur, S. F. Lau, B. Wunderlich, J. Phys. Chem. Ref. Data, 12, (1) 93 (1983). Tg: 418.0K (Cp =430.6-479.1) Tm. 608.2 K Solid: 10—410 K Experimental C1, data of glassy sample (Data Bank, 1983) 420-600 K Cp data are not available Melt: 10-410 K Melt unstable 420-560 K Experimental Cp data (Data Bank, 1983) 570-600 K Cp data are not available
TABLE 50.
TRIGONAL SELENIUM (SeT)
-(Se)Solid T(K)
Index
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 D.
Melt Value
Index
Value
0.64 3.45 6.34 8.85 10.98 12.80 14.39 15.80 17.10 18.19 19.10 19.84 20.49 21.07 21.58 22.03 22.41 22.75 23.05 23.32 23.56
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Melt
Index
Value
Index
Value
NA NA NA NA NA NA NA NA NA '
NA NA NA NA NA NA NA NA NA NA
23.78 23.99 24.18 24.36 24.52 24.68 24.83 24.97 25.11 25.25 25.38 25.51 25.63 25.75 25.88 26.00 26.12 26.24 26.36 26.48 26.60 26.72 26.84 26.96 27.08 27.20 27.33 27.45 27.58 NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA 40.11 39.82 39.54 39.26 38.98 38.72 38.46 38.21 37.96 37.72 37.49 37.26 37.04 36.82 36.62 36.42 36.22 36.03 35.85 35.68 35.51 35.35 35.19 35.04 34.90 34.76 34.64 34.51 34.40 34.29
Notes Reference: U. Gaur, H. C. Shu, A. Mehta, B. Wunderlich, J. Phys. Chem. Ref. Data, 10,(1)89(1981). Tg: 303.4K (C9 = 27.02-40.31) 7\n: 492.2K (C p = 27.51-35.78) Solid: 10-500 K Experimental C p data (Data Bank, 1981) 510-600 K Cp data are not available MeIf 10-300 K Melt unstable 310-600 K Experimental C9 data (Data Bank, 1981)
REFERENCES
1. RS. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 12, 297 (1962). 2. Idem, 12, 277 (1962). 3. M. Dole, W. P. Hettinger, N. R. Larson, J. A. Wethington, J. Chem. Phys., 20, 718 (1952). 4. B. Wunderlich, M. Dole, J. Polym. Sci., 24, 201 (1957). 5. G. T. Furukawa, M. L. Reilly, J. Res. Nat. Bur. Std., 56, 285 (1956). 6. N. Bekkedahl, H. Matheson, J. Res. Nat. Bur. Std., 15, 503 (1935).
7. S. S. Chang, A. B. Bestul, J. Res. Nat. Bur. Std., 75A, 113 (1971). 8. L. A. Wood, N. Bekkedahl, Polym. Lett., 5, 169 (1967). 9. E. Y. Roinishvili, N. N. Tavkhelidze, V. B. Akopyan, Vysokomol. Soedin. B, 9, 254 (1967). 10. C. W. Smith, M. Dole, J. Polym. Sci., 20, 37 (1956). 11. K. H. Hellwege, W. Knappe, W. Wetzel, Kolloid-Z., 180, 126 (1962). 12. F. S. Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 3, 263, (1962).
13. H. Wilski, Kolloid-Z. -Z. Polym., 248, 867 (1971). 14. F S . Dainton, D. M. Evans, F. E. Hoare, T. P. Melia, Polymer, 12, 286 (1962). 15. E. Passaglia, H. K. Kevorkian, J. Appl. Phys., 34, 90 (1963). 16. F. E. Karash, H. E. Bair, J. M. O'Reilly, J. Phys. Chem., 69, 2657 (1965). 17. S. Ichihara, A. Komatsu, T. Hata, Polym. J., 2, 644 (1971). 18. G. T. Furukawa, R. E. Mc Coskey, G. J. King, J. Res. Nat. Bur. Std., 50, 357 (1953). 19. G. T. Furukawa, R. E. Mc Coskey, M. L. Reilly, J. Res. Nat. Bur. Std., 55, 127 (1955). 20. B. V. Lebedev, I. B. Rabinowich, V. A. Budarina, Vysokomol. Soedin. A, 9, 488 (1967). 21. Th. Grewer, H. Wilski, Kolloid-Z. -Z. Polym., 226, 46 (1968). 22. P. Marx, M. Dole, J. Am. Chem. Soc, 77, 4771 (1955). 23. G. T. Furukawa, R. E. Mc Coskey, G. J. King, J. Res. Nat. Bur. Std., 43, 273 (1952). 24. T. B. Douglas, A. W. Harman, J. Res. Nat. Bur. Std., 69A, 149 (1965). 25. P. Marx, M. Dole, J. Am. Chem. Soc, 77, 4771 (1955). 26. S. Yoshida, M. Sakiyama, S. Seki, Polym. J., 1, 573 (1970). 27. J. M. O'Reilly, F. E. Karasz, H. E. Bair, J. Polym. Sci. C, 6, 109 (1963). 28. F. E. Karasz, H. E. Bair, J. M. O'Reilly, J. Polym. Sci. Part A: 2, 1141 (1968).
29. T. Hatakeyama, K. Nakamura, H. Hatakeyama, Polymer, 23, 1801 (1982). 30. V. P. Kolesov, I. E. Paylov, S. M. Skutarov, Zh. Fiz. Khim., 36, 770 (1962). 31. D. R. Gee, T. P. Melia, Polymer, 11, 192 (1970). 32. P. Marx, C. W. Smith, A. E. Worthington, M. Dole, J. Phys. Chem., 59, 1015 (1955). 33. R. C. Wilhoit, M. Dole, J. Phys. Chem., 57, 14 (1953). 34. B. Wunderlich, in: Academic Press, New York, 1990; E. Turi (Ed.), "Thermal Characterization of Polymeric Materials." Academic Press, New York, 1997. 35. Okazaki, B. Wunderlich, Macromolecules, 30, 1758 (1997). 36. B. Wunderlich, "Macromolecular Physics, vol. 3, Crystal Melting." Academic Press, Boston, MA, 1980. 37. K. Ishikiriyama, M. Pyda, G. Zhang, T. Forschner, J. Grebowicz, B. Wunderlich, J. Macromol. Sci. B: Phys., 37, 27 (1998). 38. H. Suzuki, J. Grebowicz, B. Wunderlich, Brit. Polymer J., 17, 1 (1985). 39. B. Wunderlich, Pure and Applied Chem., 67, 1919 (1995). 40. World Wide Web, URL: http://funnelweb.utcc.utk.edu/ ~athas. 41. R. Pan, M-Y Cao, B. Wunderlich, J. Thermal Anal., 31, 1319 (1986); U. Gaur, M.-Y. Cao, R. Pan, B. Wunderlich, 31, 421 (1986).
S u r f a c e
a n d
O l i g o m e r s ,
I n t e r f a c i a l P l a s t i c i z e r s ,
T e n s i o n s a n d
o f
O r g a n i c
P o l y m e r s , P i g m e n t s
Souheng W u E. I. du Point de Nemours & Company, Central Research and Development Department, Experimental Station, Wilmington, Delware, USA
A. Introduction 1. Definition 2. Temperature Dependence 3. Macleod's Relation 4. Molecular Weight Dependence 5. Effects of Glass and Crystal-Melt Transitions 6. Effect of Surface Chemical Constitution 7. Dispersion (Nonpolar) and Polar Components B. Tables Table 1. Surface Chemical Constitution and Surface Tension 1.1. Hydrocarbon Surfaces 1.2. Fluorocarbon Surfaces 1.3. Chlorocarbon Surfaces 1.4. Silicane Surfaces Table 2. Surface Tension, Polarity, and Macleod's Exponent for Amorphous Surfaces 2.1. Hydrocarbon Polymers 2.2. Styrene Polymers 2.3. Halogenated Hydrocarbon Polymers 2.4. Vinyl Polymers - Esters 2.5. Vinyl Polymers - Others 2.6. Acrylic Polymers - Nonfluorinated 27. Acrylic Polymers - Fluorinated 2.8. Methacrylic Polymers Nonfluorinated 2.9. Methacrylic Polymers - Fluorinated 2.10. Methacrylic Hydrogels 2.11. Poly(ethers) 2.12. Poly(ether) Copolymers 2.13. Poly(esters) 2.14. Poly(carbonates) 2.15. Poly(sulfones) 2.16. Phenoxy Resins 2.17. Epoxy Resins
VI-521 VI-521 VI-522 VI-522 VI-522 VI-522 VI-523 VI-523 VI-523 VI-524 VI-524 VI-524 VI-524 VI-524
VI-524 VI-524 VI-525 VI-525 VI-526 VI-526 VI-526 VI-527 VI-527 VI-527 VI-527 VI-528 VI-529 VI-529 VI-530 VI-530 VI-530 VI-530
2.18. 2.19. 2.20. 2.21. 2.22. 2.23.
Poly(amides) Poly(imides) Poly(imines) Poly(urethanes) Poly(siloxanes) Organosilanes - Hydrolyzed and Condensed Films 2.24. Cellulosics 2.25. Poly(peptides) 2.26. Miscellaneous Table 3. lnterfacial Tension for Amorphous Interfaces 3.1. Hydrocarbon Polymers vs. Others 3.2. Styrene Polymers vs. Others 3.3. Vinyl Polymers vs. Others 3.4. Acrylic Polymers vs. Others 3.5. Methacrylic Polymers vs. Others 3.6. Poly(ethers) vs. Others 3.7. Poly(esters) vs. Others 3.8. Poly(amides) vs. Others 3.9. Epoxy Resins vs. Others 3.10. PoIy(Siloxanes) vs. Others 3.11. Miscellaneous C. References A.
INTRODUCTION
1.
Definition
VI-530 VI-531 VI-531 VI-531 Vl 531 VI-532 VI-533 VI-533 VI-533 VI-535 VI-535 VI-537 VI-537 VI-538 VI-538 VI-539 VI-539 VI-539 VI-539 VI-539 VI-540 VI-540
The surface (interfacial) tension is the reversible work required to create a unit surface (interfacial) area at constant temperature (T), pressure (F), and composition (") (1), i.e., (Al) where y is the surface (interfacial) tension, G the Gibbs free energy of the system, and A the surface (interfacial) area.
The specific surface free energy/s is the free energy per unit surface area (1), i.e., (A2) where C7 is the surface concentration (the number of moles per unit area) of component j , and /i ; is the chemical potential of component j . Thus 7 = / s — (Ci/xi + C2A^), which means that the surface tension is the excess specific surface free energy. The excess means in excess of the bulk phase. This distinguishes the surface tension and the specific surface free energy (1).
where ]T ?r *s the parachor of the repeat unit and M1- its formula weight. Equation (A6) neglects the end group effect (1). The parachor is a group additive quantity, independent of temperature, and its values have been tabulated elsewhere (104,105). Macleod's relation provides a number of important relationships for analyzing the effects of molecular weight, glass transition, phase transition (crystallization), and chemical constitution on surface tension, as discussed below. 4. Molecular Weight Dependence The surface tension varies with the number-average molecular weight Mn (1) by
2. Temperature Dependence The surface tension of polymers, just as with smallmolecule liquids, varies with temperature (1) by (A3) where 70 is the surface tension at T=OK, and Tc is the critical temperature. The temperature coefficient of surface tension is thus given (1) by
(A7) where 7 ^ is the surface tension at infinite molecular weight and k\ is a constant. Equation (A7) follows directly from Macleod's relation (1). Alternatively, an empirical relation is given (1,81) as (A8)
(A4) Since Tc ~ 1000 K for most polymers (1), - d 7 / d r is therefore practically constant at ordinary temperatures, i.e., For polymer pairs that have an upper consolute curve and an UCST (upper critical solution temperature), the interfacial tension decreases with increasing temperature and vanishes at the upper consolute temperature. This is the case for most pairs of immiscible polymers. On the other hand, for polymers that have a lower consolute curve and an LCST (lower critical solution temperature), the interfacial tension vanishes at the lower consolute point and increases with increasing temperature in the immiscible region. A few polymer pairs appear to behave this way (24). 3. Macleod's Relation
where k2 is a constant. Equations (A7) and (A8) fit the experimental data equally well. Usually, the surface tension increases with increasing molecular weight. When the molecular weight is greater than about 2000-3000, the surface tension reaches within about 1 mN/ra (dyne/cm) of the value at infinite molecular weight. Therefore, the effect of molecular weight may usually be neglected for polymers, except for oligomers. Several exceptions have however been observed and explained in terms of end-group effects (1,4,103). Relationships similar to Eqs. (A7) and (A8) may be written for the interfacial tension (1,81), i.e., (A9) and
The surface tension varies with density p according to Macleod's relation (1)
(AlO)
(A5)
where ^0,^3,^4,/CQ,/:^,and k'A are constants, as discussed elsewhere (1).
where 7 0 and /3 are constants, independent of temperature. P is known as the Macleod's exponent, and usually has a value of 3.0-4.5 for polymers (1). Thus the surface tension is "solely" determined by the density for a given chemical composition. 7 0 is, to a close approximation, dependent only on the chemical constitution, and is related to Sugden's parachor (l)by (A6)
5. Effects of Glass and Crystal-Melt Transitions Macleod's relation also provides relationships for the effects of glass and crystal-melt transitions. At the glass transition, the surface tension is continuous, but its temperature coefficient is discontinuous. (d7/dr) below the glass temperature, Tg, is related to (d7/dr) r above Tg (D by (AU)
where ag is the isobaric volumetric thermal expansion coefficient in the glassy region and ar is that in the rubbery region. Since ag is usually smaller than a r , the surface tension varies less with temperature in the glassy region than in the rubbery region. Since -dj/dT is usually small, this effect is often neglected when the temperature range of interest is small. On the other hand, both the surface tension and its temperature coefficient are discontinuous at the crystal-melt transition. The surface tension of crystalline surface, 7 C , is related to that of amorphous surface j & (1) by (A12) where pc is the crystalline density, and p a the amorphous density. Since /3 — 3.0-4.5, and usually p c > p a , the crystalline surface can have a much higher surface tension than the amorphous surface. For example, polyethylene has /3 = 3.2, p a ^0.85SgZcC, p c = 1.0g/cc, and 7a = 35.7mN/m at 20 0 C. Thus its crystalline surface tension is given by
Note that the value given above refers to a truly crystalline surface. Most "melt-crystallized" semicrystalline polymers, however, have amorphous surface. Only when they are nucleated in the melt against certain nucleating surfaces, or their single crystals are grown from solutions, are crystalline surfaces obtained. 6.
Effect of Surface Chemical Constitution
The Macleod-Sugden equation shows that the surface tension depends on surface chemical constitution and density. Since the density is roughly a function of chemical constitution (105), it is expected that a given surface constitution will have a certain "characteristic" surface tension. Some of these values are listed in Table 1. These values should, however, be used only qualitatively. 7.
Dispersion (Nonpolar) and Polar Components
The surface tension can be separated into dispersion (nonpolar) and polar components (1) i.e., (A13) where 7 d is the dispersion component (arising from dispersion-force interactions) and 7 P the polar component (arising from various dipolar and specific interactions). The polarity JCP is defined as (A14) which is independent of temperature (1), i.e., (A15)
The interfacial tension is related to the surface tension and the polarity of the two contiguous phases by the harmonic-mean equation (1), (A16) or the geometric-mean equation (1,54,108,109), (A17) where the subscripts 1 and 2 refer to the two individual phases. The harmonic-mean equation has been shown to predict the interfacial tension between polymers adequately, whereas the geometric-mean equation is often less satisfactory (1,4). The 7 d and 7 P components can be determined either from the interfacial tension or the contact angles by using Eq. (A 16), the harmonic-mean equation, or less satisfactorily by Eq. (A17), the geometric-mean equation, as discussed elsewhere (1). The polarity may also be defined in terms of the cohesive energy density (1), i.e., (A18) where AE is the cohesive energy density, A E p its polar component, 6 the solubility parameter, and <5P its polar component. The polarity values determined from interfacial properties have been found to agree with those determined from cohesive energy densities for a number of polymers (1). It should be cautioned, however, that Eq. (A14) defines the surface polarity, while Eq. (A 18) defines the bulk polarity. These two values may not be the same, if the polymer has sufficiently long surface-active segments, which tend to preferentially adsorb on the surfaces. B. TABLES Table 1 lists typical values of surface tension for some surface chemical constitutions. Table 2 lists the surface tension, its temperature coefficient, polarity, and Macleod's exponent for amorphous surfaces. The surface tension for crystalline surface may be calculated from the amorphous value by using the Macleod's exponent. All data were obtained by direct reversible measurements in the melt. The values for the solid were obtained by extrapolation from the melts. These are the most reliable and preferred. On the other hand, some values were obtained by the contact angle method. These are denoted with the symbol (c). The two values usually agree well. Table 3 lists the interfacial tension and its temperature coefficient for amorphous interfaces. All data were obtained by direct reversible measurements in the melt. The values for the solid were obtained by extrapolation from the melt and have been shown to be reliable. The interfacial tension References page VI - 540
may also be estimated from the surface tension and the polarity of the two phases by using the harmonic-mean equation (Eq. (A16)).
TABLE 1. SURFACE CHEMICAL CONSTITUTION AND SURFACE TENSION Surface chemical constitution 1.1. HYDROCARBONSURFACES -CH 3 -CH 2 - C H 2 - and .-,CH.-, - C H - (phenyl ring edge)
Surface tension at 200C (mN/m = dyn/cm)
30 36 43 45
TABLE 1. cont'd Surface tension at 200C (mN/m = dyn/cm)
Surface chemical constitution 1.2. FLUOROCARBON SURFACES -CF 3 -CF 2 H -CF 3 and - C F 2 -CF2-CH 2 CF 3 -CF 2 -CFH-CF2-CH2-CFH-CH 2 -
15 26 17 23 23 30 33 37
1.3. CHLOROCARBON SURFACES -CHCl-CH 2 -CCl 2 -CH 2 = CC12
42 45 50
1.4.
SILICONESURFACES
-0-Si(CH3) 2 - O -0-Si(CH3)(C6Hs)-O-
20 26
TABLE 2. SURFACE TENSION, POLARITY, AND MACLEOD'S EXPONENT FOR AMORPHOUS SURFACES
Polymer
Surface tension y (mN/m = dyn/cm) — 200C 1500C 2000C
Macleod's exponent (fi)
-dy/dr (mN/m/K)
Polarity (x p )
-
0.08 0.05
-
5 5
-
70 70
Refs.
2.1. HYDROCARBON POLYMERS Poly(acetylene) ds-isomer 51 (c) trans-isomev 52 (c) Poly(butadiene), Mn = 5400 carboxyl acid end group 48.6 methyl ester end group 43.1 Poly(butadiene-staf-acrylonitrile), carboxyl end group 18% by weight AN 51.3 Mn = 5300 27% by weight AN 52.6 Mn = 5900 Poly(ethylene), branched M n = 7000 35.3 Mn = 2000 33.7 Poly(ethylene), linear Mn=oo 36.8 Mw = 67000 35.7 Poly(ethylene-sta?-acrylic acid) mol% acrylic acid 20 59 (c) 14 55 (c) 8 44(c) 3 41 (C) Poly(ethylene-.staf-propylene) mol% PP Mw 34 37000 33.8 36 33000 33.1 44 15000 32.0 50 63000 31.0 60 58000 30.7 Polytethylene-staf-propylene-jtaf-hexadiene), EPDM, E/PP/HD/ = 69.5/26.5/4.0 weight ratio comonomers Mn = 17000, Mw = 70000 34.5
-
-
29.9 28.8
22.7 23.3
0.1440 0.1098
-
40.0
35.7
0.0866
-
70
40.2
35.4
0.0955
-
70
26.6 25.9
23.3 22.9
0.067 0.060
0 0
3.3
1-3,7-14 15
29.4 28.2
26.6 25.4
0.056 0.057
0 0
3.2 3.2
9 1-3,7,11 14,15
-
-
19 19 19 19
3.0 3.0 3.3 3.2 2.8
13 13 13 13 13
-
-
-
-
-
25.7 25.4 24.1 23.5 23.2
22.6 22.4 21.0 20.6 20.3
0.062 0.059 0.061 0.058 0.058
0 0 0 0 0
26,2
23.0
0.064
0
20
TABLE 2. cont'd Surface tension y (mN/m = dyn/cm) Polymer Poly (ethylene-staf-vinyl acetate) E/VA weight ratio 75/25 82.3/17.7 73.4/26.6 69.1/30.9 61.3/38.7 Poly(isobutene) M n = 2700 Poly(isoprene) cis-isomer cyclized trans isomer Poly(4-methyl-l-pentene) Poly(propylene) atactic isotactic isotactic and atactic mixture Poly(styrene) and copolymers, see Styrene Polymers Poly(xylylenes), see Styrene Polymers
0
20 C
0
-dy/dr (mN/m/K)
0
150 C
200 C
Polarity v (x )
Macleod's exponent (P)
35.5 34.1 31.3 30.6 33.0
26.8 27.1 26.5 26.4 26.9
23.5 24.4 24.7 24.7 24.6
0.067 0.054 0.037 0.033 0.047
0.050 0.025 0.064 0.083 0.108
-
33.6
25.3
22.1
0.064
-
4.1
-
_ -
_ -
32 34 31 25
(c) (c) (c) (c)
29.4 29.4 30.1
~
Refs,
12 21-24 21-24 21-24 21-24 7,11,17,26 6 6 6 6
-
_ -
22.1 22.1 22.5
19.3 19.3 19.6
0.056 0.056 0.058
0 0 0.020
3.2 3.2 3.2
4,11,13,16 4,13 17,18
31.1
28.2
0.058
-
4.0
4,17,21
31.4 31.0 29.2
27.8 27.7 25.4
0.072 0.065 0.077
0.168 -
4.4 -
8,28-30 31 31
-
-
32 32 32 32
-
-
_
2.2. STYRENE POLYMERS Poly(2-methylstyrene) M n =3000 38.7 Poly(styrene) M v =44000 40.7 M n =9300 39.4 M n =HOO 39.3 Poly(styrene-.statf-acrylonitrile) mol% acrylonitrile 32.7 43 (c) 27.6 42 (c) 16.8 40 (c) 6.9 37(c) Poly(styrene-5taf-2,2,3,3-tetraftuoropropyl methacrylate mol% styrene 98 31 (c) 95 30 (c) 90 29(c) 80 28(c) 70 27 (c) 60 26(c) 50 25(c) 40 25(c) 30 21 (c) 20 20(c) 10 19(c) 2 19 (c) 1 18(c) Poly(xylylene), see also Halogenated Hydrocarbons 46.3 (c)
_ _ -
-
-
-
-
-
-
-
-
0.013
-
0.019
-
27 2,3
-
-
-
33 33 33 33 33 33 33 33 33 33 33 33 33 27
-
-
-
-
2.3. HALOGENATED HYDROCARBON POLYMERS Poly(2-chloro-l,4-xylylene), poly((3-chloro1,4-phenylene)ethylene) Poly(chloroprene) M v = 30000 Poly(chlorotrifluoroethylene) Poly(chlorotrifluoroethylene-s№tetrafluoroethylene) Wt. % TFE 60 80 Poly(dichloro-l,4-xylylene), poly((dichloro1,4-phenylene)ethyiene)
47.1 (c)
-
43.6
32.3
28.0
0.086
0.108
4.2
30.9
22.2
18.9
0.067
0.282
-
1-3,37
-
-
0.348 0.354 0.009
-
1-3 1-3 27
25.2(c) 21.3(c) 46.3 (c)
-
References page VI - 540
TABLE 2.
cont'd Surface tension y (mN/m = dyn/cm)
Polymer
2O0C
150 0 C
Poly(hexachlorobutadiene) Poly(hexafluoropropylene)
41.5 (c) 17.0 (c) 12.8(c)
-
Poly(tetrafluoroethylene) M = oc C2iF 4 4 (M = 1088) Poly(tetrafluoroethylene-.stof-ethylene) 50/50 weight ratio TFE/E Poly(trifluoroethylene) Poly(vinyl chloride) Poly(vinyl fluoride) Poly(vinylidene chloride) Poly(vinylidene fluoride)
2.4.
23.9 21.5 27.6 27.3 41.9 38.4 45.4 33.2
16.3 13.1 (c) (c) (c) (c) (c) (c)
Macleod's exponent (p)
Refs.
0.019 0.120 0.065
-
34 1-3 1-3
0.089 -
-
9 9,38,39
0.286 0.118 0.146 0.292 0.196 0.376
-
1-3 1-3 1-3 1-3 1-3 1-3
0.329 0.172 0.061 0.044 0.035 0.128 0.221 0.078
3.4 3.5 3.3 3.2 3.2 3.4 3.6 3.3
-
0.493 -
-
41 1 42 43
-
-
-
42 1
-
-
-
44 1 45
-
-
70 35
13.4 9.8 -
0.058 0.065
-
27.9 22.0 20.9 20.9 22.5 21.2 24.7 20.7
24.6 18.5 17.8 17.8 19.0 18.1 21.1 17.7
0.066 0.070 0.062 0.063 0.066 0.063 0.072 0.061
7.12 4,40 4,40 4,40 4,40 4,40 4,40 4,40
VINYL POLYMERS - OTHERS
Poly(acrylamide) Poly(acrylonitrile) Poly(heptafluoroisopropoxy)ethylene) PoIy(I-(heptafluoroisopropoxy)methyl) propylene-staMnaleic acid) PoIy(I -heptafluoroisopropoxy)propylene) Poly(methacrylonitrile) Poly(styrene-sta?-aerylonitrile), see Styrene Polymers Poly(vinyl alcohol) Poly (vinyl butyral) Poly(vinyl ethyl ether), poly(ethoxyethylene) Poly(vinyl methyl ether), poly(methoxyethylene) M n = 46500, M w = 99000 Poly(vinyl formal)
2.6.
-
Polarity (x?)
VINYL POLYMERS - ESTERS
Poly(ethylene-sta?-vinyl acetate), see Hydrocarbon Polymers Poly(vinyl acetate) Mw = 11000-120000 36.5 Poly(vinyl butyrate) 31.1 Poly(vinyl decanoate) 28.9 Poly(vinyl dodecanoate) 29.1 Poly(vinyl hexadecanoate) 30.9 Poly(vinyl hexanoate) 29.4 Poly(vinyl propionate) 34.0 Poly(vinyl octanoate) 28.7
2.5.
-
200 0 C
-dy/dJ (mN/m/K)
52.3 (c) 50 (c) 15 (c) 19 (c) 21 (c) 39 (c) 37 (c) 38 (c) 36 (c) 31.8 39 (c)
-
-
22.1
18.3 -
0.075
ACRYLIC POLYMERS - NONFLUORINATED
Poly(acrylamide) see Vinyl Polymers (nonesters) Poly(acrylonitrile), see Vinyl Polymers (nonesters) Poly(rc-butyl acrylate) M n =32000 Poly(ethyl acrylate) M n = 28000 Poly(ethylene-staf-acrylic acid), see Hydrocarbon Polymers Poly(2-ethylhexyl acrylate) M n = 34000 Poly(methyl acrylate) M n =25000
33.7 30.7
24.6 22.8
21.1 19.7
0.070 0.061
0.098 0.127
-
1 46,107
37.0 33.7
27.0 26.4
23.2 23.6
0.070 0.056
0.174 0.205
-
1 46,107
30.2 29.2
21.1 21.1
17.6 18.0
0.070 0.062
0.028 0.076
-
1 46,107
41.0 42.7
31.0 31.0
27.2 26.5
0.070 0.090
0.248 0.210
-
1 46,107
TABLE 2. cont'd Surface tension y (mN/m = dyn/cm) Polymer 2.7.
Refs.
-
-
-
47
20 (c) 15 (c) 15 (c) 10 (c) 14 (c) 18 (c) 20 (c) 16 (c) 14 (c)
-
-
-
-
_
-
-
-
47 47 47 47 47 47 47 47 47
-
-
-
49
_
-
_
_
_
METHACRYLIC POLYMERS - NONFLUOR1NATED
23.5
20.6
0.059
0.158
4.2
8
23.1
20.1
0.060
0.139
-
2
22.7
19.8 -
0.059
0.120 -
-
2 1,35 1,35
26.8
23.3
0.070
-
-
1,35
20.8
17.7
0.062
-
-
1,35
22.0 -
18.9 -
0.062 -
-
-1,
1,35 1,35 5
31.2 -
27.4 -
0.076
0.281 -
4.2 -
24.7
21.5 -
0.065 -
-
-
1,35 47
0.048 0.094 -
~ ~ -
50,53,54 47 51,52 47 33 47,55 48
-
-
1.35 56
-
56 56
-
8 49
METHACRYLIC POLYMERS - FLUORINATED
Poly(1,1-dihydropentadecafluorooctyl methacrylate) 10.5 (c) Poly(heptafluoroisopropyl methacrylate) 15 (c) Poly(heptadecafluorooctyl methacrylate) 15.3 (c) PoIy(I-hydrotetrafluoroethyl methacrylate) 15 (c) Poly(l,l-dihydrotetrafluoropropyl methacrylate) 19 (c) PoIy(I -hydrohexafluoroisopropyl methacrylate) 15 (c) Poly(Mionafluorobutyl methacrylate) 15 (c) Poly(styrene-staf-2,2,3,3-tetrafluoropropyl methacrylate), see Styrene 2.10.
200 0 C
Madeod's exponent (P)
19 (c)
Poly(benzyl methacrylate) 36 (c) Poly(tf-butyl methacrylate) Mv - 3 7 0 0 0 31.2 Poly(isobutyl methacrylate) M v = 35000 30.9 Poly(f-butyl methacrylate) Mv=6000 30.4 Poly(f-butylaminoethyl methacrylate) 34 (c) Poly(dodecyl methacrylate), poly(lauryl 32.8 (c) methacrylate) Poly(ethyl methacrylate) M v = 5200 35.9 Poly(2-ethylhexyl methacrylate) Mv =64000 28.8 Poly(rc-hexyl methacrylate) M v = 52000 30.0 Poly(dimethylaminoethyl methacrylate) 36 (c) Poly(hydroxyethyl methacrylate), see also 37 (c) Methacrylic Hydrogels Poly(lauryl methacrylate), see Poly(dodecyl methacrylate) Poly(methyl methacrylate), see also Methacrylic Hydrogels M = 3000 41.1 Poly(phenyl methacrylate) 35 (c) Poly(n-propyl methacrylate) M =8500 33.3 Poly(stearyl methacrylate), poly(octadecy! 36.3 (c) methacrylate) 2.9.
150 0 C
Polarity (xv)
ACRYLIC POLYMERS - FLUORINATED
PoJy(( l-chlorodifluoromethyl)tetrafluoroethyJ aerylate) Poly(di(chlorodifluoromethyl) fluoromethyl acrylate) PoIy(1,1-dihydroheptafluorobutyl acrylate) PoIy(1,1-dihydropentafluoroisopropy] acrylate) Poly(l,l-dihydropentadecafluorooctyl acrylate) Poly(heptafluoroisopropyl acrylate) Poly(5-(heptafluoroisopropoxy)pentyl acrylate) Poly( 11-(heptafluoroisopropoxy)undecyl acrylate) Poly(2-heptafluoropropoxy)ethyl acrylate) Po!y(nonafluoroisobutyl acrylate) 2.8.
20 0 C
— dy/dr (mN/m/K)
~
-
Polymers
-
METHACRYLIC HYDROGELS
Poly(hydroxyethyl methacrylate) dry 40 wt. % water Poly(hydroxyethyl methacrylate-jtar-dimethylaminoethyl methacrylate) weight ratio wt.% water 99 9/0 1 40 97/3 59
37(c) 69.0 (c)
-
-
68.2(c) 65.3(c)
-
-
-
-
-
-
0.701 0.657
References page VI - 540
TABLE 2. cont'd Surface tension y (mN/m = dyn/cm) Polymer Poly(hydroxyethyl methacrylate-.ytaf-metrioxyethyl methacrylate) weight ratio wt.% water 75/25 33 50/50 23 25/70 19 Poly(hydroxyethyl methacrylate-staf-methacrylic acid) weight ratio wt.% water 99.1/0.1 40 97/3 39 Poly(hydroxyethyl methacrylate-statf-methyl methacryiate) weight ratio wt.% water 95/5 43
75/25 50/50 25/75 5/95
43 21 7 3
200C
1500C
69.1 (c) 67.8 (c) 68.0(C)
-
200°C
— dy/dT (mN/m/K)
Polarity (*p)
Macleod's exponent (P)
Refs.
-
-
0.670 0.608 0.496
-
56 56 56
68.7 (c) 67.6(C)
-
-
0.700 0.704
-
56 56
68.6(c)
-
-
0.697
-
56
67.0(C) 65.7 (c) 65.6 (c) 54.4(c)
-
-
0.640 0.543 0.410 0.393
-
56 56 56 56
-
0.282
-
56
-
0.301
-
56
-
Poly (methyl methacrylate), see also Methacrylic Polymers for Dry Surfaces 3 wt.% water 60.9 (c) Poly(methyoxyethyl methacrylate) 2 wt.% water 71.1 (c)
2.11. POLY(ETHERS) (see also POLY(ETHER) COPOLYMERS, POLY(SULFONE), POLY(CARBONATE), PHENOXY RESIN, EPOXY RESIN, VINYL POLYMERS) Poly(chloral) Poly(epichlorohydrin) M = 1500 Poly(oxybutene)-diol Poly(oxyisobutene)-diol M = 30000 Poly(oxydecamethylene) Poly(oxyethylene)~diol M = -17000 Poly(oxyethylene)-diol M = 6000 M = 6000 Poly(oxyethylene)-dimethylether M = 114 M=I4S M = 182 ^ = 600 M = 5000 M=IOOOOO Poly(oxyhexamethylene)-diol Poly(oxymethylene) Poly(oxypropylene)-diol M = 2025 M=1
M = 3000 M = 400-4100 Poly(oxypropylene)-dimethylether M = 3000 Poly(oxytetramethylene) M = 43000 M = 2500
37.9 (c)
-
0.037
-
34
43.2 (25°C) 38.2 28.0
24.0
0.079
0.003
3.7
57 58
27.5 36.1
19.0 27.2
15.7 23.8
0.066 0.068
-
3.8 2.8
61 58
42.9
30.1
25.2
0.098
0.284
3.0
9,59-61
42.9 42.5
33.0 30.1
29.2 25.4
0.076 0.095
0.284 0.165
3.0 2.9
9,11,12, 9,62
28.6 31.1 32.9 375 44.1 44.2 37.4 44.6 (c)
16.0 18.6 20.5 26.1 32.7 32.8 27.5 -
11.1 13.8 15.8 21.7 28.3 28.4 23.7 -
0.097 0.096 0.095 0.088 0.088 0.088 0.076 -
0.316
4.4 4.4 4.0 3.5 3.5 3.5 3.2 -
9,59-61 9,59-61 9,59-61 9,59-61 9,59-61 9,56-61 58 1,35
31.7 31.2 31.1
21.1 20.6 20.9 21.6
17.1 16.4 17.0 17.9
0.080 0.085 0.079 0.073
0.014 -
3.4 3.4 3.4 3.4
13 62 13,57 60 61 57,60,61
30.7
18.3
13.6
0.095
-
3.6
57,60,61
31.9 38.2
24.0 27.9
20.9 24.0
0.061 0.079
0142 -
3.7
2,12 13
3L5
TABLE 2. cont'd Surface tension y (mN/m = dyn/cm) 200C
Polymer 2.12.
1500C
2000C
- dy/dT (mN/m/K)
Polarity (*p)
Macleod's exponent (/?)
Refs.
POLY(ETHER) COPOLYMERS
Poly(oxyethylene)-^/c>c/:-poly(oxypropylene)-/?/c?c/:-poly(oxyethylene) wt. % OP
DP of blocks OE
OP
OE
19.0 48.9 56.9 84.1 19.0 55.1 59.6 85.5 18.9 20.2 20.2 38.3
46 11 8 2 75 13 10 3 110 122 139 56
16 16 16 16 30 30 30 30 39 47 56 56
46 11 8 2 75 13 10 3 110 122 139 56
57.7 66.7 86.7
28 19 6
56 56 56
28 19 6
36.8 34.2 33.7 32.9 34.7 33.4 32.7 31.8 33.8 33.2 32.3 32.4
27.8 25.0 24.3 22.8 26.6 24.7 23.7 22.1 26.3 26.0 25.5 25.0
24.3 21.5 20.7 18.9 23.5 21.3 20.2 18.4 23.4 23.2 22.9 22.1
0.069 0.071 0.072 0.078 0.062 0.067 0.069 0.074 0.058 0.056 0.052 0.057
0.129 0.105 0.094 0.047 0.096 0.095 0.074 0.069 -
2.8 3.0 3.1 3.4 2.5 2.7 2.8 3.3 2.6 2.4 2.5 2.6
57,60,62 57,60,62 57,60,62 57,60,62 57,60,62 57,60,62 57,60,62 57,60,62 57,60,62 57,60,62 57,60,62 57,60,62
32.1 31.9 31.7
24.4 23.8 23.2
21.4 20.7 20.0.0
0.059 0.062 0.065
-
2.7 2.8 2.9
57,60,62 57,60,62 57,60,62
Poly(oxyethylene-ly/<3/-oxypropylene) mol% oxypropylene 17 40.5 28.1 23.4 0.095 0.139 3.6 57,62 30 39.3 26.9 22.2 0.095 0.127 3.6 57,62 41 37.5 25.5 20.9 0.092 0.112 3.6 57,62 56 34.9 23.2 18.7 0.090 0.061 3.6 57,62 76 33.4 22.3 18.0 0.086 0.040 3.3 57,62 85 32.4 213 17.0 .0.086 0.031 3.4 57,62 Poly(oxyethylene-5to/-oxypropylene)-^/c>c/:-poly(oxydimethylsilylene)-^/(9c^-poly(oxyethylene-5tor-oxypropylene)]; i.e., Poly(oxyethylene-.y?<3/-oxypropylene) has a comonomer weight ratio of 50/50, Mn = 2 2 0 0 wt.% of polysiloxane DP of polysiloxane 0 4.6 7.5 9.9 19.8 32.6
0 4.9 7.9 10.4 20.8 34.3
34.8 (25°C) 28.0(25 0 C) 25.4 (25°C) 21.4 (25°C) 20.6 (25°C) 20.5 (25°C)
-
-
-
-
-
-
-
-
-
-
-
-
63 63 63 63 63 63
Poly(oxytetramethylene-5taf-oxypropylene) mol% oxypropylene 25 35 46 52 67 85
2.13.
Mw
2100 1200 1900 2250 2200 1700
36.4 36.0 34.9 34.3 33.1 31.9
26.0 25.7 243 23.8 22.8 21.6
22.0 21.8 20.2 19.7 18.9 17.7
0.080 0.079 0.082 0.081 0.079 0.079
42.7
333
29.7
0.072
40.0
30.9
27.4
0.070
-
33 3.2 3.5 3.5 3.4 3.5
13 13 13 13 13 13
0.192
3.0
98
0.149
3.0
98
POLY(ESTERS)
Poly(oxydecamethyleneoxyisophthaloyl), poly(decamethylene isophthalate) Poly(oxydodecamethyleneoxyisophthaloyl), poly(dodecamethylene isophthalate)
References page VI - 540
TABLE 2. cont'd Surface tension y (mN/m = dyn/cm) Polymer
200C
Poly(oxyethyleneoxyterephthaloyl), poly(ethylene terephthalate) M n = 16000 Mw = 37000
44.6
Poly(oxyhexamethyleneoxyisophthaloyl), poly hexamethylene isophthalate) Poly(oxytetramethyleneoxyisophthaloyl), poly(butylene isophthalate) Poly(oxytrimethyleneoxyisophthaloyl), poly(propylene isophthalate) 2.14.
200°C
Polarity (JCP)
Macleod's exponent (/*)
Refs.
0.221
-
45.6
36.2 32.9 0.065 27.7 (2800C) 24.8 (3250C) 35.6 31.7 0.077
1,14,20,64
0.242
3.3
98
47.8
37.4
33.4
0.080
0.270
3.2
98
49.3
38.5
34.3
0.083
0.288
3.0
98
42.9 45 (c)
35.1
32.1 -
0.060
0.246 -
-
35 65
46.6 (c)
-
-
0.347
-
35
43.0
_
47.2 45.6
-
51.2(23 0 C)
-
33.7 46.8 (c)
-
39.1 (c)
-
39.1
-
POLY(CARBONATES)
Poly(oxycarbonyloxy-1,4-phenyleneisopropylidene1,4-phenylene), polycarbonate of bisphenol-A 2.15.
1500C
-dy/dr (mN/m/K)
POLY(SULFONES)
Poly(oxy-l,4~phenylenesulfonyl-l,4-phenyleneoxy1,4-phenyleneisoproypylidene-1,4-phenylene), polysulfone 2.16. PHENOXY RESINS Poly(oxy-1,4-phenyleneisopropylidene1,4-pheny leneoxy-2-hydroxy trimethylene), phenoxy resin M = 30000
_
_
_
_
35
2.17. EPOXY RESINS Diglycidyl ether of bisphenol-A, 2,3-di(glycidoxy1,4-phenylene) propane pure, M = 340 Diglycidyl ether of bisphenol-A, 2,3-(diglycidoxy1,4-phenylene)propane chain extended with bisphenol-A Diglycidyl ether of bisphenol-A with 6 wt.% of A^A^diethylaminopropylamine fresh, mixture, not cured cured Diglycidyl ether of bisphenol-A with stoichiometric amount of triethylenetetramine cured Diglycidyl ether of bisphenol-A with 0.5 wt.% of N-methylaminopropyltrimethoxysilane fresh, mixture, not cured Diglycidyl ether of bisphenol-A with 0.5 wt.% of 7-glycidoxypropyltrimethoxysilane fresh, mixture, not cured Curing agent: y-aniinopropyltrimethoxysilane M = 179 Curing agent: WV-dibutylaminopropylamine M = 186 Curing agent: A^A^diethylaminopropylamine M = 130 Curing agent: /V,iV-dimethylaminopropylamine M = 102 Curing agent: Af-methylaminopropyltrimethoxysilane M = 193 Curing agent: y-glycidoxypropyltrimethoxysilane M = 236 2.18.
-
0.432
-
67 35,68 85
-
-
32.9
-
-
-
67,68 35
-
0.166
-
35
-
-
-
68
-
68
-
25.5
-
68
25.3
_
_
_
_
_
68
24.6
_
_
_
_
_
68
23.9
_
_
_
_
_
68
27.0
_
_
_
_
_
68
23.9
-
68
POLY(AMIDES)
Poly(glycine), (nylon 2), see Poly(peptides) Poly(imino(l-oxodecamethylene)XnyIon 11)
-
22.6 (225°C)
-
72
TABLE 2. cont'd Surface tension y (mN/m = dyn/cin) Polymer
200C
1500C
Poly(imino(l-oxododecamethylene) (nylon 12) Poly(imino(l-oxohexamethylene)) (nylon 6)
35.8 (c) 38.4 (c)
-
2000C
-dy/dr (mN/ra/K)
36.1 (265°C> -
Poly(imino(l-oxotetramethylene)) (nylon 4) 48.5 (c) Poly(imino-1,4-phenyleneiminoterephthaloyl), poly( 1,4-phenylene terephthalamide) fiber (unsized) 48.5 (c) cast sheet (H-bonding parallel to surface) 33.7 (c) cast sheet (H-bonding vertical to surface) 31.3 (c) Poly(iminoadipoyliminohexamethylene) (nylon 66) 46.5 38.1 34.8 0.065 M n = 17000, M w = 35000 29,6 (280°C) 26.7 (325°C) Poly(iminoazelaoyliminononamethylene) (nylon 99) 36(c) Poly(iminopimeloyliminoheptamethylene) (nylon 77) 43 (c) Poly(iminosebacoyliminodecamethylene) (nylon 1010) 32 (c) Poly(iminosebacoyliminohexarnethylene) (nylon 610) 37.0 (2650C)Poly(iminosuberoyliminooctamethylene) (nylon 88) 34 (c) 2.19.
Polarity (JCP)
Macleod's exponent (/?)
Refs.
0.154 0.188 0.427
-
73 35 72 52,73
0.216 0.206 0.202 0.344
-
74 75 75 1,14,20,
-
-
71 71 71 72 71
0.358
-
35,76
POLY(IMIDES)
Poly(iminocarbonyl-(4,6-dicarboxy-1,3-phenylene)carbonylimino-1,4-phenyleneoxy-1,4-phenylene), KAPTON H film 41.0 (c)
-
-
Poly[(l,3,5,7-tetraoxo-2,3,6,7-tetrahydro-lH,5H-benzo[l,2-c:4,5-c] dipyrrol-2,6-diyl-l,4-phenyleneoxy-1,4-phenylene), cured KAPTON H film 37.7(c)
2.20.
-
0.223
-
35,76
-
-
-
77 77 78 78
-
-
-
-
77 77 77 77 77
39 (c)
-
-
0.179
-
79
38.6 (c)
-
0.194
-
73
~
-
0.344
-
73
25.7
16.2
12.5
0.073
-
-
80
20.39 21.17 21.01
14.15 13.47
11.75
0.048
0.042
3.5
10.57
0.058
-
-
2.9 26 83
POLY(IMINES)
Poly((benzoylimino)ethylene) Poly((butyrylimino)ethylene) Poly((dodecanoylimino)ethylene) Poly((dodecanoylimino)ethylene-staKacetylimino) trimethylene) Poly((heptanoylimino)ethylene) Poly((hexanoylimino)ethylene) Poly(((3-methyl)butyrylimino)ethylene) Poly((pentadecafluorooctadecanoylimino)ethylene) Poly((pentanoylimino)ethylene) 2.21.
-
26 25 22 22
(c) (c) (c) (c)
22 (c) 23 (c) 24 (c) 11 (c) 23 (c)
-
POLY(URETHANES)
Poly(methylenediphenyldiisocyanate-a/r-(butanediol poly(oxytetramethylene)diol) (ESTANE 5714) Poly(hexamethylene diisocyanate-a/f-triethylene glycol) Poly(4-methyl-l,3-phenylene diisocyanate-a/ftripropylene glycol)
36.3 (c)
2.22. POLY(SILOXANES) (see also ORGANOSILANES) Poly(oxydiethylsilylene) 158 cS Poly(oxydimethylsilylene) M = 75000
References page VI - 540
TABLE 2.
cont'd Surface tension y (mN/m = dyn/cm)
Polymer M = 3900
6000OcS
200C
1500C
20.17 20.59 20.47 19.8
13.93 12.93 13.5
M = 1274 19.9 M = 607 18.8 M = 310 17.6 M= 162 15.7 Poly(oxydimethylsilylene), a,co-difunctional [R-(Si(CH 3 ) 2 -O-) ,,-Si(CH 3 ) 2-R] R = (CHa) 3 NH 2 M n = 2086 20.88 14.12 M n =7916 19.86 12.97 Poly(oxydimethylsilylene), a,co-difunctional R-(Si(CH 3 ) 2 -O-) ;j -Si(CH 3 ) 2 -R R = (CH 2 ) 5 NH 2 ; M n = 1132 21.00 14.37 R = (CH 2 ) 3 COOH;M n = 2194 20.54 13.52 Poly(oxydimethylsilylene) block copolymers, see Poly(ester) Copolymers Poly(oxymethylphenylsilylene) 102 cS 26.1 11.8
2000C
-dy/dT (mN/ra/K)
Polarity (JCP) *
Madeod's exponent (0)
11.53
0.048
0.042
3.5
10.03 11.1
0.058 0.048
0.042
3.5
-
-
-
3.5 3.7 3.7 4.0
11.52 10.32
0.052 0.053
-
-
11.82 10.82
0.051 0.054
-
6.3
0.11
-
-
Refs. 2,9 26 83 2,11,14, 80,82 80-82 80-82 80-82 80-82
70 70
70 70 -
80
2.23. ORGANOSILANES - HYDROLYZED AND CONDENSED FILMS (see also POLYSILOXANES and EPOXY RESINS) 2.23.1. ALKYL AND ALKYLENE SILANES Ethyltriethoxysilane, CH 3CH 2 Si(OC 2 H 5 ) 3 on silica (no catalyst) on silica (acetic acid catalyst) on silica (propionic acid catalyst) on silica (piperidine catalyst) y-Methacryloxypropyltrimethoxysilane, CH2 = C(CH 3 )-C( = O)O(CH2)3Si(OCH3)3 on soda-lime glass Methyltrimethoxysilane, CH 3 Si(OCH 3) 3 on soda-lime glass Phenyltrimethoxysilane, C 6 H 5 Si(OCH 3) 3 on soda-lime glass Vinyltriethoxysilane, CH 2 = CHSi(OC 2 H 5 )3 on silica Vinytrimethoxysilane, CH 2 = CHSi(OCH3)3 on soda-lime glass
(c) (c) (c) (c)
-
44.8 (c)
-
2.23.2. AMINO SILANES N-|3-(aminoethyl)-Y-aminopropyltrimethoxysilane, NH 2 (CH 2 ) 2 NH(CH 2 ) 3 Si(OCH 3 ) 3 on soda-lime glass y-Aminopropyltriethoxysilane, NH 2 CH 2 CH 2 CH 2 Si(OC 2 Hs) 3 on soda-lime glass
33.7 (c) 35.7 (c)
2.23.3. EPOXY SILANE Glycidoxypropyltrimethoxysilane, H2C~/CHCH2O(CH2)3Si(OCH3) 3 O on soda-lime glass (no catalyst) on soda-lime glass (acetic acid catalyst, pH = 4)
49.4 (c) 66.9 (c)
2.23.4. HALOGENATED ALKYL SILANES /7-Bromophenyltrimethoxysilane, BrCeH 5 Si(OCHs) 3 on soda-lime glass /7-Chlorophenylethyltrimethoxysilane, ClC 6 H 4 CH 2 CH 2 Si(OCH 3 )S on pyrex glass
36.7 34.5 27.8 33.4
28.0 (c)
-
-
-
-
-
-
-
1,35
-
-
-
1,35
-
-
1,35
-
-
1,35
-
-
1,35
43.0 (c)
-
-
33.4 (c)
-
-
28.6 (c)
-
-
-
-
1,35 1,35 1,35 1,35
-
-
-
-
1,35
-
-
-
-
-
1,35
-
-
-
-
1,35 1,35
49.3 (c)
-
-
-
1,35
51.0 (c)
-
-
-
1,35
-
TABLE 2. cont'd
Polymer on silica on stainless steel on a-alumina 7-Chloropropyltrimethoxysilane, Cl(CH 2 ) 3 Si(OCH 3 ) 3 on soda-lime glass on pyrex glass on stainless steel 3-( 1,1 -Dihydroperfluorooctoxy)propyltriethoxysilane, CF 3 (CF 2 ) 6 CH 2 O(CH 2 ) 3 Si(OC 2 H 5 ) 3 on gold on pyrex glass on stainless steel y-Perfluoroisopropoxypropyltrimethoxysilane, (CF 3 ) 2 CFO(CH 2 ) 3 Si(OCH 3 ) 3 on pyrex glass on silica on stainless steel
Surface tension y (inN/m = dyn/cm) — 200C 1500C 2000C 49.9 (c) 53.3 (c) 49.9 (c) 40.7 (c) 48.8 (c) 49.9 (c)
-
-
1,35 1,35 1,35
-
-
-
-
1,35 1,35
-
-
-
1,35 1,35 1,35
-
-
-
-
1,35 1,35 1,35
-
-
-
-
1,35
0.344
-
84 84 51,52
-
-
37 (c) 35 (c) 45.4 (c)
-
-
42 (c) 36-42 (c) 45.9 (c) 34 (c) 32 (c)
-
33 (c) 37 (c) 33-37 (c) 35 (c) 38 (c) 39 (c)
-
43 (c) 45.2 (c) 39.2 (c) 50.1 (c)
-
-
44.0 (c) 48.0 (c) 44.4 (c) 35.5 (c) 37.8(c) 45.4 (c) 42.1 (c) 45(c)
-
~ -
-
-
-
-
0.296 -
-
86 86 51,52,87,88 1 1
-
-
-
-
86 86 86 86 1 89
0.203 0.224 0.443
-
90 52,91 52,92 52,92
0.375 0.192 0.435 0.191 0.119 0.440 0.359 -
-
52,92 41 52,92 52,92 41 52,92 52,92 9°
-
POLY(PEPTIDES)
Casein Poly(L-alanine) Poly(y-benyzl L-glutamate) Poly(glycine), (nylon2) Poly(y-methyl L-glutamate) a-helix random tangle a-sheet a-helix on water (3-extended chain P-sheet (3-random chain Mixed a and P sheet Wool 2.26.
Refs.
CELLULOSICS
Amylose Amylopectin Cellophane Cellulose regenerated from cotton regenerated from wood pulp Cellulose acetate Cellulose acetate butyrate Ethyl cellulose Hemicellulose arabinogalactan galactoglucomannan hardwood xylan softwood xylan Nitrocellulose Starch 2.25.
Macleod's exponent (/?)
-
2.23.5. MERCAPTO SILANE y-Mercaptopropyltrimethoxysilane, HS(CH 2 ) 3 Si(OCH 3 ) 3 on soda-lime glass 41.9 (c) 2.24.
Polarity (*p)
-
21.5 (c) 18.8 (c) 18.8 (c)
24.2 (c) 22.8 (c) 18.8 (c)
-dy/dT (mN/m/K)
-
MISCELLANEOUS
2.26.1. HYDROCARBONS Eicosane, C20H44 A/-282 Hexatriacontane, C 3$ H 74 M = 507 *
28.9
25.6 (6O0C)
-
0.0833
0
-
1,9,62,102
31.4 24 (C)
26.1 (1000C)
-
0.066
0 -
-
1,9,94,102 94
References page VI - 540
TABLE 2. cont'd Surface tension y (mN/m = dyn/cm) Polymer
20 0 C
Paraffin wax (mp 65°C)
34.7 31.0 (c) 25.5 (C)
32.0(65 0 C) -
2.26.2. ALKANE-DIOLS 1,4-Butanediol, M = 90 1,10-Decanediol, M = 174 1,6-Hexanediol, M = 118 1,5-Pentanediol, M = 104 1,3-Propanediol, M = 76
44.2 39.3 42.2 41.6 45.9
37.6 34.2 36.5 36.7 38.9
2.26.3. ADHESIVES Natural rubber-f ester rosin pressure sensitive adhesive Poly(isobutene)-based pressure sensitive adhesive Phenol-resorcinol adhesive Resorcinol adhesive Urea-formaldehyde adhesive
36 30 52 51 61
(c) (c) (c) (c) (c)
15O0C
200 0 C
-dy/c (mN/m
26.9 (150 °d).O6
Polarity (x p ) 0
-
-
-
(90 0 C) (90°C) (90 0 C) (90 0 C) (9O0C)
-
0.094 0.073 0.081 0.070 0.100
0.330 0.137 0.238 0.281 0.375
3.6 2.9 3.3 2.8 3.6
-
-
-
_ -
_
._ -
2.26.4. SULFUR "Monomeric" sulfur, below the floor temperature of 160 0 C 7 = 72.95-0.10197; for T= 120-160 0 C "Polymeric" sulfur, above the floor temperature of 160 0 C 7 = 65.31-0.05537, for T= 160-440 0 C Solid sulfur 128 (c) 2.26.5. PLASTICIZERS Di(n-butyl)-0-phthalate M = 278 Di(rc-dodecyl)-0-phthalate M = 502 Di(ethyl)-o-phthalate M = 222 Di(«-heptyl)-0-phthalate ^ = 362 Di(methyl)-o-phthalate M = 194 Di(n-nonyl)-o-phthalate M = 418 Di(n-propyl)-o-phthalate M = 250 Tricresyl phosphate
Macleod's exponent (0)
Refs. 1,94,95 1 108 58 58 58 58 58 45,101 101 93 90 90
97
_
97 96
33.1
23.1
19.2
0.077
0.051
3.4
100
30.8
22.6
19.5
0.063
0.029
2.9
100
36.6
24.6
20.0
0.092
0.115
3.8
100
30.0
20.6
17.0
0.072
0.047
3.5
100
39.5
26.9
22.0
0.097
0.190
3.7
100
28.9
19.9
16.5
0.069
0.028
3.4
100
34.4 40.9
23.3 -
19.1 -
0.085
0.067 0.027
3.3 -
100 1
-
-
0.240
-
1,99
-
-
0.147
-
1,99
2.26.6 ORGANIC PIGMENTS
Phthalocyanine (metal-free) (pure untreated surface)
52.8 (c)
Copper phthalocyanine (pure untreated surface) 46.9 (c)
-
TABLE 2. cont'd Surface tension y (mN/m = dyn/cm) Polymer
20 0 C
150 0 C
Chlorinated copper phthalocyanine (pure untreated surface) Idanthrone (pure untreated surface)
42.0 (c)
-
-
63.2(c)
-
-
47.2(c)
-
-
51.9 (c)
-
-
-dy/dr (mN/m/K)
200 0 C
Polarity (JCP)
Macleod's exponent (j?)
Refs.
0.148
-
1,99
0.475
-
1,99
0.318
-
1,99
0.464
-
1,99
-
0.273
-
1,99
-
Isoindolinone (pure untreated surface)
Manganese (3-oxynaphthoic acid derivative (pure untreated surface)
-
y-Quinacridone (pure untreated surface)
49.1 (c)
Thioindigoid red (pure untreated surface)
51.4 (c)
-
-
0.317
-
1,99
53.0(C)
-
-
0.251
-
1,99
200 0 C
- dy 1 2 /dr (mN/m/k)
Refs.
1.91
0.00322
103
Toluidine red (pure untreated surface)
TABLE 3. INTERFACIAL TENSION FOR AMORPHOUS INTERFACES Interfacial tension Y12 (mN/m = dyn/cm) Polymer 3.1.
20 0 C
150 0 C
HYDROCARBON POLYMERS vs. OTHERS
3.1.1. POLY(BUTADIENE) VS. OTHERS Poly(butadiene) vs. poly(oxydimethylsilylene) PBD Mn = 960, PDMS M n = 3900
2.48
2.07
References page VI - 540
TABLE 3.
cont'd Interfacial tension y12 (mN/m = dyn/cm) — 200C 1500C 2000C
Polymer Poly(butadiene) vs. poly(oxydimethylsilylene) PBD Mn = 2350, PDMS Mn = 3900 Poly(butadiene) vs. poly(oxydimethylsilylene) PBD Mn = 2350 PDMS Mn = 5200 Poly(butadiene) vs. poly(oxydiethylsilylene) PBD Mn = 960, PDMS Mn = 5200 Poly(butadiene) vs. epoxy resin (diglycidyl ether of bisphenol-A, chain extended with bisphenol-A)
- dy12/dT (mN/m/k)
Refs.
3.86
2.70
2.25
0.00895
103
3.98
2.85
2.42
0.00865
103
2.58
2.25
2.13
0.00250
103
1.77 (23 0C)
1.40 (55°C)
-
0.0105
70
1.23
0.57 (55°C)
-
0.0198
70
-
0.58 (55°C)
-
8.3
1.1 5.7
Poly(ethylene) (branched) vs. poly(styrene) 5.6 Poly(ethylene) (branched) vs. poly(chloroprene) 4.6 Poly(ethylene) (linear) vs. poly(methyl acrylate) 10.6 Poly(ethylene) (branched) vs. poly(methyl acrylate) Poly(ethylene) (linear) vs. poly(ethyl acrylate) 7.5 Poly(ethylene) (branched) vs. poly (ethyl acrylate) Poly(ethylene) (linear) vs. poly(n-butyl acrylate) 5.0 Poly(ethylene) (branched) vs. poly(n-butyl acrylate) 5.5 Poly(ethylene) (linear) vs. poly(2-ethylhexyl acrylate) 3.1 Poly(ethylene) (branched) vs. poly(2-ethylhexyl acrylate) 3.5 Poly(ethylene) (linear) vs. poly(methyl methacrylate) 11.8 Poly(ethylene) (linear) vs. poly(«-butyl methacrylate) 7.1 Poly(ethylene) (branched) vs. poly(iso-butyl methacrylate) 5.5 Poly(ethylene) (branched) vs. poly(terf-butyl methacrylate) 5.9 Poly(ethylene) (linear) vs. poly(poly(vinyl acetate) 14.6 Poly(ethylene) (branched) vs. poly(vinyl acetate) Poly(ethylene) (branched) vs. poly(ethylene-.smr-vinyl acetate), 2.0 25 wt.% VAc Poly(ethylene) vs. poly(ethylene-star-vinyl acetate), 12 wt.% VAc Poly(ethylene) vs. poly(ethylene-staf-vinyl acetate), 17.7 wt.% VAc Poly(ethylene) vs. poly(ethylene-staf-vinyl acetate), 25 wt.% VAc Poly(ethylene) vs. poly(ethylene-staf-vinyl acetate), 26.6 wt.% VAc Poly(ethylene) vs. poly(ethylene-staf-vinyl acetate), 30.9 wt.% VAc Poly (ethylene) vs. poly(ethylene-.star- vinyl acetate), 38.7 wt.% VAc Poly(ethylene) vs. poly(ethylene-staf-vinyl acetate), 50 wt.% VAc Poly(ethylene) vs. poly(ethylene-staf-vinyl acetate), 75 wt.% VAc Poly(ethylene) (linear) vs. poly(oxyethyleneoxyterephthaloyl) 9.4 Poly(ethylene) (branched) vs. poly(oxyethyleneoxyterephthaloyl) 13.7 Poly(ethylene) (branched) vs. poly(oxytrimethyleneoxy15.4 isophthaloyl) Poly (ethylene) (branched) vs. poly(oxytetramethyleneoxy13.5 isophthaloyl) Poly(ethylene) (branched vs. poly(oxyhexamethyleneoxy11.1 isophthaloyl) Poly(ethylene) (branched) vs. poly(oxyisophthaloyloxydeca8.3 methylene) Poly(ethylene) (branched) vs. poly(oxyisophthaloyloxydodeca5.9 methylene) Poly(ethylene) (linear) vs. poly(iminohexamethylene14.9 iminoadipoyl) (nylon 66) Poly(ethylene) (branched) vs. poly(iminohexamethyleneiminoadipoyl) (nylon 66) Poly(ethylene) vs. poly(imino(l-oxohexamethylene)) (nylon 6) Poly(ethylene) (branched) vs. poly(oxyethylene) 11.6
5.0 3.6 8.2 6.5 5.4 5.5 3.3 3.8 1.8 2.5 9.5 5.1 4.2 4.7 11.0 10.5 1.3
4.7 4.4 4.8 3.2 7.3 _ 4.6 2.7 3.2 1.3 2.1 8.6 4.4 3.7 4.3 9.7 1.1
3.1.2. POLY(BUTADIENE-5to/-ACRYLONITRILE) vs. OTHERS Poly(butadiene-staf-acrylonitrile) 18 wt.% AN vs. epoxy resin (same as above) Poly(butadiene-staf-acrylonitrile) 26 wt.% AN vs. epoxy resin (same as above) 3.1.3. POLY(ETHYLENE) VS. OTHERS Poly(ethylene) (branched) vs. poly(propylene) (atactic) Poly(ethylene) (linear) vs. poly(styrene)
0.3 0.8 1.5 1.7 2.2 2.9 4.1 7.3 6.5 (28O0C) 9.8 (2800C) 11.5
70
0.020 0.0046 0.0075 0.018 _ 0.016 0.014 0.013 0.010 0.0078 0.018 0.015 0.010 0.009 0.027 0.005
17 8 106 46 2 1,35 46 1,35 46 1,35 46,107 1,35 46,107 8 8 2 2 7,12 18 12,18
-
-
-
-
6.0 (325°C) 9.2 (325°C) 10.0
-0.030
23 23 23 23 23 23 35 35 35 14 98
10.1
8.8
0.026
98
8.4
7.3
0.021
98
6.4
5.6
0.015
98
4.5
3.9
0.011
98
-
35
0.041
14
0.016
106 12
0
10.2 (280°C)
9.4 (325 C)
17.0 (280°C)
15.2 (325°C)
9.5
0
10.7 (250 C) 8.7
TABLE 3. cont'd Interfacial tension Yi2 (mN/m = dyn/cm) 200C
Polymer Poly(ethylene) (branched) vs. poly(oxytetramethylene) Poly(ethylene) (branched) vs. poly(oxydimethylsilylene)
200°C
- dy12/dT (mN/m/k)
4.1 5.1
3.8 5.0
0.007 0.002
2,12 212,82
6.2 (2800C)
5.7 (325°C)
0.0093
20,35
0.0193
20,35
1500C
5.1 5.3
Refs.
3.1.4. POLY(ETHYLENE-staf-PROPYLENE-staf-HEXADIENE), (EPDM) vs. OTHERS EPDM (E/P/HD 69.5/26.5/4.0 weight ratio) vs. poly8.6 (oxyethyieneoxyterephthaloyl), poly(ethylene terephthalate) EPDM (E/P/HD 69.5/6.5/4.0 weight ratio) vs. poly(imino14.7 hexamethyleneiminoadipoyl) (nylon 66) Poly(ethylene-Jtaf-vinyl acetate) vs. poly(ethylene), see reverse Poly(ethylene-sta/-vinyl acetate) vs. poly(vinyl acetate), see reverse Poly(ethylene-sta/-vinyl acetate) vs. poly(ethylene stat-vinyl acetate) E/VAc (25 wt.% VAc) vs. E/VAc (12 wt.% VAc) E/VAc (25 wt.% VAc) vs. E/VAc (17.7 wt.% VAc) E/VAc (25 wt.% VAc) vs. E/VAc (38.7 wt.% VAc) E/VAc (25 wt.% VAc) vs. E/VAc (50 wt.% VAc) E/VAc (25 wt.% VAc) vs. E/VAc (75 wt.% VAc) -
9.7 (2800C)
8.8 (325°C)
0.45 0.13 0.17 1.0 3.6
-
3.1.5. POLY(ISOBUTENE) VS. OTHERS Poly(isobutene) vs. poly(vinyl acetate) Poly(isobutene) vs. poly(oxydimethylsilylene)
9.9 4.9
7.3 4.1
6.3 3.8
0.020 0.006
7 82
3.1.6. POLY(PROPYLENE) VS. OTHERS Poly(propylene) vs. poly(ethylene), see reverse Poly(propylene) vs. poly(styrene) Poly(propylene) vs. poly(oxydirnethylsilylene)
3.2
2.9
2.8
0.002
17
3.1.7. HALOGENATED HYDROCARBON POLYMERS vs. OTHERS Poly(chloroprene) vs. poly(ethylene), see reverse Poly(chloroprene) vs. poly(fl~butyl methacrylate) 2.2 Poly(chloroprene) vs. poly(styrene), see reverse Poly(chloroprene) vs. poly(oxydimethylsilylene) 7.1
1.5
1.3
0.0047
2
6.4
6.2
0.0050
2
0.7 4.2 3.2
0.5 3.2 1.4 1.4 2.5 3.7 1.5
0.4 -
0.0014 -
6.1 1.8 0.3 2.3 3.3
6.1 2.8 2.1 2.0 2.6
2 46 46 46 46 2.24 8 106 82 24 24 24 24
-
23 23 23 35 35
3.2. STYRENE POLYMERS vs. OTHERS Poly(styrene) Poly(styrene) Poly(styrene) Poly(styrene) Poly(styrene) Poly(styrene) Poly(styrene) Poly(styrene)
vs. poly(ethylene), see reverse vs. poly(chloroprene) vs. poly(rnethyl aery late) vs. poly(ethyl acrylate) vs. poly(rc-butyl acrylate) vs. poly(2-ethylhexyl acrylate) vs. poly(vinyl acetate) vs. poly(methyl methacryiate)
Poly(styrene) Poly(styrene) Poly(styrene) Poly(styrene) Poly(styrene)
vs. poly(oxydimethylsilylene) vs. poly(ethylene-$ta/-vinyl acetate), vs. poly(ethylene-s/<2f-vinyl acetate), vs. poly(ethylene-smr-vinyl acetate), vs. poly(ethylene-staf-vinyl acetate),
17.7 wt.% 30.9 wt.% 38.7 wt.% 26.6 wt.%
VAc VAc VAc VAc
3.4 0.8 1.3 6.1 3.2 2.8 1.9 2.3
0.0044 0.013 ~0 -0.0074 -0.0136 0.0020 0.0050
3.3. VINYL POLYMERS vs. OTHERS Poly(ethylene-$mr-vinyl acetate) vs. poly(ethylene), see reverse Poly(ethylene-staf-vinyl acetate) vs. polystyrene, see reverse Poly(ethylene-Jtaf-vinyl acetate) vs. self, see Hydrocarbon Polymers vs. Others 3.3.1. POLY VINYL ACETATE vs. OTHERS Poly(vinyl acetate) vs. poly(isobutene), see reverse Poly(vinyl acetate) vs. poly(ethylene-sta/-vinyl acetate), 12 wt.% VAc Poly (vinyl acetate) vs. poly(ethylene-jtaf-vinyl acetate), 17.7 wt.% VAc Poly(vinyl acetate) vs. poly(ethylene-star-vinyl acetate), 25 wt.% VAc
-
8.3
23
-
7.5
-
-
6.3 -
5.8 6.5
5.5 -
0.0043 -
23. 12 23
References page VI - 540
TABLE 3. cont'd Interfacial tension yl2 (mN/m = dyn/cm) 200C
Polymer Poly(vinyl acetate) vs. poly(ethylene-sfa/-vinyl acetate), 26.6 wt.% VAc Poly (vinyl acetate) vs. poly (ethylene-staf- vinyl acetate), 30.9 wt.% VAc Poly(vinyl acetate) vs. poly(ethylene-.staf-vinyl acetate), 38.7 wt.% VAc Poly(vinyl acetate) vs. poly(ethylene-statf-vinyl acetate), 50 wt.% VAc Poly(vinyl acetate) vs. poly(ethylene-jfaf-vinyl acetate), 75 wt.% VAc Poly(vinyl acetate) vs. poly(ft-butyl methacrylate) Poly(vinyl acetate) vs. poly(oxytetramethylene) Poly(vinyl acetate) vs. poly(oxydimethylsilylene) Poly(vinyl acetate) vs. eicosane, C2OH44
1500C
2000C
- dy n/dr (mN/m/k)
Refs.
-
6.1
-
-
23
-
5.6
-
-
23
-
4.7
-
23
3.5
-
35
-
1.2
-
35
4.2 5.5 8.4 7.1
2.8 4.5 7.3 4.6
2.3 4.1 6.9 3.6
0.010 0.0081 0.0081 0.0195
8 12 2,12,82 40
1.9
0.9
0.5
0.0078
40
3.5
2.5
2.1
0.0080
40
3.4.1. POLY(METHYL ACRYLATE) VS. OTHERS Poly(methyl acrylate) vs. poly(ethylene), see reverse Poly(methyl acrylate) vs. poly(styrene), see reverse Poly(methyl acrylate) vs. poly(ethyl acrylate) Poly(methyl acrylate) vs. poly(n-butyl acrylate) Poly(methyl acrylate) vs. poly(2-ethylhexyl acrylate)
2.4 4.0 6.6
13 3.0 5.7
0.9 2.6 5.4
0.008 0.008 0.007
1,35,46 1,35,46 1,35,46
3.4.2. POLY(ETHYL ACRYLATE) vs. OTHERS Poly(ethyl acrylate) vs. poly(ethylene), see reverse Poly(ethyl acrylate) vs. poly(styrene), see reverse Poly(ethyl acrylate) vs. poly(methyl acryiate), see reverse Poly(ethyl acrylate) vs. poly(rt-butyl acrylate) Poly(ethyl acrylate) vs. poly(2-ethylhexyl acrylate)
2.1 3.9
1.3 3.2
1.0 3.0
0.006 0.005
1,35,46 1,35,46
3.4.3. POLY(n-BUTYL ACRYLATE) vs. OTHERS Poly(ft-butyl acrylate) vs. poly(ethylene), see reverse Poly(rc-butyl acrylate) vs. poly(styrene), see reverse Poly(«-butyl acrylate) vs. poly(methyl acrylate), see reverse Poly(rt-butyl acrylate) vs. poly(ethyl acrylate), see reverse Poly(/i-butyl acrylate) vs. poly(2-ethylhexyl acrylate),
1.8
1.2
1.0
0.005
1,35,46
3.4 3.0
1.9 2.2
1.3 1.9
0.012 0.006
8 2
3.3.2. POLY(VINYL BUTYRATE) vs. OTHERS Poly(vinyl butyrate) vs. eicosane, C20H44 3.3.3. POLY(VINYL PROPIONATE) vs. OTHERS Poly (vinyl propionate) vs. eicosane, C20H44
3.4. ACRYLIC POLYMERS vs. OTHERS
3.4.4. POLY(2-ETHYLHEXYL ACRYLATE) vs. OTHERS Poly(2-ethylhexyl acrylate) vs. poly(ethylene), see reverse Poly(2-ethylhexyl acrylate) vs. poly(styrene), see reverse Poly(2-ethylhexyl acrylate) vs. poly(methyl acrylate), see reverse Poly(2-ethylhexyl acrylate) vs. poly(ethyl acrylate), see reverse Poly(2-ethylhexyl acrylate) vs. poly(n-butyl acrylate), see reverse 3.5.
METHACRYLIC POLYMERS vs. OTHERS
3.5.1. POLY(METHYL METHACRYLATE) vs. OTHERS Poly (methyl methacrylate) vs. poly(ethylene), see reverse Poly(methyl methacrylate) vs. poly(styrene), see reverse Poly(methyl methacrylate) vs. poly(/i-butyl methacrylate) Poly(methyl methacrylate) vs. poly(rerf-butyl methacrylate) 3.5.2. POLY(H-BUTYL METHACRYLATE) vs. OTHERS Poly(fl-butyl methacrylate) vs. poly(ethylene), see reverse Poly(A7-butyl methacrylate) vs. poly(vinyl acetate), see reverse
TABLE 3.
cont'd Interfacial tension 712 (mN/m = dyn/cm) 200C
Polymer
1500C
2000C
-dYl2/dr (mN/m/k)
Refs.
Poly(n-butyl methacrylate) vs. poly(chloroprene), see reverse Poly(n-butyl methacrylate) vs. poly(oxydimethylsilylene), see reverse 3.5.3. POLY(/^-BUTYL METHACRYLATE) vs. OTHERS Poly(iso-butyl methacylate) vs. poly(ethylene), see reverse 3.5.4. POLY(f
6.4
5.8
5.5
0.0045
12
6.6 2.8 4.5
4.8 2.0 3.8
4.1 1.7 3.6
0.014 0.0065 0.0051
107 107 12
~
9.3 (90°C)
-
0.040
58
1.2
1.1
0.0023
12
1.1 (900C)
-
0.013
58
3.6 3.2 9.4 6.2
0.0037 0.0025 0.0078 0.0012
3.6.2. POLY(OXYTETRAMETHYLENE) VS. OTHERS Poly(oxytetramethylene) vs. poly(oxyethylene), see reverse Poly(oxytetramethylene) vs. poly(ethylene), see reverse Poly(oxytetramethylene) vs. poly(vinyl acetate), see reverse Poly(oxytetramethylene) vs. poly(ethylene-.y/<3r-vinyl acetate), 1.5 25 wt.% VAc Poly(oxytetramethylene) vs. poly(oxydimethylsiloxane), see reverse Poly(oxytetramethylene) vs. eicosane, C20H44 3.7. POLY(ESTERS) VS. OTHERS
Poly(oxyethyleneoxyterephthaloyl) vs. polyethylene, see reverse Poly(oxyethyleneoxyterephthaloyl) vs. poly(ethylene-Jtaf-propylene-.?ta/-hexadiene), see reverse Poly(oxytrimethyleneoxyisophthaloyl) vs. poly(ethylene), see reverse Poly(oxytetramethyleneoxyisophthaloyl) vs. poly(ethylene), see reverse Poly(oxyhexamethyleneoxyisophthaloyl) vs. poly(ethylene), see reverse Poly(oxyisophthaloyloxydecamethylene) vs. poly(ethylene), see reverse Poly(oxyisophthaloyloxydodecamethylene) vs. poly(ethylene), see reverse 3.8. POLY(AMIDES) VS. OTHERS Poly(iminohexamethyleneiminoadipoyl) vs. polyethylene, see reverse Poly(iminohexamethyleneiminoadipoyl) vs. polytethylene-statf-propylene-jfaf-hexadiene), see reverse Poly(imino(l-oxohexamethylene)) vs. poly(ethylene), see reverse 3.9. EPOXY RESIN vs. OTHERS Epoxy resin vs. poly(butadiene), see reverse Epoxy resin vs. poly(butadiene-5taf-acrylonitrile), see reverse 3.10. POLY(SILOXANES) VS. OTHERS Poly(oxydimethylsilylene) Poly(oxydimethylsilylene) Poly(oxydimethylsilylene) Poly(oxydimethylsilylene) Poly(oxydimethylsilylene) Poly(oxydimethylsilylene) Poly(oxydimethylsilylene) Poly(oxydimethylsilylene) Poly(oxydimethylsilylene) Poly(oxydimethylsilylene) Poly(oxydimethylsilylene)
vs. poly(ethylene), see reverse vs. poly(styrene), see reverse vs. poly(propylene), see reverse vs. poly(isobutene), see reverse vs. poly(chloroprene), see reverse vs. po\y(viny\ acetate), see reverse vs. poly(butadiene), see reverse vs. poly(«-butyl methacrylate) vs. poly(f-butyl methacrylate) vs. poly(oxyethylene) vs. poly(oxytetramethylene)
4.2 3.6 10.8 6.4
3.8 3.3 9.8 6.3
2 2 12 2,12
References page VI - 540
TABLE 3. cont'd Interfacial tension y12 (mN/m = dyn/cm) 200C
Polymer
1500C
2000C
_ dy 12/dr (mN/m/k)
Refs.
0.100 0.094 0.070 0.081 0.073
58 58 58 58 58
3.11. MISCELLANEOUS Eicosane Eicosane Eicosane Eicosane Eicosane Eicosane Eicosane Eicosane Eicosane Eicosane
C.
(C20H44) vs. poly(oxyethylene), see reverse (C20H44) vs. poly(oxytetramethylene), see reverse (C20H44) vs. poly (vinyl acetate), see reverse (C20H44) vs. poly(vinyl propionate), see reverse (C20H44) vs. poly(vinyl butyrate), see reverse (C20H44) vs. 1,3-propanediol 25 wt.% VAc (C20H44) vs. 1,4-butanediol (C20H44) vs. 1,5-pentanediol (C20H44) vs. 1,6-hexanediol (C20H44) vs. 1,10-decanediol
45.9 44.2 41.6 42.2 39.3
38.9 (900C) 37.6(900C) 36.7 (900C) 36.5 (900C) 34.2 (900C)
-
REFERENCES
1. S. Wu, "Polymer Interface and Adhesion", Marcel Dekker, New York, 1982. 2. S. Wu, J. Polym. Sci. C, 34, 19 (1971). 3. S. Wu, J. Adhesion, 5, 39 (1973). 4. T. Hata, T. Kasemura, in: L. H. Lee (Ed.), "Adhesion and Adsorption of Polymers", Vol. 12a, Plenum, New York, 1980, p. 15. 5. H. Schonhorn, G. L. Baker, R S. Bates, J. Polym. Sci., Polym. Phys. Ed., 23, 1555 (1985). 6. L. H. Lee, J. Polym. Sci. A-2, 5, 1103 (1967). 7. S. Wu, J. Colloid Interface Sci., 31, 153 (1969). 8. S. Wu, J. Phys. Chem., 74, 632 (1970). 9. S. Wu, J. Macromol. Sci., ClO, 1 (1974). 10. S. Wu, in: D. R. Paul, S. Newman, (Eds.), "Polymer Blends", Vol. 1, Academic, New York, 1978, p. 243. 11. R. J. Roe, J. Phys. Chem. 72, 2013 (1968). 12. R. J. Roe, J. Colloid Interface Sci., 31, 228 (1969). 13. T. Kasemura, N. Yamashita, K, Suzuki, T. Kondo, T. Hata, Kobunshi Ronbunshu, 35, 263 (1978). 14. W. Berger, K. Olbricht, H. W. Kammer, Faserforsch. Textiltech., 27 (1), 9 (1976); 27 (1), 15 (1976). 15. R. H. Dettre, R. E. Johnon, Jr., J. Colloid Interface Sci., 21, 367 (1966). 16. H. Schonhorn, L. H. Sharpe, J. Polym. Sci. A, 3, 569 (1965). 17. Y. Oda, T. Hata, Preprints, 17th Annual Meeting High Polymer Society, Japan, 1968, p. 167. 18. Y. Oda, T. Hata, Preprints, Sixth Symp. Adhesion and Adhesives, The Adhesion Society of Japan, 1968, p. 69. 19. W. H. Smarook, S. Bonotto, Polym. Eng. Sci., 8, 41 (1968). 20. S. Wu, Polym. Eng. Sci, 27, 335 (1987). 21. T. Hata, Kobunshi, 17, 594 (1968). 22. T. Hata, Hyomen, 6, 659 (1968). 23. U. Uraki, T. Hata, Preprints, Thirteenth Symp. Adhesion and Adhesives, The Adhesion Society of Japan, 1975. 24. Y Kitazaki, H. Yamauchi, T. Hata, Preprints, Ninth Symp. Adhesion and Adhesives, Japan, 1971, p. 51. 25. H. Edwards, J. Appl. Polym. Sci., 12, 2213 (1968).
26. D. G. LeGrand, G. L. Gaines, Jr., J. Colloid Interface Sci, 31, 162 (1969). 27. T. E. Nowlin, D. F. Smith, Jr, J. Appl. Polym. Sci, 25, 1619 (1980). 28. W. Y. Lau, C. M. Bums, Surface Sci, 30, 478 (1972). 29. W. Y. Lay, C. M. Burns, J. Colloid Interface Sci, 45, 295 (1973). 30. W. Y Lay, C. M. Burns, J. Polym. Sci, Polym. Phys. Ed, 12, 431 (1974). 31. D. G. LeGrand, G. L. Gaines, Jr, J. Colloid Interface Sci, 42, 181 (1973). 32. L. H. Lee, Adv. Chem. Ser, 87, 85 (1968). 33. K. Tamaribuchi, Polym. Preprints, Am. Chem. Soc, 8, 631 (1967). 34. D. H. Kaelble, P. J. Dyne, L. Maus, J. Adhesion, 6, 239 (1974). Collected or estimated from various sources. 35. Collected or estimated from various sources. 36. M. K. Bernett, W. A. Zisman, J. Phys. Chem, 64, 1292 (1960). 37. H. Schonhorn, F. W. Ryan, L. H. Sharpe, J. Polym. Sci. A-2, 4, 538 (1966). 38. R. H. Dettre, R. E. Johnson, Jr, J. Colloid Interface Sci, 31, 568 (1969). 39. R. H. Dettre, R. E. Johnson, Jr, J. Phys. Chem, 71, 1529 (1967). 40. T. Kasemura, F. Uzi, T. Kondo, T. Hata, Kobunshi Ronbunshu, 36, 337 (1979). 41. Y. Kitazaki, T. Hata, J. Adhesion Soc. Japan, 8, 131, (1972). 42. A. G. Pittman, B. A. Ludwig, D. L. Sharp, J. Polym. Sci. A-I, 6, 1741 (1968). 43. W. L. Wasley, A. G. Pittman, Polym. Lett, 10, 279 (1972). 44. W. A. Zisman, Adv. Chem. Ser, 43, 1 (1964). 45. Y. Kitazaki, A. Watanabe, M. Toyama, Preprints, fourth Symp. Adhesion and Adhesives Japan, 1966 p. 31. 46. H. Tozaki, T. Hata, Preprints, 26th Annual Meeting of the Society of Polymer Science, Japan, 1977. 47. A. G. Pittman, D. L. Sharp, B. A. Ludwig, J. Polym. Sci. A-I, 6, 1729 (1968).
48. 49. 50. 51.
52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65.
66. 67. 68. 69. 70.
71. 72. 73.
74. 75. 76. 77. 78. 79.
J. N. Roitman, A. G. Pittman, Polym. Lett., 10, 499 (1972). H. W. Fox, W. A. Zisman, J. Colloid Sci., 7, 428 (1952). M. K. Bernett, W. A. Zisman, J. Phys. Chem., 66 1207 (1962). V. L. Gott, R. E. Baier, Public Document PH43-68-84-4-2, National Technical Information Service, Springfield, Virginia, 22151, May 1973. D. H. Kaelble, J. Moacanin, Polymer, 18, 475 (1977). M. K. Bernett, H. Ravener, J. Adhesion, 9, 157 (1978). D. H. Kaelble, "Physical Chemistry of Adhesion", Wiley, New York, 1971. A. G. Pittman, in: L. A. Wall (Ed.), "Fluoropolymers", Vol. 25, Wiley, New York, 1972, p. 419. R. N. King, J. D. Andrade, S. M. Ma, D. E. Gregonis, L. R. Brostrom, J. Colloid Interface Sci., 103, 62 (1985). A. K. Rastogi, L. E. St. Pierre, J. Colloid Interface Sci., 31, 168 (1969). T. Kasemura, N. Yamashita, K. Suzuki, T. Kondo, T. Hata, Kobunshi Ronbunshu, 35, 215 (1978). G. W. Bender, D. G. LeGrand, G. L. Gaines, Jr., MacromoL, 2, 681 (1969). A. K. Rastogi, L. E. St. Pierre, J. Colloid Interface Sci., 35, 16 (1971). T. Kasemura, T. Hata, Kobunshi Ronbunshu, 33,192 (1976). T. Kasemura, K. Suzuki, F. Uzi, T. Kondo, T. Hata, Kobunshi Ronbunshu, 35, 779 (1978). T. C. Kendrick, B. M. Kingston, N. C. Lyoyd, M. J. Owen, J. Colloid Interface Sci., 24, 135 (1967). H. T. Patterson, K. H. Hu, T. H. Grindtaff, J. Polym. Sci. C, 34, 31 (1971). R. E. Baier, "Surface Properties of Materials for Prosthetic Implants", Calspan Corporation, CAL Report VH-2801 -p-2, February 1970. A. Herczeg, G. S. Ronay, W. C. Simpson, Proc. Nat Soc. Aerospace Mat. Proc. Eng. Conf., Dallas, Texas, 2,221 (1970). L. H. Sharpe, H. Schonhorn, Adv. Chem. Ser., 43, 189 (1964). R. T Foister, J. Colloid Interface Sci., 99, 568 (1984). L. S. Penn, E. R. Bowler, Surface Interface Anal., 3 (4), 161 (1981). J. T. Koberstein, Chemical Engineering Department, Princeton University, Princeton, New Jersey, Private Communication, 1986. T. Fort, Jr., Adv. Chem. Ser., 43, 302 (1964). F. J. Hybart, T. R. White, J. Appl. Polym. Sci., 3,118 (1960). E. Nyilas, W. A. Morton, R. D. Cumming, D. M. Lederman, T. H. Chiu, Polym. Preprints, Am. Chem. Soc, 16 (2), 165 (1975). L. S. Penn, T K. Liao, Composites Technol. Rev., 6 (3), 133 (1984). M. Hayashi, R. Katou, T. Sakai, Seni Gakkaishi, 38 (4), T147 (1982). E. Sacher, J. Appl. Polym. Sci., 22, 2137 (1978). M. Litt, J. Herz. J. Colloid Interface Sci., 31, 248 (1969). M. Litt, J. Herz. Polym. Preprints, Am. Chem. Soc.., 10,905 (1969). H. J. Busscher, A. W. J. Van Pelt, H. P. de Jong, J. Arends, J. Colloid Interface Sci., 95, 23 (1983).
80. H. W. Fox, P. W. Taylor, W. A. Zisman, Ind. Eng. Chem., 39, 1401 (1947). 81. D. G. LeGrand, G. L. Gaines, Jr., J. Polym. Sci. C, 34, 45 (1971).; J. Colloid Interface Sci., 50, 272 (1975). 82. Y. Kitazaki, T. Hata, Preprints, 18th Annual Meeting High Polymer Society Japan, 1969, p. 478. 83. Q. S. Bhatia, J. K. Chen, J. T. Koberstein, J. E. Sohn, J. A. Emerson, J. Colloid Interface Sci., 106, 353 (1985). 84. B. R. Ray, J. R. Anderson, J. J. Scholz, J. Phys. Chem., 62, 1220 (1958). 85. J. E. Sohn, J. A. Emerson, J. K. Chen, A. F. Siegel, J. T. Kobersein, Preprints, Polym. Mater. Sci. Eng., Am. Chem. Soc, 49, 447 (1983). 86. P. Luner, M. Sandell, J. Polym. Sci. C, 28, 115 (1969). 87. W. C. Hamilton, J. Colloid Interface Sci., 40, 219 (1972). 88. H. J. Busscher, J. Arends, J. Colloid Interface Sci., 81, 75 (1981). 89. B. R. Ray, W. L. Wasley, J. J. Scholz, J. Phys. Chem., 62, 1220 (1970). 90. H. D. Feltman, J. R. McPhee, Textile Res. J., 34, 634 (1964). 91. R. E. Baier, C. Akers, S. Perlmutter, V. L. Gott, J. O'Riodan, Calspan Report WO6-EB-5307-M-18, National Institute of Health, Maryland, March 1976. 92. R. E. Baier, W. A. Zisman, MacromoL, 3, 70 (1970). 93. V. R. Gray, in "Wetting", The Society of Chemical Industry Monograph No. 25, London, 1967, p. 99. 94. S. Wu, J. Colloid Interface Sci., 71, 605 (1979); 73, 590 (1980). 95. J. F. Padday, Proc. 2nd Intern, Congr. Surface Activity, 3, 136 (1957). 96. E. Chibowski, B. Bilinski, A. Waksmundzki, W. Wojcik, J. Colloid Interface Sci., 86, 559 (1982). 97. R. Fanelli, J. Am. Chem. Soc, 72, 4016 (1950). 98. T. Kasemura, T. Kondo, T. Hata, Kobunshi Ronbunshu, 36, 815 (1979). 99. S. Wu, K. J. Brzozowski, J. Colloid Interface Sci., 37, 686 (1971). 100. T. Kasemura, N. Yamashita, T. Hata, Kobunshi Ronbunshu, 33, 703 (1976). 101. M. Toyama, T. Ito, Polym-Plast. Technol. Eng., 2 (2), 161 (1973). 102. J. J. Kasper, E. V. Kring, J. Phys. Chem 59, 1019 (1955); J. J. Jasper, E. R. Kerr, F. Gregorich, J. Am. Chem. Soc, 75, 5252 (1953). 103. S. H. Anastasiadis, J. K. Chen, J. T. Koberstein, J. E. Sohn, J. A. Emerson, Polym. Eng. Sci., 26, 1410 (1986). 104. O. R. Quayle, Chem. Rev., 53, 439 (1953). 105. D. W. van Krevelen, "Properties of Polymers", Elsevier, Amsterdam, 1976. 106. J. J. Elmendorp, G. de Vos, Polym. Eng. Sci., 26,415 (1986). 107. T. Kasemura, M. Inagaki, T. Hata, Kobunshi Ronbunshu, 44, 131 (1987). 108. F. M. Fowkes, in "Chemistry and Physics of Interfaces", American Chemical Society, Washington DC, 1968, p. 1. 109. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13,1741 (1969).
P e r m e a b i l i t y
a n d
D i f f u s i o n
D a t a
S. Pauly Fachlaboratorjum fur Permeationsprufung, Alte Schmelze 6, D-65201 Wiesbaden, FR Germany
A. Introduction VI-543 B. Conversion Factors for Various Units of the Permeability Coefficient VI-545 C. Tables VI-545 Table 1. Permeability Coefficients, Diffusion Coefficients, and Solubility Coefficients of Polymers VI-545 1.1. Poly(alkanes) VI-545 1.2. Poly(styrenes) VI-547 1.3. Poly(methacrylates) VI-548 1.4. Poly(nitriles) VI-549 1.5. Poly(vinyls) VI-549 1.6. Fluorine Containing Polymers VI-552 1.7. Poly(dienes) Vi-553 1.8. Poly(xylylenes) VI-555 1.9. Poly(oxides) VI-555 U O . Poly(esters), Poly(carbonates) VI-555 1.11. PoIy(Siloxanes) VI-558 1.12. Poly(amides), Poly(imides) VI-559 1.13. Poly(urethanes) VI-560 1.14. Poly(sulfones) VI-560 1.15. Poly(aryl ether ether ketone) VI-561 1.16. Cellulose and Derivatives VI-561 Table 2. Permeability Coefficients of Six Different Fluorinated Hydrocarbons Through Polymers VI-562 Table 3. Permeability Coefficients of Various Organic Compounds Through Low-Density Poly(ethylene) VI-562 Table 4. Permeability Coefficients and Diffusion Coefficients of an Equimolar Mixture of Various Compounds (1.25 M Each) Through High-Density Poly(ethylene) VI-564 Table 5. Permeability Coefficients of Various Organic Compounds Through High-Density Poly(ethylene) and Poly(propylene) VI-564 Table 6. Permeability Coefficients of Various Organic Compounds
Through Irradiation Crosslinked Low-Density Poly(ethylene) Table 7. Permeability Coefficients of Cases Through Irradiation Crosslinked Low-Density Poly(ethylene) Table 8. Permeability Coefficients of Chemically Crosslinked Poly(oxypropylene) Table 9. Permeability Coefficients of Gases Through Various Elastomers Table 10. Permeability Coefficients of Gases Through Various Commercial Elastomers at 35°C. Table 11. Permeability, Diffusion and Solubility Coefficients of Alkanes Through Santoprene™ (Blend of Ethylene-Propylene Copolymer and lsotactic Poly(propylene)) Table 12. Permeability, Diffusion and Solubility Coefficients of Esters Through Poly(epichlorohydrin) (ECO) D. References A.
VI-564
VI-565
VI-565 VI-566
VI-566
VI-566
VI-567 VI-568
INTRODUCTION
The transmission of molecules through polymer films is named "permeability". There are many dimensions and units found in the literature for the general expression "permeability". In this paper the permeability coefficient is used. It has the dimension (quantity of permeant) x (film thickness) (area) x (time) x (pressure drop across the film) and is the best definition for permeability. The permeability coefficient, in a strict sense, is not only a function of the chemical structure of the polymer. It also varies with the morphology of the polymer and depends on many physical factors such as density, crystallinity, and orientation. However, the chemical structure of a polymer can be considered to be the predominant factor which controls the magnitude of the permeability coefficient.
The following general trends in permeability, as related to some influencing factors, may be useful for the proper interpretation of the tables: Density can be regarded as a measure of the free volume between the molecules of the polymer structure. In general, the higher the density, the lower is the permeability. Crystallinity of a semicrystalline polymer reduces the permeability significantly compared to the value of the corresponding amorphous polymer; i.e., the higher the degree of crystallinity, the lower the permeability. The crystallinity and the density of a polymer are strongly related. The higher the crystallinity the higher is the density of a given polymer. Molecular mass of a polymer has been found to have little effect on the permeability of polymers, except at a very low range of molecular masses. Orientation of polymer molecules reduces the permeability. Crosslinking decreases the permeability, especially for higher degrees of crosslinking and for large molecular size permeants. The method and degree of vulcanization has a significant effect on the permeability of elastomers. Plasticizers increase the permeability. Humidity increases the permeability of some hydrophilic polymers. Liquid permeants have the same permeabilities as their corresponding saturated vapors, though higher permeabilities may occur especially if parts of the polymer are being dissolved. Solution cast films have variable permeabilities depending upon the kind of solvent used and the drying technique. Poor solvents tend to yield films of higher permeability. Fillers, usually inorganic fillers, decrease the permeability; however, the effect is complicated by the type, shape, and amount of filler and its interaction with the polymer. Thickness of film does not, in principle, affect the permeability coefficient, the diffusion coefficient, and the solubility coefficient. In practice, different values may be obtained from films of variable thickness, which in turn may be due to differences in drawing, orientation, and crystallinity. If a permeant does not interact with the polymer under investigation, the permeability coefficient is characteristic for the permeant-polymer system. This is the case with the permeation of many gases, such as H2, He, N2, O2, and CO 2, through many polymers. On the other hand, if a permeant interacts with the polymer, the permeation coefficient is no longer a constant, and may depend on the special conditions of the measurement and the history of the polymer film. In such cases, a single value of the permeability coefficient does not represent the characteristic permeability of the polymer, and it is necessary to know the dependency of the permeability coefficient on all possible variables in order to obtain the complete profile of the permeability of the polymer.
In these cases, the transmission rate, which has the dimension (quantity of permeant) (area) x (time) is often used for practical purposes. Since the transmission rate, Q, includes neither the pressure of the permeant nor the thickness of the polymer in its dimension, it is necessary to know either the pressure or the concentration of the permeant and the thickness of the polymer under the conditions of measurement. For both P and Q, the quantity of permeant can be expressed by mass, moles, or gaseous volume at standard temperature and pressure. These can readily be converted from one unit into another. The preferred SI unit of the permeability coefficient used in this book is . r „ cm3(273.15K; 1.013 x 105Pa) x cm unit of P : -7 cmJ x s x Pa where (273.15 K; 1.013 x 105 Pa) means standard temperature and pressure (STP). Therefore permeability coefficients given in this paper are in the range of 10~ n 10~16 cm 3 x cm/cm2 x s x Pa for many polymers and permeants. The mostly used units and their conversion factors are listed in Table B. The permeation of molecules through flawless polymers occurs by the steps of dissolution of a permeant in the polymer and diffusion of the dissolved permeant. The product of the diffusion coefficient D and the solubility coefficient S is referred to as the permeability coefficient. P=D x S
Units of D and 5 used in these tables are unit of D :
cm2 s
. r cm2(273.15K; 1.013 x 105Pa) unit of S : \— cm3 x Pa The solubility coefficients cited in the following tables are often calculated by
The temperature dependence of the permeability coefficient P, the diffusion coefficient Z), and the solubility coefficient S can be represented by
and
Consequently
where Ep is the activation energy of permeation, E^ the activation energy of diffusion, and £"s the heat of solution. PQ, DQ, and So are the pre-exponential factors. Values of Ep, ED, and Es &re given in kJ/mol in the following tables. R is the gas constant (8.3144 x 10~3kJ/Kmol); T is the temperature in K. In the following tables the temperature range is given in which PQ, Ep, E&, and Es are relevant, as
far as the authors have reported it. The permeability coefficient can be determined for a given temperature by means of the pre-exponential factor Po and the activation energy of permeation Ep. In the following tables, permeability, diffusion, and solubility coefficients are listed for many polymers. The pre-exponential factor PQ, the activation energy of permeation Ep, the activation energy of diffusion E&, and the heat of solution Es are also given. The pre-exponential factors Do and SQ can be determined by the following equations:
B. CONVERSION FACTORS FOR VARIOUS UNITS OF THE PERMEABILITY COEFFICIENT Multiplication factors to obtain P in: From
C
[cm3][cm] [qn*)[8][qn Hg]
[cm3][cm] [cm2)[sj[Pa]
[cm3][cm] [m»][day][atm]
1
7.5 x l O - 4
6.57 x l O 1 0
10" 1
7.5 XlO" 5
6.57 x l O 9
1.32 x 10~ 2
9.87 x 10~ 6
8.64 x 10 8
3.87 x 10~ 1 4
2.90 x 10" 17
2.54 x 10~ 3
9.82 x 10~ 1 2
7.37 x 10" 15
6.45 x 10" 1
1.52 x l 0 ~ u
1.14 XlO" 1 4
1
1.54XlO" 1 1
1.16 x l O " 1 4
1.01
1.33 x l O 3
1
8.75 x l O 1 3
TABLES
TABLE 1. PERMEABILITY COEFFICIENTS, DIFFUSION COEFFICIENTS, A N D SOLUBILITY COEFFICIENTS OF POLYMERS Units used in the tables are as follows: P, P0 in cm 3 (273.15 K; 1.013 x 10 5 Pa) x cm/(cm 2 x s x Pa); D in cm 2 /s; 5 in cm 3 (273.15 K; 1.013 x 10 5 Pa)/ (cm 3 x Pa); Ep, ED, Es in kJ/mol; Tin 0 C; (273.15K; 1.013 x 10 5 Pa) means standard temperature and pressure (STP).
Polymer
Permeant
T
Poly(ethylene) LLDPE
C2H4O
30
Poly(ethylene) density 0.914g/crn\ LDPE
H2 D2 He O2
25 25 25 25 25 25 25 25 25
F(xl013)
D (xlO 6 )
S(xlO 6 )
Temp. range
P0[XW1)
EP
E0
ES
Refs.
1.1. POLY(ALKANES)
AJ
Ne Kr Xe CO 2
68.9 7.4 6.6 3.7 2.2 2.1 0.48 2.15 4.01 9.5
0.031 0.474 0.476 6.8 0.46 0.36 2.42 0.169 0.069 0.372
225 1.58 1.38 0.0544 0.472 0.571 0.020 1.28 5.82 2.54
80
5-60 5-60 5-60
4.62 66.5 174
34.8 42.7 45.2
24.7 40.2 42.3
10.1 2.5 2.9
5-60
62.0
38.9
38.5
0.4
49 49 16 16 16 49 49 49 16
References page VI - 568
T
P(xlO 1 3 )
CO N2 CH 4 C2H6 C3H4 C3H6 C3H8 SF 6 H2S NH 3 CH3Br C2H4O H2O He O2 Ar CO 2 CO N2 CH 4 C2H6 C3H4 C3H6 C3H8 K-C4H10 /J-C5H12 «-C 6 H, 4 SF 6 H2S NH 3 H2O
25 25 25 25 25 25 25 25 20 20 20 30 25 25 25 25 25 25 25 25 25 25 25 25 40 25 0 25 20 20 25
1.1 0.73 2.2 5.1 32 11 7,1 0.13 27.0 21.0 110 75 68 0.86 0.30 1.30 0.27 0.15 0.11 0.29 0.44 3.0 0.87 0.404
Poly(ethylene) HDPE
C2H4O
30
21.4
Poly(ethylene) (Hizex 7000F) Isotropic density 0.943 g/crn3 draw ratio 8 0.958 9 0.957 10 0.958 12 0.960 14.5 0.962 20.5 0.966
He He He He He He He
25 25 25 25 25 25 25
1.33 1.46 1.44 0.885 0.407 0.278 0.129
3.50 3.20 3.55 2.38 1.69 1.14 0.632
0.0379 0.0457 0.0406 0.0372 0.0241 0.0244 0.0204
74 74 74 74 74 74 74
N2 O2 CO 2 He N2 O2 CO 2 He O2 CO2 He O2 He O2 CO 2 He O2
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
0.2 0.76 3.2 1.1 0.11 0.34 1.4 0.37 0.074 0.28 0.3 0.10 0.12 0.012 0.045 0.11 0.15
0.094 0.196 0.148 3.3 0.075 0.099 0.080 1.5 0.032 0.02 1.7 0.0459 0.54 0.0055 0.0035 0.48 0.0065
0.217 0.395 2.16 0.0346 0.138 0.346 1.82 0.0247 0.237 1.41 0.0188 0.197 0.0217 0.217 1.29 0.0237 0.168
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
He He He He He He He He
25 25 25 25 25 25 25 25
1.11 0.23 0.878 0.773 0.695 0.515 0.257 0.206
3.27 3.32
0.0340 0.0278
74 74 74 74 74 74 74 74
N2 O2 CO 2 N2 O2 CO 2
25 25 25 25 25 25
0.179 0.662 3 0.059 0.0522 1.0
0.0945 0.185 0.132 0.0411 0.0696 0.056
0.188 0.357 2.27 0.148 0.289 1.78
99 99 99 99 99 99
3
density 0.964g/cm , HDPE
Poly(ethylene) (Hizex 7000F) draw ratio 1.0 density 0.945 g/cm3
6.6 64
0.954
11-8
0.959
120
0.959
17.6
20.2 Poly(ethylene-hexene-l) copolymer (Rigidex 002-55) Isotropic density 0.943g/cm3 draw ratio 7 0.955 8.5 0.958 9.5 0.959 10 0.960 11 0.961 13 0.963 16.5 0.964 Poly(ethylene-hexene-1) copolymer (Rigidex 002-55) draw ratio 1.0 density 0.945 g/cm3 65
0.0063 6.5 8.0 9.0
D(XlO 6 )
Temp. range
Permeant
Polymer
0.332 0.320 0.193 0.068 0.105 0.058 0.0322 0.0135
S (xlO«) 0.336 0.228 1.13 7.55 30.2 18.8 21.3 0.951
5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60
3.07 0.17 0.12 0.12 0.096 0.093 0.057 0.015 0.025 0.011 0.0049 0.02 0.0033 0.000075 0.0016
0.028 0.18 1.1 0.22 0.15 0.15 0.51 3.0 12 8.2 8.3
0-60 10-90 5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60
0.39
5-60
0.021
97.5
F0(xl07) 154 329 425 985 209 459 1170 4050
Ev
ED
Es
Refs.
46.5 49.4 47.3 47.3 38.9 43.5 46.9 599
39.8 41.5 45.6 53.6 49.8 52.3 55.7 62.0
6.7 7.9 1.7 -6.3 -10.9 -8.8 -8.8 -2.1
23.4 36.8 38.9 35.6 36.8 37.7 43.5 52.3 47.3 52.3 56.9 62.3 76.6
6.3 -1.7 -1.2 -5.5 2.5 2.0 -2.9 -9.6 -14.2 -13.4 -12.1
62.8
-7.6
16 16 16 16 16 16 16 16 5 5 37 37 21 16 16 16 16 16 16 16 16 16 16 16 64 64 64 16 5 5 21
48.8 0.137 0.423 5.23 0.0506 1.15 0.991 3.76 13.3 1.89 5.68 28.5
33.5 29.7 35.1 37.7 30.1 39.3 39.7 40.6 42.7 33 1 38.9 44.8
29.5
55.2
80
Permeant
T
P(xlO 1 3 )
He O2 CO 2 He O2 He O2 CO 2
25 25 25 25 25 25 25 25
0.242 0.044 0.18 0.14 0.025 0.097 0.0098 0.034
Poly(ethylene-co-propylene) 40/60 amorphous 31.0 CH j-groups per 100 carbons
He
24.4
24.0
Ne Ar N2
24.4 24.4 24.4
9.0 9.8 3.7
26.5 CH3-groups per 100 carbons
He Ne Ar N2
24.1 24.1 24.1 24.1
21.5 CH3-groups per 100 carbons
He Ne Ar N2
Polymer 11.7
14.7 17.6
D(xlO6)
S(xlO 6 )
1.2 0.0203 0.0113 0.713 0.0148 0.57 0.0048 0.0025
0.0197 0.218 1.58 0.0197 0.167 0.0168 0.207 1.32
/»0(xl07)
EP
ED
ES
Refs. 99 99 99 99 99 99 99 99
0.146
0-50
1.56
27.6
15.0
12.6
25
4.5 1.06 0.67
0.20 0.93 0.545
0-50 0-50 0-50
2.48 46.6 167
31.8 39.6 43.8
28.5 37.1 45.8
3.3 2.5 -2.0
25 25 25
21.8 8.5 11.0 4.1
17.9 5.3 1.3 0.94
0.121 0.16 0.83 0.44
0-50 0-50 0-50 0-50
1.93 4.89 46.7 97.5
28.1 32.7 37.8 42.1
24.8 31.9 42.0 42.9
3.3 0.8 -4.2 -0.8
25 25 25 25
26.6 26.6 26.6 26.6
16.0 6.9 9.2 3.7
9.4 3.5 1.06 0.79
0.17 0.20 0.87 0.46
0-50 0-50 0-50 0-50
2.37 5.67 27.2 54.2
29.7 34.1 37.2 41.2
27.0 31.9 39.6 44.0
2.7 2.2 -2.4 -2.8
25 25 25 25
He H2 N2 O2 CO 2 H2O CH3Br H2S NH 3 H2O He O2 N2 CO 2 He O2 N2 CO 2 He O2 N2 CO 2 He O2
20 20 30 30 30 30 30 20 20 23 33 33 33 33 33 33 33 33 33 33 33 33 33 33
0.28 31.0 0.33 1.7 6.9 51.0 15.0 2.4 6.9 15.8 10.6 1.68 0.424 5.43 8.98 1.48 0.355 4.64 7.7 1.28 0.306 4.05 8.69 1.78
N2
33
0.494
C2H4O
30
0.9
O2 H2O He H2 O2 N2 CO 2 H2O H2O
25 25 25 25 25 25 25 25 23
1.9 1350 14.0 17.0 2.0 0.59 7.9 840 717
CO 1 CO 2 CO 2 CO 2 CO 2
25 25 25 25 25
6.0 4.35 2.18 1.J3 0.75
Poly(styrene-co-styrenesulfonic acid) Na -polysalt sulfonated with0mol% SO3" H2 (Polystyrene) ' N2 O2 CO 2 CH 4 sulfonated with 15.2mol% SO3"H2 N2 O2 CO, CH 4
23 23 23 23 23 23 23 23 23 23
18.5 0.368 2.18 10.58 0.585 10.13 0.0975 0.743 3.53 0.150
Poly(propylene) density 0.907 g/cm3 crystallinity 50%
(Trespaphan GND) density 0.8871 g/cm3 crystallinity 43% density 0.8931 g/cm3 crystallinity 50%
density 0.8998 g/cm' crystallinity 58% density 0.9016g/cm3 crystallinity 60%
Poly(propylene) 1.2. POLY(STYRENES) Poly(styrene) biaxially oriented
ultradrawn draw ratio 1.0 18 3.1 4.4 5.0
16.5
Temp. range
19.5 2.1
0.0022
20-70 20-70 20-70 20-70 20-70 10-90 0-50
0.153 224 1280 278 24.0 900 1.56 x l O 6
10-50 30-55 30-55 30-55 30-55 30-55 30-55 30-55 30-55 30-55 30-55 30-55 30-55 30-55 30-55
0 249 0.631 117 1010 173 0.534 103 11500 148 0.458 89.4 732 129 0.236 11.8
30-55
34.5
32.2 38.5 55.7 47.7 38.1 42.3 64.2
23.8 28 46 55 44 28 46 55 44 28 46 55 44 26 40 46
45
10-50 248 233 293
0.00046
158
47 80
0 14
0.0024 0.0019 0.00075
13 13 19 19 19 19,21 19 5 5 73 47 47 47 47 47 47 47 47 47 47 47 47 47 47
0.000028
-7.79
42 42 41 41 41 41 41 27 73 72 72 72 72 72
+
83
0.055 0.12 0.054 0.011
0.67 2.0 195 5.3
83 83 83 83
0.0042 0.021 0.0091 0.0026
2.3 3.6 39.8 5.8
83 83 83 83
83
References page VI - 568
T
P(xlO 1 3 )
H2 N2 O2 CO 2 CH 4
23 23 23 23 23
5.85 0.0465 0.443 2.18 0.0443
H2 N2 O2 CO 2 CH 4 H2 N2 O2 CO 2 CH 4
23 23 23 23 23 23 23 23 23 23
7.20 0.0563 0.510 2.25 0.0525 5.18 0.0270 0.315 1.65 0.0255
H2 He Ar N2 O2 O2 CO 2 CH 4 H2O
35 35 35 35 34 35 35 35 23
2.78 5.70 0.0158 6.15 0.116 0.0653 2.33 0.00263 480
88 88 88 88 51 88 88 88 73
O2
34
4.52
51
CO 2 CO 2 CO 2
35 35 35
0.435 0938 1.58
88 88 88
He
35
7.95
7.88
0.101
77
Ar N2 CH 4
35 35 35
0.383 0.140 0.176
0.0513 0.0385 0.0121
0.747 0.365 1.46
77 77 77
75/25
He Ar N2 CH 4
35 35 35 35
6.78 0.410 0.144 0.221
7.15 0.0595 0.0442 0.0167
0.0945 0.689 0.326 1.32
77 77 77 77
50/50
He Ar N2 CH 4
35 35 35 35
5.59 0.443 0.159 0.302
6.54 0.0677 0.0508 0.0242
0.0855 0.655 0.313 1.25
77 77 77 77
25/75
He Ar N2 CH 4
35 35 35 35
4.61 0.495 0.178 0.411
0.0792 0.0595 0.0333
0.625 0.299 1.23
77 77 77 77
He Ar N2 CH 4
35 35 35 35
3.62 0.533 0.180 0.493
4.88 0.0918 0.0655 0.0422
0.0743 0.580 0.275 1.17
77 77 77 77
Poly(ethyl methacrylate)
He Ne O2 Ar N2 CO 2 Kr H2S SF 6 K2O
25 25 25 25 25 25 25 25 25 25 65
5.18 2.28 0.889 0.433 0.170 3.79 0.287 2.88 0.0127 2380 2880
Poly(2-hydroxyethyl-methacrylate) highly crosslinked
O2" O2*
34 34
2.72 5.43
sulfonated with 27.5 mol% SOJ
Poly(styrene-c0-styrenesulfonic acid) Mg2+-polysalt sulfonated with 15.2 mol% SOJ
sulfonated with 27.5mol% SOJ
1.3.
2>(xlO 6 )
Temp. range
Permeant
Polymer
S(xlO«)
0.0012 0.0080 0.0027 0.00096
4.1 5.5 80.6 4.7
0.0069 0.028 0.0078 0.0025
0.83 1.8 28.6 2.1
0.0051 0.017 0.0037 00026
0.53 1.9 44.6 0.98
F 0 (XlO 7 )
EP
ED
Es
Refs. 83 83 83 83 83
83 83 83 83 83 83 83 83 83 83
POLY(METHACRYLATES)
Poly(methyl methacrylate)
Poly(methyl methacrylate) + (cellulose acetate butyrate) + (silicone) - Blend 50/40/10 Poly(methyl methacrylate) -f (Styrene/acrylonitrile) - Blend 80/20 50/50 20/80 Poly(methyl acrylate) 4Poly(epichlorohydrin) - Blend 100/0
0/100
42.5 1.5 0.106 0.0208 0.0301 0.0336 0.0065 0.0046 0.00023 0.102 0.729
0.0122 0.152 0.839 2.08 0.565 11.3 4.40 62.6 5.62 2333 395
25-80 25-80 25-80 25-80 25-80 25-80 25-80 25-80 25-80 25-65 65-80
0.255 0.242 2.1 2.03 2.18 0.435 10.1 22.8 0.885 0.00555 1.58
26.8 28.7 36.4 38.1 40.6 28.9 43.1 39.4 44.8 2.1 18.0
15.5 23.9 31.8 43.1 42.7 33.1 46.1 47.7 64.5 36.4 63.2
11.3 4.8 4.6 -5.0 -2.1 -4.2 -3.0 -8.3 -19.7 -34.3 -45.2
29 29 29 29 29 29 29 29 29 29 29 51 51
Polymer
Permeant
T
P(xlO 1 3 )
O2 CO2 H2O O2
25 25 25 25 38 25 38 25 38
0.00015 0.00060 230 0.0041 0.014 0.012 0.022 490 520
D (xlO 6 )
S (xlO*)
Temp. range
F0(xl07)
EP
Ev
E8
Refs.
1.4. POLY(NITRILES) Poly(acrylonitrile)
(Barex)
CO2 H2O Poly(acrylonitrile-a?-styrene) 86/14
66/34
57/43
39/61
Poly(acrylonitrile-«?-methyl acrylateco-butadiene) 79/15/6 Poly(methacrylonitrile) (Lopac)
O2 CO2 H2O O2 CO 2 H2O O2 CO2 H2O O2 CO 2 H2O
25 25 25 25 25 25 25 25 25 25 25 25
0.0032 0.011 640 0.036 0.16 1500 0.14 0.27 1800 0.35 1.0 1900
42 42 42 42 42 42 42 42 42 42 42 42
O2
25
0.0041
42
CO 2 H2O
25 25
0.012 970
O2 CO2 H2O O2
25 25 25 25 38 25 38 25 38
0.00090 0.0024 310 0.0026 0.0053 0.0081 0.016 260 270
CO2 H2O
Poly(methacrylonitrile-c0~styrene) 97/3
82/18
61/39
53/47
38/62
18/82
Poly(methacrylonitrile~co-styrenec-butadiene) 88/7/5 83/7/10
78/7/15
42 42 42 42 42 42 42 42 42
O2 CO2 H2O O2 CO 2 H2O O2 CO 2 H2O O2 CO 2 H2O O2 CO2 H2O O2 CO 2 H2O
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
0.0018 0.0059 370 0.0098 0.038 700 0.068 0.21 1300 0.12 0.38 1400 0.29 0.88 1600 0.81 2.4 1500
O2 CO2 H2O O2 CO2 H2O O2 CO 2 H2O
25 25 25 25 25 25 25 25 25
0.0036 0.011 450 0.0052 0.015 500 0.0072 0.024 580
He
10 30 10 30 10 30 10 30 10 30 10 30
4.95 9.44 2.99 6.84 0.838 1.97 0.136 0.367 0.0569 0.143 0.0172 0.0582
42 42 0.0003 0.0002
0.0026 0.0018
0.3 1.2
42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
0.38 2.1
42 42 42
42 42 42 42
42 42
1.5. POLY(VINYLS) Poly(vinyl acetate)
H2 Ne O2 Ar Kr
6.46 9.55 1.32 2.63 0.794 1.66 0.0178 0.0562 0.00479 0.0162 0.000602 0.00295
0.0784 0.101 0.237 0.254 0.106 0.118 0.766 0.637 111 0.943 2.78 1.96
0-20 25-40 0-20 25-40 0-20 25-40 0-20 25-40 0-20 25-40 0-20 25-40
0.00134 2.23 0.0023 10.4 0.000111 14.1 0.00074 1680 0.0471 4950 0.00826 7.7IxIO 5
13.2 31.2 15.7 41.7 11.5 39.8 20.2 56.1 32.1 61.2 30.8 76.2
17.4 22.4 21.6 31.4 30.8 35.4 46.4 60.7 47.6 69.1 60.7 81.2
-4.2 8.8 -5.9 10.3 -19.3 4.4 -26.2 -4.6 -15.5 -7.9 -29.9 -5.0
14 14 14 14 14 14 14 14 14 14 15 15
References page VI - 568
Polymer
Poly(vinyl alcohol)
Poly(vinyl benzoate)
Permeant
T
/»(xlO 13 )
CH 4 CO 2
25 35
0.0237 1.52
He c H2C D2C N2C N2^ O2C O2r CO2C CO 2 '' H2SC C2H4OC H2O
20 25 100 14 14 25 23 25 25 25 0 25
0.00075 0.00672 0.0134 0.0001 0.248 0.00665 0.00005 0.00924 65.0 0.0052 0.0015 5.25
H2
25 70 25 70 25 70 25 35 70 25 70 25 70 25 70 25 70 25 35 70
6.55 18.3 6.67 17.1 1.51 4.28 0.358 0.459 1.24 0.192 0.712 0.071 0.43 0.124 0.463 0.715 2.11 4.17 4.74 8.06
He Ne Ar
Kr Xe N2 O2 CO 2
D (xlO 6 ) 0.0017 0.00747
0.045
5(xiO 6 ) 1.39 20.4
-5.2 2.7 -1.3 6.7 -6.3 5.9 -10.1
60-85 20-60 60-85 20-60
0.863 0.00188 2.565 0.00723
38.4 22 8 43.1 28.6
38.1 38.4 50.7 46.0
0.29 -15,5 -7.7 -17.5
0.026 0.158 0.079 0.309 0.020 0.030 0.117
0.48 0.29 0.91 0.68 20.9 16.2 6.9
20-60 60-85 20-60 60-85 20-60
0.00104 1.26 0.00060 2.76 0.00020
22.4 42.3 16.7 40.2 9.6
33.0 45.2 25.1 30.5 32 9
-10.6 -2.9 -8.5 9.8 -23.4
60-85
0.734
32.6
45.2
-12.5
15.5 51.9 2.72 8.71 0.165 1.11 0.0388 0.393 0.00579 0.0898 0.279 1.948 0.117 0.874 0.0760 0.638 0.0462 0.478
0.0578 0.096 0.0585 0.160 1.15 0.691 3.91 1.61 16.5 5.14 0.0546 0.637 0.550 0.348 20.6 5.17 2.84 1.163
CH 4
608
Ar CO 2
35 35
0 642 5.05
0.0738 0.0361
0.870 14.0
Poly(vinyl chloride) unplasticized
He H2 Ne N2 Ar Kr
1.5 1.3 0.29 0.0089 0.0086 0.0060 0.14 0.034 0.12 0.021 206 0.14 3.7 4.4
2.8 0.5 0.25 0.0038 0.0012 0.00041
0.055 0.26 0.12 0.23 0.75 0.54
O2 CO 2 CH 4 H2O H2S NH 3 C2H4O
25 25 25 25 25 25 80 25 25 25 25 20 20 30
He N2 Ar CO 2 CH 4
35 35 35 35 35
2.52 0.00709 0.0277 0.182 0.00810
15 86
65 65 65 65 65 65 65 86 65 65 65 65 65 65 65 65 65 65 86 65 98
Poly(vinyl-m-methylbenzoate)
unplastiazed (Pentaform Type TH 170/01)
Refs.
10 28 57 11 11 28 59 28 28 28 37 98 21.9 24.5 16.9 22.4 23.2 28.6 31.6
893 499 3.88 13.9 1.90 7.67 0.940 6.25 0.00942 4.62 2.44 12.4 0.647 2.99 15.7 32.9 1.32 5.65
CO 2
1.9
16.7 27.2 15.5 29 1 16.9 34.5 21.4
25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80
N2
80.8
0.0055 0.251 0.00345 0.458 0.00137 0.758 0.0020
He
O2
82 7
Es
20-60 60-85 20-60 60-85 20-60 60-85 20-60
Poly(vinyl-/?-isopropylbenzoate)
Xe
E0
0.34 0.29 0.11 0.11 0.14 0.11 1.08 0.93 0.69 3.25 1.45 11.1
25
Kr
0.72 x l O 7
E?
1.93 6.39 6.17 16.1 1.08 3.83 0.033 0.0491 0.181 0.0059 0.049 0.00064
H2O
Ar
25-40
P0(xl07)
0.53
Poly(vinyl butyral)
Ne
Temp. range
0.012 0.0025 0.0013 0.024 0.000046
0.29 4.7 1.7 870 310
0.0013
330
0.00188 0.00339 0.00145
20-67 67-95 20-67 67-95 20-67 67-95 20-67 67-95 20-67 67-95 20-67 67-95 20-67 67-95 20-67 67-95 20-67 67-95
0.590 0.537 0.00251 1.09 0.00131 11.6 0.000248 40.6 0.00000289 534.8 0.00180 6.92 0.000878 19.4 0000110 3.57 0.000512 58.7
27.5 27.3 16.0 33.1 16.2 41.8 13.8 46.1 14.2 54.5 16.4 38.9 17.9 46.1 4.8 34.0 14.8 47.4
18.4 23.5 17.1 234 27.5 39.7 32.2 47.3 36.1 61.5 26.8 37.4 29.3 42.4 30.4 43.9 33.1 48.1
9.1 3.7 -1.1 9.6 -11.3 2.1 -18.3 -1.3 -22.0 -7.0 - 10.4 1.4 -11.4 3.6 25 5 -9 9 -18.3 -0.6
86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86
25-80 25-80 25-80 25-80 25-80 25-70 75-90 25-80 25-90 25-85 25-80
0.212 1.46 0.274 9380 6.28 24.2 8.85 x l O 5 179 930 7950 2.04
29.9 34.5 34.1 69.0 57.8 55.3 86.6 55.8 56.8 66.2 22.9
20.7 34.5 31.5 61.9 51.5 62.8 128.5 54.6 64.6 70.3 41.8
9.2 0 2.6 7.1 6.3 -7.5 -41.9 1.2 -7.8 -4.1 - 18.9
32 32 32 32 32 32 32 32 32 32 32 5 5 80 75 75 75 75 75
T
P(xlO 1 3 )
He N2 Ar CO1 CH 4
35 35 35 35 35
2.24 0.00501 0.0208 0.138 0.00638
0.00137 0.00242 0.00145 0.000331
75 75 75 75 75
H2 H2 H2 H2 H2 H2 H2 CO CO CO CO CO CO CO
27 27 27 27 27 27 27 27 27 27 27 27 27 27
1.8 1.4 1.3 1.3 1.6 2.1 2.7 0.019 0.012 0.013 0.014 0.021 0.079 0.281
0.48 0.456 0.422 0.444 0.473 1.56 2.25 0.0023 0.0021 00016 0.0025 0.0029 0.0054 0.029
45 45 45 45 45 45 45 45 45 45 45 45 45 45
N2 O2 N2 O2 N2 O2 N2 O2 N2 O2 N2 O2 N2 O2 N2 O2
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
0.0226 0.103 0.0281 0.120 0.0316 0.151 0.0359 0.164 0.0656 0.295 0.153 0.678 0.320 1.74 1.51 3.83
85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85
N2 O2 N2 O2 N2 O2 N2 O2 N2 O2 N2 O2 N2 O2
25 25 25 25 25 25 25 25 25 25 25 25 25 25
0.0269 0.164 0.0271 0.165 0.0431 0.254 0.0609 0.413 0.120 0.795 0.417 2.43 1.01 4.99
85 85 85 85 85 85 85 85 85 85 85 85 85 85
H2 He N, O2 CO 2 CH 4
35 35 35 35 35 35
0.41 0.98 0.0068 0.030 0.20 0.0075
96 96 96 96 96 96
Poly(vinylidene chloride)
O2
35
0.00038
96
Poly(vinylidene chloride) (Saran)
He N2 O2 CO 2 CH^Br H2S H2O
34 30 30 30 30 30 25
0.233 0000706 0.00383 0.0218 0.00218 0.027 7.0
H2O H,0
30 30
1.38 3.07
unplasticized (CS 5760)
plasticized with tricresyl triphospate % 0 5 10.2 15 20.1 30.8 40.0 0 5 10.2 15 20.1 30.8 40.0 Poly(vinyl chloride)/01igo(dimethylsiloxane) 100/0 90/10 80/20 75/25 60/40 50/50 40/60 30/70
Poly(vinyl chloride)-goligo(dimethylsiloxane)/Oligo(dimethylsiloxane) 100/0 80/20 70/30 60/40 50/50 40/60 30/70
Poly(vinyl
flouride)
Poly(vinylidene chloride-co-vinyl chloride) 88/12 plasticized with acetyltributyl citrate (%) 0.5 2.7
D(xlO 6 )
S(xlO 6 )
Temp. range
Permeant
Polymer
P0(xl07)
E?
E0
Es
Refs.
10
0-90 0-90 0-90
900 825 24.8
70.3 66.6 51.5
1.58 x l O 5 863
74.5 46.1
37 37 37 37
9.6x10^
27.6
30-75 10-60
8 21
50 50
References page VI - 568
Polymer
P(xlO 1 3 )
Permeant
T
H2O H2O
30 30
4.77 7.38
He He O2 O2 Ar Ar Ar N2 N2 CO 2 CO 2
25 70 25 70 25 35 70 25 70 25 70
9.69 33.5 1.30 6.50 0.851 1.17 4.75 0.256 1.82 5.05 21.4
H2 H2 N2 O2 CO 2 NO 2 N2O4 D2 T2 CH 4 He Ne Ar Kr Xe H2O CH 4 C2H6 C3H8 n-C 4 H,o J-C 4 Hi 0 He O2 N2 CO 2 CH 4 SO 2 Cl 2 HCl H2O
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 38 90 90 90 90 90 23 22 23 24 25 24 23 22 23
7.4 7.25 1.0 3.2 7.5 12.0 28.0 7.48 6.19 0.56 9.0 2.69 1.50 0.73 0.30 6 3.85 2.15 0.96 0.878 0.345 33.0 3.17 0.92 10.0 0.79 2.11 1.35 2.04 13.4
Poly(tetrafluorethylene-cohexafluoropropene) (Teflon FEP)
N2 O2 CO 2 CH 4 C2H6 C3H8 H-C4H10 ^C 4 H 1 0 CH3Cl C6H6 H2O
25 25 25 90 90 90 90 90 25 25 25 70
1.19 3.68 9.53 9.98 6.23 3.11 2.18 0.855 0.763 0.263 12.8 37.3
Poly(tetrafluorethylene-co-ethylene) (Hostaflon ET)
He O2 N2 CO 2 H2O He O2 N2 CO 2 CH 4 Cl 2 HCl SO 2 H2O
23 23 23 23 23 25 22 23 23 23 23 23 23 25 80
4.23 0.40 0.137 1.49 2.8 5.67 0.78 0.25 4.39 0.23 0.807 2.2 1.96 74 115
He H2 N2 O2 CO 2 H2O
20 20 25 40 40 25
4.9 7.2 Poly(vinylcyclohexanecarboxylate)
D (xlO 6 )
S(XlC 5 )
Temp. range
P0(xl07)
Ev
ED
ES
Refs. 50 50
7.33 20.3 0.122 0.772 0.0670 0.106 0.570 0.0421 0.368 0.0254 0.270
0.148 0.166 1.08 0.835 1.27 1.10 0.934 0.609 0.492 20.0 8.36
15-52 52-85 15-52 52-85 15-52
0.0158 0.547 0.00302 7.26 0.0115
18.3 27.7 19.2 39.7 23.6
16.3 23.7 30.9 41.1 34.6
0.25 4.4 -11.7 -0.34 -11.1
52-85 15-52 52-85 15-52 52-85
20.2 0.00690 60.4 0.00233 6.68
43.5 25.3 49.4 15.2 36.1
43.5 35.6 46.9 37.5 47.7
-0.011 -11.1 1.8 -22.3 -11.7
20-130
0.0415
21.4
20-130 20-130 20-130 20-130 20-130
0.0202 0.00698 0.00248 0.00087 9.7xlO" 6
0.273 0.251 0.923 1.22 4.64 0.0119 0.0386 0.105 0.0236 0.292 0.0425 0.0259 0.122 0.0797
81 81 81 81 81 86 81 81 81 81 81
1.6. FLUORINE CONTAINING POLYMERS Poly(tetrafluoroethylene)
(Hostaflon PFA)
Poly(trifluorochloroethylene) unplasticized KeI-F 300 film of about 30% crystallinity
5.1 0.705 0.00375 0.030 0.158 0.218
0.147 0.088 0.0152 0.095 0.0037 0.025 0.116 0.052 0.023 0.811 0.251 0.056 0.015 0.004
4.94 1.2 2.1 9.2 320 110 6.42 11.9 2.46 1.09 1.09 2.66 4.83 7.40
0.221 0.0763 0.0251 0.0187 0.0086
1.74 2.81 3.87 4.69 4.03
40-195 40-195 40-195 40-195 40-195 20-100 20-90 20-100 20-100 20-100 5-100 20-100 20-80 10-80
1.25 2.02 9.08 2.15 4.37 6.38 7.8 5.86 11.5 107
20-80 20-80 20-80 40-195 40-195 40-195 40-195 40-195 40-120 40-120 25-60 60-85
0.0948 0.184 0.105 0.491 0.140 0.0489 0.0278 0.0146 0.00667 2.45 x l O " 4
20-100 20-100 5-100 20-100 20-100 20-100 20-100 5-100 20-55 55-95
25-75 0-80 40-80
24.4 19.1 14.0 10.7 -2.1
29.9 26.3 28.6 58.6
-5.5 -7.2 - 14.6 -47.9
33.7 35.2 41.6 42.7 49.6 14.5 23.1 28.7 19.2 31.8 24.5 24.3 27.0 21.4
34.7 36.2 44.8 51.5 58.1
-1.0 -1.0 -3.2 -8.8 -8.5
0.273 30.6 0.109 25.5 0.0443 20.9 1.09 35.0 1.22 36.8 6.30 43.9 134 54.2 4200 67.4 0.945 34.8 122 49.5 0.494 262 7 1.58 x l 0 ~ -15.6
38.5 34.7 36.6 41.3 53.8 59.5 65.0 77.8 50.1 69.1 56.4 16.5
-7.9 -9.2 -15.7 -6.3 -17.0 -15.6 -10.8 -10.4 -15.3 -19.6 -30.2 -32.1
0.0557 0.371 0.0790 0.0562 0.326 0.0349 0.394 0.0137 0.000121 0.0387
150 4.35 24.8
22.8 32.1 31.2 23.3 34.9 26.3 29.8 21.8 1.2 17.1 23.4 30.2 59.9 46.9 49.4
23 49 23 23 23 23 23 49 49 49 49 49 49 49 49 98 53 53 53 53 53 73 73 73 73 73 73 73 73 73 24 24,67 24 53,55 53,55 53,55 53,55 53,55 55 55 56,66 56,66 54 54 54 54 54 73 73 73 73 73 73 73 73 73 73 10 10 20 20 20 37
T
P(xlO 13 )
C2H2O CH 3 Br N2 O2 CO 2 N2 O2 CO 2
60 60 25 40 40 50 30 50
3.3 3.45 0.00225 0.0188 0 036 0.413 0.42 5 63
Poly(trifluorochloroethylene-ct>ethylene) (Halar)
He O2 N2 CO 2 H2O
23 23 23 23 23
4.0 0.114 0.0457 0.457 2.8
54 54 54 54 54
Poly(vinyl fluoride) (Tedlar)
He N2 O2 CO 2 H2O
23 23 23 23 23
0.347 0.0012 0.0139 0.069 10.1
54 54 54 54 54
Poly(vinyl fluoride) (Kynar)
He H2 Ar N2 O2 CH 4 CO 2
35 35 35 35 35 35 35
1.29 0.404 0.0323 0.0167 0.0620 0.0150 0.388
H2 N2 O2 CO 2 He Ne Ax N2
25 25 25 25 24 24 24 24
He H2 N2 O2 CO 2 He H2 N2 O2 CO 2 C2H2 C3H8 He H2 N2 O2 CO 2 He H2 N2 O2 CO 2
25 25 25 25 25 25 25 25 25 25 25 50 25 25 25 25 25 25 25 25 25 25
12.7 18.9 1.89 6.15 47.6 9.2 11.9 0.8 2.9 23.2 18.7 58.5 7.4 8.85 0.454 1.76 13.9 5 13 5.35 0.177 0.721 5.59
15.5 6.43 0.51 0.79 0.425 11.7 4.5 0.25 0.43 0.19 0.0764 0.141 11.2 3.85 0.152 0.28 0.107 7.92 2.43 0.064 13.6 0.038
He Ne Ar N2 He Ne Ar N2
24 24 24 24 24 24 24 24
17.2 7.28 9.53 3.83 10.1 3.76 3.37 1.28
He O, Ar CO 2 CO N2 CH 4 C2H6 C3^H4 C3H6 C3H8 SF 6
25 25 25 25 25 25 25 25 25 25 25 25
11.8 8.49 8.29 36.3 4.64 3.00 9.77 25.0 169 62.2 40.5 0.849
crystallinity 80%
crystallinity 30% plasticizecT
D(XlO*)
S(xlO 6 )
Temp. range
Permeant
Polymer
25-75 40-60 40-80
1.87 0.336 0.00985 0.00716 0.0172 0.00294 0.00566
P0(xl07)
1.05 0.698 2.03
EP
BD
Es
Refs. 37 37 20 20 20 20 20 20
49.8 45.6 46.5
78 78 78 78 78 78 78
0.394 0.234 0.457 7.21
1.7. POLY(DIENES) Poly(butadiene)
cw-1.4
Poly(butadiene-co-acrylonitrile) 80/20 (Perbunan 18)
73/27 (Perbunan, German)
68/32 (Hycar OR 25)
61/39 (Hycar OR 15)
Poly(butadiene-c-styrene) 92/8 (Ameripol 1502)
80/20 (Hycar 2001)
Poly(butadiene) hydrogenated crystallinity 29%, Hydropol density 0894g/cm 3
31.6 4.84 14.3 104 24.5 14.4 30.8 14.4
9.6 1.1 1.5 1.05 15.7 6.55 4.06 2.96
0.326 0.444 0.957 9.87 0.156 0.220 0.758 0.488
25-50 25-50 25-50 25-50 0-45 0-45 0-45 0-45
0.0819 0.296 0.375 0.77 11.2 0.0789 0.267 0.316 0671 12.2 24.5 41.5 0.0661 0.227 0.296 0.632 13.0 0.0592 0.217 0.276 0.533 14.7
25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50 25-50
15.7 5.47 1.39 1.05 16.0 4.23 58.0 42.8
0.110 0.133 0.686 0.365 0.0628 0.0885 0.581 0.30
0-50 0-50 0-50 0-50 0-50 0-50 0-50 0-50
15.1 1.2 0.96 0.91 0.82 0.74 0.54 0.24 0.31 0.20 0.12 0.056
0.0781 0708 0.864 3.99 0.566 0.405 1.81 10.4 54.5 31.1 33.8 1.52
5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60 5-60
2.15 4.91 2.27 0.683 0.0855 0.096 0.084 0.078
27.6 34.3 29.7 21.8 20.3 21.8 194 21.3
21.3 30.1 28.5 30.6 17.3 17.4 21.3 25.0
6.3 4.2 1.2 -8.8 2.9 4.4 -1.9 -3.7
35 35 35 35 25 25 25 25
1.24 3.52 34.9 230 6.43 1.24 7.43 180 37.3 20.0 282
28.5 30.1 41.5 36.0 293 29.3 33.1 47.7 40.6 339 41.0
17.6 26.0 35.6 33.9 38.5 21.8 28.9 43.5 38.5 44.8 51.5
10.9 4.1 5.9 2.1 -9.2 75 4.2 4.2 2.1 -10.9 -10.5
1.9 8.97 473 85.6 55.5 2 23 14.9 2330 444 272
30.9 34.3 51.5 43.9 37.7 32.2 36.8 57.8 50.2 43.9
21.8 29.3 49.0 43.1 502 23.0 31.8 53.2 456 561
9.1 5.0 2.5 0.8 -12.5 9.2 5.0 4.6 4.6 -12.2
35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35
26.8 29.2 33.7 36.3 29.5 29.5 42.2 41.6
23.7 29.4 33.3 36.0 18.0 25.7 41.3 42 2
3.1 -0.2 0.4 0.3 11.5 3.8 0.9 -0.6
25 25 25 25 25 25 25 25
35.2 41.0 43.1 36.4 44.8 46.9 45.6 41.9 36.0 40.2 43.5 56.9
24.7 38.9 40.2 36.8 37.3 39.4 44.0 494 45.2 48.2 52.3 60.3
10.5 2.1 2.9 -0.4 7.5 7.5 1.6 -7.5 -9.2 -8.0 -8.8 -3.4
16 16 16 16 16 16 16 16 16 16 16 16
4.79 0.908 7.88 8.63 1.41 0.56 19.2 23.8 17.2 128 292 85.8 324 489 942 543 340 680 1680 7790
References page VI - 568
Polymer
Permeant
T
P(xlO 1 3 )
Poly(chloroprene) (Neoprene G)
H2 O2 N2 Ar CO 2 CH 4 H2O NH 3 SO 2 H2O H2O' He H2 D2 O2 N2
25 25 25 25 25 25 25 25 25 23 23 35 35 35 35 35
10.2 2.96 0.88 2.84 19.2 2.47 683
Poly(dimethylbutadiene) (Methyl rubber)
He H2 N2 O2 CO 2 CH 4
25 25 25 25 25 25
Poly(ethylene-co-propylene-a>diene)
H2O
23
157
Poly(isobutene-a?-isoprene) 98/2 (Butyl rubber)
H3O' He H2 N2 O2 CO 2 C2H2 C3H8 H2O
23 25 25 25 25 25 25 50 37.5
367 6.32 5.43 0.243 0.977 3.89 1.26 10.3 82.5
Poly(isoprene), amorphous (Natural rubber)
He O2 Ar CO 2 CO
25 25 25 25 25
17.6 17.2 115 11.8
Poly(isoprene)
N2 CH 4 C2H6 C3H4 C3H6 C3H8 SF 6 C2H2 /1-C4H10 /1-C5H12 H2O H2
H2O
25 25 25 25 25 25 25 25 50 50 25 25 50 25 50 25 50 25 50 25
Poly(isoprene-cfl-acrylonitrile) 74/26
He H2 N2 O2 CO 2
25 25 25 25 25
5.85 5.58 0.136 0.642 3.26
Poly(isoprene-co-methacrylonitrile)
H2 N2 O2 CO2
25 25 25 25
10.2 0.449 1.77 10.7
He N2 O2 CO 2 H2S C2H4O CH 3 Br
20 30 30 30 30 0 60
14.3 0.U3 40.5 0.91 0.075 548 25.5
(NeopreneW) (Neoprene)
trans(Vulcanized purified gutta percha)
O2 N2 CO 2
74/26
Poly(isoprene) hydrochloride (Pliofilm FM-I)
Temp. range
D(xlO 6 )
S(xlO 6 )
3.8 0.38 0.24 0.16 0.23
0.286 0.740 0.355
15-50 15-50 15-50
8.19
15-50
P0(xl07) 8 80 54 7 224 2499
EP
ED
ES
33 9 41.5 44.4
27.6 39.4 43.1
63 2.1 1.3
35.6
45.2
-9.6
31.4 51.9 46.5 53.6
2.1 3.8 0.8 -6.7
86.8 176 837 5130 15.0 20.7 20.0 6.62 2.23 10.8 12.8 0.355 1.58 5.63 0.622
7.11 22.7 415 154 126 2.70 74.5 526 1240 1720 10.9 106 4.64 56.3 1.62 23.7 26.7 281 379
23-60 23-60 60.4 9.33 10.7 1.01 0.533
0.0247 0.221 0.188 0.656 0.419
3.9 0.079 0.14 0.063
0.326 0.454 1.13 8.98
25-50 25-50 25-50 25-50 25-50 25-50 23-60
5.93 1.52 0.045 0.081 0.0578 0.0203 0.0224 21.6 1.73 1.36 1.25 1.35
0.109 0.355 0.543 1.20 6.71 6.22 46.4
23-60 25-50 25-50 25-50 25-50 25-50 25-50
4.04 x 10" 2.4 x 106
0735 940 2010 303 917 50300 6.84 x l O 8
745000 2.34 12.8 349 68 3 71.9 407
27.6 33 5 55.7 47.3 46.9 62.3 71.7
24.3 33.9 50.7 49.8 50.2 53.6
7.5 2.5 1.6 -5.0 -8 7 -5.0
29.3 32.7 21 8 31.0
19.7 33.5 33.1 34.3 31.0
-4.2 -0.4 -12.5 0
20-50 20-50 20-50 20-50
0.608 2.55
20-50 20-50
12.2 6.08
35.6 31.0
20-50 20-50 20-50 20-50 25-50
3.76 17.7 1.34 4.62 17 0
0.227 0.493 0.661 1.05 0.326 0.562 5.52 6.81
15-40 50-70 15-40 50-70 15-40 50-70 15-40 50-70
296 0.582 2560 0.197 1560 0.316 217 0.0671
8.01 2.47 0.045 0.092 0.031
0.0731 0.227 0.306 0.701 10.6
25-50 25-50 25-50 25-50 25-50
3.55 0.123 0.24 0.091
0.286 0.365 0.740 11.8
25-50 25-50 25-50 25-50
5.0 21 0.7 5.3 0.5 4.2 0.47 41
0.0002
83.5 49.7 60.0 2.35 16.0
38.5
10-60 30-60
33,36 33,36 33,36 36 33,36 33 31 33 33 52 52 90 90 90 90 90 35,58 35 35 35 35,33 58 52
52.8 31.8 36.4 52.3 44.8 415 48.6
1.02 1.26 9.20 0.874
1.17 0.89 0.40 0.50 0.31 0.21 0.115 0.467
2.38 9.15 0 755 3.16
83.3 49.2
Refs.
16 16,35 16 16,35 16
22.6 28 9 23.0 35 6 30.6
33.5 36.4 42.7 37.7 42.7 46.5 50.2 39.8
-15.1 -13.8 - 23.5 -14.6 -9.2
42.3 23.0 49 8 21.8 52.3 25 5 39.3 14 7
3(8 26.4 38.5 26.8 41.0 28 1 41.0 28.1
13.0 -0.4 13.8 -2.1 13.8 0.4 08 -10.5
2.17 262 13500 1330 4690
31.8 38.1 62.8 53.2 52.3
20.5 31.0 60.7 50.7 60.3
11.3 7.1 2.1 2.5 - 8.0
35 35 35 35 35
8 80 1090 209 273
33 9 53.6 46.1 42.3
28.9 48.6 40.2 51.1
5.0 5.0 5.9 -8.8
35 35 35 35
1.43 403000
36 0 73 7
2.1 -5.4
52 35 35 35 35 35 35 35 12
16,35 16 16 16 16 16,35 16 35 58 58 31,98 34 34 34 34 34 34 34 34 31
10 37 37 37,43 8 37 37
Polymer
P(xlO 1 3 )
D(xlO 6 )
Permeant
T
H2O
25
He H2 N2 02 CO 2
25 25 25 25 25
75.8 102 5.87 24.2 69.5
H2 N2 03 CO 2
25 25 25 25
32.0 2.06 7.52 33.8
Poly(p-2,6-dichloroxylylene)
H2O
25
4.97
0.00594
Poly(chloro-/;-xylylene) (paryleneC)
He H2 N2 O2 CO 2
25 25 25 25 25
1.41 0.717 0.00626 0.0358 0.105
0.103 0.0675 0.00178 0.00351 0.00164
CO 2 H2O CO 2 H2O O2 CO 2 H2O
25 25 25 25 23 23 23
He H2 N2 O2 CO 2 H2O
25 25 25 25 25 25
58.5 84.6 2.86 11.9 56.8 3045
0.0601 0.17
CO 2 CH 4 CO 2 CH 4 CO 2 CH 4 CO 2 CH 4
35 35 35 35 35 35 35 35
38 2.2 38 2.0 51 2.6 81 4.7
017 0.021 0.16 0.016 0.20 0.02 0.30 0.033
(Pliofilm NO) Poly(methyl-l-pentenylene)
Poly{2-methyM,3-pentadiene-a?-4methyl-1,3-pentadiene 85/15
1.8.
S (xlO 6 )
4100
0.55 1.01 684
0.30 0.555
Temp. range
P0(xl07)
E?
25-60
ED
Es
58.6
39 41 41 41 41 41
1.07 2.40 0.0102
0.691 1.36
Refs.
25-50 25-50 25-50 25-50
5.08 336 59.6 41.9
29.7 46.9 39.4 34.8
46.5 41.0
0.4 -1.6
35 35 35 35
19.5
36.0
-16.5
48
21.7 24.1 31.3 29.5 27.8
14.6 18.5 30.1 32.5 51.3
7.1 5.6 1.2 -3.0 -23.4
84 84 84 84 84
49.0
POLY(XYLYLENES)
1.9.
84.6 0.391 0.670 0.0863 0.567 4.62
30-80
0.0129
10-80 10-80 10-80 10-80 10-80
POLY(OXIDES)
Poly(oxymethylene) grafted with 2.8% butadiene (Hostaform)
Poly(oxy-2,6-dimethyl-i,4phenylene)
Poly(phenylene oxide) brominated 0% Br* 36% Br 91% Br 106% Bi
1.10.
1.35 683 3.83 998 0.057 1.28 422
0.014 0.027 0.044 0.070
9.64 2530 8.69 1430
25-100 25-100 25-100 25-100
0.462 0.129 0.095 0.0126
31.4 13.0 25.1 6.3
23-60
0.129
14.1
38 38 38 38 73 73 73
38.5
94.6 1797
41 41 41 41 41 40
21.7 10.6 23.7 11.8 25.4 13.1 27.2 14.3
100 100 100 100 100 100 100 100
POLY(ESTERS), POLY(CARBONATES)
Poly(oxybutyleneoxyterephthaloyl), amorphous
He Ne Ar CO 2
25 25 25 25
Poly(oxycarbonyloxy1,4-phenyleneisopropylidene1.4-phenyIene) (Lexan)
He H2 Ne Ar
25 25 100 25 175 25 175 25 25 175 25 25 175
O2 CO 2 SF6" H2O N2
1.28 0.237 0.078 0.217 7.5 9.0 10.9 0.6 32.3 1.05 22.5 6.0 4.88 x l O " 6 0.075 1050 0.225 14.3
013 0.022 0.0040 0.0062
0 888 0.997 1.97 3.46
0.64
1.38
0.015 0.53 0.021
4.15 6.12 5.03
0.0048 LOx 10~ 7
124 4.94
0.0248 0.0816
20.1 22.6
25-125 125-175 0-125 125-175 25-100 25-125 125-175
0.00544 70.2 0.00252 0.0919 0.00365 0.0118 3.2IxIO 7
22.6 54.4 19.3 31.0 15.9 53.6 1256
0-125 125-175
0.00559 1.09
25.1 41.9
20.9
1.7
25.1
-2.5
32.2
-12.9
37.7 83.7
-21.8 -30.1
26.0
O2
30
0.012
0.0029
0.41
Poly(oxyethy]eneoxyterephthaloyl), amorphous
He Ar N2 O2 CH 4 CO, He""
25 25 25 25 25 25 25 90 25 90
2.37 0.0217 0.0108 0.0444 0.0070 0.227 1.09 6.3 0.00513 0.068
3.L 0.0024 0.0019 0.0045 0.00030 0.00083 2.0
0.077 0.79 0.55 0.98 2.3 28.0 0.052
0.0013
0.45
N,
25-125 25-175
068
Poly(oxyethyleneoxyisophthaloyl)
crystallinity 40%
44 44 44 44 22 22 22 22 22 22 22 22 22 22 22 22 22 60 20-60 20-60 20-60 20-60 20-60 20-60 20-80 80-130 20-80 80-130
0.0199 0.00319 0.00025 0.227 0.00021 0.0232 0.00308 0.0266 0.00275 20.6
21.3 28.9 26.4 37.7 24 7 27.6 19.7 25.5 32.7 59.0
19.2 48.2 47.7 48.6 51.1 52.3 20.1 27.6 44.0 58.6
-1.1 -15.1 -23.9 - 14.7 -27.2 -28.5 0.9 0.9 -18.4 0
17,18 17,18 17,18 17,18 17,18 17,18 17,18 17,18 17,18 17,18
References page VI - 568
Temp. range
Permeant
T
P(xlO 13 )
D(xlO*)
O2
0.0257 0.31 0.00257 0.091 0.118 1.0 0.448 0.073 0.0038 0.030 0.013 0.084 98 0.14 1.1 0.0034 0.014 0.042 114
0.0035
0.72
0.00013
2.0
0.00057
20.0
H2 D2 N2 O2 CH3Br C2H4O H2O H2S NH 3 N2 O2 O2 H2O
25 90 25 90 25 90 25 25 25 25 25 25 25 20 20 20 23 30 23
Polyethylene terephthalate)
H2O
25
113
Polyethylene terephthalate-coisophthalate) 50/50
O2
30
0.019
0.0035
0.49
60
Polyethylene terephthalate-c0-2,6naphthalene dicarboxylate) 50/50
O2
30
0.031
0.0048
0.61
60
Poly(oxyterephthaloyloxymethylene1,4-cyclohexylenemethylene)
O2
30
0.19
0.014
1.3
60
Poly(tetramethylene adipate) diol molecular weight 1050 density 1.2Og/cm3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
0.0975 0.525 0.0278
0.076 0.027 0.039
0.1275 1.95 0.07125
0.0353 3900
0.027 0.041
0.1275 9525
76 76 76 76 76 76
molecular weight 1510 density 1.19g/cm3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
0.563 4.8 0.195 0.113 0.383 5925
0.16 0.057 0.074 0.053 0.058 0.055
0.3525 8.25 0.2625 0.2100 0.6600 10875
76 76 76 76 76 76
molecular weight 2100 density 1.18g/cm3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
1.5 15 0.9 0.6 1.2 7425
0.39 0.13 0.11 0.22 0.17 0.078
0.375 6.53 0.750 0.270 0.750 9525
76 76 76 76 76 76
Poly(carbonate) (Lexan)
H2O
25
1050
Poly(carbonate)
CO 2 CH 4
35 35
4.5 0.20
CO 2
25
9.5
95
CO 2
25
0.035
95
Poly(tetrabutylene carbonate)
CO 2 CH 4
35 35
3.17 0.0945
0.0166 0.0013
19.1 7.24
100 100
Poly(tetrachlorine carbonate)
CO 2 CH 4
35 35
5.00 0.168
0.0253 0.0022
19.6 7.61
100 100
Poly(tetramethylene hexafluoro carbonate)
CO 2
35
0.24
32.6
100
CH 4
35
3.45
0.0348
9.58
100
Poly(tetramethylene carbonate)
CO 2 CH 4
35 35
13.2 0.60
0.061 0.0081
21.5 7.37
100 100
Poly(tetramethylene carbonate) diol molecular weight 1150 density 1.29 g/cm3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
0.105 0.675 0.0525 0.0308 0.0375 825
0.029 0.012 0.010 0.019 0.008 0.012
0.368 5.40 0.525 0.165 0.473 7223
76 76 76 76 76 76
Polymer
CH 4 CO 2 (Mylar A)
(Hostaphan)
Poly(carbonate-sulfone) (diphenyl carbonate+1,10decanediol) (diphenyl carbonate + l,4-bis(3hydroxypropyisulfonyl)butane
82.5
0.000071
0.0065
S(xlO«)
P0(xl07)
EP
ED
Es
46.1 50.7 52.3 67.0 50.2 64.5
-13.0 0 -22.2 -12.9 -31.4 -19.7
20-80 80-130 20-80 80-130 20-80 80-130
0.0122 0.744 0.00719 63.2 0.000197 22.2
32.2 44.4 36.8 61.5 18.4 51.1
-25-80 -25-80 25-90 25-90 10-60
0.000945 0.000026 0.0163 0.000534 0.00032
30.8 16.8 34.8 21.7 2.9
0.00012
0.1
195
0.62 10-40
Refs. 17,18 17,18 17,18 17,18 17,18 17,18 57 57 37 37 37 37 21 5 5 61 72 60 73 98
98 0.0209 0.0046
14.5 4.0
100 100
Polymer
P (xlO 13 )
D (xlO 6 )
S (xlO 6 )
Temp. range
P0(xl07)
Permeant
T
molecular weight 1570 density 1.27 g/cm3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
0.143 1.35 0.105 0.0660 0.105 2100
0.054 0.017 0.033 0.050 0.019 0.020
0.263 7.50 0.315 0.105 0.540 10575
76 76 76 76 76 76
molecular weight 3070 density 1.2IgZCm3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
0.308 2.48 0.143 0.0900 0.0975 1875
0.072 0.026 0.043 0.026 0.015 0.030
0.473 9.75 0.345 0.345 0.675 6143
76 76 76 76 76 76
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
0.188 1.05 0.0450 0.0450 0.0375 825
0.022 0.022 0.015 0.017 0.0041 0.013
0.825 6.98 0.300 0.263 0.825 6825
76 76 76 76 76 76
molecular weight 1320 density 1.25 g/cm3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
0.225 2.03 0.150 0.0825 0.0675 1050
0.026 0.029 0.015 0.037 0.012 0.015
0.825 7.05 0.375 0.225 0.563 7230
76 76 76 76 76 76
molecular weight 1500 density 1.20 g/cm3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
0.623 2.85 0.225 0.173 0.165 1575
0.12 0.038 0.056 0.076 0.019 0.017
0.525 7.50 0.450 0.225 0.900 923
76 76 76 76 76 76
molecular weight 2380 density U8g/cm 3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
1.65 11.3 0.750 0.570 0.825 3450
0.19 0.21 0.14 0.17 0.11 0.070
0.825 5.33 0.525 0.338 0.750 4973
76 76 76 76 76 76
molecular weight 2860 density 1.18 g/cm3
O2 CO 2 CO N2 CH 4 H2O
35 35 35 35 35 23
2.18 9.00 0.975 0.900 1.20 4200
0.22 0.27 0.23 0.24 0.12 0.076
0.975 3.38 0.450 0.360 0.975 5595
76 76 76 76 76 76
O2
35
0.825
0.079
CO 2 CO N2 CH 4 H2O
35 35 35 35 23
7.50 0.443 0.278 0.480 2475
0.089 0.074 0.079 0.038 0.034
8.25 0.600 0.353 1.28 7215
76 76 76 76 76
O2
35
0.398
0.081
0.488
76
CO 2 CO N2 CH 4 H2O
35 35 35 35 23
0.035 0.033 0.040 0.021 0.019
7.50 0.405 0.210 0.495 10800
76 76 76 76 76
O2
35
0.975
0.420
76
CO 2 CO N2 CH 4 H2O
35 35 35 35 23
7.28 0.585 0.278 0.570 3000
0.061 0.16 0.13 0.048 0.020
12.0 0.375 0.218 1.20 15000
76 76 76 76 76
O2
35
0.263
0.079
0.330
76
CO 2 CO N2 CH4 H2O
35 35 35 35 23
0.050 0.063 0.074 0.037 0.034
6.30 0.225 0.113 0.405 25500
76 76 76 76
Poly(hexamethylene carbonate) diol molecular weight 1040 density 1.29 g/cm3
Poly(pentamethylene-hexamethylene carbonate) diol molecular weight 2170 density 1.18 g/cm3
Poly(dipropylene glycol carbonate) diol molecular weight 3010 density 1.19 g/cm'
Poly(dipropylene glycol)poly(propylene glycol carbonate) diol molecular weight 2020 density 1.16 g/cm3
Poly(triethylene glycol carbonate) diol molecular weight 2580 density 1.20 g/cm3
2.70 0.135 0.0825 0.105 2025
3.15 0.143 0.0825 0.150 9750
0.23
1.05
E9
E0
Es
Rcfs.
76
76
References page VI - 568
/»(xlO J3 )
Temp. range
D (xlO 6 )
S(XlO 6 )
P0(xl07)
1.50
0.24
0.630
76
20.3 0.750 0.600 1.28 655
0.16 0.24 0.18 0.14 0.11
12.8 0.315 0.330 0.900 59250
76 76 76 76 76
Polymer
Permeant
T
E9
ED
ES
Rets.
Poly(hexamethylene carbonate pentamethylene ester) diol molecular weight 2470 density 1.17g/cm3
O2
35
CO 3 CO N2 CH 4 H2O
35 35 35 35 23
He Ne Ar Kr Xe H2 N2 O2 CO 2 C3H8 /7-C4Hi0 H2O
0 0 0 0 0 0 0 0 25 25 0 35
175 143 413 765 1910 348 170 367 2430 319 14600 32300
Poly(dimethyl siloxane)
H2 He N2 O2 CO 2 CH 4 C2H4 C2H6 C3H8 H2S NH 3
35 35 35 35 35 35 35 35 35 35 35
705 420 353 695 3489 1002 2738 3150 6338 6413 9015
82 82,94 82 82,94 82,94 82,94 82 82 82 82 82
Poly(methyl ethyl siloxane)
He O2 CO 2 CH 4
35 35 35 35
172 234 1130 356
94 94 94 94
Poly(methyl propyl siloxane)
He O2 CO 2 CH 4
35 35 35 35
191 287 1727 428
94 94 94 94
Poly(methyl octyl siloxane)
H2 He N2 O2 CO-. CH 4 C2H4 C2H6 C3H8 H2S
35 35 35 35 35 35 35 35 35 35
233 99.8 65.3 144 695 236 608 720 1493 1470
NH 3
35
2213
82
Poly(triflouropropyl siloxane)
H2O
25
16050
98
Poly(triflouropropyl methyl siloxane)
He O2 CO 2 CH 4 He O^ CO 2 CH 4
35 35 35 35 35 35 35 35
185 163 1041 151 25.5 24.0 179 27.0
He O2 COo CH 4
35 35 35 35
73.5 75.8 412 97.5
He O, CO 2 CH 4
35 35 35 35
204 296 1412 448
He O2 CO 2 CH 4
35 35 35 35
146 199 980 296
1.11. POLY(SILOXANES) Poly(oxydimethylsilylene) with 10% filler Scantocel CS, vulcanized silicon rubber
Poly(phenyl methyl siloxane)
Poly (dimethyl silmethylene)
Poly(silethylene siloxane)
Poly(silhexylene siloxane)
41 16.1 12.2 8.0 4.8 47.0 8.5 12.0 12.0 2.4
0.424 0.888 3.36 9.67 39.4 0.73 2.00 3.06 2.4 608
-40-25 -40-0 -40-0 -40-0 -40-0 -40-25 -40-25 -40-25
0.0946 0.0543 0.0606 0.0134 0.00781 0.145 0.0197 0.0169
14.3 13.5 9.8 6.5 3.2 13.7 10.8 8.7
8.0 8.4 10.3 12.2 14.0 9.3 11.3 9.0
6.3 5.1 -0.5 -5.7 -10.8 4.4 -0.5 -0.3
0-70 -40-0 35-65
0.00401
6.3
11.3 14.2
-5.0
0.0303
2,41 2 2 2 2 2,41 2,41 2,41 41 46 2 3
82 82,94 82 82,94 82(94 82,94 82 82 82 82
94 94
94 94 94 94 94
94 94 94 94 94
94 94 94 94
94 94 94 94
/>(xlO 6 )
S (xlO 6 )
Temp. range
Polymer
Permeant
T
P(xlO 1 3 )
/» 0 (xl0 7 )
Poly(siloctylene siloxane)
He O2 CO 2 CH 4
35 35 35 35
131 178 899 270
94 94 94 94
Poly(meta-silphenylene siloxane)
He O2 CO 2 CH 4
35 35 35 35
63.0 55.5 389 79.5
94 94 94 94
Poly(para-silphenylene siloxane)
He N2 O2 CO 2 CH 4 C2H4 C2H6 C3H8 H2S NH 3
35 35 35 35 35 35 35 35 35 35
24.5 2.40 8.21 38.3 7.65 15.0 11.3 19.5 141 223
CO 2 CO 2 CO 2 CO 2
5 25 5 25
0.018 0.052 0.023 0.071
He N2 O2 CO 2 H2O H2S NH 3 CH 3 Br
20 30 30 20 25 30 20 60
0.398 0.00713 0.0285 0.066 0.139 0.255 0.878 0.63
Poly(imino-l-oxoundecamethylene) (Nylon U)
He H2 Ne Ar CO 2
30 30 30 40 40
1.46 1.34 0.26 0.143 0.754
Poly(5,7-dihydro-l>3,5,7-tetraoxobenzo[ l,2-c:4,5-c']dipyrrole2,6[lH,3H]-diyl- 1,4-phenyleneoxy-l,4-phenylene) (Kapton)
O2 H2O
160 30
Poly(2,2'-bis(/>-trimellitoxyphenyl) propane dianhydride-co-3,3'dimethyl-benzidme)
H2 N2 O2
30 30 30
4.85 0.0384 0.304
0.396 0.00222 0.0106
1.22 1.73 2.87
104 104 104
Poly(2,2/-bis0?-trimellitoxyphenyl) propane dianhydride-co-4,4'diaminodiphenyl ether)
H2 N2 O2
30 30 30
3.62 0.0363 0.233
0.329 0.00206 0.00878
1.10 1.76 2.65
104 104 104
Poly(2,2'-bis(p-trimellitoxyphenyl) propane dianhydride-co-4,4'diaminodiphenyl methylene)
H2 N2 O2
30 30 30
3.49 0.0343 0.220
0.289 0.00187 0.00736
1.21 1.83 2.99
104 104 104
Poly(2,2'-bis(p-trimellitoxyphenyl) propane dianhydride-co-benzidine)
H2 N2 O2
30 30 30
0.542 0.00485 0.0344
0.0536 0.000327 0.00167
1.01 1.49 2.06
104 104 104
Poly(2,2'-bis(jP~trirnellitoxyphenyl) propane dianhydride-co-3,3',4,4'tetraaminodiphenyl ether)
H2 N2 O2
30 30 30
5.52 0.0439 0.326
0.402 0.00223 0.0102
1.37 2.32 3.19
104 104 104
Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-comjm '-diaminodiphenyl methylene)
O2 CO 2 H2O
25 25 25
0.0235 0.0340 291
105 105 105
Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-co-m,;?'diaminodiphenyl methylene)
O2 H2O
25 25
0.0578 573
105 105
Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-co-p.p'diaminodiphenyl methylene)
O2 CO 2 H2O
25 25 25
0.140 0.324 984
105 105 105
Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-co-/?,/?'diaminodiphenyl ether)
O2 CO 2 H2O
25 25 25
0.0927 0.357 719
105 105 1° 5
EP
£D
ES
Refs.
82,94 82 82,94 82,94 82,94 82 82 82 82 82
1.12. POLY(AMIDES), POLY(IMIDES) Poly(iminoadipoyliminohexamethylene) (Nylon 66) undrawn drawn Poly(imino-l-oxohexamethylene) (Nylon 6)
1.7 431
0.00018 O.OOO83 0.00018 0.00048
9.97 6.32 12.8 14.8
4 4 4 4 0-90 0-90 0-90
0.00047
3.5 0.984 0.437 0.0372 0.0191 0.168 0.0018
55.7
0.0424 0.136 0.0592 0.385 3.94 21400
1.05 0.975 12
36.4 46.9 43.5 40.6
0-80
2400
58.2
60-80
137
53.2
10 37 37 37 20 8 5 37
10-50 20-60 20-60 40-60 40-60
0.0827 0.342 0.30 1.38 0.338
27.6 31.4 35.2 41.9 33.9
22.2 29.7 32.7 44.8 51.9
5.4 1.7 2.5 -2.9 -18.0
1 1 1 1 1
135-240 30-80
0.00028 0.00026
18.4 -1.28
31.0 42.0
-12.6 -43.2
67 68
References page VI - 568
D(xlO 6 )
S(xlO 6 )
Temp. range
Polymer
Permeant
T
/»(xlO 13 )
P9(XlO1)
Poly(3,3',4,4/-benzophenone tetracarboxylic dianhydnde-cobenzidine)
O2 CO 2 H2O
25 25 25
0.00668 0.0234 94.4
Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-co-pphenylenediamine)
O2 H2O
25 25
0.0103 231
105 105
Poly(3,3\4,4'-benzophenone tetracarboxylic dianhydride-co-wphenylenediamine)
O2 CO 2 H2O
25 25 25
0.0308 0.0882 804
105 105 105
PolyP.S'^'-benzophenone tetracarboxylic dianhydride-codiaminodiphenyl sulfide)
O2 CO 2 H2O
25 25 25
0.0992 0.307 787
105 105 105
Poly(3,3\4,4'-benzophenone tetracarboxylic dianhydride-com,m '-diaminobenzophenone)
O2 CO 2 H2O
25 25 25
0.0219 0.0807 428
105 105 105
Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-co-m^'diaminobenzophenone)
O2 CO 2 H2O
25 25 25
0.0450 0.0887 521
105 105 105
Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-a?-p,/?'diaminobenzophenone)
O2 CO 2 H2O
25 25 25
0.0451 0.132 599
105 105 105
Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-co-p^'diaminostilbene)
O2 CO 2
25 25
0.00214 0.00692
105 105
Poly(pyromeJlitic dianhydride-robenzidine)
O2 CO 2 H2O
25 25 25
0.00451 0.00790 131
105 105 105
Poly(pyromellitic dianhydride -com,m'-diaminobenzophenone)
O2 H2O
25 25
0.0260 727
105 105
Poly(pyromellitic dianhydride -cop,p'-diaminobenzophenone)
O2 CO 2 H2O
25 25 25
0.110 0.135 1009
105 105 105
Poly(pyromellitic dianhydride -cop,p1 -diaminodiphenyl ether)
O2 CO 2 H2O
25 25 25
0.242 1.36 1882
105 105 105
Poly(pyromellitic dianhydride -copyp'-diaminodiphenyl sulfide)
O2 H2O
25 25
0.336 1882
105 105
Poly(pyromellitic dianhydride -cop,p'-diaminodiphenyl methylene)
O2 CO 2 H2O
25 25 25
0.368 1.32 1582
105 105 105
Poly(2-methyl-2dimethylaminornethylpropylenehexa methylene dicarbamate) (PoIy(NPM-HMDI))
N2 O2
25 25
0.00975 0.0645
91 91
Poly(2-methyl-2dimethylaminomethyl-1,3propylene-diphenylmethane-4,4' dicarbamate) (PoIy(NPM-MDI))
N2 O2
25 25
0.0105 0.0675
91 91
Poly(urethane-sulfone) (tolylene diisocyanate + 1,10decanediol)
CO 2
25
0.23
95
(tolylene diisocyanate + l,3-bis(3hydroxypropylsulfonyl)propane)
CO 2
25
0.0064
95
(tolylene diisocyanate +l,4-bis(3hydroxypropylsulfonyl)butane)
CO 2
25
0.0038
95
Poly(sulfone)
CO 2 CH 4
35 35
4.20 0.19
0.020 0.0034
20.7 5.60
100 100
Poly(tetramethylsulfone)
CO 2 CH 4
35 35
15.8 0.71
0.064 0.0079
24.7 9.14
100 100
EP
£D
Es
Refs. 105 105 105
1.13. POLY(URETHANES)
1.14. POLY(SULFONES)
Polymer
Permeant
T
P(xlO 1 3 )
Poly(dimethylsulfone)
CO 2 CH 4
35 35
1.58 0.0525
Poly(tetramethylhexafluorosulfone)
CO 2 CH4
35 35
54 2.25
25 55 75 25 55 75 25 55 75 5 20 35 40 50 60 65 80 95
5.24 9.90 14.0 0.41 0.82 1.21 2.03 3.40 4.54
He'' H/ N2C O2' CO 2 ' SO 2 ' H2S1 H2S NH 3 f H2O H2'' N 2 '' O 2 '' CO2'' H2' N2' O2' CO2' H/ N/ O/ CO/ NH / SO/ H 2 S^
20 25 25 25 25 25 25 45 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
0.000375 0.00472 0.0024 0.0016 0.00353 0.00129 0.0086 0.0045 0.0118 18900 0.012 0.00507 0.00536 0.00974 0 0244 0.00559 0.00665 0.0539 0.0598 0.0138 0.0087 0.192 133 28.4 0.425
He H2
H2O H2O7 H2S H2S7 CH 4 C2H4O7 CH 3 Br 7
20 20 35 30 35 30 35 30 35 25 25 30 30 35 30 30
10.2 2.63 11.2 0.21 0.173 0.585 0.788 17.3 4.47 4130 5500 2.63 4.58 0.154 30.0 4.2
Cellulose acetobutyrate
O2
34
3.56
Cellulose nitrate
He H2 N2 O2 Ar CO 2 SO 2
25 20 25 25 25 25 25
5.18 1.5 0.087 1.46 0.0825 1.59 1.32
NH 3 H2O
25 25
D(xlO 6 )
S (xlO 6 )
Temp. range
P 0 (XlO 7 )
Ep
E0
Es
Refs.
0.0094 0.0010
16.8 5.09
100 100
0.14 0.016
39.5 14.6
100 100
1.15. POLY(ARYL ETHER ETHER KETONE) Poly(aryl ether ether ketone)
He
O2 CO 3 semicrystalline (30%)
H2O
25-75
17.2
25-75
18.7
25-75
13.8
101 101 101 101 101 101 101 101 Wl 102 102 103 102 103 102 103 103 103
0.0017 0.0053 0.0082 0.0152 0.0190 0.0356 0.0390 0.0660 0.133
1.16. CELLULOSE AND DERIVATIVES Cellulose hydrate (Cellophane)
Cellulose acetate
N2' O2
7
CO2
7
42.8 4720
41.4
1.6 xlO" 6
0.0010 0.0022
276
266 207
45-60
2.1 x 106
89.6
-25-60
0.00975
27.1
-25-60
0.00375
20.9
0.0218
18.0
0.0053 0.0053 0.000668 0.00188
0 0 20.5 21.4
10-60 10-60 0-60 0-60
W 28 28 28 28 28 28 8 28 7 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 10 10 87 37 87 37 87 37 87 21 21 8 8 87 37 37 51
0.431
1.2 23.8
0.0193 0.15 0.00753 0.0221 0.0018
0.00786 0.0262
0.45 0.975 1.05 7.2 73.3
544 18000
9 10 9 9 9 9 9
9 9 References page VI - 568
Polymer
Ethyl cellulose
(Ethocel 610) 0 b c rf e
Permeant
T
/>(xlO 13 )
C2H6 C3H8
25 25
0.0473 0.0063
He H2 N, O2 Ar CO 2 SO 2 NH 3 H2O CH6 C2H6 C2H6 C2H6 C2H6 C2H6 C3H8 C3H8 C3H8 C3H8 C3H8 C3H8 H-C4Hi0 /1-C4Hi0 H-C4H10 H-C4H10 H-C4Hi0 H-C4H10 /J-C5H12 H-C6H14
25 20 25 25 25 25 25 25 25 25 30 40 50 60 70 25 30 40 50 60 70 25 30 40 50 60 70 25 25
C 2 H 4 O-'
30
THROUGH
5 (xlO 6 )
0.00013 0.000021 2.21 0.233 0.639 0.403 0.565 0.0734 0.146 0.0286 0.019
Temp. range
F0(xl07)
EP
E0
Es
Refs.
36.2 29.6
9 9
1.8
9 10 9 9 9 9 9 9 9 9 79 79 79 79 79 9 79 79 79 79 79 9 79 79 79 79 79 9 9
1.43 1.73 1.88 15.0 270 363 23400 36.3
0.00293
94.7
0.00146
199
0.00138 0.00124
201 462
308
Thickness 0.29 mm. Thickness 0.84mm. Relative humidity 0%. Relative humidity 100%. Plasticizer was low-molecular-weight polytrifluorochloroethylene.
TABLE 2.
37 * 3.5% aqueous sodium chloride solution (simulated sea water). * The % bromination refers to 100 times the number of bromine atoms per repeat unit. /( Relative humidity 43%. ' Relative humidity 76%. y Plasticized.
P E R M E A B I L T Y C O E F F I C I E N T S O F SIX D I F F E R E N T F L U O R I N A T E D
HYDROCARBONS
POLYMERS*
CFCl 3 (24.5°C)
Polymer
Poly(ethylene) low density 37.5 high density 9.75 high density, drawn 3.38 Poly(propylene) 4.88 Poly(vinyl chloride) 0.697 (Genotherm UG), unplasticized Poly(vinyl chloride) 656 (Guttagena T52), plasticized Poly(oxyethyleneoxyterephthaloyl) 0.00188 [Polyethylene terephthalate)] (Hostaphan) Poly(imino-i-oxohexamethylene) 0.0315 (Supronyl S) Poly(imino-l-oxohexamethylene) 52.5 (Supronyl N), plasticized 0
40.1 65.3 3.32 11.0 7.65 84.8 198 529 6700 6.9 10.0 10.3 12.2 14.9 20.1 2.78 4.73 5.32 6.36 9.05 10.8 2.9 4.20 6.30 7.43 9 77 11.4 2.78 5.75
D (xlO 6 )
CF 2 Cl 2 (20 0 C)
CF 3 Cl (20 0 C)
CHFCl 2 (20 0 C)
CHF 2 Cl (20 0 C)
152 30 4.35 137 0.00668
2.03 0.673 0.326 0.132 0.00585
1.88 0.374 0.161 0.00338 0.0016
0.795 0.106 0.0266 0.0018 0.0016
0.212 0.0683 0.0336 0.00728 O.OO5O3
0.914 0.219 0.133 0.151 0.0247
1.88
0.359
0.185
0.054
0.0649
0.00135
0.0016
0.00135
0.00165
0.0039
0.00343
0.0329
0.01 I l
0.00623
0.00803
0.00923
0.0075
3.6
0.254
0.00473
0.00143
0.00225
0.0133
63.8
CF 2 Cl-CF 2 Cl (20 0 C)
N2 (20 0 C)
Ref. 61; Pin cm 3 x cm/(cm 2 x s x Pa) x 10" 13 .
TABLE 3.
PERMEABILITY COEFFICIENTS OF V A R I O U S O R G A N I C C O M P O U N D S
LOW-DENSITY
Permeant Acetaldehyde Acetanilide Acetic acid
THROUGH
POLY(ETHYLENE)a
00C 1.34 0.14
21.1°C 2.36 0.008 1.22
54.4°C
73.9°C
0.16 25.9
1.34 119
Permeant
O0C
21.1°C
54.4°C
73.9°C
Acetic anhydride Acetone Allyl alcohol Amyl acetate t-Amyl alcohol i-Amyl propionate rc-Amyl propionate Aniline Benzaldehyde Benzene Benzoic acid Benzyl alcohol n-Butyl acetate n-Butyl alcohol s-Butyl alcohol /-Butyl alcohol Butyraldehyde n-Butyric acid Camphor Carbon tetrachloride Chloroacetic acid m-Chloroaniline Chlorobenzene Chloromaleic anhydride p-Chlorotoluene Cyclohexane Decane 1,2-Dibromoethane Dibutyl ether Dibutyl phthalate oDichlorobenzene Diethylene glycol Diethyl ether Diethyl oxalate Dipentene Ethyl acetate Ethyl alcohol Ethylene glycol Ethylene glycol monobutyl ether Ethyl formate Ethyl mercaptan Ethyl propionate Formaldehyde Formamide Formic acid Furfuryl alcohol Glycerin n-Heptane n-Heptene «-Heptyl acetate Heptyl alcohol n-Hexane Hydroquinone Methyl acetate Methyl alcohol Methyl ethyl ketone Methylcyclohexane Nitrobenzene Nitroethane Nitromethane Octadecane Octyl alcohol Oxalic acid i-Pentane w-Pentane Phenol
0.051 0.55 0.063 0.22
0.32 2.67 0.57 3.42 0.078 3.9 11.8 0.67 2.67 173 0.028 0.16 5.9 0.18 0.24 0.10 3.93 1.89 0.12 240 0.12 0.63 179 0.28 119 98.7 28.0 55.0 33.6
11.6 72.3 9.04 106
83.7 295 54.2 430
23.4 81.0 1770 2.24
116 417 5400 14.2
8.02 14.8 10.6 229 39.3 8.5 3080 5.9
59 109 92.8 393 228 63.7 17700 23.6
0.098 0.15 17.7
0.04 0.05 0.02 0.35 0.075 20 22.7 11.8 12.4 3.7 4.4
1730
8300
1640 1470 480
7300 5900 1620
582 5.7
1230 10.9
60.9 18.9 5.9 0.75
10.2
0.10 19.1
18.9 0.1 1.45 0.15 0.38
0.039 18.9 38.1 0.04
123 0.28 50.3 6.5 0.28 0.26 5.9 157 9.8 0.21 0.20 0.26 0.09 106 106 7.1 0.39 138 5.5 0.48 4.95 108 1.93 1.06 0.83 0.71 0.20 106 206 0.2
3140 798 149 13.8 3931
4.7
0.30 11800 3190 669 0.50 70.8 15700
20.0
0.14 1040
0.63 3200
3540 0.02
11800 0.14
10.9 128
39.3 550
39.3 25.1
165 113
10.1 0.08 1970 5900 9.4
73.9 0.09 7860 23600 47.1
References page VI - 568
O0C
Permeant rt-Propyl alcohol /-Propylamine Tetradecane Tetradecene Toluene 1,1,1 -Trichloroethane o-Xylene p-Xylene a
0.03 0.90 0.67 22.7 14.2 33.7
21.1 0 C
54.4°C
73.9°C
0.2 16.0 5.7 4.7 199 102 101 191
8.8 275 159
66.0 1260 393
2270
11300
1420 ^890
6530 6410
Ref. 62; P ing x mm/(m2 x d).
TABLE 4.
PERMEABILITY COEFFICIENTS A N D D I F F U S I O N COEFFICIENTS O F A N E Q U I M O L A R M I X T U R E
VARIOUS C O M P O U N D S ( 1 . 2 5 M EACH) T H R O U G H
HIGH-DENSITY
D(XlO 6 )
P Permeant
22°C
500C
22°C
500C
2.4 3.3 5.3 2.7 3.1 3.3 0.73 0.49
8.8 14.6 5.9 10.0 10.0 10.2 4.4 2.7
0.0142 0.0225 0.0889 0.0500 0.0417 0.0722
0.0833 0.114
l,l,2-Trichlorethane(0.167g/ml) 1,2-Dichloroethane (0.124g/ml) Methylene chloride (0.106 g/ml) Styrene (0.130 g/ml). Benzene (0.098 g/ml) Toluene (0.098 g/ml) Naphthalene (0.160 g/ml) 2-Methyl naphthalene (0.178 g/ml) 0
0.167 0.361 0.417 0.0333 0.0203
Ref. 92; P ing x mm/(m2 x d) and Dincm 2 /s.
TABLE 5.
PERMEABILITY COEFFICIENTS O F V A R I O U S O R G A N I C C O M P O U N D S T H R O U G H
POLY(ETHYLENE) A N D
HIGH-DENSITY
POLY(PROPYLENE)*
High-density poly(ethylene) Permeant Acetic acid Acetone n-Butyl ether Carbon tetrachloride rc-Decane Dipentene Ethyl acetate Methanol Toluene a
OF
POLY(ETHYLENE)a
22.8°C
48.9°C
0.39 0.67 6.6 32 7.3 7.6 1.7 0.1 39
2.36 3.9 43.6 260 39 54 18.5 2.0 196
Poly(propylene) 22.8°C
48.9°C
0.28
8.84
181 22 29.5 5.8 0.08 142
1100 153 161 55 1.5 770
Ref. 62; Ping x mm/(m 2 x d).
TABLE 6. PERMEABILITY COEFFICIENTS O F V A R I O U S O R G A N I C C O M P O U N D S T H R O U G H I R R A D I A T I O N CROSSLINKED L O W - D E N S I T Y POLY(ETHYLENE) a
Poly(ethylene) unirradiated (crystallinity 58%)
Permeant
T
P
Temp, range
P0
fC)
(VLE%
(°C)
(V£%)
2
Acetic acid Amyl acetate Aniline Benzaldehyde Benzene
21.1 21.1 21.1 21.1 21.1
Vm Xd/ 1.27 3.80 0.70 2.76 181
2
20-75 20-75 20-75 20-75 20-75
Vm Xd/ 1.108 xlO 1 3 2.016 xlO 1 5 6.088 XiO 14 6.375 xlO 1 4 1.083x10°
Poly(ethylene) irradiated with 260 kGy (electron irradiation) EP
(~^ \mol/ 72.9 83.0 84.0 80.7 60.8
T
<°C>
P
(^)
Temp, range
<°O
2
21.1 21.1 21.1 21.1 21.1
Vm Xd/ 1.55 5.03 0.81 3.36 207
20-75 20-75 20-75 20-75 20-75
P0
(1^)
E?
f~)
Vm2xd/ \rnol/ 12 2.783 xlO 68.8 3.269 xlO 1 4 77.9 2.315 xlO 1 4 81.1 4.513 xlO 1 4 79.6 1.677 xlO 1 2 55.2
Poly(ethylene) unirradiated
Poly(ethylene) irradiated with 260 kGy
(crystallinity 58%)
(electron irradiation)
T
P
Temp, range
PQ
EP
T
P
Temp, range
P0
EP
Permeant
<°C)
(VLBH^ Vm2Xd/
<°C)
(*^) Vm2Xd/
("-) \mol/
(°C)
(Ii") Vm2Xd/
(°C)
( I ^ vm 2 xd/
(J^ \molj
Dibutyl ether Ethyl acetate /s-Heptane Methyl alcohol Methyl ethyl ketone n-Propyl alcohol -Xylene fl Ref. 63.
21.1 21.1 21.1 21.1 21.1 21.1 21.1
67.0 78.2 57.5 75.7 77.7 91.2 67.0
21.1 21.1 21.1 21.1 21.1 21.1 21.1
45.2 11.4 120 0.49 5.86 0.36 120
20-75 20-75 20-75 20-75 20-75 20-75 20-75
37.1 9.39 110 0.43 5.03 0.20 116
20-75 20-75 20-75 20-75 20-75 20-75 20-75
3.05IxIO 13 6.83IxIO 14 1.756 xlO 1 2 1.16OxIO13 3.195 xlO 1 4 3.195 xlO 1 5 8.599 xlO 1 3
7.153 xlO 1 2 1.797 xlO 1 4 5.55 xlO 1 1 7.843 x 1012 4.31OxIO14 1.639 xlO 1 4 6.676 xlO 1 2
63.1 74.4 54.4 74.0 78.1 82.6 60.4
TABLE 7. PERMEABILITY COEFFICIENTS OF GASES THROUGH IRRADIATION CROSSLINKED LOW-DENSITY POLY(ETHYLENE)fl Gas He N2
CH4 C2H6 C3H8
Irradiation Dose* (kGy)
T (0C)
D (xW6) (cm2/s)
P(xl013) (cm3 x cm/cm2 x s x Pa)
ED (kj/mol)
EV (kj/mol)
0 200 500 0 100 200 500 0 200 500 0 200 500 0 200 500
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
3.5
82.5
20.7 22.5 26.3
26.0 27.7 28.1 28.1
0.52
0.35 0.33 0.31 0.18 0.16 0.15 0.05 0.04 0.03
78.8 18.0 17.3 15.0 12.8 47.3 44.3 36.8 82.5 78.0 69.0 142 112 90
28.5 30.1 33.5 34.5 37.6 39.8 50.0 54.7 55.6
30.1 31.3 40.3 40.7 41.1 41.0 43.4 45.9 45.3 48.1 50.3
a
Ref. 71. * Films were irradiated in acetylene atmosphere; dose rate was 6.15kGy/h.
TABLE 8 .
PERMEABILITY COEFFICIENTS O F C H E M I C A L L Y CROSSLINKED POLY(OXYPROPYLENE)*
Polymer Poly(oxypropylene), crosslinked with stoichiometric quantities of tris (p-isocyanatophenylthiophosphate) (DesmodurRF)
Molecular mass of poly(oxypropylene) between crosslinks 425 725 1025 2000 3000
Permeability coefficient for 23°C ( x 1013) • — H2 CO 2.86 7.26 18.80 28.73 44.10
0.0608 0.65 2.93 7.65 12.60
" Refs. 69 and 70; P in cm3 x cm/(cm2 x s x Pa).
References page VI - 568
TABLE 9. PERMEABILITY COEFFICIENTS OF GASES THROUGH VARIOUS ELASTOMERS" Permeation coefficient N2 Elastomer NBR NBR NBR NEM SBR NR CR VMQ ECO FKM ACM EPDM CIIR CSM AU a
shore shore shore shore shore shore shore shore shore shore shore shore shore shore shore
70 60 50 70 52 66 42 50 65 70 70 68 68 70 94
O2
200C
800C
0.172 0.161 0.231 0.275 0.583 1.72 0.611 128 0.169 0.172 0.694 2.08 0.119 0.144 0.286
5.39 6.11 6.39 4.78 10.8 33.9 12.8 331 3.25 4.75 13.3 22.5 2.22 3.92 4.72
He
Hypalon®40 Hypalon®45 Viton®E60 Viton® GF Hydrin® lOOw/filler Hydrin® 100 Kraton® G1652 Kraton® FG Kraton® KG VTEOS b d
2.14 5.06 1.31 286 0.306 2.58 6.11 0.242 0.494
800C
2O0C
80°C
10.8 16.1 13.6
6.11 6.11 4.08
61.1 83.3 28.6
3.25 3.75 4.58
27.2 47.2 38.3
2.56 2.33 2.31
25.6 33.1 20.6
24.2 55.6 30.6 528
13.1 35.6 6.94
77.8 239 75.0
6.67 9.17 5.00 225
48.6 86.1 61.1 583
4.31 4.53 3.42 156
28.9 34.7 26.4 444
3.53 27.8 12.8 1.42 3.47
61.1 52.8 48.1 24.4 16.7
2.58 10.6 15.6 1.92 2.94
41.7 80.6 86.1 26.1 20.8
4.89 6.39 10.0 2.28 2.97
48.1 43.1 61.1 20.0 26.4
7.22 18.6 42.2 4.08 7.78
200C
He 800C
200C
800C
PERMEABILITY COEFFICIENTS OF GASES THROUGH VARIOUS COMMERCIAL ELASTOMERS AT 35°C fl
Elastomer tradename
c
0.639 0.75 0.722
H2
Ref. 89; P in 10~13 cm3 x cm/(cm2 x s x Pa).
TABLE 10.
a
200C
CO 2
H2
Pb
Dc
Sd
Pb
Dc
6.6 8.63 22.9 32.9 1.13 4.13 34.0 34.7 33.8
6.31 10.3 8.10 18.3 0.73 5.26 19.9 22.4 20.5
0.10 0.08 0.28 0.18 0.15 0.08 0.17 0.15 0.16
8.25 11.7 7.95 16.4 1.05 6.68 51.5 50.2 52.3
2.65 4.84 1.87 3.45 0.23 2.92 12.3 11.6 13.3
D2 Sd 0.31 0.24 0.42 0.47 0.47 0.23 0.42 0.43 0.39
Pb
Dc
7.65 2.32 11.2 5.35 750 1.79 15.7 2.78 1.20 0.18 6.60 2.93 48.2 10.1 44.9 9.68 47.7 9.93
O2 Sd
Pb
0.33 0.21 0.42 0.56 0.67 0.23 0.48 0.46 0.48
1.78 3.15 1.71 3.15 0.233 0.788 20.0 18.4 19.1
N2
Dc
Sd
Pb
Dc
Sd
2.04 4.86 1.39 3.86 0.03 0.17 1.92 1.43 1.81
0.87 0.65 1.23 0.82 0.73 0.47 1.04 1.29 1.06
0.473 0.960 0.638 1.60 0.113 0.330 7.35 6.47 7.43
0.10 0.34 0.06 0.13 0.008 0.09 1.18 0.98 1.14
0.48 0.28 0.99 1.24 1.43 0.36 0.62 0.66 0.65
Ref. 90. Pin 10"13cm3 x cm/(cm2 xsxPa). Din 10-6cm2/s. Sin 10- 6 cm 3 /(cm 3 xPa).
TABLE 1 1 .
PERMEABILITY, D I F F U S I O N A N D SOLUBILITY COEFFICIENTS O F ALKANES T H R O U G H S A N T O P R E N E ™
(BLEND O F ETHYLENE-PROPYLENE C O P O L Y M E R A N D I S O T A C T I C POLY(PROPYLENE)) a Alkane
Tb
Pc
Dd
Se
n-Pentane «-Hexane
25 25 40 55 25 40 55 70 25 40 55 70
1.51 1.11 1.48 1.85 1.39 1.67 2.13 2.12 1.03 1.38 1.73 2.18
6.07 2.88 3.83 4.63 3.22 3.74 4.72 4.82 1.83 2.36 2.88 3.64
0.25 0.39 0.39 0.40 0.43 0.45 0.45 0.44 0.56 0.58 0.60 0.60
n-Heptane
rc-Octane
EPf
£D
E8
25-70
13.86
12.87
0.99
25-70
8.64
8.23
0.41
25-70
14.10
12.89
1.21
Temp, range
Tb
Pc
Dd
Se
Temp, range
25 40 55 70 25 40 55 70 25 40 55 70 25 40 55 70 25 40 55 70 25 40 55 70 25 40 55 70 25
0.82 1.13 1.50 1.99 0.67 0.87 1.13 1.47 0.37 0.52 0.76 1.10 0.28 0.34 0.55 0.75 0.17 0.27 0.38 0.49 0.56 0.76 0.89 1.12 0.85 1.27 1.82 2.08 0.49
1.69 2.23 2.87 3.79 1.34 1.78 2.10 2.67 0.78 1.04 1.44 2.05 0.62 0.69 1.08 1.49 0.34 0.55 0.74 0.97 1.66 2.07 2.40 3.05 0.90 1.27 1.74 1.90 0.56
0.49 0.51 0.52 0.53 0.50 0.49 0.54 0.55 0.47 0.50 0.53 0.54 0.45 0.49 0.51 0.50 0.50 0.49 0.51 0.51 0.34 0.37 0.37 0.37 0.94 1.00 1.05 1.09 0.88
40 55 70
0.74 0.92 1.29
0.80 0.93 1.19
0.93 0.99 1.08
Alkane rc-Nonane
n-Decane
n-Dodecane
n-Tetradecane
rc-Hexadecane
2,2,4-Trimethylpentane
Cyclohexane
1,2,3,4Tetrahydronaphthalene
E/
£D
ES
25-70
16.65
15.12
1.53
25-70
14.86
12.67
2.19
25-70
20.80
18.30
2.51
25-70
19.48
17.41
2.07
25-70
20.04
19.43
0.61
25-70
12.67
11.19
1.48
25-70
17.43
14.70
2.74
25-70
17.81
13.69
4.12
E/
ED
E8
° Ref. 93. b Tand Temp, range in 0C. c Pin 10"6Cm3 xcm/(cm2 x s). d Din 10- 6 cm 2 /s. e S in crrrVcm3. f Ep, ED and £5 in kJ/mol.
TABLE 12.
PERMEABILITY, D I F F U S I O N A N D SOLUBILITY COEFFICIENTS O F ESTERS
POLY(EPICHLOROHYDRIN)
Alkane
Tb
Pc
Methyl acetate
25 40 50 25 44 60 25 44 60 25 44 60 25 44 60
0.998 1.450 1.640 0.765 0.985 1.304 0.346 0.480 0.636 0.317 0.486 0.621 0.146 0.327 0.546
(Ethyl acetate) (w-Butyl acetate) (Iso-amyl acetate) (Methyl salicylate)
a b c d e f
THROUGH
(ECO)*
Dd 0.712 1.069 1.246 0.561 0.779 1.052 0.295 0.418 0.559 0.267 0.420 0.554 0.071 0.155 0.263
Se
Temp, range
1.40 1.36 1.32 1.36 1.26 1.24 1.17 1.15 1.14 1.19 1.16 1.12 2.06 2.1i 2.08
25-50
16.25
18.21
-1.94
25-60
12.48
14.78
-2.30
25-60
14.34
15.02
-0.68
25-60
15.99
17.34
-1.35
25-60
31.15
31.15
0.10
Ref. 97. Tand Temp, range in 0C.2 6 3
P in 10 " cm xcm/(cm x s). Din 10" 6 cm 2 /s. S in cm3/cm3. Ep, EQ and Es in kJ/mol.
References page VI - 568
D.
REFERENCES
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37.
R. Ash, R. M. Barrer, D. G. Palmer, Polymer, 11,421 (1970). R. M. Barrer, H. T. Chio, J. Polym. Sci. C, 10, 111 (1966). J. A. Barrie, B. Plott, Polymer, 4, 303 (1963). W. W. Brandt, J. Polym. Sci., 41, 415 (1959). V. L. Braunisch, H. Lenhart, Kolloid-Z., 177, 24 (1961). J. Crank, C. Robinson, Proc. Roy. Soc. (London) A, 204,549 (1951). P. M. Hauser, A. D. McLaren, Ind. Eng. Chem. Int. Ed., 40, 112(1948). W. Heilman, V. Tammela, J. A. Meyer, V. Stannett, M. Szwarc, Ind. Eng. Chem., 48, 821 (1956). P. Y. Hsieh, J. Appl. Polym. Sci., 7, 1743 (1963). Y. Ito, Kobunshi Kagaku, 18, 124 (1961). Y. Ito, Kobunshi Kagaku, 18, 158 (1961). Y. Iyengar, J. Poly. Sci. B, 3, 663 (1965). D. Jeschke, Ph. D. Thesis, Mainz, 1960. R Mears, J. Am. Chem. Soc, 76, 3415 (1954). P. Mears, Trans. Faraday Soc, 53, 101 (1957). A. S. Michaels, H. J. Bixler, J. Polym. Sci., 50, 413 (1961). A. S. Michaels, W. R. Vieth, J. A. Barrie, J. Appl. Phys., 34,1 (1963). A-. S. Michaels, W. R. Vieth, J. A. Barrie, J. Appl. Phys., 34, 13 (1963). A. W. Myers, V. Stannett, M. Szwarc, J. Polym. Sci., 35, 285 (1959). A. W. Myers, V. Tammela, V. Stannett, M. Szwarc, Mod. Plastics, 37 (10), 139 (1960). A. W. Myers, J. A. Meyer, C. E. Rogers, V. Stannett, M. Szwarc, Tappi, 44, 58 (1961). F. J. Norton, J. Appl. Polym. Sci., 7, 1649 (1963). R. A. Pasternak, M. V. Christenson, J. Heller, Macromolecules, 3, 366 (1970). R. A. Pasternak, G. L. Burns, J. Heller, Macromolecules, 4, 470 (1971). D. R. Paul, A. T. DiBenedetto, J. Polym. Sci. C, 10, 17 (1965). R. W. Roberts, K. Kammermeyer, J. Appl. Polym. Sci. 7, 2183 (1963). G. Rust, F. Herrero, Materialprufung, 11 (5), 166 (1969). V. L. Simril, A. Hershberger, Modern Plastics, 27 (11), 95 (1950). V. Stannett, J. L. Williams, J. Polym. Sci. C, 10, 45 (1966). V. Stannett, North Carolina State University unpublished data. R. L. Taylor, D. B. Hermann, A. R. Kemp, Ind. Eng. Chem. Int. Ed., 28, 1255 (1936). B. P. Tikhomirov, H. B. Hopfenberg, V. T. Stannett, J. L. Williams, Makromol. Chem., 118, 177 (1968). G. J. Amerongen, J. Appl. Phys., 17, 972 (1946). G. J. Amerongen, J. Polym. Sci., 2, 381 (1947). G. J. Amerongen, J. Polym. Sci., 5, 307 (1950). G. J. Amerongen, Rubber Chem. Technol., 37, 1065 (1964). R. Waack, N. H. Alex, H. L. Frisch, V. Stannett, M. Szwarc, Ind. Eng. Chem., 47, 2524 (1955).
38. J. L. Williams, V. Stannett, J. Appl. Polym. Sci., 14, 1949 (1970). 39. H. Yasuda, V. Stannett, J. Polym. Sci., 57, 907 (1962). 40. H. Yasuda, V. Stannett, J. Macromol. Sci. B, 3 (4), 589 (1969). 41. H. Yasuda, Kj. Rosengren, J. Appl. Polym. Sci., 14, 2839 (1970). 42. M. Salame, J. Polym. Sci. Symp., 41, 1 (1973). 43. H. Platenius, Modern Packaging, 17, 2103 (1943). 44. L. Phan Thuy, A. Lukaschov, J. Springer, Colloid Polym. Sci., 261, 973 (1983). 45. M. Sefcik, J. Schaefer, F. May, D. Raucher, J. Polym. Sci., 21, 1041 (1983). 46. N. Minoura, S. Tani, T. Nakagawa, J. Polym. Sci., 22, 833 (1978). 47. S. Sczi, J. Springer, Colloid Polym. Sci., 259, 1170 (1981). 48. E. Sacher, J. Polym. Sci., 28, 1535 (1983). 49. H. Miyake, M. Matsuyama, K. Ashida, K. Watanabe, J. Vac Sci. Technol. A-I, 3, 1447 (1983). 50. R T. Delassus, D. J. Grieser, J. Vinyl Technol. 2 (3), 195 (1980). 51. W. H. Yang, V. R Smolen, N. A. Peppas, J. Membr. Sci., 9,53 (1981). 52. P. E. Cassidy, T. M. Aminabhavi, J. C. Brunson, Rubber Chem. Technol., 56, 357 (1983). 53. N. Y. Yan, R. M. Felder, W. J. Koros, J. Polym. Sci., 25,1755 (1980). 54. H. Fitz, Kunststoffe, 70, 27 (1980). 55. T. Duncan, W. J. Koros, R. M. Felder, J. Polym. Sci., 28,209 (1983). 56. E. Sacher, J. R. Susko, J. Polym. Sci., 27, 3893 (1982). 57. D. H. W. Carstens, E. P Ehart, J. Polym. Sci., 29,261 (1984). 58. H. Kenbishi, Int. Polym. Sci. Technol., 8 (4), (1981). 59. H. Schuch, Kautschuk, Gummi, Kunststoffe, 33 (9), (1980). 60. R. Light, R. Seymour, Soc Plast. Eng., 29, 417 (1983). 61. H. Braunisch, B. Hoffmann, Kaltetechnik, 13 (2), 59 (1961). 62. M. Solame, S. P. E. Trans., 1, 153 (1961). 63. H. Bent, J. Polym. Sci., 24, 387 (1957). 64. J. Flynn, Polymer, 23, 1325 (1982). 65. T. Hirose, K. Mizoguchi, Y. Kamiya, J. Polym. Sci., 30, 401 (1985). 66. E. Sacher, J. Susko, J. Polym. Sci., 24, 1997 (1979). 67. W. Koros, J. Wang, R. Felder, J. Polym. Sci., 26, 2805 (1981). 68. E. Sacher, R. Susko, J. Polym. Sci., 23, 2355 (1979). 69. A. L. Andrady, M. D. Sefcik, J. Polym. Sci., 21,2453 (1983). 70. A. L. Andrady, M. D. Sefcik, J. Polym. Sci., 22, 237 (1984). 71. R. W. Macdonald, R. Y M. Huang, J. Polym. Sci., 26, 2239 (1981). 72. L. H. Wang, R. S. Porter, J. Polym. Sci., 22, 1645 (1984). 73. S. Pauly, HOECHST AG, Werk Kalle, unpublished data. 74. P. S. Holden, G. A. J. Orchard, I. M. Ward, J. Polym. Sci., 23, 709 (1985).
75. M. J. El-Hibri, D. R. Paul, J. Appl. Polym. ScL, 30, 3649 (1985). 76. N. Cao, M. Pegoraro, F. Bianchi, L. Di Landro, L. Zanderighi, J. Appl. Polym. ScL, 48, 1831 (1993). 77. J. S. Chiou, J. W. Barlow, D. R. Paul, J. Appl. Polym. ScL, 30, 1173 (1985). 78. M. J. El-Hibri, D. R. Paul, J. Appl. Polym. ScL, 31, 2533 (1986). 79. E. Casur, T. G. Smith, J. Appl. Polym. ScL, 31, 1441 (1986). 80. A. Phatak, C. M. Burns, R. Y. M. Huang, J. Appl. Polym. ScL, 34, 1835 (1987). 81. T. Hirose, K. Mizoguchi, Y. Kamiya, J. Appl. Polym. ScL, 35, 517 (1988). 82. S. A. Stern, B. D. Bhide, J. Appl. Polym. ScL, 38, 2131 (1989). 83. W.-J. Chen, C. R. Martin, J. Membr. ScL, 95, 51 (1994). 84. A. Tanioka, N. Fukushima, K. Hasegawa, K. Miyasaka, J. Appl. Polym. ScL, 54, 219 (1994). 85. M. S. Lerma, K. Iwamoto, M. Seno, J. Appl. Polym. ScL, 33, 625 (1987). 86. T. Hirose, K. Mizoguchi, K. Terada, J. Appl. Polym. ScL, 58, 1031 (1995). 87. J. Li, K. Nagai, T. Nakagawa, S. Wang, J. Appl. Polym. ScL, 58, 1455 (1995). 88. J. S. Chiou, D. R. Paul, J. Appl. Polym. ScL, 34, 1037 (1987). 89. W. Beckmann, Kautschuk, Gummi, Kunststoffe, 44, 323 (1991).
90. M. W. Fitch, W. J. Koros, R. L. Nolen, J. R. Carnes, J. Appl. Polym. ScL, 47, 1033 (1993). 91. T. Tsuchida, Y Arimatsu, K. Yoda, Polym. Comm, 29, 246 (1988). 92. L. N. Britton, R. B. Ashman, T. M. Aminabhavi, P. E. Cassidy, J. Appl. Polym. ScL, 38, 227 (1989). 93. T. M. Aminabhavi, H. T. S. Phayde, J. Appl. Polym. ScL, 55, 17 (1995). 94. S. A. Stern, V. M. Shah, B. J. Hardy, J. Polym. Sci. B, 25, 1263 (1987). 95. T. Zhang, M. H. Litt, C. E. Rogers, J. Polym. Sci. B, 32,1671 (1994). 96. J. M. Mohr, D. R. Paul, J. Appl. Polym. Sci., 42, 1711 (1991). 97. T. Aminabhavi, R. S. Munnolli, J. Polym. Eng., 14, 53 (1995). 98. H. Fu, L. Jia, Chin. J. Polym. Sci., 13, 189 (1995). 99. J. A. Webb, D. I. Bower, I. M. Ward, P. T. Cardew, J. Polym. Sci. B, 31, 743 (1993). 100. K. Gosal, B. D. Freeman, Polym. Advanced Techn., 5, 673 (1994). 101. G. Golemme, E. Drioli, F. Lufrano, Polym. Sci., 36, 1647 (1994). 102. G. Mensitieri, A. Apicella, J. M. Kenny, L. Nicolais, J. Appl. Polym. Sci., 37, 381 (1989). 103. M. A. Grayson, C. J. Wolf, J. Polym. Sci. B, 25, 31 (1987). 104. G. Xuesong, L. Fengcai, Polymer, 36, 1035 (1995). 105. G. F. Sykes, A. K. St. Clair, J. Appl. Polym. ScL, 32, 3725 (1986).
R e f r a c t i v e
I n d i c e s
o f
P o l y m e r s
James C. Seferis Polymeric Composites Laboratory, Department of Chemical Engineering, University of Washington, Seattle, VVA, USA
A. B. C. D. E.
Introduction Molar Refraction Refractive Indices of Heterogeneous Polymers Optical Anisotropy Applications Table 1. Intrinsic Optical Properties of Selected Polymers Table 2. Average Refractive Indices of Polymers (in Order of Increasing n) Table 3. Average Refractive Indices of Polymers (in Alphabetical Order) F. References A.
VI-571 VI-571 VI-572 VI-572 VI-573 VI-573 VI-574 VI-578 VI-582
INTRODUCTION
The refractive indices of polymers provide fundamental physical property information that can be used in characterization, processing, and usage analyses. In-depth description of refractive indices based on classic electromagnetic theory can be found in basic texts (1,2). The purpose of this monograph is to provide a convenient reference of values and some general remarks in approximating and utilizing refractive indices of polymers. The refractive index, reported as the velocity of light in a vacuum relative to the velocity in the polymer, depends on the wavelength of light. All values reported in this chapter refer to the sodium spectral line A = 5893A, referred to as HD in this literature. However, for simplicity, the subscript D is omitted here in the subsequent discussion and tables. In general, it should be kept in mind that for any polymer, the refractive index represents an average property of its aggregate state (3,4). Orientation, conformation, as well as phase changes may all contribute to variations in the index of refraction of a polymer with a given chemical structure. Thus, the refractive index may not be expected to be equal along all axes of the molecule (5). Consequently, the measured refractive index is an average value, with contributions from the refractions of the molecule's different chemical bonds. It can be shown from classic electromagnetic theory that the square of the refractive index (n2) is the appropriate form to use in molecular descriptions of refractive indices since it is related to the dielectric tensor, having a magnitude as well as a
directional description (1,4). However, since 1.3 is known, with R — DPRU (where DP is the degree of polymerization) and M = D P M M (MM = molecular weight of the monomer unit), then the refractive index of the polymer by the Gladstone-Dale expression (Eq. B2) becomes (B3) This may be calculated only from a knowledge of the monomer unit molar refraction and molecular weight. The
use of bond or group refractions in the calculation of refractive indices of polymers has been demonstrated to be in good agreement with the measured values for homogeneous, unoriented polymers (8). C. REFRACTIVE INDICES OF HETEROGENEOUS POLYMERS For polymeric systems whose phase dimensions are below the wavelength of the incident light, the application of the Maxwell relations is valid and the refractive index of the polymer may be expressed in terms of the dielectric constants of the constituent phases (1). The dielectric constant, k, is equivalent to the square of the refractive index (k = n 2 ), and it can be demonstrated that an upper bound of the refractive index of the polymer may be obtained as the sum of dielectric constants of the constituent phases (4,5): (Cl) where m and T;/Q£ v/ = 1) are the refractive indices and volume fractions of the constituent phases of the components that make up the polymer. Similarly, the lower bound of a polymer's refractive index may be computed as the sum of the inverse of the dielectric constants of the constituent phases (4):
characterized by a single refractive index, since its optical properties will be identical in all directions. Consequently, optical anisotropy is one of the simplest and often used methods of studying orientation in polymers (5). By polarizing light in a specific direction, the refractive index of a polymer can be measured in that direction. Consequently, all three principal refractive indices of a polymer, nx, ny, n-r, corresponding to an x, y, and z direction, can be measured. For example, a refractometer fitted with a polarized eye piece has been successfully used to measure refractive indices along the major axes of polymer films (9). The average refractive indices of a polymer may be computed from the refractive indices along the axes of the polymer: (Dl) For the unoriented (isotropic) condition (nx — ny = nz), a single value of the refractive index provides a unique optical description (n = nx = ny = nz). For oriented polymers, the difference in refractive indices along two orthogonal directions can be used as the measure of optical anisotropy and, consequently, orientation of the polymer. The difference in refractive indices is defined as the birefringence or double refraction. According to Stein (5), there are three birefringences, A ,/s that may be defined for a cartesian coordinate system, with two of them being independent. They are (D2) (D3) (D4)
(C2) For most heterogeneous polymers, however, whose constituent refractive indices differ by less than 0.2, i.e., (rii — rij < 0.2), the refractive index of the polymer may be computed by the Gladstone-Dale relation, assuming additivity of the refractive indices of the constituent phases (3,4): (C3) The calculation methods described above may be used for multiphase polymers such as blends, block or graft copolymers, composites, and semicrystalline polymers.
For a polymer exhibiting transverse isotropic symmetry, as in the case of uniaxial orientation (i.e., deformation along one axis), a single birefringence is enough to characterize orientation and anisotropy. For example, for a polymer oriented uniaxially along the x direction, An^ — Anxi and Ann = O. For a fully oriented polymer, where the molecular chain axis is aligned with the deformation axis (perfect orientation) a limiting value of birefringence is reached, which is defined as the intrinsic birefringence of the polymer (10,11) and denoted as (D5)
D. OPTICAL ANISOTROPY* Small as well as long polymer molecules exhibit different refractive indices parallel and perpendicular to the molecular chain axis. Thus, all polymers should be viewed as intrinsically anisotropic. The degree of anisotropy exhibited in bulk property behavior will depend on the molecular orientation imposed by deformation during processing or testing. Only in its unoriented state can a polymer be *See also corresponding table in this Handbook.
where / is the Hermans orientation function (D6) defined on the average angle 9 that the molecular chain axis makes with the deformation axis. The Hermans orientation function (D6), - 1 / 2 < / < 1 assumes the value of - 1/2 when the molecular chain axis is perpendicular to the deformation axis; 0 for random orientation (isotropy); and - 1 for perfect alignment of the chains with the deforma-
tion axis. The use of the refractive index in the calculation of birefringence, rather than the difference of some function of the dielectric constant (n2 or 1/rc2), is an approximation to optical anisotropy. Thus, if the birefringence is used as a measure of orientation, as was proposed by Stein, form effects should be considered (5,7,11)
From Stein's equation of birefringence additivity (neglecting form birefringence) (5,11) (E3) where An^ cr and A n ^ are the crystalline and noncrystalline intrinsic birefringences, and / c r and / n c are the corresponding crystalline and noncrystalline Hermans orientation functions. If the intrinsic properties of a semicrystalline polymer are known, Eq. (E2) can be used to calculate the volume fraction crystallinity by simply measuring the polymer's refractive index, while Eq. (E3) can be used to obtain the value of the noncrystalline orientation function by measuring birefringence and crystalline orientation by an independent technique [e.g., wide angle X-ray (5)]. For a singlephase polymer like polystyrene, the orientation function can be directly calculated from the measured birefringence value and the known intrinsic birefringence:
(D7) The importance of form may be estimated from bond polarizabilities for a given polymer (4,7). Thus, to characterize completely the optical properties of a given polymer, its average refractive index as well as the intrinsic and form birefringences must be specified. To date, very few polymers have been optically characterized in such detail. However, as more refined and specific performance is demanded from polymers, this information is forthcoming. In order to demonstrate the usefulness of complete characterization and to summarize the data available till date, an example for semicrystalline polymers is provided, along with a table showing reported values (for a few polymers) of average refractive indices and intrinsic birefringences. E. APPLICATIONS Using Eq. (B2), the unoriented refractive index of a semicrystalline polymer may be calculated from a knowledge of its intrinsic crystalline and noncrystalline densities and refractive indices. First, the volume fraction crystallinity, vcr, is calculated from the densities: (El) where p is the bulk measured density, and p cr and p nc are the crystalline and noncrystalline densities. Then the average refractive index is (E2)
Once these quantities are known, it becomes possible to completely characterize and predict the optical anisotropy of a given polymer from its unoriented to its oriented state (3,4). Table 1 is provided to demonstrate that such basic optical parameters may be obtained from the literature (3,4,9,1216). The recognition of polymers as anisotropic heterogeneous systems continues to expand and their refractive indices provide useful insight into their process-structureproperty interrelations (18-20). It is hoped that continuous investigations in existing as well as new polymers will expand this compilation. Finally, Table 2 provides average refractive indices of polymers arranged in order of increasing values, while Table 3 provides the same list in alphabetical order. Some additional values from the recent literature (21-23) have been added to the earlier compilation (17) to form the material for the present edition.
TABLE 1. INTRINSIC OPTICAL PROPERTIES OF SELECTED POLYMERS
Polymer Poly(propylene) Poly(ethylene) Low orientation High orientation Poly(oxyethylene-oxyterephthaloyl) Poly(styrene)
Crystalline density (pcr) 0.936 1.000
1.455 Amorphous
Noncrystalline density (pnc) 0.850 0.855
1.335 1.06
Phase average refractive indices ncr 1.519-1.524 1.560-1.565
1.639-1.643 Amorphous
Intrinsic birefringence (xlO 3 ) nnc
1.471 1.476-1.483
1.570-1.577 1.590-1.592
An°cr
AHJJ 0
23-30 58-66
60-86
220-230 Amorphous
120 194 220-275 195
References page VI - 582
TABLE 2. AVERAGE REFRACTIVE INDICES OF POLYMERS (IN ORDER OF INCREASING n)a Polymer Poly (tetrafluoroethylene-co-hexafluoropropy lene) Poly(pentadecafluorooctyl acrylate) Poly(tetrafluoro-3-(heptafluoropropoxy)propyl acrylate) Poly(tetrafluoro-3-(pentafluoroethoxy)propyl acrylate) Poly (tetrafluoroethy lene) Poly(undecafluorohexyl acrylate) Poly(nonafluoropentyl acrylate) Poly(tetrafluoro-3-(trifluoromethoxy)propyl acrylate) Poly(pentafluorovinyl propionate) Poly(heptafluorobutyl acrylate) Poly(trifluorovinyl acetate) Poly(octafluoropentyl acrylate) PolyCpentafluoropropyl acrylate) Poly(2-heptafluorobutoxy)ethyl acrylate) Poly(2,2,3,4,4,4-hexafluorobutyl acrylate) Poly(trifluoroethyl acrylate) Poly(2~( 1,1,2,2-tetrafluoroethoxy)ethyl acrylate) Poly(trifluoroisopropyl methacrylate) Poly(2,2,2-trifluoro-1 -methylethyl methacrylate) Poly(2~trifluoroethoxy)ethyl acrylate Poly (trifluorochloroethy lene) Poly(vinylidene fluoride) Poly(oxydimethylsilylene) (poly(dimethyl siloxane)) Poly(trifluoroethyl methacrylate) Poly(oxypropylene) Poly(vinyl isobutyl ether) Poly (vinyl ethyl ether) Poly(oxyethylene) Poly(vinyl butyl ether) Poly(vinyl pentyl ether) Poly(vinyl hexyl ether) Poly(4-methyl-l-pentene) Cellulose acetate butyrate Poly(4-fluoro-2-trifluoromethylstyrene) Poly(vinyl octyl ether) Poly(vinyl-2-ethylhexyl ether) Poly(vinyl decyl ether) Poly(2-methoxyethyl acrylate) Poly(butyl acrylate) PoIy(Jer/-butyl methacrylate) Poly(vinyl dodecyl ether) Poly(3-ethoxypropyl acrylate) Poly(oxy-1 -oxopentamethylene) Poly(vinyl propionate) Poly (vinyl acetate) Poly(vinyl methyl ether) Poly(ethyl acrylate) Poly(ethylene-co-vinyl acetate) (80%-20% vinyl acetate) Cellulose propionate Cellulose acetate propionate Benzyl cellulose Phenol-formaldehyde resins Cellulose triacetate Poly(vinyl methyl ether) (isotactic) Poly(3-methoxypropyl acrylate) Poly(2-ethoxyethyl acrylate) Poly(methyl acrylate) Poly(isopropyl methacrylate) PoIy(I-decene) Poly(propylene) (atactic, density 0.8575 g/cm3) Poly(vinyl sec-butyl ether) (isotactic) Poly(dodecyl methacrylate) Poly(oxyethyleneoxysuccinoyl) (poly(ethylene succinate)) Poly(tetradecyl methacrylate)
n 1.338 1.339 1.346 1.348 1.35-1.38 1.356 1.360 1.360 1.364 1.367 1.375 1.380 1.385 1.390 1.392 1.407 1.412 1.4177 1.4185 1.419 1.42 -1.43 1.42 1.43 1.437 1.4495 1.4507 1.4540 1.4563 1.4563 1.4581 1.4591 1.459-1.465 1.46-1.49 1.46 1.4613 1.4626 1.4628 1.463 1.4631 1.466 1.4638 1.4640 1.465 1.465 1.4665 1.4665 1.467 1.4685 1.47-1.50 1.47 -1.49 1.47 1.47-1.58 1.47-1.70 1.47 -1.48 1.4700 1.471 1.471 1.472-1.480 1.4728 1.4730 1.4735 1.4740 1.4740 1.4744 1.4746
T (0C)
25 25 25 25 25 25 25 25 25 25 25 25 25 25 20 25 25
30 30 30 30 30 30
30 30 30 25 30 20 20 30 25 50 20 20 20 20
30 25 25 20 20 30 20 25 30
TABLE 2.
cont'd
Polymer Poly(ethylene-co-propylene) (EPR-rubber) Poly(hexadecyl methacrylate) Poly(vinyl formate) Poly(2-fluoroethyl methacrylate) Poly(isobutyl methacrylate) Ethyl cellulose Poly(vinyl acetal) Cellulose acetate Cellulose acetate (39.8% acetyl content) Cellulose tripropionate Poly(oxymethylene) Poly(vinyl butyral) Poly(w-hexyl methacrylate) Poly(n-butyl methacrylate) Poly(ethylidene dimethacrylate) Poly(2-ethoxyethyl methacrylate) Poly(oxyethyleneoxymaleoyl) (poly(ethylene maleate)) Poly(rt-propyl methacrylate) Poly(3,3,5-trimethylcyclohexyl methacrylate) Poly(ethyl methacrylate) Poly(2-nitro-2-methylpropyl methacrylate) Poly(triethylcarbinyl methacrylate) Poly(l,l-diethylpropyl methacrylate) Poly(methyl methacrylate) Poly(2-decyl-1,3-butadiene) Poly(vinyl alcohol) Poly(ethyl glycolate methacrylate) Poly(3-methylcyclohexyl methacrylate) Poly(cyclohexyl a-ethoxyacrylate) Methyl cellulose (low viscosity) Poly(4-methylcyclohexyl methacrylate) Poly(decamethylene glycol dimethacrylate) Poly(urethanes) Poly( 1,2-butadiene) Poly(vinyl formal) Poly(2-bromo-4-trifluoromethylstyrene) Cellulose nitrate Polype-butyl a-chloroacrylate) Poly (2-heptyl-1,3-butadiene) Poly(ethyl a-chloroacrylate) Poly(2-isopropyl-1,3-butadiene) Poly(2-methylcyclohexyl methacrylate) Poly(propylene) (density 0.9075 g/cm3) Poly(isobutene) Poly(bornyl methacrylate) Poly(2-tert-buty\-1,3-butadiene) Poly(ethylene glycol dimethacrylate) Poly(cyclohexyl methacrylate) Poly(cyclohexanediol-l,4-dimethacrylate) Butyl rubber(unvulcanized) Poly(tetrahydrofurfuryl methacrylate) Gutta percha (P) Poly(ethylene) ionomer Poly(oxyethylene) (high molecular weight) Poly(ethylene) (density 0.914 g/cm3) (density 0.94-0.945g/cm 3 ) (density 0.965g/cm3) Poly( 1 -methylcyclohexyl methacrylate) Poly(2-hydroxyethyl methacrylate) Poly(vinyl chloroacetate) Poly(butene) (isotactic) Poly(vinyl methacrylate) Poly(/V-butyl methacrylamide)
n
1.4748-1.48 1.4750 1.4757 1.4768 1.477 1.479 1.48-1.50 1.48-1.50 1.4700 1.48— 1.49 1.48 1.48-1.49 1.4813 1.483 1.4831 1.4833 1.4840 1.484 1.485 1.485 1.4868 1.4889 1.4889 1.4893 1.490 1.4899 1.49-1.53 1.5214 1.4903 1.4947 1.4969 1.497 1.4975 1.4990 1.5-1.6 1.5000 1.50 1.5 1.5-1.514 1.500 1.5000 1.502 1.5028 1.5028 1.5030 1.505-1.51 1.5059 1.5060 1.5063 1.5066 1.5067 1508 1.5096 1-509 1-51 1.51-1.54 151 1.52-1.53 1-545 1.5111 1.5119 1-512 1.5125 1.5129 1.5135
T (0C)
30 20 20 20 21 25 20 20 20-25 20 20 25 25 20 20-25 20 20 20 23 20 20.5 20 20 20 20 25 20 20 25 25 25 30 20 20 20 24.6 20 20 20 20
20 20 20 20 20 25 20 20
References page VI - 582
TABLE 2. cont'd Polymer Gutta percha (a) Terpene resin PoIy(1,3-butadiene) Shellac Poly(methyl a-chloroacrylate) Poly(2-chloroethyl methacrylate) Poly(2-diethylaminoethyl methacrylate) Poly(2-chlorocyclohexyl methacrylate) PoIy(1,3-butadiene) (35% cis; 56% trans; 7% 1,2-content) Natural rubber Poly (ally 1 methacrylate) Poly(vinyl chloride) +40% dioctyl phthalate Poly(acrylonitrile) Poly(methacrylonitrile) PoIy(1,3-butadiene) (high ds-type) Poly(butadiene-co-acrylonitrile) Poly(methyl isopropenyl ketone) Poly(isoprene) Poly(ester) resin, rigid (ca. 50% styrene) Poly((A^2-methoxyethyl)methacrylamide) Poly(2,3-dimethylbutadiene) (methyl rubber) Poly(vinyl chloride-covinyl acetate) (95/5-90/10) Poly(acrylic acid) PoIy(1,3-dichloropropyl methacrylate) Poly(2-chloro-1 -(chloromethyl)ethyl methacrylate) Poly(acrolein) PoIy(I-vinyl-2-pyrrolidone) Poly(N-methylmaleimide-<2/f-isobutene) Hydrochlorinated rubber Poly(imino(l-oxohexamethylene)) (nylon 6) Poly(iminoadipoyliminohexamethylene) (nylon 6,6) Poly(iminoadipoylimino tetramethylene) (nylon moulding 6,10) oriented fibres Poly(butadiene-co-styrene) (-30% styrene) block copolymer Poly(cyclohexyl a-chloroacrylate) Poly(2-chloroethyl a-chloroacrylate) Poly(butadiene-co-styrene) (~ 75/25) Poly(2-aminoethyl methacrylate) Poly(furfuryl methacrylate) Proteins Poly(butylmercaptyl methacrylate) PoIy(I -phenyl-/?-amyl methacrylate) PoIy(N-methyl-methacrylamide) Cellulose Poly(vinyl chloride) Urea-formaldehyde resin PolyCsec-butyl a-bromoacrylate) Poly(cyclohexyl a-bromoacrylate) Poly(2-bromoethyl methacrylate) Poly(dihydroabietic acid) Poly(abietic acid) Poly(ethylmercaptyl methacrylate) Poly(iV-allyl methacrylamide) PoIy(I-phenylethyl methacrylate) Poly(vinylfuran) Poly(2-vinyltetrahydrofuran) Poly(vinyl chloride) -f 40% tricresyl phosphate Epoxy resins Poly(p>-methoxybenzyl methacrylate) Poly(isopropyl methacrylate) Poly(/?-isopropylstyrene) Poly(chloroprene) Poly(oxyethylene)-a-benzoate-co-methacrylate) Poly(p,/7-xylylenyl dimethacrylate)
n 1.514 1.515 1.5154 1.51 1.517 1.517 1.5174 1.5179 1.5180 1.519-1.52 1.5196 1.52 1.52 1.5187 1.52 1.52 1.52 1.5200 1.521 1.523-1.54 1.5246 1.525 1.525-1.535 1.527 1.5270 1.5270 1.529 1.53 1.53 1.53-1.55 1.53 1.53 1.53 1.515 -1.565 1.53 1.532 1.533 1.535 1.537 1.5381 1.539-1.541 1.5390 1.5396 1.5398 1.54 1.54-1.55 1.54-1.56 1.542 1.542 1.5426 1.544 1.546 1.547 1.5476 1.5487 1.55 1.55 1.55 1.55-1.60 1.552 1.552 1.554 1.554-1.558 1.555 1.5559
T ( 0 C) 50 25 25 1.53 20 20 20 20
20
25
20 20 20 25 20 20
25 25 20 20 20 20
25 25 20 25 20 20 20 20 20 20 20 20 20
TABLE 2. cont'd Polymer PoIy(I-phenylallyl methacrylate) Poly(p-cyclohexylphenyl methacrylate) Poly(2-phenylethyl methacrylate) Poly(oxycarbonyloxy-1,4-phenylene-1 propylbutylidene-1,4-phenylene) PoIy(I -(o-chlorophenyl)ethyl methacrylate) Poly(styrene-co-maleic anhydride) PoIy(I-phenylcyclohexyl methacrylate) Poly(oxycarbonyloxy-1,4-phenylene-1,3~dimethylbutylidene-1,4-phenylene) Poly(methyl a-bromoacrylate) Poly(benzyl methacrylate) Poly(2-(phenylsulfonyl)ethyl methacrylate) Poly(m-cresyl methacrylate) Poly(styrene-co-acrylonitrile) ( - 75/25) Poly(oxycarbonyloxy-1,4-phenyleneisobutylidene-1,4-phenylene) Poly(o-methoxyphenyl methacrylate) Poly(phenyl methacrylate) Poly(ocresyl methacrylate) Poly(diallyl phthalate) Poly(2,3-dibromopropyl methacrylate) Poly(oxycarbonyloxy-1,4-phenylene-1 -methy 1-butylidene-1,4phenylene) Poly(oxy-2,6-dimethylphenylene) Poly(oxyethyleneoxyterephthaloyl) (amorphous) (poly(ethylene terephthalate)) Poly(vinyl benzoate) Poly(oxycarbonyloxy-1,4-phenylenebutylidene-1,4-phenylene) PoIy(1,2-diphenylethyl methacrylate) Poly(o-chlorobenzyl methacrylate) Poly(oxycarbonyloxy-1,4-phenylene-sec-butylidene-1,4-phenylene) Poly(oxypentaerythritoloxyphthaloyl) Poly(w-nitrobenzyl methacrylate) Poly(oxycarbonyloxy-1,4-phenyleneisopropylidene-1,4-phenylene) Poly(N-(2-phenylethyl)methacrylamide) Poly(4-methoxy-2-methylstyrene) Poly(o-methylstyrene) Poly(styrene) Poly(oxycarbonyloxy-1,4-phenylenecyclohexylidene-1,4-phenylene) Poly(0-methoxystyrene) Poly(diphenylmethyl methacrylate) Poly(oxycarbonyloxy-1,4-phenyleneethylidene-1,4-phenylene) Poly(p-bromophenyl methacrylate) Poly(Af-benzyl methacrylamide) Poly(p-methoxystyrene) Hard rubber (32% S) Poly(vinylidene chloride) Poly(sulfides) (Thiokol) Poly(0-chlorodiphenylmethyl methacrylate) Poly(oxycarbonyloxy-1,4-(2,6-dichloro)phenylene-isopropylidene-1,4-(2,6-dichloro)phenylene) Poly(oxycarbonyloxybis(l ,4-(3,5-dichlorophenylene))) Poly(pentachlorophenyl methacrylate) Poly(o-chlorostyrene) Poly(phenyl a-bromoacrylate) Poly(p-divinylbenzene) PoIy(N-vinylphthalimide) Poly(2,6-dichlorostyrene) Poly(P-naphthyl methacrylate) Poly(a-naphthyl carbinyl methacrylate) Poly(sulfone) Poly(2-vinylthiophene) Poly(a-naphthyl methacrylate) Poly(oxycarbonyloxy-1,4-phenylenediphenyl-methylene-1,4-phenylene) Poly(vinyl phenyl sulfide) Butylphenol formaldehyde resin Urea-thiourea-formaldehyde resin Poly(vinylnaphthalene)
n
T (0C)
1.5573 1.5575 1.5592 1.5602 1.5624 1.564 1.5645 1.5671 1.5672 1.5680 1.5682 1.5683 1.57 1.5702 1.5705 1.5706 1.5707 1.572 1.5739 1.5745
20 20 20
1.575 1.5750 1.5775 1.5792 1.5816 1.5823 1.5827 1.584 1.5845 1.5850 1.5857 1.5868 1.5874 1.59-1.592 1.5900 1.5932 1.5933 1.5937 1.5964 1 5965 1.5967 1.6 1 -60-1.63 1.6-1.7 1.6040 1.6056 1.6056 1-608 1.6098 1-612 1-6150 1-6200 1-6248 1.6298 1.63 1-633 1.6376 1.6410 1.6539 1.6568 1-66 1.660 1.6818
20 21 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 25 20 20 20 20 20 20 20 25 20 References page VI - 582
TABLE 2. confd Polymer Poly(vinylcarbazole) Naphthalene-formaldehyde resin Phenol-formaldehyde resin Poly(pentabromophenyl methacrylate)
n
T (0C)
1.683 1.696 1.70 1.71
20
Temperature in 0C are listed when available. In general, n may be assumed to decrease with increasing temperature. Approximate change may be calculated as AnIAT — - 1 x 1O~4 to 2 x 10~4/°C for glassy polymers and dn/dT— - 3 x 10~4 to 5 x 10~4/°C for amorphous unoriented polymers above the glass transition.
TABLE 3.
AVERAGE REFRACTIVE INDICES OF POLYMERS (IN ALPHABETICAL ORDER)
Polymer Benzyl cellulose Butylphenol formaldehyde resin Butyl rubber(unvulcanized) Cellulose Cellulose acetate Cellulose acetate (39.8% acetyl content) Cellulose acetate butyrate Cellulose acetate propionate Cellulose nitrate Cellulose propionate Cellulose triacetate Cellulose tripropionate Epoxy resins Ethyl cellulose Gutta percha (a) Guttapercha ((3) Hard rubber (32% S) Hydrochlorinated rubber Methyl cellulose (low viscosity) Naphthalene-formaldehyde resin Natural rubber Phenol-formaldehyde resin Phenol-formaldehyde resins Poly(abietic acid) Poly(acrolein) Poly(acrylic acid) Poly(acrylonitrile) Poly(allyl methacrylate) Poly(2-aminoethyl methacrylate) Poly(N-allyl methacrylamide) Poly(JV-benzyl methacrylamide) Poly(«-butyl methacrylate) Poly(benzyl methacrylate) Poly(bornyl methacrylate) Poly(2-bromoethyl methacrylate) Poly(p-bromophenyl methacrylate) Poly(2-bromo-4-trifluoromethylstyrene) PoIy(1,2-butadiene) Poly(l,3-butadiene) PoIy(1,3-butadiene) (high ds-type) PoIy(1,3-butadiene) (35% cis\ 56% trans; 1% 1,2-content) Poly(butadiene-co-acrylonitrile) Poly(butadiene-co-styrene) (~ 75/25) Poly(butadiene-co-styrene) ( - 30% styrene) block copolymer Poly(butene) (isotactic) Poly(butyl acrylate) Polype-butyl a-bromoacrylate) Poly(sec-butyl ot-chloroacrylate) Poly(2-terf-butyl-1,3-butadiene)
T (0C)
n 1.47-1.58 1.66 1.508 1.54 1.48-1.50 1.4700 1.46-1.49 1.47-1.48 1.5-1.514 1.47-1.49 1.47 -1.48 1.48 -1.49 1.55-1.60 1.479 1.514 1.509 1.6 1.53-1.55 1.497 1.696 1.519-1.52 1.70 1.47 -1.70 1.546 1.529 1.527 1.52 1.5187 1.5196 1.537 1.5476 1.5965 1.483 1.5680 1.5059 1.5426 1.5964 1.5 1.5000 1.5154 1.52 1.5180 1.52 1.535 1.53 1.5125 1.4631 1.466 1.542 1.500 1.5060
25
21 50
25
25 25 25 20 20 20 20 20-25 20 20 20 20 25 20 25
30 20 25 25 24.6
TABLE 3, cont'd Polymer Poly(terf-butyl methacrylate) Poly(butylmercaptyl methacrylate) Poly(N-butyl methacrylamide) Poly(ochlorobenzyl methacrylate) Poly(2-chloro-1 -(chloromethyl)ethyl methacrylate) Poly(2-chlorocyclohexyl methacrylate) Poly(0-chlorodiphenylmethyl methacrylate) Poly(2-chloroethyl a-chloroacrylate) Poly(2-chloroethyl methacrylate) PoIy(I-(o-chlorophenyl)ethyl methacrylate) Poly(chloroprene) Poly(o-chlorostyrene) Poly(m-cresyl methacrylate) Poly(0-cresyl methacrylate) Poly(cyclohexanediol-1,4-dimethacrylate) Poly(cyclohexyl a-bromoacrylate) Poly(cyclohexyl a-chloroacrylate) Poly(cyclohexyl a-ethoxyacrylate) Poly(cyclohexyl methacrylate) Poly(^-cyclohexylphenyl methacrylate) Poly(decamethylene glycol dimethacrylate) PoIy(I-decene) Poly(2-decyl-1,3-butadiene) Poly(diallyl phthalate) Poly(2,3-dibromopropyl methacrylate) Poly(l,3-dichloropropyl methacrylate) Poly(2,6-dichlorostyrene) Poly(2-diethylaminoethyl methacrylate) PoIy(1,1-diethylpropyl methacrylate) Poly(dihydroabietic acid) Poly(2,3-dimethylbutadiene) (methyl rubber) Poly( 1,2-diphenylethyl methacrylate) Poly(diphenylmethyl methacrylate) Poly(/?-divinylbenzene) Poly(dodecyl methacrylate) Poly(ester) resin, rigid (ca. 50% styrene) Poly(2-ethoxyethyl aery late) Poly(2-ethoxyethyl methacrylate) Poly(3-ethoxypropyl acrylate) Poly(ethyl acrylate) Poly(ethyl a-chloroacrylate) Poly(ethyl glycolate methacrylate) Poly(ethyl methacrylate) Poly(ethylene) (density 0.914g/cm3) (density 0.94-0.945 g/cm3) (density 0.965 g/cm3) Poly(ethylene) ionomer Poly(ethylene-a?-propylene) (EPR-rubber) Poly(ethylene-a?-vinyl acetate) (80%-20% vinyl acetate) Poly(ethylene glycol dimethacrylate) Poly(ethylidene dimethacrylate) Poly(ethylmercaptyl methacrylate) Poly(2~fluoroethyl methacrylate) Poly(4-fluoro-2-trifluorornethylstyrene) Poly(furfuryl methacrylate) Poly(2-heptafluorobutoxy)ethyl acrylate) Poly(heptafluorobutyl acrylate) Poly (2-hepty 1-1,3-butadiene) Poly(hexadecyl methacrylate) Poly(2,2,3,4,4,4-hexafluorobutyl acrylate) Poly(w-hexyl methacrylate) Poly(2-hydroxyethyl methacrylate) Poly(iminoadipoyliminohexamethylene) (nylon 6,6) Poly(iminoadipoylimino tetramethylene) (nylon moulding 6,10) oriented fibers
n
1.4638 1.5390 1.5135 1.5823 1.5270 1.5179 l .6040 1.533 1.517 1.5624 1.554 -1.558 1.6098 1.5683 1.5707 1.5067 1,542 1.532 1.4969 1.5066 1.5575 1.4990 1.4730 1.4899 1.572 1.5739 1.5270 1.6248 1.5174 1.4889 1.544 1.525 1.5816 1.5933 1.6150 1.4740 1.523-1.54 1.471 1.4833 1.465 1.4685 1.502 1.4903 1.485 1.51 1.52-1.53 1.545 1.51 1.4748-1.48 1.47-1.50 1.5063 1.4831 1.547 1.4768 1.46 1.5381 1.390 1.367 1.5000 1.4750 1.392 1.4813 1.5119 1.53 153 1.515-1.565
T (0C) 20 20 20 20 20 20 25 20 20 20 20 20 20 25 25 20 20 20 20.5 20 20 20 20 20 20 20 20 20 20 25 20 25 20 25 20 20-25 20 20 20
20 20 20 20 25 25 30 25 20 20
References page VI-5 82
TABLE 3.
coni'd
Polymer Poly(imino(l-oxohexamethylene)) (nylon 6) Poly(isobutene) Poly(isobutyl methacrylate) Poly(isoprene) Poly(2~isopropyl-1,3-butadiene) Poly(isopropyl methacrylate) Poly(/?-isopropylstyrene) Poly(methacrylonitrile) Poly(p-methoxybenzyl methacrylate) Poly(2-methoxyethyl acrylate) Poly((A^2-methoxyethyl)methacrylamide) Poly(4-methoxy-2-methylstyrene) Poly(o-methoxyphenyl methacrylate) Poly(3-methoxypropyl acrylate) Poly(o-methoxystyrene) Poly(p-methoxystyrene) Poly(methyl acrylate) Poly(rnethyl a-bromoacrylate) Poly (methyl a-chloroacrylate) Poly(methyl isopropenyl ketone) Poly(methyl methacrylate) Poly(N-methyl-methacrylamide) Pory(4-methyl-l-pentene) Poly( 1 -methylcyclohexyl methacrylate) Poly(2-methylcyclohexyl methacrylate) Poly(3-methylcyclohexyl methacrylate) Poly(4-methylcyclohexyl methacrylate) Poly(iV-methylmaleimide-alt-isobutene) Poly(o-methylstyrene) Poly(a-naphthyl carbinyl methacrylate) Poly(a-naphthyl methacrylate) Poly(p-naphthyl methacrylate) Poly(m-nitrobenzyl methacrylate) Pory(2-nitro-2-methylpropyl methacrylate) Poly(nonafluoropentyl acrylate) Poly(octafluoropentyl acrylate) Poly(oxycarbonyloxybis( 1,4-(3,5-dichlorophenylene)) Poly (oxycarbonyloxy-1,4-(2,6-dichloro)phenylene-isopropylidene-1,4-(2,6-dichloro)phenylene)) Poly(oxycarbonyloxy-1,4-phenylene-1,3-dimethylbutylidene-1,4-phenylene) Poly(oxycarbonyloxy-1,4-phenylene-1 -methyl-butylidene-1,4-phenylene) Poly(oxycarbonyloxy-1,4-phenylene-1 -propylbutylidene-1,4-phenylene) Poly (oxycarbonyloxy-1,4-phenylene-seobuty lidene-1,4-phenylene) Poly(oxycarbonyloxy-1,4-phenylenebuty lidene-1,4-phenylene) Poly(oxycarbonyloxy-1,4-phenylenecyclohexylidene-1,4-phenylene) Poly(oxycarbonyloxy-1,4-phenylenediphenyl-methylene-1,4-phenylene) Poly(oxycarbonyloxy-1,4-phenyleneethylidene-1,4-phenylene) Poly (oxycarbonyloxy-1,4-phenyleneisobutylidene-1,4-phenylene) Poly (oxycarbonyloxy-1,4-phenyleneisopropy lidene-1,4-phenylene) Poly(oxy-2,6-dimethylphenylene) Poly(oxydimethylsilylene) (poly(dimethyl siloxane)) Poly(oxyethylene) (high molecular weight) Poly(oxyethylene)-a-benzoate-co-methacrylate) Poly(oxyethyleneoxymaleoyl) (poly(ethylene maleate)) Poly(oxyethyleneoxysuccinoyl) (poly(ethylene succinate)) Poly(oxyethyleneoxyterephthaloyl) (amorphous) (polyethylene terephthalate)) Poly(oxymethylene) Poly(oxy-l-oxopentamethylene) Poly(oxypentaerythritoloxyphthaloyl) Poly(oxypropylene) Poly(pentabromophenyl methacrylate) Poly(pentachlorophenyl methacrylate) Poly(pentadecafluorooctyl acrylate)
n
1.53 1.505-1.51 1-477 1-521 15028 1.4728 1.552 1554 1-52 1552 1463 1.5246 1.5868 1.5705 1.471 1.5932 1.5967 1.472-1.480 1.5672 1.517 1.5200 1.4893 1.490 1.5398 1.459-1.465 1.5111 1.5028 1.4947 1.4975 1.53 1.5874 1.63 1.6410 1.6298 1.5845 1.4868 1.360 1.380 1.6056 1.6056 1.5671 1.5745 1.5602 1.5 827 1.5792 1.5900 1.6539 1.5937 1.5702 1.5850 1.575 1.43 1.4563 1.51-1.54 1.555 1.4840 1.4744 1.5750 1.48 1.465 1.584 1.4495 1.71 1.608 1.339
T
(° c )
20 20 30 20 20 20 25 20 20 20 25 20 20 20 20 20 23 20 20 20 20 20 20 20 20 20 20 20 25 25
20
30 20 25 25 20 20 50 20 20 25
TABLE 3.
cont'd
Polymer Poly(pentafluoropropyl acrylate) Poly(pentafluorovinyl propionate) PoIy(I -phenyl-«-amyl methacrylate) Poly(phenyl ot-bromoacrylate) Poly(phenyl methacrylate) PoIy(I-phenylallyl methacrylate) PoIy(I-phenylcyclohexyl methacrylate) Poly(l-phenylethyl methacrylate) Poly(2-phenyiethyl methacrylate) Poly(Ar-(2-phenyIethyi)methacrylamide) Poly(2-(phenylsulfonyl)ethyl methacrylate) Poly(n-propyl methacrylate) Poly(propylene) (density 0.9075 g/cm3) Poly(propylene) (atactic, density 0.8575g/cm3) Poly(styrene) Poly(styrene-co-acrylonitriie) ( - 75/25) Poly(styrene-co-maleic anhydride) Poly(sulfides) (Thiokol) Poly(sulfone) Poly(tetradecyl methacrylate) Poly(tetrafluoro-3-(heptafluoropropoxy)propyl acrylate) Poly(tetrafluoro-3-(pentafluoroethoxy)propyl acrylate) Poly(tetrafluoro-3-(trifluoromethoxy)propyl acrylate) Poly (2-( 1,1,2,2-tetrafluoroethoxy )ethy 1 acrylate) Poly(tetrafluoroethylene) Poly(tetrafluoroethylene-co-hexafluoropropylene) Poly(tetrahydrofurfuryl methacrylate) Poly(triethylcarbinyl methacrylate) Poly(2,2,2-trifluoro-1 -methylethyl methacrylate) Poly(trifluorochloroethylene) Poly(2-trifluoroethoxy)ethyl acrylate) Poly(trifluoroethyl acrylate) Poly(trifluoroethyl methacrylate) Poly(trifluoroisopropyl methacrylate) Poly(trifluorovinyl acetate) Poly(3,3,5-trimethylcyclohexyl methacrylate) Poly(undecafluorohexyl acrylate) Poly(urethanes) Poly(vinyl acetal) Poly(vinyl acetate) Poly(vinyl alcohol)
n
j (0C)
1.385 1.364 1.5396 1.612 1.5706 1.5573 1.5645 1.5487 1.5592 1.5857 1.5682 1.484 1.5030 1.4735 1.59-1.592 1.57 1.564 1.6-1.7 1.633 1.4746 1.346 1.348 1.360 1.412 1.35(- 138) 1.338 1.5096 1.4889 1.4185 1.42-1.43 1.419 1.407 1.437 1.4177 1.375 1.485 1.356 1.5-1.6 1.48-1.50 1.4665 1.49-1.53 1.5214 1.5775 1.4563 1.4740 1.48-1.49 1 -54-1.55 1.52 155 1.525-1.535 1.512 1.4628 1.4640 1.4540 1.4626 1.50 14757 14591 1.4507 1.5129 1.467 1.4700
20 30 30 20 20 30
Poly(vinyl octyl ether)
1.4613
30
Poly(vinyl pentyl ether) Poly(vinyl phenyl sulfide)
1-4581 1-6568
30 20
Poly(vinyl benzoate) Poly(vinyl butyl ether) Poly(vinyl sec-butyl ether) (isotactic) Poly (vinyl butyral) Poly(vinyl chloride) Poly(vinyl chloride) 4-40% dioctyl phthalate Poly(vinyl chloride) +40% tricresyl phosphate Poly(vinyl chloride-co-vinyl acetate) (95/5-90/10) Poly (vinyl chloroacetate) Poly(vinyl decyl ether) Poly(vinyl dodecyl ether) Poly(vinyl ethyl ether) Poly(vinyl-2-ethylhexyl ether) Poly(vinyl formal) Poly(vinyl formate) Poly(vinyl hexyl ether) Poly(vinyl isobutyl ether) Poly(vinyl methacrylate) Poly(vinyl methyl ether) Poly(vinyl methyl ether) (isotactic)
25 25 20 25 20 20 20 20 20 20 25 20 20 20 21 30 25 25 25 25 20 20 25 25 20 25 20
20 20 20 30 30
25 30 30 30 30
References page VI-582
TABLE 3. cont'd Polymer Poly(vinyl propionate) Poly(vinylcarbazole) Poly(vinylfuran) Poly(vinylidene chloride) Poly(vinylidene Poly(vinylnaphthalene) PoIy(I -vinyl-2-pyrrolidone) PoIy(N- vinylphthalimide) Poly(2- vinyltetrahydrofuran) Poly(2-vinylthiophene) Proteins Shellac Terpene resin Urea-formaldehyde resin Urea-thiourea-formaldehyde resin Poly(p,p-xylylenyl dimethacrylate)
fluoride)
n
T (0C)
1.4665 1.683 1.55 1.60-1.63 1.42 1.6818 1.53 1.6200 1.55 1.6376 1.539-1.541 1.51-1.53 1.515 1.54-1.56 1.660 1.5559
20 20 20 25 20 20 20 20
25 25 20
F. REFERENCES 1. J. R. Partington, "An Advanced Treatise of Physical Chemistry: Physico-Chemical Optics", vol. IV, Longmans, Green and Co., London, 1960. 2. J. F. Nye, "Physical Properties of Crystals", Oxford University Press, London, 1960. 3. J. C. Seferis, R. J. Samuels, Polym. Eng. ScL, 19, 975 (1979). 4. A. R. Wedgewood, J. C. Seferis, Polym. Eng. ScL, 24, 328 (1984). 5. R. S. Stein, G. L. Wilkes, in: I. M. Ward, (Ed.) "Structure and Properties of Oriented Polymers", Wiley, New York, 1975. 6. K. G. Denbigh, Trans. Faraday Soc, 36, 936 (1940). 7. R. L. Rowell, R. S. Stein, J. Chem. Phys., 47, 2985 (1967). 8. D. W. Krevelen, "Properties of Polymers - Part III: Properties of Polymers in Fields of Force", 3rd ed., Elsevier, New York, 1990. 9. R. J. Samuels, J. Appl. Polym. ScL, 26, 1383 (1981). 10. P. H. Hermans, "Contribution to the Physics of Cellulose Fibers", Elsevier, New York, 1946. 11. R. S. Stein, J. Polym. Sci. A-2, 7, 1021 (1969).
12. A. J. deVries, C. Bonnebat, J. Polym. Sci., Polym. Symp., 58, 109 (1977). 13. A. J. deVries, Pure Appl. Chem., 53, 1011 (1981). 14. R. S. Stein, J. Appl. Phys., 32, 1280 (1961). 15. G. W. Shael, J. Appl. Polym. Sci., 8, 2717 (1964). 16. G. W. Shael, J. Appl. Polym. Sci., 12, 903 (1968). 17. J. C. Seferis, in: J. Brandrup, E. H. Immergut (Eds.), "Polymer Handbook", 3rd ed., Wiley, New York, 1989, p. VI/451. 18. C. Y. Cha, R. J. Samuels, J. Polym. Sci. B: Polym. Phys, 33, 259(1995). 19. S. S. Hardaker, R. J. Samuels, J. Polym. Sci. B: Polym. Phys., 35, 777 (1997). 20. C. Cha, R. Samuels, S. Hardaker, R. Gregory, Synthetic metals, 84, 743 (1997). 21. S. Hayashi, K. Asada, S. Hovike, H. Furahata, T. Hirai, J. Colloid Interface Sci., 176, 370 (1995). 22. D. F. Stamatialis, M. Wessling, M. Sanopoulou, H. Strathmann, J. H. Petropoulos, J. Membrane Sci, 130, 75 (1997). 23. T. Doi, S. Yukioka, H. Inoue, A. Akimoto, J. Appl. Pol. Sci, 63, 925 (1997).
Radiation
Resistance
and
of
Plastics
Elastomers
Tadao Seguchi, Yosuke Morita Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI), Takasaki, Gunma 370-12, Japan
A. Introduction 1. General Comments 2. Criterion for Radiation Resistance 3. Factors of Influence and their Consideration in Tables 3.1. Type of Polymer and Formulation 3.2. Type of Radiation and Dosimetry 3.3. Dose Rate and the Atmosphere 3.4. Temperature 3.5. Other Stresses B. List of Symbols Used C. Tables of Radiation Resistance Table 1. Thermoplastics Table 2. Elastomers Table 3. Aromatic Polymers Table 4. Organic Composite Materials D. References A.
INTRODUCTION
1.
General Comments
VI-583 VI-583 VI-583 VI-583 VI-583 VI-584 VI-584 VI-584 VI-584 VI-584 VI-585 VI-585 VI-586 VI-587 VI-588 VI-588
The data on radiation resistance have been compiled mainly for practical polymer materials that have been classified into four groups: thermoplastics, elastomers, all aromatic polymers, and composite materials. The values of radiation resistance were determined by the change in mechanical properties. Radiation-induced degradation of polymer materials depends greatly on the irradiation conditions, as indicated in the tables; hence, the reader is advised to use these data with caution, considering all the factors. 2. Criterion for Radiation Resistance Radiation resistance is characterized by the half-value-dose of significant changes in mechanical properties. For
elastomers and thermoplastics, with large ultimate elongation by tensile test, the resistance is characterized by 100%
elongation at break. The half-value-dose means the absorbed dose that reduces a property to 50% of its initial value under defined environments. The SI unit gray (Gy; 1 Gy = 1 J/kg = 100 rad) is used, and values in tables are in units of MGy (106 Gy) when there is no notation. In cases where the absorbed dose in the experiment was terminated before reaching the criterion, the dose is given with the sign The properties can be affected differently, therefore more than one relevant property should be considered. In most cases, the properties used to characterize radiation resistance are the elongation at break for elastomers and flexible plastics, and the flexural strength for rigid plastics and composite materials. However, the elongation at break sometimes increases with elastomers deterioration, but in that case, the strength decreases greatly. 3. Factors of Influence and their Consideration in Tables Radiation resistance depends on polymer formulation as well as on the conditions of radiation exposure, such as the environmental atmosphere, temperature, dose rate, mechanical stress, etc. The most effective factor is the oxidation induced by radiation. Radiation resistance is indicated in two categories, with and without oxidation, together with the irradiation conditions employed. 3.1. Type of Polymer and Formulation The polymer samples reported were generally formulated by mixing with chemical agents, such as of stabilizers and fillers. Elastomers were normally crosslinked. The formulation and/or crosslinking have many variations for a given type of polymer. The formulation is determined by the suppliers based on the application (which may need, improve the mechanical or thermal properties), and the contents are usually not disclosed. Radiation resistance is influenced by formulation and crosslinking. In general, radiation resistance can be increased with inorganic fillers, with good
adhesion between the polymer and reinforcing fillers, with
antioxidants, and with aromatic compounds. Organic fillers usually decrease radiation resistance. Some of the aromatic polymers reported may contain fillers of glass or carbon fibers. The first column of the tables give the polymer name, along with the formulation or cross-linking. The second column gives the form of the test sample: either sheets (formed by heat press) or films (formed by extrusion or inflation), and their thickness (in mm). 3.2. Type of Radiation and Dosimetry The overall radiation effect does not depend on the type of radiation (such as X rays, gamma rays, electron beams, nuclear reactor irradiation, or other accelerated particle radiation), but only on the absorbed dose. There are some uncertainties about the given dose, especially to different types of radiation. In the following tables, the accuracy of the dose is estimated to be ±10% for gamma-rays and ±20% for electron beams or accelerated particles. 3.3. Dose Rate and the Atmosphere In an inert gas atmosphere or under vacuum, the dependence of dose rate on polymeric degradation is negligible at ambient temperature (1). If the other stresses, such as thermal degradation or light exposure, are eliminated during irradiation, the degradation should depend on the accumulated dose. If oxygen is present, the induced oxidation will decrease radiation resistance. The overall oxidation is determined by the rate of oxygen consumption by radiation-induced oxidation in the polymer matrix, and by the rate of oxygen supply into the matrix. The thickness of the polymer oxidation layer (L0x) is a function of radiation dose rate (I), oxygen partial pressure (P 02 ) a t o n e atmosphere total pressure, oxygen permeability coefficient (Pc) into the polymer matrix, and oxygen consumption factor ($), and is
B.
given by the following equation. (Ref. 2,3). (i) When the test material is a thick sheet, the oxidation layer occurs only at the surface, and the inside is not oxidized. The oxidation layer increases with decreasing dose rate. For most polymers, the degradation is more progressive with oxidation than without it. The dose rate affects the ratio of oxidation layer to material thickness. The degradation with oxidation can be observed by irradiation of a thin film; here, oxidation proceeds throughout the film. Oxidation throughout a thick film requires irradiation with oxygen under pressure rather than decreasing the dose rate (4). In the following tables, radiation resistance with oxidation implies that oxidation takes place throughout the material. The other dose-rate dependent degradation, chainreaction oxidation, has been reported at low dose-rate irradiations over long time periods. We believe that it is difficult to distinguish these chain reactions from thermal oxidation. In the tables, the data for very low dose rate have been excluded.
3.4. Temperature The irradiation temperature is ambient temperature, i.e. about 2 0 - 3 0 0 C . The data for lowtemperature irradiation is listed for few materials. Several experiments performed at higher irradiation temperatures are also listed. As the resistance depends on irradiation temperature, it is supposed that chemical reactions increase greatly due to the increased molecular motions during irradiation.
3.5. Other Stresses The tables do not consider mechanical stress and deformation during irradiation. These factors can have a large influence on degradation.
LIST OF SYMBOLS USED
a a 1/2 e e i/2 £100% aF crFi/2 IL IL1/2 7
Tensile strength at break (ultimate strength) Half of tensile strength at break Elongation at break (ultimate elongation) Half of elongation at break 100% of elongation at break Flexural strength Half of flexural strength Inter Lamella Shear Strength (ILSS) Half of ILSS 60 Co- 7-rays
EB n H+ RT Vac Air He N2 O2
Electron beams, ( ) energy Neutron, ( ) energy Proton, ( ) energy Room temperature Vaccum (including seal after vacuum) Air atmosphere Helium-gas atmosphere Nitrogen-gas atmosphere Oxygen gas, ( ) indicates pressure
C.
TABLES OF RADIATION RESISTANCE
TABLE 1.
THERMOPLASTICS Radiation resistance Property
Polymer
Form
Initial value
Poly(ethylene) low-density (LDPE), non formulated low-density (LDPE), non formulted cross-linked (XLPE), formulated, cable insulator
Sheet, 1 mm
r r : 18MPa c : 500%
Film, 0.1 mm
UHMW-PE (ultra high molecular weight-PE) Poly(propylene) (PP), isotactic PP
Fiber, 0.011 mm (p
a: £: a: £: a: e: a:
Sheet, 1 mm Tube, 5 mm 4>
Sheet, 0.5 mm Film, 0.1 mm
Poly(vinyl chloride) (PVC), formulated Poly(vinyl chloride) (PVC), cable jacket Poly (12-aminolauric acid), Nylon-12 Poly (8-caprolactam), Nylon-6 Poly(ethyleneterephthalate) (PET)
a- : 32 MPa S : 210% ۥ: 1200%
S-l/2 £
ioo%
^
1/2
£
100%
£ ioo%, £
100%
Dose (MGy)
a: 28MPa e : 370% Tube, a : 20MPa OD 18 mm 0 e : 190% 1.8 mm t Sheet, 0.5 mm o-: 80MPa c : 430% Sheet, 0.5 mm CT: 130MPa c : 400% Film, 0.1 mm a: 220MPa £ : 75% Film, 0.075 mm Sheet, 3 mm
Poly(styrene) (PS), atactic PS Poly(styrene) (PS), syndiotactic PS Poly(tetrafluoroethylene) (PTFE)
Sheet, 0.5 mm
Cross-linked PTFE (XL-PTFE) Poly(vinylidene fluoride) (PVDF)
Sheet, 0.5 mm
a : 280 MPa £ : 30% <7F: !30MPa
£" 100% E
100%
£ KX)1X. ff|/2 £
KX)%
*l/2
""Fl/2
CT: 60MPa
Sheet, 0.5 mm
cr : 60MPa
Sheet, 0.5 mm
0 • 55 MPa £ : 400%
0" 1/2
0*1/2 £
100%
^ 100%
CT : 25MPa £ : 270%
Sheet, I mm
a
!/2
£
100%
O" 1/2 £• 100%
Film, 0.1 mm Film, 0.1 mm
a: £: cr: £:
HOMPa 800% 65MPa 650%
^t/2 £
100%,
£
100%
Irradiation conditions
With oxidation
Refs.
>1.5 >1.5
Y, RT, vac, 5 kGy/h
5
>2 2.0 3 3 1.0 0.8
EB (2MeV), RT, vac, 2.5kGy/s or H+(8MeV), RT, vac, 0.7kGy/s Y, RT, vac, 6 kGy/h
6 7
Y, RT, air, 10 kGy/h
8
0.5 0.04 0.02
Sheet, 1.0 mm
Poly(ethylene), 2,6naphthalate (PEN) Poly(methylmethacrylate) (PMMA)
Poly(ethylenetetrafluoro ethylenectf-polymer) (ETFE), Tefzel"'
45 MPa 800% 17MPa 500% 20MPa 700% 3.7GPa
Criterions
Without oxidation (surface oxidation)
1.7 > 1.4 !.0 >3 2.3 >3 >3 2.5 1.8 2.5 42 12 0.15 1.5
Y, RT, vac, 10 kGy/h
10
EB (2MeV), RT, vac, 2.5kGy/s or H + (8MeV), RT, vac, 0.7kGy/s Y, RT, vac, 6 kGy/h
6 7
Y, RT, air, 10 kGy/h
8
Y, RT, vac, 5 kGy/h
11
Y, RT, vac, 5 kGy/h
Il
Y, RT, vac, 10 kGy/h
12
h
H (8 MeV), RT, vac, 0.7kGy/s Y, RT, vac, 10 kGy/h
Y, RT, vac, 10 kGy/h Y, 7 7 K 1 N 2 , 30kGy/h H +(30, 45MeV), RT, vac, 30Gy/s >10 Y, RT, vac, 10 kGy/h 2 CT, 8O0C, vac, 10 kGy/h >30 Y, RT, vac, 10 kGy/h 10-20 Y, 8O0C, vac, 10 kGy/h 0.0035 Y, RT, vac, 10 kGy/h 0.015 0.1 Y, 77 K, N 2 , 30kGy/h 2.0 Y, RT, vac, lOGy/h 1.2 1.0 Y, RT, air, lOGy/h 0.3 H+(8 MeV), RT, vac, 0.4 0.6 0.7kGy/s >2.5 EB (2MeV), RT, vac, 2.5kGy/s or 2.5 H + (8MeV), RT, vac, 0.7kGy/s
6 12
Dose (MGy)
Irradiation condition
Refs.
Remarks
0.25 0.4
7, RT, O 2 (1.0 MPa), 5 kGy/h
5
1.0 2.6 0.4 0.4 0.1-0.2
Y, RT, O 2 (0.4MPa), 6kGy/h
7
Y, RX O 2 (1.0 MPa), 2.8kGy/h or air, 50Gy/h Y, RT, O 2 (0.03MPa), lOkGy/h
8
0.15
Y, RT, O 2 (O.I MPa), lOkGy/h
10
0.3 0.5 0.6 O.I
Y, RT, O 2 (0.4MPa), 6kGy/h
7
Y, RT, O 2 ( 1 MPa), 2.8kGy/h, or air, 50~Gy/h
8
0.15 0.(8 0.06 0.07 1.8 1.4
Y, RT, O 2 (0.7MPa), 1.2 kGy/h
11
Y, RT. O 2 (0.7MPa), 1.2kGy/h
11
Y, RT, air, 8.5 kGy/h, or O 2 (2MPa). 8.5 kGy/h
12
7.8 4.5
Y, RT, O 2 (0.6MPa), 8.5 kGy/h
12
0.0015 0.002
Y, RT, air, 10 kGy/h
16
In air, oxidation proceeds throughout sheet
0.45 0.25 0.6 0.2
Y, RT, air, 10 kGy/h
16
In air, oxidation proceeds throughout sheet
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
9
Low dose rate in air has the same effect as high dose rate in O 2 under pressure Inner part is not oxidized by oxygen under pressure Oxidation proceeds throughout film in air at a relatively high dose rate Cross-linking under vacuum irradiation
13 14 15 15 15 15 16 13 16 17 6 6
References page VI-588
TABLE 2.
ELASTOMERS Radiation resistance
Polymer
Initial value
Form
Ethyl acrylate rubber Sheet, I mm formulated, commercial Chlorosulphonated Sheet, I mm polyethylene (Hypalon'*') formulated Chlorosulphonated Tube, 20 mm 0 polyethylene (Hypalon"') 2 mm t cable jacket Ethylene-propyleneSheet, 1 mm copolymer (EPR) formulated, commercial Ethylene-propylene-terSheet, I mm polymer (EPDM) formulated, commercial Tube, 5 mm <j) Cable insulator Ethylene-vinylacetateSheet, 1 mm rubber (EVM or EVA) formulated, commercial Film, 0.1 mm Poly(vinylidene fluoride- Sheet, co-hexaftuoropropylene) (Viton"1') commercial Poly(tetrafluoroethyleneSheet, c-propylene) (Aflus") commercial Poly-(as-isoprene) (Natural Sheet, rubber) formulated, commercial Poly(butadiene-coSheet, acrylonitrile) (Nitrile/ butadiene rubber), formulated, commercial Pol y (isobutene-cflSheet, isoprene) (Butyl rubber) formulated, commercial Silicone rubber (Q) Sheet, di-methylsilicone, commercial Silicone rubber Sheet, di-methyl silicone/ phenyl silicone (30 phr), commercial Poly(butadiene-a;-styrene) Sheet, (styrene-butadiene rubber (SBR), commercial Polyurethane rubber Sheet, (AU), commercial Polyurethane-polyester, Sheet, commercial
1 mm 1 mm
a : 11 MPa e : 270% a: 21MPa € : 390%
^7 1/2
G : 12MPa E : 800% a : 8.5 MPa e : 590% a : I I MPa e : 270% a : 30MPa e: 110% a : MPa
^1/2
a : MPa
£ 100% O" 1/2 £ 100% ^1/2 £ 100%
£100%
£ 100%
%
1 mm
(T-. 22MPa e : 580%
1 mm
a: 17MPa e : 670%
1 mm
o-. MPa e: %
1 mm
a: MPa e :%
1 mm
a: MPa e: %
O - I/2
c 1/2
E
1 mm
a: MPa
100%
°"l/2 £ !00% 0"l/2 £100% ^ 1/2 ^ 100%
a: 19 MPa e € : 420% 100% 1 -3 mm a : 35-60 MPa O" I/2 £ : 600% £ 100%
Irradiation conditions
Refs.
Dose (MGy)
Irradiation conditions
17
Y, RT, O 2 (0.5MPa), 5kGy/h
17
17
Y, RT, air, 10 kGy/h
17
1.2 0.6
>2 1.5
Y, RT, air, 10 kGy/h
8
>2 1.5
Y, RT, air, 50 Gy/h, or O 2 (I-OMPa), 2.8kGy/h
3 1.0
Y, RT, air, 10 kGy/h
17
3 >2
Y, RT, O 2 (0.5MPa), 5 kGy/h
>1.5 >1.5 >10
Y, RT, air, 10 kGy/h
17
>l.5 >l.5
Y, RT, O 2 (0.5MPa), 5 kGy/h
1.5 >3 >2.5 2.5 0.7 0.8
Y, RT, air, 10 kGy/h
17
>3 >3
>3 0.5
Y, RT, air, 10 kGy/h
1.0 2.5
1.0 >3 1.0
'
Refs.
Y, RT, O 2 (0.5MPa), 5kGy/h
Y, RT, air, 10 kGy/h
O" 1/2 £ 100% ^1/2
a: 12MPa e : 520%
ۥ:
1 mm
Dose (MGy)
Criterion
a : 11 MPa c : 270%
With oxidation
Without oxidation (surface oxidation)
Property
8 17
17
Y, RT, air, 10 kGy/h
EB (2 MeV), RT, vac, 2.5 kGy/s or 6 H+(8MeV), RT, vac, 0.7 kGy/s Y, RT, air, 10 kGy/h 17
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
Remarks Oxidation proceeds throughout in Oo under pressure Oxidation proceeds throughout in O2 under pressure Oxidation proceeds throughout at very low dose rate or in O2 under pressure In O 2 oxidation proceeds throughout sheet Oxidation is only on the surface at high dose rate, and proceeds throughout sheet in O 2 under pressure Same as above
0.3 0.3
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
Same as above
17
O.I 1.5
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
Same as above
Y, RT, air, 10 kGy/h
17
0.3 0.7
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
Same as above
2.5 1.5
Y, RT, air, 10 kGy/h
17
2.5
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
Same as above
0.06 0.25
Y, RT, air, 10 kGy/h
17
0.06 0.2
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
Same as above
0.8 0.5
Y, RT, air, 10 kGy/h
17
1.2 0.8
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
Same as above
2.5 >3
Y, RT1 air, IO kGy/h
17
2.3 2.3
Y, RT 1 O 2 (0.5MPa), 5 kGy/h
>3
Y, RT, air, IO kGy/h
17
1.2 0.7
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
Same as above
17
0.4 3 0.2 >0.5
Y, RT, O 2 (0.5MPa), 5 kGy/h
17
Same as above
18
Same as above
1.4 Y, RT, air, 10 kGy/h 3.0 0.5-1.0 Reactor, RT, air, 200 kGy/h 3-5
18
X-rays, RT, air, 100 kGy/h
Same as above
TABLE 3.
AROMATIC POLYMERS Radiation resistance Property
Polymer
Form
Initial value
Poly(phenyl-amide), Nomex "' Poly-arylene-ether-nitrile, BEK"11 (Idemitsu Kosan)
Film, 0.05 mm
Poly(ether-ether-ketone) (PEEK) amorphous
Film, 0.125 mm a: 135MPa £-.210% Film, 0.050 mm a: 120MPa e : 220% Film, 0.125 mm a: 190MPa £ : 190% Film, 0.050 mm (j: 105MPa e . 240% Film, 0.05 mm a: 140MPa £ : 160% Film, 0.i25mm O-: 240MPa £ : 90% Film, 0.05 mm a: 240MPa e: 90-120% Film, 0.125 mm a: 260MPa £ : 130-100% Film, 0.05 mm a: 320MPa e: 100%
Poly(ether-ether-ketone) (PEEK) crystalline Poly(ether-ether-imide), ULTEM"1"1 Poly(imide), Kapton"1'
Poly(imide), Upilex-R"
Poly(imide), Upilex-S"
Poly(imide), Thermo-plastics, Regulus1*' Pol y (ethersu If one), (PES)
Sheet, 2 mm
a: 100 MPa £ : 9% a-: 82 MPa £:21% CTF • 107MPa
Film, 0.125 mm CT : 390MPa £ : 30-50% Film, 0.05 mm a: 38OMPa £ : 36% Film, 0.100 mm a: 120MPa £ : 110% Sheet, 2 mm a : 78 MPa £ : 60% Film, 0.10 mm a : 85 MPa £ : 190%
Criterion
£./2 0*1/2 *l/2 ^F/2
£|/2 0"I/2 £l/2
C 1/2 ei/2 °"l/2 O" 1/2 O" !/2 17
1/2
£|/2 O" I/2 °"l/2 £./2 O" I/2 £|/2 £t/2
e»/2 O" 1/2
Without oxidation (surface oxidation)
Dose (MGy)
Irradiation conditions
With oxidation
Refs.
15 10 370 200 >370
7, RT, air, 10 kGy/h
19
Reactor, RT, air, 750 kGy/h
20
>300 100 >300 125 >300 85 >300 45 165 15 >300 140
EB (2MeV), RT, He, 6.4kGy/s
21
7, RT, N 2 , 16kGy/h
22
EB (2MeV), RT, He, 6.4kGy/s
21
7, RT, N 2 , 16 kGy/h
22
7, RT, N 2 , 16 kGy/h
22
EB (2MeV), RT, He, 6.4kGy/s
21
7, RT 5 N 2 , 16 kGy/h
22
EB (2MeV), RT, He, 6.4kGy/s
21
7, RT, N 2 , 16 kGy/h
22
160 >300 60 >300 180 >300 >300 >300 230 >300 70 > 120 90 >2 1
EB (2MeV), RT, He, 6.4kGy/s
21
7, RT, N 2 , 16kGy/h
22
EB (2MeV), RT, He, 6.4kGy/s
21
EB (2 MeV), RT, air, 5kGy/s
24
EB (2MeV), RT, vac, 2.5kGy/s
Dose (MGy) 6 3
Irradiation conditions 7, RT, O 2 (0.5 MPa), 5 kGy/h
Refs.
19
Remarks
Oxidation of surface in air irradiation Dose in reactor irradiation: 95% 7-rays and 5% neutron; temperature of material is estimated to be heated up to 1000C or more
10 >IO 20 8 10 12 5 12 5 12 3 7 3 >20 20 36 30 60 40
7, RT, O 2 (0.5MPa), 5 kGy/h
19
7, RT, air, 16 kGy/h
22
7, RT, O 2 (0.5MPa), 5 kGy/h
19
7, RT, air, 16 kGy/h
22
7, RT, air, 16 kGy/h
22
7, RT, O 2 (0.7MPa), 5 kGy/h 7, RT, O 2 (0.6MPa), 5 kGy/h
23 22
7, RT, O 2 (0.7 MPa), 5 kGy/h
19
7, RT, air, 16 kGy/h
22
Inner part is not oxidized in air irradiation
7, RT, air, 16 kGy/h
22
inner part is not oxidized in air irradiation
Inner part is not oxidized in air at high dose-rate
6
References page VI-588
TABLE 4. ORGANIC COMPOSITE MATERIALS0 Property Polymer GFRP(epoxy resin), G-IOCR8
Form
Initial value
Sheet, 2 m m
oF : 600MPa
Criterion aFl/2 £TF1/2 <7Fi/2
Dose (MGy)
Sheet, 2 mm
aF : 630MPa
GFRP(epoxy resin), (TGDDM/DDM), Vf: 40%
Sheet, 2mm
aF : 0.5-.7GPa a F I / 2 IL: 50MPa IL 1 / 2
GFRP(epoxy resin), M50J/2500 1 GFRP(silicon resin)
Sheet, 2 mm
aF : 0.8GPa IL: 60MPa Sheet, 4-6mm aF : 1.5GPa
aFif2 IL 1 / 2 crF1/2
GFRP(polyester), Vf: 40% GFRP(Kerimide) CFRP(epoxy resin), T300/3601, IM-6/R63763 CFRP(PEEK), T6142/PEEK CFRP(polyimide), T8OOH/PMR-15^ AFRP(epoxy resin), Kevlar 49/DGEBA, (FiBRA) 5 AFRP(epoxy resin), Kevlar 49/TGDDM/StO, (New FiBRA) 1
Sheet, 4-6mm aF : 2-3GPa
aF{/2
10-50
Sheet, 4 - 6 mm aF : 5GPa Sheet, 2 mm aF : 2.0GPa
aF1/2 aF[/2
Sheet, 2mm
cr F i /2
a
Sheet, 2 mm
aF : 1.2GPa IL: 80MPa Fabric rod, a : 1.6GPa 3 - 2 0 mm <j> aF : 150MPa IL: 53MPa Fabric rod, 0 : 1.6GPa 3-20mm <j) oF : 150MPa IL: 45MPa
aF1/2 IL J / 2 a: 90% crF1/2 ILl/2 a : 90% <7Fl/2 IL 1 / 2
Irradiation conditions
2 7, RT, N 2 , lOkGy/h 25 7 , 7 7 K , N 2 , 30kGy/h 2 H+ C 3 0 ' 45MeV), RT, vac, 5 kGy/h 40 7, RT, air, 10kGy/h
GFRP(epoxv resin), G-IlCR*
aF : 700MPa
aF1/2 cTpt/2
Radiation resistance without oxidation (surface oxidation) Refs.
Remarks
13
aF -. 1.2GPa at 77 K
14
H + was irradiated by beam scanning throughout sheet aF : 1.2GPa at 77 K In air, oxidation is limited only to the surface layer in air at high dose-rate aF : 1.2GPa at 77K In air, oxidation is limited only to the surface layer in air at high dose-rate Same as above
25
>120 70-90
EB (2MeV), RT, air, 5kGy/s
26
>60 >60 50
EB (2 MeV), RT, air, 5 kGy/s
27
Reactor, RT, air, l-2MGy/h
28
Reactor, RT, air, l-2MGy/h
28
In air oxidation is limited only to the surface layer in air at high dose-rate Same as above
80 Reactor, RT, air, 1-2 MGy/h > 120 EB (2 MeV), RT, air, 5 kGy/s
28 29
Same as above Same as above
> 120 EB (2MeV), RT, air, 5kGy/s
30
Same as above
>60 EB (2MeV), RT, air, 5 kGy/s >60 5 EB (2MeV), RT, air, 5kGy/h 30 60 >1205 EB (2 MeV), RT, air, 5 kGy/h > 120 >120
27
Same as above
31
Same as above
31
Same as above
GFRP: Glass fiber reinforced plastic; CFRP: Carbon fiber reinforced plastic; ARFP: Aramid fiber reinforced plastic.
D.
REFERENCES
1. Y. Haruyama, Y. Morita, T. Seguchi, T. Tanaka, T. Kanazawa, K. Yotsumoto, K. Yoshida, Report of Japan Atomic Energy Research Institute, JAERI-M 88-197 (1988). 2. T. Seguchi, S. Hashimoto, K. Arakawa, N. Hayakawa, W. Kawakami, I. Kuriyama, Radiat. Phys. Chem., 17, 195 (1981). 3. H. Kashiwabara, T. Seguchi, Ch. 11 in: A. Singh, J. Siverman (Eds.), "Radiation Processing of Polymers", Hanser Publishers, 1991. 4. T. Seguchi, K. Arakawa, N. Hayakawa, S. Machi, Radiat. Phys. Chem., 18, 671 (1981). 5. T. Seguchi, K. Arakawa, M. Ito, N. Hayakawa, S. Machi, Radiat. Phys. Chem., 21, 495 (1983). 6. T. Sasuga, S. Kawanishi, T. Seguchi, I. Kohno, Polymer, 30, 2054 (1989). 7. M. Sugiyama, M. Nitta, T. Yagi, T. Seguchi, Inst. Elect. Eng. Japan, Papers of Technical Meeting on Electrical Insulating Materials, DEI-94-88 (1994). 8. T. Seguchi, K. Yoshida, Inst. Elect. Eng. Japan, Papers of Technical Meeting on Electrical Insulating Materials, EIM-82-113 (1982). 9. Y Izumi, M. Nishii, T. Seguchi, K. Ema, T. Yamamoto, Radiat. Phys. Chem., 37, 213 (1991).
10. E. A. Hegazy, T. Seguchi, K. Arakawa, S. Machi, J. Appl. Polym. Soc, 26, 1361 (1981). 11. Y Morita, T. Seguchi, Inst. Elect. Eng. Japan, Papers of Technical Meeting on Electrical Insulating Materials, EIM-83-131 (1983). 12. T Saito, T. Seguchi, S. Nagano, I. Omae, JAERI-M 89-096. 13. H. Kudoh, N. Kasai, T. Sasuga, T. Seguchi, Radiat. Phys. Chem., 43, 329 (1994). 14. H. Kudoh, T. Sasuga, T. Seguchi, in: R. L. Clough, S. W. Shalaby (Eds.), "Irradiation of Polymers", ACS Sympo. Series 620, 1 (1996). 15. Y Tabata, A. Oshima, K. Takashika, T. Seguchi, Radiat. Phys. Chem., 48, 563 (1996). 16. A. Oshima, S. Ikeda, T. Seguchi, Y Tabata, Radiat. Phys. Chem., 49, 279 (1997). 17. T. Seguchi, T. Sasuga, K. Yoshida, H. Yagyu, Y Yamamoto, Inst. Elect. Eng. Japan, Papers of Technical Meeting on Electrical Insulating Materials, EIM-82-114 (1982). 18. H. Shonbacher, M. Tablet, CERN-89-12 (1989). 19. T. Seguchi, K. Arakawa, K. Yoshida, Y Yamamoto, H. Yagyu, Inst. Elect. Eng. Japan., Papers of Technical Meeting on Electrical Insulating Materials, EIM-83-132 (1983).
20. K. Arigane, A. Otomo, H. Sasajima, H. Takahashi, T. Seguchi, S. Murakami, JAERI-Tech 94-004 (1994). 21. T. Kawamata, M. Nagai, Y. Morita, T. Yagi, T. Seguchi, Inst. Elect. Eng. Japan., Papers of Technical Meeting on Electrical Insulating Materials, DEI-94-91 (1994). 22. Y. Morita, K. Watanabe, H. Yagyu, Inst. Elect. Eng. Japan., Papers of Technical Meeting on Electrical Insulating Materials, EIM-88-129 (1988) and their additional data. 23. T. Sasuga, Polymer, 29, 1562 (1989). 24. T. Hirade, Y. Hama, T. Sasuga, T. Seguchi, Polymer, 32, 2499 (1991). 25. S. Egusa, H. Nakajima, M. Oshikiri, M. Hagiwara, S. Shimamoto, J. Nucl. Mater., 137, 173 (1985).
26. K. Sonoda, Y. Yamamoto, O. Hashimoto, T. Ono, H. Tomita, A. Udagawa, S. Egusa, T. Sasuga, T. Seguchi, N. Tamura, Japan. J. Appl. Phys., 28, 1950 (1989). 27. A. Udagawa, K. Yudate, H. Kudoh, T. Sasuga, Y. Morino, T. Seguchi, JAERI-Tech 95-007 (1995). 28. H. Schonbacher, A. Stolarz-Izycka, CERN 79-08 (1979). 29. T. Hirade, N. Takeda, A. Udagawa, T. Sasuga, T. Seguchi, Y. Hama, Adv. Composite Mater., 1, 321 (1991). 30. T. Sasuga, T. Seguchi, H. Sakai, T. Nakamura, M. Masutani, J. Mater. Sci., 24, 1570 (1989). 31. A. Udagawa, T. Moriya, S. Matsubara, T. Seguchi, Proc. Atomic Energy Soc. Japan. Conf., Sendai, September (1996).
P V T
R e l a t i o n s h i p s o f
S t a t e
o f
a n d
E q u a t i o n s
P o l y m e r s
Junhan C h o Polymer Science and Engineering Department, Dankook University, Seoul 140-714, South Korea Isaac C. Sanchez Chemical Engineering Department, University of Texas at Austin, Austin, TX 78712, USA
A. Introduction B. Isothermal Compressibility Equations C. Empirical or Semiempirical 3-Parameter Equations of State D. Lattice or Quasi Lattice Models E. Continuum Models F. Tables Table 1. Zero Pressure Volume V 0 (T) and Bulk Modulus B0(T) Table 2. Abbreviations of Polymer Names and the Experimental TemperaturePressure Range for Polymer Liquids Table 3. PVT Properties of Other Polymers Table 4. Characteristic Parameters for the Sanchez-Cho Equation of State Table 5. Characteristic Parameters for the Hartmann- Haque Equation of State Table 6. Characteristic Parameters for the Simple Cell Model Equation of State Table 7. Characteristic Parameters for the Flory, Orwoll and Vrij Equation of State Table 8. Characteristic Parameters for the Simha-Somcynsky Equation of State Table 9. Characteristic Parameters for the Sanchez-Lacombe Equation of State Table 10. Characteristic Parameters for the AHS 4- vdW Equation of State G. References
A.
VI-591 VI-592 VI-593 VI-593 VI-594
VI-595 VI-596 VI-597 VI-597 VI-597
VI-598
VI-599
VI-599
VI-600 VI-600 VI-601
INTRODUCTION
Pressure-volume-temperature (PVT) behavior of polymeric materials are important both from the practical and
scientific viewpoint. On the practical side, a general knowledge of PVT properties are often required for processing polymers. On the scientific side, PVT properties are often required as input information on molecular models of polymer solutions. Information on molecular packing is also reflected in PVT properties. Numerous equations of state (EOS) have been developed to describe polymers. One can divide them into two categories: phenomenological and molecular. Equations of state in the first category are for the empirical representation of volumetric data. The majority of equations in this group are the so-called isothermal compressibility equations (1-4). The purely empirical, original Tait equation and its modification by Tammon have been almost exclusively used for organics, including polymers (2,3,5,6). Sanchez et al. re-examined polymer bulk data in a rigorous classical thermodynamic analysis (7,8). A new principle of temperature-pressure (T-P) superposition of compression response was found. Stated briefly, a dimensionless pressure variable is used to superpose compression data as a function of temperature into a universal curve. The governing parameter of compression is the first pressure coefficient Bx(^ dB/dP)Ps=09 of the bulk modulus B. It is related to the asymmetry of the free energy around its minimum, between dilation and compression. For polymers, B\ is around 10, and universal. A new isothermal equation of state was formulated through a Pade analysis of the pressure dependence of the bulk modulus (8). Both the Tait and the Pade equations describe almost perfectly the isothermal pressure dependence of volume. Both can be used to smoothen experimental PVT data. Equations of state in the second category arise from molecular models and the development of a proper partition function (9). Most earlier works on this group are based on the lattice or quasi-lattice description of a fluid. Three types of models have played a dominant role in the past several decades. These are the cell, hole, and lattice fluid models.
In Prigogine's cell model (10-12), any monomer is considered to be enclosed by the cell of surrounding molecules. The configurational potential is separated into the mean potential (between the center of the cell and surroundings), and the cell potential (generated by the movement of the central monomer within the cell). The cell potential was further simplified to be athermal. The Simha-Somcynsky theory (13) incorporated the lattice imperfection (hole) into the simple cell model by Prigogine et al. Flory et al. (14) borrowed some ideas from the cell model (separation of internal and external degrees of freedom) but used a Tonk's gas-type description for the repulsive part of the intermolecular potential. Unlike the cell model, the molecules are not localized in space, and a van der Waals mean field energy is employed. Meanwhile, the lattice fluid model (15,16) introduces lattice vacancies as pseudo-solvent molecules into the incompressible Flory-Huggins model. In this model, an incompressible polymer solution is converted into a compressible bulk polymer liquid. All theoretical equations of state suggest a corresponding states behavior of polymer PVT properties that requires three scaling parameters such as characteristic temperature (7*), pressure (P*), and volume (V*). The derivation of the partition function can in principle be done in continuum space. This approach yields the so called integral equation theory (9). The self consistent integral equations of the interparticle distribution functions are to be determined. For the simplest hard sphere chains, several analytical equations of state were suggested by Chiew (17-22), Wertheim (23-27) and Chapman (28,29). Chiew's equation of state is based on Baxter's solution of the Percus-Yevick integral equation for the adhesive hard sphere (AHS) system. The AHS has a strong, but extremely short ranged attractive interaction at its surface. This peculiar interaction is treated as chemical bonds. Wertheim and Chapmann considered this adhesive attraction as a perturbation to the hard sphere potential in the framework of graph theory. A different and unique work on this subject was performed by Hall and coworkers (30) without recourse to integral equation theory. A particle insertion method was generalized to hard chains in continuum space. To apply these continuum models to real systems, an energetic contribution to pressure should be added on the basis of a perturbation theory. In the simplest approximation a mean field (van der Waals) energy is added (28,31). The incorporation of the energy term turns these off-lattice models into 3-parameter (V*, T*, P*) corresponding states models. There are empirical or semiempirical equations of state that can be included partly in the two categories. The Sanchez-Cho (32), and the Hartmann-Haque (33) equations are considered the most important in applications. These two equations of state also suggest a corresponding states behavior. This article only deals with liquid data (above Tg or Tm). The mathematical expression of the liquid PVT data with either the Pade or the Tait equations are tabulated here for
extracting the 3 characteristic parameters (V*, T*, P*) for given corresponding states equations of state. The characteristic parameters are essential in the application of a given equation of state to real systems. We present, therefore, a compendium of such parameters for the 3-parameter equations of state described above. These parameters have their own physical meaning according to theories at hand. However, these are treated as adjustable parameters in a general nonlinear regression routine to best represent the smoothed experimental values regenerated from the Sanchez-Cho or the Tait equations. We used the volume data over the whole experimental T-P range. All model parameters are determined from the same data sets.
B. ISOTHERMAL COMPRESSIBILITY EQUATIONS The recently found principle of temperature-pressure (T-P) superposition (7,8) implies that the In(V/V0), is a function of the scaled pressure, P/Bo, as is compression, given below:
(Al) where Vo and Z?o are volume and the bulk modulus at zero pressure, respectively. The right hand side of Eq. (Al) is a rigorous power series expression of ln(V/Vo). The additional contributing numbers B\(i > 0) are the coefficients in the series expansion of the bulk modulus B in pressure: (A2) A tractable approximation to the infinite series in Eq. (Al) was suggested by Sanchez et al. They utilized the empirical observation that the bulk modulus B in Eq. (A2) is linear in pressure to high pressures. Expecting that the modulus B diverges as Pu(u < 1), a Pade analysis and the successive integration of B yielded the Pade equation (8) given below: (A3) where the curvature parameter, co, is defined as (A4) A pair of universal values of B i and co (B i = 10.2, co — 0.9) is observed to be excellent in correlating the bulk volumetric data of various polymers.
The historically well known Tait equation falls into the general statement of the T-P superposition in Eq. (Al): (A5) where C is universally 0.0894 (Cutler's constant). Equation (A5) is the modified version, by Tammon, of the original Tait equation, which was empirically formulated for water. One should notice that the product, CB o, comprises the socalled Tait parameter in the literature. Equations (A3) and (A5) yield an accurate representation (within experimental error) of isothermal, volume-pressure relationships. The zero pressure volume, VQ, and modulus, BQ, are additionally required to complete Eqs. (A3) and (A5). The compilation of these parameters are shown in Table 1. In this table, the abbreviation of polymer names are used. The explanation of the abbreviated names and experimental T-P range are listed in Table 2. Several types of fitting functions are used for VQ. Typically used are the polynomial and exponential expressions. For the bulk modulus, the exponential dependence on temperature is almost exclusively used. Some other polymer PV T data that are not used to obtain the characteristic parameters can be found in the literature, including blends and liquid crystalline polymers (38,50,55,59-67).
pressure, as is shown in Eq. (A6). Equation (A6) is to date the most accurate 3-parameter equation of state. The comparison of Eq. (A6) with the empirical Tait or Pade equation over the whole experimental T-P range gives the average deviation in volume less than 0.0004 cm3/g. The Sanchez-Cho equation is useful in extrapolating data to high pressures and investigating the negative pressure region. The three characteristic parameters for the Sanchez-Cho equation are given in Table 4. Hartmann-Haque (H-H) Equation of State The Hartmann-Haque equation of state (33) has the following functional form: (A8) where the dimensionless variables P, V, f are defined as in Eq. (A7). The P* is identified as the isothermal bulk modulus extrapolated to zero temperature and pressure. The zero pressure isobar in Eq. (A8) originates in the SimhaSomcynsky hole model (13) in the next section. The three characteristic parameters for the Hartmann-Haque equation are given in Table 5. The average deviation between Eq. (A8) and regenerated bulk PVT data (data smoothed using the Tait Eq.) is 0.0009 cm3/g or more than a factor of 2 worse than the S-C equation. D.
C EMPIRICAL OR SEMIEMPIRICAL 3-PARAMETER EQUATIONS OF STATE
Equations in this section are in between the compressibility equations and succeeding model equations of state: (a) they are formulated on the basis of phenomenological arguments; (b) they suggest a corresponding behavior or a universal relationship between dimensionless K T and P The Sanchez-Cho and the Hartmann-Haque equations of state are considered the most important equations in this category. Sanchez-Cho (S-C) Equation of State The Sanchez-Cho equation of state (32) was formulated by combining the empirically observed temperature dependence of the zero pressure volume VQ and modulus BQ with the isothermal Pade equation, Eq. (A3):
(A6) where the required universal numbers are B\ = 10.2, co~ 0.9, and b = 9. The dimensionless variables are defined as: (A7) The V * and P* are related to the van der Waals volume and cohesive energy density (32). The Sanchez-Cho equation provides volume as an explicit function of temperature and
LATTICE OR QUASI LATTICE MODELS
The most frequently used model equations of state based on the lattice or quasi lattice phase space are visited in this section. These are various cell models of Prigogine et al., the hole model, and the lattice fluid model. The common feature of the models in this section is the separation of pressure into the thermal (Pth) and internal (Pi) pressures: (A9) where the dimensionless variables are defined as before Eq. (A7). The physical meaning of the characteristic parameters P*, V*, T* vary among the models. But in general, V* is related to the van der Waals volume, T* is proportional to monomer-monomer interaction energy, and P* is related to the cohesive energy density. Simple Cell Model of Prigogine et al. The cell model by Prigogine et al. (10-12) is an extension of the cell model for small molecules by Lennard-Jones and Devonshire (68) to polymers. Each monomer in the system is considered to be trapped in the cell created by the surroundings. The general cell potential, generated by the surroundings, is simplified to be athermal. This turns the simple cell model into a free volume theory. The mean potential between the centers of different cells are described by the LennardJones 6-12 potential. The dimensionless equation of state has the following form: References page VI-601
(AlO) The factor 2 "1Z6 originates in the choice of the hexagonal close packing lattice as a cell geometry. The factors 1.2045 and 1.011 correct the effects of higher coordination shells on the internal energy. Table 6 gives the three characteristic parameters P*, V*, T* for the Prigogine cell model for the polymers in Tables 1 and 2. The average deviation between Eq. (AlO) and regenerated PVT data is 0.0008 cm3/g. Cell Model by Flory, Orwoll, and VHj (FOV) The cell model by Flory et al. (14) has the simpler mathematical form than the Prigogine cell model: (AU) The Lennard-Jones energy is replaced with a uniform background (van der Waals) energy. The characteristic parameters P*, V*, T* for the FOV theory are shown in Table 7. The average deviation between Eq. (All) and regenerated PVTdata is 0.0022 cm3/g. It has often been pointed out that the fitting performance of the FOV theory is less accurate, especially when covering a large pressure range. However, we present the parameters for the whole pressure range. This will provide a guidance when one fits the PVT data for smaller pressure ranges of interest.
this model. Simha and Somcynsky suggested the approximate representation of the S-S equation of state:
(A14) The characteristic parameters P*, V*, T* for the S-S theory are shown in Table 8. The parameters are obtained by fitting the original S-S equation of state in Eq. (A 12) with Eq. (A13), rather than fitting Eq. (A14). The average deviation between Eq. (A12) and regenerated PVT data is 0.0007 cm3/g. Lattice Fluid Model The Lattice Fluid model developed by Sanchez and Lacombe (15,16) introduces vacancies into the classical incompressible Flory-Huggins model. The lattice vacancy is treated as a pseudo particle in the system. The free energy of an incompressible binary polymer solution is then converted to that of the bulk polymer. The equation of state for a polymer is given below: (A15) Table 9 gives the three characteristic parameters P*, V*, 7* for the lattice fluid (LF) theory. As was with the FOV model, the LF model does not correlate PVT data well over large pressure ranges. The average deviation between Eq. (A15) and regenerated bulk PVT data is 0.0033 cm3/g. E. CONTINUUM MODELS
Hole Model by Simha and Somcynsky (S-S) The simple cell model by Prigogine et al. is modified by Simha and Somcynsky (13) to allow for lattice imperfections (holes). The model can be written as the following equation of state:
(A12) where the factor " / ' is the fraction of occupied lattice sites and satisfies
(A13) The factor s/3c in Eq. (A 13) is called the flexibility ratio, which is usually set to 1. Other factors are the same as those in the Prigogine cell model. In order to calculate volume at given temperatures and pressures, one should solve Eqs. (A12) and (A13) simultaneously. The calculational complexity is a drawback of
The widely used models presented in the last section are derived by considering the partition function of a chain system on a lattice or quasi lattice. The lattice or quasi lattice phase space can be further generalized to be a continuum counterpart. This approach yields, in general, the integral equation theory, which focuses on solving the integral equations of the particle-particle distribution functions (9). The system of hard chains has been treated the most, because it is the simplest and provides the possibility of analytical equation of state in some cases. One approach of this category is to solve the integral equations using the Percus-Yevick closure for the system of adhesive hard sphere (AHS) mixtures (17-22). An adhesive hard sphere is a hard sphere that has attractive sites at surface. The attractive interaction on these attractive sites is infinitely strong and infinitesimally short ranged. The Percus-Yevick closure yields an analytical solution for such systems. The adhesive attraction, which resembles the chemical bonding, is used to build up chains by employing the proper connectivity constraints. A different approach of this category is to manipulate the graphs in the cluster expansion of the system of hard spheres with multiple attractive sites (23-29). The attractive interaction is the same as that of the AHS system, and is treated as a perturbation to the reference hard
sphere potential. The steric incompatibility is taken into account by Wertheim to approximate the graph expansion for distribution functions. This approach is called the thermodynamic perturbation theory (TPT) (23-27) or the statistically associating fluid theory (SAFT) (28,29). A unique approach to the hard chain equation of state has been developed by Hall and coworkers (30). Flory's onlattice particle insertion analysis is generalized to the offlattice calculation. This theory is called the generalized Flory (GF) model. The enhanced evaluation of the insertion probability is further manipulated to yield the equation of state. Since the developed equations of state are for athermal chain systems, an energetic contribution to pressure is required in order for these models to be applicable to real systems. The simplest model adds a van der Waals (vdW) term as a perturbation to the reference pressure (28,31): (A16)
where the term with the subscript 0 implies the athermal reference pressure. The dimensionless variables are defined as usual (Eq. (A7)). The specific mathematical forms of the reference equation of state are as follows: (AHS)
(A17) (TPT or SAFT) (A18) (GF)
(A19)
The three characteristic parameters P*, V*, T* for the AHS -I- vdW equation of state are shown in Table 10. The average deviation between the AHS + vdW equation and regenerated bulk data is 0.0012 cm3/g. The parameters for other two equations are relatively close to those for the AHS -f vdW equation, and are not tabulated here.
F. TABLES TABLE 1. ZERO PRESSURE VOLUME (V0(T)) AND BULK MODULUS (B0(T))0 Polymer PDMS PS PoMS PMMA PnBMA PCHMA PEA PEMA PMA PVAc LPE BPE LDPE-A LDPE-B LDPE-C PBD PBD8 PBD24 PBD40 PBD50 PBD87 i-PB PAr PCL PC BCPC HFPC TMPC PET PIB PI8 PI14 PI41
Vo (D (cm3/g) 1.0079 exp(9.121 x 10' 4 O 0.9287 exp(5.131 x 10"4O 0.9396 exp(5.306 x 10' 4 O 0.8254+ 2.8383 x 10~ 4 f+ 7.792 x 10~V 0.9341 4-5.5254 x 10~4/ + 6.5803 x 10 " 7 r 2 + 1.5691 x 1 0 1 V 0.8793+4.0504 x 10" 4 f+ 7.774 x 1 0 " V - 7.7534 x 10" 1 V 0.8756 exp(7-241 x 10"4O 0.8614 exp(7.468 x 10"4O 0.8365 exp(6.795 x 10~40 0.8250 + 5.820X 10~4/ + 2.940x 10 V 0.9172 exp(7.806 x 10"4O 0.9399 exp(7.341 x 10"4O 1.1484 exp(6.950 x 10"4O 1.1524 exp(6.700 x 10"4O 1.1516 exp(6.730 x 10"4O 1.0970 exp(6.600 x 10"4O 0.9352+ 4.9988 x 10" 4 r+1.268 x 10" 7 / 2 0.9352 + 4.9988 x 10"4f + 1.268 x 10~7r2 0.9352 + 4.9988 x 10" 4 f+ 1.268 x 10~V 0.9352+ 4.9988 x 10~4? + 1.268 x 1 0 " V 0.9352+ 4.9988 x 10~ 4 /+1.268 x 10~7r2 1.1417 exp(6.751 x 10"4O 0.73381 exp(1.626 x 10" 5 F 3 / 2 ) 0.9049 exp(6.392 x 10"4O 0.73565 exp(1.859 x 10" 5 J 3 / 2 ) 0.6737+ 3.634 x 10"4f + 2.370x 10 V 0.6111+4.898x 10" 4 f+1.730x 1 0 " V 0.8497 + 5.073 x 10"4f + 3.832x 10~V 0.6883 + 5.90xl0~ 4 f 1.0750 exp(5.651 x 10"4O 0.9352+ 4.9988 x 10" 4 f+1.268 x 1 0 " V 0.9352 + 4.9988 x 10" 4 /+ 1.268 x 10~V 0.9352 + 4.9988 x 10"4/21.268 x 1 0 " V
B • (D (MPa) 1000.00 exp(- 5.701 x 10"3O 2426.17 exp(- 3.319 x 10"3O 2929.53 exp(- 4.114 x 10~30 3215.88 exp(-4.146x 10"3O 2535.79 exp(- 5.344 x 10"3O 3302.01 exp(-5.220x 10"3O 2161.07 exp(-4.839 x 10"3O 2918.34 exp(- 5.356 x 10"3O 2637.58 exp(- 4.493 x 10"3O 2 291.95 exp(-4.346x 10"3O 1976.51 exp(-4.661 x 10"3O 1980.98 exp(-4.699 x 10"3O 2157.72 exp(-4.701 x 10"3O 2199.11 exp(-4.601 x 10"3O 2088.37 exp(-4.391 x 10"3O 1987.70 exp(- 3.593 x 10~30 10915.90 exp(-5.344 x 10"3O 10915.90 exp(-5.344 x 10"3O 10915.90 exp(-5.344 x 10"3O 10915.90 exp(-5.344 x 10~3r) 10915.90 exp(- 5.344 x 10"3O 1873.60 exp(-4.533 x 10"3O 3321.03 exp(-3.375 x 10~30 2114.09 exp(- 3.931 x 10"3O 3467.56 exp(- 4.078 x 10"3O 4064.88 exp(-4.921 x 10"3O 2646.53 exp(-5.156 x 1 0 3 O 2588.37 exp(-4.242x 10"3O 4135.35 exp(- 4.150 x 10"3O 2240.49 exp(-4.329 x 10"3O 10915.90 exp(- 5.344 x 10"3O 10915.90 exp(-5..344 x 10"3O 10915.90 exp(- 5.344 x 10"3O
References page VI - 601
TABLE 1. cont'd Vo (T) (cm 3/g)
Polymer PI56 /-PP 0-PP Phenoxy PSO PEO PVME PEEK PTFE PTHF PMP PA6 PA66 PECH PVC PPO E/P50 EVA18 EVA25 EVA28 EVA40 SAN3 SAN6 SAN15 SAN18 SAN4 SAN70 SMMA20 SMMA60 a
Bo(T) (MPa)
0.9352 + 4.9988 x 10' 4 f+ 1.268 x 10" 7 / 2 1.1606 exp(6.700 x 10"4O 1.1841- 1.091 x 10~4; +5.286 x 10~V 0.76644 exp(1.921 x 10" 5 r 3 / 2 ) 0.7644 + 3.419 x \0~4t + 3.126 x HT V 0.8766 exp(7.087 x 10-4O 0.9585 exp(6.653 x 10"4O 0.7158 exp(6.690 x 10"4O 0.3200- 9.5862 x 10"4f 1.0043 exp(6.691 x 10"4O 1.4075-9.905 x 10~ 4 /+3,497 x 10~6r2 0.7597 exp(4.701 x 10"4O 0.7657 exp(6.600 x 10~4f) 0.7216 exp(5.825 x 10~4r) 0.7196 + 5.581 x 10~5f + 1.468 x 1 0 " V 0.78075 exp(2.151 x 10" 5 T 3 / 2 ) 1.2291+5.799 x l0~5t+ 1.964 x 10~6f2 1.02391 exp(2.173 x 10" 5 T 3 / 2 ) 1.00416 exp(2.244 x 10~5T3/2) 1.00832 exp(2.241 x 10 " 5 J 3 / 2 ) 1.06332 exp(2.288 x 10~ 5 7 3 / 2 ) 0.9233+ 3.936 x 10~4f +5.685 x 10 ~ V 0.9211+4.37Ox 10~4f + 5.846 x 10~V 0.9044 + 4.207 x 10~4* + 4.077 x 10~V 0.9016 + 4.036 x 10~4f+ 4.206 x 10~7?2 0.8871+3.406 x 10" 4 f+ 4.938 x 1 0 " V 0.8528 + 3.616 x 10"4* + 2.634 x 1 0 " V 0.9063 + 3.570X 10" 4 / + 6.532 x 1 0 " V 0.8610 + 3.350X 10~4f +6.98010"V
10915.90 exp(- 5.344 x 10~30 1667.79 exp(- 4.177 x 10' 3 O 1813.20 exp(- 6.604 x 10~30 4025.73 exp(-4.378 x 10"3O 4092.84 exp(~ 3.757 x 10~3r) 2323.27 exp(- 3.947 x 10~30 2413.87 exp(- 4.588 x 10"3O 4340.04 exp(- 4.124 x 10~30 4756.15 exp(~ 9.380 x 10"3O 1997.76 exp(-4.233 x 10"3O 376.7+ 2.134/-7.0445 x 10~ 3 / 2 4213.65 exp(~ 4.660 x 10"3O 3539.15 exp(- 5.040 x 10"3O 2665.55 exp(-~ 4.171 x 10"3O 3290.83 exp(-5.321 x 10~30 2548.10 exp(- 4.290 x 10~30 5447.43 exp(- 8.103 x 10"3O 2105.15 exp(- 4.537 x 10~30 2062.64 exp(-4.734 x 10~30 2052.57 exp(-4.457 x 10 ~30 2294.18 exp(- 4.989 x 10"3O 2682.33 exp(- 4.376 x 10 ~30 2538.03 exp(-4.286x 10"3O 2666.67 exp(- 3.943 x 10~3f) 2689.04 exp(- 3.858 x 10~30 3236.02 exp(~ 4.431 x 10~30 3751.68 exp(- 3.923 x 10~30 2595.08 exp(-4.143 x 10~30 2919.46 exp(-4.611 x 10~3r)
In the mathematical expression of volume, t and Tare in 0 C and K, respectively. See Table 2 for references.
TABLE 2. ABBREVIATIONS OF POLYMER NAMES AND THE EXPERIMENTAL TEMPERATURE-PRESSURE RANGE FOR POLYMER LIQUIDS0 Polymer Monomer or sourceabbreviation based Name PDMS Dimethyl siloxane PS Styrene PoMS* o-Methyl styrene PMMA Methyl methacrylate PBMA* rc-Butyl methacrylate PCHMA* Cyclo hexyl methacrylate PEA Ethyl acrylate PEMA* Ethyl methacrylate PMA Methyl acrylate PVAC Vinyl acetate LPE* Linear polyethylene (PE) BPE* Branched PE LDPE-A Low density PE-A LDPE-B Low density PE-B LDPE-C Low density PE-C PBD* Butadiene PBD8* Butadiene with 8% 1,2 content PBD24* Butadiene with 24% 1,2 content PBD40* Butadiene with 40% 1,2 content PBD50* Butadiene with 50% 1,2 content PBD87* Butadiene with 87% 1,2 content
T (0C) 25-70 115-196 139-198 114-159 34-200 123-198 37-210 113-161 37-220 35-100 142-200 125-198 112-225 112-225 112-225 4-55 25-200
P (MPa)
Refs.
0-100 34,35,36 0-200 37 0-180 37 0-200 38 0-200 38 0-200 38 0-196 34 0-196 34 0-196 34 0-80 39 0-200 38 0-200 38 0-196 40 0-196 40 0-196 40 0-283.5 41 0-200 42
25-200
0-200
42
25-200
0-200
42
25-200
0-200
42
25-200
0-200
42
TABLE 2. cont'd Polymer Monomer or sourceabbrevation based Name PB PAr* PCL PC BCPC* HFPC* TMPC* PET PIB PI8
1-Butene Arylate Caprolactone Carbonate (PC) Bisphenol chloral PC Hexafluoro bisphenol-A PC Tetramethyl bisphenol-A PC Ethylene terephthalate Isobutylene Isoprene with 8% 3,4 content PI14 Isoprene with 14% 3,4 content PI41 Isoprene with 41% 3,4 content PI56 Isoprene with 56% 3,4 content i-PP Isotactic polypropylene a-PP Atactic polypropylene Phenoxy* Phenoxy PSO Sulfone PEO Ethylene oxide PVME Vinyl methyl ether PEEK Ether ether ketone PTFE Tetrafluoro ethylene PTHF* Tetrahydro furane PMP 4-Methyl-i-pentene PA6 Amide 6
P (MPa)
Refs.
133-246 177-310 100-148 151-340 220-280 220-280 210-290 274-342 53-110 25-200
0-196 0-176.5 0-200 0-176.5 0-50 0-50 0-50 0-196 0-00 0-200
43 44 34 44 45 45 45 46 36,47 42
25-200
0-200
42
25-200
0-200
42
25-200
0-200
42
T (0C)
170-297 80-120 68-300 202-371 88-224 30-198 346-398 330-372 62-166 241-319 236-296
0-196 0-100 0-176.5 0-196 0-68.5 0-200 0-200 0-39 0-78.5 0-196 0-196
43 34 44 48 49 34,50 51 52 49 53 54
TABLE 2. cont'd Polymer abbrevation
TABLE 4. cont'd
Monomer or sourcename
PA66 PECH6 PVC PPO E/P50 EVA18 EVA25 EVA28 EVA40 SAN3 SAN6 SAN15 SAN18 SAN40 SAN70 SMMA2O0
Amide 66 Epichlorohydrine Vinyl chloride Phenylene oxide Ethylene/propylene 50% Ethylene/vinyl acetate 18% Ethylene/vinyl acetate 25% Ethylene/vinyl acetate 28% Ethylene/vinyl acetate 40% Styrene/acrylonitrile 2.7% Styrene/acrylonitrile 5.7% Styrene/acrylonitrile 15.3% Styrene/acrylonitrile 18.0% Styrene/acrylonitrile 40% Styrene/acrylonitrile 70% Styrene/methyl methacrylate 20% SMMA6O0 Styrene/methyl methacrylate 60%
0 b
P (MPa)
246-298 60-140 100-150 203-320 140-250 112-219 94-233 94-235 75-235 105-266 96-267 132-262 104-255 100-270 100-271 110-270
0-196 0-200 0-200 0-176.5 0-62.5 0-176.5 0-176.5 0-176.5 0-176.5 0-200 0-200 0-196 0-196 0-196 0-196 0-196
54 34 34 55 56 57 57 57 57 45 45 45 45 45 58 58
110-270
0-200
58
PVT PROPERTIES OF OTHER POLYMERS0
J( 0 C)
Polymer HDPE LDPE HMLPE i-Poly(l-pentene) Poly(vinylidene fluoride) Poly(methylene oxide) Poly(butylene terephthalate) Qiana nylon Natural rubber vulcanizated with 10-28% sulfur Hevea rubber uncrosslinked crosslinked (6% sulfur) crosslinked (11.5% sulfur) PS/PPO blends PS/PVME blends Main chain LCPs Azomethine ether LCP
P (MPa)
Note
Refs.
140-203 121-175 137-200 140-172 175-240 155-185 215-280
0-196.0 0-196.0 0-200.0 0.1 0.1 18.3-150.9 Figure only 20.7-103.4 Figure only
59 59 38 60 61 62 63
270-320 10-82
20.7-103.4 Figure only 0-1013.0
63 64
10-85
0-80.0
30-350 30-198
0-176.5 0-200.0
20-300
0-200.0
SimhaSomcynsky parameters only
Figure only up to nematic
65
55 50 66 67
This table lists polymers not mentioned in the earlier tables.
TABLE 4. CHARACTERISTIC PARAMETERS FOR THE SANCHEZ-CHO EQUATION OF STATE
Polymer
V* (cm3/g)
PDMS PS PoMS PMMA PBMA PCHMA
0.8071 0.8165 0.8368 0.7139 0.7963 0.7710
T* (K) 1375.1 2277.2 2380.6 2184.2 1855.9 2195.1
Polymer
V* (cm Vg)
PEA PEMA PMA PVAc LPE BPE LDPE-A LDPE-B LDPE-C PBD PBD8 PBD24 PBD40 PBD50 PBD87 PB PAr PCL PC BCPC HFPC TMPC PET PIB PI 8 PI 14 PI41 PI56 i-PP a-PP Phenoxy PSO PEO PVME PEEK PTFE PTHF PMP PA6 PA66 PECH PVC PPO E/P50 EVA18 EVA25 EVA28 EVA40 SAN3 SAN6 SAN15 SAN18 SAN40 SAN70 SMMA20 SMMA60
0.7398 0.7332 0.7121 0.6918 0.9491 0.9723 0.9852 0.9937 0.9869 0.9115 0.9308 0.9359 0.9357 0.9408 0.9498 0.9854 0.6839 0.7671 0.6871 0.5971 0.5264 0.7261 0.6199 0.9382 0.9453 0.9366 0.9370 0.9330 1.0116 0.9690 0.7242 0.6655 0.7441 0.8187 0.6395 0.3638 0.8561 1.0089 0.7130 0.6887 0.6269 0.6252 0.7181 1.0582 0.9585 0.9338 0.9241 0.8864 0.8030 0.7896 0.7860 0.7854 0.7853 0.7616 0.7789 0.7408
T* (K)
P* (MPa)
Refs.
See Abbreviations Table in Part VIlI of this Handbook. Abbreviation may not be recognized by international organization.
TABLE 3.
n
T( 0 C)
1747.4 1771.2 1829.0 1696.9 1655.0 1751.9 1865.4 1923.8 1880.5 1633.8 1798.6 1819.0 1842.9 1892.0 1905.6 1924.1 2243.9 1849.0 2070.3 2249.1 1788.2 1908.0 2022.2 2130.2 1921.0 1911.3 1912.7 1854.5 1991.5 1776.2 2103.4 2232.2 1789.1 1861.3 2126.5 1400.7 1843.0 1885.0 3140.3 2195.2 2068.9 2395.4 1810.4 2384.7 1878.9 1848.3 1812.5 1856.1 2185.7 2010.7 2170.4 2208.4 2435.2 2546.6 2105.6 2099.5
9131.8 11257.0 10623.9 10399.9 9943.5 8630.7 8214.5 7983.8 8225.3 9443.2 9136.3 8708.0 8352.0 7757.3 7241.8 6891.1 11557.3 9530.1 12106.1 9931.3 10173.1 10573.0 15278.8 7045.3 7669.6 8219.9 8112.3 8600.1 6118.1 6202.8 12728.1 13286.4 10805.4 9270.5 14335.5 9757.5 8160.2 6452.5 5718.4 8391.9 8899.3 7551.2 11776.9 6421.0 8107.5 7957.5 8622.1 8441.9 7878.5 8896.8 8602.0 8495.6 7772.6 9177.0 8531.3 8858.9
P* (MPa) 6212.9 7867.6 7772.1 9873.0 9025.3 8515.1
TABLE 5. CHARACTERISTIC PARAMETERS FOR THE HARTMANN-HAQUE EQUATION OF STATE Polymer PDMS PS
V* (cm3/g)
T* (K)
P* (MPa)
0.8795 0.8754
1106 1603
1837 2956
References page VI-601
TABLE 6. CHARACTERISTIC PARAMETERS FOR THE SIMPLE CELL MODEL EQUATION OF STATE
TABLE 5. cont'd Polymer PoMS PMMA PBMA PCHMA PEA PEMA PMA PVAc LPE BPE LDPE-A LDPE-B LDPE-C PBD PBD8 PBD24 PBD40 PBD50 PBD87 PB PAr PCL PC BCPC HFPC TMPC PET PIB PI8 PI14 PI41 PI56 /-PP fl-PP Phenoxy PSO PEO PVME PEEK PTFE PTHF PMP PA6 PA66 PECH PVC PPO E/P50 EVA18 EVA25 EVA28 EVA40 SAN3 SAN6 SAN15 SAN18 SAN40 SAN70 SMMA20 SMMA60
V* (cm3/g) 0.8891 0.7582 0.8552 0.8249 0.8038 0.7976 0.7712 0.7368 1.0381 1.0677 1.0769 1.0842 1.0781 0.9855 1.0065 1.0118 1.0113 1.0157 1.0264 1.0818 0.7408 0.8418 0.7474 0.5356 0.5758 0.8010 0.6802 0.9935 1.0199 1.0098 1.0103 1.0076 1.1066 1.0292 0.7784 0.7246 0.8005 0.8836 0.7044 0.3683 0.9165 1.1228 0.7654 0.7559 0.6734 0.6559 0.7906 1.1112 1.0443 1.0171 1.0077 0.9604 0.8615 0.8545 0.8495 0.8448 0.8326 0.8140 0.8453 0.8037
T* (K) 1608 1467 1309 1517 1284 1298 1334 1151 1211 1313 1387 1426 1396 1199 1301 1317 1336 1370 1387 1452 1614 1411 1502 1520 1306 1430 1484 1422 1389 1375 1377 1339 1475 1197 1481 1623 1254 1342 1568 900 1276 1449 2255 1643 1456 1532 1339 1516 1380 1356 1333 1339 1534 1448 1564 1566 1630 1776 1539 1530
P* (MPa) 3096 3819 3268 3038 3076 3654 3680 3817 2804 2510 2516 2509 2538 3333 3109 2989 2891 2742 2557 2066 3709 3013 3644 3641 2920 2907 4071 2976 2733 2925 2889 2990 1852 2383 4357 3972 3504 3245 3668 3251 2894 1670 2264 2453 3775 3595 3079 2247 2521 2474 2646 2716 2840 3010 2957 3024 3138 3578 2812 2912
Polymer
V* (cm3/g)
PDMS PS PoMS PMMA PBMA PCHMA PEA PEMA PMA PVAc LPE BPE LDPE-A LDPE-B LDPE-C PBD PBD8 PBD24 PBD40 PBD50 PBD87 /PB PAr PCL PC BCPC HFPC TMPC PET PIB PI8 PI14 PI41 PI56 /-PP a-PP Phenoxy PSO PEO PVME PEEK PTFE PTHF PMP PA6 PA66 PECH PVC PPO E/P50 EVAl 8 EVA25 EVA28 EVA4 SAN3 SAN6 SAN15 SAN18 SAN40 SAN70 SMMA20 SMMA60
0.9180 0.9148 0.9302 0.7941 0.8931 0.8906 0.8394 0.8321 0.8054 0.7731 1.0978 1.1179 1.1195 1.1267 1.1210 1.0269 1.0488 1.0539 1.0532 1.0573 1.0679 1.1216 0.7745 0.8758 0.7835 0.6676 0.6116 0.8473 0.7193 1.0393 1.0617 1.0516 1.0521 1.0495 1.1470 1.0758 0.8145 0.7593 0.8447 0.9210 0.7465 0.4829 0.9609 1.1652 0.7956 0.7841 0.6997 0.6855 0.8355 1.1653 1.0874 1.0592 1.0509 1.0012 0.8995 0.8950 0.8875 0.8826 0.8696 0.8493 0.8795 0.8362
T* (K) 3254 5167 5214 4783 4237 4873 4167 4190 4318 3781 4124 4309 4430 4537 4461 3811 4171 4212 4263 4357 4399 4600 52.57 4478 4969 5046 4525 4875 5070 4593 4415 4382 4386 4277 4712 3884 4837 5358 4226 4298 5418 4488 4185 4721 7048 5231 4662 4938 4585 4982 4434 4368 4319 4326 4969 4761 5069 5070 5273 5676 4908 4884
F* (MPa) 388.0 599.0 622.7 765.0 683.0 630.1 652.7 772.8 768.3 755.9 588.1 535.2 549.8 544.6 552.3 681.5 655.5 629.9 608.3 575.4 537.9 460.6 776.0 632.0 774.7 762.1 620.7 609.4 868.8 580.0 572.1 611.4 604.1 628.0 425.8 493.4 903.2 844.5 696.8 677.0 797.0 323.9 576.8 400.0 465.4 550.9 757.7 719.2 668.5 453.5 544.5 537.6 572.9 584.9 603.2 640.8 618.8 630.4 653.6 723.1 600.7 622.9
TABLE 7. CHARACTERISTIC PARAMETERS FOR THE FLORY, ORWOLL, AND VRIJ EQUATION OF STATE
TABLE 8. CHARACTERISTIC PARAMETERS FOR THE SIMHA-SOMCYNSKY EQUATION OF STATE
Polymer
V* (cm3/g)
T* (K)
P* (MPa)
Polymer
PDMS PS PoMS PMMA PBMA PCHMA PEA PEMA PMA PVAc LPE BPE LDPE-A LDPE-B LDPE-C PBD PBD8 PBD24 PBD40 PBD50 PBD87 PB PAr PCL PC BCPC HFPC TMPC PET PIB PI8 PI14 PI41 PI56 /-PP a-PP Phenoxy PSO PEO PVME PEEK PTFE PTHF PMP PA6 PA66 PECH PVC PPO E/P50 EVA18 EVA25 EVA28 EVA40 SAN3 SAN6 SAN15 SAN18 SAN40 SAN70 SMMA20 SMMA60
0.8264 0.8277 0.8457 0.7204 0.8087 0.7772 0.7563 0.7503 0.7277 0.7090 0.9818 0.9992 0.9963 1.0025 0.9974 0.9173 0.9404 0.9438 0.9419 0.9443 0.9511 0.9867 0.6991 0.7830 0.7070 0.6065 0.5521 0.7720 0.6452 0.9455 0.9480 0.9415 0.9415 0.9400 1.0072 0.9755 0.7389 0.6847 0.7719 0.8266 0.6642 0.4215 0.8774 1.0203 0.6896 0.6885 0.6321 0.6210 0.7472 1.0650 0.9724 0.9475 0.9416 0.8985 0.8129 0.8087 0.8020 0.7974 0.7869 0.7648 0.7865 0.7494
5184 8118 8463 7717 6794 7700 6599 6703 6894 6449 6548 6710 6774 6896 6809 5521 6418 6432 6453 6514 6474 6838 8470 6754 8039 8287 7360 8156 8215 7396 6573 6622 6613 6514 7011 6351 7869 8664 7147 6607 8667 7088 7006 7079 9182 7865 7192 7752 7360 8377 6870 6770 6759 6766 7897 7622 8053 7999 8369 8701 7521 7558
326.9 405.2 441.5 568.8 509.6 461.4 511.5 641.3 599.2 599.7 537.6 453.1 469.5 456.4 471.0 454.4 505.5 480.9 460.7 425.0 395.9 403.9 651.2 486.2 671.0 611.0 542.7 514.2 851.0 396.0 419.3 450.1 444.0 473.7 397.4 405.9 713.2 738.2 601.6 512.8 832.9 404.9 459.8 395.0 411.0 558.3 524.6 501.8 650.9 360.2 453.6 444.8 480.5 475.5 453.3 503.1 465.0 461.0 474.7 500.9 475.8 491.3
PDMS PS PoMS PMMA PBMA PCHMA PEA PEMA PMA PVAc LPE BPE LDPE-A LDPE-B LDPE-C PBD PBD8 PBD24 PBD40 PBD50 PBD87 PB PAr PCL PC BCPC HFPC TMPC PET PIB PI8 PI14 PI41 PI56 /PP a-PP Phenoxy PSO PEO PVME PEEK PTFE PTHF PMP PA6 PA66 PECH PVC PPO E/P50 EVA18 EVA25 EVA28 EVA40 SAN3 SAN6 SAN15 SAN18 SAN40 SAN70 SMMA20 SMMA60
V* (cm3/g) 0.9592 0.9634 0.9814 0.8369 0.9358 0.9047 0.8773 0.8710 0.8431 0.8126 1.1406 1.1674 1.1664 1.1734 1.1679 1.0766 1.0960 1.1013 1.1003 1.1049 1.1149 1.1666 0.8091 0.9173 0.8156 0.6975 0.6317 0.8794 0.7426 1.0940 1.1094 1.0997 1.1000 1.0970 1.1884 1.1274 0.8529 0.7903 0.8812 0.9632 0.7705 0.4339 1.0087 1.2050 0.8327 0.8195 0.7343 0.7320 0.8602 1.2227 1.1341 1.1040 1.0949 1.0446 0.9416 0.9352 0.9299 0.9255 0.9124 0.8906 0.9186 0.8739
T* (K) 7864 12840 13080 11940 10310 12030 11040 10190 10460 9348 9793 10390 10580 10860 10660 9225 10029 10122 10229 10450 10502 10920 12390 10870 11830 12190 10550 11540 11800 11360 10578 10541 10547 10284 11060 9494 11730 12770 10150 10360 12580 8126 10280 11030 16870 12640 11370 12350 10580 12220 10630 10440 10310 10360 12070 11490 12360 12380 12900 13790 11800 11780
P* (MPa) 501.4 715.9 746.1 926.4 856.0 772.2 830.8 987.0 969.1 947.4 786.4 692.3 716.2 703.6 718.8 815.0 827.0 792.3 763.7 716.8 671.2 603.7 1003.0 784.5 1020.0 987.8 851.0 819.2 1194.0 686.6 711.5 760.1 750.7 786.9 573.0 627.7 1139.0 1116.0 914.5 848.1 1086.0 658.1 725.5 545.3 549.9 706.9 913.1 849.5 929.4 572.0 705.6 697.8 747.2 753.9 764.2 823.8 779.2 785.3 811.8 874.7 764.0 791.1
References page VI-601
TABLE 10. CHARACTERISTIC PARAMETERS FOR THE AHS + vdW EQUATION OF STATE
TABLE 9. CHARACTERISTIC PARAMETERS FOR THE SANCHEZ-LACOMBE EQUATION OF STATE Polymer
V* (cm3/g)
J * (K)
P* (MPa)
Polymer
V* (cm3/g)
T* (K)
P* (MPa)
PDMS PS PoMS PMMA PBMA PCHMA PEA PEMA PMA PVAc LPE BPE LDPE-A LDPE-B LDPE-C PBD PBD8 PBD24 PBD40 PBD50 PBD87 PB PAr PCL PC BCPC HFPC TMPC PET PIB PI8 PI14 PI41 PI56 /-PP a-PP Phenoxy PSO PEO PVME PEEK PTFE PTHF PMP PA6 PA66 PECH PVC PPO E/P50 EVA18 EVA25 EVA28 EVA40 SAN3 SAN6 SAN15 SAN18 SAN40 SAN70 SMMA20 SMMA60
0.9022 0.8929 0.9142 0.7805 0.8789 0.8444 0.8216 0.8189 0.7908 0.7768 1.0734 1.0878 1.0827 1.0878 1.0835 0.9851 1.0167 1.0194 1.0161 1.0169 1.0224 1.0739 0.7632 0.8477 0.7737 0.6651 0.6077 0.8493 0.7102 1.0213 1.0196 1.0141 1.0139 1.0141 1.0958 1.0658 0.8032 0.7496 0.8492 0.8930 0.7310 0.4515 0.9587 1.1153 0.7406 0.7502 0.6803 0.6686 0.8220 1.1652 1.0580 1.0307 1.0259 0.9772 0.8860 0.8841 0.8733 0.8672 0.8556 0.8222 0.8520 0.8125
466 688 725 668 596 675 581 602 606 582 596 601 603 610 606 462 554 553 552 553 547 609 760 589 728 753 680 752 761 623 555 562 561 557 633 570 690 787 656 567 804 630 626 650 785 713 606 656 681 753 612 602 604 600 701 686 712 703 734 726 658 662
288.5 371.5 405.7 516.9 442.1 410.0 450.6 567.5 521.9 501.3 479.8 411.3 429.9 421.4 431.8 440.2 456.0 437.1 422.5 394.8 373.6 377.5 568.7 453.4 574.4 513.6 455.4 432.4 726.1 350.4 392.3 415.6 410.7 433.1 366.4 354.2 607.4 635.3 492.2 463.0 713.7 357.2 385.6 355.7 422.5 513.7 482.4 469.0 554.1 301.4 407.7 397.0 424.1 419.8 391.6 429.7 404.1 400.1 412.1 466.4 434.7 446.0
PDMS PS PoMS PMMA PBMA PCHMA PEA PEMA PMA PVAc LPE BPE LDPE-A LDPE-B LDPE-C PBD PBD8 PBD24 PBD40 PBD50 PBD87 /-PB PAr PCL PC BCPC HFPC TMPC PET PIB PI 8 PI 14 PI41 PI 56 /-P a-PP Phenoxy PSO PEO PVME PEEK PTFE PTHF PMP PA6 PA66 PECH PVC PPO E/P50 EVA18 EVA25 EVA28 EVA40 SAN3 SAN6 SAN15 SAN18 SAN40 SAN70 SMMA20 SMMA60
0.5629 0.6080 0.6222 0.5264 0.5820 0.5719 0.5294 0.5143 0.5111 0.4891 0.6471 0.6801 0.6995 0.7117 0.7017 0.6793 0.6764 0.6832 0.6865 0.6962 0.7069 0.7029 0.4779 0.5249 0.4691 0.4016 0.3627 0.4638 0.4041 0.7079 0.7030 0.6936 0.6943 0.6850 0.6987 0.6935 0.515 0.4541 0.4974 0.5991 0.4164 0.1807 0.6026 0.6857 0.5321 0.4818 0.4707 0.4747 0.4664 0.7592 0.6792 0.6669 0.6589 0.7130 0.5894 0.5662 0.5685 0.5763 0.5911 0.5745 0.5622 0.5344
7331 16542 17194 15173 12106 15573 10289 9659 10989 9713 7955 9336 10596 11372 10761 11913 11417 11794 12248 13112 13574 11078 12060 8788 10088 10381 8598 7446 8344 16891 13661 13326 13369 12371 10082 10648 212153 10866 8139 12258 8666 3156 10303 8842 23165 11705 15781 19538 7365 14530 10625 10405 9791 10665 14537 11971 13512 14760 18577 19851 12948 12855
707.2 731.7 731.6 986.3 868.5 793.6 933.1 1252.0 1105.2 1246.9 1136.2 924.9 845.6 802.4 846.0 867.5 900.7 843.1 792.9 710.5 642.2 680.3 1319.1 943.2 1439.2 1248.0 946.0 1496.6 1984.3 687.8 689.7 756.7 744.3 817.0 691.1 672.6 1377.3 1582.8 1439.8 900.3 1801.4 2185.6 965.0 718.6 533.4 896.1 820.9 673.1 1538.8 718.7 852.7 831.9 934.8 877.9 737.9 902.0 858.1 816.5 678.8 827.2 850.6 883.0
G. REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.
J. R. Macdonald, Rev. Mod. Phys., 41, 316 (1969). P. G. Tait, Phys. Chem., 2, 1 (1888). G. Tammon, Z. Phys. Chem., 17, 620 (1895). F. D. Murnaghan, Proc. Nat. Acad. Sci., 30, 244 (1944). A. T. Hayward, Brit. J. Appl. Phys., 18, 976 (1967). W. G. Cutler, R. H. McMickle, W. Webb, J. Chem. Phys., 29, 727 (1958). I. C. Sanchez, J. Cho, W.-J. Chen, J. Phys. Chem., 97, 6120 (1993). I. C. Sanchez, J. Cho, W.-J. Chen, Macromolecules, 26,4234 (1993). D. A. McQuarrie, "Statistical Mechanics", Harper & Row, New York, 1976. I. Prigogine, V. Mathot, J. Chem. Phys., 20, 49 (1952). I. Prigogine, N. Trappeniers, V. Mathot, Disc. Faraday Soc, 15, 93 (1953). I. Prigogine, A. Bellemans, V. Mathot, "The Molecular Theory of Solutions", North Holland, Amsterdam, Netherlands, 1957. R. Simha, T. Somcynsky, Macromolecules, 2, 342 (1969). P. J. Flory, R. A. Orwoll, A. Vrij, J. Am. Chem. Soc, 86, 3515 (1964). I. C. Sanchez, R. H. Lacombe, J. Phys. Chem., 80, 2352 (1976). I. C. Sanchez, R. H. Lacombe, J. Polym. Sci., Polym. Lett. Ed., 15, 71 (1977). R. J. Baxter, J. Chem. Phys., 49, 2770 (1968). R. J. Baxter, J. Chem. Phys., 52, 2559 (1970). B. Barboy, Chem. Phys., 11, 357 (1975). Y. C. Chiew, Molec. Phys., 70, 129 (1990). A. O. Malakhov, E. B. Brun, Macromolecules, 25, 6262 (1992). V. S. Mitlin, I. C. Sanchez, J. Chem. Phys., 99, 533 (1993). M. S. Wertheim, J. Stat. Phys., 35, 19 (1984). M. S. Wertheim, J. Stat. Phys., 35, 35 (1984). M. S. Wertheim, J. Stat. Phys., 42, 459 (1986). M. S. Wertheim, J. Stat. Phys., 42, 477 (1986). M. S. Wertheim, J. Chem. Phys., 87, 7323 (1987). W. G. Chapman, G. Jackson, K. E. Gubbins, MoI. Phys., 65, 1057 (1988). W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res., 29, 1709 (1990). R. Dickman, C. K. Hall, J. Chem. Phys., 85, 4108 (1986). G. R. Brannock, I. C. Sanchez, Macromolecules, 26, 4970 (1993). I. C. Sanchez, J. Cho, Polymer, 36, 2929 (1995). B. Hartmann, M. A. Haque, J. Appl. Polym. Sci., 30, 1553 (1985). P A. Rodgers, J. Appl. Polym. Sci., 48, 1061 (1993).
35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68.
H. Shih, P. J. Flory, Macromolecules, 5, 758 (1972). S. Beret, J. M. Prausnitz, Macromolecules, 8, 536 (1975). A. Quach, R. Simha, J. Appl. Phys., 42, 4592 (1971). O. Olabisi, R. Simha, Macromolecules, 8, 206 (1975). J. E. McKinney, M. Goldstein, J. Res. Nat. Bur. Stand., 78A, 331 (1974). P. Zoller, J. Appl. Polym. Sci., 23, 1051 (1979). J. W. Barlow, Polym. Eng. Sci., 18, 238 (1978). Y. X. Yi, P. Zoller, J. Polym. Sci., Polym. Phys. Ed., 31, 779 (1993). P. Zoller, J. Appl. Polym. Sci., 23, 1057 (1979). P. Zoller, J. Polym. Sci., Polym. Phys. Ed., 20, 1453 (1982). C. K. Kim, PhD, Dissertation, The University of Texas at Austin, 1992. P. Zoller, P. Bolli, J. Macromol. Sci. B: Phys., 18,555 (1968). B. E. Eichinger, P. J. Flory, Macromolecules, 1, 285 (1975). P. Zoller, J. Polym. Sci., Polym. Phys. Ed., 16, 1261 (1978). R. K. Jain, R. Simha, J. Polym. Sci., Polym. Phys. Ed., 17, 1929 (1979). T. Ougizawa, G. T. Dee, D. J. Walsh, Macromolecules, 24, 3834(1991). P. Zoller, T. A. Kehl, H. W. Starkweather Jr., G. A. Jones, J. Polym. Sci., Polym. Phys. Ed., 27, 993 (1989). R Zoller, J. Appl. Polym. Sci., 22, 633 (1978). P Zoller, J. Appl. Polym. Sci., 21, 3129 (1977). Y. Z. Wang, W. J. Chia, K. H. Hsieh, H. C. Tseng, J. Appl. Polym. Sci., 44, 1731 (1992). P. Zoller, H. H. Hoehn, J. Polym. Sci., Polym. Phys. Ed., 20, 1385 (1982). R. G. Griskey, N. Waldman, Mod. Plast., 43, 245 (1966). P. Zoller, R. K. Jain, R. Simha, J. Polym. Sci., Polym. Phys. Ed., 24, 687 (1968). C. K. Kim, D. R. Paul, Polymer, 33, 2089 (1992). K. H. Hellwege, W. Knappe, P Lehmann, Kolloid-Z. Z. Polym., 183, 110(1962). F. Danusso, G. Gianotti, Makromol. Chem., 61, 164 (1963). K. Nakagawa, Y. Ishida, Kolloid-Z. Z. Polym., 251, 103 (1973). V.-H. Karl, F. Asmussen, K. Ueberreiter, Makromol. Chem., 178, 2037 (1977). K.-Y. Wei, J. A. Cuculo, D. W. Ihm, J. Polym. Sci. Polym. Phys. Ed., 21, 1091 (1983). C. E. Weir, J. Res. Nat. Bur. Stand., 50, 153 (1953). O. Olabisi, R. Simha, Macromolecules, 8, 211 (1975). D. J. Walsh, G. T. Dee, P W. Wojtkowski, Polymer, 30,1467 (1989). Y. A. Fakhreddine, P Zoller, J. Polym. Sci., Part B: Polym. Phys., 32, 2445 (1994). J. E. Lennard-Jones, A. F. Devonshire, Proc. R. Soc, London Ser. A, 163, 53 (1937).
S E C T I O N
S
O
L
U
T
I
O
N
V I I
P R O P E R T I E S
V i s c o s i t y
-
a n d o f
M o l e c u l a r
W e i g h t
U n p e r t u r b e d L i n e a r
C h a i n
R e l a t i o n s h i p s
D i m e n s i o n s M o l e c u l e s
M . Kurata, Y. T s u n a s h i m a Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
A. Introduction 1. The Viscosity - Molecular Weight Relationship 2. Unperturbed Dimensions of Linear Chain Molecules B. Effect of Molecular Weight Distribution on the Viscosity Constant K C. Tables of Viscosity - Molecular Weight Relationships, [77] - KM3 Table 1. Main-Chain Acyclic Carbon Polymers 1.1. Poly(dienes) 1.2. Poly(alkenes), Poly(acetylenes) 1.3. Poly(acrylic acid) and Derivatives 1.4. Poly(oc-substituted acrylic acid) and Derivatives 1.5. Poly(vinyl ethers) 1.6. Poly(vinyl alcohol), Poly(vinyl halides) 1.7. Poly(vinyI esters) 1.8. Poly(styrene) and Derivatives 1.9. Other Compounds 1.10. Copolymers Table 2. Main-Chain Carbocyclic Polymers Table 3. Main-Chain Heteroatom Polymers 3.1. Poly(oxides), Poly(ethers) 3.2. Poly(esters), Poly(carbonates) 3.3. Poly(amides) 3.4. Poly(amino acids) 3.5. Poly(ureas), Poly(urethanes), Poly(imines) 3.6. Poly(sulfides) 3.7. Poly(phosphates) 3.8. Poly(siloxanes), Poly(silsesquioxanes) 3.9. Poly(heterocyclics)
VII-2 VII-2 VII-4 VII-5 VII-5 VII-5 VII-5 VII-7 VII-10 VU-13 VII-17 VII-17 VII-18 VII-19 VII-24 VII-27 VII-31 VII-32 VII-32 VII-34 VII-36 VII-38 VII-39 VII-39 VII-39 VII-40 VII-41
3.10. Copolymers (Maleic Anhydride, Sulfones) 3.11. Other Compounds Table 4. Cellulose and Derivatives, Poly(saccharides) Table 5. Miscellaneous D. Calculated Unperturbed Dimensions of Freely Rotating Chains E. Unperturbed Dimensions of Linear Polymer Molecules Table 6. Main-Chain Acyclic Carbon Polymers 6.1. Poly(dienes) 6.2. Poly(alkenes), Poly(acetylenes) 6.3. Poly(acrylic acid) and Derivatives 6.4. Poly(a-substituted acrylic acid) and Derivatives 6.5. Poly(vinyl ethers), Poly(vinyl alcohol), Poly(vinyl esters), Poly(vinyl halides) 6.6. Poly(styrene) and Derivatives 6.7. Other Compounds 6.8. Copolymers Table 7. Main-Chain Carbocyclic Polymers Table 8. Main-Chain Heteroatom Polymers 8.1. Poly(oxides), Poly(ethers) 8.2. Poly(esters), Poly(carbonates) 8.3. Poly(amides) 8.4. Poly(amino acids) 8.5. Poly(urethanes) 8.6. Poly(sulfides) 8.7. Poly(phosphates) 8.8. Poly(si loxanes), Poly(silsesquioxanes), Poly(silmethylenes) 8.9. Poly(heterocyclics)
VII-42 VII-42 VII-43 VII-46 VII-46 VII-47 VII-47 VII-47 VII-48 VII-49 VH-50 VII-53 VII-54 VII-56 VII-58 VII-60 VII-60 VII-60 VII-61 VII-63 VII-63 VII-63 VII-63 VII-64 VII-64 VII-64
8.10. Copolymers (Maleic Anhydride, Sulfones, Siloxanes) 8.11. Other Compounds Table 9. Cellulose and Derivatives, Poly(saccharides) F. References
VII-65 VII-66 VII-66 VII-68
A.
INTRODUCTION
1.
The Viscosity - Molecular Weight Relationship
The limiting viscosity number [77] of a solution - which has long been called the intrinsic viscosity - is defined as (Al) in terms of the solvent viscosity, 770, the solution viscosity, 77, and the solute concentration, c. The concentration, c, is expressed in grams of solute per milliliter of solution or, more frequently, in grams of solute per 100 milliliters of solution, the limiting viscosity number being given in the reciprocal of these units, i.e., in milliliters per gram or in deciliters per gram. Here, following the IUPAC 1952recommendations (1), we adopt the former unit. The quantity [77] of a polymer solution is a measure of the capacity of a polymer molecule to enhance the viscosity, which depends on the size and the shape of the polymer molecule. Within a given series of polymer homologs, [77] increases with the molecular weight M; hence it is a measure of M. Section C gives the limiting viscosity number molecular weight relationships for polymers, in various solvents and at various temperatures. The table contains the constants of the equation (A2) which is known as the Mark-Houwink-Sakurada equation. It is now well established that for linear, flexible polymers, under special conditions of temperature or solvent, (usually known as the Flory "theta" temperature or solvent, (2)), the above equation becomes (A3) In the tables, the 6 sign in parenthesis (next to the temperature data) indicates that the viscosity constants were obtained under the theta condition. Since Eq. (A3) is approximately valid over the whole molecular weight range, Kg and a — 0.50 may be used without modification, outside of the molecular weight range in which they were determined. However, it must be noted that [77] is rather sensitive to temperature in the vicinity of 9, especially when M is higher than 5 x 105. In ordinary good solvents, the constants K and a obtained are valid only within a rather limited range of M
(3,4). It is therefore, quite probable that the tabulated relationships are in error outside the indicated range of M (see eighth column in the table). As for the effect of temperature, however, both K and a mostly become insensitive to the temperature when a exceeds about 0.70, and they may be used in a 10-degree range on either side of temperature at which the constants were determined. The method of determination of the molecular weight and the number of fractionated samples (Fr.) or whole polymer samples (WP) used to determine the [77]-M relationship are also given in the ninth and the sixth or seventh columns, respectively. The abbreviations used are as follows: (A) Methods Yielding the Number-Average Molecular Weight (Mn) CR cryoscopy EG end-group titration VOS vapor pressure osmometry EB ebullioscopy OS osmotic pressure (B) Methods Yielding the Weight-Average Molecular Weight (Af w ) LS light scattering LLS low-angle laser light scattering SE sedimentation equilibrium SEC, GPC size exclusion chromatography gel permeation chromatography SA approach to the sedimentation equilibrium (Archibald's method) (C) Empirical or Semi-Empirical Methods EM electron microscopy GPC gel permeation chromatography LV limiting viscosity number - molecular weight relationship PR analysis of polymerization rate (yielding M n ) DV diffusion and viscosity MV melt viscosity - molecular weight relationship SD sedimentation and diffusion SV sedimentation and viscosity Thus, for example, the constants tabulated are for the [77]M relationships, expressed in terms of Mn or Mw, if the method is specified as OS or LS, respectively; Le., (A4) or (A5) The values OfATn and Kw, especially the former, are greatly influenced by the molecular weight distribution (MWD) of the polymer samples, and caution must be taken in using these relationships.
To illustrate this effect, let us assume that (i) Equation (A2) is applicable to the molecule i with molecular weight M, over the whole range of M; Le., (A6) (ii) The weight fraction w,- of the molecules i in a given sample can be represented by a continuous exponential function, (A7) (A8) or by the log-normal function, (A9) where h, A, p, and Mo are constants, and T represents the gamma function. Then, since [77] = ^ 1 - Wify]^ we obtain (AlO) (AU) for the exponential MWD, and
Based on the above consideration, we classify the heterogeneity of polymers into four classes, A-D, as shown in the last column of the table in Section B, and indicate it in the tenth column of the tables in Section C, as a measure of the heterogeneity of the reference samples used. It is desirable that readers select their own relationship by inspecting these data on heterogeneity as well as those on the number of samples and the molecular weight range. Generally speaking, a "good" [?7]-M relationship is one that has been obtained on the basis of Mw for at least four samples of classes A and B (exceptionally C) or on the basis of Mn for those of class A (exceptionally B), whose molecular weights range over at least one half orders of magnitude. In the "Remarks" column of Section C, we have occasionally indicated by the letter R, a "recommended" relationship for the convenience of readers. In the range of low molecular weight (mostly less than 104), the constant a becomes 0.50 irrespective of the solvent. This type of relationship cannot be used, even approximately, at higher molecular weights. This case is noted by the letter L. High conversion polymers are also marked by the letter H, where the [rj]-M relationships are less reproducible due to chain branching than are ordinary ones. The abbreviations used are as follows: A
(A12) (A13) for the log-normal MWD (5). The values of Kn/K and Kw IK calculated by these equations are shown in Section B. This table may be used for estimating an error due to MWD in the determination of M. As an example, let us assume that a given polymer sample has the exponential MWD with Mw/Mn = 2.0, while an available [77]-Mn equation has been obtained for samples with a narrow MWD, e.g., M^fMn = 1.1. Further, let a be 0.70. Then, to find the correct value of Mn of the given sample from [77], we must use Eq. (A4) with Kn = 1.54K9 instead of the available equation with ^ n = 1.06AT. Use of the latter would lead to an overestimate Mn which is related to the correct Mn by (A14) The error amounts to about 70%, i.e., Mn = 1.7Mn. Thus, application of the viscosity equation written in Mn is to be restricted to within a narrow class of samples, unless an appropriate correction is made. On the other hand, if an [77]-Mw equation is available for the same pair of working and reference samples as above, we have (A15) instead of Eq. (A14). Hence, the error Mw amounts to only 6% (M^ = 0.94Mw), which will be negligible for more practical purposes.
B C D H L R
Narrow MWD polymers, or well-fractionated polymers, Mw/Mn < 1.25 Ordinary fractionated polymers, 1.30 <M W /M n < 1.75 Poorly fractionated polymers or most probable MWD polymers, 1.8 < Mw/Mn < 2.4 Wide MWD polymers, M^jMn > 2.5 High conversion polymers, including branches Limited to low-molecular-weight polymers Recommended relationship
In Section C, polymers are arranged according to their structure in subgroups. Within each subgroup, the polymers are, in principle, given in alphabetical order. Within each polymer, the solvents are also arranged in alphabetical order, followed by the mixed solvents. Chain configurational data are occasionally given in the first column. The data given in parentheses refer to only one set of viscosity constants listed in the same row, while the data given without parentheses refer to a series of sets listed in the same and succeeding rows. Thus, for example, the data "N content, 13.9 wt.%" are effective only for the sixth row of cellulose trinitrate, and the data "95%-cw, 1%-trans, 4%-l,2" are effective for the fourth to eighth rows of polybutadiene. The tables in Section C are essentially based on the table published by Kurata and Stockmeyer (3). Data were also taken from tables published by Peterlin (7), Meyerhoff (8), Elias (9), and Krause (10), the last one including a number of unpublished data on acrylic and methacrylic polymers. We are also grateful to these authors. Thanks are also due to J. Brandrup and K. Kamide for their help with this compilation. References page VII - 68
2.
Unperturbed Dimensions of Linear Chain Molecules
The mean-square end-to-end distance (r2) of a linear chain molecule in solution is usually expressed in terms of two basic quantities, the unperturbed mean-square end-to-end distance {r2)0 and the expansion factor a; i.e., (A16) The latter quantity a represents the effect of "long-range interactions" which can be described as an osmotic swelling of the chain by the solvent-polymer interactions, while the unperturbed dimension (r 2 ) 0 represents the effect of "short-range interactions" such as bond angle restrictions and steric hindrances to internal rotation. The steric hindrances are also influenced by the torques exerted on the chain by solvent molecules, but the effect is rather small in many cases (11). For sufficiently long chain, (r 2 } 0 becomes proportional to ]T\ mlJ where Yi1 is the number of the jth-kind bond of length //. The quantity C00, defined by (A17) is often called the characteristic ratio and it serves as a measure of the effect of short-range interactions. The freely rotating state is a hypothetical state of the chain in which the bond angle restrictions are retained, but the steric hindrances to internal rotation are released. The mean-square end-to-end distance of the freely rotating chain (r 2 ) 0f can be readily calculated from the given basic structure of the chain. For instance, if the chain consists of only one kind of bond of length /, we obtain (A18) where n is the number of bonds and 6 is the supplement of the valence bond angle. For vinyl polymer chains, / = 0.154 [nm], cos (9 = 1/3, and n = M/m = 2M/MU; and hence
and temperature. The values of ro/M1/'2, rof/M1/2, a and C00 are given, together with the experimental values of Soz/M^2, ap, or Ko from which ro was computed. S0Z which is the abbreviation of (S2) ^ 2 is the z-average value of the unperturbed radius of gyration, ap is the persistence length, and Ko is the viscosity constant corresponding to KQ in Eq. (A3). The methods used to determine these quantities are also indicated in the tenth column of the tables by using the following abbreviations: (A) Light scattering LT Zimm's plot in a theta solvent yielding Soz/Mlj2. After a heterogeneity correction is made, the tabulated value of ro/M'/2^61/25Ow/My2) is obtained. LD dissymmetry method in a theta solvent. Less reliable for heterogeneous samples than the former method. LG Zimm's plot in good solvents yielding Sz/MI/2. After corrections for the excluded volume effect and heterogeneity are made, the tabulated value of ro/M 1 / 2 is obtained (3,12). (B) X-ray small-angle scattering XS the persistence length ap is obtained irrespective of the solvent nature. The tabulated values of ro/M1^2 are the asymptotic values for infinitely high molecular weight (13,14). (C) Limiting viscosity number VT viscosity - molecular weight relationship in a theta solvent. Equation (A3) ro/M 1 / 2 is calculated by the Flory and Fox relation, K0 ^ ^o{ro/M^2)\ The following values of
(A19) where Mu is the molecular weight of the repeating unit and m is the average molecular weight per skeletal link. Similar expressions for r^ (~ (r2)of ) c a n ^ e a * so obtained for more complicated chains. The results are summarized in Section D. The ratio of (r2)0 to (r 2 ) 0f , then, represents the effect of steric hindrance on the average chain dimensions: (A20) The quantity a is independent of n. Section E gives a list of the unperturbed dimensions of linear chain molecules which were obtained under various conditions of solvent
2.1 x 1023 for poorly fractionated or unfractionated polymers (class C or D) VG
viscosity - molecular weight relationship in good solvents. Ko was estimated by using the Kurata-Stockmeyer-Fixman plot (3,4) or other analogous plots (12). VWC viscosity analyzed by the wormlike cylinder model. VA viscosity in good solvents. The correction of excluded volume effect is made by using the Flory -Krigbaum-Orofino theory of the second virial coefficient A 2 or other analogous theories (12).
LT or XS. The listed values of ro/M1/2 sometimes scatter appreciably, reflecting the difficulty involved, both experimental and theoretical, in the determination of this quantity. Especially in the case of cellulose chains, the right magnitude of ro is yet in controversy (542, 549,3,691,696,688,678,686,12). In recent papers, emphasis has often been put on the effect of temperature or solvent on the unperturbed dimensions. These data are put together at the end of the tabulation for each polymer. Section E is also based on the tables published by Kurata and Stockmeyer (3).
(D) Method yielding the temperature dependence of roST stress - temperature coefficient of undiluted or swollen samples. VTe viscosity - temperature coefficient of the intrinsic viscosity The polymers are arranged in Section E in the same order as in Section C. For each polymer, smoothed values of ro/M 1 / 2 , a, and C00, which were mostly obtained by VT or VG, are given in the first line, followed by some typical values obtained by more direct methods such as
B. EFFECT OF MOLECULAR WEIGHT DISTRIBUTION ON THE VISCOSITY CONSTANT K a = 0.5 My1JMn
KjK
a=0.6
Ky1IK
KJK
a^0.7
Ky,/K
KJK
a = 0.8
Ky1IK
KjK
a = 0.9
K^/K
KjK
a = 1.0
Ky1)K KJK
K^/K
Class
MOLECULAR WEIGHT 30 4.87 15 3.46 10 2.83 5 2.03 3 1.60 2 1.33 1.75 1.25 1.50 1.18 1.25 1.09 1.10 1.04
DISTRIBUTION: EXPONENTIAL TYPE (Eq. 0.890 6.91 0.897 9.85 0.893 4.57 0.900 6.08 0.896 3.59 0.903 4.59 0.907 2.40 0.913 2.85 0.921 1.79 0.926 2.02 0.940 1.43 0.943 1.54 0.948 1.33 0.951 1.42 0.959 1.23 0.961 1.28 0.975 1.12 0.977 1.15 0.989 1.05 0.989 1.06
(A7)) 0.911 0.914 0.917 0.925 0.936 0.951 0.958 0.967 0.980 0.991
14.18 8.16 5.91 3.42 2.29 1.68 1.51 1.35 1.18 1.07
0.933 0.935 0.937 0.943 0.952 0.963 0.968 0.975 0.985 0.993
20.56 11.02 7.67 4.12 2.62 1.83 1.63 1.42 1.21 1.09
0.963 0.964 0.965 0.968 0.973 0.979 0.982 0.986 0.991 0.996
30 15 10 5 3 2 1.75 1.50 1.25 1.10
1 1 1 1 1 1 1 1 1 1
D D D D D C B B A A
MOLECULAR WEIGHT 30 3.58 15 2.76 10 2.37 5 1.83 3 1.51 2 1.30 1.75 1.23 1.50 1.16 1.25 1.09 1.10 1.04
DISTRIBUTION: NORMAL TYPE (Eq. (A9)) 0.654 5.12 0.665 7.57 0.713 3.67 0.723 5.01 0.750 3.02 0.759 3.94 0.818 2.17 0.824 2.61 0.872 1.69 0.877 1.92 0.917 1.39 0.920 1.51 0.932 1.31 0.935 1.40 0.951 1.21 0.953 1.27 0.973 1.11 0.974 1.14 0.988 1.05 0.989 1.06
0.700 0.753 0.785 0.845 0.891 0.930 0.943 0.958 0.977 0.990
11.58 7.03 5.25 3.19 2.21 1.65 1.50 1.34 1.17 1.07
0.762 0.805 0.832 0.879 0.916 0.946 0.956 0.968 0.982 0.992
18.32 10.13 7.16 3.96 2.56 1.81 1.61 1.41 1.21 1.08
0.858 0.885 0.902 0.930 0.952 0.969 0.975 0.982 0.990 0.996
30 15 10 5 3 2 1.75 1.50 1.25 1.10
1 1 1 1 1 1 1 1 1 1
D D D D D C B B A A
C.
TABLES O F VISCOSITY - M O L E C U L A R W E I G H T RELATIONSHIPS, [if] = KM*
TABLE 1. MAIN-CHAIN ACYCLIC CARBON POLYMERS No. of samples Polymer
Solvent
Temp. ( 0 C)
K(xlO3) (ml/g)
a
Fr.
W.P.
MoL wt. range (xlO~4)
Method(s)
Remarks
Refs.
-
2.1-23.2 2.1-23.2 3.8-6.1 5-50 5-50 5-50 15-50 15-50 15-35
LG LG LG OS OS OS LS LS LS
B-C B-C B-C A,R A A A A B
889 889 889 15 15 15 16 16 17
1.1. POLY(DIENES) Poly(butadiene) linear ring 98%-cij, 2%-l,2
95%-cis, \%-trcms, 4%-l,2
Dioxane Toluene Toluene Benzene Isobutyl acetate Toluene Benzene Cyclohexane 5-Methyl-2-hexanone
12.1 35 35 30(0) 20.5 30 30 30 12.6(6»)
139 16.9 11.8-10.6 33.7 185 30.5 8.5 11.2 150
0.52 0.765 0.765 0.715 0.50 0.725 0.78 0.75 0.50
4 6 3 9 6 9 4 4 4
References page VII - 68
TABLE 1. cont'd No. of samples Polymer
Solvent
3-Pentanone Toluene 94%-cw, 4%-trans, 2%-l,2 Benzene Dioxane 92%-cis, 3%-trans, 5%-l,2 Benzene 51%-trans, 43%-cis, 6%-l,2 Toluene 51%-trans, 36%-cis, 7%-l,2 Tetrahydrofiiran 11%-trans, 4%-cis, 25%-l,2 Cyclohexane 19%-trans, 21%-cis Cyclohexane 97%-frans, 3%-1,2 Cyclohexane Toluene ca. 100%-cw Benzene Heptane/hexane (1/1, v/v) 65%-l,2, 25%-trans, 10%-cw Toluene 5°C-emulsion, randomly 3-Pentanone branched 50°C-emulsion, randomly Benzene branched Poly(butadiene-c0-acrylonitrile), Buna-N rubber Acetone Benzene Chloroform Toluene Poly(butadiene-co-styrene), Buna-S, GR-S, or SBR rubber Benzene Cyclohexane 2-Pentanone Toluene
linear fraction Toluene branched fraction Toluene Poly( 1 -butenylene-co- vinylethylene) 43%-l,2 1,4-Dioxane Tetrahydrofuran Poly(2-terf-butylbutadiene) Benzene Octane Poly(chloroprene) NeopreneCG Benzene NeopreneGN Benzene NeopreneW Benzene
type, unspecified Poly(isoprene) natural rubber
synthetic cis 85-91%-cw
Butanone Butyl acetate Carbon tetrachloride Cyclohexane Toluene Benzene Cyclohexane 4-Methyl-2-pentanone 2-Pentanone Toluene Hexane Toluene Toluene 2,2,4-Trimethylpentane Heptane/propanol (78/22, v/v)
X(xlO3) (ml/g)
Temp. (0C) 10.3(0) 30 25 20.2(0) 32 30 30 25 20 40 30 32 20
152 33.9 41.4 205 10 39 25.6 12 36 28.2 29.4 14.5 138
25 24(9) 5(0)
a 0.50 0.688 0.70 0.50 0.77 0.713 0.74 0.77 0.70 0.70 0.753 0.76 0.53
110 0.62 M2^[rj\ = 7.15 + 3.47M
Fr.
W.R
MoI. wt. range (xlO4)
4 8 8 8 13 6 2 8 12 7 6 8 5
-
10-25 10-65 9-120 9-120 10-160 11-25 1-57 230-880 23-130 4-17 5-16 18-50 ?
LS OS OS OS LS OS LS LS LS LS OS LS SD
B A A A B,R A A C B,R B A A A
17 18 19 19 20 21 733 22 23 24 25 26 27
8 10
-
7-70 10-100
OS OS
B C
28 29
5-124
OS
C
29
B B B B
28 28 28 28
M2I*[rj]4/3 = 4.61 +0.3287M 16
25 25 25 25
Method(s)
Remarks
Refs.
50 13 54 49
0.64 0.55 0.68 0.64
5 5 5 7
-
2.5-10 2.5-10 2.5-10 2.5-40
OS OS OS OS
25 25 30 21 (0) 25 30 30 30 30
52.5 54 31.6 185 52.5 16.5 37.9 21.4 535
0.66 0.66 0.70 0.50 0.667 0.78 0.71 0.74 0.48
24 8 6 6 25 6 15 20
9 -
1-160 1-165 5-25 5-25 2.5-50 3-35 5-25 3-20 20-100
OS OS OS OS OS OS OS OS OS
A AJR B
45 46 47 47 28 48 47 41 41
15.7 (0) 30 21 21
173 32.3 4.2 4.2
0.50 0.72 0.80 0.80
6 6 -
8 7
0.88-22 0.88-22 6-90 6-35
LLS, SEC, OS LLS, SEC, OS SD SD
A A A A
890 890 30 30
25 25 25 25 25(0) 25 25 45.5 (0) 25
2.02 14.6 15.5 15.5 113 37.8 22.1 107 50
0.89 0.73 0.71 0.72 0.50 0.62 0.69 0.50 0.615
10 16 8 9 7 7 7 7 13
-
6-150 2-96 5-100 5-80 15-300 15-300 15-300 15-70 4-120
OS OS OS LS LS LS LS LS OS
B B B B,R A A A B B
31 32 33 34 35 35 35 34 28
30 27 35 14.5(0) 25 35 20 30 30 30 30 30
18.5 30 60.7 119 50.2 17.4 68.4 8.51 20.0 15 22.2 37
0.74 0.70 0.57 0.50 0.667 0.74 0.58 0.77 0.728 0.74 0.683 0.63
-
4 1
20
4 -
5 5 -
12 16 8 6
8-28 ca. 185 5-100 8-28 7-100 5-100 5-80 20-100 14-580 2-15 23-580 43-580
OS LS, SD LS OS OS LS SD LS LS PR LS LS
C C B C B,R B A A A,R A A A
37 38 698 37 39 698 40 41 42 43 42 42
B A A B
TABLE 1. cont'd No. of samples Polymer 84%-m, 14%-trans, 2%~1,2
71%-m, 22%-trans, 7%-3,4
guttapercha
synthetic trans synthetic trans (98%)
98% \A-trans
70% CW-1,4, 23% trans-1,4 7% 3,4 76% cis-1,4, 19% trans-1,4 5% 3,4 star type 70% cis-1,4, 23% trans-1,4 7% 3,4 (mol. wt. of arm = various) 3 arm 4 arm 8 arm
Solvent Benzene
Temp. (0C)
Dioxane Cyclohexane Dioxane 4-Methyl-2-pentanone Toluene Benzene Dioxane Propyl acetate Benzene Benzene Cyclohexane Hexane Toluene Benzene Cyclohexane »7. Hexane Toluene Cyclohexane
25 25 34(9) 35 35 35 35 25 47.7 (0) 60 (0) 32 30 30 30 30 30 30 30 30 25
Cyclohexane
25
/ST(XlO3) (ml/g)
a
Fr.
W.P.
MoI. wt. range (xlO~4)
Method(s)
Remarks
OS OS OS OS OS OS OS OS OS OS LS LS LS LS LS LS LS LS LS LS
B B B A A A A A,R A C C B B B B B B B B A
44 44 44 786 786 786 786 19 19 37 26 699 699 699 699 887 887 887 887 891
Refs.
13.3 11.2 145 20.2 94 76 17.5 35.5 191 232 43.7 18.1 16.2 13.8 17.6 18.1 16.2 13.8 17.6 20.5
0.78 0.78 0.50 0.73 0.53 0.56 0.74 0.71 0.50 0.50 0.65 0.722 0.736 0.711 0.729 0.722 0.736 0.711 0.729 0.730
20 25 30 5 5 5 5 9 9 24
~ 3 -
8 7
-
6 8 7 5 11
-
2-80 2-60 2-50 2-32 2-32 2-32 2-32 0.2-5 0.2-5 10-20 8-140 14-77 14-77 14-77 14-77 14-69 16-130 16-105 14-77 1.5-342
18.0
0.74
5
-
33-724
LS
A
892
0.757 0.753 0.493 0.726 0.501 0.741 0.502 0.764 0.722 0.736 0.711 0.729
~ 6 6 6 4
-
-
14-70 14-70 14-70 14-70
LS LS L LS LS LS LS LS LS LS LS LS
B B B B
893 893 893 893 893 893 893 893 894 894 894 894
0.68 0.63 0.57 0.73 0.60 0.65 0.55 0.72
5 5 5 5 6 6 6 6
-
3-54 3-54 3-54 3-54 3-48 3-48 3-48 3-48
OS OS OS OS OS OS OS OS
A A A A A A A A
786 786 786 786 786 786 786 786
0.50 0.77
7 7
-
1.3-27 1.3-27
LLS, SEC, OS LLS, SEC, OS
A A
890 890
0.52 0.75 0.66
8 8 11
-
1.1-14 1.1-14 25-130
LLS, SEC, OS LLS, SEC, OS LS
A A
890 890 36
1.04 0.61 0.52 0.76 0.50 0.72
12 10 6 6 3 U
-
2-18 4-700 2.7-55 2.7-55 10-130 0.03-0.5
LS LS LLS9SEC LLS5SEC LS EG
B B A A C B,L
86 87 896 896 81 82
Cyclohexane 25 12.5 Cyclohexane 25 11.6 1,4-Dioxane 34 75.5 Toluene 34 9.47 12 arm 1,4-Dioxane 34 53.9 Toluene 34 5.70 16 arm 1,4-Dioxane 34 37.4 Toluene 34 3.04 trans 1,4 Benzene 30 18.1 Cyclohexane 30 16.2 Hexane 30 13.8 Toluene 30 17.6 Poly(isoprene)-/?/0c£-poly(styrene), A*-B „ k/n, (50/50, w/w) Cyclohexane 35 21.8 Dioxane 35 32.6 4-Methyl-2-pentanone 35 53.1 Toluene 35 14.6 k/n, (25/75, w/w) Cyclohexane 35 39.3 Dioxane 35 24.8 4-Methyl-2-pentanone 35 62.8 Toluene 35 14.3 Poly(isopropenylethylene-co-l-methyl-l-vinylethylene)20-25%-l,2,70-75%-3,4 2-Octanol 30.5(0) 102 Tetrahydrofuran 30 11.6 Poly( 1 -methyl-1 -butylene-a?-isopropenylethylene) 51 %-1,4,49%-3,4 2-Octanol 41.3 78 Tetrahydrofuran 30 14.6 Poly(l,l,2-trichlorobutadiene) Benzene 25 31.6
S
-
1.2. POLY(ALKENES), POLY(ACETYLENES) Poly(alkene)C l0 -C l8 Poly(alkene) C 1 2 -C 1 8 Poly(l-butene) atactic
Toluene Cetane 2-Octanol Tetrahydrofuran Anisole Benzene
25 38 23.6 25 86.2(0) 30
12.7 21 60.5 8.24 123 22.4
References page VII - 68
TABLE 1. cont'd No. of samples Polymer
isotactic
Solvent Ethylcyclohexane Phenyl ether Anisole Decalin Ethylcyclohexane Heptane Nonane Phenetole Phenyl ether 1,2,4,-Trichlorobenzene Cyclohexane/propanol (80/20, v/v) (70/30, v/v) (65/35, v/v)
Poly(ethylene) low pressure
Biphenyl 1-Chloronaphthalene
Decalin
Decanol Diphenyl ether Diphenylmethane Dodecanol
Octanol Tetralin
1,2,4-Trichlorobenzene
3,5,5-Trimethylhexyl acetate p-Xylene
Temp. (0C) 70 141 (0) 89(0) 115 70 35 60 80 64.5(0) 148(0) 135 35 35 35 127.5 (0) 130(0) 125 125 125 129 135 135 135 135 135 153.3(0) 161.4(0) 142.2(0) 137.3(0) 138(0) 144.5 180.1 (0) 105 120 120 130 130 130 135 135 135 121
AT(XlO3) (ml/g)
a
Fr.
W.P.
MoI. wt. range (xlO" 4 )
Method(s)
Remarks
Refs.
C A B
81 700 700 83 81 83 83 81 700 700 701
7.34 104 111 9.49 7.34 4.73 15.0 5.85 113 103 H.8
0.80 0.50 0.50 0.73 0.80 0.80 0.69 0.80 0.50 0.50 0.729
5 5 5 6 4 6 6 4 5 5
-
4-130 2-66 4-57 4.5-90 8-94 4.5-90 4.5-90 11-94 4-57 4-57
LS OS OS LS LS LS LS LS OS OS GPC
102 253 497
0.59 0.51 0.44
6 6 6
-
3-73 3-73 3-73
LS LS LS
B-C B-C B-C
702 702 702
323 302 138 18.4 43 27.1 67.7 46 62 58.5 62 302 295 315 307 316
0.50 0.50 0.58 0.78 0.67 0.71 0.67 0.73 0.70 0.725 0.70 0.50 0.50 0.50 0.50 0.50 0.61 0.50 0.83 0.78 0.77 0.76 0.725 0.72 0.64 0.706 0.691 0.55
4 5 ? 10 10 26 ~ 23 7 9 7 ? 6 ? 5 6 ? 4 36 20 6 9 4 19 4 6
2-30 5.7-27 ? 5-100 5-100 5-100 3-100 3-64 2-105 0.4-50 3-120 2-105 2-105 2-105 2-105 8-32 0.8-59 2-105 13-57 5-100 0.3-50 2-30 0.4-50 8-17 3-45 0.8-123
B
1-59
LV LS, GPC LS LS LS LS LS LS LS OS GPC7LS LV LS LV LV LS LS LV LS LS LS OS OS LS LS GPC, LS GPC LS
58 703 59 60 61 62 63 64 65,66 67,68 704 58 65 58 58 69 705 58 70 60 71 71 72 73 706 704 701 705
0.83 0.83 0.725
4 8 ?
-
13-50 1-18 0.4-50
LS OS LV
C C B,R
70 74 75
(0.65) 0.738 0.63 0.63
9 8 7 -
22 7
LS OS OS OS CR
D B D D A
76 77 78 79 80
0.71
-
3
54-116
LS
B
898
0.51 0.64 0.502 0.543 0.523 0.522
6 6 6 6 6 6
-
0.92-23 0.92-23 2.8-39 2.8-39 2.8-39 2.8-39
LLS, SEC, OS LLS, SEC5 OS LS LS LS LS
A A A A A A
890 890 897 897 897 897
286 16.2 23.6 32.6 43.5 51 37.8 95.4 51 51.6
105 16.5 105 17.6 105 51 Paraffin wax (Afn = 390 ± 10) 150 (42) high pressure Decalin 70 38.73 p-Xylene 75 135 81 105 (normal paraffin) Carbon tetrachloride 20 [77] = - 1 . 1 4 + 0.104 M Poly(ethylene-a/Metrafluoroethylene) Diisobutyl adipate 240 2.3 Poly(ethylene-co-isopropylethylene) n-Hexyl acetate 65 171 Tetrahydrofuran 30 71.3 Poly(ethylene-ctf-propylene) Benzene 19.0 201 214 136 n-Decyl acetate 5.0 162 n-Heptyl acetate 38.0 156
~ ? > 10 8 10 -
0.04-11 0.2-3.5 0.2-7.6 1-10 0.024-0.048
A
A B B
? C,D D D B,R B B B B B B F B C B B B,R D A B
TABLE 1. cont'd
Polymer
Solvent
Poiy(ethylene-co-propylene-c-diene), EPDM rubber Cyclohexane Poly(isobutene) Anisole Benzene
Benzene
40 105(0) 24(0) 25 30 40 60 25 30 25 10 20 30 40 50 25 30 30 25 25 20 25 25 10 20 30 40 50 86(0) 0 15 25 30 50 60 90 25(0)
lsoamyl isovalerate
25(0)
Benzene Carbon tetrachloride 5-Methyl-3-heptanone Toluene
22.8(0) 25 55.5(0) 25 30 60.9 30
Benzene Carbon tetrachloride Chloroform Cyclohexane
Cyclohexane
Cyclohexane Decalin Diisobutylene n-Heptane Isooctane
Phenetole Toluene
oligomer-polymer
Poly(isobutene-co-isoprene), butyl rubber
Poly(methylbutylene)
Temp. (0C)
«-Hexyl acetate Tetrahydrofuran Poly (isopropy lethy lene-co-1 -methyl-1 -ethylethylene) 2-Octanol Tetrahydrofuran Poly(3-methyl-l-butene) Diisobutylene Poly( 1 -methy lbutylene-c-isopropylethy lene) 2-Octanol Tetrahydrofuran Poly(4-methyl-l-pentene) Biphenyl Decalin Diphenyl ether Diphenylmethane Poly(l-octene) Bromobenzene Cyclohexane Phenetole
26.2 30 20 53.3 30 194.6(0) 130 210.0(0) 176.6(0) 25 30 50.4(0)
(ml/g)
53.1 91 107 83 61 43 26 100 29 71 25.6 24.2 23.3 22.9 22.4 40 27.6 26.5 13.5 22 36 130 15.8 38.1 36.8 36.2 34.6 33.6 91 40 24 87 20 20 13.5 12.6 (M w >10 5 ) (M w <10 5 ) (Af w >10 5 ) (M w <10 5 ) 115 10.7 109 66 21.4 169 42.2
No. of samples tf(xlO3) a Fr. W.P.
0.75 0.50 0.50 0.53 0.56 0.60 0.66 0.504 0.68 0.55 0.639 0.697 0.699 0.701 0.702 0.72 0.69 0.69 0.740 0.70 0.64 0.50 0.697 0.624 0.626 0.627 0.631 0.633 0.50 0.60 0.65 0.56 0.67 0.68 0.71 0.72 0.50 Not const, 0.50 Not const. 0.50 0.78 0.50 0.60 0.678 0.51 0.68
MoI. wt. range (xl(T4)
Method(s)
20 15 9 9 9 9 12 12 6 7 12 6 23 5 4 8 6 6 5 6 4 3 19
3-30 18-188 18-188 ~ 0.05-126 0.05-126 0.05-126 0.05-126 9 1.35-148 0.05-126 5.7-490 6 2.6-110 6 2.6-110 6 2.6-110 6 2.6-110 6 2.6-110 14-34 4-71 0.05-126 18 6.4-161 530-1680 1-130 0.4-2.5 7 0.84-148 6 2.6-110 6 2.6-110 6 2.6-110 6 2.6-110 6 2.6-110 5-188 1-146 - 1 - 1 4 6 14-34 1-146 - 1 - 1 4 6 11-146 46-146 0.011-179
OS LV LV OS, CR OS1CR OS, CR OS, CR SEC1LLS OS, CR LS LV LV LV LV LV OS OS OS, CR SEC5LLS LS OS OS SEC, LLS LV LV LV LV LV LV LV LV OS LV LV LV LV LS
A B B B,R B B B A-B B A(?) A-B A-B A-B A-B A-B B A,R B A-B A-B A,R A,L A-B A-B A-B A-B A-B A-B B B B B B,R B B B A
41 49 49 50 50 50 50 1010 50 899 901 901 901 901 901 51 52 50 1010 53,54 55,52 56 1010 901 901 901 901 901 49 50 50 51 50 50 50 50 904
19
-
0.011-179
LS
A
904
5 6 5 5 8 8 8
-
15-72 10-30 15-72 15-30 10-30 0.84-60 0.84-60
LS OS LS OS OS LLS, SEC, OS LLS, SEC, OS
A A A A A A A
787 57 787 57 57 890 890
Remarks
Refs.
92 10.3 42
0.49 0.75 0.63
7 7 6
-
1.5-28 1.5-28 1-20
LLS, SEC, OS LLS, SEC, OS LS
A A A
890 890 85
74 29.8 152 19.5 158 160 2.90 5.75 65.5
0.52 0.68 0.50 0.75 0.50 0.50 0.78 0.78 0.50
8 8 7 5 6 6 5 6 4
-
1.1-43 1.1-43 6-30 6-30 6-30 6-30 25-400 25-400 60-400
LLS, SEC, OS LLS, SEC, OS OS OS OS OS LS LS LS
A A B B B B A A A
890 890 707 707 707 707 84 84 84
References page VII - 68
TABLE 1. cont'd No. of samples Polymer Poly(pentenamer) 80-85%-/ra«j, 19-12%-cis PoIy(I-phenyl-1-propyne)
Solvent
Cyclohexane Isopentyi acetate Toluene Cyclohexane Toluene
Temp. (0C)
K(XlO 3 ) (ml/g)
30 56.9 38(0) 234 30 52.1 36(6) (wormlike behavior) 25 (wormlike behavior)
Fr.
W.P.
MoI. wt. range (xlO~ 4 )
0.68 0.50 0.69 0.5--0.8
5 8 10 12
-
3.6-63 3.6-63 3.6-63 1.6-145
LS LS LS LS, SE
B B B A
788 788 788 902
Not const.
12
-
1.6-145
LS, SE
A
902
-
2.8-39 2.3-42 2.3-42 6-31 2-34 4-71 4-33 6-31 2-34 1.5-33 2-39 2-62 2-72 4-71 2-34 3.7-21 3.7-21 ? 2-34 5-42 5-50 10-170 5-63 2-62 10-100 5-42 5-42 3-48 3-48 2-11 4-54 5-50 ? 9-45
LS LS, SEC LS, SEC OS OS LV OS OS OS OS OS LS LS LV OS OS OS ? OS LV OS LS LS LS LS LV LV OS OS OS OS OS OS LS
A A A A A B A A A A A A,R D B A A A
897 897 897 88 89 708 90 88 89 90 91 88 92 708 89 90 90 93 89 94 708 95 96 88 97 94 94 90 90 98 96 708 99 100
a
Method(s)
Remarks
Refs.
Poly(propylene)
atactic
n-Octyl acetate 3-Nonanol 1-Octanol Benzene Biphenyl 1-Chloronaphthalene Cyclohexane Cyclohexanone Decalin
Isobutyl acetate Isopentyi acetate Phenyl ether
isotactic
Tetralin Toluene Biphenyl 1-Chloronaphthalene Decalin Dibenzyl ether Diphenyl ether
Tetralin
syndiotactic head-to-head 94%-trans> 6%-l,2 S9%-trans,U%-\>2
p-Xylene Heptane Cyclohexane Cyclohexane
27.0 5.0 77.0 25 30 129(0) 74(0) 25 30 92(0) 135 135 135 58(0) 34 (0) 145 153(0) 130 30 125.1 (0) 125(0) 139 145 135 135 183.2 (0) 142.8 (0) 145(0) 153 135 135 135 85 30
175 113 110 27.0 33.8 128.3 182 16.0 20.9 172 15.8 11.0 54.3 158,5 168.5 192 120 1.24 21.8 152 141.0 21.5 4.9 11.0 10.0 106 137 132 112 2.5 9.17 19.3 96 31.2
0.512 0.536 0.504 0.71 0.67 0.50 0.50 0.80 0.76 0.50 0.77 0.80 0.65 0.50 0.50 0.47 0.50 0.96 0.725 0.50 0.50 0.67 0.80 0.80 0.80 0.50 0.50 0.50 0.54 1.0 0.80 0.74 0.63 0.71
6 7 7 6 6 3 3 6 6 4 6 6 3 6 3 3
10 -
7 4 5 Il 9 6 4 4 4 4 4 5 9 5 12 5
-
30 30 30 30
493 4.16 295 3.82
0.39 0.86 0.43 0.90
5 5 3
-
0.2-1.1 2.1-4.2 0.3-0.8 1 7-3.2
VOS, OS VOS, OS VOS, OS VOS, OS
30 30 30 25 30
6.31 68 6.5 19.1 5.31
0.80 0.66 0.82 0.71 0.79
7 7 7
21 5 -
2-50 1-20 4-127 49-320 15-153
SD PR OS LS LS
B C B D B
101 102 710 905 972
30 30 30
9.1 8.9 10.6
0.84 0.83 0.80
8 8 8
-
1.3-5.5 1.3-5.5 1.3-5.5
VOS1GPC VOS, GPC VOS5GPC
A-B A-B A-B
908 908 908
0.93 0.92 0.89
7 7 7
-
0.7-2.9 0.7-2.9 0.7-2.9
VOS, GPC COS 5 GPC COS 5 GPC
A-B A-B A-B
909 909 909
5
-
A A B A,R A,R A,R A A A A A,R B A L L
709 709 709 709
1.3. P O L Y ( A C R Y L I C ACID) AND DERIVATIVES Poly(acrylamide)
Water
Aq. NaCl(IN) Aq. NaCl (0.12M) Poly(/V-acryloyl-m-aminobenzoic acid) W,tf-Dimethylacetamide /V,/V-Dimethylformamide Dimethyl sulfoxide Poly(/V-acryloyl-0-aminobenzoic acid) /V,Af-Dimethylformamide Dimethyl sulfoxide Tetrahydrofuran
25 25 25
3.74 3.83 3.39
TABLE 1. cont'd
Polymer
Solvent
Temp. (0C)
Poly(acrylamide-co-yV,yV,M-trimethyl aminoethyl chloride acrylate) 70% acrylamide Aq. NaCl(IN) 25 Poly(acrylic acid) 1,4-Dioxane 30(0) -,sodium salt Aq. NaOH (2M) 25 Aq. NaCl (0.012 M) 20 (IM) 25 Poly(acrylic acid) -, sodium salt Aq. NaCl (0.05M) 25 (0.1 M) 25 (0.3M) 25 (0.5M) (1.0M) Aq. NaBr (1.5M) (1.5M) (0.5M) (0.1 M) (0.05M) (0.025 M) (0.01 M)
Poly(acrylonitnle) (polymerized at - 300C) (polymerized at 600C)
(0.005 M) (0.0025 M) Aq. NaSCN (1.12M) 7-Butyrolactone
Dimethylformarnide
(Deionized DMF)
(polymerized at - 300C) (polymerized at 6O0C)
Dimethylacetamide
Dimethyl sulfoxide
Ethylene carbonate Ethylene carbonate/water (85/15, w/w)
25 25 15 15(0) 15(0) 15 25 15 25 15 15 25 15 25 15 15 30(0) 30(0) 20 30 30 30 50 20 25 25 25 25 25 25 25 25 25 30 30 30 35 35 50 20 35 50 20 50 140 50 25
(ml/g)
tf(xlO3) a
No. of samples — Fr. W.P.
MoI. wt. range (xlO~ 4 )
Method(s)
Remarks
Refs.
10.5 76 42.2
0.73 0.50 0.64
12
6 4 -
45-270 13-82 4-50
LS OS OS
D B C
905 104 105
15.47
0.93 0.90
7 12
-. -
7-180 4-50
LV OS
B C
106 105
7.35 14.6 16.9
0.88 0.80 0.75
4 4 4
-
9.4-60 9.4-60 9.4-60
LLS 5 GPC LLS, GPC LLS, GPC
B-C B-C B-C
906 906 906
18.6 41.5
0.72 0.63
4 4
-
9.4-60 9.4-60
LLS, GPC LLS, GPC
B-C B-C
906 906
145 165 124 52.7 50.6 25.4 31.2 28.1 16.3 17.6 13.6 13.2 (44.2) (24.9) 154 121 34.3 57.2 34.2 40.0 28.7 17.7 16.6 24.3 39.2 52.0 15.5 57.4 39.6 44.3 69.8 29.6 20.9 33.5 27.8 31.7 30.0 30.7 27.5 27.4 32.1 28.3 20.9 29.5
0.50 0.50 0.50 0.628 0.656 0.755 0.755 0.77 0.84 0.85 0.89 0.91 0.83 0.89 0.50 0.50 0.730 0.67 0.70 0.69 0.740 0.78 0.81 0.75 0.75 0.690 0.80 0.73 0.75 0.70 0.65 0.74 0.75 0.72 0.76 0.746 0.752 0.761 0.767 0.764 0750 0.758 0.75 0.718
4 5 4 7 7 7 7 7 7 7 7 7 7 7 5 4 5 6 5 5 5 5 7 3 7 7 9 12 22 6 6 6 9 9 13
-
5 4 16 5 8 7 7 21 6 6 -
9.4-60 6-64 12-83 1-50 2-80 1-50 2-80 1-50 1-50 2-80 1-50 2-80 1-50 1-50 6-64 12-83 4-40 4-30 6-30 15-53 4-40 7-30 5-27 3-25 3-100 5-52 3-10 0.3-1.5 4-30 2-20 8-140 4-30 6-30 16-48 3-58 9-76 4-102 2-40 2-40 2-40 9-40 9-40 4-40 7-40
LLS, GPC LV LS LV LV LV LV LV LV LV LV LV LV LV LV LS LV (LS) SA SA LS LS LS SD LS OS LS LS 5 SD EG OS LS LS SA SA LS DV LS LV LV LV LV LV LV LS LV
B-C C C C C,R C C C C C C C C C C C A,R B B D A B B C C B,R B-C L C C C B B D B A,R A A A A A A A
906 107 108 109 110 109 110 109 109 110 109 HO 109 109 107 111 134 135 135 136 134 137 138 139 140 711 141 142 143 143 144 135 135 136 145 134 134 134 134 134 134 134 146 134
263
0.49
7
-
5.2-52
LS, OS
A-B
951
-
References page VII - 68
TABLE 1. cont'd No. of samples Polymer
Solvent Hydroxyacetonitrile Aq. HNO 3 (60%)
Poly(benzyl acrylate) Poly(butyl acrylate) Poly(ter?-butyl acrylate)
Butanone Acetone Acetone Butanone Hexane Methanol Pentane Poly (1,1 -dihydroperfluorobuty 1 acrylate) Benzofluoride Methyl perfluorobutyrate Poly(MW-dimethylacrylamide) Methanol Water Poly(ethyl acrylate)
Poly(2-ferrocenylethyl acrylate) Poly(ferrocenylmethyl acrylate) Poly(hexadecyl acrylate) Poly(N-isopropylacrylamide) Poly(isopropyl acrylate)
Acetone Benzene Butanone Chloroform Ethyl acetate Benzene Benzene Methanol Heptane Tetrahydrofuran Water Acetone Benzene
Bromobenzene
isotactic
Chloroform 2,2,3,3-tetrafluoropropanol
atacti
c syndiotactic isotactic atactic and syndiotactic Poly(methyl acrylate)
Acetone
Benzene
Butanone
Dimethyl malonate Ethyl acetate Isopentyl acetate 2-methylcyclohexanol Toluene
Temp. (0C) 20 50 0 20 35 25 25 25 24.2 (0) 25 25
X(xlO3) (ml/g) 40.9 35.4 33.9 30.7 0.587 6.85 4.7 3.2 49.0 16.0 22.0
a
MoI. wt. range (xlO~ 4 )
Method(s)
Remarks
LV LV LV LV OS LS LS LS LS LS LS
A A A A C B B B B B
134 134 134 134 337 112 712 712 712 712 712
Fr.
W.P.
0.697 0.707 0.740 0.747 0.883 0.75 0.75 0.80 0.50 0.61 0.57
8 8 6 5 ? 5 5 5 5 5
6 -
4-34 4-34 2-40 4-40 ? 5-27 7-31 7-31 7-31 7-31 7-31
Refs.
26.6 26.6 25 25 40 25 30 30 30 30 30 25 25 30 20 27 20(9) 30 25 25 30 25 60 30 25
13 12 17.5 23.2 20.0 51 20.0 27.7 2.68 31.4 26.0 4.68 6.84 48.7 1.74 9.59 145 13.0 14.9 12.4 11.8 11.3 11.6 14.1 19.7
0.56 0.60 0.68 0.81 0.65 0.59 0.66 0.67 0.80 0.68 0.66 0.70 0.75 0.55 0.82 0.65 0.50 0.69 0.70 0.701 0.71 0.704 0.698 0.72 0.697
7 7 7 5 5 6 8 8 6 9 20 4 20 20 5 7
3 3 8 6 4 7 5 5 3 8 6 -
20-200 20-200 5-122 5-122 11-122 35-450 16-50 5-67 48-700 9-54 9-54 1.4-2.7 0.7-2 6-70 I-10 10-100 10-100 6-30 7-70 4-100 7-20 4-100 4-100 7-30 10-65
LS LS LS LS LS LS OS OS LS OS OS VOS, GPC VOS, GPC OS LS OS OS LS OS LS LS LS LS LS LS
B B C C C B,R B,R C B-C C C D C-D C B A A B B B,R B B B B B
113 113 103 103 103 114 115 116 117 116 116 713 714 116 118 975 975 119 120 121 119 121 121 122 121
25 25 60 60 20 25 25 25 30 25 30 30 30 35 20 25 30 35 30 35 62.5(6») 56.0(0) 30 35
17.3 15.9 17.9 14.7 (7.40) 5.5 19.8 5.20 28.2 2.58 4.5 3.56 4.59 12.8 3.5 14.1 3.97 (34) 3.51 11 68 68 7.79 21
0.703 0.708 0.693 0.704 (0.76) 0.77 0.66 0.77 0.52 0.85 0.78 0.798 0.795 0.71 0.81 0.67 0.772 (0.61) 0.793 0.69 0.50 0.50 0.697 0.60
6 6 4 6 8 9 11 7 4 7 6 6 13 4 6 4 6 4 6 -
4 7 5 3 8 7
8-110 20-110 10-65 20-110 7-32 28-160 30-250 4-183 4-45 20-130 7-160 25-190 15-140 5-30 6-240 17-68 25-190 5-47 50-190 24-148 20-160 40-105 25-190 12-69
LS LS LS LS OS LS LS LS OS OS LS LS OS OS LS LS LS LV LS LS LS LS LS LS
B B B B
121 121 121 121 123 124 125 715 126 127 128 129 129 130 128 131 129 132 129 133 129 129 129 133
B,R B B B
B.R B C A-B.R B B C B A B B B A
TABLE 1. cont'd No. of samples Polymer
Solvent Butanone-2-propanol (42/58, v/v) (1/1, v/v)
branched (42/58 v/v) PolyU-methylphenyl acrylate) Butyl acetate Poly(morpholinocarbonylethylene) Dimethylformamide Aqueous NaCl (0.1 M) Poly(piperidinocarbonylethylene) Dimethylformamide Poly(propyl acrylate) Butanone
W.P.
MoI. wt. range (xlO4)
Method(s)
Remarks
-
29-140 14-83 50-190 37-250 2-110
LS LS LS LS SD
B C B B A
124 108 129 125 346
? ? ? 4
-
? ? ? 71-181
LS LS LS LS
C C C A
338 338 338 117
0.82 0.62 (0.77) 0.774 0.81 0.68 (0.89) 0.78 0.80 0.648 0.630 0.726 0.50 0.50 0.50 0.63 0.675 0.499 0.66 0.73 0.505 0.476 0.76
5 6 10 5 3 8 6 6 6 10 8 9 5 6 6 6 6 4 5 7 6
9 3 -
17-120 100-600 8-300 1270-2070 25-260 11-670 67-132 4-800 8-80 1230-2450 1330-2070 959-2160 30-260 4-800 40-170 46-870 2.8-107 2.8-107 2.8-107 14-155 6.8-155 3.4-155 3.4-155
LS LS LS LS LS OS LS OS LS LS LS LS LLS, SEC LLS, SEC LLS, SEC LLS, SEC LLS1SEC LLS, SEC LLS5SEC
B B,R B A A A A A A A A
339 150 151 912 152 150 153 154 155 912 912 912 152 154 156 157 917 917 917 917 917 917 917
7.8 9.0 35.5
0.68 0.64 0.50
8 8 8
-
4-113 4-113 4-113
LS LS LS
B B B
771 771 771
5.75 16 4.1 4.1 2.4 47 9.4
0.68 0.60 0.71 0.71 0.78 0.49 0.68
15 6 7 7 15 6 6
-
6-350 11-204 15-2500 20-2500 6-300 11-204 7-88
LS LS LS LS LS LS L
1.35
4 5
-
26-74 48-140
LS LS
1.25 0.50 0.72
5 6 6
-
26-11 3.2-54 3.2-54
LS LLS, SEC LLS5SEC
0.66 0.58 0.70 0.494 0.651 0.494 0.687
8 8 8 6 7 6 7
-
10-610 10-610 10-610 4.8-31 5.1-475 5.1-475 5.1-475
LS LS LS
K(xlO3) (ml/g)
a
81 54.4 72 290 14.7
0.50 0.50 0.50 0.40 0.63
5 4 4 6 8
18 64 32 15.0
0.65 0.68 0.56 0.687
30 25 30 25 23 25 30 20 25 25 25 25 21.5(0) 21.5 (0) 23.7(0) 25 25 10.0 30 25 10.0 64.0 30
1.03 18.4 (4.0) 3.82 1.56 9.7 (1.15) 2.9 4.37 21.0 23.7 6.13 29.5 38 36.6 22.0 12.0 62.0 15.2 5.91 46.0 62.1 5.84
25 25 18.4(0) 20 25 20 20 20 25 25
Temp. ( 0 C)
20(9) 27.5 (0) 30(0) 20(6) 25 25 20 25 30
Fr.
Refs.
1.4. POLY(a SUBSTITUTED ACRYLIC ACID) AND DERIVATIVES Poly(benzyl methacrylate) Poly(butyl methacrylate)
Benzene Acetone Benzene Benzene Butanone
Chloroform Cyclohexane Dioxane Methyl ethyl ketone 2-Propanol
Poly(fer?-butyl methacrylate) anionic
Butyl acetate Butanone Cyclohexane Tetrahydrofuran free radical Butanone Cyclohexane ^-Heptane Tetrahydrofuran Poiy(2-ter?-butylphenyl methacrylate) Benzene Butanone Cyclohexane Poly(4-f
Unc. Unc. Unc. 35.7 (0) 30
37.5 30 35 30
0.00115 This relation not followed 0.00446 47.4 6.83 9.2 20.0 6.1 49.2 8.84 35.4 6.03
A B A C B,R
B
A-B B B
340 716 341 341 342 716 716 369 369
A-B A-B
369 914 914
A A A A-B B-C B-C B-C
343 343 343 915 915 915 915
References page VII - 68
TABLE 1. cont'd
Polymer Poly(cyclohexyl methacrylate)
Solvent Benzene Butanol
Butanone Cyclohexane
(ml/g)
No. of samples tf(xlO3) a Fr. W.P.
MoI. wt. range (xlO4)
Method(s)
30 25 23(6) 22.5(6) 25 25 30 25
8.4 3.54 33.7 45.2 31.8 5.79 7.0 8.8
0.69 0.77 0.50 0.50 0.533 0.68 0.66 0.67
5 9 5
-
6 5 9
-
80-200 10-419 57-445 10-125 10-125 57-560 80-200 10-419
LS LS LS LS LS LS LS LS
25 35 45 30 30 36 30 30 30 30
8.65 4.07 43.2 26.0 8.70 54.8 10.9 19.4 13.6 8.38
0.63 0.74 0.488 0.549 0.677 0.487 0.659 0.588 0.631 0.696
8 8 7 8 8 8 8 9 9 9
-
4-60 4-60 6.6-418 3.1-418 3.1-418 4.6-358 2.9-358 2.9-358 2.9-358 2.9-358
25 25 25 (6) 25 (6)
18.4 33.1 75.0 78.0
0.65 0.59 0.50 0.50
4 8 4 9
-
45 25 U (6) 30 31 30 23 13(0) 29.5 (0) 25 27.4 (6) 23 35 36.9(0)
38.6 3.61 34.7 4.56 36.6 1.05 8.64 32.2 34.8 2.21 33.7 2.83 8.6 47.5
0.485 0.712 0.50 0.73 0.53 0.64 0.64 0.50 0.50 0.77 0.50 0.79 0.71 0.50
9 7 10 10 10 10 8 7 7 8 8 10 4
23(0)
47.3
0.50
35 35(0)
47.6 56.4
Temp. (0C)
Remarks
Refs.
A
344 717 345 718 718 345 344 717
LS LS
B B A-C A-C A-C A-B A-B A-B A-B A-B
719 719 915 915 915 915 915 915 915 915
3.4-33 3.4-82 5.7-33 3.4-82
OS, SEC OS, SEC OS, SEC OS, SEC
A A A A
923 923 923 923
11 -
8.7-575 42-575 2.9-92 2.9-92 10-135 10-135 26-360 26-360 27-240 48-332 48-332 20-263 65-1200 22-130
LLS1SEC LLS, SEC LS, OS, SEC LS, OS, SEC LS, OS, SEC LS, OS, SEC LS LS LS LS LS LS LS LS
A-B A-B B B B B A A A A A A C B
911 911 913 913 913 913 158 158 159 160 160 161 162 156
10
-
20-263
LS
A
161
0.53 0.50
6 6
-
78-500 60-420
LS LS
A A
162 162
3.12
0.76
-
6
2-9
VOS, GPC
C,D
713
27.8 5.9 2.37 3.92 35.1
0.58 0.71 0.78 0.75 0.56
3 5 5 9
6 -
0.6-3.6 130-440 130-440 130-440 20-110
SD SD SD LS
C,D B B B
714 163 163 163 164
33.1 2.12 43.0
0.5 0.78 0.50
20 8 8
-
10-2000 6-41 6-41
SD LS LS
A A
730 165 165
10.6 12.9 52.4
0.70 0.69 0.51
6 5 7
-
4-52 4-52 4-52
LS LS LS
A,B A,B A,B
720 720 720
0.71
-
14
19-950
LS
A B A A B
Poly(cyclohexylthiolmethacrylate) Cyclohexane Tetrahydrofuran Poly(cyclooctyl methacrylate) 2-Butanol 1,4-Dioxane Toluene Poly(cyclopentyl methacrylate) Cyclohexane 1,4-Dioxane Ethyl acetate Methyl ethyl ketone Toluene Poly(2,6-dimethylphenyl methacrylate) Chlorobenzene Tetrahydrofuran Tetrahydrofuran/water Toluene Poly(diphenylmethyl methacrylate) 3-Heptanone Toluene Poly(decyl methacrylate) Ethyl acetate Tetrahydrofuran Poly(dodecyl methacrylate) Amy 1 acetate Tetrahydrofuran Poly(dodecyl methacrylate) Butyl acetate Isopropyl acetate Pentanol Poly(2-ethylbutyl methacrylate) Butanone 2-Propanol Poly(ethyl methacrylate) Butanone Ethyl acetate 2-Propanol Butanone-2-propanol (1/7, v/v) Ethyl acetate/ethanol (2/9, v/v) (1/6, v/v) Poly(2-ferrocenylethyl methacrylate) Benzene Poly(ferrocenylmethyl methacrylate) Benzene Polytfiexadecyl methacrylate) Benzene Carbon tetrachloride Heptane
25 21 21 21 25
Poly[4-(4-hexadecyloxybenzoyloxy)-phenyl methacrylate] Carbon tetrachloride Poly(hexyl methacrylate) Butanone 23 2-Propanol 32.6 (0) Poly(2-hydroxyethyl methacrylate) Dimethylformamide 30 Dimethyl sulfoxide 30 Methanol 30 PoIy[I -(2-hydroxyethyl) pyridiniumbenzene sulfonate methacrylate] Aq. KCL (0.5M) 25
2.62
721
TABLE 1. cont'd No. of samples Polymer
Solvent
PoIy[I(2-hydroxyethyl) trimethylammoniumbenzene sulfonate Aq. KCl (0.5M) Poly[AK2-hydroxypropyi) methacrylamide] Aqueous KCl (0.1 M) PolyfD.L-isobornyl methacrylate) 1-Octanol Tetrahydrofuran Poly(isobutyl methacrylate) Acetone
Acetone Benzene Benzene Butanone
Carbon tetrachloride 1,4-Dioxane 2-Hydroxymethyltetrahydrofuran Poly(5-p-methyl methacrylate) Benzene Cyclohexane 2-Pentanone Tetrahydrofuran Poly(methacrolein) Dimethylformamide Poly(methacrylie acid) M/V-Dimethylformamide/ l,4-dioxane(5/7, v/v) Methanol Aq. HCl (0.002 M) Aq. NaNO 3 (2M) Poly(methacrylonitrile) Acetone Dimethylformamide Poly(2-methoxyethyl methacrylate) Butanone Tetrahydrofuran Poly(methyl butacrylate) Butanol Butanone Poty(methyl ot-chloroacrylate) Chloroform Poly(methyl ethacrylate) Benzene Butanone 2,6-Dimethyl-4-heptanone Poly(methyl methacrylate) atactic Acetone
Acetonitrile
Benzene
Temp. ( 0 C)
AT(XlO 3 ) (ml/g)
Method(s)
a
Fr.
4.04
0.70
-
8
15-400
LS
721
25 39.6(0) 30 25 25 60 25 25 25 20 25 30 44 25 25 25
11.0 31.7 3.68 0.199 23.4 18.2 8.41 3.88 7.03 5.56 8.61 7.47 2.18 4.88 6.89 85.8
0.67 0.50 0.73 0.94 0.66 0.68 0.66 0.74 0.77 0.73 0.70 0.71 0.79 0.72 0.68 0.56
12 6 6 6 6 6 6 5 6 6 7 6 6 6 6 6
-
2-500 9-120 9-120 300-1100 50-116 50-116 1020-3460 1020-3460 50-116 300-1100 300-1100 300-1100 300-1100 1020-3460 1020-3460 50-116
LS GPC GPC LS OS OS OS LS LS LS LS OS
722 723 723 166 724 724 919 919 724 166 166 166 166 919 919 724
25 25 25(9) 25 20
9.6 11.5 43.6 11.5 2.8
0.67 0.65 0.50 0.65 0.97
6 6 6 6 -
?
12-230 12-230 12-230 12-230 0.5-2
LS LS LS LS OS, CR
B B B B ?
771 771 771 771 204
103 242 66 44.9 95.5 306
0.50 0.51 0.50 0.65 0.56 0.503
7 6 7 6 -
4 15
27.5-101 4-20 10-90 8-70 35-100 0.6-8
LS OS LV OS OS LV
B C B C C,H
907 147 148 149 202 203
methacrylate] 25
26.9(6) 26 30 25 20 29.2
W.P.
MoL wt. range (xlO4)
Remarks
C
C C C C -
Refs.
25 25 13 (6) 30 30 30 30 11.4(0)
7.34 7.57 57.0 5.43 3.08 2.35 4.29 67.6
0.71 0.71 0.50 0.73 0.78 0.82 0.75 0.50
12 12 4 10 8 6 10 10
-
4-220 4-220 6-60 7-430 20-780 16-110 4-200 4-200
LS LS LS LS LS LS LS LS
A-B A-B A A D A A A
725 725 168 168 726 168 168 168
20 20 25 25 25 25 25 25 25 25 30 39 46 30 45(6) 50 65 20 20 25 25
5.5 3.90 7.5 6.76 7.5 5.3 9.6 7.5 2.45 6.59 7.7 6.40 6.18 39.3 48 29 9.8 8.35 15.1 7.24 5.5
0.73 0.76 0.70 0.71 0.70 0.73 0.69 0.70 0.80 0.71 0.70 0.72 0.72 0.50 0.50 0.54 0.64 0.73 0.70 0.76 0.76
7 7 9 10 14 7 4 4 9 6 6 6 6 6 6 6 5 7 7 10 Il
6 -
7-700 7-700 8-137 3-700 2-740 2-780 180-350 3-98 6-210 5-41 6-263 5-41 5-41 10-86 10-260 10-260 10-260 7-700 8-90 6-100 2-740
SD SD LS SD LS, SD LS LS LS OS OS LS OS OS LV LV LV LV SD SD OS LS
A-B.R A-B B A-B A-B A-B,R A-B B-C B-C B A-B B B A-B A-BJR A-B A-B A-B
169 169 170 171 172 173 174 175 176 177 178 177 177 178 179 180 180 169 181 182 173
B A-BjR
References page VII - 68
TABLE 1. cont'd No. of samples Polymer
Solvent
Butanone
plasma initiated Butyl chloride Chloroform
living type
/?-Cymene 1,2-Dichloroethane Ethyl acetate 3-Heptanone 4-Heptanone Methyl isobutyrate Methyl methacrylate
Methyl methacrylate Nitroethane 3-Octane Propanol Tetrachloroethane 2,2,3,3-Tetrafluoropropanol Tetrahydrofuran Toluene
B utanone/2-propanol (55/45, v/v) (50/50, v/v) Methanol/toluene (9/5, v/v) oligomer-polymer atactic,/racem =0.79
isotacdc
Acetonitrile Benzene n-Butyl chloride Acetone Acetonitrile
MoL wt. range (xlO~4)
Method(s)
8 6 7 34 6 -
24-450 0.03-1 6-250 4-73 0.02-2 0.3-2 5-41 5-41 8-137 41-330 3-98 16-910 1610-3000 13-68 1.4-60 6-100 8-200 3-780 8-137 40-330 5-41 13-263 5-41 5-41 7-400 6.6-171 3-98 6-263 6-110 6.6-171 1-172 19-260 1.8-160 1.8-160 1.8-160 13-170 10-200 13-260 6.6-171 5-41 5-41 7-95
LS EB LS OS OS LS OS OS LS LS LS LS LS SA OS OS SD LS LS LS OS LS OS OS LS LV LS LS SD LV LS LV LS LS LS LV LS LV LV OS OS LV
7 6 10 6 6 6
-
4-330 5-41 0.2-7 19-263 5-41 5-41
LS LS OS OS LV OS OS
A A-B B A,L A-B B B
732 174 177 195 178 177 177
6 7 5 3
-
40-300 30-280 77-490 60-300
LS LS LS LS
A-B A-B A-B A-B
174 196 186 156
22 15 21 7 5 5
-
0.032-283 0.032-75.8 0.032-283 5-128 3-19 3-19
LS LS LS LS LV LV
A A A A-B A A
916 916 916 199 198 198
AT(XlO3) (ml/g)
a
Fr.
3.80 83 5.2 6.27 104 195 6.74 6.52 6.8 7.1 6.8 9.39 11 ±2 50.5 9.6 4.88 4.85 6.0 4.8 3.4 5.81 4.3 5.02 3.90 5.1 57.5 17.0 5.3 21.1 63.1 48 9.9 16.2 11.3 21.2 6.75 5.70 50 67.9 12.8 12.2 7.2
0.79 0.52 0.76 0.76 0.50 0.41 0.75 0.76 0.72 0.72 0.72 0.68 0.69 0.50 0.78 0.82 0.80 0.79 0.80 0.83 0.79 0.80 0.80 0.79 0.79 0.50 0.68 0.77 0.64 0.50 0.50 0.67 0.65 0.68 0.64 0.72 0.74 0.50 0.50 0.73 0.73 0.79
5 7 9 5 9 5 6 6 9 7 4 15
6 -
4 18 8 9 12 9 6 6 6 6 13 4 4 8 4 5 6 9 9 9 3 2 3 4 6 6 7
25 25 25 25 30 39 53
7.5 7.1 8.12 78 7.0 7.24 6.63
0.72 0.73 0.71 0.50 0.71 0.72 0.73
23 25 (0) 25(0) 26.2(0)
47.0 59.2 42.8 55.9
0.55 0.50 0.50 0.50
44.0 30.0 40.8 30 20 27.6(0)
23.0 130 75.5
Temp. ( 0 C) 25 25 30 30 30 30 39 53 25 25 25 25 25 35.4(0) 20 20 20 20 25 25 25 30 39 53 Unc. 159.7 (0) 25 30 20 33.7 (0) 33.8(0) 30 20 40 60 30 25 72(0) 84.4(0) 25 53 25
Not const. Not const. Not const. 0.63 0.448 0.500
W.P.
Remarks
A,L A~B,R A A,L A-B,L B B B,R A-B B-C A-B A-B B A-BJR A-B B A-B B A-B B B B A-B B-C A-B 1 R A-B A-B 1 R A-B A A A A-B C A-B A-B B B A
Refs. 183 184 178 185 185 178 177 177 170 174 175 186 727 187 188 182 169 173,189 170 174 177 178 177 177 190 191 175 178 192 191 179 178 918 918 918 178 193 179 191 177 177 194
TABLE 1. cont'd No. of samples Polymer
Solvent
Benzene p-Cymene 3-Heptanone Propanol 2,2,3,3-Tetrafluoropropanol Butanone/2-propanol (1/1. v/v)
Temp. ( 0 C)
ZiC(XlO3) (ml/g)
a
Fr.
W.P. -
MoI. wt. range (xMT4)
Method(s)
Remarks
Refs.
LV LV LS LS LV LV LV LV
A A B A-B A-B A-B A-B B
198 198 728 199 191 191 191 194
35 50 27.5 (0) 30 152.1 (0) 40.0(0) 75.9(0) 25
46 26.2 76.2 5.2 56.6 87.0 76.1 7.05
0.546 0.602 0.50 0.76 0.50 0.50 0.50 0.78
5 5 6 5 4 4 4 11
-
3-19 3-19 13-68 5-128 7-131 7-131 7-131 2-100
30.3 (0)
90.0
0.50
4
-
7-131
LV
A-B
191
4 4
8
73-232 73-232
LS LS LS
A A H
785 785 731
6 4
-
17-262 57-262
LS LS
B B
729 729
20 10 10 4 4 4 8 11 11
4 -
20-220 20-170 33-1250 33-1250 62-320 62-320 62-320 10-320 1.5-93 1.5-93
SD LS LS LS LS LS LS LS LS, OS, SEC LS, OS, SEC
5 5 12
-
3.6-21 3.6-21 1.5-94
VOS, SEC VOS, SEC LS
A-B A-B B
7
-
16-62
OS
B
6
-
4-85
GPC
6 6 6
-
48-59 48-59 48-59
SEC SEC SEC
A-B A-B A-B
921 921 921
10 10 6
4 -
85-510 8.2-138 8.2-138 4-85
LS LS, OS, SEC LS, OS, SEC GPC
D B B
905 913 913 735
5%-iso, 51%-hetero, 43%-syndiotactic
Acetonitrile/chlorobenzene (4.4/95.6, v/v) 25 (0) 68.3 0.50 (91.2/8.8, v/v) 25(0) 63.5 0.50 Poly(a-methyleneglutaronitrile) Dimethylformamide 25 31.6 0.65 Poly(methyl phenylacrylate), see 1.9 Other Compounds poly(l-methoxycarbonyl-l-phenylethylene) Poly(p-naphthyl methacrylate) Benzene 20 27.2 0.55 Tetralin 20(0) 47.5 0.50 Poly[4-(4-nonyloxy-phenyl methacrylate], Poly(phenylmethacrylic ester of nonyloxybenzoic acid) Carbon tetrachloride 24.3 0.5 Poly(octadecyl methacrylate) Tetrahydrofuran 30 2.5 0.75 Poly(octyl methacrylate) Butanol 16.8(0) 26.8 0.50 Butanone 23 4.47 0.69 Butyl acetone 10.5 (0) 0.45 20 0.53 30 0.54 Poly(tf-phenyl methacrylamide) Acetone 20 28.2 0.75 n-Propyl acetate 36(0) 37.1 0.50 Tetrahydrofuran 30 8.95 0.67 Poly(2-selenolylmethyl methacrylate) Chlorobenzene 25 36.3 056 Tetrahydrofuran 25 18.1 0.65 Poly(stearyl methacrylate) Tetrahydrofuran 30 9.0 0.67 Poly(tetrahydrofurfuryl methacrylate) Acetone 30 24.0 0.66 Poly(tetrahydro-4H-pyranyl 2-methacrylate) Isobutanol 30.4(0) 31.9 0.50 Poly(2-thiophenmethyl methacrylate) Chlorobenzene 25(0) 4.35 0.50 Tetrahydrofuran 25 6.95 0.72 Thiophen 25 9.00 0.66 Poly(ivyV,N-trimethyl aminoethyl chloride acrylate) Aq. NaCl(IN) 25 2.3 0.82 Poly(tridecyl methacrylate) Ethyl acetate 27(0) 32.2 0.50 Tetrahydrofuran 30 4.74 0.71 Tetrahydrofuran 30 2.93 0.76 Poly[2-(triphenylmethoxy)ethyl methacrylate] Mesitylene 47(0) 30 0.50 1.5.
C,H B B C C C B B
730 200 201 201 920 920 920 370 913 913 922 922 733,751 734 735
LV
736
POLY(VINYLETHERS)
Poly[(hexadecyloxy)ethylene] Poly(methoxyethylene)
Heptane Benzene Butanone Poly[(octadecyloxy)ethylene] Benzene Tetrahydrofuran Poly(vinyl methyl ether), see Poly(methoxyethylene)
21 30 30 25 30
70.8 76 137 170 224
0.50 0.60 0.56 0.47 0.35
6 13 13 -
7 7
0.5-3 1-45 1-45 0.1-1.5 9.4-11
SD LS LS LS LS
B,L B B D,H D,H
205 206 206 200 200
0.74
7
-
7-51
OS
B
234
1.6. POLY(VINYL ALCOHOL), POLY(VINYL HALIDES) Poly(chlorotrifluoroethylene)
2,5-Dichlorobenzotrifluoride
130
6.15
References page VII-68
TABLE 1. cont'd
Polymer
Solvent
Temp. (0C)
(ml/g)
tf(xlO3) a
Poly(tetrafluoroethylene-fl/f-ethylene), see also Poly(ethylene-a//-tetra-fluoroethylene) in group 1.2 Poly(vinyl alcohol) Water 25 20 0.76 25 300 0.50 25 140 0.60 30 66.6 0.64 30 42.8 0.64 30 45.3 0.64 30 73.4 0.63 80 94 0.56 Phenol/water (85/15, v/v) 30 24.6 0.80 Water/dimethylsulfoxide (100/0, v/v) 30 74.3 0.63 (90/10, v/v) 30 Not clear Poly(vinyl bromide) Cyclohexanone 25 32.8 0.55 Tetrahydrofuran 25 15.9 0.64 Methanol/tetrahydrofuran (17/83, v/v) 20 38.8 0.50 Poly(vinyl chloride) Benzyl alcohol 155.4(0) 156 0.50 Chlorobenzene 30 71.2 0.59 Cyclohexanone 20 11.6 0.85 20 13.7 1.0 20 112.5 0.63 25 12.3 0.83 25 24 0.77 25 204 0.56 25 174 0.55 25 8.5 0.75 25 13.8 0.78 30 16.3 0.77 Tetrahydrofuran 20 3.63 0.92 25 15.0 0.77 25 16.3 0.766 25 49.8 0.69 30 63.8 0.65 30 83.3 0.83 30 219 0.54 Poly(vinyl fluoride) Dimethylformamide 90 6.42 0.80 Poly(vinylidene chloride) Hexamethylphos25 25.8 0.65 phoramide l-Methyl-2-pyrrolidone 25 13.1 0.69 Tetramethylene sulfoxide 25 13.9 0.69 Poly(vinylidene fluoride) N,N-Dimethylacetamide, A^N^dimethylformamide, Af-methylpyrrolidone, M^-dimethyl-MA^-trimethylene urea 25 45 0.70
1.7.
No. of samples — Fr. W.P.
MoI. wt. range (xl(T4)
Method(s)
Remarks
B
Refs.
6 4 3 8 7 -
14 5 21
0.6-2.1 0.9-17 1-7 0.6-16 1-80 1-80 3-12 10-46 3-12
OS SD SD OS LS LS LV LS LV
B B C A,R B B B
208 209 210 212 213 213 737 214 215
7 5 7 7
-
DP = 815-2830 DP = 815-3400 2-10 2-10
VG VG LS LS
C C B B
924 924 217 217
7 9 7 7 5 11 13 ? 6 5 28 6 20 22 23 5 9 7 16 -
6 5 3 9 7
2-10 4-35 3-19 2-10 7-13 9-15 2-14 3-14 2-15 6-22 4-20 1-12 3-19 2-17 1-12 2-30 4-40 3-32 3-19 5-30 14-66 0.8-12
LS LS SA OS OS OS OS OS OS LS LS LS SA OS LS LS LS LS SA LS SV LS
B B B C C,D D,H
D C
218 219 220 221 222 222 223 224 225 226 227 228 220 229 228 230 231 232 220 233 235 738
-
7 7
0.8-12 0.8-12
LS LS
C C
738 738
LS
-
925
7
C C B A,B,R B B A,B A,B,R A-B B
POLY(VINYLESTERS)
Poly(allyl acetate) Poly(vinyl acetate)
Benzene Acetone
27 66 0.53 6 [77] = 0.104M 050 + 0.00725M 090 18 24.5 0.67 20 15.8 0.69 25 21.4 0.68 25 18.8 0.69 25 14.6 0.72 25 10.8 0.72 30 17.6 0.68 30 8.6 0.74 30 17.4 0.70 30 10.2 0.72 30 10.1 0.73
8 21 6 6 6 ? 10 16 8 ? 11
? 6 8 -
0.1-0.3 0.3-150 4-34 19-72 4-34 ? 0.7-1.3 0.9-2.5 2-163 8-66 7-68 3-126 6-150
CR LS OS LS OS LS EG EG OS LS OS LS LS
A B B C,L B,L A-B A-B C A
216 236 237 238 237 239 240 240 241 242 243 244 236
TABLE 1. cont'd No. of samples Polymer
Poly(vinyl Poly(vinyl Poiy(vinyl Poly(vinyl
Solvent
benzoate) butyrate) caproate) 4-chlorobenzoate)
Poly(vinyl formate)
Poly(vinyl isobutyrate) Poly(vinyl isocaproate) Poly(vinyl pivalate)
Poly(vinyl sulfate)
Temp. (0C)
K (xlO3) (ml/g)
a
30 [77] =0.097 M 0 5 0 +0.00723 M 0 ^ 46 13.8 0.71 Acetonitrile 25 16.2 0.71 30 41.5 0.62 Benzene 30 22 0.65 30 56.3 0.62 30 56.3 0.62 35 21.6 0.675 Butanone 25 13.4 0.71 25 42 0.62 30 10.7 0.71 Chlorobenzene 25 110 0.50 25 94.4 0.56 53 53.7 0.60 67 28.9 0.65 Chloroform 20 15.8 0.74 25 20.3 0.72 53 14.7 0.74 Dioxane 25 11.4 0.74 53, 60 10.2 0.75 Ethanol 56.9(0) 90 0.50 Ethyl formate 30 32 0.65 3-Heptanone 26.8(0) 82.0 0.50 29(0) 92.9 0.50 Methanol 6(0) 101 0.50 25 38.0 0.59 30 31.4 0.60 53 36.6 0.59 6-Methyl-3-heptanone 66(0) 82.0 0.50 66(0) 78.0 0.50 4-Methyl-2-pentanone 30 44.9 0.60 Tetrahydrofuran 25 16 0.70 35 15.6 0.708 Toluene 25 108 0.53 67 156 0.49 1,2,4-Trichlorobenzene 35 33.0 0.623 Heptane/3-methyl-2-butanone (27.3/72.7, v/v) 25 92 0.50 Xylene 32.5 (0) 62.0 0.50 Benzene 30 11.15 0.735 Benzene 30 15.47 0.689 Water 30 64.0 0.64 Butanol/butanone 60(0) 73 0.50 (47/53, v/v) Acetone 30 29.3 0.63 Acetonitrile 30 14.1 0.717 Dioxane 30 20.7 0.68 Methyl acetate 30 37.6 0.61 Methyl formate 30 14.1 0.722 Benzene 30 11.05 0.711 Benzene 30 51.0 0.575 Acetone 25 2.88 0.77 Butanone-methanol 20 53 0.50 (0.897 g/ml) Aq. NaCl (0.5 M) 20 0.55 1.06
MoI. wt. range (xlO~4)
Method(s)
Remarks A A B A-B A-B B B A-B A AJB C A A A A
Fr.
W.P.
22 6 4 5 24 12 14 6 15 9 6 6 6 ? 5 5 5 5 5 4 5 18
13 ? 13 -
0.3-150 4-34 24-215 97-153 34-102 3-86 7-54 5-40 25-346 2-120 3-120 0.15-7 4-34 4-34 4-34 7-68 4-34 4-34 4-34 4-34 4-150 16-154 4-150 5-83 0.3-150 4-22 3-120 4-22 14-83 9-150 12-69 5-50 1.7-117 4-15 4-15 5-40
LS OS LS LS LS OS LS LS LS SD,LS LS OS OS OS OS OS OS OS OS OS OS, LS LS OS, LS LS OS, LS, VOS OS LS OS LS OS, LS LS GPC GPC OS OS LS
6 5 7 7
4 4 -
25-287 10-24 3-15 3-126 6-35 6-35
LS OS OS OS LV LV
C B C C B B
244 334 256 256 336 336
4 2
9 9 8 7 7 4 4 -
3-41 3-41 3-41 3-24 3-24 5-20 3-17 40-217 222-344
LV LV LV LV LV OS OS LS LS
C C C C C C C C C
257 257 257 257 257 256 256 258 258
6
-
1-6
LV
C
261
13 22 13 20
-
15-219 0.91-352 15-219 0.91-352
LS LS LS LS
A-B A-B A-B A-B
937 937 937 937
5 5 9 3 5 11 9 4 4
A A B B A A-B A A-B B C B A-B A B,C B B B
Refs. 236 236 246 247 248 249 250 251 252 253 244 195 236 236 236 243 236 236 237 237 236 247 236 255 236,245 237 244 237 255 236 247 739 740 237 237 251
1.8. POLY(STYRENE) AND DERIVATIVES Poly(4-acetoxystyrene)
Butyl acetate Dioxane Isopropyl acetate Tetrahydrofuran
26.8(0) 25 19.7(0) 25
52.0 16.7 52.0 17.5
0.50 0.65 0.50 0.64
References page VII - 68
TABLE 1. cont'd
Polymer Poly(4-bromostyrene)
Poly(p-terf-butylstyrene)
Poly(2-chlorostyrene)
Solvent Benzene Chlorobenzene Toluene Benzene Benzene Cyclohexane Cyclohexane 1-Hexanol Cyclohexane 1,4-Dioxane 1-Nitropropane 1-Nitropropane 3-Nonanol 2-Octanol 2-Octanol Tetrahydrofuran Butanone Toluene
Poly(4-chlorostyrene)
Benzene Benzene-methanol (4.5/1, v/v) Butanone Chlorobenzene Chloroform Dioxane Ethylbenzene Toluene
Poly(4-cyclohexylstyrene) Poly(2,5-dichlorostyrene)
Poly(3,4-dichlorostyrene)
Poly(2,4-dimethylstyrene)
PoIy(1,4-divinylbenzene) Poly(3-fluorostyrene)
Poly(4-fluorostyrene)
Poly(4-hydroxystyrene)
Heptane Toluene Toluene Ethanol/ethyl acetate (1/15, w/w) Chlorobenzene 0-Dichlorobenzene Butanol/butyl acetate (1/13, w/w) Benzene Butyl acetate Cyclohexane Toluene frans-Decalin Benzene Butanone Carbon tetrachloride Chloroform Benzene Butanone Carbon tetrachloride Chloroform Dioxane Ethyl propionate Isobutyl acetate Tetrahydrofuran 1-Chloro-n-hexane
(ml/g)
No. of samples tf(xlO3) a Fr. W.P.
MoI. wt. range (xlO 4 )
Method(s)
Remarks
20(6) 26.3 (0) 30 30 35 35 25 35 65.0 35.0 25.0 38.0 31.0 31 (0) 10.9 32.7 32.7 30.0 24.5 (0) 25 (0) 25 30 30 26.7 41.6(0)
95.5 50.0 7.43 18.2 7.1 6.58 8.52 9.9 64.7 11.1 21.4 14.3 60.0 61 66.5 60.8 61.0 10.4 46.8 46.0 11.5 14.3 30.6 29.3 56.8
0.53 0.50 0.69 0.57 0.74 0.739 0.717 0.71 0.480 0.694 0.604 0.644 0.489 0.49 0.490 0.492 0.489 0.70 0.50 0.50 0.66 0.65 0.56 0.56 0.50
10 5 5 5 4 7 10 4 6 7 4 4 7 4 6 6 7 7 7 5 6 10 5 5
8 -
3-30 84-250 59-400 63-400 1.8-640 1.3-174 1.3-240 1.8-640 16-240 2.7-45.5 9.3-45.5 9.3-45.5 2.7-45.5 1.8-640 16-240 16-240 2.7-45.5 2.7-45.5 20-80 20-100 14-101 23-143 10-200 34-180 34-180
OS LS LS LS LS LLS, SEC, OS LLS, SEC, OS LS LLS, SEC, OS OS, LLS OS, LLS OS, LLS OS, LLS LS LLS, SEC, OS LLS, SEC, OS OS, LLS OS, LLS LS LS LS LS LS LV LV
B A,R A A A A A A A A A A A A A A A A A,R A,B A,B A C B B
347 348 348 349 741 934 934 741 934 938 938 938 938 741 934 934 938 938 742 743 743 350 351 744 744
25 30 30 30 30 30 20 25 30 30 30 30 30 21 30.5(0)
29 3.52 2.19 14.8 17.6 21.8 24.1 13.2 13.0 11.8 5.37 32.3 10.6 12.6 35.5
0.59 0.75 0.80 0.65 0.62 0.60 0.605 0.645 0.64 0.65 0.71 0.54 0.69 0.69 0.50
7 6 6 6 6 7 7 6 7 9 8
8 8 7 7 ~ -
3-140 17-270 17-270 10-200 10-200 10-180 2-40 1-244 3-140 21-140 17-270 4-30 2-30 7-66 50-130
LS OS OS LS LS LS LS LS LS LS OS OS OS LS LS
BJR B B C C B B B B,R A B A-B A-B
352 353 353 351 351 745 354 355 352 349 353 266 266 356 357
30 30 32.9 (0)
4.39 4.11
0.72 0.73 0.50
7 7 8
-
8-51 8-51 40-540
OS OS LS
A A
358 358 359
20 20 20 30 25.0(0) 25 25 25 25 25 25 25 25 25 25 25 25 5.7
3.8 10.2 14.8 9.52 286 15.3 13.8 65.6 12.8 40.8 11.1 82.8 16.1 20.3 63.7 59.4 37.2 91.6
0.79 0.68 0.65 0.70 0.32 0.69 0.70 0.53 0.70 0.58 0.73 0.50 0.69 0.66 0.52 0.53 0.60 0.468
6 8 7 7
9 -
3-22 3-22 3-22 5-120 0.7-180
LS LS LS LS LS, SE
B,C B,C B,C C Branching
-
8
0.5-8 1-15
LS LS
C C
11 11 11 10 9
8 -
0.2-13 3.8-583 3.8-583 3.8-583 3.8-583 5.9-90.3
LS LS LS LS LS LS, SEC, OS
C A
746 746 746 333 895 747 747 747 747 747 747 747 747 940 940 940 940 888
Temp. (0C)
Refs.
TABLE 1. cont'd
Polymer
Solvent
Poly(4-iodostyrene) Dioxane Poly((p-isopropyl-a-methylstyrene) Tetrahydrofuran Poly(/?-isopropylstyrene) Toluene Poly(o-methoxystyrene) Butanone Toluene Methanol/toluene (25/75, v/v) Poly(/?-methoxystyrene) Butanone Chlorocyclohexane Pentyl acetate Toluene
(ml/g)
No. of samples tf(xlO3) a Fr. W.P.
20
33
0.51
10
6
10-118
LV
B-C
360
25 25 30 30 30(0)
45 12.3 18.6 6.40 57.5
0.55 0.69 0.59 0.71 0.50
8 5 5 4
5 ~ -
1-63 14-75 13-35 13-35 15-30
LS LS LS LS LS
A-D B1C A-B A-B A-B
748 265 362 362 362
30 35 25 25 25 30 30 30(0)
3.75 8.6 17.7 55 10.5 5.28 18.0 62.1
0.73 0.68 0.63 0.52 0.70 0.73 0.62 0.50
5 6 16 16 16 5 6 5
-
13-75 1-100 22-220 22-220 22-220 13-75 1-100 7-180
LS LS LS LS LS LS LS LS
A-B B A A A B B B
362 352 363 363 363 362 352 362
10.3 9.15 73 78 76 76.0 71.3 67 7.06 7.81 10.8 24.9 66.0 72.7 2.2 76.8
0.72 0.726 0.50 0.50 0.50 0.50 0.51 0.50 0.744 0.73 0.71 0.647 0.50 0.50 0.80 0.50
4 5 8 6 4
9 6 10 9 6 9 9 9 9 6 13 -
4-170 37.5-685 4-750 9-400 2-66 4-170 3-140 8-750 8-750 3-60 2-66 14-91 2-370 2-18 1-100 14-91
LS LS LS, OS LS LS LS LS LS, OS LS, OS SD LS OS LS LS LS OS
A A A A A A A A A A A B B B B B
319 873 320 321 322 323 324 320 320 325 322,326 327 328 328 329 327
71.8 94.9 79.6 94.8 65.1 74.6 86.4 74.0 83.0 40.0 19.4 13.3 11.1 10.1 33.6 27.0 26.5 7.36 11.76 17.42 70 8.86
0.491 0.459 0.477 0.461 0.497 0.484 0.474 0.493 0.480 0.56 0.67 0.70 0.69 0.71 0.570 0.590 0.594 0.76 0.70 0.64 0.50 0.74
9 9 9 9 9 9 9 11 11 16 16 16 16 16 8 15 8 9 7 7 6 9
-
5.9-90.3 5.9-90.3 5.9-90.3 5.9-90.3 5.9-90.3 5.9-90.3 5.9-90.3 2.01-90.3 2.01-90.3 0.2-130 0.2-130 0.2-130 0.2-130 0.2-130 6.0-107 5.4-354 6.0-107 8-115 15-83 15-83 16-200 19-180
LLS, SEC, OS LLS, SEC, OS LLS, SEC, OS LLS, SEC, OS LLS, SEC, OS LLS, SEC, OS LLS, SEC, OS LLS, SEC, OS LLS, SEC, OS OS5GPC OS, GPC OS, GPC OS, GPC OS, GPC LLS, LS LLS5LS LLS, LS OS OS OS LS LS
A A A A A A A A A B B B B B A A A A A A A A
888 888 888 888 888 888 888 888 888 927 927 927 927 927 935 935 935 330 330 330 331 331
22
0.68
6
-
11-133
SV
A
332
4.37 6.3 12.3
0.736 0.78 0.72
18 7
21 -
10-260 1-300 0.6-520
OS SD SD
C A AJR
364 270 271
Temp. (0C)
Methanol/toluene (28.1/71.9, v/v) Poly(a-methylstyrene) anionic, (ca. 50%-hetero, ca. 40%-syndio) Benzene 30 30 Cyclohexane 34.5 (0) 37 (0) 38 (0) 38.6(0) 39 rrans-Decalin 9.5 (9) Toluene 25 25 30 cationic Benzene 30 (10%-hetero, 90%-syndio) Cyclohexane 32.5 (9) (19%-hetero, 80%-syndio) 33.3(0) Toluene 30(0) Benzene/methanol 30 (79.4/20.6, v/v) 10.0 1-Chloro-n-heptane 20.0 27.0 1-Chloro-n-octane 43.0 53.0 80.0 n-Hexyl acetate 85.0 Cyclohexane 34.5 trans-Deca\in 10.0 n-Butyl chloride 35.5 Carbon tetrachloride 45 Chloroform 25 Tetrahydrofuran 25 Toluene 25 M-Butyl chloride 5 25 50 Poly(m-methylstyrene) Benzene 30 Cyclohexane 30 Ethyl acetate 30 Poly(p-methylstyrene) Diethyl succinate 16.4 (0) Toluene 30 Poly(methylstyrene), position of substituent, unspecified Cyclohexane 20 Poly[(2,3,4,5,6-pentafluorostyrene)] 4-Methyl-2-pentanone 20 Poly(styrene) Benzene 20 atactic 20
MoI. wt. range (xl
Method(s)
Remarks
Refs.
References page VII - 68
TABLE 1. cont'd No. of samples Polymer
Solvent
Butanone
Butyl chloride n-Butyl chloride
Temp. (0C)
#(xlO3) (nuVg)
25 25 25 25 25 25 34 25 25 25 30 34 35 40.8 25
22.7 41.7 34.0 9.52 9.18 11.3 9.8 39 30.5 19.5 23 28.9 17.1 15.1 17.4
50 Carbon tetrachloride
Chlorobenzene Chloroform
Cyclohexane
cw-Decalin Decalin (100%-trans)
Decalin (13%~trans)
Dichloroethane 1,2-Dichloroethane Diethyl malonate Diethyl oxalate Dimethylformamide Dioxane Ethyl acetate/cyclohexane (100/0-10/90)
10 20 30 40 50 25.7 25 25 30 28 34(0) 34(6) 34.5 (0) 35(6) 35(0) 35(0) 40 45 50 50 25 20 23 23.8(0) 25 30 60 18(0) 30 40 60 100 25 35 35 34.2 (0) 55.8 (0) 35 34
10 25 40 55 65
a
Fr.
0.72 0.60 0.65 0.744 0.743 0.73 0.737 0.58 0.60 0.635 0.62 0.60 0.64 0.659 0.662 (Af w >3.7x 104) 16.2 0.665 (M w >3.7x 104) 12.6 0.717 12.0 0.720 11.4 0.724 11.2 0.725 11.0 0.726 7.4 0.749 7.16 0.76 11.2 0.73 4.9 0.794 108.0 0.479 82 0.50 90.2 0.503 84.6 0.50 80 0.50 70 0.50 76 0.50 41.6 0.554 34.7 0.575 26.9 0.599 36.4 0.584 40 0.574 149 0.44 98 0.48 0.50 67 0.52 61 0.53 22 0.63 77 0.50 36 0.58 37 0.58 22 0.64 15.7 0.67 21.0 0.66 14.3 0.69 14.3 0.69 71.8 0.50 73.0 0.50 31.8 0.603 15.0 0.694 18.2-43.8 11.0 9.32 9.07 8.79 8.90
0.54-0.67 0.733 0.738 0.739 0.742 0.740
W.P.
MoI. wt. range (xlO~4)
Method(s)
Remarks
Refs.
9 U 6 6 10 10 16 5 7 7 10 13 5 8
7 -
0.2-0.8 0.1-1 0.04-0.8 3-61 3-70 7-180 8-80 1-180 7-150 12-280 40-370 8-80 4-640 29-106 0.97-67.5
CR CR EG OS LS OS DV LS OS LS LS DV LS LS LLS, SEC
C,L B,L A,L A A A A A,R A A B A A B A
272 272 273 274 275 276 277 278 276 279 280 281,282 752 283 933
8
-
0.97-67.5
LLS, SEC
A
933
4 8 5 4 7 15 9 8 3 8 10 10 10 10 7 8 7 7 7 6 4 4 4 4 4 6 7 11 11 3 3 5 10
6 6 6 6 6 -
1.8-180 1.8-180 1.8-180 1.8-180 1.8-180 62-424 12-280 7-150 19-373 0.6-69 1-70 0.6-69 14-200 8-42 3-200 4-137 4-137 4-137 4-137 4-52 4.8-2360 14-200 14-200 14-200 14-200 14-200 14-140 14-140 14-140 14-140 14-200 1-180 10-500 9-540 39-400 39-400 0.4-87 8-80
LV LV LV LV LV LS LS OS OS OS LV OS LS LS SD LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LV LV LS DV
A-B A-B A-B A-B A-B B A A B A A A A1R A B B B B B A A A A A A A A A A A A A A A A B B A A
901 901 901 901 901 283 279 276 284 285 274 285 286 287 288 283 283 283 283 289 936 290 290 290 290 290 290 290 290 290 290 290 278 689 752 291 291 754 282
5 -
6 6 6 6 6
11-96 1.8-180 1.8-180 1.8-180 1.8-180 1.8-180
LV LV LV LV LV
A A-B A-B A-B A-B A-B
939 901 901 901 901 901
TABLE 1. cont'd No. of samples Polymer
Solvent Ethylbenzene Ethylcyclohexane Methylcyclohexane 4-Methyl-2-pentanone Tetrahydrofuran Toluene
atactic, anionic
Tnchloro benzene Benzene/methanol (74/26, v/v) B utanone/methanol (97.5/2.5, v/v) (95.9/5.0, v/v) (92.5/7.5, v/v) (89/11, v/v) Butanone/2-propanol (6/1, v/v) (82.6/17.4, v/v) Chloroform/methanol (90/10, v/v) (80/20, v/v) (75/25, v/v) (74.7/24.3, v/v) Dioxane/methanol (65.1/34.9, v/v) Toluene/methanol (90/10, v/v) (80/20, v/v) (76.9/24.8, v/v) (75.2/24.8, v/v) Benzene
Cyclohexane
Cyclohexene Decalin (66%-ds) Decalin (99%-trans) Dichloroethane Dioctyl phthalate Tetrahydrofuran
Temp. (0C)
K(xlO3) (ml/g)
a
25 17.6 0.68 70(0) 75 0.50 70(0) 76 0.50 70.5(0) 69.6 0.50 35 61.9 0.53 25 11.0 0.725 25 14 0.70 20 4.16 0.788 25 7.5 0.75 25 8.48 0.748 25 10.5 0.73 25 17 0.69 25 7.54 0.783 25 13.4 0.71 25 44 0.65 25 {a increases with M) 25 100 0.50 30 9.2 0.72 30 12.0 0.71 30 11.0 0.725 34 9.7 0.733 35 12.6 0.71 35 12.9 0.71 135 1.75 0.67 34(0) 89 0.50
Fr.
W.P.
MoK wt. range (xlO~ 4 ) 7-150 36-127 ? 39-400 5-100 1-100
Method(s)
Remarks A B
L A,R,L A B A-B A A B
Refs.
5 2 ? 3
? -
-
7
10 8 7 6 9 ? 5 10 8 9 8 7 W 16
? ~ 9 -
4-137 12-280 4-52 16-100 1-160 5-80 7-150 0.5-4.5 0.08-3.7 0.05-0.5 4-146 40-370 8-85 S-SO 3-650 5-100
OS LV ? LV LS GPC LS LS LS LS LS LS OS OS OS CR CR LS LS OS DV LS LS
10
-
8-80
DV
A
276 292 293 291 698 749 756 283 279 289 294 278 295 276 296 297 298 299 280 300 282 752 698 697 277
B B A C B A A A,R A A
25 25 25 25(0)
22.4 26.3 35.7 73
0.62 0.60 0.57 0.50
8 8 8 8
-
12-280 12-280 12-280 12-280
LS LS . LS LS
A A A A
279 279 279 279
23(0) 34(0)
73 71.8
0.50 0.50
9 10
-
4-146 8-80
LS DV
A A
299 282
25 25 25 25 (0)
7.7 12 46 73
0.75 0.68 0.54 0.50
8 8 8 8
-
12-280 12-280 12-280 12-280
LS LS LS LS
A A A A
279,278 279,278 279,278 279,278
34(0)
72.6
0.50
10
-
8-80
DV
A
282
10.4 26 92 88 100 7.8 8.5 11.5 9.50 74.5 85 88 88 91 86 16.3 80 81 8.38 80 13.63
0 715 0.612 0.50 0.50 0.50 0.75 0.75 0.73 0.74 0.50 0.50 0.50 0.50 0.50 0.50 0.68 0.50 0.50 0.74 0.50 0.714
8 8 12 10 17 -
7 12 5 6 ? 12 9 4 7 3 6 8 5 4 -
12-280 12-280 0.07-3.5 8-80 0.04-1 40-6000 2.5-150 25-300 31-500 ? 0.04-150 31-970 1-6000 25-300 2-50 20-107 2-50 31-760 25-300 40-160 2-4000
LS LS DV DV VOS, EB LS VOS LS LS LS LS LS LS LS LS LS LS LS LS LS LS, OS, SD
A A A,L A A,L A,R A A A B A,R A A A A A A A A A A,R
25 25 25 34(0) 25 25 30 30 30 34(0) 34.5 (0) 34.5(0) 34.5(0) 34.6 (0) 35(0) 25 12.2 (0) 20.4(0) 30 22.0(0) 25
17 13
279 279 298,297 282 301 750 301 302 649 304 301,303 649 750 302 305 306 303 649 302 303 753
References page VII - 68
TABLE 1. cont'd No. of samples Polymer
Solvent
Fr.
W.P.
MoI. wt. range (xlO4)
14.6 0.70 10.69 0.724 ll.2 0.72 9.77 0.73 34.5 0.62 8.81 0.75 10.4 0.73 9.5 0.77 10.6 0.735 25.9 0.734 17.9 0.677 11.0 0.725 9.3 0.72 (a decreases with M) (a decreases with M) (a decreases with M) 53 0.61 0.465 0.5 0.67 53 0.50 0.52 12.0 0.68 6.38 0.734 55.6 0.50 12.4 0.67
6 20 6 7 3 5 7 5 5 9 9 8 12 3 12 8 10 8 8 10 10
6 12 25 5 15 -
42-842 3-4000 3-24 1-104 0.4-230 25-300 2.6-50 4-75 4-37 9-32 2-100 3-37 15-71 30-200 8-300 8-300
-
25 5.7 0.76 35 36 0.55 35(6) 63.1 0.50 50 26.5 0.58 35 7.4 0.73 35 (0) 66.5 0.50 35 74.7 0.73 16.6-30.1 (0) (depend on M w ) 35 Not const. 34.5 (not 0) 30 0.5 34.5 (not 0) 24 0.5 34(0) g' =0.94 (3 branches)* g' =0.82 (4 branches)* 15 g' = 0.48 (9 branches)* 25 g ' = 0.90 (3 branches) * 34 g'=0.84 (4 branches)* 25 (0.344) (1.0) 25 (0.312) (1.0)
5 5 9 9 9 6 6 -
-
Temp. (0C)
Thiophenol Toluene
isotactic
25 20 20 25 25 30 30.3 30 30 30 25 30 30 25 35 (0) 30 25 35 (not 0) 40 35 34.5 35 30 25 25 40.0 35.0
Benzene Chloroform o-Dichlorobenzene Toluene
branched, random type
head-to-head
Butanone Cyclohexane Toluene Tetrahydrofuran
Cyclohexane Tetrahydrofuran
ring star type three branches four branches
Toluene Cyclohexane Toluene Benzene Cyclohexane Cyclohexane
star type 3 arm
Toluene Cyclohexane Toluene Cyclohexane
star type 15 arm 20 arm star type, anionic
Toluene Cyclohexane Cyclohexane Cyclohexane
regular H-shaped
Decalin Toluene Poly(styrenesulfonic acid)
£(xlO3) (ml/g)
Aq. HCl (0.52M) Aq. NaCl (0.52M) -, sodium salt Aq. NaCl (4.17M) (0.5M) (0.1 M) (0.05M) (0.02M) (0.01 M) (0.05M) Aq. KCl (3.1M) a g' = 0?] of branched molecules/fr] of linear molecules with
25(6») 25 25 25 25 25 25 25 same mol. wt.
a
Method(s)
Remarks
Refs.
A A,R
0.69-43.6 16.1-43.6 0.69-43.6 3-27 4.4-27.6 3-27 ?-18 3^27 0.7-44 0.7-44
LS LS1 OS, SD SD SD SD LS OS, LS OS OS OS LV OS LS LS LS LS LS GPC GPC GPC LLS, GPC LS LLS, GPC LS LLS, GPC LS LS
778 753 307 308 309 302 310 311 312 284 313 312 314 315 316 316 756 926 926 926 928 930 928 930 928 755 755
3-96 3-96 5-140 5-140 5-140 11-170 11-170 -
OS, GPC OS, GPC OS, LS OS, LS OS, LS LS LS LS
A A A A A A A
757 757 758 758 758 759 759 931
A-B A-B
931 941 941 304 304 318 304 304 365 365
4 3
-
86-302 26-148
LS LS, OS, GPC LS, OS, GPC
3 3
-
18-46 18-46
LV LV
A,R B A A A-B,R C-D C A-B A-B7R B-C A A C B B B A-B A-B A-B A-B A-B
20.4 18.6 17.8 13.9 10.1 2.8 2.3 20.4
0.50 0.64 0.68 0.72 0.78 0.89 0.93 0.50
4 6 6 6 6 5 5 4
-
49-228 39-234 39-234 39-234 39-234 39-234 49-234 49-234
LS LS LS LS LS LS LS LS
B B,R B B B B B B
366 366 366 366 366 366 366 366
12.3 172
0.757 0.50
10 10
-
85-122 85-122
OS, LS OS, LS
B B
1011 1011
1.9. OTHERCOMPOUNDS Poly(2-acrylamino-2-methylpropanesulfonarnide) Water Water/1,4-dioxane (81.5/18.5, v/v)
25 25(0)
TABLE 1. cont'd No. of samples Polymer PoIy(allylammonium chloride)
Poly[(bipheny!-4-yl)-ethylene]
Poly(terf-butyl crotonate)
Solvent Aqueous NaCl (0.05 M) (0.2M) (0.5M) (1.0M) Benzene
Butyl chloride Toluene
Poly(carbanilinoxyethylene), (Poly(vinyl carbanilate))
Dioxane Dioxane/methanol (28/72, v/v) Poly(dibutyl itaconate) Toluene Poly(dicyclohexyl itaconate) Tetrahydrofuran Toluene Poly(didecyl itaconate) Toluene Poly(diethyl fumarate) Benzene Poly(didodecyl itaconate) Toluene Poly(diethyl itaconate) Toluene Poly[di(ethylcyclohexyl) itaconate] Toluene Poly(dihexadecyl itaconate) Toluene Poly(dihexy] itaconate) Toluene Poly(diicosayl itaconate) Toluene Poly(diisopropyl fumarate) Benzene Poly(dimethyl itaconate) Benzene Poly[di(methylcyclohexyl) itaconate] Toluene Poly(dioctyl itaconate) Toluene Poly(diphenylmethylene) Benzene Poly(diphenyl itaconate) Toluene Poly(dioctadecyl itaconate) Toluene Poly(dipropyl itaconate) Toluene Poly[di(propylcyclohexyl itaconate] Pentyl acetate Toluene Poly(ditetradecyl itaconate) Toluene Poly(diundecyl itaconate) Toluene Poly( 1 -methoxycarbonyl-1 -phenylethylene) Benzene Chloroform Ethylbenzene Poly(monodecyl itaconate) Tetrahydrofuran Poly(monododecyl itaconate)
Tetrahydrofuran
Fr.
W.P.
MoI. wt. range (xMT4)
0.975 0.815 0.794 0.714 0.619 0.59 0.589 0.82 0.82
9 7 6 9 5 6 5 10
11 -
4.1-18 2.8-18 2.8-18 4.1-18 7-170 1-110 7-170 0.2-32 0.6-35
LS LS LS LS LS LV LS OS, GPC OS, GPC
B B B A A
900 900 900 900 264 264 264 760 760
13.7
0.68
11
-
6-200
LS
A
335
64.5 5.70 23.3 13.1 8.01 1.62 11.7 1.48
0.51 0.70 0.58 0.623 0.64 0.87 0.59 0.80
5 8 5 10 11 10 -
~ -
6-200 20-105 5-56 5-56 13-82 ?-20
8
5-61
LS LS OS OS LS OS, GPC LS LS
A B B B B A-B B
335 762 761 761 762 1009 945 762
0.73 0.60 0.72 0.56 0.98
_ 11
8 _ -
12-122 _ 4.7-30
LS LS LS L S OS, GPC
B B A-B
763 945 762 945 1009
0.68
-
8
4-120
LS
B
762
0.76 0.71 0.328 0.69 0.59 0.78
-
13-102 11-163 1-90 5.7-57
6
13-109
LS LS ? LS LS LS
B
? 9 -
8
25 25 25
2.02 3.67 218 4.47 13.1 1.62
763 762 267 943 945 762
25 25 25 25
14.0 2.23 9.91 10.01
0.56 0.73 0.61 0.61
B B -
763 763 945 762
Temp. (0C)
AT(XlO 3 ) (ml/g)
25 25 25 25 20 30 75 25 25
2.40 7.18 7.19 13.9 21.4 29.5 27.7 7.7 7.7
20 20(0) 25 25 25 25 30 25 25
25 2.62 25 H.4 25 3.71 25 14.3 30 0.753 (Wormlike behavior) 25 5.15 25 25
16-170
Remarks
-
-
Refs.
-
4
9-250
8 8 8 11
-
6-40 6-40 6-40 3.3-72.4
LS LS LS LS, SEC
A A A A
361 361 361 1006
0.65
9
-
1.7-233
LS, SEC
A
949
0.66
8
-
9.0-45
LS
-
943
0.65
12
-
6.5-52
LS
-
943
0.35 0.53
3 3
-
9-51 9-51
OS OS
5.89 13.4
0.74 0.63
4 5
-
18-130 18-160
LS LS
19.6 18.6 7.87 5.77
0.67 0.70 0.85 0.88
4 4 4 4
-
1-21 1-21 1-21 1-21
OS, GPC OS, GPC OS, GPC OS, GPC
5.97 241 29.2
0.566 0.661 0.507 Not const.
16-91 16-91
Method(s)
LS LS LS LS
30 35.6 30 12.7 15(6») 51.4 25 (Wormlike behavior) 25 11.2 (Wormlike behavior) 25 5.26
Poly[bis(phenylethyl) itaconate] Toluene Poly[bis(phenyl-n-propyl) itaconate] Toluene 25 Poly(9-vinyladenine) Aq. NaCl (0.1 M)/ NaAs(CH3)2(0.1M); pH7 26 40 PoIy(I -vinyl-3-benzylimidazolium chloride) Aq. NaCl (0.2M) 25 Methanol/N(CH3)4 25 Br(0.01 M) Poly(4-vinylbenzyl trimethylamrnonium chloride) Aq. NaCl (0.5 M) 25 (0.1 M) 25 (0.01 M) 25 (0.002 M) 25
a
830 830 B B
813 813
764 764 764 764
References page VII - 68
TABLE 1. cont'd No. of samples Polymer Poly(vinylcarbazole)
Solvent Benzene Bromobenzene Chlorobenzene Chloroform Cyclohexanone 1,2-Dichlorobenzene 1,3-Dichlorobenzene Nitrobenzene
Tetrachloroethane Tetrahydrofuran Toluene Poly(N-vinyl-3,6-dibromo carbazole) p-Chloro-m-cresol o-Chlorophenol PoIy(I-vinylimidazole) Aq. NaCl (0.1 M) (5.0M) Aq. NaSCN (0.1 M) Methanol/N(CH3)4 Br(0.01 M) protonated Aq. HCl (0.1 M)/ NaCl(IM) Poly(5-vinyl-2-methylpyridine) Butanone Dimethylformamide Methanol
PoIy(I-vinylnaphthalene)
Benzene
Poly(2-vinylnaphthalene)
Benzene
Poly(3-vinylpyrene)
Poly(2-vinylpyridine)
Decalin/toluene (13/10, w/w) Chloroform 1,2-Dichlorobenzene Tetrahydrofuran Benzene Ben e
z ne Benzene
Poly(2-vinylpyridine 1-oxide)
Butanone Dimethylformamide Dioxane Methanol Methyl ethyl ketone Pyridine 2-Propanol Pyridine Pyridine Ethanol/water (92/8, w/w) Benzyl alcohol 1-Butanol Chloroform Methanol
Temp. (0C) 25 25 30 45 25 25 25 25 25 25 30 45 25 25 37 (0) 112.9(0) 60.0(0) 25 25(0) 25(0) 25 25(0)
Fr.
W.P.
MoI. wt. range (xlO4)
0.58 0.76 0.755 0.776 0.74 0.67 0.61 0.68 0.75 0.69 0.716 0.739 0.68 0.65 0.50
11 7 6 6 7 8 9 7 6 6 6 6 9 10 7
-
0.7-45 7-49 7-57 7-57 7-49 3-45 2-45 4-44 7-49 7-49 7-57 7-57 2-45 1-45 4-107
LS GPC GPC GPC GPC LS LS GPC GPC GPC GPC GPC LS LS OS
A A-B A-B A-B A-B A A A-B A-B A-B A-B A-B A A A
367 765 766 766 765 367 367 767 767 765 766 766 367 367 368
30.2 27.5 122 121 105 48.5
0.50 0.50 0.51 0.50 0.50 0.63
7 8 5 8 5 6
-
4.8-125 4.8-125 9-90 5-90 9-90 9-130
LS LS LS LS
B B B B
942 942 813 813 813 813
169
0.50
5
-
9-90
LS
B
813 375 376 377 377 376 375 264 264 268 264 264 269
IC(XlO 3 ) (ml/g) 30.5 5.14 5.23 4.44 5.93 13.6 20.0 11.0 5.6 9.25 7.19 6.03 12.9 14.4 76.2
a
Method(s)
Remarks
Refs.
25 25 25 25 25 25 20 75 17 20 75 30.2(0)
13.9 19 13.0 18.0 18.6 8.0 2.20 1.03 1.7 6.90 8.69
0.65 0.64 0.76 0.83 0.70 0.76 0.82 0.88 0.80 0.719 0.695 0.50
5 15 6 8 9 9 4 4 11 6 6 8
-
13-88 6-100 4-40 4-40 7-80 13-88 4-17 4-17 10-100 6-68 6-69 10-100
LS LS OS OS LS LS LS LS LS LS LS LS
A A A-B A-B A A B B
25(0) 25 25 25 25 10 10 11-4(0) 12 15 25 25 25 25 25 25 25 25 25 25
51.0 11.7 31.8 6.6 17.0 151 149 81 56.0 31.8 97.2 14.7 30.9 11.3 93.3 9.84 18.4 9.9 13.8 12.2
0.500 0.655 0.547 0.72 0.64 0.445 0.43 0.50 0.53 0.59 0.47 0.67 0.58 0.73 0.480 0.727 0.67 0.73 0.69 0.73
9 9 9 3 14 5 5 5 5 5 14 14 14 14 5 5 5 4 14 14
-
3-50 3-50 3-50 3-11 3-93 9.4-196 9.4-196 9.4-196 9.4-196 9.4-196 3-93 3-93 3-93 3-93 9.4-196 9.4-196 9.4-196 9.4-196 3-93 3-93
LS LS LS LS LS LS, OS LS, OS LS, OS LS, OS LS, OS LS LS LS LS LS, OS LS, OS LS, OS LS, OS LS LS
A A A B,C A A A A A B,C B,C B,C B,C A A A A B,C B,C
768 768 768 769 371 944 952 952 952 952 207 371 371 371 944 944 952 952 207 371
9.35 7.78 15.8 7.55
0.73 0.72 0.64 0.72
14 14 14 14
-
1.3-34 1.3-34 1.3-34 13-34
LS LS LS LS
A-B A-B A-B A-B
946 946 946 946
25 25 25 25
B B
TABLE 1. cont'd No. of samples Polymer
Poly(4-vinylpyridine)
Poly(vinylpyrrolidone)
Solvent 1-Propanol 2-Propanol Ethanol Water Butanone/2-propanol Ethanol/water (92/8, w/w) Chloroform Methanol Water
Acetone/water (66.8/33.2, v/v) Aq. Na 2 SO 4 (0.55M) Poly( 1 - vinyl-2-pyrrolidone) high M low M Poly(vinylsulfonic acid)
Aq. sodium acetate (0.1 M) Aq. sodium acetate (0.1 M) Aq. KBr (0.347 M)
Aq. KCl (0.349 M) (0.650 M) (1.001 M) Aq. NaBr (0346 M)
Poly(vinyltrimcthylsilane) 1.10.
(1.008 M) Aq. NaCi (1.003 M) (0.5M) Cyclohexane
MoK wt. range (xlO4)
Method(s)
Remarks
3 -
1.3-34 13-34 1-4 10-185 10-185 7-224 7-224
LS LS SD LS LS LS LS
A-B A-B C A-B A-B B B
946 946 372 373 373 374 374
4 3 15 9 6 -
2 6 5 3
2-23 2-23 1-9 0.7-10 1-4 1-20 8-110 1.2-108
LS LS SD LS SD SD OS LS
B B B B,R C,D B A,R B
378 378 379 378 211 381 383 384
5
-
9-46
OS
B
770
4-220
-
-
948
0.2-4
-
-
948
Temp. (0C)
/C(XlO 3 ) (ml/g)
a
Fr.
W.R
25 25 25 25 25 25 25
10.3 12.0 (1.51) 25.0 22.0 38.0 12.0
0.70 0.68 (0.52) 0.68 0.687 0.57 0.73
14 14 8 8 7 7
25 30 20 25 25 30 30 25 {0)
19.4 23 64 67.6 4.1 14 39.3 75.0
0.64 0.65 0.58 0.55 0.85 0.70 0.59 0.50
25 (0)
58.0
0.500
25
5.7(0) 15 30 50 5.5 (0) 25 26.0(0) 44.5(0) -0.6(0) 10 20 30 40.1(0)
68.8 30.8 24.5 26.6 68.2 16.7 79.5 80.3 95.5 26.8 25.1 22.0 94.5
0.74 (Mixed) 0.53 (Mixed) 0.50 0.61 0.75 0.76 0.50 079 0.50 0.50 0.50 0.73 0.76 0.79 0.50
32.4(0) 20 25
96.1 21.5 8.2
0.50 0.65 0.71
5 5
6 -
4-39 0.3-3 59-213
LS SD LS
B C B
259 260 610
0.50 0.50
7 5
-
0.06-1.26 0.15-0.40
OS OS
A A
590 590
0.65
?
?
?
?
0.79
6
-
2-21
LS
0.743 0.502
11 8
-
2-53
LS
0.62 0.68
16 4
-
15-120 10-78
LS LS
B B
593 594
0.61 0.77
11 Il
-
19-56 19-56
LS LS
B B
595 595
0.74
6
-
14-58
LS
B
773
25
8.86
Refs.
64
5 5 5 5 5 5 5 5 5 5 5 5 5
-
4-39 8-39 8-39 8-39 4-39 4-39 4-39 4-39 4-39 8-39 8-39 8-39 4-39
LS LS LS LS LS LS LS LS LS LS LS LS LS
B B B B B B B B B B B B B
259 259 259 259 259 259 259 259 259 259 259 259 259
COPOLYMERS
Poly(acrylonitrile-co-butadiene), see also Poly(butadiene-a?-acrylonitrile) in group 1.1 (18/82, w/w, random) Toluene 25 251 (26/74, w/w, random) Toluene 25 260 Poly(acrylonitrile-«?-glycidyl methacrylate) Dimethyiformamide 30 175 Poly(acrylonitrile-ctf-methyl acrylate) Dimethyiformamide 20 17.9 Poly (acrylonitri Ie-j/fl/-methyl acrylate), (91.5/8.5, w/w) Dimethyiformamide 25 21.3 Ethylene carbonate/water 25(0) 152 (82.5/17.5, w/w) Poly(acrylonitrile-c-styrene) (38.3/61.7, mol/mol,) Butanone 30 36 Tetrahydrofuran 25 21.5 azeotropic (62.6/37.4, mol/mol, random) Butanone 30 53 Dimethyiformamide 30 12 Poly(acrylonitrile-67ar-styrene) (27.4/72.6, mol/mol) Dimethyiformamide 30 12.0
591 B
592 772 772
References page VII - 68
TABLE 1. cont'd No. of samples Polymer
Solvent
Temp. (0C)
K(XlO3) (ml/g)
a
Fr.
(38.5/61.5, mol/mol) Dimethylformamide 30 16.2 0.73 6 (47.5/52.5, mol/mol) Dimethylformamide 30 17.2 0.73 6 Poly (aery lonitriie-a/f-styrene) (1/1, mol/mol) Butanone 30 24.3 0.67 10 Dimethylformamide 30 7.63 0.76 9 Butanone/methanol 30(6) 140 0.50 10 (63.6/36.4, v/v) Poly (aery lonitrile-co-vinylidene chloride) 58 wt.% AN 7-Butyrolactone 25 112 0.576 8 Dimethylacetamide 25 99.9 0.603 8 Dimethylformamide 25 102 0.591 8 Af-methyl-2-pyrrolidone 25 114 0.595 8 70 wt.% HNO 3 25 142 0.521 8 Poly(jP-aminobenzoic acid-jtaf-6-aminohexanoic acid) (1/1, mol/mol) Dichloroacetic acid 30 23.7 1.13 4 Trifluoroacetic acid 30 132.5 0.99 4 Poly(butadiene-co-methacrylamide) (90/10, w/w, random) Toluene 25 437 0.50 5 PoIy(butadiene-c-2-methyl-5-vinylpyridine) Toluene 25 309 0.50 5 Poly(butadiene-co-styrene), see also Poly(butadiene-co-styrene) in group 1.1 (84/16 mol/mol, random) Benzene 25 39.4 0.70 4 Dibutyl phthalate 56 472 0.40 6 2-Pentanone 23.8 (B) 167 0.50 5 Poiy(butyl itaconate-c-dibutyl itaconate), (40/60, mol/mol, random) Acetone 25 575 0.32 6 Methanol 25 354 0.32 7 w-Xylene 25 1040 0.21 7 Poly(butyl methacrylate-a/f-styrene) Butanone 25 5.3 0.76 10 Poly(butyl methacrylate-.yta/-styrene) (1/1, mol/mol) Butanone 25 4.9 0.77 10 35 5.98 0.75 8 Cyclohexane 35 7.88 0.70 6 Poly(ferf-butylphenyl methacrylate)-.sf<2f-vinylpyrrolidone) (33.7/66.3, mol/mol) Benzene 25 118 0.53 5 Chloroform 25 105 0.57 5 (60.4/39.6, mol/mol) Benzene 25 130 0.55 4 Chloroform 25 247 0.51 4 Poly(^-^r/-butylstyrene)-^/oc/c-poly(dimethyl-siloxane)-^/oc/:-poly(p-f«rr-butylstyrene) 28 wt.% PBS Methyl ethyl ketone 10 252 0.39 4 15 58.9 0.50 4 20 40.5 0.54 4 31 19.3 0.61 4 38 10.7 0.66 4 Benzene 35 15.4 0.66 4 Methyl ethyl ketone 15(9) 58.9 0.50 4 20 40.5 0.54 4 31 19.3 0.61 4 Poly(/?-chlorostyrene-jfaf-methylmethacrylate), (52/48, mol/mol) Benzene 27 7.94 0.72 9 Benzene/hexane 22.3(0) 64 050 8 (60/40, v/v) Poly(4-chlorostyrene)-£>/ocA:-poly(styrene)-^/oc/:-poly(4-chlorostyrene), A * - B „ - A * 2k/n, (33/67, mol/mol) Carbon tetrachloride 40 6.24 0.76 Cumene 40 5.88 0.76 2k/n, (50/50, mol/mol) Carbon tetrachloride 40 6.63 0.74 Cumene 40 5.76 0.75 Poly(diethyl fumarate-a?-isobutene) 50/50, mol/mol Benzene/petrol ether 20 340 0.44 4 Poly(diethyl fumarate-co-vinylcarbazole) Benzene 25 14.6 0.67 6
W.P.
MoI. wt. range (xlO4)
Method(s)
Remarks
-
22-106 14-78
LS LS
B B
773 773
-
5-100 8-100 5-100
LS LS LS
B B B
774 774 774
-
4.2-50 4.2-50 4.2-50 4.2-50 4.2-50
LS LS LS LS LS
-
961 961 961 961 961
-
12-60 12-60
LS LS
-
0.09-0.11
OS
A
590
-
0.08-1.04
OS
A
590
-
2-51 2-51 7-51
OS OS OS
A A A
596 596 596
-
9-70 11-110 11-110
LS LS LS
B B B
597 597 597
-
32-320
LS
B
776
-
15-208 22-56 34-50
LS LS LS
B B B
776 777 777
-
33-96 33-96
OS OS OS OS
C C C C
779 779 779 779
-
12-129 12-129 12-129 12-129 12-129 9 3-128 9.3-128 9.3-128 9.3-128
OS5GPC OS, GPC OS, GPC OS, GPC OS, GPC OS, LS OS, LS OS, LS OS, LS
C-D C-D C-D C-D C-D B B B B
957 957 957 957 957 960 960 960 960
-
15-120 15-120
LS LS
C C
598 598
5 5 10 10
14-61 14-61 19-74 19-74
OS OS OS OS
A A A A
780 780 780 780
-
1-14
SD
C
599
-
2-13
LS
B
789
Refs.
775 775
TABLE 1. cont'd No. of samples Polymer
Solvent
Temp. (0C)
K(XlO 3 ) (ml/g)
a
Poly(p-diethylphosphonomethylstyrene-c-styrene), (1/4, mol/tnol, random) Benzene 20 1.95 0.90 Tetrachloroethane 20 0.0836 1.18 Poly(dimethyl itaconate-co-styrene) (75/25, w/w) Toluene 25 6.6 0.68 (67/33, w/w) 25 9.0 0.67 (59/41, w/w) 25 9.7 0.67 (49/51, w/w) 25 11.7 0.67 (29.5/70.5, w/w) 25 12.8 0.67 (27/73, w/w) 25 10.9 0.69 (0/100, w/w) 25 11.45 0.712 Poly(dimethyl siloxane-codiphenylsiloxane) (54/45, mol/mol) Benzene 25 40.7 0.60 Dimethyl phthalate 82.5 512 0.31 Ethanol/toluene 29.5 (6) 78 0.50 (37/63, w/w) (66/34, mol/mol) Benzene 25 15.6 0.68 Hexane 36(6) 141 0.44 Benzene/2-propanol 42(0) 74 0.50 (44/56, w/w) Poly(divinylstyrene-a?-styrene), see also Poly(styrene), branched, random type, in group 1.8. Benzene 25 37.2 0.70 Octane 21 162 0.50 Poly(ethyl acrylate-j/aMnethyl methacrylate), (80/20, mol/mol) Acetone 25 62 0.57 Poly(ethyl methacrylate a/r-styrene) Butanone 25 9.3 0.72 Poly(ethyl methacrylate-jfaf-styrene) (1/1, mol/mol) Butanone 25 12.0 0.70 Poly(ethylene-co-a-methyl-styrene), [(ET)w (MS) ,Jp m/n = 3/4 Cyclohexane 30 92 0.56 Dioxane 30 76 0.58 Toluene 30 32 0.68 Butanone/cyclohexane 30(6) 135 0.50 (60/40, v/v) m/n = 5/4 Cyclohexane 30 65 0.60 Dioxane 30 89 0.56 Toluene 30 37 0.66 Butanone/cyclohexane 30(0) 140 0.50 (75/25, v/v) m/n = 5/7 Cyclohexane 30(0) 112 0.50 Dioxane 30 123 0.49 Toluene 30 56 0.58 Poly(hexadecyl methacrylate-co-methyl methacrylate) (25/75, mol/mol, random) Heptane 25 85.0 0.38 Propyl acetate 25 17.1 0.62 (38/62, mol/mol, random) Chloroform 25 36.3 0.57 Heptane 25 6.9 0.65 Propyl acetate 25 53.6 0.50 (50/50, mol/mol, random) Chloroform 25 53 0.54 Heptane 25 32.0 0.52 Propyl acetate 25 91.3 0.43 PoIy(I-hexene-co-sulfur dioxide), see Poly[sulfonyl(butylethylene) in group 3.10. Poly(isobutene-co-isoprene), see group 1.2. Poly(isoprene)-&/
Fr.
W.P.
MoI. wt. range (xlO" 4 )
5 11
-
15-50 9-51
SV SV
B B
6 6 8 7 8 8 12
-
6-22 4-19 5-38 6-24 7-36 6-40 3-58
LS LS LS LS LS LS LS
A A A A A A A
683 683 683 683 683 683 683
5 5 5
-
7-57 11-57 7-35
OS OS OS
A A A
596 596 596
4 4 4
-
3.7-100 3.7-100 3.7-100
LS LS LS
A A A
596 596 596
5 6
-
5-80 5-80
SD SD
10
-
65-800
LS
B
114
9
-
19-470
LS
B
776
10
-
3-185
LS
B
776
5 5 5 5
-
0.7-6 0.7-6 0.7-6 0.7-6
SA SA SA SA
B B B B
604 604 604 604
5 5 5 5
-
0.8-7 0.8-7 0.8-7 0.8-7
SA SA SA SA
B B B B
604 604 604 604
4 4 4
-
1.5-7 1.5-7 1.5-7
SA SA SA
B B B
604 604 604
8 8 8 8 8 8 8 8
-
4-47 4-47 16-195 4-47 4-47 10-154 4-47 4-47
LS LS LS LS LS LS LS LS
A A A A A A A A
605 605 605 605 605 605 605 605
7 7 7 7
-
29-130 29-130 29-130 29-130
LV LV LV LV
B B B B
842 842 842 842
9
-
26-105
LS
Method(s)
Remarks
Refs.
602 602
607
DN-Degree of neutralization
References page VII - 68
TABLE 1.
Polymer
cont'd
Solvent
Temp. (0C)
K (xlO3) (ml/g)
a
No. of samples — —— Fr. W.P.
Poly(4-methoxystyrene-jfaf-styrene) (24.4/75.6, mol/mol) Toluene 25 7.0 0.75 9 (26.4/73.6, mol/mol) Butanone 25,50 40 0.585 8 Toluene 25 18.6 0.68 8 (46.2/53.8, moVmol) Toluene 25 7.3 0.755 13 (53.0/47.0, mol/mol) Butanone 25(0) 100 0.49 7 Toluene 25 37 0.615 7 (74.0/26.0, mol/mol) Toluene 25 8.2 0.755 9 (75.6/34.4, mol/mol) tert-Butylbenzene 25 (0) 83 0.49 6 Toluene 25 16.9 0.673 7 Poly(methyl acrylate-Jta/'-methylmethacrylate) (17/83, w/w) Butanone 25 11.7 0.70 4 (29/71, w/w) 25 11.1 0.63 4 (67/33, w/w) 25 36.6 0.60 4 Poly(methyl acrylate-co-styrene) (22/78, mol/mol, random) Benzene 30 8.93 0.744 16 Butanone 30 21.1 0.640 12 2-Methylcyclohexanol 43.5 (0) 77 0.50 8 (33/67, mol/mol, random) Benzene 30 7.18 0.759 9 Butanone 30 11.4 0.696 4 2-Methylcyclohexanol 35.0(0) 76 0.50 7 (47/53, mol/mol, random) Butanone 30 10.7 0.724 9 (50/50, mol/mol, random) Ethyl acetate 35 41.6 0.57 9 (59/41, mol/mol, random) Benzene 30 6.15 0.780 6 Butanone 30 11.3 0.703 4 2-Methylcyclohexanol 36.6 (0) 76 0.50 6 (76/24, mol/mol, random) Benzene 30 7.42 0.766 6 Butanone 30 9.16 0.728 5 2-Methylcyclohexanol 29.4 (0) 75 0.50 5 Poly(methyl methacrylate-co-p-isopropylstyrene), 2/3, mol/mol, graft Butanone 25 0.021 1.11 Poly(methyl methacrylate-co-2-methyl-5-vinylpyridine) (85/15, mol/mol, random) Acetic acid 25 170 0.51 3 Poly(methyl methacrylate-co-styrene) (10/90, mol/mol, random) 1-Chlorobutane 40.8 16.6 0.609 5 (30/70, mol/mol, random) 1-Chlorobutane 30 17.6 0.67 9 Cyclohexanol 64.0(0) 71.6 0.51 4 Toluene 30 8.32 0.75 10 (44/56, mol/mol, random) 1-Chlorobutane 30 24.9 0.63 10 Cyclohexanol 64.0(0) 70.0 0.51 4 Toluene 30 13.2 0.71 11 (50/50, mol/mol, random) Butanone 25 15.4 0.675 11 (52/48, mol/mol, random) 1-Chlorobutane 40.8 49.0 0.575 5 (71/29, mol/mol, random) 1-Chlorobutane 30 24.9 0.63 10 Cyclohexanol 68.0(0) 97.3 0.47 5 Toluene 30 11.4 0.70 8 (94/6, mol/mol, random) 1-Chlorobutane 40.8 27.6 0.617 5 nearly equimolar, three blocks (MSM) Cyclohexanol 81.0(0) lim M v v ^oM e /M l / 2 = 63 PS% 86.1-90.4, graft (S on M; Mps= 0.7-1.0 x 104) Benzene 25 [77] = 0.00918 M J 5 7 4 V 7 7 Butanone 25 \rj\ = 0.0390 M j ^ V ' 5 9 graft Bromoform 56 0.6 6 Poly(methyl methacrylate)-6/od:-poly(styrene), A*-B,,, k/n, (54/46, w/w) Butanone 30 9.4 0.69 6 1-Chlorobutane 30 22.4 0.60 6 Toluene 30 7.3 0.73 6 Poly(2-methyl-l-pentene-c0~sulfur dioxide), see Poly[sulfonyl(l-methyl- 1-propylethylene)], group 3.10. Poly(a-methylstyrene-co-styrene) Benzene 20 14.4 0.69 5 PoIy(I -octadecane-a/r-maleic acid) Ethyl acetate 25 55 0.48 6
MoL wt. range (xlO~ 4 )
Method(s)
Remarks
-
4-42 7-80 7-80 3.5-70 7-80 7-80 5-35 7-80 7-80
OS LV LV OS LV LV OS LV LV
B B B B B B B B B
781 782 782 781 782 782 781 782 782
-
56-208 37-137 71-187
LS LS LS
B B B
131 131 131
-
2.6-80 2.6-80 2.6-80 6.6-36 6.6-36 6.6-36 6.7-24.4 18-116 7-40 12-40 7-40 7.2-28 8.9-28 6.5-24
LS LS LS LS LS LS OS LS LS LS LS LS LS LS
A A A A A A A A A A A A A A
129 129 129 129 129 129 129 133 129 129 129 129 129 129
6
31-65
LS
-
37-150
LV
B
612
-
20-82 5-55 5-55 5-55 5-81 10-81 4.8-81 5-227 18-115 4.8-81 15-106 7-106 20-100
LS LS LS LS LS LS LS LS LS LS LS LS LS
B B B B B B B B B B B B B
613 614 614 614 614 614 614 615 613 614 614 614 613
7
3.4-147
LS
B
616
-
83-121 53-285 180-320
LV LV LV
-
5.8-93 5.8-93 5.8-93
LS LS LS
A A A
783 783 783
-
18-80
SV
A
332
-
2.4-9.9
LS
-
956
Refs.
611
617 617 618
Next Page
TABLE 1. cont'd
Polymer
Solvent
Temp.
K(xlO3)
( 0 C)
(ml/g)
No. of samples
range a
Fr.
Poly(octyl methacrylate-a//-styrene) Butanone 25 7.4 0.72 11 Poly(octyl methacrylate-staf-styrene), (1/1, mol/mol) Butanone 25 7.8 0.71 10 Poly(styrene)-6/oc/c-poly(butadiene)-^/oc/c-poly(styrene) 50 wt.%-PS Toluene 30 71.3 0.62 7 Poly(styrene)-/7/ocA:-poly(4-chloro-styrene)-^/oc^-poly(styrene), B,,-A*-B„ k/2n, (33/67, mol/mol) Carbon tetrachloride 40 6.10 0.77 Cumene 40 3.99 0.79 fc/2n, (50/50, mol/mol) Butanone 30 8.14 0.72 Carbon tetrachloride 40 5.58 0.76 Cumene 40 6.84 0.74 Toluene 30 4.62 0.79 k/ln, (66/34, mol/mol) Carbon tetrachloride 40 5.94 0.74 Cumene 40 5.21 0.75 Poly(styrene-cc-sulfur dioxide), see Poly[sulfonyl(phenylethylene)], group 3.10. Poly(styrene)-gra/?-poly(methyl methacrylate), MMA content, 13 wt.% Bromoform (16.5) (0.58) 5 Poly(styrene)-frfoc£-poly(dimethylsiloxane) 12-62% PS Methyl ethyl ketone 25 Various Various Various Poly(styrene-c0-monoethyl rnaleate) Acetone 26.4(0) 51.1 0.50 9 Dioxane 25 11.2 0.702 9 Tetrahydrofuran 25 7.50 0.695 9 -, sodium salt Aq. NaCl (0.005 M) 25 5.8 0.87 4 (0.01 M) 25 5.5 0.85 5 (0.03M) 25 6.3 0.80 5 (0.05M) 25 Il 0.73 5 (0.075M) 25 10 0.71 5 (0.15M) 25 15 0.65 5 (0.3M) 25 21 0.60 5 (0.6M) 25 55 0.50 5 Poly(styrene)-Z?/
TABLE 2.
MoI. wt.
W.P.
(xlO4)
Method(s)
Remarks
-
12-450
LS
B
776
-
10-198
LS
B
776
-
5.7-140
OS, LS
A-B
958
4 4 8 8 8 8 4 4
20-82 20-82 31-89 31-89 31-89 31-89 15-54 15-54
OS OS OS OS OS OS OS OS
A A A A A A A A
780 780 780 780 780 780 780 780
-
17-196
SD
A
784
-
Various
OS, GPC
B-C
955
-
20-180 20-180 20-180
LS LS LS
A A A
317 317 317
-
40-130 40-180 40-180 40-180 40-180 40-180 40-180 40-180
LS LS LS LS LS LS LS LS
A A A A A A A A
317 317 317 317 317 317 317 317
-
6.5-153 6.5-153 6.5-153
LS 5 OS LS, OS LS, OS
A A A
944 944 944
MoI. wt. range M(xlO4)
Method
Remarks
Refs.
MAIN-CHAIN CARBOCYCLIC POLYMERS
Polymer Poly(acenaphthenylene)
Solvent Benzene
Temp. (0C)
(ml/g)
25
30.04
25
Poly(4,7-dimethylindene) Poly(6-methylindene)
Ethylene chloride Dioxane Methylene chloride Toluene Benzene Benzene
25 25 25 25 25 25
2.82 20.0 11.5 6.92 6.76 3.5 34
No. of samples tf(xlO3) a Fr. WP 0.594
Il
Refs.
-
2-100
OS
B
262
0.74
4
-
4-100
LS
A,B
263
0.54 0.61 0.66 0.66 0.77 0.60
6 7 5 17 9 13
-
6-125 6-145 6-145 3-175 5.8-140 30-1320
LS LS LS LS LS LS
A,B A,B A,B AJB C,D CD
263 263 263 263 811 811
References page VII - 68
Previous Page
TABLE 3. MAIN-CHAIN HETEROATOM POLYMERS
Polymer
Solvent
No. of samples — Fr. WP
MoI. wt. range M(xlO4)
Method(s)
Remarks
-
8-520 67-640 2-50 0.1-0.9 0.05-0.9
LS LS OS SE SE
A-B B B B
385 790 472 386 386
-
6(?) 6(?)
1.6-25 1.6-25
LS LS
Branching Branching
964 964
0.69 0.585 0.66 0.63 0.64 0.68
8 5 7 7 8 15
-
3-17 7-17 2-42 3-18 2-42 2-42
LS LS LS LS LS LS
B B B B B B
473 473 474 473 474 474
0.57
9
-
7.6-32.5
LLS, SEC
B
962
19.72 0.638 13.9 0.68 15.5 0.67 32.1 0.609 21.4 0.635 32 0.67 156 0.50 48 0.68 39.7 0.686 129 0.50 69 0.61 62 0.64 206 0.50 [rj] = 0.5 + 0.035Af064 140 0.51
5 7 12 9 12 9 5 6 11 5
10 10 10 15 10 -
1-110 4-145 4-145 1-110 4-145 7-100 0.02-0.3 0.01-1.9 8-520 0.02-0.8 0.02-1.1 7-100 0.02-0.15 0.006-1.1 7-100
LS LS LS LS LS LV EG EG LS EG EG LV EG EG LV
A C C A C A,R A1L A A1R A,L A A A,L A A
792 473 473 792 473 387 388 389 385 388 389 387 388 389 387
[rj\ = 2 . 0 + 0.024M 0 7 3 [17] = 0.75 4- 0.035 A/ 071 138 0.50 [rj\ = 2.0 + 0.033Af072 85.2 0.57 120 0.52 14.5 0.70 [rj\ = 2 . 0 + 0.016A/ 076 156 0.50 12.5 0.78 6.4 0.82 16.6 0.82 6.9 0.81 60.2 0.67 61.7 0.66 56.8 0.67 50.5 0.68 49.9 0.67 48.8 0.66 77.7 0.61 76.3 0.57 118 0.54
10 13 7 12 ? 5 11 5 -
-
0.1-3 0.006-1.1 0.02-0.15 0.006-1.9 ? 7-100 0.04-0.4 0.006-1.1 0.019-0.1 2-500 3-700 0.04-0.4 3-700 0.31-3.0 0.31-3.0 0.31-3.0 0.31-3.0 0.31-3.0 0.31-3.0 0.31-3.0 0.31-3.0 0.31-3.0
LS 1 SD EG EG EG LS 1 SD LV EG EG EG LS, SD LV EG LV GPC GPC GPC GPC GPC GPC GPC GPC GPC
A A A,L A A A C1L A A1L C C,R C1L C A-B A-B A-B A-B A-B A-B A-B A-B A-B
390 389 388 389 391 387 392 391 393 394 395 392 395 963 963 963 963 963 963 963 963 963
Temp. (0C)
K(xlO3) (ml/g)
25 80 35 35 30
39.7 1.48 3.5 195 172
0.686 0.56 0.83 0.53 0.56
9 8 22 7 9
37 37
150 207
0.327 0.320
a
Refs.
3.1. POLY(OXIDES), POLY(ETHERS) Poly(butene oxide), see Poly[oxy(ethylethylene)] Poly(ethylene oxide), see Poly(oxyethylene) Poly[oxy(ter/-butyl-ethylene)] Benzene isotactic Xylene Poly(l,2-cyclohexylene) Toluene Poly(oxydecamethylene) Benzene Chloroform Poly(2,6-dichlorophenylene oxide) from 2,4,6-trichlorophenol Toluene from4-bromoToluene 2,6-dichlorophenol Poly (oxy-2,6-dimethyl-1,4-phenylene) Benzene Carbon tetrachloride Chlorobenzene
25 25 25 90 25 25
Chloroform Toluene Poly(dioxolane), see Poly(oxymethyleneoxyethylene) Poly[2,2'-(p,/?-oxydi-p-phenylene)6,6'-oxybis(4-phenylquinoline)] Chloroform 25 Poly(oxy-2,6-diphenyl-1,4-phenylene) Benzene 50 Chlorobenzene 25 90 Chloroform 25 Toluene 25 Poly(oxyethylene) Acetone 25 25 Benzene 20 25 25 Carbon tetrachloride 20 25 Chloroform 25 Cyclohexane 20 Diethylene glycol 50 diethyl ether Dimethylformamide 25 Dioxane 20 25 Methanol 20 25 4-Methylpentan-2-one 50 Toluene 35 Water 20 25 30 35 35 45 Water 3 5 10 15 25 35 55 75 85
26.0 75.5 37.8 51.4 48.3 28.5
250
4 6 5 4 5 6 6 6 6 6 6 6 6 6
TABLE 3. cont'd No. of samples Polymer
Poly[oxy(ethylethylene)]
Solvent Aq. KOH (0.96M) (1.10M) (1.24M) (1.48M) Aq-K 2 SO 4 (0.45M) Aq-MgSO 4 (0.39M) Benzene Butanol Butanone Hexane 2-Propanol
Poly[oxy(hexamethylene)] Poly(oxymethylene)
Benzene Dioxane Dimethylformamide
Temp. ( 0 C) 25 25 25 25 35(0) 35 45(0) 25 30 25 30 25 30(0) 30(6) 25 25 130 140 25 25
K(xlO3) (ml/g)
Poly(oxytrimethylene)
Acetone Benzene Carbon tetrachloride
30 30 30
Method(s)
a
Fr.
144 165 185 309 130 280 100
0.53 0.51 0.50 0.43 0.50 0.45 0.50
-
6 6 6 6 5 5 5
0.31-3.0 0.31-3.0 0.31-3.0 0.31-3.0 3-700 7-100 3-700
GPC GPC GPC GPC LV LV LV
A-B A-B A-B A-B C A C
963 963 963 963 395 387 395
15.9 3.39 19.6 4.08 14.3 86.5 111 86.9 131 22.4 18.1 46.0 87
0.75 0.84 0.69 0.79 0.73 0.50 0.50 0.62 0.55 0.71 0.73 0.74 0.69
10 9 10 9 10 9 9 1 1 7 7 7 -
8 10 5
5-120 20-210 5-120 20-210 5-120 20-210 5-120 0.01-1.5 0.01-1.5 0.15-1.5 0.15-1.5 0.15-1.5 2-16
LS LS LS LS LS LS LS SE, CR SE, CR EG EG EG LS
B-C B B-C B B-C B B-C C C B B B C
396 397 396 397 396 397 396 398 398 399 399 399 402
0.80 0.93 0.50 0.724 0.810
? 4 -
18
EG OS LS LS LS
CJD
14 3 3
0.8-10 ? 9-100 7-13 7-13
D C C
400 403 404 405 405
0.73 0.758 0.766
4 10 10
-
3-11 1.4-81 1.4-81
OS LS LS
B,C B,C
791 385 385
0.702
7
-
0.86-8
LS
B
993
0.818 0.56 0.79 0.77 0.8 0.73 0.64 0.65 0.67 0.64 0.55 0.62 0.72 0.75
8 5 5 3 ? 11 5 6 6 10 6 5 3
-
LS LS SE LS ? LV LS LS LS SE LS SE SE LS
B A A A-B
8 10 -
0.46-8 0.1-0.4 0.07-0.33 3-70 ? 0.5-92 1-8 0.05-0.4 3.4-367 0.05-0.33 1-7 0.05-0.33 0.07-0.33 3-70
A A A-B
993 406 407 408 409 410 411 406 408 407 411 407 407 408
0.50 0.56 0.65 0.60 0.65 0.78
7 5 5 10
12 12 -
1-7 0.1-0.4 0.04-0.4 2.6-113 2.6-113 3-12
LS
LS LS OS
A L L A A A-B
411 793 793 412 412 413
0.49
-
11
2.6-113
LS
A
412
0.59 0.78 0.75
-
7 15 11
2.8-20 2.8-30 2.8-25
LS LS LS
A A A
414 414 414
Hexafluoroacetonesesquihydrate (1/1.7, mol/mol, with triethylamine 1%, v/v) Phenol/tetrachloroethane (1/3, w/w) 90 27.5 (1/3, v/v) 90 5.22 Poly(oxymethyleneoxyethylene) Chiorobenzene 25 200 /7-Chlorophenol 60 41.3 lH,lH,5H-octafluoro110 13.35 pentanol-1 Tetrahydrofuran 25 17 Poly[oxy(phenylethylene)] Benzene 30 92.2 Toluene 25 67.9 Poly(oxy-1,4-phenylene-oxy-1,4-phenylene-carbonyl-1,4-pheny lene), (PEEK) /7-Chlorophenol/ 35 58.6 0-dichloro-benzene (60/40, w/w) Methanesulfonic acid 30 22.6 Poly(oxypropylene) Acetone 25 75.5 Benzene 20 111 25 11.2 25 14 isotactic 25 38.5 25 41.3 25 41.5 Hexane 46 19.7 Methanol 20 40.6 25 76.9 Tetrahydrofuran 20 55.0 Toluene 20 20.8 25 12.9 Toluene/2,2,4-trimethylpentane (5/7, v/v) 39.5 (0) 107.5 oligomer Acetone 20 75.5 Benzene 20 41.5 Poly(oxytetramethylene) Benzene 30 131 Ethyl acetate 30 42.2 Toluene 28 25.1 Ethyl acetate/hexane (22.7/77.3, w/w) 31.8(0) 206 76.0 21.9 26.7
WP
MoL wt. range Af(Xl(T4)
Remarks
C A A A-B A
Refs.
References page VII - 68
TABLE 3. cont'd No. of samples Polymer
Solvent
Poly(phenyl ether-a//-phenyl ketone), (PEK) Sulfuric acid (96.4%) Poly(propylene oxide), see Poly(oxypropylene) Poly(tetrahydrofuran), see Poly(oxytetramethylene)
Temp. (0C)
?
K(xlO3) (imVg)
56
a
Fr.
0.73
-
WP
6
MoI. wt. range Af(XlO" 4 )
Method(s)
Remarks
Refs.
1.2-5
LS, SEC
C-D
1008
VOS1EG
-
966
VOS VOS VOS VOS
C C C C
967 967 967 967
LLS
-
968
OS, LS OS, LS OS, LS OS1LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS OS, LS
A A A A A A A A A A A A A A A A A A A A
959 959 959 959 959 959 959 959 959 959 959 959 959 959 959 959 959 959 959 959
LV LV OS OS
C C B A
415 415 416 416
OS
C
475
LS LS LS LS LS SEC
B A A,R A B
476 477 478 796 796 965
LS SD LS LS LS LS SD LS
A B BJR A A A C,R A
478 479 476 478 478 478 479 796
3.2. POLY(ESTERS), POLY(CARBONATES) Poly(butylene isophthalate) Chloroform ? 3.3 0.92 6 1.4-3.7 Poly(butylene adipate-co-butylene isophthalate) (100 mol% BADP) Chloroform 30 73.1 0.69 6 0.67-1.45 (80 mol% BADP) Chloroform 30 47.4 0.73 4 0.92-1.9 (50 mol% BADP) Chloroform 30 26.7 0.78 4 0.80-1.8 (20 mol% BADP) Chloroform 30 11.2 0.80 4 0.88-2.3 Bisphenol A poly(carbonates), see Poly[oxycarbonyloxy-l,4-phenyleneisopropylidene-l,4-phenylene| Poly(Af-decanoyldehydroalanine methyl ester) Tetrahydrofuran 25 26.3 0.63 6 10-254 Polyethylene terephthalate), see Poly(oxyethyleneoxyterephthaloyl) PoIy(D-(3-hydroxybutyrate), see Poly(D-oxy- l-oxo-3-methyl-trimethylene) Poly(4,4;-isopropylidene-diphenyl carbonate)-block-poly(styrene) 26wt.%-PS Chloroform 25 31.1 0.74 9 6-17 Diethyl carbonate 25 228 0.54 9 6-17 1,4-Dioxane 25 60.8 0.68 9 6-17 Methylene chloride 25 21.2 0.77 9 6-17 Tetrahydrofuran 25 136 0.57 9 6-17 48wt.%-PS Chloroform 25 65.1 0.71 8 3-11 Diethyl carbonate 25 378 0.53 8 3-11 1,4-Dioxane 25 80.5 0.68 8 3-11 Methylene chloride 25 28.6 0.79 8 3-11 Tetrahydrofuran 25 352 0.54 8 3-11 50wt.%-PS Chloroform 25 62.7 0.71 6 6-27 Diethyl carbonate 25 316 0.55 6 6-27 1,4-Dioxane 25 79.8 0.68 6 6-27 Methylene chloride 25 20.4 0.81 6 6-27 Tetrahydrofuran 25 243 0.56 6 6-27 73wt.%-PS Chloroform 25 52.2 0.74 9 6-17 Diethyl carbonate 25 347 0.55 9 6-17 1,4-Dioxane 25 117 0.67 9 6-17 Methylene chloride 25 31.5 0.80 9 6-17 Tetrahydrofuran 25 143 0.65 9 6-17 Poly(D,L-P-methyl-(3-propiolactone), see Poly(D,L-|3-methyl-p-propiolactone), see Poly(D,L-oxy-l-oxo-3-methyl-trimethylene) Poly(oxyadipoyloxydecamethylene) Chlorobenzene 25 11.7 0.84 7 0.3-3 Diethyl succinate 79 5.8 0.86 12 1-3 Poly(oxybutynedioylBenzene 20 151 0.55 ? 0.1-0.5 oxyhexamethylene) Chloroform 20 91 0.61 ? 0.1-0.5 Poly[oxycarbonyl(bicyclo-[2,2,2]octan-2,5-dion)carbonyloxyhexamethylene] Chloroform 20 4 1.4-3.9 Poly [oxy carbony loxy-1,4-phenyleneisopropylidene 1,4-pheny lene] Butyl benzyl ether 170(0) 210 0.50 8 4-31 Chloroform 20 277 0.50 1.5-6 25 12.0 0.82 8 1-7 25 30.1 0.74 12 0.4-47 Dichloromethane 25 29.9 0.74 12 0.4-47 Dioxane/cyclohexane 25(6) 2.5-2.8 Various 9 (68/32) Ethylene chloride 25 20.4 0.76 8 1-7 Methylene chloride 25 11.1 0.82 6 1-27 25 11.9 0.80 12 1-76 25 38.9 0.70 8 1-7 Tetrachloroethane 25 13.4 0.82 8 1-7 Tetrahydrofuran 25 38.9 0.70 8 1-7 25 39.9 0.70 6 1-27 25 37.8 0.71 12 0.4-47
TABLE 3. cont'd No. of samples Temp.
Polymer
Solvent
(0C)
K(xlO3)
(ml/g)
Tetrahydrofuran Room temp. 31.4 Cyclohexane/dioxane 25 210 (36.1/63.9, w/w) Poly(oxy-1,4-cyclohexyleneoxysebacoyl) CiJ Chloroform 20 27.8 trans Chloroform 20 18.3 Poly[oxy-1,10-di-oxoperfluorodecamethyleneoxydecamethylene) Chloroform 25 15.5 j-Tetrachloroethane 25(6) 88 Poly(oxyethyleneoxycarbony 1-1,4-phenyleneoxyethyleneoxy-1,4-phenylenecarbony 1) 0-Chlorophenol 35 145 Phenol-tetrachloroethane 35 112 (1/2, w/w) Poly(oxyethyleneoxyterephthaloyl) 0-Chloropheno! 25 17 25 19 25 30 25 42.5 25 65.6 55 26 w-Cresol 25 0.77 Dichloroacetic acid 45 400 Tetrachloroethane 50 13.8 Trifluoroacetic acid 25 140 30 43.3 35 130 55 105 Dichloroethane/phenol 9.2 (6/4, v/v) Phenol/tetrachloroethane 25 140 (40/60, w/w) 35 125 (3/5, v/v) 30 22.9 (50/50, v/v) 20 75.5 25 21 25 12.7 Phenol/tetrachlorophenol 25 46.8 Phenol/trichlorophenol 29.8 28.0 (10/7, v/v) 30 630 Poly(oxyfumaroyloxyhexamethylene) Chloroform 20 27.1 Poly[oxy(hexahydro-3,6-endomethylenephthaloyl)-oxyhexamethylene] cis Benzene 20 4.64 Chloroform 20 9.33 trans Benzene 20 17.4 Chloroform 20 17.9 Poly[oxy(hexahydroterephthaloyl)oxyoctamethylene] cis Chloroform 20 22.9 trans Chloroform 20 18.9 Poly(oxyhexamethyleneoxy-2,9-dibutylsebacoyl) Benzene 20 37.4 Poly(oxyhexamethyleneoxysebacoyl) Benzene 20 62.7 Chloroform 20 72.5 Poly(oxymaleoyloxyhexamethylene) Benzene 20 76.3 Chloroform 20 36.2 Tetrahydrofuran 20 43.7 Poly (oxy-1 -oxo-dimethy ltrimethy lene) Trifluoroacetic acid 20 24.2 Poly(oxy- 1-oxohexamethylene) Benzene 25 72
30
9.94
MoI. wt. range
M(xlQ~4)
a
Fr.
WP
Method(s) Remarks
Refs.
0.70 0.50
9 4
-
- . 30-75
SEC LS
B B
965 476
0.78 0.86
-
5 9
2.1-4.6 1.1-3.7
OS OS
C C
480 480
0.70 0.50
7 7
-
0.8-8 0.8-8
LS LS
795 795
0.59 0.63
9 9
-
1.3-11 1.3-11
OS OS
801 801
0.83 0.81 0.77 0.69 0.73 0.77 0.95 0.50 0.87 0.64 0.68 0.66 0.69 0.8
6 7 6 7 7 7 6
7 34 5 5 6 9 -
0.8-2.0 1.5-3.8 1.1-2.9 2-15 1.2-2.5 1.5-3.8 0.04-1.2 1.5-3.8 0.04-0.1 1.5-3.8 2.5-12 1.5-3.8 1.5-3.8
EG EG EG SD OS EG EG EG EG EG LS EG EG EG
C B C S C B A,L B A,L B C B B
481 482 483 484 485 482 486 482 487 482 488 482 482 489
0.64 0.65 0.73 0.685 0.82 0.86 0.68 0.775
6 6 -
9 38 9
1.5-3.8 1.5-3.8 2.5-12 0.3-3 0.5-3
EG EG LS EG EG
B B C C C
-
4
0.1-0.4
LS EG
C
482 482 488 490 491 492 493 494
0.47
-
8
1.1-4
OS
C
495
0.80
5
-
2-4.3
OS
B
417
0.86 0.83 0.75 0.77
13 13 10 11
-
2.3-7.5 2.3-7.5 3.3-11 3.3-15
OS OS OS OS
B B B B
496 496 496 496
0.79 0.84
6 6
-
3.3-5.5 2.4-4.4
OS OS
B B
480 480
0.74
?
-
0.9-2.4
OS
B
418
0.69 0.70
9 9
-
0.6-1.8 2-10
OS OS
B B
418 419
0.60 0.73 0.66
7 7 7
-
1.3-6.6 1.3-6.6 1.3-6.6
OS OS OS
B B B
417 417 417
0.74 0.63
11 6
-
5-54 3.4-12
GPC LS
B, C A
800 808
0.82
9
-
1.4-15
SV
B
447
References page VII - 68
TABLE 3.
cont'd No. of samples
Polymer
Poly(oxy-l-oxo-3-methyltrimethyiene) DD,L-
Solvent Dimethylformamide Dioxane Ethyl acetate Chloroform 2,2,2-Trifluoroethanol Chloroform Ethylene dichloride Trifluoroethanol Butyl chloride Chloroform 1-Chloronaphthalene Ethylene dichloride Trifluoroethanol
Temp. (0C) 30 25 25 30 30 30 30 25 13(0) 30 40 30 25 30
AT(XlO3) (ml/g)
a
Fr.
19.1 90 180 7.7 25.1 11.8 9.18 12.5 100 16.6 39.6 16.8 22.2 17.5
0.73 0.61 0.52 0.82 0.74 0.78 0.78 0.80 0.50 0.76 0.62 0.74 0.76 0.78
9 6 6 9 9 9 4 5 4 6 8 8
Poly(oxysebacoyloxyhexadecamethylene) Chloroform 20 74.7 0.70 4 Poly(oxysuccinyloxyhexamethylene) Benzene 20 43.3 0.70 22 Chloroform 20 24.4 0.79 18 Tetrahydrofuran 20 44.3 0.69 13 Poly[oxytetra(ethyleneoxy)carbonyl(l-methylethyleneoxy)thio(2-methylethylene(carbonyl] Chloroform ? 34.7 0.714 Polyfoxy-CL^S-trimethyl^-phenylindan-S^'-dicarbonyOoxy-l^-phenyleneisopropylidene-l^-phenylene] Tetrahydrofuran 25 30.5 0.691 7 Poly(oxyundecanoyl) Chloroform 20 21.4 0.60 7 25 36.3 0.82 Poly(phenylhydroquinone-co-terephthalic acid) c-Dichlorobenzene/p-chlorophenol (1/1, w/w) 25 30 0.869 5 (Wormlike behavior) Poly(P-propiolactone) Chloroform 30 28.2 0.71 13 1,4-Dioxane 30 17 0.71 2,2,2,-TrifluoroethanoI 30 17.2 0.78 13
MoL wt. range M(XlO" 4 )
Method(s)
Remarks
5 6 -
1.4-15 3.4-12 3.4-12 2-78 2-101 11-164 11-164 11-164 2-15 2-15 2-15 2-15 2-15 2-15
SV LS LS SD LS LS LS LS LS LS LS LS LS LS
B A A C, D C, D B, C B, C B, C A A A A A A
447 808 808 660 661 797 797 797 798 798 798 798 798 798
-
2-10
OS
B
419
-
1.5-5 1.5-5 1.5-5
OS OS OS
B B B
417 417 417
?
<1.5
EG
?
421
6
2.6-30 3-49 0.5-1.3
LS OS EG
A B C
794 419 420
-
5.0-16
LS
-
969
-
0.68-86 0.68-86 0.68-86
LS LS LS
B-D B-D B-D
991 991 991
1.8-21 1-30 2.5-14 6.6-16 1.8-21 <10 >100
SD SD OS, LS SD SD SE SE
A,R B A D A
441 823 825 442 441 821 821
B,C
826
WP
Refs.
3.3. POLY(AMIDES) (FOR COPOLY(AMIDES), see 3.10 COPOLYMERS) Poly[(butylimino)carbonyl], [Poly(butyl isocyanate)] Benzene Carbon tetrachloride
20 22 Tetrachloromethane 20 Tetrahydrofuran 20 40 40 Poly[(chlorohexylimino)-carbonyl], [Poly(chlorohexyl isocyanate)] Carbon tetrachloride 21 Poly (tran j-2,5-dimethylpiperazo-1,3-phthaloyl) m-Cresol 25 Trifluoroethanol 25 Poly[(hexyliminocarbonyl], [Poly(hexyl isocyanate)] Carbon tetrachloride 25 Chloroform 25 Hexane 25 25 25 Tetrahydrofuran 25 Toluene 25 Poly(hexyl isocyanate) Butyl chloride 25 Dichloromethane 20 Toluene
10 25
1.10 31.6 7.81 x 10~5
1.11 1.2 2.0
9 8
0.457 -
1.18 1.8-2.0 0.26-0.37
4 4
7 2 7 -
0.22
1.21
10
-
1.4-31
SD
-
0.75 0.75
9 10
-
6-237 3-237
LS LS
10 10 8 8 6 10 11 31 13
-
3.8-43 3.8-43 6.8-39 >10 6 9.1-230 3.8-43 3.8-43 0.44-724 0.44-91
LS A LS A LS A LS A LS A, B LS A LS A LS, SE A LS, OS, SE, LV A
822 822 824 824 827 822 822 970 984
13
-
0.44-91
LS, OS, SE, LV
A
984
13
-
0.44-91
LS, OS, SE, LV
A
984
0.0152 1.10 0.0499 0.97 1.0 1.2 88 0.77 5.4 0.97 0.0220 1.06 0.0248 1.05 (Wormlike behavior) Not const. (Wormlike behavior) Not const. (Wormlike behavior) Not const. (Wormlike behavior)
828 828
TABLE 3. cont'd
Polymer
Solvent
Temp. (0C) 40
Poly(iminoadipoyliminohexamethylene), (Nylon 66) o-Chlorophenol m-Cresol Dichloroacetic acid 2,2,3,3-Tetrafluoropropanol/CF3COONa (0.1 M) Aq. HCOOH (90%, v/v)
Remarks
Refs.
0.44-91
LS, OS, SE, LV
A
984
13 13 -
2 2 2
1.4-5 1.4-5 0.015-5 0.015-5 1.4-5
LS, EG LS, G LS5EG LSJEG LV
C C B B C
443 443 444 444 443
3
11
0.6-6.5
LS, EG
C
443
13
20 -
0.5-2.5 0.015-5
EG LS.EG
C B
446 444
0.74
-
19
1-5
EG
C,R
445
87.7 0.65 [7?] = 1.0 + 0.0516M 0 6 8 7
~ 6
2 -
1.4-5 0.015-5
LS, EG LS,EG
C B, R
443 444
25(0) 227 0.50 25(0) 253 0.50 25 [rj\ = 2.5 + 0.0249 M 0 8 3 2
7 12
2 -
1.4-5 0.015-5 0.015-5
LS, EG LS, EG LS,EG
C B-C B
443 444 444
0.67
~
2
1.4-5
LV
C
443
1.7
-
10
0.7-2.3
DV
807
0.56
-
14
0.9-2.5
LS
802
0.96
-
5
0.8-2.4
SD
B
454
0.75
-
8
1.6-7.4
GPC
D
806
0.76
12
-
0.7-4.8
EG
805
0.65
12
-
0.8-2.2
EG
805
0.74 0.75 0.64
38 16 15
5 5
0.3-13 1-13 1-13
LS LS LS
B,R B B
803 812 812
0.62 0.74 0.75 0.73 0.82 0.82 0.82 0.70 0.82 0.50 0.69 0.22 0.27
6 5 5 5 6 6 6
-
-
4 3
EG LS LS LS LS LS LS EG LS LS EG VOS VOS
B B B B B B B
11 5
0.05-0.5 1.3-10 1.3-10 1.3-10 0.7-12 0.7-12 0.7-12 0.45-1.6 0.7-12 0.7-12 0.3-1.3 0.02-0.06 0.03-0.06
A A
448 450 450 450 450 450 450 451 450 450 452 449 449
0.76
-
7
0.2-1.4
EG
B
453
0.79
-
14
0.2-2.3
EG
B
453
25
25 25 25
Aq. HCOOH (90%, v/v)/KCl (2.3M)
Method(s)
-
25 25 25 25 25
Not const (Wormlike behavior)
MoI. wt. range M(xlO~4)
13
25 25 Aq. HCOOH (90% vol)/HCOONa (0.1 M)
(ml/g)
No. of samples tf(xlO3) a Fr. WP
168 0.62 240 0,61 [T)] = 0.5 + 0.0353 M 0 7 9 2 [17] = 0.5 + 0.352A/ 0551 114 0.66
35.3
0.786
110 0.72 [7/] = 2.5 +0.0132 M 0 8 7 3 32.8
Aq-H2SO4 (95%, v/v) (96%, v/v) 25 115 Poly(iminocarbony 1-1,4-phenylene), Poly(/?-benzamide) Suifuric acid (96%) 20 1.6 Poly(imino-4,6-carboxyisophthaloylimino-1,4-phenylene) Dirnethylformamide 30 252 Poly(iminohexamethyleneiminosebacoyl), (Nylon 6-10) m-Cresol 25 13.5 Poly(iminohexamethyleneiminoterephthaloyloxyhexamethyleneoxyterephthaloyl) Phenol/tetrachloroethane 25 36.4 (1/1, w/w) Poly(iminohexamethyleneiminothiocarbonylhexamethylenethiocarbonyl) Dimethylformamide/ 20 22.8 LiCl (5%) Poly(iminohexamethyleneiminothiocarbonyltetramethylenethiocarbonyl) Dimethylformamide/ 20 99.1 LiCl (5%) Poly[irnino(l-oxododecamethylene)], (Nylon 12) m-Cresol 25 81 25 46.3 Suifuric acid (96%) 25 69.4 Poly[imino(l-oxohexamethylene)], (Nylon 6) m-Cresol 25 320 Trifluoroethanol -20 53.3 25 53.6 50 58.2 Aq. HCOOH (85%) -10 26.8 0 24.8 10 23.4 20 75 25 22.6 Aq. HCOOH (65%) 25 229 Aq. H 2 S O 4 (40%) 25 59.2 ring oligomer m-Cresol 25 2100 Ethylene chlorohydrin 25 870 Monochain, polymerized with stearic acid Cone. H 2 SO 4 25 63 Dichain, polymerized with sebacic acid Cone. H 2 SO 4 25 42
B5R B
References page VII - 68
TABLE 3. cont'd No. of samples Polymer
Solvent
Temp. (0C)
#(xlO3) (ml/g)
a
Fr.
Tetrachain, polymerized with a tetrabasic acid Cone. H 2 SO 4 25 55 0.74 Octachain, polymerized with a octabasic acid Cone. H 2 SO 4 25 13.5 0.86 Poly(iminoterephthaloylhydrazocarbonyl-l,4-phenylene), [Poly(terephthaloyl-/?-aminobenzhydrazide)] Dimethyl sulfoxide 25 1.3-0.9 15 25 1.05 0.795 Poly(iminoterephthaloylimino-1,4-phenylenefluoren-9-y lidene-1,4-phenylene) Dimethylformamide 25 110 0.66 7 Poly(iminoterephthaloylimino-1,4-phenylene-phthalidylidene-1,4-phenylene) Dimethylformamide 25 277 0.59 8 Poly[iminoterephthaloylimino(trimethylhexamethylene)], 2,4,4-/2,2,4-trimethyl (1/1, mol/mol) Dimethylformamide 25 27.4 0.71 17 Poly(isophthaloyl-ta2ns-2,5-dimethylpiperazine) W-methyl-2-pyrrolidone 25 Not const 18 (Wormlike behavior) Poly[(octylimino)carbonyl], [Poly(octyl isocyanate)] Carbon tetrachloride 22 2.02 x 10" 5 2.0 4 Poly( 1,4-phenyleneterephthalamide), (Kevlar) 96% Sulfuric acid 30 1.09 1.25 Poly(terephthalamide-p-benzohydrazide) Dimethyl sulfoxide 25 (Wormlike behavior) 6 3.4.
MoI. wt. range M(xlO~4)
Method(s)
Remarks
11
0.2-1.9
EG
B
453
5
0.4-2.6
EG
B
453
8
0.2-5.8 1.2-65
LS LS
B B
809 810
-
1.5-7.8
LS
B
503
-
1.4-6.9
LS
B
503
-
1.2-28
LS, SA
B
804
-
0.26-237
LS, SE
A
971
-
5.9-20.0
OS 1 LS
A
825
3
1.6-3.8
LS
-
973
-
0.94-5.8
LS, SE
A
974
EG
B,L
455
LS LS LS
B B B
456 456 456
LS
B
456
LS LS LS LS
C B B C
457 814 814 457
LS LS LS LS
C C C C
458 458 459 459
LS
C
815
SE
C
816
OS
C
817
LS LS
B B
460 460
OS OS OS OS
C C C C
463 463 464 464
SA
B,C
467
WP
Refs.
POLY(AMINOACIDS)
Poly(|3-benzyl-L-aspartate), see Poly(iminocarbonyl-L-benzyloxycarbonylethylidene) Poly(y-benzyl-L-glutamate), see Poly(iminocarbonyl-L-benzyloxycarbonylpropylidene) Poly[(benzylimino)carbonylethylene], (Poly(/V-benzyl-p-alanine)) Dichloroacetic acid 25 120 0.525 6 0.15-1.8 Poly(iminocarbonyl-L-benzyloxycarbonylethylidene), (Poly(p-benzyl-L-aspartate)) m-Cresol 15 1.15 5 0.8-24 70 0.74 5 0.8-24 Hexamethylphos25 0.80 4 2-24 phoramide Chloroform/dichloro25 1.30 5 0.8-24 acetic acid (98/2, v/v) Poly(iminocarbonyl-L-benzyloxycarbonylpropylidene), Dichloroacetic acid 25 2.78 0.87 6 2-34 25 8.8 0.77 8 6(Poly(Y-benzyl-L-glutamate)) Dimethylformamide 25 0.0056 1.45 8 6~ 25 0.00029 1.70 5 7-34 Dichloroacetic acid/heptane (55/45, v/v) 21 116 0.53 4 1.5-10 (90/10, v/v) 21 25.4 0.68 4 1.5-10 D,L-glutamate Dichloroacetic acid 25 2.85 0.85 6 1.5-10 Dimethylformamide 25 37.7 0.55 6 1.5-10 Poly(iminocarbonyl-L-hydroxycarbonylpropylidene), [Poly(oc-L-glutamic acid)] Sodium phosphate buffer 25.5 1.55 0.96 5 4-15 (1.01 M, pH, 6.8) Poly[iminocarbonyl-L-(iV-hydroxy-ethylcarbamoylpropylidene)], {Poly[W5-(2-hydroxyethyl)-L-glutamine]} Sodium phosphate buffer 25 26.2 0.65 6 0.8-15 (0.05 M, pH,7.4) Water 30 0.55 4 1.7-7.2 Poly[iminocarbonyl-L-(W-hydroxypropylcarbamoylpropylidene)], (PoIy(W 5-(3-hydroxypropyl)-L-glutamine)) Methanol 25 1.6 4 20-40 Water 25 0.6-1.0 5 2-33 Poly(iminocarbonyl-L-methoxycarbonylpropylidene), [Poly(y-methyl-L-glutamate)] m-Cresol 25 >1 3-21 Dichloroacetic acid 25 29 0.74 6 3-21 D,L-glutamate m-Cresol 25 11 0.78 6 3.2-8.2 Dichloroacetic acid 25 5.9 0.85 6 3.2-8.2 Poly(iminocarbonyl-L-methoxyethylideneiminocarbonyl-L-hydroxyethylideneiminocarbonylmethylene), [Poly(Asp(OCH3)-Ser(H)-Gly)] Dichloroacetic acid 30 868 0.367 9 0.25-1.1
TABLE 3. cont'd No. of samples Polymer
Solvent
Temp. (0C)
JST(XlO3) (ml/g)
a
Poly(iminocarbonyl-L-methylthiopropylidene), [Poly(L-methionine)] acid (1/1, mol) Dichloroacetic acid 3.0 0.87 Dichloroacetic acid/trifluoroacetic 36 0.62 Poly(iminocarbonyl-L-/7-nitrobenzyloxycarbonylpropylidene), [Poly(y-/?-nitrobenzyl-L-glutamate)] Dichloroacetic acid 25 11.5 0.72 Dimethylformamide 25 0.0170 1.36 Poly(iminocarbonyl-phenylethylidene), [Poly(phenylalanine))] LChloroform 25 0.00346 1.48 D,L Chloroform/dichloro21 118 0.55 acetic acid (2/3, v/v) Poly(y-hydroxy-L-proline) Water 30 92 0.68 Poly(oc,£-L-lysine) Dimethylformamide/ 20 2500 0 LiCl (1%) Poly[(methylimino)carbonylmethylene], (Polyfsarcosine)J Water 20 56 0.88 PoIy(I-proh'ne), see Poly[(L-l,2-pyrrolidindiyl)carbonyl] in group 3.9.
Fr.
WP
MoI. wt. range Af(XlO" 4 )
Method(s)
Remarks
3-50
LS
B
Refs.
-
5
820
4
3-50
LS
B
820
-
10 10
1-5 1-5
LS LS
B B
608 608
-
11
2.2-14
LS LS
B B
465 466
3
-
1.6-3.5 0.05-23
GPC
A A
818 819
-
5
0.7-1.6
EG
C
468
8 4
-
0.24-2.8 P = 4-13
LS CR
D
976 470
5
0.35-1.6
LS
C
497
5
0.9-4.3
SV
C
498
5 5 5 5
0.5-4 2-16 1.7-28 0.9-9
SV SV SV SV
C C C C
498 498 498 498
-
0.38-26
LS
-
977
10 14 7 5 7
3.2-35 0.3-2.4 0.13-2.4 0.06-2.4 0.4-2.4 0.2-2.4
LS LS LS LS LS LS
C C C C C
978 471 471 471 471 471
3.5. POLY(UREAS), POLY(URETHANES), POLY(IMINES) Poly(ethylene imine), see also Poly(iminoethylene) Methanol Poly(iminoethylene) Water
25 25
10.4 [?;J = 2.14 P 0 3 5 P: number of N atoms
0.95
Poly(oxytetramethyleneoxycarbonylimino-2,4-tolyleneiminocarbonyl) Dimethylformamide 30 54 0.74 Poly[oxytetramethyleneoxycarbonylimino-(6-pentyloxy-l,3-phenylene)-iminocarbonyl] Dimethylformamide 20 8.1 0.86 Poly(oxytetramethyleneoxycarbonylimino-[6-(aH,coH,coH-perfluoroalkylene)oxy-l,3-phenylene]-iminocarbonyl) number of F atoms 4 Acetone 20 7.1 0.81 8 Acetone 20 4.3 0.785 12 Acetone 20 13.5 0.67 16 Acetone 20 25.6 0.615 Poly(terephthalic acid-4-aminobenzohydrazide) Dimethyl sulfoxide 25 (Wormlike behavior) 11 Poly(urethane)with methylene fri5(4-phenyl isocyanate), tetramethylene glycol and ethylenediamine Dimethylacetamide 25 101 0.59 8 Poly(ureyleneheptamethylene) Dichloroacetic acid 46 338 0.505 Sulfuric acid (90%) 25 50.0 0.714 46 223 0.506 (96%) 25 37.5 0.757 (98%) 46 240 0.53 3.6.
POLY(SULFIDES)
Poly(thiopropylene)
Benzene
PolyUnmethylene sulfide)
Chloroform
3.7.
20 30 25
3.3 5.0 31.0
0.86 0.78 0.76
7 6
10 -
3.8-20.4 3.6-73 1-4.7
LS LS OS
B B
436 839 979
0.073 0.63 7.3 27 25
1.17 0.93 0.89 0.75 0.74
-
6 6 6 5 6
0.4-1 0.4-1 0.4-1 0.4-1 0.4-1
EG EG EG EG EG
-
980 980 980 980 980
6.5 49.4 69
0.69 0.50 0.61
-
16 9 5
1-125 1-125 0.09-1
LS LS EG
C C C
422 422 423
POLY(PHOSPHATES)
Lithium-potassium copoly(phosphate) Li/K(9/1, mol/mol) Aq. NaBr (8/2, mol/mol) Aq. NaBr (7/3, mol/mol) Aq. NaBr (6/4, mol/mol) Aq. NaBr (5/5, mol/mol) Aq. NaBr Poly[oxy(hydroxyphosphinylidene)] Aq. NaBr sodium salt
(0.035 N) (0.035 N) (0.035 N) (0.035 N) (0.035 N)
(0.35 M) (0.415M) Aq. NaBr (0.035 M)
25 25(0) 25.5
References page VII - 68
TABLE 3. cont'd No. of samples Polymer
Solvent
Temp. (0C)
Poly(phosphoric acid), see Poly[oxy(hydroxyphosphinylidene)] Sodium-potassium copoly(phosphate) Na/K(9/l,moUmol) Aq. NaBr (0.035N) (8/2, mol/mol) Aq. NaBr (0.035 N) (7/3, mol/mol) Aq. NaBr (0.035 N) (6/4, mol/mol) Aq. NaBr (0.035N) (5/5, mol/mol) Aq. NaBr (0.035 N) (4/6, mol/mol) Aq. NaBr (0.035 N)
MoL wt. range M(Xl(T4)
Method(s)
Remarks
4 4 4 4 4 4
0.4-0.8 0.4-0.8 0.4-0.8 0.4-0.8 0.4-0.8 0.4-0.8
EG EG EG EG EG EG
-
980 980 980 980 980 980
? ?
-
1.2-15 20-230
SD SD
? ?
619 619 619
X(xlO3) (ml/g)
a
Fr.
3.6 Il 12 57 73 150
0.93 0.81 0.80 0.60 0.57 0.50
-
WP
Refs.
3.8. POLY(SILOXANES), POLY(SILSESQUIOXANES) Poly(dimethyl siloxane), see Poly[oxy(dimethylsilylene)] Poly[(l-isobutyl-3-phenylsilsesquioxane)] Benzene Butyl acetate Poly(3-methylbutenesilsesquioxane) Benzene
Poly(methylphenylsiloxane)
Poly[oxy(dimethylsilylene)]
Butyl acetate Cyclohexane Methylcyclohexane Tetrahydrofuran Benzene Bromobenzene Bromocyclohexane
Bromocyclohexane Bromocyclohexane/ phenetole (6/7, v/v) Butanone
21 21 24
1.4 0.90 110 0.54 Same as above two data
21 21 24 25 50 20 25 20 78.7(0) 28 (0) 28(0) 29.0(0) 37(0) 36.3(0)
5.4 1.6 5.4 27.3 15.6 30.6 16.5 12 76 78 79.5 74 78 75.5
0.88 0.90 0.88 0.60 0.65 0.58 0.69 0.68 0.50 0.50 0.50 0.50 0.5 0.50
5 ? 13 4 4 4 4 4 3 5 6 5 7 4
~ ~ -
9-60 0.35-74 9-60 12-46 12-46 12-46 12-46 5.5-12 8-106 10-92 4-90 3.3-106 4.5-32 4.5-106
SD SD SD LS LS LS LS LV LS SD LS LS LS LS
B B B C C C C A-B A A A AJR A
603 619 603 983 983 983 983 424 425 426 838 425 982 425
20 20(0) 30
64 81 48
0.525 0.50 0.55
6 5 8
-
4-90 5-66 5-66
LS OS OS
A A A
838 427 427
106
0.50
4
-
55-120
LS
A-B
424
76
0.50
3
-
8-106
LS
A
425
10.2 70 79 73 20.0 2.43 8.28 21.5 75 13.6 18.7 12.5 23.9 64.5
0.735 0.50 0.50 0.50 0.66 0.84 0.72 0.65 0.50 0.69 0.66 0.703 0.64 0.54
8 2 4 5 5 13 18 8 10 10
2 ? 7 ? -
1.7-90 34-106 5-66 4.5-106 0.3-20 1.9-13 10-92 2-130 0.2-1.0 0.26-63 0.2-30 1.7-90 4-35 0.8-25
LS LS OS LS OS, LS LS SD OS OS OS, LS LS, SA LS LS LS
A A A A.R C C A
B B A A A
838 425 427 425 428 429 426 430 56 981 837 838 431 431
11.2 87.1 109 43.5
0.75 0.50 0.50 0.58
6 4 6 15
-
7-40 2.5-27 2.5-30 1.7-43
LS OS OS OS
B A A A
499 433 433 433
326 240
0.21 0.28
12 3
-
0.1-500 5-100
LS LS
C 8 F 18 ZC 2 Cl 4 F 2 (33.17/66.83, w/w), 22.5(0) low cohesive energy density mixture Chlorobenzene/dimethyl 57.5 (0) phthalate (45/6, v/v) Cyclohexane 35 Ethyliodide 2.1(0) Phenetole 83(0) 89.5(0) Toluene 20 25 25 25 25 Toluene 25 Toluene 25 35 star type, 3 branches Toluene 20 star type, 4 branches Toluene 20 Poly [oxy(dimethylsilylene] 1,4-phenylenedimethylsilylene] Toluene 25 Poly[oxy(dipropylsilylene)] 2-Pentanone 76(0) Toluene 10(0) 25 Poly[oxy(methylsilylene)] Me/Si = 1.5 Chlorobenzene 20(0) Me/Si =1.8 Chlorobenzene/dimethyl 20(0) phthalate (90.7/9.3, w/w)
432 432
TABLE 3. cont'd No. of samples Polymer
Solvent
Poly(oxy(methylphenylsilylene)] Cyclohexane Diisobutylamine Toluene Poly[oxy(y-trifluoropropylmethylsilylene)] Cyclohexyl acetate Ethyl acetate Methyl hexanoate Poly(phenylsilsesquioxane) Benzene
Bromoform
cw-syndiotactic 3.9.
Benzene/bromoform (60/40, w/w) 1,2-Dichloroethane
Temp. (0C) 25 30.4(0) 25 25.0 (0) 25 72.8 (0) 21 21 21 21 25 21 21 21 (0) 21(0) 50.5(0)
MoI. wt. range M(xlO"4)
Method(s)
Remarks
-
6-124 6-124 6-124
LS LS LS
A A A
434 434 434
-
12-451 20-451 44-451
A A A
-
1.7-6.1 0.4-88 3.7-15 10-31
-
3.7-15 3.6-88 14-71 60-340 5-30
LS LS LS LS SD SD SD SD LS SD SD SD SD OS
435 435 435 500 501 502 501,603 603 843 501 502 502 619 601
K(xlO3) (ml/g)
a
Fr.
WP
5.52 51.5 3.90
0.72 0.50 0.78
13 9 20
0.50 0.70 0.50 0.92 0.90 0.85 1.10 0.70
12 9 7 7 14 8 5
1.09 0.85 0.85 0.50 0.87
8 12 5 ? 4
41.0 5.92 44.5 0.77 2.38 0.13 7.6 Not linear 0.13 2.38 2.38 220 2.12
B B B,L B B B B ?
Refs.
POLY(HETEROCYCLICS)
Poly(2,6-benzothiazole) Methanesulfonic acid 30.0 12.6 1.0 6 0.36-11 LLS Poly(benzobisthiazole-2,6-diyl-1,4-phenylene) Methanesulfonic acid 25 0.014 1.8 1.5-3.7 LS Poly[2,5-benzoxazole) Methanesulfonic acid 30.0 10.9 1.02 4 0.49-11 LLS Poly[bis(m-chlorophenoxy)phosphazene] Chloroform 25 0.67 10 59-668 LS Poly[6,6'-bis(3-phenylquinoxaline)-2,2'-diyl-l,4-phenylene)] m-Cresol 40 86 0.63 8 1-35 LS Poly [(1,3-dihydro-3-oxoisobenzofuran-1 -ylidene)-1,4-phenyleneiminoterephthaloylimino-1,4-phenylene] Dimethylformamide 25 277 0.59 7 1.4-5.5 LS B Poly [(1,3-dihydro-3-oxo-2-pheny lisoindole-1 -ylidene)-1,4-phenyIeneoxyterephthaloyIoxy-1,4-phenylene] Tetrachloroethane 20 41.0 0.684 10 0.9-3 LS B Tetrahydrofuran 20 259 0.488 5 1-3 LS B Poly [(5,7-dihydro-1,3,5,7-tetraoxobenzo[ 1,2-c:4,5-c ']-dipyrrole-2,6( 1 H,3H)diyl)-1,4-phenylene-( 1,3-dihydro-3-oxoisobenzofuran-1 -ylidene)-1,4-phenylene] Dimethylformamide 20 328 0.516 26 0.4-17 LS B Poly(3,3'-dimethylthietane) Tetrahydrofuran 25 11.0 0.79 7 3.8-12.9 OS B Poly( 1 -isobutyl-2,5-oxopyrrolidine-3,4-diyl) Butyl acetate 21 22 0.65 13 19-340 SD A Poly[2-methoxy-4,6-di(/7,/7'-isopropylidene diphenyloxy)-j-triazine] Chloroform 30 16.8 0.74 6 9-55.2 OS, LS B-C 1,2-Dichloroethane 30 21.6 0.71 4 14-55.2 OS, LS B-C 1,2-Dichloroethane/ 30 27.9 0.68 4 14-55.2 OS, LS B-C n-butanol (80/15, v/v) Poly(methylene-/V,/V '-dimethylpiperidinium chloride) Aq. NaCl (0.1 M) 20 39.8 0.660 5 8-195 LS A (0.4M) 20 13.9 0.542 5 8-195 LS A Poly[//-(/z-octadecyl)maleimide] Benzene 25 5.38 0.74 17 1.2-33 OS, VOS, GPC B 1-Chloronaphthalene 25 2.89 0.77 7 1.5-12 OS, VOS, GPC B 0-Dichlorobenzene 25 4.03 0.75 7 L8-12 OS, VOS, GPC B Tetrahydrofuran 25 9.61 0.67 15 1-3-33 OS, VOS, GPC B Toluene 25 6.04 0.70 8 1.2-17 OS, VOS, GPC B 1-Decanol 39.4(0) 18.3 0.50 6 2-19 LV B 1-Hexanol 79.0(0) 37.0 0.50 6 1.4-9 LV B 1-Octanol 53.7(0) 23.5 0.50 6 1.1-12 LV B Poly(N,N'-(/?-phenylene)-3,3 ',4,4 '-biphenyltetracarboxylic acid diamine] M-methylpyrrolidinone 25 9.5 0.90 4 0.59-7.5 LLS, SEC Dimethyl sulfoxide 25 38 0.77 6 0.58-5.6 LLS, SEC Poly(4-phenylquinoline-2,6-diyloxy-4-phenylguinoIine-2,6-diyI-1,4-pheny leneoxy-1,4-phenylene) Chloroform 25 90 0.66 3 4-8 OS Poly [(4-phenyl-1,2,4-triazol-3,5-diyl)-1,3(or 1,4)-phenylene] Phenol/water (90/10, w/w) 845 0.56 5 1.3-2.7 OS Poly [(L-1,2-pyrrolidindiyl)-carbonyl] Water, acetic acid 25 No simple relation 5 1-5 OS C
989 833 989 836 845 503 514 514 515 986 512 985 985 985
829 829 987 987 987 987 987 988 988 988 990 990 832 516 507
References page VII - 68
TABLE 3. cont'd No. of samples Polymer
Solvent
Temp. (0C)
K(xlO3) (mi/g)
a
Fr.
MoI. wt. range M(xlO"4)
Method(s)
-
3-8
OS
-
4-56
SD
? ? ? ? ?
? ? ? ? ?
L L LLS L L L L LLS
-
21-111 21-111 21-111
-
WP
Poly(quinoline-2,4-diyl-1,4-phenyleneoxy-1,4-phenylene-quinoline- 4,2-diyl-1,4-phenyleneoxy-1,4-phenylene) Chloroform 20 550 0.44 3 Poly (1 -/?-tolyl-2,5-oxopyrrolidine-3,4-diyl) Dimethylformamide 21 15.5 0.7 6
Remarks
Refs.
831 B
513
3.10. COPOLYMERS (MALEIC ANHYDRIDE, SULFONES) Poly[3,9-bis(ethylidone-2,4,8,10-tetraoxaspiro(5,5)undecane)-ran-(fran^-cyclohexane-dimethanol)/(l,6-hexanediol)] rraiw-CDM/1,6-ND (100/0) Tetrahydrofuran 30 49.2 0.57 ? (70/30) Tetrahydrofuran 30 22 0.65 ? (50/50) Tetrahydrofuran 30 17.2 0.68 ? (29/71) Tetrahydrofuran 30 11.9 0.74 ? (0/100) Tetrahydrofuran 30 3.78 0.81 ? Poly[(tetrahydro-2,5-dioxo-3,4-furandiyI)(l-isobutyloxyethylene)] Acetone 30 124.7 0.506 5 Butanone 30 119.4 0.512 5 Tetrahydrofuran 30 75.6 0.552 5 Poly [(tetrahydro-2,5-dioxo-3,4-furandiyl)( 1 -methoxycarbonyl-1 -methylethylene)] Acetone 30 12.4 0.69 6 Dimethylsulfoxide 30 7.5 0.77 6 Dioxane 30 26.1 0.64 6 Tetrahydrofuran 30 13.4 0.69 6 Poly [(tetrahydro-2,5-dioxo-3,4-furandiyl)( 1 -phenylethylene)] Acetone 30 8.69 0.74 6 Tetrahydrofuran 30 5.07 0.81 6 Poly[sulfonyl(bicycloheptene)] Chloroform 25 1.58 0.79 4 Cyclohexane 25 3.05 0.73 4 Poly[sulfonyl(butylethylene)] Acetone 20 5.9 0.74 7 Benzene 25 8.9 0.70 5 Chloroform 25 5.8 0.75 6 Dioxane 25 6.2 0.76 5 Hexylchloride 13(0) 33 0.55 5 Butanone/2-propanol 8(0) 53 0.50 6 (29.8/70.2, v/v) (37/63, v/v) 24(0) 53 0.50 6 Dioxane/hexane (40/60, v/v) 20(0) 65 0.50 7 Poly [sulfonyl( 1 -methyl-1 -propy lethy lene)] Chloroform 20 5.9 0.81 6 Butanone/2-propanol 22.5 (0) 91 0.50 6 (39.5/60.5, v/v) Butanone/hexane 11.5(0) 91 0.50 6 (35.4/64.6, v/v) Poly[sulfonyl(phenyleneoxyphenylene)] Dimethylformamide 25 33 0.64 6 Poly[sulfonyl(phenylethylene)] Tetrahydrofuran 30 3.89 0.78 5 3.11.
S
-
-
954 954 954 954 954
LS LS LS
B B B
504 504 504
20-71 20-71 20-71 20-71
LS LS LS LS
B B B B
505 505 505 505
~ -
13-75 13-75 27-227 27-227 5-60 9-107 7-54 9-107 10-60 7-54
OS OS LS LS LS, SD OS OS OS LS, SD OS
A A D D B A,R A,R A B A
506 506 840 840 437 438 439 438 437 439
-
7-54
OS
A
439
-
9-107
OS
A
438
-
4-50 4-50
OS OS
A A
439 439
-
4-50
OS
A
439
-
3-25 15-40
LS OS
C A
841 440
7
-
18-960
LS
B-D
995
8
-
0.58-10
LS
B
993
5 5 5 5
-
1.5-14.2 1.5-14.2 1.5-14.2 1.5-14.2
OS, SEC OS, SEC OS5SEC OS, SEC
C C C C
992 992 992 992
5
-
4-10
GPC
B
834 835
GPC
B
835
LS
C
844
C
844
S S
-
OTHERCOMPOUNDS
Poly(di-n-hexylsilane) Tetrahydrofuran 25 17.0 0.672 Poly(oxy-1,4-phenylene-oxy-1 ^-phenylene-N-phenylimine-1,4-phenylene) Tetrahydrofuran 25 63.4 0.617 Poly [oxythiocarbonyloxy-l,4-phenylene(methyl)phenylmethylene-l,4-phenylene] Chloroform 25 71.0 0.60 Dichloromethane 25 141 0.55 1,4-Dioxane 25 153 0.50 Tetrahydrofuran 25 61.7 0.61 Poly [/rans-bis(tributylphosphine)platinum-1,4-butadiynediyl] Heptane 25 Wormlike Cylinder Tetrahydrofuran 25 6 . 5 x l 0 ~ 7 1.7 Poly[/r<2AW-bis(tributylphosphine)platinum-1,4-phenylenediethynylene j Tetrahydrofuran 25 2 . 0 x l 0 " 6 1.7 Poly(hexamethylenedimethylammonium bromide) Aq. KBr (0.4M) 25 62.2 0.58 Poly(hexamethylenedimethylammonium chloride) Aq. KCl (0.4M) 25 1.02 1.00
5
-
1.3-5
4
-
1.3-3
LS
TABLE 4.
CELLULOSE AND DERIVATIVES, POLY(SACCHARIDES) (See also table "Properties of Cellulose Materials' 1 ) No. of samples
Polymer
Solvent
(Acetoxypropyl) cellulose
Dimethyl phthalate
Amylose
Dimethyl sulfoxide
Temp. ( 0 C)
Ethylenediamine Formamide Water Acetone/dimethyl sulfoxide (43.5/56.5, v/v) Aq. KCl (0.33M)
Amylose triacetate
(0.50M) Aq. KOH (0.15M) (0.2M) (0.5M) (IM) Aq. NaOH (0.5 M) Chloroform
Methyl acetate Nitromethane
Amylose tributyrate
Amylose tricarbanilate
Chloroform/cyclohexane (80/20, v/v) (50/50, v/v) Methanol/nitromethane (70.7/29.3, v/v) (50/50, v/v) (25/75, v/v) Nitromethane/propanol (43.3/56.7, v/v) (50/50, v/v) Butanone Carbon tetrachloride Ethyl acetate Tetrahydrofuran Acetone Dioxane Dioxane Pyridine
Amylose tricarbethoxymethylcarbarnate Acetone Amylose tripropionate Ethyl acetate Tetrahydrofuran Amylose, carboxymethyl Aq. NaCl -,sodium salt (0.35M) (0.5 M, pH8) (0.78M; 0.02% NaN3) Amylose, diethylaminoethyl -, hydrochloride Arginic acid, sodium salt
Aq. NaCl (0.78 M; 0.02% NaN3) Aq. NaCl (0.2M)
25 105 150 20 25 25 25 25 20 25 20 20(0) 22.5 25 {d) 25(6») 25 {0) 25 25 25 25 20 30 30 50 25 22.5 25 30 30 50 30 30 30(0) 30 30 25(0) 25 25 25 25 25 20 20 20 25 20 25 25 37.5 35 35 35 25
K(XlO3) (ml/g)
a
Fr.
-
0.88 6 0.75 5 0.57 6 (Wormlike behavior) 3.97 0.82 1.25 0.87 9 15.1 0.70 30.6 0.64 6 15.5 0.70 6 22.6 0.67 30.5 0.62 14 13.2 0.68 83.1 0 51 -
W.P.
MoL wt. range (xlO4)
-
2.2-43 7.6-43 2.2-43
SEC, LLS SEC, LLS SEC, LLS
A-C A-C A-C
1001 1001 1001
14 12 12 10
2-217 22-310 8-180 27-220 31-310 2-157 8-180 36-217 2-157
LS LS LS LS LS LS LS LS LS
C B B B B C B C C
517 518 519 520 518 517 519 517 517
Method(s) Remarks Refs.
33.9 112 115 61.1 8.36 6.92 8.50 1.18 3.65 1.06 4.90 5.20 5.60 8.50 3.58 2.18 9.93 8.71
0.59 0.50 0.50 0.50 0.77 0.78 0.76 0.89 0.85 0.92 0.85 0.83 0.80 0.73 0.78 0.82 0.76 0.76
5 5 6
-
16-230 16-230 27-220
LS LS LS
? 5 6 5 12 4 4 12 6 6 4 4
16 3 -
8-180 16-229 27-220 31-310 2-217 12-480 21-102 21-102 7-19 14-310 4-100 4-100 21-102 21-102
LS LS LS LS LS LS LS LS SD LS LS LS LS LS
B B B B B B B B C B A A D B B,C B,C A A
521 522 520 523 519 522 520 518 517 524 525 525 526 519,527 846 846 525 525
4.64 7.41
0.85 0.79
4 4
-
21-102 21-102
LS LS
A A
525 525
98.4 6.49 10.23
0.51 0.75 0.76
4 4 4
-
21-102 21-102 21-102
LS LS LS
A A A
525 525 525
91.6 0.50 17.0 0.66 3.39 0.77 3.46 0.79 5.59 0.74 1.66 0.86 0.814 0.90 0.906 0.92 (Wormlike behavior) 0.589 0.92 2.00 0.83
12 12 7 7 7 7 7 11
26 25 20 -
14-310 14-310 7-160 7-160 7-160 7-160 4-490 4-360 21-290 4-360 30-244
LS LS LS LS LS LS LS LS LS LS LS
B B B B B B B B A B B
519 519 847 847 847 847 528 528 997 528 848,849
27.6 31.3 24.8
0.63 0.58 0.61
13 8 6
-
9-380 1-61 1-61
LV OS, GPC OS5GPC
B B B
529 850 850
25.2 209 37.1
0.64 0.53 0.61
6 6
-
5-21 7-29
LS OS LS
A B B
609 530 531
82.8
0.55
5
-
4-23
LS
B
531
1.0
-
7
5-19
OS
C
532
7.97
References page VII - 68
TABLE 4.
cont'd No. of samples
Polymer
Solvent
Temp. ( 0 C)
Cellulose, see also table "Properties of Cellulose Materials" Cadoxen Cuprammonium
Cellulose acetate DS 0 0.49
DS* 1.75 Cellulose acetate butyrate
Cellulose diacetate Ac. acid content, 55.5 wt.%
Cellulose nitrate Cellulose triacetate
Cupriethylene yV,iV-Dimethylactamide/ 9% LiCl A^-Dimethylacetamide Dimethyl sulfoxide Formamide Water /V,/v*-Dimethylacetamide Acetic acid Acetone Ethyl acetate Nitromethane Acetone Dimethylacetamide MW-Dimethylactamide Tetrahydrofuran Trifluoroacetic acid Tetrahydrofuran Acetone
Chloroform
o-Cresol Dichloromethane Dimethylacetamide Tetrachloroethane Trifluoroacetic acid Acetone/water (80/20, v/v)
Cellulose tributyrate
Ethanol/methylene chloride (20/80, v/v) Butanone Tributyrin
Cellulose tricarbanilate
Dodecane/tetralin (75/25, v/v) Acetone
Acetone Anisole Butanone Cyclohexanol Cyclohexanone
25 25 20 25 25 30 25 25 25 25 25 25 25 30 30 25 25 30 25 25 25 20 25 25 25 25 20 25 30 30 30 20 25 25 25 20 25 13.9 30 30 0 25 50 70 130(0) 0 20 25 35 25 94(0) 15 30 73(6) 25 35
AT(XlO 3 ) (ml/g)
33.8 38.5 105 8.5 13.3 0.128
a
0.77 0.76 0.66 0.81 0.905 1.19
191 0.60 171 0.61 20.9 0.60 20.9 0.60 95.8 0.65 14.6 0.83 13.7 0.85 11.3 0.83 16.5 0.78 133 0.616 39.5 0.738 11.0 0.848 (Wormlike behavior) 51.3 0.688 52.7 0.696 0.80-0.84 2.38 1.0 14.9 0.82 8.97 0.90 33.0 0.760 28.9 0.725 2.2 0.95 45.4 0.649 14.4 0.800 4.5 0.9 6.15 0.9 24.7 0.704 26.4 0.750 39.3 0.662 39.6 0.706 2.65 1.0 21.0 0.834
0.803
4.3 18.2 5.3 5.6 6.1 6.2 82
0.87 0.80 0.87 0.85 0.82 0.80 0.50
1.10 0.93 4.66 0.84 1.43 0.91 1.31 0.90 Not const. (Wormlike behavior) 130 0.50 2.02 0.89 3.42 0.84 156 0.51 1.91 0.86 2.02 0.85
Fr.
W.P.
MoI. wt. range (xlO4)
Method(s) Remarks Refs.
5 4 9 32 9
5 -
20-100 1.0-3.4 2-25 8-96 1-54 12.5-70
SD SE, LS OS OS OS LLS
C,R B-C,R C C B-C -
533 534 535 536 537 1000
10 10 10 10 7 6 6 9 5 6
5 11 -
LS LS LS LS LS OS OS LS LS LS LS SE
B B B B B B-C B-C
-
4-15 4-15 4-15 4-15 3-14 1-21 1-21 3-14 3-14 6-27 6-19 3.58-17.0
A A A-B
851 851 851 851 852 538 538 853 853 854 855 1007
6 5 5 8 14 9 9 13 7 6 5 5 7 10 10 8 9
9 -
7-30 6-19 2.6-27 2-14 2-39 1-18 2-30 8-69 1-13 8-69 10-18 3-18 3-18 6-69 6-69 6-69 6-69 2-11
LS LS LLS, OS SD OS OS OS LS LS LS LS LV LV LS LS LS LS SD
A A D B A(?) B,R C A A A A C C A A A A B
854 855 1004 539 540 541 535 855 856 855 857 542 542 855 855 855 855 539
-
2
2-30 -30
OS OS
C C
535 5315
7 7 4 4 4 4 3
~ -
6-32 8-32 6-32 6-32 6-32 6-32 11-21
LS OS LS LS LS LS OS
B.R C-D B B B B C-D
543 544,2 543 543 543 543 544,2
6 6 6 9
16 -
31-220 7-270 31-220 31-220 22-770
LS LS LS LS LS, GPC
B-C B B-CR B-C B-C
545 528 545 545 996
4 5 5
10 10 5 -
31-220 21-110 21-110 21-110 31-220 31-220
LS LS LS LS LS LS
B-C D D D B-C B-C
546 858 858 858 545 545
TABLE 4. cont'd No. of samples Polymer
Solvent Dioxane
Pyridine Tetrahydrofuran Cellulose trihexanoate Cellulose trinitrate
Dimethylformamide Dioxane Acetone
(N content, 12.9 wt.%) (N content, 13.9 wt.%)
Butyl acetate Butyl formate Cyclohexanone Ethyl acetate
Cellulose trioctanoate
(CyanoethylXhydroxypropyl) cellulose Ethyl cellulose
Ethyl butyrate Ethyl formate Ethyl lactate 2-Heptanone Methyl acetate Nitrobenzene Pentyl acetate Dimethylformamide y-Phenylpropanol Toluene Tetrahydrofuran Acetone Benzene
Water
25
Aq. HCl (4M)
25
Chloroform Ethyl acetate Methanol Nitroethane
DS" 0.88
41 (9) 35 20 25 25 25 25 25 25 25 25 25 25 25 25 25 25 30 25 25 25 25 25 25 25 140(6») 48(0) 30 25
Water Cadoxen Water Aq. HCl (4M)
Butyl acetate
Methy] cellulose DS" 1.74
20 25 35 50 15 21 30 70 20 25
20 20 25 60 25 60 25 60 25 46 25 60 25 25 60 25 25 25 25
Butanone
Ethyl hydroxyethyl cellulose Hydroxyethyl cellulose
Temp. (0C)
K(xlO3) (ml/g)
a
Fn
4.20 0.813 0.865 0.849 0.89
316
0.55
-
Method(s) Remarks Refs.
15 15 10 10 10 12 -
7-270 31-220 31-220 31-94 21-110 1-11 21-110 21-110 7-270 2.7-370
LS LS LS LS LS SD LS LS LS LS, GPC
B B-C B-C B-C D B D D B B-C
528 545 545 545 858 859 858 858 528 996
-
6-130 4-130 1-250 8-265 68-250 4-32 15-200 8-400 5-50 3-100 7-26 5-50 7-26 7-22 3-100 7-26 68-250 4-57 5-50 7-26 3-65 7-26 7-22 7-22 7-26 10-32 8-32 8-35 5.4-27
LS LS SD LS LS LS LS LS OS OS OS OS OS OS OS OS LS LS OS OS OS OS OS OS OS OS OS OS LLS, SEC
C-D C-D B B-C C C-D AJR A,R B-C B-C B-C B-C B-C B-C B-C B-C C B-C B-C B-C B-C B-C B-C B-C B-C B-C B-C B-C C-D
547 547 548 549 550 551 552 552 535 537 553 535 553 554 537 553 550 555 556 553 537 553 554 554 553 544 544 544 1002
degree of
1.1-8 SD 1.1-8 SD 4-14 OS 4-14 OS 4-14 OS 4-14 OS 4-14 OS 4-14 OS 4-14 OS 4-14 OS 4-14 OS 4-14 OS 10-41 LS 4-14 OS 4-14 OS 5-18 SD, LS 8-61 LS 8-63 LS polymerization)
A A B-C B-C B-C B-C B-C B-C B-C B-C B-C B-C B-C B-C B-C B B B B
557 557 558 558 558 558 558 558 558 558 558 558 559 558 558 560 561 561 562
12-57
LS
C-D
563
LS
B
562
W.P.
0.88 0.97 5 0.96 5 0.95 4 0.97 095 Il 1.04 0.95 2.57 0.86 3.46 0.86 Not const. 12 (Wormlike behavior) 245 0.50 7 125 0.57 7 2.80 1.00 13 1.69 1.00 11 .1.66 0.86 6 10.8 0.89 4 5.70 0.90 4 6.93 0.91 6 7.00 0.933 9 11.0 0.91 33 23.5 0.78 6 5.68 0.969 9 23 0.81 6 2.24 0.810 6 3.8 1.03 33 8.3 0.90 6 1.66 0.86 7 2.50 1.01 6 3.64 1.0 ? 30 0.79 6 12.2 0.92 10 5.0 0.93 6 18.3 0.835 6 6.1 0.945 6 1.1 1.04 6 113 0.50 3 129 0.50 3 17.3 0.70 6 1.14 0.99 8 (Wormlike behavior) 1.51 1.05 5 1.34 1.07 5 29.2 0.81 6 35.8 0.78 6 18.2 0.84 6 26.7 0.79 6 14.0 0.87 6 18.1 0.83 6 11.8 0.89 6 9.3 0.90 6 10.7 0.89 6 14.0 0.85 6 52.3 0.65 6 4.2 0.96 6 22.6 0.79 6 37 0.80 4 17.4 0.79 4 9.53 0.87 5 [rj] = 1.2 DPjv87 (DPW; weight-average
M - 1 . 6 DP°W86
MoI. wt. range (xlO~ 4 )
5
References page VII - 68
TABLE 4.
cont'd No. of samples
Polymer
Solvent
Sodium carboxymethylcellulose DS" 0.2-1.0 DS0 0.96 DSa 0.62-0.74
Aq. NaOH (0.78MVNaN3(ClM) Cadoxen Aq. HCl (4M) Aq. NaCl (0.001 M)
35 25 25 25 25 25 25 25 25 25 0
(0.01 M) (0.1 M) (0.005 M) (0.01 M) (0.05M) (0.2M) Aq. NaOH (1 M)
DS° 1.06
Sodium cellulose xanthate Dextran linear fraction
Formamide Water
branched fraction
Methanol/water (40.5/59.5, v/v) Water
Guaran triacetate
Acetonitrile
Hyaluronic acid
Pullulan
Aq. HCl (0.1 M) Aq. NaCl (0.2M) (0.5M) Water
Salep glucomannan triacetate
Nitroethane
Shizophyllan((3-l,3-D-glucan)
Dimethyl sulfoxide Aq. NaOH
Xanthan
Cadoxen
a
37 0.61 33.4 0.73 [77] = 0.97 DP*83
Fr.
W.P.
MoI. wt. range (xlO" 4 )
6 -
5
7-30 5-106
Method(s) Remarks Refs.
OS5LS LS
B C B
531 564 562
SD SD SD LS LS LS LS
C-D C-D C-D C-D C-D C-D C-D C
565 565 565 566 566 566 566 567
OS LS EA OS LS
C C,R C C C
568 569 570 568 860
LS
C
7-85 206-534 7-103 7-103 11-103 11-236 0.53-102 0.06-0.4
LS LS LS LS LS LS SE LS
A B A A A A A A-B
569 571 572 572 573 573 573 998 1003 574
3-190 10-25 300-570 3-15 20-360 30-700 3-360
SE1LS LS LS LS LS LS LS
A A A
0.100 1.40 8 4.5-35 0.646 1.20 3 4.5-35 12.3 0.91 8 4.5-35 7.2 0.95 4 14-106 8.1 0.92 4 14-106 19 0.82 4 14-106 43 0.74 4 14-106 [7/1 = 1.67 DP™2 + 0.62 DS23- 0.20 DS 6 DP^ 94 DS,, Degree of substitution at the /( = 2, 3 or 6) positions in glucose unit
25 25 25 50 34(0)
165 97.8 49.3 39.3 10.3
0.49 0.50 0.60 0.61 0.25
5 10 10 6 -
25 32.7 25 25 25 25 25 25 25 30
-
0.20
9 6 4 5 5 8 5 9 8 11
25 25 25 25 25 25 25
Aq. NaCl (0.1 M) a
IiC(XlO3) (ml/g)
Temp. (0C)
2.62 3Jl 27.9 22.8 31.8 22.1 This relation not followed -
0.87 0.52 0.763 0.816 0.777 0.66 0.65
0.69 1.8 1.1 0.87 0.70 0.17 1.14 Double strand helix
6 -
8 -
6 4 3
-
5
-
0.2-3.2 2-10 0.04-4.5 0.2-3.2 7-51 0
862,863 863 863 865 865 866 865
DS: Degree of substitution.
TABLE 5.
MISCELLANEOUS No. of samples
Polymer
Solvent
Imogolite
Aqueous acetic acid/ 0.02 wt.% NaN3
D.
K ( x 10 3 ) (ml/g)
Temp. ( 0 C) 30
a
[77] = 9.35 x 10- 10 M 2 /ln M (sonic wave)
Fr.
WP
6 -
59-208
CALCULATED U N P E R T U R B E D D I M E N S I O N S O F FREELY R O T A T I N G C H A I N S
Chain type Poly(methylene) chain Amylosic chain Cellulosic chain Gutta-percha (trans polydiene) Natural rubber (cis polydiene) Poly(peptide)
(nm mol J / 2 /g 1/2 ) 0.308/M,1/2 0.426/M^ 2 0.790/1M1J2 0.580/My 2 0.383/M,1/2 0.383/A*//2
0.218/m 1 / 2 0.191/m 1 / 2 0353/m^2 0.290/m 1/2 0.201/m 1 / 2 0.221/w 1 / 2
Af(XlO'4)
Refs. 2 518 620 620,621 620 620
MoL wt. range Method Remarks LS
A
Ref. 1005
E.
UNPERTURBED DIMENSIONS OF LINEAR POLYMER MOLECULES
TABLE 6. MAINCHAIN ACYCLIC CARBON POLYMERS S0JM1J2
Polymer 6.1.
Solvent
Temp. (0C)
(XlO4) or a, (nm)
K0 (xlO 3 ) (ml/g)
ro/M^2 xlO 4 (nm)
roi /M1'1 (xlO 4 ) (nm) a - roAor
C^=r\/nl2
Method(s) Refs.*
POLY(DIENES)
Poly(butadiene) 100%-m 98%-cis, 2%-l,2 95%-cis, 4%-l,2
Dioxane 202 205 920 547 Isobutyl acetate 20.5 185 880 547 2-Pentanone 59.7 157 835 546 3-Pentanone 10.3 152 825 546 92%-cis, 5%-l,2 Benzene 32 150±20 820±40 545 l\%-trans, 25%-l,2 Cyclohexane 25 300±40 l030±50 702 19%-tmns, 21%-1,2 Cyclohexane 20 280±25 1010±30 742 91%-tmns,3%-\2 Cyclohexane 40 200 ± 3 0 935 ± 4 0 768 100%-m Various solvents 50 Undiluted 50-90 din rl/dT = 0.4 x 10" 3 (deg~ l ) \00%-trans Decalin 55 Undiluted din r*/dT = -0.6 x 10- 1 (deg" 1 ) \,4-trans Oligomeric 1,4-PoIy (butadiene) 25.0-105.8 din r%/dT = -0.10 x 10" 3 (deg" 1 ) linear Dioxane 12.1 155 Toluene 35 150 Poly(1 -butenylene-ctf-vinylethylene) 43%-1,2 1,4-Dioxane 15.7 173 Poly(chloroprene) &5%-trans Benzene 25 115db20 750±80 535 Butanone 25 113 750 535 Cyclohexane 45.5 107 755 535 Butanone 25 313 750 535 Poly(2,3-dimethylbutadiene) 85%-f/ww-l,4, 3%-l,2 CyclohexaneM-propanol 25 226 Poly(isoprene) 100%-HJ Benzene; 2-pentanone ~20 130 ± 2 0 810 ±45 485 Diisopropyl ether 22 0.76 847 485 2-Pentanone 14.5 119 Undiluted - 10 to 70 din r20/dT = 0.41 x 10~3 (deg' 1 ) 30-70 din rl/dT = 0.56 x 10 ~3 (deg" 1 ) 100%-trans Propyl acetate 60 232 970 703 Dioxane 47.7 191 910 703 Undiluted -60 din rl/dT = -0.27 x I0" 3 (deg" 1 ) trans-i A Benzene, cyclohexane, Toluene 30 198 884 Hexane 30 135 778 71%-cw, 22%-trans, Cyclohexane; dioxane; 35 126 766 7%-3,4 4-methyl-2-pentanone; toluene Poly (isopropenylethylene-co-1 -methyl-1 -vinylethylene) 20-25%-1,2,70-75%-3,4 2-Octanol 30.5 - 1 0 2 Poly [isoprene-b/tfdc-poly(styrene)], A^-B,, k/n, (75/25, w/w) 4-Methyl-2-pentanone; 30 128 782 toluene k/n, (50/50, w/w) Cyclohexane; dioxane; 35 110 741 4-methyl-2-pentanone; toluene Butanone 44 116 757 Cyclohexane 46 116 756 4-Methyl-2-pentanone 30 124 773 Toluene 30 115 754 k/n, (25/75, w/w) Cyclohexane; dioxane; 35 97 711 4-methyl-2-pentanone; toluene Poly(methylbutylene) 43%-1,2 n-Hexyl acetate 60.9 189 Poly(1 -methyl-1 -butylene-co-isopropenylethylene) 51 %-1,4,49%-3,4 2-Octanol
41.3
-
96
-
1.68 1.61 1.53 1.51 1.50±0.08 1.45 ±0.08 1.36±0.05 1.22 ±0.07 1.63
5.15 4.75 4.3 4.2 4.15 7.3 6.9 5.4 4.9
VT VT VT VT VG VG VG VG VT ST VA ST
19 15 17 17 3(20) 3(22) 3(23) 24 622 622 623 623
1.23
5.8
-
6.15 -
VG VG VG
888 889 889
1.40±0.15 1.40 1.41 1.40
6.0 5.6 5.6 5.65 5.6
VT VG VT VT LT
890 3(32,33) 35 34 624
1.67 ±0.09 1.74
8.59 ±0.14 5.0 5.5 4.7
1.38 1.30
7.2 6.35
VG, VT VT5VG XS VT ST ST1VT VT VT ST
883 3,37 625 626 626 627 37 19 623
1.26 1.11
5.99 4.64 -
VG VG VG
894 894 786
-
7.9
VT
890
-
VG
867
-
-
VG
786
-
-
VT VG VG VG VG
867 867 867 867 786
-
6.2
VG
890
-
5.3
VG
890
* References in parentheses include data used for the calculations of end to end distance in Ref. 3.
References page VII - 68
TABLE 6. cont'd
Temp. Polymer
(0C)
Solvent
S91ZM1J2 (xlO 4 ) or a, (nm)
JT1 (xlO 3 )
ro/M /
(ml/g)
xlO 4 (nm)
{2
ror/M1/2 (xlO4) (nm)
a^ro/rw
427
1.82±0.05
C T O =r5/n/ 2
Method(s) Refs.*
6.2. POLY(ALKENES), POLY(ACETYLENES) Poiy(l-butene) atactic
isotactic
Poly(ethylene)
2-Octanol Tetrahydrofuran Anisole; ethylcyclohexane Nonane Phenyl ether Undiluted Anisole Nonane Phenetole Phenyl ether Undiluted
23.6 25 ~70
-
74 74 123±10
775±25
5.3 5.3 6.6
VG VG VT,VG
896 896 3(81)
15.1
LT VT ST VT LT VT VT ST ST
81 700 633 700 81 700 700 634 634
35 141 140-200 89 80 64.5 148 140-200 160 1-Chloronaphthalene; tetralin; /7-Xylene -100
590 ± 5 0 1180 ± 7 0 427 2.76 ±0.20 104 747 din r j / d ? = (0.5 ±0.04) x 10~3 (deg" 1 ) 111 763 51O±5O 1290±90 427 3.00±0.20 113 767 103 744 din r%/dT = (0.09 ±0.07) x 10~3 (deg" 1 ) din r g / d ? = - 0 . 1 x 10" 3 (deg" 1 ) 1.63 ±0.08
5.3
VG
Decalin Bis-2-ethylhexyl adipate
1070 582 1.84 225 940±40 582 1.61 690±100 1320±150 582 2.27 ±0.26 323 1085 582 1.87 307 1070 582 1.84 316 ± 7 1080 582 1.86 315 1080 582 1.86 302 1065 582 1.83 295 1060 582 1.79 286 1040 582 1.79 330 1095 582 1.88 322 1085 582 1.87 309 1070 582 1.84 din rg/dT = -(1.15 ± 0.1) x 1 0 ' 3 (deg" 1 )
6.8 5.2 10.3 7.0 6.8 6.9 6.9 7.6 6.4 6.4 7.1 7.0 6.8
VA VT LT VT VT VT VT VT VT VT VT VT VT ST
3(61,67, 74) 65 630 630 58 58 69 58 65 58 58 631 631 631 629
632 703 703 703
Biphenyl Dodecanol
140 145 145 127.5 137.3 138 142.2 153.3 161.4 180.1 127.5 142.2 163.9 140-190
Diphenylmethane Decanol Diphenyl ether Octanol Biphenyl Diphenylmethane Diphenyl ether Undiluted; diluted with triacontane; dotriacontane Hexadecane low pressure Biphenyl Decalin 1,2,4-Trichlorobenzene Poly(ethylene-co-isopropylethylene) n-Hexyl acetate Poly(ethylene-a?-propylene) Benzene n-Decyl acetate n-Heptyl acetate n-Octyl acetate Poly(isobutene) Anisole Benzene Benzene Phenetole Heptane/propanol (80/20, v/v) Undiluted; diluted with hexadecane Poly(isopropylethylene-c-1 -methyl-1 -ethylethylene) 2-Octanol Poly( 1 -methylbutylene-co-isopropylethylene) 2-Octanol Poly(l-octene) Bromobenzene Cyclohexane Phenetole Poly(pentenamer) 80-85%-fran5, 19-12%-cw Isopentyl acetate
-
230
950±40
582
140 130 120 135
din rg/dT = -1.2 x 10~3 (deg" 1 ) 302 1130 360 1200 360 1200 -
65 19.0 21.4 5.0 38.0 27.0 105 24 25 86 25
390
60
188 206 203 203 194 198 91 ± 5 107 ± 5 105 91 ± 5 166
938 933 933 919 925 700 ±20 740 ± 2 0 749 700 ±20 780
412 412 412 412
18.0 -
-
-
VA VT VG VG
1.70 ±0.05 1.80 ±0.05 1.70 ±0.05 1.9
6.3 6.85 6.78 6.78 6.57 6.66 5.8 6.5 6.7 5.8 7.2
VG VG VG VG VG VG VT VT VG VT LT
890 897 897 897 897 897 49 49 1010 49 628
ST
629
7.2
VG
890
1.96±0.15 2.44±0.20 2.14 ±0.10
5.0 7.7 11.9 9.1
VG VG VG VT
890 84 84 84
1.26
-
VT
788
din r§/d? = -(0.1 ±0.05) x 10~3 (deg" 1 )
26.2
83
53.3 25 30 50.4
-
91 50 100 65
570±50 710±60 625 ±30
38
-
234
991
291 291 291
-
TABLE 6. cont'd
Polymer IPoIy(I-pentene) atactic isotactic
Temp. (0C)
Solvent
Undiluted 2-Pentanol Undiluted
(xlO 4 ) wap (nm)
40-140 62.4 80-140 -90 -60
din din din din
3-Nonanol 5.0 1-Octanol 77.0 Isoamyl acetate; benzene; 30 cyclohexane; toluene Decalin 135 1-Chloronaphthalene 74 Cyclohexanone 92 Diphenyl ether 153 Diphenyl 129 Isoamyl acetate 34 Isobutyl acetate 58 Phenyl ether 146 Above 4 solvents 1-Chloronaphthalene; -140 decalin; tetralin Diphenyl ether 145 145 145 Biphenyl 125.1 Diphenyl ether 142.8 Dibenzyl ether 183.2 Diphenyl 125 Phenyl ether 143 Above 2 solvents Heptane 30 Isoamyl acetate 45
-
K0 (xlO 3 ) (ml/g)
ro/M^2 xlO 4 (nm)
r o f /M 1 / 2 (xlO 4 ) (nm)
rl/dT = (0.53 ±0.05) x 10~3 (deg" 1 ) 121 790 368 rg/dr = (0.34 ±0.04) x 10~3 (deg" 1 ) rl/dT = -0.3 x 10" 3 (deg" 1 ) rl/dT= -0.2 x 10 ~3 (deg~')
C 0 0 =/-*//!/ 2 Method(s)
ST VT ST ST ST
Refs.*
633 633 633 634 635
2.14
9.2
475
1.76 ±0.05
6.6 5.4 6.2
VG VG VT,VG
897 897 3(88,89)
475 475 475 475
1.63 ±0.08 1.85 1.83 1.61
5.3 6.85 6.7 5.2 -
VG VT VT VT VT VT VT VT
3(88,91) 90 90 90 708 708 708 708 708 3(88,96)
Poly(propylene)
atactic
isotactic
syndiotactic head-to-head 94%-trans, 6%-l,2 S9%-trans, 11%-1,2 Poly(vinylethylene) atactic
Cyclohexane Cyclohexane
30 30
2-Octanol
32.8
158 115 156 ± 1 5
857 773 835 ± 2 5
125 ± 2 0 755 ± 3 5 182 880 172 870 120 765 128.3 820 168.5 900 158.5 880 125.6 820 din rl/dT = 1.8 x 10" 3 (deg" 1 ) 120±20 765±40 132 790 94 710 370 ± 3 0 685 ± 3 0 ~ 152 809 137 782 106 718 141.0 850 130.4 830 din rl/dT = 3 x 10" 3 (deg" 1 ) 164 830 172 843 -
80 70 120
674 646
475
1.61 ±0.08
475 475 475 475 475 475
1.66 1.49 1.44 ±0.07 1.70 1.62 1.51
475 475
1.75 1.77
-
-
- V 5.2 5.5 4.45 4.15 5.8 5.25 4.55 ~ - V 6.1 6.25
T VG VT VT LT VT VT VT VT VT VG VT
90 630 630 94 94 94 708 708 708 100 100
T
1.42 1.36
4.0 3.7
VG VG
709 709
-
7.0
VT
896
2.72 ±0.10 2.36 1.83 -
VG VG VT VG VG VG VG VG VG VG VT LD VT VG VG
3(101) 710 104 868 868 868 868 868 868 868 108,109 108 111 3(138,139) 135
6.3. POLY(ACRYLIC ACID) AND DERIVATIVES Poly(acrylamide) Poly(acrylic acid) 50% neutralization
100%-neutralization
-,sodium salt
Poly(acryionitrile) (polymd. at - 300C)
Water
30 30 1,4-Dioxane 30 Aq. NaCl C s - 0 . 0 2 mol/1 30 0.10mol/l 30 0.50mol/l 30 Aq. NaCl, C s -0.02 mol/1 30 0.10moi/l 30 0.50 mol/1 30 1.50 mol/1 30 Aq. NaBr (1.5M) 15 15 Aq. NaSCN (1.25 M) 30 Dimethylformamide 25 7-Butyrolactone; 30
-
260 ± 4 0
_ -
76 95 121 114 112 121 133 120 124 _ 121 210±15 250
100 ± 5 0 862 665 692 750 735 730 750 774 750 756 1030 752 930±20 970
-
318 318 318 422 422
2.38 3.24 2.36 2.20±0.05 2.30
14.8 11.14 6.7 11.3 21 11.1 9.7 10.6
-
367 363 -
-
dimethylformamide
30
-
250
900
422
2.13
9.1
VG
135
Ethylene carbonate/water
25
-
-
950
-
2.25
10.1
Various
951
'
-** 1
(polymd. at 600C)
(85/15, w/w) Dimethylformamide/ MwCJf-AW
&
-
-
U№
12
-6
Various
9 5 1
References page VII - 68
TABLE 6. cont'd
Polymer
Solvent
55wt.%HNO 3 67wt.%HNO 3 Poly(/V-acryloyl-m-aminobenzoic acid) /V,/V-dimethylacetamide, N,/V-dimethylformamide, Dimethyl sulfoxide Poly(Af-acryloyl--aminobenzoic acid) /V,N-dimethylformamide, Dimethyl sulfoxide, Tetrahydrofran Poly(butyl acrylate) Undiluted Polype-butyl acrylate) Poly(terf-butyl acrylate)
PoIy(A^N'-dimethylacrylamide) Poly(dodecyl acrylate) Poly(ethyl acrylate)
Poly(hexyl acrylate) Poly(isopentyl acrylate) Poly(isopropyl acrylate)
isotactic syndiotactic Poly(methyl acrylate)
Undiluted Undiluted Acetone; butanone; methanol; pentane Methanol; water Undiluted Acetone; methanol Acetone Undiluted Undiluted Undiluted Benzene Bromobenzene 2,2,3,3-Tetrafluoropropanol Undiluted Bromobenzene Bromobenzene Various solvents Isopentyl acetate 2-Methylcyclohexanol Butanone/2-propanol (42/58, v/v) (50/50, v/v)
Undiluted Poly(octyl acrylate) Undiluted Poly(morpholinocarbonylethylene) Dimethylformamide Poly(piperidinocarbonylethylene) Dimethylformamide Poly(propyl acrylate) Undiluted
Temp. (0C)
S to/M1J2 (xlO 4 ) *o orap (xlO 3 ) (nm) (ml/g)
r o /M 1 / 2 xlO4(nm)
25 25
r Of /M l /2 (xlO 4 ) (nm) a = ro/rOf
C^.=rl/nl2
Method(s) Refs.*
1060 1290
-
2.51 3.06
12.6 18.5
Various Various
951 951
670
223
3.0
18.1
VG
908
85 660 223 rl/dT = -0.2 x 10~3 (deg~ l ) r^/dr^OCdeg-1) rl/dT = -0.2 x 10" 3 (deg" 1 ) rl/dT = -0.2 x 10 ~3 (deg" 1 )
2.96
18.3
VG ST ST ST ST
909 635 634 635 635
2.2 ~ 2.3 2.17±0.14
9.15
30
-
85
25 60 76 60 60
din din din din
25 25 60 30 25 60 76 60 60 25 60 25
47 ± 1 78±15 din rl/dT = 1.0 x 90±10
607 ± 3 670±40 309 10~3 (deg" 1 ) 720±30 308 856 308 x 10~3 (deg" 1 ) x 10" 3 (deg~ l ) x 10~3 (deg"1J x 10" 3 (deg~ l ) 540 ±25 287 540 ±25 287 700 ± 3 0 287
2.34±0.10 2.78
10.9 15.4
1.88 ±0.08 1.88 ±0.08 2.42 ±0.10
7.1 7.1 11.7
VG 712 VG 3(103) ST 635 VG 3(115,116) VG 114 ST 635 ST 634 ST 635 ST 635 VA 120 VA 120 VG 121
60 60 60 30 62.5 56.0
din rl/dT = -0.3 x 10~3 (deg" 1 ) 630 ±30 287 546 ±35 287 81 ± 10 680 ±30 332 68 650 332 68 650 332
2.20 ±0.10 1.90 ±0.12 2.05 ±0.10 1.96 1.96
9.7 7.2 8.4 7.7 7.7
ST 635 VA 120 VA 120 VG 3(123,132) VT 129 VT 129
20 30 27.5 60 60
din rl/dT = din rl/dT =
2.05 2.00 2.17
8.4 8.0 9.4
VT VT LD ST ST
124 129 108 635 635
260
2.42±0.15
U.7
VG
3(338)
58 ± 1 0 600 ±40 261 din rl/dT = -0.3 x 10~3 (deg" 1 )
2.30 ±0.15
10.6
VG ST
3(338) 635
1.98±0.10
7.85
VT,VG
2.06
8.5
3.45 -
23.8 11.8 10.2 10.2
LT LD ST ST VA VG VG VG
3(152) (154,156) 910 152 635 635 157 917 917 917
_
VTe
917
VG
3(340)
25 25 60
din din din din -
rl/dT rl/dT rl/dT rl/dT
= = = =
-
-
-0.2 -0.4 -0.3 -0.2 92
81 680 332 72 665 332 720 332 -0.2 x 10~3 (deg" 1 ) -0.2 x 10" 3 (deg" 1 )
70±10
630±40
6.4. POLY(a-SUBSTITUTED ACRYLIC ACID) ANfD DERIVATIVES Poly(butyl methacrylate)
Butanone; 2-propanol
23
Dimethylformamide 23.6 2-Propanol 23 Undiluted 60 Polype-butyl methacrylate) Undiluted 60 Poly(terf-butyl methacrylate) Butyl acetate 25 anionic Cyclohexane 10.0 free radical Cyclohexane 10.0 n-Heptane 64.0 Butanone, cyclohexane, n-Heptane, Tetrahydrofuran 25-64 Poly(fer?-butylphenyl methacrylate) Acetone 20
309
34±5
510±20
258
-
659 530 258 din rl/dT = 2.5 x 10" 3 (deg" 1 ) din rl/dT ~ -0.2 x 10" 3 (deg" 1 ) 894 258 60.8 48.9 48.6 -
din rl/dT = 0 (deg"1) -
35 ± 5
515 ±20
208
2.48 ±0.10
TABLE 6. cont'd S01ZM1J2 Polymer
Solvent
Temp. (0C)
Poly(2-terf-butylphenyl methacrylate) Benzene; butanone 25 Cyclohexane 18.4 Poly(4-ter/-butylphenyl methacrylate) Acetone; cyclohexane; 25 tetrahydrofuran Poly(2-chloroethyl methacrylate) 0-Dichlorobenzene 35.7 Poly(cyclobutyl methacrylate) 1-Butanol 37.5 Poly(cyclohexyl methacrylate) Butanol 23 Benzene; butanol; 25 butanone; cyclohexane; dioxane Poly(cyclododecyl methacrylate) Cyclohexane,toluene 30 Butanol 22.5 n-Hexyl acetate 35 21-27 Poly(cyclohexyl thiolmethacrylate) Cyclohexane 25 Tetrahydrofuran 35 Poly(cyclooctyl methacrylate) 2-Butanol 45 1,4-Dioxane, toluene 30 Poly(cyclopentyl methacrylate) Cyclohexane 36 1,4-Dioxane,ethyl acetate, methyl ethyl ketone, Toluene 30 Poly(decahydro- |3-naphthyl methacrylate) Poly(decyl methacrylate) Ethyl acetate Poly(2,6-dimethylphenyl methacrylate) Chlorobenzene, tetrahydrofuran Tetrahydrofuran/water, toluene Poly(diphenylmethyl methacrylate) 3-Heptanone Poly(dodecyl methacrylate) Isopropyl acetate Pentanol
Poly(docosyl methacrylate) Poly(2-ethylbutyl methacrylate) Poly(ethyl methacrylate)
Poly(hexadecyl methacrylate) Poly(hexyl methacrylate)
Undiluted Amyl acetate, tetrahydrofuran Butanone; 2-propanol 2-Propanol Butanone 2-Propanol Butanone/2-propanol (1/7, v/v) Heptane Butanone 2-Propanol
Undiluted Poly[N-(2-hydroxypropyl) methacrylamide] Aq. NaCl (10%); water Ethanol Dimethylformamide Poly(isobutyl methacrylate) 2-Hydroxymethyltetrahydrofuran Acetone Benzene
(XlO4) orap (nm)
K0 (xlO3) (ml/g)
ro/M1'2 xlO 4 (nm)
rot/M1'2 (xlO 4 ) (nm)
O
= r0/rot
Cx=rl/nl2
Method(s) Refs.*
~ -
35 35
550 550
-
2.6 2.6
-
VG VG
771 771
-
45
565
-
-
-
VG
716
-
47.5 47.7 34 45
510 590
237 240
2.15 2.5
10.5 10.0 9.25 -
VT VG VT VG
914 915 345 717
224 228
33.0 45.2 33.0 -
549 558
236
2.33
236
2.37
14.2 14.2 -
VG VT VG LG
915 718 915 718
-
30.0 30.0 37.7 37.7 47.8
490 490 -
230 230 -
2.13 2.13 -
-
-
12.1 12.1 11.2
VG VG VG VG VG
719 719 915 915 915
-
47.8
-
-
11.2
VG
915
11
-
43 35.7
600 -
210 -
2.9 ~
13.0
VT
717 913
25
-
77
675
223
3.02
18.3
VG
923
25
-
77
675
223
3.02
18.3
VT
923
33.1 510 32.2 490 193 34.8 500 193 222 500 193 din rJ/dT = 2.6 x 10~3 (deg" 1 ) 37.9 -
2.54 2.59 2.59
14.0 12.9 13.4 13.4 23.6
VG VT VT LD ST VG
911 158 159 159 635 913
45 13 29.5 29.5 60 31,30 25 27.4 23 36.5 23
-
36±5 33.7 49.3 47.5 47.3
510±30 500 565 ± 1 5 575 560
236 236 288 288 288
2.16±0.13 2.12 1.96 ±0.05 2.00 1.94
9.3 8.95 7.7 8.0 7.55
VG,VT VT VG VT VT
3(160) 160 3(161) 156 161
288 175 236 236 236
1.94 3.54 2.25 ±0.08 2.29 2.46
7.55 25.1 10.1 10.5 12.1
LD VG VT1VG VT LD ST
161 163 3(165) 165 165 635
-
VG VG VG VT
722 722 722 724
-
VG VG
919 919
23 21 30 32.6 32.6 60
560 60 620 41 ± 4 530 ± 2 0 43 540 580 din r g / d r = 2.2 x 1 0 ' 3 (deg" 1 )
50 10 25 19.5
-
52 52 52 26.5
590 590 590 501
-
25 25
-
89.8 113
290 313
-
-
References page VII - 68
TABLE 6. cont'd _ _
Polymer
Poly(isopentyl methacrylate) Poly(isopropyl methacrylate) Poly(5-p-menthyl methacrylate)
Poly(methacrylic acid)
Poly(methyl butacrylate) Poly(methyl ethacrylate) Poly((methyl methacrylate) atactic
Solvent
Carbon tetrachloride 1,4-Dioxane Undiluted Undiluted Benzene; cyclohexane; 2-pentanone; tetrahydrofuran Aq. NaCl A^-Dimethylformamide/ l,4-Dioxane(5/7, Wv) Butanol 2,6-Dimethyl-4-heptanone Various solvents
Acetonitrile Butyl chloride
isotactic
Temp. (0C)
Benzene, toluene Benzene; chloroform; etc. (various) 2-Methyl-4-pentanone Methyl isovaleriate Butyl acetate Butanone/2-propanol (58.2/41.8, v/v) (55/45, v/v) (50/50, v/v) (46.8/53.2, v/v) Butyl chloride 4-Heptanone Isoamyl acetate 4-Heptanone 3-Octanone Undiluted Acetonitrile
(xlO 4 ) or ap (nm)
#o (xlO 3 ) (ml/g)
ro/M1/2 xlO 4 (nm)
25 25 60 60 25
105 305 98.4 299 din rl/dT = 1.4 x 10~3 (deg" 1 ) din rl/dT = 2.5 x 10~3 (deg" 1 ) 44.0 630
25 26.9 (0)
284
200 103
900 -
ror/M1'2 (xlO 4 ) (nm) tr = r o /rof
-
-
C^^rl/nl2 -
Method(s) Refs.* VG V
G
919 919 635 635 771
-
3.1
-
ST ST VT,VG
334 -
2.7 2.13
14.6 -
VG LT,VT
110 907
13 11.4 25
-
57 67.6 70 ± 2 0
590 620 640 ±60
258 288 308
2.28 2.15 2.08 ±0.20
10.4 9.25 8.65
VT VT VT,VG
45 35.4 40.8 21 Various
219 292 ± 6 0.72 ±0.05
49 ± 5 46 ± 9
555 ±15 537 620 ±15 653 ±25 -
308 308 308 308 -
1.80 ±0.05 1.74 2.01 ±0.05 2.12 ±0.08 -
6.5 6.05 8.1 9.0 -
VT LT LT XS VG
168 168 3(170, 173, 174,181, 193,196) 179 636 283 637 869
-42 -37 -20 4.0
-
308 308 308 308
1.62 1.70 1.69 1.78
5.25 5.8 5.7 6.35
VT VT VT VT
636 636 636 636
308 308 308 308 308 308 308 308
1.82 1.98 1.99 2.00 2.01 2.01 1.78 ±0.05 1.82 ±0.03
6.65 7.85 7.95 8.0 8.1 8.1 6.35 6.65
308
2.17
308
2.32
9.4 10.8
VT VT VT VT VT VT VT VT ST VT VT VT
636 636 636 636 636 636 179 179 634 198 728 191
308 308 308
2.30 2.21 1.98
10.6 9.75 7.85
VT VT VT
191 191 191
-
2.08
VA
927
1.98-2.28 2.24-2.54 2.17-2.45 2.27-2.82 2.48-2.80 2.30
VA VA VA VA VA VA
927 927 927 927 927 927
14.5 9.6 10.4
VG VG VG VG VT, VG LD ST
12.8 22.8 28.5 35.4 40.4 57.5 33 72 168 27.6 27.5 30.3
36.0 41.5 40.6 47.2
500 525 520 550
49.8 560 50.4 610 50.8 610 52.6 620 53.2 620 53.5 620 47±4 550±15 50 ± 3 560 ±10 din rl/dT = 0.1 x 10~3 (deg" 1 ) 75.5 670 273 76.2 669 90 715
Butanone/2-propanol (50/50, v/v) 3-Heptanone 40 87 710 Propanol 75.9 76.1 680 p-Cymene 152.1 56.6 610 Poly(methyl methacrylate)-WocA:-poly(a-methylstyrene)-Wc>cit-poly(methylmethacrylate) 0.0 wt.% PMS Chloroform, toluene, 25, tetrahydrofuran, 45 660 carbon tetrachloride 6.7 wt.% PMS ibid. 25,45 600-690 8.3 wt.% PMS ibid. 25,45 670-770 21.0 wt.% PMS ibid. 25,45 630-720 31.8 wt.% PMS ibid. 25,45 680-780 78.1 wt.% PMS ibid. 25,45 710-810 100 wt.% PMS ibid. 25,45 653 Poly(methyl-phenylacrylate), (see group 1.7 Poly(methoxycarbonyl-l-phenylethylene) Poly(P-naphthyl methacrylate) Benzene Various 47.2 574 Tetralin Various 47.5 575 Toluene Various 39.0 538 54 660 Poly(octadecyl methacrylate) Butyl acetone 10.5,20,30 Poly(octyl methacrylate) Butanol; butanone 20 30 ± 5 480 ± 2 0 Butanol 16.8 500 Undiluted 60 din rg/dT = 2.2 x 10" 3 (deg" 1 )
-
-
210
3.1 2.19 ±0.09 2.28
219 219
729 729 729 717 920 3(201) 201 635
TABLE 6. cont'd S 0z /Mi /2 Polymer
Solvent
Temp. (0C)
Poly(W-phenylmethacrylamide) Poly(phenyl methacrylate)
Acetone Acetone; benzene; butanone; dioxane Poly(2-selenolylmethyl methacrylate) Chlorobenzene Tetrahydrofuran Poly(stearyl methacrylate) n-Propyl acetate Poly(tetrahydrofurfuryl)methacrylate) 2-Hydroxymethyltetrahydrofuran Poly(2-thiophenmethyl methacrylate) Chlorobenzene Tetrahydrofuran, thiophene Poly(tridecyl methacrylate) Ethyl acetate Poly[2-(triphenylmethoxy)ethyl methacrylate] Mesitylene
(XlO4) or a, (nm)
K0 (xlO 3 ) (ml/g)
r^jM1'1 xlO 4 (nm)
rw/M1'2 (xlO 4 ) (nm) <,=ro/rol
38 ± 9 57
520 ±40 670
242 240
2.15 ±0.16 2.8
9.25 -
VG VG
3(370) 717
204 204 -
2.84 2.98 -
18.0 20.4
VG VG VT
922 922 913
-
VT
734
2.45 2.45
10.8 10.8 14.7
VT VG VT
921 921 913
-
18-19
VT
736
20 25
-
25 25 36
-
56 65 38.2
580 607 -
31.2
-
34.9
573
25 25 27
-
45.0 45.0 33.3
594 594 -
228 228
47
-
30
487
-
C^^rl/nl2
Method(s) Refs.*
6.5. POLY(VINYL ETHERS), POLY(VINYL ALCOHOL), POLY(VINYL ESTERS), POLY(VINYL HALIDES) Poly(chlorotrifluoroethylene)
Poly(vinyl acetate)
2,5-Dichlorobenzotrifluoride Benzene; butanone Mixed digomers of poly(chlorotrifluoroethylene) Perfluorokerosene Various solvents
Poly(vinyl alcohol)
3-Heptanone 29 Heptane/3-methyl-225 butanone (26.8/73.2, v/v) Methanol 6 3-Heptanone 26.8 Ethanol 56.9 6-Methyl-3-heptanone 66 Tetrahydrofuran 35 Water 30
Poly(methoxyethylene) Poly(tetrafluoroethylene)
Undiluted Poly(vinyl benzoate) Poly(vinyl bromide)
130 30 340 300 25
50 90 32.5 20
Xylene Cyclohexane; tetrahydrofuran; methanol/THF (17/83, v/v) 1-Methylnaphthalene ~20 Poly(vinyl butyrate) Benzene 30 Poly(vinyl chloride) Cyclohexanone; ~25 tetrahydrofuran Benzyl alcohol 155.4 Tetrahydrofuran 25 Poly(vinyl 4-chlorobenzoate) Butanol/butanone 60 (47/53, v/v) Poly(vinyl fluoride) Dimethylformamide 90 Poly(vinyl hexanoate) Benzene 30 Poly(vinyl isobutyrate) Benzene 30 Poly(vinyl methyl ether), see Poly(methoxyethylene) Poly(vinyl pivalate) Butanone/methanol 20 (0.897 g/ml)
Poly(vinylidene chloride)
l-Methyl-2-pyrrolidone; Tetramethylene sulfoxide
25
330±50 -
52 ± 3
580 ±15
286
2.03 ±0.07
8.25
VG
3(234)
195 ± 3 0 900 ± 5 0 Jn this poor solvent
404
2.23 ±0.13
9.95 7±2
VG LT
3(206) 885,886 690 3(242, 244, 252,255) 641 252
-300 93 ± 1 0
1070 705 ±10
308 332
~3.5 2.12 ±0.09
~24 9.0
VG VT, VG
-
790 ± 2 0 745±20
332 332
2.38 ±0.07 2.24±0.07
11.3 10.0
XS LT
720 670 690 660 774 ±20 950 ± 4 0
332 332 332 332 464
2.17 2.02 2.08 1.99 2.04 ±0.10
9.4 8.15 8.65 7.9 8.3
VT VT VT VT VG VG
din r^/dT = 0.0 (deg" 1 ) din rl/dT = 0.5 x 10~3 (deg' 1 ) 62 ± 8 620 ±25 252 40 ± 5 540 ±20 298
2.46 ±0.10 1.82 ±0.07
12.1 6.6
2.56 2.32 ±0.12 1.83±0.15
13.1 6.7
XS VG VG
393 390 228
2.08 1.84 2.92
8.65 17.1
VT VG VT
640 3(256) 3(221,223, 224,229) 219 879 336
5.9
VG VG VG
235 3(256) 3(256)
VT
258
VG
738
0.95 ±0.05 318±1O -
1.09 ~ -
101 82.0 90 78 116 ± 9 222 ±25
80 ± 1 0 100±30
763 670 ±35 393 820 717 665
298 288
-
156 103 73
-
128 91 ± 10 80 ± 1 0
787 700±30 670 ±35
457 258 288
1.72 2.71 ±0.12 2.32 ±0.12
-
53 ± 5
580 ± 2 0
253
2.29 ±0.08
-
60±10
620±30
-
-
8±1
236 236 236 236 740 3(208,210, 212) ST 638 ST 639 VT 334 VT, VG 3(217, 218)
References page VII - 68
TABLE 6.
cont'd S9JM1J2
Polymer Poly(vinylidene
Solvent fluoride)
Temp. (0C)
/V,W-dimethylacetamide, 25 A^dimethylformamide, Af-methylpyrrolidone, N,N-6imethy-N,N-trimethylene urea
(XlO4) or a, (nm)
K0 (xlO 3 ) (ml/g)
ro/M1^2 xlO 4 (nm)
rof/Afl/2 (xlO 4 ) (nm)
C00=T1JnI2
330
-
237 255 286 -
54 54 50 28.5 46.0 44.0 30.0 45 62 61 ± 5
237 236 -
54.2 46.8 50 ± 5
580 580 560 ± 2 0
261
2.22 2.22 2.15 ±0.07
12.3 9.25
Method(s) Refs.*
8.9
LV
925
11.2 11.2 12.5 12.3 11.8 13.4 ±0.7
VT VG VT VG VG VG VG VG LG VG VT LT VG VG VG VG VG
937 937 348 870 870 870 870 349 349 741 741 741 934 934 934 934 934
6.6. POLY(STYRENE) AND DERIVATIVES Poly(4-acetoxystyrene)
Poly(4-bromostyrene)
Butyl acetate, Isopropyl acetate, Dioxane, tetrahydrofuran Benzene Chloroform Dimethylformamide Dioxane Toluene
Poly(p-tert-butylstyrene)
Poly(2-chlorostyrene) Poly(4-chlorostyrene)
Poly(4-cyclohexylstyrene) Poly(2,5-dichlorostyrene) Poly3,4-dichlorostyrene)
Poly(2,4-dimethylstyrene)
Poly(4-hydroxystyrene)
Poly(o-methoxystyrene) Poly(p-methoxystyrene)
Benzene; cyclohexane i-Nitropropane Benzene Cyclohexane 1-Hexanol 3-Nonanol 2-Octanol 1 -Nitropropane 2-Octanol Butanone Butanone; chlorobenzene; toluene Benzene; benzene/ methanol (5.5/1, v/v) Toluene
26.8 19.7 25 26.3 30 30 30 30 30 30 35 31 31 35 25 65.0 10.9 32.7 31.0 32.7 24.5 24.5 30
58.2 57.7 51.1 59.5 55.7
593 593 570 564 554 612 610 ±15
228 228 228 -
2.37 2.37 2.50 2.05 2.41 2.37 2.09 2.48 2.43 -
--
11.9 13.1 12.6
VG 938 VT 742 LT 742 VG 3(352,355), 353 VG 744
26.7
-
59
590
-
2.25
-
30 30 30 60 30.5
272 -
58 53 ± 3 51 ± 3 35.5
615 615 570 ± 2 0 560 ± 2 0 510
261 261 226 226 234
2.36 2.36 2.52 ±0.07 2.48 ±0.07 2.18
11.1 11.1 12.7 12.2 9.5
VG LG VG VG VT
349 349 266 266 3(357)
Heptane; toluene Toluene Ethanol/ethyl acetate (1/15, w/w) Butanol/butyl acetate 32.9 (1/13, w/w) Chlorobenzene; o30 dichlorobenzene Cyclohexane; 1,220 dichloroethane; dioxane n-Decane; n-heptane 50 /7-Dichlorobenzene 60 Toluene 30 Dioxane 25 Ethyl propionate 25 Isobutyl acetate 25 Tetrahydrofuran 25 Methanol/toluene 30 (25/75, v/v) Amyl acetate 75.0 Amyl acetate; cyclo23.4 hexane; toluene Butanone; 20, 50, 75 chlorocyclohexane; toluene Methanol/toluene 30 (28.1/71.9, v/v)
-
71
640
234
2.7
14.6
VT
359
-
38±5
510±20
234
2.18±0.08
9.5
VG
358
-
59-60
635-640
-
-
VG
746
-
48-49 48.5 60 ± 5 82.7 90.0 90.0 83.7 57.5
595-600 595 630 ±15 600
268 266
2.35 ±0.07 2.38 2.45 2.45 2.39 2.26
11.0 11.3 12.0 ] 2.0 11.4 10.2
VG VG VG VG VG VG VG VT
746 746 333 940 940 940 940 362
-
69 71
635 ±15 640
-
2.40 ±0.06
-
VT VG
871 363
-
66-73
-
-
-
VG
782
-
62.1
630
2.37
11.2
VT
362
266
TABLE 6. cont'd
Polymer
Solvent
Temp. (0C)
4-Methyl~2-pentanone 2-Methyl-2phenylpropane Toluene Poly(methyl methacrylate)-/7/tfc£-poly(a-methylstyrene)-&/tfc£Poly(ot-methylstyrene) l-Chloro-n-hexane 1-Chloro-n-heptane l-Chloro-«-octane
anionic (atactic)
/i-Hexyl acetate Cyclohexane /ra/w-Decalin Benzene; cyclohexane frans-Decalin Cyclohexane
ca. 50%-hetero, ca. 40%syndio
rrans-Decalin (100%)
cationic (syndiotactic)
Poly(w-methylstyrene)
Poly(/7-methylstyrene)
Poly(styrene) atactic
23.4 52.2
n-Butyl chloride Cyclohexane /ra/w-Decalin Ethylcyclohexane; methylcyclohexane Cyclohexane
Benzene; toluene Benzene/ethanol (71.5/28.5, v/v) Butanone/2-propanol (87/13, v/v) 1-Chloroundecane Cyclohexane Dimethyl malonate
K0 (xlO 3 ) (ml/g)
-
64 74
r o /Af 1/2 xlO 4 (nm) 620 ± 1 5 650 ± 2 0
25 74 650 ± 2 0 poly(methyl methacrylate), see also group 1.4 5.7 66.0 10.0 65.2 20.0 62.5 27.0 62.7 43.0 63.8 53.0 63.1 80.0 63.8 85.0 665 34.5 68.9 10.0 68.0 ~ 30 76 ± 5 650 ± 15 9.5 67 ± 2 625 ± 5 ~38 76±2 650 ± 10 34.5
290
34.5 34.9 34.9 9.5 9.5 9.6 9.6 30
263 283
Toluene; benzene/ methanol (79.4/20.6, v/v) Cyclohexane ~33 Benzene; cyclohexane; 30 ethyl acetate 40 50 Butanone; cyclohexane; 30 toluene Diethyl succinate 16.4 16.4 Various solvents
(xlO 4 ) orap (nm)
-30
25,50 34.5 16-80 -70 34 35 35 35 25 25 67 32.8 34.8 35.9
ror/M 1 / 2 (xlO 4 ) (nm)
Method(s) Refs.*
-
2.33 ±0.07 2.45 ±0.06
-
VT VT
871 871
-
2.45 ±0.06
-
VT
871
-
-
-
-
284 284 284
2.29 ± 0.05 2.20 ±0.02 2.29±0.03
10.4 10.3 10.0 10.0 10.1 10.1 10.1 10.4 10.7 10.6 10.5 9.7 10.5
VG VG VG VG VG VG VG VG VG VG VT, VG VT VT
-
-
LT
-
-
-
710 73
C^^rJ/w/2
250 -
62.5 74 ± 1 0
645 645 650 690 630 615 615 670 ± 2 5
-
69 ± 3 84.0
655 ± 1 0 664
284 284
2.31 ±0.03 2.34
10.7 11.0
VT VG
872 873 873 872 872 873 873 3(329, 327) 328 330
-
86.8 89.7 68±5
671 678 620±15
284 284 284
2.37 2.39 2.18±0.05
11.2 11.4 9.5
VG VG VG
330 330 651,331
291
70 -
655 680
284 284
2.31 2.39
10.7 11.4
VT LT
331 331
670 ± 1 5
302
2.22 ±0.05
9.85
VT, VG
9.25
74.2 67
-
297 ± 3 -
82 ± 5
77 81.4 75±5
-
284
2.36 ±0.10
11.1
v
650±15
302
-
690 ± 1 0 730 670 705±15 700 ± 1 5 645
302 302 302 302 302 302
2.28 ±0.04 2.42 2.22 2.33±0.05 2.32 ±0,04 2.14
10.4 11.7 9.85 10.9 10.8 9.15
LT LT LT XS XS LT
643 278 644 645 645 628
317
-
757
302
2.50
12.5
LT
278
-
-
775 768 762
302 302 302
2.56 2.54 2.52
13.1 12.9 12.7
VA VA VA
646 646 646
-
<3
3(274, 277, 279,282 286,299, 301,304) 933
2.15±0.05
282 ± 5 306 300 0.92±0.03 0.91 ±0.02 296
-
-
VT LT VT LT VT LT VT VT 1 VG
888 888 888 888 888 888 888 888 888 888 319,323 320 320,321 322,323 872
LT
875
Monte Carlo, G 876 3(292,293)
References page VII - 68
TABLE 6. cont'd
Polymer
atactic, anionic
isotactic
head-to-head head-to-tail star type four branches six branches star type 12.3 arm 16.8 arm regular H-shaped Poly(styrene-p-sulfonic acid) - , sodium salt 6.7.
Solvent
Temp. (0C)
73%-fra«5-Decalin 18 100%-frans-Decalin 24 Butyl formate -9 Hexyl-m-xylol 12.5 Decalin 29.5 Diethyl malonate 31 Cyclohexane 34 Diethyl oxalate 51.5 Methylcyclohexane 68 Cyclohexanol 83.5 1-Chlorodecane 6.6 1-Chloroundecane 32.8 1-Chlorododecane 58.6 Cyclohexane/methylcyclohexane (1/0, v/v) 34.5 (2/1, v/v) 43.0 (1/1, v/v) 48.0 (1/2, v/v) 54.0 (0/1, v/v) 70.5 Diethyl malonate 34.2 Diethyl oxalate 55.8 Undiluted 150 Benzene/isopropyl alcohol (64/36, v/v) 25.5 25.5 Cyclohexane 34.5 34.5 34.5 ~34.5
(xlO 4 ) or ap (nm)
K0 (xlO 3 ) (ml/g)
-
77 82 77.4 77.0 77.9 70.5 79.5 72.2 78.0 50.8 78.0 78.7 80.7
din r j / d ? =
77.9 655 77.6 655 74.8 650 73.0 645 69.6 635 71.8 640 73.0 645 0.4 x 10~3 (deg" 1 )
C^=rl/nl2
2.17 2.22 2.17 2.17 2.17 2.10 2.18 2.12 2.17 1.90 2.17 2.18 2.20
9.4 9.85 9.4 9.4 9.4 8.8 9.5 9.0 9.4 7.2 9.4 9.5 9.7
VT VT VT VT VT VT VT VT VT VT VT VT VT
290 290 647 647 647 647 647 647 647 647 648 648 648
302 302 302 302 302 302 302
2.17 2.17 2.15 2.14 2.10 2.12 2.14
9.4 9.4 9.25 9.15 8.8 9.0 9.15
VT VT VT VT VT VT VT ST
291 291 291 291 291 291 291 634
302
2.27±0.03
10.3
-
80 ± 1
665 ± 5
302
2.20 ± 0.02
9.7
30
-
90±10
695±25
302
2.30±0.08
10.5
Chlorobenzene Tetrahydrofuran Tetrahydrofuran
25.3 25 25
-
176 135 78
890 805 660
302
2.94
17.3 -
Cyclohexane
35 34.5 34.5 34.6 34.6 35 35 25
661 685 465 -
-
-
-
-
-
-
425
214
1.98
880
-
Aq. NaCl (4.17M)
107 89.7
63.1 280 190 <S2>0z/<S2> Oz,iin =0.276 < 5 2 > 0 z / < 5 2 > Oz,i,n = 0.228 66.5 235 20.4
Method(s) Refs.*
302 302 302 302 302 302 302 302 302 302 302 302 302
88±3
Cyclohexane Cyclohexane Cyclohexane Cyclohexane
12-22
655 670 655 655 655 635 660 640 655 575 655 660 665
rot/M1'2 (xlO 4 ) (nm) ff = ro/r O f
764 706 685 685±10
Decalin; dioctyl phthalate Benzene; toluene
312 288 280 -
ro/M^2 xlO 4 (nm)
-
-
LT VT LV VT LT VT
874 874 877 877 878 301,302. 303,305,649 VT 303,649
VG 3(311,312, 314) VG 650 VG 756 VG 756
7.85
VT LT LT LT LT VT LT VT
758 878 878 929 929 759 759 366
4.0
32
VT
1011
2.63
13.8
2.82
15.9
VG VG VT
264 264 335
2.51 2.60 2.99 3.30
-
VG VG VG VG
789 762 761 762
OTHERCOMPOUNDS
Poly(2-acrylamino-2-methyl-propanesulfonamide) Water/1,4-dioxane (81.5/18.5, v/v) Poly[(biphenyl-4-yl)ethylene] Benzene Poly(carbanilinoxyethylene)
Dioxane/methanol (28/72, v/v) Poly [ 1 -(9-carbazyl)-2,3-(diethoxycarbonyl)-butane-1,4-diyl] Benzene Poly(dibutyl itaconate) Toluene Poly(dicyclohexyl itaconate) Tetrahydrofuran; toluene Poly(didecyl itaconate) Toluene
25 30 20-75 20
25 25 25 25
-
172
63.0 605 230 d In rg/dT = (0.23 ±0.01) x 10" 3 (deg" 1 ) 75 680 241
-
54 ± 2 35.4 44 ± 2 33.8
573 508 503
228 198 152
TABLE 6. cont'd
Polymer
Solvent
Temp. (0C)
Poly(didodecyl itaconate) Toluene 25 Poly(diethyl itaconate) Toluene 25 Poly(diethylcyclohexyl Toluene 25 itaconate) Poly(dihexadecyl itaconate) Toluene 25 Poly(dihexyl itaconate) Toluene 25 Poly(diicosayl itaconate) Toluene 25 Poly(dimethyl itaconate) Benzene 25 Poly(dimethylcyclohexyl itaconate) Toluene 25 Poly(dioctadecyl itaconate) Toluene 25 Poly(diphenyl itaconate) Toluene 25 Poly(dipropyl itaconate) Toluene 25 Poly(dipropylcyclohexyl itaconate) Amyl acetate 25 Toluene 25 Poly(ditetradecyl itaconate) Toluene 25 Poly(diundecyl itaconate) Toluene 25 Poly (1 -methoxycarbonyl -1 -pheny lethylene) Benzene; chloroform 30 Ethylbenzene 15 Poly[bis(phenylethyl)itaconate] Toluene 25 Poly[bis(phenyl-n-propyl)itaconatej Toluene 25 PoIy(N-vinyl-3,6-dibromo carbazole) /7-Chloro-w-cresol H2.9 (?-Chlorophenol 60.0 Poly(vinylcarbazole) Benzene; chloroform; tetrachloroethane; 25 tetrahydrofuran Bromobenzene; chloro25 form; nitrobenzene Chlorobenzene; 30-45 nitrobenzene 1,2-Dichlorobenzene 25 1,2-Dichloroethane 25 Toluene 37 PoIy(I-vinylimidazole) Aq. NaCl (0.1 M); 25 (5 M); aqueous NaSCN (0.1 M) protonated Acetate (0.1 M) 25 Acetate (0.1 M)/NaCl 25 (IM) Aq. HCl (0.1 M)/ 25 NaCl(IM) Propionate(O.lM) 25 PoIy(I-vinyl-3-benzyl-imidazoliumchloride) Aq. NaCl (0.01 M); 25 (0.02M); (0.05M); acetate (0.1 M); aqueous NaH 2 PO 4 (0.1 M) PoIy(I -vinylnaphthalene) Benzene 30 75 20-75 Poly(2-vinylnaphthalene) Benzene 30 65 20-75 Decalin/toluene 30.2 (13/10, w/w) Poly(3-vinylpyrene) Chloroform; 1,2-dichloro- 25 benzene; tetrahydrofuran
(xlO 4 ) or a , (nm)
K0 (xlO 3 ) (ml/g)
ro/Ml/2 xlO 4 (nm)
ror/M 1 / 2 (xlO 4 ) (nm)
C^^rl/nl2
Method(s) Refs.*
-
33.6 22.3 27.5
447
226
3.6 1.98 2.83
25 -
VG VG VG
945 762 763
-
33.5 34.8 26.7 30.2
528 494
179 245
3.9 2.90 3.9 2.02
30 31 -
VG VG VG VG
945 762 945 762
-
27.5 30.7 28.4 27.3
478
211
2.83 4.0 2.69 2.27
31 14.6 -
VG VG VG VG
763 945 943 762
-
27.0 24.8 33.6 33.9
514
147
2.93 2.84 3.7 3.50
27 -
VG VG VG VG
763 763 945 762
-
54 ± 1 54 ± 1 28.1
585 ± 5 585 ± 5 -
242 242 -
2.42 ±0.02 2.42 ±0.02 2.78
11.7 11.7 14.8
VG VT VG
361 361 943
-
29.7
-
~
2.91
15.6
VG
943
-
30.2 27.5
470 481
-
2.89 2.96
16.7 17.5
VT VT
942 942
619
222
2.82
15.9
VG
367
222
2.66
-
VG
765
-
VG
766
16.2 12-15
VG VG VT VT
767 767 368 813
-
68 ± 2
-
59.2
590
-
56.8
583
-
58.5 59.6 76.2 ± 5 116±10
589 592 633 774±22
222 -
2.85 -
-
414 183
1180 900
-
-
15-28 15-28
VT VT
813 813
-
169
880
-
-
15-28
VT
813
-
392
1160
-
-
15-28
VT
813
63
18
VG
813
24.2
6.2 5.3
ca. 19.2
VG VG VG VG VG VG VT
264 264 264 264 264 264 269
-
VG
768
-
435 248 1.76 405 248 1.63 din r*/6T = -(1.87 ±0.04) x 10~3 (deg" 1 ) 64.7 610 248 2.45 595 248 2.40 din r ^ / d J = -^(0.83 ± 0.03) x 10" 3 (deg" 1 ) 248 ca. 3.1 -
52.0
577
-
2.84
12.0 11.5
References page VII - 68
TABLE 6. cont'd
Polymer Poly(2-vinylpyridine)
Solvent Various solvents Benzene
Benzene; chloroform; etc. (various) Chloroform
Poly(2-vinylpyridine 1-oxide)
Poly(4-vinylpyridine) Poly(5-vinyl-2-methylpyridine)
Poly(vinylpyrrolidone)
PoIy(I -vinyl-2-pyrrolidone)
Poly(vinyl sulfate) Poly(vinylsulfonic acid)
6.8.
Temp. (0C)
S0JM1J2 (xlO 4 ) or ap (nm)
K0 (xlO 3 ) (ml/g)
ro/M1/2 xlO 4 (nm)
25 15 25 30 40 50 60 Various
-
82 ± 1 0 72 71 59 52 57 62 72 ± 11
660 ± 3 0 635 633 595 570 590 605 660 ± 30
300 300 300 300 300 300 300 -
2.20 ±0.10 2.12 2.11 1.98 190 1.96 2.02 -
9.7 9.0 8.9 7.85 7.2 7.65 8.15 -
VG VG VG VG VG VG VG VG
371 652 652 652 652 652 652 869
-
88 87.5
690 689
300 300
2.24 2.24
10.0 10.0
VG VG
652 652
-
81 55
- 3 0 0 576 278
2.3 2.07
~ 8.6
VT,VG VG
952 946
0 25 10-15 25 25
Benzene, 2-propanol, pyridine Benzyl alcohol, 1-butanol, chloroform, methanol, 1-propanol, 2-propanol Ethanol; water 25 Butanone; methanol 25 Butyl acetate 21.8 4-Methyl-2-pentanone 37.4 Pentyl acetate 48.2 Water ~25 Acetone/water (66.8/33.2, v/v) 25 B utanone/2-propanol (94/4, v/v) 25 Aq. Na 2 SO 4 25 (O.55M); 2-propanol Chloroform 25 Chloroform/acetone 25 (40/60, v/v) Water; water/acetone 25 (80/20, v/v) Water/acetone 25 (33.2/66.8, v/v) Methanol/3-heptanone, 25 ethanol/3-heptanone, propyl alcohol/ 3-heptanone Aq. NaCl (0.5 M) 20 Aq. KBr (0.349 M) 5.7 Aq. KCl (0.349M) 5.5 (0.650M) 26.0 (1.001 M) 44.5 Aq. NaBr (0.347M) -0.6 Aq. NaCl (1.003M) 32.4 Aq. NaBr (1.008M) 40.1
-
94 ± 1 0 69 ± 5 83 83 80 lOOdb 15
/WM1/2 (xlO 4 ) (nm) a = r o /r O r
C^ ^r2JnI2
Method(s) Refs.*
710 ± 3 0 652 ± 1 5 675 675 665 720±40
300 282 282 282 282 292
2.37 ±0.10 2.31 ±0.05 2.39 2.39 2.36 2.48±0.12
11.2 10.6 11.4 11.4 11.1 12.3
VG 3(373,374) VG 375 VT 381 VT 381 VT 381 VG 3(380,382)
-
75
650
292
2.22
9.85
VT
384
-
61 58.0
630 650
292 290
2.16 2.24
9.3 -
VT VT,VG
653 770
-
30.0 66.0
520 680
290 290
1.79 2.34
-
VG VG
770 770
-
23.0
480
290
1.66
-
VG
770
-
74.0
710
290
2.45
-
VT
770
VG
947
VG VT VT VT VT VT VT VT
3(261) 259,642 259,642 259,642 259,642 259,642 259,642 259,642
LG
878
61
-
25 ± 15 68.8 68.2 79.5 80.3 95.5 96.1 94.5
460 ± 8 0 650(788)f 650(786)* 685(830)* 690(832)* 730(882)* 730(880)* 725(875)*
278 296 296 296 296 296 296 296
1.65 ±0.30 2.19(2.66)t 2.19(2.66)t 2.31(2.80)* 2.33(2.81)* 2.46(2.98)* 2.46(2.97)* 2.45(2.96)*
5.45 9.6 9.6 10.6 10.8 12.1 12.1 12.0
COPOLYMERS
Poly(acrylonitrile-.staf-a-rnethylstyrene) ca. (46/54, mol/mol) Tetrahydrofuran Poly(acrylonitrile-a?-styrene) (38.3/61.7, mol/mol) Butanone 30 azeotropic (62.6/37.4, mol/mol, random) Butanone; 30 dimethylformamide (38.5/61.5, mol/mol) Butanone azeotropic Tetrahydrofuran -
409 -
124
770
335
2.30±0.05
10.6
VG
593,595
-
170
840
362
2.32
10.8
VG
595
354 390
-
-
-
LG LG
878 878
-
* The values of ro/Ml/2 and a given in parentheses were obtained by using # 0 = 1 39 x 10 23 , while for the others # 0 = 2.5 x 1023 was used.
TABLE 6. cont'd S^fM1J2
Polymer (1/1, mol/mol. alternating)
Solvent
Temp. (0C)
Butanone; dichloroethane; 30 dimethylformamide Butanone/methanol 30 (63.6/36.4, v/v) Poly(acrylonitrile-r<7y-Butyrolactone 25 vinylidene chloride) Dimethylacetamide 25 58 wt.%-AN Dimethylformamide 25 /V-Methyl-2-pyrrolidone 25 70wt.%HNO 3 25 Poly(butadiene-5far-styrene) (84/16, mol/mol) 2-Pentanone 23.8 Poly(butyl itaconate-staf-dibutyl) itaconate) (40.5/59.5, mol/mol) Acetone 25 Methanol/m-xylene (100/0, v/v) 25 (80/20, v/v) 25 (65/35, v/v) 25 (50/50, v/v) 25 (30/70, v/v) 25 (10/90, v/v) 25 (0/100, v/v) 25 Poly(/?-chlorostyrene-.staf-methyl methacrylate) (51.6/48.4, mol/mol) Benzene/hexane 22.3 (960/40, v/v) poly(dimethyl itaconate-ce-styrene) (100/0, w/w) Benzene 25 (75/25, w/w) Toluene 25 (67/33, w/w) 25 (59/41, w/w) 25 (49/51, w/w) 25 (29.5/70.5, w/w) 25 (27/73, w/w) 25 (0/100, w/w) 25 Poly(ethyl acrylate-staf-methyl methacrylate) (80/20, mol/mol) Acetone 25 Poly(ethylene-a>a-methyl-styrene), [(ET),,,(MS) ,,]p m/n = 3/4 Butanone/cyclohexane (60/40, v/v) 30 m/n — 5/4 Butanone/cyclohexane (75/25, v/v) 30 m/n = 5/7 Cyclohexane 30 Poly(4-methoxystyrene~sfa/'-styrene) {24.4/75.6, mol/mol) Toluene 25 (26.4/73.6, mol/mol) Butanone; chlorocy25,50,75 clohexane; toluene (46.2/53.8, mol/mol) Toluene 25 (53.0/47.0, mol/mol) Butanone; chlorocyclohexane; toluene 25,50,75 (74.0/26.0, mol/mol) Toluene 25 (75.6/24.4, mol/mol) Butanone; chlorocyclohexane; toluene 25, 50, 75 Poly (methyl acrylate-.?/W-styrene) (50/50, mol/mol) Ethyl acetate 35 (22/78, mol/mol) Various solvents -30 (33-76, mol/mol) -30 (47/53, mol/mol) -30 (59/41, mol/mol) -30 (76/24, mol/mol) -30 Poly(methyl methacrylate-co-styrene) (100/0, mol/mol, random) 1-Chlorobutane 40.8 (94/6, mol/mol, random) 40.8 (58/42, mol/mol, random) 40.8
(xlO 4 ) orap (nm)
*o (xlO 3 ) (ml/g)
/WM 1 /* ro/M^2 (xlO 4 ) 4 xlO (nm) (nm)
Cx=rl/nl2
Method(s) Refs.*
-
139
785
~
2.25
-
VG
774
-
140
785
-
2.25
-
VT
774
940 980 950 1000 860
-
2.46 2.57 2.49 2.62 2.31
13.2 14.4 13.5 15.0 10.8
Various Various Various Various Various
961 961 961 961 961
VT
596
-
23.8
-
83
3.2
VG
682
-
51 62
2.7 2.8 3.1 3.4 3.4 3.2 2.5
VG VG VG VG VG VG VG
682 682 682 682 682 682 682
VT
598
7
460
8 98 101 82 42
-
64
660
-
30.4 35.4 40.3 45.7 55.3 63.4 63.7 78.0
495 508 544 553 590 617 618 661
245 260 266 270 278 287 288 302
2.02 1.96 2.04 2.05 2.12 2.15 2.15 2.17
VT VT VT VT VT VT VT VT
683 683 683 683 683 683 683 683
823
308
2.67
VG
114
-
135
820
345
2.38
VT
604
-
140 112
830 770
373 343
2.22 2.24
VT VT
604 604
-
VG VG
781 782
-
VG
781
-
81 95-100
-
-
109 -
86-109 98
-
-
VG VG
782 781
-
75-83
-
-
VG
782
-
104 ± 2 75 76 77 76 75
-
50 59 95
1010 ± 2 0 650 650 655 650 650
314
3.22
VG VT,VG VT VG VT, VG VT
133 129 129 129 129 129
583 616 728
308 308 305
1.89 2.00 2.39
VT VG VG
613 613 613
References page VII - 68
TABLE 6. cont'd SoJM1J2 Polymer
Temp. ( 0 C)
Solvent
(10/90, mol/mol, random) (0/100, mol/mol, random) (71/29, mol/mol, random) Various solvents (44/56, mol/mol, random) Various solvents (30/70, mol/mol, random) Various solvents three blocks (MSM) Cyclohexanol nearly equimolar Poly(styrene)-^oc&-poly(butadiene)-fc/0dfc-poly(styrene) 50 Toluene Poly(styrene-.staf-vinylpyrrolidone) (87/13, w/w) Butanone Butanone/2-propanol (75/25, v/v) (13/87, w/w) Butanone/2-propanol (97/3, v/v) Poly(styrene-c0-monomethyl maleate) Acetone Aq. NaCl (0.6 M) Poly(trifluoronitrosomethane-co-tetrafluoroethylene)
40.8 40.8 ~30 - 30 ~30 81
ro/M^ xlO 4 (nm)
89 80 66 ± 2 75 ± 2 77 ± 2 63
707 685 625 ±95 655 ± 95 660 ±95 617
2
970-986
rm/M1'2 (xlO 4 ) (nm)
305
Cx=rl/nl2
2.34 2.27 2.05 2.15 2.17 2.04
-
Method(s) Refs.* VG VG VG,VT VG,VT VG,VT VT
613 613 614 614 614 616
VG
958
25 25
-
96 76
VT VT
684 684
25
341
75
LT,VT
684
VT VT
317 317
VT
3(685)
VG VG VG VG VG VG VG
8792 879 879 879 879 879 879
Method
Ref.
26.4 25
-
51.1 55
35
-
38
25 25 25 25 25 25 25
-
127 123 100 70 62 56 50
575 585 510 ±25 768 761 707 630 605 585 563
285 285
2.02 2.05
8.15 8.4
304
1.68 ±0.08
320 290 250 233 230 224 221
2.40 2.62 2.82 2.70 2.63 2.61 2.55
-
M A I N - C H A I N CARBOCYCLIC POLYMERS
Polymer Poly( 1,2-acenaphthenylene) trans
TABLE 8.
-
K0 (xlO 3 ) (ml/g)
wt.%-PS 30
Poly(vinylchloride-.staf-diphenylpropene) Tetrahydrofuran (77.3/22.7, mol/mol) Tetrahydrofuran (62/38, mol/mol) Tetrahydrofuran (33/67, mol/mol) Tetrahydrofuran (11/89, mol/mol) Tetrahydrofuran (4/96, mol/mol) Tetrahydrofuran (0/100, mol/mol) Tetrahydrofuran
TABLE 7.
(XlO 4 ) or a , (nm)
Solvent
Temp. ( 0 C)
SQ1IMI!1 (xlO 4 ) orap (nm)
Various solvents
25
-
KQ (xlO 3 ) (ml/g)
36 ± 3
ro/M ' xlO 4 (nm)
roi/M1'2 (xlO 4 ) (nm)
a = r o /r O f
520 ± 2 0
354
1.47 ±0.05
1 2
VG
263
MAIN-CHAIN HETEROATOM POLYMERS
So1IM1J2 Polymer
Solvent
Temp. ( 0 C)
(xlO 4 ) or ap (nm)
K0 (xlO 3 ) (ml/g)
ro/M 1 ' 2 xlO 4 (nm)
/-of /M V2 (xlO 4 ) (nm)
C^=rJ//i/2
Method(s)
Refs.
8.1. POLY(OXIDES), POLY(ETHERS) Poly(butene oxide), see Poly[oxy(ethylethylene)] Poly(ethylene oxide), see Poly(oxyethylene) Poly[oxy(terr-butylethylene)] Benzene isotactic Xylene Poly(oxy-1,2-cyclohexylene) Toluene Poly(oxydecamethylene) Benzene; chloroform Poly [oxy(2,6-dimethyl-1,4-phenylene)] Chlorobenzene; toluene Benzene; carbon tetrachloride
25 80 35 ~30
-
230
-
53 240
25 25
-
166 ± 5 175 db 8
930 1040 592 960 833 ± 10 85O±1O
377* 359 570 715 715
2.47 1.65 1.68
13.6 15.9 7.5
VG VG VG VG
385 790 472 386
1.16 ±0.02 1.13±0.02
2.7 2.6
VG VG
474 473
TABLE 8. cont'd S^fM1J2
Polymer
Solvent
Poly (oxy(2,6-dipheny I-1,4-phenylene)J Chlorobenzene; toluene Poly(oxyethylene) Various solvents Aq. K 2 SO 4 (0.45M); aq. MgSO4 (0.39M) Benzene Acetone Various poor solvents Undiluted Water
(XlO4) orap (nm)
Temp. (0C)
K0 (xlO 3 ) (ml/g)
ro/Ml/2 xlO4(nm)
rm/M1'2 (xlO 4 ) (nm) a = ro/rOf
C^=rl/nl2
Method(s) Refs.
25 ~20
-
80 ± 5 liOdb 10
660 ±20 750±30
500 541
1.32 ±0.04 1.38±0.06
3.5 3.8
VG 473 VG 3(389,390)
~40
-
115 db 15
775±30
541
1.43±0.06
4.1
VT
395,655
129 790 541 1.46 170 840 541 1.55 170 840 541 1.55 din r^/dT = (0.23 ± 0.02) x 10" 3 (deg" 1 ) 175 888 566 1.57 201-156 177 888 566 1.57 183-180 87 700 423 1.66 ±0.05
4.25 4.8 4.8
5.5
VG VG VG ST VG VG VG VG VG.VT
656,388 387 387 655 963 963 963 963 397
25 25 50 60 25 3-85 25 25 30
Aq. KOH (1.24M) (0.96-1.48 M) Poly[oxy(ethylethylene)] Benzene; butanone; 2-propanol 2-Propanol 30 Poly(oxyhexamethylene) Benzene; dioxane 25 Poly(oxymethylene) Hexafluoroacetone sesquihydrate (1/1.7, mol/mol) 25 Poly [oxy(2-methyl-6-phenyl-1,4-phenylene)] Dioxane/methyl25 cyclohexane (1/1, v/v) Poly[oxy(phenylethylene)] Toluene 25 Poly(oxypropylene) Benzene; methanol 25 Toluene/2,2-trimethylpentane (5/7, v/v) 39.5 2,2,4-Trimethylpentane 50 Poly(oxytetramethylene) Diethyl malonate 33.5 Ethyl acetate 30 Ethyl acetate/hexane (22.7/77.3, w/w) 30.4 31.8 2-Propanol 44.6 Undiluted 60 Poly(oxytrimethylene) Acetone; benzene; carboiitetrachloride 30 Poly(propyleneoxide), see Poly(oxypropylene) Poly(tetrahydrofuran), see Poly(oxytetramethylene)
-
-
110 185
730 910
427 565*
1.71 1.61
5.85 5.15
VT VG
396 398
-
430±40
1200±80
522
2.3±0.2
10.5
VG
402
-
110 ± 5
790 ±20
580
1.36 ±0.04
3.7
VT
673
-
75 115±10
640 750±25
344* 472
1.85 1.59±0.05
6.85 5.05
VG VG
385 3(411)
375 -
107.5 243 180±20
735 800 945 860±30
472 494* 556 556
1.56 1.62 1.70 1.55±0.05
4.85 5.75 5.8 4.8
VT LT VT VG
411 654 658 412
267 975 556 210 900±20 556 231 930 556 = -1.33 x 10" 3 (deg" 1 )
1.75 1.62 ±0.03 1.67
6.1 5.25 5.6
VT VT VT ST
658 412 658 659
1.45
4.2
VG
414
-
VG VG VG VG
967 967 967 967
3.55
VT
3(415)
-
VT.LT
950
-
VTJLT VGJLG
950 950
din rJ/dT -
126
795
550
8.2. POLY(ESTERS), POLY(CARBONATES) Poly(butylene adipate-cobutylene isophthalate) (100 mol% BADP) Chloroform 30 247 950 (80 mol% BADP) Chloroform 30 ~ 225 923 (50 mol% BADP) Chloroform 30 160 823 (20 mol% BADP) Chloroform 30 99 700 Bisphenol A poly (carbonate), see Poly(oxycarbonyl-l,4-phenyleneisopropylidene-l, 4-phenylene) Poly(ethylene terephthalate), see Poly(oxyethyleneoxyterephthaloyl) Chlorobenzene 25 lOOdblO 720±25 Poly ((3-hydroxybuty rate) Chloroform/n-heptane, (50.2/49.8, v/v) 25 157 860 2,2,2-Trifluoroethanol/ water (52.6/47.4, v/v) 25 149 840 2,2,2-Trifluoroethanol 25 380-390 145-160 830-960 Poly (4,4 '-isopropylidenediphenyl carbonate)-fc/ocfc- poly (sty rene) 26 wt.%-PS Chloroform, diethyl carbonate, 1,4-dioxane, methylene chloride, tetrahydrofuran 25 910-1040 2
1/2
1/2
-
540
1.33 ±0.05
-
-
VG
959 2
* These values of rOf of poly(epoxide) chains were calculated by 0.377/M// [nm.mol /gram ], while those given without asterisk were calculated by 0.360/M// . The former is due to Allen et al. (Ref. 695). The latter is based on the assumption that all valence angles of skeleton are tetrahedral.
References page VII - 68
TABLE 8. cont'd
Polymer
Solvent
Temp. (0C)
48 wt.%-PS #M. 25 50wt.%-PS ibid. 25 73wt.%-PS ibid. 25 Poly(oxybutynedioyloxyhexamethylene) Benzene; chloroform 20 Poly [oxycarbonyloxy-1,4-phenyleneisopropylidene-1,4-pheny lene] Methylene chloride; 25 tetrahydrofuran Butyl benzyl ether 170 Cyclohexane/dioxane (36.1/63.9, w/w) 25 Chloroform; 25 tetrahydrofuran Hexane/tetrachloroethane (54/46, v/v) 30 Various 25 Poly(oxy-1,4-cyclohexyleneoxysebacoyl) cis Chloroform 20 trans Chloroform 20 Poly(oxyethyleneoxyterephthaloyl) Phenol/tetrachloroethane 25 (1/1, v/v) 0-Chlorophenol 25 Trifluoroacetic acid 30 Poly(oxyfumaroyloxyhexamethylene) Chloroform 20-50 Poly[oxy(hexahydroterephthaloyl)oxyoctamethylene] cis Chloroform 20 trans Chloroform 20 Poly(oxyhexamethyleneoxy-2,9-dibutylsebacoyl) Benzene 20 Poly(oxyhexamethyleneoxysebacoyl) Benzene; chloroform 20 Poly[oxyisophthaloyloxy-1,4-phenylene (fluoren-9-yildene)-1,4-phenylene] Tetrachloroethane; 20 tetrahydrofuran Poly(oxymaleoyloxyhexamethylene) Benzene; chloroform; 20-50 tetrahydrofuran Poly(oxy-1 -oxo-dimethyltrimethylene) Trifluoroacetic acid 20 Poly(oxy- 1-oxo-hexamethylene) Benzene; dioxane; 25 ethyl acetate
(xlO 4 ) or a, (nm)
JK0 (xlO 3 ) (ml/g)
ro/Ml/2 xlO 4 (nm)
ror/M 1 / 2 (xlO 4 ) (nm) a = r o /r O f
1000-1200 1040-1200 1120-1270
-
-
C^=r\/nl2
Method(s) Refs.
-
VG VG VG
959 959 959
3.9
VG
3(416)
-
180±20
870±30
627
1.39±0.05
-
180±20
880±20
796
i. 10±0.05
VG
3(479)
-
210
940
796
1.18
VT
476
-
210 150 ± 1 3
940 840
796 796
1.18 1.05
VT VG
476 478
-
230 210±17
930 920±50
796 -
1.16 1.35
VT VG
694 880
-
140 ±20 160 ± 2 0
800 ± 3 0 840 ± 3 0
495 633
1.62 ±0.05 1.33 ±0.05
VG VG
3(480) 3(480)
-
160 ±15
840 ±25
687
1.22 ±0.03
3.15
VG
3(491)
-
210 242
910 975
687 687
1.33 1.42
3.7 4.25
VG VG
484 488
-
180 ± 2 0
870 ± 3 0
592
1.47 ±0.05
4.3
VG
3(417)
-
140 ± 2 0 160 ± 2 0
800 ± 3 0 840 ±30
495 633
1.62 ±0.05 1.33 ±0.05
VG VG
3(480) 3(480)
-
155 ±25
835 ±70
457
1.82 ±0.15
6.6
3(418)
-
215±60
910± 100
540
1.70±0.17
5.8
3(418,419)
-
210
902
-
135 ± 15
790±30
238 -
950
-
Poly(oxy-1 -oxo-3-methylt.rimethy lene), D,L Chloroform; ethylene 30 133 875 dichloride Trifluoroethanol 25 133 875 Poly(oxyperfluorosebacoyloxydecamethylene) Chloroform; j-tetra25 _ _ _ _ chloroethane Poly(oxysebacoyloxyhexadecamethylene) Chloroform 20 270±40 100±50 Poly(oxysuccinyioxyhexamethylene) Benzene; chloroform; tetrahydrofuran 20-60 165 ± 3 0 850 ± 6 0 Poly [oxy-(l,l,3-trimethyl-3-phenylindan-5,4'-dicarbonyO-oxy-l,4-phenyleneisopropylidene-1,4-phenylene] Tetrahydrofuran 25 156 ± 2 850 ± 1 0 Poiy(oxyundecanoyl) Chloroform 20 185±60 88O±1OO Poly(p-propiolactone) Chloroform, 1,4-dioxane, 2,2,2,-trifluoroethanol 30 146
510
-
674
1.55±0.05
4.8
VG
3(417)
-
5.9 ±0.3
VG VG
800 808
-
VG
5
.
6
-
8
8
1
-
-
VG
799
-
-
VG
799
6.3 ±0.5
VG,VT
795
_
555
1.80±0.10
6.5
VG
3(419)
522
1.62 ±0.14
5.25
VG
3(417)
550
1.60±0.16
5.1
VG VG
794,882 3(419,420)
-
VG
991
TABLE 8. cont'd
Polymer
Solvent
Temp. (0C)
(xlO 4 ) or a, (nm)
K0 (xlO 3 ) (ml/g)
rOf/Af1/2 ro/M1^2 (xlO 4 ) xlO4(nm) (nm) a = ro/rOf
C^=rl/nl2
Method(s) Refs.
8.3. POLY(AMIDES) Poly(iminoadipoyliminohexamethylene), (Nylon 66) Aq. HCOOH (90%, v/v) 25 190 ± 2 0 Aqueous HCOOH (90%, v/v) KCl (2.3M) 25 ~ 253 25 192 Poly(iminohexamethyleneiminoterephthaloyloxyhexamethyleneoxyterephthaloyl) Phenol/tetrachloroethane 25 250 (1/1, w/w) Polyfiminohexamethyleneiminothiocarbonylhexamethylenethiocarbonyl) Dimethylformamide/ 20 142 LiCl (5%) Poly(iminohexamethyleneiminothiocarbonyltetramethylenethiocarbonyl) Dimethylformamide/ 20 279 LiCl (5%) Poly[imino(l-oxododecamethylene)], (Nylon 12) m-Cresol 25 266 25 238 Sulfuric acid (96%) 25 222 Poly[imino(l-oxohexamethylene)], (Nylon 6) Sulfuric acid 25 190±10 Aq. HCOOH 25 229 (65-85%) Poly[iminoterephthaloylimino-l,4-phenylene(fluoren-9-ylidene)-l,4-phenylene] Dimethylformamide 25 409 Poly[iminoterephthaloylimino(tnmethylhexamethylene)J, 2,4,4-/2,2,4-trimethyl (1 / 1 , rnol/mol) Aniline 142 148 Dimethylformamide 25 174 Pyrroline 62 151 Poly(isophthaloyl-fra/w-2,5-dimethylpiperazine) /V-methyl-2-pyrrolidone 25 355 8.4.
890 ± 4 0
545
1.63 ±0.08
5.3
VG
3(445,446)
1010 935
545 545
1.85 1.72
6.85 5.93
VT VT
444 668,669
1000
-
-
4.76
VG
806
VG
805
VG
805
803 812 812
970 949 890±20 970
545 545
VG VG VG
1.63 ±0.04 1.78
5.3 6.35
VG VT,VG
850 850
640 640
-
3(453) 450
VG
503
1.33 1.33
-
VG VG VG
804 804 804
-
-
VG
971
2.24 ± 0 . 1
9.6
VA
670
2.32 ±0.08 2.14 2.32 ±0.08
10.3 8.8 10.3
VG VA VG
3(457) 670(457) 3(459)
2.14±0.1
8.8
VA
670
-
VG
815
-
10 ± 1 15.8
Complex VA
817 818
1.25 ±0.20
3.0
VG
3(468)
VG
497
VG VG
436 979
POLY(AMINO ACIDS)
_
POLY(URETHANES)
Poly(oxytetramethyleneoxycarbonylimino-2,4-tolyleneiminocarbonyl) Dimethylformamide 30 8.6.
6.77 -
~ 1200
Poly(p-benzyl-L-aspartate), see Poly(iminocarbonyl-L-benzyloxycarbonylethylidene) Poly(Y-benzylglutamate), see Poly(iminocarbonyl-benzyloxycarbonylpropylidene) Poly(iminocarbonyl-L-benzyloxycarbonylethylidene) m-Cresol 100 600 268 Poly(iminocarbonyl-benzyloxycarbonylpropylidene) L Dichloroacetic acid 25 58 ± 5 600 ± 2 0 259 25 D,L Dichloroacetic acid; 25 58 ± 5 600 ± 2 0 259 dimethylformamide Poly(iminocarbonyl-L-carboxypropylidene), [Poly(L-glutamic acid)] Phosphate buffer 17 720 337 (Na + , 0.3 M; pH 7.85) Poly(iminocarbonyl-L-hydrocarbonylpropylidene), [Poly(a-L-glutamic acid)] Sodium phosphate buffer (pH, ca. 7) 25.5 98.4 775 Poly(iminocarbonyl-L-(A'r-hydroxyethylcarbamoylpropylidene)], (PoIy[A'3-(2-hydroxyethyl)-L-glutamine]} Water 30 Poly(Y-hydroxy-L-proline) Water 30 _ _ _ _ Poly[(methylimino)carbonylmethylene], [Poly(sarcosine)] Water 20 50 ± 2 0 570 ± 9 0 455 8.5.
6.29 6.01
1030
515
600 783
-
2.0
POLY(SULFIDES)
Poly(thiopropylene) Poly(tnmethylene sulfide)
Benzene Chloroform
20 25
-
60 150
-
4.0
References page VII - 68
TABLE 8. cont'd
Polymer
Solvent
Temp. (0C)
(XlO4) or ap (nm)
Jf0 (xlO 3 ) (ml/g)
ro/M 1 ' 2 (xl0 4 nm)
50 ± 3
560 ±20
fof/M 1 ^ (xlO 4 ) (nm) a = ro/rOf
Cx=r2/nl2
Method(s) Refs.
8.7. POLY(PHOSPHATES) Poly[oxy(hydroxyphosphinylidene)] Aq. NaBr (0.35-0.415 M)
Aq. LiBr Aq. CsCl (0.96M) Aq. LiCl (2.9M) Aq. NaCl (0.96M)
25
-
30 30 30
-
370
1.51 ±0.04
3.93 2.25 2.79
6.6
VT,VG
3(422)
7.1
LT LT LT
662 663 663 663
8.8. POLY(SILOXANES), POLY(SILSESQUIOXANES), POLY(SILMETHYLENES) Poly(dimethyl siloxane), see Poly[oxy(dimethylsilylene)] Poly(dimethylsilmethylene) Heptane/propanol (68.8/31.2, v/v) Poly(dimethylsiltrimethylene) Heptane Poly(diphenylsiltrimethylene) Cyclohexanol/toluene (63.5/36.5, v/v) Polytoxy(dimethylsilylene) Buianone, toluene
Various theta solvents C 8 F 18 ZC 2 Cl 4 F 2 (33/67, w/w) Ethyl iodide Bromocyclohexane
Bromocyclohexane Bromocyclohexane/ phenetole (6/7, v/v) Chlorobenzene/dimethyl phthalate (45/6, v/v) Bromobenzene Phenetole Toluene Undiluted Diluted with liquid silicon Poly[oxy(dipropylsilylene)] 2-Pentanone Toluene Polyfoxy(methylphenylsilylene)] Diisobutylamine Cyclohexane Methylcyclohexane Tetrahydrofuran Poly[oxy(Y-trifluoropropylmethylsilylene)] Cyclohexyl acetate Methyl hexanoate Poly(phenylsilsesquioxane) 1,2-Dichloroethane
25
540
-
988
450
2.2
-
LT
671
25 25
580
-
1200 1160
480 322
2.5 3.6
-
LG LT
671 671
80 ± 5
670 ±20
482
1.39 ±0.05
6.25
VT,VG
106
612 ±13 740
482 482
1.27 ±0.03 1.54
5.2 7.6
LT VT
3(427, 428) 664 425 424
640 655 [655] 685 660
482 482 482
1.33 1.36
VT VT T LT VT VT
425 425 838 838 982 425
~25
-
2-90 22.5
266 ±10 -
2 29 28 28 37 36
294 ±14 -
57.5 78.5 89.5 25 30 40-100 30-105
70 74 79.5 78 75
1.37
6.1
1.37 1.37 1.35 -
6.1 6.1 5.9 -
VT VT VT VG VG ST VT
425 425 425 981 953 665 665
372 372 363 -
1.89 2.04 1.58 -
-
-
12.0 14.0 8.35 10.8 10.8 10.2 13.4
VT VT VT VG VG VG VG
433 433 434 983 983 983 983
341 341 -
1.61(1.90)* 1.66(1.96)* -
6.3 6.65
VT VT VT
435 435 675
-
VG
986
16.6 16.2 15.4
VG VG VG VG
985 987 987 987
76 660 482 76 660 482 73 650 482 75 670 78 678 din r 2 / d r = -(0.78 ±0.06) x 10" 3 (deg~l) din rg/dr = -(0.71 ±0.13) x 10~3 (deg"1)
76 10 30.4 25 50 20 25
-
25.0 72.8 50.5
-
87.1 109 51.5 71.5 71.5 65.0 96.0
703 759 575 -
41.0 550(648)* 44.5 565(667)* 1160
5.7 6.0 V -
8.9. POLY(HETEROCYCLICS) Poly(3,3'-dimethylthietane) Tetrahydrofuran 25 Poly[2-methoxy-4,6-di(p,/?'-isopropylidene diphenyloxy^j-triazine] Chloroform, 1,2-dichloroethane, 1,2-dichloroethaneMbutanol (80/15, v/v) 30 Poly[AHn-octadecyl)maleimide] Benzene 25 1-Chloronaphthalene 25 o-Dichlorobenzene 25
120
-
16.5-17.5 28 27 25
744
850-863 -
778
1.1 -
* The values of ro/Af1/2 and c given in parentheses were obtained by using #0 = 1-39 x 1O23, while for the others $ 0 = 2.5 x 1023 was used.
TABLE 8. cont'd
Polymer
Solvent
Temp. (0C)
Soz/MlJ2 (XlO4) K0 or a, (xlO 3 ) (nm) (ml/g)
ro/M 1 ' 2 xlO4(nm)
Tetrahydrofuran 25 37 Toluene 25 24 1-Decanol 39.4 18.3 1-Hexanol 79.0 37.0 1-Octanol 53.7 23.5 Poly [6,6'-bis(3-phenylquinoxaline)-2,2 '-diyl-1,4-phenylene] m-Cresol 40 213 1000 Poly [(1,3-dihydro-3-oxo-isobenzofuran-1 -ylidene)-1,4-phenyleneoxyisophthaloyloxy-1,4-phenylene] Tetrachloroethane; 20 195 880 tetrahydrofuran Poly [(1,3-dihydro-3-oxo-isobenzofuran-1 -ylidene)-1,4-phenyleneiminoterephthaloylimino-1,4-phenylene] Dimethylformamide 25 558 ~ 1500 Poly [(D,L- 1,2-pyrrolidindiyl)carbonyl] Water 25 ca. 25 ca. 570 Poly( 1 -isobutyl-2,5-dioxopyrrolidin-3,4-diyl) Butyl acetate 21 132 790 Poly( 1 -/7-tolyl-2,5 dioxopyrrolidin-3,4-diyl) Dirnethylformamide 21 75 670
rw/M1'2 (xlO 4 ) (nm) a = ro/r of C00 = rJ/11/2
-
-
-
20.0 15.0 11.7 18.8 13.8
VG VG VT VT VT
987 987 988 988 988
-
VG
849
VG
674
VG
503
VT
3(507)
VG
512
VG
513
LS LS LS LS LS
954 954 954 954 954
VG
506
VG VG VT LT VG
840 840 666 666 348
-
390
Method(s) Refs.
ca. 1.5
-
8.10. COPOLYMERS (MALEIC ANHYDRIDE, SULFONES, SILOXANES) 8.10.1. MALEIC ANHYDRIDE COMPOLYMERS Poly [3,9-bis(ethylidone-2,4,8,10-tetraoxaspiro(5,5)undecane)-ran-?rans-cydohexane-dimethanol)/( 1,6-hexanediol)] trans-CDM/[,6-ND (100/0) Tetrahydrofuran 30 87.0 (70/30) Tetrahydrofuran 30 67.0 (50/50) Tetrahydrofuran 30 61.5 (29/71) Tetrahydrofuran 30 50.0 (0/100) Tetrahydrofuran 30 30.0 Poly[(tetrahydro-2,5-dioxo-3,4-furandiyl)-l-phenylethylene] Tetrahydrofuran 8.10.2. SULFONES Poly(sulfonylbicycloheptene) Poly[sulfonyl(butylethylene)]
Chloroform Cyclohexane Hexyl chloride
Benzene/cyclohexane (43/57, v/v) Butanone/2-propanol (30-37/70, v/v) Dioxane/hexane (40/60, v/v) Poly [sulfonyl( 1 -methyl-1 -propylethy lene) j Butanone/hexane (35.4/64.6, v/v) Poly(sulfonyl-Jp-phenoxyphenylene) Dimethylformamide Poly[sulfonyl(phenylethylene)J Tetrahydrofuran
30
25,40 25 13 13 25
-
~ 296 ± 9 -
82.6
29.0 29.0 67 ± 2 66 ± 2
-
-
732
383
1.91
488 488 625 ±10 725 ±22 642 ± 7
350 350 350
1.79 ±0.02 2.07 ±0.07 1.84 ±0.02
4.2 4.2
8-24
-
53
580
350
1.66
VT
439
20
-
65 ± 2
638 ± 7
350
1.83 ±0.02
VT
438
11.5
-
91
700
VT
439
25 30
-
VG VG
841 440,667
VT VG VT VG VG
957 960 960 960 960
VT VT
596 596
106 753±20 57.4 649
8.10.3. SILOXANES Poly(p-^rr-butylstyrene)-^/oc/c-polydimethylsiloxane)-^/ocA:-poly(p-^rf-butylstyrene) 28 wt.% PBS Methyl ethyl ketone 15 58.9 Benzene 35 68 Methyl ethyl ketone 15 59 20 62 31 62 Poly(dimethyl siloxane-c-diphenyl siloxane) (95/5, mol/mol) Bromobenzene 9 100 (66/34, mol/mol) Benzene/2-propanol 42 74 (44/56, w/w)
771 425
620 650 620 630 630 742 670
0.98±0.10 1.53
-
-
1.56 1.70
-
References page VII - 68
TABLE 8. cont'd SKZM1J2
Polymer
Solvent
Temp. (0C)
(55/45, mol/mol)
Dimethylphthalate 82.5 Ethanol/toluene 295 (37/63, w/w) Poly(styrene)-Wocfc-poly(dimethyl siloxane) 68% PS Butanone 30 Decalin 30 Toluene 30 Poly(styrene)-fc/0c£-poly(dimethyl siloxane)-b/ocfc-poly(styrene) 68% PS Toluene 30 8.11.
(xlO 4 ) orap (nm)
K0 (xlO 3 ) (ml/g)
r^/Mx>2 xlO4(nm)
rOf /MV2 (xlO 4 ) (nm) <j = ro/rof
-
78 78
675 675
-
-
81 80 82
687 687 687
-
80
687
C^=rl/nl2
Method(s) Refs.
1.81 1.81
VT VT
596 596
-
VG VG VG
953 953 953
-
VG
953
11 12 12 11
VG VG VG VG
864 864 864 864
19 23
VG VG
864 864
C,, = 13.2 19
VG VG
994 995
-
VG
844
5.26 5.89 4.98 4.79
VG VG VG VG
992 992 992 992
OTHERCOMPOUNDS
Poly(2-acrylamino-2-methylpropanesulfonic acid) cesium salt Aq. CsCl(IN) 25 sodium salt Aq. CsCl(IN) 25 Aq. NaCl 25 tetrabutylammonium salt Aq. NaCl 25 (0.1 N; IN; 5N) Organic solvents 25 Tetrabutylammonium 25 bromide (0.5 N) Poly(dihexoxyphosphazene) Tetrahydrofuran 25 Poly(rfi-n-hexylsilane) Tetrahydrofuran 25 Poly(hexamethylenedimethylammonium bromide) Aq. KBr (0.4M) 25 Poly [oxythiocarbonyloxy-1,4-phenylene(methyl)phenylrnethylene-1,4-phenylene] Chloroform 25 Dichloromethane 25 1,4-Dioxane 25 Tetrahydrofuran 25 -
TABLE 9.
16 32 30 10
-
23 30 30.8
-
-
-
--
740
-
117.4
825
190 225 175 165
913 965 888 871
-
-
CELLULOSE AND DERIVATIVES, POLY(SACCHARIDES)
Polymer Amylose
Amylose acetate Amylose triacetate
Amylose tributyrate
Solvent
Temp. (0C)
Dimethyl sulfoxide; ethylene diamine Various solvents Aq. KCl (0.33M); dimethyl sulfoxide Aq. KCl (0.5M) Aq. KOH (0.15M) Aq. KCl (0.33M) Nitromethane Water/dimethyl sulfoxide (40/60, v/v) Water Nitromethane Chloroform; nitromethane
Butanone Butanone; carbon tetrachloride Ethyl acetate
Sto/MlJ2 (xlO 4 ) or a, (nm)
K0 (xlO 3 ) (ml/g)
rot/M1'2 ro/M / (xlO 4 ) xlO4(nm) (nm) a = ro/r0f
56db 12
600±50
335
1.79±0.15
VG
3(518)
700 750 ±25
335 335
2.08 2.24 ±0.08
VT,VG VT1VG
517 3(520)
335
1.87
VT VG VT LG
25
-
25 25
-
110 ± 5
25 25 25 22.5
_ -
61 164
25 24 25 30 30 30 25 25
-
25
_
1 2
625 _
51 47 ±10 48
_ 920
589 580 ±60 580 800 ±15 557 674 595
_ 335
250 250 250 -
C.x=rl/nl2
5.2« 2.75
2.22 2.32 ±0.24 2.32 3.2 ±0.06
4.1 11.7 -
6.83
Method(s) Refs.
VA5LG VG,LG VG VG VG VG LG VG LG
523 519 530 527 884 999 846 3(524) 676 677 847 847 847
TABLE 9. cont'd
Polymer
Solvent
Amy lose tricarbanilate
Amylose tripropionate Carboxymethyl amylose, sodium salt
Diethylaminoethyl amylose hydrochloride Cellulose
Cellulose diacetate Ac. acid content, 55.5 wt.% Cellulose triacetate
Cellulose tributyrate
Cellulose tricarbanilate
Cellulose trihexanoate
Cellulose trinitrate
Ethyl acetate; tetrahydrofuran
25
-
Acetone; dioxane; pyridine Dioxane/methanol (49/51, v/v) Pyridine Ethyl acetate Aq. NaCl (0.65 M) Aq. NaCl (0.5 M; pH 8) Aq. NaCl (0.78 M; 0.02% NaN3) Aq. NaCl (0.78 M; 0.02% NaN 3) Cupriethylene diamine Cadoxen /V,/V-dimethylacetamide/ 9% LiCi
20
-
13.9) 12.9) 13.5) 12.0)
20 25 25 37.5 35
KQ (xlO 3 ) (ml/g)
27 ± 5
471-478 -
57
rof/M 1 ' 2 (xlO 4 ) (nm) a = ro/rm
30
_
_
Acetone 25 Tetrahydrofuran 25 Acetone; 25-30 chloroform; o-cresol Ethylacetate; dioxane; 25 methyl acetate; tetrahydrofuran Chloroform 30 Butanone 30 Dodecane/tetralin 130 (75/25, v/v) Acetone; dioxane; 20 pyridine Acetone ~25 Acetone 25 Cyclohexane ~25 Dioxane ~25 Diox ane/methanol (42.5/57.5, v/v) 20 Anisol 94 Cyclohexanol 73 73 Dioxane 15 30 45 60 70 Tetrahydrofuran 25 Dimethylformamide 41 Dioxane/water 63 (100/7, v/v) Acetone; ethyl acetate -25
-
25 22 -20 20 25 25 30 20
_
108± 10
Method(s) Refs.
-
5.63
VG
847
-
VG
861 3(528)
678 848 850 609 530
187
2.21-2.24 2.51 ±0.16
2180
-
11.7
583
-
2.32 2.62 2.95
6.21 7.9a 10.0°
LT LG VT? VT VA
2.15
5.3fl
VA
531
6.4°
VA
531
VG VG
3(537) 691,534 1000
35 180 ±80 495
Cx=^ZnI2
470 ±30
35
0.24
Acetone Acetone Ethyl acetate Acetone
r^/M1'2 xlO4(nm) 611
25 25
Acetone
(N%, (N%, (N%, (N%,
Temp. (0C)
Sto/MlJ2 (xlO 4 ) orap (nm)
900 ±150 1250 _
620 620
_
1.45 ±0.25 2.0 6.71
91.9
LG
26.3 13.5
LS 854 LS 854 VG 3(541,542)
750±30
465
3.59 2.56 1.61 ±0.07
730-740
465
1.57-1.59
680
VG VG VT
857 3(544) 544
VG
3(528)
-
97 ±15 82
1180 730 ±40 690
408 408
1.79 ±0.10 1.69
-
130 ±30
810 ±70
346
2.34 ±0.20
-
65 ± 3
346 346 346
1.83
83.5 ± 3 44 ± 3
635 1450 690 560
1.99 1.61
1120 805 875 1090 860 830 800 780 750 1410 980 960
346 346 346 -
3.24 2.32 2.52 -
-
-
-
130 156 76 68 61 56 51 240 224
370 370
2.65 2.60
-
130 ±30
810 ±50
458
1.77 ±0.11
VG
720 930 ±15 1180-1590 850-975 2410 1780 2050
458 458 458 458 462 475 467 486
1.57 2.03 ±0.03 2.58-3.46 1.85-2.12 4.7 3.4 3.9 2.5
LG XS XS XS LG LG LG XS
-
ca. 1000 ca. 1050 -
360 0.26 ±0.01 0.40-0.70 0.22-0.28 970 530 700 0.48
-
-
VG
-
-
VG VWC VG VG
693 996 693 693
LT LT, VT LT VT VG VG VG VG VG VWC VT VT
678 546 546 858 858 858 858 858 858 996 547 547 3(535,537 548,549) 3(549) 641 679 679 686 686 555 687
References page VII - 68
Next Page
TABLE 9. cont'd S^fM1J2 Polymer Cellulose trioctanoate
(Cyanoethyl)(hydroxypropyl) cellulose Ethyl cellulose Ethyl hydroxyethyl cellulose
Hydroxyethyl cellulose Methyl cellulose Pullulan Sodium carboxymethyl cellulose
Sodium cellulose xanthate Hyaluronic acid
Solvent Toluene Dimethylformamide Y-Phenylpropanol Tetrahydrofuran
Temp. (0C)
(XlO4) orap (nm)
30 140 48 25 din r g / d T
K0 (xlO 3 ) (ml/g)
rQ/Mll2 xlO4(nm)
127 ± 1 5 800 ± 4 0 113 770 129 805 = 3.8 x 10" 3 (deg" 1 ) -
340 340 340
970 ± 2 0 1300 ± 5 0 1100
520 545 545
250 1000 920 ± 100 1500 ± 6 0 91 357 1130
Methanol Water
25 25 25
-
Cadoxen; water Water Water Cadoxen
25 25 25 25
360 -
Aq. NaCl (0.005-0.2 M) Aq. N a O H ( I M ) Aq. HCl (0.1 M)
25
-
420
1190
30 25
-
290
1380
"These values of the characteristic ratio Cx
rOf/M^2 (xlO 4 ) (nm) ff = ro/rof
of cellulosic chains were obtained by Cx
232 ± 1 0 550 ± 8 0 335
Cx=r\jnl2
2.35 ± 0 . 1 2 2.27 2.37
Method(s) Refs. VG VT VT VTe
3(544) 544 544 1002
1.87 ± 0 . 0 3 2.38 ± 0 . 0 9 2.0
VG VG VG
514 581 563
1.9 2.58 ± 0 . 1 0 2.0
VG VG VG VG
3(559) 3(560) 691,560, 692 691,561 3(563) 1003 691,565
502
2.4
VG
691,565
VG VA
681 688
-
2.5
-
-
= r ^ / D P / 2 , where DP is the degree of polymerization and / = 0.425 (nm).
F. REFERENCES 1. "Report on Nomenclature in the Field of Macromolecules, International Union of Pure and Applied Chemistry", J. Polym. Sci., 8, 257 (1952). 2. P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, Ithaca, New York, 1953. 3. M. Kurata, W. H. Stockmayer, Fortschr. Hochpolymer. Forsch., 3, 196 (1963). 4. W. H. Stockmayer, M. Fixman, J. Polym. Sci. C, 1, 137 (1963). 5. R. Koningsveld, C. A. Tuijnman, Makromol. Chem., 38, 39,44 (1960). 6. "A Structure-Based Nomenclature for Linear Polymers", Macromolecules, 1, 193 (1968). 7. A. Peterlin, "Viskositat und Form", in: H. A. Stuart (Ed.), "Die Physik der Hochpolymeren", vol. II, Springer, Berlin, 1953. 8. G. Meyerhoff, Fortschr. Hochpolymer. Forsch., 3, 59 (1961). 9. H. -G. Elias, Kunststoffe-Plastics, 4, 1 (1961). 10. S. Krause, "Dilute Solution Properties of Acrylic and Methacrylic Polymers", Part I, Revision 1, Rohm & Haas, Philadelphia, Pennsylvania, 1961. 11. R J . Flory, "Statistical Mechanics of Chain Molecules", Interscience, Wiley, New York, 1969. 12. H. Yamakawa, "Modern Theory of Polymer Solutions", Harper & Row, New York, 1971. 13. A. Peterlin, J. Polym. Sci., 47, 403 (1960). 14. S. Heine, O. Kratky, G. Porod, R J. Schmitz, Makromol. Chem., 44/46, 682 (1961); S. Heine, ibid., 48, 205 (1961); S. Heine, O. Kratky, J. Roppert, ibid., 56, 150 (1962). 15. F. Danusso, G. Moraglio, G. Gianott, J. Polym. Sci., 51,475 (1961).
16. H. Fujita, N. Takeguchi, K. Kawahara, M. Abe, H. Utiyama, M. Kurata, Paper presented the Twelfth Polymer Symposium, Nagoya, Japan, Nov., 1963. 17. M. Abe, Y. Murakami, H. Fujita, J. Appl. Polym. Sci., 9, 2549 (1965); see also Ref. 254. 18. R. Endo, Nippon Gomu Kyokaishi (J. Rubber Ind. Japan), 34, 522 (1961). See also, M. Takeda, R. Endo, Rept. Progr. Polym. Phys. Japan, 6, 37 (1963). 19. I. Ya. Poddubnyi, Ye. G. Erenberg, M. A. Yeremina, Vysokomol. Soedin. A, 10, 1381 (1968). 20. W. G. Cooper, G. Vaughan, D. E. Eaves, R. W. Madden, J. Polym. Sci., 50, 159 (1961). 21. R. Endo, Nippon Gomu Kyokaishi (J. Rubber Ind. Japan), 35, 658 (1962). 22. R. L. Cleland, J. Polym. Sci., 27, 349 (1958); see also Ref. 26. 23. P L. Ribeyrolles, A. Guyot, H. Benoit, J. Chim. Phys., 56, 377 (1959); see also Ref. 26. 24. M. Kurata, H. Utiyama, K. Kajitani, T. Koyama, H. Fujita, Paper presented at the Twelfth Polymer Symposium, Nagoya, Japan, Nov., 1963. 25. R. Endo, Nippon Gomu Kyokaishi (J. Rubber Ind. Japan), 34, 527 (1961). 26. W. Cooper, D. E. Eaves, G. Vaughan, J. Polym. Sci., 59,241 (1962). 27. I. Ya. Poddubnyi, V. A. Grechanovskii, Vysokomol. Soedin., 6, 64 (1964). 28. R. L. Scott, W. C. Carter, M. Magat, J. Am. Chem. Soc, 71, 220 (1949). 29. D. J. Pollock, L. J. Elyash, T. W. Dewitt, J. Polym. Sci., 15, 335 (1955). 30. V. S. Skazka, M. Kozhokaru, G. A. Fomin, L. F. Roguleva, Vysokomol. Soedin. A, 9, 177 (1967).
Previous Page
TABLE 9. cont'd S^fM1J2 Polymer Cellulose trioctanoate
(Cyanoethyl)(hydroxypropyl) cellulose Ethyl cellulose Ethyl hydroxyethyl cellulose
Hydroxyethyl cellulose Methyl cellulose Pullulan Sodium carboxymethyl cellulose
Sodium cellulose xanthate Hyaluronic acid
Solvent Toluene Dimethylformamide Y-Phenylpropanol Tetrahydrofuran
Temp. (0C)
(XlO4) orap (nm)
30 140 48 25 din r g / d T
K0 (xlO 3 ) (ml/g)
rQ/Mll2 xlO4(nm)
127 ± 1 5 800 ± 4 0 113 770 129 805 = 3.8 x 10" 3 (deg" 1 ) -
340 340 340
970 ± 2 0 1300 ± 5 0 1100
520 545 545
250 1000 920 ± 100 1500 ± 6 0 91 357 1130
Methanol Water
25 25 25
-
Cadoxen; water Water Water Cadoxen
25 25 25 25
360 -
Aq. NaCl (0.005-0.2 M) Aq. N a O H ( I M ) Aq. HCl (0.1 M)
25
-
420
1190
30 25
-
290
1380
"These values of the characteristic ratio Cx
rOf/M^2 (xlO 4 ) (nm) ff = ro/rof
of cellulosic chains were obtained by Cx
232 ± 1 0 550 ± 8 0 335
Cx=r\jnl2
2.35 ± 0 . 1 2 2.27 2.37
Method(s) Refs. VG VT VT VTe
3(544) 544 544 1002
1.87 ± 0 . 0 3 2.38 ± 0 . 0 9 2.0
VG VG VG
514 581 563
1.9 2.58 ± 0 . 1 0 2.0
VG VG VG VG
3(559) 3(560) 691,560, 692 691,561 3(563) 1003 691,565
502
2.4
VG
691,565
VG VA
681 688
-
2.5
-
-
= r ^ / D P / 2 , where DP is the degree of polymerization and / = 0.425 (nm).
F. REFERENCES 1. "Report on Nomenclature in the Field of Macromolecules, International Union of Pure and Applied Chemistry", J. Polym. Sci., 8, 257 (1952). 2. P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, Ithaca, New York, 1953. 3. M. Kurata, W. H. Stockmayer, Fortschr. Hochpolymer. Forsch., 3, 196 (1963). 4. W. H. Stockmayer, M. Fixman, J. Polym. Sci. C, 1, 137 (1963). 5. R. Koningsveld, C. A. Tuijnman, Makromol. Chem., 38, 39,44 (1960). 6. "A Structure-Based Nomenclature for Linear Polymers", Macromolecules, 1, 193 (1968). 7. A. Peterlin, "Viskositat und Form", in: H. A. Stuart (Ed.), "Die Physik der Hochpolymeren", vol. II, Springer, Berlin, 1953. 8. G. Meyerhoff, Fortschr. Hochpolymer. Forsch., 3, 59 (1961). 9. H. -G. Elias, Kunststoffe-Plastics, 4, 1 (1961). 10. S. Krause, "Dilute Solution Properties of Acrylic and Methacrylic Polymers", Part I, Revision 1, Rohm & Haas, Philadelphia, Pennsylvania, 1961. 11. R J . Flory, "Statistical Mechanics of Chain Molecules", Interscience, Wiley, New York, 1969. 12. H. Yamakawa, "Modern Theory of Polymer Solutions", Harper & Row, New York, 1971. 13. A. Peterlin, J. Polym. Sci., 47, 403 (1960). 14. S. Heine, O. Kratky, G. Porod, R J. Schmitz, Makromol. Chem., 44/46, 682 (1961); S. Heine, ibid., 48, 205 (1961); S. Heine, O. Kratky, J. Roppert, ibid., 56, 150 (1962). 15. F. Danusso, G. Moraglio, G. Gianott, J. Polym. Sci., 51,475 (1961).
16. H. Fujita, N. Takeguchi, K. Kawahara, M. Abe, H. Utiyama, M. Kurata, Paper presented the Twelfth Polymer Symposium, Nagoya, Japan, Nov., 1963. 17. M. Abe, Y. Murakami, H. Fujita, J. Appl. Polym. Sci., 9, 2549 (1965); see also Ref. 254. 18. R. Endo, Nippon Gomu Kyokaishi (J. Rubber Ind. Japan), 34, 522 (1961). See also, M. Takeda, R. Endo, Rept. Progr. Polym. Phys. Japan, 6, 37 (1963). 19. I. Ya. Poddubnyi, Ye. G. Erenberg, M. A. Yeremina, Vysokomol. Soedin. A, 10, 1381 (1968). 20. W. G. Cooper, G. Vaughan, D. E. Eaves, R. W. Madden, J. Polym. Sci., 50, 159 (1961). 21. R. Endo, Nippon Gomu Kyokaishi (J. Rubber Ind. Japan), 35, 658 (1962). 22. R. L. Cleland, J. Polym. Sci., 27, 349 (1958); see also Ref. 26. 23. P L. Ribeyrolles, A. Guyot, H. Benoit, J. Chim. Phys., 56, 377 (1959); see also Ref. 26. 24. M. Kurata, H. Utiyama, K. Kajitani, T. Koyama, H. Fujita, Paper presented at the Twelfth Polymer Symposium, Nagoya, Japan, Nov., 1963. 25. R. Endo, Nippon Gomu Kyokaishi (J. Rubber Ind. Japan), 34, 527 (1961). 26. W. Cooper, D. E. Eaves, G. Vaughan, J. Polym. Sci., 59,241 (1962). 27. I. Ya. Poddubnyi, V. A. Grechanovskii, Vysokomol. Soedin., 6, 64 (1964). 28. R. L. Scott, W. C. Carter, M. Magat, J. Am. Chem. Soc, 71, 220 (1949). 29. D. J. Pollock, L. J. Elyash, T. W. Dewitt, J. Polym. Sci., 15, 335 (1955). 30. V. S. Skazka, M. Kozhokaru, G. A. Fomin, L. F. Roguleva, Vysokomol. Soedin. A, 9, 177 (1967).
31. W. E. Mochel, J. B. Nichols, J. Am. Chem. Soc, 71, 3435 (1949). 32. W. E. Mochel, J. B. Nichols, C. J. Mighton, J. Am. Chem. Soc, 70, 2185 (1948). 33. W. E. Mochel, J. B. Nichols, Ind. Eng. Chem., 43, 154 (1951). 34. K. Hanafusa, A. Teramoto, H. Fujita, J. Phys. Chem., 70, 4004 (1966). 35. K. Kawahara, T. Norisuye, H. Fujita, J. Chem. Phys., 49, 4339 (1968). 36. S. A. Pavlova, T. A. Soboleva, A. P. Supran, Vysokomol. Soedin., 6, 122(1964). 37. H. L. Wagner, P. J. Flory, J. Am. Chem. Soc, 74, 195 (1952). 38. K. Altgelt, G. V. Schulz, Makromol. Chem., 36,209 (1960). 39. W. C. Carter, R. L. Scott, M. Magat, J. Am. Chem. Soc, 68, 1480 (1946). 40. I. Ya. Poddubnyi, V. A. Grechanovskii, A. V. Podalinskii, Vysokomol. Soedin., S, 1588 (1964). 41. M. Abe, M. Iwama, T. Homma, Kogyo Kagaku Zasshi (J. Chem. Soc Japan, Ind. Chem. Sec), 72, 2313 (1969). 42. W. H. Beattie, C. Booth, J. Appl. Polym. ScL, 7,507 (1963). 43. H. Brody, M. Ladaeki, R. Milkovitch, M. Szwarc, J. Polym. Sci., 25, 221 (1959). 44. I. Y. Poddubnyi, E. G. Ehrenberg, J. Polym. Sci., 57, 545 (1962). [ K - 13.3 in Benzene is for Li-type polymers and 11.2 for Ziegler-types. No difference is found in dioxane.] 45. H. C. Tingey, R. H. Ewart, G. E. Hulse, unpublished work; cited in Ref. 28; see also, D. M. French, R. H. Ewart, Anal. Chem., 19, 165 (1947). 46. J. A. Yanko, J. Polym. Sci., 3, 576 (1958). 47. T. Homma, H. Fujita, J. Appl. Polym. Sci., 9, 1701 (1965). [Bound styrene, 24%.] 48. J.-Y. Chien, W. Chin, Y-S. Cheng, Kolloidn. Zh., 19, 515 (1957). 49. T. G. Fox, P. J. Flory, J. Am. Chem. Soc, 73, 1909 (1951). 50. T. G. Fox, P. J. Flory, J. Phys. Colloid Chem., 53, 197 (1949). 51. C. E. H. Bawn, E. S. Hill, M. A. Wajid, Trans. Faraday Soc, 52, 1651 (1956). 52. W. R. Krigbaum, P. J. Flory, J. Am. Chem. Soc, 75, 1775 (1953). 53. A. Ram, Thesis, Mass. Inst. Tech., Cambridge, Mass., USA, 1961. 54. F. R. Cottrell, E. W. Merrill, K. A. Smith, J. Polym. Sci. A-2, 7, 1415 (1969). 55. P. J. Flory, J. Am. Chem. Soc, 65, 372 (1943). 56. U. Bianchi, M. Dalpiaz, E. Patrone, Makromol. Chem., 80, 112(1964). 57. N. M. Tret'yakova, L. V. Kosmodem'yanskii, R. G. Romanova, E. G. Lazaryants, Vysokomol. Soedin. A, 12, 2754 (1970). 58. R. Chiang, J. Phys. Chem., 70, 2348 (1966). 59. R. W. Wheatcraft, cited in H. Wesslau, Makromol. Chem., 20, 111 (1956). 60. E. Duch, L. Kuechler, Z. Elektrochem., 60, 218 (1956).
61. J. T. Atkins, L. T. Muus, C. W. Smith, E. T. Pieski, J. Am. Chem. Soc, 79, 5089 (1957). 62. A. Kotera, T. Saito, K. Takamizawa, Y. Miyazawa, Rept. Progr. Polymer Phys. Japan, 3, 58 (1960). 63. P. S. Francis, R. Cooke, Jr., J. H. Elliott, J. Polym. Sci., 31, 453 (1957). 64. P. M. Henry, J. Polym. Sci., 36, 3 (1959). 65. R. Chiang, J. Phys. Chem., 69, 1645 (1965). 66. R. Chiang, J. Polym. Sci., 36, 91 (1959). 67. L. H. Tung, J. Polym. Sci., 24, 333 (1957). 68. L. H. Tung, J. Polym. Sci., 36, 287 (1959). 69. C. J. Stacy, R. L. Arnett, J. Phys. Chem., 69, 3109 (1965). See also Ref. 73. 70. Q. A. Trementozzi, J. Polym. Sci., 36, 113 (1959). 71. H. Wesslau, Makromol. Chem., 26, 96 (1958). 72. H. S. Kaufmann, E. K. Walsh, J. Polym. Sci., 26, 124 (L) (1957). 73. C. J. Stacy, R. L. Arnett, J. Polym. Sci. A, 2, 167 (1964). 74. W. R. Krigbaum, Q. A. Trementozzi, J. Polym. Sci., 28,295 (1958). 75. R. A. Mendelson, E. E. Drott, J. Polym. Sci. B, 11, 795 (1968). 76. W. F. Busse, R. Longworth, J. Polym. Sci., 58, 49 (1962). 77. K. Ueberreiter, H.-J. Orthman, S. Sorge, Makromol. Chem., 8, 21 (1952). 78. I. Harris, J. Polym. Sci., 8, 353 (1952). 79. Q. A. Trementozzi, J. Polym. Sci., 23, 887 (1957). 80. K. H. Meyer, A. van der Wyk, HeIv. Chim. Acta, 18, 1067 (1935). 81. W. R. Krigbaum, J. E. Kurz, P. Smith, J. Phys. Chem., 65, 1984 (1961). 82. R. Endo, K. Iimura, M. Takeda, Bull. Chem. Soc Japan, 37, 950 (1964). 83. S. S. Stivala, R. J. Valles, D. W. Levi, J. Appl. Polym. Sci., 7, 97 (1963). 84. J. B. Kinsinger, L. E. Ballard, J. Polym. Sci. A, 3, 3963 (1965). 85. I. H. Billick, J. P. Kennedy, Polymer, 6, 175 (1965). 86. J. L. Jungnickel, F. T. Weiss, J. Polym. Sci., 49,437 (1961). 87. D. L. Flowers, W. A. Hewett, R. D. Mullineaux, J. Polym. Sci. A, 2, 2305 (1964). 88. J. B. Kinsinger, R. E. Hughes, J. Phys. Chem., 63, 2002 (1959). 89. F. Danusso, G. Moraglio, Rend. Acad. Naz. Lincei, 25, 509 (1958). 90. J. B. Kinsinger, R. E. Hughes, J. Phys. Chem., 67, 1922 (1963). 91. F. Danusso, G. Moraglio, Makromol. Chem., 28, 250 (1958). 92. L. Westerman, J. Polym. Sci. A, 1, 411 (1963). 93. H. J. L. Schuurmans, R. A. Mendelson, unpublished work; cited in E. Kohn, H. J. L. Schuurmans, J. V. Cavender, R. A. Mendelson, J. Polym. Sci., 58, 681 (1962). 94. A. Nakajima, A. Saijo, J. Polym. Sci. A-2, 6, 735 (1968). 95. A. Kotera, K. Takamizawa, T. Kamata, H. Kawaguchi, Rept. Progr. Polym. Phys. Japan, 4, 131 (1961).
96. P. Parrini, F. Sebastiano, G. Messina, Makromol. Chem., 38, 27 (1960). 97. R. Chiang, J. Polym. ScL, 38, 235 (1958). 98. G. Ciampa, Chim. Ind. (Milan), 38, 298 (1956). 99. F. Ang, H. Mark, Monatsh. Chem., 88, 427 (1957). 100. H. Inagaki, T. Miyamoto, S. Ohta, J. Phys. Chem, 70, 3420 (1966). 101. W. Scholtan, Makromol. Chem., 14, 169 (1954). 102. E. Collinson, F. S. Dainton, G. S. McNaughton, Trans. Faraday Soc, 53, 489 (1957). 103. L. Trossarelli, M. Meirone, J. Polym. Sci., 57, 445 (1962). 104. S. Newman, W. R. Krigbaum, C. Laugier, P. J. Flory, J. Polym. Sd., 14, 451 (1954). 105. A. Takahashi, N. Hayashi, I. Kagawa, Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Sec), 60, 1059 (1957). See also Ref. 126. 106. V. N. Tsvetkov, S. Ya. Lyubina, T. V. Barskaya, Vysokomol. Soedin., 6, 806 (1964); V. N. Tsvetkov, V. S. Skazka, G. V. Tarasova, V. M. Yamshchikov, S. Ya Lyubina, ibid. Ser. A, 10, 74 (1968). 107. A. Takahashi, S. Yamori, I. Kagawa, Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sec), 83, 11 (1962). 108. A. Takahashi, T. Kamei, I. Kagawa, Nippon Kagaku Zasshi (J. Chem. Soc Japan, Pure Chem. Sec), 83, 14 (1962). 109. A. Takahashi, M. Nagasawa, J. Am. Chem. Soc, 86, 543 (1964). 110. I. Noda, T. Tsuge, M. Nagasawa, J. Phys. Chem., 74, 710 (1970). 111. A. Soda, I. Kagawa Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sec), 83, 412 (1962). 112. G. Saini, L. Trossarelli, Atti Accad. Sci. Torino, Classe Sci. Fis., Mat. Nat, 90, 410 (1955-56). cf. Ref. 10. 113. G. B. Rathmann, F A. Bovey, J. Polym. Sci., 15, 544 (1955). 114. M. Giurgea, C. Ghita, I. Baltog, A. Lupu, J. Polym. Sci. A-2, 4, 529 (1966). 115. H. Sumitomo, Y. Hachihama, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 10, 544 (1953). See also Y. Hachihama, H. Sumitomo, Technol. Rept. Osaka Univ., 3, 385 (1953). 116. H. Sumitomo, Y. Hachihama, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 12, 479 (1955). See also Y. Hachihama, H. Sumitomo, Technol. Rept. Osaka Univ., 5, 485 (1956). 117. D. Mangaraj, S. K. Patra, Makromol. Chem., 107, 230 (1967). 118. I. G. Soboleva, N. V. Makletsova, S. S. Medvedev, Dokl. Akad. Nauk. SSSR, 94, 289 (1954). 119. E. S. Cohn, T A. Orofino, I. L. Scogna, unpublished work; cited in Ref. 10. 120. J. E. Mark, R. A. Wessling, R. E. Hughes, J. Phys. Chem., 70, 1895 (1966). 121. R. A. Wessling, J. E. Mark, E. Hamori, J. E. Mark, J. Phys. Chem., 70, 1903 (1966). 122. S. Krause, unpublished work; cited in Ref. 10. 123. H. Staudinger, H. Warm, Z. Prakt. Chem., 155, 261 (1940).
124. L. Trossareli, G. Saini, Atti Accad. Sci. Torino, Classe Sci. Fis., Mat. Nat., 90, 419 (1955-56); cited in Ref. 10. 125. L. Trossareli, G. Saini, Atti Accad. Sci. Torino, Classe Sci. Fis., Mat. Nat., 90, 431 (1955-56); cited in Ref. 10. 126. H. Ito, S. Shimizu, S. Suzuki, Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Sec), 59, 930 (1956). 127. G. M. Guzman, Anales Real Soc Espan. Fis. Quim. (Madrid) Ser. B, 52, 377 (1956); cited in Ref. 10. 128. Rohm and Haas, old data; reported in Ref. 10. 129. H. Matsuda, K. Yamano, H. Inagaki, J. Polym. Sci. A-2, 7, 609 (1969). 130. J. N. Sen, S. R. Chatterjee, S. R. Palit, J. Sci. Ind. Res. B, (India), 11, 90 (1952); cited in Ref. 10. 131. A. Kotera, T. Saito, Y. Watanabe, M. Ohama, Makromol. Chem., 87, 195 (1965). 132. N. T. Srinivasan, M. Santappa, Makromol. Chem., 27, 61 (1958). 133. K. Karunakaran, M. Santappa, J. Polym. Sci. A-2, 6, 713 (1968). 134. Y. Fujisaki, H. Kobayashi, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 19, 73, 81 (1962). 135. H. Inagaki, K. Hayashi, T. Matsuo, Makromol. Chem., 84, 80 (1965). 136. T. Shibukawa, M. Sone, A. Uchida, K. Iwahori, J. Polym. Sci. A-I, 6, 147 (1968). 137. W. Scholtan, H. Marzolph, Makromol. Chem., 57, 52 (1962). 138. J. Bisschops, J. Polym. Sci., 17, 81 (1955). 139. R. L. Cleland, W. H. Stockmayer, J. Polym. Sci., 17, 473 (1955). 140. R. F. Onyon, J. Polym. Sci., 22, 13 (1956). 141. W. R. Krigbaum, A. M. Kotliar, J. Polym. Sci., 32, 323 (1958). 142. C. H. Bamford, A. D. Jenkins, R. Johnston, E. F. T. White, Trans. Faraday Soc, 55, 168 (1959). 143. P. F. Onyon, J. Polym. Sci., 37, 315 (1959). 144. L. H. Peebles, J. Polym. Sci. A, 3, 361 (1965). 145. H. Kobayashi, J. Polym. Sci., 39, 369 (1959). 146. R. Chiang, J. C. Stauffer, J. Polym. Sci. A-2, 5, 101 (1967). 147. N. M. Wiederhorn, A. R. Brown, J. Polym. Sci., 8, 651 (1952). 148. A. Katchalsky, H. Eisenberg, J. Polym. Sci., 6, 145 (1951). 149. R. Arnold, S. R. Caplan, Trans. Faraday Soc, 51, 857 (1955). 150. R. van Leemput, R. Stein, J. Polym. Sci. A, 1, 985 (1963). [K values are given for monodisperse polymers.] 151. Rohm and Haas, old data; reported in Ref. 10. 152. S. N. Chinai, R. A. Guzzi, J. Polym. Sci., 21, 417 (1956). 153. A. S. Nair, M. S. Muthana, Makromol. Chem., 47, 114 (1961). 154. V. N. Tsvetkov, S. I. Klenin, Zh. Tekhn. Fiz., 29, 1393 (1959). 155. Z. Mencik, Chem. Listy, 46, 407 (1952). 156. S. N. Chinai, R. J. Valles, J. Polym. Sci., 39, 363 (1959). 157. M. Kozhokaryu, V. S. Skazka, K. G. Berdnikova, Vysokomol. Soedin., 8, 1063 (1967). 158. S. N. Chinai, R. A. Guzzi, J. Polym. Sci., 41, 475 (1959).
159. H. T. Lee, D. W. Levi, J. Polym. Sci., 47, 449 (1960). 160. F. E. Didot, S. N. Chinai, D. W. Levi, J. Poiym. Sci., 43, 557 (1960). 161. S. N. Chinai, R. J. Samuels, J. Polym. Sci., 19, 463 (1956). 162. K. Karunakaran, M. Santappa, Makromol. Chem., I l l , 20 (1968). 163. V. N. Tsvetkov, D. Khardi, I. N. Shtennikova, Ye. V. Komeyeva, G. F. Pirogova, K. Nitrai, Vysokomol. Soedin. Ser. A, 11, 349 (1969). 164. J.-Y. Chieng, M.-H. Shih, Z. Physik. Chem. (Leipzig), 207, 60 (1957). 165. S. N. Chinai, J. Polym. Sci., 25, 413 (1957). 166. R. J. Valles, J. Polym. Sci. A, 3, 3853 (1965); see also R. J. Valles, E. C. Schramm, ibid., 3, 3664 (1965); and Ref. 167. 167. R. J. Valles, Makromol. Chem., 100, 167 (1967). 168. M. Iwama, H. Utiyama, M. Kurata, J. Makromol. Chem., 1, 701 (1966). 169. G. Meyerhoff, G. V. Schuiz, Makromol. Chem., 7, 294 (1951). 170. J. Bischoff, V. Desreux, Bull Soc. Chim. Beiges, 61, 10 (1952). 171. G. V. Schuiz, G. Meyerhoff, Z. Elektrochem., 56, 904 (1952). 172. G. V. Schuiz, H.-J. Cantow, G. Meyerhoff, J. Polym. Sci., 10, 79 (1953). 173. H.-J. Cantow, G. V. Schuiz, Z. Physik. Chem. (Frankfurt), 2, 117 (1954); see also H.-J. Cantow, G. V. Schuiz, ibid., 1, 365(1954). 174. S. N. Chinai, J. D. Matlack, A. L. Resnick, R. J. Samuels, J. Polym. Sci., 17, 391 (1955). 175. F. W. Billmeyer, Jr., C. B. de Than, J. Am. Chem. Soc, 77, 4763 (1955). 176. S. L. Kapur, J. Sci, Ind. Res. B (India), 15, 239 (1956). 177. W. R. Moore, R. J. Fort, J. Polym. Sci. A, 1, 929 (1963). 178. E. Conn-Ginsberg, T. G. Fox, H. F. Mason, Polymer, 3, 97 (1962). 179. T. G. Fox, Polymer, 3, 111 (1962). 180. E. S. Cohn, T. G. Fox, unpublished work; cited in Ref. 10. 181. A. F. V. Eriksson, Acta Chem. Scand., 7, 623 (1953). 182. J. H. Baxendale, S. Bywater, M. G. Evans, J. Polym. Sci., 1, 237 (1946). 183. J.-Y. Chien, L.-H. Shin, K.-I. Shin, H. H. Pao, Acta Chim. Sinica., 23, 215 (1957). cf. Ref. 10. 184. K. G. Schoen, G. V. Schuiz, Z. Physik. Chem. (Frankfurt), 2, 197 (1954). 185. T. G. Fox, J. B. Kinsinger, H. F. Mason, E. M. Schuele, Polymer, 3, 71 (1962). 186. J. Hakozaki, Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sec), 82, 155 (1961). 187. H. Inagaki, S. Kawai, Makromol. Chem., 79,42 (1964). See also Ref. 197. 188. G. V. Schuiz, A. Dinglinger, Z. Prakt, Chem., 158, 137 (1941). 189. H. J. Cantow, J. Pouget, C. Wippler, Makromol. Chem., 14, 110(1954). 190. V. N. Tsvetkov, S. I. Klenin, J. Polym. Sci., 30, 187 (1958).
191. I. Sakurada, A. Nakajima, O. Yoshizaki, K. Nakamae, Kolloid-Z., 186, 41 (1962). 192. A. F. V. Eriksson, Acta Chem. Scand., 10, 378 (1956). 193. E. F. Casassa, W. H. Stockmayer, Polymer, 3, 53 (1962). 194. E. Hamori, L. R. Prusinowski, P. G. Sparks, R. E. Hughes, J. Phys. Chem., 69, 1101 (1965). 195. E. Patrone, E. Bianchi, Makromol. Chem., 94, 52 (1966). 196. S. N. Chinai, C. W. Bondurant, J. Polym. Sci., 22, 555 (1956). 197. G. V. Schuiz, R. Kirste, Z. Phys. Chem. (Frankfurt), 30,171 (1961). 198. S. Krause, E. Conn-Ginsberg, J. Phys. Chem., 67, 1479 (1963). 199. S. Krause, E. Conn-Ginsberg, Polymer, 3, 565 (1962). 200. J. G. Fee, W. S. Port, L. P. Whitnauer, J. Polym. Sci., 33, 95 (1958). 201. S. N. Chinai, A. L. Resnick, H. T. Lee, J. Polym. Sci., 33, 471 (1958). 202. N. Fuhrman, R. B. Mesrobian, J. Am. Chem. Soc, 76, 3281 (1954). 203. C. G. Overberger, E. M. Pearce, N. Mayes, J. Polym. Sci., 34, 109 (1959). 204. R. C. Schuiz, S. Suzuki, H. Cherdron, W. Kern, Makromol. Chem., 53, 145 (1962). 205. Ye. V. Korneyeva, V. N. Tsvetkov, P. N. Lavrenko, Vysokomol. Soedin. A, 12, 1369 (1970). 206. J. A. Manson, G. J. Arquette, Makromol. Chem., 37, 187 (I960). 207. S. Arichi, J. Set. Hiroshima Univ. Ser. A-II, 29, 97 (1965). 208. P. J. Flory, F. Leutner, J. Polym. Sci., 3, 880 (1948). 209. K. Dialer, K. Vogler, F. Patat, HeIv. Chim. Acta, 35, 869 (1952). 210. H. A. Dieu, J. Polym. Sci., 12, 417 (1954). 211. L. E. Miller, F. A. Hamm, J. Phys. Chem., 57, 110 (1953). 212. A. Nakajima, K. Furutate, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 6, 460 (1949). 213. M. Matsumoto, Y. Ohyanagi, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 17, 191 (1960). [The second line is the constant corrected for monodisperse sample.] 214. T. Matsuo, H. Inagaki, Makromol. Chem., 55, 151 (1962). 215. M. Matsumoto, K. Imai, J. Polym. Sci., 24, 125 (1957). 216. M. Litt, F. R. Eirich, J. Polym. Sci., 45, 379 (1960). 217. A. C. Ciferri, M. Kryszewski, G. Weil, J. Polym. Sci., 27, 167 (1958). 218. A. Ciferri, M. Lauretti, Ann. Chim. (Rome), 48,198 (1958). 219. M. Sato, Y. Koshiishi, M. Asahina, J. Polym. Sci. B, 1, 233 (1963). 220. H. Inagaki, J. Nakazawa, private communication. 221. J. W. Breitenbach, E. L. Forster, A. J. Renner, Kolloid-Z., 127, 1 (1952). 222. C. Bier, H. Kramer, Makromol. Chem., 18/19, 151 (1955). 223. G. Ciampa, H. Schwindt, Makromol. Chem., 21, 169 (1954). 224. F. Danusso, G. Moraglio, S. Cazzera, Chim. Ind. (Milan), 36, 883 (1954). 225. Z. Mencik, Collection Czech. Chem. Commun., 21, 517 (1956).
226. W. R. Moore, R. J. Hutchinson, Nature, 200, 1095 (1963). 227. J. Vavra, J. Lapcik, J. Sabados, J. Polym. ScL A-2, 5, 1305 (1967). 228. M. Bohdanecky, K. Sole, P. Kratochvil, M. Kolinsky, M. Pyska, D. Lim, J. Polym. Sci. A-2, 5, 343 (1967). 229. H. Batzer, A. Nisch, Makromol. Chem., 22, 131 (1957). 230. M. Freeman, P. P. Manning, J. Polym. Sci. A, 2, 2017 (1964). 231. A. Takahashi, M. Ohara, I. Kagawa, Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Sec), 66, 960 (1963). 232. M. Sato, Y. Koshiishi, M. Asahina, cited in: A. Nakajima, K. Kato, Makromol. Chem., 95, 52 (1966). 233. T. Kobayashi, Bull. Chem. Soc. Japan, 35, 726 (1962). 234. E. K. Walsh, H. S. Kaufman, J. Polym. Sci., 26, 1 (1957). 235. M. L. Wallach, M. A. Kabayama, J. Polym. Sci. A-I, 4, 2667 (1966). 236. M. Ueda, K. Kajitani, Makromol. Chem., 108, 138 (1967), and private communication. 237. W. R. Moore, M. Murphy, J. Polym. Sci., 56, 519 (1962). 238. V. N. Tsvetkov, S. Ya. Kotlyar, Zh. Fiz. Khim., 30, 1100 (1956). 239. G. Saini, L. Maldifassi, L. Trossarelli, Ann. Chim. (Rome), 44, 1954 (1954); cited in H.-G. Elias, Kunststoffe-Plastics, 4, 8 (1961). 240. G. S. Misra, V. R Gupta, Makromol. Chem., 71, 110 (1964). 241. R. H. Wagner, J. Polym. Sci., 2, 21 (1947). 242. S. N. Chinai, R C. Scherer, D. W. Levi, J. Polym. Sci., 17, 117(1955). 243. K. Z. Fattakhov, E. S. Pisarenko, L. N. Verkotina, Kolloidn. Zh., 18, 101 (1956). 244. M. Matsumoto, Y. Ohyanagi, J. Polym. Sci., 46,441 (1960). Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 17, 1 (1960). 245. R. Naito, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 16, 7 (1959). 246. Bevak, Thesis, Mass. Inst. Tech., Cambridge, Mass., USA, 1955. 247. V. Kalpagam, R. Rao, J. Polym. Sci. A, 1, 233 (1963). 248. M. R. Rao, V. Kalpagam, J. Polym. Sci., 49, S 14 (1961). 249. A. Nakajima, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 11, 142 (1954). 250. V. V. Varadiah, J. Polym. Sci., 19, 477 (1956). 251. G. C. Berry, L. M. Hobbs, V. C. Long, Polymer, 5, 31 (1964). 252. A. R. Schulz, J. Am. Chem. Soc, 76, 3423 (1954); see also R. O. Howard, Thesis, Mass. Inst. Tech., Cambridge, MA, 1952. 253. H.-G. Elias, F. Patat, Makromol. Chem., 25, 13 (1957). 254. M. Abe, H. Fujita, J. Phys. Chem., 69, 3263 (1965). 255. M. Matsumoto, Y. Ohyanagi, J. Polym. Sci., 50, Sl (1961); see also Ref. 244. 256. C. J. Kurian, M. S. Muthana, Makromol. Chem., 29, 1 (1959). 257. K. Fujii, S. Imoto, J. Ukida, M. Matsumoto, Kobunshi Kagaku (Chem. High Polym., Tokyo), 19, 581 (1962). 258. H. Hopff, J. Dohany, Makromol. Chem., 69, 131 (1963).
259. H. Eisenberg, D. Woodside, J. Chem. Phys., 36, 1844 (1962). 260. K. Dialer, R. Kerber, Makromol. Chem., 17, 56 (1955). 261. F. Patat, K. Vogler, HeIv. Chim. Acta, 35, 128 (1952). 262. J. Springer, K. Ueberreiter, R. Wenzel, Makromol. Chem., 96, 122 (1966). 263. J. M. Barrales-Rienda, D. C. Pepper, Polymer, 8, 337 (1967). 264. L. A. Utracki, R. Simha, Makromol. Chem., 117,94 (1968). See also, L. A. Utracki, R. Simha, N. Eliezer, Polymer, 10, 43 (1969). 265. F. S. Holahan, S. S. Stivala, D. W. Levi, J. Polym. Sci. A, 3, 3987 (1955). 266. N. Kuwahara, K. Ogino, M. Konuma, N. Iida, M. Kaneko, J. Polym. Sci. A-2, 4, 173 (1966). 267. V. V. Korshak, S. L. Sosin, V. P. Alekseeva, J. Polym. Sci., 52, 213 (1961). 268. V. E. Eskin, O. Z. Korotkina, Vysokomol. Soedin., 1, 1580 (1959). 269. V. E. Eskin, O. Z. Korotkina, Vysokomol. Soedin., 2, 272 (1960). 270. M. Cantow, G. Meyerhoff, G. V. Schulz, Makromol. Chem., 49, 1 (1961). 271. G. Meyerhoff, Z. Phys. Chem. (Frankfurt), 4, 335 (1955). 272. D. C. Pepper, J. Polym. Sci., 7, 347 (1951). See also D. C. Pepper, Proc Roy. Dublin Soc, 25, 239 (1951). 273. G. S. Misra, R. C. Rastogi, V. P. Gupta, Makromol. Chem., 50, 72 (1961). 274. W. R. Krigbaum, P. J. Flory, J. Polym. Sci., 11, 37 (1953). 275. T. A. Orofino, F. Wenger, J. Phys. Chem., 67, 566 (1963). 276. C. E. H. Bawn, C. Freeman, A. Kamaliddin, Trans. Faraday Soc, 46, 1107 (1950). 277. C. Rossi* Chimica delle Macromolecole (Sept. 1961); Consiglio Nazionalle delle Ricerche, Roma (1963) p. 153. 278. P Outer, C. I. Carr, B. H. Zimm, J. Chem. Phys., 18, 830 (1950). 279. J. Oth, V. Desreux, Bull. Soc Chim. Beiges, 63,285 (1954). 280. T. Oyama, K. Kawahara, M. Ueda, Nippon Kagaku Zasshi (J. Chem. Soc Japan, Pure Chem. Sec), 79, 727 (1958). 281. U. Bianchi, V. Magnasso, C. Rossi, Ric. Sci., 58, 1412 (1958). 282. U. Bianchi, V. Magnasso, C. Rossi, Chim. Ind. (Milan), 40, 263 (1958); See also, Ref. 276. 283. H. Utiyama, Thesis, Kyoto Univ., Kyoto, Japan, 1962. 284. R. Endo, M. Takeda, J. Polym. Sci., 56, 28 (1962). [The tabulated constants are calculated from the original figure.] 285. L. Utracki, R. Simha, J. Phys. Chem., 67, 1052 (1963). 286. H. Inagaki, H. Suzuki, M. Fujii, T. Matsuo, J. Phys. Chem., 70, 1718 (1966). See also H. Inagaki, H. Suzuki, M. Kurata, J. Polym. Sci. C, 15, 409 (1966). 287. T. Homma, K. Kawahara, H. Fujita, M. Ueda, Makromol. Chem., 67, 132 (1963). 288. H. J. Cantow, Makromol. Chem., 30, 169 (1959). 289. L. A. Papazian, Polymer, 10, 399 (1969). 290. H. Inagaki, private communication [based on the data given in Ref. 286, and also on unpublished data]. 291. M. Abe, H. Fujita, J. Phys. Chem., 69, 3263 (1965).
292. T. G. Fox, P. J. Flory, J. Am. Chem. Soc, 73, 1915 (1951). 293. E. T. Dimitru, L. H. Cragg, unpublished work; cited in: P. J. Flory, "Principles of Polymer Chemistry", Cornell Univ. Press, Ithaca, New York, 1953, p. 615, Table XXVII. 294. J. W. Breitenbach, H. Gabler, O. F. Olaj, Makromol. Chem., 81, 32 (1964). 295. R. H. Ewart, H. C. Tingey, M. Wales, unpublished work; cited in W. V. Smith, J. Am. Chem. Soc, 68, 2063 (1946). 296. C. H. Bamford, M. J. S. Dewar, Proc. Roy. Soc. London A, 192, 329 (1948). 297. H. Marzolph, G. V. Schulz, Makromol. Chem., 13, 120 (1954). 298. C. Rossi, U. Bianchi, E. Bianchi, Makromol. Chem., 41, 31 (1960); see also, Ref. 301. 299. S. N. Chinai, P. C. Scherer, C. W, Bondurat, D. W. Levi, J. Polym. Sci., 22, 527 (1956). 300. F. Danusso, G. Moraglio, J. Polym. Sci., 24, 161 (1957). 301. T. Altares, D. P. Wyman, V. R. Allen, J. Polym. Sci. A, 2, 4533 (1964). 302. A. Yamamoto, M. Fujii, G. Tanaka, H. Yamakawa, Polym. J., 2, 799 (1971). 303. G. C. Berry, J. Chem. Phys., 46, 1338 (1967). 304. M. Morton, T. E. Helminiak, S. D. Gadkary, F. Bueche, J. Polym. Sci., 57, 471 (1962). 305. J. M. G. Cowie, S. Bywater, Polymer, 6, 197 (1965). 306. J. M. G. Cowie, E. L. Cussler, J. Chem. Phys., 46, 4886 (1967). 307. G. Meyerhoff, Z. Physik. Chem. (Frankfurt), 23, 100 (1960). 308. H. W. McCormick, J. Polym. Sci., 36, 341 (1959). 309. R. N. Mukherjea, P. Remmp, J. Chim. Phys., 56,94 (1959). 310. J. M. G. Cowie, D. J. Worsfold, S. Bywater, Trans. Faraday Soc, 57, 537 (1961). 311. F. Ang, J. Polym. Sci., 25, 126 (1957). 312. G. Natta, F. Danusso, G. Moraglio, Makromol. Chem., 20, 37 (1956). See also Ref. 300. 313. W. R. Krigbaum, D. K. Carpenter, S. Newman, J. Phys. Chem., 62, 1586 (1958). 314. L. Trossarelli, E. Campi, G. Saini, J. Polym. Sci., 35, 205 (1959). 315. C. D. Thurmond, B. H. Zimm, J. Polym. Sci., 8,477 (1952). 316. M. Kurata, M. Abe, M. Iwama, M. Matsushima, Polym. J., 3, 729 (1972). 317. S. Minatono, Thesis, Kyoto Univ., Kyoto, Japan, 1966. 318. Y. Mitsuda, K. Osaki, L. Schrag, J. D. Ferry, Polym. J., 4,24 (1973). 319. K. Sakato, M. Kurata, Polym. J., 1, 260 (1970). 320. I. Noda, K. Mizutani, T. Kato, T. Fujimoto, M. Nagasawa, Macromolecuies, 3, 787 (1970). 321. J. M. G. Cowie, S. Bywater, D. J. Worsfold, Polymer, 8,105 (1967). 322. A. F. Sirianni, D. J. Worsfold, S. Bywater, Trans. Faraday Soc, 55, 2124 (1959). 323. M. Abe, K. Sakato, T. Kageyama, M. Fukatsu, M. Kurata, Bull. Chem. Soc Japan, 41, 2330 (1968). 324. I. Noda, S. Saito, T. Fujimoto, M. Nagasawa, J. Phys. Chem., 71, 4048 (1967).
325. H. W. McCormick, J. Polym. Sci., 41, 327 (1959). 326. B. J. Cottam, J. M. G. Cowie, S. Bywater, Makromol. Chem., 86, 116(1965). 327. S. Okamura, T. Higashimura, Y. Imanishi, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 16, 244 (1959). 328. J. M. G. Cowie, S. Bywater, J. Polym. Sci. A-2, 6, 499 (1968). 329. A. Kotera, T. Saito, H. Matsuda, R. Kamata, Rept. Progr. Polym. Phys. Japan, 3, 51 (1960). 330. A. K. Chaudhuri, D. K. Sarkar, S. Palit, Makromol. Chem., I l l , 36 (1968). 331. G. Tanaka, S. Imai, H. Yamakawa, J. Chem. Phys., 52,2639 (1970). 332. V. P. Budtov, V. M. Belyayev, Vysokomol. Soedin. A, 12, 1909 (1970). 333. C. S. H. Chen, R. F. Stamm, J. Polym. Sci., 58, 369 (1962). 334. I. Sakurada, Y. Sakaguchi, S. Kokuryo, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 17, 227 (1960). 335. W. Burchard, M. Nosseir, Makromol. Chem., 82, 109 (1964). 336. Y. Sakaguchi, J. Nishino, K. Tsugawa, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 20, 661 (1963). 337. S. K. Patra, Thesis, I. I. T. Kharagpur, India 1965; cited in S. K. Patra, D. Mangaraj, Makromol. Chem., I l l , 168 (1968). 338. J. Parrod, J. Elles, J. Polym. Sci., 29, 411 (1958). 339. E. S. Cohn, unpublished work; cited in Ref. 10. 340. V. N. Tsvetkov, O. V. Kalisov, Zh. Fiz. Khim., 33, 710 (1959). 341. O. V. Kalisov, I. N. Shtennikova, Vysokomol. Soedin., 1, 842 (1959). 342. V. N. Tsvetkov, S. I. Klenin, J. Polym. Sci., 30,187 (1958). 343. M. Tricot, V. Desreux, Makromol. Chem., 149,185 (1971). 344. E. S. Cohn, I. L. Scogna, T. A. Orofino, unpublished work; cited in Ref. 10. 345. J. Hakozaki, Nippon Kagaku Zasshi (J. Chem. Soc Japan, Pure Chem. Sec), 82, 158 (1961). 346. V. N. Tsvetkov, V. S. Skazka, N. A. Nikitin, I. B. Steparenko, Vysokomol. Soedin., 6, 69 (1964). 347. W. Kern, D. Brawn, Makromol. Chem., 27, 23 (1958). 348. K. Takashima, G. Tanaka, H. Yamakawa, Polym. J., 2, 245 (1971). 349. Y. Noguchi, A. Aoki, G. Tanaka, H. Yamakawa, J. Chem. Phys., 52, 2651 (1970). 350. K. Matsumura, Makromol. Chem., 124, 204 (1969). 351. R. B. Mohite, S. Gundiah, S. L. Kapur, Makromol. Chem., 116, 280 (1968). 352. A. Kotera, T. Saito, H. Matsuda, R. Kamata, Rept. Progr. Polym. Phys. Japan, 3, 51 (1960). 353. N. Kuwahara, K. Ogino, A. Kasai, S. Ueno, M. Kaneko, J. Polym. Sci. A, 3, 985 (1965). 354. G. Greber, J. Tolle, W. Burchard, Makromol. Chem., 71,47 (1964). 355. J. E. Davis, Thesis, Mass. Ins. Tech., Cambridge, Mass., USA, 1960. 356. E. F. Frisman, L. F. Shalaeva, Dokl. Akad. Nauk. SSSR, 101, 970 (1955).
357. V. E. Eskin, K. Z. Gumargalieva, Vysokomol. Soedin., 2, 265 (1960). 358. N. Kuwahara, K. Ogino, M. Konuma, N. Iida, M. Kaneko, J. Polym. Sci. A-2, 4, 173 (1966). 359. V. E. Eskin, L. N. Andreeva, Vysokomol. Soedin., 3, 435 (1961). 360. D. Braun, T.-O. Ahn, W. Kern, Makromol. Chern., 53, 154 (1962). 361. S. Minatono, Thesis, Kyoto Univ., Kyoto, Japan, 1967. 362. Y. Imanishi, T. Higashimura, S. Okamura, Kobunshi Kagaku (Chem. High Polym., Japan, Tokyo), 22, 241 (1965). 363. G. Ceccorulli, M. Pizzoli, G. Stea, Makromol. Chem., 142, 153 (1971). 364. W. A. Pryor, T-L. Huang, Macromolecules, 2, 70 (1969). 365. M. Kato, T. Nakagawa, H. Akamatsu, Bull. Chem. Soc. Japan, 33, 322 (1960). 366. A. Takahashi, T. Kato, M. Nagasawa, J. Phys. Chem., 71, 2001 (1967). 367. G. Sitaramaiah, D. Jacobs, Polymer, 11, 165 (1970). 368. N. Kuwahara, S. Higashide, M. Nakata, M. Kaneko, J. Polym. Sci. A-2, 7, 285 (1969). 369. G. M. Chetyrkina, V. G. Aldoshin, S. Y. Frenkel, Vysokomol. Soedin., 1, 1133 (1959). 370. V. N. Tsvetkov, V. G. Aldoshin, Zh. Fiz. Khim., 33, 2767 (1959). 371. S. Arichi, Bull. Chem. Soc. Japan, 39, 439 (1966). 372. D. O. Jordan, A. R. Mathieson, M. R. Porter, J. Polym. Sci., 21, 473 (1956). 373. J. B. Berkowitz, M. Yamin, R. M. Fuoss, J. Polym. Sci., 28, 69 (1958). 374. A. G. Boyes, U-P. Strauss, J. Polym. Sci., 22, 463 (1956). 375. M. Miura, Y. Kubota, T. Masuzukawa, Bull. Chem. Soc. Japan, 38, 316 (1965). 376. C. Garbuglio, L. Crescentini, A. MuIa, G. B. Gechele, Makromol. Chem., 97, 97 (1966); see also Ref. 381. 377. H. Sato, T. Yamamoto, Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sec), 80, 1393 (1959). 378. G. B. Levy, H. P. Frank, J. Polym. Sci., 17, 247 (1955); see also Ref. 380. 379. K. Dialer, K. Vogler, Makromol. Chem., 6, 191 (1951). 380. G. B. Levy, H. P. Frank, J. Polym. Sci., 10, 371 (1953). 381. G. B. Gechele, L. Crescentini, J. Polym. Sci. A, 3, 3599 (1965). 382. W. Scholtan, Makromol. Chem., 7, 209 (1951). 383. L. C. Cerney, T. E. Helminiak, J. F. Meier, J. Polym. Sci., 44, 539 (1960). 384. H.-G. Elias, Makromol. Chem., 50, 1 (1961). 385. G. Allen, C. Booth, S. J. Hurst, M. N. Jones, C. Price, Polymer, 8, 391 (1967). 386. K. Yamamoto, H. Fujita, Polymer, 8, 517 (1967). 387. D. R. Beech, C. Booth, J. Polym. Sci. A-2, 7, 575 (1969). 388. C. Rossi, C. Cuniberti, J. Polym. Sci. B, 2, 681 (1964). 389. C. Sadron, R Rempp, J. Polym. Sci., 29, 127 (1958). 390. T. A. Ritscher, H.-G. Elias, Makromol. Chem., 30, 48 (1959). 391. H.-G. Elias, Kunststoffe-Plastics, 4, 1 (1961).
392. D. K. Thomas, A. Charlesby, J. Polym. Sci., 42, 195 (1960). 393. C. Rossi, E. Bianchi, G. Conio, Chim. Ind. (Milan), 45, 1498 (1963). 394. F. E. Bailey, Jr., J. L. Kucera, L. G. Imhof, J. Polym. Sci., 32, 517 (1958). 395. F. E. Bailey, Jr., R. W. Callard, J. Appl. Polym. Sci., 1, 56 (1959). 396. C. Booth, R. Orme, Polymer, 11, 626 (1970). 397. M. Matsushima, M. Fukatsu, M. Kurata, Bull. Chem. Soc. Japan, 41, 2570 (1968). 398. K. Yamamoto, H. Fujita, Polymer, 7, 557 (1966). 399. L. Hoehr, V. Jaacks, H. Cherdron, S. Iwabuchi, W. Kern, Makromol. Chem., 103, 279 (1967). 400. J. Majer, Makromol. Chem., 86, 253 (1965). 401. V. Kokle, F. W. Billmeyer, Jr., J. Polym. Sci. B, 3,47 (1965). 402. W. H. Stockmayer, L.-L. Chen, J. Polym. Sci. A-2, 4, 437 (1966). 403. J. Majer, unpublished; cited in M. Kucera, E. Spousta, Makromol. Chem., 76, 183 (1964). 404. N. A. Pravikova, Ye. B. Berman, Ye. B. Lyudvig, A. G. Davtyan, Vysokomol. Soedin. A, 12, 580 (1970). 405. H. L. Wagner, K. F. Wissbrun, Makromol. Chem., 81, 14 (1964). 406. G. Meyerhoff, U. Moritz, Makromol. Chem., 109, 143 (1967). 407. W. Scholtan, S. Y Lie, Makromol. Chem., 108, 104 (1967). 408. G. Alen, A. C. Booth, M. M. Jones, Polymer, 5, 195 (1964). 409. R. E. Hughes, J. Richards, unpublished work; cited in P. E. Ebert, C. C. Price, J. Polym. Sci., 34, 157 (1959). 410. R. J. Valles, Makromol. Chem., 113, 147 (1968). [The constants are expressed in terms of Mn]. 411. J. Moacanin, J. Appl. Polym. Sci., 1, 272 (1959). 412. M. Kurata, H. Utiyama, K. Kamada, Makromol. Chem., 88, 281 (1965). 413. S. M. AIi, M. B. Huglin, Makromol. Chem., 84, 117 (1965). 414. K. Yamamoto, A. Teramoto, H. Fujita, Polymer, 7, 267 (1966). 415. P. J. Flory, P. B. Stickney, J. Am. Chem. Soc, 62, 3032 (1940). 416. H. Batzer, G. Weisenberger, Makromol. Chem., 11, 83 (1953). 417. H. Batzer, B. Mohr. Makromol. Chem., 8, 217 (1952). 418. H. Batzer, Makromol. Chem., 10, 13 (1953). 419. H. Batzer, Makromol. Chem., 5, 5 (1950). 420. W. O. Baker, C. S. Fuller, J. H. Heiss, Jr., J. Am. Chem. Soc, 63, 3316 (1941). 421. J. G. Erickson, J. Polym. Sci. A-I, 4, 519 (1966). 422. U. P. Strauss, P L. Wineman, J. Am. Chem. Soc, 80, 2366 (1958). 423. M. Nakagaki, S. Ohashi, F. Minato, Bull. Chem. Soc. Japan, 36, 341 (1963). 424. V. Crescenzi, P. J. Flory, J. Am. Chem. Soc, 86, 141 (1964). 425. G. V Schulz, A. Haug, Z. Phys. Chem. (Frankfurt), 34, 328 (1962). 426. A. Haug, G. Meyerhoff, Makromol. Chem., 53, 91 (1962).
427. P. J. Flory, L. Mandelkern, J. B. Kinsinger, W. B. Schulz, J. Am. Chem. Soc, 74, 3364 (1952). 428. A. J. Barry, J. Appl. Phys., 17, 1020 (1946). 429. H. H. Takimoto, C. T. Forbes, R. K. Laudenslager, J. Appl. Polym. Sci., 5, 153 (1961). 430. A. Ya. Korolev, K. A. Andrianov, L. S. Utesheva, T. E. Vredenskaya, Dokl. Akad. Nauk. SSSR, 89, 65 (1953). 431. K. A. Andrianov, B. G. Zavin, N. V. Pertsova, Vysokomol. Soedin. A, 10,46(1968). 432. F. P Price, S. G. Martin, J. P. Bianchi, J. Polym. Sci., 22,41 (1956). 433. C-L. Lee, F. A. Emerson, J. Polym. Sci. A-2,5, 829 (1967). 434. R. R. Buch, H. M. Klimisch, O. K. Johannson, J. Polym. Sci. A-2, 8, 541 (1970). 435. R. R. Buch, H. M. Klimisch, O. K. Johannson, J. Polym. Sci. A-2, 7, 563 (1969). 436. V. Ye. Eskin, A. Ye. Nesterov, Vysokomol. Soedin., 8, 141 (1966). 437. K. J. Ivin, H. A. Ende, G. Meyerhoif, Polymer, 3, 129 (1962). 438. T. W. Bates, K. J. Ivin, Polymer, 8, 263 (1967). 439. T. W. Bates, J. Biggins, K. J. Ivin, Makromol. Chem., 87, 180(1965). 440. R. Endo. T. Manago, M. Takeda, Bull. Chem. Soc. japan, 39, 733 (1966). 441. W. Burchard, Makromol. Chem., 67, 182 (1963). 442. V. N. Tsvetkov, I. N. Shtennikova, Ye. I. Ryumtsev, L. N. Andreyeva, Yu. P. Getmanchuk, Yu. L. Spirin, R. I. Dryagileva, Vysokomol. Soedin. A, 10, 2132 (1968); see also V. N. Tsvetkov, Eur. Polym. J. Suppl., 237 (1969). 443. J. J. Burke, T. A. Orofino. J. Polym. Sci. A-2, 7, 1 (1969). 444. H.-G. Elias, R. Schumacher, Makromol. Chem., 76, 23 (1964). 445. G. J. Howard, J. Polym. Sci., 37, 310 (1959). 446. G. B. Taylor, J. Am. Chem. Soc, 69, 635 (1947). 447. J. V. Koleske, R. D. Lundberg, J. Polym. Sci. A-2, 7, 897 (1967). 448. K. Hoshino, M. Watanabe, Nippon Kagaku Zasshi (J. Chem. Soc. Japan, Pure Chem. Sec), 70, 24 (1949). 449. R. Okada, T. Fukumura, H. Tanzawa, J. Polym. Sci. B, 4, 971 (1966). 450. A. Mattiussi, G. B. Gechele, R. Francesconi, J. Polym. Sci. A-2, 7, 411 (1969); see also G. B. Gechele, A. Mattiussi, Eur. Polym. J., I1 47 (1965); A. Mattiussi, G. B. Gechele, N. Pizzoli, ibid., 2, 283 (1966). 451. R. Bennewitz, Faserforsch. Textiltech., 5, 155 (1954). 452. J.-J. Chien, L.-H. Shih, K.-I. Shih, Acta Chem. Sinica, 21, 50 (1955). 453. J. R. Schaefgen, P J. Flory, J. Am. Chem. Soc, 70, 2709 (1948). 454. P. W. Morgan, S. L. Kwolek, J. Polym. Sci. A, 1, 1147 (1963). 455. A. Zilkha, Y. Burstein, Biopolymers, 2, 147 (1964). 456. Y. Hayashi, A. Teramoto. K. Kawahara, H. Fujita, Biopolymers, 8,403 (1969). 457. P. Doty, J. H. Bradbury, A. M. Holtzer, J. Am. Chem. Soc, 78. 947 (1956).
458. E. Marchal, C. Dufour, J. Polym. Sci. C, 30, 77 (1970). 459. G. Spach, Compt. Rend., 249, 543 (1959). 460. K. Okita, A. Teramoto, H. Fujita, Biopolymers, 9, 717 (1970). 461. N. Lupu-Lotan, A. Yaron, A. Berger, M. SeIa, Biopolymers, 3, 625 (1965). 462. A. Nakajima, T. Hayashi, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 24, 230 (1967). 463. S. Tanaka, Thesis, Kyoto Univ. Kyoto, Japan, 1972. 464. A. Nakajima, S. Tanaka, K. Itoh, Polym. J., 3, 398 (1972). 465. J. Marchal, C. Lapp, J. Chim. Phys., 60, 756 (1963). 466. C. Lapp, J. Marchal, J. Chim. Phys., 62, 1032 (1965). 467. D. F. Detar, F. F. Rogers, Jr., H. Bach, J. Am. Chem. Soc, 89, 3039 (1967). 468. J. H. Fessler, A. G. Ogston, Trans. Faraday Soc, 47, 667 (1951). 469. C. Tanford, K. Kawahara, S. Lapanje, J. Am. Chem. Soc, 89, 729 (1967). 470. G. Thomson, S. A. Rice, M. Nagasawa, J. Am. Chem. Soc, 85, 2537 (1963). 471. J. Feisst, H.-G. Elias, Makromol. Chem., 82, 78 (1964). 472. A. MeIe, R. Rufo, L. Santonato, Polymer, 10, 233 (1969). 473. P. J. Akers, G. Allen, M. J. Bethell, Polymer, 9, 575 (1968). 474. J. M. Barrales-Rienda, D. C. Pepper, J. Polym. Sci. B, 4, 939 (1966). 475. H. Batzer, G. Benzing, Makromol. Chem., 62, 66 (1963). 476. G. C. Berry, H. Nomura, K. G. Mayhan, J. Polym. Sci. A-2, 5, 1 (1967). 477. A. D. Chirico, Chim. Ind. (Milan), 42, 248 (1960). 478. G. Sitaramaiah, J. Polym. Sci. A, 3, 2743 (1965). 479. G. V Schulz, A. Horbach, Makromol. Chem., 29, 93 (1959). 480. H. Batzer, G. Fritz, Makromol. Chem., 14, 179 (1955). 481. D. A. S. Ravens, I. M. Ward, Trans. Faraday Soc, 57, 150 (1961). 482. W. R. Moore, D. Sanderson, Polymer, 9, 153 (1968). 483. I. M. Ward, Nature, 180, 141 (1957). 484. G. Meyerhoff, S. Shimotsuma, Makromol. Chem., 135, 195 (1970). 485. I. Marshall, A. Todd, Trans. Faraday Soc, 49, 67 (1953). 486. H. Zahn, C. Borstlap, G. VaIk, Makromol. Chem., 64, 18 (1963). 487. B. Seidel, J. Polym. Sci., 55, 411 (1961). 488. M. L. Wallach, Makromol. Chem., 103, 19 (1967). 489. E. V. Kuznetsov, A. O. Wisel, I. M. Shermergorn, C. C. Tjulenjeu, Vysokomol. Soedin., 2, 205 (1960). 490. H. M. Koepp, H. Werner, Makromol. Chem., 32, 79 (1959). 491. A. Conix, Makromol. Chem., 26, 226 (1958). 492. W. Griehl, S. Neue, Faserforsch. Textiltech., 5, 423 (1954). 493. L. D. Moore, ACS Meeting, Cleveland, Polym. Preprints, 1, 234 (1960). 494. N. G. Gaylord, S. Rosenbaum, J. Polym. Sci., 39, 545 (1959). 495. W. A. Lanke, reported in W. R. Krigbaum, J. Polym. Sci., 28, 213 (1958).
496. H. Batzer, H. Juergen, Makromol. Chem., 44/49, 179 (1961). 497. B. F. Malichenko, O. N. Tsypina, A. Ye. Nesterov, A. S. Shevlyakov, Yu. S. Lipatov, Vysokomol. Soedin. A, 9, 2624 (1967). 498. B. F. Malichenko, A. V. Yazlovitskii, A. Ye. Nesterov, Vysokomol. Soedin. A, 12, 1700 (1970). 499. R. J. Merker, M. J. Scott, J. Polym. Sci. A, 2, 15 (1964). 500. J. F. Brown, Jr., L. H. Vogt, Jr., A. Katchman, J. W. Eustance, K. M. Kiser, K. W. Krantz, J. Am. Chem. Soc, 82, 6194 (1960). 501. V. N. Tsvetkov, K. A. Andrianov, G. I. Okhrimenko, I. N. Shtenikova, G. A. Fomin, M. G. Vitovskaya, V. I. Pakhomov, A. A. Yarosh, D. N. Andreyev, Vysokomol. Soedin. A, 12, 1892 (1970). 502. V. N. Tsvetkov, K. A. Andrianov, I. N. Shtennikova, G. I. Okhrimenko, L. N. Andreyeva, G. A. Fomin, V. I. Pakhomov, Vysokomol. Soedin. A, 10, 547 (1968). 503. V. V. Rode, P. N. Gribkova, V. V. Korshak, Vysokomol. Soedin. A, 11, 57 (1969). 504. R. Endo, H. Iimura, M. Takeda, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 29, 44 (1972). 505. R. Endo, M. Hattori, M. Takeda, Kobunshi Kagaku (Chem. High Polym. (Tokyo)), 29, 48 (1972). 506. R. Endo, T. Hinokuma, M. Takeda, J. Polym. Sci. A-2, 6, 665 (1968). 507. I. Z. Steinberg, W. F. Harrington, A. Berger, M. SeIa, E. Katchalski, J. Am. Chem. Soc, 82, 5263 (1960). 512. V. N. Tsvetkov, G. A. Fomin, P. N. Lavrenko, I. N. Shtennikova, T. V. Sheremeteva, LI. Godunova, Vysokomol. Soedin. A, 10, 903 (1968). 513. V N . Tsvetkov, N. N. Kupriyanova, G. V Tarasova, P. N. Lavrenko, 1.1. Migunova, Vysokomol. Soedin. A, 12, 1974 (1970). 514. L. V Dubrovina, S. A. Pavlova, V. V. Korshak, Vysokomol. Soedin., 8, 752 (1966). 515. VV. Korshak, S. A. Pavlova, L. V Boiko, T. M. Babchinitser, S. V. Vinogradova, Ya. S. Vygodskii, N. A. GoIubeva, Vysokomol. Soedin. A, 12, 56 (1970). 516. J. R. Holsten, M. R. Lilyquist, J. Polym. Sci. A, 3, 3905 (1965). 517. W. Burchard, Makromol. Chem., 64, 110 (1963). 518. J. M. G. Cowie, Makromol. Chem., 42, 230 (1961). 519. W. Banks, C. T. Greenwood, Polymer, 10, 257 (1969). 520. W. W. Everett, J. F. Foster, J. Am. Chem. Soc, 81, 3459, 3464 (1959). 521. W. Banks, C. T. Greenwood, Makromol. Chem., 67, 49 (1963). 522. W. Banks, C. T. Greenwood, Eur. Polym. J., 5, 649 (1969). 523. J. M. G. Cowie, Makromol. Chem., 53, 13 (1962). 524. J. M. G. Cowie, J. Polym. Sci., 49, 455 (1961). 525. R. S. Patel, R. D. Patel, Makromol. Chem., 90, 262 (1966). 526. B. A. Dombrow, C. O. Beckmann, J. Phys. Colloid Chem., 51, 107 (1947). 527. W. Banks, C. T. Greenwood, D. J. Hourston, Trans. Faraday Soc, 64, 363 (1968); see also Makromol. Chem., I l l , 226 (1968).
528. W. Burchard, E. Husemann, Makromol. Chem., 44/46, 358 (1961). 529. H. Husemann, R. Resz, R. Wermer, Makromol. Chem., 47, 48 (1961). 530. D. A. Brant, B. K. Min, Macromolecules, 2, 1 (1969). 531. K. D. Goebel, D. A. Brant, Macromolecules, 3, 634 (1970). 532. F. G. Donnan, R. C. Rose, Can. J. Research, B, 28, 105 (1950). 533. D. Henley, Arkiv Kemi, 18, 327 (1961). 534. W. Brown, R. Wilkstroem, Eur. Polym. J., 1, 1 (1965). 535. W. G. Harland, in: Honeyman, Ed., "Recent Advances in Chemistry of Cellulose and Starch" Interscience, New York, 1959, p. 265. 536. N. Gralen, T. Svedberg, Nature, 152, 625 (1943). 537. E. H. Immergut, B. G. Ranby, H. Mark, Ind. Eng. Chem., 45, 2383 (1953). 538. J. W. Tamblyn, D. R. Morey, R. H. Wagner, Ind. Eng. Chem., 37, 573 (1945). 539. F. H. Holmes, D. J. Smith, Trans. Faraday Soc, 53, 67 (1957). 540. W. J. B. Badgley, H. Mark, J. Phys. Colloid Chem., 51, 58 (1947). 541. H. J. Philipp, C. F. Bjork, J. Polym. Sci., 6, 549 (1951). 542. P. J. Flory, O. K. Spurr, Jr., D. K. Carpenter, J. Polym. Sci., 27, 231 (1958). 543. L. Huppenthal, S. Claesson, Roczniki Chem., 39, 1867 (1965). 544. L. Mandelkern, P. J. Flory, J. Am. Chem. Soc, 74, 2517 (1952). 545. V. P. Shanbhag, Arkiv Kemi, 29, 1 (1968). 546. V. P. Shanbhag, J. Oehman, Arkiv Kemi, 29, 163 (1968). 547. W. R. Krigbaum, L. H. Sperling, J. Phys. Chem., 64, 99 (1960). 548. G. Meyerhoff, J. Polym. Sci., 29, 399 (1958). 549. A. M. Holtzer, H. Benoit, P. Doty, J. Phys. Chem., 58, 624 (1954). 550. M. M. Huque, D. A. I. Goring, S. G. Mason, Can. J. Chem., 36, 952 (1958). 551. R. M. Badger, R. H. Blaker, J. Phys. Colloid Chem., 53, 1056 (1949). 552. E. Penzel, G. V. Shulz, Makromol. Chem., 113, 64 (1968). 553. W. R. Moore, J. A. Epstein, J. Appl. Chem. (London), 6, 168 (1956). 554. W. R. Moore, G. D. Edge, J. Polym. Sci., 47, 469 (1960). 555. M. L. Hunt, S. Newman, H. A. Scheraga, P. J. Flory, J. Phys. Chem., 60, 1278 (1956). 556. W. G. Harland, Nature, 170, 667 (1952). 557. G. Meyerhoff, N. Suetterlin, Makromol. Chem., 87, 258 (1965). 558. W. R. Moore, A. M. Brown, J. Colloid Sci., 14, 1343 (1959). 559. V. N. Tsvetkov, S. Ya. Kotlyar, Zh. Fiz. Khim., 30, 1100 (1956). 560. R. St. J. Manley, Arkiv Kemi, 9, 519 (1956). 561. W. Brown, D. Henley, J. Oehman, Makromol. Chem., 64, 49 (1963); see also W. Brown, Arkiv Kemi, 18, 227 (1961). 562. H. Vink, Makromol. Chem., 94, 1 (1966).
563. W. B. Neeley, J. Polym. Sci. A, 1, 311 (1963). 564. W. Brown, D. Henley, J. Oehman, Makromol. Chem., 62, 164 (1963). 565. G. Sitaramaiah, D. A. I. Goring J. Polym. Sci., 58, 1107 (1962). 566. W. Brown, D. Henley, Makromol. Chem., 79, 68 (1964). 567. H. Elmgren, Arkiv Kemi, 24, 237 (1965). 568. K. Gekko, Makromol. Chem., 148, 229 (1971). 569. F. R. Senti, N. N. Hellman, N. H. Ludwig, G. E. Babcock, R. Tobin, C. A. Class, B. L. Lamberts, J. Polym. Sci., 17, 527 (1955); see also Ref. 8. 570. K. Gekko, H. Noguchi, Biopolymers, 10, 1513 (1971). 571. L. H. Arond, H. P. Frank, J. Phys. Chem., 58, 953 (1954). 572. J. V. Koleska, S. F. Kurath, J. Polym. Sci. A, 2,4123 (1964). 573. R. L. Cleland, J. L. Wang, Biopolymers, 9, 799 (1970). 574. D. H. Juers, H. A. Swenson, S. F. Kurath, J. Polym. Sci. A-2, 5, 361 (1967). 590. N. M. Tret'yakova, L. V. Kosmodem'yanoskii, R. G. Romanova, E. G. Lazaryants, Vysokomol. Soedin. A, 12, 2754 (1970). 591. Houtz, cited in Y. Iwakura, Y. Kurosaki, N. Nakabayashi, Makromol. Chem., 44/46, 570 (1961). 592. W. Scholtan, H. Marzolph, Makromol. Chem., 57, 52 (1962). 593. Y. Shimura, I. Mita, H. Kambe, J. Polym. Sci. B, 2, 403 (1964). 594. H. Gerrens, H. Ohlinger, R. Fricker, Makromol. Chem., 87, 209 (1965). 595. Y. Shimura, J. Polym. Sci., A-2, 4, 423 (1966). 596. Ye. G. Erenburg, G. G. Kartasheva, M. A. Yeremina, I. Ya. Poddubnyi, Vysokomol. Soedin. A, 9, 2709 (1967). 597. Ye. A. Bekturov, L. A. Bimendina, S. V. Bereza, Vysokomol. Soedin. A, 12, 2179 (1970). 598. R. B. Mohite, S. Gundiah, S. I. Kapur, Makromol. Chem., 108, 52 (1967). 599. H. Hopff, D. Starck, Makromol. Chem., 48, 50 (1961). 600. S. R. Rafikov, S. A. Pavlova, Sh. Shayakhmotov, Vysokomol. Soedin. A, 11, 1990 (1969). 601. T. E. Helminiak, C. L. Benner, W. E. Gibbs, Polymer Preprints, 8, 284 (1967); see also CA, 1967,116045k; cited by W. H. Stockmayer, IUPAC Symposium, Leiden, Netherlands, 1970. 602. I. Ya. Poddubnyi, V. A. Grechanovskii, M. I. Mosevitskii, Vysokomol. Soedin., 5, 1042 (1964). 603. V. N. Tsvetkov, K. A. Andrianov, G. I. Okhrimenko, M. G. Vitovskaya, Eur. Polym. J., 7, 1215 (1971). 604. H. Tanzawa, T. Tanaka, A. Soda, J. Polym. Sci. A-2, 7, 929 (1969). 605. S. V. Bereza, Ye. A. Bekturov, S. R. Rafikov, Vysokomol. Soedin. A, 11, 1681 (1969). 606. S. V. Bereza, S. R. Rafikov, Ye. A. Bekturov, R. Ye. Legkunets, Vysokomol. Soedin. A, 10, 2536 (1968). 607. V. A. Myagchenkov, E. V Kuznetsov, O. A. Ishhakov, V. M. Lichkina, Vysokomol. Soedin., 5, 724 (1963). 608. J. Feyen, K. deGroot, A. C. deVisser, A. Bantjes, Biopolymers, 10, 2509 (1971).
609. J. R. Patel, C. K. Patel, R. D. Patel, Starke, 19, 330 (1967); cited in: J. R. Patel, R. D. Patel, Biopolymers, 10, 839 (1971). 610. A. B. Duchkova, N. S. Nametkin, V. S. Khotimskii, L. Ye. Gusel'nikov, S. G. Durgar'yan, Vysokomol. Soedin., 8, 1814 (1966). 611. J. D. Matlack, S. N. Chinai, R. A. Guzzi, D. W. Levi, J. Polym. Sci., 49, 533 (1961). 612. S. M. Kochergin, V. P. Barabanov, I. G. Fedorova, Vysokomol. Soedin., 8, 916 (1966). 613. H. Utiyama, K. Kajitani, M. Kurata, unpublished work. Cf. Rept. Progr. Polym. Phys. Japan, 6, 29 (1963). 614. T. Kotaka, Y. Murakami, H. Inagaki, J. Phys. Chem., 72, 829 (1968); see also T. Kotaka, H. Ohnuma, Y. Murakami, ibid., 70, 4099 (1966). 615. W. H. Stockmayer, L. D. Moore, Jr., M. Fixman, B. N. Epstein, J. Polym. Sci., 16, 517 (1955). 616. T. Kotaka, H. Ohnuma, H. Inagaki, Polymers, 10, 517 (1969); see also H. Ohnuma, H. Inagaki, ibid., 10, 501 (1969). 617. S. Polowinskii, J. Polym. Sci. A-2, 5, 891 (1967). 618. V. N. Tsvetkov, S. Ya. Magarik, T. Kadyrov, G. A. Andreyeva, Vysokomol. Soedin. A, 10, 943 (1968). 619. V. N. Tsvetkov, Makromol. Chem., 160, 1 (1972). 620. H. Benoit, J. Polym. Sci., 3, 376 (1948). 621. H. Markovitz, J. Chem. Phys., 20, 868 (1952). 622. J. E. Mark, J. Am. Chem. Soc., 88, 4354 (1966). 623. J. E. Mark, J. Am. Chem. Soc, 89, 6829 (1967). 624. T. Norisuye, K. Kawahara, A. Teramoto, H. Fujita, J. Chem. Phys., 49, 4330 (1968). 625. O. Kratky, H. Sand, Kolloid-Z., 172, 18 (1960). 626. J. E. Mark, Ref. 622; based on the stress-temperature data of L. A. Wood and F. L. Roth, J. Appl. Phys., 15, 781 (1944). 627. J. E. Mark, Ref. 622; based on the stress-temperature data of A. Ciferri, Makromol. Chem., 43, 152 (1961). 628. E. D. Kunst, Rec. Trav. Chim., 69, 125 (1950). 629. A. Ciferri, C. A. J. Hoeve, P. J. Flory, J. Am. Chem. Soc, 83, 1015 (1961); A. Ciferri, J. Polym. Sci., 54, 149 (1961). 630. A. Kotera, H. Matsuda, A. Wada, Rept. Progr. Polym. Phys. Japan, 8, 5 (1965). 631. A. Nakajima, F. Hamada, S. Hayashi, J. Polym. Sci. C, 15, 285 (1966). 632. P. J. Flory, A. Ciferri, R. Chiang, J. Am. Chem. Soc, 83, 1023 (1961). 633. J. E. Mark, P. J. Flory, J. Am. Chem. Soc, 87, 1423 (1965). 634. Unpublished data from the Chemstrand Research Center; cited in A. Ciferri, J. Polym. Sci. A, 2, 3089 (1964). 635. A. V. Tobolsky, D. Carlson, N. Indicator, J. Polym. Sci., 54, 175 (1961). 636. R. Kirste, G. V. Schulz, Z. Phys. Chem. (Frankfurt), 30,171 (1961). 637. R. Kirste, O. Kratky, Z. Phys. Chem. (Frankfurt), 31, 363 (1962). 638. A. Nakajima, H. Yamakawa, J. Phys. Chem., 67, 654 (1963). 639. H. Abe, W. Prins, J. Polym. Sci. C, 2, 527 (1963).
640. O. Kratky, G. Porod, Rec. Trav. Chim., 68, 1106 (1949). 641. E. Wada, K. Okano, Rept. Progr. Polym. Phys. Japan, 6, 1 (1963). 642. E. Eisenberg, E. F. Casassa, J. Polym. Sci., 47, 29 (1960). 643. N. T. Notley, P. J. W. Debye, J. Polym. Sci., 17, 99 (1955). 644. W. R. Krigbaum, D. K. Carpenter, J. Phys. Chem., 59, 1166 (1955). 645. E. Wada, K. Okano, Rept. Progr. Polym. Phys. Japan, 7, 19 (1964). 646. T. A. Oroflno, J. W. Mickey, Jr., J. Chem. Phys., 38, 2513 (1963). 647. G. V. Schulz, H. Baumann, Makromol. Chem., 60, 120 (1963). 648. T. A. Orofino, A. Ciferri, J. Phys. Chem., 68, 3136 (1964). 649. M. Fukuda, M. Fukutomi, Y. Kato, T. Hashimoto, [Private communication.] 650. H. Utiyama, J. Phys. Chem., 69, 4138 (1965). 651. N. Kuwahara, K. Ogino, A. Kasai, S. Ueno, M. Kaneko, J. Polym. Sci. A, 3, 985 (1965). 652. A. Dondos, H. Benoit, Makromol. Chem., 135, 181 (1970). 653. V. Ye. Eskin, O. Z. Korotkina, Vysokomol. Soedin. A, 12, 2216 (1970). 654. G. Allen, C. Booth, C. Price, Polymer, 8, 397,414 (1967). 655. J. E. Mark, P. J. Flory, J. Am. Chem. Soc, 87, 1415 (1965). 656. C. Rossi, A. Perico, J. Chem. Phys., 53, 1223 (1970). 657. W. Silberszyc, J. Polym. Sci. B, 1, 577 (1963). 658. J. M. Evans, M. B. Huglin, Makromol. Chem., 127, 141 (1969). 659. K. Bak, E. Elefante, J. E. Mark, J. Phys. Chem., 71, 4007 (1967). 660. R. H. Marchessault, K. Okamura, C. J. Su, Macromolecules, 3, 735 (1970). 661. J. Cornibert, R. H. Marchessault, H. Benoit, G. Weill, Macromolecules, 3, 741 (1970). 662. U. P. Strauss, P. Ander, J. Phys. Chem., 66, 2235 (1962). 663. J. K. Peterson, Thesis, Ohio State Univ., Ohio, USA, 1961. 664. Ye. G. Erenburg, G. G. Kartasheva, M. A. Yeremina, I. Ya. Poddubnyi, Vysokomot. Soedin. A, 9, 2709 (1967). 665. J. E. Mark, P. J. Flory, J. Am. Chem. Soc, 86, 138 (1964). 666. K. J. Ivin, H. A. Ende, J. Polym. Sci., 54, S17 (1961). 667. R. Endo, T. Hinokuma, M. Takeda, J. Polym. Sci. A-2, 6, 665 (1968). 668. P. R. Saunders, J. Polym. Sci. A, 2, 3765 (1964). 669. P. J. Flory, A. D. Williams, J. Polym. Sci. A-2, 5, 399 (1967). 670. D. A. Brant, P. J. Flory, J. Am. Chem. Soc, 87,2788 (1965). 671. A. Yu. Koshevnik, M. M. Kusakov, E. A. Razumovskaya, Vysokomol. Soedin. A, 10, 2795 (1968). 672. A. E. Tonelli, P. J. Flory, Macromolecules, 2, 225 (1969). 673. A. R. Schulz, J. Polym. Sci. A-2, 8, 883 (1970). 674. S. A. Pavlova, V. V. Korshak, L. V. Dubrovina, G. I. Timofeyeva, Vysokomol. Soedin. A, 9, 2624 (1967). 675. W. H. Stockmayer, IUPAC Symposium, Leiden, Netherlands, 1970. [This estimate of ro/M1/2 was based on the viscosity data given in Ref. 601.] 676. J. M. G. Cowie, P. M. Toporowski, Polymer, 5, 601 (1964).
677. R. S. Patel, R. D. Patel, J. Polym. Sci. A, 3, 2123 (1965); A2, 4, 835 (1966). 678. W. Burchard, Makromol. Chem., 88, 11 (1965). 679. S. Heine, O. Kxatky, G. Porod, P. Schmitz, Makromol. Chem., 44/46, 682 (1961). 680. A. M. Rijke, J. Polym. Sci. B, 4, 131 (1966). 681. B. Das, A. K. Ray, P. K. Choudhary, J. Phys. Chem., 73, 3413 (1969); see also B. Das, P. K. Choudhary, J. Polym. Sci. A-I, 5, 769 (1967). 682. Ye. A. Bekturov, L. A. Bimendina, S. V. Bareza, Vysokomol. Soedin. A, 12, 2179 (1970). 683. J. Velickovic, D. Jovanovic, J. Vukajlovic, Makromol. Chem., 129, 203 (1969). 684. V. Ye. Eskin, O. Z. Korotkina, Vysokomol. Soedin. A, 12, 2216 (1970). 685. G. A. Morneau, P. I. Roth, A. R. Schulz, J. Polym. Sci., 55, 609 (1961). 686. G. V. Schulz, E. Penzel, Makromol. Chem., 112, 260 (1968). 687. O. Kratky, H. Leopold, G. Puchwein, Kolloid-Z. -Z. Polymere, 216/217, 255 (1967). 688. R. L. Cleland, Biopolymers, 10, 1925 (1971). 689. M. Nakata, Makromol. Chem., 149, 99 (1971). 690. T. W. Bates, W. H. Stockmayer, J. Chem. Phys., 45, 2321 (1966); Macromolecules, 1, 12 (1968). 691. W. Brown, D. Henley, Makromol. Chem., 75, 179 (1964). 692. R. St. John Manley, Svensk Papperstidn. 61, 96 (1958). 693. V. P. Shanbhag, Arkiv Kemi, 29, 139 (1968). 694. S. Teramachi, A. Takahashi, I. Kagawa, Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Sec), 69, 685 (1966). 695. G. Allen, C. Booth, C. Price, Polymer, 8, 414 (1967). 696. P. J. Flory, Makromol. Chem., 98, 128 (1966). 697. Recommendation of IUPAC Macromolecular Division working party, "Molecular Characterization of Commercial Polymers", Strassbourg, 12.3.1971. 698. N. Corbin, J. Prud'homme, J. Polym. Sci., Polym. Phys. EcL 15, 1937 (1977). 699. P. N. Chaturvedi, C. K. Patel, J. Polym. Sci., Polym. Phys. Ed., 23, 1255 (1985). 700. G. Moraglio, G. Gianotti, F. Zoppi, U. Bonicelli, Eur. Polym. J., 7, 303 (1971). 701. D. Constantin, Eur. Polym. J., 13, 907 (1977). 702. I. Katime, P. Garro, J. M. Teijon, Eur. Polym. J., 11, 881 (1975). 703. G. R. Williamson, A. Cervenka, Eur. Polym. J., 10, 295 (1974). 704. E. P. Otocka, R. J. Roe, M. Y. Hellman, P. M. Muglia, Macromolecules, 4, 507 (1971). 705. H. L. Wagner, C. A. J. Hoeve, J. Polym. Sci., Polym. Symp., 54, 327 (1976). 706. G. R. Williamson, A. Cervenka, Eur. Polym. J., 8, 1009 (1972). 707. S. Tani, F. Hamada, A. Nakajima, Polym. J., 5, 86 (1973). 708. G. Moraglio, G. Gianotti, U. Bonicelli, Eur. Polym. J., 9, 623 (1973).
709. S. Anchi, M. Y. Pedram, J. M. G. Cowie, Eur. Polym. J., 15, 113 (1979). 710. G. S. Misra, S. H. Bhattacharya, Eur. Polym. J., 15, 125 (1979). 711. K. Kamide, Y. Miyazaki, H. Kobayashi, Polym. J., 17, 607 (1985). 712. R. Jerome, V. Desreux, Eur. Polym. J., 6, 411 (1970). 713. C U . Pittman, Jr., R. L. Voges, W. R. Jones, Macromolecules, 4, 291 (1971). 714. C. U. Pittman, Jr., J. C. Lai, D. P. Vanderpool, M. Good, R. Prado, Macromolecules, 3, 746 (1970). 715. M. Guaita, O. Chiantore, Makromol. Chem., 176, 185 (1975). 716. L. Gargallo, D. Radic, I. Katime, Eur. Polym. J., 16, 383 (1980). 717. N. Hadjichristidis, M. Devaleriola, V. Desreux, Eur. Polym. J., 8, 1193 (1972). 718. I. A. Katime Amashta, G. Sanchez, Eur. Polym. J., 11, 223 (1975). 719. N. Hadjichristidis, C. Touloupis, L. J. Fetters, Macromolecules, 14, 128 (1981). 720. R. J. Fort, T. M. Polyzoidis, Eur. Polym. J., 12, 685 (1976). 721. J. Stejskal, M. J. Benes, P. Krotochvil, J. Peska, J. Polym. Sci., Polym. Phys. Ed., 11, 1803 (1973). 722. M. Bohdanecky, H. Bazilova, J. Kopecek, Eur. Polym. J., 10,405 (1974). 723. N. Hadjichristidis, J. Mays, W. Ferry, L. J. Fetters, J. Polym. Sci., Polym. Phys. Ed., 22, 1745 (1984). 724. M. M. Zafar, R. Mahmood, S. A. Wadood, Makromol. Chem., 160, 313 (1972). 725. J. Stejskal, J. Janca, P. Kratochvil, Polym. J., 8, 549 (1976). 726. J. N. Helbert, C-Y. Chen, C U. Pittman, Jr., G. L. Hagnauer, Macromolecules, 11, 1104 (1978). 727. Y. Kashiwagi, Y. Einaga, H. Fujita, Polym. J., 12, 271 (1980). 728. I. Katime, A. Roig, L. M. Leon, S. Montero, Eur. Polym. J., 13, 59 (1977). 729. J. Niezette, N. Hadjichristidis, V. Desreux, Eur. Potym. J., 13,41 (1977). 730. V. N. Tsvetkov, E. I. Riumtsev, I. N. Shtennikova, E. V. Korneeva, B. A. Krenstel, Yu. B. Amerik, Eur. Polym. J., 9, 481 (1973). 731. M. Galin, J.-C. Galin, Eur. Polym. J., 9, 1149 (1973). 732. Z. Grubisic, P. Rempp, H. Benoit, J. Polym. Sci. B, 5, 753 (1967). 733. X. Zhongde, S. Mingshi, N. Hadjichristidis, L. J. Fetters, Macromolecules, 14, 1591 (1981). 734. M. M. Zafar, R. Mahmood, Makromol. Chem., 175, 903 (1974). 735. N. Hadjichristidis, J. Mays, R. D. Vargo, L. J. Fetters, J. Polym. Sci., Polym. Phys. Ed., 21, 189 (1983). 736. M. Dolezalova, V. Petrus, Z. Tuzar, M. Bohdanecky, Eur. Polym. J., 12, 701 (1976). 737. K. Yamaura, K. Hirata, S. Tamura, S. Matsuzawa, J. Polym. Sci., Polym. Phys. Ed., 23, 1703 (1985). 738. K. Matsuo, W. H. Stockmayer, Macromolecules, 8, 660 (1975).
739. R Cane, T. Capaccioli, Eur. Polym. J., 14, 185 (1978). 740. C M. L. Atkinson, R. Dietz, Eur. Polym. J., 15, 21 (1979). 741. Z. Kucukyavuz, S. Kucukyavuz, Eur. Polym. J., 14, 867 (1978). 742. I. Katime, A. Roig, Eur. Polym. J., 11, 603 (1975). 743. K. Matsumura, Polym. J., 1, 332 (1970). 744. I. Hernandez-Fuentes, M. G. Prolongo, Eur. Polym. J., 15, 571 (1979). 745. Y. Izumi, Y. Miyake, Polym. J., 3, 647 (1972). 746. V. E. Eskin, T. N. Nekrasova, U. Juraev, Eur. Polym. J., 11, 341 (1975). 747. M. Matsuo, W. H. Stockmayer, J. Polym. Sci., Polym. Phys. Ed., 11, 43 (1973). 748. S. L. Malhotra, J. Leonard, E. Ahad, Eur. Polym. J., 14, 257 (1978). 749. A. L. Spatorico, B. Coulter, J. Polym. Sci., Polym. Phys. Ed., 11, 1139 (1973). 750. Y. Einaga, Y Miyaki, H. Fujita, J. Polym. Sci., Polym. Phys. Ed., 17, 2103 (1979). 751. Z. Xu, N. Hadjichristidis, L. J. Fetters, cited in Ref. 733. 752. M. Nakata, Makromol. Chem., 149, 99 (1971). 753. G. Meyerhoff, B. Appelt, Macromoiecules, 12, 968 (1979), 13, 657 (1980). 754. C W. Tsimpris, B. Suryanrayanan, K. G. Mayhan, J. Polym. Sci. A-2, 10, 1837 (1972). 755. J. Roovers, J. Polym. Sci., Polym. Phys. Ed., 23, 1117 (1985). 756. C Strazielle, H. Benoit, O. Vogi, Eur. Polym. J., 14, 331 (1978). 757. J. Herz, M. Hert, C Strazielle, Makromol. Chem., 160, 213 (1972). 758. J. E. L. Roovers, S. Bywater, Macromolecules, 5, 384 (1972). 759. J. Roovers, P. M. Toporowski, Macromolecules, 14, 1174 (1981). 760. I. Noda, Y. Yamamoto, T. Kitano, M. Nagasawa, Macromolecules, 14, 1306 (1981). 761. J. Velickovic, S. Coseva, R. J. Fort, Eur. Polym. J., 11, 377 (1975). 762. J. Velickovic, S. Vasovic Makromol. Chem., 153, 207 (1972). 763. J. Velickovic, J. Filipovic, S. Coseva, Eur. Polym. J., 15, 521 (1979). 764. Y. Higo, Y. Kato, M. Itoh, N. Kozuka, I. Noda, M. Nagasawa, Polym. J., 14, 809 (1982). 765. L. M. Leon, I. Katime, M. Gonzalez, J. Figueruelo, Eur. Polym. J., 14 671 (1978). 766. L. M. Leon, J. Galaz, L. M. Garcia, M. S. Anasagasti, Eur. Polym. J., 16, 921 (1980). 767. L. M. Leon, I. Katime, M. Rodriguez, Eur. Polym. J., 15, 29 (1979). 768. G. Sitaramaiah, D. Jacobs, Makromol. Chem., 164, 237 (1973). 769. G. Fourche, C Tourenne, Eur. Polym. J., 12, 663 (1976). 770. R. Meza, L. Gargallo, Eur. Polym. J., 13, 235 (1977). 771. M. Tricot, J. Bleus, J.-P. Riga, V. Desreux, Makromol. Chem., 175, 913 (1974).
772. K. Kamide, Y. Miyazaki, H. Kobayashi, Polym. J., 14, 591 (1982). 773. C. R. Reddy, V. Kalpagam, J. Polym. Sci., Polym. Phys. Ed., 14, 749 (1976) 774. C. Cincu, Eur. Polym. J., 10, 29 (1974). 775. S. AIi, Polym. J., 15, 685 (1979). 776. J. Podesva, M. Bohdanecky, P. Kratochvil, J. Polym. Sci., Polym. Phys. Ed., 15, 1521 (1977). 777. K. S. V. Srinivasan, M. Santappa, J. Polym. Sci., Polym. Phys. Ed., 11, 331 (1973). 778. N. Nemoto, T. Inoue, Y. Tsunashima, M. Kurata, Bull. Inst. Chem. Res., Kyoto Univ., 62, 177 (1984). 779. D. Radic, L. Gargallo, J. Polym. Sci., Polym. Phys. Ed., 16, 977 (1978). 780. M. Shima, E. Ogawa, S. Ban, M. Sato, J. Polym. Sci., Polym. Phys. Ed., 15, 1999 (1977). 781. M. Pizzoli, G. Ceccorulli, Eur. Polym. J., 8, 769 (1972). 782. M. Pizzoli, G. Ceccorulli, G. Stea, Makromol. Chem., 164, 273 (1973). 783. T. Tanaka, T. Kotaka, K. Ban, M. Hattori, H. Inagaki, Macromolecules, 10, 960 (1977). 784. S. Ya. Magarik, G. M. Pavlov, G. A. Fomin, Macromolecules, 11, 294 (1978). 785. M. G. Prolongo, R. M. Masegosa, I. Hernandez-Fuentes, A. Horta, Macromolecules, 14, 1526 (1981). 786. J. Prud'homme, J. E. L. Roovers, S. By water, Eur. Polym. J., 8, 901 (1972). 787. T. Tsuji, H. Fujita, Polym. J., 4, 409 (1973). 788. G. Gianotti, U. Bonicelli, D. Borghi, Makromol. Chem., 166, 235 (1973). 789. Cr. Simionescu, J. Cobianu, Eur. Polym. J., 15, 173 (1979). 790. N. Doddi, W. C. Forsman, C. C. Price, J. Polym. Sci., Polym. Phys. Ed., 12, 1395 (1974). 791. R. Alamo, J. G. Fatou, A. Bello, Polym. J., 15, 491 (1983). 792. A. R. Schulz, A. L. Bridgman, E. M. Hadsell, C. R. McCullough, J. Polym. Sci. A-2, 10, 273 (1972). 793. G. Meyerhoff, Makromol. Chem., 145, 189 (1971). 794. A. L. Spatorico, J. Polym. Sci., Polym. Phys. Ed., 12, 159 (1974). 795. K. Matsuo, W. H. Stockrnayer, G. F. Needham, J. Polym. Sci., Polym. Sypm., 71, 95 (1984). 796. T. Tsuji, T. Norisuye, H. Fujita, Polym. J., 7, 558 (1975). 797. S. A. Akita, Y. Einaga, Y Miyaki, H. Fujita, Macromolecules, 9, 774 (1976). 798. T. Hirose, Y Einaga, H. Fujita, Polym. J., 11, 819 (1979). 799. Y Miyaki, Y. Einaga, T. Hirose, H. Fujita, Macromolecules, 10, 1356 (1977). 800. T. Capaccioli, L. Zotteri, Eur. Polym. J., 11, 729 (1975). 801. K. Kamide, Y Miyazaki, H. Kobayashi, Polym. J., 9, 317 (1977). 802. C. W. Tsimpris, K. G. Mayhan, J. Polym. Sci., Polym. Phys. Ed., 11, 1151 (1973). 803. B. Lanska, M. Bohdanecky, J. Sebenda, Z. Tuzar, Eur. Polym. J., 14, 807 (1978). 804. J. Herold, G. Meyerhoff, Eur. Polym. J., 15, 525 (1979). 805. J. C. Gressier, G. Levesque, Eur. Polym. J., 16,1167 (1980). 806. A. DeChirico, Eur. Polym. J., 13, 537 (1977).
807. V. N. Tsvetkov, G. I. Kudryavtsev, I. N. Shennikova, T. V. Pekar, E. N. Zakkarova, V. D. Kalmykova, A. V. Volokhina, Eur. Polym. J., 12, 517 (1976). 808. A. A. Jones, W. H. Stockmayer, R. J. Molinari, J. Polym. Sci., Polym. Symp., 54, 227 (1976). 809. K. Sakurai, K. Ochi, T. Norisuye, H. Fujita, Polym. J., 16, 559 (1984). 810. E. Bianchi, A. Ciferri, J. Preston, W. R. Krigbaum, J. Polym. Sci., Polym. Phys. Ed., 19, 863 (1981). 811. H. Garreau, E. Marechal, Eur. Polym. J., 9, 263 (1973). 812. Z. Tuzar, M. Bohdanecky, R. Puffr, J. Sebenda, Eur. Polym. J., 11, 851 (1975). 813. J. S. Tan, A. R. Sochor, Macromolecules, 14, 1700 (1981). 814. S. Itoh, N. Nishioka, T. Norisuye, A. Teramoto, Macromolecules, 14, 904 (1981). 815. R. B. Howkins, A. Holtzer, Macromolecules, 5,294 (1972). 816. M. Oka, T. Hayashi, A. Nakajima, Polym. J., 17, 621 (1985). 817. W. L. Mattice, J.-T. Lo, Macromolecules, 5, 734 (1972). 818. D. S. Clark, W. L. Mattice, Macromolecules, 10, 369 (1977). 819. S. M. Aharoni, C. R. Crosby III, E. K. Walsh, Macromolecules, 15, 1093 (1982). 820. C. Fougnot, J. Jozefovicz, J. Polym. Sci., Polym. Symp., 39, 199 (1972). 821. M. R. Ambler, D. Mclntyre, L. J. Fetters, Macromolecules 11, 300 (1978). 822. M. N. Berger, B. M. Tidswell, J. Polym. Sci., Polym. Symp., 42, 1063 (1973). 823. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, Yu. P. Getmanchuk, Eur. Polym. J., 7, 767 (1971). 824. H. Murakami, T. Norisuye, H. Fujita, Macromolecules, 13, 345 (1980). 825. A. J. Bur, L. J. Fetters, Macromolecules, 6, 874 (1973). 826. V. N. Tsvetkov, E. I. Rjumtsev, N. V. Pogodina, I. N. S. Shtennikova, Eur. Polym. J., 11, 37 (1975). 827. D. N. Rubingh, H. Yu, Macromolecules, 9, 681 (1976). 828. J. Sadanobu, T. Norisuye, H. Fujita, Polym. J., 13, 75 (1981). 829. S. loan, E. Dumitrium S. Maxim, A. Carpov, Eur. Polym. J., 13, 109 (1977). 830. H. Kaye, H. J. Chou, J. Polym. Sci., Polym. Phys. Ed., 13, 477 (1975). 831. J. F. Wolfe, J. K. Stille, Macromolecules, 9, 489 (1976). 832. S. O. Norris, J. K. Stille, Macromolecules, 9, 496 (1976). 833. S.-G. Chu, S. Venkatraman, G. C. Berry, Y Einaga, Macromolecules, 14, 939 (1981). 834. M. Motowoka, T. Norisuye, A. Teramoto, H. Fujita, Polym. J., 11, 665 (1979). 835. S. Takahashi, M. Kariya, T. Yatake, K. Sonogashira, N. Hagihara, Macromolecules, 11, 1063 (1978). 836. G. L. Hagnauer, B. R. Laliberte, J. Polym. Sci., Polym. Phys. Ed., 14, 367 (1976). 837. J. Brzezinski, Z. Czlonkowska-Kohutnicka, B. Czarnecka, A. Kornas-Calka, Eur. Polym. J., 9, 733 (1973). 838. J. G. Zilliox, J. E. L. Roovers, S. Bywater, Macromolecules, 8, 573 (1975).
839. A. Stokes, Eur. Polym. J., 6, 719 (1970). 840. A. C. Ouano, E. Gipstein, W. Kaye, B. Dawson, Macromolecules, 8, 558 (1975). 841. G. Allen, J. McAnish, Eur. Polym. J., 6, 1635 (1970). 842. N. Ohno, K. Nitta, S. Makino, S. Sugai, J. Polym. Sci., Polym. Phys. Ed., 11, 413 (1973). 843. J. Kovaf, L. Mrkvickova-Vaculova, M. Bohdanecky, Makromol. Chem., 176, 1829 (1975). 844. D. Casson, A. Rembaum, Macromolecules, 5, 75 (1972). 845. G. L. Hagnauer, G. D. Mulligan, Macromolecules, 6, 477 (1973). 846. J. M. G. Cowie, A. Maconnachie, Eur. Polym. J., 11, 79 (1975). 847. J. M. G. Cowie, A. Maconnachie, Eur. Polym. J., 10, 367, 375 (1974). 848. W. Banks, C. T. Greenwood, Makromol. Chem., 144, 135 (1971). 849. W. Banks, C. T. Greenwood, Eur. Polym. J., 7, 263 (1971). 850. J. M. G. Cowie, A. Maconnachie, J. Polym. Sci., Polym. Phys. Ed., 12, 407 (1974). 851. K. Kamide, M. Saito, T. Abe, Polym. J., 13, 421 (1981). 852. M. Saito, Polym. J., 15, 249 (1983). 853. N. G. Vyas, S. Shashikant, C. K. Patel, R. D. Patel, J. Polym. Sci., Polym. Phys. Ed., 17, 2021 (1979). 854. K. Kamide, T. Terakawa, Y. Miyazaki, Polym. J., 11, 285 (1979). 855. K. Kamide, Y. Miyazaki, T. Abe, Polym. J., 11, 523 (1979). 856. N. P. Dymarchuk, K. P. Mischenko, T. V. Formina, Zh. Prikl. Khim. (Leningrad), 37, 2263 (1964), cited in Ref. 855. 857. P R. M. Nair, R. M. Gohil, K. C. Patel, R. D. Patel, Eur. Polym. J., 13, 273 (1977). 858. J. T. Guthrie, M. B. Huglin, R. W. Richards, V. I. Shah, A. H. Simpson, Eur. Polym. J., 11, 527 (1975). 859. V. N. Tsvetkov, E. I. Rjumtsev, L. N. Andreeva, N. V. Pogodina, P N. Lavrenko, L. Kutsenko, Eur. Polym. J., 10, 563 (1974). 860. L. C. Cerney, J. McTiernan, D. M. Stasiw, J. Polym. Sci., Polym. Symp., 42, 1455 (1973). 861. J. M. G. Cowie, A. Maconnachie, Data cited in Ref. 850. 862. T. Norisuye, T. Yanaki, H. Fujita, J. Polym. Sci., Polym. Phys. Ed., 18, 547 (1980). 863. Y. Kashiwagi, T. Norisuye, H. Fujita, Macromolecules, 14, 1220 (1981). 864. L. W. Fisher, A. R. Sochor, J. S. Tan, Macromolecules, 10, 955 (1977). 865. T. Sato, T. Norisuye, H. Fujita, Polym. J., 16, 341 (1984). 866. M. Milas, M. Rinaudo, B. Tinland, Polym. Bull., 14, 157 (1985). 867. J. R. Urwin, M. Girolamo, Makromol. Chem., 160, 183 (1972). 868. P. J. Kay, F. E. Treloar, Makromol. Chem., 175, 3207 (1974). 869. A. Dondos, H. Benoit, Macromolecules, 4, 279 (1971). 870. P. Karayannidis, A. Dondos, Makromol. Chem., 147, 135 (1971).
871. M. Pezzoli, C. Stea, G. Ceccorulli, G. B. Gechele, Eur. Polym. J., 6, 1219 (1970). 872. T. Kato, K. Miyaso, I. Noda, T. Fujimoto, M. Nagasawa, Macromolecules, 3, 777 (1970). 873. Y. Tsunashima, Dactoral Thesis, Kyoto Univ., 1972. 874. K. Takashima, K. Nakae, M. Shibata, H. Yamakawa, Macromolecules, 7, 641 (1974). 875. Y. Miyaki, Y. Einaga, H. Fujita, Macromolecules, 11, 1180 (1978). 876. P. Munk, B. O. Gutierrez, Macromolecules, 12,467 (1979). 877. Y. Mikayi, Y. Einaga, H. Fujita, M. Fukuda, Macromolecules, 13, 588 (1980). 878. G. Glockner, Eur. Polym. J., 15, 727 (1979). 879. A. Dondos, Eur. Polym. J., 7, 405 (1971). 880. V. R. Moore, M. A. Uddin, Eur. Polym. J., 6, 121 (1970). 881. M. R. Knecht, H.-G. Elias, Makromol. Chem., 157, 1 (1972). 882. F. S. Tan, J. Polym. Sci., Polym. Phys. Ed., 12, 175 (1974). 883. J. Ansorena, J. J. Iruin, G. M. Guzman, J. Polym. Sci., Polym. Phys. Ed., 18, 173 (1980). 884. R. C. Jordan, D. A. Brant, Macromolecules, 13,491 (1980). 885. B. Chu, C. Wu, J. Zuo, Macromolecules, 20, 700 (1987). 886. W. H. Stockmayer, in: M. Nagasawa (Ed.), "Molecular Conformation and Dynamics of Macromolecules in Condensed Systems", Elsevier, Amsterdam, 1988, p. 1. 887. R N. Chaturvedi, C. K. Patel, J. Polym. Sci., Polym. Phys. Ed., 23, 1255(1985). 888. J. W. Mays, N. Hadjichristidis, W. W. Graessley. L. J. Fetters, J. Polym. Sci., Polym. Phys. Ed., 24, 2553 (1986). 889. J. Roovers, P. M. Tororowski, J. Polym. Sci., Polym. Phys. Ed., 26, 1251 (1988). 890. J. Mays, N. Hadjichristidis, L. J. Fetters, Macromolecules, 17, 2723 (1984). 891. N. S. Davidson, L. J. Fetters, W. G. Funk, N. Hadjichristidis, W. W. Graessley, Macromolecules, 20, 2614 (1987). 892. Y. Tsunashima, M. Hirata, N. Nemoto, M. Kurata, Macromolecules, 21, 1107(1988). 893. B. J. Bauer, L. J. Fetters, W. W. Graessley, N. Hadjichristidis, G. F. Quack, Macromolecules, 22, 2337 (1989). 894. P. N. Chaturvedi, C. K. Patel, Makromol. Chem., 186, 2341 (1985). 895. K. Kajiwara, H. Suzuki, H. Inagaki, M. Maeda, T. Tsuruta, Makromol. Chem., 187, 2257 (1986). 896. X. Zhongde, N. Hadjichristidis, J. M. Carella, L. J. Fetters, Macromolecules, 16, 925 (1983). 897. J. W. Mays, L. J. Fetters, Macromolecules, 22, 921 (1989). 898. Z. Wang, A. Tontisakis, W. H. Tuminello, W. Buck, B. Chu, Macromolecules, 23, 1444 (1990). 899. W. Brown, P. Zhou, Macromolecules, 24, 5151 (1991). 900. H. Ochiai, M. Handa, H. Matsumoto, T. Moriga, I. Murakami, Makromol. Chem., 186, 2547 (1985). 901. F. Gundert, B. A. Wolf, Makromol. Chem., 187, 2969 (1986). 902. T. Hirao, A. Teramoto, T. Sato, T. Norisuye, T. Masuda, T. Higashimura, Polym. J., 23, 925 (1991). 903. Y. Tsunashima, H. Hara, H. Narita, F. Horii, ICR Annual Report, 2, 28 (1995).
904. F. Abe, Y. Einaga, H. Yamakawa, Macromolecules, 24, 4423 (1991). 905. F. Mabire, R. Audebert, C. Quivoron, Polym., 25, 1317 (1984). 906. T. Kato, T. Tokuya, T. Nozaki, A. Takahashi, Polym., 25, 218 (1984). 907. K. Sivadasan, S. Gundiah, Polym., 28, 1426 (1987). 908. T. Desai, P. Shah, B. Suthar, J. Polym. ScL, Polym. Phys. Ed., 26, 491 (1988). 909. K. Patal, P. P. Shah, B. Suthar, J. Polym. ScL, Polym. Phys. Ed., 26, 491 (1988). 910. B. C. Simionescu, S. loan, C. I. Simionescu, J. Polym. ScL, Polym. Phys. Ed., 25, 829 (1987); C. I. Simionescu, B. C. Simionescu, S. loan, J. Polym. ScL, Polym. Lett. Ed., 23, 121 (1985). 911. J. W. Mays, N. Hadjichristidis, J. S. Lindner, J. Polym. ScL, Polym. Phys. Ed., 28, 1881 (1990). 912. C. I. Simionescu, S. loan, B. C. Simionescu, Europ. Polym. J., 23, 69 (1987). 913. X. Zhongde, N. Hadjichristidis, L. J. Fetters, Macromolecules, 17, 2303 (1984). 914. J. W. Mays, W. Ferry, N. Hadjichristidis, L. J. Fetters, Macromolecules, 18, 2330 (1985). 915. E. Siakali-Kioulafa, N. Hadjichristidis, J. W. Mays, Macromolecules, 22, 2059 (1989). 916. Y. Fujii, Y. Tamai, T. Konishi, H. Yamakawa, Macromolecules, 24, 1608 (1991). 917. A. Karandinos, S. Nan, J. W. Mays, Macromolecules, 24, 2007 (1991). 918. M. Stickler, D. Panke, W. Wunderlich, Makromol. Chem., 188, 2651 (1987). 919. C. I. Simionescu, S. loan, A. Flondor, B. C. Simionescu, Makromol. Chem., 189, 2331 (1988). 920. M. Ricker, M. Schmidt, Makromol. Chem., 192, 679 (1991). 921. L. Gargallo, M. I. Munoz, D. Radic, Polym., 27, 1416 (1986). 922. L. Gargallo, M. L Munoz, F. R. Dias, D. Radic, Polym., 29, 1898 (1988). 923. L. Gargallo, N. Hamidi, D. Radic, Polym., 31, 924 (1990). 924. K. Yamaura, K. Hirata, S. Tamura, S. Matsuzawa, J. Polym. ScL, Polym. Phys. Ed., 23, 1703 (1985). 925. G. Lutringer, G. Weill, Polym., 32, 877 (1991). 926. J. Roovers, J. Polym. ScL, Polym. Phys. Ed., 23, 1117 (1985). 927. T. Corner, F. W. Peaker, J. Polym. ScL, Polym. Phys. Ed., 22, 2105 (1984). 928. H. Zhiduau, Y Meina, Z. Xuanqi, W. Wiaobing, J. Xiaoming, H. Jiaxian, L. Chunrong, W. Linfu, Europ. Polym. J., 22, 597 (1986). 929. J. Roovers, N. Hadjichristidis, L. J. Fetters, Macromolecules, 16, 214 (1983). 930. G. B. McKenna, G. Hadziioannou, P. Lutz, G. HiId, C. Strazielle, C. Straupe, P. Reimpp, A. Kovacs, Macromolecules, 20, 498 (1987). 931. N. Khasat, R. W. Pennisi, N. Hadjichristidis, L. J. Fetters, Macromolecules, 21, 1100 (1988).
932. Y Einaga, H. Koyama, T. Konishi, H. Yamakawa, Macromolecules, 22, 3419 (1989). 933. M. E. Lewis, S. Nan, J. W. Mays, Macromolecules, 24, 197 (1991). 934. J. W. Mays, S. Nan, D. Whitfield, Macromolecules, 24, 315 (1991). 935. J. W. Mays, S. Nan, M. E. Lewis, Macromolecules, 24, 4857 (1991). 936. W. -M, Kulicke, M. Prescher, Makromol. Chem., 185, 2619 (1984). 937. S. Arichi, N. Sakamoto, S. Himuro, M. Miki, M. Yoshida, Polymer, 26, 1175 (1985). 938. J. W. Mays, W. F. Ferry, N. Hadjichristidis, W. G. Funk, L. J. Fetters, Polym.er 27, 129 (1986). 939. A. A. Abdel-Azim, S. A. Moustafa, M. M. E. Dessouky, F. Abdel-Rehim, S. A. Hassan, Polymer, 27, 1406 (1986). 940. S. Arichi, N. Sakamoto, M. Yoshida, S. Himuro, Polymer, 27, 1761 (1986). 941. T. Masuda, Y. Ohta, T. Yamauchi, S. Onogi, Polym. J., 16, 273 (1984). 942. J. M. Barrales-Rienda, P. A. G. Gomez, Europ. Polym. J., 20, 1213 (1984). 943. J. Velickovic, J. Filipovic, Macromolecules, 17,611 (1984). 944. Y Matsushita, Y. Nakao, K. Shimizu, I. Noda, M. Nagasawa, Macromolecules, 21, 2790 (1988). 945. J. Velickovic, J. Filipovic, Makromol. Chem., 185, 569 (1984). 946. N. Sakamoto, H. Tanaka, K. Yamaguchi, M. Yasuda, S. Arichi, Makromol. Chem., 186, 1881 (1985). 947. R. Gavara, A. Campos, J. E. Figueruelo, Makromol. Chem., 191, 1899 (1990). 948. G. M. Pavlov, E. F. Panarin, E. V. Korneeva, C. V. Kurochkin, V. E. Baikov, V. N. Ushakova, Makromol. Chem., 191, 2889 (1990). 949. A. Leon, L. Gargallo, D. Radic, A. Horta, Polym., 32, 761 (1991). 950. M. B. Huglin, M. A. Radwan, Polym., 32, 1293 (1991). 951. K. Kamide, Y Miyazaki, H. Kobayashi, Polym. J., 17, 607 (1985). 952. Y. Matsushita, K. Shimizu, Y. Nakao, H. Choshi, I. Noda, M. Nagasawa, Polym. J., 18, 361 (1986). 953. M. Benchabane, R. Van Leemput, J. Polym. ScL, Polym. Phys. Ed., 23, 991 (1985). 954. D. B. Cotts, J. Polym. ScL, Polym. Phys. Ed., 23, 2217 (1985). 955. S. L. Malhotra, T. L. Bluhm, Y Deslandes, Europ. Polym. J., 22, 391 (1986). 956. K. Matsuo, W. H. Stockmayer, F. Bangerter, Macromolecules, 18, 1346 (1985). 957. Z. Kucukyavuz, S. Kucukyavuz, Makromol. Chem., 187, 2469 (1986). 958. Z. Kucukyavuz, Makromol. Chem, 191, 2205 (1990). 959. A. Dems, G. Strobin, Makromol, Chem., 192, 131 (1991). 960. S. Kucukyavus, Z. Kucukyavus, G. Erdogan, Polym., 31, 379 (1990). 961. K. Kamide, Y. Miyazaki, H. Yamazaki, Polym. J., 18, 645 (1986).
962. R M. Cotts, J. Polym. ScL, Polym. Phys. Ed., 24, 1493 (1986). 963. P. Gregory, M. B. Huglin, Makromol. Chem., 187, 1745 (1986). 964. D. Kisakurek, N. Binboga, J. F. Harrod, Polym., 28, 1767 (1987). 965. J. I. Eguiazabal, J. Areizaga, J. J. Iruin, G. M. Guzman, Europ. Polym. J., 21, 711 (1985). 966. F. Pilati, A. Munari, P. Manaresi, G. Miloni, V. Bonora, Europ. Polym. J., 23, 265 (1987). 967. A. Munari, P. Manaresi, E. Chiorboli, A. Chiolle, Europ. Polym. J., 28, 101 (1992). 968. L. J. Mathias, R. E. Hermes, Macromolecules, 19, 1536 (1986). 969. W. R. Krigbaum, T. Tanaka, Macromolecules, 21, 743 (1988). 970. M. Kuwata, H. Murakami, T. Norisuye, H. Fujita, Macromolecules, 17, 2731 (1984). 971. T. Kitagawa, J. Sadanobu, T. Norisuye, Macromolecules, 23, 602 (1990). 972. R. A. Kulkarni, S. Gundiah, Makromol. Chem., 185, 549 (1984). 973. Q. Ying, B. Chu, R. Qian, J. Bao, J. Zhang, C, Xu, Polymer, 26, 1401 (1985). 974. K. Sakurai, K. Ochi, T. Norisuye, H. Fujita, Polym. J., 16, 559 (1984). 975. S. Fujishige, Polym. J., 19, 297 (1987). 976. K. F. Weyts, E. J. Goethals, W. H. Bunge, C. J. B. Treslong, Europ. Polym. J., 26, 445 (1990). 977. W. R. Krigbaum, G. Brelsford, Macromolecules, 21, 2502 (1988). 978. K. Kamide, A. Kiguchi, Y. Miyazaki, Polym. J., 18, 919 (1986). 979. A. Sanchez, A. Bello, C. Marco, J. G. Fatou, Makromol. Chem., 189, 399 (1988). 980. H. N. Bhargava, C. B. Sharma, R. R. Srivastava, Polmer J., 18,619 (1986); H. N. Bhargava, R. R. Srivastava, M. Singh, Polym. J., 19, 1285 (1987). 981. A. Lapp, J. Herz, C. Strazielle, Makromol. Chem., 186, 1919 (1985). 982. J. Horska, V. Petrus, M. Bohdanecky, Polym., 28, 1207 (1987). 983. C. Salom, J. J. Freire, I. Hernandes-Fuentas, Polym., 30, 615 (1989). 984. T. Itoh, H. Chikiri, A. Teramoto, S. M. Aharoni, Polym. J., 20, 143 (1988). 985. P. P Shah, Europ. Polym. J., 20, 519 (1984). 986. S. Lazcano, A. Bello, C. Marco, J. G. Fatou, Europ. Polym. J., 24, 985 (1988). 987. J. M. Barrales-Rienda, C. R. Galicia, J. J. Freire, A. Horta, Macromolecules, 16, 940 (1983).
988. J. M. Barrales-Rienda, C. R. Galicia, J. J. Freire, A, Horta, Macromolecules, 16, 1707 (1983). 989. A. W. Chow, S. P. Bitler, R E. Penwell, D. J. Osborne, J. R Wolfe, Macromolecules, 22, 3514 (1989). 990. S. A. Swanson, P. M. Cotts, R. Siemens, S. H. Kim, Macromolecules, 24, 1352 (1991). 991. D. Rosenvasser, R. V. Figini, Makromol. Chem., 185, 1361 (1984). 992. L. Gargallo, E. Soto, L. H. Tagle, D. Radic, Europ. Polym. J., 24, 1119(1988). 993. J. Roovers, J. D. Cooney, R M. Toporowski, Macromolecules, 23, 1611 (1990). 994. J. Bravo, M. P. Tarazona, E. Saiz, Macromolecules, 24, 4089 (1991). 995. R M. Cotts, S. Ferline, G. Dagli, D. S. Pearson, Macromolecules, 24, 6730 (1991). 996. J. Danhelka, M. Netopilik, M. Bohdanecky, J. Polym. ScL, Polym. Phys. Ed., 25, 1801 (1987). 997. B. Pfannemuller, M. Schmidt, G. Ziegast, K. Matsuo, Macromolecules, 17, 710 (1984). 998. T. Kato, T. Katsuki, A. Takahashi, Macromolecules, 17, 1726 (1984). 999. S. G. Ring, K. J. 1'Anson, V. J. Morris, Macromolecules, 18, 182 (1985). 1000. C. L. McCormick, P. A. Callais, B. H. Hutchinson, Jr., Macromolecules, 18, 2394 (1985). 1001. G. V. Laivins, D. G. Gray, Macromolecules, 18, 1746 (1985). 1002. J. W. Mays, Macromolecules, 21, 3179 (1988). 1003. K. Nishinari, K. Kohyama, P. A. Williams, G. O. Phillips, W. Burchard, K. Ogino, Macromolecules, 24, 5590 (1991). 1004. A. Wirscn, Makromol. Chem., 189, 833 (1988). 1005. N. Donkai, H. Inagaki, K. Kajiwara, H. Urakawa, M. Schmidt, Makromol. Chem., 186, 2623 (1985). 1006. A. Leon, L. Gargallo, A. Horta, D. Radic, J. Polym. ScL, Polym. Phys. Ed., 27, 2337 (1989). 1007. H. Kawanishi, Y. Tsunashima, F. Horii, S. Okada, Polym. preprints Japan 45, 3387 (1996). 1008. C. Wei-Berk, G. C. Berry, J. Polym. ScL, Polym. Phys. Ed., 28, 1873 (1990). 1009. A. Matsumoto, T. Tarui, T. Otsu, Macromolecules, 23, 5102 (1990). 1010. L. J. Fetters, N. Hadjichristidis, J. S. Lindner, J. W. Mays, W. W. Wilson, Macromolecules, 24, 3127(1991). 1011. S. R. Gooda, M. B. Huglin, Macromolecules, 25, 4215(1992). Note: References 508-511 and 575-589 are for biological polymers such as collagen, gelatin and poly(nucieotides), which do not appear in the present tables.
S e d i m e n t a t i o n
C o e f f i c i e n t s ,
C o e f f i c i e n t s , V o l u m e s , S e c o n d
F r i c t i o n a l V i r i a j
P o l y m e r s
M.
P a r t i a l
D i f f u s i o n
S p e c i f i c
R a t i o s ,
a
C o e f f i c i e n t s i n
n
d
o f
S o l u t i o n * * *
D . L e c h n e r , E. N o r d m e i e r ,
D. G.
Steinmeier
Physical Chemistry, University of Osnabruck, Osnabriick, FR Germany
A. Sedimentation Coefficients, Diffusion Coefficients, Partial Specific Volumes, and Frictional Ratios of Polymers in Solution 1. Introduction 1.1. Sedimentation Coefficient 1.2. Diffusion Coefficient 1.3. Molar Mass Averages Determined from Sedimentation and Diffusion Coefficients 1.4. Partial Specific Volumes 1.5. Frictional Ratios 1.6. List of Symbols and Abbreviations 1.7. Miscellaneous B. Tables of Sedimentation Coefficients, Diffusion Coefficients, Partial Specific Volumes, and Frictional Ratios of Polymers in Solution Table Table Table Table Table Table
1. 2. 3. 4. 5. 6.
Poly(alkenes) Poly(dienes) Acrylic Polymers Vinyl Polymers Styrene Polymers (O, C)-Heterochain Polymers [Poly(ethers), Poly(esters), Poly(carbonates)]
Table 7.
VII-86 VII-86 VII-86 VII-87
VII-89 VII-89 VII-89 VII-90 VII-91
VII-92 VII-92 VII-94 VII-96 VII-105 Vil-109
VIM 34
* Based on a table in the second edition, by P. E. O. Klarner, and H. A. Ende, BASF AG, Ludwigshafen, Germany. ** Particular thanks are due to B. Hartmann, Cl. Kerrinnes, and L. Schloesser for checking and preparing the manuscript.
(N, C)- and (O, N, C)-Heterochain Polymers [Poly(amides), Poly(ureas), Poly(urethanes)] V I M 37 Table 8. Other Synthetic Polymers VIM40 Table 9. Inorganic Polymers VIM41 Table 10. Poly(saccharides) V I M 44 Table 1 1 . Other Biopolymers [Proteins, Poly(nucleotides)] V I M 57 C. Second Virial Coefficients of Polymers in Solution V I M 63 1. Introduction V I M 63 1.1. CoIIigative Properties V I M 63 1.2. Scattering Methods VIM63 1.3. Sedimentation Velocity V I M 63 1.4. Sedimentation Equilibrium VIM64 1.5. p - V - 7 Measurements V I M 64 1.6. Averages of the Second Virial Coefficient V I M 64 1.7. Second Virial Coefficient - Molar Mass Relationship V I M 64 1.8. Temperature Dependence, Pressure Dependence V I M 64 1.9. Abbreviations V I M 64 1.10. Miscellaneous VIM64 D. Tables of Second Virial Coefficients of Polymers in Solution V I M 65 Table 12. Poly(alkenes), Poly(alkynes) V I M 65 Table 13. Poly(dienes) V I M 68 Table 14. Poly(acrylics) V I M 70
Table 15. Poly(vlnyls) VIM 77 Table 16. Poly(styrenes) VIM 79 Table 17. (O, C)-Heterochain Polymers [Poly(ethers), Poly(esters), Poly(carbonates)] Vl I-188 Table 18. (N, C)- and (O, N, O-Heterochain Polymers [Poly(amides), Poly(ureas), Poly(urethanes)] VIM 91 Table 19. Other Synthetic Polymers VIM92 Table 20. Inorganic Polymers VIM 92 Table 21. Poly(saccharides) VIM 94 Table 22. Other Biopolymers [Proteins, Poly(nucleotides)] VIM 96 E. References VIM 98
A. SEDIMENTATION COEFFICIENTS, DIFFUSION COEFFICIENTS, PARTIAL SPECIFIC VOLUMES, AND FRICTIONAL RATIOS OF POLYMERS IN SOLUTION
(2, 349-357, 799, 800)
concentrations at zero time and at time t at the boundary, respectively. Averages of the Sedimentation Coefficient The average of a function X(M) is defined as
(A4) with J000 W(M) AM = 1, where W(M) denotes the probability density function (in our case the molar mass distribution). The average with /3 = 0 is called the number average Xn, with (5 = 1, the mass average Xw, and with /3 = 2, the z-average Xz. In principle it is possible to evaluate the various averages of the sedimentation coefficient from the distribution of the concentration gradient, 9C/9r, in the cell:
1. Introduction 1.1. Sedimentation Coefficient The sedimentation coefficient s is defined as the sedimentation velocity in a unit force field (Al) where r is the distance from center of rotation, and u, the angular velocity. For a given polymer-solvent system, the sedimentation coefficient is dependent on temperature 7, pressure /?, and polymer concentration C. Experimentally, sedimentation coefficients can be determined only with an ultracentrifuge. Concentration Dependence For polymer solutions studied by ultracentrifugation, the following concentration dependence of the sedimentation coefficient holds: (A2) where SQ is the sedimentation coefficient at zero concentration. In Section B the concentration dependence of s according to Eq. (A2) is listed. In some cases, special extrapolation procedures are used. The tables in Section B also refer to the appropriate reference. For special treatments, see, e.g., Gehatia (358,359). Sector shaped cells are normally used in an ultracentrifuge. In these cells, the square-dilution rule has to be taken into account (360): (A3) where r$ and rt are the distances of the meniscus and of the boundary from the axis of rotation and CQ and Ct the
(A5)
where W(M) = C(M)/ J000 C(M) dM - C[M)/C0 is the mass distribution of the polydisperse polymer in the cell and sn, 5W, and sz the number average, mass average and z-average of the sedimentation coefficient. In many cases the migration of the maximum of the quantity dC/dr is determined, which leads to a sedimentation coefficient st, that in turn is related, in a complicated manner, to the averages of s in Eq. (A5). Another method of evaluating the sedimentation coefficient is by observing the median, that is the line dividing the gradient curve in two equal areas, yielding a value sm which is also a rather complicated average. Provided the skewness of the molar mass distribution is not very pronounced, sw can be calculated by (Ref. 259) (A6) Most ultracentrifuges measure the refractive index difference between polymer and solvent, dn, or the refractive index gradient dn/dr versus r (Schlieren optics). With certain assumptions dn/dr can be related to the concentration gradient (Ref. 14) (A7)
where R is called the specific refractive index increment. The interference optics measure the deflection of the parallel interference lines in the solution. This deflection is directly proportional to the concentration of the polymer. The absorption optics measure the optical density of the system as a function of the rotor distance, which, according to the Lambert-Beers law is proportional to the concentration of the polymer. The intensity is measured with a photoelectric scanner. A multiplexer is used in order to measure several concentrations during one run (869-871). Sedimentation Coefficient - Molar Mass Relationship The dependence of s on the molar mass can be given by a power law expression: (A8) where Ks and as are empirical constants determined for each polymer-solvent system at given values of temperature and pressure. In Section B, relationship (A8) is listed whenever quoted in the literature, in preference to single s values,
coefficient JJL depends on the polymer-solvent system and varies only slightly with pressure. In Section B, the intrinsic sedimentation coefficient, [s0], instead of sQ, has been occasionally listed, [s0] is related to Eq. (9): [s0] = J 0 W ( I -v2p\). 1.2. Diffusion Coefficient The translational diffusion coefficient D is defined by Ficks' first law: (All) where J is the flow of substance (total number of particles transported in unit time across unit surface) and VC the concentration gradient. For one dimensional diffusion, Eq. (All) reduces to (A12) where A denotes the area and n the number of moles. The negative sign in Eqs. (All) and (A12) indicate that diffusion takes place in the direction of decreasing concentration. For practical reasons, Ficks second law is prefered (A13)
Temperature Dependence, Pressure Dependence Svedberg and Pedersen (2) and Mosimann and Signer (361) derived expressions for the temperature and pressure dependence of the sedimentation coefficient with restricted validity: (A9) where se, 77 f, v\ and p\ denotes the values at the reference temperature and/or pressure. Equation (A9) holds in the case of an incompressible medium and if no changes of size, shape and solvation state of the dissolved molecules in the temperature and pressure region take place. From these assumptions it may be deduced that Eq. (A9) can be applied with sufficient accuracy only on proteins in aqueous solvents. Due to the high centrifugal fields applied in the ultracentrifuge, pressure gradients with pressures up to 200 bars are encountered in the cell and change appreciably the viscosity and the density of the solvent and the partial specific volume of the polymer. Thus the sedimentation coefficient, s, measured at a pressure p differs from the sedimentation coefficient, s0, measured at 0 bar. Application of Eq. (A9) for the calculation of s requires the knowledge of 7/i (362), pi (given in a number of Handbooks) and v 2 (148). More precise equations for the calculation of the pressure influence on the sedimentation have been worked out by several authors (363,364,365,800). The equation of Oth and Desreux (Ref. 363)
where A denotes the Laplace operator. Eq. (A 13) reduces to (A14) for the one dimensional case. Eqs. (A13) and (A14) allow the determination of D when solved with consideration to certain initial and boundary conditions. Experimentally translational diffusion coefficients can be determined with an ultracentrifuge (see Section 1.3) in special diffusion cells using Eqs. (A11)-(A14) (800) and with dynamic light scattering (DLS). Since 1970, when the dynamic light scattering became available, nearly all diffusion coefficients have been measured by this method. Based on the theory of Pecora (853,854), the experimentally measured autocorrelation function #2(0 is linked with the diffusion coefficient in polymer solutions (Refs. 730,855):
(A15)
where n ~ 1 for the heterodyne procedure and n = 2 for the homodyne one. Eq. (A 15) reduces, in the case of a monodisperse polymer solution, to
(AlO) (A16) has very often been used for the calculation of 5° (800). The References page VII-198
A and B are measurable constants. Extrapolation of q against zero yields P(q,M) = 1. Note that g2(t) is the z-average of the function, exp(—q2D(M)t). In this way one obtains the direct measurable quantity Dz from dynamic light scattering on polydisperse polymer solutions. For polydisperse polymer solutions, Eq. (A 16) may be expanded in a series (Ref. 856):
(A17) where the moments, /x,-, are related to the molar mass distribution of the polymer (671). More general methods for the determination of the distribution of the diffusion coefficient and of the molar mass are given elsewhere (857,858). As has been pointed out, only the translational diffusion coefficient is listed in the tables. For higher modes of the autocorrelation function (e.g. rotation, vibration) see the appropriate literature (853,854). The entire description of the translational diffusion of a polymer molecule in solution requires the determination of the mutual or cooperative diffusion coefficient, Dm, which characterizes the relaxation of a concentration gradient and the self-diffusion coefficient, D s , which describes the Brownian or random motions of the polymer molecule (860-863).
At infinite dilution, Dm = Dsx Dm is normally measured with classical diffusion cells or dynamic light scattering whereas Ds can be studied by measuring the migration of labeled solute molecules (864), by pulsed field gradient NMR (865), and by forced Rayleigh scattering (866). Normally, Dm is given in the tables. In some cases, especially where Ds is extrapolated to zero concentration, ^ s = Dm is given in the tables. Concentration Dependence The concentration dependence of the diffusion coefficient may be described as (A18) where DQ is the diffusion coefficient at zero concentration. In Section B a concentration dependence of D according to Eq. (A 18) is listed. In some cases, special extrapolation procedures are used. In these cases Section B refers to the appropriate references. Averages of the Diffusion Coefficient Similar considerations as made on sedimentation coefficients hold for diffusion coefficients. From measurements
in a diffusion cell, one obtains the various averages of the diffusion coefficient from the distribution of the concentration gradient, 6C/3r, in the cell:
(A19)
where W(M) = C(M)/C0. The diffusion cell may be combined in the same manner as in the case of the ultracentrifuge with Schlieren optics, interference optics, and absorbtion optics. In most cases, the mass average and the area average of the diffusion coefficient are determined. They can be calculated with the help of Eqs. (A14) and (A19): (A20)
(A21)
(3C/9r) max is the maximum height of dC/dr. The integral in Eq. (A21) is the area of the curve. As has been pointed out, dynamic light scattering measurements normally yield the z-average of D. Nevertheless it might be possible to determine averages other than Dz with the help of Eqs. (A19) and (A21). In Section B the different averages of D are quoted. In some cases unusual averages are listed. In these cases Section B refers to the appropriate references. Diffusion Coefficient - Molar Mass Relationship The diffusion coefficient - molar mass dependence frequently takes the form (A22) where Ko and a a are constants for each polymer-solvent system at given values of temperature and pressure. In Section B relationship A(22) is listed whenever quoted in the literature, in preference to single D values. Temperature Dependence, Pressure Dependence A similar expression as Eq. (A9) holds under the same restricted conditions for the temperature and pressure dependence of the diffusion coefficient: (A23)
where De and rj\ denote the values at the reference temperature TQ and/or pressure po- As has been pointed out in Eq. (A9), Eq. (A23) can be applied with sufficient accuracy on proteins in aqueous solvents only. The temperature dependence of the diffusion coefficient is often described by the following exponential function
where ^1-(J = 1,2) is the partial specific volume of component i. When component 2 is polymer and component 1 solvent, then, for practical reasons it is convenient to introduce the so-called apparent partial specific volume v\ which is defined by (A29)
(A24) where Ep denotes the apparent activation energy of the diffusion and D 0 0 the diffusion coefficient at the limit T = 00. In Section B we have listed the temperature and pressure dependence of D whenever quoted in the literature. 1.3. Molar Mass Averages Determined from Sedimentation and Diffusion Coefficients For the experimental determination of the molar mass from sedimentation and diffusion measurements, the Svedberg Eq. (A2) is used: (A25) Here SQ and DQ are the corrected and standardized coefficients for zero polymer concentration. For polydisperse polymers the various averages of the sedimentation and diffusion coefficient s and D are inserted, obtaining certain molar mass averages Mpn. Thus Eq. (A25) acquires the more general form: (A26) For /3 — n, w, z, . . . and 7 = n, w, z, . . . Eq. (A26) defines several different molar mass averages M n?n , Afw>n, AfW)W etc. The averages, Af„,„, and Mw>w, are different from Afn and Af w respectively (859). The coefficients with j3 — n and z and 7 = n are determinable only with large error. Instead, the coefficients with (3 = / and m (see under Section 1.1.) and 7 — A and w (see under Section 1.2.) are usually evaluated. Thus, rather peculiar averages, e.g. Afr>A, Af mjW, and AfmA» result. The more straightforward molar mass averages M n , w , Mw>w, AfZiW, etc., in relation to the familiar averages, M n , Afw , and Afz , are found elsewhere in the literature (369-371,859).
where v® denotes the specific volume of the solvent. The quantity, v\, now contains the parameter of nonideal mixing of both the solvent and the polymer. In practice, however v\ differs not much from V2 if the polymer concentration is kept low (up to 1%). Dividing Eq. (A29) by the total mass m\ -\-ni2 leads to (A30) where v is the specific volume of the solution and Wi = nii/Y*, mi a re the mass fractions of the solvent (i = 1) and the polymer (i — 2). With v~\/p and v\ — 1/pi, p and p\ being the densities of the solution and the solvent, respectively, it is readily found that (A31) Eq. (A31) demonstrates that v\ can be determined by measuring p\ and p. Numerous methods for determining densities are described in the literature (268,372-379). In order to determine the partial specific volume from the apparent specific volume, Eq. (A29) yields
(A32) where (9V/9m 2 ) m i is, according to definition, equal to V2, In terms of mass fractions, Eq. (A32) can finally be written as (A33) Most values reported in the literature are ^ 2 - v a l u e s rather than t?2-values, since extrapolation according to Eq. (A33) is usually omitted. The differences between v\ and v2 are, however, often small.
1.4. Partial Specific Volumes The volume, VlA, of an ideal two component system can be expressed in terms of the masses m\ and rri2 and the specific volumes, v\ and v\, of the two components by the equation
1.5. Frictional Ratios The molar frictional coefficient, / s p , of an unsolvated spherical molecule may be computed by the formula based on Stokes law:
(A27)
(A34)
Most components do not behave ideally upon mixing; i.e. they react with each other in a way so that the total volume deviates from Vld. The total volume can then be written as
where rj is the viscosity of the solvent and iVA is Avogadro's number. When the shape of a molecule deviates from a sphere, or when it is solvated, then the frictional coefficient, /0, of such a molecule is larger than that of the spherical molecule. The frictional ratio, /o// sp > thus permits to draw conclusions concerning either solvation or shape of the
(A28)
References page VII-198
molecule. It is possible to calculate the dimensions of the nonspherical molecule, provided a particular model (ellipsoid, cylinder, etc.) for the molecule is adopted and either the degree of solvation is known or assumed to be negligible. The molar frictional coefficient can be determined either from sedimentation velocity data, provided the molar mass is known from independent measurements according to the Svedberg equation f o s o =M(1 -V2Pi) foso= M(I-V2Pi)
(A35)
or from diffusion measurements, using the relation /o / 0 - RT/D RT/Do 0
(A36)
Eqs. (A34)-(A36) are most frequently used for calculating the frictional ratio. / o / / s p is listed in the tables. Other relationships for the determination of /o// S p are quoted in the literature (2). In these cases special reference to the literature is made in the tables. In few cases, only the molar frictional coefficient /o, rather than/o// s p , was quoted in the literature. These values are inserted in the same column as the values for the frictional ratio.
1.6. List of Symbols and Symbols C Co C1 D DA D n , D w , D1 D Do 771 T) 1 /sp /0 ks, ks kD, kD M M n , M w , Mz M MMW
Abbreviations
Concentration Initial polymer concentration Polymer concentration at time t Diffusion coefficient Area average of the diffusion coefficient Number average, mass average, and z-average of the diffusion coefficient Diffusion coefficient at reference temperature and/or pressure Diffusion coefficient at zero concentration Viscosity of solvent Viscosity of solvent at reference temperature and/or pressure Molar frictional coefficient of a spherical molecule Molar frictional coefficient at zero concentration Concentration coefficients defined by Eq. (A2) Concentration coefficients defined by Eq. (Al8) Molar mass of the polymer Number average, mass average and z-average of the molar mass of the polymer Molar mass determined b y M a r k - H o u w i n k equation Molar mass determined by equations from Mandelkern and Flory, or Wales and Van Holde (see Section 1.7)
Af #>7
Molar mass average determined by Eq. (A26) from SQJ and D0n MStW9 Mj.A, Molar mass average determined from MS£> undefined sedimentation coefficient s and D w , DA and undefined diffusion coefficient D, respectively n Refractive index or number of moles u Angular velocity r Distance from center of rotation ro Distance of meniscus from center of rotation rt Distance of boundary from center of rotation at time t p Density of solution p1 Density of the solvent R G a s constant s Sedimentation coefficient ^n, Sw, ^z N u m b e r average, mass average, and z-average of the sedimentation coefficient SQ Sedimentation coefficient at reference temperature and/or pressure s0 Sedimentation coefficient at pressure p = 0 bar so Sedimentation coefficient at zero concentration [so] Intrinsic sedimentation coefficient (see under Section 1.1) sm Sedimentation coefficient determined from migration of gradient curve median sf Sedimentation coefficient determined from migration of gradient curve maximum T Temperature 9 Theta temperature (A2=O) t Time Vi Partial specific volume of component / (/ = 1, solvent; / = 2, solute) v°x Specific volume of component / v2 Apparent specific volume of solute Abbreviations A approx. CLS DLS NBS
OS PCC RT SE SRM SV TS V
Archibald method approximately Classical light scattering method Dynamic light scattering method National Bureau of Standards, USA (now National Institute of Standard and Technology, NIST) Osmometry Pressure Chemical Co., Pittsburg, PA, USA Room temperature Sedimentation equilibrium Standard reference material Sedimentation velocity Toyo Soda Co., Japan Number of single values given in Ref. cited
1.7. Miscellaneous With certain assumptions it is possible to determine the molar mass from a combination of the intrinsic viscosity [77] and the limiting sedimentation coefficient so- In this way, Mandelkern and Flory (128) and Wales and Van Holde (134) derived an expression. An
expression similar to the equation between M, [77], and So was derived between M, [77], and Do (128). The molar masses determined from either one of these relationships are refered to as MW.
References page VII -198
B. TABLES OF SEDIMENTATION COEFFICIENTS, DIFFUSION COEFFICIENTS, PARTIAL SPECIFIC VOLUMES, AND FRICTIONAL RATIOS OF POLYMERS IN SOLUTION
TABLE 1.
POLY(ALKENES)
Polymer
Solvent
T(0C)
M (XlO" 3 ) (g/mol)
110
Poly(ethylene) 1-Bromonaphthalene
linear l-Bromonaphthalene
UO 120 120 120
branched linear
4.7 14.2 21.8 55.0 3.5-274 69 136 88
1-Chloronaphthalene branched, fractions branches per molec. 1.9 2.6 3.0 2.9 4.6 5.7 6.4 13.7 16.1 26.3
Poly(l-butene) Poly(isobutene)
*s (cm3/g)
D0 (xlO 7 )(cm 2 /s)
* D (cm 3 /g) /o//sp
v2(cm3/g)
1.42 2.03 2.39 3.39 so = 7.74xlO- 1 5 M 0 3 4 4 -4.09 -5.14 -5.18 -1.67 -2.37 -3.31
Tetralin Ethyl octanoate Cyclohexane
110 123 130
80 22 (T=B) 34 (T=O)
Refs.
My
38
Mv
38 509
fa] = 51 cm3/g 90 169
[7?] = 18cm3/g 33 56 60 66 74 88 118 129 139 a
509 27
27
532
a
26
9.80
60 79 99 261 493 25.7 503 800
6.42 6.42 4.73 3.13 2.15 0.87 0.20 1.30 6.4c
55.5 721±159
DA, M w , D w given in Ref.
30.9 86.7 172 672
0.925 1.49 1.94 3.33
54 128 191 510
593
619 £>o ! Z ;M w /M n ^5 1.106* M v ; Oppanol B 100 1.091
20
Remarks
M MW
-1.06 -1.91 -2.85 -2.77 -3.57 -4.11 -4.52 -7.30 -7.87 -11.37 Diphenyl
branched
so (xlO 1 3 ) (S)
Mn
409,410 576 32,621,622
25
Ethyloctanoate n-Heptane
Octane
Poly(isobutylene)
22 25
25 20.9 23.2 20.7 25
1420 21 78 122 176 490 698 1800 750 145
65.2-308 52 1600 1600 1900
4.45
836 6.32 2.99 2.26 1.84 1.01 0.79 0.43
1.3
1.106
55.5
5.8
388
0.68
Toluene
24
388
2.7
Benzene Chloroform Cyclohexane
24.5 25 25
Isoamyl isovalerate (IAIV)
25 (T=O)
25
D0 -1.27 x 10- 8 M; 048 ; D 0 = 6.22X10- 8 M; 0 - 6 0
48.5 139 422 634 819 1760 18.1 48.5 139 422 634 819 1760
25 Isoamyl isovalerate (IAIV)
22.1 25 (T=O)
420 634 819 1760
620
Sr
237
1.072 1.069 1.075
24
18.1
M W ; M W / M n = 3.2 M W ; M W / M n = 2.1 M W ;M W /M n = 2.0 M w ; M w /M n = 2.7 M W ; M W / M n =4.5 M w ; M w /M n = 5.1 M W ; M W / M n = 10.8 M w ; C from 0.53 to2.95g/dm 3 ; Af n , D A given in Ref. M w ; CLS
D0 = 5 . 0 1 x l 0 4 M 0 5 5 5
Tetralin
n-Heptane
4.8 41 53 79 167 379 348
CLS and DLS D 0 = 1.78 x 10" 4 M; 0572 1.33 x 105 < M W < 14.8 x 105 g/mol -8.7 5.1 -16 3.1 -24 1.9 -47 1.1 -64 0.86 -80 0.75 -110 0.52 -1.5 16.3 3.5 9.5 13 5.5 56 2.8 68 2.3 88 2.0 180 1.3 D0 = 4.10 x 10"4 M^0560; 0.64 x 105 < M w < 14.8 x 105 g/mol D 0 = 5.94 x 10"5 M^0493; 0.64 x 1 0 5 < M w < 1 4 . 8 x 105 g/mol 1.06 0.86 0.75
511 449 148
623 Af w , j°, C = 3.461 g/ dm3; 25V; C from 3.461 to 16.293 g/dm3 p from 0 to 46 x 10 5 Pa 624 Oppanol B 50; M w /M n = 3.0 624 Oppanol B 50; A/ w /M n = 3.0 A/ W /M n = 1.2 989 M w /M n = 1.2 990 M w /M n = 1.08
1050
Mw/Mn = l.06 M w /M n = 1.07 M w /M n = 1.09 M w /M n = 1.06 M w /M n = 1.09 M w /M 0 = 1.09 1050
CLS and DLS
990
CLS and DLS
990
[T7J = 70.9 cm 3/g [7?] = 88.2cm3/g [7?] = 99.8cm 3 /g [77] = 146cm3/g
References page
1051
VII -198
TABLE 1.
cont'd
Polymer Poly(l-hexene)
Solvent Acetone
Poly(tetrafluoroethylene) Perfluorotetracosane a b c
T( 0 C)
M(xlO~ 3 )(g/mol)
20
46.8 222 571
s 0 (xl0 1 3 )(s)
*s (cm3/g)
D 0 (xlO 7 )(cm 2 /s)
*D (cm3/g) /o//sp
U 2 (cm3/g)
Remarks
53
16.2 6.4 3.0
11.5 21.5 33.8
0.793
20 325
3.66 1.21
260 2100
Refs.
54 1004
-35.2 - 130.0
See Ref.for various methods applied and values obtained. Corrected for pressure influence. See Ref. for def. of s.
TABLE 2. POLY(DJENES) Polymer Poly(butadiene)
cis-4 cis-4 95%, 1,4 CW
Solvent
M ( x 10-3)(g/mol)
Diethyl ketone
10.3
Dodecane Hexafluorobenzene Diethylketone
80 80 10.3 (T- G)
Hexane/heptane (1/1) 90%, 1,4CiJ(TiJ 4 ) 90%, l,4dj(CoC12) Hexane/heptane (1/1) Hexatriacontan cis-4 linear 'Cyclohexane
18-armed star
T( 0 C)
20
60 187 350 436 778 1380
ks (cm3/g)
26.5 {T-Q)
Cyclohexane
25
Dioxane
26.5 (T=O)
k D (cm3/g)
V2 (cm3/g)
Remarks
J 0 = 0.53 X l O " 1 5 M05 55-1080 34.7-1040
Refs. 590
1.76 2.76 3.45 4.28 4.52 5.15
J n , J W , J,, J m , 0 given in Ref.
J0=2.80xl0-15M048 4.78 D0 = 1.45 x 10- 4 Af" 0 - 561 ; 11000 < M w < 760000 g/mol £ 0 = 6.34xl0- 5 M; 0 - 4 9 6 ; 11000 < M w < 760000 g/mol D 0 = 2.39xl0- 4 AC 0 5 7 0 ; 99000 < M w < 1900000 g/mol D0 = 8.87 x 10"5 M;0-497; 99000 < M w < 1900000 g/mol D 0 = 1.38 x 10- 4 M- 0 5 ;
J 0 -1.28 x 10"2 M 0 5 7.58
19.7
4.65 3.43
16.0 20.6
625 625 574 323 323 625 987
JO=2.33X1O-15M050
80 25
Dioxane
£>0 ( x l O 7 ) (cm2/s)
23.8 16.3
22 (T =6) 34.8-780 Methyl ethyl ketone/ cyclohexane (47.5/52.5) 20 (T=O) 475 Methyl ethyl ketone/ isopropanol (60/40) 205 101 Poly(butadiene-c-styrene) 25 81.9-168 branched Benzene 21 (T= 6) 49-514 Methyl n-propyl ketone Methyl n-propyl ketone 21 (T=O) 49-514 21 mass% styrene Methyl ethyl ketone 25 56-380 Poly(chloroprene)
Poly(butadienejtof-acrylonitrile)
so(xlO 1 3 )(s)
552 given in Ref. DA; Msj>
1.21-4.63 J 0 = 1.04 x 10~ 15 M 0 5 J 0 = 0.83 x 10 "15 M05
0.995 ±0.005
See Ref.
JO = 3 . 1 X 1 O - ' 5 M 0 5
0.773
Mn M w ; OS; SE
552
406 573 344 444
Poly(isoprene) linear 4-armed star 18-armed star 3-armed star 4-armed star
Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Cyclohexane
5 50 50 50
8-armed star
12-armed star
18-armed star
Chloroform
20
5 5 21.2-122 61.7-630 137 173 380 795 1760 4400 96 810 3900 5280 93 218 384 800 1480 3570 270 485 930 125
natural rubber, crepe
Cyclohexane
20
natural rubber
Hexane
20
1,4-cw 1,4-cw (TiCU/AL (C7H15)I)
Hexane Hexane
20 25
275 330 450 760 1600 1750 1800 1600 270 1660 460-970
£) __ |Q-7.73±0.()8 ^-0.54±0.04
D0= 10 " 7 4 7 ± 0.05 M-°-61±001
M w /M n = 1.05-1.11 Mw/Mn - 1.02-1.07
626
[TjI = 0.958 dL/g [T;J = 0.973 dL/g [rj\ = 1-74 dL/g [r/] =1.83 dL/g Ir7J = 3.30 dL/g [r/]= 6.37 dL/g [T/1 = 0.294 dL/g
988
D 0 = I O --7-22±O.I2 M -n.6l±().O3
15.5 15.5 27.5
4.6 4.76 4.35 4.6 9 21 50 = 5.01 x K)- 1 5 M 0 4 5 i ( J =7.76x 10~ 2 Af 0 - 42
2.4 1.87 1.20 0.91 0.52
76.5 138 235 250
0.89 0.37 0.305
560 331
2.4 1.88 1.06 0.71 0.455 2.24
[r/J = 4.33 dL/g [r/l = 5.63 dL/g [?/] = 0.182 dL/g
35 100 169 303
1.26 1.16 2.63 1.64 1.55 1.41 1.44 0.48 0.46 0.41 0.48 3 1.01 D 0 = 3.98 x 10 ~2 M~055
fa] =1.02 dL/g [T7] =1.58 dL/g fa] = 2.90 dL/g Af.v,£>; Determ. of /o//,p see Ref.
3.32 5.10 5.26 3.82
M w ; OS; Determ. Of/o//sp see Ref-
337
337
4.71 4.67 4.64 3.82
29 337
1.10 1.54 M w / A f n = 1.8-2.9
References page
324 627
VII -198
TABLE 3.
ACRYLIC POLYMERS
Polymer Poly(acrylamide)
Solvent Water
7-( 0 C) 20
M ( x l O ~ 3 ) (g/mol) 19.4-534
130-8200
H-acryl amide 2,3,3-D3- acrylamide
s 0 (xl0 I 3 )(s)
jt = 8.17xl0- 1 5 M 0 3 1
PolyO?-ethoxycarbonyl phenylmethacrylamide)
Poly(JV-isopropyl methacrylamide)
kn (cm3/g) /o//sp V2 (cm3/g) 0.769
D2,o = 1.24 X l O " 4 Af-° 53±O01
0.708
20
5000 250, 610
0.693 0.696
Water/Nad (0.2mol/dm3) 20
250, 610
0.687
20 Water/NaCI (0.5moydm3) 20 25
490-5150 8400
Water/NaCI Water/NaCI (0.1 mol/dm3) Water/NaCI (0.1 mol/dm3)
100-8000 8200 25
2330
1710 Water/NaCI (2g/dm3) 20 20 Water/NaCI (20g/dm3) 25 Water/NaNO3 (0.5 mol/ dm3)
8000 160 260
Water/NaCI (1 M)
Water
^0 = 8.17 x 10- 15 Af 5 0 I 31 so=9x 10"15 AfJ,32 S 0 =4.9 x l O ~ 1 5 AfJ 37
J 0 = 1-07 XlO" 1 5 Af 048±001
Water/NaCI (0.1 mol/dm3) Water/NaCI (0.2mol/dm3) Acetone
Ethyl acetate Water
Water
15 20 25 27.5 30 32 33 20
D0 = 8.46xl0- 4 M-° 69 1570
0.3
88
0.697 0.710
266,154 D measured in H2O/KC1 (0.2mol/dm3); MtyA 628 SV; 15V; Af W / A f n = ' 1.15-1.4 629 C = 0.06, 1.2g/dm3 630 Af w ; Af w /Af n = 1.5; C=5, 10g/drn3 630 Af w ;Af w /Af n = 1.5; C = 5, 10g/dm3 632 Mw/Mn =2.5 633 631 Af w ; D*,o 790
Do = 1.24xlO- 4 M- O 5 3 ± 0 0 1
0.505 0.630 1.6 0.14 1.29 ±0.05 1.15±0.10 0.280
Refs.
Remarks
M^; see Ref. for 5o and ks
634, 635 667 1008
97 1370 72
Afw; D2)0 Af w; £>2,o
277
634 634 636
Af w; DZ)o D1; C = O.5g/dm3
636 637
479
0.562 0.383 7.05
D1; C = 0.5g/dm 3 ;4V D1; C = 0.5g/dm 3 ;4V Afw;DA
267
575 955 1060 1000 740
7.59 3.90 2.52 2.18 1.16
MW;DA
267 267
1100 260-740 290
1.11 D A =2.8 xlO" 4
26
Dimethylformamide Dimethylformamide/ formamide (90/10)
Poly(jV-isopropy 1acrylamide)
D 0 (xl0 7 )(cm 2 /s)
D A = 8.46 x 10" 4 M" 069
5 w = 1.07xl0- 15 A/2 48±001
460 partially hydrolyzed Pusher 700 (Dow Chemical)
its (cm3/g)
1000
Af n
2.48 3.04 3.55 4.17 4.76 5.08
0.896
498 Af w in chloroform
0.902 D 0 = 2.02 xlO" 4 Af"0-57
267
Poly(yV-isopropyImethacrylamide-co-acrylamide) Deionized water IPAMlOO 1PAM-85 IPAM-70 IPAM-55 IPAM-40 IPAM
3000 3100 4500 3900 2200 5200 Poly(acrylamide-co-sodium-3-acrylamide-3-methylbutanoate-co-(2-(acrylamido)-2-methylpropyl) trimethylammonium chloride) AM
NaAMB
AMPTAC
ATABAM 0.5-0.5 25 Water/NaCl ( I M ) 3430 ATABAM 2.5-2.5 13900 ATABAM 5.0-5.0 3450 ATABAM 10-10 10800 ATABAM 15-15 12200 ATABAM 5.0-10 11200 ATABAM 10-5.0 19400 Poly(acrylamide-a?-3-(2-acrylamido-2-methylpropane dirnethylammonio)-1 -propane-sulfonate) (AM-co-AMPDAPS) DAPSAM-1 DAPSAM-5 DAPSAM-10-2 DAPSAM-10-3 DAPSAM-25-2 DAPSAM-40-2 DAPSAM-40-3 DAPSAM-60-2 DAPSAM-75-2 DAPSAM-100
Water/1 M NaCl
Poly(acrylamide-c0-NaAMPS-c0-AMPTAC) ATASAM 0.5-0.5 Water/1 M NaCl ATASAM 2.5-2.5 ATASAM 5-5 ATASAM 10-10 ATASAM 15-15 ATASAM 10-5 Poly(NaAMPS-co-AMPTAC) ATAS-O ATAS-10-2 ATAS-25-2 ATAS-40-2 ATAS-50-2 ATAS-70-2 ATAS-100 Poly( 1,4-benzamide) PoIy(1,4-phenylene terephthalamide)
0.490 0.439 0.394 0.421 0.524 0.335
25
25
Water/1 M NaCl
25
Dimethylacetamide/ 3% (g/mol) LiCl 96 wt.% H 2 SO 4
25 30
0.498 0.313 0.476 0.264 0.313 0.361 0.389
3200 12400 700 21500 8200 15100 17500 5400 6200 3000
0.505 0.316 0.401 0.320 0.397 0.362 0.324 0.360 0.490 0.628
6030 2780 5070 5870 6770 3880
0.423 0.577 0.381 0.449 0.433 0.413
6120 8220 6200 7920 7680 4980 1470 55 48.3 38.4 22.7 15.9
0.387 0.419 0.473 0.385 0.463 0.406 0.637 D 0 =4.38 x 10" 4 A/- 0 8 2
CLS, DLS
1006
Terpolymer composition mol% AM: NaAMB: AMPTAC 99: 0.5: 0.5 8 9 . 1 : 5 . 1 : 5.8 85.9:7.9: 6.2 80.5 : 9.7 : 9.8 74.6: 11.5: 14.0 75.7: 13.6: 10.7 85.3:4.5: 10.2 AMPDAPS in the copolymer mol%
1023
1010 5 9.6 10 27.7 38.9 40 58.8 70.1 100 dn/dC = 0.1426 cm3/g dn/dC = 0.1481 cm 3/g dn/dC = 0.1510cm 3 /g dn/dC = 0.1395cm 3 /g dn/dC = 0.1344cm 3 /g dn/dC = 0.1376cm 3 /g AMPTAC in the copolymer mol% 0.0 14.7 36.1 45.4 51.7 65.7 100.0
1022
1021
1007
0.072 0.088 0.113 0.159
References page
VII -198
TABLE 3.
cont'd
Polymer
Solvent
T( 0 C)
M (xlO- 3 )(g/mol)
S0 (xlO 1 3 ) (S)
*s (cm Vg)
Poly(m-phenylene isophthal amide) Poly(acrylonitrile)
30
42.6 29.8
Dimethylacetamide Di methy 1 acetamide/ 3% LiCl Dimethylformamide
26
4.2-230
J 0 = 1-72 x 10~ 1 5 M° 4 4 so =0.68 x 10"15 M^ 44
78.7 67-1030 48 113 155 270 105 210 16 28 63 193 214 28-575 980 320
1.72 1.65-4.68 1.52 2.08 2.36 2.95 2.04 2.48
25
25
35
Poly(acrylonitrilejtof-styrene) Poly(acrylonitrilea/f-styrene) Poly(amidobenzimidazole)
•y2 («n3/g)
0.66 0.71
Remarks
SV
1082
3.6 2.1 1.75 1.25
0.83
569 See Ref. for s and MMW 533 115 sr; Z) w , M t w
74
0.830 7.14 5.72 5.08 4.03 3.91 D 0 = 2.19 x I O ~ 4 M"0-58
4.6 3.08
Dw\ Dn given in Ref.
206
C=1.5-10g/dm 3
201 792 462
£ D =2.31 x 10~ 9 xD ( 7 L 2 9
RT
1200 210
5.78" 2.94 "
Dimethylformamide/methanol
1200
4.03 h
Butanone
330
12.1
M s , n calculated from 5o=O.O25 M n ; C = 0.648 g/ dm 3 ; 5V M n ; C= 1.323g/ dm 3 ; 12V M n ; C- 1.27Og/ dm3;4V C= 1.5-lOg/dnr 1
Butanone
170
10.2
C=l.5-10g/dm 3
74.7 72.3 63.1 55.7 46.9 39.6 27.3 10.1
1.33 1.32 1.28 1.25 1.11 0.99 0.93 0.80
Dimethylacetamide
Refs.
25 20
Dimethylformamide/ benzene 30% Dimethylformamide/ benzene 37% Dimethylformamide/ tetrahydrofuran (1/1)
kD (cm Vg) /o//sp
0.196 D7J) =2.72 x 10"5 M" 077 0.074 0.093 D,, 0 =l.5l x 10-5 M- 0 7 2 D 0 = 1.13 x 10-4 M"0'56 D 0 = 0.55 x 10"4 M" 056
14.5 96 wt.% H 2 SO 4 / 0.05MK 2 SO 4
D0 ( x 107) (cm2/s)
7000
138
RT
25
537 525 550 428 285 183 142 51
638
792 792 1046
Dimethylacetamide/ 0.3% LiCl
Poly(benzyl acrylate-co-methyl acrylate) different comp. Methyl ethyl ketone Poly(/i-butyl-acrylate) Methyl isobutyl ketone Poly(tert-butyl-acrylate) Methyl ethyl ketone Acetone Methanol Pentane Methyl ethyl ketone Acetone Methanol Pentane Acetone Methanol Pentane Methyl ethyl ketone Acetone Methanol Pentane Methyl ethyl ketone Acetone Methanol Pentane Methyl isobutyl ketone Poly(n-butyl methacrylate) Propan-2-ol Ethyl acetate Microgels
25
1.45 1.33 1.12 0.88
900 890 720 460 v 2 and M given
20 23.3 25
46 306
25
237
25
180
25
149
25
75
21.2
820
21.5 20
40-8000 254
Tetrahydrofiiran
Poly(terf-butyl methacrylate) Poly(cetyl methacrylate) Poly(cholesteryl acrylate) Poly(2.6-diisopropylphenylmethacrylate) Poly(2.6-dimethylphenylmethacrylate) Poly(acrylic acid)
79.3 60.6 41.1 29.3
0.944 17.7 0.207 0.237 0.266 0.160 0.194 0.230 0.244 0.182 0.203 0.228 0.139 0.162 0.191 0.109 0.117 0.127 0.137
M w ; so
0.94 0.84 0.53 0.22 0.88 0.74 0.49 0.21 0.64 0.43 0.20 0.65 0.55 0.39 0.19 0.59 0.32 0.22 0.13
506 148 512
M w ; SQ
M w ; 50
148
0.922 6.3XlO-5M"050 0.174
254
0.145
340
0.181
380
0.191
399 A/ w , C = 0.1-0.5g/dm3; 646 see Ref. M w , C = O.l-O.5g/dm 3 ; see Ref. M w , C = O.l-O.5g/dm 3 ; see Ref. M w , C = 0.J-0.5g/dm3; see Ref. 1052 C = 0.5g/dm 3 551 DA', MS,D given in Ref. 560 580 MxJD
s 0 =0.12M 0 3 1 5 0 = 3.02 x 10 "5 M 0 4 1
Heptane Benzene
25 20 21 21 21
Toluene
25
0.789
1053
Toluene
25
0.894
1053
0.73
555
Butyl acetate
Water/NaCl (0.2mol/dm 3 ) (0.02rnol/dm3) (0.012 mol/dm3) (0.006 mol/dm 3 )
20-22c
140-780
D 0 = 2.51 x 10"4 M" 055 D 0 = 174 x 10 "3 M" 064
50 =1.42 x 10" 1 4 xM 0 3 6 5o = 1.9 x IO" 1 5 M 0 4 6
D 0 = 3.2xl0- 4 M-° 5 4
4.77
5.6
1100
7.3 ±0.5
81.0 114.0
35.0 0.65 ±0.02^
20.0 28.2 49.0
References page
VII -198
TABLE 3.
cont'd
Polymer
Solvent
T( 0 C)
(l.0mol/dm 3 ) (0.2mol/dm3) (0.012mol/dm3) (0.006 mol/dm3) (0.0012 mol/dm3) (1.0 mol/dm 3 ) (0.2 mol/dm3) (0.012 mol/dm3) (0.006 mol/dm3) Methyl isobutyl ketone Poly(ethyl acrylate) 24.3 /i-Propanol 28 Poly(ethyl acrylate-ca-acrylic-acid) Water/NaCl (0.05mol/dm3) sodium salt (0.1 mol/dm3) (0.3 mol/dm3) (0.5 mol/dm3) (0.7 mol/dm3) (l.Omoydm 3 ) (1.2 mol/dm3) 2-Heptanone Poly (ethyl acrylate-co-methylacrylate) 20 different comp. Methyl ethyl ketone 20 Poly(ethyl methacrylate) Acetone
Poly(isooctyl methacrylate)
Methyl isobutyl ketone (theta-solvent)e
22.9 25
M ( x l O ~ 3 ) (g/mol)
So(xlO13)(s)
420 6.5 ±0.5
ks (cm3/g) 2.4 4.2 32.0 60.0
Z) 0 (xl0 7 )(cm 2 /s)
1.35 ±0.05^
70 2.4 ±0.1 34 18-155
0.0 2.75 8.0
3.2±0.1 d
kD (cm3/g)
fo/U
^ 2 (cm 3Zg)
Remarks
0.2 1.0 10.0 27.4 146 22.3 22.3 150 286
555
0.951
Mv
148 456
MJM n = 1.8-2.3
637
v 2 and M given
506 59 18 268 52 148 427
S0 =1.05 XiO-2 M0/1 £>o,z = 5.76xl0- 4 M-° 6 5 Oo,z = 8.55x 10" 4 M- 067 D o > z =3.73xl0- 4 M- 0 5 9 /) oz = 1.54xl0- 4 M-° 5 2 D Ot2 = 1.41 x 10- 4 M" 051 Z)Oi2 = 1.24x 10" 4 M" 050 Do'z = 1.10xl0- 4 M-° 4 9 £)o^ = 1.35xl0- 4 M-° 5 1
185-1300
77-7440 34.1-9350
S0 -A/0'43 8.95-120
24.6-7440 410 1036
7.45-107
0.798 0.798 0.7942
17.4-0.85 23-60
20.0-0.95
0-63
M /iA ; 5,; See Ref. extrapolated value M,,w; 5,; DA, See Ref.
0.863 0.900
63.0-67.5
Refs.
875 (Trautmann) Toluene Poly(phenyl methacrylate) Poly(sulfoalkyl methacrylate) alkyl: hexyl 0.1 M NaCl
306
1.22
1.54 X l O - 4
octyl
494
1.02
1.72 X l O - 4
decyl
701
1.00
1.99x 10"4
ethyl
734
0.975
2.07 x 10~4
Poly(methacrylic acid)
Dimethylsulfoxide
25
25
1053
0.789
25
34 130 260 429 432 381
0.46 1.02 1.27 1.66 1.85 1.60
Af w /M n = 1.5; dn/dC = 0.135cm3/g M w /M n =2.0;dn/dC = 0.140 cm 3/g M w /M n = 1-8; dn/dC = 0.149cm3/g M^fMn =2.1; dn/dC = 0.170cm3/g
100
638
Poly(methacrylic acid)
Sodium salt Water/NaCl, Y / = 4 5 7 9 14 19 29 39 49 59
20
OO
21.3 Water/HCI(pH = 2.0) Water/NaOH (pH = 12.0) 21.4 Water/NaCl (0.01 mol/dm3)/ 21.8 NaOH(pH= 12.0) Poly(methyl acrylate-co-styrene) 20 Methyl ethyl ketone different comp. Poly(methyl Acetone 20 methacrylate)
20 20
Acetonitrile
Acetonitrile-d3 Benzene
111 1404
2.80 3.02
237 339 442 530 690 768 880 943 986 1014 1112 62 78
2.90 3.87 4.36 4.73 5.46 5.66 6.04 6.28 6.43 6.50 7.22
20.3 46.1 88.5
72 224 614
10.25 1.19 x 1.97 x 18 5.35 x 14.1 x
6.8 2.2 0.92 O0 z = (8.09 ±0.68) xlO~4 M -0.576±0.006 -0.41-73.05 27.06 ±0.70 17.20 ±0.17
20 20 25 30 38
16 29
44
1.16 1.80 2.95 4.18 7.55 10.9 20.2 35.3 74.0 119 218 1.1 115 1.9-77
101 82.1 68.0 57.5 40.8 36.4 25.6 21.0 14.3 11.6 8.9 74.1
l.l
42.8
20 25 25
0.712 0.385
M of uncharged polymer 148 Mv 148 Mv
0.412
Mv
148
v 2 and M given
506 460 15 15 15 639 639
3.45
78
115 201 1380 6350 65-1980 65-1980
124
s,; apparent M
1.150 1.072 0.923 0.838 0.742 0.692 0.643 0.621 0.611 0.602
10- 5 cm« 10" 5 Cm* 0.789 10- 5 cm« l0" 5 cm«
M,, A ;
st; DA
M */Mn = 1.20-1.44 M w /M n = 1.20-1.44; seeRef. D 0 , 2 ;M w /M n = 1.18
-6.97 -4.77
1054 494 570
0.798 0.825 See Ref. for range
J 0 = 18.6 x IO" 1 5 M 0 5 1
1057
1080 460 M M W; (AIBN) See Ref. 268 (B 2 O 2 ) See Ref. 268 211 494 1080 NMR-self diffusion
NMR-selfdiffusion 5.05
30
Mw M */Mn = 1.08 for all
-0.7 -2.1 -3.7 -3.1 -3.7 -4.1 -5.1 -8.1 -11.4 -13.2 -24.2
639
1.25xl0- 5 cm* 0.8273-0.8077 0.8069+ 39.4/M 0.818 0.879
MMW
References page
VII -198
TABLE 3. Polymer
cont'd Solvent
T( 0 C)
Butanone n-Butyl acetate
25 25
n-Butyl chloride
34.5 34.5
M(xlO" 3 )(g/mol)
34.5 34.5 35 (T=O) 35.6
40.8
*s (cm3/g)
]>o(xlO 7 )(cm 2 /s)
k D (cm3/g)
hlfsP
V 2 (cm3/g) 0.799
22.38 ±0.01 14.92 ±0.05
16 29 200 1300 6550 1.80 2.95 4.18 7.55 10.9 20.2 35.3 74.0 119 218
Value for infinite molar mass M w /M n = 1.20-1.44 Mw/Mn = 1.20-1.44; see Ref.
Do,z = (3.08 ±0.68) x l O ~ 4 M -0.498±0 007
65-1980 65-1980
40.1 15.7 39.1 86.0
251 ±53 22 41 107
7.18 2.91 1.15 62.4 51.5 44.0 32.7 28.1 21.8 16.4 11.2 9.1 6.8
-6.2
-30
1.65xl0-5cm*
-55
4.09xl0- 5 cm*
-35
0.82
1057 M*/Mn^ 1.08 for all
-3.8 -5.1 -6.1 -9.0 -10.7 -14.6 -18.8 0.8038
25
0.7942 46.7
25
8 0.8187 0.8015
Diethyl ketone 25 25
0.8181 200 1300 6550
2.11 4.5 8.55
Ethyl acetate
Value for infinite molar mass Value for infinite molar mass Value for infinite molar mass NMR-self diffusion See Ref. for D 0 and kD -values Value for infinite molar mass Value for infinite molar mass Value for infinite molar mass
2.17 x 10" 5 cm« 6.35 x 10" 5 cm* 17.6 x 10" 5 Cm*
134 412 1040
0.7963
Ethyl acetate 20
79 127
7.6 8.8
2.5 0.8
7.21 5.66
207 315
11.7 14.1
1.8 1.9
4.36 3.73
6,15
-4.0
Chloroform
1,4-Dioxane
639 639
9.38 x 10" Cm*
0.8118
o-Dichlorobenzene
See Ref. for def. of 5
-3.0
25
1.1 31
1054 208
5
Chlorobenzene
25-65
Refs.
639
- 6.52
-22.4
Carbon tetrachlonde
Chloroform-d Cyclohexanone
Remarks
0 0
Value for infinite molar mass
268 268 268 1080 640 268 268 268 15 15 15 268
0.787 5 0 = -0.06 + 0.026 M05
211
211
381 473 701 931 180 1965 18-1965
16.3 19.4 21.5 25.0 9.86 34.0 S0= 1.51 x 10"15
2.4 5.2 5.2 6.0 0.59 3.1
3.79 3.38 2.54 2.34
Methyl ethyl ketone Methyl isobutyl ketone Methyl rnethacrylate
0.7993 21.8
480 370
1.95
0.816
454
1.51
943
Tetrahydrofuran
Thiophenol
Toluene
0.8085
25
20
45-448 107 260 265 401 844 1100 2140 4050 115
M
1.15 1.63 1.66 2.08 2.56 3.06 3.94 4.88
87 126 150 201 315 375 615 955
atactic
Acetone
Acetonitrile
44 (T = 0)
1400 190 190 190 190 1.83 4.18 7.55 20.2 50.4 74.0 119 204 312 482 952 1.83 4.18 7.55 20.2 50.4
Value for infinite molar mass Mv M w ; D1; M w / M n = 2 , C=i.34g/dm 3 M w ; Dz; M w / M n = 2 , C = 0.859 g/dm3 Value for infinite molar mass
268
641 268
* s =2.50 x 10- 2 M" 6 9
£>o,z ==2.27 x 10 "5
1.19x 10- 5 cm*
0.8101
20.62 0.8063 0.8019 0.8190 0.8143 69.2 48.2 36.5 22.4 14.3 11.5 9.1 6.7 5.5 4.3 2.9 78.0 57.5 40.8 26.9 17.6
148 641
642 1056
s o = 1.17x 10"13
5.80 25 17 22.15 29.5 45.0 25
212
0.333
0.807
m-Xylene
Mt w
-1.6 -1.8 -2.9 - I.I 1.8 1.9 7.4 19 13 29 64 - 1.7 -3.1 -3.7 -6.1 -8.0
460 268
Value for infinite molar mass Value for infinite molar mass MV Mv
645 148
Mv Mw M w / M n « 1.08 for all
1058
M w ; M w / M n « 1.08 for all
1058
References page
VII -198
TABLE 3. Polymer
isotactic
cont'd Solvent
T( 0 C)
M (xlO- 3 )(g/mol)
Acetone
25
Acetonitrile
28 (r=0)
Acetonitrile
Poly(methacrylic acid)/PoIy(vinylpyrrolidone) complex Water
Dimethylsulfoxide
25
25
s 0 (xl0 1 3 )(s)
Z>o(xlO 7 )(cm 2 /s) 14.3 11.6 8.9 7.3 5.9 4.2 52.4 34.5 16.6 10.9 7.1 4.3 3.2 2.6 49.9 33.0 16.2 10.6 7.2 4.6 3.4 2.9
74.0 119 204 312 482 952 3.04 7.27 30.9 70.1 154 379 686 978 3.04 7.27 30.9 70.1 154 379 686 978 1000 1384 1324 1313 1262 1335 1136 1138 1065 936 746 692 536 428 311 130
*s (cm3/g)
it D (cm3/g) /o//sp -11 -13 -16 -15 -33 -38 -1.5 -2.5 -2.8 -1.5 2.3 15 37 57 -2.6 -4.9 -9.8 -14 -21 -36 -52 -66
47 (T=O)
380 800 1050 2630
20.7 30.8 36.0 58.6
Refs.
Af w ;M w /M n «1.06 for all
1058
A/ w ;M w /M n «1.06 for all
1058
638
24.4 30.3 28.5 30.3 28.5 33.3 25.0 26.6 2.63 2.50 2.30 2.20 2.10 J.79 1.60 1.08
638
Poly(methyl methacrylate-co-ethylene dimethylacrylate) Ethyl acetate 20 randomly branched
Mesitylene
Remarks
0.680
M w ; see Ref. for 549 polymerization conditions, S 0 , ks and M values Af w (measured in 643 dioxane); i^i
Toluene
47 (T= 0) 25
380-2630 1000 1350 170 51 380 800 1050 2630
5o = 3.1 x 1O 1 3 Af 0 5 20.57 26.39 12.6 6.7 16.6 24.3 26.5 42.7
644 645 0.702
Mw Mw; (measured in dioxane); V2T)i
643
a
For all temperatures. See Ref. c See Ref. d See Ref. for def. of D 'See Ref. f Y = total concentration (mol/dm3) of Na-ions divided by concentration (mol/dm3) of poly(methacrylic acid). b
TABLE 4. VINYL POLYMERS Polymer
Solvent
T( 0 C)
M(xlO- 3 )(g/mol)
so (xlO 1 3 ) (S)
Poly(hydroxyether) composed of 1,4-anhydroerythritol and diglycidyl etherAjisphenol A 20 3.1 2.5 4.9 6.95 8.26 11.8 12.3 14.2 Poly(methoxy ethylene) Amyl alcohol 15 23.5 Poly(vinyl acetal) Toluene 20.9 Poly(vinyl acetate) Cyclohexanone 23.8 48 Diethyl ketone 13 40 15 20 M^38 Methyl ethyl ketone So = 9.8 xlO" 17-1200 13 1,2,3-Trichloropropane 40 25 microgels Methanol 2360-17500 25 Methanol 31700-422900 20 Poly(vinyl alcohol) Water 22.4 13 0.96 34 1.26 74 1.96 90 1.86 S0 =4.4 x 10" 15 Af 032 21.6 21
* s (cmVg)
D d (xl0 7 )(cmVs)
* D (ciiiVg) Z*/Zsp
Remarks
V2 (cmVg)
16 13 9.6 8.0 7.5 6.7 5.8 5.5
[Tf] = 8.7 cm Vg [7?] = 9.9cm3/g [?7J=10.0cm3/g
1085
M = ILlCm3Zg [ty] = 11.9 cm Vg [77]= 12.2 cm Vg
0.983 0.848 0.849 0.821 0.833 D0 =7.8 x 10 "4 Af w63
Af v
Af,A;sf;DA
0.83 0.841 Do,z = 9.78 XlO" 5 Af"0478 0.16
Af w Af w
0.765 7.46 3.77 2.68 2.16 D0 = S-SxIO- 1 0 Af- 0 6 8
Refs.
148 148 148 60 110,122 60 647 647 129 129
Af r , w ; s,
130 148
0.765 0.750
References page Af v
VII -198
TABLE 4.
cont'd
Polymer
M(xlO- 3 )(g/mol)
Solvent 25
25 25
25 25 25 30
Water/borax (0.0060 mol/dm3) (0.0100 mol/dm3) (0.0149 mol/dm3) (0.0299 mol/dm3) (0.0498 mol/dm3) Water/NaCl (0.2 mol/dm3) D2O/NaCI (0.2 mol/dm3) Water/n-Propanol (10 mass%)
Poly(4-vinylbiphenyl) Poly(vinyl butyral) Poly(4-vinyl-/V-butylpyridinium bromide)
25
0.61 0.96 1.54 2.52 1.10 2.13 3.22 4.35
ks (cm3/g)
Z> 0 (xl0 7 )(cm 2 /s) 6.89 3.97 2.3 1.45 3.06 7.56 5.45 2.65 1.75
*D (cm3/g) /o//sp 228 282 347 400 -8
V2 (cm3/g)
Remarks
1.(HxM- 0 1 6 6
0.754 M v ; C=10g/dm 3 A/ v ; C=10g/dm 3
12.3 9.8
Refs.
119 D A ; M w / M n = 1.01 Ms1DlS,; C = 2~10g/ dm 3
4.02 4.39 4.62
0.769 0.766 0.763 0.767
648 649
650 658 151
650
0.768 0.775 0.771 0.777 0.79
2.14
25
152
1.22 25 20
Water/rt-Propanol (20 mass%)
25
Water/n-Propanol (30 mass%)
25
Water/n-Propanol (35 mass%)
25 (T=B)
Amyl alcohol Water/NaCl (0.2 mol/dm 3 )
8.5 23.3 64.7 167 107 9 28 130 492 94.5 18 43 6.4 19.8 54 94.5
s 0 (xl0 1 3 )(s)
25 20 20 25
9 1.14 63 200 13 30 74 230 10 21 74 200 14 21 76 217
115 25
0.90 4.10 1.82 2.33 0.63 0.95 1.25 1.45 0.62 0.92 1.05 1.15 0.82 0.92 1.32 1.64
3.0 1.10
5.45 3.82 3.55 2.45 4.00 2.15 1.65 1.05 3.25 2.85 1.55 0.85 3.25 2.80 1.55 1.05
2.8
M S t D ; s t ; C = 2-10 g/dm3
649
M s j ) \ s x \ C=2~10g/ dm 3
649
MX.D\ 51; C = 2-JOg/ dm 3
649
Af,. D ; J 1 ; C = 2-1Og/ dm 3
649
See Ref. for solvent [7 ? ]=l22cm 3 /g C = I g/dm 3
480 148 135 131
3.45 3.22 4.00 5.08 5.30 3.45 4.25 4.70 3.42 4.15 4.23
2.38
0.82 0.883 0.77
Poly(yV-vinylcarbazole)
Poly(vinyl chloride)
Benzene Chlorobenzene Cyclohexanone
20 23.1 23.4 25
120 1-Dioxane Tetrahydrofuran
20
4550 847
33.3 16.3
0.786 0.793 0.7 U 0.6926 0.705
940 19 53 66 120 29-110 100-180 39 97-105
CLS
0.622 1.075 1.18 1.56
Mn
148 148 602 75
M w ; MMW given
640 651 640 544
Iv) = 122 cm -Vg
S 0 = 2-195 x 10~ i 5 M 0 4 9 7.69-5.32
457
CLS
247-132
in Ref .
25 Fractionated
Poly(vinyl chlorideco-vinyl acetate) Poly(vinyl chloride-o?vinylidene chloride) Poly(vinyl fluoride)
0.7429 0.6951 90 46 20.2-183
6.8 5.41 S0 = 6.50 x 10" 2 Af 0 4 1
181 602 602
55
Cyclohexanone
23.5
0.723
M = 12.2 cm -Vg
596 148
Cyclohexanone
23.5
0.703
[77] = 77.4 cm 3 /g
148
Dimethylformamide/ LiBr (0.1 mol/dm 3 )
100
114-521
.90=0.101 xM0M
143-654
.?o = 9.29 x 10-2 M 0 4
421 0.72
SQ from 5Q
441
= J(1 + 1.66[7?]Q;
Poly (vinyl methyl ether) PoIy(I-vinylnaphthalene) Poly(2-vinylnaphthalene) Poly(vinylpyridine)
See Poly(methoxy ethylene) Toluene 25 Toluene
25
Ethanol
25
97 430
3.6 6.45
179 629
Poly(vinyl sulfonic acid) Sodium salt
Poly(vinyl trimethylsilane)
Water/NaCl (0.5mol/dm3)
20
Cyclohexane
RT
3 5 9 12.5 29.5 29.5 500
Methanol
25
Water
20
480
0.84
480
21.3
0.682 0.689 0.410
15.0 11.0 9.75 5.95 6.40
0.428 0.430 0.424 0.408 0.424
1.0(1.04)
M MW ; Ref. 134
132
S1; See Ref. for M and D
116
M^fMn = 1.4-2.1; C = O.5g/dm 3
652
s= 1.02 x 10 -15 M^ 43
25 Poly(vinylpyrrolidone)
1.57 1.96 2.32 2.94 4.27 4.46
0.82
23 20 500 12-74
761 D = 2.4x 10"4 M" 057 9.60
3.41
5o = 8.81 x 10- 1 6 Af 0 5 0
D 0 = L O x 10"4
0.730 0.776 0.783
A*u>; SV
M0.50
References page
150 144 144 143,144
VII-198
TABLE 4.
cont'd
Polymer
Solvent
T(0C)
*s (cm3/g)
M(xlO- 3 )(g/mol) 13-41.5
0.82-1.42
94.5 2700 10.6 42 86
10 12.20 0.85 1.66 1.94
1.17 0.50 8.66 4.31 2.44
Z)0 (xlO 7 )(cm 2 /s)
A: D (cm3/g) /o//sP
7.55-4.14
1.70-2.11
1.17 0.50 8.66 4.31 2.44
1.66
Water/CaBr(lmol/dm 3 ) 20 Water/KBr(lmol/dm 3 ) Water/LiBr(lmol/dm 3 ) Water/MgBr2 (1 mol/dm3) Water/NaCl (0.2mol/dm3)
(Luviskol K 30)
a
See Ref.
Phosphate buffer (0.1 mol/dm3; pH = 7) Water/NaSCN (0.6 mol/dm3) Water/Na2SO4 (0.2 mol/dm 3 ) Water/NaAc(0.1M)
20
945
5,; 7V; see Ref. for M and D V2 at 24.850C; DA given in Ref.
MS,D\ C = 5%
M,,D; C= 5%
M MW
C=10g/dm 3 C=10g/dm 3 C=10g/dm 3 C= 10.03 g/dm3
5.5 4.78 4.06 4.01 1.46 68 85
2.09 2.38
391 2.81 4.36
720 1310 1630
0.772
25
Af MW
0.771 25
5 0 = 2.14 x 10" 1 5 M 0 4 2 5o= 1.15 x 10" 1 5 M 0 4 8
D0 =2.42 x 10" 4 M" 0 5 8 D0= t -29 x 10" 4 M- 052
Refs. 40
153
0.775 0.781 0.820 0.780 0.784 0.801
20
1.0 1.43 1.59 1.76 4.77 7.13 7.13 12.5 16.7 5o = 8.81 X l O - 1 6 M 0 5 7.15
Remarks
M,, D ;C = 50%
29 ca. 32 30 50 24.5 24.5 24.5 24.5 12 25 39.2 55.6 310 584 1129 1900 3420
0.802
2.12 2.94
unfractionated 23.1 25
V 2 (cm3/g)
178 178 178 178 148 150 487 144 144 611,613 611,613 611,613 611,613 144 144 144 144 144 144 144 144 144 144 153 487 487
M w > 4 x 104g/mol M w < 4 x 104g/mol
1059
TABLE 5.
STYRENE POLYMERS
Polymer
Solvent
Poly(styrene)-poly(dimethylsiioxane) THF 7.5 vol% PDMS/THF 15 vol% PDMS/THF Poly(styrene)-fc-poly(ethylene/propylene) 2-Pentanol 5% 2-Pentanol/5methyl-2-hexanone 10% 2-Pentanol/5methyl-2-hexanone 15% 2-Pentanol/5methyl-2-hexanone Benzene Poly(o-chlorostyrene) Benzene Poly(/?-chlorostyrene) Toluene Poly(/?-isopropyla-methylstyrene)
Poly(a-methylstyrene) narrow distribution
Benzene
T(0C)
M(xlO- 3 )(g/moI)
S 0 (xlO 1 3 ) (S)
*s (cmVg)
Chloroform Cyclohexane
kD (cm3/g)
V2 (cm3/g)
Remarks
Refs. 1064
25 25 25
46.8 46.8 46.8
7.28 1.32 0.72
25 25
105 105
7.03 7.10
[T7]= 16.2 cm 3/g [i7]=15.5cm3/g
25
105
6.96
[T7]= 13.6 cm Vg
25
105
6.73
[r?] = 12.9cm3/g
19 36 8.4
PS : M w = 32100g/mol PS : M W =32100 g/mol PS : Mw = 32100 g/mol 1067
30 30 21.5
18-625
21.5
18-625
0.792 0.797 D 2 = (5 ± 2)x I 0 8 Ml- 0 6 1 ± 0 ( H )
5o = 3.61 x 10"15 M 043
30
48.4-1670
30
8.64
19.88 ±0.28
32.7
10.65 ±0.11
91.7
6.02 ±0.02
14.5 ±0.4
145.3
4.80 ±0.05
20.8 ±1.4
394.6
2.74 ±0.12
52.2 ±1.0
976.4
1.58 ±0.07
101.4±1.6
21 20 28 32 34.5
110-3280 204 204 444 768 1190 1820 3300
4.67 ±1.98
O21O = (5.24±0.48) x i0- 4 M< 0 - 5 9 ± 0 0 1 >
500
3.1 D 2 =4.78 x 10" 5 M- 0425 Dx = 6.49 x XO-5M-0425 D0 = 1.36 x 10 "8 Af^ 0 5 3.00
S0= 1.67 x 10"!5 Ml5 8.06 11.7 16.5 21.6 24.3 33.0
20 36 38 91 68 119
585 585 653
A f w ; M w / M n = 1.1-3.1; C = 0.01-0.3g/dm3 Afw ; corrected for 653 polydispersitiy (Log-Norm distribution)
O,/K>-N = (4±2)xl0- 8 Mir 0 5 7 ± 0 0 3 )
100-1000
Poly(a-methylstyrene)
D0 ( x l O 7 ) (Cm2Zs)
Mw from SE,LS; ks, DQ, kD given in Ref. M w (CLS); MW/Mn = I -59; D z,0 M w (CLS); Mw/Mn = 1.22; D,,o M w (CLS); M w //Vf n = 1.03; Dz0 M w (CLS); M w /M n = 1.04; D.o Af w (CLS); MW/Mn = 126; D 2,Q A/ w (CLS); MW/Mn = M w (CLS); M^fMn = 1.1-1.6 Mw; Ow 1.03 < M W / M n < 1.15 1.03<M w /M n <1.15 MJMv= 1.04-1.2
/o = 1.78 x 10~ 5 cm 2.6Ox 10 " 5 cm 3.41 x 10 ~ 5 cm 3.87 x 10 " 5 cm 5.21 x 10" 5 cm 7.03 x 10 " 5 cm
References page
522 654
654 558 1070 1070 657 655 656
VII -198
TABLE 5.
STYRENE POLYMERS
Polymer
narrow distribution
Solvent
Cyclohexane
T(0C)
M ( X l O " 3 ) (g/mol) 7470 204-7470 48.4-1670
39 35
(T-9)
tam5-Decalin
/ra/z5-Deca!in
5o = 1.72 x IO" 15 M 049
730 1520
13.89 19.47 5o = 1-86 x 1 0 ~ l 5 M £ 5 5o =1-93 x 10"15 M^5
35-125
6500
39
42.7-1430
50 =2.0 x 10~ 15 M 0 5
39
42.5-1170
5o = 2.04 x 10- 15 M° 50
204 444 768 1190 1820 6.85 7470 204-7470 1190 1820 3300 7470
1.74 2.42 3.40 4.41 5.15 89 10.6 5 0 = 3.9 x tO~ 1 6 M^ 5 4.98 5.71 7.41 11.4
9.5 {T= 0)
3300
20
Toluene
49.8 5o= 1-8 x l O - 1 5 M^ 5 so = 2.0 xlO" 1 5 M 0 5
37-627
37 38.2
£> 0 (xl0 7 )(cm 2 /s)
S 0 ( x l O 1 3 ) (S)
*D (cm3/g) /o//sp
^ 2 (cm3/g)
Remarks
10.6 x 10 " 5 Cm 0.886
134
/0 = 4.1 x IO" 8 M° 5 cm 0.889
fc, = 6.2x IO 4 M 0 5 1.886 /o = 1.62 x l 0 ~ 5 cm 2.47 x 10 ~ 5 cm 3.12 x 10 -5 cm 3.72 x 10" 5 Cm 4.82 x 10" 5 Cm /o = 6.65 x 10" 5 cm 9.73 x 10- 5 cm 0.894 / 0 =r4.19x 10" 5 Cm 5.53 x 10~ 5 cm 7.82 x 10 " 5 cm 11.5 x 10" 5 cm 0.892 /o = 1.99 x 10 " 5 cm 2.95 x 10' 5 cm 3.68 x 10 " 5 cm 4.91 x 10" 5 cm 6.43 x 10 ~ 5 cm 8.74 x 10 " 5 cm 13.8 x 10" 5 cm 0.892 0.873
29 27 38 62 57 106 109 137 178 353 45 82 134 167 207 356 628
40
204 444 768 1190 1820 3300 7470
2.71 3.38 5.26 6.41 7.41 10.3 14.3
25 35 25-120
42.5-1170 19.8 40.1 6500
5o = 3.Ot x 10" i5 M 0 4 4 11.37 17.78 2.38-8.0
37
20
50 =4.02 x 10- 1 5 Mi 4 3
25
8.64
19.55±O.18
1.12±0.30
32.7
10.67 ±0.05
4.63 ±0.30
Rets.
656 M w (SE); ks given in Ref. Af w; A; M n given in Ref; 5 in so Af w Mw\ DQ given in Ref. M w dep. of ks given in Ref. C=16.4g/dm 3 ; see Ref. for SQ-values Af w; pressure dep. of s given in Ref. M v ; CLS; ks given in Ref.
522 321 616 68 594 550 601 472 656
Mw;
SQ
656 656
656
472 M n ; A; LS Af v 616 Mv C=16.4g/dm 3 ; see 550 Ref. for 5 o-values M w ; DQ and/o 68 given in Ref. M w ; (CLS) M w / 654 M n =1.59 M w ; (CLS) M w / M n = 1.22
91.7 145.3 394.6 792.9 976.4 100-1000 204 444 768 1190 1820 3300 7470 204-7470 Poly(a-methylstyreneToluene b/ocfc-butadiene) Poly(a-methylstyrene-jmr-butadiene) different comp. Cyclohexane Poly(styrene)
Acetone Benzene
91 167 247 353 457 743 1450
Mw; (CLS) M^lMn = 1.03 M w ; (CLS) M w / M n = 1.04 M w ; (CLS) Mw/Mn = 1.26 /V/ w ; (CLS) Mw/Mn = 1.20 /Vf w ; (CLS) M w /M n = 1.10 654 656
0.873
656
37 20 25 20 25 25
25
Benzene
6.76 9.26 12.0 15.1 17.2 22.7 33.8 J 0 = 3.6 X l O - 1 5 M0^
6.10 ±0.02 13.5 ±0.4 4.76 ± 0.07 19.7 ±2.4 2.77 ±0.02 46.0 ±1.8 1.80 ±0.02 88.9 ±4.9 1.61 ±002 105.3 ±7.2 D,.o = (5.24±O.48)x 10"4 /if-o.59±o.oi /o =2.25 x 10" 5 Cm 3.49 x 10~ 5 cm 4.78 x 10" 5 Cm 6.04 x 10 ~ 5 cm 7.81 x 10~ 5 cm 10.9 x 10' 5 cm 16.5 x 10" 5 cm
25 25
SQ and M v given in Ref. 1200-2450
11.9-16.7
1.18-0.80
27.9 25.0 21.1 17.2 11.7 4.1 1.50
2.5 7.14
50 263 606 532 480 180
Extrapolated value Mn; M w =450.10 See Ref. for v-i
0.899 0.911
150 9.2 1.32 1.95 2.8 3.9 10.6 67 606
567
SV; M w
150
0.91 0.9175
OO
150 268 43 268
1.18-520 2.3-222 NBS 705 NBS 419 Styron 683-7
PCC four branched star
35
40 25 25
25
179 411 277 4000 392, 1700
3.29 22 1.57 59 3.26 45 D 0 = 3.05xl0- 4 M- 0 5 5 19.89
100.4
312,2210 140 24.8 86.6 162 411 1110
0.9078-0.9177
0.917 4.3 12.4 5.7 3.6 2.5 1.1
±0.1 ±0.1 ±0.1 ±0.1 ±0.1
577 577 577
M*;DA 577 M w ; CLS M w ; see Ref. for so and kg M w ; see Ref. for SQ and ks C=1.5-10g/dm 3 DL\ C=I.5-89g/dm 3
172 793 793 792 661
D,
References page
VII -198
TABLE 5.
cont'd
Polymer
M (xlO- 3 )(g/mol)
Solvent
30 30
four branched star
PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC, PCC,
4b Ic 3b 13a 4b Ic 3b 13a 4b Ic 3b 13a 4b Ic 3b 13a 4b Ic 3b 13a 4b Ic 3b 13a 4b Ic 3b 13a
PCC, 4b PCC, Ic
Benzene
20 25
20
Benzene/cyclohexane (90/10)
Benzene/cyclohexane (80/20)
Benzene/cyclohexane (70/30)
Benzene/cyclohexane (60/40)
Benzene/cyclohexane (50/50)
Benzene/cyclohexane (40/60) Benzene/cyclohexane (40/60) Benzene/cyclohexane (30/70)
20
4330 88700 79.8 775 2420 5530 9700 13400 24-3800 785 24-24000
S 6 (XlO 1 3 Xs)
its (cm3/g)
D0 ( x 107) (cm2/s)
*D (cm3/g) /o//v
0.6 ±0.1 0.7 ±0.1 5.18 ±0.02 15.44 1.41 120 0.745 310 0.512 490 0.353 640 0.284 740 £> z0 = (2.18±0.32) x 10~ 4 MZ"(055±002) 1.30 150 D2,o =(2.18 ±0.32) x 10~ 4 A/2"(055±002)
117 186 372 596 117 186 372 596 117 186 372 5% 117 186 372 5% 117 186 372 5% 117 186 372 5% 117 186 372 596
4.17 3.26 2.29 1.92 4.23 3.42 2.30 1.84 4.14 3.33 2.27 1.80 4.15 3.26 2.24 1.74 4.15 3.37 2.26 1.82 4.18 3.24 2.15 1.69 3.96 3.12 2.25 1.75
117 186
3.86 2.96
U 2 (cm3/g)
Remarks
Dx Mw; D 2 0 A# w /A/ n = l.01 M w /Af n = 1.04 M w /M n = 1.04 Mw/Mn = 1.03
Refs.
659 660
662 M w ; Af w /M n =1.01 663 M W ; M * / M n = 0.02-1.2; 664 ks given in Ref. MW;D£; C = 4g/dra3
A f w ; D 2 ; C = 4g/dm3
665
M W ; D Z ; C = 4g/dm3
665
M W ; D Z ; C = 4g/dm3
665
Mv\Dz, C = 4g/dra3
665
M w ; D 2 ; C = 4g/dm 3
665
M w ; Z ) z ; C = 4g/dm 3
665
M W ; D 2 ; C = 4g/dm 3
665
PCC, 3b PCC, 13a PCC, 4b PCC, Ic PCC, 3b PCC, 13a PCC, 4b PCC, Ic PCC, 3b PCC, 13a
Poly(styrene)
Polyscience
2.00 1.75 3.64 2.88 1.99 1.57 3.39 2.64 1.88 1.48
372 596 117 186 372 596 117 186 372 596
Benzene/cyclohexane (20/80)
Benzene/cyclohexane (10/90)
Benzene/methanol (1/3.27 vol) Benzene/propane-2-ol (64/36)
25
Benzene
25
25.5(7 = 0)
Bromobenzene
Butanone
20
665
A f w ; D z ; C = 4g/dm 3
665
150
0.660
8.2 4.14 -21.0 3.367 ±0.012 — 31.6± 1.2 2.266 ±0.006 -34.4 ±0.6 1.751 ±0.007 -45.0 ±1.0 1.512±0.014 -48.7 ±2.6 1.411 ±0.001 -5.03 ±0.8 1.065 ±0.004 -58.4 ±1.0 0.942 ±0.006 -64.6±1.7 O21O-Af-0497*0-006 10.4 2 7.5 3 5.1 7 3.5 10 2.8
33 111 180 392 670 860 1000 1800 2050 33-2050 5.0 10.0 17.5 35.5 50.0 10.000 3800
Waters
M w ; Dz; C = 4g/dm 3
110 331 985 720 528 250 550 800 1300 90 180 750 960 1700 2800 3400
7.13 13.41 26.0 23.8 18.4 12.6 18.2 21.3 26.0 12 21 21 22 31 45 30
3.25
666
DLS DLS DLS DLS DLS Mw; see Ref. for ^o and A: v Af w ; see Ref. for SQ and /c y CLS; M: av. of 6 obs. CLS; Af: av. of 6 obs. CLS; A/: av. of 6 obs. CLS; Af: av. of 6 obs. Afw;s,;Z>A
73 130 170 230 12 6.4 2.6 2.04 1.70 1.48 0.83
1.38 2.05 3.18 3.75 3.71 3.59 6.05
666 1038
667 667 11
3 125
126
References page
VII -198
TABLE 5.
cont'd
Polymer
M(xlO- 3 )(g/mol)
Solvent
5000 5500 450
Butanone 2-Butanone
23.4 25 25 30
PCC, 4b, 13a, 61208
PCC PCC-Ic NBS 705
Butanone 25 20 21-2
45 48 17.9
D 0 (xlO 7 )(cm 2 /s)
kD (cm3/g) fo/fsp
/0 = 3.12x 10- 5 cm
528 1800
1.56 D0 = 3.1 x 10~4 M" 053 £> z = 4.58x IQ-4 M-0-55
5.13 3.83 2.21 1.19 0.976
238 426 1210 3850 5470 110, 670, 950
5.89 13.4 55.3 140 140
£> Zi o = (3.1 ±0.2) x 10-4 M(-°-"±()02) D ^0 = 4.1 x 10- 4 M- 054 5.86 ±0.06 5.66 ±0.09
20.8-1700 100-1800 200 190
25
5400-15300
D^) = S-SxIO- 4 M; 0 - 5 6 1
25
20.8 33 111 200 392 507 670 2700 8700 20.8-8700
25
25 25
V2 (cm3/g)
D z<0 = (5.5 ±0.2) x 10"4 M; 0561±0005
22.5 7.90 5.96 2.95 1.37 0.62 ±0.01 0.9078
OO
325-2800
log S0 = 17.845+0.455 log M w
Refs.
D A ; av. of 4 obs.
4 4 3 568 568 1071 1071 995
fo=kT/(Dorn) CLS CLS 3 . 7 < M w x 10' 4 <302 1.03 < M W / M n < 1.15 DLS DLS DLS DLS DLS M w ; See Ref. for O 0 and ko Mw M w ; M w / M n < 1.06; 4V M w ;M w /M n =l.O4;D z . o M w (SE);
897 669 670 671
M W ; M W / M n < 1.17; Z)^0 M w (SE);M w /M n <2.1;Z) / ..o M w ; (DLS);
22.5±1.0 -25±5 16.0 ±0.6 -26 ± 5 8.1 ±0.3 -11 ± 4 5.95 ±0.1 -2±3 3.95±0.15 9±4 3.3O±O.1O 19±4 2.9±0.l 27±4 1.30 ±0.03 72 ±5 0.70 ±0.03
21 110 200 670 270 10000
Remarks
5.24 5.25
0.84 0.81 3.4 3.75
4.89 ±0.06 4.37 ±0.03 5.22 ±0.06
25 PCC, 2b PCC, 4b PCC, Ic PCC, Ba PCC, 14b
*s (cm3/g)
254 288 233
PCC-50124 NBS 706 blend
PCC, 2b PCC, 7b PCC, 4b PCC, Ic PCC, 3b PCC, 5a PCC, 13a PCC, 14b JVC, 7M
s0(xl013)(s)
Mw; M^fMn 672 = 1.3-1.6; 4V M w ; M w / M n = 1.06; 673 M W ; M W / M n = 1.06; Z)^o M w ; M^fMn = 1.06; Dzfi M*\ M^fMn= 1.06; Difi M w ; A f w / M n = l . l ; Da) M w ; M w /M n = 1.2; D^ 0 M w ; Af w /M n = l.l; D z 0 M w ; M w /M n = 1.3; Dz.o Mw: M w /M n = 1.3;D 2i0 M w ; Mw/Mn 673 = 1.06-1.3 M W ; M W / M n = 1.06 674 M w ; M w / M n = 1.06 M w ; M w /M n = I.O6 Mw; M w / M n = 1 . 1 5 MW;MW/Mn=1.3 Mw 675 Extrapolated value 268 [J0] =1-385 x 10-Sg 169
NBS 706 NBS 705 Waters sample W-61970
25
25 27
257.8 179.3 2145 (7=0)
127
35.76-37.82
82 140
9.8 13.3 s0 =4.62 x 10~ 1 5 M 0452
25 25
107
43 9.4 48 5.14 0.107 M 0 5 5 fc, = 8 . O 8 x l O - 2 M 0 7 0 7.44
27
Butanone/butanol (74/26)
25
Butyl acetate Carbon tetrachloride
Chlorobenzene Chloroform
25 23
2.2 480 770 1100 200 372.5 830 1065 2300
20.0
111
25.0
175
6.18 3.32 2.51 2.64
-86 -12
5
648
25
2000
0.63
27
82 140 480 1100
4.43 2.27 1.41 1.04
0.7 0.179 ±0.012 0.931
79.8
3.70 ±0.2
-1.3l a
268 677
9.2
given in Ref. DLS; Mw/Mn = 1.09 M w ; Z),o A. Paar Digital Densitometer M w ; M w /Af n < 1.3; C = 2Og/dm3; 3V Mn; Dw
0.9087
Extrapolated value
0.9207 0.912
Extrapolated value
38.92
180
12
320 400 500 (1.84) 5.8
/o = 3.86 x 10- 5 cm 0.9100
log J 0 = 17.992 + 0.415 log Mw
799
268 12 659 268 1060 125 5 1060
0.908 0.924 13.1 15.4 17.8 — 15.1
991 676 1060
0.5 a
OO
115-2800
642 716
12
0.9162
2880 10000
21 25
M w ; Af w /A/ n =1.01; O A ; C=15.1g/dm 3 M w ; DLS Mw;Dzfi; C = 7.9 g/dm3 Mw; D 20 ; C= 1.7g/dm 3
1.0
25
standard sample no. 706
745
Af w ; CLS
OO
550 800 1300 540 278
12
M w /Mn = 1.6-2.3
49 0 40
123 162 272
600
250
571 571 571 571 427
169 18.05 26.6 32.0 47.1
24 25 25
30 25 25 20
For solvents See Ref.; 5 W ; A; C = 2g/dm3 M n ; £> w ; Dw=kM~$53
0z,o = 5.85x 10 "4 M"0-58 50
45-448
Butanone
M w ; CLS Mw; CLS M w ; CLS
3.88 5.4 1.62 £)0 = 1 . 9 6 x l 0 - 4 A/"049
M W ;Z> W Extrapolated value [50] = - 1.595 xlO' 2 S0
References page
558 268 268
VII -198
TABLE 5.
cont'd
Polymer
Solvent
PCC, 4b
T( 0 C)
*s (cm3/g)
22 21
UO 500 5000 13300 16400
Cyclohexane
25
00
Cyclohexane
181-1040 28 180 180 30 90 237 1150 34 (T=O) 0.37 34.5(T=O) 0.58 0.90 1.78 3.48 10.1 40.0 191.0 732.0 1320.0 702 35.1 (T=O) 2300 32-1640 35
Styron 683-7
0.9293 .$•0 = 3.85 XlO" 1 5 Ml*1 ca. 2.2 ca. 2.5 4.0 ca. 3.1 16.9*
125
194-929 150
678 748
Extrapolated value Ms,d
Mw / A / n w l . 02 Af w /Af n «l.O2 M w /Af n «l.O2
DLS DLS
/o = 2.95 x Kr 5 Cm 0.934
5.06
0.928 -7
given in Ref. M*;h = kT/(DQr)i)
M w ; CLS See Ref. for V2 Af w*, Af n given in Ref.; Dw
1061 1061 6 3 5 107 96 172 532 592
Mn
592 592 592 486
Afw;DA
577
M W ;Z) A Afw;DA Af w ;dep. of ks given in Ref.
594
5
8.43 16.2 34.5
268 605 414 414 587 587 576 1069
M w/Mn »1.02 Af w /Af n «1.02 A/ w /M n «1.02 Af w /Af n «1.02 M w /M n «1.02
A/ w ; A
3.86
S 0 = 1.50 x 10-
Af w ; Af w /Af n = 1.06 M w; flotation
D0 = 1.21 x 10" 4 Af- 049
2.71 3.19 2.88
35
-1.03 -1.67 -1.91 -3.45 -3.78 -6.07 -10.0 -21.7 -38.9 -68.4
1.92
50 =1-69 x 10" 15 Af 048 J 0 = 1-35 x 10- 1 5 AfJ 5 1 28.1
Refs.
My
67.4 58.2 43.1 32.9 21.7 13.0 6.58 3.04 1.57 1.17 1.69 0.93
11.4-1040
Remarks
Af n C=17.8g/dm 3 C= 1.47-17.9 g/dm3
72 22
NBS 705
Styron 683-7 NBS 705 NBS 419
V 2 (cm3/g)
330 690 950 1420
12.1
309 975 4900 277 179 411
/o//sp
61 -12.30 -20.80 -27.10 -33.3
540
4000
D 0 (xl0 7 )(cm 2 /s)
0.943
|5
M
05
S0 = 1-50x 10~ t 5 Af 0 5
3.86 -6 3.19 -4 2.67 -4 D 0 =1.21 X l O - 4 A f " 0 5 0.928 0.933
M n ; Af w =450.000
605 606
Waters sample no. 25170
13 16 22 28 35 32 34 36 38 40 42 28-40 45 55 35 35 35 35
NBS 705 Waters sample no. 25167 Waters sample no. 61970 PCC, 4a PCC, Ia PCC, Ic PCC, 3a PCC, 6a
38 40.4 45 55 45 55 35 (T= 6) 40 35
180 4000 4000 79.8 498 179, 1050 179
2.28 -1.4 -0.8 5.8 12.1 24 46 71 86 105 125
-4.3
ca. 2.9
29.0 34.0
1570 3570
0.934 0.936 4.61 ±0.2 1.5
3.37 ±0.05 3.64 ±0.01 3.83 ±0.04 4.61 ±0.08 1.49 ±0.02 1.83 ±0.03 D. i O =i.39x 10" 4 Af" 0 5 2.9 2.62
4100-48000 200 179.3
Cyclohexane
TS-6 PCC, 60914 TS-8 TS-34 TS-31 TS-33
35
4500 97 160 190 410 860 1800 97-1800
233 422 600 1260 3840 8420 20600 233-20600 110-4100
1.20 0.80 0.34
4.64 ±0.04 5.93 ±0.03 6.44 ±0.03 9.68 ±0.08 14.05 ±0.08
543
Mw; D 2 ; see Ref. AZn Mw\ D 2 given in Ref. M W ;M W /M n -1.06;
414 172 172 659 679 679 680
Given in Ref.
680
Mw (CLS) Mw (CLS)
-17.62
3.23 ±0.02
900
34.5 (T = 6)
A*MW;A/ W =51.000,
Mn =49.000
867 2145
35.4
PCC, 4b, 13a, PS-705; F-4
1500
51 2.42 2.61 2.88 3.26 16.8 17.2 17.6 18.0 18.6 19.0
19±1.5 21.5±1
26±1 38±4 58±4
S0 = (1.51 ±0.02) x 10"15 M 0 5 5 0 = (0.062±0.003)M05 7.3 9.7 11.6 18.2 29.4 40.8 66.7 50 = (1.50±0.01)x 10"15 M05 5 0 = (0.052±0.0l0)Af 05
M w C=10g/dm 3 A/ w ; Af w /A/ n = 1.07;D2 Af w ; Af w /M n = 1.12; D1 M W ; M W / M n = 1.21; D 2 M^D1, C = 5.4g/dm3 A/ w ;M w /Af n = 1.06 Af w ; Af w /A/ n = l.O6 M w ;A/ w /M n = l-06 M w ; A/ w /Af n = 1.06 M w ; M w /A/ n = lJ5 Af w /M n = 1.20
681 682 684
685 685
M w ; M w / M n = U5 686 M w ; M w /M n = 1.04 M w ; M w / A / n = l.l Mw;Mw/Mn=1.05 M w ; Af w /M n = 1.05 Af...: Af ..,/M., = 1.19 686 D2,o = (1.38±O.O4)x 10"4 A*"05
687 1.06-1.15, ks given in Ref.
References page
VII -198
TABLE 5. Polymer
cont'd Solvent
r(°O
M (xl0- 3 )(g/mol)
35 ±0.2
PCC
35.4
SRM 1478
28 35 35
10 15 20 30 35(T=O) 40 50 15 20 30 35(7=0) 40 50 60 70 80 90 100 20 30 35 (F= 0) 40 50 60 70 80 90 100 35 (T= 6)
PCC
PCC
PCC
PCC PCC PCC
Cyclohexane
s0(xl0l3)(s)
230
7.3 ±0.2
230 37.4 51 ±2.5 410±20 186 ±10 254 ±13
7.2 ±0.2
D,,o=(1.24±O.O5)x IO" 8 M2-°-498±002
37-350
1.66 5o = 1.49 x 10"l5 M 0 5
£> z0 = i.40x 10"4 Af" 0 5
1fcefs. 688
3.69 4.08 4.51 5.44 5.01 6.36 7.27 ca. 2.51 2.78 3.38 3.69 3.97 4.57 5.17 5.91 6.67 7.47 8.28 1.72 1.99 2.12 2.26 2.61 2.96 3.36 3.80 4.25 4.77
350
107-775
Remarks
1.06-1.15, ks given in Ref. M w ; C = 2.5g/dm 3 ;s 0 given in Ref.
2.07 ±0.02 5.86 ±0.22 2.56 ±0.07 2.56 ±0.03
110
35
*D (cm3/g) /o//sp ^ 2 (cm3/g)
0.9320 ±0.0007
37
670
Z)0 (xlO 7 )(cm 2 /s)
DZi0 = (l38±0.04)x 10" 4 Af- 0 5
110-4100
35
its (cm3/g)
A f w ; M z / M w < 1.1; D 2
689 689 690 691
MW;MJMW < 1 . 1 ; D1
A/ w ; Af z /M w = 1.87;Z) z M w ; A/ Z /M w = 1.24; 0.05; O z MW;MW/Mn = 1.06; #z,0
692
MW;M*/Mn = 1.06; 692
M w ; Mw/Mn = 1.1;
692
M w ; A/ W /M n = 1.06-1.1; D Zr0 Mw;Dzfi; C = 4.2-79.9 g/dm 3 A f w ; C = 0.9-8.08
692 795 694
35 (T= 0)
PCC, 4b
20 37 35 35
Styron 683-7
35±0.1
2.41 ±0.20
2.43 ±0.05
2.45 ±0.26
2.46 ± 0.09
117 250 269 670 340
7.14
265
g/dm 3 ; 7V; corrected for polydispersity M w ; MjMw = 1.61 ±0.05; D; C = 2g/dm 3 M w ;M y ./M w = 1.59± 0.19; D; C = 2g/dm 3
3.14 2.25 1.95 24
3.69
-8.4
7.76
3.23
-5.4
425
9.23
3.07
-7.1
365
8.25
3.35
-9.4
M W ; D Z ; C=10g/dm 3 Mw-Dz- C=10g/dm 3 D1 given in Ref. M w ; M n = 111000; Dw,0; see Ref. M w ; Mn = 182000; D w 0 ; see Ref. M w ; M n =202000; D w 0 ; see Ref. M w ; M n = 168000; D w 0 ; see Ref. MW;MW/Mn = 1.02-1.17
D7J) = 1.39 x 10"4 Af" 0 - 5
4100-48000
O z =D z ,o-7.76x 109 C 34.5
35 34.5 (T =9)
44.5
TS-32 TS-31
TS-33
Cyclohexane
35.6 38.7 35.6 36.6 39.0 35.6 36.6 38.0 39.0 35.4
98
4.64 ±0.04
160
5.93 ±0.03
190 411 860
6.44 ±0.03 9.68 ±0.08 14.05 ±0.08
M w ; Mw/Mn< 1.06; pressure dependence of J 0 given in Ref. M w ; Mw/Mn< 1.06 M W ; M W / M n < 1.06 M w ; M w / M n < 1.15 0.934
238 426 1210 3850 5470 238 426 1210 3850 5470 6770 8420
20600
100-20600
2.74 2.09 1.24 0.67 0.58 3.22 2.46 1.42 0.75 0.612 38.02 38.06 41.19 40.79 40.70 64.36 64.75 63.19 61.75 S0 =1.50 x 10-' 5 M 0 5 0
-22.0 -26.6 -48.6 -50.0 -85.6 -10.6 -8.3 1.21 8.67 43.5
DLS DLS DLS DLS DLS DLS DLS DLS DLS DLS Mw; M w / M n = l . l 4
695
665 693 796 797
696 696 697
743 995
698
M w ; M w / M n = 1.17
Mw
References page
VII-198
TABLE 5. cont'd Polymer
Solvent
TCC)
M(xlO~ 3 )(g/moI)
NBS-705
35
179
PCC, 8a
35
10.3
30
37
20.3 (T= Tc)
85
S0(x 1013)(s)
*, (cm3/g)
Z)0 (xlO 7 )(cm 2 /s)
kD (cm3/g)
/o//sp
V2 (cm3/g)
Remarks
Refs.
700 £>z,o, *D given in Ref. 700 M w ; M w / M n = 1.06; D1^ kD given in Ref. Af w ;M w /A* n =l.O3; 701
6.4 ±0.02 0.9214
3.00
702 Tc critical temp.
34.5 (T=0) 24.3 (T= Tc) 140 34.5(7-= 0) 27.0(T=Tc) 320 34.5 (T =0) 30.0 (T= T c ) 700 34.5 (T =0) 31.0(T=T c ) 1100 34.5 (T= B) 34.5 (T=Q) 85-1100 F 10
35
107
Styron 683-7 PCC, 7a Waters, 41995 PCC, 4b NBS-705 PCC, 3b Waters, 25166N Water, 25166 PCC, 5a Waters, 25167 PCC, 14a Waters, 61970
35 34.5
302 5i 98.2 110 183 390 470 411 498 867 1800 2145 51-2145
34.5
34.5
PCC, 4b PCC, Ic PCC, 13a PCC, 14b
0.9285 0.9225
0.9280 0.9219 0.9260 0.9195 0.9220 0.9179 0.9200 4.33
-4
2.81
-8
702 648 Z> A ; C=l5.3g/dm 3 C=l3g/dm 3
34.5
PCC, 2b
3.7 4.96 5.0 7.60 8.8 12.60 12.0 13.20 14.2 S 0 = 1-58 x 10"15 A/ 049
35
6.10 4.50 4.03 3.36 2.33 2.26 2.20 2.05 1.64 1.12 1.09 £,,o = (1-388 ±0.42) x 10"4 M~ 0 5
3.28 4.66 5.09 6-33 9.26 9.34 9.62 11.16 13.64 19.41 (9.41 .?o =(1.514 ±0.077) X l O - 1 5 M 0 5 ks = (0.65 ±0.17)
1.2 3.1 4.0 107 30.2 21
35.0 22.3 19.45 12.30 7.31 8.97
NO 200 670 2700 21-2700
4.20 3.05 1.66 0.84
-2.0 -2.8 -3.9 -5.7 - 10.8 -9 - 18 - 16 -34 -56
D z , 0 = (1.3 ±0.2) x 10-4 x M; 0497±0006
703 0.936 0.936
703 A f w ; M w / M n = 1.2
704
993 DLS 993 DLS 993 DLS 993 DLS DLS 993 M W ; M W / M n <0.06, 674 DLS M w ; M^fMn <0.06; DLS M w ; M w / M n <0.06, DLS A/ w ; Mw/Mn <0.15; DLS M w ; M w /M n <0.3; DLS M W ; M W / M n = 1.6-2.3; 674 DLS
21-2700
s0=i.46xl0-'5M050i
kD = (4.1 ±0.3) x K)- 4 x A/^8±o04 2
35 Cyclohexane linear, S102 linear, PS 100f2 linear, S108 linear, PS800f2 linear, PS1000f2 star branched branched branched branched branched branched branched branched branched branched branched, 4-armed stars, S131A branched, 4-armed stars, S121A branched, 4-armed stars, S l I l A branched, 4-armed stars, S161A branched, 4-armed stars, S141AA branched, 4-armed stars, S181A branched, 4-armed stars, S191A branched, 6-armed stars, HS061A branched, 6-armed stars, HS051A Comb, C612 Comb, C622 Comb, C632 Comb, C642 Comb, C652 Comb, C732 Comb, C742 Comb, C752 PCC, 3b
PCC, 14a branched, 4-armed stars branched, 3-armed stars
branched, 12-armed stars
35
35 34.5
44.5
35
35 35
35 35
500 5000 16400 84
11.50 24.40 50.00 4.29
116 238 675 1700 960 980 1730 2390 4780 14300 980 1730 2390 4780 14300 50.7 93.5 154 351 521 1027 1390 UO 1090 475 624 913 1630 3130 1530 2230 3620
4.94 7.66 12.2 20.15
*, = 5.69x IQ- M 40 104 150
050
1.66 ±0.04 1.63 1.28 1.09 0.767 0.509 1.82 1.37 1.18 0.860 0.569
-4l00±400
A/ w ; M ^/Mn = 1.6-2.3
745 748
Afw ; 5 D corrected for pressure influence
683
Mw; D2r0; DLS Af w /Af n = 1.17 Mw/Ma = L24 M^fMn = 1.19 M*/Mn = 1.06 Af w /M n = 1.03
719 994
994
683
3.38 4.72 6.17 9.34 12.0 16.2 18.7 5.51 17.4 10.8 13.7 17.4 25.0 35.6 20.6 26.5 36.3
683 683
Af w ;s 0
683 392
1700 312 2210 12.4 920 1190 55 149 467
Mw;Mw/Mn<1.10 ^o and ks given in Ref. M w ; A/ w /Af n
793 793 793 705
11.73 1.47 1.28 6.61 4.04 2.42
References page
VII -198
TABLE 5.
cont'd
Polymer
Solvent
branched, 18-armed stars branched, 9-armed stars PCC Cyclohexanone Cyclopentane PCC, 4b
PCC, 2b PCC, 3b PCC, 61208
J( 0 C)
35 25 5 11 15 20 30 40 20 20 20 20
808 1110 1690 8770 950 200 til
(T=O) (T=Q) (T=O) (T=O)
20.8 392 900 20.8-900
34.85
20 (T=O)
4480
PCC
20A(T=O)
110
TS, TS, TS, TS,
F80 FF33 FF35 FF36
fro/u-Decalin
24.8 29.0 34.0 18.2 30 40 50 60 70 80 90 100 110 18.2 40 60 80 110 27 20A(T=O)
A: D (cm3/g) /o//sp
V2 (cm3/g)
-41 ±4
2-0 g/g 10.9g/g 16.1 g/g 17.1 g/g 22.9 g/g 27.0 g/g 9.7 g/g 36.5 g/g 64.9 g/g
450
2.73
73
4.54 5.27 6.13 0.85 1.16 0.93 1.43 1.52 1.82 1.96 2.69 3.30 3.59 0.69 0.76 1.10 1.45 2.23 0.50 - 15 0.5223 -38.8 ±2.4 0.3035 -82.2 ±7.3 0.1935 - 104 ± 1 1 0.1458 -119±19 D 0 = (4.60 ±0.08) x 10"5 M" 05
Remarks
Refs.
M w ; D Z)0 A
706 624 707
M W ; M W / M n < 1.06 M w ; M w / M n < 1.10 Mw; M w / M n < l . l Q
707 707 707 707 707 708
C = 4.448g/dm 3 ;4V M w ; M w /M n ^1.06;D z C = 0.55 mass%;6V D z ; C=5.95 mass%;3V 756 D 2 ; C = 5.95 mass%; 3V D,; C= 5.95 mass%; 3V
5.91
150
770 775 2420 5530 9700 775-9700 20.4 1800 25 (T=O)
D 0 (xlO 7 )(cm 2 /s) 1.85 1.61 1.35 0.621 1.66 ±0.04 5.2
8.07 8.40 8.84 8.90 9.94 11.03 3.97 16.12 26.60 5 0 := 8.7 x I0- | 4 M° 5 0
TS-12
PoJym. Soc. (Japan), stand, sample
ks (cm3/g)
M(xlO- 3 )(g/mol)
Mn; DA;
DW;MW,
M Mw given in Ref. 502
Mn;DA;Dw;Mw; M MW given in Ref.
M n ; Dw
0.13 0.43 ±0.02
502
12 709
710 711
5.43 Af w ; M w /M n ^1.20
20 25 30 35 40 20
NBS-705
30 40 20.5 (T = 9)
390
2.34 2.60 2.78 3.06 3.34
27.3 58.8 65.6 79.1 94.9
179.3
I.Il
1.72 x 10"5 1.77 x 10 ~ 5 1.82 x 10 ~ 5
37
1.33 1.59 6.95
180
3.13
670
1.65
1260
1.172
2880
0.736
5050
0.566
Mw\ M»/Mn< 1.10
712
Mw; Mw/Mn = 1.07, D,,o, DLS;/ o //?o
713
M w ; Af w /Af n = 1.06; D,,o; DLS
714
D,.o; DLS
trans-Decalin
20
Dibutyl phthalate 0-Dichlorobenzene Dichloroethane
25 30 35 40 25 120 25 21
Diethyl ketone Dimethylformamide
25 21
Dioxane 1,4-Dioxane
25 50
75
0.70
390
0.86 1.01
0.9259 0.9282 0.9308 0.9336 0.9357
680 OO
500 5000 13300 16400 oo 500 5000 13300
-4.26 -8.35 -13.30 - 16.70
292 880 1330 1960
3.60 6.70 7.70
103 167 190
1.02-1.15; DLS M*, 10V; 7: 24,725 C = 0-84.5 g/drn3 M W ;9V; C = 0-86.7 g/dm3 M w ; 9V; C = 0-83.0g/dm3 715 /V/ w ; DlSh DLS
0.9289
Extrapolated value M w ; flotation
268 748
0.9106
Extrapolated value
268 748
0.930 2 4 9 17.5 50 100 2 4 9 17.5
714
D 2 0 = 1.309 x 10~4 Af" 05
20.5(T=O) 37-5050 PCC, 3b
D 2 0 ; DLS A f w ; M w / M n = 1.05; O2.0; DLS A*w; A/ w /M n = 1.09; X>z,o; DLS Mw;Mw/Mn=1.02; £>z,o; DLS
27.7 19.8 14.9 9.9 5.8 4.1 41.8 30.0 21.3 14.1
Taylor dispersion method
References page
1060 1062
VII -198
TABLE 5. Polymer
cont'd M (xlO" 3 )(g/mol)
Solvent
95
1,4-Dioxane
95 105
Dioxane Epichlorohydrin
25 30 21
Epichlorohydrin/ dimethyl maleate (1.3/1.0mol/mol) Ethyl acetate PCC, PCC, PCC, PCC,
4b Ic 3b 13a
25 27 20
Ethyl acetate/ cyciohexane (90/10)
20
Ethyl acetate/ cyciohexane (80/20)
20
Ethyl acetate/ cyciohexane (70/30)
20
k D (cm3/g)
*s (cm3/g)
50 100 2 4 9 17.5 50 100 2 4 9 17.5 50 100
0.9270 3.l0±0.2 -1.97 -3.85 -7.15 -11.10 -1.35 -2.63 -3.03 -5.26
13.7
145 460 1160 2170 36 97 168 278 0.9132
OO
117 186 372 596 117 186 372 596 117 186 372 596 117 186 372 596
V2 (cm3/g)
8.2 5.9 52.7 39.1 28.0 18.4 10.8 7.6 59.5 44.1 32.5 20.9 12.4 8.7
OO
79.8 500 5000 13300 16400 500 5000 13300 16400
/0//sp
2.64 6.23 5.05 3.31 2.45 6.05 4.54 3.21 2.38 5.81 4.55 3.05 2.45 5.73 4.36 2.89 2.20
Remarks
Refs.
Taylor dispersion method
1062
Extrapolated value M w ; DZi0; DLS Mw; flotation
268 659 748
M w ; flotation
748
Extrapolated value
268
Mv, Dx
665
12
665
665
MW;DZ
665
Ethyl acetate/ cyclohexane (60/40)
20
Ethyl acetate/ cyclohexane (50/50)
20
Ethyl acetate/ cyclohexane (40/60)
20
Ethyl acetate/ cyclohexane (30/70)
20
Ethyl acetate/ cyclohexane (20/80)
20
Ethyl acetate/ cyclohexane (10/90)
20
Ethyl benzene
27 30
Ethyl n-butyrate Mesitylene Methylethylketone Methyl isopropyl ketone Nitrobenzene Tetrahydrofuran
Tetrahydrofuran linear
130 25 25 25 20 25 25
25 25
117 186 372 596 117 186 372 596 117 186 372 596 117 186 372 596 117 186 372 596 117 186 372 596 770 42.5-1430
9.5 50 = 3.28 x 10"15 M 042
3.55
5.28 4.11 2.76 2.15 4.95 3.92 2.53 1.99 4.72 3.68 2.39 1.92 4.27 3.54 2.31 1.81 4.08 3.09 2.10 1.53 3.69 2.73 1.79 1.49 0.96
665
665
M w ; D1
3840 5480 8420 20000 10.5 45.0 79.5 182.0
7.2-34
111 37.8 79.4
665
665
Mw; D1
665
130
0.919 0.9260 0.919 94-1200
665
12 612
Mv; 12V; ks given in Ref. D given in Ref.
6.95-2.5 0.682 0.531 0.432 0.241 15.8 8.1 6.15 3.95 £>Hnear = (1 4 0 ± 0 2 0 ) x
cyclic
Afw ; Dz
6 14 20
Extrapolated value 7 V ; s , ; D A = D w ; *f /|W
571 1114 1071 1501 8 20 38 46
0.904
0.9102
Af w /Af n = 1.04 M w /M n = 1.15 Af w /Af n = 1.17 M w /M n = 1.20 Extrapolated value Af w /M n = 1.15 Af w /Af n = 1.19 Af w /Af n = 1.08 JVf w /Af n = U0
794 1060 268 1060 66 1060 992 992
268 996
jQ-4 ^-0.48*002
M w /M n = l-20 M w /M n = 1.21 Af w /Af n = 1.14
References page
VII -198
TABLE 5. Polymer
cont'd
M(xl0- 3 )(g/mol)
Solvent
181.5 30
198 370 570
no
30
linear
star linear
30 30
30 24
atactic
4-terr-Butyltoluene
50
atactic
Toluene
15
Toluene
390 411 3000 10000 180 390 3000 10000 960 180-10000 19.8 37 51 HO 411 20-411 20.4 51 97.2 160 411 860 1800 20-1800 5.38 20.2 359 732 1270 3840 0.92 5.38 9.98 40.0 97.3 191 359 732 1270 3840
s 0 (xl0 1 3 )(s)
*s (cm3/g)
D 0 (xlO 7 )(cm 2 /s)
* D (cm3/g) /o//sp V2 (cm3/g)
27 D=yclic = (2.40±0.17)x IO" 4 M-052±002 13.41 8.81 8.02 4.92 2.47 2.51 0.813 0.435 3.25 36 ±8 2.48 96±7 0.813 390 ±90 0.435 620 ±30 1.71 ±0.04 5100 ±500 £>2,o = (3.2±O.l) x 10 "4 Af;056±002 13.41 76 8.81 24 14.9 8.02 32 4.92 75 2.51 Dz,o = (3.O±O.4) x 10-4 A*"0549*0013 7 12.7 16 7.65 28 5.43 44 3.99 91 2.35 136 1.59 264 1.01 Dz,0 = (3.45±0.18)x 10-4 M;0564±00()4 19.2 - 2.69 9.31 -2.44 2.01 20.4 1.38 57.0 1.02 77.1 0.53 129 52.0 -1.22 20.0 0.525 14.1 2.38 6.85 10.7 4.15 21.8 2.82 40.6 1.96 71.2 1.33 130 0.978 206 0.502 319
Remarks
Refs.
Mw/Mn = \.\\ M w ; D 2>0 ; kD given in Ref.; DLS
M w ; D z 0 ; DLS
718
719,722
719,722 M w ; D^0; DLS 720,722 Mw; DLS 721 M v ; M w / M n = 1.06; Dzfll DLS
DLS A* w ; D,,o; DLS
M w ; DLS DLS DLS DLS DLS DLS DLS M w /M n = 1.0l M^fMn = 1.03 M w /M n = 1.03 M w / M n = 1.02 Mw/Mn = \.O2 Af w /Af n = 1.02 M w /Af n = 1.0l M w /M n = 1.03 Af w /M n = 1.03 M w /M n = 1.05
721 723
723 1068
1068
1068
20
536
8.75
1.95
450
7.92
2.02
150 1.2-520 300 45 140 960 2850 250-1300 Szwarc "living polymer" 22.7 23.5
/o = 3.55 x l O - 5 c m
0.910 0.917 6.25 7.20 4.75 9.65 18.1 5.9-11.2 57.5-226
D- Af" 053 2.50 2.85 4.03 1.17 0.74
75.0
8.05-3.29
3.7-5.20 36.4 36.4
0.917 0.916
25 D = 2.15xlO" 4 Af; 053
25
4.13 3.78 1.265 0.81 0.43 0.31
1260 2950 8000 15000
27
PCC TS-12
30 25 25
0.917 770 1.2 2 40 13.3 200 4480
96 0.66 0.44
1.22 0.917 0.948
14.01 3.4
TS-33
15.47
25
20600
30
250
2.57
269 411
2.37 1.982
30
30
238 426 1210 3850 5470 79.8 93.46 347.22 1136.36 3802.28
3.19 2.32 1.28 0.68 0.55 6.32 ±0.2 5.22 ±0.2 2.20 ±0.1 1.20±0.1 0.85 ±0.05
Av. of 3 obs.
4 5 606 43
Mn; Mw =450000
16
Af ,,A; S 1 ; DA
0.918
74
3
Mw;sr;DA
190 3.24 3.24
Af w ;j,;£> A ;
56.7 74.2 190 361 546 20.57 10.476 61.36 173.3 1552.94
4V; ks given in Ref. 4V;Af,, A C = I g/dm3 Af v
125 44 148 237 409 Extrapolated value 268 591 532 v 2 given in Ref. 511 D A ; C = 0.79g/dm3 511 D A ;C=1.19g/dm 3 1078 DLS 1078 DLS 1078 DLS 1078 DLS 57 12 Af n (Ref. 13); £>w 17 St 17 1,237 467 624 Af w ; M w /M n < 1.06 708 Af w ; Af W /M n = 1.14; C = 0.429 g/dm3; 12V (C = 0.429-37.02 g/dm3 Af w ; C = 0.487g/dm3; 6V 708 (C = 0.487-4.445 g/dm3) Af w ; Af n = IOOOOO; 721 Dz,o; DLS Af w ; Af n =59000; D Zi0 ; DLS Afw ; Mn = 388000; £>z,o; DLA DLS 995 DLS 995 DLS 995 DLS 995 DLS 995 Mw; D 2 0 ; DLS 659
References page
VII -198
TABLE 5.
cont'd
Polymer
3
M(xlO- )(g/mol)
Solvent
j0(xl013)(s)
3
3
*D (cm /g) /o//sp
ks (cm /g) 12.6 ±3.8
30
37
PCC
20
670
PCC
20
670
1.58
23
179
3.59 ±0.25
85.9 ±73.7
55
179
5.09 ±0.03
198.1 ±10.1
10
110
2.3
Toluene
3
V 2 (cm /g)
Remarks
Refs.
701 M W ; M W / M n = 1.03; O11O-, DLS Mw; Dx given in 796 Ref.; DLS A*w;/>z,o C = 795 4.2-79.9g/dm3; DLS A/ w ;M w /M n =i.O6; 680 Dzfi;kD=kD /> Z)0 ;DLS A# W ;A# W /A# 0 = 1.06; 680
D l f i \ k D = kDDz#\DlS PCC, 4b
20
99.5
4.45
20
783 1280 2890 18800
1.34 1.01 0.53 0.207
20
37
8.027
110 200 422 775 1230 2420 1.2 3.1 4.0 10.7 30.2 48.5 97.0 424 25.6 38.6 64.9 238
4.180 3.175 1.900 1.360 1.083 0.720 40.1 28.5 25.8 15.7 8.82 6.78 4.39 1.96 2.56 1.95 1.32 0.80
F 80 F 126 F 288
Toluene
20
25
D2; C = 28.7g/dm3, DLS M w ; M w / A f n = 1.07; 727 £>Z)o; DLS Mw;Dzfi; DLS Mw; Dz0; DLS M w ; D1 o; DLS M w ;Af w /M n =1.16; 730 DzQ; C=0.0715-0.3511 g/dm J , DLS 731 M w ;M w /A/ n = 1.03; OZ)0; DLS Mw/Mn = 1.03 Mw/Mn = \№ M w /M n = 1.04 M w /A/ n = 1.01 A/ w /A/ n = 1.02 M w /M n = 1.04 993 DLS DLS DLS DLS DLS DLS DLS DLS 744 Mw; Mw/Mn = \ . \ ;
19 113 173 432
-0.8
1.7 5.0 10.0 21.0 70.9
Dz,0;
5 0 = 3.43 x 10" 1 5 A/ 0 4 1 3 /fc s = 8.08x 10"2 M 0 7 4 linear 4-ring-shaped
Toluene
25 25
30 78.5 123
2.554 3.869 4.808
DLS
A/ w /A/ n = 1.6-2.3 0.916 0.922
SV SV SV
745 1075 1075 1075 1075
21
20
microgei
272 3.1 4.0 10.7 500 5000 13300 16400 4590 9500 16100 37-16100
20
no
25 24
200 111 410
25
260
6.909
7.30 15.20 18.50 25.00
1075 1076 1076 1076 748
SV DLS DLS DLS
28.5 25.8 15.1 270 840 1000 1490 0.497 0.310 0.205 D0 = 3.32 x 10~ 4 M 0574
4.25 ±0.10 3.25 ±0.10 3.954 ±0.002 2.07
25.8 ±0.003
731 M w /M n = 1.05 Af w /Af n =1.03 A/ W /M n = 1.16 728,729, M w ; extrapolated 731 for C = O and M w /Af n = 1.0;DLS 732 M w ; Z) 20 ; DLS 732 A/ w ; D 20 ; DLS 733 1066 Cross link ratio 1:20
Toluene NBS 706 PCC, 4b
25
TS, F870
110
4.00
C<0.45g/dm3 M w ; 23V; C = 0-120g/dm3
4.25, 4.50
724 735
9500
TS, F225
2420
TS, F510
5530 Toluene
25
25
PCC, 7a
734
D, = 3.38; D2 = 2.96; D 3 = 2.86
25
17.4 HO 900 111
51
2.98
Z) given in Ref. Af w ; A/ w /M n =0.04; D given in Ref. Mw; M w /M n =0.04; /) given in Ref. Taylor dispersion technique
14.4 4.42 1.34 4.35
30±3
2.48
22±6
1.52
20±6
0.92
20±5
0.56
20±6
0.35
23 ± 1 0
7.20
M w ; Af w /A/ n =I.O6; DLQ\ p= lbar £> z0 ; p = 960bar M w ;M w /M n =L06; Dz,o, P= 1940bar A/ w ;M w /A/ n =K06; D z>0 ;/? = 2900 bar A/ w ; Af w /Af n =1.06; ^ 2) o;P = 387Obar A/ w ;M w /Af n = 1.06; £>z,o;P = 484Obaf M w ; M w / M n = 1.06;
1074 726
736
S 0 ; / > i =D A
Waters, 41995 PCC, 4b NBS 705
98.2 110.0 183
3.94 4.32 5.12
5.31 4.58 3.48
References page
VU -198
TABLE 5.
cont'd
Polymer NBS 705 NBS 1479 TS 550 TS 2000 PCC, 3b Waters, 25166 N Waters, 25166 PCC, 5a Waters, 25167 PCC, 14a
Solvent
T(0C)
191 939 5850 15900 390 470 411 498 867 1800
Toluene Toluene
Waters 61970 Toluene
M(xlO" 3 )(g/mol)
25 25 RT
2145 51-2145 51-2145 1000
S 0 ( x 10°) (S)
35
branched
30 Toluene
branched, 4-armed stars
35
branched, 6-armed stars
35
comb
35
116 216 275 675 860 1700 980 1730 2390 4780 14300 50.7 93.5 154 351 521 1027 1390 110 1090 475 624 913 1630 3130 1050 1190 1530
Z)0 ( x 107) (cm2/s)
AD (cm3/g) /o//sP
W 2 (cm3/g)
1.00
13.53
Remarks DLS DLS DLS DLS
3.49 1.44 0.62 0.31 2.46 2.33 2.24 2.05 1.52 1.00
7.15 7.20 7.32 7.93 9.92 13.70
0.917
0.6 4.80 6.22 7.06 9.97 11.1 15.0
Mw
736 736 736 717
M w ; D7/, C = 0.05%; DLS A * w ; D z ; C = 0.05%; DLS A/w;so
717 683
994 994 994 994 994 683
1.88 1.39 1.28 0.895 0.595 3.60 4.59 5.81 8.33 9.75 13.2 14.5 5.41 14.6 9.91 11.8 14.6 20.4 29.0 12.9 14.6 16.4
1019 1019 1019 1019 736
736
S 0 = 2.84 x 10" 15 M°£ 1.3
Rets.
Mw; A f w / A * n = 1 2 ;
WW= 1-65 ±0.15
13000 linear
ks (cm Vg)
Afw;5o
683 683
21
Toluene Toluene/butanone (3/1) (1/D (1/3) /n-Xylene /?-Xylene Tetrach loroethane
25 20
20 25 20
2230 3620 500 5000 13300 16400
21.3 27.6 7.30 15.20 18.50 25.00
528 553 554
9.9 12.9 15.6
MW;DZ; C=0.05%; DLS
270 840 1000 1490 2.11 2.45 2.82
20 20 RT
0.475
latex, 109 nm
RT
0.089
latex, 109nm latex
20 24.7 40.2 55.2 70.4 25 25 25 25
0.415 0.431 0.637 0.865 1.15 0.439 0.652 ±0.007 0.654 ±0.007 0.687 ±0.007 0.696 ±0.008 0.856 ±0.043
0.081
0.41
latex latex latex latex
Water/NaCl (0.01mol/dm 3 )
latex PMMA/benzene CpMMA=0g/cm 3 CpMMA=0.91g/cm 3
20 30 8420 8420
0.38 0.0594
8420 8420 8420 8420
0.0330 0.0055 0.0021 0.125
CPMMA = I- 28 g/cm CPMMA =2.69 g/cm3 C PMMA = 3.67 g/cm3 CPMMA= 3.70 g/cm3
8420 8420 8420 8420
0.0837 0.0281 0.0148 0.0258
CPMMA= 3.67 g/cm3 C PMMA=0 g/cm3 CPMMA = 3.65 g/cm 3
8420 1260 1260
0.0364 1.10 0.0347
1260
0.0727
CPMMA = 1. 29 g/cm 3 CpMMA=2.72g/cm 3 CpMMA=3.65g/crn 3 CPMMA =0.91 g/cm3
S A ; D A \ f Q = kT/(Dorn) Extrapolated value v 2 given in Ref.
S0 =9.77 x 10"15 A/ 0266
halomethyiated, containing 5.66% P latex Water latex, DCC, 481 nm latex latex, 481 nm
90.7-507
0.919 /o = 3.65 x 10" 5 Cm /o= 3.43 x 10~ 5 cm /o = 3.29x 10" 5 cm 0.9205
CPMMA= 3.65 g/cm
3
1060 3 3 3 268 532 561
See Ref. D1; DLS O 2 ; DLS Dx; DLS; C = 0.05g/dm3 Dx; DLS; C = 0.05g/dm3 D1; DLS D1; DLS
737 727 738 739
Dx, DLS; C = 0M%
684 741 741 741 741 746
739 740 723
D1, DLS; C = 0.004% D Z ;DLS; C = 0.022% D Z ;DLS; C = 0.004% D,, DLS; C = 0.023% O z>0 ; DLS
A* PMMA =4.05 X 106g/mol
10 6 g/mol 3
748
1077
1077
MpMMA = 109x 1077 106g/mol 5 MPMMA=8.5X 10 g/mol MPMMA=4.05X
1077 106g/mol 6 AfpMMA = 1.93xl0 g/mol
References page
VII-198
TABLE 5.
cont'd
Polymer
Solvent
T(0C)
CpMMA=3.65g/cm 3
Poly(styreneco-butadiene) 24 mass% St. Poly(styrene)-Woc*(dimethylsiloxane)
CPMMA = 3.70g/cm3 Methyl n-propyl ketone
M (xl
21
1260 125-985
21 (T=B) 49-514 46.8 25 THF 46.8 25 7.5 vol% PDMS/THF 46.8 25 15 vol% PDMS/THF Poly(styrene)-6/ocfc-(hydrogenated polybutadiene)-fc/c>c&-polystyrene 25 4800 1,4-Dioxane/0-30 vol% n-heptane 4440 Poly(styrene)-6/ocA;-(hydrogenated polybutadiene)-^/ocA:-polystyrene 1,4-Dioxane/0-30 vol% 4200 n-heptane 3770 Poly(styrene-a?-divinylbenzene) 21 65-710 30/70 n-Octane Poly(styrene-c0-isooctyl methacrylate) 59.6 20/80 Theta-solvent (see Ref.) 25 (T=O) 53.5 Poly(styrene-&/od:-methyl methacrylate) 600 Butyl acetate RT Poly(a-methylstyrene)
Poly(styrenesulfonic acid)
PCC
S 0 ( X l O 1 3 ) (S)
Toluene
25
n-Butylchloride
25
*s (cm3/g)
£> 0 (xl0 7 )(cm 2 /s)
k D (cm3/g)
Vi (cm3/g)
Remarks
Refs.
0.111
MPMMA = 109X
0.137
MpMMA = 8.5xl05g/mol
^0 = 3.31 x 10" 16 M 062
1077
590
S0 = 8.3 x 10" 16 M 05 7.280 1.320 0.715
*o = 1.59xlO- 1 5 M 0 5 0
Tracer cliff, coef.
1064
4.02
0 vol% n-Heptane
1018
6.63
10 vol% n-Heptane
1018
7.54
20 vol % n-Heptane
1018
11.95
30 vol% n-Heptane
1018
19 -36 -8.4
D 0 = 1.49 x 10" 4 M- 050
1.6
53.8
11.4
-24.8
74.3
10.1
-22.3
171
6.38
-24.3
303
4.56
-23.2
666
3.04
-26.1
881
2.67
-25.4
3540
1.26
-21.9
Water/KCl(0.2mol/dm3)
20
670-1150
8.6-11.5
Water/NaCl (0.005-0.2 mol/dm3) Water/NaCl (0.01 mol/dm3)
25
350-2650
4.95-16.4 0.90
322
1.05 0.761
25.87-28.42
Z) 20 = 3.14 x 10"4M;0556
400
/0//sp
jw; A C=1.67g/dm 3
427
111 Mw; Z)2; C = 0.05%; DLS 998 7000<M w < 1140000 g/mol [?7] = 17.Ocni3/g; 997 D0 = 3.81 x 10 ~4 [7?] = 20.5cm3/g; 997 DO = 3.81 x l O " 4 [77] = 32.5 cm 3/g; 997 D0 = 3.81 x 10 "4 A/"0531 [7?] = 46.4cm3/g; 997 D0 = 3.81 x I0"4 A/"0531 [7?] = 74.1cm 3 /g; 997 Do = 3.81 x 10~4 A/-053! [r}) = 86.2 cm 3/g; 997 Do = 3.81 x l O " 4 [7?] = l98cm 3 /g; 997 D 0 = 3.81 x 10"4 M-0.531 M MW ; single data given in Ref. 127 A/MW; single data given in Ref. 452 MW;MW/Afn
C = 0.01-17.5g/dm3
742
Next Page 650
PCC
742
0.75 £>z,o; 9V C = 0.049-26.4 g/dm3
PCC
1200
PCC
Water/NaCl (0.01 mol/dm3)
650
0.727 ±0.007
PCC
Water/Nad (0.025mol/dm3)
650
0.864 ±0.09
PCC
Water/NaCl (0.05 mol/dm3)
650
0.92 ±0.01
PCC
Water/NaCl (0.10mol/dm3)
650
1.01 ±0.01
340
1.05
Water/NaCl (0.1 mol/dm3)
Sulfonated Poly(styrene) Ionomers DMF/1 x DMF/1 x DMF/1 x DMF/1 x Poly(sodium-styrenesulfonate-co-2-vinylnaphthalene) Poly(styrene) PMPS
10"4M salt 10" 3 M salt 10" 2 M salt 10-'M salt
12 15
1.20
20
1.65
25
2.7
400 25
50
65 a b
742
0.40 Dz,0; 12V C = 0.01-27.0 g/dm3 M W \ D Z ; C = 0.05 g/dm3; 9V; DLS A / W ; D Z ; C = 0.075 g/dm3; 14V; DLS M w ; D 2 ; C = 0.28 g/dm 3 ;9V; DLS Mv1Dx; C = 0.05 g/dm3; 11V; DLS A/ w ; D 2 ; C=13.1 g/dm3; DLS Af w ; Dz\ C= 13.1 g/dm3; DLS Afw;D2;C=13.1 g/dm3; DLS M w ; D 2 ; C= 13.1 g/dm3; DLS
828 1.63 237 1.58 21 1.68 8 1.77 D1Q = (1.5 ±0.8) x 10 "3, , -(0.75±0 06)
2
0.415 ±0.041
105
10.2
0.321 ±0.028
46
12.2 17.5 2 10.2 12.2 17.5
0.289 ±0.026 0.265 ±0.032 0.728 ±0.041 0.554 ±0.033 0.448 ±0.059 0.419 ±0.045
94 122 121 49 80 121
Ion content: 2.6%
747
756
1089
1073 PC-spectroscopy; PMPS: Af w =2600g/mol;
1079
See Ref. See Ref. for def. of s.
References page
VII -198
TABLE 6.
Previous Page
(O,C)-HETEROCHAIN POLYMERS (POLY(ETHERS), POLY(ESTERS), POLY(CARBONATES))
Polymer Poly(carbonate) PMC PMC PMC PPhC Poly(thiocarbonate) PHTC PHTC PMTC-1 PMTC-2 PetTC PiBuTC PPhTC P3ClPhTC-l P3ClPhTC-2 P4ClPhTC-l
Solvent
T (0C)
M(xlO- 3 )(g/mol)
ks (cm3/g)
Z) 0 (xl0 7 )(cm 2 /s)
*D (cm3/g) /o//sp V 2 (cm3/g)
Remarks
Refs.
1045
1,4-Dioxane Methylene chloride Tetrahydrofuran Benzene
25 20 20 25
41.8 41.8 41.8 47.0
0.804 0.8999 0.7738 0.762
Af w /M n = 1.10 M w /M n = 1.10 Mw/Mn = 1.10 M w /M n = 1.09
Benzene 1,4-Dioxane
25
19.1 19.1 9.4 63.0 14.0 40.0 93.0 5.8 34.0 5.0 5.0 5.0 31.0 4.5 4.5 4.5 28.0
0.753 0.795 0.790 0.808 0.790 0.834 0.780 0.719 0.718 0.738 0.724 0.729 0.732 0.700 0.704 0.705 0.694
M w /M n = 1.23 M w /M n = 1.23 M w /M n = 1.34 M w /A/ n = 1.30 Af w /M n = 1.40 M w /M n = l.24
0.8099
45 45 M t , w ; st 535,537 Mw from Scheraga - Mandel kern-Eq. (Ref. 536)
Benzene
35 50 25
P4ClPhTC-2 P34ClPhTC-i
1,4-Dioxane Chlorobenzene Benzene P34ClPhTC-2 Poly(ethylene terephthalate) See Poly(oxyethyleneoxyterephthaloyl) Poly(oxycarbonyloxy-1,4-phenyleneisopropylidene-l ,4-phenylene) Methylene chloride 20 8.5-266 Tetrahydrofuran 20 780 PoJy(oxycarbonylChloroform 20 propylene)
Poly(oxyethylene)
s0(xl0I3)(s)
Acetone Formamide Methanol
Water
25 25 25
20
370 156 83.5 21.1 4.3 4.3 4.3 23.8 19.2 40
74 145 594 1200 0.29 0.625
S 0 = 1-33 X l O " 1 4 A/?3,62 -9.95
1/D0 = 1.569 x l O " 3 Ms°£38
0.812
M w/Mn = 2.01
PAAR DMA 55
1044
-8.16 -4.96 - 3.50 -2.00
3.18
37.8 5.76 23.5 10.7 10.7 8.23
5.92 4.05 1.63 1.10 37.0 29.2
M w ; CLS M w ; CLS M w ; CLS 0.785
184 184 184
150 1003 re = 16.1°C; [T?] = 79.5 x 10"3 M 058 forT=25°C 7Q = 17.2°C r e =16.7°C r e =16.5°C 177
Water
20
22.8 23 25 25
1.25 3.3 5.8 8.8 10.6 i.426 1.470 1.778 1.822 470 0.24 4.3 177 300 679 1190 20
12 23.8 37.3 TS1SE 15
24.0 13.3 11.6 10.3 7.2 23.6 22.6 19.7 20.1
180
0.834 0.846
184 1002
11.5 1.33 1.08 0.79 0.63
M w / M n = 1.05 Mv/Mn = l.\Q
0.9058 0.8689 0.8420 0.59 0.93 1.09
25
1.08 30.0 0.79
TS, SE 70 67.9
0.63
TS 5 SE 150 119
D1 = KD M-039 17.7-119 3.73
25 ±0.02
1.58
26.8
1130
TS, SE 8, SE 30, SE 150 Poly(ethylene glycol)
Poly(oxy-2,6-dimethyl1,4-phenylene)
25
D2O D2O/diethylene glycol 1/1 Toluene
1470 1490 1900 2000 2610 2630 2670 1130-2670 5.7-1200
4.16 4.18 4.67 4.78 5.39 5.42 5.34 5 0 =6.40 x 10"' 6 M? 456
320
2.15
1.33 1.36 1.15 1.12 0.93 0.93 0.94 DQ =1.86 x 10 ~4 M^ 067
M w / M n = 1.12 For p = 1 MPa For/?=100Mpa For/? = 200Mpa
150 M w ; CLS 744 M w ; M w / M n = 1.04; D z ; C= 1.003g/dm3; DLS M w ; M w / M n = 1.05; D1 C=l.OO3g/dm 3 ; DLS M w ; Af w /A/ n =1.10; DL C= 1.003g/dm3; DLS M w ; M w / M n = l . l 2 ; D, C=l.OO3g/dm 3 ;DLS M W ; M W / M n = 1.12 744 C=I.OO3g/dm 3 ;DLS 749 given in Ref.; /o =RT/DQA
29.1 28.4 30.9 31.2 34.4 34.2 33.8 M w ; M w / M n = 1.12;D given in Ref.
0.0206-0.0251 0.0463-0.0509 0.0556-0.0624
749 750 751 1088
1.0
25 5 25 25 40-54 55-65 69-78
1001
184
7.35 4.85 3.95 1.33
17.7 TS, SE 30
148
C = 30 mass% C = 40 mass% C = 50 mass%
References page
765 765 765
VII -198
TABLE 6.
cont'd
Polymer
Solvent
T(0C)
Po!y(oxyethyleneoxyterephthaloyl)(po!yethylene terephthalate) m-cresol 25
unfractionated 50
D0 (x 107) (cm2/s)
M(xlO- 3 )(g^mol)
111 77.3 61.0 41.3 36.8 23.0 60.2 87.3
0.103 0.153 0.138 0.132 0.125
0.435 0.405 0.391 0.372 0.338 0.439 0.408
180
Acetone Benzene
20 20
Water
25
40
3.73
TS, SE 8
73
2.09
TS, SE t5
148
1.66
TS, SE 30
278
1.72
TS, SE 70
661
1.07
148
1.73 2.47 2.88 2.63 2.72 3.08 3.25 3.49
Poly(oxypropylene)
TS, SE 5
TS, SE 15
TS, SE 15
15 34 43 25 30.3 35.4 40.5 45.5
148
v2(cm3/g)
0.120 0.155 0.186 0.263 0.280 0.365 0.205 0.130
Ul 77.3 61.0 41.3 36.8 23.0 60.2 87.3 0.074-3.375 0.134-3.375
unfractionated
* D (cm 3 /g) /o//sp
Remarks
M XiD A 2 given in Ref.
0.678
140
0.992
Refs.
526
526
80
0.381 / 0 =4.4x10- 7 M 0 5 2
465 D A ;/o=*r/(D O 7?,) 465 DA; M from condensation and boiling temperature elevation 765 Af w ;M w /Af n = 1.03; D*;C=14g/dm 3 ;DLS Af w ;M w /M n = 1.02;D,; C = 4.8g/dm 3 ;DLS M w ; A/ w /A/ n =L04;D*; C = 3.2g/dm3;DLS M w ;M w /Atf n = 1.05;Dz; C=10.6g/dm3;DLS MW;MW/Mn= 1.10; D 2 ; C = 3.6g/dm 3 ;DLS M w ;M w /A/ n = 1.04;D2; C=10.5g/dm 3 ;DLS A/ w ; M w /M n = 1.0;£>*; C = 25.6g/dm3;DLS
TABLE 7.
(N,C)-AND (O,N,C)-HETEROCHAIN POLYMERS (POLY(AMIDES), POLY(UREAS), POLY(URETHANES))
Polymer
Solvent
Poly(ethylenimine) linear
100 mM NaCl 25 mM NaCl 10 mM NaCl 25 mM NaCl Poly(n-butyliminocarbonyl) (Poly(butylisocyanate)) Tetrahydrofuran Poly(hexyliminocarbonyl) (Poly(hexylisocyanate)) Hexane
T (0C)
.M (xl0- 3 )(g/mol)
25
41.5 41.5 41.5 88.2
20
18-211
25
52.7 202 411
$o(xlO13)(s)
D 0 (xl0 7 )(cm 2 /s)
* D (cm3/g)
50 =3.05 x 10~ 14 M 0 1 6
/0//sp
v 2 (cm3/g)
325 752
27.3 -263 -242
C = 0.2-6.0 g/kg
0.890
148
My
589 589
0.678 0.682
764
764
A/ W /M n «2.6
763,764
A/ W /M n «1.5 From dn/dc (see Ref.) 0.747
763 532 579
function of composition and M given
448
753
0.578
50 = 3.9 x 10" 15 Af 039
1090
D0 = 1.69 x 10" 4 M- 085 8.11 3.17 1.85
25
Refs.
Remarks
DLS
2.3 9.2 25 15
2.48 1.92 1.39 1.12
Poly(iminohexamethyleneiminoadipoyl) (Nylon 66) 22.4 16 Formic acid (98-100%) Poly(iminoisophthaloylijnino-1,3-phenyJene) S 0 = 1.9 x 10"15 M044 25 30.2-156 Dimethy lformamide 5o = 2.8 x IO" 15 M 039 LiCl (2.5g/dm3+96% H2SO4) 20.7-142 in dimethy lformamide Poly(iminoisophthaloylimino-1,3-phenylene-sulfonyI-1,3-phenylene) (Poly(3,3 '-diphenylsulfonisophthalamide)) 25 79 2.2 82 2.5 UO 2.6 130 2.8 175 3.3 240 3.5 360 4.4 79-360 50 = 2.56 xlO" 1 5 M 040 25 Poly(iminoterephthaloylimino-1,4-phenylene-sulfony 1-1,3-pnenylene) (Poly(4,4-diphenylsulfonterephthalarnide)) 1.50 25.0 20 1.71 33.4 2.00 50.0 2.40 68.5 72.0 2.57 90.0 2.70 98.0 2.77 109.0 2.86 25-109 50 =2.34 X l O " 1 5 M 042 Poly(iminoterephthaloylimino-1,4-phenyleneanthron-9-ylidene-1,4-phenylene) Dimethylformamide 25 Poly(l-lysine) branched by benzyl aspartate and benzyl glutamate Dimethylformamide 20 50 = 3.0xlO" 1 5 M 040 Poly(4,4'-oxydiphenylene) pyromellitamic acid) Dimethylformamide/ LiBr (0.1 mol/dm3)
*s (cm3/g)
References page
VII -198
TABLE 7. Polymer
cont'd Solvent
T( 0 C)
M ( x 10 "3) (g/mol)
so(xlOl3)(s)
Poly(4,4'-phenylene) pyromellitamic acid) 25 Di methy lformam ide/ LiBr (0.1 mol/dm3) Poly(oxy-1,4-phenyleneiminocarbonyl-2,5-dicarboxy-1,4-phenylenecarbonylimino-1,4-phenylene) Dimethylacetamide/ 15 9.9-266 0.99-3.22 18.4-45.4 S0 = 3.72 x 10"15 M°36 LiBr (0.1 mol/dm 3 ) 15 Poly(iminoisophthaloylimino-1,3-pnenylene) 25 (3.30-3.70) Dimethy Iformamide/ LiCl (0.25%) 0.33 25 4.3 Dimethylformamide/ 0.33 5.9 LiCl (3%) 0.39 7.7 0.43 10.6 0.37 11.2 0.57 15.5 066 20 0.53 24 0.76 25 0.76 27 0.86 37 0.77 38 0.86 41 0.73 43 0.78 47 081 48 0.82 50 0.88 55 0.89 57 0.92 65 0.90 69 0.95 70 0.95 72 0.96 74 0.98 75 0.98 80 1.08 82 1.14 96 1.15 112 1.18 112 unfractionated 1.24 113 1.24 113 1.19 118 1.18 124 1.25 133 1.23 143 1.36 147 1.33 154
*s (cm3/g)
D0 (xlO 7 )(cm 2 /s)
0.18
49
107
160
210 90 190
283 270 250 315
290
465
6.19 4.47 4.03 3.24 2.65 2.95 2.65 1.78 2.47 2.00 1.85 1.62 1.67 1.37 1.33 1.35 1.31 1.28 1.26 1.13 1.04 1.08 1.05 1.04 1.05 0.98 1.06 0.95 0.82 0.84 0.88 0.88 0.81 0.76 0.75 0.69 0.74 0.69
* D (cm3/g)
/0//sp
V2 (cm3/g)
Remarks
Refs.
^o given in Ref.
753
17 V; CLS
455 403
C = O.55-l.lOg/dm 3 ; See Ref.
754 755 755
Di methy Iformamide/ LiCl (0.005g/dm3) Dimethylformamide/ LiCl (0.010g/dm3) Dimethylformamide/ LiCl (0.030g/dm3)
Poly(iminoisophthaloylirntno-1,3-pnenylene) Dimethylformamide/ LiCl (0.040g/dm3) Dimethylformamide/ LiCl (0.050g/dm3) Poly(naphthoylene imidobenzimidazole) sulfuric acid 96%
25 25 25 25
25 25
163 184 209 233 237 296 305 4.3-305 112
1.47 1.54 1.67 1.95 1.81 1.82 2.06 50 =0.88 x 10~ 15 M 043
575 667 875 870
0.72 0.67 0.64 0.67 0.61 0.49 0.54 227 D 0 =0.71 x 10"8 Af- 0 5 7 1.91
237 124 305 237 124 112
0.88 1.20 0.50 0.68 1.08 1.28
305 124 305 112
0.40 0.71 0.30 0.97
A/,i£>; C = 0.3-0.4g/ dm 3
755 755
755 C = 0.3-0.4 g/dm 3
755 C = 0.3-0.4 g/dm 3 C = 0.3-0.4 g/dm 3
D 0 = 3.9 x JO- 6 M" 0 5 5 D 0 = 3.4 x 10"5 A*"074
30
Poly(urethane) from Poly(oxycaproyl) (A) diphenylmethanediisocyanate, ethylenediamine linear Dimethylformamide 25 26.2-128 S0= 1.36 x 10-|S M 044 A : M n = 1 . 3 x 103 266-306 5o =9.86 x 10" 1 6 M 0 4 6 A:M n =2.8x 103 146.4-17.9 5 0 = 1.18 x 10~ 15 M 0 4 5 AiMn= 1.8 x 103 200 2.91 branched 96.7 2.10 branched 137 2.50 71.2 1.85 Poly(ureyleneheptaDimethylformamide 55 methylene) 90 Formic acid (97%) 25 Sulfonic acid (96%) 25 23.5 60 Poly(ureylene-2,4,4-trimethylpentarnethylene) Dimethylformamide 55 90 Formic acid (97%) 25
0.71 ±0.02
M > 5 0 x 103g/mol
755
1043
M < 8 0 x 103g/mol 0.848 0.8745 0.8581
292 176 243 159
7V; &, given in Ref. 607,608 7V; ks given in Ref. Af MW
M MW
0.955 0.949 0.915 0.974 0.965
183
M w ; CLS
183 183
183
0.955 0.949 0.915
References page
VII -198
TABLE 8.
OTHER SYNTHETIC POLYMERS
Polymer
Solvent
T(0C)
Poly(bibenzoate): Poly(heptamethylene p,p '-bibenzoate) Cl3CH Cl 2 CH 2 Cl 4 C 2 H 2 Poly(oxybis(ethylene oxide) p,p'-bibenzoate) Cl3CH Cl 4 C 2 H 2 Poly(oxytris(ethylene oxide) p,p '-bibenzoate) Cl3CH Cl 4 C 2 H 2 Poly(oxytetraquis(ethylene oxide) p,p'-bibenzoate) Cl3CH Cl 4 C 2 H 2 Phenol novoiac Acetone
RT
Phenol resol
RT
Acetone
Poly(terephthalic acid-4-aminobenzohydrazide) Dimethylsulfoxide
Poly(acenaphthylene) Poly(-methylphenylene)
Benzene Toluene
M(xlO" 3 )(g/mol)
5 0 ( X l O 1 3 ) (S)
*s (cm3/g)
Remarks
/o//sp
Refs.
25
0.814 0.820 0.835
1086
25
0.733 0.768
1086
25
0.745 0.761
1086
25
0.759 0.783
1086
23
25 20
70.2 63.7 53.5 43.6 34.2 106.8 88.3 71.J 46.0 27.1
0.770 1.300 1.930 2.280 4.030 0.370 0.740 1.500 2.800 7.530
4.02 2.97 2.28 2.25 1.75 1.32 1.00 0.806 0.665 0.393 0.255
3.78 5.67 7.06 9.16 9.79 16.6 28.5 47.1 83.9 155 260
Af n ; Dw; Mw; DA given in Ref.
762
Mn; D^; MW;DA given in Ref.
762
CLS, DLS
1017
-16.2 -31.0 - 101 -192 -349 -588
5.6
1.10
18.5
1.68
9.3 12.6 15.8 16.8 23.4 36.7 77.2 270
1.36 1.55 1.73 2.20 2.35 2.87 4.40 8.25
12.5 11.1 11.0 12.1 9.41 8.38 5.34 3.52
1.94 2.04 2.06
480 140
0.77 0.841 independ. of M
2.04 2.26 2.42 2.97
£>A
Af, lW ; £>w Af/,w; ^A Mt>w; £>w £>w
Poly(L-p-tolyl-2,5-dioxopyrrolidine-3,4-diyl) (Poly-p-tolyl-maleimide) Dimethylformamide 21 40-560 Poly(JV-phenylmaleimide-co-styrene) Tetrahydrofuran 25
D0 = 3.47 x IO" 3 M" 058
S0 = 2.76 x 10" 1 4 M 0 4 2
0.74
563
0.9064 0.8040 0.7768 0.7584 0.7400 0.6988
1047 WNpi =0.430 w NPi =0.528 w NP1 =0.569 WNPi =0.702 w N pi = 1.000
TABLE 9. INORGANIC POLYMERS M(xlO- 3 )(g/mol)
so ( x l O 1 3 ) (S)
*s (cm3/g)
Solvent
T( 0 C)
Poly(bis(m-chlorophenoxy)phosphazene) Chloroform
25 ±0.01
3450 ±240
38
1000
1.39
2.8
0.370
139
14
480
1.05
5.2
0.311
139
32
1100
1.08
3.8
0.316
20
570
1.25
4.1
0.315
25
650
1.36
3.6
0.318
Polymer
Poly(metaphosphoric acid) magnesium complex Water/NaCl (0.4 mol/ dm 3 ) potassium salt Water/NaCl (0.1 mol/ dm 3 ) Water/NaCl (0.4 mol/ dm 3 ) Water/NaCl (0.1 mol/ dm3)/ethanol (5%) Water/NaCl (0.1 mol/ dm3)/ethanol (8%)
Poly(3-methyl-l-butene-l-sUsesquioxane), cyclolinear 24 Butylacetate Poly(oxydimethylsilylene) (polydimethyl siloxane) Bromocyclohexane 28
linear
28 (T=O)
D0 (xlO 7 )(cm 2 /s)
* D (em3/g) /0//sp
V2 (cm Vg)
Remarks
Refs.
757 757
1.40 ±0.01 116 D0 = (2.08 ± 0.06) X l O - 4 M "°57
92-600
5O = I - I x I O - 1 4 M 0 3 1
101 165 550
-2.40 -2.70 -4.60
D 0 = L I x 10~ 3 M- 0 6 9
M,,£»;5(13V); D (13V) 0.863 ±0.003
326
1.66 1.15 0.59
0.312
28.2
0.386
23.5
0.700
17.4
1.130
13.3
2.130
9.69
5.280
5.96
1.025
583
M n ; M w /M n = 1.0; D; C = 0.69 mass% M n ; M w / M n = 1.0; Z); C = 0.77 mass% Mn;Mw/Mn=1.0l; D; C = 0.80 mass% M n ; M w /M n = 1.04; D; C = 0.76mass% Mn;Mw/Mn = l.ll; D; C = 0.72mass% M n ; M^fMn = 1.03; D; C = 0.98 mass%
References page
326 758
VII -198
TABLE 9. Polymer
cont'd Solvent
r(°o
28
15
cyclic
28
Butanone
Toluene
10 20 35 20 22.4 25
linear
M ( x 10 ~3) (g/moi)
(T=0)
s0(xl0I3)(s)
ks (cm3/g)
D 0 (xl0 7 )(cm 2 /s)
10.240
4.32
14.980
3.27
4.030
9.61
10.240
5.75
14.980
4.47
0.296
27.4
0.520
21.7
1.070
15.0
2.080
10.9
3.710
8.30
8.480
5.56
17.380
3.53
8.480
7.67
17.380
4.81
16
1.018 1.0282 1.0468 4.09 6.07
3.00 1.60 1.024 124.00
0.3863
107.10
0.6086
80.00
1.053
58.92
Refs.
758
758 M11; M w /M n =1.0; D; C = 0.74 mass% M n ; Af w /M n = 1.0; D; C = 0.78 mass% M n ; M^fMn = 1.02; D; C= 0.76 mass% M n ; M w /M n = 1.04; Z); C = 0.79 mass% M n ; M w /M n = 1.01; D; C = 0.76 mass% M n ; M w /M n = 1.04; D; C= 0.73 mass% M n ; M w /M n = 1.14; D; C = 0.73 mass% M n ; M w /M n = 1.08; O; C = 0.73 mass% M n ; M»/Mn = 1.04; D; C = 0.77 mass% M n ; M w /M n = 1.06; D; C = 0.72 mass% M n ; M w /M n = 1.08; D; C = 0.73 mass%
11.5
3.710
Remarks M n ; M w /M n = 1.20; D; C = 0.7I mass% M n ; M w / M n = 1.14; D; C = 0.80 mass% M n ; M w /M n = 1.08; D] C = 0.68 mass% M n ; M w /M n = 1.20; D; C = 0.71 mass% M n ; M*/M n = 1.12; Z>; C = 0.63 mass%
D 0 =KoAf- 0 5 4 * 0 0 2 33.7
0.222
301 920 9.4 0.3122
k» (cm3/g) /o//sp V2 (cm3/g)
758
148
Af ,.D
326
Mv Af n ; Af W /Af o = 1.0; D; C= 1.405 mass% M n ; Af w /M n = 1.0; D; C= 1.375 mass% Af n ; Af W /Af n = 1.03; D; C= 1.388 mass% Af n ; M w /Af n = 1.02; D; C= 1.333 mass%
148 759
Poly(oxydimethylsilylene) (polydimethyl siloxane) linear Toluene
1.442
49.42
Mn; M^fMn = 1.02; D; C= 1.371 mass%
3.573
33.52
6.018
26.65
14.460
15.03
Af n ; Af W /Af n = 1.04; D; C= 1.243 mass% Af n ; Af W /Af n = l.05; D; C= 1.337 mass% Af n ; Af W /Af n = 1.07; D; C = 1.249 mass%
23.570
10.88
0.3-23.6 0.2223
145.20
0.2964
123.30
0.7410
78.00
1.189
64.73
1.534
57.13
3.171
40.95
4.172
37.07
9.077
24.22
17.673
16.26
Poly(oxydimethylsilylene) (polydimethyl siloxane)
cyclic
Toluene
Af n ; Af w /Af n = 1.08; D; C= 1.750 mass% Af n ; Af W / A f n « 1.08 Af n ; Af W /Af n = 1.0; D; C= 1.483 mass% Af n ; Af W /Af n = 1.0; D; C = 1.294 mass% Af n ; M^fMn = 1.07; D; C= 1.180 mass% Af n ; Af W /M n = 1.08; D; C= 1.512 mass% Af n ; Af W /Af n = 1.05; D; C= 1.180 mass% Af 0 ; Af W /Af n = 1.06;
759 759
D;C=l.504mass%
linear
25
cyclic
Poly(oxydiphenylsilylene) (Poly(phenyl siloxane)) Benzene Poly(oxymethylphenylsilylene) Toluene
21 22
D ~ Af ~° 43 * ° °°2
0.2-17.7 23.30 12.40 0.627 23.20 11.50 0.296 4-3350
11.15 17.35 82.05 13.05 21.75 125.4 S0 =9.16 x 10" 1 5 Af 0 3 7
8.18 3.36 -2.08 2.33 -2.00 - 1.503
D 0 =6.16 X l O - 4 Af" 063
Mn; Af w /M n = 1.04; D; C= 1.351 mass% Af n ; Af W / A f n = 1.06; D; C= 1.237 mass% Af n ; Af W / A f n = 1.07; D; C= 1.432 mass% Mn; Afw/Afn«1.08 M w ; D 0(Z
759 760
M w ; /> OiX
760
556
0.807 0.006
[77] = 132 cm Vg
References page
148
VII -198
TABLE 10.
POLY(SACCHARIDES)
Polymer Amylose
Carboxymethyl cellulose
sodium salt
Solvent
T(0C) 20
1,4-dioxane
M(xlO- 3 )(g/moI) 2.8 5.8 9.2 17.3 32.9 49.0 83.5 121 356 860 1130 1280 2050 2730
Water
RT
Water/NaOH(0.01 rnol/ dm 3 ; pH= 12.0) Water/NaCl(0.001 mol/ dm 3 )
20.6
700
25
44.7 46 90.6 94.2 163 194 280 346 70 104 175 290 70 104 175 290 44.7 163 346
Water/NaCl(0.005 mol/dm3)
Water/NaCl(0.01 mol/dm3)
$ 0 (xl0 l 3 )(s) 0.303 0.642 0.805 1.27 1.44 1.86 1.92 2.29 3.13 4.16 4.16 4.54 5.40 5.85 5o = 6.6 x 10-' 5 AfJJ 0
ks (cm3/g)
62 33 41 77 141 160 183 280 284
Cuprammonium hydroxide
11.4 10.8 8.2 6.9 4.1 3.56 2.15 1.77 0.825 0.452 0.344 0.332 0.247 0.20 D0 = 6.6 xlO" 4 1.2 2.8 3.7 12.0
*D (cm3/g)
/0//sp
V 2 (cm3/g)
-3 0 -4 10 5 17 22 36 52 142 166 346 447
Remarks
768
Af sj}\ so; £>Z)o
768
C = 0.1 mass% C = 0.5 mass% C =1.0 mass% C = 2.0 mass% Af v
150 44 1750 340
4.28 3.8 1.9 10.4 7.2
768 766
148 314
2.40 2.30 2.50 2.58 2.65 2.62 2.85 2.96 2.54 3.00 3.14 3.97 2.76 3.18 4.25 4.28 2.70 3.11 4.53
Af n
277,278
Af n
277,278
314
767
51.5 20
Refs.
Af w ; so; DZQ
*f-0.70
0.505
Water/NaCI Cellulose absorbent cotton aged, alkali cell, overaged cotton (Georgia) HoIo cellulose (spruce)
D e (xl0 7 )(cm 2 /s)
HO 20 900 390
2.64 0.84 1.54 0.2 0.72
5,; C=l.0g/dm 3 30 45 350 145
5.3 4.6 9.8 4.7
0.508 0.508 0.508 0.508
63 14 14 14 14
linters, unbleached !inters, bleached linters, cotton filter paper Cellulose flax fiber nettle fiber ramie fiber sulfate cell, sulfate cell., acetylated sulfate cell., precipit. sulfite cell, sulfite cell., bleached
1500 490 1200
10.3 7.2 9.2 3.94
600 520 690
0.23 0.43 0.26 2.83
320 130 250
9.0 6.1 8.6
0.508 0.508 0.508
5900 1900 2000 400 570
17.5 14.0 10.8 6.5 6.3
1700 1000 860 390
O.i 0.25 0.18 0.54 0.37
1200 320 250 105 190
13.1 7.7 10.4 5.9 7.7
0.508 0.508 0.508 0.508 0.508
320 500
6.3 6.3 4.28
0.66 0.45 2.72 3.67
165 115
5.2
0.508
1.04 0.54 2.70 3.53 5.4
0 75
380
2.73 viscose staplefiber(sulfate cellulose) -, (spruce) -, (pine) wood cellulose (Cross and Bevan aspen) -Cellulose, cotton linters -Cellulose, holo cellulose P Cellulose Cellulose Cupriethylenediamine
Cadmium ethylenediamine
linters hydrol.
75 230
25
12
5,; C = l g / d m 3
A/,, w ; s,\ Dw
s,; constituent A st; constituent B
50 170
53
2.6 4.1 4.28 2.73 4.6
680
6.5
320
0.32
295
27 175 9.5
1.6 5.5 8.3
50
1.97 1.2 0.95
50
33.6 24.5 18.8 10.1
1.25 1.13 1.04 0.74
43 155 210 275 435 745 115
1.80 2.75 3.17 3.80 4.53 5.49 2.87
Iron-tartaric acid Complex Na salt
20
111 201.4 364 539 100 10.35 51 143
1.75 2.17 2.98 3.35
Acetone 20
4.07 7.5 10.9
1.77 0.75 0.64 0.58 0.44 0.31 1.06
600 5600 14300
0.89 0.60 0.46 0.35 5.4 20.7 7.7 4.0
14 14 63 63
0.642 8.4
0.508
14
4.0
0.508
14 234
0.508 0.508 s,; constituent A 5,; constituent B
97 425
0.65
153 370 465 710 1000 1410 367
14 14 14 14 14
14 14 63 63 62
4.8 6.4
25
sulfite pulp
Cellulose acetate
14 14 14 63
0.50
Af,, w ; S1; D*
97 97 97 97 97 97 97 97 235
0.654
0 M,,w; J,; O A
References page
13 39
VII -198
TABLE 10.
cont'd
Polymer
from cotton !inters
Acetone
s 0 (xl0 1 3 )(s)
*s (cm3/g)
194 10.4-194 150
12.5 5o = 1.22 x 10" 14 M 0 - 38 16.7
19100
136 66 145 110 26 24.2-249
16.0 10.5 14.7 12.8 7.0 ^ 0 = 1.2 x 10" 1 4 M 0 3 9
0.687 0.692 0.698 0.697 0.690
10.0 8.4
0.700 0.700
M (xlO- 3 )(g/mol)
Solvent
25
DQ (xlO 7 )(cm 2 /s)
k D (cm3/g)
/o//sp
v 2 (cm3/g)
Refs.
Remarks
3.4 0.68 0.687
M,,w; Mw/Mn = 1.27
39,769 554,557
given in Ref.
Cellulose acetate from wood cellulose
Acetone 20
40 21.2-122
A/ W /M n = 1.15-1.99
557
557 770 1.12-2.44
25
degree of substitution: 2.46
degree of substitution: 2.92 MN-Dimethylacetamide
Cellulose triacetate Cellulose acetate-cobutyrate Cellulose carbanilate
25
sym-Tetrachloroethane sym-Tetrachloroethane
21.9 22.7
Acetone Dioxane
20 23
24.2 37.6 59.0 75.0 111 159 249 24.2-249
5.28 6,26 7.31 7.67 9.80 11.60 12.50 S0= 1 . 0 2 X l O - 1 4 A f 0 3 9
24.3 43.8 65.1 68.3 104 169 188
36.7 82.2 137 308 500 250 97
2.27 2.83 3.32 4.04 4.17
71.7 101 131 205 228
3930 1.35-2580
45.4 5 0 = 2.35 x 10~ 15 M0M
14 24 28 34 39 46 44 66 61 84 107
769
M W ; M W / M n = 1.2-1.3 769
148 148
0.744 0.777
0.72
Afv,£>; DA, ks and kD given in Ref.
792 68 771I
4.7 4.9 4.1 3.4 3.6 3.2 2.6 2.8 2.5 2.3
14-107 Dioxane
Ethyl acetate
Cellulose carbanilate
Cellulose glycolate sodium salt
Methyl cellulose
Cellulose nitrate 13.8% N
20
20 23
Ethylacetate
Water/NaCl(0.2 mol/dm3) 20 Water/NaCl(0.5 mol/dm3) Water/NaCl(l .0 mol/dm3) Water 25
Acetone
20
4.43 8.70 11.9 17.8 42.0 80.8 141 215 278 1040 1570 2580 4.43-2580 14 24 28 34 39 46 44 66 61 84 107 14-107
0.520 0.743 0.823 0.95 1.25 1.51 1.88 2.18 2.34 4.00 4.35 5.50 50 = 2.35 x 10" 15 M~£ 3 7 3.9 4.7 4.8 5.3 5.4 6.1 5.5 6.9 7.0 7.0 8.3 S0 = 1.3 x 10~ 1 3 Z 032
177 145 150 164 380 574 863
55 55 19 31 39 58 91 89 87 102 163 190 252 408 6.2 30 80.2 199 613 100
3.4 3.44 2.62 2.57 2.50 2.07 1.90 1.80 1.71 1.62 1.40 1.36 0.94
3.30 1.3 78 140
270
540 620 740
O0=^xIO-6Zj68
Z=degree of polymerization
771
-5 11.0 0 8.0 0 6.5 5.0 5 2.80 2 1.75 10 1.25 8 0.95 60 0.79 64 0.36 188 0.26 262 0.20 400 D0 =2.2 x 10 "4 A/;°63 19.4 13.8 12.1 10.9 9.6 9.3 8.8 7.3 8.0 5.8 5.4 D0 = 2.2 x 10 "5 Zj68
Mw; S0; DZyQ\ DLS
768
MsJ>
768 771
3.08 215 3.22 4.34 3.80 3.12 2.44 1.63 1.75
771
0.72
6.5
Z = degree of polymerization
185 3.2
0.53 [T)] = 67 cm 3Yg [rf] = 1 1 0 cm Vg [17] = 1 3 8 cm Vg [T7] =242 cm Vg [T7] =238 cm Vg [77] = 260 cm Vg [77] = 270 cm Vg [77] = 31OcmVg [77] =450 cm Vg [??] = 500cmVg [T)) = 760 cm Vg [»7] = 830 cm Vg
1.75 1.33 1.17 0.90 0.73
12.0 30.0 13.9
0.72
1.7 3.2 4.6 5.4 6.9 3.74
0.51
14.0
3.29
14 14 14 1083
223 SE SE M,,D Msj>
0.57 190
771
st;DA=Dv/ References page
276 64 65
VII -198
TABLE 10.
cont'd Solvent
Polymer
cotton (13.8% N)
cotton (13.5-14% N) Acetone
holo cellulose (spruce) holo cellulose (-cellulose) 1 inters
linters, bleached
linters, bleached and unbleached
rayon pulp
sulfate pulp sulfite pulp 13.9% N
T(0C)
242 13.8 16.3 27.8 100 153 187 267 495 1175 13 23 46 74 90 178 262 456 630 2490 74 178 262 456 593 1130 340 780 230 250 344 780 400 600 680 6 30 80 199 613 24 300 350 510 570 410 430 533
*D (cm3/g) /o/Ap
ks (cm3/g)
M (xl0 3 )(g/mol) 14.2 6.5 7.1 8.3 12.6 15.3 14.5 16.8 25.3 26.2 7.2 8.8 11.1 10.8 12.8 15.2 17.1 20.5 21.5 37.5 10.8 15.2 17.1 20.5 20.0 30.5 21.6 13.4 16 15.8 19.0 14.0 19.0 5.2 8.7 12.0 18.0 30.0 17.6 15.5 16.7 18.3 23.3 16.2 16.4
420 210
2.60 20.9 19.3 13.3 5.6 4.5 3.5 2.8 2.3 1.0 25.0 16.5 10.8 6.45 6.30 3.80 2.90 2.00 1.50 0.66 6.45 3.80 2.90 2.00 1.50 1.20 2.57 2.4
420 280 420
2.8 2.05 1.0 1.44 1.11
V2 (cm3/g)
Remarks
Refs.
259 0.572 0.570 0.566
64
58,64 49,58 58
175 65
210 120 225
6.3
0.51
7.7
0.51
12.2 10.6
0.510 0.5It)
11.5
0.510
M,,w; s,; Z)w
14 14 14 65 14 14
35 SE SE
480 260 360 480 1150 350 360
3.7 2.0 3.01 2.15 1.94 1.48 1.66 1.56 1.56 1.46
223
M.V.D
M1|D
235 100
280 265
6.0 7.9 8.2 9.6 8.2 9.6 9.6
0.51 0.51 0.51 0.51 0.51 0.51 0.51
14
M, >w ; st', Dw
M w ; D Z)0 ; DLS
14 14 772
1.03 0.69 0.43
870 1750 3600 430-3600 Butyl acetate Cyclohexanone Ethyl acetate chemical cotton
21.3 20
raw cotton (Delfos variety) !inters viscose rayon 20 20
80.2 613 350 370 690 195 93 17.5 Z w =3300 (CLS)
M w ; DLS
0.584 0.59
Ll 2.0
Mv
1.49 0.91
11.4 13.1 1500 9.3 9.26
0.47
0.556
2.40 4.77
M/>w; S1; O A = D W
0.59
Z n = 2600 (OS); Z) w 0 ; DLS; Z=degree of polymerization Z n =2100 (OS); £>w,0; DLS Zn = 1600 (OS); £> w ,0; DLS M w ; M n = 34600 M w ; M n = 60600 M w ; M n =89000 Mn Mw M w ; M n =257000
0.545
purified chemical linters
30
Methanol Pentyl acetate
unfractionated fractionated
Water
20 20
21
Z w = 2800 (CLS)
0.77
Z w = 2400 (CLS)
0.97
41.3 76 128 HO 248 573 41.3-573 80.2 27 91 100 153 186 282 80.2 613 335 63 106 143 191 228 260 300 342 444 600 658 822
SE; [SQ] given in Ref.
6.34 7.10 8.65 9.62 11.13 12.66 S 0 = 3.04 x 10- 1 4 M^ 2 9 13.3 5.8 5.6 4.5 3.5 2.9 0.55 540 100 120 220 320 400 470 500 610 690 870 870 1250
148 91 91 65 91 91 773
90
90 223 259
0.54
4.0 6.5 10.2 5.8 6.4 7.2 8.2 8.7 9.5 9.7 9.8 11.1 11.8 12.4 13.9
772 259 223
SE
223
MsJD
774 774
References page
VII -198
TABLE 10.
cont'd
Polymer
Cellulose xanthate
sodium salt a-Cyclodextrin Pullulan
Dextran T 500, linear
Solvent
Water/NaCl (lmol/dm 3 )
T( 0 G)
M (xl0" 3 )(g/mol)
21 0
Water/NaOH (0.2 mol/ 20 dm 3 VNaCl (1.0mol/dm 3 ) Water 25 ± 0.01 Water + 0.02% (m/m) 25 Sodium azide 40 60 80 25 40 60 80 25 40 60 80 25 40 60 80 25 Water
Ethanediol
S 0 ( X l O 1 3 ) (S)
ks (cm Vg)
D 0 (xl0 7 )(cm 2 /s)
*D (cm3/g) /o//sp
V2 (cm Vg)
983
15.1
Z= 1460
2.10
0.59 / o = l . 1 6 x 10 6 gi- l mol
Z= 1060
2.25
/o=l.Ol x 10 6 g5-'mol
Z= 590 Z = 450 Z = 360 Z =350 35-126
1.68 1.81 1.22 1.05 2.3-4.4
/0 = 0.73 x 10 6 gj-'mot /0 = 0.57 x 10 6 g^-'mol /o = O.52 x I O 6 g f - ' m o l /0 = 0.49 x lO^s" 1 mol 3.4-4.3 0.530
Remarks
1220
70-280
3.35-1.83
20-0
See Ref. for degree of subst. Z= degree of polymerization
107 188 384 572 811 1050 1490 2100 2360
2.36 3.20 4.30 6.70 1.80 2.50 4.10 5.00 1.40 2.00 3.00 3.80 1.00 1.40 1.90 2.95 2.56 1.94 1.34 1.12 0.92 0.787 0.630 0.567 0.530
154.3
4.40
191.4
4.26
242.1
4.34
309.6
3.66
303
513
1000
774 437
14 775
32.0 167
Refs.
-32.0 -37.1 -35.3 -46.3 0 0 5.1 12.8 23.6 28.0 26.7 27.5 55.0 65.7 84.2 54.9 -20.1 -22.7 -30.5 -40.2 -36.4 -35.0 76.2 30.2 114
[77]= 42.5 cm Vg
!087
[rj\ = 65.3 cm Vg
[77] = 95.4 cm Vg
[77J =154.2 cm Vg
[T?] = 44 cm
Vg [T7] = 70 cm Vg [r?]= 102 cm Vg [77] = 145 cm Vg [77]-175 cm Vg [77] = 225 cm Vg [77] = 250 cm Vg [77] = 31OcmVg [77] = 338 cm Vg M W ; M W / A f n = 1.26; C= lg/dm 3 C= l g / d m 3 M W ; M W / M n = l.i7; C= lg/dm 3 MW;MW/Mn=l.25; C= lg/dm 3
1013
779
linear
branched
367.7
3.34
434.1
3.48
28.9
6.01
57.3
4.90
92.5
4.72
142.9
4.12
185.6
2.86
272.0
3.20
433.4
2.80
380.5
2.88
M w ; M^IMn= 1.23; C=lg/dm3 A / W ; M W / M n = 1.32; M w ; M w /M n = 1.22; C=lg/dm3 Mw\ Af w /AT n = 1.16; C=lg/dm3
779
C=:lg/dm 3 M W ; M W / M n = U7; C=lg/dm3 M w ; Af w /M n = 1.13; C=lg/dm3 C=lg/dm3 M w ; Af w /M n = 1.31; C=lg/dm3 779 C=ig/dm 3
branched
T 500, linear
5
443.1
2.79
493.3
2.77
564.6
2.29
617.7
2.38
782.5
2.53
280.8
3.66
324.6
3.49
360.0
2.77
401.6
2.76
424.0
2.77
472.5
2.49
580.7
2.93
779
C=lg/dm3 M w ;Af w /M n =1.20; C=lg/dm3 MW;MW/Mn=1.28; C=lg/dm3 M w ; M w /M n =1.28; C= tg/dm 3 M w ; M w /Af n =1.28; C=lg/dm3 M w ; M w / M n = 1.35; C=lg/dm3
154-434
linear
29-434
D, = KDM-°™
branched
380-783
DA = K D M- 025
branched
C=lg/dm3 M w ; Af w /M n =1.29; C=lg/dm3 M w ; Af w /A/ n = 1.38; C=lg/dm3 Mw; Mw/Mn=l.35; C=lg/dm3 M w ; M w /M n = 1.50; C=lg/dm3 M W ;M W /M n =1.34; C=lg/dm3
C=lg/dm3 M w ; A/ w /A/ n <1.3; C=lg/dm 3
779 779 779
C=lg/dm 3 779
280-580 C=lg/dm3
References page
VII -198
TABLE 10.
cont 'd
Polymer
Solvent Water
T( 0 C) 20
209 20 T 10
20
A:s (cm3/g)
Af (xlO~ 3 ) (g/mol) 10-200 20
1.1-6.0 2.02
44 65 150 460 160 18-400 13-200 6
3.04 3.47 5.47 9.6
*>o(xlO 7 )(cm 2 /s)
V2 (cm3/g)
0.60 so = 2.45 x 10-' 6 Af^ 44 5o = 2.36 x 10" 1 6 AfO 4 5 8.9
T 20
16.5
6.7
T 70
39.5
3.3
T 150
86.0
2.2
120.3
2.2
Dextran FDR 7783
kD (cm3/g) /off*
25 3.24 ±0.2 0.643 ±0.002 7.3 ±0.4
75 Leuconostoc mesenteroides
20
20
9.8 ±0.5
7.3 ±0.3
20
5.8 ±0.4
43 ±4
3.9 ±0.1
75 ±4
3.1 ±0.1
U0±5
2.8 ±0.1
l50±7
2.3 ±0.1
230 ±10
1.90 ±0.05
490±30
1.25 ±0.05
10-500
D i)0 = 2.25x 10~4 Af" 045
Refs.
j t vs. M diagram M determ. by Ogston's method (Ref. 24,25)
23
Si
24
148 26 26 776 1.68; DLS Af w ;D Z i O ;Af w /Af n = 1.24; DLS M W ;D Z|O ; Af W /A# n = 1.76; DLS Af w ;J> 2 ,o; Af w /Af n = 1.80; DLS
DZio = (l.17±0.3) x IO"4 AfJ52±0021
6-120.3
Remarks
Af w; O^o; Af w /Af n = 1.32; DLS Mw/Mn 1.8; DLS; 776 see Ref. C = 2.72mass%; 111 self diffusion; 5V C = 0J6 mass%; 19V 111 111 C = 2.72 mass%; self diffusion; 9V Af w (CLS);M w /M n = 1.6; Dz0; DLS Afw(CLS); Af w /Af n = 1.2; Dzfi; DLS Afw(CLS); Af w /Af n = 1.3; /),,o; DLS A/W(CLS); Afw /A/ n = 1.6; DZi0; DLS A/W(CLS); Af w /Af n = 1.4; D z 0 ; DLS A/ W (CLS);M W /M n = 1.8; D z0 ; DLS Afw(CLS); A f w / A f n = 2 . 1 ; Dii0; DLS Af w (CLS);M w /A/ n =2.3; Oz,0; DLS 778 D in mm 2 /s, M in kg/mol
T 500 linear
Water
25
154.3
779
2.40 C=lg/dm 3
linear
branched
191.3
2.22
242.1
2.08
309.6
1.93
367.7
1.75
434.1
1.55
28.9
3.17
57.3
3.08
92.5
2.52
142.9
2.51
185.6
2.13
272.0
1.82
433.4
1.46
380.5
1.68
443.1
1.53
493.3
1.49
564.6
1.42
617.7
1.35
782.5
1.24
280.8
1.95
324.6
1.83
360.0
1.72
401.6
1.67
424.0
1.62
472.5
1.53
580.7
1.41
C=IgAJm 3 Af w ; Af w /A* n =1.25; C=lg/dm 3 A/ w ; A/ W /Af n = 1.23; C=IgAJm 3 A/ W ;M W /Af n =1.32; C=lg/dm 3 Af w ;Af w /Af n = l.22; C=Ig/dm 3 M w ; Af w /M n =1.16; C=lg/dm 3 Af w ; Af w /Af n = 1.16; C=lg/dm 3
779
C=IgAJm 3 Af w ; A f w / M n = l . l 3 ; C=IgAIm 3 C=lg/dm 3 A/ w ; A/ w /Af B = 1.31; C=lg/dm 3 Af w ;A/ w /M n =I.2O; C=lg/dm 3 M W ;M W /Af n =1.24; C=ig/dm 3
779
C=lg/dm 3 Af w ;M w /Af n = 1.38; C=lg/dm 3 A/ W ;M W /M n = 1.35; C=lg/dm 3 C=lg/dm 3 M w ;Af w /Af n = 1.34; C=lg/dm 3
779
C=lg/dm 3 Af w ;A/ w /Af n =1.20; C=lg/dm 3 Afw ; A/ w /A/ n = 1.28;
C=lg/dm 3 M W ;A/ W /Af n = 1.28; C=lg/dm 3 A/ w ; A/ W /Af n = 1.35; C=lg/dm 3
References page
VII -198
TABLE 10. Polymer
cont'd Solvent
T(0C) 25
T 500, linear
M(xl()- 3 )(g/mol)
So(XlO 1 3 Xs)
29-434
branched
380-783
branched
280-580
D0 (xlO 7 )(cm 2 /s)
kD (cm3/g)
/0//sp
U 2 (cm3/g)
D, = KD M-040
154-434
linear
ks (cm3/g)
Dx = Kn M- 044 3.3
T 250
0.598 Water
Dextran PL PL PL PL PL PL
10 !5 40 100 400 900
25
Water 0.05 g/cL sodium azide
20
20 Water/Na2HPO4 (0.025 mol/dm 3 VNaH 2 PO 4 (0.025 mol/dm 3 )
p/bar
11; 19; 100; 510 9.9 39.7 65.0 481 2270 3250 7.5 14.5 41.6 120.7 374 1270 14 36 84 141 240 1990 3050 38000
1.64 2.64 4.1 5.3 6.55 23.3 26.4 150
9.10 4.39 3.32 1.40 0.74 0.66 9.00 6.31 4.14 2.57 1.30 0.78 7.50 4.69 3.12 2.40 1.73 0.75 0.55 0.25
-10 ~10 ~10 ~20 ~60 ~90
1.04 1.00 1.58 1.46 2.60 2.26 0.58 0.53 1.42 1.19 2.00 1.66 0.42
81.5 71.4 124.1 100.7 105.8 112.4 63.3 59.2 32.9 29.0 30.8 35.5 -49.6
Remarks
Refs.
M W ; M W / M n = 1.3; C=lg/dm 3
779
779 C=lg/dm 3 A/ w ; M w /M n =1.5; 779 C=lg/dm 3 M W ; M W / M n = 1.4; 779 C=lg/dm3 Extrapolated value (C = O); 25V C=0.0903-0.1508 mass% 750 D given in Ref. M w /M n = l.62 999 M w /M n =1.60 M w /M n = 1.85 M w/Mn =2.69
[T1] = 7.42 cm3/g [77] = 10.53 cm 3/g [7]]= 18.85 cm -Vg Lr/1 = 29.77 cm Vg [77] =50-57 cm Vg [77] = 64.20 cm Vg
1015
92
1.88 2.19 2.49 2.79 3.15 3.61 4.25 4.03
Water 30
1000
70
1000
100
1000
30
7400
70
7400
100
7400
30
17500
2000 2000 2000 2000 2000 2000
DLS
1084
0.38 0.61 0.54 1.48 1.23 0.98 0.35 0.85 0.73 0.60 0.52 1.45 1.15
2000 50
17500
100
17500
30
21100
50
21100
70
21100
100 2000 Leuconostoc mesenteroides ca. 5% branched Water/Na2HPO4 20 (0.05 mol/dm 3 )/NaH 2PO4 (0.05mol/dm3)
21100
2000 2000 2000 2000 2000
11.2-437
1.57-9.82
-45.2 -51.0 -46.3 -49.3 -47.1 -29.4 -31.6 -37.9 -33.4 -38.2 -28.1 - 53.7 -54.0 167
1.74-3.22 0.611
8.80-1.40
see Ref. for /o//sP and D 0 sr =1.45 x 1 0 - 1 5 A f J J f
highly branched
Water/Na2HPO4 20 (0.05 mol/dm3 )/NaH 2PO 4 (0.05 mol/dm 3 )
167
0.603 28.8
see Ref. for /o//sp and D 0
Dextran S1 =3.43 x 10' 1 5 Af ff 2-(Diethylamino)ethy!-dextran 0.8 M sodium nitrate DEAE PL 1 DEAEPL10 DEAEPL 15 DEAE PL 40 DEAE PL 100 DEAE PL 400 DEAE PL 900 P-Dextrin Water Ethyl cellulose Acetone
sym-tetrachloroethane Ethyl hydroxyethyl cellulose ca. 18% ethoxyl Water
20
20 20
1.58 11.30 21 45.7 131 429 1474 1.134 78.8 52.1 35.9 19.4 11.45 20
21.9
53 90 190
20
92
167 17.6 7.8 5.52 3.56 2.04 1.13 0.709
0.48 5.53 4.81 4.33 3.48 3.02
0.627 0.885
5.7 7.5 9.8 14.6 21.4 3.46 1.43 1.05
[77] = 3.34 cm Vg [77] = 8.72 cm Vg [7?] = 11.59 cm Vg [7]) = 19.45 cm 3/g [77J = 31.49 cm Vg [77] = 52.15 cm Vg [77] = 65.73cm Vg C = I g/dm 3
1015
C = 6.1 g/dm 3 ; see Ref. for D C = 5.0 g/dm3 C = 5.16g/dm 3
21
148
0.864 2.0
1.9
30
3.8
171 412
94
0.721 given in Ref.
ca. 30% ethoxyl 4- hydroxyethyl
140 200 300 92-300
2.32 2.63 3.0 s = 3.1 x IO" 1 5 M 036
1.4 1.1 0.8
30 30 30
4.1 5.1 6.0
0.711 0.703 0.705 MA,w; st
References page
94
VII -198
TABLE 10.
cont'd
Polymer Ficoll (Pharmacia)
Solvent Water
T(0C)
M(xlO- 3 )(g/mol)
25
400
ks (cm3/g)
DQ (xlO 7 )(cm 2 /s)
kD (cm3/g) /o//sp
V2 (cm3/g)
Remarks
Refs. 782
4.37 C = 5.7-298g/dm3
Galactomannan Carob Guar Lotus I Lotus II Lucerne Redclover Galactomannan S. japonica Soybean
Water
20
319 657 3.7 332 239 416
4.65 5.33 1.35 5.43 7.69 4.81
0.97 0.54 24.2 1.09 2.14 0.77
0.629 0.635 0.628 0.630 0.636 0.630
152 16.6
3.02 1.72
1.32 6.90
0.629 0.634
781 DA.O given in Ref.
ks, ko, as, aD given in Ref. Glucose carbanilate Hydroxyethyl
1,4-dioxane Water
20 19.2 25
0.76 470 125 330 420 545
0.190
125-545 150
.S=LOxIO- 1 5 M, 0 ^ 2.89
73 73 73 73 73 73 11 17 60 110 1000 1.8
1.72 1.87 2.17 2.28 2.36 2.54
0.332
14 70.6 151 302 22.6 24.3 34.3 38.1
0.83 (.29 1.67 2.50 0.79 0.79 0.89 0.89
2.82 4.45 4.90 5.65
23.5 385 1020 1190 1580
-50
J.86 1.11 0.96 0.85
3.96 4.78
0.678 0.701
A//,w; sr, vi at 200C
781 768 148 98
5.12 5.29
Hydroxyethyl Natrosol 250G
25
/> = 8.2x 10 -s M'0M Af ,,z>; SQ\ 9V; C = 0.4-48 g/dm 3
Hydroxypropyl cellulose Klucel-L
782 Water
Water
Maltotriose carbanilate Methyl cellulose 22.6% methoxyl 27.05% methoxyl 27.44% methoxyl 28.45% methoxyl 28.8% methoxyl 31.7% methoxyl 31.8% methoxyl
98 782
25 25 30 34 37 40 [T = O)
1,4-Dioxane
20
Water
20
101.4 96.8 74.8 59.2 44.4
0.773 C = I . 1-98 g/dm 3
5.0 5.0 3.0 2.7 1.9 0.57 17.3
783
784
Af w ; C=I0g/dm 3 A/W; JO;
#*,o; DLS
768
-6 3.0
1.49 0.92 0.71 3.05 3.9 2.34 4.5
0.68 0.704 0.710 0.683 0.717 0.720 0.73
M w ; SE
Mw; SE Mw; SE
222 19
19,20 222 !9,20 222
ca. 28% methoxyi
V2 =0.0560 + 0.0542 C0CH, (C in%) D0 =7.9 x 10- 5 M-JJ 56 4.45
5o=0.85 x \0~15 Mff Water/NaCl (0.2 mol/ dm 3 )
Xanthan
Water (deionized)
20
RT
Water/NaCl (0.3mol/dm3) Water/NaCl (lmol/dm 3 ) Water/urea (4 mol/dm3) (heat treated) Water 25 0.1 M NaCl native pyruvate-free acetate-free
TABLE 11.
14.1 24.3
3.05
38.1 2000 2000 2000 2000
2.47 0.242 0.194 0.155
2000 9000
0.280 0.166
2940 1370 1770
0.155 0.260 0.260
19,20 av. of M not 21 specified; see Ref. for D C = 5.0g/dm3; see Ref. for D See Ref. for D D 20 ; DLS 785 Mwi DzQ\ DLS 785 Dz,o; DLS 785 785 785 Mw; D,,o; DLS; 786,787 C = 0.025-0.1% DLS 1011,1012
873 296 231
OTHER BlOPOLYMERS [PROTEINS, POLY(NUCLEOTIDES)]
Polymer (3-Alanine
Solvent Water
J( 0 C)
M(xl0- 3 )(g/mo!)
S 0 ( X l O 1 3 ) (S)
*s (cm3/g)
25 36
Aldolase
D o ( x 10 7) (cm 2/s) * D (cm3/g) 101.4 147.1 2.65
40
/0//sp
v 2 (cm3/g)
Remarks
Refs.
D\C-\ mass% D 0 Ik 0 = -0.07
00.*;
DQT]Q/T=
788 789,718
13.04 Poly(Y-benzyl-Lglutamate)
Dichloroacetic acid 0 to 100 vol%" N,A^Dimethylformamide
25 21
530 59-364
25
300 550 51-410 36.4-4350
25
a
3.8-4.2 s c =2.8 x 10~ 14 M 0 2
1.62-3.91 1.77-3.95
D c =2.8 x 10"3 M" 08 100 180 9-141 15-141
1.1 0.75
0.786 0.779
Ms#\ for sc and Dc see Ref. CLS CLS for SQ and ks see Ref. CLS; for s 0 , ks and M A see Ref.
566 559 581 434 450
helix to coil transition between 60 and 80 vol%
References page
VII -198
TABLE 11. cont'd Polymer
Solvent
T( 0 C) RT
Poly(y-benzyl-a,Lglutamate) Poly(L-lysine)hydrobromide
Benzylalcohol
M(xlO- 3 )(g/mol) 83 220 370 38
s0(xl013)(s) 2.2 3.0 3.5
*s (cm3/g)
D0 (xlO 7 )(cm 2 /s)
Jk D (cm3/g)
2.0
80
3.9
95
4.9
200
15.0
210
18.6
560
33.5
30 70
300 318
3.70 1.33 0.4763
84.8
Water/NaBr (3.02 x lO-'mol/dm 3 ) Water/NaBr (7.41 x 10- 2 mol/dm 3 )
84.8
Water/NaBr (5.75 x 10- 3 mol/dm 3 )
84.8
Water/NaBr (2.00 x 10- 3 mol/dm 3 )
84.8
Water/NaBr (7.41 x 10~ 4 mol/dm 3 )
84.8 25
Remarks
Refs. 717
6.8
320
V2 (cm3/g)
1.30 0.84
73
25
/0//sp
Mw; Mn =29000; £>o,z given in Ref. Af w ; M n =43000; £>o,z given in Ref. Af w ; Mn =48000; ^O1Z given in Ref. Af w ; Mn =55000; £*o,z given in Ref. M w ; Af n = 101000; ^o,* given in Ref. Mw; Mn = 128000; ^o.z given in Ref. M w ; Af n = 190000; £>o,z given in Ref. M w ; 10V (C = 0.58l5.08g/dm 3 )
11
c p = 3 x lO- 3 g/cm 3 ;£> = 2.6x lO- 7 cm 2 /s 3 3 7 2 C p = l x l0~ g/cm ; D = 2.2x l0- cm /s 4 3 7 2 c p = 5 x l 0 - g / c m ; Z ) = 2.0x 10" Cm As Cp = 3 x IO- 3 g/cm 3 ;£> = 3.Ox tO- 7 cm 2 /s c p = l x 10- 3 g/cm 3 ; £> = 2.4x 10" 7 Cm 2 Zs Cp = 5 x 10~ 3 g/cm 3 ; D = 2.2x lO- 7 cm 2 /s c p = 5 x 10- 3 g/cm 3 ; D = 1 8 x lO- 7 cm 2 /s c p = l x 10~ 3 g/cm3; Z)= 8 x 10" 7 cm 2 /s c p = l x 10~ 4 g/cm 3 ; D= 1.7 x lO- 7 cm 2 /s Cp = 5 x 10- 3 g/cm 3 ; D = 32x lO- ? cm 2 /s c p = l x 10- 3 g/'cm 3 ; D= 1 1 x lO- ? cm 2 /s c p = 5 x 10" 5 g/cm 3 ; D= 1.6x 10- 7 cm 2 /s C n = 3 x 10" 3 g/cm 3 ; D = 30x lO- 7 cm 2 /s Cp =7.5 x 10" 4 g/cm 3 ; D= 12 x 10~ 7 cm 2 /s c p = 8 x IO" 5 g/cm 3 ; D= 1.9 x IO " 7 cm 2 /s c p = 5 x 10~ 3 g/cm 3 ; £> = 40x 10"7cm 2 /s Cp =3 x 10" 3 g/cm 3 ; D = 4 2 x lO" 7 cm 2 /s Cp = 1.5 x 10~ 3 g/cm 3 ; D = 3 O x I0" 7 cm 2 /s
Water/NaBr (6.92 x 10~ 5 mol/dm 3 )
84.8
Water/NaCl (0.1mol/dm 3 ) Water/NaCl (0.01mol/dm 3 )
3500
0.84
3500
0.38
668
782 1016 1042
1041
Poly(adenylic acid) Dx; C = 4.8g/dm 3 ; DLS D,; C = 2.4g/dm 3 ; DLS
3500
Water/cacodylate (pH = 7.4)
0.10
D1; C = O.I2g/dm 3 ; DLS
5.8 ±0.1
M w ; £) D w ; DLS
876
C = 25%
852
D; C = I mass% D, C = 1 mass% D0,/, DLS
872 788 788 879
Bovine plasma albumin Water/NaCl (0.2 mol/dm 3 )
18-22
68
D, Mw =4.0 x 10* 2 cm/s g/mol
20 Water/NaCl (0.1 mol/ dm3)/phosphate (0.1 mol/dm 3 ; pH = 7) Bovine serum albumin Water (pH = 5.2) Water
6.70 9.03 16.5 5.65 ±0.35
20 25 36 22
Water/NaCl (0.10-0.15 mol/dm 3 ) Water/Tris/HCl 20 (0.5mmol/dm 3 ;pH = 7.4) (10.0mmol/dm 3 ; pH = 7.4) (100.0mmol/dm 3 ; pH = 7.0) (120.0mmol/dm 3 ; pH = 4.7) (1000.0 mmol/dm 3 ;
denaturated globular Casein micelles a.si-casein
Chromatin subunit
Chymotrypsinogen
Collagen
native DNA
calf thymus
pH = 7.8) Water/Gdn-HCl Water/phosphate buffer Water/phosphate buffer (pH = 6) Water/Gdn-HCl
0.2 M phosphate buffer, pH = 6.7 Water/NaCl (0.1-2 mol/dm 3 ) Water/Gdn-HCl Water/NaCl (0.2 mol/ dm 3 ) Water
Water/NaCl (0.2 mol/ dm 3VNa2EDTA (0.01 mol/dm 3 ) Water/NaCl (0.1 mol/ dm 3 )
740
6.00 5.50
873
6.1 Dm
5.90
875
1.907
£>O*D = (3.26X 10~ 6 cm 5 /g/s
67
25
69
1.907
O 0 A: D = 3.28x 10~ 6 cm 5 /g/s
25
69
6.69
D 0 A:D = -4.52X 10" 6 cm 5 /g/s
35
3400
DLS; Gdn = Guanidin
718 877 878
4.5 5.76 ±0.05
Doy, DLS
5.7 25.7 29
3.15 3.15 7.4 ±0.3
5
789 789 1048
D 0 A: D = -0.70x 10" 6 cm 5 /g/s O 0 ^D = -0.70 x 10- 6 cm 5 /g/s
12 20 20 20
22.0
Mw/Mn = 1.07; see Ref.
880
DLS; Gdn = Guanidin DLS Mw; £>o, w ; DLS
718 789 876
4.32 4.12 0.86 ±0.02 0.223 ±0.06
D1; C=158g/dm 3 ; 881 DLS D1; C=157g/dm 3 ; DLS D6; C=147g/dm 3 ; DLS D1; C = 0.4 mass%;DLS 884 D1; DLS; pH = 6.5
0.080 2.06
D1; DLS CLS and DLS
885,887 1014
References page
VII -198
4.36
14500 156
D (U ; DLS; Gdn = Guanidin D(u, DLS
0.45 ±0.03
3.4-1.8
20 20
874
5.00
30 20 20
30 25 18-22
740
*>app
TABLE 11.
cont'd
Polymer
histone (1:1)
pure
Solvent
20 Water/NaCl(0.5mol/ dm 3 ) 20 Water/NH4Ac (0.4mol/dm3) Water/LiCl(5.5mol/ 20 dm 3 ) Water/Nad (0.14 mol/ 25 dm3)/Tris(0.01mol/dm3) Water/NaCl (1.0 mol/ 20 dm 3 ) Water/Nad (LO mol/ 22-23 dm3)/EDTA Water/NaCl 22-23 (l.Omol/dm3) Water/NaCl 20 (O.8mol/dm3) Water/NaCl (l.Omol/dm3) Water/Nad (1.2mol/dm3) Water/NaCl (1.4mol/dm3) Water/NaCl (1.5mol/dm3) Water/NaCl 20 (0.8mol/dm3) Water/NaCl 20 (0.8mol/dm3) Water
histone F j (1:1)
histone F2A (1:1) E. coli phage 14 Gelatin
Water/NaCl (0.8mol/dm3) Water/NaCl (O.8mol/dm3) Water Formamide
Glycoprotein ovomucoid Water Glycoproteins Blood-groupspecific glycoprotein (human) Butyrylcholinesterase (horse) Cervial (bovine) Fibrinogen (human) Prothrombin (human) Submaxillary (ovine)
So(XlO 13 Xs)
7-(0C)
*,
Do ( x 107) (cmVs)
/0//sp
V2 (cm3/g)
Remarks
Refs.
10000
20.0
0.114
11700
17.1
0.096
10300
9.3
0.130-0.193
D2; DLS; see Ref
0.05
D2; DLS; pH = 8
886
0.118
D2; DLS; pH = 7
887
0.15
D 2 ;C = 0.04g/dm3; 888,887 DLS; pH = 9.6 D2; C = 0.04g/dm3; DLS; pH= 10.3 D2; DLS; urea (2mol/ 889 dm3); phosphate buffer
0.14 1500
0.265 ±0.008
1500
0.234 ±0.009 0.183 ±0.005 0.187±0.005 0.186 ±0.005 0.155 ±0.003
1500
0.166±0.012
885,887
D2; DLS; 889 C = 0.7g/dm3 D2; DLS; C = 0.35g/dm3
4.36
D 2 ; C=158g/dm 3 ; DLS
881
889
20 20
1500
0.103 ±0.004
D 2 ; DLS
20
1500
0.259 ±0.009
D 2 ; DLS
20
(1.9±0.2) 105 (1.925 ±0.066) 105 292 346 371
0.25 x 0.03 0.295 ±0.003 0.358 35 0.324 50 0.311 63 4.03 Do*D = 7.25 x 10'6cm5/g/s
Do>2; DLS D0,*; DLS M* /Mn = 2.3 A/ W /M n =2.7 M w /Af n = 1.8 Doy, DLS
738 895 1000
Nonprotein component 2% 20% 74% 2.5% 10% 41%
1049
25
0.731 0.707 0.635 0.725 0.713 0.685
789
Submaxillary (porcine) Tamm-Horsfall (human) Lipoproteins HDL (human) HDL2 (human) LDL 1 (porcine) LpB (human) VHDL, (human) Nucleoproteins Alfalfa mosaic virus Bacteriophage fd (E. coli) Bacteriophage R 17 (E. coli) Bacteriophage T 7 (E. coli) Bacteriophage T 2 (E. coli) Fog virus 3 Nucleosome (chicken) 30 S Ribosome (E. coli) Southern bean mosaic virus (cowpeas) Tobacco mosaic virus Metalloprotein Ferritin (horse spleen) haemocyanin (M. trunculus) Haemoglobin
Histone (lysin rich) Lysozyme
Nitrochitin
Water/NaCl (0.1 mol/dm3)/ acetate buffer (0.1 mol/dm3) Water 13
9200
(1.03 ±0.0l)-(1.08 ±0.01) 5.58
15
6.46
18 21 24 27 30 33 35 37 25
6.81 7.38 7.82 8.13 8.33 8.50 8.59 8.61 8.5
Water/Nad (0.14 mol/ dm3)/Tris (0.01 mol/dm3) Water 20 Water/NaCl (0.1 mol/ 20 dm3)/phosphate buffer Dimethvlformamide 26
Il
10 10.6 ±0.02 S 0 = 1.12 x 10- 1 4 M^ 2 9 10000 < A/ w < 170000 g/mol
0.66 0.692
54% 28%
0.884 0.897 0.952 0.953 0.83
50% 59% 72% 78.5% 38%
1049
0.703 0.71 0.681 0.639 0.66 0.713 0.654 0.601 0.693 0.728
16%; RNA 12%; DNA 30%; RNA 51%; DNA 55%; DNA 10% lipide 45%; DNA 70%; RNA 21%; RNA 5%; RNA
1049
0.589
38% iron hydroxide D 0 , 2 ;DLS; pH = 5.7
1049 878
D1; DLS; C= 1.25 mass% D1 for C— 17 mass% given in Ref.
890
D01; DLS; pH = 8
891
D11 C = 2Og/dm 3 ;DLS Do,*; DLS; pH = 6.0
892 878
£>o = 7.02 xlO" 4 Af" 070 10000 < M W < 170000g/mol
1081
Polynucleosome Water/Tris-HCl (30.0mmol/dm3) Water/Tris-HCl (10.0mmol/dm3) Water/Tris-HCl (0.5mmol/dm3) WaterflTris-HCl (O.lmmol/dm 3 )
20
0.65
D 2 ;DLS;pH = 7.4
0.61
O z ;DLS;pH = 7.4
0.53
D2; DLS; pH = 7.4
0.39
D z ;DLS;pH = 7.4
References page
740
Vn -198
TABLE 11. Polymer
cont'd Solvent
T( 0 C)
Af (xl0- 3 )(g/mol)
25 Water Pepsinogen PhosDhatidvl choline vesicles 25 D2O/CsCl (0.001 mol/dm 3 ) 20 Water/NaCl (0.2 mol/ Serum albumin dm3)/NaF (0.005mol/dm3) 25 Water Sucrose 36 18-22 Water/NaCl Urease (0.2 mol/dm3) 20 Water Virus R 17 BSV PM2 T7 Proteins
Water/GdnHCl (6mol/ 25 dm3)/mercaptoethanol (0.1 mol/dm3)
so(xlO13)(s)
*s (cm3/g)
D 0 (xlO 7 )(cm 2 /s) 2.52
40 4.0 69
60 4020 ±170 4550 ±160 8810 ±170 47900 ±1700 50900±1100
kD (cm3/g)
/0//sp
V2 (cm3/g)
Remarks
D0ko = 2>.95 x IO- 6 cm 5 /g/s
0.341 1.24 6.1 ±0.1 52.3 65.8 3.4 ±0.1 1.534±0.015 1.423 ±0.014 1.246 ±0.013 0.650 ±0.007 0.644 ±0.007 D0,z = 6.96 x 10- 6 «- 0560
Refs. 789,718
D,; DLS; C= I3g/dm 3
893
Do-/, Dw and Dx
896
given in Ref. C = 1 mass% C= 1 mass%
788 876
Doy, DLS Oo:,\ DLS
894
£>o.z; DLS
DOtZ; DLS £) Oz ; DLS DLS; n — number 789 of chain segments; Gdn = Guanidine
C. SECOND VIRIAL COEFFICIENTS OF POLYMERS IN SOLUTION 1.
The osmotic pressure of a polymer solution can be described as (C5)
Introduction
The behavior of polymers in solution can be described by the colligative properties introducing the virial coefficients A2, A3, etc. According to the theory of McMillan and Mayer (866868), the second virial coefficient of a monodisperse polymer solution is defined as
where R and T are the gas constant and the absolute temperature. In some cases B = RTA 2 is given (instead of A2). With certain assumptions it is possible to express the third virial coefficent, A3, in terms of the second virial coefficient (379-381). Especially when A2 is small, it is found that, for example, Eq. (C5) can be approximately expressed as (Ref. 382)
(Cl)
(C6)
where N& is Avogadro's number, V is the volume of the system, M is the molar mass of the dissoluted polymer, F 1 (I), Fi(2), and F 2 (1,2) are the molecular distribution functions of species 1 (solvent molecule) and species 2 (solute molecule), and d(l,2) is the differential volume element in hyperspace. The integral in Eq. (Cl) is called the cluster integral. The distribution functions for the molecules, F\ and F 2 , are to be evaluated at zero concentration. There are a couple of methods for the experimental determination of the second virial coefficient.
if A 3 - A | M n / 4 . Following Eqs. (C2)-(C6), the dimension of A2 is given in molcm 3 /g 2 or molm 3 /kg 2 . 1.2. Scattering Methods (Classical Light Scattering, X-ray Scattering, Neutron Scattering) Based on the fluctuation theory of Smoluchowski (383) and Einstein (384), which links osmotic pressure with classical light scattering, Debye (385) established the fundamental equation for the light scattering of polymers in solution: (C7)
1.1. Colligative Properties The vapor pressure depression of the solvent in a polymer solution is expressed as
with q = (4TT/A) sin 0/2 and
(C2) where p°{ and p\ are the vapor pressure of the pure solvent and the solvent in the solution, V® is the molar volume of the pure solvent, C is the mass concentration of the polymer, Mn is the number average of the molar mass, and A 2, A 3, ... are the virial coefficients. For theta conditions, the virial coefficents are zero. The freezing point depression, 7V,i> of a polymer solution is
(C3)
Equation (Cl) makes it possible to determine the virial coefficients from classical light scattering measurements and can also be applied on X-ray and neutron scattering. In Eq. (C7), K is a constant and R(q) is the excess intensity of the scattered beam at the value q, at unit distance and unit primary intensity. Mw denotes the mass average of the molar mass and Pz(q) is the z-mean of the scattering function from which the dimensions of the dissoluted polymer can be calculated (hn is the distance between scattering points 0 and n). The g(#)-function corresponds to the ^-dependence of A2. P(q) denotes the scattering function of a monodisperse polymer. 1.3. Sedimentation Velocity The determination of sedimentation and diffusion coefficient, s and D9 yields the virial coefficients of a polymer solution (Ref. 800):
and the boiling point increase, TB.I* is
(C4) (C8)
with T^ and Tx the boiling point (freezing point) of the pure solvent and of the solvent in the solution, and E? and E& are the cryoscopic and ebullioscopic constants.
where V2 is the partial specific volume of the solute and p\ is the density of the solvent. References page VII-198
1.4. Sedimentation Equilibrium The sedimentation equilibrium in an ultracentrifuge gives (Ref. 800)
1.7. Second Virial Coefficient - Molar Mass Relationship The dependence of A 2 on the molar mass can be given by a power expression
(C9)
(ci6)
where u is the angular velocity and r is the distance from the center of rotation. 1.5. p-V-T Measurements The virial coefficients are related to thermodynamic quantities (ClO) where V\ is the partial molar volume of the solvent and /if is the excess chemical potential of the solvent in the solution. (CU) G^ is the molar excess Gibbs energy, Gm is the molar Gibbs energy, and G^ is the molar Gibbs energy of an ideal solution. With the help of the equation (C12) /if, and consequently the virial coefficients, can be calculated from p-V-T measurements. 1.6. Averages of the Second Virial Coefficient The average of A 2 for heterogeneous polymers is rather complicated and depends on the measuring method. If A 2 is obtained from measurements based on colligative methods, it will give the average (Ref. 860) (C13)
This is a double mass average of A2. Classical light scattering measurements will give the average (Ref. 860)
(C14) This is a double z-average of A2. Ay is defined as
(C15) where i stands for a molecule of the ith species and/ for one of the y'th species.
where KA and a A are empirical constants determined for each polymer solvent system at given values of temperature and pressure. In Section C, relationship (C 16) is listed whenever quoted in the literature, in preferences to single A 2 values.
1.8. Temperature Dependence, Pressure Depende There is no general equation concerning the temperature and pressure dependence. The equation (Ref. 860) (C17) where /?o is for the independent part of the excluded volume, M 0 is the molar mass of a segment, and 0 is the theta temperature, has only a restricted validity. 1.9. Abbreviations A approx. CLS DLS Cont. GPC LALLS OS RT SANS SAXS SE SV V VOS
Archibald method Approximately Classical light scattering Dynamic light scattering Continued Gel permeation chromatography Low angle laser light scattering Osmotic pressure osmometry Room temperature Small angle neutron scattering Small angle X-ray scattering Sedimentation equilibrium Sedimentation velocity Number of single values given in ref. cited Vapor pressure osmometry
1.10. Miscellaneous For solvent mixtures, the volume fraction
D.
TABLE OF SECOND VIRIAL COEFFICIENTS OF POLYMERS IN SOLUTION
TABLE 12. POLY(ALKENES), POLY(ALKYNES) Polymer Poiy(L-butene) atactic isotactic atactic isotactic atactic isotactic Poly(ethylene)
Solvent
F( 0 C)
M ( x 10 3 ) (g/mol)
n-Nonane
35 80 45 45 45
44.1-1300 105-935 26.3-558 90.1-775
125 135
115-2160 107 113 120 141 13.63 32.1 119.6 82-89 55 91 99 131 91 570 89 415 11.4-28.9 1.75-2.06 3.53 3.72 22.95, 24.8 3.77 17.6 (GPC) 22.7(GPC) 26.6(GPC) 121-526 310 625 144-720 20-1000 145-700 145-690
Toluene Toluene 1 -Chloronaphthalene
135
Diphenylmethane 1,2,4-Trichlorobenzene
142 135
1,2,4-Trichlorobenzene Trichlorobenzene
135 135
NBS standard linear
140
branched
low pressure Marlex high pressure linear, fractions n-Decane 1,2,3,4-Tetrahydronaphthalene
135 115 105
branched, varying degree
125 81
high pressure
81
A2 ( x 104) (mol cm 3 /g 2 )
2.4 6.05-1.05 10.8-4.10 6.57-3.73 M~032 M ~°25 12.0-0.78 3.5 3.9 3.0 5.6 15.9 10.9 10.3 -0.25 to 0.93 21.0 19.0 18.8 23.5 19.0 15 11.4 9.1 41.1-45.2 20.11-34.37 7.59 6.70 4.17 4.36 2.64 2.17 3.22 10.5 (approx.) 11.6 10.6 6.3 x 10" 3 M~° 15 5.9-1.6 21.8-6.6
low pressure high pressure, fractionated low pressure, fractionated
p-Xylene
105 81 105
105-219 38-735 2600-6100 573 1980 125-465 9-215 11.2-160
HDPE, linear
>i-Decane
130
600
26.8-1.68 3.6-0.9 0 (approx.) 0.92 0.82 23.1-15.9 27.8-6.54 33.5-26.1 26.2 x i O " 3 A*"024 4.8
520 310 520 310 600 540
5.0 5.4 2.0 2.4 1.9 1.97
1160 3210 ±290
1.02 0.511 ±0.054
LDPE, branched Lupolenl840D Poly(ethylene-cotetrafluoroethylene)
n-Decane
130
n-Decane Diisobutyladipate
130 240
Remarks
Refs.
CLS
109
OS
109
OS
316
9V; CLS; A2M; (cmVg) CLS
291 820
CLS
821
CLS CLS
820 820
CLS CLS
905 904
4V; VOS Mw/Mn = 1.11-4.56 3V; VOS Mw/Mn = 1.39 VOS M w /M n = 1.03 VOS MW/Mn = 1.08 VOS Mw/Ma = 1.39 VOS Mw/AZn = 22.96 VOS M w /M n =9.24 VOS M w /M n = 18.59 8V; CLS CLS CLS
822 822 822
2V; CLS; Mn given in Ref. 2V; CLS; Mn given in Ref.
822 822 822 822 296 296 296 231a 231 231
8V; CLSM 2 M; (cm3/g) 6V; CLS
291 292
CLS
293
3V; CLS 12V; OS 4V; OS CLS, A2,i =4.70 x 10- 3 M~Q[1
293 292 292 292a 906
CLS
906
CLS CLS
906 1026
References page VII-198
TABLE 12. cont'd Polymer
Solvent
Poly(isobutene)
Benzene
T( 0 C)
1260
78.1 x 10~4
30
556 722
45.0 0.52 A2=0.75xl0-3M-°12 A 2 =3.45 x 10~3 M" 0 2 0 4 A 2 =6.88 x 10~3 M ; 0 2 0 3 A 2 = 6.88 x 10 ~3 M"° 2 0 3 260.0 10.6 9.55 8.40 7.05 5.30 4.55 3.85 3.13 2.68 2.54 5.0 4.39 1.0 (approx.)
40 25 23
Cyclohexane
25 25
Ethyl caprylate Ethyl heptanoate
n-Heptane
0 25 25-75 25-75 25-75 26-70 25-75 23 23 25
60 Heptane/propyl alcohol 90/10 80/20 72/28 Isoamyl isovalerate
A 2 ( x 10 4 ) (mol cm 3 /g 2 )
24-30
Chloroform Cyclohexane
Dibutyl ether
M ( x 10~3) (g/mol)
25 60 60 21
23
25
27-16100 550 26.1 42.9 77.7 181 488 878 1580 3390 7830 14100 2400 391-4700 9000 db 1000 674 56 122 230 612 1100 167-16100 27.1 42.5 81.3 179 487 890 1580 3310 7750 50-22
41.0 0.430-1.62 - 0.234 to 1.69 -0.363 to 1.14 - 0.358 to 1.093 -0.270 to 1.012 A 2 =3.08 x 10" 3 M~°188 A 2 = 3.08 x 1O- 3 M~ 0 1 8 8 4.96 4.45 3.94 3.22 2.65 2.42 2.08 1.78 1.51 A 2 = 1.49 x 10 ~2 M ~on
400-1900 1900
2.85-2.75 1.75
1900 1900 1900 1900 80.4 178 482 872 1600 80.4 178 482 872 1600 80.4 178 482 872 1600
1.95 0 0.85 -0.25 -0,23 -0.31 - 0.30 -0.33 -0.40 - 0.14 -0.20 -0.20 -0.19 -0.20 - 0.06 -0.09 -0.10 -0.08 -0.10
Remarks (1 -(298/7)); CLS; Mv A2M; (cmVg)
Refs. 308 311 160
OS Mw/Mn«1.2 CLS CLS CLS CLS; A3 reported CLS; A3 reported; M w /M n = 1.08 CLS; A 3 reported; M w /M n = 1.10 CLS; A 3 reported; M w /M n = 1.09 CLS; A 3 reported; Mw/Mn = 1.10 CLS; A 3 reported; Mw/Mn = 1.09 CLS; A 3 reported CLS; A3 reported CLS; A 3 reported CLS; A 3 reported CLS CLS CLS; graphical representation of !^dependence given in Ref. CLS 6V; CLS; Mw/Mn = 1.13 6V; CLS; Mw/Mn = 1.20 6V; CLS; AfW/M„ = 1.19 6V; CLS; Mw/Mn = 1.24 6V; CLS; Mw/Mn = 1.30 CLS CLS; 1.14 <MW/Afn <2.28 CLS; A3 reported
317 989 990 898 202 901
17V; CLS; different methods of polymer preparation; see Ref. 3V; CLS
600
CLS
CLS; see Ref. for A3
56 56 56 56 899
CLS; see Ref. for A3
899
CLS; see Ref. for A3
899
CLS
454 843 438 202 934
990 898 900
56 56
TABLE 12.
coni'd
Polymer
Solvent
T( 0 C)
M ( x 10~ 3 ) (g/mol)
27
00 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.09 0.08 0.20 0.18 0.18 0.15 0.13 0.30 0.25 0.25 0.23 0.19 0.35 0.30 0.28 0.28 0.24 0.40 0.35 0.35 0.33 0.30 7.96 8.03 6.9 6.61 6.2 5.56 5.30 5.00 4.76 4.42 4.23 4.09 3.93 4.08 3.84 3.72 3.67 3.57 3.51 3.34 3.15 3.14 3.00 2.94 1.1 1.2 (approx.)
Isooctane
25
Isooctane /z-Pentane
25 0
80.4 178 482 872 1600 80.4 178 482 872 1600 80.4 178 482 872 1600 80.4 178 482 872 1600 80.4 178 482 872 1600 80.4 178 482 872 1600 5 6.2 8.9 11.8 15.8 22.9 26.1 33.9 39.0 56.4 61.4 80.5 87.0 95.0 122 140 180 230 270 393 612 832 1100 1360 2400 9000 ±1000
Ethylacetate
25
28
3.0
25
37 51 68 99 250-4000
2.9 2.8 2.5 2.1 3.12-1.62
29
31
33
35 Isoamyl isovalerate 35 37
PoIy(I-octadecene/maleic anhydride)
PoIy(I-octene)
A2 ( x 10 4 ) (mol cm 3 /g 2 )
Bromobenzene
Remarks
Refs.
CLS; see Ref. for A3
899
CLS; see Ref. for A 3
899
CLS; see Ref. for A 3
899
CLS; see Ref. for A 3
899
CLS; see Ref. for A 3
899 899
CLS; see Ref. for A3
CLS
902
CLS CLS; graphical representation of T-dependence given in Ref. CLS
454 438
CLS
420
981
References page VII-198
TABLE 12. cont'd Polymer
Solvent
Poly(propylene)
1,2,4-Trichlorobenzene
isotactic
a-Chloronaphthalene
atactic
Benzene Bromobenzene
Carbon tetrachloride
isotactic
1-Chloronaphthalene
atactic PoIy(I-pentene) (80% trans) isotactic Poly(tetrafluoroethylene)
Cyclohexane
T( 0 C)
M ( x 10 3 ) (g/mol)
140
23.0-28.0 44.5-49.8 34.7-37.1 484 (approx.)
12.0-16.9 12.5-15.0 23.8-22.4 4.3 (approx.)
116 (approx.)
3.65 (approx.)
147 ± 1
25 100
2.16
37-130 37
2.16 1.25-2.50
125 135 140 25
107-1110
A 2 ( x 10 4 ) (mol cm 3 /g 2 )
3.2XlO- 3 Af" 0 2 0 1.21 10.8 -2-+46.5 54-69.5
4.3 x 10" 3 Af " ° 1 6 16.5XlO- 3 Af- 0 2 7 3.9 (approx.) 20x 10" 3 Af"026
Remarks 5V; VOS; Afw /A/ n = 10.00 3V; VOS; Mw/Af n =5.70 2V; VOS; Afw/Afn = 8.60 3V; CLS; three different wavelengths used 3V; CLS; three different wavelengths used CLS OS CLS 4V; OS; B\ (bar cm 6 /g 2 ) 6V; OS; B\ (bar cm 6 /g 2 ); values for four more solvents given in Ref. CLS CLS 4V; CLS
Refs. 822 822 822 446
318 518,520 518,520 518,520 518,520
318 318 315 318
Hexane Toluene Poly(chlorotrifluoroethylene) mixed oligomeres Perfluorotetracosane
25 30 340
105-17200 549-25.2 290 ± 2 0
1.8-3.2 0.86-2.96 0.67 ±0.13
11V; CLS; Aft/Mw = 1.1-1.9 7V; OS; (cmVg)
835 604 1039
325
Toluene
25
CLS CLS CLS
Poly(l-phenyl-l-propene)
Toluene
25
0.19±21% 0.10±20% 2.91 3.78 3.58 4.31 3.84 4.82 4.77 5.46 6.05 6.75 9.50 9.88 10.0 15.7
1004
Poly(l-phenyl-l-propene)
260±15% 2100±15% 1450 1320 613 372 258 142 140 100 57 55.9 43.9 28.2 22.1 15.5
TABLE 13.
1034
SE;Af z /M w SE; Af2/Mw SE;Af2/Afw SE; MZ/A/W SE; Afz/Afw
= = = = =
1.06 1.08 L06 1.09 i.O6
1034
POLY(DIENES)
Polymer Poly(butadiene) \A-cis
Solvent
T (0C)
Af ( x 10 3 ) (g/mol)
Benzene
28.6
60-293 138 20 46 70.9 76 130 355 548 925 2950 3740 16500 11-760 99-1900 840-4350
Cyclohexane
linear 18-armed-star unfractionated
25
25 28.6
A2 ( x 10 4 ) (mol cm 3 /g 2 )
15.3 (approx.) 27.9 16.4 (14.9) 25.0 13.2(12.7) 13.6 11.6(10.3) 9.2 (8.5) (7.9) (6.7) (4.9) (4.6) (3.6) A2 = 132 x 10~2 A/; 0218 A2 - 5.0 x 10~3 M~022 2.92 (approx.)
Remarks
Refs.
11V; OS OS OS, (CLS)
297
CLS CLS 11V; CLS
987
903
297
TABLE 13.
cont'd
Polymer
Solvent
fractionated lA-trans 69% 60-70% unfractionated fractionated
Dioxane Toluene Poly(butadiene-co-styrene) 25-30% styrene Benzene 25-30% Cyclohexane 24% diblock, 32.9-3.59 mass% PST
triblock, 45.9-4.05 mass% PST
Poly(chloroprene)
Chlorinated rubber
Dioxane Toluene Cyclohexane Dioxane Toluene Butanone n-Butyl acetate Carbon tetrachloride frans-Decalin
Butanone
Chlorinated rubber-o?-poly(ethyl methacrylate) 20.72% Butanone Poly(isoprene) cis Cyclohexane
T( 0 C)
M ( x 10 3 ) (g/mol)
A2 ( x 104) (mol cm 3 /g 2 )
28.6 28.6 25 25
7.50 t o - 1 . 6 3 1.67 0.52 (approx.) 2.6 t o - 0 . 4 2.67 (approx.) 18.3-9.48 3.81-1.49 19.4-11.5
7V; CLS CLS 7V; CLS 12V; CLS 5V; CLS 4V; OS 4V; OS 7V; OS
297 297 288 288
34.2 34.2 34.2
143-1640 1070 5400-19000 3400-18000 2300-11000 17.4-370 17.9-434 18.2-466
28.6 28.6 30
58-112 800-26700 49-514
13.5 (approx.) 0.9 (approx.) 1.7-1.0
4V; OS 4V; CLS 8V; OS
297 297 344
34.2 34.2 34.2 34.2
42.6-625 43.6-610 43.0-625 35.8-517
10.0-7.55 5.8-1.64 12.6-8.17 10.1-8.69
4V; OS 4V; OS 4V; OS 8V; OS
497
34.2 34.2 25 25 25 0.4-48.7 1.1 -48.7 0.4-48.7 29 35
34-170 34.6-516 147-2920 149-3020 156-3180 587 865 1660 156 4410
6.63-2.16 12.5-9.57 0 2.52-1.24 4.59-2.03 -0.10 to +1.49 - 0.074 to H- 1.43 -0.05 to +1.12 3.60 -0.18
29
197
4.80
20 25 25
1600 620 ±10% 32.4 71.95 97.2 295 452 1700
Remarks
Refs.
497 497 497
497
6V; OS 8V; OS 7V; CLS 7V; CLS 7V; CLS 12V; CLS 13V; CLS 12V; CLS OS CLS
493 493 493 493
478 478
OS
478
Msj>; B, (bar cm 6 /g 2 ) OS CLS; Mw/Mn given
29 508 927
CLS; B, (bar cm 6 /g 2 )
30
1300 1300 300 430
6.5 5.0 ±20% 0.123 0.114 0.109 0.104 0.088 14.2 14.3 11.7 12.7 6.2 3.30
CLS; B; (bar cm 6 /g 2 )
28
OS; values for CLS in Ref. CLS
508 980
25 20
150 1800 1850 1900 2900 3100 3800
3.34 14.3 9 4.5 2.6 0.4 0
CLS CLS; B; (bar cm 6 /g 2 )
980 31
-
35.2-410 41-6800
7.0-12.6 1.6-9.4
16V; CLS 28V; CLS
988 988
30
221-370
5.51-4.40
495
Methyl isobutyl ketone
30
221 -370
1.25-1.74
Toluene
30
221-370
9.04-10.2
CLS; values for OS given in Ref. CLS; values for OS given in Ref. CLS; values for OS given in Ref.
Carbon tetrachloride
natural rubber
epoxidized 10 mole% Chloroform nitrile rubber 100% hydrogenated Chloroform brominated, 0% bromine Cyclohexane 5.8% bromine 7.3% bromine 25.8% bromine 41.5% bromine 43.8% bromine Poly(isoprene) long-arm-stars functionality 2.9-4.0 Cyclohexane functionality 4.9-18.1 Toluene Poly(isoprene-co-styrene) block copolymer Cyclohexane
7 27 7 27 25 25
495 495
References page VII -198
TABLE 13. cont'd Polymer
Solvent
Poly(isoprene)/Poly(ethylenepropylene) star polymers Cyclohexane Methylcyclohexane Tetrahydrofuran Methylcyclohexane-d14
TABLE 14.
T ( 0 C)
M ( x 1 0 3 ) (g/mol)
-
61 13.5 4.2 61 13.5 4.2
T( 0 C)
M ( x 10~3) (g/mol)
25 25 25-60 25
1100 1500 390 4700 1100-2000 1400
A 2 ( x 10 4 ) (mol c m 3 / g 2 )
8.06 2.91 11.1 8.24 3.03 5.5
Remarks
CLS CLS CLS SANS SANS SANS
Refs.
928
928
POLY(ACRYLICS)
Polymer Poly(acrylamide)
Solvent Dimethylsulfoxide Ethanolamine Water
25 Aq. NaCl 0.1 M
4 9.5 18 25 28 39 49 60 4.5 14 24.5 25 34.5 44 55.5 2.5 6.5 10 18.5 26.4 30 20 25 25
33
A 2 ( x 104) (mol cm 3 /g 2 ) 1.3 7.3 217 x (1-(235/7)) 0.64 4.9-5.4 1.8
3.3 4.5 5.2 6.1 6.0 6.5 6.8 6.8 220 2.0 2.4 3.0 2.8 3.0 3.1 3.2 6700 0.3 0.5 0.7 1.1 1.3 1.8 Aq. NaCl 0.2M 255-2750 3.06-2.81 Aq. NaCl 0.5M 900-1400 5.3-7.7 Aq. NaCIlM 2330 3.66 1710 3.14 2130 0.43 3670 0.29 Poly(acrylamide-co-3-(2-acrylamido-2-methylpropanedimethylammonio)-1 -propanesulfonate) (AMPDAPS) AMPDAPS 1 mol% Aq. NaCl 1M 25 3200 2.67 5mol% 12400 1.76 9.6 mol% 7000 1.49 10mol% 21500 1.69 27.7 mol% 8200 1.33 38.9 mol% 15100 0.75 40mol% 17500 1.21 58.8 mol% 5400 0.49 70.1 mol% 6200 0.48 100 mol% 3000 0.25 Poly(acrylamide-C0-sodium acrylate) (AM) 100mol%AM Water 25 5000 5.1 3.7 Aq. Na 2 SO 4 0.1 M 5000 2.5 2.4 83 mol% AM 5290 3.8
Remarks CLS CLS CLS CLS; (J cm 6 /g 2 ) 5V; CLS 5V;CLS;M W /M n = 2.5p dependence given in Ref. CLS
Refs. 827 827 308 93 827 832 974
CLS;Afw/Afn=1.7
CLS; A#w/Afn = 2.2
M1JM^ = 1.44-1.73 6V; CLS
833 827 1008
Deuterated monomer Microemulsion Microemulsion, deuterated CLS
1010
CLS LALLS CLS LALLS CLS
1036
TABLE 14. cont'd Polymer
Solvent
T( 0 C)
M ( x 10~3) (g/mol)
70 mol% AM 55mol%AM 36mol%AM
5550 5960 6110
9.4mol%AM
6450
Poly(acrylamide-c-sodium acryiate) 5.6rnol%AM
6160
A1 ( x 104) (mol cm 3 /g 2 )
Remarks
Refs.
4.8 8.1 12.3 9.7 8.9 7.7
LALLS CLS LALLS
5.5 6.8 2.8
CLS LALLS CLS
1036
CLS
1025
CLS
1021
3.7mol%AM NaBr 0.5 M 6500 Poly(acrylamide-co-sodium-3-methacrylamido-3-methylbutanoate) (AM) (NaMAMB) 0mol%AM 0.1 M NaCl 25 2600 3.5 31.7 mol% AM 2000 3.2 42.7 mol% AM 4200 3.3 58.1 mol% AM 6600 3.5 70.4mol%AM 6900 3.1 87.9 mol% AM 7200 3.2 100 mol% AM 8900 3.5 Poly(sodium-2-(acrylamido)-2-methylpropanesulfonate-cc>-(2-(aci7lamido)-2-methylpropyl)trimethylammonium chloride) (NaAMPS) (AMPTAC) 0mol% AMPTAC Aq. NaCUM 25 6120 0.92 14.7 mol% AMPTAC 8220 0.49 36.1 mol% AMPTAC 62000 -0.02 45.4 mol% AMPTAC 7920 0.59 51.7 mol% AMPTAC 7680 0.76 65.7 mol% AMPTAC 4980 0.34 100 mol% AMPTAC 1470 2.11 Poly(acrylanTide-co-sodium-2-(acryIamido)-2-methylpropanesuifonate-co-(2-(acrylamido)-2-methylpropyl)trim ammonium (NaAMPS) (AMPTAC) mol% (NaAMPS)/mol% (AMPTAC) 0.5/0.5 Aq. NaCIlM 25 6030 2.95 2.5/2.5 2780 1.65 5/5 5070 2.00 10/10 5870 1.57 15/15 6770 1.31 10/5 3880 1.56 Poly(acrylamide-co-sodium-3-acrylamide-3-methylbutanoate-c«?-(2-(acrylamido)-2-methylpropyl)trimethylammonium chloride) (NaAMB) (AMPTAC) mol% (NaAMB)/mol% (AMPTAC) 0.5/0.5 Aq. NaCIlM 25 3430 3.61 5.1/5.8 13900 1.66 7.9/6.2 3450 1.63 9.7/9.8 10800 2.06 11.5/14.0 12200 1.75 13.6/10.7 19400 1.85 4.5/10.2 11200 1.84 Poly(acrylamide-co-maleic Aq-NaNO 3 21.5 24.4 4.0 anhydride) Poly(acrylic acid) Aq. NaCl IM 25 500 2.8 0.1 M 13 0.01 M 88 IS: 0.102-0.994 27.5 770 5.95-196 Dioxane 230 -0.1 420 0.1 890 0.2 1510 0.2 2440 0.0 5600 0.3 1,4-Dioxane 25 134-1220 28.0-18 0.2 M Hydrogen 20-68 1100 49.9 x (1-(287/7)) chloride sodium salt Aq. NaCl 0.01 M 25 64 7.98 0.05 M 58.7 1.22 0.1 M 30-644 0.68 (approx.) 1.0 M 58 0.07
chloride)
CLS
1022
CLS
1023
CLS
828
CLS
829
6V; CLS; IS = ionic strength CLS
320 970
5V; CLS; A2M; (cm3/g) CLS
202 308
OS; B; (bar cm 6 /g 2 ) OS; 6V;
254
References page VH-198
TABLE 14. cont'd Polymer
Solvent
T( 0 C)
M ( x 10 3 ) (g/mol)
A2 ( x 104) (mol cm 3 /g 2 )
Poly(acrylic acid-co-acrylamide-c6>-3-((2-acrylaraido-2-methylpropyl)dimethylammonio)-l-propanesulfonate) (AA) (AM) (AMPDAPS) AA/AM/AMPDAPS mol% (in feed) 90/5/5 3000 2.77 80/10/10 5400 2.95 50/25/25 7900 2.23 20/40/40 4700 2.23 90/10/0 4000 5.76 75/25/0 1900 9.49 90/0/10 7000 1.49 75/0/25 8200 1.33 Poly(n-butyl acrylate) Acetone 20 32-920 5.0-2.9 Tetrahydrofuran 29 4.8 76 4.5 110 5.0 200 3.9 790 3.4 Poly(w-butyl acrylate) Tetrahydrofuran 1480 3.3 25 118-245 0.0146-0.0197 Poly(n-butyl acrylate-co-methyl methacrylate) mass% 79.5/20.5 Acetone 20 22-740 8.0-2.6 56/44 24-710 11.0-4.0 29.5/70.5 27-800 9.5-3.6 Poly(terf-butyl acrylate) Butanone 25 306-75 2.37-4.27 Tetrahydrofuran 110 4.7 180 3.7 350 3.9 700 3.5 820 2.5 Poly(n-butyl methacrylate) Acetone 20 57-490 2.3-1.5 RT 108-582 3.61-1.69 Carbontetrachloride 20 21633± 1700 A2 - 1 7 6 0 x 10~3 M; 0 1 8 116-613 3.04-1.33 Butanone 23 250-2580 2.08-1.69 117-666 3.65-1.95 Isopropyl alcohol 20 108-506 -0.7 to 0.39 23.7 107-650 - 0.15 to 0.1 25.0 107-653 0.03 to 0.2 31.0 107-653 0.54 (approx.) 45.0 109-262 1.44 (approx.) Methyl ethylketone 25 21633 ±1700 A2 = 2.585 x 10 ~3 M ~° 21 Poly(tert-butyl methacrylate) Butanone 25 27.7 3.81
Poly(butyl methacrylate-c-methyl methacrylate) 50/50 mass% Acetone Poly(terf-butylphenyl methacrylate) Poly(carbethoxyphenylDimethylformamide methacrylamide) DMF/formamide 90/10 Ethyl acetate Poly(cetyl methacrylate) Heptane
66.0 190 414 835 1070 34.2
3.55 3.14 2.73 2.61 2.56 5.63
68.3 138 242 342 611 1550
5.23 4.53 3.34 3.01 2.79 2.44
20
70-430
3.2-2.2
20
995
2.2
200-1070
1.2 6.2 3.38-1.9
25
Remarks
Refs.
LALLS
1035
7V; CLS CLS
525 970
4V; CLS
970 1037
7V; CLS 7V; CLS 7V; CLS 5V; CLS CLS
524
5V; CLS 5V; OS CLS 5V; CLS; A3 reported 7V; CLS 5V; CLS; A3 reported 4V; CLS 5V 5V 5V 3V CLS
525 280 910
512 970
165,205 280 279
910
CLS; A2 = 1.25 x 10 "3 M-°115; anionic polymerization
912
CLS; A2 =7.55 x 10~3 M; 0 2 5 ; free-radical polymerization
912
5V; CLS
525
CLS
267
9V; CLS
263
TABLE 14. cont'd Polymer
Solvent
Poly( 1,1 -dihydroperfluorobutyl acrylate) Benzotrifluoride Methyl perfluorobutyrate Poly(ethyl acrylate) Acetone
Tetrahydrofuran
Poly(ethyl acrylate-co-methyl methacrylate) 50/50 mass% Acetone Dimethylformamide Butanone Poly(2-ethylhexyl acrylate) Tetrahydrofuran
T (0C)
M ( x 10 3) (g/mol)
25
2000-38000 5200-14100 55-860 320-8000 145-691 132-691 145-711 69 180 230 420 810 1040
20 28 30
-
20 20 20 -
Poly(ethyl methacrylate)
Toluene Ethyl acetate
37 35
Poly(n-hexyl acrylate)
Butanone Tetrahydrofuran
23 -
Poly(n-hexyl methacrylate) PolyO'-butyl acrylate)
Butanone Tetrahydrofuran
23 -
Poly(isopropyl acrylate) highly isotactic Bromobenzene 60 moderately isotactic Bromobenzene 60 syndiotactic Bromobenzene 60 atactic Benzene 25 Poly(isopropylacrylamide (IPAM)/Poly(acrylamide) copolymer IPAM= 100 mol% Water IPAM = 85mol% IPAM = 70 mol% IPAM = 55mol% IPAM = 40 mol% IPAM = 0 mol% Poly(W-isopropylWater 20 methacrylamide) Poly(n-lauryi acrylate) Tetrahydrofuran -
PolyOauryl methacrylate) Poly (methacrylamide) Poly(methacrylic acid)
n-Butyl acetate Water Hydrochloric acid 0.02 M 0.1 M 0.114 M LOM LiBrinethanol0.125M
23 22-56 27-53
25 25 30
220-660
A2 ( x 104) (mol cm 3 /g 2 )
0.2 (approx.) 0.5 5.0-3.1 10.52 (approx.) 14.6 (approx.) 18.1-14.1 13.3 (approx.) 8.1 4.7 5.3 4.1 3.8 4.3
200-2630 100 170 320 590 1040 640-4050 200 490 780 1000
4.3-3.5 see Ref. see Ref. 2.6 2.4 2.1 2.4 1.7 2.0 A2 = 0.0045 M"°25 1.45-1.01 1.38-1.20 4.9-1.83 4.7 4.5 3.4 3.2 2.4 1.77-1.17 4.5 3.6 3.0 3.0
74.3-509 109-46 142-564 71.7-703
6.21-3.52 5.83-4.12 7.06-3.71 7.27-3.60
3000 3100 4500 3900 2200 5200 -
2.94 3.01 3.31 3.46 3.62 3.78 A2 = 5.9 x 10" 3 M" 0 2 5
95 260 600 1000 260-3600 320 590
6.5 2.3 1.6 0.9 1.10-0.47 4.49 (1-(279/7)) 14.8 ((329/7)-1)
146-682 200-427 84-169 42-383 34-421
1.76 (approx.) 16.9 (approx.) 2.2-0.4 5.2-2.3 4.9-1.8
210 280 400 490 880 1340 660-72 926-11620
Remarks
Refs.
10V; CLS 2V; CLS 6V; CLS 10V; OS; B; (bar cm 6 /g 2 ) 13V; OS; B\ (bar cm 6 /g 2 ) 7V; OS; B, (bar cm 6 /g 2 ) 5V; OS; B\ (bar cm 6 /g 2 ) CLS
203 203 525 208 233 271 270 970
5V; CLS CLS OS CLS
525 515 515 970
4V; OS 9V; CLS Calculated ace. to Orofino, Flory 9V; CLS CLS
586 471
8V; CLS CLS
295 970
6V; OS 4V; OS 4V; OS 5V; OS
429
162 970
CLS
1006
CLS
1005
CLS
970
8V; CLS CLS CLS; Tin K
205 308 308
3V; OS 5V; CLS 3V; OS 4V; CLS 5V; OS
240 240 240 249 249
References page VII-198
TABLE 14. cont'd Polymer
Poly(methyl acrylate)
Solvent Methanol 0.05MNaCl 0.5MNaCl Water + x M NaCl x = 0.18-0.0007 Acetone Ethyl acetate Butanone/isopropanol 58/42 Tetrahydrofuran
Poly (methyl acrylate-co-chlorinated rubber) 86.9/13.1 graft copolymer Butanone Poly(methyl acrylate-co-methyl methacrylate) 50/50 mass% Acetone Poly(methyl butacrylate) Butanone Poly(methyl ethacrylate) Butanone Poly(methyl methacrylate) Acetone
T( 0 C)
Acetonitrile Acetonitrile/1-butanol VMeCN = 0.3-0.9 Acetonitrile/pentyl acetate VMeCN = 0-0.95 Acetonitrile/1-propanol VMeCN =0.3-0.9 Acetonitrile/methanol VMeCN =0.5-1 Acetonitrile/carbon tetrachloride VMeCN = 0 % VMeCN =40% VMeCN = 100%
atactic
Remarks
Refs.
517 (approx.) 505 (approx.) 510
2.42 (approx.) 1.465-0 0.96-0.1
3V; CLS 4V; CLS 3V; CLS
25 20 25 35 20
196 77-880 280-2500 362-1480 290-1720
0-780 4.5-2.8 4.2-2.4 1.92 (approx.) 0.1-0.06
5V; CLS 5V; CLS 17V; CLS 5V; CLS 8V; CLS
-
49 69 100 260 430 570
4.1 4.7 3.8 3.7 3.0 4.1
CLS
970
35
33940
0.079
CLS
478
20 30 30 20
80-525 75.2-4280 46.1-1910
5.5-3.5 2.77-1.00 4.78-1.72 See Ref.
525 445 445
0.2-510 23-5300 200-6550 550 510 0.203-0.385 0.691-2.480 341-7800 0.613-20 0.613-50.2 0.613-496
30-1.5 12.2-1.55 2.25-0.68 1.9 1.5 -24.2 to 113.0 627-47.5 12 - 4 . 4 to 6.5 - 3.6 to 8.0 - 3.0 to 9.5 - 2 . 3 to 11 - 1 . 9 to 12 - 1 . 5 to 13 - U o 14 - 0 . 5 to 15 0-16.5 - 1 to-0.08 -0.89 to 2.24 - 0.76 to 2.58
10V; CLS 10V; CLS 10V; CLS Small angle X-ray scat. varying tacticities measured 10V; small angle X-ray scat. 10V; SE; B\ (bar cm 6 /g 2 ) 3V; SE CLS; identical samples; Small angle X-ray scat. 4V; B; (bar cm 6 /g 2 ); Mn 3V; B, (bar cm 6 /g 2 ); Mn CLS 8V; CLS 9V; CLS 11V; CLS 1IV; CLS 11V; CLS 11V; CLS 1IV; CLS 11V; CLS 11V; CLS 17V; CLS 7V; CLS MeCN = acetonitrile 1IV; CLS
-0.16 to 2.30
7V; CLS
- 0.97 to 0.38
7V; CLS
25
Poly(methylmethacrylate)
A2 ( x 104) (mol cm 3 /g 2 )
20-40 20-60 20-40
22
Acetonitrile
M ( x 10"3) (g/mol)
20 25 30 35 40 44 (0) 47 50 55 28-42 25
25
20-496 169
120
51 ±4.3 3670 ± 5 0 68-1370 240-4470 27.7-7800 1450 2.69-2500 86-1050 92-798
0.6 5.9 -0.65 8.2±0.61 2.12 ±0.05 2.9xlO~3M-022 (7.1-3.5) x 103 2.3-1.1 0.975-0.29 19 0.97-390 2.90-1.58 1.89-1.52
346 346
355 525 246,247 482 246
492 52 15 469 469 408 408 842 915
915 916
10V; CLS MeCN = acetonitrile
823
CLS; 5; (barcm 6 /g 2 ) CLS; B\ (bar cm 6 /g 2 ) CLS 7V; CLS; 981(cml2/g) 5V; CLS 12V; CLS; (J cm Vg2) CLS 13V 7V; OS 9V; CLS
419 419 273 232 264 99 202 275 202 202
TABLE 14. cont'd Polymer
Solvent
T(0C)
M ( x 1 0 3 ) (g/mol)
486-6620
155 313 380 688 946 1930 155 313 380 688 946 1930 90 305 506 162-647 64-726 10 10 10 0.188-0.935 433 5-52.8 75.5 210 210 210
2.38-0.82 2.63xlO- 3 /Vf 078 1.85 - 1.5 to 12.5 0.100 0.114 0.107 0.175 0.184 0.177 0.256 0.279 0.292 1.25-47.3 5.66 5.06 4.39 3.91 3.31 3.32 2.97 2.61 2.32 1.99 1.23-17.2 0.20 0.40 0.57 6.92 6.12 5.57 4.91 4.39 380 4.33 3.66 3.47 3.03 2.64 2.33 5.0 3.9 3.2 28.8-88 12.3-95 -0.1 0 0.2 - 222.2 to 8.9 2.63 7.38-2.18 2.70 0.001-0.369 -0.128 to 0.293 - 0.365 to 0.237
210 486-6620 210 210 0.202-0.755 1.160-4.625 30 1100 4600 200-6550
-0.248 to 0.174 0.96-0.36 0-1.20 - 0.242 to 0.088 40.0-6.7 23.2-0.0 -1.6 to 0.365 - 0 . 3 to 0.325 -0.23 to 0.31 - 0.24 to 0.07
30 atactic
Acetonitrile
44 47
50
55
isotactic
unfractionated fractionated
Acetone Chloroform
25 25
Nitroethane
30
Acetone Acetonitrile
Chloroform
25 35 45 55 25
Nitroethane
30
Tetrahydrofuran
-
Acetonitrile
30.5
Acetonitrile
40 43.3 50 25 30 25
Benzene
fractionated
Butanone Butanone/isopropanol 58.2/41.8 55/45 50/50 Butanone/isopropanol 46.8/53.2 Butyl acetate Butyl chloride Carbon tetrachloride Chlorobutane
4-36 4-36 8-40 18-40 25 - 1 8 to 60 14-48 25 4-48 28-48 28-48 35.6
A2 ( x 10 4 ) (mol c m 3 / g 2 )
161 0.594-204 312 482 765 312 482 765 312 482 765 0.594-1580 204 312 482 765 1580 204 312 482 765 1580 0.789-1930 688
Remarks
Refs.
4V; CLS OS;4 2 M; (cm Vg) OS 10V; CLS CLS
55 274 494 917
CLS
CLS
19V; CLS CLS
CLS
16V; CLS; Mw/Mn see Ref. CLS; Afw/Mn see Ref.
918
CLS; Mw/Mn see Ref.
CLS; Mw/Mn see Ref.
CLS; M w /M n given
956
12V; OS; A2 A/; (cm3/g) 5V; OS; A1 M; (cm3/g) SAXS SAXS SAXS 8V; B, (bar cm 6 /g 2 ); Mn OS 6V; CLS CLS 9V; CLS; (J cm 3 /g 2 ) 9V; CLS; (J cm 3 /g 2 ) 9V; CLS; (J cm 3 /g 2 )
274 274 492 492 492 408 494 418 418 13 13 13
7V; CLS; (J cm 3 /g 2 ) 4V; CLS 6V;CLS 10V; CLS; (J cm 3 /g 2 ) 3V; B\ (bar cm 6 /g 2 ); Mn 4V; B, (bar cm 6 /g 2 ); Mn 12V; CLS 7V; CLS 7V; CLS 3V; SD
13 55 210,215 13 408 408 210,215 210,215 210,215 15
References page VII-198
TABLE 14. cont'd Polymer
Solvent
T( 0 C)
l-Chlorobutane/240 butanol cpbu =0-0.7991 l-Chlorobutane/240 ±0.2 methoxy-ethanol Chloroform 25
Chloroform/butyl acetate % butyl acetate 0 20 40 60 80 90 100 Dimethylformamide
A2 ( x 104) (mol cm 3 /g 2 )
Remarks
Refs.
2400-2690
0-1.28
12V; CLS
909
2330-2640
0-116
14V; CLS
913
830-1370 0.204-0.379 0.710-5.240
(12-10) x 103 - 53.9 to 81.0 49.6-21.9
2V; CLS; 981 (cm3/g) 4V; B, (bar cm 6 /g 2 ); Mn 3V; B; (bar cm 6 /g 2 ); Mn CLS; apparent values for Mw
232 408 408 914
38 38
172 260 270 294 227 212 172 32.2±0.3 2180 60 486-6620 1220-2000 5690 5690
0.75 0.30 0.31 0.53 0.33 0.51 0.05 10.9-0.16 6.2-0.08 3.24-1.43 3.1-3.0 1.82 1.75
OS; B, (bar cm 6 /g 2 ); AZn OS; fl; (bar cm 6 /g 2 ); Mn 4V; CLS 2V; CLS CLS CLS
419 419 5 294 908 908
38
5690
-0.11
CLS
908
16-62 20-60 20-60 25
172-3100 2100 210 2100 20-1730
1.9-1.2 -0.76 to 0.52 - 0.276 to 0.014 -1.13-0.055 (4.02-1.39) x 10~2
130-2760 760-1400 1220 34-9800 410-3260
(3.04-1.07) x 10~2 (5.4-4.2) x 103 1.6 2.78-1.46 1.92-1.66
410-3260 210 210 210 210 45.9-940
0.08-0.02 0.005-1.44 -0.57 to 1.14 -1.56 to 0.91 -1.02 to 0.68 4.43-2.34
48.9-4490
5.02-1.95
1470-6990
1.44-0.61
22-1710 114-564
30.5
1220-2000 47-9300 12.3-20
5.51-1.68 3.38-1.73 0.67 x 10 " 3 M~ 0257 2.6(approx.) 5.3-1.1 5.7-8.5
35
8150
0.36
CLS
478
See Ref.
11V
549
IV; CLS 7V; CLS CLS CLS; Mn = 0.90 x 106 g/mol
824 209 229 919
25
Dioxane
a-Chloronaphthalene/
Af ( x 10 3 ) (g/mol)
toluene <£CNA = 0.72
unfractionated
linear
ot-Chloronaphthalene/ polystyrene (Cp S =3.76g/l) Ethyl acetate 4-heptanone Isoamyl acetate Isopentyl acetate Butanone
Butanone/isopropyl alcohol 55/45 23 58.2/41.8 4-36 55/45 4-36 50/50 8-50 46.8/53.2 8-40 Butanone 40
randomly branched
unfractionated
Nitroethane
Tetrahydrofuran Toluene Poly (methyl methacrylate-co-chlorinated rubber) (45.9/54.1) graft polymer Butanone Poly(methyl methacrylate-co-ethylene dimethacrylate) randomly branched Butanone Poly(methyl methacrylate)/90% poly(styrene) (side chains) graft polymer Benzene Poly(n-octyl methacrylate) Butanone Poly(N-phenylmethacrylamide) Acetone Poly(phenyl acrylate) Ethyl lactate
25
40 23 20 11.55 13.65
1800 3260-12520 100-3200 1460
0.52 0.77-0.35 4.1-3.2 0.0 6.0
3V; OS 10V; CLS 11V; CLS; (J cm 3 /g 2 ) 12V; CLS 7V; CLS; A2M; (cm3/g2); A3 reported 4V; CLS 4V; CLS; 981 (cm 12/g) CLS 10V; CLS 7V; CLS
196 210,215 13 210,215 273
6V; CLS 9V; CLS 10V 10V 8V 8V; CLS; OS results also given in Ref. 12V; CLS; OS results also given in Ref. 3V; CLS; OS results also given in Ref. 6V; CLS; A3 reported 2V; CLS; A 3 reported CLS 2V; CLS 6V; CLS 3V; OS
163 210,215 210,215 210,215 210,215 570
273 232 294 253 163
570 570 273 273 273 294 121 274
TABLE 14. cont'd Polymer
T ( 0 C)
Solvent
Poly(n-propyl aery late)
Tetrahydrofuran
Poly(sulfodecyimethacrylate) Poly(sulfoethylmethacrylate) Poly(sulfohexylmethacrylate) Poly(sulfooctylmethacrylate)
Aq. NaCl Aq. NaCl Aq. NaCl Aq. NaCl
TABLE 15.
0.1 M 0.1 M 0.1M 0.1 M
16.65 22.75 31.65 45.45 59.45 74.45 89.85 106.15 -
M ( x 1 0 3 ) (g/mol)
A1 (x 10 4 ) (mol c m 3 / g 2 )
29.2 51.7 687 94.0 117 125 141 150 4.0 5.3 3.6 3.3 3.0 2.9 2.9 1.91 6.41 5.61 2.03
25 25 25 25
110 200 440 630 800 980 1080 734 306 494 701
T (0C)
Af ( x 10~3) (g/mol)
20
1041
4.217
1132 1235 1371 1778 2367 2973 3078
Remarks
CLS
Refs.
970
CLS; Afw/Afn =2.1 CLS; Afw/Afn = 1.5 CLS; MW/Af n = 2.0 CLS; Mw/Mn = 1.8
1009
Remarks
Refs.
POLY(VINYLS)
Polymer
Solvent
Poly(acrylonitrile)
Dimethylformamide
20
98-120
20
25 25-40 35
9-69 91-762 43-298 27-159 103 33-101 28-575
4.064 3.988 3.589 3.631 3.456 3.291 3.311 A2 =9.44 x 10- 3 Af^ 0219 22.9-21.4 4.94 x 10~2 Af""0-24 32.2-7.0 2.43 x 10 ~2 M ~22 21 (approx.) 16-20 18.3 19.1 (approx.) 2.74 x 10 " 2 M" 0 2 4
25 25 25
150-174 158-263 155-2620
0.073-0.254 0.252-0.420 - 0.002 to 0.153
25
42 62 90 140 204 270 348 500 200 196 215-861 347-409 536-894 13-450
0.132 0.121 0.120 0.120 0.115 0.110 0.095 0.090 0.119 0.137 0.0075 2.3-0.7 3.4-2.3 1.9-1.7 3.89 (approx.)
25
highly isotactic, 73.4% iso triades HNO 3 ; 60-70 mass% HNO 3 ; 70 mass% Dimethylsulfoxide Poly(acrylonitrile)/vinylidene chloride copolymer, 59 wt.% AN Dimethylacetamide
Poly(n-butoxyethylene) Poly(ethoxyethylene) Poly(isopropoxyethylene) Poly(methoxyethylene)
Butyrolactone Dimethylformamide 70mass%HNO 3 Butanone Butanone Butanone Butanone
A 2 ( x 10 4 ) (mol cm 3 /g 2 )
25 25 25 25 25 25 25
CLS
971
CLS 2 Different wavelengths used 5V; OS; (cm4Zg) CLS 7V; OS OS CLS 13V; OS 9V; Af
603 248 95 199 200 938 74 201
4V; CLS 5V; CLS 4V; CLS
973
CLS; A2 = 5.77 x 10" 3 Af"014
972
CLS CLS CLS 2V; CLS 2V; CLS 2V; CLS 12V; CLS
149 149 149 149
References page VII -198
TABLE 15. cont'd Polymer Poly(2-methyl-5-vinylpyridine) PoIy(I-trimethylsilyl ethylene) Poly(vinyl acetate)
branched
Solvent Butanone Cyclohexane Acetone
T( 0 C) 25 25 30 (approx.)
Methanol Benzene
25 30
Methanol
30 (approx.) 30 (approx.) 36 (approx.) 36 (approx.) 25
linear branched Butanone
30 linear branched linear
Butanone Tetrahydrofuran Trichlorobenzene
branched Poly(vinyl alcohol)
Trichlorobenzene Water
Poly(vinyl bromide)
Tetrahydrofuran
Poly(vinyl butyral)
Dioxane
Poly(vinyl-wo-butyral) Poly(vinyl caprolactam) Poly(vinyl carbanilate)
Poly(iV-vinylcarbazole)
Poly(vinyl chloride)
Dimethylformamide Cyclohexanol Cyclohexanone Diethylene glycol/ diethyl ether Diethyl ketone Dioxane
36 (approx.) 36 (approx.) 25 36 (approx.) 36 (approx.) 30 73.5 80 RT 37
20 40-90 15-90 5-95
Pyndine Benzene
20-90 20 5-95 10-90 25
Dioxane
37
Toluene
37-43 37-43 25
Cyclohexanone
30 30-70 25
29 Poly(vinyl chloride-co-butylacrylate) comonomer content (mol%) 16.6 Tetrahydrofuran 400
25
M ( x 10 "3) (g/mol) 67-1200 2130-590 27-845 343-722 78-660 2360-422900 258-45.2 5203-331 370-620 1620-1900 2920 3580 870-3420 58-367 93-1100 40-1268 300-772 440-3580 430-12.60 13.8-47.7 1380-3760 1610-4110 180-196 245 100-458 6-76 104-270 541-89.5 208-73.9 181-57.5 462-207 377-1670 1100
A2 ( x 104) (mol cm 3 /g 2 ) 2.8-1.2 4.85-12.00 8.80-3.34 3.66-3.50 6.5-2.5 7.50-0.172 4.76 (approx.) 0.208-2.066 3.5 (approx.) 1.14-1.3 0.99 1.06 3.51-2.43 10 (approx.) 5 (approx.) 7.00-2.95 3.93-2.90 3.2-2.74 2.99-0.66 0.160-0.280 2.29-1.75 5.94 x i O " 3 M" 0 2 3 0 1.69-1.18 3.9-5.2 1.119 2.189-0.775 6-0 2.7-2.0 5.53-10.3 9.15-11.3 9.45-12.2 6.9-9.6 0.337-0.662 - 1.2 to 1.2 (approx.) 2.2-1.9 (approx.) 2.7-1.5 (approx.)
298 522 118(119) 59 (50) 32.3-97.4 90 48.8 44.9
- 0.5-1.8 (approx.) (3.4-1.71) x 10 ~4 2.7-2.2 (approx.) 2.5-2.0 (approx.) 0.57-1.32 0.61 0.54 2.35-0.91 4.26 x 10 ~3 A/" 027 0-0.27 0.01-0.26 U 12 (18) 3.7 x 102 3.9 x (1+(1613/D) 12.8 XlO" 4 16.2 x 10 " 4
24.8 37-110 122 56 (53) 136
6.85 2.5 (approx.) 15 14 (17) 9.03
173-302 205-632
0.0518-0.0649 0.0156-0.0244
7.2-183 1100 4550-136 1630 2290 42.4-1070
Remarks 13V; CLS 6V; CLS 9V; CLS CLS 18V; CLS 9V; DLS 10V; OS 8V; CLS 2V; CLS 2V; CLS 3V; CLS 11V; CLS 8V; OS; B, (bar cm 6 /g 2 ) CLS; B; (bar cm 6 /g 2 ) 12V; CLS CLS 10V; CLS 9V; CLS 3V; CLS 12V; CLS 19V; CLS 2 V; CLS CLS 5V; CLS 14V; CLS 2V; CLS 8V; OS 5V; OS 7V; OS 6V; OS 8V; CLS 8V; CLS 6V; CLS 7V; CLS 8V; CLS 11V; CLS; (cm 2 /g 2 ) 7V; CLS 4V; CLS CLS CLS CLS 8V 3V; OS 3V; OS A; (CLS) A; (CLS) OS; (cm4/g) CLS; Mv OS; OS; more values for seven different PVC-preparations given in Ref. OS; (J cm 3 /g 2 ) 5V; OS; (J cm Vg2) A A; (CLS) OS
4V; CLS 3V; CLS
Refs. 432 553 330 331 289 831 453 331 333 333 111 112 112 330 331 333 333 1037 333 333 333 282,283 282,283 282,283 287 597
1024 504 504 504
401 504 504 457 499 499 499 499 499 602 602 108 308,309 451 451
75 75 602 602 478
1037
TABLE 15. cont'd Polymer
Solvent
Poly(vinyl chloride-co-w-butyl ether) comonomer content (mol%) 9.2 Tetrahydrofuran Poly(vinyl chloride-co-methylacrylate) comonomer content (mol%) 25.5 Tetrahydrofuran 41.6 64.0 Poly(vinyl chloride-co-vinyl acetate) comonomer content (mol%) 11.4 Tetrahydrofuran 25.0 40.0 66.0 Poly(vinyl chloride-co-vinylidene chloride) comonomer content (mol%) 15 Tetrahydrofuran 42 Poly(vinylchloride-co-poly(ethyl methacrylate)) 84.55%/15.45% Tetrahydrofuran Poly(vinyl chloride-co-poly(methyl methacrylate)) 45A%/54.9% graft Tetrahydrofuran copolymer Poly (vinyl methyl ether) see Poly(methoxyethylene) Poly(2-vinylpiridine) Aq. H 2 SO 4 ; 0.01 M 0.1 M 0.25 M 0.5 M 0.75 M 1.0M 5.1M 10.3 M Poly(4-vinyipiridine) Ethyl alcohol Poly(vinylpyrrolidone) Cyclohexanone Ethanol Water
Poly(vinylpyrrolidone-c0-vinylcaprolactam) 1:1 stat. Ethanol
TABLE 16.
T (0C)
M ( x 10 ~3) (g/mol)
A2 ( x 104) (mol cm 3 /g 2 )
Remarks
Refs.
25
30-98
0.077-0.115
3V; CLS
1037
25
221-476 121-891 379-2510
0.0503-0.0570 0.0316-0.0803 0.014-0.033
3V; CLS 4V; CLS 4V; CLS
1037
25
29.5-96.7 21-185 43-179 100-708
0.089-0.119 0.050-0.148 0.064-0.118 0.012-0.028
4V; CLS 4V; CLS 4V; CLS 4V; CLS
1037
25
50-223 79-187
0.0449-0.0910 0.0260-0.0396
4V; CLS 4V; CLS
1037
29
161
4.80
OS
478
29
302
9.55
OS
478
25
288
CLS
977
RT 25 20 20 25
102-1850 24.5-37.9 63-500 310 11.6-75.4 19.5-933 310
11 2.2 2.1 1.7 1.3 1.4 3.0 3.0 4.13 (approx.) 2.6 (approx.) 1.15-5.47 4.2 3.39 (approx.) 64.7-2.52 4.2
20
140-557
0.457-1.89
T (0C)
M ( x 10 ~3) (g/mol)
10V; CLS 3V; OS 8V; CLS M w /M n = 1.5 12V; CLS 6V; CLS CLS;M w /A/ n = 1.5
286 191 1024 985 191
8V; CLS
1024
942
POLY(STYRENES)
Polymer
Solvent
Poiy(p-bromostyrene) Toluene 30 3860-630 Poly(/7-^rr-butylstyrene)-^-poly(dimethylsiloxane)-^-poly(/?-rerr-butylstyrene) anionically synthetized diblock Toluene 30 92.7 triblock 115 291 829 Poly(m-chlorostyrene) Butanone 30 1064-322 Toluene Poly(-ch!orostyrene)
rc-Butyi
acetate
Chlorobenzene
35
1075-145
5 30 55 30
415 403 401 406
A2 ( x 104) (mol cm 3 /g 2 ) 0.076-0.113
4.23 3.24 2.56 2.10 1.44-1.78 <4 2 =1.54xl0- 3 M- 0 1 7 2.42-5.08 A2 = 26.5 x l 0 ~ 3 M" 0 3 3 0.570 0.449 0.337 1.72
Remarks
Refs.
5V; CLS
516
CLS; Mw/A/n given
966
5V; CLS
595
6V; CLS OS OS OS OS
585 585 585 585
References page VII -198
TABLE 16. cont'd Polymer
Poly(p-chlorostyrene)
Solvent
T( 0 C)
M ( x 10~3) (g/mol)
Toluene
25 30 35
1005-142 407 1087-435 1429-2350
Butanone «-Butyl acetate
21 5 30 50 30 30
480-4220 180 176 165 316 472-192
Chlorobenzene Toluene
Poly(2,5-dichlorostyrene) Poly(p-methoxystyrene) Poly(oc-methylstyrene)
Poly(a-methylstyrene)
17.3
0.461 to - 0.116
3000
0.406 to -0.109
25
1.45 6.76 20.1 24.7 59.0 63.1 75.9 118 177 305 313 665 903 1140
34.5 37
204-7470 278-46.9
49 34 8.05 7.03 5.54 5.29 5.67 4.63 4.55 3.73 3.56 2.90 2.71 2.56 A2 = L l S x I O - 2 M ; 0 2 7 3 2.08 4.2-5.9
-
45-417
37 30
253-106 430-102
30 30 30
1210-391 847-263 1180-500
n-Butylchloride
30 -
Toluene
Poly(a-methylstyrene-c-acrylonitrile) 46 mol% acrylonitrile Tetrahydrofuran Poly(a-methylstyrene-c0-styrene) 50/50 Toluene Poly(o-methylstyrene) Toluene Poly(p-methylstyrene)
60-313 61-1020 180-1080 1220 1220 310
A2 = 3.11 x 10" 3 M" 0 2 5 5 A2 = 2.4 x 10~7 M^50 A 2 =6.0 x 1 0 - 9 M j 7 2 A2 =5.5 x 10" 10 M 0 8 4 0.218 0.509 0.575 to-0.142
20 25 30 25
monodisperse
Poly(a-methylstyrene)
6.9-3540
1.78-2.70 1.73 2.18-2.70 1.96-3.00 5.22xl0-3A/-°23 1.29-0.752 2.96 2.39 1.90 2.17 0.96-1.69 A2=KM ~° 6 0.570-0.895 0.825 0.625 0.88-0.20 A2=KM"020 A2-KM"040 17.4 13.7 See Ref. 0.60-2.97
Dioxane Butanone Toluene Benzene
Cyclohexane
Butanone Cyclohexane Dichlororethane
A2 ( x 10 4 ) (mol cm 3 /g 2 )
20 24 30 40 50 50-32
1370-214 206 463 590-19600 870-220 850-220 1.45 6.76
Remarks
Refs.
6V; CLS OS 6V; CLS 4V; CLS
527 585 500 500
10V; CLS OS OS OS OS 5V; OS A 3 given in Ref. 6V; CLS CLS OS 7V; CLS CLS; 6V CLS; 6V CLS; B\ (bar cm 6 /g 2 ) CLS; B, (bar cm 6 /g 2 )
300 585 585 585 585 609
15V; CLS; M w /M n , MjM*, given M w /M n = 1.03-1.15 CLS CLS CLS
7V; CLS; A2-values for mixtures of these samples given in Ref. 7V; CLS; A 2-values for mixtures of these samples given in Ref. 7V; CLS; A2-vatues for mixtures of these samples given in Ref. CLS; B, (bar cm 6 /g 2 ) M J i D ;SE;£;(barcm 6 /g 2 ) CLS
516 516 585 250 610 407 407 522 997
935
484 484 484
484
484
407 407 998
CLS 8V; OS
845 584
7.70 (mean)
19V; CLS
819
5.9-5.2 2.64-4.80 A 2 = 3.89 x 10" 2 M - 0 3 8 1.00-1.28 1.56-1.92 1.70-2.28
4V; OS 7V; CLS
584 588
4V; CLS 3V; CLS 3V; CLS
517 517 517
TABLE 16. Polymer
cont'd Solvent Diethyl succinate
Poly(styrene)
Toluene Benzene
T (0C)
M ( x 10 ~3) (g/mol)
60-16
1970
0.589 to - 0.026
8V; CLS
896 762 684 1800-192 1330-7100 2700
0.819 to-0.001 0.900 to -0.013 0.830 to - 0.046 2.18-4.37 3.6-3.3 3.4
0.207-3100 150 35.6-1750 16700 12500-19200
54-3.1 3.95 7.24-2.22 2.23 1.52-1.12
8V; CLS 8V; CLS 8V; CLS 9V; CLS 4V; CLS; A2M; (cm Vg) CLSM 2 M; (cm 3 /g)M 3 given in Ref. 9V; CLS CLS; M z /M w = 1.01-1.55 CLS; A2M; (cmVg) 4V; CLSM 2 =2.9 x
30 20
20 25
A 2 ( x 104) (mol cm Vg2)
Remarks
Refs. 517
517 514 514 801 804 833 805 807
IO-3M;059
8760-56800 30 25
Bromobenzene Butanone 2-Butanone
Carbon tetrachloride
Chloroform Cyclohexane
1.82-1.09 A2 = 1.05 x 10~2 M ; 0 2 7 6 3.56, 3.30 11.3 8.80 5.78 4.72 3.33 2.85 2.29 1.80 1.49 1.38 6.38-2.15 0.0127 0.58 6.90 1.80 1.53 1.46
589 10.3 19.8 97.9 200 845 1380 3150 8560 14500 20100 20 35.5-1750 20 150 25 25 50 233 670 1800 mixtures 18007670; wa =0.15-0.85 1.390-1.496 18007233; w fl =0.20-0.63 1.540-1.740 1800750; wa =0.13-0.91 0.63-1.36 30 233-5840 A 2 =4.37 x 10" 3 M; 0 2 7 7 20 150 3.58 17.5-1800 2.23-7.69 24 2880 2.58 25 35 6.47 45 5.73 61 5.57 186 4.83 422 3.52 775 2.08 25 6.56 15 0.37-40 - 2.75 to 10 20 - 2.00 to 13 25 -1.20 to 15 30 - 0.45 to 18 34.5 (0) 0.03-21 20.7-3150 0-0.1 40 0.37-40 0.40-22 44.5 45
Cyclopentane
50 23
l,4Dioxane
20
233-5840
160 260 400 150
A2 = 6.30 x 10" 4 M~° 173 0.77-24 1.10-26 28 23 20 2.75
6V; CLS CLS CLS CLS; A 3 given in Ref.
808 1038 818 922
Mz/Mw = 1.01-1.55 CLS CLSM 2 M; (cm Vg) CLS CLS CLS CLS
833 804 806 926
6V; CLS 4V; CLS 6V; CLS CLS; M w /M n = 1.04-1.16 CLS 5V; CLS; Mw/Mn = 1.04-1.30 CLS CLS
926
CLS 1IV; CLS; Mw/Mn given in Ref. 1IV; CLS; Mw/Mn given in Ref. 1IV; CLS; Mw/Mn given in Ref. 1IV; CLS; Mw/Mn given in Ref. 14V; CLS; Mw/Mn given in Ref. 6V; A3 given in Ref. 11V; CLS; M w /M n given in Ref. CLS;MW/Mn = 1.04-1.16 11V; CLS; M»/Mn given in Ref. 1IV; CLS; Mw/Mn given in Ref. CLS; Mw/Mn given in Ref.
CLS
995 804 934 991 927
804 920
923 920 995 920
924
804
References page VII -198
TABLE 16. cont'd Polymer
Solvent Decalin (trans)
Dimethylformamide Dioctylphtalate Ethylbenzene Methyl acetate
1-Phenyldecane
Tetrahydrofuran
Tetrahydrofuran/15 vol% Poly(dimethylsiloxane) Toluene
T (0C)
M ( x 10 ~3) (g/mol)
20 25 30 35 40 25 12 (6) 22 20 25 30 43 55 70 100 114 125 21.6 27.0 31.3 35.0 41.3 25
390
30 25
390
90-20000 25.75±1.10 32.09 ± 1.28 25.75 db 1.10
- 17.1 ±9.1 2.27 2.18 1.82 2.32 1.75 1.48 1.37 0.0127 3.5-21.7 7.3 450 510 540 0 (approx.)
95.4 9700 22300 2960 10800-22200
10 159 336 2.24 1.90-1.28
50-20000
5.94-1.4
30
1810 125-2960 1290 2580 6120 11100 15900 586 6,7-533
2.14 3.29 2.35 1.99 1.64 I.34 1.21 3.05 3.04-74
20
233-5840 107 ± 5
A2 = 1.58 x 10~2 M" 0 2 8 6 4.8 ±0.1
25
Toluene 30
Xylene
179.3
-0.06 0.25 0.58 0.85 1.11 1.9 0 -0.036 3.10-8.41 A2 = (0.011 ±0.005) M-°21±om - 0.235 0 0.22 0.39 0.21 0 -0.35 -3.22 - 0.83 1.54 2.04 3.97 1.41-5.91 10.52±0.20 9.07 db 0.15 A2 = (0.0194±0.004) M~°286±002 ~ 14.7 ± 3.9
32.09± 1.28 622-4400 12300 23400 24400 29700 35600 40200 150 1.2-424 21.6 160 260 400 20.5
12 20
23
Toluene
704 5000 2050 50-1800
A 2 ( x 104) (mol cm 3 /g 2 )
Remarks
Refs.
CLS CLS CLS CLS CLS CLS Extrapolated value CLS; M^fMn < 1.30 5V; CLS; M w /M n = 1.06-1.30 CLS; 0.1106<Mw <8.48 x 106 DLS; M^1/Mn = 1.07 DLS DLS DLS DLS DLS DLS CLS
815 815 815 815 815 938 930 921 934 929 811 811 811 811 811 811 811 813
9V; CLS; Mw/Mn = 1.04-1.20 LALLS; MW/Mn = 1.03 LALLS; Mw/Mn = 1.02 CLS; 0.1106 <M W < 8.48 x 106 LALLS; MW/Mn = 1.03
992 1031 929 1031
LALLS; M w /M n = 1.02 CLS CLS
841 810
CLS 8V; CLS SANS CLS; Mw/Mn given in Ref.
804 993 993 924
CLS; microgel containing; see Ref.
802
CLS; Mw/Mn = 1.05 9V; CLS; A2 =4.79 x 10" 3
803 807
1IV; CLS; MW/MR = 1.06-1.30 values for A 3 given in Ref. CLS CLS CLS
814
CLS 10V; OS; Mw/Mn given in Ref. A 2 = 0.964 M ~° 5 - 4.36 x 10- 3 CLS; Mw/Mn = 1.04-1.16 CLS
818 925
812 847 809
995 1032
TABLE 16. cont'd Polymer linear cyclic linear
Solvent Tetrahydrofuran Xylene Toluene (deuterated > 99%)
T (0C)
M ( x 10~3) (g/mol)
25
10.5-182 11.1-181.5 120±5 132
4.62-11.0 4.37-9.33 7.0±l 9.1
143 163 196 215 127 143 163 184 194 10-390
9.2 7.7 6.8 8.0 7.8 7.7 7.1 6.6 7.0 3.9-24.4 1.48-19.5 - 0.368 to 0.446 3.87-31.7 1.69-14.8 - 1.27 to 2.0 -1.17 to 0.932 -1.93 to 0.599 -2.82 to 0.631
24 22 ± 5
cyclic
linear
cyclic
Mixtures A/B mass%B:0-l Mixtures C/B mass%B:0-l Mixtures D/B mass% B: 0- I NBS 705 standard
NBS 1479 standard Toyo Soda 550 Toyo Soda 2000 IUPAC-sample lUPAC-sample IUPAC-sample
Toluene Methyl ethylketone Cyclohexane Toluene Methyl ethylketone Cyclohexane
Toluene
/ra/w-Decalin
Toluene Toluene Toluene Toluene
30-40 25-40
21
20 30 40 -
branched linear branched linear
110 15-227 40 105 132 227 36(A) 1600 (B) 4.9 (C) 1600 (B) 2.3 (D) 1600 (B) 179.3
179 50 5500 20000 79 233 630 3.38 ± 0.08 170 ' 257
25 atactic 40 60 Benzene/ethanol 80/20 70/30 Benzene/heptane Heptane 0-56 vol.%
Benzene/hexane 50/50 40/60 30/70
109-5000 3200-62 680 4000
A2 (x 104) (mol cm 3 /g 2 )
Remarks
Refs.
4V; CLS; Mw/Mn = 1.08-1.19 4V; CLS; MW/Mn = 1.08-1.20 SANS SANS
996 937 931
SANS
931
8V; CLS 7V; CLS 3V; CLS 11V; CLS 11V; CLS 4V; CLS 4V; CLS 4V; CLS 4V; CLS 4V
932
851
8V
851
7V
851
CLS; MJMn = 1.07
830
932
9.3-2.6 20.0-2.6 25-2.6 - 0.036 0.593 117 6.00 4.00 2.09 1.61 6.2 5.0 5.1 23 ± 3 4.9 5.7 3.3 5.4 3.83 (approx.) 2.9-6.0 4.9 x l O " 4 3.2 2.30
25 60 25 60
1750
1.75 1.55 0 1.1
35.0±0.2
23.4-2370
3.06-0
25 60 25 60 60
1750
1.0 0.9 0 0.65 0
CLS; Mw/Mn = 1.05 1019,1020 CLS; Mw/Mn -1.1 CLS; Mw/Mn = 1.2 CLS; M W /M n = 1.3 OS Il OS 11 OS 11 M from isothermal distillation 463 CLS 312 312 312 312 8V; CLS 56 5V; CLS 454 M v ; (cm4/g) 562 CLS 172 56 CLS
56 56 56 56
9V; CLS; A2-values corrected for preferential adsorption given in Ref.
440
56 56 56 56 56
References page VII -198
TABLE 16. cont'd Polymer
T (0C)
Solvent
Benzene/isopropanol Isopropanol 0-39 voi.% 35.0±0.2 n-Butyl acetate 5 30 55 Carbon tetrachloride 25 Chlorobenzene 25 30 Chloroform 20 Chloroform/methanol 100/0 25 90/10 80/20 Chloroform 30
M ( x 10 3 ) (g/mol)
/1 2 ( x 104) (raol cm3 /g 2 )
3.06-0 1.88 2.08 2.00 2.6 5.41 3.77 8.0-6.6
8V; CLS OS
440 585
CLS OS OS 4V; CLS
294 404 585 176
330
CLS
176
100
7.5 5.4 1.9 5.4-5.1
5V; CLSM2,s, A2lH given in Ref. 2V; CLS OS; A2 M/(cm3/g); see Ref. for various extrapolation methods 3V; OS CLS
528
CLS
967
9V; CLS; A2M; (cm3/g); Mn given in Ref. 6V; CLS; (J cm 3 /g 2 ) 5V; CLS 4V; OS 4V 4V 3V; OS 5V; CLS 3V; CLS 3V;CLS 5V; CLS; /I2M; (cm3/g) 5V; CLS; A2M; (cm3/g) CLS
133 105 166 106 106 106 497 329 334 172 133 133 454
3V; CLS; p dependence in Ref. 3V; CLS; p dependence in Ref. 3V; CLS; p dependence m Ref. 7V; CLS CLS
528 528 528 503 967
l-Chloro-4-methylbenzene l-Chloronaphthalene
RT 130
410-1050 34.5 (approx.)
2.4 (approx.) 1.33 x 102 (approx.)
isotactic atactic
-Dichlorobenzene n-Butylchloride
RT 15
4-terf-Butyltoluene
50
196-264 360 739 1270 3920 5.37 20.2 364 743 1280 3950 406
2.9-1.9 2.48 2.00 1.81 1.35 5.12 4.18 2.03 1.74 1.55 1.17 ~ 6.0 to 9.0
68.7 1610 50-203
- 0.410 to 0.226 - 0.37 to 0.258 - 0.276 to ~ 0.445 0.634-0.445 1.33-0.901 -0.061 to 0.071 -0.153 to 0.538 0-0.54 0-0.88 -131 to 23.1 -16.3 to 22.7 0.07 0 0.5 0.4-0.25 0.79-0.87 1.11-1.19 0.95-1.29 0.320 0.304 0.321 0.526 0.537 0.509 2.50 1.62 1.20 0.764 0.738 0.674 0.887 0.854 0.797
Cyclohexane
Cyclohexane
27.96-43.99 23-45 27-41.5 30 40 50 34.2 35.5-55 35-55 31.94-43.99 29.92-44.03 28 33 50 40 45 50 50 40
45
50
55
Refs.
2340-4170 411 404 402 920 98.4 388 372-2800
isotactic
1-Chloro-n-undecane
Remarks
78-210 See Ref. 3200 4000 406 500
100
513-45.9 370 744 1270 370 743 1280 5.48 10.3 20.5 370 746 1280 370 746 1280
328 523
328 967
TABLE 16. cont'd Polymer
Solvent Cyclohexane
T (0C) 34.5(6)
Decalin
atactic
Dichloroethane
25 30 40 22 25 35 67
Dichloroethane/cyclohexane 65/35 22 67 35/65 22 67 6/94 22 67 Dioxane 25 34.2 Dioxane/heptane Heptane 0-58.5 vol.% Ethyl acetate Ethylbenzene Hexyl-m-xylene atactic
IUPAC-sample
Poly(isobutene)/ cyclohexane
35 ±0.2 25 16 20 25-40
Butanone Toluene
30 35 40 7.5-45 15
Toluene
15
RT 20 22 25
M ( x 10 ~3) (g/mol) 0.162 0.266 0.370 1.23 2.27 5.38 10.1 20.6 500 1800
3-17 3 439-5360 16 1610
>4 2 ( x 104) (mol cm 3 /g 2 ) 100 43 33 4.10 1.33 0.41 0.28 0.10 0.8xl0~ 4 0.19 to - 0.01 0.40-0.20 0.72-0.45 7-2.54 6.8 See Ref. 2.7
Remarks
Refs.
CLS; Mw/Mn = LOO CLS; M^fMn = LOO CLS; Mw/Mn = 1.00 CLS; Mw/Mn = 1.03 CLS; M w /M n = 1.05 CLS; MW/Mn = 1.03 CLS; Afw/Mn = 1.03 CLS; M w /M n = 1.02 Mv; (cm4/g) 4V; CLS; p dependence in Ref. 5V; CLS; p dependence in Ref. 5V; CLS; p dependence in Ref. 6V; CLS CLS 11V; CLS CLS
968
562 528 528 528 166 166 564 166
CLS
900-920 97.3 77.6-196
3.98 3.32 2.76 2.70 0.78 1.27 2.9-2.8 3.08 5.11-4.48
2V; CLS OS; A3 given in Ref. 3V; OS
166 166 166 166 166 166 294 404 497
2240-2630 243 680 570-6000 14.9-39.8 84.2
2.51-0 0.7 4.7 x 10~4 0 0.2-0.05 3.59
9V; CLS OS M v ; (cm4/g) 3V; CLS; SAXS 2V; CLS; SAXS 5V; CLS
440 196 562 492 492 599
38.8
1.81 0.93 0.46 0.586 12.2 8.80 4.36 3.72 3.12 2.81 2.07 44 43 37 25 17 14.6 12.2 8.80 6.45 4.36 3.72 3.12 2.81 2.07 1.29 2.2-0.72 4.3-0.86 3.5-1.05 1.2-1.0
CLS; (J cm 3 /g 2 ) CLS
599 599 599 105 967
68.7 5.37 20.0 191 357 723 1290 3940 0.578 0.680 0.904 1.23 2.27 3.48 5.38 20.0 39.4 191 357 723 1290 3940 1030 115-2800 2-1770 3.2-980 245-540
CLS; Mw/AZn = 100 CLS; Mw/Mn = 1.00 CLS; M*/Mn = 1.01 CLS; Mw/Mn = 1.03 CLS; A/W/Mn = 1.05 CLS; M w /M n = 1.07 CLS; Mw/Mn = 1.03 CLS; Mw/Mn = 1.02 CLS
968
CLS 8V; CLS 9V; CLS 8V; CLS 2V; OS
253 176 166 166 196
References page VII -198
TABLE 16. cont'd Polymer
branched
Solvent
T (0C)
M ( x 1 0 ~ 3 ) (g/mol)
35 67
96.3-785 170-257 900 45.1-6350 517-980
166-5.3 1.9 1.3 See Ref. 0.89-0.81
16.3-17.4
(0.2 t o - 0 . 3 ) 0 8.32-2.105
Butanone/isopropyl alcohol 87/13 22 67 Tetrahydrofuran 30
24.4-5700
Tetralin Toluene Cyclohexane
680 54-4400 980-14300
25 12 34.5 44.5 30
Toluene star branched comb branched
15 20 25
comb branched
Toluene 30
384 1870 2320 3880 1800 5.85-125 1800 209-3920 680 99-952 237 72-1800 100 373 13.3 418-37.6 30.9-612 155-710
4.OxIO" 4 30-792 -0.08-0.03 0.02-0.18 0.38-2.12 115 380 404 520 2.24-2.39 (approx.) 9.4-4.5 2.27-2.41 4.20-1.84 5.0xl0"4 6.5-3.5 1.23 (11-7.0) xlO 3 4.6
Remarks
Refs.
5V; OS 2V;CLS;OS CLS 13V; CLS 3V; CLS
176 312 294 564 166
2V; CLS 2V; CLS 6V; CLS; A2M^A2,s given in Ref. M v ; (cm4/g) 8V; CLSM 2 M; (cm Vg) 5V; CLS; Afw/M11 = 1.03-1.24 5V; CLS; Mw/Mn = 1.03-1.24 5V; CLS; Mw/Mn = 1.03-1.24 CLS; A2M; (cm3/g) CLSM 2 M, (cm Vg) CLS; A2M; (cm Vg) CLS;A 2 M; (cmVg) 5V; CLS 5V; SAXS 5V; CLS 4V; CLS M v ;(cm 4 /g) 7V; CLS; OS See Ref.; (J cm Vg2) 10V; CLS; (cm4/g) 5V; CLS; A2.H; A2.s given in Ref. OS OS 7V; OS A2M, (cmVg) 4V; CLS OS OS OS 5V; OSM 2 M; (cm Vg) 3V; OS 16V; CLS 8V; OS 3V; CLS 2V; CLS M v ; CLS; A 2M; (cm Vg)
166 166 481
56-452 77.8-196 33.1-6460 366-50.9 209-1600 1610 980
3.45 4.49 4.54-5.88 7.4IxIO-3M075 4.17-1.56 A2=kM~022 = 4.6 x 1 0 - 3 M - 0 2 2 = 2.1 x 10~3 M~016 29-145 (5.43-4.46) x 10 " 4 See Ref. 5.5-6.9 4.28-2.46 3.12-2.43 20.4 x [(479/T)- 1]
20 25
50000 48000 35000 29000 20000 100
0.058 0.061 0.059 0.062 0.054 2.7
10
350
0.08-34.2
9V; CLS; Mw/Mn«
Xylene + 2% methanol
20 30 24
110 ± 10
0.3-43.2 0.3-64.8 3.7 ± 1
9V;CLS;M W /M n «1.2 9V; CLS; Mw/Mn »1.2 SANS; sulfonation level 1.39 mol%
Dimethylformamide
25
538
0.0051
30.27 34.2 35 37 40 22-67 28-67 Poly(styrene)-fc-(Polyethylene/Polypropylene) 4-Methyl-2-pentanone/ 2-Chlorobutane (mixtures) 100%/0% 90%/10% 80%/20% 70%/30% 60%/40% 50%/50% Poly(styrenesulfonate) sodium salt; degree of NaNO3-solutions; ionic sulfonation = 0.84 strength 0.005-2.0
Poly(styrene)/Poly(acrylonitrile) mass ratio 3:1
A 2 ( X 1 0 4 ) (mol c m 3 / g 2 )
25
CLS; micelles
562 548 994
548 548 548 548 528 492 528 492 562 176 56 245 585 585 467 503 169 290 317 319 319 327 497 564 584 121 166 308,310
1033
CLS; unassociated
CLS
1.2
936
937
938
TABLE 16. cont'd Polymer
Solvent
Poly(styrene)(PST)/Poly(/?-chlorostyrene) mixtures, mass frac. PST i.000 Butanone 0.786 0.593 0.434 0.272 0.133 0.000 1.000 Cumene 0.786 0.593 0.434 0.272 0.133 0.000 1.000 Toluene 0.786 0.593 0.434 0.272 0.133 0.000 block-copolymei mass frac. PST 0.650 Butanone 0.467 0.372 0.655 0.509 0.311 0.650 Cumene 0.467 0.372 0.655 0.509 0.311 0.650 Toluene 0.467 0.372 0.655 0.509 0.311 Poly(styrene)/poly Toluene (isobutylene)
T( 0 C)
M ( x 10~3) (g/mol)
30
341 330 341 330 341 330
1.15 1.51 1.70 1.78 1.76 1.82 1.72 2.90 2.38 1.92 1.39 0.84 0.37 - 0.20 3.73 3.41 2.99 2.64 2.30 1.75 1.20
OS
969
OS
969
OS
969
379 325 368 374 356 299 379 325 368 374 356 299 379 325 368 374 356 299 194-2400 (PS)
1.68 1.78 1.75 1.68 1.82 1.85 2.19 1.65 1.37 2.27 1.85 1.52 3.02 2.62 2.23 3.00 2.73 2.14 - 9.80 to 8.36
OS
969
OS
969
OS
969
16V; CLS; concentration and angle dependence given in Ref.
817
Micelles; Mw =47.6 x 10 " 6 g/mol Micelles; Mw = 18.2 x Micelles; Mw = 42.2 x Micelles; Mw = 43.0 x Micelles; Mw = 43.5 x
933
55
30
30
55
30
21
A2 ( x 104) (mol cm 3 /g 2 )
Remarks
Refs.
156-2440 (PIB) Poly(styrene)-/?/odr-Poly(ethylene/propylene) 35±3mass%PS Methyl ethylketone Methyl propylketone Methyl isobutylketone Diethylketone 5-Methyl-2-hexanone Poly(styrene-o?-maleic anhydride)/poly(ethyl acrylate) A B graft copolymer A B 56.5/43.5 Acetone 77/23 0/100 Poly(styrene-a?-/?-methoxystyrene) random mol% p-methoxystyrene Toluene 53.8
25
105
420 310 680 960 780
25
53.4 71.2 350
2.IxIO" 4 2.IxIO" 4 5.7 XlO" 4
25
71-350 35.5-701
5.0-3.0 4.1-3.2
10 ~6 g/mol 10 " 6 g/mol 10 ~6 g/mol 10 ~6 g/mol
OS; (cm4/g)
489
7V; OS 12V; OS
617 617
References page VII-198
Next Page
TABLE 16. cont'd Polymer
Solvent
T (0C)
M ( x 1 0 ~ 3 ) (g/mol)
75.6 26.4
44-421 61-665
53.0
66-1783
75.6
79-1717
A 2 ( X 1 0 4 ) (mol c m 3 / g 2 ) 5.9-3.5 5.34-4.29 A 2 =2.0 XlO- 3 A*- 0 1 1 5 5.46-3.41 A2 - 2 . 4 x l O " 3 M~ 0135 4.54-3.00 A2=2.3xl0-3M-0145
Remarks
Refs.
8V; OS 9V; CLS
617 617
11V; CLS
617
8V; CLS
617
See Ref. OS See Ref. CLS
515 515
Poly(styrene-co-methyl acrylate) Dimethylformamide Butanone Poly(styrene-c-methyl methacrylate) approx. 50/50 Carbon tetrachloride Dioxane random, mol% St. 29.3 2-Ethoxyethanol 56.2 (Cyclohexanol) 70.2 block copolymer mol%St. 27 1,4-Dioxane 33 46 56 100 mol% St. 49.6 2-Ethoxyethanol (Cyclohexanol) 73.2 85.1 100 mass%St. 38 Benzene
20 20 25 40.0 (68.0) 58.4 (61.3) 72.8(63.0)
81.0 81.3 84.0 84.0 81.8 30
1330-1900 1330-1900 354 350 342
2.3-2.4 3.8-3.6 0 0 0
2V; CLS 2V; CLS OS
294 294 443
CLS
816
317 317 392 193 206 1530
OS
443
CLS
818
49-2270 970
11.0 9.98 11.8 10.9 7.37 0 0 0 0 0 1.48 1.25 1.65 4.92 3.2-1.45 1.55
11V; CLS
1330-1900
1.5-1.2
294 294 507 294 507
4800 4440 4200 3770
0.021 0.042 0.075 0.127
Toluene fractionated unfractionated
Butanone
69 25
Isoamyl acetate Nitroethane Toluene Poly(styrene)-6/ocfc-(hydrogenated Polybutadiene)-&/0cfc-Poly(styrene) 1,4-Dioxane/n-heptane Ai-Heptane 0 vol% 25 n-Heptane 10 vol% ^-Heptane 20 vol% n-Heptane 30 vol% a
See Ref. 2V; CLS See Ref.
CLS, micelles
1018
w = mass fraction of component *.
TABLE 17. Polymer
(O, O-HETEROCHAIN POLYMERS (POLY(ETHERS), POLY(ESTERS), POLY(CARBONATES)) Solvent
Poly (carbonate) see Poly(oxycarbonyloxy ) Poly(3,3'-dimethyl oxetane) Cyclohexane
J( 0 C)
M ( x 10~3) (g/mol)
25
18.5
0.159
37.0 52.0 55.0 67.5 130
0.162 0.156 0.154 0.148 0.155
2100-343
2.3-1.8
Polyethylene terephthalate) see Poly(oxyethyleneoxyterephthaloyl) Poly(formaldehyde) see Poly(oxymethylene) Poly(oxybutene) Butanone 30
A2 ( x 104) (mol cm 3 /g 2 )
Remarks
Refs.
OS
976
6V; CLS
598
Previous Page
TABLE 16. cont'd Polymer
Solvent
T (0C)
M ( x 1 0 ~ 3 ) (g/mol)
75.6 26.4
44-421 61-665
53.0
66-1783
75.6
79-1717
A 2 ( X 1 0 4 ) (mol c m 3 / g 2 ) 5.9-3.5 5.34-4.29 A 2 =2.0 XlO- 3 A*- 0 1 1 5 5.46-3.41 A2 - 2 . 4 x l O " 3 M~ 0135 4.54-3.00 A2=2.3xl0-3M-0145
Remarks
Refs.
8V; OS 9V; CLS
617 617
11V; CLS
617
8V; CLS
617
See Ref. OS See Ref. CLS
515 515
Poly(styrene-co-methyl acrylate) Dimethylformamide Butanone Poly(styrene-c-methyl methacrylate) approx. 50/50 Carbon tetrachloride Dioxane random, mol% St. 29.3 2-Ethoxyethanol 56.2 (Cyclohexanol) 70.2 block copolymer mol%St. 27 1,4-Dioxane 33 46 56 100 mol% St. 49.6 2-Ethoxyethanol (Cyclohexanol) 73.2 85.1 100 mass%St. 38 Benzene
20 20 25 40.0 (68.0) 58.4 (61.3) 72.8(63.0)
81.0 81.3 84.0 84.0 81.8 30
1330-1900 1330-1900 354 350 342
2.3-2.4 3.8-3.6 0 0 0
2V; CLS 2V; CLS OS
294 294 443
CLS
816
317 317 392 193 206 1530
OS
443
CLS
818
49-2270 970
11.0 9.98 11.8 10.9 7.37 0 0 0 0 0 1.48 1.25 1.65 4.92 3.2-1.45 1.55
11V; CLS
1330-1900
1.5-1.2
294 294 507 294 507
4800 4440 4200 3770
0.021 0.042 0.075 0.127
Toluene fractionated unfractionated
Butanone
69 25
Isoamyl acetate Nitroethane Toluene Poly(styrene)-6/ocfc-(hydrogenated Polybutadiene)-&/0cfc-Poly(styrene) 1,4-Dioxane/n-heptane Ai-Heptane 0 vol% 25 n-Heptane 10 vol% ^-Heptane 20 vol% n-Heptane 30 vol% a
See Ref. 2V; CLS See Ref.
CLS, micelles
1018
w = mass fraction of component *.
TABLE 17. Polymer
(O, O-HETEROCHAIN POLYMERS (POLY(ETHERS), POLY(ESTERS), POLY(CARBONATES)) Solvent
Poly (carbonate) see Poly(oxycarbonyloxy ) Poly(3,3'-dimethyl oxetane) Cyclohexane
J( 0 C)
M ( x 10~3) (g/mol)
25
18.5
0.159
37.0 52.0 55.0 67.5 130
0.162 0.156 0.154 0.148 0.155
2100-343
2.3-1.8
Polyethylene terephthalate) see Poly(oxyethyleneoxyterephthaloyl) Poly(formaldehyde) see Poly(oxymethylene) Poly(oxybutene) Butanone 30
A2 ( x 104) (mol cm 3 /g 2 )
Remarks
Refs.
OS
976
6V; CLS
598
TABLE 17. cont'd Polymer
Solvent
T (0C)
Poly(oxycarbonyloxy-1,4-phenyleneisopropylidene-l ,4-phenylene) Chloroform 25
Cyclohexanone Dioxane Dioxane/cyclohexanone Ethylene chloride Ethylene dichloride
30 25
20 25 30
Methylene chloride
Tetrahydrofuran
Poly(oxyethylene)
Benzene
27 20 25 27 25
Dimethylformamide Methanoi
25-120 25
Methanoi
25
Water
5 20 25
40
Water (D2O)
25
Poly(oxyethylene)/Poly(oxypropylene) copolymer star structure molar fraction oxyethylene Water 25 0.724-0.866
M ( x 10~3) (g/moi)
A 2 ( x 104) (mol an 3 /g 2 )
76.9-28.5 10.2-463
11.9-14.4 24-8.91
88-37.3 76.9-31.6 76.9-28.5 76.9-31.6 56.4-97.7 359 146-401 76.9-28.5 61-122 23-182 8-266 76.9-31.6 59.2-469 23-92 7.70 3.79 3.79 3.5 (approx.) 7.70 3.79 0.316-6.75 See Ref. 0.062-37.3
12.5-18.0 8.8-10.1 10.9-12.4 0 10.6-12.7 11.0-9.0 7.43 7.83-5.75 12.1-14.4 3.6-2.5 3.9-2.9 4-1.29 11.0-13.0 8.7-5.23 2.5-1.7 27.4 78 30 37-47 66.0 56.0 18.0-16.4 170-34.8 1220-46
1-31 1-10 4-23 3-48 68.5 < M W < 852 40 74 145 594 1200 6.95 35.7 1.59 2.88 10.9-800 10.1 6.95 20.5 35.7 177 300 1190 6.95 20.5 35.7 20 ± 2
102.5-39 84.5-47.5 87-46 48-27.5 A2 =0.0329 M ; 0 2 8 ± 0 0 6 29.5 28.3 23.9 18.7 17.6 0.465 0.318 0.2963 0.2611 116-30.4 62 0.289 0.243 0.232 12.17 9.25 1.36 0.267 0.196 0.195 24 ± 2
18 ± 2
16 ± 2
19
13 ± 2
30.1-36
0.06-0.215
Remarks
Refs.
6V; OS 14V; CLS; two different wavelengths Mw /AZn given in Ref. 6V; OS 5V; OS 5V; OS 4V; OS 5V; OS 3V; OS; Mn given CLS 4V; OS; Mn given 4V; OS 2V; CLS; (J cm 3 /g 2 ) 6V; OS; (J cm 3 /g 2 ) 6V; M5j>\ (J cm 3 /g 2 ) 5V; OS 7V; CLS 6V; OS; (J cm 3 /g 2 ) CLS; B; (bar cm 6 /g 2 ) OS; B, (bar cm 6 /g 2 ) OS; B, (bar cm 6 /g 2 ) 4V; OS; B\ (bar cm 6 /g 2 ) OS; B; (bar cm 6 /g 2 ) OS; B\ (bar cm 6 /g 2 ) 3V; OS 3V; CLS CLS; B, (bar cm 6 /g 2 ); data for seven solvents and for OS; SE given in Ref. 11V; CLS; B, (bar cm 6 /g 2 ) 4V;CLS;£;(barcm 6 /g 2 ) 3V; CLS; B\ (bar cm 6 /g 2 ) 2V; CLS; B\ (bar cm 6 /g 2 ) CLS CLS; Mw/Mn = 1.03 CLS; M^fMn = 1.02 CLS; Mw/Mn = 1.04 CLS; Afw/Afn = U 0 CLS; Afw/Afn = 1-12 LALLS; MW/Mn = 1.04 LALLS; M w /M n = 1.04 CLS CLS 5V; B, (bar cm 6 /g 2 ) CLS; B, (bar cm 6 /g 2 ) LALLS; Afw/M n = 1.04 LALLS; M^/Mn = 1.03 LALLS; M^fMn = 1.04 CLS; MW/Mn = 1.04 CLS; M*/Mn = 1.05 CLS; Mw/Mn = 1.12 LALLS; Mw/Mn = 1.04 LALLS; Mw/Mn = 1.03 LALLS; Afw/Mn = 1-04 SANS; p = 0 MPa; Mw/ Mn < 1.1 SANS; p =100 MPa; Mw/Mn < 1.1 SANS; p = 200 MPa; Mw/ATn
496 850
4V; CLS
496 496 496 496 496 850 850 850 496 45 45 45 496 850 45 407 407 407 188 407 407 518 423 423
192 193 184 185 907 1003
975 965 189 184 975
1002
975
1001
986
References page VII -198
TABLE 17. cont'd Polymer
Solvent
25
107-18.1
14-25.5 40 (approx.)
25
39
26
50 25
74-26.2 12.2
15 (approx.) 19
25 25
33 17.2
25 25 25 70
8V; OS Different types of osmometers used; see Ref. Different types of osmometers used; see Ref. 4V; OS OS
526
542
39 ±1.8 53
CLS OS
911 542
11.3
35
OS
542
(5.6-2.0) x 10~3 56-25 32 35 av. 31-28 32-31 See Ref.
25
10.6
47
5V; CLS, see Ref. 5V; CLS OS 5V; OS 3V; OS 2V OS; (cm3/mol); CLSmeasurements also given in Ref. OS
430 236 510
110
23-170 23-185 41 86.5-27 35-58 46-66.5 34-56
25
46 20 48-85 50-89 46 30
0.067 0.125 0.45-3.85 783-901 0.535-3.31 901 783 34.2-4410 34.6-1030
-90 0 15.2 (approx.) 0.46-4.50 (10.75-0.95) x 1O~3 0-1.58 -0.25-1.72 3.16-0.523 6.14-2.47
Chloroform
25
14.7
o-Chlorophenol/tetrachloroethylene 60/40 -Chlorophenol/tetrachloroethylene 60/40 2,2,2-trifluoroethanol
25
Dimethyl sulfoxide
fractionated o-Chlorophenol/tetrachloroethylene 60/40 Hexafluoro isopropanol Chloroform o-Chlorophenol/tetrachloroethylene 60/40 Hexafluoroacetone hydrate Hexafluoroacetone /7-Chlorophenol
IH, IH, 5H-Octafluoropentanol-1 -Chlorophenol/tetrachloroethylene 60/40 Acetone
Hexane Methanol Iso-octane
Poly(terephthalic acid-4aminobenzohydrazide)
A 2 ( x 10 4 ) (mol cm 3 /g 2 )
Refs.
unfractionated
Poly(oxytetramethylene), Poly(tetrahydrofuran) Poly(oxytetramethyleneoxyadipoyl Poly(oxytetramethyleneoxyisophthaloyl) Poly(oxytetramethyleneoxyterephthaloyl) Poly(|3-propiolactone)
M ( x 10~3) (g/mol)
Remarks
Poly(oxyethyleneoxyterephthaloyl) fractionated 0-Chlorophenol
Poly(oxyhexamethyleneoxydipoyl) Poly(oxyhexamethyleneoxyterephthaloyl) Poly(oxymethylene) - ; diacetate unfractionated fractionated unfractionate fractionated Poly(oxymethylene-c
T( 0 C)
Hexane Ethyl acetate
402 542
CLS CLS 6V; CLS 5V; CLS 6V; A; A 2 ; (cmVg); see Ref. 9V; CLS 7V; CLS 16V; CLS 10V; CLS
207 413
40
OS
542
12.8
27
OS
542
25
13.4
30
OS
542
30
6.80xl03< M w < 861 x 103
23
3.78
CLS CLS
978 1017
5.67 7.06 9.16 9.79 16.6 28.5 47.1 83.9 155 260
A 2 = (0.025 db0.003) M ; 0 0.787 0.529 0.636 0.572 0.406 0.442 0.594 0.559 0.498 0.171 0.327
I9±001
475
428 470 428
TABLE 18. (N, C)- AND(O, N, O-HETEROCHAIN POLYMERS (POLYAMIDES, POLYUREAS, POLYURETHANES) Polymer PoIyCallylammonium hydrochloride) Poly(l,4-benzamide) Poly((n-butylimino)carbonyl) (Poly(/?-butyl isocyanate))
Poly(dimethyldiallylammonium chloride)
Polyethylene imine) Poly(W-(3-hydroxypropylHglutamine)
Poly(imino-l,4(2-cyanophenylene)iminoterephthaloyl) Poly(imino(2,5-dicarboxyterephthaloyl)imino-l,4phenyleneoxy-1,4-phenylene)
Solvent
T (0C)
M ( x 10 3 ) (g/mol)
Aq. NaCl 0.05-3.0 M Dimethylacetamide, 3% LiCl Chloroform
25
180
2.4-33.7
7V
1028
-
55
3.06
CLS
1007
22
61-10000
25.1
31V; CLS
Toluene
37
23 db 0.5 - 530 db 60
Aq. NaCl LOM (pH = 5.5)
Aq.. NaCl 1M Methanol
Sulfuric acid 96%
A2 {x 104) (mol cm 3 /g 2 )
Remarks
565
7V; OS 21.2 ±2.7 21.3 0.278
37 23±2
23-523 89
35 35
114 281 352 418 473 16.6-5320 366 db 5 - 100 ± 5
25
55 ± 1 4.1-20.8
2.40-4.1 ±0.6 3.3 0.15-1.11
15
22.5-266
(21.1-14.3) x lO" 4
60 25
18 18
183 840
25
31
59.2 t o - 7 . 0
25
31
0
25 25
31 2-52
- 9 . 4 to 36.5 312-10.1
25 25
32 62
1.0-4.0 (approx.) 57.1
37
61-606
20 (approx.) 6.10 6.24 6.49 6.28 6.46 5.97 6.23 20 (approx.)
0.247 0.15 0.122 0.127 0.222 A2 = 0.135 M ; 0 5 3 ± 0 0 2
Refs.
2V; OS CLS
433 433 565 1029
CLS; Mw/Mn = 1.8-2.2 5V; CLS
1030 534 534
CLS 9V; CLS
849
13V; CLS; A2M; (cm3/g); OS
403
OS; B, (bar cm 6 /g 2 ) OS; B; (bar cm 6 /g 2 )
217 217
7V; CLS; B, (bar cm 6 /g 2 )
219
Dimethylacetamide
0.1 M LiBr Poly(iminohexamethyleneiminoadipoyl) (Nylon 66) m-Cresol Formic acid (90%) Formic acid (90%)/KCl 0.2-2.5MKCl Formic acid (90%)/KCi 2.3 M KCl Formic acid/2 M KCl 82.5-40% Acid Formic acid (90%)/2 M KCl Formic acid (75-98%) 0.5 M Sodium formide 2,2,3,3-Tetrafluoropropanol 0.1 M Sodium trifluoroacetate/2,2,3,3tetrafluoropropanol Poly(/7-hexyliminocarbonyl) Toluene Poly(/?-hexyl isocyanate)
Dichloromethane
20
Poly((f?-octylimino)carbonyl)
Toluene
37
111 180 253 342 481 724 1060 68-200
Poly(ureyleneheptamethylene)
Dichloroacetic acid
25 45 73 98 45 73 25-98
28.5 17.5 17.8 13.2 3.1-17.8 2.6-23.5 17.5 (approx.)
0 6.5 38 52 32-6.2 82-8.0 0-52
45
0.5
5
Formic acid 98%/KCl 96/4
219 5V; CLS; B; (bar cm 6 /g 2 ) 20V; CLS; B\ (bar cm 6 /g 2 )
6V; CLS CLS; B, (bar cm 6 /g 2 )
3V; OS; see Ref. for measurements in THF CLS
219 218
405 220,221
565 983
3V; OS; see Ref. for measurements in THF CLS; B; (bar cm 6 /g 2 ) CLS; B, (bar cm 6 /g 2 ) CLS; B, (bar cm 6 /g 2 ) CLS; B\ (bar cm 6 /g 2 ) 6V; CLS; B\ (bar cm 6 /g 2 ) 6V; CLS; B\ (bar cm 6 /g 2 ) 4V; CLS; B; (bar cm 6 /g 2 )
565 400 400 400 400 183 183 183
CLS; B, (bar cm 6 /g 2 )
183
References page VII -198
TABLE 18. cont'd Polymer
T (0C)
Solvent
Poly(ureyleneheptamethylene)
Formic acid 98%/KCl 96/4 Formic acid 85.8-99.5%/ KCI 3.0-10.0% Formic acid 98%/KCl 4%
TABLE 19.
M ( x 10~3) (g/mol)
A 2 ( x 104) (mol cm 3 /g 2 )
Remarks
Refs.
45
3-13.9
104-59
6V; CLS; B; (bar cm 6 /g 2 )
183
73
5.7-12.5
512-30
8V; CLS; B\ (bar cm 6 /g 2 )
400
83 25
19.5-26.3 10.6
83-0.0 -190
6V; CLS; B; (bar cm 6 /g 2 ) CLS; B, (bar cm 6 /g 2 )
400 400
T (0C)
M ( x 10 3 ) (g/mol) 1720-33 1140-23 60.6-351 60.6-351 19.3
0.26-2.42 0.28-2.10 7.75-5.81 2.11-1.46 0.2047
21.5 27.3 33.4 47.3
0.1808 0.1750 0.1634 0.1651
OTHER SYNTHETIC POLYMERS
Polymer
Solvent
Poly(acenaphthylene)
Toluene
25
Poly(terf-butyl crotonate)
n-Butylchloride Ethylacetate Chloroform
25 25 25
Poly(trimethylene sulfide)
A 2 ( x 104) (mol cm 3 /g 2 )
Remarks 17V; CLS 17V; OS 4V; CLS 4V; CLS OS
Refs. 458 838 838 1027
TABLE 20. INORGANIC POLYMERS Polymer
Solvent
T (0C)
Af ( x 1 0 ~ 3 ) (g/mol)
A 2 ( X 1 0 4 ) (mol c m 3 / g 2 )
18 25
0.758 3.98 1.67 1.27 0.655 0.576 0.76 A2 =0.0019 M~°19 1.3
CLS
982
CLS; Mw/Mn given CLS CLS
953 955 954
CLS; MJMn given
956
8V; CLS 9V; CLS 6V; CLS
836 836 836
9V; CLS 8V; CLS 7V; CLS 8V; CLS 8V; CLS 8V; CLS 1OV; CLS 6V; CLS
216
Poly(dihexoxyphosphazene)
Tetrahydrofuran
Poly(di-AMiexylsilane)
Hexane Tetrahydrofuran Tetrahydrofuran
32 20 20
2340 26.3 245 917 2280 2260 6200 100-10000 229
Toluene
-
3.6
10.3
7.2 25.5 79.2 282 625 1.89-30.1 1.98-21.8 0.93 3.03 10.6-32.6 80 340 1060 33 85 340 780 1060 15400 14000 5800
8.6 6.3 4.4 3.6 3.0 13.6-8.04 13.0-6.76 8.42 2.62 0 - 2.025 to 1.750 - 0.587 to 0.890 -0.272 to 0.772 - 1 . 3 to 2.260 - 0.782 to 2.012 - 0.136 to 1329 - 0.257 to 1.985 -0.190 to 0.985 32 37 36
Poly(ferrocenylsilane) symmetrically substituted Poly(oxydimethylsilylene) (Poly(dimethyl siloxane))
linear cyclic linear
Toluene
25
Bromocyclohexane
28
Bromobenzene
Bromocyclohexane
59.1-110.8 70-108.3 73.7-111.1 16.7-60.2 18.2-60.2 29.2-60.2 24.1 -90.3 25.5-60.2
Remarks
Refs.
216
437 437 437
TABLE 20. cont'd Polymer
T( 0 C)
Solvent
Bromocyclohexane/ phenetol (6/7)
23.9-88.8 26.8-93.9 31.8-90 20
Chlorobenzene
/7-Dodecane (DOD)/ 20 butanone y? D00 = 0.00-1.00
«-Hexadecane (HED)/ 20 butanone v?HED =0.00-1.00 /i-Undecane (UND)/ 20 butanone v?UND =0.00-1.00
Poly(oxydimethylsilylene) linear
(Poly(dimethyl siloxane)) >?-Hexane (HEX)/ butanone
257
270
1.2
rc-Decane (DEC)/ butanone y?DEC = 0-1
20
Cyclohexane
31.5 80.5 125 150 31.5 80.5 125 150 31.5 80.5 125 150 68 80.5 125 150 45 80 340 1060 23.5
25
20
Acetone
43 38 50 -1.23 to 2.14 -0.536 to 1.490 -0.239 to 1.280 1.88 1.70 0.08-4.32 0.92-4.29 0.09-3.47 0.10-3.08 0.01-2.49 0.00-2.14 0.00-2.09 0.04-6.08 0.12-5.00 0.093-4.65 0.096-4.50
25
/i-Nonane (NON)/ butanone ?N0N = 0 - 1
Toluene
5400 4400 4300 80 340 1060 107 232 68 80.5 125 150 80.5 125 150 31.5 80.5 125 150
100 235 0.66-2.015
20
Styrene
A 2 ( x 10 4 ) (mol cm 3 /g 2 )
0.04-9.55 0.12-7.60 0.093-6.78 0.096-6.47 0.04-8.95 0.12-7.00 0.093-6.36 0.096-6.03 0.04-7.92 0.12-6.38 0.093-5.78 0.096-5.43 0.08-5.35 0.12-5.20 0.09-4.74 0.10-4.64 -2.15 to 3.823 -0.93 to 3.23 -0.54 to 1.796 0.015-1.466 -2.19 -0.96 0 1.37 -0.77 - 0.42 -0.36 - 0.22 - 0.04 0.26 0.59 -1.06 -0.86 0 0.17 0.68 3.53 3.18 25.0-4.05 - 2 . 6 6 to 10.6 1.6
^-Heptane (HEP)/ butanone v?HEP = 0 - 1
Phenetol
Poly(oxymethyl phenylsilylene) (Poly( methylpheny lsiloxane))
20
M ( x 10 3 ) (g/mol)
80.8-122.8 81.7-123.1 79.5-122.8 90-112.8 14 28 35 60 25 28 30 33 35 40 50 25 30 35 (0) 40 50 20
860
130
Remarks
10V; CLS 10V; CLS 8V; CLS OS OS 1IV; CLS 10V; CLS 1IV; CLS
Refs. 437 437 437 216
501 501 957
UV; CLS
9V; CLS
958
9V; CLS; LALLS 9V; CLS; LALLS 10V; LALLS 10V; LALLS 10V; LALLS 10V; LALLS 11V; LALLS 11V; LALLS 11V; LALLS 11V; LALLS 10V; LALLS 10V; LALLS 10V; LALLS 10V; LALLS 11V; LALLS 11V; LALLS 11V; LALLS UV; LALLS 8V; CLS 7V 7V 6V CLS; A3 given
958,963 958,963 963
963
963
963
216
962
CLS; A3 given
CLS
961
OS OS 3V; OS 3V;CLS CLS; Mw/Af „ =1.65
501 501 518 519 959
CLS; Afw/Afn = 1.65
References page VII -198
TABLE 20. cont'd Polymer Poly(phenyl silsesquioxane) Poly(tetramethyl-psilphenylene-siloxane)
Solvent Toluene Toluene
T (0C) 37 25
40 55 25 32.5
M ( x 10 ~3) (g/mol) 488.5-26.4 382
360
A2 (x 10 4 ) (mol cm 3 /g 2 ) 1.123-2.434 0.118
0.118 0.118 0.112 0.113
Remarks 15V; OS OS
Refs. 459 960
OS
960
TABLE 21. POLY(SACCHARIDES) Polymer Amylose acetate Cellulose hydrolized !inters sulfitepulp regenerated
Cellulose acetate Cellulose acetate phthalate acetyl content: 19.5% phthalyl content: 21.4% Cellulose diacetate
Cellulose diacetate
Solvent
T( 0 C)
Cellulose nitrate (13.9% N) (12.9% N) (ca. 13.55% N)
-
148-3110
2.43
Cadmium ethylenediamine
25
Aq. NaOH, 8wt.%
3.5 10 26 35 41 45 25 RT 30
225-945 215 80
16.1 (approx.) 12.1 4.79 3.75 3.33 2.75 -0.58 - 3.06 11.0 9.4-5.8 A2 = 2.34 x 10 ~3 AfJ1,11
Aq. LiOH, 6 wt.% Acetone 0.5 N NaHCO3
Acetone
Butanone
12.1 25.4 37.7 45.0 50.3 30 40
Butanone
71
4.1 3.8 3.6 3.5 3.4 -0.5 -0.25
5V; CLS CLS CLS
846 97 941
CLS 4V; CLS CLS; 1.68 <MW < 13.44 ( x 106)
302 939
CLS
825
CLS (dA2/d7)=--0.25 x 10 ~5 [cm3/(g K)]
826
25 25 RT 25
81-3850 141-1700 61.6-2482 77-2640 780
10.8-8.2 13.3-12.5 0.24 (approx.) 6.10 (approx.) 11.2
6V; CLS 4V; CLS 14V; OS; B; (bar L 2 /g 2 ) 11V; CLS CLS
477
15 20 20 25 29.7
22.8-417 31-661 150-400 30-360 71.5 295-450 130
0.24 (approx.) 0.28 (approx.) 1.0-0.5 3.5-0.3 44.1 28.5-25.7 10.8
8V; OS; B\ (bar L 2 /g 2 ) 1IV; OS; B\ (bar L 2 /g 2 ) CLS; B, (bar cm6/g2> OS; B; (bar cm 6 /g 2 ) OS; A2M; (cm Vg) 2V; OS; A2M; (cm Vg) OS
195 194 239 239 91 91 196
Acetone
Ethyl acetate
94
CLS
Refs.
141 2580-80.8 42.0-1.35
20
Butyl acetate
121 60-173
Remarks
0 0.25 - 0.25 0 -2.1 2.45-11.5 7.5-20.0
Dioxane
from row cotton (ca. 13.66% N) from cotton
from viscose rayon from chemical cotton (12.4% N)
A2 ( x 10 4 ) (mol cm 3 /g 2 )
Nitromethane
50 60 40 50 Cellulose carbanilate
M (x 10~3) (g/mol)
25
92
7V 6V
68 68
61 22 824
TABLE 21. cont'd Polymer Cellulose tricarbanilate
Dextran
Solvent Tetrahydrofuran
T ( 0 C)
M ( x 1 0 3 ) (g/mol)
25
105 200 294 385 508 578 787 1050 1330 1820 3700 86 128 185 225 267 400 513 885 1720 7.5 14.5 41.6 120.7 374 1270 36.96 67.94 113.07 530.61 485 485 9.9 39.7 65.0 481 2270 3250 1.58
7.0 7.2 5.7 5.0 5.6 4.2 4.2 4.3 4.2 4.0 3.8 5.5 4.5 8.0 6.7 3.7 4.8 4.8 4.5 3.3 9.80 1.00 7.26 5.87 2.30 1.05 0.0616 0.0421 0.0352 0.0302 4.6 4.6 13.8 9.2 77 3.9 0.9 0.7 1.34
11.3 21.0 45.7 131 405 429 495 640 1474 107 188 384 572 811 1050 1490 2100 2360
0.05 g/100 ml sodium azide 20
Water
20
25
(2-(Diethylamino)ethyl) dextran
Pullulan
hydrophobized Tetramethylarnmonium gellan gum
Aq. sodium nitrate 0.8 M
20
A 2 ( X 1 0 4 ) (mol c m 3 / g 2 )
25
760
11.6 9.5 4.6 3.31 2.1 2.28 1.95 1.4 1.15 2.50 2.20 1.60 1.60 1.38 1.35 1.50 1.20 1.46 A 2 =5.42 x 10 ~3 M" 0 2 6 2.60
Tetramethylammonium chloride C = 0.0200 mol/dm3 28 C = 0.0500 mol/dm3 C = 0.0750 mol/dm3
97 98 95
0.71 0.45 0.39
Water
25
Remarks
Refs.
CLS; Mw/Mn given
940
CLS; MJMn given
940
CLS
1015
CLS
965
A#w/Afn = 1.95 CLS; Mw/Mn = 1.95 CLS
985 942 999
CLS
1015
CLS; Mw/Mn given
1013
CLS
943
OS
984
References page VII -198
TABLE 21. cont'd Polymer
Solvent
T( 0 C)
Xanthan, A
C = 0.2000 mol/dm3 C = 0.5000 mol/dm3 C = 0.0125 mol/dm3 C = 0.0200 moydm3 C = 0.0500 mol/dm3 C = 0.0750 mol/dm3 C = 0.2000 mol/dm3 C = 0.5000 mol/dm3 Synth, seawater brine
Xanthan Xanthan Xanthan Xanthan
0.1M NaCl
-
0.1 M NaCl 0.085MNaCl 0.1 N NaCl
25
0.005MNaCl 0.007 M 0.01 M 0.02 M 0.03 M 0.06 M 0.1 M 0.2 M 0.6M LOM 0.1 M NaCl
25
B C D A
Xanthan D powdered broth double stranded helix
sodium salt
native acetyl-free pyruvate-free
TABLE 22.
40
~
20
M ( x 10 3 ) (g/raol) 98 100 49 50 48 52 52 48 4200 5000 5100 5400 8100 8200 10100 4100 12200 5200 5000 5100 9600 5800 7400 1800 74 112 164 209 240 362 603 994 1420 2560 3940 7400 233 225 229 238 226 222 220 221 228 227 2940 1770 1370
A2 ( x 10 4 ) (mol cm 3 /g 2 ) 0.30 0.24 0.95 0.71 0.44 0.34 0.21 0.12 2.0 2.3 2.6 2.4 2.7 2.5 2.5 0.95 1.5 2.1 3.6 4.0 4.2 3.5 3.2 6-8 6 80 6.18 5.64 5.34 5.02 4.77 4.35 3.79 3.99 3.08 2.91 3.17 20(±4) 17.5(±3.5) 16(±1) 8.0(±1.0) 7.5(±0.5) 5.3(±0.5) 4.8(±0.3) 2.95(±0.05) 2.1(±0.1) 1.7 (±0.5) 4.94 6.00 5.22
Remarks
Refs.
OS
984
CLS
946
CLS; 0.22 um filter used CLS CLS CLS; 0.22 ^m filter used CLS CLS CLS
944
CLS; A 3 given
945
CLS CLS CLS
1011,1012
OTHER BIOPOLYMERS (PROTEINS, POLY(NUCLEOTIDES))
Polymer Calf thymus desoxyribonucleic acid Gelatin (30.2% C, 8.2% H, 18.5% N)
Solvent
T(0C)
M ( x 10~3) (g/mol)
A1 ( x 104) (mol cm 3 /g 2 )
Remarks
Refs.
Aq. NaCl 0.2 M
20
156 ± 5
0.0072 ± 0.0002
CLS
1014
0.5 M KSCN
25
400
2.0
CLS
979
380 292 346 371
2.6 3.7 4.5 6.2
CLS CLS; Mw/Afn given
Formamide
979 1000
TABLE 22. cont'd Polymer
Solvent
Poly((ybenzyl-L-glutamate)
Chlorobenzene Chloroform Chloroform/formamide
T (0C)
M ( x 10 ~ 3 ) (g/mol)
25
920 130-358 392 408 230 21.4-336 490 555 179 60 149 179 27.4 179 140 18.5-414 350 132-417 179 .6
5.1 5.0-4.7 2.0 2.2 16 15.7-7.5 5.0 23.2 3.52 5.36 3.94 4.14 - 6 ± 1.3-2.5 ±0.27 4.43 - 0 . 9 ±0.44-2.6 ±0.15 2.5 (approx.) 4.7 See Ref. 3.46 16.0
33.4 154 222
9.1 9.3 9.1
277 179 ± 1 69-250 76-176 60 149 179 27.4-490 60 149 179 277 102 25-1100
3.35 3.1 ±0.1 3.5-2.8 3.8-2.0 5.38 3.35 3.86 2.2 (approx.) 5.70 4.77 3.80 3.45 3.9 1.1-3.3
0.4-16 8-24 19-44 400 440 105 ± 0.03 1.00 ±0.05 109 ±0.03 107 ±0.05 117±18
1.8-13.7 1.9-5.1 1.2-2.6 5.3 5.8 0.30 ± 0.02 0.26 ±0.06 0.69 ±0.05 2.9 ±0.3 181±4 61 ± 2 29 ± 2 20 ± 2 10 ±1.5 6±1.5 2 ±1.5 0.88 0.48 0.38 0.50 0.30
Cyclohexanone Dochloroacetic acid Dichloroethane Dimethylformamide
5 15
15-55 20 20-55 25
25-70
30 37 40
45 75
Poly(y-benzyl-Lglutamate) (PBG) PBG-S-S-PBG PBG-N = N-PBG PBG-(CH2)IO-PBG
Desoxyribonucleic acid
fragments
Poly(L-glutamic acid)
Dimethylformamide
Dioxane Tetrahydrofuran Aq. NaCl, IM 0.1 M 0.01 M Aq. NaCl, 0.002M 0.005 M 0.01 M 0.02 M 0.04 M 0.1M 0.5 M Aq. NaCl, 0.02 M 0.05 M 0.1 M 0.05 M 0.2 M
25
25 25
25
-
112
104 104
A 2 ( X 1 0 4 ) (mol c m 3 / g 2 )
Remarks CLS 4V; CLS
CLS 3V; CLS CLS CLS CLS CLS CLS CLS 5V; OS CLS 5V; OS 13V; CLS CLS CLS CLS 3V; OS; CLS; M w ; B, (bar cm 6 /g 2 ) 5V;£;(barcm 6 /g 2 ) 4V; B\ (bar cm 6 /g 2 ) 4V; B\ (bar cm 6 /g 2 ); for measurements in five more solvents see Ref. CLS OS 5V; OS CLS CLS CLS 8V; OS CLS CLS CLS CLS CLS 10V; CLS
Refs. 488 299 435 435 488 299 488 476 949
521 949 521 435 488 450 949 476 476 476 476
949 1016 450 435 949
521 949
950 951
1IV; CLS 4V; CLS 6V; CLS CLS CLS CLS; A3, A4 given
488 488 947
CLS; theoretical values given
948
CLS CLS CLS CLS CLS
952
References page VII-198
E. REFERENCES 1. G. Meyerhoff, Z. Electrochem., 61, 1250 (1957). 2. T. Svedberg, K. O. Pederson, "Die Ultrazentrifuge", Th. Steinkopf, Dresden und Leipzig, 1940. 3. G. Meyerhoff, Makromol. Chem., 37, 97 (1960). 4. H. R Frank, H. R Mark, J, Polym. Sci., 17, 1 (1955). 5. G. Meyerhoff, in "Conference on the Ultracentrifuge", Academic Press, New York, 1963. 6. G. Meyerhoff, Makromol. Chem., 72, 214 (1964). 7. J. G. Kirkwood, J. Riseman, J. Chem. Phys., 16,565 (1948). 8. J. Riseman, J. G. Kirkwood, in: K R. Eirich, (Ed.), "Rheology, Theory and Application", vol. I, Academic Press, New York, 1956. 9. M. Kurata, H. Yamakawa, J. Chem. Phys., 29, 311 (1958). 10. H. Kuhn, A. Silberberg, J. Polym. Sci., 14, 193 (1954). 11. International Union of Pure and Applied Chemistry, J. Polym. Sci., 10, 129 (1953). 12. A. F. Schick, S. J. Singer, J. Phys. Chem., 54, 1028 (1950). 13. G. V. Schulz, H. Inagaki, R. Kirste, Z. Phys. Chem. N. F., 24, 390 (1960). 14. N. Gralen, Dissertation, Uppsala, 1944. 15. H. Luetge, G. Meyerhoff, Makromol. Chem., 68, 180 (1963). 16. K. Nachtigall, G. Meyerhoff, Z. Phys. Chem. (Frankfurt), 30, 35 (1961). 17. G. Meyerhoff, Makromol. Chem., 15, 68 (1955). 18. G. Meyerhoff, Makromol. Chem., 12, 45 (1954). 19. K. Uda, G. Meyerhoff, Makromol. Chem., 67, 168 (1961). 20. R. Signer, J. Liecht., HeIv. Chim. Acta, 21, 530 (1938). 21. A. Poison, Kolloid-Z., 83, 172 (1938). 22. A. M. Holtzer, H. Benoit, M. Doty, J. Phys. Chem., 58, 624 (1954). 23. J. W. Williams, W. M. Saunders, J. Phys. Chem., 58, 854 (1954). 24. A. G. Ogston, E. F. Woods, Trans. Faraday Soc, 50, 635 (1954). 25. A. G. Ogston, Trans. Faraday Soc, 49, 1481 (1953). 26. F. R. Senti, N. N. Hellmann, N. H. Ludwig, G. Babcock, R. Tobin, C. A. Glass, B. L. Lamberts, J. Polym. Sci., 17, 527 (1955). 27. L. D. Moore, Jr., G. R. Greear, J. O. Sharp, J. Polym. Sci., 59, 339 (1962). 28. G. V. Schulz, K, Altgelt, H.-J. Cantow, Makromol. Chem., 21, 13 (1956). 29. K. Altgelt, G. V. Schulz, Makromol. Chem., 32, 66 (1959). 30. K. Altgelt, G. V. Schulz, Makromol. Chem., 36, 209 (1960). 31. G. V. Schulz, A. MuIa, Proc. Nat. Rubber, Res. Conf., Kuala Lumpur, 1960, p. 602. 32. L. Mandelkern, W. R. Krigbaum, H. A. Scheraga, P. J. Flory, J. Chem. Phys., 20, 1392 (1952). 33. K. H. Schachman, M. A. Lauffer, J. Am. Chem. Soc, 71, 536 (1949). 34. M. A. Lauffer, J. Am. Chem. Soc, 66, 1188 (1944). 35. H. Neurath, Chem. Rev., 30, 357 (1942). 36. M. A. Lauffer, J. Am. Chem. Soc, 66, 1195 (1944).
37. H. K. Schachman, W. J. Kauzman, J. Phys. Chem., 53, 150 (1949). 38. H. W. McCormick, J. Polym. Sci. A, 1, 103 (1963). 39. S. J. Singer, J. Chem. Phys., 15, 341 (1947). 40. L. E. Miller, F. A. Hamm, J. Phys. Chem., 57, 110 (1953). 41. H. Ende, G. Meyerhoff, G. V. Schulz, Z. Naturforsch., 13b, 713 (1958). 42. S. Shulman, J. Am. Chem. Soc, 75, 5846 (1953). 43. G. Meyerhoff, Z. Physik. Chem. (Frankfurt), 4, 335 (1955). 44. G. Meyerhoff, Z. Physik. Chem. (Frankfurt), 23, 100 (1960). 45. V. Schulz, A. Horbach, Makromol. Chem., 29, 93 (1959). 46. G. V. Schulz, D. Laue, O. Bodmann, Makromol. Chem., 31, 75 (1959). 47. R. Cecil, A. G. Ogston, Biochem. J., 42, 229 (1948). 48. G. V. Schulz, H. A. Ende, Z. Physik. Chem. (Frankfurt), 36, 82 (1963). 49. G. V. Schulz, M. Marx, Makromol. Chem., 14, 52 (1954). 50. M. Cantow, G. Meyerhoff, G. V. Schulz, Makromol. Chem., 49, 1 (1961). 51. O. Bodmann, D. Kranz, G. V. Schulz, Makromol. Chem., 41, 225 (1960). 52. G. V. Schulz, G. Meyerhoff, Z. Elektrochem., 56, 545 (1952). 53. K. J. Ivin, H. A. Ende, G. Meyerhoff, Polymer, 3, 129 (1962). 54. K. J. Ivin, J. Poiym. Sci., 25, 228 (1957). 55. G. V. Schulz, H. Doll, Z. Elektrochem., 63, 301 (1959). 56. E. D. Kunst, Dissertation, Groningen, 1950. 57. G. V. Schulz, K. V. Guenner, H. Gerrens, Z. Physik. Chem. (Frankfurt), 4, 192 (1955). 58. G. Meyerhoff, Naturwissenschaften, 41, 13 (1954). 59. G. Meyerhoff, G. V. Schulz, Makromol. Chem., 7, 294 (1951). 60. G. V. Browning, J. D. Ferry, J. Chem. Phys., 17, 1107 (1949). 61. A. Muenster, J. Polym. Sci., 8, 633 (1952). 62. J. Stamm, J. Am. Chem. Soc, 52, 3047 (1930). 63. J. Stamm, J. Am Chem. Soc, 52, 3062 (1930). 64. G. Meyerhoff, J. Polym. Sci., 29, 399 (1958). 65. G. Meyerhoff, Makromol. Chem., 32, 249 (1959). 66. J. Hengstenberg, G. V. Schulz, Makromol. Chem., 2, 5 (1948). 67. A. Poison, Kolloid-Z., 87, 149 (1939). 68. J. M. G. Cowie, S. Bywater, J. Polym. Sci. C, 30, 85 (1970). 69. T. Svedberg, K. O. Pedersen, The Ultracentrifuge, The Clarendon Press, Oxford, 1940. 70. A. G. Poison, Dissertation University of Stellenbosch, South Africa, 1937. 71. R. O. Carter, J. Am. Chem. Soc, 63, 1960 (1941). 72. H. G. Tennent, C. F. Vilbrandt, J. Am. Chem. Soc, 65, 424 (1943). 73. K. O. Petersen, J. J. I. Andersson, unpubl. results, cited, in Ref. 67.
74. W. R. Krigbaum, A. M. Kotliar, J. Polym. ScL, 32, 323 (1958). 75. A. Oth, Ind. Chim. Beige, 20, 423 (1955). 76. T. Svedberg, L-B. Eriksson-Quensel, J. Am. Chem. Soc, 56, 1700 (1934). 77. L. Krejci, T. Svedberg, J. Am. Chem. Soc, 56,1706 (1934). 78. T. Svedberg, L-B. Eriksson, J. Am. Chem. Soc, 55, 2834 (1933). 79. W. F. H. M. Mommaertz, R. G. Parrish, J. Biol. Chem., 188, 545 (1951). 80. P. Johnson, R. Landolt, Nature, 165, 430 (1950). 81. G. L. Miller, W. C. Price, Arch. Biochem. Biophys., 10,467 (1946). 82. W. F. H. M. Mommaertz, Arkiv Kemi Mineral. Geol., 19A, No. 17 (1945). 83. N. W. Pirie, Advan. Enzymol., 5, 1 (1945). 84. M. A. Lauffer, J. Phys. Chem., 44, 1137 (1940). 85. M. A. Lauffer, W. M. Stanley, J. Biol. Chem., 135, 463 (1940). 86. A. G. Ogston, Biochem. L, 37, 78 (1943). 87. A. S. McFarlane, R. A. Kekwick, Biochem. J., 32, 1607 (1938). 88. R C. Bawden, N. W. Pirie, unpubl. (cit. in Ref. 83). 89. M. M. Huque, D. A. Goring, S. G. Mason, Can. J. Chem., 36, 952 (1958). 90. L. Hunt, S. Newman, H. A. Scheraga, P. J. Flory, J. Phys. Chem., 60, 1278 (1956). 91. S. Newman, L. Loeb, C. M. Conrad, J. Polym. ScL, 10, 463 (1953). 92. B. Ingelman, M. S. Hailing, Arkiv Kemi, 1, 61 (1949). 93. H.-J. Cantow, Z. Naturforsch., 7b, 485 (1952). 94. R. S. J. Manley, Arkiv Kemi, 9, 519 (1956). 95. Y. Fujisaki, H. Kobayashi, Chem. High Polym. (Japan), 19, 81 (1962). 96. H.-J. Cantow, Makromol. Chem., 30, 169 (1959). 97. D. Henley, Arkiv Kemi, 18, 327 (1961). 98. W. Brown, Arkiv Kemi, 18, 227 (1961). 99. H.-J. Cantow, G. V. Schulz, Z. Phys. Chem. (Frankfurt), 2, 117 (1954). 100. D. J. Bell, H. Gutfreund, R. Cecil, A. G. Ogston, Biochem. J., 42, 405 (1945). 101. R. W. G. Wyckoff, J. Biol. Chem., 121, 219 (1937). 102. H. Neurath, A. M. Saum, J. Biol. Chem., 126, 435 (1938). 103. F. C. Bawden, N. W. Pirie, Proc. Roy. Soc (London), Sen B, 123, 274 (1937). 104. W. M. Stanley, J. Phys. Chem., 42, 55 (1938). 105. H.-J. Cantow, Z. Physik. Chem. (Frankfurt), 7, 58 (1956). 106. W. R. Krigbaum, J. Am. Chem. Soc, 76, 3758 (1954). 107. H. W. McCormick, J. Polym. ScL, 36, 341 (1959). 108. J. W. Breitenbach, E. L. Forster, A. J. Renner, Kolloid-Z., 127, 1 (1952). 109. W. R. Krigbaum, J. E. Kurz, P. Smith, J. Phys. Chem., 65, 1984 (1961). 110. H.-G. Elias, F. Patat, J. Polym. ScL, 29, 141 (1958). 111. A. R. Shultz, J. Am. Chem. Soc, 76, 3422 (1954). 112. H.-G. Elias, F. Patat, Makromol. Chem., 25, 13 (1958).
113. T. Svedberg, L-B. Eriksson, J. Am. Chem. Soc, 54, 3998 (1933). 114. L. Krejci, T. Svedberg, J. Am. Chem. Soc, 57, 946 (1935). 115. J. Bisschops, J. Polym. ScL, 17, 81 (1955). 116. K. Dialer, R. Kerber, Makromol. Chem., 17, 56 (1955). 117. A. Oth, Bull. Soc, Schim. Beiges, 64, 484 (1955). 118. A. R. Peacocke, H. R. Schachmann, Biochim. Biophys. Acta, 15, 198 (1954). 119. K. Dialer, K. Vogler, F. Patat, HeIv. Chim. Acta, 35, 869 (1952). 120. J. L. Oncley, G. Scatchard, A. Brown, J. Phys. Chem., 51, 184 (1947). 121. G. V. Schulz, H. Baumann, R. Darskus, J. Phys. Chem., 70, 3647 (1966). 122. R. A. Kekwick, K. O. Pedersen, Biochem. J., 30, 2201 (1936). 123. M. Deidelberger, K. O. Pedersen, J. Gen. Physiol., 19, 95 (1935). 124. G. J. Howard, D. O. Jordan, J. Polym. ScL, 12, 209 (1954). 125. S. Newman, F. Eirich, J. Colloid ScL, 5, 541 (1950). 126. N. Gralen, G. Lagermalm, J. Phys. Chem., 56, 514 (1952). 127. J. A. V. Butler, A. B. Robins, K. V. Shooter, Proc. Roy. Soc (London) Ser. A, 241, 299 (1951). 128. L. Mandelkern, P. J. Fiory, J. Chem. Phys., 20, 212 (1952). 129. H. A. Dieu, J. Polym. ScL, 12, 417 (1957). 130. L. Freund, M. Daune, J. Polym. ScL, 29, 161 (1958). 131. D. O. Jordan, A. R. Mathieson, M. R. Porter, J. Polym. ScL, 21,463 (1956). 132. D. O. Jordan, A. R. Mathieson, M. R. Porter, J. Polym. ScL, 21, 473 (1956). 133. T. A. Orofino, J. W. Mickey, Jr., J. Chem. Phys., 38, 2512 (1963). 134. M. Wales, K. E. Van Holde, J. Polym. ScL, 14, 81 (1954). 135. B. Rosen, P. Kamath, F. Eirich, Disc Faraday Soc, 11, 135 (1951). 136. D. A. I. Goring, C. Chepeswick, J. Colloid ScL, 10, 440 (1955). 137. L. P. Witnauer, F. R. Senti, M. D. Stern, J. Polym. ScL, 16, 1 (1955). 138. R. L. Baldwin, Biochem. J., 55, 644 (1953). 139. H. Malmgren, Acta Chem. Scand., 6, 1 (1952). 140. R. Gehm, Acta Chem. Scand., 5, 270 (1951). 141. J. H. Fessler, A. G. Ogston, Trans. Faraday Soc, 47, 667 (1951). 142. L. W. Nichol, A. B. Roy, Biochemistry, 4, 386 (1965). 143. W. Scholtan, Makromol. Chem., 36, 162 (1960). 144. W. Scholtan, Makromol. Chem., 7, 209 (1952). 145. C. G. Holmberg, Arkiv Kemi, Mineral. Geol., 17A, No. 28 (1944). 146. V. L. Koenig, Arch. Biochem., 25, 241 (1950). 147. V. L. Koenig, J. D. Perrings, Arch. Biochem. Biophys., 41, 367 (1952). 148. G. R. Andersson, Arkiv Kemi, 20, 513 (1963). 149. J. A. Manson, G. J. Arquette, Makromol. Chem., 37, 187 (1960). 150. H.-G. Elias, Makromol. Chem., 50, 1 (1961).
151. K. Nakanishi, M. Kurata, Bull. Chem. Soc (Japan), 33,152 (1960). 152. W. G. Martin, W. H. Cook, C. A. Winkler, Can. J. Chem., 34, 809 (1956). 153. W. Scholtan, Makromol. Chem., 23, 128 (1957). 154. V. L. Koenig, J. D. Perrings, Arch. Biochem. Biophys., 36, 147 (1952). 155. V. L. Koenig, J. D. Perrings, Arch. Biochem. Biophys., 40, 218 (1952). 156. V. L. Koenig, K. O. Pedersen, Arch. Biochem., 25, 97 (1950). 157. I. B. Eriksson-Quensel, Biochem. J., 32, 585 (1938). 158. A. Tiselius, D. Gross, Kolloid-Z., 66, 11 (1934). 159. K. O. Pedersen, Biochem. J., 30, 961 (1936). 160. W. R. Krigbaum, P. J. Flory, J. Am. Chem. Soc, 75, 1775 (1953). 161. M. D. Dayhoff, G. E. Perlmann, D. A. Maclnnes, J. Am. Chem. Soc, 74, 2515 (1952). 162. S. N. Chinai, R. J. Samuels, J. Polym. ScL, 19, 463 (1956). 163. S. N. Chinai, J. D. Matlack, A. L. Resnick, R. J. Samuels, J. Polym. ScL, 17, 391 (1955). 165. S. N. Chinai, R. A. Guzzi, J. Polym. ScL, 21, 417 (1956). 166. P. Outer, C. I. Carr, B. H. Zimm, J. Chem. Phys., 18, 830 (1950). 167. K. A. Granath, J. Colloid ScL, 13, 308 (1958). 168. O. Lamm, A. Poison, Biochem. J., 30, 528 (1936). 169. J. Oth, V. Desreux, Bull. Soc Chem. Beiges, 66, 303 (1957). 170. W. B. Bridgman, J. Am Chem. Soc, 68, 857 (1946). 171. H. K. Schachman, W. F. Harrington, J. Polym. ScL, 12,379, (1954). 172. D. Mclntyre, A. Wims, L. C. Williams, L. Mandelkern, J. Phys. Chem., 66, 1932 (1962). 173. H. K. Schachman, Protein and Function, Brookhaven Symposia in Biology: No. 13, 49 (1960) 174. H. K. Schachman, J. Am. Chem. Soc, 73, 4453 (1951). 175. L-B. Eriksson-Quensel, T. Svedberg, Biol. Bull., 71, 498 (1936). 176. J. Oth, V. Desreux, Bull. Soc. Chim. Beiges, 63,285 (1954). 177. R J. Rempp, J. Chim. Phys., 54, 432 (1957). 178. K. Dialer, K. Vogler, Makromol. Chem., 6, 191 (1951). 180. C. Rosse, U. Bianchi, V. Mangasco, J. Polym. ScL, 30, 175 (1958). 181. G. Kegeles, S. M. Klainer, W. J. Salem, J. Phys. Chem., 61, 1286 (1957). 182. G. W. Schwert, S. Kaufmann, J. Biol. Chem., 179, 655 (1949). 183. J. Feisst, H.-G. Elias, Makromol. Chem., 82, 78 (1965). 184. H.-G. Elias, Z. Physik. Chem. (Frankfurt), 28, 303 (1961). 185. H.-G. Elias, Chem. Ing.-Tech., 33, 359 (1961). 186. K. Froembling, F. Patat, Makromol. Chem., 25, 41 (1958). 187. H.-G. Elias, Makromol. Chem., 27, 192 (1958). 188. H.-G. Elias, E. Maenner, Makromol. Chem., 40, 207 (1960). 189. H.-G. Elias, Angew. Chem., 73, 209 (1961). 190. F. Patat, H.-G. Elias, Naturwissenschaften, 46, 322 (1959).
191. J. Hengstenberg, E. Schuch, Makromol. Chem., 7, 236 (1952). 192. T. A. Ritscher, H.-G. Elias, Makromol. Chem., 30, 48 (1959). 193. C. Sadron, P Rempp, J. Polym. ScL, 29, 127 (1958). 194. A. Muenster, Z. Physik. Chem. (Leipzig), 197, 17 (1951). 195. H. Diener, A. Muenster, Z. Physik. Chem. (Frankfurt), 13, 202 (1957). 196. G. Jacobsson, Acta Chem. Scand., 8, 1843 (1954). 197. W. Burchard, Z. Physik. Chem. (Frankfurt), 42,293 (1964). 198. W. Burchard, Makromol. Chem., 59, 16 (1963). 199. P. E. Onyon, J. Polym. ScL, 37, 315 (1959). 200. P E. Onyon, J. Polym. ScL, 22, 13 (1956). 201. H. Kobayashi, J. Polym. ScL, 39, 369 (1959). 202. S. Newman, W. R. Krigbaum, C. Laugier, R J. Flory, J. Polym. ScL, 14, 451 (1954). 203. G. B. Rathmann, F. A. Bovey, J. Polym. ScL, 15, 544 (1955). 204. I. J. O'Donell, E. F. Woods, J. Polym. ScL, 21, 397 (1956). 205. S. N. Chinai, R. A. Guzzi, J. Polym. ScL, 41, 475 (1956). 206. H. Kobayashi, J. Polym. ScL, 26, 230 (1957). 207. G. Allen, C. Booth, M. N. Jones, Polymer (London), 5,195 (1964). 208. J. E. Hansen, M. G. McCarthy, T. J. Dietz, J. Polym. ScL, 7, 77 (1951). 209. S. N. Chinai, A. L. Resnick, H. T. Lee, J. Polym. ScL, 33, 471 (1958). 210. R. Kirste, G. V. Schulz, Z. Physik. Chem. (Frankfurt), 27, 301 (1961) 211. A. F. V. Eriksson, Acta Chem. Scand., 7, 623 (1953). 212. A. F. V. Eriksson, Acta Chem. Scand., 10, 378 (1956). 213. A. Ehrenberg, Acta Chem. Scand., 11, 1257 (1957). 214. R. V. Webber, J. Am. Chem. Soc, 78, 536 (1956). 215. G. V. Schulz, R. Kirste, Z. Physik. Chem. (Frankfurt), 30, 171 (1961). 216. G. V. Schulz, A. Haug, R. Kirste, Z. Physik. Chem., 38, 1 (1963). 217. R. Schumacher, H.-G. Elias, Makromol. Chem., 76, 12 (1964), 218. H.-G. Elias, R. Schumacher, Makromol. Chem., 76, 23 (1964). 219. P. R. Saunders, J. Polym. ScL, 57, 131 (1961). 220. D. W. Carlson, Dissertation, University Delaware, June 1959. 221. H. C. Beachell, D. W. Carlson, J. Polym. ScL, 40, 543 (1959). 222. R. Signer, R V. Tavel, HeIv. Chim. Acta, 21, 535 (1938). 223. H. Mosimann, HeIv. Chim. Acta, 26, 61 (1943). 224. B. H. Soerbo, Acta Chem. Scand., 7, 1129 (1953). 225. A. Ehrenberg, H. Theorell, Acta Chem. Scand., 9, 1193 (1949). 226. H. Theorell, R. Bonnichsen, Acta Chem. Scand., 5, 1105 (1951). 227. H. G. Boman, Acta Chem. Scand., 5, 1311 (1951). 228. A. Ehrenberg, S. Paleus, Acta Chem. Scand., 9, 538 (1955).
229. V. N. Tsvetkov, V. G. Alsoshin, Zh. Fiz. Khim., 33, 2767 (1959). (Russ. J. Phys. Chem., 33, 619 (1959). 230. R. Chiang, J. Phys. Chem., 69, 1645 (1965). 231. V. Kokle, F. W. Billmeyer, Jr., L. T. Muus, E. J. Newitt, J. Polym. ScL, 62, 251 (1962). 232. J. Bischoff, V. Desreux, Bull. Soc. Chim. Beiges, 61, 10 (1952). 233. Y. Hachihama, H. Sumitomo, Technol. Rept. Osaka Univ., 3, 385 (1953). 234. H. Vink, Arkiv. Kemi, 14, 29 (1957). 235. S. Claesson, W. Bergmann, G. Jay me, Svensk Papperstid, 62, 141 (1959). 236. W. H. Stockmayer, L. L. Chan, ACS Meeting, Detroit, 1965, Polymer Preprints, 6, 333 (1965). 237. M. J. R. Cantow, R. S. Porter, J. F. Johnson, ACS Meeting, Detroit, 1965, Polymer Preprints, 6, 338 (1965). 238. G. M. Guzman, Anales Real Soc. Espan, Fis. Quim. B (Madrid), 52, 377 (1956). 239. J. Schurz, Papier, 15, 530 (1961). 240. R. Arnold, S. R. Caplan, Trans. Faraday Soc, 51, 857 (1955). 241. A. Ehrenberg, K. Dalziel, Acta Chem. Scand., 11, 398 (1957). 242. A. Ehrenberg, K. Agner, Acta Chem. Scand., 12,95 (1958). 243. K. Z. Fattakhov, V. N. Tsvetkov, O. V. K. Kallistov, Zh. Eksperim. i. Teor. Fiz., 26, 351 (1954). 244. M. L. Wagner, H. A. Scheraga, J. Phys. Chem., 60, 1066 (1956). 245. C. E. H. Bawn, R. F. Freeman, A. R. Kamaliddin, Trans. Faraday Soc, 46, 862 (1950). 246. L. Trossarelli, G. Saini, Atti Accad. Sci. Torino: Classe Sci. Fis. Mat. Nat, 90, 419 (1955-56). 247. G. Saini, L. Trossarelli, Atti Accad. Sci. Torino: Classe Sci. Fis. Mat. Nat, 90, 431 (1955-56). 248. H. Frind, Faserforsch. Textiltech., 5, 540 (1954). 249. Q. A. Trementozzi, J. Am Chem. Soc, 76, 5273 (1954). 250. V. E. Eskin, T. I. Vokov, Vysokomol. Soedin., 5,614 (1963). 251. L. G. Longsworth, J. Am. Chem. Soc, 75, 5705 (1953). 252. L. G. Longsworth, H. Phys. Chem., 58, 770 (1954). 253. F. W. Billmeyer, Jr., C. B. DeThan, J. Am. Chem. Soc, 77, 4763 (1955). 254. A. Takahashi, J. Hayashi, I. Kagawa, Kogyo Kagaku Zasshi, 60, 1059 (1957). 255. H. H. Weber, Biochim. Biophys. Acta, 4, 12 (1950). 256. O. Snellman, T Erdoes, Biochim. Biophys. Acta, 2, 650 (1948). 257. E. J. Cohn, J. L. Oncley, L. E. Strong, W. L. Hughes, Jr., S. H. Armstrong, Jr., J. Clin, Invest., 23, 417 (1944). 259. I. Jullander, Arkiv Kemi, 21A, 8 (1945). 260. D. S. Feingold, M. Gehatia, J. Polym. Sci., 22, 783 (1957). 261. G. L. Borgin, J. Am. Chem. Soc, 71, 2247 (1949). 262. J. Y. Chien, L. H. Shih, S. C. Yu, J. Polym. Sci., 29, 117 (1958). 263. J. Y Chien, L. H. Shih, Z. Physik. Chem., 207, 60 (1957). 264. J. Y Chien, L. H. Shih, K. T Shih, Hua Hsueh Hsueh Pao, 23, 215 (1957).
265. H.-G. Elias, H. H. Scshluhbach, Ann. Chem., 627, 126 (1959). 266. W. Scholtan, Makromol. Chem., 14, 169 (1954). 267. G. M. Chetyrkina, V. G. Alsoshin, S. Y. Frenkel, Vysokomol. Soedin., 1, 1133(1959). 268. G. V. Schulz, M. Hoffmann, Makromol. Chem., 23, 220 (1957). 269. H. Mosiman, T Svedberg, Kolloid-Z., 100, 99 (1942). 270. H. Sumitomo, Y Hachihama, Chem. High Polymers (Japan), 10, 544 (1953). 271. H. Sumitomo, Y Yatsuhama, Chem. High Polymers (Japan), 11, 65 (1954). 272. H.-G. Elias, Makromolekuele, Huethig and Wepf, BaselHeidelberg (1971) 273. E. F. Casassa, W. H. Stockmayer, Polymer, 3, 53 (1962). 274. T. G. Fox, J. B. Kinsinger, H. F. Mason, E. M. Schuele, Polymer, 3, 71 (1962). 275. E. Cohn-Ginsberg, T. G. Fox, H. F. Mason, Polymer, 3, 97 (1962). 276. H. Campbell, P. Johnson, Trans. Faraday Soc, 40, 221 (1944). 277. W. Brown, D. Henley, Makromol. Chem., 79, 68 (1964). 278. W. Brown, D. Henley, J. Oehman, Arkiv Kemi, 22, 189 (1964). 279. R. Van Leemput, R. Stein, J. Polym. Sci. A, 2, 4039 (1964). 280. R. Van Leemput, R. Stein, J. Polym. Sci. A, 1, 985 (1963). 281. W. Burchard, E. Husemann, Makromol. Chem., 44/46, 358 (1961). 282. T Matsuo, H. Inagaki, Makromol. Chem., 55, 150 (1962). 283. T. Matsuo, H. Inagaki, Makromol. Chem., 53, 130 (1962). 284. W. Brown, D. Henley, J. Oehman, Makromol. Chem., 62, 164 (1963). 285. W. Brown, D. Henley, J. Oehman, Makromol. Chem., 64, 49 (1963). 286. J. B. Berkowitz, M. Yamin, R. M. Fuoss, J. Polym, Sci., 28, 69 (1958). 287. A. Ciferri, M. Kryszewski, G. Weill, J. Polym. Sci., 27,167 (1958). 288. R. L. Cleland, J. Polym. Sci., 27, 349 (1958). 289. S. N. Chinai, P. C. Scherer, D. W. Lewi, J. Polym. Sci., 17, 117 (1955). 290. L. Trossarelli, E. Campi, G. Saini, J. Polym. Sci., 35, 205 (1959). 291. L. H. Tung, J. Polym. Sci. A, 2, 4875 (1964). 292. Q. A. Trementozzi, J. Polym. Sci., 23, 887 (1957). 292a. W. R. Krigbaum, Q. A. Trementozzi, J. Polym. Sci., 28, 295, (1958). 293. Q. A. Trementozzi, J. Polym. Sci., 36, 113 (1959). 294. W. H. Stockmayer, L. D. Moore, Jr., M. Fixman, B. N. Epstein, J. Polym. Sci., 16, 517 (1955). 295. S. N. Chinai, J. Polym. Sci., 25, 413 (1957). 296. L. H. Tung, J. Polym. Sci., 36, 287 (1959). 297. W. Cooper, G. Vaughan, D. E. Eaves, R. W. Madden, J. Polym. Sci., 50, 159 (1961). 298. P. Dreizehn, R. W. Noble, D. F. Waugh, J. Am. Chem. Soc, 84, 4938 (1962).
-
299. P. Doty, J. H. Bradburg, A. M. Holtzer, J. Am. Chem. Soc, 78, 947 (1956). 300. S. Mao, E. V. Frisrnan, Vysokomol. Soedin., 4, 1839 (1962). 301. H. Boedtker, P. Doty, J. Am. Chem. Soc, 78, 4267 (1956). 302. R. S. Stein, P. Doty, J. Am. Chem. Soc, 68, 159 (1946). 303. U. P. Strauss, P. L. Wineman, J. Am. Chem. Soc, 80, 2366 (1958). 304. H. Boedtker, S. Simmons, J. Am. Chem. Soc, 80, 2550 (1958). 305. A. Holtzner, S. Lowey, J. Am. Chem. Soc, 81,1370 (1959). 306. R. Bjorklund, S. Katz, J. Am. Chem. Soc, 78, 2123 (1956). 307. V. N. Tsetkov, O. V. Kalistov, Zh. Fiz. Khim., 33, 710 (1959). 308. A. Silberberg, J. Elissaf, A. K. Katschalsky, J. Polym. Sci., 23, 259 (1957). 309. P. Doty, F. Mishuck, J. Am. Chem. Soc, 69, 1631 (1947). 310. P. Doty, M. Brownstein, W. Schlener, J. Phys. Colloid, Chem., 53, 213 (1949). 311. W. R. Krigbaum, P. J. Flory, J. Am. Chem. Soc, 75, 5254 (1953). 312. M. Morton, T. E. Helminiak, S. D. Gadkary, F. Bueche, J. Polym. Sci., 57, 471 (1962). 313. J. V. Koleske, S. F. Kurath, J. Polym. Sci. A, 2,4123 (1964). 314. G. Sitaramaiah, D. A. I. Goring, J. Polym. Sci., 58, 1107 (1962). 315. R. Chiang, J. Polym. Sci., 28, 235 (1958). 316. W. R. Krigbaum, J. E. Kurz, P. Smith, J, Phys. Chem., 65, . 1984 (1961). 317. P. J. Flory, J. Am. Chem. Soc, 65, 372 (1943). 318. J. B. Kinsinger, R. E. Hughes, J. Phys. Chem., 63, 2002 (1959). From R. Chiang, Chapter in: B. Ke (Ed.), "Newer Methods of Polymer Characterization", Interscience, New York, 1964, p. 471. 319. F. Danusso, G. Moraglio, Makromol. Chem., 28, 250 (1958). 320. T. A. Orofino, P. J. Flory, J. Phys. Chem., 63, 283 (1959). 321. H. W. McCormick, J. Polym. Sci., 41, 327 (1959). 322. I. Y. Poddubnyi, V. A. Grechanovskii, M. I. Mosevitskii, Vysokomol. Soedin., 5, 1042 (1964). 323. I. Y. Poddubnyi, V. A. Grechanovskii, M. I. Mosevitskii, Vysokomol. Soedin., 5, 1049 (1964). 324. I. Y Poddubnyi, V. A. Grechanovskii, A. V. Podalinskii, Vysokomol. Soedin., 5, 1588 (1964). 325. W. Burchard, Makromol. Chem., 67, 182 (1963). 326. A. von Haug, G. Meyerhoff, Makromol. Chem., 53, 91 (1962). 327. J. M. G. Cowie, D. J. Worsfold, S. Bywater, Trans. Faraday Soc, 57, 705 (1961). 328. W. R. Krigbaum, D. K. Carpenter, S. Newman, J. Phys. Chem., 62, 1586 (1958). 329. W. R. Krigbaum, D. K. Carpenter, J. Phys. Chem., 59,1166 (1955). 330. M. Matsumoto, Y. Ohyanagi, J. Polym. Sci., 46,441 (1960). 331. Y. Ohyanagi, M. Matsumoto, Chem. High Polymer (Japan), 16, 296 (1959). 332. J. Moacanin, J. Appl. Polym. Sci., 1, 272 (1959).
333. G. C. Berry, L. M. Hobbs, V. C. Long, Polymer (London), 5, 31 (1964). 334. W. R. Krigbaum, L. H. Sperling, J. Phys. Chem., 64, 99 (1960). 335. H. J. L. Trap, J. J. Hermans, J. Phys. Chem., 58,757 (3954). 336. N. S. Schneider, P. Doty, J. Phys. Chem., 58, 762 (1954). 337. S. Bywater, P. Johnson, Trans. Faraday Soc, 47, 195 (1951). 338. E. V. Gouinlock, Jr., P. J. Flory, H. A. Scheraga, J. Polym. Sci., 16, 383 (1955). 339. K. Krishnamurti, T. Svedberg, J. Am. Chem. Soc, 52, 2897 (1930). 340. E. O. Kraemer, J. Phys. Chem., 45, 660 (1941). 341. E. O. Kraemer, J. Phys. Chem., 46, 177 (1942). 342. L. H. Arond, H. P Frank, J. Phys. Chem., 58, 953 (1954). 343. H. Boedtker, P. Doty, J. Phys. Chem., 58, 968 (1954). 344. T. Homma,. Fujita, J. Appl. Polym. Sci., 9, 1701 (1965). 345. B. P. Brand, D. A. I. Goring, P. Johnson, Trans. Faraday Soc, 51, 872 (1955). 346. E. A. Kanevskaya, P. I. Zubov, L. V Ivanova, Yu. S. Liptaov, Vysokomol. Soedin., 6, 981 (1964). 347. S. Lowey, C. Cohen, J. MoI. Biol, 4, 293 (1962). 348. M. J. Kronman, M. D. Stern, J. Phys. Chem., 59, 969 (1955). 349. G. Meyerhoff, "Bestimmung des Molekulargewichtes durch Diffusions-und Sedimentationsmessungen (Ultra zentrifuge)". In: Houben-Weyl "Methoden der organischen Chemie", vol. Ill, Part 1, Georg Thieme Verlag, Stuttgart, 1955, p. 390. 350. J. Hengstenberg, in: H. A. Stuart: "Sedimentation und Diffusion von Makromolekuelen", Physik der Hochpolymeren, vol. II, Springer, Berlin, Goettingen, Heidelberg, 1953, p. 411. 351. A. L. Geddes, "Determination of Diffusivity", in: A. Weissberger: Technique of Organic Chemistry, vol. I, Part 1, Interscience, New York, 1949, p. 551. 352. J. B. Nichols, E. D. Bailey, "Determinations with the Ultracentrifuge", in: A. Weissberger: Technique of Organic Chemistry, vol. I, Part 1, Interscience, New York, 1949, p. 621. 353. P O. Kinell, B. G. Roanby, Advan. Colloid, Sci., 3, 182 (1950). 354. H. K. Schachman, "Ultracentrifugation in Biochemistry", Academic Press, New York and London, 1959. 355. R. L. Baldwin, K. E. Van Holde, Fortschr. HochpolymerForsch., 1, 451 (1960). 356. H. Fujita, "Mathematical Theory of Sedimentation Analysis", Academic Press, New York, 1962. 357. J. W. Williams, "Ultracentrifugal Analysis in Theory and Experiment", Academic Press, New York, London, 1963. 358. M. Gehatia, J. Polym. Sci., 57, 241 (1962). 359. M. Gehatia, Naturwissenschaften, 48, 598 (1961). 360. T. Svedberg, H. Rinde, J. Am. Chem. Soc, 46,2677 (1924). 361. H. Mosimann, R. Signer, HeIv. Chim. Acta, 27, 1123 (1944). 362. P. W. Bridgman, Proc Am. Acad. Arts Sci., 61, 57 (1926). 363. J. Oth, V. Desreux, Bull. Soc Chim. Beiges, 63,133 (1954).
364. 365. 366. 367. 368. 369. 370.
371. 372.
373.
374. 375. 376. 377. 378. 379. 380. 381. 382. 383. 384. 385. 386. 387. 388. 389. 390. 391. 392. 393. 394. 395. 396.
397. 398.
M. Wales, J. Am. Chem. Soc, 81, 4758 (1959). J. Fujita, J. Chem. Phys., 24, 1084 (1956). H.-G. Elias, Makromol. Chem., 29, 30 (1959). H. Mark, In: Saenger, R., "Der feste Koerper", Hirzel Verlag, Zuerich, 1938, p. 65. Houwink, R. R., J. Prakt. Chem., 157, 15 (1940). I. Jullander, Arkiv Kemi, Mineral, GeoL, I9B, No. 4 (1944). I. Jullander, "Ueber die Berechnung von Molekulargewichten aus Messungen von Sedimentationsgeschwindigkeit und Diffusion", in: "The Svedberg", Jubilee Volume, Almquist and Wiksells Boktryckeri AB, Uppsala, 1944. S. J. Singer, J. Polym. ScL, 1, 445 (1946). N. Bauer, "Determination of Density", in: A. Weissberger: "Technique of Organic Chemistry", vol. I, Part 1, Interscience, New York, 1949, p. 253. H. Kienitz, "Bestimmung der Dichte", in: Houben-Weyl: "Methoden der organischen Chemie", vol. Ill, Part 1, Georg Thieme Verlag, Stuttgart, 1955, p. 163. W. Geffcken, C. Beckmann, A. Kruis, Z. Physik. Chem. B, 20, 398 (1933). A. B. Lamb, R. E. Lee, J. Am. Chem. Soc, 35,1666 (1913). D. A. Maclnnes, M. O. Dayhoff, B. R. Ray, Rev. Sci. Instr., 22, 642 (1951). D. A. Maclnnes, M. O. Dayhoff, J. Am. Chem. Soc, 74, 1017 (1952). J. Stauff, G. Ruemmler, Kolloid-Z., 166, 152 (1959). P. J. Flory, W. R. Krigbaum, J. Chem. Phys., 18, 1086 (1950). P. J. Flory, J. Chem. Phys., 17, 1347 (1949). W. H. Stockmayer, E. F. Casassa, J. Chem. Phys., 20, 1560 (1952). W. R. Krigbaum, P. J. Flory, J. Polym. Sci., 9, 503 (1952). M. v. Smoluchowski, Ann. Physik., 25, 205 (1908). A. Einstein, Ann. Physik., 33, 1275 (1910). P. Debye, J. Appl. Physics, 15, 338 (1944). G. V. Schulz, Z. Physik. Chem., 193, 168 (1944). P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, Ithaca, New York, 1953. L. Mandelkern, P. J. Flory, J. Chem. Phys., 19, 984 (1951). C. Tanford, "Physical Chemistry of Macromolecules", Wiley, New York, 1961. M. V. Volkenstein, "Configurational Statistics of Polymeric Chains", Interscience, New York-London, 1963. P. J. Flory, W. R. Krigbaum, Ann. Rev. Phys. Chem., 2, 383 (1951). F. T. Wall, L. A. Hiller, Jr., Ann. Rev. Phys. Chem., 5, 267 (1954), J. J. Hermans, Ann. Rev. Phys. Chem., 8, 179 (1957). E. F. Casassa, Ann. Rev. Phys. Chem., 11, 477 (1960). W. H. Stockmayer, Makromol. Chem., 35, 54 (1960). T. B. Grimley, "The Theory of High Polymer Solutions", in: J. C. Robb, F. W. Peaker (Eds.), "Progress in High Polymers", vol. I, Academic Press, New York, 1961. R. E. Hughes, C. A. V. Frankenberg, Ann. Rev. Phys. Chem., 14, 291 (1963). P. J. Flory, J. Chem. Phys., 10, 51 (1942).
399. M. L. Huggins, J. Phys. Chem., 46, 151 (1942). 400. J. Feisst, H.-G. Elias, Makromol. Chem., 82, 78 (1965). 401. W. Burchard, M. Nosslir, Makromol. Chem., 82, 109 (1965). 402. H. L. Wagner, K. F. Wissbrun, Makromol. Chem., 81, 14 (1965). 403. M. L. Wallach, Polymer Preprints, 6/1, 53 (1965). 404. J. Leonard, H. Daoust, J. Phys. Chem., 69, 1174 (1965). 405. R R. Sunders, J. Polym. Sci. A-3, 1221 (1965). 406. J. Blanchford, R. F. Robertson, J. Polym. Sci. A, 3, 1289 (1965). 407. H.-G. Elias, H. Schlumpf, Makromol. Chem., 85, 118 (1965). 408. J. Springer et al., Ben Bunsenges. Physik. Chem., 69, 494 (1965). 409. M. J. R. Cantow et al. Polymer Preprints, 6/1, 338 (1965). 410. M. J. R. Contow et al. Makromol. Chem., 87, 248 (1965). 411. D. Kranz et al. Biochim. Biophys. Acta, 102, 514 (1965). 412. G. Meyerhoff, N. Suetterlin, Makromol. Chem., 87, 258 (1965). 413. M. Kurata, H. Utiyama, K. Kamada, Makromol. Chem., 88, 281 (1965). 414. G. Rehage et al. Makromol. Chem., 88, 232 (1965). 415. R. Kirste, W. Wunderlich, J. Polym. Sci. B, 3, 851 (1965). 416. A. Chatterjee, J. Am. Chem. Soc, 86, 3640 (1964). 417. T Lindahl et al., J. Am. Chem. Soc, 87, 4961 (1965). 418. C. Rossi, E. Bianchi, E. Pedemonte, Makromol. Chem., 89, 95 (1965). 419. H.-G. Elias, O. Etter, Makromol. Chem., 228 (1965). 420. J. B. Kinsinger, L. E. Ballard, J. Polym. Sci. A, 3, 3963 (1965). 421. M. L. Wallach, M. A. Kabayama, Polymer Preprints, 7/1, 237 (1966). 422. B. R. Jennings, H. G. Jerrard, J. Chem. Phys., 44, 1291 (1966). 423. H.-G. Elias, H. P. Lys, Makromol. Chem., 92, 1 (1966). 424. P. W. Heaps et al., Nature, 209, 397 (1966). 425. W. Brown, R. Wirkstroem, Eur. Polym. J., 1, 1 (1965). 426. O. Wetter, Z. Naturforschung, 19b, 60 (1964). 427. M. Kalfus, J. Mitus, J. Polym. Sci. A, 1/4, 953 (1966). 428. G. Allen, C. Booth, C. Price, Polymer, 7, 167 (1966). 429. J. E. Mark, R. A. Wessling, R. E. Hughes, J. Phys. Chem., 70, 1895 (1966). 430. W. H. Stockmayer, L. L. Chan, J. Polym. Sci. A, 4, 437 (1966). 431. G. C. Berry, J. Chem. Phys., 44, 4550 (1966). 432. C. Garbuglio et al., Makromol. Chem., 97, 97 (1966). 433. L. J. Fetters, H. Yu, Polymer Preprints, 7/2, 443 (1966). 434. H. Fujita et al., Biopolymers, 4, 781 (1966). 435. H. Fujita et al., Biopolymers, 4, 769 (1966). 436. J. Rosenbloom, E. C. Cox, Biopolymers, 4, 747 (1966). 437. H. Elmgren, Arkiv Kemi, 24/3, 237 (1965). 438. G. Delmas, D. Patterson, Polymer, 7, 513 (1966). 439. M. J. Hunter, J. Phys. Chem., 70, 3285 (1966).
440. J. M. G. Cowie, S. By water, J. Macromol. Chem., 1, 851 (1966). 441. M. L. Wallach, M. A. Kabayama, J. Polym. Sci. A-I, 4, 2667 (1966). 442. W. Scholtan, S. Y. Lie, Makromol. Chem., 98, 204 (1966). 443. T. Kataka et al., J. Phys. Chem., 70, 4099 (1966). 444. K. Hanafusa et al., J. Phys. Chem., 70, 4004 (1966). 445. M. Iwama et al., J. Macromol. Chem., 1, 701 (1966). 446. D. K. Carpenter, J. Polym. Sci. A, 2, 923 (1966). 447. C. Tanford et al., J. Am Chem. Soc, 89, 729 (1967). 448. N. Eliezer, Biopolymers, 5, 105 (1967). 449. B. Porsch, M. Kubin, J. Polym. Sci. C, 16, 515 (1967). 450. A. Teramoto, T. Yamashita, H. Fujita, J. Chem. Phys., 46, 1919 (1967). 451. M. Bohdanecky et al., J. Polym. Sci. A-2, 5, 343 (1967). 452. M. Nagasawa, Y. Eguchi, J. Phys., 71, 880 (1967). 453. S. Gundiah, Makromol. Chem., 104, 196 (1967). 454. A. A. Tager, V. M. Andreeva, J. Polym. Sci. C, 16, 1145 (1967). 455. M. L. Wallach, J. Polym. Sci. A-2, 5, 653 (1967). 456. J. Llopis, A. Albert, P. Usobiaga, European Polym. J., 3, 259 (1967). 457. J. Naghizadeh, J. Springer, Kolloid-Z., 215, 21 (1967). 458. J. M. Barrales-Rienda, D. C. Pepper, Polymer, 8, 337 (1967). 459. T. E. Helminiak, C. L. Brenner, W. E. Gibbs, Polymer Preprints, 8, 284 (1967). 460. G. Meyerhoff, J. Polymer Sci. C, 16, 1579 (1967). 461. D. H. Juers, H. A. Swenson, S. F. Kurath, J. Polym. Sci. A-2, 5, 361 (1967). 462. R. B. Beevers, Polymer, 8, 419 (1967). 463. R Callot, A. Banderet, J. Chim. Phys., 64, 1260 (1967). 464. S. Lapanje, C. Tanford, J. Am. Chem. Soc, 89, 5030 (1967). 465. G. Meyerhoff, Makromol. Chem., 107, 124 (1967). 466. J. M. Barrales-Rienda, D. C. Pepper, European Polym. J., 3, 535 (1967). 467. N. Kuwahara, T. Okazawa, M. Kaneko, J. Chem. Phys., 47, 3357 (1967). 468. W. J. Closs, J. G. Jerrard, B. R. Jennings, Nature, 215,1196 (1967). 469. W. Wunderlich, Makromol. Chem., 108, 315 (1967). 470. W. Scholtan, S. Y. Lie, Makromol. Chem., 108,104 (1967). 471. K. Karunakaran, M. Santappa, Makromol. Chem., I l l , 20 (1967). 472. J. Noda et al., J. Phys. Chem., 71, 4048 (1967). 473. W. Banks, C. F. Greenwood, D. J. Hourston, Trans. Faraday Soc, 64, 363 (1968); Makromol. Chem., I l l , 226 (1968). 474. R. G. Kirste, W. Wunderlich, Z. Physik. Chem., 58, 133 (1968). 475. G. Meyerhoff, U. Moritz, Makromol. Chem., 109, 143 (1968). 476. H.-G. Elias, J. Gerber, Makromol. Chem., 112, 142 (1967). 477. E. Penzel, G. V. Schulz, Makromol. Chem., 112, 260 (1968). 478. S. P. Rao, N. Santappa, J. Polym. Sci. A-I, 6, 95 (1968).
479. T. Kotaka, Y. Murakami, H. Inagaki, J. Phys. Chem., 72, 829 (1968). 480. J. Moakanin et al., J. Macromol. Sci. A: Chem., 1/8, 1497 (1967). 481. G. V. Schulz, H. Baumann, Makromol. Chem., 114, 122 (1968). 482. K. Karunakaran, M. Santappa, J. Polym. Sci. A-2, 6, 713 (1968). 483. H. Triebel, Biopolymers, 6, 449 (1968). 484. T. Kato, K. Miyaso, M. Nagasawa, J. Phys. Chem., 72,2161 (1968). 485. G. Cohen, H. Eisenberg, Biopolymers, 6, 1077 (1968). 486. T. Kotak, N. Donkai, J. Polym. Sci. A-2, 6, 1457 (1968). 487. J. Goldfarb, S. Rodriguez, Makromol. Chem., 116, 96 (1968). 488. J. Lilie, J. Springer, K. Ueberreiter, Kolloid-Z., 226, 138 (1968). 489. J. Danon, J. Polym. Sci. C, 16, 4071 (1968). 490. J. M. G. Cowie, Polymer, 9, 587 (1968). 491. Y Arnaud, J. Polym. Sci. C, 16, 4103 (1968). 492. R. G. Kirste, G. Wild, Makromol. Chem., 121, 174 (1969). 493. T. Norisuye et al., J. Chem. Phys., 49, 4330 (1968). 494. N. Kuwahara, T. Oikawa, M. Kaneko, J. Chem. Phys., 49, 4972 (1968). 495. D. N. Cramod, J. R. Urwin, Europ. Polym. J., 5, 35 and 45 (1969). 496. W. R. Moore, M. Uddin, European Polym. J., 5, 185 (1969). 497. L. A. Utracki, R. Simha, J. Fetters, J. Polym. Sci. A-2, 6, 2051 (1968). 498. M. Heskins, J. E. Guillet, J. Macromol. Sci. A, 2/8, 1441 (1968). 499. N. Kuwahara et al., J. Polym. Sci. A-2, 7, 285 (1969). 500. K. Matsumura, Makromol. Chem., 124, 204 (1969). 501. N. Kuwahara et al., J. Polym. Sci. C, 23, 543 (1968). 502. A. Kotera et al., J. Polym. Sci. C, 23, 619 (1968). 503. L. A. Papazian, Polymer, 10, 399 (1969). 504. W. Burchard, Polymer, 10, 467 (1969). 505. A. H. Rosenberg, W. Studier, Biopolymers, 7, 765 (1969). 506. W. Maechtle, H. Fischer, Angew. Makromol. Chem., 7,147 (1969). 507. J. Danon, R. Derai, European Polym. J., 5, 659 (1969). 508. T. S. Ng, G. V. Schulz, Makromol. Chem., 127, 165 (1969). 509. L. H. Tung, G. W. Knight, J. Polym. Sci. A-2, 7, 1623 (1969). 510. R. Dick, D. Roussel, H. Benoit, J. Chim. Phys., 66, 1612 (1969). 511. M. Kubin, B. Porsch, European Polym. J., 6, 97 (1970). 512. R. Jerome, V. Desreux, European Polym. J., 6, 411 (1970). 513. A. Takahashi et al., J. Phys. Chem., 74, 944 (1970). 514. H. Dautzenberg, Faserforsch. Textiltechn., 21, 117 (1970). 515. W. Maechtle, Angew. Makromol. Chem., 10, 1 (1970). 516. Y. Noguchi et al., J. Chem. Phys., 52, 2651 (1970). 517. G. Tanaka, S. Imai, H. Yamakawa, J. Chem. Phys., 52, 2639 (1970).
518. K. Kamide, K. Sugamiya, C. Nakayama, Makromol. Chem., 132, 75 (1970). 519. G. Adank, H.-G. Elias, Makromol. Chem., 102,151 (1967). 520. H.-G. Elias, H. Dietschy, Makromol. Chem., 105, 102 (1967). 521. K. D. Goebel, W. G. Miller, Macromolecules, 3, 64 (1970). 522. K. Sakato, M. Kurata, Polymer J., 1, 260 (1970). 523. R. L. Arnett, R. Q. Gregg, J. Phys. Chem., 74, 1593 (1970). 524. W. Wunderlich, Angew. Chem., 11, 73 (1970). 525. W. Wunderlich, Angew. Makromol. Chem., 11, 189 (1970). 526. G. Meyerhoff, S. Shimotsuma, Makromol. Chem., 135,195 (1970). 527. K. Matsumura, Polymer J., 1, 322 (1970). 528. M. Lechner, G. V. Schulz, Eur. Polym. J., 6, 945 (1970). 529. R. L. Cleland, J. L. Wang, Biopolymers, 9, 799 (1970). 530. T. C. Laurent, M. Ryan, A. Pietruszkiewicz, Biochim. Biophys. Acta, 42, 476 (1960). 531. W. Banks, C. T. Greenwood, J. Sloss, Makromol. Chem., 140, 109 (1970). 532. B. J. Rietveld, J. Polym. Sci. A-2, 8, 1837 (1970). 533. K.-J. Linow, B. Philipp, Faserforsch. Textiltechn., 21, 483 (1970). 534. K. Okita, A. Teramoto, H. Fujita, Polym. J., 1, 582 (1970). 535. R. H. Marchessault, K. Okamura, C. J. Su, Macromolecules, 3, 735 (1970). 536. H. A. Scheraga, L. Mandelkern, J. Am. Chem. Soc, 75, 179 (1953). 537. J. Cornibert et al., Macromolecuies, 3, 741 (1970). 538. A. Krasna, J. R. Dawson, J. A. Harpst, Biopolymers, 9, 1017 (1970). 539. A. Krasna, Biopolymers, 9, 1029 (1970). 540. K. E. Reinert, J. Strassburger, H. Triebel, Biopolymers, 10, 285 (1971). 541. K. E. Reinert, Biopolymers, 10, 275 (1971). 542. M. Gilbert, F. J. Hybart, J. Polym. Sci. A-I, 9, 227 (1971). 543. V. Petrus, J. Danihel, M. Bohdanecky, Europ. Polym. J., 7, 143 (1971), 544. W. J. Bengough, G. F. Grant, Eur. Polym. J., 7, 203 (1971). 545. W. Banks, C. T. Greenwood, J. Sloss, Eur. Polym. J., 7, 263 (1971). 546. J. R. Urwin, M. Girolamo, Makromol. Chem., 142, 161 (1971). 547. W. Banks, C. T. Greenwood, Makromol. Chem., 144, 135 (1971). 548. G. C. Berry, J. Polym. Sci. A-2,, 9, 687 (1971). 549. K. Kamada, H. Sato, Polym. J., 2, 489 (1971). 550. P F. Mijnlieff, W. J. M. Jaspers, Trans. Faraday Soc, 67/6, 1837 (1971). 551. M. Kozhokaryu, V. S. Skazka, K. G. Berdnikova, Vysokomol. Soedin., 8, 1063 (1966). 552. J. J. Poddubnyi, A. V. Podalinskii, V. A. Grechanovskii, Vysokomol. Soedin., 8, 1556 (1966). 553. A. B. Duckova et al., Vysokomol. Soedin., 8, 1814 (1966). 554. V. M. Golubev, S. Ya. Frenkel, Vysokomol. Soedin. A, 9, 1847 (1967). 555. V N. Tsvetkov et al., Vysokomol. Soedin. A, 10,74 (1968).
556. V. N. Tsvetkov et al., Vysokomol. Soedin. A, 10, 547 (1968). 557. V. M. Golubev, S. Ya. Frenkel, Vysokomol. Soedin. A, 10, 750 (1968). 558. Yu. Ye. Eizner, A. N. Cherkasov, S. J. Klenin, Vysokomol. Soedin. A, 10, 1971 (1968). 559. V N. Tsvetkov et al., Vysokomol. Soedin., 7, 1103 (1965). 560. V N. Tsvetkov et al., Vysokomol. Soedin. A, 11, 349 (1970). 561. S. R. Rafikov, Vysokomol. Soedin. A, 11, 1990 (1969). 562. A. A. Tager et al., Vysokomol. Soedin. A, 12, 1320 (1970). 563. V N. Tsvetkov et al., Vysokomol. Soedin. A, 12, 1974 (1970). 564. N. Nakata, Makromol. Chem., 149, 99 (1971). 565. L. J. Fetters, H. Yu, Macromolecules, 4, 385 (1971). 566. K. de Groot et al., Kolloid-Z., 246, 578 (1971). 567. K. E Elgert, E. Seiler, Makromol. Chem., 151, 83 (1972). 568. R. Gabler, N. C. Ford, Jr., F. E. Karasz, Polymer Preprints, 12,776 (1971). 569. K.-J. Linow, B. Philipp, Faserforsch. Textiltechn., 22, 444 (1971). 570. K. Kamada, H. Sato, Polymer J., 2, 593 (1971). 571. O. Kramer, J. E. Frederick, Macromolecules, 4,613 (1971). 572. W. L. Petikolas, Adv. Polym. Sci., 9, 285 (1972). 573. T. Homma, H. Fujita, J. Appl. Polym. Sci., 9, 1701 (1965). 574. M. Abe et al., J. Appl Polym. Sci., 8, 2549 (1965). 575. L. C. Cerny, R. C. Graham, H. James, Jr., J. Appl. Polym. Sci., 11, 1941 (1967). 576. W. J. Closs, B. R. Jennings, H. G. Jerrard, Europ. Polym. J., 4, 639 (1968). 577. H. Matsuda, H. Aonuma, S. Kuroiwa, J. Appl. Polym. Sci., 14, 335 (1970). 578. M. G. Wirick, H. Waldmann, J. Appl. Polym. Sci., 14, 579 (1970). 579. J. K. Nekrasov et al., Vysokomol. Soedin. A, 14, 866 (1972). 580. V N. Tsvetkov et al., Vysokomol. Soedin. A, 14, 427 (1972). 581. A. Wada, N. C. Ford, F. E. Karasz, Polymer Preprints, 13, 191 (1972). 582. K. Lederer, Polymer Preprints, 13, 203 (1972). 583. V N. Tsvetkov et al., Vysokomol. Soedin. A, 14, 369 (1972). 584. D. J. Goldwasser, D. J. Williams, Polymer Preprints, 12, 539 (1971). 585. K. Kubo, K. Ogino, Bull. Chem. Soc. (Japan), 44, 997 (1971). 586. T. Lucas, Compt. Rend. C, 270, 1377 (1970). 587. M. Gorden, S. Polowinski, British Polymer J. , 2 , 182 (1970). 588. K. Matsumura, Bull. Chem. Soc. (Japan), 43, 1303 (1970). 589. J. K. Nekrasov, Vysokomol. Soedin. A, 13, 1707 (1971). 590. M. Abe, M. Iwama, T. Homma, J. Chem. Soc. (Japan) Ind. Chem. Sect., 72,2313 (1969). 591. V. Bugdahl, Kautschuk, Gummi, Kunststoffe, 22, 486 (1969).
592. H. Matsuda, H. Aonuma, S. Kuroiwa, Rep. Prog. Polym. Phys. Jpn., 11, 25 (1968). 593. A. Kotera, H. Matsuda, K. Takemura, Rep. Prog. Polym. Phys. Jpn., 11, 61 (1968). 594. A. Kotera, T. Hamada, Rep. Prog. Polym. Phys. Jpn., 11,57 (1968). 595. K. Matsumura, Bull. Chem. Soc. (Japan), 42, 1874 (1969). 596. G. Moraglio, F. Zoppi, F. Danusso, Chim. Ind. (Milan), 51, 117(1969). 597. H. Matsuda, K. Yamano, H. Inagaki, J. Chem. Soc. (Japan) Ind. Chem. Sect., 73, 390 (1970). 598. M. Matsushima, M. Fukatsu, M, Kurata, Bull. Chem. Soc. (Japan), 41, 2570 (1968). 599. A. J. Hyde, A. G. Tanner, J. Colloid Interf. SdL, 28, 179 (1968). 600. Cervenka et al., Collection Czech. Chem. Commun., 33, 4248 (1968). 601. M. Abe et al., Bull. Chem. Soc. (Japan), 41, 2330 (1968). 602. V. Petrus, Collection Czech. Chem. Commun., 33, 119 (1968). 603. K. Kamide et al., Chem. High Polymers (Tokyo), 24, 679 (1967). 604. G. Moraglio, N. Oddo, Chim. Ind., 48, 224 (1966). 605. J. M. G. Cowie, E. L. Cussler, J. Chem. Phys., 46, 4886 (1967). 606. K. F. Elgert, K. Cammann, Z. Anal. Chem., 226, 193 (1967). 607. H. Sato, Bull. Chem. Soc. (Japan), 39, 2335 (1966). 608. H. Sato, Bull. Chem. Soc. (Japan), 39, 2340 (1966). 609. K. Takamizawa, Bull. Chem. Soc. (Japan), 39,1168 (1966). 610. A. Kotera et al. Bull. Chem. Soc. (Japan), 39, 1192 (1966). 611. C. Trevisoi, R. Francesconi, Chim. Ind., 47, 1184 (1965). 612. G. Moraglio, J. Masini, Chim. Ind., 47, 1050 (1965). 613. C. Trevissoi, R. Francesconi, Chim. Ind., 47, 744 (1965). 614. J. Eigner, P. Doty, J. MoI. Biol., 12, 549 (1965). 615. R. Jaenicke, M. Gehatia, Biochim. Biophys. Acta, 45, 217 (1960). 616. A. Soda, T. Fujimoto, M. Nagasawa, J. Phys. Chem., 71, 4274 (1967). 617. M. Pizzoli, G. Ceccorulli, Europ. Polym. J., 8, 769 (1972). 618. M. B. Huglin, "Light Scattering from Polymer Solutions", Academic Press, London, New York, 1972. 619. M. Helmstedt, G. Fleischer, H. K. Roth, Plaste Kautsch., 29, 628 620. G. Patlmamanoharan, H, d. Hek, A. Vrij, Colloid Polym. ScL, 261, 786 (1983). 621. G. M. Kok, A. Rudin, J. Appl. Polym. Sci., 27, 3357 (1982). 622. H. K. Mahabadi, A. Rudin, Makromol. Chem., 179, 2977 (1978). 623. B. Nystroem, J. Roots, Makromol. Chem., 180, 2419 (1979). 624. B. Chitrangad, H. R. Osmers, J. Polym. Sci., Polym. Phys. Ed., 18, 1219 (1980). 625. R. D. Ferguson, E. von Meerwall, J. Polym. Sci., Polym. Phys. Ed., 18, 1285 (1980).
626. C. Xuexin, X, Zhongde, E. von Meerwall, N. Seunge, N. Hadjichristidis, L. J. Fetters, Macromolecules, 17, 1343 (1984). 627. A. A. Berg, Vysokomol. Soedin., Ser. A, 22, 543 (1980). 628. T. Schwartz, J. Francois, G. Weill, Polymer, 21, 247 (1980). 629. W.-M. Kulicke, R. Kniewske, J. Klein, Prog. Polym. Sci., 8, 373 (1982). 630. P. Munk, T. M. Aminabhavi, R Williams, D. E. Hoffmann, M. Chmelir, Macro-molecules, 13, 871 (1980). 631. W. Maechtle, Makromol. Chem., 183, 2515 (1982). 632. W. Scholtan, Makromol. Chem., 14, 169 (1954). 633. J. Klein, K.-D. Conrad, Makromol. Chem., 181, 227 (1980). 634. J. Francois, T. Schwartz, G. Weill, Macromolecules, 13, 564 (1980). 635. J. Francois, D. Sarazin, T. Schwartz, G. Weill, Polymer, 20, 696 (1979). 636. A. DiNapoli, B. Chu, C. Cha, Macromolecules, 15, 1174 (1982). 637. S. Wunder, N. C. Ford, F. E. Karasz, J. Tan, J. Colloid Interface Sci., 63, 290 (1978). 638. L. A. Bimendina, V. V. Roganov, E. A. Bekturov, J. Polym. Sci., Polym. Symp., 44, 65 (1974). 639. H.-U. ter Meer, W. Burchard, W. Wunderlich, Colloid Polym. Sci., 258, 675 (1980). 640. G. Rosskopf, J. Polawka, G. Rehage, W. Borchard, Ber. Bunsenges. Phys. Chem., 83, 360 (1979). 641. B. Chu, D. Lee, Macromolecules, 17, 926 (1984). 642. R. B. Flippen, Soc. Plast. Eng. Tech. Pap., 29, 550 (1983). 643. M. Dolezalova, V. Petrus, Z. Tuzar, M. Bohdanecky, Eur. Polym. J., 12, 701 (1976). 644. M. Dolezalova, V. Petrus, M. Bohdanecky, Collect. Czech. Chem.. Commun., 42, 1960 (1977). 645. B. Nystroem, L. O. Sundeloef, M. Bohdanecky, V. Petrus, J. Polym. Sci., Polym. Lett. Ed., 17, 543 (1979). 646. D. Kunz, A. Thurn, W. Burchard, Colloid Polym. Sci., 261, 635 (1983). 647. M. Schmidt, D. Nerger, W. Burchard, Polymer, 20, 582 (1979). 648. M. Okabe, K. Shibuya, H. Matsuda, Kobunshi Ronbushu, 38, 15 (1981). 649. I. Dekany, S. Sipos, F. Szanto, Coll. Polym. Sci., 251, 752 (1973). 650. N. Ochiai, V. Fujina, Y. Tadokoro, I. Murakami, Polym. J., 13, 351 (1981). 651. A. Malick, Polimery (Warsaw), 24, 166 (1979). 652. N. S. Nametkin, O. B. Semenov, S. G. Durgaryan, V. S. Skazka, V. G. Filippova, V. Ya. Nikolayev, Polym. Sci. (USSR)A, 17, 1115 (1975). 653. D. Landheer, S.-L. Malhatra, J. Macromol. Sci., Chem., 16, 1349 (1981). 654. J. C. Selser, Macromolecules, 14, 346 (1981). 655. I. Noda, S. Goto, M. Nagasawa, Polym. J., 8, 507 (1976). 656. I. Noda, K. Mizatani, K. Tadaya, Macromolecules, 10., 618 (1977).
657. P. M. Lavrenko, A. A. Bojkov, L. N. Andraeva, E. V. Beljaeva, A. F. Podolskij, Vysokomol. Soedin., Ser. A, 23, 1937 (1981). 658. P. Konig, F. Wolf, Plaste Kautsch., 25, 21 (1978). 659. E. Ozdemir, R. W. Richards, Polymer, 24, 1097 (1983). 660. N. Nemoto, Y. Makita, Y. Tsunashima, M. Kurata, Macromolecules, 17, 425 (1984). 661. J. Hadgraft, A. J. Hyde, R. W. Richards, J. Chem. Soc, Faraday Trans., 2, 75, 1495 (1979). 662. M. Adam., M. Delsanti, J. de Physique, 37, 1045 (1976). 663. N. Nemoto, Y Tsunashima, M. Kurata, Polym. J., 13, 827 (1981). 664. M. Adam, M. Delsanti, Macromolecules, 10, 1229 (1977). 665. T. M. Aminabhavi, P. Munk, Macromolecules, 12, 1194 (1979). 666. R. A. Frost, D. Caroline, Macromolecules, 10, 616 (1977). 667. G. Pouyet, F. Francois, J. Dayantis, G. Weill, Macromolecules, 13, 176 (1980). 668. M. Schmitt, Macromolecules, 17, 553 (1984). 669. N. C. Ford, F. E. Karasz, J. E. Owen, Farad. Disc. Chem. Soc, 49, 228 (1970). 670. C. M. Kok, F. R. Hallett, A. Rudin, Eur. Polym. J., 21, 33 (1985). 671. J. C. Selser, Macromolecules, 12, 909 (1979). 672. T. A. King, M. F. Treadaway, J. Chem. Soc, Faraday Trans., 2, 72, 1473 (1976). 673. T. A. King, A. Knox, J. D. G. McAdam, Polymer, 14, 293 (1973). 674. T. A. King, A. Knox, W. J. Lee, J. D. G. McAdam, Polymer, 14, 151 (1973). 675. I. Nishio, A. Wada, Polym. J., 12, 145 (1980). 676. Y-H. Lin, B. Chu, Macromolecules, 14, 385 (1981). 677. G. D. Patterson, J. P. Jarry, C. P. Lindsey, Macromolecules, 13, 668 (1980). 678. W. Brown, R. M. Johnsen, P. Stilbs, Polym. Bull., 9, 305 (1983). 679. E. J. Amis, C. C. Han, Y. Matsushita, Polymer, 25, 650 (1984). 680. C. C. Han, A. Z. Akcasu, Polymer, 22, 1165 (1981). 681. C. C. Han, A. Z. Akcasu, Amer. Chem. Soc, Div. Polym. Chem., Polym. Prepr., 22, 68 (1981). 682. G. Allen, P. Vasudevan, E. Y Hawkins, T. A. King, J. Chem. Soc, Faraday Trans., 2, 73, 449 (1977). 683. J. Roovers, P. M. Toporowski, J. Polym. Sci., Polym. Phys. Ed., 18, 1907 (1980). 684. T. F. Reed, J. E. Frederick, Macromolecules, 4, 72 (1971). 685. J. J. Mulderije, Macromolecules, 13, 1207 (1980). 686. P. Vidakovic, C. Allain, F. Rondelez, Macromolecules, 15, 1571 (1982). 687. C. C. Han, F. L. McCrackin, Polymer, 20, 4278 (1979). 688. D. C. Han, Polymer, 20, 259 (1979). 689. C. Destor, F. Rondelez, Polymer, 22, 67 (1981). 690. F. W. Wang, F. L. McCrackin, Polymer, 24, 1541 (1983). 691. J. C. Brown, P. N. Pusey, R. Dietz, J. Chem. Phys., 62, 1136 (1975) 692. V. J. Novotny, J. Chem. Phys., 78, 183 (1982).
693. A. M. Jamieson, M. E. McDonnell, Adv. Chem. Ser., 174, 163 (1979). 694. M. Okabe, J. Polym. Sci., 22, 477 (1984). 695. T. A. King, M. F. Treadaway, J. Chem. Soc, Faraday Trans., 2, 73, 1616 (1977). 696. C. C. Han, A. Z. Akcasu, Macromolecules, 14,1080 (1981). 697. J. J. Mulderije, Macromolecules, 15, 506 (1982). 698. P. Vidakovic, F. Rondelez, Macromolecules, 16, 253 (1983). 699. P. Vidakovic, C. Allain, F. Rondelez, J. Phys. (Paris), 42, 323 (1981). 700. E. Gulari, E. Gulari, T Chu, B. Chu, Polymer, 20, 347 (1979). 701. T. Cosgrove, J. M. Sutherland, Polymer, 24, 534 (1983). 702. G. Ponyet, F. Candau, J. Dayantis, Makromol. Chem., 177, 2973 (1976). 703. V. Petrus, B. Porsch, B. Nystroem, L. O. Sundeloef, Makromol. Chem., 184, 295 (1983). 704. M. Bohdanecky, V. Petrus, B. Porsch, L. O. Sundeloef, Makromol. Chem., 184, 309 (1983). 705. H. Huber, W. Burchard, L. J. Fetters, Macromolecules, 17, 541 (1984). 706. T. L. Yu, H. Reiharian, A. M. Jamieson, Macromolecules, 13, 1590 (1980). 707. B. Nystroem, J. Roots, R. Bergman, Polymer, 20, 157 (1979). 708. J. Roots, B. Nystroem, J. Polym. Sci., Polym. Phys. Ed., 19, 479 (1981). 709. Y Tsunashima, N. Nemoto, M. Kurata, Macromolecules, 16, 1184(1983). 710. Y Tsunashima, N. Nemoto, Macromolecules, 16, 1941 (1983). 711. B. Nystroem, B. Porsch, L. O. Sundeloef, Eur. Polym. J., 13, 683 (1977). 712. B. Nystroem, J. Roots, Eur. Polym. J., 14, 551 (1978). 713. T. Nose, B. Chu, Macromolecules, 12, 590 (1979). 714. M. J. Pritchard, D. Caroline, Macromolecules, 14, 424 (1981). 715. S. J. Candau, I. Butler, T. A. King, Polymer, 24, 1601 (1983). 716. A. C. Quano, J. Colloid Interface Sci., 63, 275 (1978). 717. V. S. Skazka, Russ. Chem. Rev., 53, 506 (1984); V. S. Skazka, Vysokomol. Soed. A, 17, 2607 (1975). 718. M. E. McDonnell, A. M. Jamieson, J. Polym. Sci., Polym. Phys. Ed., 18, 1781 (1980). 719. T. L. Yu, H. Reihanian, A. M. Jamieson, Macromolecules, 13, 1590 (1980). 720. H. Reihanian, T. L. Yu, A. M. Jamieson, Am. Chem. Soc, Div. Polym. Chem. Polym. Prepr., 22, 78 (1981). 721. M. E. McDonnell, A. M. Jamieson, J. Macromol. Sci., Phys., 13, 67 (1977). 722. T. L. Yu, H. Reihanian, J. G. Southwick, A. M. Jamieson, J. Macromol. Sci., Phys., 18, 777 (1981). 723. W. Mandema, H. Zeldenrust, Polymer, 18, 835 (1977). 724. J. Roots, B. Nystroem, L. O. Sundeloef, B. Porsch, Polymer, 20, 337 (1979). 725. B. Nystroem, J. Roots, Polymer, 18, 1289 (1977).
726. J. Roots, B. Nystroem, Macromolecules, 15, 553 (1982). 727. S. Bantle, M. Schmidt, W. Burchard, Macromolecules, 15, 1604 (1982). 728. J. Raczek, G. Meyerhoff, Macromolecules, 13, 1251 (1980). 729. J. Raczek, Eur. Polym. J., 19, 607 (1983). 730. J. Raczek, Eur. Polym. J., 18, 847 (1982). 731. J. Raczek, Eur. Polym. J., 18, 393 (1982). 732. P. N. Pusey, J. M. Vaughan, G. Williams, J. Chem. Soc., Faraday Trans., 2, 70, 1696 (1974). 733. T. M. Aminabhavi, J. Macromol. ScL, Chem., 19, 687 (1983). 734. B. Porsch, L. O. Sundeloef, Collect. Czech. Chem. Commun., 46, 3018 (1981). 735. J. Hendrix, B. Saleh, K. Gnadig, L. de Maeyer, Polymer, 18, 10 (1977). 736. V. Petrus, B. Porsch, B. Nystroem, L. O. Sundeloef, Macromolecular Chemistry and Physics (Base), 183,1279 (1982). 737. M. H. Birnboim, H. Weiss, J. Polym. ScL, Polym. Phys. Ed., 17, 2225 (1979). 738. K. Ohbayashi, M. Minoda, M. Utiyama, Macromolecules, 14, 1031 (1981). 739. M. Schmidt, W. Burchard, N. C. Ford, Macromolecules, 11, 452 (1978). 740. K. S. Schmitz, M. Lu, J. Gauntt, J. Chem. Phys., 78, 5059 (1983). 741. C. M. Trotter, D. N. Pinder, J. Chem. Phys., 75,118 (1981). 742. R. S. Koene, M. Mandel, Macromolecules, 16, 220 (1983). 743. H. Matsuda, I. Yamada, M. Okabe, S. Kuroiwa, Polym. J., 9, 527 (1977). 744. Y. Kambe, C. Honda, Polym. Commun., 24, 208 (1983). 745. B. Appelt, G. Meyerhoff, Macromolecules, 13,657 (1980). 746. J. C. Brown, P N. Pusey, J. W. Goodwin, R. H. Otterwill, J. Phys. A, 8, 664 (1975). 747. R. S. Koene, T. Nicolai, M. Mandel, Macromolecules, 16, 227 (1983). 748. V. S. Skazka, G. V. Tarasova, Polym. ScL USSR, 17, 2062 (1975). 749. E. Bortel, A. Kochunowski, Macromol. Chem., Rapid Commun., 1, 205 (1980). 750. W. Brown, P. Stilbs, Polymer, 24, 188 (1983). 751. B. Nystroem, S. Boileau, P. Hemery, J. Roots, Eur. Polym. J., 17, 249 (1981). 752. K. Kubota, B. Chu, Macromolecules, 16, 105 (1983). 753. O. V. Kallistov, J. E. Svetlov, I. G. Silinskaya, V. P. Sklizkova, V. V. Kudriavtsev, M. M. Koton, Eur. Polym. J., 18, 1103 (1982). 754. L K. Nekrusov, Vysokomol. Soedin. A, 19, 910 (1977). 755. V. N. Tovetkov, P. N. Lavrenko, G. M. Pavlov, S. V. Busin, E. P. Astapenko, A. A. Bojkov, N. A. Shildyayeva, S. A. Didenko, B. F. Malicnenko, Vysokomol. Soedin. A, 24, 2343 (1982). Polym. Sci. USSR 24, 2689 (1982). 756. W. Brown, Macromolecules, 17, 66 (1984). 757. B. Chu, E. Gulari, Macromolecules, 12, 445 (1979). 758. C. J. Edwards, R. F. Stapto, J. A. Semlyen, Polymer, 23,865 (1982).
759. C. J. Edwards, R. F. Stapto, J. A. Semlyen, Polymer, 21,781 (1980). 760. C. J. Edwards, S. Bantle, W. Burchard, R. F Stapto, J. A. Semlyen Polymer, 23, 873 (1982). 761. N. S. Nametkin, O. B. Semonov, S. G. Durgaryan, V. S. Skazka, V. G. Filippova, Polym. Sci. USSR, 17, 1115 (1975). 762. S.-J. Ishida, T. Kitagawa, Y. Nakamoto, K. Kaneko, Polym. Bull., 10, 533 (1983). 763. G. E. Prozorova, A. V. Pavlov, A. M. Scetinin, M. M. Iovleva, S. P. Papkov, Vysokumol. Soedin. B, 19, 750 (1977). 764. E. S. Bilimova, V. M. Golubev, Vysokomol. Soedin. B, 21, 854 (1979). 765. R. T. van Emmerik, C. A. Smolders, Eur. Polym. J., 9, 931 (1973). 766. D. Singh, K. D. Nigam, J. Appl. Polym. Sci., 23, 3021 (1979). 767. R. G. Griskey, G. H. Sedahmed, J. Appl. Polym. Sci., 17, 3761 (1973). 768. W. Sutter, W. Burchard, Makromol. Chem., 179, 1961 (1978). 769. S. J. Ishida, H. Komatsu, H. Katoh, M. Saito, Y. Miyazaki, K. Kamide, Makromol. Chem., 183, 3075 (1982). 770. F H. Holmes, D. I. Smith, J. Chem. Soc, Faraday Trans., 53, 69 (1957) 771. V N. Tsvetkov, E. J. Rjumtsev, L. N. Andreeva, N. V. Pogodina, P. N. Lavrenko, L. J. Kutsenko, Eur. Polym. J., 10,563 (1974). 772. G. Meyerhoff, G. Buldt, Makromol. Chem., 175, 675 (1974). 773. D. B. Sellen, Polymer, 16, 169 (1975). 774. G. M. Pavlov, S. J. Frenkel, Vysokomol. Soedin. A, 25, 1015 (1983). 775. T. Uemara, T. Moro, J. Komiyama, T. Lijima, Macromolecules, 12, 737 (1979). 776. B. N. Preston, W. D. Comper, A. E. Hughes, I. Snook, W. van Hagen, J. Chem. Soc, Faraday Trans., 1, 78, 1209 (1982). 777. W. Brown, P. Stilbs, R. M. Johnsen, J. Polym. Sci., Polym. Phys. Ed., 20, 1771 (1982). 778. D. B. Sellen, Polymer, 16, 561 (1975). 779. E. M. Fahner, G. H. GroBmann, K. H. Ebert, Makromol. Chem., 185, 2205 (1984). 780. H. Elmgren, J. Polym. Sci., Polym. Lett. Ed., 20, 389 (1982). 781. W. R. Sharman, E. L. Richards, G. N. Malcolm, Biopolymers, 17, 2817 (1978). 782. L. D. Sundeloef, B. Nystroem, J. Polym. Sci., Polym. Lett. Ed., 15, 377 (1977). 783. B. Nystroem, R. Bergman, Eur. Polym. J., 14, 431 (1978). 784. S. A. Chung, D. G. Gray, J. Colloid Interface Sci., 67, 255 (1978). 785. J. G. Southwick, A. M. Jamieson, J. Blackwell, Appl. Polym. Symp., 37, 385 (1983). 786. J. G. Southwick, M. E. McDonnell, A. M. Jamieson, J. Blackwell, Macromolecules, 12, 305 (1979). 787. G. Holzwarth, Carbohydr. Res., 66, 173 (1978).
788. B. Nystroem, J. Roots, Eur. Polym. J., 16, 201 (1980). 789. M. E. McDonnell, A. M. Jamieson, Biopolymers, 15, 1283 (1976). 790. K. J. Linow, O. Okatova, B. Philipp, Acta Polym., 34, 376 (1983). 791. G. Muller, Polym. Bull., 11, 391 (1984). 792. K. J. Linow, B. Philipp, Faserforsch. Textiltech., 29, 452 (1978). 793. B. Nystroem, J. Roots, Polymer, 21, 183 (1980). 794. J. L. Duda, Y. C. Ni, J. S. Vrentas, Macromolecules, 12,459 (1979). 795. G. Buldt, G. Meyerhoff, Makromol. Chem., Suppl., 1, 359 (1975). 796. G. Buldt, Eur. Polym. J., 12, 239 (1976). 797. M. Okabe, H. Matsuda, J. Appl. Polym. Sci., 28, 2325 (1983). 798. A. M. Jamieson, C. T. Presley, Int. J. Polym. Mater., 4, 161 (1976). 799. P. T. Callaghan, D. N. Pinder, Macromolecules, 13, 1085 (1980). 800. H. Fujita, Foundations of Ultracentrifugal Analysis, Wiley, New York, 1975 801. V. E. Eskin, I. A. Baranovskaja, Vysokomol. Soedin. A, 19, 533 (1977). 802. O. Prochazka, Z. Tuzar, P. Kartochvil, Makromol. Chem., 184, 2097 (1983). 803. M. D. Lechner, Eur. Polym. J., 17, 3 (1981). 804. L. Wolinski, K. Witkowski, Z. Turzynski, Makromol. Chem., 180, 2399 (1979). 805. H. Suzuki, Brit. Polymer J., 11, 35 (1979). 806. H. Suzuki, Brit. Polymer J., 11, 41 (1979). 807. V. Chrastova, D. Mikulasova, J. Lacok, P. Citovicky, Polymer, 22, 1054 (1981). 808. Y. Miyaki et al., Macromolecules, 11, 1180 (1978). 809. H. Utiyama et al., Macromolecules, 11, 506 (1978). 810. B. Appelt, G. Meyerhoff, Macromolecules, 13,657 (1980). 811. K. Kubota, K. M. Abbey, B. Chu, Macromolecules, 16,137 (1983). 812. M. Hara, A. Nakajima, Polym. J., 12, 711 (1980). 813. H. Geerissen, B. A. Wolf, Makromol. Chem., Rapid Comm.,3, 17 (1982). 814. R. Kniewske, W. M. Kulicke, Makromol. Chem., 184,2173 (1983). 815. J. Roots, B. Nystrom, Eur. Polym. J., 14, 773 (1978). 816. S. F. Sun, Makromol. Chem., Rapid Comm, 4, 203 (1983). 817. M. W. van den Esker, J. Laven, A. Broeckman, A. Vrij, J. Poiym. Sci., Polym. Phys. Ed., 14, 1953 (1976). 818. H. Utiyama, K. Takenaka, M. Mizumori, M. Fukuda, Macromolecules, 7, 28 (1974). 819. G. Glockner et al., Acta Polymerica, 30, 10 (1979). 820. J. Stejskal, J. Horska, P. Kratochvil, J. Appl. Polym. Sci., 27, 3929 (1982). 821. C. C. Han, P H. Verdier, H. L. Wagner, J. of Research, 83, 185 (1978). 822. F. M. Mirabella jr., J. Appl. Polym. Sci., 25, 1775 (1980).
823. J. Vazquez, L. de Bias, M. G. Prolongo, R. M. Masegosa, I. Hernandez-Fuentes, A. Horta, Makromol. Chem., 185, 797 (1984). 824. H. Dautzenberg, J. Polym. Sci., Polym. Symp., 61, 83 (1977). 825. H. Suzuki, Y. Miyazaki, K. Kamide, Eur. Polym. J., 16,703 (1980). 826. H. Suzuki, et al., Eur. Polym. J., 18, 831 (1982). 827. J. Stejskal, J. Horska, Makromol. Chem., 183,2527 (1982). 828. L. M. Ionescu, I. Petrea, 1.1. Bujor, I. Demetrescu, Makromol. Chem., 184, 1005 (1983). 829. M. Hara, A. Nakajima, Polym. J., 12, 701 (1980). 830. T. Nose, B. Chu, Macromolecules, 12, 590 (1979). 831. M. Schmidt, D. Nerger, W. Burchard, Polymer, 20, 582 (1979). 832. M. D. Lechner, D. G. Steinmeier, Makromol. Chem., Rapid Commun., 2, 421 (1981). 833. T, M. Aminabhavi, R. C. Patel, K. Bridger, E. S. Jayadevappa, J. Macromol. Sci. Chem. A, 17, 1283 (1982). 834. K. Gekko, J. Am. Chem. Soc, 103, 415 (1981). 835. A. L. Izjumnikov, G. R. Polkjaova, A. R. Gautmacher, Vysokomol. Soedin. A, 25, 2341 (1983). 836. C. J. Edwards, R. F. Stepto, J. A. Semlyen, Polymer, 23,869 (1982). 837. V. N. Tsvetkov, S. O. Tsepelevich, Eur. Polym. J., 19, 267 (1983). 838. I. Noda, T. Imai, T. Kitano, M. Nagasawa, Macromolecules, 14, 1303 (1981). 839. T. Sato, T. Norisuye, H. Fujita, Polym. J., 16, 341 (1984). 840. G. V. Schulz, E. Penzel, Makromol. Chem., 112, 260 (1968). 841. G. C. Berry, J. Chem. Phys., 44, 4550 (1966). 842. H. J. Cantow, G. V. Schulz, Z. Phys. Chem. N.F., 2, 117 (1954). 843. T. Matsumoto, N. Nishioka, H. Fujita, J. Polym. Sci. A-2, 10, 23 (1972). 844. T. Norisuye, K. Kawahara, A. Teramoto, H. Fujita, J. Chem. Phys., 49, 4330 (1968). 845. T. Kato, K. Miyaso, I. Noda, T. Fujimoto, M. Nagasawa, Macromolecules, 3, 777 (1970). 846. W. Banks, C. T. Greenwood, Eur. Polym. J., 4, 245 (1968). 847. D. Rahlwes, R. G. Kirste, Makromol. Chem., 178, 1793 (1977). 848. G. Glockner, Eur. Polym. J., 15, 727 (1979). 849. A. L. Izyumnikov et al., Vysokomol. Soedin. A, 25, 582 (1983). 850. T. Tsuji, T. Norisuye, H. Fujita, Polym. J., 7, 558 (1975). 851. T. L. Welzen, Brit. Polym. J., 12, 95 (1980). 852. D. B. Sellen, Polymer, 16, 773 (1975). 853. B. J. Berne, R. Pecora, "Dynamic Light Scattering", Wiley, New York, 1976. 854. B. Chu, "Laser Light Scattering", Academic Press, New York, 1974. 855. J. Raczek, Eur. Polym. J., 19, 607 (1983). 856. D. E. Koppel, J. Chem. Phys., 57, 4814 (1972). 857. G. S. Greschner, Eur. Polym. J., 20, 475 (1984).
858. J. Raczek, Eur. Polym. J., 18, 393 (1982). 859. H.-G. Elias, R. Bareiss, J. G. Watterson, Advan. Polym. Sci., 11, 111 (1973). 860. H. Yamakawa, "Modern Theory of Polymer Solutions", Harper and Row, New York, 1971. 861. J. A. Marquese, J. M. Deutch, J. Chem. Phys., 73, 5396 (1980). 862. B. Nystrom, J. Roots, J. Macromol. Sci., Rev. Macromol. Chem. C, 19, 35 (1980). 863. W. Brown, P. Stilbs, R. M. Johnsen, J. Polym. Sci., Polym. Phys. Ed., 20, 1771 (1982). 864. R. G. Kitchen, B. N. Preston, J. D. Wells, J. Polym. Sci., Polym. Symp., 55, 39 (1976). 865. J. E. Tanner, K.-J. Liu, J. E. Andersson, Macromolecules, 4, 586 (1971); H. Hervet, L. Leger, F. Rondelez, Phys. Rev. Lett., 42, 1681 (1979). 866. W. G. McMillan, J. E. Mayer, J. Chem. Phys., 13, 276 (1945). 867. B. H. Zimm, J. Chem. Phys., 14, 164 (1946). 868. A. C. Albrecht, J. Chem. Phys., 27, 1002 (1957). 869. C. H. Paul, D. A. Yphantis, Anal. Biochem., 48,588 (1972). 870. J. Flossdorf, H. Schilling, K. R Schindler, Makromol. Chem., 179, 1617 (1978). 871. W. Machtle, U. Klodwig, Makromol. Chem., 180, 2507 (1979). 872. R. Giordano, G. Maisano, F. Mellamace, N. Nicoli, F Wanderlengh, J. Chem. Phys., 75, 4770 (1981). 873. J. D. Harrey, R. Geddes, P. R. Wills, Biopolymers, 18, 2249 (1979). 874. Y. S. Oh, C. S. Johnson Jr., J. Chem. Phys., 74,2717 (1981). 875. N. A. Weissmann, R. C. Pan, A. R. Ware, J. Chem. Phys., 70, 2897 (1979). 876. D. B. Sellen, Polymer, 14, 359 (1973). 877. D. Langevin, F. Rondelez, Polymer, 19, 875 (1978). 878. R. Ford, E. Jakeman, C. J. Oliver, E. R. Pike, R. J. Blagrove, E. Wood, A. R. Peacocke, Nature, 227, 242 (1970). 879. B. D. Fair, D. Y. Chao, A. M. Jamieson, J. Colloid Interface Sci., 66, 323 (1978). 880. E. Hantz, A. Cao, E. Taiilandier, P. Tivant, M. Drifford, N. Defer, J. Kruh, Int. J. Biol. Macromol., 5, 130 (1983). 881. E. J. Amis, P. A. Janmey, J. D. Ferry, H. Yu, Polym. Bull., 6, 13 (1981). 882. G. C. Fletcher, Biopolymers, 15, 2201 (1976). 883. H. Reihanian, A. M. Jamieson, Macromolecules, 12, 684 (1979). 884. J. Douglas, H. Eisenberg, Biopolymers, 15, 61 (1976). 885. N. Parthasarathy, K. S. Schmitz, M. K. Cowman, Biopolymers, 19, 1137 (1980). 886. F. C. Chen, B. Chu, J. Chem. Phys., 68, 2235 (1977). 887. K. S. Schmitz, Biopolymers, 18, 479 (1979). 888. S.-C. Lin, J. M. Schurr, Biopolymers, 17, 425 (1978). 889. W. L. Wun, W. Prins, Biopolymers, 14, 111 (1975). 890. W. B. Veldkamp, I. R. Votano, Biopolymers, 19, 111 (1980). 891. F. C. Chen, A. Yeh, B. Chu, J. Chem. Phys., 65, 4508 (1977). 892. D. F. Nicoli, G. B. Benedek, Biopolymers, 15, 2421 (1976).
893. F. C. Chen, A. Chrzeszczyk, B. Chu, J. Chem. Phys., 64, 3403 (1976). 894. R. D. Camerini-Otero, R N. Pusey, D. E. Koppel, D. W. Schaefer, R. M. Franklin, Biochemistry, 13, 960 (1974). 895. S. B. Dubin, G. B. Benedek, F. C. Bancroft, D. J. Freifelder, MoI. Biol., 54, 547 (1970). 896. R. G. Kitchen, B. N. Preston, J. D. Wells, J. Polym. Sci., Polym. Symp., 55, 39 (1976). 897. J. Carlfors, R. Rymden, B. Nystroem, Polym. Commun., 24, 263 (1983). 898. L. J. Fetters, N. Hadjichristidis,J. S. LindnerJ.W. Mays, W.W. Wilson, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 32 (1), 640-641 (1991). 899. K. Akasaka, Y. Nakamura, T. Norisuye, A. Teramoto, Polym. J., 26 (3), 363 (1994). 900. K. Akasaka, Y. Nakamura, T. Norisuye, A. Teramoto, Polym. J., 26 (12), 1387(1994). 901. Y. Nakamura, K. Akasaka, K. Katayama, T. Norisuye, A. Teramoto, Macromolecules, 25 (3), 1134 (1992). 902. H. Geerissen, P. Schuetzeichel, B. A. Wolf, Macromolecules, 24 (1), 304 (1991). 903. R. H. Colby, L. J. Fetters, W. W. Groessly, Macromolecules, 20 (9), 2226 (1987). 904. C. Wu, D. Lilge, J. Appl. Polym. Sci., 50 (10), 1753 (1993). 905. J. W. Pope, B. Chu, Macromolecules, 17 (12), 2633 (1984). 906. E. Nordmeier, U. Lanver, M. D. Lechner, Macromolecules, 23 (4), 1072 (1990). 907. S. Kinugasa, H. Nakahara, J. I. Kawahara, Y. Koga, H. Takaya, J. Polym. Sci., Part B: Polym. Phys., 34 (3), 583 (1996). 908. B. Chu, D. Wu, Macromolecules, 20 (7), 1606 (1987). 909. M. Nakata, Y. Nakano, K. Kawate, Macromolecules, 21 (8), 2509 (1988). 910. B.C. Simionescu, S. loan, C.I. Simionescu, J. Polym. Sci., Polym. Phys. Ed., 25 (4), 829 (1987). 911. M. Naoki, I. H. Park, S. L. Wunder, B. Chu, J. Polym. Sci., Polym. Phys. Ed., 23 (12), 2567 (1985). 912. A. Karandinos, S. Nan, J. W. Mays, N. Hadjichristidis, Macromoiecules, 24 (8), 2007 (1991). 913. M. Nakata, N. Numasawa, Macromolecules, 18 (9), 1736 (1985). 914. I. Katime, R. B. Valenciano, M. S. Anasgasti, D. Yoldi, Eur. Polym. J., 21 (5), 485 (1985). 915. F. Abe, Y. Einaga, H. Yamakawa, Macromolecules, 28 (3), 694 (1995). 916. R. M. Masegosa, M. G. Prolongo, I. Hernandez-Fuentes, A. Horta, Macromolecules, 17 (6), 1181 (1984). 917. F. Abe, Y. Einaga, H. Yamakawa, Macromolecules, 27 (12), 3262 (1994). 918. M. Kamijo, F. Abe, Y Einaga, H. Yamakawa, Macromolecules, 28 (12), 4159 (1995). 919. M. B. Huglin, M. K. Khorasani, P. M. Sasia, Polymer, 29 (9), 1590 (1988). 920. H. Yamakawa, F. Abe, Y. Einaga, Macromolecules, 27 (20), 5704 (1994). 921. M. J. Solomon, S. J. Muller, J. Polym. Sci., Part B: Polym. Phys., 34(1), 181 (1996).
922. Y. Nakamura, T. Norisuye, A. Teramoto, J. Polym. Sci., Polym. Phys. Ed., 29 (2), 153 (1991). 923. Y. Nakamura, T. Norisuye, A. Teramoto, Macromolecules, 24(17), 4904 (1991). 924. L. J. Vagberg, K. A. Cogan, A. P. Gast, Macromolecules, 24 (7), 1670 (1991). 925. L. Zhang, D. Qin, R. Qian, Polym. J., 17 (4), 657 (1985). 926. C. M. Kok, A. Rudin, Eur. Polym. J., 22 (2), 107 (1986). 927. S. Allorio, S. Pispas, E. Siakali-Kioulafa, N. Hadjichristidis, J. Polym. Sci., Part B: Polym. Phys., 33 (16), 2229 (1995). 928. L. Willner, O. Jucknischke, D. Richter, L. J. Fetters, J. S. Huang, B. Farago, Makromol. Chem., Macromol. Symp., 61, 122 (1992). 929. K. Venkataswamy, A. M. Jamieson, R. G. Petshek, Org. Coat. Appl. Polym. Sci. Proa, 55, 339 (1986). 930. T. Nicolai, W. Brown, Macromolecules, 29 (5), 1698 (1996). 931. M. Ragnetti, D. Geiser, H. Hoecker, R. C. Oberthuer, Macromol. Chem. Phys., Suppl., 186 (8), 1701 (1985). 932. H. Zhang, Z. He, Polym. Commun., 32 (8), 239 (1991). 933. J. R. Quintana, M. Villacampa, I. A. Katime, Polymer, 34 (11), 2380(1993). 934. F. Gundert, B. A. Wolf, J. Chem. Phys., 87 (10), 6156 (1987). 935. J. Li, J. Mays, Polym. Prepr. (Am. Chem. Soc, Div. Poiym. Chem.), 35 (1), 130 (1994). 936. E. Nordmeier, W. Dauwe, Polym. J., 24 (3), 229 (1992). 937. A. M. Pedley, J. S. Higgins, D. G. Peiffer, A. R. Rennie, Macromolecules, 23 (9), 2494 (1990). 938. B. Gantchev, M. Mihailov, Polym. Bull., 17 (2), 181 (1987). 939. C. P. Patel, H. C. Trivedi, K. C. Patel, R. D. Patel, J. Polym. Mater., 8 (3), 231 (1991). 940. J. Danhelka, M. Netopilik, M. Bohdanecky, J. Polym. Sci., Polym. Phys. Ed., 25 (9), 1801 (1987). 941. K. Kamide, M. Saito, K. Kowsaka, Polym. J., 19 (10), 1173 (1987). 942. J. Desbrieres, R. Borsali, M. Rinaudo, M. Milas, Macromolecules, 26 (10), 2592 (1993). 943. K. Akiyoshi, S. Deguchi, N. Moriguchi, A. Yamaguchi, J. Sunamoto, Macromolecules, 26 (12), 3062 (1993). 944. T. Sato, T. Norisuye, H. Fujita, Macromolecules, 17 (12), 2696 (1984). 945. K. Kawakami, T. Norisuye, Macromolecules, 24 (17), 4898 (1991). 946. E.A. Lange, Org. Coat. Appl. Polym. Sci. Proa, 55, 567 (1986). 947. P: Wissenburg, T. Odijk, P. Cirkel, M. Mandel, Macromolecules, 28 (7), 2315 (1995). 948. T. Nicolai, M. Mandel, Macromolecules, 22 (1), 438 (1989). 949. L. M. DeLong, P. S. Russo, Macromolecules, 24 (23), 6139 (1991). 950. M. A. Tracy, R. Pecora, Macromolecules, 25 (1), 337 (1992).
951. G. D. Rudkovskaja, B. M. Sabsels, I. A. Baranovskaja, N. N. Uljanova, u.a., Vysokomol. Soedin., A, 31 (1), 133 (1989). 952. A. Kidera, A. Nakajima, Macromolecules, 17 (4), 659 (1984). 953. P. Metzger Cotts, Org. Coat. Appl. Polym. Sci. Proa, 53, 336 (1985). 954. D. A. Foucher, R. Ziembinski, B.-Z. Tang, P. M. Macdonald, J. Massey, Jaeger, Macromolecules, 26 (11), 2878 (1993). 955. P. M. Cotts, S. Feriine, G. Dagli, D. S. Pearson, Macromolecules, 24 (25), 6730 (1991). 956. M. Anasagasti, I. Katime, C. Strazielle, Macromol. Chem. Phys., Suppl., 188 (1), 201 (1987). 957. B. Celda, A. Campos, R. Gavara, J. E. Figueruelo, Polymer, 27 (8), 1247 (1986). 958. A. Campos, B. Celda, J. Mora, J. E. Figueruelo, Polymer, 25 (10), 1479 (1984). 959. M. R. Gomez-Anton, A. Horta, I. Hernandez-Fuentes, Polym. Commun., 27 (1), 5 (1986). 960. S. Wang, J. E. Mark, Polym. Bull., 31 (2), 205 (1993). 961. A. Lapp, C. Strazielle, Makromol. Chem., Rapid Commun., 6 (9), 591 (1985). 962. A. Lapp, C. Strazielle, Macromol. Chem. Phys., Suppl., 188 (12), 2921 (1987). 963. A. Campos, B. Celda, J. Mora, J. E. Figueruelo, Eur. Polym. 1, 20(12), 1187 (1984). 964. B. Celda, A. Campos, R. Tejero, J. E. Figueruelo, Eur. Polym. J., 22 (2), 129 (1986). 965. F. Doebert, A. Pfennig, M. Stumpf, Macromolecules, 28 (23), 7860 (1995). 966. S. Kuecuekyavuz, Z. Kuecuekyavuz, G. Erdogan, Polymer, 31 (2), 379 (1990). 967. H. Yamakawa, F. Abe, Y. Einaga, Macromolecules, 26 (8), 1898 (1993). 968. Y. Einaga, F. Abe, H. Yamakawa, Macromolecules, 26 (23), 6243 (1993). 969. E. Ogawa, N. Yamaguchi, M. Shima, Polym. J., 18 (12), 903 (1986). 970. E. Penzel, N. Goetz, Angew. Makromol. Chem., 178, 191 (1990). 971. B. C. Simionescu, S. loan, M. Bercea, C. I. Simionescu, Eur. Polym. J., 27 (6), 553 (1991). 972. K. Kamide, Y. Miyazaki, H. Yamazaki, Polym. J., 18 (9), 645 (1986). 973. H. Yamazaki, Y Miyazaki, M. Saito, K. Kamide, Polym. J., 23 (6), 725 (1991). 974. A. Kanda, M. Duval, D. Sarazin, J. Francois, Polymer, 26 (3), 406 (1985). 975. H. Hasse, H.-P. Kany, R. Tintinger, G. Maurer, Macromolecules, 28 (10), 3540 (1995). 976. E. Perez, Bello, J.G. Fatou, Eur. Polym. J., 24 (5), 431 (1988). 977. M. Yoshida, N. Sakamoto, K. Ikemi, S. Arichi, Bull. Chem. Soc. Jpn., 66 (6), 1598 (1993). 978. D. Rosenvasser, R. V. Figini, Macromol. Chem. Phys., Suppl., 185 (7), 1361 (1984). 979. J. Stejskal, D. Strakova, P. Kratochvil, Macromol. Chem. Phys., Suppl., 188 (4), 855 (1987).
980. S. Roy, S. Bhattacharjee, A. K. Bhowmick, B. R. Gupta, R. A. Kulkarni, Macromol. Rep. A, 30 (3/4), 301 (1993). 981. K. Matsuo, W. H. Stockmayer, F. Bangerter, Maeromolecules, 18 (6), 1346 (1985). 982. J. Bravo, M. P. Tarazona, E. Saiz, Macromolecules, 24 (14), 4089 (1991). 983. Y. Jinbo, T. Sato, A. Teramoto, Macromolecules, 27 (21), 6080 (1994). 984. E. Ogawa, Polym. J., 27 (6), 567 (1995). 985. B. Tinland, R. Borsali, Macromolecules, 27 (8), 2141 (1994). 986. A. Louai, D. Sarazin, G. Pollet, F. Moreaux, Polymer, 32 (4), 703 (1991). 987. J. Roovers, J. E. Martin, J. Polym. Sci., Polym. Phys. Ed., 27 (12), 2513 (1989). 988. B. J. Bauer, L. J. Fetters, W. W. Graessley, N. Hadjichristidis, G. F. Quack, Macromolecules, 22 (5), 2337 (1989). 989. W. Brown, P. Zhou, Macromolecules, 24 (18), 5151 (1991). 990. L. J. Fetters, N. Hadjichristidis, J. S. Lindner, J. W. Mays, W. W. Wilson, Macromolecules, 24 (11), 3127 (1991). 991. C. H. Wang, X. Q. Zhang, Macromolecules, 28 (7), 2288 (1995). 992. M. Bhatt, A. M. Jamieson, Macromolecules, 21 (10), 3015 (1988). 993. K. Huber, S. Bantle, P. Lutz, W. Burchard, Macromolecules, 18 (7), 1461 (1985). 994. M. Murayama, M. Okada, T. Fukutomi, T. Nose, Macromol. Chem. Phys., Suppl., 188 (4), 829 (1987). 995. B. K. Varma, Y. Fujita, M. Takahashi, T. Nose, J. Polym. Sci., Polym. Phys. Ed., 22 (10), 1781 (1984). 996. M. Duval, P. Lutz, C. Strazielle, Makromol. Chem., Rapid Commun., 6 (2), 71 (1985). 997. J. W. Mays, S. Nan, M. E. Lewis, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 32 (1), S 74 (1991). 998. J. S. Lindner, W. W. Wilson, J. W. Mays, Macromolecules, 21 (11), 3304(1988). 999. C. Wu, Macromolecules, 26 (15), 3821 (1993). 1000. C. Wu, J. Polym. Sci., Part B: Polym. Phys., 32 (5), 803 (1994). 1001. N. Vennemann, M. D. Lechner, R. C. Oberthuer, Polymer, 28 (10), 1738 (1987). 1002. Y Kambe, C. Honda, Polym. Commun., 25 (5), 154 (1984). 1003. P. Zhou, W. Brown, Macromolecules, 23 (4), 1131 (1990). 1004. B. Chu, C. Wu, W. Buck, Macromolecules, 22 (2), 831 (1989). 1005. K. Kubota, K. Hamano, N. Kuwahara, S. Fujishige, I. Ando, Polym. J., 22 (12), 1051 (1990). 1006. P. S. Mumick, C. L. McCormick, Polym. Eng. Sci., 34 (18), 1419 (1994). 1007. Q. Ying, J. Wang, C. Long, B. Chu, Org. Coat. Appl. Polym. Sci. Proa, 54, 546 (1986). 1008. Q. Ying, G. Wu, B. Chu, R. Farinato, L. Jackson, Macromolecules, 29 (13), 4646 (1996). 1009. W. Peiqiang, M. Siddiq, C. Huiying, Q. Di, C. Wu, Macromolecules, 29 (1), 277 (1996). 1010. C. L. McCormick, L. C. Salazar, Polymer, 33 (21), 4617 (1992).
1011. T. Coviello, W. Burchard, M. Dentini, V. Crescenzi, Macromolecules, 20 (5), 1102(1987). 1012. T. Coviello, K. Kajiwara, W. Burchard, M. Dentini, V Crescenzi, Macromolecules, 19 (11), 2826 (1986). 1013. T. Kato, T. Katsuki, A. Takahashi, Macromolecules, 17 (9), 1726 (1984). 1014. H. T. Goinga, R. Pecora, Macromolecules, 24 (23), 6128 (1991). 1015. R. Hanselmann, W. Burchard, R. Lemmes, D. Schwengers, Macromol. Chem. Phys., 196 (7), 2259 (1995). 1016. R S. Russo, F. E. Karasz, K. H. Langley, J. Chem. Phys., 80 (10), 5312 (1984). 1017. W. R. Krigbaum, G. Brelsford, Macromolecules, 21 (8), 2502 (1988). 1018. C. Konak, Z. Tuzar, P. Stepanek, G. Sedlacek, P. Kratochvil, Prog. Colloid Polym. Sci., 71, 15 (1985). 1019. T. A. Seery, E. J. Amis, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 29 (2), 389 (1988). 1020. T. A. Seery, J. A. Shorter, E. J. Amis, Polymer, 30 (7), 1197 (1989). 1021. C. L. McCormick, L. C. Salazar, Macromolecules, 25 (7), 1896 (1992). 1022. C. L. McCormick, L. C. Salazar, Polymer, 33 (20), 4384 (1992). 1023. C. L. McCormick, L. C. Salazar, J. Appl. Polym. Sci., 48 (6), 1115(1993). 1024. E. Vrinov, F. T. Abdullaev, U. M. Mirzaev, Vysokomol. Soedin. A, 31 (3), 602 (1989). 1025. C. L. McCormick, K. P. Blackmon, Macromolecules, 19 (6), 1512 (1986). 1026. B. Chu, C. Wu, W. Buck, Macromolecules, 22 (1), 371 (1989). 1027. A. Sanchez, A. Bello, C. Marco, J. G. Fatou, Macromol. Chem. Phys., Suppl., 189 (2), 399 (1988). 1028. H. Ochiai, M. Handa, H. Matsumoto, T. Moriga, I. Murakami, Macromol. Chem. Phys., Suppl., 186 (12), 2547 (1985). 1029. C. W. Burkhardt, K. J. McCarthy, D. R Parazak, J. Polym. Sci., Polym. Lett. Ed., 25 (5), 209 (1987). 1030. I. H. Park, E.-J. Choi, Polymer, 37 (2), 313 (1996). 1031. M. R. Aven, C. Cohen, Macromolecules, 23 (2), 476 (1990). 1032. A. M. Pedley, J. S. Higgins, D. G. Peiffer, W. Burchard, Macromolecules, 23 (5), 1434 (1990). 1033. M. Villacampa, E. D. de Apodaca, J. R. Quintana, I. Katime, Macromolecules, 28 (12), 4144 (1995). 1034. T. Hirao, A. Teramoto, T. Sato, T. Norisuye, T. Masuda, T. Higashimura, Polym. J., 23 (8), 925 (1991). 1035. E. E. Kathmann, A. D. de Davis, C. L. McCormick, Macromolecules, 27 (12), 3156 (1994). 1036. W. M. Kulicke, H. H. Hoerl, Colloid Polym. Sci., 263 (7), 530 (1985). 1037. K. S. Minsker, R. B. Pancheshnikova, Yu. B. Monakov, G. E. Zaikov, Eur. Polym. J., 21 (11), 981 (1985). 1038. J. Li, Y Wan, Z. Xu, J.W. Mays, Macromolecules, 28 (15), 5347 (1995). 1039. B. Chu, C. Wu, et al, Macromolecules, 2Q (3), 700 (1987). 1040. Q. Ying, B. Chu, Macromolecules, 19 (6), 1580 (1986).
1041. N. Nemoto, H. Matsuda, Y. Tsunashima, M. Kurata, Macromolecules, 17 (9), 1731 (1984). 1042. P. Shukla, M. Muthukumar, K. H. Langley, J. Appl. Polym. ScL, 44(12), 2115 (1992). 1043. P. N. Lavrenko, O. V. Okatova, S. V. Vinogradova, A. L. Rusanov, Ponomarev, I. I. Eur. Polym. J., 26 (12), 1337 (1990). 1044. J. Mogin, C. Abradelo, M. F. Rey-Stolle, L. H. Tagle, I. Hernandez-Fuentes, Eur. Polym. J., 28 (2), 187 (1992). 1045. M. J. Fabre, L. H. Tagle, L. Gargallo, D. Radic, I. Hernandez-Fuentes, Eur Polym. J., 25 (12), 1315 (1989). 1046. E. B. Tarabukina, Z. N. Slavina, S. Ya. Frenkel, Acta Polym., 42 (6), 266 (1991). 1047. F. Francuskiewicz, G. Gloeckner, P. Kratochvil, Angew. Makromol. Chem., 206 (Mar), 121 (1993). 1048. A. Thurn, W. Burchard, R. Niki, Colloid Polym. ScL, 265 (10), 897 (1987). 1049. H. Durchschlag, Colloid Polym. ScL, 267 (12), 1139 (1989). 1050. M Osa, F. Abe, T. Yoshizaki, Y. Einaga, H. Yamakawa, Macromolecules, 29 (6), 2302 (1996). 1051. T. Konishi, T. Yoshizaki, H. Yamakawa, Macromolecules, 24 (20), 5614 (1991). 1052. W. Maechtle, G. Ley, J. Streib, Prog. Colloid Polym. ScL, 99, 144 (1995). 1053. L. Gargallo, D. Radic, N. Hamidi, L. Cardenas, A. Horta, J. Hernandez-Fuentes, J. Appl. Poiym. ScL, 36 (6), 1495 (1988). 1054. H. Ochiai, K. Kamata, I. Murakami, Polym. Commun., 25 (5), 158 (1984). 1055. E. Morales, M. R. Gomez-Anton, I. F. Pierola, J. Appl. Polym. ScL, 58 (11), 1943 (1995). 1056. N. Nemoto, S. Okada, T. Inoue, M. Kurata, Macromolecules, 21 (5), 1502 (1988). 1057. K. Dehara, T. Yoshizaki, H. Yamakawa, Macromolecules, 26 (19), 5137 (1993). 1058. T. Arai, N. Sawatari, T. Yoshizaki, Y. Einaga, H. Yamakawa, Macromolecules, 29 (6), 2309 (1996). 1059. G. M. Pavlov, E. F. Panarin, E. V. Korneeva, K. V. Kurockin, V. E. Bajkov, Vysokomol. Soedin. A, 32 (6), 1190 (1990). 1060. M. B. Huglin, S. J. O'Donohue, M. A. Radwan, Eur. Polym. J., 25 (6), 543 (1989). 1061. G. Vansco, Eur. Polym. J., 26 (3), 345 (1990). 1062. A. Barooah, C. K. Sun, S. H. Chen, J. Polym. ScL, Polym. Phys. Ed., 24 (4), 817 (1986). 1063. C. M. Kok, F. R. Hallett, A. Rudin, Eur. Polym. J., 21 (1), 33 (1985). 1064. J. W. Klein, C. Cohen, Polymer, 34 (20), 4186 (1993). 1065. R. Mieczkowski, L. Huppenthal, Polimery (Warsaw), 32 (10), 397 (1987). 1066. P. Rossmanith, W. Koehler, Macromolecules, 29 (9), 3203 (1996).
1067. J. R. Quintana, M. D. Janez, M. Villacampa, I. Katime, Macromolecules, 28 (12), 4139 (1995). 1068. T. Arai, F. Abe, T. Yoshizaki, Y. Einaga, H. Yamakawa, Macromolecules, 28 (10), 3609 (1995). 1069. T. Yamada, T. Yoshizaki, H. Yamakawa, Macromolecules, 25 (1), 377 (1992). 1070. N. Hadjichtistidis, J. S. Lindner, J. W. Mays, W. W. Wilson, Macromolecules, 24 (25), 6725 (1991). 1071. M. E. Lewis, S. Nan, W. Yunan, J. Li, J. W. Mays, N. Hadjichristidis, Macromole-cules, 24 (25), 6686 (1991). 1072. Y. Tsunashima, Macromolecules, 23 (11), 2963 (1990). 1073. G. J. Vancso, B. R. White, J. E. Guilet, Eur. Polym. J., 29 (5), 751 (1993). 1074. J. S. Vrentan, C. H. Chu, J. Polym. ScL, Polym. Phys. Ed., 27 (2), 465 (1989). 1075. J. Huang, C. Li, B. He, Macromol. Chem. Phys., SuppL, 187 (1), 149 (1986). 1076. K. Huber, W. Burchard, A. U. Akcasu, Macromolecules, 18 (12), 2743 (1985). 1077. N. Numasawa, K. Kuwamoto, T. Nose, Macromolecules, 19 (10), 2593 (1986). 1078. W. Brown, R. Rymden, Macromolecules, 21 (3), 840 (1988). 1079. M. M. Rodrigo, C. Cohen, Macromolecuies, 21 (7), 2091 (1988). 1080. F. D. Blum, T. L. Maver, R. Raghavan, Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.), 28 (1), 340, (1987). 1081. G. M. Pavlov, N. V. Pogodina, S. V. Busin, A. B. Melnikov, E. B. Lysenko, u.a., Vysokomol. Soedin. A, 28 (4), 688 (1986). 1082. P. N. Lavrenko, E. P. Astapenko, S. V. Busin, O. V. Okatova, Vysokomol. Soedin. A, 28 (8), 1669 (1986). 1083. G. Pavlov, N. Michailova, E. Tarabukina, E. Korneeva, Prog. Colloid Polym. ScL, 99, 109 (1995). 1084. R. I. Stankovic, S. Jovanovic, L. Ilic, E. Nordmeier, M. D. Lechner, Polymer, 32 (2), 235 (1991). 1085. E. Wachenfeld-Eisele, W. Burchard, Polymer, 29 (3), 471 (1988). 1086. M. J. Gonzalez-Tejera, J. M. Perena, A. Bello, I. Hernandez-Fuentes, Polym. Bull., 31 (1), 111 (1993). 1087. R. I. Stankovic, L. Ilic, E. Nordmeier, S. Jovanovic, M. D. Lechner, Polym. Bull., 27 (3), 337 (1991). 1088. R. A. Waggoner, F. D. Blum, J. C. Lang, Macromolecules, 28 (8), 2658 (1995). 1089. J.-L. Wu, M. Hara, Macromolecules, 27 (4), 923 (1994). 1090. R. G. Smits, M. E. Kuil, M. Mandel, Macromolecules, 26 (25), 6808 (1993). 1091. S. S. Sorlie, Macromolecules, 23 (2), 487 (1990). 1092. S. J. Rathbone, C. A. Haynes, H. W. Blanch, J. M. Prausnitz, Macromolecules, 23 (17), 3944 (1990).
P o l y m o l e c u l a r i t y
C o r r e c t i o n
F a c t o r s
R o l f E. B a r e i s s Bergstraesser Weg 23, D-55268 Nieder-Olm, FR Germany
A. List of Symbols Used B. Introduction Table 1. Numerical Values of Gamma Function r(x) C. Polymolecularity Correction Factors for Intrinsic Viscosity versus Molecular Weight Relationship Table 2. For M w and SZ* Table 3. For M w and LN f Table 4. For M n and SZ Table 5. For M n and LN Table 6. For M-SwDw and SZ Table 7. For M-S"D^ and LN Table 8. For M-S"D" and SZ Table 9. For M ^ D * and LN Table 10. For M-^Dz and SZ Table 11. For M-"wD] and LN Table 12. For M^w and SZ and LN Table 13. For M-S*M" Table 14. For M^]wow a n d s z and L N Table 15. For M^ol Table 16. For A ^ D ~ and SZ Table 17. For M ^ D A and LN Table 18. For M^o1 and SZ and LN Table 19. For M^o] D. Polymolecularity Correction Factors for Sedimentation Coefficient versus Molecular Weight Relationship Table 20. For s w , M w and SZ Table 21. For s w , /Vfw and LN Table 22. For s w , M n and SZ Table 23. For s w , Mn and LN Table 24. For sW/ M-5wDw and SZ Table 25. For s w , A^sIoI a n d L N Table 26. Conversion of swax into sw for SZ Table 27. Conversion of smax into sw for LN
* SZ: Schulz-Zimm distribution of molecular weight. * LN: Logarithmic normal distribution of molecular weight.
VII-216 VII-217 VII-223
VII-223 VII-223 VII-223 VII-223 VII-224 VII-224 VII-224 VII-224 VII-224 VII-225 VII-225 VII-225 VII-225 VII-225 VII-226 VII-226 VII-226 VII-226 VII-226
VII-227 VII-227 VII-227 VII-227 VII-227 VII-228 VII-228 VII-228 VII-229
E. Polymolecularity Correction Factors for Diffusion Coefficient versus Molecular Weight Relationship Table 28. For D A , Mn and SZ Table 29. For D A , M n and LN Table 30. For D A , M-SWDA and SZ Table 3 1 . For D A , M ^ D Aa n d L N Table 32. For D w , M n " and SZ Table 33. For D w , M n and LN Table 34. For D Z / /Vln and SZ Table 35. For D Z / M n and LN Table 36. For D A / Mw and SZ Table 37. For D A / M w and LN Table 38. For D w , M w and SZ Table 39. For D W / M w and LN Table 40. For O z , Mw and SZ Table 4 1 . For DZf Mw and LN F. Polymolecularity Correction Factors for Mean-Square Radius of Gyration versus Molecular Weight Relationship Table 42. For ( S 2 ) z , Mw and SZ Table 43. For (S2) 2 , M w and LN Table 44. For (S 2 )z , Mz and SZ Table 45. For (S 2 ) 2 , M1 and LN Table 46. For (S 2 ) 2 / Mn and SZ Table 47. For ( S 2 ) z , Mn and LN G. Polymolecularity Correction Factors for Second Virial Coefficient versus Molecular Weight Relationship
VII-229 VII-229 VII-229 VII-229 VII-230 VII-230 VII-230 VII-230 VII-230 Vf 1-231 VII-231 VII-231 VII-231 VII-232 VII-232
VII-232 VII-232 VII-233 VII-233 VII-233 VII-234 VII-234
VII-234
Table 48. For Af?\
Mn and SZ
VII-234
Table 49. For A{°P),
Mn and LN
VII-235
, /Vfw and SZ
VII-235
Table 50. For /^
LS)
Table 5 1 . For A^, M w and LN H. Polymolecularity Correction Factors for the Determination of the Dimensions of Macromolecules 1. Fox-Flory Relationship Table 52. For ( r 2 ) z / M n and SZ Table 53. For ( r 2 ) z , M n and LN Table 54. For ( r 2 ) z , M w and SZ Table 55. For ( r 2 ) z , M w and LN
VII-235
VII-235 VII-235 VII-235 VII-236 VII-236 VII-236
2.
Interconversion of Different Averages of the Mean-Square Radius of Gyration Table 56. (S2) w from (S2)z for SZ Table 57. (S 2 ) w from (S2)z for LN Table 58. (S2) n from (S2) 2 for SZ Table 59. (S 2 ) n from (5 2 } z for LN 3. Interconversion of Different Averages
VII-236 VII-236 VII-237 VII-237 VII-238
^A = (E 1 V^r 0 T 2
of the Mean-Square End-to-End Distance VII-238 Table 60. (r 2 ) n from [(r 2 ) 3 / 2 ] 2 / 3 for SZ
VII-238
Dz
Table 62. ( r 2 ) w from [(r 2 ) 3 / 2 ] 2 / 3 for SZ
VII-239
[/] e i k
2 3/2 2/3
Table 61. (r ) n from [(r ) 2
]
2 3/2 2/3
Table 63. ( r ) w from [(r )
]
2
2 3/2 2/3
2
2 3/2 2/3
Table 64. (r ) z from [(r )
]
for LN
VII-239
for SZ
VII-239
Table 65. (r ) z from [(r ) ] for LN 4. The Effect of Polymolecularity on the Radius of Gyration of Stiff Polymer Chains _ Table 66. q (sz) (£ w ) for SZ Table 67. c/( LN )(l w ) for LN I. Polymolecularity Correction Factors for the Determination of Unperturbed Dimensions of Macromolecules 1. Burchard-Stockmayer-Fixman Procedure Table 68. For Mw, SZ and LN Table 69. For Mn and SZ Table 70. For M n and LN 2. Cowie- By water Procedure Table 71. CB, 1: For M W / s w and SZ Table 72. CB, 2: For M w , s w and SZ Table 73. CB, 1: For Mw, s w and LN Table 74. CB, 2: For /Vfw, s w and LN 3. Baumann-Stockmayer-Fixman Procedure Table 75. q^: For M w and SZ Table 76. q £ § 2 ) i : For (S 2 ) z and SZ L
Table 77. qJ ^:For M w and LN 2
VII-240 VII-240 VII-240
VII-240 VII-240 VII-240 VII-240 VII-241 VII-241 VII-241 VII-241 VII-241 VII-241 VII-242 VII-242 VII-242
Table 80. q ^ ^ : For (S 2 ) z and SZ
VII-243
w andLN
Table 82. q^s*)/ For (S ) z and LN References ' *
LIST OF SYMBOLS USED a
exponent in D = KoM ° exponent in s = KsMas exponent in [rj\ — K^Maw
VII-242
VII-243 VII-243 VII-244
diffusion coefficient of component / weight-average diffusion coefficient Dw = X)1-WiD1z-average diffusion coefficient intrinsic frictional coefficient in the theta state integers 1,2,..., i degree of coupling in Schulz-Zimm distributions of the molecular weight
/:-(M w /M n -ir l
Mn
constant in D = KDMaD constant for the determination of unperturbed dimensions Jf0 = $e((r2)0/M)3/2 a$ constant in s — KsM constant in (S2) = K{si)Ml^ constant in [77] = K^Maw reduced contour length L — L'/A""1 contour length number-, weight-, z-average L molecular weight1 any average of the molecular weight molecular weight from D molecular weight of component / molecular weight of compound j molecular weight of median in logarithmic normal distributions number-average molecular weight
Ms M(S2) Mso My
molecular weight from s molecular weight from (S2) molecular weight from s and D viscosity-average molecular weight
KD Ko K5 K{si) K[^ L V Ln, L w , L z M M av Mo Mi Mj Mm
Mv = (E,- vw(Af y)x/a™
VII-242
VII-243 VII-243
2
aD as a[v]
VII-239
Table 78. q ^ 2 ) : For (S ) 2 and LN 4. Baumann-Kurata-Stockmayer Procedure Table 79. q ^ ^ For Mw and SZ Table 81. g ^ n /F o r ^
A.
VII-238
D1 £)w
for LN
2
J.
A2 second virial coefficient P LS ^2° '' ^2 ^ ^ 2 from osmotic pressure, light scattering, resp. B,Bf,B" constants D diffusion coefficient DA "area average" diffusion coefficient
Mw
weight-average molecular weight
Ms[v] MfylD rii A^L P0 q #B
molecular weight from s and [77] molecular weight from [77] and D mole fraction of component i Avogadro number constant in [ / ] e - Po(r2)lo/2 polymolecularity correction factor q for Baumann-Stockmayer-Fixman procedure q for Burchard-Stockmayer-Fixman equation
#BSF
According to IUPAC recommendations (1,2), "molecular weight" is understood to be the relative molecular mass, the numerical values of which are identical to those of the molar mass in g/mol and therefore molecular weight is denoted here with the same symbol as the molar mass, viz. M.
<7BKS
<7 for B a u m a n n - K u r a t a - S t o c k m a y e r
^CB5I 5 ^CB,2 qDiff ' #FF qQyx
procedure 's for Cowie-Bywater procedure q for D = KDMaD q for Fox-Flory equation q for (S2)= K^M1+6
^KMSH q{Lw) q(r2)n
q for [rj\ = K[r}]MaW q for stiff p o l y m e r c h a i n s 's for conversion o f [(^*2)
2
2
6 Y^, i $(e)
B. ]„
into
2
(r )n,
and
4(r )l
(>* >w
q{ri)z
( r 2 ) z , respectively
q(s*)w q{S2}l
# ' s for conversion o f ( S 2 ) z into (S2) w a n d (S 2 ) n , respectively q for s = KsMa*
(r2) (r?) (r2)av (r 2 ) 0
mean-square end-to-end distance (r 2 ) of component i any average of (r 2 ) mean-square unperturbed end-to-end distance
[(O 3^]n
1.5th moment of number distribution of mean-square end-to-end distance 32 n number-average mean-square end-to-end
(r2)n 2
[r ) w 2
(r ) z 5 smax sw (S2) (S 2 ) o (S 2 ) (S 2 ) av (S 2 ) n 2
Ii^]
= EMrJ) '
distance (r2)n = £ . "i(rt) weight-average mean-square end-to-end distance (r 2 ) w = Yliwi(rf) z-average mean-square end-to-end distance
,= (E,»«"ir?)/(2>M)
sedimentation coefficient sedimentation coefficient determined from the maximum of the concentration gradient curve weight-average sedimentation coefficient mean-square radius of gyration unperturbed mean-square radius of gyration (S 2 ) of component i any average of (S 2 ) number-average mean-square radius of
gyration (S2) n = Yl MS})
(S ) w
weight-average mean-square radius of
(S ) z
gyration (S 2 ) w = £ > , < S ? > z-average mean-square radius of gyration
2
(S ) Oz v2 Wi Wj
(S2)z =
(Z^iMi(S2))/(Y:^iMi)
unperturbed (S 2 )z partial specific volume of the solute (index 2) mass fraction of component i mass fraction of component j
e
exponent in (S2) =
T) [77] [77] • [fj] w
viscosity (index 1: solvent) intrinsic viscosity intrinsic viscosity of component i weight-average intrinsic viscosity
A TT p a
l
index theta state summation over all components / viscosity function; ^ e = $(e — O) — 2.5 x 1O 23 InOl" 1 for end-to-end distance and [77] in cm 3 /g is also called Flory constant INTRODUCTION
Relationships between molecular weight M ( 1 , 2 ) / and properties dependent on M, for polymers exhibiting a molecular weight distribution (MWD, polymolecularity 2 ) require the use of corresponding averages ("principle of corresponding averages" (3)). For example, in Staudinger's viscosity law (4), modified by Kuhn (5), Mark (6), Sakurada (7) and Houwink (8,9) (KMSH), the experimentally determined intrinsic viscosity [77] is the weight-average intrinsic viscosity ( 1 0 - 1 2 ) but the corresponding molecular weight is the viscosity-average molecular weight (13,14) Mv : where
A direct experimental determination of M v is not possible (exception: the intrinsic viscosity [fj] e and the weightaverage sedimentation coefficient sw, both for the theta state, inserted in the Flory-Krigbaum-Mandelkern-Scheraga equation ( 1 5 - 1 7 ) result in the viscosity-average molecular weight for the theta state, M v ,e (18)). Therefore, for the determination of the numerical values of the constant JSTf7Jj and the exponent a ^ in Eq. ( B l ) different molecular weight averages, M a v , are usually applied, e.g. the weightaverage molecular weight (M a v = M w ) , the number-average molecular weight (M a v = M n ) , or the molecular weight averages obtained with Svedberg's equation 3 (19) Mso or the equations of Flory, Krigbaum, Mandelkern and Scheraga (15-17) M5[T7] and M^D. From Mav> the viscosity-average molecular weight M v can be calculated, provided the type and width of the molecular weight distribution of the polymer samples or fractions are known (14). 1. Alternatively, a polymolecularity correction factor q can be defined which corrects Eq. ( B l ) for the use of M a v instead of M v *
K^Ml+e
(Bl) (B2) Equation (B2) reads, for M a v = M w :
ft] w = N = £,- w iW«
length of Kuhn statistical segment pi-3.14159 density (index 1: solvent) standard deviation of logarithmic normal distribution
(B3) (see Tables 2 and 3). 2
Polymolecularity is understood to describe the phenomenon that most polymers are nonuniform (2) with respect to relative molecular mass. 3 See this Handbook page VII-85.
References page VII - 244
For M av = Mn: (B4) (see Tables 4 and 5). For M av
EEM5W£W:
(see Tables 18 and 19). (B5)
(see Tables 6 and 7). ForM a v EEM J w £ A :
2. Correspondingly, polymolecularity correction factors are useful for the relationship of sedimentation coefficient versus molecular weight, S = KsMp=KSqSCtMZl
(B 12)
the relationship of diffusion coefficient versus molecular weight, D= (B6)
(see Tables 8 and 9). For M av EE M 1 w£>z:
KDMI0
(see Tables 10 and 11). ForM a v = M 5 w M w :
(B 13)
and the relationship of mean-square radius of gyration 4 versus molecular weight
(S2) = Kw&lfi (B7)
= KDqDlifM«°
= K{si)gGyiM!J*
(B 14)
if other than the corresponding molecular weight averages M 5 , MD, and M ^ , respectively (3), are to be used for the numerical evaluation of the constants Ks, KD, K^) and the exponents as, dp, £, respectively. Analogous to Eq. (Bl) the polymolecularity correction factors for Eqs. (B 12), (B 13), and (B 14) are found to be: (B15) (B 16) (BlV)
(B8) Eq. (B 15) reads for s — s w , M av = M w : (see Tables 12 and 13). ForM a v ~M ( ^ ] w j D w :
(B18) (see Tables 20 and 21). For s = s w , Mav = Mn: (B9)
(see Tables 14 and 15). ForM a v == Mn w £ A :
(B19) (see Tables 22 and 23).
(BlO) (see Tables 16 and 17).
4 The symbol for the radius of gyration is a capital S - contrary to the recommendations by IUPAC (2) - in order to distinguish it from the symbol for the sedimentation coefficient s.
For s = sw, M av = MSw£w (20):
For D~DZ,
M av ~ M W :
(B27) (B20) (see Tables 24 and 25). For calculating sw from experimentally determined sm&x, see Tables 26 and 27 (21).
(see Tables 40 and 41). 4. Equation (B17) reads, for (S2) == (S2) z, Mav = M w :
(B28)
3. Equation (B 16) reads for D ~ D&, Mav = Mn:
(B21) (see Tables 28 and 29). For D = D A , M av
= M,W£)A
(20):
(B29)
(B22) (see Tables 30 and 31). For D = D w , M av ~ M n : (B30) (B23) (see Tables 46 and 47).
(see Tables 32 and 33). ForD-D2, Mav-Mn:
5. In order to obtain the correct numerical values of constant KA2 and exponent a A2 in the exponential relationship between the second virial coefficient A 2 and molecular weight M (B24)
A 2 = KA2M^
it is necessary to determine the corresponding averages A2,av and M a v with respect to Eq. (B31):
(see Tables 34 and 35). For D = D A , M av ~MW:
A2)av =
(B25) (see Tables 36 and 37). For D = D w , M av = M w '
KAMVA2
(B32)
A2,av is the measured second virial coefficient of a nonuniform (2) polymer sample, while M a v is the value of the molecular weight which fulfils Eq. (B32) if KA1 and a A2 are valid for strictly uniform (2) samples i: A2,,- -
(B26) (see Tables 38 and 39).
(B31)
KA2AC2
(B33)
In paper (22), the corresponding averages of the molecular weight M 2 (OP) and M 2 (LS> are calculated for the average second virial coefficients A\ J and A\ } obtained from References page VII - 244
osmotic pressure (OP) and light scattering (LS) measurements, respectively, according to Flory and Krigbaum (23)
(see Tables 52 and 53), whereas for ( r 2 ) z and M av = M w Eq. (B41) gives
(B34)
(B35) where wt is the mass fraction of uniform polymer species i, Wj the mass fraction of uniform polymer species j , M1 and Mj their molecular weights, respectively, and (Az)1J is the second virial coefficient effective between species i and j . Since Mav^(op) an( ^ M S(LS) are not directly experimentally accessible, polymolecularity correction factors (2) q^ ,(Opj and q a -A (LSJ are defined so that M 2 (OP> and M 2 (LS) can
(B43) (see Tables 54 and 55). 7. For converting the experimentally determined zaverage mean-square radius of gyration (S2) z into the weight-average or the number-average mean-square radii of gyration (S2) w or (S 2 ) n , respectively (B44)
be calculated from experimentally determined M n and M w , respectively: (B36)
(B45) the polymolecularity correction factors q ^
and/or q ^
(B37) Thus the respective polymolecularity correction factors (B46) (B38) (B39) can be obtained. The numerical values of qa Q A* j(Ls)
are
-T(OP) and (B47)
calculated numerically and listed for Schulz-
Zimm (SZ), i.e. qf*\m Mn^2
and 4 If^ (LS) > and logarithmic MWy42
normal (LN), i.e. q _N : (0P) and q~ -{LS), distributions of the molecular weight (see Tables 48-51). 6. Similarly, application of the principle of corresponding averages (3,9,24-26) to the relationship of Fox and Flory (B40) and defining a polymolecularity correction factor q^
are to be used (26) (see Tables 56-59). 8. Correspondingly, in order to convert the 1.5th moment of the number distribution of the mean-square end-to-end distance [(r2) 3/2}nJ 2
resulting from Eq. (B40) if M n is used 2
(27),into(r )n, ( r ) w o r ( r 2 ) z (B48) (B49) (B50)
(B41) for the use of the z-average mean-square end-to-end distance ( r 2 ) z and M a v = M n in Eq. (B41) leads to
the polymolecularity correction factors q{r*)n, (r2)w> q(ri)z are to be used:
an
d
(B51) (B42)
10.2. In the equation of Cowie and By water (36) also, two polymolecularity correction factors are necessary. If M w and sw are to be used, one obtains (14,33): (B52) (B60)
(B53) (see Tables 60-65). (B61)
9. The experimentally obtained ratio of the z-average unperturbed mean-square radius of gyration and the weightaverage molecular weight ( 5 2 ) 0 z / M w of a polymolecular sample of stiff polymer chains can be transformed into (S2) 0/M for a monomolecular polymer, the molecular weight M of which is equal to M w of the polymolecular sample, according to: (S2) JM - ((5 2 ) 0 ) Z /M w )(M w /M z )^(L w )
(B62)
(B54)
where q(Lw) is the polymolecularity correction factor (28) (see Tables 66 and 67). 10. Application of the principle of corresponding averages to the various relationships for the experimental determination of the unperturbed dimensions of polymers in thermodynamically good solvents leads unambiguously to the correct polymolecularity correction factors (29). 10.1. The original (30) and modified (31) procedures of Burchard (32), Stockmayer and Fixman (30) can be handled with polymolecularity correction factors #BSF depending upon which average of the molecular weight (Af w or M n ) is to be used (33-35):
(see Tables 71-74). 10.3. Baumann (37) and later Banks and Greenwood (38) describe procedures for the evaluation of unperturbed dimensions from the determination of the molecular weight and the radius of gyration for a series of polymer homologues. The Baumann-Stockmayer-Fixman procedure uses the theory of Stockmayer and Fixman (30) and with the two polymolecularity correction factors <7B,Mav (f° r the molecular weight) and #B,(.s2)av (f° r the radius of gyration) reads (39):
(B63)
(B55) (B56)
For M av = M w :
The general formulae for #BSF,Afw (33) and for 1 ^BSF,M 0 and 2
(B64) and for
(B58)
(B65) (B59) (see Tables 68-70).
(see Tables 75-78). References page VII - 244
10.4. Application of the theory of Kurata and Stockmayer (40) leads to the Baumann-Kurata-Stockmayer procedure (41)
(B66) For Mav = M w :
(B67) and for
(B68) (see Tables 79-82). The numerical values of the polymolecularity correction factors Eqs. (B3-B11, B18-B30, B42, B43, B46, B47, B51-B53, B57-B59, B61, B62, B64, B65, B67, B68) are tabulated on the following pages for Schulz-Zimm (SZ) distributions of the molecular weight (42,43)
(B69) and for logarithmic normal (LN) distributions of the molecular weight (44-47)
(B70) as a function of the width of the respective distribution expressed as Mw/Mn and where relevant of the exponent aJ77] of Eq. (Bl). The calculations have been conducted by inserting Eq. (B69) or Eq. (B70) for SZ or LN, respectively, into the general expressions Eqs. (B3-B11, B18-B30, B42, B43, B46, B47, B51-B53, B57-B59, B61, B62, B64, B65, B67, B68), replacing the summations by integrals and solution of the integrals (48). The resulting formulae of the polymolecularity correction factors q ( sz ' and g(LN) are given on the titles of the tables. Analogously, it is possible to calculate the corresponding formulae for the polymolecularity correctiom factors from the general expressions, Eqs. (B3-B11, B18-B3O, B42, B43, B46, B47, B51-B53, B57-B59, B61, B62, B64, B65, B67, B68), for any molecular weight distribution (MWD) of which a closed mathematical expression can be formu-
lated and for which the resulting integrals can be solved. In cases where the MWD is known but no closed mathematical expression can be formulated, or if the resulting integrals cannot be solved analytically, the polymolecularity correction factors nevertheless can be calculated numerically (22,28), i.e. because the general polymolecularity correction formulae represent moments (14) or products of moments of the MWD, they can in principle be taken from any experimentally determined (e.g. by gelpermeation chromatography) molecular weight distribution curve of the polymers or polymer fractions investigated. In case the type of MWD of the polymers or polymer fractions investigated is not known the numerical values of the following tables still give an appropriate impression of the sensitivity of the methods listed towards type and width of the MWD as compared with the range of the experimental errors. Furthermore, as long as the difference between the numerical values of (sz) and g(LN' is not significant, the sensitivity of the method considered toward the type of MWD most probably is not strong, in other words any MWD other than SZ or LN will not exhibit a q value much different from q^ or q(LN\ When corresponding numerical values for q(sz^ and q^LN^ differ substantially (cf. Tables 75 and 77) and/or q > 1 (cf. e.g. Table 47) or q < 1 (cf. e.g. Table 53), it is preferable to look for another experimental method which provides more adequate correction. A closer look upon the numerical values of the following tables also reveals that there are methods which are not sensitive towards polymolecularity (such as setting up [rj] = K^]Ma W with M5w£A (Tables 8 and 9) whereas others are very sensitive towards polymolecularity (such as correlating Dz and Mn in D — KDMGD (Tables 34 and 35)). The exponents a^, as, a#, e, and aAl of Eqs. Bl, B12B14 and B31 are interconnected with each other (49-55) by the "Exponents' Rule" (50,14):
In the following tables the numerical values for Afw/Mn range from 1.1 to 20.0, those for a ^ from 0.4 to 0.9, in order to cover also limiting cases which occur in practical work (e.g., a ^ < 0.5; e < 0). The intervals for both parameters Mw/A/n and a ^ as well as the number of digits behind the decimal sign for the polymolecularity correction factors are chosen so that for any value of M w /M n and a ^j within the above-mentioned limits the numerical value of the polymolecularity correction factor can be found by interpolation of the numerical values given in the tables with an accuracy of at least about 1 % except, of course, when extremely low numerical values are involved. In order to enable the user to calculate the numerical values of the polymolecularity correction factors for any Mw/Mn and a[^] (or a5i a#, e, and ^ 2 , respectively) the exact formulae for all polymolecularity correction factors tabulated are given on top of the corresponding tables; for this purpose a table of the numerical values of the gamma function T (x) for 1.00 < x < 2.00 is included
(Table 1). For x< 1 and x>2, the following formula can be used
r(*+i) =xr(x)
TABLE 3. POLYMOLECULARITY CORRECTION FACTORS ^KMSH /MW F O R M = *\n\M*u USING WEIGHT-AVERAGE MOLECULAR WEIGHT Mw FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
TABLE 1. NUMERICAL VALUES OF GAMMA FUNCTION JTU) x
T(X)
f(jc)
JC
JC
F(Jt)
x T(JC)
0.88623 0.88659 0.88704 0.88757 0.88818 0.88887 0.88964 0.89049 0.89142 0.89243 0.89352 0.89468 0.89592 0.89724 0.89864 0.90012 0.90167 0.90330 0.90500 0.90678 0.90864 0.91057 0.91258 0.91466 0.91683
1.75 0.91906 1.76 0.92137 1.77 0.92376 1.78 0.92623 1.79 0.92877 1.80 0.93138 1.81 0.93408 1.82 0.93685 1.83 0.93969 1.84 0.94261 1.85 0.94561 1.86 0.94869 1.87 0.95184 1.88 0.95507 1.89 0.95838 1.90 0.96177 1.91 0.96523 1.92 0.96878 1.93 0.97240 1.94 0.97610 1.95 0.97988 1.96 0.98374 1.97 0.98768 1.98 0.99171 1.99 0.99581 2.00 1.00000
CU,
- (M»/Mn)Kr«N>/2
K[v]Myq^u^
w = a
\n\
1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24
1.00000 0.99433 0.98884 0.98355 0.97844 0.97350 0.96874 0.96415 0.95973 0.95546 0.95135 0.94739 0.94359 0.93993 0.93642 0.93304 0.92980 0.92670 0.92373 0.92088 0.91817 0.91558 0.91311 0.91075 0.90852
1.25 0.90640 1.26 0.90440 1.27 0.90250 1.28 0.90072 1.29 0.89904 1.30 0.89747 1.31 0.89600 1.32 0.89464 1.33 0.89338 1.34 0.89222 1.35 0.89115 1.36 0.89018 1.37 0.88931 1.38 0.88854 1.39 0.88785 1.40 0.88726 1.41 0.88676 1.42 0.88636 1.43 0.88604 1.44 0.88580 1.45 0.88565 L 46 0.88560 1.47 0.88563 1.48 0.88575 1.49 0.88595
1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74
My,/Mn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.40
0.50
0.70
0.90
0.9886 0.9690 0.9525 0.9383 0.9202 0.8959 0.8765 0.8467 0.8244 0.8065 0.7792 0.7586 0.6980
0.9882 0.9677 0.9506 0.9358 0.9170 0.8918 0.8717 0.8409 0.8178 0.7993 0.7711 0.7499 0.6877
0.9900 0.9728 0.9583 0.9458 0.9298 0.9083 0.8911 0.8645 0.8445 0.8285 0.8039 0.7852 0.7301
0.9957 0.9883 0.9819 0.9764 0.9693 0.9596 0.9518 0.9395 0.9301 0.9225 0.9107 0.9016 0.8739
It is a pleasure for the author to acknowledge the fruitful discussions with Dr. B. Jung, Editorial Office "Macromolecular Chemistry and Physics". C. INTRINSIC VISCOSITY VERSUS MOLECULAR WEIGHT RELATIONSHIP TABLE
2. POLYMOLECULARITY CORRECTION FACTORS
?KMSHM
FOR
M = *|ii]Maw USING WEIGHTAVERAGE MOLE-
TABLE 4. POLYMOLECULARITY CORRECTION FACTORS ^KMSH/Wn F O R M = KwWM USING NUMBER-AVERAGE MOLECULAR WEIGHT Mn FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT
CULAR \VEIGHT Mw FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT /7 ( S Z )
-
r
( *+ flM + 1)
? KMSH1AiT w ~ (£ + \yMp{k+
1)
1
M w
1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 10.0 20.0
0.9891 0.9725 0.9605 0.9515 0.9414 0.9301 0.9228 0.9137 0.9083 0.8977 0.8924
0.50 0.9887 0.9716 0.9594 0.9502 0.9400 0.9287 0.9213 0.9123 0.9069 0.8964 0.8913
^"1,!(SZ)
a
? KMSH1* w
\n]
M*/Mn
\n\
0.40
_ /Xfc +flfoj+ l)
\n\~K(,Ma^n{SZ)
^ ~~A N
a
Mw/Mn
(SZ)
0.70 0.9906 0.9765 0.9665 0.9590 0.9509 0.9419 0.9360 0.9289 0.9247 0.9166 0.9126
0.90 0.9960 0.9900 0.9858 0.9827 0.9793 0.9755 0.9731 0.9701 0.9684 0.9650 0.9634
1.1 1.3 1.5 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 15.0 20.0
0.40
0.50
0.60
0.70
1.0276 1.0802 1.1297 1.2422 1.3419 1.4320 1.5908 1.7290 1.8525 2.0683 2.2548 2.6415 2.9579
1.0370 1.1078 1.1750 1.3293 1.4684 1.5958 1.8245 2.0279 2.2129 2.5429 2.8348 3.4586 3.9860
1.0474 1.1388 1.2262 1.4296 1.6162 1.7898 2.1078 2.3968 2.6643 3.1523 3.5944 4.5684 5.4197
1.0589 1.1733 1.2837 1.5447 1.7888 2.0197 2.4514 2.8529 3.2317 3.9380 4.5937 6.0836 7.4299
0.80
0.90
1.0715 1.0852 1.2115 1.2537 1.3480 1.4199 1.6765 1.8274 1.9901 2.2253 2.2921 2.6155 2.8692 3.3782 3.4186 4.1222 3.9469 4.8516 4.9549 6.2762 5.9138 7.6655 8.1624 11.03 10.26 14.28
References page VII - 244
TABLES. POLYMOLECULARITY CORRECTION FACTORS 9KLMSH/vin F O R M = *M AI
W - JfnAfaMo(LN) [T)\-K[7l]Mn 4KMSH^n
«w My1JMn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.40 1.0270 1.0762 1.1202 1.1602 1.2142 1.2925 1.3602 1.4743 1.5693 1.6515 1.7901 1.9055 2.3136
0.50 1.0364 1.1034 1.1642 1.2202 1.2968 1.4100 1.5098 1.6818 1.8286 1.9580 2.1810 2.3714 3.0753
0.60
0.70
1.0468 1.1342 1.2149 1.2901 1.3947 1.5524 1.6944 1.9453 2.1652 2.3633 2.7132 3.0200 4.2121
1.0583 1.1690 1.2728 1.3713 1.5105 1.7249 1.9226 2.2815 2.6055 2.9040 3.4462 3.9355 5.9445
0.80 0.90 1.0710 1.0849 1.2079 1.2515 1.3390 1.4144 1.4653 1.5741 1.6472 1.8088 1.9343 2.1890 2.2056 2.5582 2.7132 3.2716 3.1861 3.9593 3.6330 4.6272 4.4691 5.9176 5.2481 7.1614 8.6445 12.953
TABLE 6. POLYMOLECULARITY CORRECTION FACTORS ^KMSH SWDW F O R M = Kw/VlaM USING MOLECULAR WEIGHT FROM s j AND D w FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT
rsz)
=
*KMSH,sWDW
( y3k-
3 a|l7]
1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 20.0
1.0064 1.0179 1.0277 1.0362 1.0470 1.0608 1.0711 1.0855 1.0950 1.1017 1.1106 1.1162 1.1281
0.50
0.60
0.70
0.80
0.90
1.0120 1.0191 1.0331 1.0527 1.0509 1.0812 1.0662 1.1056 1.0854 1.1361 L1100 1.1755 1.1284 1.2051 1.1539 1.2465 1.1708 1.2741 1.1828 1.2938 1.1987 1.3200 1.2088 1.3367 1.2301 1.3724
1.0279 1.0771 1.1190 1.1551 1.2006 1.2598 1.3048 1.3684 1.4113 1.4421 1.4836 1.5102 1.5676
1.0384 1.1065 1.1651 1.2160 1.2809 1.3664 1.4323 1.5269 1.5918 1.6389 1.7030 1.7445 1.8353
1.0506 1.1413 1.2203 1.2898 1.3795 1.5000 1.5943 1.7326 1.8291 1.9003 1.9983 2.0626 2.2059
TABLE 7. POLYMOLECULARITY CORRECTION FACTORS q[LMNs}H-ttfiw FOR M = JCMWW USING MOLECULAR WEIGHT FROM swW AND D w FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT ,,(LN)
_ /jr. ,jr. v (5a*,-a H )/6
ri _ «
f>a w
1.1 1.3
0.40
Mv/Mn
0.40
1.5 1.7 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 20.0
1.0274 1.0360 1.0473 1.0630 1.0760 1.0968 1.1133 1.1269 1.1487 1.1659 1.2211
0.50 1.0520 1.0686 1.0905 1.1214 1.1472 1.1892 1.2228 1.2510 1.2968 1.3335 1.4542
0.60 1.0845 1.1120 1.1487 1.2011 1.2457 1.3195 1.3797 1.4310 1.5157 1.5849 1.8206
0.70
0.80 0.90
1.1255 1.1674 1.2241 1.3064 1.3777 1.4983 1.5991 1.6864 1.8340 1.9573 2.3959
1.1761 1.2365 1.3195 1.4427 1.5518 1.7411 1.9037 2.0477 2.2974 2.5119 3.3145
1.2372 1.3213 1.4389 1.6178 1.7803 2.0705 2.3279 2.5617 2.9794 3.3497 4.8199
TABLE 8. POLYMOLECULARITY CORRECTION FACTORS 9KMSH$WDA F O R M = KM*1* W USING MOLECULAR WEIGHT FROM V AND D A FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SZ)
r(fe + flw + i)[r(fc +1)] 3 *"-*
=
<*KMSH^bA
[r{{3k
_
flw + 5 ) / 3 ) ]
**
[ r m
+
aH
+
7)/6] 2«M
My,/Mn
0.40
0.50
0.70
0.90
1.1 1.5 2.0 3.0 5.0 10.0 20.0
1.0001 1.0007 1.0012 1.0018 1.0024 1.0029 1.0032
1.0029 1.0113 1.0176 1.0243 1.0299 1.0342 1.0364
1.0114 1.0439 1.0678 1.0929 1.1137 1.1297 1.1378
1.0236 1.0907 1.1404 1.1926 1.2363 1.2700 1.2871
TABLE 9. POLYMOLECULARITY CORRECTION FACTORS ^K1MSH5WOA F O R M = *[,iM* w USING MOLECULAR WEIGHT FROMs w AND DA FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
«w My,/Mn
0.40
0.50
0.70
0.90
1.0001 L0005 1.0009 1.0015 1.0021 1.0031 1.0040
1.0030 1.0128 1.0219 1.0349 1.0516 1.0746 1.0981
1.0118 1.0512 1.0891 1.1448 1.2191 1.3276 1.4459
1.0245 1.1086 1.1927 1.3222 1.5056 1.7958 2.1418
(LN)
«M M^fMn
{n\
r{k+l)
\n]
0.40
a
\ «Hr(fc + a M + i) + 2)
a
M^IMn
TABLE 7. cont'd
0.50
0.60
0.70
0.80
0.90
1.0064 1.0120 1.0176 L0333
1.0192 1.0539
1.0282 1.0795
1.0389 1.1107
1.0513 1.1477
1.1 1.5 2.0 3.0 5.0 10.0 20.0
TABLE 10. POLYMOLECULARITY CORRECTION FACTORS FOR 9KMSH(5WD, M = K^M'to USING MOLECULAR WEIGHT FROM sj AND D1 FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT SZ
r
0< ) ( f e + fl[l?] + l ) *KMSH,SWDZ ~ (fc 4. l ) a M m 4. 1)
Afw/Mn
0.40
1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 10.0 20.0
m
_ - flM (SZ) ~~ A N / i lwO I ^KMSH,J w D 2
0.50
0.9891 0.9725 0.9605 0.9515 0.9414 0.9301 0.9228 0.9137 0.9083 0.8977 0.8924
0.9887 0.9716 0.9594 0.9502 0.9400 0.9287 0.9213 0.9123 0.9069 0.8964 0.8913
0.70
0.90
0.9906 0.9765 0.9665 0.9590 0.9509 0.9419 0.9360 0.9289 0.9247 0.9166 0.9126
0.9960 0.9900 0.9858 0.9827 0.9793 0.9755 0.9731 0.9701 0.9684 0.9650 0.9634
TABLE 12. cont'd a
[n\
M^fMn 2.0 5.0 10.0 20.0
0.40
0.50"
0.70
0.90
0.9885 0.9811 0.9786 0.9773
1.0000 1.0000 1.0000 1.0000
1.0323 1.0530 1.0600 1.0635
1.0702 1.1153 1.1307 1.1385
a
SeeRef. 18.
TABLE 13. POLYMOLECULARITY CORRECTION FACTORS 9KlMSH,swfiHw F O R M = *[,]M'w USING MOLECULAR WEIGHT FROM s w AND [ij] ~ [ij\ w FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT JLN)
/ w ,jr. \{^\-2a\n]-2a[n])/6 W = ^W*j^]w^KMSH,*wWw
TABLE 11. POLYMOLECULARITY CORRECTION FACTORS ^KMSH,5WDZ
F O R
W
FROM «j AND Dz FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
«w My1IMn
a
\n\
M = ^ M M - K USING MOLECULAR WEIGHT
0.40
0.50
0.70
0.90
0.9886 0.9690 0.9525 0.9383 0.9202 0.8959 0.8765 0.8467 0.8244 0.8065 0.7792 0.7586 0.6980
0.9882 0.9677 0.9506 0.9358 0.9170 0.8918 0.8717 0.8409 0.8178 0.7993 0.7711 0.7499 0.6877
0.9900 0.9728 0.9583 0.9458 0.9298 0.9083 0.8911 0.8645 0.8445 0.8285 0.8039 0.7852 0.7301
0.9957 0.9883 0.9819 0.9764 0.9693 0.9596 0.9518 0.9395 0.9301 0.9225 0.9107 0.9016 0.8739
M^fMn 1.1 1.5 2.0 5.0 10.0 20.0
0.40
a
0.50
0.70
0.90
0.9980 0.9914 0.9853 0.9662 0.9521 0.9381
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0058 1.0249 1.0429 1.1026 1.1499 1.1993
1.0127 1.0550 1.0958 1.2367 1.3552 1.4850
a
SeeRef. 18.
1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 20.0
TABLE 12. POLYMOLECULARITY CORRECTION FACTORS ?KMSH,iw[t) F O R M = K[fi)Ma["] USING MOLECULAR WEIGHT FROM swAND [if] ~ [ij]w FOR POLYMERS WITH A SCHULZZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SZ) *KMSH,Jwfe)w
1 0
i
= [r(
(3£ „
1
r f r +flM+ i)] - -* "
fl(j?J + 5 ) / / 3 ) ]
1.5aW
[ r ( f c+
! ) ] I-2« w
a
[n\
My,/Mn
0.40
0.50"
0.70
0.90
1.1 1.5
0.9980 0.9925
1.0000 1.0000
1.0056 1.0211
1.0122 1.0459
TABLE 14. POLYMOLECULARITY CORRECTION FACTORS 9KMSH[#] DW F O R M = K[f]Maw USING MOLECULAR WEIGHT F R O M ' M = [fj]w AND D w FOR POLYMERS WITH A SCHULZZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT
[r(k + a[v] 4- l ) ] a ' ^ 1 [ r ( ( 3 ^ - aH + 2)/3] 3 f l '^
(sz)
^KMSH,^WDW
j
^
r
+
JJJ^W + I
«w M*/Mn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0 20.0
0.40
0.50
0.60
0.70
0.80
0.90
1.0234 1.0655 1.1020 1.1338 1.1744 1.2275 1.2680 1.3253 1.3639 1.4286 1.4522 1.5030
1.0363 1.1025 1.1607 1.2122 1.2787 1.3676 1.4367 1.5365 1.6050 1.7224 1.7661 1.8614
1.0530 1.1512 1.2395 1.3189 1.4236 1.5672 1.6815 1.8511 1.9705 2.1810 2.2611 2.4394
1.0741 1.2143 1.3438 1.4629 1.6240 1.8519 2.0391 2.3264 2.5351 2.9160 3.0653 3.4059
1.1001 1.2949 1.4809 1.6570 1.9022 1.2628 2.5706 3.0620 3.4334 4.1406 4.4280 5.1043
1.1318 1.3973 1.6611 1.9195 2.2923 2.8666 3.3795 4.2389 4.9193 6.2842 6.8637 8.2812
References page VII - 244
TABLE 15. POLYMOLECULARITY CORRECTION FACTORS a L C/KMSH ^ Dw FOR [if] = K[n]M M USING MOLECULAR WEIGHT FROM*fa] =fa]wAND D w FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT ^
My1IMn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0 20.0
M
0.40
0.50
0.60
0.70
1.0234 1.0657 1.1034 1.1374 1.1832 1.2490 1.3055 1.3999 1.4778 1.6563 1.7485 2.0688
1.0364 1.1034 1.1642 1.2202 1.2968 1.4100 1.5098 1.6818 1.8286 2.1810 2.3714 3.0753
1.0532 1.1534 1.2468 1.3346 1.4580 1.6462 1.8178 2.1258 2.4002 3.0994 3.4995 5.1022
1.0745 1.2186 1.3574 1.4917 1.6861 1.9949 2.2887 2.8428 3.3635 4.7932 5.6711 9.5619
0.80
a
\n)
My1JMn 3.0 5.0 10.0 20.0
= (*w/*.) ( 4 -N + f c N-«^
^
TABLE 17. cont'd
0.40
0.50
0.60
0.70
0.80
0.90
1.0526 1.0780 1.1134 1.1500
1.1085 1.1629 1.2409 1.3243
1.1922 1.2937 1.4454 1.6150
1.3131 1.4903 1.7698 2.1016
1.4851 1.7850 2.2909 2.9402
1.7297 2.2316 3.1532 4.4554
0.90
1.1008 1.1331 1.3027 1.4105 1.5049 1.7016 1.7072 2.0050 2.0111 2.4811 2.5184 3.3243 3.0265 4.2219 4.0446 6.1560 5.0648 8.2480 8.1342 15.27 10.19 20.46 20.49 50.78
TABLE 18. POLYMOLECULARITY CORRECTION FACTORS K
F O R
M M
^KMSHft)bt [n] = \v} * USING MOLECULAR WEIGHT FROM [Jf] = ft]w AND Dz FOR POLYMERS WITH A SCHULZZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (sz)
=
[r{k + a^ + l)]'M + 1 [r((3* -aH -f 5)/3)]3flM ^
QKMSH.[f))wDt
+
tfa№[r(k
-f l)J4flIl'' +1
a
\n\
TABLE 16. POLYMOLECULARITY CORRECTION FACTORS {
F O R
a
q ^MSHMwDA M = *M>W w USING MOLECULAR WEIGHT FROMfa]= fa]w AND D A FOR POLYMERS WITH A SCHULZZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SZ)
[r{k+ I)] 5 0 N - 1 U ^
=
? KMSH 1 (^DA
j
r
^+ ^
+
+
S1,,) + l ) ] g H + 1 7
y6j6flW
My,/Mn 1.1 1.5 2.0 3.0 4.0 5.0 10.0 20.0
0.40
0.50
0.70
0.90
0.9715 0.8997 0.8538 0.8108 0.7904 0.7784 0.7553 0.7442
0.9665 0.8830 0.8305 0.7820 0.7592 0.7459 0.7204 0.7081
0.9612 0.8657 0.8086 0.7529 0.7277 0.7132 0.6853 0.6719
0.9644 0.8756 0.8200 0.7684 0.7442 0.7301 0.7029 0.6899
«M Af w /A/ n 1.1 1.5 2.0 3.0 5.0 10.0 20.0
0.40
0.50
0.70
1.0044 1.0172 1.0270 1.0375 1.0465 1.0535 1.0570
1.0088 1.0344 1.0538 1.0747 1.0924 1.1061 1.1132
1.0231 1.0909 1.1426 1.1983 1.2458 1.2831 1.3022
0.90 1.0468 1.1861 1.2949 1.4147 1.5189 1.6020 1.6452
TABLE 19. POLYMOLECULARITY CORRECTION FACTORS g^{_|£,
FOR fa] = JCwM*w USING MOLECULAR WEIGHT
FROM fa] i fa]w AND Dz FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
C TABLE 17. POLYMOLECULARITY CORRECTION FACTORS ^KMSH1W DA F O R M= KWM*M U S I N G MOLECULAR WEIGHT FROMfa]= fa]w AND O A FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
[rj[ =
My1JMn 1.1 1.5 2.0
^W^^A^KMSH.M.OA
0.40
0.50
0.60
0.70
0.80
0.90
1.0045 1.0191 1.0329
1.0090 1.0387 1.0671
1.0154 1.0670 1.1173
1.0239 1.1057 1.1875
1.0349 1.1572 1.2834
1.0487 1.2241 1.4130
A
= (Mw/Mn)Krn,-M)^
a
\n\
M^lMn 1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.40
0.50
0.60
0.70
0.80
0.90
0.9702 0.8793 0.8026 0.7057 0.6441 0.6001 0.5663 0.5169 0.4816 0.3865
0.9649 0.8589 0.7711 0.6623 0.5946 0.5469 0.5107 0.4585 0.4217 0.3252
0.9611 0.8448 0.7495 0.6332 0.5617 0.5120 0.4746 0.4210 0.3837 0.2876
0.9593 0.8378 0.7390 0.6192 0.5461 0.4955 0.4576 0.4036 0.3662 0.2706
0.9597 0.8393 0.7412 0.6221 0.5494 0.4989 0.4611 0.4073 0.3698 0.2741
0.9627 0.8506 0.7584 0.6451 0.5751 0.5262 0.4892 0.4362 0.3990 0.3026
D. SEDIMENTATION COEFFICIENT VERSUS MOLECULAR WEIGHT RELATIONSHIP TABLE 20. POLYMOLECULARITY CORRECTION FACTORS 1 JsIdLyVu F O R s = KsM*' RISING sw AND /Vfw FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SZ) ^sedlSwMw
r(* + l + o , ) iy.r{k + i)
=
{k +
r((3*-aM+5)/3) i)(2-M)/3 r ( i k + !)
a (V] and (as)
My1IMn a M and(as)
1.1 1.5 2.0 3.0 4.0 5.0 8.0 20.0
*L N U W = (AWMn) (a <-" )/2 = (*w/«n) (- W- a «- 2)/l8
(ifc+
5w = i f , A f ^ S L * w
M w /M n
TABLE 21. POLYMOLECULARITY CORRECTION FACTORS ?sld!iw*iw F O R s = K*M*' LOSING sw AND Mw FOR POLYMERS WITH A" LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
0.40 (0.53)
0.50 (0.50)
0.70 (0.43)
0.90 (0.37)
0.9888 0.9597 0.9406 0.9222 0.9133 0.9080 0.9003 0.8927
0.9887 0.9594 0.9400 0.9213 0.9123 0.9069 0.8990 0.8913
0.9889 0.9598 0.9404 0.9216 0.9124 0.9070 0.8990 0.8911
0.9895 0.9616 0.9429 0.9246 0.9157 0.9104 0.9025 0.8947
1.1 1.5 2.0 3.0 5.0 7.0 10.0 15.0 20.0
0.40 (0.53)
0.50 (0.50)
0.90 (0.37)
0.9882 0.9508 0.9174 0.8722 0.8185 0.7849 0.7509 0.7139 0.6888
0.9882 0.9506 0.9170 0.8717 0.8178 0.7841 0.7499 0.7128 0.6877
0.9890 0.9540 0.9227 0.8802 0.8295 0.7978 0.7654 0.7302 0.7062
TABLE 22. POLYMOLECULARITY CORRECTION FACTORS q{£\wJiln FOR s = KsMa° USING sw AND Mn FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT "
a to] and (as) Mw/Mn
1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.40(0.53)
1.0403 1.1914 1.3612 1.6568 1.9129 2.1423 2.3521 2.7292 3.0654 4.4117
0.50(0.50)
1.0370 1.1750 1.3293 1.5958 1.8245 2.0279 2.2129 2.5429 2.8348 3.9860
0.60(0.47)
1.0337 1.1592 1.2989 1.5381 1.7416 1.9213 2.0837 2.3714 2.6240 3.6050
0.70(0.43)
1.0306 1.1443 1.2699 1.4835 1.6638 1.8218 1.9638 2.2136 2.4312 3.2638
0.80(0.40)
1.0276 1.1297 1.2422 1.4320 1.5908 1.7290 1.8525 2.0683 2.2548 2.9579
0.90(0.37)
1.0247 1.1158 1.2158 1.3833 1.5223 1.6425 1.7493 1.9345 2.0934 2.6836
TABLE 23. POLYMOLECULARITY CORRECTION FACTORS q^"l u FOR s = KSM** USING sw AND Mn FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
a to) and (as)
M*,/Mn
1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.40(0.53)
1.0397 1.1803 1.3277 1.5671 1.7627 1.9311 2.0805 2.3403 2.5638 3.4039
0.50(0.50)
1.0364 1.1642 1.2968 1.5098 1.6818 1.8286 1.9580 2.1810 2.3714 3.0753
0.60(0.47)
0.70(0.43)
1.0332 1.1488 1.2677 1.4564 1.6071 1.7346 1.8463 2.0373 2.1990 2.7877
1.0300 1.1342 1.2402 1.4066 1.5381 1.6484 1.7445 1.9075 2.0444 2.5354
0.80(0.40)
1.0270 1.1202 1.2142 1.3602 1.4743 1.5693 1.6515 1.7901 1.9055 2.3136
0.90(0.37)
1.0242 1.1069 1.1897 1.3169 1.4153 1.4967 1.5666 1.6837 1.7806 2.1183
References page VII - 244
TABLE 24. POLYMOLECULARITY CORRECTION FACTORS qS!iwalwl)w SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT* "
FOR s = K M
* *'
USING
*w A N D ^*WDW FOR POLYMERS WITH A
[r((3* + 5 - aw)/3)] < a w +1 ^[r((3* -f 2 - « w )/3)] (2 ~ a ^ )/3
(SZ)
_
^,
(Sz,
a M and(a s ) My9ZMn 1.1 1.5 2.0 3.0 5.0 8.0 10.0 20.0
0.40(0.53)
0.50(0.50)
0.60(0.47)
0.70(0.43)
0.80(0.40)
0.90(0.37)
1.0119 1.0503 1.0837 1.1250 1.1648 1.1897 1.1982 1.2153
1.0120 1.0509 1.0854 1.1284 1.1704 1.1966 1.2055 1.2234
1.0119 1.0512 1.0863 1.1307 1.1746 1.2018 1.2111 1.2295
1.0118 1.0509 1.0864 1.1320 1.1773 1.2053 1.2147 1.2334
1.0116 1.0502 1.0857 1.1319 1.1783 1.2066 1.2161 1.2348
1.0112 1.0490 1.0842 1.1306 1.1774 1.2057 1.2151 1.2335
TABLE 25. POLYMOLECULARITY CORRECTION FACTORS q£^ w/5l| b FOR s = KsMa° USING $w AND M-Swbvt FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT0 (LN)
,^
/J& \ ( « H - * H + 2 ) / 1 8
c
-KMa*
/7 ( L N )
a M and (as) My1JMn 1.1 1.5 2.0 3.0 5.0 6.0 8.0 10.0 20.0 a
0.40(0.53)
0.50(0.50)
0.60(0.47)
0.70(0.43)
0.80(0.40)
0.90(0.37)
1.0119 1.0518 1.0901 1.1465 1.2218 1.2498 1.2953 1.3318 1.4518
1.0120 1.0520 1.0905 1.1472 1.2228 1.2510 1.2968 1.3335 1.4542
1.0119 1.0518 1.0901 1.1465 1.2218 1.2498 1.2953 1.3318 1.4518
1.0118 1.0510 1.0888 1.1444 1.2185 1.2461 1.2909 1.3267 1.4446
1.0115 1.0499 1.0867 1.1409 1.2130 1.2399 1.2834 1.3183 1.4326
1.0111 1.0482 1.0838 1.1361 1.2055 1.2313 1.2731 1.3065 1.4160
Unfortunately there is a printing error in Ref. 20. The exponent (a ^ - a ^ 4- 2 ) / 1 8 given here is correct.
TABLE 26. VALUES OF s w /s max FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT, CALCULATED ACCORDING TO
(sw\ V W sz
r(k + as + i) ^ r ( f c - a w / 3 + 5/3) (* + 1 - "sYTik + 1) (* + 1/3 + a w /3) (2 - fl w )/3 r(* + 1) a w and(a s )
My9IMn 1.1 1.2 1.5 2.0 3.0 5.0 10.0 20.0
0.40 (0.53) 1.0153 1.0294 1.0653 1.1097 1.1657 1.2217 1.2724 1.3013
0.50 (0.50) 1.0120 1.0230 1.0509 1.0854 1.1284 1.1708 1.2088 1.2301
0.60 (0.47) 1.0090 1.0172 1.0382 1.0640 L0961 1.1275 1.1553 1.1708
0.70 (0.43)
0.80 (0.40)
0.90 (0.37)
1.0063 1.0120 1.0269 1.0454 1.0683 1.0907 1.1105 1.1214
1.0039 1.0075 1.0171 1.0293 1.0446 1.0598 1.0731 1.0805
1.0018 1.0037 1.0087 1.0156 1.0247 1.0340 1.0422 1.0468
TABLE 27. VALUES OF $w/smax FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT, CALCULATED ACCORDING TO V max/ LN
Mn
Mn
a[n] and (a,) My1JMn
0.40 (0.53)
1.1 1.2 1.5 2.0 3.0 5.0 10.0 20.0
1.0415 1.0809 1.1887 1.3441 1.5980 1.9871 2.6710 3.5901
0.50 (0.50)
0.60 (0.47)
1.0364 1.0708 1.1642 1.2968 1.5098 1.8286 2.3714 3.0753
0.70 (0.43)
1.0316 1.0614 1.1416 1.2541 1.4317 1.6917 2.1216 2.6607
E. DIFFUSION COEFFICIENT VERSUS MOLECULAR WEIGHT RELATIONSHIP TABLE 28. POLYMOLECULARITY CORRECTION FACTORS q{oflbkMn F O R D = KDM*D USING D A AND Mn FOR POLYMERS
1.0272 1.0527 1.1210 1.2156 1.3626 1.5735 1.9128 2.3252
0.80 (0.40) 1.0231 1.0447 1.1022 1.1810 1.3017 1.4715 1.7378 2.0523
0.90 (0.37) 1.0194 1.0375 1.0852 1.1500 1.2480 1.3834 1.5910 1.8297
TABLE 29. POLYMOLECULARITY CORRECTION FACTORS FOR D = K M ?DHM>A*I» D *° USING OA AND Mn FOR POLYMERS WITH V L O G A R I T H M I C NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
W I T H V S C H U L Z - Z I M M (SZ) DISTRIBUTION OF THE MOLECU-
LAR WEIGHT a [,,I and (aD)
My,/Mn
1.1 1.5 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.40 ( - 0.47)
0.50 ( - 0.50)
0.90 ( - 0.63)
0.9723 0.8798 0.7939 0.7291 0.6783 0.6026 0.5483 0.5068 0.4467 0.4045 0.2955
0.9700 0.8705 0.7790 0.7107 0.6575 0.5789 0.5230 0.4806 0.4197 0.3773 0.2695
0.9602 0.8324 0.7200 0.6392 0.5781 0.4908 0.4309 0.3868 03253 0.2840 0.1851
0.50 (- 0.50)
0.90 ( - 0.63)
0.9729 0.8899 0.8192 0.7289 0.6293 0.5155 0.4223
0.9707 0.8810 0.8052 0.7094 0.6047 0.4870 0.3921
0.9610 0.8445 0.7490 0.6325 0.5112 0.3829 0.2868
1.1 1.5 2.0 3.0 5.0 10.0 20.0
a M and (aD)
M*/Mn
0.40 ( - 0.47)
TABLE 30. POLYMOLECULARITY CORRECTION FACTORS g ^ ^ . FOR D = KDMa° USING DA AND M-SW£)A FOR POLYMERS WITH A A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT
a M and (aD) My,/Mn 1.1 2.0 4.0 8.0 20.0
0.40 (-0.47)
0.50(-0.5O)
1.0035 1.0210 1.0331 1.0395 1.0434
1.0029 1.0176 1.0278 1.0318 1.0364
0.60 (-0.53) 1.0023 1.0140 1.0221 1.0264 1.0290
0.70 (-0.57)
0.80(-0.6O)
0.90 (-0.63)
1.0017 1.0104 1.0164 1.0196 1.0215
1.0011 1.0068 1.0107 1.0128 1.0140
1.0005 1.0033 1.0052 1.0062 1.0068
References page VII - 244
TABLE 31. POLYMOLECULARITY CORRECTION FACTORS q^p.M^ F O R D = KDM*° USING DA AND /Vflw&A FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR*WEIGHT (LN)
4BiffJ>A#fvltA
=
/,-> /»-> ^(flfWnl -2a fW2 nl -a( (/ i+2)/36
(Mw/Mn)
pD .
„ JTf00
-(LN)
A-^£)M-w0A^Diff£)A^wOA
a w and (aD) My1JMn
0.40 (- 0.47)
0.50 (- 0.50)
0.60 (- 0.53)
0.70 (- 0.57)
0.80 (~ 0.60)
0.90 (- 0.63)
1.1 1.5 2.0 3.0 5.0 8.0 20.0
1.0036 1.0153 1.0262 1.0419 1.0619 1.0807 1.1183
1.0030 1.0128 1.0219 1.0349 1.0516 1.0671 1.0981
1.0024 1.0101 1.0174 1.0277 1.0409 1.0531 1.0774
1.0018 1.0075 1.0128 1.0204 1.0301 1.0390 1.0567
1.0011 1.0049 1.0084 1.0133 1.0195 1.0253 1.0366
1.0006 1.0024 1.0040 1.0064 i.0094 1.0121 1.0175
TABLE 32. POLYMOLECULARITY CORRECTION FACTORS ^DwAin FOR D = KDMa° USING Ow AND Mn FOR POLYMERS WITH\ SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SZ) i r(fc + ai) + i) i r ( ( 3 * - a M + 2)/3) ^Diff,DwMfl kaD T(A:+1) fc-Kl+1)/* r(*+l) D w = KDM°Dq**
TABLE 34. POLYMOLECULARITY CORRECTION FACTORS ^DWbxMn F O R D = K D M * ° USING D z AND Mn FOR POLYMERS WITH YsCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SZ) 1 r{k + flp + 2) ^ *K)+0/3 f((3* - aH 4- 5)/3) ^DIfF1D2Mn ^ 0 (Jt + I) r(k + i) ' k + \ r(k+\)
D^n
Dz = K9Mn «[,,) and (a D )
My1JMn 1.1 1.5 2.0 3.0 5.0 7.0 10.0 15.0 20.0
qmibtMn a [,] and(aD)
0.40 ( - 0.47)
0.50 ( - 0.50)
0.90 ( - 0.63)
0.9877 0.9406 0.8878 0.8017 0.6837 0.6064 0.5285 0.4478 0.3963
0.9876 0.9400 0.8862 0.7979 0.6760 0.5959 0.5154 0.4323 0.3796
0.9884 0.9429 0.8896 0.7981 0.6659 0.5768 0.4868 0.3945 0.3369
My9JMn 0.40 (-0.47) 0.50 (-0.50) 1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.9458 0.7942 0.6806 0.5523 0.4782 0.4285 0.3920 0.3412 0.3065 0.2206
0.70 (-0.57) 0.90 (-0.63)
0.9427 0.7833 0.6647 0.5319 0.4561 0.4056 0.3688 0.3179 0.2835 0.1993
0.9369 0.7628 0.6349 0.4945 0.4159 0.3644 0.3273 0.2767 0.2431 0.1632
0.9315 0.7439 0.6079 0.4611 0.3806 0.3285 0.2915 0.2418 0.2093 0.1342
TABLE 35. POLYMOLECULARITY CORRECTION FACTORS FOR D = K M TABLE 33. POLYMOLECULARITY CORRECTION FACTORS VDKM)1*. o *° USING Dt AND Mn FOR POLYMERS FOR D = <*DiHrDwMn KDM*° USING D W AND Mn FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT MOLECULAR WEIGHT « № n = ( M w / A / n ) ( ° ^ ) / 2 = (Mw/Mn)K,)^N-8)/i8
a M and(a D )
a M and {aD) My1IMn 1.1 1.5 2.0 3.0 5.0 7.0 10.0 15.0 20.0
0.40 ( - 0.47)
0.50 ( - 0.50)
0.90 ( - 0.63)
0.9882 0.9508 0.9174 0.8722 0.8185 0.7849 0.7509 0.7139 0.6888
0.9882 0.9506 0.9170 0.8717 0.8178 0.7841 0.7499 0.7128 0.6877
0.9890 0.9540 0.9227 0.8802 0.8295 0.7978 0.7654 0.7302 0.7062
M*/Mn 0.40 (-0.47) 0.50(-0.5O) 1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.9452 0.7869 0.6638 0.5224 0.4407 0.3862 0.3468 0.2925 0.2564 0.1702
0.9422 0.7761 0.6484 0.5033 0.4204 0.3657 0.3263 0.2726 0.2371 0.1538
0.70 (-0.57) 0.90 (-0.63) 0.9364 0.7561 0.6201 0.4689 0.3845 0.3297 0.2907 0.2384 0.2044 0.1268
0.9311 0.7380 0.5948 0.4390 0.3538 0.2993 0.2611 0.2105 0.1781 0.1059
TABLE 36. POLYMOLECULARITY CORRECTION FACTORS FOR D = K ^DW,DAMW oMa° USING 6 A AND Mw FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SZ)
*DifU>Atfw
=
[r{k +i)]2(k+
i)~ f l °
=
+2 4
= (M»/Mnyial>r^.rW6
C!D A * W = (Mw/Mny^ ^
[ r ( ^ + i)l2(fe + i ) ( o ' " l + 1 ) / 3
I)] 2 ~ [r((6k +
\r{k-aDl2+
TABLE 37. POLYMOLECULARITY CORRECTION FACTORS ^DWGA/SIW F O R D = KoMao USING DA AND Mw FOR POLYMERS WITH ALOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
a[n]+l)/6)}2
Dt =
K0MVqW^ a[,j and (aD)
a w and (aD) MvZMn 1.1 1.5 2.0 3.0 5.0 10.0 20.0
My,/Mn 0.40 (-0.47)
0.40 ( - 0.47)
0.50 ( - 0.50)
0.90 ( - 0.63)
1.0165 1.0631 1.0971 1.1326 1.1620 1.1846 1.1960
1.0173 1.0661 1.1017 1.1388 1.1695 1.1931 1.2051
1.0200 1.0760 1.1168 1.1592 1.1941 1.2209 1.2345
1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0 20.0
0.50(-0.5O)
1.0172 1.0481 1.0752 1.0996 1.1320 1.1781 1.2172 1.2815 1.3336 1.4506 1.5097 1.7090
0.70 (-0.57) 0.90 (-0.63)
1.0180 1.0504 1.0790 1.1046 1.1388 1.1874 1.2287 1.2968 1.3522 1.4768 1.5399 1.7537
1.0195 1.0547 1.0858 1.1138 1.1511 1.2045 1.2499 1.3251 1.3865 1.5254 1.5961 1.8373
1.0208 1.0584 1.0917 1.1217 1.1618 1.2193 1.2684 1.3498 1.4166 1.5683 1.6458 1.9122
TABLE 38. POLYMOLECULARITY CORRECTION FACTORS q ^ ^ FOR D - KDMa° USING D w AND Mw FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT * _ (*+l)-fl°r(* + a p + l) _ (k+ l ) ( " N ^ ) / 3 r ( ( 3 ^ _ a { r / ] + 2 ) / 3 ) *Difrj>w*w r(kTT) " r(k + \) n(SZ)
w
_ "" D
(sz) w q
™j>**~
a ^ and (aD) My,/Mn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0 20.0
0.40 (- 0.47)
0.50 (- 0.50)
0.60 (- 0.53)
0.70 (- 0.57)
0.80 (- 0.60)
0.90 (- 0.63)
1.0326 1.0891 1.1365 1.1767 1.2268 1.2909 1.3386 1.4050 1.4490 1.5216 1.5479 1.6037
1.0358 1.0984 1.1512 1.1965 1.2533 1.3267 1.3820 1.4596 1.5115 1.5983 1.6299 1.6977
1.0391 1.1081 1.1668 1.2175 1.2817 1.3655 1.4293 1.5200 1.5812 1.6849 1.7230 1.8056
1.0426 1.1182 1.1833 1.2399 1.3122 1.4076 1.4811 1.5868 1.6592 1.7831 1.8293 1.9302
1.0462 1.1288 1.2007 1.2637 1.3448 1.4533 1.5379 1.6612 1.7467 1.8953 1.9514 2.0754
1.0499 1.1400 1.2190 1.2889 1.3799 1.5031 1.6003 1.7441 1.8453 2.0242 2.0927 2.2461
TABLE 39. POLYMOLECULARITY CORRECTION FACTORS q^^^ F O RD = KDM*D LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT JLN)
_ (O
IfJi \(nl-ao)/2
_ /i>
/ w \ («?j+5«[(,,+4)/18
USING D w AND /Vfw FOR POLYMERS WITH A £
_ jr_£f fli^d-N). .
a w and (aD) My1IMn 1.1 1.3 1.5 1.7 2.0 2.5 3.0
0.40 (-0.47) 1.0332 1.0939 1.1488 1.1991 1.2677 1.3683 1.4564
0.50(-0.5O)
0.60 (-0.53)
0.70 (-0.57)
0.80(-0.6O)
0.90 (-0.63)
1.0364 1.1034 1.1642 1.2202 1.2968 1.4100 1.5098
1.0397 1.1132 1.1803 1.2423 1.3277 1.4545 1.5671
1.0432 1.1235 1.1972 1.2656 1.3603 1.5019 1.6285
1.0468 1.1342 1.2149 1.2901 1.3947 1.5524 1.6944
1.0505 1.1453 1.2333 1.3158 1.4312 1.6063 1.7651
References page VII - 244
TABLE 39. cont'd a M and (aD) 0.40 (- 0.47)
My1IMn 4.0 5.0 8.0 10.0 20.0
0.50 ( - 0.50)
0.60 ( - 0.53)
0.70 (- 0.57)
0.80 (- 0.60)
0.90 (- 0.63)
1.6818 1.8286 2.1810 2.3714 3.0753
1.7627 1.9311 2.3403 2.5638 3.4039
1.8503 2.0430 2.5169 2.7790 3.7802
1.9453 2.1652 2.7132 3.0200 4.2121
2.0483 2.2989 2.9316 3.2902 4.7089
1.6071 1.7346 2.0373 2.1990 2.7877
TABLE 40. POLYMOLECULARITY CORRECTION FACTORS ?DHf JM«W F O R ° = KoM*° USING DX AND MW FOR POLYMERS WITHASCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT ^D\ff,DtMw (k+ly+aD
TABLE 41. POLYMOLECULARITY CORRECTION FACTORS ^Diffk*** F O R D = K*>MaD U S I N G D* A N D ^w FOR POLYMERS WITH VLOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT *&£>,*. = (Mw/Mn)(fl»+fl*)/2 = (M w /M n )Kr«N-2)/is
r(k + i)
Dz^KDM^q^^
1 r ( ( 3 f c - a w + 5)/3) (ife + i)(2-«w)/3 r(*+i)
a[7] and (aD) My9IMn
d[n\ and (aj>) M w /M n 0.40 (-0.47)
1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
F.
0.9888 0.9597 0.9406 0.9222 0.9133 0.9080 0.9046 0.9003 0.8978 0.8927
0.50(-0.5O)
0.9887 0.9594 0.9400 0.9213 0.9123 0.9069 0.9034 0.8990 0.8964 0.8913
0.50 (-0.50)
0.9882 0.9508 0.9174 0.8722 0.8415 0.8185 0.8001 0.7720 0.7509 0.6888
0.9882 0.9506 0.9170 0.8717 0.8409 0.8178 0.7993 0.7711 0.7499 0.6877
1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.60 (-0.53) 0.90 (-0.63)
0.9887 0.9594 0.9399 0.9211 0.9120 0.9066 0.9030 0.8986 0.8960 0.8908
0.40 (-0.47)
0.9895 0.9616 0.9429 0.9246 0.9157 0.9104 0.9068 0.9025 0.8999 0.8947
0.70 (-0.57) 0.90 (-0.63) 0.9884 0.9514 0.9184 0.8738 0.8435 0.8207 0.8025 0.7747 0.7537 0.6922
0.9890 0.9540 0.9227 0.8802 0.8513 0.8295 0.8122 0.7855 0.7654 0.7062
MEAN-SQUARE RADIUS OF GYRATION VERSUS MOLECULAR WEIGHT RELATIONSHIP
TABLE 42. POLYMOLECULARITY CORRECTION FACTORS ^ ( $ 2 ) ^ w FOR (S2) = K^M^ WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (57) (SZ)
„
r ( * + C + 3)
*<*.<">.*•""(* + i )
e+2
r ( ( 3 * + 2fl W +8)/3) +
r ( * + 1 ) " ( k + I)VH Mr(k
+1)
USING (S2)z AND M w FOR POLYMERS ,
2 (
h
"
<52)
w
{sz)
*<*'№<>
a[tj] and (B)
My1JMn 1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.40 (-0.07) 1.0818 1.2982 1.4457 1.5921 1.6650 1.7086 1.7376 1.7739 1.7956 1.8390
0.50(0.00)
0.60(0.07)
0.70(0.13)
0.80(0.20)
0.90(0.27)
1.0909 1.3333 1.5000 1.6667 1.7500 1.8000 1.8333 1.8750 1.9000 1.9500
1.1005 1.3707 1.5583 1.7473 1.8422 1.8993 1.9375 1.9852 2.0138 2.0713
1.1105 1.4105 1.6210 1.8345 1.9423 2.0073 2.0508 2.1053 2.1380 2.2037
1.1210 1.4529 1.6881 1.9287 2.0508 2.1246 2.1741 2.2361 2.2735 2.6291
1.1320 1.4979 1.7602 2.0305 2.1685 2.2521 2.3083 2.3788 2.4213 2.5069
TABLE 43. POLYMOLECULARITY CORRECTION FACTORS q(^{52) ^ FOR (S2) - K{S2}M*+* USING (S2) z AND Mw FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
a[n] and(e) My1JMn
0.40 (-0.07)
1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
1.0898 1.4417 1.8689 2.6944 3.4929 4.2720 5.0358 6.5281 7.9840 14.92
0.50(0.00)
0.60(0.07)
1.1000 1.5000 2.0000 3.0000 4.0000 5.0000 6.0000 8.0000 10.00 20.00
1.1108 1.5635 2.1469 3.3566 4.6090 5.8941 7.2060 9.8948 12.65 27.17
9
r(fe +£ + 3)
Oyr.«s»).A.-(jk+1)№ +
2 )
«+ir№+1)
i){k
1.1341 1.7078 2.4967 4.2638 6.2333 8.3684 10.65 15.56 20.89 52.16
0.90(0.27) 1.1466 1.7897 2.7049 4.8410 7.3163 10.08 13.09 19.79 27.26 73.74
= K
(s*)M^* USING (S 2 ) 2 AND /Vf2 FOR POLYMERS
r((3fc + 2 a w + 8)/3) { k +
0.80(0.20)
1.1221 1.6326 2.3116 3.7739 5.3435 6.9981 8.7237 12.35 16.18 37.39
TABLE 44. POLYMOLECULARITY CORRECTION FACTORS q ^ s 2 ) MZ F O R ^ WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT J^
0.70(0.13)
*!+*„<«>
2
)^+2^r(k^\)
{
h
{S2)
z
*<*№•*'
+ 2
a w and (s) M*/Mn 1.1 1.5 2.0 3.0 5.0 20.0
0.40 (-0.07) 0.9974 0.9925 0.9902 0.9883 0.9872 0.9860
0.50(0.00)
0.60(0.07)
0.70(0.13)
0.80(0.20)
0.90(0.27)
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0029 1.0085 1.0112 1.0133 1.0146 1.0159
1.0062 1.0181 1.0238 1.0282 1.0311 1.0338
1.0099 1.0287 1.0378 1.0448 1.0494 1.0538
1.0139 1.0405 1.0532 1.0632 1.0697 1.0758
TABLE 45. POLYMOLECULARITY CORRECTION FACTORS q^"]^ -Mi FOR (S2) = K(s*)M1+e USING (S 2 ) z AND Mz FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT ,,(LN)
_ /w /f> \(e2+e)/2 _ /w /r> N (2aJ'±aH-\)f9
,%2\
_F
M
Jl+^(
L N
)
a w and (s) My,/Mn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 6.0 7.0 10.0 20.0
0.40 (-0.07) 0.9970 0.9919 0.9875 0.9836 0.9787 0.9719 0.9664 0.9578 0.9512 0.9458 0.9413 0.9309 0.9110
0.50(0.00)
0.60(0.07)
0.70(0.13)
0.80(0.20)
0.90(0.27)
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0034 1.0094 1.0145 1.0190 1.0250 1.0331 1.0398 1.0505 1.0589 1.0658 1.0716 1.0853 1.1124
1.0072 1.0200 1.0311 1.0409 1.0538 1.0717 1.0865 1.1104 1.1293 1.1450 1.1584 1.1900 1.2540
1.0115 1.0320 1.0499 1.0657 1.0867 1.1162 1.1409 1.1810 1.2130 1.2399 1.2630 1.3183 1.4326
1.0162 1.0453 1.0709 1.0938 1.1242 1.1674 1.2039 1.2638 1.3123 1.3534 1.3891 1.4753 1.6586
References page VII - 244
TABLE 46. POLYMOLECULARITY CORRECTION FACTORS g ^ s ' ) , / ^
F O R
5
( ^
K
=
7 M +
<s ) * *
2
USING (S ) z AND Mn FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SZ) r(k + e + 3) _ r ( ( 3 * + 2 a w + 8)/3) *<&№.*.-k*"(k+\)r(k+\)""ifc^H+*)^* + i)r(* +1)
. *
2 2
_ ~
, <52>
n
(sz) r
52
^ >< >^«
a M and(s) M w /M n 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0 20.0
0.40 ( - 0.07) 1.1825 1.5419 1.8954 2.2444 2.7608 3.6069 4.4390 6.0720 7.6738 12.35 15.40 30.12
0.50 (0.00)
0.70 (0.07)
1.2000 1.6000 2.0000 2.4000 3.0000 4.0000 5.0000 7.0000 9.0000 15.00 19.00 39.00
1.2372 1.7268 2.2333 2.7537 3.5558 4.9399 6.3715 9.3464 12.44 22.22 29.06 65.71
0.90 (0.27) 1.2773 1.8693 2.5034 3.1732 4.2352 6.1333 8.1651 12.55 17.30 33.13 44.74 111.46
TABLE 47. POLYMOLECULARITY CORRECTION FACTORS qj^\s2) Mn FOR (S2) = K(s2)M1+£ USING (S 2 ) z AND Mn FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
a[n] and(«) My1JMn
0.40 ( - 0.07)
0.50 (0.00)
0.60 (0.07)
0.70 (0.13)
0.80 (0.20)
1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0
1.1912 1.6186 2.1049 2.6485 3.5691 5.3758 7.5125 12.74 19.19 45.46 68.48
1.2100 1.6900 2.2500 2.8900 4.0000 6.2500 9.0000 16.00 25.00 64.00 100.00
1.2296 1.7666 2.4095 3.1610 4.4968 7.2960 10.83 20.22 32.81 90.93 147.53
1.2501 1.8488 2.5849 3.4655 5.0708 8.5519 13.11 25.71 43.37 130.39 219.90
1.2715 1.9370 2.7781 3.8083 5.7358 10.06 15.93 32.90 57.73 188.71 331.13
0.90 (0.27) 1.2938 2.0319 2.9911 4.1949 6.5080 11.89 19.47 42.35 77.41 275.64 503.76
G. SECOND VIRIAL COEFFICIENT VERSUS MOLECULAR WEIGHT RELATIONSHIP TABLE 48.
POLYMOLECULARITY CORRECTION FACTORS
q ( s z ) (OP) FOR A{°P) = KA2M*** USING Afn FOR POLYMERS WITH Mn ,A2 A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT
a M and (aA2) M^/Mn 1.1 1.2
0.65 (- 0.35)
0.80 (- 0.20)
0.95 (- 0.05)
1.0492 1.0606
1.0267 1.0318
1.0063 1.0073
TABLE 48. confd ain] and
MvIMn 1.3 1.4 1.5 1.7 2.0 3.0 5.0
(aAl)
0.65 (- 0.35)
0.80 (- 0.20)
0.95 ( 0.05)
1.0653 1.0666 1.0658 1.0603 1.0469 0.9886 0.8949
1.0333 1.0329 1.0314 1.0264 LO164 0.9775 0.9167
1.0074 1.0070 1.0064 1.0048 1.0018 0.9907 0.9735
TABLE 49. POLYMOLECULARITY CORRECTION FACTORS g£N)^OP) FOR A^ = KA2Ma*2 USING /Vfn FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
1.1 1.2 1.3 1.4 1.5 1.7 2.0 3.0 5.0 10.0 20.0
0.65 ( - 0.35)
0.80 ( - 0.20)
0.95 ( - 0.05)
1.0495 1.0619 1.0685 1.0723 1.0745 1.0761 1.0750 1.0630 1.0378 0.9924 0.9318
1.0270 1.0330 1.0358 1.0371 1.0375 1.0371 1.0347 1.0237 1.0042 0.9713 0.9280
1.0064 1.0077 1.0081 1.0083 1.0082 1.0078 1.0068 1.0030 0.9969 0.9867 0.9733
aM and (aAl) M ^/Mn 1.4 1.5 1.7 2.0 3.0 5.0
aM and (a Aa ) M w /M n
TABLE 50. cont'd
0.65 ( - 0.35)
0.80 ( - 0.20)
0.95 ( - 0.05)
1.0649 1.0661 1.0667 1.0657 1.0600 1.0531
1.0333 1.0334 1.0329 1.0314 1.0267 1.0217
1.0075 1.0074 1.0071 1.0065 1.0050 0.0035
TABLE 51. POLYMOLECULARITY CORRECTION FACTORS g(-tN)-«s, FOR MLS) = KA2M'*2 USING Mw FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
a w and (a A1) TABLE 50.
POLYMOLECULARITY CORRECTION FACTORS
g£Z)_(LS) FOR A{is) = KA2M'**
A SCHULZ-ZIMM DISTRIBUTION OF THE MOLECULAR WEIGHT
«(„] and (aA 2 )
Mw/Mn Ll 1.2 1.3
M*/Mn
0.65 ( - 0.35)
0.80 (~ 0.20)
0.95 ( - 0.05)
1.0496 1.0620 1.0686 1.0723 1.0742 1.0764 1.0753 1.0634 1.0391 0.9968 0.9604
1.0271 1.0331 1.0359 1.0371 1.0375 1.0374 1.0350 1.0241 1.0057 0.9752 0.9513
1.0065 1.0078 1.0082 1.0084 1.0083 1.0082 1.0071 1.0035 0.9985 0.9887 0.9816
USING Mw FOR POLYMERS WITH
0.65 ( - 0.35)
0.80 ( - 0.20)
0.95 ( - 0.05)
1.0477 1.0579 1.0626
1.0260 1.0308 1.0326
1.0063 1.0072 1.0075
1.1 1.2 1.3 1.4 1.5 1.7 2.0 3.0 5.0 10.0 20.0
H.
DETERMINATION OF THE DIMENSIONS OF MACROMOLECULES
1.
Fox-Flory Relationship
TABLE 52. POLYMOLECULARITY CORRECTION FACTORS qffZ){r2)^n FOR FOX-FLORY RELATIONSHIP [tj] = ${s){r2)3/2/M
USING {r2)z
AND AIn FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT
• a w - *+»*y<'+Q1 " Q f ^ -'"+"'" № +'" "m^^F
w
-
«№'*".
a ( ,|and(«) M*/Mn 1.1 1.3 1.5 2.0 3.0 4.0 5.0 10.0 20.0
0.40 (- 0.07) 0.7991 0.5642 0.4329 0.2708 0.1531 0.1063 0.0813 0.0373 0.0179
0.50 (0.00)
0.60 (0.07)
0.70 (0.13)
0.80 (0.20)
0.90 (0.27)
0.7888 0.5474 0.4154 0.2558 0.1427 0.0985 0.0751 0.0342 0.0164
0.7790 0.5317 0.3994 0.2424 0.1336 0.0917 0.0697 0.0316 0.0151
0.7695 0.5171 0.3846 0.2304 0.1256 0.0858 0.0650 0.0293 0.0139
0.7604 0.5034 0.3710 0.2195 0.1185 0.0806 0.0609 0.0273 0.0130
0.7518 0.4905 0.3585 0.2097 0.1121 0.0760 0.0573 0.0256 0.0121
References page VII - 2 4 4
TABLE 53. POLYMOLECULARITY CORRECTION FACTORS g££ 2 ) ^ FOR FOX-FLORY RELATIONSHIP [if] - #00(r 2 ) 3/2/M USING (r 2 ) z AND Mn FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
«£&),*. = (Mw/Mn)(3£2-I8£-21)/8 - (MJMn)Kr^r")/*
[v] =
m&qw2h_n
a(9) and (e) My1JMn
0.40 ( - 0.07)
1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0
0.7900 0.3668 0.1801 0.0661 0.0324 0.0187 0.0119 0.0058 0.0034
0.50 (0.00)
0.60 (0.07)
0.70 (0.13)
0.80 (0.20)
0.90 (0.27)
0.7787 0.3450 0.1621 0.0559 0.0263 0.0146 0.0091 0.0043 0.0024
0.7677 0.3248 0.1463 0.0475 0.0214 0.0115 0.0069 0.0031 0.0017
0.7572 0.3063 0.1323 0.0405 0.0175 0.0091 0.0054 0.0023 0.0012
0.7470 0.2892 0.1199 0.0347 0.0144 0.0073 0.0042 0.0017 0.0009
0.7372 0.2734 0.1089 0.0298 0.0119 0.0058 0.0032 0.0013 0.0006
TABLE 54. POLYMOLECULAR1TY CORRECTION FACTORS 9FFZ
+ i))l»
= (k + ^[r(k
TABLE 55. POLYMOLECULARITY CORRECTION FACTORS qjW2) ^ FOR FOX-FLORY RELATIONSHIP [i/j =
r ( f c + fl
"" + 1) i n [r((3^ + 2flH + 8)/3)] 3 / 2
a M and (a) Mw/Mn
0.40 (- 0.07)
0.50 (0.00)
0.70 (0.13)
0.90 (0.27)
A(v] and (a) M w /M n
1.1 1.5 2.0 3.0 4.0 5.0 20.0
2.
0.40 ( - 0.07)
0.8791 0.6494 0.5416 0.4593 0.4253 0.4067 0.3578
0.50 (0.00)
0.8677 0.6231 0.5117 0.4282 0.3941 0.3755 0.3273
0.70 (0.13)
0.8465 0.5769 0.4607 0.3767 0.3432 0.3252 0.2789
1.1 1.5 2.0 3.0 4.0 5.0 10.0 20.0
0.90 (0.27)
0.8269 0.5377 0.4193 0.3363 0.3038 0.2865 0.2427
0.8690 0.5502 0.3601 0.1982 0.1297 0.0934 0.0336 0.0121
0.8565 0.5174 0.3242 0.1678 0.1051 0.0731 0.0237 0.0077
0.8329 0.4594 0.2646 0.1215 0.0700 0.0456 0.0121 0.0032
0.8110 0.4101 0.2179 0.0894 0.0475 0.0291 0.0063 0.0014
Interconversion of Different Averages of the Mean-Square Radius of Gyration
TABLE 56. POLYMOLECULARITY CORRECTION FACTORS q["|w FOR THE CALCULATION OF (S2)w FROM (S2)z FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT .(SZ) _ _ _ _ A ± J _ _ _ *< 52 >w-(3* + 2a N -f5)/3
/C2V _fl(SZ) (s2) ^ >w-«<s*>wP Jz a
[n]
M^lMn 1.1 1.2 1.3 1.4 1.5 1.7
0.40 0.9218 0.8654 0.8228 0.7895 0.7627 0.7224
0.50
0.60
0.70
0.80
0.90
0.9167 0.8571 0.8125 0.7778 0.7500 0.7083
0.9116 0.8491 0.8025 0.7664 0.7377 0.6948
0.9066 0.8411 0.7927 0.7554 0.7258 0.6818
0.9016 0.8333 0.7831 0.7447 0.7143 0.6693
0.8967 0.8257 0.7738 0.7343 0.7031 0.6572
TABLE 56. cont'd a
\n\
My1IMn 1.9 2.0 2.5 3.0 4.0 6.0 10.0 20.0
0.40 0.6934 0.6818 0.6410 0.6164 0.5882 0.5625 0.5435 0.5300
0.50
0.60
0.70
0.80
0.90
0.6786 0.6667 0.6250 0.6000 0.5714 0.5455 0.5263 0.5128
0.6643 0.6522 0.6098 0.5844 0.5556 0.5294 0.5102 0.4967
0.6507 0.6383 0.5952 0.5696 0.5405 0.5143 0.4950 0.4815
0.6376 0.6250 0.5814 0.5556 0.5263 0.5000 0.4808 0.4673
0.6250 0.6122 0.5682 0.5422 0.5128 0.4865 0.4673 0.4539
TABLE 57. POLYMOLECULARITY CORRECTION FACTORS g j ^ FOR THE CALCULATION OF (S2) w FROM (S2) 2 FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT a
My1JMn 1.1 1.2 1.3 1.4 1.5 1.7 1.9 2.0 2.5 3.0 4.0 5.0 6.0 8.0 10.0 20.0
m
-(M
IM r ( 2 f l »"! + 2 ) / 3
(s2)
~aim
(S2)
0.40
0.50
0.60
0.70
0.80
0.90
0.9149 0.8435 0.7828 0.7305 0.6849 0.6094 0.5493 0.5236 0.4252 0.3587 0.2742 0.2227 0.1878 0.1436 0.1166 0.0611
0.9091 0.8333 0.7692 0.7143 0.6667 0.5882 0.5263 0.5000 0.4000 0.3333 0.2500 0.2000 0.1667 0.1250 0.1000 0.0500
0.9033 0.8233 0.7559 0.6984 0.6489 0.5678 0.5043 0.4774 0.3763 0.3098 0.2279 0.1797 0.1479 0.1088 0.0858 0.0409
0.8976 0.8133 0.7428 0.6829 0.6316 0.5481 0.4831 0.4559 0.3540 0.2879 0.2078 0.1614 0.1312 0.0947 0.0736 0.0335
0.8919 0.8035 0.7299 0.6678 0.6147 0.5290 0.4629 0.4353 0.3330 0.2676 0.1895 0.1450 0.1165 0.0825 0.0631 0.0275
0.8863 0.7938 0.7173 0.6530 0.5983 0.5106 0.4435 0.4156 0.3133 0.2487 0.1727 0.1302 0.1034 0.0718 0.0541 0.0225
TABLE 58. POLYMOLECULARITY CORRECTION FACTORS qfQ FOR THE CALCULATION OF (S2) n FROM (S2) z FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT .(SZ) q
Wn~
„
fe(fc+l) [{3k
, 2x
__(SZ),^
{
+ 2a[r}]+2)/3}(3k + 2a{ii]+5)/3)
" >"-*<*'>•<* >*
a
\n\
My,/Mn 1.1 1.2 1.3 1.4 1.5 1.7 1.9 2.0 2.5 3.0 4.0 5.0 6.0 10.0 20.0
0.40
0.50
0.60
0.70
0.80
0.90
0.8431 0.7293 0.6428 0.5749 0.5200 0.4369 0.3769 0.3527 0.2671 0.2150 0.1548 0.1210 0.0993 0.0578 0.0283
0.8333 0.7143 0.6250 0.5556 0.5000 0.4167 0.3571 0.3333 0.2500 0.2000 0.1429 0.1111 0.0909 0.0526 0.0256
0.8237 0.6998 0.6079 0.5372 0.4811 0.3978 0.3389 0.3156 0.2345 0.1865 0.1323 0.1024 0.0836 0.0481 0.0234
0.8143 0.6857 0.5916 0.5198 0.4633 0.3802 0.3221 0.2992 0.2205 0.1744 0.1229 0.0948 0.0771 0.0442 0.0214
0.8050 0.6720 0.5758 0.5032 0.4464 0.3637 0.3065 0.2841 0.2076 0.1634 0.1144 0.0880 0.0714 0.0407 0.0196
0.7959 0.6588 0.5607 0.4873 0.4305 0.3483 0.2921 0.2701 0.1959 0.1534 0.1068 0.0819 0.0663 0.0377 0.0181
References page VII - 244
TABLE 59. POLYMOLECULARITY CORRECTION FACTORS <$?> FOR THE CALCULATION OF (S2) n FROM (S2) z FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT ,,(LN) _ (M
IK* W 4 «M+ 4 )/3
/c2\
- Q ^
(S2)
«M
My1IMn
0.40
1.1 1.2 1.3 1.4 1.5 1.7 1.9 2.0 2.5 3.0 4.0 5.0 6.0 10.0
0.8370 0.7115 0.6128 0.5336 0.4691 0.3714 0.3018 0.2742 0.1808 0.1286 0.0752 0.0496 0.0353 0.136
0.50
0.60
0.70
0.80
0.8264 0.6944 0.5917 0.5102 0.4444 0.3460 0.2770 0.2500 0.1600 0.1111 0.0625 0.0400 0.0278 0.0100
0.8160 0.6778 0.5714 0.4878 0.4211 0.3224 0.2543 0.2279 0.1416 0.0960 0.0520 0.0323 0.0219 0.0074
0.8057 0.6615 0.5517 0.4664 0.3989 0.3004 0.2334 0.2078 0.1253 0.0829 0.0432 0.0260 0.0172 0.0054
0.7955 0.6456 0.5328 0.4460 0.3779 0.2798 0.2143 0.1895 0.1109 0.0716 0.0359 0.0210 0.0136 0.0040
0.90 0.7855 0.6301 0.5145 0.4264 0.3580 0.2607 0.1967 0.1727 0.0981 0.0618 0.0298 0.0170 0.0107 0.0029
3. Interconversion of Different Averages of the Mean-Square End-to-End Distance TABLE 60. POLYMOLECULARITY CORRECTION FACTORS q j ^ FOR THE CALCULATION OF (r2) n FROM [(r2>3/2]n = £ . m(rf)3/2 AS OBTAINED FROM FOX-FLORY RELATIONSHIP WITH Mn ACCORDING TO EQ. (B40) FOR POLYMERS WITH A SCHULZZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SZ)
*<'*>.
/
k
y3r((3k
+ 2a{7]]+2)/3)
TABLE 61. POLYMOLECULARITY CORRECTION FACTORS q((r1^ FOR THE CALCULATION OF (r 2 ) n FROM [(r 2 ) 3/2 ] n = E/"/( r i 2 > 3 / 2 A S OBTAINED FROM FOX-FLORY RELATIONSHIP WITH Mn ACCORDING TO EQ. (B40) FOR POLYMERS WITH A LOGARITHMIC NORMAL DISTRIBUTION OF THE MOLECULAR WEIGHT
[ r ( ^ i + a N )] 2/3
\r(k+i)J
* $ . = (*w/*B)-(-N+2fl«+1)/9
41^]T
a
\n]
a
M w /M n
\n\
M w /M n 1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.40
0.50
0.70
0.90
0.9790 0.9087 0.8426 0.7513 0.6898 0.6443 0.6089 0.5561 0.5178 0.4136
0.9761 0.8981 0.8271 0.7323 0.6697 0.6242 0.5889 0.5368 0.4993 0.3978
0.9697 0.8760 0.7962 0.6954 0.6315 0.5861 0.5514 0.5009 0.4649 0.3688
0.9627 0.8531 0.7654 0.6600 0.5957 0.5508 0.5170 0.4681 0.4337 0.3429
1.1 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 20.0
0.40 0.9795 0.9155 0.8599 0.7872 0.7394 0.7043 0.6769 0.6358 0.6057 0.5208
0.50 0.9765 0.9036 0.8409 0.7598 0.7071 0.6687 0.6389 0.5946 0.5623 0.4729
0.70
0.90
0.9699 0.8779 0.8005 0.7027 0.6407 0.5964 0.5625 0.5129 0.4774 0.3821
0.9625 0.8499 0.7573 0.6436 0.5735 0.5244 0.4874 0.4343 0.3971 0.3007
TABLE 62. POLYMOLECULARITY CORRECTION FACTORS 9{"j FOR THE CALCULATION OF
=
q{r2)
-
My1)Mn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0 20.0
TABLE 64. POLYMOLECULARITY CORRECTION FACTORS qW)t FOR THE CALCULATION OF (r 2 ) z FROM [
r((3* + 2q w +5)/3) kvi[r(k + i)}{/3ink
(sz ^J
) =
q
+ a[r}] + i)}2/3
0.40
0.50
0.70
0.90
M^fMn
1.0704 1.2051 1.3328 1.4548 1.6290 1.9005 2.1538 2.6211 3.0498 4.1891 4.8677 7.7480
1.0737 1.2142 1.3471 1.4738 1.6543 1.9351 2.1969 2.6789 3.1208 4.2941 4.9925 7.9556
1.0796 1.2305 1.3724 1.5071 1.6985 1.9954 2.2715 2,7788 3.2432 4.4744 5.2066 8.3107
1.0846 1.2441 1.3933 1.5346 1.7348 2.0445 2.3320 2.8594 3.3416 4.6189 5.3779 8.5941
1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0 20.0
TABLE 63. POLYMOLECULARITY CORRECTION FACTORS Cj[^ FOR THE CALCULATION OF (r 2 ) w FROM [(r 2 ) 3 / 2 ] n ~ £ , " / ( r , 2 ) 3 / 2 AS OBTAINED FROM FOX-FLORY RELATIONSHIP WITH Mn ACCORDING TO EQ. (B40) FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
r((3* + 2a w + 8)/3) ik2/3(ik+ i)[r(ik+ i)]l/3[r(jfe + fl(l/, +1)] 2 / 3
0.40
0.50
0.70
0.90
1.1612 1.4646 1.7475 2.0139 2.3891 2.9647 3.4940 4.4558 5.3269 7.6102 8.9565 14.62
1.1713 1.4944 1.7961 2.0806 2.4814 3.0962 3.6615 4.6881 5.6175 8.0515 9.4858 15.51
1.1908 1.5523 1.8908 2.2104 2.6610 3.3523 3.9877 5.1408 6.1837 8.9116 10.52 17.26
1.2095 1.6078 1.9816 2.3350 2.8335 3.5984 4.3012 5.5758 6.7278 9.7381 11.51 18.94
TABLE 65. POLYMOLECULARITY CORRECTION FACTORS g j ^ FOR THE CALCULATION OF (r 2 ) z FROM [(r 2 ) 3/2 ] n = E / " / ( r , 2 ) V 2 AS OBTAINED FROM FOX-FLORY RELATIONSHIP WITH Mn ACCORDING TO EQ. (B40) FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT * $ > = (M w /Mn)-W. —WrH)/9
My1JMn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 15.0 20.0
0.40
0.50
1.0706 1.2065 1.3366 1.4618 1.6421 1.9264 2.1949 2.6965 3.1634 3.6042 4.0245 4.4280 4.8174 5.1946 6.9432 8.5302
1.0741 1.2175 1.3554 1.4888 1.6818 1.9882 2.2795 2.8284 3.3437 3.8337 4.3035 4.7568 5.1962 5.6234 7.6220 9.4574
0.70 1.0805 1.2375 1.3900 1.5388 1.7559 2.1048 2.4408 3.0832 3.6959 4.2858 4.8574 5.4139 5.9574 6.4897 9.0208 11.395
^
=
^(LN) ^
,
2/3
0.90 1.0860 1.2549 1.4204 1.5829 1.8220 2.2102 2.5881 3.3198 4.0271 4.7156 5.3886 6.0489 6.6981 7.3376 10.423 13.369
My1JMn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 10.0 15.0
0.40
0.50
0.60
1.1702 1.1815 1.1927 1.5413 1.5827 1.6243 1.9514 2.0331 2.1163 2.3987 2.5310 2.6673 3.1359 3.3636 3.6022 4.5306 4.9704 5.4419 6.1196 6.8385 7.6233 9.8340 11.31 12.98 14.21 16.72 19.60 19.19 23.00 27.46 24.74 30.12 36.52 30.84 38.05 46.74 44.55 56.23 70.61 86.94 114.33 149.44
0.70
0.80
1.2037 1.2146 1.6660 1.7078 2.2009 2.2868 2.8077 2.9520 3.8519 4.1125 5.9459 6.4833 8.4775 9.4043 14.84 16.91 22.90 26.66 32.65 38.67 44.07 52.97 57.15 69.55 88.22 109.65 194.16 250.74
0.90 1.2253 1.7497 2.3739 3.1000 4.3839 7.0550 10.41 19.22 30.93 45.62 63.38 84.25 135.59 321.88
References page VII - 244
4.
The Effect of Polymolecularity on the Radius of Gyration of Stiff Polymer Chains
TABLE 66. POLYMOLECULARITY CORRECTION FACTORS g(sz)(Iw) FOR STIFF POLYMER CHAINS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF CHAIN LENGTHS L qW(L*) Lw/li 1.1 1.2 1.5 2 3 5 10 ^w/^n
TABLE
~
for £ w
1.5
2
4
10
20
40
100
0.8986 0.7714 0.8098 0.7592 0.7720 0.6985 0.6836
0.8720 0.8335 0.8669 0.8227 0.7899 0.7692 0.7558
0.8901 0.8902 0.9100 0.8838 0.8637 0.8509 0.8425
0.9523 0.9537 0.9626 0.9507 0.9414 0.9355 0.9316
0.9759 0.9768 0.9812 0.9751 0.9703 0.9671 0.9651
0.9879 0.9883 0.9905 0.9875 0.9851 0.9835 0.9824
0.9952 0.9953 0.9962 0.9950 0.9940 0.9933 0.9928
L O G A R I T H M I C
N O R M A L
Myff/Mn-
67.
POLYMOLECULARITY
(LN) D I S T R I B U T I O N
O F
C H A I N
C O R R E C T I O N
LENGTHS
FACTORS
q
( L N )
(Z
w
)
FOR
STIFF
POLYMER
C H A I N S
W I T H
A
L
G^)(Zw) for Iw Ly1JLl 1.1 1.2 1.5 2 3 5 10 ^U/Ln
1.5
2
4
10
20
40
100
0.919 0.864 0.749 0.663 0.57 0.52 0.51
0.9636 0.913 0.817 0.737 0.665 0.612 0.589
0.9651 0.9377 0.8822 0.8325 0.7876 0.7537 0.7303
0.9861 0.9746 0.9505 0.9276 0.9056 0.8887 0.8764
0.9932 0.9875 0.9751 0.9631 0.9513 0.9422 0.9354
0.9966 0.9937 0.9875 0.9814 0.9753 0.9705 0.9670
0.9986 0.9975 0.9950 0.9924 0.9900 0.9881 0.9866
= Mw/A/n.
I.
DETERMINATION OF UNPERTURBED DIMENSIONS OF MACROMOLECULES
1.
Burchard-Stockmayer-Fixman Procedure
TABLE 68. POLYMOLECULARITY CORRECTION FACTORS gBSF,/ww F O R BURCHARD-STOCKMAYER-FIXMAN PROCEDURE (EQ. B55) USING /Vfw FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT AND FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT
*2£*. = (*w/«.) "1/8
M / ( M « k ) - Ko + B'a*/q*$Mw
M*/Mn
1.1
1.5
2.0
3.0
5.0
10.0
20.0
^BTFUW IBSFM*
°' 9 8 8 7 °' 9 8 8 2
°' 9 5 9 4 °- 9 5 0 6
a9400
°- 9213 °- 8717
0 9069
08964
°' 8 9 1 3 °' 6877
°' 9 1 7 0
' °- 8178
°- 7499
TABLE 69. POLYMOLECULART IY CORRECTO I N FACTORS ^B"^ AND ^s*^ FOR BURCHARD-STOCKMAYER-FX I MAN PRO DURE (EQ. B56) USING A*n FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEG I HT q
^BSF1Wn ~ k**r{k+l) My1)Mn
1.1
1.3
1.5
™^ 4hSFMnMn ' ~ K*
BSFMn ~ (k+l)r(k+l)
1.7
2.0
2.5
3.0
4.0
1
L0370
L1078
L175
°
L2389
L3293
L4684 L5958
L8245
2
0 9427
0 8522
07833
°' 7 2 8 7
0 6647
°- 5 8 7 4
04561
^BSlU.
^BSFUH
'
'
-
05319
5.0 2 0279
6.0
2 2129 0 4056 ' °' 3 6 8 8
+ B M
n I ^BSF 1 M n
8.0 2 5429
'
03179
10.0 28348
°2835
15.0 3 4586
* °- 2 3 0 6
20.0 3986
°
01993
TABLE 70. POLYMOLECULARITY CORRECTION FACTORS 1 g ^ ) ^ n AND 2 g ^
B
FOR BURCHARD-STOCKMAYER-FIXMAN PROCE-
DURE (EQ. B56) USING Mn FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT 1^(LN)
My1JMn
1.1
1.3
1
L0364
2
9422
QBSFMn
q^SF,Mn °'
2.
,r> /jr. x3/8
U
2.0
2.5
L2968
L4100
3 4
L1642
L2202
0/7761
0<7177
°'
6484
(„1 / f 1 „ (LN)
_ /r> ,jr. x -5/8
1.7
8488
°
°-
1.5
2 (LN)
°-
5640
3.0 L5098
°-
5033
4.0
5.0
L6818
°'
M ^ - J f 4- U'Ml/2 I1T
L8286
4204
°
6.0 L958
3657
°
03263
2 l 8 1 0
10.0 2 3 7 1 4
02726
°-
15.0
20.0
2<7608
2371
°
3 0753
'
1841
°1538
Cowie- By water Procedure
TABLE 71. POLYMOLECULARITY CORRECTION FACTORS ggf, FOR THE COWIE-BYWATER PROCEDURE (EQ. B60) USING /Vtw AND sw FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 72) ^
(SZ)
r ( * - 0 . S e + 2)
CB)1
(* + I ) 0 5 J X * - 0.5e4- 1.5)
(My 2 Aw)(I - v2Pl)/(viNL)
= PO^SBZ)I 4-
TABLE 73. POLYMOLECULARITY CORRECTION FACTORS g£B"} FOR THE COWIE-BYWATER PROCEDURE (EQ. B60) USING Mw AND sw FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 74)
* S 5 - (Mw/M n ) <«-*>/•
lfMWgVft
(MJZ 2 Aw)(I ~ V2Pi)/(r/iiVL) = POq{csl +
a M and (B) M w /M n 1.1 1.5 2.0 3.0 5.0 10.0 20.0
0.40 ( - 0.07)
0.50 (0.00)
0.90 (0.27)
1.0129 1.0477 1.0716 1.0955 1.1145 1.1287 1.1358
1.0114 1.0424 1.0638 1.0854 1.1026 1.1155 1.1220
1.0054 1.0209 1.0322 1.0441 1.0538 1.0612 1.0650
M*/Mn 1.1 1.5 2.0 3.0 5.0 10.0 15.0 20.0
0.40 (- 0.07)
0.50 (0.00)
0.90 (0.27)
1.0136 1.0591 1.1032 1.1684 1.2561 1.3857 1.4676 1.5287
1.0120 1.0520 1.0905 1.1472 1.2228 1.3335 1.4029 1.4542
1.0056 1.0239 1.0413 1.0662 1.0984 1.1438 1.1711 1.1909
TABLE 74. POLYMOLECULARITY CORRECTION FACTORS g£j$ FOR THE COWIE-BYWATER PROCEDURE (EQ. B60) USING Mw AND sw FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 73) «S3 = («w/Mn) (I - )/2
(SZ) __ * - 0 . 5 e + 1 . 5 *CB.2 k + l
(M^ 2 AW)(I - V2Pi)/fai*L) = Po^SUl +
(MlJ2/sw)(\ - V2P1V(TMJVL) = Poq{™\ + Bf'MlJ2q{*Q a M and (e) Mv/Mn
B"MlJ2q^
TABLE 72. POLYMOLECULARITY CORRECTION FACTORS ggg FOR THE COWIE-BYWATER PROCEDURE (EQ. B60) USING Mw AND sw FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 71)
1.1 1.5 2.0 3.0 5.0 10.0 20.0
8.0
a M and (e) My1IMn
0.40 ( - 0.07)
0.50 (0.00)
0.90 (0.27)
1.0485 1.1778 1.2667 1.3556 1.4267 1.4800 1.5067
1.0455 1.1667 1.2500 1.3333 1.4000 1.4500 1.4750
1.0333 1.1222 1.1833 1.2444 1.2933 1.3300 1.3483
B"M\!2q^l
1.1 1.5 2.0 3.0 5.0 10.0 12.0 16.0 20.0
0.40 ( - 0.07)
0.50 (0.00)
0.90 (0.27)
1.0521 1.2414 1.4473 1.7967 2.3593 3.4145 3.7633 4.3873 4.9418
1.0488 1.2247 1.4142 1.7321 2.2361 3.1623 3.4641 4.0000 4.4721
1.0356 1.1603 1.2894 1.4960 1.8042 2.3263 2.4871 2.7638 2.9995
References page VII - 244
3.
Baumann-Stockmayer-Fixman Procedure
TABLE 75. POLYMOLECULARITY CORRECTION FACTORS g ^ FOR THE BAUMANN-STOCKMAYER-FIXMAN PROCEDURE (EQ. B63) USING Mw FOR POLYMERS WITH A SCHULZ-ZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 76)
TABLE 77. POLYMOLECULARITY CORRECTION FACTORS q{^[ FOR THE BAUMANN-STOCKMAYER-FIXMAN PROCEDURE (EQ. B63) USING /Vlw FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 78) (LN) f/c2\
(SZ)
2
2
K*> ^zkA^Tjy
._ / i . i I U f , i
?
\2/. .
ON 2
1.2048 1.5203 1.7520 1.9292 2.1286 2.3547 2.5055 2.8071 3.0333 3.1464
X
/rr>
[r(fc + 3.5)]8/3 r ( * + e + 3) (SZ) \l3/2_^3/2 R ,r, (SZ) ,1/2 a [,j and (g)
Mw/Mn 1.1 1.3 1.5 1.7 2.0 3.0 5.0 10.0 20.0
0.40 (- 0.07) 1.1016 1.2287 1.3050 1.3560 1.4069 1.4884 1.5427 1.5785 1.5950
0.50 (0.00) 0.70 (0.13) 1.1044 1.2353 1.3140 1.3665 1.4191 1.5033 1.5595 1.5965 1.6135
1.1105 1.2496 1.3334 1.3894 1.4456 1.5355 1.5956 1.6352 1.6535
„
MJMn
,jr.
(LN) x 1/2
q^\ 1.2392 1.8046 2.4900 3.3000 4.7568 7.8590 11.845 22.627 37.384 56.343 79.702 107.63 140.30 177.83
TABLE 78. POLYMOLECULARITY CORRECTION FACTORS q^s}2) FOR THE BAUMANN-STOCKMAYER-FIXMAN PROCEDURE (EQ. B63) USING (S 2 ) z FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 77) ^( L N )
^B1(S2), f/p2v ,,(LN)
/(jr.
0.90 (0.27) 1.1173 1.2654 1.3549 1.4147 1.4747 1.5709 1.6352 1.6776 1.6971
=
(M
/AA \0.25e2+0.5£+1.25
{Mw/Mn)
(LN) ^ 3/2 _ ^ 3 / 2
R
,jr.
(LN) x 1/2
a{tj] and (e)
[r(k + I)) 3 [r(£ + 1.5e + 3.5)]2/3 (SZ)
^3/2
1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
^
TABLE 76. POLYMOLECULARITY CORRECTION FACTORS q{$*)t F O R T H E BAUMANN-STOCKMAYER-FIXMAN PROCEDURE (EQ. B63) USING (S 2 ) z FOR POLYMERS WITH A SCHULZZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 75)
r/c2\
(LN) X 1 3/2
35)]2
-
1.1 1.3 1.5 1.7 2.0 2.5 3.0 5.0 10.0 20.0
,,jr.
.,-> x 2.25
[ H * + Ol
^ . - ( * + D ( * + 2)(A: + 3) [ r ( J k + i/2 *i12+«MW^S!)
Mw/M n
(LN)
,jr.
M^IMn 1.1 1.3 1.5 1.7 2.0 3.0 4.0 5.0 6.0 8.0 10.0 12.0 14.0 16.0 20.0
0.40 (-0.07)
0.50(0.00)
0.70(0.13)
1.1231 1.3764 1.6385 1.9083 2.3259 3.8109 5.4097 7.0989 8.8637 12.58 16.51 20.62 24.87 29.27 38.40
1.1265 1.3881 1.6600 1.9412 2.3784 3.9482 5.6569 7.4767 9.3905 13.45 17.78 22.33 27.08 32.00 42.29
1.1342 1.4143 1.7086 2.0158 2.4986 4.2690 6.2429 8.3833 10.67 15.60 20.95 26.65 32.67 38.97 52.34
0.90(0.27) 1.1429 1.4443 1.7649 2.1032 2.6410 4.6612 6.9751 9.5353 12.31 18.42 25.18 32.51 40.35 48.65 66.51
4.
Baumann-Kurata-Stockmayer Procedure
TABLE 79. POLYMOLECULARITY CORRECTION FACTORS 1BKSMW
FOR THE
TABLE 80. POLYMOLECULARITY CORRECTION FACTORS 1
BAUMANN-KURATA-STOCKMAYER PROCE-
JBKS1(S'),
=
*BKS,MW =
BAUMANN-KURATA-STOCKMAYER
r(k + e + 3)[r(k-0.5e + 3.5)}2 (*+l) 4 (* + 2) 3 (r(*+l)] 3 r((3k + 2a{v] + $)/3)[r((3k - a{v] + 11)/3)]2 (k+\)\k + 2)3[r(k+i)}3
(SZ)
=
r(k + g + 3)[r(fe- 0.56 + 3.5)]2 ( ^ + l ) 3 ( i t - f 2) 4 [r(A:+l)] 3
?BKS,<S^ =
r((3k + 2a[n] + 8)/3)[r((3* - a{v] + ll)/3)] 2 (* + i) 3 (* + 2) 4 [r(* + i)] 3
a M and (s) M w /M n 1.1 1.3 1.5 1.7 2.0 2.5 3.0 5.0 10.0 20.0
PROCE-
DURE (EQ. B66) USING (S2) z FOR POLYMERS WITH A SCHULZZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 79)
DURE (EQ. B66) USING Mw FOR POLYMERS WITH A SCHULZZIMM (SZ) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 80) (SZ)
F O R T H E
a [,j and (g)
0.40 ( - 0.07)
0.50 (0.00)
0.60 (0.07)
0.90 (0.27)
1.1627 1.4135 1.5978 1.7388 1.8976 2.0776 2.1976 2.4377 2.6179 2.7080
1.1593 1.4050 1.5855 1.7236 1.8791 2.0554 2.1730 2.4082 2.5847 2.6729
1.1566 1.3981 1.5756 1.7114 1.8643 2.0376 2.1532 2.3845 2.5580 2.6448
1.1521 1.3868 1.5593 1.6913 1.8399 2.0085 2.1209 2.3458 2.5146 2.5990
My1JMn
1.1 1.3 1.5 1.7 2.0 2.5 3.0 5.0 10.0 20.0
0.40 ( - 0.07)
0.50 (0.00)
0.60 (0.07)
0.90 (0.27)
1.0658 1.1485 1.1983 1.2317 1.2650 1.2985 1.3185 1.3543 1.3778 1.3887
1.0627 1.1416 1.1891 1.2209 1.2528 1.2846 1.3038 1.3379 1.3604 1.3707
1.0602 1.1360 1.1817 1.2122 1.2428 1.2735 1.2919 1.3247 1.3463 1.3563
1.0561 1.1268 1.1694 1.1980 1.2266 1.2553 1.2725 1.3032 1.3235 1.3328
TABLE 81. POLYMOLECULARITY CORRECTION FACTORS q{^^ FOR THE BAUMANN-KURATA-STOCKMAYER PROCEDURE (EQ. B66) USING /Ww FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 82) (LN)
/.-,
if-j. N0.75e2-0.5e+1.75
/rA
/r> \ (a*,-2au+6)/3
/C
2\
(LN)
/,.-v
(LN)
x
-,
D
.-, ^(LN)
///c2\
,,0-N)
\ 1/2
a{n] and (s) My1JMn
0.40 ( - 0.07)
0.50 (0.00)
0.60 (0.07)
0.70 (0.13)
0.80 (0.20)
0.90 (0.27)
1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0 20.0
1.1856 1.5980 2.0636 2.5807 3.4502 5.1403 7.1196 11.90 17.73 41.07 61.19 211.11
1.1815 1.5827 2.0331 2.5310 3.3636 4.9704 6.8385 11.31 16.72 38.05 56.23 189.15
1.1781 1.5703 2.0085 2.4910 3.2944 4.8357 6.6168 10.85 15.93 35.75 52.48 172.89
1.1755 1.5607 1.9896 2.4603 3.2415 4.7334 6.4493 10.51 15.34 34.06 49.74 161.22
1.1737 1.5539 1.9762 2.4387 3.2043 4.6616 6.3323 10.27 14.94 32.90 47.86 153.37
1.1725 1.5498 1.9682 2.4258 3.1821 4.6191 6.2631 10.13 14.70 32.22 46.77 148.84
References page VII - 244
TABLE 82. POLYMOLECULARITY CORRECTION FACTORS q{^]{S2)x FOR THE BAUMANN-KURATA-STOCKMAYER PROCEDURE (EQ. B66) USING (S2)z FOR POLYMERS WITH A LOGARITHMIC NORMAL (LN) DISTRIBUTION OF THE MOLECULAR WEIGHT (SEE ALSO TABLE 81) ( LN )
(KA
I\A
\°75c2-0.56+0.75
(£.
/w
N(af.-2a w +3)/3
/C
2 \ ,JLN)
/,.-,
(LN)
N
„
D
jr.
(LN)
/f/v2\
,JLN)
x 1/2
aM and(e) M^/Mn 1.1 1.3 1.5 1.7 2.0 2.5 3.0 4.0 5.0 8.0 10.0 20.0
).
0.40 (-0.07) 1.0779 1.2292 1.3757 1.5181 1.7251 2.0561 2.3732 2.9759 3.5470 5.1337 6.1188 10.5555
0.50(0.00) 1.0741 1.2175 1.3554 1.4888 1.6818 1.9882 2.2795 2.8284 3.3437 4.7568 5.6234 9.4574
0.60(0.07) 1.0710 1.2079 1.3390 1.4653 1.6472 1.9343 2.2056 2.7132 3.1861 4.4691 5.2481 8.6445
0.70(0.13) 1.0687 1.2006 1.3264 1.4473 1.6208 1.8934 2.1498 2.6268 3.0687 4.2575 4.9736 8.0609
0.80(0.20) 1.0670 1.1953 1.3175 1.4345 1.6021 1.8647 2.1108 2.5669 2.9874 4.1125 4.7863 7.6683
0.90(0.27) 1.0659 1.1922 1.3121 1.4269 1.5911 1.8477 2.0877 2.5315 2.9397 4.0278 4.6774 7.4420
REFERENCES
1. "Quantities, Units and Symbols in Physical Chemistry", second edition, Blackwell Scientific Publications, Oxford, 1993. 2. "Compendium of Macromolecular Nomenclature", Blackwell Scientific Publications, Oxford, 1991. 3. R. E. Bareiss, Makromol. Chem., 184, 1509 (1983). 4. H. Staudinger, W. Heuer, Ber. Dtsch. Chem. Ges. B, 63, 222 (1930). 5. W. Kuhn, Kolloid-Z., 68, 2 (1934). 6. H. Mark, in "Der Feste Koerper (Vortraege zum 50jaehrigen Bestehen der Physikalischen Gesellschaft Zuerich 1937)", R. Saenger (Ed.), Hirzel, Leipzig, 1938. 7. I. Sakurada, Kasen-Koenshu, 5, 33 (1940), Nippon Kagaku Senni Kenkyujo (Institute of Chemical Fiber, Japan), 5th meeting, Oct. 8, 1940, coll. vol. of lectures. 8. R. Houwink, J. Prakt. Chem., 157, 15 (1941). 9. R. E. Bareiss, Chem. Ztg., 105, 97 (1981). 10. H. G. Bungenberg de Jong, W.A.L. Dekker, Biochem. Z., 212, 318 (1929). 11. W. Philippoff, "Viskositaet der Kolloide", in "Handbuch der Kolloidwissenschaft in Einzeldarstellungen", Vol. IX, Th. Steinkopff, Dresden-Leipzig, 1942, p. 333. 12. G. Meyerhoff, Adv. Polym. Sci., 3, 59 (1961). 13. P. J. Flory, J. Am. Chem. Soc, 65, 372 (1943). 14. H.-G. Elias, R. (R. E.) Bareiss, J. G. Watterson, Adv. Polym. Sci., 11, 111 (1973). 15. L. Mandelkern, P. J. Flory, J. Chem. Phys., 20, 212 (1952). 16. L. Mandelkern, W. R. Krigbaum, H. A. Scheraga, P. J. Flory, J. Chem. Phys., 20, 1392 (1952). 17. H. A. Scheraga, L. Mandelkern, J. Am. Chem. Soc, 75, 179 (1953). 18. H.-G. Elias, R. (R. E.) Bareiss, J. Macromol. Sci., Chem., 1, 1377 (1967).
19. T. Svedberg, Kolloid-Z., Erg. -Bd., 36, 53 (1925). 20. R. E. Bareiss, Vysokomol. Soedin. Ser. A, 32, 171 (1990). 21. V. Petrus, M. Bohdanecky, R. E. Bareiss, Polym. Commun., 31, 68 (1990). 22. R. E. Bareiss, B. Jung, A. R. Khokhlov, Macromol. Theory Simul, 5, 157 (1996). 23. P. J. Flory, W. R. Krigbaum, J. Chem. Phys., 18, 1086 (1950). 24. R. E. Bareiss, Makromol. Chem., 182, 1761 (1981). 25. R. E. Bareiss, Makromol. Chem., Rapid Commun., 2, 523 (1981). 26. R. E. Bareiss, Eur. Polym. J., 19, 847 (1983). 27. S. Newman, W. R. Krigbaum, C. Laugier, P. J. Flory, J. Polym. Sci., 14,451 (1954). 28. V. Petrus, M. Bohdanecky, R. E. Bareiss, Makromol. Chem., 188, 2447 (1987). 29. R. E. Bareiss, Makromol. Chem., 187, 955, 1335 (1986). 30. W. H. Stockmayer, M. Fixman, J. Polym. Sci., Part C: Polym. Symp, 1, 137 (1963). 31. H. Yamakawa, "Modern Theory of Polymer Solutions", Harper & Row, New York, 1971. 32. W. Burchard, Makromol. Chem., 50, 20 (1961). 33. W. Sutter, A. Kuppel, Makromol. Chem., 149, 271 (1971). 34. M. Guaita, R. E. Bareiss, Makromol. Chem., 180, 2735 (1979). 35. V. Petrus, M. Bohdanecky, R. E. Bareiss, Makromol. Chem., 190, 1453 (1989). 36. J. M. G. Cowie, S. Bywater, Polymer, 6, 197 (1965). 37. H. Baumann, J. Polym. Sci. B, 3, 1069 (1965). 38. W. Banks, C. T. Greenwood, Eur. Polym. J., 4, 249 (1968). 39. R. E. Bareiss, Makromol. Chem., 170, 251 (1973). 40. M. Kurata, W. H. Stockmayer, Adv. Polym. Sci., 3, 196 (1963).
41. 42. 43. 44. 45. 46. 47. 48. 49. 50.
R. E. Bareiss, J. Bellido, Makromol. Chem., 177, 3571 (1976). G. V. Schulz, Z. Phys. Chem., Abt. B, 43, 25 (1939). B. H. Zimm, J. Chem. Phys., 16, 1099 (1948). W. D. Lansing, E. O. Kraemer, J. Am. Chem. Soc, 57, 1369 (1935). H. Wesslau, Makromol. Chem., 20, 111 (1956). E. P. Honig, J. Phys. Chem., 69, 4418 (1965). J. G. Watterson, J. Macromol. ScL, Chem., 5, 459 (1971). See e.g. Appendices in Refs. 24 and 41. N. F. Gralen, Dissertation, Uppsala, 1944. B. Vollmert, Angew. Chem., 71, 119 (1959).
51. N. Yamada, H. Matsuda, H. Nakamura, Rep. Prog. Polym. Phys. Jpn., 4, 81 (1961). 52. K. G. Berdnikova, G. V. Tarasova, V. S. Skazka, N. A. Nikitin, G. V. Dyuzhev, Vysokomol. Soedin., 6, 2057 (1964); Eng. translation in Polym. Sci. USSR, 6, 2280 (1965). 53. D. M. Crothers, B. H. Zimm, J. MoI. Biol, 12, 524 (1965). 54. H.-G. Elias, Makromol. Chem., 122, 264 (1969). 55. R. E. Bareiss, Makromol. Chem. 185, 1623 (1984). 56. R. Koningsveld, C. A. F. Tuijnman, Makromol. Chem., 38, 39 (1960). 57. R. Ch. Oberthuer, Makromol. Chem., 179, 2693 (1978).
P o l y m e r - S o l v e n t
I n t e r a c t i o n
P a r a m e t e r s
N . Schuld, B.A. W o l f lnstitut fur Physikalische Chemie Universitat Mainz Mainz, FR Germany A. B. C. D. E. F. G. H. I. J. A.
Introduction Concentration Variables Conversion of Concentration Variables Basic Equations Methods of Determination Temperature Dependence Concentration Dependence Molecular Weight Dependence Polymer-Solvent Interaction Parameters, x References
VII-247 VII-247 VII-247 VII-247 VII-248 Vl 1-249 VII-249 VII-250 VII-250 VII-262
2. Weight fractions w,:
(B2) m{
3. Segment fractions S1- (hard core volume fractions): (B3) V* molar hard core volume (characteristic volumes) of components related to reduced volumes V,- by Vi = ViJVt* (11).
INTRODUCTION
The classical thermodynamics of binary polymer-solvent systems was developed independently by P. J. Flory (1-3) and M. L. Huggins (4-6). It is based on the well-known lattice model qualitatively formulated by K. H. Meyer (7), who pointed out the effect of the differences in molecular size of polymer and solvent molecules on the entropy of mixing. The quantitative calculation of the entropy of mixing led to the introduction of a dimensionless quantity, the so-called Flory-Huggins interaction parameter x> f ° r the thermodynamic description of polymer solutions. It was evident from the beginning that \ iS a function of T\ however, at first \ was considered to be independent of the concentration of the polymer. Subsequent experiments have shown the necessity of treating x a s a function of composition (8,9). Furthermore, x also depends on M 2 (the molecular weight of the polymer), not only at high dilution, but - according to recent experiments (10) - even at high concentrations of polymers.
C. CONVERSION OF CONCENTRATION VARIABLES
py pi are the densities of the solution and of the pure component i, Xjp — w\/p\ + W2/P2', p*, p* are the hard core (characteristic) densities of the solution and of the component 1, p* = Mi/V* where Af,- is the molar mass, l/p* = w\/p\ + W2/V2; V, V1 are the reduced volumes of the solution and of the component i.
B. CONCENTRATION VARIABLES Since the numerical value of the interaction parameter depends on the concentration variable chosen, one has to specify it in each case. The following three quantities are most frequently used, where the subscript 1 stands for the solvent and the subscript 2 for the polymer: D.
1. Volume fractions ?,•:
(Bl) n j moles of component i Vi molar volume of component i
weight of component i
BASIC EQUATIONS
The reduced molar Gibbs energy of mixing, &Gy[/RT, is given by the following equation:
(Dl)
where X1 is the mole fraction of component i, R is the gas constant, T is the absolute temperature and g stands for the integral polymer-solvent interaction parameter; g refers to the interaction (mixing of the pure liquid compounds) of a solvent molecule with a polymer segment, the size of which is defined by the molar volume of the solvent. This definition implies some difficulties as soon as mixed solvents or solvents with more than one segment are considered. Alternatively, the Gibbs energy of mixing can be normalized to the volume, so that it reads :
torial behavior: (D8) (D9) (DlO) From phenomenological thermodynamics, one obtains the interrelations between these parameters, given in Eqs. (D11-D13):
(D2) (DIl)
where B is an interaction energy-density parameter that no longer depends on the definition of a segment, and relates to g and molar volume of the segment Vseg by
(D12) (D13)
(D3) The sum (D4) of Eq. (Dl) is the combinatorial part of AGM- The remaining term (D5) is the so-called reduced residual Gibbs energy of mixing. Partial differentiation of AG/RT with respect to ni, the number of moles of solvent, or t%2, the number of moles of polymer, respectively, yields the reduced partial molar Gibbs energy of mixing of the solvent AG i/RT = AjJi1ZRT, or the reduced partial molar Gibbs energy of mixing of the polymer, AG2/RT = A[A2/RT: (D6)
Since it is the chemical potential of the solvent that is normally measured, x *s practically the only interaction parameter that can be directly obtained. In the following text, the term polymer-solvent interaction parameter (Flory-Huggins parameter) is, therefore, exclusively applied to xE. METHODS OF DETERMINATION Rearrangement of Eq. (D6) yields
(El) METHODS FOR THE DETERMINATION OF POLYMER-SOLVENT INTERACTION PARAMETERS Typical range of concentration
Methods
V? 2 ~»0
Scattering methods
LS SAXS SANS
0 <
Osmosis Light scattering Critical miscibility (only applicable with poor solvents) Differential vaporpressure methods
OS LS CM
0.3 <(pi < 0.8
Vapor-pressure methods
VP
(p2 -» 1
Inverse gas chromatography (gas liquid chromatography)
IGC
(D7) N = V2/V\ (where V1 = Vseg), the ratio of the molar volumes of the components is, in general, different from the degree of polymerization but proportional to it; x anc* £ are the Flory-Huggins interaction parameters in the differential equation for the solvent and for the polymer, respectively. Separating AGi and AG 2 like AG M (Eqs. D1-D5) into a combinatorial and a residual contribution yields the following expressions for the different interaction parameters, which demonstrates that they measure the deviation of a real polymer solution from purely combina-
Abbreviation in text
AVP
Refs. 20 129 21-25
26 3 27-30
Since AGi — RT In a \, the interaction parameter x ls accessible from the measured activity of the solvent. In order to get the information for the entire range of concentrations, a combination of several methods is necessary. The table given on the previous page shows the concentration ranges for the applicability of the most commonly used methods, the abbreviations used in the text to specify the method, and some pertinent references. Information stemming from the following sources is not incorporated in the tables: melting point depression of polymer (3,12,13), freezing point depression of solvents (8), swelling equilibria (3,14-17), and intrinsic viscosities (18,19).
According to experimental information, three characteristic behaviors can be distinguished: 1. Very often, x increases greatly with polymer concentration, particularly in the case of poor solvents. The systems benzene/polyisobutylene (PIB) (21,31,32), n-pentane/polyisobutylene (33,34), and cyclohexane/ polystyrene (22) (Figs. 1 and 2) constitute examples.
Benzene/PIB 7=0 = 250C n-pentane/PIB T = 25°C
F. TEMPERATURE DEPENDENCE X
The temperature dependence of \ can be described for most systems exhibiting UCSTs by means of the following equation: (Fl)
Cyclohexane/PfB T = 25°C
Knowing the temperature dependence of x, it is possible to split this quantity in its enthalpic and entropic part (^H
and xs)(F2) where
(F3)
Figure
1.
Examples for t h e v a r i a t i o n
of the
Flory-Huggins
i n t e r a c t i o n p a r a m e t e r , x (Eq. D 1 4 ) , w i t h t h e v o l u m e f r a c t i o n (p2
(F4)
of p o l y m e r for t h e systems b e n z e n e / p o l y O s o b u t y l e n e ) (PIB), np e n t a n e / P I B a n d c y c l o h e x a n e / P I B at t h e i n d i c a t e d t e m p e r a t u r e s .
G. CONCENTRATION DEPENDENCE The following expression for the Flory-Huggins parameter was deduced on the basis of the lattice theory (25):
Cyclohexane/PS T = e = 34°c
(Gl) where a and 7 are constants within a certain temperature range and {3 varies with T (/? = PQ + Px /T). For the integral interaction parameter, g, the equation reads:
x n-octane/PDMS T s 200C
(G2) Toluene/PS T = 25°C
For an analytical representation of the experimentally found concentration dependence, the following power series with n = 2 is normally adequate:
V2
(G3)
Figure 2 .
Examples for
the variation
of t h e
Flory-Huggins
i n t e r a c t i o n p a r a m e t e r , x (Eq- D 1 4 ) , w i t h t h e v o l u m e f r a c t i o n ^ of p o l y m e r for t h e systems c y c l o h e x a n e / p o l y s t y r e n e
(G4)
octane/poly(dimethyl
(PS),
2
n-
siloxane) (PDMS) a n d t o l u e n e / P S at t h e
indicated temperatures.
References page VII - 262
COEFFICIENTS X0/ Zi/ X2 <Ecl- G3> O F SYSTEMS SELECTED FOR GRAPHICAL REPRESENTATION (Figs. 1 AND 2) System
T/(0C)
Xo
25 25 25 34 20 25
0.506 0.484 0.440 0.507 0.501 0.431
Benzene/PIB n-Pentane/PIB Cyclohexane/PIB Cyclohexane/PS /z-Octane/PDMS Toluene/PS
Xi 0.229 0.184 -0.083 0.149 -0.035 -0.311
Xi
Refs.
0.317 0.080 0.068 0.464 0.042 -0.036
2131,32 33,34 30,31,35 22 36 37
2. In some cases, x seems to be independent of composition, as proposed by the original Flory-Huggins theory. These findings mainly concern good solvents; examples are the systems cyclohexane/polyisobutylene (30,31,35) and n-octane/poly(dimethyl siloxane) (PDMS) (36) (Figs. 1 and 2). 3. In a few cases, mostly with highly exothermal systems, x decreases with concentration, as with toluene/polystyrene (37) (Fig. 2). The lines drawn in Figs. 1 and 2 have been calculated by means of Eq. (G3) and the coefficients Xi> collected in the table given above. H.
MOLECULAR WEIGHT DEPENDENCE
dilute polymer solutions, depend markedly on Mi_\ since this quantity is closely related (cf. Eq. II) to x» i t s dependence on chain length in this concentration regime is obvious. Recent experiments (10) have shown that x may depend on the molar mass of the polymer even for concentrated solutions. Furthermore, there is some evidence (given in Ref. 60, resulting from a common valuation of the data given in Refs. 83,58,33,30 and 90, and from a comparison of the results reported in Refs. 99 and 110) that even Xoo> the x parameter for an infinitely large excess of polymer, may depend on chain length. According to the few presently available experimental data, a reduction of x upon an increase of Mi according to some scaling law seems to be the normal case. I.
POLYMER-SOLVENT INTERACTION PARAMETERS, X
Values of the polymer-solvent interaction parameters, defined by Eq. (El) in terms of volume fractions, have been collected. They are tabulated as a function of polymer concentration for various temperatures. Data given on the basis of segment fractions, £2, or weight fractions, w>2, were converted into volume fractions ?2. If needed, Xo can be calculated from the second osmotic virial coefficient A 2 (see corresponding chapter in this Handbook by means of the following equation:
Second osmotic virial coefficients, as obtained from osmotic pressure or light scattering measurements with
Solvent
T (0C)
M1 (kg/mol)
x (0.0)
x (0.2)
(H)
x (0.4)
Cellulose acetate 2.5 Acetone Dioxane Methyl acetate Pyridine
30 30 30 30
104 104 104 104
0.30 0.31 0.43 0.07
0.51 0.51 0.59 0.09
Cellulose acetate 3.0 Dichloromethane Trichloromethane
25 30
157 157
0.38 0.36
0.45 0.45
Cellulose acetate x Dimethylformamide Dimethylformamide
50 70
36 36
Cellulose nitrate 2.6 Acetone Acetonitrile Cyclopentanone Dioxane Ethyl acetate Ethyl formate Isopentyl acetate Isopropyl ketone Methyl isopropyl ketone Methyl tert-butyl ketone Nitromethane rc-Propyl acetate
20 20 20 20 20 20 20 20 20 20 20 20
100 100 100 100 130 130 130 100 100 100 100 130
0.14 0.42 0.04 -0.08 -0.89 0.62 -0.5 0.16 0.66 -0.38
0.06 0.59 0.07 1.2 -0.43 -0.14 -1.8 -0.08 -0.52 -1.5 0.64 -0.83
x (0.6)
x (0.8)
x (LO)
0.49 0.51 0.67 0.39
0.55 0.31
-0.37 0.42 -0.71 -0.25 -1.35 -0.42 -3.3 -1.7 -1.6 -2.8 0.6 -2.0
-1.24 0.12 -2.4 -1.7 -3.2
-3.7 0.45 -4.1
-0.1
Method
Refs.
VP VP VP VP
38 38 38 38
VP VP
39 39
VP VP
40 40
VP VP VP VP VP VP VP VP VP VP VP VP
41 41 41 41 42 42 42 41 41 41 41 42
Solvent
T (0C)
M2 (kg/mol)
* (0.0)
x (0.2)
* (0.4)
x (0.6)
z (0.8)
x (1.0)
Method
Refs.
0.52 0.35 0.55 0.74
0.67 0.44 0.51 1.02
VP VP VP VP
43 43 43 44
1.28
VP
40
0.6 0.47
VP VP VP
45 45 46 47
Cellulose, hydroxypropyl Acetone Ethanol Tetrahydrofuran Water
25 25 25 25
Poly (aery lonitrile) Dimethylformamide
70
30.6
65 65 25 25
17 17
0.49
53
0.41
140-200 140-200 140-200
7 7 7
0.54-0.30 0.59-0.27 0.08-0.56
IGC IGC IGC
48 48 48
140-200 140-200 140-200 140-200
7 7 7 7
1.34-1.24 0.82-0.48 0.75-0.57 0.84-0.39
IGC IGC IGC IGC
48 48 48 48
13.1 13.1 65.2 13.1 13.1 13.1 13.1 13.1 13.1 13.1 65.2 13.1 12.2 65.2 13.1 13.1 13.1 13.1 13.1 200 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 13.1 65.2 13.1 13.1
1.64-1.32 2.86-2.36
IGC IGC VP IGC IGC IGC IGC IGC IGC IGC VP IGC IGC VP IGC IGC IGC IGC IGC VP IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC VP IGC IGC
49 49 50 49 49 49 49 49 49 49 50 49 49 50 49 49 49 49 49 51 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 50 49 49
Poly(oc-methyl styrene) Cumene a-Methylstyrene Toluene Poly(arylate) Chlorobenzene o-Dichlorobenzene Diethylene glycol diethyl ether rc-Dodecane Ethylbenzene Tetralin p-Xy lene Poly(butadiene) Acetone Acetonitrile Benzene
40-100 40-100 23.5 40-100 1-Butanol 40-100 Butyl acetate 40-100 Butyronitrile 40-100 l-Chlorobutane 40-100 1-Chloropentane 40-100 1-Chloropropane 40-100 Cyclohexane 23.5 40-100 Dibutylether 40-100 Dichloromethane 23.5 Diethylether 40-100 Diethylketone 40-100 Dipropylether 40-100 Ethanol 40-100 Ethyl acetate 40-100 Ethylbenzene 80 Ethylcyclohexane 40-100 n-Heptane 40-100 1-Heptene 40-100 w-Hexane 40-100 1-Hexene 40-100 Methanol 40-100 Methyl acetate 40-100 Methyl cyclohexane 40-100 Methyl ethyl ketone 40-100 Methyl isobutyl ketone 40-100 n-Octane 40-100 1-Octene 40-100 «-Pentane 40-100 1-Propanol 40-100 2-Propanol 40-100 Propionitrile 40-100 Propyl acetate 40-100 Tetrachloromethane 23.5 Tetrachloromethane 40-100 Tetrahydrofuran 40-100
100 100 100 100
0.47 0.46 0.51
0.51 0.47 0.6
0.06
0.02 0.26-0.19 2.76-1.64 0.52-0.45 1.90-1.57 0.33-0.25 0.37-0.32 0.36-0.30 0.26 0.22-0.15 0.37-0.34
0.27
0.12 0.43-0.40 0.82-0.67 0.51-2.26 3.41-2.30 0.86-0.69
0.31
0.37 0.09-0.04 0.36-0.31 0.25-0.23 0.37-0.38 0.32-0.28 3.85-2.70 1.14-0.92 0.17-0.13 1.19-0.97 0.95-0.72 0.34-0.28 0.23-0.20 0.44-0.36 2.97-1.97 2.94-1.86 2.25-1.82 0.67-0.55
-0.04
-0.12 0.10-0.15 0.35-0.29
References page VII - 262
Solvent
Toluene Trichloromethane Trichloromethane Poly(butene-l) n-Decane n-Heptane n-Nonane n-Octane Poly(decene) Toluene Poly(dimethyl siloxane) Acetone Benzene
Cycloheptane Cyclohexane
Cyclooctane Cyclopentane n-Decane Diisobutyl ketone 1,4-Dioxane Ethyl n-butyl ketone Ethylbenzene n-Heptane
Hexamethyl disiloxane
n-Hexane
T ( 0 C)
M2 (kg/mol)
40-100 23.5 40-100
13.1 65.2 13.1
115-135 115-135 115-135 115-135
10 10 10 10
30
213.9
100 20 25 25 25 25 25 25 25-70 25-70 30 30 30 30 30 40 40 25-70 20 25 25 25-70 30 30 25-70 25-70 20 35 25-70 100 35 23.5 25-70 25-70 20 20 25-70 25-70 30 23.2 25 25 25 25-70 20 20 25 25-70 25-70 30 30 30
50 1.54 4.17 10 15.7 50 50 50 50 6.65 15.65 26 89 89 1.54 4.17 50 50 10 50 50
x (0.0)
% (0.4)
% (0.6)
x (08)
X
fl-0)
0.14-0.12 -0.2
0.49
0.56
0.41
89 50 50 30 80 50
0.44 0.46
0.44
0.39
0.35
0.64 0.56
0.71 0.65 0.66 0.66 0.76 0.66
0.77 0.72 0.8 0.73 0.82 0.73
0.85 0.75
0.71 0.71 0.72 0.45 0.74 0.81 0.73
0.63
0.48
0.50 0.50
0.43
0.43
0.42 0.46
0.05-0.07 0.30 0.38 0.32 0.36
IGC IGC IGC IGC
52 52 52 52
0.32
VP
53
1.33 0.85 (0.76)
IGC VP VP VP OS1VP VP VP, IGC IGC VP, IGC IGC VP VP VP VP VP VP VP VP, IGC OS OS, VP VP, IGC VP, IGC VP VP VP, IGC VP, IGC
54 36 55 55 56 57 58 59 58 59 60 60 60 61 60 55 55 58 62 56 58 58 63 64 58 58 65 66 58 54 66 36 58 59 65 36 58 59 64 36 55 55 58 58 40 65 61 58 59 67 67 67
0.79 0.79 0.81 0.79-0.74 0.81-0.75 0.74 0.75 0.74 0.77 (0.72) (0.83) 0.56-0.53 0.47 0.47 0.47-0.48 0.42 0.45 0.66-0.61 0.42-0.46 0.64
0.52
0.40
0.63
0.7
0.45
0.45
0.46
0.3 0.27 0.21
0.28 0.25 0.22
0.43 0.26 0.24 0.25
0.40 0.41 0.37 0.38 0.38
Refs.
49 50 49
1.32-1.18 1.06 0.54
Method
IGC VP IGC
-0.34
0.49
80 50 50 50 30 50 50 50 89 50 1.54 4.17 50 50 30 89 50 50 6.65 15.65 26
% (0.2)
0.77-0.73 0.83-0.78 0.50 0.48 0.48-0.50 0.50-0.49 0.45 0.25 0.28 0.28-0.34 0.45 0.50 0.43 0.46-0.47 0.45 0.39 0.40 0.41
OS VP, IGC IGC OS VP VP, IGC IGC VP VP,IGC IGC VP VP VP VP VP, IGC VP, IGC VP VP VP, IGC IGC VP VP VP
Solvent
T (0C)
M 2 (kg/mol)
30 30 30 35 25-70 20 25 30 35 50 20 25 100 25-70 25-70 25-70 25-70 25-70 25-70 140
89 89 89 89 50 80 280 50 80 80 80 50
50 30 50 50 4.17 50 50 50 144 4.17 50 50 30 50 50
m-Xylene -Xylene
23.2 20 20 20 25 25 25-70 35 35 40 25-70 25-70 20 20 25 100 100 20 25 25 25 25-70 25-70 40 100 30 100 20 25 25-70 25 25 25-70 25-70 25-70
Poly(dodecene) Toluene
30
94.9
Poly(e-caprolactam) Tetrachloromethane
65
10.7
Poly(epichlorohydrin) Acetone Benzene
100 100
Mesitylene Methyl ethyl ketone
Methyl isobutyl ketone 2-Methylbutane 2-MethyIheptane 2-Methylhexane 3-Methylhexane 2-Methylpentane Octamethylcyclotetra siloxane Octamethyltrisiloxane n-Octane
n-Pentane
Tetrachloromethane Toluene
Trichloromethane 2,2,4-Trimethylpentane /7-Xylene
x (0.0)
x (0.2)
x (0.6)
X (1.0)
0.41 0.38 0.40 0.41
0.43 0.40 0.41 0.42 0.95-0.86
0.57 0.51
0.64
0.79
0.57 0.56 0.54 0.39 1.10 0.49-0.47 0.52-0.50 0.45-0.46 0.46 0.45-0.43 0.45-0.43
0.42
0.51
0.38
0.25
0.22
0.19
0.17
0.50 0.50 0.36
0.51 0.49 0.40
0.52 0.50 0.44
0.14 0.53 0.55 0.51 0.52 0.56-0.52 0.54
0.42
0.45
0.50
0.40
0.40
0.43
0.41
0.40
0.59 0.53
0.64 0.58 0.59
0.72 0.65 0.65
0.63
89 30 4.17 50 50 50 50 50 50
* (0.8)
0.50
50 50 50 50 50 50 10.1
50 1.54 4.17 50 50 50 4.17
x (04)
0.68 0.64
0.35
0.35
(0.44) 0.45-0.49 0.41-0.43 0.48 0.40 0.45 0.31 0.36 0.82 (0.74) 0.75 0.75-0.71 0.80-0.75 (0.69) 0.59 0.65 0.60 0.43
0.38
0.58
0.67
0.34
0.47
0.61
0.54
0.46
0.39
0.45-0.43 0.78 0.75 0.80-0.77 0.82-0.76 0.86-0.80 0.74
0.28 0.25
Method
Refs.
VP VP VP VP VP, IGC OS OS VP OS OS OS IGC IGC VP, IGC IGC VP, IGC IGC VP, IGC IGC VP
61 64 67 61 58 66 68 69 66 66 66 59 54 58 59 58 59 58 59 70
VP
VP VP, IGC VP VP, IGC IGC VP, IGC VP, IGC
36 65 36 62 55 58 59 59 71 55 58 59 65 36 58 54 54 36 55 55 58 58 59 55 54 72 54 65 55 58 36 58 59 58 58
VP
53
VP
73
IGC IGC
54 54
VP OS VP VP, IGC IGC IGC OS VP VP, IGC IGC VP VP1IGC IGC IGC VP VP VP VP, IGC VP, IGC IGC VP IGC VP IGC
References page VII - 262
Solvent n-Butane 1-Butanol Butyl acetate Chlorobenzene 1-Chlorobutane Chloromethane 1-Chloropentane Cycloheptane Cyclohexane Cyclohexene Cyclooctane Cyclopentane /z-Decane 1,1-Dichloroethane 1,2-Dichloroethane Dichloromethane 1,4-Dioxane Ethanol Ethyl acetate Ethyl benzene n-Heptane n-Hexane Methyl acetate Methyl ethyl ketone n-Nonane n-Octane n-Pentane 1-PentanoI Propane 1-Propanol Propyl acetate Tetrachloromethane Tetrahydrofuran Toluene 1,1,1-Trichloroethane Trichloroethylene Trichloromethane n-Undecane Poly(ethyl methacrylate) Dichloromethane Tetrachloromethane Toluene Trichloromethane Poly(ethylene glycol) Ethylbenzene
Poly(ethylene oxide) Benzene
Cyclohexane rc-Decane Ethanol n-Octane Toluene Trichloromethane Poly(ethylene)HD ds-Decalin
T( 0 C)
M 2 (kg/mol)
x (0.0)
x (0.2)
x (0.4)
* (0.6)
x (0.8)
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 23.5 23.5 23.5 23.5 70 70 70 70
144 144.4 144 144
-0.94
2 3.272 4 6
50.3 70 70 100 100 100 100 100 99.8 100 100
6.1 100 6.1
149
105
0.38
0.18 0.19
0.14 0.14
x (1.0)
Method
1.65 1.12 0.36 0.24 0.62 0.36 0.65 1.19 1.25 0.84 1.20 1.16 2.12 0.33 0.20 0.18 0.04 1.58 0.35 0.44 1.79 1.72 0.39 0.20 1.99 1.89 1.64 1.03 1.71 1.22 0.33 0.69 0.01 0.31 0.46 0.53 0.25 2.24
IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC
54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54
-0.52 -0.01 0.19 -1.05
-0.66 -0.12 0.15
VP VP VP VP
74 74 74 74
0.87 0.42 0.85 0.71
0.83 0.45 0.82 0.69
VP VP VP VP
75 40 75 75
0.1 0.23 0.12
0.22 0.09
0.26 -0.55
VP VP VP IGC IGC IGC IGC IGC VP IGC IGC
76 73 76 54 54 54 54 54 40 54 54
0.07
IGC
77
0.13 1.23 2.10 0.70 1.85 5.2
0.41
Refs.
0.3
Solvent
T (0C)
f«mj-Decalin rt-Decane
149 145-190 149 185 2,4-Dimethyl hexane 149 3,4-Dimethyl hexane 149 n-Dodecane 149 Ethylbenzene 149 Mesitylene 149 2-Methylheptane 149 3-Methylhexane 149 rc-Nonane 149 rc-Octane 149 Tetralin 149 Toluene 149 2,2,4-Trimethyl hexane 149 2,2,4-Trimethyl pentane 149 m-Xylene 149 p-Xylene 149 Poly(ethylene)LD Benzene 1-Butanol Chlorobenzene Cyclohexane Cyclohexanol cw-Decalin rra/w-Decalin n-Decane 2,4-Dimethyl hexane 2,5-Dimethyl hexane 3,4-Dimethyl hexane rc-Dodecane
125-135 135 135 125-135 135 120-145 120-145 120-145 120-145 120-145 120-145 110-145 120-145 Ethylbenzene 120-145 n-Heptane 108.9 Mesitylene 120-145 3-Methyl heptane 120-145 3-Methylhexane 120-145 H-Nonane 120-145 H-Octane 120-145 Phenol 135 Tetrachloromethane 135 Tetralin 120-145 Toluene 120-145 Trichloromethane 135 2,2,4-Trimethyl hexane 120-145 2,2,4-Trimethyl pentane 120-145 m-Xylene 120-145 />-Xylene 120-145
Poly(heptene) Toluene Poly(isobutylene) Benzene
M2 (kg/mol)
x (0.0)
% (0.2)
* (0.4)
x (0.6)
* (0.8)
105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105
82 82 82 82 82 82 82 82 0.45 82 82 82 82 82
0.29
0.31
0.34
30
224.1
0.48
0.45
0.43
10 25 25 25 25 25 25 25-50 25-65 26.9 39.6
40
0.67
0.78
0.92
0.57
0.50
0.66
0.75
0.88
0.76
0.82
0.82 0.80
Refs.
IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC
77 28 77 78 77 77 77 77 77 77 77 77 77 77 77 77 77 77 77
0.43-0.36 1.38 0.34 0.18 1.22 0.03 0.02-0.00 0.25-0.26 0.34-0.32 0.35 0.25 0.18 0.23-0.24 0.33
IGC IGC IGC IGC IGC
79 79 79 79 79 77 77 77 77 77 77 28 77 77 80 77 77 77 77 77 79 79 77 77 79 77 77 77 77
VP
0.91 1.06 0.87 0.86
0.57 0.73 0.70
Method
0.05 0.18 0.31 0.12 0.38 0.31 0.28 0.37 0.28 0.39 0.40 0.34 0.36 0.32 0.39 0.35 0.40 0.34 0.32
0.24-0.25 0.31-0.30 0.33-0.34 0.28 0.31-0.30 1.5 0.24 0.29-0.28 0.34 0.41 0.29-0.28 0.34 0.29 0.27-0.28
82 82 82 82
40
(10)
0.2
82 82
40 40 40 50 90 66 40
Z
0.91-0.79 0.86-0.61 1.07
IGC IGC IGC
VP
53
VP IGC VP IGC IGC VP OS IGC IGC VP VP
32 30 32 81 83 82 21 30 83 84 32
References page VII - 262
Solvent
n-Butane Chlorobenzene Cyclohexane
2,2-Dimethylpropane Ethylbenzene n-Heptane ^-Hexane Methyl ethyl ketone 2-Methylbutane n-Nonane n-Octane n-Pentane
Tetrachloromethane Toluene Trichloromethane Poly(isoprene) Acetone Benzene
T (0C) 40 40 40-65 60 65 65 80 100 100 25 25 25 25 25 25 25 25-65 25-50 40-65 40 40 60 65 100 25-46 35 25 40 25 25-65 25 25 25-65 100 25-35 35-46 25 25 25 25-65 25 25 25 25 25 25 25 25-50 25-65 35 35 40 45 55 100 100 100 25 10 25 25 25 25
M2 (kg/mol)
% (0.0)
x (0.2)
x (0.4)
50 50 53 50 50 100 50 26.1 40 40 40 50 50 66 40 66 53 50 50 50 50
* (0.8)
0.69 0.65
0.75 0.74
0.52 0.73 0.73 0.4
0.60 0.74 0.74 0.49
0.42
0.41
0.33
0.37
* (1.0) 0.83 0.87-0.77 0.69 0.75 0.74 0.58 0.65 0.70
0.403 0.42
0.43 0.56 0.54
0.44 0.43 0.54-0.42 0.43-0.40 0.47-0.42 0.30 0.33
0.38 0.45 0.41 0.38
0.52 0.48 0.39 0.82-0.87
1000 1000 50 50
0.34 0.4
40 40 40 50 40 1000 1000 40 40 40 40 40 40 40 50 62 66 1000 66 40 62 1000 62 62 62
x (0.6)
0.82 0.55 0.5 0.57 0.57-0.47 0.65
0.4
0.4 0.63-0.50 1.55 0.65 0.65-0.68 0.49 0.52
0.44
0.48 0.57
0.62
0.68
0.48
0.53
0.57
0.62
0.63
0.48
0.53
0.57
0.62
0.63
0.58 0.62 0.57 0.56
0.63 0.62
0.63 0.62
0.62 0.63
0.63 0.63
0.53
0.52-0.43 0.75 0.73 0.72 0.28 0.68 0.70 0.68 0.70-0.60 0.72-0.57 0.62
0.48 0.60 0.78
100
100
0.40
0.41
0.41
0.42 0.41
0.39
0.40
0.41
0.43 0.41
1.27 0.43 0.41 0.43 0.42
1.8 0.41 0.46 0.43
Method VP VP
Refs.
VP VP VP VP IGC VP VP VP VP
82 85 86 82 82 82 85 87 87 88 35 81 83 82 89 30 83 30 86 82 82 85 82 87 90 90 82 82
IGC IGC IGC VP IGC IGC VP VP IGC IGC OS IGC VP IGC IGC VP, IGC VP IGC VP IGC IGC VP VP VP VP VP IGC IGC IGC
81 83 81 82 83 87 90 90 81 81 91 83 34 81 83 58 33 30 90 30 83 33 90 33 33 33 87 87 87
VP VP OS, VP IGC VP VP
92 93 94 96 95 93
VP VP VP VP IGC IGC OS VP IGC IGC VP OS IGC IGC IGC
Solvent
T (0C)
25-55 40 40 Ethyl acetate 25 25 50 50 Ethylbenzene 25-55 «-Heptane 25-55 /i-Hexane 25-55 Methyl ethyl ketone 25 45 2-Methylheptane 25-55 2-Methylhexane 25-55 2-Methylpentane 25-55 n-Octane 25-55 n-Pentane 25-55 Tetrachloromethane 23.5 Toluene 25-55 30 Trichloromethane 23.5 2,2,4-Trimethylpentane 25-55 p-Xylene 25-55 Poly(methyl acryiate) Acetone Benzene n-Butane 1-Butanol n-Butylbenzene tert-Butylbenzene n-Butylcyclohexane Cyclohexane ris-Decalin trans-D&cahn n-Decane Dichloromethane 1,4-Dioxane n-Dodecane Ethanol Ethyl acetate Ethylbenzene n-Heptane n-Hexane Methyl ethyl ketone Naphthalene n-Nonane n-Octane n-Pentane Propane n-Tetradecane Tetrahydrofuran Tetralin 3,3,4,4-Tetramethylhexane Toluene Trichloromethane 3,4,5-Trimethylheptane 2,2,5-Trimethylhexane 2,2,4-Trimethylpentane Poly(methyl methacrylate) 1,2-Dichloroethane
100 90-110 100 100 90-110 90-110 90-110 90-110 90-110 90-110 88-110 23.5 100 90-110 100 100 90-110 100 100 100 100-110 100 90-110 100 100 90-110 100 90-110 90-110 90-110 23.5 90-110 90-110 90-110
23.5 50 50
M2 (kg/mol)
x (0.0)
x (0.2)
% (0.4)
x (0.6)
* (0.8)
0.82 0.81 0.77 0.79
0.41 0.41 0.96 0.96 0.91 0.92
100 0.69 0.68 0.68
100
0.86 0.83
1.05 0.99
0.20
0.10
0.42 0.25
0.38 0.16
x U-O) 0.46-0.43 0.44 0.44 1.24 1.23 0.34-0.30 0.51-0.49 0.54-0.50 1.43 1.20 0.50-0.47 0.52-0.50 0.56-0.52 0.49-0.46 0.61-0.53 0.36-0.32
270 100
0.46
0.49-0.46 0.28-0.26
0.4 0.51-0.46 1.86 0.79 1.15-1.05 1.03-0.95 2.34-2.13 1.72-1.51 2.07-1.84 2.13-1.90 2.68-2.43
200 200 200 200 200 200 200 200 63.2
-0.22
-0.43 0.20 3.00-2.75 1.01 0.43 0.83-0.75 2.10 2.08 0.40 0.49-0.47 2.4 2.38-2.19 1.92 2.5 3.36-3.06 0.34 1.04-0.95 2.17-1.95
200 200
200 200 200 200 200 200 63.2 200 200 200
33.2 5.5 8.43
0.67-0.62 -0.53
-0.58 2.44-2.20 2.48-2.21 2.35-2.07
-0.63 0.25 0.14
-0.7 0.17 0.21
-0.74 0.32 0.33
Method
Refs.
IGC IGC VP VP VP VP VP IGC IGC IGC VP VP IGC IGC IGC IGC IGC VP IGC VP VP IGC IGC
96 96 93 97 92 97 92 96 96 96 92 92 96 96 96 96 96 50 96 98 50 96 96
IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC VP IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC IGC
54 99 54 54 99 99 99 99 99 99 99 74 54 99 54 54 99 54 54 54 99 54 99 54 54 99 54 99 99
IGC VP IGC IGC IGC
99 74 99 99 99
VP VP VP
74 40 40
References page VII - 262
Solvent
3,3-Dimethyl-2butanone
Mesitylene Tetrachloromethane
Toluene
/7-Xylene
Poly(n-butyl acrylate) Benzene Toluene Trichloromethane Poly(n-butyl methacrylate) Acetone Acetonitrile Benzene 1,2-Dichloroethane Ethanol Ethyl acetate rc-Hexane Mesitylene Methyl ethyl ketone 1-Propanol 2-Propanol Toluene Trichloromethane m-Xylene o-Xylene Poly(c-chlorostyrene) Benzene
T(0C) 70 70 50 50.2 69.3 70.3 130 50 50.2 69.7 70.7 23.5 48.5 49.8 50 50 50.1 69.6 70 70 70.4 160 50 70 100 136.2 23.5 23.5 23.5
120 120 50.5 50.8 40 60 80 120 120 100 50.5 120 120 27 56 86 50.2 50.5 120 70.8 71.3
M2 (kg/mol)
(0.4)
x (0.6)
x (0.8)
5.5 8.43 3.15
0.06
0.21 0.31 0.45
0.33 0.28 0.34
VP VP VP
40 40 100
8.56 3.15 8.56 8.43 3.16 8.56 3.15 8.56 33.2 19.77 3.16 36.41 72 8.56 3.16 36.41 72 8.56 110 8.43 8.43 8.46 8.46
0.55
0.55 0.63 0.57 0.85 0.56 0.6 0.57 0.53
0.6 0.46 0.74 0.99
VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP
100 100 100 40 100 100 100 100 74 101 100 40 40 100 100 40 100 100 102 100 100 100 100
VP VP VP
74 74 74
IGC IGC VP VP VP VP VP IGC IGC VP VP IGC IGC VP VP VP VP VP IGC VP VP
103 103 40 40 104 104 104 103 103 40 40 103 103 104 104 104 40 40 103 40 40
VP VP VP
105 105 105
(0.0)
x (0.2)
35 35 36.8 36.8 8.9 8.9 8.9 35 35 36.8 36.8 35 35 8.9 8.9 8.9 36.8 36.8 35 36.8 36.8 607 607 607
Poly(octadecene) Toluene
30
193.5
Poly(/?-bromostyrene) Toluene
20
10
z
0.59
0.56
0.62
0.53
0.53 0.60 0.50 0.51 0.58 0.53 0.45 0.44 0.51
0.65 0.62 0.66 0.45 0.45 0.69 0.51 0.53 0.73 0.63 0.51 0.50 0.71
0.67 0.89 0.77 0.46
0.89 0.84 0.73 0.63
0.17 0.05 -0.39
0.02
z (1.0)
0.89 0.71
33 33 33
25 40 40
Methyl ethyl ketone
Z
0.12 -0.32
0.93 1.40 0.509 0.484 0.477
0.492 0.432 0.399
0.57 0.55 0.53
0.54 0.49 0.46
0.21 0.41 0.68 0.66 0.63
0.65 0.59 0.54 0.24 0.01
0.14 0.37 0.86 0.8 0.76
1.09 0.99 0.89
0.41 0.3
0.44
1.38 1.19 1.01 0.67 0.78 0.62 1.01 1.29 1.11 0.95
Refs.
0.82 0.72 0.64 0.17
1.03 0.88 0.77
0.48 0.26
0.4 0.27
0.56
0.58 0.56
0.60 0.62 0.83
0.51
0.74
VP
53
0.64
0.65
VP
106
0.10
0.50
Method
0.62 0.67 1.02
Solvent
T (0C)
M 2 (kg/mol)
% (0.0)
% (0.2)
x (0.4)
x (0.6)
z (08)
x (10)
Method
Refs.
Poly(p-chlorostyrene) Toluene
22
10
0.53
0.58
0.55
VP
106
Poly(p-methyl styrene) Toluene
20
10
0.41
0.4
0.35
VP
106
500 500 3.35
0.16 0.15 0.45
0.03 0.08 0.48
VP VP VP
107 107 108
1.72 0.51 0.22 1.11
IGC IGC IGC VP
87 87 87 109
1.01 0.18 0.22 1.66 1.55 0.29 0.55 0.43 0.61
VP IGC VP VP IGC IGC IGC IGC
109 29 87 109 109 87 87 87 87
IGC VP VP IGC IGC IGC IGC IGC VP VP VP VP VP VP VP VP VP VP VP VP VP IGC IGC IGC IGC IGC VP IGC IGC IGC IGC IGC CM, LS LS, CM CM, LS CM IGC IGC
110 111 111 112 110 110 110 110 113 113 114 37 115 115 116 115 115 116 115 115 116 78 117 110 118 30 102 99 110 110 110 110 120 119 120 120 99 99
Polypropylene glycol) Benzene Methanol Poly(propylene) Acetone Benzene Cyclohexane 2,4-Dimethyl3-pentanone n-Hexane w-Octane 3-Pentanone Tetrachloromethane Tetrahydrofuran Toluene Trichloromethane Poly(styrene) Acetic acid Acetone
Acetonitrile Aniline Benzaldehyde Benzene
Benzyl alcohol 1-Butanol 2-Butanol n-Butyl acetate tert-Butyl acetate
n-Butylbenzene *-Butylcyclohexane
47.2 74.7 25 100 100 100 25 45 80 100 25 45 100 100 100 100 162-229 25 50 150 162-229 162-229 162-229 162-229 20 20 23.5 25 30 30 40 50 50 60 70 70 80 120 133-210 162-229 140-200 150-200 130-155 160-180 162-229 162-229 162-229 162-229 10 30 50 143-183 183-203 160-180
-0.03 0.02
-0.07 -0.02
20
0.55
0.61
0.7
0.86
20
0.57
0.57
0.64
0.79
0.70 0.70
0.82 0.71
1.08 0.97
0.81 0.80
0.94 0.92
20 20
20 15.7 15.7 17.5 20 20 20 20 20 500 600 90 19.2 103.8 218 19.2 103.8 218 19.2 103.8 218 200 20 76 97 275 120 20 20 20 20 11 11 11 11 120 120
3.00-2.15 1.1 0.65 1.30-0.56 2.02-0.93 1.11-0.68 1.22-0.80
0.57 0.49 0.42
0.37
0.39 0.46 0.30 0.32 0.41 0.54 0.26 0.45 0.53 0.25 0.32 0.40 0.14
0.21 0.44 0.19 0.26 0.3 0.35 0.28 0.26 0.21 0.31 0.27 0.35 0.23 0.33 0.32-0.20 0.66-0.13 0.59-0.60 0.38 0.31-0.28 0.29-0.24 1.42-0.65 1.47-0.82 1.71-0.81 1.01-0.45
0.50 0.50 0.49
0.54 0.54 0.53
0.64 0.64 0.63 0.73-0.52 0.38-0.35 0.77-0.71
References page VII - 262
Solvent
Chlorobenzene Cyclohexane
Cyclohexanone ds-Decalin trans-Decalin n-Decane Di(«-propyl)ether -Dichlorobenzene 1,2-Dichloroethane Dichloromethane Diethyl ether Diisopropyl ether Dimethylformamide 1,4-Dioxane
n-Dodecane Ethanol Ethyl acetate Ethylbenzene
Ethylene glycol
T ( 0 C)
162-229 20 30 30 30 30 30 30 34 35 35 40 40 44 45 45 50 50 50 55 60 60 65 65 70 70 80 150 140-200 162-229 160-180 162-229 183-203 183-203 140-200 183-203 20 133-210 162-229 23.5 162-229 162-229 162-229 140-200 20 20 50 133-171 162-229 183-203 162-229 150 162-229 30 50 50 70 70 130 140 150 120-185 133-210 140-200 160-180 162-229
M2 (kg/mo!)
i (0.0)
% (0.2)
% (0.4)
20 500
% (0.6)
* (0.8)
% (1.0)
0.68
0.92
0.78 0.79 0.87 0.71 0.69 0.75
0.77 0.98 0.89 0.92 0.93
1.14
0.75 0.75 0.76 0.72
0.91 0.92 0.92 0.93
(1.15)
0.73 0.66 0.52 0.72 0.66 0.62 0.72
0.85 0.82 0.73
(1.02)
0.73 0.78 0.89
(0.82)
0.60 0.65 0.57 0.68
0.65 0.65 0.71 0.8
(0.70)
0.81
0.91
0.68-0.28 0.57
19.2 100 103.8 150 218 25.1 51 233 100 218 25.1 51 233 100 103.8 150 233 100 218 51 233 19.2 103.8 218 17.5 76 20 120 20 120 120 76 120 500 200 20 600 20 20 20 76 200 500 10.3 200 20 120 20 17.5 20 230 19.2 103.8 19.2 103.8 275 275 17.5 200 76 275 20
0.47
0.65
0.57 0.56 0.56
0.64
0.63
0.49
0.57 0.55 0.55
0.48
0.34 0.53
0.55 0.59
0.48
0.53 0.51
0.55
0.50 0.50 0.49
0.64
0.63
0.71
0.92 0.47 1.05-0.85 1.11-0.46 0.62-0.53 1.08-0.49 0.47-0.42 0.52-0.46 1.51-1.13 1.01-0.94 0.59-0.30 0.85-0.22
0.24
0.10 0.62-0.21 0.78-0.71 1.42-0.41 1.29-1.16
0.67
0.40 0.88
0.23
0.28
0.35 0.44 0.61
0.35 0.44 0.78
0.40 0.66 0.75 0.74 0.71 0.33
0.43 0.91 0.65 0.83 0.39
1.10 0.52-0.39 0.95-0.42 1.09-1.00 1.80-0.43 0.46 1.14-0.35
0.43 0.46 0.27 0.22-0.14 0.40-0.23 0.57-0.58 0.32-0.25 3.77-2.23
Method
IGC VP CM VP VP VP VP VP OS, VP LS HSGC VP VP OS, VP LS HSGC VP VP VP HSGC VP VP LS HSGC VP VP VP IGC IGC IGC IGC IGC IGC IGC IGC IGC VP IGC IGC VP IGC IGC IGC IGC VP VP VP IGC IGC IGC IGC IGC IGC VP VP VP VP VP VP VP IGC IGC IGC IGC VP IGC
Refs.
110 113 25 115 121 115 122 123 22 23 124 121 116 22 23 124 121 115 122 124 121 116 23 124 115 115 116 112 118 110 99 110 99 99 118 99 113 117 110 114 110 110 110 118 113 113 101 117 110 99 110 112 110 123 125 125 125 125 102 102 112 29 117 118 102 110
Solvent Formamide n-Heptane n-Hexadecane n-Hexane Methanol Methyl cyclohexane Methyl ethyl ketone
Naphthalene Nitrobenzene n-Nonane n-Octane n-Octane /-Octane 1-Octanol n-Pentane 1-Pentanol 3-Pentanone 1-Propanol 2-Propanol Propyl acetate Pyridine Styrene Tetrachloromethane
n-Tetradecane Tetrahydrofuran Tetralin 3,3,4,4-Tetramethylhexane Toluene
Trichloroethane Trichloroethylene
T(0C)
M1 (kg/mo!)
162-229 140-200 162-229 183-203 162-229 162-229 72 25 48.5 70 120-200 133-171 162-229 183-203 162-229 130-175 150 162-229 162-229 162-229 162-229 162-229 20 20 120-200 162-229 162-229 25 70 162-229 133-210 20 23.5 133-171 162-229 183-203 162-229 183-203 160-180
20 76 20 120 20 20 110 290 10.3 290 35 200 20 120 20 53.7 17.5 20 20 20 20 20 200 500 9 20 20 290 290 20 200 500 600 200 20 120 20 120 120
20 20 22 23.5 25 25 25 25 25 40 45 48.5 49.8 60 65 69.5 80 100 110 130 133-210 162-229 140-200 23.5 162-229
200 500 10 600 51 90 100 170 290 218 51 10.3 45 218 51 45 290 103.8 275 275 200 20 76 600 20
x (0.0)
0.49
x (0.2)
0.58
* (0.4)
0.67 0.63 0.63
* (0.6)
0.69 0.67 0.63
Z
(0.8)
x (1.0)
Method
4.11-3.16 1.49-1.14 1.33-0.25 1.22-1.14 1.35-0.03 2.19-0.44
IGC IGC IGC IGC IGC IGC OS VP VP VP IGC IGC IGC IGC IGC VP IGC IGC IGC IGC IGC IGC VP VP IGC IGC IGC VP VP IGC IGC VP VP IGC IGC IGC IGC IGC IGC
110 118 110 99 110 110 126 127 101 127 128 117 110 99 110 51 112 110 110 110 110 110 113 113 128 110 110 111 111 110 117 113 114 117 110 99 110 99 99
VP VP VP VP LS VP SAXS OS VP VP LS VP VP VP LS VP VP VP VP VP IGC IGC IGC VP IGC
113 113 106 114 23 37 129 130 127 116 23 101 40 116 23 40 127 131 102 102 117 110 118 114 110
0.77 0.73 0.72 1.13-0.9 0.80-0.67 L16-0.36 0.13-0.11 1.18-0.72 1.00-0.97 1.24 2.19-0.80 1.72-0.35 1.14-0.55 1.12-0.83 1.75-0.86
0.63
0.65 0.65
0.95 0.87 1.54/1.38/1.4 1.71-0.27 1.74-0.15'
0.66 0.61
0.66 0.6
0.66 0.59 1.02-0.23 0.23/0.28/0.23
0.37
0.37 0.31 0.49-0.19 0.90-0.26 1.14-1.08 0.70-0.16 0.20-0.11 0.90-0.76
0.40
0.44 0.43
0.37 0.37 0.41
0.37 0.35
0.52 0.41 0.39 0.39
0.34 0.33
0.30 0.40
0.23
0.16
0.42
0.37 0.36
0.31 0.37
0.34
0.33 0.45 0.35
0.32 0.53 0.37
0.57 0.35 0.48 0.37
0.57
0.42
0.25
0.37 0.40 0.52
0.40
0.07
0.3 0.35 0.21
0.18 0.32-0.21 0.67-0.04 0.57-0.56
-0.1 0.69-0.12
Refs.
References page VII - 262
Solvent Trichloromethane
Water m-Xylene o-Xylene
m-Xylene
T( 0 C)
Vinyl acetate Poly (vinyl methyl ether) Acetone Cyclohexane Ethyl acetate Ethylbenzene rc-Octane
% (0.2)
* (0.4)
0.52 0.45
0.32 0.34
8.6 109.1 170 1041 170 110
150 150 150 150 150
68.5 68.5 68.5 68.5 68.5
t
(0.6)
0.23 0.23
t
(0.8)
z(1.0)
0.17 0.14 1.4-1.48 0.43-0.01 4.40-3.10
0.61 0.48 0.53 0.52
0.52 0.43 0.43 0.39 0.38-0.25 0.72-0.26 0.39-0.35
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
25 30 30 30 30 40 30
Poly (vinyl methyl ketone) n-Decane 83-163 rc-Dodecane 113-173 n-Heptane 73-163 n-Nonane 73-163 n-Octane 73-163 n-Undecane 83-163
).
% (0.0)
25 290 50 290 120-200 9 162-229 20 162-229 20 100 19.2 100 19.2 100 103.8 100 1538 133-210 200 162-229 20 130-175 53.7
Poly(tert-butyl methacrylate) Benzene 50 69.5 Ethylbenzene 69.5 Mesitylene 100 Methyl ethyl ketone 50 69.5 3-Pentanone 50 Tetrachloromethane 50 Toluene 100 50 69.6 Trichloromethane 50 m-Xylene 69.5 -Xylene 69.5 p-Xylene 69.5 Poly(vinyl acetate) Acetone
M1 (kg/mol)
0.25
500 500 500 500 500 500
VP VP IGC IGC IGC VP VP VP VP IGC IGC VP
111 111 128 110 110 40 40 40 40 117 110 51 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0.36 0.36 0.69 0.71 0.52 0.62 0.58 0.42 0.44 0.44 0.44 0.62 0.63 0.57
VP VP VP VP VP VP VP VP VP VP VP VP VP VP VP
0.38 0.38
0.48 0.55 0.33 0.55 0.34 0.22
SAXS VP VP VP VP VP VP
132 133 133 134 133 134 135
0.54 0.47 0.21 0.10 0.97
IGC IGC IGC IGC IGC
112 112 112 112 112
3.91-3.54 3.89-3.16 3.56-3.05 3.48-3.20 3.55-3.11 3.86-3.68
IGC IGC IGC IGC IGC IGC
136 136 136 136 136 136
0.41 0.41
Refs.
0.39 0.31 0.62 0.70 0.33 0.43 0.63 0.42 0.47 0.44 0.37 0.03 0.67 0.55 0.42
0.454 0.31
Method
0.29
0.31 0.35
REFERENCES 1. R J . Flory, J. Chem. Phys., 10, 51 (1942). 2. P. J. Flory, J. Chem. Phys., 12, 425 (1944). 3. P. J. Flory, "Principles of Polymer Chemistry", Cornell University Press, Ithaca, 1953. 4. M. L. Huggins, J. Chem. Phys., 46, 151 (1942). 5. M. L. Huggins, J. Am. Chem. Soc, 64, 1712 (1942).
6. M. L. Huggins, "Physical Chemistry of High Polymers", Wiley, New York, 1958. 7. K. H. Meyer, Z. Phys. Chem., 44, 383 (1939). 8. R. A. Orwoll, Rubber Chem. Technol., 50, 451 (1977). 9. A. F. M. Barton, "Handbook of Solubility Parameters and Dher Cohesion Parameters", CRC Press, Boca Raton, 1983.
10. H. M. Petri, N. Schuld, B. A. Wolf, Macromolecules, 28, 4975 (1995). 11. P. J. Flory, Disc. Faraday Soc, 49, 7 (1970). 12. P. J. Flory, J. Chem. Phys., 17, 223 (1949). 13. C E . Anagnostopoulos, A. Y.Coran,H. R.Gamrath, J. Appl. Polym. ScL, 4, 181 (1960). 14. P. J. Flory, Rehner, Jr., J. Chem. Phys., 11, 521 (1943). 15. P. J. Flory, J. Chem. Phys., 18, 108 (1950). 16. P. Doty, H. S. Zable, J. Polym. Sci., 1, 90 (1946). 17. A. F. Blanchard, P. M. Wootton, J. Polym. Sci., 34, 627 (1959). 18. G. M. Bristow, W. F. Watson, Trans. Faraday Soc, 54, 1742 (1958). 19. C. M. Kok, A. Rudin, J. Appl. Polym. Sci., 27, 353 (1982). 20. M. B. Huglin (Ed.), "Light Scattering from Polymer Solutions", Academic Press, London (1972). 21. R J. Flory, H. Daoust, J. Polym. Sci., 25, 429 (1957). 22. W. R. Krigbaum, D. O. Geymer, J. Am. Chem. Soc, 81, 1859 (1959). 23. T. G. Scholte, Eur. Polym. J., 6, 1063 (1970). 24. R. Koningsveld, L. A. Kleintjens, A. R. Shultz, J. Polym. Sci. Part A-2, 8, 1261 (1970). 25. R. Koningsveld, L. A. Kleintjens, Macromolecules, 4, 637 (1971). 26. C. A. Haynes, R. A. Beyon, R. S. King, H. W. Blanch, J. M. Prausnitz, J. Chem., Phys., 93, 5612 (1989). 27. O. Smidsrod, J. E. Guillet, Macromolecules, 2, 272 (1969). 28. D. Patterson, Y. B. Tewari, H. R Schreiber, J. E. Guillet, Macromolecules, 4, 356 (1971). 29. N. F. Brockmeier, R. W. McCoy, J. A. Meyer, Macromolecules, 5, 464 (1972). 30. R. D. Newman, J. M. Prausnitz, J. Chem. Phys., 76, 1492 (1972). 31. P. J. Flory, J. Am. Chem. Soc, 65, 372 (1943). 32. B. E. Eichinger, P. J. Flory, Trans. Faraday Soc, 64, 2053 (1968). 33. C. H. Baker, W. B. Brown, G. Gee, J. S. Rowlinson, D. Stubley, Y. E. Yeadon, Polymer, 3, 215 (1962). 34. B. E. Eichinger, P. J. Flory, Trans. Faraday Soc, 64, 2066 (1968). 35. B. E. Eichinger, P. J. Flory, Trans. Faraday Soc, 64, 2061 (1968). 36. R. S. Chahal, W-P. Kao, D. Patterson, J. Chem. Soc, Faraday Trans. 1, 69, 1834 (1973). 37. I. Noda, Y. Higo, N. Ueno, T. Fujimoto, Macromolecules, 17, 1055 (1984). 38. W. R. Moore, R. Shuttleworth, J. Polym. Sci., Part A, 1, 733 (1963). 39. W. R. Moore, R. Shuttleworth, J. Polym. Sci., Part A, 1,1985 (1963). 40. C. Wohlfarth, Physical Sciences Data Vol. 44, Elsevier (1990). 41. E. C. Baughan, A. L. Jones, K. Stewart, Proc Roy. Soc, London, Ser. A, 225, 478 (1954). 42. A. L. Jones, Trans. Faraday Soc, 52, 1408 (1956). 43. J. S. Aspler, D. G. Gray, Polymer, 23, 43 (1982). 44. J. S. Aspler, D. G. Gray, Macromolecules, 12, 562 (1979).
45. S. G. Canagrata, D. Margerison, J. R Newport, Trans. Faraday Soc, 63, 3058 (1966). 46. I. Noda, N. Kato, T. Kitano, et al., Macromolecules, 14, 668 (1981). 47. A. Hamdouni, J. Leonard, V. T. Bui, Polymer Commun., 31, 258 (1990). 48. J. I. Eguiazabal, M. J. Fernandez-Berridi, J. J. Iruin, J. M. Elorza, Polym. Bull, 13, 463 (1985). 49. P. Alessi, A. Cortessi, P. Sacomani, E. Valles, Macromolecules, 26, 6175 (1993). 50. S. Saeki, J. C. Holste, D. C. Bonner, J. Polym. Sci., Polym. Phys. Ed., 20, 793 (1982). 51. Y. Iwai, Y. Arai, J. Chem. Eng., Japan, 22, 155 (1989). 52. G. Charlet, R. Ducasse, G. Delmas, Polymer, 22, 1190 (1981). 53. P. J. T. Tait, P. J. Livesey, Polymer, 11, 359 (1970). 54. P. Munk, P. Hattam, Q. Du, et. al., J. Appl. Polym. Sci.: Appl. Polym. Symp., 45, 289 (1990). 55. E. Dolch, M. Glaser, A. Heintz, H. Wagner, R. N. Lichtenthaler, Ber. Bunsenges. Phys. Chem., 88, 479 (1984). 56. P. J. Flory, H. Shih, Macromolecules, 5, 761 (1972). 57. M. J. Newing, Trans. Faraday Soc, 46, 613 (1950). 58. R. N. Lichtenthaler, D. D. Liu, J. M. Prausnitz, Ber. Bunsengesell, 78, 470 (1974). 59. W. R. Summers, Y. B. Tewari, H. P. Schreiber, Macromolecules, 5, 12 (1972). 60. A. J. Ashworth, G. J. Price, Macromolecules, 19,358 (1986). 61. A. J. Ashworth, G. J. Price, Thermochim. Acta, 82, 161 (1984). 62. N. Kuwahara, T. Okazawa, M. Keneko, J. Polym. Sci., Part C, 23, 543 (1968). 63. R. W. Brotzman, B. E. Eichinger, Macromolecules, 15, 531 (1982). 64. A. J. Ashworth, et. al., Macromolecules, 17, 1090 (1984). 65. W. E. Hammers, C. L. Ligny, J. Polym. Sci., Polym. Phys. Ed., 12, 2065 (1974). 66. T. Shiomi, Z. Izumi, F. Hamada, A. Nakajima, Macromolecules, 13, 1149 (1980). 67. A. J. Ashworth, G. J. Price, J. Chem. Soc, Faraday Trans. I, 81, 473 (1985). 68. D. W. Scott, J. Am. Chem. Soc, 68, 1877 (1946). 69. A. Muramoto, Polymer, 23, 1311 (1982). 70. R. C. Osthoff,W. T. Grubb,J. Am. Chem. Soc,76,399(1954). 71. K. Sugamiya, N. Kuwahara, M. Kaneko, Macromolecules, 7, 66 (1974). 72. A. J. Ashworth, G. J. Price, Macromolecules, 19, 362 (1986). 73. C. Panayiotou, J. H. Vera, Polym. J., 16, 89 (1984). 74. S. Saeki, J. Holste, D. C. Bonner, J. Polym. Sci. Polym. Phys, Ed., 21, 2049 (1983). 75. C. Wohlfarth, W. Zschoch, M. T. Ratzsch, Acta Polymerica, 32,616(1981). 76. C. Booth, C. J. Devoy, Polymer, 12, 309 (1971). 77. H. P. Schreiber, Y. B. Tewari, D. Patterson. J. Polym. Sci., Polym. Phys. Ed., 11, 15 (1973). 78. N. F. Brockmeier, R. W. McCoy, J. A. Meyer, Macromolecules, 5, 130 (1972).
79. G. DiPaola-Baranyi, J. E. Guillet, H.-E. Jeberien, J. Klein, Makromol. Chem., 181, 215 (1980). 80. J. H. van der Waails, J. J. Hermans, Rec. Trav. Chim. Pays Bas., 69, 971 (1950). 81. Y.-K. Leung, B. E. Eichinger, J. Phys. Chem., 78,60 (1974). 82. H. Masuoka, N. Murashige, M. Yorizane, Fluid Phase Equil., 18, 155 (1984). 83. Y-K. Leung, B. E. Eichinger, Macromolecules, 7, 685 (1974). 84. R. S. Jessup, J. Res. Nat. Bur. Stand., 60, 47 (1958). 85. N.-H. Wang, S. Takashima, H. Masuoka, Kagaku Kogaku Ronbunshu, 15, 313 (1989). 86. R. N. Lichtenthaler, D. D. Liu, J. M. Prausnitz, Macromolecules, 7, 565 (1974). 87. Q. Du, P. Hattam, R Munk, J. Chem. Eng. Data, 35, 367 (1990). 88. Y Nakamura, K. Akasaka, K. Katayama, T. Norisuye, A. Teramoto, Macromolecules, 25, 1134 (1992). 89. P. J. Flory, J. Am. Chem. Soc, 65, 372 (1943). 90. S. Prager, E. Bagley, R A. Long, J. Am. Chem. Soc, 75, 2742 (1953). 91. P. J. Flory, J. L. Ellenson, B. E. Eichinger, Macromolecules, 1, 279 (1968). 92. C. Booth, G. Gee. G. Holden, G. R. Williamson, Polymer, 5, 343 (1964). 93. B. E. Eichinger, P. J. Flory, Trans. Faraday Soc, 64, 2035 (1968). 94. G. Gee. J. Chem. Soc, 5, 280 (1947). 95. G. Gee, J. B. M. Herbert, R. C. Roberts, Polymer, 6, 541 (1965). 96. Y B. Tewari, H. R Schreiber, Macromolecules, 5, 329 (1972). 97. C. Booth, G. Gee, G. R. Williamson, J. Polym. ScL, 23, 3 (1957). 98. K. H. Meyer, E. Wolff, C. G. Boissonnas, HeIv. Chim. Acta, 23, 430 (1940). 99. G. DiPaola-Baranyi, J. Guillet, Macromolecules, 11, 228 (1978). 100. E. Regener, C. Wohlfarth, M. T. Ratzsch, S. Horing, Acta Polymerica, 39, 618 (1988). 101. P. J. T. Tait, A. M. Abushihada, Polymer, 18, 810 (1977). 102. J. S. Vrentas, J. L. Duda, S. T. Hsieh, Ind. Eng. Chem., Process Des. Dev., 22, 326 (1983). 103. D. J. Walsh, J. G. McKeown, Polymer, 21, 1330 (1980). 104. S. P. Nunes, B. A. Wolf, Macromolecules, 20, 1948 (1987). 105. K. Gekko, K. Matsumura, Bull. Chem. Soc Japan, 46, 1554 (1973). 106. R. Corneliussen, S. A. Rice, H. Yamakawa, J. Chem. Phys., 38, 1768 (1963). 107. C. Booth, C. J. Devoy, Polymer, 12, 320 (1971).
108. M. L. Lakhanpal, B. E. Conway. J. Polym. SdL, 46, 75 (1960). 109. W. B. Brown, G. Gee, W. D: Taylor, Polymer, 5, 362 (1964). 110. S. Gundiiz, S. Dincer, Polymer, 21, 1041 (1980). 111. C. E. H. Bawn, M. A. Wajid, Trans. Faraday Soc, 52, 1658 (1956). 112. S. Klotz, R. H. Schuster, H.-J. Cantow, Makromol. Chem., 187, 1491 (1986). 113. E. C. Baughan, Trans. Faraday Soc, 44, 495 (1948). 114. S. Saeki, J. C. Holste, D. C. Bonner, J. Polym. ScL, Poly. Phys. Ed., 19, 307 (1981). 115. M. T. Ratzsch, M. Opel, C. Wohlfarth, Acta Polymerica, 31, 218 (1980). 116. N.-H. Wang, S. Takashima, H. Matsuoka, Kagaku Kogaku Ronbunshu, 15, 795 (1989). 117. F. H. Covitz, J. King, J. Polym. Sci. A, 10, 689 (1972). 118. M. Galin, M. C. Rupprecht, Polymer, 19, 506 (1978). 119. B. A. Wolf, H. J. Adam, J. Chem. Phys., 75, 4121 (1981). 120. K. Schotsch, B. A. Wolf, H.-E. Jeberien, J. Klein, Makromol. Chem., 185, 2169 (1984). 121. Y C. Bae, J. J. Shim, D. S. Soane, J. M. Prausnitz, J. Polym. ScL, 47, 1193 (1993). 122. K. Schmoll, E. Jeckel, Z. Elektrochemie, 60, 756 (1956). 123. T. Katayama, K. Matsumura, Y Urahama, Kagaju Kogaku, 35, 1012 (1971). 124. H. M. Petri, B. A. Wolf. Macromolecules, 27, 2714 (1994). 125. M. T. Ratzsch, G. Illig, C. Wohlfarth, Acta Polymerica, 33, 89 (1982). 126. K. Kamide, K. Sugamiya, T. Kawai, Y Miyazaki, Polym. J., 12, 67 (1980). 127. C. E. H. Bawn, R. F. J . Freeman, A. R. Kamaliddin, Trans. Faraday Soc, 46, 677 (1950). 128. C. Uriate, M. J. Fdez.-Berride, J. M. Elorza, J. J. Iruin, L. Kleintjens, Polymer, 30, 1493 (1989). 129. S. Kinugasa, H. Hayashi, F. Hamada, A. Nakajima, Macromolecules, 18, 582 (1985). 130. C. E. Bawn, E. S. Hill and M. A. Wajid, Trans. Faraday Soc, 52, 1651 (1958). 131. G. Illig, Dissertation, TH Leuna-Merseburg, 1981. 132. A. M. Hecht, F. Horkay, E.Geissler, J. P. Benoit, Macromolecules, 24, 4183 (1991). 133. K. Mathsumara, T. Katayama, Kagaku Kogaku, 38, 388 (1974). 134. R. J. Kokes, A. R. DiPietro, F. A. Long, J. Am. Chem. Soc, 75, 6319 (1953). 135. A. Nakajima, H. Yamakawa, I. Sakurada, J. Polym. Sci., 35, 489 (1959). 136. Zeki Y Al-Saigh, Poly. Int., 40, 25 (1996).
Concentration Dependence of the Viscosity of Dilute Polymer Solutions: Huggins and Schulz-Blaschke Constants Cl i f o rd K . S c h o f PPG Industre is, Inc. Asilon Park, PA, USA A. Introduction VII-265 B. Tables VII-266 Table 1. Huggins Constants VII-266 1.1. Poly(dienes) and Poly(alkenes) VII-266 1.2. Poly(acrylic acid) and Poly(methacrylic acid) Derivatives VII-268 1.3. Vinyl Polymers VII-272 1.4. Poly(oxides) VII-277 1.5. Poly(esters) VII-278 1.6. Polyamides VII-279 1.7. Other Compounds VII-280 1.8. Cellulose, Cellulose Derivatives, and Polysaccharides VII-282 Table 2. Schulz-Blaschke Constants VII-284 C. References VII-285 A.
INTRODUCTION
The dependence of the viscosity of dilute polymer solutions on concentration can be described by a power series: (Al) where 77 is the viscosity of the solution and 770 is the viscosity of the solvent. This equation is usually presented in another form:
(specific viscosity), can be put in the form (A4) which becomes the Huggins equation (1) (A5) where k^ is the Huggins viscosity constant that is the most commonly used dilute solution viscosity number or index. It is easily determined from the slope of a plot of 77sp/c versus c. The Huggins constant can be thought of as a measure of the "goodness" of the solvent for the polymer with values around 0.3 in good solvents and 0.5-1 in theta solvents. It should be noted that these generalizations break down with extremely dilute solutions (2) and with chain aggregation (3). In both cases, values tend to be higher. The Huggins constant is independent of molecular weight for many polymers, but is dependent on molecular weight for polymers that associate easily in solution (3). The Huggins equation and Huggins constants can be used to determine values for the limiting viscosity number, [77]. For extrapolation procedures related to [77] and k^, see (Ref. 4). Applications of the Huggins equation to measure [77] are given in Refs. (5,6). The latter gives an equation for [T?]: (A6)
(A2) where [77] is the limiting viscosity number and ki(k\,k2) • • •) is a dimensionless constant. If terms with the third and higher powers of concentration are neglected, then Eq. (A2) becomes (A3) which, since 77/770 = rjTG\ (viscosity ratio) and 77rei — 1 == Vsp
which can be used for single point determinations, i.e., calculating [77] from a single viscosity measurement at a known concentration. Computer programs relating solution viscosity and molecular parameters are found in Refs. (7,8). Other semiempirical equations, such as those of Kraemer and Schulz and Blaschke, also are used for processing viscosity data. The Kraemer equation (Ref. 9) is (A7)
where kk is the Kraemer constant. Sometimes, the term k^ [rj] c is written as positive and the constants are listed as negative numbers. The result is the same. The SchulzBlaschke equation (10) is (A8) Although few Schulz-Blaschke constants have been published, some investigators contend that the SchulzBlaschke equation is superior because it works with a wider range of concentrations and is not bound to a constant specific viscosity region (11). On the other hand, it is not recommended for single point determinations because of large errors (6). Huggins' and Kraemer's equations, used singly or in combined form, are better (6). In addition to the polymer-solvent system, Jc^ and ksb depend on concentration (whether semidilute, dilute, or extremely dilute), molecular weight, degree of branching, shear rate of measurement, and whether there can be preferential solvation (copolymers and mixed solvents). With polymers in good solvents, measured values for the Huggins constant are between 0.3 and 0.4. In some cases, they are even lower (2). With decreasing goodness of the solvent, the Huggins constant increases steadily, reaching 0.55 or more for theta conditions. Regarding concentration, deGennes (12) has defined a critical concentration, c*, above which solutions are semidilute and below which they are dilute. Most k^ and A:sb values have been measured in the dilute region. Dondos (2) has defined another critical concentration, c**, below which the solution is called extremely dilute. Values for &h measured below c** tend to be higher than those measured between c* and c**. It is interesting that Peterson and Fixman (13) predicted higher values for Huggins constants except for those below c**. It may be that the low values in the dilute region are due to polymer coil compression because of lack of sufficient volume (2). The Huggins constant is not supposed to be dependent on the molecular weight of the polymer. In many cases, it is not (14-18), or the dependence is small (14,19,20), but other results show definite molecular weight dependence
(3,21). It appears that the Huggins constant is related to molecular weight in polymers that associate in solution, either by the effect of strong ionic or polar interactions, or by the effect of hydrogen bonds (3). There is a relationship between fch and the coil expansion factor or coefficient of expansion, a, which is a measure of the extent of the expansion of the polymer coil in a particular solvent. In good solvents, the coil is more extended than in poor solvents and a is correspondingly larger. The Huggins constant seems to vary with a3 (3,14,22,23). One expression for this is (Ref. 23) (A9) Although there is no agreement in the literature as regards the influence of branching on viscosity constants, most results indicate that k^ and /csb increase with higher degrees of branching (24-26). There is no agreement on the effect of shearing on viscosity constants either, the literature indicating both increases (27) and decreases (28) with increasing shear rate. Shearing that produced chain scission lowered the limiting viscosity number [77] and raised >th, and did so more at higher shear rates, although there was a tendency toward stabilization at the highest shear rates (29). The influence of shear rate is usually neglected below 1500 sec ~J (H). Huggins constants also can be determined for dilute suspensions. The £h value for such a suspension is sensitive to the degree and nature of the polydispersity of the specimen (30). The following tables contain Huggins and SchulzBlaschke constants taken from the literature, along with the relevant references. The values are listed by limiting viscosity number [77], the units of which are ml/g. Values marked with an asterisk (*) are interpolated values from the literature (mostly mean values calculated by Stickler and Sutterlin (H)). For information on molecular weight and other factors, as well as conditions of measurement not given in the tables, the reader may refer to the original publications.
B. TABLES TABLE 1. HUGGINS CONSTANTS Polymer
Solvent
T( 0 C)
Remarks
[tj]
kh
Refs.
1.1. POLY(DIENES) AND POLY(ALKENES) Poly(l,3-butadiene), cis
Toluene Phenyloctane Dioctyl phthalate
Poly(isoprene) cis Poly(isoprene) stars
Toluene Cyclohexane
25 25 50 16.5 21.5 25 25
Three-armed stars Four-armed stars Three-armed stars Four-armed stars
451 447 147 162
0.46 0.46 0.95 0.77
35.4 37.6 185 195
0.33 0.35 0.4 0.46
31 32
31 33
TABLE 1. cont'd Solvent
T( 0 C)
Toluene 1,4-Dioxane Toluene 1,4-Dioxane Benzene n-Hexane Tetrahydrofuran
34 34 34 34 30 30 25?
Gutta percha Poly(chloroprene)
Toluene Benzene
25 25
Poly(ethylene)
Tetralin /7-Xylene
80 100
Low pressure
Tetralin p-Xylene
80 81
Low pressure Low pressure
p-Xylene Benzene
81 105 20
High pressure High pressure
Polymer
Natural rubber Natural rubber (epoxidized)
Poly(isobutene)
Remarks Chlorosilane-linked stars Divinylbenzene-linked stars
1% Epoxy 9.5% Epoxy 18% Epoxy
24 25 30
Poly(isobutene)
Carbon tetrachloride Chlorobenzene Cyclohexane
40 30 25 25
Cyclohexane
30
Cyclohexane
30
Dibutyl ether Diisobutylene Heptane Isooctane
25 25 25 30
30
Poly(propylene)
Ref. also includes data for 10 20, 40, 50C
Mv - (16-926) x 103 Ref. also includes data for 10, 20, 40, 50C; only small variation in k across range Ref. also includes data for 20, 40 C; only small variation in k across range
Tetrachioroethane Tetradecane Toluene Benzene
25 25 25 30
Atactic
Carbon tetrachloride Chlorobenzene Chloroform
50 30 30
Atactic Atactic Atactic
fa]
kh
Refs.
14-780 14-164 82-195 30-70.5 354 170 415 218 30
0.35-0.88 0.63-9.2 0.50-1.02 0.71-1.19 0.32 0.35 0.84 0.43 4.27
10 30-120 150 200
0.58* 0.34 ±0.06* 0.43 0.52*
38 97 327
0.71 0.45 0.69
35 71 141 153 159
0.38 0.27 0.39 0.65 0.89
24 107 128 27 100 183 30 100 240 30-320 14-42 155 19 54 384 309 484 29 84 261 389 165
0.54 0.87 0.49* 0.49 0.59 0.7 0.49* 0.57* 0.70* 0.42 * db 0.02 0.36 0.36 0.38 ± 0.02 0.35 ±0.04 0.30 ±0.01 0.32 0.19 0.41 0.34 0.33 0.31 0.33 0.40 ±0.05 0.3 0.57 0.43 0.37 0.42 0.94 0.58 0.47 0.27 0.33 0.36 0.43 0.42 0.42 0.25 0.33 0.31
185 22 56 157 219 8.4 16.7 35.7 276 189 171 30 95 150 253 165 196
33 33 34 34 35 31 36
37 38,39 40 38,39
38,39 39,41 14 42 14 14 14 43 14 44 45 46
14 47 14 46
48 14 14 14 49 50 49 50 50 50
References page VII - 285
TABLE 1. cont'd Polymer
Solvent a-Chloronaphthalene Cyclohexane
T (0C)
Remarks
139 30
Atactic Atactic
60-70 30 135 30 30 34
Isotactic Atactic Isotactic Atactic Atactic Atactic
Toluene
30 30 30 130 30
Atactic Atactic Atactic Atactic Atactic
p-Xylene
125
Atactic
Decalin 2-Ethyl hexyl acetate n-Heptane Isoamyl acetate Isopropyl ether Tetrahydrofuran Tetralin
[i/]
kh
Refs.
45-330 276 277
0.27 db 0.02 0.24 0.36 0.25
120 205 26 65 98 156 176 155
0.38 0.34 0.45 0.65 0.83 0.36 0.32 0.36
30-120 190-220 180
0.36* ±0.02 0.40* ±0.03 0.35
20 150 240
0.35 0.25 0.25
70-190 157 106 134-296 170-245 309-342 239-711 117
0.3 0.4 0.28 0.31 0.31* 0.34 ±0.1 0.33 0.35
46-177
0.35
34 36 38 40 145 148 145 47 55 64 72 160 149 159 166 142 144 147 16-50
0.55 0.45 0.35 0.25 0.29 0.29 0.36 0.7 0.54 0.45 0.4 0.24 0.4 0.3 0.25 0.32 0.3 0.26 ~0.5to~~0.3
133 120-970 134
0.31 0.25-0.27 0.28
51 49 50 52 50 51 50 50 49 50 50 50 51 49 51 51
1.2. POLY(ACRYLIC ACID) AND POLY(METHACRYLIC ACID) DERIVATIVES Poly(acrylic acid)
Poly(acrylonitrile)
Poly(ethyl acrylate)
Water (0.1M NaCl) Water (0.25 M NaCl)
25 25
Dimethyl formamide
25 30
Acetone
Poly(decyl methacrylate)
Isooctane
Poly(ethyl methacrylate)
Benzene /i-Butanol
n-Butyl bromide
n-Butyl chloride Methyl acetate Ethyl acetate
40, 50, 60, 70 60 30 30 25
35 52 60 45 52 60 70 42 50 58 65 40 47 61 20-53 35 45 55 65
Degree of Degree of Degree of also for
neutr. = 0 neutr. = 0.3 neutr. = 0.76; data 5, 15, 35, 45 C
Telomers Ref. also includes data for 50, 75, 100 C
Conformational changes occurred in this range
53 54
55 56,57 55,58 59 60 59 56 61 60 62 63,64 65 66
67 67
67
67 68 67 69 67
TABLE 1. cont'd Polymer
Solvent
T(0C) 20-65
Isobutyl acetate
20-65
Isoamyl acetate
50 70 80 37 44 51 60 23-45 40 50-70 47
Isopropanol
Methyl ethyl ketone Methyl n-propyl ketone m-Xylene
Remarks Conformational changes occurred in this range Conformational changes occurred in this range
Water (0.1 M NaCl) Water (0.25 M NaCl)
25 25
Poly(methacrylonitrile)
Dimethyl formamide
29
Poly(methyl acrylate)
Acetone
30
Benzene
Carbon tetrachloride/ methanol Chlorobenzene Chloroform Ethyl acetate Methyl ethyl ketone
40 25 30 35 40 45, 55 35 25 30 35 40 30,35,40 25 30
Toluene
Poly (methyl methacrylate)
Acetone Benzene
35, 40 25 30 35 40 45 55 25 25? 20 25
Degree of neutr. = 0 Degree of neutr. = 0.1 Degree of neutr. = 0.3 Degree of neutr. = 0.81; also data for 5, 15, 35, 45 C Anionic
Vol. fraction of methanol: 0.33 ([77] maximum, k minimum)
kh
Refs.
12-48 ~ 0 . 4 5 t o ~ - 0 . 1 13-45 ~ 0.5 to ^ — 0.15 145 152 156 88 129 151 183 157-158 196 183-189 131
54 61 70 Poly(methacrylic acid)
[tj]
0.39 0.37 0.32 1.06 0.27 0.39 0.43 0.34-0.35 0.2 0.33 ±0.01 0.39
134 137 139
0.33 0.33 0.29
30 35 240 575
2.33 0.65 0.33 0.3
26 60-143 95-298 333 314 52-343 383 50-335 382 48-330 25-214
0.4 0.34* ±0.03 0.38 0.37 0.38 0.37 0.31 0.38 0.38 0.38 2.94 ±0.06
53-305 220 215 222 115-120 45 85 116 108 302 104 34-147 61 201 34-160 69 35-169 35-175
0.4 0.41 0.39 0.36 0.50 ±0.01 0.65 0.56 0.39 0.45 0.43 0.44 0.59 0.59 0.33 0.52
85 4 9.5 14 22 26-40 68-331 667
0.35 0.25 1.65* 0.69* 0.5 0.35 0.30* 0.25 ±0.01 0.18
68 68 67 67
67 67 67
53 54
70 71 72 72 71 72 71 72 71 73 71 74 74 75 73 72 73 71 73 72 71 73 71 71 7 ^ 82 77 78
References page VII - 285
TABLE 1. cont'd Polymer
Solvent
T( 0 C)
Remarks 90% Isotactic
Butyl acetate
25
90% Isotactic n-Butyl bromide Chloroform
Cyclohexanone Dimethyl formamide Ethyl acetate Isoamyl acetate Methyl ethyl ketone
Di-n-propyl ketone Tetrachloroethane Tetrahydrofuran Toluene
35 50 58 25
30,60 40, 60 50 70 25 25 50 65 80 25
30, 60 33.8 35-50 25 30 25
30 0-Xylene
m-Xylene
p-Xylene
Poly(hexyl methacrylate) Poly(heptyl methacrylate) Poly(octyl methacrylate) Poly(tetradecyl methacrylate)
w-Heptane rc-Heptane n-Heptane n-Heptane
60 40 50 60 70 40 50 60 70 40 50 60 70 30 30 30 30
Star-branched polymer
Star-branched polymer
[iy]
kh
Refs.
41 49-61 73-125 7 29 64 110 22 39 52 47 63 70 19 146 223-275 390 870 138, 152 146 136 56 53 36 44 47 7 27 56 137 151 172
0.39 0.33 0.3* ±0.03 0.9 0.67 0.58 0.47 0.67 0.61 0.57 0.5 0.41 0.35 0.32 0.25 0.38 0.22* 0.18 0.44 0.45 0.4 0.48 0.38 0.41 0.71 0.63 0.5 0.9 0.49 0.4 0.33 0.4 0.49
11.4 17
1.66* 1.48
101 24 40 9 24 55 83 229 414 37 80
0.29 0.161* 0.49* 0.63 0.46 0.41 0.33 0.25 0.23 0.43 ±0.04 0.41 ±0.03
68 72 76 81 55 62 71 80 42 48 59 64 31 45 64 58
0.34 0.21 0.32 0.27 0.48 0.67 0.55 0.35 1.31 1.26 0.93 0.47 0.5 0.44 0.45 0.32
14 78
14 67
79 80 67 14 82 14 67 78 14 78 75 80 81 78 14 81 78 14 78 44,80 80 67
67
67
83 83 83 83
TABLE 1. cont'd Polymer Poly(cyclobutyl methyl methacrylate)
Poly(cyclohexyl methyl methacrylate)
Poly(cyclooctyl methacrylate)
Solvent 1-Butanol
T( 0 C)
Remarks
40
Tetrahydrofuran
30
1-Butanol
45
Cyclohexane
30
Tetrahydrofuran
30
1-Hexanol
38
Cyclohexane
30
Tetrahydrofuran
30
Cyclohexane
30
Tetrahydrofuran
30
Toluene
25
M
kh
Refs.
13
1.49
20 36 22 57 142 10
1.16 1.33 0.36 0.31 0.3 0.74
17 41 17 54 91 16 35 105 10 16 23 17 38 25 76
0.81 0.62 0.18 0.43 0.31 0.52 0.35 0.36 0.94 1.46 1.77 0.26 0.39 0.4 0.37
9 18 36 9 17 36 19
0.69 0.49 0.38 0.7 0.55 0.37 0.4
95 230 13 39 73 22.6-98.0 34.0-88.4 33.9-54.1
0.34 0.35 0.76 0.73 0.61 0.42 0.41 0.61
11.6 24.7 28.2 13.5 16.5 18.5 23 62.7 13-42 22-87 14-23 29-155 29-148 33-178 11-111 11.0-99 11.0-98 10.0-91 11-133 11-111 9.0-64 10.0-87
0.79 0.47 0.52 0.32 0.55 0.45 0.41 0.37 1.25 0.48 1.17 0.42 0.43 0.36 0.34 0.33 0.35 0.35 0.29 0.3 0.4 0.33
84
84 84
84 84 84 84 84
Poly(cycloundecyl methacrylate)
Poly(diphenyl methyl methacrylate)
Poly(2,6-diisopropyl phenyl methacrylate) Poly(2,3-epoxypropyl methacrylate)
Poly(pentachlorophenyl methacrylate)
Poly(2-biphenyl methacrylate) Poly(4-biphenyl methacrylate)
3-Heptanone
45
Tetrahydrofuran Toluene Tetrahydrofuran/water (90.9/9.1, v/v) Tetrahydrofuran
25 25 25
1,4-Dioxane
25
Benzene Toluene Ethyl benzene oXylene Chlorobenzene 0-Dichlorobenzene Chloroform Tetrahydrofuran Benzene 1,4-Dioxane Chloroform Tetrahydrofuran Benzene 1,4-Dioxane
40 25 25 25 25 25 25 25 25 25 25 25 25 25
25
Theta solvent
84 84 85
85 224
86 86
87
88
89
References page VII - 285
TABLE 1. cont'd Solvent
T(0C)
Poly(di-isobornyl methacrylate)
Tetrahydrofuran 1-Octanol
30 39.6
Poly(acrylamide)
Water
25
Water (1M NaCl) Water (pH 7)
25 30
Poly(4-isopropyl styrene) Poly(4-isopropyl a-methyl styrene)
Toluene Toluene
25 21.5
Poly(styrene)
Benzene
25 25 25
Polymer
Remarks
[tj]
kh
25.3-104 13.1 23 1300-1700 274 1353 1200-1900 21
0.23 ±0.01 1.29 1.13 0.35 av. 0.16 0.5 0.33 av. 0.46
44-139 16.5 25.5 44 60 105 73.5 1.7 5.5 10.2 40.4 43 126 150 7, 13.7 82.9, 132 187,432
0.34 ±0.04 0.52 0.3 0.42 0.33 0.37 0.36 0.79 0.71 0.54 0.54 0.38 0.35 0.33 0.57 0.38 0.36
14.5 43 180 386
0.55 0.41 0.33 0.29
10.7-60.7 10.8-114 42 16 48 178
0.84 ±0.03 0.77±0.06 0.6 0.5 0.52 0.48 0.78 0.61
1.5 2.5 3.7 5.4 6.6 9 29-31 43,44 97
1.3 0.91 0.96 0.93 0.81 0.67 0.86* ±0.02 0.59 0.59
152 174 47
0.51 0.49 0.53 1.28 0.50 ±0.005 0.41* ±0.02 0.43* ±0.02 0.45* ±0.02 0.6 0.71
Refs. 90
6 91 6 92
1.3. VINYL POLYMERS
Atactic Atactic
Benzene/isopropanol Butyl acetate
25 25
Theta temperature, atactic
4-terf-Butyltoluene
50
Atactic
Carbon tetrachloride
25 30
Chloroform Cyclohexane
30, 60 30 34.5 = 6> 31, 95 34 34.5 34.5 34.5
Ref. also includes data for 10,20,40, 50C
Ref. also includes data for 15, 20, 25, 32, 40, 50C Trifunctional star molecule Oc** c 2.1x10*; k > 0.5 for MW < 2.1 x 105
34.5
cw-Decaline franj-Decaline
34 34.3, 34.8 34.5 35 36 40 40, 22 45 50 20 20
Branched Trifunctional star molecule Atactic
Trifunctional star c
55 20 60 120 38 80
93 94
95 96 109
14 97 98 46
81 46 95 99 2 100 101 109
102 95 97 103 14 14 95 2 99 14 14
TABLE 1.
cont'd
Polymer
Solvent
T( 0 C)
Remarks
25 30 Diethyl malonate
34
Theta temperature
40 Dimethyl formamide
25 30 35
Dioctyl phthalate
95 25 35 45
1,4-Dioxane
25
Ethyl benzene
25
Methyl ethyl ketone
25 30 40 40.3 60 25 15 21
1-Methyl naphthalene Toluene
25 25 25
c < c** c > c** Ref. also includes data for 10, 40, 55,65 C
0.49* ±0.01 0.51* ±0.02 0.4 0.42 0.47 0.5 0.5 0.47 0.5 0.44 0.39
12.2 77.2 188 20-700 49 89 51 86 45 54-87
0.48 0.4 0.41 0.48 0.59 0.58 0.57 0.5 0.56 0.5 0.81 0.35 0.503 0.423 0.365 0.291
13.4 26.1 41.7 384
Atactic
292 40-125 360 460
0.34 0.35 ±0.03 0.30 ±0.05 0.25 ±0.08
Anionic
8 14 36-272 41-123 56 71 63-84 14 73-234 28 98 203 12.6 28.1 64 362
0.51 0.44 0.34 ±0.03 0.34 ±0.02 0.41 0.38 0.31 0.46 ±0.02 0.38 ±0.015 0.41 ±0.02 0.39 0.34 ±0.01 0.56 0.43 0.38 0.32
28-80 68 30 42-66 91 134 3.7 6.6 8.4
0.51-0.52 0.33 0.46 0.35* 0.37 0.41 1.54 1.13 0.79
Thermal Branched
30
25
50 130 47 117 45 82 45 83 19 36 76-172
0.54 ±0.09
Linear
Poly(vinyl acetate)
kh
44-151
30
60 Toluene/methanol (77/23) 25 Acetone 18 25
[tj]
Theta temperature
Refs.
14 14 14 14 14 57 104 105 14 14 14 2 46
98 57,81 64 106 81 107 97 99 98,107 39,108 39,108 102 102 39,81,83 106 83 95 83 104
81 23 110 39,64,110
111,112
References page VII - 285
TABLE 1. cont'd Polymer
T( 0 C)
Solvent
Remarks
30
Benzene
32, 39,46 30
30
Zero shear plot Emulsion polymer
35
Branched
35
Linear
40
Zero shear plot Chlorobenzene
2-Chloroethylene Chloroform
Dioxane Methanol
Toluene
Water
Poly (vinyl alcohol)
18 25 32, 39, 46 25 18 25 32, 39,46 18 25 32,39,46 18 25 30 32,39,46 18 25 30 32, 39,46 25
Dimethyl sulfoxide DMSO/water (4/1, w/w)
30 30
Partially alcoholized 72.5% Hydrolyzed, unfract. Middle fractions 77.9% Hydrolyzed, unfract. Middle fractions 73.3% Hydrolyzed, unfract. Middle fractions No cooling Precooled to form clusters
[*/]
kh
Refs.
11.6, 12.9 20.8 27.1 70 250 450 65, 64, 63 126 50-450 147 197 262 281 124-381 77 133 229 45 72-200 300 500 700 137-177 196-250 281-570 204 243 268 354 197-413 71 37-45 66-69 99-121 68, 67, 65
0.53 0.38 0.34 0.35* ±0.02 0.37* ±0.02 0.39 ±0.02 0.41, 0.42, 0.44 0.17 0.37 ±0.03 0.25 0.3 0.45 0.65 0.34 1.42 1.21 1.05 0.28 0.35* ±0.02 0.37* ±0.02 0.39* ±0.02 0.42* ±0.02 0.33* ±0.01 0.34* ±0.01 0.35* ±0.01 0.25 0.28 0.36 0.44 0.42 0.44 0.35* ±0.03 0.44* ±0.01 0.35* ±0.04 0.43, 0.44, 0.4
101 45 62-92 146 99, 95, 92 77 75 74,73,72 41 30 40 50
0.34 0.31 0.37* ±0.02 0.28 0.37, 0.39, 0.41 0.27 0.29 0.31,0.32,0.34 0.61 0.41* ±0.04 0.49* ±0.03 0.57* ±0.03
44,45,47 46 46
0.52,0.41,0.39 0.57 0.55
47, 47, 48
0.56, 0.56, 0.54
21 20 9.5 10 20.2 20.6
0.67 0.98 2.27 3.87 1.03 1.2
122 77-99
0.43 0.75 ± 0.03
113 110 28 113 28
113 115
115 28
110 39,110 110 64 110 39,110 110 110 39,110 110 110 39,110 116 110 110 39,110 116 110 117 118
H9 225
TABLE 1. cont'd Polymer
Solvent
T (0C)
Remarks
M
Precooled to form clusters Precooled to form clusters Water Water
25 30 30(?)
100 132
Poly(vinyl chloride)
30
Water (boric acid/ 0.167MNaOH)
30
Water
60
Acetone Anisole Bromobenzene Butyl acetate 7-Butyrolactone Chlorobenzene Chloroform Cyclohexanone
20 25 25 25 25 25 20 20 25 30 20-60 80
Cyclopentanone 1,2-Dichloroethane Dimethyl formamide Dioxane
20 25 25 25
Ethyl acetate Ethyl acetyl acetate Methyl ethyl ketone
25 25 25
Morpholine
30 50 69
Nitrobenzene Tetrachloroethane
25 25
Refs.
30 42.1 71, 77, 86.5 96 165
1.1 1.8 0.5 0.57* 0.59 0.69 0.71 0.81
40 40 50 60 70-80 100 170
0.59* 0.9 0.60* 0.66* 0.68* 0.74* 0.83*
119,121 123 121
88, 85 78 22 28 42 84 32 59 36 34 40 43 34 39 38
0.65, 0.7 1.6 25 16 5.5 1.8 1.26 0.93 0.42 0.46 0.4 0.38 0.43 0.42 0.49
114
30 30 30
Water (dil. NaOH)
kh
0.042 M, 0.084 M NaOH 0.167MNaOH 0.005 M Boric acid 0.01 M 0.02 M 0.06 M
Samples with different tacticity
90-130 100-121 23-132 94 108 287 338 438 46 41 40 33 40 50 60 70 39 34 26 32 47-83 71 89 108 64 79 98 58 70 87 41 29 36-76 93
120,139 119,121 122
114
123
14 14 14 14 14 14 14 64,124 0.34 125,126 0.35 127,128,129 130 0.36 131 0.43 0.57 0.64 0.48 0.33 14 0.4 14 0.3 14 0.5 14 0.48* 0.44* 0.41 * 0.38* 0.43 14 0.43 14 0.34 14 0.35 0.38 ±0.01 0.64 132 0.57 0.49 0.81 132 0.67 0.53 0.85 132 0.7 0.55 0.33 14 0.42 14 0.37* ±0.01 0.35
References page VII - 285
TABLE 1. cont'd Polymer
Solvent Tetrahydrofuran
T( 0 C) 20
Remarks
[if]
kh
Refs.
100% Conversion
20-143 49 171 201-220 76-91 107 44 46
0.28* ±0.02 0.35 0.31 0.36* ±0.02 0.44* ±0.01 0.47 0.35 0.46
133 14 133
7 22-38 93-134 7 21-37 92-133 21-37 91-129 7 21-36 91-126 21-36 90-122 30 63.2 75.6 53.9 85.2 57.2 75.1 50 113 48 162 44 134 62 74 48 107 106 131 206 16 27 37 15 27 37 15 26 36 14 25 36 14 25 35 18 46 67-107 18 45 86 106
0.55 0.51* ±0.04 0.34* ±0.01 0.56 0.51* ±0.03 0.35* ±0.01 0.54* ±0.02 0.36* ±0.01 0.51 0.51* ±0.12 0.36* ±0.01 0.43* ±0.01 0.36* ±0.01 2.69 0.49 0.58 1.01 0.201 2.29 0.43 0.34 0.54 0.3 0.51 0.3 0.55 0.42 0.46 0.3 0.46 0.63 0.5 0.36 0.46 0.45 0.41* ±0.03 0.47 0.48 0.43* ±0.02 0.61 0.57 0.43* ±0.02 0.75 0.46 0.44* ±0.01 0.78 0.6 0.49* ±0.01 0.5 0.41 0.35* ±0.01 0.5 0.43 0.38 0.36
30
Poly(vinyl cyanoethyl ether) Poly(vinyl biphenyl)
Tetrahydrofurftiryl alcohol Tetramethylene sulfoxide Water Acetone Benzene
25 25 30 30 20 30 45 65 75
Poly(vinyl butyral)
Methanol Ethanol «-Propanol Isopropanol n-Butanol Isobutanol Cyclohexanone Acetone
25 25 25 25 25 25 25 30
Acetonitrile
30
Dioxane
30
Methyl acetate
30
Methyl formate
30
Poly(W-vinyl imidazole)
Water (0.2 M NaBr)
25
PoIy(I-vinyl naphthalene)
Benzene
20
Poly(vinyl formate)
30 45 65 75 Poly(2-vinyl naphthalene)
Benzene
20 30
Degree of neutr. = 0 Degree of neutr. = 0.3 Degree of neutr. = 0.8
132 14 14 121 121 134 134 134 134 134 135 135 135 135 135 135 135 136 136 136 136 136 137
134
134 134 134 134 134 134
TABLE 1. cont'd Polymer
Solvent
T(0C)
Remarks
45 65 75 Poly (vinyl phenylketone) Poly(4~vinylpyridine) Poly(vinyl pyrollidone)
Benzene Ethanol Dimethyl formamide Methanol Methanol -I- 0.33 N GC Ethanol
25 25 25 25 25 25
Propanol
25
Water
15 25 35 45 55 65 25 35 25 36 25 39
Water (salt soln.)
Poly(vinyltrimethylsilane) Poly(vinyl 4-trimethylsilyl benzoate) Poly(vinyl 3-trimethylsilyl benzoate) Poly(vinylidene fluoride)
1.4.
kh
Refs.
17 43 63-103 17 20 43-101 17 43-100
0.58 0.45 0.39* ±0.01 0.51 0.43 0.38* ±0.06 0.48 0.38* ±0.06
134
0.45 GC; guanidine hydrochloride
1.2MNaH 2 PO 4 Theta temperature 0.5MNa 2 SO 4 Theta temperature 0.5MNa 2 CO 3 Theta temperature; Ref. contains data for seven other salts
33 30.7 34 28 34 29 17.2 15 13.3 11.5 10.6 1.25 15.5 14.7 16.9 12.9 16.2 15.5
0.45 0.62 0.77 0.81 0.95 1.3 0.97 1.99 0.85 2.16 1.07 2.6
134 134 112 138 139 140
141
226
Cyclohexane Toluene
25 25
96-154 136
0.35 ±0.03 0.19
142 143
Toluene
25
214
0.54
143
Dimethylacetamide
25
76 116 143 189 325 108 124 132 174 74 128 175 -75 ? —65
0.35 0.37 0.32 0.27
144
0.33 0.37 0.42 0.47 0.31 0.36 0.39 0.54 0.47 0.4
2 48 3 82 3 45 3 39 1.1 1.9 2.4 5.5
-3.7 0.4 -0.9 0.4 -0.6 0.4 -2.5 0.4 8.16 3.41 2.06 2.3
25
Polyethylene glycol monovinyl ether)
[rj]
Dimethyl formamide
25
Water Ethanol Dimethyl formamide
25 25 25
Benzene
20
Chloroform
20
Dimethyl formamide
20
Toluene
30
[77] corr. for aggregation
0.42 145
144
146
POLY(OXIDES)
Poly(oxyethylene)
35
147 147 147 147 148
References page VII - 285
TABLE 1. cont'd Polymer
Solvent Water
Water
J( 0 C) 10.2 18.1 24 32 20
Remarks
fa]
MW=LOxIO 5
25 30 35
Water (2.40M NaCl)
25 54 Water (1.5 M Na acetate) 25 55 Water (1.5MNa formate) 25 52 Water (0.80M KF) 25 49 Water (2.40M KNO3) 25 53 Water (urea)
Theta temperature Theta temperature Theta temperature Theta temperature Theta temperature; Refs. 149-151 include data on a number of other salts
kh
Refs.
98.3 91.4 84.9 77.5 3 5 37.7 28.1 36.5 41.1 1.7 3 5 10.8 26.1 17 28.9 20.8 29.5 21.2 29.5 22.7 26 20
0.63 0.71 0.87 0.97 1.1 0.4 0.39 0.39 0.46 0.22 4.95 2.42 0.93 0.44 0.82 1.64 0.56 0.9 0.57 0.98 0.56 0.76 0.55 0.87
227
97 89 80 116 109-96 135-270 69 102
0.53 0.57 0.72 0.43 0.47 ±0.03 0.3 0.23 0.21
227
147 149 150 149 150 148
150 149 149 151 149
Poly(oxymethylene)
p-Chlorophenol Dimethyl formamide
10.2 20.1 32 10.2 16-32 60 140
Poly(oxypropylene)
Benzene
150 35
152 153
25 25 25
154 154 155 155
1.5.
152 152
POLY(ESTERS)
Poly(oxyethyleneoxy adipoyl) Poly(bis(oxyethylene) oxyadipoyl)
Poly(oxyethyleneoxy sebacoyl) Poly(oxyethyleneoxy terephthaloyl) Poly(mono-ethyl itaconate)
Cyclohexanone Dimethyl formamide Methyl ethyl ketone
Oligomers with different functionality Nonfunctional 3.1 3.6 4.3 Monofunctional 3.3 4.2 4.5 5.2 Bifunctional 3.5 4.1 4.8 5.3 5.7 8.7
0.39, 0.42 0.46 0.42 0.3 0.34 0.42 0.32 0.25 0.32 0.26 0.22 0.3 0.25
155
155
Cyclohexanone
25
154
w-Cresol/phenol (1/1)
25
156
Methanol (0.1M KI)
25
2-Ethoxyethanol
25
40.2 67.1 86 41.3 55 71
0.25 0.34 0.47 0.2 0.22 0.3
157 157
TABLE 1. cont'd Polymer 1.6.
T( 0 C)
Solvent
Remarks
[if]
kh
Kefs.
POLYAMIDES
Poly(iminoadipoylimino hexamethylene) (Nylon 66)
ra-Cresol Formic acid (90%)
20 25
Poly(iminoisophthaloyl imino-l,2-phenylene)
Dimethyl formamide (1.18N LiCl)
25
Poly[imino(l-oxohexa methylene)] (Nylon 6)
Tricresol
25
m-Cresol
?
Tricresol
20-60 25
Formic acid (85%)
(68.8%)
Hexafluoroisopropanol Sulfuric acid (96%) (93%)
Poly[imino(l-oxo-undecamethylene)] Poly(iminoterephthaloyl imino-l,2-phenylene) Poly(amidobenzimidazole) Aramid
(0.019 vol.% water)
25
25 25 25
25
(62%)
25
(60%)
25
(52.5%)
25
Sulfuric acid Dimethyl formamide (1.18NLiCl) Sulfuric acid fibers
1,3- and 1,4-phenylene polymers also in this Ref. (in DMF/LiCl and sulfuric acid/LiCl) Polymers with different end groups Branched polymers with 27-220 different end groups
25
(80%)
(33%) Phenol: CCl 4 (1 :1) Nylon 12
83 100 120 140 200
(0.05MCF 3 COONa)
50 109 335 70 80 85 48 86 460 32 200 240 558 965 1340 73 101 155 305 200-500 94-104 63 125 490 502 48 90 325 34 60 195 52 54 57 30 50 135 152
25 25 45 75 25 25
1,3- and 1,4-phenylene polymers also in this Ref. (in sulfuric acid)
25 25 25 25 25
Virgin fibers Heated to 1400C Heated to 1600C Heated to 2000C Heated to 2500C
0.2 0.22* ±0.01 0.24* ± 0.02 0.27* ±0.02 0.29* ±0.01
158 159
160 161 2.75-0.26 1.1 0.49 0.29 0.32* ±0.08 0.22* ±0.06 0.18* ±0.02 0.24 0.12 0.13 0.38 0.32 0.34 0.56 0.89 1.31 0.24 0.66 1.36 3.36 0.23 0.30* ±0.07 0.42 0.26 0.23 0.19 0.5 0.34 0.3 1.06 0.74 0.36 0.52* ±0.1 0.44* ±0.1 0.34* ±0.06 1.37 0.96 0.44 0.39
162 163 161,164
165
164
164 166
166
167 165 164
164 164 165 164
165 168 160 160 440 460 440 500 520
0.5 0.54 0.65 0.6 0.6
169
References page VII - 285
TABLE 1.
cont'd
Polymer Poly(/?-benzanalide terephthalamide) Poly(caprolactam) 1.7.
Solvent Sulfuric acid
T( 0 C) 25
Sulfuric acid (80%)
Remarks Rod-like polymer, high MW Low MW Fibers
Iq]
kh
Refs.
>100 <10 121-143
~0.5 >L0 0.29* ±0.02
170
32.4 46.7 51.9 52.7 58.6 45.1 51.4 68 218 178 480 44-555 51-755 32 37 39 40 50 55 54 386 243 224 170 280 253 243 247 49 55 62 74 80 93 57 68 74 80 98 106 77 43 37 25 23
1.87 0.95 0.87 0.41 0.54 0.95 0.91 0.53 0.27 0.31 0.25 0.36* ±0.03 0.36* ±0.01 0.9 0.29 0.16 0.15 0.45 0.48 0.53 0.21 0.23 0.25 0.28 0.11 0.21 0.23 0.5 0.7 0.55 0.41 0.41 0.34 0.29 0.56 0.5
171
OTHERCOMPOUNDS
Al-isopropoxypoly( vinyl butyral)
Methanol Ethanol /2-Propanol Isopropanol n-Butanol Isobutanol Cyclohexanone Water Water Water Water Tetrahydrofuran Cyclohexanone Water (0.5 M salt)
25 25 25 25 25 25 25 25
Poly(dimethylaminoethyl methacrylate dimethyl sulfate)
Water (0.1M salt)
30
Poly[3-dimethyl(methacryl oyloxyethyl)ammonium propane sulfonate]
Water (KCl)
30
Water (0.5 M)
30
Poly(2-acrylamido-2-methyl propanesulfonic acid) Poly(2-acrylamido-2-methyl propane sulfonamide Poly(epichlorohydrin) Poly(/Vyv'-dimethyl(acryl amidopropyl) ammomium propane sulfonate
25 25 25 30
NH4Cl LiCl NaCl KCl MgCl2 CaCl2 SrCl2 KF KCl KBr KI LiCl NaCl KCl CsCl 0.25 M 0.30M 0.40M 0.50M 0.8 M 1.50M LiCl NaCl KCl KBr 10
KClO4 CaCl2 Poly(ether imide)
Dichloromethane
10 25
Pyridine
10 ^ 10
2
N-Methyl pyrollidone
51
25
NMP/water (96/9)
Polyethylene imine) Polyethylene oxide)urethanes
Water (1M NaCl) Tetrahydrofuran
10 25 50 25 50 35 25
Na-polyphosphate
Water (NaBr)
25
NMP/water (95/5)
Different hydrophobic end caps
135
228 228 229 172 173
174
175
175
041
0.39 0.38 0.37 0.37 043
1?6
0.66 2.13 2.44
176
0 48
45 33 34 29 25 23 10.4-64.4 19, 18.5,24
0.59 \ 0.8 1.16 1.93 2.23 0.76 * ± 0.02 0.4
50-276
0.29* ±0.04
176
vi*> 176 230 177 178
TABLE 1. cont'd Polymer
Solvent
T( 0 C)
Poly(di-n-hexylsilane)
Tetrahydrofuran
25
Poly(oxydimethylsilylene)
Benzene Carbon tetrachloride Chlorobenzene Cyclohexane n-Heptane Methyl ethyl ketone Tetrahydrofuran Toluene
25 25 25 25 25 25 25 25
Poly(methylene Af, Af-dimethy lpiperidinium chloride) Poly[bis(2-phenylethoxy) phosphazene]
Water (NaCl) Tetrahydrofuran
25
Phenolphthalein poly(aryl ether sulfone)
Dimethyl formamide
25
Chloroform
25
Poly(phenyl quinoxaline)
Poly(sodium acrylate)
Poly(styrene sulfonic acid), potassium salt
Sodium polystyrenesulfonate)-diallyldimethyl ammonium chloride
20-60
Chloroform 25? Chloroform/toluene (98/2) Chloroform/toluene (95/5) Chloroform/ethanol (95/5) Water (NaCl) 25
Water (0.4% NaCl) 10% NaCl 0.40% NaCl 1.30% NaCl 5.00% NaCl 10.00% NaCl Water (KCl)
25
Remarks
kh
Refs.
58 87 133 143 192 515 831 251 312 219 324 305 151 319 62-241 146 577-727 10-210
0.33 0.36 0.34 0.4 0.44 0.38 0.66 0.44 0.51 0.61 0.37 0.45 0.8 0.39 0.55* ±0.02 0.51 0.46* ±0.01 0.35-0.50
179
0.42 0.62 0.32 0.49 0.62 0.51 0.74 0.89 0.78 0.53 0.33 0.31 0.06 0.38 0.42 0.51 0.65 0.34 0.48 0.37 0.6 2.2 6.3 0.75 1.14 3.73 12.4 20 0.76 0.49 2.93 6.62 18.7 4.92 0.37 0.26 0.73 1.28 7.91 22.9 2.51 0.39 0.29
231
Ionic strengths ranging 0.1-0.5M
MW = O.8xlO 5 MW = 2.20 x 105 MW = 4.90 xlO 5 Reference includes data from additional solvents, molecular weights
0.4% NaCl 1.30% 5.00% 10.00% 3% C8 substitution 3% C12 substitution
25
[if]
Ionic str., Z= LOOM / = 4.0 x 10"1 M, MW 41.5 /=1.0 x 10" 2 M ^3.OxIO-1M Z=LOxIO- 1 M / = LOOM, MW 109.5 Z=LOxIO- 1 M Z = 7.0 XlO- 1 M Z = 3.0 XlO- 1 M Z=LOxIO- 1 M Z = 3.1 M, MW 1170 Z=LOM Z=LOxIO- 1 M Z=LOxIO- 3 M Z = 3.0 x 10" 4 M Z = 3.0 x 10' 5 M Z= 10" 4 M Z=IO - 3 M Z= 10" 2 M Z = 0.5 M
8.4 11.7 12.9 29 53.6 89.3 28.5 50.5 82.7 65 75 62 78 256 153 77 59 276 78 278 165 64 34 8.2 15.7 27.5 39 65.7 15.7 39.9 83.5 105 148 16.6 115 361 3353 5786 9661 4480 2750 1150 202
180 180 180 180 180 180 180 180 181 182 182 183
Bo Bo 184
185
186,187
233
References page VII - 285
TABLE 1. cont'd Polymer
Solvent
T( 0 C)
Remarks
M
kh
Refs.
Ref. also gives data for copolymers with acrylamide Poly(thiopropylene) 1.8.
Benzene
20
188
CELLULOSE, CELLULOSE DERIVATIVES, AND POLYSACCHARIDES
Alginate(sodium) Amylose
Arabinoglucuronoxylan Cellulose
Cellulose acetate
Water Water Water Water Water
(NaCl/CuCl2) (KOH) (NaOH) (KOH-NaCl) (IN KOH)
Water Cd-ethylenediamine (Cadoxen) Cu-ethylenediamine (Cuoxen) Zn-ethylenediamine (Zincoxen) LiCl/dimethylacetamide Acetone Formic acid Pyridine
Cellulose diacetate
Dimethyl formamide
30 25 25 25 25 30 35 40 25 20 25 25
Near gelation point
25 30 30 30 30 25
30 25?
MW = 4.2 to 4.5 x 105
Subst. = 2.34 as-is reprecipitated Subst. = 2.34 as-is reprecipitated Subst. = 2.55 as-is reprecipitated
Cellulose triacetate
Acetic acid
25
Chloroform
25
Methylene chloride Tetrachloroethane
15-30 25
Cellulose acetate phthalate
Water (NaCl solns.)
35
Cellulose nitrate
Acetone Diethyl adipate Isoamyl acetate Water Ethyl acetate Water
20 25 25 20 20 20
Methyl cellulose Ethyl cellulose Ethyl hydroxyethyl cellulose
Water
0
15
0.27
139 129 121 107 41.6 ±2.2 339-1395 426-510 440 466 510 248-383
0.19 0.2 0.48 0.88 3.6 ±0.6 0.50 ±0.01 0.46* ±0.01 0.54* ±0.02 0.59 0.65 0.47* ±0.09
641-682
0.43-0.59
295 196 185 155
0.56 0.8 1.3 1
158 145 230 200 199 195 72 117 43 72
0.48 0.87 0.32 0.72 0.29 0.35 0.42 0.57 0.45 0.43
50 82 90 71 68 695-1195
0.34 0.38 8.64 3.36 1.69 0.53* ±0.08
400 41-188 440 175 135 125 140 423 845 1052 1218 402 794 977 1130
1.2 0.65 ±0.15 1 11.3 18 13 7.5 0.57 0.74 0.8 0.87 0.43 0.59 0.68 0.75
Q temp. = 27°C Salt cone. = 0.002 M Salt cone. = 0.006 M Salt cone. =0.0. IM
0.5mM/gSDS l.OmM/g 2.0mM/g 5.0mM/g Hydroxyethyl cellulose
180
234 189 189 189 190 190 190 190 235 191 192 192 192 236 193 193 193 194
195
196 196 197 196 198 191 199 200 237 191 238
201
201
TABLE 1. cont'd Polymer
Solvent
T( 0 C)
Remarks
20 25 25
35
40 60 25
Water
Degraded hydroxyethyl cellulose Hydrophobically modified hydroxyethyl cellulose
Water Water Water Water Water
(LiCl) (KCl (CuCl2) (MnCl2)
Water
Hydroxypropyl cellulose Water Hydroxy propylrnethyl cellulose Water Na-carboxymethyl cellulose Water (NaCl)
Lyzozyme
Water (1M NaCl) Water (1N NaOH) Water (NaCl) 0.5 M NaCl/10% cadox. 0.5 M K, NaH phosphates Water 10% Cadoxen Water 10% Cadoxen 88% Formic acid Water
Microbial polysaccharide
Water (NaCl)
Acidic hetero polysaccharides p-D-Glucan
25 25 25 25 25 25 40 60 20 20 25 25 25 25 30 30
5 15 25 40 55 25?
pH 2.2 pH 3.0 pH 5.0 pH7.0 pH 9.0 pHll.O pH 12.0 1 x 10 "* to 1 x 10 ~3 M
Water (NaCl)
25?
Water (0.1 M NaCl)
25
Refs.
273 128 381 754 895 1062 370 725 875 1010 100 86 622 624 610 600 674 740 792 900* ±42 928 * ± 14 951 * ± 1 930* ±15
1.22 0.31 0.3 0.47 0.62 0.67 0.22 0.4 0.49 0.57 0.75 0.85 4.04 3.09 2.94 3.1 2.39 1.48 1.23 0.98* ±0.16 0.90 * ± 0.03 0.86* ±0.01 0.98* ±0.08
237 239 201
110 91 69 134 740
1.45 2.22 3.75 0.83 0.54
239
Subst. 0.75; 0.01, 0.1, and 0.2MNaCl Subst. 0.5-2.5 Subst. 0.5-2.5 from Auricularia auricula judae from Auricularia auricula judae
Enzyme from egg-whites (glycoside hydrolase)
Kelco S-657; 0.001 M NaCl
Kelco S-130; 0.001 M NaCl
0.1 M NaCl
Xanthan gum
kh
Thermal degradation in water or salt soln. at 60, 80, 1000C
0.1 M NaCl
Welan gum
[tj]
Native Renatured
201
239 202
202 202 202 202 202
237 198
72 101 4900 4050 265 353 750 3.05 2.83 2.66 2.49 2.41 752 838 1452 2194 680 750 1380 2097 738 1078 1537 2471 641 984 1510 2370 10300 13200
0.2 0.36 0.49 0.41 0.21 0.23 0.49 1.35 1.42 1.48 1.54 1.58 0.99 0.62 0.73 0.81 0.7 0.43 0.59 0.6 0.94 0.99 1 0.86 0.46 0.55 0.51 0.62 0.45 0.46
203 203 204 205 205 205 205 205 205 240
206
206
206
206
207
References page VII - 285
TABLE 2. SCHULZ-BLASCHKE CONSTANTS Polymer Poly(isoprene) Guttapercha Poly(chloroprene) Poly(methylene) Poly(ethylene) PoIy(I -butene) Poly(isobutene) Poly(acrylonitrile) Poly(methyl methacrylate)
Solvent
Toluene0 Benzene m-Xylene° Decalin Decalin Diisobutylene Dimethyl formamide Acetone
PoIy(I-ethylbutyl methacrylate Poly(n-hexyl methacrylate) Poly(n-octyl methacrylate) Poly(n-lauryl methacrylate) Poly(acrylamide) Poly(vinyl alcohol) Poly(vinyl chloride)
Methyl ethyl ketone Toluene0 Methyl ethyl ketone Isopropanol Methyl ethyl ketone Isopropanol Methyl ethyl ketone Isopropanol Methyl ethyl ketone n-Butanol Methyl ethyl ketone n-Butyl acetate Isopropyl acetate Water Water (IM NaCl) Water Cyclohexanone
25 32.6 23 16.8 23 23 13 25 25 30 25
Cyclohexanone0 Poly(vinyl acetate) Poly(styrene)
Benzene Toluene Benzene Butanone0 Chloroform Cyclohexane Ethyl acetate Methyl ethyl ketone Toluene0
Poly(a-methyl styrene)
Poly(2-methyl-5-vinyl tetrazole)
25 25 120 135 115 20 25 25 32 25 25 20 25 27.3 32 25 25 23 21.5 23 27.4
Benzene0 Butyl acetate Chloroform Chloroform0
Poly(ethyl methacrylate) Poly(n-butyl methacrylate)
T( 0 C)
m-Xylenefl Cyclohexane
25 20-60 30 25 25 30 25 25 34 25 30 25 30 25 30
Cyclohexane/ ethylacetate (50/50)
30
Chloroform
20
Remarks
[17]
ksh
Refs.
19-208
0.32
121-1535 ??sP
0.29 0.48
77sp
0.5
25-480
0.3
l/* sb = 5.411og(T7sp + 5)-1.15 7?sp < 1
0.5
VsP
0.33 1 0.36 0.89
rjsp < 1 ^sp
0.3 0.7 0.36 0.8 0.46 0.38 0.59 0.20* ±0.06 0.20* ±0.07 0.46* ±0.02 0.28 ±0.01 0.32 ± 0.03
Low pressure Stereoregular
Theta temperature Theta temperature Theta temperature Theta temperature Theta temperature
MW 69000-106000 reprecipitated 21-139 1/Jfc8b = 5.224 log(77sp 4- 4 ) - 0.65 1 l/* 8b = 10.534 log(7?sp + 3 ) - 2.65
28 34 52 68 78 37 56 88 119 164 26 37 56 86
0.82 0.99 1.05 1.02 0.77 0.4 0.29 0.37 0.38 0.39 0.4 0.26 0.41 0.26
208 209 208 210 211 208 208 208 211,212 213 208,212 212 10 208 214 213 211 208 211 211 211 211 211 211 211 211 211 211 211 6 6 122 215 208 130 213 208 208 213 208 208 208 208 214 208 214 208 216
216
217
TABLE 2.
cont'd
Polymer
Poly(oxyethylene)
Poly(oxydimethylsilylene) Poly(iminoadipoylimino hexamethylene) (Nylon 66)
Poly(amide imide) Cellulose Cellulose acetate Cellulose nitrate
Ethyl cellulose
Solvent
T( 0 C)
Dimethyl formamide
20
Methylene chloride
20
Acetonitrile Benzene Benzyl alcohol Carbon tetrachloride Dimethylformamide Dioxane Methanol Methyl acetate Water Butanone0 Chloroform* Formic acid (90%)
25 10 37 25 25 25 25 25 25 25 25 25 25
/V-Methyl pyrollidone Cadoxen Cuoxam Cuoxen Acetone Acetone
30 20 20 20 25 20
Ethyl acetate
27 20
Acetone Benzene Isobutanol /i-Butyl chloride Ethyl acetate
20, 30,40 20,30 40 20,30,40 20, 30,40 20, 30, 40 20
Remarks
[tj] 186 270 20 39 64 128 236 27 34 55 89 168 244 M v >10 4 M v >10 4 M v >10 4 M v >10 4 M v >10 4 M v >10 4 M v >10 4 M v >10 4 M v >10 4 M v >10 4
(13.7% N)
(13.7% N)
Subst. = 2.73 Subst. = 2.73 Subst. = 2.73 Subst. = 2.73 Subst. = 2.73 Subst. = 2.73
ksb 0.19 0.19 0.59 0.38 0.33 0.23 0.22 0.26 0.19 0.29 0.25 0.3 0.35 0.22 0.21 0.23 0.19 0.3 0.27 0.27 0.26 0.27 0.17
83 100 120 140 200 19-87 339-1395 946-1125 190-2800
0.2 0.22 * ± 0.02 0.24* ±0.02 0.26* ±0.02 0.28* ±0.01 0.3 0.29 ±0.08 0.29 0.29
180-500 500-1000 1000-1400 1400-2000 695-1995
0.29 0.34 0.37 0.4 0.30 ±0.03
200-600 600-1200 1200-1800 1800-2400 24-180 26-450 362-418 25-420 25-470 25-450 41-1888
0.26 0.3 0.33 0.37 0.35,0.33,0.32 0.36,0.35 0.34 0.34,0.33,0.32 0.33, 0.33, 0.32 0.29,0.28,0.27 0.31 ±0.05
Refs.
217
217
218 218 218 218 218 218 218 218 218 208 208 159
219 191 220 221 64 222
191 64 222
223 223 223 223 223 191
"&Sb is roughly calculable from the Arrhenius constant. C
REFERENCES 1. 2. 3. 4. 5.
M. L. Huggins, J. Am. Chem. Soc, 64, 2716 (1942). A. Dondos, C. Tsitsilianis, Polym. Int., 28, 151 (1992). I. Doit, Polymer (London), 29, 490 (1988). T. Sakai, J. Polym. Sci. A-2, 6, 1659 (1968). P. M. Reilly, B. M. E. van der Hoff, M. Ziogas, J. Appl. Polym. Sci., 24, 2087 (1979).
6. M. M. Rafi'ee Fanood, M. H. George, Polymer, 28, 2244 (1987). 7. A. Penati et al., J. Appl. Polym. Sci., 19, 2583 (1975). 8. A. Varada Rajulu, A. Padma, J. Polym. Mater., 6,15 (1989). 9. E. O. Kraemer, Ind. Eng. Chem., 30, 1200 (1938). 10. G. V. Schulz, F. Blaschke, J. Prakt. Chem., 158, 130 (1941), 159, 146 (1941).
11. M. Stickler, N. Siitterlin, in: J. Brandrup, E. H. Immergut (Eds.) "Polymer Handbook", 3rd Ed., Wiley-Interscience, Wiley, New York, 1989, p. VIM 83. 12. P. G. de Gennes, "Scaling Concepts in Polymer Physics", Cornell Univ. Press, Ithaca, NY, 1979. 13. J. M. Peterson, M. Fixman, J. Chem. Phys., 39,2516 (1963). 14. M. Bohdanecky, Collect. Czech. Chem. Commun., 35, 1972 (1970). 15. K. K. Chee, J. Appl. Polymer. ScL5 23, 1639 (1979). 16. M. Bohdanecky, Z. Tuzar, Collect, Czech. Chem. Commun., 34, 3318 (1969). 17. C. G. Seefried et al., J. Polym. Sci., Polym. Phys. Edn., 18, 817 (1980). 18. J. Moacanin, J. Appl. Polym. Sci., 1, 272 (1959). 19. N. Howard, M. B. Huglin, R. W. Richards, J. Appl. Polymer Sci., 16, 1525 (1972). 20. P. Munk, M. T. Abijaoude, M. E. Halbrook, J. Polym. Sci., Polym. Physics Edn., 16, 105 (1978). 21. B. Lanska et al., Eur. Polym. J., 14, 807 (1978). 22. R. Berger, Makromol. Chem., 102, 24 (1967). 23. A. A. Abdel-Azim, Macromol. Rapid Commun., 15, 183 (1994). 24. C. E. H. Bawn, M. B. Huglin, Polymer (London), 3, 615 (1962). 25. J. Blackford, R. F. Robertson, J. Polym. Sci. A, 3,1289,1303 (1965). 26. J. A. Manson, L. H. Cragg, Can. J. Chem., 30, 482 (1952); 36, 858 (1958). 27. L. M. Hobbs, V. C. Long, Polymer (London), 4, 479 (1963). 28. S. L. Kapur, S. Gundiah, J. Polym. Sci., 26, 89 (1957). 29. M. Moan, A. Omari, Polym. Degrad. and Stab., 35, 277 (1992). 30. R. B. Jones, Physica A (Amsterdam), 212, 43 (1994). 31. G. M. Bristow, J. Polym. Sci., 62, 168 (1962). 32. R. H. Colby et al., Macromolec, 24, 3873 (1991). 33. B. J. Bauer et al., Macromolec, 22, 2337 (1989). 34. S. L. Kapur, S. Gundiah, Makromol. Chem., 26, 119 (1958). 35. N. V. Bac, L. Terlemezyan, M. Mihailov, J. Appl. Polym. Sci., 50, 845 (1993). 36. J. Polacek, Collect. Czech. Chem. Commun., 25, 2103 (1960). 37. L. Nicolas, J. Polym. Sci., 29, 191 (1958). 38. Q. A. Trementozzi, J. Polym. Sci., 23, 887 (1957). 39. O. F. Solomon, I. Z. Ciuta, BuI. Inst. Politeh. "Gheorghe Gheorgie-Dej". Bucuresti, 30, 87 (1968). 40. E. Willert, R. Berger, G. Langhammer, Plaste Kautschuk, 14, 303 (1967). 41. H. J. Schuurmans, J. Polym. Sci., 57, 557 (1962). 42. V. P. Budtov, Vysokomol. Soedin., Ser. A, 9, 765, (1967). 43. W. F. Hadden, Jr., R. S. Porter, J. F. Johnson, J. Appl. Polym. Sci., 8, 1371 (1964). 44. L.-Y Chou, J. L. Zakin, J. Colloid Interface Sci., 25, 547 (1967). 45. A. Penati, G. Pagani, E. Beacco, Ann. Chim. (Rome), 64, 99 (1974).
46. F. Gundert, B. A. Wolf, Makromol. Chem., 187, 2969 (1986). 47. P. H. Plesch, P. P. Rutherford, Polymer, 1, 271 (1960). 48. H. Geerissen, P. Schiitzeichel, B. A. Wolf, Macromolec, 24, 304 (1991). 49. F. Danuso, G. Moraglio, Atti Accad. Nazi. Lincei, Rend., Classe Sci. Fis. Mat. Nat., 25, 509 (1958). 50. G. Moraglio, F. Danusso, Ann. Chim. (Rome), 49, 902 (1959). 51. K. Kamido, Kobunshi Kagaku, 21, 152 (1964). 52. P. Xie, Q. Ying, L. Shi, Gaofenzi Xuebao, 257 (1990); Chem. Abstr., 114, 123693h (1991). 53. G. Barone et al., Ric Sci., 36, 477 (1966). 54. M. Sakurai et al., Polym. J. (Tokyo), 25, 1247 (1993). 55. N. M. Beder, A. B. Pakshver, Khim, Volokna, 3, 21 (1961). 56. T. Shibukawa, K. Nakaguchi, Kobunshi Kagaku, 14, 353 (1957). 57. Y. Shimura, J. Polym. Sci. A-2, 4, 423 (1966). 58. S. Uchiyama, Sen-i Gakaishi, 22, 373 (1966). 59. T. Shibukawa, K. Nakaguchi, Kobunshi Kagaku, 14, 203 (1957). 60. M. Katayama, T. Ogoshi, Kobunshi Kagaku, 13, 114, 148 (1958). 61. N. S. Batty, J. T. Guthrie, Polymer, 19, 1145 (1978). 62. T. Shibukawa, K. Nakaguchi, Kobunshi Kagaku, 14, 291, 294 (1957). 63. H. Somitomo, Y. Yatsukama, Kobunshi Kagaku, 11, 65 (1954). 64. M. L. Huggins, "Physical Chemistry of High Polymers", Wiley, New York, 1958, p. 82. 65. Y. Pietrasantra, G. Rigal, P. Schaeffner, Makromol. Chem., 182, 1371 (1981). 66. N. Schott, B. Will, B. A. Wolf, Makromol. Chem., 189,2067 (1988). 67. P. Vasudevan, M. Santappa, Makromol. Chem., 137, 262 (1970). 68. J. Y. Olayemi, Makromol. Chem., 183, 2547 (1982). 69. K. Karunakaran, M. Santappa, Current Sci. (India), 33, 551 (1964). 70. J. Herz et al., Compt. Rend., 261, 1319 (1965). 71. N. Yokomichi, K. Ogino, T. Nakagawa, Nippon Kagaku Zasshi, 87, 233 (1996). 72. S. Gundiah, N. V. Viswanathan, S. L. Kapur, J. Sci. Ind. Res., 19B, 191 (1960). 73. B. Maitra, A. K. Nandi, Polymer, 34, 1260 (1993). 74. N. T. Srinivasan, M. Santappa, Makromol. Chem., 27, 61 (1958). 75. A. Kotera et al., Makromol. Chem., 87, 195 (1965). 76. A. Blumstein, F. W. Billmeyer, Jr., J. Polym. Sci. A-2, 4,465 (1966). 77. G. S. Kolesnikov, Tsing Han-Ming, Vysokomol. Soedin., 3, 1210(1961). 78. M. Bohdanecky, Coll. Czech. Chem. Commun., 31, 4095 (1966). 79. A. S. Badran et al., J. Appl. Polym. Sci., 45, 333 (1992). 80. S. Morimoto, A. Machi, Kogyo Gijutsuin Sen I Kogyo Shikensho Kenkyn Hokoku, 67, 1 (1964).
81. V. Efstratiadis et al., Polym. Int., 33, 171 (1994). 82. G. N. Tsidvintseva, Deposited Doc, 1978, VINITI 170478; Chem. Abstr., 91, 193784u (1979). 83. Z. Li, W. Zhang, K. Feng, Zhongshan Daxue Xuebao, Ziran Kexueban, 3, 27, (1986). 84. D. Pateropoulou, E. Siakali-Kioulafa, N. Hadjichristidis, Macromol. Chem. Phys., 195, 173 (1994). 85. J. W. Mays, N. Hadjichristidis, J. S. Linder, J. Polym. Sci. B: Polym. Phys., 28, 1181 (1990). 86. B. Bednar et al., Sb. Vys. Sk. Chem. Technol. Praze, 53, 241 (1980). 87. M. Becerra, D. Radic, L. Gargallo, Makromol. Chem., 179, 2241 (1978). 88. J. B. Alexopoulos, N. Hadjichristidis, Makromol. Chem., 180, 455 (1979). 89. J. B. Alexopoulos, N. Hajichristidis, A. Vassiliadis, Polymer, 16, 386 (1975). 90. N. Hadjichristidis et al., J. Polym. ScL, Polym. Phys. Ed., 22, 1745 (1984). 91. Rafi'ee Fanood, M. H. George, Polymer, 28, 2241 (1987). 92. H. Kamogawa, T. Sekiya, Kogyo Kagaku Zasshi, 63, 1631 (1960). 93. F. S. Holahan, S. S. Stivala, D. W. Levi, J. Polym. Sci. A, 3, 3987 (1965). 94. D. Landheer, S.-L. Malhotra, J. Macromol. Sci.-Chem. A, 16, 1349 (1981). 95. T. A. Orofino, F. Wenger, J. Phys. Chem., 67, 566 (1963). 96. M. Pulat, N. Uyysal, Cemil Senvar, Marmara Univ. Fen Blimleri Derg., 5, 125 (1988). 97. T. Arai et al., Macromolec, 28, 3609 (1995). 98. J. R. Urwin, J. M. Stearne, Makromol. Chem., 78, 204 (1964). 99. V. P. Budtov, Vysokomol. Soedin., Ser. A, 9, 765 (1967). 100. J. Schurz, H. Pippan, Monatsch. Chem., 94, 859 (1963). 101. K. K. Chee, J. Appl. Polym. Sci., 27, 1675 (1982). 102. M. Morton et al., J. Polym. Sci., 57, 471 (1962). 103. H.-G. Elias, O. Etter, Makromol. Chem., 66, 56 (1963). 104. J. L. Zakin, R. Wu, H. Luh, K. G. Mayan, J. Polym. Sci., Polym. Phys. Ed., 14, 299 (1976). 105. V. A. Myagchenkov, E. V. Kuzentsov, V. Ya. Kitkevich, Vysokomol. Soedin., 6, 1366 (1964). 106. A. I. Goldberg, W. P. Hohenstein, H. Mark, J. Polym. Sci., 2, 503 (1947). 107. U. Lohmander, R. Stroemberg, Makromol. Chem., 72, 143 (1964). 108. H. W. McCormick, J. Colloid Sci., 16, 635 (1961). 109. Y. Einaga et al., Macromolec, 22, 3419 (1989). 110. W. E. Moore, M. Muiphy, J. Polym. Sci., 56, 519 (1962). 111. A.M. Meffroy-Biget, A. Unanue, P. Stevenot, C. R. Hebd. Seances Acad. Sci., Ser. C, 281, 179 (1975). 112. A.-M. Meffroy-Biget et al., C. R. Hebd. Seances Acad. Sci., Serv. C, 281, 429 (1975). 113. K. Imai, U. Maeda, M. Matsumoto, Kobunshi Kagaku, 14, 419(1957). 114. M. Shibayama et al., Macromolec, 29, 885 (1986). 115. L. M. Hobbs, V. C. Long, Polymer, 4, 479 (1963).
116. M. Matsumoto, U. Maeda, K. Imai, Kobunshi Kagaku, 14, 425 (1957). 117. A. Beresniewicz, J. Polym. Sci., 39, 63 (1959). 118. F. Lerner, M. Alon, J. Polym. Sci. A: Polym. Chem., 25, 181 (1987). 119. M. Negishi et al., Kobunshi Kagaku, 14, 239 (1957). 120. L. Z. Vilenchik et al., Chromatographia, 24, 633 (1987). 121. M. Matsumota, K. Imai, Kobunshi Kagaku, 12, 402 (1955). 122. T. Ikaya, K. Imai, Kobunshi Ronbunshu, 36, 329 (1979). 123. Y. Sakaguchi, N. Yasuhira, Kobunshi Kagaku, 13, 437 (1956). 124. J. W. Breitenbach, E. L. Forster, A. J. Renner, Kolloid-A., 127, 1 (1952). 125. F. Dunusso, G. Moraglio, S. Gazzeva, Chim. Ind. (Milan), 36, 883 (1964). 126. L. C. Grotz, J. Polym. Sci. B, 2, 883 (1964). 127. G. M. Guzman, J. M. G. Faton, Anales Real Soc. Espan. Frs. Quim. (Madrid), 54-B, 263 (1958). 128. K. Goto, Y. Ono, S. Furusawa, Kobunshi Kagaku, 11, 437 (1954). 129. H. Sobue, Y. Tabata, Y. Tajima, Kogyo Kagaku Zasshi, 61, 1328 (1958). 130. L. Lapcik, V. Roubal, Zb. Pr. Chemikotechnol. Fak. SVST, 1972, 15 (1974). 131. E. L. Madruga, J. Millan, J. Polym. Sci., Polym. Chem. Ed., 12, 2111 (1974). 132. Y Nakamura, M. Saito, Kobunshi Kagaku, 17, 718 (1960). 133. F. Krasovec, J. Stefan, Inst. Reports (Ljubljana), 3, 203 (1956). 134. L. A. Utracki, R. Simha, Makromol. Chem., 177, 94 (1968). 135. R. Hippe, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 23, 363 (1975). 136. K. Fujii et al., Kobunshi Kagaku, 19, 581 (1962). 137. M. Sakurai et al., Polymer J. (Tokyo), 26, 658 (1994). 138. D. O. Jordan, A. R. Mathieson, M. R. Porter, J. Polym. Sci., 21, 473 (1956). 139. L. Z. Vilenchik et al., Vysokomol. Soedin, Ser. B, 31 (2), 114 (1989). 140. G. Liang, X. Liang, R. Feng, Zhongshan Daxue Xuebao, Ziran Kexueban, 3, 126, (1980). 141. N. Ahmad, B. Ahmad, J. Chem. Soc. Pak., 12, 246 (1990). 142. A. B. Duchkova et al., Vysokomol. Soedin., 8, 1814 (1966). 143. H. Hopff, M. A. Osman, Makromol. Chem., 135,175 (1970). 144. G. Lutringer, G. WeM, Polymer, 32, 877 (1991). 145. G. Lutringer, B. Meurer, G. WeM, Polymer, 32, 884 (1991). 146. G. S. Nurkeeva et al., Vysokomol. Soedin., Ser. B, 28, 649 (1986). 147. G. Mueh, Kolloid-Z., 196, 64,c 140 (1964). 148. D. K. Thomas, A. Charlesby, J. Polym. Sci., 42, 195 (1960). 149. M. Ataman, J. Macromol. Sci.-Chem. A, 24, 967 (1987). 150. E. A. Boucher, P. M. Hines, J. Polym. Sci., Polym. Phys. Ed., 16, 501 (1978). 151. M. Ataman and E. A. Boucher, J. Polym. Sci.: Polym. Phys. Ed., 20, 1585 (1982). 152. W. Tummler, Plaste Kautschuk, 12, 582 (1965). 153. K. Okazaki, Kogyo Kagaku Zasshi, 64, 342 (1961).
154. A. Orszagh, F. Fejgin, Polimery, 8, 233 (1963). 155. N. N. Filatova et al, Polym. Sci. USSR, 24, 1144 (1982). 156. H. Sobue, A. Kajiura, Kogyo Kagaku Zasshi, 62, 1908 (1959). 157. L. Gargallo et al, Eur. Polym. J., 29, 609 (1993). 158. G. Prati, Ann. Chim. (Rome), 47, 51 (1957). 159. E. Heim, Faserforsch. u. Textiltech., 11, 513 (1960). 160. V. Z. Nikonov, L. B. Sokolov, Vysokomol. Soedin., 8, 1529 (1966). 161. J. Sebanda, J. Kralicek, Coll. Czech. Chem. Commun., 31, 2534 (1966). 162. J. Kralicek, J. Kondelikova, V. Kubanek, Sb. Vys. Sk. Chem.-Technol. Praze, Org. Chem. Technol. C, 18, 61 (1973). 163. L. Huppenthal, R. Szczepanska, Polimery (Warsaw), 21, 16 (1976). 164. R. Rybnikar, Faserforsch. U. Textiltech., 9, 500 (1958). 165. W. Sbrolli, T. Capaccioli, Chim. Ind. (Milan), 42, 243 (1960). 166. O. Quadrat, M. Bohdanecky, Coll. Czech. Chem. Commun., 29, 2469 (1964). 167. A. V. Pavlov, S. E. Bresler, S. R. Rafikov, Vysokomol. Soedin., 6, 2068 (1964). 168. M. K. Baloch, Polym. Bull. (Berlin), 34, 469 (1995). 169. L. V. Avrorova et al., Khim. Volokna, 20, (1988). 170. S. M. Aharoni, Macromolec, 20, 2010 (1987). 171. D. Pishev, N. Angelova, Przegl. Wlok. Tech. Wlok., 46, 5 (1992). 172. H. Li et al., Chemical Journal of Chinese Universities, 10, 1065 (1989). 173. W.-F. Lee, C-C. Tsai, Polymer, 36, 357 (1992). 174. D.-J. Liaw, S. J. Shian, K. R. Lee, J. Appl. Polym. Sci., 45,61 (1992). 175. D.-J. Liaw et al., J. Appl. Polym. Sci., 34, 999 (1987). 176. A. Viallat, R. Pedro Bom, J. P Cohen Addad, Polymer, 33, 4379 (1992). 177. C. Maechling-Strasser et al., Polymer, 33, 627 (1992). 178. U.-P. Strauss, J. Polym. Sci., 33, 291 (1958). 179. P. M. Cotts et al., Macromolec, 24, 6730 (1991). 180. M. Takeda, A. Yamada, T. Saito, Kobunshi Kagaku, 14, 265 (1957). 181. M. Takeda, A. Yamada, Kobunshi Kagaku, 14, 247 (1957). 182. J. Brzezinski, Polimery (Warsaw), 18, 67 (1973). 183. S. Maxim et al., Eur. Polym. J., 13, 105 (1977). 184. M. S. Matevosyan, A. A. Askadskii, G. L. Slonimskii, Vysokomol. Soedin., Ser. A, 29, 761 (1987). 185. B. Magny, I. Ilioponlos, R. Audebert, Polym. Comm., 32, 456 (1991). 186. R. M. Davis, W. B. Russel, Proc. IUPAC Macromol. Symp., 28, 902 (1982). 187. R. M. Davis, W. B. Russel, Macromolec, 20, 518 (1987). 188. V E. Eskin, A. E. Nesterrov, Vysokomol. Soedin., 8, 141 (1966). 189. S. R. Erilander, R. M. Purvinas, Starke, 20, 37 (1968). 190. M. K. S. Morsi, C. Sterling, J. Appl. Polym. Sci., 10, 925 (1966).
191. L. S. Bolotnikova, T. I. Samsonova, Zh. Prikl. Khim., 38, 2299 (1965). 192. M. W. Pandit, R. S. Singh, Indian J. Technol., 6, 172 (1968). 193. V. R Kharitonova, A. B. Pakshver, Kolloid. Zhur., 20, 110 (1958). 194. G. Khamrakulov et al., Vysokomol. Soedin, Ser. A, 35, 705 (1993). 195. L. A. Knypikova, T. A. Savitskaya, D. D. Grinshpan, Khim. Drev., 8, (1993). 196. P. Haward, R. S. Parikh, J. Polym. Sci. A-I, 6, 537 (1968). 197. I. I. Ryskina et al., Polym. Sci. USSR, 18, 2854 (1976). 198. C. Patel et al., J. Polym. Mater., 4, 35 (1987). 199. U. Lohmander, R. Stroemberg, Makromol. Chem., 72, 143 (1964). 200. F. Higashide, J. Nakajima, Kogyo Kagaku Zasshi, 69, 1329 (1966). 201. W. Brown, Arkiv Kemi, 18, 227 (1961). 202. A. Blazkova, J. Hrivikova, L. Lapcik, Chem. Pap., 44, 289 (1990). 203. K. Watanabe, M. Nakamura, Kogyo Kaguku Zassshi, 69, 1329 (1966). 204. D. A. I. Goring, S. Sitaramaiah, Polymer, 4, 7 (1963). 205. L. Zhang et al., Carbohydr. Res., 270, 1 (1995). 206. R. Urbani, D. A. Brant, Carbohydr. Polym., 11, 169 (1989). 207. M. Milas et al., Macromolec, 23, 2506 (1990). 208. M. Hoffman, Makromol. Chem., 24, 222, 245 (1957). 209. J. Polacek, J. Polym. Sci., 39, 469 (1959). 210. H. Wesslau, Makromol. Chem., 20, 111 (1956). 211. R. J. Valles, M. C. Otzinger, D. W. Levi, J. Appl. Polym. Sci., 4, 92 (1960). 212. H. Craubner, Makromol. Chem., 93, 24 (1966). 213. V V. Varadaiah, R. Rao, Polym. Sci., 19, 379 (1956). 214. V. E. Hart, J. Polym. Sci., 17, 215 (1955). 215. H. Anders, H. Zimmerman, H. Behnisch, Acta Polym., 37, 63 (1986). 216. L. D. Choo, L. M. Goo, Nonmunjip - Sanop Kwahak Kisul Yonguso (Inha Taehakkyo), 17, 247 (1989). 217. T. I. Bychkova et al., Vysokomol. Soedin., Ser. B, 28, 456 (1986). 218. H.-G. Elias, Makromol. Chem., 99, 219 (1966). 219. N. Tsubokawa, Y. Sone, Kobunshi Ronbunshu, 43, 71 (1986). 220. E. Husemann, G. V. Schulz, J. Makromol. Chem., I1 197 (1943). 221. M. Marx, Makromol. Chem., 16, 157 (1955); Papier, 10,135 (1956). 222. M. Marx, G. V. Schulz, Makromol. Chem., 31, 140 (1959); see also M. Marx-Figini, Makromol. Chem., 36, 220 (I960). 223. G. Meyerhoff, N. Sutterlin in Ref., 11, p. VII-200. 224. L. Gargallo, N. Hamidi, D. Radic, Polym. Int., 24, 1 (1991). 225. T. Takigawa, K. Urayama, T. Masuda, J. Chem. Phys., 93, 7310 (1990). 226. A. Guner, J. Appl. Polym. Sci., 62, 78 (1996). 227. S. I. Jeon, G. D. Chang, J. Korean Chem. Soc, 40, 748 (1996). 228. D. Dragan, Angew. Makromol. Chem., 236, 85 (1996).
229. S. R. Gooda, M. B. Huglin, Macromolec, 25, 4215 (1992). 230. I. H. Park, E.-J. Choi, Polymer, 37, 313 (1996). 231. J. A. Perdigon, M. P. Tarazona, E. Saiz, An. Quim. Int. Ed., 92, 385 (1996). 232. S.-Q. Bo et al., Chem. J. Chinese Univ. (Gaodeng Xuexiao Huaxue Xuebao), 17, 820 (1996). 233. F. Brand, H. Dautzenberg, Langmuir, 13, 2905 (1997). 234. H. Zheng et al., J. Chem. Phys., 105, 7746 (1996).
235. R. Dhami et al., Carbohydr. Polym., 28, 113 (1995). 236. T. Wang et al., Xianweisu Kexue Yu Jishu, 4, 7 (1996). 237. S. Nilsson, L.-O. Sundelof, B. Porsch, Carbohydr. Polym., 28, 265 (1995). 238. C. Holmberg, Colloid Polym. ScL, 274, 836 (1996). 239. L. Picton, G. Muller, Progr. Colloid Polym. ScL, 102, 26 (1996). 240. K. Monkos, Biochim. Biophys. Acta, 1339, 304 (1997).
Theta Solvents H a n s G . E l i a s Mcihg ian Moelcualr n I stiute, 1910 West St. Ande rws Rd,. Md ialnd, Ml 48640, A. Introduction 1. Fundamentals 1.1. Thermodynamics 1.2. Unperturbed Dimensions 2. Methods to Determine Theta Solvents 2.1. Phase Equilibrium (PE) 2.2. Second Virial Coefficient (A) 2.3. Cloud Point Titration (CP) 2.4. Cloud Temperature Titration (CT) 2.5. Unperturbed Dimensions (RGM, VM, DM, SM) 2.6. Other Methods B. Tables of Theta Solvents for Polymers Table 1. Homochain Polymers 1.1. Poly(alkanes) 1.2. Poly(alkenes) 1.3. Poly(styrenes) 1.4. Poly(vinyls) 1.5. Poly(acrylics) and Related Compounds 1.6. Poly(methacrylics) and Related Compounds 1.7. Other Carbon Chains Table 2. Heterochain Polymers 2.1. Poly(acetals) and Poly(ethers) 2.2. Poly(esters) 2.3. Poly(amides) 2.4. Polyureas and Polyurethanes 2.5. Polysaccharides 2.6. Carbon-Sulfur Chains 2.7. Silicon-Oxygen Chains 2.8. Phosphorus-Oxygen Chains C. References A.
INTRODUCTION
1.
Fundamentals
VII-291 VII-291 VII-291 VII-292 VII-293 VII-293 VII-293 VII-294 VII-294 VII-294 VII-294 VII-295 VII-295 VII-295 VII-299 VII-300 VII-305 VII-307 Vll-308 VII-312 VII-313 VII-313 VII-315 VII-316 VII-316 VII-316 VII-317 VII-317 VII-318 VII-318
/ . / Thermodynamics The theta state is defined as that state of a polymer solution at which the excess chemical potential, and correspondingly, the excess Gibbs energy of
dilution is zero. For a given polymer-solvent system, this state is obtained at a certain characteristic temperature, the theta temperature 0. A solvent at this temperature is called a theta solvent. Since Flory (110) was the first to show the importance of the theta state for a better understanding of physical structures and properties of polymers, the theta temperature is sometimes also called "Flory temperature". The name "van't Hoff temperature" has also been suggested (127). However, neither "Flory temperature" nor "van't Hoff temperature" has gained acceptance. The exact definition of the theta state is given by chemical thermodynamics. The chemical potential of a solvent 1, A/i i, can be split into an ideal term and an excess term: (Al) where the excess chemical potential at the thermodynamic temperature T is given by the enthalpy of dilution, Ai/1, and the excess entropy of dilution, AS|XC: (A2) A zero excess chemical potential does not imply that both the enthalpy of solution and the excess entropy of solution are zero as in the case of true ideal solutions where AH\ = 0 and A5f c = 0. Rather, a theta state means only that the terms on the right side of Eq. (A2) compensate each other at the theta temperature <9, i.e., Ai/1 = 0AS\*c for Afj,\KC at T — 0. Solutions in the theta state are thus not thermodynamically ideal but thermodynamically pseudoideal (306). The chemical potential cannot be measured directly. It may be expressed, however, by the product of the osmotic pressure IJ of the solution and the partial specific volume *vj of the solvent: (A3) The concentration dependence of the osmotic pressure of non-electrolyte solutions can be written as a power series (A4)
where C2 = m 2 /V is the mass concentration of the polymer (mass m2 of the polymer 2 per total volume V of the solution after mixing polymer and solvent) and Ai, A2, A3,... are first, second, third,... virial coefficients, respectively. The second virial coefficient is a measure of the interaction between two bodies, the third virial coefficient a measure of interactions between three bodies, etc. Second and third virial coefficients depend on the chemical structure and the molar mass of the polymer, the chemical structure of the solvent (and thus its interaction with the polymer), and the temperature. The first virial coefficient is given by (A5) where R is the general gas constant (R = 8.314510 J/K/mol) and Mn is the number-average molar mass of the polymer. Eq. (A4) is thus often written as (A6) where (Mn) is the apparent number-average molar mass, B = A2/RT, and C ^A3/RT. The third term of the right-hand side of Eq. (A4) is often negligible at low polymer concentrations. Combinations of Eqs. (Al), (A3) and (A4) then yields, (A7) Since by definition the excess chemical potential is zero at the theta temperature, the second virial coefficient (but not necessarily the third virial coefficient) is also zero (A 2 = 0 at T — 0). The concentration dependence of the reduced osmotic pressure, IJ/C2, is thus zero at the theta temperature, albeit at low concentrations only. The same reasoning applies to other colligative methods (cryoscopy, ebullioscopy, vapor phase osmometry) and also to those physical methods that measure concentration dependencies of apparent molar masses (static light scattering, sedimentation equilibrium, combination of sedimentation and diffusion coefficient, etc.). An example is static light scattering which yields at the scattering angle 7? —>0°: (A8) where (M w ) app = apparent mass-average molar mass, Ko- optical constant at zero angle, and /?o = Rayleigh ratio at zero scattering angle. The virial coefficients B and C of light scattering average differently over interactions than those of colligative measurements; B and C of poly molecular ("polydisperse") polymers are numerically different for osmotic pressure and light scattering measurements. The theta temperature may also be phenomenologically defined as the critical miscibility temperature at the limit of infinite molar mass (110). Since a solution may exhibit two
critical miscibility temperatures, a polymer solution may display two theta temperatures. In the case of endothermic solutions, a lowering of temperature leads to less positive second virial coefficients and the theta temperature corresponds to an upper critical solution temperature (UCST) in the limit of infinite molar mass. The theta temperature corresponds to a lower critical solution temperature (LCST) in the case of exothermic solutions (see, e.g., (92)). 1.2. Unperturbed Dimensions The thermodynamic behavior described above results from the fact that longrange interactions between polymer segments are absent in the theta state. Long-range interactions are intramolecular interactions between segments or groups of one and the same polymer molecule that are separated by many chemical bonds along the chain; they are remote in sequence but adjacent in space. Short-range interactions are interactions between chain groups that are near to each other in sequence. They are determined by the length of chain bonds, the valence angles between chain atoms, and the hindrance to rotation around chain bonds (usually due to a pair (4 chain bonds) or two pairs (5 chain bonds) of conformers in the chain). In a thermodynamically good solvent (A2 > 0), polymer-solvent interactions are much larger than polymer-polymer and solvent-solvent interactions. The polymer chain expands in order to minimize polymer-polymer contacts; the dimensions of these chains are said to be perturbed. In such perturbed chains, the space occupied by one polymer segment is excluded for all other segments of the same polymer chain, i.e., even at infinite dilution. In a theta solvent (A2 = 0), polymer-solvent interactions are just balanced by polymer-polymer and solventsolvent interactions. Long-range interactions disappear and the polymer chain assumes its so-called unperturbed dimensions which manifest themselves for linear chains by a dependence of the root-mean square radii of gyration s, on the square root of molar masses: (A9) Intrinsic viscosities [rj] are also controlled by the space requirements of polymer molecules. For unperturbed coils of linear chains, one can write (see textbooks of polymer science) (AlO) where ^o is usually assumed to be a universal constant (but see Ref. 498). The dependence of the radius of gyration, (s2) ' ,or the intrinsic viscosity, [77], on the square-root of the molar mass is generally taken as a manifestation of unperturbed dimensions and thus also of the presence of the theta state of the polymer. The assumption that theta conditions lead to unperturbed dimensions is often fulfilled within limits of error for most of the investigated polymers but it is not true in the general
sense. The thermodynamic definition of the theta state refers to the global properties of polymer solutions whereas the definition of unperturbed dimensions relates to the local properties of the chain. Both definitions agree exactly only if infinitely thin chains are surrounded by a locally and globally homogeneous continuum of solvent molecules. The ability of a theta solvent to generate unperturbed dimensions thus depends on the constitution and configuration of the polymer, the solvent, and the temperature [83] since all these factors influence long-range interactions (excluded volume effects and interactions with the solvent). Small molar mass dependencies of theta temperatures are sometimes detectable for single solvents (230), especially at low molar masses when the effects of end groups or small helical segments (525) become noticeable. However, if the macromolecules have long side chains and if the main chain and the side chains are constitutionally different, then the theta state of a polymer solution may not be identical with the unperturbed state of polymer coils, even for single solvents. An example is the solution of poly(octadecyl methacrylate) in butyl acetate which is in the theta state at 10.50C (A2 = 0). At this temperature, the exponent ay of the intrinsic viscosity/molar mass relationship of Eq. (AlO) was found as av = 0.44 instead of 0.50, due to a contraction of the long side chains (406). A similar discrepancy between the theta state of the polymer-solvent system and the unperturbed dimensions of the polymer coils has been found for cyclic poly(styrene) in cyclohexane where 0 = 28.5°C according to thermodynamics but ay — 0.40 at the same temperature; aw = 1/2 was observed for the considerably higher temperature of T = 400C (366). In both cases, intrinsic viscosities were assumed to reflect unperturbed dimensions. This is not necessarily true, however, since atactic poly(methyl methacrylate) exhibited the same reduced mean-square radius of gyration, (s2)Q/Mw, in the two theta solvents acetonitrile (<9 = 44°C) and w-butyl chloride (0 = 40.50C) whereas the corresponding viscosity quantities, [rj\e/Mj , definitely differed from each other despite the almost identical theta temperatures (512). In mixed solvents, these effects may be enhanced by a possible distribution of solvent components, depending on the polarities of the polymer 2 and liquids 1 and 3; 1 is a solvent and liquid 3 usually a non-solvent (precipitant). It seems that in the absence of large variations of theta temperatures, the unperturbed dimension of a given apolar polymer is approximately the same in various apolar solvents. However, unperturbed dimensions (as determined from intrinsic viscosities) may vary widely for polar polymers in various polar theta mixtures (31,95,154). For a review of various methods for the determination of unperturbed dimensions in mixed solvents see (526). 2. Methods to Determine Theta Solvents Methods for the determination of theta temperatures are discussed in greater detail in two reviews (527,528). As mentioned above, theta conditions do not neces-
sarily lead to unperturbed dimensions of coils (and vice versa). 2.1. Phase Equilibrium (PE) Binary mixtures of a polymer in a single solvent phase-separate at various temperatures, r sep , depending on the volume fraction 02 of the polymer. The maximum of the Tsep = /(02)-function is called the critical solution temperature Tcst. The experiment is repeated for a series of dilute solutions of polymers of the same constitution and configuration but of different molar mass. The relation between the critical solution temperature and the molar mass of the polymer is based on the FloryHuggins lattice theory which predicts that (All) where ip \ is the Flory residual-entropy parameter and r is the ratio of the molecular volume of the polymer to that of the solvent. Since r is proportional to the (number-average) molar mass of the polymer, Eq. (All) can be written as (A12) for polymers of sufficiently high r (or M n ) (Shultz-Flory method) (110,529). Extrapolation of the inverse critical solution temperatures to infinite molar mass delivers the inverse theta temperature 0. The data must be extrapolated not only to infinite molar mass but also to infinite dilution if used with mixed solvents (191). Furthermore, the method can be used only for phase separations into two liquid phases. Care must therefore be taken with crystalline polymers. 2.2. Second Virial Coefficient (A) All absolute methods for the determination of molar masses may be used; most commonly applied are membrane osmometry and static light scattering. Less frequently used are vapor phase osmometry and sedimentation equilibrium. Absolute methods that depend on specific solvent behaviour cannot be applied; examples are cryoscopy and ebullioscopy. Measurements must be performed at sufficiently low polymer concentrations in order to avoid effects of third virial coefficients. The concentration dependence of reciprocal apparent molar masses is determined for a given polymer-solvent pair at different temperatures. Second virial coefficients are calculated from the slopes of these curves (see Eqs. (A6) and (A8)) and plotted against temperature (110). The dependence of the second virial coefficients on temperature is linear only in the proximity of the theta temperature. Care must be taken, therefore, to work close to the theta temperature. Alternatively, the second virial coefficient may be measured at a constant temperature, using different solvent-nonsolvent ratios. However, appropriate precautions and corrections have to be used if mixed solvents are References page VII-318
used (Donnan equilibria in membrane osmometry, effects of differences in refractive indices in static light scattering, etc). 2.3. Cloud-Point Titration (CP) Dilute polymer solutions of different concentrations are titrated at constant temperature with a nonsolvent until the first sign of cloudiness. The volume fraction 03>cp of the nonsolvent 3 at the cloud point is then plotted against the logarithm of the volume fraction 02,cP of the polymer at the cloud point (89,90,531) and extrapolated to pure polymer: (A13) where Bcv is the slope of the 03)Cp =/(ln02,cP)-curve and 03@ is the volume fraction of the nonsolvent in the theta mixture solvent-nonsolvent. At high molar masses (small # cp ) and polymer densities p2 « 1 g/ml, mass-concentrations ^2xp ~ P202,cp (in g/ml) can be used instead of volume fractions 02,cp (93); neglect of these conditions may lead to errors (58). This "Elias method" has been shown to have theoretical justification from the Flory-Huggins lattice model (532,533); a comprehensive review of this method is available (93).
where r is the ratio of molecular volumes of polymer and solvent. 2.5. Unperturbed Dimensions (RGM, VISA, DM, SM) Root-mean-square radii of gyration, (s2)1^2, depend on the as power of the molar mass M (110): (A16) The exponent becomes a s — 1/2 for the unperturbed state where (s2) = (s2}0. The temperature dependence of the function (s2) =f(M) can thus be used to determine the temperature T0 at which as = 1/2 (RGM method). This method is cumbersome; more often used is the temperature dependence of the intrinsic viscosity/molar mass relationship (A17)
because av = 1/2 at the unperturbed state (at TQ) (VM method). Less often used are the corresponding relationships between molar masses and other hydrodynamic properties such as sedimentation coefficients (SM method) or diffusion coefficients (DM method). Unperturbed radii of gyration (from scattering experi2.4. Cloud Temperature Titration (CT) In a variation ments) always seem to indicate theta conditions (cf. Ref. of the cloud point titration method, cloud temperatures may 512) but the database is too small to allow definite proof. be determined by cooling or heating of dilute polymer Unperturbed dimensions from hydrodynamic measuresolutions of various concentrations until cloudiness appears ments in single solvents sometimes do not coincide with (58). The inverse cloud point temperature Tct is then plotted the theta state (cf. Refs. 366,466,512); see also Section 1.2. against the logarithm of the volume fraction <j>2,ct of the Hydrodynamic measurements in mixed solvents very often polymer 2 at the cloud point and extrapolated to pure deliver different unperturbed dimensions for theta condipolymer: tions (cf. Refs. 31,83,95,154). (A14) This method is also based on the Flory-Huggins lattice model (522,533). In a modification of the method, inverse cloud temperatures are plotted against 1/r06 (530), again based on the Flory-Huggins theory: (A15)
Method Abbreviation A CP CT PE VM
Name Second virial coefficient Cloud point titration Cloud point temperature Phase equilibria (critical solution temperature) Intrinsic viscosity/molar mass
2.6. Other Methods (IG, PL, R) The theta state and/or unperturbed dimensions have occasionally been determined by various other methods: refractometry (R) (7,24), dielectric measurements (E) (5), polarized luminescence (PL) (399), inverse gas chromatography (IG) (412), and dynamic light scattering (LS) (376). Common methods for the determination of theta temperatures 0, theta compositions ^1-, © of mixed solvents, and/or unperturbed dimensions are compared in the following table:
Required for the application Minimum number Knowledge of l>pe of of polymers molar mass solvent 3 1 1 3 3
Yes No No Yes Yes
Preferably single Mixed Preferably single Preferably single Single or mixed
Determined parameter O <£3.e O O £>03,e
B. TABLES OF THETA SOLVENTS FOR POLYMERS In the following tables, theta solvents and theta temperatures have been compiled for various polymers from the literature. The polymers are subdivided into groups of chemically similar compounds (see beginning of chapter for Contents). Within each group, polymers are arranged alphabetically, mostly according to the polymer names used in the original reference; no attempt has been made to use either IUPAC names (systematic names) or poly(monomer) names exclusively. Monomer units in alternating and random copolymers are listed alphabetically, regardless of their proportions; their relative amounts are given in parentheses on a mole/mole basis. Segments of block and graft copolymers are usually noted in the sequence reported by authors. The following abbreviations are used: alt (alternating), block (self-explanatory), co (statistical or random (or unspecified)), graft (self-explanatory). Polymers are further characterized by their tacticity (if any), provided it has been reported in the literature. Polymers by free radical polymerizations are usually assumed by authors to be "atactic". Tacticities are usually given as mole fractions of isotactic diads (JCJ), syndiotactic diads (jt5), isotactic triads (xa), syndiotactic triads (x ss ), heterotactic triads (^i8), ds-configurations (jtCis)» trans-
configurations (x trans)- If no quantitative characterization was reported, tacticities are described as it (predominantly isotactic), st (predominantly syndiotactic), at (neither predominantly iso- nor syndiotactic), cis (predominantly cis-tactic), or trans (predominantly trans-tactic). For each polymer, theta solvents are given in alphabetical order; no attempt was made to convert commonly used solvent names into systematic names (e.g. dioxane = 1,4dioxane). In mixed solvents, the liquid listed first may thus be a solvent or a nonsolvent. Compositions of mixed solvents are given in vol./vol. unless otherwise noted (ex: w/w indicates weight per weight). A recent (smaller) list (496) of "Theta Temperatures" is mainly concerned with unperturbed dimensions. Since these dimensions are often evaluated from measurements at nontheta temperatures using various theories of intrinsic viscosity/molar mass, or (far less frequent) radius of gyration/molar mass relationships, reported "theta temperatures" are often not theta temperatures per se but the temperatures at which measurements in thermodynamically good solvents have been performed. A comprehensive list of unperturbed dimensions of various polymers can be found in Section VII/1 of this Handbook and a list of characteristic ratios of polymethacrylates in (497).
TABLE 1. HOMOCHAIN POLYMERS Polymer (mol/mol)
Theta solvent (v/v)
Theta temp. (0C)
Method
Refs.
35 30 20 23 83 83 86.2 141 61 61 - 46 89.1 89 35.0 148 64.5
A, VM A, VM PE, VM PE, VM VM PE, VM PE PE, VM VM PE, VM PE, VM PE PE, VM VM PE 5 VM PE, VM
238 237 16 245,246 245 246 190 246 245 246 246 190 246 304 246 246
1.1. POLY(ALKANES) Poly(acenaphthylene)
Ethylene dichloride (1,2-dichloro ethane)
PoIy(I-butene), atactic
i-Amyl acetate Anisole Diphenyl ether Phenetole
-,isotactic
Toluene Anisole Cyclohexane/n-propanol (69/31) Diphenyl ether Phenetole
Poly(butene-c0-ethylene), 40 branches per 100 backbone carbon atoms Poly(ethylene)
3-Octanol 2-Octanol 1-Octanol f-Amyl alcohol Anisole Benzyl phenyl ether Bis(2-ethylhexyl) adipate Bis(2-ethylhexyl sebacate) Carbon disulfide n-Decanol Dibutyl phthalate Dioctyl adipate Diphenyl
5.0 29.0 59.0 199.2 153.5 191.5 170 145 145 150 -73 153.3 >200 145 128
VM VM VM PE PE PE PE VM PE PE PE PE PE VM PE
514 514 514 251 251 251 324 351 240 324 510 251 324 508 353
References page VII - 318
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v)
Diphenyl ether Diphenyl methane Diphenylene oxide n-Dodecanol n-Heptane n-Hexane *-Hexanol//?-xylene (70/30) «-Hexanol/xylene (70/30) Nitrobenzene /?-Nonyl phenol «-Octane /i-Octanol p-Octyl phenol rc-Pentane 3,5,5-Trimethylhexyl acetate Poly(ethylene-a/f-propylene)
Poly(ethylene-co-propylene) Poly(ethyl ethylene) Poly(l-hexene)
Benzene n-Decyl acetate n-Heptyl acetate n-Hexyl acetate n-Octyl acetate Methanol/toluene (50/50) 2-Octanol Phenetole Butanone/n-hexane (29.8/70.2) Butanone//-propanol (37/63) (41.5/58.5) Dioxane/n-hexane (40/60) n-Hexyl chloride
Poly(isobutene)
/-Amyl benzyl ether i-Amyl butyrate i-Amyl /-valerate
i-Amyl n-valerate n-Amyl butyrate Anisole Benzene
n-Butanol/n-hexane (23.6/76.4) n-ButanoI/methyicyclohexane (29.2/70.8) (42.1/57.9) Butanone/carbon tetrachloride (33.7/66.3) Butanone/cyclohexane (36.8/63.2) Butanone/n-hexane (36.6/63.4) n-Butyl n-butyrate
Theta temp. (0C)
Method
Refs.
127.5 127.5 125 118 118 165 163.9 161.4 142.2 118 143.4 138 137.3 173.9 133.3 133 155 170 >200 162.4 210 180.1 174.5 85 80.0 126 121 19-21.4 5.0 38.0 60.9 27.0
PE, VM VM PE CT PE A PE, VM PE PE, VM PE PE PE, VM PE PE PE PE PE CT PE PE PE PE PE PE PE A PE CP CP CP CP CP
485 492 324 355 462 177 251,485 46 251,485 324 353 324 251 132 132 252 8 136 324 251 132 251 251 252 132 353 353 453 453 453 453 453 346 458 514 210 18 18 154 154 19 154 18 339 339 183 427 517 499 221 339 339 113 517 44 113 320 339 100 100 100 100 100 100 339
23.5 23.5 61.3 8 24 23.5 4 20.5 13 13 23.7 28 22.1 25.0 25.0 27 22.1 21.0 22.0 105.5 25.0 25 24.0 24 22.8 25.0 25.0 49.0 25.0 25.0 25.0 46.2
A, VM VM VM PE PE A, PE A, PE VM A, PE A A, VM A, VM A DM, VM A A SM, VM A A PE 5 VM A PE, VM VM A, VM CP CP CP CP CP CP A
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v) Carbon tetrachloride/dioxane (63.8/36.2) Chlorobenzene/n-propanol (67.5/37.5) (76.0./24.0) (79.7/20.3) Chloroform/n-propanol (57.9/42.1) (77.1/22.9) (79.5/20.5) Cyclohexane/dioxane (45.1/54.9) Cyclohexane/n-propanol Cyclohexanol/toluene (29.3/70.7) Cyclopentane n-Decanol/n-hexane (41.1/58.9) n-Decanol/methylcyclohexane (47.5/52.5) Dibuty ether Dioxane/n-hexane (48.2/51.8) Dioxane/methylcyclohexane (51.0/49.0) Diphenyl ether Diphenyl ether/ethylbenzene (50/50) (25/75) Ethylbenzene Ethyl caproate Ethyl caprylate Ethyl heptanoate
Poly [ 1 -(4-methylpentyl)-1 -buty lene-a?1 -(1,5-dimethylhexy l)ethylene ( = hydrogenated poly(myrcene) Poly(2-methylpentene-l-sulfone) PoIy(I-octene)
CP CP CP CP CP CP CP CP VM CP
Refs.
PE, VM PE, VM
100 100 100 100 100 100 100 100 305 100 536 100 100 76 100 100 113 113 113 113 113 263 44 113 44 44 536 100 100 100 100 100 100 100 536 536 183 183 100 100 100 536 183 339 183 536 76 44 113 113
n-Hexyl acetate 2-Octanol 0-Chloronaphthalene o-Dichlorobenzene Diphenyl Diphenyl ether Diphenylmethane
60.9 37.6 165 133 194.6 210.0 176.6
A VM VM VM PE, VM PE 1 VM PE, VM
363 454 262 262 334 334 334
2-Octanol Butanone/fl-hexane (35.4/64.6) Butanone//-propanol n-Pentane Phenetole
51.0 11.5 22.5 162.5 50.4
VM PE PE PE PE
514 18 18 169 170
Toluene
Poly(4-methyl-l-pentene, 0.90 < Xx < 0.94
Method
25.0 49.0 25.0 14.0 49.0 25.0 14.0 25.0 35 25.0 188 25.0 25.0 204 25.0 25.0 148 76.0 26.8 -24.0 57 22 33 33 57 22 185 25.0 25.0 25.0 25.0 25.0 25.0 25.0 52 ± 2 45 72.7 24.0 25.0 25.0 25.0 153 47.7 55.5 5.9 103 76.0 87 86.0 -13.0
Ethyl hexanoate Ethyl octanoate 3-Ethylpentane n-Heptanol/n-hexane (37.4/62.6) H-Heptanol/methylcyclohexane (39.5/60.5) rt-Hexane//i-hexanol (68.3/31.7) n-Hexane/3-methylbutanone (57.6/43.4) n-Hexane/n-octanol (63.7/36.3) n-Hexane/n-pentanol (71.7/28.3) n-Hexane/n-propanol (80.3/19.7) 2-Methylbutane (M = 23000, 150000) - , (M = 760000) Methyl capronate Methyl caprylate Methylcycohexane/n-octanol (56.0/44.0) Methylcyclohexane/n-pentanol (65.2/34.8) Methylcyciohexane/w-propanol (74.2/25.8) 2-Methylhexane Methyl heptanoate 3-Methylheptanone-5 Methyl pelargonate 2-Methylpentane Pentane Phenetole Poly(2-methyl-2-butylene) ( = hydrogenated l,4-poly(isoprene)) Poly(methylethylene) Poly([S]-4-methyl-l-hexene), X1 > 0.95
Theta temp. (0C)
CP CP A, RGM, VM CP CP PE PE PE PE PE PE PE
CP CP CP CP CP CP CP A A CP CP CP A A 1 VM A A, RGM, VM
References page VII - 318
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v)
Poly(l-pentene), atactic
Anisole i-Butyl acetate Diphenylmethane Phenetole Phenetole Phenyl ether i-Amyl acetate Anisole i-Butyl acetate Diphenylmethane 2-Pentanol Phenetole
-, isotactic
Poly(propylene), atactic
Phenyl ether i-Amyl acetate n-Amyl acetate n-Butanol/carbon tetrachloride (33/67) n-Butanol/n-hexane (32/68) n-Butanol/methylcyclohexane (34/66) /-Butyl acetate n-Butyl acetate Carbon tetrachloride/n-propanol (74/26) 1-Chloronaphthalene Cyclohexanone Diphenyl Diphenyl ether
-, isotactic
n-Hexane/fl-propanol Methylcyclohexane/n-propanol (69/31) 1-Octanol 2-OctanoI 3-Octanol n-Propyl acetate *-Amyl acetate i-Amyl benzylether p-t-Amyl phenol Benzyl phenyl ether Benzyl propionate rc-Butyl alcohol r-Butyl alcohol p-r-Butyl phenol 1-Chloronaphthalene /7-Cresol Dibenzyl ether Diphenyl Diphenyl ether
-, syndiotactic Poly(propylene), head-to-head
Diphenylmethane p-Ethyl phenol i-Octyl phenol /7-Octyl phenol i-Amyl acetate i-Amylacetate
Poly(vinyl ethylene), at
2-Octanol
Theta temp. (0C)
Method
Refs.
85 32.5 121.0 64.0 48.3 149 31.5 85 32.5 121.0 62.4 55.8 64.0 149 34 34 36.6 25.0 25.0 25.0 65.5 58.0 58.5 25.0 74 68 92 129 153.3 146 25 25 77 37 6 5.0 85.5 70 34 111 140.8 181.8 132 147.2 122 166.0 74 206 183.2 183.2 125.1 125.1 125.0 146.2 145 143 142.8 142.8 116.5 184 115 106 45 43 56.8 32.8
PE, VM PE, VM PE, VM PE, VM A PE, VM VM PE, VM PE, VM PE, VM PE A PE, VM PE, VM VM VM A CP CP CP A VM A CP PE A PE VM PE VM CP CP CP CP CP A A
472 472 472 472 192 472 243 472 472 472 219 192 472 472 69 244 333 78 78 78 333 244 332 78 171,521 314 171,521 244 172 244 78 78 453 453 453 333 152 69 448 448 448 448 448 448 448 521 448 255 448 255 448 244 172 171,521 244 255 448 448 448 448 448 152 471 514 458
PE PE PE PE PE PE PE A PE PE PE PE PE VM PE PE, VM VM PE PE PE PE PE PE A PE VM A, VM
TABLEI. cont'd Polymer (mol/mol) 1.2.
Theta solvent (v/v)
Theta temp. (0C)
Method
Refs.
POLY(ALKENES)
1,4-Poly(butadiene), 97.0% cis 95.0% cis 94.6% cis
94.0% cis 93.0% cis
^-Heptane /7-Propyl acetate Diethyl ketone 5-Methyl-2-hexanone/2-pentanone (1/3) (1/1) (3/1) 3-Pentanone 3-Pentanone/2-pentanone (3/2) Diethyl ketone Ethyl propyl ketone Propylene oxide Diethyl ketone Ethyl propyl ketone Propylene oxide
90.0% cis
-, 70% cis-1,4; 23% trans-1,4; 7% 3,4 -, 43% 1,2 units; trans/cis = 2.3/1 -, 36% cis; 57% trans; 7% 1,2-vinyl -, -, hydrogenated rc-Hexyl 1,4-Poly(butadiene), 9% cyclization 31% cyclization 46% cyclization 63% cyclization 81% cyclization Poly(butadiene-o>-styrene) (76.1/23.9) (75/25) (70/30) 1,4-Poly(chloroprene), cis
/-Butyl acetate n-Heptane/w-hexane (25/75) (50/50) 5-Methyl-2-hexanone 2-Pentanone 3-Pentanone Dioxane Dioxane Dioxane acetate Cyclohexanone/dioxane (12/88) Cyclohexanone/dioxane (17/83) Cyclohexanone/dioxane (21/79) Cyclohexanone/dioxane (30/70) Cyclohexanone/dioxane (39/61) Methyl /-butyl ketone 2-Pentanone /?-Octane /?-Octane Butanone Cyclohexane Cyclopentane Decalin, trans
1 ,4-Poly(2,3-dimethylbutadiene) >85% trans-1,4; 3% 1,2-vinyl 1,4-Poly(isoprene). Natural rubber 96% cis 94% cis trans (gutta percha) trans (other)
-, 51% 1,4-units (mainly trans; 49% 3,4units, 1-2% 1,2-units -, - . hydrogenated -, <5% 1,4-units, 20-25% 1,2-units, 70-75% 3,4-units
-1 35.5 10.3 46.2 32.7 22.3 10.3 30.0 213 240 146 208 14 237 - 22 141 35 20.5 20 5 12.6 59.7 10.6 22.3 15.7 26.5 65.0 30 30 30 30 30 46 21 21 21 25 25 45.5 56.3 2
PE 242 A, VM 242 VM 362 PE 2 PE 2 PE 2 PE 2 PE 2 PE 66 PE 66 PE 66 PE 66 PE 66 PE 66 PE 66 PE 66 PE 66 A, VM 70 PE 282 PE 282 PE 1 PE 1 PE 1 VM 447 A 363 A, VM 480 A 363 A, VM 358 A, VM 358 A, VM 358 A, VM 358 A, VM 358 PE 145 PE 145 VM 284 PE, DM, SM, VM 283 A 133 VM 455,495 PE 133 PE 133 A 455
Cyclohexane//i-propanol (81.3/18.7)
25
CP
483
Butanone H-Hexane/i-Propanol (1/1) 2-Pentanone Dioxane n-Heptane/n-Propanol (69.5/30.5; w/w) Methyl isobutyl ketone Methyl propyl ketone ^-Propyl acetate Dioxane /-Propanol/toluene (36.2/63.8) (35.5/64.5) (34.2/65.8) (33.5/66.5) (32.4/67.6)
25 21 14.5 31.2 25 16.5 33 60 47.7 50 45 40 35 30
VM VM PE PE A, CP, VM A A PE PE A, CP A, CP A, CP A, CP A, CP
88 284 352 11 74 42 42 352 352 11 11 11 11 11
2-Octanol 2-Octanol
41.3 55.3
A A
363 363
2-Octanol
30.5
A
363
References page VII-318
TABLE 1. cont'd Theta temp. (0C)
Polymer (mol/moi)
Theta solvent (v/v)
-, -, hydrogenated 1,4-Poly(isoprene), star 4-arm star 6-arm star 8-arm star 12-arm star 1,4-Poly(isoprene), 94% cis, linear 3 branches 11 branches 22 branches 22 branches l,2-co-3,4-Poly(isoprene) (35/65) 1,4-Poly(isoprene), brominated (30% of double bonds) Poly(isoprene-£/oc/:-styrene) Poly (1 -methyl-1 -butenylene-coisopropenylethylene) Poly(2-methyl-1,3-pentadiene) ( = PoIy(1,3-dimethyl-l-butenylene))
2-Octanol Dioxane Dioxane Dioxane Dioxane Dioxane Methyl propyl ketone Methyl propyl ketone Methyl propyl ketone Methyl propyl ketone Methyl isobutyl ketone Benzene/i-propanol (55/45)
26.2 34.1 33.4 33.5 32.8 32.9 33 33 27.8 23.5 15 20
A A A A A A A A A A A CP
363 130 130 130 20 20 42 42 42 42 42 98
Cyclohexane Butanone
20 44
A VM
310 347
2-Octanol
41.3
A
363
Dioxane 2-Octanol
61.2 28.9
VM VM
454 454
2-Octanol 2-Octanol /-Amyl acetate /-Amyl acetate Cyclohexane
51.0 35.9 38 38 36.0
A VM VM VM A
363 514 347,125 361 491
Butyl acetate /-Propyl acetate Benzene 1-Hexanol 1-Nitropropane
26.8 19.7 20 65.0 31.0 31.0 31 10.9 32.7 32.7
VM VM VM A, PE A, VM A, PE VM A, PE A, PE VM
367 367 168 515 197,465 515 370 515 515 370,473
Poly [ 1 -(4-methylpentyl)-1 -butylene-co l-(l,5-dimethylhexyl)ethylene] Poly(myrcene), 90% 1,4, 10% 3,4Poly(pentenamer), 80-85% trans 85% trans PoIy(I-phenyl-1-propyne) 1.3. POLY(STYRENES) Poly(4-acetoxystyrene) Poly(p-bromostyrene) Poly(p-f-butylstyrene)
3-Nonanol 2-Octanol 2-Octanol Poly(p-f-butylstyrene)-b/0c£-poly(dimethylsiloxane)-b/ocfc-poly(p-f-butylstyrene); 28wt.% butylstyrene units Poly(ochlorostyrene) Poly(p-chlorostyrene)
1-Nitropropane Butanone Butanone Benzene Benzene/methanol (5.5/1) (5.0/1) (4.5/1) n-Butyl acetate f-Butyl acetate n-Butyl carbitol Carbon tetrachloride Carbon tetrachloride/toluene (1/1) (5/2) Cumene Ethyl acetate Ethylbenzene Ethyl chloroacetate Methyl chloroacetate /-Propyl acetate
157 31 25 8 26.7 32.4 41.6 33.7 65.4 50.1 58.9 52.3 50.7 13.4 32.0 60.9 59.0 11.7 -7.5 -14.7 -1.3 -1.8 65.0 64.6 75.7 65.0
Method
PE PE PE, VM PE, VM PE PE PE VM PE PE PE PE PE PE PE PE PE VM PE PE PE PE PE PE PE PE
Refs.
365 365 224 224 139 139 139 195 156 156 196 158 156 196 196 158 157 195 158 156 158 156 158 156 156 158
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v) /-Propyl benzene /-Propyl chloroacetate Tetrachloroethylene
Poly(p-chlorostyrene-a?-methyl methacrylate) (51.6/48.4) Poly(/?-decylstyrene) Poly(2,5-dichlorostyrene) Poly(3,4-dichlorostyrene) Poly(/?-hexylstyrene)
franj-Decalin/trichloroethylene (78/22) Butanone/ethylbutyl ketone (1/1.24)
Ethanol/ethyl acetate (6.3/93.7; w/w) rc-Butanol/n-butyl acetate (7.1/92.9; w/w) Butanone
Poly(/?-methoxystyrene)
/-Amyl acetate Benzene/cyclohexanol (61.2/38.8) Benzene/n-heptane (72.5/27.5) Benzene/methanol (73.7/26.3) Butanone/n-heptane (80.0/20.0) Butanone/rt-propanol (80.6/19.4) f-Butylbenzene Chloroform/cyclohexane (63.9/36.1) Chloroform/methanol (66.5/33.5) Cyclohexanol/toluene (37.2/62.8) Dichlorodecane Methyl isobutyl ketone
Poly(/?-methoxystyrene-costyrene) 26.4/73.6 53.0/47.0 75.6/24.4
Poly(a-methylstyrene) x% = 0.95; x ss = 0.90 Jt s = 0.91; * ss = 0.81 xs = 0.83; xss = 0.68 Jts = 0.65; xss = 0.44 xss = 0.44 * s = 0.64 atactic
/-Amyl formate /-Amyl formate /-Amyl propionate Hexyl methyl ketone /-Amyl formate /-Amyl propionate f-Butylbenzene Hexyl methyl ketone Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Benzene/methanol (79.4/20.6) Butanone n-Butyl chloride 1-Chlorodecane 1-Chloroheptane 1-Chlorohexane 1-Chlorooctane Cyclohexane toms-Decalin
isotactic Poly(p,/-propylstyrene) Poly(p,/-propylstyrene-co-styrene) (88/12) (56/44) (33/67) Poly(styrene)
Diethyl succinate w-Hexyl acetate Butanone Dioxane//-propanol (35/65) Dioxane/i-propanol (37/63) Dioxane/i-propanol (44/56) Dioxane/i-propanol (48/52) /-Amyl acetate Benzene Benzene/i-Propanol (58/42) Benzene/cyclohexanol (38.4/61.6) Benzene/n-heptane (44/56)
Theta temp. (0C) 59.0 - 8.2 -8.2 44.4
Method
Refs.
PE PE PE PE
156 156 158 156
VM A PE A A A PE PE A, CP CP A, CP A, CP A, CP PE A, CP A, CP A, CP PE CP
239 464 464 103 102 464 464 281 226 295 226 226 226 281 226 226 226 281 281
30.5 22.8 18.1 27.0 37.0 > 50.0 12.5 > 30 32.3 33.1 34.3 36.8 37.0 39 30 31 -10 139 80.0 20, 27 5.7, 10 43, 53 34.5 38 9.5 10.0 16.4 85.0 45 20
CT CT CT CT CT CT CT CT A A A A VM A, VM
CP
280 280 280 280 280 280 280 280 63 63 63 63 64 3 272 217 536 536 470 479 479 479 479 59 266 479 494 479 217 98
20 20 20 220 -49 249.8 35 25 35
CP CP CP PE PE PE A A, CP A
98 98 98 296 296 460 62 95 62
22.3 21.0 18.1 30.5 32.9 30.0 29.3 75.0 25 25 25 25 25 52.2 25 25 25 92.6 23.4
VM VM VM VM VM VM VM VM A, VM VM
References page VII - 318
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v) Benzene/n-hexane (38/61) (34.7/65.3) Benzene/methanol (74.7/25.3) (74/26) (77.8/22.2) (78/22) (78/22) Benzene//-propanol (66/34) (64.2/35.8) (69/31) Bicyclohexyl Butanone Butanone/methanol (89/11) (89.7/11.3) (88.9/11.1) Butanone//-propanol (85.7/14.3) (82.6/17.4) (87/13) (87/13) /-Butyl acetate f-Butyl acetate Butylchioride n-Butyl formate Carbon tetrachloride/n-butanol (65/35) Carbon tetrachloride/heptane (53/47) Carbon tetrachloride/methanol (81.7/28.3) Chlorobenzene/di-z-propyl ether (32/68) 1-Chlorodecane l-Chlorodecane/3-methylcyclohexane (21.8/78.2) (25.0/75.0) (50.5/49.5) (90.0/10.0) 1-Chlorododecane Chloroform/methanol (74.7/25.3) (75.2/24.8) 1-Chloroundecane Cyclodecane Cycloheptane Cyclohexane
Theta temp. (0C)
Method
Refs.
20 25 35 34 25 23.5 21.5 20 25 35 61 148.8 25 25 30 23 34 67 67 - 46 - 34.7 109.3 35.6 - 9 -7.5 35 35 25 25 6 6.6 8.5
CP A, CP A VM A, CP A PE CP A, CP A PE PE A, VM A, CP PE A VM A A PE PE PE SM A CP A A A, CP A1 CP CT A VM
128 95 62 31 95 42 42 98 95 62 522 460 273 95 315 53 31 115 274 296 374 374 233 307 375 62 62 95 95 22 269 456
22.8 35.0 59.6 87.8 58.6 58.6 25 25 32.8 32.8 32.8 16 17 19.0 213 34.0 34.0 34.0 34.0 34.4 34.5 34.5 34.5 34.5 34.5 34.5 34.8 35.0 35.0 35.0 35.0 35.0
CT CT CT CT A VM A, VM A, CP A A VM PE PE VM PE VM PE A PE A, VM VM VM A VM DM, VM VM A A DM, SM DM A SM
22 22 22 22 269 456 273 95 269 270 456 445 445 456 371 31 189 307 439 188 2, 476 488 42 290 427 456 270 274 43,308 232 229 144
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v)
Cyclohexane, deuterated Cyclohexane/methylcyclohexane (2/1) (1/1) (1/2) Cyclohexane/toluene (86.9/13.1) Cyclohexanol
Cyclopentane
Cyclooctane Decalin (wcis = 0) (wcis = 0) (Wc1S=O) (wcis=0) (wcis=0) (w c l s =0.20) (w c i s =0.23) (wcls = 0.50) (wcis = 0.54) (wcis =0.60) (w c i s =0.66) (w cis = 0.80) (wcis = 1.00) (Wcis = 1.00) (Wcis = 1.00) cis/trans cis/trans unknown unknown unknown Diethyl ether/dimethoxy ethane (0.7/0.3) Di(2-ethylhexyl) phthalate Diethyl malonate
Diethyl malonate/diethyl oxalate (4/1) (1/1) (1/4) Diethyl oxalate
Dimethyl succinate Dioctylphthalate
Theta temp. (0C) 35.0 35.0 40.2 40.0 38 43 48 54 15 79 83.5 83.5 83.5 86 87 87.8 19.6 19.6 19.8 20 20.5 20.6 154 154.5 154.2 12 20.5 23.8 22.8 21.2 21.0 20.4 21.2 19.3 15.5 16.0 15.0 15.2 14.0 12.5 12.2 10.8 19.3 14.5 31 29.5 18.2 - 5 - 27 22 31 34.2 34.5 35.6 35.9 36.0 40 47 52.6 51.5 55.8 58.2 59.6 67.6 22
Method
A A PE VM VM VM PE CT A VM A PE PE CT PE A, VM PE VM PE A, VM PE PE VM A CT A DM 1 VM PE 5 VM A PE A A A A A A CP PE A A A DM A A A VM VM PE A VM VM VM VM A VM VM CT VM
Refs. 328 439 328 439 438 2 2 2 315 135 118 290 307 461 8 22 203 368 460 536 456 204 536 368 203 445 456 153 22 26 427 119 26 268 26 160 26 451 26 26 451 523 271 42 289 153 182 356 356 160 307 2 456 42 270 503 2 2 2 307 2 456 22 456 26
References page VII - 318
TABLE 1.
cont'd
Polymer (mol/mol)
Theta solvent (v/v) Dioxane/n-heptane (41.5/58.5) DioxaneM-hexane (38/62) Dioxane/methanol (71.4/28.6) (65.1/34.9) (66.5/33.5) (66.5/33.5) Dioxane/i-propanol (55/45) (51.5/48.5) Ethyl acetate
Ethyl acetoacetate Ethylcyclohexane Heptane/nitropropane (58/42) Heptane/toluene (52.4/47.6) Hexane/3-methylbutanone (48/52) Hexyl m-xylene Methanol/tetrahydrofuran (28.7/71.3) Methanol/toluene (20/80) (23/77) (23.1/76.6) (24.8/75.2) (27.2/72.8) Methyl acetate Methyl cyclohexane
3-Methyl cyclohexanol Methyl cyclopentane D,L-Menthol 1-Phenyldecane i-Propyl acetate n-Propyl acetate
Poly(styrene), deuterated
D,L-Terpineol Tetrahydrofuran/water (92.3/7.7) Toluene (estimated theta temperature) Cyclohexane Cyclohexane, deuterated
Poly(styrene), H-shaped Poly(styrene), head-to-head
Carbondisulfide Cyclohexane Cyclohexane
Poly(styrene), combs (theta temperatures depend strongly on number and length of branches)
Benzene/methanol (78/22) Cyclohexane
Theta temp. (0C)
Method
Refs.
35 20 25 34 35 35 20 35 - 44.3 -44 - 43.5 139 108.5 70 75.0 35 30 20 12.5 25 25 25.0 25.0 34 45.0 43 114 60 67.2 68 68.0 69.3 70.5 70.5 98.0 98.0 75 144 115 28.0 30.6 - 27 107 - 80 178 78.5 25 -154 30 30 36 36 35 36 34.8 19 16
A CP A, CP VM A A 1 VM CP A LS PE CP PE CP PE VM A PE CP A A, CP A, VM CP VM VM VM PE PE VM A A VM A VM VM CT VM PE PE VM A PE PE PE PE PE VM CP
62 128 95 31 62 82 98 62 376 296 375 296 147 114 456 62 315 99 307 95 273 505 490 31,490 490 296 296 290 184 307 456 438 2 85 22 296 440 440 290 124 124 296 296 296 296 290 322 375 328 439 328 439 439 60 372 329 369
16-24 16-24 18-33 18-33 20-36 28-33
A, PE A PE RGM VM A
PE A, VM PE A, VM A, CT A
42 502 42 502 75 294
TABLE 1. cont'd Polymer (mol/mol)
I beta solvent (v/v) Decalin (cis-trans) Diethyl malonate
Poly(styrene), Poly(styrene), Poly(styrene), Poly(styrene),
3-star 9.4-star (6-15.5) stars cyclic
Poly (1,4-divinylbenzene) (soluble; by anionic polymerization) 1.4. POLY(VINYLS) Poly(2,5-dimethyl-4-vinylethynylpiperidol-4) Poly(divinyl ether-c-maleic anhydride methyl ester) (1/2) Poly(isobutyl vinyl ether-a/f-maleic anhydride) Poly(maleic acid-a/f-vinyl pyrrolidone) Poly(2-methyl-5-vinylpyridine)
Cyclohexane Cyclohexane Cyclohexane Cyclohexane
- , grafted by styrene Poly(vinyl alcohol)
PE A, VM PE A, VM A VM A VM A
42 502 42 502 493 486 524 366 373
A
364
Dimethylformamide
25
VM
444
VM VM VM VM VM PE VM PE PE VM PE VM PE PE PE PE PE, VM PE PE A A PE A,PE VM PE CP A PE PE PE PE A,PE A,PE A,PE A PE PE A,PE CP CP A A CP CP CP CP CP CP CP CP
302 235 235 434 434 123 120 123 123 120 123 120 123 123 123 123 123 123 123 167 167 338 316 223 28 147 42 250 250 338 250 316 222 223 42 250 345 223 380 380 42 42 147 147 357 357 357 357 357 258 536
Tetrahydrofuran Acetone NaCl/water (1 mol/1) Acetone/dimethylsulfoxide (65.4/34.6) Na2SO4/water (0.986 mol/1) /-Amyl acetate n-Amyl acetate
Ethyl n-butyrate Ethyl propionate Propionitrile n-Propyl acetate n-Propyl propionate Tetrahydronaphthalene Sodium cacodylate/water (0.1 mol/1) Sodium chloride/water (0.1 mol/1) Acetone/i-propanol (23/77) Butanone/i-propanol (73.2/26.8) rt-Butyl ethyl ketone Cetyl alcohol Di-i-butyl ketone Ethanol Ethanoymethanol (80/20) (60/40) (50/50) (40/60) n-Heptane/3-methylbutanone (26.8/73.2) (27.3/72.7) 3-Heptanone Methanol
-,branched
Refs.
25
/-Butyl methyl ketone
Poly(vinyl acetate)
4.5 4.5 22 22 34.8 22 18-33 40 28.5
Method
Decalin (trans)
/-Butyl acetate n-Butyl acetate
Poly(9-vinyl adenine)
Theta temp. (0C)
6-Methyl-3-heptanone z-Propanol Z-Propanol, deuterated Ethanol 3-Heptanone Di(i-butyl) ketone Ethyl acetoacetate r-Butanol/water (32.0/68.0; w/w) Ethanol/water (41.5/58.5; w/w) Methanol/water (41.7/58.3; w/w) /-Propanol/water (39.4/60.6; w/w) n-Propanol/water (35.1/64.9; w/w) NaCI/water(2mol/l)
30 29.8 25 25 25 53.2 48.2 48.4 49.0 21.8 21.8 37.4 38.7 50.0 25.4 -3.6 19.3 58.0 49.5 26 40 30 25 29.0 123 136.5 19 17 26.5 34 36 25 30 29 29 6 6 66 52.6 51.8 12-15 26 136.5 108.5 25 25 25 25 25 25 27 ± 3
References page VII - 318
TABLE 1. cont'd Polymer (mol/mol)
-, urethanized
4.9% 8.1% 11.5%
Poly(vinyl benzoate) Poly(4-vinyl biphenyl) Poly(vinyl bromide) Poly(vinyl carbanilate)
PoIy(TV-vinyl carbazole)
Poly(vinyl chloride)
Theta solvent (v/v) Water /?-Propanol/water (30/40) (40/50) K-Propanol/water (30/40) (40/50) n-Propanol/water (30/40) (40/50) Xylene 2-Methoxyethanol/dimethoxyethane (70.6/29.4) Methanol/tetrahydrofuran (17/83) Acetone/water (92.2/7.8) Butanone/water (44/56) Diethyl ketone Dioxane/methanol (28/72) Methanol/tetrahydrofuran (71.5/28.5) Chlorobenzene Chlorobenzene/methanol (85.9/14.1) 1,3-Dichlorobenzene/methanol (85.0/15.0) Nitrobenzene Toluene Benzyl alcohol rc-Butanol/cyclohexanone (15.8/100) (43.5/100) Cyclohexane/dimethylformamide (100/12.8) Cyclohexanone Dimethylformamide Methanol/tetrahydrofuran (42/58) Phenetol Tetrahydrofuran/water (100/5) (91.5/8.5) (100/11.9) (100/11.9) (100/9.5) 0-Xylene
-, isotactic and syndiotactic Poly(vinyl /?-chlorobenzoate) rc-Butanol/butanone (47/53) Poly(vinyl cyclohexane) Tetrahydrofuran Poly(vinylethylene) (98% 1,2-, 2% 1,4-) 1-Hexanol Poly (N- vinylimidazole) rc-Butanol Poly(vinyl methyl ether) Cyclohexane Poly(P-vinyl naphthalene) Decalin/toluene (56.5/43.5) Poly(vinyl pivalate) Acetone/methanol (38.2/61.8) Benzene/methanol (33.3/66.7) Butanone/methanol (24.6/75.4) Poly(3-vinylpyrene) Chloroform Methanol/tetrahydrofuran (8/92) Poly(2-vinylpyridine) Benzene
Poly(N-vinyrpyrrolidone)
Poly(vinyl stearate) PoIy(N-vinyl succinamic acid) Poly(vinyl sulfonic acid)
n-Heptane/n-propanol (59.6/40.4; w/w) Acetone/water (66.8/33.2) Dioxane NaCl/water (O.55mol/1) Water n-Octane NaCl/water (0.2mol/l) KBr/water (0.347 molA) KCl/water (0.349 mol/1) (0.65mol/l) (1.001 mol/1) NaBr/water (0.346 mol/1) (1.008 mol/1) NaCl/water (1.003 mol/1)
Theta temp. (0C)
Method
Refs.
97 30 60 30 60 30 60 32.5 30 20 20 20 35 20 20 - 37.4 25 25 -21.4 37 39 155.4 59 72 40.5 22 51 36.5 22 88 17 25 30 30 30 84
PE CT CT CT CT CT CT A A,VM A A A A A A VM CP,VM CP,VM VM A,VM A PE E E E A E E A,CP VM E A CT E CT VM E PE,VM A VM
79 299 299 299 299 299 299 301 237 56 41 41 41 41 41 207 126 126 207 200 249 303 4 4 4 321 4 4 137 377 4 186 253 4 253 377 6 298 97 514 337 520 104 80 80 80 319 319 413 81 378 149 90 39 234 381 313 265 87 87 87 87 87 87 87
60 25 66 25 51 30.2 20 20 20 25 25 11.4 15 16.2 25.0 25.0 -10 25 130.5 17 25 5.7 5.5 26.0 44.5 -0.6 40.1 32.4
A A,VM CP CP CP VM CP,VM VM VM PE CP,VM A PE CT VM VM PE PE PE PE PE PE PE
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v)
Poly(l-vinyl-l,2,4-triazole)
Dimethylformamide Dimethylformamide/dioxane (76.6/23.4)
Theta temp. (0C)
Method
Refs.
25 25
VM CP
430 9i
25
CP
211
20 25 21
VM A, VM A, RGM
33 463 442
CP A, PE A, VM VM VM VM VM SM, VM DM, SM DM, SM DM, SM DM, SM DM, SM
391 263 536 387 163 384 468 384 306 285 285 285 285 285
1.5. POLY(ACRYLICS) AND RELATED COMPOUNDS Poly(acrylamide)
Methanol/water (2/3) (41/59) NaCl in water (0.1 mol/l)/methanol (59/41)
Poly(2-acrylamido-2-methylpropanesulfone amide) Poly(acrylic acid) Poly (aery lonitrile)
Poly(acrylonitrile-ctf-butadiene) (35/65) (40/60)
Poly(acrylonitrile-c0-methyl acrylate) (95/5) Poly(acrylonitrile-c0-methyl methacryiate) JC AN =0.236 JTAN=0.5 * AN =0.74 Poly(acrylonitrile-costyrene) (1/2) (51/49) Poly(/-butyl acrylate) Poly(f-butyl acrylate-co-vinylidene chloride) (16.7/83.3) Poly(cetyl acrylate) Poly(cyclohexyl methacryiate) Poly(decyl acrylate)
Dioxane/water (18.5/81.5) Dioxane Water/0.2 mol/1 HCl Dimethylformamide/methanol (81/19) Ethylene carbonate Ethylene carbonate/water (85/15; w/w) (85/15; v/v) Nitric acid/water (55/45; w/w) Butanone/cyclohexane (47.5/52.5) Acetonitrile/butanone (79/21) Benzene/cyclohexane (85.5/14.5) Butanone/cyclohexane (47.4/52.5) Butanone/Z-propanol (60/40) Cyclohexane/ethyl acetate (32.7/67.3) Ethylene carbonate/water (82.5/17.5; w/w) Nitric acid/water (51/49; w/w)
24.8 24.8
VM VM
385 385
Benzene Benzene/dimethylformamide (6.5/1) Benzene/dimethylformamide (5/3) Benzene/methanol (66.7/33.3) Dimethylformamide/methanol (44.7/55.3) Ethyl acetate Benzene/methanol (52/48) rc-Hexane
19.8 30 30 25 25 40-43 25 24.2
VM
VM
379 379 379 91 91 216 213 159
PE VM VM A, PE A, PE A, PE A PE A PE PE PE PE PE VM PE
12 341 450 340 340 340 388 388 388 388 212 212 212 212 323 12
Benzyl alcohol Butyl acetate w-Butanol /-Amyl alcohol n-Butyl alcohol Ethyl acetate n-Hexanol n-Pentanol
Poly(ethyl acrylate)
n-Butanol Ethanol Methanol w-Propanol
Poly(ethyl acrylate-co-vinylidene chloride) (14.9/85.1) Poly(hexyl acrylate-co-vinylidene chloride) (14.5/85.5) Poly(hexadecyl acrylate)
Ethyl acetoacetate Benzyl alcohol rc-Heptanol fl-Hexanol
Poly(phenyl aerylamide) Poly(Af-/-propyl acrylamide)
25 30 14 db 5 20 60 29.3 44 25 25 19-22 19-22 22 20 19-22
Water Dioxane Water
44 15.2 23.0 - 8.5 - 24.5 9-11 34 43.2 70 75.6 44.9 37.4 20.5 39.5 39.5 49.6
CP CP PE
56.8
PE
12
20.5 30.1 52.2 60.2 -8 20 31 30.6 30.6 20
A PE A PE A
388 388 388 388 441 389 142 390 534 382
PE VM LS VM
References page VII - 318
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v)
Poly(i-propyl acrylate), atactic
l,2-Butanediol/l,3-butanediol (68.4/31.6) n-Decane l,2-Butanediol/l,3-butanediol (68.4/31.6) n-Decane n-Decane
isotactic syndiotactic Poly(n-octyl acrylate-co-vinylidene chloride) (15.5/84.4) Poly(phenyl acrylate) Sodium poly(acrylate)
Benzyl alcohol Ethyl lactate NaBr/water (1.504 mol/1)
Theta temp. (0C) 121.0 166.6 123.5 178.0 168.3 77.9 11.7 13.8 15.0
Method
Refs.
PE PE PE PE PE
218 218 354 354 218
PE A, CP VT A
12 146 383 452
1.6. POLY(METHACRYLICS) AND RELATED COMPOUNDS Poly(benzyl methacrylate) PolyO?-biphenyl methacrylate) Poly(DL-*'-bornyl methacrylate) Poly(4~f-butylcyclohexyl methacrylate) Poly(n~butyl methacrylate)
Poly(z-butyl methacrylate), isotactic
Cyclohexanone Cyclopentanol Benzene 1-Octanol Cyclohexane n-Butanoi i-Butanol n-Decane Dimethylformamide n-Dodecane Ethanol n-Hexadecane Methyl carbitol Methyl cellosolve n-Octane *-Propanol
Poly (/-butyl methacrylate)
Dimethylformamide Methyl carbitol Methyl cellosolve Cyclohexane
Poly(2-*-butylphenyl methacrylate) PoIyO?-r-butylphenyl methacrylate) Poly(2-chloroethyl methacrylate) Poly(cyclobutyl methacrylate) Poly(cyclobutylmethyl methacrylate) Poly(cyclododecyl methacrylate) Poly(cyclohexyl methacrylate)
n-Heptane Cyclohexane Cyclohexane o-Dichlorobenzene /i-Butanol n-Butanol Hexyl acetate n-Butanol
Poly(cyclooctyl methacrylate) Poly(cyclopentyl methacrylate) Poly(decyl methacrylate) Poly(2,6-dimethylphenyl methacrylate) Poly(2,6-diisopropylphenyl methacrylate)
n-Decane n-Decanol n-Dodecane n-Hexanol n-Nonanol n-Octane n-Octanol n-Propanol 2-Butanol Cyclohexane Ethyl acetate n-Pentanol Toluene Tetrahydrofuran/water (90.6/9.4) Tetrahydrofuran/water (90.1/9.1)
73.2 83.5 10 39.6 -133 40 10.7 84.8 23.6 101 «45 119.8 87.9 59.6 68.9 20.9 21.5 23 23.7 25 48.1 115.6 74.9 10 10 64 18.5 25 35.7 37.5 40.0 35 22.5 22.5 22.5 93.6 23.0 97.5 9.2 20.2 83.4 17.9 39.5 45 36 11 9.6 25.0 25.0 25
PE,VM A VM A VM VM PE VM IG VM PE PE VM VM A,VM IG A, PE A PE PE PE VM PE PE PE,VM VM A PE VM PE A,VM VM VM VM VM VM VM VM VM VM VM PE A A PE A A VM
291 292 129 396 288 288 205 205 254 205 412 205 254 254 205 205 50 412 54 348 254 254 254 466 518 518 336 121 397 404 504 404 166 131 312 312 312 312 312 312 312 312 312 404 404 401,457 140 411 411 467
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v)
Poly(diphenylmethyl methacrylate) Poly(docosyl methacrylate) Poly(dodecyl methacrylate) Poly(ethylbutyl methacrylate) Poly(ethyl methacrylate)
3-Heptanone Amyl acetate /z-Amyl alcohol i-Propanol Butanone/*-propanol (12.5/87.5) /i-Butyl bromide Methyl «-propyl ketone /-Propanol m-Xylene
Poly(glycidyl methacrylate-co-lauryl methacrylate) (3/97)
Poly(«-hexyl methacrylate)
Ethanol/rc-heptane (69/31) (62/38) (56/44) (49/51) n-Heptane/Az-propanol (56/44) (70/30) j'-Propanol rt-Propanol
Poly(2-hydroxyethyl methacrylate), it
Poly(isobutyl methacrylate) Poly(rc-lauryl methacrylate)
Urea/water (4 mol/1) (6mol/l) (8 mol/1) 2-Butanol Ethanol 1-Propanol 2-Propanol Water 2-Hydroxymethyltetrahydrofuran /-Propyl acetate n-Pentanoi
Poly(5-p-menthyl methacrylate) Poly(methacrylic acid)
Poly(rnethacrylonitrile) Poiy(hexyleneoxyphenylenecarboxyphenyleneoxymethylene methacrylate) Poly(methyl w-butacrylate) Poly(methyl ethacrylate) Poly(methyl methacrylate)
2-Pentanone Dioxane/dimethylformamide (7/5) HCl/water (0.002 mol/1) Methanol NaCl/water (0.5 mol/1) (0.05 mol/1) Dimethylformamide Toluene Toluene-d8 n-Butanol DiO'-butyl) ketone Acetone Acetone/ethanol (47.7/52.3) Acetone/methanol (78.1/21.9) Acetonitrile
Acetonitrile/butanol (93/7) Acetonitrile/methanol (90/10) Acetonitrile/pentyl acetate (93/7) Acetonitriie/n-propanol
Theta temp. (0C)
Method
45 31 29.5 27.4 23 0 -1 36.9 36.9 -3
PE,VM A A,VM A, PE A, PE VM VM A, PE VM VM
405,478 401,457 247 77 52 349 349 54 474 349
-24 1 24 40 1 24 32.6 37 20.0 21.3 10 27.2 52.5 3.7 15.8 32.1 14.0 15.3 19.5 13 13 29.5 29.5 25 26.9 30 151 26 43 68 29.2
CP CP CP CP CP CP A, PE VM A PE VM VM VM VM VM VM VM VM PE A, PE PE, VM A, PE VM VM VM VM PE VM A A VM
257 257 257 257 257 257 47 34 388 388 86 86 86 484 484 484 484 484 507 48 489 206 208 336 392 165 393 394 164 164 275
15.5 6.5 13 11.4 -126 - ( 5 5 ±10) 25 25 28 30 30.5 32.3 38 44 44 44.0 45 ±10 60 25 25 25 25
A A A A VM A, CP VM VM A,VM RGM A, VM VM A DM,VM RGM VM PE, VM A A A A
Refs.
402 402 155 155 288 112 96 278 278 57 414 409 162 407,410,519 427 512,513 112 112 220 220 220 220
References page VII - 318
TABLE 1. cont'd Polymer (mol/mol)
Theta temp. (0C)
Theta solvent (v/v) /-Amyl acetate n-Amyl acetate n-Amyl methyl ketone Benzene Benzene/Vhexane (70/30) 2-Butanol/l-chlorobutane (80/20) Butanone Butanone/cyclohexane (59.5/40.5) Butanone/n-hexane (70.7/29.3) Butanone/i-propanol (58.2/41.8) (55/45) (55/45) (38/62) (50/50) (50/50) (50/50) (50/50) (58.2/41.8) (46.8/53.2) 2^Butoxyethanol «-Butyl acetate n-Butyl chloride
Carbon tetrachloride Carbon tetrachloride/rc-hexane (99.4/0.6) Carbon tetrachloride/methanol (53.3/46.7) Chloroform Cyclohexane/dioxane (53/47) (53.4/46.6) Cyclohexanol Cyclohexanone/j-propanol (51.6/48.4) Decalin (trans) Dichloroethane 2,2-Dimethyl-4-pentanone 2,4-Dimethyl-3-pentanone DioxaneM-hexane (59/41) Dioxane/water (85/15) 2-Ethoxyethanol Ethyl acetate Ethyl 2-Heptanone
tt-butyraldehyde
3-Heptanone 4-Heptanone n-Hexane/3-methyl-2-butanone (17/83) rc-Hexane/toluene (18.8/81.2) Methanol/toluene (64.3/35.7)
57.5 41 15 -223 20 39.2 -98 25 25 4 7.0 12.8 20 22.8 25 25 25 25 28.5 75.0 75.0 -20 32.6 34.0 35.0 35.0 35.0 35.4 35.4 40.6 40.8 40.8 40.8 27 25 25 -273 20 25 77.6 21-22 23.5 -233 35 41 46 20 25 27.1 30.1 37.8 -98 22 11 11.5 25 33.7 33.8 34 ± 1 0 40.4 20 25 26.2
Method A VM VM VM CP A VM A, CP A, CP A A A CP A PE VM A A A VM VM A A VM A RGM A VM A DM,VM RGM A VM CP CP VM A,VM A,CP VM VM VM PE VM PE CP A VM VM A,VM VM PE VM RGM VM PE PE VM A CP CP A, PE
Refs. 174 112 293 112 128 403 112 96 96 174 311 174 128 174 300 32 49 96 174 278 443 174 173 278 311 414 509 174 400 407 427 512,513 519 112 96 96 112 82 96 117 279 277 112 112 32 112 98 343 443 278 409 112 112 112 414 112 300 112,516 112 174 99 96 54
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v) 2-Methoxyethanol Methyl *-butyrate Methyl methacrylate 2-Methyl-4-pentanone Methyl i-valerate Nitrobenzene//-propanol (51.6/48.4; w/w) Nitromethane 2-Octanone 3-Octanone Tetralin Toluene
A-, =0.07 x, =0.08 A, =0.09
x, =0.94
x,: = 1.00
Poly(methyl methacrylate-co-9,10-anthrylenedimethyl dimethacrylate (99.86/0.14) Poly(methyl methacrylate-/?/
Poly(methyl methacrylate-a/f-styrene) (50/50) Poly (methyl methacrylate-fr/c>cA: styrene) (14.9/85.1) (15.4/84.6) (26.8/73.2) (27.6/72.4) (various) (50/50) (50/50) (50.4/49.6) (50.4/49.6) (51.4/48.6) (51.4/48.6) (64.1/35.9) (64.1/35.9) Poly(methyl methacrylate-cc-styrene) (23.7/76.3)
(29.8/70.2) (30.6/69.4) (41.9/58.1)
(43.8/56.2) (44.8/55.2)
m-Xylene /7-Cymene n-Propanol Acetonitrile Butanone//-propanol (50/50) p-Cumene 3-Heptanone n-Propanol Acetonitrile Butanone//-propanol (55/45) «-Butyl chloride ButanoneA'-propanol (55/45) /1-Butyl chloride tt-Propanol
Theta temp. ( 0 C) -2 - 2 - (53 ±10) -163 -42 - 37 18 32.0 60 72 74 - ( 6 5 ±10) - 178 24 159.7 84.4 43.0 30.3 152.1 40.0 75.9 27.6 25.0 26.5 8.0 26.5 85.2
Method VM VM VM VM A A VM RGM PE PE CT VM PE VM PE PE A PE PE PE PE PE A A A A PE
Refs. 278 443 112 112 174 174 227 414 112 112,516 147 112 408 277 300 300 511 300 300 300 300 187 311 311 311 311 300
Toluene/octane (78/22)
25
PL
399
1-Chlorohexane 3-Heptanone 2-Methyl cyclohexanol 2-Octanone
93 84 62 94
PE PE PE PE
179 179 179 179
Cyclohexanol
60.8
A,VM
181
Cyclohexanol
2-Ethoxyethanol
84 84 84 84 82 81.6 81.1 81.3 81.0 81.0 81.3 80.5 69.5
A,VM A A, VM A PE A A, VM A,VM A,VM A A A A
181 267 180 267 179 118 181 180 180 267 267 267 267
BenzeneM-hexane (44/56) Benzene/?-propanol (57/43) /7-Hexane/3-methylbutane (40/60) Cyclohexanol 2-Ethoxyethanol Cyclohexanol 2-Ethoxyethanol BenzeneM-hexane (51/49) Benzene//-propanol (51/49) /?-Hexane/3-methylbutanone (34/66) Cyclohexanol 2-Ethoxyethanol Cyclohexanol 2-Ethoxyethanol
20 20 20 63.0 72.8 63.0 72.8 20.0 20.0 20.0 61.3 58.4 61.3 58.4
CP CP CP A5VM A,VM A A CP CP CP A,VM A,VM A A
99 99 99 180 180 267 267 99 99 99 180 180 267 267
2-Ethoxyethanol Cyclohexanol
References page VII - 318
TABLE 1. cont'd Polymer (mol/mol)
Theta solvent (v/v) (48.0/52.0) (50.0/50.0) (51.4/48.6) (57.7/42.3) (64.1/35.9) (70.7/29.3) (71.5/28.5) (73.9/26.1)
Poly(P-naphthyl methacrylate) Poly(octadecyl methacrylate) Poly(n-octyl methacrylate) PolyO-octyl methacrylate) PolyO'-octyl methacrylate-o?-styrene) (20/80) Poly(pentachlorophenyl methacrylate)
Cyclohexanol Cyclohexanol Cyclohexanol 2-Ethoxyethanol Benzene/n-hexane (59/41) Benzene/i-propanol (48/52) n-Hexane/3-methylbutanone (29/71) Cyclohexanol 2-Ethoxyethanol Cyclohexanol 2-Ethoxyethanol Cyclohexanol 2-Ethoxyethanol Benzene/«-hexane (62/38) Benzene/n-propanol (41/59) H-Hexane/3-methylbutanone (24/76) Tetralin Toluene Butyl acetate n-Butanol Acetone/n-heptane (64.1/35.9) Butanone/methanol (99.4/0.6) Benzene Benzene/ethylbenzene (5/5) Benzene/toluene (1/9) (5/5) Chloroform o-Dichlorobenzene Ethylbenzene
Poly(4-phenylbutyl-l-methacrylate) Poly(2-phenylethyl-l -methacrylate) Poly(phenyl thiolmethacrylate) Poly(stearyl methacrylate) Poly(tetrahydrofurfuryl methacrylate)
Theta temp. (0C) 61.6 68.6 81.3 81.0 20 20 20 80.5 69.5 68.0 40 68.2 40 20 20 20 20 52 10.5 16.8 25 25 37 40 30 10 14 35 -126 25 25 25 23.0 27.5 25 36 31.2
Poly(tetrahydro-4#-pyranyl-2-methacrylate) Poly(2,4,5-trichlorophenyl methacrylate)
1-Chloroundecane 1-Chloroheptane Butanone Propyl acetate 2-Hydroxymethyltetrahydrofuran/methanol (80/20) i-Butanol Benzene
Poly(tridecyl methacrylate)
Ethyl acetate
30.5 21.8 25.0 27
Acetone/methanol (99/1) Acetone/water (98/2) Benzene/methanol (60/40) Butanone/methanol (63/37) Chloroform/methanol (52/48) Ethyl acetate/methanol (65/31) Methanol/toluene (43/57) Tetrahydrofuran/water (87.4/12.6) Acetone/methanol (99/1) Acetone/water (97/3) Benzene/methanol (42/58) Butanone/methanol (38/62) Chloroform/methanol (40/60) Ethyl acetate/methanol (40/60) Methanol/toluene (54/46) Benzene/methanol (82/18) Chloroform/methanol (75/25) Methanol/toluene (21/79) Acetone/water (91/9) Benzene/n-heptane (53/47)
30 30 30 30 30 30 30 25.0 30 30 30 30 30 30 30 30 30 30 30 30
Method A, VM A A
Refs.
R, VM VM VM VM A PE,VM
181 118 178 178 99 99 99 178 178 180 180 267 267 99 99 99 264 264 406 51 161 161 287 24 287 287 287 287 288 287 288 24 477 477 176 401,457 359
A VM VM A
481 395 398 401,457
CP CP CP CP CP CP CP VM CP CP CP CP CP CP CP CP CP CP CP CP
350 350 350 350 350 350 350 470 350 350 350 350 350 350 350 350 350 350 350 350
CP CP CP A A A, VM A, VM A A CP CP CP VM VM A A, PE A, CP A, CP PE R5VM PE PE PE PE PE
1.7. OTHER CARBON CHAINS Poly[di(rt-amyl) itaconate]
Poly(dibenzyl itaconate) Poly[di(n-butyi) itaconate]
Poly[di(n-decyl) itaconate] Poly(diethyl itaconate)
TABLE 1. cont'd Polymer (mol/mol)
Poly[di(rc-heptyl) itaconate] Poly[di(n-hexyl) itaconate]
Poly(dimethyl itaconate)
Poly(N-2,4-dimethyl phenylmaleimide) Poly[di(rc-nonyl) itaconate] Poly[di(rc-octyl) itaconate]
Poly[di(n-propyl itaconate] Poly[di(«-undecyl) itaconate] Poly[/V-(rt-octadecyl) maleimide]
Poly(mono(n-octyl) itaconate) Poly(tetrafluoroetnylene-c0trifluoronitrosomethane (1/1)
Theta solvent (v/v) Butanone/mineral spirits (34/66) Ethanol/water (91/9) Benzene/methanol (42/58) Butanone/methanol (88/12) Benzene/methanol (64/36) Butanone/methanol (68/32) Chloroform/methanol (64/36) Ethyl acetate/methanol (78/22) Methanol/toluene (28/72) Acetone/methanol (71/29) Acetone/water (80/20) Benzene/n-hexane (93/7) Benzene/methanol (41/59) Butanone/cyclohexane (86/14) Butanone/n-hexane (90/10) Butanone/methanol (62/38) Chloroform/methanol (32/68) Ethanol/water (95/5) Butyl acetate Ethanol/water (5/95) Benzene/methanol (80/20) Butanone/methanol (99/1) Chloroform/methanol (71/29) Ethyl acetate/methanol (99/1) Methanol/toluene (22/78) Acetone/water (94/6) Ethanol/water (8/2) Benzene/methanol (83/17) Chloroform/methanol (77/23) w-Butanol n-Decanol «-Hexanol H-Octanol 2-Propanol Trichlorotrifluoroethane
Theta temp. (0C)
Method
Refs.
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 21 30 30 30 30 30 30 30 30 30 30 120.5 39.3 78.9 53.6 30
CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP CP DM,VM CP CP CP CP CP CP CP CP CP CP CP,VM CP1VM CP,VM CP,VM VM
350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 342 350 350 350 350 350 350 350 350 350 350 17 17 17 17 386
VM
248
35
TABLE 2. HETEROCHAIN POLYMERS Polymer (mol/mol) 2.1.
Theta solvent (v/v)
Theta temp. (0C)
Method
Refs.
POLY(ACETALS) AND POLY(ETHERS)
Poly(oxy-2,6-dimethyl-l,4-phenylene) Poly(oxyethylene); polyethylene oxide)
Methylene chloride Acetonitrile//-propyl ether (45/55) Benzene/i-octane (100/48) CaCl 2 /water(2mol/l) ChloroformM-hexane (54/46) (47.4/52.6) CsCl/water(2mol/l) Diethylene glyeol diethylether KCl/water(2mol/l) KF/water(0.30mol/l)
(0.50mol/l) (0.80mol/l) (1.00mol/l) KNO3/water (2mol/l) KOH/water(1.24mol/l) K 3 PO 4 /water(0.20mol/l)
89.2 20 70.8 71 82 86 20 20 60 50 54 57 78.0
VM CP CT PE CT CT CP CT,VM CT VM CT CT PE
66.0 49.0 38.0
PE PE PE
65 25 63.0
CT PE, VM PE
317 98 134 8 260 36 98 90 260 25 36 260 482
482 482 482 36 416 482
References page VII - 318
Table 2.
cont'd
Polymer (mol/mo!)
Theta solvent (v/v) (0.30mol/l) (0.35 mol/1) (0.40mol/l) K 2 SO 4 /water(0.45mol/l)
LiCl/water (2mol/l) Methyl /-butyl ketone MgCl 2 /water(2mol/l) MgSO4/water (0.39 mol/1)
NaCl/water (2mol/l) Na acetate/water (0.75 mol/1) (1.50mol/l) (2.00 mol/1) (3.00 mol/1) Na 2 S 2 O 3 (0.20mol/l) (0.30 mol/1) (0.40 mol/1) (0.50 mol/1) NH 4 Cl/water(2mol/l) Nitroethane//-propyl ether (45/55) RbCl/water(2mol/l) SrCl 2water (2 mol/1) ZnSO4/water (0.30mol/1) (0.35 mol/1) (0.45 mol/1) 21 salts in water (various concentrations) Water
Poly(oxyethylethylene), poly(butylene oxide) Poly(oxy(2-hydroxytrimethylene)oxy1,4-phenylene-isopropylidene1,4-phenylene) Poly(oxypropylene); poly(propylene oxide) Poly(oxytetrafluoroethylene)-co poly(oxydifluoromethylene) (40/60) Poly (oxytetramethylene); poly(tetrahydrofuran)
Theta temp. (0C) 45.0 38.0 26.0 34 34 35 35 90 90 50 80 90 42 42 42 45 60 61 75.0 55.0 45.0 31.0 74.0 63.0 52.0 41.0 76 77 20 56 73 82 54.0 48.0 35.0 97 5.1 96 102 103 108.3 117 92-109
Method
Refs.
PE PE PE CT CT PE VM CT CT VM CT CT CT CP
DM,VM CT A VM VM CT VT
482 482 482 259 36 13 25 36 260 25 260 36 259 36 536 13 260 260 482 482 482 482 482 482 482 482 260 36 98 260 260 36 482 482 482 417 45 36 418 416 419 260 383
PE CT CT PE PE PE PE PE PE PE PE CT CT CP CT CT CT PE PE PE
/-Propanol
29.8 30
VM VM
225 35
Cyclohexanone/toluene (32.5/67.5) Tetrahydrofuran/toluene (2/1) /-Octane
22 30 50
VM SM A
194 37 10
Freon TF
25
VM
415
Acetonitrile/benzene (61.5/38.5) Acetonitrile/butanone (38.3/61.7) Acetonitrile/carbon tetrachloride (50.2/49.8) Acetonitrile/chlorobenzene (60.1/39.9) Acetonitrile/tetrahydrofuran (58.7/41.3) Acetonitrile/toluene (61/39) rc-Butanol Butanone Chlorobenzene ChlorobenzeneM-octane (25.0/75.0) (21.5/78.5)
25 25 25 25 25 25 5 25 25 10 25.8
CP CP CP CP CP CP PE VM VM A, CP A, CP
94 94 94 94 94 94 107 214 214 106 106
Table 2. cont'd Polymer (mol/mol)
Theta solvent (v/v) (14.5/85.5) (13.0/87.0) (10.9/89.1)
Method
Refs.
i-Propanol Toluene Cyclohexane
46.0 63.0 80.0 26 33.5 30.4 33 44.6 28.3 27
A, CP A, CP A, CP VM PE PE A PE A PE
Cyclohexane/dioxane (32/68) s-Tetrachloroethane
25 25
CP VM
437 446
Dichloroethane Chloroform/heptane (50.2/49.8) 2,2,2-Trifluoroethanol/water (52.6/47.4)
25 25 25
A CP CP
420 421 421
Toluene
17.0
A, VM
506
Cyclohexanol
64
PE
360
Chloroform/n-hexane (65/35) (63/37) (62/38) (60/40) (59/41) (57/43) (56/44)
20 20 20 20 20 20 20
CP CP CP CP CP CP CP
98 99 98 98 98 98 98
BenzeneM-hexane (83.3/16.7) Cyclohexanol Chiorobenzene/K-hexane (75.9/24.1) rc-Hexane/nitrobenzene (43.3/56.7) Benzene/n-hexane (85.1/14.9) Chiorobenzene/rc-hexane (70.2/29.8) Nitrobenzene/rc-hexane (67.0/33.0)
25 77 25 25 25 25 25
CP PE CP CP CP CP CP
175 360 175 175 175 175 175
n-Butyl benzyl ether Chloroform Chloroform/ethanol (74.5/25.5) Cyclohexane/dioxane (36.1/63.9; w/w) Cyclohexanol Cyclohexanol
170 20 18 25 114.5 88
A A CP VM PE PE
27 73 193 241 360 360
Cyclohexane/dichloroacetic acid (6/4) Benzene/n-hexane (48.3/51.7) BromobenzeneM-hexane (45.0/55.0) ChlorobenzeneM-hexane (37.5/62.5)
25 25 25 25
A,VM CP CP CP
344 175 175 175
Butyl chloride
13
A,VM
143
Acetonitrile//-propyl ether (35.8/64.2) Chloroform/rt-hexane (56/44)
20 20
CP CP
98 98
^-ButanolM-heptane (81/19) Ethanol/n-heptane (39/61) (51/49) (59/41) /i-Heptane//i-propanol (35/65) (16/84)
1 1 24 40 1 24
CP CP CP CP CP CP
257 257 257 257 257 257
Cyclohexane/rc-heptane Diethyl malonate Ethyl acetate/n-hexane (22.7/77.3)
Poly(oxytrimethylene)
Theta temp. (0C)
106 106 106 214,228 105 105 199 105 9 55
2.2. POLY(ESTERS) Poly(bisphenol A-co-(isophthalic acid 4terephthalic acid; 1:1) Poly(decamethylene perfluorosebacate) Poly(diphenylphthalide dicarboxylic acida/f-/?,p'-dihydroxydiphenyl) Poly(P-hydroxybutyrate) Poly( 1 -(6-[4-(4-methoxyphenoxycarbonyl)phenoxyjhexyloxycarbonyl)-1 -methylethylene) Poly(oxyadipoyloxyhexamethylene); poly(hexamethylene adipate) Poly(oxyadipoly-poly(oxyethylene) mol. wt. of PEOX = 150 200 300 387 600 2580 7000 Poly(oxyadipoyloxytetramethylene); poly(tetramethylene adipate)
Poly(oxycaproyl); poly(£-caprolactone) Poly(oxycarbony loxy-1,4-pheny leneisopropylidene-1,4-phenylene); bisphenol A polycarbonate
Poly(oxyethyleneoxyadipoyl) Poiy(oxyethyleneoxysuberoyl) Poly(oxyethyleneoxyterephthaioyl); polyethylene terephthalate) Poly(oxyoctamethyleneoctasebacoyl) DL-Poly(oxy( 1 -oxo-3-methyltrimethylene)) poly(DL-^-methyl-propiolactone) Poly(oxy sebacoy loxy-poly (oxyethylene)); mol. wt. of PEOX = 387 Poly (12-oxy stearoy 1); poly(12-hydroxystearic acid)
References page VII-318
Table 2. cont'd Polymer (mol/mol) Poly(oxysuberoyl-poly(oxyethylene)) mol. wt. of PEOX = 387 Poly(oxysebacoyloxy-poly(oxyethylene)); mol. wt. of PEOX = 387 Poly(phenolphthalein-a/f-terephthalic acid) Poly[2,2-propane-bis(4-phenylthiocarbonate)] 2.3.
Theta solvent (v/v)
Theta temp. (0C)
Method
Refs.
Acetonitrile/i-propyl ether (38.6/61.4) Chloroform/n-hexane (58/42)
20 20
CP CP
98 98
Acetonitrile/i-propyl ether (35.8/64.2) ChloroformM-hexane (61/39) Tetrahydrofuran Chloroform/cyclohexane (76.5/23.5)
20 20 19 25
CP CP A VM
98 98 420 469
Dioxane/water (18.5/81.5) Dichloroethane/diethylene glycol (80/20)
25 25
A,VM A
475 209
Carbon tetrachloride/methanol (81.5/18.5) Methanol/toluene (19.5/80.5)
25 25
CP CP
Carbon tetrachloride/m-cresol/cyclohexane Formic acid/KCl/water
20 25
SM A,VM
335 101
CaCl2/methanol (15g/dl) Chloroform/perfluoro alcohol (7/3) m-Cresol/decalin (25/75) KCl in formic acid (2.3 mol/l)/water (90/10)
35 25 30 25
VM PE CT VM
256 198 148 422
POLY(AMIDES)
Poly(2-acrylamido-2-methylpropane sulfonamide) Poly(y-benzyl-L-glutamate) Poly ([n-hexylimino)carbony 1]; poly(n-hexyl isocyanate) Poly(iminoadipoyliminohexamethylene); poly(hexamethylene adipamide) Poly (imino( 1 -oxohexamethy lene)); poly(e-caprolactam)
Poly(iminoterephthaloylimino2,2,4/2,4,4-trimethylhexamethylene) Poly |7V-methylimino( 1 -oxodecamethylene)]; poly(N-methyldodecane lactam) Poly(L-proline) Poly(pyromellitic acid-c-4-amino-1,4phenyleneoxy-l,4-phenyleneamine) Poly(pyromellitic acid-co-4-amino-1,4phenyleneoxy-1,4-phenyleneoxy1,4-phenyleneamine)
29 29
Aniline Pyrroline
142 62
CT, PE PE
141 141
Dioxane Trifluoroethanol Water
30.5 130 100
A,VM A A
286 227 227
Dimethylacetamide/dioxane (1/2.5)
21
A,VM
449
Dimethylacetamide/dioxane (1/7.5)
21
A,VM
449
Dimethylformamide
82
VM
318
Acetone/dimethylformamide (21/79)
25
VM
23
Butanol/l,2-dichloroethane (38/62)
30
VM
435
Dichloroacetic acid Sulfuric acid (90%) 2,4,4-Trimethyl pentane
46 46 39.5
VM VM VM
109 109 236
Water Acetone/dimethyl sulfoxide (43.5/56.5) Dimethyl sulfoxide/methanol (49/51) Dimethyl sulfoxide/0.5 mol/1 KCl in water (25/75) Guanidinium chloride in water (4.2 mol/1) 0.33 mol/1 KCl in water
25 20 25.0
A VM VM
325 40 61
25 25 22.5 25 25 25 155 159.8 37 49
VM VM VM VM VM A PE PE PE PE
61 424 14 108 61 15 330 426 331 426
2.4. POLYUREAS, POLYURETHANES AND OTHER NITROGEN CHAINS Poly( 1,4-butylene glycol-c-4,4 '-diphenylmethanediisocyanate-co-poly(oxycaprolyl)) Poly(ethylene glycol-co-4,4; -dipheny 1methane diisocyanate) Poly[2-methoxy-4,6-di(p,p/-isopropylidene diphenyloxy) j-triazine] Poly(ureylene heptamethylene); Poly(heptamethylene urea) Polyurethane from polypropylene glycol and 2,4,4-tolylene diisocyanate 2.5.
POLYSACCHARIDES
Amylopectin Amylose
Amylose tricarbanilate Cellulose diacetate
Sodium acetate buffer Pyridine/water (86.7/13.3) Acetone Butanone
Table 2. cont'd Polymer (moi/mol)
Theta solvent (v/v)
Cellulose triacetate
Acetone
Cellulose tributyrate Cellulose tricaproate Cellulose tricaprylate
Tetrachloroethane Dimethylformarnide Dimethylformarnide 3-Phenylpropanol Anisole Cyclohexanol Water Water
Cellulose tricarbanilate Dextran Hydroxyethyl cellulose
Theta temp. (0C)
Method
Refs.
A PE PE PE PE A A PE PE A A A A
332 426 331 65 65 150 191 215 215 425 425 535 423
23.5 23.5 25
CP
501 501 261
105.5 26.8 25.0
VM PE VM
428 436 500
29.5 -7 -5.2 - 3 25 25 25 25 25 25 78.3 78.7 28 36.8 39.0 36.3 19.8 19.8 20.0 20.0 20.0 -38.2 -19.2 68 56.3 -81 -68.2 25 87 63 65 67 ± 2 4.8 18 2.1 -173.2 -173.2 -113.2
A A VM A CP CP CP CP CP CP VM A VM VM A A PE VM A PE A VM VM A A A VM CP PE CT PE
68 202 201 202 94 94 94 94 94 94 201 309 433,459 201 209 309 432 201 67 111 202 201 201 202 309 202 201 94 71 72 72 536 201 202 309 201 201 201
50 158.8 170 27 181 56.6 41 140 48 94 73 101.8 - 73
2.6. CARBON-SULFUR CHAINS Poly(arylate-arylenesulfonoxide) Poly(arylate-&/c>c&-arylenesulfonoxide) Poly(propylene sulfide) Poly(sulfonyl-1,4-phenyleneoxy1,4-phenylene-dimethylmethylene1,4-phenylene-oxy) Poly(arylene sulfonate) Poly(diphenylether sulfone)
Dioxane Dioxane n-Heptane/toluene (31.5/68.5) Dimethylsulfoxide Dioxane Dimethylformamide/methanol (83/17)
2.7. SILICON-OXYGEN CHAINS Poly(oxydimethylsilyiene) poly(dimethyl siloxane)
Acetone/toluene (6/5) Benzene Benzyl alcohol/carbon tetrachloride (21.2/78.8) Benzyl alcohol/chloroform (12.8/87.2) Benzyl alcohol/ethyl benzene (14.6/85.4) Benzyl alcohol/methylene chloride (22.7/77.3) Benzyl alcohol/trichloroethylene (21.7/78.3) Benzyl alcohol/toluene (16.2/83.8) Bromobenzene Bromocyclohexane Bromocyclohexane/phenetole (85.7/14.3) Butanone
n-Butyl acetate Chlorobenzene Chlorobenzene/dimethyl phthalate (88.2/11.8) Cyclohexane Cyclohexanol/toluene (34/66) Dichlorobenzene Ethanol/n-heptane (49/51) Ethyl acetate Ethyl iodide ^-Heptane rc-Hexane Methylcyclohexane
VM A A VM VM VM
References page VII-318
Table 2. cont'd Polymer (mol/mol)
Theta temp. (0C)
Theta solvent (v/v) Methylcyclopentane Nitroethane/toluene (25.9/74.1) Nitromethane/toluene (18.9/81.1) Nitropropane/toluene (36/64) n-Nonane rc-Octane Perfluorooctane/tetrachlorodifluoroethane (33.2/66.8; w/w) Phenetole
K-Propyl acetate Styrene Toluene Xylene Poly(methylphenylsiloxane) Poly(phenylsilasesquioxane)
Di-/-butylamine 1,2-Dichloroethane
Poly(Y-trifluoropropyl methyl siloxamer)
Mesitylene/toluene (30/70) Cyclohexyl acetate Methyl hexanoate
-98.2 25 25 25 -113.2 -143.2 22.5 83.0 83.0 89.3 89.5 -28.2 35 -30 -33.2 -47 -48.2 30.4 50.5 56 25 25 72.8
Method VM CP CP CP VM VM A, PE PE A VM A VM A A VM A VM VM VM A VM VM
Refs. 201 94 94 94 201 201 67 111 202 201 309 201 429 202 201 202 201 487 138,431 276 185 38 38
2.8. PHOSPHORUS-OXYGEN CHAINS Poly(phosphate)
LiBr/water (1.80mol/l) LiCl/water (0.40mol/l) NaBr/water (0.415 mol/1)
25 20 25
A A A
326 297 327
C. REFERENCES 1. M. Abe, H. Fujita, Rep. Progr. Polym. Phys. Japan, 7, 42 (1964). 2. M. Abe, H. Fujita, J. Phys. Chem., 69, 3263 (1965). 3. M. Abe, K. Sakato, T. Kageyama, M. Fukatsu, M. Kurata, Bull. Chem. Soc. Japan, 41, 2330 (1968). 4. P. Adamski, Vysokomol. Soedin. A, 13, 709 (1971); Polym. Sci. USSR, 13, 803 (1973). 5. P. Adamski, Vysokomol. Soedin. B, 13, 666 (1971). 6. P. Adamski, Zesz. Nauk Politech. Lodz, 23, 5 (1971). 7. P. Adamski, M. Kryshevski, IUPAC Symp. Macromolecules, Toronto, 1968. 8. A. M. Afifi-Effat, J. N. Hay, M. Wiles, J. Polym. Sci. B, 11, 87 (1973). 9. S. M. AIi, M. B. Huglin, Makromol. Chem., 84, 117 (1965). 10. G. Allen, C. Booth, C. Price, Polymer, 7, 167 (1966). 11. F. J. Ansorene, L. M. Revuelta, G. M. Guzman, J. J. Iruin, Europ. Polym. J., 18, 19 (1982). 12. M. Asahina, M. Sato, Bull. Chem. Soc. Japan, 35, 630 (1962). 13. F. E. Bailey, Jr., R. W. Callard, J. Appl. Polym. Sci., 1, 56 (1959). 14. W. Banks, C. T. Greenwood, Makromol. Chem., 67, 49 (1963); Carbohydrate Res., 7, 349 (1968). 15. W. Banks, C. T. Greenwood, J. Sloss, Makromol. Chem., 140, 109 (1970). 16. J. M. Barrales-Rienda, D. C. Pepper, Polymer, 8,337 (1967).
17. J. M. Barrales-Rienda, C. Romero Galicia, J. F. Freire, A. Horta, Macromolecules, 16, 337 (1983). 18. T. W. Bates, J. Biggins, K. J. Ivin, Makromol. Chem., 87,180 (1965). 19. T. W. Bates, K. J. Ivin, Polymer, 8, 263 (1967). 20. B. J. Bauer, N. Hadjichristidis, L. J. Fetters, J. E. L. Roovers, J. Am. Chem. Soc, 102, 2410 (1980). 21. U. Baumann, H. Schreiber, K. Tessmar, Makromol. Chem., 36, 81 (1960). 22. A. Bazuaye, M. B. Huglin, Polymer, 20, 44 (1979). 23. H. C. Beachell, J. C. Peterson, J. Polym. Sci. A-I, 7, 2021 (1969). 24. M. Becerra, D. Radic, L. Gargallo, Makromol. Chem. 179, 2241 (1978). 25. D. R. Beach, C. Booth, J. Polym. Sci. A-2, 7, 575 (1969). 26. G. C. Berry, J. Chem. Phys., 44, 4550 (1966). 27. G. C. Berry, H. Nomura, K. G. Mayhan, J. Polym. Sci. A-2, 5, 1 (1967). 28. G. C. Berry, H. Nakayasu, T. G. Fox, J. Polym. Sci., Polym. Phys. Ed., 17, 1825 (1979). 29. M. N. Berger, B. M. Tidswell, J. Polym. Sci.-Symp., 42, 1063 (1973). 30. U. Bianchi, V. Magnasco, C. Rossi, Ric. Sci., 28, 1412 (1958). 31. U. Bianchi, V. Magnasco, C. Rossi, Chim. Ind. (Milan), 40, 263 (1958).
32. M. Bohdanecky, Coll. Czech. Chem. Commun., 29, 876 (1964). 33. M. Bohdaneckv, V. Petrus, B. Sedlacek, Makromol. Chem., 184, 2061 (1983). 34. M. Bohdaneck>>, Z. Tuzar, Coll. Czech. Chem. Commun., 34, 3318 (1969). 35. C. Booth, R. Orme, Polymer, 11, 626 (1970). 36. E. A. Boucher, P. M. Hines, J. Polym. ScL, Polym. Phys. Ed., 16, 501 (1978). 37. J. Brezinski, B. Czamecka, Polimery Tworzywa, 14, 117 (1969). 38. R. R. Buch, H. M. Klimisch, O. K. Johannson, J. Polym. Sci. A-2, 7, 563 (1969). 39. W. Burchard, Habilitation Thesis, University of Freiburg, Germany. 40. W. Burchard, Makromol. Chem., 64, 110 (1963). 41. W. Burchard, Z. Physik. Chem. (Frankfurt/M.), 43, 265 (1964). 42. F. Candau, C. Strazielle, H. Benoit, Makromol. Chem., 170, 165 (1973). 43. H. -J. Cantow, Makromol. Chem., 30, 169 (1959). 44. D. K. Carpenter, J. H. Hsieh, ACS Polymer Preprints, 13, 981 (1972). 45. B. Chew, A. Couper, J. Chem. Soc. Faraday Soc, [1], 72,382 (1976). 46. R. Chiang, J. Phys. Chem., 69, 1645 (1965). 47. S. N. Chinai, J. Polym. Sci., 25, 413 (1957). 48. S. N. Chinai, J. Polym. Sci., 44, 475 (1959). 49. S. N. Chinai, C. W. Bondurant, J. Polym. Sci., 22, 555 (1956). 50. S. N. Chinai, R. A. Guzzi, J. Polym. Sci., 21, 417 (1956). 51. S. N. Chinai, A. L. Resnick, H. T. Lee, J. Polym. Sci., 33,471 (1958). 52. S. N. Chinai, R. J. Samuels, J. Polym. Sci., 19, 463 (1956). 53. S. N. Chinai, P C. Scherer, C. W. Bondurant, D. W. Levi, J. Polym. Sci., 22, 527, (1956). 54. S. N. Chinai, R. J. Valles, J. Polym. 39, 363 (1959). 55. D. S. Chiu, Y. Takahashi, J. E. Mark, Polymer, 17, 670 (1976). 56. A. Ciferri, M. Lauretti, Ann. Chim. (Rome), 48, 198 (1958). 57. E. Conn-Ginsberg, T. G. Fox, H. F. Mason, Polymer, 3, 97 (1962). 58. C. F. Cornet, H. van Ballegooijen, Polymer, 7, 293 (1966). 59. B. J. Cottam, J. M. G. Cowie, S. Bywater, Makromol. Chem., 86, 116(1965). 60. J. P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, G. Jannink, R. Ober, J. des Cloizeaux, Macromolecules, 7, 863 (1974). 61. J. M. G. Cowie, Makromol. Chem., 59, 189 (1963). 62. J. M. G. Cowie, J. Polymer. Sci. C, 23, 267 (1968). 63. J. M. G. Cowie, S. Bywater, J. Polym. Sci. A-2, 6, 499 (1968). 64. J. M. G. Cowie, S. Bywater, D. J. Worsfold, Polymer, 8, 105 (1967). 65. J. M. G. Cowie, A. Maconnachie, R. J. Ranson, Macromolecules, 4, 57 (1971). 66. J. M. G. Cowie, I. J. McEwen, Polymer, 16, 933 (1975).
67. V. Crescenci, P. J. Flory, J. Am. Chem. Soc, 86, 141 (1964). 68. A. Czuppon, IUPAC Symp. Macromolecules, Prague 1965, Preprint 459. 69. F. Danusso, G. Moraglio, Atti Accad. Nazi. Lincei Rend. Classe Sci. Fis. Mat. Nat., [8], 25, 509 (1958). 70. F. Danusso, G. Moraglio, G. Gianotti, J. Polym. Sci., 51,475 (1961). 71. J. V. Dawkins, M. Hemming, Makromol. Chem., 155, 75 (1972). 72. J. V. Dawkins, G. Taylor, Colloid Polym. Sci., 258, 79 (1980). 73. A. de Chirico, Chim. Ind. (Milan), 42, 248 (1960). 74. A. de Chirico, Chim. Ind. (Milan), 46, 53 (1964). 75. D. Decker, Makromol. Chem., 125, 136 (1969). 76. G. Delmas, D. Patterson, Polymer, 7, 513 (1966). 77. F. E. Didot, S. N. Chinai, D. W. Levi, J. Polym. Sci., 43, 557 (1960). 78. H. Dietschy, Ph.D. Thesis, ETH Zurich 1966. 79. H. A. Dieu, J. Polym. Sci., 12, 417 (1954). 80. J. Dohany, Ph.D. Thesis, ETH Zurich 1963. 81. A. Dondos, Makromol. Chem., 135. 181 (1970). 82. A. Dondos, H. Benoit, J. Polym. Sci. B, 7, 279 (1969). 83. A. Dondos, H. Benoit, Macromolecules, 4, 279 (1971). 84. P. Dreyfus, M. P. Dreyfus, Adv. Polym. Sci., 4, 528 (1967). 85. E. T. Dumitru, L. H. Cragg, Cited in ref. [110], p. 615. 86. K. Dusek, M. Bohdanecky, E. Prokopova, Eur. Polym. J., 10, 239 (1974). 87. H. Eisenberg, D. Woodside, J. Polym. Phys. 36,1844 (1962). 88. K. H. Elgert, PhD Thesis, Techn. Univ. of Munich, 1963. 89. H.-G. Elias, Makromol. Chem., 33, 140 (1959). 90. H.-G. Elias, Makromol. Chem., 50, 1 (1961). 91. H.-G. Elias, Makromol. Chem., 54, 78 (1962). 92. H.-G. Elias, "Makromolekiile", Hiithig and Wepf, Basle, Fourth Ed. 1981, p. 200; "Macromolecules", Plenum, New York, Second Ed. 1984, Vol. I., p. 232. 93. H.-G. Elias, in: L. H. Tung, (Ed.), 'Tractionation of Synthetic Polymers", Dekker, New York, 1977. 94. H.-G. Elias, G. Adank, Makromol. Chem., 69, 241 (1963). 95. H.-G. Elias, O. Etter, Makromol. Chem., 66, 56 (1963). 96. H.-G. Elias, O. Etter, Makromol. Chem., 89, 228 (1965). 97. H.-G. Elias, O. Etter, J. Makromol. Chem., 1, 431 (1966). 98. H.-G. Elias, U. Gruber, Makromol. Chem., 78, 72 (1964). 99. U. Gruber, H. -G. Elias, Makromol. Chem., 86, 168 (1965). 100. H. -G. Elias, F. W. Ibrahim, Makromol. Chem., 89, 12 (1965). 101. H. -G. Elias, R. Schumacher, Makromol. Chem., 76, 23 (1964). 102. V. E. Eskin, L. N. Andreeva, Vysokomol. Soedin., 3, 435 (1961); cited in J. Polym. Sci., 56, S 39 (1962). 103. V. E. Eskin, K. Z. Gumargalieva, Vysokomol. Soedin., 2, 265 (1960). 104. V. E. Eskin, O. Z. Korothina, Vysokomol. Soedin,, 2, 272 (1960); J. Polym. Sci. USSR, 2, 247 (1961). 105. J. M. Evans, M. B. Huglin, Makromol. Chem., 127, 141 (1969). 106. J. M. Evans, M. B. Huglin, Europ. Polym. J., 6, 1161 (1970).
107. J. M. Evans, M. B. Huglin, cited in [84]. 108. W. W. Everett, J. F. Foster, J. Am. Chem. Soc, 81, 3459, 3464 (1959). 109. J. Feisst, H.-G. Elias, Makromol. Chem., 82, 78 (1965). 110. P. J. Flory, "Principles of Polymer Chemistry", Cornell Univ. Press, Ithaca, NY, 1953. 111. P. J. Flory, L. Mandelkern, J. B. Kinsinger, W. B. Shultz, J. Am. Chem. Soc, 74, 3364 (1952). 112. T. G. Fox, Polymer, 3, 111 (1962). 113. T. G. Fox, P. J. Flory, J. Am. Chem. Soc, 73, 1909 (1959). 114. T. G. Fox, P. J. Flory, J. Am. Chem. Soc, 73, 1915 (1959). 115. T. G. Fox, J. B. Kinsinger, H. F. Mason, E. M. Schuele, Polymer, 3, 71 (1962). 116. D. M. French, A. W. Casey, C. I. Collins, P. Kirchner, ACS Polymer Preprints, 7, 447 (1966). 117. D. Froelich, Ph.D. Thesis, Univ. of Strasbourg, 1966; cited in [83]. 118. D. Froelich, H. Benoit, Makromol. Chem., 92, 224 (1966). 119. M. Fukuda, M. Fukutomi, Y. Kato, T. Hashimoto, J. Polym. Sci.-Polym. Chem. Ed., 12, 871 (1974). 120. C. Garbuglio, L. Crescentini, A. MuIa, G. B. Gechele, Makromol. Chem., 97, 97 (1966). 121. L. Gargallo, J. Niezzette, V. Desreux, Bull. Soc Roy. Sci. Liege, 1-2, 82 (1977); cited in [122]. 122. L. Gargallo, D. Radic, I. Katime, Europ. Polym. J., 16, 383 (1980). 123. G. B. Gechele, L. Crescentini, J. Polym. Sci. A, 3, 3599 (1965). 124. H. Geerissen, B. A. Wolf, Makromol. Chem., Rapid Commun., 3, 17 (1982). 125. G. Gianotti, U. Bonicelli, D. Borghi, Makromol. Chem., 166, 235 (1973). 126. C. Gonzalez, F Zamora, G. M. Guzman, L. M. Leon, Makromol. Chem., 185, 339 (1984). 127. T. B. Grimley, Proc Roy. Soc. [London] A, 212, 339 (1952). 128. U. Gruber, Ph.D. Thesis, ETH Zurich, 1964. 129. N. Hadjichristidis, Polymer, 16, 848 (1975). 130. N. Hadjichristidis, J. E. L. Roovers, J. Polym. Sci., Polym. Phys. Ed., 12, 2521 (1974). 131. J. Hakozaki, J. Chem. Soc Japan, Pure Chem. Sect. (Nippon Kagaku Zasshi), 82, 158 (1961). 132. F. Hamada, K. Fujisawa, A. Nakajima, Polym. J., 4, 316 (1973). 133. K. Hanafusa, A. Teramoto, H. Fujita, J. Chem. Phys., 70, 4004 (1966). 134. J. N. Hay, A. M. Afifi-Effat, Brit. Polym. J., 9, 1 (1977). 135. J. N. Hay, P A. Fitzgerald, J. Polym. Sci., Polym. Chem. Ed., 18, 1079 (1980). 136. J. N. Hay, M. Wiles, Brit. Polym. J., 10, 181 (1978). 137. W. Hayduk, H. A. Bromfield, J. Appl. Polym. Sci., 22, 149 (1978). 138. T. E. Helminiak, C. L. Benner, W. E. Gibbs, ACS Polymer Preprints, 8, 284 (1967). 139. I. Hernandez-Fuentes, M. G. Prolongo, Europ. Polym. J., 15, 571 (1979). 140. F. K. Herold, B. A. Wolf, Makromol. Chem., 184, 2539 (1981).
141. J. Herold, G. Meyerhoff, Europ. Polym. J., 15, 525 (1979). 142. M. Heskins, J. E. Guillet, J. Macromol. Sci. A, 2, 1441 (1968). 143. T. Hirosye, Y. Einaga, H. Fujita, Polym. J., 11, 819 (1979). 144. T. Homma, K. Kawahara, H. Fujita, M. Ueda, Makromol. Chem., 67, 132 (1963). 145. T. Homma, K. Kawahara, H. Fujita, J. Appl. Polym. Sci., 8, 2853 (1964). 146. F. Hooshmand-Mozaffar, M. K. Hoseinalizadeh-Khorasani, M. B. Huglin, Polymer, 21, 413 (1980). 147. F. Horii, Y Ikada, I. Sakurada, J. Polym. Sci., Polym. Chem. Ed., 12, 323 (1974). 148. N. Howard, M. B. Huglin, R. W. Richards, J. Appl. Polym. Sci., 16, 1525 (1972). 149. A. J. Hyde, R. B. Taylor, Polymer, 4, 1 (1963). 150. T. Ikeda, H. Kawaguchi, Rep. Progr. Polym. Phys. Japan, 9, 23 (1966). 151. H. Inagaki, A. Nakazawa, T. Kotaka, Bull. Inst. Chem. Res. Kyoto Univ., 43, 135 (1965). 152. H. Inagaki, T. Miyamoto, S. Ohta, J. Phys. Chem., 70, 3420 (1966). 153. H. Inagaki, H. Suzuki, M. Fujii, T Matsuo, J. Phys. Chem., 70, 1718 (1966). 154. K. J. Mn, H. A. Ende, G. Meyerhoff, Polymer, 3,129 (1962). 155. M. Iwama, H. Utiyama, M. Kurata, J. Macromol. Chem., 1, 701 (1966). 156. Y. Izumi, Y Miyake, Polym. J., 3, 647 (1972). 157. Y Izumi, Y. Miyake, Polym. J., 4, 205 (1973). 158. Y. Izumi, S. Otsuka, Y Miyake, Rep. Progr. Polym. Phys. Japan, 12, 13 (1969). 159. R. Jerome, V. Desreux, Europ. Polym. J., 6, 411 (1970). 160. R. M. Johnson, J. L. Schrag, J. D. Ferry, Polym. J., 1, 742 (1970). 161. M. Kalfus, J. Mitus, J. Polym. Sci. A-I, 4, 953 (1966). 162. K. Kamada, H. Sato, Polym. J., 2, 593 (1971). 163. K. Kamide, T. Terekawa, Makromol. Chem., 155,25 (1972). 164. Ye. A. Kanevskaya, P. I. Zubov, L. V. Ivanova, Yu. S. Lipatov, Vysokomol. Soedin., 6, 981 (1964); Polym. Sci. USSR, 6, 1080 (1964). 165. A. Katchalsky, H. Eisenberg, J. Polym. Sci., 6, 145 (1951). 166. I. A. Katime Amashta, G. Sanchez, Europ. Polym. J., 11,223 (1975). 167. H. Kaye, H. J. Cou, J. Polym. Sci., Polym. Phys. Ed., 13,477 (1975). 168. W. Kern, D. Braun, Makromol. Chem., 27, 23 (1958). 169. J. B. Kinsinger, L. E. Ballard, J. Polym. Sci. B, 2, 879 (1964). 170. J. B. Kinsinger, L. E. Baliard, J. Polym. Sci. A, 3, 3963 (1965). 171. J. B. Kinsinger, R. E. Hughes, J. Phys. Chem., 67, 1922 (1963). 172. J. B. Kinsinger, R. A. Wessling, J. Am. Chem. Soc, 81, 2908 (1959). 173. R. Kirste, G. V. Schulz, Z. Physik. Chem. (Frankfurt/M.), 27, 310 (1960). 174. R. G. Kirste, G. V. Schulz, Z. Physik. Chem. (Frankfurt/M.), 30, 171 (1961).
Next Page
175. M. R. Knecht, R-G. Elias, Makromol. Chem., 157, 1 (1972). 176. A. Kokkiaris, C. Touloupis, N. Hadjichristidis, Polymer, 22, 63 (1981). 177. R. Koningsveld, Th. G. Schoolte, private communication. 178. T. Kotaka, H. Ohnuma, H. Inagaki, Polymer, 10, 517 (1969). 179. T. Kotaka, H. Ohnuma, H. Inagaki, ACS Polymer Preprints, 11, 660 (1970). 180. T. Kotaka, H. Ohnuma, Y. Murakami, J. Phys. Chem., 70, 4099 (1966). 181. T. Kotaka, T. Tanaka, H. Ohnuma, Y. Murakami, H. Inagaki, Polymer J., 1, 245 (1970). 182. A. Kotera, H. Matsuda, K. Konishi, K. Takemura, J. Polym. Sci. C, 23, 619 (1968). 183. A. Kotera, N. Onda, T. Saito, Rep. Progr. Polym. Phys. Japan, 17, 25 (1974). 184. A. Kotera, T. Saito, N. Yamaguchi, Annual Meeting Chem. Soc. Japan, 1962; cited in A. Kotera, N. Ise, A. Senuma, T. Hamada, IUPAC Symp. Macromol., Prague 1965, Preprint 232. 185. J. Kovaf, L. Mrkvickova-Vaculova, M. Bohdanecky, Makromol. Chem., 176, 1829 (1975). 186. P. Kratochvil, D. Strtakova, Makromol. Chem., 154, 325 (1972). 187. S. Krause, E. Cohn-Ginsburg, J. Phys. Chem., 67, 1479 (1963). 188. W. R. Krigbaum, D. K. Carpenter, J. Phys. Chem., 59, 1166 (1955). 189. W. R. Krigbaum, P. J. Flory, J. Polym. Sci., 11, 37 (1953). 190. W. R. Krigbaum, J. E. Kurz, P. Smith, J. Phys. Chem., 65, 1984 (1961). 191. W. R. Krigbaum, L. H. Sperling, J. Phys. Chem., 64, 99 (1960). 192. W. R. Krigbaum, J. D. Woods, J. Polym. Sci. A, 2, 3075 (1964). 193. S. Krozer, Plaste Kautschuk, 15, 175 (1968). 194. S. Krozer, A. Pastusiak, IUPAC Symp. Macromol., Prague 1965, Preprint 609. 195. K. Kubo, K. Ogino, Rep. Progr. Polym. Phys. Japan, 10,111 (1967). 196. K. Kubo, K. Ogino, T. Nakagawa, Rep. Progr. Polym. Phys. Japan, 10, 7 (1967). 197. Z. Kuciikyavuz, A. Kuc,iikyavuz, Europ. Polym. J., 14, 867 (1978). 198. A. M. Kulakova, I. K. Nekrasov, Vysokomol. Soedin. A, 18, 127 (1976); Polym. Sci. USSR, 18, 146 (1976). 199. M. Kurata, H. Utiyama, K. Kamada, Makromol. Chem., 88, 281 (1965). 200. N. Kuwahara, S. Higashida, M. Nakata, K. Kaneko, J. Polym. Sci. A-2, 7, 285 (1969). 201. N. Kuwahara, M. Kaneko, Makromol. Chem., 82 205 (1965). 202. N. Kuwahara, T. Miyake, M. Kaneko, J. Furuichi, Rep. Progr. Polym. Phys. Japan, 5, 1 (1962). 203. N. Kuwahara. S. Saeki, S. Konno, M. Kaneko, Macromolecules, 6, 589 (1973). 204. N. Kuwahara, S. Saeki, S. Konno, Polymer, 15, 66 (1974).
205. D. Lath, M. Bohdanecky, J. Polym. Sci.-Letters Ed., 15, 555 (1977). 206. H. T. Lee, D. W. Levi, J. Polym. Sci., 47, 449 (1960). 207. L. M. Leon, J. Galaz, L. M. Garcia, M. S. Anasagasti, Europ. Polym. J., 16, 921 (1980). 208. D. W. Levi, H. T. Lee, R. J. Valles, J. Polym. Sci., 62, S163 (1962). 209. J. Lilie, J. Springer, K. Ueberreiter, Kolloid-Z., 226, 138 (1968). 210. F. C. Lin, S. S. Stivala, J. A. Biesenberger, J. Appl. Polym. Sci., 17, 3465 (1973). 211. M. Lippay. Ph.D. Thesis, ETH Zurich, 1963. 212. J. Llopis, A. Albeit, P. Usobiaga, Europ. Polym. J., 3, 259 (1967). 213. T. Lucas, Bull. Liaison Lab. (Lab. Prof. Peint)., 20, 15 (1967). 214. N. V. Makletsova, I. V. Epel'baum, B. A. Rozenberg, Ye. B. Lyudvig, Vysokomol. Soedin., 7, 70 (1965); Polym. Sci. USSR, 7, 73 (1966). 215. L. Mandelkern, P. J. Flory, J. Am. Chem. Soc, 74, 2517 (1952). 216. P. V. Mangalam, V. P. Kalpagam, J. Polym. Sci.-Polym. Phys. Ed., 20, 773 (1982). 217. V. P. Mardykin, K. B. Martinovich, A. I. Volozhin, N. M. Denisyuk, Vysokomol. Soedin. B, 16, 23 (1974); CA 81: 1390Or (1974). 218. J. E. Mark, Diss. Abstr., 23, 1205 (1962). 219. J. E. Mark, P. J. Flory, J. Am. Chem. Soc, 87, 1423 (1965). 220. R. M. Masegosa, M. G. Prolongo, I. Hernandez-Fuentes, A. Horta, Macromolecules, 17, 1181 (1984). 221. T. Matsumoto, N. Nishioka, H. Fujita, J. Polym. Sci. A-2,10, 23 (1972). 222. M. Matsumoto, Y. Ohyanagi, J. Polym. Sci., 46, 441 (1960). 223. M. Matsumoto, Y. Ohyanagi, J. Polym. Sci., 50, Sl (1961). 224. K. Matsumura, Polym. J., 1 322 (1970). 225. M. Matsushima, M. Fukatsu, M. Kurata, Bull. Chem. Soc Japan, 41, 2570 (1968). 226. A. Mattiussi, E. Conto, G. B. Gechele, Europ. Polym. J., 8, 429 (1972). 227. W. L. Mattice, L. Mandelkern, Macromolecules, 4, 271 (1971). 228. R. M. May, R. E. Wetton, cited in [84]. 229. H. W. McCormick, J. Polym. Sci., 36, 341 (1959). 230. D. Mclntyre, J. H. O'Mara, B. C. Konouck, J. Am. Chem. Soc, 81, 3498 (1959). 231. R. A. Mendelson, J. Polym. Sci., 46, 493 (1960). 232. G. Meyerhoff, Makromol. Chem., 37, 97 (1960). 233. G. Meyerhoff, in: J. W. Williams (Ed.), "Ultracentrifugal Analysis in Theory and Practice". Academic Press, New York, 1963. 234. R. Meza, L. Gargallo, Europ. Polym. J., 13, 235 (1977). 235. S. Miyamoto, Y. Ishii, H. Ohnuma, Makromol. Chem., 182, 483 (1981). 236. J. Moacanin, J. Appl. Polym. Sci., 1, 272 (1959). 237. J. Moacanin, A. Rembaum, R. K. Laudenslager, ACS Polymer Preprints, 4/2, 179 (1963).
Previous Page
Table 2. cont'd Polymer (mol/mol)
Theta temp. (0C)
Theta solvent (v/v) Methylcyclopentane Nitroethane/toluene (25.9/74.1) Nitromethane/toluene (18.9/81.1) Nitropropane/toluene (36/64) n-Nonane rc-Octane Perfluorooctane/tetrachlorodifluoroethane (33.2/66.8; w/w) Phenetole
K-Propyl acetate Styrene Toluene Xylene Poly(methylphenylsiloxane) Poly(phenylsilasesquioxane)
Di-/-butylamine 1,2-Dichloroethane
Poly(Y-trifluoropropyl methyl siloxamer)
Mesitylene/toluene (30/70) Cyclohexyl acetate Methyl hexanoate
-98.2 25 25 25 -113.2 -143.2 22.5 83.0 83.0 89.3 89.5 -28.2 35 -30 -33.2 -47 -48.2 30.4 50.5 56 25 25 72.8
Method VM CP CP CP VM VM A, PE PE A VM A VM A A VM A VM VM VM A VM VM
Refs. 201 94 94 94 201 201 67 111 202 201 309 201 429 202 201 202 201 487 138,431 276 185 38 38
2.8. PHOSPHORUS-OXYGEN CHAINS Poly(phosphate)
LiBr/water (1.80mol/l) LiCl/water (0.40mol/l) NaBr/water (0.415 mol/1)
25 20 25
A A A
326 297 327
C. REFERENCES 1. M. Abe, H. Fujita, Rep. Progr. Polym. Phys. Japan, 7, 42 (1964). 2. M. Abe, H. Fujita, J. Phys. Chem., 69, 3263 (1965). 3. M. Abe, K. Sakato, T. Kageyama, M. Fukatsu, M. Kurata, Bull. Chem. Soc. Japan, 41, 2330 (1968). 4. P. Adamski, Vysokomol. Soedin. A, 13, 709 (1971); Polym. Sci. USSR, 13, 803 (1973). 5. P. Adamski, Vysokomol. Soedin. B, 13, 666 (1971). 6. P. Adamski, Zesz. Nauk Politech. Lodz, 23, 5 (1971). 7. P. Adamski, M. Kryshevski, IUPAC Symp. Macromolecules, Toronto, 1968. 8. A. M. Afifi-Effat, J. N. Hay, M. Wiles, J. Polym. Sci. B, 11, 87 (1973). 9. S. M. AIi, M. B. Huglin, Makromol. Chem., 84, 117 (1965). 10. G. Allen, C. Booth, C. Price, Polymer, 7, 167 (1966). 11. F. J. Ansorene, L. M. Revuelta, G. M. Guzman, J. J. Iruin, Europ. Polym. J., 18, 19 (1982). 12. M. Asahina, M. Sato, Bull. Chem. Soc. Japan, 35, 630 (1962). 13. F. E. Bailey, Jr., R. W. Callard, J. Appl. Polym. Sci., 1, 56 (1959). 14. W. Banks, C. T. Greenwood, Makromol. Chem., 67, 49 (1963); Carbohydrate Res., 7, 349 (1968). 15. W. Banks, C. T. Greenwood, J. Sloss, Makromol. Chem., 140, 109 (1970). 16. J. M. Barrales-Rienda, D. C. Pepper, Polymer, 8,337 (1967).
17. J. M. Barrales-Rienda, C. Romero Galicia, J. F. Freire, A. Horta, Macromolecules, 16, 337 (1983). 18. T. W. Bates, J. Biggins, K. J. Ivin, Makromol. Chem., 87,180 (1965). 19. T. W. Bates, K. J. Ivin, Polymer, 8, 263 (1967). 20. B. J. Bauer, N. Hadjichristidis, L. J. Fetters, J. E. L. Roovers, J. Am. Chem. Soc, 102, 2410 (1980). 21. U. Baumann, H. Schreiber, K. Tessmar, Makromol. Chem., 36, 81 (1960). 22. A. Bazuaye, M. B. Huglin, Polymer, 20, 44 (1979). 23. H. C. Beachell, J. C. Peterson, J. Polym. Sci. A-I, 7, 2021 (1969). 24. M. Becerra, D. Radic, L. Gargallo, Makromol. Chem. 179, 2241 (1978). 25. D. R. Beach, C. Booth, J. Polym. Sci. A-2, 7, 575 (1969). 26. G. C. Berry, J. Chem. Phys., 44, 4550 (1966). 27. G. C. Berry, H. Nomura, K. G. Mayhan, J. Polym. Sci. A-2, 5, 1 (1967). 28. G. C. Berry, H. Nakayasu, T. G. Fox, J. Polym. Sci., Polym. Phys. Ed., 17, 1825 (1979). 29. M. N. Berger, B. M. Tidswell, J. Polym. Sci.-Symp., 42, 1063 (1973). 30. U. Bianchi, V. Magnasco, C. Rossi, Ric. Sci., 28, 1412 (1958). 31. U. Bianchi, V. Magnasco, C. Rossi, Chim. Ind. (Milan), 40, 263 (1958).
32. M. Bohdanecky, Coll. Czech. Chem. Commun., 29, 876 (1964). 33. M. Bohdaneckv, V. Petrus, B. Sedlacek, Makromol. Chem., 184, 2061 (1983). 34. M. Bohdaneck>>, Z. Tuzar, Coll. Czech. Chem. Commun., 34, 3318 (1969). 35. C. Booth, R. Orme, Polymer, 11, 626 (1970). 36. E. A. Boucher, P. M. Hines, J. Polym. ScL, Polym. Phys. Ed., 16, 501 (1978). 37. J. Brezinski, B. Czamecka, Polimery Tworzywa, 14, 117 (1969). 38. R. R. Buch, H. M. Klimisch, O. K. Johannson, J. Polym. Sci. A-2, 7, 563 (1969). 39. W. Burchard, Habilitation Thesis, University of Freiburg, Germany. 40. W. Burchard, Makromol. Chem., 64, 110 (1963). 41. W. Burchard, Z. Physik. Chem. (Frankfurt/M.), 43, 265 (1964). 42. F. Candau, C. Strazielle, H. Benoit, Makromol. Chem., 170, 165 (1973). 43. H. -J. Cantow, Makromol. Chem., 30, 169 (1959). 44. D. K. Carpenter, J. H. Hsieh, ACS Polymer Preprints, 13, 981 (1972). 45. B. Chew, A. Couper, J. Chem. Soc. Faraday Soc, [1], 72,382 (1976). 46. R. Chiang, J. Phys. Chem., 69, 1645 (1965). 47. S. N. Chinai, J. Polym. Sci., 25, 413 (1957). 48. S. N. Chinai, J. Polym. Sci., 44, 475 (1959). 49. S. N. Chinai, C. W. Bondurant, J. Polym. Sci., 22, 555 (1956). 50. S. N. Chinai, R. A. Guzzi, J. Polym. Sci., 21, 417 (1956). 51. S. N. Chinai, A. L. Resnick, H. T. Lee, J. Polym. Sci., 33,471 (1958). 52. S. N. Chinai, R. J. Samuels, J. Polym. Sci., 19, 463 (1956). 53. S. N. Chinai, P C. Scherer, C. W. Bondurant, D. W. Levi, J. Polym. Sci., 22, 527, (1956). 54. S. N. Chinai, R. J. Valles, J. Polym. 39, 363 (1959). 55. D. S. Chiu, Y. Takahashi, J. E. Mark, Polymer, 17, 670 (1976). 56. A. Ciferri, M. Lauretti, Ann. Chim. (Rome), 48, 198 (1958). 57. E. Conn-Ginsberg, T. G. Fox, H. F. Mason, Polymer, 3, 97 (1962). 58. C. F. Cornet, H. van Ballegooijen, Polymer, 7, 293 (1966). 59. B. J. Cottam, J. M. G. Cowie, S. Bywater, Makromol. Chem., 86, 116(1965). 60. J. P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, G. Jannink, R. Ober, J. des Cloizeaux, Macromolecules, 7, 863 (1974). 61. J. M. G. Cowie, Makromol. Chem., 59, 189 (1963). 62. J. M. G. Cowie, J. Polymer. Sci. C, 23, 267 (1968). 63. J. M. G. Cowie, S. Bywater, J. Polym. Sci. A-2, 6, 499 (1968). 64. J. M. G. Cowie, S. Bywater, D. J. Worsfold, Polymer, 8, 105 (1967). 65. J. M. G. Cowie, A. Maconnachie, R. J. Ranson, Macromolecules, 4, 57 (1971). 66. J. M. G. Cowie, I. J. McEwen, Polymer, 16, 933 (1975).
67. V. Crescenci, P. J. Flory, J. Am. Chem. Soc, 86, 141 (1964). 68. A. Czuppon, IUPAC Symp. Macromolecules, Prague 1965, Preprint 459. 69. F. Danusso, G. Moraglio, Atti Accad. Nazi. Lincei Rend. Classe Sci. Fis. Mat. Nat., [8], 25, 509 (1958). 70. F. Danusso, G. Moraglio, G. Gianotti, J. Polym. Sci., 51,475 (1961). 71. J. V. Dawkins, M. Hemming, Makromol. Chem., 155, 75 (1972). 72. J. V. Dawkins, G. Taylor, Colloid Polym. Sci., 258, 79 (1980). 73. A. de Chirico, Chim. Ind. (Milan), 42, 248 (1960). 74. A. de Chirico, Chim. Ind. (Milan), 46, 53 (1964). 75. D. Decker, Makromol. Chem., 125, 136 (1969). 76. G. Delmas, D. Patterson, Polymer, 7, 513 (1966). 77. F. E. Didot, S. N. Chinai, D. W. Levi, J. Polym. Sci., 43, 557 (1960). 78. H. Dietschy, Ph.D. Thesis, ETH Zurich 1966. 79. H. A. Dieu, J. Polym. Sci., 12, 417 (1954). 80. J. Dohany, Ph.D. Thesis, ETH Zurich 1963. 81. A. Dondos, Makromol. Chem., 135. 181 (1970). 82. A. Dondos, H. Benoit, J. Polym. Sci. B, 7, 279 (1969). 83. A. Dondos, H. Benoit, Macromolecules, 4, 279 (1971). 84. P. Dreyfus, M. P. Dreyfus, Adv. Polym. Sci., 4, 528 (1967). 85. E. T. Dumitru, L. H. Cragg, Cited in ref. [110], p. 615. 86. K. Dusek, M. Bohdanecky, E. Prokopova, Eur. Polym. J., 10, 239 (1974). 87. H. Eisenberg, D. Woodside, J. Polym. Phys. 36,1844 (1962). 88. K. H. Elgert, PhD Thesis, Techn. Univ. of Munich, 1963. 89. H.-G. Elias, Makromol. Chem., 33, 140 (1959). 90. H.-G. Elias, Makromol. Chem., 50, 1 (1961). 91. H.-G. Elias, Makromol. Chem., 54, 78 (1962). 92. H.-G. Elias, "Makromolekiile", Hiithig and Wepf, Basle, Fourth Ed. 1981, p. 200; "Macromolecules", Plenum, New York, Second Ed. 1984, Vol. I., p. 232. 93. H.-G. Elias, in: L. H. Tung, (Ed.), 'Tractionation of Synthetic Polymers", Dekker, New York, 1977. 94. H.-G. Elias, G. Adank, Makromol. Chem., 69, 241 (1963). 95. H.-G. Elias, O. Etter, Makromol. Chem., 66, 56 (1963). 96. H.-G. Elias, O. Etter, Makromol. Chem., 89, 228 (1965). 97. H.-G. Elias, O. Etter, J. Makromol. Chem., 1, 431 (1966). 98. H.-G. Elias, U. Gruber, Makromol. Chem., 78, 72 (1964). 99. U. Gruber, H. -G. Elias, Makromol. Chem., 86, 168 (1965). 100. H. -G. Elias, F. W. Ibrahim, Makromol. Chem., 89, 12 (1965). 101. H. -G. Elias, R. Schumacher, Makromol. Chem., 76, 23 (1964). 102. V. E. Eskin, L. N. Andreeva, Vysokomol. Soedin., 3, 435 (1961); cited in J. Polym. Sci., 56, S 39 (1962). 103. V. E. Eskin, K. Z. Gumargalieva, Vysokomol. Soedin., 2, 265 (1960). 104. V. E. Eskin, O. Z. Korothina, Vysokomol. Soedin,, 2, 272 (1960); J. Polym. Sci. USSR, 2, 247 (1961). 105. J. M. Evans, M. B. Huglin, Makromol. Chem., 127, 141 (1969). 106. J. M. Evans, M. B. Huglin, Europ. Polym. J., 6, 1161 (1970).
107. J. M. Evans, M. B. Huglin, cited in [84]. 108. W. W. Everett, J. F. Foster, J. Am. Chem. Soc, 81, 3459, 3464 (1959). 109. J. Feisst, H.-G. Elias, Makromol. Chem., 82, 78 (1965). 110. P. J. Flory, "Principles of Polymer Chemistry", Cornell Univ. Press, Ithaca, NY, 1953. 111. P. J. Flory, L. Mandelkern, J. B. Kinsinger, W. B. Shultz, J. Am. Chem. Soc, 74, 3364 (1952). 112. T. G. Fox, Polymer, 3, 111 (1962). 113. T. G. Fox, P. J. Flory, J. Am. Chem. Soc, 73, 1909 (1959). 114. T. G. Fox, P. J. Flory, J. Am. Chem. Soc, 73, 1915 (1959). 115. T. G. Fox, J. B. Kinsinger, H. F. Mason, E. M. Schuele, Polymer, 3, 71 (1962). 116. D. M. French, A. W. Casey, C. I. Collins, P. Kirchner, ACS Polymer Preprints, 7, 447 (1966). 117. D. Froelich, Ph.D. Thesis, Univ. of Strasbourg, 1966; cited in [83]. 118. D. Froelich, H. Benoit, Makromol. Chem., 92, 224 (1966). 119. M. Fukuda, M. Fukutomi, Y. Kato, T. Hashimoto, J. Polym. Sci.-Polym. Chem. Ed., 12, 871 (1974). 120. C. Garbuglio, L. Crescentini, A. MuIa, G. B. Gechele, Makromol. Chem., 97, 97 (1966). 121. L. Gargallo, J. Niezzette, V. Desreux, Bull. Soc Roy. Sci. Liege, 1-2, 82 (1977); cited in [122]. 122. L. Gargallo, D. Radic, I. Katime, Europ. Polym. J., 16, 383 (1980). 123. G. B. Gechele, L. Crescentini, J. Polym. Sci. A, 3, 3599 (1965). 124. H. Geerissen, B. A. Wolf, Makromol. Chem., Rapid Commun., 3, 17 (1982). 125. G. Gianotti, U. Bonicelli, D. Borghi, Makromol. Chem., 166, 235 (1973). 126. C. Gonzalez, F Zamora, G. M. Guzman, L. M. Leon, Makromol. Chem., 185, 339 (1984). 127. T. B. Grimley, Proc Roy. Soc. [London] A, 212, 339 (1952). 128. U. Gruber, Ph.D. Thesis, ETH Zurich, 1964. 129. N. Hadjichristidis, Polymer, 16, 848 (1975). 130. N. Hadjichristidis, J. E. L. Roovers, J. Polym. Sci., Polym. Phys. Ed., 12, 2521 (1974). 131. J. Hakozaki, J. Chem. Soc Japan, Pure Chem. Sect. (Nippon Kagaku Zasshi), 82, 158 (1961). 132. F. Hamada, K. Fujisawa, A. Nakajima, Polym. J., 4, 316 (1973). 133. K. Hanafusa, A. Teramoto, H. Fujita, J. Chem. Phys., 70, 4004 (1966). 134. J. N. Hay, A. M. Afifi-Effat, Brit. Polym. J., 9, 1 (1977). 135. J. N. Hay, P A. Fitzgerald, J. Polym. Sci., Polym. Chem. Ed., 18, 1079 (1980). 136. J. N. Hay, M. Wiles, Brit. Polym. J., 10, 181 (1978). 137. W. Hayduk, H. A. Bromfield, J. Appl. Polym. Sci., 22, 149 (1978). 138. T. E. Helminiak, C. L. Benner, W. E. Gibbs, ACS Polymer Preprints, 8, 284 (1967). 139. I. Hernandez-Fuentes, M. G. Prolongo, Europ. Polym. J., 15, 571 (1979). 140. F. K. Herold, B. A. Wolf, Makromol. Chem., 184, 2539 (1981).
141. J. Herold, G. Meyerhoff, Europ. Polym. J., 15, 525 (1979). 142. M. Heskins, J. E. Guillet, J. Macromol. Sci. A, 2, 1441 (1968). 143. T. Hirosye, Y. Einaga, H. Fujita, Polym. J., 11, 819 (1979). 144. T. Homma, K. Kawahara, H. Fujita, M. Ueda, Makromol. Chem., 67, 132 (1963). 145. T. Homma, K. Kawahara, H. Fujita, J. Appl. Polym. Sci., 8, 2853 (1964). 146. F. Hooshmand-Mozaffar, M. K. Hoseinalizadeh-Khorasani, M. B. Huglin, Polymer, 21, 413 (1980). 147. F. Horii, Y Ikada, I. Sakurada, J. Polym. Sci., Polym. Chem. Ed., 12, 323 (1974). 148. N. Howard, M. B. Huglin, R. W. Richards, J. Appl. Polym. Sci., 16, 1525 (1972). 149. A. J. Hyde, R. B. Taylor, Polymer, 4, 1 (1963). 150. T. Ikeda, H. Kawaguchi, Rep. Progr. Polym. Phys. Japan, 9, 23 (1966). 151. H. Inagaki, A. Nakazawa, T. Kotaka, Bull. Inst. Chem. Res. Kyoto Univ., 43, 135 (1965). 152. H. Inagaki, T. Miyamoto, S. Ohta, J. Phys. Chem., 70, 3420 (1966). 153. H. Inagaki, H. Suzuki, M. Fujii, T Matsuo, J. Phys. Chem., 70, 1718 (1966). 154. K. J. Mn, H. A. Ende, G. Meyerhoff, Polymer, 3,129 (1962). 155. M. Iwama, H. Utiyama, M. Kurata, J. Macromol. Chem., 1, 701 (1966). 156. Y. Izumi, Y Miyake, Polym. J., 3, 647 (1972). 157. Y Izumi, Y. Miyake, Polym. J., 4, 205 (1973). 158. Y. Izumi, S. Otsuka, Y Miyake, Rep. Progr. Polym. Phys. Japan, 12, 13 (1969). 159. R. Jerome, V. Desreux, Europ. Polym. J., 6, 411 (1970). 160. R. M. Johnson, J. L. Schrag, J. D. Ferry, Polym. J., 1, 742 (1970). 161. M. Kalfus, J. Mitus, J. Polym. Sci. A-I, 4, 953 (1966). 162. K. Kamada, H. Sato, Polym. J., 2, 593 (1971). 163. K. Kamide, T. Terekawa, Makromol. Chem., 155,25 (1972). 164. Ye. A. Kanevskaya, P. I. Zubov, L. V. Ivanova, Yu. S. Lipatov, Vysokomol. Soedin., 6, 981 (1964); Polym. Sci. USSR, 6, 1080 (1964). 165. A. Katchalsky, H. Eisenberg, J. Polym. Sci., 6, 145 (1951). 166. I. A. Katime Amashta, G. Sanchez, Europ. Polym. J., 11,223 (1975). 167. H. Kaye, H. J. Cou, J. Polym. Sci., Polym. Phys. Ed., 13,477 (1975). 168. W. Kern, D. Braun, Makromol. Chem., 27, 23 (1958). 169. J. B. Kinsinger, L. E. Ballard, J. Polym. Sci. B, 2, 879 (1964). 170. J. B. Kinsinger, L. E. Baliard, J. Polym. Sci. A, 3, 3963 (1965). 171. J. B. Kinsinger, R. E. Hughes, J. Phys. Chem., 67, 1922 (1963). 172. J. B. Kinsinger, R. A. Wessling, J. Am. Chem. Soc, 81, 2908 (1959). 173. R. Kirste, G. V. Schulz, Z. Physik. Chem. (Frankfurt/M.), 27, 310 (1960). 174. R. G. Kirste, G. V. Schulz, Z. Physik. Chem. (Frankfurt/M.), 30, 171 (1961).
175. M. R. Knecht, R-G. Elias, Makromol. Chem., 157, 1 (1972). 176. A. Kokkiaris, C. Touloupis, N. Hadjichristidis, Polymer, 22, 63 (1981). 177. R. Koningsveld, Th. G. Schoolte, private communication. 178. T. Kotaka, H. Ohnuma, H. Inagaki, Polymer, 10, 517 (1969). 179. T. Kotaka, H. Ohnuma, H. Inagaki, ACS Polymer Preprints, 11, 660 (1970). 180. T. Kotaka, H. Ohnuma, Y. Murakami, J. Phys. Chem., 70, 4099 (1966). 181. T. Kotaka, T. Tanaka, H. Ohnuma, Y. Murakami, H. Inagaki, Polymer J., 1, 245 (1970). 182. A. Kotera, H. Matsuda, K. Konishi, K. Takemura, J. Polym. Sci. C, 23, 619 (1968). 183. A. Kotera, N. Onda, T. Saito, Rep. Progr. Polym. Phys. Japan, 17, 25 (1974). 184. A. Kotera, T. Saito, N. Yamaguchi, Annual Meeting Chem. Soc. Japan, 1962; cited in A. Kotera, N. Ise, A. Senuma, T. Hamada, IUPAC Symp. Macromol., Prague 1965, Preprint 232. 185. J. Kovaf, L. Mrkvickova-Vaculova, M. Bohdanecky, Makromol. Chem., 176, 1829 (1975). 186. P. Kratochvil, D. Strtakova, Makromol. Chem., 154, 325 (1972). 187. S. Krause, E. Cohn-Ginsburg, J. Phys. Chem., 67, 1479 (1963). 188. W. R. Krigbaum, D. K. Carpenter, J. Phys. Chem., 59, 1166 (1955). 189. W. R. Krigbaum, P. J. Flory, J. Polym. Sci., 11, 37 (1953). 190. W. R. Krigbaum, J. E. Kurz, P. Smith, J. Phys. Chem., 65, 1984 (1961). 191. W. R. Krigbaum, L. H. Sperling, J. Phys. Chem., 64, 99 (1960). 192. W. R. Krigbaum, J. D. Woods, J. Polym. Sci. A, 2, 3075 (1964). 193. S. Krozer, Plaste Kautschuk, 15, 175 (1968). 194. S. Krozer, A. Pastusiak, IUPAC Symp. Macromol., Prague 1965, Preprint 609. 195. K. Kubo, K. Ogino, Rep. Progr. Polym. Phys. Japan, 10,111 (1967). 196. K. Kubo, K. Ogino, T. Nakagawa, Rep. Progr. Polym. Phys. Japan, 10, 7 (1967). 197. Z. Kuciikyavuz, A. Kuc,iikyavuz, Europ. Polym. J., 14, 867 (1978). 198. A. M. Kulakova, I. K. Nekrasov, Vysokomol. Soedin. A, 18, 127 (1976); Polym. Sci. USSR, 18, 146 (1976). 199. M. Kurata, H. Utiyama, K. Kamada, Makromol. Chem., 88, 281 (1965). 200. N. Kuwahara, S. Higashida, M. Nakata, K. Kaneko, J. Polym. Sci. A-2, 7, 285 (1969). 201. N. Kuwahara, M. Kaneko, Makromol. Chem., 82 205 (1965). 202. N. Kuwahara, T. Miyake, M. Kaneko, J. Furuichi, Rep. Progr. Polym. Phys. Japan, 5, 1 (1962). 203. N. Kuwahara. S. Saeki, S. Konno, M. Kaneko, Macromolecules, 6, 589 (1973). 204. N. Kuwahara, S. Saeki, S. Konno, Polymer, 15, 66 (1974).
205. D. Lath, M. Bohdanecky, J. Polym. Sci.-Letters Ed., 15, 555 (1977). 206. H. T. Lee, D. W. Levi, J. Polym. Sci., 47, 449 (1960). 207. L. M. Leon, J. Galaz, L. M. Garcia, M. S. Anasagasti, Europ. Polym. J., 16, 921 (1980). 208. D. W. Levi, H. T. Lee, R. J. Valles, J. Polym. Sci., 62, S163 (1962). 209. J. Lilie, J. Springer, K. Ueberreiter, Kolloid-Z., 226, 138 (1968). 210. F. C. Lin, S. S. Stivala, J. A. Biesenberger, J. Appl. Polym. Sci., 17, 3465 (1973). 211. M. Lippay. Ph.D. Thesis, ETH Zurich, 1963. 212. J. Llopis, A. Albeit, P. Usobiaga, Europ. Polym. J., 3, 259 (1967). 213. T. Lucas, Bull. Liaison Lab. (Lab. Prof. Peint)., 20, 15 (1967). 214. N. V. Makletsova, I. V. Epel'baum, B. A. Rozenberg, Ye. B. Lyudvig, Vysokomol. Soedin., 7, 70 (1965); Polym. Sci. USSR, 7, 73 (1966). 215. L. Mandelkern, P. J. Flory, J. Am. Chem. Soc, 74, 2517 (1952). 216. P. V. Mangalam, V. P. Kalpagam, J. Polym. Sci.-Polym. Phys. Ed., 20, 773 (1982). 217. V. P. Mardykin, K. B. Martinovich, A. I. Volozhin, N. M. Denisyuk, Vysokomol. Soedin. B, 16, 23 (1974); CA 81: 1390Or (1974). 218. J. E. Mark, Diss. Abstr., 23, 1205 (1962). 219. J. E. Mark, P. J. Flory, J. Am. Chem. Soc, 87, 1423 (1965). 220. R. M. Masegosa, M. G. Prolongo, I. Hernandez-Fuentes, A. Horta, Macromolecules, 17, 1181 (1984). 221. T. Matsumoto, N. Nishioka, H. Fujita, J. Polym. Sci. A-2,10, 23 (1972). 222. M. Matsumoto, Y. Ohyanagi, J. Polym. Sci., 46, 441 (1960). 223. M. Matsumoto, Y. Ohyanagi, J. Polym. Sci., 50, Sl (1961). 224. K. Matsumura, Polym. J., 1 322 (1970). 225. M. Matsushima, M. Fukatsu, M. Kurata, Bull. Chem. Soc Japan, 41, 2570 (1968). 226. A. Mattiussi, E. Conto, G. B. Gechele, Europ. Polym. J., 8, 429 (1972). 227. W. L. Mattice, L. Mandelkern, Macromolecules, 4, 271 (1971). 228. R. M. May, R. E. Wetton, cited in [84]. 229. H. W. McCormick, J. Polym. Sci., 36, 341 (1959). 230. D. Mclntyre, J. H. O'Mara, B. C. Konouck, J. Am. Chem. Soc, 81, 3498 (1959). 231. R. A. Mendelson, J. Polym. Sci., 46, 493 (1960). 232. G. Meyerhoff, Makromol. Chem., 37, 97 (1960). 233. G. Meyerhoff, in: J. W. Williams (Ed.), "Ultracentrifugal Analysis in Theory and Practice". Academic Press, New York, 1963. 234. R. Meza, L. Gargallo, Europ. Polym. J., 13, 235 (1977). 235. S. Miyamoto, Y. Ishii, H. Ohnuma, Makromol. Chem., 182, 483 (1981). 236. J. Moacanin, J. Appl. Polym. Sci., 1, 272 (1959). 237. J. Moacanin, A. Rembaum, R. K. Laudenslager, ACS Polymer Preprints, 4/2, 179 (1963).
238. J. Moacanin, A. Rembaum, R. K. Laudenslager, R. Adler, J. Macromol. Sci., Chem., A: 1, 1497 (1967). 239. R. B. Mohite, S. Gundiah, S. L. Kapur, Makromol. Chem., 108, 52 (1967). 240. L. D. Moore, Jr., J. Polym. Sci., 36, 155 (1959). 241. W. R. Moore, M. Uddin, Europ. Polym. J., 5, 185 (1969). 242. G. Moraglio, Europ. Polym. J., I1 103 (1965). 243. G. Moraglio, J. Brzenzainski, J. Polym. Sci. B, 2, 1105 (1964). 244. G. Moraglio, G. Gianotti, U. Bonicelli, Europ. Polym. J., 9, 623 (1973). 245. G. Moraglio, G. Gianotti, F. Danusso, Europ. Polym. J., 3, 251 (1967). 246. G. Moraglio, G. Gianotti, F. Zoppi, U. Bonicelli, Europ. Polym. J., 7, 303 (1971). 247. U. Moritz, G. Meyerhoff, Makromol. Chem., 139,23 (1970). 248. G. A. Morneau, P. I. Roth, A. R. Shultz, J. Polym. Sci., 55, 609 (1961). 249. J. Naghizadeh, J. Springer, Kolloid-Z. Z. Polym., 215, 21 (1967). 250. R. Naito, Chem. High Polym. Japan (Kobunshi Kagaku), 16, 7 (1959). 251. A. Nakajima, H. Fujiwara, F. Hamada, J. Polym. Sci. A-2,4, 507 (1966). 252. A. Nakajima, F. Hamada, Rep. Progr. Polym. Phys. Japan, 9, 41 (1966). 253. A. Nakajima, K. Kato, Makromol. Chem., 95, 52 (1966). 254. A. Nakajima, K. Okazaki, Chem. High Poiym. Japan (Kobunshi Kagaku), 22, 791 (1965). 255. A. Nakajima, H. Saijyo, J. Polym. Sci. A-2, 6, 735 (1968). 256. A. Nakajima, K. Tanaami, Polym. J., 5, 248 (1973). 257. D. H. Napper, Trans. Faraday Soc, 64, 1701 (1968). 258. D. H. Napper, Kolloid-Z., 234, 1149 (1969). 259. D. H. Napper, J. Colloid Interface Sci., 32, 106 (1970). 260. D. H. Napper, J. Colloid Interface Sci., 33, 384 (1970). 261. D. W. Nash, C. C. Pepper, Polymer, 16, 105 (1975). 262. P. Neuenschwander, P. Pino, Makromol. Chem., 181, 737 (1980). 263. S. Newman, W. R. Krigbaum, C. Laugier, P. J. Flory, J. Polym. Sci., 14, 451 (1954). 264. J. Niezette, N. Hadjichristidis, V. Desreux, Europ. Polym. J., 13, 41 (1977). 265. A. Nikolaev, N. V. Daniel, A. M. Torotseva, I. Varga, N. V. Ivanova, Vysokomol. Soedin., 6, 292 (1964); Polym. Sci. USSR, 6, 336 (1964). 266. I. Noda, K. Mizutani, T. Kato, T. Fujimoto, N. Nagasawa, Macromolecules, 3, 787 (1970). 267. H. Ohnuma, Y. Murakami, T. Kotaka, Rep. Progr. Polym. Phys. Japan, 10, 63 (1967). 268. R. Okada, Y. Toyoshima, H. Fujita, Makromol. Chem., 59, 137 (1963). 269. T. A. Orofino, A. Ciferri, J. Phys. Chem., 68, 3136 (1964). 270. T. A. Orofino, J. W. Mickey, Jr., J. Chem. Phys., 38, 2512 (1963). 271. R. Okada, Y. Toyoshima, H. Fujita, Makromol. Chem., 59, 137 (1963).
272. S. Okamura, T. Higashimura, Y. Imanishi, Chem. High Polym. Japan (Kobunshi Kagaku), 16, 244 (1959). 273. J. Oth, V. Desreux, Bull. Soc. Chim. Beige, 63, 285 (1954). 274. P. Outer, C. I. Carr, B. H. Zimm, J. Chem. Phys., 18, 830 (1950). 275. C. G. Overberger, E. M. Pearce, N. Mayes, J. Polym. Sci., 34, 109 (1959). 276. O. Quadrat, Coll. Czech. Chem. Commun., 35, 2564 (1970). 277. O. Quadrat, M. Bohdanecky, J. Polym. Sci. A-2, 5, 1309 (1967). 278. O. Quadrat, M. Bohdanecky, L. Mrkvickova, Makromol. Chem., 182, 445 (1981). 279. O. Quadrat, M. Bohdaneckv, P. Munk, J. Polym. Sci. C, 16, 95 (1967). 280. M. Pissoli, G. Ceccorulli, G. Stea, Makromol. Chem., 164, 273 (1973). 281. M. Pizzoli, G. Stera, G. Ceccorulli, G. B. Gechele, Europ. Polym. J., 6, 1219 (1970). 282. I. Ya. Poddubnyi, V. A. Grechanovskii, M. I. Mosevitskii, Vysokomol. Soedin, 5, 1049 (1963); Polym Sci. USSR, 5, 105 (1964). 283. I. Ya. Poddubnyi, V. A. Grechanovskii, M. I. Mosevitskii, A. V. Podalinskii, Vysokomol. Soedin, 5, 1042 (1963); Polym. Sci. USSR, 5, 97 (1964). 284. I. Ya. Poddubnyi, V. A. Grechanovskii, A. V. Podalinskii, J. Polym. Sci. C, 16, 3109 (1968). 285. I. Ya. Poddubnyi, A. V. Podalinskii, V. A. Grechanovskii, Polym. Sci. USSR, 8, 1715 (1966). 286. R. Puffr, Z. Tuzar, L. Mrkvickova, J. Sebenda, Makromol. Chem., 184, 1957 (1983). 287. D. Radic, L. Gargallo, Makromol. Chem., 180, 1329 (1979). 288. D. Radic, L. Gargallo, Polymer, 22, 410 (1981). 289. C. Reiss, H. Benoit, Compt. Rend. Acad. Sci. (Paris), 253, 268 (1962). 290. C. Reiss, H. Benoit, J. Polym. Sci. C, 16, 3079 (1968). 291. R. W. Richards, Polymer, 18, 114 (1977). 292. R. W. Richards, G. Disselhoff, Angew. Makromol. Chem., 66, 221 (1978). 293. A. Roig, I. Katime, V. C. Ramiro, L. M. Leon, An. Quim., 69, 965 (1973). 294. J. Roovers, Polymer, 20, 843 (1979). 295. R. Rossi, A. Mattiussi, G. B. Gechele, D. Damiani, Chim. Ind. (Milan), 53, 350(1971). 296. S. Saeki, S. Konno, N. Kuwahara, M. Nakata, M. Kaneko, Macromolecules, 7, 521 (1974). 297. G. Saini, L. Trossarelli, J. Polym. Sci., 23, 563 (1957). 298. Y. Sakaguchi, J. Nishino, K. Tsugawa, Chem. High Polym., Japan (Kobunshi Kagaku), 20, 661 (1963). 299. I. Sakurada, A. Nakajima, K. Shibetani, J. Polym. Sci. A, 2, 3345 (1964). 300. I. Sakurada, A. Nakajima, O. Yoshizaki, K. Nakamae, Kolloid-Z., 186, 41 (1962). 301. I. Sakurada, Y. Sakaguchi, S. Kokuryo, Chem. High. Polym. Japan (Kobunshi Kagaku), 17, 227 (1960). 302. R. J. Samuels, Polymer, 18, 452 (1977). 303. M. Sato, Y. Koshishi, M. Asahina, J. Polym. Sci. B, 1, 233 (1963).
304. K. S. Sastry, R. D. Patel, Europ. Polym. J., 5, 79 (1969). 305. P. R. Saunders, J. Poiym. Sci., 57, 131 (1961). 306. W. Scholtan, H. Lange, R. Casper, U. Pohl, D. Wendisch, R. Mayer-Mader, Angew. Makromol. Chem., 27, 1 (1972). 307. G. V. Schulz, H. Baumann, Makromol. Chem., 60,120 (1963). 308. G. V. Schulz, H. J. Cantow, Z. Elektrochem., 60, 517 (1956). 309. G. V. Schulz, A. Haug, Z. Physik. Chem. (Frankfurt/M.), 34, 328 (1962). 310. G. V. Schulz, A. MuIa, Makromol. Chem., 44/46, 479 (1961). 311. G. V. Schulz, W. Wunderlich, R. Kirste, Makromol. Chem., 75, 22 (1964). 312. K. Sedlak, D. Lath, Makrotest sb, Prednasek, Celustatni Kof., 5, 71 (1978); CA 89, 180549e (1978). 313. V. S. Shazka, G. A. Fomin, G. V. Tarasova, I. G. Kirillova, V. M. Yamshchikov, A. Ye. Grishchenko, I. A. Shefer, I. S. Alekseyeva, Polym. Sci. USSR, 15, 2903 (1973). 314. Y. Shiokawa, H. Takeo, K. Takamizawa, T. Oyama, Rep. Progr. Polym. Phys. Japan, 7, 49 (1964). 315. A. R. Shultz, Ph.D. Thesis, Cornell Univ., cited in [HO]. 316. A. R. Shultz, J. Am. Chem. Soc, 76, 3422 (1954). 317. A. R. Shultz, C. R. McCullough, J. Polym. Sci. A-2,7, 1577 (1969). 318. L. Simek, J. Hrncirik, M. Mladek, Angew. Makromol. Chem., 92, 33 (1980). 319. G. Sitaramaiah, D. Jacobs, Makromol. Chem., 164, 237 (1973). 320. V. S. Skazka, R. A. Zobov, A. Moshpauenko, Vysokomol. Soedin., 4, 1257 (1962). 321. E. M. Sorvik, J. Appl. Polym. Sci., 21, 2769 (1977). 322. T. Spychaj, D. Lath, D. Berek, Polymer, 20, 437 (1979). 323. K. S. V. Srinivasan, M. Santappa, Polymer, 14, 5 (1973). 324. C. J. Stacy, R. L. Arnett, J. Phys. Chem., 69, 3109 (1965). 325. C. J. Stacy, J. E Foster, J. Polym. Sci., 20, 56 (1956). 326. U. P. Strauss, P Ander, J. Phys. Chem., 66, 2235 (1962). 327. U. P. Strauss, R L. Wineman, J. Am. Chem. Soc, 80, 3266 (1958). 328. C. Strazielle et al., cited in J. P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, G. Jannink, R. Ober, C. Picot, J. des Cloizeaux, Macromolecules, 7, 863 (1974). 329. C. Strazielle, H. Benoit, O. Vogl, Europ. Polym. J., 14, 331 (1978). 330. H. Suzuki, K. Kamide, M. Saitoh, Europ. Polym. J., 18, 123 (1982). 331. H. Suzuki, Y Muraoka, M. Saitoh, K. Kamide, Brit. Polym. J., 14, 23 (1982). 332. H. Suzuki, Y. Muraoka, M. Saitoh, K. Kamide, Europ. Polym. J., 18, 831 (1982). 333. K. Takamizawa, Y. Kambara, T Oyama, Rep. Progr. Polym. Phys. Japan, 10, 85 (1967). 334. S. Tani, F. Hamada, A. Nakajima, Polym. J., 5, 86 (1973). 335. J. O. Threkeld, H. A. Ende, J. Polym. Sci. A-2,4,663 (1966). 336. M. Tricot, J. P. Bleus, J.-P. Riga, V. Desreux, Makromol. Chem., 175, 913 (1974). 337. M. Tricot, C. Mertens, R Collete, V. Desreux, Bull. Roy. Soc. Liege, 43, 502 (1974).
338. S. Tsuchiya, Y. Sakaguchi, I. Sakurada, Chem. High. Polym. Japan (Kobunshi Kagaku), 18, 346 (1961). 339. T Tsuji, H. Fujita, Polym. J., 4, 409 (1973). 340. V. N. Tsvetkov, L. N. Andreyeva, Ye. V. Korneyeva, R N. Lavrenko, N. A. Plate, V. R Shibayev, B. S. Petrukhin, Vysokomol. Soedin. A, 14, 1944 (1972). 341. V. N. Tsvetkov, L. N. Andreyeva, Ye. V. Komeyeva, P. N. Lavrenko, N. A. Plate, V. P Shibayev, B. S. Petrukhin, Vysokomol. Soedin. A, 13, 2226 (1971); Polym. Sci. USSR, 13, 2501 (1971). 342. V. N. Tsvetkov, G. V. Tarasova, Ye. L. Vinogradov, N. Kuprianova, V. M. Yamshchikov, V. S. Kozka, V. S. Ivanov, V. K. Smirnova, 1. I. Migunova, Vysokomol. Soedin. A, 13, 620 (1971); Polym. Sci. USSR, 13, 705 (1971). 343. Z. Tuzar, P. Kratochvil, Coll. Czech. Chem. Comm., 32, 3358 (1967). 344. Z. Tuzar, V. Vosicky, M. Bohdanecky, J. Jalovecky, Makromol. Chem., 180, 1399 (1979). 345. M. Ueda, K. Kajitani, Makromol. Chem., 108, 138 (1967) 346. M. Uhniat, M. Rubaj, T. Marciniak, J. Bankiewicz, Polimery, 17, 141 (1972); CA 77: 153493c (1972). 347. I. R. Urwin, M. Girolamo, Makromol. Chem., 150, 179 (1971). 348. R. van Leemput, R. Stein, J. Polym. Sci. A, 2, 4039 (1964). 349. P. Vasudevan, M. Santappa, Makromol. Chem., 137, 261 (1970). 350. J. Valickovic, V. Juranicova, J. Filipovic, Angew. Makromol. Chem., 24, 77 (1972). 351. H. Volker, F-J. Luig, Angew. Makromol. Chem., 12, 43 (1970). 352. H. L. Wagner, P J. Flory, J. Am. Chem. Soc, 74,195 (1952). 353. H. L. Wagner, C. A. J. Hoeve, J. Polym. Sci.-Symp., 54, 327 (1976). 354. R. A. Wessling, Diss. Abstr., 23, 1536 (1962). 355. G. R. Williamson, A. Cervenko, Europ. Polym. J., 10, 295 (1974). 356. B. A. Wolf, H. F. Bieringer, J. W. Breitenbach, Polymer, 17, 605 (1976). 357. E. Wolfram, Kolloid-Z. Z. Polym., 227, 86 (1968). 358. K. Yamamoto, N. Bessho, T. Shiibashi, E. Maekawa, Polym. J., 13, 555 (1981). 359. M. M. Zafar, R. Mahmood, Makromol. Chem., 175, 903 (1974). 360. E. A. Zavaglia, F. W. Billmeyer, Jr., Official Digest, 36, 221 (1964). 361. G. Gianotti, U. Bonicelli, D. Borghi, Makromol. Chem., 166, 235 (1973). 362. M. Abe, Y. Murakami, H. Fujita, J. Appl. Polym. Sci., 9, 2549(1965). 363. J. Mays, H. Hadjichristidis, L. J. Fetters, Macromolecules, 17, 2723 (1984). 364. K. Kajiwara, H. Suzuki, H. Inagaki, M. Maeda, T. Tsuruta, Makromol. Chem., 187, 2251 (1986). 365. Z. Kiic.ukyavuz, S. Kugiikyavuz, Makromol. Chem., 187 2469 (1986). 366. J. Roovers, J. Polym. Sci., Polym. Phys. Ed., 23, 1117 (1985).
367. S. Arichi, N. Sakamoto, S. Himura, M. Miki, M. Yoshida, Polymer, 26, 1175(1985). 368. G. C. Berry, E. F. Casassa, P.-Y. Liu, J. Polym. Sci., Polym. Phys. B, 25, 673 (1987). 369. O. Vogl, M. Malanga, W. Berger, in W. J. Bailey, T. Tsuruta, Eds., "Contemporary Topics in Polymer Science", Vol. 4, Plenum, New York 1984, p. 35. 370. J. W. Mays, W. M. Ferry, N. Hadjichristidis, W. G. Funk, L. J. Fetters, Polymer, 27, 129 (1986). 371. R. W. Richards, A. Maconnachie, G. Allen, Polymer, 22,153 (1981). 372. J. L. Roovers, P. M. Toporowski, Macromolecules, 14, 1174 (1981). 373. J. L. Roovers, P. M. Toporowski, Macromolecules, 16, 843 (1983). 374. B. A. Wolf, H. J. Adam, J. Chem. Phys., 75, 4121 (1981). 375. P. Vidakovic, F. Rondelez, Macromolecules, 18,700 (1985). 376. W. Brown, P. Stepanek, Macromolecules, 21, 1791 (1988). 377. H. Geerissen, J. Roos, B. A. Wolf, Makromol. Chem., 186, 753 (1985). 378. S. Arichi, Bull. Chem. Soc. Japan, 39, 439 (1966). 379. P. V. Mangalam, V. P. Kalpagam, Polymer, 23, 991 (1982). 380. F. Horkay, H. B. Stanley, E. Geissler, S. M. King, Macromolecules, 28, 678 (1995). 381. P. Sakellariou, Polymer, 33, 1339 (1992). 382. S. Fujishige, Polymer J., 19, 297 (1987). 383. P. Gregory, M. B. Huglin, M. K. H. Khorasani, P. M. Sasia, Brit. Polym. J., 20, 1 (1988). 384. K. Kamide, Y. Miyazaki, H. Kobayashi, Polymer J., 17, 607 (1985). 385. K. Kamide, Y Miyazaki, H. Kobayashi, Polymer J., 14, 591 (1982). 386. L. Gargallo, D. Radic, A. Leon, Makromol. Chem., 186, 1289 (1985). 387. W. Scholtan, H. Marzolph, Makromol. Chem., 57,52 (1962). 388. V. P. Shibaev, Habilitation Thesis, Moscow State University, 1974; cited by N. A. Plate, V. P. Shibaev, "Comb-Shaped Polymers and Liquid Crystals", Plenum, New York, 1987. 389. M. P. Breton, Diss. Abstracts International B, 42/11, 4446 (1982). 390. K. Kubota, S. Fujishige, I. Ando, Polymer J., 22, 15 (1990). 391. S. R. Gooda, M. B. Huglin, Macromolecules, 25, 4215 (1992). 392. K. Sivadasan, S. Gundiah, Polymer, 28, 1426 (1987). 393. K. Nomiama, M. Kaneko, Rep. Progr. Polym. Phys. Japan, 24, 15 (1981). 394. N. M. Wiederbora, A. R. Brown, J. Polym. Sci., 8, 651 (1952). 395. N. Hadjichristidis, C. Touloupis, Makromol. Chem., 183, 611 (1982). 396. N. Hadjichristidis, J. Mays, W. Ferry, L. J. Fetters, J. Polym. Sci.-Polym. Phys. Ed., 22, 1745 (1984). 397. J. W. Mays, W. Ferry, N. Hadjichristidis, L. J. Fetters, Macromolecules, 18, 2330 (1985). 398. N. Hadjichristidis, Makromol. Chem., 178, 1463 (1977). 399. M. Krakovyak, T. Ananieva, E. Anufrieva, T. Nekrasova, G. Sinitsina, Makromol. Chem., 186, 1075 (1985).
400. H. Inagaki, S. Kawai, Makromol. Chem., 79, 42 (1964). 401. X. Zhongde, N. Hadjichristidis, L. J. Fetters, Macromolecules, 17, 2303 (1984). 402. H. G. Ohm, R. G. Kirste, R. C. Oberthiir, Makromol. Chem., 189, 1387 (1988). 403. M. Nakata, Y Nakano, K. Kawate, Macromolecules, 21, 2509 (1988). 404. E. Siakali-Kioulafa, N. Hadjichristidis, J. W. Mays, Macromolecules, 22, 2059 (1989). 405. J. W. Mays, N. Hadjichristidis, J. S. Lindner, ACS Polymer Preprints, 32/1, 148 (1991). 406. M. Ricker, M. Schmidt, ACS Polymer Preprints, 31/2, 122 (1990) Makromol. Chem. 192, 679 (1991). 407. Y. Tamai, T. Konishi, Y. Einaga, M. Fujii, H. Yamakawa, Macromolecules, 23, 4067 (1990). 408. G. M. Burnett, P. Meares, C. Paton, Trans. Faraday, Soc, 58, 737 (1962). 409. M. Guaita, O. Chiantore, W. Burchard, Makromol. Chem., 192, 2333 (1991). 410. T. Yoshizaki, H. Hayashi, H. Yamakawa, Macromolecules, 26, 4037 (1993). 411. L. Gargallo, N. Hamidi, D. Radic, Polymer, 31, 924 (1990). 412. S. P. Nunes, B. A. Wolf, H. E. Jeberien, Macromolecules, 20, 1948 (1987). 413. Y Matsushita, K. Shimizu, Y Nakao, H. Chashi, I. Noda, M. Nagasawa, Polym. J., 18, 361 (1986). 414. I. Katime, J. R. Quintana, Polym. Bull, 6, 455 (1982). 415. M. J. R. Cantow, R. B. Larrabee, E. M. Barrall II, R. S. Butner, P. Cotts, F. Levy, T. Y Ting, Makromol. Chem., 187, 2475 (1986). 416. P. Gregory, M. B. Huglin, Makromol. Chem., 187, 1745 (1986). 417. M. Ataman, Colloid Polym. Sci., 265, 19 (1987). 418. W. F. Polik, W. Burchard, Macromolecules, 16, 978 (1983). 419. T. Amu, Polymer, 23, 1775 (1982). 420. Ye. A. Gladkova, S.-S. A. Pavlova, L. V. Dubrovina, V. V. Korshak, Vysokomol. soyed. A, 26,53 (1984); Polymer Sci. USSR, 26, 59 (1984). 421. M. B. Huglin, M. A. Radwan, Polymer, 32, 1293 (1991). 422. P. R. Saunders, J. Polym. Sci. A, 2, 3765 (1964). 423. W. Brown, Arkiv Kemi, 18, 227 (1961). 424. H. L. Griffin, S. R. Erlander, F. R. Senti, Die Starke, 1, 8 (1967). 425. V. P. Shanbhag, J. Ohman, Arkiv Kemi, 29, 163 (1968). 426. K. Kamide, S. Matsuda; cited in K. Kamide, M. Saito, Adv. Polym. Sci., 83, 1 (1987). 427. T. Konishi, Y. Yoshizaki, H. Yamakawa, Macromolecules, 24, 5614 (1991). 428. G. Allen, J. McAnish, C. Strazielle, Europ. Polym. J., 5, 319 (1969). 429. A. Lapp, C. Strazielle, Makromol. Chem.-Rapid Comm., 6, 591 (1985); Makromol. Chem., 188, 2921 (1987). 430. L. A. Tartarova, T G. Ermakova, N. F. Kedreena, B. A. Kasekeen, D. D. Novekov, B. A. Lopirev, Vysokomol. Soedin., 24, 697 (1982). 431. T. E. Helminiak, C. L. Benner, W. E. Gibbs, ACS Polymer Preprints, 8/1, 284 (1967).
432. P. J. Flory, L. Mandelkern, J. B. Kinsinger, W. B. Shultz, J. Am. Chem. Soc., 74, 3364 (1952). 433. A. Haug, G. Meyerhoff, Makromol. Chem., 53, 91 (1962). 434. H. Rios, L. Gargallo, D. Radic, J. Polym. ScL, B: Polym. Phys. 24, 2421 (1986). 435. P. P. Shah, J. Macromol. Sci. A: Chem. 21, 547 (1984). 436. L. V. Dubrovina, S.-S. A. Pavlova, M. A. Ponomareva, Vysokomol. Soyed. A, 27, 780 (1985); Polym. Sci. USSR, 27, 875 (1985). 437. J. I. Egaiazabal, J. Areizaga, J. J. Iruin, G. M. Guzman, Europ. Polym. J., 21, 711 (1985). 438. I. H. Park, J.-H. Kim, T. Chang, Macromolecules, 25, 7300 (1992). 439. C. Strazielle, H. Benoit, Macromolecules, 8, 203 (1975). 440. J. M. G. Cowie, I. J. McEwen, Polymer, 25, 1107 (1984). 441. A. Kanda, M. Duval, D. Sarazin, J. Francois, Polymer, 26, 406 (1985). 442. T. Schwartz, J. Sabbadin, J. Francois, Polymer, 22, 609 (1981). 443. O. Quadrat, L. Mrkvickova, Europ. Polym. J., 17, 1155 (1981). 444. E. A. Bekturov, S. L. Kudaibergenov, J. Macromol. Sci. B: Phys. 25, 133 (1986). 445. J. M. G. Cowie, I. J. McEwen, Brit. Polym. J., 18, 387 (1986). 446. K. Matsuo, W. H. Stockmayer, G. F. Needham, J. Polym. Sci., Polym. Symp., 71, 95 (1984). 447. N. Hadjichristidis, Z. Zhongde, L. J. Fetters, J. Roovers, J. Polym. Sci., Polym. Phys. Ed., 20, 743 (1982). 448. A. Nakajima, H. Fujiwara, J. Polym. Sci. A-2, 6, 723 (1968). 449. T. M. Birshtein, Europ. Polym. J., 13, 375 (1977). 450. N. Hadjichristidis, M. Devaleriola, V. Desreux, Europ. Polym. J,, 8, 1193 (1972). 451. G. C. Berry, J. Chem. Phys., 46, 1338 (1967). 452. A. Takahashi, S. Yamori, I. Kagawa, J. Chem. Soc. Japan, Ind. Chem. Section., 83, 11 (1962); cited in A. Takahashi, M. Nagasawa, J. Am. Chem. Soc, 86, 543 (1964). 453. J. W. Mays, L. J. Fetters, Macromolecules, 22, 921 (1989). 454. Xu Zhongde, J. Mays, C. Xuexin, N. Hadjichristidis, F. C. Schilling, H. E. Bair, D. S. Pearson, L. J. Fetters, Macromolecules, 18, 2560 (1985). 455. T. Norisuye, K. Kawahara, A. Teramoto, H. Fujita, J. Chem. Phys., 49, 4330 (1968). 456. J. W. Mays, N. Hadjichristidis, L. J. Fetters, Macromolecules, 18, 2231 (1985). 457. Xu Zhongde, N. Hadjichristidis, L. J. Fetters, Macromolecules, 17, 2303 (1984). 458. Xu Zhongde, N. Hadjichristidis, J. M. Carella, L. J. Fetters, Macromolecules, 16, 925 (1983). 459. J. G. Zilliox, J. E. L. Roovers, S. Bywater, Macromolecules, 8, 573 (1975). 460. S. Saeki, N. Kuwahara, S. Konno, M. Kaneko, Macromolecules, 6, 589 (1973). 461. A. M. Afifi-Effat, J. N. Hay, Brit. Polym. J., 8, 91 (1976). 462. W. R. A. D. Moore, W. Millns, Brit. Polym. J., 1, 81 (1969).
463. A. L. Izyumnikov, L. V. Mineyev, V. A. Maslennikov, L. S. Sidorina, O. S. Samsonova, A. D. Abkin, Polym. Sci. USSR, 30, 1062 (1988). 464. S. Ya. Magarik, A. P. Filippov, N. V. D'yakonova, Polym. Sci. USSR, 29, 772 (1987). 465. S. Kiiguiikyavuz, Z. Kuguukyavuz, Polym. Commun., 31,35 (1990). 466. A. Karandinos, J. W. Mays, H. Hadjichristidis, Polym. Bull., 24, 251 (1990). 467. L. Gargallo, N. Hamidi, D. Radic, Polym. Internat., 24, 1 (1991). 468. B. Simionescu, S. loan, M. Bercea, C. I. Simionescu, Europ. Polym. J., 27, 589 (1991). 469. L. Gargallo, E. Soto, F. R. Diaz, L. H. Tagle, D. Radic, Europ. Polym. J., 23, 571 (1987). 470. M. Yazdani-Pedram, L. Gargallo, D. Radic, Europ. Polym. J., 21, 461 (1985). 471. S. Arichi, M. Y. Pedram, J. M. G. Cowie, Europ. Polym. J., 15, 113 (1979). 472. G. Moraglio, G. Gianotti, Europ. Polym. J., 5, 781 (1969). 473. A. George, W. W. Wilson, J. S. Lindner, J. W. Mays, Polymer, 35, 600 (1994). 474. A. Kuntman, B. M. Baysal, Polymer, 34, 3723 (1993). 475. S. R. Gooda, M. B. Huglin, Polymer, 34, 1913 (1993). 476. A.-A. A. Abdel-Azim, M. B. Huglin, Polymer, 24, 1429 (1983). 477. Y. -Z. Chen, J. W. Mays, N. Hadjichristidis, J. Polym. Sci., Polym. Phys. Ed., 32, 715 (1994). 478. J. W. Mays, N. Hadjichristidis, J. S. Lindner, J. Polym. Sci., Polym. Phys. Ed., 28, 1881 (1990). 479. J. W. Mays, N. Hadjichristidis, W. W. Graessley, L. J. Fetters, J. Polym. Sci., Polym. Phys. Ed., 24, 2553 (1986). 480. N. Hadjichristidis, Xu Zhongde, L. J. Fetters, J. Roovers, J. Polym. Sci., Polym. Phys. Ed., 20, 743 (1982). 481. N. Hadjichristidis, J. W. Mays, R. D. Vargo, L. J. Fetters, J. Polym. Sci., Polym. Phys. Ed., 21, 189 (1983). 482. M. Ataman, E. A. Boucher, J. Polym. Sci., Polym. Phys. Ed., 20, 1585 (1982). 483. J. Ansorena, J. J. Iruin, G. M. Guzman, J. Polym. Sci., Polym. Phys. Ed., 18, 173 (1980). 484. S. H. Oh, M. S. John, J. Polym. Sci., Polym. Chem. Ed., 27, 1731 (1989). 485. A. Nakajima, F. Hamada, S. Hayashi, J. Polym. Sci. C, 15, 285 (1966). 486. C. Tsitslianis, E. Pierri, A. Dondos, J. Polym. Sci., Polym. Letters Ed., 21, 685 (1983). 487. R. R. Buch, H. M. Klimisch, O. K. Johannoson, J. Polym. Sci. A-2, 8, 541 (1970). 488. T. Altares, D. P. Wyman, V. R. Allen, J. Polym. Sci. A, 2, 4533 (1964). 489. S. N. Chinai, R. A. Guzzi, J. Polym. Sci., 41, 475 (1959). 490. U. Bianchi, V. Magnasco, J. Polym. Sci., 41, 177 (1959). 491. T. Hirao, A. Teramoto, T. Sato, T. Norisuye, T. Masuda, T. Higashimura, Polym. J., 23, 925 (1991). 492. R. Chiang, J. Phys. Chem., 70, 2348 (1966). 493. T. A. Orofino, F. Wenger, J. Phys. Chem., 67, 566 (1963).
494. G. Tanaka, S. Imai, H. Yamakawa, J. Chem. Phys., 52, 2639 (1970). 495. K. Kawahara, T. Norisuye, H. Fujita, J. Chem. Phys., 49, 4339 (1968). 496. P. R. Sundarajan, in: J. E. Mark, (Ed.), "Physical Properties of Polymers Handbook", AIP Press, American Institute of Physics, Woodbury. NY, 1996, p. 197. 497. J. W. Mays, N. Hadjichristidis, J. Macromol. Sci.-Rev. Macromol. Chem. Phys. C, 28, 371 (1988). 498. H. -G. Elias, Polymere, Huthig and Wepf, Zug (Switzerland) 1996, p. 204; Polymers, VCH Publ., Weinheim (Germany) 1997, p. 209. 499. K. Akasaka, Y. Nakamura, T. Norisuye, A. Teramoto, Polym. J., 26, 363 (1994). 500. Y H. Park, D. C. Lee, Polymer (Korea), 12,749 (1988); cited in (496). 501. I. A. Ronova, M. A. Ponomareva, L. V. Dubrovina, et al., Int. Polym. Sci. Techn., 13, T 90 (1986); cited in (496). 502. I. Noda, T. Horikawa, T. Kato, T. Fujimoto, M. Nagasawa, Macromolecules, 3, 795 (1970). 503. M. Bohdanecky, D. Berek, Macromol. Chem., Rapid Commun., 6, 275 (1985). 504. D. Pateropoulou, E. Siakali-Kioulafa, N. Hadjichristidis, Macromol. Chem. Phys., 195, 173 (1994). 505. A.-A. A. Abdel-Azim, Macromol. Chem. Phys., 195, 159 (1994). 506. L. Fritz, J. Springer, Makromol. Chem., 194, 2047 (1993). 507. M. M. Zafar, R. Mahmood, S. A. Wadood, Makromol. Chem., 160, 313 (1972). 508. T. Hama, K. Yamaguchi, T. Suzuki, Makromol. Chem., 155, 283 (1972). 509. H. Liitje, G. Meyerhoff, Makromol. Chem., 68, 180 (1963). 510. H. M. Tan, A. Hiltner, E. Baer, Macromolecules, 16, 28 (1983). 511. T. Yoshizaki, K. Hayashi, H. Yamakawa, Macromolecules, 27, 4259 (1994). 512. F. Abe, K. Horita, Y Einaga, H. Yamakawa, Macromolecules, 27, 725 (1994). 513. Y. Takaeda, T. Yoshizaki, H. Yamakawa, Macromolecules, 26, 3742 (1993). 514. P. Hattam, S. Gauntlett, J. W. Mays, N. Hadjichristidis, R. N. Young, L. J. Fetters, Macromolecules, 24,6199 (1991).
515. J. W. Mays, S. Nan, D. Whitfield, Macromolecules, 24, 315 (1991). 516. J. W. Mays, S. Nan, W. Yunan, J. Li, N. Hadjichristidis, Macromolecules, 24, 4469 (1991). 517. F. Abe, Y. Einaga, H. Yamakawa, Macromolecules, 24,4423 (1991). 518. A. Karandinos, S. Nan, J. W. Mays, N. Hadjichristidis, Macromolecules, 24, 2007 (1991). 519. F. Fujii, Y. Tamai, T. Konishi, H. Yamakawa, Macromolecules, 24, 1608 (1991). 520. H. M. Petri, N. Schuld, B. A. Wolf, Macromolecules, 28, 4975 (1995). 521. J. B. Kinsinger, R. E. Hughes, J. Phys. Chem., 63, 2002 (1959). 522. F Strehle, Th. Dorfmuller, D. Samios, Macromolecules, 25, 3569 (1992); N. Pesce da Silveira, D. Samios, F. Strehle, Th. Dorfmiiller, Macromol. Chem. Phys., 197, 1945 (1996). 523. W.-M. Kulicke, M. Prescher, Makromol. Chem., 185, 2619 (1984). 524. J.-G. Zilliox, Makromol. Chem., 156, 121 (1972). 525. F. Abe, Y. Einaga, H. Yamakawa, Macromolecules, 27, 3262 (1994). 526. A.-A. A. Abdel-Azim, M. B. Huglin, Europ. Polym. J., 18, 735 (1982). 527. R. Jenkins, R. S. Porter, Adv. Polym. Sci., 36, 1 (1980). 528. J. W. Mays, N. Hadjichristidis, J. Macromol. Sci. Rev.Macromol. Phys. C, 28, 371 (1988). 529. A. R. Shultz, P. J. Flory, J. Am. Chem. Soc, 74, 4760 (1952). 530. G. Talamini, G. Bidotto, Makromol. Chem., 110, 111 (1967). 531. H.-G. Elias, M. Dobler, H.-R. Wyss, J. Polym. Sci., 46, 264 (1960). 532. D. H. Napper, Polymer, 10, 181 (1969). 533. D. H. Napper, Polymeric Stabilization of Colloidal Dispersions, Academic Press, London 1983. 534. S. Q. Zhou, S. Y Fan, S. T. F. An-yeung, C. Wu, Polymer, 36, 1341 (1995). 535. F. Dobert, A. Pfennig, M. Stumpf, Macromolecules, 28, 7860 (1995). 536. D. H. Napper, in: C. A. Finch, (Ed.), Chemistry and Technology of Water-Soluble, Polymers, Plenum, New York 1983.
F r a c t i o n a t i o n
o f
P o l y m e r s
J. M . B a r r a l e s - R i e n d a , A . B e I I o , P. B e I I o , G . M .
Guzman
Departamento de Qufmica-Ffsica de Polfmeros, lnstituto de Ciencia y Tecnologfa de Poli'meros, Consejo Superior de Investigaciones Cientfficas, Madrid, Spain
A. Principles of Polymer Fractionation B. Fractionation Methods 1. Fractionation by Solubility 2. Fractionation by Chromatography 3. Cross Fractionation 4. Fractionation by Sedimentation 5. Fractionation by Diffusion 6. Fractionation by Ultrafiltration Through Porous Membranes 7. Fractionation by Zone Melting 8. Electron Microscopic Counting Method C. Tables of Fractionation Systems for Different Polymers Table 1. Main-Chain Acyclic Carbon Polymers 1.1. Poly(dienes) 1.2. Poly(alkenes) 1.3. Poly(acrylic acid) and Derivatives 1.4. Poly(methacrylic acid) and Derivatives 1.5. Other a- and ^-Substituted Poly(acrylics) and Poly(methacrylics) 1.6. Poly(vinyl ethers) 1.7. Poly(vinyl alcohol), Poly(vinyl ketones), Poly(vinyl halides), Poly(vinyl nitriles) 1.8. Polytvinyl esters) 1.9. Poly(styrenes) 1.10. Other Compounds 1.11. Random and Alternating Copolymers 1.12. Block Copolymers 1.13. Graft Copolymers 1.14. Mixture of Polymers Table 2. Main-Chain Carbocyclic Polymers 2.1 Poly(phenylenes) 2.2. Formaldehyde Resins
VII-327 VII-328 VII-328 VII-330 VII-332 VII-333 VII-333 VII-333 VII-333 VII-333 VII-333 VII-333 VII-333 VII-336 VII-344 VII-346
VII-351 VII-353
VII-353 VII-355 VII-356 VII-363 VII-366 VII-382 VII-389 VII-395 VII-397 VII-397 VII-397
Table 3. Main-Chain Heteroatom Polymers VII-398 3.1. Poly(oxides) VII-398 3.2. Poly(carbonates) VII-404 3.3. Poly(esters) VII-405 3.4. Poly(urethanes) and Poly(ureas) VII-410 3.5. Poly(amides) and Poly(imines) VII-411 3.6. Poly(amino acids) VII-414 3.7. Poly(sulfides), Poly(sulfones), Poly(sulfonamides) VII-416 3.8. Poly(silanes) and Poly(siloxanes) VII-418 3.9. Poly(phosphazenes) and Related Polymers VII-422 3.10. Other Compounds VII-423 3.11. Random Copolymers VII-425 3.12. Block Copolymers VII-427 3.13. Graft Copolymers VII-430 Table 4. Poly(saccharides) VII-431 4.1. Poly(saccharides) VII-431 4.2. Graft Copolymers VII-436 4.3. Mixtures of Polymers VII-438 D. References VII-438 A.
PRINCIPLES OF POLYMER FRACTIONATION
As a general rule, the composition of a polymeric substance is not homogeneous. The differences between the macromolecules of such a substance may be classified according to three main properties: (a) molecular weight, (b) chemical composition, and (c) molecular configuration and structure. Fractionation of a polymeric substance means the separation of that substance into its different molecular species, using a suitable experimental technique, in order to obtain homogeneous fractions. The molecular weight distribution is a general feature for practically all synthetic polymers; it is a consequence of the particular nature of the polymerization process by which they are made. Natural polymers usually have molecular weight distributions as a result of the degradation processes suffered by the substance during
Mr. J. Salort's data processing skills permitted the authors to prepare a draft < " this chapter in a relatively short time, and they thank him for his invaluable help.
isolation from living tissues. Additional causes, such as more or less accidental degradation during processing, improper handling, or routine use, may contribute substantially to an increase in the width of the natural molecular weight distribution already present in the sample. The existence of molecular weight heterogeneity in macromolecular substances is therefore quite general. It is one of their fundamental properties and is directly responsible for the necessity of using several molecular weight averages for their description. It also exerts a permanent influence on all the properties of the substance, both in solution and in the solid state. Differences in chemical composition in polymers originate from those reaction which offer several possibilities of substitution along the backbone of the macromolecules, for instance, the synthesis of random, block and graft copolymers and then any partial chemical transformations to which the substances can be subjected. The third kind of heterogeneity mentioned above refers to differences in the physical configuration of the macromolecules, such as those between linear and branched polymers, and also to differences in the tacticity of the several molecular species present in the mixture, which is usually reflected in varying amounts of amorphous and crystalline materials in the substance. Most of the experimental techniques developed so far to fractionate polymers refer to fractionation according to molecular weight. Chemical composition and physical structure differences are handled by more or less sophisticated modifications of the solubility method, such as varying the nature of solvent/nonsolvent mixture or the temperature of extraction, or by using an appropriate active support (adsorbent). The experimental techniques referred to in the tables are mostly based on the variation of some properties directly related to the molecular size. It is common to classify the fractionation method according to their preparative analytical character. The latter methods do not isolate fraction; they are mainly intended to explore the molecular weight distribution of the polymer. The classification of fractionation methods together with the basic idea of each experimental technique is briefly described below. Reviews of polymer fractionation have been published by Cragg and Hammerschlag (660), Desreux and Oth (745), Schulz (2902), Conrad (613), Hall (1198), Channen (544), Guzman (1172,1174), Bello, BarralesRienda and Guzman (276,277), Fuchs and Leugering (936), Kaesbauer and Schuch (1584), Screaton (2924), Schneider (2878), Cantow (506), Johnson, Porter and Cantow (1506), Moll (2231), Tung (3284,3286), Francuskiewicz (918). Reviews dealing with some specific aspects of fractionation have been published by Schurz (2915), Samsonov (2826), Schneider (2880), Giddings (1047, 1050-1052,1147). Reviews concerning theoretical aspects of polymer fractionation have been given in the book of Tompa (3217), and by Voorn (3397), Huggins and Okamoto (1392), and Koningsveld (1749). In recent years, gel permeation chromatography (GPC) has become a technique of widespread use not only for
molecular weight distribution but also for preparative fractionation. There exists much information on this technique in recent literature. General reviews on GPC have been published by Cantow, Porter and Johnson (505), Heitz and Kern (1262), Altgelt and Moore (71), Johnson and Porter (1507,1508), Altgelt (72), Determann (748), Altgelt and Segal (73), Lambert (1854), Ouano, Barrall II and Johnson (2492), Dawkins and Yeadon (717), Janca (1471), Ouano (2494), Barrales-Rienda (225), Bruessau (452), Hamielec and Styring (1202), Dawkins (718) and books by Yau, Kirkland and BIy (3552), Belenkii and Vilenchik (275), Janca (1474). Also, nonexclusion liquid chromatographies and cross fractionations for copolymers have been reviewed by Glockner (1071,1076,1080), Vela Estrada and Hamielec (3366) and Mori (2283); temperature rising elution fractionation (TREF) by Wild (1710,3475, 3476); and field flow fractionation (FFF) by Janca (1476). B. FRACTIONATION METHODS 1. Fractionation by Solubility (a) Fractional Precipitation Addition of Nonsolvent Successive precipitation of polymer species from a solution by addition of a miscible nonsolvent. The larger molecules precipitate first. Lowering the Temperature Successive precipitation of polymer species from a solution by controlled cooling. The larger molecules precipitate first. Solvent Volatilization Successive precipitation of polymer species from a solution of the polymer in a solvent/ nonsolvent mixture by controlled evaporation of the more volatile solvent. The larger molecules precipitate first. Pressure Variation at Lower Critical Solution Temperature Successive separation is carried out at a lower critical solution temperature (LCST) under isothermal conditions by changing the pressure of the system. Low molecular weight species are precipitated first. The efficiency of the method is poor in low molecular weight ranges. (b) Turbidimetric Titration Continuous precipitation of polymer species from a very dilute solution by progressive addition of nonsolvent. In the absence of coagulation, the amount of polymer precipitated can be measured by the increase in optical density of the solution. The larger molecules precipitate first. This is an analytical method and can also be reversed, i.e; the polymer is first precipitated completely, and then redissolved by progressive addition of solvent. (c) Summative Precipitation Simultaneous precipitation of polymer species from several solutions of the same sample by addition of increasing amounts of nonsolvent to the solution. The sum of all the precipitates constitutes a cumulative weight distribution. This is an analytical method. (d) Cumulative Volume of Precipitate Successive precipitation of polymer species from a solution by addition of increasing amounts of nonsolvent. Fractions are not isolated
and the cumulative volume of precipitate is observed and determined after each nonsolvent increment. This is an analytical method. (e) Fractional Solution Direct Extraction Small polymer molecules are brought in direct contact with the solvent to extract low-molecular weight species from the swollen polymer. Subsequent fractions can be obtained either by different solvent mixtures of increasing dissolution power, or by raising the temperature stepwise with the same solvent. Smaller molecules are extracted first. Film Extraction CONTINUOUS OPERATION (CONTINUOUS FILM EXTRACTION) (CFE) The polymer solution is applied as a thin coating on both sides of a slowly moving belt. On passing through a drying region the solvent evaporates; the thin film on the belt is extracted continuously in a series of tubes containing solvent/nonsolvent mixtures of increasing dissolution power kept at constant temperatures. BATCH OPERATION (FILM EXTRACTION)
It Works
by
using support material to obtain a very thin film with a large surface area. A metal foil is coated thinly with a polymer solution and the solvent is stripped out; after drying, the foil is cut into strips and extracted successively with solvent/ nonsolvent mixtures of increasing solvent power, or by raising the temperature stepwise with the same solvent. Smaller molecules are extracted first. Column Extraction The polymer is distributed on an inert support (small glass beads or sea sand) packed in a column which will subsequently have solvent passed through it either in an upward or downward direction. Successive elutions then take place in steps by the use of different solvent mixtures or by different extraction temperatures. Temperature-Rising Elution Fractionation (TREF) The sample is loaded by injection in hot solution into a column packed with an inert support. The column is held in a hot bath. The loaded column is then cooled down to room temperature at a rate as slow as possible. The polymer to be fractionated must be deposited on the inert support by programmed cooling slow enough for crystallization, in such a way that it facilitates and promotes the crystallization of the different branched species in layers one upon the other. This step favours the effective separation by elution with increasing temperatures, which may be carried out stepwise or continuously. Therefore, polymer species are eluted with a solvent from the column as the temperature rises at a selected rate of heating. Molecules are eluted first according to their short-chain branches, i.e., with respect to degree of branching. Coacervate Extraction A liquid polymer-rich gel phase (coacervate) is extracted by a solvent, forming a sol phase. Both the sol phase (or extracting agent) and the gel phase (coacervate) contain the same solvent and nonsolvent and are formed only together with the polymer fractionated (i.e., solvent and nonsolvent are completely miscible without the polymer). Thus, this procedure is a liquidliquid extraction. Successive extraction of polymer species
can be done from the coacervate. Smaller molecules are extracted first. Continuous Polymer Fractionation (CPF) It represents a special variety of a counter-current extraction that functions in the following way: A comparatively concentrated solution of the polymer in a given solvent [it can also be a solvent/non-solvent mixture (the feed, FD)] is introduced into a pulsed sieve-bottom column at one end, and the same solvent or solvent/nonsolvent mixture but free of polymer (extracting agent, EA) is added at the other end. Both phases are homogeneous as they enter the column, but the CPF splits the polymer into two fractions by demixing inside the column in such a way that the molecules of different mass distribute between the two phases. This treatment really forms a coacervate due to the limited solubility of the polymer in the solvent/nonsolvent system. The coacervate is continuously extracted inside a countercurrent column by the liquid extracting agent whereby the polymer molecules will be distributed over the countercurrent phases according to their MW. The high molecular weight material remains in the phase resulting from the feed and leaves the column as the gel phase, whereas the low molecular weight material is extracted with the sol phase, so these two fractions leave the column as gel and sol phases, respectively. Thus, the original polymer can be split into two fractions at a desired MW in one continuous run. (f) Partition Between Immiscible Solvents Polymer species are distributed according to molecular size between two immiscible liquids of different solvent power. Countercurrent extraction is particularly suitable for this method. (g) Fractionation with Demixing Solvents It is possible to separate chemically different polymers dissolved in a suitable homogeneous solvent mixture quantitatively, if the solvents are miscible at high temperatures but show phase separation at a lower temperature. Demixing is reached by slow-cooling the system to the desired separation (equilibrium) temperature. Stirring of the system is advantageous. Details of the demixing procedure depend on polymer species. Blends of polymers and copolymers, including block-, graft- and statistical copolymers, can be separated in one fractionation step with respect to their chemical nature. Multistep fractionation methods using demixing solvents (cumulative, successive, semicumulative, and head-tail type of fractionation) have been used to determine the chemical distribution of binary copolymers as well as block- and graft-copolymers. (h) Fractional Crystallization Successive separation of species from polymer solutions by crystallization at different temperatures. The crystallization can be carried out under stagnant conditions, but considerable improvement in the efficiency is obtained if the crystallization is induced by fast stirring (stirring crystallization). Under these conditions, the high molecular weight constituent crystallizes first, settling on the stirrer as long thin fibrillar crystals. The technique can be coupled with fractional References page VII-438
extraction at increasing solution temperatures. The method is poorly reproducible. Crystallization Analysis Fractionation (CRYSTAF) It is based on the segregation of crystals of different morphology or comonomer content by crystallization. In CRYSTAF, the separation and analysis are performed in a single step (the crystallization cycle), where concentration of the polymer solution is intermittently sampled and analyzed as the temperature goes down. The temperature-concentration data which are obtained correspond, in the cases of branched poly(olefins) or their copolymers with a-olefins, to the cumulative curve of the side chain branching distribution (SCBD). The last point at the lowest temperature of the experiment is the soluble or noncrystallizable fraction. 2. Fractionation by Chromatography (a) Adsorption Chromatography (Chromatography on an active support) The adsorption of polymer species on an active support depends on the molecular weight. Frontal Analysis The active support is packed in a column. A solution of polymer passes down the column and is collected when leaving it. The concentration in the effluent changes with the volume collected, and presents successive fronts due to the differential adsorption of molecular species on the active support. Elution Analysis COLUMN A small quantity of polymer is adsorbed on the upper portion of the support packed in the column. Elution with a suitable solvent takes place; each component moves down the column at a different rate and is completely displaced at some time and collect in the effluent; in the gradient elution method, the eluent is a liquid of increasing solvent power. THIN LAYER CHROMATOGRAPHY (TLC) A thin layer chromatographic system is represented by the following three elements: a stationary phase which is a thin layer formed usually on a glass plate with an adsorbent like silica gel (the thin layer is activated by drying); a mobile phase which is any solvent or mixture used as a developer, and a sample. Separation is effected because the migration rate of each component relative to that of the mobile phase is retarded by the stationary phase to different degrees. A spot of the polymer solution is put on the plate, and after drying, the plate is placed vertically in a tank containing a suitable solvent or mixture. As the solvent moves upwards, it carries along each component at different rates. Separated, colorless species can be made visible by appropriate methods. When TLC is used in combination with a concentration gradient method, the composition of the developer (solvent or mixture) changes with the development time. In general, the TLC of a polymer may be classified into four types depending on the separation mechanism: adsorptiondesorption, partition, molecular sieving (size exclusion), and ion-exchange process. However, only two of the above mechanisms, adsorption and molecular sieving, are applicable to separation of high polymers.
(b) Competitive Selective Adsorption This method is applied to separate mixtures of tactic forms into their components. The principle of separation consists of a competitive adsorption of two different tactic polymers from the solution onto solid surface. The two tactic forms compete for occupying active sites on the solid adsorbent; one of them will be selectively adsorbed on the adsorbent, while the second one will be unadsorbed and remain in solution. In practice, the separation is carried out by adding the solid adsorbent to the solution of the tactic mixture. The solvent must be selected in such a way that the stereocomplex formation between tactic forms rarely occurs. (c) "Precipitation" Chromatography (Baker-Williams Method) (Chromatography on an inactive support) The support is an inert material packed in a column. On top of the column, a small amount of polymer is placed, as in elution chromatography. A temperature gradient is set along the column, the upper part being at higher temperature than the bottom; then the elution takes place with a solvent mixture of increasing solvent power. Polymer species move down the column being in a continuous exchange between a precipitated phase and a saturated solution. This distribution depends on the molecular size. Precipitation chromatography can also be carried out in the absence of a temperature gradient. It then becomes essentially a continuous fractionation by fractional solution, (see under Fractional Solution Column Extraction). (d) Normal-Phase and Reversed-Phase Liquid Chromatography Copolymer separation by non-steric liquid chromatography (NELC) can be achieved in practice by the difference of adsoiption power between the copolymers and the stationary phase. In both NPLC and RPLC, the mobile phase should be a good solvent for the copolymers during the entire elution. In NPLC, stationary phases are polar, for example, silica gel, silica-CN, silica-NH2 and poly(acrylonitrile) gel; retention times increases with sample polarity and mobile phases are less polar. Gradient elution is performed to increase the content of a polar solvent in the mobile phase, i.e. the polarity of the eluent increases in the course of a run. RPLC is performed on non polar columns, i.e. stationary phases are hydrophobic (e.g. packed with crosslinked poly(styrene) (PS), or an alkyl branched phase materials such as silica-ODS), and the retention times decrease with polarity. Mobile phases are polar. RP gradient elution is performed to increase the content of less polar solvent in the mobile phase, i.e. the polarity of the eluent decreases in the course of a run. (e) Gel Permeation Chromatography (GPC) (Chromatography on a porous support) Gel permeation chromatography, sometimes referred to as size-exclusion chromatography (SEC), is an analytical or preparative technique in which solute molecules are separated according to their effective hydrodynamic volumes in solution. A
gel permeation chromatographic system is composed of three fundamental elements. The stationary phase is an expanded and highly crosslinked polymer gel network (expanded silica gel, gel of porous glass, or some of these, but modified by chemical or physical treatments). The gel is packed into a chromatographic column; a mobile phase which may be any solvent or mixture for the polymer and a good swelling agent for the gel. The polymer sample in dilute solution is injected onto a column which contains porous particles with solvent and which is continuously fluxed with eluent. The separation occurs as the polymer molecules in the eluent solvent (mobile phase) percolate through the porous bed (stationary phase). As a result of the restrictions imposed by the size of the pores on the larger molecules, there is a greater pore volume available to the low molecular weight species giving them in effect a longer path length and they, therefore, are more strongly retarded during elution. In other words, small molecules are able to penetrate into the pores of the beads more readily than the larger ones. This effectively increases the retention volume as molecular size decreases. Hence an inverse relationship between retention volume and molecular weight of the polymer exists. Since from an ideal point of view polymer solubility and adsorption are not occurring in this chromatographic process, the volume of eluent required for the elution of any macromolecules species must essentially be dependent on chain length and appears to be insensitive to structure (universal calibration). However, this seems to be not always the case (non-exclusion effects). (f) Surface Exclusion Chromatography (Hydrodynamic exclusion chromatography) Conventional gel permeation chromatography (GPC) fails when applied to the characterization of very large macromolecules. Such polymers are easily oriented or deformed by hydrodynamic forces occurring in columns. Hence, steric pore exclusion mechanisms are disturbed, separation efficiency is poor, and the relationship between elution volume and molecular weight is no longer found valid for the highest molecular weight species. Surface exclusion chromatography (hydrodynamic exclusion chromatography) has been developed for rigid particle size determinations. This technique has been shown to be efficient for size separation of proteins and latexes. It uses a non-porous packing as a stationary phase. (g) Partition Chromatography Polymer species are distributed between two liquid phases, one of them mobile and the other fixed by absorption on a support. The support consists of strips or sheets of porous paper. The immobile phase is packed in a column. (h) Phase Distribution Chromatography (PDC) Separation of polymer components in a PDC column is based on thermodynamic and kinetic interactions between the mobile phase (the polymer to be analyzed is dissolved in a Q-solvent) and a gel (stationary phase) of the same
linear high polymer situated as a non-crosslinked coating on the surface of small glass bead. It is important to keep the temperature always below the Q-temperature of the sample. The separation efficiency increases sharply with decreasing temperature since the higher molecular species dissolve in the gel phase to a higher extent than the lower molecular species, the former leave the column later. It is a powerful method for the correct determination of narrow molecular weight distributions. (i) Field Flow Fractionation (FFF) Field flow fractionation resembles chromatography in both the experimental and dynamical aspects of its operation, and it can therefore be thought of as a chromatographic method. It requires neither a stationary phase in the classical sense, nor the packing to support as is characteristic of chromatography. For this reason FFF has been described as one phase chromatography. Like chromatography, it is an elution technique used to separate components as they are transported through a column by a stream of solvent. The method is based on the difference between the flow rates in the center and near the column walls which obey Poiseuille's law. Retention is caused by an external field or gradient which forces the solute into narrow layers occupying the slow flow regions near the wall of an empty channel. Several types of FFF based on the type of force field applied have been developed. Classical FFF THERMAL FFF Thermal field flow fractionation (ThFFF) is a high-resolution separation method for a wide range of relatively non-polar polymers in suitable organic solvents. Certain polar macromolecules can also be fractionated by ThFFF in totally aqueous systems. ThFP7F separations are carried out with a single mobile phase in a thin, open channel by applying a large thermal gradient across highly polished parallel plates between which a spacer is clamped. It is usually composed of two metallic blocks with highly polished surfaces. ThFFF separations are governed by two transport mechanisms acting in opposition: thermal diffusion, which is the movement of mass in response to a temperature gradient, and ordinary (Fickian) diffusion, which is the movement of mass in response to the concentration gradient established by thermal diffusion. SEDIMENTATION FFF Either natural gravitational or centrifugal forces in the centrifuge serve as an effective field. The channel is usually coiled around the interior basket of a centrifuge rotor. This technique separates components on the basis of their mass differences. ELECTRICAL FFF The altogether homogeneous field is induced by electrical current across the channel. Charged macromolecules interact with the field and are separated according to the ratio of electrophoretic mobility to diffusion coefficient. FLOW FFF Flow field-flow fractionation separates according to differences in diffusion coefficients. PRESSURE FFF Pressure field-flow fractionation (pressure FFF) and flow FFF are by nature very similar. In both References page VII-438
cases, it is the cross flow that represents the lateral field. The principal difference is that in flow FFF, the flow field is applied externally across the channel formed between two parallel plane membranes, whereas in pressure FFF, the lateral flow across the wall of a circular-cross-section capillary is initiated by an internal pressure drop in a liquid pumped along the semipermeable capillary. MAGNETIC FFF Magnetic field-flow fractionation has been studied in only a few cases dealing with theoretical principles of the separation and retention of bovine serum albumin in the presence of nickel (II) ions in a magnetic field of 400G and retention of metal oxides. CONCENTRATION FFF Concentration field flow fractionation (concentration FFF) is the only FFF technique that could make use of a concentration gradient of a mixed solvent across the channel in order to induce effective chemical forces or chemical field. SHEAR FFF Shear field-flow fractionation (shear FFF) has been proposed as a technique in which shear forces are responsible for migration perpendicular to flow. An internal shear force field is induced in the annular space between two concentric cylinders that are in relative rotational motion. Focusing FFF SEDIMENTATION-FLOTATION FOCUSING FFF
In SFFFFF
solute particles or macromolecules "sediment" or float in the density gradient of a liquid phase according to the difference between the local density of the liquid and that of the particle or macromolecule. At quasi-equilibrium, the solute species are focused in a thin layer at the position where the density of the environment is the same as the solute density. isoELECTRic FOCUSING FFF The electrophoretic mobility of amphoteric macromolecules is a function of pH and is zero at the isoelectric point. This means that if a stable pH gradient is formed in the FFF channel due to an applied electrical field, the amphoteric solute under the influence of this field is focused into the position of the isoelectric point. In a steady state, this transport is balanced by ordinary diffusion. (j) Ion-Exchange Chromatography The support is an ion-exchange resin, constituting an immobile phase, through which the solution of polymer is passed. This method is appropriate for polymer species bearing electric charges; the molecules are distributed between the liquid phase and the interface, according to their ionic adsorption forces, which depend on the electric charge and the size of the macromolecules. (k) Hydrodynamic Chromatography Hydrodynamic chromatography (HDC) is a rather new technique for separating solutes or dispersed materials at high dilution in the micron range, according to decreasing size. It is based on the effect of a radial flow gradient inducing different mobilities according to size. Larger particles are located preferentially in the axis of capillaries where the flow rate is
maximum; whereas smaller ones are closer to the walls where the flow rate is minimum. Packed and open capillary columns can separate particles below and above one mm, respectively. It involves injection of a dilute latex sample into a carrier stream (the aqueous eluent) which is pumped through the system at a constant flow rate. The column is packed with non-porous beads. Larger particles exit the column before smaller ones and are detected using a suitable system of detection. It is a complementary method to field-flow fractionation (FFF), steric exclusion chromatography (SEC) and superfluid chromatography. 3. Cross Fractionation Most of the copolymers and polymers obtained by chemical modification reactions generally possess a two-dimensional distribution: MWD (Molecular Weight Distribution) and CCD (Distribution of Chemical Composition). An analogous problem exists with polyolefins: MWD and distribution of Short-Chain Branching (SCB). It is normally impossible that they can be adequately fractionated by both molecular weight (MWD) and by chemical composition (CCD). The problem is overcome by cross fractionation. The term cross-fractionation refers to any combination of fractionation methods capable of evaluating the distribution in size and composition. (a) Classical Cross Fractionation Cross fractionation requires two solvent/nonsolvent systems to separate in two different directions. A solvent/nonsolvent combination fractionating solely by MW would be appropriate for the evaluation of the MWD, another one separating by CC would be suited for measuring the CCD of the material. Fractions of the starting material obtained by one precipitant are redissolved and fractionated once more with the help of the complementary precipitant yielding the final fractions. Owing to its high expenditure of time and materials, classical cross-fractionation is seldom performed. However, this procedure is irreplaceable for the production of narrow molecular weight distribution fractions in both MW and CCD on a preparative scale. (b) Non-Classical Cross Fractionation This technique of cross fractionation can be performed off-line or online. Typical cross-fractionations include partition chromatography-SEC, gradient elution-SEC, SEC-turbidimetric titration, gradient elution-TREF, TREF-SEC and demixing fractionation-demixing fractionation. (c) Orthogonal Chromatography This technique is a special case of non-classical cross fractionation in which two coupled SEC techniques are used. SEC in different eluents can separate a copolymer in two diverging directions. Two SEC instruments are coupled together so that the eluent from the first one flows through the injection valve of the second one. (d) Cross Fractionation by Bidimensional TLC Combined types of TLC are often for the separation of polymers, copolymers, etc. This technique allows separation according to chemical composition, molecular weight, and stereoregularity. Copolymers, LD and LLD poly(ethy-
lenes) and chemically modified polymers are extremely multicomponent materials which often exhibit simultaneous distributions of molecular weight, composition, and monomer sequence length. Interference of the remaining two distributions while attempting to elucidate one of them greatly complicates analysis. Cross fractionation (bidimensional) TLC is a method to elucidate such problems.
(b) Brownian Diffusion Polymer molecules diffuse at different rates from a solution into a solvent by a boundary, depending on their molecular weights. The translational diffusion constants can be determined by special optical means and related to the inhomogeneity of the sample. This is an analytical method.
4. Fractionation by Sedimentation
6. Fractionation by Ultrafiltration Through Porous Membranes
(a) Sedimentation Velocity Sedimentation velocity of polymer species in a high centrifugal field is a function of molecular size. This is usually an analytical method unless a velocity ultracentrifuge of the preparative type is used. (b) Sedimentation Equilibrium At lower rotational speeds of the ultracentrifuge, it becomes possible to create an equilibrium situation such that the rate of sedimentation is exactly equal to the rate of back-diffusion of the macromolecules. Larger polymer molecules are then found closer to the bottom of the cell than smaller ones. (c) Density Gradient Technique In a performed or selfgenerated density gradient, the polymer collects around the position of its own density in a band. The width of this band is dependent on the molecular weight of the polymer. A band of polydisperse macromolecules contains more highmolecular-weight polymer near its maximum than near its "tails". This technique is also capable of separating according to composition. 5. Fractionation by Diffusion (a) Thermal Diffusion A polymer solution is placed between two surfaces, and a high temperature gradient is established between them. The solution is in contact with an upper and a lower reservoir. The temperature gradient gives rise to a thermal circulation of the molecules, producing a separation of polymer species, which migrate towards the lower reservoir. Thermal diffusion is more pronounced for the larger molecules than for the smaller.
A polymer solution is submitted to ultrafiltration through a series of membranes of different porosity. The rate of diffusion depends on the molecular size and the degree of permeability of the membranes. It is possible to isolate fractions with varying molecular weights at different times. 7. Fractionation by Zone Melting A solid solvent is packed in a column. A small amount of polymer is put on top of the solid solvent and dissolved by heating a narrow zone. After solidification, a lower zone is heated, melted, and resolidified. The full column is treated in this way. Polymer species move down the column at different rates, depending on their molecular size during the molten stage. At the end, the polymer is distributed throughout the entire column and recovered by cutting the solid into several portions and sublimating the solvent. 8. Electron Microscopic Counting Method With most glassy amorphous polymers, it is possible by means of the electron microscope, to observe single spherical molecules, if very dilute solutions in a solvent/ nonsolvent mixture are sprayed onto a thin substrate. Consequently, the weight- and number-average molecular weights and molecular weight distributions can be obtained. The method can be recommended and applied only for polymers with molecular weights higher than 5 x 105.
C. TABLES OF FRACTIONATION SYSTEMS FOR DIFFERENT POLYMERS TABLE 1. MAIN-CHAIN ACYLIC CARBON POLYMERS Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
1.1. POLY(DIENES) Poly(diacetylene)
Chromatography
Poly (butadiene)
Chromatography
Chloroform Methylene dichloride 1,2,4-Trichlorobenzene Benzene/ethanol Benzene/methanol Butyl acetate/isopropanol
SEC, styragel 2640,3450 SEC, ultrastyragel 1677 SEC, u-styragel 2620 SEC 1380,2073,2074 Precipitation chromatogr. 624,626 Precipitation chromatogr., 35-28°C 2636 Precipitation chromatogr., 25-55°C, 2756 1,4-m
References page VII-438
TABLE 1. confd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture Carbon tetrachloride followed by amyl chloride Chloroform Chloroform, tetrahydrofuran Diisobutene/isooctane Diisobutene/rc-propanol Ethyl acetate Methanol, ethanol Methylene chloride n-Heptane/isooctane oDichlorobenzene
Tetrahydrofuran
Coacervation Extraction Field flow Fractional crystallization Fractional precipitation
Toluene Toluene/isopropyl alcohol Toluene/n-propanol Trichlorobenzene Trichloroethylene Benzene/pentane Benzene/acetone Benzene/acetone-methanol (9/1) Water (0.1% w/w FL-70 detergent + 0.02% sodium azide Heptane Benzene/acetone.dioxane followed by acetone: methanol Benzene/methanol
Remarks
Two dimension TLC, silica gel, 779 lA-trans,\A-cis and l,2-vinyl SEC 2925,2927 SEC, carboxy -f hydroxy term. 1879 Three-arm star 2608 Precipitation chromatogr. 1397 Precipitation chromatogr., 1,4-cw 1397 Hydroxytelechelic; SEC, styragel 740 Column elution, carboxy term. 1880 Hydroxytelechelic; SEC, Porasil 740 SEC, lArtrans, 1,4,-cw and 1919 1,2,-vinyl (modified) Precipitation chromatogr. 50-400C 1272 SEC, 1300C 1251,1252 SEC, 1400C, 1,2141,142 SEC, 1500C, It4-cis 3031 SEC, 250C, I A-cis 1214 SEC 12,379,380,381,547, 886,956,1824,1852, 2667,2677,3314,3346 SEC, 25°C 2555 SEC, deuterated 146 SEC, low MW 1842,1878 SEC, modified 2900,2901 SEC, phenogel, telechelic 592 SEC, star branched 1196,1783 SEC, u-styragel, 300C, three arms 2561 SEC, carboxy term 2925,2926,2927 SEC, cyclized 366 SEC 7,2073,3241 Precipitation chromatogr., 44-24°C 1379 Precipitation chromatogr, 1,4,-cw. 1397 SEC, 135°C> hydrogenated 2555 SEC, 23°C 3195 1214 Branched polymer 3364 28°C 625 Sedimentation, latexes 352 Several temperatures, \ A,-trans
25°C 25°, IArCiS 25°C, Hydroxy term. Low. temp., 1,4,-ns Benzene/rc-butanol Heptane/acetone rc-pentane-dioxane/methanol Pentane/methanol Tetrahydrofuran/water Toluene/ethanol Toluene/heptane Toluene/methanol
Fractional solution
Toluene/n-butanol Benzene/methanol Chloroform, chloroformethanol, ethanol, carbon tetrachloride, carbon tetrachloride-chloroform
Refs.
1,4,-m Hydrogenated 300C, carboxy term. Chlorinated 1,4,-cw I Ar trans lArcis 28°C Cyclic, 1,4,-cw-tri- and tetrachain Cyclopolymer Column elution, carboxy 4- hydroxy term,
3241,3242 1001 428,430 '882 2373 1396 7 1726 2260 3510 922 3136,3346 442 3416 813,3597 ' HO 2666,3586 1726 3524 1879
TABLE 1. cont'd Polymer
Method of fractionation
Sedimentation velocity
Turbidimetric titration Poly[(3,5-di-/erf-butyl-4-hydroxyphenyl)acetylene] Chromatography Poly(fm-butylacetylene) Chromatography PoIy(I-chloro-1-decyne) PoIy(I -chloro-1-hexadecyne) PoIy(I-chloro-1-hexyne) PoIy(I -chloro-1-octyne) PoIy(1,1,2-trichlorobutadiene) Poly(chloroprene)
Chromatography Chromatography Chromatography Chromatography Fractional precipitation Chromatography
Fractional precipitation
Fractional solution Sedimentation velocity Thermal diffusion Turbidimetric titration Poly( 1 -ferrocenyl-1,3-butadiene) Chromatography Poly[0-(trifluoiomethyl)phenyl)acetylene] Chromatography Poly(2,4-hexadiyn-1,6-ylene-asbacate) Chromatography PoIy(1,4-bis(homoallyl)cubane) Chromatography Poly(5-hydroxyoctylene) Chromatography Poly(isoprene) Chromatography
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Chloroform/methanol Ethyl ether Diethyl ketone tt-heptane/isooctane rc-Hexane/n-heptane (1/1) Octane Carbon tetrachloride/rc-butanol
Column elution Extraction Ultracentrifuge, 10.30C Ultracentrifuge, 20.50C 1,4,-ds Ultracentrifuge, strereoreg. Ultracentrifuge
Tetrahydrofuran Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Benzene/petroleum ether Benzene Benzene/methanol Butanone Butanone: methyl alcohol (0.887/0.113) Chloroform Tetrahydrofuran Benzene/acetone Benzene/methanol
SEC, SEC, SEC, SEC, SEC, SEC, SEC,
Butanone/methanol Benzene/isopropanol Benzene/methanol Butanone Benzene Benzene/methanol
2925,2926 2371 3333 2259 59,2624 429,430 1332,1332,3559
styragel u.-styragel styragel styragel styragel styragel styragel
SEC, 25°C Precipitation chromatogr., 28-35°C SEC, 25°C SEC, 25°C SEC SEC
XA.-trans 250C 300C Neoprene, 300C cont, film ext. 200C
2401 2071 2356 3568 3568 3568 3568 2546,3027 1984 2636 1610 1610 2890 649 1233 1206,2221, 2222,2223 2847 682 344 345,2890 2890 1725,1789 2129
Tetrahydrofuran
SEC
Chloroform
SEC, styragel
2067,2070
Tetrahydrofuran Tetrahydrofuran Tetrahydrofuran Benzene/methanol
SEC, styragel SEC, jA-styragel SEC, ultrastyragel Precipitation chromatogr.
1814 557 2700 365,1964, 2332,2636 436
Chloroform Cyclohexane Cyclohexanone Methylene chloride 0-Dichlorobenzene Tetrahydrofuran
3347
Precipitation chromatogr., glass beads 300C, SEC, styragel 297,708,716 SEC, ultrastyragel 3553 SEC 716,1962 Partition on paper 195,309 SEC u-styragel 1919 SEC, 135°C 709 SEC, j.i-styragel, 25°C, amino-capped 700 SEC, u-styragel, 30°C, three 2561 and four arms SEC, styragel, several 22,81,112,427, structures 495,886,1166,
1184,1185,1243, 1308,2105,2677, 3396 Tetrahydrofuran, toluene/methanol (95/5) Toluene Toluene/isopropyl alcohol Trichlorobenzene
SEC, u-styragel and sodium salt carboxylated SEC, preparative styragel Precipitation chromatogr. SEC, 130°C
888 551 1379 1215,1380
References page VII-438
TABLE 1. confd Polymer
Method of fractionation Field flow Fractional precipitation
Solvent or solvent/nonsolvent mixture Tetrahydrofuran Benzene/acetone Benzene/ethanol Benzene/isopropanol Benzene/methanol BenzeneM-butanol Chloroform/acetone Dichloroethane/butanone Hexane/1-propanol Toluene-ethanol (4: l)/ethanol Toluene/boiling methanoi Toluene/methanol
Fractional solution
Thermal diffusion Trubidimetric titration Poly( 1 -isopropylidenedicyclopentadiene) Fractional precipitation Poly (1,4-(2,3-dimethylbutadiene) Fractional crystallization PoIy(1,4-cis-(2-methyl-1,3-pentadiene) Fractional solution Poly(norbornadiene) Extraction PoIy(1,3-pentadiene) Fractional solution Poly(perfluorobutadiene) Fractional solution PoIy(I-phenylbutadiene) Chromatography Poly(phenylacetylene) Chromatography Poly(spiro-2,4-hepta-4,6-diene) Fractional precipitation 1.2.
Toluene/n-butanol Acetone Acetone, n-hexane Amyl acetate/2-ethoxyethanol mixtures Benzene/methanol Tetrahydrofuran Carbon tetrachloride/«-butanol Toluene-ethanol (4: l)/ethanol
Remarks
Refs.
Thermal 1146 Havea 1233 Gutta percha, balata, synthetic 625 fran.y-poly(isoprene) Low temp. 359 cis 10 Low temp. 359,551,1039,1158 2640 Pale crepe 484 1963 cis, 26°C 2597 Rubber 3230,3438 Chlorinated natural rubber 65 87,88,112,256, 386,470,883, 1828,2332, 2759,3406 trans,l-4,cis,\-4 436,3507 300C 2639 Have a extraction 1505 Guayule, extraction 1231,1232,2123 Column extraction 1828 25°C, column extraction, natural rubber Natural rubber 25°C
Toluene/methanol
437,3455 1904 1332 2643 533
Toluene/methanol
28°C
Diethyl ether, heptane, toluene Toluene, o-dichlorobenzene Benzene/butanone Hexane, hexafluorobenzene Tetrahydrofuran Tetrahydrofuran Benzene/isopropanol
Direct extraction Amorph/cryst, 1,4-c/s, isotactic Extraction SEC, styragel SEC, 25°C, styragel
111 485 2218 2370 3220,3221 3106 2932 1247
POLY(ALKENES)
Poly(a-olefins) (General) Chromatography Poly(l-butene) See Poly(ethylethylene) Poly(butylethylene) Chromatography Fractional precipitation Poly(cyclohexylethylene) Poly(cyclopentylethylene) Poly(cyclopropylethylene)
Fractional solution Fractional solution Fractional solution
Poly(ethylene)
Chromatography
Benzene/ethanol
Precipitation chromatogr.
843
1,2,4-Trichlorobenzene Tetrahydrofuran Cyclohexane/acetone Toluene/fl-butanol Xylene/triethylene glycol Benzene Ethyl ether Benzene Ethyl ether, n-heptane, octane, nonane 1,2,4-Trichlorobenzene
800C, styragel, SEC SEC, ultrastyragel, 300C
3418 160 1931 3223 2974 2497 2497 2497 2501
Chlorobenzene Diphenyl ether, tetralin/triethylene glycol
13O0C Extraction Extraction Extraction Extraction SEC, 135°C SEC, u-styragel, 145°C, HDPE, LLDPE, LDPE SEC, styragel, 140°C SEC, styragel, 145°C SEC, ultrastyragel, 135°C SEC, 1000C merckogel, and styragel Continuous fractionation (counter current extraction) > 1300C
2520 731 3456 1925 824 1266 1018
TABLE 1. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture Ligroin/2-(2-butyl)ethanol 0-Dichlorobenzene
Perchloroethylene Propane Tetralin Tetralin/2-butoxyethanol Toluene Trichlorobenzene
Coacervation
Cross-fractionation
Extraction Fractional crystallization
Dibutyl phthalate/decalin (60/40) o-Dichlorobenzene/triethylene glycol Xylene/poly(oxyethylene) Xylene/triethylene glycol Xylene: ethyl cellosolve-poly(oxyethylene) (50/50) o-Dichlorobenzene Trichlorobenzene Xylene Phenyl ether, tetralin/triethylene glycol 1,2,4-Trichlorobenzene
Xylene
Fractional demixing Fractional precipitation
Xylene, perchloroethylene or 1-Chloronaphthalene Dimethylformamide/methylcyclo hexane 2,4-Dimethylpentane 2-Ethylhexanol/decalin (85/15) Amyl acetate
Remarks
Refs.
Precipitation chromatogr. 3015 SEC 3318 SEC, Low MW HDPE 3376 SEC, styragel 2355 SEC, styragel, 1300C, 135°C, 190,235,236,617, 138°C 709,712,963,1045, 1411,1646,1981, 1982,2347,3030, 3479 SEC, 1100C 2783,3394 Supercritical fluid fractionation 2127 SEC, 125°C 1984 Precipitation chromatogr., 611,1143 110-1600C SEC, 25°C, low MW 81,126 SEC 379,381,509,607, 614,615,639,723,751, 785,786,1006,1311,1643, 1644,1704,1989,2076, 2139,2346,2347,2348, 2349,2482,2509,2590, 2661,2697,2698,2820, 2821,2868,2881,3282, 3377,3403,3433,3434, 3435,3441,3458,3462, 3469,3470,3471,3472, 3480 SEC, styragel, 135-1400C, 1823 branched 3480 138°C
709 1839,2451,2919 1823 2661
Branched 1200C SEC (135°C), LLDPE TREF; SEC, 1400C, LLDPE TREF-Chromosorb, SEC 1400C TREF (silica)
3602 3318 2183 3602 1014
CRYSTAF, LLDPE, 95-300C 1675,2237 CRYSTAF, LLPDE, 95-300C 2235 CRYSTAF, LLPDE, VLDPE, 2236 95-300C CRYSTAF, metallocene resins 2236 blend 1287,1625,1627,1645, 1748,2076,2559,2560, 2665 UHMWPE 2119 Lowering temp, stirred 2560 Chlorinated PE
1817
At a lower critical solution, temp, is sensitive to the side-group content Solvent volatilization., low temp. 133°C, lowering temp.
212 1619,3451, 3452,3453 21
References page VII-438
TABLE 1. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture Benzene/poly(oxyethylene) Epichlorhydrine/rt-hexane Liquid ethylene at 130 atm. and 800C /7-Xylene/n-hexanol Tetralin/2-ethoxyethanol (1/3) Tetralin/benzyl alcohol (3/2) Toluene/methanol Toluene/«-butanol Toluene/rc-propanol Toluene/poly(oxyethylene) Toluene/triethylene glycol Xylene/n-butanol Xylene/n-propanol Xylene/poly(oxyethylene) Xylene/triethylene glycol
Remarks
Refs.
750C 35°C Releasing pressure
2364 1566 3298
Turbidimetric by lowering temp. Lowering temp., branched Lowering temp. 105-165 0 C 115-1000C Lowering temp. Lowering temp. 800C 1070C 100-115 0 C 900C 75°C, 800C, 1300C 900C
16 1990 1578,1709 697 1815 2364,3299 2392 1578 1815 125 1555,2314,2364, 2450,2451 18,278,279,280, 281,342,1628,
1630,2339,2701, 2974,3163,3279, 3280,3281 Fractional solution
1,2,4-Trichlorobenzene 2-Ethoxy ethyl acetate (cellosolve)/decalin Anhydric carbonic, pentane Carbon dioxide, propane, propane-modified carbon dioxide Cyclohexanone Decalin Decalin/2-ethoxy-ethyl acetate Decalin/ethylene glycol -hexanol Diisopropyl ether, benzene, xylene Ethyl benzene/cellosolve Mesitylene/2-butoxyethanol o-Dichlorobenzene/dimethyl phthalate Petroleum ether Tetralin Tetralin/2-butoxyethanol Trimethylbenzene/butylcellosolve Toluene Toluene/poly(oxyethylene) Xylene Xylene, chloronaphthalene, perchloroethylene Xylene/butyl cellosolve Xylene/2-butoxyethanol Xylene/2-ethoxy-ethyl acetate (cellosolves) Xylene/butyl cellosolve Xylene/diethylene glycol monomethyl ether
LLDPE 1300C, glass beads
2895,3478 3480
Supercritical SCFF, Low MW HDPE
2884 3376
Rising temp. 1500C Column elution 1390C, column elution Extraction, waxes
2896 1872 1126 1735 1722
1200C, column elution 963 Column elution, 126°C 3224 127°C, glass beads column 2933,2934 elution Column elution, low MW 1025 Quartz sand, column extraction, 467 variable temp, gradient 126°C, column elution analytical 3224 and preparative, branched Column elution, glass beads, 13O0C 1954 Column elution 743,744,2364 800C 2390,2391 1235,1628,1629,1642 128°C, column extraction 2466 Rising temp. 305,615 Increasing temp. 2560 125°C, Column elution Column elution Column elution, 125°C Column elution, 1270C Column elution 126°C
2808,3220 574,641,871,1224, 1246,2338,2340, 2344,3224 2466 2343 917,1200,1276,1342, 1359,1632,1668,1669, 1832,2076,2138,2246, 2354,2804,2820,2821, 2867,3452,3453,3469, 3470,3519
TABLE 1. cont'd Polymer
Method of fractionation
Sedimentation equilibrium Sedimentation velocity Stirring-induced fractional precipitation Thermal field flow TREF
Solvent or solvent/nonsolvent mixture
Column elution, 1200C, LLDPE Film extraction Boiling mixt., 46-86°C Column elution Ultracentrifuge, 123.2°C Ultracentrifuge, 1100C Ultracentrifuge, 1200C 100-78 0 C
o-Dichlorobenzene Water/ethylene glycol or silicone oil, water/glycerol 1,2,4-Trichlorobenzene
90-140 0 C 90-130 0 C
Trichlorobenzene
Xylene
Poly(ethylethylene) PoIy(I -butene) Chromatography Extraction Fractional precipitation
Fractional solution Poly(hexadecylethylene) (poly( 1-octadecene) Chromatography Fractional precipitation PoIy(I-hexene) see Poly(butylethylene) Poly(hexylethylene) poly( 1 -octene) Chromatography Fractional precipitation
Refs.
Xylene/ethyl cellosolve Xylene/n-butanol Xylene/trichloroethylene Xylene/triethylene glycol Biphenyl 1 -Bromonaphthalene 1-Chloronaphthalene Decalin
Butyl cellosolve Chloronaphthalene o-Dichlorobenzene
Turbidimetric titration
Remarks
a-Chloronaphthalene/20% dimethyl phthalate Xy lene/rt-hexanol
1367 935 1642 279,3279 2893 2117 2244 1293 2520 2520
Chromosorb-P, TREF room 3241 - 20°C/hour Glass beads, LLDPE 2896 LLDPE 728,1514,1849 Glass beads, deuterated 1954 HP-LPDE, HDPE, LLDPE 1648 Chromosorb-P, analytical, low 1710 density and low linear density Direction of separation SCB 3318 SEC 3603 TREF (glass beads) 2355 20°C/h 3474 Chromosorb-P, analytical 4- preparative, 1581 very low density HP-LDPE/LLDPE blends 3026 LLDPE, 1400C 2183 Steel shot, analytical 41255 preparative, low linear density 25-120 0 C 1367 Chromosorb P, branched 1823 Chromosorb-P, analytical 3473 4- preparative, low density LLDPE, sylanated glass beads 186 Sand, preparative, low density 2973 1413,3162 123 8
Benzene/butanone Dichlorobenzene Trichlorobenzene Boiling ether Cyclohexane/acetone Cyclohexane/cyclohexanolglycol (3/1) Decane c-Dichlorobenzene/ dimethylformamide Petroleum ether/acetone Toluene/methanol Xylene/triethylene glycol Benzene/methanol
Precipitation chromatogr., 18-50 0 C SEC, 125°C SEC, styragel, 800C, 135°C Tacticity 35°C 115°C
Trichlorobenzene Xylene/triethylene glycol
800C 1300C
3415 2974
Trichlorobenzene Cyclohexane/acetone Xylene/triethylene glycol
SEC, styragel, 800C
3418 1682 2974
Lowering temp.
300C, atactic 1300C Extraction
1300C
1179 1982 2758,3418 480 635,2841 3083 1589 548,2263 735 2261,2263 2974 843
References page VII-438
TABLE 1. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsoivent mixture
Poly(isobutene) see Poly(l,l-dimethylethylene) Poly(3-methyl-l-hexene) Fractional solution
Acetone, ethyl acetate, diethyl ether, cyclohexane Poly(4-methyl-l-hexene) Fractional solution Acetone, ethylacetate, diethyl ether, cyclohexane Poly(3,7-dimethyl-l-octene) see PoIy(1,5-dimethylhexyl-ethylene) Poly(3-methyl-l-pentene) see PoIy(I-methylpropyl)ethylene) Poly(4-methyl-l-pentene) see Poly(2-methylpropyl)ethylene) Poly(endo, exo-5,6-dimethylbicyclo[2.2. l]hept-2-ene) Chromatography Tetrahydrofuran Poly(2-methylbutyl)ethylene) (poly-4-methyl-1 -hexene) Chromatography Alcohols, aromatic hydrocarbons, ethers Methylcyclohexane Fractional precipitation Benzene-nitrobenzene Fractional solution Benzene and ethyl ether Boiling (acetone, ethyl acetate, ethyl ether, isopropyl ether and cyclohexane) Poly( 1,1 -dimethylethylene) Poly(isobutylene) Chromatography 2-Methylheptane Benzene/acetone Carbon tetrachloride Chloroform Diisobutene/n-butanol Heptane Hexane/ethanol Tetrachloromethane, chloroform, ethanol - chloroform Tetrahydrofuran
Remarks
Refs.
Extraction
3387
Extraction
3387
SEC, Shodex
3095
Column elution on active support
2603
SEC, styragel, 600C Lowering temp. 61-25°C Stereoisomers, extraction Stereoisomers, extraction
2382 1973,2382 2382 331
Column elution Charcoal and 1959 colloidal silica Precipitation chromatogr., glass 500,501,2648 beads, 28-5O°C SEC 620 SEC, jn-styragel, 38°C 772 Precipitation chromatogr., 10-60 0 C 2513 SEC, styragel 2657 Precipitation chromatogr., 10-60 0 C 2513 Column elution, 300C silica gel 3583 965 1389,1657,1663,2387,2679 1595 431,504,966,1655,2229, 2294,2398,2399,3570 SEC, ultrastyragel 164 SEC, 1500C 2650 0 Precipitation chromatogr., 25-70 C 2229 glass bead Precipitation chromatogr., 10-60 0 C 2513 1959 SEC u-styragel SEC, ultrastyragel SEC, styragel
Trichlorobenzene Xylene/rt-propanol Fractional precipitation
Fractional solution
2,4,4-Trimethylpentene/ n-butanol Benzene/acetone Benzene/methanol Chloroform-methylene chloride/acetone Cyclohexane/butanone Heptane/ethanol Liquid ethylene at 130 atm. releasing pressure Toluene/methanol Benzene (theta technique) Benzene, benzene/methanol Hexane/ethanol Toluene, methyl ethyl ketone Toluene/acetone mixtures Toluene/butanone, heptane/butanone Toluene/methanol
28°C 25° C 800C Column elution, 24.5°C Column elution Column elution, 25°C Continous operation Extraction, 300C Continous operation Column elution, charcoal
322,323,644,645, 678,903,913,914, 928,1796,2043,2044 785,909,1492 2833 2524 373 3298 184,2664,3126 2086 2353 3583 1016 322 1017 324,1857
TABLE 1. cont'd Polymer
Method of fractionation Sedimentation velocity Thermal diffusion Turbidimetric titration
Poly( 1,5-dimethylhexylethylene) Chromatography Extraction
Poly(2-methylpropene) PoIy(I-methylpropylethylene)
Chromatography Chromatography Fractional solution
Poly(2-methylpropylethylene)
Fractional precipitation
Fractional solution Poly(nonylethylene) PoIy(I-undecene) Chromatography Poly(octadecylethylene) Fractional solution Poly(1 -octenylene) Poly(octenamer) Chromatography Poly( 1 -pentenylene) Poly(pentenamer) Chromatography Fractional precipitation Poly(pentylethylene) PoIy(I -heptene) Chromatography Poly(propylene) Chromatography
Solvent or solvent/nonsolvent mixture 2,2,4-Trimethylpentane n-heptane Butyl acetate, butyl ether, methoxymethanol, methyl propyl ketone, diethyl ketone, ethyl amyl ketone, heptane/n-butanol Acetone/ethyl ether, benzene, ethyl ether Boiling (acetone, ethyl acetate, ethyl ether, diisopropyl ether, cyclohexane) Tetrahydrofuran Acetone/ethyl ether, benzene Boiling (acetone, ethyl acetate, and benzene) Benzene/nitrobenzene (3/1) Decalin/ethyl cellosolve Benzene and ethyl ether
Remarks
Refs.
Gradient 40-50 0 C Lowering temp.
3410 1833 2234
20-780C polymeric active support
2603 595
SEC, u-styragel Column elution, 18-200C, active support, acetone soluble fraction Extraction
2602
Stereoisomers, extraction
2382 3150 2382
Trichlorobenzene Boiling ethyl ether
SEC, styragel, 800C Extraction
3418 1996
Tetrahydrofuran
SEC, styragel, spherosil
126,1066
o-Dichlorobenzene Tetrahydrofuran Toluene/methanol
SEC, styragel, 135°C SEC, styragel, spherosil 40/20 (0C)
3608 126,2832,3490 1044,3490
Trichlorobenzene 1,2,4-Trichlorobenzene
SEC, styragel, 800C
1,2-Dichlorobenzene Cyclohexane Isopropyl ether Ligroin/2-butoxyethanol 0-Dichlorobenzene
Petroleum ether/methanol Tetralin Tetralin/2-butoxyethanol Tetralin/diethylene glycol monobutyl ether (mixtures) Tetralin/diethylene glycol monomethyl ethyl ether Trichlorobenzene
Lowering temp.
568 2603
3418 608 SEC 3541 SEC, u-styragel, 135°C 1907 SEC, u-styragel, 145°C 1925 SEC, ultrastyragel, 140°C 2670 SEC, ultrastyragel, 135°C 824 SEC, u-styragel, 135°C 185 SEC, u-styragel, 7O0C 3561 High MW and crystallinity 2367 Precipitation chromatogr., 75-1700C 3015 SEC 1634 SEC, styragel, 135°C 767,768,769,771, 1588,1638,1946, 1982,1994,2434, 2760,2789, 3365,3386 SEC, styragel, 1400C 2216 SEC, styragel, preparative 135°C 148 Silica gel, 0-48 0 C, low MW 1026 Column elution increasing 612 temp. 20-1500C SEC, 130-1450C 1853 Precipitation chromatogr, 611 140-1800C Column elution, 165°C according 612 to MW Column elution, 145°C 2265 SEC, 135°C,130oC,150°C
607,673,1774, 2487,2488,3377
References page VII-438
TABLE 1. cont'd Polymer
Method of fractionation
Ccacervation
Solvent or solvent/nonsolvent mixture Trichlorobenzene/dimethyl phthalate o-Dichlorobenzene/triethylene glycol Tetralin/poly(oxyethylene)
Extraction Acetone, ethyl ether, n-pentane, n-hexane, n-heptane, n-octane Boiling (acetone, ethyl ether, n-hexane, n-heptane Boiling (heptane, xylene) Boiling diethyl ether, hexane, heptane Boiling heptane, octane Boiling hexane, heptane, toluene Boiling xylene Boiling xylene, octane Boiling (ethyl ether, n-heptane, methyl cyclohexane) Different solvents Ethyl ether, n-hexane, n-heptane Heptane
Fractional crystallization
Heptane, diethyl ether, hexane/heptane Heptane, n-octane, xylene Hexane n-Octane, n-heptane, n-hexane, n-pentane Xylene/ethylene glycol monoethyl ether 1,2,4-trichlorobenzene n-Heptane
Fractional precipitation
Fractional solution
o-Xylene Octane Perchloroethylene Xylene Benzene/acetone Benzene/methanol Cyclohexane/acetone Cyclohexane/isopropanol Cyclohexanone/ethylene glycol or dimethyl phthalate Decalin/phenol-decalin/ propylene glycol 0-Dichlorobenzene/benzyl alcohol Trichlorobenzene/dimethyl phthalate Xylene/poly(oxyethylene) Xylene/triethylene glycol 17 Hydrocarbon fractions with increasing b.p. from 35 to 1300C Acetone, diethyl ether, n-pentane, n-hexane, n-heptane
Remarks Precipitation chromatogr. temp. grad. 55-125°C glass beads Isotactic
Refs. 169 191
1400C 2720 17 Hydrocarbon fractions 2337 with increasing b.p. from 35 to 1300C Isotactic 1956,2201,2372,2797
Amorphous and crystalline
958
Tacticity Tacticity
536 479
Tacticity Syndiotactic
213 185
Tacticity Tacticity Amorphous and crystalline Different temp. Syndiotactic Boiling Hot and cold Kumagawa extraction Tacticity Boiling Stereoregular separation
536 535 3351 1539 2438 1970,3032,3252 892 478 2536 2751 2539 2674
CRYSTAF, isotactic + sindiotactic mixture Stirred, opt. act. (amorphous and crystalline)
2236 2500
Isotactic, 130-135°C
341 2539 2560 1550 906 293,1679 1681,2252 124 1681
1300C, nitrogen atm.
1870
Lowering temp. 70-90 0 C, isotactic Stereoregular separation Atactic Atactic
2264 140° C 112°C,134°C 1300C
Extraction
169 704,1557 2974
1940
TABLE 1. cont'd Polymer
Method of fractionation
TREF Turbidimetric titration Poly(propylethylene) Fractional precipitation Poly(tetradecylethylene) PoIy(I-hexadecene) Chromatography Poly(undecylethylene) PoIy(I-tridecene) * Chromatography Poly(vinylcyclohexane) see Poly(cyclohexylethylene)
Solvent or solvent/nonsolvent mixture Acetone, diethyl ether, /7-pentane, tf-hexane, fl-heptane Butyl cellosolve/diethyleneglycol monobutyl ether Decalin Decalin/2-ethoxyethanol Decalin/acetophenone Decalin/benzyl alcohol Decalin/diethylene glycol monobutyl ether Decalin/ethyl carbitol Diethyl ether, pentane heptane, aliphatic hydrocarbons, decalin Ether, hexane, heptane Ethylene glycol monobutyl ether/diethylene glycol monobutyl ether Hexane, n-decane Kerosene/diethylene glycol monomethyl ether Kerosene/diethyleneglycol monobutyl ether Kerosene/ethylene glycol (10%) in 2-butoxyethanol Nine solvents of increasing solvent power and boiling point 0-Dichlorobenzene/diethylene glycol o-Dichlorobenzene/diethylene glycol monobutyl ether 0-Diehlorobenzene/dimethyl phthalate Tetralin Tetralin/2-butoxyethanol Tetralin/2-ethoxyethanol Tetralin/diethylene glycol monomethyl ether-ethylene glycol (75%-25%) Tetralin/dimethyl phthalate Xylene/2-ethoxyethanol Xylene/ethylene glycol monoethyl ether Xylene/ethylene glycol monoethyl ether, ethylene glycol monobutyl ether/diethyleneglycol monobutyl ether Xylene/methanol Xylene/poly(oxyethylene) Trichlorobenzene Xylene
Remarks
Refs.
Extraction, anisotactic
2752
165°C
1360
Rising temp. Column extraction, 1100C Column elution,146.5°C Column elution, 152°C Column elution,161°C
2435 1416 2556 2556 2434
Column elution,160°C Successive extraction
2435 1907 609 1907
Gradient extraction several temp. Column extraction, 1500C
1684 3350,3467
Column elution,155°C,160°C
1420,2433
Column extraction 156°C, isotactic According to crystallinity Column elution, 168°C, 1700C and 172°C Column elution, 166°C
673,872,2983 2385 704,1329,2137,2649 3517,3518
Column elution, 1500C
2933
Column extraction, increasing temp. Column extraction Column extraction, 1700C Column extraction, 180°C, isotactic
3016 3146 2519 1312
Column extraction, 155-178°C 165°C Gradient extraction, several temp. Temperature (121 - 128°C) and (159-161°C)
2161 1359 1907 536
Benzene/methanol Chloroform/isopropanol Tetralin/butyl cellosolve Toluene/methanol
Column extraction, 56°C, atactic Coacervate extraction, 134°C 140-300C 20-1300C, column extraction 25-1300C, glass beads 300C, atactic 300C, atactic 1100C 300C, isotactic
2649,2983 704 3026 1536 2216 1522 1522 3145,3146 696,2262
Trichlorobenzene
SEC, styragel, 800C
3418
Trichlorobenzene
SEC, styragel, 800C
3418
References page VII-438
TABLE 1. confd Polymer 1.3.
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
SEC, aquagel-OH
2121 2686
POLY(ACRYLIC ACID) AND DERIVATIVES
Poly(acrylamide)
Chromatography Electron microscopy Fractional precipitation
Poly (acrylic acid)
Sedimentation velocity Chromatography
Electrophoresis Extraction Extraction (CPF) Fractional precipitation
Fractional solution Poly(acrylic acid), sodium salt Field
flow
Fractional precipitation Poly (aery lie anhydride) Chromatography Poly(N-acryloyl-oaminobenzoic acid) Chromatography Fractional precipitation Poly(Af-acryloyl-iV'-methyl piperazine) Chromatography Poly[4-(acryloyloxy)propoxy)-4'-cyanobiphenyl] Chromatography Poly(benzyl acrylate) chromium tricarbonyl Chromatography Poly(n-butyl acrylate) Chromatography
Sodium sulfate 0.5 M Water/n-propanol (dispersant agent) Formamide Formamide/water (1/15) Sodium nitrate (water) 0.5 N Sodium sulfate (water) 0.1N Water Water/acetone-methanol Water/isopropyl alcohol Water/methanol Water Dioxane Sodium chloride (water) 0.3 N Water Sodium acetate buffer, pH = 5.0 Water/isopropanol Dioxane Methanol/ether Methanol/ethyl acetate Methanol/water «-Propanol/1,2-dichloroethane Dioxane Dioxane-water Water -f 0.02 M triethanolamine + 0.1 M potassium chloride Sodium hydroxide 0.4 N (water)/ methanol-water-sodium hydroxide 2.2 N Tetrahydrofuran Tetrahydrofuran Tetrahydrofuran/petroleum ether
SEC SEC, surface modified silica SEC SEC SEC, TSK-gel, Sephadex
2465 336 752 1703 1224,2361 3500 3375 300C, 25°C 252,253,336,805, 2199,2465,2910 Hydrolyzed, decreasing temp. 2920 1993 Continuous fractionation (counter 1177 current extraction) > 400C SEC, TSK-gel sodium salt 1616 SEC 1636 560 Partially neutralizated 868 1177 1680,1708 200C 3255,3263 <9-point phase as a sodium salt 2176 3046 CPF 1177 Extraction 1848 1046,1047,1048,1049, 1050,1051,1052 Stepwise lowering temp. 2809 40~20°C SEC, cyclocopolymer
2083
SEC, styragel 300C
2532 2532
Tetrahydrofuran
3506
Chloroform
SEC, styragel
Tetrahydrofuran Butyl acetate Methylene chloride Tetrahydrofuran
SEC SEC, styragel, 700C SEC SEC SEC, ultrastyragel Supercritical SEC, star-shaped molecules 25°C
Fractional solution Nitrous oxide Chromatography Tetrahydrofuran Fractional precipitation Methanol/methanol-water Poly(n-butyl oc-bromoacrylate) Chromatography Tetrahydrofuran Poly(4-(butylphenylazoxy)phenyl acrylate) Poly(n-butyl-p-acryloyl azoxy benzene) Fractional precipitation Chloroform/n-heptane Poly(cholesteryl acrylate) Fractional precipitation Benzene/acetone Poly(n-decyl acrylate) Fractional precipitation n-heptane/acetone Poly(terf-butyl acrylate)
2839 2611 3501 1928 826 1980 2882 3245 1498 2852 2544 3271 857,3269
Poly(diacetone acrylamide) PoIy(N-(1,1 -dimethyl-3-oxobutyl)acrylamide)
Poly(ethyl acrylate)
Poly(ethyl-a-bromoacrylate)
Fractional precipitation Field flow Fractional precipitation Turbidimetric titration Chromatography
Methanol/water Water + FL-70 tensoactive Acetone/methanol Acetone/water-methanol (1:5) Butanone/methanol-water Chloroform/n-hexane Tetrahydrofuran
1502 1903 2019 1941,1942,1943 3056 1991 2852
Sedimentation, cyclical-field, spheres 300C 300C
TABLE 1. cont'd Polymer
Method of fractionation
Poly(2-ethyl-n-hexyl acrylate) Fractional precipitation Poly[(N-ethylcarbazol-3-yl) methyl acrylate] Chromatography Poly(ferrocenyl ethyl acrylate) Chromatography Poly(ferrocenyl methyl acrylate) Chromatography Poly(fluoroalkyl-2-trifluoromethyl acrylate) Chromatography Poly(/V-formyl acrylamide) Chromatography Poly(1,1 -dihydroperfluorobutyl) acrylate Fractional precipitation Poly(2-hydroxyethyl acrylate) Chromatography Poly (N-isoproply acrylamide) Chromatography Fractional precipitation Poly(isopropyl acrylate) Fractional precipitation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Tetrahydrofuran/ethanol-n-hexane (2/1)
250C
Tetrahydrofuran Tetrahydrofuran
SEC, u-styragel SEC
3000,3001 2612
Tetrahydrofuran
SEC
2609,2610
Tetrahydrofuran Dimethylformamide
SEC, styragel SEC, vinyl acetate copolymer gel (Merckgel)
Benzenetrifluoride/methanol Tetrahydrofuran Methanol Ethanol/diethyl ether BenzeneM-hexane Chlorobenzene/rc-hexadecane
3442
SEC, styragel, telomer 25°C, atactic 110-1150C, stereoregular
2362 3225 2714 402 2124 3207 2042 2042
Poly(isopropyl-a-bromoacrylate) Chromatography Chromatography Fractional precipitation Phase separation Poly[4'-methoxyphenyl-4-((acryloxyloxy)propoxy)benzoate)] Chromatography
Poly(AMsopropylacrylamide)
Tetrahydrofuran Dimethylpirrolidone Acetone/n-hexane Water-fed acetone/n-hexane Chloroform
Po\y(trans-l 1 {4-[5-(4-methoxyphenyl)-l,3-dioxan-2-yl]-2,6-dimethylphenoxy}undecyl acrylate] Chromatography Tetrahydrofuran Poly (methyl acrylate) Fractional precipitation Acetone/petroleum ether Acetone/water - methanol Benzene/methanol Benzene/petroleum ether Butanone/methanol Liquid ethylene at 130 atm and 800C Tetrahydrofuran/methanol- water (1:1) Fractional solution Chlorodifluoromethane Turbidimetric titration Toluene/methanol Poly(methyl a-bromoacrylate) Chromatography Tetrahydrofuran Poly(methyl a-chloroacrylate) Chromatography Tetrahydrofuran Fractional precipitation Acetonitrile/methanol Poly(Af-( 1,1 ,-dimethyl-3-imidazolylpropyl acrylamide) Fractional precipitation Methanol/mesitylene Poly(methyl a-(trifluoromethyl)acrylate) Chromatography Tetrahydrofuran Poly(Af,Af-dimethylacrylamide) Chromatography Dimethylformamide + lithium bromide 0.1% Tetrahydrofuran Poly(2-methylsulflnyl ethylacrylate) Fractional precipitation Chloroform/toluene Poly( 1 -(2-methylsulfinyl) ethoxycarbonyl)ethylene) Poly(«-octadecyl acrylate) Chromatography Tetrahydrofuran Poly( 1 -oxyl-2,2,6,6-tetramethyl-4-piperidyl) acrylamide Chromatography Tetrahydrofuran Poly( 1 -oxyl-2,2,6,6-tetramethyl-4-piperidyl) acrylate Chromatography Tetrahydrofuran Poly( 1,2,2,6,6-pentamethyl-4-piperidyl) acrylate Chromatography Tetrahydrofuran Poly(rc-pentyl a-bromoacrylate) Chromatography Tetrahydrofuran Poly(phenyl acrylate) Fractional precipitation Toluene/methanol
2852 2864 950 2445
SEC, u-bondagel
SEC, styragel SEC, styragel, analytical, preparative SEC, styragel, 400C
2839 1408 1381 1136 1167,195 8 2059 2001 1773 3298
Releasing pressure 25°C
3442
Supercritical fluid fractionation SEC, styragel SEC, u-styragel
2127 3398 159,2852 159 1267 1207
SEC, styragel, 300C, 400C
1446 3042
SEC, ultrastyragel, 25°C
3506
0
3O C
1335 2964
SEC, u-styragel, 22°C
1582
SEC, |a-styragel, 22°C
1582
SEC, u-styragel, 220C
1582
SEC, styragel 28°C
2852 1347
References page VII-438
TABLE 1. cont'd Polymer
Method of fractionation
Poly(4-phenylazoxyphenyl acrylate) Fractional precipitation Poly(rc-propyl acrylate) Fractional precipitation Poly(rc-propyl a-bromoacrylate) Chromatography Poly(3-sulfonylpropane methacrylamide) Fractional precipitation
Solvent or solvent/nonsolvent mixture
Remarks
ChloroformM-heptane Acetone/methanol Tetrahydrofuran
Refs.
2544 2019 SEC, styragel
2852
Ethanol/rc-heptane
894
Benzene/methanol
2690
Trichloromethane/methanol Butanone/methanol Benzene/methanol
3053 2749 38
1.4. P O L Y ( M E T H A C R Y L I C ACID) AND DERIVATIVES Poly(alkylphenyl methacrylates)s (General) Fractional precipitation Poly(6-(anisyloxycarbonylphenoxy)hexylmethacrylate) Fractional precipitation Poly(benzyl methacrylate) Fractional precipitation Poly(2-biphenyl methacrylate) Fractional precipitation Poly(p-tert-butylcyclohexyl methacrylate) Fractional precipitation Poly(n-butyl methacrylate) Chromatography
Fractional precipitation
Dioxane/methanol Benzene Tetrahydrofuran Tetralin Toluene Acetone/methanol
SEC, styragel SEC SEC, styragel SEC, styragel, 75°C
Lowering temp. Acetone/water Benzene/methanol Toluene/methanol Thermal diffusion Benzene Poly(tert-butyl methacrylate) Poly(1-tert-butoxycarbonyI)-I-methylethylene Chromatography Tetrahydrofuran
Fractional precipitation
SEC, styragel
SEC SEC, styragel SEC, u styragel 300C SEC, ultrastyragel
Acetone/methanol Toluene/methanol, toluene/methanol 4- water Sedimentation velocity Butyl acetate 20-21 0 C Poly(2-tert-butylphenyl methacrylate) PoIy(J-(2-tert-butyl phenoxyl carbonyl)-]-methylethylene)) Fractional precipitation Benzene/methanol Poly(p-terf-butylphenyl methacrylate) Fractional precipitation Acetone/2-propanol Poly(carbethoxyphenyl methacrylamide) [PoIy(I-(Carbethoxyphenylimino carbonyl)-! -methylethylene)] Sedimentation velocity Ethyl acetate 200C Poly(4-cetyloxycarbonylphenyl methacrylate) Fractional precipitation Benzene/methanol Poly(chloresteryl methacrylate) Chromatography Tetrahydrofuran SEC Poly(2-chlorophenyl methacrylate) Fractional precipitation Benzene/isopropanol Poly(4-chlorophenylmethacrylate) [PoIy(I -4-chlorophenyloxycarbonyl) 1 -methylethylene] Fractional precipitation Chloroform/methanol Poly(cyclohexyl methacrylate) Chromatography Toluene SEC, styragel, 800C Fractional precipitation Dioxane/methanol 25°C Lowering temp. Tetrahydrofuran/methanol Poly( 1 -(2-A^cyclohexyl-N-methyl-carbamoyloxy) ethyl) methacrylate) Chromatography Tetrahydrofuran SEC, styragel, 28°C Poly(cyclohexyl thiolmethacrylate) Fractional precipitation Toluene/methanol Poly(decahydro-p-naphthyl methacrylate) Fractional precipitation Dioxane/methanol 25°C Poly(rc-decyl methacrylate) Fractional precipitation Toluene/methanol
990 1263 690 2824 2975 261 393,1489,1605, 2628,2994 581 3348 1519,2419 2993,2997 1724 3109 1685 3358 1577 1777 1577 292 3232 990,991 923 3275 1377 2396 3231 1180 1180 2144 1605 2668 1186 1181 3599
TABLE 1. cont'd Polymer
Method of fractionation
Poly(fl-docosyl methacrylate) Poly(dodecy] methacrylate)
Solvent or solvent/nonsolvent mixture
Fractional precipitation Toluene/methanol Chromatography Tetrahydrofuran Fractional precipitation Toluene/methanol Poly(2,3-epoxypropyl methacrylate) Chromatography Tetrahydrofuran Fractional precipitation Benzene/methanol Sedimentation velocity Heptane-acetone Poly(2-(Af,/V-diethyl carbamoyloxy)-2-methyl-ethyl methacrylate) Chromatography Tetrahydrofuran Poly(ethyi methacrylate) (Poly-(l-(ethoxycarbonyl)-l-methyl ethylene)] Chromatography Tetrahydrofuran Fractional precipitation Acetone/acetone + water system Acetone/acetone-water (4:1) Benzene/methanol Benzene/n-hexane Benzene/petroleum ether Methanol/water, chloroform/methanol Poly (ethyl methacrylate)-d i0 Chromatography Tetrahydrofuran Poly( 1 -(2- (/V,Af-diethylcarbamoy loxy )ethy lmethacrylate) Chromatography Tetrahydrofuran Poly(/V-ethylcarbazol-3-yl)methyl methacrylate) Chromatography Tetrahydrofuran Poly(ethylene glycol methacrylate) Fractional precipitation Ethanol/methanol (0.7/1), n-heptane-benzene (1:1) Ethanol/n-heptane-benzene (1:1) Poly(ferrocenylethyl methacrylate) (Poly-( 1 -(ferrocenylethoxycarbonyl)-l-methylethylene)) Chromatography Tetrahydrofuran Poly(ferrocenylmethyl methacrylate) (Poly-(1-(ferrocenylmethoxycarbonyl)-l -methylethylene)) Chromatography Dimethylformamide Tetrahydrofuran
Remarks
Refs. 3599 2285 2285
SEC, styragel, 250C
SEC, styragel, silica gel, 25°C Theta-solvent
2295 3232 1544
SEC, styragel
2668
SEC, styragel
2824 351,1608 582,1583 2459 3362,3363 2628 2460
Lowering temp.
SEC, styragel predeuterated
1226
SEC, styragel, 28°C
2668
SEC, ji-styragel
3000
300C
369,372,799
300C
369
SEC
2612
SEC, styragel SEC
2615 2609,2610,2614, 2615,3247
PoIy(I l-(hexadecyldimethylammonio)-undecyl methacrylate) Chromatography
Chloroform -f 0.005 M SEC, u-styragel and ultrastyragel 376 tetrabutylammonium bromide Poly(/?-hexyl methacrylate) (PoIy(I -(hexyl-oxycarbonyl)-1 -methylethylene) Fractional precipitation Acetone/ethanol Lowering temp. 583 Poly(2-hydroxyethyl methacrylate) Chromatography Tetrahydrofuran SEC, u-styragel 1122 Fractional precipitation Benzene: ethanol 300C 910 (1 : I)/n-heptane Methanol/rc-heptane -benzene 1496 (1:1) Poly(/V-(2-hydroxyethyl)phthalimido methacrylate) [PoIy(I-(phthalimedoethoxycarbonyl)-1 -methylethylene)] Fractional precipitation Chloroform/petroleum ether 200C 3595 Poly(/V-(2-hydroxypropyl) methacrylamide) Chromatography Tris buffer solution (pH = 8.3 SEC, Sepharose 3088 in 0.5 M sodium chloride) Fractional precipitation Methanol/acetone 400C 374 Poly[l-(5-indanyloxy carbonyl)-l-methylethylene)] Poly(5-indanyl methacrylate) Fractional precipitation Toluene/ethanol 998 Poly(isobornyl methacrylate) Fractional precipitation Toluene/methanol 1187 Poly(isobutyl methacrylate) (Poly-( 1 -(isobutoxycarbonyl)-l-methylethylene)) Fractional precipitation Acetone/methanol 300C 3334,3335,3574 Toluene/methanol 2998 Poly(isooctyl methacrylate) (PoIy-(I-(isooctyloxycarbonyl)-l-methylethylene)) Sedimentation velocity Heptane/acetone Theta-solvent 1544 Poly(5-/?-menthyl methacrylate) (PoIy(I-(5-p-menthyloxycarbonyl)-l-methylethylene)) Fractional precipitation Benzene/methanol 3232 Poly(methacrylamide) Fractional precipitation Formamide/methanol 25°C 3211 Poly(methacrylic acid) [poly( 1-carboxy-1 -methylethylene)] Electrophoresis Water (sodium phosphate, dibasic) Stereoregular separation 162
References page VII-438
TABLE 1. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Methanol/butyl acetate-2-pentanone (10:1) Methanol/diethyl ether Methanol/ethyl acetate 4acetic acid Methanol/ethyl ether Methanol/methyl isobutyl ketone Sedimentation equilibrium Methanol Poly-A^-[4-(methacryloyloxy)phenyl]-2-(4-methoxy phenyl)acetamide Chromatography Tetrahydrofuran Poly(2-methoxyethyl methacrylate) Chromatography Tetrahydrofuran Fractional precipitation Toluene/ethanol Poly-A^[4-[[4-methoxyphenyl)acetyl]oxyphenyl]methacrylamide] Chromatography Tetrahydrofuran Poly[/ra«5-ll{4-[5-(4-methoxyphenyl)-l,3-dioxan-2-yl]-2,6-dimethylphenoxy}undecyl methacrylate] Chromatography Tetrahydrofuran
Remarks
Refs.
Fractional precipitation
1361 3012 115,335,929, 2377,2378 904,1598,2153 3464
25°C
517 SEC, ultrastyragel, 25°C SEC, silica gel 27°C
971 3388 3074
SEC, ultrastyragel, 200C SEC, styragel, 400C
971 1381
Poly(4-methoxyphenyl methacrylate) (PoIy(I -(methoxyphenoxycarbonyl)- 1-methylethylene)
Chromatography Poly(2,2-dimethyl-1,3-dioxolan-4-yl)methyl methacrylate Chromatography Poly(methyl methacrylate)
GPC Tetrahydrofuran
3454 0
SEC, styragel, 40 C
2274
PoIy(I-(methoxycarboonyl)-l-methylethylene)
Chromatography
1,2,4-Trichlorobenzene 2,2,2-Trifluoroethanol 2-Ethoxyethanol Acetone Acetone/methanol
SEC, styragel, 145°C SEC, 500C SEC, silica gel Activated carbon -f super eel SEC TLC Precipitation chromatogr. silanated glass beads Precipitation chromatogr., periodic temp, changes
AcetonitrileM-butyl chloride Benzene/cyclohexane, ATLC, oligomers heptane/ethylacetate, cyclohexane/ethylacetate, benzene/cyclohexane/ethylacetate Benzene/methanol Precipitation chromatogr. Butanone/butanone-70% ethanol Chloroform SEC, preparative SEC, silica gel, 250C SEC, styragel, 33°C Chloroforrn/rnethanol Precipitation chromatogr. TLC Dimethylformamide SEC, styragel, 700C Dioxane ThFFF Ethyl acetate TLC Methylene chloride SEC, u-styragel, 32°C Petroleum ether: tetrahydrofuran HPLC, gradient Tetrahydrofuran Perdeuterated, SFiC, Zorbax SEC
572 2671,2672 577 601 2158,2159 2210 1951 2634,2637 91 356
215,710,1175 3440 3138 2211 60,188,707,2094 397 1419 357,3402 1686 2210 60 356 730,2811 974 59,60,167,229, 284,298,357,441, 758,1383,1387, 2103,2150,2151, 2601,2671,2873, 2874,3024,3109,3426 SEC, silanated silica gel, 25°C 3079 SEC, styragel, poreglass, 25°C 2801 SEC, styragel, 25°C telechelic 2442 SEC, u-styragel, 25°C 1602 SEC, u-styragel, 25°C, isotactic 1601 and syndiotactic samples
TABLE 1. cont'd Polymer
Method of fractionation
Field flow Fractional precipitation
Solvent or solvent/nonsolvent mixture
Tetrahydrofuran: triethylamino (9:1) Trichloroethylene Xylene Tetrahydrofuran Acetone/Aq. acetone Acetone/methanol Acetone/methanol-water (1:1) Acetone/w-heptane Acetone/n-hexane Acetone/petroleum ether Acetone/shellsolve Acetone/water Aq. acetone solutions Benzene-chloroform (3: iypetroleum ether Benzene/cyclohexane Benzene/isopropyl alcohol Benzene/methanol
Benzene/n-hexane Benzene/petroleum ether
Fractional solution
Benzene/shellsolve Butanone-ethanol/cyclohexane Butanone/methanol Butanone/n-hexane Carbon tetrachloride/shellsolve Chloroform/n-heptane Chloroform/petroleum ether Dioxane/n-heptane Methyl ethyl ketone/methanol Toluene/methanol-water Toluene/petroleum ether Acetone/methanol Acetone/n-hexane Benzene/cyclohexane B enzene/methanol
Sedimentation velocity
Butanone/cyclohexane: methanol Chloroform/methanol Chloroform/petroleum ether Toluene/methanol, benzene/methanol Toluene/petroleum ether Acetone Ethyl acetate
Remarks
Refs.
SEC, u-styragel, Isotactic (99%), syndiotactic (92%) Syndiotactic SEC, [i-styragel, 35°C SEC, 23°C SEC, syndiotactic Thermal
Summative method 200C Low MW Lowering temp.
1606 3439 670
3195 304 1146 251 368,373,605,916, 1467,1491,1603,1605, 2873,2999,3049,3521 605,915 1318 331,1718,2062 851 605,915 273,580,605,915, 949,1415,2905,3607 251 2148
850,851,1205,1679 1599,1600 166,303,727,953, 1175,1466,1547,1604, 2317,2419,2533,2535, 2600,2770,2771,2772, 2773,3138,3606 Isotactic 2036 Isotactic (99%), syndiotactic (92%) 1606 Isotactic and syndiotactic samples 1601 Isotactic atactic 1602 25°C 74,909,949,1205, 1363,1785,1992,2250, 3256,3362,3363 25°C 367,368,662,663, 2685,3137,3253 605,915,1786 3440 518,1773 518 605,915,916 Lowering temp. 2987 132,3238 300C, imidized 3141 589 2109 640 Column extraction 742,2635,2638,2906 Column extraction, 200C glass 2302 beads, analytical and preparative Column extraction 2906 2421 Column extraction 215 3440 Column extraction 397 Film extraction 935 2350 Ultracentrifuge Ultracentrifuge, 200C
831 1680 852,853
References page VII-438
TABLE 1. con^d Polymer
Method of fractionation
Thermal diffusion Turbidimetric titration
Solvent or solvent/nonsolvent mixture Ethyl acetate/acetone Nitrornethane Acetone Benzene Toluene Acetone/water Benzene/cyclohexane Benzene/methanol Butanone/water-methanol (3:1) Chloroform/methanol
Remarks Ultracentrifuge, 200C Ultracentrifuge, (9-temp. 28°C Plate type apparatus
Poly(2-(4-methyl-1 -piperaziny lcarbonyloxy )ethy lmethacrylate) Chromatography Tetrahydrofuran SEC, styragel, 26°C Poiy(2-(4-methyl-l-piperazinylcarbonyloxy)-2-methylethylmethacrylate) Chromatography Tetrahydrofuran SEC, styragel, 28°C Poly(dimethylamino) ethyl methacrylate Chromatography Tetrahydrofuran: triethylamino SEC, ja-styragel, 35°C (9:1) Poly (1 -(2-(MN-dimethylcarbamoyloxy)ethy lmethacrylate) Chromatography Tetrahydrofuran SEC, styragel, 28°C Poly(2-(Af,N-dimethylcarbamoyloxy)-2-methylethyl methacrylate) Chromatography Tetrahydrofuran SEC, styragel, 28°C Poly(p-methylphenyl methacrylate) Chromatography Tetrahydrofuran SEC Poly(2,5-dimethylpyrazolyl methacrylate) Fractional precipitation Acetone/«-hexane 200C Poly(2-morpholinocarbonyloxy)ethylmethacrylate) Chromatography Tetrahydrofuran SEC, styragel, 26°C PoIy(I-naphthyl methacrylate) Chromatography rc-Butyl acetate SEC, bioglass Tetrahydrofuran SEC, 400C Poly(2-[(3,5-dinitrobenzoyl)oxy]ethyl methacrylate) Chromatography Tetrahydrofuran SEC, ^-styragel Poly(1 -(1 -nonyloxy-4-phenoxycarbonyl)phenyl methacrylate) Fractional precipitation Benzene/acetone Poly(octadecyl methacrylate) Fractional precipitation Toluene/methanol Poly(n-octyl methacrylate) Chromatography Tetrahydrofuran SEC, styragel Fractional precipitation Toluene/ethanol Poly(3-(8-oxyl-7,7,9,9-tetramethyl-2,4-dioxo-l,3,8-triazaspiro(4,5)-dec-3-yl)propyl methacrylate) Chromatography Tetrahydrofuran SEC, ji-styragel, 22°C Poly(pentachlorophenyl methacrylate) Fractional precipitation Toluene/petroleum ether Poly(l,2,2,6,6-pentamethyl-4-piperidyl methacrylate) Poly(1 -methyl-1 -(1,2,2,6,6-pentamethyl-4-piperidyl)oxycarbonyl ethylene) Chromatography Tetrahydrofuran SEC, u.-styragel, 22°C Poly(phenyl methacrylate) Chromatography Tetrahydrofuran/water SEC, styragel Toluene SEC, styragel, 800C Fractional precipitation Acetone/isopropanol 25°C Poly(//-phenylmethacrylamide) (PoIy-I'(phenyliminocarbonyl)-l-methylethylene)) Fractional precipitation Acetone/benzene Poly(diphenylmethyl methacrylate) Chromatography Chloroform SEC, ^-styragel Poly(propionyloxyethyl methacrylate) Chromatography Tetrahydrofuran SEC, u.-styragel Poly(propyl methacrylate) Fractional precipitation Sodium chloride LON (water)/ methanol - isopropanol (1:1) Sodium sulfonate salt Poly(n-stearyl methacrylate) Fractional precipitation Toluene/methanol Poly (tetrahydrofuran methacrylate) Chromatography Tetrahydrofuran SEC Poly(tetrahydrofurfuryl methacrylate) Fractional precipitation Acetone/benzene 25°C Poly(4-( 1,1,3,3-tetramethylbutyl)phenylmethacrylate) Chromatography Tetrahydrofuran SEC, styragel Fractional precipitation Benzene/methanol Poly(2-thiophene methyl methacrylate) Chromatography Tetrahydrofuran SEC, ultrastyragel
Refs. 1679 2769 931 1726,1727 1863,1868 58,1012,1219 664 1991 58 1991 2668 2668 670 2668 2668 3454 2960 2668 143 2402 3000,3001 476 2750 2824 2628 1582 259 1582 989 1180 1180 2853 766 1496 3143 3598,3599 954 3575 989 2446 993
TABLE 1. cant'(I Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Fractional precipitation Benzene/methanol Poly( 2,4,5-trichIorophenyl methacrylate) Poly( 1 (2,4.5-trichlorophenoxycarbonvl)1-methylethylene) Fractional precipitation Benzene/methanol Poly(/7-tridecyl methacrylate) Fractional precipitation Toluene/methanol Poly(2-tiimethy!ammonium ethyl methacrylate chloride) Chromatography Nitric acid (0.1 M) 4- sodium nitrate (0.1 M)/water Sedimentation velocity Sodium chloride 0.1 N Poly(triphenylmethyl methacrylate) Chromatography Tetrahydrofuran Poly(tiityl methacrylate) Fractional precipitation Hexamethyl phosphotriamidebenzene (40:60)/petroleum ether 1.5.
Remarks
Refs. 993 1182,2396 3599 3080,3081
25 0 C
3081
SEC, styragel
2453 2394
OTHER a- AND p-SUBSTITUTED POLY(ACRYLICS) AND POLY(METHACRYLICS)
Poly(di-/j-alkyl itaconates)
Fractional precipitation
Poly(di-//-amyl itaconate) fPoly( J -(n-amyl-oxycarhonylwethyl)-1 Turbidimetric titration
Poly(di-benzyl itaconate)
Chromatography Fractional precipitation
PolyUnv-butyl crotonate)
Poly(di-/f-butyl itaconate)
Chromatography
Fractional precipitation Chromatography
Benzene/methanol -(n-cunyloxYcarbonyl)ethvlene I Acetone/methanol Benzene/methanol Butanone/methanol Chloroform/methanol Ethyl acetate/methanol Toluene/methanol Benzene/methanol Isobutyl methyl ketone/methanol l.l.3,3.3,-hexafluoro2-propanol Carbon dioxide/methylene dichloride Chloroform Toluene/methanol Benzene/methanol
Tetrahydrofuran Benzene/methanol Acetone/methanol Acetone/water Benzene/methanol Butanone/methanol Chloroform/methanol Ethyl acetate/methanol Toluene/methanol Cholestery] vinyl succinate Chromatography Tetrahydrofuran Poly(dicyclohexyl itaconate) Fractional precipitation Toluene/methanol Poly(di-/?-decyl itaconate) Poly( 1 -[n-decyloxycarbonylmethyl)-1 -n-decyloxycarbcmyDethxlene) Chromatography Benzene/methanol Turbidimetric titration Benzene/methanol Chloroform/methanol Toluene/methanol Poly(mono-//-decyl itaconate) Chromatography Tetrahydrofuran Fractional precipitation Butanol/methanol:water mixtures (2:1) Poly[ l-(decyloxycarbonylmethyl)-l-(methoxycarbonyl)ethylene] Poly(methyl clecyl iruconate) Fractional solution Chloroform/ethanol:methanol (1:1) Poly(di-//-dodecyl itaconate) Poly( 1'-(n-dodecyloxycarbonyl methyl)-l-n-decyl-oxycarbonyI)erhvlene Fractional precipitation Benzene/methanol Poly(mono-//-dodecyl itaconate) Chiomatography Tetrahydrofuran Fractional precipitation Turbidimetric titration
Poly dimethyl, diethyl, di-propyl itaconates
755
30 c C 3O0C 3O0C 30C 30°C 30c C Precipitation chromatogr., glass beads, grad. temp. 25 C
3368 3368 3368 3368 3368 3368 3373
SEC. u-styraged. analytical
3324
SFC, non-bonded silica gel 1600C, 20MPa. SEC, styragel, preparative. oligomers
3324
Precipitation chromatogr., glass beads, grad. temp. SEC, ultrastyragel 30 : C 30 0 C 30 c C 30° C 30 0 C 30 C 30 : C SEC 25°C Precipitation chromatogr. 30 0 C 30°C 30 0 C SEC. u-styragel
3554
3324 2408 3370 1365 1365 3368 3368 3368 3368 3368 3368 3368 2424 3371 3370 3368 3368 3368 2691 1912,2691
1914
3371 SEC. u-styragel
2691
References page VII-438
TABLE 1. cont'd Polymer
Method of fractionation Fractional precipitation
PoIy(1,1 -(diethoxycarbonyl)ethylene) Chromatography Fractional precipitation Poly (ethyl cyanoacrylate) Fractional precipitation Poly(di-n-ethyl itaconate) Chromatography Fractional precipitation Turbidimetric titration
Solvent or solvent/nonsolvent mixture
Remarks
Butanol/methanol-water mixture (2:1) Butanol/methanol: water (2:1)
Chloroform SEC Tetrahydrofuran/water 500C Methylene chloride/methanol Tetrahydrofuran SEC, ultrastyragel Benzene/methanol Acetone/water, 300C benzene/n-heptane, butanone/«-heptane, butanone/mineral spirits, ethanol/water Poly(mono-n-ethyl itaconate) Fractional precipitation Methanol-acetone (1: l)/diethyl ether Poly(di-n-heptyl itaconate) Turbidimetric titration Benzene/methanol, 300C butanone/methanol Poly(di-n-hexadecyl itaconate) PoIy(J-(n-hexadecyloxycarbonylmethyl-1 -(n-hexadecyloxycarbonyl)ethylene Fractional precipitation Benzene/methanol Turbidimetric titration Benzene/methanol, 300C butanone/methanol, chloroform/methanol, ethyl acetate/methanol, toluene/methanol Poly( 1 -(n-diicosayloxy-carbonylmethyl) 1 -(diicosayloxycarbonyl)ethylene Poly(diicosayl itaconate) Fractional solution Benzene/methanol Column elution Poly(methyl butacrylate) Fractional solution Acetone/methanol, Column elution benzene/rc-hexane Poly(methyl-«-decyl itaconate) Chromatography Tetrachloroethane-phenol SEC, ji-styragel (3:l)/n-hexanol Fractional precipitation Butanol/methanol: water (2:1) Poly(methyl-n-dodecyl itaconate) Chromatography Tetrahydrofuran SEC, u.-styragel Fractional precipitation Butanol/methanol:water (2:1) Poly(di-n-methyl itaconate) Chromatography Tetrahydrofuran SEC, ultrastyragel Fractional precipitation Acetone/methanol Benzene/methanol Turbidimetric titration Acetone/methanol 300C Acetone/water 300C Benzene/water 300C Benzene/n-hexane 300C Butanone/cyclohexane 300C Butanone/methanol 300C Butanone/w-hexane 30°C Chloroform/methanol 30°C Poly(di-«-octadecyl itaconate) Poly(1 -(n-octadecyloxycarbonylmethyl-l-octadecyloxycarbonyljethylene) Fractional precipitation Benzene/methanol Poly(di-rc~octyl itaconate) Turbidimetric titration Benzene/methanol, 300C butanone/methanol, chloroform/methanol, ethyl acetate/methanol, toluene/methanol Poly(di-n-phenyl ethyl itaconate) Chromatography Benzene/methanol Precipitation chromatogr., glass beads, temp. grad. 18-400C Poly(diphenyl itaconate) Chromatography Benzene/methanol Precipitation chromatogr., glass beads, temp. grad. 20-400C Poly(di(phenyl-n-propyl) itaconate) PoIy(I -phenylpropyloxycarbonylmethyl)-1 -(phenylpropyloxycarbonyl)ethylene) Chromatography Benzene/methanol Precipitation chromatogr., glass beads, temp. grad. 18-400C Poly(di-rc-propyl itaconate) Chromatography Tetrahydrofuran SEC, ultrastyragel Fractional precipitation Benzene/methanol Turbidimetric titration Acetone/water 300C
Refs. 1913 2691 1460 1460 781 1365 1365 3368
997 3368 3374 3368
3374 1456 2691 2691 2691 2691 1365 2674 1365 3368 3368 3368 3368 3368 3368 3368 3368 3374 3368
3373 3372 3373 1365 1365 3368
Next Page
TABLE 1. cont'd Method of fractionation
Polymer
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Ethanol/water 300C Poly(di-n-tetradecyl itaconate) PoIy(I-n-tetradecyloxycarbonylmethyl)-l-(tetradecyloxycarbonyl)ethylene) Fractional precipitation Benzene/methanol Poly(di-«-undecyl itaconate) Turbidimetric titration Benzene/methanol 300C Chloroform/methanol 300C
3348 3374 3368 3368
1.6. POLY(VINYL ETHERS) PolytS-tt^'^'-bis^^-n-alkoxybenzoylloxyjbenzylloxylcarbonyllbicyclotl.l.lJhept-l-enes Fractional precipitation Tetrahydrofuran/hexane Poly (ally loxyethylene) Poly (ally I vinyl ether) Chromatography Tetrahydrofuran Poly(butoxyethylene) Fractional precipitation Benzene/methanol Poly(2-chloro-4-methylpenthyl 4 '[[8-vinyl oxy]octyl]oxy]biphenyl-4-carboxylete) Chromatography Tetrahydrofuran Poly(2-chloroethoxyethylene) Chromatography Chloroform Poly(hexadecyloxyethylene) Fractional precipitation n-Heptane/acetone Poly(isobutoxyethylene) Chromatography Chloroform Tetrahydrofuran Extraction
Acetone, benzene, ethyl ether, methylene chloride Fractional precipitation Toluene-butanone (1: l)/ethanol Poly(isobutyl propenyl ether) [Poly(l-isobutoxy-2-methylethylene)] Chromatography Chloroform Poly(isobutyl vinyl ether) Chromatography Chloroform Toluene, chloroform Poly(isopropyloxyethylene)
Acetone, benzene, ethyl ether, methylene chloride Poly 5-[[[n-[(4/-methoxy-4-biphenyl)oxy]alkyl]-oxy]carbonyl]bicyclo [2.2.1]hept-2-enes Chromatography Tetrahydrofuran Poly(methoxyethylene) Chromatography Tetrahydrofuran Fractional precipitation Benzene/w-hexane, n-heptane or decane Chloroform/heptane Methanol
2676 SEC u-bondagel
2989 2977
SEC, styragel, 4O0C, (r,s) SEC, styragel SEC, styragel SEC u-styragel SEC, styragel Oppanol C Lowering temp.
2865
SEC, styragel SEC, styragel SEC, styragel, analytical and preparative
Extraction
Fractional solution Poly (vinyl isobutyl ether) see Poly(isobutoxyethylene) Poly(vinyl methyl ether) see Poly (methoxyethylene)
Toluene/heptane Water Toluene/petroleum ether
2569 1300 1760 2212 2856 1244,1827 1972
1299 1597,1692 1569 584 1972
SEC, styragel SEC, u-styragel
1744 2857 2025
Lowering temp. 65 to 25°C and to3°C Raising temp. Continous extraction (CPF)
247 3352 246 2025 2587
1.7. POLY(VINYL ALCOHOL), POLY(VINYL KETONES), POLY(VINYL HALIDES), POLY(VINYL NITRILES) Poly(acrylonitrile)
Chromatography
Chloroform Dimethylacetamide Dimethylformamide
Fractional precipitation
Dimethyl sulfoxide-aq. hydrochloric acid/toluene Dimethyl sulfoxide/toluene Dimethylformamide Dimethylformamide/ethanol Dimethylformamide/lauric alcohol Dimethylformamide/ligroin Dimethylformamide/n-heptane
SEC, styragel SEC, styragel SEC SEC, Merck gel SEC, Sephadex SEC, styragel, 700C 35°C 35°C 110-90 0 C pH 6.0, ageing period 50-60 0 C 600C
1781 330,1965 985,1846 1461 1781 1142 1715 946,947,1414, 1554,1558,1716 2888 2173 3071 1111 267,339,383,594, 945,948,1371, 1626,2167
References page VII-438
Previous Page
TABLE 1. cont'd Polymer
Method of fractionation
Poly(divinylbenzene-C(?-methacrylate) Fractional precipitation Poly(divinylbenzene-c-vinylpyridene) Chromatography Poly(4-vinylpyridine-a?-ter/-butyl methacrylate) Chromatography Poly(vinylpyrrolidone-cc>-diamyl itaconate) Chromatography Poly(vinylpyrrolidone-cc»-diethyl itaconate) Chromatography Poly(vinylpyrrolidone-c<9-dimethyl itaconate) Chromatography Poly(vinylpyrrolidone-co-dipropyl itaconate) Chromatography Poly(vinylpyrrolidone-c0-monornethyl itaconate) Chromatography Poly(vinylpyrrolidone-c0-monoamyl itaconate) Chromatography Poly(vinylpyrrolidone-o?-monoethyl itaconate) Chromatography Poly(vinylpyrrolidone-co-monopropyl itaconate) Chromatography
Solvent or solvent/nonsolvent mixture
Remarks
Benzene/methanol Benzene
Refs.
563 SEC, styragel
Dimethylformamide/triethylamine/ pyridine (8: 1: 1)
2327 669
Tetrahydrofuran
SEC, ultrastyragel
2692
Tetrahydrofuran
SEC, ultrastyragel
2692
Tetrahydrofuran
SEC, ultrastyragel
2692
Tetrahydrofuran
SEC, ultrastyragel
2692
Tetrahydrofuran
SEC, ultrastyragel
2692
Tetrahydrofuran
SEC, ultrastyragel
2692
Tetrahydrofuran
SEC, ultrastyragel
2692
Tetrahydrofuran
SEC, ultrastyragel
2692
1.12. BLOCK COPOLYMERS Poly(acrylamide)-&/oc/:-poly(methyl methacrylate) Fractional precipitation Water/methanol followed by water Poly(acrylamido-2-rnethylpropane-sulfonic acid)-^/ocfc-poly(styrene)-^/oc^-poly(2-acrylamido-2-methyl propane-sulfonic acid) Extraction Hot cyclohexane, methanolTriblock ethyl ether (5 : 3), benzene Poly(acrylate)-Z?/<9c/:-poly(methyl methacrylate) Fractional precipitation Chloroform/methanol 25°C Poly(acrylonitrile)-fc/0c£-poly(methyl methacrylate) Extraction Acetone, dimethylformamide Poly(acrylonitrile)-W
3020 1752 25 2958 2379 2379 2379 2379 2326 2011 783 783
2955 1239 846 1022 1022 2379 3427
TABLE 1. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture Chloroform/carbon tetrachloride, tetrahydrofuran/methanol Cyclohexane-chloroform Methanol, acetone, butanone, ethyl acetate, tetrahydrofuran, chloroform, toluene, etc. o-Dichlorobenzene Tetrahydrofuran
Toluene
Fractional precipitation
Fractional solution Sedimentation velocity
Benzene/butanone and cyclohexane/isooctane Benzene/methanol Benzene n-Heptane rc-Octane/cyclohexane (3/1)
Remarks
Refs.
TLC, silica gel gradient elution
1769
TLC, concentration gradient TLC, silica gel
780 1769
SEC SEC, styragel, 135°C SEC SEC, macroporous glass SEC, styragel HP SEC SEC, 45°C SEC, macroporous glass SEC, styragel Cross fractionation
83 2365 542,2795 2379,2834,3287 1770,2379,2541 237 1788 2379 2379 3172 3558 2472 3047 2627
Extraction 25°C 21°C
Poly(butadiene)-/7/c>cA:-poly(styrene-co-acrylonitrile) Chromatography Tetrahydrofuran SEC Poly( 1 -butene)-b/oc&-poly(propy lene) Fractional solution Tetraline Column extraction, increasing temp. Poly(butyl acrylate)-£/<x'£-poly(methyl methacrylate) Fractional solution «-Butanol/methanol Poly(/7-butyl acrylate)-ib/oc^-poly(vinyl chloride) Chromatography Dimethylformamide SEC, porous silica, 45°C Fractional precipitation Tetrahydrofuran/ethanol 25°C Poly {ten- butyl methacrylate)-b/0cfc-poly(dimethylamino)etnyl methacrylate ChromatograqhY Tetrahydrofuran:triethylamine (9: 1) SEC, u-styragel, 35°C Poly(rm-butyl methacrylate)-fr/c?c£-poly(oxyethylene) Chromatography Tetrahydrofuran SEC SEC, styragel, 25°C Poly(«-butyl methacrylate)-/?/G>cfc-poly(styrene) Chromatography Tetrahydrofuran SEC, u-styragel Extraction Isopropanol, cyclohexane Scrambled type Poly(terf-butyl methacrylate)-/?/oc/[-poly(styrene) Chromatography Trichloroethylene 35°C Poly(fl~butyl methacrylate)-/?/0<:A>-poly(vinyl chloride) Fractional precipitation Tetrahydrofuran/methanol25°C acetone (9:1) Poly(/m-butyl-4-vinylbenzoate)-/?/0cfc-poly(/err-butyl methacrylate) Chromatography Tetrahydrofuran SEC Poly(/eA-r-butylacrylate)-/?/^c^-poly(styrene)-^/chlorostyrene)-6/o<:&-poly(>7-hexadecyl methacrylate) Chromatography Tetrahydrofuran SEC, u-styragel Poly(/>chlorostyrene)-Z?/c>c/:-poly(styrene) Fractional precipitation Benzene/methanol Poly(/?-chlorostyrene)-/7/ocA:-poly(styrene)-^/ocA;-poly(/?-chlorostyrene) Chromatography Tetrahydrofuran SEC, styragel Poly(4-cyanostyrene)-6/<9c&-poly(ter/-butyl methacrylate)-/?/oc^:-poly(4-cyanostyrene) Chromatography Dimethylformamide SEC Poly(cyclohexyl methacrylate)-fr/c>d:-poly(styrene) Extraction Acetone, cyclohexane Scrambled type Poly(fl-dodecyl methacrylate)-&/
1801 630 1150 3442 3442 670 3109 3107 2011 2011 714 3442
3419 2099 1667 2012 2440 2967 1437 2011 2952 2952
3442
References page VII-438
TABLE 1. confd Polymer
Method of fractionation
Poly(ethyl methacrylate)-b/
Solvent or solvent/nonsolvent mixture
Remarks
Tetrahydrofuran/methanol-water
Refs.
2952
Tetrahydrofuran Butanone/isopropanol (2:8), cyclohexane
SEC, n-styragel
2011 2011
Tetrahydrofuran
SEC, u-styragel
2012
Cyclohexane/isopropyl alcohol
2554
Tetrahydrofuran
SEC, phenogel, 25°C
1022
Tetrahydrofuran
SEC, phenogel, 25°C
1022
o-Dichlorobenzene
SEC, shodex, 1400C
770
Tetrahydrofuran/ethanoln-hexane (2:1)
25° C
3442
SEC, styragel
2615
SEC, styragel
2615
SEC, u-styragel
2012
Dimethylformamide, tetrahydrofuran Poly(ferrocenylmethyl methacrylate)-6/cfc-pory(lauryl methacrylate) Fractional precipitation Benzene/methanol Poly(n~hexyl methacrylate)-fc/0c&-poly(methyl methacrylate) Fractional precipitation Benzene/methanol Poly(dihydronaphthalene)-fc/oc/c-poly(styrene) Extraction Ethyl acetate, butanone Poly(isobutene)-fc/oc&-poly(indene) Fractional solution Butanone, n-hexane, methylene dichloride, dioxane Poly(isobutene)-^/
29 200C
29 538
Extraction
2386 3495
SEC, styragel Tris-stars Precipitation chromatogr, thermal gradient SEC, styragel
1655 1659 695 1653 1655 1064 695
SEC, n-styragel Scrambled type
2011 2011
SEC
1188
SEC
1297
SEC
3584
SEC
3129
SEC
1927
TABLE 1. cont'd
Polymer
Method of fractionation
Poly(isodecyl methacrylate)-b/0c&-poly(styrene) Extraction Poly(isoprene)-^/(?c/:-poly(/err-butylacrylate) Chromatography Poly(isoprene)-^0d:-poly(2,6-dihydroxypropyl methacrylate) Chromatography Poly(isoprene)-&/c>c/:-poly(methyl methacrylate) Fractional precipitation Poly(isoprene)-^/(9c/c-poly(a-methylstyrene)-^/c>c/:-poly(isoprene) Chromatography Poly(isoprene)-b/0cfc-(novolac resins) Turbidimetric titration Poly( 1,4-isoprene)-fc/ocfc-poly(styrene) Chromatography Poly(isoprene)-^/ocfe-poly(styrene)-fe/ocfc-poly(isoprene) Chromatography Poly(isoprene)-&/0c&-poly(styrene)-£/
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Isopropanol-butanone (8:2), cyclohexane
Scrambled type
2011
Tetrahydrofuran
SEC, u-styragel, 25°C
3312
Tetrahydrofuran
SEC, 40 0 C
2273
Benzene/methanol Chloroform/w-hexane (7/10) Toluene
1163 TLC SEC, styragel
2379 2379
Acetone/water
1775
Tetrahydrofuran
cis, SEC, phenogel, 25°C
1022
Tetrahydrofuran, chloroform
SEC, u-styragel, end functionalized
2606
Tetrahydrofuran (5% NJN-dimethylbenzylamine)
SEC, styragel
2209
Poly(isoprene)-&/o<:fc-poly(4-vinyl pyridine) Chromatography Toluene SEC, 70 0 C Poly(2-isoprophenylbenzoxazole)-£/0d:~poly(terr-butyl methacrylate)-&/poly(styrene) Fractional precipitation Chloroform/heptane, benzene/cyclohexane Chloroform/heptane, Multiblock benzene/heptane Poly(lauryl methacrylate)-&/0cfc-poly(metnyl methacrylate) Fractional precipitation Benzene/methanol, 20 0 C benzene/methanol - isopropanol (1:1), benzene/methanoln-heptane (1:1) Poly(methacrylic acid)-&/ocfc-poly(styrene) Chromatography Tetrahydrofuran SEC, n-styragel Extraction Benzene, followed by methanol Poly(p-methoxystyrene)-fc/0c/;-poly(cyclohexene oxide) Chromatography Carbon tetrachloride/ TLC, silica gel, gradient tetrahydrofuran Turbidimetric titration Benzene, butanone ( 3 : l)/ethanol Poly(methyl acrylate)-b/0c&-poly(vinyl chloride) Fractional precipitation Tetrahydrofuran/rnethanol25 0 C water (1:1) Poly(methyl methacrylate)-&/ocfc-poly(terf-butyl acrylate) Chromatography Tetrahydrofuran Poly(methyl methacrylate)-/?/oc/:-poly(^r^-butyl methacrylate) Chromatography Tetrahydrofuran SEC Poly(methyl methacrylate)-&/ocfc-poly(a-chloroacrylate) Fractional precipitation Chloroform-acetone (1:2)/methanol Fractional solution Chloroform/acetone mixtures Selective solution pf homopolymers, extraction
1269 1438 1438 2011 2011
736 737
29
1596 1596 1152 1152 3442
3357 2503 2462 2462
References page VII-438
TABLE 1. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Turbidimetric titration
Poly(methyl
Poly(methyl Poly(methyl Poly(methyl Poly(methyl
Dimethylformamide/rt-dibutyl ether methacrylate)-^/oc/:-poly((dimethylamino)ethyl methacrylate) Chromatography Tetrahydrofuran: triethylamine (9:1) methacrylate)-^c>c/c-poly(ethylene)-fr/0cfc-poly(methyl methacrylate) Chromatography Tetrahydrofuran methacrylate)-i>/ocA;-poly(a-methylstyrene)-^/o<:/:-poly(methyl methacrylate) Chromatography Chloroform methacrylate)-&/0c£-poly(«-octadecyl methacrylate) Fractional precipitation Benzene/methanol methacrylate)-£/0c&-poly(styrene) Chromatography Acetone/water Benzene, followed by chloroform-methanol (6:13) Benzene, methanol Benzene/methanol Carbon tetrachloride, butanone Nitroethane/acetone Tetrahydrofuran Extraction
Remarks 200C SEC, u-styragel, 35°C SEC, styragel, 25°C SEC, styragel, preparative 200C
Refs. 2462 670 3107 633 29
Precipitation chromatogr. TLC
248 2379
TLC, silica gel Precipitation chromatogr. TLC TLC
3578 2233 1570 1771
TLC, silica gel SEC SEC, silanized glass beads
Acetone, tetralin Acetone, tetralin, cyclohexane, acetonitrile Butanone/isopropanol (3:7), Scrambled type cyclohexane Cyclohexane, acetonitrile, benzene, methanol acetonitrile (1:1) Field flow Cyclohexane, acetonitrile Fractional precipitation 1-Chlorobutane/n-hexane Benzene-acetone (1 : l)/petroleum ether Benzene-chlorobenzene (1: iypetroleum ether Benzene-chlorobenzene (1: l)/methanol Benzene/cyclohexane Benzene/methanol Column extraction Butanone/diisopropyl ether 300C Chloroform/methanol Turbidimetric titration Acetone/water Benzene/methanol 25° C Butanone/isopropanol Butanone/water-methanol (3:1) Poly(methyl methacrylate)-^0c&-poly(styrene)-&/
1572 250,2011,2443 193 2233 3316 2011 2307 2958 1771 3316 926 165 1355 1355,1415,2233 472 1784 3020 2131 1415 1355 2233 777 3444 2131 2552 3442 3442 2954
TABLE 1. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(methyl vinyl ether)-b/0c&-poly(isobutyl vinyl ether)-fr/0c/c-poly(methyl vinyl ether) Chromatography Tetrahydrofuran Poly(p-Ar,N-dimethylaminostyrene)-^/oc/:-poly(methacrylic acid) Chromatography Tetrahydrofuran Poly(2-N,N-dimethylcarbamoyloxyethyl methacrylate)-b/c>c&-poly(styrene) Chromatography Tetrahydrofuran Poly(a-methylstyrene)-b/0c&-poly((dimethylamino)ethyl methacrylate) Chromatography Tetrahydrofuran: tnethylamine (9:1) Poly(a-methylstyrene)-fr/0c/:-poly(isobutyl vinyl ether)-6/od:-poly(a~methylstyrene) Extraction 2-Propanol Poly(a-methylstyrene)-&/0c&-poly(isobutylene)-poly(a-methylstyrene) Chromatography Tetrahydrofuran Extraction rc-Hexane, 1-nitropropane Poly(a-methylstyrene)-^/c><:/c-poly(isoprene)-^/c>c/:-poly(a-methylstyrene) Chromatography Toluene Sedimentation analysis Cyclohexane Tetrahydrofuran Poly(a-methylstyrene)-^/oc/:-poly(propylene sulfide)-Hoc&-poly(a-rnethylstyrene) Chromatography Tetrahydrofuran Poly(a-methylstyrene)-6/oc£-poly(styrene) Chromatography Tetrahydrofuran Density gradient technique Bromoform/benzene Fractional precipitation Benzene/methanol B utanone-benzene (6: l)/methanol 4- 0.01% calcium chloride Poly(4-octylstyrene)-6/0c&-poly(2,6-dihydroxypropyl methacrylate) Chromatography Tetrahydrofuran Poly (oxyethylene)-6/oc/c- poly (methyl methacrylate) Chromatography Tetrahydrofuran Poly(oxyethylene)-/?/-Dichlorobenzene Poly(styrene)-fr/c>cfc-poly(butadiene) Chromatography Tetrahydrofuran Cross-Fractionation Fractional precipitation Poly(styrene)-&/
Sedimentation analysis PoIy(styrene)-£/0c£-poly(butadiene)-b/0c&-(urea) Chromatography Sedimentation velocity Poly(styrene)-^/c?c^-poly(butadiene)-Woc/:-poly(4-vinylpyridine) Chromatography Poly(styrene)-/?/tfcfc-poly(terf-butyl acrylate) Chromatography Poly(styrene)-6/0c/:-poly(tert-butyl methacrylate) Chromatography Fractional precipitation
Tetrahydrofuran Tetrahydrofuran/methanol Benzene/methanol GPC, spherical silica Methylene chloride Tetrahydrofuran
Remarks
Refs.
SEC, u-styragel
2857
SEC, styragel
2284
SEC, styragel, 28°C
2668
SEC, u-styragel, 35°C
2855 SEC SEC, u-styragel
1926 1656 1659
SEC, 70 0 C
885 885 885
SEC, styragel, 45°C
2289
SEC, ultra styragel, 25°C Ultracentrifuge
1676 2695 1787 165
SEC, 40 0 C
2273
SEC, styragel, 25°C
3107
TLC, cellulose F SEC, styragel, 40 0 C
3306 2352,3306
SEC, u-styragel scrambled type
2011
SEC, u-styragel
766
SEC, shodex, 1400C
770
SEC, u-styragel, star shaped SEC, 40°C SEC Turbidimetric titration Star copolymers A2B
1503 3572 1331 1331 1405 3296 1919 1031 1166 1788,2941 3295
Toluene Tetrahydrofuran/allyl alcohol
SEC, SEC, SEC, SEC, 30 0 C
Tetrahydrofuran Tetrahydrofuran/ethanol
SEC, styragel, 25°C star branched 25°C, several compositions
Tetrahydrofuran
SEC, styragel
Tetrahydrofuran
SEC
Tetrahydrofuran
SEC, phenogel, 25°C SEC, styragel, 25°C
Tetrahydrofuran/methanol
670
u-styragel silica gel styragel 45°C
84,318,2669 2669 117 3389 2703 3006,3007 3007
References page VII-438
TABLE 1.
Polymer
cont'd Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(styrene)-^/oc/c-poly(ferr-butylacrylate) Chromatography Tetrahydrofuran Poly(styrene)-£/
Sedimentation analysis Turbidimetric titration Poly(styrene)-fc/0C&-poly(isoprene)-b/<x:A;-poly(styrene) Chromatography
SEC, ultrastyragel, 30 0 C
2099
SEC, styragel, 25°C
2703
TLC
327
2967
SEC, u-styragel SEC, styragel
1151 3155
Tetrahydrofuran
SEC, 40 0 C
2273
Tetrahydrofuran Cyclohexane/1-propanol
SEC, u-bondagel 25 0 C
Toluene: cyclohexane ( 3 : l)/methanol
Toluene
Fractional precipitation
Refs.
SEC, styragel
Poly(styrene)-^/ocA:-poly(ethylene/butylene)-^/oc^-poly(styrene) Chromatography 4-methyl-2-pentane Poly(styrene)-b/#d:-poly(p-hydroxystyrene) Chromatography Tetrahydrofuran Poly(styrene)-b/0c&-poly(isoprene) Chromatography 1,2-Dichloroethane Base lubricating oil Methylene chloride Tetrahydrofuran
Fractional demixing
Remarks
Dimethylformamide/ methylcyclohexane Benzene/methanol
Carbon tetrachloride/cyclohexane Acetone/methanol Toluene/methanol Tetrahydrofuran Tetrahydrofuran, chloroform Toluene
Poly(styrene)-^/c>c/:-poly(isoprene)-Z7/(9cA:-poly(4-vinylpyridine) Chromatography Tetrahydrofuran Poly(styrene)-^/c?c/:-poly(2-isoprophenylbenzoxazole)-^/(9c^-poly(styrene) Chromatography Tetrahydrofuran Poly(styrene)-b/oc/:-poly(metriacrylic acid) Chromatography Tetrahydrofuran Fractional precipitation Benzene/methanol Poly(styrene)-/?Z0cfc-poly(metal methacrylate) Fractional precipitation Benzene/methanol Poly(styrene)-M0c&-poly(methacrylic acid) Chromatography Tetrahydrofuran Sedimentation velocity Dioxane: water (80:20) Poly(styrene)-&/0c&-poly([6-[4-(4-methoxyphenyl) phenoxy] hexylmethacrylate] Chromatography Tetrahydrofuran Pory(styrene)-£/ocA:-poly(methyl methacrylate) Chromatography Tetrahydrofuran
650 650 1195
SEC
3380 3594
SEC, 25°C Hydrogenated, SEC, styragel, 50 0 C Modified, SEC, oc-styragel SEC, n-styragel, 30 0 C SEC, 42 0 C SEC, styragel Star copolymers, SEC, styragel SEC (multiblocks) SEC, styragel, 35°C (multiblocks) Hydrogenated, di block 25°C One, two, three and four arms Star copolymers A2B Multiblocks
SEC, u-styragel, 30 0 C SEC, styragel SEC, ^-styragel, end functionalized Hydrogenated, SEC, styragel
2630 2664 1919 2605 661 1062,2102 318 1320,2266 632 2629 650 2663 1405 2598 1775 2870 2605 1166,1728 2606 2941
SEC, styragel
1977
SEC, styragel, 40 0 C
1438
SEC, styragel, 25 0 C
2703 2016
Ionomers
741
SEC, phenogel, 25°C
2703 2682
SEC
3513
SEC, 40 0 C
3572
TABLE 1. cont'd Method of fractionation
Polymer
Solvent or solvent/nonsolvent mixture
Remarks
Extraction
Refs.
Cyclohexane, acetonitrile, benzene Poly(styrene)-6/0c/c-poly(methyl methacrylate)-&/0c&-poly(rt-butyl methacrylate) Fractional precipitation Tetrahydrofuran/petroleum ether Poly(styrene)-6/oc£-poly(methyl methacrylate)-fr/(?c&-poly(styrene) Chromatography Benzene/butanone TLC, silica gel Carbon tetrachloride/methyl TLC, silica gel acetate Dimethylformamide SEC, macroporous glass Nitroethane/acetone TLC, silica gel Toluene SEC, styragel Fractional precipitation Benzene, chlorobenzene/ petroleum ether Poly(styrene)-6/ocA:-poly((dimethylamino)ethylmethacrylate) Chromatography Tetrahydrofuran: triethylamine SEC, u-styragel, 35°C (9:1) Poly(styrene)-£/cfc-poly[(3-vinyl phenyl)methoxy(-rerr-butyldimethylsilane))-^/(9C^-poly(styrene) Chromatography Tetrahydrofuran SEC Poly(styrene)-^/oc^-poly(A^-vinylcarbazole) Chromatography Tetrahydrofuran SEC, u-styragel Extraction Cyclohexane, toluene Scrambled type Poly(styrene)-W0c/c-poly(2-vinylpyridene)-&/0c£-poly(butadiene) Chromatography Tetrahydrofuran SEC Poly(styrene)-/?/0c/:-poly(2-vinylpyridine) Chromatography Tetrahydrofuran Fractional precipitation Benzene/rc-heptane Poly(styrene)~fr/oc&-poly(4-vinylpyridine) Chromatography Tetrahydrofuran SEC, 40 0 C Tetrahydrofuran, SEC, styragel, 60 0 C (THF), dimethylformamide 70 0 C (DMF) Fractional precipitation BenzeneM-heptane Thermal field flow Tetrahydrofuran, dimethylformamide Poly(styrene-co-maieic anhydride)-fc/0cfc-poly(butadiene) Chromatography Tetrahydrofuran SEC, u-styragel Poly(2-vinyl naphthalene)-fr/c>cfc-poly(vinyldiphenyl anthracene) Chromatography Tetrahydrofuran SEC, u-styragel Poly(vinylcyclohexane)-b/oc&-poly(ethyl ethylene) Chromatography Tetrahydrofuran SEC, phenogel, 25°C Poly[2-(4-vinylphenyl)-4,4-dimethyl-2-oxazoline]-W(?c/:-poly(styrene)-6/oc/:-poly[2-(4-vinylphenyl)-4,4-dimethyl-2-oxazoline] Chromatography Tetrahydrofuran SEC, styragel, 40 0 C Poly(4-vinylpyridine)-^/oc/:-poly(styrene)-^/c>c/c-poly(4-vinylpyridine) Chromatography Tetrahydrofuran SEC, 40 0 C Poly(4-vinylpyridine)-fr/c?c/:~poly(2-vinylpyridine) Fractional precipitation Tetrahydrofuran-methanol/ 20 0 C n- heptane 1.13.
2600
1253 1572 1572 2379 1572 2379 1194
670
802 3560 1873 1892,3442 2945 2944 1310 2012 2012 3429 2909 1131,1132 1441,1442 113 1133 114
1802 3043 1022 1309 1441,1442 1134
GRAFT COPOLYMERS
Poly(acrylamide)-grq/f-poly(vinyl alcohol) Turbidimetric titration Poly(acrylic acid)-(gra/r-poly(tetramethylene oxide) Chromatography
Formic acid/butanone Water/ethanol Tetrahydrofuran
1173 1173 SEC
3196
References page VII-438
TABLE 1. confd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(acrylonitrile)-gra/jf-poly(methyl methacrylate) Extraction Benzene Poly(acrylonitrile)-gra/f-poly(styrene) Fractional solution Toluene-dimethylformamide Poly(N-acryloyl pyrrolidone-c(7-acrylaniide)-grq/t-poly(2-pyrrolidone) Extraction Boiling water Poly(Af-acryloyl pyrrolidone-cc>-acrylonitrile)-gra/3t-poly(2-pyrrolidone) Extraction Boiling water Poly(Af-acryloyl pyrrolidone-comethyl methacrylate)-gra/f-poly(2-pyrrolidone) Extraction Boiling water Poly(|3-alanine)-gra/f-poly(acrylic acid) Turbidimetric titration Formic acid 85%/ethanol Poly(butadiene)-gra/f-poly(acrylate) Chromatography Tetrahydrofuran Poly(butadiene)-gra/f-poly(methacrylate) Chromatography Tetrahydrofuran Poly(butadiene)-gra/f-poly(styrene) Chromatography Tetrahydrofuran Extraction Turbidimetric titration Poly(butadiene)-gra/^poly(styrene-c0-acrylonitrile) Chromatography Poly(butadiene)-gra/f-poly(vinyl chloride) Chromatography Extraction Poly(n-butyl actylate)-gra/f-poly(rnethyl methacrylate) Extraction Poly((n-butyl acrylate-co-styrene)-gra/r-poly(oxyethylene)) Chromatography Poly(butyl acrylate)-co-poly(styrene)-^r(3^-poly(oxyethylene) Chromatography Poly(butyl methacrylate)-^ra/3f-poly(methacrylate) Fractional precipitation Poly(butyl methacrylate)-gra/f-poly(styrene) Fractional precipitation Chlorinated poly(cyclopentadiene)-^ra/f-poly(butadiene) Chromatography Chlorinated rubber-gra#-poly(ethyl methacrylate) Fractional precipitation Chlorinated rubber-grq/?-poly(methyl acrylate) Fractional precipitation Chlorinated rubber-gro/if-poly(methyl methacrylate) Fractional precipitation Poly(chloroprene)-gra/f-poly(isobutene) Fractional precipitation
Toluene Butanone Cyclohexane-acetone, toluene Benzene/acetone-methanol (9:1)
Remarks
2949 1494 3540 3540 3540 1173 SEC
1386
cis
1386
cis SEC, styragel SEC, styragel
Tetrahydrofuran Tetrahydrofuran n-Pentane
Refs.
1386 492,3285 2360 3565 1390 192 1250
SEC
Acetonitrile
3,1891 3197 2427
Tetrahydrofuran
SEC, u-styragel, macromer
2726
Tetrahydrofuran
SEC, u-styragel, macromer
2726
Acetone/methanol-water (1:1)
1249
Acetone/water-methanol (50:50) Benzene/methanol
1249 1249
Tetrahydrofuran
SEC, lichrospher, 400C
1290
Butanone/methanol
2707
Butanone/methanol
2707
Butanone/methanol
2707
Benzene-butanone (1:4)/methanol
1721
Poly(chloroprene)-gra/it-(poly(isobutene-^/
1660 1664
1654 1654 SEC, styragel
1662 1662
TABLE 1. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(p-chlorostyrene)-gra/r-poly(styrene) Fractional precipitation Benzene/methanol Chlorosulfonated poly(ethylene)-gra//-poly(methyl methacrylate) Extraction Acetonitrile Poly(4-( 1,1 -dicyanoethylazo)benzyl methacrylate)-gra/ir-poly(methacrylomtrile) Chromatography Dimethylformamide Poly(4-( 1,1 -dicyanoethylazo)benzyl methacrylate-co-methyl methacrylate)-^rq//-poly(styrene) Chromatography Dimethylformamide Poly(A/r-eosin vinylamine hydrochloride)-gra/i?-poly(acrylamide) Fractional precipitation Water/acetone Poly(Af-eosin vinylamine hydrochloride)-gra/f-poly(acrylic acid) Fractional precipitation Water/acetone PolyCN-eosin vinylamine hydrochloride)-£r(2/f-poly(acrylonitrile) Fractional precipitation Water/acetone Poly(N-eosin vinylamine hydrochloride)-gra/f-poly(styrene) Fractional precipitation Water/acetic acid Poly(ethyl-a-chloroacrylate)-gra/r-poly(vinyl acetate) Fractional precipitation Acetone/ethanol Butanone/methanol-water (1 :1) Poly(ethylene)-gra//-poly(acrylamide) Extraction Water Poly(ethylene)-gra/f-poly(acrylic acid) Extraction Water Fractional precipitation Xylene/methanol Poly(ethylene)-gra/ir-poly (1,2-epoxy-3-butene) Extraction Chloroform Poly(ethylene-cc>-vinylacetate)-(gra/r-poly(methyl methacrylate) Chromatography Tetrahydrofuran Poly(ethylene)-gra//-poly(2,3,4,5,6-pentafluorostyrene) Extraction Acetone Poly(ethylene-C(?-propylene)-,gra/f-poly(butadiene) Chromatography Toluene Poly(ethylene-co-propylene-co-l,4-hexadiene)-(gra//-poly(isobutene) Extraction n-Pentane, 3-pentanone Poly(ethylene-co-propylene-co-hexadiene)-^ra^poly(styrene-^ra//-poly(a-methylstyrene)) Extraction Acetone, n-pentane Poly(ethylene-ce>-propylene)-gra/3Npoly(styrene) Chromatography Toluene Poly(ethylene-cc?-propylene)-
Remarks
Refs. 2206 2848
SEC, fractogel
2423
SEC, fractogel
2423 3020 3020 3020 3020 3019 3019 2651 262 2753
1300C
2310 SEC, ultrastyragel
2258 3483
SEC SEC, styragel
78 78 1650 1650
SEC, styragel
78 772 1553,3483 559
900C
1818 Three layers
1818
Lowering temp, and solvent demixing
1818
SEC
151
SEC, |i-styragel
151 151
Macromer
3534
Macromer
3534 2463
References page VII-438
TABLE 1. confd Polymer
Method of fractionation
Poly(isobutene)-gra/ir-poly(styrene) Chromatography Extraction
Solvent or solvent/nonsolvent mixture
Benzene-cyclohexane/isopropanol Cyclohexane/n-propanol Butanone, cyclohexane n-Hexane, cyclohexane Cyclohexane/n-propanol Toluene/methanol
Fractional precipitation Turbidimetric titration Poly(isobutylene-c0-isoprene)-gro/ir-poly(methyl methacrylate) Chromatography Tetrahydrofuran Poly(isoprene)-gra/f-poly(styrene) Chromatography Toluene Poly( 1,3-diisopropenylbenzene)--styrene-gra/f-poly(methyl methacrylate) Fractional precipitation Chloroform/methanol Poly(methyl acrylate)~£ra/3f-poly(vinyl chloride) Fractional precipitation Benzene/methanol Poly(methyl methacrylate)-gra/fr-poly(butadiene) Extraction Petroleum ether, cyclohexane, acetone Poly(methyl methacrylate)-gra/fr-poly(P-hydroxybutyrate) Chromatography Tetrahydrofuran Poly(methyl methacrylate)-gra/j?-poly(isobutene) Chromatography Benzene Extraction Butanone, cyclohexane Poly(methyl methacrylate)-gra/ir-poly(isoprene) Turbidimetric titration Methylene dichloride -f HCl/methanol + HCl Poly(methyl methacrylate)-grq/*-poly(isopropylstyrene) Fractional precipitation Benzene/isopropanol Poly(methyl methacrylate)-grq/*-poly(methyl methacrylate) Chromatography Tetrahydrofuran Extraction Poly(methyl methacrylate)-grq/jr-poly(oxypropylene) Fractional precipitation Poly(methyl methacrylate)-gra#-poly(stearyl methacrylate) Chromatography Poly(methyl methacrylate)-gra#-poly(styrene) Chromatography
Precipitation chromatogr. Precipitation chromatogr.
694 545 395 2930 545 1778
SEC SEC, styragel, 82°C, 35°C
593 489,492,1183 1976 2077
SEC, styragel
2094 3021 3022 2707 490
SEC, styragel, 35°C
1776
SEC
1665 395 1333 833 3005
Ethyl ether, methanol Toluene/n-heptane
25° C
2041
Chloroform
Macromer, SEC, styragel
1447
Tetrahydrofuran/acetonitrile
Reversed phase, silica-C18(subindice), gradient SEC, ^-styragel HPLC reverse and normal phase mode HPLC (octadecyl modified silica), adsorption, composition
3189
Tetrahydrofuran: acetonitrile gradient
Fractional precipitation
Refs.
SEC, permagel + ultrastyragel, 30-450C Macromer
Tetrahydrofuran/n-heptane
Extraction
Remarks
Ethyl ether, acetonitrile, benzene Benzene-chlorobenzene (1: l)/methanol Benzene-acetone (1; l)/methanol + 0.1 M calcium chloride Benzene-chlorobenzene (1: l)/petroleum ether Benzene/methanol Benzene/petroleum ether
3534
3190 3147 3190 2205 570 109 109,973,1997 1249 1249
TABLE 1. cont'd Polymer
Method of fractionation
Turbidimetric titration Poly (methyl methacrylate)-gra/f-poly( vinyl acetate) Chromatography Fractional precipitation Fractional solution Poly(methyl methacrylate)-gra/r-poly(vinyl chloride) Fractional precipitation Poly(dimethyl vinyl siloxane)-gra//-poly(acrylonitrile) Extraction
Solvent or solvent/nonsolvent mixture
Acetone/acetone-water Acetone/methanol Acetone/water-methanol (50:50) Acetone/water
Poly(styrene)-gra/ir-poly(ethyl acrylate) Extraction
2722,3019 3017,3021 2200 Precipitation chromatogr., 45-15°C 1212 1249,3017,3019 1249 Column extraction
57
Dioxane/methanol
3017
Dimethylformamide, boiling benzene
Tetrahydrofuran «-Pentane, butanone, nitropropane Poly(a-methylstyrene-c-l,3-diisopropenylbenzene)-^rq/t-poly(styrene) Fractional precipitation Benzene/methanol Poly(phenyl vinyl sulfide)-gra#-poly(methyl methacrylate) Fractional precipitation Benzene/methanol Poly(phthalimidoacrylate-cc?-styrene)-gra//-poly(oxyethylene) Chromatography Water-methanol Poly(propylene)-gra/i?-poly(butyl acrylate) Extraction Acetone Poly(propylene)-gra/Sf-poly(MA^-dimethylaminoethyl methacrylate) Chromatography Xylene/n-octanol Extraction Acetone Poly(propylene)-gra/f-poly(styrene) Chromatography Benzene/methanol
Fractional precipitation Poly(styrene-o?-maleic anhydride)-gra/f-poly(acrylonitrile) Fractional solution
Refs.
Butanone/methanol-water (1:1) Chloroform/methanol Benzene-chlorobenzene (1:1)/ petroleum ether
Poly(a-methylstyrene)-£ra/r-chlorobutyl rubber Chromatography Extraction
Extraction Turbidimetric titration Rubber-gra//-poly(methyl methacrylate) Extraction
Remarks
Chloroform/isopropanol Benzene Benzene/methanol
268 SEC, styragel
1976 1747 SEC
Column extraction, 126°C Precipitation chromatogr. temp. gradient, glass beads Column elution
1462 1462 900,901 900,901,1521 738 900,1522 194 108 1718
Extraction
Cyclohexane, ethyl ether, acetonitrile
Poly(styrene-a/Mnaleic anhydride)-gra/ir-poly(ethylene oxide) Chromatography Tetrahydrofuran Poly(styrene-o?-maleic anhydride)-gra/ir-poly(methyl methacrylate) Fractional precipitation Acetone/methanol Poly(styrene-co-maleic anhydride)-gra/f-poly(vinyl chloride) Extraction Butanone, ammonium hydroxide Poly(styrene)-gra/f-poly(methyl methacrylate) Extraction Cyclohexane, acetonitrile, benzene Poly(styrene)-gra//-poly(te/?-oxyethylene) Chromatography Tetrahydrofuran Poly(styrene-c-1 -phenyl-2-(3-vinylphenylthiodiazene)-gra/r-poly(acrylonitrile) Extraction Chloroform, nitromethane/water, dimethylformamide Poly(styrene)-gra/^oly(styrene-cc>-methyl methacrylate) Fractional precipitation Benzene/methanol Poly(styrene)-gra/ir-poly(vinyl acetate) Fractional precipitation Butanone/methanol
308 1462
Acetone Petroleum ether, acetone Acetone/«-hexane Aq. acetone, tetrahydrofuran, dimethylformamide
1662 1662
2730 1393
SEC, u-styragel
818 2730 1888 3512
SEC
1480 2422
94 3017 References page VII-438
TABLE 1. confd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(styrene-co-vinyl benzyl chloride)-gra/if-poly(styrene) Fractional precipitation Benzene/methanol Poly(styrene-c<>vinylbenzophenone)-gra/f-poly(acrylonitrile) Chromatography Dimethylformamide Poly(styrene-co-vinylbenzophenone)-^ra/f-poly(methyl methacrylate) Chromatography Tetrahydrofuran Poly(tetrafluoroethylene-co-perfluorovinyl ether)-gra/f-poly(acrylic acid) Extraction Water Poly(tetrahydrofuran-6/0c£-£-caprolactone) Chromatography Tetrahydrofuran Poly(tetrahydrofuran)-(gra/r-poly(styrene) Fractional precipitation Tetrahydrofuran/isopropanol Poly(vinyl acetate)-gra#-poly(methyl methacrylate) Chromatography Butanone/carbon tetrachloride (8/2) Methanol/water (9/1) Fractional precipitation Acetone/methanol-water (1 :2) Poly(vinyl acetate)-£ra/f-poly(styrene) Chromatography Methanol-water (9: l)/chloroform Fractional precipitation Benzene/petroleum ether Poly(vinyl alcohol)-^ra/f-poly(methyl methacrylate) Fractional precipitation Benzene/n-butanol Poly(vinyl alcohol)-,gra/r-poly(styrene) Chromatography Benzene/methanol/butanone Poly(vinyl benzoate)-gra//-poly(methyl methacrylate) Fractional precipitation Acetone/methanol Poly(vinyl benzoate)-gra/f-poly(vinyl acetate) Fractional precipitation Acetone/methanol-water Poly(vinyl chloride)-gra/f-poly(ethyl methacrylate) Extraction Acetone Fractional precipitation Butanone/methanol Dioxane/methanol Tetrahydrofuran-acetone (1 : 3)/ methanol-water (4:1) Poly(vinyl chloride)-gra/f-poly(glycidyl methacrylate) Extraction Butanone, isopropanol Poly(vinyl chloride)-)gra/f-poly(isobutene) Chromatography Tetrahydrofuran Extraction n-Pentane Poly(vinyl chloride)-gra/f-poly(methyl methacrylate) Fractional precipitation Butanone/methanol Poly(vinyl chloride)-gra/f-poly(ot-methylstyrene) Chromatography Tetrahydrofuran Extraction Benzene Poly(vinyl chloride)-gra/jf-poly(styrene) Chromatography Tetrahydrofuran Extraction Benzene, toluene toluene/dichloroethane Fractional precipitation Benzene/methanol Tetrahydrofuran/methanol Tetrahydrofuran/petroleum ether Tetrahydrofuran/water Poly(vinyl chloride)-gray/-poly(styrene-c0-acrylonitrile) Extraction Toluene/dichloroethane mixtures Poly(Af-vinylcarbazole)-gra/f-poly(isoprene) Chromatography Tetrahydrofuran Poly(2-vinylpyridine)-gra/f-poly(acrylonitrile) Fractional solution Ethanol Ethanol/dimethylformamide Poly(2-vinylpyridine)-gra/ir-poly(vinyl acetate) Extraction Benzene, water Pory(2-vinyrpyridine)-gra/?-poly(vinyl alcohol) Extraction Benzene, water
Remarks
Refs.
497 SEC
957
SEC, ^i-styragel
957 1261
SEC
2413
Lowering temp.
2447
TLC, silica gel
1357
TLC, silica gel
1357 3017 1357 1249 2814
Silica gel, column adsorption
1356 3018 3018 546 2707 3017 360 2715
SEC
3 1156,3197 2707
SEC, styragel
3237 3237
SEC, styragel
1652 546 973,2206 1869 1652,1869 1869 546
SEC
1434
Extraction
1493 1493 3161 3161
TABLE 1. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
1.14. MIXTURE OF POLYMERS Poly(butadiene) 4- poly(a-methylstyrene) Fractional demixing Poly(butadiene) 4- poly(styrene-co-acrylonitrile) Fractional demixing Poly(butadiene) -f poly(vinyl chloride) Fractional demixing PoIy(I-butene) 4- poly(propylene) Fractional solution Chlorinated poly(vinyl chloride) 4- poly(vinylchloride) Fractional demixing Poly(ethylene) 4-poly(ethylene) TREF Poly(ethylene) 4- poly(ethylene-co-propylene-co-diene) TREF Poly(ethylene) -I- poly(ethylene-co-vinylacetate) TREF Poly(ethylene) 4- poly(isobutylene) TREF Poly(ethylene) -I- poly(oxyethylene) Fractional demixing Poly(ethylene) 4- poly(propylene) Chromatography Fractional crystallization Fractional solution Poly(ethylene) 4- poly(vinyl acetate) Fractional demixing Poly(etnylene-C0-propylene)-&/ocfc-poly(ethylene) 4-po Chromatography Fractional precipitation Poly(ethylene-c0-propylene) 4- poly(styrene-co-butylacrylate) Fractional demixing Poly(/?-iodostyrene) 4- poly(vinyl acetate) Extraction Poly(isobutylene) 4- poly(a-methylstyrene) Fractional demixing Poly(isobutylene) 4- poly(oxyethylene) Fractional demixing Poly(isobutylene) 4- poly (sty rene-c-butylacry late) Fractional demixing Poly(isoprene)-6/(?c&:-poly(tert-butylacrylate) 4- poly(isoprene) Fractional precipitation Poly(/>methoxystyrene) 4- poly(cyclohexane) Chromatography
Dimethylformamide: methylcyclohexane (0.34:0.66)
25°C
1816
Dimethylformamide: methylcyclohexane (0.43:057)
25°C
1816
Dimethylformamide: methylcyclohexane (0.4:0.6), (0.3:0.7)
1816
Tetralin
Column elution increasing temp.
3016
Dimethylformamide: methylcyclohexane (0.4:0.6) Chloronaphthalene
25°C, <35% Chlorinated
1816
HP-LDPE/LLDPE (ethylene-co-1 -butene)
1648
Chloronaphthalene
EPDM
1648
Chloronaphthalene
LLDPE(ethylene-cc?-l-octene) 4HP-EVA
1648
Chloronaphthalene
1648
Dimethylformamide: methylcyclohexane (0.2:0.8)
1816
1,2,4-Trichlorobenzene Perchloroethylene Tetralin
SEC, 1450C Stirring Column elution increasing temp.
572 2560 3016
Dimethylformamide: methylcyclohexane (0.3:0.7)
25°C, LLDPE
1816 mixture
Tetrahydrofuran SEC, phenogel, 25°C Cyclohexanone 4- toluene/methanol
1021 1021
Dimethylformamide: methylcyclohexane (0.2:0.8)
1816
Benzene
750
Dimethylformamide: methylcyclohexane (0.32:0.68)
1816
Dimethylformamide: methylcyclohexane (0.2:0.8)
25°C
1816
Dimethylformamide: methylcyclohexane (0.2:0.8)
25°C, 72% S
1816
Toluene/methanol
200C
3312
TLC, silica gel, gradient
1152
Carbon tetrachloride/ tetrahydrofuran Turbidimetric titration Benzene: butanone (3: l)/ethanol Poly(methyl methacrylate) 4- poly(iminoadipoyliminohexamethylene) (Nylon 66) Density gradient technique Dichloroacetic acid/methanol Extraction Chloroform
1152 1350 1350
References page VII-438
TABLE 1. confd Polymer
Method of fractionation Fractional precipitation
Turbidimetric titration Poly(methyl methacrylate) 4- polyflauryl methacrylate) Fractional precipitation Poly(methyl methacrylate) 4- poly(/r-hexyl methacrylate) Fractional precipitation Poly(dimethylsiloxane) 4- poly(etnylene-c0~vinylacetate) Fractional demixing Poly(dimethylsiloxane) 4- poly(a-methylstyrene) Fractional demixing Poly(dimethylsiloxane) 4- poly(oxyethylene) Fractional demixing
Solvent or solvent/nonsolvent mixture Dichloroacetic acid/methanol Formic acid/methanol m-Cresol/methanol w-Cresol/methanol
1350 1350 1350 1350 20° C
29
Benzene/methanol
200C
29
Methanol: heptane (0.48:0.52)
25°C, 70% VA
1816
Dimethylformamide: methylcyclohexane (0.4:0.6)
250C
1816
Dimethylformamide: methylcyclohexane (0.2:0.8), methanol: heptane (0.28 :0.72)
25°C
1816
25°C
1816
Homopolymer
3082
Homopolymer
3082
TREF
2185
Chrornosorb P, analytical and preparative, impact-resistane PP
2184
Dimethylformamide: methylcyclohexane (0.4:0.6), (0.3:0.7) Poly(methacrylic acid)-fc/0c£-poly(2-vinyl pyridine) H- poly(2-vinyl pyridine) Extraction Methanol Poly(methacrylie acid)-block-po\y(2-vinyl pyridine) + poly(methacrylic acid) Extraction Acetonitrile Poly(propyiene) 4- poly(ethylene-propylene) rubber Fractional precipitation 1,2,4-Trichlorobenzene Poly(propylene) 4- poly(ethylene-co-propylene) 4- poly(ethylene) TREF Trichlorobenzene
Poly(styrene) 4- poly(ethylene-co-propylene) Fractional demixing
Refs.
Benzene/methanol
Poly(dimethylsiloxane) 4- poly(vinyl chloride) Fractional demixing
Poly (sty rene) 4- poly (butadiene) Chromatography Poly(styrene) 4- poly(dimethylsiloxane) Chromatography Poly(styrene) 4-poly(ethylene) Chromatography Fractional demixing
Remarks
Tetrahydrofuran
2795
Toluene SEC, 200C 1,2,4-Trichlorobenzene SEC, styragel, 145°C Dimethylformamide: methylcyclohexane (0.24:76), (0.25 :0.75)
701 572 1816
Dimethylformamide: methylcyclo- 25°C (53% PE-47% pp) hexane (0.2:0.8) Poly(styrene) 4- poly(ethylene-co-propylene-a?-dicyclo pentadiene) Fractional demixing Dimethylformamide: methylcyclo- 25°C (50% PE-43% PP-7% DCP) hexane (0.2:0.8) Poly(styrene) 4- poly(ethylene-co-vinylacetate) Fractional demixing Dimethylformamide: methylcyclo- 25°C 8.5% VA hexane (0.3:0.7) Poly(styrene) 4- poly(isobutylene) Fractional demixing Dimethylformamide: methylcyclo- 45°C hexane (0.24:0.76) Poly(styrene)-6/ocfc-poly(isoprene) 4- poly(styrene) Fractional precipitation Cyclohexane/1-propanol, dioxane/1 -propanol Poly(styrene) 4- poly(methyl methacrylate) Chromatography Toulene SEC 4-adsorption (separation mixtures) Toulene, tetrahydrofuran SEC/adsorption, (separation) mixtures Trichloroethylene SEC, 23°C Fractional precipitation Benzene/methanol 300C Tetrahydrofuran SEC Turbidimetric titration Benzene/methanol 25° C Poly(styrene) 4- poly(oxyethylene) Chromatography Tetrahydrofuran SEC, styragel Poly (styrene) + paraffin Fractional solution Chloroform Column extraction Poly(styrene) 4- poly(vinyl acetate) Extraction Methanol
1816 1816 1816 1816 650 1477 1478 3195 176 1898 1415 348 1732 750
TABLE 1. cont'd Method of fractionation
Polymer
Poly(styrene) -f poly(vinyl chlroide) Extraction Poly(vinyl acetate) -I- poly(vinyl chloride) Extraction Poly(vinyl alkyl ether) 4- poly(cyclic ethers) Extraction
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Cyclohexane
750
Tetrahydrofuran
750
^-Heptane, acetone
2644
TABLE 2. MAIN-CHAIN CARBOCYLIC POLYMERS Method of fractionation
Polymer 2.1.
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
POLY(PHENYLENES)
Poly(2,5-dialkoxy phenylene) Poly(anthracene)
Chromatography Extraction Fractional precipitation Poly(benzene-co-anthracene) Extraction Poly(bromophenylenes) oligomers Fractional solution Poly(p-dichloromethylbenzene-c0-benzene) Chromatography Poly(p-dichloromethylbenzene-ctf-diphenylmethane) Chromatography Poly(cumarone-co-indene) Fractional precipitation
Poly(ethynylene-phenyleneethynylene) Chromatography Poly(7,16-dihydroheptacenes) Chromatography Poly(indene) Chromatography Poly(bis-indenylene) Chromatography PoIy(1,3-diisopropenylbenzene) Chromatography PoIy(1,4-diisopropenylbenzene) Chromatography Poly [(2-methoxycarbonyl)phenylene-1,4-diyl] Chromatography Poly(dimethylbiphenylene) Chromatography Poly(phenylenes) Fractional precipitation Poly( 1,4-phenylene(methylmethy lene) Chromatography Poly(diphenylmethylene) Fractional precipitation Poly(divinylbenzenes) Chromatography
Tetrahydrofuran Benzene, acetone, etc. Benzene/methanol Benzene,bromobenzene
SEC, styragel, 25°C
3305 1304 307,1128 307
Dioxane/water
2914
Chloroform
SEC
1117
Chloroform Benzene-ethyl acetate/methonal
SEC
1118 3587
o-Dichlorobenzene Tetrahydrofuran Tetrahydrofuran Benzene Tetrahydrofuan Tetrahydrofuran Tetrahydrofuran
SEC, 1200C SEC, analytical and preparative SEC, u-styragel SEC SEC, u-styragel SEC, styragel SEC, styragel
3459 2840 3202 2393 2678 1976 1976
Tetrahydrofuran Chloroform Toluene/cyclohexane
SEC SEC, styragel
552 1797 537
Tetrahydrofuran Benzene/methanol Tetrahydrofuran
SEC, styrage]
541 3332 2403
SEC, TSK gel
2.2. FORMALDEHYDE RESINS Phenolic resin (General) Poly(ureas) - General
Fractional precipitation Fractional precipitation
Poly(dibenzothiophenolformaldehyde) Chromatography /?-ferf-ButyIphenolformaldehyde Chromatography p-Creso\-formaldehyde Chromatography Fractional precipitation
Acetone, tetrahydrofuran/water Phenol-tetrachloroethane (1: l)/ethanol-/i-heptane
3091,3092 2550
Tetrahydrofuran
SEC, styragel
1061
Tetrahydrofuran Tetrahydrofuran Benzene/methanol, Benzene/petroleum ether Dimethylformamide/water Dioxane, dichloroethane, trichloroethylene/methanol, ethanol,tt-propanol, ft-butanol, ethyl ether, formamide
SEC, styragel SEC, Merck gel
2416 414 1670 3213 3390
References page VII-438
Next Page
TABLE 2. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Tetradydrofuran-methanol(l :2) water Tetrahydrofuran/petroleum ether Toluene/petroleum ether Formaldehyde - sodium napthalene sulfonate Fractional precipitation Water/acetone Poly(p-hydroxybenzoic acid-c0-/?-bromopnenol-c-formaldehyde) Fractional precipitation Methanol/water Melamine - formaldehyde Chromatography Dimethylformamide resins
1670 1670 1670 2572 Random copolymer SEC SEC, Merck gel
Methylphenol derivatives - formaldehyde Chromatography Phenol-formaldehyde
Chromatography
Coacervation
Fractional precipitation
Turbidimetric titration
Phenolated phenanthrene - formaldehyde Chromatography
Benzene/acetic acid/water (80:24: 3) Benzene - acetic acid - water Tetrahydrofuran
Ethanol or dioxane/salts in water Methanol, ethanol, rc-propanol, novolac, dioxane/carbon dioxide, water solution Acetone-methanol/petroleum ether Acetone/petroleum ether Acetone/water Dioxane, dichloroethane, trichloroethylene/methanol, ethanol, n-propanol, n-butanol, ethyl ether, formamide Methanol/water Acetone/diluted sulfuric acid Methanol/diluted sulfuric acid Toluene/n-hexane, toluene/methanol Dichloroethane Tetrahydrofuran
Poly(phenol)s Chromatography Poly(diphenyl ether-co-formaldehyde) Fractional precipitation Resorcinol-formaldehyde Chromatography Urea-formaldehyde Chromatography Fractional precipitation
Water, methanol Benzene/methanol Tetrahydrofuran Tetrahydrofuran Diemthyl sulfoxide/acetone Ethanol-water(l : l)/methanol
Refs.
Paper chromatogr, 15°C Paper partition SEC, u-styragel SEC, Merck gel SEC, styragel
550 415 413,417 891 891,2558 175,788,3098 414 1432,1562,2239, 2790,3407 481 482
527 300C
1562 527,3212,3213,
481 526 526 11 SEC, styragel, analytical and preparative SEC, styragel, analytical and preparative SEC 300C SEC, oligomers SEC
1277 1277 3485 2397 1348 1349,1617 1617 3391
TABLE 3. MAIN-CHAIN HETEROATOM POLYMERS
Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
SEC,Styragl Amorphous + crystalline
1144 2368
3.1. POLY(OXIDES) Poly(acetaldehyde), see Poly(oxyethyiidene) Poly(acrolein) Chromatography Poly (aldehydes) general Extraction
Tetrahydrofuran Boiling acetone, diisopropyl ether, benzene
Previous Page
TABLE 2. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Tetradydrofuran-methanol(l :2) water Tetrahydrofuran/petroleum ether Toluene/petroleum ether Formaldehyde - sodium napthalene sulfonate Fractional precipitation Water/acetone Poly(p-hydroxybenzoic acid-c0-/?-bromopnenol-c-formaldehyde) Fractional precipitation Methanol/water Melamine - formaldehyde Chromatography Dimethylformamide resins
1670 1670 1670 2572 Random copolymer SEC SEC, Merck gel
Methylphenol derivatives - formaldehyde Chromatography Phenol-formaldehyde
Chromatography
Coacervation
Fractional precipitation
Turbidimetric titration
Phenolated phenanthrene - formaldehyde Chromatography
Benzene/acetic acid/water (80:24: 3) Benzene - acetic acid - water Tetrahydrofuran
Ethanol or dioxane/salts in water Methanol, ethanol, rc-propanol, novolac, dioxane/carbon dioxide, water solution Acetone-methanol/petroleum ether Acetone/petroleum ether Acetone/water Dioxane, dichloroethane, trichloroethylene/methanol, ethanol, n-propanol, n-butanol, ethyl ether, formamide Methanol/water Acetone/diluted sulfuric acid Methanol/diluted sulfuric acid Toluene/n-hexane, toluene/methanol Dichloroethane Tetrahydrofuran
Poly(phenol)s Chromatography Poly(diphenyl ether-co-formaldehyde) Fractional precipitation Resorcinol-formaldehyde Chromatography Urea-formaldehyde Chromatography Fractional precipitation
Water, methanol Benzene/methanol Tetrahydrofuran Tetrahydrofuran Diemthyl sulfoxide/acetone Ethanol-water(l : l)/methanol
Refs.
Paper chromatogr, 15°C Paper partition SEC, u-styragel SEC, Merck gel SEC, styragel
550 415 413,417 891 891,2558 175,788,3098 414 1432,1562,2239, 2790,3407 481 482
527 300C
1562 527,3212,3213,
481 526 526 11 SEC, styragel, analytical and preparative SEC, styragel, analytical and preparative SEC 300C SEC, oligomers SEC
1277 1277 3485 2397 1348 1349,1617 1617 3391
TABLE 3. MAIN-CHAIN HETEROATOM POLYMERS
Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
SEC,Styragl Amorphous + crystalline
1144 2368
3.1. POLY(OXIDES) Poly(acetaldehyde), see Poly(oxyethyiidene) Poly(acrolein) Chromatography Poly (aldehydes) general Extraction
Tetrahydrofuran Boiling acetone, diisopropyl ether, benzene
TABLE 3. cont'cl Polymer
Method of fractionation
Poly( p-allyloxypropionaldehyde) Chromatography Poly(aryl ether isoquinoline)s Chromatography PoIy(I-butene oxide), see Poly(oxy(ethylethylene) Poly(epichlorohydrin), see Poly(oxy(chloromethyl)ethylene) Poly(epoxides) Chromatography Poly(ether ether ketimine) Chromatography Fractional precipitation Poly(ethylene oxide), see Poly(oxyethylene) Poly(glutaraldehyde) Chromatography Methyl [poly(ether ether ketone)] Fractional precipitation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Methanol, chloroform Propio-,butyr, isobutyr-, and isovaleraldehydes
Amorphous 4- crystalline Amorphous-I-crystalline
938 2368
Tetrahydrofuran Chloroform
SEC, styragel SEC, u-styragel
137 3004
Benzene Tetrahydrofuran Benzene//?-hexane
SEC, styragel SEC,(.i-styragel, 35°C 20-35 0 C
1263 2778 2778
Dimethylformamide
SEC, styragel
2038
/V-Methyl-2-pyrrolidone -fchloroform/methanol
Hot dissolved in NMP and diluted in chloroform
3417
Poly(2-methyl-1,4,6-trioxa-spiro-(4,4Hionane) Chromatography Tetrahydrofuran SEC,j.i-styragel Poly(n.v~l,4-bis((methylsfulfonyl)methyl) cyclohexane),(/ra/?5-l,4-bis(methylsulfonyl)methyl)cyclohexane) Chromatography Chloroform SEC, styragel, 40 0 C Poly[ 1,3-bis( 1 -naphthoxy )benzene J Chromatography Chloroform SEC. styragel. 40 0 C Poly[2.2'-bis( 1-naphthoxy )biphenylj Chromatography Chloroform SEC, styragel. 4OX Poly [4,4 '-bis( 1 -naphthoxy )biphenyl J Chromatography Chloroform SEC, styragel, 4O0C Poly(oxadiazo-3,5-diyl-perfluoroethylidene-/7/oc^-oxyperfluoropropylene) Chromatography l,l,2-Trichloro-4,2,2-trifluoroethane SEC, porous silica (Halocarbon 113) Poly(oxy-2-butenyleneoxy-1.4-phenyleneisopropylidene-1.4-phenylene) Chromatography Tetrahydrofuran SEC, styragel, 30 c C Poly(oxy(te/7-butyl)ethyJene) Fractional crystallization Benzene 8O0C, lowering temp. Fractional precipitation Benzene/methanol Poly(oxy(4-chlorobutyl)ethylene) Cromatography Tetrahydrofuran SEC, styragel Poly(oxy(2-chloroethyl)ethylene) Chromatography Tetrahydrofuran SEC. styragel Poly(oxy(chloiomethyl)ethylene) Extraction; precipitation Acetone(cold), acetone/methanol. methanol/water Poly(oxy(3-chloropropyl)oxirane) Chromatography Tetrahydrofuran SEC. styragel Poly(oxy-2-cyanoethyloxymethylene) Fractional solution Acetone, dimethylformamide Poly(oxy-1.2-cycIohexylene) Chromatography Tetrahydrofuran Fractional precipitation Benzene/methanol 25°C PoIy(OXy-1,4-cyclohexylene) (polyi' 1,4-cyclohe.xane oxide) Chromatography m-Cresol-chlorobenzene (1:1) SEC, 25°C Tetrahydrofuran SEC.M-styragel Poly(oxy-3,5-dimethyl-l. 4-cyclohexylene) Chromatography Tetrahydrofuran SEC. styragel Poly(oxy-2.6-dimethyl-1.4-phenylene) Chromatography Carbon tetrachloride/methanol TLC, silica gel (98/2) Chloroform SEC, styragel Dimethyl sulfoxide SEC Methylene dichloride TLC, silica gel o-Dichlorobenzene SEC, 80 0 C SEC, styragel, 1400C Tetrahydrofuran SEC SEC, n-styragel SEC. u-styragel. 4O0C Toluene SEC Fractional precipitation Benzene/methanol
3226 2566 2567 2567 2567 1765
2324 53 764 2966 2966 1431
2966 3097 1240,1241 2128 3073 319 1754 2785 120,3219 1932 2785 1391 3320 2724,3460 2564 230 31 120
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Chloroform/methanol Ethylene dichloride/nitromethane Toluene/methanol Toluene/petroleum ether Fractional solution Chloroform/acetone Chloroform/methanol Stirring fractionation Dioxane Turbidimetric titration Chloroform/ethanol Poly(oxy-1,1 -dimethyltrimethylene) [(Poly(2,2-dimethyloxacyclobutane)] Chromatography Tetrahydrofuran Poly(oxy-2,2 '-dimethytrimethylene) Poly(3,3'-dimethyloxetane) Fractional precipitation Chlorobenzene/ethanol Cyclohexane/ethanol Poly(oxy-2,6-diphenyl-1,4-phenylene) Chromatography Benzene Methylene dichloride Tetrahydrofuran Poly(oxy(ethylethylene) poly(1-butene oxide) Chromatography Tetrahydrofuran Trichlorobenzene Fractional precipitation Benzene/methanol Poly (oxy (2-hydroxy trimethylene)oxy-1,4-phenyleneiopropylidene-1,4-phenylene) Chromatography Chloroform Chloroform/ethanol (2/1) Tetrahydrofuran Fractional solution Poly(oxy-3-methyl-3-chloromethyltrimethyiene) Sedimentation velocity Poly(oxy-2-methyl-1,4-cyclohexylene) Chromatography Poly (oxy (1 -methyl)trimethylene) Chromatography Poly(oxy(2-methyl)trimethylene) Fractional precipitation Poly(oxy-4-phenylazo-1,2-phenylene) Chromatography Poly (oxy decamethylene) Fractional precipitation Poly(oxyethylene) Chromatography
Remarks
Refs.
200C, preparative
217,1871,2504 3061 217,220,1871 152 3320 456 31 456
200C, preparative Column extraction 25°C
1758 300C 50°C 250C
1099 2577,2579 2981 1517 1087
SEC, styragel SEC, 90°C
27,1889,2009 389 389
Chloroform/n-hexane
SEC,u-styragel SEC, Sephadex SEC, butyl methacrylate gel SEC, styragel Column extraction
455 245 1843 819,847,1843 2322
Butanone
210C
36
Tetrahydrofuran
SEC
1754,1755
Tetrahydrofuran
SEC, styragel
Chloroform/methanol
25°C
Tetrahydrofuran Benzene/methanol Acetone Benzene Butanone/water (1/1) Chloroform/ethanol (10/1) Chloroform/pyridine(5/7) Dimethylacetamide Dimethylacetamide
SEC, styragel
Ethylene glycol/methanol (4/1) Methanol followed by methanol/dimethylformamide (4/1) 0-Dichlorobenzene Pyridene-water (0.1:10) Tetrahydrofuran
SEC, Sephadex, 500C SEC, styragel TLC, kieselgel TLC, alumina TLC, silica gel SEC, 74°C GLC of trimethylsilyl ether derivatives, low MW TLC, gradient const. Gradient elution, TLC SEC SEC, 1300C TLC, silica gel SEC SEC, 24.9°C SEC, butyl methacrylatea?-triethylene glycol methacrylate gel SEC, PS-PSOE network SEC, styragel, 25°C Tosylated, SEC, ultrastyragel Tosylated, SEC, u-spherogel
1756,1757,2441 2739 2312 3523 1520 1263 465 978 978 1813,1822 898 2480 2480 3437 1251,1252 978 27,1264,1265 566 2003 269 667,1683, 2049,3034 3112 3112
TABLE 3. confd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Toluene
Trichloroethylene Water
Extraction
Water, water/methanol (80:20), (60:40), dimethylformamide Water/chloroform-benzene Water/«-hexane
Field flow Fractional crytallization Fractional precipitation
Methanol Benzene/isooctane Ethanol Benzene/ethyl ether Benzene/isooctane
Remarks
Refs.
Tosylated, SEC, u-styragel SEC, butyl methacrylateco-triethylene glycol methacrylate gel SEC, TSK gel SEC, 23°C SEC, TSK gel SEC, aquagel-OH SEC, modified glass beads SEC, poly(acrylamfcle gel)
3112 2003 1224 3195 1224,3557 2121 1611,1612 719
Distribution between two immiscible liquid countercurrent Distribution between two immiscible liquid countercurrent
520 520,521
1689 388 1237 1528,1529 16,52,264,265, 266,353,388,391,
200C
1820,1986,2290, 3062,3063,3064, 3065,3066 Benzene/isooctane (68/32) Benzene/isooctane (7/3) BenzeneM-heptane Benzene/rt-hexane Chloroform/n-hexane Isopropanol/w-heptane Toluene/isooctane Touene/n-hexane Water(0.375 M sodium percarbonate) Water, potassium sulfate Fractional solution Benzene/n-heptane Sedimentation equilibrium Aq. 0.1-hydrochloric acid Sedimentation velocity Aq. 0.1-hydrochloric acid Turbidimetric titration Benzene/isooctane Benzenes-heptane Chloroform/n-hexane Isooctane/benzene (100/48) Poly[oxyethyleneoxyethyleneoxyethyleneoxy( 1,4 '-biphenylyl)-2,4-phenyl] butane Chromatography Tetrahydrofuran Poly(oxyhexamethylene) Fractional precipitation Benzene/methanol Butanone Dioxane/methanol Tetrahydrofuran/methanol Poly(oxymethylene(2-hydroxy-5-methyl-1,3-phenylene) methylene) Fractional precipitation Benzene/petroleum ether
37°C 65°C, low MW Lowering temp. Lowering temp. Low temp.
600C LCST, raisng temp., star Lowering temp. Low MW Ultracentrifuge, 25°C Ultracentrifuge, 25°C
3086 734 2731 263 1237,2757,2807 180 172 2757 1987 720 3557 792 721 398 398 16 1236 833 1237
35°C Lowering temp.
SEC, styragel,40°C 2571 400C 2032 300C, phase separation at 28°C 3522 54°C 2031 40°C 2028,2031,2033,2734 35°C
1524
SEC SEC, styragel, 1500C diol, diacetate and diethyl ether ends SEC Lowering temp, fractional 150-1640C Stirred, 6O0C Lowering temp, diacetate Lowering temp. Methoxy capped, 123.5-1060C
1222
Poly(oxymethylene) Poly(forrnaldehyde)
Chromatography
Extraction Fractional crystallization Fractional precipitation
1,1,1,3,3,3-Hexafluoro-2-propanol Dimethylacetamide Dimethylformamide Dimethylformamide -Dichlorobenzene /?-Chlorophenol Phenol Dimethylformamide
610 419 757,2461 2002 1712,1713 3072 757 1327
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation Fractional solution
Turbidimetric titration Poly(oxymethylene oxy tetramethylene) PoIy(1,3-dioxepane) Fractional precipitation Poly(oxymethyleneoxyethylene) PoIy(1,3-dioxolane) Chromatography
Fractionation precipitation
Poly(oxymethyleneoxymethylene-1,4-phenymethylene) Fractional precipitation Poly(oxymethyleneoxytetramethylene) Fractional separation Poly(oxyoctadecylethylene) Extraction Poly(oxyoctamethylene) Poly(oxyphenylethylene)
Fractional precipitation Fractional precipitation
Poly(oxypropylene) Poly(propylene oxide) Chromatography
Solvent or solvent/nonsolvent mixture Phenol/ethyl cellosolve Tetrachloroethane-phenol (3: l)/n-hexanol
1535,1713 1129
Dimethylformamide
1129 3359
Benzene/methanol
300C
2035
Benzene Tetrahydrofuran Water and water 4- Sodium chloride 0.1N Benzene/rc-hexane-ethanol Chlorobenzene Chloroform/fl-hexane-methanol Dichloroethane/methanol
SEC SEC, styragel SEC
1640 1807 290
Lowering temp. 25°C Lowering temp.
34 2735 32,33 121
Chlorofrom/methanol
2737
Benzene/methanol Boiling methylene dichloride Fractional precipitation dichloride/rc-hexanol Benzene/methanol Benzene/isooctane Toluene/rc-hexane
1002 107 107
Acetone Aq. 0.3 M sodium hydroxide Aq. 1.0 M sodium chloride Benzene
Butanone Chlorobenzene Chloroform Chloroform Ethyl acetate Ethyl acetate + water Ethyl acetate/water, ethyl acetate/butanone Isooctane Methanol Methanol/water Tetrahydrofuran
Extraction
Column extraction, Kieselite 1200C
Refs.
Column extraction, 1300C Lowering temp.
Benzene,n-heptane
Distribution between immiscible liquids
Remarks
Toluene Water/chloroform-benzene Water/«-hexane Acetone Acetone(cold), acetone/methanol, methanol/water Acetone (00C), w-hexane (-78 0 C) /i-Hexane
Methylene 25°C 300C TLC SEC, 25°C Polyurethane gel SEC, 25°C PMMA gel Membrane chromatogr. SEC, styragel Extraction from an active support TLC Membrane chromatogr. SEC, styragel, preparative SEC, phenogel, oligomers TLC TLC, silica gel Column, elution, silica gel
2029,2030,2574 53 2091 3330 3326 3326 2155 3307 961 3330 2155 1435 3227 3330 3326 3326
SEC, Merck gel, 95-96°C 77 Column elution, silica gel 3326 Precipitation chromatogr. 20-60 0 C 2889 SEC 3156 SEC, styragel 27,1435,1780, 2150,2161,2540, 2541,2889, 3336,3337 SEC, styragel, 400C, 76 stereoregular-frarcs SEC 2889 Countercrurrent 520 Countercurrent 0°C(D,L) Tacticity Amorphous + crystalline
5,507,-521 3250 1307 1431
Optically active
1422,1423, 1424,1425
-78°C(D-L)
1423
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Fractional crystallization
Acetone, Isooctane
Fractional precipitation
Acetone
Fractional solution
rc-hexane
Isooctane Acetone Acetone/isopropyl ether Ethanol/water Isooctane Isooctane/octamethyl tetrasiloxane
Poly(oxytetramethylene)
Chromatography
Distribution between immiscibe liquids Extraction Fractional precipitation
Fractional solution
Sedimentation velocity Turbidimetric titration
Isopropanol/water Methanol/water Acetone/water Butanone Dimethyformamide Methanol-water mixtures Tetrahydrofuran
Toluene Toluene, ethyl benzene, ethyl acetate, dioxane, tetrahydrofuran, cyclohexane, methyl ethyl ketone, benzene Cyclohexane-toluene (9:1)/ water-methanol Isopropanol/water Water/acetone Acetone Benzene/methanol Benzene/n-hexane Toluene/methanol Butanone Ethyl ether/petroleum ether Hydrocarbons, alcohols, water Isopropanol/water Ethyl acetate-n-hexane (22.3:77.7) Ethanol/water
Remarks
Refs.
Lowering temp. 400C Lowering temp. Lowering temp. Lowering temp. 00C to -78°C crystalline -h amorphous(D, L comp.) Lowering temp. 00C, crystalline + amorphous Column extraction, alumina Column extraction 600C, lowering temp. Amorphous, extracted with isooctane at 400C, crystalline fractionated at 70,740C 7O0C, 74°C 25°C SEC, styragel SEC, Merckogel PVA gel Dicarbamates, HPLC, 35°C SEC (Low MW) SEC, styragel SEC, ultrastyragel, 300C SEC, Styragel ThFFF
3307 51 49,385,387,2655 76 960 960 3311 962 2288 627 390,606 49 51 50 50 1844,2431 3125 1790 92 1220 92,672,1746, 1840,1841,3125 567 329 3339
1509 Continuous extraction Mixtures Lowering temp. 600C Lowering temp. Column, elution, silica gel 22°C 50 C, low MW 300C
345 1844 2786 43,861,862 180 179 2005 1840,1841 1396 2296 344 3531 2005
Poly(oxytrifluoropropylene) Poly(trifluoropropylene oxide)
Coacervation Acetone/toluene-water (1:25) Poly(oxytrimethylene) Chromatography Chloroform Fractional precipitation Acetone/water Perfluoropoly(ether) copolymer (General) Fractional precipitation CFC 113/methanol Perfluoropoly(oxyalklenes) Chromatography Delifrene-LS/methanol Fractional precipitation Delifrene-LS/methanol Poly(2-phenoxymethyl-l,4,6-trioxa-spiro-4,4-nonane)(polymer derived from:) Chromatography Tetrahydrofuran Poly(phenyl glycidyl ether) Chromatography Butanone,butanone 4n-heptane Tetrahydrofuran Poly(2-phenyl-1,4,6-trioxa-spiro-(4,4)-nonane)(polymer from:) Chromatography Tetrahydrofuran
300C SEC, u-styragel, 35°C
1691 2687 2578,3134 2831 1923 1923
OHgomers Oligomers SEC, styragel Adsorption chromatogr. silica gel, 200C SEC, styragel
3226 1834
SEC, u.-styragel
3226
1834
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(prophyrin oxide)s Chromatography Chloroform Poly(tetrahydrofuran) Chromatography Chloroform Poly(thio-2,2'-dimethyltrimethylene) Fractional precipitation Benzene/methanol Poly(triazine-2,4 diyl-perfluoroethylidene-block-oxyperfluoropropylene) Chromatography l,l,2-Trichloro-l,2,2,-trifluo roethane(Halocarbon 113) 3.2.
Remarks
Refs.
SEC, ^-styragel SEC, ultrastyragel
2859 3553
25°C SEC, porous silica
1882,1883 1765
POLY(CARBONATES)
Poly(carbonates) (general) poly(oxycarbonyloxy ) Fractional precipitation Methylene chloride/n-heptane 3216 Turbidimetric titration Chloroform/methanol 1804 Poly (carbon dioxide)-a/r-(oxypropylene); poly(oxypropylene) Chromatography Tetrahydrofuran 28 Poly(2,4-hexadiyn-1,6-ylene carbonate) Chromatography Terahydrofuran SEC, styragel 1814 Poly(bis(4-hydroxyphenyl)isopropylidene; di(4-hydroxyphenyl)ethylene)-a/f-phosgene) Turbidimetric titration Methylene dichloride/methanol 1740 Poly(bis(4- hydroxyphenyl)isopropylidene; diethylene glycol)-a/f-phosgene) Chromatography Tetraydrofuran SEC, u.-styragel 1999 Poly(bis(4-hdroxyphenyl)isopropylidene; (4-hydroxy-3,5-dichlorophenyl) isopropylidene)-a/r-phosgene) Turbidimetric titration Methylene dichloride/methanol 1740 Poly(bis(hydroxyphenyl)isopropylidene; di(4-hydroxyphenyl)sulfone-a/f-phosgene) Turbidimetric titration Methylene dichloride 1740 Poly(bis(4-hydroxyphenyl)isopropylidene terephthalic acid)- 25°C Methylene dichloride SEC, ultrastyragel 173 SEC, u-styragel 1906 SEC, styragel 4,1321,3562 Methylene dichloride/ 3291,3292,3293 ^-heptane Tetrahydrofuran SEC, u-styragel 65,174,177, 231,458,683,806, 854,2171,3443 SEC, ultrastyragel, 35°C 824 Extraction Hot benzene Low MW 1906 Extraction (CPF) Methylene chloride-diethylene Continous operation 3443 glycol Fractional precipitation 1-2-Dichloroethane/isooctane 500C 231 Chloroform/methanol 23°C, 25°C 539,1068,2254, 2256,2257 Chloroform/n-octane 1068 Methylene chloride-cresol/ -20 0 C 1975 petroleum ether Methylene chloride/methanol 0, 20, 25, 300C 1068,1353,1975,3009 Methylene chloride/n-heptane 312 Methylene chloride/n-octane 25°C, 300C 1068 Methylene chloride/petroleum 25°C 1975 ether Methylene dichloride/methanol 173 Tetrachloroethane/paraffin oils 25°C 1975 Fractional solution Methylene dichloride/«-hexane 1069 Turbidimetric titration Dioxane-tetralin 2297 (7 :10)/cyclohexane/decalin(l: I)) Methylene dichloride/methanol 1069 Poly(oxycarbonyloxy-1,4-phenylene-1 -cyclohexylene-1,4-phenylene) Fractional precipitation Methylene dichloride/methanol 999
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(oxycarbonyloxytrimethylene) Poly(trimethylene carbonate) Chromatography Tetrahydrofuran Poly[oxythiocarbonyloxy-1,4-phenylene (methyl) phenylmethylene-1,4-phenylene] Fractional precipitation Chloroform/methanol Poly[2,2-propane-bis(4-phenylthiocarbonate)] Fractional precipitation Chloroform/methanol 3.3.
Remarks
Refs.
SEC
1795 996 994
POLY(ESTERS)
Poly(esters) (general)
Chromatography
Chloroform/ethanol, ethyl ether/water
Ethanol-cyclohexane(3:1)1 cyclohexane Poly(adipic acid-co-ethylene glycol), see Poly(oxyethyleneoxyadipoyl) Poly(adipic acid-co-poly(ethylene glycol) Fractional precipitation Acetonitrile/isopropyl ether Chloroform/n-hexane Fractional solution Butanone Poly(adipic acid-c-glycerol) Fractional precipitation Benzene/petroleum ether Poly(adipic acid-a/f-(propylene glycol, ethylene glycol) Chromatography Toluene/ethanol (93:7), toluene/ethanol (90: 10) Alkyd resins Turbidimetric titration Acetone/water Butanone/methanol Dioxane/water Poly (benzene-1,3,5-triacetic acid-co-decamethylene glycol) Chromatography Benzene Sedimentation velocity Butanone Poly(co-caprolactone), see Poly(oxy(l-oxohexamethylene) Poly(diethylene glycol-1,4-frarcs-cyclohexanedicarboxylate) Fractional precipitation Chloroform/methanol Poly(ethylene terephthalate), see Poly(oxyethyleneoxyterephthaloyl) Poly(2,4-hexadiyn-1,6-ylene adipate) Chromatography Tetrahydrofuran Poly(P-hydroxyalkanoate)s Chromatography Chloroform Poly(l,2-dihydroxybenzene phthalate) Chromatography Poly( 1,3-dihydroxybenzene phthalate) Chromatography Poly( 1,4-dihydroxybenzene phthalate) Chromatography Poly(4-hydroxybutyrate) Chromatography Poly(P-hydroxybutyrate) Chromatography
Extraction Fractional precipitation
Paper chromatogr., oligomers from aliphatic and armoatic diacids and glycols Precipitation chromatogr.
Column extraction, silica gel
122 2646
833 833 3559 527 3331 1454 2768 1454
SEC Ultracentrifuge
1541 3105
35° C
2745
SEC, styragel SEC, styragel + ultrastyragel SEC, ultrastyragel
1814 1678 1254
Tetrahydrofuran
SEC, u-styragel, 25°C
3384
Tetrahydrofuran
SEC, u-styragel, 25°C
3384
Tetrafydrofuran Chloroform Chloroform
SEC, u-styragel, 250C SEC, ultrastyragel, 25°C SEC, ultrastyragel, (S)-hydroxybutyrate SEC, u-styragel, 400C, [(R)-3-hydroxybutyrate] Syndiotactic, (R, S)-hydroxybutyrate (S)-hydroxybutyrate p-D,L-hydroxybutyrate
3384 2 3592
Acetone
Chloroform/methanol Methylene chloride/diethyl ether PoIy(11-hydroxyundecanoic acid) see Poly(oxy (1-oxoundecamethylene)) Poly((isophthalic acid maleic anhydride)-a/f-propyiene glycol) Chromatography Acetone/n-heptane Poly((isophthalic terephthalic acid ( 1 : l))-a/f-bis(4-hydroxyphenyl)isopropylidene) Chromatography Tetrahydrofuran Poly(lauric acid-co-glycerol) Fractional precipitation Toluene/w-heptane Poly((maleic anhydride; phthalic anhydride)-a//-(ethylene glycol; cyclohexanol)) Fractional precipitation Acetone/petroleum ether Poly( 1 -(6-[4-(4-methoxyphenoxycarbonyl)phenoxy ]hexyloxycarbonyl)-1 -rnethylethylene)) Chromatography Tetrahydrofuran Fractional precipitation Chloroform/methanol
Precipitation chromatogr., 27-50 0 C SEC, styragel, 25°C Alkyd resin
1458,1549 1326 3592 1794
502 1843 2329 1593
SEC
930 2380
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(oxy-2(4-(carbazol-9-yl)butyl)trimethyleneoxyadipoyl) Fractional precipitation TetrahydrofuranAi-hexane Poly(oxy-2(4-(carbazol-9-yl)butyl)trimethyleneoxysebacoyl) Fractional precipitation TetrahydrofuranM-hexane Poly(oxy-2(4-(carbazol-9-yl)butyl)trimethyleneoxysuccinyl) Fractional precipitation Tetrahydrofuran/n-hexane PolyCCoxy^'^' -dihexyl-/?-terphenyl-l,4-oxy-2-2-dihexyl terephthaloyl) Chromatography Tetrahydrofuran Poly(oxy( 1,4-dimethyitetrarnethylene)oxysebacoyl) Chromatography Chloroform Poly(oxy(2,2 '-methylethyltrimethy lene)oxysebacoyl) Chromatography Chloroform Pory(di-(4-oxy-3-methylphenyl-2,2-propane oxy terephthaloyl)) Fractional precipitation Phenol: tetrachloroethylene (3: l)/heptane Poly(oxy( 1 -oxy2,2-dimethyl-3-isopropylidenyl)trimethylene) Chromatography Chloroform Tetrahydrofuran Poly(oxy( 1 -oxo-2-dimethyletylene) Chromatography Hexafluoroisopropanol Poly(oxy(1 -oxo-2,2-dimethyltrimethylene) (Poly(pivalolactone)) Chromatography w-Cresol Poly(oxy( 1 -oxo-3-ethyltrimethylene) Poly($-ethyl-$-propiolactone) Fractional precipitation Chloroform/ethyl ether Poly(oxy(l -oxo-2-methylethylene)) PoIy(D1L-lactic acid) Chromatography Tetrahydrofuran Poly(oxy( 1 -oxo-3-rnethyltrimethylene) Poly(oL-methyl-f3-propiolactone), Poly(a-butyrolactone) Chromatography Tetrahydrofuran Fractional precipitation Chloroform/acetone Chloroform/chloroform -propylene glycol(l:2) Poly(oxy-1 -oxo(2-( 1,2,3 ,-tetrahydro-5-methyl-2,4-dioxo-1 -pyrimidinyl)methyltrimethylene) Chromatography Dimethylformamide Poly(oxy(l-oxoethylene) Poly(glycolate) Chromatography Hexafluoroisopropanol Poly(oxy(l-oxohexamethylene) Chromatography Methylene chloride o-Dichlorobenzene Tetrahydrofuran
Fractional precipitation
Fractional solution Sedimentation velocity Turbidimetric titration Poly(oxy( 1 -oxopentamethylene) Poly(fi-valerolactone) Chromatography Poly(oxy( 1 -oxotrimethylene) Poly($-propiolactone) Chromatography Fractional precipitation
Benzene/isooctane Benzene/w-heptane Benzene/petroleum ether
Remarks
Refs. 3166 3166 3166
SEC, ultrastyragel, 25°C
1546
SEC, styragel
2426
SEC, styragel
2426 2549
SEC, styragel SEC, styragal
2493 2493
SEC, (i-styragel
2616
SEC, 1200C, 112°C
396
Crystalline/amorphous
3191
SEC, 300C
3342
SEC, styragel Crystalline /amorphous
SEC, Sephadex SEC, SEC, SEC, SEC, SEC, SEC, SEC, 34° C
u-styragel ultrastyragel, 25°C 135°C shodex u-styragel styragel ultrastyragel
3548,3549 3191 2208
1228 2616 1793 2713 863 2869 860,2024 794,795,796 2583 1738 668 1160 1160 2583 437 1160
Butanone//z-hexane Benzene/isooctane mixtures Benzene Benzene/petroleum ether
25°C Oligomers Oligomers Column extraction, temp. 300C Oligomers
Tetrahydrofuran
SEC, f.t-styragel
2711
m-Cresol Chloroform/petroleum ether Chloroform/toluene
SEC, styragel, 1000C 300C Lowering temp.
3430 668 2781
55°C
1953
SEC, Sephadex
1228
SEC, styragel
2426
SEC, ultrastyragel, 25°C
1546
SEC, ultastyragel, 25°C
1546
Poly (oxy (1 -oxoundecamethy lene) Fractional precipitation Benzene/methanol Poly(oxy-1 -oxo(2(l ,2,3,4-tetrahydro-2,4-dioxo-1 -pyrimidinyl)methyltrimethylene) Chromatography Dimethylformamide Poly(oxy( 1,1,2,2-tetramethyl(ethylene-oxysebacoyl) Chromatography Chloroform Poly(oxy-2//,3//,5//-triphenyl-p-quinquophenyl-4,4////-oxy-2,5-diphenyl terephthaloyl) Chromatography Tetrahydrofuran Poly(oxy-2 ",3 ",5 "-triphenyl-/?-terpheny 1-4,4 ""-oxy-2,5-diphenyl terephthaloyl) Chromatography Tetrahydrofuran
TABLE 3. cont'd Polymer
Method of fractionation
Poly(oxyadipoyloxydecamethylene) Chromatography Poly(oxybutyleneoxy adipoyl) Poly(butylene adipate) Chromatography
Solvent or solvent/nonsol vent mixture
Remarks
Refs.
Tetrahydrofuran
SEC, styragel
1512
Tetrahydrofuran
SEC SEC, ultrastyragel, oligomers
2241 3121
Poly(oxycarbonyl- 1,2-phenylene) Poly(2-hydroxy-benzoate) Chromatography m-Cresol/chlorofrom (15/85) SEC, styragel, 38°C 2806 Poly(oxycarbonyl-1,3-phenylene) Poly(3-hydroxybenzoate) Chromatography Chloroform SEC, Styragel 1791 Poly(oxycarbonyl-l,4-phenylene-co-oxycarbonyl-2,6-naphthylene) Chromatography 3,5-bis(Trifluoromethyl)/decalin SEC, 600C 1819 Fractional precipitation 3,5-bis(Trifluoromethyl)phenol/ 900C 1803,1819 decalin Poly(oxycarbonyl-1,4-phenylene-isopropylidene- 1,4-phenyleneoxycarbonyl-1,4-phenylene-1,6-indanylene) Chromatography Cyclohexane/dioxane Precipitation chromatogr., thermal 3045 gradient, acid wahed glass beads Poly(oxycarbonyl-1,4-phenyleneoxytherephthaloyloxy-1,4-phenylenecarbonyloxydecamethylene) Fractional precipitation Trifluoroacetic acid/o-xylene 3277 Sedimentation velocity Trifluoroacetic acid 25°C 3277 Poly[2,2~bis(4-oxycyclohexyl)propane adipatej Chromatography Methylene dichloride 1003 Poly(oxydecamethyleneoxysebacoyl) Fractional solution Benzene/ethanol Column elution 3157 Tetrachloroethane/rt-heptane Column elution 3157 Poly(di(oxethylene)oxyadipoyl) Chromatography tf-Hexane-butanone-ethanol Column extraction, silica gel 890 Extraction Butanone/«-hexane Oligomers, column extraction 1159 Turbidimetric titration Butanone/petroleum ether 1159 Poly(oxyethylene oxyethyleneethyleneoxyadipoyl) Chromatography Tetrahydrofuran SEC, ultratyragel, oligomers 3121 Poly(di(oxyethylene)oxyterephthaloyl) Fractional precipitation Chloroform/ethanol 300C 1944,2738,2744 Poly(oxyethyleneoxyadipoyl) Fractional crytallization Ethanol Hot 1324 Fractional precipitation Benzene/petroleum ether 2693 Chloroform/petroleum ether 1594 Poly(di(oxethylene)oxycarbonyl 1,4-cyclohexylenecarbonyl)fr<ms Chromatography Methylene dichloride SEC, styragel 893 Poly(oxyethyleneoxycarbonyl-1,4-phenyleneoxyethylenoxy-1,4-phenylene carbonyl) Fractional precipitation 1,1,2,2-Tetrachloroethane//i-heptane, 200C 1560 tf-chlorophenol(3:2) Poly(di(oxyethylene)oxyisophthaloyl) Fractional precipitation Chloroform/methanol 300C 2740 Poly(oxyethyleneoxyisophthaloyl) Chromatography Tetrahydrofuran SEC, 37°C 333 Fractional precipitation Tetrachloroethane/r?-heptane 3515 Poly(oxyethyleneoxyphthaloyl) Fractional precipitation Ethylene dichloride/petroleum ether 1303 Poly(oxyethyleneoxysebacoyl) Chromatography Tetrahydrofuran SEC, 37°C 333 Fractional precipitation Hot methanol 1324 Poly(oxyethyleneoxysuberoyl) Chromatography Tetrahydrofuran SEC, 37°C 333 Fractional precipitation Hot methanol 1324 Poly(oxyethyleneoxysuccinoyl) Chromatography m-Cresol SEC, styragel, 1000C 3431 Poly(oxyethyleneoxyterephthaloyl) Poly(ethylene terephthalate) Chromatography Chloroform/ethanol (94/6) TLC, Kiesselgel oligomers 761 m-Cresol SEC 804 SEC, styragel, 125°C 1278 Methylene dichloride/ SEC, styragel 1894 hexafluoroi spropanol (70/30) Nitrobenzene/tetrachloroethylene 2521 (5/95) SEC, styragel 1000C 3310 o-rm-Butylphenol SEC, styragel, 1100C 2792 Tetrahydrofuran Samples were dissolved in 333 phenol-tetrachloroethane- (3 : 2) SEC, 37°C
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
SEC, u-styragel, 400C, PET oligomers SEC, oligomers SEC, styragel, 400C, analytical and preparative, oligomers SEC, 500C
Coacervation Distribution between immiscible liquids Extraction Fractional precipitation
Turbidimetric titration Poly(tri(oxyethylene)oxyterephthaloyl) Fractional precipitation Poly(oxyhexamethylene oxy-4,4 '-biphenyleneoyl) Chromatography Poly(oxyhexamethyleneoxy)(a,a-dibutyl)sebacoyl) Fractional precipitation Fractional precipitation Poly(oxyhexamethyleneoxysebacoyl) Chromatography Fractional solution
2972 2972
Trifluoroacetic, acid/ chlorofoTm(10:90)eluent -Chlorophenol Trifluoroacetic acid Charcoal chloroform(20:80) solvent Phenol -tetrachloroethane/n-heptane m-Cresol/petroleum ether
2162
Hot chloroform Oligomers Methylene chloride-ethanol (4:6) 1,1,2,2-Tetrachloroethane/n-heptane, 200C o-chlorophenol (3:2) Dimethylformamide Lowering temp. m-Cresol/ligroin (b.p. 1000C) 5O0C 0-ChlorophenolM-heptane
1906 475 1560
Phenol-1,2,4-trichlorobenzene/ n-heptane Phenol-tetrachloroethane(l : I)/ ligroin
Fractional solution
2972
450 3290 3300
3300 3300 2160,2162,2242, 2247,2255 3140
25°C
65°C Phenol-tetrachloroethaneM-heptane Phenol/cyclohexane 700C Phenol-tetrachloroethane(3:2)/ Film extraction, 95°C n-nonane Phenol/n-heptane 56°C Phenol-tetrachloroethane/n-heptane
3400 1111 1023,1024,1278,2712 1723 935 2506 2006
Chloroform/methanol
300C
2741
Phenol +tetrachloroethane
SEC, 500C
3214
Benzene/methanol Benzene/methanol
Chloroform Benzene/methanol, tetrachloroethane/n-heptane Turbidimetric titration Carbon tetrachloride/n-heptane Poly(oxyhexane oxyadipoyl) Chromatography Tetrahydrofuran Poly (oxyisophthaloyloxy-1,4-phenylene-(2-phenyl)phthalimidine-1,4-phenylene) Fractional precipitation Tetrachloroethane/tetrahydrofuran Sedimentation velocity Tetrahydrofuran Poly(oxy isophthaloyloxy-1,4-phenylene-phthalidylidene-1,4-phenylene) Chromatography Tetrachloroethane/ethanol Extraction Phenol-tetrachloroethane(l: 3)/ rc-heptane Turbidimetric titration Tetrachloroethane/ethanol Poly(oxyneopentyleneoxyadipoyl) Fractional precipitation Chloroform/hexane Poly(oxypropyleneoxyisophthaloyl) Fractional precipitation Chloroform/methanol Poly(oxypropyleneoxyterephthaloyl) Chromatography Chloroform Tetrahydrofuran Extraction Methylene dichloride/ethanol (4/6) Fractional precipitation Chloroform/methanol Poly(oxysebacoyloxydecamethylene) Turbidimetric titration Carbon tetrachlorideM-heptane
241,3481 241,3481 SEC, styragel Column elution
2426 3157
200C SEC, styragel, oligomers
1763 3121
200C Precipitation chromatogr., 15-65°C
790 790 789 789 789 2742
300C
2576
SEC, styragel or bio-beads SEC, styragel or bio-beads Cyclic oligomers 300C
337 337 475 2576
200C
1763
TABLE 3. Polymer
cont'd Method of fractionation
Poly(oxysuccinoyloxyhexamethylene) Chromatography
Solvent or solvent/nonsolvent mixture
Butanone-cyclohexane Butanone-cyclohexane (3: l)/cyclohexane Butanone (1:4)
Poly(oxytartaroyloxyhexamethylene) Chromatography Benzene Poly(oxyterephthaloyloxy(3-methylphenylene)isopropylidene-l,4-(3-methylphenylene) Poly(arylate) Fractional precipitation Dichloroethane/n-hexane Poly (oxyterephthaloy loxy-1,4-chlorophenyleneisopropylidene-1,4-chloro/phenylene) Chromatography Chloroform Tetrahydrofuran Fractional precipitation Dichloroethane/n-hexane Poly(oxyterephthaloyloxy-1,4-phenylenefluoren-9-ylidene-1,4-phenylene) Poly(arylate) Fractional precipitation Carbon tetrachloride-phenol (3: l)//i-heptane Dichloroethane/n-hexane Poly(oxytetramethyleneoxyadipoyl) Poly(tetramethylene adipate) Chromatography Benezene-ethanol (3:1) Tetrahydrofuran Poly(oxytetramethyleneoxyterephthaloyl) Poly(tetramethylene terephthalate) Chromatography Chloroform -n-hexane( 10:5) and chloroform-n-hexane( 10: 3) Hexafluoroisopropanol «-Hexane-dioxane (7:3) Extraction
Methylene dichloride-ethanol (4:6) Fractional precipitation 1,1,2,2-Tetrachloroethanephenol/zi - heptane Poly(oxytrimethyleneoxysuccinyl) Poly(trimethylene succinate) Chromatography Tetrahydrofuran Poly(phenylhydroquinone-coterephthalic acid) Fractional solution o-Dichlorobenzene: /?-chlorobenzene (50:50)/methanol Poly(phthalic acid-a/f-pentaerythrytol) Fractional precipitation Acetone Poly(phthalic anhydride-a//-(coconut oil;glycerol)) Fractional precipitation Acetone/water Poly(phthalic anhydride-a/f-glycerol) Fractional precipitation Acetone/water Butanone-acetone/methanol Butanone-acetone/methanol-water Poly(phthalic anhydride; lauric acid)-a/r-glycerol) Fractional precipitation Toluene/n-heptane Poly(phthalidylidene-1,4-phenylene oxy-1,4-phenylene carbonyl-1,4-phenyleneoxy-1,4-phenylene) Fractional precipitation A/^Dimethyformamide/ethanol Poly(pivalolactone) see Poly(oxy( 1 -oxo-2,2-dirnethyltrimethylene) Poly(sebacic acid-a/Hhexanediol ;hexanetriol) Fractional precipitation Benzene/methanol Poly(sebacic, adipic, tartaric acid)-a/?-(l,6-hexanediol-l,10-decanediol) Fractional precipitation Benzene/methanol Fractional solution Benzene/methanol Poly(succinic acid-co-hexanediol) see Poly(oxysuccinoyloxyhexamethylene) Fractional precipitation Poly((succinico;pimelic acid)-a/f-(hexanediol) Poly(terephthalic acid-co-ethylene glycol) see Poly(oxyethyleneoxyterephthaloyl) Poly(ditrimethylene glycol terephthalate) Chromatography Tetrahydrofuran Fractional precipitation Toluene/methanol
Remarks
Refs.
Precipitation chromatogr., 70-270C and 70-400C
1210
Precipitation chromatogr., 27-700C
1210 1210 2321
Urea
1671 3244 343 1843 3244
SEC, styragel, 25°C
791 3025 TLC, silica gel SEC, 37°C
3327 333 812
Cyclic oligomers extracted with 0-dichlorobenzene, TLC, silica gel HPLC, lichrosorb, cyclic oligomer, extracted with -dichlorobenzene Cyclic oligomers
3014 812 475 1354,2303
SEC, styragel
1512
23°C
1798
Lowering temp.
364
Alkyd resin
896
Alkyd resin
897 362 362 2339 3499 242 240,3481 240,3481
Benzene/methanol
SEC, styragel, 300C
242
3068 1102
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
3.4. POLY(URETHANES) AND POLY(UREAS) Poly(urethanes) (General)
Fractional precipitation
Acetone, benzene, ethyl acetate, chloroform and their mixtures with DMF, dimethylformamide/di-/7-pentyl ether Poly(poly(caprolactone)-c0-4,4'diphenylmethane diisocyanate-c<9-2,4~butanediol) Fractional precipitation Dimethylacetamide/diphenyl ether Poly(poly(caprolactone)-c-4,4'diphenylmethane diisocyanate-co-ethylene diamine) Fractional precipitation Dimethylacetamide//?-heptaneethyl ether Poly((caprolactone)-c0-trimethylol ethane-co-4,4/-diphenylmethane diisocyanate-co-ethylene diamine) Fractional precipitation Dimethylacetamide/n-heptaneethyl ether Poly (poly (caprolactone)diol-co-4,4 '-diphenylme thane diisocyanate-co-1,5-pentanediol) Fractional precipitation Dimethylformamide/ 300C dimethylformamide-water(4: 1) Poly((ethylene diamine-c<9-2,4-toluenediisocyanate)-co-poly(tetramethylene oxide)) Chromatography Dimethylformamide-f 0.01 M lithium bromide Poly(ethylene diamine-co-2,4-toluenediisocyanate-co-poly-(oxytetramethyleneoxyadipoyl) Chromatography Dimethylformamide + 0.01 M SEC lithium bromide Poly[4,4'-diisocyanodiphenylmethane-co^^-hexadene-1,6-diol-co-poly(propylene glycol)] Chromatography Tetrahydrofuran SEC, styragel Poly(oxycarbonyloxy-1,4-phenyleneureylene-1,4-phenyleneureylene-1,4-phenylene) Turbidimetric titration Dimethylformamide Poly(oxycarbonyloxy-1,4-phenyleneureylene-1,5-naphthyleneureylene-1,4-phenylene) Turbidimetric titration Dimethylformamide Poly(oxycarbonyloxy-1,4-phenyleneureylene-1,4-phenylenemethylene-1,4-phenyleneureylene-1,4-phenylene) Turbidimetric titration Dimethylformamide Poly(oxycarbonyloxy-1,4-phenyleneureylene-1,4-toluylene ureylene 1,4-phenylene) Turbidimetric titration Dimethylformamide Poly(oxycarbonyloxy-1,4-phenyleneureylenehexamethyleneureylene-1,4-phenylene) Turbidimetric titration Dimethylformamide Poly(oxycarbonyl(phenylimino)ethylene)(Poly(AT-phenylethylenimine-a/r-carbon dioxide) Extraction Methanol Homopolymer Poly (poly (oxyethyleneoxy adipoyl)-co-4,4 '-dipheny !methane diisocyanate-co-1,4-butanediol) Fractional precipitation Dimethylforrnamide/dibutyl ether Poly(oxyethyleneoxycarbonylimino-1,4-phenylene-methylene-1,4-phenylene) Extraction Dimethylformamide/acetone 300C Fractional solution Dimethylformamide/acetone Poly(poly(oxypropylene)-c<9-toluene diisocyanate) Fractional solution Benzene/isooctane Column extraction, 34°C Poly(oxytetramethylene oxycarbonylimino hexamethyleneiminocarbonyl) Fractional precipitation Benzene/2,2,4-trimethylpentane 25°C Poly(poly(oxytetramethyleneoxyadipoyl)-c-4,4/-diphenylmethanediisocyanate-co-l,4-butenediol) Fractional precipitation Dimethylformamide/dibuty! ether Poly(poly(oxytetramethyleneoxyadipoyl)-c-toluylenediisocyanate) Chromatography Ethyl acetate SEC, styragel, 200C Poly(oxytetramethyleneoxycarbonylimino-2,4-toloyleneiminocarbonyl) Chromatography Dimethylformamide + lithium SEC, u-styragel bromide (0.01%) Poly(oxytetramethyleneoxycarbonylimino-1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Chromatography Tetrahydrofuran SEC, styragel Poly(oxytetramethyleneoxycarbonyliminohexamethyleneiminocarbonyl) Chromatography Formic acid/water (88%) Paper partition chromatogr. Fractional solution m-CresolM-hexane Poly(ureylene(l-ethoxycarbonyl)pentamethylene) Poly(urea of ethyl ester L-lysine) Coacervation Trichloroethane-phenol/ftheptane
2992
2991 2842 2842 2935 2505 2505 1382 1739 1739 1739 1739 1739 3029 2991 254 255 1421 42 2991 3328 2704 488 157 2400 1764
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
3.5. POLY(AMIDES) AND POLY(IMINES) Poly(amido amine) Chromatography Dimethylformamide PoJy((6-aminocaproic acid; adipic acid)-a/r-hexamethylenediamine) Fractional precipitation Phenol/water 70-90 0 C Poly(butylimino carbonyl) Fractional precipitation Carbon tetrachloride/methanol Poly((N-tert-butylimino)ethylene) Chromatography Tetrahydrofuran SEC, styragel, 200C Poly(butyliminocarbonyl) [Poly(butylisocyanate)] Chromatography Benzene SEC Fractional precipitation Cabon tetrachloride/methanol Tetrachloroethane/methanol Sedimentation analysis Carbon tetrachloride Poly(e-caprolactam) see Poly(imino(l-oxohexamethylene)) Poly(caprolactam-co-hexamethylenediamine-co-adipic acid-co-azelaic acid) Extraction Methanol/water mixtures 35°C Turbidimetric titration Methanol/water mixtures Poly(ethy limino-/m«5-fumaroylethylamino-1,4-(2-methyl)phenylene-methy lene-1,4-(2-methyl)phenylene) Fractional precipitation Dimethylformamide/water Methanol/water Turbidimetric titration Dimethylformamide/water Poly ((R)- 1-deuterio-n-hexyl isocyanate) Chromatography Chloroform SEC, styragel, 4O0C analytical and preparative Poly(n-hexyl isocyanate) Fractional precipitation Chloroform/methanol Sedimentation equilibrium Hot hexane, hot benzene, Ultracentrifuge, 25°C hot hexafluoroisopropanol, m-cresol Poly(hexyliminocarbonyl) Poly(hexy I isocyanate) Chromatography Chloroform SEC, styragel, 400C Coacervation Tetrachloromethane/methanol Toluene/methanol 25°C Fractional precipitation Benzene/methanol Carbon tetrachloride/methanol
2130 243 1227 1089 468 3264 2978,3274 468 2543 2543 876 876 875 2452 787 2851
1451 358 300,301 1500 1451,1810,2309, 2787,3068
Sedimentation equilibrium Poly(imino(l-oxodecamethylene)) [Nylon 10] Distribution between immiscible liquids Poly(imino(l-oxododecamethylene)) [Nylon 2] Chromatography
Turbidimetric titration Poly(irnino(l-oxohexamethylene)) [Nylon 6] Chromatography
Distribution between immiscible liquids Fractional crystallization Fractional precipitation
Hexane
25°C
1451
Phenol/water
700C
1368
Benzyl/alcohol Hexarnethylphosphotriamide Methylene dichloride Tetrahydrofuran w-Cresol/«-heptane
SEC SEC, styragel, 85°C SEC, u-styragel SEC
2522 2507 1465 834 2287
SEC, lichrospher, 1000C SEC, 1000C Formic acid/water Paper partition, 200C Hexamethylphosphortriamide SEC, 85°C Hydrochloric and 0.1 M SEC, biogel m-Cresol SEC, 1050C, 133°C SEC, styragel, 112°C Methylene chloride SEC, u-styragel Phenol-ethanol-water( 1:2.6:1.6) SEC, Sephadex Phenol-n-propanol (7:3) SEC, 65°C Trifluoroethanol SEC, styragel Phenol/water Continuous Benzyl alcohol
Phenol-tetrachloroethane (1 : l)/ethanol->?-heptane Formic acid-water (85:15)-5% lithium chloride/water-5% lithium chloride
2523 2522 157 2507 320 235,236 616 1465 3422 2523 2098 807
25°C, stirred
328
Amorphous
325
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture m-Cresol/cyclohexane m-Cresol/ethyl ether m-Cresol/ligroin
Fractional solution
Sedimentation equilibrium Sedimentation velocity Summative precipitation Thermal diffusion Turbidimetric titration
Poly(imino(l-oxooctamethylene)) [Nylon 8] Chromatography Fractional solution Poly(irnino(l-oxotetramethylene) [Nylon 4] Chromatography Fractional precipitation Poly(imino(l-oxoundecamethylene) [Nylon 11] Chromatography
Phenol-tetrachloroethylene (1: l)/«-heptane Phenol/methanol-water Phenol/water Cone, formic acid Formic acid/propyl acetate Phenol/ethylene glycol/water Phenol/water mixtures Water-methanol (81.5: l8.5)/phenol Formic acid-water (85%) + 2M potassium chloride Hexafluoroisopropanol Formic acid (85%) water Formic acid-water 90% Formic acid/dibutyl ether Hydrochloric acid/Aq. ammonium sulfate m-Cresol-isobutanol-petroleum ether (1:9) petroleum ether-tetrachloroethane (9:1) m-Cresol/n-heptane m-Cresol/petroleum ether Phenol 94%/50% methanol Phenol-water-96% ethanol ( 1 : 1 : l)/46% ethanol Methylene dichloride Phenol/water-methanol
Remarks 26°C 25°C 700C 20-900C Film extraction Coacervation Column extraction, 700C Column extraction, linear and branched 25°C
Refs. 1516 1192 1111,1125, 2548,3294 2694 1821 3482 666 935 3289 1010,2096 2097 2893 2542 638 1863 1274 2642 1110 2548 665 1011 214
SEC, fi-styragel Coacervation, 25°C
m-Cresol SEC, 900C Methylene dichloride SEC, ji-styragel m-Cresol-benzene(6: \)ln-heptane
Benzyl alcohol SEC, u,-styragel Hexamethyl phosphotriamide SEC, 85°C Methylene dichloride SEC, fi-styragel Fractional precipitation m-Cresol/ethyl alochol or ^-heptane Poly(iminoperchloroterephthaloyliminohexamethylene) Poly(hexamethylene perchloroterephthalamide) Fractional precipitation m-Cresol/cyclohexane Poly(imino-1,4-phenyleneimino-terephthaloyl) Chromatography Sulfuric acid 90% Preparative SEC, silica gel Sulfuric acid 96% SEC Tetrahydrofuran SEC, Shodex Poly(imino-1,3-phenyleneimino-isopthaloyl) Poly(m-phenylene isophthalamide) Fractional precipitation Dimethylformamide 4- 5% lithium chloride/dioxane Sedimentation velocity Dimethylformamide + lithium Ultracentrifuge chloride Poly(imino-1,4-phenylenecarbonylhydroazoterephthaloyl) Polyfterephthalamide-p-benzohydrazide) Fractional precipitation Dimethylsulfoxide: dichloro25°C, the precipitate is (50:30-50:70)/dimethyl methane sulfoxide redisolved by temp, lowering Poly(iminoadipoyl iminodecamethylene)/7Vy/(?rt 610] Distribution between Phenol/water Continuous, Nylon 610 immiscible liquids Poly(iminoadipoyl iminohexamethylene) [Nylon 66] Chromatography Formic acid-water (88%) Partition chromatogr. 200C Hexafluoroisopropanol SEC, styragel Methylene dichloride SEC, ji-styragel
1465 525 1385 1465 2764 2953 2507 1465 3192 1875 128 130 2432 3276,3385 2375 2816 807 157 1395 1465
TABLE 3. cont'd Polymer
Method of fractionation Distribution between immiscible liquids Fractional precipitation
Solvent or solvent/nonsolvent mixture Phenol/water
Remarks
Refs.
Continous, Nylon 66
807
ra-Cresol/cyclohexane Phenol/water Nylon 66 Sedimentation gradient Carbon tetrachloride, Ultracentrifuge m-cresol, cyclohexane Turbidimetric titration m-Cresol/cyclohexane Nylon 66 m-CresolM-heptane Poly (iminocarbony l(3-carboxybiphenyl)4,4 '-ylenecarbony limino-1,4-phenylenemethylene-1,4-phenylene) Fractional precipitation m-Cresol/cyclohexane Poly(iminocarbonyl-1,4-(2,5-methoxycarbonyl)phenylenecarbonylimino-1,4~(3-phthalidyl)phenylene-methylene-1,4-phenylene) Fractional solution Trichloroethylene-phenol-^-heptane Poly (iminocarbony 1-1,4-phenylene) [Poly(p-benzamide)] Chromatography Sulfuric acid 92% SEC, preparative, silica gel Poly(iminocarbonyl- 1,4-phenyleneiminocarbonyl tetramethylene) Fractional precipitation Dimethylacetamide/Lithium chloride/propionic acid Poly(iminoethylene) Chromatography Water SEC, Sephadex Water 0.109 N sodium chloride SEC, biogel Curtain electrophoresis Acetic acid-water Poly(iminohexamethylene iminosebacoyl) Chromatography Formic acid-water (88%) Paper partition Methylene dichloride SEC, u-styragel Mechanical fractionation Tyler screens Interfaciai condensation Poly(iminoisophthaloyl iminodecamethylene) Turbidimetric titration /?-Cresol/acetone Poly(imino( 1 -oxohexamethylene)coimino( 1 -oxododecamethylene) Poly(6-capro\actam-co-12-dodecanelactam) Fractional precipitation m-Cresol/«-heptane Poly(iminoterepthaloylimino-2-methyl-4,4-dimethylhexamethylene) Fractional precipitation Dimethylformamide/ethyl acetate Poly(iminoterepthaloylimino-3-methyl-4,4-dimethylhexamethylene) Chromatography Methylene dichloride SEC, u-styragel Poly(iminoterepthaloylimino-2-phenylenefluorene-9-ylidene-l,4-phenylene) Fractional precipitation Dimethylformamide/acetone Dimethylformamide/acetoneethanol (2:1) Poly(iminoterephthaloylimino-1,4-phenylenephthalidylidene-1,4-phenylene) Coacervation Dimethylformamide (3% HCl 1 N)/ethanol Dimethylformamide (acidified HCl)/ethanol Fractional precipitation Dimethylformamide/acetone Dimethylformamide/acetoneethanol (2:1) Poly(iminotetramethylene iminoisophthaloyl) Turbidimetric titration Cresol/acetone Poly(isopropylmethacrylamide) Fractional precipitation Ethanol/diethyl ether Poly(franj-2,5-dimethyl-1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Chromatography Dichloroethylene/cyclohexane Column elution, 300C / Poly(4,4 -methylenedianiline-co-l-chloro 2,3-epoxypropane) (epoxy resin) Chromatography Acetonitrile-water gradient HPLC reverse phase, graft silica gel, preparative Tetrahydrofuran SEC, styragel, preparative Poly[(dimethylimino) decamethylene bromide] Fractional solution Ethylene glycol monoethyl ether/diisopropyl ether Poly(frarcs-2,5-dimethylpiperazinediylisophthaloyl) Fractional precipitation Chloroform- l-5%phenol//ihexane Methylene chloride-ethanol, (10%) n-hexane Methylene chloride-methanol (85: 15) rc-hexane) Sedimentation equilibrium /V-methylpyrralidone 25°C
1375,1516 3165 3204 1376 2287 3128 2232 129,130 39 2673 1369 2584 157 1465 2272 3033 44 1283 1465 2765 2765 2374 2376 2765 2765 3033 3207 2240 1145 1145 2899
2292 1694,2802 2291 1694
References page VII-438
TABLE 3. contd Polymer
Method of fractionation
Solvent or solvent/nonsol vent mixture
Remarks
Poly(oxysebacoyloxyethylene iminoterephthaloyliminoethylene) Chromatography Methylene dichloride S EC, |i-styragel Poly(oxysuccinoyloxyethylene iminoterephthaloyliminoethylene) Chromatography Methylene dichloride S EC,u-styragel Poly(oxyterephthaloyloxyethylene iminoterephthaloyl iminoethylene) Chromatography Methylene dichloride SEC, n-styragel Poly(oxytetramethyleneoxysuccinoyl iminohexamethylene iminosuccinoyl) Chromatography Methylene dichloride SEC, ja-styragel Poly(oxytetramethyleneoxyuccinoyl iminododecamethylene iminosuccinoyl) Chromatography Methylene dichloride SEC, ji-styragel Poly(phenylcarbamoyl)iminoethylene) PoIy(I -(N-phenylcarbamoyl) aziridine) Chromatography Tetrahydrofuran SEC, styragel Poly[N,iV/-O-phenylene)-3,3/,4,4/-biphenyl tetracarboxylic acid diamide] Chromatography Dimethylpyrrolidone SEC, ja-styragel, 600C Poly(m-phenyleneisophthalamide) Chromatography Af-methyl-2-pyrrolidone,/V,/V, dimethylacetamide Poly(/V-phenylnorbomene-5,6-dicarboximides) Chromatography Tetrahydrofuran SEC, ultrastyragel Poly(piperazine-1,4-diyl-ethylene) Poly(ethylene-co-piperazine) Fractional precipitation Water/acetone Poly(piperazine-2,4-diyl-sebacoyl) Mechanical fractionation Tyler screens Interfacial condensation PolyCquaterthienyl-N-dodecyl pyrrole) Chromatography Tetrahydrofuran Poly(terephthalic acid-4-iminobenzohydrazide) Fractional solution Dimethylsulfoxide/ethyl acetate Poly(l,2,6,7-tetrahydrobenzo(l,2-C:4,5-C) dipyrrole-2,6-diyl-terephthaloyl) Chromatography m-Cresol SEC, styragel, 95°C Poly(l,2,6,7-tetradhydrobenzo(l,2-C:4,5-C) dipyrrole-2,6-diyl-sebacoyl) Chromatography m-Cresol SEC, styragel, 95°C Poly( 1,2,6,7-tetrahydrobenzo( 1,2-C: 4,5-C ')dipyrrole-2,6-diyl-carbonyl-1,4-phenyleneoxy-1,4-phenylenecarbonyl) Chromatography m-Cresol SEC, styragel Poly(l,2,6,7-tetrahydrobenzo(l,2-C:4,5-C)dipyrrole-2,6-diyl-adipoyl) Chromatography m-Cresol SEC, styragel, 95°C Poly(1,2,6,7-tetrahydrobenzo( 1,2-C : 4,5-C ')dipyrrole-2,6~diyl-isophthaloyl) Chromatography m-Cresol SEC, styragel, 95°C Poly(ter/-thienyl-Af-dodecyl pyrole) Chromatography Tetrahydrofuran
Refs. 1465 1465 1465 1465 1465 119 3114 1847 144 2675 2272 2515 1799 763 763 763 763 763 2515
3.6. POLY(AMINO ACIDS) Poly(y-benzyl-L-glutamate) poly(imino(l-(2-benzyloxycarbonylethyl)-2-oxo-ethylene) Chromatography Dimethylformamide m-Cresol m-Cresol -chlorobenzene/benzoic acid Methylene dichloride/methanol Tetrahydrofuran Dialysis Dioxane Fractional precipitation Dichloroethane/petroleum ether Dioxane/ethanol Methylene dichloride/methanol Fractional solution Formic acid, ethanol (hot) Poly(y-benzyl-D-glutamate-cc-benzyl-L-glutamate) Fractional precipitation Methylene dichloride/methanol Sedimentation equilibrium Dimethylformamide Poly(y-benzyl-L-glutamate-Af-carboxy anhydride) Fractional precipitation Methylene dichloride/methanol Poly(//-carbobenzoxy-L-lysine)-co-poly(l-lysine-Y-methyl-L-glutamate) Chromatography Tetrahydrofuran Fractional precipitation Dimethylforrnamide/ethyl ether Poly(carbobenzoxy-L-lysine-C(?-styrene) Fractional precipitation Chloroform-hexamethylphosphor triamide/methanol
SEC SEC, 10O0C SEC Precipitation chromatogr. SEC, styragel
Extraction
2330 1030 405 636,637,1085 3528 2203 3257,3258,3229 88 406 2203
Ultracentrifuge
1248 1248
25°C
3528
SEC, styragel
2812 2812 334
TABLE 3. cont'd Polymer
Method of fractionation
Casein-gra/f-poly(vinyl acetate) Extraction Deoxyribonucleic acid Sedimentation velocity Fibrinogen Sedimentation
Solvent or solvent/nonsolvent mixture Acetone Sodium dodecyl sulfate Buffer solution Phosphate buffer Water/ethanol
Gelatin Coacervation Gelatin-£ra/r-poly(methyl acrylate) Extraction Tetrahydrofuran Poly(glutamate, sodium salt) Chromatography Sodium nitrate (water) 0.1 M Poly(L-glutamic acid) Fractional precipitation Dimethyl sulfoxide/2-propanol Glycogen Sedimentation Water Heparin Fractional precipitation Water/ethanol Poly(L-histidine) Poly(imino-l-(4-imidazolyhnethyl)-2-oxo-ethylene) Chromatography Lithium chloride 0 . 5 M + 1 M HCl pH = 2.35 buffer Poly(A(-super-5-(4-hydroxbutyl)-L-glutamine-L-lysine) Fractional precipitation Methanol/ethyl ether Poly(hydroxybutylglutamine) Fractional precipitation Methanol/ethyl ether Poly(hydroxybutylglutamine-c«9-L-arginine) Fractional precipitation Methanol-1 M aq. sodium chloride (9: 1 )/ethyl ether Poly(hydroxybutylglutamine-cx>-glycine) Fractional precipitation Methanol/ethyl ether Poly(hydroxybutylglutamine-tY>-i.-serine) Fractional precipitation Methanol/ethyl ether Poly(hydroxybutylglutamine-ra/7-L-leucine) Fractional precipitation Methanol/ethyl ether Poly(/V-super-5-omegahydroxyethyl-L-glutamine) Chromatography Water Poly(/V-super-5-(3-hydroxypropyl)-L-glutamine Chromatography Water Poly(hydroxypropyl glutamine-c0-L-alanine) Fractional precipitation Methanol/ethyl ether Poly(hydroxypropyl glutamine-cohydroxybutylglutamine) Fractional precipitation Methanol/ethyl ether Poly(hydroxypropyl glutamine-co-L-leucine) Fractional precipitation Methanol/ethyl ether Poly(hydroxypropyl glutamine) Fractional precipitation Methanol/ethyl ether Poly(imino(l-(2-/V-benzylcarbamoylethyl)-2-oxoethylene-/7/c>c^-poly(butadiene) Extraction Methanol-water (1 : 1) Fractional precipitation Hexamethylphosphortriamide/ acetone Lactoglobulin Salt fractionation Ammonium sulfate solution 2.19M PoIy(Cx epsilon-1-lysine) Chromatography Dimethylformamide -f- 1 % lithium chloride Poly(lysine-c0-lactic acid) Chromatography Chloroform Poly(e-c-L-lysyl-y-benzyl-L-glutamate) Chromatography Tetrahydrofuran Poly(L-lysyl-L-valyl-L-lysine) Chromatography Water, 0.1M potassium phosphate dibasic and monobasic Pbly(Y-methyl-D-glutamate-co-Y-methyl-L-glutamate) Fractional precipitation Methylene dichloride/methanol Sedimentation equilibrium m-Cresol Poly(y-methyl-D,L-methylglutarnate-i'/6>cA:-poly(butadiene)-/?/(?cA;-poly(Y-methyl-D,L-glutamate) Fractional precipitation /?-Hexane-chloroform/ethanol Polypeptides from (L-,D-Lysine-f L-tyrosine) Fractional precipitation Water + 0.1 N chloride acid/0.1 M sodium citrate Poly(L-proline) Chromatography Water Sedimentation velocity Propionic acid Proteins Chromatography Hexafluoroisopropanol Fractional precipitation Ethanol Poly(sarcosine) Centrifugation Dioxane/water
Remarks
Refs.
cambiar de grupo? Ultracentrifuge 20 0 C
2225 2976 841 840 2652,3067 2325 2762 1673 434 821,987
SEC, silica gel
Gel filtration, Dextran gel
2215
811 2780 1751
89 1394 69 SEC, Sephadex, preparative
2095
SEC
2454 2621 3395 69 3395 2580 2580 3215 24
SEC
228
SEC, styragel
2464 597
1248 1248 1248 2165 SEC 20 0 C Silk Blood plasma, large scale Precipitation chromatogr.
980 515 1464 1921 511
References page VII-438
TABLE 3. cont'd Polymer Silk fibroin
Method of fractionation Chromatography Fractional precipitation
Poly(N-tosyl-L-tyrosine-formal) Fractional precipitation
Solvent or solvent/nonsolvent mixture Formic acid 99.3% + 4.5% LiCl LiBr 9.3 M/aq. rivanol (6,9-diamino-2-ethoxy-acridine lactate) Lithium sulfocyanide/water Acetone/water
Remarks SEC, bioglass, 3O0C 4°C
Refs. 3229 3229 2986 2946
3.7. POLY(SULFIDES), POLY(SULFONES), POLY(SULFONAMIDES) Poly( l-(/i-alkylthio)-1 -propynes) Chromatography Poly(1-butenesulfone) see Poly (sulfonylethylethylene) Poly(3-n-dodecylthiophene-2,5-diyl) Extraction Poly(l,2-epithiopropane) Chromatography Poly (ether sulfone) Chromatography Poly(2,5-ethylene (thiene [3,2-b] thiophenediyl) ethylene) Chromatography Poly(2,5-ethylenethiophenediylethylene) Chromatography Poly (5,5 '-ethynylene-2,2 '-bithiophenediylethynylene) Chromatography Poly(2,5-ethynylene-3-butylthiophenediylethynylene) Chromatography Poly(2,5-ethynylene-3-hexylthiophenediylethynylene) Chromatography Poly(2,5-ethynylene-3-methylthiophenediylethynylene) Chromatography Poly(2,5-ethynylene-3-octylthiophenediylethynylene) Chromatography Poly(2,5-ethynylene-3-phenylthiophenediylethynylene) Chromatography Poly(3-hexylthiophene) Chromatography Poly(3-rc-hexylthiophene-2,5-diyl) Extraction Poly[2,5-(3-methyl thieno [3,2-b] thiophenylene)] Chromatography Poly(3-octylthiophene) Chromatography Poly(oxy-1,4-phenylene sulfonyl-1,4-phenylene) Chromatography
Chloroform
SEC, styragel
2068
Hexane, acetone, methylene dichloride Tetrahydrofuran SEC, u-styragel Af-methyl-2-pyrrolidine SEC
3526 3436 1995
Chloroform
SEC, styragel
2798
Chloroform
SEC, styragel
2798
Chloroform
SEC, styragel
2798
Chloroform
SEC, styragel
2798
Chloroform
SEC, styragel
2798
Chloroform
SEC, styragel
2798
Chloroform
SEC, styragel
2798
Chloroform Tetrahydrofuran
SEC, styragel SEC
2798 1260,1336
Hexane, acetone, methylene dichloride, tetrahydrofuran Chloroform Tetrahydrofuran
3526 SEC, styragel
Chloroform SEC, styragel N-methypyrrolidone + lithium SEC, Shodex, 25°C bromide 0.1 M Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-(2-chloromethyl)-phenylene-isopropylidene-1,4-phenylene) Chromatography Tetrahydrofuran SEC, u-styragel Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-(2-vinyl)-phenyleneisopropylidene-1,4-phenylene) Chromatography Tetrahydrofuran SEC, u-styragel Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-pheny leneisopropylidene-1,4-phenylene) Chromatography Chloroform SEC, u-styragel Dimethylacetamide, SEC dimethylformamide Tetrahydrofuran SEC, u-styragel SEC, styragel Fractional precipitation Cholorobenzene/isopropanol Dimethylsulfoxide 800C, lowering temp. Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-(2-ethynyl)phenyleneisopropylidene-1,4-phenylene) Chromatography Tetrahydrofuran SEC, u-styragel Poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenylene( 1 -methylethylidene)-1,4-phenylene) Chromatography Tetrahydrofuran SEC Poly(oxyethylenethioethylene) Fractional precipitation Chloroform/w-hexane Poly(phenylene sulfide) Chromatography 1-Chloronaphthalene SEC, u-styragel, 2100C l-Cycolhexyl-2-pyrrolidone-h SEC, styragel, 2100C 20 nM lithium chloride, 1 -chloronaphthalene a-Chloronaphthalene SEC, 2100C
2798 1939 3571 549 2564 2564 455,1280,2927 2927 2564,2565 2927 1157 54 2564 3468 2436 1370
3248
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(styrene sulfonic acid) Chromatography Water Poly(sulfide rubber)s Chromatography Dioxane Poly(sulfonyl-1,2-cyclohexylene) Fractional precipitation Benzene/methanol Poly (sulfonyl-1,2-cyclopentylene) Fractional precipitation Dioxane/methanol Poly(sulfonyl-1 -methyl-1 -propylethylene) Fractional precipitation Acetone/methanol Poly(sulfonyl-l,4-phenylenesulfonylimino-(ethoxycarbonyl)pentamethyleneimino) Fractional precipitation Dimethylformamide/ethanol Poly(sulfonyl-1,4-phenyleoxy-1,3-propylenoxy-1,4-phenylene) Chromatography N-Methyl-2-pyrrolidone Poly(sulfonyl-phenylethylene) Fractional precipitation Tetrahydrofuran/methanol Poly(sulfonylbutylethylene) Poly(hexene-1 -sulphone) Fractional precipitation Acetone/methanol Poly(sulfonylethylethylene) Chromatography Tetrahydrofuran Fractional precipitation Acetone/methanol Poly(tetrathioethylene) Chromatography Dioxane Poly(2,5-thieno [3,2-b]thiophenylene) Chromatography Chloroform Poly( 1,4-bis(2-thienyl)-2,5-didodecy loxyphenylene) Chromatography Tetrahydrofuran Poly( 1,4-bis(2-thieny l)-2,5-dieicosinoxyphenylene) Chromatography Tetrahydrofuran Poly( 1,4-bis(2-thienyl)-2,5-diheptoxyphenylene) Chromatography Tetrahydrofuran Poly( 1,4-bis(2-thienyl)-2,5-dihexadecy loxyphenylene) Chromatography Tetrahydrofuran Poly(l,4-bis(2-thienyl)-2,5-dihexylphenylene) Chromatography Tetrahydrofuran Poly( 1,4-bis(2-thieny l)-2-dodecyloxy-5-methoxyphenylene) Chromatography Tetrahydrofuran Poly( 1,4-bis(2-thienyl)-2-heptoxy-5-methoxyphenylene) Chromatography Tetrahydrofuran Poly(thio-tert-butylethylene) Fractional precipitation Benzene/methanol Poly(thio-1,2-cyclohexylene) Chromatography Tetrahydrofuran Poly(thio-2,5-dimethyl-1,4-phenylene) Chromatography N-Methyl-2-pyrrolidone Poly(thio( 1 -methyltrimethylene) Chromatography Benzene Poly(thio-1,4-phenyleneoxy-1,10-decyleneoxy-1,4-phenylene) Chromatography N-Methyl-2-pyrrolidone Poly(thio-1,4-phenyleneoxy-1,7-heptyleneoxy-1,4-phenylene) Chromatography N-Methyl-2-pyrrolidone Poly(thio-1,4-phenyleneoxy-1,6-hexyleneoxy-1,4-phenylene) Chromatography AT-Methyl-2-pyrrolidone Poly(thio-1,4-phenyleneoxy-1,8-octy leneoxy-1,4-phenylene) Chromatography /V-Methyl-2-pyrrolidone Poly(thio-1,4-phenyleneoxy-1,5-pentyleneoxy-1,4-phenylene) Chromatography N-Methyl-2-pyrrolidone Poly(thio-1,4-phenylene) Chromatography 1-Chloronaphthalene
Refs.
SEC Column elution, silica gel
691 1037 873 873
Lowering temp.
238 258
SEC, 25°C 400C
3525 844
Lowering temp. SEC 400C Lowering temp.
238,239,1455 446 447 1029
SEC, styragel
2798
SEC, ultrastyragel
2794
SEC, ultrastyragel
2794
SEC, ultrastyragel
2794
SEC, ultrastyragel
2794
SEC, ultrastyragel
2794
SEC, ultrastyragel
2794
SEC, ultrastyragel SEC, styragel
2794 800 1090
SEC, 25°C
3525
SEC, 45°C
1573
SEC, 25°C
3525
SEC, 25°C
3525
SEC, 25°C
3525
SEC, 25°C
3525 3525 3060
W-Methyl-2-pyrrolidone Toluene, chloronapthalene
SEC, 25°C SEC, 2100C, porasil and u-bondagel SEC, Sephadex only DMSO soluble fraction SEC, Asahipac, 25°C Rising temp.
N-Methyl-2-pyrrolidone
SEC, 25 C
^ ^
AT-Methyl-2-pyrrolidone
SEC, 25 C
*m
iV-Methyl-2-pyrrolidone
SEC, Asahipac, 25 C
W-Methyl-2-pyrrolidone
SEC
Dimethylsulfoxide Fractional precipitation Poly(thio-1,4-phenyleneoxy-1,4-bytyleneoxy-1,4-phenylene) Chromatography Poly(thio-1,4-phenyleneoxy, 1,2-ethy leneoxy-1,4-phenylene) Chromatography Poly (thio-1,4-phenyleneoxy-1,4-phenylene) Chromatography Poly(thio-1,4-phenyleneoxy-1,3-propyleneoxy-1,4-phenylene) Chromatography
Remarks
1366 3525 1961
-^ZD
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation
Poly(thio-2,3,5,6-tetramethyl 1,4-phenylene) Chromatography Poly(thiohexamethylene) Fractional precipitation Poly(thiomethylethylethylene) Chromatography Poly(thiophene) Chromatography
Solvent or solvent/nonsolvent mixture N-methyl-2-pyrrolidone Benzene/methanol Tetrahydrofuran Chloroform Chloroform- n -hexane- ace tone (20:5:2) tf-Hexane-chloroform-Butanone (30:6:11)
Poly(thiophene-,5-diylvinylene) Poly(2,5~thienylenevinylene) Chromatography Poly(thiopropylene) Chromatography Extraction Fractional precipitation Poly(thiotetramethylene) Poly(thiotrimethylene) Poly(vinyl phenyl sulfoxide)
Fractional pecipitation Fractional precipitation Chromatography
Chloroform Methylene dichloride Ethyl ether Benzene/methanol Carbon tetrachlorideM-hexane Benzene/methanol Chlroform/hexane Tetrahydrofuran
Remarks SEC, Asahipac, 25°C 400C SEC, styragel Chloroform soluble fraction SEC, Ja-gel
Refs. 3525 2575,2829 2696 507
Chloroform soluble fraction, TLC, silica gel coate with poly(acrylamide) SEC SEC, poragel
500C SEC, TSK gel
725 3002 801 855,2363 2363 2034 2827,2830 1620
3.8. POLY(SILANES) AND POLY(SILOXANES) Poly(di-fl-alkylsiloxane)s Poly(2,3-benzo-l-silabutenes)
Chromatography Chromatography
Toluene Tetrahydrofuran
Poly[(3,4-benzo-l-silacyclo pent-3-en-l-ylene)-cw and /ra«5-but-2-en-l,4-ylene] Chromatography Tetrahydrofuran Poly(benzyldimethylvinylsilane) Chromatography Tetrahydrofuran Poly(di-n-butylsiloxane) Chromatography Tetrahydrofuran Poly[[(2,2-dichloro-l-oxo-3,4-cyclobutanediyl)]-c?5-bis(methylene)](methylphenylsilylene)] Chromatography Tetrahydrofuran Poly(chlorophenyl silsesquioxane) Poly(chlorophenyl siloxane) Fractional precipitation Benzene/ft-heptane Poly(dichlorophenyl silsesquioxane) Fractional precipitation Benzene/«-hexane Poly(chromium potassium sulfate-co-phenyl sodiumoxydihydroxysilane) Fractional precipitation Carbon tetrachloride/petroleum ether Poly(di-fl-decylsiloxane) Chromatography Tetrahydrofuran Poly(di-«-ethylsiloxane) Chromatography Toluene Poly(ferrooxyhalophenylsilylene) Fractional precipitation Benzene/petroleum ether Poly(ferrocenyl di-n-butylsilane) Chromatography Tetrahydrofuran-f 0.1% /i-tetrabutylammonium bromide Poly(ferrocenyl dimethylsilane) Chromatography Tetrahydrofuran 4-0.1 % n-tetrabutylammonium bromide Poly (ferrocenyl diethylsilane) Chromatography Tetrahydrofuran 4- 0.1 % rc-tetrabutylammonium bromide Poly(ferrocenyl di-w-hexyl silane) Chromatography Tetrahydrofuran-f 0.1 % n-tetrabutylammonium bromide Poly(ferrocenyl methyl, propylen 3-trifluoro silene) Chromatography Tetrahydrofuran -f 0.1 % tert-nbutylammonium bromide Poly (ferrocenyl methyl ferrocenylsilane) Chromatography Tetrahydrofuran + 0.1 % /7-tetrabutylammonium bromide Poly(ferrocenyl methyl 5-norobornylsilane) Chromatography Tetrahydrofuran + 0.1 % n-tetrabutylammonium bromide
SEC, u-styragel SEC, u-styragel, analytical and preparative
2495 3199
SEC, ultrastyragel, 200C
3420
SEC, styragel SEC, u-styragel
2471 2230
SEC
1899
Ladder
95
Ladder
95 156
SEC, u-styragel SEC
2230 1729 483
SEC, ultrastyragel SEC, ultrastyragel SEC, ultrastyragel
911 911 911
SEC, ultrastyragel
911
SEC, ultrastyragel
911
SEC, ultrastyragel
912
SEC, ultrastyragei
912
SEC, ultrastyragel
912
TABLE 3. cont'd Polymer
Method of fractionation
Poly(ferrocenyl methyl, rc-octadecyl silane) Chromatography Poly(ferrocenyl methyl, phenyl silane) Chromatography Poly(ferrocenyl methyl, vinyl silane) Chromatography Poly(ferrocenyl methylsilane)
Chromatography
Solvent or solvent/nonsolvent mixture Tetrahydrofuran + 0.1% /7-tetrabutylammonium bromide
Remarks
Refs.
SEC, ultrastyragel
912
Tetrahydrofuran 4-0.1 % SEC, ultrastyragel rc-tetrabutylammonium bromide
912
Tetrahydrofuran + 0.1 % SEC, ultrastyragel rt-tetrabutylammonium bromide Tetrahydrofuran + 0.1% SEC, ultrastyragel A7-tetrabutylammonium bromide Tetrahydrofuran SEC, u-styragel
912 912
Poly(di-n-heptylsiloxane) Chromatography Poly(hexamethylcyclotrisiloxane) Chromatography Chloroform SEC, 250C Poly( 1,3,5,7,9,11 -hexaphenyl-1,3,5,7,9,11 -hexacyclohexasiloxane) Fractional precipitation Benzene/methanol Poly (di-n-hexylsi lane) Chromatography Tetrahydrofuran SEC Poly(di-fl-hexylsiloxane) Chromatography Tetrahydrofuran SEC, u-styragel Poly(methyl cyclohexylsilylene-co-cyclohexylenesilylene) Chromatography Tetrahydrofuran SEC, ji-styragel Poly(2,2-dimethyl-5,5-diphenyl-l-oxa-2,5-disilacyclopentane) Poly(oxydimethylsilyleneethylene-diphenylsilylene) Chromatography Tetrahydrofuran SEC, porosity glass Poly(2,5-dimethyl-2,5-diphenyl-l-oxa-,5-disilacyclopentane) Poly(oxymethylphenylsilylenemethylenemethylpenylsilylene) Chromatography Tetrahydrofuran SEC, porosity glass Poly( 1,1 -dimethyl-1 -germa-d.s-pent-3-ene) Chromatography Tetrahydrofuran SEC, u-styragel, 25°C Poly(methyl-tt-hexylsilylane) Chromatography Tetrahydrofuran SEC Fractional precipitation Cyclohexane/isopropanol Poly(methyl-P-phenethyl-cc>-methylphenyl silylene) Chromatography Tetrahydrofuran SEC, u-styragel Poly(methyl-(3-phenethylsilylene-c6>-methyl-/7-tolylsilylene) Chromatography Tetrahydrofuran SEC, u-styragel Poly(methyl(2-phenylethyl)silylene) Chromatography Tetrahydrofuran SEC, u-styragel Poly( 1 -methyl-1 -sila-ds-pent-3-ene) Chromatography Tetrahydrofuran SEC, u-styragel SEC, ultrastyragel, 200C Poly(methyl-3,3,3-trifluoropropylmethylsiloxane) Fractional precipitation Ethyl acetate/toluene Poly(5-methyl-2,2,5-triphenyl-l-oxa-disilacyclopentane) Poly(oxydiphenylsilyleneethylenemethylphenylsilyeene) Chromatography Tetrahydrofuran SEC, porosity glass Poly( 1 -methyl-1 -vinyl-1 -silabutene) Chromatography Tetrahydrofuran SEC, ultrastyragel, 200C Poly((3-methylbutenyl)l-silsesquioxane) Fractional precipitation Benzene/methanol Cyclohexane/acetone - methanol (1:5) Poly[(methylchlorosilylene)methylene] Chromatography Tetrahydrofuran SEC, u-styragel Poly(methylcyclohexylsilylene) Chromatography Tetrahydrofuran SEC, u-styragel Fractional precipitation Cyclohexane/isopropanol Poly(methylcyclohexylsilylene-co-methyl-p-tolylsilylene) Chromatography Tetrahydrofuran SEC, u-styragel Poly(methycylclohexylsilylene-cc-methylphenylethylsilylene) Chromatography Tetrahydrofuran SEC, u-styragel Poly[(methyldeuteriosilylene)methylene] Chromatography Tetrahydrofuran SEC, u-styragel Poly(methylethylsiloxane) Fractional precipitation Benzene/methanol Poly(methylphenylsilane) Fractional precipitation Toluene/isopropanol Poly(methylphenylsiloxane) Fractional precipitation Toluene/methanol Poly(dimethylsilmethylene) Chromatography Toluene SEC Fractional precipitation Benzene/methanol Poly(dimethylsiloxane) Chromatography Chloroform SEC, preparative Tetrahydrofuran SEC SEC, u-styragel, 35°C
2230 585 102 646,2763 2230 3591 3102 3102 3588 1468 749 3591 3591 3591 3588 3601 459 3102 1930 3270 3270 161 3591 749 3591 3591 161 1358 749 2819 1924 1711 3514 3099 778
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation Fractional precipitation Fractional precipitation
Poly[(di-methylsilylene)methylene] Chromatography Poly[(methylsilylene)methylene] Chromatography Poly(di-n-nonylsiloxane) Chromatography Poly(di-rc-octylsiloxane) Chromatography Poly(oxy(ditrimethylsiloxy)silylene) Chromatography Poly(oxydichlorophenyl)titano-tetra-(oxyhlorophenylsilylene) Fractional precipitation Poiy(l,4-bis-(oxydimethylsilyl)phenylenedimethyl-silane) Chromatography Poly(oxydimethylsilylene) Poly(dimethyl siloxane) Chromatography
Solvent or solvent/nonsolvent mixture Benzene/methanol Toluene/methanol Andrici carbonic Methy ethyl ketone/methanol Supercritical Toluene/acetone
1358 2060 3593 3514 2883 2143
25°C Supercritical Nitrous oxide
SEC, u-styragel
161
Tetrahydrofuran Tetrahydrofuran Tetrahydrofuran
SEC, u-styragel SEC, u.-styragel SEC, ja-styragel
161 2230 2230
Tetrahydrofuran
SEC, styragel
1533
Carbon tetrachloride/petroleum ether Poly(oxydimethyhilyleneoxydimethylsilylenelA-phenylenedimethylsilylene) Tetrahydrofuran SEC, styragel, 30 0 C Benzene Chloroform
Trichloroethylene
Foam fractionation Fractional precipitation
Refs.
Tetrahydrofuran
Ethanol/methanoJ, ethyl ether/ethanol, and ethyl ether n-Heptane/butanone n-Hexane/butanone o-Dichlorobenzene Tetrahydrofuran Toluene
Distribution between immiscible liquids
Remarks
Methanol/carbon tetrachloride in counter current with cyclohexane Benzene Benzene/methanol
Cyclohexane - carbon tetrachloride ( 3 : l)/methanol Ethyl acetate/methanol Toluene/methanol Fractional solution Benzene/methanol Cyclohexane-carbon tetrachloride ( 3 : l)/methanol Sedimentation velocity n-heptane Turbidimetric titration Butanone/methanol Methyl ethyl ketone/methanol Poly(oxydimethylsilylene-1,4-phenyleneoxy-1,4-phenylenedimethylsilylene) Chromatography Tetrahydrofuran Poly(oxydimethylsilylene-1,4-phenylenedimethylsilylene) Chromatography Tetrahydrofuran Poly(oxydiphenylsilylene) Fractional precipitation Benzene/methanol
SEC, 55°C SEC, 35°C, 30 0 C SEC, styragei, 30 0 C Gradient elution, carbon
Trifunctional star 25°C, extraction 20 0 C 25°C
2613 967 713,2174 2789 197
SEC, u-styragel, 20 0 C SEC, ^-styragel, 20 0 C SEC, styragel, 87 0 C SEC, 25°C Oligomers, SEC SEC SEC, u-styragel SEC, difunctio. SEC, octadecyltrichlorosilane modified silica gel SEC, styragel, 37°C SEC, styragel, preparative Precipitation chromatogr., temp. gradient, quartz sand, branched polymer SEC, 25°C, 23°C
25°C
155
494 494 713 1905 285 1328,1649 1890,1896 1081 1257 1897,3496 765 99
2961,3195 208
967 322,323,457, 679,1257,1649, 1835,1837,3094 104 711,1257,1449,2174 15 3 100 967,2585 2585 2174 706
SEC, ji-styragel
808
SEC, u-styragel
808 3261,3265
TABLE 3. confd Polymer
Method of fractionation
Poly(oxydiphenyltitano-tetraoxydiphenylsilylene) Fractional precipitation Poly(oxyhydroxyaluminooxydichlorophenylsilylene) Fractional precipitation Poly(oxyhydroxyaluminooxydiphenylsilylene) Fractional precipitation Poly(oxymethyl-3,3,3-trifluoropropylsilylene) Fractional precipitation Poly(oxymethylphenylsilylene) Chromatography Fractional precipitation Fractional solution
Solvent or solvent/nonsolvent mixture
Chromatography Fractional precipitation
Refs.
Carbon tetrachloride/petroleum ether
155
Carbon tetrachloride/petroleum ether
154
Carbon tetrachloride/petroleum ether
154
Ethyl acetate/toluene Tetrahydrofuran Cyclohexane-carbon tetrachloride (3: l)/methanol Toluene/isopropanol Cyclohexane-carbon tetrachloride (3: l)/methanol Tetrahydrofuran Tetrahydrofuran Cyclohexane
Poly(rt-pentyl-/i-alkylsilanes) Chromatography Poly(di-n-pentylsiloxane) Chromatography Poly(di-rc-pentylsilyene) Chromatography Poly(l,l-diphenyl-2,2,3,3,4,4-hexamethylcyclotetrasiloxane) Fractional precipitation Benzene/methanol Poly(1,1 -diphenyl-1 -sila-ds-pent 3-ene) Chromatography Tetrahydrofuran Poly(phenyl siloxane) Fractional precipitation Benzene/methanol Poly( 1 -phenyl-1 -vinyl-1 -silabutene) Chromatography Tetrahydrofuran Poly(diphenylene siloxane) Fractional precipitation Benzene/methanol Poly(m-phenylene siloxane) Fractional precipitation Benzene/methanol Poly(p-phenylene siloxane) Fractional precipitation Benzene/methanol Poly(/?-phenylenetetramethyldisiloxane) Poly(oxydimethylsilyene-l,4-phenylenedimethylsilylene) Chromatography Tetrahydrofuran Poly(phenylmethylsiloxane) Chromatography Methanol/tetrahydrofuran Poly(diphenylsilane) Poly(phenylsilsesquioxane)
Remarks
Toluene Tetrahydrofuran Benzene/methanol Benzene/rc-heptane Benzene/n-hexane
SEC, ultrastyragel, 25°C
460 2000 104 461,2000 105
SEC, u-styragel SEC, u-styragel SEC, u,-styragel, chiral
1705 2230 925 97
SEC, ji-styragel, 25°C 200C
3588 2547
SEC, ultrastyragel, 200C
1930 2604 2604 2604
SEC, styragel, 300C 2613 Liquid absorption (HPLC), 602 silica-Csubindice 18, cyclic SEC, styragel, preparative 602 SEC 1510 106,1270,2684,3272 106 95
Poly( 1,3-diphenyltetradisiloxane) Fractional precipitation Benzene/methanol Poly(dipropyl siloxane) Fractional precipitation Toluene/methanol Poly(2,2,5,5-tetramethyl-l-oxa-2,5-disilacyclopentane) Poly(oxydimethylsilyleneethylene-dimethylsilylene) Chromatography Tetrahydrofuran SEC, porasil Poly(2,2,54etramethyl-5-phenyl-l-oxa-2,5-disilacyclopentane) Poly(oxydimethylsilyleneethylene-methylphenylsilylene) Chromatography Tetrahydrofuran SEC, porosity glass Poly(tetramethyl-/?-silphenylene siloxane) Chromatography Tetrahydrofuran SEC, styragel Poly(tetramethyl-p-silphenylene-siloxane) Fractional precipitation Benzene/methanol-water Poly(2,2,5,5-tetraphenyl]-l-oxa-disiiacyclopentane) Poly(oxydiphenylsilylenethylene-diphenylsilylene) Chromatography Tetrahydrofuran SEC, porosity glass Poly(l,3,5,7-tetraphenyl-l,3,5,7-tetrachlorocyclotetrasiloxane) Fractional precipitation Benzene/methanol Poly( 1,3,5,7-tetrapheylhexatetrasiloxane) Fractional precipitation Benzene/methanol Poly[4-([l-trifluoromethyl)alkoxoly(rc) carbonyl)phenyl 4'-alkoxy(m) biphenyl-4-carboxylate siloxane)] Chromatography Tetrahydrofuran SEC, styragel Poly[(3,3,3-trifluoropropyl)methyl]silane Chromatography Tetrahydrofuran SEC, styragel Poly (1,1,3-trimethyl-1 -sila-ds-pent-3-ene) Chromatography Tetrahydrofuran SEC, u-styragel, 25°C SEC, ultrastyragel, 200C
102 1895 3103 3102 2456 3421 3102 102 102 629 940 3588 2517
References page VII-438
TABLE 3. Polymer
confd Method of fractionation
Poly(p[bis(trimethylsilyl)methyl]w0 propenylbenzene) Chromatography Poly[(o-trimethylsilyl)phenyl acetylene] Chromatography Poly( 1,3,5-triphenylpentatrisiloxane) Fractional precipitation Poly(bis(undecenyloxy)methylsilane) Chromatography Poly( 1,1 -divinyl-1 -vinyl-1 -silabutene) Chromatography Poly(divinyltetramethyldisiloxane) Fractional precipitation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Tetrahydrofuran
SEC, styragel
2328
Chloroform
SEC, styragel
2069
Benzene/methanol
102
Tetrahydrofuran
SEC
2110
Tetrahydrofuran
SEC, ultrastyragel, 200C
1930
Butanone/methanol
25°C
1161
3.9. POLY(PHOSPHAZENES) AND RELATED POLYMERS Poly(aminocarbophosphazenes) Chromatography Poly[bis-(4-biphyloxy)phosphazene)] Chromatography Poly(fris-/7-bromophenyleneoxy)phosphazene Chromatography
Tetrahydrofuran +0.1 wt.% tetra n-butylammonium bromide
SEC, phenogel
Tetrahydrofuran -f 0.1 wt.% tetra rt-butylammonium bromide
SEC, ji-styragel, 35°C
Tetrahydrofuran-f-0.1 wt.% SEC, n-styragel, 25°C tetra-n-butylmammonium bromide Poly(fran.s-2,4-dicarboxy phenoxy-3,4,6,6-tetraphenoxy)cyclotriphosphazene-<2/f-oxy-1,4-phenyleneisopropylidine-1,4-phenyleoxy) Chromatography Cresol: chloroform (20:80) SEC Poly(di(m-chlorophenoxy)phosphazene) Chromatography Chloroform SEC, styragel Poly(di-(p-chlorophenoxy)phosphazene) Fractional precipitation Dimethylformamide Lowering temp. Poly(bis-/?-chlorophenyleneoxy)phosphazene Chromatography Tetrahydrofuran 4-0.1 wt.% SEC, u~styragel, 25°C tetra-n-butylammonium bromide Poly(diphenoxy phosphazene) Chromatography Tetrahydrofuran-f 0.1 wt.% SEC, ji-styragel, 35°C tetra-ft-butylammonium bromide Poly(fluoroalkoxyphosphazene) Fractional solution 1,1,2-TrichloroExtraction 1,2,2-trifluoroethane/acetone Poly(dihexoxyphosphazene) Fractional precipitation Tetrahydrofuran/ethanol Poly(di-(/?-isopropylphenoxy)phosphazene) Chromatography Tetrahydrofuran SEC, styragel Poly(methyl phenyl phosphazene) Chromatography Tetrahydrofuran-I-0.1 % SEC, u-styragel, 300C w-tetrabutylammonuium bromide Poly(di-(p-methylanilino)phosphazene) Fractional precipitation Tetrahydrofuran/diethylene glycol Poly(dimethyloxy phosphazene) Chromatography Tetrahydrofuran + 0.1 wt.% SEC, ji-styragel 35°C tetra-«-butylammonium bromide Poly(di p-methylphenylenoxy phosphazene) Chromatography Tetrahydrofuran -f 0.1 wt.% SEC, fx-styragel, 35°C tetra-n-butylammonium bromide Poly[bis((3-naphthoxy) phosphazene) Chromatography Tetrahydrofuran-f 0.1 wt.% SEC, fi-styragel, 35°C tetra-n-butylammonium bromide Tetrahydrofuran 4- 0.1 % tetrakis SEC, styragel (n-butyl ammonium bromide) Fractional precipitation Tetrahydrofuran/hexane
47
2299 2299
2214 1191 55 2299 2299 1190 421 1094 3489
2593 2299 2299
2299 422 422
TABLE 3.
cont'd
Polymer
Method of fractionation
Poly(octafluroropentoxy-phosphazene) Fractional precipitation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Toluene-tetrahydrofuran (30:15)/petroleum ether Tetrahydrofuran
874
Poly(diphenoxyphosphazene) Chromatography SEC, pore glass beads Poly((p-phenylazoanilino)phosphazene) Chromatography Aq. 95% methanol SEC, styragel PoIy(O-phenylazona-phthalene-2~oxy-methylamino)phosphazene) Chromatography Aq. 95% methanol SEC, styragel Poly ((1 -phenylazonapthalene-2-oxytrifluoroethyoxy )phosphazene) Chromatography Tetrahydrofuran SEC, styragel Poly(di-(p-phenylphenoxy)phosphazene) Fractional precipitation Dimethylformamide Lowering temp. Polymer from chromium (JJ) acetate and potassium diphenylphosphinate Chromatography Tetrahydrofuran SEC Poly((2-trifluoroethoxy)(l -difluoro-2,3,4-hexafluoropentoxy) phosphazene) Phosphonitrilic fluoroelastomers Chromatography Dimethylformamide SEC, styragel Fractional precipitation Acetonitrile/benzene Poly(bis-2,2,2-trifluoroethoxy)phenoxy phosphazenes) Chromatography Tetrahydrofuran+ wt.% SEC, u-styragel, 35°C tetra-rc-butylammonium bromide Tetrahydrofuran 4- 0.875 g SEC, styragel tetra-rc-butylammonium bromide/1 Fractional precipitation Tetrahydrofuran/methanol Poly(2,2,2-trifluoroethoxy)phosphazene Chromatography Tetrahydrofuran SEC, styragel, 400C Fractional precipitation Acetone/cycloxhexane 25°C Methanol Lowering temp. 400C to 25°C Poly (urylene-1,4-phenyleneureylenephenylphosphinylidene) Fractional precipitation Dimemthyl sulfoxide/carbon 25°C tetrachloride
3.10.
45 46 46 46 55 733 514 514 2299 48 48 1937 55 55 516
OTHERCOMPOUNDS
Poly(2-acrylamido-2-methylpropanesulfonic acid) Fractional precipitation Ca Cl 2 •6 H2O 3.0 M/2-propanol Poly(5~( 1 -adamantyloxy-2H-pyrrole-2-one) Chromatography Tetrahydrofuran Poly (aniline )-co-poly(/V-butyI aniline) Chromatography /V-methylpyrrolidone Poly(arylate) from: (terephthalic acid chloride + 2-phenyl-bis-(4-hydroxyphenyl)-phthalimidine) Coacervation Tetrachloroethane-phenol (3:1)/ n-heptane Poly(dibenzimidazole(2,3-a)(6,7-a)-1,8-dioxo-1,2,7,8-tetrahydro-4,5-benzoph enantroltne) Chromatography Methanesulfonic acid, 96% sulfuric acid Poly(benzo(l,2-d: 5,4-d') bisoxazole-2,6-diyl-l,4-phenylene) Chromatography Methanesulfonic acid Poly(5,5 '-dibenzoimidazoie-2,2 '-diyl-1 ,-3-phenylene) Fractional precipitation Dimethylacetamide/rc-hexane Sedimentaion equilibrium Dimethylacetamide Dimethylacetamide/lithium chloride/propionic acid Poly(/V-butyl aniline) Chromatography /V-Methylpyrrolidone Poly(chalcones) (General) Chromatography Dimethyl sulfoxide Poly(cyclodiborozane)s Chromatography Tetrahydrofuran Poly{A^-[3,4,5-tris(«-dodecan-l-yloxy) phenyljmaleimide} Chromatography Tetrahydrofuran Poly(N-dodecyl aniline) Chromatography N-Methylpyrrolidone Epoxy Chromatography Tetrahydrofuran Poly(ether ester)s Chromatography Methylene dichloride Poly(N-ethyl aniline) Chromatography /V-Methylpyrroiidone
1105 SEC, styragel
3484
SEC, trimethylsilyl-branched phase, 25°C
302 867
SEC, porous silica
313
SEC
648
610C Ultracentrifuge, 400C Ultracentrifuge
1271 1019 3466
SEC, trimethylsilyl-branched-phase, 25°C SEC SEC, styragel
573 2014 591
SEC, styragel, 400C SEC, trimethylsilyl-branched-phase, 25°C SEC, styragel, 25°C SEC, ultrastyragel SEC, trimethylsilyl-branched-phase, 25°C
2570 573 2275 3206 573
References page VII-438
TABLE 3. confd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Poly(ferrocenediylfurfurylidene) Dioxane/isopropanol-water 2383 Tetrahydrofuran+ 0.1 % tetraSEC, ultrastyragel 2557 n-butylammonium bromide Poly(5,7-dihydro-l,3,5,7-tetraoxobenzo-(l,2-c:4,5-c')dipyrrole-2,6-(lH, 3H)-diyl-l,4-phenylenephthalidylidene-l,4-phenylene) Fractional precipitation Nitrobenzene/dichloroethane 500C and 63° C 1762 Poly(2,3-dihydrobenzofuran-2,3-diyl) Fractional precipitation Benzene/methanol Optically active 866 Poly( 1 -isobutyl-2,5-dioxopyrrolidin-3,4-diyl) Fractional precipitation Benzene/methanol 3262 Poly(2-methoxy-1,3,5-triazine-4,6-diyloxy-1,4-phenyleneisopropylidene-1,4-phenyleneoxy) Chromatography Chloroform SEC, styragel, 300C 2957 Fractional precipitation 1,2-Dichloroethane/methanol 300C 2957 Poly(N-methylaniline) Chromatography N-Methylpyrrolidone SEC, trimethylsilyl-branched-phase, 25°C 573 Poly( 1,2,4-dimethylphenyl~2,5-dioxopyrrolidin-3,4-diyl) Fractional precipitation Ethyl acetate/methanol 210C 3267 Poly(nitrilo-2-methyl-1,4-phenylene nitrilomethylidyne-1,4-phenylenemethylidyne) Chromatography Sulfuric acid 96% SEC 2169 Poly( 1 -octadecyl-2,5-dioxopyrrolidin-3,4-diyl) Chromatography Tetrahydrofuran SEC, styragel, 25°C 224 Fractional precipitation Toluene/methanol 200C 224 PoIy(1,3-dioxa-2-propyl-4,6-cyclohexylene-methylene) Poly (vinyl butyral) Chromatography Tetrahydrofuran Acetylated, SEC, spherosil 688 Fractional precipitation Isopropanol/water 1313 Poly(oxadiazoledily-1,4-phenylenephthalidylidene-1,4-phenylene) Fractional precipitation Tetrachloroethane~phenol/«-heptane 2510,3209 Sedimentation analysis Dimethylformamide 2510 Poly(2-oxo-l,3-dioxolan-4,5-diyl) Poly vinylcarbonato Fractional precipitation Dimethylformamide/methanol 2912 Dimethylformamide/«-butanol 2912 Poly(2,5-dioxopyrrolidine-1,3-diylthio-4,4-biphenylenethio-2,5-dioxopyrrolidine-1,4-phenylenemethylene-1,4-phenylene) Chromatography Dimethylformamide -f- lithium SEC, silica gel 3461 nitrate Poly(2,5-dioxopyrrolidine-1,3-diylthio-1,4-phenyleneoxy-1,4-phenyleneoxy-1,4-phenylenethio-2,5-dioxopyrrolidine-1,4-phenylenemethylene1,4-phenylene) Chromatography Dimethylformamide-I-lithium SEC, silica gel 3461 nitrate Poly (4,4 'dioxy-2,2 '-dimethylazoxybenzenedodecanedioyl) Chromatography Chloroform SEC, styragel, 400C 2335 Poly(oxybenzoxazole-5,2-diyl-1,4-phenylenephthalidylindene-1,4-phenylenebenzoxazole-2,5-diyl) Fractional precipitation Tetrachloroethane-phenol/n-heptane 2309 Poly (oxyphthalimide-5,2-diyl-1,4-phenylenephthalidylidene-1,4-phenylenephthalimide-2,5-diyl) Fractional precipitation Tetrachloroethane-phenol/rc-heptane 3209 Poly(phenol formaldehyde) Chromatography Tetrahydrofuran SEC, ultrastyragel 578 Phenol novocal Chromatography Tetrahydrofuran SEC, styragel, 25°C 2275 Poly( 1 -phenyl-2,5-dioxopyrrolidin-3,4-diyl) PoIy[N-phenylmaleimide] Chromatography Tetrahydrofuran SEC, styragel, 38°C 1189 Poly(2,2-(l,4-phenyl)-7,7-hydroxy-bis-(3-pheylquinoxaline) Fractional precipitation Carbon tetrachloride-phenol/ 3211 n-heptane Poly( 1,4-phenylenemethylene-3,5-pyrazole) Fractional precipitation Dimethylforrnamide/benzene 25°C 3233 PolyO?-phenylene)s Chromatography Chloroform SEC, styragel, 400C 2568 Poly(3-phenylqumoxalme-2,7-diyloxy-3-phenylquinoxaline-7,2-diyl-l,4-phenylene) Fractional precipitation Tetrachloroethane-phenol 3210 (1: l)/«-heptane Poly( 1,4-piperazinediyl-2,5-dioxopyrrolidine-1,3-diyl-hexamethylene-2,5-dioxopyrrolidine-1,3-diyl) Fractional precipitation Chloroform/acetone 1000 Poly(iV-propyl aniline) Chromatography N-Methylpyrrolidone SEC, trimethylsilyl-branched-phase, 25°C 573 Poly(propyleneglycol)-cc>-di(4-isocyanotophenyl)methane-co-pyromellitic dianhydride) Poly(etherimide) Chromatography Dimethylformamide SEC, styragel 724 Poly (2,4-quinolinediyl-1,4-phenyleneoxy-1,4-phenylene) Fractional precipitation Chloroform/methanol 3492 Poly(ferrocenylgermanes)
Fractional precipitation Chromatography
Next Page TABLE 3.
cont'd
Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Poly[ 1 -(3-sulfonatepropyl)-pyridinium-2-yl]-ethylene)] Poly(2-vinylpyridinium sulfopropylbetaine) Fractional precipitation Water/methanol Poly( 1 -toly l-2,5-dioxopyrrolidin-3,4-diyl) Fractional precipitation Chloroform/methanol 200C Poly[(4,4'-trimethylene-bis-( 1 -methyl piperidine)-iV-(2,3-butene)di-tetrafluoroborate] Chromatography Acetonitrile -f- acetic acid 0.5 M SEC, HEMA (70:30) Fractional solution Ethylene glycol monomethyl Column extraction, CPF ether/diisopropyl ether Poly[(4,4 '-trimethy lene-bis-( 1 -methyl piperidine)-N-(2,3-butene)dibromide] Chromatography Acetonitrile + acetic acid 0.5 M, SEC, HEMA (70:30) Fractional solution Ethylene glycol monomethyl Column extraction, CPF ether/diisopropyl ether Wool-gra/3r-poly(rc-butyl acrylate) Extraction Benzene or acetone Wool-gra/f-poly(ethyl acrylate) Extraction Benzene Benzene or acetone Wool-gra/ir-poly(methyl acrylate) Extraction Benzene Benzene or acetone Wool-gra/f-poly(methyl methacrylate) Extraction Benzene Benzene or acetone Wool-gra//-poly(methyl acrylate-co-vinyl acetate) Extraction Benzene Wool-gra/f-poly(vinyl acetate) Extraction Benzene
2238 3266 2898 2898 2898 2898 3356 2196 3356 2192,2195,2197 3356 6,2193 828,3356 2197 2189,2195,2197
3.11. RANDOM COPOLYMERS Poly(acetaldehyde-co-chloral) Fractional precipitation Chloroform/methanol Poly(acrolein-co-thiophenolmercaptal) Fractional precipitation Benzene/methanol Poly(acrylonitrile-c0-a-hydroxyisobutyric acid anhydrosulfite) Turbidimetric titration Dimethylformamide/chloroform Poly(5-( 1 -adamantyloxy)-2H-pyrrole-2-one-c-methyl methacrylate) Chromatography Tetrahydrofuran Poly(5( 1 -adamantyloxy)-2H-pyrrole-2-one-c0-styrene) Chromatography Tetrahydrofuran Poly(A^alaninylmaleimide-c-methacrylic acid) Chromatography Dimethylformamide Poly(Af-alaninylrnaleimide-a?-vinyl acetate) Chromatography Dimethylformamide Poly(di-Ai-alkylsiloxane-co-di-n-hexylsiloxane) Chromatography Toluene Poly(p-allyloxypropionaldehyde-<%>-acrylonitrile) Chromatography Tetrahydrofuran Poly(P-allyloxypropionaldehyde-co-styrene) Chromatography Tetrahydrofuran Poly(butyleneglycol-«/r-(terephthalic acid-sebacic acid)) Chromatography o-Chlorophenol Poly(carbon monoxide-co-ethylene) Chromatography Trichlorobenzene Poly(carbon monoxide-co-vinyl chloride) Chromatography Carbon tetrachloride-ethyl alcohol(l: 1) tetrahydrofuran PoIy(1,3-bis(p-carboxyphenoxy)propane-c0-sebacic acid) Chromatography Chloroform Poly(3,3-bis(chloromethyl)oxacyclobutane-co-(3-propiolactone) Chromatography Chlorobenzene Fractional precipitation Ethylene dichloride/ethanol Poly(cyclohexane oxide-conitroethylene) Extraction Benzene
1457 2911 1426 SEC, styragel
3484
SEC, styragel
3484
SEC, u-styragel, 400C
1901
SEC, u-styragel, 400C
1901
SEC
2496
SEC, styragel
137
SEC, styragel
137 2047
SEC, styragel, 135°C
1108
TLC, gradient elution
1633
SEC, styragel
685
SEC, styragel
3465 3124 1429
References page VII-438
Previous Page TABLE 3.
cont'd
Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Poly[ 1 -(3-sulfonatepropyl)-pyridinium-2-yl]-ethylene)] Poly(2-vinylpyridinium sulfopropylbetaine) Fractional precipitation Water/methanol Poly( 1 -toly l-2,5-dioxopyrrolidin-3,4-diyl) Fractional precipitation Chloroform/methanol 200C Poly[(4,4'-trimethylene-bis-( 1 -methyl piperidine)-iV-(2,3-butene)di-tetrafluoroborate] Chromatography Acetonitrile -f- acetic acid 0.5 M SEC, HEMA (70:30) Fractional solution Ethylene glycol monomethyl Column extraction, CPF ether/diisopropyl ether Poly[(4,4 '-trimethy lene-bis-( 1 -methyl piperidine)-N-(2,3-butene)dibromide] Chromatography Acetonitrile + acetic acid 0.5 M, SEC, HEMA (70:30) Fractional solution Ethylene glycol monomethyl Column extraction, CPF ether/diisopropyl ether Wool-gra/3r-poly(rc-butyl acrylate) Extraction Benzene or acetone Wool-gra/f-poly(ethyl acrylate) Extraction Benzene Benzene or acetone Wool-gra/ir-poly(methyl acrylate) Extraction Benzene Benzene or acetone Wool-gra/f-poly(methyl methacrylate) Extraction Benzene Benzene or acetone Wool-gra//-poly(methyl acrylate-co-vinyl acetate) Extraction Benzene Wool-gra/f-poly(vinyl acetate) Extraction Benzene
2238 3266 2898 2898 2898 2898 3356 2196 3356 2192,2195,2197 3356 6,2193 828,3356 2197 2189,2195,2197
3.11. RANDOM COPOLYMERS Poly(acetaldehyde-co-chloral) Fractional precipitation Chloroform/methanol Poly(acrolein-co-thiophenolmercaptal) Fractional precipitation Benzene/methanol Poly(acrylonitrile-c0-a-hydroxyisobutyric acid anhydrosulfite) Turbidimetric titration Dimethylformamide/chloroform Poly(5-( 1 -adamantyloxy)-2H-pyrrole-2-one-c-methyl methacrylate) Chromatography Tetrahydrofuran Poly(5( 1 -adamantyloxy)-2H-pyrrole-2-one-c0-styrene) Chromatography Tetrahydrofuran Poly(A^alaninylmaleimide-c-methacrylic acid) Chromatography Dimethylformamide Poly(Af-alaninylrnaleimide-a?-vinyl acetate) Chromatography Dimethylformamide Poly(di-Ai-alkylsiloxane-co-di-n-hexylsiloxane) Chromatography Toluene Poly(p-allyloxypropionaldehyde-<%>-acrylonitrile) Chromatography Tetrahydrofuran Poly(P-allyloxypropionaldehyde-co-styrene) Chromatography Tetrahydrofuran Poly(butyleneglycol-«/r-(terephthalic acid-sebacic acid)) Chromatography o-Chlorophenol Poly(carbon monoxide-co-ethylene) Chromatography Trichlorobenzene Poly(carbon monoxide-co-vinyl chloride) Chromatography Carbon tetrachloride-ethyl alcohol(l: 1) tetrahydrofuran PoIy(1,3-bis(p-carboxyphenoxy)propane-c0-sebacic acid) Chromatography Chloroform Poly(3,3-bis(chloromethyl)oxacyclobutane-co-(3-propiolactone) Chromatography Chlorobenzene Fractional precipitation Ethylene dichloride/ethanol Poly(cyclohexane oxide-conitroethylene) Extraction Benzene
1457 2911 1426 SEC, styragel
3484
SEC, styragel
3484
SEC, u-styragel, 400C
1901
SEC, u-styragel, 400C
1901
SEC
2496
SEC, styragel
137
SEC, styragel
137 2047
SEC, styragel, 135°C
1108
TLC, gradient elution
1633
SEC, styragel
685
SEC, styragel
3465 3124 1429
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation
Poly(cyclohexene-
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Ethanol/cyclohexane
Alternating, SEC rc-octylporasil, 25°C
3486
Tetrahydrofuran
SEC, ultrastyragel, 35°C
3101
Methanol, benzene Benzene/methanol Tetrahydrofuran
3123 SEC, styragel
Acetone or carbon tetrachloride
Poly(ethylene-a?-e-caprolactone) Chromatography Tetrahydrofuran SEC, Shodex Poly(ethylene glycol-cc>-2,2-butyl-hydroxyphenyl)propane-a/r-terephthalic acid) Extraction Boiling, ethyl ether, acetone, 1,2-dichloropropane, tetrahydrofuran, 1,2-dichloroethane Poly(etheylene terephthalate-co-caprolactone) Fractional precipitation Chloroform/methanol Poly(ferrocenylsilene-cG>-ferrocenylgermane)s Chromatography Tetrahydrofuran + 0.1 wt.% SEC, ultrastyragel tetra-n-butylammonium bromide Poly(formaldehyde-co-dioxolane) Fractional precipitation Tetrachloroethane-phenol/cyclohexane Poly( 1,6-hexamethylene diol-co-2-methyl-2-ethyl-1,3-propanediol-a/f-sebacic acid) Chromatography Chloroform SEC, styragel Poly(3-hydroxybutyrate-co-hydroxyvalerate) Fractional precipitation Chloroform/heptane Poly(3-hydroxybutyrate-co-3-hydroxypropianate) Chromatography Chloroform SEC, styragel SEC, ultrastyragel, 400C Fractional precipitation Chloroform/n-heptane Poly(3-hydroxybutyrate-cc>-4-hydroxypropianate) Chromatography Chloroform SEC, ultrastyragel, 400C Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Fractional precipitation Acetone/water Poly[(A^-(4-hydroxyphenyl)maleimide)-a/r-(/7-trimethylsilyl-a-methylstyrene)] Chromatography Tetrahydrofuran SEC, styragel, 400C Poly(D,L-lactic acid-co-glycolic acid) Chromatography Methylene chloride SEC Poly(methyl-2-ethyl-2-thiirane~cc>-thiopropylene) Chromatography Tetrahydrofuran SEC, styragel Poly(methyl methacrylate-co-/?-cresyl methacrylate) Fractional precipitation Benzene/methanol Crosslinked with /7-cresol formaldehyde resins Poly(methyl methacrylate-co-dithio-3-chlorophenylene dithiophenylene methylenephenylene) Extraction Acetone and chloroform Poly(methyl methacrylate-co-oxyethylenedithioethylene) Extraction Acetone, carbon disulflde PoIy(1,4-bis-(di-methylhydroxysilyi)phenylene-co-dimethylsiloxane) Fractional precipitation Benzene/methanol 200C Poly(methylphenyl phosphazene-co-methyl-3-amino phenyl phosphazene) Chromatography Tetrahydrofuran + 0.1 % SEC, ji-styragel, 300C M-tetrabutylammonium bromide Poly(methylphenyl phosphazene-co-methyl-3-imino carbonyl ethylene) Chromatography Tetrahydrofuran + 0.1 % SEC, u-styragel 300C n-tetrabutylammonium bromide Poly(methylphenyl phosphazene-co-methyl-3-nitro phenyl phosphazene) Chromatography Tetrahydrofuran + 0.1 % SEC, u-styragel, 25°C n-tetrabutylammonium bromide Poly(dimethylsilapropylene-c0-diphenylsilapropynylenes) Chromatography Tetrahydrofuran SEC, ultrastyragel
2177 1792 3288 863 1201
3497 2557 1433 2426 3567 2968 1826 508 1826 2204 575 2793 2696 2641 1199 1199 98 3489 3489 3489 400
TABLE 3.
cont'd
Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(dimethylsilylene-co-diphenylsilylenes) Fractional precipitation Tetrahydrofuran/2-propanol Poly(dimethylsilylene-co-methyl-p-phenethylsilylene) Chromatography Tetrahydrofuran Fractional precipitation Tetrahydrofuran/2-propanol Poly(dimethylsilylene-co-metylcyclohexylsilylene) Chromatography Tetrahydrofuran Fractional precipitation Tetrahydrofuran/2-propanol Poly(dimethylsiloxane-o?-isophorone diisocyanate) Chromatography Tetrahydrofuran Poly(dimethylethylsilylene-c0-phenylmethylsylylene) Chromatography Tetrahydrofuran Poly(octamethylcyclotetrasiloxane-cc>-octaphenylcyclotetrasiloxane) Chromatography Benzene Poly(octaphenylcyclotetrasiloxane-a?-octa methylcyclotetrasiloxane) Chromatography Benzene Poly(dioxolane-co-tetrahydrofuran) Fractional precipitation Chloroform/«-hexane Poly(oxyethylene-cc-oxypropylene) Chromatography Butanone, water saturated Dioxane-water (10:1) Hexane-butanone methanol (6:2: 1) Turbidimetric titration Dimethylformamide/water Methanol/water Poly(phenyl methacrylate-co-methyl methacrylate) Fractional precipitation Benzene/methanol Poly^-propylmethylsilane-co-cyclohexylmethylsilane) Chromatography Chloroform Fractional precipitation Toluene/ethyl acetate Poly(«-propylmethysilene-c0-isopropylmetnylsilane) Chromatography Chloroform Fractional precipitation Toluene/ethyl acetate Poly(«-propylmethylsilene-co-phenylmethylsilene) Chromatography Chloroform Fractional precipitation Toluene/ethyl acetate Poly(silarylene)~fl//-poly(siloxane)s Chromatography Tetrahydrofuran Poly(styrene-C0-£-caprolactam) Chromatography Tetrahydrofuran Extraction Fractional precipitation Poly(styrene-co-oxyethylenedithioethylene) Extraction Poly(tetrahydrofuran-C0-1,2-butene oxide) Chromatography Poly(tetrahydrofuran-co-oxyproylene) Chromatography Poly(tetrahydrofuran-cY>-«-propyl glycidyl ether) Chromatography Poly(tetrahydrofuran-co-vinyl butyl ether) Extraction Poly(dithiotetramethylene-c0-methyl methacrylate) Extraction Poly(dithiotetramethylene-co-styrene) Extraction Poly(3,3,3-trifluoropropylmethylsilane-co-methylpropylsilane) Chromatography 3.12.
Remarks
Refs. 3590
SEC, }A-styragel
3590 3590
SEC, u-styragel
3590 3590
SEC, ultrastyragel, 400C
3604
SEC, Shodex
145
SEC, styragel
103
SEC, styragel
101 3563
TLC, silica gel TLC, silica gel TLC, silica gel
3329 3329 3329 1056 1056 995
SEC, u-styragel 25°C
2858 2858
SEC, u-styragel 25°C
2858 2858
SEC, u-styragel 25°C
2858 2858
SEC, styragel, 25°C SEC SEC, styragel
Benzene and trifluoroethanol Benzene/methanol Cyclohexane and carbon disulfide
809 3533 3532 1279 3532,3533 1199
Tetrahydrofuran
SEC
1204
Tetrahydrofuran
SEC
346,347,349, 350,1204
Tetrahydrofuran
SEC
1204
n-Heptane, acetone
2644
Acetone and carbon tetrachloride
1199
Cyclohexane and carbon disulfide
1199
Tetrahydrofuran
SEC
941
Methanol, chlorofom
Extraction
939
BLOCKCOPOLYMERS
Poly(acetaldehyde)-W<x*-poly(oxypropylene) Fractional solution
References page VII-438
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Poly(5-(/?-acrylamidophenyl)-10,15,20-triphenylporphin)-fr/c>cfc-poly(styrene) Chromatography Benzene SEC, bioglass Poly(acrylonitrile)-6/oc/:-poly(butandiene)-6/<9cA;-epoxy resins Turbidimetric titration Chloroform/methanol Poly(acrylomtrile)-&/c>c&-poly(oxyethylene) Chromatography Tetrahydrofuran SEC, ji-styragel, 25°C Poly(acrylonitrile)-&/c£-poly(methyl-2-ethyl-2-thiirane) Chromatography Tetrahydrofuran SEC, styragel Poly(butadiene)-fr/ocA;-poly(oxy-1,4-phenylenesulfonyl-1,4-phenylene-1,4-pheny Iene-isopropylidene-1,4-phenylene) Chromatography Tetrahydrofuran SEC, ji-styragel Poly(butadiene)-fr/0cfc-poly(oxymethylene) Extraction Toluene, acetone, methanol, water Poly(butadiene-ctf-styrene)-&/(?cA:-(epoxy resins) Turbidmetric titration Chloroform/ethanol Poly(«-butyl isocyanate)-fr/0c£-poly(styrene) Chromatography Falta disolvent SEC Poly(p-butyrolactone)-&/0c&-poly(oxyethylene) Chromatography Tetrahydrofuran SEC, styragel Poly(P-butyrolactone)-fr/0cfc-poly(oxypropylene) Chromatography Tetrahydrofuran SEC, styragel Poly(p-butyrolactone)-^/c?c/:-poly(propiolactone) Chromatography Tetrahydrofuran SEC, styragel Poly(8-caprolactam)-^/ocA:-poly(l,4-butyleneglycol-cio-4,4-diphenylmethanediisocyanate) Fractional precipitation Dimethylformamide/diamyl ether Poly(6-caprolactam)-Z?/c?c/[-poly(isobutene)-^/c»c/:-poly(£-caprolactam) Extraction n-Hexane, 2,2,2 trifluoroethanol Poly(s-caprolactarn)-/b/0c/:-poly(styrene) Fractional precipitation m-Cresol/cyclohexane Turbidimetric titration Toluene/n-hexane Poly(£-caprolactone)-^/oc^poly(lactide) Extraction Acetone, chloroform Poly(8-caprolactone)-^/oc/c-poly(D,L-lactide)-^/c>c/:-poly(8-caprolactone) Chromatography Dimethylformamide SEC, styragel, 45°C Poly(£-caprolactone)-6/ocfc-poly(oxyethylene) Fractional precipitation Benzene-methanol/isooctane Benzene/isooctane Poly(£-caprolactone)-M0cfc-poly(P-propiolactone) Fractional precipitation Toluene/petroleum ether Poly(£-caprolactone)-6/oc/:-(tetrahydrofuran)-&/ocfc-(£-caprolactone) Chromatography Tetrahydrofuran SEC Expoxide resin-fr/c>c&-poly(butadiene-C0-styrene) Turbidimetric titration Chloroform/methanol Poly(ethylene glycol)-&/0c&-Poly(L-lysine) Centrifugation Tetrahydrofuran SEC Poly(ethylene terepthalate)-^/
Refs.
1223 1579 3110 969 2580 2580 2345 1248 1279 1279 2696 2653 2414
1579 1082,1083 3550 3550 3550 2990 3494 1279 1109 881 3036 2581,2582 2581,2582 1203 2412 1580 1211 3600
686
TABLE 3. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Poly(2,2-bis(4-hydroxyphenyl)propane-C(?-bis(4-hydroxy-2,5-dichlorophenyl)methane-c<7-phosgene), (block copolyrner) Chromatography Chloroform SEC, styragel Tetrahydrofuran SEC, styragel Poly(isoprene)-/?/0C&-poly(oxytetramethylene) Chromatography Tetrahydrofuran SEC, styragel Poly(isoprene)-/?/>cA;-poly(methylmethacrylate) Chromatography Tetrahydrofuran SEC, u-styragel, 25°C Fractional precipitation Choroform/methanol Poly(methyl methacrylate)-6/oc/c-(2,4-toluenediisocyanate) Chromatography Toluene, tetrahydrofuran SEC Poly(dimethyl siloxane)-fr/oc£-poly(styrene) Chromatography Toluene SEC, 20 0 C Poly(dimethylsilylene) -block-po\y(styrene) Chromatography Tetrahydrofuran SEC Toluene SEC, 20 0 C Poly(dimethylsilylene)-6/6>c/:-poly(styrene)-^/oc/:-poly(dimethylsilylene) Chromatography Toluene SEC, u-styragel, 25°C SEC, styragel Poly(a-methylstyrene)-Moc£-poly-(oxytetramethylene) Chromatography Tetrahydrofuran SEC, styragel Poly(cx-methylstyrene)-/7/t;c/:~poly(propylenesulfide)-^/6/c^-po]y(a-methylstyrene) Chromatography Tetrahydrofuran SEC, styragel Poly( 1,3-dioxolane)-b/c?c&-poly(p-methoxystyrene) Chromatography Tetrahydrofuran SEC, styragel Poly(oxybutylene)-/?/oc^-poly(oxyethyylene)-^/oc^~poly(oxybutylene) Chromatography Tetrahydrofuran SEC, u-styragel Poly(oxycarbony loxy-1,4-phenyleneisopropylidene-1,4-phenylene)-«//-poly(isobutene) Chromatography Tetrahydrofuran SEC, f.i-styragel Poly(oxydimethylsilylene)-/?/e>dc-poly(oxymethylsilylene) Chromatography Ethyl acetate SEC, styragel, 30 0 C Poly(oxyethylene)~/b/<%'fc-poly(ethyl methacylate) Fractional precipitation Benzene/2,2,4-trimethylpentane Poly(oxyethylene)-/7/c^-poly(isoprene)-^/c?c^-poly(oxyethylene) Chromatography Tetrahydrofuran SEC, styragel, 30 0 C Poly(oxyethylene)-M0cA:-poly(rnethacrylonitrile) Chromatography Tetrahydrofuran SEC, u-styragel, 25°C Poly(oxyethylene)-/?/-poly(oxyethyleneoxyadipoyl)-^/c'^ Chromatography Tetrahydrofuran SEC, styragel, 25°C Poly(oxyethylene)-^<9c£-poly(oxyethyleneoxyadipoyl) Fractional precipitation Benzene/isooctane 35° C Poly(oxyetnylene)-W0cA:-poly(oxyethyleneoxyad^^ Chromatography Tetrahydrofuran SEC, styragel, 25°C Poly(oxyethylene)-fr/0c&-poly(oxypropylene) Chromatography Tetrahydrofuran SEC, styragel Poly(oxyethylene)-i?/oc^:-poly(oxypropylene)-^/c?c/:-poly(oxyethylene) Chromatography Dimethylformamide + lithium SEC, silica-Ti-fluoropolymer, chloride 30 0 C
2493 2493 1 1082 739 2696 2645 3108 3108 1082 701 287,554 701 178 1511 2747 2747 1410 3542 1929 93 2951 2271 2271 1728 3110 3109 1631 3543 970 970 970 26 3424
References page VII-438
TABLE 3. confd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
Poly(oxyethylene)-^/ocfc-poly(isoprene)-poly(styrene)-ib//c>c/c-poly(2-methyl-5-vinylpyiidine) Extraction Toluene, acetone, methanol, water Poly(oxymethylene)-Mc>cfc-poly(a-methyIstyrene) Extraction Toluene, acetone, methanol Poly(oxymethylene)-b/0c£-poly(styrene) Extraction Toluene, acetone, methanol,water Poly(oxypropylene)-6/ocfc-poly(oxyethylene)-^/c?c^-poly(oxypropylene) Chromatography Tetrahydrofuran Poly(oxypropylene)-&/0c£-poly-(oxytetramethylene) Chromatography Tetrahydrofuran Poly(oxypropylene)-&/-5,10,15,20-tetra(a,a,a,a-<3-methacrylamidophenyl)porphin) Chromatography Benzene Poly(styrene)-b/oc/c-(l -methyl-2,4-diisocyanate cyclohexane) Chromatography Toluene, tetrahydrofuran Poly(styrene)-/?/ocfc-poly(oxyethylene) Chromatography Dimethylformamide Tetrahydrofuran Poly(styrene)-b/oc£-poly(oxypropylene) Chromatography Dimethylformamide Poly(styrene)-£/0cfc-poly(oxytetramethylene) Chromatography Dimethylformamide Tetrahydrofuran Poly(styrene)-b/ocfc-(2,4-toluene diisocyanate) Chromatography Toluene, tetrahydrofuran Poly(tetrahydrofuran)-b/ocfc-(e-caprolactone) Chromatography Tetrahydrofuran Poly[y-(vinyloxy)ethyl cinnamate]-fr/c>cfc-poly(isobutyl vinyl ether) Chromatography Ethyl acetate
Remarks
Refs.
SEC, styragel, 300C
1728
SEC, styragel 35°C
2039 2039 1253 2414 2414 2414 2414
SEC, styragel
3383
SEC, styragel, 300C
1761 2179
SEC, styragel
628
SEC, bioglass
1223 1082
SEC, Merck gel Star polymer
3415 3246
SEC, Merck gel
3415
SEC, Merck gel SEC, styragel
3415 1,2746,3530
SEC
1082,1083
SEC
2411
SEC, styragel
1938
3.13. GRAFT COPOLYMERS Poly (acrylic acid)-gra//-poly(|3-alanine) Turbidimetric titration Formic acid-water (85:15)/ethanol Poly(acrylonitrile)-gr<3/ir-poly(imino-l,3-phenyleneiminoisophthaioyl) Extraction Dimethylformamide Nitromethane/water (5%) Fractional precipitation Dimethylformamide/methanol Poly(acrylonitrile)-gra^-poly(iminoadipoyliminohexamethylene) Extraction Dimethylformamide Poly(epoxide)-gra/f-poly(organosiloxanes) Turbidimetric titration Dioxane/water Poly(a-hydroxyisobutyric acid anhydrosulfite)-gra/f-poly(acrylonitrile) Turbidimetric titration Dimethylformamide/chloroform Poly(bis(4-isopropylphenoxy)phosphazene)-gra/f-poly(styrene) Fractional precipitation Benzene/acetone Poly(methyl methacrylate)-^r<3^-poly(imino-l-oxohexamethylene) Extraction Benzene or acetone Poly(methyl methacrylate)-gr<2^-poly(iminoadipoyliminohexamethylene) Fractional precipitation Formic acid/methanol m-Cresol/methanol
1173 1587 1587 1587 1587 96 1426 1067 1259 1350 1350
TABLE 3. cont'd Method of fractionation
Polymer
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Poly (methyl methacry late)-£ra/f-poly(oxy~ 1 -oxo-hexamethylene) Extraction Benzene Poly(dimethylsiloxane)-gra/f-poly(methyl methacrylate) Extraction Dimethylsulfoxide/tetrachlororethane Fractional demixing Dimethyl sulfoxide/ tetrachloroethane Poly(2-methyl-2-oxazoline)-£ra//-poly(vinyl chloride) Extraction Methanol Poly(oxyethylene)-gra/]r-poly(«-butyl methacrylate) Fractional solution Benzene/2,2,4-trimethylpentane Column extraction Poly(oxyethylene)-gra/Npoly(iminoadipoyliminohexamethylene) Extraction Methanol Poly(oxyethylene)-gra/f-poly(methyl methacrylate) Extraction Ethylacetate, methanol Fractional precipitation Chloroform/ethyl ether Poly(oxyethylene)-,gm/f-poly(/t-propylmethacrylate) Fractional solution Benzene/2,2,4-trimethylpentane Column extraction Poly(oxyethyleneoxycarbonylimino-l,4-phenylenemethyleneiminocarbonyl)-^ra//-poly(acrylonitrile) Extraction Dimethylformamide/ethanol Poly(oxyethyleneoxyterephthaloyl)-£ra//-poly(vinyl acetate) Extraction Acetone Poly(oxyethyleneoxyterephthaloyl)-gra/it-poly(oxyethyleneoxysuccinoyl) Chromatography oterf-Butylphenol SEC, styragel, 1100C Poly(oxymethyleneoxyethylene)-gra/r-poly(/?-methoxystyrene) Chromatography Tetrahydrofuran SEC, styragel Poly(phenyl methyl silylene)-gra//-poly(tetrahydrofuran) Chromatography Tetrahydrofuran SEC, ultrastyragel Poly(pivalolactone)-^ra/f-poly(ethylene-co-propylene-co-l,4-hexadiene) Chromatography Tetrahydrofuran SEC, styragel Extraction Hot hexane, hot benzene, hot hexafluoroisopropanol, m-cresol Poly(propylene)-gra//-poly(2(2-hydroxy-5-vinylphenyl)2H-benzotriazole) Chromatography Tetrahydrofuran SEC Poly(siloxane)-gra/r-poly(pivalolactone) Chromatography Methylene chloride/ hexafluoroisopropyl alcohol Poly(styrene)-gra/f-poly(imino-1 -oxohexamethylene) Extraction Benzene /1 = 4,6, 10 Poly(styrene)-
TABLE 4.
2630,3077 3077 3236 3200 1586 420 3297 3200 14 870 2792 1410 1378 3198 3198 2658 3423 3483 877 3483 2410 2410 2178 820 820 820
POLY(SACCHARIDES)
Polymer 4.1.
2301
Method of fractionation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
POLY(SACCHARIDES)
Acetoxy propyl cellulose Alginates
Fractional precipitation Centrifugation
Benzene/heptane Water
Ethylene diammonium alginates
2979 623
References page VII-438
TABLE 4.
confd
Polymer
Method of fractionation Fractional precipitation
Amilose tributyrate Amylopectin Amylopectin xanthate
Fractional precipitation Chromatography Fractional precipitation
Amylose
Chromatography Fractional precipitation
Amylose acetate
Fractional precipitation
Amylose benzoate Amylose triacetate Amylose tricarbanilate
Fractional solution Fractional precipitation Chromatography Fractional precipitation
Amylose tripropianate Amylose xanthane
Sedimentation velocity Fractional precipitation Fractional precipitation
Arabinogalactam Arabinose
Chromatography Chromatography
Carboxymethyl amylose
Fractional precipitation Chromatography Fractional precipitation
Carboxymethyl cellulose
Fractional precipitation
Cellulose
Centrifugal sedimentation Chromatography Extraction
Fractional precipitation
Fractional solution
Cellulose acetate
Chromatography
Solvent or solvent/nonsol vent mixture Water/manganous chloride 4calcium chloride Water/sodium chloride Toulene/petroleum ether Dimethyl sulfoxide Water/manganous chloride + calcium chloride Dimethyl sulfoxide Acetone/acetone-water (1:1) Acetone/water Dimethyl sulfoxide/acetone Dimethyl sulfoxide/ethanol Diemthyl sulfoxide/n-butanol Dimethylformamide/methanol + 10% CaCl2 Nitromethane/methanol Water/methanol Dimethyl sulfoxide/n-butanol Nitromethane/methanol Nitromethane/methanol Nitromethane/methanol Ethanol/water Acetone/methanol Dimethylformamide/methanol + 10% CaCl2 Dioxane Ethyl acetate/methanol Water IN sodium hydroxide/methanol Water Chloroform/acetone, pyridine, glacial acetic acid Acetone/petroleum ether Sodium chloride 0.5M aq. solution Sodium chloride 0.5M /acetone Water-acetone (7 : 3) + 0.5 % sodium chloride/acetone Water/acetone Water/ethanol Water suspension Cadoxen Iron-sodium tartrate Water, 0.25% ammonium oxalate and 80% ethanol Acetone/acetone -water Cadoxen-water (1: l)/propanolwater(3: 1) Cadoxen-water/propanol-water Cadoxen/water-glycerol(l: 1) Cuene/propanol, cuoxam/propanol Iron-sodium tartrate/mannitol Sodium hydroxide 2.0 M/methanol Sulfuric acid (60-65%)/water Cadoxen Cuene Cuoxam Iron-sodium tartrate solution/ sodiumchloride 5 N 1,2-Dichloroethane Chloroform-acetone (1:1)
Remarks
Refs.
Sodium alginate
2118
Sodium alginate 25° C SEC, silica porous gel, 600C Sodium salt
1230 657 2817 2022
SEC, u-bondagel SEC, Porasil, 300C Acetate Carbanilate 25°C Carbanilate
1900 3341 1400 469 1013 197,652,1013 198,199,200,201,202 1401
Acetate Glucoamicoethyl 25°C 25°C 3TC 25°C 25°C 20°C
653 3457 198,199,202, 203,653,654 653,654 2525,2526,2527 659 2594,2595 204,205,206,207 677,1401,1402,2595
25° C Sodium salt
3104 658 2021
SEC, Sephadex G-75 Araban acetate, charcoal
3118 1107
Araban acetate 30°C, sodium salt Sodium salt Crystals suspension micel sol SEC Active charcoal Regenerated fibers
1107 408,1084 2023 2529,2530,2531 449 1112 1483 294 1484 2538 1881 2072 2573,2732,2733
25° C Varying temp. Rayon summative method - 15°C Extraction Summative method SEC, Porasil A, triacetate Triacetate, calcium silicate as absorbent
1176 377 2988 1487,1488 631 2995 1485,1486 2306 2982 1481,1482 3120 2333
TABLE 4.
cont'd
Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture Methylene dichloride-acetone/ methanol Methylene dichloride-tetrahydrofuran/methanol Methylene dichloride/methanol Tetrahydrofuran
Diffusion into porous charcoal Acetone, dioxane Fractional precipitation l-Chloro-2,3-epoxypropane/ rc-hexane Acetone-ethanol (5:3)/n-hexane Acetone-water (3 : l)/water Acetone/95% ethanol
Fractional solution
Sedimentation velocity Thermal diffusion Turbidimetric titration
Cellulose acetate-butyrate
Fractional precipitation
Cellulose cyanoethyl
Turbidimetric titration Fractional precipitation
Cellulose nitrate
Sedimentation velocity Chromatography
Acetone/ethanol Acetone/n-heptane-acetone (1:1) Acetone/water Acetone/water followed by acetone/rc-pentane Aq. acetoneM-heptane-acetone (3:1) Chloroform-acetone (1:1)/ petroleum ether Chloroform-acetone/petroleum ether Chloroform/ethanol Tetrachloroethylene/ethanol Acetone Acetone/methanol Dioxane/n-hexane mixtures/ dioxane/heptane reflux Water/water-acetone Acetone Dichloroethane Acetic acid/water Acetone/ethanol Butanol-ethanol(4: l)/95% ethanol Dimethylformamide/dibutyl ether Acetone/isopropyl alcohol Acetone/water-acetone (1:1) 4- 2% salt and then water alone + 2% salt Acetone/ethanol-water (3:1) Methylene dichloride-methanol (10: l)/methanol Acetone Acetone Acetone-methanolchloroform (10:10: 5) Acetone/cyclohexane followed by acetone/rt-methanol Dioxane-methanol-2-propanol (15:10:1) Ethyl acetate Nitromethane-methanol (2:8) Tetrahydrofuran
Remarks
Refs.
TLC, silica gel for MW distribution TLC, silica gel for MW distribution TLC, silica gel for acetyl group distribution SEC SEC, styragel triacetate Countercurrent 35°C Triacetate
1559 1559 1559 433,2304,3149 466 3115,3116 1565
909,2246 3070 162,1566,2596, 3037,3113 1564,1568,1750,3153 1097 1097,1169 2780
Lowering temp. 230C Diacetate Cross fractionation
2863 Triacetate, 25°C
1373,1374
25°C
1372
Diacetate
762 762 2170
Adsorption on to activated carbon Column extraction Triacetate Summative 25°C, diacetate Triacetate
1750 1097,3410,3411 1862,1863,1868 2180 1845 338 1059 2269 3139 2267 3278
2PC 26°C Activated carbon SEC SEC, Porasil, 12-13% N TLC, silica gel, 25°C, TLC, kiseselgur, 25°C Elution chromatography, starch TLC, silica gel, 25°C, TLC, Kieselgur, 25°C SEC, styragel TLC, kieselgur, 25°C TLC, silica gel, 25°C, TLC, alumina, 25°C SEC SEC, u-styragel
742,743 656
3278 601 2158,2159 438 1563 439 1563 1341 1563 1563 2150,2151,2158, 2304,2305,2491 2058
References page VII-438
TABLE 4.
cont'd
Polymer
Method of fractionation
Diffiusion into porous charcoal Distribution between immiscible liquids
Solvent or solvent/nonsolvent mixture
Acetone and dioxane Cellulose triacetate gel in methyl acetate, water, ethanol, butyl acetate Fractional precipitation Acetone-ethanol (5 : 3)M-hexane Acetone-ethanol (5:3)/shellsolv Acetone/acetone-water (1:1) Acetone/acetone-water (4:1) until pure water Acetone/acetone-water mixtures Acetone/ligroin Acetone/n-heptane Acetone/n-hexane
Remarks
Refs.
SEC, u-styragel,styragel, 230C SEC, porous silica gel SEC, styragel
3488 2057 37,810,2154, 2755,2936,2937, 2938,2939 2940, 3404,3432 3116
Countercurrent
439 Acetone~9% water/water Room temp. High MW 00C, dark
2202,2782,3201 885,2245,2248 1398 2334,3580,3581,3582 2052,2053,2054,2897
12-13% /V Lowering temp. 250C Low MW
AcetoneM-hexane( 1/1 )/rc-hexane Acetone/petroleum ether Acetone/water
Fractional solution Membrane diffusion Sedimentation velocity Turbidimetric titration Cellulose propionate Cellulose tributyrate Cellulose tricarbanilate
Chromatography Fractional precipitation Chromatography
Fractional precipitation
Celllulose tripropionate Cellulose xanthate
Fractional solution Chromatography Fractional precipitation Fractional precipitation
Cyanoethyl (hydroxypropyl)cellulose Chromatography Fractional precipitation Dextran Chromatography
Acetone/water followed by acetone/n-heptane Acetone/water-acetone Acetone/water-acetone (5:1) Ethyl acetate/n-heptane Acetone/methanol-water Ethyl acetate/95% ethanol Acetone Acetone Acetone/acetone-water Acetone/methanol-water (9:1) Acetone/water Tetrahydrofuran Acetone/water Acetone Acetone/water Tetrahydrofuran Acetone/1% aq. sodium chloride Acetone/acetone-water (1:1) Acetone/methanol Benzene/methanol Acetone/water Tetrahydrofuran Acetone/petroleum ether Sodium chloride-10% aq. methanol Tetrahydrofuran Acetone/^-heptane Dimethyl sulfoxide/methanol (15%) 4-ammonium acetate Sodium chloride water 0.5% Sodium nitrate 0.1 M Water
Triangle method Cross fractionation
Column extraction Ultracentrifuge Dinitrate Dinitrate SEC, ultrastyragel SEC, spherosil Sand, gradual increase in temp. SEC SEC, spherosil
SEC Viscose fraction SEC, u-styragel, 25°C
438 140 2987 477,703,2633 1563 1398 1213 2334,3399 20,703,2051,2125, 2126,3208,3425 15 2056,2562,2908 2055 2861 743 838,1292 3381 2479 2448 2313 2313 519 1856 687 687 432,2298,3193 687 432 1403 118 3273 3104 433 869 1040
SEC
2107 2107 2818
SEC, porous glass SEC, spherosil Activated carbon
232 2762 601
TABLE 4. cont'd Polymer
Method of fractionation
Solvent or sol vent/nonsol vent mixture
Remarks
Refs.
SEC SEC, controlled porous glass SEC, aguapak SEC, aquagel-OH SEC, Porasil SEC, porous glass beads bonded with hydrophilic compounds SEC, Sephadex, preparative SEC, sepharose SEC, sepheron SEC, TSK gel
Fractional precipitation Fractional solution Sedimentation velocity Turbidimetric titration Ultrafiltration Ethyl cellulose
Chromatography Fractional precipitation
Water( 10 mM sodium chloride) Water, cadoxen Water/1% diethylene glycol Water/ethanol Water/95% Ethanol Water/manganous chloride + calcium chloride Water-ethanol Water Water/ethanol Water Methylene dichloride Acetone/water Ethyl acetate -acetone (1:4)/water
SEC SEC, porous silica beads Precipitation chromatogr. Acid hydrolyzed Low MW Ultracentrifuge, 200C Amicom-XM-4B and UM-I diaflomembranes SEC
Poly(2-(diethylamino)ethyl)dextran Chromatography Water, 0.8M sodium nitrate Diethylamino amylose hydrochloride Chromatography Aq. sodium chloride 0.5M SEC Poly(2-D-glucopyranosyl-3-oxymethyl)-acrylic acid ethyl ester) Chromatography Tetrahydrofuran SEC, ultrastyragel Poly(D-glucose) Fractional precipitation Water/methanol Lowering temp. Guaran triacetate Fractional precipitation Chloroform/ethanol 22.5°C Sedimentation velocity Acetonitrile 25°C Gum arabic Fractional precipitation Aq. sodium chloride 0.5M/acetone Hemicellulose Fractional precipitation KOH 5%/methanol Hemicellulolse acetate Fractional precipitation Chloroform-ethanol (9: l)-/n-hexane 3309 Tri-0-heptylcellulose Chromatography Chlroroform SEC, preparative Fractional precipitation Benzene/methanol Hydroxyethyl cellulose Chromatography Sodium chloride 0.25M/sodium phosphate 0.005M Fractional precipitation Water/acetone 25°C Hydroxyethyl cellulose acetate Chromatography Tetrahydrofuran SEC 2-Hydroxypropyl cellulose, benzoic acid ester Fractional precipitation Acetone/methanol-water (85:15) Hydroxypropy; cellulose Chromatography Tetrahydrofuran SEC, 250C Extraction Ethanol (anhydrous)-heptane 13 mixtures Fractional precipitation Ethanol/heptane Ethanol/rc-heptane 300C o-(2,3-Dihyproxypropyl)cellulose Chromatography Acetic acid solution (water) SEC, Tosoh, 25GC 2-Hydroxypropyl cellulose propionic acid ester Fractional precipitation Benzene/«-heptane Hydroxypropyl lignin Fractional precipitation Acetone/hexane Levan Chromatography Dimethyl sulfoxide/methanol SEC (15%) 4- ammonium acetate Lignin Chromatography Dimethyl sulfoxide SEC SEC, Sephadex Sodium hydroxide 0.10M SEC, Sephadex
1116,1884 234,816 378 2121 3028 1611,1612 232,233,234 233,234 1070,2617 1224 3343 294 1885 814,815 2950 127,222, 1028,3046,3605 2381 814 1130 2084 183 440 2152,3093 2862 1209 1084 2632 2164 1737 1337 3117 3309 3130 3130 2121 448,836 3498 316 3487 1759,2761 3487 2850 3240 1647 2818 3041 2111 2835
References page VII-438
TABLE 4. cont'd Method of fractionation
Polymer
Fractional precipitation
Solvent or solvent/nonsolvent mixture
Remarks
Refs.
Sodium hydroxide 0.10M (carbonate-free) Sulfuric acid
SEC, analytical and preparative
2836
By pH change and centrifugation
2837
Sodium chloride 0.0001M Aq. Water
SEC, Sephadex G-50 SEC, 44°C
Ligninsulfonic acid, sodium salt Chromatography Extraction Fractional precipitation Fractional solution Poly(3-D-methacryloyl glucomic acid) Chromatography Methyl cellulose Thermal diffusion Pectins Fractional precipitation Fractional precipitation Membrane diffusion Pullulan Field flow Fractional precipitation Schizophyllan Chromatography Fractional precipitation Scleroglucan Chromatography Starch
Tribenzyl glucan
Alkaline leaching Aqueous leaching Centrifugation Chromatography
Extraction Fractional precipitation Sedimentation velocity
Poly(vinyl galactose ketone) Chromatography Poly(vinyl isopropylidene arabinose ketone) Chromatography Xanthan Chromatography
Xylan
Fractional precipitation Fractional precipitation
Water/ethanol Water/ethanol Aq. sodium choride/95% ethanol Tetrahydrofuran Water Ethylene diamine Dioxane/petroleum ether Water Water Water/isopropyl alcohol Sodium hydroxide water 0.01M Water/ethanol, water/acetone Dimethyl sulfoxide/methanol (15%) 4- ammonium acetate Sodium hydroxide 0.5 M (water) Water Dilute alkali Dimethylsulfoxide + 0.03 M aqueous sodium nitrate Dimethyl sulfoxide/methanol (15%) 4- ammonium acetate Aq. sodium hydroxide/w-butanol Thymol/w-butanol Benzene Tetrahydrofuran Tetrahydrofuran Aq. sodium sulfate 0.5M Sodium nitrate 0.1M + 1 % ethylene glycol Water -f sodium chloride 5g/l
Brownian diffusion SEC, ultrastyragel Amylopectin temp. Propianate, lowering Extracellular SEC, TSK gel SEC Several temp, and times SEC, u-styragel, 800C SEC
8°C benzylated lineat a-, 1, 6 glucans SEC, ultrastyragel
1153,1154 378 879 879 2219 2632 2779 3058 2502 931 1688 1615 1450 1450 2818 196 196,650,1121 249 590 2818 196,248 651 2140 2632
SEC, ultrastyragel SEC, preparative SEC, silica gel
2632 2514 1855
Surface exclusion chromatography SiC particles, 300C
1893
Acetone/0.5M sodium chloride Dimethyl sulfoxide/ethanol
1178 1887
4.2. GRAFT COPOLYMERS Acetyl cellulose-gra/f-poly(acrylarnide) Extraction Water, acetone Amylopectine-gra/f-poly(methyl methacrylate) Extraction 1,2-Dichloroethane Amylose triacetate-gra/ir-poly-(4,4 '-diphenylmethane diisocyanate-co-poly(butadiene)) Chromatography Chloroform SEC, u-bondagel Amylose-gra/f-poly(4,4'-diphenylmethane diisocyanate-co-poly(ethylene-co-poly(ethylene-c-propylene adipate)) Chromatography Dimethyl sulfoxide SEC, u-bondagel Amylose-gra/f-poly(4,4;-diphenylmethane diisocyanate-co-poly(ethylene terephthalate)) Chromatography Dimethyl sulfoxide SEC, u-bondagel Amylose-gra/if-poly(rnethyl acrylate) Fractional precipitation Dimethyl sulfoxide/n-butanol Amylose-gra/f-poly(methyl methacrylate) Extraction 1,2-Dichloroethane Amylose triacetate-gra/f-poly-(4,4 '-diphenylmethane diisocyanate-co-propylene glycol) Chromatography Chloroform SEC, u-bondagel Amylose triacetate-grq/ir-poly-(2,4-toluene diisocyanate-co-poly(butadiene)) Chromatography Chloroform SEC, u-bondagel
3160 1100 1978 1900 1900 2534 1100 1978 1978
TABLE 4. cont'd Polymer
Method of fractionation
Solvent or solvent/nonsolvent mixture
AmyJose triacetate-gra//-poly(2,4-toluene diisocyanate-c6>-poly(oxypropylene) Chromatography Chloroform Benzyl cellulose-gra/f-poly(styrene) Fractional precipitation Benzene/methanol Cellulose-gra/f-poly(acrylamide) Extraction Dimethylformamide,water cuprammonium Cellulose-gra/>-poly(acrylonitrile) Dimethylformamide, water cuprammonium Cellulose-gra/f-poly(ethyl acrylate) Extraction Acetone Benzene Cellulose-gra/z-polyCmethyl methacrylate) Extraction Acetone Acetone or benzene Benzene Dichloroethane Xanthation process Cellulose~£ra/?-poly(styrene) Extraction Boiling benzene Tetrahydrofuran-water (98:2) Fractional precipitation Dioxane/methanol Cellulose-(grq/if-poly(2-vinylpyridine) Chromatography Benzene/methanol Extraction Cellulose nitrate-gra/r-poly(methyl methacrylate) Chromatography Extraction Cellulose acetate- gra/f-polyCacrylamide) Extraction Cellulose- acetate-gra//-poly(acrylonitrile) Extraction Fractional precipitation Cellulose-acetate-gra//-poly(butyl acrylate) Extraction ,precipitation Turbidimetric titration Cellulose acetate-gra/ir- poly (ethyl acrylate) Extraction;precipitation Turbidimetric titration Cellulose-acetate-gra/r-poly(methyl acrylate) Extraction;precipitation Turbidimetric titration Cellulose-acetate-gra/f-poly(methyl methacrylate) Fractional precipitation Cellulose acetate-^ra/f-poly(2-methyl-5-vinylpyridine) Extraction Cellulose acetate-£ra/f-poly(oxymethylene) Fractional precipitation Cellulose acetate-gra/?-poly(styrene) Chromatography
Fractional precipitation
Remarks
Refs.
SEC, u-bondagel
1978 530
Cellophane
1008
Cellophane
1008
55°C
1534 2191 1007,1284,1809 827 1041 2187 1041 2175 1162 2914
Viscose
200C Precipitation chromatography, celite, 15-600C
Benzene Tetrahydrofuran Benzene, methanol
2803 SEC, u-styragel
3057 3057
Acetone Dimethylformamide Dimethylformamide-dioxane (3.5:2) Dimethylformamide/chloroform
3447
1008 Acetylated Cotton
2748 2748 2748
Acetone/water Benzene Actone-rc-methanol (6 : 4)/ methanol
1406 1406 1406
Acetone/water Benzene Acetone-methanol(6:4)/methanol
1406 1406 1406
Acetone/water Benzene Acetone-methanol (6:4)/methanol
1406 1406 1406
Pyridine, acetone (95%/-5%)/water
342
Acetone, methylene chloride, methanol
1523
Dimethylformamide/ethyl ether Benzene/ethanol Chloroform Methylene dichloride-methanol (1:1) Chloroform//?-heptane Pyridine/Aq. hydrochloric acid
209 Precipitation chromatogr., celite, 15-600C TLC, silica gel TLC, silica gel
3447
Triacetylated viscose
2748 3547
1357 1357
References page VII-438
Next Page TABLE 4. contfd Polymer
Method of fractionation
Cellulose acetate-gra/if-poly(vinyl acetate) Extraction;precipitation Cellulose acetate-gra/r-poly(3-vinylpyridine) Extraction
Solvent or solvent/nonsolvent mixture
Remarks
Methanol; benzene/methanol
509
Methanol;acetone-dichloroethane (1:4)
Cellulose acetate-gra/r-poly-(iV-vinylpyrrolidone) Extraction Water, acetone Cotton-gra//-poly(acrylamide) Extraction Water Cotton-gra/r-poly(glycidyl methacrylate) Extraction Butanone Cotton-gra/?-poly(rnethacrylic acid) Extraction Water Dextran-gra//-poly(acrylamide) Chromatography Water (0.5M potassium phthalate) Dextran-,gra/r-poly(acrylamide-cc>-sodium-2-acrylamido-2-methyl propane sulfonate) Chromatography Water 0.4M Sodium sulfate Dextran-gra/f-poly(methyl methacrylate) Extraction Several solvents Dextran-gra//-poly-(AT-vinylpyrrolidone) Turbidimetric titration Water/acetone Ethyl cellulose-gra/r-pory(acrylamide) Extraction Hot methanol Ethyl cellulose-gra//~poly(methyl methacrylate) Fractional precipitation Acetone/methanol Methyl cellulose-gra/r-polyCacrylonitrile) Extraction Water Methylated xylan~gra/?-poly(styrene) Fractional precipitation Benzene/petroleum ether Oxycellulose-gra/f-poly(methyl methacrylate) Extraction Benzene Xanthation process Starch-gra/f-poly(acrylarnide) Extraction Etahn, 1,2-diol and acetic acid Starcg-gra/f-poly(acrylonitrile) Chromatography Dimethylformamide Extraction Dimethylformamide Dimethylformamide, Y butyrolactone, dimethysulfoxide Starch-gra/f-polyCmethyl methacrylate) Extraction Acetone Extraction;precipitation Benzene; Aq. dimethylfomamide/ methanol Starch-#ra/f-poly(styrene) Chromatography Tetrahydrofuran Starch-gra/]r-poly(vinyl acetate) Extraction Water at 100°C;benzene Tricarbanilated (cellulose)-gra/?-poly(styrene) Fractional precipitation Dioxane/water
Refs.
3158 3159 3414 3414 SEC SEC, porous glass
3414 2112,3505 2113 2467 2962 1008 530
Hot
530 2425
SEC, 750C
1041 1041 3003 1141 1142 865
2190 530 1273 2194 2917
4.3. MIXTURES OF POLYMERS Cellulose acetate -fpoly(oxyethylene) Fractional precipitation
D.
Dimethylformamide/ethyl ether
209
REFERENCES 1. M. J. M. Abadie, F. Schue, T. Sovel, D. B. Hartley, D. H. Richards, Polymer, 23, 445 (1982). 2. R. Abate, A. Ballistreri, G. Montaudo, E. lmpallomeni, Macromolecules, 27, 332 (1994). 3. K. B. Abbas, N. G. Thame, J. Polym. ScL, Polym. Chem. Ed., 13, 59 (1975). 4. K. B. Abbas, Polymer, 21, 936 (1980). 5. A. H. Abdel-Alim, A. E. Hamielec, J. Appl. Polym. ScL, 17, 3033 (1973). 6. S. Abdel-Fattah, I. Geczy, Polymer J., 6, 542 (1974).
7. M. Abe, Y. Murakami, H. Fujita, J. Appl. Polym. ScL, 9, 2549 (1965). 8. Z. Abe, H. Tanaka, M. Sumimoto, J. Polym. ScL, Polym. Chem. Ed., 16, 305 (1978). 9. G. J. K. Acres, F. L. Dalton, J. Polym. Sci. A, 1, 2419 (1963). 10. K. Adachi, T. Kotaka, Macromolecules, 20, 2018 (1987). 11. H. E. Adams, P. O. Power, lnd. Eng. Chem., Anal. Chem., 15, 711 (1943).
Previous Page TABLE 4. contfd Polymer
Method of fractionation
Cellulose acetate-gra/if-poly(vinyl acetate) Extraction;precipitation Cellulose acetate-gra/r-poly(3-vinylpyridine) Extraction
Solvent or solvent/nonsolvent mixture
Remarks
Methanol; benzene/methanol
509
Methanol;acetone-dichloroethane (1:4)
Cellulose acetate-gra/r-poly-(iV-vinylpyrrolidone) Extraction Water, acetone Cotton-gra//-poly(acrylamide) Extraction Water Cotton-gra/r-poly(glycidyl methacrylate) Extraction Butanone Cotton-gra/?-poly(rnethacrylic acid) Extraction Water Dextran-gra//-poly(acrylamide) Chromatography Water (0.5M potassium phthalate) Dextran-,gra/r-poly(acrylamide-cc>-sodium-2-acrylamido-2-methyl propane sulfonate) Chromatography Water 0.4M Sodium sulfate Dextran-gra/f-poly(methyl methacrylate) Extraction Several solvents Dextran-gra//-poly-(AT-vinylpyrrolidone) Turbidimetric titration Water/acetone Ethyl cellulose-gra/r-pory(acrylamide) Extraction Hot methanol Ethyl cellulose-gra//~poly(methyl methacrylate) Fractional precipitation Acetone/methanol Methyl cellulose-gra/r-polyCacrylonitrile) Extraction Water Methylated xylan~gra/?-poly(styrene) Fractional precipitation Benzene/petroleum ether Oxycellulose-gra/f-poly(methyl methacrylate) Extraction Benzene Xanthation process Starch-gra/f-poly(acrylarnide) Extraction Etahn, 1,2-diol and acetic acid Starcg-gra/f-poly(acrylonitrile) Chromatography Dimethylformamide Extraction Dimethylformamide Dimethylformamide, Y butyrolactone, dimethysulfoxide Starch-gra/f-polyCmethyl methacrylate) Extraction Acetone Extraction;precipitation Benzene; Aq. dimethylfomamide/ methanol Starch-#ra/f-poly(styrene) Chromatography Tetrahydrofuran Starch-gra/]r-poly(vinyl acetate) Extraction Water at 100°C;benzene Tricarbanilated (cellulose)-gra/?-poly(styrene) Fractional precipitation Dioxane/water
Refs.
3158 3159 3414 3414 SEC SEC, porous glass
3414 2112,3505 2113 2467 2962 1008 530
Hot
530 2425
SEC, 750C
1041 1041 3003 1141 1142 865
2190 530 1273 2194 2917
4.3. MIXTURES OF POLYMERS Cellulose acetate -fpoly(oxyethylene) Fractional precipitation
D.
Dimethylformamide/ethyl ether
209
REFERENCES 1. M. J. M. Abadie, F. Schue, T. Sovel, D. B. Hartley, D. H. Richards, Polymer, 23, 445 (1982). 2. R. Abate, A. Ballistreri, G. Montaudo, E. lmpallomeni, Macromolecules, 27, 332 (1994). 3. K. B. Abbas, N. G. Thame, J. Polym. ScL, Polym. Chem. Ed., 13, 59 (1975). 4. K. B. Abbas, Polymer, 21, 936 (1980). 5. A. H. Abdel-Alim, A. E. Hamielec, J. Appl. Polym. ScL, 17, 3033 (1973). 6. S. Abdel-Fattah, I. Geczy, Polymer J., 6, 542 (1974).
7. M. Abe, Y. Murakami, H. Fujita, J. Appl. Polym. ScL, 9, 2549 (1965). 8. Z. Abe, H. Tanaka, M. Sumimoto, J. Polym. ScL, Polym. Chem. Ed., 16, 305 (1978). 9. G. J. K. Acres, F. L. Dalton, J. Polym. Sci. A, 1, 2419 (1963). 10. K. Adachi, T. Kotaka, Macromolecules, 20, 2018 (1987). 11. H. E. Adams, P. O. Power, lnd. Eng. Chem., Anal. Chem., 15, 711 (1943).
12. H. E. Adams, E. Ahad, M. S. Chang, D. B. Davis, D. M. French, J. Appl. Polym. ScL, 17, 269 (1973). 13. M. A. Aden, E. Bianchi, A. Cifferi, G. Conio, A. Tealdi, Macromolecules, 17, 2010 (1984). 14. K. Adibi, M. H. George, J. A. Barrie, J. Polym. ScL, Poly. Chem. Ed., 19, 57 (1981). 15. K. Aejmelaeus, Ann. Acad. ScL, Fennicae., Serie A, 2, 63 (1950). 16. A. M. Afifi-Effat, J. N. Hay, M. Wiles, J. Polym. ScL B, 11, 87 (1973). 17. A. M. Afifi-Effat, J. N. Hay, Br. Polym. J., 8, 91 (1976). 18. A. B. Agasaryan, G. P. Belov, S. P. Davtyan, M. L. Eritsyan, Eur. Polym. J., 11, 549 (1975). 19. H. Agbaje, J. Springer, Eur. Polym. J., 22, 943 (1986). 20. J. C. Aggarwal, J. L. Mc Carthy, J. Indian Chem. Soc, 26, 11 (1949). 21. S. L. Aggarwal, L. Marker, M. J. Carrano, J. Appl. Polym. ScL, 3, 78 (1960). 22. R. K. Agnihotri, D. Falcon, E. C. Fredericks, J. Polym. ScL, Polym. Chem. Ed., 10, 1839 (1972). 23. E. Ahad, Y. Sicotte, J. Polym. ScL C, 30, 163 (1970). 24. S. M. Aharoni, C. R. Crosby III, E. K. Walsh, Macromolecules, 15, 1093 (1982). 25. T. O. Ahn, J. Lee, H. M. Jeong, K. Cho, Eur. Polym. J., 30, 353 (1994). 26. T. Aida, S. Inoue, Makromol. Chem., Rapid. Commun., 1, 677 (1980). 27. T. Aida, S. Inoue, Macromolecules, 14, 1162 (1981). 28. T. Aida, S. Inoue, Macromolecules, 15, 682 (1982). 29. H. Ailhaud, Y. Gallot, A. Skoulios, Makromol. Chem., 140, 179 (1970). 30. L. Akcelrod, A. S. Gomes, J. Polym. ScL, Polym. Chem. Ed., 16, 2431 (1978). 31. P J . Akers, G. Allen, M. J. Bethell, Polymer, 9, 575 (1968). 32. R. Alamo, J. G. Fatou, J. Guzman, Polymer, 23, 374 (1982). 33. R. Alamo, J. G. Fatou, J. Guzman, Polymer, 23, 379 (1982). 34. R. Alamo, J. G. Fatou, A. Bello, Polym. J., 15, 491 (1983). 35. A. Albert, D. C. Pepper, Proc. Roy. Soc. (London) A, 263, 75 (1961). 36. G. P. Aleksink, V. V. Shamanin, A. F. Podolsky, L. V. Alferova, V. A. Kropachev, Polym. J., 13, 33 (1981). 37. W. J. Alexander, Th. E. Muller, J. Polym. ScL, C, 36, 87 (1971). 38. J. Alexopoulos, N. Hadjichristidis, Makromol. Chem., 180, 455 (1979). 39. S. AIi, Br. Polym. J., 10, 108 (1978). 40. S. All, A. K. Raina, Makromol. Chem., 179, 2925 (1978). 41. S. AIi, N. Ahmad, Br. Polym. J., 14, 113 (1982). 42. S. I. AIi, J. Appl. Polym. ScL, Appl. Polym. Symp., 51, 293 (1992). 43. S. M. AIi, M. B. Huglin, Makromol. Chem., 84, 117 (1965). 44. R. Alijev, Z. Tuzar, J. Kondelikova, H. Verlova, J. Kralicek, M. Budesinky, Angew. Makromol. Chem., 105, 99 (1982). 45. H. R. Allcock, G. Y. Moore, W. J. Cook, Macromolecules, 7, 571 (1974). 46. H. R. Allcock, S. D. Wright, K. M. Kosyder, Macromolecules, 11, 357 (1978).
47. H. R. Allcock, S. M. Coley, Ch. T. Morrissey, Macromolecules, 27, 2904 (1994). 48. H. R. Allcock, Y-B. Kim, Macromolecules 27, 3933 (1994). 49. G. Allen, C. Booth, M. N. Jones, Polymer, 5, 257 (1964). 50. G. Allen, C. Booth, M. N. Jones, Polymer, 5, 195 (1964). 51. G. Allen, C. Booth, C. Price, Polymer, 8, 397 (1967). 52. G. Allen, C. Booth, S. J. Hurst, M. N. Jones, C. Price, Polymer, 8, 391 (1967). 53. G. Allen, C. Booth, S. J. Hurst, Polymer, 8, 385 (1967). 54. G. Allen, J. Mc Ainsh, C. Strazielle, Eur. Polym. J., 5, 319 (1969). 55. G. Allen, C. J. Lewis, S. M. Todd, Polymer, 11, 44 (1970). 56. P. E. M. Allen, J. M. Downer, G. W. Hastings, H. W. Melville, P. Molyneux, J. R. Urwin, Nature (London), 177, 910 (1956). 57. P. E. M. Allen, G. M. Burnett, J. M. Downer, H. W. Melville, Makromol. Chem., 38, 72 (1960). 58. P. E. M. Allen, R. Hardy, J. R. Mayer, P. Molyneux, Makromol. Chem. 38, 52 (1960). 59. P. E. M. Allen, R. P. Chaplin, D. O. Jordan, Eur. Polym. J., 8, 271 (1972). 60. P. E. M. Allen, C. Mair, Eur. Polym. J., 20, 697 (1984). 61. V. R. Allen, S. R. Turner, J. Macromol. ScL, Part A: Chem., 5, 229 (1971). 62. D. F. Alliet, J. M. Pacco, Polym. Preprints, 8 (2), 1288 (1967). 63. D. F. Alliet, J. M. Pacco, J. Polym. ScL, C, 21, 199 (1968). 64. D. F. Alliet, J. Appl. Polym. Symp., 8, 39 (1969). 65. R. Allirot, Compt. Rend., 231, 1065 (1950). 66. Y. Alrnog, M. Levy, J. Polym. Sci. Polym. Chem. Ed., 18, 1 (1980). 67. T. Altares Jr., D. P. Wyman, V. R. Allen, J. Polym. Sci. A-I, 2,4533 (1964). 68. T. Altares Jr., D. P. Wyman, V. R. Allen, K. Meyersen, J. Polym. Sci. A-I, 3, 4131 (1965). 69. J. E. Alter, G. T. Taylor, H. A. Scheraga, Macromolecules, 5, 739 (1972). 70. K. H. Altgelt, J. Appl. Polym. Sci., 9, 3389 (1965). 71. K. H. Altgelt, J. C. Moore, in: M. J. R. Cantow (Ed.), "Polymer Fractionation" Academic Press, London, 1967. 72. K. H. Altgelt, in: J. C. Giddings, R. A. Keller (Eds.), "Advances in Chromatography", vol 7, Marcel Dekker, New York. 1968. 73. K. H. Altgelt, L. Segal Eds., "Gel Permeation Chromatography", Marcel Dekker, New York, 1971. 74. J. M. Alvarino, A. Bello, G. M. Guzman, Anales Quim. (Madrid), 66, 105 (1970). 75. J. M. Alvarino, M. L. Hernandez, L. Lain, M. De Renobales, A. Torre, Eur. Polym. J., 14, 991 (1978). 76. K. Alyuriik, T. Ozden, N. Colak, Polymer, 27,-2009 (1986). 77. K. Alyiiriik, K. Hartani, Polymer, 30, 2328 (1989). 78. A. J. Amass, E. W. Duck, J. R. Hawkins, J. M. Locke, Eur. Polym. J., 8, 781 (1972). 79. M. R. Ambler, R. D. Mate, J. Polym. Sci., Polym. Chem. Ed., 10, 2677 (1972).
80. M. R. Ambler, D, Mc Intyre, J. Appl. Polym. ScL, 21, 3237 (1977). 81. M. R. Ambler, J. Polym. ScL, Polym. Lett. Ed., 14, 683 (1978). 82. M. R. Ambler, W. G. Stevenson, L. J. Fetters, Polymer, 19, 48 (1978). 83. R. J. Ambrose, J. Appl. Polym. ScL, 15, 1297 (1971). 84. R. J. Ambrose, W. L. Hergenrother, J. Polym. ScL Polym. Lett. Ed., 14, 603 (1976). 85. Y. Amerik, J. E. Guillet, Macromolecules, 4, 375 (1971). 86. P Ammendola, T. Taucredi, A. Zambelli, Macromolecules, 19, 307 (1986). 87. K. Anandakumaran, C. C. Kuo, S, Mukherji and A. E. Woodward, J. Polym. ScL, Polym. Chem. Ed., 20, 1669 (1982). 88. K. Anandakumaran, W. Herman, A. E. Woodward, Macromolecules, 16, 563 (1983). 89. V. S. Ananthanarajanan, R. H. Andreatta, D. Poland, H. A. Scheraga, Macromolecules, 4, 417 (1971). 90. K. B. Anderson, A. Holmstrom, E. M. Sorvik, Makromol. Chem., 166, 247 (1978), 91. G. D. Andrews, A. Vatvars, Macromolecules, 14, 1603 (1981). 92. G. D. Andrews, A. Vatvars, G. Pruckmayr, Macromolecules, 15, 1580 (1982). 93. A. P. Andreyev, I. A. Vakhtina, O. G. Tarakanov, Polym. ScL USSR, 22, 2877 (1980); Vysokomol. Soedin. A, 22, 2627 (1980). 94. G. A. Andreyeva, S. R Mitsengendler, K. I. Sokolova, A. A. Korotkov, Polym. ScL USSR, 8, 2391 (1966); Vysokomol. Soedin., 8, 2159 (1966). 95. L. N. Andreyeva, S. V. Bushin, A. I. Mashoshin, Ye. B. Lysenko, K. P. Smirnov, V. N. Yemel'yanov, V. N. Tsvetkov, Polym. ScL USSR, 24, 2405 (1982); Vysokomol. Soedin. A, 24, 2101 (1982). 96. K. A. Andrianov et al., Vysokomol. Soedin., 3, 1692 (1961). 97. K. A. Andrianov, S. Ye. Yakushkina, L. N. Guniava, Poly. Sci. USSR, 8, 2398 (1966); Vysokomol. Soedin., 8, 2166 (1966). 98. K. A. Andrianov, V. I. Pakhomov, V. M. Gel'perina, D. N. Mukhina, Polym. Sci. USSR, 8, 1787 (1966); Vysokomol. Soedin., 8, 1618 (1966). 99. K. A. Andrianov, B. G. Zavin, N. V Pertsova, Polym. Sci. USSR, 10, 49 (1968); Vysokomol. Soedin. A, 10, 46 (1968). 100. K. A. Andrianov, 1.1. Tverdokhlebova, S. A. Pavlova, B. G. Zavin, J. Polym. Sci. C, 22, 741 (1969). 101. K. A. Andrianov, B. G. Zavin, G. F. Sablina, Polym. Sci. USSR, 14, 1294 (1972); Vysokomol. Soedin. A, 14, 1156 (1972). 102. K. A. Andrianov, S. A. Paulova, L I. Tverdokhlebova, V N. Yemeryanov, T. A. Larina, A. Yu. Rabkina, Polym. Sci. USSR, 14, 2628 (1972); Vysokomol. Soedin. A, 14, 2246 (1972). 103. K. A. Andrianov, A. A. Zhdanov, B. G. Zavin, G. F. Sablina, Polymer Sci. USSR, 14, 2078 (1972); Vysokomol. Soedin. A, 14, 1855 (1972).
104. K. A. Andrianov, S. A. Pavlova, 1.1. Tverdokhlebova, N. V. Pertsova, V A. Temnikovskii, Polym. Sci. USSR, 14, 2035 (1972); Vysokomol. Soedin. A, 14, 1816 (1972). 105. K. A. Andrianov, S.-S. A. Pavlova, I. P Tverdokhlebova, N. V Pertsova, V A. Temnikovskii, L. N. Pronina, Polym. Sci. USSR, 19, 532 (1977); Vysokomol. Soedin. A, 19, 466 (1977). 106. K. A. Andrianov, 1.1. Tverdokhlebova, I. I. Mamayeva, A. Yu. Rabkina, B. G. Zavin, V. M. Men'shov, A. K. Chekalov, S.-S. A. Pavlova, Polym. Sci. USSR, 20, 1857 (1976); Vysokomol. Soedin. A, 20, 1646 (1978). 107. F. Andruzzi, D. Lupinacci, P. L. Magagnini, Macromolecules, 13, 15 (1980). 108. D. J. Angier, D. T. Turner, J. Polym. Sci., 28, 265 (1958). 109. D. J. Angier, R. J. Cereza, W. F Watson, J. Poiym. Sci., 34, 699 (1959). 110. F. J. Ansorena, J. J. Iruin, G. M. Guzman, Eur. Polym. J., 16, 165 (1980). 111. F J . Ansorena, J. J. Iruin, G. M. Guzman, J. Polym. Sci. Polym. Chem. Ed., 18, 173 (1980). 112. F J. Ansorena, L. M. Revuelta, G. M. Guzman, J. J. Iruin, Eur. Poly J., 18, 19 (1982). 113. M. Antonietti, S. Heinz, M. Schmidt, Ch. Rosenauer, Macromolecules, 27, 3276 (1994). 114. M. Antonietti, A. Briel, C. Tank, Acta Polym., 46, 254 (1995). 115. E. V. Anufrieva, T. M. Birshtein, T. N. Nekrasova, O. B. Ptitsyn, T. V. Sheveleva, J. Polym. Sci. C, 16, 3519(1968). 116. S. Aoshima, T. Higashimura, Macromolecules, 22, 1010 (1989). 117. K. Arai, T. Kotaka, Y. Kitano, K. Yoshimura, Macromolecules, 13, 1670 (1980). 118. K. Araki, Y. Imamura, Makromol. Chem. 183, 1334 (1982). 119. T. Araki, F. Nogami, H. Tsukube, K. Nagata, S. Iyoshi, J. Polym. Chem. Ed., 16, 1037 (1978). 120. M. A. de Araujo, R. Stadler, Makromol. Chem., 189, 2169 (1988). 121. P. Archambault, R. E. Prud'homme, J. Polym. Sci. Polym. Phys. Ed., 18, 35 (1980). 122. I. Arendt, H. J. Schenck, Kunststoffe, 48, 111 (1958). 123. S. Arichi, S. Mitsuta, N. Sakamoto, H. Murata, Bull. Chem. Soc. Japan, 39, 428 (1966). 124. S. Arichi, M. J. Pedram, J. M. G. Cowie, Eur. Polym. J., 5, 107 (1979). 125. R. S. Aries, A. P. Sachs, J. Polym. Sci., 21, 551 (1956). 126. J.-P. Arlie, Y Chauvin, D. Commereve, J.-P. Soufflet, Makromol. Chem., 175, 861 (1974). 127. L. H. Arond, H. P Frank, J. Phys. Chem, 58, 953 (1954). 128. M. Arpin, C. Strazielle, Makromol. Chem., 177,293 (1976). 129. M. Arpin, C. Strazielle, Makromol. Chem., 177,581 (1976). 130. M. Arpin, C. Strazielle, Polymer, 18, 591 (1977). 131. F. Arranz, M. Galin, J. C. Galin, P. Rempp, IUPAC Boston, vol. 1,432(1971). 132. F. Arranz, J. C. Galin, Makromol. Chem., 152, 185 (1972). 133. F. Arranz, M. Sanchez-Chaves, A. Molinero, R. Martinez, Makromol. Chem., Rapid. Commun., 4, 29 (1983).
134. R. Arshady, B. S. R. Reddy, M. H. George, Polymer, 25, 1161 (1984). 135. S. M. Arulsamy, M. Santappa, Makromol. Chem., 178, 2451 (1977). 136. N. Asada, H. Hosozawa, A. Toyoda, H. Sato, Rubber Chem. Techno!., 63, 181 (1990). 137. J. Asakura, Y. Matsubara, M. Yoshihara, T. Maeshima, J. Macromol. Sci. Part A: Chem., 14, 803 (1980). 138. R. Asami, M. Gyi, M. Takaki, T. Ikuta, Polym. J., 10, 301 (1978). 139. R. Asami, M. Takaki, K. Kite, E. Asakura, Polym. Bull, 2, 713 (1980). 140. H. Asaoka, A. Suzuki, J. Soc. Text. Cell lnd. (Japan), 11, 32 (1955). 141. H. Ashitaka, H. Ichikawa, H. Ueno, A. Nagasaka, J. Polym. Sci. Polym. Chem. Ed., 21, 1853 (1983). 142. H. Ashitaka, K. Jinda, H. Ueno, J. Polym. Sci., Polym. Chem. Ed., 21, 1951 (1983). 143. J. S. Aspler, C. E. Hoyle, J. E. Guillet, Macromolecules, 11, 925 (1978). 144. J. Asrar, Macromolecules, 27, 4036 (1994). 145. T. Asuke, Y. Chien-Hua, R. West, Macromolecules, 27, 3023 (1994). 146. E. L. Atkin, L. A. Kleintjens, R. Koningsveld, L. J. Fetters, Makromol. Chem., 184, 377 (1984). 147. C. M. L. Atkinson, R. Dietz, Brit. Polym. J., 6, 133 (1974). 148. C. M. L. Atkinson, R. Dietz, Makromol. Chem. 177, 213 (1976). 149. C. M. L. Atkinson, R. Dietz,Eur. Poly. J., 15, 21 (1979). 150. C. M. L. Atkinson, R. Dietz, M. A. Francis, Polymer, 21, 891 (1980). 151. M. Augenstein, M. Stickler, Makromol. Chem., 191, 415 (1990). 152. C. Auschra, R. Stadler, I. G. Voight-Martin, Polymer, 34, 2081 (1993). 153. M. R. Aven, C. Cohen, Makromol. Chem., 189, 881 (1988). 154. T. P. Avilova, V. T. Bykov, G. Ya. Zolotar, Polym. Sci. USSR, 7, 917 (1965); Vysokomol. Soedin., 7, 831 (1965). 155. T. P. Avilova, V. T. Bykov, V. P Marinin, N. P. Shapkin, Polym. Sci. USSR, 7, 2377 (1965); Vysokomol. Soedin., 7, 2168 (1965). 156. T. P. Avilova, V. T. Bykov, L. A. Kondratenko, Polym. Sci. USSR, 8, 12 (1966), Vysokomol. Soedin., 8, 14 (1966). 157. C. W. Ayers, Analyst, 78, 382 (1953). 158. M. A. Azzen, U. S. Yousef, G. Pierre, Eur. Polym. J., 32,111 (1996). 159. G. N. Babu, A. Narula, S. L. Hsu, J. C. W. Chien, Macromolecules, 17, 2749 (1984). 160. G. N. Babu, R. A. Newmark, J. C. W. Chien, Macromolecules, 27, 3383 (1994). 161. E. Bacque, J.-P. Pillto, M. Birot, J. Dunogues, Macromolecules, 21, 34 (1988). 162. W. J. Badgley, H. F. Mark, J. Phys. Chem., 51, 58 (1947). 163. H. J. Bae, T. Miyashita, M. lino, M. Matsuda, Macromolecules, 21, 26 (1988). 164. X. H. Bae, Z. Fodor, R. Faust, Macromolecules, 30, 198 (1997).
165. M. Baer, J. Polym. Sci. A, 2, 417 (1964). 166. G. Bagby, R. S. Lehrle, J. C. Robb. Makromol. Chem., 119, 122 (1968). 167. G. Bagby, R. S. Lehrle, J. C. Robb. Polymer, 9, 284 (1968). 168. F. Bai, S. E. Webber, Macromolecuies, 21, 625 (1988). 169. M. D. Baijal, R. M. Diller, F R. Pool, Polym. Preprints, 10 (2), 1464 (1969). 170. M. D. Baijal, K. M. Kanppila, Polym. Eng. Sci., 11, 182 (1971). 171. D. Bailey, D. Tirrell, C. Pinazzi, O. Vogl, Macromolecules, 11, 312 (1978). 172. F. E. Bailey, G. M. Powell, K. L. Smith, lnd. Eng. Chem., 50, 8 (1958). 173. C. Bailly, D. Daoust, R. Legras, J. P. Mercier, A. Lapp, CV. Sterazielle, Polymer, 27, 1410 (1986). 174. Ch. Bailly, M. Daumerie, R. Legras, J. P. Mercier, J. Polym. Sci., Polym. Phys. Ed., 23, 493 (1985). 175. D. R. Bain, J. D. Wagner, Polymer, 25, 403 (1984). 176. F C. Baines, J. C. Bevington, Eur. Polym. J., 3, 593 (1967). 177. H. E. Bair, D. R. Falcone, M. Y. Hellman, G. E. Johnson, P. G. Kelleher, J. Appl. Polym. Sci., 26, 1777 (1981). 178. R Bajaj, S. K. Varshney, A. Misra, J. Polym. Sci., Polym. Chem. Ed., 18, 295 (1980). 179. K. Bak, G. Elefante, J. E. Mark, J. Phys. Chem., 71, 4007 (1967). 180. K. Bak, G. Elefante, J. E. Mark, Polym. Preprints, 8 (2), 998 (1967). 181. B. Baker, P. J. T. Tait, Polymer, 8, 225 (1967). 182. C. A. Baker, R. J. P. Williams, J. Chem. Soc, 2352 (1956). 183. R. W. Baker, J. Appl. Poiym. Sci., 13, 369 (1969). 184. N. F Bakeyev, I. S. Lakoba, Polym. Sci. USSR, 14, 2849 (1972); Vysokomol. Soedin. A, 14, 2443 (1972). 185. G. Balbontin, D. Dainelli, M. Galimberti, G. Paganetto, Makromol. Chem., 193, 693 (1992). 186. G. Balbontin, I. Camurati, T. Dall'occo, A. Finotti, R. Franzese, G. Vecellio, Angew. Makromol. Chem., 219, 139 (1994). 187. S. T. Balke, R. Patel, 29th Canadian Chemical Engineering Conference, Sarnia, Ontario, 1979. 188. D. G. H. Ballard, J. V. Dawkins, Makromol. Chem., 148, 195 (1971). 189. D. G. H. Ballard, J. V. Dawkins, J. M. Key, P. W. Van Lienden, Makromol. Che., 165, 173 (1973). 190. D. G. H. Ballard, J. V Dawkins,, Eur. Polym. J., 10, 829 (1974). 191. D. G. H. Ballard, P. Cheshire, G. W. Longman, J. Schelten, Polymer, 19, 379 (1978). 192. G. D. Ballova, V. M. Bulatova, K. A. Vylegzhanina, Ye. I. Yegorova, L. L. Sul'zhenko, G. P. Fratkina, Polym. Sci. USSR, 11, 2080 (1969); Vysokomol, Soedin. A, 11, 1827 (1969). 193. C. H. Bamford, G. C. Eastmond, J. Woo, D. H. Richards, Polymer, 23, 643 (1982). 194. A. Banderet, W. Kobryner, Compt. Rend., 244, 604 (1957). 195. T. F. Banigan, Science, 117, 249 (1953). 196. W. Banks, C. T. Greenwood, J. Thomson, Makromol. Chem., 31, 197 (1959).
197. W. Banks, C. T. Greenwood, Makromol. Chem., 67, 49 (1963). 198. W. Banks, C. T. Greenwood, Eur. Polym. J., 4, 249 (1968). 199. W. Banks, C. T. Greenwood, Eur. Polym. J., 4, 377 (1968). 200. W. Banks, C. T. Greenwood, Makromol. Chem., 114, 245 (1968). 201. W. Banks, C. T. Greenwood, D. J. Hourston, Makromol. Chem., I l l , 226 (1968). 202. W. Banks, C. T. Greenwood, D. J. Hourston, Trans. Faraday Soc, 64, 363 (1968). 203. W. Banks, C. T. Greenwood, Polymer, 10, 257 (1969). 204. W. Banks, C. T. Greenwood, J. Sloss, Makromol. Chem., 140, 109 (1970). 205. W. Banks, C. T. Greenwood, J. Sloss, Makromol. Chem., 140, 119(1970). 206. W. Banks, C. T. Greenwood, J. Sloss, Eur. Polym. J., 7, 263 (1971). 207. W. Banks, C. T. Greenwood, Makromol. Chem., 144, 135 (1971). 208. D. W. Bannister, C. S. G. Phillips, R. J. P. Williams, Anal. Chem., 26, 1451 (1954). 209. A. Bar-Dan, A. Zilkha, Eur. Polym. J., 6, 403 (1970). 210. I. A. Baranovskaya, V. Ye. Eskin, Polym. Sci. USSR, 7, 373 (1965); Vysokomol. Soedin., 7, 339 (1964). 211. K. Baranwal, H. Jacobs, J. Appl. Polym. Sci., 13, 797 (1969). 212. A. Barbalata, T. Bohossian, G. Delmas, J. Appl. Polym. Sci., 46,411 (1992). 213. P. C. Barbe, L. Noristi, G. Baruzzi, Makromol. Chem., 193, 229 (1992). 214. G. M. Bardina, A. A. Speranskii, V. K. Murav'ev, V. M. Kharitonov, Khim. Volokna., 26 (1968). 215. A. Barlow, R. S. Lehrle, J. C. Robb, D. Sunderland, Polymer, 8, 537 (1967). 216. W. K. R. Barnikol, G. V. Schulz, Z. Physik. Chem. N. F. (Frankfurt), 47, 89 (1965). 217. J. M. Barrales-Rienda, D. C. Pepper, Eur. Polym. J., 3, 535 (1967). 218. J. M. Barrales-Rienda, D. C. Pepper, Polymer, 8, 337 (1967). 219. J. M. Barrales-Rienda, G. R. Brown, D. C. Pepper, Polymer, 10, 327 (1969). 220. J. M. Barrales-Rienda, Anales Qufm. (Madrid), 66, 767 (1970). 221. J. M. Barrales-Rienda, J. Gonzales Ramos, M. V. Dabrio Bafiuls, Anales Qufm. (Madrid), 67, 651 (1971). 222. J. M. Barrales-Rienda, A. Horta, E. Saiz, J. Macromol. Sci., Part A: Chem., 8, 715 (1974). 223. J. M. Barrales-Rienda, P. A. Galera Gomez, J. Gonzales Ramos, E. Otero Aenlle, Anales Qufm. (Madrid), 76, 49 (1980). 224. J. M. Barrales-Rienda, C. Romero Galicia, A. Horta, Macromolecules, 16, 932 (1983). 225. J. M. Barrales-Rienda, Rev. Plast. Mod. (Madrid), 324, 605 (1983). 226. J. M. Barrales-Rienda, P. A. Galera Gomez, Eur. Polym. J., 20, 1213 (1984).
227. J. M. Barrales-Rienda, P. A. Galera Gonez, A. Horta, E. Saiz, Macromolecules, 18, 2572 (1985). 228. D. Barrera, E. Zylstra, P. T. Lausbury, R. Langer, Macromolecules, 28, 425 (1995). 229. C. A. Barson, J. C Robb, Brit. Polym. J., 3, 53 (1971). 230. M. Bartmann, U. Kowaiczik, Makromol. Chem., 189, 2285 (1988). 231. R. L. Bartosiewicz, C. Booth, A. Marshall, Eur. Polym, J., 10, 783 (1974). 232. A. M. Basedow, K. H. Ebert, H. Ederer, H. Hunger, Makromol. Chem., 177, 1501 (1976). 233. A. M. Basedow, K. H. Ebert, U. Ruland, Makromol. Chem., 179, 1351 (1978). 234. A. M. Basedow, K. H. Ebert, W. Feigenbutz, Makromol. Chem., 181, 1071 (1980). 235. G. L. Bata, J. E. Hazell, L. A. Prince, IUPAC Toronto, Preprint A, 4, 14 (1968). 236. G. L. Bata, J. E. Hazell, L. A. Prince, J. Polym. Sci. C, 30, 157 (1970). 237. F. S. Bates, R. E. Cohen, C. V. Barney, Macromolecules, 15, 589 (1982). 238. T. W. Bates, J. Biggins, K. J. Ivin, Makromol. Chem., 87, 180 (1965). 239. T. W. Bates, K. J. Ivin, Polymer, 8, 263 (1967). 240. H. Batzer, Makromol. Chem., 5. 66 (1950). 241. H. Batzer, F. Wiloth, Makromol, Chem., 8, 41 (1952). 242. H. Batzer, Makromol. Chem., 12, 145 (1954). 243. H. Batzer, A. Moeschle, Makromol. Chem., 22, 195 (1957). 244. H. Batzer, A. Nisch, Makromol. Chem., 22, 131 (1957). 245. H. Batzer, S. A. Zahir, J. Appl. Polym. Sci., 21, 1843(1977). 246. B. J. Bauer, R. M. Briber, C. C. Han, Macromolecules, 22, 940 (1989). 247. B. J. Bauer, B. Hanley, Y, Muroga, Polymer Commun., 30 19 (1989). 248. H. Baum, G. A. Gilbert, H. L. Wood, J. Chem. Soc., 4047 (1955). 249. H . Baum. G. A. Gilbert, J. Colloid. Sci., 11, 428 (1956). 250. G. F. Bauman, S. Steingiser, J. Polym. Sci. A, 1, 3396 (1963). 251. J. H. Baxendale, S. By water, M. G. Evans, Trans. Faraday Soc, 42, 675 (1946). 252. B. Baysal, G. Adler, D. Ballantine, A. Glines, J. Polym. Sci. B, 1, 257 (1963). 253. B. Baysal, J. Polym. Sci. C, 4, 935 (1963). 254. H. C. Beachell, J. C. Peterson, Polym. Preprints, 8(1), 456 (1967). 255. H. C. Beachell, J. C. Peterson, J. Polym. Sci. A-I, 7, 2021 (1969). 256. W. H. Beattie, C. Booth, J. Appl. Polym. Sci., 7, 508 (1963). 257. W. H. Beattie, J. Polym. Sci. A-I, 3, 527 (1965). 258. J. Beaumais, G. Muller, J.-C. Fenyo, Polym. Bull., 2, 449 (1980). 259. M. Becerra, D. Radic, L. Gargallo, Makromol. Chem., 179, 2241 (1978). 260. G. Beck, J. Kiwi, D. Lindenau, W. Schnabel. Eur. Polym. J., 10, 1069 (1974).
261. G. P. van der Beck, M. A. Cohen Stuart, G. J. Fleer, Macromolecules, 24, 3553 (1991). 262. C. G. Beddows, H. Gil, J. T. Guthrie, Polym. Bull., 3, 645 (1980). 263. D. R. Beech, C. Booth, J. Polym. Sci. A-2, 7, 575 (1969). 264. D. R. Beech, C. Booth, I. H. Hillier, C. J. Pickles, Eur. Polym. J., 8, 799 (1972). 265. D. R. Beech, C. Booth, D. V. Dodgson, R. R. Shaipe, J. R. S. Waring, Polymer, 13, 73 (1972). 266. D. R. Beech, C. Booth, Polymer, 13, 355 (1972). 267. R. B. Beevers, J. Polym. Sci. A-I, 2, 5257 (1964). 268. S. I. Beilin, Y. L. Vollershtein, B. A. Dolgoplosk, V. A. Kargin, M. N. Shvarts, T. V. Fremel, Polym. Sci. USSR, 10, 1 (1968); Vysokomol. Soedin. A, 10, 3 (1968). 269. G. Beinert, P. Chaumont, P. Rempp, J. Herz, Eur. Polym. J., 20, 837 (1984). 270. Ye. A. Bekturov, L. A. Bimendina, S. V. Bereza, Polym. Sci. USSR, 10, 2468 (1970); Vysokomol. Soedin. A, 12, 2179 (1970). 271. Ye. A. Bekturov, R. Ye. Legkunets, Polym. Sci. USSR, 12, 702 (1970), Vysokomol. Soedin. A, 12, 626 (1970). 272. E. A. Bekturov, Sh. Sh. Shajakhmetov, S. E. Kudaibergenov, Polymer, 21, 787 (1980). 273. M. Bel'govskii, V. M. Gol'dberg, I. A. Krasotkina, D. Ya. Toptygin, Polym. Sci. USSR, 13, 758 (1971); Vysokomol. Soedin. A, 13, 666 (1971). 274. M. Belbachir, B. Boutevin, Y. Pietrasanta, G. Rigal, Makromol. Chem., 183, 2347 (1982). 275. B. G. Belenkii, L. Z. Vilenchik, "Modern Liquid Chromatography of Macromolecules", Elsevier, Amsterdam, 1983. 276. A. Bello, J. M. Barrales-Rienda, G. M. Guzman, in: J. Brandrup, E. H. Immergut, (Eds.), "Polymer Handbook". 2nd. ed., Wiley, New York, 1989. 277. A. Bello, J. M. Barrales-Rienda, G. M. Guzman, in: J. Brandrup, E. H. Immergut, (Eds.), "Polymer Handbook". 3rd. ed., Wiley, New York, 1989. 278. G. P. Belov, S. K. Kaltochikhina, L. I. Atanasova, Polym. Sci. USSR, 8, 2046 (1966); Vysokomol. Soedin., 8, 1852 (1966). 279. G. P. Belov, A. P Lisitskaya, N. M. Chirkov, V. I. Tsvetkova, Vysokomol. Soedin. A, 9, 1269 (1967); Polymer Sci. USSR, 9, 1417 (1967). 280. G. P. Belov, A. P. Lisitskaya, T. I. Solovyeva, N. M. Chirkov, Eur. Polym. J., 6, 29 (1970). 281. G. P. Belov, V. I. Kuznetsov, T. I. Solovyeva, N. M. Chirkov, S. S. Ivanchev, Makromol. Chem., 140, 213 (1970). 282. G. P. Belov, V. N. Belova, L. N. Raspopov, Y. V. Kissin, K.M. A. Brikenshtein, N. M. Chirkov, Polym. J., 3? 681 (1972). 283. L. Beltzung, C. Strazieile, Makromol. Chem., 185, 1145 (1984). 284. L. Beltzung, C. Strazieile, Makromol. Chem., 185, 1155 (1982). 285. M. Beltzung, C. Picot, R Rempp, J. Herz, Macromolecules, 15 1594(1982). 286. V. M. Belyayev, V. P. Budtov, S. Ya. Frenkel', N. V Daniel, Polym. Sci. USSR., 14, 2724 (1972); Vysokomol. Soedin. A, 14,2335 (1972).
287. M. Benchanabe, R. Van Leemput, J. Polym. Sci. Polym. Phys. Ed., 23, 991 (1985). 288. W. L Bengough, G. F. Grant, Eur. Polym. J., 7, 203 (1971). 289. M. A. Benincasa, J. C. Gidding, Anal. Chem., 64, 790 (1992). 290. A. Benkhira, E. Franta, M. Rawiso, J. Francois, Macromolecules, 27, 3963 (1994). 291. H. Benoit, Z. Griibisic, P. Rempp, D. Decker, J.-G. Zilliox, J. Chim. Phys., 63, 1507 (1966). 292. K. G. Berdnikova, G. V. Tarasova, V. S. Skazka, N. A. Nikitin, G. V. Dyuzhev, Polym. Sci. USSR, 6, 2280 (1964); Vysokomol. Soedin. 6, 2057 (1964). 293. D. Berek, D. Lath, V. Durdovic, J. Polym. Sci. C, 16, 659 (1967). 294. D. Berek, G. Katuscakova, I. Novak, Brit. Polym. J., 9, 62 (1977). 295. A. Beresniewicz, J. Polym. Sci., 35, 321 (1959). 296. S. V. Bereza, Ye. A. Bekturov, S. R. Rafikov, Polym. Sci. USSR, 11, 1907 (1969); Vysokomol. Soedin. A, 11, 1681 (1969). 297. A. A. Berg. V. G. Kozlov, V. P. Budtov, Yu. B. Monakov, S. R. Rafikov, Polym. Sci. USSR, 22,601 (1980); Vysokomol. Soedin., A, 22, 543 (1980). 298. K. C. Berger, G. V. Schulz, Makromol. Chem., 136, 221 (1970). 299. K. C. Berger, Makromol. Chem., 175, 2121 (1974). 300. M. N. Berger, B. M. Tidswell, IUPAC Helsinki, vol. Ill, Preprint II 63 (1972). 301. M. N. Berger, A. Cervenka, Eur. Polym. J., 10, 205 (1974). 302. J.-Y. Bergeron, L. H. Dao, Macromolecules, 25, 3332 (1992). 303. H. Berghmans, G. Smets, Makromol. Chem., 115, 187 (1968). 304. H. Berghmans, A. Donkers, L. Frenay, W. Stoks, F. E. De Schryver, P. Moldenars, J. Mewis, Polymer, 28, 97 (1987). 305. C. Bergstrom, E. Avela, J. Appl. Polym. Sci., 23, 163 (1979). 306. J. B. Berkowitz, M. Yamin, R. M. Fuoss, J. Polym. Sci., 28, 69 (1958). 307. A. A. Berlin, V. A. Grigorovskaya, O. G. Sel'skaya, Polym. Sci. USSR, 12, 2879 (1970); Vysokomol. Soedin. 12-A, 2541 (1970). 308. I. V. Berlinova, a., Amzil, N. G. Vladimirov, J. Polym. Sci. Part. A: Polym. Chem., 33, 1751 (1995). 309. D. E. Bernal, Rev. General Caoutchouc, 32, 889 (1955). 310. G. C. Berry, L. M. Hobbs, V. C. Long, Polymer, 5, 31 (1964). 311. G. C. Berry, R. G. Craig, Polymer, 5, 19 (1964). 312. G. C. Berry, H. Nomura, K. G. Mayhan, J. Polym. Sci. A-2, 5, 1 (1967). 313. G. C. Berry, S. P. Yen, Adv. Chem. Sen, 91, 734 (1969). 314. G. C. Berry, E. F. Casassa, P-Y Liu, J. Polym. Sci. Part B: Polym. Phys., 25, 673 (1987). 315. J. C. Bevington, G. M. Guzman, H. W. Melville, Proc. Roy. Soc. (London) A, 221, 437 (1954). 316. S. N. Bhadani, S. L. Tseng, D. G. Gray, Makromol. Chem., 184, 1727 (1983).
317. G. S. Bhargava, H. U. Khan, K. K. Bhattacharyya, J. Appl. Polym. ScL, 23, 1181 (1979). 318. L.-K. Bi, L. J. Fetters, Macromolecules, 9, 732 (1976). 319. Y. Bi, D. C. Neckers, Macromolecules, 27, 3683 (1994). 320. E. Biagini, B. Pedemonte, E. Pedemonte, S. Russo, A. Turturro, Makromol. Chem., 183, 2131 (1982). 321. U. Bianchi, V. Magnasco, J. Polym. ScL, 41, 177 (1959). 322. U. Bianchi, M. Dalpiaz, E. Patrone, Makromol. Chem., 80, 112(1964). 323. U. Bianchi, E. Patrone, M. Dalpiaz, Makromol. Chem., 84, 230 (1965). 324. U. Bianchi, A. Peterlin, J. Poiym. Sci. A-2, 6, 1011 (1968). 325. U. Bianchi, M. Bruzzone, M. Mormino, J. Polym. Sci. Polym. Lett. Ed., 15, 345 (1977). 326. J. P. Bianchi, F. P. Price, B. H. Zimm, J. Polym. Sci., 25, 27 (1957). 327. E. Bigdeli, R. W. Lenz, B. Oster, R. D. Lundberg, J. Polym. Sci., Polym. Chem. Ed., 16, 469 (1978). 328. P. Biernacki, S. Chrzczonowicz, M. Wlodarczyk, Eur. Polym. J., 7, 739 (1971). 329. R. Bill, M. Droesher, G. Wegner, Makromol. Chem., 182, 1033 (1981). 330. N. C. Billingham, L. M. Boxall, A. D. Jenkins, P. D. Lees, Eur. Polym. J., 10, 981 (1974). 331. F. W. Billmeyer, W. H. Stockmayer, J. Polym. ScL, 5, 121 (1950). 332. F. W. Billmever, R. N. Kelley, Polym. Preprints, 8 (2), 1259 (1967). 333. F. W. Billmeyer, I. Katz, Macromolecules, 2, 105 (1969). 334. J. R Billot, A. Douy, B. Gallot, Makromol. Chem., 178 1641 (1977). 335. L. A. Bimendina, V. V. Roganov, Ye. A. Kekturov, Polym. Sci. USSR, 16, 3274 (1974); Vysokomol. Sodin. A, 16, 2810 (1974). 336. R. Biran, J. V. Dawkins, Eur. Polym. J., 20, 129 (1984). 337. A. W. Birley, J. V. Kawkins, D. Kyriacos, Polymer, 21, 632 (1980). 338. J. Bischoff, V. Desreux, Bull. Soc. Chim. Beiges, 60, 137 (1951). 339. J. Bischops, J. Polym. Sci., 17, 81 (1955). 340. B. Biyani, A. J. Campagna, D. Daruwalla, C. M. Srivastava, P. Erlich, J. Macromol. ScL, Part A: Chem., 9, 327 (1975). 341. D. A. Blackadder, G. J. Le Poidevin, Polymer, 18, 547 (1977). 342. W. R. Blackmore, W. Alexander, Can. J. Chem., 39, 1888 (1961). 343. I. V. Blagodatskikh, L. V. Dubrovina, S.-S. A. Pavlova, Polym. Sci. USSR, 24,400 (1982); Vysokomoi. Soedin. A, 24, 367 (1982). 344. D. E. Blair, J. Appl. Polym. Sci., 14, 2469 (1970). 345. D. E. Blair, Polym. Preprints, 11 (2), 967 (1970). 346. L. P. Blanchard, M. D. Baijal, Polym. preprints, 7 (2), 944 (1966). 347. L. P. Blanchard, M. D. Baijal, J. Polym. Sci. A, 15, 2045 (1967). 348. L.-R Blanchard, V. Hornof, H.-H. Lam, S. L. Malhotra, Eur. Polym. J., 10, 1057 (1974).
349. L. P. Blanchard, G. G. Gabra, V. Hornof, S. L. Malhotra, J. Polym. Sci., Polym. Chem. Ed., 13, 271 (1975). 350. L. P. Blanchard, G. G. Gabra, S. L. Malhotra, J. Polym. Sci., Polym. Chem. Ed., 13, 1619 (1975). 351. M. D. Blanco, J. M. Teijon, I. Katime, Eur. Polym. J., 26, 249 (1990). 352. M. Blanda, P-L. Reschiglian, F. Dondi, R. Beckett, Polym. Int., 33, 61 (1994). 353. M. J. Blandamer, M. F. Fox, E. Powell, J. W. Stafford, Makromol. Chem., 124, 222 (1969). 354. F. Blasco, E. Riande, J. Polym. Sci., Polym. Phys. Ed., 21, 835 (1983). 355. A. Bledzki, M. I. Prosinska, D. Berek, J. Polym. Sci., Polym. Chem. Ed., 16, 107 (1978). 356. A. Bledzki, H. Balard, D. Braun, Makromol. Chem., 189, 2807 (1988). 357. T. Bleha, T. Spychaj, R. Vondra, D. Berek, J. Polym. Sci., Polym. Phys. Ed., 21, 1903 (1983). 358. H. Block, J. J. Gosling, S. M. Walker, Polymer, 25, 1465 (1984). 359. G. F. Bloomfield, Rubber Chem. Technol., 24, 737 (1951). 360. Z. Blumczynski, T. Skowzonski, W. Laskawski, Angew. Makromol. Chem., 97, 115 (1981). 361. D. D. BIy, Polym. Preprints, 8 (2), 1234 (1967). 362. E. G. Bobalek, E. R. Moore, S. S. Levy, C. C. Lee, J. Appl. Polym. Sci., 8, 625 (1964). 363. L. L. Boehm, R. H. Casper, G. V. Schulz, J. Polym. Sci., Polym. Phys. Ed., 12, 239 (1974). 364. Ye. P. Bogomolova, A. A. Trapeznikov, V. N. Fedotov, Vysokomol. Soedin. A, 12, 1216 (1970); Polym. Sci. USSR, 12, 1375 (1970). 365. V. Bohackova, J. Polacek, Z. Grubisic, H. Benoit, J. Chim. Phys., 66, 207 (1969). 366. V. Bohackova, E. Fiserova, Z. Gallot-Grubisic, J. Polacek, M. Stolka, J. Chim. Phys., 67, 777 (1970). 367. M. Bohdanecky, Coll. Czech. Chem. Commun., 29, 876 (1964). 368. M. Bohdanecky, Coll. Czech. Chem. Commun., 31, 4095 (1966). 369. M. Bohdanecky, Z. Tuzar, M. Stoll, R. Chromecek, Coll. Czech. Commun., 33, 4104 (1968). 370. M. Bohdanecky, V. Petrus, P. Kratochvil, Coll. Czech. Chem. Commun., 33, 4089 (1968). 371. M. Bohdanecky, V. Petrus, P. Kratochvil, Coll. Czech. Chem. Commun., 34, 1168 (1969). 372. M. Bohdanecky, Z. Tuzar, Coll. Czech. Chem. Commun., 34, 3318 (1969). 373. M. Bohdanecky, Coll. Czech. Chem. Commun., 35, 1972 (1970). 374. M. Bohdanecky, H. Bazilova, J. Kopecek, Eur. Polym. J., 10, 405 (1974). 375. G. Boileux-Steffan, Q. T. Pham, Makromol. Chem., 185, 877 (1984). 376. D. Bolikal, S. L. Regen, Macromolecules, 17, 1287 (1984). 377. L. S. Bolotnikova, T. I. Samsonova, Polym. Sci. USSR, 6, 590 (1964); Vysokomol. Soedin., 6, 533 (1964).
378. K. J. Bombaugh, W. A. Dark, R. N. King, J. Polym. Sci. C21, 131 (1968). 379. K. A. Boni, F. A. SIiemers, P. B. Stickney, Polym. Preprints., 8 (i), 446(1967). 380. K. A. Boni, F. A. SIiemers, P. B. Stickney, J. Polym. Sci. A-2, 6, 1567 (1968). 381. K. A. Boni, F. A. SIiemers, P. B. Stiekney, J. Polym. Sci. A-2, 6, 1579 (1968). 382. G. Bonta, B. M. Gallo, S. Russo, C. Uliana, Polymer, 17, 217 (1976). 383. C. Booth, L. R. Beason, J. Polym. Sci., 42, 108 (1960). 384. C. Booth, L. R. Beason, J. Polym. Sci., 42, 99 (1960). 385. C. Booth, M. N. Jones, E. Powell, Nature (London), 196, 772 (1962). 386. C. Booth, Polymer, 4, 471 (1963). 387. C. Booth, W. C. E. Higginson, E. Powell, Polymer, 5, 479 (1964). 388. C. Booth, C. Price, Polymer, 7, 85 (1966). 389. C. Booth, R. Orme, Polymer, 11, 626 (1970). 390. C. Booth, D. V. Dodgson, I. H. Hillier, Polymer, 11, 11 (1970). 391. C. Booth, J. M. Bruce, M. Buggy, Polymer, 13, 475 (1972). 392. C. Booth, J.-L. Forget, I. Georgii, W. S. Li, Price, Eur. Polym. J., 16, 255 (1980). 393. O. V. Boronina, V. A. Kasaikin, M. B. Lachinov, V. P. Zubov, V. A. Kavanov, Polym. Sci. USSR, 22,2028 (1980); Vysokomol. Soedin. A, 22, 1850 (1980). 394. J. Borrajo, C. Cordon, J. M. Carella, S. Toso, G. Goizueta, J. Polym. Sci. Part B: Polym. Phys., 33, 1627 (1995). 395. P. Borrell, G. Riess, A. Banderet, Bull. Soc. Chim. France, 2, 354(1961). 396. C. Borri, S. Brueckner, V. Crescenzi, G. Delia Fortuna, A. Mariano, R Scarazzato, Eur. Polym. J., 7, 1515 (1971). 397. E. Borsig, M. Lazar, M. Capla, S. Florian, Angew. Makromol. Chem., 9, 89 (1969). 398. E. Bortel, A. Kochanowski, Makromol. Chem. Rapid Commun., 1, 205 (1980). 399. E. Bortel, M. Stysto, Makromol. Chem., 189, 1155 (1988). 400. R. Bortolin, S. S. D. Brown, B. Parbhoo, Macromolecules, 23, 2465 (1990). 401. J. J. Bourguignon, H. Bellisent, J. C. Galin, Polymer, 18, 937 (1977). 402. B. Boutevin, M. Maliszewicz, Y. Pietrasanta, Makromol. Chem., 183, 2333 (1982). 403. T. N. Bowner, E. Reichmams, C. W. Wilkins Jr., M. Y. Hellman, J. Polym. Sci., Polym. Chem. Ed., 20, 2661 (1982). 404. R. F. Boyer, J. Polym. Sci., 8, 73, 197 (1952). 405. E. M. Bradbury, C. Crane-Robinson, H. W. E. Rattle, Polymer, 11, 277 (1970). 406. E. M. Bradbury, C. Crane-Robinson, P. G. Hartman, Polymer, 14, 543 (1973). 407. J. G. Braks, R. Y. M. Huang, Makromol. Chem., 185, 317 (1984). 408. D. A. Brant, B. Kwon Min, Macromolecules, 2, 1 (1969). 409. D Braun, W. Fischer, Makromol. Chem., 85, 155 (1965).
410. D. Braun, F-J. Quesada Lucas, W. Neumann, Makromol. Chem., 127, 253 (1969). 411. D. Braun, D. Chaudhari, Makromol. Chem., 133, 241 (1970). 412. D. Braun, D. Chaudhari, W. Maechtle, Angew. Makromol. Chem., 15 83 (1971). 413. D. Braun, V. Legradic, Angew. Makromol. Chem., 25, 193 (1972). 414. D. Braun, J. Arndt, Angew. Makromol. Chem., 73, 143 (1978). 415. D. Braun, W. Pandjojo, Angew. Makromol. Chem., 80, 195 (1979). 416. D. Braun, G. Holzer, R. I. Noriega, Angew. Makromol. Chem., 89, 111 (1980). 417. D. Braun, P. Guenther, W. Pandjojo, Angew. Makromol. Chem., 102, 147 (1982). 418. D. Braun, E. Bezdadea, M. Dethloff, Angew. Makromol. Chem., 147, 49 (1987). 419. D. Braun, S. Ross, Angew. Makromol. Chem., 228, 185 (1995). 420. D. Braun, C. Heittig-Rupaner, Angew. Makromol. Chem., 225, 83 (1995). 421. J. Bravo, M. P. Tarazona, E. Saiz, Macromolecules, 24, 4089 (1991). 422. J. Bravo, M. P. Tarazona, E. Saiz, Macromolecules, 25, 5625 (1992). 423. J. W. Breitenbach, H. G. Burger, Makromol. Chem., 54, 60 (1962). 424. J. W. Breitenbach, H. G. Burger, A. Schindler, Monatsh. Chem., 93, 160 (1962). 425. J. W. Breitenbach, H. Gabler, O. F. Olaj, Makromol. Chem., 81, 32(1965). 426. J. W. Breitenbach, B. A. Wolf, Makromol. Chem., 108, 263 (1967). 427. P Bres, D. H. Richards, M. J. Stewart, M. Viguier, Brit. Polym, J., 16, 1 (1984). 428. S. E. Bresler, I. Ya. Poddubnyi, S. Ya. Frenkel, Zh. Tekhn. Fiz., 23, 1521 (1953). 429. S. E. Bresler, S. Ya. Frenkel, Zh. Tekhn. Fiz., 23, 1502 (1953). 430. S. E. Bresler, I. Y. Poddubnyi, S. Ya. Frenkel, Rubber Chem. Technol., 30, 507 (1957). 431. P. I. Brewer, Polymer, 9, 545 (1968). 432. R. J. Brewer, L. J. Tanghe, S. Bailey, J. T. Burr, J. Polym. Sci. A, 16, 1697 (1968). 433. R. J. Brewer, L. J. Tanghe, S. Bailey, J. Polym. Sci. A, 17, 1635 (1969). 434. W. B. Bridgman, J. Am. Chem. Soc, 64, 2349 (1942). 435. S. L. Brimhall, M. N. Myers, K. D. Caldwell, J. C. Giddings, J. Polym. Sci., Polym. Lett. Ed., 22, 339 (1984). 436. G. M. Bristow, B. Westall, Polymer, 8, 609 (1967). 437. G. L. Borde, J. V. Koleske, J. Macromol. Sci., Part A: Chem., 6, 1109 (1972). 438. B. W. Brodman, M. P. Devine, M. J. Gurbarg, J. Macromol. ScL, Part A: Chem., 8, 837 (1974). 439. M. C. Brooks, R. M. Badger, J. Am. Chem., Soc, 72, 1705, 4384 (1950).
440. A. P. Brookshaw, D. E. Hillman, J. I. Paul, Brit. Polym. J., 5, 229 (1973). 441. J.-C. Brosse, J.-C. Lenain, J.-M. Gauthier, Makromol. Chem., 183, 2685 (1982). 442. R. W. Brotzman, P. J. Flory, Macromolecules, 20, 351 (1987). 443. L. de Brouckere, E. Bidaine, A. Van der Heyden, Bull. Soc. Chim. Beiges, 58, 418 (1949). 444. F. M. Brower, H. W. Mc Cormick, J. Polym. ScL, 36, 341 (1959). 445. F. M. Brower, H. W. Mc Cormick, J. Polym. Sci. A-I, 1749 (1963). 446. J. R. Borwn, J. H. O'Donnell, Macromolecules, 5, 109 (1972). 447. J. R. Borwn, J. H. O'Donnell, J. Macromol. ScL, Part A: Chem., 6, 1411 (1972). 448. W. Brown, Arkiv Kemi, 18, 227 (1961). 449. W. Brown, D. Henley, J. Oehman, Arkiy Kemi, 22, 189 (1964). 450. S. D. Bruck, J. Polym. Sci., 32, 519 (1958). 451. S. Brueckner, G. Allegra, G. Gianotti, E. Moraglio, Eur. Polym. J., 10, 347 (1974). 452. R. Bruessau, Analytiker-Taschenbuch, 4, 415 (1984). 453. W. A. J. Bryce, I. G. Meldrum, J. Polym. Sci., C, 16, 3321 (1968). 454. W. A. J. Bryce, G. Mc Gibbon, I. G. Meldrum, Polymer, 11, 394 (1970). 455. L. E. Brydia, O. M. Garty, J. Polym. Sci., Polym. Chem. Ed., 18, 1577 (1980). 456. J. Brzezinski, Z. Czlonkowska-Kohutnicka, O. Kallistov, Sz. Krozer, Plaste Kautschuk, 15, 403 (1968). 457. J. Brzezinski, Z. Czlonkowska-Kohutnicka, B. Czarnecka, A. Kornas-Calka, Eur. Polym. J., 9, 733 (1973). 458. L. Brzezinski, Z. Dobkowski, Eur. Polym. J., 16, 85 (1980). 459. R. R. Buch, H. M. Klimisch, O. K. Johannson, Polym. Preprints, 6 (2), 1022 (1965). 460. R. R. Buch, H. M. Klimisch, O. K. Johanson, J. Polym. Sci. A-2, 7, 563 (1969). 461. R. R. Buch, H. M. Klimisch, O. K. Johannson, J. Polym. Sci. A-2, 8, 541 (1970). 462. V. P. Budtov, N. G. Podosenova, V. M. Gal'perin, G. A. Otradina, V. G. Rupyshev, N. M. Domareva, Ye. O. Krivchenko, Polym. Sci. USSR, 18, 1742 (1976); Vysokomol. Soedin. A, 18, 1522 (1976). 463. V. P. Budtov, S. S. Ivanchev, U. M. Belyayev, O. S. Romanova, G. A. Otradina, Polym. Sci. USSR, 18, 2662 (1976); Vysokomol. Soedin. A, 18, 2328 (1976). 464. R. Buening, R. Minke, D. Schulze, Angew. Makromol. Chem., 25, 27 (1972). 465. K. Buerger, Z. Anal. Chem., 196, 259 (1963). 466. A. Buleon, H. Chanzy, P. Froment, J. Polym. Sci., Polym. Phys. Ed., 20, 1081 (1982). 467. A. A. Buniyat-Zade, Ye. A. Osipov, A. Bazimova, Polym. Sci. USSR, 14, 808 (1972); Vysokomol. Soedin. A, 14, 722 (1972). 468. A. J. Bur, L. J. Fetters, Macromolecules, 6, 874 (1973).
469. W. Burchard, B. Fritz, R. Lippert, B. Pfannemuller, E. Husemann, Makromol. Chem., 44-46, 358 (1961). 470. D. R. Burfield, L. C. Chew, S. N. Gan, Polymer, 17, 713 (1976). 471. D. E. Burge, D. B. Bruss, J. Polym. Sci. A-I, 1927 (1963). 472. G. M. Burnett, P. Meares, C. Paton, Trans. Faraday Soc, 58, 723 (1962). 473. H. Burns, D. K. Carpenter, Macromolecules, 1, 384 (1968). 474. F. W. Burns, B. Mc Carthy, R. M. O'Connor, D. C. Pepper, IUPAC Helsinki, vol 1, Preprint, 1/30 (1972). 475. K. Burzin, W. Holtrup, R. Feinauer, Angew. Makromol Chem., 74, 93 (1978). 476. S. V. Bushin, Ye. V. Korneyeva, I. I. Konstantinov, Yu. B. Amerik, S. A. Didenko, I. N. Shtennikova, V. N. Tsvetkov, Polym. ScL USSR, 24, 1671 (1982); Vysokomol. Soedin. A, 24, 1469 (1982). 477. S. V. Bushin, Ye. B. Lysenko, V. A. Cherkasov, K. P. Smironov, S. A. Didenko, G. N. Marchenko, V. N. Tsvetkov, Polym. Sci. USSR, 25, 2212 (1983); Vysokomol. Sodin. A, 25, 1899 (1983). 478. V. Busico, P. Corradini, L. De Martino, F. Graziano, A. Iadicicco, Makromol. Chem., 192, 49 (1991). 479. V. Busico, P. Corradini, R. De Biasio, M. Trifuoggi, Makromol. Chem., 193, 1765 (1992). 480. V Busico, P. Corradini, R. De Biasio, Makromol. Chem., 193, 897 (1992). 481. A. Buzagh, K. Udvarhelyi, F. Horkay, Kolloid Z., 154, 130 (1957). 482. A. Buzagh, K. Udvarhelyi, F. Horkay, Kolloid Z., 157, 53 (1958). 483. V. T. Bykov, T. P. Avilova, N. P. Shapkin, Polym. Sci. USSR, 12, 813 (1970); Vysokomol. Soedin. A, 12, 724 (1970). 484. S. Bywater, P. Johnson, Trans. Faraday Soc, 47, 195(1951). 485. F. Cabassi, W. Porzio, G. Ricci, S. Bruckner, S. V. Msille, Makromol. Chem., 189, 2135 (1988). 486. R. E. Cais, J. M. Kometani, Macromolecules, 17, 1932 (1984). 487. K. D. Caldwell, S. L. Brimmhall, J. Cao, J. C. Giddings, J. Appl. Polym. Sci., 36, 7.3 (1988). 488. Y. Camberlin, J. P. Pascault, M. Letoffe, P. Clardy, J. Polym. Sci., Polym. Chem. Ed., 20, 383 (1982). 489. G. G. Cameron, M. Y. Qureshi, J. Polym. Sci., Polym. Chem. Ed., 18, 2143 (1980). 490. G. G. Cameron, M. Y. Qureshi, J. Polym. Sci., Polym. Chem. Ed., 18, 3149(1980). 491. H. Campbell, P. O. Kane, I. G. Ottewill, J. Polym. Sci., 12, 611 (1954). 492. D. S. Campbell, A. J. Tinker, Polymer, 25, 1146 (1984). 493. A. Campos, L. Borque, J. E. Figueruelo, Anales Quim. (Madrid), B, 74, 701 (1978). 494. A. Compos, B. Celda, R. Tejero, J. E. Figueruelo, Eur. Polym. 1, 20, 447 (1984). 495. E. Compos-Lopez, J. L. Angulo-Sanchez, J. Polym. Sci., Polym. Lett. Ed., 14, 649 (1976). 496. F. Can, T. Capaccioli, Eur. Polym. J., 14, 185 (1978). 497. F. Candau, P. Rempp, Makromol. Chem., 122, 15 (1969). 498. H. J. Cantow, Makromol. Chem., 30, 81 (1959).
499. M. J. R. Cantow, R. S. Porter, J. F. Johnson, Makromol. Chem., 49, 1 (1961). 500. M. J. R. Cantow, R. S. Porter, J. F. Johnson, Nature (London), 192, 752 (1962). 501. M. J. R. Cantow, R. S. Porter, J. F. Johnson, J. Polym. Sci., C, 1, 187 (1963). 502. M. J. R. Cantow, R. S. Porter, J. F. Johnson, J. Appl. Polym. Sci., 8, 2963 (1964). 503. M. J. R. Cantow, R. S. Porter, J. F. Johnson, Polym. Preprints, 6 (1), 338 (1965). 504. M. J. R. Cantow, R. S. Porter, J. F. Johnson, J. Polym. Sci. B, 4,707 (1966). 505. M. J. R. Cantow, R. S. Porter, J. F. Johnson, J. Macromol. Sci: Rev. Macromol. Chem., 1, 393 (1966). 506. M. J. R. Cantow (Ed.) "Polymer Fractionation", Academic Press, New York, 1966. 507. Y. Cao, Q. Wu, K. Guo, R. Qian, Makromol. Chem., 185, 389 (1984). 508. A. Cao, M. Ichikawa, K-i. Kasuya, N. Yoshio, N. Asakawa, Y. Inoue, Y. Doi, H. Abe, Polym. J., 28, 1096 (1996). 509. G. Capaccio, I. M. Ward, J. Polym. Sci., Polym. Phys. Ed., 20, 1107 (1982). 510. T. Capaccioli, L. Zotteri, Eur. Polym. J., 11, 729 (1975). 511. S. R. Caplan, J. Polym. Sci., 35, 409 (1959). 512. K. R. Cardunen, R. O. Carter III, M. Zimbo, J. L. Gerlock, D. R. Bauer, Macromolecules, 21, 1598 (1988). 513. C. Caiiini, J. Polym. Sci., Polym. Chem. Ed., 18, 799 (1980). 514. D. W. Carlson, E. O'Rourke, J. K. Valaitis, A. G. Altenau, J. Polym. Sci., Polym. Chem. Ed., 14, 1379 (1978). 515. S. H. Carr, E. Baer, A. G. Walton, J. Macromol. Sci., Part B: Phys., 6, 15 (1972). 516. C. E. Carraher Jr., T. W. Brandt, Makromol. Chem., 130, 166(1970). 517. B. Carton, V. Bottiglione, M. Morcellet, C. Loucheux, Makromol. Chem., 179, 2931 (1978). 518. E. F. Casassa, W. H. Stockmayer, Polymer, 3, 53 (1962). 519. G. A. Casay, A. George, N. Hadjichristidis, J. S. Lindner, J. Polym. Sci., Part B: Polym. Phys., 33, 1537 (1995). 520. L. C. Case, J. Phys. Chem., 62, 895 (1958). 521. L. C. Case, Makromol. Chem., 41, 61 (1960). 522. R. H. Casper, G. V. Schulz, J. Polym. Sci. A-2, 8, 833 (1970). 523. R. H. Casper, G. V. Schulz, Sep., 6, 321 (1971). 524. G. Ceccorulli, M. Pizzoli, G. Stea, Makromol. Chem., 142, 153 (1971). 525. G. Ceccorulli, F. Manescalchi, Makromol. Chem., 168, 303 (1973). 526. J. Cepelak, Plaste Kautschuk, 2, 34 (1955). 527. J. Cepelak, Chem. PrumysL, 6, 106 (1956). 528. R. J. Ceresa, Polymer, 1, 480 (1960). 529. R. J. Ceresa, Polymer, 1, 488 (1960). 530. R. J. Ceresa, Polymer, 2, 213 (1961). 531. L. C. Cerny, T. E. Helminiak, J. F. Meier, J. Polym. Sci., 44, 539 (1960). 532. S. Cesca, A. Roggero, T. Salvatori, A. De Chirico, G. Santi, Makromol. Chem., 133, 161 (1970).
533. S. Cesca, A. Priola, A. De Chirico, G. Santi, Makromol. Chem., 143, 211 (1971). 534. S. Cesca, P. V. Duranti, A. Roggero, G. Santi, M. Bruzzone, J. Polym. Sci., Polym. Chem. Ed., 12, 1209 (1974). 535. J. C. Chadwick, A. Miedema, B. J. Ruisch, O. Sudmeijer, Makromol. Chem., 193, 1463 (1992). 536. J. C. Chadwick, A. Miedema, O. Sudmeijer, Makromol. Chem. Phys., 195 167 (1994). 537. A. J. Chalk, A. R. Gilbert, J. Polym. Sci., Polym. Chem. Ed., 10, 2033 (1972). 538. G. Champetier, M. Fontanille, A.-C. Korn, P. Sigwalt, J. Polym. Sci., 58, 911 (1962). 539. J. V. Champion, R. A. Desson, G. H. Neeten, Polymer, 15, 301 (1974). 540. R. K. S. Chan, Polym. Eng. Sci., 11, 152 (1971). 541. J. E. Chandler, B. H. Johnson, R. W. Lenz, Macromolecules, 13, 377 (1980). 542. F S. C. Chang, Polym. Preprints, 12 (2), 835 (1971). 543. E. P., Chang, R. Salovey, J. Polym. Sci., Polym. Chem. Ed., 12,2977 (1974). 544. E. W. Channen, Rev. Pure Appl. Chem., 9, 225 (1959). 545. A. Chapiro, P. Cordier, J. Josefowicz, J. Sebban-Danon, J. Polym. Sci., C, 4,491 (1963). 546. A Chapiro, G. Palma, Eur. Polym. J., 3, 151 (1967). 547. R. P. Chaplin, W. Ching, Chromatographia, 11, 600 (1978). 548. G. Charlet, R. Ducasse, G. Delmas, Polymer, 22, 1190 (1981). 549. Y. Charlier, P. Godard, D. Daoust, C. Strazielle, Macromolecules, 27, 3604(1994). 550. S. K. Chatterjee, N. Dattagupta, Brit. Polym. J., 6, 293 (1974). 551. P. N. Chaturvedi, C. K. Patel, J. Polym. Sci., Polym. Chem. Ed., 23, 1255 (1985). 552. V. Chatuverdi, S. Tanaka, K. Kaeriyama, Macromolecules, 26, 2607 (1993). 553. A. K. Chaudhuri, D. K. Sarkar, S. R. Palit, Makromol. Chem., I l l , 36 (1968). 554. P Chaumont, G. Beinert, J. Herz, P. Rempp, Polymer, 22, 663 (1981). 555. P. Chaumont, G. Beinert, J. Herz, Eur. Polym. J., 18, 875 (1982). 556. P. Chaumont, G. Beinert, J. E. Herz, P. Rempp, Makromol. Chem., 183, 1181 (1982). 557. Y. Chauvin, L. Saussine, Macromolecules, 29, 1163 (1996). 558. A. S. Chawla, R. Y. M. Huang, J. Polym. Sci., Polym. Chem. Ed., 13, 1271 (1975). 559. W. K. W. Chen, H. Z. Friedlander, J. Polym. Sci. C, 4, 1195 (1963). 560. J.-L. Chen, H. Morawetz, Macromolecules, 15, 1185 (1982). 561. C-Y. Chen, M. lgbal. C. U. Pittman Jr., J. N. Helbert, Makromol. Chem., 179, 2109 (1978). 562. C-Y. Chen, C. U. Pittman Jr, J. N. Heibert, J. Polym. Sci., Polym. Chem. Ed., 18, 169 (1980). 563. H. Chen, K. Ishizu, T. Fukutomi, T. Kakurai, J. Polym. Sci., Polym. Chem. Ed., 22, 2123 (1984).
564. H. R. Chen, L. P. Blanchard, IUPAC Leiden VoI 1, 37 (1970). 565. R.-S. Cheng, X.-H. Yan, J. Appl. Polym. Sci., Appl. Polym. Symp., 48, 123 (1991). 566. S. Z. D. Cheng, A. Zhang, J. Cheu, D. P. Heberer, J. Polym. Sci. Part B: Polym. Phys., 29, 287 (1991). 567. A. Chenite, F. Brisse, Macromolecules, 25, 776 (1992). 568. H. Cheradame, J.-C. Habimana, E. Rousset, F. J. Chen, Marcomolecules, 27, 631 (1994). 569. H. Cheradame, P. P. Kisilitsa, O. G. Sel'skaya, A. A. Berlin, Polym. Sci. USSR, 10, 223 (1968); Vysokomol. Soedin. A, 10, 196 (1968). 570. A. N. Cherkasov, S. I. Klenin, G. A. Andreyeva, Polym. Sci. USSR, 12, 1382 (1970); Vysokomol. Soedin. A, 12, 1223 (1970). 571. A. N. Cherkasov, S. I. Klenin, M. Z. El'Sabei, Polym. Sci. USSR, 14, 1486 (1972); Vysokomol. Soedin. A, 14, 1326 (1972). 572. P. Cheung, S. T. Balke, T. C. Schunk, T. H. Mourey, J. Appl. Polym. Sci., Appl. Polym. Symp., 52, 105 (1993). 573. J.-W. Chevalier, J.-Y. Bergeron, L. H. Dao, Macromolecules, 25, 3325 (1992). 574. R. Chiang, J. Phys. Chem., 69, 1645 (1965). 575. W.-Y. Chiang, J.-Y. Lu, Angew. Makromol. Chem., 205, 75 (1993). 576. O. Chiantore, S. Pokorny, M. Bleha, J. Janca, Angew. Makromol. Chem., 105, 61 (1982). 577. O. Chiantore, M. Guaita, J. Liquid. Chromatog., 8, 1413 (1985). 578. O. Chiantore, M. Guaita, J. Appl. Polym. Sci., Appl. Polym. Symp., 48, 431 (1991). 579. O. Chianotore, P. Cinquina, M. Guaita, Eur. Polym. J., 30, 1043 (1994). 580. S. N. China, J. D. Matlack, A. L. Resnick, R. L. Samuels, J. Polym. Sci., 17, 391 (1955). 581. S. N. China, R. A. Guzzi, J. Polym. Sci., 21, 417 (1956). 582. S. N. China, R. J. Samuels, J. Polym. Sci., 19, 463 (1956). 583. S. N. China J. Polym. Sci., 25, 413 (1957). 584. W. O. Choi, M. Sawamoto, T. Higashimura, Macromolecules, 23, 48 (1990). 585. J. Chojnowski, L. Wilczek, Makromol. Chem., 180, 117 (1979). 586. M. S. Choudhary, I. K. Varma, Angew. Mackromol. Chem., 87, 75 (1980). 587. M. S. Choudhary, I. K. Varma, J. Macromol. Sci., Part A: Chem., 20, 941 (1983). 588. R. C. L. Chow, C. S. Marvel, J. Polym. Sci. A-I, 5, 2949 (1967). 589. B. Chu, D-quing Wu, Macromolecules, 20, 1606 (1987). 590. J.-Y. Chuang, J. Appl. Polym. Sci., Appl. Polym. Symp., 45, 227 (1990). 591. Y. Chujo, I. Tomita, T. Saegusa, Macromolecules, 27, 6714 (1994). 592. T. C. Chung, M. Chasmawala, Macromolecules, 25, 5137 (1992). 593. T. C. Chung, W. Janvikul, R. Bernard, R. Hu, Polymer, 36, 3565 (1995).
594. G. Ciampa, H. Schwindt, Chim. Ind., 37, 169 (1955). 595. F. Ciardelli, G. Montagnoli, D. Pini, O. Pieroni, C. Carlini, E. Benedetti, Makromol. Chem., 147, 53 (1971). 596. F. Ciardelli, P. Locatelli, M. Marchetti, A. Zambelli, Makromol. Chem., 175, 923 (1974). 597. R. Ciaschi, M. D'Alagni, G. Mignucci, Makromol. Chem., 180, 2883 (1979). 598. C. Cincu, Eur. Polym. J., 10, 29 (1974). 599. C. Cincu, C. V. Uglea, Makromol. Chem., 177,2457 (1976). 600. P. Cinquina, G. Gianotti, D. Borghi, Polymer Commun., 31, 30 (1990). 601. S. Claesson, Disc. Faraday Soc, 7, 321 (1949). 602. S. J. Clarson, J. A. Semlyen, Polymer, 27, 1633 (1986). 603. D. Cleverdon, D. Laker, J. Appl. Chem., 1, 6 (1951). 604. I. E. Climie, E. F. T. White, J. Polym. Sci., 47, 149 (1960). 605. E. Cohn-Ginsberg, T. G. Fox, H. F. Mason, Polymer, 3, 97 (1962). 606. N. Colak, K. Alyiiriik, Macromolecules, 30, 1709 (1989). 607. H. Coll, D. K. Gilding, J. Polym. Sci. A-2, 8, 89 (1970). 608. J. W. Collete, C. W. Tullock, N. Mac Donald, W. H. Buck, A. C. L. Su, J. R. Harrell, R. Mulhaught, B. C. Anderson, Macromolecules, 22, 3851 (1989). 609. J. W. Collete, D. W. Ovenall, W. H. Buck, R. C. Fergurson, Macromolecules, 22, 3858 (1989). 610. R Colombo, S. Custro, R Radici, J. Polym. Sci., Polym. Chem. Ed., 18, 681 (1980). 611. R. L. Combs, D. F. Slonaker, J. T. Summers, Org. Coatings Plastics Preprints, 21, 249 (1961). 612. R. L. Combs, D. F. Slonaker, F. B. Joyner, H. W. Coover Jr., J. Polym. Sci. A-I, 5, 215 (1967). 613. C. M. Conrad, Ind. Eng. Chem., 45, 2511 (1953). 614. D. Constantin, Eur. Polym. J., 13, 907 (1977). 615. D. Constantin, M. Hert, J.-P. Machon, Makromol. Chem., 179, 1581 (1978). 616. W. Conti, E. Sorta, Eur. Polym. J., 8, 475 (1972). 617. M. Cooper, R. St. John Manley, J. Macromol. Sci., Part B: Phys., 10, 59 (1974). 618. A. R. Cooper, J. F. Johnson, A. R. Bruzzone, Polym. Preprints, 10 (2), 1455 (1969). 619. A. R. Cooper, A. R. Bruzzone, J. F. Johnson, Makromol. Chem., 138, 279 (1970). 620. A. R. Cooper, J. F. Johnson, Polym. Preprints, 12 (2), 738 (1971). 621. A. R. Cooper, J. Polym. Sci., Polym. Phys. Ed., 12, 1969 (1974). 622. A. R. Cooper, A. J. Hughes, J. F. Johnson, Chromatograhia, 8, 136 (1975). 623. R. E. Cooper, J. Upadhyay, A. Wassermann, J. Polym. Sci., 60, S46 (1962). 624. W. Cooper, G. Vaughan, D. E. Eaves, R. W. Madden, J. Polym. Sci., 50, 159 (1961). 625. W. Cooper, D. E. Eaves, G. Vaughan, J. Polym. Sci., 59, 241 (1962). 626. W. Cooper, G. Vaughan, J. Yardles, J. Polym. Sci., 59, S2 (1962). 627. W. Cooper, G. A. Pope, G. Vaughan, Eur. Polym. J., 4, 207 (1968).
628. W. Cooper, P. T. Hale, J. S. Walker, Polymer, 15, 175 (1974). 629. N. F. Cooray, M. Kakimoto, Y. Imai, Y. Suzuki, Macromolecules, 27, 1592 (1994). 630. H. W. Coover, Jr., R. L. Mc Connell, F. B. Joyner, D. F. Slonaker, R. L. Combs, J. Polym. Sci. A-I, 4, 2563 (1966). 631. S. Coppick, O. A. Battista, M. R. Lytton, Ind. Eng. Chem., 42, 2533 (1950). 632. N. Corbin, J. Prud'homme, J. Polym. Sci., Polym. Chem. Ed., 14, 1645 (1976). 633. T. Corner, F. W. Peaker, J. Polym. Sci., Polym. Chem. Ed., 22,2119(1984). 634. C. F. Cornet, Polymer, 9, 7 (1968). 635. M. Cortazar, G. M. Guzman, Makromol. Chem., 183, 721 (1982). 636. A. Cosani, E. Peggion, E. Scoff one, A. S. Verdini, J. Polym. Sci., B, 4, 55 (1965). 637. A. Cosani, E. Peggion, E. Scoff one, A. S. Verdini, Makromol. Chem., 97 113 (1966). 638. G. Costa, E. Pedemonte, S. Russo, E. Sava, Polymer, 20, 713 (1979). 639. J. A. Cote, M. Shida, J. Polym. Sci. A-2, 9, 421 (1971). 640. B. J. Cottam, D. M. Wiles, S. Bywater, Can. J. Chem., 41, 1905 (1963). 641. B. J. Cottam, J. Appl. Polym. Sci., 9, 1853 (1965). 642. B. J. Cottam, J. M. G. Cowie, S. Bywater, Makromol. Chem., 86, 116(1965). 643. G. R. Cotton, W. C. Schneider, J. Appl. Polym. Sci., 7,1243 (1963). 644. F. R. Cottrell, E. W. Merrill, K. A. Smith, IUPAC Toronto, Preprint A, 8, 1 (1968). 645. F. R. Cottrell, E. W. Merrill, K. A. Smith, J. Polym. Sci. A-2, 7, 1415 (1969). 646. P. M. Cotts, S. Ferline, G. Dagli, D. S. Pearson, Macromolecules, 24, 6730 (1991). 647. P. M. Cotts, Macromolecules, 27, 6487 (1994). 648. D. B. Cotts, G. C. Berry, Macromolecules, 14, 930 (1981). 649. J. Coupek, K. Bouchal, Makromol. Chem., 135, 69 (1970). 650. J. M. G. Cowie, C. T. Greenwood, J. Chem. Soc, 2862 (1957). 651. J. M. G. Cowie, C. T. Greenwood, J. Chem. Soc, 4640 (1957). 652. J. M. G. Cowie, Makromol. Chem., 42, 230 (1960). 653. J. M. G. Cowie, J. Polym. Sci., 49, 455 (1961). 654. J. M. G. Cowie, P. M. Toporowski, Polymer, 5, 601 (1964). 655. J. M. G. Cowie, S. Bywater, J. Polym. Sci. A-2, 6, 499 (1968). 656. J. M. G. Cowie, R. J. Ranson, Makromol. Chem., 143, 105 (1971). 657. J. M. G. Cowie, A. Macconnachie, Eur. Polym. J., 10, 367 (1974). 658. J. M. G. Cowie, A. Macconnachie, J. Polym. Sci., PoIm. Phys. Ed., 12, 407 (1974). 659. J. M. G. Cowie, A. Macconnachie, Eur. Polym. J., 11, 79 (1975). 660. L. H. Cragg, H. Hammerschlag, Chem. Rev., 39, 79 (1946).
661. D. N. Cramond, J. M. Hammond, J. R. Urwin, Eur. Polym. J., 4, 451 (1968). 662. H. Craubner, Makromol. Chem., 78. 121 (1964). 663. H. Craubner, Makromol. Chem., 89, 105 (1965). 664. H. Craubner, Ber. Bunsenges. Phys. Chem., 74, 1262 (1970). 665. H. Craubner, J. Polym. Sci., C, 42, 889 (1973). 666. H. Craubner, Makromol. Chem., 175, 2461 (1974). 667. J. R. Craven, R. H. Mobbs, C. Booth, J. R. M. Giles, Makromol. Chem. Rapid Commun, 7, 81 (1986). 668. V. Crescenzi, G. Manzini, G. Calzolari, C. Borri, Eur. Polym. J., 8, 449 (1972). 669. S. Creutz, P. Teysse, R. Jerome, Macromolecules, 30, 1 (1997). 670. S. Creutz, P. Teyssie, R. Jerome, Macromolecules, 30, 6 (1997). 671. M. A. Crook, F. S. Walker, Nature (London), 198, 1163 (1963). 672. T. G. Croucher, R. E. Wetton, Polymer, 17, 205 (1976). 673. P. Crouzet, F. Fine, P. Mangin, J. Appl. Polym. Sci., 13,205 (1969). 674. C. Crouzet, J. Marchal, Makromol. Chem., 177, 2819 (1976). 675. E. Csakvari, M. Azori, F. Tudos, Polym. Bull., 5, 413 (1981). 676. P. Cukor, M. Rubner, J. Polym. Sci., Polym. Chem. Ed., 18, 909 (1980). 677. R. J. E. Cumberbich, W. G. Harland, J. Textile Inst, 49, T679 (1958). 678. C. Cuniberti, U. Bianchi, Polymer, 7, 151 (1966). 679. C. Cuniberti, J. Polym. Sci. A-2, 8, 2051 (1970). 680. C. Cuniberti, U. Bianchi, Polymer, 15, 346 (1974). 681. C. Cuniberti, A. Perico, Eur. Polym. J., 16, 887 (1980). 682. J. Curchod, T. Ve, J. Appl. Polym. Sci., 9, 3541 (1965). 683. Z. Czlonkowska-Kohutnicka, Z. Dobkowski, Eur. Polym. J., 18,911 (1982). 684. G. F. D'Alelio, A. B. Finestone, L. Taft, T. J. Miranda, J. Polym. Sci., 45, 83 (1960). 685. A. D'Emanuele, J. Kost, J. L. Hill, R. Langer, Macromolecules, 25, 511 (1992). 686. E. Dan, M. B. Roller, J. Polym. Sci., Polym. Lett. Ed., 21, 875 (1983). 687. J. Danhelka, I. Koessler, V. Bohackova, J. Polym. Sci., Polym. Chem. Ed., 14, 287 (1976). 688. J. Danhelka, L. Mrkvickova, V. Stephan, I. Koessler, Angew. Makromol. Chem., 122, 77 (1984). 689. M. Danielwicz, M. Kubin, J. Appl. Polym. Sci., 26, 951 (1981). 690. P. O. Danis, D. E. Karr, W. J. Simonsick, Macromolecules, 28, 1229 (1995). 691. P. O. Danis, D. E. Karr, Macromolecules, 28, 8548 (1995). 692. J. Danon, J. Jozefovicz, Eur. Polym. J., 5, 405 (1969). 693. J. Danon, R. Derai, Eur. Polym. J., 5, 659 (1969). 694. J. Danon, J. Jozefowicz, J. Polym. Sci. C, 16, 4523 (1969). 695. J. Danon, J. Jozefovicz, Eur. Polym. J., 6, 199 (1970). 696. F. Danusso, G. Gianotti, Makromol. Chem., 6, 164 (1963).
697. B. Das, B. B. Konar, J. Macromol. Sci., Part A: Chem. 19, 601 (1983). 698. C. David, D. Baeyens-Volant, G. Delaunois, O. L. Vinh, W. Piret, G. Geuskens, Eur. Polym. J., 14, 501 (1978). 699. M. G. Davidson, W. M. Deen, Macomolecules, 21, 3474 (1988). 700. N. S. Davidson, L. J. Fetters, W. G. Funk, W. W. Graessley, N. Hadjichristidis, Macromolecules, 21, 112 (1988). 701. W. G. Davies, D. P. Jones, Polym. Preprints, 11 (2), 447 (1970). 702. D. H. Davies, D. C. Phillips, J. D. B. Smith, J. Polym. Sci., Polym. Chem. Ed., 17, 1153 (1979). 703. W. E. Davis, J. Am. Chem. Soc, 69, 1453 (1947). 704. T. E. Davis, R. L. Tobias, J. Polym. Sci., 50, 227 (1961). 705. T. P. Davis, K. F. O'Driscoll, M. C. Piton, M. A. Winnik, Macromolecules, 23, 2113 (1990). 706. V. P. Davyodova, N. A. Pravikova, T. A. Yakushina, V. I. Yakovleva, Polym. Sci. USSR, 8, 479 (1966); Vysokomol. Soedin., 8, 436 (1966). 707. J. V. Dawkins, J. Macromol. Sci. B, 2, 623 (1968). 708. J. V. Dawkins, R. Denyer, J. W. Maddock, Polymer, 10, 154 (1969). 709. J. V. Dawkins, Eur. Polym. J., 6, 831 (1970). 710. J. V. Dawkins, F. W. Peaker, Eur. Polym. J., 6, 209 (1970). 711. J. V. Dawkins, J. W. Maddock, D. Coupe, J. Polym. Sci. A2, 8, 1803 (1970). 712. J. V. Dawkins, J. W. Maddock, Eur. Polym. J., 7, 1537 (1971). 713. J. V. Dawkins, M. Hemming, Makromol. Chem., 155, 75 (1972). 714. J. V. Dawkins, M. Hemming, J. Appl. Polym. Sci., 19, 3107 (1975). 715. J. V. Dawkins, G. Taylor, J. Polym. Sci., Poly. Lett. Ed., 13, 29 (1975). 716. J. V. Dawkins, M. Hemming, Makromol. Chem., 176, 1777 (1975). 717. J. Y. Dawkins, G. Yeadon, "High Performance Gel Permeation Chromatography" in Development in Polymer Characterization, vol 1, Chapter 23, Applied Science Publishers Ltd., London, 1978. 718. J. V. Dawkins in C. Booth, in: C. Price (Ed.), "Comprehensive Polymer Science", vol. 1, Pergamon, Oxford, (1989), p. 231. 719. J. V. Dawkins, N. P. Gabbott, A. M. C. Montenegro, L. L. Lloyd, F. P. Warner, J. Appl. Poiym. Sci., Appl. Polym. Symp., 45, 103 (1990). 720. F. De Candia, Makromol. Chem., 141, 177 (1971). 721. F. De Candia, V. Vittoria, U. Bianchi, E. Patrone, Macromolecules, 5, 493 (1972). 722. A. De Chirico, S. Arrighetti, M. Bruzzone, Polymer, 22,529 (1981). 723. A. C. De Kok, A. C. Oomens, J. Liq. Chromatog., 5, 807 (1982). 724. A. C. De Visser, A. A. Driessen, J. G. C. Wolke, Makromol. Chem., Rapid Commun., 1, 177 (1980). 725. M. De Wit, G. Verreyt, Y. Bao, H. J. Geise, Macromolecules, 28, 5144 (1995).
726. P. C. Deb, S. R. Palit, Makromol. Chem., 128, 123 (1969). 727. P. C. Deb, S. R. Palit, Makromol. Chem., 166, 227 (1973). 728. F. Defoor, G. Groeninckx, P. Shouterden, B. Van der Heijden, Polymer, 33, 3878 (1992). 729. F. Defoor, G. Groeninckx, H. Reynaers, P. Schouterden, B. V. Hejiden, J. Appl. Polym. Sci., 47, 1839 (1993). 730. C. Degoulet, T. Nicolai, D. Durand, J. P. Busnel, Macromolecules, 28, 6819(1995). 731. A. W. Degroot, J. Appl. Polym. Sci., Appl. Polym. Symp., 43, 85 (1989). 732. A. D. Delman, B. B. Slimms, A. E. Ruff, J. Polym. Sci., 45, 415 (1960). 733. A. D. Delman, J. Kelly, J. Mironov, B. B. Simms, J. Polym. Sci. A-I, 4, 1277 (1966). 734. G. Delmas, J. Appl. Polym. Sci., 12, 839 (1968). 735. G. Delmas, P. Tancrede, Eur. Polym. J., 9, 199 (1973). 736. A. Dems, G. Strobin, Makromol. Chem., 192, 131 (1991). 737. A. Dems, G. Strobin, Makromol. Chem., 192, 115 (1991). 738. F. Denes, V. Percec, M. Totolin, J. P. Kennedy, Polym. Bull., 2, 499 (1980). 739. X. M. Deng, C. D. Xiong, L. M. Cheng, H. H. Huang, R. P. Xu, J. Appl. Polym. Sci., 55, 1193 (1995). 740. I. Descheres. O. Paisse, J. N. Colonna-Ceccaldi, Makromol. Chem., 188,583 (1987). 741. A. Desjardins, A. Eisenberg, Macromolecules, 24, 5779 (1991). 742. V. Desreux, Bull Soc. Chim. Beiges, 51, 416 (1948). 743. V. Desreux, Rec. Trav. Chim., 68, 789 (1949). 744. V. Desreux, M. C. Spiegels, Bull. Soc. Chim. Beiges, 59, 476 (1950). 745. V. Desreux, A. Oth, Chem, Weekbl., 48, 247 (1952). 746. H. Determann, G. Lueben, Th. Wieland, Makromol. Chem., 73, 168 (1964). 747. H. Determann, M. Kriewen, Th. Wieland, Makromol. Chem., 114, 256(1968). 748. H. Determann, "Gel Chromatography", 2nd ed., Springer, New York, 1969. 749. J. Devaux, J. Sledz, F. Schue, L. Giral, H. Naarmann, Eur. Poly. J., 25,263 (1989). 750. H. Dexheimer, O. Fuchs, Makromol. Chem., 96, 172 (1966). 751. H. Dexheimer, E. Helmes, H. J. Leugering, IUPAC Toronto, Preprint A, 8, 1 (1968). 752. A. Di Napoli, B. Chu, C. Cha, Macromolecules, 15, 1174 (1982). 753. K. Dialer, K. Vogler, Makromol. Chem. 6, 191 (1951). 754. K. Dialer, K. Vogler, F. Patat, HeIv. Chim. Acta, 35, 869 (1952). 755. R. Diaz Calleja, L. Gargallo, D. Radic, Macromolecules, 28, 6963 (1995). 756. A. Diaz-Barrios, A. Rengel, J. Polym. Sci., Polym. Chem. Ed., 22, 519 (1984). 757. R. Dick, H. Sack, H. Benoit, J. Polym. Sci. C, 16, 4597 (1969). 758. B. Dickens, J. W. Martin, D. Waksman, Polymer, 25, 706 (1984). 759. H. A. Dieu, J. Polym. Sci., 12, 417 (1954).
760. V. Dimonie, M. S. EI-Aasser, A. Klein, J. W. Vanderhoff, J. Polym. Sci., Polym. Chem. Ed., 22, 2197 (1984). 761. K. Dimov, E. Terlemezyan, J. Polym. Sci., Polym. Chem. Ed., 10, 3133 (1972). 762. A. Dobry, J. Chim. Phys., 35, 387 (1938). 763. N. Doddi, J. Polym. Sci., Polym. Chem. Ed., 12,761 (1974). 764. N. Doddi, W. C. Forsman, C. C. Price, J. Polym. Sci., Polym. Phys. Ed., 12, 1395 (1974). 765. K. Dodgson, D. Sympson, J. A. Semlyen, Polymer, 19,1285 (1978). 766. M. A. Doherty, T. E. Hogen-Esch, Makromol. Chem., 187, 61 (1986). 767. Y. Doi, M. Takada, T. Keii, Makromol. Chem., 180, 57 (1979). 768. Y. Doi, S. Ueki, T. Keii, Makromol. Chem., 180, 1359 (1979). 769. Y. Doi, A. Morinaga, T. Keii, Makromol. Chem. Rapid Commun., 1, 193 (1980). 770. Y. Doi, S. Ueki, T. Keii, Makromol. Chem. Rapid Commun., 3, 225 (1982). 771. Y. Doi, S. Ueki, S. Tamura, S. Nagahara, T. Keii, Polymer, 23, 258 (1982). 772. T. Doi, A. Akimoto, A. Matsumoto, T. Otsu, J. Polym. Sci. Part A: Polym. Chem., 34, 367 (1996). 773. A. Domard, M. Rinaudo, C. Rochas, J. Polym. Sci., Polym. Phys. Ed., 17, 673 (1979). 774. Ye, S. Domnina, G. G. Skvortsova, Polym. Sci. USSR, 8, 1394 (1966); Vysokoraol. Soedin., 8, 1268 (1966). 775. A. Dondos, H. Benoit, Makromol. Chem., 129, 35 (1969). 776. A. Dondos, Makromol. Chem., 135, 181 (1970). 777. A. Dondos, P. Rempp, H. Benoit, Makromol. Chem., 15, 1659 (1974). 778. X. Dong, A. Proctor, D. M. Hercules, Macromolecules, 30, 63 (1997). 779. N. Donkai, N. Murayama, T. Miyamoto, H. Inagaki, Makromol. Chem., 175, 187 (1974). 780. N. Donkai, T. Miyamoto, H. Inagaki, Polym. J., 7, 577 (1975). 781. E. F. Donnelly, D. C. Pepper, Makromol. Chem., Rapid Commun., 2, 439 (1981). 782. P Doty, H. Wagner, S. Singer, J. Phys. Colloid. Chem., 51, 322 (1947). 783. A. Douy, B. Gallot, Polymer, 23, 1039 (1982). 784. S. Dragan, S. loan, M. Dima, Polym. Bull., 7,473 (1982). 785. E. E. Drott, R. A. Mendelson, J. Polym. Sci. A-2, 8, 1373 (1970). 786. E. E. Drott, R. A. Mendeison, Polym. Preprints, 12 (1), 277 (1971). 787. D. B. Dupre, H. Wang, Macromolecules, 25, 7155 (1992). 788. P. L. Dubin, M. Kronstadt, J. Polym. Sci., Polym. Chem. Ed., 20, 1709 (1982). 789. L. V. Dubrovina, G. I. Timofeyeva, V. V. Korshak, S. S. Pavlova, Polym. Sci. USSR, 6, 2225 (1964); Vysokomol. Soedin., 6, 2011 (1964). 790. L. V. Dubrovina, S. A. Pavlova, V. V. Korshak, Polym. Sci. USSR, 8, 2171 (1966); Vysokomol. Soedin., 8, 1965 (1966).
791. L. V. Dubrovina, S. A. Pavlova, V. A. Vasnev, S. V. Vinogradova, V. V. Korshak, Polym. Sci. USSR, 12, 1484 (1970); Vysokomol. Soedin. A, 12, 1308 (1970). 792. S. A. Dubrovskii, I. V. Kumpanenko, V. M. Gol'dberg, K. S. Kazanskii, Poiym. Sci. USSR, 17, 3141 (1975); Vysokomol. Soedin. A, 17, 2733 (1975). 793. A. B. Duchkova, N. S. Nametkin, V. S. Khotimskii, L. Ye. Gusel'nikov, S. G. Durgar'yan, Polym. Sci. USSR, 8, 2002 (1966); Vysokomol. Soedin., 8, 1814 (1966). 794. A. Duda, Z. Florjanczyk, A. Hofman, S. Slomkowski, S. Penczek, Macromolecules, 23, 1640 (1990). 795. A. Duda, Macromolecules, 27, 576 (1994). 796. A. Duda, Macromolecules, 29, 1399 (1996). 797. J. H. Duerksen, A. E. Hamielec, Polym. Preprints, 8 (2), 1337 (1967). 798. J. H. Duerksen, A. E. Hamielec, J. Polym. Sci. C, 21, 83 (1968). 799. K. Dulek, Coll. Czech. Chem. Commun., 34, 3309 (1969). 800. P. Dumas, N. Spassky, P. Sigwalt, J. Polym. Sci., Polym. Chem. Ed., 12, 1001 (1974). 801. P. Dumas, N. Spassky, P. Sigwalt, J. Polym. Sci., Polym. Chem. Ed., 14, 1015 (1976). 802. T. Dumelow, S. R. Holding, L. J. Maisey, J. V. Dawkins, Polymer, 27, 1170(1986). 803. A. S. Dunn, B. D. Stead, H. W. Melville, Trans. Faraday Soc, 50, 279 (1954). 804. D. T. Duong, J. P. Bell, J. Polym. Sci., Polym. Phys. Ed., 13, 765 (1975). 805. M. Duval, J. Francois, D. Sarazin, Polymer, 26, 397 (1985). 806. I. Duvdevani, J. A. Biesenberger, M. Tan, J. Polym. Sci. B, 9, 429 (1971). 807. N. Duveau, A. Piguet, J. Polym. Sci., 57, 357 (1962). 808. P. R. Dvornic, R. W. Lenz, J. Polym. Sci., Polym. Chem. Ed., 20, 593 (1982). 809. P. R. Dvornic, R. W. Lenz, Macromolecules, 27, 5833 (1994). 810. J. Dyer, L. H. Phifer, J. Polym. Sci. C, 36, 103 (1971). 811. M. K. Dygert, G. T. Taylor, F. Cardinaux, H. A. Scheraga, Macromolecules, 9, 794 (1976). 812. G. C. East, A. M. Girshab, Polymer, 23, 323 (1982). 813. K. C. Eberly, B. L. Johnson, J. Polym. Sci., 3, 283 (1948). 814. K. H. Ebert, M. Brosche, K. F. Elgert, Makromol. Chem., 72, 191 (1964). 815. K. H. Ebert, G. Schenk, G. Rupprecht, M. Brosche, H. W. Weng, D. Heinicke, Makromol. Chem., 96, 206 (1966). 816. K. H. Ebert, H. J. Ederer, J. Emmert, Polym. Bull., 6, 471 (1982). 817. S. Ebner, H. Keul, H. Hocker, Macromolecules, 29, 553 (1996). 818. A. R. Eckert, S. E. Webber, Macromolecules, 29, 560 (1996). 819. G. D. Edwards, J. Appl. Polym. Sci., 9, 3845 (1965). 820. H. S. Egboh, M. H. Goerge, J. A. Barrie, D. J. Walsh, J. Polym. Sci., Polym. Chem. Ed., 20, 2879 (1982). 821. J. Ehrlich, S. S. Stivala, Polymer, 15, 204 (1974). 822. B. S. Ehrlich, W. V. Smith, Polym. Preprints, 12 (2), 847 (1971).
823. A. Eigel, H. Buenemann, N. Dattagupta, Makromoi. Chem., 175, 1847 (1974). 824. J. L. Ekmanis, R. A. Skinner, J. Appl. Polym. ScL, Appl. Polym. Symp., 48, 57 (1991). 825. A. A. El'Saied, S. Ya. Mirlina, V. A. Kargin, Polym. Sci. USSR, 11, 314 (1969); Vysokomol. Soedin. A, 11, 282 (1969). 826. M. S. El-Aasser, T. Makgawinata, J. W. Vanderhoff, J. Polym. Sci., Polym. Chem. Ed., 21, 2363 (1983). 827. M. H. El-Rafie, A. I. WaIy, A. Hebeish, J. Polym. Sci., Polym. Chem. Ed., 14, 2903 (1976). 828. M. H. El-Rafie, S. H. Abdel-Fatth, E. M. Khalil, A. Hebeish, Angew. Makromoi. Chem., 87, 63 (1980). 829. M. Z. El-Sabee, A. H. Ahmed, S. Mawaziny, Eur. Polym. J., 10, 1149 (1974). 830. K. F. Elgert, R. Wohlschiess, Angew. Makromoi. Chem., 57, 87 (1977). 831. E. J. Elgood, N. S. Heath, B. J. O'Brien, D. H. Solomon, J. Appl. Polym. Sci., 8, 881 (1964). 832. H.-G. Elias, F. Patat, Makromoi. Chem., 25, 13 (1957). 833. H.-G. Elias, V. Gruber, Makromoi. Chem., 78, 72 (1964). 834. H.-G. Elias, A. Fritz, Makromoi. Chem., 114, 31 (1968). 835. H.-G. Elias, V. S. Kamat, Makromoi. Chem., 117, 61 (1968). 836. H. Elmgren, S. Norrby, Makromoi. Chem., 123,265 (1969). 837. W. L. Elsdon, J. M. Goldwasser, A. Rudin, J. Polym. Sci., Polym. Phys. Ed., 19, 483 (1981). 838. C. Emery, W. E. Cohen, Aust. J. Appl. Sci., 2, 473 (1951). 839. A. H. Emery, H. G. Drickamer, J. Chem. Phys., 3, 2252 (1953). 840. H. A. Ende, G. V. Schulz, Z. Physk. Chem. N. F. (Frankfurt), 33, 143 (1962). 841. H. A. Ende, J. M. Peterson, G. V. Schulz, Z. Physk. Chem. N. F. (Frankfurt), 41, 224 (1964). 842. R. Endo, Chem. High Polym. (Japan), 19, 39 (1962). 843. R. Endo, K. Iimura, M. Takeda, Bull. Chem. Soc. Japan, 37, 950 (1964). 844. R. Endo, T. Manago, M. Takeda, Bull. Chem. Soc. Japan, 39, 733 (1966). 845. R. Endo, T. Hinokuma, M. Takeda, J. Polym. Sci. A-2, 6, 665 (1968). 846. D. Engel, R. C. Schulz, Eur. Polym. J., 19, 967 (1983). 847. N. S. Enikolopyan, M. A. Markevitch, L. S. Sakhonenko, S. Z. Rogovina, V. G. Oshmyan, J. Polym. Sci., Polym. Chem. Ed., 20, 1231 (1982). 848. Ye. G. Erenburg, L. V. Pavlova, Ye. O. Osipchuk, I. M. Dolgopol'skii, A. I. Konshin, R. L. Rabinovich, I. Ya. Poddubnyi, Polym. Sci. USSR, 20,431 (1978); Vysokomol. Soedin. A, 20, 382 (1978). 849. Ye. G. Erenburg, L. V. Pavlova, Y. O. Osipchuk, I. M. Dolgopol'skii, A. I. Konshin, A. M. Greis, I. Y. Poddubnyi, Polym. Sci. USSR, 21, 2496 (1979). 850. A. F. V. Eriksson, Acta Chem. Scand., 3, 1 (1949). 851. A. F. V. Eriksson, Acta Chem. Scand., 7, 377 (1953). 852. A. F V. Eriksson, Acta Chem. Scand., 7, 623 (1953). 853. A. F. V. Eriksson, Acta Chem. Scand., 10, 360, 378 (1953).
854. B. Erman, D. C. Marvin, P. A. Irvine, P. J. Flory, Macromolecules, 15, 664 (1982). 855. V. Ye. Eskin, A. Ye. Nesterov, Polym. Sci. USSR, 8, 152 (1966); Vysokomol. Soedin., 8, 141 (1966). 856. V E. Eskin. I. N. Serdjuk, J. Polym. Sci. C, 23, 309 (1968). 857. V Ye. Eskin, A. I. Kipper, Polym. Sci. USSR., 16, 2157 (1974); Vysokomol. Soedin. A, 16, 1862 (1974). 858. V Ye. Eskin, U. Zhurayev, T. N. Nekrasova, Polym. Sci. USSR, 18, 2890 (1976); Vysokomol. Soedin. A, 18, 2529 (1976). 859. V Ye. Eskin, S. Ya. Magarik, U. B. Zhurayev, G. D. Rudkovskaya, Polym. Sci. USSR, 20, 2494 (1978); Vysokomol. Soedin. A, 20, 2219 (1978). 860. G. A. Estrina, A. I. Kuzayev, S. P. Davtyan, B. A. Rozenberg, Polym. Sci. USSR, 22, 1421 (1980); Vysokomol. Soedin. A, 22, 1294 (1980). 861. J. M. Evans, M. B. Huglin, Makromoi. Chem. 127, 141 (1969). 862. J. M. Evans, M. B. Huglin, R. F. T. Stepto, Makromoi. Chem., 146, 91 (1971). 863. W. J. Evans, H. Katsumata, Macromolecules, 27, 4011 (1994). 864. J. Exner, M. Bohdanecky, Coil. Czech. Chem. Commun., 31, 3985 (1966). 865. G. F. Fanta, R. C. Burr, C. R. Russel, C. E. Rist, J. Appl. Polym. Sci., 10, 929 (1966). 866. M. Farina, G. Bressan, Makromoi. Chem., 61, 79 (1963). 867. Z. M. Farmazyan, S.-S. Pavlova, L. V Dubrovina, Polym. Sci. USSR, 22, 1735 (1980); Vysokomol. Soedin. A, 22, 1582 (1980). 868. D. Farrar, M. Hawe, Patent Ep 85.308260 A2 860625. 869. G. R. Farvardin, P. Howard, Polymer, 20, 667 (1979). 870. S. A. Faterpeker, S. P. Potnis, Angew. Makromoi. Chem., 90, 69 (1980). 871. J. G. Fatou, L. Mandelkern, J. Phys. Chem., 69,417 (1965). 872. J. M. G. Fatou, Eur. Polym. J., 7, 1057 (1971). 873. A. H. Fawcett, K. J. Ivin, Polymer, 13, 439 (1972). 874. S. G. Federov, G. S. Gol'din, G. S. Nikitina, A. V. Kisin, V. M. Nosova, Polym. Sci. USSR, 22, 2270 (1980); Vysokomol. Soedin. A, 22, 2070 (1980). 875. O. Ya. Fedotova et al. Vysokomol. Soedin. 5, 900 (1963). 876. O. Ya. Fedotova, M. I. Shtil'man, Polym. Sci. USSR, 8, 1332 (1966); Vysokomol. Soedin., 8, 1209 (1966). 877. R. Feinauer, W. Funke, K. Hamann, Makromoi. Chem., 82, 123 (1965). 878. D. Feldman, C. Uglea, N. Simionescu, J. Polym. Sci. A-1,7, 439 (1969). 879. V F. Felicetta, A. Ahola, J. L. Mc Carthy, J. Am. Chem. Soc, 78, 1899 (1956). 880. R. E. Felter, E. S. Moyer, L. N. Ray Jr., J. Polym. Sci., B, 7, 529 (1969). 881. X. D. Feng, C. X. Song, W. Y. Chen, J. Polym. Sci., Polym. Phys. Ed., 21, 593 (1983). 882. S. Fernandez Bermudez, J- G. Fatou, J. Royo, Anales Qufm. (Madrid) 66, 789 (1970). 883. M. J. Fernandez-Berridi, F. J. Ansorena, J. J. Iruin, G. M. Guzman, Macromolecules, 13, 190 (1980).
884. J. D. Ferry, D. C. Udy, F. C. Wu, G. E. Heckler, D. B. Fordyce, J. Colloid. Sci., 6, 429 (1951). 885. L. J. Fetters, M. Morton, Macromolecuies, 2, 453 (1969). 886. L. J. Fetters, M. Morton, Macromolecuies, 7, 552 (1974). 887. L. J. Fetters, D. Mc Intyre, Polymer, 19, 463 (1978). 888. L. J. Fetters, W. W. Graessley, N. Hadjichristidis, A. D. Kiss, D. S. Pearson. L. B. Younghouse, Macromolecuies, 21, 1644 (1988). 889. R. V. Figini, H. Hostalka, K. Hurm, G. Loehr, G. V. Schulz, Z. Physik. Chem. N. F. (Frankfurt), 45, 269 (1965). 890. N. N. Filatova, D. Ya. Rossina, V. V. Yevreinov, S. G. Entelis, Polym. Sci. USSR., 20, 2663 (1978); Vysokomol. Soedin. A, 20, 2367 (1978). 891. S. R. Finn, J. W. James, J. Appl. Chem., 6, 466 (1956). 892. A. P. Firsov, I. V. Yeremina, N. M. Chirkov, Polym. Sci. USSR, 6, 417 (1964); Vysokomol. Soedin., 6, 377 (1964). 893. L. W. Fisher, G. H. Pearson. P. D. Yacobucci, J. Polym. Sci., Polym. Phys. Ed., 18, 1455 (1980). 894. L. W. Fisher, A. R. Sochor, J. S. Tan, Macromolecuies, 10, 949 (1977). 895. E. B. Fitzgerald, R. M. Fuoss, Ind. Eng. Chem., 42, 1603 (1950). 896. J. R. Fletcher, L. Polgar, D. H. Solomom, J. Appl. Polym. Sci., 8, 659 (1964). 897. J. R. Fletcher, L. Polgar, D. H. Solomom, J. Appl. Polym. Sci., 8, 663 (1964). 898. J. R. Fletcher, H. E. Persinger, J. Polym. Sci. A-I, 6, 1025 (1968). 899. A. Flondor, S. Maxim, S. loan, Eur. Polym. J., 22, 683 (1986). 900. S. Florian, D. Lath, V. Durdovic, Angew. Mokromol. Chem., 10, 189 (1970). 901. S. Florian, D. Lath, Z. Manasek, Angew. Makromol. Chem., 13, 43 (1970). 902. S. Florian, E. Lathova, P. Mach, Eur. Polym. J., 30, 449 (1994). 903. P. J. Flory, J. Am. Chem. Soc, 65, 372 (1943). 904. P. J. Flory, J. Am. Chem. Soc, 65, 375 (1943). 905. D. L. Flowers, W. A. Hewett, R. D. Mullineaux, J. Polym. Sci. A-I, 2, 2305 (1964). 906. C. M. Fontan, J. Phys. Chem., 63, 1167 (1959). 907. J. Fontan, J. Millan Rodriguez, Anales Quim. (Madrid), 60, 411 (1964). 908. J. L. Forget, C. Booth, P. H. Canham, M. Duggleby, T. A. King, C. Price, J. Poiym. Sci., Polym. Phys. Ed., 17, 1403 (1979). 909. R. J. Fort, R. J. Hutchinson, W. R. Moore, M. Murphy, Polymer, 4, 35 (1963). 910. R. J. Fort, T. M. Poiyzoidis, Eur. Polym. J., 12, 685 (1976). 911. D. A. Foucher, B. Z. Tang, I. Manners, J. Am. Chem. Soc, 114, 6246 (1992). 912. D. Foucher, R. Ziembinki, R. Petersen, J. Pudelski, M. Edwars, Y. Ni, J. Massey, C. R. Jaeger, G. J. Vancso, I. Manners, Macromolecuies, 27, 3992 (1994). 913. T. G. Fox, P. J. Flory, J. Am. Chem. Soc, 70, 2384 (1984). 914. T. G. Fox, P. J. Flory, J. Phys. Chem., 53, 197 (1949).
915. T G. Fox, J. B. Kinsinger, H. F. Mason, E. M. Schuele, Polymer, 3, 71 (1962). 916. T. G. Fox, Polymer, 3, 111 (1962). 917. P. S. Francis, R. C. Cooke Jr., J. H. Elliot, J. Polym. Sci., 31, 453 (1958). 918. F. Francuskiewicz, "Polymer Fractional on", Springer, Berlin, 1994. 919. H. P. Frank, J. W. Breitenbach, J. Polym. Sci., 6,609 (1951). 920. J. M. J. Frechet, S. Matuszczak, B. Reck, H. D. H. Stover, C. G. Willson, Macromolecuies, 24, 1746 (1991). 921. M. Freeman, P. P. Manning, J. Polym. Sci. A-I, 2, 2017 (1964). 922. D. M. French, A. W. Casey, C. I. Collins, P. Kirchner, Polym. Preprints, 7(1), 447 (1966). 923. S. Ya. Frenkel, S. I. Klenin, Polym. Sci. USSR, 6, 1571 (1964); Vysokomol. Soedin., 6, 1420 (1964). 924. L. Freund, M. Daune, J. Polym. Sci., 29, 161 (1958). 925. H. Frey, Moller, K. Matyjaszewski, Macromolecuies, 27, 1814 (1994). 926. D. Freyss, P. Rempp, H. Benoit, J. Polym. Sci., B, 2, 217 (1964). 927. H. L. Frisch, Q. Xu, Macromolecuies, 25, 5145 (1992). 928. E. V. Frisman, M. A. Sibileva, M. A. Chebishyan, Polym. Sci. USSR, 9, 1191 (1967); Vysokomol. Soedin., 9 1071 (1967). 929. E. V. Frisman, M. A. Sibileva, N. Tkhi Kim Ngan, T. N. Nekrasova, Polym. Sci. USSR, 10, 2125 (1968); Vysokomol. Soedin. A, 10, 1834 (1968). 930. L. Fritz, J. Springer, Makromol. Chem. 194, 2047 (1993). 931. H. Fritzemeier, J. J. Hermans, Bull. Soc. Chem. Beiges, 57, 136 (1984). 932. P. E. Froehlnig, D. M. Koenhen, A. Bantjes, C. A. Smolders, Polymer, 17, 835 (1976). 933. O. Fuchs, Makromol. Chem. 5, 245 (1951). 934. O. Fuchs, Makromol. Chem. 7, 259 (1952). 935. O. Fuchs, Z. Elektrochem. 60, 229 (1956). 936. O. Fuchs, H. J. Leugering, in: R. Nitsche, K. A. Wolf (Eds.), "Kunststoffe" vol. 1, Springer, Berlin, p. 118 1962. 937. O. Fuchs, Makromol. Chem. 58, 65 (1962). 938. H. Fujii, J. Furukawa, T. Saegusa, A. Kawasaki, Makromol. Chem., 40, 226 (1960). 939. H. Fujii, T. Fujii, T. Saegusa, J. Furukawa, Makromol. Chem., 63, 147 (1963). 940. M. Fujino, T. Hisaki, M. Fujiki, N. Matsumoto, Macromolecules, 25, 1079 (1992). 941. M. Fujimo, T. Hisaki, N. Matsumoto, J. Polym. Sci. Part A, Polym. Chem., 33, 2279 (1995). 942. T. Fujimoto, N. Ozaki, M. Nagasawa, J. Polym. Sci. A-I, 3, 2259 (1965). 943. T. Fujimoto, H. Narukawa, M. Nagasawa, Macromolecuies, 3, 57 (1970). 944. T. Fujimoto, S. Tani, K. Takano, M. Ogawa, M. Nagasawa, Macromolecuies, 11, 673 (1978). 945. Y. Fujisaki, H. Kobayashi, Chem. High Polym. (Japan), 18, 305 (1961). 946. Y. Fujisaki, H. Kobayashi, Chem. High Polym. (Japan), 19, 73 (1962).
947. Y. Fujisaki, H. Kobayashi, Chem. High Polym. (Japan), 19, 49 (1962). 948. Y. Fujisaki, High Polym. (Japan), 19, 64 (1962). 949. S. Fujisaki, H.-G. Elias, Makromol. Chem., 155, 127 (1972). 950. S. Fujishige, Polym. J., 19, 297 (1987). 951. M. Fukuda, M. Fukutomi, Y. Kato, T. Hashimoto, J. Polym. Sci., Polym. Phys. Ed., 12, 871 (1974). 952. T. Fukuda, Y Ma, H. Inagaki, Polym. J., 14, 705 (1982). 953. T. Fukutomi, A. Yokota, K. Ishizu, J. Polym. Sci., Polym. Chem. Ed., 22, 2983 (1984). 954. A. P. Full, J. E. Puig, L. U. Gron, E. W. Kaler, J. R. Minter, T. H. Mourey, J. Texter, Macromolecules, 25, 5157 (1992). 955. B. L. Funt, D. R. Richardson, J. Polym. Sci. A-I, 8, 1055 (1970). 956. B. L. Funt, V. Hornof, J. Appl. Polym. Sci., 15,2439 (1971). 957. B. L. Funt, L. C. Hsu, J. Polym. Sci., Polym. Chem. Ed., 18, 1957 (1980). 958. J. Furukawa, T. Saegusa, T. Tsuruta, S. Anzai, T. Narumiya, A. Kawasaki, Makromol. Chem., 41, 17 (1960). 959. J. Furukawa, T. Saegusa, N. Mise, A. Kawasaki, Makromol. Chem., 39, 243 (1960). 960. J. Furukawa, S. Akutsu, T. Saegusa, Makromol. Chem., 81, 100 (1965). 961. J. Furukawa, S. Akustsu, T. Saegusa, Makromol. Chem., 94, 68 (1966). 962. J. Furukawa, T. Saegusa, S. Yasui, S. Akutsu, Makromol. Chem., 94, 74 (1966). 963. E. A. Fushman, L. F. Borisova, Ye. I. Vizen, N. M. Chirkov, Polym. Sci. USSR, 16, 2282 (1974); Vysokomol. Soedin. A, 16, 1972 (1974). 964. A. Gabert, H. Seide, G. Langhammer, J. Polym. Sci. C, 16, 3547 (1968). 965. A. C. Gadkari, M. Zsuga, J. P. Kennedy, Polym. Bull., 18, 317 (1987). 966. D. Gaeckle, D. Patterson, Macromolecules, 5, 136 (1972). 967. G. L. Gaines Jr., D. G. Le Grand, J. Polym. Sci. B, 6, 625 (1968). 968. V. M. Gal'perin, N. A. Kuznetzov, A. L. Smolyanskii, Polym. Sci. USSR, 14, 3122 (1972); Vysokomol. Soedin. A, 14, 2684 (1972). 969. J. C. Galin, Makromol. Chem., 124, 118 (1969). 970. M. Galin, J. C. Galin, Makromol. Chem. 160, 321 (1972). 971. A. Gallardo, J. San Roman, Macromolecules, 25, 5836 (1992). 972. A. Gallo, Chim. Ind. (Milan), 35, 487 (1953). 973. Y. Gallot, P. Rempp, J. Parrod, J. Polym. Sci. B, 1, 329 (1963). 974. M. E. Galvin, S. Heffner, K. I. Winey, Macromolecules, 27, 3520 (1994). 975. L. W. Gamble, W. T. Wipke, T. Lane, Poly. Preprints, 4 (2), 162 (1963). 976. L. W. Gamble, W. T. Wipke, T. Lane, J. Appl. Polym. Sci., 9, 1503 (1965). 977. S. I. Ganicheva, V. M. Belyayev, V. V. Krivobokov, O. V. Kallistov, S. Ya. Frenkel, Polym. Sci. USSR, 24, 1734 (1982); Vysokomol. Soedin. A, 24, 1523 (1982).
978. E. S. Gankina, M. D. Val'chikina, B. G. Belen'kii, Polym. Sci. USSR, 18, 1345 (1976); Vysokomol, Soedin. A, 18, 1170(1976). 979. E. S. Gankina, S. I. Ganicheva, Y M. Belyayev, Y. Y. Kever, B. G. Belen'kii, Polym. Sci. USSR, 24, 909 (1982); Vysokomol. Soedin. A, 24, 814 (1982). 980. V. Ganser, J. Engel, D. Winklmair, G. Kiause, Biopolymers, 9, 329 (1970). 981. C. Garbuglio, G. Pezzin, C. Badoni, Chim. Ind. (Milan), 46, 797 (1964). 982. C. Garbuglio, L. Crescentini, A. MuIa, G. B. Gechele, Makromol. Chem., 97, 97 (1966). 983. C. Garbuglio, A. MuIa, L. Chinellato, J. Polym. Sci. C, 16, 1529 (1967). 984. M. Garcia-Martf, K. H. Reichert, Makromol. Chem., 144, 17 (1971). 985. L. H. Garcia-Rubio, A. E. Hamielec, J. Appl. Polym. Sci., 23, 1397 (1979). 986. L. H. Garcia-Rubio, A. E. Hamielec, J. F. Mc Gregor, ACS Symposium Series in: C. D. Craver (Ed.), "Polymer Characterization: Spectroscopic, Chromatographic and Physical Instrumental Methods", ACS Advances in Chemistry Series, 203, 311 (1983). 987. S. K. Garg, S. S. Stivala, Polymer, 19, 243 (1978). 988. S. K. Garg, S. S. Stivala, Polymer, 23, 514 (1982). 989. L. Gargallo, H. Rios, D. Radic, Polym. Bull., 11, 525 (1984). 990. L. Gargallo, Makromol. Chem., 177, 233 (1976). 991. L. Gargallo, D. Radic, I. Katime, Eur. Polym. J., 16, 383 (1980). 992. L. Gargallo, C. L. Giiemes, D. Radic, Eur. Polym. J., 20,483 (1984). 993. L. Gargallo, M. I. Munoz, D. Radic, Polymer, 27, 1416 (1986). 994. L. Gargallo, E. Soto, F. R. Diaz, L. H. Tagle, D. Radic, Eur. Polym. J., 23, 571 (1987). 995. L. Gargallo, D. Radic, L. H. Tagle, Polym. Bull., 17, 15 (1987). 996. L. Gargallo, E. Soto, L. H. Tagle, D. Radic, Eur. Polym. J., 24,1119(1988). 997. L. Gargallo, M. Yazdani-Pedram, D. Radic, A. Horta, J. Bravo, Eur. Polym. J., 29, 609 (1993). 998. L. Gargallo, F. Martmez-Pina, A. Leiva, D. Radic, Eur. Polym. J., 32, 1303 (1996). 999. T. I. Garmonova, M. G. Vitovskaya, P. N. Laurenko, V. N. Tsvetkov, Ye. V. Korovina, Polym. Sci. USSR, 13, 996 (1971); Vysokomol. Soedin. A, 13, 884 (1971). 1000. T. I. Garmonova, M. G. Vitovskaya, S. V. Bushin, T. V. Sheremeteva, A. P. Zaitseva, Polym. Sci. USSR, 16, 306 (1974); Vysokomol. Soedin. A, 16, 265 (1974). 1001. V. Garten, W. Becker, Makromol. Chem., 3, 78 (1949). 1002. J. Garza, C. Marco, J. G. Fatou, A. Bello, Polymer, 22, 477 (1981). 1003. R. G. Gaughan, H. W. Hill, J. E. Inda, J. Polym. Sci. :Part A, Polym. Chem., 24, 419 (1986). 1004. G. Gavoret, J. Duclaax, J. Chim. Phys., 42, 41 (1945). 1005. G. Gavoret, M. Magat, J. Chim. Phys., 44, 90 (1947).
1006. N. G. Gaylord, A. Takahashi, S. Kikuchi, R. A. Guzzi, J. Polym. ScL, Polym. Lett. Ed., 10, 95 (1972). 1007. N. G. Gayiord, S. Maiti, S. S. Dixit, J. Polyrn. Sci. Polym. Lett. Ed., 10, 855 (1972). 1008. N. Geacintov, V. Stannett, E. W. Abrahamson, J. J. Hermans, J. Appl. Polym. Sci., 3, 54 (1960). 1009. B. Gebus, R. Knoesel, Mackromol. Chem., 175, 1439 (1974). 1010. G. B. Gechele, A. Mattiussi, Eur. Polym. J., 1, 47 (1965). 1011. I. Geczy, G. Revai, Kolor Ert., 12, 186 (1970). 1012. I. Geczy, S. H. Abdel-Fattah, Angew. Makromol. Chem., 43, 75 (1975). 1013. R. Geddes, C. T. Greenwood, A. W. Mac Gregor, Makromol. Chem., 79, 189 (1964). 1014. H. Geeriseen, R Schuetzeichei, B. H. Wolf, Makromol. Chem. 191, 659 (1970). 1015. H. Geeriseen, J. Roos, B. A. Wolf, Makromol. Chem., 186, 735 (1985). 1016. H. Geerissen, J. Ross, P. Schutzeichei, B. A. Wolf, J. Appl. Polym. Sci., 34, 271 (1987). 1017. H. Geerissen, P. SchiitZeichel, B. A. Wolf, J. Appl. Polym. Sci., 34, 287 (1987). 1018. H. Geerissen, P Schutzeichei, B. A. Wolf, Makromol. Chem., 191,659 (1990). 1019. M. Gehatia, D. R. Wiff, IUPAC Boston, Vol. 11, 1045 (1971). 1020. M. Gehatia, D. R. Wiff, Eur. Polym. J., 8, 585 (1972). 1021. M. D. Gehlsen, K. Almdal, F. S. Bates, Macromolecules, 25, 939 (1992). 1022. M. D. Gehlsen, F. S. Bates, Macromolecules, 27, 3611 (1994). 1023. K. Gehrke, G. Reinisch, IUPAC Praga, Preprint, 444 (1965). 1024. K. Gehrke, G. Reinisch, J. Polym. Sci. A-I, 7, 1571 (1969). 1025. G. Geiseler, H. Herold, F. Runge, Erdoel Kohle, 7, 357 (1954). 1026. G. Geiseler, H. P. Baumann, Z. Elektrochem., 62, 209 (1958). 1027. D. Geiser, H. Hoecker, Polym. Bull. 2, 591 (1980). 1028. K. Gekko, Makromol. Chem., 148, 229 (1971). 1029. A. N. Genkin, T. P. Nasonova, I. Y. Poddubnyi, Vysokomol. Soedin., 4, 1088 (1962). 1030. J. Gerber, H.-G. Elias, Makromol. Chem., 112, 142 (1968). 1031. K. Gerberding, G. Heinz, W. Helkmann, Makromol. Chem. Rapid Commun., 1, 221 (1980). 1032. H. Geerissen, J. Roos, B. A. Wolf, Makromol. Chem., 186, 735-801 (1987). 1033. R. German, R. Hank, G. Vaughan, Kautschuk Gummi, Kunststoffe, 19, 67 (1966). 1034. H. Gerrens, H. Ohlinger, R. Fricker, Makromol. Chem., 87, 209 (1965). 1035. C. Gerth, H. H. Meyer, Angew. Makromol. Chem., 74, 81 (1978). 1036. J. A. Gervasi, A. B. Gosnell, V. Stannett, Polym. Preprints, 8 (1), 785 (1967). 1037. A. N. Geukin et al., Vysokomol. Soedin., 4, 1088 (1962).
1038. A. V. Gevorkyan, Ye. S. Yegiyan, N. G. Oganeyan, R. V. Bagdasaryan, Polym. Sci. USSR, 12, 1218 (1970); Vysokomol. Soedin. A, 12, 1078 (1970). 1039. A. V. Gevorkyan, L. Kh. Simonyan, K. A. Torosyan, A. Sh. Safarov, Polym. Sci. USSR, 14, 448 (1974); Vysokomol. Soedin. A, 14, 385 (1974). 1040. K. K. Ghosh, P. K. Choudhury, Makromol. Chem., 102,217 (1967). 1041. P. Ghosh, M. Banerjee, T. K. Ghosh, J. Macromol. Sci. A: Chem. 18, 607 (1982). 1042. H.-B. Gia, R. Jerome, P. Teyssie, J. Polym. Sci., Polym. Chem. Ed., 18, 3488 (1980). 1043. E. Giannetti, P. Mazzocchi, E. Albizzati, T. Fiorani, F. Milani, Makromol. Chem., 185, 2133 (1984). 1044. G. Gianotti, U. Bonicelli, D. Borghi, Makromol. Chem., 166, 235 (1973). 1045. G. Gianotti, A. Cicuta, D. Romanini, Polymer, 21, 1087 (1980). 1046. J. C. Giddings, M. N. Myers, G.-C. Lin, M. Martin, J. Chromatog., 142, 23 (1977). 1047. J. C. Giddings, S. R. Fisher, M. N. Myers, Am. Laboratory, 10, 15 (1978). 1048. J. C. Giddings, M. Martin, M. N. Myers, J. Chromatog., 158, 419 (1978). 1049. J. C. Giddings, G.-C. Lin, M. N. Myers, J. Liq. Chromatog., 1, t (1978). 1050. J. C. Giddings, M. N. Myers, K. D. Caldwell, S. R. Fisher, Methods of Biochem. Anal., 26, 79 (1980). 1051. J. C. Giddings Pure. Appl. Chem., 51, 1459 (1979). 1052. J. C. Giddings, Anal. Chem., 53, 1170A (1981). 1053. J. C. Giddings, M. Martin, M. N. Myers, J. Polym. Sci., Polym. Sci. Phys. Ed., 19, 815 (1981). 1054. J. C. Giddings. V. Kumar, P. S. Williams, M. N. Myers, in "Polymer Characterization" Adv. Chem. Series, 227, 3 (1990). 1055. J. C. Giddings. Y. Xu, M. N. Myers, Anal. Chem., 66, 3047 (1994). 1056. H. Giesekus, unpublished report to Farbenfabriken Bayer 1964, quoted by H. Giesekus, in: M. J. R. Cantow, (Ed.), "Polymer Fractionation", Academic Press, New York, 1967, p. 191. 1057. H. Giesekus, in: M. J. R. Cantow, (Ed.), "Polymer Fractionation", Academic Press, New York, 1967, p. 191. 1058. H. Giesekus, unpublished report to Farbenfabriken Bayer 1954, quoted by H. Giesekus, in: M. J. R. Cantow, (Ed.), "Polymer Fractionation", Academic Press, New York, 1967, p. 191. 1059. H. Giesekus, unpublished report to Farbenfabriken Bayer 1955, quoted by H. Giesekus, in: M. J. R. Cantow (Ed.), "Polymer Fractionation" Academic Press, New York, 1967, p. 191. 1060. L. Gilet, M.-F. Grenier-Loustalot, J. Bounoure, Polymer, 33,4605(1992). 1061. E. Gipstein, A. C. Ouano, W. A. Hewett, Macromolecules, 5, 249 (1972). 1062. M. Girolamo, J. R. Urwm, Eur. Polym. J., 8, 1159 (1972). 1063. M. Giurgea. C. Ghita, I. Baltog, A. Lupu, J. Polym. Sci. A-2, 4, 529 (1966).
1064. P. Giusti, Polym. J., 12, 555 (1980). 1065. J. L. Glajch, D. C. Warren, M. A. Kaiser, L. B. Rogers, Anal. Chem., 50, 1962 (1978). 1066. W. Glenz, W. Holtrup, F. W. Kuepper, H. H. Meyer, Angew Makromol. Chem., 37, 97 (1974). 1067. M. Gleria, A. Bolognesi, W. Porzio, M. Castellani, S. Destri, G. Audisio, Macromolecules, 20, 469 (1987). 1068. G. Glockner, Plaste Kautschuk, 10, 154 (1963). 1069. G. Glockner, Z. Physik. Chem. (Leipzig), 229, 98 (1965). 1070. G. Glockner, J. Chromatog., 191, 279 (1980). 1071. G. Glockner, "Polymer charakterisienrong durch Fliissigkeitschromatographie" Hiithing Heidelberg (1982). 1072. G. Glockner, J. H. M. Van den Berg, N. L. J. Mejerink, T. G. Scholte, R. Koningsveld, Macromolecules, 17, 962 (1984). 1073. G. Glockner, V. Albrecht, F. Francuskiewicz, D. Ilchmann, Angew. Makromol. Angew. Makromol. Chem., 130, 41 (1985). 1074. G. Glockner, J. H. M. van der Berg, J. Chromatog., 352,511 (1986). 1075. G. Glockner, J. H. M. van der Berg, J. Chromatog., 384,135 (1987). 1076. G. Glockner, in: Elsevier (Ed.), "Polymer Characterization by liquid Chromatography", Amsterdam, 1987. 1077. G. Glockner, M. Stickler, W. Wunderlich, J. Appl. Polym. ScL, 37, 3147 (1989). 1078. G. Glockner, J. Appl. Polym. Sd., Appl. Polym. Symp., 43, 39 (1989). 1079. G. Glockner, J. Stejskal, R Kratochvil, Makromol. Chem., 190, 427 (1989). 1080. G. Glockner, "Gradient HPLC of Copolymer and Chromatographic Cross-fractionation", Springer Berlin, 1991. 1081. Y. Gnanov, R Rempp, Makromol. Chem., 189,1997 (1988). 1082. R. A. Godfrey, G. W. Miller, J. Polym. Sci. A-I, 7, 2387 (1969). 1083. R. A. Godfrey, G. W. Miller, Polym. Preprints 10 (1), 218 (1969). 1084. K. D. Goebel, D. A. Brant, Macromolecules, 3, 634 (1970). 1085. K. D. Goebel, W. G. Miller, Macromolecules, 3, 64 (1970). 1086. R. Goeden, D. D. Davis, M. Y. Hellman, A. J. Lovinger, F. H. Winslow, Macromolecules, 21, 1212 (1988). 1087. D. J. Goedhart, A. Opschoor, IUPAC Leiden, vol. 1, 163 (1970). 1088. D. J. Goedhart, A. Opschoor, J. Polym. Sci. A-2, 8, 1227 (1970). 1089. E. J. Goethals, A. Munir, R. Devaux, L. Vandenberghe, Makromol. Chem., Rapid Commun., 3, 515 (1982). 1090. E. J. Goethals, H. Nuytten, R. P. Simonds, Polym. Bull., 7, 89 (1982). 1091. A. L. Goff, I. R Yakovlev, V. M. Zhulin, M. G. Gonikberg, Polym. Sci. USSR, 11, 1487 (1969); Vysokomol. Soedin. A, 11, 1309 (1969). 1092. S. H. Goh, S. Y. Lee, S. M. Low, Macromolecules, 27,6736 (1994). 1093. A. I. Goldberg, W. R Hohenstein, H. F. Mark, J. Polym. Sci., 2, 503 (1947). 1094. L. Goldfarb, N. D. Hann, R. L. Dieck, D. C. Messersmith, J. Polym. Sci., Polym. Chem. Ed., 16, 1505 (1978).
1095. F J. Golemba, J. E. Guillet, Macromolecules, 5,212 (1972). 1096. M. A. Goiub, J. Polym. Sci., 11, 281 (1953). 1097. V. M. Golubev, S. Ya. Frenkel, Polym. Sci. USSR, 10, 869 (1968); Vysokomol. Soedin. A, 10, 750 (1968). 1098. M. T. Gomes Freire, L. Danicher, M. Lambla, Makromol. Chem., 189, 67 (1988). 1099. M. A. Gomez, J. G. Fatou, A. Bello, Eur. Polym. J., 22, 661 (1986). 1100. I. Goni, M. D. Gurruchaga, M. Valero, G. M. Guzman, J. Polym. Sci., Polym, Chem. Ed., 22, 1327 (1984). 1101. C. Gonzalez, F Zamora, G. M. Guzman, L. M. Leon, Makromol. Chem., 185, 339 (1984). 1102. C. C. Gonzalez, E. Riande, A. Bello, J. M. Perena, Macromolecules, 21, 3230 (1988). 1103. M. C. Gonzalez, F. Zamora, Eur. Polym. J., 26, 431 (1990). 1104. G. Gooberman, J. Polym. Sci., 40, 469 (1959). 1105. S. R. Gooda, M. B. Huglin, Macromolecules, 25, 4215 (1992). 1106. S. R. Gooda, M. B. Huglin, Polymer, 34, 1913 (1993). 1107. A. E. Goodban, H. S. Owens, J. Polym. Sci., 23, 825 (1957). 1108. R. Gooden, M. Y Hellman. R. S Hutton, F. H. Winslow, Macromolecules, 17, 2830 (1984). 1109. M. Goodman, L. Scarso, Polym. Preprints, 2, 116 (1961). 1110. A. Gorcienko, W. Griehl, H. Siebert, Faserforsch. Textiltech., 6, 105 (1955). 1111. A. Gorcienko, Faserforsch. Textiitech., 4, 499 (1953). 1112. D. A. I. Goring, G. Sitaramaiah, Polymer, 4, 7 (1963). 1113. A. B. Gosnell, J. A. Gervasi, A. Schindler, J. Polym. Sci. A-I, 4, 1401 (1966). 1114. N. Gospodinova, L. Terlemerzyan, M. Milhailov, V. Men Han, K. Ben Du, Eur. Polym. J., 28, 961 (1992). 1115. N. Gralen, G. Lagermalm, J. Phys. Chem., 56, 514 (1952). 1116. K. A. Granath, P. Flodin, Makromol. Chem., 48,160 (1961). 1117. N. Grassie, I. G. Meldrum, Eur. Polym. J., 6, 499 (1970). 1118. N. Grassie, I. G. Meldrum, Eur. Polym. J., 6, 513 (1970). 1119. J. H. S. Green, H. T. Hookway, M. F. Vaughan, Chem. Ind., 862 (1958). 1120. J. H. S. Green, M. F. Vaughan, Chem. Ind., 29 (1958). 1121. C. T. Greenwood, Adv. Carbohydr. Chem., 11, 335 (1956). 1122. D. E. Gregonis, G. A. Russell, J. D. Andrade, A. C. De Visser, Polymer, 19, 1279 (1978). 1123. G. S. Greschner, Makromol. Chem., 180, 2551 (1979). 1124. G. S. Greschner, Makromol. Chem., 183, 2823 (1982). 1125. W. Griehl, H. Lueckert, J. Polym. Sci., 30, 399 (1958). 1126. B. M. Grieveson, Makromol. Chem., 84, 93 (1965). 1127. C. H. Griffiths, A. Van Laeken, J. Polym. Sci., Polym. Phys. Ed., 14, 1433 (1976). 1128. V. A. Grigorovskaya, V. Ye. Basin, L. S. Lyubchenko, D. K. Khakimova, Ye. S. Cherepanova, A. A. Berlin, Polym. Sci. USSR, 18, 2960 (1976); Vysokomol, Soedin. A, 18, 2590 (1976). 1129. H. Grohn, H. Friedrich, J. Polym. Sci. C, 16, 3737 (1968). 1130. A. Gronawall, H. Hint, B. Ingelman, G. Wallenius, O. Wilander, Scand. J. Chem. Lab. Invest., 4, 363 (1952). 1131. P. Grosius, Y. Gallot, A. Skoulios, Makromol. Chem., 127, 94 (1969).
Next Page
1132. P. Grosius, Y. Gallot, A. Skoulios, Eur. Polym. J., 6, 355 (1970). 1133. P. Grosius, Y. Gallot, A. Skoulios, Makromol. Chem, 132, 35 (1970). 1134. P Grosius, Y. Gallot, A. Skoulios, Makromol. Chem., 136, 191 (1970). 1135. R. I. Gruz, T. Yu. Verkhoglyadova, Ye. F. Panarin, S. N. Ushakov, Polym. Sci. USSR, 13, 736 (1971); Vysokomol. Soedin. A, 13, 647 (1971). 1136. M. Guaita, O. Chiantore, Makromol. Chem., 176, 185 (1975). 1137. J. M. Guenet, Z. Gallot, C. Picot, H. Benoit. J. Appl. Polym. Sci., 21, 2181 (1977). 1138. J. M. Guenet, Macromolecules, 20, 2874 (1987). 1139. B. Guenther Soares, A. de S. Gomes, Polym. Bull., 22, 207 (1989). 1140. J. A. Guest, K. Matsuo, W. H. Stockmayer, Macromolecules, 13, 560 (1980). 1141. L. A. Gugliemeili, M. O. Weaver, C. R. Russell, C. E. Rist, J. Polym. Sci. B, 9, 151 (1971). 1142. L. A. Gugliemeili, C. L. Swanson, F. L. Baker, W. M. Doane, C. R. Russell, J. Polym. Sci., Polym. Chem. Ed., 12, 2683 (1974). 1143. J. E. Guillet, R. L. Combs, D. F. Slonaker, H. W. Coover, J. Polym. Sci., 47, 307 (1960). 1144. D. Gulino, J. Cole, J. P. Pascault, Makromol. Chem., 182, 1215 (1981). 1145. D. Gulino, J. GaIy, J. P. Pascault, Q. T. Pham. Makromol. Chem., 185, 297 (1984). 1146. J. J. Gunderson, J. C. Giddings, Macromolecules, 19, 2618 (1986). 1147. J. J. Gunderson, J. C. Giddings, C. Booth, C. Price, (Eds.), "Comprensive Polymer Science", vol. 1, Pergamon, Oxford, 1989, p. 279. 1148. S. Gundiah, N. V. Visvanathan, S. L. Kapur, Indian J. Chem., 4, 344 (1966). 1149. S. Gundiah, Makromol. Chem., 104, (1967). 1150. B. Gunesin, I. Piirma, J. Appl. Polym. Sci., 26,3103 (1981). 1151. A. Guo, G. Liu, J. Tao, Macromolecules, 29, 2487 (1996). 1152. H.-Q. Guo, A. Kajiwara, Y. Morishima, M. Kamachi, Macromolecules, 29, 2354 (1996). 1153. P. R. Gupta, J. L. Mc Carthy, Macromolecules, 1, 236 (1968). 1154. P. R. Gupta, J. L. Mc Carthy, Macromolecules, 1, 495 (1968). 1155. I. Gupta, S. N. Gupta, D. C. Neckers, J. Polym. Sci., Polym. Chem. Ed., 20, 147 (1982). 1156. S. N. Gupta, J. P. Kennedy, Polym. Bull., 1, 253 (1979). 1157. V. V. Gur'yanova, O. F. Alkayeva, S. Ye. Melamed, Reitburd, A. L. Narkon, B. M. Arshava, A. V. Pavlov, D. D. Novikov, Polym. Sci. USSR, 25, 438 (1983); Vysokomol. Soedin. A, 25, 375 (1983). 1158. A. A. Guryleva, M. P. Dianov, Polym Sci. USSR, 10, 1661 (1968); Vysokomoi. Soedin. A, 10, 1431 (1968). 1159. A. A. Guryleva, B. Ya. Teitel'baum. R. A. Shlyakhter, L. P. Moskevich, Poiym. Sci. USSR, 14, 1370 (1972); Vysokomoi. Soedin. A, 14, 1221 (1972).
1160. A. A. Guryleva, R. A. Shlyakhter, B. Ya. Teiterbaum. Polym. Sci. USSR, 16, 1427 (1974); Vysokomol. Soedin. A, 16, 1235 (1974). 1161. L. Ye. Gusel'nikov, A. Yu. Koshevnik, I. M. Kosheleva, M. M. Kusakov, Polym. Sci. USSR, 7, 860 (1965); Vysokomol. Soedin., 7, 950 (1965). 1162. J. T. Guthrie, M. Ryder, F. I. Abdel-Hay, Polym. Bull., 1, 501 (1979). 1163. J. M. Guyon-Gelliu, J. GoIe, J. P Pascault, J. Appl. Polym. Sci., 19, 3173 (1975). 1164. A. Guyot, P. Quang-Tho, J. Chim. Phys., 63, 742 (1966). 1165. A. Guyot, P. Rocaniere, J. Appl. Polym. Sci., 13, 2019 (1969). 1166. P. Guyot, J. C. Favier, M. Fontanille, P. Sigwalt, Polymer, 23, 73 (1982). 1167. G. M. Guzman, Anales Real Soc. Esp. Fis. Quim. B, 50,631 (1954). 1168. G. M. Guzman, J. Polym. Sci., 19, 519 (1956). 1169. G. M. Guzman, J. M. G. Fatou, Anales Real Soc. Esp. Fis. Quim. B, 53, 669 (1957). 1170. G. M. Guzman, J. M. G. Fatou, Anales Real Soc. Esp. Fis. Quim. B, 54, 609 (1958). 1171. G. M. Guzman, J. M. G. Fatou, Anales Real Soc. Esp. Fis. Quim. B, 54, 263 (1958). 1172. G. M. Guzman, in: J. C. Robb, F. W. Peaker, (Eds.), "Progress in High Polymers", Heywood, London, 1961. 1173. G. M. Guzman, F. Arranz, Anales Real Soc. Esp. Fis. Quim. B, 59, 445 (1963). 1174. G. M. Guzman, in: J. Brandrup, E. H. Immergut, (Eds.), "Polymer Handbook" 1st ed., Interscience, New York, 1966. 1175. G. M. Guzman, A. Bello, Makromol. Chem., 107, 46 (1967). 1176. G. M. Guzman, E. Riande, J. M. Perena, A. G. Urefla, Eur. Polym. J., 10, 537 (1974). 1177. M. Haberer, B. A. Wolf, Angew. Makromol. Chem., 228, 179 (1995). 1178. L. S. Hacche, G. E. Washington, D. A. Brant, Macromolecules, 20, 2180 (1987). 1179. W. F. Haddon, R. S. Porter, J. F. Johnson, J. Appl. Polym. Sci., 8, 1371 (1964). 1180. N. Hadjichristidis, M. Devaleriola, V. Desreux, Eur. Polym. J., 8, 1193 (1972). 1181. N. Hadjichristidis, V Desreux, J. Macromol. Sci. Part A: Chem., 6, 1227 (1972). 1182. N. Hadjichristidis, Makromol. Chem., 178, 1463 (1977). 1183. H. Hadjichristidis, J. Roovers, J. Polym. Sci., Polym. Phys. Ed., 16, 851 (1978). 1184. H. Hadjichristidis, L. J. Fetters, Macromolecules, 11, 668 (1978). 1185. H. Hadjichristidis, A. Guyot, L. J. Fetters, Macromolecules, 11, 668 (1978). 1186. H. Hadjichristidis, C. Touloupis, L. J. Fetters, Macromolecules, 14, 128 (1981). 1187. H. Hadjichristidis, J. Mays, W. Ferry, L. J. Fetters, J. Polym. Sci., Polym. Chem. Ed., 22, 1745 (1984). 1188. S. Hadjikyriacon, R. Faust, Macromolecules, 28, 7893 (1995).
Previous Page
1189. T. Hagiwara, T. Shimizu, T. Someno, T. Yamagishi, H. Hamana, T. Narita, Macromolecules, 21, 3324 (1988). 1190. G. L. Hagnauer, N. S. Schneider, J. Polym. Sci. A-2,10,699 (1972). 1191. G. L. Hahnauer, B. R. Laliberte, J. Polym. Sci., Polym. Phys. Ed., 14, 367 (1976). 1192. P. Hague, M. B. Huglin, B. L. Johnson, J. Smith, J. Appl. Polym. Sci., 12, 2105 (1968). 1193. W. Hahn, W. Muller, R. W. Webber, Makromol. Chem., 21, 131 (1956). 1194. H. Hai'da, J.-P. Lingelser, Y. Gallot, M. Duval, Makromol. Chem., 192, 270 (1991). 1195. D. A. Hajduk, S. M. Gruner, P. Rangarajan, R. A. Register, L. J. Fetters, Ch. Honeker, R. J. Albalak, E. L. Thomas, Macromolecules, 27, 490 (1994). 1196. A. F. Halasa, H. E. Adams, J. Polym. Sci. C, 30,169 (1970). 1197. A. Halbwachs, Z. Grubisie-Gallot, Makromol. Chem. Rapid Commun., 7, 709 (1986). 1198. R. W. Hall, in: P. W. Allen, (Ed.), "Techniques of Polymer Characterization", Butterworths, London, 1959. 1199. M. L. Hallensleben, Makromol. Chem., 177, 3213 (1976). 1200. T. Hama, K. Yamaguchi, T. Suzaki, Makromol. Chem., 155, 283 (1972). 1201. F L . Hamb, J. Polym. Sci., Polym. Chem. Ed., 10, 3217 (1972). 1202. A. E. Hamielec, M. Styring, Pure Appl. Chem., 57, 955 (1985). 1203. A. Hamiton, R. Jerome, Ph. Tyssie, J. Polym. Sci., Polym. Chem. Ed., 15, 1035 (1977). 1204. J. M. Hammond, J. F. Hooper, W. G. P. Robertson, J. Polym. Sci. A-I, 9, 281 (1971). 1205. E. Hamori, L. R. Prusinowski, P. G. Sparks, R. E. Hughes, J. Phys. Chem., 69, 1101 (1965). 1206. K. Hanafusa, A. Teramoto, H. Fujita, J. Phys. Chem., 70, 4004 (1966). 1207. T. M. Handel, I. S. Ponticello, J. S. Tan, Macromolecules, 20, 264 (1987). 1208. J. Hannus, G. Smets, Bull. Soc. Chim. Beiges, 60, 76 (1951). 1209. R. Hanselmann, W. Buchard, R. Lemmes, D. Schwengers, Makromol. Chem. Phys., 196, 2259 (1995). 1210. C. M. Hansen, G. A. Sather, J. Appl. Polym. Sci., 8, 2479 (1964). 1211. A. Harada, K. Kataoka, Macromolecules, 28, 5294 (1995). 1212. R. Hardy, P. E. M. Allen, Makromol. Chem., 42, 38 (1960). 1213. W. G. Harland, J. Textile Inst., 46, 483 (1955). 1214. D. J. Harmon, J. Polym. Sci. C, 8, 243 (1965). 1215. D. J. Harmon, H. L. Jacobs, J. Appl. Polym. Sci., 10, 253 (1966). 1216. D. J. Harmon, J. Appl. Polym. Sci., 11, 1333 (1967). 1217. R. E. Harrington, B. H. Zimm, Polym. Preprints, 6 (1), 346 (1965). 1218. R. E. Harrington, P. G. Pegoraro, J. Polym. Sci. A-I, 4, 475 (1966). 1219. I. Harris, R. G. J. Miller, J. Polym. Sci., 7, 377 (1951). 1220. C. A. Harrison, Th. H. Mourey, J. Appl. Polym. Sci., 56,211 (1995).
1221. N. Harder, Acta Chem. Scand., 11, 1162 (1957). 1222. M. Hasagawa, K. Yamamoto, T. Shiwaku, T. Hashimoto, Macromolecules, 23, 2629 (1990). 1223. E. Hasegawa, J. Nemoto, T. Kanayama, E. Tsuchida, Eur. Polym. J., 14, 123 (1978). 1224. T. Hashimoto, H. Sasaki, M. Aiura, Y. Kato, J. Polym. Sci., Polym. Phys. Ed., 16, 1789 (1978). 1225. G. W. Hastings, D. W. Ovenall, F W. Peaker, Nature (London) 1091 (1956). 1226. K. Hatada, T. Kitayama, S. Okakata, H. Yuki, Polym. J., 14, 971 (1982). 1227. D. Hatman, B. Chu, Macromolecules, 17, 1537 (1984). 1228. M. Hattori, H. Takai, M. Kinoshita, Makromol. Chem., 179 905 (1978). 1229. S. Hattori, H. Endoh, H. Nakahara, T. Kamata, M. Hamashima, Polym. J., 10, 173 (1978). 1230. A. Haugh, Acta Chem. Scand., 13, 601 (1959). 1231. E. A. Hauser, D. S. Le Beau, Indian Rubber J., 110, 601 (1946). 1232. E. A. Hauser, D. S. Le Beau, Rubber Chem. Tech., 20, 70 (1947). 1233. E. A. Hauser, D. S. Le Beau, J. Phys. Chem., 54, 256 (1950). 1234. A. Hauss, Angew, Makromol. Chem., 8, 73 (1969). 1235. S. W. Hawkins, H. Smith, J. Polym. Sci., 28, 341 (1958). 1236. J. N. Hay, M. Sabir, R. L. T. Steven, Polymer, 10, 187 (1969). 1237. J. N. Hay, A. M. Afifi-Effat, Brit. Polym. J., 1, 9 (1977). 1238. J. N. Hay, M. Wiles, Brit. Polym. J., 10, 181 (1978). 1239. J. N. Hay, J. F. Mc Cabe, J. Polym. Sci., Polym. Chem. Ed., 16, 2893 (1978). 1240. S. Hayase, T. Ito, S. Suzuki, M. Wada, J. Polym. Sci., Polym. Chem. Ed., 19, 2541 (1981). 1241. S. Hayase, Y. Onishi, K. Yoshikiyo, S. Suzuki, M. Wada, J. Polym. Sci., Polym. Chem. Ed., 20, 3155 (1982). 1242. K. Hayashi, D. C. Pepper, Polym. J., 8, 1 (1976). 1243. K. Hayshi, M. Tachibana, S. Okamura, J. Polym. Sci., Polym. Chem. Ed., 18, 3381 (1980). 1244. K. Hayshi, J. Polym. Sci., Polym. Chem. Ed., 18, 179 (1980). 1245. K. Hayshi, N. Kotani, J. Polym. Sci., Polym. Chem. Ed., 18, 191 (1980). 1246. S. Hayshi, F. Hamada, A. Saijoo, A. Nakajima, Kobunshi Kagaku Japan, 24, 769 (1967). 1247. S. Hayshi, S. Ikuma, K. Okuyama, T. Kajiyama, M. Takayanagy, J. Polym. Sci., Polym. Phys. Ed., 17, 1995 (1979). 1248. T. Hayshi, G. W. Chen, A. Nakjima, Polym. J., 16, 739 (1984). 1249. P. Hayden, R. Roberts, Int. J. Appl. Radiation Isotopes, 5, 269 (1959). 1250. R. Hayes, S. Futamura, J. Polym. Sci., Polym. Chem. Ed., 19, 985 (1981). 1251. J. E. Hazell, L. A. Prince, H. E. Stapelfeldt, Polym. Preprints, 8 (2), 1303 (1967). 1252. J. E. Hazell, L. A. Prince, H. E. Stapelfeldt, Polym. Sci. C, 21, 43 (1968). 1253. B. Hazer, Angew. Makromol. Chem., 129, 31 (1985).
1254. B. Hazer, R. W. Lenz, R. C. Fuller, Macromolecules, 27, 45 (1994). 1255. L. A. Hazlitt, D. G. Moldovan, US Patent., 4, 798.081 (1989). 1256. L. G. Hazlitt, J. Appl. Polym. ScL, Appl. Polym. Symp., 45, 25 (1990). 1257. Q.-J. He, X.-Z. Li, D.-Y. Meng, J. Liquid. Chromatog., 5, 1223 (1982). 1258. Z.-D. He, X-C. Zhang, R.-S. Cheng, J. Liquid. Chromatog., 5, 1209 (1982). 1259. A. Hebeish, M. H. El-Rafie, A. I. WaIy, J. Polym. ScL, Polym. Chem. Ed., 14, 2895 (1976). 1260. G. W. Heffner, D. S. Pearson, Macromolecules, 24, 6295 (1991). 1261. E. A. Hegazy, N. B. El-Assy, A.-G. M. Rabie, I. Ishigaki, J. Okamoto, J. Polym. ScL, Polym. Chem. Ed., 22, 597 (1984). 1262. W. Heitz, W. Kern, Angew. Makromol. Chem., 1, 150 (1967). 1263. W. Heitz, B. Boemer, H. Ullner, Makromol. Chem., 121, 102 (1969). 1264. W. Heitz, Angew. Makromol. Chem., 10, 115 (1970). 1265. W. Heitz, Makromol. Chem., 145, 141 (1971). 1266. W. Heitz, T. Wirth, R. Peters, G. Strobl, E. W. Fischer, Makromol. Chem., 162, 63 (1972). 1267. J. N. Helbert, C-Y. Chen, C. V. Pittman Jr., G. L. Hagnauer, Macromolecules, 11, 1104 (1978). 1268. J. Heller, J. Moacanin, J. Polym. Sci. B, 6, 595 (1968). 1269. J. Heller, J. F. Schimscheimer, R. A. Pasternak, C. B. Kingsley, J. Moacanin, J. Polym. Sci. A-I, 7, 73 (1969). 1270. T. E. Helminiak, C. L. Benner, W. E. Gibbs, Polym. Preprints, 8 (1), 284 (1967). 1271. T. E. Helminiak, C. L. Benner, W. E. Gibbs, Polym. Preprints, 11 (1), 291 (1970). 1272. J. F. Henderson, J. M. Hulme, J. Appl. Polym. Sci., 11, 2349 (1967). 1273. A. M. Henderson, A. Rudin, J. Polym. Sci., Polym. Chem. Ed., 19, 1707 (1981). 1274. J. Hengstenberg, Angew. Chem., 65, 350 (1953). 1275. J. Hengstenberg, Z. Elektrochem., 60, 236 (1956). 1276. P. M. Henry, J. Polym. Sci., 36, 3 (1959). 1277. L. D. Herbert, J. G. Robinson, G. Marr, Brit. Polym. J., 14, 180 (1982). 1278. W. L. Hergenrother, C. J. Nelson, J. Polym. Sci., Polym. Chem. Ed., 12, 2905 (1974). 1279. W. L. Hergenrother, R. J. Ambrose, J. Polym. Sci., Polym. Chem. Ed., 12, 2613 (1974). 1280. P. M. Hergenrother, J. Polymer Sci., Polym. Chem. Ed., 20, 1313 (1982). 1281. JJ. Hermans, H. A. Ende, J. Polym. Sci. C, 1, 161 (1963). 1282. I. Hernandez-Fuentes, M. G. Prolongo, Eur. Polym. J., 15, 671 (1979). 1283. J. Herold, G. Meyerhoff, Eur. Polym. J., 15, 525 (1979). 1284. R. Herold, J.-P. Fouassier, Angew. Makromol. Chem., 86, 123 (1980). 1285. P Herrent, J. Polym. Sci., 8, 346 (1952).
1286. A. Herrera de MoIa, M. Marx-Figini, R. V. Figini, Makromol. Chem., 176, 2455 (1975). 1287. M. Hert, J. Rault, E. Robelin, Makromol. Chem., 184, 225 (1983). 1288. J. Herz, D. Decker-Freyss, P Rempp, J. Polym. Sci. C, 16, 4035 (1968). 1289. J. Herz, M. Hert, C. Strazielle, Makromol. Chem., 160, 213 (1972). 1290. G. Heublein, W. Freitag, W. Mock, Makromol. Chem., 181, 267 (1980). 1291. G. Heufer, D. Braun, J. Polym. Sci. B, 3, 495 (1965). 1292. E. Heuser, Wim. Shockley, R. Kjellgreen, Tappi, 33, 92 (1950). 1293. M. E. S. Hibibe, M. C. A. Esperidiao, J. Polym. Sci. Part B, Polym. Phys. Ed., 33, 759 (1995). 1294. T. Higashimura, T. Matsuda, S. Okamura, J. Polym. Sci. A-I, 8, 483 (1970). 1295. T. Higashimura, O. Kishiro, J. Polym. Sci., Polym. Chem. Ed., 12, 967 (1974). 1296. T. Higashimura, O. Kishiro, T. Takeda, J. Polym. Sci., Polym. Chem. Ed., 14, 1089 (1976). 1297. T. Higashimura, M. Mitsuhashi, M. Sawamoto, Macromolecules, 12, 178 (1979). 1298. T. Higashimura, H. Teranishi, M. Sawamoto, Polym. J., 12, 393 (1980). 1299. T. Higashimura, A. Tavizaki, M. Sawamoto, J. Polym. Sci., Polym. Sci., Polym. Chem. Ed., 22, 3173 (1984). 1300. T. Higashimura, Y. M. Law, M. Sawamoto, Polym. J., 16, 401 (1984). 1301. Y. Higo, Y. Kato, M. Itoh, N. Kozuka, I. Noda, M. Nagasawa, Polym. J., 14, 809 (1982). 1302. G. HiId, A. Kohler, P Rempp, Eur. Polym. J., 16, 525 (1980). 1303. A. Hilt, K. H. Reichert, K. Hamann, Makromol. Chem., 101, 246 (1967). 1304. O. Hinterhofer, Makromol. Chem., 181, 67 (1980). 1305. T. Hirabayashi, K. Yokota, Polym. J., 14, 789 (1982). 1306. A. Hirai, K. Yamaguchi, K. Takenaka, K. Suzuki, S. Nakahama, N. Yamazaki, Makromol. Chem., Rapid Commun., 3, 941 (1982). 1307. T. Hirano, P. H. Khanh, T. Tsuruta, Makromol. Chem., 153, 331 (1972). 1308. A. Hirao,, I. Hattori, T. Sasagawa, K. Yamaguchi, S. Nakahama, N. Yamazaki, Makromol. Chem., Rapid Commun., 3, 59 (1982). 1309. A. Hirao, Y. Ishino, S. Nakahama, Macromolecules, 21, 561 (1988). 1310. A. Hirao, K. Kitamura, K. Takenata, S. Nakahama, Macromolecules, 26, 4995 (1993). 1311. S. Hirata, H. Hasegawa, A. Kishimoto, J. Appl. Polym. Sci., 14, 2025 (1970). 1312. M. Hirooka, H. Kanda, K. Nakaguchi, J. Polym. Sci. B, 1, 701 (1963). 1313. S. M. Hirshfield, E. R. Allen, J. Polym. ScL, 39, 554 (1959). 1314. T. Hjerberg, E. M. Soervik, J. Polym. Sci., Polym. Chem. Ed., 16, 645 (1978).
1315. T. Hjerberg, E. M. Soervik, J. Macromol. Sci., Part A: Chem., 17, 983 (1982). 1316. M. Hlousek, J. Lanikova, Chem. Prumsysl, 16 (14), 160 (1966). 1317. M. Hlousek, J. Lanikova, J. Polym. Sci. C, 16, 935 (1967). 1318. N. Ho-Duc, H. Daoust, Can. J. Chem., 46, 2456 (1968). 1319. N. Ho-Duc, H. Daoust, A. Gourdenne, Polym. Preprints, 12 (1), 639 (1971). 1320. N. Ho-Duc, J. Prud'homme, Macromolecules, 6, 472 (1973). 1321. H. C. Hoare, D. E. Hillman, Brit. Polym. J., 3, 259 (1971). 1322. L. M. Hobbs, S. C. Kothari, V. C. Long, G. C. Sutaria, J. Polym. Sci., 22, 123 (1956). 1323. L. M. Hobbs, V. C. Long, Polymer, 4, 479 (1963). 1324. S. J. Hobbs, F. W. Billmeyer Jr., J. Polym. Sci. A-2, 8, 1387 (1970). 1325. H. Hocker, K. Saeki, Makromol. Chem., 148, 107 (1971). 1326. P. J. Hocking, R. H. Marchessault, Polym. Bull, 30, 163 (1993). 1327. L. Hoehr, V. Jaacks, H. Cherdron, S. Iwabuchi, W. Kern, Makromol. Chem., 103, 279 (1967). 1328. H. J. Hoelle, B. R. Lehnen, Eur. Polym. J., 11, 663 (1975). 1329. A. S. Hoffman, B. A. Fries, P. C. Condit, J. Polym. Sci. C, 4, 109 (1963). 1330. J. D. Hoffman, B. H. Zimm, J. Polym. Sci., 15, 405 (1955). 1331. M. Hoffman, H. Urban, Makromol. Chem., 178, 2683 (1977). 1332. M. Hoffmann, Makromol. Chem., 57, 96 (1962). 1333. M. Hoffmann, unpublished report to Farbenfabriken Bayer, 1959, quoted by H. Giesekus, in: M. J. R. Cantow, (Ed.), "Polymer Fractionation", Academic Press, 1967, p. 191. 1334. M. Hoffmann, Makromol. Chem., 177, 1021 (1976). 1335. V. Hofmann, H. Ringsdorf, E. Schaumloeffel, Makromol. Chem., 181, 351 (1980). 1336. S. Holdcrof, Macromolecules, 24, 4834 (1991). 1337. G. E. Holdcroft, P. H. Plesch, Makromol. Chem., 185, 27 (1984). 1338. P. J. Holdsworth, A. Keller, I. M. Ward, T. Williams, Makromol. Chem., 125, 82 (1969). 1339. P. J. Holdsworth, A. Keller, I. M. Ward, T. Williams, Makromol. Chem., 125, 70 (1969). 1340. G. M. Holob, R Erlich, J. Polym. Sci., Polym. Phys. Ed., 15, 627 (1977). 1341. C. Holt, W. Mackie, D. B. Sellen, Polymer, 19,1421 (1978). 1342. W. Holtrup, Makromol. Chem., 178, 2335 (1977). 1343. R. B. Homer, M. Shinitzky, Macromolecules, 1,469 (1968). 1344. T. Homma, K. Kawahara, H. Fujita, M. Ueda, Makromol. Chem., 67, 132 (1963). 1345. T. Homma, K. Kawahara, H. Fujita, J. Appl. Polym. Sci., 8, 2853 (1964). 1346. T. Homma, H. Fujita, J. Appl. Polym. Sci., 9, 1701 (1965). 1347. F. Hooshmand-Mozaffar, M. K. Hoseinalizadeh-Khorasani, M. B. Huglin, Polymer, 21, 413 (1980). 1348. P. Hope, R. Anderson, A. S. Bloss, Brit. Polym. J., 5, 67 (1973). 1349. P. Hope, B. P Stark, Brit. Polym. J., 5, 363 (1973).
1350. H. Hopff, M. De Tomasi, H.-G. Elias, Makromol. Chem., 96, 41 (1966). 1351. H. Hopff, M. A. Osman, Makromol. Chem., 143, 289 (1971). 1352. J. Hopken, M. Moller, Macromolecules, 25, 1461 (1992). 1353. A. Horbach, H. Vernaleken, K. Weirauch, Makromol. Chem., 181, 111 (1980). 1354. A. Horbach, R. Binsack, H. Mueller, Angew. Makromol. Chem., 98, 35 (1981). 1355. K. Horie, D. Mikulasova, Makromol. Chem., 175, 2091 (1974). 1356. F. Horii, Y. Ikada, J. Polym. Sci., Polym. Lett. Ed., 12, 27 (1974). 1357. F. Horii, Y. Ikada, I. Sakurada, J. Polym. Sci., Polym. Chem. Ed., 13, 755 (1975). 1358. H. Horiuchi, S. Irie, T. Nose, Polymer, 32, 1970 (1991). 1359. R H. Horowitz, Polym. Preprints, 3, 167 (1962). 1360. R. H. Horowitz, Polym. Preprints, 4, 689 (1963). 1361. J. Horsky, V. Petrus, M. Bohdnecky, Makromol. Chem., 187, 2621 (1986). 1362. J. Horsky, M. Bohdnecky, Eur. Polym. J., 26, 1109 (1990). 1363. A. Horta, L A. Katime, Macromolecules, 17, 2734 (1984). 1364. A. Horta, E. Saiz, J. M. Barraies-Rienda, R A. Galera Gomez, Polymer, 27, 139 (1986). 1365. A. Horta, L. Gargallo, D. Radic, Macromolecules, 23, 5320 (1990). 1366. B. Hortling, J. J. Lindberg, Makromol. Chem., 179, 1707 (1978). 1367. S. Hosoda, Polym. J., 20, 383 (1988). 1368. K. Hoshino, M. Watanabe, J. Am. Chem. Soc, 73, 4816 (1951). 1369. R. E. Hostetler, J. W. Swanson, J. Polym. Sci., Polym, Chem, Ed., 12, 29 (1974). 1370. T. Housaki, J. Appl. Polym. Sci., Appl. Polym. Symp., 48, 75 (1991). 1371. R. C. Houtz, Textile Res. J., 20, 786 (1950). 1372. P. Howard, R. S. Parikh, IUPAC Praga, Preprint P 265 (1965). 1373. P. Howard, R. S. Parikh, J. Polym. Sci. A-I, 4, 407 (1966). 1374. P. Howard, R. S. Parikh, J. Polym. Sci. C, 30, 17 (1970). 1375. G. J. Howard, J. Polym. Sci., 37, 310 (1959). 1376. G. J. Howard, J. Polym. Sci. A, 1, 2667 (1963). 1377. C. E. Hoyle, C. P. Chawla, Macromolecules, 28, 1946 (1995). 1378. J. S. Hrkach, K. Matyjaszewski, Macromolecules, 23, 4042 (1990). 1379. H. L. Hsieh, J. Polym. Sci. A-I, 3, 191 (1965). 1380. H. L. Hsieh, O. F. Mc Kinney, J. Polym. Sci. B, 4, 843 (1966). 1381. C. S. Hsu, V. Percec, Makromol. Chem., 189, 1141 (1988). 1382. X. Hu, J. L. Stanford, R. J. Day, R. J. Young, Macromolecules, 25, 672 (1992). 1383. R. Y. Hunag, G. Mayer, IUPAC Budapest, Vol. Ill, Preprint 6/03 (1969). 1384. R. Y. M. Huang, J. F Westlake, S. C. Sharma, J. Polym. Sci. A-I, 7, 1729 (1969).
1385. R. Y. M. Huang, U. Y. Kim, J. M. Dickson, D. R. Lloyd, C. Y Peng, J. Appl. Polym. ScL, 26, 1135 (1981). 1386. N. Huang, D. C. Suudberg, J. Polym. Sci. Part A: Polym. Chem., 33, 2551 (1995). 1387. R. Y. M. Huang, P. Chandramouli, J. Polym. Sci. A-I, 7, 1393 (1969). 1388. R. Y M. Huang, J. F. Westlake, IUPAC Budapest, Vol. Ill, 8, 49 (1970). 1389. C. Huber, K. H. Lederer, J. Polym. Sci., Polym. Lett. Ed., 18, 535 (1980). 1390. P. Hubin-Eschger, Angew. Makromol. Chem., 26, 107 (1972). 1391. R Hudec, Z. Slama, H. Stepankova, Makromol Chem., 180, 351 (1979). 1392. M. L. Huggins, H. Okamoto, in: M. J. R. Cantow (Ed.), "Polymer Fractionation", Academic Press, New York, 1996. 1393. L. J. Hughes, G. L. Brown. J. Appl. Polym. Sci., 7, 59 (1963). 1394. L. J. Hughes, R. H. Andreatta, H. A. Scheraga, Macromolecules, 5, 187 (1972). 1395. A. J. Hughes, J. P. Bell, J. Polym. Sci., Polym. Phys. Ed., 16, 201 (1978). 1396. M. B. Huglin. D. H. Whitehurst, D. Sims, J. Appl. Polym. Sci., 12, 1889 (1968). 1397. J. M. Hulme, L. A. Mc Leod, Polymer, 3, 153 (1962). 1398. M. L. Hunt, S. Newman, H. A. Scheraga, P. J. Flory, J. Phys. Chem., 60, 1278 (1956). 1399. B. K. Hunter, K. E. Russell, M. Y Scammell, S. L. Thompson, J. Poiym. Sci., Poiym. Chem. Ed., 22, 1383 (1984). 1400. E. Husemann, Makromol. Chem., 26, p. 181, p. 199 (1958). 1401. E. Husemann, B. Pfannemuller, Makromol. Chem., 49, 214 (1961). 1402. E. Husemann, B. Pfannemuller, Makromol. Chem., 69, 74 (1963). 1403. E. Husemann, R. Werner, Makromol. Chem., 59,43 (1963). 1404. A. J. Hyde, R. B. Taylor, Polymer, 4, 1 (1963). 1405. H. Iatron, E. Siakali-Kionlafa, N. Hadjichristidis,J. Roovers, J. Polym. Sci. Part B, Polym. Phys., 33, 1925 (1995). 1406. F. Ide, R. Handa, K. Nakatsuka, Chem. High Polym. (Japan), 21, 57 (1964). 1407. Ye. V. Ignatova, M. B. Lachinov, V. P. Zubov, Ye. S. Garina, V. A. Kabanov, Polym. Sci. USSR, 22, 3057 (1980); Vysokomol. Soedin. A, 22, 2787 (1980). 1408. T. Ikeda, S. Horiuchi, D. B. Karaujit, S. Kurihara, S. Tazuke, Macromolecules, 23, 36 (1990). 1409. T. Ikeda, S. Kurihara, D. B. Karaujit, S. Tazuke, Macromolecules, 23, 3938 (1990). 1410. I. Ikeda, K. Suzuki, T. Maekawa, T. Higashimura, Polym. J., 12, 423 (1980). 1411. K.-H. Ulers, Makromol. Chem., 118, 88 (1968). 1412. K. Imai, M. Matsumoto, Bull. Chem. Soc. Japan, 36, 455 (1963). 1413. L. G. Imhof, J. Appl. Polym. Sci., 10, 1137 (1966). 1414. H. Inagaki, K. Hayashi, T. Matsuo, Makromol. Chem., 84, 80 (1965).
1415. H. Inagaki, T. Miyamoto, Makromol. Chem., 87, 166 (1965). 1416. H. Inagaki, T. Miyamoto, S. Ohta, J. Phys. Chem., 70, 3420 (1966). 1417. H. Inagaki, H. Suzuki, M. Fujii, T. Matsuo, J. Phys. Chem., 70, 1718 (1966). 1418. H. Inagaki, H. Matsuda, F. Kafniyama, Macromolecules, 1, 520 (1968). 1419. H. Inagaki, F. Kamiyama, T. Yagi, Macromolecules, 4, 133 (1971). 1420. H. Inamura, H. Ochiai, H. Yamamura, J. Polym. Sci., Polym. Phys. Ed., 14, 1221 (1976). 1421. J. D. Ingham, N. S. Rapp, J. Polym. Sci., A-I, 2, 4941 (1964). 1422. S. Inoue, T. Tsuruta, N. Yoshida, Kogyo Kagaku Zassi, 67, 1439 (1964). 1423. S. Inoue, T. Tsuruta, N. Yoshida, Makromol. Chem., 79, 34 (1964). 1424. S. Inoue, Y. Yokota, N. Yoshida, T. Tsuruta, Makromol. Chem., 90, 131 (1966). 1425. S. Inoue, T. Tsukuma, M. Kawaguchi, T. Tsuruta, Makromol. Chem., 103, 151 (1967). 1426. S. Inoue, K. Tsubaki, T. Yamada, T. Tsuruta, Makromol. Chem., 125, 181 (1969). 1427. T. Inoue, S. Tazuke, J. Polym. Sci., Polym. Chem. Ed., 19, 2861 (1981). 1428. K. Irabo, S. Anzai, A. Onishi, Bull. Chem. Soc. Japan, 41, 501 (1968). 1429. M. Me, S. Tomimoto, K. Hayashi, J. Polym. Sci., Polym. Chem. Ed., 11, 1859 (1973). 1430. J. J. Iruin, G. M. Guzman, J. Ansorena, Makromol. Chem., 182, 2789 (1981). 1431. S. Ishida. Bull. Chem. Soc. Japan, 33, 727 (1960). 1432. S. Ishida, Y Tsutsumi, K. Kaneko, J. Polym. Sci., Polym. Chem. Ed., 19, 1609 (1981). 1433. I. Ishigaki, N. Morishita, Y Morita, A. Ito, J. Appl. Polym. Sci., 21, 749(1977). 1434. S. Ishikausa, Makromol. Chem. Phys., 196, 485 (1995). 1435. M. Ishimori, T. Hagiwara, T. Tsuruta, Makromol. Chem., 179, 2337 (1978). 1436. T. Ishizone, J. Tsuchiya, A. Hirao, S. Nakahama, Macromolecules, 25, 4840 (1992). 1437. T Ishizone, A. Hirao, S. Nakahama, Macromolecules, 26, 6964 (1993). 1438. T. Ishizone, N. Oka, A. Hirao, S. Nakahama, Macromolecules, 29, 528 (1996). 1439. K. Ishizu, K. Ino, Y Koshiro, T. Fukutomi, T. Kakurai, J. Polym. Sci., Polym. Chem. Ed., 20, 2545 (1982). 1440. K. Ishizu, A. Ohtaka, T. Fukutomi, T. Kakurai, J. Polym. Sci., Polym. Chem. Ed., 20, 3199 (1982). 1441. K. Ishizu, Y. Kashi, T. Fukutomi, T. Kakurai, Makromol. Chem., 183, 3099 (1982). 1442. K. Ishizu, K. Inagaki, K. Bessho, T. Fukutomi, Makromol. Chem., 185, 1169 (1984). 1443. K. Ishizu, T. Fukuyama, Macromolecules, 22, 244 (1989). 1444. Y Isono, T. Fujimoto, H. Inagaki, M. Shishido, M. Nagasawa, Polym. J., 12, 131 (1980).
1445. H. Itagaki, A. Okamoto, K. Horie, I. Mita, Eur. Polym. J., 18, 885 (1982). 1446. H. Ito, D. C. Miller, C. G. Willson, Macromolecules, 15, 915 (1982). 1447. K. Ito, N. Usami, Y. Yamashita, Macromolecules, 13, 216 (1980). 1448. K. Ito, Y. Tomi, S. Kawaguchi, Macromolecules, 25, 1538 (1992). 1449. Y. Ito, S. Shuishido, J. Polym. ScL, Polym. Phys. Ed., 10, 2239 (1972). 1450. T. Itou, A. Teramoto, Polym. J., 16, 779 (1984). 1451. T. Itou, M. Chikiri, A. Taremoto, S. M. Aharoni, Polym. J., 20, 143 (1988). 1452. S. S. Ivanchev, N. I. Solomko, Polym. Sci. USSR, 8, 353 (1966); Vysokomoi. Soedin., 8, 322 (1966). 1453. S. S. Ivanchev, L. V. Shumnyi, V. V. Konovalenko, Polym. Sci. USSR, 22, 3000 (1980); Vysokomoi. Soedin. A, 22, 2735 (1980). 1454. J. Ivanfi, E. Ady, J. Paint. Technol, 43, 199 (1970). 1455. K. J. Ivin, H. A. Ende, G. Meyerhoff, Polymer, 3, 129 (1962). 1456. M. Iwama, H. Utiyama, M. Kurata, J. Macromol. Sci. Chem., 1, 701 (1966). 1457. T. Iwata, T. Saegusa, H. Fujii, J. Furukawa, Makromol. Chem., 97, 49 (1966). 1458. T. Iwata, Y. Doi, K. Kasuya, Y. Inoue, Macromolecules, 30, 833 (1997). 1459. Y. Izumi, Y Miyake, Polym. J., 3, 647 (1972). 1460. V. Jaacks, G. Franzmann, Makromol. Chem., 143, 283 (1971). 1461. V. Jaacks, C. D. Eisenbach, W. Kern, Makromol. Chem., 161, 139 (1972). 1462. H. Jabloner, R. H. Mumma, J. Polym. Sci., Polym. Chem. Ed., 10, 763 (1972). 1463. C. Jackson, D. J. Frater, J. W. Mays, J. Polym. Sci. B, Polym. Phys., 33, 2155 (1995). 1464. C. Jackson, J. P. O'Brien, Macromolecules, 28, 5975 (1955). 1465. E. Jacobi, H. Schuttenberg, R. C. Schulz, Makromol. Chem. Rapid. Commun., 1, 397 (1980). 1466. J. Jaffe, C. Berliner, J. Chim. Phys., 63, 389 (1966). 1467. J. Jaffe, C. Berliner, M. Lambert, J. Chim. Phys., 64, 499 (1967). 1468. B. Jambe, J. Marchand.-Brynaert, J, Devaux, J. Polym. Sci. :Part A, Polym. Chem., 33, 1283 (1995). 1469. J. Janca, S. Pokorny, J. Chromatog., 170, 319 (1979). 1470. J. Janca, M. Kolinsky, J. Appl. Polym. Sci., 21, 83 (1977). 1471. J. Janca, Chem. Listy, 73, 476 (1979). 1472. J. Janca, S. Pokorny, M. Kolinsky, J. Appl. Polym. Sci., 23, 1811 (1979). 1473. J. Janca, S. Pokorny, L. Z. Vilenchik, B. G. Belenkii, J. Chromatog., 211, 39 (1981). 1474. J. Janca (Ed.), "Chromatographic Science Series", vol. 25, Marcel Dekker, New York, 1984. 1475. J. Janca, D. Pribyiova, K. Bouchal, V. Tyrackova, J. Liquid. Chromatogr., 9, 2059 (1986).
1476. J. Janca, "Field-Flow Fractionation - Analysis of Macromolecules and Particles", Chromatographic Science Series, vol 39, Marcel Dekker, New York, 1988. 1477. M. Janco, T. Prudskova, D. Bereck, J. Appl. Polym. Sci., 55, 393 (1995). 1478. M. Janco, D. Bereck, T. Prudskova, Polymer, 36, 3295 (1995). 1479. M. Janic, M. J. Benes, J. Peska, Makromol. Chem., 138, 99 (1970). 1480. P. Jannasch, B. Wesslen, J. Polym. Sci. Part A, Polym. Chem., 33, 1465 (1995). 1481. G. Jayme, K. Kringstad, Angew. Chem., 73, 219 (1961). 1482. G. Jayme, P. Kleppe, A. Kunschner, Makromol. Chem., 48, 144 (1961). 1483. G. Jayme, H. Knolle, Makromol. Chem., 82, 190 (1965). 1484. G. Jayme, J. Troeften, Naturwissenschaften, 52,496 (1965). 1485. G. Jayme, P. Kleppe, Papier, 15, 6 (1961). 1486. G. Jayme, K. K. Hasvold, Papier, 20, 657 (1966). 1487. G. Jayme, G. El-Kodsi, Papier, 24, p. 125, p. 679 (1970). 1488. G, Jayme, G. El-Kodsi, Papier, 25, 589, 627 (1971). 1489. J. M. Jelich, S. P. Nunes, E. Paul, B. A. Wolf, Macromolecules, 20, 1943 (1987). 1490. H. H, G. Jellinek, G. White, J. Polym. Sci., 6, 757 (1951). 1491. H. H. G. Jellinek, M. D. Lun, Polym. Preprints, 8(1), 533 (1967). 1492. H. H. G. Jellinek, J. J. Lichorat, Polym. J., 12, 347 (1980). 1493. A. M. Jendrychowska-Bonamour, Eur. Polym. J., 6, 1491 (1970). 1494. A. M. Jendrychowska-Bonamour, C. Michot, Eur. Polym. J., 13, 251 (1977). 1495. R. E. Jentoft, T. H. Gouw, J. Polym. Sci., B, 7, 811 (1969). 1496. S. I. Jeon, M. S. Jhon, J. Polym. Sci., Polym. Chem. Ed., 22, 3555 (1984). 1497. S. I. Jeon, D. W. Lee, J. Polym. Sci. B, Polym. Phys., 33, 411 (1995). 1498. R. Jerome, V. Desreux, Eur, Polym. J., 6, 411 (1970). 1499. M. Jiang, T. Huang, J. Xie, Makromol. Chem. Phys., 196, 803 (1995). 1500. Y. Jinbo, T. Sato, A. Teramoto, Macromolecules, 27, 6080 (1994). 1501. B. Jirgensons, J. Polym. Sci., 8 519 (1952). 1502. T. Jochsberger, N. Indictor, N. Gudiilludglu, C. J. Shahani, N. S. Baer, J. Polym. Sci., Polym. Chem. Ed., 16, 309 (1978). 1503. C. Johann, P. KiIa, J. Appl. Polym. Sci., Appl. Polym. Symp., 48, 111 (1991). 1504. R. M. Johnsen, Chem. Scripta, 1, 81 (1971). 1505. B. L. Johnson, Ind. Eng. Chem., 40, 351 (1948). 1506. J. F. Johnson, R. S. Porter, M. J. R. Cantow, in: H. F. Mark, N. G. Gaylord, N. M. Bikales, (Eds.), "Fractionation" in Encyclopedia Polym. Sci., Technol. Interscience, New York, 7, 231 (1967). 1507. J. F. Johnson, R. S. Porter (Eds.), "Analytical Gel Permeation Chromatography", J. Polym. Sci. C, 21, Interscience, New York, 1968.
1508. J. F. Johnson, R. S. Porter, "Gel Permeation Chromatography" in: A. D. Jenkins, (Ed.), "Progress in Polymer Science", vol. 2, Pergamon Press, 201 (1970). 1509. P. R. Johnston, J. Appl. Polym. Sci., 9, 467 (1965). 1510. R. G. Jones, R. E. Benfield, R. H. Cragg, A. C. Swain, S. J. Webb, Macromolecules, 26, 4878 (1993). 1511. F. R. Jones, Eur. Polym. J., 10, 249 (1974). 1512. F. R. Jones, L. E. Scales, J. A. Semiyen, Polymer, 15, 738 (1974). 1513. E. F. Jordan Jr., A. N. Wrigley, J. Polym. Sci. A-I, 2, 3909 (1964). 1514. P. L. Joskowicz, A. Munoz, J. Barrera, A. Miiller, Makromol. Chem. Phys., 196, 385 (1995). 1515. S. Jovanovic, J. Romatowski, G. V. Schulz, Makromol. Chem., 85, 187 (1965). 1516. J. Juilfs, Kolloid. Z., 141, 88 (1955). 1517. P. C. Juliano, J. V. Crivello, D. E. Floryan, Polym. Preprints, 12(1), 632(1971). 1518. J. L. Jungnickel, F. T. Weiss, J. Polym. Sci., 49, 437 (1961). 1519. J. Junquera, N. Cardona, J. E. Figueruelo, Makromol. Chem., 160, 159 (1972). 1520. G. R. Juppien, Angew. Makromol. Chem., 70, 199 (1978). 1521. V. Juranicova, S. Florian, D. Berek, Eur. Polym. J., 6, 63 (1970). 1522. V. Juranicova, S. Florian, D. Berek, Eur. Polym. J., 6, 57 (1970). 1523. R. I. Kabalyunas, G. D. Shershneva, R. M. Livshits, Z. A. Rogovin, Polym. Sci. USSR, 8, 260 (1966); Vysokomol. Soedin., 8,240(1966). 1524. H. Kaemmerer, W. Kern, W. HeuseiyJ. Polym. Sci., 28, 331 (1958). 1525. H. Kaemmerer, F. Rocaboy, Compt. Rend., 256, 4440 (1963). 1526. H. Kaemmerer, F. Rocaboy, Makromol. Chem., 72, 76 (1964). 1527. H. Kaemmerer, K.-G. Steinfort, W. Kern, Makromol. Chem., 70, 173 (1964). 1528. H. Kaemmerer, P. N. Grover, Makromol. Chem., 96, 270 (1966). 1529. H. Kaemmerer, P. N. Grover, Makromol. Chem., 99, 49 (1966). 1530. H. Kaemmerer, K. F. Mueck, Makromol. Chem., 136, 161 (1970). 1531. H. Kaemmerer, K. F. Mueck, Makromol. Chem., 136, 179 (1970). 1532. K. Kagawa, T. Oishi, K. Matsusaki, M. Fujimoto, Polymer, 36, 941 (1995). 1533. M. Kajiwara, N. Yamamoto, Brit. Polym. J., 16, 148 (1984). 1534. Y. Kakamura, O. Hinojosa, J. C. Arthur Jr., J. Appl. Polym. Sci., 15, 391 (1971). 1535. H. Kakiuchi, W. Fukuda, Kogyo Kagaku Zasshi, 66, 964 (1963). 1536. M. Kakugo, T. Miyatake, Y. Naito, K. Mizunuma, Macromolecules, 21, 314 (1988). 1537. M. Kakugo, T. Miyatake, K. Mizunuma, Y. Kawai, Macromolecules, 21, 2309 (1988).
1538. M. Kakugo, Y. Naito, K. Mizunuma, T. Miyatake, Makromol. Chem., 190, 849 (1989). 1539. M. Kakugo, T. Miyatake, Y. Naiko, K. Mizunuma, Makromol. Chem., 190, 505 (1989). 1540. M. Kakugo, T. Miyatake, K. Mizunuma, Macromolecules, 24, 1469 (1991). 1541. J. Kalal, M. Gordon, C. Devoy, Makromol. Chem., 152,233 (1972). 1542. J. Kalal, V. Marousek, R Svec, Angew. Makromol. Chem., 38, 45 (1974). 1543. M. Kalfus, E. Kopytovski, Z. Skupinska, S. Lesniak, Polym. Sci. USSR, 7, 1830 (1965); Vysokomol. Soedin., 7, 1655 (1965). 1544. M. Kalfus. J. Mitus, J. Polym. Sci. A-I, 4, 953 (1966). 1545. R. Kalir, A. Zilkha, Eur. Polym. J., 14, 557 (1978). 1546. J. K. Kallitsis, F. Kakali, K. G. Gravalos, Macromolecules, 27, 4509 (1994). 1547. K. K. Kalnin'sh, A. N. Krasowskii, B. G. Belen'kii, G. A. Andreyeva, Polym. Sci., USSR, 18, 2636 (1976); Vysokomol. Soedin. A, 18, 2304 (1976). 1548. K. Kamada, H. Sato, Polym. J., 2, 593 (1971). 1549. Y Kamaguchi, Y. Doi, Macromolecules, 25, 2324 (1992). 1550. P. M. Kamath, L. Wild, Polym. Eng. Sci., 6, 213 (1966). 1551. Y Kambe, C. Honda, Angew. Makromol. Chem., 25, 163 (1972). 1552. Y Kambe, C. Honda, Angew. Makromol. Chem., 48, 175 (1975). 1553. I. Kamel, S. Machi, J. Silverman, J. Polym. Sci., Polym. Chem. Ed., 10, 1019 (1972). 1554. K. Kamide, K. Fujii, H. Kobayashi, Makromol. Chem., 117, 190 (1968). 1555. K. Kamide, K. Ohno, T. Kawai, Makromol. Chem., 137, 1 (1970). 1556. K. Kamide, K. Sugamiya, T. Ogawa, C. Nakayama, N. Baba, Makromol. Chem., 135, 23 (1970). 1557. K. Kamide, K. Yamaguchi, Makromol. Chem., 162, 205 (1972). 1558. K. Kamide, T. Terakawa, Makromol. Chem., 155, 25 (1972). 1559. K. Kamide, S. Manabe, E. Osafune, Makromol. Chem., 168, 173 (1973). 1560. K. Kamide, Y. Miyazaki, H. Kobayashi, Polym. J., 9, 317 (1977). 1561. K. Kamide, Y. Miyazaki, T. Abe, Polym. J., 9, 395 (1977). 1562. K. Kamide, Y. Miyakawa, Makromol. Chem., 179, 359 (1978). 1563. K. Kamide, T. Okada, T. Terakawa, K. Kaneko, Polym. J., 10, 547 (1978). 1564. K. Kamide, T. Terakawa, Y. Miyazaki, Polym. J., 11, 285 (1979). 1565. K. Kamide, Y. Miyazaki, T. Abe, Polym. J., 11, 523 (1979). 1566. K. Kamide, Y. Miyazaki, T. Abe, Brit. Polym. J., 13, 168 (1981). 1567. K. Kamide, Y Miyazaki, H. Kobayashi, Polym. J., 14, 591 (1982). 1568. K. Kamide, M. Saito, Eur. Polym. J., 20, 903 (1984).
1569. M. Kamigaito, K. Yamaoka, M. Sawamoto, T. Higashimura, Macromolecules, 25, 6400 (1992). 1570. F. Kamiyama, H. Matsuda, H. Inagaki, Makromol. Chem., 125, 286 (1969). 1571. F. Kamiyama, H. Matsuda, H. Inagaki, Polym. J., 1, 518 (1970). 1572. F. Kamiyama, H. Inagaki, T. Kotaka, Polym. J., 3, 470 (1972). 1573. R. Kammereck, L. J. Fetters, M. Morton, Polym. Preprints, 11 (1), 72 (1970). 1574. B. K. Kang, K. F. O'Driscoll, Macromolecules, 7, 886 (1974). 1575. P. J. Kangle, E. Pacsu, J. Polym. ScL, 54, 301 (1961). 1576. S. L. Kapur, S. Gundiah, J. Polym. ScL, 26, 89 (1957). 1577. A. Karandinos, S. Nan, J. W. Mays, N. Hadjichristidis, Macromolecules, 24, 2007 (1991). 1578. A. N. Karasev, I. N. Andreyeva, N. M. Domareva, K. I. Kosmatykh, M. G. Karaseva, N. A. Domnicheva, Polym. ScL USSR, 12, 1275 (1970); Vysokomol. Soedin. A, 12, 1127 (1970). 1579. V. A. Kargin, N. A. Plate, A. S. Dobrynina, Colloid. J. USSR, 20, 315 (1958). 1580. V. A. Kargin, N. A. Plate, A. S. Dobrynina, kolliod. Zh., 20, 332 (1958). 1581. S. Karoglaniza, I. R. Harrison, Am. Chem. Soc. Proceedings. Polym. Mat. Sci. and Eng., 61, 748 (1989). 1582. F. E. Karrer, Makromol. Chem., 181, 595 (1980). 1583. K. Karuwakaran, M. Santappa, Makromol. Chem., I l l , 20 (1968). 1584. F. Kasbauer, E. Schuch in: K. A. WoIf(Ed.), "Kunststoffe", Vol. 1, Springer, Berlin, 1962. 1585. T. Kase, M. Imahori, T. Kazama, Y. Isono, T. Fujimoto, Macromolecuies, 24, 1714 (1991). 1586. H. A. Kashani, M. H. George, J. A. Barrie, J. Polym. Sci., Polym. Lett., 15, 565 (1977). >37. H. A. Kashani, J. A. Barrie, M. H. George, J. Polym. Sci., Polym. Chem. Ed., 16, 533 (1978). J'88. N. Kashiwa, J. Yoshitake, Makromol. Chem., Rapid Commun., 3, 211 (1982). 1589. N. Kashiwa, J. Yoshitake, A. Mizuno, T. Tsutmi, Polymer, 28, 1227 (1987). 1590. A. K. Kashyap, V. Kalpagam, C. Rami Reddy, Polymer, 18, 878 (1977). 1591. A. K. Kashyap, V. Kalpagam, J. Polym. Sci., Polym. Chem. Ed., 17, 225 (1979). 1592. A. K. Kashyap, V. Kalpagam, Makromol. Chem., 180,1243 (1979). 1593. A. Kastanek, J. Zelenka, K. Hajek, J. Appl. Polym. Sci., 26, 4117 (1981). 1594. A. Kastanek, O. Dufka, I. Dosoudilova, J. Appl. Polym. ScL, 38, 1883 (1989). 1595. G. Kaszas, J. E. Puskas, C. C. Chen, J. P Kennedy, Macromolecules, 23, 3909 (1990). 1596. S. Kataoka, T. Ando, Polymer, 25, 507 (1984). 1597. H. Katayama, M. Kamigaito, M. Sawamoto, T. Higashimura, Macromolecules, 28, 3747 (1995). 1598. A. Katchalski, H. Eisenberg, J. Polym. ScL, 6, 145 (1951).
1599. I. Katime, A. Roig, L. M. Leon, Anales Quim. (Madrid), 67, 811 (1971). 1600. I. Katime, A. Roig, P. Gutierrez Cabanas, Eur. Poly. J., 10, 897 (1974). 1601. I. A. Katime, J. R. Quintana, C. Strazielle, Makromol. Chem., 187, 1441 (1986). 1602. I. Katime, J. R. Quintana, R. Valenciano, C. Strazielle, Polymer, 27, 742 (1986). 1603. I. A. Katime, M. B. Huglin, P. M. Sasia, Eur. Polym. J., 24, 561 (1988). 1604. I. A. Katime, J. R. Quintana, Eur. Polym. J., 24,775 (1988). 1605. I. A. Katime, P. M. Sasia, B. Eguia, Eur. Polym. J., 24, 1159 (1988). 1606. I. A. Katime, J. R. Quintana, Makromol. Chem., 189, 1373 (1988). 1607. I. A. Katime, J. R. Quintana, L. C. Cesteros, M. C. Peleteiro, Polym. Bull., 21, 69 (1989). 1608. I. Katime, D. Blanco, J. M. Teijon, Polym. Bull., 21, 89 (1989). 1609. Y Kato, S. Kido, T. Hashimoto, J. Polym. Phys. Ed., 11, 2329 (1973). 1610. Y. Kato, T. Hashimoto, J. Polym. Sci., Polym. Phys. Ed., 12, 813 (1974). 1611. Y. Kato, K. Kamiya, H. Sasaki, T. Hashimoto, J. Chromatogr. 193,311 (1980). 1612. Y. Kato, K. Kamiya, H. Sasaki, T. Hashimoto, J. Chromatogr. 193, 297 (1980). 1613. T. Kato, K. Miyaso, M. Nagasawa, J. Phys. Chem., 72,2161 (1968). 1614. T. Kato, T. Hashimoto, T. Fujimoto, M. Nagasawa, J. Polym. Sci., Polym. Phys. Ed., 13, 1849 (1975). 1615. T. Kato, T. Katsuki, A. Takahashi, Macromolecules, 17, 1726 (1984). 1616. T. Kato, T. Tokuya, T. Nozaki, A. Takahashi, Polymer, 25, 218 (1984) 1617. S. Katuscak, M. Tomas, O. Schiessl, J. Appl. Polym. Sci., 26, 381 (1981). 1618. H. S. Kaufman, E. Solomon, Ind. Eng. Chem., 45, 1779 (1953). 1619. H. S. Kaufman, E. K. Walsh, J. Polym. Sci., 26, 124 (1957). 1620. R. S. Kauga, T. Hogen-Esch, E. Raudrianalimanana, A. Soum, M. Fontanille, Macromolecules, 23, 4235 (1990). 1621. S. K. Kaumar, V. W. Suter, R. C. Reid, Fluid Phas. Equilib., 29, 373 (1986). 1622. K. Kawahara, Chem. High Polym. (Japan), 18, 687 (1961). 1623. K. Kawahara, R. Okada, J. Polym. Sci., 56, S7 (1962). 1624. K. Kawahara, Makromol. Chem., 73, 1 (1964). 1625. T. Kawai, A. Keller, J. Polym. Sci. B, 2, 333 (1964). 1626. T. Kawai, E. Ida, Kolloid. Z.-Z. Polym., 194, 40 (1964). 1627. T. Kawai, Makromol. Chem., 102, 125 (1967). 1628. T. Kawai, T. Goto, H. Maeda, Kolloid. Z.-Z. Polym., 223, 117 (1968). 1629. T. Kawai, K. Ehara, H. Sasano, K. Kamide, Makromol Chem., I l l , 271 (1968). 1630. T. Kawai, T. Hama, K. Ehara, Makromol. Chem., 113, 282 (1968).
1631. T. Kawai, S. Shiozaki, S. Sonoda. H. Nakagawa, T. Matsumoto, H. Maeda, Makromol. Chem., 128, 252 (1969). 1632. T. Kawai, M. Hosoi, K. Kamide, Makromol. Chem., 146,55 (1971). 1633. W. Kawai, T. Ichihashi, J. Polym. Sci., Polym. Chem. Ed., 12, 201 (1974). 1634. H. Kawamura, T. Hayashi, Y. Inone, R. Chujo, Macromolecules, 22, 2181 (1989). 1635. A. Kawasaki, J. Furukawa, T. Saegusa, M. Mise, T. Tsuruta, Makromol. Chem., 42, 25 (1960). 1636. P. J. Kay, F. E. Treloar, Makromol. Chem., 175, 3207 (1974). 1637. H. Kaye, H. J. Chou, J. Polym. Sci., Polym. Phys. Ed., 13, 477 (1975). 1638. T. Keii, Y. Doi, E. Suzuki, M. Tamura, M. Murata, K. Soga, Makromol. Chem., 185, 1537 (1984). 1639. G. I. Keim, D. L. Christman, L. R. Kangas, S. K. Keahey, Macromolecules, 5, 217 (1972). 1640. T. Kelen, D. Schlotterbeck, V. Jaacks, IUPAC Boston, Preprints vol. 11,649 (1971). 1641. T. Kelen, B. Ivan, T. T. Nagy, B. Turcsanyi, F. Tiidos, J. P. Kennedy, Polym. Bull, 1, 79 (1978). 1642. A. Keller, A. O'Connor, Polymer, 1, 163 (1960). 1643. A. Keller, Kolloid. Z.-Z. Polym., 231, 386 (1969). 1644. A. Keller, E. Martuscelli, D. J. Priest, Y. Udagawa, IUPAC Leiden, Preprints vol. 11, 843 (1970). 1645. A. Keller, F. M. Willmouth, J. Polym. Sci. A-2, 8, 1443 (1970). 1646. A. Keller, F. M. Willmouth, J. Macromol. Sci., Part B: Phy., 6, 493 (1972). 1647. S. S. Kelley, T. C. Ward, T. G. Rials, W. G. Glasser, J. Appl. Polym. Sci., 37, 2961 (1989). 1648. E. C. Kelusky, C. T. Elston, R. E. Murray, Polym. Eng. Sci. 27, 1562 (1987). 1649. T. C. Kendrick, J. Polym. Sci. A-2, 7, 297 (1969). 1650. J. P. Kennedy, A. Vidal, J. Polym. Sci., Polym. Chem. Ed., 13, 1765 (1975). 1651. J. P. Kennedy, M. Nakao, J. Macromol. Sci., Part A: Chem., 11, 1621 (1977). 1652. J. P. Kennedy, M. Nakao, J. Macromol. Sci., Part A: Chem., A, 12, 197 (1978). 1653. J. P. Kennedy, S. C. Feinberg, S. Y Huang, J. Polym. Sci., Polym. Chem. Ed., 16, 243 (1978). 1654. J. P. Kennedy, S. S. Plamthottam, J. Macromol. Sci., Part A: Chem., 14, 729 (1980). 1655. J. P. Kennedy, S. Y. Huang, R. A. Smith, J. Macromol. Sci., Part A: Chem., 14, 1085 (1980). 1656. J. P. Kennedy, R. A. Smith, J. Polym. Sci., Polym. Chem. Ed., 18, 1539 (1980). 1657. J. P. Kennedy, R. A. Smith, J. Polym. Sci., Polym. Chem. Ed., 18, 1523 (1980). 1658. J. P. Kennedy, D. Y L. Chung, A. Guyot, J. Polym. Sci., Polymer Chem. Ed., 19, 2737 (1981). 1659. J. P. Kennedy, S. C. Guhaniyogi, L. R. Ross, J. Macromol. Sci., Part A: Chem., 18, 119 (1982). 1660. J. P. Kennedy, S. S. Plamthottam, B. Ivan, J. Macromol. Sci., Part A: Chem., 17, 637 (1982).
1661. J. P. Kennedy, R. T. Chou, J. Macromol. Sci., Part A: Chem., 18, 11 (1982). 1662. J. P. Kennedy, S. C. Guhaniyogi, J. Macromol. Sci., Part A: Chem., 18, 103 (1982). 1663. J. P. Kennedy, R. T. Chou, V. S. C. Chang, J. Macromol. Sci., Part A Chem., 18, 39 (1982). 1664. J. P. Kennedy, S. S. Plamthottam, Polym. Bull., 7, 337 (1982). 1665. J. P. Kennedy, M. Hiza, J. Polym. Sci., Polym. Chem. Ed., 21, 1033 (1983). 1666. J. P. Kennedy, J. Kurian, Macromolecules, 23, 3736 (1990). 1667. J. P. Kennedy, N. Meguriya, B. Kesler, Macromolecules, 24, 6572 (1991). 1668. A. S. Kenyon, I. O. Salyer, J. Polym. Sci., 43, 427 (1960). 1669. A. S. Kenyon, I. O. Salyer, J. E. Kurz, D. R. Brown, J. Polym. Sci. C, 8, 205 (1965). 1670. W. Kern, H. Kammerer, G. DaIl'Asta, R. Dieck, Makromol. Chem., 6, 206 (1951). 1671. W. Kern, H. Schmidt, H. S. Von Steinwehr, Makromol. Chem., 16, 74 (1955). 1672. F. F. Khodzhevanov, N. S. Nametkin, S. G. Durgaryan, I. Ye. Chernyakov, Polym. Sci. USSR, 14, 1022 (1972); Vysokomol. Soedin. A, 14, 920 (1972). 1673. A. Kidera, A. Nakajima, Macromolecules, 17, 659 (1984). 1674. K. Kikukawa, S. Nozakura, S. Murahashi, Polym. J., 3, 52 (1972). 1675. J. D. Kim. J. B. Soares, G. L. Rempel, B. Monrabal, Control of Molecular Weight and Chemical Composition Distyribution of Polyolefins with supported Metallocene Catalyst. Present at the MetCon-97, USA. 1676. J. K. Kim, C. D. Han, Macromolecules, 25, 271 (1992). 1677. W. H. Kim, N. B. Kodali, J. Kumar, S. K. Tripathy, Macromolecules, 27, 1819 (1994). 1678. Y B. Kim, R. W. Lenz, R. C. Fuller, Macromolecules, 25, 1852(1992). 1679. P. O. Kinell, Acta Chem. Scand., 1, 832 (1947). 1680. P. O. Kinell, Acta Chem. Scand., 1, 335 (1947). 1681. J. B. Kinsinger, R. E. Hughes, J. Phys. Chem., 63, 2002 (1959). 1682. J. B. Kinsinger, L. E. Ballard, J. Polym. Sci. A-I, 3, 3963 (1965). 1683. S. Kinugasa, S. Hattori, K. Ishikawa, J. Appl. Polym. Sci., Appl. Polym. Symp., 52, 205 (1993). 1684. M. Kioka, H. Makio, A. Mizuno, N. Kashiwa, Polymer, 35, 580 (1994). 1685. E. Kiran, J. K. Gillham, E. Gipstein, J. Macromol. Sci., Part B: Phys., 9, 341 (1974). 1686. J. J. Kirkland, S. W. Rementer, W. W. Yau, Anal. Chem., 60, 610 (1988). 1687. J. J. Kirkland, S. W. Rementer, W. W. Yau, Macromolecules, 38, 1383 (1989). 1688. J. J. Kirkland, C. H. Dilks Jr., S. W. Rementer, Anal. Chem., 64, 1295 (1992). 1689. J. J. Kirkland, C. H. Dilks, Anal. Chem., 64, 2836 (1992). 1690. J. E. Kirsh, T. A. Soos, T. M. Karaputadze, Eur. Polym. J., 15, 223 (1979).
1691. L. A. Kiseleva, V. M. Men'shov, I. A. Zadorozhnyi, V. A. Ponomarenko, Polym. Sci. USSR, 18, 1426 (1976); Vysokomol. Soedin. A, 18, 1243 (1976). 1692. Y. Kishimoto, S. Aoshima, T. Higashimura, Macromolecules, 22, 3877 (1989). 1693. J. V. Kissin, J. Polym. Sci. Part A, Polym. Chem., 33, 227 (1995). 1694. T. Kitagawa, J. Sadanosu, T. Norisuye, Macromolecules, 23, 602 (1990). 1695. J. Klein, E. Killmann, Makromol. Chem., 96, 193 (1966). 1696. J. Klein, F. Patat, Makromol Chem., 97, 189 (1966). 1697. J. Klein, U. Wittenberger, Makromol. Chem., 122,1 (1969). 1698. J. Klein, G. Weinhold, Angew. Makromol. Chem., 10, 49 (1970). 1699. J. Klein, H. Friedel, J. Appl. Polym. Sci., 14, 1927 (1970). 1700. J. Klein, R. Heitzmann, Makromol. Chem., 179, 1895 (1978). 1701. J. Klein, U. Standt, W. Kaminsky, Polym. Bull., 1, 287 (1979). 1702. J. Klein, U. D. Standt, Colloid Polym. Sci., 259, 977 (1981). 1703. J. Klein, A. Westerkamp, J. Polym. Sci., Polym. Chem. Ed., 19, 707 (1981). 1704. L. A. Kleintjens, R. Koningsveld, W. H. Stockmayer, Brit. Polym. J., 8, 144 (1976). 1705. B. M. Klemann, R. West, J. A. Koutsky, Macromolecules, 29, 198 (1996). 1706. V. I. Klenin, G. G. Uglanova, Polym. Sci. USSR, 11, 2587 (1969); Vysokomol. Soedin. A, 11, 2273 (1969). 1707. E. Klespers, W. Hartmann, J. Polymer Sci., Polym. Lett. Ed., 15, 707, 713 (1977). 1708. N. Th. M. Klooster, F. Van der Touw, M. Mandel, Macromolecules, 17, 2070 (1984). 1709. A. M. Knebel'man, L. A. Kantor, D. F. Kagan, Polym. Sci USSR, 12, 3117 (1970); Vysokomol. Soedin. A, 12, 2745 (1970). 1710. D. C. Knobeloch, L. Wild, SPE Poliolefins IV Conference Preprints, 427 (1984). 1711. J. H. Ko, J. E. Mark, Macromolecules, 8, 869 (1975). 1712. E. Kobayashi, T. Higashimura, S. Okamura, J. Macromol. Sci., Part A Chem., 1, 1519 (1967). 1713. E. Kobayashi, S. Okamura, S. Signer, J. Appl. Polym. Sci., 12, 1661 (1968). 1714. H. Kobayashi, J. Polym. Sci., 26, 230 (1957). 1715. H. Kobayashi, Y. Fujisaki, J. Polym. Sci. B, 1, 15 (1963). 1716. H. Kobayashi, K. Sasaguri, Y. Fujisaki, T. Amano, J. Polym. Sci. A-I, 2, 313 (1964). 1717. T. Kobayashi, Bull. Chem. Soc. Japan, 35, 726 (1962). 1718. W. Kobryner, A. Benderet, Compt. Rend., 245, 689 (1957). 1719. R. Kocher, Ch. Sadron, Makromol. Chem., 10, 172 (1953). 1720. S. M. Kochergin, V. P. Barabanov, I. G. Fedorova, Polym. Sci. USSR, 8, 1006 (1966); Vysokomol. Soedin., 8, 916 (1966). 1721. G. Kockelbergh, G. Smets, J. Polym. Sci., 33, 227 (1958). 1722. H. Koelbel, W. H. E. Mueller, H. Hammer, Makromol. Chem., 70, 1 (1964). 1723. H. M. Koepp, H. Werrer, Makromol. Chem., 32, 309 (1959). 1724. I. Koessler, J. Krejsa, J. Polym. Sci., 29, 69 (1958).
1725. I. Koessler, M. Stolka, J. Polym. Sci., 44, 213 (1960). 1726. I. Koessler, J. Krejsa, J. Polym. Sci., 57, 509 (1962). 1727. I. Koesslerr, H. Krauserova, J. Polym. Sci. A-I, 4, 1329 (1966). 1728. D. W. Koetsier, A. Bantjes, J. Feijen, D. J. Lyman, J. Polym. Sci., Polym. Chem. Ed., 16, 511 (1978). 1729. G. Kogler, A. Hasenhindlm, M. Moller, Macromolecules, 22, 490 (1989). 1730. A. Kohier, J. G. Zilliox, P. Rempp, J. Polacek, I. Koessler, Eur. Polym. J., 8, 627 (1972). 1731. S. Kohjiya, K. Iwata, S. Yamashita, T. Miyamoto, H. Inagaki, Polym. J., 15, 869 (1983). 1732. H. W. Kohlschuetter, K. Unger, K. Vogel, Makromol. Chem., 93, 1 (1966). 1733. J. Koivumak, J. V. Seppala, Polym. Bull., 31, 441 (1993). 1734. K. Kojima, M. Sawamoto, T. Higashimura, Macromolecules, 23, 948 (1990). 1735. V Kokle, F. W. Billmeyer Jr., J. Polym. Sci. C, 8, 217 (1965). 1736. E. Kokufuta, Polymer, 21, 177 (1980). 1737. J. V. Koleske, S. F. Kurath, J. Polym. Sci. A-I, 2, 4123 (1964). 1738. J. V Koleske, R. D. Lundberg, J. Polym. Sci. A-2, 7, 897 (1969). 1739. H. S. Kolesnikov, O. V. Smirnova, V N. Lamm, A. A. Kudryashov, Polym. Sci. USSR, 11, 2518 (1969); Vysokomol. Soedin. A, 11, 2211 (1969). 1740. H. S. Kolesnikov, O. V Smimova, A. K. Mikitayev, V. M. Gradyshev, Polym. Sci. USSR, 12, 1617 (1970); Vysokomol. Soedin. A, 12, 1424 (1970). 1741. M. Kolinsky, V Jisova, D. Lim, IUPAC Helsinki Preprints, Vol. II, 1/88 (1972). 1742. M. Kolinsky, J. Janca, J. Polym. Sci., Polym. Chem. Ed., 12, 1181 (1974). 1743. 1.1. Kolodkina, A. M. Yurkevich, Ye. F. Panann, Polym. Sci. USSR, 18, 558 (1976); Vysokomol. Soedin. A, 18, 490 (1976). 1744. Z. Komiya, C. Pugh, R. R. Schrock, Macromolecules, 25, 6586 (1992). 1745. R. A. Komoroski, R. G. Parker, M. H. Lehr, Macromolecules, 15, 844 (1982). 1746. G. N. Komratov, R. A. Barzykina, G. V Korovtna, Polym. Sci. USSR, 20,686 (1979); Vysokomol. Soedin., A, 20, 608 (1978). 1747. S. Kondo, T. Nakamatsu, K. Tsuda, J. Macromol. Sci. Chem. A, 11, 719 (1977). 1748. R. Koningsveld, A. J. Pennings, Rec. Trav. Chim., 83, 552 (1964). 1749. R. Koningsveld, Fortsch, Hochpolym. Forsch., 7, 1 (1970). 1750. H. Konishi, Sen-i-Gakkaishi, 17, 1170 (1961). 1751. Y. Konishi, J. W. Van Nispen, G. Davenport, H. A. Scheraga, Macromolecules, 10, 1265 (1977). 1752. H. Konishi, Y. Shinagawa, A. Azuma, T. Okano, J. Kiji, Makromol. Chem., 183, 2941 (1982). 1753. T. Konishi, T. Yoshizaki, J. Shimada, H. Yamakawa, Macromolecules, 22, 1921 (1989). 1754. J. Kops, H. Spanggaard, Makromol. Chem., 151, (1972).
1755. J. Kops, H. Spanggaard, Polym. Preprints, 13 (1), 90 (1972). 1756. J. Kops, S. Hvilsted, H. Spanggaard, Macromolecules, 13, 1058 (1980). 1757. J. Kops, H. Spanggaard, Macromolecules, 15, 1200 (1982). 1758. J. Kops, H. Spanggaard, Macromolecules, 15, 1225 (1982). 1759. E. V. Korneeva, I. N. Shtennikova, V. P. Shibaev, S. I. Klenin, G. F. Kolbina, I. V. Ekaeva, J. A. Didenko, Eur. Polym. J., 26, 781 (1990). 1760. Ye. V. Korneyeva, V. N. Tsvetkov, P. N. Lavrenko, Polym. Sci. USSR, 12, 1554 (1970); Vysokomol. Sodin. A, 12, 1369 (1970). 1761. G. V. Korovina, D. Ya, Rossina, D. D. Novikov, S. G. Entelis, Polym. Sci. USSR, 16, 1471 (1974); Vysokomol. Soedin. A, 16, 1274 (1974). 1762. V. V. Korshak, S. A. Pavlova, L. V. Boika, T. M. Babchinitser, S. V. Vinogradova, Ya. S. Vygodskii, N. A. Gulebeva, Polym. Sci. USSR, 12, 63 (1970); Vysokomol. Soedin. A, 12, 56 (1970). 1763. V V. Korshak, G. L Tarasova, S. A. Pavlova, Polym. Sci. USSR, 13, 1179 (1971); Vysokomol. Soedin. A, 13, 1047 (1971). 1764. V V. Korshak, S.-S. A. Pavlova, S. V. Rogozhin, V. A. Davankov, T. N. Sentsova, A. A. Kurganov, G. I. Timofeyeva, Yu. A. Davisovich, Polym. Sci. USSR, 22, 45 (1980); Vysokomol. Soedin. A, 22, 41 (1980). 1765. R. A. Korus, R. W. Rosser, Anal. Chem., 50, 249 (1978). 1766. T. Kotaka, V Murakami, H. Inagaki, J. Phys. Chem., 72, 829 (1968). 1767. T. Kotaka, N. Donkai, J. Polym. Sci., A-2, 6, 1457 (1968). 1768. T. Kotaka, H. Ohnuma, H. Inagaki, Polymer, 10, 517 (1969). 1769. T. Kotaka, T. Tanaka, H. Ohnuma, Y. Muzakami, H. Inagaki, Polym. J., 1, 245 (1970). 1770. T. Kotaka, J. L. White, Macromolecules, 7, 106 (1974). 1771. T. Kotaka, T. Ljda, T. Tanaka, H. Inagaki, Makromol. Chem., 176, 1273 (1975). 1772. T. Kotaka, Angew. Makromol. Chem., 56, 77 (1976). 1773. A. Kotera, T. Saito, Y. Watanabe, M. Ohame, Makromol. Chem., 87, 195 (1965). 1774. J. Kovarova-Lerchova, J. Pilaf, G. Samay, J. Pospfsil, Eur. Polym. J., 14, 601 (1978). 1775. B. M. Kovarskaya, L. I. Golubenkova, M. S. Akutin, I. I. Levantovskaya, Vysokomol. Soedin., 1, 1042 (1959). 1776. M. Kowalczuk, G. Adamus, Z. Jedlinski, Macromolecules, 27, 572 (1994). 1777. M. Kozhokaryu, V. S. Skazka, K. G. Berdnikova, Polym. Sci. USSR, 8, 1167 (1966); Vysokomol. Soedin., 8, 1063 (1966). 1778. P. V. Kozlov et al., Vysokomol. Soedin., 2, 1575 (1960). 1779. J. J. Krackeler, H. Naidus, J. Polym. Sci. C, 27, 207 (1969). 1780. D. Kranz, Kolloid. Z.-Z. Polym., 227, 41 (1968). 1781. D. Kranz, H. Uwe-Pohl, H. Baumann, Angew. Makromol. Chem., 26, 59 (1972). 1782. F. Krasovek, J. Stefan, lnst. Ljubljana 203 (1956). 1783. G. Kraus, C. J. Stacy, J. Polym. Sci. A-2, 10, 657 (1972). 1784. S. Krause, J. Phys. Chem., 65, 1618 (1961). 1785. S. Krause, E. Cohn-Ginsberg, Polymer, 3, 566 (1962).
1786. S. Krause, E. Cohn-Ginsberg, J. Polym. Sci. A-I, 2, 1393 (1964). 1787. S. Krause, D. J. Dunn, A. Seyed-Mozzaffari, A. M. Biswas, Macromolecules, 10, 786 (1977). 1788. S. Krause, Z. Lu, M. Iskandar, Macromolecules, 15, 1076 (1982). 1789. J. Krejse, Makromol. Chem., 33, 244 (1959). 1790. H.-J. Kress, W. Stix, W. Heitz, Makromol. Chem., 185, 173 (1984). 1791. H. R. Kricheldorf, Q.-Z. Zang, G. Schwarz, Polymer, 23, 1821 (1982). 1792. H. R. Kricheldorf, G. Bier, Polymer, 25, 1151 (1984). 1793. H. R. Kricheldorf, M. V. Sumbel, I. Kreiser-Saunders, Macromolecules, 24, 1944 (1991). 1794. H. R. Kricheldorf, S.-R. Lee, N. Scharnagl, Macromolecules, 27, 3139 (1994). 1795. H. R. Kricheldorf, B. Weegen-Schulz, J. Polym. Sci. Part A, Polym. Chem., 33, 2193 (1995). 1796. W. R. Krigbaum, P. J. Flory, J. Am. Chem. Soc, 75, 1775 (1953). 1797. W. R. Krigbaum, K. J. Krause, J. Polym. Sci., Polym. Chem. Ed., 16, 3151 (1978). 1798. W. R. Kribaum, T. Tanaka, Macromolecules, 21, 743 (1988). 1799. W. R. Krigbaum, G. Brelsord, G. Macromolecules, 21,2502 (1988). 1800. W. R. Krigbaum, A. M. Kotliar, J. Polym. Sci., 32, 323 (1958). 1801. E. Kroeze, G. Ten Brinke, G. Hadziioannou, Macromolecules, 28, 6650(1995). 1802. E. Kroeze, G. Ten Brinke, G. Hadziioannou, J. Macromol. Sci. A, Pure Appl. Chem., A, 34, 439 (1997). 1803. H. Kromer, R. Kuhn, H. Pielartzik, W. Siebke, V. Eckhardt, M. Schmid, Macromolecules, 24, 1950 (1991). 1804. S. Krozer, M. Vainryb, L. Silina, Vysokomol. Soedin., 2, 1876(1960). 1805. S. Krozer, P. Carstensen, M. Bodelsen, A. Thirsing, Makromol. Chem., 175, 1893 (1974). 1806. M. Kubin, P. Spacek, R. Chromecek, Coll. Czech. Chem. Commun., 32, 3881 (1967). 1807. P. Kubisa, S. Penczek, Makromol. Chem., 179, 445 (1978). 1808. K. Kubo, K. Ogino, Sci. Pap. Coll. Gen. Educ, 16, 193 (1966). 1809. H. Kubota, Y. Ogiwara, K. Matsuzaki, J. Polym. Sci., Polym. Chem. Ed., 12, 2809 (1974). 1810. K. Kubota, B. Chu, Macromolecules, 16, 105 (1983). 1811. Z. Ku9iikyavuz, S. Kiiciikyavuz, Eur. Polym. J., 14, 867 (1978). 1812. L. G. Kudryavtseva, A. D. Litmanovich, A. V. Topchiyev, V. Ya. Shtern, Neftekhim., 3, 343 (1963). 1813. J. Kugler, E. W. Fisher, M. Peuscher, C. D. Eisenbach, Makromol. Chem., 184, 2325 (1983). 1814. S. Kuhling, H. Keul, H. Hocker, Macromolecules, 23, 4192 (1990). 1815. R. Kuhn, H. Kroemer, G. Rossmanith, Angew. Makromol. Chem., 40/41, 361 (1974). 1816. R. Kuhn, Makromol. Chem., 177, 1525 (1976).
1817. R. Kuhn, Makromol. Chem., 181, 725 (1980). 1818. R. Kuhn, Makromol. Chem., 185, 1003 (1984). 1819. R. Kuhn, J. AppL Polym. ScL, Appl. Polym. Symp., 52, 19 (1993). 1820. E. Kukufuta, S. Fujii, Y. Harai, I. Nakamura, Polymer, 23, 452 (1982). 1821. A. M. Kulakova, L K. Nekrasov, Polym. ScL USSR, 18,146 (1976); Vysokomol. Soedin. A, 18, 127 (1976). 1822. W. M. Kulicke, M. Elsabee, C. D. Eisenbach, M. Peuscher, Polym. Bull, 9, 190 (1983). 1823. L. I. Kulin, N. L. Meijerink, P. S. Sturck, Pure Appl. Chem., 60, 1404 (1988). 1824. V. N. G. Kumar, K. Hummel, Angew. Makromol. Chem., 102, 167 (1982). 1825. V. G. Kumar, M. Rama Rao, P. V. Ravindrau, K. V. C. Rao, J. Polym. ScL, Polym. Chem. Ed., 21, 2133 (1983). 1826. M. Kunioka, Y. Doi, Macromolecules, 23, 1933 (1990). 1827. T. Kunitake, K. Takarabe, S. Tsugawa, Polym. J., 8, 363 (1976). 1828. C-C. Kuo, A. E. Woodward, Macromolecules, 17, 1034 (1984). 1829. W. Kuran, A. Wieslochowski, Polym. Bull., 2, 411 (1980). 1830. N. Kuroda, Y. Nishitani, K. Matsuura, M. Miyooshi, Makromol. Chem., 188, 1897 (1987). 1831. N. Kuroda, Y. Nishitani, K. Matsuura, N. Ikegami, Macromolecules, 25, 2820 (1992). 1832. J. E. Kurz, J. Polym. Sci. A-I, 3, 1895 (1965). 1833. M. M. Kusakov, A. Yu. Koshevnik, D. N. Nekrasov, V. F. Chirkova, L. M. Shol'pina, Polym. Sci. USSR, 8, 1141 (1966); Vysokomol. Soedin., 8, 1040 (1966). 1834. P P. Kushch, A. I. Kuzayev, B, A. Komarov, B. A. Rozenberg, Polym. Sci, USSR, 22, 2205 (1980); Vysokomol. Soedin. A, 22, 2012 (1980). 1835. N. Kuwahara, M. Kaneko, Makromol. Chem., 82, 205 (1965). 1836. N. Kuwahara, M. Kaneko, K. Kubo, Makromol. Chem., 110, 294 (1967). 1837. N. Kuwahara, T. Okazawa, M. Kaneko, J. Polym. ScL C, 23, 543 (1968). 1838. N. Kuwahara, S. Higashida, M. Nakata, M. Kaneko, J. Polym. Sci. A-2, 7, 285 (1969). 1839. N. Kuwahara, S. Saeki, T. Chiba, M. Kaneko, Polymer, 15, 777 (1974). 1840. A. I. Kuzayev, G. N. Komratov, G. V. Korovina, S. G. Entelis, Polym. Sci. USSR, 12, 1124 (1970); Vysokomol. Soedin. A, 12, 995 (1970). 1841. A. I. Kuzayev, G. N. Komratov, G. V. Korovina, S. G. Entelis, Polym. Sci. USSR, 12, 1167 (1970); Vysokomol. Soedin. A, 12, 1033 (1970). 1842. A. I. Kuzayev, V. A. Linde, Ya. I. Estrin, N. A. Afanasyev, S. M. Baturin, S. G. Entelis, Polym. ScL USSR, 18, 667 (1976); Vysokomol. Soedin. A, 18, 585 (1976). 1843. A. I. Kuzayev, Polym. Sci. USSR, 22, 2284 (1980); Vysokomol. Soedin. A, 22, 2082 (1980). 1844. V N. Kuznetsov, V. B. Kogan, L. A. Venkstern, T. A. Usatova, V A. Morozova, Polym. ScL USSR, 12, 3143 (1970); Vysokomol. Soedin. A, 12, 2768 (1970).
1845. Y. Kyogoku, Techn. Rept. Osaka Univ., 7, 147 (1958), quoted by R. E. Glegg, L. J. Tanghe, R. J. Brewer, in "Fractionation", in "Cellulose and Cellulose Derivatives", Vol. V, Part IV, Editors, N. M. Bikales, L. Segal, WileyInterscience, New York, 1971. 1846. Y. Kyoo Han, M. V. Jin, S. K. Choi, J. Polym. Sci., Polym. Chem. Ed., 21, 73 (1983). 1847. M. Kyotani, H. Kanetsuna, Keukyu Hokoku-Sen'i Kobunshi Zairo Kenkyusho, 172, 37 (1992). 1848. F. Laborie, J. Polym. Sci., Polym. Chem. Ed., 15, 1275 (1977). 1849. M. G. Lachtermarcher, A. Rudin, J. Appl. Polym. ScL, 58, 2077 (1995). 1850. J. H. Lai, Macromolecules, 17, 1010 (1984). 1851. S.-T. Lai, L. Saugermano, J. Chromatog., 322, 338 (1985). 1852. D. LaIa, J. R Rabek, B. Ranby, Eur. Polym. J., 16, 735 (1980). 1853. A. Lambert, Polymer, 10, 213 (1969). 1854. A. Lambert, Brit. Polym. J., 3, 13 (1971). 1855. F. Lambert, M. Milas, M. Rinaudo, Polym. Bull, 7, 185 (1982). 1856. R. F. Landel, J. D. Ferry, J. Phys. Chem., 59, 658 (1955). 1857. I. Landler, Compt. Rend., 225, 629 (1947). 1858. H. Lange, W. Scholtan, Angew. Makromol. Chem., 26, 59 (1972). 1859. H. Lange, H. Baumann, Angew. Makromol. Chem., 43, 167 (1975). 1860. W. L. Langford, D. J. Vaughan, Nature (London), 184, 116 (1959). 1861. G. Langhammer, Kolloid. Z., 146, 44 (1956). 1862. G. Langhammer, Makromol. Chem., 21, 74 (1956). 1863. G. Langhammer, J. Polym. Sci., 29, 505 (1958). 1864. G. Langhammer, H. Pfennig, K. Quitzsch, Z. elektrochem., 62, 458 (1958). 1865. G. Langhammer, H. Foerster, Z. Physik. Chem. N. F. (Frankfurt), 15, 212 (1958). 1866. G. Langhammer, K. Quitzsch. Makromol. Chem., 43, 160 (1961). 1867. G. Langhammer, H. Seide, Kolloid. Z.-Z. Polym., 216/217, 264 (1967). 1868. H. G. Langhammer, Svensk. Kern. Tidskr., 69, 328 (1957). 1869. H. Langner, Makromol. Chem., 119, 37 (1968). 1870. J. Lanikova, M. Hlousek, Eur. Polym. J., 6, 25 (1970). 1871. J. Lanikova, M. Hlousek, M. Novakova, Pardubice Symposium Preprints, 299 (1970). 1872. H. M. Lanovskaya, N. A. Pravikova, Polym. ScL USSR, 11, 2208 (1969); Vysokomol. Soedin. A, 11, 1938 (1969). 1873. E. Lanza, H. Berghmans, G. Smets, J. Polym. Sci., Polym. Phys. Ed., 11, 95 (1973). 1874. A. Lapp, G. Beinert, C. Picot, Makromol. Chem., 185, 453 (1984). 1875. R. Larrain, L. H. Tagle, F. R. Diaz, Polym. Bull., 4, 487 (1981). 1876. R. D. Law, Polym. Preprints, 8 (2), 1348 (1967). 1877. R. D. Law, J. Polym. Sci. C, 21, 225 (1968). 1878. R. D. Law, J. Polym. Sci. A-I, 7, 2097 (1969). 1879. R. D. Law, J. Polym. Sci. A-I, 9, 589 (1971).
1880. R. D. Law, J. Polym. Sci., Polym. Chem. Ed., 11, 175 (1973). 1881. J. M. Lawter, R. Sun, W. B. Banks, J. Agric. Food Chem., 43, 667 (1995). 1882. S. Lazcano, C. Marco, J. G. Fatou, A. Bello, Eur. Polym. J., 24, 991 (1988). 1883. S. Lazcano, A. Bello, C. Marco, J. G. Fatou, Eur. Polym. J., 24, 985 (1988). 1884. M. Le Page, R. Beau, A. J. de Vries, Polym. Preprints 8 (2), 1211 (1967). 1885. M. Le Page, R. Beau, A. J. de Vries, J. Polym. Sci. C, 21, 119(1968). 1886. V. P. Lebedev. D. Ya. Tsvankin, Yu. V. Glazkovskii, Polym. Sci. USSR, 14, 1123 (1972); Vysokomol. Soedin. A, 14, 1010 (1972). 1887. R. G. Lebel, D. A. I. Goring, J. Polym. Sci. C, 2, 29 (1963). 1888. P. Lebel, C. Job, J. Polym. Sci. C, 4, 649 (1963). 1889. A. Leborgne, S. L. Malhotra, L.-P. Blanchard, J. Polym. Sci., Polymer Chem. Ed., 14, 2853 (1976). 1890. J.-J. Lebrun, G. Sauvet, P. Sigwalt, Makromol. Chem., Rapid Commun., 3, 757 (1982). 1891. G. Lechermeier, A. Revillon, G. Pillot, J. Appl. Polym. Sci., 19, 1989 (1975). 1892. G. Lechermeier, G. Pillot, J. GoIe, A. Revillon, J. Appl. Polym. Sci., 19, 1979 (1975). 1893. J. Lecourtier, G. Chaureteau, Macromolecules, 17, 1340 (1984). 1894. M. Ledbetter, J. Cucolo, P. Tucker, J. Polym. Sci., Polym. Chem. Ed., 22, 1435 (1984). 1895. C. L. Lee, F. A. Emerson, J. Polym. Sci. A-2, 5, 829 (1967). 1896. C. L. Lee, C. L. Frye, O. K. Johannson, Polym. Preprints, 10 (2), 1361 (1969). 1897. C. L. Lee, O. K. Johannson, J. Polym. Sci., Polym. Chem. Ed., 14, 729 (1978). 1898. H. Ch. Lee, M. Ree, T. Chang, Polymer, 36, 2215 (1995). 1899. H. S. J. Lee, W. P. Weber, Macromolecules, 24, 4749 (1991). 1900. K. S. Lee, V. T. Stannett, R. D. Gilbert, J. Polym. Sci., Polym. Chem. Ed., 20, 997 (1982). 1901. N.-J. Lee, Y-A. Kim, S.-H. Kim, W.-M. Choi, J. Macromol. Sci. A: Pure Appl. Chem., 34, 1 (1997). 1902. S. Lee, J. C. Giddings, Anal. Chem., 60, 2328 (1988). 1903. S. Lee, M. N. Myers, R. Beckett, J. C. Giddings, Anal. Chem., 60, 1129(1988). 1904. S. Lee, A. Molnar, Macromolecules, 28, 6354 (1995). 1905. P. M. Lefebvre, R. Jerome, Ph. Teyssie, J. Polym. Sci., Chem. Ed., 21, 789 (1983). 1906. R. Legras, C. Bailly, M. Daumerie, J. M. Dekoninck, J. P. Mercier, V. Zichy, E. Nield, Polymer, 25, 835 (1984). 1907. A. Lehtinen, R. Paukkeri, Makromol. Chem. Phys., 195, 1539 (1994). 1908. G. Y Lei, J. Polym. Sci., Polym. Chem. Ed., 19, 389 (1981). 1909. P. J. Lemstra, G. Challa, J. Polym. Sci., Polym. Chem. Ed., 13, 1809 (1975). 1910. J.-C. Lenain, J.-C. Brosse, Makromol. Chem., Rapid Commun., 3, 609 (1982).
1911. R. W. Lenz, L. C. Westfelt, J. Polym. Sci., Polym. Chem. Ed., 14, 2147 (1976). 1912. A. Leon, L. Gargallo, A. Horta, D. Radic, J. Polym. Sci., Part B: Polym. Phys., 27, 2337 (1989). 1913. A. Leon, L. Gargallo, D. Radic, A. Horta, Polymer, 32, 761 (1991). 1914. A. Leon, L. Gargallo, D. Radic, J. Bravo, A. Horta, Makromol. Chem. 193, 393 (1992). 1915. L. M. Leon, I. Katime, M. Gonzalez, J. Figueruelo, Eur. Polym. J., 14, 671 (1978). 1916. J. Leonard, H. Daoust, J. Phys. Chem., 69, 1174 (1965). 1917. J. Leonard, S. L. Malhotra, J. Macromol. Sci., Part A: Chem., 10, 1279 (1976). 1918. J. Leonard, S. L. Malhotra, J. Macromol. Sci., Part A: Chem., 11, 2087 (1977). 1919. K.-W. Leong, G. B. Butler, J. Macromol. Sci., Part A: Chem., 14, 287 (1980). 1920. C. Lepilleur, E. J. Beckman, Macromolecules, 30, 745 (1997). 1921. J. B. Lesh, K. Schultz, J. D. Porsche, Ind. Eng. Chem., 42, 1376 (1950). 1922. H. Leth Pedersen, J. Polym. Sci. B, 5, 239 (1967). 1923. M. Levi, S. Turri, J. Appl. Polym. Sci., 55, 989 (1995). 1924. G. Levin, J. B. Carmichael, J. Polym. Sci. A-I, 6, 1 (1968). 1925. R. Lew, D. Suwanda, S. T. Balke, T. H. Mourey, J. Appl. Polym. Sci., Appl. Polym. Symp., 52, 125 (1993). 1926. D. Li, R. Faust, Macromolecules, 28, 4893 (1995). 1927. D. Li, R. Faust, Macromolecules, 28, 1383 (1995). 1928. R. H. Liang, E-D. Tsay, A. Gupta, Macromolecules, 15,974 (1982). 1929. T.-P. Liao, J. P. Kennedy, Polym. Bull., 7, 233 (1982). 1930. Ch. X. Liao, W. P. Weber, Macromolecules, 25, 1639 (1992). 1931. F. C. Lin, S. S. Stivala, J. A. Biesenberger, J. Appl. Polym. Sci., 17, 1073 (1973). 1932. J. J. Lindberg, P. Sterck, B. Hortling, Suomen Kemistilehti. B, 42, 451 (1969). 1933. C. V. Linden, Polymer, 21, 171 (1980). 1934. A. D. Litmanovich, V. Ya. Shtern, Polym. Sci. USSR, 7, 1478 (1965); Vysokomol. Soedin., 7, 1332 (1965). 1935. A. A. Litmanovich, I. M. Papisov, V. A. Kabanov, Polym. Sci. USSR, 22, 1297 (1980); Vysokomol. Soedin. A, 22, 1180(1980). 1936. J. N. Little, J. L. Waters, K. J. Bombaugh, W. J. Pauplis. Polym. Preprints 10 (1), 326 (1969). 1937. H. Q. Liu, V. T. Stannett, Macromolecuies, 23, 140 (1990). 1938. G. Liu, N. Hu, X. Xu, H. Yao, Macromolecules, 27, 3892 (1994). 1939. N. Ljungqvist, T. Hjerberg, Macromolecules, 28, 5993 (1995). 1940. G. H. Llinas, S.-H. Dong, D. T. Mallin, M. D. Rauseh, Y-G. Lin, H. H. Winter, J. C. W. Chien, Macromolecules, 25, 1242 (1992). 1941. J. Llopis, A. Albert, P. Usobiaga, Anales Real Soc. Esp. Fis. Qufm. B, 62, 1103 (1966). 1942. J. Llopis, A. Albert, P. Usobiaga, Anales Real Soc. Esp. Fis. Qufm. B, 63, 413 (1967).
1943. J. Llopis, A. Albert, P. Usobiaga, Eur. Polym. J., 3, 259 (1967). 1944. M. A. Llorente, E. Riande, J. Guzman, Macromolecules, 17, 1048 (1984). 1945. P. Longi, F. Greco, U. Rossi, Makromol. Chem., 116, 113 (1968). 1946. P. Locatelli, M. C. Sacchi, E. Rigamonti, A. Zambelli, Macromolecules, 17, 123 (1984). 1947. P. Locatelli, M. C. Sacchi, I. Tritto, R Forlini, Macromolecules, 23, 2406 (1990). 1948. J. D. Loconti, J. W. Cahill, J. Polym. ScL, 49, S2 (1961). 1949. J. D. Loconti, J. W. Cahill, J. Polym. Sci. A, 1, 3163 (1963). 1950. G. Loehr, G. V. Schulz, Makromol. Chem., 117,283 (1968). 1951. G. Loehr, A. H. E. Mueller, V. Warzelhan, G. V. Schulz, Makromol. Chem., 175, 497 (1973). 1952. A. L. Logothetis, J. M. Mc Kenna, J. Polym. Sci., Polym. Chem. Ed., 16, 2797 (1978). 1953. F. Lombard, Makromol. Chem., 8, 201 (1952). 1954. J. D. Londono, A. H. Narten, G. D. Wignall, K. G. Honnell, E. T. Hsieh, T. W. Johnson, F. S. Bates, Macromolecules, 27, 2864 (1994). 1955. V. C. Long, G. C. Berry, L. M. Hobbs, Polymer, 5, 517 (1964). 1956. R Longi, A. Roggero. Ann. Chim. (Rome), 51,1013 (1961). 1957. P. Longo, A. Grassi, L. Oliva, P. Ammendola, Makromol. Chem., 191, 237 (1990). 1958. B. E. Lopez Madruga, J. M. Barrales-Rienda, G. M. Guzman, Anales Quim. (Madrid), 67, 153 (1971). 1959. B. V. Losikov, N. I. Kaverina, A. A. Fedyantseva, Khim. Tekhnol. Topliva, 3, 51 (1956). 1960. C. Loucheux, Z. Czlonkowska, J. Polym. Sci. C, 16, 4001 (1968). 1961. P. A. Lovell, R. H. Still, Makromol. Chem., 188, 1561 (1987). 1962. E. G. Lovering, W. B. Wright, J. Polym. Sci. A-I, 6, 2221 (1968). 1963. E. G. Lovering, J. Polym. Sci. C, 30, 329 (1970). 1964. E. G. Lovering, D. C. Wooden, Polym. Preprints, 11 (2), 935 (1970). 1965. A. J. Lovinger, Polymer, 21, 1317 (1980). 1966. I. L. Lovric, J. Polym. ScL A-2, 7, 1357 (1969). 1967. I. L. Lovric, J. Polym. Sci. A-2, 8, 807 (1970). 1968. L. Lovric, Z. Grubisic-Gallot, B. Kunst, Eur. Polym. J., 12, 189 (1976). 1969. Lj. Lovric, IUPAC Helsinki Preprints, Vol. Ill, H-41 (1972). 1970. H. Lu, S. Xiao, Makromol. Chem., 194, 2095 (1993). 1971. H. Luetje, Z. Physik. Chem. N. F (Frankfurt), 43, 11 (1964). 1972. R L. Luisi, E. Chiellini, R F. Franchini, M. Orienti, Makromol. Chem., 112, 197 (1968). 1973. R L. Luisi, F. Pezzana, Eur. Polym. J., 6, 259 (1970). 1974. R. Lukas, J. JancaL. Mrkvickova, S. Pokorny, M. Kolinsky, J. Polym. Sci., Polym. Chem. Ed., 16, 2539 (1978). 1975. S. Lunak, M. Bohdanecky, Coll. Czech, Chem. Commun., 30, 2756 (1965). 1976. P. Lutz, G. Beinert, R Rempp, Makromol. Chem., 183, 2787 (1982).
1977. A. R. Luxton, A. Quig, M.-J. Delvaux, L. J. Fetters, Polymer, 19, 1320 (1978). 1978. M. M. Lynn, V. T. Stannett, R. G. Gilbert, J. Polym. Sci., Polym. Chem. Ed., 18, 1967 (1980). 1979. A. R. Lyons, E. Catterall, Makromol. Chem., 146, 141 (1971). 1980. R. A. Lyons, J. Hutovic, M. C. Piton, D. I. Christie, R A. Clay, B. G. Manders, S. H. Kable, R. G. Gilbert, Macromolecules, 29, 1918 (1996). 1981. B. J. Lyons, A. S. Fox, Polym. Preprints, 8 (2), 1241 (1967). 1982. B. J. Lyons, A. S. Fox, J. Polym. Sci. C, 21, 159 (1968). 1983. S. Ya. Lyubina, V. S. Skazka, I. A. Strelina, G. V. Tarasova, V. M. Yamschikov, Polym. Sci. USSR, 14, 1539 (1972); Vysokornol. Soedin. A, 14, 1371 (1972). 1984. D. Mac Callum, Makromol. Chem., 100, 117 (1967). 1985. S. Machi, J. Silverman, D. J. Metz, J. Phys. Chem., 76, 930 (1972). 1986. J. Q. G. Maclaine, C. Booth, Polymer, 16, 191 (1975). 1987. J. Q. G. Maclaine, P. C. Ashman, C. Booth, Polymer, 17, 109 (1976). 1988. C. Macosko, K. E. Weaie, Polym. Preprints, 10 (2), 562 (1969). 1989. T. B. MacRury, M. L. Mc Connell, J. Appl. Polym. Sci., 24, 651 (1979). 1990. E. Maderek, G. R. Strobl, Colloid Polym. Sci., 261, 471 (1983). 1991. E. L. Madruga, J. San Roman, M. J. Rodriguez, Anales Quim. (Madrid), 79, 188 (1983). 1992. E. L. Madruga, J. San Roman, J. Macromol. Sci., Part A: Chem., 21, 167 (1984). 1993. W. Maechtle, Makromol. Chem., 183, 2515 (1982). 1994. Y. Maeda, K. Nakayama, H. Kanetsuna, Polym. J., 14, 295 (1982). 1995. C. Maes, R Godard, D. Daoust, R. Legras, C. Strazielle, Makromol. Chem. Phys, 196, 1523 (1995). 1996. P. L. Magagnini, F. Andruzzi, G. F. Benetti, Macromolecules, 13, 12 (1980). 1997. S. Ya. Magarik, G. M. Pavlov, G. A. Fomin, Macromolecules, 11, 294 (1978). 1998. S. Mah, Y. Yamamoto, K. Hayashi, J. Polym. Sci., Polym. Chem. Ed., 20, 1709 (1982). 1999. H. K. Mahabadi, L. Alexandru, Can. J. Chem., 63, 221 (1985). 2000. A.-F. de Mahieu, D. Daoust, J. Devaux, M. de Valck, Eur. Polym. J., 28, 685 (1992). 2001. B. Maitra, A. K. Nandi, Polymer, 34, 1260 (1993). 2002. J. Majer, Makromol. Chem., 86, 253 (1965). 2003. S. B. Makarova, Ye. A. Gukasova, A. I. Kuzayev, S. P. Davtyan, Polym. Sci. USSR, 18, 3141 (1976); Vysokomol. Soedin. A, 18, 2747 (1976). 2004. A. I. Maklakov, E. I. Nagumanova, Polyrn. Sci. USSR, 7, 2302 (1965); Vysokomol. Soedin., 7, 2101 (1965). 2005. N. V. Makletsova, I. V. Epel'baum, B. A. Rozenberg, Ye. B. Lyudvig, Polym. Sci. USSR, 7, 73 (1965); Vysokomol. Soedin., 7, 70 (1965). 2006. N. G. Mal'tseva, I. F. Tibanov, E. M. Aisenshtein, Khim. Volokna., 26 (1971).
2007. S. L. Malhotra, C. Baillet, H. H. Lam-Tran, L. P. Blanchard, J. Macromol. ScL, Part A: Chem., 12, 103 (1976). 2008. S. L. Malhotra, J. Leonard, E. Ahad, Eur. Polym. J., 14, 257 (1978). 2009. S. L. Malhotra, A. Leborgne, L.-R Blanchard, J. Polym. Sci., Polym. Chem. Ed., 16, 561 (1978). 2010. S. L. Malhotra, P. Lessard, L. Minh, L. P. Blanchard, J. Macromol. Sci., Part A: Chem., 14, 915 (1980). 2011. S. L. Malhotra, J. M. Gauthier, J. Macromol. Sci., Part A: Chem., 18, 783 (1982). 2012. S. L. Malhotra, J. Macromol. Sci., Part A: Chem., 18, 1055 (1982/83). 2013. S. L. Malhotra, M. Breton, J. M. Gauthier, j . Macromol. Sci., Part A: Chem., 18, 1151 (1982/83). 2014. B. Malm, J. J. Lindberg, Makromol. Chem., 182, 2747 (1981). 2015. C. P. Malone, H. L. Suchan, W. W. Yau, J. Polym. Sci. B, 7, 781 (1969). 2016. C. Maltesh, P. Somasundaran, Pradip, R. A. Kulkarni, S. Gundiah, Macromolecules, 24, 5775 (1991). 2017. P. V. Mangalam, V. Kalpagam, J. Polym. Sci., Phys. Ed., 20, 773 (1982). 2018. P V. Manglam, V. Kalpagam, Polymer, 23, 991 (1982). 2019. D. Mangaraj, S. K. Patra, Makromol. Chem., 107, 230 (1967). 2020. D. Mangaraj, S. B. Rath, Polym. Preprints, 12 (1), 573 (1971). 2021. P. K. Manna, P. K. Choudhury, J. Polym. Sci., Polym. Chem. Ed., 10, 77 (1972). 2022. P. K. Manna, P. K. Choudhury, J. Polym. Sci., Polym. Chem. Ed., 10,2159(1972). 2023. P. K. Manna, P. K. Choudhury, J. Macromol. Sci. A: Chem., 8,909 (1974). 2024. N. E. Manolova, I. Gitsov, R. S. Velichkova, I. B. Rashkov, Polym. Bull., 13, 285 (1985). 2025. J. A. Manson, G. J. Arquelte, Makromol. Chem., 37, 187 (1960). 2026. P. Mansson, J. Polym. Sci., Polym. Chem. Ed., 18, 1945 (1980). 2027. K. Mara, T. Imoto, Koiloid, Z.-Z. Polym., 237, 297 (1970). 2028. C. Marco, A. Bello, J. Gomez Fatou, Makromol. Chem., 179, 1333 (1978). 2029. C. Marco, J. G. Fatou, A. Beilo, A. Blanco, Polymer, 20, 1250(1979). 2030. C. Marco, J. Gomez Fatou, A. Bello, A. Blanco, Makromol. Chem., 181, 1357 (1980). 2031. C. Marco, J. M. Perena, A. Bello, J. G. Fatou, Brit. Polym. J., 14, 117 (1982). 2032. C. Marco, A. Bello, J. G. Fatou, Eur. Polym. J., 17, 41 (1983). 2033. C. Marco, J. G. Fatou, A. Bello, A. Lopez, Brit. Polym. J., 16, 11 (1984). 2034. C. Marco, J. G. Fatou, A. Bello, J. M. Perena, Makromol. Chem., 185, 1255 (1984). 2035. C. Marco, A. Bello, J. G. Fatou, J. Garza, Makromol. Chem., 187, 177 (1986).
2036. C. Marco, J. G. Fatou, M. A. Gomez, H. Tanaka, A. E. Tonelli, Macromolecules, 23, 2183 (1990). 2037. D. Mardare, K. Matyjaszewski, Macromoiecules, 27, 645 (1994). 2038. S. Margel, A. Rembaum, Macromolecules, 13, 19 (1980). 2039. P. Marie, J. P Lingelser, Y. Gailot, Makromol. Chem., 183, 2961 (1982). 2040. N. G. Marina, Yu. B. Monakov, S. R. Rafikov, V. P. Budtov, N. V. Duvakina, O. A. Ponomarev, Yu. I. Lysikov, E. S. Filatova, Polym. Sci. USSR, 18, 620 (1976); Vysokomol. Soedin. A, 18, 542 (1976). 2041. C. Marize, F. Oliveria, A. S. Gomez, Polym. Bull., 22, 401 (1989). 2042. J. E. Mark, R. A. Wessling, R. E. Hughes, J. Phys. Chem., 70, 1895 (1966). 2043. J. E. Mark, G. B. Thomas, J. Phys, Chem., 70, 3588 (1966). 2044. J. E. Mark, G. B. Thomas, Polym. Preprints, 7 (2), 438 (1966). 2045. M. J. Marks, J. K. Sekinger, Macromolecules, 27, 4106 (1994). 2046. K. Marquardt, P. Mehnert, Angew. Makromol. Chem., 53, 125 (1976). 2047. W. Marrs, R. H. Peters, R. H. Still, J. Appl. Polym. Sci., 23, 1063 (1979). 2048. C. A. Marshall, R. A. Mock, J. Polym. Sci., 17, 591 (1955). 2049. A. Marshall, R. H. Mobbs, C. Booth, Eur. Polym. J., 16, 881 (1980). 2050. G. Martinez, J. Millan, M. Bert, A. Michel, A. Guyot, J. Macromol. Sci., Part A: Chem., 12, 489 (1978). 2051. M. Marx-Figini, J. Polym. Sci., 30, 119 (1958). 2052. M. Marx-Figini, Makromol. Chem., 32, 233 (1959). 2053. M. Marx-Figini, G. V. Schulz, Makromol. Chem., 62, 49 (1963). 2054. M. Marx-Figini, E. Penzel, Makromol. Chem., 87, 307 (1965). 2055. M. Marx-Figini, J. Polym. Sci. C, 28, 57 (1969). 2056. M. Marx-Figini, B. Pion, Makromol. Chem., 177, 1013 (1976). 2057. M. Marx-Figini, O. Soubelet, Polym. Bull., 6, 501 (1982). 2058. M. Marx-Figini, O. Soubelet, Polym. Bull, 11, 281 (1984). 2059. R. M. Masegosa, I. Hernandez-Fuentes, E. A. Ojalvo, E. Saiz, Macromolecules, 12, 862 (1979). 2060. R. M. Masegosa, M. R. Gomez-Anton, A. Horta, Makromol. Chem., 187, 163 (1986). 2061. T. Masuda, K. Kitagawa, T. Inoue, S. Onogi, Macromolecules, 3, 116 (1970). 2062. T. Masuda, K. Kitagawa, S. Onogi, Polym. J., 1,418 (1970). 2063. T. Masuda, Y. Nakagawa, Y. Ohta, S. Onogi, Polym. J., 3,92 (1972). 2064. T. Masuda, M. Sawamoto, T. Higashimura, Makromol. Chem., 177, 2981 (1976). 2065. T. Masuda, E. Isobe, T. Higashimura, Macromolecules, 18, 841 (1985). 2066. T. Masuda, Y. Ohta, S. Onogi, Macromolecules, 19, 2524 (1986). 2067. T. Masuda, T. Hamano, T. Higashimura, T. Ueda, H. Muramatsu, Macromolecules, 21, 283 (1988).
2068. T. Masuda, T. Matsumoto, T. Yoshimura, T. Higashimura, Macromolecules, 23, 4902 (1990). 2069. T. Masuda, T. Hamano, K. Tsuchihara, T. Higashimura, Macromolecules, 23, 1374 (1990). 2070. T. Masuda, K. Mishima, J.-I. Fujimori, M. Nishida, H. Muramatsu, T. Higashimura, Macromolecules, 25, 1401 (1992). 2071. T. Masuda, H. Izumikawa, Y. Msiumi, T. Higashimura, Macromolecules, 29, 1167 (1996). 2072. V. J. Masura, Faserforsch, Textiltech., 13, 517 (1962). 2073. R. D. Mate, H. S. Lundstrom, Polym. Preprints, 8 (2), 1397 (1967). 2074. R. D. Mate, H. S. Lundstrom, J. Polym. Sci. C, 21, 317 (1968). 2075. A. R. Mathieson, J. Colloid Sci, 15, 387 (1960). 2076. V. B. F. Mathot, M. F. J. Pijpers, Polym. Bull, 11, 297 (1984). 2077. J. D. Matlack, S. N. Chinal, R. A. Guzzi, D. W. Levi, J. Polym. Sci., 49, 533 (1961). 2078. H. Matsuda K. Yamano, H. Inagaki, J. Polym. Sci. A-2, 7, 609 (1969). 2079. H. Matsuda, H. Aonuma, S. Kuroiwa, J. Appl. Polym. Sci., 14, 335 (1970). 2080. H. Matsuda, M. Takeshima, S. Shimizu, S. Kuroiwa, Makromol. Chem., 134, 309 (1970). 2081. H. Matsuda, I. Yamada, S. Kuroiwa, Polym. J., 8, 415 (1976). 2082. O. Matsuda, J. Okamoto, N. Suzuki, M. Ito, Y. Tabata, J. Macromol. Sci., Part A: Chem., 8, 775 (1974). 2083. A. Matsumoto, T. Kitamura, M. Oiwa, G. B. Butler, J. Polym. Sci., Polym. Chem. Ed., 19, 2531 (1981). 2084. Y. Matsumoto, Shizuoka-ben Kogyo Gijustsu Senta, Kenkyu Hokoku, 33, 79 (1988). 2085. A. Matsumoto, T. Tarui, T. Otsu, Macromolecules, 23,5102 (1990). 2086. T. Matsumoto, N. Nishioka, H. Fujita, J. Polym. Sci. A-2, 10, 23 (1972). 2087. K. Matsumura, Bull. Chem. Soc. Japan, 42, 1874 (1969). 2088. K. Matsumura, Makromol. Chem., 124, 204 (1969). 2089. K. Matsumura, M. Fukaya, K. Mizuno, Bull. Chem. Soc. Japan, 43, 1881 (1970). 2090. T. Matsuo, H. Inagaki, Makromol. Chem., 55, 150 (1962). 2091. K. Matsuo, W. H. Stockmayer, S. Mashimo, Macromolecules, 15, 606 (1982). 2092. Y. Matsushita, H. Furuhashi, H. Choshi, I. Noda, M. Nagasawa, T. Fujimoto, C. C. Han, Polym. J., 14, 489 (1982). 2093. K. Matsuzaki, C. Ichijo, T. Kawai, Makromol. Chem., 182, 2919 (1981). 2094. K. Matsuzaki, T. Kanai, C. Ichijo, M. Yuzawa, Makromol. Chem., 185, 2291 (1984). 2095. W. L. Mattice, J.-T. Lo, Macromolecules, 5, 734 (1972). 2096. A. Mattiussi, G. B. Gechele, M. Pizzoli, Eur. Polym. J., 2, 383 (1966). 2097. A. Mattiussi, F. Manescalchi, G. B. Gechele, Eur. Polym. J., 5, 105 (1969). 2098. M. Matzner, L. M. Robeson, R. J. Greff, J. E. McGrath, Angew. Makromol. Chem., 26, 137 (1972).
2099. J.-P. Mautekker, S. K. Varsahney, R. Fayt, C. Jacobs, R. Jerome, Ph. Teyssie, Macromolecules, 23, 3893 (1990). 2100. J. A. May Jr., W. B. Smith, J. Phys. Chem., 72, 216, 2993 (1968). 2101. S. Mayeda, M. Nagata, J. Appl. Polym. Sci., Appl. Polym. Symp., 52, 473 (1993). 2102. R. Mayer, Polymer, 15, 137 (1974). 2103. G. Mayer, R. Y. M. Huang, Makromol. Chem., 181, 1727 (1980). 2104. J. F. Mayoral, M. Levy, J. Polym. Sci., Polym. Chem. Ed., 20, 2755 (1982). 2105. J. W. Mays, N. Hadjichnstidis, L. J. Fetters, Macromolecules, 17, 2723 (1984). 2106. J. W. Mays, W. M. Ferry, N. Hadjichristidis, W. G. Funk, Polymer, 27, 129 (1986). 2107. J. W. Mays, Macromolecules, 21, 3179 (1988). 2108. J. W. Mays, S. Man, M. E. Lewis, Macromolecules, 24, 4857 (1991). 2109. J. W. Mays, S. Man, W. Yunan, J. Li, Macromolecules, 24, 4469 (1991). 2110. A. M. Mazafarov, M. Golly, M. Moller, Macromolecules, 28, 8444 (1995). 2111. R. A. D. Mbachu, J. Manley, J. Polym. Sci., Polym. Chem. Ed., 19, 2065 (1981). 2112. C. L. Mc Cormick, L. S. Park, J. Polym. Sci., Polym. Chem. Ed., 21, 2229 (1983). 2113. C. L. Mc Cormick, L. S. Park, J. Polym. Sci., Polym. Chem. Ed., 22, 49 (1984). 2114. C. L. Mc Cormick, G. S. Chen, J. Polym. Sci., Polym. Chem. Ed., 22, 3649 (1984). 2115. H. W. Mc Cormick, J. Polym. Sci., 36, 341 (1959). 2116. H. W. Mc Cormick, J. Polym. Sci., 41, 327 (1959). 2117. H. W. Mc Cormick, J. Polym. Sci. A, 1, 341 (1959). 2118. R. H. Mc Dowell, Chem. Ind., 1401 (1958). 2119. A. J. Mc Hugh, E. P. Vrahopoulou, B. J. Edwards, J. Polym. Sci., Part B: Polym. Phys., 25, 953 (1987). 2120. G. B. Mc Kenna, G. Hadziioannou, P. Lutz, G. HiId, C. Strazielle, C. Stranpe, P. Rempp, A. J. Kovas, Macromolecules, 20, 498 (1987). 2121. E. Meehan, L. L. Lloyd, J. A. Mcconville, F. P. Warner, N. P. Gabbott, J. V. Dawkins J. Appl. Polym. Sci., Appl. Polym. Symp., 48, 3 (1991). 2122. E. Meehan, S. O'Donohue, A. G. Williams, J. V. Dawkins, J. Appl. Polym. Sci., Appl. Polym. Symp., 51, 151 (1992). 2123. J. W. Meeks, T. F. Banigan, R. W. Planck, India Rubber World, 122, 301 (1950). 2124. M. Meewes, J. Ricka, M. de Silva, R. Nyffnegger, Th. Binkert, Macromolecules, 24, 5811 (1991). 2125. A. M. Meffroy-Bigget, Bull. Soc. Chim. (France), 458, 465 (1954). 2126. A. M. Meffroy-Bigget, Compt. Rend., 240, 1707 (1955). 2127. M. A. Meilchen, B. M. Hasch, M. A. McHugh, Macromolecules, 24, 4874 (1991). 2128. A. MeIe, R. Rufo, L. Santonato, Polymer, 10, 233 (1969). 2129. L. G. Melkonyan, R. V. Bagdasaryan, Izv. Akad. Nauk. Arm. SSR Khim. Nauki. 18. 333 (1965).
2130. A. D. Meltzar, D. A. Tirrell, A. A. Jones, P. T. Jones, P. T. Ingelfield, Macromolecules, 25, 4541 (1992). 2131. H. W. Melville, B. D. Stead, J. Polym. ScL, 16, 505 (1956). 2132. Z. Mencfk, Chem. Zvesti, 9, 165 (1955). 2133. H. J. Mencer, Z. Grubisic-Gallot, J. Liquid. Chromatogr., 2, 649 (1979). 2134. H. J. Mencer, B. Kunst, Makromol. Chem., 180, 2463 (1979). 2135. H. J. Mencer, Z. Vajnaht, J. Chromatogr., 241, 205 (1982). 2136. H. J. Mencer, Z. Gomzi, Angew. Makromol. Chem., 162, 163 (1988). 2137. R. A. Mendelson, J. Polym. ScL A, 1, 2361 (1963). 2138. R. A. Mendelson, E. E. Drott, J. Polym. ScL, B, 6, 795 (1968). 2139. R. A. Mendelson, F. L. Finger, Polym. Preprints, 12 (1), 370 (1971). 2140. J.-P. Merce, A. Sarko, Macromolecules, 5, 132 (1972). 2141. G. R. Meredith, J. G. Van Dusen, D. J. Williams, Macromolecules, 15, 1385 (1982). 2142. Y. Merle, L. Merle-Aubry, J. E. Guillet, Macromolecules, 17, 288 (1984). 2143. R. Mertsch, B. A. Wolf, Macromolecules, 27, 3289 (1994). 2144. E. H. Merz, J. Polym. ScL, 3, 790 (1948). 2145. E. H. Merz, R. W. Raetz, J. Polym. ScL, 5, 587 (1950). 2146. J. C. Meunier, R. Van Leemput, Makromol. Chem., 142, 1 (1971). 2147. J.-C. Meunier, Z. Gallot, Makromol. Chem., 156, 117 (1972). 2148. G. Meyerhoff, Makromol. Chem., 12, 45 (1954). 2149. G. Meyerhoff, J. Romatowski, Makromol. Chem., 74, 222 (1964). 2150. G. Meyerhoff, Ber. Bunsenges. Phys. Chem., 69, 866 (1965). 2151. G. Meyerhoff, Makromol. Chem., 89, 282 (1965). 2152. G. Meyerhoff, N. Suetterlin, Makromol. Chem., 87, 258 (1965). 2153. G. Meyerhoff, W. Meier, K. Berger, Makromol. Chem., 91, 290 (1966). 2154. G. Meyerhoff, S. Jovanovic, J. Polym. Sci. B, 5,495 (1967). 2155. G. Meyerhoff, S. Shimotsuma, Makromol. Chem., 109,263 (1967). 2156. G. Meyerhoff, Polym. Preprints 8 (2), 1295 (1967). 2157. G. Meyerhoff, J. Polym. Sci. C, 21, 31 (1968). 2158. G. Meyerhoff, Angew. Makromol. Chem., 4/5, 268 (1968). 2159. G. Meyerhoff, Makromol. Chem., 134, 129 (1970). 2160. G. Meyerhoff, S. Shimotsuma, Makromol. Chem., 135,195 (1970). 2161. G. Meyerhoff, U. Moritz, R. G. Kirste, W. Heitz, Eur. Polym. J., 7, 933 (1971). 2162. G. Meyerhoff, S. Shimotsuma, IUPAC Boston, Preprints, Vol. 11, 1157 (1971). 2163. R. Meza, L. Gargallo, Eur. Polym. J., 13, 235 (1977). 2164. F. Michel, A. Bockmann, W. Mechstroth, Makromol. Chem., 48, 15 (1961). 2165. F. Michel, W. Meckstroth, Makromol. Chem., 51, 107 (1962).
2166. C. Mijangos, G. Martinez, A. Michel, J. Millan, A. Guyot, Eur. Polym. J., 20, 1 (1984). 2167. N. V. Mikhailov, S. G. Zelikman, Kolloidn. Zh., 18, 717 (1956). 2168. J. Millan, E. L. Madruga, G. Martinez, Angew. Makromol. Chem., 45, 177 (1975). 2169. B. Millaud, C. Strazielie, Polymer, 20. 563 (1979). 2170. B. Miller, E. Pacsu, J. Polym. Sci., 41, 97 (1959). 2171. G. W. Miller, S. A. D. Visser, Poiym. Preprints, 8 (1), 641 (1967). 2172. L. E. Miller, F. A. Hamm, J. Phys. Chem., 57, 110 (1953). 2173. M. L. Miller, J. Polym. Sci., 56, 203 (1962). 2174. N. J. Mills, Eur. Polym. J., 5, 675 (1969). 2175. T. I. Min, H. Inagaki, Polymer, 21, 309 (1980). 2176. A. Minakata, N. Imai, Biopolymers, 11, 329 (1972). 2177. Y. Minoura, M. Mitoh, Makromol. Chem., 99, 186 (1966). 2178. Y. Minoura, M. Shundo, Y Enomoto, J. Polym. Sci. A-I, 6, 979 (1968). 2179. Y. Minoura, M. Mitoh, Makromol. Chem., 124, 241 (1969). 2180. S. A. Minyailo, N. P. Zakurdaeve, Khim. Volokna, 15, 44 (1973). 2181. F. M. Mirabella Jr., E. M. Barrall, J. F. Johnson, J. Appl. Polym. ScL, 19, 2131 (1975). 2182. F. M. Mirabella Jr., E. M. Barrall II, J. F. Johnson, Polymer, 17, 17 (1976). 2183. F. M. Mirabella Jr., EA Ford, J. Polym. Sci. A-2: Polym. Phys., 25, 777 (1987). 2184. F. M. Mirabella Jr., J. Appl. Polym. Sci., Appl. Polym. Symp., 51, 117(1992). 2185. F. M. Mirabeila Jr., Polymer, 34, 1729 (1993). 2186. F. M. Mirabella Jr., J. Liquid. Chromatogr., 17,3201 (1994). 2187. I. M. Mirkamilov, U. Azizov, M. U. Sadykov, Kh. U. Usmanov, Polym. Sci. USSR, 14,1904 (1972); Vysokomol. Soedin. A, 14, 1704 (1972). 2188. V. M. Misin, V. I. Fartunin, A. M. Fomin, M. I. Cherkashin, Polym. Sci. USSR, 22, 2171 (1980); Vysokomol. Soedin. A, 22, 1981 (1980). 2189. B. N. Misra, P. S. Chandel, R. Dogra, J. Polym. Sci., Polym. Chem. Ed., 16, 1801 (1978). 2190. B. N. Misra, R. Dogra, J.Macromol. Sci. A, 14, 763 (1980). 2191. B. N. Misra, R. Dogra, I. K. Mehta, J. Polym. Sci., Polym. Chem. Ed., 18, 749 (1980). 2192. B. N. Misra, P. S. Chandel, J. Polym. Sci., Polym. Chem. Ed., 18, 1171 (1980). 2193. B. N. Misra, I. K. Mehta, J. Polym. Sci., Polym. Chem. Ed., 18, 1911 (1980). 2194. B. N. Misra, R. Dogra, I. Kaur, D. Sood, J. Polym. Sci., Polym. Chem. Ed., 18, 341 (1980). 2195. B. N. Misra, R. Dogra, I. K. Mehta, A. S. Singha, Angew. Makromol. Chem., 90, 83 (1980). 2196. B. N. Misra, I. K. Mehta, R. K. Sharma, Polym. Bull., 3,115 (1980). 2197. B. N. Misra, D. S. Sood, I. K. Mehta, J. Macromol. Sci., Part A: Chem., 18, 209 (1982). 2198. G. S. Misra, V. P. Gupta, Makromol. Chem., 71,110 (1964). 2199. G. S. Misra, S. N. Battacharya, Eur. Polym. J., 15, 125 (1979).
2200. I. Mita, J. Chim. Phys., 59, 530 (J962). 2201. K. Mitani, T. Suzuki, A. Matsuo, Y. Takegami, J. Polym. ScL, Polym. Chem. Ed., 12, 771 (1974). 2202. R. L. Mitchell, Ind. Eng. Chem., 45, 2526 (1953). 2203. J. C. Mitchell, A. E. Woodard, P. Doty, J. Am. Chem. Soc, 79, 3955 (1957). 2204. H. Mitomo, N. Morishita, Y. Doi, Polymer, 36,2573 (1995). 2205. S. P. Mitsengendler et al., Vysokomol. Soedin., 4, 1366 (1962). 2206. S. P. Mitsengendler, K. I. Sokolova, G. A. Andreyeva, A. A. Korotkov, T. Kadyrov, S. I. Klenin, S. Ya. Magarik, Polym. Sci. USSR, 9, 1261 (1967); Vysokomol. Soedin., 9, 1133 (1967). 2207. M. Miura, Y. Kubota, T. Masuzukawa, Bull. Chem. Soc. Japan., 38, 316(1965). 2208. Y. Miyaki, Y. Einaga, T. Hirosye, H. Fujita, Macromolecules, 10, 1356 (1977). 2209. Y. Miyaki, M. Iwata, Y. Fujita, H. Tanisugi, Y. Isono, T. Fujimoto, Macromolecules, 17, 1907 (1984). 2210. T. Miyamoto, H. Inagaki, Macromolecules, 2, 554 (1969). 2211. T. Miyamoto, S. Tomoshige, H. Inagaki, Polym. J., 6, 564 (1974). 2212. M. Miyamoto, M. Sawamoto, T. Higashimura, Macromolecules, 17, 265 (1984). 2213. M. Miyamoto, K. Hayashizaki, M. Tokumizu, T. Saegusa, Macromolecules, 23, 4718 (1990). 2214. K. Miyata, K. Muraoka, T. Itaya, T. Tanigaki, K. Inour, Eur. Polym. J., 32, 1257 (1996). 2215. R. Miyatake, J. Kumanotani, Makromol. Chem., 177, 2749 (1976). 2216. A. Mizono, T. Abiru, M. Motowoka, M. Kioka, M. Onda, J. Appl Polym. Sci., Appl. Polym. Symp., 52, 159 (1993). 2217. K. Mizuhara, K. Hara, T. Imoto, Kolloid. Z.-Z. Polym., 229, 17 (1969). 2218. A. Mizuno, M. Onda, T. Sogane, Polymer, 32, 2953 (1991). 2219. J. Moacanin, N. Nelson, E. Back, V. F. Felicetta, J. L. Mc Carthy, J. Am. Chem. Soc, 81, 2054 (1959). 2220. J. Moacanin, A. Rembaum, R. K. Laudenslager, R. Adler, J. Macromol. Sci., Part A: Chem., 1, 1497 (1967). 2221. W. E. Mochel, J. B. Nichols, C. J. Mighton, J. Am. Chem. Soc, 70, 2185 (1948). 2222. W. E. Mochel J. B. Nichols, J. Am. Chem. Soc, 71, 3435 (1949). 2223. W. E. Mochel, J. B. Nichlos, Ind. Eng. Chem., 43, 154 (1951). 2224. R. A. Mock, C. A. Marshall, V. Deane Floria, J. W. Sanders, J. Polym. Sci., 11, 447 (1953). 2225. D. Mohan, G. Radhakrishanan, S. Rajadurai, Makromol. Chem., 183, 1659 (1982). 2226. R. B. Mohite, S. Gundiah, S. L. Kapur, Makromol. Chem., 108, 52 (1967). 2227. R. B. Mohite S. Gundiah, S. L. Kapur, Makromol. Chem., 116, 280 (1968). 2228. R. B. Mohite, G. Meyerhoff, Angew. Makromol. Chem., 25, 41 (1972). 2229. E. Mokhtari-Nejad, K. C. Berger, R. Hammel, K. Lederer, Makromol. Chem., 179, 159 (1978).
2230. A. Molenberg, H.-A. Klok, M. Moller, S. Boileau, D. Teyssie, Macromolecules, 30, 792 (1997). 2231. W. L. H. Moll, Kolloid, Z.-Z. Polym., 223, 48 (1968). 2232. Ye. D. Molodtsova, S. A. Pavlova, G. I. Timofeyeva, Ya. S. Vygodskii, S. V. Vinogradova, V. V. Korshak, Polym. Sci. USSR, 16, 2529 (1974); Vysokomol. Soedin. A, 16, 2183 (1974). 2233. P. Molyneux, Makromol. Chem., 43, 31 (1961). 2234. R Molyneux, Kolloid. Z.-Z. Polym., 226, 15 (1968). 2235. B. Monrabnal, J. Appl. Polym. Sci., 52, 491 (1994). 2236. B. Monrabal, Makromol. Chem. Macromol. Symposia., 110, 81 (1994). 2237. B. Monrabal, Analysis of Metallocene Type Polyolefins by CRYSTAF (Crystallization Analysis Fractionation), International GPC Symposium, San Diego, 1996. 2238. V. M. Monroy Soto, J. C. Galin, Polymer, 25, 254 (1984). 2239. P. G. Montague, F. W. Peaker, P. Bosworth, P. Lemon, Brit. Polym. J., 3, 93 (1971). 2240. G. Montaudo, P. Maravigna, P. Finocchiaro, C G . Overberger, Macromolecules, 5, 203 (1972). 2241. G. Montaudo, D. Garrozo, M. S. Montando, G. Pugliss, F. Samperi, Macromolecules, 28, 7983 (1995). 2242. S. Montserrat, P. Colomer, Polym. Bull., 12, 173 (1984). 2243. J. C. Moore, J. Polym. Sci. A, 2, 835 (1964). 2244. L. D. Moore Jr., G. R. Greear, J. O. Sharp, J. Polym. Sci., 59, 339 (1962). 2245. W. R. Moore, J. A. Epstein, J. Appl. Chem., 6, 168 (1956). 2246. W. R. Moore, B. M. Tidswell, J. Appl. Chem., 8,232 (1958). 2247. W. R. Moore, R. P. Sheldon, J. Textile Inst., 50, T 294 (1959). 2248. W. R. Moore, G. P. Pearson, Polymer, 1, 144 (1960). 2249. W. R. Moore, M. Murphy, J. Polym. Sci., 56, 519 (1962). 2250. W. R. Moore, R. J. Fort, J. Polym. Sci. A-1,1, 929 (1963). 2251. W. R. Moore, R. J. Hutchinsons, Nature (London), 200, 1095 (1963). 2252. W. R. Moore, G. F. Boden, J. Appl. Polym. Sci., 9, 2019 (1965). 2253. W. R. Moore, K. Saito, Eur. Polym. J., 3, 65 (1967). 2254. W. R. Moore, M. A. Uddin, Eur. Polym. J., 3, 673 (1967). 2255. W. R. Moore, D. Sanderson, Polymer, 9, 153 (1968). 2256. W. R. Moore, M. Uddin, Eur. Polym. J., 5, 185 (1969). 2257. W. R. Moore, M. A. Uddin, Eur. Polym. J., 6, 121 (1970). 2258. M. A. R. Moraes, A. C. F. Moreira, R. V. Barbosa, B. G. Soares, Macromolecules, 29, 416 (1996). 2259. G. Moraglio, Chim. Ind. (Milan), 44, 352 (1962). 2260. G. Moraglio, Eur. Polym. J., 1, 103 (1965). 2261. G. Moraglio, G. Gianotti, F. Danusso, Eur. Polym. J., 3, 251 (1967). 2262. G. Moraglio, G. Gianotti, Eur. Polym. J., 5, 781 (1969). 2263. G. Moraglio, G. Gianotti, F. Zoppi, U. Bonicelli, Eur. Polym. J., 7, 303 (1971). 2264. G. Moraglio, G. Gianotti, U. Bonicelli, Eur. Polym. J., 9, 623 (1973). 2265. G. Moraglio, U. Bonicelli, Polymer, 19, 1363 (1978). 2266. B. Morese-Seguela, M. St-Jacques, J. M. Renaud, J. Prud'homme, Macromolecules, 13, 100 (1980).
2267. 2268. 2269. 2270. 2271. 2272. 2273. 2274. 2275. 2276. 2277. 2278. 2279. 2280. 2281. 2282. 2283. 2284.
2285. 2286. 2287.
2288. 2289. 2290. 2291. 2292. 2293. 2294. 2295. 2296. 2297.
2298. 2299.
D. R. Morey, J. W. Tamblyn, J. Appl. Phys., 16, 419 (1945). D. R. Morey, J. W. Tamblyn, J. Phys. Chem., 50, 12 (1946). D. R. Morey, J. W. Tamblyn, J. Phys. Chem., 51,721 (1947). D. R. Morey, E. W. Taylor, G. R Waugh, J. Colloid Sci., 6, 470(1951). RJ. Morgan, S. E. Harding, K. Petrak, Macromolecules, 23, 4461 (1990). P. W. Morgan, S. L. Kwolek, J. Polym. Sci., 62, 33 (1962). H. Mori, A. Hirao, S. Nakahama, K. Senshu, Macromolecules, 27, 4093 (1994). H. Mori, A. Hirao, S. Nakahama, Moromolecules, 27, 35 (1994). S. Mori, Anal. Chem., 53, 1813 (1981). S. Mori, M. Suzuki, Anal. Chem., 56, 1708 (1984). S. Mori, Anal. Chem., 60, 1125 (1988). S. Mori, M. Mouri, Anal. Chem., 61, 2171 (1989). S. Mori, J. Appl. Polym. Sci., Appl. Polym. Symp., 43, 65 (1989). S. Mori, Anal. Chem., 62, 1902 (1990). S. Mori, J. Appl. Polym. Sci., Appl. Polym. Symp., 45, 71 (1990). S. Mori, J. Appl. Polym. Sci., Appl. Polym. Symp., 48, 133 (1991). S. Mori, TRIP, 2, 208 (1994). Y. Morishima, T. Hashinoto, Y. Itoh, M. Kamachi, S. Nizakura, L. Polym. Sci., Polym. Chem. Ed., 20, 299 (1982). U. Moritz, G. Meyerhoff, Makromol. Chem., 139,23 (1970) G. A. Morneau, P I. Roth, A. R. Shultz, J. Polym. Sci., 55, 609(1961). A. G. Morozov, E. D. AFtshuler, A. Y. Pavlov, M. K. Dobrokhotova, Plast Massy, 8, 72 (1972); Soviet Plast., 8, 85 (1972). R. J. Morris, H. E. Persinger, J. Polym. Sci. A, 1, 1041 (1963). M. Morton, R. F. Kammereck, L. J. Fetters, Macromolecules, 4, 11 (1971). T. M. Moshkina, A. N. Pudovik, Vysokomol. Soedin., 5. 1106(1963). M. Motowoka, T. Norisuye, H. Fujita, Polym. J., 9, 613 (1977). M. Motowoka, H. Fujita, T. Norisuye, Polym. J., 10, 331 (1978). T. H. Moury, J. Chromatogr., 357, 101 (1986). L. Mrkvickova, P. Lopour, S. Pokorny, J. Janca, Angew. Makromol. Chem., 90, 217 (1980). L. Mrkvickova, J. Kalal, B. Bednar, J. Janca, Makromol. Chem., 183, 203 (1982). H. Mueller, Patent, DE 86-3607946 860311. O. Mueller, unpublished report to Farbenfabriken Bayer 1962 quoted by H. Giesekus, in: M. J. R. Cantow, (Ed.), "Polymer Fractionation", Academic Press, New York, 1967, p. 191. R. Muggli, H-G. Elias, K. Muehlethaler, Makromol. Chem., 121, 290 (1969). A. N. Mujumdar, S. G. Young, R. L. Merker, J. H. Magill, Macromolecules, 23, 14 (1990).
2300. A. K. Mukherjee, J. C. Bertrand, D. A. Allen, Angew. Makromol. Chem., 72, 213 (1978). 2301. A. K. Mukherjee, H. R. Goel, J. Macromol. Sci. A: Chem., 17, 545 (1982). 2302. A. MuIa L. Chinellato, Eur. Polym. J., 6, 1 (1970). 2303. F. J. Muller, U. Altenhofen, F. J. Wortmann, H. Zahn, Angew. Makromol. Chem., 83, 171 (1979). 2304. T. E. Muller, W. J. Alexander, Polym. Preprints, 8 (2), 1371 (1967). 2305. T. E. Muller, W. J. Alexander, J. Polym. Sci. C, 21, 283 (1968). 2306. W. A. Muller, L. N. Rogers, Ind. Eng. Chem., 45, 2522 (1953). 2307. Y-U. Mun, T. Sato, T. Otsu, Makromol. Chem., 185, 1507 (1984). 2308. P. Munk, Coll. Czech. Chem. Commun., 32, 787 (1967). 2309. H. Murakami, T. Norisuye, H. Fujita, Macromolecules, 13, 345 (1980). 2310. K. Murata, J. Polym. Sci., Polym. Chem. Ed., 10, 3673 (1972). 2311. J. B. Murray, G. J. Perry, M. T Vertessy, J. Macromol. Sci., Part A: Chem., 17, 265 (1982). 2312. M. M. Musiani, G. Mengoli, B. Pelli, C. Folonari, Makromol. Chem., 183, 1869 (1982). 2313. C. Mussa, I. Vercelli, E. Cernia, Ann. Chim. (Rome), 41, 130(1951). 2314. C. Mussa, J. Polym. Sci., 28, 587 (1958). 2315. M. I. Mustafayev, K. V. Aliev, V. A. Kabanov, Polym. Sci USSR, 12, 968 (1970); Vysokomol. Soedin. A, 12, 855 (1970). 2316. V. A. Myagchenkov, Ye. V. Kuznetsov, N. I. Dominova, Polym. Sci. USSR, 6, 1786 (1964); Vysokomol. Soedin, 6, 1612 (1964). 2317. V. A. Myagchenkov, Ye. V. Kuznetsov, V Ya. Kitkevich, Polym. Sci. USSR, 6, 1507 (1964); Vysokomol. Soedin., 6, L 366 (1964). 2318. V. A. Myagchenkov, Ye. V. Kuznetsov, L. A. Zaltsgendler, Polym. Sci. USSR, 7, 2275 (1965); Vysokomol. Soedin., 7, 2077 (1965). 2319. V. A. Myagchenkov, V. F. Kurenkov, E. V Kuznetsov, S. Ya. Frenkel, Eur. Polym. J., 6, 63 (1970). 2320. V. A. Myagchenkov, V. F. Kurenkov, L. F. Antonova, A. Ya. Belobokova, Polym. Sci. USSR, 12, 1980 (1970); Vysokomol. Soedin. A, 12, 1745 (1970). 2321. VA. Myagchenkov, A. K. Vagapova, V. F. Kurenkov, S. Ya. Frenkel, Eur. Polym. J., 14, 169 (1978). 2322. G. E. Myers, J. R. Dagon, J. Polym. Sci. A-I, 2, 2631 (1964). 2323. C. D. Myrat, J. S. Rowlinson, Polymer 6, 645 (1965). 2324. T. D. N'Guyen, S. Boileau, Polym. Bull., 1, 817 (1979). 2325. T. Nagabhushanam, K. T. Joseph, M. Santappa, J. Polym. Sci., Polym. Chem. Ed., 16, 3287 (1978). 2326. S. Nagarajan, K. S. V. Srinivasan, J. Polym. Sci. Part A: Polym. Chem., 33, 2925 (1995). 2327. Y. Nagasaki, M. Taniuchi, T. Tsuruta, Makromol. Chem., 189, 723 (1988). 2328. Y. Nagasaki, N. Yamazaki, K. Takeda, N, Kata, M. Kato, Macromolecules, 27, 3702 (1994).
2329. T. Nagata, J. Appl. Polym. ScL, 13, 2601 (1969). 2330. K. Nagayama, S. Okada, Polym. J., 5, 97 (1973). 2331. J. Naghizadeh, J. Springer, Kolloid. Z.-Z. Polym., 215, 21 (3967). 2332. S. Nair, B. C. Sekhar, Chem. Soc. (London) Spec. Publ., 23, 105 (1968). 2333. P. R. M. Nair, R. M. Gohil, K. C. Patel, R. D. Patel, Eur. Polym. J., 13, 273 (1977). 2334. H. Nakahara, M. Shihanda, J. Soc. Text. Cell. Ind. (Japan), 8, 438 (1952). 2335. A. Nakai, W. Wang, T. Hashimoto, A. Blumstein, Y. Maeda, Macromolecules, 27, 6963 (1994). 2336. A. Nakajima, I. Sakurada, Chem. High Polym. (Japan), 11, 110(1954). 2337. A. Nakajima, H. Fujiwara, Bull. Chem. Soc. Japan, 37, 909 (1964). 2338. A. Nakajima, F. Hamada, S. Hayashi, A. Saijoo, Discussion Meeting of Soc. Polym. ScL, Japan, July, 10, 1965, Kobe, Japan. 2339. A. Nakajima, F. Hamada, Kolloid Z.-Z. Polym., 205, 55 (1965). 2340. A. Nakajima, F. Hamada, S. Hayashi, J. Polym. Sci. C, 15, 285 (1966). 2341. A. Nakajima, F. Hamada, T. Shimizu, Makromol. Chem., 90, 229 (1966). 2342. A. Nakajima, K. Kato, Makromol. Chem., 95, 52 (1966). 2343. A. Nakajima, S. Hayashi, Kolloid. Z.-Z. Polym., 225, 116 (1968). 2344. A. Nakajima, S. Hayashi, T. Korenaga, T. Sumida, Kolloid. Z.-Z. Polym., 222, 124 (1968). 2345. A. Nakajima, T. Hayashi, K. Kugo, K. Shinoda, Macromolecules, 12, 840 (1979). 2346. N. Nakajima, J. Polym. Sci. A-2, 5, 101 (1966). 2347. N. Nakajima, Polym. Preprints, 8 (2), 1282 (1967). 2348. N. Nakajima, J. Polym. ScL C, 21, 153 (1968). 2349. N. Nakajima, Polym. Preprints, 12 (2), 804 (1971). 2350. M. Nakakata, K. Kawate, Y. Ishitaka, Macromolecules, 27, 1825 (1994). 2351. Y. Nakamura, T. Norisuye, A. Teramoto, J. Polym. Sci., Part B: Polym. Phys., 29, 153 (1991). 2352. K. Nakamura, R. Endo, M. Takeda, J. Polym. Sci., Polym. Phys. Ed., 14, 135 (1976). 2353. Y. Nakamura, K. Akasaka, K. Katayama, T. Norisuye, A. Teramoto, Macromolecules, 25, 1134 (1992). 2354. S. Nakano, J. Polym. ScL, Polym. Phys. Ed., 12, 1499 (1974). 2355. S. Nakano, Y. Goto, J. Appl. Polym. Sci., 26, 4217 (1981). 2356. M. Nakano, T. Masuda, T. Higashimura, Macromolecules, 27, 1344 (1994). 2357. M. Nakata, Makromol. Chem., 149, 49 (1971). 2358. N. S. Nametkin, O. B. Semenov, S. G. Durgar'yan, S. Skazka, V. G. Filippova, V. Ya. Nikolayev, Polym. Sci. USSR, 17, 1115 (1975); Vysokomol. Soedin. A, 17, 973 (1975). 2359. A. K. Nandi, L. Mandelkern, J. Polym. Sci. Part B, Polym. Phys., 29, 1287 (1991).
2360. V. Narasimhan, R. Y. M. Huang, C. M. Burns, J. Polym. Sci., Polym. Chem. Ed., 22, 3895 (1984). 2361. H. Narita, S. Machida, Makromol, Chem., 97, 209 (1966). 2362. T Narita, T. Hagiwara, H. Hamana, S. Maesaka, Polym. J., 20, 519 (1988). 2363. D. W. Nash, D. C. Pepper, Polymer, 16, 105 (1975). 2364. A. Nasini, C. Mussa, Makromol. Chem., 22, 59 (1957). 2365. M. Natov, D. Kelchajov, M. Michailova, Angew. Chem., 102, 175 (1982). 2366. G. Natta, F. Danusso, G. Moraglio, Makromol. Chem., 20, 37 (1956). 2367. G. Natta, M. Pegoraro, M. Peraldo, Ricerca Sci., 28, 1473 (1958). 2368. G. Natta et al., Atti. Accad. Nazi, Lincei, 28, 18 (1960). 2369. G. Natta, A. Zambelli, I. Pasquon, F. Ciampelli, Makromol. Chem., 79, 161 (1964). 2370. G. Natta, L. Porri, A. Carbonaro, G. Stoppa, Makromol. Chem., 77, 114 (1964). 2371. G. Natta, L. Porri, A. Carbonaro, Makromol. Chem., 77, 126 (1964). 2372. G. Natta, I. Pasquon, A. Zambelli, G. Gatti, Makromol. Chem., 70, 191 (1964). 2373. L. A. Neboinova, V. A. Grechanovskii, I. Ya. Poddubnyi, L. R. Avdeyeva, Polym. Sci. USSR, 16, 216 (1974); Vysokomol. Soedin. A, 16, 183 (1974). 2374. I. K. Nekrasov, A. M. Kurakova, S. V. Kuz'minskaya, K. G. Khabarova, Ye. P. Krasnov, Polym. Sci. USSR, 22, 410 (1980); Vysokomol. Soedin. A, 22, 370 (1980). 2375. I. K. Nekrasov, Polym. Sci. USSR, 17, 510 (1975); Vysokomol. Soedin. A, 17, 439 (1975). 2376. LK. Nekrasov, K. G. Khabarova, S. V. Kuz'minskaya, Ye. P. Krasnov, S. N. Khar'kov, Polym. Sci. USSR, 22, 699 (1980); Vysokomol. Soedin. A, 22, 633 (1980). 2377. T. N. Nekrasova, O. B. Ptitsyn, M. S. Shikanova, Polym. Sci. USSR, 10, 1771 (1968); Vysokomol. Soedin. A, 10, 530 (1968). 2378. T. N. Nekrasova, E. Churylo, Polym. Sci. USSR, 11, 1249 (1969); Vysokomol. Soedin. A, 11, 1103 (1969). 2379. V. V Nesterov, V D. Krasikov, Ye. V Chubarova, L. D. Turkova, E. S. Gankina, B. G. Belen'kii, Polym. Sci. USSR, 20, 2608 (1978); Vysokomol. Soedin. A, 20, 2320 (1978). 2380. M. Netopilik, M. Bohdanecky, C. Wehrstedt, R. Ruhmann, G. Schulz, Makromol. Chem., 194, 2199 (1993). 2381. C. Neuchl, A. Mersmann, Chemical Engineering Science, 50,951 (1995). 2382. P. Neuenschwander, P. Pino, Makromol. Chem., 181, 737 (1980). 2383. E. W. Neuse, K. Koda, E. Carter, Makromol. Chem., 84,213 (1965). 2384. C. J. Neves, E. Monteiro, A. C. Habert, J. Appl. Polym. Sci., 50, 817 (1993). 2385. S. Newman, J. Polym. Sci., 47, 111 (1960). 2386. H. A. Nguyen, J. P. Kennedy, Polym. Bull., 10, 74 (1983). 2387. H. A. Nguyen, E. Marechal, Polym. Bull., 11, 99 (1984). 2388. T. Q. Nguyen, G. Yu., H. H. Kausch, Macromolecules, 28, 4851 (1995). 2389. E. Nichols, Polym. Preprints, 12 (2), 828 (1971).
Next Page 2390. 2391. 2392. 2393. 2394. 2395. 2396. 2397. 2398.
L. Nicolas, Compt. Rend., 236, 809 (1953). L. Nicolas, Compt. Rend., 242, 2720 (1956). L. Nicolas, Makromol. Chem., 24, 173 (1957). P. Nicolet, J. Macromol. Sci., Part A: Chem., 11, 577 (1977). J. Niezette, N. Hadjichristidis, V. Desreux, Makromol. Chem., 177, 2069 (1976). J. Niezette, A. Linkens, Polymer, 19, 939 (1978). J. Niezette, J. Vauderschueren, G. Yianakopoulas, Eur. Polym. J., 26, 775 (1990). A. Ninagawa, I. Ijichi, M. Imoto, Makromol. Chem., 107, 196(1967). N. Nishida, D. G. Salladay, J. L. White, J. Appl. Polym. Sci., 15, 1181 (1971).
2399. N. Nishida, D. G. Salladay, J. L. White, Polym. Preprints, 12 (2), 522(1971). 2400. M. Nishide, M. Sera, Kogyo Kagaku Zasshi, 64, 1145 (1961). 2401. H. Nishide, N. Yoshioka, K. lnagaki, T. Kaku, E. Tsuchida, Macromolecules, 25, 569 (1992). 2402. S. Nishimoto, K. Yamamoto, T. Kagiya, Macromolecules, 15, 720 (1982). 2403. Y. Nitadori, T. Tsuruta, Makromol. Chem., 179, 2069 (1978). 2404. O. V. Noa, V. P. Torchilin, A. D. Litmanovich, N. A. Plate, Polym. Sci. USSR, 16, 775 (1974); Vysokomol. Soedin. A, 16, 668 (1974). 2405. I. Noda, S. Saito, T. Fujimoto, M. Nagasawa, J. Phys. Chem., 71, 4048 (1967). 2406. I. Noda, T. Horikawa, T. Kato, T. Fujimoto, M. Nagasawa, Macromolecules, 3, 795 (1970). 2407. 1. Noda, H. Ishikawa, Y Miyazaki, K. Kamide, Polym. J., 12, 87 (1980). 2408. I. Noda, T. Imai, T. Kitano, M. Nagasawa, Macromolecules, 14, 1303 (1981). 2409. K. Noguchi, Y Yanagihara, M. Kasai, B. Katayama, J. Appl. Polym. Sci., Appl. Polym. Symp., 51, 161 (1992). 2410. K. Nollen, W. Funke, K. Hamann, Makromol. Chem., 94, 248 (1966). 2411. R. Nomura, T. Endo, Macromolecules, 28, 1754 (1995). 2412. R. Nomura, T. Endo, Macromolecules, 28, 5372 (1995). 2413. R. Nomura, T. Endo, Polym. Bull., 35, 683 (1995). 2414. K. Noro, H. Kawazura, T. Moriyama, S. Yoshioka, Makromol. Chem., 83, 35 (1965). 2415. N. T. Notley, J. Polym. Sci., A, 1, 227 (1963). 2416. T. E. Nowlin, W. H. Boyd, J. Polym. Sci., Polym. Chem. Ed., 14, 2341 (1976). 2417. S. Nozakura, Y Morishima, S. Murahashi, J. Polym. Sci., Polym. Chem. Ed., 10, 2781 (1972). 2418. S. Nozakura, Y. Morishima, S. Murahashi, J. Polym. Sci., Polym. Chem. Ed., 10, 2767 (1972). 2419. J. S. U. Nu, I. Piirma, J. Appl. Polym. Sci., 33, 727 (1987). 2420. M. Nukui, Y Ohkatsu, T. Tsuruta, Makromol. Chem., 183, 1457 (1982). 2421. N. Numasawa, K. Kuwamoto, T. Nose, Macromolecules, 19, 2593 (1986).
2422. O. Nuyken, M. Hofinger, R. Kerber, Polym. Bull., 1, 679 (1979). 2423. O. Nuyken, R. Rengel, R. Kerber, Makromol. Chem., 181, 1565 (1980). 2424. K. Nyitrai, F. Cser, G. Csermely, B. D. Ngoc, L. Fuzes, G. Samay, G. Hardy, Eur. Polym. J., 14, 467 (1978). 2425. J. J. O'Malley, P. H. Marchessault, J. Phys. Chem., 70, 3235 (1966). 2426. J. J. O'Malley, W. J. Stauffer, J. Polym. Sci., Polym. Chem. Ed., 12, 865 (1974). 2427. T. O'Neill, J. Hoigne, J. Polym. Sci., Polym. Chem. Ed., 10, 581 (1972). 2428. D. B. O'Connor, G. W. Scott, D. R. Coulter, A. Yavrouian, Macromolecules, 24, 2355 (1991). 2429. H. Ochiai, Y Fujino, Y Tadokoro, I. Murakami, Polymer, 21, 485 (1980). 2430. H. Ochiai, Y Kurita, I. Murakami, Makromol. Chem., 189, 351 (1988). 2431. E. A. Ofstead, Polym. Preprints, 6 (2), 674 (1965). 2432. N. Ogata, K. Sanvi, S. Kitayama, J. Polym. Sci., Polym. Chem. Ed., 22, 863 (1984). 2433. T. Ogawa, Y Suzuki, S. Tanaka, S. Hoshino, Kobunshi Kagaku, 27, 356 (1970). 2434. T. Ogawa, Y Suzuki, T. Inaba, J. Polym. Sci., Polym. Chem. Ed., 10,737 (1972). 2435. T. Ogawa, S. Hoshino, J. Appl. Polym. Sci., 17, 2235 (1973). 2436. T. Ogawa, T. Inaba, J. Appl. Polym. Sci., 21, 2979 (1977). 2437. T. Ogawa, M. Sakai, J. Polym. Sci., Polym. Phys. Ed., 19, 1377 (1981). 2438. T. Ogawa, H.-G. Elias, J. Macromol. Sci., Part A: Chem., 17, 727 (1982). 2439. T. Ogawa, W. Ishitobi, J. Polym. Sci., Polym. Chem. Ed., 21,781 (1983). 2440. E. Ogawa, M. Sato, M. Shima, Eur. Polym. J., 17, 497 (1981). 2441. N. Oguni, J. Hyoda, Macromolecules, 13, 1687 (1980). 2442. M. Ohata, S. Ikeda, S. Akatani, Y Isono, Macromolecules, 25, 5131 (1992). 2443. H. Ohnuma, T. Kotaka, H. lnagaki, Polymer, 10, 501 (1969). 2444. H. Ohnuma, K. Inoue, K. Se, T. Kotaka, Macromolecules, 17, 1285 (1984). 2445. H. Ohta, I. Ando, S. Fujishige, K. Kubota, J. Polym. Sci. Part B: Polym. Phys., 29, 963 (1991). 2446. T. Ojeda, D. Radic, L. Gargallo, Makromol. Chem., 181, 2237 (1980). 2447. M. Okada, H. Sumitomo, T. Kakezawa, Makromol. Chem., 162, 285 (1972). 2448. S. Okajima, T. Kikuchi, Kogyo Kagaku Zasshi, 63, 1772 (1960). 2449. H. Okamoto, J. Polym. Sci., 37, 173 (1959). 2450. H. Okamoto, K. Sekikawa, J. Polym. Sci., 55, 597 (1961). 2451. H. Okamoto, J. Polym. Sci. A-I, 2, 3451 (1964). 2452. N. Okamoto, F. Mukaida, H. Gu, Y. Nakamura, T. Sato, A. Taremoto, M. M. Green, C. Andreola, N. C. Peterson, S. Lifson, Macromolecules, 29, 2878 (1996).
Previous Page
2453. Y. Okamoto, K. Suzuki, H. Yuki, J. Polym. ScL, Polym. Chem. Ed., 18, 3043 (1980). 2454. K. Okita, A. Teramoto, H. Fujita, Biopolymers, 9, 717 (1970). 2455. N. A. Okladnov, V. I. Zegel'man, V. P. Lebedev, S. V. Svetozarskii, Ye. N. Zirberman, Polym. Sci. USSR, 12,349 (1970); Vysokomol. Soedin. A, 12, 306 (1970). 2456. N. Okui, J. H. Magill, Polymer, 17, 1086 (1976). 2457. O. F. Olaj, J. W. Breitenbach, B. Wolf, Monatsh. Chem., 95, 1646 (1964). 2458. O. F. Olaj, J. W. Breitenbach, I. Hofreiter, Makromol. Chem., 91, 264 (1966). 2459. J. Y. Olayemi, Makromol. Chem., 183, 2547 (1982). 2460. J. Y. Olayemi, A. K. Yusuf, J. Appl. Polym. Sci., 38, 1779 (1989). 2461. T. Olcese, J. Ackermann, P. Radici, U. Bianchi, Makromol. Chem., 174, 137 (1973). 2462. A. V. Olenin, M. B. Lachinov, V. A. Kasaikin, V. P Zubov, V. A. Kabanov, Polym. Sci. USSR, 20, 460 (1978); Vysokomol. Soedin. A, 20, 407 (1978). 2463. H. Omichi, K. Araki, T. Takahashi, T. Yasukawa, K. Murakami, J. Polym. Sci., Polym. Chem. Ed., 14, 2365 (1976). 2464. I. Omura, D. C. Lee, S. Itov, A. Teramoto, H. Fujita, Polymer, 17, 847 (1976). 2465. N. Onda, K. Furusawa, N. Yamaguchi, S. Komuro, J. Appl. Poiym. Sci., 23, 3631 (1979). 2466. M. Ondas, E. Spirk, Angew. Makromol. Chem., 204, 37 (1993). 2467. Y. Onishi, S. Maruno, S. Kamiya, S. Horkoku, M. Hasegawa, Polymer, 19, 1325 (1978). 2468. S. Onogi, S. Kimura, T. Kato, T. Masuda, N. Miyanaga, J. Polym. Sci. C, 15, 381 (1966). 2469. S. Onogi, T. Masuda, K. Kitagawa, Macromolecules, 3,109 (1970). 2470. M. Orbay, R. Laible, L. Dulog, Makromol. Chem., 183, 47 (1982). 2471. J. Orn, T. Hasegawa, T. Kawakita, Y. Kondo, M. Takaki, Macromolecules, 24, 1253 (1991). 2472. R. J. Orr, H. L. Williams, J. Am. Chem. Soc, 79, 3137 (1957). 2473. H. Orth, Angew. Makromol. Chem., 23, 83 (1972). 2474. Z. Osawa, Y Uchida, J. Polym. Sci., Polym. Chem. Ed., 20, 2259 (1982). 2475. F. T. Osborne, S. Omi, V. T. Stannett, E. P. Stahel, J. Polym. Sci. A-I, 8, 1657 (1970). 2476. H. W. Osterhoudt, L. N. Ray, Polym. Preprints, 8 (2), 1220 (1967). 2477. A. Oth, J. Bisschops, Ind. Chim. Beiges, 20, 426 (1955). 2478. J. Oth, V. Desreux, Bull. Soc. Chim. Beiges, 63, 261 (1954). 2479. J. Oth, V. Desreux, Ricerca Sci., 25, 447 (1955). 2480. E. P. Otocka, M. Y. Hellman, Macromolecules, 3, 362 (1970). 2481. E. P. Otocka, Macromolecules, 3, 691 (1970). 2482. E. P. Otocka, R. J. Roe, M. Y Hellman, P. M. Muglia, Macromolecules, 4, 507 (1971). 2483. E. P. Otocka, Polym. Preprints, 12 (1), 645 (1971).
2484. E. P. Otocka, M. Y. Hellman, P M. Muglia, Macromolecules, 5, 227 (1972). 2485. E. P. Otocka, M. Y Hellman, J. Polym. Sci., Polym. Lett. Ed., 12, 331 (1974). 2486. T. Otsu, H. Ohnishi, M. Koyama, J. Macromol. Sci., Part A: Chem., 14, 853 (1980). 2487. A. C. Ouano, P. L. Mercier, Polym. Preprints 8 (2), 1389 (1967). 2488. A. C. Ouano, P. L. Mercier, J. Polym. Sci. C, 21, 309 (1968). 2489. A. C. Ouano, J. Polym. Sci. A-2, 9, 377 (1971). 2490. A. C. Ouano, J. Polym. Sci. B, 9, 2179 (1971). 2491. A. C. Ouano, A. Broido, E. M. Barrall, II, A. C. Javier-Son, Polym. Preprints, 12 (2), 859 (1971). 2492. A. C. Ouano, E. M. Barrall, II, J. F. Johnson, in: P. E. Siade Jr. (Ed.), "Polymer Molecular Weight", Marcel Dekker, New York, Chapter 6, 1975. 2493. A. C. Ouano, D. E. Johnson, B. Dawson, L. A. Pederson, J. Polym. Sci., Polym. Chem. Ed., 14, 701 (1976). 2494. A. C. Ouano, Rubber Chem. Technol., 54, 535 (1981). 2495. G. J. J. Out, A. A. Turestskii, M. Moller, D. Oelfin, Macromolecules, 27, 3310 (1994). 2496. G. J. J. Out, A. A. Turetskii, M. Moller, D. Oelfin, Macromolecules, 28, 596 (1995). 2497. C. G. Overberger, A. E. Borchert, A. Katchman, J. Polym. Sci., 44, 491 (1960). 2498. C. G. Overberger, S. Nozakura, J. Polym. Sci. A, 1, 1439 (1963). 2499. C. G. Overberger, K. Mizamichi, J. Polym. Sci. A, 1, 2023 (1963). 2500. C. G. Overberger, P. A. Jarovitzky, H. Mukamal, Polym. Preprints, 8 (1), 401 (1967). 2501. C. G. Overberger, G. W. Halek, J. Polym. Sci. A-I, 8, 359 (1970). 2502. H. S. Owens, J. C. Miers, W. D. Maclay, J. Colloid, Sci., 3, 277 (1948). 2503. H. Ozaki, A. Hirao, S. Nakahama, Makromol. Chem. Phys., 196, 2099 (1995). 2504. A. Pacter, K. A. Sharif, J. Polym. Sci. B, 9, 435 (1971). 2505. C. S. Paik Sung, C. B. Hu, C. S. Wu, Macromolecules, 13, 111 (1980). 2506. F. Pailhes, M. Alliot-Lugaz, N. Duveau, J. Kyritsos, J. Polym. Sci. C, 16, 1177 (1967). 2507. R. Panaris, G. Pallas, J. Polym. Sci. B, 8, 441 (1970). 2508. R. Panaris, A. Peyrouset, IUPAC Helsinki, Preprints, Vol. Ill, 11-45 (1972). 2509. R. Panaris, A. Peyrouset, IUPAC Helsinki, Preprints, vol. Ill, 11-46 (1972). 2510. L. A. Pankratova, G. I. Timofeyeva, V. V. Korshak, S. A. Pavlova, D. R. Tur, S. V. Vinogradova, Polym. Sci. USSR, 16, 3105 (1974); Vysokomol. Soedin. A, 16, 2666 (1974). 2511. J. Pannell, Polymer, 13, 2 (1972). 2512. J. Pannell, Polymer, 17, 351 (1976).. 2513. C. J. Panton, P. H. Plesch, P. P. Rutherford, J. Chem. Soc, 2586(1964). 2514. G. Paradossi, D. A. Brant, Macromolecules, 15, 874 (1982).
2515. J. R Parakka, A. P. Chacko, D. E. Nikles, P. Wang, S. Hasegawa, Y. Murayama, R. M. Metzger, M. P. Cava, Macromolecules, 29, 1928 (1996). 2516. I. H. Park, Q.-W. Wang, B. Chu, Macromolecules, 20, 1965 (1987). 2517. Y. T. Park, G. Manuel, W. P. Weber, Macromolecules, 23, 1911 (1990). 2518. E. J. Parks, F. E. Brinckman, C. E. MuMn, D. M. Andersen, V. J. Castelli, J. Appl. Polym. ScL, 26, 2967 (1981). 2519. P. Parrini, F. Sebastiano, G. Messina, Makromol. Chem., 38, 27 (1960). 2520. L. Pasti, S. Roccasalvo, F. Dondi, P. Reschigliau, J. Polym. ScL, Part B: Polym. Phys., 33, 1225 (1995). 2521. E. E. Paschke, B. A. Bidlingmeyer, J. G. Bergmann, J. Polym. Chem. Ed., 15, 983 (1977). 2522. G. Pastuska, U. Just, Angew. Makromol. Chem., 81, 11 (1979). 2523. G. Pastuska, U. Just, H. August, Angew. Makromol. Chem., 107, 173 (1982). 2524. F. Patat, J. Klein, Makromol. Chem., 93, 230 (1966). 2525. C. K. Patel, R. D. Patel, Makromol. Chem., 128,157 (1969). 2526. C. K. Patel, R. D. Patel, Staerke, 21, 166 (1969). 2527. C. K. Patel, R. D. Patel, Makromol. Chem., 131,281 (1970). 2528. G. N. Patel, J. Polym. ScL, Polym. Phys. Ed., 17, 1591 (1979). 2529. J. R. Patel, C. K. Patel, R. D. Patel, Staerke, 19, 330 (1967). 2530. J. R. Patel, R. D. Patel, Polymer, 10, 167 (1969). 2531. J. R. Patel, Makromol. Chem., 134, 263 (1970). 2532. K. Patel, R P. Shah, B. Suthar, Eur. Polym. J., 22, 63 (1986). 2533. V. M. Patel, C. K. Patel, K. C. Patel, R. D. Patel, Angew. Makromol. Chem., 18, 39 (1971). 2534. S. K. Patra, S. Ghosh, B. K. Patnaik, R. T. Thampy, Chem. Soc. (London) Spec. Pub., 23, 233 (1968). 2535. E. Patrone, U. Bianchi, Makromol. Chem., 94, 52 (1966). 2536. R. Paukkeri, A. Lehtinen, Polymer, 35, 1673 (1994). 2537. S. Paul, B. Ranby, J. Polym. ScL, Polym. Chem. Ed., 14, 2449 (1976). 2538. P. Paulusma, D. Vermaas, J. Polym. Sci. C, 2, 488 (1963). 2539. A. Pavan, A. Provasoli, G. Moraglio, A. Zambelli, Makromol. Chem., 178, 1099 (1977). 2540. W. A. Pavelich, R. A. Livigni, Polym. Preprints, 8 (2), 1343 (1967). 2541. W. A. Pavelick, R. A. Livigni, J. Polym. Sci. C, 21, 215 (1968). 2542. A. V. Pavlov, S. Ye. Bresler, S. R. Rafikov, Polym. Sci. USSR, 6, 2293 (1964); Vysokomol. Soedin. A, 6, 2068 (1964). 2543. A. V. Pavlov, V. G. Aldoshin, S. Ya. Frenkel, Polym. Sci. USSR, 6, 1773 (1964); Vysokomol. Soedin. A, 6, 1600 (1964). 2544. G. M. Pavlov, Ye. V. Korneyeva, T. I. Garmonova, D. Hardy, K. Nitrai, Polym. Sci. USSR, 20, 1844 (1978); Vysokomol. Soedin. A, 20, 1634 (1978). 2545. G. M. Paulov, E. F. Panarin, E. V. Korneeva, C. V. Kurochkin, V. E. Baikov, V. N. Ushakova, Makromol. Chem., 191,2889 (1990).
2546. S. A. Pavlova, T. A. Soboleva, A. P. Suprun, Polym. Sci. USSR, 6, 144 (1964); Vysokomol. Soedin., 6, 122 (1964). 2547. S. A. Pavlova, V. I. Pakhomov, 1.1. Tverdokhlebova, Polym. ScL USSR, 6, 1408 (1964); Vysokomol. Soedin. A, 6, 1275 (1964). 2548. S. A. Pavlova, T. M. Frunze, L. V. Dubrovina, V. Y. Kurashev, V. I. Zaitsev, V. V. Korshak, Polym. Sci. USSR, 16, 23 (1974); Vysokomol. Soedin. A, 16, 22 (1974). 2549. S. A. Pavlova, L. V. Dubrovina, T. M. Orlova, Poiym. Sci. USSR, 16, 1940 (1974); Vysokomol. Soedin. A, 16, 1673 (1974). 2550. S. A. Pavlova, G. 1. Timofeyeva, G. V. Akopyan, Polym. Sci. USSR, 24, 185 (1982); Vysokomol. Soedin. A, 24, 161 (1982). 2551. F. W. Peaker, J. C. Robb, Nature (London), 182, 1591 (1958). 2552. F. W. Peaker, Analyst, 85, 235 (1960). 2553. F. W. Peaker, J. M. Patel, J. Appl. Polym. Symp., 8, 125 (1969). 2554. D. S. Pearson, W. W. Graessley, Macromolecules, 13, 1001 (1980). 2555. D. S. Pearson, L. J. Fetters, W. W. Graessley, G. V. Strate, E. von Meerwall, Macromolecules,, 27, 711 (1994). 2556. M. Pechocova, V. Pechoc, Makromol. Chem., 163, 235 (1973). 2557. T. J. Peckman, J. A. Massey, M. Edwards, I. Manners, D. A. Foucher, Macromolecules, 29, 2396 (1996). 2558. H. G. Peer, Rec. Trav. Chim., 78, 631 (1959). 2559. A. J. Pennings, A. M. Kiel, Kolloid Z.-Z. Polym., 205, 160 (1965). 2560. A. J. Pennings, J. Polym. Sci. C, 16, 1799 (1967). 2561. R. W. Pennisi, L. J. Fetters, Macromolecules, 21, 1094 (1988). 2562. E. Penzel, G. V. Schulz, Makromol. Chem., 113, 64 (1968). 2563. D. C. Pepper, P. P. Rutherford, J. Appl. Polym. Sci., 2, 100 (1959). 2564. V Percec, B. C. Auman, Makromol. Chem., 185, 2319 (1984). 2565. V. Percec, B. C. Auman, Makromol. Chem., 185, 1867 (1984). 2566. V. Percec, R. Yourd, Macromolecules, 21, 3379 (1988). 2567. V Percec, S. Okita, J. H. Wang, Macromolecules, 25, 64 (1992). 2568. V. Percec, S. Okita, R. Weiss, Macromolecules, 25, 1816 (1992). 2569. V Percec, H. Oda, Macromolecules, 27, 4454 (1994). 2570. V Percec, D. Schlueter, J. C. Ronda, G. Johansson, G. Ungar, J. P. Zhou, Macromolecules, 29, 1464 (1996). 2571. V. Percec, P. J. Turkaly, A. D. Asandei, Macromolecules, 30,943 (1997). 2572. E. B. Perclman, L. Z. Oblasova, G. D. Kharlanspovieh, E. A. Kineva, B. A. Popov, R. F. Valetdinov, A. I. Vovk, V R. Falikman, Izobreteniya, 7, 159 (1992). 2573. J. M. Perefla, E. Riande, G. M. Guzman, Anales Quim. (Madrid), 68,441 (1972). 2574. J. M. Perefla, C. Marco, Makromol. Chem., 181, 1525 (1980).
2575. J. M. Perefia, C. Marco, A. Bello, J. G. Fatou, Macromolecules, 17, 348 (1984). 2576. C. Perez, J. Guzman, E. Riande, J. G. de Ia Campa, J. de Abajo, Makromol. Chem., 189, 691 (1988). 2577. E. Perez, A. Bello, J. G. Fatou, J. A. Rausell-Colom, Makromol. Chem., 190, 613 (1989). 2578. E. Perez, A. Bello, J. G. Fatou, Polym. Bull, 18, 59 (1987). 2579. E. Perez, A. Bello, J. G. Fatou, Eur. Polym. J., 24, 431 (1988). 2580. B. Perly, A. Douy, B. Gallot, Makromol. Chem., 177, 2569 (1976). 2581. R. Perret, A. Skoulios, C. R. Acad, Sci. (Paris) C, 268, 230 (1969). 2582. R. Perret, A. Skoulios, Makromol. Chem., 156,143 (1972). 2583. R. Perret, A. Skoulios, Makromol. Chem., 152, 291 (1972). 2584. T. D. Perrine, P. F. Goolsby, J. Polym. Sci. A-I, 3, 3031 (1965). 2585. N. V. Pertsova, K. A. Andrianov, 1.1. Tverdokhlebova, S. A. Pavlova, Polym. Sci. USSR, 12, 1131 (1970); Vysokomol. Soedin. A, 12, 1001 (1970). 2586. K. A. Peterson, A. D. Stein, M. D. Fayer, Macromolecules, 23,111(1990). 2587. H. M. Petri, A. Stammer, B. A. Wolf, Macromol. Chem. Phys., 196, 1453 (1995). 2588. V. Petrus, Coll. Czech. Chem. Commun., 33, 119 (1968). 2589. V. Petrus, I. Danihel, M. Bohdanecky, Eur. Polym. J., 7,143 (1971). 2590. J. Peyroche, Y. Girard, R. Laputte, A. Guyot, Makromol. Chem., 129, 215 (1969). 2591. G. Pezzin, G. Talamini, G. Vidotto, Makromol. Chem., 43, 12 (1961). 2592. G. Pezzin, G. Sanmartin, F. Zilio-Grandi, J. Appl. Polym. Sci., 11, 1539 (1967). 2593. G. Pezzin, S. Lora, L. Busulini, Polym. Bull., 5,543 (1981). 2594. B. Pfannemueller, H. Meyerhoefer, R. C. Schulz, Makromol. Chem., 121, 147 (1969). 2595. B. Pfannemueller, W. Burchard, Makromol. Chem., 121, 1 (1969). 2596. R. J. Phillipp, C. F. Bjork, J. Polym. Sci., 6, 383, 549 (1951). 2597. R. J. Phillipp, N. Vatansever, Macromolecules, 20, 2138 (1987). 2598. J. Prud'homme, S. Bywater, Polym. Preprints, 10 (2), 518 (1969). 2599. J. Di Pietro, A. Di Edwardo, Makromol. Chem., 98, 275 (1966). 2600. I. Piirma, L. P. H. Chou, J. Appl. Polym. Sci., 24, 2051 (1979). 2601. C. Pinazzi, J.-C. Lenain, J.-C. Brosse, G. Legeay, Makromol. Chem., 177, 3139 (1976). 2602. R Pino, F. Ciardelli, G. P. Lorenzi, Makromol. Chem., 70, 182 (1964). 2603. P. Pino, G. Montagnoli, F Ciardelli, E. Benedetti, Makromol. Chem., 93, 158 (1966). 2604. Ye. P. Piskareva, Ye. G. Erenburg, M. A. Yeremina, S. B. Dolgoplosk, I. Ya. Poddubnyi, Polym. Sci. USSR, 14, 2557 (1972); Vysokomol. Soedin. A, 14, 2183 (1972).
2605. S. Pispas, N. Hadjichristidis, J. W. Mays, Macromolecules, 27, 6307 (1994). 2606. S. Pispas, N. Hadjichristidis, Macromolecules, 27, 1891 (1994). 2607. J. Pitha, Macromolecules, 9, 771 (1976). 2608. M. Pitsikalis, N. Hadjichristidis, Macromolecules, 28, 3904 (1995). 2609. C. U. Pittman, J. C. Lai, D. P Vanderpool, M. Good, R. Prado, Macromolecules, 3, 746 (1970). 2610. C. U. Pittman, M. Good, J. Lai, D. Vanderpool, in: C D . Craver (Ed.), "Polymer Characterization", Plenum Press, New York, 97 (1971). 2611. C U . Pittman, R. L. Voges, J. Elder, Macromolecules, 4, 302 (1971). 2612. C U. Pittman, R. L. Voges, W. R. Jones, Macromolecules, 4, 291 (1971). 2613. C U. Pittman, Jr., W. J. Patterson, S. P McManus, J. Polym. Sci., Polym. Chem. Ed., 14, 1715 (1976). 2614. C U. Pittman, Jr., A. Hirao, J. Polym. Sci., Polym. Chem. Ed., 15, 1677 (1977). 2615. C U. Pittman, Jr., A. Hirao, J. Polym. Sci., Polym. Chem. Ed., 16, 1197(1978). 2616. C U. Pittman, Jr., M. Iqbal, C Y. Chen, J. N. Helbert, J. Poiym. Sci., Polym. Chem. Ed., 16, 2725 (1978). 2617. H. Pitz, D. Le-Kim, Chromatographia, 12, 155 (1979). 2618. M. Pizzoii, G. Ceccorulii, Eur. Polym. J., 8, 769 (1972). 2619. M. Pizzoii, G. Stea, G. Ceccorulii, G. B. Gechele, Eur. Polym. J., 6, 1219 (1970). 2620. C Plachetta, N. O. Rau, A. Hauck, R. C Schulz, Makromol. Chem., Rapid Commun., 3, 249 (1982). 2621. K. E. B. Platzer, V S. Ananthanarayanan, R. H. Andreatta, H. A. Scheraga, Macromolecules, 5, 177 (1972). 2622. I. Y Poddubnyi, V. A. Grechanovskii, M. I. Mosevitskii, Vysokomol. Soedin., 5, 1042 (1963). 2623. I. Ya. Poddubnyi, M. A. Rabinerzon, J. Appl. Polym. Sci., 9, 2527 (1965). 2624. I. Ya. Poddubnyi, V. A. Grechanovskii, E. G. Ehrenburg, Makromol. Chem., 94, 268 (1966). 2625. I. Ya. Poddubnyi, A. V Podalinskii, V A. Grechanovskii, Polym. Sci. USSR, 8, 1715 (1966); Vysokomol. Soedin., 8, 1556 (1966). 2626. I. Ya. Poddubnyi, A. V Podalinskii, Polym. Sci. USSR, 11, 450 (1969); Vysokomol. Soedin. A, 11, 400 (1969). 2627. I. Ya. Poddubnyi, A. V. Podalinskii, V A. Grechanovskii, Polym. Sci. USSR, 14, 799 (1972); Vysokomol. Soedin. A, 14, 714 (1972). 2628. J. Podesva, M. Bohdanecky, P. Kratochvil, G, Samay, J. Polym. Sci., Polym. Phys. Ed., 15, 1521 (1977). 2629. J. Podesva, O. Prochazka, J. Stejskal, P. Spacek, S. Enders. J. Appl. Polym. Sci., 49, 1265 (1993). 2630. J. Podesva, R Spacek, A. Sikova, J. Polym. Sci., Polym. Chem. Ed., 22, 3343 (1984). 2631. J. Podesva, J. Stejskal, O. Prochazka, P. Spacek, S. Enders, J. Appl. Polym. Sci., 48, 1127 (1993). 2632. S. Podzimek, J. Appl. Polym. Sci., 54, 91 (1994). 2633. N. V. Pogodina, P. N. Lavrenko, K. S. Pozhivilko, A. B. Mel'nikov, T. A. Kolobova, G. N. Marchenko, V. N. Tsevt-
2634. 2635. 2636. 2637. 2638. 2639. 2640. 2641. 2642.
2643. 2644.
2645.
2646. 2647. 2648. 2649. 2650. 2651. 2652. 2653. 2654. 2655. 2656. 2657.
2658. 2659. 2660. 2661. 2662.
kov, Polym. Sci. USSR, 24, 358 (1982); Vysokomol. Soedin. A, 24, 332 (1982). J. Polacek, Coll. Czech. Chem. Commun., 28, 1838 (1963). J. Polacek, Coll. Czech. Chem. Commun., 28, 3011 (1963). J. Polacek, I. Koessler, J. Vodehnal, J. Polym. Sci. A-I, 3, 2511 (1965). J. Polacek, L. Schulz, I. Koessler, J. Polym. Sci. C, 16, 1327 (1967). J. Polacek, Eur. Poiym. J., 6, 81 (1970). D. J. Pollock, L. J. Elyash, T. W. De Witt, J. Polym. Sci., 15, 87 (1955). D. J. Pollock, L. J. Elyash, T. W. De Witt, J. Polym. Sci., 15, 335 (1955). S. Polowinski, Eur. Polym. J., 14, 563 (1978). V. M. Polyakova, A. Ye. Fainerman, R. T. Voitsekhouskii, Polym. Sci. USSR, 6, 479 (1964); Vysokomol. Soedin., 6, 432 (1964). G. R. Polyakova, N. A. Pravikova, Polym. Sci. USSR, 9, 1578 (1967); Vysokomol. Soedin., 9, 1405 (1967). V. A. Ponomarenko, A. M. Khomutov, A. P. Alimov, Polym. Sci. USSR, 10, 1203 (1968); Vysokomol. Soedin. A, 10, 1038 (1968). V. A. Ponomarenko, A. M. Khomutov, S. I. Il'chenko, G. N. Goseshkova, V. S. Bogdanov, Polym. Sci. USSR, 11, 206 (1969); Vysokomol. Soedin. A, 11, 182 (1969). M. T. Pope, T. J. Weakley, P. J. P. Williams, J. Chem. Soc. 3442 (1959). I. G. Popovic, L. Katsikas, W. Schnabel, Eur. Polym. J., 25, 465 (1989). R. S. Porter, J. F. Johnson, Polymer, 5, 201 (1964). R. S. Porter, M. J. R. Cantow, J. F. Johnson, Makromol. Chem., 94, 143 (1966). R. S. Porter, M. J. R. Cantow, J. F. Johnson, J. Appl. Polym. ScL, 11, 335 (1967). V. A. Postinkov, N. J. Lukin, B. V Maslov, N. A. Plate Polym. Bull., 3, 75 (1980). J. Pouradier, A. M. Venet, J. Chim. Phys., 47, 11 (1950). A. Pourdjavadi, P. J. Madec, E. Marechal, Eur. Polym. J., 20, 305 (1984). G. Pouyet, F. Candau, J. Dayantis, Makromol. Chem., 177, 2973 (1976). E. Powell, Polymer, 8, 211 (1967). P. O. Powers, Ind. Eng. Chem., 42, 2558 (1950). T. I. Poznyak, D. M. Lisitsyn, D. D. Novikov, A. A. Berlin, F. S. D'yachkouskii, Yu. A. Prochukham, Yu. A. Sangalov, K. S. Minsker, Polym. Sci. USSR, 22, 1565 (1980); Vysokomol. Soedin. A, 22, 1424 (1980). W. Prakellok, O. Vogl, A. Gupta, J. Polym. Sci., Polym. Chem. Ed., 19, 3307(1981). J. A. Pratt, S-H Lee, M:A. McHugh, J. Appl. Polym. Sci., 49, 953 (1993). N. A. Pravikova, Y U. Ryabova, P. Vyrskyi, Vysokomol. Soedin., 5, 1165 (1963). R. Prechner, R. Panaris, H. Benolt, Makromol. Chem., 156, 39 (1972). D. C. Prevorsek, B. T. Debona, Y. Kesten, J. Polym. Sci. Polym. Chem. Ed., 18, 75 (1980).
2663. C. Price, A. G. Watson, M. T. Chow, Polymer, 13, 333 (1972). 2664. C. Price, A. L. Hudd, C. Booth, B. Wright, Polymer, 23,650 (1982). 2665. R. B. Prime, B. Wunderlich, J. Polym. Sci. A-2, 7, 2061 (1969). 2666. A. Priola, N. Passerini, M. Bruzzone, S. Cesca, Angew. Makromol. Chem., 88, 21 (1980). 2667. J. Probst, K. Unger, H.-J. Cantow, Angew. Makromol. Chem., 35, 177 (1974). 2668. J. Probst, G. KoIb, Makromol. Chem., 177, 2681 (1976). 2669. K. Prochazka, G. Glockner, M. Hoff, Z. Tuzar, Makromol. Chem., 185, 1187 (1984). 2670. A. Proto, L. Oliva, C. Pellecchia, A. J. Sivak, L. A. Cullo, Macromolecules, 23, 2904 (1990). 2671. T. Provder, J. H. Clark, E. E. Drott, Polym. Preprints, 12 (2), 819 (1971). 2672. T. Provder, J. C. Woodbrey, J. H. Clark, Sep. Sci., 6, 101 (1971). 2673. V S. Pshezhetskii, G. A. Murtazaeva, V A. Kabanov, Eur. Polym. J., 10, 584 (1974). 2674. R. Puakkeri, A. Lehtinen, Polymer, 34, 4075 (1993). 2675. N. G. Puchkova, A. V. Nekrasov, Ye. F. Razvodovskii, B. S. El'tsefon, Polym. Sci. USSR, 22, 1407 (1980); Vysokomol. Soedin. A, 22, 1281 (1980). 2676. C. Pugh, R. R. Schrock, Macromolecules, 25, 6593 (1992) 2677. J. P. Purdon, Jr., R. D. Mate, J. Polym. Sci. A-I, 6, 243 (1968). 2678. J. Puskas, G. Kaszas, J. P. Kennedy, T. Kelen, F. Tudos, J, Macromol. Sci., Part A: Chem., 18, 1263 (1982/83). 2679. J. Puskas, G. Kaszas, J. P. Kennedy, T. Kelen, F. Tiidos, J, Macromol. Sci., Part A: Chem., 18, 1229 (1982/83). 2680. J. Puskas, G. Kaszas, J. P. Kennedy, T. Kelen, F. Tudos, J, Macromole. Sci., Part A: Chem., 18, 1245 (1982/83). 2681. J. Puskas, G. Kaszas, J. P. Kennedy, T. Kelen, F. Tiidos, J, Macromole. Sci., Part A: Chem., 18, 1315 (1982/83). 2682. A. Qin, M. Tian, C. Ramireddy, S. E. Webber, P. Munk, Z. Tuzar, Macromolecules, 27, 120 (1994). 2683. O. Quadrat, M. Bohdanecky, Coll. Czech. Chem. Commun., 33, 2130 (1968). 2684. O. Quadrat, Coll. Czech. Chem. Commun., 35,2564 (1970). 2685. O. Quadrat, Coll. Czech. Chem. Commun., 36,2042 (1971). 2686. D. V Quayle, Polymer, 8, 217 (1967). 2687. M. Y Qureshi, M. Ochel, Eur. Polym. J., 32, 691 (1996). 2688. W. Rabel, K. Ueberreiter, Kolloid, Z.-Z. Polym., 198, 1 (1964). 2689. D. Radic, L. Gargallo, J. Polym. Sci., Polym. Phys. Ed., 16, 977 (1978). 2690. D. Radic, N. Hamidi, L. Gargallo, Eur. Polym. J., 24, 799 (1988). 2691. D. Radic, L. Gargallo, A. Leon, A. Horta, J. Macromol. Sci., Part B: Phys., 31, 215 (1992). 2692. D. Radic, L. Gargallo, Macromolecules, 30, 817 (1997). 2693. S. R. Rafikov, V. V. Korshak, G. N. Chelnokova, Izv. Akad. Nauk, SSSR, 642 (1948). 2694. G. Rafler, G. Reinisch, Angew. Makromol. Chem., 20, 57 (1971).
2695. D. Rahlwes, R. G. Kirste, Makromol. Chem., 178, 1793 (1977). 2696. A. Rakotomanga, P. Hemery, S. Boileau, B. Lotz, Eur. Polym. J., 14, 581 (1978). 2697. A. Ram, J. Miltz, J. Appl. Polym. Sci., 15, 2639 (1971). 2698. A. Ram, J. Miltz, IUPAC Helsinki, Preprints, vol. Ill, 11-47 (1972). 2699. S. Ramakrishnan, E. Berluche, T. C. Chung, Macromolecules, 23, 378 (1990). 2700. S. Ramakrishnan, T. C. Chung, Macromolecules, 23, 4519 (1990). 2701. N. K. Raman, J. J. Hermans, J. Polym. Sci., 35, 71 (1959). 2702. K. R. Ramazanov, N. G. Khiebtsov, V. I. Klenin, Polym. Sci. USSR, 25, 1279 (1983); Vysokomol. Soedin. A, 25, 1102 (1983). 2703. C. Ramirecidy, Z. Tuzar, K. Prochazka, S. E. Webber, P. Munk, Macromolecules, 25, 2541 (1992). 2704. S. Ramesh, G. Radhakrishnan, Eur. Polym. J., 32, 993 (1996). 2705. W. G. Rand, A. K. Mukherji, J. Polym. Sci., Polym. Lett. Ed., 20, 501 (1982). 2706. M. R. Rao, V. Kalpagam, J. Sci. Ind. Res. (India), 20, 207 (1961). 2707. S. P. Rao, M. Santappa, J. Polym. Sci. A-I, 6, 95 (1968). 2708. M. R. Rao, S. Packirisamy, P. V. Ravindran, P. K. Nasendranath, Macromolecules, 25, 5165 (1992). 2709. N. S. Rapp, J. D. Ingham, J. Polym. Sci. A, 2, 689 (1964). 2710. I. B. Rashkov, G. Merle, Q. T. Pham, V. C. Shishkova, J. P. Pascault, I. M. Panayotv, Eur. Polym. J., 18, 37 (1982). 2711. LB. Rashkov, I. Gitsov, J. Polym, Sci., Polym. Chem. Ed., 22, 905 (1984). 2712. I. B. Rashkov, T. V. Kakuliva, N. G. Vladiminov, I. Gitsoc, Eur. Polym. J., 23, 407 (1986). 2713. I. B. Raskkov, I. Gitsov, L M. Panayotov, J. R Pascault, J. Polym. Sci., Polym. Chem. Ed., 21, 923 (1983). 2714. G. B. Rathmann, F. A. Bovey, J. Polym. Sci., 15,544 (1955). 2715. A. Ravve, J. T. Khamis, J. Polym. Sci., 61, 185 (1962). 2716. A. Ravve, J. T. Khamis, L. X. Mallavarapu, J. Polym. Sci. A-I, 3, 1775 (1965). 2717. M. G. Rayner, Polymer, 10, 827 (1969). 2718. S. E Redd, Jr., J. Polym. Sci., Polym. Chem. Ed., 10, 2025 (1972). 2719. C. R. Reddy, V. Kalpagam, J. Polym. Sci., Polym. Phys. Ed., 14, 749 (1976). 2720. O. Redlich, A. L. Jacobson, W. H. McFadden, J. Polym. Sci. A, 1, 393 (1963). 2721. G. Reinnisch, G. Rafler, G. I. Timofejeva, Angew. Makromol. Chem., 7, 110(1969). 2722. P Rempp, Polym. Preprints, 7 (L), 141 (1966). 2723. C. N. Renn, R. E. Synovec, Anal. Chem., 60, 200 (1988). 2724. A. Revillon, L. E. St. Pierre, J. Appl. Polym. Sci., 14, 373 (1970). 2725. A. Revillon, B. Dumont, A. Guyot, L Polym. Sci., Polym. Chem. Ed., 14, 2263 (1976). 2726. A. Revillon, T. Hamaide, Polym. Bull., 6, 235 (1982). 2727. A. Revillon, P. Boucher, J. Appl. Polym. Sci., Appl. Polym. Symp., 43, 115 (1989).
2728. A. Revillon, P. Boucher, L-F. Guilland, L Appl. Polym. Sci., Appl. Polym. Symp., 48, 243 (1991). 2729. R. Rew, D. Suwande, S. T. Balke, T. H. Mousey, J. Appl. Polym. Sci., Appl. Polym. Symp., 52, 125 (1993). 2730. G. E. J. Reynolds, J. Polym. Sci. C, 16, 3957 (1968). 2731. E. Riande, M. Alonso, J. M. G. Fatou, Rev. Plast. (Madrid), 186, 1834 (1971). 2732. E. Riande, J. M. Perefia, L Macromol. Sci., Part A: Chem., 8, 1413 (1974). 2733. E. Riande, J. M. Perena, Makromol. Chem., 175, 2923 (1974). 2734. E. Riande, J. Polym. Sci., Polym. Phys. Ed., 14, 2231 (1976). 2735. E. Riande, J. E. Mark, Macromolecules, 11, 956 (1978). 2736. E. Riande, J. Guzman, Macromolecules, 12, 952 (1979). 2737. E. Riande, J. Guzman, E. Saiz, Polymer, 22, 465 (1981). 2738. E. Riande, L Guzman, M. A. Llorente, Polym. Bull, 9, 369 (1983). 2739. E. Riande, J. G. de Ia Campa, L Guzman J. De Abajo, Macromolecules, 17, 1431 (1984). 2740. E. Riande, L Guzman, J. Abajo, Makromol. Chem., 185, 1943 (1984). 2741. E. Riande, J. Guzman, J. Polym. Sci., Polym. Phys. Ed., 23, 1235 (1985). 2742. E. Riande, J. Guzman, H. Adabbo, Macromolecules, 19, 2567 (1986). 2743. E. Riande, J. Guzman, J. G. de Ia Campa, J. de Abajo, J. Polym. Sci. Part B: Polym. Phys., 25, 2403 (1987). 2744. E. Riande, L G. de Ia Campa, D. D. Schlereth, J. de Abajo, J. Guzman, Macromolecules, 20, 1641 (1987). 2745. E. Riande, J. Guzman J. G. de Ia Campa, Macromolecules, 21, 2128 (1988). 2746. D. H. Richards, S. B. Kingston, T. Sovel, Polymer, 19, 68 (1978). 2747. D. H. Richards, S. B. Kingston, T. Sovel, Polymer, 19, 806 (1978). 2748. G. N. Richards, J. Appl. Polym. Sci., 5, 540 (1961). 2749. R. W. Richards, Polymer, 18, 114 (1977). 2750. M. Ricker, M. Schmidt, Makromol. Chem., 192, 679 (1991). 2751. B. Rieger, L C. W. Chien, Polym. Bull., 21, 159 (1989). 2752. B. Rieger, X. Mu, D. T. Mallin, M. D. Rausch, J. C. W. Chien, Macromolecules, 23, 3559 (1990). 2753. J. K. Rieke, G. M. Hart, J. Polym. Sci. C, 1, 117 (1963). 2754. R. Rigamonti, E. Meda, Ricerca Sci., 25, 457 (1955). 2755. M. Rinaudo, L P. Merle, Eur. Polym. J., 6, 41 (1970). 2756. W. Ring, H.-J. Cantow, Makromol. Chem., 89, 138 (1965) 2757. W. Ring, H.-J. Cantow, W. Holtrup, Eur. Polym. J., 2, 151 (1966). 2758. W. Ring, W. Holtrup, Makromol. Chem., 103, 83 (1967). 2759. M. Riou, R. Pibarot, Rev. Gen. Caoutchouc, 27, 596 (1950). 2760. L. A. Rishina, E. I. Vizen, Eur. Polym. J., 16, 965 (1980. 2761. L. Robitaille, N. Turcotte, S. Fortin, Macromolecules, 24, 2413 (1991). 2762. C. Rochas, A. Domard, M. Rinaudo, Eur. Polym. J., 16, 135 (1980).
2763. W. E. Rochefort, G. W. Heffner, D. S. Pearson, R. D. Miller, P. M. Cotts, Macromolecules, 24, 4861 (1991). 2764. J. Roda, J. Kralicek, Z. Bouskava, Eur. Polym. J., 13, 119 (1977). 2765. V. V. Rode, P. N. Gribkova, V. V. Korshak, Polym. Sci. USSR, 11,60 (1969); Vysokomol. Soedin. A, 11,57 (1969). 2766. D. Roessner, W.-M. Kulicke, J. Chromatogr., 687, 249 (1994). 2767. R. Roestamsjah, L. A. Wall, R. E. Florin, M. H. Aldridge, L. J. Fetters, J. Polym. Sci., Polym. Phys. Ed., 13, 1783 (1975). 2768. T . W. Rogers, ACS Div. Org. Coating Plastics Chem., 33, 65 (1973). 2769. C. L. Rohn, J. Polym. Sci. A-2, 5, 547 (1967). 2770. A. Roig, J. E. Figueruelo, E. Llano, J. Polym. Sci. B, 3, 171 (1965). 2771. A. Roig, J. E. Figueruelo, E. Llano, J. Polym. Sci. C, 16, 4141 (1968). 2772. A. Roig, E. Llano, J. E. Figueruelo, I. Katime, Anales Quim. (Madrid), 67, 343 (1971). 2773. A. Roig, E. Llano, J. E. Figueruelo, Anales Quim. (Madrid), 67,699(1971). 2774. J. M. Rooney, Makromol. Chem., 179, 2419 (1978). 2775. J. E. L. Roovers, S. Bywater, Polym. Preprints, 12 (1), 290 (1971). 2776. J. E. L. Roovers, S. Bywater, Macromolecules, 5, 384 (1972). 2777. J. Roovers, N. Hadjichristridis, L. J. Fetters, Macromolecules, 16, 214 (1983). 2778. J. Roovers, J. D. Cooney, P. M. Toporowski, Macromolecules, 23, 1611 (1990). 2779. J. L. Rosenberg, C. O. Beckmann, J. Colloid. Sci., 3, 483 (1948). 2780. A. J. Rosenthal, B. B. White, Ind. Eng. Chem., 44, 2693 (1952). 2781. D. Rosenvasser, A. S. Casas, R. V. Figini, Makromol. Chem., 183, 3067 (1982). 2782. W. E. Roseveare, L. Poore, Ind. Eng. Chem., 45, 2518 (1953). 2783. J. H. Ross, M. E. Casto, J. Polym. Sci. C, 21, 143 (1968). 2784. A. Rossi, J. Zhang, G. Odian, Macromolecules, 29, 2231 (1996). 2785. J. L. Roubaty, A. Revillion, Brit. Polym. J., 8, 95 (1976). 2786. B. A. Rozenberg, N. V. Makletsova, I. V. Epel'baum, Ye. B. Lyudvig, S. S. Medvedev, Polym. Sci., USSR, 7, 1163 (1965); Vysokomol. Soedin., 7, 1051 (1965). 2787. D. N. Rubingh, H. Yu, Macromolecules, 9, 681 (1976). 2788. A. Rudin, G. W. Bennett, J. R. McLaren, J. Appl. Polym. Sci., 13, 2371 (1969). 2789. A. Rudin, H. L. W. Hoegy, J. Polym. Sci., Polym. Chem. Ed., 10, 217 (1972). 2790. A. Rudin, C. A. Fyfe, S. Martin Vines, J. Appl. Polym. Sci., 28, 2611 (1983). 2791. C. A. Rue, M. E. Schimpfuraf, Anal. Chem., 66, 4054 (1994). 2792. J. Rueter, K.-H. Magosch, R. Feinaur, Angew. Makromol. Chem., 56, 139(1976).
2793. J. M. Ruiz, J. P. Busnell, J. Benoit, Pharm. Res., 7, 928 (1990). 2794. J. P. Ruiz, J. R. Dharia, J. R. Reynolds, L. J. Buckley, Macromolecules, 25, 849 (1992). 2795. J. R. Runyon, D. E. Barnes, J. D. Rudd, L. H. Tung, J. Appl. Polym. Sci., 13, 2359 (1969). 2796. A. M. Ruskin, G. Parravano, J. Appl. Polym. Sci., 8, 565 (1964). 2797. C. A. Russell, J. Appl. Polym. Sci., 4, 219 (1960). 2798. D. R. Rutherford, J. K. StMe, C. M. Elliot, V. R. Reichart, Macromolecules, 25, 2294 (1992). 2799. L. G. Ryabova, Z. Ya. Berestneva, N. A. Pravikova, Polym. Sci. USSR, 7, 1976 (1965); Vysokomol. Soedin., 7, 1796 (1965). 2800. M. C. Sacchi, Z.-Q. Fan, F. Forlini, I. Tritto, P. Locatelli, Makromol. Chem. Phys., 195, 2805 (1994). 2801. R. Sack, G. V. Schulz, G. Meyorhoff, Macromolecules, 21, 3345 (1988). 2802. J. Sadanobu, T. Norisuye, H. Fujita, Polym. J., 13, 75 (1981). 2803. M. U. Sadykov, U. Azizov, Kh. U. Usmanov, I. M. Mirkamilov, Polym. Sci. USSR, 10, 376 (1968); Vysokomol. Soedin. A, 10, 322 (1968). 2804. S. Saeda, J. Yotsuyanagi, K. Yamaguchi, J. Appl. Polym. Sci., 15, 277(1971). 2805. T. Saegusa, T. Yatsu, H. Fujii, Polym. J., 8, 593 (1976). 2806. T. Saegusa, T. Tokuzawa, S. Kobayashi, Polym. Bull., 1, 341 (1979). 2807. S. Saeki, N. Kuwahara, M. Nakata, M. Kaneko, Polymer, 17, 685 (1976). 2808. T. Saito, K. Yamaguchi, Polymer, 15, 219 (1974). 2809. M. Sakai, I. Noda, M. Nagasawa, J. Polym. Sci., Polym. Phys. Ed., 10, 1047 (1972). 2810. M. Sakai, T. Fujimoto, M. Nagasawa, Macromolecules, 5, 786 (1972). 2811. W. Sakai, A. Tsuchida, M. Yamamoto, J. Yamauchi, J. Polym. Sci. Part A, Polym. Chem., 33, 1969 (1995). 2812. M. Sakamoto, Y. Kuroyanagi, J. Polym. Sci., Polym. Chem. Ed., 16, 1107 (1978). 2813. N. Sakota, H. Nakamura, K. Nishihara, Makromol. Chem., 129, 56 (1969). 2814. I. Sakurada, S. Matuzawa, Y. Kubota, Makromol. Chem., 68, 115 (1963). 2815. I. Sakurada, A. Nakajima, K. Shibatani, J. Polym. Sci. A, 2, 3545 (1964). 2816. K. Sakurai, K. Ochi, T. Norisuye, H. Fujita, Polym. J., 16, 559 (1984). 2817. P. Salemis, M. Rinaudo, Polym. Bull., 12, 283 (1984). 2818. P. Salemis, M. Rinaudo, Polym. Bull., 11, 397 (1984). 2819. C. Salom, J. J. Freire, I. Hernandez-Fuentes, Polym. J., 20, 1109(1988). 2820. R. Salovey, M. Y Hellman, J. Polym. Sci. A-2, 5, 333 (1967). 2821. R. Salovey, M. Y Hellman, J. Polym. Sci. B, 5, 647 (1967). 2822. R. Salovey, R. C. Gebauer, J. Polym. Sci., Polym. Chem. Ed., 10, 1533 (1972).
2823. I. O. Salyer, A. S. Kenyon, M. Ohta, J. Polym. ScL, Polyrn. Chem. Ed., 10, 419 (1972). 2824. G. Samay, M. Kubin, J. Podesva, Angew. Makromol. Chem., 72, 185 (1978). 2825. S. M. Samoilov, V. N. Monastyrskii, A. F. Zhigach, Polym. ScL USSR, 18, 829 (1976); Vysokomol. Soedin. A, 18,731 (1976). 2826. G. V. Samsonov, Uspedhi. Khim., 30, 1410 (1961). 2827. A. Sanchez, C. Marco, J. G. Fatou, A. Bello, Eur. Polym. J., 24, 355 (1988). 2828. G. Sanchez, G. Weill, R. Knoesel, Makromol, Chem., 179 131 (1978). 2829. A. Sanchez, C. Marco, J. G. Fatou, A. Bello, Makromol. Chem., 188, 1205 (1987). 2830. A. Sanchez, A. Bello, C. Marcos, J. G. Fatou, Makromol. Chem., 189, 399 (1988). 2831. A. Sanguineti, P. A. Guarda, G. Mardionni, G. Ajroldi, Polymer, 36, 3697 (1995). 2832. K. Sanui, R. W. Lenz, W. J. Mac Knight, J. Polym. Sci.t Polym. Chem. Ed., 12, 1965 (1974). 2833. M. Sanviat, J. P. Cohen-Addad, Polymer, 22, 461 (1981). 2834. K. Sardelis, H. J. Michels, G. Allen, Polymer, 25, 1011 (1984). 2835. S. Sarkanen, D. C. Teller, J. Hall, J. L. Mc Carthy, Macromolecules, 14,426(1981). 2836. S. Sarkanen, D. C. Teller, E. Abramowski, J. L. McCarthy, Macromolecules, 15, 1098 (1982). 2837. S. Sarkanen, D. C. Teller, C. R. Stevens, J. L. McCarthy, Macromolecules, 17, 2588 (1984). 2838. Y. Sasaki, L. L. Walter, E. L. Hurst, C. U. Pittman Jr., J. Polym. ScL, Chem. Ed., 11, 1213 (1973). 2839. T. Sasaki, T. Ikeda, K. Ichimura, Macromolecules, 25, 3807 (1992). 2840. V. R. Sastri, R. Schulman, D. C. Roberts, Macromolecules, 15, 939 (1982). 2841. K. S. Sastry, R. D. Patel, Eur. Polym. J., 5, 79 (1969). 2842. H. Sato, Bull. Chem. Soc. Japan, 39, 2335 (1966). 2843. H. Sato, K. Saito, K. Miyashita, Y. Tanaka, Makromol. Chem., 182, 2259 (1981). 2844. H. Sato, H. Takeuchji, S. Suzuki, Y. Tanaka, Makromol. Chem., Rapid Commun., 5, 719 (1984). 2845. H. Sato, H. Takeuchi, Y. Tanaka, Macromolecules, 19,2613 (1986). 2846. H. Sato, K. Mitsutami, I. Shimizu, Y. Tanaka, J. Chromatog., 447, 387 (1988). 2847. K. Sato, F R. Eirich, J. E. Mark, J. Polym. Sci., Polym. Phys. Ed., 14, 619 (1976). 2848. T. Sato, M. Yoshioka, T. Otsu, Makromol. Chem., 153, 47 (1972). 2849. T. Sato, K. Takahashi, H. Tanaka, T. Ota, K. Kato, Macromolecules, 24, 2330 (1991). 2850. T. Sato, Y. Tsujii, T. Fukuda, T. Miyamoto, Macromolecules, 25, 3890 (1992). 2851. T. Sato, Y. Jinbo, A. Teramoto, Macromolecules, 30, 590 (1997). 2852. K. G. Saunders, W. J. Macknight, R. W. Lenz, Macromolecules, 15, 1 (1982).
2853. M. 1. Savitskaya, S. Ya. Frenkel, Zh. Fiz. Khim., 32, 1063 (1958). 2854. M. Sawamoto, T. Masuda, T. Higashimura, Makromol. Chem., 177, 2995 (1976). 2855. M. Sawamoto, J. P. Kennedy, J. Macromol. Sci., Part A: Chem., 18, 1293 (1982/83). 2856. M. Sawamoto, J. P. Kennedy, J. Macromol. Sci., Part A: Chem., 18, 1275 (1982/83). 2857. M. Sawamoto, J. P. Kennedy, J. Macromol. Sci., Part A: Chem., 18, 1301 (1982/83). 2858. S. P. Sawan, Y-G. Tsai, H.-Y. Huang, T-M. Hsu, Polym. Prepr. Am. Chem. Soc, Div. Polym. Chem., 29 (1), 297 (1988). 2859. E. Scamporrino, D. Vitalini, Macromolecules, 25, 1625 (1992). 2860. W. Schabel, E. Schamberg, Makromol. Chem., 104, 9 (1967). 2861. P. C. Scherer, B. P. Rouse, Rayon Synth. Text., 29, 55, 85 (1948). 2862. P. C. Scherer, R. D. McNeer, Rayon Synth. Text., 30, 56 (1949). 2863. P. C. Scherer, R. B. Thompson, Rayon Synth. Text., 31, 51 (1950). 2864. H. G. Schild, D. A. Tirrell, Macromolecules, 25, 4553 (1992). 2865. C. Schildknecht, S. Gross, H. Davidson, Ind. Eng. Chem., 40, 2104 (1948). 2866. M. E. Schimpf, P. S. Williams, J. C. Giddings, J. Appl. Polym. Sci., 37, 2059 (1989). 2867. A. Schindler, Monatsh Chem., 95, 868 (1964). 2868. A. Schindler, R. B. Strong, Makromol. Chem., 114, 77 (1968). 2869. A. Schindler, Y. M. Hibionada, C. G. Pitt, J. Polym. Sci., Polym. Chem. Ed., 20, 319 (1982). 2870. S. Schlick, M. Levy, J. Phys. Chem., 64, 883 (1960). 2871. P. J. Schmitt, G. V. Schulz, Makromol. Chem., 121, 184 (1969). 2872. F. P. Schmitz, E. Klesper, Makromol. Chem., Rapid Commun., 2, 735 (1981). 2873. W. Schnabel, H.Sotobayashi, Polym. J., 8, 423 (1976). 2874. W. Schnabel, S. Klaumuenzer, H. Sotobayashi, F. Asmussen, Y. Tabata, Macromolecules, 17, 2108 (1984). 2875. N. S. Schneider, L. G. Holmes, J. Polym. Sci., 38, 552 (1959). 2876. N. S. Schneider, L. G. Holmes, C. F. Mijal, J. D. Loconti, J. Polym. Sci., 37, 551 (1959). 2877. N. S. Schneider, J. D. Loconti, L. G. Holmes, J. Appl. Polym. Sci., 3, 251 (1960). 2878. N. S. Schneider, Anal. Chem., 33, 1829 (1961). 2879. N. S. Schneider, J. D. Loconti, L. G. Holmes, J. Appl. Polym. Sci., 5, 354(1961). 2880. N. S. Schneider, J. Polym. Sci. C, 8, 179 (1965). 2881. N. S. Schneider, R. J. Traskos, A. S. Hoffman, J. Appl. Polym. Sci., 12, 1567 (1968). 2882. K. M. Scholsky, L.-W. Morgan, J. Polym. Sci. C, Polym. Letters, 26, 181 (1988).
2883. K. M. Scholsky, L. W. Morgan, J. Polym. Sci. C, Polym. Lett., 26, 181 (1988). 2884. K. M. Scholsky, J. Appl. Polym. Sci., 47, 1633 (1993). 2885. W. Scholtan, Makromol. Chem., 24, 104 (1957). 2886. W. Scholtan, Makromol. Chem., 24, 83 (1957). 2887. W. Scholtan, Makromol. Chem., 36, 162 (1960). 2888. W. Scholtan, H. Marzolph, Makromol. Chem., 55, 52 (1962). 2889. W. Scholtan, D. Kranz, Makromol. Chem., 110,150 (1967). 2890. W. Scholtan, H. Lange, S. Y. Lie, K. Dinges, R. MeyerMader, Angew. Makromol. Chem., 14, 43 (1970). 2891. W. Scholtan, H. Lange, R. Casper, H. Uwe Pohl, D. Wendisch, R. Meyer-Mader, Angew. Makromol. Chem., 27, 1 (1992). 2892. W. Scholtan, F. J. Kwoll, Makromol. Chem., 151,33 (1972). 2893. Th. G. Scholte, J. Polym. Sci. A-2, 6, 111 (1968). 2894. Th. G. Scholte, Eur. Polym. J., 6, 51 (1970). 2895. P. Schouterdan, G. Groeninck, B. van der Heijden, F. Jansen, Polymer, 28, 2099 (1987). 2896. P. Schouterdan, G. Groeninckx, R. Reynaers, H. Riekel, M. H. J., Polym. Bull., 13, 553 (1985). 2897. G. V. Schuiz, M. Marx-Figini, Makromol. Chem., 14, 52'(1954). 2898. K. Schultes, B. A. Wolf, W. H. Meyer, G. Wegner, Acta Polym., 46, 367 (1995). 2899. K. Schultes, B. A. Wolf, W. H. Meyer, G. Wegner, Macromol. Chem. Phys., 196, 1005 (1995). 2900. D. N. Schuiz, A. F. Halasa, J. Polym. Sci., Polym. Chem. Ed., 15, 2401 (1977). 2901. D. N. Schuiz, J. W. Spiewak, J. K. Valaitis, V. D. Mochel, M. L. Barzan, Macromolecules, 13, 1367 (1980). 2902. G. V. Schuiz, in: H. A. Stuart (Ed.), "Die Physik der Hochpolymeren", Springer, Berlin, vol. 2 (1953). 2903. G. V. Schuiz, M. Hoffmann, Makromol. Chem., 23, 220 (1957). 2904. G. V. Schuiz, A. Scholz, R. V. Figini, Makromol. Chem., 57, 220 (1962). 2905. G. V. Schuiz, W. Wunderlich, R. Kirste, Makromol. Chem., 75, 22 (1964). 2906. G. V. Schuiz, K. C. Berger, A. G. R. Schloz, Ber. Bunsenges. Phys. Chem., 68, 856 (1965). 2907. G. V. Schuiz, J. Romatowski, Makromol. Chem., 85, 195 (1965). 2908. G. V. Schuiz, E. Penzel, Makromol. Chem., 112, 260 (1968). 2909. M. F. Schuiz, A. K. Khandpur, F. S. Bates, K. Almdal, K. Mortensen, D. A. Hajduk, S. M. Gruner, Macromolecules, 29, 2857 (1996). 2910. R. C. Schuiz, G. Renner, A. Henglein, W. Kern, Makromol. Chem., 12, 20 (1954). 2911. R. C. Schuiz, E. Mueller, W. Kern, Makromol. Chem., 30, 39 (1959). 2912. R. C. Schuiz, N. Vollkommer, Makromol. Chem., 116, 288 (1968). 2913. R. Schuiz, H. Engelhardt, Chromatographia, 29, 325 (1990). 2914. W. W. Schuiz, W. C. Purdy, Anal. Chem., 35, 2044 (1963).
2915. J. Schurz, Oesterr. Chem. Ztg., 56, 311 (1955). 2916. J. Schurz, Th. Steiner, H. Streitzig, Makromol. Chem., 23, 141 (1957). 2917. J. Schurz, M. Rebek, H. Spoerk, Angew. Makromol. Chem., 1, 42 (1967). 2918. H. Schuster, M. Hoffmann, K. Dinges, Angew. Makromol. Chem., 9, 35 (1969). 2919. H. J. L. Schuurmans, J. Polym. Sci., 57, 557 (1962). 2920. T. Schwartz, J. Francois, Makromol. Chem., 182, 2757 (1981). 2921. J. Schwelzer, J. Springer, Chromatographia, 20, 347 (1985). 2922. U. Schwenk, Angew. Makromol. Chem., 47, 43 (1975). 2923. J. Scornaux, R. Van Leemput, Makromol. Chem., 177,2721 (1976). 2924. R. M. Screaton, in: B. Ke (Ed.), "Newer Methods in Polymer Characterization", Interscience, New York, 1964. 2925. R. M. Screaton, Polym. Preprints 8 (2), 1379 (1967). 2926. R. M. Screaton, R. W. Seemann, J. Polym. Sci. C, 21, 297 (1968). 2927. R. M. Screaton, R. W. Seemann, J. Appl. Polym. Symposia, 8, 81 (1969). 2928. K. Se, H. Ohnuma, T. Kotaka, Polym. J., 14, 895 (1982). 2929. K. Se, H. Ohnuma, T. Kotaka, Macromolecules, 16, 1581 (1983). 2930. J. Sebban-Danon, J. Polym. Sci., 48, 121 (1960). 2931. B. Sebille, J. Neel, J. Chim. Phys., 60, 475 (1963). 2932. J. Sedlacek, J. Vohlidal, Z. Grubisic-Gallot, Makromol. Chem. Rapid Commun., 14, 51 (1993). 2933. B. See, T. G. Smith, J. Appl. Polym. Sci., 10, 1625 (1966). 2934. B. See, T. G. Smith, Eur. Polym. J., 7, 727 (1971). 2935. C. G. Seefried, Jr., J. V. Koleske, F. E. Critchfield, C. R. Pfaffenberger, J. Polym. Sci., Polym. Phys. Ed., 18, 817 (1980). 2936. L. Segal, J. Polym. Sci. B, 4, 1011 (1966). 2937. L. Segal, Polym. Preprints, 8 (2), 1365 (1967). 2938. L. Segal, J. Polym. Sci. C, 21, 267 (1968). 2939. L. Segal, J. D. Timpa, J. I. Wadsworth, J. Polym. Sci. A-1,8, 25 (1970). 2940. L. Segal, J. D. Timpa, J. I. Wadsworth, J. Polym. Sci. A-1,8, 3577 (1970). 2941. R. Segnela, J. Prud'homme, Macromolecules, 11, 1007 (1978). 2942. A. L. Segre, M. Delfini. M. Paci, A. M. Raspolli-Galletti, R. Solaro, Macromolecules, 18, 44 (1985). 2943. N. Segudovic, S. Sertic, M. Kovac-Filipovic, V. Jarm, J. Appl. Polym. Sci., Appl. Polym. Symp., 48, 185 (1991). 2944. J. SeIb, Y. Gallot, Makromol. Chem., 181, 809 (1980). 2945. J. SeIb, Y. Gallot, Makromol. Chem., 181, 2605 (1980). 2946. E. Selegny, M. Vert, Eur. Polym. J., 7, 1307 (1971). 2947. Y D. Semchikov, L. A. Smirnova, T. Y Knyazeva, S. A. Bulgakova, V. I. Sherstyankh, Eur. Polym. J., 26, 883 (1990). 2948. Y D. Semchikov, L. A. Smirnova, N. A. Kopylova, V. V. Izvolenskii, Eur. Polym. J., 32, 1213 (1996). 2949. T K. Sengupta, S. R. Palit, J. Polym. Sci., Polym. Chem. Ed., 16, 713 (1978).
2950. F. R. Senti, N. N. Hellman, N. H. Ludwig, G. E. Babcock, R. Tobin, C. A. Glass, B. L. Lamberts, J. Polym. ScL, 17, 527 (1955). 2951. P. K. Seow, Y. Gallot, A. Skoulios, Makromol. Chem., 176, 3153 (1975). 2952. K. Seow, J. P. Lingelser, Y. Gallot, Makromol. Chem., 178, 107 (1977). 2953. G. Serpe, N. Chaupart, J. Polym. ScL: Part B, Polym. Phys., 34, 2351 (1996). 2954. S. L. N. Seung, R. N. Young, Polym. Bull, 1, 481 (1979). 2955. V. P Shaboldin, A. G. Sukhomudrenko, A. I. Krasheninnikov, V. A. Morozov, Polym. ScL USSR, 14, 1638 (1972); Vysokomol. Soedin. A, 14, 1462 (1972). 2956. A. C. Shah, I. Holdaway. I. W. Parsons, R. N. Haward, Polymer, 19, 1067 (1978). 2957. P P Shah, Eur. Polym. J., 20, 519 (1984). 2958. A. S. Shaikh, S. Dumitriu, E. Comanita, C. I. Simionescu, Polym. Bull, 3, 363 (1980). 2959. L. I. Shakhovskaya, L. V. Krayeva, L. I. Menzentseva, Polym. ScL USSR, 22, 2915 (1980); Vysokomol. Soedin, A, 22, 2660 (1980). 2960. G. V. Shatalov, Ye. N. Pozina, B. I. Mikhant'ev, S. A. Preobrazhenskii, Polym. Sci. USSR, 22, 995 (1980); Vysokomol. Soedin. A, 22, 900 (1980). 2961. M. T. Shaw, F. Rodrihuez, Polym. Preprints, 7 (2), 1053 (1966). 2962. K. P. Shen, F. R. Eirich, J. Polym. Sci., 53, 81 (1961). 2963. P J. Sheth, J. F. Johnson, R. S. Porter, Polym. Preprints, 12 (2), 513 (1971). 2964. Y Shibasaki, K. Fukuda, J. Polymer Sci., Polym. Chem. Ed., 19, 257 (1981). 2965. E. Shiedermaier, J. Klein, Angew. Makromol. Chem., 10, 169(1970). 2966. J. S. Shih, J. F Brandt, M. P Zussman, D. A. Tirrell, J. Polym. ScL, Polym. Chem. Ed., 20, 2839 (1982). 2967. M. Shima, E. Ogawa, K. Konishik, Makromol. Chem., 177, 241 (1976), 2968. E. Shimamura, M. Scandola, Y Doi, Macromolecules, 27, 4429 (1994). 2969. T. Shimizu, A. Minakata, T. Tomiyama, Polymer, 21, 1427 (1980). 2970. J. Shimura, I. Mita, H. Kambe, J. Polym. Sci. B, 2, 403 (1964). 2971. Y Shimura, Bull. Chem. Soc. Japan, 40, 273 (1967). 2972. S. Shiono, J. Polym. Sci., Polym. Chem. Ed., 17, 4123 (1979). 2973. K. Shirayama, T. Okada, S. Kita, J. Polym. Sci. Part A-2,3, 907 (1965). 2974. K. Shiriyama, T. Matsuda, S. I. Kita, Makromol. Chem., 147, 155 (1971). 2975. Ye. I. Shklyarova, L. B. Itsikson, A. M. Kaplan, V. B. Golubev, V. P. Zubov, V. A. Kabanov, Polym. Sci. USSR, 20, 517 (1978); Vysokomol. Soedin. A, 20, 456 (1978). 2976. K. V Shooter, J. A. V Butler, J. Poiym. Sci., 23,705 (1957). 2977. M. F. Shostakovskii, V. Z. Annenkova, A. K. Khaliullin, A. Inyutkin, E. A. Gaitseva, V. N. Salaurov, Polym. Sci. USSR, 11, 2257 (1969); Vysokomol. Soedin. A, 11, 1979 (1969).
2978. I. N. Shtennikova, V. N. Tsvetkov, T. V. Peker, Ye. I. Ryumtsev, Yu. P. Getmanchuk, Polym. ScL USSR, 16, 1256 (1974); Vysokomol. Soedin. A, 16, 1086 (1974). 2979. I. N. Shtennikova, E. V. Korneeva, G. F. Kolbina, I. A. Strelina, P. N. Lavrenko, V. P. Shibaev, I. V. Ekaeva, Eur. Polym. J., 28, 353 (1992). 2980. A. R. Shultz, J. Am. Chem. Soc, 76, 3422 (1954). 2981. A. R. Shultz, A. L. Bridgman, E. M. Hadsell, C. R. McCullough, J. Polym. Sci. A-2, 10, 273 (1972). 2982. N. V. Shulyatikova, D. I. Mandel'baurn, Zh. Prikl. Khim., 24, 264 (1951). 2983. S. Shyluk, J. Polym. Sci., 62, 317 (1962). 2984. W. Siebourg, R. D. Lundberg, R. W. Lenz, Macromolecules, 13, 1013 (1980). 2985. R. Signer, H. Gross, HeIv. Chim. Acta, 17, 726 (1934). 2986. R. Signer, R. Glanzmann, Makromol. Chem., 5,257 (1951). 2987. H. Sihtola. E. Kaila, N. Virkola, Makromol. Chem., 11, 70 (1953). 2988. H. Sihtola, E. Kaila, L. Laamanen, J. Polym. Sci., 23, 809 (1957). 2989. D. J. Sikkema, H, Angad-Gaur, Makromol. Chem., 181, 2259 (1980). 2990. L. Simek, J. Hrncivk, M. Mladek, Angew. Markromol. Chem., 92, (1980). 2991. L. Simek, Z. Tuzar, M. Bohdanecky, Makromol, Chem., Rapid Commun., 1, 215 (1980). 2992. L. Simek, M. Bohdanecky, J. Appl. Polym Sci., 58, 897 (1995). 2993. B. G. Siminionescu, S. Ioian, C. I. Simionescu, J. Polym. Sci. Part B: Polym. Phys., 25, 829 (1987). 2994. B. C. Simionescu, S. loan, A. Chiriac, C. I. Simionescu, Polym. Bull., 17, 439 (1987). 2995. C. C. Simionescu, E. Calistru, Faserforsch. Textiltch., 7, 171 (1956). 2996. C. Simionescu, N. Cobianu, Eur. Polym. J., 15, 173 (1979). 2997. C. J. Simionescu, S. loan, B. C. Simionescu, Eur. Polym. J., 23, 69 (1987). 2998. C. I. Simionescu, S. loan, A. Flondor, B. C. Simionescu, Makromol. Chem., 189, 2331 (1988). 2999. C. I. Simionescu, A. Chiriac, I. Neamtu, Polym. Bull., 27, 31 (1991). 3000. A. Simmons, A. Natansohn, Macromolecules, 25, 3881 (1992). 3001. A. Simmons, A. Natansohn, Macromolecules, 25, 1272 (1992). 3002. R. P. Simonds, E. J. Goethals, Makromol. Chem., 179, 1689 (1978). 3003. O. P. Singh, N. K. Scandle, I. K. Varma, Angew, Makromol. Chem., 122, 193 (1984). 3004. R. Singh, A. S. Hay, Macromolecules, 25, 1033 (1992). 3005. E. J. Siochi, J. M. DeSimone, A. M. Hellstern, J. E. McGrath, T. C. Ward, Macromolecules, 23, 4696 (1990). 3006. D. F. Siqueira, S. P. Nunes, B. A. Wolf, Macromolecules, 27, 1045 (1994). 3007. D. F. Siqueira, S. P. Nunes, B. A. Wolf, Macromolecules, 27, 234 (1994). 3008. R. M. Sisson, J. C. Giddings, Anal. Chem., 66 4043 (1994).
3009. G. Sitaramaiah, J. Polym. Sci. A-I, 3, 2743 (1965). 3010. G. Sitaramaiah, D. Jacobs, Polymer, 11, 165 (1970). 3011. G. Sitaramaiah, D. Jacobs, Makromol. Chem., 164, 237 (1973). 3012. K. Sivadasan, S. Gundiah, Polymer., 28, 1426 (1987). 3013. V. S. Skazka, S. Ya. Magarik, G. M. Pavlov, Kh. Rout, G. V. Tarasova, Polym. Sci. USSR, 20, 180 (1978): Vysokomol. Soedin. A, 20, 157 (1978). 3014. E. L. Slagowski, R. G. Gebauer, G. J. Gaesser, J. Appl. Polym. Sci., 21, 2293 (1977). 3015. D. F. Slonaker, R. L. Combs, J. E. , Guillet, H. W. Coover Jr., J. Polym. Sci. A-2, 4, 523 (1966). 3016. D. F. Slonaker, R. L. Combs, H. W. Coover Jr., Macromol. Sci., Part A: Chem., 1, 539 (1967). 3017. G. Smets, M. Claesen, J. Polym. Sci., 8, 289 (1952). 3018. G. Smets, A. Hertoghe, Makromol. Chem., 17, 189 (1956). 3019. G. Smets, J. Roovers, W. Van Humbeek, J. Appl. Polym Sci., 5, 149 (1961). 3020. G. Smets, W. De Winter, G. Delzenne, J. Polym. Sci., 55, 767 (1961). 3021. G. Smets, A. Poot, G. L. Duncan, J. Polym. Sci., 54, 65 (1961). 3022. G. Smets, E. Dysseleer, Makromol. Chem., 91 160 (1966). 3023. W. B. Smith, J. A. May, Ch. W. Kim, J. Polym. Sci. A-2, 4, 365 (1966). 3024. W. B. Smith, Polym. Preprints, 11 (2), 1019 (1970). 3025. T. W. Smith, J. E. Kuder, D. Wychick, J. Polym. Sci., Polym. Chem. Ed., 14,2433 (1976). 3026. J. B. P. Soares, A. E. Hamielec, Polymer, 36, 1639 (1995). 3027. T. A. Soboleva, A. P. Suprun, S. A. Pavlova, Polym. Sci. USSR, 6, 104 (1969); Vysokomol. Soedin., 6, 89 (1964). 3028. A. A. Soeteman, J. P. M. Roels, J. A. P. P. Van Dijk, J. A. M. Smit, J. Polym. Sci., Polym. Phys. Ed., 16, 2147 (1978). 3029. K. Soga, S. Hosoda, S. lkeda, J. Polym. Sci., Polym. Chem. Ed., 12, 729 (1974). 3030. K. Soga, S. Kawakami, H. Shirakawa, S. lkeda, Makromol. Chem. Rapid Commun., 1, 523 (1980). 3031. K. Soga, K. Yamamoto, Polym. Bull., 6, 263 (1982). 3032. K. Soga, M. Ohgizawa, T. Shiono, Makromol. Chem., Rapid Commun., 10, 503 (1989). 3033. L. B. Sokolov, V. Z. Nikonov, G. N. Shilyakova, Polym. Sci. USSR, 11, 699 (1969); Vysokomol. Soedin. A, 11, 616 (1969). 3034. A. A. Solov'yanov, K. S. Kazanskii, Polym. Sci. USSR, 14, 1186 (1972); Vysokomol. Soedin. A, 14 , 1063 (1972). 3035. L. Sole, D. Berek, D. Mikulasova, Colloid, Polym Sci., 258, 702(1980). 3036. C. X. Song, X. D. Feng, Macromolecules, 17, 2764 (1984). 3037. A. M. Sookne, M. Harris, Ind. Eng. Chem., 37, 475, 478 (1945). 3038. B. Soper, R. N. Haward, E. F. T. White, J. Polym. Sci., Polym. Chem. Ed., 10, 2545 (1972). 3039. M. F. Sorokin, M. M. Babkina, Polym. Sci. USSR, 8, 122 (1966); Vysokomol. Soedin., 8, 115 (1966). 3040. H. Sotobayashi, K. Ueberreiter, Z. Elektrochem., 67, 178 (1963).
3041. T. N. Soundararajan, M. Wayman, IUPAC Toronto, Preprints A, 11, 3 (1968). 3042. I. Soutar, L. Swanson, F. G. Thorpe, C. Zhu, Macromolecules, 29, 918 (1996). 3043. G. G. Sowash, S. E. Webber, Macromolecules, 21, 1608 (1988). 3044. R. W. Sparidens, H. A. Claessens, G. H. J. van Doremaele, A. M. van Herk, J. Chromatogr., 508, 319 (1990). 3045. A. L. Spatorico, J. Polym. Sci., Polym. Phys. Ed., 12, 159 (1974). 3046. A. L. Spatorico, G. L. Beyer, J. Appl. Polym. Sci., 19, 2933 (1975). 3047. J. Spevacek, Makromol. Chem., Rapid Commun., 3, 697 (1982). 3048. P. P. Spiegelman, G. Parravano, J. Polym. Sci. A, 2, 2245 (1964). 3049. J. Springer, K. Ueberreiter, E. Moeller, Ber. Bunsenges.
Phys., Chem., 69,494(1965). 3050. J. Springer, K. Ueberreiter, R. Wenzel, Makromol. Chem., 96, 122 (1966). 3051. J. Springer, K. Ueberreiter, W. Weinle, Eur. Polym. J., 6, 87 (1970). 3052. J. Springer, J. Schmelzer, T. Zeplichal, Chromatographia, 13, 1644(1980). 3053. J. Springer, F. W. Weigelt, Markomol. Chem., 184, 1489 (1983). 3054. T. Spychaj, J. Appl. Polym. Sci., Appl. Polym. Symp., 48, 199 (1991). 3055. K. S. V. Srinivasan, M. Santappa, J. Polym. Sci., Polym. Phy. Ed., 11, 331 (1973). 3056. K. S. V. Srinivasan, M. Santappa, Polymer, 14, 5 (1973). 3057. K. S. V. Srinivasan, D. Sudhakar, Polym. Bull, 2, 321 (1980). 3058. C. J. Stacy, J. F. Foster, J. Polym. Sci., 25, 39 (1957). 3059. C. J. Stacy, J. Appl. Polym. Sci., 21, 2231 (1977). 3060. C. J. Stacy, Polym. Preprints, 26 (1), 180 (1985). 3061. G. D. Staffin, C. C. Price, J. Am. Chem. Soc, 82, 3632 (1960). 3062. J. W. Stafford, Makromol. Chem., 134, 87 (1970). 3063. J. W. Stafford, Makromol. Chem., 134, 73 (1970). 3064. J. W. Stafford, Makromol. Chem., 134, 57 (1970). 3065. J. W. Stafford, Makromol. Chem., 134, 113 (1970). 3066. J. W. Stafford, Makromol. Chem., 134, 99 (1970). 3067. G. Stainsby, Discussion Faraday Soc, 18, 288 (1954). 3068. D. Statman, B. Chu, Macromolecuies, 17, 1537 (1984). 3069. H. Staudinger, M. Haberle, Makromol. Chem., 9,48 (1952). 3070. H. Staudinger, T. Eiche, Makromol. Chem., 10,235 (1953). 3071. R. Stefani, M. Chevreton J. Terrier, C. Eyraud, Compt. Rend., 248, 2006(1959). 3072. Ya. Steiny, Polym. Sci. USSR, 10, 2184 (1968).; Vysokomol. Soedin. A, 10, 1883 (1968). 3073. J. Stejny, J. Macromol. Sci., Part A: Chem., 7, 1435 (1973). 3074. J. Stejskal, J. Janca, P. Kratochvil, Polym. J., 8, 549 (1976). 3075. J. Stejskal, R Kratochvil, Macromolecules, 11,1097 (1978). 3076. J. Stejskal, P. Kratochvil, D. Strakova, Macromolecules, 14, 150(1981).
3077. J. Stejskal, D. Strakova, P. Kratochvil, S. D. Smith, J. E. McGrath. Macromolecules, 22, 861 (1989). 3078. T. Stelter, J. Springer, Makromol. Chem., 185, 1719 (1984). 3079. M. Stickler, G. Meyerhoff, Makromol. Chem., 179, 2729 (1978). 3080. M. Stickler, F. Eisenbeiss, Eur. Polym. J., 20, 849 (1984). 3081. M. Stickler, Angew, Makromol. Chem., 123/124,85 (1984). 3082. J. K. Stille, M. Kamachi, M. Kurihara, Polym. Preprints, 12 (2)., 223 (1971). 3083. S. S. Stivala, R. J. Valles, D. W. Levi, J. Appl. Polym. Sci., 7, 97 (1963). 3084. W. H. Stockmayer et al., J. Polym. Sci., 16, 517 (1955). 3085. G. ver Strate, C. Cozewith, S. Ju, Macromolecules, 21,3360 (1988). 3086. C. Strazielle, Makromol. Chem., 119, 50 (1968). 3087. C. Strazielle, H. Benoit, O. Vogl, Eur. Polym. J., 14, 331 (1978). 3088. J. Strohalm, J. Kopecek, Angew, Makromol. Chem., 70,109 (1978). 3089. K. Su, E. E. Remsen, H. M. Thompson, L. G. Sneddon, Macromolecules, 24, 3760 (1991). 3090. N. N. Sudareva, O. I. Kurenbin, G. B. Belen'kii, V. M. Mal'tsev, Polym. Sci. USSR, 31, 1915 (1989); Vysokomol. Soedin. A, 31, 1739 (1989). 3091. H. Sue, E. Ueno, Y, Nakamoto, S. I. Ishida, Macromolecules, 38, 1305 (1989). 3092. H. Sue, Y. Nakamoto, S-I, Ishidu, Polym. Bull, 21, 97 (1989). 3093. N. Suetterlin, G. Meyerhoff, Makromol. Chem., 165, 223 (1973). 3094. K. Sugamiya, N. Kuwahara, M. Kaneko, Macromolecules, 7, 66 (1974). 3095. T. Sunga, K. J. Ivin, G. Hofmeister, J. H. Oskan, R. S. Schrock, Macromolecules, 27, 4043 (1994). 3096. T. Suminoe, N. Yamazoki, S. Kambara, Chem. High Polym. (Japan), 20, 461 (1963). 3097. H. Sumitomo, K. Kobayashi, J. Polym. Sci. A-I, 4, 907 (1966). 3098. R. M. Summers, J. Polym. Sci., Polym. Chem. Ed., 16,1669 (1978). 3099. S.-J. Sun, T. Chang, J. Polym. Sci., Part A, 31,2711 (1993). 3100. C. S. P. Sung, I. R. Gould, N. J. Turro, Macromolecules, 17, 1447 (1984). 3101. M. Super, E. Berluche, C. Costello, E. Beckman, Macromolecules, 30, 368 (1997). 3102. B. Suryanayanan, B. W. Peace, K. G. Mayhan, J. Polym. Sci., Polym. Chem. Ed., 12, 1109 (1974). 3103. B. Suryanayanan, B. W. Peace, K. G. Mayhan, J. Polym. Sci., Polym. Chem. Ed., 12, 1109 (1974). 3104. W. Sutter, W. Burchard, Makromol. Chem., 179, 1961 (1978). 3105. H. Suzuki, C. G. Leoni, Brit, Polym. J., 5, 485 (1973). 3106. T. Suzuki, Y. Tsuji, Y. Takegami, Macromlecules, 11 639 (1978). 3107. T. Suzuki, V. Murakami, Y Takegami, Polym. J., 12, 183 (1980).
3108. T. Suzuki, Y. Murakami, O. Yamada, Y Takegami, J. Macromol. Sci. Part A: Chem, 18, 817 (1982). 3109. T. Suzuki, O. Yamada, Y Murakami, Y Takegami, Y Watanabe, Macromolecules, 15, 223 (1982). 3110. T Suzuki, Y Murakami, Y Takegami, Polym. J., 14, 431 (1982). 3111. F. Svec, J. Labsky, L. Lanyova, J. Hradil, S. Pokorny, J. Kalal, Angew, Makromol. Chem., 90, 47 (1980). 3112. A. X. Swamikannu, M. H. Litt, J. Polym. Sci., Polym. Chem. Ed., 22, 1623 (1984). 3113. D. L. Swanson, J. W. Williams, J. Appl. Phys., 26, 810 (1955). 3114. S. A. Swanson, P. M. Cotts, R. Siemens, S. H. Kim, Macromolecules, 24, 1352 (1991). 3115. H. A. Swenson, Acta Chem. Scand., 9, 572 (1955). 3116. H. A. Swenson, A. Rosenberg, Acta Chem. Scand., 10,1393 (1956). 3117. H. A. Swenson, H. M. Kaustinen, O. A. Kaustinen, N. S. Thompson, J. Polym. Sci. A-2, 6, 1593 (1968). 3118. H. A. Swenson, H. M. Kaustinen, J. J. Bachhuber, Macromolecules, 2, 142 (1969). 3119. H. A. Swenson, H. M. Kaustinen, K. E. Almin, J. Polym. Sci. B, 9, 261 (1971). 3120. H. A. Swenson, J. A. Carlson, H. M. Kaustinen, J. Polym. Sci. C, 36, 293 (1971). 3121. M. Szesztay, Z. Laszlo-Hedvig, R Tiidos, J. Appl. Polym. Sci., Appl. Polym. Symp., 48, 227 (1991). 3122. P. Szweczyk, M. Kalfus, J. Mackromol. Sci. Part A: Chem., 7, 737 (1973). 3123. K. Tada, Y Yamada, T Saegusa, J. Furukawa, Makromol. Chem., 99, 232 (1966). 3124. K. Tada, T. Saegusa, J. Furukawa, Makromol. Chem., 102, 47 (1967). 3125. N. G. Taganov, A. P. Klinov, G. N. Komratov, R. A. Barzykina, G. V. Korovina, G. V. Isagulyants, S. G. Entelis, Polym. Sci., USSR, 22, 1762 (1980); Vysokomol. Soedin. A, 22, 1607 (1980). 3126. A. A. Tager, A. A. Anikeyeva, V. M. Andreyeva, T. Ya. Gomarova, L. A. Chernoskutova, Polym. Sci. USSR, 10, 1926 (1968).; Vysokomol. Soedin. A, 10, 1661 (1968). 3127. A. A. Tager, A. A. Anikeyeva, L. V. Adamova, V. M. Andreyeva, T. A. Kuz'mina, M. V. Tsilipotkina, Polym. Sci. USSR, 13, 751 (1971).; Vysokomol Soedin. A, 13, 659 (1971). 3128. L. H. Tagle, F. R. Diaz, R. J. Vega, Polym. Bull., 11, 523 (1984). 3129. A. Takacs, R. Faust, Macromolecules, 28, 7266 (1995). 3130. A. Takada, T. Fukuda, J. Watanabe, T. Miyamoto, Macromolecules, 28, 3394 (1995). 3131. M. Takahashi, M. Watanabe, Sen-i-Gakkaishi, 17, 122 (1961). 3132. M. Takahashi, M. Watanabe, Sen-i-Gakkaishi, 17, 111 (1961). 3133. A. Takahashi, M. Obara, I. Kagawa Kogyo Kagaku Zasshi, 66, 960 (1963). 3134. Y Takahashi, J. E. Mark, J. Am. Chem. Soc, 98, 3756 (1976). 3135. K. Takamizawa, Bull. Chem. Soc. Japan, 39, 1186 (1996).
3136. M. Takeda, R. Endo, Y. Matsuura, J. Polym. Sci. C, 23, 487 (1968). 3137. G. Talamini, G. Vidotto, Makromol. Chem., 110, 111 (1967). 3138. Y. Tamai, T. Koniski, Y. Einaga, M. Fujii, H. Yamakawa, Macromolecules, 23, 4067 (1990). 3139. J. W. Tamblyn, D. R. Morey, R. H. Wagner, Ind. Eng. Chem., 37, 573 (1945). 3140. P. E. Tampellini, E. Occhiello, F. Garbassi, Polym. Bull., 30, 551 (1993). 3141. E. Tampellini, L. Canova, P. Cinquina, G. Gianotti, Polymer, 35, 367 (1944). 3142. J. S. Tan, S. P. Gasper, J. Polym. Sci., Polym. Phys. Ed., 12, 1785 (1974). 3143. J. S. Tan, S. P. Gasper, J. Poiym. Sci., Polym. Phys. Ed., 13, 1705 (1975). 3144. J. S. Tan, A. R. Sochor, Macromolecules, 14, 1700 (1981). 3145. S.Tanaka,H.Morikawa,J.Polym.Sci.A-1,3,3147(1965). 3146. S. Tanaka, A. Nakamura,H. Morikawa, Makromol. Chem., 85, 164 (1965). 3147. S. Tanaka, M. Uno, S. Teramachi, Y. Tsukahara, Polymer, 36, 2219 (1995). 3148. T. Tanaka, N. Donkai, H. Inagaki, Macromolecules, 13, 1021 (1980). 3149. L. J. Tangle, W. J. Rebel, R. J. Brewer, J. Polym. Sci. A-1,8, 2935 (1970). 3150. S. Tani, F. Hamada, A. Nakajima, Polym. J., 5, 86 (1973). 3151. K. Tanikawa, T. Enomoto, M. Hatano, K. Moteyi, Z. Okuno, Makromol. Chem., 176, 3025 (1975). 3152. T. Taninaka, H. Uemura, Y. Minoura, Eur. Polym. J., 14,197 (1978). 3153. D. W. Tanner, G. C. Berry, J. Polym. Sci., Polym. Phys. Ed., 12, 941 (1974). 3154. H. Tanzawa, T. Tanaka, A. Soda, J. Polym. Sci. A-2,7,929 (1969). 3155. J. Tao, S. Stewart, G. Liu, M. Yaang, Macromolecules, 30, 2738 (1997). 3156. A. Taquet, R. Jerome, Ph. Teyssie, J. P. Masy, E. Goethals, J. Polym. Sci. Part A: Polym. Chem., 33, 1169 (1995). 3157. G. I. Tarasova, S. A. Pavlova, V. V. Korkshak, Polym. Sci. USSR, 15, 1046 (1973); Vysokomol. Soedin. A, 15 929 (1973). 3158. S. A. Tashmukhamedov, P. P. Larin R. S. Tillayev, Yu. T. Tashpulatov, Kh. U. Usmanov, Polym. Sci. USSR, 10, 2113 (1968); Vysokomol. Soedin. A, 10, 1823 (1968). 3159. S. A. Tashmukhamedov, P. P. Larin R. S. Tillayev, Yu. T. Tashpulatov, Kh. U. Usmanov, Poiym. Sci. USSR, 11, 515 (1969); Vysokomol. Soedin. A, 11, 453 (1968). 3160. S. A. Tashmukhamedov, B. V. Sagdullayev, P. P. Larin, R. S. Tillayev, Kh. U. Usmanov, Polym. Sci. USSR, 16, 1620 (1974); Vysokomol. Soedin. A, 16, 1395 (1974). 3161. S. A. Tashmukhamedov, Sh. A. Azizov, A. Sh. Karabayev, E. T. Tsagarayev, R. S. Tillayev, Kh. U. Usmanov, Polym. Sci. USSR, 18, 2478 (1976); Vysokomol. Soedin. A, 18, 2171 (1976). 3162. W. C. Taylor, L. H. Tung, Soc. Plastics Eng. Trans., 2, 1 (1962). 3163. W. C. Taylor, L. H. Tung, J. Polym. Sci., B, 1, 157 (1963).
3164. D. L. Taylor, J. Polym. Sci. A, 2, 611 (1964). 3165. G. B. Taylor, J. Am. Chem. Soc, 69, 638 (1947). 3166. S. Tazuke, H. Nagahara, Makromol. Chem., 181, 2207 (1980). 3167. S. Tazuke, O. Supakorn, T. Inoue, J. Polym. Sci., Polym. Chem. Ed., 20, 2239 (1982). 3168. H. Tebbe, F. von Ackern, B. Tieke, Makromol. Chem. Phys., 196, 1475 (1995). 3169. N. B. Tennikov, P. P. Nefyedov, Polym. Sci. USSR, 22, 513 (1980); Vysokomol. Soedin. A, 22, 461 (1980). 3170. M. Tepelekian, P. Quang Tho, A. Guyot, Eur. Polym. J., 5, 795 (1969). 3171. S. Teramachi, M. Nagasawa, J. Macromol. Sci., Part A: Chem., 2, 1169 (1968). 3172. S. Teramachi, Y. Kato, J. Macromol. Sci., Part A: Chem., 4, 1785 (1970). 3173. S. Teramachi, Y. Kato, Macromolecules, 4, 54 (1971). 3174. S. Teramachi, H. Tomioka, M. Sotokawa, J. Macromol. Sci. Part A: Chem., 6, 97 (1972). 3175. S. Teramachi, T. Fujikawa, J. Macromol. Sci. PartA Chem., 6, 1393 (1972). 3176. S. Teramachi, H. Uchiyama, Polym. J., 5, 243 (1973). 3177. S. Teramachi, T. Fukao, Polym. J., 6, 532 (1974). 3178. S. Teramachi, H. Eaki, Polym. J., 7, 593 (1975). 3179. S. Teramachi, R. Obata, K. Yamashita, N. Takemoto, J. Macromol. Sci. Part A: Chem., 11, 535 (1977). 3180. S. Teramachi, A. Hasegawa, M. Akatsuka, A. Yamashita, N. Takemoto, Macromolecules, 11, 1206 (1978). 3181. S. Teramachi, A. Haegawa, Y Shime, M. Akatsuka, M. Nakayama, Macromolecules, 12, 992 (1979). 3182. S. Teramachi, A. Hasegawa, S. Hasegawa, T. Ishibe, Polym. J., 13, 319 (1981). 3183. S. Teramachi, A. Hasegawa, S. Yoshida, Polym. J., 14, 161 (1982). 3184. S. Teramachi, A. Hasegawa, S. Yoshida, Macromolecules, 16, 542 (1983). 3185. S. Teramachi, A. Hasegawa, Y. Shigekuni, S. Matsunaga, Polym. J., 21, 803 (1989). 3186. S. Teramachi, A. Hasegawa, Y. Shigekuni, S. Matsunaga, Polym. J., 21, 803 (1989). 3187. S. Teramachi, A. Hasegawa, Y. Shigekuni, K. Zenta, M. Hahimoto. J. Appl. Polym. Sci., Appl. Polym. Symp., 45, 87 (1990). 3188. S. Teramachi, A. Hasegawa, K. Motoyama, Polym. J., 22, 489 (1990). 3189. S. Teramachi, A. Hasegawa, T. Matsumoto, K. Kitahara, Y. Tsukahara, Y. Yamashita, Macromlecules, 25, 4025 (1992). 3190. S. Teramachi, S. Sato, H. Shimura, S. Watanabe, Y. Tsukahara, Macromolecules, 28, 6138 (1995). 3191. K. Teramachi, M. Iida, T. Araku, S. Yamashita, H. Tani, Macromolecules, 7, 421 (1974). 3192. C. C. Terau, E. M. Macchi, R. V. Figini, J. Appl. Polym. Sci., 34, 2433 (1987). 3193. M. Terbojevich, A. Casani, M. Camilot, B. Focher, J. Appl. Polym. Sci., 55, 1663 (1995). 3194. D. R. Terrell, Polymer, 23, 1045 (1982).
3195. S. L. Terry, Rodriguez, Polym. Preprints, 8 (2), 1270 (1967). 3196. Y. Tezuka, S. Hayashi, Macromolecules, 28, 3038 (1995). 3197. N. G. Thame, R. D. Lundberg, J. P. Kennedy, J. Polym. Sci., Polym. Ed., 10, 2507 (1972). 3198. R. C. Thamm, W. H. Buck, J. Polym. Sci., Polym. Chem. Ed., 16, 539 (1978). 3199. M. Theurig, S. J. Sargeant, G. Manuel, W. P. Weber, Macromolecules, 25, 3834 (1992). 3200. A. Thierry, A. Skoulios, Makromol. Chem., 177, 319 (1976). 3201. B. B. Thomas, W. J. Alexander, J. Polym. Sci., 15, 361 (1955). 3202. L. Thomas, A. Polton, M. Tardi, P. Sigwalt, Macromolecules, 25, 5886 (1992). 3203. G. H. Thompson, M. N. Myers, J. C. Gidding, Anal. Chem., 41, 1219 (1969). 3204. J. O. Threlkeld, H. A. Ende, J. Polym. Sci. A-2, 4, 663 (1966). 3205. C. D. Thurmond, B. H. Zimm, J. Polym. Sci., 8,477 (1952). 3206. E. J. Tijsma, L. vad der Does, A. Bantjes, I. Vulic, G. H. W. Bunning, Macromolecules, 27, 179 (1994). 3207. E. L Tiktopulo, V. N. Uversky, V. B. Lushchik, S. I. Klenin, V. E. Bychkova, O. B. Ptitsyn, Macromolecules, 28, 7519 (1995). 3208. T. E. Timeil, Ind. Eng. Chem., 47, 2166 (1955). 3209. G. I. Timofeyeva, S. A. Pavlova, IUPAC Helsinki, Preprints Vol. Ill, 11-64 (1972). 3210. G. I. Timofeyeva, Ye. S. Krongauz, A. M. Berlin, V. V. Kroshak, S.-S. Pavlova, Polym. Sci. USSR, 18,984 (1976).; Vysokomol Soedin. A, 18, 863 (1976). 3211. L. V. Titkova, E. Prokopova, B. Sedlacek, V. Petrus, K. Dusek, M. Bohdanecky, Eur. Polym. J., 14, 145 (1978). 3212. F. L. Tobiason, C. Chandler, F. E. Schwarz, Macromolecules, 5, 321 (1972). 3213. F. L. Tobiason, G. H. Cain, J. W. Anderson, J. Polym. Sci., Polym. Chem. Ed., 16, 275 (1978). 3214. M. Tokita, T. Takahashi, M. Hayashi, K. Inomata, J. Watanabe, Macromolecules, 29, 1345 (1996). 3215. M. P. Tombs, Biochem. J., 67 (1957). 3216. M. Tomikawa, Chem. High Polym. (Japan), 20, 11 (1963). 3217. H. Tompa, "Polymer Solutions", Butterworths, London, 1956. 3218. A. V. Topchiev, G. I. Chernyi, V. N. Andronov, Dokl. Akad. Nauk SSR, 143, 879 (1962). 3219. J. P Tovborgjensen, J. Kops, J. Polym. Sci., Polym. Chem. Ed., 18, 2737 (1980). 3220. M. S. Toy, J. M. Newman, J. Polym. Sci. A, 1, 2333 (1969). 3221. M. S. Toy, Polym. Preprints, 12 (1), 385 (1971). 3222. A. H. Traaen, J. Appl. Polym. Sci., 7, 581 (1963). 3223. G. Trafara, J. Polym. Sci., Polym. Chem. Ed., 18, 321 (1980). 3224. R. T. Traskos, N. S. Schneider, A. S. Hoffman, J. Appl. Polym. Sci., 12, 509 (1968). 3225. B. Trathnigg, H. Junek, Angew, Makromol. Chem., 53, 81 (1968). 3226. B. Trathnigg, G. Hippmann, Angew. Makromol. Chem., 105, 9 (1982).
3227. B. Trathnigg, X. Yan, J. Appl. Polym. Sci., Appl. Polym., Symp., 52, 193 (1993). 3228. W. Trautvetter, Makromol. Chem., 101, 214 (1967). 3229. V. Trefiletti, G. Conio, F. Pioli, B. Cavazza, A. Perico, E. Patrone, Makromol. Chem., 181, 1159 (1980). 3230. N. M. Tret'yakova, L. V. Kosmodem'yanskii, R. G. Romanova, E. G. Lazaryants, Polym. Sci. USSR, 12, 3127 (1970); Vysokomol. Soedin. A, 12, 2754 (1970). 3231. M. Tricot, V Desreux, Makromol. Chem., 149, 185 (1971). 3232. M. Tricot, J. P. Bleus, J. P Riga, V Desreux, Makromol. Chem., 175, 913 (1974). 3233. M. Tricot, Polymer, 24, 366 (1983). 3234. C. K. Trinh, W. Schnabel, Makromol. Chem., Phys., 198, 1319(1997). 3235. P. Trivedi, J. Macromol. Sci., Part A: Chem., 14,589 (1980). 3236. P. D. Trivedi, D. N. Shulz, Polym. Bull., 3, 37 (1980). 3237. P. D. Trivedi, R. J. Ambrose, A. G. Altenau, J. Macromol. Sci. A: Chem., 17, 1159(1982). 3238. E. Trommdorff, H. Koehle, P. Lagally, Makromol. Chem., 1, 169 (1948). 3239. L. D. Trung, J. Mordini, P. Q. Tho, A. Guyot, Eur. Polym. J., 6, 1187 (1970). 3240. S.-L. Tseng, G. V. Laivins, D. G. Gray, Macromolecules, 15, 1262 (1982). 3241. S. Tseng, W. Herman, A. E. Woodward, B. A. Newman, Macromolecules, 15, 338 (1982). 3242. S. Tseng, A. E. Woodward, Macromolecules, 15, 343 (1982). 3243. M. V. Tsilipotkina, A. A. Tager, E. B. Makovskaya, V Partina, Polym. Sci., USSR, 12, 1222 (1970); Vysokomol. Soedin. A, 12, 1082 (1970). 3244. M. V Tsilipotkina, A. A. Tager, O. V. Nechayeva, A. V Vasiliev, L. M. Bykova, S. M. Bulygina, V A. Vasnsev, S. N. Salazkin, Polym. Sci. USSR, 14, 2304 (1972); Vysokomol. Soedin. A, 14, 2053 (1991). 3245. C. Tsitsilianis, P. Lutz, S. Graff, J. P. Lamps, P Remp. Macromolecules, 24, 5897 (1991). 3246. C. Tsitsilianis, D. Papanagopoullos, P. Lutz, Polymer, 36, 3745 (1995). 3247. K. Tsubakiyama, T. Matsuo, T. Sakaki, K. Yoshida, T. Fujimura, K. Azaki, J. Polym. Sci., Polym. Chem., Ed., 17, 173 (1979). 3248. E. Tsuchida, E. Shouji, K. Yamamoto, Macromolecules, 26, 7144 (1993). 3249. T. Tsuruta, R. Fuijo, J. Furukawa, Makromol. Chem., 80, 172 (1964). 3250. T. Tsuruta, S. Inoue, N. Yoshida, Y. Yokota, Makromol. Chem., 81, 191 (1965). 3251. R. Tsushima, T. Tsuruta, J. Polym. Sci., Polym. Chem. Ed., 12, 183 (1974). 3252. T Tsutsui, A. Mizuno, N. Kashiwa, Makromol. Chem., 190, 1177 (1989). 3253. V N. Tsvetkov, V S. Skazka, N. M. Krivoruchko, Vysokomol. Soedin., 2, 1045 (1960). 3254. V. N. Tsvetkov, N. N. Boitsova, Vysokomol. Soedin., 5, 1263 (1963). 3255. V N. Tsvetkov, S. Ya. Lyubina, T. V Barskaya, Polym. Sci., USSR 6, 886 (1964); Vysokomol. Soedin., 6, 806 (1964).
3256. V. N. Tsvetkov, V. P. Budtov, Polym. Sci. USSR, 6, 1332 (1964); Vysokomol. Soedin., 6, 1209 (1964). 3257. V. N. Tsvetkov, I. N. Shtennikova, Ye. I. Ryumtsev, G. I. Okhrimenko, Polym. Sci. USSR, 7, 1223 (1965); Vysokomol. Soedin., 7, 1104 (1965). 3258. V. N. Tsvetkov, Yu. V. Mitin, I. N. Shtennikova, V. R. Glushenkova, G. V. Tarasova, V. S. Skazka, N. A. Nikitin, Polym. Sci., USSR, 7, 1216 (1965); Vysokomol. Soedin., 7, (1965). 3259. V. N. Tsvetkov, I. N. Shtennikova, Ye. I. Ryumtsev, V S. Skazka, Polym. Sci. USSR. 7, 1231 (1965); Vysokomol. Soedin., 7, 1111 (1965). 3260. V. N. Tsvetkov, S. Ya. Lubina, V. Ye Bychkova, I. A. Strelina, Polym. Sci. USSR, 8, 928 (1966); Vysokomol. Soedin., 8, 846 (1996). 3261. V. N. Tsvetkov, K. A. Andrianov, I. N. Shtennikova, G. I. Okhrimenko, L. N. Andreyeva, G. A. Fomin, V. I. Pakhomov, Polym. Sci. USSR, 10, 636 (1968); Vysokomol. Soedin. A, 10,547(1968). 3262. V. N. Tsvetkov, G. A. Fomin, P. N. Lavrenko, I. N. Shten nikova, T. V. Sheremeteva, L. I. Godunova, Polym. Sci. USSR, 10, 1051 (1968); Vyokomol. Soedin. A, 10, 93 (1968). 3263. V. N. Tsvetkov, V. S. Skazka, G. V. Tarasova, V. M. Yamshchikov, S. Ya. Lyubina, Polym. Sci. USSR, 10, 81 (1968); Vyokomol, Soedin. A, 10, 74 (1968). 3264. V. N. Tsvetkov, I. N. Shtennikova, E. I. Riumtsev, Yu. P Getmanchuk, IUPAC Leiden, Preprints, VoI I, 51 (1970). 3265. V. N. Tsvetkov, K. A. Andrianov, G. I. Okhrimenko, I. N. Shtennikova, G. A. Fomin, M. G. Vitovskaya, V. I. Pakhomov, A. A. Yarosh, D. N. Andreyev, Polym. Sci USSR, 12, 2146 (1970); Vysokomol. Soedin. A, 12, 1892 (1970). 3266. V. N. Tsvetkov, N. N. Kupriyanova, G. V. Tarasova, P. N. Lavrnko, I. L Migunova, Polym. Sci. USSR, 12, 2238 (1970); Vysokomol. Soedin. A, 12, (1970). 3267. V. N. Tsvetkov, et al., Polym. Sci. USSR, 13, 705 (1971); Vysokomol. Soedin. A, 13, 620 (1971). 3268. V. N. Tsvetkov, E. N. Zakharova, G. A. Fomin, P. N. Lavrenko, Polym. Sci. USSR, 14,2192 (1972); Vysokomol. Soedin. A, 14, 1956(1972). 3269. V N. Tsvetkov, L. N. Andreyeva, Ye V Korneyeva, P. N. Lavrenko, N. A. Plate, V. P Shibayev, B. S. Petrukhin, Polym. Sci. USSR, 14, 1944 (1972). 3270. V. N. Tsvetkov, K. A. Andrianov, M. G. Vitovskaya, N. N. Makarova, E. N. Zakharova, S. V. Bushin, P. N. Lavrenko, Polym. Sci. USSR, 14,412 (1972 ); Vysokomol. Soedin. A, 14, 369 (1972). 3271. V. N. Tsvetkov, Ye. V. Korneyeva, I. N. Shtennikova, P. N. Lavrenko, G. F. Kolbina, D. Khardi, K. Nitrai, Polym. Sci. USSR, 14, 478 (1972); Vysokomol. Soedin. A, 14, 427 (1972). 3272. V. N. Tsvetkov, K. A. Andrianov, M. G. Vitovskaya, E. P. Astapenko, Poiym. Sci. USSR, 14, 3032 (1972); Vysokomol Soedin. A, 14, 2603 (1972). 3273. V. N. Tsvetkov, E. I. Rjumtsev, L. N. Andreeva, N. V Pogodina, P. N. Lavrenko, L. I. Kutsenko, Eur. Polym. J., 10, 563 (1974). 3274. V. N. Tsvetkov, I. N. Shtennikova, M. G. Vitovskaya, Ye. I. Ryumtsev, T. V. Pekker, Yu. P. Getmanchuk, P. N. Lav-
3275.
3276.
3277.
3278.
3279. 3280. 3281. 3282. 3283. 3284. 3285. 3286.
3287. 3288. 3289. 3290. 3291. 3292. 3293. 3294. 3295. 3296. 3297. 3298. 3299. 3300. 3301. 3302.
renko, S. V Bushin, Polym. Sci. USSR, 16, 655 (1974); Vysokomol. Sodien. A, 16, 566 (1974). V. N. Tsvetkov, I. N. Shtennikova, Ye. I. Ryumtsev, N. V. Pogodina, G. F. Kobina, Ye. V. Korneyeva, P. N. Lavrenko, O. V. Okatova, Yu. B. Amerik, A. A. Baturin, Polym. Sci. USSR, 18, 2302 (1976); Vysokomol. Soedin. A, 18, 2016 (1976). V. N. Tsvetkov, P N. Lavrenko, G. M. Paulov, S. V. Bushin, E. P. Astapenko, A. A. Boikov, N. A. SmTdyayeva, S. A. Didenko, B. F. Malichenko, Polym. Sci. USSR, 24, 2687 (1982); Vysokomol. Soedin. A, 24, 2343 (1982). V. N. Tsvetkov, L. N. Andreeva, P. N. Lavrenko, E. V. Believa, O. V. Okatova, A. Y. Bilibin, S. S. Skorokhodov, Eur. Polym. J., 20, 817 (1984). V. N. Tsvetkov, P. N. Lavrenko, L. N. Andreeva, A. I. Mashoshin, O. V. Okatova, O. I. Mikriukova, L. I. Kutsenko, Eur. Polym. J., 20, 823 (1984). L. H. Tung, J. Polym. Sci., 20, 495 (1956). L. H. Tung, J. Polym. Sci., 24, 333 (1956). L. H. Tung, S. P. E. Journal, 14, 25 (1958). L. H. Tung, J. C. Moore, G. W. Knight, J. Appl. Polym. Sci., 10, 1261 (1966). L. H. Tung, J. Polym. Sci., A-2, 7, 47 (1969). L. H. Tung, J. Macromol. Sci. Rev. Macromol. Chem. C, 6, 51 (1971). L. H. Tung, R. M. Wiley, J. Polym. Sci., Polym. Phys. Ed., 11, 1413 (1973). L. H. Tung (Ed.), "Fractionation of Synthetic Polymers Principle and Practices", Marcel Dekker, New York, 1977. L. H. Tung, J. Appl. Polym. Sci., 24, 953 (1979). S. R. Turner, M. Stolka, J. Polym. Sci., Polym. Chem. Ed., 16, 1167 (1978). E. Turska, M. Laczkowski, J. Polym. Sci., 23, 285 (1957). E. Turska, T. Skwarsi, Zeszyty Nauk. Plitech. Lodz Chem., 5, 21 (1957). E. Trsuka, A. Dems, M. Siniarska, Bull. Acad. Polon. Sci. Ser. Sci. Chim, 13, 189 (1965). E. Trsuka, T. Siniarska-Kapuscirika, Eur. Polym. J., 5, (Suppl.)., 431 (1969). E. Trsuka, A. M. Wrobel, Polymer, 11, 408 (1970). Z. Tuzar, P Kratochvi, M. Bohdanecky, J. Polym. Sci. C, 16, 633 (1967). Z. Tuzar, V. Petrus, P. Kratochvil, Makromol. Chem., 175, 3181 (1974). Z. Tuzar, B. Bednar, C. Konak, M. Kubin, S. Svobodova, K. Prochazka, Markomol. Chem., 183, 39 (1982). M. A. Twaik, M. Tahan, A. Zilkha, J. Polym. Sci., A-I, 7, 2469 (1969). US Patent, 2, 457, 238 (1948). K. Ueberreiter, H. J. Orthmann, G. Sorge, Makromol. Chem., 8, 21 (1952). K. Ueberreiter, R. Goetze, Makromol. Chem., 29, 61 (1959). K. Ueberreiter, J. Sringer, Z. Phys. Chem. N. F. (Frankfurt). 36, 299 (1963). K. Ueberreiter, W. Bruns, Ber Bunsenge Phys. Chem., 68, 541 (1964).
3303. K. Ueberreiter, J. Melheimer, J. Springer, Kolloid, Z.-Z. Polym., 234, 989 (1969). 3304. M. Ueda, Polym. J., 3, 431 (1972). 3305. M. Ueda, T. Abe, H. Awano, Macromolecules, 25, 5125 (1992). 3306. A. Uede, S. Nagai, J. Polym. Sci. Part A: Polym. Chern., 24, 405 (1986). 3307. N. Ueyama, T. Araki, H. Tani, Macromolecules, 7, 153 (1974). 3308. C. V. Uglea, Makromol. Chem., 166, 275 (1973). 3309. C. V. Uglea, Makromol. Chem., 175, 1535 (1974). 3310. C. V. Uglea, V. N. Stan, Brit. Polym. J., 14, 39 (1982). 3311. N. Ugur, K. Alyuriik, J. Polym. Sci. Part A: Polym. Chem., 27, 1749 (1989). 3312. H. I. Unal, C. Price, P. M. Budd, R. H. Mobbs, Eur. Polym. J., 30, 1037 (1994). 3313. C. A. Uraneck, J. E. Burleigh, J. Appl. Polym. Sci., 14, 267 (1970). 3314. C. A. Uraneck, J. N. Short, J. Appl. Polym. Sci., 14, 1421 (1970). 3315. K. Urushido, A. Matsumoto, M. Oiwa, J. Polym. Sci., Polym. Chem. Ed., 18, 1771 (1980). 3316. J. R. Urwin, J. M. Stearn. Makromol. Chem., 78,194 (1964). 3317. J. R. Urwin, J. Mckenzie, Steame, D. O. Jordan, R. A. Mills, Makromol. Chem., 72, 53 (1964). 3318. T. Usami, Y. Gotoh, S. Takayama, Macromolecules, 19, 2722 (1986). 3319. T. Usami, Y. Gotoh, S. Takayama, H. Ohtami, S. Tsuge, Macromolecules, 20, 1557 (1987). 3320. T. Usami, Y. Kogawa, S. Takayama, T. Koyama, Eur. Polym. J., 26, 699 (1990). 3321. T. Usami, Y. Gotoh, H. Umemoto, S. Takayama, J. Appl. Polym. Sci., Appl. Polym. Symp., 52, 145 (1993). 3322. S. N. Ushakov, S. P. Mitsengendier, V. N. Krasulina, Izv. Akad. Nauk SSSR, 3, 366 (1957). 3323. Kh. U. Usmanov, A. A. Yul'Chibaev, T. Sirlibaev, Plast. Massy, 2, 73 (1966). 3324. K. Ute, T. Asada, K. Hatada, Macromolecules, 29, 1904 (1996). 3325. H. Utiyama, J. Phys. Chem., 69, 4138 (1965). 3326. I. A. Vakhtina, O. G. Tarakanov, R. I. Khrenova, Polym. Sci. USSR, 16, 3022 (1974); Vysokomol. Soedin. A, 16, 2598 (1974). 3327. I. A. Vakhtina, A. G. Okuneva, K. Tekhrits, O. G. Tarakanov, Polym. Sci. USSR, 18, 541 (1976); Vysokomol. Soedin. A, 18, 471 (1976). 3328. I. A. Vakhtina, T. Bettger, A. P. Andreyev, O. S. Novozhilova, O. S. Tarakanov, Polym. Sci. USSR, 18, 2447 (1976); Vysokomol. Soedin. A, 18, 2138 (1976). 3329. I. K. Vakhtina, Ye. A. Petrakova, H. Knopp, G. A. Gladkovskii, Polym. Sci. USSR, 20, 2689 (1978); Vysokomol. Soedin. A, 20, 2388 (1978). 3330. I. K. Vakhtina, Ye. A. Petrakova, U. Pentsel', O. G. Tarakanov, Polym. Sci., USSR, 22, 1833 (1980); Vysokomol. Soedin. A, 22, 1671 (1980). 3331. I. A. Vakhtina, G. V. Shirokova, A. G. Okuneva, Polym. Sci. USSR, 24, 2290 (1982); Vysokomol. Soedin. A, 24, 2002 (1982).
3332. D. G. Val'kovkii, S. L. Sosin, V. V. Krsohak, S. A. Pavlova, Polym. Sci. USSR, 6, 2044 (1964); Vysokomol. Soedin., 6, 1848 (1964). 3333. R. H. Valentine, J. D. Ferry, T. Homma, K. Ninomiya, J. Polym. Sci. A-2, 6, 479 (1968). 3334. R. J. Valles, E. C. Schramm, J. Polym. Sci. A-I, 3, 3853 (1965). 3335. R. J. Valles, Polym. Preprints, 6 (2), 1041 (1965). 3336. R. J. Valles, Makromol. Chem., 113, 147 (1968). 3337. R. J. Valles, Polym. Preprints, 9 (1), 752 (1968). 3338. I. Valyi, A. G. Janssen, H. Mark. J. Phys. Chem., 49, 461 (1945). 3339. A. C. van Asten, W. Th. Kok, R. Tijssen, H. Poppe, J. Chromatogr. A, 676, 361 (1994). 3340. A. C. Van Asten, H. F. M. Boelens, W. T. Kok, H. Poppe, P. S. Williams, J. C. Giddings, Sep. Sci. Technol, 29, 573 (1994). 3341. J. A. P. P. Van DiJk, W. C. M. Henkens, J. A. M. Smit, J. Polym. Sci., Polym. Phy. Ed., 14, 1485 (1976). 3342. J. A. P. P. Van Dijk, J. A. M. Smit, F. E. Kohn, J. Feijen, J. Polym. Sci., Polym. Chem. Ed., 21, 197 (1983). 3343. W. N. E. Van Dijk-Wolthuis,O. Franssen, H. Talsma, M. J. Van Steenbergen, J. J. Kettenes-vanden Bosch, W. E. Hennink, Macromolecules, 28, 6317 (1995). 3344. J. G. Van Dusen, J. F. O'Malley, J. Polym. Sci., Polym. Lett. Ed., 18,493 (1980). 3345. M. E. Van Kreveld, N. Van Den Hoed, J. Chromatogr., 149, 71 (1978). 3346. D. C. Van Landuyt, C. W. Huskins, J. Polym. Sci. B, 6, 643 (1968). 3347. D. C. Van Landuyt, J. Polym. Sci., Polym. Lett. Ed., 10,125 (1972). 3348. R. Van Leemput, R. Stein, J. Polym. Sci. A, 1, 985 (1963). 3349. J. G. Van Ommen, H. A. Polman, P. C. J. M. VanBerkel, P. J. Gellings, Eur. Polym. J., 16, 1051 (1980). 3350. J. Van Schooten, P. W. O. Wijga, Makromol. Chem., 43, 23 (1961). 3351. J. Van Schooten, H. Van Hoorn, J. Boerma, Polymer, 2, 161 (1961). 3352. E. J. Vandenberg, J. Polym. Sci., C, 1, 207 (1963). 3353. I. K. Varma, S. S. Grover, J. Appl. Polym. Sci., 14, 2965 (1970). 3354. I. K. Varma, K. K. Sharma, Angew, Makromol. Chem., 79, 147 (1979). 3355. I. K. Varma, S. Patnaik, J. Polym. Sci., Polym. Chem. Ed., 17, 3279 (1979). 3356. D. S. Varma, R. K. Sarkar, Angew, Makromol. Chem., 35, 203 (1974). 3357. S. K. Varshney, Ch. Jacobs, J. P. Hautekeer, P. Bayard, R. Jerome, R. Fayt, P. Teyssie, Macromolecules, 24, 4997 (1991). 3358. S. K. Varshney, Z. Gao, X. F. Zhong, A. Eisenberg, Macromolecules, 27, 1076 (1994). 3359. N. I. Vasil'ev, V. I. Irzhak, V. I. Kartsovnik, N. S. Yenikolopyan, Polym. Sci. USSR, 12, 2276 (1970); Vysokomol. Soedin. A, 12, 2006 (1970).
3360. O. I. Vasilova, V. V. Zaitseva, R. V. Kucher, Polym. Sci. USSR 23, 657 (1981); Vysokomol. Soedin. A, 23, 587 (1981). 3361. O. I. Vasilova, R. V. Kucher, Polym. Sci. USSR, 25, 2276 (1983); Vysokomol. Soedin., 25, 2276 (1983). 3362. P. Vasudevan, M. Santappa, Makromol. Chem., 137, 261 (1970). 3363. P. Vasudevan, M. Santappa, J. Polym. Sci. A-2, 9, 483 (1971). 3364. G. Vaughan, D. E. Eaves, W. Cooper, Polymer, 2, 235 (1961). 3365. M. F. Vaughan, M. A. Francis, J. Appl. Polym. Sci., 21, 2409 (1977). 3366. J. M. Vela Estrada, A. E. Hamielec, Polym. Reaction Eng., 1, 171 (1992-93). 3367. J. Velickovic, D. Jovanovic J. Vukajlovic, Makromol. Chem., 129,203 (1969). 3368. J. Velickovic, V. Juranicova, J. Filipovic, Angew. Makromol. Chem., 24, 77 (1972). 3369. J. Velickovic, J. Filipovic, IUPAC Helsinki, Preprints, Vol. Ill, 11-67 (1972). 3370. J. Velickovic, S. Vasovic, Makromol. Chem., 153, 207 (1972). 3371. J. Velickovic, S. Coseva, R. J. Fort, Eur. Polym. J., 11, 377 (1975). 3372. J. Velickovic, M. Plavsic, Eur. Polym. J., 12, 151 (1976). 3373. J. Velickovic, J. Filipvic, Macromolecules, 17, 611 (1984). 3374. J. Velickovic, J. Filipovic, Makromol. Chem., 185, 569 (1984). 3375. K. Venkatarao, M. Santappa, J. Polym. Sci. A-I, 8, 1785 (1970). 3376. J. C. Via, C. L. Brave, L. T. Taylor, Anal. Chem., 66, 603 (1994). 3377. J. L. Vidal, P. Crouzet, MA. Martens, J. Chromatogr. Sci., 20, 252 (1982). 3378. G. Vidotto, R. Zannetti, L. Cavalli, Makromol. Chem., 146, 159(1971). 3379. L. Vilenchik, R. Ayotte, J. Appl. Polym. Sci., Appl. Polym. Symp., 51, 73 (1992). 3380. M. Villacampa, J. R. Quintana, R. Salazar, I. Katime, Macromolecules, 28, 1025 (1995). 3381. H. Vink, R. Wikstrom, Svensk. Papperstid., 66, 55 (1963). 3382. F. Vira, K. Viras, F. Aroni, A. Dondos, Eur. Polym. J., 10, 891 (1974). 3383. F. Viras, Y-Z. Luo, K. Viras, R. H. Mobbs, T. A. King. C. Booth, Makromol. Chem., 189, 459 (1988). 3384. D. Vitalini, E. Scamporrino, P. Maravigna, Macromolecules, 27, 2291 (1994). 3385. M. G. Vitovskaya, E. P. Astapenko, V Ya. Nikolayev, S. A. Didenko, V. N. Tsvetkov, Polym. Sci. USSR, 18, 788 (1976); Vysokomol. Soedin. A, 18, 691 (1976). 3386. Ye. I. Vizen, F. I. Yakobson, Polum. Sci. USSR, 20, 1046 (1978); Vysokomol. Soedin. A, 20, 927 (1976). 3387. J. Vizzini, F. Ciardelli, J. C. W. Chein, Macromolecules, 25, 108 (1992). 3388. P. Vicek, J. Janca, J. Trekoval. Makromol. Chem., Rapid. Commun., 1, 485 (1980).
3389. P. Vicek, J. Otoupalova, A. Sikora, J. Kriz, Macromolecules, 28, 7262 (1995). 3390. R. E. Vogel, Kunststoffe, 42, 17 (1952). 3391. R. E. Vogel, Kunststoffe, 44, 335 (1954). 3392. L. A. Volkova, Ye. A. Andreyeva, V. Ye. Eskin, Polym. Sci. USSR, 20, 986 (1978); Vysokomol. Soedin. A, 20, 874 (1978). 3393. B. Vollmert, J.-X. Huang, Makromol. Chem., Rapid Commun, 1, 333 (1980). 3394. W. C. Von Dohlen, T. P. Wilson, J. Polym. Sci., Polym. Chem., Ed., 17, 2511 (1979). 3395. P. H. Von Dreele, N. Lotan, V. S. Ananthanarayanan, R. H. Andreatta, D. Poland, H. A. Scheraga, Macromolecules, 4, 408 (1971). 3396. E. Von Meerwall, D. H. Tomich, N. Hadjichristidis, L. J. Fetters, Macromolecules, 15, 1157 (1982). 3397. M. J. Voorn, Fortsch. Hochpolym. Forsch., 1, 192 (1959). 3398. B. Ya. Voronov, G. I. Volkova, Zarodsk. Lab., 30, 1411 (1964). 3399. N. G. Vyas, S. Shashikant, C. K. Patel, R. D. Patel. J. Polym. Sci., Polym. Phys. Ed., 17, 2021 (1979). 3400. Yu, P. Vyrskii, O. A. Klapovskaya, N. V. Andrianova, O. F. Alkayeva, Polym. Sci. USSR, 10, 1959 (1968); Vysokomol Soedin. A, 10, 1688 (1968). 3401. T. Wada, S. Machi, J. Polym. Sci., Polym. Lett. Ed., 11, 115 (1973). 3402. T. Wada, M. Takehisa, S. Machi, J. Polym. Sci., Polym. Chem. Ed., 12, 1629 (1974). 3403. T. Wada, T. Watanabe, M. Takehisa, S. Machi, J. Polym. Sci., Polym. Chem. Ed., 12, 1585 (1974). 3404. J. I. Wadsworth, L. Segal, J. D. Timpa, Polym. Preprints, 12, (2)., 854 (1971). 3405. R. H. Wanger, J. Polym. Sci., 2, 21 (1974). 3406. H. L. Wanger, P. J. Flory, J. Am. Chem. Soc, 74, 195 (1952). 3407. E. R. Wanger, R. J. Greff, J. Polym. Sci., A-I, 9, 2193 (1971). 3408. K.-G. Wahlund, H. S. Winegarner, K. D. Caldwell, J. C. Giddings, Anal. Chem., 58, 573 (1986). 3409. M. Wales, J. W. Williams, J. O. Thompson, R. H. Ewart, J. Phys, Colloid. Chem., 52, 983 (1948). 3410. M. Wales, F. T. Adler, K. E. Van Holde, J. Phys, Colloid, Chem., 55, 145 (1951). 3411. M. Wales, D. L. Swanson, J. Phys. Colloid. Chem., 55, 203 (1951). 3412. M. Wales, S. J. Rehfield, J. Polym. Sci., 62, 179 (1962). 3413. M. L. Wallach, Polym. Preprints, 10 (2), 1248 (1969). 3414. A. WaIy, N. Y Abou-Zeid, E. A. El-Alfy, A. Hebeish, Angew. Makromol. Chem., 103, 61 (1982). 3415. R. WaIz, W. Heitz, J. Polym. Sci., Polym. Chem. Ed., 16, 1807 (1978). 3416. P-g. Wand, A. Woodward, Macromolecules, 20, 1818 (1987). 3417. F. Wang, J. Roovers, P. M. Toporowski, Macromolecules, 26, 2826 (1993). 3418. J.-S. Wang, J. R. Knox, R. S. Porter, J. Polym. Sci., Polym. Phys. Ed., 16, 1709 (1978).
3419. J. Wang, P. Bayard, R. Jermoe, P. Teyster, S. V. Varshney, Macromolecules, 26, 2386 (1993). 3420. L. Wang, Y.-H. Ko. W. P. Weber, Macromolecules, 25,2828 (1992). 3421. S. Wang, J. E. Mark. Polym. Bull., 31, 205 (1993). 3422. T. P. Wang, G. Heidemann, G. Walk, Angew. Makromol. Chem., 25, 69 (1972). 3423. S. Wanigatunga, K. B. Wagener, Macromolecules, 22,4156 (1989). 3424. G. Wanka, H. Hoffmann, W. Ulbricht, Macromolecules, 27, 4145 (1994). 3425. H. A. Wannow, R Thormann, Kolloid, Z., 112, 94 (1949). 3426. V. Warzelhan, H. Hoecker, G. V. Schulz, Makromol. Chem., 179, 2221 (1978). 3427. H. Watanabe, T. Kotaka, Polym. J., 14, 739 (1982). 3428. H. Watanabe, H. Yashida, T. Kotaka, Macromolecules, 21, 2175 (1988). 3429. H. Watanabe, T. Shimura, T. Kotaka, M. Tirrell, Macromolecules, 26, 6338 (1993). 3430. M. Watanabe, M. Togo, K. Sanui, N. Ogata, T. Kobayashi, E. Ohtaki, Macromolecules, 17, 2908 (1984). 3431. M. Watanabe, M. Rikukawa, K. Sanui, N. Ogata, N. Kato, T. Kobayashi, Z. Ohtaki, Macromolecules, 17,2902 (1984). 3432. S. Watanabe, J. Hayashi, T. Akahori, J. Polym, Sci., Polym. Chem Ed., 12, 1065 (1974). 3433. T. Watanabe, T. Wada, S. Machi, M. Takeshisa, J. Polym. Sci., Polym. Lett. Ed., 10, 741 (1972). 3434. T. Watanabe, T. Wada, M. Takehisa, S. Machi, J. Polym. Sci., Polym. Chem. Ed., 12, 1609 (1974). 3435. T. Watanabe, T. Wada, M. Takeshia, S. Machi, J. Polym. Sci., Polym. Ed., 12, 1619 (1974). 3436. Y. Watanabe, T. Aida, S. Inoue, Macromolecules, 23, 2612 (1990). 3437. J. L. Waters, Polym. Preprints, 6 (2), 1061 (1965). 3438. W. F. Watson, J. Polym. Sci., 13, 595 (1954). 3439. J. W. Ways, S. Nan, W. Yuman, J. Li. N. Hadjichristidis, Macromolecules, 24, 4469 (1991). 3440. T. J. R. Weakley, R. J. P Williams, J. D. Wilson, J. Chem. Soc, 3963 (1960). 3441. N. E. Weeks, S. Mori, R. S. Porter, J. Polym. Sci., Polym. Phys. Ed., 13, 2031 (1975). 3442. G. Weinand, G. Smets, J. Polym. Sci., Polym. Chem. Ed., 16, 3091 (1978). 3443. K. Weinmann, B. A. Wolf, M. T. Ratzch, L. Tschersich, J. Appl. Polym. Sci., 45, 1265 (1992). 3444. j . K. Weise, Polym. Preprints, 12 (1)., 512 (1971). 3445. P. Weiss, J. Herz, P Rempp, Z. Gallot, H. Benoit, Makromol. Chem., 145, 105 (1971). 3446. G. J. Welch, Polymer, 15, 429 (1974). 3447. J. D. Welions, A. Schindler, V. Stannett, Polymer, 5, 499 (1964). 3448. F. Wenger, S. P. S. Yen, Makromol. Chem., 43, 1 (1961). 3449. F. Wenger, Makromol. Chem., 64, 151 (1963). 3450. G. Wenz, G. Wegner, Makromol. Chem., Rapid Commun., 3, 231 (1982). 3451. H. Wesslau, Makromol. Chem., 20, 111 (1956). 3452. H. Wesslau, Makromol. Chem., 26, 102 (1958).
3453. H. Wesslau, Makromol. Chem., 26, 96 (1958). 3454. B. Wesslin, G. Gunneby, G. Hellstroem, P. Svedling, IUPAC Helsinki, Preprints, Vol. I, 1/46 (1972). 3455. B. Westall, Polymer, 9, 423 (1968). 3456. L. Westerman, J. C. Clark, J. Poly Sci., Polym. Phys. Ed., 11, 559 (1973). 3457. R. L. Whistler, H. J. Roberts, J. Org. Chem., 26, 2458 (1961). 3458. H. Whitaker, G. Hills, J. Appl. Polym. Sci., 13, 1921 (1969). 3459. D. M. White, Polym. Preprints, 12 (1), 155 (1971). 3460. D. M. White, Macromolecules, 12, 1008 (1979). 3461. J. E. White, M. D. Scaia, Polymer, 25, 850 (1984). 3462. B. A. Whitehouse, Macromolecules, 4, 463 (1971). 3463. L. R. Whitlock, R. S. Porter, J. Polym. Sci., Polym. Phys. Ed., 10, 877 (1972). 3464. N. M. Wiederhorn, A. R. Brown, J. Polym. Sci., 8, 651 (1952). 3465. N. Wiemers, G. Wegner, Makromol. Chem., 175, 2719 (1974). 3466. D. R. Wiff, M. Gehatia, A. Wereta, J. Polym. Sci., Poly Phys. Ed., 13, 275 (1975). 3467. R W. O. Wijga, J. Van Schooten, J. Boerma, Makromol. Chem., 36, 115 (1960). 3468. J. G. Wijmans, C. A. Smolders, Eur. Polym. J., 19, 1143 (1983). 3469. L. Wild, R. Guliana, J. Polym. Sci. A-2, 5, 1087 (1967). 3470. L. Wild, R. Ranganath, T. RyIe, J. Polym. Sci. A-2, 9, 2137 (1971). 3471. L. Wild, R. Ranganath, T. RyIe, Polym. Preprints, 12 (1)., 266 (1971). 3472. L. Wild, R. Ranganath, A. Barlow, J, Appl. Polym. Sci., 21, 3331 (1977). 3473. L. Wild, T. R. RyIe, Polym. Preprints, Am. Chem. Sco., Polym. Chem. Div., 18, 182 (1977). 3474. L. Wild, T. R. RyIe, D. C. Knobeloch, I. R. Peat, J. Polym. Sci., Polym. Phys. Ed., 20, 441 (1982). 3475. L. Wild, Adv. Polym. Sci, 98, 1 (1990). 3476. L. Wild, TRIP, 1, 50 (1993). 3477. C-E. Wilen, J. H. Nasman, Macromolecules, 27, 4051 (1994). 3478. D. L. Wilfong, G. W. Knight, J. Polym. Sci., Polym. Phys. Ed., 28, 861 (1990). 3479. T. Williams, Y. Udagawa, A. Keller, I. M. Ward, J. Polym. Sci., A-2, 8, 35 (1970). 3480. G. R. Williamson, A. Cervenka, Eur. Polym. J., 8, 1009 (1972). 3481. F. Wiloth, Makromol. Chem., 8, i l l (1952). 3482. F. Wiloth, Makromol. Chem., 14, 156 (1954). 3483. J. E. Wilson, J. Macromol. Sci. Part A: Chem., 8, 307 (1974). 3484. J. C. Wilson, J. Polym. Sci., Polym. Chem. Ed., 14, 2927 (1976). 3485. W. W. Wilson, P. Fanz, G. D. McGinnis, J. Appl. Polym. Sci., 24, 2195 (1979). 3486. E. Wipfelder, H. Heusinger, J. Poly Sci., Polym. Chem. Ed., 16, 1779 (1978).
3487. 3488. 3489. 3490. 3491. 3492. 3493. 3494. 3495. 3496. 3497. 3498. 3499. 3500. 3501. 3502. 3503. 3504. 3505. 3506. 3507. 3508. 3509. 3510.
3511. 3512. 3513. 3514. 3515. 3516. 3517. 3518. 3519.
M. Wirick, M. Waldman, J. Appl. Polym. Sci., 14, 579 (1970). A. Wirsen, Makromoi. Chem., 189, 833 (1988). P. Wisian-Neilson, M. Bahadur, J. M. Iriarte, R. R. Ford, Ch. E. Wood, Macromolecules, 27, 4471 (1994). J. Witte, M. Hoffman, Makromoi. Chem., 179, 641 (1978). U. Wittenberger, J. Klein, Angew. Makromoi. Chem., 8, 133 (1969). J. F. Wolfe, J. K. Stille, Macromolecules, 9, 489 (1976). E. Wolfram, M. Nagy, Kolloid, Z.-Z. Polym., 227, 86 (1968). R. H. Wondraczek, J. P. Kennedy, Polym. Bull., 2, 675 (1980). R. H. Wondraczek, H. E. Hotzel. G. Heublein, Polym. Bull., 7, 377 (1982). P. V. Wright, J. Polym. Sci., Polym. Phys. Ed., 11, 51 (1973). C. Wu, K. F. Woo, X. Luo, D.-Z. Ma, Macromolecules, 27, 6055 (1994). C. Wu, M. Siddiq, S. Jiang. Y. Huang, J. Appl. Polym. Sci., 58, 1779 (1995). C. Wu, S. Bo, M. Siddiq, G. Yang. T. Chen, Macromolecules, 29, 2989 (1996). X. Y. Wu, D. Hunkeler, A. E. Hamielec, R. H. Pelton, D. R. Woods, J. Appl. Polym. Sci., 42, 2081 (1991). W. Wunderlich, Makromoi. Chem., 177, 973 (176). D. P. Wyman, T. Altares, Jr., Marokmol. Chem., 72, 68 (1964). D. P Wyman, L. J. Elyash, W. J. Frazer, J. Polym. Sci. A-I, 3, 861 (1965). D. P. Wyman, I. H. Song, Makromoi. Chem., 115, 64 (1968). M. G. Wyzgoski, J. Appl. Polym. Sci., 26, 1689 (1981). X. Xie, T. E. Hogen-Esch, Macromolecules, 29, 1734 (1996). J. Xu, A. E. Woodward, Macromolecules, 19, 1114 (1986). G. Xu, S. Lin, Macromolecules, 30, 685 (1997). G. Xue, Y. Wang, S. Liu, Y Liao, Macromolecules, 28, 3476 (1995). A. I. Yakubchik, B. I. Tikhumirov, L. N. Mikhailova, Polym. Sci. USSR, 7, 1728 (1965); Vysokomol. Soedin., 7, 1562 (1965). A. Yamada, Y. Yamamuro, M. Yanagita, Bull. Chem. Soc. Japan, 35, 609 (1962). B. Yamada, T. Otsu, Makromoi. Chem., 190, 915 (1989). M. Yamada, T. Iguchi, A. Hirao, S. Nakahama, J. Watanabe, Macromolecules, 28, 50 (1995). T. Yamada, T. Yoshizaki, H. Yamakawa, Macromolecules, 25, 1487 (1992). R. Yamadera, C. Sonode, J. Polym. Sci. B, 3, 411 (1965). K. Yamaguchi, S. Saeda, J. Polym. Sci., A-2, 7, 1303 (1969). K. Yamaguchi, Makromoi. Chem., 128, 19 (1969). K. Yamaguchi, Makromoi. Chem., 132, 143 (1970). K. Yamaguchi, T. Wada, S. Maruyama, M. Takehisa, J. Polym. Sci., Polym. Phys. Ed., 11, 1573 (1973).
3520. K. Yamaguchi, A. Hirao, K. Suzuki, K. Takenaka, S. Nakahama, N. Yamazaki, J. Polym. Sci., Polym. Lett. Ed., 21, 395 (1983). 3521. S. Yamaguchi, H. Hayashi, F. Hamada, A. Nakajima, Macromolecules, 17, 2131 (1984). 3522. K. Yamamoto, H. Fujita, Polymer, 7, 557 (1966). 3523. K. Yamamoto, H. Fujita, Polymer, 8, 517 (1967). 3524. K. Yamamoto, N. Bessho, T. Shibashi, E. Maekawa, Polym. J., 13, 555 (1981). 3525. K. Yamamoto, N. Jikei, K. Miyatake, J. Katoh, H. Nishida, E. Tsuchida, Macromolecules, 27, 4312 (1994). 3526. T. Yamamoto, D. Oguro, K. Kubota, Macromolecules, 29, 1833 (1996). 3527. Y Yamamoto, I. Noda, M. Nagasawa, Polym. J., 1, 304 (1970). 3528. S. Yamashita, H. Tani, Macromolecules, 7, 406 (1974). 3529. Y Yamashita, S. Miura, M. Nakamura, Makromoi. Chem., 68, 31 (1963). 3530. Y Yamashita, K. Nobutoki, Y. Nakamura, M. Hirota, Macromolecules, 4, 548 (1971). 3531. Y. Yamashita, M. Hirota, H. Matsui, A. Hirao, K. Nobutoki, Polym. J., 2 , 4 3 (1971). 3532. Y Yamashita, K. Ito, K. Chiba, S. Kozawa, Polym. J., 3, 389 (1972). 3533. Y. Yamashita, Polym. Preprints, 13 (1), 151 (1972). 3534. Y. Yamashita, Y. Tsukahara, H. Ito, Polym. Bull., 7, 289 (1982). 3535. K. Yamaura, S. Matsuzawa, Y. Go. Kolloid, Z.-Z. Polym. 240, 820 (1970). 3536. K. Yamaura, S. Kinugasa, S. Matsuzawa, Kolloid. Z.-Z. Polym. 248, 893 (1971). 3537. K. Yamaura, Y. Hoe, S. Matsuzawa, Y. Go, Kolloid, Z.-Z. Polym. 243, 7 (1971). 3538. M. Yamawaki, A. Matsumoto, M. Oiwa, J. Polym. Sci., Polym. Chem. Ed., 22, 1541 (1984). 3539. N. Yamazaki et al., Kogyo Kagaku Zasshi, 64, 1687 (1961). 3540. Y. C. Yang, J. C. Lim, H. G. Woo, S. K. Choi, J. Macromol. Sci. Part A: Chem., 18, 677 (1982). 3541. C. B. Yang, C. C. Hsu, J. Appl. Polym. Sci., 58, 1245 (1995). 3542. C-W. Yang, Z. Yang, Z.-K. Zhou, D. A. Attwood, C. Booth, Macromolecules, 29, 670 (1996). 3543. Z. Yang, S. Pickard, N.-J. Deng, R. J. Barlow, D. Attwood, C. Booth, Macromolecules, 27, 2371 (1994). 3544. J. A. Yanko, J. Polym. Sci., 3, 576 (1948). 3545. J. A. Yanko, J. Polym. Sci., 22, 153 (1956). 3546. J. F. Yanus, J. M. Pearson, Macromolecules, 7, 716 (1974). 3547. H. Yasuda, J. A. Wray, V. Stannett, J. Polym. Sci. C, 2, 387 (1963). 3548. T. Yasuda, T. Aida, S. Inoue, Makromoi. Chem., Rapid Commun., 3, 585 (1982). 3549. T. Yasuda, T. Aida, S. Inoue, Macromolecules, 16, 1792 (1983). 3550. T. Yasuda, T. Aida, S. Inoue, Macromolecules, 17, 2217 (1984). 3551. W. W. Yau, C. P. Halone, J. Polym. Sci. B, 5, 663 (1967).
3552. W. W. Yau, J. J. Kirkland, D. D. BIy, "Modern Size Exclusion Chromatography", Wiley-Interscience, New York, 1979. 3553. W. W. Yau, J. Appl Polym. ScL, Appl Polym. Symp., 48, 85 (1991). 3554. M. Yazdani-Pedram, L. Gargallo, D. Radic, Eur. Polym. J., 21, 461 (1985). 3555. S. J. Yeh, H. L. Frisch, J. Polym. Sci., 27, 149 (1958). 3556. S.-P. S. Yen, Makromol. Chem., 81, 152 (1965). 3557. D. R. Yen, S. Raghavan, E. W. Merrill, Macromolecules, 29, 8977 (1996). 3558. M. A. Yeremina, Ye. G. Erenburg, I. Ya. Poddubnyi, Polym. Sci. USSR, 20, 2480 (1978); Vysokomol. Soedin. A, 20, 2207 (1978). 3559. V. V. Yevreinov, V. I. Gerbich, L. I. Sarynina, S. G. Entelis, Polym. Sci USSR, 12, 938 (1970); Vysokomol. Soedin. A, 12, 829 (1970). 3560. R. Yin. T. Hogen-Esch, Macromolecules, 26, 6952 (1993). 3561. O. Ying, P. Xie, M. Je, Makromol. Chem., Rapid Commun., 6, 105 (1985). 3562. M. Yokouchi, Y Kobayashi, J. Appl. Polym. Sci., 26, 431 (1981). 3563. Y. Yokoyama, M. Okada, H. Sumitomo, Polym. J., 11, 629 (1979). 3564. K. Yoshida, Y Yamashita, Makromol. Chem., 100, 175 (1967). 3565. K. Yoshida, K. Ishigure, H. Garreau, V. Stannett, J. Macromol. Sci. Part A: Chem., 14, 739 (1980). 3566. H. Yoshida, K. Nakamura, Y Kobayashi, Polym. J., 14, 855 (1982). 3567. N. Yoshie, H. Menju, H. Sato, Y. Inoue, Macromolecules, 28, 6516 (1995). 3568. T. Yoshimura, T. Masuda, T. Higahimura, Macromolecules, 21, 1899 (1988). 3569. M. Yoshioka, T. Otsu, Macromolecules, 25, 559 (1992). 3570. J. F. S. Yu, J. L. Zakin, G. K. Patterson, J. Appl. Polym. Sci., 23, 2493 (1973). 3571. T. Tu, S. Fu, S. Li, C. Ji, W. Cheng, Polymer, 25, 1363 (1984). 3572. Y. S. Yu, R. Jerome, R. Fary, Ph. Teyssie, Macromolecules, 27, 5957 (1994). 3573. A. A. Yulchibayev, Kh. U. Usmanov, A. Kh. Gufarov, A. Matyakubov, IUPAC Helsinki Preprints, Vol. II, 1/153 (1972). 3574. M. M. Zafar, R. Mahmood, S. A. Wadood, Makromol. Chem., 160, 313 (1972). 3575. M. M. Zafar, R. Mahmood, Makromol, Chem., 175, 903 (1974). 3576. Yu, S. Zaitsev, V. D. Yenal'ev, A. I. Yurzhenko, Polym. Sci. USSR, 12, 2831 (1970); Vysokomol. Soedin. A, 12, 2500 (1970). 3577. A. Zambelli, P. Ammendola, A. J. Sivak, Makromol. Chem., 17, 461 (1984). 3578. L. V. Zamoiskaya, E. S. Gankina, Ye. B. Milovskaya, Polym. Sci. USSR, 18, 1873 (1976); Vysokomol. Soedin. A, 18, 1635 (1976). 3579. G. Zanocco, E. Abuin, E. Lissi, L. Gargallo, D. Radic, Eur. Polym. J., 18, 1037 (1982).
3580. 3581. 3582. 3583.
3584. 3585.
3586. 3587. 3588. 3589. 3590. 3591. 3592. 3593. 3594. 3595.
3596.
3597.
3598. 3599. 3600. 3601. 3602. 3603. 3604. 3605. 3606. 3607. 3608.
F. Zapf, Makromol. Chem., 3, 164 (1949). F. Zapf, Makromol. Chem., 10, 35 (1953). F. Zapf, Makromol. Chem., 10, 61 (1953). I. N. Zaripov, V. V. Beresnev, P. A. Kirpichnikov, Polym. Sci., USSR, 18, 2547 (1976); Vysokomol. Soedin. A, 18, 2228 (1976). B. Zaschker, J. P. Kennedy, Macromolecules, 28, 4426 (1995). V. I. Zegel'man, M. N. Shlykova, S. V. Svetozarskli, Ye, N. Zil'berman, Polym. Sci. USSR, 10, 133 (1968); Vysokomol Soedin. A, 10, 114 (1968). R. P. Zelinski, C. F. Wofford, J. Polym. Sci. A-I, 3, 93 (1965). A. C. Zettlemoyer, E. T. Pieski, Ind. Eng. Chem. 45, 165 (1953). X. Zhang, Q. Zhou, W. P. Weber, R. F. Horvath, T. H. Chan, G. Manuel, Macromolecules, 21, 1563 (1988). X. F. Zhang, E. Eisenberg, Macromolecules, 27, 4915 (1994). X.-H. Zhang, R. West, J. Polym. Sci., Polym. Chem. Ed., 22, 159 (1984). X.-H. Zhang, R. West, J. Polym. Sci., Polym. Chem. Ed., 22, 225 (1984). Y Zhang, R. A. Gross, R. W. Lenz, Macromolecules, 23, 3206 (1990). Z. Zhao, R. Wartkins, S. W. Barton, J. Appl. Polym. Sci., 55, 773 (1995). J. Q. Zhao, E. M. Pearce, T.K. Kwei, H. S. Jeon, P. K. Kesani, N. P. Balsara, Macromolecules, 28, 1972 (1995). S. Ya Zhelobayeva, A. V Troitskaya, T. N. Osipova, S. I. Klenin, A. F. Nikolayev, Polym. Sci. USSR, 13,951 (1971); Vysokomol. Soedin. A, 13, 842 (1971). H. Zhiduan, Y. Meina, Z. Xuanqui, W. Xiaobing, J. Xiaoming. H. Jiaxian, L. Chuynrong. W. Linfu, Eur. Polym. J. 22, 597 (1986). S. Zhiquan, O. Jun, W. Fusong, H. Zhenya, V Fusheng, Q. Baogong, J. Polym. Sci., Polym., Chem. Ed., 18, 3345 (1980). X. Zhongde, S. Mingshi, N. Hadjichristidis, L. J. Fetters, Macromolecules, 14, 1591 (1981). X. Zhongde, N. Hadjichristidis, L. J. Fetters, Macromolecules, 17, 2303 (1984). X. Zhonge, Y Ping, Z. Jinngguo, J. Erfand, W. Meiyan, J. Appl. Polym. Sci., 37, 3195 (1989). S. Q. Zhou, W. P. Weber, Macromolecules, 23, 1915 (1990). X. Q. Zhou, J. N. Hay, Eur. Polym. J., 29, 291 (1993). X.-Q. Zhou, J. N. Hay, Polymer, 34, 2283 (1993). H. Zhuang, J. A. Gardella, Jr, D. M. Hercules, Macromolecules, 300, 1153 (1997). M. Zief, G. Brunner, J. Metzendorff, Ind. Eng. Chem., 48, 119(1956). J.-G. Zilliox, P. Rempp, J. Parrod, J. Polym. Sci. C, 22, 145 (1968). A. Zivny, J.Pouchly, K. Sole, Coll. Czech. Chem. Commun. 32, 2753 (1967). W. X. Zukas, W. J. Mac Knight, R. W. Lenz, Polym. Bull., 2, 263 (1980).
S o l v e n t s
a n d
N o n
S o l v e n t s
f o r
P o l y m e r s
D a n i e l R. B l o c h Lakeshore Research, 5536 W. Branch Trail Racine, Wl, USA 53402
A. Introduction VII-498 B. Abbreviations VII-498 C. Tables of Solvents and Nonsolvents VII-499 Table 1. Main-Chain Acyclic Carbon Polymers VII-499 1.1. Poly(dienes), Poly(acetylenes) VII-499 1.2. Poly(alkenes) VII-500 1.3. Poly(acrylics), Poly(methacrylics) VII-501 1.3.1. Poly(acrylic acids) VII-501 1.3.2. Poly(acrylates) VII-501 1.3.3. Poly(methacrylates) VII-501 1.3.4. Poly(disubstituted esters) VII-502 1.3.5. Poly(acrylamides), Poly(methacrylamides) VII-503 1.4. Poly(vinyl ethers) VII-503 1.5. Poly(vinyl alcohols), Poly(acetals), Poly(vinyl ketones) ' VII-504 1.6. Poly(vinyl halides) VII-505 1.7. Poly(vinyl nitrites) VII-506 1.8. Poly(vinyl esters) VII-506 1.9. Poly(styrenes) VII-507 1.10. Other Compounds VII-508 Table 2. Main-Chain Carbocyclic Polymers VII-509 2.1. Poly(phenylenes) VII-509 2.2. Other Compounds VII-510 Table 3. Main-Chain Carbonyl Polymers VII-510 Table 4. Main-Chain Acyclic Heteroatom Polymers VII-511 4.1. Main-Chain - C - O - C Polymers VII-511 4.1.1. Poly(oxides) VII-511 4.1.2. Poly(carbonates) VII-513 4.1.3. Poly(esters) VII-513 4.1.4. Poly(anhydrides) VII-515 4.1.5. Poly(urethanes) VII-515 4.2. Main-Chain - O - Heteroatom Polymers VII-515 4.2.1. Poly(sulfonates) VII-515 4.2.2. Poly(siloxanes) VII-516
4.3.
Table 5.
Table 6. Table 7.
Main-Chain - C - S - C - and - C - S - N - Polymers 4.3.1. Poly(sulfides) 4.3.2. Poly(sulfones) 4.3.3. Others 4.4. Main-Chain - C - N - C Polymers 4.4.1. Poly(amides) 4.4.2. Poly(hydrazides) 4.4.3. Poly(ureas) 4.4.4. Poly(carbodiimides) 4.4.5. Other Compounds 4.5. Poly(phosphazenes) and Related Compounds 4.6. Poly(silanes), Poly(silazanes) Main-Chain Heterocyclic Polymers 5.1. Poly(benzoxazoles), Poly(oxadiazoles), Poly(oxadiazolidines) 5.2. Poly(dithiazoles), Poly(benzothiazoles) 5.3. Poly(imides) 5.3.1. Poly(benzimides) 5.3.2. Poly(pyromellitides) 5.3.3. Others 5.4. Poly(quinoxalines) 5.5. Poly(benzimidazoles) 5.6. Poly(piperazines) 5.7. Poly(anhydrides) 5.8. Poly(thiophenes) 5.9. Others Formaldehyde Resins Natural Polymers and Modified Natural Polymers 7.1. Natural Rubber and Derivatives 7.2. Cutta Percha 7.3. Cellulose and Derivatives 7.3.1. Cellulose 7.3.2. Cellulose Ethers
VII-516 VII-516 VII-517 VII-518 VII-518 VII-518 VII-520 VII-521 VII-521 VII-521 VII-522 VII-522 VII-523 VII-523 VII-524 VII-524 VII-524 VII-525 VII-525 VII-526 VII-526 VII-526 VII-527 VII-527 VII-527 VII-528 VII-528 VII-528 VII-529 VII-529 VII-529 VII-529
7.3.3. Cellulose Esters VII-530 7.3.4. Cellulose Nitrate and Sulfate VII-531 7.4. Starch and Derivatives VII-531 7.5. Other Poly(saccharides) VII-531 7.6. Natural Resins VII-532 Table 8. Inorganic Polymers VII-532 Table 9. Poly(electrolytes) VII-533 Table 10. Block Polymers VIJ-533 Table 11. Dendrimers VII-534 D. References VII-536
A.
INTRODUCTION
The tables contain qualitative solubility data for a selected number of polymers. Since no standard definition for solvent-nonsolvent systems has been used in most of the original sources, the recognition of a certain compound as a solvent or nonsolvent is to some extent influenced by personal interpretation. No attempt has been made to edit the original information. Division into only two classes, solvents and nonsolvents, is dictated by the practical point of view. For more quantitative information, the user is referred to the tables of theta solvents and fractionation of polymers in this Handbook. The arrangement of polymers into classes is based on chemical structure. Since properties change gradually within a series of homologs, polymers are arranged according to increasing complexity, as regards the size of the monomer unit, and the kind and number of substituents. Only when this principle could not be applied was an alphabetical listing chosen. We believe that a typical solution behavior of similar polymers may be recognized more easily by this arrangement. When formulas are given, they refer to the main structures present in the polymers. Polymers are named in a manner thought to be most recognizable to the reader. IUPAC or common names (and sometimes both) are used. The table has nearly doubled in size since the last edition. New polymer categories include copolymers, mainchain carbonyl polymers, block copolymers and dendrimers, emphasizing recently developed materials. Copolymers are generally named with the dominant monomer given first, but the reader should check alternate names, since each polymer is listed only once. Solubility of copolymers generally resemble more or less the properties of the dominating monomer, although they often exhibit higher solubilities than the corresponding homopolymers. The solubility of block copolymers may reflect the solubilizing/dispersing power of one of the polymer segments rather than true solubility of all segments. Dendrimers are shown as the repeating monomer unit, with the terminal unit specified when known.
Solubility normally increases with rising temperature. However, negative temperature coefficients in some solvents are observed. This is particularly true for cellulose and poly(ethylene oxide)s. Increasing molecular weight generally reduces solubility. Increased branching increases the solubility compared to a linear polymer of the same molecular weight. Certain combinations of two or more solvents may become nonsolvents. Conversely, mixtures of two or more nonsolvents may sometimes become solvents. These possibilities should be considered if new solvent-nonsolvent combinations are to be examined. It is recommended that the reader consults the solubility parameter section in this Handbook. The classification of a certain compound as a nonsolvent does not necessarily imply its ability to act as a precipitant since this is also influenced by the nature of the particular solvent of a solvent-nonsolvent pair. However, most nonsolvents combine both properties. The list of solvents and nonsolvents for each polymer is arranged alphabetically. If class names are used, they refer to the most common compounds. Less common compounds, although falling into a class already mentioned, are additionally cited. Water is a nonsolvent for most polymers and is, therefore, often not mentioned or only mentioned if similar polymers or derivatives are water soluble. The data refer to room temperature unless otherwise stated. Homologs and closely related compounds generally have similar solubility properties. When specific solvents or nonsolvents are cited, it is done so with the understanding that homologs and compounds with similar structures can be expected to exhibit similar properties.
B.
ABBREVIATIONS
bzn. DMA DMF DMSO HMPT TMS THF W aqu. cone. DS degrad. dil. mol. wt. rt SC sw temp.
Benzene /V,/V-Dimethylacetamide Af,N~Dimethylformamide Dimethyl sulfoxide Hexamethylphosphoric triamide Tetramethylene sulfone Tetrahydrofuran Water Aqueous Concentrated Degree of substitution Degradation Diluted Molecular weight Room temperature Substituent content Swelling Temperature
C. TABLES OF SOLVENTS AND NONSOLVENTS TABLE 1. MAIN-CHAIN ACYCLIC CARBON POLYMERS Polymer 1.1.
Solvents
Nonsolvents
Refs.
POLY(DIENES), POLY(ACETYLENES) (see also 6.1, 6.2)
Poly(dienes) unsubstituted Poly(allene) PoIy(1,2-butadiene) 57% 1,2PoIy(1,3-butadiene)
98% cis-, 2% 1,295% cis-, 1% trans100% cis97% trans-, 3% 1,2Poly(isoprene), cis-, with chlorosulfonylisocyanato groups Poly(dienes) substituted Poly(2-terf-butyl-l,3-butadiene) Poly(dicyclopentadiene) Poly(5,7-dimethyl-1,6-octadiene) PoIy(I-methoxybutadiene), crystalline
Bzn., halogenated hydrocarbons Toluene Chloroform Higher aliphatic ethers, hydrocarbons, higher ketones, THF Bzn., toluene Cyclohexane Bzn., heptane/hexane (1/1) Cyclohexane, toluene See PoIy(1,3-butadiene) Toluene Bzn., carbon disulfide, carbon tetrachloride, chloroform, diethyl ether, heptane Toluene See Poly(2-terf-butyl-1,3-butadiene)
Poly(2-chlorobutadiene), chloroprene
Bzn., carbon tetrachloride, chlorinated hydrocarbons, cyclohexane/toluene, cyclohexanone, dioxane, ethyl * acetate, pyridine 1,4-dsBzn., chloroform, ether, hexane, THF Poly[2-(chloromethyl)butadienej Dichloromethane, THF, toluene Poly(perfluoro-1,4-pentadiene) Hexafluorobenzene Poly(2,5-diheptyl~l,4-phenylenehexa-l,3,5-triene-l,6~diyl) Acetone, bzn., chloroform PoIy(1,5-pentamethyl-2-enediyl) Methylene chloride Poly(butadiene-c-styrene) (7:3-95:5) Bzn., cyclohexane, toluene Buna-S GR-S SBR rubber Poly(acetylenes) Poly(acetylene) Aniline, DMF, isopropylamine Poly(phenylacetylene) low mol. wt. high mol. wt.
Alcohol, dil. acids, dil. alkalies, hypochlorite solutions, lower ketones and esters, nitromethane, propionitrile, W
Chloroform, cyclohexane, dioxane
Poly[bis(alkylthio)acetylene]
Aromatic hydrocarbons, halogenated hydrocarbons Chloroform, hexane, THF
Poly[3-(^rr-butoxycarbonylmethyleneiminocarbonyloxy)8-(5-pyrimidyl)-oct-5-yn-7-ene-l,8-diyl] Poly[2-(dodecyloxycarbonyl) 1,4-phenyleneethynylene] THF (hot) Dichlorobenzene Poly(9,9-dipropargylfluorene),
Diethyl ether, hexane Acetone, alcohol
8 9,10
Methanol
11
Acetone, bzn., dioxane, heptane, methanol Alcohols, aliphatic hydrocarbons, hydrogen fluoride, ketones, mineral oils, nonoxidizing cone, acids incl. hydrogen fluoride, toluene (sw), W Acetone, ethanol, methanol Ethanol, methanol
12
Acetone, bzn., carbon tetrachloride, cyclohexane, methanol, methylene chloride, pyridine
Methanol
4-7,13
14 686 16 17 7
Methanol
18
19,20 19-21 22
23 24 Methanol
DMF/pyridine
W
Dioxane, pyridine
Methanol
Acetone, bzn., chloroform
1 2 3 4-6
7 7 7 7
Acetone, carbon tetrachloride, methanol Bzn., cyclohexane (hot), toluene Methanol
Poly(diphenyldiacetyiene), poly- r(№ (1,4-diphenyl-1,3-butadiene), — Q~ Q— I C=CC 6 H 5
Poly (1 -propynyleneoxy-1,4-phenyleneisopropylidene1,4-phenyleneoxy-2-propynylene) Poly(ethynylene-1,4-phenyleneoxy1,4-phenyleneethynylene) Poly(butadiene-c-acrylonitrile)
Hexane, methanol
25 26
27,247 28 7
References page VII - 536
TABLE 1. cont'd Polymer 1.2.
Solvents
Nonsolvents
Refs.
POLY(ALKENES)
Poly(methylene) Polyethylene high density
low density chlorinated, 40% Cl
chlorinated, 60% Cl
chlorosulfonated, 30% Cl, 1.5% S Poly(ethylene g-maleic anhydride) (97:3) Poly(ethylene-o?-propylene) (3:2) Poly(ethylene-co-acryiic acid) (6:1) Poly(vinyl chloride-co-ethylene) (1:9) Poly(ethylene-C0-propylene-c0-5-methylene2-norbornene) (40:55 :5), PoIyEPDM Polypropylene) atactic
isotactic PoIy(I-butene) atactic isotactic Poly(isobutene)
Poly(4-methyl-l-pentene), isotactic Poly(2-methyl-3-hydroxy-1,4-butylene) PoIy(I -hexene) Poly(cyclopentylethylene) Poly(cyclohexylethylene) atactic stereospecific
Poly(cyclohexylalkenes) Poly(cyclohexenylethylene) atactic isotactic Poly(pentenamer), Poly(cyclopentene) -f CH = CH(CH2 ) 3f~ Poly(3,4-dicarboxypent-l-ene-l,5-diyl)
See Polyethylene Above 8O0C: 1,2,4-trichlorobenzene, decalin, di-rt-amyl ether, halogenated hydrocarbons, higher aliphatic esters and ketones, hydrocarbons, xylene As above, but temperature 20-3O0C lower, depending on degree of branching At elevated temperature: chlorobenzene, cyclohexanone, tetrachloroethane, tetrahydronaphthalene, toluene, xylene At elevated temperature: acetone/ carbon disulfide (1/1), aromatic hydrocarbons, chloroform, cyclohexane, THF Chlorinated hydrocarbons, MEK, THF, toluene Toluene, xylene Bzn., xylene (hot) Xylene Cyclohexanone (hot), nitrobenzene/chloroform (1 /1) 1,2,4-Trichlorobenzene
All common organic solvents at room temperature, more polar organic solvents even at elevated temperatures, inorganic solvents
Bzn., chlorinated hydrocarbons at rt, cyclohexane, diethyl ether, ethylcyclohexane, hydrocarbons, isoamyl acetate, toluene See Polyethylene
More polar organic solvents with small hydrocarbon group even at elevated temperature
4-7,13, 29,30
As above
5,7
Acetone, butanol, chloroform, dioxane, MEK, methanol, methyl acetate, THF
31
Acetone, aliphatic and cycloaliphatic hydrocarbons, ethanol, methanol, methyl acetate
31
32,33 W
34 32 32 127 32 5,7
7,32 Bzn., chloroform, decalin, ethylcyclohexane, toluene See Polyethylene, ethylcyclohexane Aliphatic ethers, anisole, carbon Lower alcohols, lower ketones disulfide, chlorinated hydrocarbons, and esters, nitromethane, di(2-chloroethyl) ether, diethylsumde, lower organic acids, propionitrile higher alcohols, higher esters, hydrocarbons, THF See Polyethylene THF Chloroform, THF Chloroform, diethyl ether, toluene Methanol Chlorinated hydrocarbons, Alcohols, ethers, dioxane, esters, ketones hydrocarbons, THF At elevated temperature: bzn., Heptane, MEK, nitrobenzene chlorobenzene, decahydronaphthalene, o-dichlorobenzene, methylcyclohexane, tetrahydronaphthalene, xylene Chloroform, diethyl ether (partially), Methanol toluene Aliphatic hydrocarbons Acetone, ethanol Aromatic hydrocarbons, Acetone, aliphatic hydrocarbons, halogenated hydrocarbons (partially) diethyl ether, ethanol Chlorinated hydrocarbons, Alcohols, aliphatic ketones, ethers hydrocarbons Chloroform, methanol Diethyl ether
7 5,6,13, 30,35
36 37 38 39 40
41 42 42 43 44
TABLE 1. cont'd Polymer Poly(3,4-dihydroxypent-l-ene-l,5-diyl) PoIy(I, l-diphenyl-2-vinylcyclopropane) Poly(/?-anthrylphenylethylene) PoIy(I-methylbicyclo-[2.2.1]-hept-2-ene) Poly(vinylborazine) Poly(methylene-a/r-5-hydroxycyclohexene-l,3-diyl) Poly(ethylene-ctf-1,4-hexadiene) (97:3) Poly(ethylene-ctf-l-cyano-l,4-butylene) (1:2) Poly(isobutylene-c0-4-methylstyrene) (95:5) Poly[hexene-c<9-Af,N-di(isopropyl)amino-l-pentene] (2: 3)
Solvents
Nonsolvents
Refs.
DMSO, methanol Chloroform Bzn., chlorobenzene, methylene chloride Chlorobenzene, /7-xylene Bzn. Hexanes Toluene Acetone (hot), chloroform, DMA, DMSO Chloroform Hexane
Ethanol Methanol Methanol, ethanol, hexane, W
44 45 46
Methanol Pentane
47 48 49 50 51
Alcohols, dil. alkali solutions, formamide, DMF, W Dioxane/water (80/20)
Dioxane (hot) (sw), esters, hydrocarbons, ketones Dioxane
Alcohols, aqu. hydrogen chloride (0.002 M, >30°C), dil. aqu. sodium hydroxide, W W(partially) THF DMF, methanol, W
Carboxylic acids, esters, hydrocarbons, ketones
Aromatic hydrocarbons, chlorinated hydrocarbons, esters, ketones, THF See General, acetone, bzn., ethyl acetate, glycol ester ethers, phosphorus trichloride See General, acetone, butanol, bzn., glycol ether, methanol, THF, /?-xylene Methanol, W See General, butanol, turpentine
Aliphatic hydrocarbons, hydrogenated naphthalenes, diethyl ether Alcohols, carbon tetrachloride
Methanol
52 53
1.3. POLY(ACRYLICS), POLY(METHACRYLICS) 1.3.1. POLY(ACRYLIC ACIDS) Poly(acrylic acid) atactic isotactic Poly(methacrylic acid) atactic isotactic, syndiotactic Poly(acrylic acid-c-9-vinylphenanthrene) (3:2) Poly(itaconic acid)
Acetone, aniline, bzn., carbon disulfide, chloroform, ethanol, ethyl acetate, THF
4-6, 13,54 55 4,5 56 57 58
1.3.2. POLY(ACRYLATES) General Poly(methyl acrylate) Poly(ethyl acrylate) Poly(2-hydroxyethyl acrylate) Poly(/i-butyl acrylate) Poly(ter/-butyl acrylate) Poly(4-hydroxybutyl acrylate) Poly(isobornyl acrylate) Poly(cyclohexyl acrylate) Poly(2-ethylhexyl acrylate) Poly(benzyl acrylate) Poly(5-cyano-3-thiapentyl acrylate) Poly[l-(/V-ethyl-AMl,4,7,10,13-pentaoxacyclopentadecyl)carbamoyl)ethylenej Poly(pentachlorophenyl acrylate) Poly(4-10,15,20-triphenylporphorin-21H,23H-5-ylphenyl acrylate) Poly(vinylcyclohexane-a?-methyl acrylate) (9: 1)
Aliphatic alcohols C >4, cyclohexanol, tetrahydrofurfuryl alcohol Cyclohexyl acetate, ethanol, ethyl acetate, methanol
5,7, 30,59 5,7, 30,59 32 30
Acetone, methanol Isopropanol THF Bzn., THF, toluene Esters, ketones, THF, toluene Bzn., THF, toluene Acetone, acetonitrile, dioxane, pyridine Solvents of low solubility parameter Bzn., chloroform Hexane
7 32 60 32 32 32 61 62
Bzn., THF Bzn., chloroform, THF, trifluoroacetic acid THF
Hexane, methanol, W Acetone, ethanol, hexane, methanol, W
63 64
W
65
1.3.3. POLY(METHACRYLATES) General
Acetic acid, acetone, bzn., chlorobenzene, chloroform, cyclohexanol (hot), cyclohexanone, cyclohexyi acetate, dioxane, 2-ethoxyethanol, ethyl acetate, isobutanol (hot), isobutyric acid, MEK, methylene chloride, xylene
Castor oil, cyclohexane, diethyl ether, ethylene glycol, formamide, gasoline, glycerol, hexane, methanol, nujol
References page VII - 536
TABLE 1. cont'd Polymer Poly(methyl methacrylate) atactic
isotactic syndiotactic Poly(methyl methacrylate-co-2-acrylamido-2-methyl1-propanesulfonic acid) (95 :5) Poly(ethyl methacrylate)
Poly(2-hydroxyethyl methacrylate) Poly(w-propyl methacrylate)
PoIy(^-butyl methacrylate) and Poly(isobutyl methacrylate)
Poly (butyl methacrylate-o?- /-butyl methacrylate) (1:1) Poly(n-hexyl methacrylate) Poly(cyclohexyl methacrylate) Poly(cyclohexylmethyl methacrylate) Poly(n-octyl methacrylate) Poly(2-ethylhexyl methacrylate) Poly(rc-decyl methacrylate) Poly(rc-lauryl methacrylate) Poly(phenyl methacrylate) Poly(benzyl methacrylate) Poly(4-ter/-butylphenyl methacrylate) Poly[(4-(terf-butyoxycarbonyloxy)phenyl) methacrylate] Poly(bornyl methacrylate) Poly(isobornyl methacrylate) Poly[2-(dimethylamino)ethyl methacrylate] Poly[(2-trimethylsiloxy)ethyl methacrylate] Poly[2-(/V-carbazoyl)ethyl methacrylate], crystalline Poly(cyanomethyl methacrylate) Poly[2-(4-phenylazophenyl)ethyl methacrylate] Poly[(methacryloyloxyundecyloxycarbonyldecyl)2-(trimethylamino)ethyl phosphate] Poly[4-(4-methoxyphenyloxycarbonyl) phenoxyhexamethylene methacrylate] Poly[2-(dimethylamino)ethyl methacrylate-coacrylamide] (4 : 1 to 2: 3)
Solvents
Nonsolvents
Refs.
See General, ethanol/water, Butylene glycol, carbon ethanol/carbon tetrachloride, tetrachloride, m-cresol, diethyl isopropanol/MEK (1/1) above 25°C, ether, ethanol (absolute), higher formic acid, nitroethane esters, hydrogenated naphthalenes, linseed oil, turpentine Acetone, acetonitrile, bzn., MEK, THF See isotactic Bzn., toluene
4,5,13, 30,66,67
See General, carbon tetrachloride, Alcohols, cyclohexane ethanol (hot), ethyl ether, ethyl acetate, formic acid, isopropanol above 37°C, tetralin, turpentine (hot) DMF, methanol, methyl CellosolveQ See General, carbon tetrachloride, Formic acid castor oil (hot), cyclohexane (hot), diethyl ether, ethanol, gasoline (hot), Unseed oil (hot), turpentine See General, carbon tetrachloride, Ethanol (cold), formic acid castor oil (hot), cyclohexane, diethyl ether, ethanol (hot), gasoline, hexane, isopropanol above 23.7°C, linseed oil (hot), nujol (hot), turpentine Acetone, MEK, methylene chloride, THF, toluene Isopropanol above 33°C, MEK Bzn., dioxane, THF Bzn., THF Methanol n-Butanol, MEK Bzn., MEK, THF Bzn., THF n-Pentanol above 29°C, Ethyl acetate, methanol isopropyl acetate, MEK Bzn., MEK, THF, toluene Bzn., chloroform, dioxane, THF Acetone Bzn. Bzn. Methanol Bzn., THF, toluene Bzn., toluene THF Aniline (hot, partially), diphenyl MEK ether (hot), nitrobenzene (hot) Acetone, acetonitrile, ethyl acetate, Bzn., chloroform, methanol THF THF Methanol Ethanol (hot), methanol Acetone, bzn.
5,7,67,68
Chloroform, THF, bzn., methylene chloride, o-dichlorobenzene, W
Hexane, methanol
Acetone, acetonitrile, bzn., DME, furfurol, halogenated hydrocarbons, methyl acetate, nitrobenzene, nitromethane, THF Acetone, amyl acetate, dioxane, ethanol, halogenated hydrocarbons, hydrocarbons, methyl acetate, THF Bzn., chloroform, dioxane, DMF, ethyl acetate, THF
Aliphatic hydrocarbons, carbon tetrachloride, diisopropyl ether, ethanol, ethyl acetate, methanol, propylene carbonate, toluene, W Acetonitrile, DMF, furfurol, methanol, nitrobenzene, nitromethane, propylene carbonate
7,32 32 A32
32 67
5,13,30, 67-69
32 5 32 70 5 32 32 5,71 32 32 5 696 72 32 32 73 74 75 76 77 78 79
1.3.4. POLY(DISUBSTITUTED ESTERS) Poly(dimethyl itaconate)
Poly(di-«-butyl itaconate) Poly(diphenyl itaconate)
80-82
81,82 83
TABLE 1. cont'd Polymer Poly(diamyl fumarate) Poly (methyl terr-butyl fumarate)
Solvents Chloroform, THF, toluene Bzn., chloroform, methanol, THF
Nonsol vents Hexane, W Hexane, W
Refs. 84 85
1.3.5. POLY(ACRYLAMIDES), POLY(METHACRYLAMIDES) Polyacrylamide
Ethylene glycol (partially), morpholine, W
Alcohols, diethyl ether, DMF, 4,5,13 esters, higher glycols, hydrocarbons, nitrobenzene, propylene glycol, THF W (hot) 86,87 W (sw) 5 88 W (sw) 89 32
Poly(AMsopropylacrylamide) W (cold) Poly(WV-dimethylacrylamide) Methanol, W (400C) Poly(WV-diethylacrylamide) THF Poly[N-(l,l-dimethyl-3~oxobutyl) acrylamide] Butanol, MEK, toluene Poly(2-acrylamido-2-methyl-l-propanesulfonic acid), W PoIyAMPS Poly(N-terf-butyl-N-allylacrylamide) Chloroform Petroleum ether Poly(N-dodecylacrylamide-co-iV-vinylcarbazole) Chloroform Acrylonitrile (15:1 to 2:1) Polymethacrylamide Acetone, ethylene glycol, methanol, W Diethyl ether, hydrocarbons PolyyV-carbazolylcarbonylethylene), Poly(9-acryloylcarbazole) atactic Bzn. (partially) Methanol tactic Chloroform (partially), cone, or moderately cone, sulfuric acid Poly(morpholinocarbonylethylene), DMF Poly(/V-acryloylmorpholine) Poly(piperidinocarbonylethylene), DMF Poly(acryloylpiperidide)
90 91 4,5,13 92 5 5 5
1.4. POLY(VINYL ETHERS) General Unsubstituted Poly(methoxyethylene), Poly(methyl vinyl ether) amorphous crystalline Poly(ethoxyethylene), Poly(ethyl vinyl ether), Poly(propoxyethylene), crystalline Poly(propyl vinyl ether) Poly(isopropoxyethylene), crystalline, Poly(isopropyl vinyl ether) Poly(butoxyethylene), Poly (butyl vinyl ether) Poly(isobutoxyethylene), Poly(isobutyl vinyl ether) amorphous
crystalline
Poly(terf-butoxyethylene), Poly(ferf-butyl vinyl ether) amorphous crystalline Poiy(neopentyloxyethylene), Poly(neopentyl vinyl ether), crystalline Poly(cyclohexyloxyethylene), Poly(cyclohexyl vinyl ether) Poly(benzyloxyethylene), Poly(benzyl vinyl ether) atactic
Bzn., rc-butanol, cyclohexanone, halogenated hydrocarbons, MEK
Heptane
See General, acetone, ethanol, ethyl acetate, methylene chloride, THF, W (cold)
Diethyl ether, ethylene glycol, 4,5,13,30,93-95 hexane, W (hot) Acetone, methanol, W
95,96
See Poly(methoxyethylene) Acetone, heptane
95
See Poly(propoxyethylene) See General, bis(2-ethoxy ethyl) ether, Ethanol, 2-ethoxyethanol cyclohexane, diethyl ether, n-heptane See General, aliphatic alcohols C>2, bis(2-ethoxyethyl) ether, carbon disulfide, cyclohexane, diethyl ether, ^-heptane, isopropyl acetate, MEK, methylene chloride Chloroform above 500C
Ethanol 2-ethoxyethanol, methanol
Heptane, bis(2-ethoxyethyl) ether, bzn. (sw at 200C), chloroform (sw at 200C), isopropanol (hot), MEK
Acetone, MEK
4,13,30, 93,98,99
95
95,98 95,98 95
Bzn., heptane Bzn., heptane Methylene chloride Acetone, bzn., toluene
95,97
100 Ethanol, methanol, W
101
References page VII - 536
TABLE 1. cont'd Polymer Substituted Poly(carbomethoxymethoxyethylene) Poly[2-(methoxyethoxy)ethylene], crystalline Poly[2-(chloroethoxy)ethylene], crystalline Poly(2,2,2-trifluoroethoxyethylene), crystalline Poly(methyl vinyl ether-a/Mnethyl tricyanoethylenecarboxylate) Poly(phenyl vinyl ether-a/f-2-phenyl1,1-dicyanoethylene)
Solvents
Chloroform, methylene chloride W Bzn., dioxane, heptane DMA, DMF, nitromethane Acetone, carbon tetrachloride, chloroform, DMF, DMSO, THF
Nonsol vents
Diethyl ether Diethyl ether Acetone
Refs.
Diethyl ether
102 95 95 95 103
Hexane methanol
104
1.5. POLY(VINYL ALCOHOLS), POLY(ACETALS), POLY(VINYL KETONES) Poly(vinyl alcohol) atactic
syndiotactic 12% acetyl 35% acetyl Poly(vinyl alcohol-co-ethylene) (1:1) Poly(vinyl alcohol-a?-rnaleic anhydride) (1:1) Poly(allyl alcohol) lower mol. wt. high mol. wt. (DP > 350) Poly(vinyl formal)
Poly(vinyl acetal)
high degree of acetalization Poly(vinyl butyral) acetalization 70% acetalization 77% acetalization 83% Poly(vinyl alcohol-covinyl pentanal) Poly(2-vinyl-4,7-dihydro-1,3-dioxepine),
Poly(vinyl cyclohexanone ketal),
Acetamide, DMF, DMSO (hot), formamide, glycerol (hot), glycols (hot), HMTP, piperazine, triethylenediamine, W
Carboxylic acids, chlorinated hydrocarbons, esters, hydrocarbons, ketones, lower alcohols, cone. aqu. salt solutions, THF
1,3-Propandiol above 1600C, W above 1600C W (cold) Carboxylic acids, esters, halogenated hydrocarbons, hydrocarbons, ketones, W (hot) Alcohols, aqu. sol. of tetraalkylW ammonium bromide and iodide DMF (hot), DMSO (hot) Methylene chloride, THF Acetone Cresol, dioxane, glycerol, methanol, pyridine, THF Mixtures of cone, hydrochloric acid and dioxane, methanol, THF Acetic acid, benzyl alcohol, bzn./alcohol (70/30), carbon tetrachloride/alcohol (70/30), 2-chloroethanol, chloroform, cyclohexanone, dichloroethylene/ diacetone alcohol (50/50), dioxane, DMF, furfurol, THF, toluene Acetone, benzyl acetate, bzn./ethanol (1/1), bzn., butanol, carbon tetrachloride, 2-chloroethanol, chloroform, chloroform/methanol (9/1), cyclohexanone, dioxane, ethanol, ethyl acetate, ethylene glycol, THF Acetic acid (glacial), dioxane, ethanol, ethylene dichloride, methanol, nitromethane, pyridine
4-6,13, 30,105
106 4 38 107 108 13
Most organic solvents, W Acetone (sw), aliphatic hydrocarbons, aromatic hydrocarbons (sw), dilute acids, dioxane, esters, ethanol, methanol, pyridine (sw), W
DiI. acids, aliphatic hydrocarbons, diethyl ether (sw), pyridine (sw), W
Acetone, bzn.
13 4,6,30
6,30
4
Alcohols, cyclohexanone, ethyl glycol acetate, ethyl lactate Acetone, alcohols, cyclohexanone, lower esters, methylene chloride Alcohols, lower esters, ketones, methylene chloride Bzn., chloroform Acetone, 2-buten-1,2-diol
Aliphatic ketones, hydrocarbons, methylene chloride, most esters, W Higher esters, hydrocarbons, methyl isobutyl ketone Higher esters, hydrocarbons, methanol
109 109
Methanol W
110 111
Butanol, chloroform, cyclohexanone, ethanol, ethylene glycol, ethylene chloride, THF
Aliphatic hydrocarbons, carbon tetrachloride (sw), diethyl ether (sw)
109
30
TABLE 1. cont'd Polymer Poly(vinyl methyl ketone) Poly(methyl isopropenyl ketone)
Solvents
Nonsolvents
Acetic acid, acetone, chloroform, dioxane, DMF, ethyl acetate, pyridine, THF Acetone, dioxane, esters
Alcohol, carbon tetrachloride, diethyl ether, petroleum ether, W Alcohol, petroleum ether, W
Refs. 4,6,13 6,13
1.6. POLY(VINYL HALIDES) Poly (vinyl chloride) high mol. wt.
Acetone/carbon disulflde, chlorobenzene, cyclohexanone, cyclopentanone, DMF, DMSO, MEK, nitrobenzene, THF
lower mol. wt.
chlorinated, 63% Cl
Poly(vinylidene chloride)
Poly(vinyl bromide) Poly (vinyl fluoride) chlorinated, 30% Cl chlorinated, 60% Cl Poly(vinylidene
, fluoride)
PoIy(1,2-difluoroethylene) PoIy(I-chloro-1-fluoroethylene) Poly(chlorotrifluoroethylene)
Poly(tetrafluoroethylene) Poly(3,3,3-trifluoropropylene) Poly(hexafluoropropylene) Poly(3,3,4,4,5,5,5-heptafluoro-l-pentene) Poly(vinylidene chloride cyanide-a/M,3-cyclohexadiene) Poly(cnlorotrifluoroethyIene-c0-vinylidene fluoride) (3:1) Poly(tetrafluoroethylene-o?-hexafluoropropylene) (4:1) Poly[tetrafluoroethylene-o>-4,5-difluoro-2,2bis(trifluoromethyl)-l,3-dioxole] (13: 87 and 35:65)
Acetic anhydride (sw), 4-7,13, acetone (sw), nonoxidizing acids, 30,112 alcohols, cone, alkalies, aniline (sw), carbon disulflde, carboxylic acids, esters, hydrocarbons, nitroparaffins (sw), vinyl chloride Acetone/carbon disulflde, cyclohexanone, 4-6,13,30 1,2-dichlorobenzene, diisopropyl ketone, dioxane, DMF, ethylene chloride, HMPT, isophorone, mesityl oxide, nitrobenzene, perchloroethylene/acetone, toluene, tricresyl phosphate Acetone, aromatic hydrocarbons, Aliphatic and cycloaliphatic 6 butyl acetate, chlorobenzene, hydrocarbons, carbon tetrachloride, chloroform, cyclohexanone, dioxane, methyl acetate, nitromethane, DMF, DMSO, nitrobenzene, THF organic and inorganic acids Benzonitrile, butyl acetate, Cone, and moderately cone, acids 4,6,30, cyclohexanone, 1,2-dichlorobenzene, and alkalies (except ammonia), 113,114 dioxane, DMA, DMF, NMP, alcohols, carbon disulflde, tetrahydrofurfuryl alcohol, tetralin chloroform, cyclohexanone (hot), THF (hot), trichloroethane (cold, sw), dioxane (cold, sw), ethyl bromide, hydrocarbons, phenols, THF (cold, sw) Cyclohexanone, THF DMF, ethanol, HMPT, 5 hydrocarbons, methanol Cyclohexanone (hot), dinitrile, Aliphatic, cycloaliphatic, and 115 DMA (hot), DMF, DMSO (hot) aromatic hydrocarbons DMF Aliphatic, cycloaliphatic, and 115 aromatic hydrocarbons Carbon tetrachloride Aliphatic, cycloaliphatic, and 115 aromatic hydrocarbons y-Butyrolactone, cyclohexanone, Acetone, alcohols, aliphatic and 116-119 DMA, DMF, DMSO, ethylene cycloaliphatic hydrocarbons, carbonate, NMP chlorinated solvents, methyl isobutyl ketone Acetone, DMF, methyl isobutyl ketone Ethanol, hydrocarbons, methanol 118 Toluene 120 2,5-Dinitrotrifluorobenzene (1300C), Common organic solvents at RT 4,5,13, bzn. (2000C), carbon tetrachloride 121,674 (114°C), cyclohexane (235°C), 1,2-dichlorotrifluorobenzene, HMPT, mesitylene (14O0C), toluene (142°C), 1,1,1-trichloroethane (1200C), 1,2,3-trifluoropentachloropentane Perfluorokerosene (3500C), no other 4,13,122,123 solvent known Acetone, hexafluorobenzene Ethanol, hydrocarbons, methanol 124 Hexafluorobenzene, 125 perfluorodibutylamine, perfluorodibutyl ether Perfluorohexane 126 Chloroform Pentane 128 MEK Amyl acetate 129 Carbon dioxide (>200°C) Hexafluorobenzene, perfluorooctane
130 131
References page VII - 536
TABLE 1. cont'd Polymer 1.7.
Solvents
Nonsolvents
Refs.
POLY(VINYL NITRILES)
Polyacrylonitrile
ultrahigh MW Poly(2-fluoroacrylonitrile) Poly(acrylonitrile-a?-vinyl acetate) (98:2) Poly(acrylonitrile-a//-1,3-isoprene) Poly(vinylidine fluoride-co-ethyl vinyl ether) (1:1) Poly(acrylonitrile-a?-butadiene) (2:3 to 1:4) Polymethacrylonitrile
Acetic anhydride, y-butyrolactone, e-caprolactam, bis(2-cyanoethyl)ether, bis(4-cyanobutyl)sulfone, chloroacetonitrile/water, chloroacetonitrile, cyanoacetic acid, dimethyl phosphite, dimethyl sulfone, dioxanone, DMA, DMF, DMSO, ethylene carbonate, A^formylhexamethyleneimine, 2-hydroxyethyl methyl sulfone, Af-methyl-p-cyanoethylformamide, methylene dithiocyanate, Af-methyl-a,a,a,~trifluoroacetamide, l-methyl-2-pyridone, 3-,4-nitrophenol, nitromethane/W (94:6), Af-nitrosopiperidine, 2-oxazolidone, 1,3,3,5-tetracyanopentane, tetramethylene sulfoxide, l,i,l-trichloro-3-nitro-2-propane, sulfuric acid, nitric acid, p-phenol sulfonic acid, cone. aqu. sodium thiocyanate, molten quat. ammonium salts and their aqu. solutions DMF (10O0C) DMF DMF 1,2-Dichloroethane THF MEK, THF (partially), toluene Acetic anhydride, acetone, benzonitrile, cyanoacetic acid, cyclohexanone, dinitriles, DMF (>20°C), DMSO, ethylene carbonate, furfural, HMPT, methylene chloride, nitromethane, pyridine
Acetonitrile (sw), 5,6,13,132, acrylonitrile, alcohols, aliphatic 133,675 nitro compounds, bis(2-hydroxyethyl) sulfoxide, chlorinated hydrocarbons, 3,4-dimethyl sulfolane, diethyl ether, diethyl sulfone (sw), diethyl sulfoxide, diethylformamide, dimethylmalomtrile, dimethyloxamide, 1,1 -dimethylsuccinonitrile, ethylene urea, formamide, hexamethylene dithiocyanate, 1,6-hexanediamine, hydrocarbons, 1-hydroxypropionitrile, ketones, methanol, methoxyacetamide, methoxyacetonitrile, methyl thiocyanate, 1-nitrophenol, propyl formate
THF Methanol Aliphatic hydrocarbons, alcohols, esters, methacrylonitrile, toluene
134 135 136 137 135 32 4,5
1.8. POLY(VINYL ESTERS) Poly(vinyl acetate) atactic
syndiotactic Poly(vinyl trifluoroacetate) Poly(vinyl propionate) Poly(vinyl n-butyrate) Poly(vinyl isobutyrate) Poly(vinyl pivalate) Poly(vinyl caproate)
Acetic acid, acetone, acetonitrile, allyl DiL acids, dil. alkalies, carbon 4,5,13 alcohol, benzyl alcohol, bzn., carbon tetrachloride (sw), carbon disulfide, tetrachloride/ethanol, chlorobenzene, cyclohexanol, diethyl ether (anhydrous, chloroform, dichloroethylene/ethanol alcohol free), higher esters C>5, (20/80), 2,4-dimethyl-3-pentanol, ethanol (anhydrous, sw), ethylene dioxane, DMF, DMSO, lower glycol, saturated hydrocarbons, aliphatic esters, ethanol/W, glycol mesitylene, W (sw) ether esters, glycol ethers, methanol, nitromethane, tetrahydrofurfuryl alcohol, THF, toluene Chlorobenzene, chloroform Acetone, bzn. 106 Acetone, chloroform, ethyl acetate, 138 hexamethyldisiloxane See Poly(vinyl acetate) See Poly(vinyl acetate), amyl alcohol, 31 cyclohexane, hexyl acetate See Poly(vinyl acetate), amyl alcohol, 31 cyclohexane, hexyl acetate Acetone, butanone, bzn., ethyl Hexane, methanol, W 139 acetate, toluene Bzn. 5
TABLE 1. cont'd Polymer Poly(vinyl caprylate) Poly(vinyl laurate) Poly(vinyl benzoate), Poly(vinyl chloroacetate)
Poly(vinyl acetylacetate)
Pory(vinyl-A'-octadecylcarbamate) Poly(vtnyl acetate-fl/f-N-alkyl/arylmaleimide)
1.9.
Solvents
Nonsol vents
Acetone, aliphatic and aromatic hydrocarbons Aliphatic and aromatic hydrocarbons See Poly(vinyl acetate) Chlorobenzene, chloroform, cyclohexanone, dioxane, ethyl acetate, pyridine Acetic acid, acetone, chloroform, dioxane, DMF, ethyl acetate, pyridine, THF, saturated aqu. sol. of magnesium perchlorate Toluene (hot) Bzn., chloroform
Lower alcohols
Bzn., carbon disulfide, lower chlorinated aliphatic hydrocarbons, chloroform, cyclohexane (above 35°C), cyclohexanone, cyclohexane/acetone, decahydronaphthalene/diethyl oxalate, dimethyl phthalate, dioxane, ethyl acetate, ethylbenzene, glycol formal, MEK, methylene chloride, NMP, 1-nitropropane, phenol/acetone, phosphorus trichloride, THF, tributyl phosphate Bzn., chloroform, o-dichlorobenzene, toluene n-Tetradecane/dec any dronaph thai ene (2/1) THF See Polystyrene MEK, THF, toluene Bzn., THF, toluene Acetone, acetonitrile, DMF, DMSO, nitromethane Bzn., THF Bzn., dioxane, THF Ethyl acetate/ethanol (15/1) toluene THF Methanol and higher alcohols, methyl acetate, THF, THF/chloroform (1/1) MEK, toluene Bzn., toluene, chloroform Chloroform Acetone, bzn., chlorohexane, DMF, methylene chloride THF
Acetic acid, acetone, alcohols, diethyl ether, diols, ethylene chlorohydrin, glycol ethers, saturated hydrocarbons, isobutyl phthalate, phenol, 1,2,3, 4-tetrafluorobenzene (lower than 100C), tri(chloroethyl) phosphate, tricresyl phosphate
Refs. 4
Lower alcohols, acetone
4 5,87 4
Acetone (sw), saturated hydrocarbons
Alcohols, bzn., diethyl ether, W
140
Petroleum ether
327 142
POLY(STYRENES)
Poly(styrene) atactic
isotactic syndiotactic Poly(4-acetoxystyrene) Poly(a-methylstyrene), Poly(2-,3-, or 4-chlorostyrene) Poly(chloromethylstyrene) Poly(4-cyanostyrene) Poly(2 ,3-, or 4-bromostyrene) Poly(4-iodostyrene) Poly(2,5-dichlorostyrene) Poly(2,4,6-tribromostyrene) Poly(4-hydroxystyrene), Poly(/?-hydroxyphenylethylene)
Poly(4-methoxystyrene) Poly(2,5-dimethoxystyrene) Poly(3,4-dimethoxystyrene) Poly(ter/-butyl-4-vinyl perbenzoate) Poly(4-formylphenyl)ethylene, Poly(/>formylstyrene) Poly(styrenesulfonic acid) Poly(styrene-co-styrenesulfomc acid) (95:5) sodium salt Poly(4-trimethylsilylethynylenestyrene) Poly(styrene-c0-allyl alcohol) (94:6) Poly(styrene-c-acrylonitrile) (3 : 2) Poly(styrene-ctf-tert-butoxycarbonyloxystyrene) (4:5) Poly(styrene-o?-butyl methacrylate) (1:1) Poly(styrene-<:/-2,4-diamino-6-vinyl-l,3,5-tnazine)
4,5,7, 13,30,143
7 144 Mechanol
144
Bzn., carbon tetrachloride, ethyl acetate, diethyl ether, hexane, methanol
32 32 146 5,32 5,32 5 32 147,148
Chloroform, toluene
Hexane
5 149 150 141
Hexane, methanol, W
151
Hexane, methanol
Ethanol, lower glycols, W DMF, methylene chloride, THF Lower glycols, W THF Alcohols, aromatic hydrocarbons, esters, THF Chloroform, MEK, methylene chloride, Methanol THF THF, pyridine Methanol, W MEK, toluene DMSO, hexafiuoroisopropanol
32 152 153 154 32 7,32,155 156 32 157
References page VII - 536
TABLE 1.
cont'd
Polymer Poly(styrene-C0-maleic anhydride) (9:1) (1:1) Poly(styrene-a/Mnaleimide) Poly(styrene-cc?-4-thiomethylstyrene) (95:5) Poly(styrene-c0-4-vinylpyridine) (1:1)
Solvents
Cyclohexane/ethyl acetate (3/2) Acetone, acetonitrile, MEK THF THF DMF, THF
Nonsol vents
Methanol Ethanol, hexane
Refs.
65 32,158 157 159 32
1.10. OTHER COMPOUNDS (alphabetically ordered) Polyacrolein, (redox polymerization)
Polyacrolein (ionic polymerization), See 3.1.1 Poly(anthrylethylene) Poly(7V-benztriazolylethylene) Poly(biphenylyethylene) Poly(7V-carbazolyethylene), Poly(/V-vinylcarbazole)
Poly[6-(/V-carbazolyl)hexylethylene] Poly(diallyldimethylsilane) Poly(3,6-dichloro-Af-carbazolylethylene) Poly(2,4-dimethyl-6-triazinylethylene) Poly(diphenylphosphinylideneethylene), Poly(vinyldiphenylphosphine oxide) Poly(diphenylthiophosphinylideneethylene), Poly (vinyldiphenylphosphine sulfide) Poly(2-methyl-5-pyridylethylene) Poly(3-morpholinylethylene) PoIy(I-nitropropylene) Poly(2-pyridylethylene), Poly(2-vmylpyridine)
crystalline Poly(4-pyridylethylene), Poly(4-vinylpyridine)
Poly(/V-pyrrolidonylethylene), Poly(Af-vinylpyrrolidone)
Above 60 0 C: pyridine/water (55/45 to 90/10), above 1300C: nitrobenzene, sat. stannous chloride solution, y-butyrolactone (160-170 0 C), ethylene carbonate (130-135 0 C), DMF(153°C), DMSO (160-170 0 C), divinyl sulfone(150-155°C), TMS (160-165 0 C)
Lower alcohols, hydrocarbons, chlorinated hydrocarbons, diethyl ether, esters, aromatic ketones
Methylene chloride Chlorinated hydrocarbons, cyclohexanol, DMF, glacial acetic acid Bzn., dimethoxyethane, toluene Benzyl acetate, bzn., chlorobenzene, chloroform, cyclohexanone, dioxane, cone, nitric acid, cone, sulfuric acid, tetrachloroethane
Methanol Alcohols, esters, hydrocarbons, ketones, W
Acetone, methanol (partially), NMP (123°C) Bzn. Dichloroethane Alcohols, bzn., esters, ketones, W (cold) Bzn., ethanol, methanol, toluene Bzn., chloroform
Methanol Acetals, alcohols, dil. alkalies, dil. carboxylic acids, chlorohydrin, 1-chlorotoluene (sw), diethyl ether, dimethyltetrahydrofuran, diols, aliphatic esters, glycol monoethers, aliphatic ketones, saturated hydrocarbons, trichloroethylene (sw), W Methanol Methanol Aliphatic hydrocarbons, W (ppt. below 73°C) Hexane, W Methanol
Methanol, DMF W DMF (partially) Acetone, alcohols/water, bzn., Carbon tetrachloride toluene, chloroform, dioxane, ethanol, W (sw) glacial acetic acid, aqu. mineral acids, nitroethane, pyridine, THF Aromatic hydrocarbons (reflux), Aliphatic hydrocarbons (reflux), chlorinated solvents, methanol diethyl ether, MEK Acetone/W (1/1), benzyl alcohol, Acetone, diethyl ether, dioxane, bzn., cyclohexanol, dioxane/W ethyl acetate, MEK, petroleum (1/1), ethanol/water (92/8), ether, W isopropanol/MEK (86/14), methanol, aqu. mineral acids, nitromethane, pyridine, THF (solubility depending on small Acetic esters, acetone, acid amounts of W): acetone, dil. acids, esters, carbon tetrachloride, aromatic alcohols, chloroacetic acid 1-chlorotoluene, diethyl ether, esters, chloroform, chlorohydrins, hydrocarbons, methoxybutyrate ethanol, glacial acetic acid, esters, nitomethane/W methanol, nitromethane, pyridine
160,161
15 162 163 4,6,13, 30,164
165,166 167 168 169 170,171 171 5 172 173 4,13,35, 174,175
5,13,175
4-6,13,30
TABLE 1. cont'd Polymer
Solvents
PoIy(N-I,2,4-triazolylethylene)
Glacial acetic acid, DMF, DMSO, W
PolyyV-vinylthiopyrrolidone) Poly(5-vinyl-l,3-benzodioxole) Poly(2-vinylthiophene) Poly(vinyl sulfate) Poly(vinylsulfofluoride) Poly(vinylsulfonic acid) sodium salt Poly(vinyl sulfoxide) Poly(vinyl 4-methoxyphenyl sulfoxide) Poly(/V-vinylpyrrolidone-a>acrylic acid) (3 : 1 to 1: 3)
DMF Chloroform Chloroform Aqu. NaCl (0.5 M), W Acetone, DMF, ethyl acetate, THF Acetone, dioxane, ethanol, W Methanol, W, aqu. NaCl (0.5M) Chloroform, DMSO, methanol, W THF Acetone/W (1/1), isopropanol/W (1/1), NMP Butanol, DMSO, ethylene glycol, formamide, methanol, W DMSO, ethylene glycol (partially), formamide, W Saturated hydrocarbons Bzn., dioxane, THF Ethanol, isopropanol Ethanol Isopropanol, W DMF, DMSO (partially), NMP
Poly(vinyl amine), Poly(aminoethylene) Poly(vinylformamide) Poly(/V-vinylpyrrolidone-co-i-hexadecene) (1 :2) Poly(vinylnaphthalene) Poly(Af-vinylpyrrolidone-co-vinyl acetate) (1 :4 to 3 :2) PoIy(ZV-vinylpyrrolidone-co vinyl alcohol) (13: 1) PoIy(N-vinylpyrrolidone-covinyl acetate) (1:1) Poly(A^vinylformamide-o?-methyl 3-phenyl2-cyanopropenoate) (1:1) Poly(2-vinylpyridine-costyrene) (7:3) Poly(4-vinylpyridine-cfl-styrene) (3:2)
TABLE 2.
Alcohols, chlorinated hydrocarbons, esters, hydrocarbons ketone Butanol, hydrocarbons, MEK, W Methanol Diethyl ether Esters, hydrocarbons, ketones Acetone, methanol Acetone, bzn. Diethyl ether Methanol, MEK, THF
Refs. 162 176 150 177 5 13 4,13,179 13,179 180,181 182 183 179,184,185
Acetone, isopropanol /7-Propanol, W
Diethyl ether Chloroform, diethyl ether, ethyl acetate, methylene chloride
Bzn., chloroform, MEK, THF DMF, THF
179,185 186 32 186 187 32,681 697 32 32
MAIN-CHAIN CARBOCYCLIC POLYMERS
Polymer 2.1.
Nonsol vents
Solvents
Nonsolvents
Refs.
POLY(PHENYLENES)
Poly(2-hydroxy-l,4-phenylene) Poly(dihydroxyl-1,4-phenylene), Polyhydroquinone
Methylene chloride DMF (partially)
Poly(2.5-dw7-butoxy-l,4-phenylene)
1,2-Dichloroethane, methylene chloride, nitrobenzene Toluene Acetic acid, chloroform, DMF, ethanol Toluene
Poly(2,5-di-rc-decyl-l,4-phenylene) Poly(A^,A^-dimethy!aniline) Poly(2,l': 4 ' , 1 " : 4",1 "'-quaterphenylene-1,4), Poly [2-(phenyl-1,4-phenylene-1,4-phenylene)1,4-phenylene] Poly(2-benzoyl-l,4-phenylene), Poly(2,5-benzophenone) Poly(nitrophenylene) Poly[2-(4-methylbenzoyl)-l ,4-phenylene] Poly(2,5-dihydroxy-l,4-phenylenethenylene) PoIy(1,4-benzophenone-/V-phenyloxime) Poly(2,5-dimethoxy-l,4-phenylenethenylene) Poly(2,5-dimethyl-l,4-phenylenethenylene) low mol. wt. Poly(2,5-dimethyl-l,4-phenylenemethylene) low mol. wt. PoIy(1,4-phenyleneethenylene), Poly(phenylenevinylene) Poly( 1,4-phenylene-1,2-diphenylethenylene) PoIy[1,4-phenyleneethenylene-1,4-phenyleneethynylene2,5-(dodecyloxy)-1,4-phenyleneethynylene] Poly[3-nitro-l,4-phenyleneethenylene-2-(dihexylamino)1,4-phenyleneethenylene]
m-Cresol, DMA, methylene chloride, NMP
Acetone, chloroform, ethanol
188 181
Methanol
189
Acetone Aqu. sodium hydroxide Methanol
190 191 192
Methanol
193,194
All common organic compounds DMA Common organic solvents, aqu. potassium hydroxide DMA, NMP Bromoform Common organic solvents Chloroform, 1,2-and 1,4-dichlorobenzene Chloroform, 1,2- and 1,4-dichlorobenzene (hot) Biphenyl, benzyl benzoate, chlorinated biphenyls, diphenyl ether, nitrobenzene Chloroform Methanol Chloroform, THE toluene Chloroform, 1,2-dichloroethane, THF
195 196 197 194 197,198 199 199 197,200 201 202 203
References page VII - 536
TABLE 2. cont'd Polymer Poly(tetramethyl-l,4-phenylenethenylene) Poly(5-«-dodecyloxy-l,4-phenylene) Poly(2,5-di-n-decyloxy-1,4-phenylene) Poly(2,5-di-n-decyloxy-4,4/-biphenylylene) Poly[2-bis(methoxycarbonyl)-1,4-phenylenethenylene] Poly[l,4-phenylene-l,2-di(4-phenoxyphenyl)ethenylene] Poly [2-(2-phenylethenyl)~ 1,4-phenyleneethenylene] Poly(6-rc-hexyl-l,4-naphthalenediylethenylene) Poly(2,6-naphthalenediylethenylene)
Solvents
Nonsolvents
Refs.
Bzn., 1-chloronaphthalene (sw), ethanol DMA, DMF THF THF Methylene chloride Chlorobenzene, chloroform, toluene DMF Chloroform Tetrachloroethylene (partially)
Methanol Methanol Methanol Methanol
197 204 205 205 206 207 208 209 210
2.2. OTHER COMPOUNDS (alphabetically ordered) Poly(acenaphthylene) Poly[//-(3-bromophenyl)norbornenedicarboximide] PoIy(1,3-cyclohexadiene) Poly( 1,3-cyclohexy leneethenylene) PoIy(1,5-cyclooctadiene) Poly(cyclopentadiene), T V ^ - T — \ \
Bzn., carbon tetrachloride, chloroform, 1,2-dichloroethane (>30°C), THF, toluene 1,2-Dichloroethane, methylene chloride Bzn., xylene Bzn. Aromatic hydrocarbons, chlorinated hydrocarbons, diethyl ether (partially) methanol (oligomers) Bzn., chloroform, dioxane, THF
Poly( 1,3-cyclophenylenemethylene) Poly(erafo-dicyclopentadiene) Poly(2,3-dimethoxycarbonyl-2,5-cyclohexadien1,4-diylethenylene), Poly(dimethyl barrelene2,3-carboxylate) Poly(l,2-dihydronaphthalene)
Toluene (hot) Bzn., carbon disulfide, chlorobenzene Bzn.
Poly(dimethylfulvene)
Acetone, bzn., chlorinated hydrocarbons, diethyl ether, hexane Aromatic chlorinated hydrocarbons, diethyl ether, dioxane, drying oils, ketones, pyridine Bzn., carbon disulfide, chloroform, THF Acetone, acetonitrile, bzn., chloroform, DMF, DMSO, THF
Poly(indene) PoIy(I-isopropylidene3a,4,7,7a-tetrahydroindene) Poly[l,4-phenylene-l,2-dicyanol,2-bis(propoxycarbonyl)ethenylene]
Bis(phenoxyphenyl) ether (above 2900C)
Acetone, acids, alcohols, dimethoxyethane, ethers
4,32,211
Methanol Methanol Methanol Methanol
212 213 214 215
Ether, hexane, methanol, petrol
216
Acetone, hexane, methanol Methanol
217,218 219 206
Amyl acetate, chloronaphthalene, diphenyl ether, tetrachloroethane, tetrahydronaphthalene Alcohol
220
Acids, aliphatic hydrocarbons (sw), alkalies, lower alcohols, W
6
221
Acetone, cyclohexane, ethanol, hexane
222
Diethyl ether, hexane, methanol
164
TABLE 3. MAIN-CHAIN CARBONYL POLYMERS Polymer Poly(carbonylethylene) Poly(carbonyl-l,2-propylene) Poly(carbonylethylene-cc>-carbonyH,2-propylene) (7:3) Poly(carbonyl-l-furfuryltrimethylene) Poly(carbonylphenylethylene), Poly(carbon monoxideco-styrene) Poly(carbonyl-1-phenyltrimethylene) Poly(carbonyl-l,4-cyclohexan-3-onediyl) Poly(carbonyl-l,4-cyclohexan-3-onediylmethylene) Poly[carbonyl-2,3-di(ethoxycarbonyl)bicyclo[2.2.2] hepta-2,5-diene-5,6-diyl] Poly(carbonyl-4,4/-biphenylylene) Poly(carbonyl-l,4-phenyleneoxy-l,4-phenylene)
Solvents ra-Cresol Hexafluoroisopropanol Cresol, hexafluoropropylene, methylene chloride Acetone, dioxane Chlorobenzene, hexafluoroisopropanol, MEK (hot), methylene chloride Chloroform Chloroform Chloroform Acetone, common organic solvents Chloroform, DMA, 1,1,2,2-tetrachloroethane
Nonsolvents
Methanol Chloroform, ethanol, W Methanol
Refs. 328 329 330,331 332 333-335
Alkyl hydrocarbons
336 337 338 339
DMA, NMP MEK, methanol, toluene
194 340
Methanol
TABLE 3. cont'd Polymer
Solvents
Poly(carbonyl-1,3-pheny leneoxy-1,4-phenylene) Poly [carbonyl-l,4-phenyleneoxy-2-(methoxy methylene)1,4-phenyleneoxy-1,4-phenylenej Poly(carbonyl-l,3-phenylenecarbonyl-l,4-phenyleneoxy1,4-phenylene), PEKK Poly(carbonyl-1,4-phenytenecarbony 1-1,4-phenyleneoxy1,4-phenylene), PEKK Poly(carbonyl-1,3-phenylenecarbonyt-1,4-phenyleneoxy1,3-phenylenemethylene-1,3-phenyleneoxy-1,4-phenylene) Poly(carbonyl-l,4-phenylenecarbonyl-l,4-phenyleneoxy1,4-phenylene-2-pentylidene-1,4-phenyleneoxy1,4-phenylene) Poly(carbonyl-1,4-phenyleneoxy-1,4-phenyIeneoxy1,3-pyridinediyloxy -1,4-phenyleneoxy-1,4-phenylene) Poly (carbony 1-1,4-phenyleneoxy-4,4'-biphenylyleneoxy1,4-phenylene-c-carbonyl-1,4-phenyleneoxy1,4-phenyleneoxy-1,4-phenylene) (1:1 to 1:3) Poly(carbonyl-l,3-phenylenecarbonyl-l,4-phenyleneoxy1,3-pheny lenemethylene-1,3-phenyleneoxy1,4-phenylene)
TABLE 4.
Nonsolvents
Refs.
-Chlorophenol Chloroform, THF
341 342
Pentafluorophenol (80°)
343,344
Pentafluorophenol
344
DMA, DMF, NMP
345
DMA
Methanol
346
DMA
347
Sulfuric acid, 0.1 wt.%
348
DMA, DMSO, NMP
345
MAIN-CHAIN ACYCLIC HETEROATOM POLYMERS
Polymer
Solvents
Nonsolvents
Refs.
4.1. MAIN-CHAIN - C - O - C - POLYMERS 4.1.1. POLY(OXIDES) Unsubstituted Poly(oxymethylene), Poly formaldehyde
Poly(oxyethylene), Polyethylene glycol), Poly(ethylene oxide)
Poly(oxyethylidene), Polyacetaldehyde amorphous crystalline Poly(oxypropylene), PoIy(1,2-propylene glycol), Poly(propylene oxide), crystalline Poly(oxypropylidene), crystalline Poly(oxyisopropylidene), Polyacetone PoIy(1,3-dioxolane) Poly(oxytetramethylene), Poly(tetrahydrofuran) Poly(oxycyclopentenylene) Poly(oxycyclohexenylene) Poly(oxymethylenecyclopropylidenemethyleneoxyhexamethylene) Poly(oxy- 1,3-phenylene)
At elevated temp.: aniline, benzyl Lower alcohols, diethyl ether, 4,224,225 alcohol, benzyl benzoate, lower esters, hydrocarbons bromobenzene, y-butyrolactone, chlorophenols, diphenyl ether, DMF, ethylene carbonate, formamide, malodinitrile, phenol Acetonitrile, alcohols, bzn., Aliphatic hydrocarbons, ethers, dioxane 4,5,13 chloroform, cyclohexanone, esters, (sw), W (hot) DMF, W (cold), aqu. K 2 SO 4 (0.45 M above 35°C), aqu. Mg2SO4 (0.39 x M above 45°C) Alcohols, aromatic hydrocarbons, chloroform, esters, ketones Chloroform (partially) Acetone, bzn., chloroform, dioxane, DMF, ethanol, methanol (hot), THF Chloroform (partially) Acetone, chloroform Methylene chloride, W (700C) Bzn., chloroform, ethanol, THF Bzn., carbon disulfide, chloroform Aliphatic hydrocarbons, Chinese wood oil, methyl acetate, toluene Methylene chloride Benzophenone, bzn., diphenyl ether. DMF, DMSO, nitrobenzene, 3-pentanol, pyridine
Aliphatic hydrocarbons
226
Alcohols, esters, hydrocarbons, ketones 2-Aminoethanol, diethyl ether (sw), ethyl acetate (sw) Common organic solvents
226 13
Hexane, methanol, petroleum ether, W Methanol Acetone, ethanol, 2-ethoxyethanol
227 228 229 230-233 677 13
Hexanes
234
Methanol
235
References page VII - 536
TABLE 4. cont'd Polymer
Solvents
Substituted Polyepichlorohydrin, Poly(oxy-3-chloro-l,2-propylene) Poly(oxy-2-chloroethylidene) amorphous crystalline Poly(oxy-2-methyltetramethylene) Poly(oxy-2,2,2-trichloroethylidene), crystalline Polychloral Poly[oxy-2,2-bis(chloromethyl)trimethylene, Poly (oxy-2,6-dimethyl-1,4-phenylene), Poly(2,6-dimethyl-1,4-phenylene oxide) amorphous crystalline Poly(oxy-2,6-dichloro-1,4-phenylene) Poly(oxy-l,4-phenylene-l,2-cyclopropylene1,4-pheny leneoxymethylene) Poly(oxy-4,4/-biphenylylene-l,2-propylene1,4-phenyleneoxydodecamethylene) PoIy(I-propynylene-l,3-diyloxy-l, 4-phenyleneisopropylidene-1,4-phenyleneoxy2-propynylene 1,3-diyl) Poly[oxyethylene-co-oxy(chlorornethyl)ethylene] (1:1) Poly[oxy-3,5-bis(4-carboxyphenyl)-l,4-phenylene-a?oxy-3,5-bis(phenyl)-l,4-phenylene] (13: 87 to 62:38) Poly(oxy-l,4-phenyleneisopropylidine-l,4-phenyleneoxya/f-2-hydroxy-l,3-propylene), Poly(Bisphenol A), epoxy resin Polymeric structures, not 100% specific Poly(dimethylketene), -f OC-)-
Nonsolvents
Refs. 32,94,236,237 32,94, 236,237
Acetone, bzn., chloroform, diethyl ether, MEK, THF, toluene
Methanol
Chloroform
Cyclohexanone
Methanol Chloroform, methanol Methanol Chloroform, methanol, other common solvents Methanol
a-Pinene (hot) Bzn., chlorobenzene, chloroform, toluene 2-Methoxymethanol Chloroform, DMA, NMP
a-Pinene (cold), methanol, ethanol Ethanol, methanol, nitromethane, oc-pinene (hot) Methanol Methanol
Bzn., Cloroform
238 238 239 227 237,240 241 - 244 241-244 241-244 688 245
Chloroform
246
Toluene
247
Chloroform DMF, DMSO
Methanol Chloroform, toluene
Esters, ethers, ketones
237 248 249
C(CH3)2 low mol. wt. higher mol. wt. Polyacrolein, (ionic polymerization) -f OCH+-
Diethyl ether Bzn., carbon tetrachloride Acetone, bzn., dioxane, THF, DMF
Methanol Chloroform (partially) Methanol, petroleum ether
Aniline, y-butyrolactone, DMF, nitrobenzene, pyridine
Alcohols, hydrocarbons
250,251 250, 251 252
CH=CH2 Polyacrolein, (redox polymerization) see 1.10 Poly(a-methylacrolein)
13
Poly[l,2-di(epoxyethyl)benzene],
Chloroform, THF
Poly(phenyl glycidyl ether)
1,2-Dichlorobenzene (hot), DMF (hot), xylene (hot)
Common organic solvents at rt
Bzn., chloroform, diethyl ether, THF
Petroleum ether, W
Methylene chloride, THF, pyridine
Bzn., (partially)
Chloroform, diethyl ether, dioxane, THF Bzn., chloroform, diethyl ether, THF, dioxane Bzn., chloroform, hexane
Petroleum ether, W
133,197, 255,256 133,197, 255,256 255
Petroleum ether, W
255
Methanol
257
Poly(glutardialdehyde) low mol. wt. high mol. wt. Poly(p-methylglutardialdehyde), low mol. wt. Poly(p-phenylglutardialdehyde), low mol. wt. VoXy {trans-1,2-cyclohexanedicarb-
253 254
oxaldehyde),
Poly(2-formyl- A 5-dihydropyran)
Aromatic hydrocarbons, chloroform, pyridine, THF
258
TABLE 4. cont'd Polymer
Solvents
Nonsolvents
Refs.
4.1.2. POLY(CARBONATES) Poly(oxycarbonyloxypropylene) Poly(oxycarbonyloxyhexamethylene) Poly(oxycarbonyloxy-2,4-dihydroxy-l,4-butylene) Poly(oxycarbonyloxy-l,4-butyleneoxycarbonyloxy1,4-cyclohexylene) Poly(oxycarbonyloxymethylene-l,2-cylcohex4-enylenemethylene) Poly(oxycarbonyloxy-l,3-phenylene) Poly(oxycarbonyloxy-l,4-phenylene) Poly(oxycarbonyloxy-1,4-phenyleneisopropylidene-l,4-phenylene), Poly(Bisphenol A carbonate) chlorinated (8% Cl and more) Poly(oxycarbonyloxy-1,4-phenylene2-pentylidene-1,4-phenylene) Poly(carbon dioxide-co-propylene oxide) (1:1) Polypropylene carbonate-co-propylene oxide) (9:1) Poly(oxycarbonyloxy-l,2-cyclohexyleneoxy1,2-cylclohexylene)
Dioxane, methylene chloride Acetone, bzn., chloroform, toluene Methylene chloride Chloroform, THF
Methanol, W Ethanol, ether Ethanol
678 13 260 261
Chloroform
Chloroform, ra-cresol, cyclohexanone, dioxane, DMF, pyridine, THF
262 Common organic solvents Common organic solvents Acetone, carbon tetrachloride, lower esters, hydrocarbons, styrene
Bzn., methyl methacrylate, styrene Bzn., chloroform, ethyl acetate THF Chlorobenzene Methylene chloride, THF
13 13 13,263-265 265 13
Methanol Methanol
266 267 268
4.1.3. POLY(ESTERS) (alphabetically ordered) Polyethylene terephthalate), see Poly(oxyterephthaloyloxyethylene) Poly(oxyadipoyloxyethylene, Poly(ethylene adipate) Poly(oxyadipoyloxy-1,4-phenylene-1,2-propenylene1,4-phenylene) Poly(oxyadipoyloxytetramethylene), PoIy(1,4-butylene adipate) Poly(oxyadipoyloxytrimethylene), Poly(l,3-propylene adipate) Poly(oxyazelaoyloxyethlylene), Poly(ethylene azelate) Poly(oxycarbonyl-4,4'-biphenylylenecarbonyloxyhexamethylene) Poly(oxycarbonyl-1,4-cyclohexylenecarbonyloxyoctamethylene), cis and trans Poly(oxycarbonyldodecamethylenecarbonyloxy4,4 '-biphenylylene) Poly(oxycarbonylethylene), Poly((3-propiolactone) Poly(oxycarbonyiethyleneoxyethylene) Poly(oxycarbonylethylidene), Poly(DL-lactic acid) Poly (oxycarbonylethynylene-1,4-phenyleneethynylenecarbonyltetramethylene) Poly(oxycarbonyl-2,6-naphthalenediylcarbonyloxybutylene, Poly(butylene 2,6-naphthalate) Poly(oxycarbonyl-2,6-naphthalenediylcarbonyloxyethylene, Poly(ethylene 2,6-napthalenedicarboxylate) Poly(oxycarbonyl-2,6-naphthalenediyl-c6>-oxycarbonyl1,4-phenylene) (1:3) Poly(oxycarbonyloctadecamethylenecarbonyloxyethylene) Poly(oxycarbonylpentamethylene), Poly(e-caprolactone), Poly(oxyhexanoyl) Poly(oxycarbonylpentamethylene-co-oxycarbonyl3-hydroxypentamethylene) (9:1 to 1:9), Poly(5-hydroxyvaleric acid-co-4-hydroxyvaleric acid) Poly(oxycarbonyl-1,4-phenylene), Poly(4-hydroxybenzoic acid) Poly(oxycarbonyl-1,4-phenyleneoxyhexamethyleneoxy1,4-phenylene)
Bzn., THF Chloroform Chloroform, DMF, THF
32 269 Methanol
32,270
Chloroform, MEK, THF
32
Bzn., THF
32
Pentafluorophenol/methylene chloride (3/1), THF Chloroform
271,272 5
Phenol/tetrachloroethane (3/2)
273
Chloroform, formic acid
Hydrocarbons
274,275
THF, toluene Acetone, chloroform, toluene
Ethanol
278 276,277
DMA
Methanol
Methylene chloride
Chloroform THF
279 280,281
Hexafluoroisopropanol
282
Pentafiuorophenol/hexafluoroisopropanol Toluene Chloroform, methylene chloride, THF, toluene Methylene chloride
283
No known solvent Phenol//?-chlorophenol/ trichloroethylene (25/40/35)
Methanol Hexane, methanol Methanol (cold)
284 285-287 288 32 289
References page VII - 536
TABLE 4. cont'd Polymer Poly(oxycarbonyl-1,4-phenyleneoxyterephthaloyloxytetramethylene) (7 : 3 to 2:3), Poly(butylene terephthalate-co-4-hydroxybenzoic acid) Poly(oxycarbonyl-2-phenyl-l,3-propylene) Poly(oxycarbonylpolyethylenecarbonylpolyethylene) Poly(oxycarbonyl-l,2-propylene), Poly(3-hydroxybutyric acid) Poly(oxycarbonyl-l,3-propylene), Poly(y-butyrolactone), Poly(4-hydroxybutyric acid) Poly(oxycarbonyl-1,2-propylene-cooxyethylenecarbonyloxyethylene) (9:1 to 1:9) Poly(oxycarbonyltetradecamethylene) Poly(oxycarbonyltrimethyleneoxyethylene-co-methyl vinyl ether) (1:2 to 4: 1) Poly(oxycarbonyl-l-vinylethylene), Poly(p-vinyl-P-propiolactone) Poly(oxy-a,a-dibutylsebacoyloxyhexamethylene) Poly(oxydodecanedioyloxy-l,4-phenylene2-methylethenylene-1,4-phenylene) Poly(oxyfumaroyloxyhexamethylene) Poly(oxyfumaroyloxytetramethylene) Poly(oxyglutaroyloxyhexamethylene) Poly(oxyglutaroyloxypropylene), Poly(l,3-propylene glutarate) Poly(oxyisophthyloyloxy-4,4'-biphenylylene) Poly(oxyisophthaloyloxy-1,4-phenylene), Poly(phenylene isophthalate)
Poly(oxyisophthaloyloxy-1,4-phenylenefluorenylidene-1,4-phenylene) Poly(oxyisophthaloyloxy-l,l,3-trimethylindan -3,5-diyl-l,4-phenylene) Poly(oxymaleoyloxyhexamethylene), Poly(hexamethylene malonate) Poly(oxymaleoyloxytetramethylene), Poly(butylene malonate) Poly(oxyoxalyloxyethylene), Poly(ethylene oxalate) Poly(oxyoxalyloxyhexamethylene), Poly(hexamethylene oxalate) Poly(oxy-1-oxo-3-methyltrimethlylene-cc?-oxy3-ethyltrimethylene) (9:1), Poly(3-hydroxybutryic acid-cc-3-hydroxyvaleric acid) Poly(oxy-l-oxo-3-methyltrimethylene-co-oxy1-oxotrimethylene) (1:0 to 3 :1), Pory(3-hydroxybutyric acid-co-3-hydroxypropionic acid) Poly(oxy-1-OXO-1,2-propylene), Poly(lactic acid) Poly (oxy- 1-oxo-1,2-propylene-co-oxycarbonylmethylene), Poly (lactic acid-co-glycolic acid) (1:1 to 1:3) Poly(oxysuccinoyloxy-2,2-dimethyl-l,3-propylene) Poly(oxysuccinoyloxydoeicosan-10,12-diyne-l,22-diyl) Poly(oxysebacoyloxyhexamethylene), Poly(hexamethylene sebacate) Poly(oxysebacoyloxyhexadecamethylene) Poly(oxysuccinoyloxyhexamethylene), Poly(hexamethylene succinate) Poly(oxysuccinoyloxymethylene-l,4-cyclohexylenemethylene) Poly(oxysuccinoyloxynonamethylenebutadyne1,3-diylnonamethylene)
Solvents
Nonsolvents
/?-Chlorophenol/tetrachloroethane, trifluoroacetic acid Chloroform Cyclohexane Chloroform
Refs. 291
Hexane
290 292 7
Carbon tetrachloride, chloroform, dichloroethylene, trifluoroethanol Chloroform
Diethyl ether/hexane (1 :3)
295
Chloroform Bzn.
Diethyl ether
296 297
Butyrolactone, chlorinated hydrocarbons, DMF Bzn. Chloroform
293,294
298 Hexane, W
Chloroform Chloroform, NMP Methanol, W Bzn., chlorobenzene, chloroform, THF Chloroform, MEK, THF, toluene See poly(oxyisophthaloyloxy-1,4-phenylene) At elevated temp.: benzophenone, Common organic solvents halogenated biphenyls, halogenated diphenyl oxides, halogenated naphthalenes, m-terphenyl, 2,4,6-trichlorophenol Dichloroethane Methanol, W Chloroform, DMF, m-cresol, NMP, nitrobenzene, pyridine, THF Bzn., chloroform, THF
DMSO, hexane, methanol
Chloroform, NMP, THF
Methanol
Chlorobenzene, chloroform, dioxane, nitromethane, toluene Chloroform
302
303 304
300
Bzn., Chlorobenzene, chloroform, THF 301 Bzn., methanol, toluene, THF 301,305 306
Hexane, methanol
Acetone, chloroform, dioxane, DMF, methylene chloride, pyridine Chloroform
Ethanol, hexane, methanol
307
276,277,308,690 309
Bzn., chloroform, THF Chloroform, THF Bzn., chlorobenzene, chloroform, THF
Chloroform, THF
5 300 301 32
5
Chloroform
Chloroform Bzn., chlorobenzene, chloroform, nitromethane, THF Bzn., chloroform, THF (hot)
5 299
32 310 5,301 Methanol
5 5,301,305 32 310
TABLE 4. cont'd Polymer Poly(oxysuccinoyloxytetramethylene), Poly(tetramethylene succinate) Poly(oxysuccinoyloxytrimethylene), Poly( 1,3-propylene succinate) Poly[oxyterephthaloyloxy-l,4-(2-rc-alkyl)phenylene] Poly(oxyterephthaloyloxytetramethylene), Poly(butylene terephthalate) Poly[oxyterephthaloyloxybutyIene-C(?-oxycarbony2,6-naphthanenediylcarbonylpoly(oxyethylene)] (1:1) Poly(oxyterephthaloyloxyethylene), crystalline, Polyethylene terephthalate), Poly(oxyethyleneoxyterephthaloyl)
Poly(oxyterephthaloyloxyethylene-a?-oxyhexanoyl) (1:1), Poly(ethylene terephthalate-coe-caprolactone) Poly(oxyterephthaloyloxyethylene-c<9-oxycarbonylnaphthalene-2,6-diylcarbonyloxyethylene) ( < 4 : 1, > 4 : 1) Poly(oxyterephthaloyloxy- 1,4-phenylenecarbonyloxy tetraethylene) ( 2 : 1 : 1 ) Poly(oxyundecanoyl)
Solvents Chloroform, toluene
Nonsolvents
Refs.
Diethyl ether
311
Chloroform, MEK, THF, toluene /?-Chlorophenol, methylene chloride Phenol/tetrachloroethane
32 Acetone, ethanol, hexane
312 313
m-Cresol
314
Chloral hydrate, chlorophenol, Aliphatic alcohols, carboxylic DMSO (hot), halogenated aliphatic esters, chlorinated hydrocarbons, carboxylic acids, anhydrous ethers, hydrocarbons, ketones hydrogen fluoride, nitrobenzene, phenol/2,4,6-trichlorophenol (10/7), phenol, phenol/tetrachloroethane ( l / l ) Chloroform Methanol
4,5,315, 316
317
Phenol/tetrachloroethane (3/2)
318
p-Chlorophenol/tetrachloroethane, trifluoroacetic acid Bzn., chloroform
291 5
4.1.4. POLY(ANHYDRIDES) Poly(oxysebacoyl) Poly(oxyterephthaloyl)
Chloroform DMF
276 319,320
4.1.5. POLY(URETHANES) (alphabetically ordered) Poly(urethanes) (general) Poly(oxy-l,4-butyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl), Poly(butanediol-#/f-diphenyl methane-1,4-diisocyanate) Poly(oxy-l,4-cyclohexyleneoxycarbonylimino1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl) Poly(oxyethyleneoxycarbonyliminoethylene~ iminocarbonyl) Poly(oxyethyleneoxycarbonyliminohexamethyleneiminocarbonyl) Poly(oxyethyleneoxycarbonylimino~ 1,3-phenyleneiminocarbonyl) Poly(oxytrimethyleneiminocarbonyl)
4.2.
Phenol, m-cresol, formic acid, sulfuric acid DMA
Alcohols, diethyl ether, saturated hydrocarbons
Dioxane (hot), DMF, THF
1,1,2-Trichloroethane
322
Chloroform, formic acid, methylene chloride Diethyl ether
323
ra-Cresol DMF m-Cresol (hot), DMSO, sulfuric acid
4 321
Chlorobenzene, chloroform, cyclohexanone (sw), DMF (sw), xylene
DMSO
324 325 326
MAIN-CHAIN - O - HETEROATOM POLYMERS
4.2.1. POLY(SULFONATES) Poiy(aryl sulfonates) DMF
Methanol
349
DMA, DMF, NMP
Chloroform, methanol, methyl ethyl ketone, tetrahydrofuran
676
References page VII - 536
TABLE 4. cont'd Polymer
Solvents
Nonsolvents
Refs.
4.2.2. POLY(SILOXANES) (ordered according to increasing complexity) Poly(siloxanes) (general) fluids and greases
Aromatic and chlorinated hydrocarbons, esters
Moderately cone, acids and alkalies, 6 lower alcohols, W rubbers Aromatic and chlorinated hydrocarbons 6 (sw), esters (sw) Poly(oxydimethylsilylene), Poly(dimethylsiloxane) Amyl acetate, chlorobenzene, Acetone, acetonitrile, acetophenone, 4,5 chloroform, cyclohexyl acetate, aniline, benzyl alcohol, benzyl acetate, dichlorobenzene, 1,2-dimethoxybromobenzene, y-butyrolactone, ethane, ethyl bromide, Carbitol ~, cyclohexanone, cyclohexanol, ethyl acetate, ofluorotoluene, 1,4-dibromobutane, 1,2-dichloroethane, hydrocarbons, hydrogenated xylene, di(chloroethyl) ether, dichlorobenzene, isopropyl acetate, MEK (above 200C), dimethylnaphthalene, dioxane, octylamine, phenetol diphenyl oxide, ethyl formate, ethyl (above 13°C), trichloroethylene benzoate, 2-isopropoxyethanol, mesityl oxide, methanol, nitrobenzene, 1 -nitropropane Poly(oxydiethylsilylene), Poly(diethylsiloxane) Toluene W 32 Poly(oxyhydrophenylsilylene) THF 351 Poly(oxymethylphenylsilylene), Poly(methylphenylsiloxane) Acetone (hot), butanol, chloroform, Ethanol, ethylene glycol, methanol 352 diethyl ether, ethyl acetate, toluene Poly(oxymethylhexadecylsilylene) Chloroform, THF, toluene W 32 Poly(oxyalkylmethylsilylene)-co-4-(4-cyanobenzoyl)phenoxy DMF, toluene Hexane, methanol 353 Poly(oxydiphenylsilylene), Poly(diphenylsiloxane) Acetone (hot) Acetone (cold) 352 Poly[oxybis(3,4-dichlorophenyl)silylene] Acetone, bzn. 354 Poly(oxydimethylsilyleneethyleneoxydimethylsilylene) Toluene 355 Poly(oxydimethylsilyleneoxydimethylsilyleneTHF 356 1,4-phenylenedimethylsilylene) Poly [oxymethy 1(5-f-butoxycarbonyloxy-2-norbornyl)silylene] Chloroform, toluene Methanol 357,358 Poly(oxydimethylsilylene-c-oxyalkylmethylsilylene), Aliphatic hydrocarbons, aromatic Ethanol, W 359 Poly(dimethylsiloxane-co-alkylmethylsiloxane) hydrocarbons, isopropanol Poly(oxydimethylsirylene-a?-oxycarbonylBzn., carbon tetrachloride, 360 l,4-phenyleneisopropylidene-l,4~phenylene) (1:3 to 1:1) chloroform, methylene chloride, pyridine, THF 4.3. MAIN-CHAIN - C - S - C - AND -C-S-N-POLYMERS 4.3.1.POLY(SULFIDES) (alphabetically ordered) Poly(2,5-dioxopyrrolidine-1,3-diylthio-1,4-phenylene)
Tricresol
Methanol
Poly(dithioethyleneoxyethylene)
1,1,2-Trichloroethane (partially), other chlorinated hydrocarbons (partially)
liquid polymers Poly(tetrathioethylene)
Bzn., ethylene dichloride No solvent known
Poly(tetrathioethyleneoxyethylene)
1,1,2-Trichloroethane (partially), other chlorinated hydrocarbons (partially) Bzn., ethylene dichloride Biphenyl, dichlorobiphenyl, dimethyl-/?-terphenyl Chloroform/methanol
DiI. acids, alcohols, dil. alkalies, 6,178 bzn. (sw), carbon disulfide, carbon tetrachloride (sw), gasoline (sw), turpentine (sw) 6,178 DiI. acids, alcohols, dil. alkalies, 6,178 bzn. (sw), carbon tetrachloride, carbon disulfide, gasoline Dil. acids, alcohols, dil. alkalies, 6,178 bzn. (sw), carbon tetrachloride, carbon disulfide, gasoline 6,178 362
liquid polymers Poly(thio-4,4-biphenylylene) Poly(thiodifluoromethylene) Poly(thio-2,5-dimethyl-l,4-phenylene) Poly(thiomethylene-l,4-frafls-cyclohexylenemethylenethiomethylene) Poly(thio-1,4-phenylene), Poly(phenylene sulfide)
Cone, nitric acid (reflux), aqu. sodium hydroxide (10%, reflux)
Hexane, methylene chloride Bzn., chloroform
Methanol, W
Biphenyl, ra-dichlorobenzene, dichlorobiphenyl, dimethyl/7-terphenyl, hexachlorobiphenyl
At reflux temp.: 2,4-lutidine, phenyl sulfide, phenyl oxide, pyridine, toluene
361
363 364 365 362,366, 367
TABLE 4.
cont'd
Polymer
Solvents
Poly (thio-l,4-p.henylenecarbony 1-1,4-phenyleneisopropylidene-1,4-phenylenecarbonyl-1,4-phenylene) Poly(thio-l,4-phenyleneiminocarbonyl-l,4-phenyleneoxy carbonylethylene) Poly(thio-l,4-phenyleneoxymethyleneoxy-l,4-phenylene) Poly(thio-1,4-phenyleneoxy-1,4-phenylene) Poly(thiotetramethyl-1,4-phenylene) O C
^ ~\T^)C
Nonsolvents
Refs.
Chloroform, NMP
Methanol
368
Chloroform, NMP
Hexane, methanol
369
Chloroform, methyiene chloride Hexane, methyiene chloride Durene
Methanol
364 364 364
O S
^V"
CNH
lf':\~NH^
DMA DMF NMP
'
'
Methanol
370
4.3.2. POLY(SULFONES) (ordered according to increasing complexity) Poly(ethylene-a?-sulfur dioxide) Poly(propylene-o?-sulfur dioxide) PoIy(I -butene-co-sulfur dioxide)
No solvent known Cone, nitric acid, cone, sulfuric acid Acetone, cyclohexanone
Poly(butylethylene-cosulfur dioxide) PoIy(1,3-hexadiene-o?-sulfur dioxide) (1 : <3) Poly(dimethylbutadiene-cc>-sulfur dioxide) PoIy(I-pentyne-co-sulfur dioxide) PoIy(I -hexyne-co-sulfur dioxide) PoIy(I-heptyne-co-sulfur dioxide) Poly[4-(terf-butoxycarbonyloxy)styrene-co-sulfur dioxide] (5:1) PoIy(1,4-phenyleneoxymethyleneoxy1,4-phenylenesulfonyl) PoIy(1,4-phenylenesulfonyl) Poly(oxy-l,4-phenylenesulfony 1-1,4-phenylene)
Bzn., chloroform, dioxane Acetone, chloroform, DMA, DMF, THF Cone, nitric acid, cone, sulfuric acid Common organic solvents Dioxane Acetone, dioxane Acetone, dioxane Toluene
7 371 13 13 13 13 372
Chloroform
364
Poly (thio-1,4-phenylenesulfonyl-1,4-phenylene) Poly(carbonyl-l,3-phenylenemethylene1,4-phenylenesulfonyl-1,4-phenylene) Poly(thio-1,4-phenylenesulfonyl-1,4-phenylenethio1,4-phenyleneisopropylidine-1,4-phenylene) Poly(3-amino-l,4-phenylenesulfonyl-2-amino1,4-phenyleneoxy-1,4-phenyleneisopropylidene1,4-phenylene) Poly(2,5-thiophenediylsulfonyM ,4-phenyleneoxy1,4-phenyleneisopropylidene-1,4-phenyleneoxy) PoIy(1,4-phenylenesulfony 1-1,4-phenyleneoxy4,4'-biphenylyleneoxy) PoIy(1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenylenecarbonyl-1,4-phenyleneoxy1,4-phenyleneoxy) PoIy(1,4-phenylenesulfonyl-1,4-phenyleneoxy1,3-phenyleneethenylene -1,3-phenyleneoxy) PoIy(1,4-phenylenesulfonyM,4-phenyleneoxy1,4-phenylenevinylidene-1,4-phenylene) Poly (1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenyleneoxy-1,3-pyridinediyloxy-1,4-phenyleneoxy) PoIy(1,4-phenylenesulfonyl-1,4-phenyleneoxy1,4-phenylenemethylphosphineoxide-1,4-phenyleneoxy)
Poly(l,3,4,6-tetraoxyperhydrocyclopentene-(l,2-c: 3,4-c')dipropyl-2,5-diylethylenesulfonylethylene)
Aniline, DMA, pyridine Aniline, aromatic amines, DMF, DMSO, methyiene chloride, NMP, pyridine DMF, DMSO, NMP No known solvent
Common organic solvents Paraffins, cycloparaffins, aromatic hydrocarbons
Methanol Alcohols, halogenated hydrocarbons, hydrocarbons, silicone oil Acetone, DMF, THF, toluene
DMA/toluene
13,178 13,178 13
373 32,373-375 376 377 378
THF
Ethanol/W (1:1)
379
DMA, methyiene chloride, THF
Methanol, W
380
Aniline, DMA, pyridine Chloroform, sulfolane
373 Methanol
381
DMA
382
Chloroform, DMA
181
DMA
347
DMA
Methanol/W
383
Dichlorobenzene
Isopropanol, methanol
384
DMF, DMSO, formic acid, NMP, sulfuric acid
Hexane
385
References page VII-536
TABLE 4.
cont'd
Polymer
Solvents
Nonsolvents
Refs.
4.3.3. OTHERS Poly(trimethylenesulfite)
Methylene chloride
386
4.4. MAIN-CHAIN - C - N - C - POLYMERS 4.4.1. POLY(AMIDES) Poly(amides) 1 Poly(N-ethyliminocarbonyl), Poly (ethyl isocyanate) Poly(N-butyliminocarbonyl) Poly(butyl isocyanate) Poly(A/r-n-hexyliminocarbonyl), Poly(n-hexyl isocyanate) Poly(N-m-tolyliminocarbonyl) Poly(A/'-vinyliminocarbonyl) Poly (amide) 1,5 Poly(iminoglutaroyliminomethylene) Poly(amide) 1,6 Poly(iminoadipoyliminomethylene), Poly(methylene adipamide) Poly(amide) 1,12 Poly(iminododecanoyliminomethylene) Poly(amides) 2 Poly(7-benzyl glutamamide) Poly(lysine-co-lactic acid) (1:19) Poly(amides) 3 Poly[imino-(l-oxo-2,2-dimethyl-3-phenyltrimethylene)], Poly(3,3-dimethyl-4-phenylazetidine-2-one) Poly[imino-(l-oxo-3-methyltrimethylene)], Poly (4-methylazetidine-2-one) optical activity < 75% optical activity > 80% Poly[imino-(l-oxotrirnethylene)]
Poly(aspartic acid-co-lactic acid) (1:9) Poly(amides) 4 Poly[imino-(l-oxotetramethylene)], Polypyrrolidone
Poly(iminooxalyliminotetramethylene) Poly(imino-l-carboxy-l,3-propylenecarbonyl), Poly (y-glutamic acid) Poly(amide) 4,6 Poly(iminoadipoyliminotetramethylene), Poly(butylene adipamide) Poly(amides) 5,5 Poly(iminoglutaroyliminopentamethylene), Poly (1,5-pentamethylene glutaramide) Poly (amide) 5,6 Poly(iminoadipoyliminopentamethylene), Poly (pentamethylene adipamide) Poly(amides) 6 Poly[imino-(l-oxohexamethylene)], Poly (e-caprolactam) chlorinated
Sulfuric acid, trifluoroacetic acid Bzn., carbon tetrachloride, THF Bzn., chloroform, DMF DMF DMA, DMF, DMSO, pyridine
Methanol Alcohols, carbon disulfide, chloroform, dioxane
1,4-Butanediol, dichloroacetic acid
387 387,388 389-391 387 392 393,394
1,4-Butanediol
394
2-Methyl-2,4-pentanediol
394
m-Cresol, DMF Chloroform
Methanol
Phenol, sulfuric acid, trifluoroethanol
Chloroform, HMPT, methanol, sol. OfCa(CNS)2 in methanol
Formic acid, phenol, sulfuric acid, sol. of Ca(SCN) 2 in methanol Chlorobenzene/trichloroacetic acid (1/1), dichloroacetic acid, formic acid/trichloroacetic acid (3/7) Aqu. chloral hydrate, aqu. sol. of CaBr2 or FeCU, chloroacetic acid, cyanoacetic acid, formic acid, glycerol (hot), nitric acid, nitrophenols, phenol (hot), sulfuric acid, W>140°C Methylene chloride
Chloroform, HMPT* methanol, trifluoroethanol Formic acid, sulfuric acid
395,396 397 399 399,691
a-Pyrrolidone (hot), acetic acid (hot), aqu. sol. of Ca(CNS)2, benzyl alcohol (hot), 0-chlorophenol, m-cresol, dichloroacetic acid, formic acid, methanol, sulfuric acid Dichloroacetic acid, sulfuric acid, trifluoroacetamide W
Most organic solvents, dilute bases and acids, DMF, DMSO, phenol (cold)
691 13,400,401
402 DMF, formamide, W
403, 404
Formic acid, phenol, W
405
Ethanol
406
Hexafluoroisopropanol
407
Dichloroacetic acid
408
Dichloroacetic acid, trifluoroethanol
Methanol
409,410
Acetic acid, chlorophenol, m-cresol, ethylene carbonate, formic acid, HMPT, phosphoric acid, sulfuric acid, trichloroacetic acid o-Chlorophenol, DMSO, sulfuric acid
Alcohols, chloroform, esters, ethers, hydrocarbons, ketones
4,5
Formic acid
411
TABLE 4. cont'd Polymer Poly[imino-(l-oxohexamethylene)], partially N-trifluoroacetic acid substituted Poly[imino-( l-oxohexamethylene)-cY;-imino(1-oxyundecamethylene)] (1:1) Poly[imino-(l-oxohexamethylene)-o?-iminosuccinoyl], (9 : 1 to 2: 8) Poly(amide) 6,6 Poly(iminoadipoyliminohexamethylene), Poly(hexamethylene adipamide)]
Poly(amide) 6,9 Poly(iminoazelaoyliminohexamethylene) Poly(amide) 7 Poly[imino-(1 -oxohepamethylene)-o?-imino(1-oxodedecamethylene)], (1 : 1) Poly(amide) 8,6 Poly(iminoadipoyliminooctamethylene) Poly (amide) 10,6 Poly(iminoadipoyliminodecarnethylene), Poly(decamethylene adipamide) Poly(amide) 11 Poly[imino-(l-oxoundecamethylene)], PoIy(I I-aminoundecanoic acid) Poly(amide) 12 Poly[imino-(l-oxododecamethylene)], PoIy(12-aminododecanoic acid) Poly(amide) 12/2 Poly(iminocarbonylmethyleneiminocarbonylundecamethylene) Poly(amide) 12,6 Poly(iminoadipoylirmnododecamethylene) Poly (amide) 18 Poly[amino-(l-oxooctadecamethylene)], Poly (18-aminostearic acid) Other aliphatic poly (amides) Poly(iminotartronoyliminohexamethylene) Aromatic poly(amides) Poly(imino~l,4-phenylenecarbonyl-cc>-oxy-l,4-phenylenecarbonyl) (1 : 1 to 1 :9), Poly(/?-aminobenzoic acid-co-p-hydroxybenzoic acid) Poly(iminocarbonyl-l,4-phenyleneoxyterephthaloyloxy1,4-phenylenecarbonylimino-1,4-phenylenehexafluoroisopropylidene-1,4-phenylene) Poly(iminocarbonylpyridine-2,6-diyl-carbonylimino1,4-phenyleneoxy-l ,4-phenylene) Poly(iminoterephthaloyliminoethylene), Poly(ethylene terephthalamide) Poly(A^methyliminoterephthaloyl-/V-methyliminoethylene) Poly(/V-methyliminoterephthaloyl-
Solvents Acetone, chloroform, THF
Nonsolvents Hexane, W
Refs. 412
2,2,2-Trifluoroethanol/methylene chloride (3/2) Mesitylene/sulfolane
413 414
it: Chloral hydrate, chloroacetic Aliphatic alcohols, chloroform, acids, formic acid, HCl, HF, liquid diethyl ether, hydrocarbons, sulfur dioxide, methanol, phenols, aliphatic ketones, aliphatic esters phosphoric acid, sulfuric acid, trichloroethanol, trifluoroethanol, saturated solutions of: alcohol-soluble salts, e.g. calcium chloride, magnesium chloride in methanol, at 120-1800C: acetic acid, /V-acetylmorpholine, benzyl alcohol, 2-butene-l,4-diol, 1,3-chloropropanol, di(ethylene glycol), DMSO, ethylene chlorohydrin, formamide
13
m-Cresol
32
2,2,2-Trifluoroethanol/methylene chloride (3/2)
413 415
1,4-Butanediol, hot Chlorobenzene, diethyl succinate (790C)
5
Higher primary alcohols, DMF, DMSO, hexafluoropropanol
13,692
Cresol DMSO
416 Diethyl ether
398
Cresol
416
DMF, DMSO, pyridine
Hexane, methanol, W
417
Chloroacetic acid, DMSO
Acetone, hexane, methanol, W
418
Cone, sulfuric acid (decomp.)
Insoluble in all common solvents
419
NMP
693
NMP, sulfuric acid
Methanol
420
Sulfuric acid
Acetone, chloroform, m-cresol, DMF, ethanolAV (4/1), formamide, trifluoroacetic acid Ethanol/W (4/1)
421 421
Acetone, DMF
421
Acetone, chloroform, m-cresol, DMF, formamide, sulfuric acid, trifluoroacetic acid Chloroform, m-cresol (hot),
References page VII - 536
TABLE 4. cont'd Polymer Mmethyliminotetramethylene) Poly(immoisophthaloylimino-1,3-phenylene), N-methyl substituted Poly(iminoisophthaloyHmino-l,4-phenyleneoxy1,4-phenylene) Poly(iminoisophthaloylimino-2,4-pentylene) Poly(iminoisophthaioylimino-4,4'-biphenylylene)
Poly (iminoisophthaloylimino-1,4-phenylene) Poly(iminoterephthaloylirninoethylene oxyisophthaloyloxyethylene) Poly(iminoterephthaloyliminotetramethylene) Poly(butylene terephthalamide) Poly(iminoterephthaloylimino-2,4-pentylene) Poly(iminoterephthaloylimino-1,4-phenylene), Poly (p-phenylene tetrephthalamide) Poly(iminocarbonyl-l-methyl-4,5-imidazolediylcarbonyliminoethylene) Poly(iminocarbonyl-l,4-phenyleneiminocarbonylpentamethylene) Poly(iminoterephthaloylimino-3-methyl1,4-phenyleneoxyethyleneoxy-2-methyl-1,4-phenylene) Poly(iminocarbonyl-l,4-phenylenehexafluoroisopropylidene-1,4-phenylenecarbonylimino1,4-phenyleneoxy-1,4-phenylene) Poly(iminocarbonyl-l,4-phenyleneoxyterephthaloyloxy1,4-phenylenecarbonylimino-1,4-phenylenehexafluoroisopropylidene-1,4-phenylene) Poly(imino-3-alkylisophthaloylimino-1,4-phenylene) Poly(iminotetra(octylthio)terephthaloylimino1,4-phenylene) Poly(pyromellitic dianhydride-co-aromatic diamines), Poly(amic acids)
Solvents
Nonsolvents
Refs.
ethanol/W (4/1) (hot), formamide, sulfuric acid DMSO, sulfuric acid
Hexane, W
422
NMP, sulfuric acid
Methanol
420
DMF, DMSO, methanol, Hexane, methanol trifluoroacetic acid, trifluoroethanol Cone, sulfuric acid ra-Cresol (hot), DMA (sw), DMF (sw), DMSO (sw), formic acid (85%) (sw), glacial acetic acid (sw), methanol, NMP (sw) HMPT DMSO, NMP, trifluoroacetic acid Methanol, DMF DMF, formamide, sulfuric acid, trifluoroacetic acid LiCl, sulfuric acid, trifluoroacetic acid DMF/LiCl, NMP
Acetone, chloroform, m-cresol DMF, DMSO, trifluoroethanol, W
423 424
425 426 421 423 427,428
Chloroform, DMF, methylene chloride, NMP Ethyl acetate
429
Tetrachloroethane
431
DMA
430
Methanol
NMP NMP Methylene chloride/methanesulfonic acid DMF, DMA, DMSO, tetramethylurea
432 693
Chlorobenzene, chloroform, dioxane, THF, trifluoroacetic acid
433 434 435
Sulfur and phosphorus containing poly(amides) Poly(iminoadipoyliminotrimethylene-1,4-phenylenephosphinidene-l,4-phenylenetrimethylene)
Aqu. hydrochloric acid (5%), cresol, DMF, ethanol, formic acid
Poly(iminoethyleneiminocarbonyl- 1,4-phenylenesulfonyl-1,4-phenylenecarbonyl)
Formic acid, tetrachloroethane/phenol (2/3), 1,1,2-trichloroethane/formic acid (3/2) Cresol, DMF, ethanol, C-7 fluoroalcohol, formic acid
Poly(iminohexamethyleneiminocarbonylethylene1,4-phenylenephosphinylidene1,4-phenyleneethylenecarbonyl) Poly(iminohexamethyleneiminocarbonylethylenethioethylenecarbonyl) Poly(iminoisophthaloylimino-l,3-phenylenesulfonyl-1,3-phenylene) Poly (iminoterephmaloylimino-1,3-phenylenesulfonyl-1,3-phenylene) Poly(iminoterephthaloylimino-1,4-phenylenesulfonyl-1,4-phenylene) Poly(iminoterephthaloyliminotrimethylene1,4-phenylenephosphinidene1,4-phenylenetrimethylene
Acetone, acetonitrile, chiorobenzene, chloroform, C-7 fluoroalcohol, hexane (sw), W 2-Chloroethanol, m-cresol, DMF
436 437
DMA, DMF, NMP
Acetone, acetonitrile, aqu. hydrochloric acid (5%, sw), chlorobenzene, chloroform (sw), HX, W (sw) Acetone, acetonitrile, aqu. hydrochloric 436 acid (5%), chlorobenzene, chloroform, ethanol, C-7 fluoroalcohol (sw), hexane, W 438
DMA, DMF
NMP
438
Sol. of LiCl in DMF (5%)
DMF, NMP
438
Cresol, DMF, formic acid, hydrochloric acid (5% sw)
Acetone, acetonitrile, chlorobenzene, chloroform, ethanol (sw), hexane, W
436
Chloroform, odichlorobenzene, nitrobenzene, THF
Acetone, hexane, methanol
439
Cresol, DMF, formic acid
4.4.2. POLY(HYDRAZIDES) Poly[diazo-l,4-phenylenecarbonyltri(oxyethylene)oxycarbonyl-1,4-phenylene]
TABLE 4. cont'd Polymer Poly(hydrazoadipoylhydrazoisophthaloyl) Poly(hydrazoadipoylhydrazosuccinoyl) Poly(hydrazoisophthaloylhydrazoterephthaloyl)
Poly(4,4'-benzaldehydeazineoxy-l,4-phenyleneisopropylidene-1,4-phenyleneoxy)
Solvents
Nonsol vents
DMSO, HMPT m-Cresol, dichloroacetic acid (degrad.), DMA, DMSO (cold), formic acid (degrad.), NMP, sulfuric acid (degrad.), trifluoroacetic acid (degrad.), trifluoropropanol Toluene
DMSO (sw) Chloroform, nitrobenzene, trichloroethane (sw), trifluoropropanol, W
Methanol
Refs. 440 440 441
442
4.4.3. POLY(UREAS) Poly(ureas) (general) Poly(iminocarbonylirninononamethylene), Poly(ureylenenonamethylene) Poly(iminocarbonylimino-l,3-phenyleneiminocarbonylirnino-2-methyl-5-sulfo-1,3-phenylene), Poly(ureylene-1,3-phenyleneureylene-2-methyl5-sulfo-1,3-phenylene)
m-cresol, formic acid, phenol, sulfuric acid Sulfuric acid (60% and 95%) Aqu. NaOH
Alcohols, diethyl ether m-Cresol (sw), glacial acetic acid, aqu. NaOH (45%, sw) W
30 679 443
4.4.4. POLY(CARBODIIMIDES) (arranged according to increasing complexity) NR
Poly(diethylcarbodiimide) ** Poly(diallylcarbodiimide) Poly(di-rc-butylcarbodiimide) Poly(diisobutylcarbodiimide) Poly(methylhexylcarbodiimide) Poly(di-rc-hexylcarbodiimide) Poly(diphenylcarbodiimide) -N=C=N-RPoly(hexamethylenecarbodiimide) Poly(4,4'-biphenylylenemethylenecarbodiimide) Poly(3-methyl-l,4-phenylenecarbodiimide) Poly(l,3-xylylenecarbodiimide)
Poly(2,2'-dimethyl-4,4'-biphenylylenecarbodiimide) Poly(2,2/-dimethoxy-l,4-biphenylylenecarbodiimide) PoIy(1,5-naphthylenediylcarbodiimide)
Formic acid, aqu. mineral acids Formic acid Formic acid Formic acid Toluene Formic acid, rc-heptane, toluene Formic acid
Heptane Heptane Heptane
444 444 444 444 445 445,446 444
No solvent known m-Cresol, trichlorophenol/phenol (7/10) No solvent known No solvent known Chlorobenzene, chloroform, cyclohexanone, DMF, DMSO, ethylene chiorohydrin, formic acid, trichloroethylene, xylene No solvent known No solvent known No solvent known
447 447 447 447
447 447 447
4.4.5. OTHER COMPOUNDS Poly(N-propanoyliminoethylene), Poly(2-ethyl-2-oxazoline) Poly[AKperfluorooctylethylenecarbonyl)iminoethylene] Poly(/V-benzoyliminoethylene) Poly[AH(9-carbazolyl)acetyl)iminoethylene] Poly[N-2-((9-carbazolyl)propanoyl)iminoethylene] Polysuccinimide Poly(ter?-butylmaleimide) Poly(phenylmaleimide) Poly(m-aniline) Polyaniline, camphorsulfonic acid doped Poly|7V-(p-tert-butylbenzoyi)aniline] Poly(2-pentadecylaniline) Poly(3-trifluoromethylaniline) Poly(4-amino-3-sulfoaniline)
Ethanol, W Hexafluoroisopropanol Chloroform Chloroform, THF Chloroform, THF Mesitylene sulfolane Bzn., carbon tetrachloride, DMF, THF DMF, DMSO DMF, DMSO, methylene chloride (partially), NMP Benzyl alcohol, chloroform, m-, p-cresol, DMF, NMP Acetone (partially), chloroform (partially), DMSO, THF Chloroform, THF Acetone, acrylonitrile, toluene Methanol, W
Methanol Diethyl ether Ethanol, diethyl ether Ethanol, diethyl ether Hexane Bzn., hexane
448,449 450 451 452 452 453 454 454 455 456,457 458 459 460 461
References page VII - 536
TABLE 4. cont'd Polymer Poly[yV-(p-sulfophenyl)imino-3-hydroxymethyll,4-phenyleneimino-l,4-phenylene] Poly[N-(4-methylphenyl)-6-iminohexamethylenecarbonyl1,4-phenylene] Poly(imino-l,4-phenylenecarbonyloxy1,4-phenyleneoxycarbonyl-l,4-phenylene) Poly[/V-(methyl)imino-3-phenyltriazine-l,5-diyl] Poly (9-nitriloanthraquinone-10-nitrilo-l,4-phenylene) Poly(9-nitriloanthraquinone- 10-nitrilo-1,4-phenylenemethylene-1,4-phenylene) Poly[carbonyliminocarbonyl-1,4-phenylenecarbonyliminocarbonyloxy-2,2-(dimethyl) tetramethyleneoxy] Poly(oxy-3-methyl-l,4-phenylene-<9MV-azoxy2-methyl-1,4-phenyleneoxy-1,12-dodecanoyl),
Solvents DMF (partially), DMSO (partially), NMP (partially), W Methylene chloride, THF
Nonsolvents
Refs. 462
Diethyl ether, methanol
463
m-Cresol, DMA (partially), DMSO (partially), NMP (partially), sulfuric acid Bzn., cresols, phenols Chlorobenzene, chloroform Chlorobenzene
Chloroform, hexane
464
Hexane Hexanes
465 466 467
DMA
Diethyl ether
468
Chloroform
Poly[/V-(acetyl)irninoethylene-c-Af(3-thiopheneylcarbonyl)iminoethylene]
469
Acetone, acetonitrile, DMF, DMSO, THF
470
4.5. POLY(PHOSPHAZENES) AND RELATED COMPOUNDS Poly(dichlorophosphazene) Poly[bis(trifluoroethoxy)phosphazene] Poly(dimethoxyphosphazene) Poly(dihexyloxyphosphazene) Poly(methylphenylphosphazene) Poly(diphenoxyphosphazene) Poly(4-nitrophenoxyphenoxyphosphazene) Poly[(phenylthiophosphonoyl)trirnethyene]
Acetonitrile, cyclohexane, 682 methylene chloride, THF Acetone, cyclohexanone (hot), Diethyl ether, dioxane, ethanol, 471-473 dimethyl ether, ethyl acetate, hydrocarbons, W glycol, methanol (hot), THF Acetonitrile, chloroform, Acetone, bzn., diethyl ether, ethanol, W 471 dimethoxyethane, dioxane, DMF, methanol, pyridine, THF Bzn. 7 THF 474 Bzn. (hot), chlorobenzene, DMF, THF Acetone, DMSO, ethanol, hexane, W 471 Dioxane, THF Hexane, methanol, W 475 Acetone (partially), acetonitrile Toluene, ethyl acetate, methanol, W 476 (partially), chloroform, DMF, DMSO
Chloroform
Methanol/W (9/1)
477
Methylene chloride
Diethyl ether
478
Aromatic hydrocarbons, carbon tetrachloride, cyclohexane Aromatic hydrocarbons Diethyl ether, THF Toluene Isooctane Chloroform Carbon tetrachloride Toluene THF Toluene Toluene Chloroform, diethyl ether Bzn., THF
Acetone (partially), DMSO (partially)
479
4.6. POLY(SILANES), POLY(SILAZANES) Poly(alkyltrisilazane) Poly(dimethylsilylene-1,4-phenylene) Poly(dimethlylsilylenetrimethylene) Poly(;z-pentyl-n-hexylsilylene) Poly(di-rc-hexylsilylene) Poly(methylphenylsilylene) Poly(phenylchlorosilylene) PoIy(1,1,2,2-tetramethyldisilylenemethylene) Poly (diethoxysilylene-1,4-phenylene) Poly(octamethyltetrasilylenedimethylsilylene) Poly(octamethyltetrasilylenemethylene) Poly(dihydrosilylene-1,4-phenylene) Poly(hydrophenylsilyleneethynylene1,3-phenyleneethynylene)
Aliphatic hydrocarbons, ethanol Isopropanol/ethyl acetate
Ethanol Chloroform/me thanol Methanol Methanol Ethanol Hexane, methanol
480 481 482 483 484 485 486 487 488 488 489 490,491
Next Page
TABLE 4. cont'd Polymer Poly(dibutylsilylene-1,4-phenyleneethenylene1,4-phenyleneethenylene-1,4-phenylene) Poly(hexamethylcyclotrisilazane) Poly(dihexylsilyleneferrocenediyl) Poly(dimethyisilylene-N-methylimino) Poly(dimethylsilyleneiminoethyleneimino) Poly(dimethylsilylene-co-1,3-dihydro1,3-dimethyldisilazane) (1:1 to 3: 1)
Solvents
Nonsolvents
Refs.
Chloroform
THF
492
Carbon tetrachloride, hydrocarbons THF THF Xylene Decaline, toluene
Acetone, DMSO
493 680 494 495 496
Toluene
Methanol
497
TABLE 5. MAIN-CHAIN HETEROCYCLIC POLYMERS Polymer
Solvents
Nonsolvents
Refs.
5.1. POLY(BENZOXAZOLES), POLY(OXADIAZOLES), POLY(OXADIAZOLIDINES) Poly(benzoxazoles) Poly(2,5-benzoxazolediyl) Poly(2,6-benzoxazolediyl) Poly(dibenzothiazoles)
Sulfuric acid Sulfuric acid
498 498 499
R = 1,3-phenylene R = 1,4-phenylene R = octamethylene R = 1,4-cyclohexylene
Sulfuric acid Sulfuric acid m-Cresol, formic acid, sulfuric acid Sulfuric acid
R = tetramethylene
Chloroform, m-cresol, DMF (hot), Benzyl alcohol, formic acid pyridine (hot), sulfuric acid (hot), tetrachloroethane (hot), THF (hot) Benzyl alcohol (hot), chloroform, DMF (partially), formic acid (partially) m-cresol (hot), pyridine, sulfuric acid, tetrachloroethane (hot), THF Chloroform, m-cresol, Benzyl alcohol, DMF, pyridine, formic acid (hot), sulfuric acid (hot) tetrachloroethane, THF
R = 1,3-phenylene
R = l ,4-phenylene
Organic solvents Organic solvents Acetic acid, DMA, DMF, DMSO, formamide, NMP
Polyphosphoric acid
DMA, NMP
499 499,500 500 501
502 502
502 503
Methanol
504-506
Poly( 1,3,4-oxadiazoles)
R = octamethylene
R = methylene to eicosamethylene
Bzn., chloroform, m-cresol, dichloroethylene, DMA (hot), DMF, DMSO (hot), NMP (hot), sulfuric acid DMA (hot), DMSO (hot), NMP (hot), DMSO (sw), NMP (sw) sulfuric acid (95%)
507-509
509
References page VII - 536
Previous Page
TABLE 4. cont'd Polymer Poly(dibutylsilylene-1,4-phenyleneethenylene1,4-phenyleneethenylene-1,4-phenylene) Poly(hexamethylcyclotrisilazane) Poly(dihexylsilyleneferrocenediyl) Poly(dimethyisilylene-N-methylimino) Poly(dimethylsilyleneiminoethyleneimino) Poly(dimethylsilylene-co-1,3-dihydro1,3-dimethyldisilazane) (1:1 to 3: 1)
Solvents
Nonsolvents
Refs.
Chloroform
THF
492
Carbon tetrachloride, hydrocarbons THF THF Xylene Decaline, toluene
Acetone, DMSO
493 680 494 495 496
Toluene
Methanol
497
TABLE 5. MAIN-CHAIN HETEROCYCLIC POLYMERS Polymer
Solvents
Nonsolvents
Refs.
5.1. POLY(BENZOXAZOLES), POLY(OXADIAZOLES), POLY(OXADIAZOLIDINES) Poly(benzoxazoles) Poly(2,5-benzoxazolediyl) Poly(2,6-benzoxazolediyl) Poly(dibenzothiazoles)
Sulfuric acid Sulfuric acid
498 498 499
R = 1,3-phenylene R = 1,4-phenylene R = octamethylene R = 1,4-cyclohexylene
Sulfuric acid Sulfuric acid m-Cresol, formic acid, sulfuric acid Sulfuric acid
R = tetramethylene
Chloroform, m-cresol, DMF (hot), Benzyl alcohol, formic acid pyridine (hot), sulfuric acid (hot), tetrachloroethane (hot), THF (hot) Benzyl alcohol (hot), chloroform, DMF (partially), formic acid (partially) m-cresol (hot), pyridine, sulfuric acid, tetrachloroethane (hot), THF Chloroform, m-cresol, Benzyl alcohol, DMF, pyridine, formic acid (hot), sulfuric acid (hot) tetrachloroethane, THF
R = 1,3-phenylene
R = l ,4-phenylene
Organic solvents Organic solvents Acetic acid, DMA, DMF, DMSO, formamide, NMP
Polyphosphoric acid
DMA, NMP
499 499,500 500 501
502 502
502 503
Methanol
504-506
Poly( 1,3,4-oxadiazoles)
R = octamethylene
R = methylene to eicosamethylene
Bzn., chloroform, m-cresol, dichloroethylene, DMA (hot), DMF, DMSO (hot), NMP (hot), sulfuric acid DMA (hot), DMSO (hot), NMP (hot), DMSO (sw), NMP (sw) sulfuric acid (95%)
507-509
509
References page VII - 536
TABLE 5. cont'd Polymer R = 1,4-cyclohexylene R = 1,3-cyclohexylene R = 1,2-phenylene R = 1,3-phenylene
Solvents Formic acid (80%), sulfuric acid DMA, DMSO, formic acid (80%), NMP, sulfuric acid Sulfuric acid Sulfuric acid, trifluoroacetic acid
Nonsolvents
Refs.
DMA, DMSO, NMP
Chloroform, m-cresol, DMF, nitrobenzene, tetrafluoropropanol
510 510 511 512-514
Poly(oxadiazolidines)
R=l,3-phenylene
DMSO
Methanol
515
Diethyl ether, diphenyl ether, diphenylmethane, DMA, DMF, DMSO, ethanol, formic acid, quinoline
516
5.2. POLY(DITHIAZOLES), POLY(BENZOTHIAZOLES) Poly(dithiazoles)
R = 1,4-phenylene R = l ,4-phenylenehexamethylene-1,4-phenylene Mw = 11000 Mw = 12000 Mw = 27000 Poly(benzothiazoles)
Sulfuric acid (cold) Sulfuric acid (cold) DMF (cold) DMF (hot)
DMF (hot)
516 516 516 516
R = 1,4-phenylene R = 5-alkoxy-l,3-phenylene R = l,4-bicyclo[2.2.2]octane R = 1,4-phenylene and 1,4-phenyleneimino1,4-phenylene
Methanesulfonic acid Methanesulfonic acid Methanesulfonic acid, sulfuric acid Methanesulfonic acid, polyphosphoric acid
517 433 518 519
R = 1,3-phenylene R = 3,5-pyridinediyl R = 1,4-phenyleneoxy-1,4-phenylene R = 1,4-phenylenecarbonyl-1,4-phenylene R = 1,4-phenylene R = 1,6-anthracenediyl Poly(2,6-benzothiazolediyl)
Cone, sulfuric acid Cone, sulfuric acid Cone, sulfuric acid Cone, sulfuric acid Cone, sulfuric acid Sulfuric acid (partially) Sulfuric acid
520 520 520 520 500 521 498
5.3. POLY(IMIDES) 5.3.1. POLY(BENZIMIDES)
R = 1,4-phenylenecarbonyloxyethyleneoxyethyleneoxycarbonyl R = poly(isobutylene)iminocarbonyl rc-Butyl R = 1,4-phenyleneoxy-1,4-phenyleneiminocarbonyl R = 4,4/-biphenylyleneiminocarbonyl R = 1,4-phenylenemethylene-1,4-phenyleneiminocarbonyl R = 1,4-phenylenecarbonyloxymethyleneoxycarbonyl R = 1,4-phenyleneoxy-1,4-phenyleneiminocarbonyl R = 1,4-phenyleneoxy-1,4-phenylenecarbonylimino1,4-phenyleneoxy-1,4-pheny leneiminocarbony 1
Methylene chloride/trifluoroacetic acid (4/1) acetate, diethyl ether NMP NMP/xylene DMA5DMSO, NMP m-Cresol (1500C), trichlorobenzene (reflux) DMA DMA, NMP
Methanol Ethanol, methanol
Methanol Methanol
522 313 523 524 525,539 526 527 528
TABLE 5. cont'd Polymer R = 1,4-phenylene R' = 5-oxy-1,4-phenyleneisopropylidene1,4-phenylene-5 '-oxy R = hexamethylene R'-5,5'-oxy R = 2,2/-di(trifluoromethyl)-4,4/-biphenylylene R' = S^'-hexafluoroisopropylidene R = 1,4-phenyleneoxy-1,4-phenylene R' = 5,5 '-phenylphosphineoxide R = 2,2/-ditrifluoromethyl-4,4/-biphenylylene R' = 5,5'-idyl R = 1,4-phenyleneoxy-l, 4-phenylene R' = 5,5'-carbonyl R = 1,3-phenylene R' = S^'-oxy-l^-phenyleneisopropylidene1,4-phenyleneoxy
Solvents
Nonsolvents
Refs.
DMA
529
Cone, sulfuric acid
530
Acetone, chloroform, m-cresol
531
NMP
532
m-Cresol (hot)
533
DMA
534
NMP
535
5.3.2. POLY(PYROMELLITIMIDES)
R = nonamethylene R = 1,3-phenylene; 1,4-phenylene R = 4,4'-biphenylylene R = 1,4-phenylenemethylene-l,4-phenylene; 1,4-phenyleneisopropylidene-1,4-phenylene R = 1,4-phenyleneoxy-1,4-phenylene amic acid R = 1,4-phenylenethio-l,4-phenylene R = 1,4-phenylenesulfonyl-l,4-phenylene R = l,3-phenylenesulfonyl-l,3-methylene R = pentaerythrityl R —4-hydroxy-l,3-phenyleneisopropylidene4-hydroxy-1,3-phenylene R = ethylidenecarbonyloxysebacoyloxycarbonylethylidene, <40% imide R = hexa-2,4-diyne-l,6-diyl R = l,3-phenyleneoxy-l,3-phenyleneoxy-1,3-phenylene
m-Cresol Cone, sulfuric acid Fuming nitric acid Cone, sulfuric acid
Common Common Common Common
solvents solvents solvents solvents
13,540 13,540 13,540 13,540
DMA, iV-methylcaprolactone, fuming nitric acid DMA, DMF, DMSO Fuming nitric acid Cone, sulfuric acid Cone, sulfuric acid No solvent known DMF, DMA, DMSO, nitrobenzene, tetramethylene sulfone Chloroform
Common organic solvents
13,540, 541 542 13,540 13,540 13,540 543 223
DMSO DMA
organic organic organic organic
Common organic solvents Common organic solvents Common organic solvents
544 W
545 525
DMA (partial), DMSO (partial), NMP (partial)
546
Cresol, DMA, DMF, DMSO, NMP
536
4-Butyrolactone
537
No known solvent
538
5.3.3. OTHERS
References page VII - 536
TABLE 5. cont'd Polymer 5.4.
Nonsolvents
Refs.
POLY(QUINOXAHNES)
Poly(quinoxaline-2,6-diylquinoxaline-6,2-diyl1,4-phenylene) Poly(quinoxalines) several different compositions
5.5.
Solvents
Sulfuric acid
547
13-Dichloro-l,l,3,3-tetrafluoro2,2-dihydroxypropane, methanesulfonic acid
548,549
POLY(BENZIMIDAZOLES)
Poly(benzimidazoles)
R = tetramethylene R = 1,4-phenylene R = 1,3-phenylene Poly(dibenzimidazoles)
R = tetramethylene to eicosane-l,20-diyl R = cyclohexylene R = 1,3-phenylene
R = 1,4-phenylene R = 2,2/-biphenylylene R = 4,4'-biphenylylene R = 3,5-pyridyenediyl R = 2,5-furandiyl R = l,4-phenyleneiminocarbonyl-R'-carbonylimino1,4-phenylene; R' = octamethylene; 1,4-phenylene; 1,3-phenylene
5.6.
DMSO (partially), formic acid Formic acid (partially)
m-Cresol, formic acid (85%), DMA, DMSO, NMP, cone. sulfuric acid Acetic acid, m-cresol, DMF, DMSO, formic acid, NMP, sulfuric acid DMA, DMSO, formic acid, NMP, cone, sulfuric acid Formic acid (2-3% soluble) DMF, DMSO, formic acid Formic acid (partially) DMF (partially), DMSO, formic acid (partially) DMF, DMSO, formic acid (partially) DMA, DMF, DMSO, NMP, cone. sulfuric acid
DMF DMF, DMSO, formic acid DMF, DMSO
550 550 550
Glacial acetic acid, DMF (sw)
551 501
Glacial acetic acid, m-cresol, DMF (partially), formic acid (85%, sw) DMF, DMSO DMF, DMSO
Glacial acetic acid (sw), m cresol (sw), formic acid (sw), methanol
550,551
550,551 550,551 550,551 550,551 550,551 550,551
POLY(PIPERAZINES)
Poly(2,5-diketo-l,4-piperazinediy 1-1,4-phenylene sulfonyl-1,4-phenylene) Poly(2,5-dimethyl-l,4-piperazinediylcarbonyl1,4-phenylenesulfonyl-1,4-phenylene) Poly(l,4-piperazinediylcarbonylethylene1,4-phenylenephosphinylidene1,4-phenyleneethylenecarbonyl) Poly(piperazinediylcarbonyloxym-cyclohexyleneoxycarbonyl) Poly(l,4-piperazinediylcarbonyl2,5-pyridinediylcarbonyl) PoIy(1,4-piperazinediyl-2-hydroxytrimethyleneoxy1,4-phenyleneisopropylidene-1,4-phenyleneoxy1 -hydroxyethylene) PoIy(1,4-piperazinediylcarbonyl-2,5-norbornadiene2,3-diylcarbonyl)
Dichloroacetic acid, formic acid, DMA, DMF, DMSO 552 trifluoroacetic acid DMF, svm-tetrachloroethane/phenol Methanol, W 13 (2/3) Chloroform, cresol, DMF, ethanol, Acetone, acetonitrile (sw), chlorobenzene, 436 C-7 fluoroalcohol, formic acid, aqu. hexane hydrochloric acid (5%) Chloroform, m-cresol, formic acid 323 m-cresol, formic acid, cone. aqu. HCl, phenol, sulfuric acid DMF Chloroform, o-cresol
553 554 Methanol
555
TABLE 5.
cont'd
Polymer 5.7.
Solvents
Refs.
POLY(ANHYDRIDES)
Poly(maleic anhydride)
PolyCacrylic anhydride)
Acetic anhydride, acetonitrile, acetophenone, lower aliphatic alcohols, butanone, dioxane, DMF, ethers, ketones, nitroparaffins DMF, DMSO
Poly(methacrylic anhydride)
DMF, DMSO
Poly(itaconic acid anhydride)
Acetic acid, acetone, cyclohexanone, THF THF
Poly(maleic anhydride-a/f-2-cyclohexylenel,3-dioxepin-5-ene)
Poly(maleic Poly(maleic Poly(maleic Poly(maleic Poly(maleic
anhydride-fl//-isopropenylisocyanate) anhydride-a/f-2-propenylisocyanate) anhydride-co-styrene) (3:1) anhydride-a/r-methyl vinyl ether) anhydride-tf/r-1-octadecene)
Poly(maleic anhydride -co-N-vinylforrnamide) (1 :1) 5.8.
Nonsolvents
Acetone, DMF MEK Acetone, MEK MEK, THF Acetone, bzn., carbon tetrachloride, ethyl acetate THF
Hydrocarbons, most chlorinated hydrocarbons
Alcohols, bzn., diethyl ether
Aliphatic hydrocarbons, diethyl ether, methanol, W Chloroform, diethyl ether Hexenes
556
13
557,558 687,700 559
560 561 153 Carbon tetrachloride, diethyl ether, hexane 186 Ethanol 562 Bzn.
563
POLY(THIOPHENES)
Poly(3-alkyl-2,5-thiophenediyl) Poly(3-hexyl-2,5-thiophenediyl) Poly(3-hexyloxycarbonyl-2,5-thiophenediyl) Poly(3,4-oxyethyleneoxy-2,5-thiophenediyl) Poly(2,5-thiophenediyl-co-3-undecyl-2,5-thiophenediyl) (1:1) Poly(3-rnethyl-2,5-thiophenediyl-c<73-oligodimethylysiloxane-2,5~thiophenediyl) Poly(2,5-thiophenediylethylene) Poly(2,5-thiophenediyl-co-dimethylsilylene) (3:1 to 3 : 2) Poly(2,5-thiophenediyl-co-/V-tt-dodecyl-2,5-pyrrolediyl) (4:1) Po]y(2,5-thiophenediyl-l,2-dirnethoxyethenylene) Poly(2,5-thiophenediylethynylene-2,5-dioctyloxy1,4-phenylene) Poly(2,5-thiophenediylethynylene-l,4-tetrafluoro phenyleneethynylene) Poly(thieno[3.2-b]thiophene-2,5-diyl) Poly(2,5-thiophenediylcarbonyl-1,4-phenyleneoxy1,4-phenyleneisopropylidene-1,4-phenyleneoxy) Poly(4,4/-diphenyl-2,2/-bisthiazole-5,5'-diyl)
Chloroform, methylene chloride, THF (partially) THF, toluene Chloroform, DMF Chloroform Nitrobenzene, THF
564 Methanol Methanol Methanol
Chloroform THF Dimethoxyethane THF Chloroform Chloroform, THF, toluene
7 565 566 567 568
Methanol Hexane
Chloroform, THF, toluene
569 570 571 572 573 573
Chloroform Chloroform, DMA, NMP
Methanol Methanol
574 575-577
Hexane
Methanol
578
Chloroform
579
5.9. OTHERS Poly(2,3-dihydrofuran-3,4-diyl) Poly(2,5-furandiylethylene) Poly(3,5-dicarboxytetrahydropyran-3,5-diylmethylene)
Toluene THF DMSO
Methanol Acetone
580 569 581
References page VII - 536
TABLE 5. cont'd Polymer Poly(Ar-rt-butylitaconimide) Poly(iV-phenylmaleimide) Poly(2,5-pyridinediylethenylene) Poly(#-2-ethylhexyl-3,6-carbazolediylethenylene) Poly^-methyleneimidazoleimide-l^-diyl) Poly(3-phenyl-3,5-triazolediyl-l,4-phenyleneoxy1,4-phenyleneisopropylidene-1,4-phenyleneoxy1,4-phenylene) Poly[3-(2'-pyridyl)-l,2,4-triazine-5,6-diyll,4-phenyleneoxy-4,4'-biphenylyleneoxy1,4-phenylene] Poly(3,5-pyrazolediyl-l,4-phenyleneoxy1,4-phenylenecarbonyl-1,4-phenyleneoxy1,4-phenylene)
Solvents
Nonsolvents
Refs.
Bzn., THF, toluene DMF, DMSO, THF Methanol Formic acid, sulfuric acid 1M LiCl in NMP Methanol DMA (partially), sulfuric acid (partially) Toluene Methanol
7 582 583 584 585 586
Chlorobenzene, NMP
Methanol
587
DMA, NMP
Chloroform, methanol
588
TABLE 6. FORMALDEHYDE RESINS Polymer Aniline-formaldehyde resins low mol. wt. high mol. wt. Melamine-formaldehyde resins very low mol. wt. intermediate mol. wt. final resin, high mol. wt. Phenol-formaldehyde resins Novolaks and low mol. wt. 4-terf-butylphenol and 4-phenylphenol polymers final resins
Solvents Methylcyclohexanone No solvent known
final resin, high mol. wt. Phenyl glycidyl ether-formaldehyde resins, low mol. wt.
Alcohols, aniline (sw), hydrocarbons Aniline, chlorinated hydrocarbons (sw)
Refs. 6 6
Alcohol, W DiI. and cone, acids, formalin, formic acids, pyridine No solvent known
6 6
Acetone, diethyl ether, esters, hydrocarbons Drying oils Molten phenols (with some decomposition)
6
fully cured resins /7-Toluenesulfonamide-formaldehyde resins Urea-formaldehyde resins very low mol. wt. intermediate mol. wt.
Nonsolvents
Alcohols, bzn., esters, ethers, ketones
6
Most common organic compounds
6 6
DiI. acids (sw), dil. alkalies (sw), alcohol, 6 W(sw) Aliphatic hydrocarbons, W 6,589
Alcohol, W DiI. and cone, acids, formalin, formic acid, pyridine No solvent known Acetone, MEK, methyl isobutyl ketone
6 6 6 590
TABLE 7. NATURAL POLYMERS AND MODIFIED NATURAL POLYMERS Polymer
Solvents
Nonsolvents
Refs.
7.1. NATURAL RUBBER AND DERIVATIVES (see also 1.1) Natural rubber
cyclic
Bzn., chlorinated hydrocarbons, cyclohexane, hydrocarbons, methyl isobutyl ketone (low mol. wt.), w-propyl ketone (above 14.5°C), toluene (low mol. wt.) Aromatic and chlorinated hydrocarbons
hydrochlorinated chlorinated
Chlorinated hydrocarbons Aromatic and chlorinated hydrocarbons, hydrogenated naphthas
dichlorocarbene modified
Chloroform
Acetone, alcohols, carboxylic acids
Acetone, acids, alcohol, alkalies, diethyl ether, aliphatic hydrocarbons, oils (sw), W Alcohol, W Cone, acids, oxidizing acids, acetone (sw), alcohol, moderately cone, alkalies, aliphatic hydrocarbons, diethyl ether (sw), W Methanol
4,5,7, 591
6 6 6
592
TABLE 7. cont'd Polymer
Solvents
Nonsolvents
Refs.
7.2. GUTTA PERCHA Gutta percha
Bzn., cloroform, hot petroleum ether
Alcohol, W
6
7.3. CELLULOSE AND DERIVATIVES 7.3.1. CELLULOSE Cellulose
/V-Ethylpyridinium chloride/DMF DiI. aqu. alkalies, hydrocarbons, (1/1), /V-ethylpyridinium mineral oils, W (sw) chloride/pyridine (1/1), trifluoroacetic acid, aqu. solutions of: alkalies (ice-cold), beryllium perchlorate, calcium thiocyanate, cupriammonium hydroxide, cupriethylenediamine, sodium xanthate, tetramethylammonium hydroxide, zinc chloride/hydrochloric acid (cold), zinc chloride (hot), cone, phosphoric acid, cone, sulfuric acid. See also table on cellulose in this Handbook
4-6, 593,594
7.3.2. CELLULOSE ETHERS Methyl cellulose SC = 3-10% = 22-32% = > 40% Ethyl cellulose DS = 0.5-0.7 = 1.0-1.5 =2 = 2.3
=3 Isopropyl cellulose DS = 0.5 = 2.5
Butyl cellulose DS = 0.8 = 1.9 Benzyl cellulose DS = 1.65 =2
Aqu. alkalies Aqu. alkali, N-ethylpyridinium chloride/DMF, methanol/methylene chloride, W (cold) Acetone, chloroform, cyclohexanone, esters, pyridine
W Diethyl ether, methanol, methylene chloride, W (hot)
Aqu. alkali Acetic acid, cuoxam, formic acid, pyridine, W (cold) Chloroform, chlorohydrins, dichloroethylene, ethanol, methylene chloride, THF Acetic esters, alcohols, alkyl halides, bzn., carbon disulfide, furan derivatives, ketones, nitromethane Alcohols, bzn., esters, methylene chloride
W (cold) Ethanol
Aliphatic hydrocarbons, diethyl ether, ethanol, W
6,595 6,594,595 6,595 5,6,30, 595,596
Alcohols, diethyl ether, esters, hydrocarbons, ketones, tetrachloroethylene, W Acetone (cold), ethylene glycol
Carbon tetrachloride, diols, di-n-propyl ether, hydrocarbons, tetrahydrofurfuryl alcohol
W (cold) Acetone, butanol, bzn., chloroform, cyclohexanone, dichloroethane, dioxane, glycol formal, methyl acetate, methylcyclohexanone, THF
W (hot) Ethanol, ethanol/diethylether (1/3), hydrocarbons, methanol, propanol
595 30
Polar organic solvents Aromatic hydrocarbons, polar organic solvents
Hydrocarbons, W Aliphatic hydrocarbons, W
595 595
Methylene chloride, methyl ether glycol acetate, nitrobenzene Acetates (< C5), acetone, bzn./acetone, bzn./alcohol, chlorobenzene, chlorohydrins, dichloroethylene, ethanol/carbon tetrachloride (1/1), MEK, methylene chloride, pyridine, tetrahydrofurfuryl alcohol, tetralin, trichloroethylene
Bzn., chlorobenzene, butyl acetate
210
Alcohols, (> C5), carbon tetrachloride, o-chlorotoluene, diethyl ether, dioxane, dipropyl ketone, hydrocarbons
6,30
References page VII - 536
TABLE 7.
cont'd
Polymer DS = 3
Hydroxyethyl cellulose SC = <30% = 35-55% = >55% Hydroxypropyl cellulose Carboxymethyl cellulose SC = 5-10% = 15-30% = high Cyanoethyl cellulose SC = 8-12% = 24-32% = >50%
Solvents
Nonsolvents
Acetone, butyl acetate, chlorobenzene, Aliphatic hydrocarbons, aromatic chloroform, cyclohexanone, hydrocarbons (sw), carbon ethyl acetate, MEK tetrachloride, diethyl ether, dioxane, ethanol Alkali Ethylene chlorohydrin, DMSO, formic acid, W Bzn./acetone, bzn./alcohol, chloroform, pyridine, esters Cellosolve", dioxane, ethanol, methanol, W (<45°C)
Refs. 199
Cellosolve", hexane, methanol, toluene
597
Acetone, bzn., methanol (sw), methyl acetate, THF W (>45°C)
597
Alkali W (sodium salt) Acetone, bzn./acetone, bzn./alcohol, chloroform, esters, pyridine 6 Alkali W Acetone, bzn./acetone, bzn./alcohol, chloroform, esters, pyridine
7.3.3. CELLULOSE ESTERS Cellulose triformate Cellulose acetate DS = 0.6-0.8 = 1.3-1.7 = 2-2.3
Cellulose triacetate
Cellulose acetate hydrogen phthalate Cellulose tripropionate Cellulose tributyrate
Cellulose tricaproate
Cellulose tricaprylate Cellulose stearate DS = 3
Formic acid, pyridine W 2-Methoxyethanol Acetic acid (glacial), acetone, aniline, benzyl alcohol, chloroform/methanol, cyclohexanone, diethanolamine, dioxane, ethyl acetate/nitrobenzene, ethylene glycol ethers, formic acid, glycol monoethyl ether acetate, methyl acetate, methylene chloride/methanol (4/1), nitromethane, phenols, pyridine Acetone/W (4/1), chloroform/alcohol, chloroform, dioxane, ethyl acetate, ethylene glycol ether acetates, ethylene carbonate, methyl acetate, methylene chloride/ethanol (4/1), methylene chloride, THF, trichloroethane Acetone Acetone, bzn., chlorobenzene, dichloroethane, ethyl acetate Acetone, amyl acetate, bzn., chlorobenzene, chloroform, cyclohexanone, dodecane/tetralin (3/1 above 1300C), ethanol (hot), ethyl acetate, nitrobenzene, THF, xylene (hot) Acetone, bzn., chlorobenzene, chloroform, cyclohexanone, diethyl ether, dioxane, DMF, ethanol (hot), ethyl acetate, glacial acetic acid (hot), hexane, nitroethane, THF, xylene DMF (above 14O0C), 3-phenylpropanol (above 48°C), toluene bzn., tetrachloroethane, toluene
30 Acetone, W Aliphatic ethers, hydrocarbons, weak mineral acids
Acetone (partially), aliphatic hydrocarbons, aliphatic ethers, bzn., chlorobenzene, c-chlorotoluene, dichloroethane, ethanol (absolute), glycol ethers, methyl /-butyl ketone, weak mineral acids o-Chlorotoluene, ethanol, hydrocarbons
595 4,6
4-6,30, 598,599
32 30
2 Ethylhexanol, cyclohexane, diethyl ether, hexane, methanol
595
2-Hydroxyethyl acetate, formamide, methanol, nitromethane
595
5 Acetone, butyl acetate, dichloroethane, ethyl acetate
595
TABLE 7. cont'd Polymer Cellulose acetate butyrate DS (acetate) — 0.5 DS (butyrate) = 2.35 DS (acetate) - 2 . 1 DS (butyrate) = 0.7 Cellulose tricarbanilate
Propyl cellulose benzoate
Hydroxypropyl cellulose perfluorooctanoate DS = 3 (ester), DS = 4 (ether)
Solvents
Nonsolvents
Refs.
Acetone, amyl acetate, bzn., Aliphatic hydrocarbons, diethyl ether, chloroform, cyclohexanone, dioxane, ethanol, methanol esters, methanol (hot), nitroethane, tetrachloroethane, toluene (hot) Acetone, chloroform, cyclohexanone, Amyl acetate, bzn./methanol dichloroethane, dioxane, (1/4 and 4/1), carbon tetrachloride, ethyl acetate, nitroethane diethyl ether, ethanol, hydrocarbons, methanol, W Acetone, bzn., chloroform, dioxane, Methanol, W DMF, iV-ethylpyridinium chloride/DMSO (1/1), iV-ethylpyridinium chloride/pyridine (1/1), pyridine, THF Acetone, bzn., chloroform, dioxane, DMA, ethyl acetate, pyridine, TMF, toluene, xylene Acetone Ethanol
595
595
7,594, 595
600
601
7.3.4. CELLULOSE NITRATE AND SULFATE Cellulose nitrate N = 6.8% N = 10.5-12% N = 12.7%
Cellulose sulfate, sodium salt DS=I
W 602 Acetic acid (glacial), acetone, Higher alcohols, higher carboxylic 4,6,595 alcohol/diethyl ether, alcohol (lower), acids, higher ketones, amyl acetate, ethylene glycol ethers tricresyl phosphate Acetone, cyclohexanone, ethanol/ DiI. carboxylic acids, aliphatic 4-6,595 diethyl ether, ethyl lactate, hydrocarbons, aromatic ethyl butyrate, ethylene carbonate, hydrocarbons (sw), diethyl ether, ethylene glycol ether acetates, ethylene glycol, higher alcohols (sw), furan derivatives, halogenated lower alcohols, W hydrocarbons, methyl acetate, methyl amyl ketone, nitrobenzene W
Ethanol
595
Ethylenediamine, /V-ethylpyridinium chloride/pyridine (1/1), DMSO, nitromethane, W (hot), aqu. KOH, aqu. KCl (0.33 M, above 25°C) Chloroform, methyl acetate, nitromethane Acetone, dioxane, pyridine W, W/butanol Bzn., chloroform, dioxane, DMF, DMSO, THF Liquid ammonia, aqu. sol. of cupriethylenediamine, fused chloral hydrate, N-ethylpyridinium chloride/pyridine (1 /1), W (hot, pressure)
w-Butanol, diethyl ether
7.4. STARCH AND DERIVATIVES Amylose
Amylose acetate DS = 2 Amylose tricarbanilate Amylopectin Benzyl amylose DS = 3 Starch
Starch, methyl ether DS = 0.5-2 DS = 3
5,7,363,594,595,603
W
5
Acetone, diethyl ether, ethanol Ethanoi, methanol, W Alkali (sw), diethyl ether, W (sw)
W (cold) Chloroform
W (hot)
Aqu. alkalies, aqu. sodium carbonate, W (sparingly)
DiI. acids, aqu. calcium salt solutions, hydrophilic organic compounds (sw), hydrophobic organic compounds Organic hydrophobic compounds Organic hydrophobic compounds
5 604 605 6,363, 594,595
595 595
7.5. OTHER POLY(SACCHARIDES) Alginic acid alkali and ammonium salts magnesium and ferrous salts
Aqu. alkali, W W
6,363 6
References page VII - 536
TABLE 7.
cont'd
Polymer calcium salts copper, zinc, aluminum salts beryllium, chromium, ferric salts ^-Carrageenan Chitin Chitosan N-[Q '-hydroxy-2',3 '-dicarboxy)ethyl]chitosan Glycogen Gum arabic Gum tragacanth, Tragacanthin, tragacanthic acid 2,3-Di-0-benzyl-(l,5)-ot-D-furanan Heparin Konjac glucomannan Pectin Pullulan Xanthan gum
Solvents Weak aqu. alkali Aqu. ammonium hydroxide W Formic acid, cone. mineral acids (degrad.) Acetic acid, W (pH < 6.5) W DiI. trichloroacetic acid W (warm) W o-Dichlorobenzene (hot) DiL alkali solution, alkaline solution of ammonium sulfate, W W DiI. acids, W W W
Nonsolvents
Refs.
Organic hydrophobic compounds, W Organic hydrophobic compounds, W Aqu. alkali, organic hydrophobic compounds DiI. acids, organic solvents
694 363
Alcohol Alcohol Acetone, alcohol
606 607 363 363 363
Acetone, cyclohexanone, ethyl acetate, hexane, methanol Acetic acid, acetone, alcohol
608 363 609 363 609 610
Alcohol
7.6. NATURAL RESINS Colophony
Copal
Shellac
Zein a
Acetone, aromatic hydrocarbons Aliphatic hydrocarbons (partially), carbon tetrachloride, chloroform, diethyl ether, ethanol, ethyl acetate, methanol Acetone (25-90%)", bzn. (35-60%)", carbon tetrachloride (15-40%)°, chloroform (30-90%)*, diethyl ether (10-90%)fl, ethanol (20-100%)°, hydrocarbons (10-55%)°, methanol (20-70%)° Acetone (50-80%)*, bzn. (10-20%)°, Aliphatic hydrocarbons carbon tetrachloride (5-15%)°, chloroform (25-40%)°, diethyl ether (10-25%)°, ethanol (85-98%)°, methanol (100%) Aqu. alcohols, glycols, DMF
30
30
30
32
Percentage soluble, depending on source.
TABLE 8. INORGANIC POLYMERS Polymer Poly(phosphorus nitrile chloride) Poly(sodium-m-phosphate) Poly(tri-/i-butyl tin fluoride) Poly(phosphoryldimethylamide) Poly(2,5-selenienylene) PoIy[Tj 5-(vinylcyclopentadienyl)tricarbonylmethyltungsten] Poly(n-dibutyl stannane)
Solvents Bzn., carbon tetrachloride, chloroform, cyclohexane Aqu. sol. of LiCl, NaCl or NH4Cl Aliphatic hydrocarbons Carbon tetrachloride (hot), W Chloroform, THF Bzn., chloroform, THF Chloroform, THF, toluene
Nonsolvents
Refs.
Aliphatic hydrocarbons
611
Acetone, ethanol, W
612 259 613 614 615 616
Acetone Methanol, W Hexane Methanol
TABLE 9. POLY(ELECTROLYTES) Polymer Poly(allyammonium chloride) Poly(allylammonium phosphate) Poly (dial lyldimethylammonium chloride) Poly(benzyltrimethylammonium chloride) Poly(diallyldimethylamrnonium chloride-cc-Afisopropylacrylamide), (2:98) Poly (sodium trimethyleneoxyethylenesulfonate) Poly[dimethyldodecyl(2-acrylamidoethyl) ammonium bromide] Poly(4-/V-butylpyridiniumethylene bromide)
Solvents
Nonsolvents
Refs.
W HCl, W W W W
Methanol Methanol, W
617 617 618 32 619
DMSO, W W
Bzn., hexane
620 701
Bzn., hexane
621
Methylene chloride tert-Butyi methyl ether Ethyl acetate
687 583 622 623
Diethyl ether
624
Hexane, methanol, THF, toluene
625
Benzyl alcohol, DMSO, nitromethane, W Poly(2-/V-methylpyridiniumethylene iodine) Methanol, W Poly(Af-methylpyridinium-2,5-diylethenylene) DMF, DMSO, NMP, W Poly(4,4/-bipyridiniumdiyl-N,A^/-decamethylene dibromide) DMF/methanol, W PoIy(1,4-pyridiniumdiyl-A'r,A^/-tetramethyleneEthanol 4,1 -pyridiniumdiylethenylene methylsulfate) Poly(2,6-diphenyl-l,4-pyridiniumdiyl-yV,A^/DMA, DMF, DMSO, NMP 1,4-phenylene-4,1 -pyridiniumdiyl-1,4-phenylene) Poly|ethyldipropargyl-4-sulfobutyl ammonium betainej Formic acid, W
TABLE 10. BLOCK COPOLYMERS (alphabetically listed) Polymer Poly(f-butyl methacrylate)-b-polystyrene-b-poly(f-butyl methacrylate) ( 1 : 6 : 1 ) Poly(f-butyl methacrylate)-b-poly(oxytetramethylene)b-poly(butyl methacrylate) ( 2 : 6 : 2 to 4 : 2 : 4 ) Poly(butyl acrylate)-b-poly[3-(pentamethyldisiloxy)propyl methacrylate] (3:1) Poly(butyl vinyl ether)-b-poly(2-ethyloxazoline) Poly(2-cinnamoylethyl methacrylate)-bpoly(acrylic acid) (4:5) Poly(e-caprolactone)-b-poly(oxytetramethylene)b-poly(e-caprolactone) (4: 2 : 4 to 1:3:1) Poly(dimethylsiloxane)-b-poly(6-aminohexanoic acid) (1:2) Poly(2-ethyl-2-oxazoline)-b-poly(lactic acid) (3 :2 to 2 :4), Poly (Af-proponyliminoethylene)-b-poly (oxy-1 -oxo2-methylethylene) Poly(3-hydroxybutyric acid)-b-poly(e-caprolactone) ( 3 : 5 to 2 : 1 ) Polyisobutylene-b-poly(a-tnethylstyrene) (9: 1) PolyOmethacrylic acid)-b-polystyreneb-poly(methacrylic acid) ( 1 : 8 : 1 ) Poly(3-methyl-2,5-thiophenediyl)b-poly(2-vinylpyrrolidone) Poly(oxy-2,2-di(chloromethyl)trimethlylene)b-poly(oxytetramethylene)-b-poiyoxy2,2-di(chloromethyl)trimethylene (7 : 86:7) Poly(oxytetramethylene)-b-poly(e-caprolactone) (1:4) Polystyrene-b-polybutadiene-b-polystyrene) ( 7 : 8 6 : 7 to 15:70: 15) Polystyrene-b-poly(terr-butyl methacrylate) (2: 3 to 4 : 1 ) Polystyrene-b-poly(dimethylsiloxane) (1:1) (1 :9 to 7:3)
Solvents Dioxane
Nonsolvents Hexane
Refs. 626
Toluene
627
THF
628
Chlorobenzene, THF Methanol, methylene chloride
Hexanes Isopropanol/hexane (3/7)
629 630
THF, toluene
631
2,2,2-Trifluoroethanol
632
Chlorobenzene
Hexane
633
Chloroform
Methanol
634
Chloroform Dioxane
Methanol Hexane
635 626
Anisole
636
Methylene chloride
637
THF, toluene Toluene
638 639
Dioxane THF Bzn./2-methoxyethyl ether, dioxane
Hexane Methanol Methanol, W
626 350 640
References page VII - 536
TABLE 10. cont'd Polymer Polystyrene-b-poly(ethylene/butylene)-b-polystyrene ( 1 : 8 : 1 to 1:3:1) Polystyrene-b-poly(ethylene/propylene) (3:7) Polystyrene-b-(/v*-ethyl-2-ethynylpyridinium trifluoromethanesulfonate) ( 8 : 1 ) Polystyrene-b-poly(hexyl isocyanate) (1:4) Polystyrene-b-poly(hydroxyethyl methacrylate) (2:3) Polystyrene-b-polyisoprene (1:1) Polystyrene-b-polyisoprene-b-polystyrene (1 : 12: 1 to 2 : 1: 2)
Polystyrene-b-poly(methyl methacrylate) (7:3) Polystyrene-b-poly(methylphenylsiloxane) (3:2) Polystyrene-b-poly(methyl vinyl ether) (2:1) Polystyrene-b-poly(4-vinylpyridine) (5:1) Polystyrene-b-poly(2-vinylpyridine) ( 1 : 1 to 6 : 1 ) Polystyrene-b-poly(vinylpyridine) (1:1) Polypropylene-b-poly(methacrylic acid) (2:1)
Solvents
Nonsolvents
Toluene
Refs. 641,642
THF Diethyl ether/petroleum ether (1/1), THF Carbon tetrachloride, chloroform, toluene DMF, THF Dioctyl phthalate MEK/isobutyl isobutyrate, methylcylcohexane/methylene chloride (3/2), methyl amyl ketone, methylene chloride, xylene Toluene Cyclohexane Methylene chloride THF Bzn. THF Dioxane, THF, toluene
643 644 645 646 647 639, 548-650
Hexanes Hexane/methanol (8/2) Hexane Methanol
7,698 651 652 653 654 655 653,626
Nonsolvents
Refs.
TABLE 11. DENDRIMERS Polymer
Solvents DMSO, methanol, THF (partially), W
656
THF
657
Methylene chloride, most organic solvents Acetone, DMSO
Hexane, W
689
Toluene
hyperbranched
Lower alcohols, ethyl acetate, W Alcohol, glycols, W Acetone, chloroform
659
Hydrocarbons
W THF, toluene
Bzn., chloroform, cyclohexane, methylene chloride
658,684
683 660
661,685 Methanol
662
287
TABLE 11.
cont'd
Polymer
Solvents
Nonsolvents
Refs.
THF
Methanol
663
THF
Methanol
664
DMF, NMP, THF
665 666,667
Chloroform
Methanol
668
THF
Methanol
669
THF
Ethyl acetate, chloroform, DMF, DMSO, methylene chloride, THF, toluene
670
DMF, DMSO, THF Methylene chloride
671 524
THF
Diethyl ether, W
672
DMF
673
NMP, THF
695
References page VII - 536
D.
REFERENCES
1. W. P. Baker, J. Polym. Sci. A, 1, 655 (1963). 2. A. A. Arest-Yakubovich et al., ACS Polymer Preprints 37 (2), 634 (1996). 3. T. Yasuyuki et al., Macromolecules, 26, 5253 (1993). 4. H. Dexheimer, O. Fuchs, in: R. R. Nitsche, K. A. Wolf, (Eds.), "Struktur und Physikalisches Verhalten der Kunststoffe", vol. 1, Springer, Heidelberg, 1961. 5. M. Kurata W. H. Stockmayer, in: Adv. Polym. Sci. vol. 3, Springer, Heidelberg, 1963, p. 196. 6. W. J. Roff, in: "Fibers, Plastics, and Rubbers", Academic Press, New York, 1956. 7. Y. Du et al., in: J. E. Mark (Ed.), "Physical Properties of Polymers Handbook", Ch. 17, AIP Press, New York, 1996. 8. L. van der Does, J. F. van Duijd et al., J. Polym. Sci. Chem. Ed., 17, 53 (1980). 9. W. Marcony, A. Mazzei, S. Cucinella, M. J. Cesari, Polym. Sci. A, 2, 4261 (1964). 10. Jr. J. M. Wilbur, C. S. Marvel, J. Polym. Sci. A, 2, 4415 (1964). 11. T. A. Davidson et al., Macromolecules, 29, 786 (1996). 12. R. F. Heck, D. S. Breslow, J. Polym. Sci., 41, 521 (1959). 13. Houben-Weyl, in: "Methoden der Organischen Chernie", Band XIV/1, 2, 4, Auflage, ThiemeVerlag, Stuttgart, 1961. 14. Jr. C. A. Aufdermarsh, R. Pariser, J. Polym. Sci. A, 2, 4727 (1964). 15. R. H. Michel, J. Polym. Sci. A, 2, 2533 (1964). 16. Y. Sonoda et al., Macromolecules, 29, 288 (1996). 17. J-i. Sugiyama et al., Macromolecules, 27, 5543 (1994). 18. Y. Tabata, B. Saito, H. Shibano, H. Sobue, K. Oshima, Makromol. Chem., 76, 89 (1964). 19. S. Kambara, H. Noguchi, Makromol. Chem., 73, 24 (1964). 20. I. M. Paushkin, S. A. Nizova, J. Poiym. Sci. A, 2, 2783 (1964). 21. A. Teramoto, ACS Polymer Preprints, 31 (2), 135 (1990). 22. P. Teyssie, A. C. Korn-Girard, Polym. Sci. A, 2, 2849 (1964). 23. H.-KK. Roth, H. Gruber, Synthetic Metals, 37, 151 (1990). 24. W. H. Kim et al., Macromolecules, 27, 1819 (1994). 25. M. Moroni, J. LeMoigne, Macromolecules, 27, 562 (1994). 26. G. J. Tregre, L. J. Mathias, ACS Polymer Preprints, 36 (2), 310 (1995). 27. S. Dirlikow et al., ACS Polymer Preprints, 33 (1), 483 (1992). 28. E. W. Kwock et al., ACS Polymer Preprints, 34 (1), 900 (1993). 29. K. J. Saunders, "Organic Polymer Chemistry", 2nd ed., Chapman and Hall, New York, 1988, p. 56. 30. K. Thinius, in: "Analytische Chemie der Plaste", Springer, Heidelberg, 1952. 31. O. Fuchs, unpublished results. 32. Scientific Polymer Products, Inc. Catalog 1996/97, Ontario, NY. 33. K. J. Saunders, "Organic Polymer Chemistry", 2nd ed., Chapman and Hall, New York, 1988; p. 61. 34. Trade literature, AlliedSignal Inc., Morrestown, NJ,
35. S. Arichi, H. Matsuura, Y Tamimoto, H., Murata, Bull. Chem. Soc. (Japan), 39, 434 (1966). 36. S. Sanganeria, ACS Polymer Preprints, 34 (2), 378 (1993). 37. G. N. Babu et al., Macromolecules, 27, 3383 (1994). 38. S. Saito, J. Polym. Sci. A-I, 7, 1789 (1969). 39. H. G. Elias, O. Etter, J. Polym. Sci. A l , 5, 947 (1967). 40. W. H. McCarty, G. Parravano, J. Polym. Sci. A-I, 3, 4029 (1965). 41. Y. Iwakura, K. Uno, K. Ichikawa, J. Polym. Sci. A, 2, 3387 (1964). 42. W. Marconi, S. Cesca, G. Delia Fortuna, J. Polym. Sci. B, 2, 301 (1964). 43. G. Dall'Asta, G. Natta, G. Mazzanti, Chem. Eng. News, 42 (14), 42 (1964). 44. M. Perrott, B. M. Novak, Macromolecules, 29, 1817 (1996). 45. I. Cho, J. Y Lee, Makromol. Chem. Rapid Commun., 5, 263 (1984). 46. A. Mukoh, H. Morishita, J. Polym. Sci. Letters, 18, 35 (1980). 47. J. G. Hamilton, K. J. Ivin, J. J. Rooney, Brit. Polym. J., 16,21 (1984). 48. K. Su et al., ACS Polymer Preprints, 32 (3), 481 (1991). 49. K. M. Stein et al., ACS Polymer Preprints, 35 (1), 480 (1994). 50. T. C. Chung et al. Macromolecules, 27, 7533 (1994). 51. C D . Eisenbach, B. Sperlich, Macromolecules, 29, 7748 (1996). 52. S. A. Haque et al., ACS Polym. Mater. Sci. Eng., 76, 87 (1997). 53. A. Mogstad et al., ACS Polymer Preprints, 34 (1), 211 (1993). 54. P. J. Flory, J. E. Osterheld, J. Phys. Chem., 58, 653 (1954). 55. M. L. Miller, K. O'Donnell, J. Skogman, J. Colloid Sci., 17, 649 (1962). 56. E. M. Loebl, J. O'Neill, J. Polym. Sci., 45, 538 (1960). 57. D. J. Diserow et al., ACS Polymer Preprints, 33 (1), 810 (1992). 58. H. Nakamoto, Y Ogo, T. Imoto, Makromol. Chem., Ill, 104 (1968). 59. G. F. L. Ehlers, J. Polym. Sci. A, 2, 4989 (1964). 60. S. Coca et al., ACS Polymer Preprints, 38 (1), 689 (1997). 61. J. Prager, R. M. McCurdy, G. B. Rathmann, J. Polym. Sci. A, 2, 1941 (1964). 62. Y. Nakatsuji, S. Furuyoshi, M. Okahara, Makromol. Chem., 87, 105 (1986). 63. C. Potin, A. Pleurdeau, C. M. Bruneau, Angew. Makromol. Chem., 138, 75 (1986). 64. M. Kamachi, H. Akimoto, S. Nozakura, J. Polym. Sci. Letters Ed., 21, 693 (1983). 65. J.-S. Kim et al., Macromolecules, 27, 814 (1994). 66. C. Simionescu, D. Feldman, I. Theil, Plaste Kautschuk, 15, 714 (1968). 67. D. E. Strain, R. G. Kennelly, H. R. Dittmar, Ind. Eng. Chem., 31, 382 (1939). 68. Trade literature, ICI Acrylics, St. Louis, MO.
69. Trade literature, Rohm Tech, Maiden, MA. 70. L. Gargallo, I. Mendez, D. Radic, Makromol. Chem., 184, 1053 (1983). 71. I. Reynolds et al., Macromolecules, 28, 7845 (1995). 72. M. Imoto, T. Otsu, K. Tsuda, T. Ito, J. Polym. Sci. A, 2, 1407 (1964). 73. Y. Nagasaki et al., ACS Polymer Preprints, 38 (1), 514 (1997). 74. G. Natta, P. Longi, E. Pellino, Makromol. Chem., 71, 212 (1964). 75. M. Ueda, T. Suzuki et al., J. Polym. Sci. Chem. Ed., 21,2997 (1983). 76. A. Natansohn et al., Macromolecules, 28, 4179 (1995). 77. A. Furukawa, T. Nakaya, M. Imoto, Makromol. Chem., 187, 311 (1986). 78. J. Springer, F. W. Weigelt, Makromol. Chem., 184, 1489 (1983). 79. S. H. Yuk, ACS Polym. Mater. Sci. Eng., 76, 231 (1997). 80. R. D Calleja et al., Macromolecules, 28, 6963 (1995). 81. J. Velickovic, Vukajlovic-Fiiipovic, J. Angew. Makromol. Chem., 13, 79 (1970). 82. J. Velickovic, J. Juranicova, J. Filipovic, IUPAC Intern. Symp. Macromolecules; Leiden, vol. I, 289 (1970). 83. J. Velickovic, M. Plavsic, Eur. Polym. J., 19, 1171 (1983). 84. T. Otsu, K. Shiraishi, A. Matsumoto et al., Polym. Commun., 26, 367 (1985). 85. N. Toyoda, T. Otsu, J. Macromol. Sci. A, 19, 1011 (1983). 86. J. S. Scarpa, D. D. Mueller, I. M. Klotz, J. Am. Chem. Soc, 89, 6024 (1967). 87. C. K. Chiklis, J. M. Grasshoff, J. Polym. Sci. A-2, 8, 1617 (1970). 88. S. Nakahama et al., ACS Polym. Mater. Sci. Eng., 76, 11 (1997). 89. L. E. Coleman, J. F. Bork, D. P. Wyman, ACS Polymer Preprints, 5, 250 (1964). 90. T. Kodaira et al., Macromolecules, 27, 1320 (1994). 91. R. Miyashita et al., Macromolecules, 27, 513 (1994). 92. J. Heller, C. B. Kingsley, Makromol. Chem., 78, 47 (1964). 93. O. Nuyken et al., ACS Polymer Preprints, 37 (1), 343 (1996). 94. A. Alegria et al., Macromolecules, 28, 8819 (1995). 95. E. J. Vandenberg, R. F. Heck, D. S. Breslow, J. Polym. Sci., 41, 519 (1959). 96. G. F. L. Ehlers, J. D. Ray, J. Polym. Sci. A, 2, 4989 (1964). 97. C. E. Schildknecht, S. T. Gross, H. R. Davidson, J. M. Lambert, A. O. Zoss, Ind. Eng. Chem., 40, 2104 (1948). 98. R. J. Kern, J. J. Hawkins, J. D. Calfee, Makromol. Chem., 66, 127 (1963). 99. G. Natta, G. Mazzanti, P Longi, F. Bernardini, J. Polym. Sci., 31, 181 (1958). 100. H. Cramail, A. Deffieux, Macromolecules, 27, 1401 (1994). 101. H. Yuki, K. Hatada, S. Murahashi, K. Hibino, Polym. J., 1, 271 (1970). 102. D. D. Coffman, G. H. KaIb, A. B. Ness, J. Org. Chem., 13, 223 (1948). 103. T. Yokozawa, E. Tsuruta, Macromolecules, 29, 8053 (1996).
104. G. B. Dharas et al., ACS Polymer Preprints, 33 (1), 211 (1992). 105. K. Saunders, J. Organic Polymer Chemistry, 2nd ed., Chapman and Hall, New York, 1988, p. 121. 106. M. Sumi, K. Matsumura, R. Obno, S. Nozakura, S. Murahashi, Chem. High Polymers (Tokyo), 24, 606 (1967). 107. D. Y. Sogah, J. F. Harris, ACS Polymer Preprints, 32 (1), 435 (1991). 108. B. M. Novak, A. K. Cederstav, ACS Polymer Preprints, 36 (1), 548 (1995). 109. Brochure "Mowital" of Hoechst AG, Frankfurt/M., 1971. 110. T. Hayashi et al., Macromolecules, 27, 2270 (1994). 111. H. Rittner, R. Sperber, Macromolecules, 27, 5919 (1994). 112. Skillicorn et al., J. of Vinyl Technology, 15 (2), 105 (1993). 113. R. A. Wessling, J. Appl. Polym. Sci., 14, 1531 (1970). 114. R. A. Wessling, J. Appl. Polym. Sci., 14, 2263 (1970). 115. G. H. KaIb, D. D. Coffman, T. A. Ford, F. L. Johnston, J. Appl. Polym. Sci., 4, 55 (1960). 116. R. Advincula et al., ACS Polymer Preprints, 38 (1), 912 (1997). 117. Trade literature, Elf Atochem, Philadelphia, PA. 118. W. S. Durrell, G. Westmoreland, M. G. Moshonas, J. Polym. Sci. A, 3, 2975 (1965). 119. E. L. Gal'perin et al., Vysokomol Soedin. A, 12, 1654 (1970). 120. R L. Rinaldi, ACS Polymer Preprints, 38 (1), 770 (1997). 121. H. T. Hall, J. Am. Chem. Soc, 71, 68 (1952). 122. R. C. Doban, A. C. Knight, J. J. Peterson, C. A. Sperati, Am. Chem. Soc. Meeting Atlantic City, 1956. 123. N. K. I. Symons, J. Polym. Sci., 51, S21 (1961). 124. D. Mclntyre, D. R. Valentine, ACS Polymer Preprints, 7, 1133 (1966). 125. R. E. Lowry, D. W. Brown, L. A. Wall, J. Polym. Sci. A-1,4, 2229 (1966). 126. D. W. Brown, R. E. Lowry, L. A. Wall, J. Polym. Sci. A-I, 8, 2441 (1970). 127. D. Lopez et al., Macromolecules, 27, 7415 (1994). 128. V Panchalingam et al., ACS Polymer Preprints, 32 (3), 185 (1991). 129. Trade literature, 3M Industrial Chemicals, St. Paul, MN. 130. W. Tuminello et al., Macromolecules, 28, 1506 (1995). 131. Dupont Specialty Polymers, Wilmington, DE. 132. S. M. Jo et al., ACS Polymer Preprints, 38 (1), 697 (1997). 133. Jr. W. W. Moyer, D. A. Grev, J. Polym. Sci. B, 1, 29 (1963). 134. A. Yamane et al., Macromolecules, 30, 4170 (1997). 135. M. Victor et al., ACS Polymer Preprints, 33 (1), 1162 (1992). 136. M. Ulbricht, G. Belfort, ACS Polymer Preprints, 36 (1), 135 (1995). 137. M. G. Mikhael et al., Macromolecules, 27, 7499 (1994). 138. G. L. Eian, ACS Polymer Preprints, 36 (1), 459 (1995). 139. H. Hopff, J. Dohany, Makromol. Chem., 69, 131 (1963). 140. H. Staudinger, M. Haeberle, Makromol. Chem., 9, 52 (1953). 141. K. Schaefers, C. Schneider, J. Polym. Sci. Chem. Ed., 23, 2879 (1985).
142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166.
167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178.
T. M. Pyriadi, ACS Polymer Preprints, 36 (1), 245 (1995). R. C. Schulz, R. Wolf, Makromol. Chem., 99, 76 (1966). M. Tosaka et al., Macromolecules, 30, 4132 (1997). P. Lu et al., Macromolecules, 29, 8583 (1996). T. Ishizone et al., Macromolecules, 30, 761 (1997). P. Xing et al., Macromolecules, 30, 2726 (1997). Trade literature, Hoechst Celanese, Dallas, TX. H. Kamogawa, H. G. Cassidy, J. Polym. Sci. A, 2, 2409 (1964). T. Ishizone, Macromolecules, 28, 3787 (1995). A. Hirao, Y. Ishino, S. Nakahama, Makromol. Chem., 187, 141 (1986). Y. Fu, R. A. Weiss, ACS Polymer Preprints, 38 (1), 270 (1997). Trade literature, ALCO Chemical, Chattanooga, TN. T. Ishizone et al., ACS Polymer Preprints, 35 (2), 540 (1994). D. Liu et al., Macromolecules, 28, 622 (1995). B. D. Edgecombe et al., ACS Polym. Mater. Sci. Eng., 75, 478 (1996). R. F. M. Lange, E. W. Meijer, Macromolecules, 28, 782 (1995). R. A. Sanayei et al., Macromolecules, 27, 5577 (1994). J. B. Schlenoff et al., Macromolecules, 28, 4290 (1995). R. C. Schulz, J. Kovacs, W. Kern, Makromol. Chem., 52,236 (1962). R. Hank, Makromol. Chem., 52, 108 (1962). H. Hopff, M. Lippay, Makromol. Chem., 66, 157 (1963). J. Moacanin, A. Rembaum, R. K. Laudenslager, ACS Polymer Preprints, 4, 179 (1963). G. Sitaramaiah, D. Jacobs, Polymer, 11, 165 (1970). J. Heller, D. J. Lymann, W. A. Hewett, Makromol. Chem., 73, 48 (1964). Y. L. Getter, International Series of Monographs on Organic Chemistry, Vol. 6, "Organophosphorus Monomers and Polymers", Pergamon Press: New York, 1962. G. B. Butler, Proc. Conf. "High Temperature Polymer and Fluid Research", Dayton, Ohio, 1962, p. 53. J. Pielichowski, A. Romaniszyn, J. Polym. Sci. Letters Ed., 22, 395 (1984). A. T. Coscia, R. L. Kugel, J. Pellon, J. Polym. Sci., 55, 303 (1961). H. R. Allcock, J. Polym. Sci. A, 2, 4087 (1964). R. Rabinowitz, R. Marcus, J. Pellon, J. Polym. Sci. A, 2, 1233 (1964). Br. Patent 849038. A. V. Topchiev, V. P. Alaniya, J. Polym. Sci. A, 1, 559 (1963). G. Natta, G. Mazzanti, G. Dall'Asta, P. Longi, Makromol. Chem., 37, 160 (1960). P. Grosius, Y. Gallot, A. Skoulios, Makromol. Chem., 136, 191 (1970). L. E. Coleman, J. F. Bork, J. Polym. Sci. A-1,8,2073 (1970). R. M. O'Malley et al., Macromolecules, 27, 5107 (1994). N. Gaylord, in: "Polyethers, Polyalkylene Sulfides and Other Polythioethers", High Polymers, vol. XIII, Part III, Interscience, New York-London, 1962.
179. Trade literature, Air Products and Chemicals, Allentown, PA. 180. K. Imai, T. Shiomi et al., J. Macromol. Sci. A, 22, 1347 (1985). 181. A. Patil, ACS Polym. Mater. Sci. Eng., 75, 287 (1996). 182. A. Bader, J. R. Wunsch, Macromolecules, 28, 3794 (1995). 183. J. C. Hornby et al., Soap/Cosmetics/Chemical Specialities June 1993, p. 40. 184. L. A. Belfiore, ACS Polym. Mater. Sci. Eng., 76, 97 (1997). 185. R. J. Badesso et al., ACS Polym. Mater. Sci. Eng., 69, 251 (1993). 186. Trade literature, ISP Technologies, Wayne, NJ. 187. F. Shi, R. Subramanian, ACS Polymer Preprints, 37 (1), 637 (1996). 188. Q. Pei et al., ACS Polymer Preprints, 36 (I), 213 (1995). 189. T. Okada et al., Macromolecules, 29, 7645 (1996). 190. T. F. McCarthy, Macromolecules, 28, 8350 (1995). 191. R. Zhang et al., Macromolecules, 29, 7627 (1996). 192. M. Pomerantz, J. Wang, ACS Polymer Preprints, 35 (1), 210 (1994). 193. Trade literature, Maxdem Inc., San Dimas, CA. 194. R. W. Phillips et al., Macromolecules, 27, 2354 (1994). 195. H. O. Wirth, R. Mueller, W. Kern, Makromol. Chem., 77, 90 (1964). 196. A. J. Pasquale et al., ACS Polymer Preprints, 38 (1), 170 (1997). 197. C. Aso, Y. Aito, Makromol. Chem., 58, 195 (1962). 198. L. D. Taylor, H. S. Kolesinski, J. Polym. Sci. B, 1, 117 (1963). 199. J. A. Moore, ACS Polymer Preprints, 5, 250 (1964). 200. J. R. Schaefgen, J. Polym. Sci., 41, 133 (1959). 201. B. R. Hsich, ACS Polym. Mater. Sci. Eng., 67, 252 (1992). 202. W. Chen et al., ACS Polymer Preprints, 36 (1), 495 (1995). 203. M. Pan et al., ACS Polymer Preprints, 36 (1), 618 (1995). 204. J. L. Reddiger, J, R. Reynolds, ACS Polymer Preprints, 37(1), 530 (1996). 205. Y. Fu, ACS Polymer Preprints, 38 (1), 410 (1997). 206. M. Wagaman, R. H. Grubbs, Macromolecules, 30, 3978 (1997). 207. Y. Baek, G. I. Stegeman, ACS Polym. Mater. Sci. Eng., 75, 221 (1996). 208. J.-I. Jin et al., Macromolecules, 27, 5239 (1994). 209. L. Pu et. al., Macromolecules, 29, 1138 (1996). 210. C-S. Wang, Y-M. Sun, ACS Polymer Preprints, 36 (1), 197 (1995). 211. R. Kulkarni, ACS Polymer Preprints, 32 (1), 128 (1991). 212. J. Asrar, Macromolecules, 27, 4036 (1994). 213. D. A. Frey, M. Hasegawa, C. S. Marvel, J. Polym. Sci. A, 1, 2057 (1963). 214. J. Konzelman, K. B. Wagener, ACS Polymer Preprints, 33 (2), 110(1992). 215. R. Reichel, C. S. Marvel, R. Z. Greenley, J. t>olym. Sci. A, 1, 2935 (1963). 216. S. P. Yen, ACS Polymer Preprints, 4, 82 (1963). 217. G. W. Coates, R. W. Waymough, ACS Polym. Mater. Sci. Eng., 67, 92 (1992).
218. G. W. Coates et al., ACS Polymer Preprints, 33 (1), 1230 (1992). 219. S. Cesca, A. Priola, G. Santi, J. Polym. Sci. B, 8, 573 (1970). 220. L. A. Wall, L. J. Fetters, S. Straus, J. Polym. Sci. B, 5, 721 (1967). 221. H. Mains, J. H. Day, J. Polym. Sci. B, 1, 347 (1963). 222. S. Cesca, A. Roggero, N. Palladino, A. De Chivico, Makromol. Chem., 136,23 (1970). 223. V. V. Korshak, S. M. Tseitlin, V. I. Azarov, A. I. Parlov, Izv. Akad. Nauk SSSR, Ser. Chim., 1, 226 (1968). 224. R. G. Alsup, J. O. Punderson, G. F. Leverett, J. Appl. Polym. Sci., 1, 185 (1959). 225. N. G. Gaylord, Polyethers; Interscience: New York, Part I, p. 46. 226. J. Furukawa, T. Saegusa, H. Fujii, A. Kawasaki, T. Tatano, Makromol. Chem., 33, 32 (1959). 227. J. Furukawa, T. Saegusa, H. Fujii, Makromol. Chem., 44/46, 398 (1961). 228. J. Furukawa, T. Saegusa, in: "Polymerization of Aldehydes and Oxides", Polymer Reviews, Interscience, New York, Vol. 3, 1963. 229. A. Benkhira et al., Macromolecules, 27, 3963 (1994). 230. K. Weissermel, E. Noelken, Makromol. Chem., 68, 140 (1963). 231. V. N. Kuznetsov, S. D. Vogman et al., Vysokomol. Soedin. A, 12, 2635 (1970). 232. R. C. Schulz, R. Wolf, Makromol. Chem., 99, 76 (1966). 233. T. Saegusa, S. Matsumoto, Y. Hashimoto, Macromol., 3,735 (1970). 234. M. E. Wright, G. D. Allred, ACS Polymer Preprints, 33 (1), 1123 (1992). 235. G. B. Brown, A. Goldman, ACS Polymer Preprints, 4 (2), 39 (1963). 236. S. Brochu, G. Ampleman, Macromolecules, 29, 5539 (1996). 237. J.-C. Lee et al., Macromolecules, 30, 3766 (1997). 238. T. Iwata, G. Wasai, T. Saegusa, Furukawa, J. Makromol. Chem., 77, 229 (1964). 239. E. Riande, J. Guzman, L. Garillo, Macromolecules, 17, 1234 (1984). 240. I. Penczek, S. Penzcek, Makromol. Chem., 67, 203 (1963). 241. W. A. Butte, C. C. Price, R. E. Hughes, J. Polym. Sci., 61, 528 (1962). 242. G. F. Endres, A. S. Hay, J. W. Eustance, J. Org. Chem., 28, 1300 (1963). 243. G. D. Staffin, C. C. Price, J. Am. Chem. Soc, 82, 3632 (1960). 244. J. M. Barrales-Rienda, D. C. Pepper, Eur. Polym. J., 3, 535 (1967). 245. R. W. Phillips et al., Macromolecules, 27, 3451 (1994). 246. R.-M. Ho et al., Macromolecules, 30, 3349 (1997). 247. Z. Chen et al., ACS Polym. Mater. Sci. Eng., 70, 40 (1994). 248. M. E. Denker, F. W. Harris, ACS Polymer Preprints, 35 (1), 521 (1994). 249. K. J. Saunders, "Organic Polymer Chemistry", 2nd ed., Chapman and Hall, New York, p. 275.
250. G. F. Pregaglia, M. Binaghi, M. Cambini, Makromol. Chem., 67, 10 (1963). 251. G. Natta, G. Mazzanti, G. F. Pregaglia, M. Binaghi, M. Cambini, Makromol. Chem., 51, 148 (1962). 252. R. C. Schulz, W. Passmann, Makromol. Chem., 60, 139 (1963). 253. C. Aso, Y. Aito, Makromol. Chem., 73, 141 (1964). 254. A. Takahashi, S. Kambara, Makromol. Chem., 72,92 (1964). 255. K. Meyersen, R. C. Schulz, W. Kern, Makromol. Chem., 58, 204 (1962). 256. C. G. Overberger, S. Ishida, H. Ringsdorf, J. Polym. Sci., 62, 51 (1962). 257. C. G. Overberger, S. Ishida, ACS Polymer Preprints, 5, 210 (1964). 258. H. Ohse, H. Cherdron, F. Korte, Makromol. Chem., 76, 147 (1964). 259. P. Dunn, D. Oldfield, J. Macromol. Sci. A, 4, 1157 (1970). 260. M. Acemoglu et al., Macromolecules, 28, 3030 (1995). 261. J. Labadie, ACS Polymer Preprints, 36 (1), 735 (1995). 262. X. Chen et al., Macromolecules, 30, 3470 (1997). 263. W. R. Moore, M. Uddin, Eur. Polym. J., 5, 185 (1969). 264. W. R. Moore, M. Uddin, Eur. Polym. J., 6, 121 (1970). 265. G. S. Kolesnikov et al., Vysokomol. Soedin. B, 12, 548 (1970). 266. C-S. Tan, T.-I. Hsu, Macromolecules, 30, 3147 (1997). 267. J. M. Bronk, J. S. Riffle, ACS Polymer Preprints, 35 (1), 915 (1994). 268. M. Super et al., Macromolecules, 30, 368 (1997). 269. P. Cebe, J. Carbeck, ACS Polymer Preprints, 33 (1), 331 (1992). 270. J. P. Penning, R. St. John Manley, ACS Polymer Preprints, 36 (1), 330 (1995). 271. M. Tokita et al., Macromolecules, 29, 1345 (1996). 272. X. Li, F. Brisse, Macromolecules, 27, 7718 (1994). 273. Y. Maeda, J. Watanabe, Macromoiecules, 28, 1661 (1995). 274. S. Inoue, Y. Tomoi, T. Tsuruta, J. Furukawa, Makromol. Chem., 48, 229 (1961). 275. H. Cherdron, H. Ohse, F. Korte, Makromol. Chem., 56, 179, 187 (1962). 276. K. M. Shakesheff et al., ACS Polymer Preprints, 36 (1), 71 (1995). 277. S. M. Li et al., ACS Polymer Preprints, 37 (2), 133 (1996). 278. A. Lofgren et al., Macromolecules, 27, 5556 (1994). 279. S. Oi et al., Macromolecules, 29, 2694 (1996). 280. P. Hubbard et al., Macromolecules, 29, 8304 (1996). 281. P. Wilson, W. J. Brittain, ACS Polymer Preprints, 36 (2), 136 (1995). 282. C. Spies, R. Gehrke, Macromolecules, 30, 1701 (1997). 283. A. Romo-Uribe, A. H. Windle, Macromolecules, 28, 7085 (1995). 284. C. G. Bauch et al., ACS Polymer Preprints, 32 (1), 377 (1991). 285. Y. Wei et al., ACS Polymer Preprints, 36 (2), 241 (1995). 286. H.-L. Chen et al., Macromolecules, 30, 1718 (1997). 287. H. A. Al-Maullen, D. M. Knauss, ACS Polymer Preprints, 38 (1), 68 (1997).
288. D. Tian et al., Macromolecules, 30, 406 (1997). 289. J.-H. Chang et al., ACS Polymer Preprints, 36 (1), 829 (1995). 290. K. Belfield, G. Zhong, ACS Polymer Preprints, 36 (2), 269 (1995). 291. F. Ignatious et al., ACS Polymer Preprints, 34 (2), 586 (1993). 292. B.-H. Chang, J. Kwiatek, ACS Polymer Preprints, 36 (2), 146 (1995). 293. S. Davies, B. Tighe, ACS Polymer Preprints, 36 (1), 103 (1995). 294. R. H. Marchessault, K. Okamura, C. J. Su, MacromoL, 3, 735 (1970). 295. Y. Hori, A. Yamaguchi, Macromolecules, 28, 406 (1995). 296. K. S. Bisht et al., Macromolecules, 30, 2705 (1997). 297. Y. Hiragui, Y. Tokiwa, Macromolecules, 30, 3691 (1997). 298. H. Ohse, H. Cherdron, Makromol. Chem., 95, 283 (1966). 299. A. Roviello, A. Sirigu, Makromol. Chem., 181,1799 (1980). 300. N. Lacoudre, A. Leborgue et al., Makromol. Chem., 187, 341 (1986). 301. H. Batzer, H. Lang, Makromol. Chem., 15, 211 (1955). 302. R. Nitsche, K. A. Wolf, US Patent 3 036990, 3 036991, 1962. 303. J. Lo, S. N. Lee, E. M. Pearce, J. Appl. Polym. ScL, 29, 35 (1984). 304. Y. Imai, S. Tassavori, J. Polym. Sci. Chem. Ed., 22, 1319 (1984). 305. J. H. Pawlow et al., ACS Polymer Preprints, 37 (2), 198 (1996). 306. J. Hori et al., Macromolecules, 26, 4388 (1993). 307. E. Shimamura, Macromolecules, 27, 4429 (1994). 308. H. R. Kricheldorf, J. M. Jonte, Polym. Bull., 9, 276 (1983). 309. A. G. Shard et al., ACS Polymer Preprints, 36 (1), 74 (1995). 310. R. C. Schulz et al., ACS Polymer Preprints, 31 (2), 402 (1990). 311. YK. Sung, D. K. Song, ACS Polymer Preprints, 37 (2), 107 (1996). 312. J. Majnusz, J. Catala, R. W. Lenz, Eur. Polym. J., 19, 1043 (1983). 313. Trade literature, Amoco Chemical Co., Chicago, IL. 314. J. Jager et al., ACS Polymer Preprints, 37 (1), 236 (1996). 315. K. J. Saunders, "Organic Polymer Chemistry", 2nd ed., Chapman and Hall, New York, 1988, p. 256. 316. H. Prueckner, Erdoel, Kohle, Erdgas, Petrochemie, 16, 188 (1959). 317. C. Wu et al., Macromolecules, 27, 6055 (1994). 318. A. S. Jones et al., ACS Polymer Preprints, 37 (1), 229 (1996). 319. Y-H. So, ACS Polymer Preprints, 35 (1), 819 (1994). 320. F. H. Henglein, H. E. Tarrach, Kunststoffe-Plastics, 6, 5 (1959). 321. S. Nomula, S. L. Cooper, ACS Polymer Preprints, 38 (1), 78 (1997). 322. D. J. Lyman, J. Polym. Sci., 55, 507 (1961). 323. E. L. Wittbecker, M. Katz, J. Polym. Sci., 40, 367 (1959). 324. T. M. Gricenko et al., KMm. Volokna, 5, 18 (1970). 325. D. J. Lyman, J. Polym. Sci., 45, 49 (1960).
326. S. Neffgen et al., Macromolecules, 30, 1289 (1997). 327. Trade literature, Anderson Development Co., Adrian, MI. 328. J. C. Wittmann et al., ACS Polymer Preprints, 36 (I), 257 (1995). 329. S. Bronco, Macromolecules, 27, 4436 (1994). 330. Z. Jiang et al., ACS Polymer Preprints, 35 (1), 676 (1994). 331. J. G. Bonner, A. K. Powell, ACS Polym. Mater. Sci. Eng., 76, 108 (1997). 332. A. A. Patel, S. R. Patel, Eur. Polym. J., 19, 17 (1983). 333. M. Barsacchi et al., ACS Polym. Mater. Sci. Eng., 67, 63 (1992). 334. M. Brookhart et al., ACS Polymer Preprints, 35 (2), 530 (1994). 335. R. A. Koster, R. H. Birk, ACS Polymer Preprints, 37 (2), 525 (1996). 336. S. Murtuza, A. Sen, ACS Polymer Preprints, 37 (2), 194 (1996). 337. S. L. Borkowsky, R. M. Waymouth, Macromolecules, 29, 6377 (1996). 338. S. L. Borkowsky, R. M. Waymough, ACS Polymer Preprints, 35 (1), 792 (1994). 339. A. L. Safir, B. M. Novak, ACS Polymer Preprints, 36 (1), 227 (1995). 340. M. F. Teasley, B. S. Hsiao, Macromolecules, 29, 6432 (1996). 341. M. Teasley etal., ACS Polymer Preprints, 38(1), 125 (1997). 342. F. Wang, J. Roovers, ACS Polym. Mater. Sci. Eng., 69, 44 (1993). 343. R.-M. Ho et al., Macromolecules, 27, 5787 (1994). 344. R.-H. Ho et al., ACS Polymer Preprints, 36 (1), 338 (1995). 345. S. Ahmed etal., ACS Polymer Preprints, 38 (I), 172(1997). 346. U. Hoffmann et al., Macromolecules, 27, 3575 (1994). 347. J. V. Facinelli et al., ACS Polymer Preprints, 36 (1), 759 (1995). 348. Z. Wu et al., ACS Polymer Preprints, 36 (2), 215 (1995). 349. D. W. Thomson, G. F. L. Ehlers, J. Polym. Sci. A, 2, 1051 (1964). 350. A. Mochizuki et al., Macromolecules, 28, 365 (1995). 351. J. V. Beach, ACS Polym. Mater. Sci. Eng., 72, 205 (1995). 352. B. A. Kiselov, I. A. Stepina, Z. P. Ablekova, Soviet Plastics, 13 (1970). 353. G. W. Gray, D. Lacey et al., Makromol. Chem. Rapid Commun., 7, 71 (1986). 354. J. B. Ganci, F. A. Bettelheim, J. Polym. Sci. A, 2, 4011 (1964). 355. P. R. Dvornic et al., Macromolecules, 27, 7575 (1994). 356. P. R. Dvornic, R. W. Lenz, Macromolecules, 27, 5833 (1994). 357. P. R. Dvornic, V. V. Gerov, Macromolecules, 27, 1068 (1994). 358. R. Puyerbrock et al., ACS Polym. Mater. Sci. Eng., 72, 110 (1995). 359. Trade literature, GE Silicones, Waterford, NY. 360. H. Zhuang, Jr., J. A. Gardella, Macromolecules, 30, 3632 (1997).
361. A. Sergeyev, V. I. Ness'kin, S. S. Arustamyan, Polymer Commun., 26, 365 (1985). 362. Phillips Petroleum US Patent 3 380951. 363. B. Jirgensons, in: "Natural Organic Polymers", Pergamon Press, New York, 1962. 364. K. Yamamoto et al., Macromolecules, 27, 4312 (1994). 365. J. L. de Ia Pena, E. Riande, J. Guzman, Macromolecules, 18, 2739 (1985). 366. S. S. Wu et al., ACS Polymer Preprints, 36 (1), 267 (1995). 367. H. A. Smith, C. E. Handlovits, Proc. Conf. High Temperature Polymer and Fluid Research, Dayton, Ohio, 1962, p. 123. 368. M. L. Cameron et al., ACS Polymer Preprints, 31 (1), 297 (1990). 369. M. Ueda, T. Okada, Macromolecules, 27, 3449 (1994). 370. R. A. Johnson, L. J. Mathais, Macromolecules, 28, 79 (1995). 371. J. D. Davies, W. H. Daley, ACS Polymer Preprints, 37 (1), 745 (1996). 372. M. P. Bohrer, D. A. Mixon, ACS Polymer Preprints, 34 (1), 455 (1993). 373. K. J. Saunders, "Organic Polymer Chemistry", 2nd ed., Chapman and Hall, New York,' 1988; p. 283. 374. H. A. Vogel, J. Polym. Sci. A-I, 8, 2035 (1970). 375. M .E. A. Cudby, R. G. Feasy, B. E. Jennings, M. E. B. Jones, J. B. Rose, Polymer, 6, 589 (1965). 376. A. Bhatnager, ACS Polymer Preprints, 38 (1), 111 (1997). 377. A. Pandya et al., Macromolecules, 27, 1367 (1994). 378. S. G. Gaynor, S. Z. Edelman, ACS Polymer Preprints, 38 (1), 703 (1997). 379. M. D. Guiver et al., Macromolecules, 28, 7612 (1995). 380. R. S. Achibald et al., ACS Polym. Mater. Sci. Eng., 69, 293 (1993). 381. Y-K. Han et al., Macromolecules, 28, 916 (1995). 382. C. Gao, A. S. Hay, ACS Polymer Preprints, 36 (2), 102 (1995). 383. D. J. Riley et al., ACS Polymer Preprints, 37 (1), 489 (1996). 384. T. M. Moy et al., ACS Polymer Preprints, 33 (1), 489 (1992). 385. M. Russo, S. Hara, Chem. High Polymers (Tokyo), 27, 661 (1970). 386. N. Azuma, Macromolecules, 28, 7331 (1995). 387. V. E. Shashoua, W. Sweeny, R. F. Tietz, J. Am. Chem. Soc, 82, 866 (1966). 388. W. Buchard, Makromol. Chem., 67, 182 (1963). 389. A. Ohshima et al., Macromolecules, 28, 6095 (1995). 390. Y Jimbo et al., Macromolecules, 27, 6080 (1994). 391. C. Khatri et al., ACS Polymer Preprints, 33 (2), 200 (1992). 392. R. C. Schultz, R. Stenner, Makromol. Chem., 12, 202 (1964). 393. L. Franco et al., ACS Polymer Preprints, 33 (1), 325 (1992). 394. L. Franco et al., Macromolecules, 27, 4284 (1994). 395. J. A. Muller et al., ACS Polymer Preprints, 36 (1), 166 (1995). 396. J. Helfrich et al., Macromolecules, 27, 472 (1994). 397. D. Barrera et al., Macromolecules, 28, 425 (1995). 398. M. Bermudez et al., Macromolecules, 27, 6325 (1994).
399. R. Graf, G. Lohaus, K. Boerner, E. Schmidt, H. Bestian, Angew. Chem., 74, 523 (1962). 400. J. Masamoto, Y Kaneko, K. Sasaguri, H. Kobayashi, J. Soc. Fiber Sci. Technol. Japan, 25, 525 (1969). 401. J. Masamoto, K. Sasaguri, C. Ohizumi, H. Kobayashi, J. Polym. Sci. A-2, 8, 1703 (1970). 402. S. Jin, K. E. Gonsalves, ACS Polym. Mater. Sci. Eng., 76, 15 (1997). 403. C-W. Ng et al., ACS Polym. Mater. Sci. Eng., 69, 345 (1993). 404. H. Sekiguchi, Bull. Soc. Chim. France, 1839 (1960). 405. R. J. Gaymans, V. S. Venkatraman, J. Schuijer, J. Polym. Sci. Chem. Ed., 22, 1373 (1984). 406. S. A. Giannos, ACS Polym. Mater. Sci. Eng., 62, 236 (1990). 407. K. L. L. Eerisels et al., Macromolecules, 29, 6744 (1996). 408. E. Navarro et al., Macromolecules, 29, 5406 (1996). 409. E. Navarro et al., Macromolecules, 28, 8742 (1995). 410. S. Steadman, L. J. Mathias, ACS Polymer Preprints, 37 (2), 256 (1996). 411. G. Reinisch, K. Dietrich, Eur. Polyrn. J., 6, 1269 (1970). 412. K. Weiskopf, G. Meyerhoff, Polymer, 24, 72 (1983). 413. C. G. Johnson, L. J. Mathias, ACS Polymer Preprints, 34 (2), 348 (1993). 414. T. KakuchietaL, ACS Polymer Preprints, 37(1), 561 (1996). 415. M. J. Hill, E. D. T. Atkins, Macromolecules, 28, 604 (1995). 416. Trade literature, HuIs, Marl, Germany. 417. G. Cojazzi, A. M. Drusiani et al., Eur. Polym. J., 17, 1241 (1981). 418. N. Ogata, K. Sanui et al., J. Polym. Sci. Chem. Ed., 22, 793 (1984). 419. H. R. Dricheldorf et al., Macromolecules, 27, 1669 (1994). 420. M. Ueda, A. Mochizuki, Macromolecules, 18, 2353 (1985). 421. V. E. Shaskoua, W. M. Eareckson, J. Polym. Sci., 40, 343 (1959). 422. A. C. Karydas, M. Kapuscinska, E. M. Pearce, Eur. Polym. J., 19, 935 (1983). 423. C. G. Overberger, C. X. Lu, C. C. Chen, J. Polym. Sci. Chem. Ed., 24, 75 (1986). 424. Y Iwakura, K. Uno, Y Imai, M. Fukui, Makromol. Chem., 77, 41 (1964). 425. K. J. Saunders, "Organic Polymer Chemistry", 2nd ed., Chapman and Hall, New York, 1988; p. 210. 426. C. X. Lu, Q. Li, J. Pan, J. Polym. Sci. Chem. Ed., 23, 30 (1985). 427. D. J. Schaefer et al., ACS Polymer Preprints, 35 (1), 118 (1994). 428. K. J. Saunders, "Organic Polymer Chemistry", 2nd ed., Chapman and Hall, New York, 1988; p 209. 429. K. J. Bouck, P G. Rasmussen, ACS Polymer Preprints, 34 (1), 463 (1993). 430. J. Rosch, R. Mulhaupt, ACS Polymer Preprints, 33 (1), 370 (1992). 431. D. Lin et al., ACS Polymer Preprints, 33 (1), 335 (1992). 432. P E. Cassidy et al., ACS Polymer Preprints, 31 (2), 582 (1990). 433. K. Kimura et al., Macromolecules, 27, 1303 (1994).
434. H. Kricheldorf, A. Domschke, Macromolecules, 27, 1509 (1994). 435. C. E. Sroog, S. V. Abramo, C. E. Berr, W. M. Edwards, A. L. Endrey, K. L. Olivier, ACS Polymer Preprints, 5(1), 132; J. Polym. Sci. A, 3, 1373 (1965). 436. J. Pellon, W. G. Carpenter, J. Polym. Sci. A, 1, 863 (1963). 437. B. L. Kwolek, P. W. Morgan, J. Polym. Sci. A, 2,269 (1964). 438. S. A. Suncket, W. A. Muiphey, S. B. Spenk, J. Polym. Sci., 40, 389 (1959). 439. K. Iimura, N. Koide et al, Makromol. Chem., 182, 2563 (1981). 440. A. H. Frazer, F. T. Wallenberger, J. Polym. Sci. A, 2, 1137 (1964). 441. A. H. Frazer, F. T. Wallenberger, J. Polym. Sci. A, 2, 1147 (1964). 442. K. R. Carter, J. L. Hedrich, ACS Polymer Preprints, 34 (1), 521 (1993). 443. H. Rinke, E. Istel, in: E. Mueller (Ed.), "Houben-Weyl Methoden der Organischen Chemie", vol. 14 (2), 412 ed., Georg Thieme, Stuttgart, 1963. 444. G. C. Robinson, J. Polym. Sci. A, 2, 390 (1964). 445. A. Goodwin, B. M. Novak, Macromolecules, 27, 5520 (1994). 446. K. Shibayama et al., Macromolecules, 30, 3159 (1997). 447. D. J. Lyman, N. Sadri, Makromol. Chem., 67, 1 (1963). 448. C. H. Chen et al., Macromolecules, 27, 6376 (1994). 449. Trade literature, Polymer Chemistry Innovations, Tuscon, AZ. 450. J. M. Rodriguey-Parada et al., Macromolecules, 27, 1571 (1994). 451. M. A. Mitchell et al., ACS Polym. Mater. Sci. Eng., 68, 22 (1993). 452. K. S. Arora, C. G. Overberger, J. Polym. Sci. Chem. Ed., 24, 37 (1986). 453. T. Nakato et al., ACS Polymer Preprints, 37 (1), 555 (1996). 454. O. Takayuki, A. Tatsumi, A. Matsumoto, J. Polym. Sci. Letters Ed., 24, 113 (1986). 455. A. Ito et al., Macromolecules, 28, 5618 (1995). 456. Y. Xia, A. G. MacDiarmid, Macromolecules, 27, 7212 (1994). 457. M. R. Majidi et al., ACS Polymer Preprints, 36 (2), 51 (1995). 458. M. G. Mikheal et al., ACS Polymer Preprints, 37 (1), 523 (1996). 459. T. E. Herold, R. S. Duran, ACS Polymer Preprints, 36 (1), 576 (1995). 460. W. E. Rudzinski et al., ACS Polymer Preprints, 34 (1), 449 (1993). 461. K. Shirdhara et al., Macromolecules, 30, 4024 (1997). 462. M. T. Nguyen, A. F. Diaz, Macromolecules, 27, 7003 (1994). 463. T. Tsuda, A. Tobisawa, Macromolecules, 28, 1360 (1995). 464. J. Gopal, M. Srinivasan, Makromol. Chem., 187, 1 (1986). 465. G. F. L. Ehlers, J. D. Ray, J. Polym. Sci. A, 2, 4989 (1964). 466. H. K. Hall, Jr., ACS Polym. Mater. Sci. Eng., 72, 129 (1995). 467. H. K. Hall et al., Macromolecules, 28, 1 (1995).
468. T. Endo et al., Macromolecules, 27, 3694 (1994). 469. A. Nakai et al., Macromolecules, 27, 6963 (1994). 470. B. M. Culbertson, X.-L. Want, ACS Polymer Preprints, 37 (2), 279 (1996). 471. H. R. Allcock, R. L. Kugel, K. J. Valan, Inorg. Chem., 5, 1709 (1966). 472. G. Allen, C. J. Lewis, S. M. Todd, Polymer, 11, 31 (1970). 473. G. Allen, C. J. Lewis, S. M. Todd, Polymer, 11, 44 (1970). 474. G.-F. Xu, P. Wilsian-Neilson, ACS Polymer Preprints, 36 (1), 219 (1995). 475. H. R. Allcock, P. E. Austin, Macromolecules, 14, 1616 (1981). 476. S. Kobayashi, M. Suzuki, T. Saegusa, Macromolecules, 19, 462 (1986). 477. E. Bonaplata et al., ACS Polym. Mater. Sci. Eng., 70, 405 (1994). 478. J. Gruneich, P. Wisian-Neilsen, ACS Polymer Preprints, 37 (1), 611 (1996). 479. L. W. Breed, R. L. Elliott, A. F. Ferris, J. Polym. Sci. A, 2, 45, 1964; J. Org. Chem., 27, 1114 (1962). 480. K. A. Andrianov, V. I. Pachomov, V. M. Gel'perina, Dokl. Akad. Nauk SSSR, 162, 79 (1965). 481. K. Matsumota, H. Yamaoka, Macromolecules, 28, 7029 (1995). 482. B. M. Klemann et al., Macromolecules, 29, 198 (1996). 483. M. M. Despotopoulou et al., Macromolecules, 29, 5797 (1996). 484. T. Hiraoka et al., ACS Polymer Preprints, 37 (1), 483 (1996). 485. J. P. Banovetz et al., ACS Polymer Preprints, 34 (1), 228 (1993). 486. H. Isaka et al., Macromolecules, 28, 4733 (1995). 487. J. Ohshita et al., Macromolecules, 30, 1540 (1997). 488. H. Isaka et al., Macromolecules, 30, 344 (1997). 489. J. Ohshita et al., Macromolecules, 27, 5583 (1994). 490. M. Itoh et al., Macromolecules, 30, 694 (1997). 491. M. Itoh et al., Macromolecules, 27, 7917 (1994). 492. M.-K. Ryu et al., ACS Polym. Mater. Sci. Eng., 75, 408 (1996). 493. C. R. Krueger, E. G. Rochow, J. Polym. Sci. A, 2, 3179 (1964). 494. H. Tang et al., Macromolecules, 30, 1400 (1997). 495. R. Minne, E. G. Rochow, J. Am. Chem. Soc, 82, 5625 (1960). 496. J. P. Pillot et al., ACS Polymer Preprints, 34 (1), 562 (1993). 497. Y. Pang, ACS Polymer Preprints, 37 (2), 382 (1996). 498. Y. Imai, K. Uno, Y. Iwakura, Makromol. Chem., 83, 17 (1965). 499. T. Kubota, R. Nakanishi, J. Polym. Sci. B, 2, 655 (1964). 500. Y. Imai, I. Kaoka, K. Uno, Y. Iwakura, Makromol. Chem., 83, 167 (1965). 501. S. Inoue, Y. Imai, K. Uno, Y. Iwakura, Makromol. Chem., 95, 236 (1966). 502. V. V. Korshak, G. M. Tseitlin, A. I. Pavlow, Vysokomol. Soedin., 8, 1599 (1966). 503. D. M. Husband et al., ACS Polymer Preprints, 36 (1), 221 (1995).
504. W. D. Joseph et al., ACS Polymer Preprints, 34 (1), 397 (1993). 505. R. J. Parry, B. K. Wilson, Macromolecules, 27, 40 (1994). 506. W. D. Joseph et al., ACS Polymer Preprints, 35 (1), 551 (1994). 507. A. W. Frazer, W. Sweeny, F. T. Wallenberger, J. Polym. Sci. A, 2, 1157 (1964). 508. M. Hasegawa, T. Unishi, J. Polym. Sci. B, 2, 237 (1964). 509. Y Iwakura, K. Uno, S. Hara, Makromol. Chem., 94, 103 (1966). 510. Y. Iwakura, K. Uno, S. Hara, Makromol. Chem., 95, 248 (1966). 511. C J . Abshire, C. S. Marvel, Makromol. Chem., 44/46, 388 (1961). 512. A. H. Frazer, W. Sweeny, F. T. Wallenberger, J. Polym. Sci. A, 2, 1157 (1964). 513. M. Hasegawa, R. Huiski, J. Polym. Sci. B, 2, 237 (1964). 514. Y. Iwakura, K. Uno, S. Hara, J. Polym. Sci. A, 3, 45 (1965). 515. A. H. Frazer, F. T. Wallenberger, J. Polym. Sci. A, 2, 1181 (1964). 516. D. T. Longone, H. H. Un, J. Polym. Sci. A, 3, 3117 (1965). 517. M. Srinivasarao, ACS Polymer Preprints, 33 (1), 777 (1992). 518. M. Dotrong et al., ACS Polymer Preprints, 32 (3), 201 (1991). 519. K. R. Srinivansan et ah, ACS Polymer Preprints, 36 (2), 249 (1995). 520. P. Hergenrother, W. Wrasidlo, H. H. Levine, ACS Polymer Preprints, 5, 153 (1964). 521. H. Kokelenberg, C. S. Marvel, J. Polym. Sci. A-I, 8, 3235 (1970). 522. H. R. Kircheldorf et al., Macromolecules, 27, 2540 (1994). 523. V. N. Sekharipuram et al., ACS Polymer Preprints, 34 (1), 618 (1993). 524. P. Cebe, ACS Polymer Preprints, 37 (1), 140 (1996). 525. D. C. Rich et al., ACS Polymer Preprints, 38 (1), 414 (1997). 526. R. Pardey et al., Macromolecules, 27, 5794 (1994). 527. R. J. Perry et al., Macromolecules, 28, 2607 (1995). 528. R. J. Perry et al, Macromolecules, 27, 4058 (1994). 529. S.-H. Hsiao et al., Macromolecules, 30, 165 (1997). 530. K. Itoya et al., Macromolecules, 27, 4101 (1994). 531. A. E. Hoy It, S. J. Haung, ACS Polymer Preprints, 35 (1), 343 (1994). 532. Y-N. Lin et al., ACS Polymer Preprints, 34 (1), 515 (1993). 533. D. Cheng et al., ACS Polymer Preprints, 34 (2), 718 (1993). 534. R. E. Southwark et al., ACS Polym. Mater. Sci. Eng., 76,183 (1997). 535. B. Conger et al., Macromolecules, 30, 4049 (1997). 536. T. Matsumoto, T. Kurosaki, Macromolecules, 28, 5684 (1995). 537. N. A. J. M. van Aerie, A. J. W. ToI, Macromolecules, 27, 6520 (1994). 538. K. Itoya et al., Macromolecules, 27, 7231 (1994). 539. Trade literature, Amoco Performance Products, Ridgefield, CT.
540. C. E. Sroog, S. E. Abramo, C. E. Berr, W. M. Edwards, A. L. Endrey, K. L. Olivier, ACS Polymer Preprints, 5, 132 (1964). 541. J. W. Yu et al., Macromolecules, 30, 1845 (1997). 542. K. J. Saunders, "Organic Polymer Chemistry", 2nd ed., Chapman and Hall, New York, 1988, p. 217. 543. J. Heller, J. H. Hodgkin, F. J. Martinelli, J. Polym. Sci. B, 6, 153 (1968). 544. K. E. Uhrich et al., Macromolecules, 28, 2184 (1995). 545. A. N. Thuo, H. W. Beckman, ACS Polymer Preprints, 36 (2), 274 (1995). 546. J. W. Park et ai., Macromolecules, 27, 3459 (1994). 547. J. K. Stille, J. R. Williamson, J. Polym. Sci. A, 2, 3867 (1964). 548. J. K. Stille, E. L. Mainen, Macromolecules, 1, 36 (1968). 549. F. De Schryver, C. S. Marvel, J. Polym. Sci. A, 1, 5, 545 (1967). 550. H. H. Levine, J. K. Kjeller, C. G. Delano, ACS Polymer Preprints, 5, 160 (1964). 551. Y Iwakura, K. Uno, Y Imai, Makromol. Chem., 77, 33 (1964). 552. Y Iwakura, S. I. Izawa, F. Hayano, J. Polym. Sci. A-I, 6, 1097 (1968). 553. V. P. Sarzevskaja et al., Ukr. Khim. Zh., 35, 390 (1969). 554. J. E. White et al., ACS Polymer Preprints, 34 (1), 904 (1993). 555. T. Nishikubo et al., Macromolecules, 27, 1087 (1994). 556. J. L. Lang, W. A. Pavelich, H. D. Clarey, J. Polym. Sci. A, 1, 1123 (1963). 557. J. C. L. Hwa, W. A. Fleming, L. Miller, J. Polym. Sci. A, 2, 2395 (1964). 558. F. Xi, O. Vogl, J. Macromol. Sci. A, 20, 139 (1983). 559. J. L. Ding, R. M. Ottenbrite, ACS Polymer Preprints, 34 (2), 508 (1993). 560. W. Mormann, K. Schmalz, ACS Polymer Preprints, 33 (1), 968 (1992). 561. W. Mormann, K. Schmalz, Macromolecules, 27, 7115 (1994). 562. Trade literature, Chevron Chemical Co., Houston, TX. 563. Y Chang, C. L. McCormick, Macromolecules, 26, 4814 (1993). 564. Trade literature, Rieke Metals, Lincoln, NE. 565. M. Pomerantz et al., ACS Polym. Mater. Sci. Eng., 72, 271 (1995). 566. A. Kumar, S. R. Reynolds, ACS Polymer Preprints, 37 (2), 337 (1996). 567. J. Kowalik et al., ACS Polym. Mater. Sci. Eng., 72, 325 (1995). 568. S. Arnold et al., ACS Polym. Mater. Sci. Eng., 72, 170 (1995). 569. Y-H. Lu et al., Macromolecules, 29, 5546 (1996). 570. J. Parakka et al., Macromolecules, 29, 1928 (1996). 571. J. K. Herrema et al., Macromolecules, 28, 8102 (1995). 572. L. D. Peeters et al., Macromolecules, 29, 4216 (1996). 573. Y Pang et al., ACS Polymer Preprints, 37 (2), 333 (1996). 574. D. R. Rutherford et al., ACS Polymer Preprints, 31 (2), 643 (1990).
575. V. V. Sheares et al., ACS Polymer Preprints, 33 (2), 170 (1992). 576. V. V. Sheares et al., ACS Polym. Mater. Sci. Eng., 69, 236 (1993). 577. V. V. Sheares, ACS Polym. Mater. Sci. Eng., 73,258 (1995). 578. M. D. Curtin et al., ACS Polymer Preprints, 36 (1), 191 (1995). 579. J. Kastner et al., Macromolecules, 28, 2922 (1995). 580. F. Sanda, M. Matsumoto, Macromolecules, 28, 6911 (1995). 581. T. Tsuda, L. J. Mathias, ACS Polymer Preprint, 34 (2), 346 (1993). 582. A. Saito, D. A. Tirrell, ACS Polymer Preprints, 34 (1), 152 (1993). 583. M. J. Marsella, T. M. Swager, ACS Polymer Preprints, 33 (1), 1196(1992). 584. S.-W. Park et al., ACS Polymer Preprints, 36 (2), 259 (1995). 585. Y.-K. Kim et al., ACS Polymer Preprints, 32 (3), 590 (1991). 586. K. R. Carter et al., ACS Polymer Preprints, 34 (1), 481 (1993). 587. M. Strukilj, J. C. Hedrick, Macromolecules, 27,7511 (1994). 588. R. G. Bass, K. R. Srinivasan, ACS Polymer Preprints, 32 (1), 619 (1991). 589. Trade literature, AKZO, Dobbs Ferry, NY. 590. Trade literature, Dow Chemical Co., Midland, MI. 591. Trade literature, Hardman Inc., Belleville, NJ. 592. J. H. Bradbury, M. C. S. Perera, Brit. Polym. J., 18, 127 (1986). 593. H. Valdsar, R. Dunlap, Am. Chem. Soc. Meeting, Atlantic City, N. J., Sept. 1952. 594. E. Husemann, E. Siefert, Makromol. Chem., 128, 288 (1969). 595. E. Ott, H. M. Spurlin, (Eds.), "Cellulose and Cellulose Derivatives" Interscience, New York, 2nd ed., 1954. This book contains additional references. 596. A. Muenster, H. in: A. Stuart (Ed.), "Physik der Hochpolymeren", vol. II, Springer, Heidelberg, 1953, p. 193. 597. Trade literature, Hercules, Inc., Wilmington, DE. 598. Trade literature, Eastman Chemical Co., Kingsport, TN. 599. P. Howard, R. S. Pankh, Polym. Sci. A-I, 6, 537 (1968). 600. S. N. Bhadani, D. G. Gray, Makromol. Chem. Rapid Commun., 3, 449 (1982). 601. F. Guittard et al., Macromolecules, 27, 6988 (1994). 602. C. E. Schildknecht (Ed.), "Polymer Processes", Interscience: New York, 1956, p. 427. 603. C. T. Greenwood, D. J. Hourston, A. R. Proeter, Eur. Polyrn. J., 6, 293 (1970). 604. K. R. Meyer, Angew. Chem., 63, 155 (1951). 605. G. Keilich, N. Frank, E. Husemann, Makromol. Chem., 143, 275 (1971). 606. Trade literature, Pronova Biopolymers, Portsmouth, NH. 607. J. V. Gruber et al., Macromolecules, 28, 8865 (1995). 608. A. Hagino, S. Yoshida et al., Macromolecules, 19, 1 (1986). 609. C. L. Yue et al., ACS Polymer Preprints, 36 (1), 416 (1995). 610. Trade literature, Kelco, Chicago, IL. 611. R. Knoesel, J. Perrod, H. Benoit, Compt. Rend., 251, 2944 (1960).
612. J. F. McCullough, I. R. Van Walzer, E. J. Griffith, J. Am. Chem. Soc, 78, 4528 (1956). 613. E. Schwarzmann, I. R. Van Walzer, J. Am. Chem. Soc, 82, 6009 (1960). 614. H. Guenther, M. D. Bezoavi, P. Kovacic, J. Polym. Sci. Letters Ed., 22, 65 (1984). 615. C V . Pittman, R. D. Priester, T. V. Jagaramann, J. Polym. Sci. Chem. Ed., 19, 3351 (1981). 616. W. K. Zou, N.-L. Yang, ACS Polymer Preprints, 33 (2), 188 (1992). 617. S. Harada, S. Hasegawa, Makromol. Chem. Rapid Commun., 5, 27 (1984). 618. Trade literature, CPS Chemical Co., Old Bridge, NJ. 619. Y. Deng, R. Pelton, Macromolecules, 28, 4617 (1995). 620. J. C. Gahin, J. Appl. Polym. Sci., IS, 213 (1970). 621. M. Tricot, F. Debeauvais, C. Houssier, Eur. Polym. J., 11, 589 (1975). 622. L. P. Meier et al., Macromolecules, 29, 718 (1996). 623. P. Cheng et al., ACS Polymer Preprints, 32 (1), 138 (1991). 624. S. A. X. Haung, F. W. Harris, ACS Polymer Preprints, 35 (1), 519 (1994). 625. D.-C. Choi et al., Macromolecules, 30, 176 (1997). 626. A. Qin et al., Macromolecules, 27, 120 (1994). 627. R. Nomura et al., Macromolecules, 28, 86 (1995). 628. A. H. Gabor, C. K. Ober, ACS Polym. Mater. Sci. Eng., 72, 104 (1995). 629. O. Liu et al., ACS Polymer Preprints, 33 (1), 215 (1992). 630. F. Henselwood, G. Liu, Macromolecules, 30, 488 (1997). 631. R. Numora, T. Endo, Macromolecules, 28, 5372 (1995). 632. X. Chen, J. A. Gardella, ACS Polymer Preprints, 33 (2), 312 (1992). 633. C. Kim et al., ACS Polymer Preprints, 37 (2), 159 (1996). 634. M. S. Reeve, ACS Polym. Mater. Sci. Eng., 67, 182 (1992). 635. D. Li, R. Faust, Macromolecules, 28, 1383 (1995). 636. J. Li et al., ACS Polymer Preprints, 36 (2), 388 (1995). 637. G.-H. Hsiue et al., ACS Polymer Preprints, 33 (2), 212 (1992). 638. R. Nomura, T. Endo, Macromolecules, 28, 1754 (1995). 639. Trade literature, Shell Chemical Co., Houston, TX. 640. J. H. Chu et al., ACS Polymer Preprints, 36 (2), 122 (1995). 641. M. Motomatsu et al., ACS Polymer Preprints, 37 (2), 579 (1996). 642. B. S. Pinheiro, K. I. Winey, ACS Polymer Preprints, 36 (1), 174 (1995). 643. D. Hajduk et al., Macromolecules, 27, 490 (1994). 644. L. Balogh, L. A. Blumstein, ACS Polymer Preprints, 36 (2), 211 (1995). 645. J. T. Chen et al., Macromolecules, 28, 1688 (1995). 646. S. Nakahama et al., ACS Polymer Preprints, 36 (1), 57 (1995). 647. X. Jin, T. Lodge, ACS Polymer Preprints, 36 (1), 168 (1995). 648. R. F. Story, D. W. Baugh, ACS Polymer Preprints, 36 (1), 414 (1995). 649. Z. Fodor, R. Faust, ACS Polymer Preprints, 36 (2), 176 (1995). 650. X. Chen et al., ACS Polymer Preprints, 38 (1), 715 (1997).
651. 652. 653. 654. 655. 656. 657. 658. 659. 660. 661. 662. 663. 664. 665. 666. 667. 668. 669. 670. 671. 672. 673. 674. 675.
S. J. Clarson et al., Macromolecules, 28, 674 (1995). T. Ohmura et al., Macromolecules, 27, 3714 (1994). D. Nguyen et al., Macromolecules, 27, 5173 (1994). Y. Gan, T. E. Hogen-Esch, ACS Polymer Preprints, 36 (1), 406 (1995). Y. Gan et al., ACS Polymer Preprints 1993,34 (1), 69 (1993). T. K. Bera et al., ACS Polym. Mater. Sci. Eng., 77, 126 (1997). H. R. Allcock et al., Macromolecules, 30, 3184 (1997). I. Ihre, A. HuIt, ACS Polym. Mater. Sci. Eng., 77,71 (1997). S. Rannard, N. Davis, ACS Polym. Mater. Sci. Eng., 77, 63 (1997). Trade literature, DSM Fine Chemicals, Heerlen, NL. L. J. Hobson et al., ACS Polym. Mater. Sci. Eng., 77, 220 (1997). Y. H. Kim, ACS Polym. Mater. Sci. Eng., 73, 175 (1995). C. Kim et al., Macromolecules, 29, 6353 (1996). P. Lu et al., ACS Polymer Preprints, 37 (2), 342 (1996). C. J. Hawker, F. Chu, Macromolecules, 29, 4370 (1996). C. J. Hawker, ACS Polym. Mater. Sci. Eng., 76, 152 (1997). J. P Kampf, ACS Polymer Preprints, 38 (1), 908 (1997). M. R. Leduc et al., ACS Polym. Mater. Sci. Eng., 77, 1 (1997). W. Hayes et al., ACS Polym. Mater. Sci. Eng., 77, 143 (1997). E. W. Kwock et al., ACS Polymer Preprints 1991,32 (3), 635 (1991). F. Walter et al., ACS Polymer Preprints, 34 (1), 79 (1993). S. R. Turner et al., Macromolecules, 27, 1611 (1994). C. Wu et al, Macromolecuies, 29, 228 (1996). DBP 926. 163; 928, 793; 929, 931; 929. 932; 1955, Hoechst AG, O. Fuchs et al., Chem. Z. 1169, 1956; 3756, 1958. G. E. Ham, Ind. Eng. Chem., 46, 390 (1954).
676. 677. 678. 679. 680. 681. 682. 683. 684. 685. 686. 687. 688. 689. 690. 691. 692. 693. 694. 695. 696. 697. 698. 699. 700. 701.
S. Petitjean et al., Macromolecules, 27, 4127 (1994). R. Bacskai, J. Polym. Sci. A, 1, 2777 (1963). W. Kuran, P. Gorecki, Makromol. Chem., 184, 907 (1983). T. Ikemura, Chem. High Polymers (Tokyo), 26, 845 (1969). M. T. Nguyen et al., ACS Polym. Mater. Sci. Eng., 70, 22 (1994). Y. Xhong, P. Wolf, ACS Polymer Preprints, 36 (2), 370 (1995). H. R. Allcock et al., Macromolecules, 29, 7740 (1996). Trade literature, BASF, Rensselaer, NY. E. Malstrom, A. HuIt, Macromolecules, 29, 1222 (1996). Trade literature, Dendritech Inc., Midland, MI. J. F. Klebe, J. Polym. Sci. A, 2, 2673 (1964). K. I. Lee, H. Japson, P Choleva, Internat. Polym. Sci. Technol., 8, 143 (1981). M. Kubo et al., Macromolecules, 29, 4447 (1996). E. Malstrom et al., ACS Polym. Mater. Sci. Eng., 77, 151 (1997). H. R. Kricheldorf, A. Serra, Polym. Bull., 14, 497 (1985). E. Schmidt, Angew. Makromol. Chem., 14, 185 (1970). N. Tsutsumi et al., Macromolecules, 30, 1637 (1997). M. Bruma et al., ACS Polymer Preprints, 36 (1), 727 (1995). K. Vanneste et al., Macromolecules, 27, 7496 (1994). S. C. E. Backson et al., ACS Polymer Preprints, 34 (1), 50 (1993). B. A. Howell, B. Pan, ACS Polym. Mater. Sci. Eng., 76,401 (1997). M. Eaker et al., ACS Polymer Preprints, 36 (1), 473 (1995). K. Char et al., Macromolecules, 26, 4165 (1993). S. Hadjikyriacou, R. Foust, Macromolecules, 28, 7893 (1995). S. Nagai, Bull. Chem. Soc. Japan, 37, 369 (1964). Y. Chang et al., Macromolecules, 27, 2145 (1994).
S p e c i f i c o f
R e f r a c t i v e
P o l y m e r s
i n
I n d e x D i l u t e
I n c r e m e n t s S o l u t i o n *
S. M i c h i e l s e n School of Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA, USA
A. B. C. D.
Introduction VU-547 Introduction from the Third Edition VII-547 Refractometric Calibration Data VII-550 Tables of Specific Refractive Index Increments of Polymer Solutions VII-551 Table 1. Main-Chain Acyclic Carbon Polymers VII-551 1.1. Poly(dienes) VII-551 1.2. Poly(alkenes) VII-553 1.3. Poly(acrylic acid) and Derivatives VII-557 1.4. Poly(methacrylic acid) and Derivatives VII-561 1.5. Other a- or p-Substituted Poly(acrylics) and Poly(methacrylics) VII-573 1.6. Poly(styrenes) VII-574 1.7. Other Compounds VII-588 Table 2. Main-Chain Cyclic Carbon Polymers VII-594 Table 3. Main-Chain Heteroatom Polymers VII-594 3.1. C - O - C Polymers (Poly(oxides), Poly(esters), and Others) VII-594 3.2. C-S-C Polymers (Poly(sulfones) and Others) VII-599 3.3. C - N - C Polymers (Poly(amides), Poly(isocyanates), Poly(urethanes), and Others) VII-600 3.4. Poly(amino acids) VII-604 3.5. Poly(silanes) and Poly(silazanes) Vll-606 3.6. Poly(heterocyclics) and Others VII-608 Table 4. Cellulose and Derivatives VII-609 Table 5. Poly(saccharides) VII-611 E. References VII-615
trend of using XQ = 633 nm from the HeNe laser continues and thus the 633 nm data has been given its own column in this compilation. As in the previous edition, most copolymer data has not been included. Perhaps the most significant change since the previous edition is the coupling of size exclusion chromatography (SEC) with multiple detectors, largely eliminating the need for v for obtaining molecular weights. In addition, the measurement of the specific refractive index increment has become so routine that many authors no longer report the results of these measurements. These two factors combine to reduce the number of new entries to a mere 46 new references and about 160 new entries. Finally, the excellent introduction written by Huglin for the third edition has been retained in its entirety and follows this brief introduction. B.
INTRODUCTION FROM THE THIRD EDITION
This is the limiting value at c — 0 of the quantity (n — no)/c, where n and no are the refractive indices of the solution and solvent, respectively, and c (g/ml) denotes the concentration of the polymer in solution. Conditions of constant pressure p, constant temperature T, and a fixed wavelength of light in vacuum, Ao, are implied. Specific refractive index increments are required to determine the weight-average molecular weight, Af w , of a polymer and the second virial coefficient, Aj, of a polymer in solution, using the light scattering equation. (Al) where (A2)
A.
INTRODUCTION
This section presents a compilation of the specific index of refraction increments, v = dn/dc, of polymer solutions. This table has been updated since the third edition. The * Based on a table by M. B. Huglin in the 3rd ed. of the Polymer Handbook.
Here, c is the concentration of the polymer in solution (g/ml) RQ (cm" 1 ) is the reduced intensity at an angle 0, P(O), is the particle scattering function, A2 is expressed in molcrnVg 2 , /VA (mol" 1 ) is the Avogadro number. Because
u appears as a squared term, an error of E% in v will result in an error of 2E% in the derived molecular weight, and consequently an accurate determination of v is imperative. Examination of reported data discloses that about 20 different values of Ao have been used by different workers, this increase over the earlier more restricted number being due to growing use of various laser light sources. The values of the constant K appropriate to nine common values of Ao are as follows: 1 0 7 X A 0 (cm)
366 403 436 488 514 546 578 633 1086
10 6 x K (cm~ 4 mol)
Vp, = i/B- However, it is not possible to derive the molecular weights M A and M B of the constituent portions or the heterogeneity parameters P and Q. If vA / isB, an apparent value of M is obtained. Tuzar et al. (8) have summarized the criteria for the most sensitive characterization of a copolymer:
Quantity to be determined
Criterion
M
vA and ^B fr°tn large and of same sign;
MA MB Q
V A large and i/B = 0 ^ B large and z/A = 0 i/ = 0
Of UA = ^B
18.3 12.4 9.07 5.78 4.69 3.69 2.94 2.04 0.236
For a copolymer comprising monomers A and B or a terpolymer comprising units A, B and C, the specific increment is an additive function of the composition of the polymer expressed in terms of weight fractions w. Thus,
Equations (A3) and (A4) have been verified with copolymer samples of known composition (5,6). In studies on terpolymerization, Kambe and Honda (7,897) have found that the value of v, from monomer feeds other than the azeotropic composition, changes with conversion, on account of a composition distribution. On the other hand, a constant value of v, independent of conversion, is yielded for the azeotropic case in which feed and polymer have the same composition. When vA and vB differ appreciably in a given solvent, Eq. (A3) affords a convenient means of estimating composition from the measured value of v. If this is not the situation, it is possible to introduce changes in the specific increment by using mixed solvents. The appropriate specific increment to be utilized in light scattering is then v^ that is, one at constant potential of low molecular weight solvent. V11 is measured after dialysis equilibrium between solution and pure mixed solvent, v and V11 allow one to obtain the coefficient of preferential adsorption 71 (ml/g) of the liquid (solvent 1) in the binary solvent mixture, which has a greater affinity for the polymer: (A5) In Eq. (A5), dno/d(/) 1 is the variation of the refractive index of the mixed solvent, with its composition expressed in terms of the volume fraction <j>\ of liquid 1. For a copolymer derived from A and B, light scattering always yields the true value of the molecular weight M if
Normally, these conditions cannot be satisfied by using single solvents alone, and recourse must be made to using mixed solvents and employing i/M, (v^)^ and (y^)fi of the appropriate composition to satisfy them. The concentration dependence of v is expressed by the coefficient a2, in Eq. (A6). (A6) Lorimer (1) has derived an expression for coefficient a 2 in terms of no, v, and the concentration dependence of the partial specific volume of the polymer in solution, V2. However, within the range of c normally used to measure v, the value of a2 is usually close to zero. Expressions have also been formulated for v in terms of HQ, VI, and the refractive index of the polymer in solution, n2. These afford an indirect means of obtaining TJ2 from an experimental value of v (see Refs. 2-5). Actually v2 can now be measured to a very high level of accuracy with the Kratky digital densimeter, provided there is an appreciable difference between the densities of polymer and solvent. The main uncertainty or difficulty lies in the value of n 2 , when one wishes to calculate v via v2. 1.
Measurement and Calibration
Experimental methods and refinements have been summarized elsewhere (4). The main approaches are given below. lnterferometry In this absolute method, light beams of identical geometrical paths traverse two different optical paths and the number (/) of displaced fringes is measured by an optical compensator. If / is the length of the troughs, (n — no) is given by (A7) When (n — TIQ) is very small, for example, in extremely dilute solutions, the accuracy can be enhanced by increasing the trough length. A range of troughs of different lengths is normally available with a commercial instrument. The slope of a plot/versus c, when multiplied by (//A 0 ),
yields the value of v. Baltog et al. (10) have developed an improved cell which prevents the formation of a liquid film at the central surface with the trough, thus enabling accurate measurements to be made with volatile liquids. Differences in the dispersion of the refractive index of the solvent and the solute can lead to discontinuities in the plot of / versus c. This problem can be overcome by measuring / for a large number of solutions of gradually increasing concentration, i.e., by the dropwise addition of concentrated polymer solution to pure solvent (5,11). Differential Refractometry This relies on the image displacement AX of beams from the light source, which traverse pure solvent and polymer solution in a divided cell. Adequate temperature control is necessary and it is essential to utilize a stoppered cell to prevent solvent "creep". The method is not an absolute one and necessitates calibration with solutions of accurately known (ft - fto), so that the calibration constant k can be determined for the apparatus:
A0 = 633 nm and C in g salt/100 g water (Ref. 942):
Also, for Ao = 1086 nm and C expressed in g salt/100 ml solution, the following holds at 20 0 C (Ref. 943):
Mandel and coworkers (722) have calibrated the Chromatix differential refractometer for Ao = 633 nm and have also indicated the range over which AX is directly proportional to (ft — fto). Values of the latter quantity were interpolated to Ao = 633 nm via a Cauchy dispersion from the values at other wavelengths in Section C. Within the interval 3.6>C>0.46g salt/100g water, the following polynomial was found for aq. NaCl at 633 nm
(A8) In Eq. (A8), n is the refractive index of the solution of calibrant, and fto that of the solvent. The value of k decreases slightly with increase in Ao and must therefore be re-determined if measurements are to be conducted at a different wavelength. A selection of useful calibration data (all involving aqueous solutions) has been gathered from several sources in the literature and is given in Section C. The Brice-Phoenix differential cell is satisfactory for liquids having refractive indices not in excess of about 1.60. At higher values than this, the slit image disappears from the field of vision because of total reflection in the glass partition dividing the cell. Kratochvil and Babka (9) have described a useful modification whereby the partition is replaced with glass of a higher refractive index. This extends the useful range of the different refractometers so that even such highly refractive liquids as 1-bromonaphthalene can be accomodated. The calibration data at A o = 436 nm for aq. KCl in Section C have been fitted by Abdel-Azim and Huglin (676) to the following polynomial in which C is the concentration expressed is g salt/100 g water (ft - ft0) x 10 6 - 1.862 + 1415.8C - 17.699C 2 + 0.428C 3 Some light scattering and refractometric data relating to wavelengths different from those in Section C have been summarized elsewhere (833). The most common light source for recent light scattering studies is probably the He-Ne laser affording Ao = 633 nm. At this Ao, directly measured specific refractive index increments for certain aqueous salt solutions have been reported. On the assumption of direct proportionality between (ft — fto) and concentration, these may be represented as follows for
Abbreviations/Symbols Used Arochlor (B) Cadoxen Calgon Cuoxam Cuoxen DCA DMA DMSO DN DS EDTA FeTNa Freon 113 GHCl Halothane HEMA HMP / M MEK MMA TEAB TFP THF Versene (/u)
(approximately) Chlorinated diphenyl Branched polymer Triethylenediamine cadmium hydroxide Sodium hexametaphosphate Cuprammonium hydroxide Cupriethylenediamine hydroxide Dichloroacetic acid /V,N-Dimethylacetamide Dimethyl sulfoxide Degree of neutralization (also a) Degree of substitution Ethylenediamine tetraacetic acid Iron-tartaric acid-sodium complex solution l-Fluorodichloro-2-chlorodifluoroethane Guanidine hydrochloride 1,1,1 -Trifluoro-2-chloro-2-bromoethane 2-Hydroxyethyl methacrylate Hexamethyl phosphoramide Ionic strength Relative molar mass (M) or molarity (M), according to context Methyl ethyl ketone Methyl methacrylate Tetraethyl ammonium bromide 2,2',3,3 '-Tetrafluoropropanol Tetrahydrofuran Sodium salt of EDTA Specific increment measured at dialysis equilibrium
References page VII-615
C.
REFRACTOMETRIC CALIBRATION DATA (n - n0 ) ( x 106 )
Concentration Solute NaCl
NH4NO3
Na2SO4
SrCl2
KCl
Sucrose
(g/100 g water)
Temp* (0C)
0.0938 0.1034 0.3362 0.5602 0.6866 0.9090 1.1240 1.6465 2.0327 3.7307 6.7405 0.07878 0.1671 0.3433 1.0314 2.8884 5.8417 0.09566 0.2198 0.2686 0.3939 0.7508 1.2640 1.5417 2.5322 5.7875 0.08474 0.1749 0.2430 0.3580 0.0696 0.1067 0.2799 0.5964 1.0794 1.4911 2.9821 3.9969 4.4732 5.9642 6.4680 0.100
0.09412 0.1037 0.3375 0.5627 0.6900 0.9142 1.1311 1.6595 2.0513 3.7854 6.9092 0.07906 0.1677 0.3450 1.0408 2.9479 6.0732 0.09595 0.2205 0.2694 0.3952 0.7536 1.2693 1.5488 2.5471 5.8500 0.08506 0.1755 0.2437 0.3591 0.0699 0.1070 0.2812 0.5994 1.0869 1.5037 3.0250 4.0703 4.5647 6.1217 3.6526 0.100
0.200
0.200
0.300
0.301
0.400
0.402
0.500
0.502
0.600
0.604
0.701
0.705
0.801
0.806
0.902
0.9082
1.002
1.010
1.506
1.523
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20 28 20
(g/100 ml solution)
436 n m
546 n m
173 190 614 1019 1246 1645 2028 2954 3634 6583 11673 103.5 218.9 448.5 1336 3702 7410 153.1 349.0 425.3 620.1 1168 1940 2352 3796 8309 159.8 328.5 455.5 669.2 100 153 399 845 1521 2093 4135 5500 6136 8105 8763 _ _ _ _ -
_ _
166 184 592 982 1202 1586 1956 2848 3504 6345 11247 98.77 208.9 428.0 1275 3531 7066 151.0 344.1 419.3 611.5 1151 1913 2319 3744 8195 155.1 318.9 442.2 649.6 96 148 386 817 1469 2022 3994 5314 5926 7828 8465 -
_
_
_
_ _
_ _
_ _
-
578 n m
589 n m
165 182 588 976 1194 1576 1943 2830 3481 6306 11174 96 147 383 812 1460 2009 3969 5281 5890 7781 8414 -
165 182 587 974 1191 1572 1939 2824 3474 6293 11151 97.73 206.7 423.5 1262 3494 6992 150.5 343.0 417.9 609.4 1148 1906 2311 3731 8168 154.1 316.7 439.1 645.1 96 146 382 810 1457 2005 3962 5271 5879 7766 8398 140 140 290 290 430 430 580 570 720 720 860 860 1010 1000 1150 1140 1300 1290 1440 1430 2160
-
-
-
(n - no) ( x 106)
Concentration Solute
(g/100 ml solution)
2.012
2.041
3.030
3.093
3.52 4.056
4.167
5.089
5.263
6.14 7.181
7.527
8.240
8.696
9.306
9.890
10.6 16.3
D.
Temp. (0C)
(g/100 g water)
436 n m
28 20 28 20 28 25 20 28 20 28 25 20 28 20 28 20 28 25 25
-
546 n m
5100 8900 15400 23600
578 n m
589 n m 2150 2890 2870 4340 4300
5000 5810 5760 7280 7220 8800 10270 10190 11780 11680 13300 13190 15200 23200
TABLES OF SPECIFIC REFRACTIVE INDEX INCREMENTS OF POLYMER SOLUTIONS
TABLE 1. MAIN-CHAIN ACYCLIC CARBON POLYMERS dw/dc (ml/g) Polymer
Solvent
A0 = 436nm
X0 = 546nm
A0 = 633nm
Others
T (0C)
Refs.
1.1. POLY(DIENES) PoIy(1,3-butadiene)
Benzene 0.0117 0.022 Bromoform 1-Bromonaphthalene Chloroform Cyclohexane
pure 1,4 pure 1,2
hydroxyl terminated and acetyl terminated 98% cis 1,4 98% trans 1,4 7% vinyl-99% vinyl high 1,4; M = 0.96 x 103 to 90.6 xlO 3 hydroxyl terminated and acetyl terminated
Diethyl ketone w-Heptane THF Chloroform Chloroform Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexanone 1,2-Dichloroethane n-Heptane Hexane Isobutyl acetate MEK 5-Methyl-2-hexanone 3-Pentanone THF Toluene
0.144 0.126 0.121 0.092 0.156 0.151
0.011 0.0086 0.021 — 0.115 —0.185 0.083
20 25
0.118 0.113 0.087
0.092 0.096
0.141 0.132 0.087 0.093
0.127
0.118
25 25 25
0.106 0.111 0.110 0.110-0.087 0.094-0.Ill 0.092 0.157 0.177 0.149 0.165 0.125 0.145
0.081 0.088 0.150 0.169 0.143 0.159 0.120 0.139
0.034
0.031
0.130
25 37 20 25 30 30 30 30 25 25 25 35 20.5 26 12.6 10.3 23 25
57 58 647 58 58 58 59,60 61 62 62 63 61 57 859 859 835 647 836 836 836 836 647 647 859 859 859 859 859 859 830 647
References page VII - 615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Poly(chloroprene)
Solvent
n-Butyl acetate Carbon tetrachloride trans-Dccalm MEK
A 0 = 436 nm
0.146 0.0976 0.0799 0.0820 0.0777 0.160 0.162
Poly(cyclopentadiene) Poly(isoprene) 97.8% cis 1,4 73-80% cis 1,4 Poly(isoprene) anionically polymerized
Benzene Bromobenzene Carbon tetrachloride
0.0143
Chloroform oChlorotoluene Cyclohexane
0.100
Others
T( 0 C)
25 25 25 40 10 25 25
0.0394 0.125
21 21
0.0194 -0.041
20 20 25
58 73 964
25 20 20 23
68 73 73 34 59 74,75 69 69 69 68 68 68 68 70 70 69 73 68 73 7374 70 70 71 34 73 68 72 655 655 655 704 835
0.156
0.095 -0.003 0.104 0.1034
0.117
Cyclohexene
0.0988 0.0992 0.0953 0.0914
Decalin w-Hexane
0.0669
(non-extracted) (extracted) 0.1886 73-80% cis 1,4 cyclic cw 1,4
Methyl isobutyl ketone THF
70-75% cw 1,4 73-80% cis 1,4
Toluene
chlorinated synthetic high cis natural hevea natural guayule
MEK Chloroform
0.131 0.1238 0.124 0.117 0.0943 0.0947 0.0909 0.0869 0.145 0.0946 0.0605 0.168 0.1802 0.139 0.156 0.128 0.128
25 27 7 25 27 17 7 20 20 25 20 25 20 20 20 19-21 35 20 25 35 25 25 25 35 20
0.160 (calc.)
Cyclohexane
0.0308 0.131 0.104 0.106 0.108 0.117
0.0308 0.028 0.0339 0.100 0.104 0.101 0.106
trans \A star branched 93% 1,4- M = 0.9 x 103 - 10.1 x 103 93% 1,4- M> 19.5 XlO 3 synthetic high cis n-Hexane natural hevea natural guayule THF synthetic, high cis natural hevea natural guayule synthetic Toluene natural hevea natural guayuie Poly(trichlorobutadiene) Benzene
Refs.
64 64 64 64 64 64 65 66 66 67 67
0.082
0.1305
73-80% cis 1,4
A0 = 633 nm
0.152 0.138
THF Benzene Carbon tetrachloride
73-80% cis 1,4 73-80% cis 1,4 70-75% cis 1,4 trans cyclic
A0 = 546 nm
0 U 7
30
838
0.06
25 25 25 25 25 25 20 25 25 25 25 25 25 25
833 833 833 655 655 655 835 655 655 655 655 655 655 76
0.104-0.113 0.093-0.105 0.106 0.192 0.200 0.198
0.191 0.198 0.193
0.153 0.160 0.157 0.030 0.034 0.033
0.148 0.156 0.153 0.028 0.032 0.030
0.124
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436nm
A0 = 546 nm
X0 = 633 nm
Others
T (0C)
Refs.
1.2. POLY(ALKENES) PoIy(I-butene) isotactic
n-Nonane 1-Chloronaphthalene
0.092 0.108 -0.206
35 80 135 135 135 25
13 13 867 867 867 621
-0.078
-0.107(403) -0.085(578) -0.101(403) -0.080(578)
35 35 35 35 35 135 135 123.2 135 135 135 135
767 767 767 767 767 867 867 14 863 863 863 863
-0.205
-0.207(578)
135 135
863 863
-0.187 -0.183(578) -0.177
Cyclohexane Cyclohexane/n-propanol (10/90, v/v) (20/80, v/v) (30/70, v/v) (35/65, v/v) 1,2,4-Trichlorobenzene
0.074
- 0.120
0.068 0.072 0.072 0.075 0.079 - 0.108 -0.103
Poly(ethylene)
Biphenyl Bromobenzene
-0.101
-0.174 -0.089 -0.083
B B B
-0.095 1-Bromonaphthalene
B B B B
-0.083 -0.208
-0.210 -0.208(578) -0.206 -0.076
(?-Chlorobenzene 1-Chloronaphthalene
-0.195 -0.199 -0.198 -0.197 -0.188 -0.195 -0.1957 -0.193 -0.192 -0.195 -0.191 -0.214 - 0.245
Mn=
- 0.127 (403) -0.105(578)
12300 13500 18300 25200 110000 112000
-0.1967 -0.1955 -0.191 -0.1931 -0.1929 -0.1932 -0.1916 -0.1883 -0.1879 -0.190 -0.1956 -0.1961 -0.191 -0.189 -0.1967 -0.187 -0.1943 -0.193 -0.192 -0.191 -0.191
135 863 135 863 135 863 135 863 65-80 15 90 16,17 90 18 100 19 105 20,21 110 19 114 23 120 19 125 24 125 25,18 125 16 125 26 125 27 127 23 128 23 130 19 135 22 135 22 135 22 135 22 135 22 135 22 135 17,28 139 23 140 23 140 25 140 19 145 23 150 19 151 23 115 832,917 120 931 125 931 127 610
References page VII - 615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436nm -0.215
increase with M B B B
-0.212
n-Decane
0.114
A0 = 546nm
A0 = 633nm
-0.192 -0.183 -0.192 -0.191 -0.193 -0.196 -0.188 to-0.193 0.195 to-0.192 -0.193 to-0.188 -0.189 -0.178 -0.190 -0.196 -0.177 -0.195 0.0881 0.0890 0.0901 0.0917 0.0870 0.0881 0.095 0.0915 0.0922 0.0937 0.0955 0.0971 0.0985 0.0979 0.0995 0.113
0.121
0.117
0.126
0.121
0.132
0.126
0.117
0.114
0.120
0.118
0.112 B B
0.116
Others -0.188(578)
-0.184(578)
0.114(404) 0.112(577) 0.119(404) 0.116(577) 0.123(404) 0.120(577) 0.130(404) 0.124(577) 0.119(403) 0.113(578) 0.122(403) 0.117(578)
T (0C)
Refs.
135 863,867 135 866 135 932 135 832,917,934 135 631 135 815,914 135 933 135 914 135 863,867 135 863,867 140 935,936 145 934 145 864 937,938 65 15 70 15 75 15 80 15 111 23 114 23 115 24 120 23 125 23 130 23 138 23 139 23 143 23 146 23 149 23 106 632 106 632 106 632 106 832 106 832 106 832 106 832 106 832 135 863 135 863 135 863 135 863
B p-Dibromobenzene
- 0.179
0.098 - 0.162
-0.176
-0.159
140 135 135 135 135
935 863 863 863 863
-0.165
-0.215(403) -0.172(578) -0.212(403) -0.169(578)
120 120 135 135 135 135 135 123 127 127 127 127
939 29 864 863 863 863 863 939 863 863 863 863
-0.163
-0.209(403) -0.168(578)
135 135
863 863
-0.155 B B
-0.153
- 0.184 (403) -0.159(578) -0.182(403) -0.157(578)
B 0-Dichlorobenzene
-0.078 0.078 -0.056 -0.095
-0.083 -0.078
B
-0.091
-0.081
-0.202
-0.174 -0.176
B
Diphenyl
-0.166 B B B
-0.199 -0.195
-0.173 -0.172
-0.101(403) -0.080(578) -0.099(403) -0.078(578)
TABLE 1. cont'd dw/dc (ml/g) Polymer
Solvent
B B B
;vO = 436nm -0.192
^0 = 546 nm
A0 = 633 nm
-0.167
863 863
-0.155(403) -0.127(578) -0.142(403) -0.118(578)
142 142 142 142 142
863 866 863 863 863
0.049 (403) 0.046(578) 0.050(403) 0.047 (578)
137 137 137 137
863 863 863 863
-0.220(403) -0.172(578) -0.211(403) -0.164(578)
135 135 135 135
863 863 863 863
-0.001(403) -0.001(578) 0.001 (403) 0.001 (578)
135 135 135 135
863 863 863 863
-0.075
120
931
-0.074 -0.094 -0.094 - 0.077 -0.074
- 0.091 (403) -0.075(578)
125 125 129 135 135
931 940 941 863 863
- 0.071
-0.089(403) - 0.073 (578)
135 135
863 863
50 80 81.5 81.5 95 95 100 104 105 105 105 105 105 110 116 119 125 128 138 144 135 135 135 135 135 135 135 135
15 15 30,20 25 23 23 23 23 25 21* 29* 29* 29* 23 23 23 15 23 23 23 631 746,900 863,867 863,867 864 866 863,867 863,867
-0.146
-0.129 -0.126
-0.135
-0.120 -0.116
i-Dodecanol
0.048
0.046 0.045
B B B
0.049
0.047 0.047
1 -Methylnaphthalene
-0.206
-0.177 -0.167
B B B
-0.199
-0.170 -0.159
Paraffin oil
-0.001
-0.001 -0.001
B B B
0.001
0.001 0.001
Tetralin
- 0.087 B B B
-0.085
-0.075 -0.0834 -0.0811
0.104 -0.0887
-0.0805
1,2,4-Trichlorobenzetie -0.125
-0.075 -0.0910 -0.0918 - 0.0903 -0.893 -0.0691 -0.100 -0.078 -0.072 -0.083 -0.088 -0.0866 -0.0858 -0.075 - 0.0837 -0.0813 -0.0801 -0.106 -0.116 -0.107 -0.104
B B
-0.177
Refs.
135 135
-0.126 B B B
T( 0 C)
-0.207(403) -0.163(578)
-0.158(633) Diphenylmethane
Others
-0.111 -0.105 -0.102
-0.109(488) -0.130(403) -0.108(578) -0.122(403) -0.103(578)
* Values reported erroneously as positive in these references.
References page VII-615
TABLE 1.
cont'd dn/dc (ml/g)
Polymer B increase with M Mn= 2000 18400 34000 77000 110000 Poly(hexene-l) Poly(isobutylene)
Solvent
A0 = 436nm
X0 = 546nm
A0 = 633nm
Others
- 0.109 to - 0.106 -0.1085 -0.1085 -0.1082 -0.1073 -0.1063 Cyclohexane Toluene Benzene Cyclohexane
-0.063 -0.042 -0.007
Cyclohexane Cyclohexane
0.067 0.0285 + 2.08 0.0198 + 2.29 XlO" 4 T(K) x 10" 4 7(K) 0.0991 0.0966 -0.146 -0.131 0.043 0.0374 0.1036 0.124 0.167 0.135 0.140 0.1422 0.1008 0.155 0.1066 0.1091 0.1129 0.140
0.105 0.099
Cyclohexane 1-Chloronaphthalene Decalin rc~Decane Dibutyl ether n-Heptane rt-Hexane Isoamyl isovalerate Isooctane
0.135 0.139 Toluene 1,2,4-Trichlorobenzene PoIy(I-octene) frans-poly(pentenamer) Poly(propylene)
0.001 - 0.066
Bromobenzene n-Hexane Benzene Bromobenzene n-Butyl chloride n-Butyl propionate Carbon tetrachloride 1-Chloronaphthalene
-0.122
-0.128(578)
-0.051
- 0.070 (403) -0.053(578)
- 0.054 -0.105
0.175
-0.228
0.171 -0.0497 -0.1125 - 0.0599 -0.1082 0.1101 0.0112 -0.227 -0.195
-0.227 -0.231 isotactic -0.2275 -0.195 isotactic syndiotactic
Cyclohexane Decalin n-Heptane
p-Xylene 1-Chloronaphthalene
-0.200(365) 0.023
0.1105 0.1077
n-Hexane Methylcyclohexane Toluene atactic
-0.189 -0.188 -0.2157 -0.184 0.0570
-0.211
0.1152 0.0652 -0.0368 - 0.0027 -0.0380 -0.188
-0.177
-0.183(578)
T (0C)
Refs.
135 135 135 135 135 135 25 25 25 20 25 25
914 22 22 22 22 22 858 858 956 31 32 872 956
25 135 25 35 22.5 120 25 25 25 25 25 15 25 40 25.5 25 25 135 25 135 135 30
957 867 33 34 35 35 36 37 38 38 872 38 38 38 39 32 40 867 872 867 867 41
25 25 40 25 25 25 25 125 140 145 145 125 140 145 150 25 120 30 30 25 25 25 25 25 135
894 42 42 43 43 43 43 44 25 27 45 46 28,47 48 49 42 50 51 52 42 42 42 43 43 867
TABLEI. cont'd dn/dc (ml/g) Polymer isotactic atactic
Solvent
X0 = 436 nm
1,2,4-Trichlorobenzene
A0 = 546 nm
A0 = 633 nm
-0.205 -0.123
-0.184 -0.111
-0.173
-0.121
-0.107
-0.105 isotactic
-0.102 -0.092 to -0.094
Others -0.180(578) -0.130(403) -0.109(578) -0.128(403) -0.105(578)
PoIy(I-phenyl-1-propyne)
Toluene 0.1861 0.1656 Cyclohexane 0.264 + 5.3 x 10-4(T°C-30) 0.234 + 4.7 x 10~4(T°C-30) Poly(trifiuorochloroethylene) Mesitylene 0.026 Poly(vinylcyclohexane) Cyclohexane 0.101 Cyclohexane/dioxane 0.103 (50.1/49.9, v/v) Cyclohexane/MEK 0.138 (64.6/35.4, v/v) Decalin/dioxane 0.078 (50.6/49.4, v/v) Decalin/MEK 0.075 (59.7/40.3, v/v) rt-Heptane/dioxane 0.147 (56.8/43.2, v/v) K-Heptane/MEK 0.167 (82.6/17.4, v/v) n-Hexane 0.170 THF 0.131
T( 0 C)
Refs.
135 135 135 135 135 145 25 30-45 145 25 25
867 867 867 867 867 646 979 979 53 305 305
25
305
25
305
25
305
25
305
25
305
25 25
305 305
25 25 25 25 25 25 25 25 30 65 25 25 65 25 25 25 RT 20 25 20 20 20
627 627 627 657 657 620 627 627 898 928 627 928 928 728 728 728 674 714 926 714 714 929 927 899 980 714 77 78 79 80 714 639 639 657 728 845 785 657
1.3. POLY(ACRYLIC ACID) AND DERIVATIVES Poly(acrylamide)
Acetic acid DMSO Ethanolamine Ethylene glycol
Formamide Formic acid Aq. 1% LiCl Aq. 5% LiCl Aq. IMMg(ClO 4 )I Aq. 2.8 M Mg(ClO 4 ) 2 Aq. 3 M Mg(ClO4) 2 Aq. IMNaCl Aq. IMNaCl Aq. IMNaCl Aq. 0.2MNaCl Aq. 0.2MNaCl Aq. 0.1 M NaCl Aq. 0.1 M NaCl Aq. IMNaNO 3 Aq. 0.02MNa 2 SO 4 Water
0.199 0.091 0.093
0.117 0.109 0.103 0.172
0.194 0.089 0.089 0.177 0.095-0.110 0.084 0.113 0.109
0.192 0.089 0.088
0.111 0.109
0.127 0.169
0.166 0.181
0.110 0.165 0.145 0.138 0.175 0.175 (fi) 0.156-0.159 0.186
0.182 0.172 (/x) 0.17 0.164
0.182
30 25 20 20-65
0.1869 0.185
0.182 0.149 0.163 0.195(589) 0.179
0.167
0.173 (/x) 0.160 0.187 0.183 0.170 0.169 0.162
0.172(405) 0.157 (579)
30 20 25 25 25 25 25 25 25
References page VII-615
TABLE 1. confd d/t/dc (ml/g) Polymer
Solvent
A0 = 436 nm
vt0 = 546 nm
A0 = 633 nm
Others
0.161
T ( 0 C) 25 25 25
0.185 0.146 0.142
25 23 23 25
804 926 888 927 627 924 925 620
0.149(488)
53.7
604
0.209
25
944
0.158 0.179 0.261
30 30 30 25 25
85 85 85 86 86 87 77 80 617 617 617 617 617 617 617 617 617 617 617 617 617 617 617 617 617 617 617 617 617 617 617 743 743 743 743 743 743 743 617 617 617 617 617 617 617 617 617 617 617
0.183 0.18 0.165 0.193
On aging Water containing carboxyl groups Water
0.187
0.197-0.326
Poly [N-( 1,1 -dimethyl-3-imidazolylpropyl)acrylamide] O.OlMTetrabutylammonium Poly(acrylic acid) DN = 0.102,/ = 0.10 Aqueous NaCl 0.335,0.10 0.994,0.10 Dioxane
0.090 0.088 0.140(589) 0.146 0.137
HCl 0.1 N 0.2 N Water Water/dioxane (90/10, v/v) (80/20, v/v) (60/40, v/v) (50/50, v/v) (40/60, v/v) (35/65, v/v) (30/70, v/v) (25/75, v/v) (10/90, v/v) (5/95, v/v) (1.5/98.5, v/v) - , lithium salt
- , sodium salt
Methanol a — 0 0.04 0.09 0.21 0.40 0.60 0.69 Water Water/dioxane (90/10, v/v) (80/20, v/v) (60/40, v/v) (50/50, v/v) (40/60, v/v)
Refs.
0.156 0.160 0.112 0.164 0.105 0.171 0.119 0.174 0.117 0.178 0.117 0.166 0.112 0.159 0.101 0.141 0.079 0.204 0.138 0.092 0.075 0.078 0.084
(^) (M)
00 (/z) 00 00 00 00 (At) 00 (fi) 0.191 0.198 0.199 0.233 0.235 0.251 0.224
0.231 0.246 0.126 0.258 0.100 0.238 0.073 0.219 0.082 0.203 0.069
00 {ii) 00 00 (it)
20-65 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 20 20 20 20 20 20 20 25 25 25 25 25 25 25 25 25 25 25
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
^0 = 436 nm (30/70, v/v)
DN = 0.2 DN-0.2 DN-0.6 DN = 0.6 DN-I DN-I DN=I Poly(benzyl acrylate)
(20/80, v/v) Aq. 0.3 M NaCl Aq. 1M NaCl Aq. NaBr (Af = COl, 0.025, 0.1) (Af = 0.5) (Af = 0.01. 0.025, 0.1) (Af = 0.5) (Af = 0.01, 0.025, 0.1) (M = 0.5) (M = 1.5) Benzene DMF
MEK
Poly(w-butyl acrylate)
Poly(rm-butyl acrylate) Poly(l,l-dihydroperfluorobutyl acrylate) Poly(WV-dimethylacrylamide) Poly(ethyl acrylate)
Acetone Benzene Chlorobenzene Cyclohexanone Dioxane n-Hexane MEK THF
X0 = 546 nm 0.184 0.066 Ox) 0.223
0.128 (/x) 0.122 0*) 0.156 Ox) 0.138(At) 0.183 Oz) 0.166 (/x) 0.140(Ai) 0.062 0.124
0.062 0.119
0.1760 0.1746 0.1746
0.1665 0.1665
A0 = 633 nm
Others
617 617 617 678 678 711
25 25 25 25 25 25 20 20 20 20 20 20 20 20 20 20 20 30 30 30 30 30 30 30
711 711 711 711 711 711 6 6 6 6 6 88 6 5 5 5 89 84 84 729 729 84 729 84 803 84 90 91 91 83 83 10,92,93 89 10 10 729 10 10,93 729 10 10 5 729 5 5 10,93 94 10 95 982 982 982 982 982
0.132(365) 0.118(578) 0.117(589) 0.116(644) 0.1653 (578) 0.1647 (589) 0.1623 (644)
-0.0292 -0.0525 0.021 (488) 0.043 (488) 0.0885 0.088(488) 0.0651 0.062 -0.0239 0.0818 0.30 0.0311 0.194 0.150
Methanol Water Acetone
1.107 0.109
Benzene Chloroform Cyclohexanone Dichloroethane Dioxane
-0.042 0.0363 0.017 (488) 0.23 0.036 0.045 (488)
DMF Ethyl acetate MEK
Poly(2-ethylhexyl acrylate)
n-Methylpyrrolidone Water Butanone rc-Heptane Tetrahydrofuran Toluene Chlorobenzene
Poly(isopropyl acrylate) isotactic, syndiotactic and Bromobenzene atactic
0.0870
0.032 0.0916 0.0856
0.0854(578) 0.088 (488) 0.0853 (589) 0.0852 (644)
0.086 0.1407 -0.027 0.131
30 25 25 25 25 25 25 20 25 25 30 25 25 30 25 25 20 30 20 20 25 30 25 25
0.101 0.096 0.070 -0.040 -0.072 -0.103
-0.0870
Refs.
25 25 25 0.159 (\x) (488) 25 0.152 (u) (488) 25 25
0.112
Toluene MEK Benzotrifluoride
T( 0 C)
60
101
References page VII-615
TABLE 1. cont'd dn/dc (ml/g) Polymer
isotactic and atactic Poly (methyl acrylate)
Solvent
TFP Acetone Acetonitrile
Benzene o-Chlorophenol m-Cresol 1,2-Dibromoethane
Dioxane
Ethyl acetate
Isoamyl acetate MEK
TFP TFP/o-chlorophenol (10/90, v/v) (26/74, v/v) (32/68, v/v) (40/60, v/v) (50/50, v/v) (70/30, v/v) (90/10, v/v) Poly(n-octadecyl acrylate)
Toluene Benzene n-Butyl acetate Carbon tetrachloride Chlorobenzene Cyclohexane n-Hexane
A0 = 436 nm
A0 = 546 nm
X0 = 633 nm
Others
0.124 0.113 0.120 0.121 0.122 0.123 0.123 0.127 -0.019 -0.056 -0.035 -0.0606 -0.0598 -0.0578 -0.0579 -0.062 0.0503 0.052 0.055 0.0524 0.0533 0.0547 0.0566 0.0940 0.0989 0.0967 0.100 0.102 0.102 0.105 0.077 0.090 0.0938
0.118 0.119 0.120 0.122 0.125
-0.560 -0.0528 -0.0532 -0.0523 0.0497 0.0515 0.0526 0.0537 0.0562 0.0920 0.0967 0.0964 0.101 0.103 0.0923
0.097 0.090 0.126 -0.050 -0.050 (M) -0.014 -0.004Gu) -0.005 - 0.016 (/i) 0.004 0.029 (/i) 0.043 0.064 Qi) 0.075 0.123 Qi) 0.102 0.135 Qi) -0.009 - 0.0505 - 0.0269 -0.0363 0.0883 0.0114 -0.0682 -0.0489 -0.0563 0.0175 0.1096 0.1292
0.0921 (578) 0.0919 (589) 0.0915 (644)
T ( 0 C)
Refs.
25 20 25 32 40 48 30 56 30 30 30 25 32 40 48 30 25 30 30 32 40 48 56 19.5 25 32 30 35 40 48 30 RT 20 20 20 30 35 30
101 89 96 96 96 96 96 96 97 916-918 916-918 96 96 96 96 916-918 96 96 97 96 96 96 96 96 96 96 96 98 96 96 97 99 5 5 5 97,100 72 916-918
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
916-918 916-918 916-918 916-918 916-918 916-918 916-918 916-918 916-918 916-918 916-918 916-918 916-918 916-918 97 84 84 84 84 84 84 84 84 84 84 84
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436nm
THF
A0 = 546 nm
A0 = 633 nm
T (0C)
Others
0.0702
30
84
30 30 30
84 84 84
0.1102
30 30
634 94
0.154
RT
674
0.0508 (589)
25
982
0.123
12
922 81 82 105 89 106 107 106,107 106 911 106 789
0.0898 0.0723 -0.0425
Toluene Poly(phenyl acrylate) MEK Poly(rc-propyl acrylate) MEK Poly(trimethylammoniumethyl chloride acrylate) Aq. IMNaCl
Refs.
0.183
1.4. POLY(METHACRYLIC ACID) AND DERIVATIVES Poly(allyl methacrylate) Carbon tetrachloride Poly(benzyl methacrylate-co-cyclohexylmethyl methacrylate) (1/1, (mol/mol) Di-isobutyl ketone Poly(N-terf-butylacrylamide) Methanol 0.249 0.234 0.234 Poly(/i-butyl methacrylate) Acetone 0.1249 0.1236 0.122 Benzene -0.023 -0.014 -0.024 0.015 Bromobenzene -0.084 -0.073 Bromoform -0.129 0.118 n-Butyl chloride 0.085 Carbon tetrachloride 0.026 0.027 m-Cresol/rt-heptane 0.155 (30/70, v/v) 0.358 (M) DMF Isopropanol 0.102 0.102 0.1059 0.1066 0.1068 0.1076 0.1097 MEK 0.103 0.102 0.1059 0.1046 0.104
0.1257(366)
0.016
0.1064(366) 0.097
0.100 0.169
TFP
0.067 -0.024
Toluene -0.017 Poly(terf-butyl methacrylate) n-Butyl acetate Poly(p-te/t-butylphenyl Acetone methacrylate) Chloroform/THF (90/10, v/v) (70/30, v/v) (50/50, v/v) (30/70, v/v) (10/90, v/v) Water/THF (2/98, v/v) (4/96, v/v) (7/93, v/v) (9/91, v/v)
0.09 0.183 0.110 0.107 0.120 0.100 0.130 0.129 0.133 0.206 0.164 0.266 0.142 0.124 0.208 0.143 0.177 0.194 0.192 0.205
(/x) (M) (M)
(M) (M) (M) (M) (M)
(M)
20 25 20 25 25 25 25 25 25 25 25 20 23 20 23.7 25 31 45 25 25 23 20 25 25 20 20 25
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
789 769 108 109 109 109 109 109 106,107 105 108 869 807 789 869 869 911 110 111 665 655 665 665 665 665 665 655 665 655 796 796 796 796 796 796 796 796
References page VII-615
TABLE 1.
cont'd dn/dc (ml/g)
Polymer Poly(cetyl methacrylate)
Poly(2-chloroethyl methacrylate) Poly(4-chlorophenyl methacrylate) Poly(cyclohexyl methacrylate)
Poly(decahydro-(3-naphthyl methacrylate) Poly(n>decyl methacrylate)
Solvent
A0 = 436 nm
Benzene rc-Butyl acetate Carbon tetrachloride w-Heptane THF
Poly(ethyl methacrylate)
Poly(n-hexyl methacrylate) Poly(2-hydroxyethyl methacrylate)
A0 = 633 nm
Others
T( 0 C)
0.02 0.095
21 30
112 113 112 112 749
25 - 0.015 0.114 0.096
Refs.
Benzene
0.0758
25
114
n-Butyl alcohol
0.098
25
762
25 25 25 25
911 115 911 856
0.054
30 25
744 744
0.163 0.157
RT RT
680 680
0.119
25 25 25 29 35 50 65 75 85 25-48 31 30 25
679 116 116 116 116 116 116 116 116 116 744 744 117
Ai-Butyl chloride Cyclohexane Toluene Cyclohexane
Cyclohexane Ethyl acetate Poly- [2-(2-diethylaminoethoxy)ethyl methacrylate] Methanol Poly(dimethylaminoethyl Methanol methacrylate) Poly(N,N-dimethylarninoethyl methacrylate Af-oxide) Aq. 0.1M NaCl Poly(«-docosyl methacrylate) o-Dichlorobenzene Tetralin
Poly(2~ethylbutyl methacrylate)
X0 = 546 nm
THF n-Amyl acetate Cyclohexane Isopropanol
0.116 0.0845 0.019 0.104 0.115
0.102 0.094 0.0935 0.093 0.091 0.088 0.084 0.076 0.0745 0.090
0.090 0.084
0.109
0.105
0.104 0.087 0.109 0.113
0.102
25 25
117 911 122 122
0.104 0.101 0.107 0.075
23 25 23 25 25 23 32.6 25 25
123 807 123 807 911 124 124 616 807 120 119 119 119 119 119 119 119 119 119 119 119 119
0.082 0.081 0.077 0.070 0.068 0.0745 0.054
MEK n-Butyl chloride Ethyl acetate Ethyl acetate/ethanol (1/4.5 - 1/6, v/v) MEK
MEK/isopropanol (1/7, v/v) Methyl cellusolve Toluene -0.009 MEK 0.105 Isopropanol 0.108 2-Chloroethanol DMF Dioxane/water (90/10, v/v) (80/20, v/v) (60/40, v/v) (40/60, v/v) (20/80, v/v) Ethanol/water (80/20, v/v)
0.105 0.106 0.048 0.076 0.076 0.083 0.066 (/it) 0.086 0.071 (/x) 0.095 0.100 (M) 0.108 0.120 Ot) 0.123 0.130(/Lt) 0.124 0.121 (At)
25 25 25 25 25 25 25 25 25 25 25 25
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm (70/30, v/v) (60/40, v/v) (40/60, v/v) (30/70, v/v)
Formamide rc-Heptane/m-cresol (50/50, v/v) (50/50, v/v) Methanol Methanol/HEMA (25/75, v/v) (25/75, v/v) (35/65, v/v) (35/65, v/v) (50/50, v/v) (50/50, v/v) (62.5/37.5, v/v) (75/25, v/v) (87.5/12.5, v/v) 2-Methoxy ethanol Methyl cellusolve rc-Propanol/dioxane (85/15, v/v) (70/30, v/v) (60/40, v/v) (40/60, v/v) (30/70, v/v) rc-Propanol/water (95/5, v/v) (90/10, v/v) (80/20, v/v) (75/25, v/v) (70/30, v/v) (60/40, v/v) (50/50, v/v) (40/60, v/v) (30/70, v/v) (20/80, v/v) TFP/HEMA (50/50, v/v) Toluene/methanol (42/58, v/v) Toluene/isopropanol (38/62, v/v)
X0 = 546nm
A0 = 633 nm
Others
T (0C)
0.121 0.119 (Ai) 0.120 0.120 (jj) 0.123 0.127 (M) 0.125 0.132 Ox) 0.045 0.033 0.361 (Ai) 0.162 0.078 0.070(/Lt) 0.090 0.081 00 0.110 00 0.093 00 0.120 0.107 (M) 0.135 0.122 (Ai) 0.151 0.140 (AX) 0.091 0.095
25 25 25 25 25 25 25 25
0.105 0.108(Ai) 0.100 0.103(Ai) 0.096 0.097(Ai) 0.091 0.090(Ai) 0.087 0.086 (M) 0.110 0.105 (Ai) 0.113 0.105 (Ai) 0.115 0.106 (Ai) 0.103 00 0.119 0.109 (Ai) 0.122 0.110(Ai) 0.125 0.123 (/i) 0.128 0.138 (M) 0.131 0.149 (M) 0.135 0.153 (M) 0.105 0.083 OO 0.101 0.063 (M) 0.087 0.064 (M)
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
Refs. 119 119 119 119 119 119 119 119 120 698 698 120 726 726 726 726 726 726 726 726 726 726 726 726 769 807 119 119 119 119 119 119 119 119 119 119 121 121 121 121 121 121 120 121 121 121 121 121 121 121 121 121 121 121 121 726 726 118 118 118 118
References page VII-615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436nm
Water/2-chloroethanol (80/20, v/v) (72/25, v/v) (70/30, v/v) (60/40, v/v) (50/50, v/v) (40/60, v/v) (20/80, v/v) Water/Hema (20/80, v/v)
(60/40, v/v)
Poly [l(2-hydroxyethyl)pyridinium methacrylate]], benzenesulfonate Aq. 0.5MKBr 0.136Ox) 0.5 M KCl 0.122(Ai) IMKCl 0.118(Ai) 2MKC1 0.113 (AX) 3MKC1 0.104 Oi) 1.86MKSCN 0.05MNaF 0.123 (Ai) 0.05MNaI 4MNaI Poly [l(2-hydroxyethyl)pyridinium methacrylate], toluenesulfonate Benzyl alcohol Benzyl alcohol/methyloc-naphthyl ether (45/55, v/v) DMF
A0 = 546nm
0.031 0.131 (M) 0.046 0.127 (/i) 0.023 0.120 Oi) 0.015 0.101 (u) 0.016 0.103 Oi) 0.020 0.091 0 0 0.034 0.066(At)
A0 = 633 nm
Others
T (0C)
25 25 25 25 25 25 25 25 25 25 25 25 25 25
Refs.
616 616 616 616 616 616 616 616 616 616 616 616 616 616
0.068
25
726
0.049 (At) 0.069 0.051 (Ai) 0.071 0.053 (At) 0.074 0.055 (Ai) 0.076 0.057 (Ai) 0.079 0.059 (Ai) 0.103
25 30 30 40 40 50 50 60 60 70 70 25
726 726 726 726 726 726 726 726 726 726 726 726
0.143 Oi) 0.104 0.144(At) 0.107 0.147(Ai) 0.109 0.149 (M) 0.111 0.151 (Ai) 0.114 0.154(At)
25 30 30 40 40 50 50 60 60 70 70
726 726 726 726 726 726 726 726 726 726 726
0.178 0.129(Ai) 0.178 0.117 Ou) 0.174 0.114 (/i) 0.167 0.108(At) 0.161 0.100(Ai) 0.119 (At) 0.118 (Ai) 0.183 0.155 (At) 0.121 0.119(Ai)
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
818 813 818 813 818 813 818 813 818 813 813 813 818 818 818 818
0.039 0.000
25 25
813 813
0.130
25
813
TABLE 1. cont'd d/i/dc (ml/g) Polymer
Solvent
A0 = 436nm
X0 = 546nm
0.182 0.181 0.129 Oz) 0.5 M KCl 0.182 0.121 (/*) 0.114 00 IMKCl 0.178 0.117 0 0 0.111 00 2MKC1 0.171 0.109(/u) 0.105(At) 3 M KCl 0.163 0.100(Ai) 0.097 (/i) Methanol 0.209 Methanol + 0.5MLiCl 0.205 0.5MNaF 0.186 4MNaI 0.121 0.116(Ai) 7MNaI 0.072 n-Propanol 0.159 Tetrahydrofurfuryl alcohol 0.106 TFP 0.196 Water 0.187 Poly [ 1 (2-hydroxyethyl)trimethylammonium methacrylate], benzene sulfonate Aq. 0.5 M KCl 0.101 (^) Poly[l(2-hydroxyethyl)tximethylammonium methacrylate], toluene sulfonate Aq, 0.5 M KCl 0.095 00 Poly(/V-2-hydroxypropyl methacrylamide) Aq. 0.1 M KCl 0.166 Poly(isobutyl methacrylate) Acetone 0.122 0.117 n-Butyl chloride 0.084 Toluene -0.021 Poly(isooctyl methacrylate) ^-Heptane Poly(n-lauryl methacryiate) n-Amyl alcohol 0.0744 0.0781 n-Butyl acetate 0.092 0.090 Isopropyl acetate 0.107 0.104 Poly(methacrylamide) Aq. 0.4 M Mg perchlorate 0.180 0.180 OO Water Poly(methacrylic acid) Water 0.175 Water/dioxane (95/5, v/v) 0.170 0.179 Ox) (90/10, v/v) 0.165 0.180 (JJ) (80/20, v/v) 0.163 0.200 (Ai) (70/30, v/v) 0.150 0.191 (M) (60/40, v/v) 0.150 0.196(Ai) (50/50, v/v) 0.139 0.169(Ai) (40/60, v/v) 0.134 0.155 (Ai) (35/65, v/v) 0.148 (JJ) (25/75, v/v) 0.125 0.122 (15/85, v/v) 0.115 0.109 (M) Dimethyl formamide/ 0.099 1,4-dioxane (5:7, v/v) Alcoholic LiBr 0.154 Ethanol 0.154 HCl 0.1 N 0.5N 0.137
A0 = 633nm
Others
Ethanol Aq. 0.5MKBr
T (0C) 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
813 813 818 813 813,818 813 813,818 813 813,818 813 813,818 813 813 813 813 818 813 813 813 813 813
25
813
25
813
25 25 25 25
755 103,104 911 911 168 125 126 126 775 775 77 628 628 628 628 628 628 628 628 628 628 628 628 628 628 628 628 628 628 628 628 977
0.109 23 13 25 25 20-65 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 26.9
0.209
Refs.
25 25 0.159(589) 25
127 127 87 128
References page VII-615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
A0 = 546 nm
A0 = 633 nm
0.045 N 0.02 N 0.001 N Methanol NaBr 0.1 M
0.140 0.134
NaCl 0.1 M NaF 0.1 M NaI 0.1 M Na 2 SO 4 0.1 M (NH4)IMo7O24O-OlM Water
0.142
Poly(methacrylie acid), sodium salt Water Water/dioxane (95/5, v/v) (90/10, v/v) (80/20, v/v) (75/25, v/v) (70/30, v/v)
0.260 0.256 0.230 (jjL) 0.240 0.189 (M) 0.250 0.154 (M) 0.252 0.121 (M) 0.238 0.108 (M)
Poly(methoxybiphenyl methacrylate) THF 0.196 50/50 Poly(methoxy-biphenyl methacrylate-co-methoxybiphenyl ethylene oxide methacrylate) THF 0.194 Poly(methoxybiphenyl ethylene oxide methacrylate) THF 0.212 50/50 Poly(methoxy-biphenyl ethylene oxide methacrylate-co-methoxy-biphenyl bis(ethylene oxide)methacrylate) THF 0.188 Poly(methoxybiphenyl bis(ethylene oxide) methacrylate THF 0.205 Poly(methoxybiphenyl methacrylate-comethoxybiphenyl tris(ethylene oxide)methacrylate) THF 0.170 Poly(methoxybiphenyl tris(ethylene oxide)methacrylate) THF 0.181 50/50 poly(methoxybiphenyl methacrylate-co-methoxybiphenyl tetrakis(ethylene oxide) methacrylate THF 0.153 Poly(methoxybiphenyl tetrakis(ethylene oxide) methacrylate) THF 0.171 Poly(methoxybiphenyl methacrylate) CHCl3 0.163 Poly(methoxybiphenyl ethylene oxide methacrylate) CHCl3 0.180 50/50 Poly(methoxybiphenyl ethylene oxide methacrylate-co-methoxybiphenyl bis(ethylene oxide)methacrylate) CHCl3 0.153 Poly(methoxybiphenyl bis(ethylene oxide) methacrylate) CHCl3 0.167 Poly(methoxybiphenyl tris(ethylene oxide) methacrylate) CHCl3 0.152 Poly(methoxybiphenyl tetrakis(ethylene oxide) methacrylate) CHCl3 0.152 Poly(2-methacryloyloxyethyl trimethylammonium chloride) 1M aqueous NaCl 0.157 Poly(2-methoxyethyl Halothane 0.125 methacrylate) MEK 0.108
J( 0 C)
Refs.
0.156(560) 20 0.162 (M) (560) 20 0.158 20-65 25 25 0.234(560) 20 0.209 (/it) (560) 20 0.213 (M) (560) 20 0.229(560) 20 0.219(^X560) 20 0.197 (M) (560) 20 0.210 (M) (560) 20 0.227 20 0.169 (/*) (560) 20 25 0.153
129 129 77 128 128 129 129 129 129 129 129 129 129 129 128 80
Others
25 25 25 25 25 25 25 25 25 25 25
628 628 628 628 628 628 628 628 628 628 628 958 958 958 958 958 958 958 958 958 958 958 958 958 958 958
25 25
971 589 589,902
TABLE 1. cont'd d/t/dc (ml/g) Polymer
Poly(methyl methacrylate)
Solvent
X0 = 436 nm
Nitrobenzene THF Toluene 1,2,4, Trichlorobenzene Acetone
A0 = 546 nm
A0 = 633
rnn
Others
-0.058 0.078 0.000 -0.067 0.1391 0.107 0.137 0.129
0.134
T( 0 C)
Refs.
25 25 25 25 27 27 23 ± 2
589 589 589 653 130 131 132 133 134
0.131
0.1313 0.136
0.1293 0.134
0.134(366)
25 25
0.132 0.132 0.1305
0.1312 Acetone
0.132
20 20 20 20 20
0.135 0.1292 0.1330 0.135
20 20 25 25
0.1285
0.1281 (578) 0.1279(589) 0.1276(644)
25 25 20 25 25 25 25 25
137,138 139 140,141 759 618 689 947 142 141 141 141 141 141
0.1170 0.1005 0.091 0.0861 0.0734
25 25 25 25 25 20
140 140 140 140 140 626
0.133 0.137
25 20 44
721 136 947
0.094 0.078 (/J,) 0.100 0.085 (/x) 0.110 0.097 (iji) 0.119 0.113(/i)
25 25 25 25 25 25 25 25 25
726 726 726 726 726 726 726 726 726
0.034 0.033 (IJ,)
25 25
726 726
0.074 0.115(A*) 0.059 0.104 (At) 0.044 0.084 (Ai) 0.027 0.050 (Ai)
25 25 25 25 25 25 25 25
825 825 825 825 825 825 825 825
0.130 0.129 M w >5060 isotactic
Af w >10 4
Acetone Acetone Acetone/benzene (88/12, (76/24, (64/36, (52/48, (40/60, Acetone/chloroform (80/20, v/v) (60/40, v/v) (52/48, v/v) (40/60, v/v) (20/80, v/v) Acetone/water (62.2/37.8, mol) Acetonitrile Acetonitrile Acetonitrile/MMA (17/83, v/v) (32/68, v/v) (50/50, v/v) (68/32, v/v) Acetophenone/MMA (50/50, v/v) Acetophenone/isopropanol (30/70, v/v) (40/60, v/v) (50/50, v/v) (60/40, v/v)
0.134 0.136 v/v) v/v) v/v) v/v) v/v)
0.134 0.1170 0.1005 0.0861 0.0734 0.0590
0.136 0.140 0.144
135 10,136 92 89 5 5 5 93
References page VII-615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
(70/30, v/v)
XQ = 546 nm
A0 = 633 nm
Others
0.017 0.030 (/x) 0.001 0.005 Ox) -0.012 -0.012Ox)
(80/20, v/v) (90/10, v/v) Arochlor Benzene
-0.124 0.0398
T( 0 C)
Refs.
25 25 25 25 25 25 20 27
25 20 30 25 25 25 25 25 25 25 25 25
825 825 825 825 825 825 144 130 145 146 139 147 148 10 6 677 689 726 726 726 726 726 726 726 726
25 25 25 25 25 25 25 25 25 25 25 25
782 782 782 782 782 782 782 782 782 782 782 782
25 25 25 25 25 25 25 25 25 25 25 25 25 25
-0.010 0.002 0.0039
25 25
0.0110 0.004 -0
0.001 0.006
-0.016 0.007 0.015
Benzene/MMA (30/70, v/v) (50/50, v/v) (70/30, v/v) Benzyl alcohol/MMA (50/50, v/v) Benzyl alcoholM-butanol (90/10, v/v)
0.061 0.054 0.046 0.044 0.033 0.032 0.026 0.027 -0.036 -0.034 0.012 0.017 0.016 0.024 0.030 0.043 0.041 0.060 0.057 0.084
(80/20, v/v) (70/30, v/v) (60/40, v/v) (50/50, v/v) (40/60, v/v) Benzyl alcohol/sec-butanol (90/10, v/v)
00 00 (/x) (/Lt)
0*) (/x) (/x) (/x) (M) Ox)
-0.037 - 0.070 (/x) 0.011 -0.012 (AX) 0.012 0.013 00 0.029 0.082 (M) 0.040 0.160 Ox) 0.056 0.254 Ox) 0.074 0.316 Ox) — 0.058
(80/20, v/v) (70/30, v/v) (60/40, v/v) (50/50, v/v) (40/60, v/v) (30/70, v/v) Bromobenzene
0.056
25 25
782 782 782 782 782 782 782 782 782 782 782 782 782 782 145 624 825
0.196 Ox) 0.036 0.166 (M) 0.019 0.136 (M)
25 25 25 25 25
825 825 825 825 825
- 0.050 Bromoform/isopropanol (30/70, v/v) (40/60, v/v) (50/50, v/v)
TABLE 1. cont'd d/t/dc (ml/g) Polymer
Solvent
^ 0 = 436 nm
(60/40, v/v) (70/30, v/v) (80/20, v/v) (90/10, v/v) Bromoform/acetophenone/ isopropanol 1 -Bromonaphthalene 2-Butanol n-Butyl acetate
X0 = 546 rim
0.002 0.092 -0.017 0.034 00 -0.036 -0.031 00 -0.059 - 0.067 00 Values for numerous solvent ratios given in reference - 0.147 -0.148 0.0802 + 0.0004 * T (0C) 0.0987 0.0970 0.0986 0.0969 0.1 0.0970 0.097
syndiotactic rc-Butyl acetate/chloroform (20/80, v/v) (40/60, v/v) (60/40, v/v) (80/20, v/v) (90/10, v/v) n-Butyl chloride 0.0913 0.0948 0.0984
/I 0 = 633 nm
Others
fa)
0.063 0.070 0.073 0.083 0.094 0.0898 0.0934 0.0970 0.096
0.098 0.0931 0.1021 0.1001 0.0902 0.0965
syndiotactic isotactic n-Butyl chloride/toluene (83/17, v/v) (56.9/43.1, v/v) (32.1/67.9, v/v) (20/80, v/v) Carbon tetrachloride
Refs.
25 25 25 25 25 25 25 25
825 825 825 825 825 825 825 825 825
25 55 < T < 76 0.101 (366) 25 25 25 25 25 0.096 25 0.096 25 0.097 25
0.093 atactic
T ( 0 C)
0.0914 0.1001 0.0986 0.0875 0.0954
0.080 0.058 0.035 0.026
25 25 25 25 25 20 30 40 40 25 40 25 50 50 25 50
802 802 802 802 802 143 143 143 615 721 731 150 150 150 150 150
25 25 25 25
911 911 911 911 145 677 145 697 689 146 148 955 135 134
0.023 0.033
Chlorobenzene
30 -0.026
- 0.004 -0.010 -0.018
35 25 25
- 0.026 1-Chlorobutane Chloroform
0.098 0.0631
0.0629
0.0630
0.0628
0.0635 (366) 0.056
40 25
25 0.050
0.059 0.056 Cyclohexanone o-Dichlorobenzene
0.062 0.059 0.046 -0.037
145 9 954 135 139 113 149 670 689 802 742
25 30 25 25 30 25
139 148 10,140 677 689 802 729 689
References page VII - 615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
1,2-Dichloroethane
0.050 0.050
A0 = 546 nm
A0 = 633 nm
Others
0.051 30 0.050 0.046 0.079
Dioxane 0.0720
T( 0 C)
0.075 0.0707 0.068 0.071
0.050
25 30 25
0.074(366)
25
0.0703 (589)
25 25 25
0.07 0.070 0.066 0.0707 0.072 (488) 0.068 0.069 Dioxane/water (95/5, v/v) (90/10, v/v) (85/15, v/v)
(82/18, v/v) DMF
0.0600
0.070 0.072 0.076 (/z) 0.076 0.083 Oi) 0.079 0.072 0.090(Ai) 0.090 0.082 (^) 0.096 OLO 0.0614
0.0617 (578) 0.0168 (589) 0.0619 (644) 0.055 (365)
0.055 0.069 0.095
25 25 30 25 25 25 25 25 25 25 25 25 30 25 25 20 20 20 20 25 30 90
0.042 0.060
0.058 0.086 0.058 0.063
Polymer modified with RCH 2 Li R = SC 6 H 5 R = SO 2 CH 3 R = SO 2 N(CH 3 ) 2 Ethyl acetate
0.079-0.096 0.1200
0.070-0.081 0.075-0.107 0.1180
0.123(366) 0.1174 (589)
0.118
20 30 25 25 25 25 25 25 25 25
0.118 isotactic
0.117 Furfuryl alcohol H-Heptane/m-cresol (50/50, v/v) Isoamyl acetate
0.0931 0.0945 0.0959 0.0974
MEK
0.138 0.116 0.010 0.040 0.349 (/x) 0.0911 0.0926 0.0942 0.0957 0.111 0.112
25 30 25 30 25 25 20 30 40 50 RT
0.093 0.111
Refs. 151 152 147 10 826 689 154 135,139 145 93 155 121,147 148 10 156,157 729 618 689 807,822 121 121 121 121 121 118 118,121 158 121 121 5,6 5,6 5,6 6 10 159 159 148 897 826 807 689 700 700 700 135,139 155 10 618 771 826 720 691 698 698 143 143 143 143 154 160 131 134
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
A0 = 546 nm
A0 = 633 nm
Others
0.1173
RT RT
0.100 0.1131
0.1112
0.113
0.111 0.117
0.110 0.1110(578) 0.1107(589) 0.1102(644)
0.111 0.111 0.110 0.108 0.01385 0.111(488) 0.114
30 30
0.059 0.131 0.113 0.1147
35 35 25 25 30 20 10 20 30 40 30 30 30 20
0.113 0.111
atactic syndiotactic isotactic
(55/54, v/v) MEK/2-propanol (43.6/56.4, mol/mol) 2-Methoxy ethanol Methyl cellusolve MMA/styrene (50/50, v/v)
0.110 0.1090 0.1130 0.1167 0.1208 0.1169 0.1165 0.1167 0.109
2-Propanol/isopropylamine (5.6/94.4, mol/mol) TFP TFP/water (92/5, v/v)
40 25 25 25 30 25
0.082 0.025 0.025 (/a) 0.075 0.0176 0.100 0.094
25 20
0.109
(90/10, v/v) (80/20, v/v) (70/30, v/v) (65/35, v/v) THF
0.112 0.134 0.108 0.1075 0.1114 0.1153 0.1192 0.1153 0.1155 0.1152
0.089
Methyl methacrylate /V-Methylpyrrolidone Nitroethane
0.0887 0.0886
20 20 20 23db2 25 25 25 25 25 27 28
0.113 0.111
0.113
MEK/isopropanol
T( 0 C)
0.141 0.141 0.140 (M) 0.139 0.137 (M) 0.135 0.131 (M) 0.133 0.124 (/i) 0.132 0.121 (ILL) 0.0871 0.0870 0.0902
0.091 (366)
25 25 25 25 25 25 25 25 25 25 25 25 25 36
0.09 0.087 0.098 0.086
25 25
Refs. 163 99 148 5,6,88 5 5 132 162 146 132,161 10,93 165 130 134 151 145 152 164 153 147 34 72 689 807 826 897 143 143 143 143 150 150 150 626 731 807 726 726 158 10 154 161 626 121 121 121 121 121 121 121 121 121 121 121 135 139 34 166 618 637 689
References page VII-615
TABLE 1. contfd dw/dc (ml/g) Polymer
Solvent
A0 = 436 nm
A0 = 546 nm
M v v >10 4 atactic isotactic varying tacticities
A0 = 633 nm
Others
0.110-0.114 0.084 0.086 0.084-0.088 THF/cyclopentane (65.7/34.3, mol/mol) Toluene
0.089
25 25 25 20
0.004 0.010 0.0094
30 25 25
0.0157 0.004 0.005 0.003
0.004 0.009 0.014 -0.003 0.001 0.003 0.007 0.010 0.007 0.014
atactic syndiotactic isotactic Toluene/methanol (42/58, v/v) Toluene/isopropanol (38/62, v/v) Toluene//?-cymene (73.4/26.6, w/w) (49.7/503, w/w) Benzene
0.094 0.152 (/x) 0.096 0.154 (M) 0.073 0.121 (/i) 0.006 0.008 0.133
Poly(o-methylphenylthio methacrylate Poly((3-naphthyl Benzene methacrylate) Poly(nonyloxy-1,4-phenyleneoxycarbonylphenyl methacrylate) Carbon tetrachloride Poly(//-octadecylacrylamide) Benzene Chlorobenzene Cyclohexane rc-Hexane
Poly(rc-octyl methacrylate) Poly(4-phenylbutyl1 -methacrylate) Poly(2-phenylethyl1-methacrylate) Poly(phenyl methacrylate)
THF Toluene rc-Butanol MEK 1-Chloroundecane
0.083 0.107
0.133 0.142 0.096
Poly(phenylthiol 0.142 methacrylate) Poly[2-(3-sodium sulfonato-2-methylpropyl) methacrylamide] Aq. 0.05MNaCl 0.142 (/x) Aq. 5 M NaCl 0.097 (jx) Poly(3-sodium sulfonatopropyl methacrylate) Aq. 0.01 M NaCl 0.11 Aq. 0.1 M NaCl 0.13 Poly(n-stearyl methacrylate) Cyclohexane rt-Propyl acetate 0.107
Refs. 984 811 811 686 626
152 146 139 153 147 30 691 30 697,699,834 50 699 70 699 15 834 20 834 25 834 25 911 25 146 25 146 25 146 25 118 25 118 25 167 25 167 25 118 25 118 30 30 35
699 699 666
25
856 890 84 84 84 84 84 84 84 169 169 965
0.100
0.105(488)
24 30 30 30 30 30 30 30 16.8 28 23
0.128
0.134(488)
27.5
965
25 35
170 115 666
RT RT
701 701
25 25 20 36
824 824 744 744
0.0269 0.0489 0.0651 0.1292 0.1168 0.0898 0.0154 0.080 0.107
1-Chloroheptane Acetone MEK Benzene
T( 0 C)
0.234 0.182
0.054
TABLE 1. cont'd d/i/dc (ml/g) Polymer
Solvent
A0 = 436nm
Poly(tetrahydro-4H-pyranyl- THF 2-methacrylate) Poly(rc-tridecyl methacrylate) Ethyl acetate THF Poly(3-trimethylammonium ethyl chloride methacrylate) Aq. IMNaCl
A0 = 546nm
A0 = 633nm
Others
T (0C)
Refs.
0.092
20
840
0.083
27 30
744 744
0.121 0.157
0.155
0.154
25
882
0.158 (/Lt)
0.155(AX)
0.154(/Lt)
25
882
25
770
Poly[2-(triphenylmethoxy)ethyl methacrylate] Dioxane
0.180
1.5. OTHER a OR p SUBSTITUTED POLY(ACRYLICS) AND POLY(METHACRYLICS) Poly[bis(phenylethyl) itaconate] Poly[bis(phenyl-«-propyl) itaconate] Poly(ter/-butyl crotonate)
MEK
0.180
20
738
MEK
0.173
20
738
0.083 0.111 0.074 -0.035 0.018 0.036 0.102 0.096 -0.027 0.183 0.109 0.074 -0.030 0.020 -0.050 0.036 0.101 -0.021 0.101 0.096 0.112 -0.077 -0.023 0.109 0.126 0.058 -0.005 0.132 0.017 0.079 -0.041 0.015 -0.032 0.074 -0.018 0.024 0.100 0.096 -0.014 0.075 -0.037 -0.036 0.017 0.035 0.102 0.102
25 25 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
718 718 102 102 102 102 102 102 102 738 102 102 102 102 102 102 102 102 102 102 102 102 102 763 763 763 763 763 763 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
H-Butyl chloride Ethyl acetate Poly(di-fi-amyl itaconate) rc-Amyl acetate Benzene Carbon tetrachloride Chloroform Ethyl acetate MEK Toluene Poly(dibenzyl itaconate) MEK Poly(di-rc-butyl itaconate) Acetone n-Amy\ acetate Benzene Carbon tetrachloride Chlorobenzene Chloroform Ethyl acetate Ethylbenzene N-Hexane MEK Methyl acetate Styrene Toluene Poly(di-cyclohexyl itaconate) n-Amyl acetate H-Butyl acetate Carbon tetrachloride Chlorobenzene K-Propyl acetate Toluene Poly(di-K-decyl itaconate) n-Amy\ acetate Benzene Carbon tetrachloride Toluene Poly(diethyl itaconate) w-Amyl acetate Benzene Carbon tetrachloride Ethyl acetate MEK Toluene Poly(di-n-heptyl itaconate) w-Amyl acetate Benzene Benzene Carbon tetrachloride Chloroform Ethyl acetate Ethyl acetate
References page VII - 615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Poly(dimethylitaconate)
Solvent MEK MEK Toluene Toluene Acetone Benzene Chlorobenzene Chloroform MEK Methyl acetate MEK
A0 = 436 nm
PoIy(AM,1-dimethyl3-oxobutylacrylamide) Poly(di-n-nonyl itaconate) rc-Amyl acetate Benzene Toluene Poly(di-rc-octyl itaconate) rc-Amyl acetate Benzene Carbon tetrachloride Chloroform Ethyl acetate MEK Toluene Poly(diphenyl itaconate) Benzene Chlorobenzene Ethyl acetate MEK Styrene Toluene Poly(di-n-propyl itaconate) n-Amyl acetate Benzene Carbon tetrachloride Chloroform MEK Toluene Poly(di-n-undecyl itaconate) n-Amyl acetate Benzene Carbon tetrachloride Chlorobenzene Chloroform Ethyl benzene rc-Hexane Styrene Toluene Poly(methyl a-chloroacrylate) Chloroform Poly(methyl n-butacrylate) n-Butanol MEK Poly(methyl ethacrylate) Diisobutyl ketone MEK 1.6.
A0 = 546 nm
A0 = 633 nm
Others
T( 0 C)
Refs.
0.095 0.095 -0.029 -0.028 0.118 0.000 -0.022 0.041 0.096 0.110 0.137
20 20 20 20 20 20 20 20 20 20 25
102 102 102 102 102 102 102 102 102 102 622
0.079 -0.030 -0.039 0.078 -0.039 0.016 0.033 0.105 0.096 -0.030 0.083 0.060 0.191 0.189 0.040 0.087 0.074 -0.025 0.021 0.036 0.096 -0.019 0.079 -0.042 0.014 -0.064 0.030 - 0.030 0.112 -0.088 -0.032 0.072 0.0878 0.1192 0.0791 0.1357
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 13 30 11.4 30
102 102 102 102 102 102 102 102 102 102 768 768 768 768 768 768 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 707 286 286 286 286
0.139
25
654
0.0643
25
974
0.0344
25
974
0.0368
25
974
0.0391
25
974
0.0443
25
974
POLY(STYRENES)
Poly(4-acetoxystyrene) Dioxane Poly(4-acetoxymethyl styrene) Toluene Poly(0.05 wt.% 4-acetoxymethyl styrene-co-0.95 Toluene Poly(0.10 wt.% 4-acetoxymethyl styrene-c-0.90 Toluene Poly(0.20 wt.% 4-acetoxymethyl styrene-co-0.80 Toluene Poly(0.35 wt.% 4-acetoxymethyl styrene-co-0.65 Toluene
wt.% tert-butyloxy carbonyloxy styrene) wt.% terf-butyloxy carbonyloxy styrene) wt.% tert-butyloxy carbonyloxy styrene) wt.% terf-butyloxy carbonyloxy styrene)
TABLE 1. cont'd d/i/dc (ml/g) Polymer
Solvent
X0 = 436nm
X0 = 546nm
PoIy(0.50 wt.% 4-acetoxymethyl styrene-co-0.50 wt.% tert-buiy\oxy carbonyloxy styrene) Toluene Poly(/?-?m-butylstyrene) Cyclohexane 0.139 1-Nitropropane 0.162 Poly(tf-chlorostyrene) MEK 0.191 Poly(/?-chlorostyrene) Benzene 0.095 Chloroform 0.157 Dioxane 0.164 MEK 0.207 0.197 Toluene 0.121 PolyOModostyrene) Dioxane 0.156 0.144
14% iodine 27% iodine Poly(p-isopropylot-methylstyrene) Poly(/7-isopropylstyrene)
Poly(p-isopropylstyrene) hydroperoxide Poly (p-methoxy styrene)
Poly(a-methylstyrene)
A0 = 633nm
0.0486
Chloroform MEK THF MEK THF Benzene/cyclohexanol (61.19/38.81, v/v) Benzene/methanol (73.69/26.31, v/v) Chloroform/cyclohexane (36.08/63.92, v/v) Chloroform/methanol (66.49/33.51, v/v) MEK/n-heptane (80.01/19.99, v/v) MEKAi-propanol (80.64/19.36, v/v) Toluene Toluene/cyclohexanol (62.8/37.2, v/v) Benzene
0.084 0.134 0.198 0.177 0.195-0.203 0.177
0.105
0.124 0.186 0.167 0.184-0.197 0.167 0.112
Carbon tetrachloride Cyclohexane
1,2-Dichloroethane Toluene
Toluene Acetone/cyclohexane (26.6/73.4, v/v)
776 187 187 188 187 189 175
0.163
175
0.190
175
0.211
175
0.215
175
0.101 0.113
0.168
0.193(366)
0.192
0.219(366)
0.126
0.135(366) 0.129 0.137
0.137 Poly(;?-methylstyrene) Poly(styrene)
974 778 778 765 171 171 171 172 173 174 174 174 174
175
0.1165 0.131 0.1307 0.130
Refs.
0.125
0.138
Poly(a-methylstyrene)
20 35 20 20 20 20 874 874 25 25 25 25 25 25
0.1238 0.134 0.131 0.178 0.206 0.208 0.199 0.200 0.1967 0.210 0.212 0.214 0.204 0.1764
T (0C)
25 35 35 25
0.166(365) 0.143 (578) 0.142(589) 0.140(644) 0.032 0.050
Bromoform Toluene
Others
0.093 0.192
25
176 175
25 25 30 30 23 32 36 37 39 39 40 45 50 35 25 23 25 25 23 25 25 20
177 178 179 180 181 183 183 182 179 177 183 183 183 181 177 34 184 177 181 185 186 613 976
25
783
References page VII - 615
TABLE 1. confd dn/dc (ml/g) Polymer
Solvent (38.2/61.8, v/v) (49.1/50.9, v/v) (59.1/40.9, v/v) (68.4/31.6, v/v) (77.2/22.8, v/v) Isoamyl acetate n-Amy\ acetate Arochlor Benzene
A0 = 436 nm
A0 = 546 nm
A0 = 633 nm
Others
0.202 0.207 0.214 0.220 0.225
T( 0 C) 25 25 25 25 25 30 20
0.205 0.205 -0.017 0.1151 0.111 0.1066 0.113 0.1066
0.115 0.108 0.109 0.112
0.1034 0.1034
0.1030(578) 0.1028(589) 0.1021 (644)
0.105 0.105 0.109 0.107(589)
0.109 0.110
20 20 20 20 20 20 25 25 25 25 25
0.115 0.108 0.1025 0.108 0.1094
25 25 25
0.1062 0.106 0.105
25 25 25
0.111 0.106 0.113
28 30
0.109 0.106 0.101 0.115 0.1123 0.112 0.131 0.107
0.103 0.111 0.105
0.109
0.106 0.103 0.106 0.109(488)
increase with M: M = 1.3 x 103 - 1.3 x 105 M> 1.05 XlO 6 star shaped star shaped comb shaped
0.093-0.109 0.091-0.106 0.108 0.104 0.126 0.104-0.109 0.102 0.116 0.113 0.112
30 30 30 35 70 20 25 25 25 25 25 25 25 25 25 25 35 25 30 30 30 35
0.105 Benzene Benzene/bromoform (95/5, v/v) (90/10, v/v) (85/15, v/v)
0.0495 -f 2.20 x 10 " 4 T(K) 0.101 0.096 0.099
25 25 25
Refs. 783 783 783 783 783 97 102,190 144 191 102 6 203 5 5 5 205 106 107 32 206 193 194 57 195 146,197 139 148 10 198 145,196, 199,201 192 204 147 97 200 84 202 203 709 664 593,705 779,751 774 890,647 812 648 612 612 612 683 612 671 677 821 683 618 962 198 198 198
TABLE 1. cont'd d/i/dc (ml/g) Polymer
Solvent
X0 = 436 nm
(75/25, v/v) (50/50, v/v) (25/75, v/v) Benzene/(CH 2C1)2CHOH (33/67, v/v) Benzene/cyclohexane (82.9/18.1, mol/mol) (65.3/34.7, mol/mol) (44.8/55.2, mol/mol) (23.6/76.4, mol/mol) (10/90, mol/mol) (4.8/95.2, mol/mol) (90/10, v/v) (80/20, v/v)
0.083 0.074 0.036
0.137 0.155 0.155 0.172 0.170 0.186 0.183 0.197 0.189 0.202 0.191 0.116 0.126 0.138 0.142 {(i) 0.135 0.144
(50/50, v/v)
0.151
v/v) v/v) v/v) v/v)
(10/90, v/v) Benzene/cyclohexanol (61.6/38.4, v/v) (81.8/18.2, mol/mol)
A0 = 633 nm
Others
T ( 0 C)
25 25 25 0.112
(75/25, v/v) (70/30, v/v) (60/40, v/v)
(40/60, (35/65, (30/70, (20/80,
A0 = 546 nm
0.150 0.159 (M) 0.158 0.165 0.171 0.166 0.175 (/i) 0.175
0.121 0.134 (90.9/9.1, mol/mol) 0.119 (99.628/0.372, mol/mol) 0.124 0.134 Benzene/rc-docosane (98.7/1.3, mol/mol) 0.122 0.140 (95.7/4.3, mol/mol) 0.135 0.147 (90.3/9.7, v/v) 0.147 0.150 Benzene/rt-dodecane (96.2/3.8, mol/mol) 0.123 0.139 (92.7/7.3, mol/mol) 0.131 0.145 (86.4/13.6, mol/mol) 0.140 0.149 Benzene/1 -dodecanol (98.1/1.9, mol/mol) 0.116 (94.6/5.4, mol/mol) 0.122 (89.7/10.3, mol/mol) 0.132
0.113 0.120 0.124 0.129 0.135 0.137 0.142 0.145 0.148 0.153 0.154 0.158 0.162 0.162 0.108
Refs.
198 198 198 207
20 70 20 70 20 70 20 70 20 70 20 20 20 30 30 25 20 20 25 20 25 30 30 20 25 20 20 25 30 30 20
208 208 208 208 208 208 208 208 208 208 208 709 709 692 692 751 709 709 751 709 751 692 692 709 751 709 709 751 692 692 709
25 20 70 20 20 70
209 208 208 208 208 208
20 70 20 70 20 70
210 210 210 210 210 210
20 70 20 70 20 70
210 210 210 210 210 210
20 20 20
210 210 210
References page VII - 615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
X0 = 436 nm
Benzene/ethanol (70.4/29.6, v/v) (70.4/29.6, v/v) (94.3/5.7, v/v) (89.1/10.9, v/v) (62.1/37.9, v/v) BenzeneM-heptane (44/56, v/v) (90/10, v/v) (50/50, v/v) (60/40, v/v) BenzeneM-hexane (88/12, mol/mol) (78.6/21.4, mol/mol) (63.2/36.8, mol/mol) (55.1/44.9, mol/mol) Benzene/1 -hexanol (92.7/7.3, mol/mol) (84.9/15.1, mol/mol) (76.6/23.4, mol/mol) (67.8/32.2, mol/mol) Benzene/MEK (25.1/74.9, mol/mol) (50.2/49.8, mol/mol) (75.1/24.9, mol/mol) Benzene/methanol (70.9/29.1, mol/mol) (83.9/16.1, mol/mol) (92.4/7.6, mol/mol) (22.2/77.8, v/v) (76.6/23.4, v/v) (80/20, v/v) (74.7/25.3, v/v) (95/5, v/v) (80/15, v/v) (83/17, v/v) (80/20, v/v) (78/22, v/v) (76.8/23.2, v/v) (76.8/23.2, v/v) (75/25, v/v) Benzene/1-octadecanol (99.15/0.85, mol/mol) Benzene/poly(oxyethylene) 420 (95.9/4.1, mol/mol) 2100 (99.41/0.59, mol/mol) Benzene/isopropanol (35.8/64.2, v/v) (65/35, v/v) (61/39, v/v) (64/36, v/v)
A0 = 546 nm
A0 = 633 nm
Others
T( 0 C)
Refs.
0.156 0.155 0.115 0.119 0.131 0.162 0.151
19.6 25 20 20 70 20 70
611 611 210 210 210 210 210
0.130 0.124
35 35 25 25
211 202 751 751
0.141 0.160 0.174 0.188 0.199 0.197 0.205
20 20 70 20 70 20 70
210 210 210 210 210 210 210
0.119 0.126 0.135 0.136 0.148 0.144
20 20 70 20 20 70
210 210 210 210 210 210
0.210 0.224 0.178 0.193 0.145 0.162
20 70 20 70 20 70
203 203 203 203 203 203
0.154 0.124 0.114
20 20 20 25 25
0.116 0.134
35 25 25 25 25 25 16.7 25 25 20 70
208 208 208 209 193 207 211 751 751 751 751 751 611 611 751 210 210
0.125
20
210
0.120
20
210
25
212 207 211 692 692
0.157 0.152
0.145 0.122 0.137 0.159 0.114 0.127 0.132 0.136 0.141 0.190 0.187 0.144
0.159 0.154 0.142 0.150 0.216 (jui)
35 30 30
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
X0 = 436nm
Benzene/rc-propanol (63.7/36.3, v/v) Bromobenzene
0.131 0.130 0.0492 0.043 0.0495
X0 = 546nm
A0 = 633nm
Others
0.042 0.0485 0.0455
0.042
Bromoform
- 0.005 0.012
611 611 213 106 107 214
25
0.012
1-Bromonaphthalene
30 -0.051 -0.091 -0.0517 0.1997 0.2018
25 25 25 20 25
0.156 0.161 0.159 0.160
0162 0.159
0.144 0.146 0.147 0.150 0.1518 0.148
0.145 (589)
0.148 015
0.162 Poly(styrene) anionically polymerized
21.7 29.7 18 25
25 30
0.014
n-Butyl chloride rc-Butyl propionate Carbon tetrachloride
Refs.
25 25
0.047 0.015 0.014
T (0C)
Carbon tetrachloride Carbon tetrachloride/ 0.176 n-butanol (65/35, v/v) Carbon tetrachloride/ 0.189 rc-heptane (53/47, v/v) Carbon tetrachloride/ methanol (18.3/81.7, v/v) Chlorobenzene 0.0833 0 082
O145
25 25 30 30 35 25 25 30
145,215 624 57 106 216 874 216,919 145 57 9 43 43 102 217 154 145 106 206 84 204 202
647 651 677
oc
¥\ ^??
is
911
0.162
9c
onQ
0 079 '
IR
25
^
S
Jn
213
Z
0.079
0.0848
Il 0.079
°081
0.083 Chlorobenzene/isopropyl ether (68/32, v/v) 1 -Chlorodecane l-Chlorodecane/3-methylcyclohexanol
(782/21.S1V(V) (75/25, v/v) (49.5/50.5, v/v) (10/90, v/v) Chloroform
2
H 148
„
™ 697
0192 '
25
209
6 2
661
0.165
228
66.
0.168 0.166 0.155
35 59 6 87;8
0.165 '
0.158 0.1554 0.165
I8 20 25
0.169 0.152 0.161 0.157
25 30
^
1
661
^1 57 213 102 26 148 146 677
References page VII-615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent Cyclohexane
M w = 2.18 XlO 3 2.92 XlO 3 4.69 XlO 3 11.8 x l O 3 22.2 XlO 3 167 x l O 3
A0 = 436 nm 0.1795 0.1798 0.1801 0.1804 0.1810 0.168 0.171 0.174 0.177 0.180 0.181 0.1825 0.181 0.1840
A0 = 546 nm
A0 = 633 nm
Others
0.1682 0.1685 0.1687 0.1690 0.1695 0.156 0.160 0.163 0.165 0.167 0.167 0.1709 0.1723 0.171 0.179 0.1738 0.1752 0.181 0.163
0.179 0.181
M = 1.2 x 103 - 1.07 x 105 star shaped after photoisomerization: trans —> cis
0.191 0.181 0.181
0.166 0.170 0.169 0.171 0.169 0.156-0.168 0.157-0.163 0.100
0.181 0.171 0.175 (488) 0.181 0.184 0.161 0.168 0.170 Cyclohexane Cyclohexane/cyclohexanol (75.3/24.7, v/v) -0.043 -0.044 -0.045 -0.046 -0.047 (37.3/62.7, v/v) -0.048 -0.049 -0.050 -0.051 Cyclohexane/ethanol 0.065 (97/3, v/v) 0.064 Cyclohexane/ethyl acetate (10/90, v/v) 0.229 (20/80, v/v) 0.226 (30/70, v/v) 0.223 (40/60, v/v) 0.219 (50/50, v/v) 0.216 (60/40, v/v) 0.211 (70/30, v/v) 0.206
0.187 0.191 0.195
0.216 0.213 0.210 0.206 0.202 0.197 0.191
Refs.
20 21 22 23 25 25 25 25 25 25 25 30 34.5 35 35 35 40 40 45 50
0.181 0.1855 0.1870 0.188
T( 0 C)
219 219 219 219 139,219 220 220 220 220 220 220 219 221 219 209 202,222 218 219 219 223 224 618 20 709 25 647 25 751 30 677 34.5 712,705 34.5 809 34.5 732 34.5 737 28 736 34.8 611 34.8 664 35 642 35 659,694,704 35 661 35 671 35 683 35 683 30 943 40 943 50 943 36 38 44 52.2 58.2 65.1 74 82 86 29.2 39.8
611 611 611 611 611 611 611 611 611 611 611
20 20 20 20 20 20 20
709 709 709 709 709 709 709
TABLE 1. cont'd dit/dc (ml/g) Polymer
Solvent (80/20, v/v) (90/10, v/v) Cyclohexane/methanol (95.5/4.5, v/v) Cyclohexane/w-propanol (97.6/2.4, v/v) Cyclohexane/styrene (15/85, v/v)
A0 = 436nm 0.198 0.189 0.099 0.098 0.041 0.040
(40/60, v/v) (50/50, v/v) (60/40, v/v) (70/30, v/v) (85/15, v/v)
Cyclohexanone Cyclohexene Decalin
A0 = 633nm
Others
0.184 0.176
0.075 0.086 0.092 0.112 0.104 0.129 0.120 0.152 0.129 0.160 0.138 0.166 0.155 0.173
(30/70, v/v)
Cyclohexanol
A0 = 546nm
(M) (/i) Cu) (M) (M) (M)
(ji)
0.165 0.141 0.169 0.169 0.151 0.151 0.151 0.165 0.129 0.129 0.118 0.137 0.138 0.143 0.147 0.152 0.155 0.120 0.125
0.119 0.137 0.141 0.120 0.120 0.120 50 bar pressure 50 bar pressure 50 bar pressure cw-Decalin Decalin, 50% trans
0.124
1,2-Dibromoethane
0.065
0.123(579)
0.110 0.130 0.110 0.127 0.111 0.128 0.111 0.130 0.132 0.119 0.120 0.121 0.122 0.123 0.115 0.115 0.116 0.117 0.118
0.125 (579) 0.126(579) 0.128(579) 0.130(579)
T (0C)
Refs.
20 20 29.2 39.8 28.2 37.8
709 709 611 611 611 611
25 25 25 25 25 25 25 25 25 25 25 25 25 25 84.2 87.8 92.5 100 30 25 30 25 24 25 25 52 60 87 104 123 139 20 20
726 726 726 726 726 726 726 726 726 726 726 726 726 726 611 661 611 611 216 647 216,919 23 217 215 23 23 23 23 23 23 23 615,713 625
20 20.4 22.8 25 30 30 40 40 50 60 20 30 40 50 60 12 20 30 40 50 60 30
827 809 661 827 625 827 625 827 625 625 625 625 625 625 625 221 885 885 885 885 885 216,919
References page VII-615
TABLE 1.
coned dn/dc (ml/g)
Polymer
Solvent
A0 = 436nm
Dibutyl phthalate 1,2-Dichloroethane
A0 = 546nm
A0 = 633nm
Others
0.108 0.120 0.155 0.155 0.161
0.168 0.168
T (0C) 25 135 25
30 30
863 863 647 151 218 152 147 152 200 826
25 25 25 25 25 25 59.6
693 693 693 693 693 693 661
20 30
0.168 0.168 0.168 0.166 0.158 Diethyl ether/methylcyclohexane (70/30, v/v) 0.215 (65/35, v/v) 0.220 (60/40, v/v) 0.215 (50/50, v/v) 0.225 (40/60, v/v) 0.240 (35/65, v/v) 0.245 Diethyl oxalate 0.195 Diethyl fumarate/CH2ClCH2OH (80/20, v/v) Dioxane
0.185
0.152 0.171 0.176 0.168 0.172 0.173
0.1852
0.1731
0.193
0.182
0.204(365) 0.171 (578) 0.170(589) 0.168(644) 0.1702 (589) 0.176(589) 0.170
0.181 0.190
20 20 20 20 25 25 25 35 35
0.184 0.166 0.170 0.173 0.181 star shaped deuterated polymer
star shaped
Dioxane/1-bromonaphthalene (96/4, v/v) 0.134 (90/10, v/v) 0.075 (83/17, v/v) 0.000 (81.5/18.5, v/v) - 0.010 (50/50, v/v) -0.298 Dioxane//i-heptane 0.212 (41.5/58.5, v/v) Dioxane/methanol (28.6/71.4, v/v) (66.5/33.5, v/v) 0.218 Dioxane/methanol (71.4/28.6, v/v) (71.4/28.6, v/v) Dioxane/isopropanol 0.212 (51.5/48.5, v/v) Dioxane/styrene (15/85, v/v) (15/85, v/v) (30/70, v/v)
0.170 0.195 0.164 00 0*) 00 00 (/i)
25 25 30 35 35 30 30 30 30 30 35
0.191 0.222 0.197
0.076 0.084 00 0.092 0.102 OO
Refs.
207 154 225 145 196 174 174 174 174 139 155 206 148 97 202 147 618 807,822 751 671 683 683 645 216,919 216,919 216,919 216,919 216,919 211
25 35 25 35 35 35
209 211 683 683 211
25 25 25 25
726 726 726 726
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
X0 = 436 nm
(40/60, v/v)
A0 = 633 nm
Others
0.104 0.112 (/*) 0.116 0.129 (M) 0.126 0.138 (M) 0.137 0.147 Oi) 0.155 0.163 Oi)
(50/50, v/v) (60/40, v/v) (70/30, v/v) (85/15, v/v) DMF
A0 = 546 nm
0.1703 0.1739
0.1648
0.1632(578) 0.1625 (589) 0.1604(644) 0.145 0.189(365)
0.165 0.175
T (0C) 25 25 25 25 25 25 25 25 25 25 18 20 20 20 20 25 25
0.166 0.171 0.165 0.168 Microgel DMF/tetralin (35.2/64.8, v/v) Ethyl acetate
0.158 0.166 0.178 0.174 0.119 (/x) 0.119
25 80 18 20 25 20 25 30
0.2310 0.234 0.231
20 20 25 30
0.2231 0.218 0.223 0.226 0.216
Ethyl acetate/ethanol (94.81/5.19, v/v) (91.76/8.24, v/v) (89.34/10.66, v/v) Ethylbenzene
0.2196 0.2210 0.2238 0.1 Il 0.093 0.093 0.096 0.102 0.114 0.128 0.117
Ethylcyclohexane Furfuryl alcohol n- Heptane/sty rene (10/90, v/v) (20/80, v/v) (30/70, v/v) (40/60, v/v) (50/50, v/v) (60/40, v/v) MEK
0.2258 0.2275 0.2290 0.2287
0.075 0.089 (M) 0.091 0.109(M) 0.106 0.136 (M) 0.122 0.162 (p) 0.137 0.191 (M) 0.154 0.195 (M) 0.2138 0.2155 0.2167
Refs. 726 726 726 726 726 726 726 726 726 726 213 5,6 5,6 5,6 148 6 215 146 658 658 869 897 638 826 608 638 638 213 102 226 709 779 826 618
25 25 25 25 20 30 40 50 60 70 30
226 226 226 102 885 885 885 885 885 806 691
25 25 25 25 25 25 25 25 25 25 25 25 7.5 15 18 20
726 726 726 726 726 726 726 726 726 726 726 726 219 219 213 219
References page VII-615
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436nm 0.2296
A0 = 546nm
A0 = 633 nm
Others
0.2170 0.214
T (0C) 20 20 20
0.243 0.232 0.229 0.228 0.2296
0.2170
0.2298
0.2175
0.2150 (578) 0.2143 (589) 0.2110(644) 0.2146 (589)
0.2298
0.229 0.226 0.231 0.231
0.2165 0.2178 0.214 0.220
20 20 20 20 20 25 25 25 25 25
25 25
0.220 0.218
0.208(589) 0.220 (589)
0.226
25 0.220
0.227
0.219 0.230 0.215
25 25 0.210*
0.229
0.217
0.232 0.238 0.232 0.223 0.229
0.223
0.2309 0.227 0.2321 0.2333 0.2345
0.2189
0.222 (437) 0.216(589)
25 25 30 30 30
0.170
30 30 35 35 40 45 67 70
0.219
0.2201 0.2213 0.2225 0.230
0.254 0.212 0.222 0.214 0.225
0.230 increase with M
0.207 0.217 0.220 0.217 0.218 0.207-0.211 0.220
0.238 0.235 0.240
randomly branched branched with divinyl benzene MEK/(CH 2C1)2CHOH (46/54, v/v) MEK/1-dodecanol (95.4/4.6, mol/mol)
* Given erroneously as 0.110 in journal.
20 20 25 25 25 25 25 30 30 35
0.165 0.238 0.253
Refs.
6 227 203 153 88,231 102,190 5 5 5 139 155 165 219 195 145,154,196 146 217 212 151,232 232 228 148 215 147 106 224 107 233 206 216 152 229 230 164 219 97 219 219 219 218 203 618 891 869 897 751 807 809 902 648 826 216,919 599 598 207
20 70
203 203
TABLE 1. cont'd d#*/dc (ml/g) Polymer
Solvent
J ( 0 C)
Refs.
0.232 0.248
20 70
203 203
0.241 0.238 0.251 0.234 0.249
20 20 70 20 70
203 203 203 203 203
0.214 0.211
25 25
209 209
0.219 0.140 0.149 (/*) 0.188
25 25
207 726 726 26
22 22 22 22 22 22 22 22 22 98.4
234 234 234 234 234 234 234 234 234 661
22.8 35 59.6 87.8
661 661 661 661
98.4 98.4 98.4 98.4 98.4 35
903,676 903,676 903,676 903,676 903,676 202
35 35 25 20 34.5 98.4
202 211 146 102 903 676,903
34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 30 30
903 903 903 903 903 903 903 903 216 84 235 57 166 236 236 236
XQ = 436 nm
(91.2/8.8, mol/mol) MEK/1-hexanol (93.3/6.7, mol/mol) (84.8/15.2, mol/mol) (73.7/26.3, mol/mol) MEK/methanol (11.3/88.7, v/v) MEK/isopropanol (11.4/88.6, v/v) (85/15, v/v) MEK/styrene (50/50, v/v)
Methylcyclohexane Methylcyclohexane/acetone (17/83, v/v) 0.242 (22.2/77.8, v/v) 0.242 (28/72, v/v) 0.239 (39/61, v/v) 0.231 (50/50, v/v) 0.228 (61/39, v/v) 0.223 (72/28, v/v) 0.222 (83/17, v/v) 0.217 (88.3/11.7, v/v) 0.210 3-Methyl cyclohexanol 0.154 3-Methyl cyclohexanol/1 -chlorodecane (21.8/78.2, v/v) 0.165 (25/75, v/v) 0.168 (50.5/49.5, v/v) 0.166 (90/10, v/v) 0.155 3-Methylcyclohexanol/tetralin (23.2/76.8, v/v) 0.096 (43.4/56.6, v/v) 0.115 (49.5/50.5, v/v) 0.112 (61/39, v/v) 0.131 (77/23, v/v) 0.145 Nitropropane 0.208 NitropropaneM-heptane (42/58, v/v) 0.216 0.218 Phenylcyanide 0.0775 Styrene 0.054 Tetralin 0.072 0.075 Tetraiin/cyclohexane (89.4/10.6, v/v) 0.082 (^) (88/12, v/v) 0.087 (81/19, v/v) 0.093 (79.4/20.6, v/v) 0.095 (^) (69.7/30.3, v/v) 0.119 (A0 (59.7/40.3, v/v) 0.139 (fj) (39.6/60.4, v/v) 0.159 (/*) (20/80, v/v) 0.173 (M) THF 0.195
/I0 = 546nm
X0 = 633nm
Others
0.1926 0.190 0.198 Mw=
2.4 x l O 4 5.31 x 104 16.5 xlO 4
0.194 0.205 0.202 0.207
0.193 0.189 0.194
25 25 25
References page VII - 615
TABLE 1. cont'd dn/dc (mi/g) Polymer
Solvent 54.1 x 104 15OxIO 4 57OxIO 4
A0 = 436nm 0.208 0.209 0.211
A0 = 546nm
A0 = 633nm
Others
0.195 0.196 0.198
25 25 25 0.186 0.193 0.192 0.186
0.195 0.208 0.186 0.190 0.193
100% mol deuterated 62% mol deuterated 25% mol deuterated THF/methanol (28.7/71.3, v/v) Toluene
0.111 0.112
0.193 0.171 0.177 0.182
20 23 25 30 RT RT RT RT
0.188 0.165 0.172 0.178
0.179 0.109 0.104
0.112 0.1113
0.112 0.195
0.109 0.1079
0.1073(578) 0.1071 (589) 0.1060(644) 0.113
20 20 23 25
0.111 0.112
0.111 0.112 0.1150
25 RT 12 20 20 20 20 20 20
0.108 0.110
0.1188 0.1129
T (0C)
0.109 0.1079 0.1091 0.1130 0.110 0.111
25 25 25 25 25 25 25 25 28
0.1111 0.111 0.110
0-U3 0.118 0.114
30 30 35 45 65
0.118 0.125 0.110 0.118
67 0.106 0.101
0.113 0-115 0.111 0.103(1086) M = 1.2 x 103 - 1.07 x 103 star shaped polymer
0.089-0.105 0.103 0.105(1086) 0.113
0.109 0.111 0.110 0.H2 0.105 0.110-0.112 0.093-0.109 0.112
increase with M increase with M: 0-117
0.107-0.110
15 20 20 20 20 20 25 25 25 25 25 25 25 25 25 25
Refs. 236 236 236 618,798 869 830 637 216,919 630 630 630 630 209 232 221 31,227 102 238 5 5 5 153 230 231 240 237 239 225 241 242 43 243 240 217,228 146 139 29 147 152,216 229 97 243 243 244 218 618 842 834 834 869 915 732 737 915 647 751 601 613 633 635 648 664 834
TABLE 1. confd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
X0 = 546 nm
4
A/>2xlO star branched
A0 = 633 nm
Others
0.108 0.103-0.106 0.107-0.112 0.108 0.110
M = 2 x 103 - 18 x 105
0.125 0.126 isotactic M w =0.02 x 10 s - 0.5 x 105 Toluene Mw = l . l 0 x l 0 5 Toluene M w = 1.60 x l O 5 Toluene M w = 2.00 x K)5 - 8.67 x 105Toluene M w = 18 x 105 Toluene M w = 1.25 x 105 - 2.5 x 105 Toluene dispersion Water latex sulfonated
0.111 0.101-0.107 0.106 0.107 0.110-0.117 0.118 0.117 0.250 0.241 0.256 0.257
Neutralization equiv. = 0.9 mEq/g: 0.05 M NaCl 1.8mEq/g: 0.056MNaCl 2.0 mEq/g: 0.10 M NaCl 2.7 mEq/g: 0.10 M NaCl Toluene//>cymene (73.4/26.6 w/w) 0.115 (49.7/50.3 w/w) 0.117 Trichlorobenzene Water/THF (1 /99, v/v)
0.212 0.207 0.195 0.205
25 25 25 25
247 247 247 247
0.124 0.128 (M) 0.152 Ox) 0.122 (/x)
30 30 25 25 25 25 25 25 25 25 25 25 30 25 25 25 25
699 699 653 796 796 796 796 796 796 796 796 249 85 675 675 879 879
0.198
25
753
0.164
35
814
0.122 0.124 0.125
25 40 55
795 795 795
25 25
675 675
0.028 0.183 0.166 Oi) 0.192 0.183 Ox) 0.180 0.177 Ox) 0.180 0.188(At)
(3/97, v/v) (4.5/95.5, v/v) (7/93, v/v) Poly(styrene-p-sulfonic acid) Aq. KCl 2.5 M -, K-salt, DN= 1.0 Aq. KCl; / = 0.10 - , Na-salt THF/ethanol (76/24, v/v) Aq. 0.1 M Na 2 SO 4 Aq. 1M Na 2 SO 4 Poly(styrene-co-acrylonitrile), (1/1, mol/mol) MEK Poly(styrene-c<9-/?-butyl methacrylate) (1/1, mol/mol) MEK Poly(styrene-c0-/?-cnlorostyrene), ( ~ l / l , mol/mol) Cumene Poly(styrene-a?-ethylene-a7-butene) (Kraton G) THF THF/ethanol (94/6, v/v) (88/12, v/v)
Refs.
25 833 25 833 23-27 652 30 671 30 691 30 697,699,216 30 834 30 837 35 659 35 704 50 699 70 699 80 638 90 609 30 245 30 962 30 962 30 962 30 962 30 962 30 962 25 95 246 25 247 248
0.113 0.118 0.101-0.118 0.113 0.114 0.119 0.125
M = 2 x 103 - 18 x 105
T (0C)
0.0347* 0.197
0.116 0.118 0.120 00 0.120 0.124Ou)
25
675
25 25
675 675
* Expressed in 1/g-segment.
References page VII-615
TABLE 1. cont'd d/i/dc (ml/g) Polymer 1.7.
Solvent
A0 = 436nm
A0 = 546 nm
A0 = 633 nm
Others
T (0C)
Refs.
OTHER COMPOUNDS
Poly(acrylonitrile)
y-Butyrolactone Dimethylacetamide Chlorobenzene DMF
0.0767
0.079 0.078 0.0769
25 30 25 0.00
0.080 0.085 0.870
18 20 20 20 20 20 25 25
0.082 0.0874 0.0877 0.0914 0.0924 0.196 0.083 0.089 0.080
0.085 DMSO
0.029
DMSO/acrylonitrile (65/35, v/v) (73/27, v/v) (82/18, v/v) (91/9, v/v)
0.084 0.087 0.084 0.078 0.031 0.043 0.092 0.0263
25 25 25 20 25 25 25 140 25
0.061 0.067 0.055 0.062 0.048 0.053 0.040 0.044
25 25 25 25 25 25 25 25 0.132
726 726 726 726 726 726 726 726 891
0.174(580) 0.198(580) 0.228 (580)
644 644 644
(/i) (JJL) (jj.) Ox)
MEK
276 277 278 891 643 891 213 238 281 283 283 283 284 215,276, 278,280 279 282 277 10 897 985 278 285 278 284
Poly(diacetylenes) =c-c=c-c= (CH2)9
(CH2)9
O-COR O-COR R = isopropyl Chloroform R = benzyl R = 1-methylene naphthalene R = 1-methylene naphthalene 1,2-Dichloroethane
0.267
0.220(578)
RT RT 25
740 740 715 577
0.091
25
663
0.180
25
663
0.088
25 30
663 896
25
733
25
679
25 25
269 269
0.190 Poly(terf-butyl vinyl ketone) sec-Butyl alcohol Poly(N-isobutyl maleimide) Chlorobenzene Poly(maleic acid-c-ethyl vinyl ether) (1/1, mol/mol) THF Poly(maleic acid-a?-ethyl vinyl ether) (1/1 mol), sodium salt Aq. 0.18MNaCl Poly(maleic anhydride-co-ethyl vinyl ether (1/1, mol/mol) THF Acetone 0.133 Poly(maleic anhydride-co-octadecene) (1/1, mol/mol) Ethyl acetate Poly(2-methyl 5-vinylpyridine; iV-oxide) Methanol Poly(2-methyl-5-vinylpyridine) rc-Butyl acetate 0.200 MEK 0.212
0.097 0.01
0.119 0.262 0.188 0.202
TABLE 1. contd dn/dc (ml/g) Polymer
Solvent Methanol
A0 = 436 nm 0.273
A0 = 546 nm
A0 = 633 nm
Others
0.257
Benzene Acetone
0.102 0.095 0.104 0.116 0.104 0.104 0.105 0.1021
Acetonitrile Benzene
0.104 0.030 -0.0225 0.0716 -0.0426
n-Butyl acetate Chlorobenzene
- 0.049 0.028 0.087 0.095 0.080
Dioxane Ethyl acetate Ethyl formate MEK 0.080 0.080
0.080 0.083 0.080 0.080 0.075 Methanol
0.107 0.130 0.132 0.124 0.132 0.1319 0.119 0.130
Methyl isobutyl ketone Methyl isopropyl ketone/ 0.075 ^-heptane (3/1-6/1, v/v) THF
0.132
0.128 (366) 0.068
0.075 0.0582
Refs.
25 RT 25 20
0.250 Poly(phenyl vinyl ketone) Poly(vinyl acetate)
T( 0 C)
270 680 759 238 287 25 32 25 289 25 288 25 201 35 34 290 194 30 84 30 84 30 84 25 32 290 25 32 290 15 32 291 252,287,292 25 32,293 25 205 25 289 35 32 618 25 287 25 288 25 205,294 25 32 289 34-38 295 618 881 290 25 252 30
84 618
0.057
25
0.054
25 34-38
637 803 865 296
25 25 25 25 25 25 25 25 25 25 25 25 26 40
297 297 297 289 289 289 289 289 289 289 289 289 289 289 289 823 823
0.050 Poly(vinyl acetate) 0.059 Trichlorobenzene Poly(vinyl acetate) (partially hydrolyzed) Deg. of Hydrolysis = 0.840 Water 0.883 0.964 0.008 Acetone 0.029 0.049 0.119 0.008 MEK 0.029 0.049 0.119 0.008 Methanol 0.029 0.049 0.119 Poly(9-vinyl adenine) Aq. 0.1 M NaCl+Na cacodylate
0.1030 0.151 0.155 0.161 0.103 0.101 0.098 0.090 0.083 0.087 0.092 0.110 0.128 0.115 0.107 0.071 0.326 0.331
References page VII-615
TABLE 1. cont'd dn/dc (ml/g) Polymer Poly(vinyl alcohol)
Solvent
A0 = 436nm
Water/n-propanol (98/2, w/w)
0.134
0.135
0.145
0.147
0.158
0.160
Water
Poly (vinyl bromide)
0.164
Water Benzene Carbon tetrachloride Dioxane Ethylene glycol dimethyl ether Ethylene glycol dimethyl ether/ethylene glycol monomethyl ether (56/44, v/v) THF
X0 = 633 nm
Others
T (0C)
Refs.
0.128(366) 0.133 (404) 0.142(366) 0.144 (404) 0.151 (366) 0.153 (404)
25 25 40 40 70 70 20 20 30
881 881 881 881 881 881 298 299 287 948 948 948 300 300 300 300
0.150 0,144 0.168
M w = 39900 M w -120000 M w = 160000 Poly(vinylbiphenyl)
/I0 = 546nm
0.164(578) 0.151 0.153 0.153
0.182 0.220 0.257 0.301
0.165 0.207 0.233 0.277
25 25 25 24 24 24 24
0.297-0.301
0.271-0.275
30
300
25
251 252 250
0.155 0.190 0.195 0.198 0.201 0.204 0.207 0.232 0.185 0.262
25 25 25 25 25 20 20 25 25 30 35 40 45 25 25 25
880 880 880 880 880 301 302 304 303 303 303 303 303 304 304 304
0.128
25
781
0.113 0.174 0.138
25 25 20 20
800 800 238 682 253 682 259 259 255,256 206 10 254,257 258 259 259 259 259
0.112 0.112(644)
Poly(vinyl n-butyl ether) MEK Poly(vinyl butyral) - acetylated Acetone Acetonitrile rc-Butyl acetate n-Butyl chloride THF Poiy(vinyl n-butyrate) MEK Poly(vinyl carbanilate) Dioxane PoIy(N-vinylcarbazole) Benzene
0.0792 0.119 0.130 0.084 0.075 0.071 0.0684 0.159 0.210 0.219 0.222 0.225 0.228 0.231 0.268 0.214 0.282
Chloroform Tetrachloroethane THF Poly(9-vinylcarbazole-c0-diethyl fumarate) Benzene Poly (N- vinyl- 3,6-dibromocarbazole) o-Dichloroenzene THF Poly (vinyl chloride) Acetone iso-Amyl acetate Aq. NH4OH; pH 9-10 (latex) «-Butyl acetate Cyclohexanone 0.0718 0.0723 0.079
0.0739 0.0758 0.0764 0.0767
0.098 0.200 0.112 0.0705 0.0714 0.0840 0.077 0.075 0.074 0.0727 0.0742 0.0746 0.0756
0.0701 (578) 0.0708 (578) 0.076(589) 0.078 0.0716(578) 0.0740 (578) 0.0745 (578) 0.0753 (578)
20 15.5 20 25 25 25 25 25 25 30 35
TABLE 1. cont'd dnldc (ml/g) Polymer
Solvent
I0 = 436 nm
A0 = 546nm
A0 = 633 nm
Others
0.0905 0.0840 0.0900 0.0970 0.0940 0.075 0.074 0.0380
Di-n-butyl phthalate Diethyl adipate Di-2-ethylhexyl phthalate
0.085 0.0435 0.0465 0.0494 0.0518
Diethyl malonate Diethyl oxalate Diethyl succinate Di-2-heptylnoyl phthalate Di-fl-hexyl phthalate
0.094 0.103 0.094 0.0420 0.0250 0.0260 0.0280 0.0300 0.0260 0.0900 0.0925
Dimethyl phthalate Dioxane
0.107 M w = 2.04 x iO6 1.78 x l O 6
0.107(589)
0.0850 0.0865 0.0395 0.069 0.078 0.0875 0.095
Di-rc-propyl phthalate DMF
0.084 0.0816 Ethyl heptanoate Tetrachloroethane
THF
0.104 0.11
0.0810
0.0813 (578) 0.102
0.1040 0.115
0.0432 0.0450 0.0540 0.0630 0.1017 0.110
0.1010(578)
T (0C) 50 50 75 75 95 20 25 25 20 25 50 80 105 20 20 20 25 25 50 70 105 25 25 25
255 256 256 255 256 682 851 256 682 256 256 256 256 682 682 682 256 256 256 256 256 256 256 260
25 25
206 261
28.5 28.5 25 25 50 75 95
262 262 256 256 256 256 256 258 259 682 255 255 255 255 259 265 258 266 263 261 256 206 267 259 259 259 259 34 264 682 637 851 267 255 255 255 255 255
25 20 20 25 50 75 16.5 RT
0.102 0.106 0.1124 0.119 0.1079 0.1067 0.1093 0.1118
0.105 0.1123 0.116 0.1065 0.1052 0.1053 0.1064 0.1087 0.1045 0.1065
0.115(589) 0.1068(578) 0.1046(578) 0.1059(578) 0.1093(578) 0.111 0.102
-, chlorinated 56.4, 58.3, 61.5, 63.4, 66.6,
wt.% wt.% wt.% wt.% wt.%
THF/water (91/9, v/v) Cl Tetrachloroethane Cl Cl Cl Cl
0.112 (/x)
0.106 0.1085 (^) 0.045 0.0424 0.525 0.0606 0.073
Refs.
20 25 25 25 25 25 25 30 35 35 20 25 25 25 25 25 25 25 25
References page VII-615
TABLE 1. confd dn/dc (ml/g) Polymer Poly(vinyl dimethylamylsilane) Poly(vinyl dimethylheptylsilane) Poly(vinyl dimethy lpheny lsilane) Poly(vinylidene chloride) Poly(vinyl ethyl ether) Poly(vinyl fluoride) Poly(vinylidene fluoride)
PoIy(N-vinyl-imidazole) incr. with mol. wt.
Poly(vinyl isopropyl ether) Poly(vinyl methyl ether)
Poly(a-vinylnaphthalene)
Poly(P-vinylnaphthalene)
Poly(2~vinylpyridine)
Solvent
X0 = 436 nm
A0 = 546 nm
A0 = 633 nm
Others
Refs.
Cyclohexane
0.070
25
884
Cyclohexane
0.085
25
884
Cyclohexane
0.142
25
884
l-Methyl-2-pyirolidone Tetramethylene sulfoxide MEK 0.0736 DMF DMA DMF DMSO AW-dimethylethyleneurea Hexamethylphosphoric triamide //-methyl pyrrolidone 3-methyltetramethylene sulfone Tetramethylurea
0.080 0.049
RT RT 25 25 25 25 25 25 25 25 25
695 695 250 268 986 986 986 986 986 986 986 986
0.235 0.224
25 25 25
887 719 719
0.224 (^)
25
719
0.0827 0.0944
25 25
Ethanol Methanol Tetrabutyl ammonium bromide Tetrabutyl ammonium bromide MEK MEK Chloroform THF Toluene Benzene Ethylene dichloride Ethylene glycol dimethyl ether Toluene Benzene Carbon tetrachloride Ethylene glycol dimethyl ether Ethylene glycol dimethyl ether/ethylene glycol monomethyl ether (56/44, v/v) Aniline Benzene rc-Butanol 2-Butanol Chloroform
«0.02 -0.033 -0.023 -0.062 -0.055 - 0.046 -0.052 - 0.064 -0.042
-0.031 -0.021 -0.060 -0.053 - 0.044 -0.50 - 0.063 -0.040
0.180-0.192
0.192 0.239 0.268
0.175 0.217 0.248
24 24 24
250 250 842 842 842 300 300 300
0.162-0.192 0.182-0.197 0.215 0.309
0.167-0.181 0.194 0.284
24 24 24 24
300 300 300 300
0.283
0.258
24
300
25 25 25 25 23 25 35 25 25 25 25
907 907 907 907 34 907 39 907 907 907 907 271 271 797
0.044 0.063 0.001
0.023 0.107 0.209 0.216 0.1372 0.168 0.1215
Cyclohexanone 1,2-Dichloroethane Dioxane DMF
0.144 0.148 0.175 0.165
atactic isotactic
0.157 0.163 DME/methacrylic acid (95/5, v/v) Ethanol
atactic isotactic isotactic
F( 0 C)
Ethanol -f 0.1M sodium acetate
0.187(589)
20
0.195 (fj.) (589) 20 25
0.245 0.221 0.221 0.222
797 907 271 271 271
Next Page
TABLE 1. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
MEK Methanol Af = 2.1 x 103-22.9 x 103 Poly(vinyl-2-pyridine) 0.950 Nitromethane/0.050 0.900 Nitromethane/0.100 0.800 Nitromethane/0.200 0.750 Nitromethane/0.250 0.700 Nitromethane/0.300 0.625 Nitromethane/0.375 0.565 Nitromethane/0.435 0.500 Nitromethane/0.500 0.470 Nitromethane/0.530 0.400 Nitromethane/0.600 0.250 Nitromethane/0.750 0.214 Nitromethane/0.786 Nitroethane n-Propanol 2-Propanol 1,1,2,2-Tetrachloroethane THF
X0 = 546 nm
A0 = 633 nm
Others
0.215
25 RT 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
0.254 0.270 0.259-0.263 carbon tetrachloride carbon tetrachloride carbon tetrachloride carbon tetrachloride carbon tetrachloride carbon tetrachloride carbon tetrachloride carbon tetrachloride carbon tetrachloride carbon tetrachloride carbon tetrachloride carbon tetrachloride 0.197 0.215 0.221 0.109 0.195
T (0C)
0.2020 0.1989 0.1918 0.1889 0.1847 0.1793 0.1740 0.1705 0.1684 0.1560 0.1525 0.1500
0.182 Poly(4-vinylpyridine)
1,1,1-Trichloroethane Chloroform DMF
0.162 0.150 0.160
25 25 25 0.153 0.153
Ethanol Ethanol/water (95/5, wAv) Isopropanol MEK/isopropanol (85/15, w/w) (86/14, w/w) Methanol Nitromethane Phenyl cyanide Poly(2-vinylpyridine 1-oxide) Aq. IMNaCl 2-Propanol Poly(4-vinylpyridine ;V-oxide)Aq. 0.1 M NaCl Poly(vinylpyrrolidone) Chloroform Methanol
25 25
0.224 0.267
25 25 0.180 0.159 0.152
0.052 0.209 0.241 0.108
0.185 0.181 0.180 0.179 0.179
Poly(vinyltrimethyl silane)
0.108 0.183 0.176 0.135 0.185 0.176 0.176 0.175 0.174
Water
KCl 0.35 M 0.65 M Carbon tetrachloride Cyclohexane Cyclohexane
25 25 25 25
0.220
Water
Mw=IOlOO Mw = 35100 Mw =46400 Mw = 1540000 Poly(vinylsulfonic acid), potassium salt
RT
0.231 0.231 0.224 0.221
25 25 25 0.176(578) 0.175 (578) 0.174(578) 0.173 (578) 0.181 0.181 0.185 0.179
0.01664 (/*)* 0.01638 (^)* 0.048 0.083 0.087
20 25 30 35 25 25 25 25 23 23 25
Refs. 907 680 907 909 967 967 967 967 967 967 967 967 967 967 967 967 907 907 907 907 907 272 907 146 146 658 680 273 273 274 274 274 274 275 275 275 146 679 640,987 679 306 201 193 193 306 792 792 792 792 948 948 948 948 308 308 307 307 884
* Expressed in i/g-segment.
References page VII-615
Previous Page
TABLE 2. MAIN-CHAIN CYCLIC CARBON POLYMERS dn/dc (ml/g) Polymer
Solvent
A0 = 436nm
Poly(acenaphthylene)
Benzene 1,2-Dichloroethane Toluene Poly(4,7-dimethyl-indene) Benzene Poly(6-methyl-indene) Benzene Poly(phenylenes)-phenyl substituted Benzene THF
0.225 0.264
A0 = 546 nm
yto = 633nm
Others
0.119 0.238 0.190
T( 0 C) 25 35 25
55 55 56 750 750
25 25
848 848
0.100 0.100 0.250 0.294
Refs.
TABLE 3. MAIN-CHAIN HETEROATOM POLYMERS dn/dc (ml/g) Polymer 3.1.
Solvent
Others
T( 0 C)
Refs.
0.095 0.114
0.08825 80 75
340 819 328
0.114 0.098 0.124 0.169 0.1153 0.118 0.116 0.128 0.133 0.136 0.139 0.145 0.152 0.160 0.1136
25 25 25 25 25 25 25 35 40 60 25 35 40 60 25
330 330 330 331 331 330 787 787 787 787 787 787 787 787 331
0.226 0.185 0.123
30 25 30
921 331 963
0.119 0.117 0.119 0.124
30 30 30 30
983 983 983 983
25 25 25 25 25 25 25 25
332 332 332 332 332 332 332 332 333 333
A0 = 436 nm
A0 = 546 nm
A0 = 633 nm
C - O - C POLYMERS (POLY(OXIDES), POLY(ESTERS) AND OTHERS)
3.1.1. POLY(OXIDES) Poly(formaldehyde) see Poly(oxymethylene) Poly(oxybutylethylene) [Poly(hexamethylene oxide)] Diethyl ketone Poly(oxy-tert-butylethylene) c-Dichlorobenzene Isooctane Poly(oxy-2,6-dimethyl-1,4-phenylene) (PPO) Benzene Chlorobenzene Chloroform Toluene
Trichloroethane
Xylene Poly(oxy-2,6-diphenyl-1,4-phenylene) Chloroform Toluene Poly(dichlorophenylene oxide) Toluene Mw = 5 x l 0 4 Mw = 0 . 4 7 x l 0 5 Toluene M w = 1.14xl0 5 Toluene 5 Mw=0.47xl0 Toluene Mw = 0 . 4 7 x l 0 5 Toluene Poly(oxyethylene) glycol M w = 62 Acetonitrile 100 161 205 316 407 970 9400 106 Benzene 194
0.0964 0.106 0.114 0.121 0.123 0.130 0.135 0.135 -0.086 -0.073
TABLE 3. cont'd dn/dr (ml/g) Polymer
Solvent
A0 = 436 nm
282 810 3510
A0 = 633
rnn
Others
-0.016
ChloroformM-hexane (47/53, v/v) 1,2-Dibromoethane Dioxane
25 30 54 25 30 23
-0.018 -0.013 -0.017 to -0.010 -0.022 -0.108
-0.039 0.054 0.054
-0.090 0.076 0.066 0.091 0.128 -0.030 0.053 0.091
-0.048
-0.044 0.045
0.061 DMF M w = 9400 M w = 810 10000
MEK Methanol
Mw=
62 100 161 205 316 445 810 1020 3000 6000 9400 10000 31000 0.145 0.150
Mw =0.68 xlO 5 Mw = 6700
Methanol Methyl acetate Pyridine 1,1,2,2-Tetrachloroethane THF Water
-0.026 0.006 0.134
62 106 194 300 600
0.138 0.136 0.134 0.133 0.093 0.108 0.124 0.126 0.135
0.111 -0.018 0.007 0.068 0.132 0.139 0.135
0.134 0.132 0.131
0.123 0.131
23
860 333 846 335 332 333 333 334 332 332 332 332 332 332 333 332 333 333 332 333 332 193 328 846 846 963 332 860 860 334 337 334 725 685
25 25 25 25 45 30 45 25 25 23 23 27
0.132 0.133 0.132 0.129
0.135 (578)
0.133 (578) 0.132(578) 0.130(578)
333 333 332 846 846 612 962 860 334 751 751 751 860 860 846 193
25 25 25 25 25 25
0.134 0.132
Refs.
25 25 25 23 23 30 20
45 25 25
<0.05 0.044 0.092 0.094 0.150 0.118 0.127 0.135 0.139 0.141 0.142 0.143 0.144 0.149 0.150 0.150 0.148 0.150 0.143 0.152 0.142 0.142
0.138
Mw=
T( 0 C)
- 0.066 -0.059
M= 1.5 x 103 - 5.3 x 105 Benzene Mw =4000 Bromofrom n-Butanol Carbon tetrachloride/ methanol (75/25, v/v) (50/50, v/v) (20/80, v/v) Chlorobenzene Chloroform
Mw = 10000
A0 = 546 nm
20 25
25 30 40 50
688 725 725 725 333 333 333 333 333
References page VII - 615
TABLE 3. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436nm
600 810 0.136 1200 0.139 3000 0.141 4000 6000 6000 0.145 9000 9400 10000 0.142 14400 14400 31000 340000 0.149 Poly(ethylene glycol) carbamate Mw = 5500 Benzene -0.035 Poly(oxyethylethylene) [PoIy(I-butene oxide)] Benzene Chlorobenzene Ethyl acetate n-Hexane MEK 0.0863 Toluene Poly(oxymethylene) Hexafluoroacetone/water 0.134 (1/1.7, mol/mol) + l%(v/v) triethylamine buffer, pH 2.0 0.114 Oi) 1H,1H,5H-Octafluoropentanol-1 Poly(oxymethyleneoxyethylene) [Poly(dioxolane)] MW Chlorobenzene o-Dichlorobenzene Dichloroethane Dioxane Poly(oxy-1-octylethylene)) Chloroform Poly(oxy(l-phenyl)ethylene) [Poly(styrene oxide)] Benzene M w = 67 Acetone 0.085 125 0.0915 450 0.096 1100 0.099 1240 0.099 2100 0.100 3270 0.100 3850 0.101 Benzene -0.0530 Polypropylene glycol) Mw = 4000 Benzene -0.055 Chlorobenzene -0.0658 w-Hexane 0.0775 0.0460 M w = 9.6 XlO 5 0.0887 0.101 2.0xl05 0.0895 0.104 Feron 113 0.118 Isooctane 0.0655 Methanol 0.137 Mw -.12.2 x l O 5 0.118 12.5 XlO 5 0.115 Poly(oxytetramethylene) [Poly(tetrahydroruran)] Chlorobenzene 0.070 Ethyl acetate 0.110
A0 = 546nm
A0 = 633nm
Others
T (0C)
Refs.
0.128 (589)
25
0.134(589) 0.134(589)
25 25
0.134(589)
25 25 25 80 25 25
338 333 333 333 338 338 333 338 332 333 336 336 332 339
30
962
25 25 25 25 30 25
326 326 326 326 327 326 341
0.128 0.134
0.139 0.135 0.139 0.115 0.135
-0.0403 -0.0784 0.1125 0.1008 -0.0357 0.128 OMl(JJL) 0.156
110
341 325
25
578 578 578 578 329
-0.0448
30 25 25 25 25 25 25 25 25 25
328 342 342 342 342 342 342 342 342 343
-0.0638 0.0775 0.0460 0.0887 0.101 0.0895 0.104 0.115 0.0655 0.135 0.118 0.115
30 25 25 40 46 57 46 57 25 35 24 ± 1 25 25
963 343 343 343 343 343 343 343 343 343 300 343 343
25
347 348
0.051 0.075 0.020 0.050 0.0357 0.085
TABLE 3. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
Ethyl acetate/n-hexane (22.7/77.3, w/w) isopropanol Isopropyl acetate MEK
Methyl acetate 3-Methyl-2-heptanone 2-Pentanone THF Poly(oxytrimethylene) 3.1.2.
A0 = 546 nm
A0 = 633 nm
Others
7 (0C)
Refs.
0.114 0.114
30 31.8
349 349
0.108 0.098 0.102
46 22.5 30 25
351 352 348 350 347 350 350 350 348 350 353
0.0625
0.091 0.095 0.101 0.056 0.084 0.0625 0.064
25 25 25 25 25
MEK
0.0946
POLY(ESTERS)
Poly(ethylene terephthalate) see Poly(oxyethyleneoxyterephthaloyl) Poly(P-hydroxybutyric acid) 2,2,2-trifluoroethanol 0.153 Poly(oxyadipoyloxytetramethylene) [Poly(butylene adipate)] Acetic acid Diethyl carbonate
0.149
0.146
0.100 0.084 0.091 Dioxane 0.0518 THF 0.0784 Poly(oxycarbonyloxy-l,4-phenyleneisopropylidene-l,4-phenylene) [Poly(carbonate) from Bisphenol A] Bromoform 0.004 0.004 Chloroform 0.162 0.164 0.156 0.153 0.157 0.147 0.167 0.155 Chloroform 4-2% (w/w) 0.154 ethanol 1 /2-Dibromomethane 0.054 0.050 Dioxane 0.168 Dichloroethane 0.166 0.154 Methylene chloride 0.1660 0.177 0.1773
Pyridine 1,1,2,2-Tetrachloroethane THF
0.077 0.106 0.1889
0.1547(553) 0.1538(574) 0.1654(533) 0.1643(574) 0.165(553)
0.177 0.073 0.094
0.1765(553) 0.1753(574) 0.1815(553) 0.1805(574)
0.1943 0.198 0.194 Poly(oxyethyleneoxyterephthaloyl) [PoJy(ethylene terephthalate)] Dichloroacetic acid Trifluoroacetic acid l,l,l,3,3,3-Hexafluoropropanol-2 0.308 Poly(oxy- 1-oxohexamethylene) [Poly(e-caprolactone)] Prepared with 1 mol/mol (CoH 5)3 Al Acetic acid tf-Dichlorobenzene
0.148(578)
0.186 0.182 0.1021 0.278
25
988
50 35 70 35 35
317 317 317 317 317
23 20 20 23 23 25 25
860 319 318 920 793 860 588 758
23 25 25 7 7 25 27 27 25 23 23 7 7 27 27 23 25
860 320 588 322 322 321 322 322 322 860 860 322 322 322 322 860 588
35
0.287
25 25
34 323 875 843
0.108 -0.0595
50 35
317 317
0.243
References page VII-615
TABLE 3. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
Diethyl carbonate
A0 = 546 nm
A0 = 633 nm
Others
T (0C)
Refs.
0.092 0.0990 0.0489 0.0507 0.054 0.0581
35 70 25 35 50 70
317 317 317 317 317 317
0.0940 -0.057 0.093 0.0939 0.101 0.0489 0.0504 0.0581 0.0795
50 35 35 40 70 25 35 70 35
317 317 317 317 317 317 317 317 317
0.0917 0.1021
35 70
317 317
0.149
25
703
0.151 0.151
25 25
702 595
85
324
0.039
20
636
0.100 -0.071 0.090 0.100 Dioxane 0.050 0.054 0.054 THF 0.076 Poly(oxytetramethyleneoxyadipoyl-co-butandiol-cc-diphenylmethane diisocyanate) DMF 0.110 Poly(oxytetramethyleneoxyterephthaloyl) 1,1,1,3,3,3 Hexafluoropropanol-2 Poly(oxytriphenylstibyleneoxytetramethylterephthaloyl) HMP Poly(oxytriphenylstibyleneoxyterephthaloyl) HMP Poly(oxytriphenylstibyleneoxybromoterephthaloyl) HMP Poly(oxytriphenylstibyleneoxynitroterephthaloyl) HMP Poly(oxytriphenylstibyleneoxydichloroterephthaloyl) HMP Poly(oxytriphenylstibyleneoxyoxalyl) HMP Poly(oxytriphenylstibyleneoxyfumaroyl) HMP Poly (oxytriphenylstibyleneoxyferrocene-1,1 -dicarboxoyl) HMP
50 35 45 70 35 50 70 35
317 317 317 317 317 317 317 317
25
877
25
875
Dioxane
Prepared with 1 mol% (C2H5)IAlCl Acetic Acid -Dichlorobenzene Diethyl carbonate Dioxane THF Prepared with 0.61 mol% W-C4H9OK Diethyl carbonate Poly(D-oxy- l-oxo-3-methyl tetramethylene) Trifluoroethanol 0.152 Poly(D,L-oxy-l-oxo-3-methyl tetramethylene) Trifluoroethanol 0.153 Tetrahydrofuran 0.153 Poly(oxy-l-oxo-2-methylethylene) [poly(lactic acid)] Bromobenzene Poly(oxypropylenetriol-co-diphenylmethane diisocyanate) DMF Poly(oxysebacoyloxyoctamethylene) Acetic acid 0-Dichlorobenzene Diethyl carbonate
-0.06
0.236 0.56
873
0.86
873
2.2
873
0.45
873
0.18
873
2.1
873
0.68
873
0.88
873
3.1.3. OTHER COMPOUNDS Poly(oxy-1,4-phenyleneoxy-1,4-phenylene-carbonyl-1,4-phenylene) 97.4% H 2 SO 4
0.525 (514) 0.385
RT RT
747 747
TABLE 3.
cont'd d/t/dc (ml/g)
Polymer 3.2.
Solvent
A 0 = 436 nm
A0 = 546 nm
A0 = 633 nm
Others
T( 0 C)
Refs.
C - S - C POLYMERS (POLY(SULFONES) AND OTHERS)
3.2.1. POLY(SULFONES) Poly(bicycloheptene-ce>-sulfur dioxide) Chloroform Cyclohexanone PoIy(I-butene-co-sulfur dioxide) Chloroform MEK Poly(cyclohexene-co-sulfur dioxide) Chloroform Poly( 1 -dodecene-co-sulfur dioxide) Phenolphthalein poly(ether sulfone) CHCl3 Chloroform PoIy(I-hexene-cc-sulfur dioxide) Chloroform n-Hexyl chloride MEK/isopropanol (37/63, v/v) (41.5/58.5, v/v)
0.102 0.112
25 25
696 696
0.0949(578)
20 26
355 904
0.1133
0.1104(578)
20
355
0.0695
0.204(532) 0.0581 (578)
25 20
967 355
0.0782 (578)
20 7 20 27
355 355 355 355
37 7 20
355 355 355
20
355
25
580
0.102
25
966
0.082 0.157
25 25
972 972,966
5 25 45 25 25 25 5 25 45
971 970 970 970 970 970 970 970 970 970
30
973
25
947
0.0970 0.133
0.129
0.0790 0.0796 0.0834 0.1242 0.1261 0.1208 0.1233
Poly( 1 -octene-co-sulfur dioxide) Chloroform 0.0732 Poly(oxy-1,4-phenylenesulfonyl-l ,4-phenylene) [Poly(sulfone)] DMF
0.0718 (578) 0.194
3.2.2. OTHER COMPOUNDS Poly(2-acrylamido, 2-methyl propane sulfonic acid) 4.5 M aqueous NaCl Poly(2-acrylamido, 2-methyl propane sulfonamide) Formamide Water Poly(2-acrylamido-2-methylpropane sulfonate) 1 M aqueous NaCl Poly(2-ethyl-2-oxazoline) Water Water Water Ethanol i-Pfopanol «-Butanol Poly(2-methyl-2-oxazoline) Water Water Water Poly(2-methoxycyanurate) of bisphenol F Chloroform 0.173 Poly(p-phenylene-ds-benzobisoxazole) Methane sulfonic acid Poly(thio-carbonyl-1 -(4-methylphenyl sulfonylamino)-ethylene) DMF Poly(thiopropylene) Benzene
0.154 0.184(510) 0.176(510) 0.174(510) 0.155 (510) 0.155(510) 0.110(510) 0.182(510) 0.172(510) 0.172(510)
0.480 0.126-0.142 0.100 0.0935
0.08095
20
853 344 345 346
3.3. C - N - C POLYMERS (POLY(AMIDES), POLY(ISOCYANATES), POLY(URETHANES) AND OTHERS) 3.3.1. POLY(AMIDES) Poly(iminoadipoyliminohexamethylene) (Nylon 66)
References page VII-615
TABLE 3. confd dn/dc (ml/g) Polymer
Trifluoroacetylated
Solvent
A0 = 436nm
Formic acid 90%+ 0.5 M sodium formate Trifluoroethanol Acetone Formic acid 75% 80% 85% 90%
A0 = 546nm
A0 = 633nm
Others
T (0C)
Refs.
0.137
25
870
0.228 0.076
25 25 25 25 25 25 25 25
870 669 311 311 312 311,313 309 312 311 311 310
0.144 0.145 0.141 0.145 0.145 0.145
95% 100%
0.150 0.157
25
0.1525 Formic acid 4- KCl 85% 4-2.0 M KCl 0.124 90%+ 0.2M KCl 0.143 0.5 M KCl 0.140 1.0MKC1 0.136 1.5 M KCl 0.131 2.0M KCl 0.126 2.5 M KCl 0.122 95% 4-2.0M KCl 0.129 Formic acid 4- sodium formate 75%4-0.5M 0.138 80%4-0.5M 0.136 90% 4-0.02 M 0.147 0.05M 0.146 0.10M 0.142 0.2 M 0.142 0.5 M 0.136 0.75M 0.130 1.0M 0.124 95%4-0.5M 0.136 100% 4-0.5 M 0.136 Tetrafluoropropanol 0.190 Tetrafluoropropanol4-0.1N 0.190 sodium trifluoroacetate buffer Poly(4-iminobenzoyl) Dichloroacetic acid 0.151 DMA 0.188 Trifluoroacetic acid 0.226 96% Sulfuric acid 0.360 Poly(iminocarbonyl-(4,6-dicarboxy- l,3-phenylene)-carbonylirnino-1,4-phenylene) [Poly(amic acid)] DMF 0.269 0.230 Poly(iminocarbonyl-(3,4-dicarboxy-1,5-phenylene)carbonylimino-1,4-phenyleneisopropylidene-1,4-phenylene) [Poly(amic acid)] LiBr 0.1N in DMA 0.206 0.210 Poly(iminohexamethyleneiminoterephthaloyl) 1,1,1,3,3,3-Hexarluoro0.231 isopropanol-2 Poly(imino(l-oxododecamethylene)) (Nylon 12) m-Cresol -0.030 m-Cresol -0.020 m-Cresol/n-heptane (90/10, v/v) -0.004 0.036 GLO (80/20, v/v) 0.006 0.075 (M) (70/30, v/v) 0.022 0.182 (/u) (60/40, v/v) 0.043 0.340 0 0 (40/60, v/v) 0.083 0.254 0 0
313 313 313 313 313 313 313 313 25 25 25 25 25 25 25 25 25 25 25 25 25
311 311 311 311 311 311 311 311 311 311 311 314,315 314
RT RT RT
808 808 808 656
25
816 574 573
25
875
25 25
766 698
25 25 25 25 25 25 25 25 25 25
698 698 698 698 698 698 698,790 698,790 791 791
TABLE 3. cont'd dw/dc (ml/g) Polymer
Solvent
A0 = 436 nm
m-Cresol/TFP (40/60, v/v) Hexafluoroisopropanol 0.266 Trifluoroacetylated Acetone 0.088 Poly(imino-(l-oxohexamethylene)) (Nylon 6) Carbon disulfide 95% Chloral hydrate 0.075 o-Chlorophenol 0.024 m-Cresol 0.003 m-Cresol/rc-Heptane (90/10, v/v) (80/20, v/v) (70/30, v/v)
(50/40, v/v) (50/50, v/v)
Dichloroacetic acid
DMA Formic acid 90% ±1.0 M KCl 2.0M KCl 90% Formic acid 0.138 4- 0.5 M Na formate 1,1,1,3,3,3-Hexafluoropropanol-2 Octafluoropentanol Tetrafluoropropanol/water (95/5, v/v) (90/10, v/v) (80/20, v/v) (70/30, v/v) (90/10, v/v) Tetrafluoropropanol + 1.27 x 10"3g/ml LiCl (extrapolated to 0% H2O 2.54 x 10 ~3 g/ml LiCl (extrapolated to 0% H2O) 4.24 x 10 " 3 g/ml LiCl (extrapolated to 0% H2O) 6.36 x 10 ~3 g/ml LiCl (extrapolated to 0% H2O) Trifluoroacetic acid TFP 0.187 0.038 TFP/-chlorophenol (10/90, v/v) 0.027 OO (27/73, v/v) 0.061 (27/73, v/v) 0.100 (M) (50/50, v/v) 0.092
A0 = 546 ntn
A0 = 633 nm
Others
0.254 00 0.255
J( 0 C)
Refs.
25 25 25
766 614 669
0.005
25 60 30 25 30 25
309 871 916-918 309 916-918 698
0.020 0.047 OO 0.031 0.032 00 0.246 OO 0.045 0.243 OO 0.241 (jjk) 0.240 00 0.053 0.471 00 0.853 00 0.083 0.816 (M) 0.71100 0.640 00 0.098 0.098 0.099 0.104 0.136 0.136 0.126 0.135
0.134
25 25 25 25 20 25 25 37 45 25 25 20 25 25 37 45 RT 25 50 80 RT 25 25 25
698 698 698 698 698 698 698 698 698 698 698 698 698,790 698,790 698 698 808 309 309 309 808 309 309 623
0.253
25
876
0.192
25
309
0.183 0.182 0.180 0.179 0.18 0.183
25 25 25 25 25 25
316 316 316 316 316 316
0.183
25
316
0.183
25
316
0.182
25
316
0.172
RT 30 30
808 916-918 916-918
30
916-918 916-918 916-918 916-918
0.0815 0.072
0.071 (578)
-0.016
30 30 30
References page VII - 615
TABLE 3. coned d/t/dc (ml/g) Polymer
Solvent (50/50, (70/30, (70/30, (90/10,
v/v) v/v) v/v) v/v)
A0 = 436 nm
A0 = 633 nm
Others
0.220 (M) 0.143 0.290 0 0 0.174 0.254 00
TFP/water (90/10, v/v) 4-0.1MLiCl Trifluoroethanol Trifluoroacetylated Acetone Poly(imino-( 1 -oxooctamethylene)) TFP/5 vol% water/ 0.05MLiCl Poly [imino-( 1 -oxotetramethylene)] m-Cresol ra-Cresol/n-Heptane (90/10, v/v)
A0 = 546 nm
916-918 916-918 916-918 916-918 916, 918 761 791 791 870 669
0.173 0 0
25
878
0.015
25
698
25 25 25 25 25 25 25 25 25 25
698 698 698 698 698 698 698 698 698 698
RT RT RT RT RT
862 862 862 862 862
0.275 0.287
25 25
841 850
0.278
25
0.254
25
841 656 850
25 25 25
669 669 669
20 25
784 669
0.236 0.075
0.028 0.042 0.035 0.121 0.055 0.234 0.079 0.415 0.089 0.710
(70/30, v/v) (60/40, v/v) (50/50, v/v)
Refs.
30 30 30 30 30 25 25 25 25 25
0.180 0.182 0.182 Oi)
(80/20, v/v)
T( 0 C)
Poly(imino-1,3-phenylene-imino-isophthaloyl) DMA 0.245 DMA + 3% LiCl 0.219 DMA+ 5% LiCl 0.217 DMA+ 6.5% LiCl 0.214 DMA + 8% LiCl 0.200 Poly(imino-1,4-phenylene-imino-terephthaloyl) Chlorosulfonic acid Chlorosulfonic acid + 0.01MLiClSO 3 H 2 SO 4 96% H 2 SO 4 0.309 Methane sulfonic acid Poly(imino-trimethylhexamethylene-imino-terephthaloyl) (Trogamid T Polyamide) Trifluoroacetylated Acetone 0.117 Trifluoroacetylated Acetonitrile 0.105 Chloroform/ethanol 0.191 (53/47, v/v) DMF 0.153 0.144
(/i) OO 00 00 00
3.3.2. POLY(ISOCYANATES) Poly(Af-butyliminocarbonyl) [Poly(butyl isocyanate)] Chloroform THF Poly(Af-hexyliminocarbonyl) n-Butyl chloride Chloroform /z-Hexane THF M= 38xl03 M=IlOxIO3 Poly(Af-octyliminocarbonyl)
THF THF THF
0.054 0.134 0.0978 0.100 0.099
0.054 0.084 0.092
40 25
0.129
25
0.097 0.088 0.093 0.098
25 25
356 706 745 358 717 358 360 708 854 854 708
TABLE 3. cont'd d/i/dc (ml/g) Polymer
Solvent
X0 = 436nm
A0 = 546 nm
A0 = 633 nm
Poly(/V-tolyliminocarbonyl) [Poly(tolyl isocyanate)] Bromoform
Others
T (0C)
Refs.
0.017
359
0.159 0.166 0.163 ((J,) 0.173 0.178 (M) 0.181 0.188 (M) 0.189 0.200 OO 0.195 0.205 (fj) 0.203 0.154 0.159 OO 0.147 0.160 (/u) 0.143 0.149 00 0.139 0.135 00 0.134 0.125 (M) 0.130 0.120 (M) 0.125 0.123
357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357 357
3.3.3. POLY(URETHANES) Poly (oxycarbonylimino-1,4-phenylenemethylene-1,4-phenylene-iminocarbonyloxyhexamethylene) DMF DMF/acetone (90/10, v/v) (80/20, v/v) (70/30, v/v) (60/40, v/v) (50/50, v/v) (40/60, v/v) DMF/toluene (90/10, v/v) (80/20, v/v) (70/30, v/v) (60/40, v/v) (50/50, v/v) (40/60, v/v) (30/70, v/v) (25/75, v/v) Poly(oxycarbonylimino-2,4-tolylene-iminocarbonyl-oxy(poly(oxypropylene)) Methanol 0.152 0.150 0.148 0.145
22 22
361 361
35 35 35 35
952 952 959 952
25
960
25 20 25 25 25 25 25 25 25
799 868 855 831 916 855 855 607 607
22 35 35 35
660 662 969 969 969
3.3.4. OTHER COMPOUNDS Poly(aryl ether ether ketone) Mw = 123600 NMP Mw = 33800 NMP Mw = 23800 NMP Mw = 3450 NMP Phenolphthalein poly(aryl ether ketone) CHCl3 Poly(hydrazocarbonyl-1,4-phenylene-imino-terephthaloyl) DMSO DMA DMA 4-5% LiCl DMSO
0.188 0.185 0.185 0.180 0.231 (532) 0.175 0.564 0.292
0.254 0.180 0.166 0.195 0.166 96% H 2 SO 4 0.305 DMA 0.288 0.248 DMSO 0.240 0.205 Poly(nitrilo-2-methy 1-1,4-phenylene-nitrilo-methylidine-1,4-phenylene-methylidine) (Poly(azomethine)) 96% H 2 SO 4 0.62 H 2 SO 4 1.05 0.78 Polyethyleneimine Water 0.210 IM aqueous NaCl 0.195 Methanol 0.225
References page VII - 615
TABLE 3.
cont'd dn/dc (ml/g)
Polymer
Solvent
A0 = 436nm
A0 = 546 nm
Poly(oxydianiline-pyromellitic dianhydride) poly(amic acid) N-methylpyrrolidone Ionene Polymers CH Z" CH Z" 1 (P°ly m e r 3,4 Br with x = 3, y — 4 and Z = Br) 3 3 I I (Polymer 6,6 Br with x = 6, y = 6 and Z = Br) N + - (CH 2 )^-N + - (CH2)), (Polymer 6,6 Br with x = 6, y = 6 and Z = Cl) CH3 CH3 3,4Br 0.4M aq. KBr L J " 0.30MKBr 0.20M 0.10M 0.05 M 6,6Br, 0.4MKBr 6,6Cl, 0.4MKBr 6,6Cl, 0.4MKC1
X0 = 633 nm
T (0C)
Others
0.192
Refs. 968
0.1560-0.1601 0.160 0.160 0.162 0.168 0.1567-0.1609 0.1546-0.1599 0.1636-0.1668
572 572 572 572 572 572 572 572
3.4. POLY(AMINO ACIDS) Poly(Y-benzyl-L-glutamate)
Dichloroacetic acid (DCA) DCA/dioxane (20/80, v/v) (40/60, v/v) (50/50, v/v) (60/40, v/v) (66/34, v/v) (70/30, v/v) (80/20, v/v) (83/14, v/v)
Dioxane Bovine Serum Albumin Native: Aq. buffer, pH 6.2-7.4 Heated 100min at 600C; pH 6.2-7.4 Heated 100 min at 700C; pH 6.2-7.4 Heated 100 min at 900C; pH 6.2-7.4 PoIy(Y>N-carbobenzoxy-L-a,Y-diaminobutyric acid) DMSO 0.087 DNA-Sodium salt Aq. 0.2MNaCl, 7 = 0.5 0.170 0 0
0.085 0.103 0.102 0.097 0.098 0.096 0.100 0.093 0.103 0.081 0.108 0.077 0.115 0.083 0.124 0.084 0.124 0.114 0.193 0.190 0.180 0.147
(IJL) (/A) Ox) (/i) 00 (At) Oi) 00
0.083
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 619,629 906 906 906 906
25
600
25
710
/ = 0.2
0.166(/A)
25
710
/ = 0.02 / = 0.01 / = 0.005
0.172 (/i) 0.176(Ai) 0.180 0 0
25 25 25
710 710 710
25 25 25 25 25
739 739 739 739 739
25 25 25 25 25 25 25 25 25 25
910 910 910 910 910 910 910 910 910 910
Poly(L-glutamic acid)
-, Sodium salt
Aq. 0.5 M NaCl Aq. 0.2MNaCl Aq. 0.1 M NaCl Aq. 0.05 M NaCl Aq. 0.02 M NaCl 1-Propanol/water (10/90, v/v) (20/80, v/v) (30/70, v/v) (40/60, v/v) (60/40, v/v)
0.170 0.183 0.190 0.194 0.195
00 00 00 00 00 0.191 0.174 0.181 0.143 0.171 0.133 0.157 0.111 0.141 0.089
(M)
(At) (Ai) ((J,) (At)
TABLE 3. cont'd dn/dc (ml/g) Polymer
Solvent (70/30, v/v) (72/25, v/v) (85/15, v/v) 2-Propanol/water (10/90, v/v) (20/80, v/v) (30/70, v/v) (40/60, v/v) (50/50, v/v) (60/40, v/v) (70/30, v/v) (72/25, v/v) ferf-Butanol/water (10/90, v/v) (20/80, v/v) (30/70, v/v) (50/50, v/v) (60/40, v/v) (70/30, v/v) (75/25, v/v) (80/20, v/v) Glycol/water (10/90, v/v) (20/80, v/v) (30/70, v/v) (40/60, v/v) (50/50, v/v) (60/40, v/v) (70/30, v/v) (80/20, v/v) (90/10, v/v) DMSO/water (10/90, v/v)
kQ = 436nm
A0 = 546 nm
^0 = 633 nm
T (0C)
Others
Refs.
0.136 0.103 (/i) 0.131 0.107 (M) 0.128 0.119 (M)
25 25 25 25 25 25
910 910 910 910 910 910
0.185 0.167 (M) 0.174 0.140 (M) 0.166 0.130 (/x) 0.151 0.109 (M) 0.143 0.103 (M) 0.135 0.097 (M) 0.129 0.117 Ox) 0.127 0.119Ox)
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910
0.191 0.171 (M) 0.176 0.142 (/x) 0.168 0.127 (M) 0.138 0.084 (M) 0.132 0.082 (M) 0.128 0.090 (M) 0.124 0.100 (M) 0.123 0.103 Ox)
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910
0.172 0.182 (M) 0.161 0.176 (M) 0.152 0.166 (M) 0.142 0.150 (M) 0.137 1.138 00 0.132 0.128 (M) 0.130 0.120 (M) 0.126 0.112 (M) 0.121 0.100 (M)
25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910
0.180 0.157
25 25
910 910
(M)
References page VII - 615
TABLE 3. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436nm
A0 = 546 nm
A0 = 633 nm
(20/80, v/v) (30/70, v/v) (40/60, v/v)
Refs.
0.170 0.131 (/i) 0.161
25 25 25
910 910 910
0.120(M)
25
910
0.151 0.092 (M) 0.141 0.073 (M) 0.130 0.045 (M)
25 25 25 25 25 25
0.154
0.150
0.131 0.102 0.158 0.102 0.153
0.127 0.097 0.156 0.095 0.151
650 650 650 650 650
(60/40, v/v) Aq. 1% cetyl trimethyl ammonium bromide Aq. 8MGHC1 Aq. 15% MgCl2 Aq. 0.1 M NaCl Aq. 8 M Urea Water PoIy(N5 -(2-hydroxyethyl)L-glutamine) Water Water/2-propanol (75/25, v/v) (60/40, v/v) (40/60, v/v) Poly(4-nitrol-L-phenylalanine) WV-Dimethylacetamide Poly(L-proline) Form I: propionic acid Form II: propionic acid Collapsed form: propionic acid -4- 3 M LiBr Phycocyanin Aq. pH 6.8,/ = 0.1 Poly(sulfopropyl betaines) Aq. 0.1M NaCl Tobacco mosaic virus Water a-Tropomyosin Aq. NaCl
T (0C)
910 910 910 910 910 910 650
(50/50, v/v)
Glycogen
Others
0.186
25
590
0.161 0.158 0.151
25 25 25
590 590 590 961 857 857 857
0.1398 0.158 0.167 0.122
24 24 24 0.180
25 25 60
908 679 587 734
0.098
23 ± 2 23 ± 2 25 25 25 25 28 25 25
362 362 947 947 947 947 978 978 37
0.115 0.092 0.103 0.123 0.112
25 25 25 25 25
37 37 37 37 37
0.133 0.135 0.145 0.172 0.175
25 25 25 25 25 25 25 25 25
37 37 37 37 37 201 779 777 138
0.197 0.184 0.187
3.5. POLY(SILANES) AND POLY(SILAZANES) Ludox
Diluted with water Diluted with NaCl (0.05M) Poly(di-rc-hexylsilane) Hexane THF Cyclohexane Toluene Poly(dimethyl siloxane) Bromocyclohexane Toluene Poly(dimethylsilmethylene) n-Heptane w-Heptane/n-propanol (75/25, v/v) (71/29, v/v) (69.5/30.5, v/v) Poly(dimethylsiltrimethylene) n-Heptane Poly(diphenylsiltrimethylene) Toluene Toluene/cyclohexanol (79.5/20.5, v/v) (75/25, v/v) (70/30, v/v) (40/60, v/v) (37.6/62.4, v/v) Poly(oxydimethylsilylene) Benzene M = 1100-8700 Benzene/triethyl borate (94.44/5.56, v/v)
0.0620 0.0592
0.0608 0.0587
0.0606 (578) 0.0585(578) 0.177 0.138 0,123 0.044
- 0.825 -0.0938
0.098 -0.096 - 0.108 to - 0.099 0.115
TABLE 3. cont'd d/i/dc (ml/g) Polymer 1.06 XlO 6 0.078 XlO 6 0.545 XlO 6 0.34 x l O 6 0.085 x 106 0.033 x 106 1892 978 682 150 M = 930-32600
Mw=
M = 481-1132
Solvent
A0 = 436 nm
Bromocyclohexane
A0 = 546 nm
A0 = 633
rnn
Others
0.078 0.079 -0.083 0.081 0.090 0.090 -0.086 -0.092 -0.098 -0.111 - 0.105 to 0.082
Ethyl acetate MEK MEK/n-undecane (80/20, v/v) (70/30, v/v) (60/40, v/v) (50/50, v/v) (40/60, v/v) (10/90, v/v) (5/95, v/v) >7-Octadecane Toluene
M w = 0.545 x 106 0.21 x 106 1892 978 682 150 M=1430 M = 850-301000 M = 48l-677 Cyclic polymer, M = 1980-21800 rc-Undecane Poly(oxymethylphenylsilylene) Acetone Benzene Az-Butyl chloride Carbon tetrachloride Chlorobenzene Chloroform Cyclohexane MEK Poly(oxymethyl-3,3,3-trifluoropropylsilylene) Cyclohexyl acetate Poly(oxyphenylsilylene) Benzene Poly(phenylsilsesquioxane) cw-syndio Chloroform cu-syndio THF Poly(silicic acid) Water
0.036 0.029 0.023 0.020 0.016 0.011 0.009 -0.010 -0.013 - 0.050 to -0.030 0.103 0.094 -0.1042 -0.0947 -0.1037 -0.0941 -0.1029 -0.0933 -0.1027 -0.0933 -0.1023 -0.0927 - 0.084 0.092 -0.085 -0.094 -0.099 -0.134 -0.093 -0.105 to -0.107 - 0.119 to 0.084
70-100
T( 0 C) 25 25 29 25 25 25 29 29 29 29 28 25 20
363 363 364 363 363 363 364 364 364 364 667 779 673
20 20 20 20 20 20 20 748
673 673 673 673 673 673 673
365 14.6 366 19.9 366 25.4 366 29.9 366 34.8 366 25 364 25 367 25 364 25 364 25 364 25 364 25 641 16.5-35 801 25 667,672, 748,801 25-70 748 25 752 25 667 20 673
-0.090
-0.130to -0.122 - 0.094 - 0.087 to - 0.084 -0.016 0.179 0.053 0.142 0.089 0.030 0.102 0.111 0.163 0.052
25 25 25 25 25 25 25 25
690 690 690 690 690 690 690 690
35
368 369
20 20
847 847 362 370
25
371
0.08 0.119
0.111 0.133
0.0592 0.65
Poly(trimethylsiloxanotitanoxanes) Cyclohexane
0.156
Refs.
References page VII-615
TABLE 3. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436nm
A0 = 546nm
A0 = 633nm
Others
T (0C)
Refs.
3.6. POLY(HETEROCYCLICS) AND OTHERS 3.6.1. POLY(HETROCYCYCLICS) Poly(benzimidazolediyl-benzimidazolediy 1-1,4-phenyleneoxy-1,4-phenylene) DMA 0.326 Poly(benzo[l,2-d: 5,4-d'] Bisoxazol-2,6-diyl-l,4-phenylene) Chlorosulfonic acid 0.502 4-0.01MLiClSO3 Methane sulfonic acid 0.0474 Poly(benzo[ 1,2-d: 5,4-d ']-bisthiazol-2,6-diyl-1,4-phenylene) Chlorosulfonic acid 0.540 Methane sulfonic acid 0.564 Poly(benzoxazolediyl-iminoterephthaloylimino-l,3-(4-hydroxyphenylene)) 96% H 2 SO 4 0.30 Poly(3,9-bis(ethylidene-2,4,8,10-tetraoxaspiro[5,5]undecane-per-cyclohexanedimethanol) (TCHD) Poly(3,9-bis(ethylidene-2,4,8,10-tetraoxaspiro(5,5]undecane-per-hexanediol) (HD) TCHD/HD = 100/0, mol/mol THF 0.085 = 70/30, mol/mol 0.083 = 60/40, mol/mol 0.083 = 50/50, mol/mol 0.082 = 29/71, mol/mol 0.081 = 0/100, mol/mol 0.079 Poly(A^iV-dimethylpiperidme-3,5-diyl-methylene), hydrochloride Methanol + 0.0093 M TEAB 0.211 0.258 (/i) + 0.0186M TEAB 0.215 0.262 (ji) + 0.030MTEAB 0.220 0.270 (ji) 4-0.0352 TEAB 0.230 0.300 (ji) + 0.046MTEAB 0.210 0.305 (ji) Aq. 0.1 M NaCl 0.183 0.182 (ji) Aq. 0.2MNaCl 0.200 0.186 (ji) Aq. 0.3MNaCl 0.173 0.170 (M) Aq. 0.4MNaCl 0.171 0.170 (ji) Aq. 0.5MNaCl 0.181 0.167 (ii) Poly(2,5-dimethyl-1,4-piperazinediyl-isophthaloyl) Af-Methyl-2-pyrrolidone 0.131 0.123 Trifluoroethanol 0.279 0.267 Poly(isophthaloyl-frans-2,5-dimethylpiperazine) NMP 0.131 0.123 Poly(2,5-dimethyl-1,4-piperazinediyl-phthaloyl) Acetic acid (glacial) 0.212 0.200 Chloroform 0.160 0.150 m-Cresol 0.066 0.064 DMA 0.152 0.146 Hexafluoro-propanol-2 0.290 0.278 N-Methyl-2-pyrrolidone 0.130 0.121 Poly(2,5-dimethyl-1,4-piperazinediyl-terephthaloyl) Trifluoroethanol 0.278 0.266 Poly (iminobenzimidazole-diyl-1,4-phenylene-iminoterephthaloy 1) DMF 0.29 Sulfuric acid 0.29 Poly(pyrazole-3,5-diyl-methylenephenylene) DMF 0.223
30
828
25
850
25
850
25 25
841 841 895 839 839 839 839 839 839
2 1 7 8 0 21 780 21 780 21 780 21 780 21 780 21 780 21 780 21 780 21 780 21 772 21 772 21 772 21 772 21 772 21 772 21 772 21 772 21 772 21 772 25 25
603 603
25
951
25 25 25 25 25 25
591 591 591 591 591 591
25
592
25 25
889 889
25
687
TABLE 3. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
XQ = 546 nm
A0 = 633 nm
Others
T (0C)
Poly[(l ,3,5,7-tetraoxo-2,3,6,7-tetrahydro-]H,5H-benzo [ 1,2,-c: 4,5-c']dipyrrol-2,6-diyl)-1,4-phenyleneisopropylidene-1,4-phenylene] (Polyimide from pyromellitic anhydride and 4,4'-diaminodiphenylpropane) LiBr 0.1N in DMA 0.196
Refs.
574
3.6.2. OTHER COMPOUNDS Poly(2,6-dichloroquinoline) Formic acid Poly [/rart5-bis(tributylphosphine)-platinum-1,4-butadiynediyl] n-Heptane Poly[bis(m-chlorophenoxy)phosphazene] Chloroform Poly(fluoroalkoxyphosFrezon E2/acetone 0.048 phazenes) (10/1, v/v) Sodium polyphosphate Aq. NaBr 0.1N 0.25 N 0.35 N 0.40N
0.57
951
0.199
25
597
0.114
25 30
861 579
0.109 0.105 0.102 0.101
581 581 581 581
TABLE 4. CELLULOSE AND DERIVATIVES dn/dc (ml/g) Polymer
Solvent
X9 = 436nm
X0 = 546nm
A0 = 633nm
Others
T( 0 C)
Refs.
Acetoxypropyl cellulose Acetone THF Carboxymethyl cellulose NaCl 0.1 M Carboxymethyl cellulose, sodium salt DS = 0.96 Cadoxen0.237MCd. 0.94 0.44 0.21 Aq. NaCl Cellulose
Cellulose acetate DS = 0.49 DS = 0.49 DS = 0.49 DS =1.75 DS = 2.45 DS = 2.45 Cellulose carbanilate DS 1.6-2.3 DS 1.6-2.3
Acetone Cadoxen Cadoxen (5% Cd)/water (1/1, v/v) 0.237MCd
0.100 0.056 0.147
25 25 25
730 730 373
0.1398 0.1373 Ou) 0.147 0.164 0.175 0.136 0.154 0.158 0.111 0.186 0.190 (^)
0.1896 0.1861 (p) 0.145 0.162 0.171
25 25 25 25 25
0.183 0.189 Gu)
25 25 25
377 377 404 404 404 128 405 405 374 375,376 912 377
0.1317
0.1927
25
0.1925(M)
0.1890
25
377
Cuoxam 0.205 M Cu Cuoxen0.0518MCu 0.0776MCu FeTNa DMA -h5%w/w LiCl DMA + 9%w/w LiCl (incr. with Mw)
0.117 0.1352
0.233 0.2574 0.2653 0.245 (/x) 0.08
25 25 25 25 25 30
378 377 377 379 735 741
DMA Formamide Water DMA THF Trifluoroethanol
0.068 0.069 0.131 0.046 0.071 0.157
25 25 25
602 602 602 605 817 817
Dioxane Ethyl acetate
0.110 (/x)
0.040-0.027
0.141 0.180
757 757
References page VII - 615
TABLE 4. contd Anldc (mi/g) Polymer Cellulose diacetate
Cellulose nitrate 10.98% N 11.89% N 12.55% N 12.9% N 11.3% N 13.49% N 12-12.3% N Cellulose triacetate Cellulose nitrate Cellulose tricaproate Cellulose tributyrate
Cellulose tricarbanilate
Solvent
X0 = 436nm
Acetone Acetone DMA MEK Acetone
DMA Methylene chloride/ methanol (50/50, v/v) Trifluoroacetic acid 1-Chloronaphthalene Bromoform MEK Dioxane/water (100/7, v/v) DMF Acetone
X0 = 633 nm
Others
0.112 0.109 0.042 0.104 0.1022 0.1010 0.0968 0.1151
Ethyl acetate Acetone DMA + 6% LiCl Ethyl acetate Chloroform
A0 = 546 nm
0.0998 0.0985 0.0950 0.103
0.102 0.107 0.055 0.092 0.0406 0.0496 0.040 0.130 (/x)
0.0442 0.2069 0.2155 0.2176 0.215
Dibutyl ketone Diethyl ketone Dioxane
0.0148 (589) 0.1556 0.137 0.137 0.1911 0.1651
0.1666 0.210 0.1797 0.1558 0.156 (488)
0.168 0.168 Dioxane/1 -bromonaphthalene (97/3, v/v) 0.162(At) (96/4, v/v) 0.140 (JM) (90/10, v/v) 0.000 (M) (83/17, v/v) -0.150 (M) 0.168 Furfural 0.070 0.070 MEK 0.188 0.188 Pyridine 0.089 0.089 THF 0.182
0.156
0.181 361
0.169 Cellulose trinitrate (fully substituted)
Nitrobenzene Acetone
0.182 0.050 0.105 0.102 0.1116 0.0930
0.101 0.0903 0.098 (1086)
Refs.
25 25 25 50
786 913 594 794
25 25 25 25 20 25 20 25 25 25 55 25
380 380 380 382 381 383 756 892 892 384 384 594 773
0.185 (589) 0.147 - 0.11 0.078 0.104 0.478 0.1966 0.2047 0.2033 0.205
Benzophenone Cyclohexanone
T (0C)
24 21 21 63 41 7 25 27 30 25 55 25 30 30 25 25 25 20 30 30 30 30 30 30 20 30 30 30 30 30 30 30 25 30 30 RT 25 25 25
668 385 886 886 385 385 385 386 385 216 844 387 386 216,919 216 388 386 386 681 764 216,919 216,919 216,919 216,919 216,919 389 216 216,919 216 216,919 216 216,919 216 844 216,919 216,919 253 390 382 380 915
TABLE 4. cont'd dn/dc (ml/g) Polymer
Solvent
A0 = 436 nm
Ethyl acetate
A0 = 546 nm
A0 = 633 nm
Others
0.102
30 25 20
0.107 0.105 Cellulose xanthate
Aq. NaOH
T (0C)
0.103 0.105 0.212 0.230 0.190 0.20
1.0 M 2.5 M Cellulose xanthate, sodium vSalt DS = 0.25 Aq. NaOH 1.0 N 0.48 0.77 0.91 Diethyiacetamide cellulose xanthate DS = 0.40 Aq. DMSO 90% 0.49 0.60 0.80 0.92 1.00 1.22 Ethyl cellulose Methanol Ethyl hydroxyethyl cellulose Methanol Hemicellulose KOH 0.36 M NaCl 0.25 M/0.5% Calgon 0.5 M 0.5 M/0.5% Versene Hydroxypropyl cellulose Anhydrous ethanol Water Lignin Aq. NaHCO3 pH 9.65 Ligninsulfonic acid, Aq. NaCl 0.1 M sodium salt Methyl cellulose Mw =160000 Mw = 210000 Mw = 234000 Sodium carboxymethyl cellulose Sodium cellulose disulfate
0.231 0.185 0.205 0.275 0.300 0.425
0.130 0.147
25 0.131
0.127 0.145 0.136 0.120 0.143 0.218
0.143 (578)
25 25 25
0.197 0.200 0.117
DMSO Water Water Water Water Water
0.134 0.135 0.132
Aq. 0.5 M NaCl
0.150
0.150(578)
0.081 (u)
397 397 397 397 397 397 397 398 399 400 400 400 400 401 684 372 407
25 25 25 25
407 407 402 948 948 948 684
25
788
0.154
0.153
383 391 381 852 392 393 394 395 378 396 406 406 406 406
0.144 0.098 0.144 0.144 0.098 0.096 0.079
0.146
Refs.
TABLE 5. POLY(SACCHARIDES) dn/dc (ml/g) Polymer Amylopectin
Solvent
A0 = 436nm
DMSO DMSO/water (90/10, v/v) (80/20, v/v) (60/40, v/v) (50/50, v/v) Ethylenediamine Ethylenediamine hydrate Formamide KOH 1.0N NaOH 0.2 N
0.098 0.092 0.069 0.142 0.142
A0 = 546nm 0.066 0.074 0.083 0.101 0.110 0.098 0.092 0.069 0.142 0.142
A0 = 633nm
Others
T (0C)
Refs. 408,409 408,409 408,409 408,409 408,409 410 410 410 410 412
References page VII-615
TABLE 5. cont'd dit/dc (ml/g) Polymer
Amylopectin acetate
Amylose
Solvent Water
0.156 0.155
Aq. 1% cetyl trimethyl ammonium bromide Aq. 0.33 M KCl Aq. 0.1 M KCl Aq. 15% MgCl2 Aq. 1% Na lauryl sulfate Aq. 8 M Urea Water Acetone Acetonitrile Chloroform Dioxane Nitromethane DMSO/water (30/70, v/v) (35/65, v/v) (45/55, v/v)
0.146
(50/50, (60/40, (70/30, (80/20, (90/10,
Amylose acetate
DS-2.9 Amylose tributyrate Amylose tricarbonilate
vL0 = 436 nm
v/v) v/v) v/v) v/v) v/v)
DMSO GHCl 4.2M Aq. KCl KOH l.OM Aq-NaIO3 Nitromethane
Ethyl acetate MEK Acetone
Dioxane Pyridine Amylose tripropionate Ethyl acetate MEK Araban Aq. DMF 1% NaCl 2 M Araban acetate DMF MEK Chitosan Water Curdlan (bacterial (3-1,3 glucan) Cadoxen/water (1/1, v/v) Dextran
Water Ba(OH)2 0.0503 M
0.153 0.156 0.112 0.158 0.106 0.160 0.118 0.128 0.051 0.057 0.088 0.127 00 0.128 (M) 0.119 (AX) 0.108 Ox) 0.118 (M) 0.147 (M) 0.112 (M) 0.093 00 0.080 (M) 0.076 00 0.062 (M) 0.0676 0.118
A0 = 546 nm
A0 = 633 nm
Others
T( 0 C)
0.154 0.0151 0.152 0.143
412 413 408,409,411 650
0.111 0.153 0.100 0.157
25 25 15 25 35 45 25 25 25 25 25 0.0659 0.116
25 0.146 0.146
0.153 0.0875 0.0857 0.088 0.087 0.098 0.091 0.2279 0.2218 0.163
0.152 30 RT 20 20
0.0835 0.0835 0.083
0.2164 0.2094 0.151 0.0973
Refs.
0.178(361)
0.092 0.086
30 25 25 27 7 20 25 25 25
0.142 0.130 0.126 0.0886 0.166 0.107 0.163 (M)
25 25 0.148
650 650 650 650 650 650 412 412 412 412 412 716 716 716 716 716 716 716 716 716 716 716 414 415 416 416 417 418 419 420 421 650 760 754 754 422 422 389 423 820 820 424 424 425 425 426 596 596 649 377
0.1465
0.1441
25
0.1642(M)
0.1618 (M)
25
0.108 M
0.1415
0.1394
25
0.1738(M)
0.1708(M)
25
377
Cadoxen 0.237 M Cd
0.1235
0.1219
25
377
0.1842(M)
0.1809(M)
25
377
0.1907(M)
0.1875 (M)
25
377
377
377
TABLE 5. cont'd dn/dc (ml/g) Polymer
Solvent Cuoxen0.0518MCu 0.0776MCu LiSCN 2.5 M NaCl 0.1 M
0.5 M 1.0 M 2.0M NaOH 0.25 M 0.75 M ZnCl2 4 M Water
X0 = 436 nm
A0 = 546 nm
A0 = 633 nm
Others
0.1323 0.2525 (/JL) 0.2625(/x)
J( 0 C)
Refs.
25 25 25
377 377 377 409 427
0.129 0.151
0.1476
0.1454
25
377
0.1470(A*)
0.1445 (M)
25
377
0.1447
0.1424
25
377
0.1435(M)
0.1413(M)
25
377
0.1361 0.1374 (M) 0.1456 0.1584 Oi) 0.1437 0.1646 Oi) 0.151 0.154
0.1342 0.1351 (n) 0.1433 0.1558 (M) 0.1415 0.162100 0.147 0.151 0.151 0.15 0.1481 0.151
25 25 25 25 25 25
377 377 377 377 377 377 428 429 430 431 432 428 237 433 409 377 377
0.1518 0.154 0.161 0.150 0.1504 0.1494 OO Dextran Mw = IOlOO Water Mw =43400 Water Mw = 68100 Water Mw = 508900 Water Dextran tricarbanilate DMF 0.161 Dialdehyde starch Water 0.153 Glucomannan triacetate Nitroethane D-Gluose (products from irradiated aq. glucose solutions) M = 9.8 xlO 3 Water 14.4 x 104 50 x 105 25 x 105 DMSO/water (98/2, w/w) Guaran triacetate Acetonitrile Gum arabic Aq. HCl 0.152 NaCl 0.35 M; NaOH 0.02 N; 0.149 0.25% Na salt of EDTA Water 0.145 Hyaluronic Acid Water Hydroxyethyl starch Aq. NaCl 0.9% 0.136 DS = 0.8 0.160 0.06-1.2 (no change, Aq. NaCl 0.9% 0.151 av. value) Water 0.151 Related compounds: Acetyl (DS = 0.1) Water 0.150 (DS = 0.7) 0.147 (DS=LO) 0.141 Hydroxy butyl starch (DS =0.2) 0.151 Hydroxy propyl starch (DS = 6.5) 0.151 (DS = 1.5) 0.152 Hydrolyzed waxy 0.152 maize starch oc-Keratose Aq. Phosphate buffer; / = 0.2; pH 6.7
0.1476(578)
25 25 23 20
0.152 0.1481 0.1472Oi) 0.152 0.151 0.147 0.147 0.151 0.152 0.076 0.166 0.200 0.215 -0.135 0.1200 0.150
0.166-0.170 0.161
0.182
25 25 25 25 25
22.5 25
948 948 948 948 428 434 435 436 436 436 436 437 438 439
25 25 25 20
439 905 440 441 442
20
442
20 20 20
442 442 442
20
442
20 20 20
442 442 442 443
References page VII-615
TABLE 5. cont'd dn/dc (ml/g) Polymer
Lipopolysaccharide Mannan Magnesium alginate Mucopolysaccharides Potassium alginate Schizophyllan (Polysaccharide)
Solvent
A0 = 436nm
Dichloroacetic acid Dichloroacetic acid 0.1 M KCl Formic acid 0.1 M KCl 0.5 M KCl Water Acetone Ethyl acetate Aq-MgCl2 Aq. 0.033 M MgCl2 Phosphate buffer 0.15 M + NaCl 0.2 M Water Aq.; in presence of KCl DMSO
Sodium amylose xanthate (DS = 0.4-0.5)
(Ripening time = 0hr)(inair) 22 46 94 142 190 0 (under N 2 ) 45 93 140 188 Sodium carboxymethyl amylose
Xanthan Xylan
Aq. 0.1 M NaCl Aq. NaCl (4- Na EDTA) Aq.; in presence of NaCl
A0 = 633 nm
Others
7 (0C)
0.160
0.145
444 444
0.156 0.155 0.152
0.159 0.057 0.061
20-25 25 25
444 444 444 445 446 446 447 805 448 448 448 447 727 829
0.066 0.071 (/*) 0.142 0.142
25 25 25 25 RT RT 20-25
727 727 829 727 805 724 447
25 25 25 25
449 449 449 449 450
0.102 0.101 0.157
RT RT 20-25 RT
0.150 (JJ) 0.15 0.165
Aq. NaCl 0.1M 0.25 M 0.50M 1.0M Aq. NaOH 4%
0.163 - 0.1460 -0.1480 -0.1555 -0.1741 0.1700 0.1547 0.1471 0.1522 0.1938 0.2564 0.1700 0.1785 0.1899 0.2181 0.2963
Aq. NaCl 0.0065 M 0.01 M 0.03 M 0.035 M 1.0 M 2.5 M 0.35 M Aq. 0.1 M NaCl Na salt: Aq. 0.1 M NaCl Na salt: cadoxen Cadoxen DMSO
0.138 0.138 0.138 0.134 0.124 0.103 0.1325 0.144 (JJ) 0.144 (/i) 0.167 (/i)
Ethyl acetate
0.097
Refs.
0.088 0.088
0.166 0.166 0.181 0.062
DMSO/Water (86.5/13.5, w/w) (86.5/13.5, w/w) Water Sodium Alginate
0.151 0.102 0.101 0.158 0.158 (/*)
A0 = 546 nm
0.141 (/i) 0.164 (/x) 0.178 0.064 0.062 0.97
30 30 30 30 30 35 30 27 25 25 25
450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 450 451 723 606 606 452 453 454 455
E. REFERENCES 1. J. W. Lorimer, Polymer, 13, 274 (1972). 2. M. B. Huglin, in: M. B. Huglin, (Ed.), "Light Scattering from Polymer Solutions" Academic Press, London/New York, 1972. 3. W. Heller, J. Polym. Sci. A-2, 4, 209 (1966). 4. M. B. Huglin, J. Appl. Polym. Sci., 9, 4003 (1965). 5. W. Machtle, H. Fischer, Angew. Makromol. Chem., 7, 147 (1969). 6. W. Machtle, Angew. Makromol. Chem., 15, 17 (1971). 7. Y. Kambe, C. Honda, Angew. Makromol. Chem., 25, 163 (1972). 8. Tuzar, P. Kratochvil, D. Strakova, Eur. Polym. J., 6, 1113 (1970). 9. P. Kratochvil, J. Babka, J. Appl. Polym. Sci., 16, 1053 (1972). 10. I. Baltog, C. Ghita, L. Ghita, Eur. Polym. J., 6, 1299 (1970). 11. P. Kratochvil, B. Sedlacek, D. Strakova, Z. Tuzar, Makromol. Chem., 148,271 (1971). 12. M. B. Huglin, J. Appl. Polym. Sci., 9, 3963 (1965). 13. W. R. Krigbaum, J. E. Kurz, P. Smith, J. Phys. Chem., 65, 1984(1961). 14. Th. G. Scholte, J. Polym. Sci. A-2, 6, 91 (1968). 15. R. Chiang, J. Polym. Sci. C, 8, 295 (1965). 16. F. W. Billmeyer, Jr., J. Am. Chem. Soc, 75, 6118 (1953). 17. R. Chiang, J. Polym. Sci., 36, 91 (1959). 18. L. H. Tung, J. Polym. Sci., 36, 287 (1959). 19. H. P. Schreiber, M. H. Waldman, J. Polym. Sci., A-2, 1655 (1964). 20. Q. A. Trementozzi, J. Polym. Sci., 23, 887 (1957). 21. Q. A. Trementozzi, J. Polym. Sci., 36, 113 (1959). 22. H. L. Wagner, C. A. J. Hoeve, J. Polym. Sci. A-2, 9, 1763 (1971). 23. J. EhI, C. Loucheux, C. Reiss, H. Benoit, Makromol. Chem., 75, 35 (1964). 24. V. Kokle, F. W. Billmeyer, Jr., L. T Muus, E. J. Newitt, J. Polym. Sci., 62, 251 (1962). 25. E. E. Drott, R. A. Mendelson, J. Polym. Sci. B-2, 187 (1964). 26. A. Kotera, N. Iso, A. Senuma, T. Hamada, J. Polym. Sci. A-2, 5, 277 (1967). 27. A. Kotera, T Saito, H. Matsuda, A. Wada, Rept. Progr. Polym. Phys. Japan, 8, 5 (1965). 28. R. Chiang, J. Polym. Sci., 28, 235 (1958). 29. J. E. Kurz, J. Polym. Sci. A, 3, 1895 (1965). 30. R. A. Mendelson, J. Polym. Sci., 46, 493 (1960). 31. D. A. Albright, J. W. Williams, J. Phys. Chem., 71, 2780 (1967). 32. A. A. Tager, A. A. Anikeyeva, V. M. Andreyeva, T. Ya. Gumarova, L. A. Chernoskutova, Polym. Sci. USSR, 10, 1962 (1968). 33. F. R. Cottrell, E. W. Merrill, K. A. Smith, J. Polym. Sci. A-2, 7, 1415 (1969). 34. D. Coupe, R A. Curnuck, J. V. Dawkins, ICI Limited, Petrochemicals + Polymer Lab., Runcorn, England-private communication (1969).
35. G. Delmas, D. Patterson, Polymer, 7, 513 (1966). 36. A. Cervenka, M, Marek, K. Sole, P. Kratochvil, Coll. Czech, Chem. Commun., 33, 4248 (1968). 37. A. Yu. Koshevnik, M. M. Kusakov, E. A. Razumovskaya, Polym. Sci. USSR, 10, 3242 (1968). 38. T. Matsumoto, N. Nishioka, H. Fujita, J. Polym. Sci. A-2,10, 23 (1972). 39. A. Sakanishi, J. Chem. Phys. 48, 3850 (1968). 40. K. E. van Holde, J. W. Williams, J. Polym. Sci., 11, 243 (1953). 41. J. B. Kinsinger, L. E. Ballard, J. Polym. Sci. A, 3, 3963 (1965). 42. H.-G. Elias, H. Dietschy, Makromol. Chem., 105, 102 (1967). 43. S. Florian, D. Lath, Z. Manasek, Angew. Makromol. Chem., 13, 43 (1970). 44. J. B. Kinsinger, R. E. Hughes, J. Phys. Chem., 63, 2002 (1959). 45. K. Yamaguchi, Makromol. Chem., 128, 19 (1969). 46. W. E. Weston, F. W. Billmeyer, Jr., J. Phys. Chem., 65, 576 (1961). 47. L. Westerman, J. Polym. Sci. A, 1, 411 (1963). 48. P. P. Parrini, F. Sebastiano, G. Messina, Makromol. Chem., 38, 27 (1960). 49. D. K. Carpenter, J. Polym. Sci. A-2, 4, 923 (1966). 50. H. Janeschitz-Kriegl, U. Daum, Kolloid Z Z . Polym., 210, 112 (1966). 51. T. Miyamoto, H. Inagaki, J. Polym. Sci. A-2, 7, 963 (1969). 52. H. Inagaki, T. Miyamoto, S. Ohta, J. Phys. Chem., 70, 3421 (1966). 53. H. T. Hall, J. Polym. Sci., 7, 443 (1951). 54. L. Saunders, L. Spirer, Polymer, 6, 635 (1965). 55. J. Moacanin, A. Rembaum, R. K. Laudenslager, R. Adler, J. Macromol. Sci. A, 1, 1497 (1967). 56. J. M. Barrales-Rienda, D. C. Pepper, Polymer, 8, 337 (1967). 57. R. J. Angelo, R. M. Ikeda, M. L. Wallach, Polymer, 6, 141 (1965). 58. R. Kuhn, S. B. Liang, H.-J. Cantow, Angew. Makromol. Chem., 18, 101 (1971). 59. W. Cooper, D. E. Eaves, G. Vaughan, J. Polym. Sci., 59, 241 (1962). 60. W. Cooper, G. Vaughan, D. E. Eaves, R. W. Madden, J. Polym. Sci., 50, 159 (1961). 61. Ph. Ribeyrolles, A. Guyot, H. Benoit, J. Chim. Phys., 56, 377 (1959). 62. R. Kratochvil, D. Strakova, P. Schmidt, Angew. Makromol. Chem., 23, 169 (1972). 63. S. Abe, Y. Murakami, H. Fujita, J. Appl. Polym. Sci., 9, 2549 (1965). 64. T. Norisaye, K. Kawahara, A. Teramoto, H. Fujita, J. Chem. Phys., 49, 4330 (1968). 65. K. Hanafusa, A. Teramoto, H. Fujita, J. Phys. Chem., 70, 4004 (1966). 66. J. Curchod, T. Ve, J. Appl. Polym. Sci., 9, 3541 (1965).
67. P. V. French, A. Wassermann, J. Chem. Soc. 1044 (1963). 68. G. V. Schulz, K. Altgelt, H.-J. Cantow, Makromol. Chem., 21, 13 (1956). 69. K. Altgelt, G. V. Schulz, Makromol. Chem., 36, 209 (1959). 70. J. Vavra, J. Polym. Sci. C, 16, 1103 (1967). 71. G. M. Bristow, B. Westall, Polymer, 8, 609 (1967). 72. S. P. Rao, M. Santappa, J. Polym. Sci. A-I, 6, 95 (1968). 73. P. J. Reed, J. R. Urwin, Austral, J. Chem., 23, 1743 (1970). 74. V. Bohackova, J. Polacek, H. Benoit, J. Chim. Phys., 66,197 (1969). 75. V. Bohackova, J. Polacek, Grubisic, H. Benoit, J. Chim. Phys., 66, 207 (1969). 76. S. A. Pavlova, T. A. Soboleva, A. P. Suprun, Vysokomol, Soedin., 6, 122 (1964). 77. A. Silberberg, J. Eliassaf, A. Katchalsky, J. Polym. Sci., 23, 259 (1957). 78. H.-J. Cantow, Z. Naturforsch., 7B, 485 (1952). 79. T. A. Fadner, H. Morawetz, J. Polym. Sci., 45, 475 (1960). 80. V. A. Myagchenkov, A. K. Vagapova, E. V. Kuznetsov, Vysokomol-Soedin., 11, 673 (1969). 81. E. A. S. Cavell, I. T. Gilson, B. R. Jennings, H. G. Jerrard, J. Polym. Sci. A-2, 3615 (1964). 82. B. R. Jennings, Thesis-Univ. Southampton, 1964. 83. L. Trossarelli, M. Meirone, J. Polym. Sci., 57, 445 (1962). 84. E. F. Jordan, Jr., J. Polym. Sci. A-I, 6, 2209 (1968). 85. T. A. Orofino, P J. Flory, J. Phys. Chem., 63, 283 (1959). 86. S. Newman, W. R. Krigbaum, C. Langier, P. J. Flory, J. Polym. Sci., 14, 451 (1954). 87. Z. Alexandrowicz, J. Polym. Sci., 40, 91 (1959). 88. D. Braun, G. Mott, Angew. Makromol. Chem., 18, 183 (1971). 89. W. Wunderlich, Angew. Makromol. Chem., 11, 189 (1970). 90. R. Jerome, V. Desreux, Eur. Polym. J., 6, 411 (1970). 91. G. B. Rathman, F. A. Bovey, J. Polym. Sci., 15, 544 (1955). 92. M. Giurgea, C. Ghita, I. Baltog, A. Lupu, J. Polym. Sci., 4, 529 (1966). 93. M. Giurgea, L. Pop, I. Baltog, A. Belea, Rev. Roumaine Chim., 11, 467 (1966). 94. D. Mangaraj, S. K. Patra, Makromol. Chem., 107, 230 (1967). 95. H. Wesslau, Makromol. Chem., 69, 213 (1963). 96. K. Harvey, B. Sc. Thesis University of Salford, 1969. 97. H. Matsuda, K. Yamano, H. Inagaki, J. Polym. Sci. A-2, 7, 609 (1969). 98. K. Karunakaran, M. Santappa, J. Polym. Sci. A-2, 6, 713 (1968). 99. A. Kotera, T. Saito, Y. Watanabe, M. Ohama, Makromol. Chem., 87, 195 (1965). 100. H. Matsuda, H. Inagaki, Bull. Inst. Chem. Res. Kyoto Univ., 46, 48 (1968). 101. R. A. Wessling, J. E. Mark, E. Hamori, R. E. Hughes, J. Phys. Chem., 70, 1903 (1966). 102. J. Velickovic, J. Vukajlovic-Filipovic, Angew, Makromol. Chem., 13, 79 (1970). 103. R. J. Valles, J. Polym. Sci. A, 3, 3853 (1965). 104. R. J. Valles, Makromol. Chem., 100, 167 (1967).
105. R. van Leemput, R. Stein, J. Polym. Sci. A, 1, 985 (1963). 106. V. E. Eskin, A. L. Izyumnikov, E. D. Rogozhkina, Yu. P. Vyrskii, Polym. Sci. USSR, 7, 1310 (1965). 107. V. E. Eskin, A. L. Izyumnikov, E. D. Rogozhkina, Yu. P. Vryskii, Polym. Sci. USSR, 9, 591 (1967). 108. S. N. Chinai, R. A. Guzzi, J. Polym. Sci., 21, 417 (1956). 109. R. van Leemput, R. Stein., J. Polym. Sci. A, 2, 4039 (1964). 110. M. Kozhokaryu, V. S. Skazka, K. G. Berdnikova, Polym. Sci., USSR, 8, 1167 (1966). 111. V N . Tsvetkov, O. V. Kallistov, Zh. Fiz. Khim, 33, 710 (1959). 112. V. N. Tsevtkov, D. Khardi, I. N. Shtennikova, Ye. V. Korneyeva, G. F. Pirogova, K. Nitrai, Polym. Sci. USSR, 11, 392 (1969). 113. S. V. Bereza, S. R. Rafikov, Ye. A. Bekturov, R. Ye. Legkunets, Polym. Sci. USSR, 10, 2945 (1968). 114. M. Tricot, V. Desreux, Makromol. Chem., 149, 185 (1971). 115. N. Hadjichristidis, M. Devaleriola, V. Desreux, Eur. Polym. J., 8, 1193 (1972). 116. D. W. Levi, R. J. Valles, E. C. Schramm, J. Polym. Sci., 56, 305 (1962). 117. F. E. Didcot, S. N. Chinai, D. W. Levi, J. Polym. Sci., 43,557 (1960). 118. Z. Tuzar, P. Kratochvil, Polym. Letters, 7, 825 (1969). 119. Z. Tuzar, M. Bohdanecky, Coll. Czech. Chem. Commun., 34, 289 (1969). 120. M. Bohdanecky, Z. Tuzar, M. Stoll, R. Chromocek, Coll. Czech. Chem. Commun., 33, 4140 (1968). 121. Z. Tuzar, P. Kratochvil, Coll. Czech. Chem. Commun., 32, 3358 (1967). 122. K. Karunakaran, M. Santappa, Makromol. Chem., I l l , 20 (1968). 123. S. N. Chinai, R. J. Samuels, J. Polym. Sci., 19, 463 (1956). 124. S. N. Chinai, J. Polym. Sci., 25, 413 (1957). 125. H. T. Lee, D. W. Levi, J. Polym. Sci., 47, 449 (1960). 126. S. N. Chinai, R. A. Guzzi, J. Polym. Sci., 41, 475 (1959). 127. Q. A. Trementozzi, J. Am. Chem. Soc, 76, 5273 (1954). 128. H. J. L. Trapp, J. J. Hermans, J. Phys. Chem., 58, 757 (1954). 129. A. Vrij, J. Th. G. Overbeek, J. Colloid Sci., 17, 570 (1962). 130. H. L. Bhatnagar, A. R. Biswas, J. Polym. Sci., 13, 461 (1954). 131. R. Tremblay, Y Sicotte, M. Rinfret, J. Polym. Sci., 14, 310 (1954). 132. E. S. Cohn, E. M. Schuele, J. Polym. Sci., 14, 309 (1954). 133. J.-Y Chien, L.-H. Shih, S.-C. Yu, J. Polym. Sci., 29, 117 (1958). 134. J. Bischoff, V Desreux, Bull. Soc. Chem. Beiges, 61, 10 (1952). 135. H.-J. Cantow, O. Bodmann, Z. Physik Chem. (Frankfurt), 3, 65 (1955). 136. E. Conn-Ginsberg, T. G. Fox, H. F. Mason, Polymer, 3, 97 (1962). 137. H.-G. Elias, O. Etter, Makromol. Chem., 89, 228 (1965). 138. W. Schnabel, Makromol. Chem., 86, 9 (1965). 139. O. Bodmann, Makromol. Chem., 122, 196 (1969).
140. S. Fujishige, H.-G. Elias, Makromol. Chem., 155, 127 (1972). 141. S. Fujishige, H.-G. Elias, Makromol. Chem., 155, 137 (1972). 142. S. Krause, Er Cohn-Ginsberg, Polymer, 3, 565 (1962). 143. R. Kirste, G. V. Schulz, Z. Physik Chem. (Frankfurt), 27, 301 (1961). 144. T. Matsuo, A. Pavan, A. Peterlin, D. T. Turner, J. Colloid Interfac. Sci., 24, 241 (1967). 145. W. Bushuk, H. Benoit, Canad. J. Chem., 36, 1616 (1958). 146. A. Bello., G. M. Guzman, Eur. Polym. J., 2, 85 (1966). 147. T. Kotaka, N. Donkai, H. Ohnuma, H. Inagaki, J. Polym. Sci. A-2, 6, 1803 (1968). 148. J. Lamprecht, C. Strazielle, J. Dayantis, H. Benoit, Makromol. Chem., 148, 285 (1971). 149. L. Mrkvickova-Vaculova, P. Kratochvil, Coll. Czech. Commun., 37, 2015 (1972). 150. G. V. Schulz, W. Wunderlich, R. Kirste, Makromol. Chem., 75, 22 (1964). 151. S. Krause, J. Phys. Chem., 65, 1618 (1961). 152. H. Ohnuma, T. Kotaka, H. Inagaki, Polymer, 10, 501 (1969). 153. H. Ohnuma, T. Kotaka, H. Inagaki, Rept. Progr. Polym. Phys. Japan, 11, 29 (1968). 154. W. H. Stockmayer, L. D. Moore, Jr., M. Fixman, B. N. Epstein, J. Polym. Sci., 16, 517 (1955). 155. O. Bodmann, Makromol. Chem., 122, 210 (1969). 156. L. Mrkvickova-Vaculova, P. Kratochvil, Coll. Czech. Chem. Cornmun., 37, 2029 (1972). 157. J. Trekoval, P Kratochvil J. Polym. Sci. A-I, 10, 1391 (1972). 158. A. Cervenka, R Kratochvil, Coll. Czech. Chem. Commun., 34, 2568 (1969). 159. R. Chiang, J. J. Burke, J. O. Threlkeld, T. A. Orofino, J. Phys. Chem., 70, 3591 (1966). 160. F. W. Billmeyer, Jr., C. B. de Than, J. Am. Chem. Soc, 77, 4763 (1955). 161. E. E Casassa, W. H. Stockmayer, Polymer, 3, 53 (1962). 162. S. N. Chinai, J. D. Matlock, A. L. Resnick, R. J. Samuels, J. Polym. Sci., 17, 391 (1955). 163. S. N. Chinai, J. Polym. Sci., 14, 408 (1954). 164. Y. Shimura, H. Kambe, Rept. Progr. Polym. Phys. Japan, 9, 103 (1966). 165. U. Gruber, H.-G. Elias, Makromol. Chem., 84, 168 (1965). 166. A. Dondos, Makromol. Chem., 147, 123 (1971). 167. J. T Guthrie, M. B. Huglin, G. O. Phillips, Makromol. Chem., 149, 309 (1971). 168. M. Kalfus, J. Mitus, J. Polym. Sci. A-I, 4, 953 (1966). 169. S. N. Chinai, A. L. Resnick, H. T. Lee, J. Polym. Sci., 33,471 (1958). 170. V. N. Tsvetkov, V. G. Aldoshin, Russ. J. Phys. Chem., 33, 619 (1959). 171. R. B. Mohite, S. Gundiah, S. L. Kapur, Makromol. Chem., 116, 280 (1968). 172. G. Greber, J. Tolle, W. Burchard, Makromol. Chem., 71, 47 (1964). 173. K. Matsumura, Makromol. Chem., 124, 204 (1969).
174. D. Braun, W. Chaudhari, W. Machtle, Angew. Makromol. Chem., 15, 83 (1971). 175. A. Matiussi, E. Conti, G. B. Gechele, Eur. Polym. J., 8, 429 (1972). 176. M. Pizzoli, G. Stea, G. Ceccorulli, G. B. Gechele, Eur. Poly. J., 6, 1219 (1970). 177. K. Okita, A. Teramoto, K. Kawahara, H. Fujita, J. Phys. Chem., 72, 278 (1968). 178. A. M. Kotliar, J. Polym. Sci., 55, 71 (1961). 179. M. Abe, K. Sakato, T. Kageyama, M. Fukatsu, M. Kurata, Bull. Chem. Soc. Japan, 41, 2330 (1968). 180. K. Sakato-quoted in Ref. 584. 181. PF. Mijnlieff, D. J. Coumou, J. Colloid Interf. Sci., 27, 553 (1968). 182. J. M. G. Cowie, S. By water, D. J. Worsfold, Polymer, 8, 105 (1967). 183. T. Kato, K. Miyasu, M. Nagasaawa, J. Phys. Chem., 72,2161 (1968). 184. T. Fujimoto, N. Ozaki, M. Nagasawa, J. Polym. Sci. A, 3, 2259 (1965). 185. D. E. Burge, D. B. Bruss, J. Polym. Sci. A, 1, 1927 (1963). 186. A. F. Sirianni, D. G. Worsfold, S. Bywater, Trans. Faraday Soc, 55, 2124 (1959). 187. J. D. Matlock, S. N. Chinai, R. A. Guzzi, D. W. Levi, J. Polym. Sci., 49, 533 (1961). 188. F. S. Holahan, S. S. Stivala, D. W. Levi, J. Polym. ScL A, 3, 3987 (1965). 189. F. S. Holahan, S. S. Stivala, D. W. Levi, J. Polym. Sci. A, 3, 3993 (1965). 190. J. Velickovic, D. Jovanovic, J. Vukajlovic, J. Makromol. Chem., 129, 203 (1969). 191. M. Morton, T. E. Helminiak, S. D. Gadkary, F. Bueche, J. Polym. Sci., 57, 471 (1962). 192. J. C. Spitzbergen, H. C. Beachell, J. Polym. Sci. A, 2, 1205 (1964). 193. H.-G. Elias, Makromol. Chem., 50, 1 (1961). 194. V. V. Varadaiah, J. Polym. Sci., 19, 477 (1956). 195. A. J. Hyde, J. H. Ryan, F. T. Wall, T. F Schatzki, J. Polym. Sci., 33, 129 (1958). 196. B. R. Jennings, H. Plummer, Brit. J. Appl. Phys., 1, 1201 (1968). 197. L. M. Alberino, W. W. Graessley, J. Phys. Chem., 72, 4229 (1968). 198. J. M. G. Cowie, R. Dey, J. T. McCrindle, Polym. J., 2, 88 (1971). 199. R. S. Roche, A. G. Tanner, Angew. Makromol. Chem., 13, 183 (1970). 200. A. Yamamoto, M. Fujii, G. Tanaka, H. Yamakawa, Polym. J., 2, 799 (1971). 201. Y. Ikada, W. Schnabel, Makromol. Chem., 86, 20 (1965). 202. J. M. G. Cowie, S. Byater, J. Macromol. Chem., 1, 581 (1966). 203. H. Lange, Makromol. Chem., 86, 192 (1965). 204. T. E. Smith, D. K. Carpenter, Macromolecules, 1, 204 (1968). 205. W. W. Graessley, R. D. Hartung, W. C. Uy, J. Polym. Sci. A-2, 7, 1919 (1969).
206. G. Wigand, J.-J. Veith, Plaste Kautschuk, 16, 671 (1969). 207. R. H. Ewart, C. P. Roe, P. Debye, J. R. McCartney, J. Chem. Phys., 14, 687 (1946). 208. H. Lange, Kolloid Z.-Z. Polym., 201, 123 (1965). 209. H.-G. Elias, O. Etter, Makromol. Chem., 66, 56 (1963). 210. H. Lange, Kolloid Z.-Z. Polym., 199, 128 (1964). 211. J. M. G. Cowie, J. Polym. Sci. C, 23, 267 (1968). 212. B. A. Brice, M. Halwer, R. Speiser, J. Opt Soc. Am., 40, 768 (1950). 213. H. Kambe, I. Mita, Y. Shimura, Rept. No. 381 (Vol. 29, No. 3). Aeronaut. Res. Inst., Univ. of Tokyo (1964). 214. H. Janeschitz-Kriegl, Kolloid-Z., 203, 119 (1965). 215. H. Baumann, H. Lange, Angew. Makromol. Chem., 9, 16 (1969). 216. J. T. Guthrie. Ph.D. Thesis, Univ. Salford, 1971. 217. J. W. Breitenbach, H. Gabler, Makromol. Chem., 37, 53 (1960). 218. P. Outer, C. J. Carr, B. H. Zimm, J. Chem. Phys., 18, 830 (1950). 219. H.-J. Cantow, Z. Phys. Chem. (Frankfurt), 7, 58 (1956). 220. J. P. Kratohvil in "Characterization of Macromolecular Structure" -Proc. Conf. at Warrenton, Virginia, USA, Publication No. 1573, Nat. Acad. Sci., Washington DC, USA, 1968. 221. G. C. Berry, J. Chem. Phys., 44, 4550 (1966). 222. J. M. G. Cowie, E. L. Cussler, J. Chem. Phys., 46, 4886 (1967). 223. L. A. Papazian, Polymer, 10, 399 (1969). 224. T. Alteres, Jr., D. P. Wyman, V. R. Allen, K. Meyersen, J. Polym. Sci. A, 3, 4131 (1965). 225. Q. A. Trementozzi, R. R Steiner, R Doty, J. Am. Chem. Soc, 74, 2070 (1952). 226. R. M. Johnsen, Chem. Scripta, 1, 81 (1971). 227. P. M. Doty, B. H. Zimm, H. R Mark, J. Chem. Phys., 12,144 (1944). 228. J. W. Breitenbach, H. Gabler, O. R Olaj, Makromol. Chem., 81, 32 (1965). 229. D. K. Carpenter, W. R. Krigbaum, J. Chem. Phys., 24, 1041 (1956). 230. S. M. Maron, R. L. H. Lou, J. Polym. Sci., 14, 229 (1955). 231. J. Oth, V. Desreux, Bull. Soc. Chim. Beiges, 63, 285 (1954). 232. H. P. Frank, H. R Mark, J. Polym. Sci., 17, 1 (1955). 233. P. Doty, R. F. Steiner, J. Chem. Phys., 18, 1211 (1950). 234. J. M. G. Cowie, J. T. McCrindle, Eur. Polym. J., 8, 1185 (1972). 235. P. Grosius, Y. Gallot, A. Skoulios, Makromol. Chem., 127, 94 (1969). 236. G. V. Schulz, H. Baumann, Makromol. Chem., 114, 122 (1968). 237. Y. Tomimatsu, L. Vitello, K. Fong, J. Colloid Interf. Sci., 27, 573 (1968). 238. E. Elbing, A. G. Parts, Makromol. Chem., 82, 270 (1965). 239. J. M. G. Cowie, D. J. Worsfold, S. By water, Trans. Faraday Soc, 57, 705 (1961). 240. O. Bodmann, Thesis, Mainz (1955).
241. J. H. O'Mara, D. Mclntyre, J. Phys. Chem., 63, 1435 (1959). 242. P. N. Norberg, L.-O. Sundelof, Makromol. Chem., 77, 77 (1964). 243. T. G. Scholte, J. Polym. Sci. A-2, 10, 519 (1972). 244. B. Chincoli, A. J. Havlik, R. D. Void-unpublished results quoted in Ref. 586. 245. L. Trossarelli, E. Campi, G. Saini, J. Polym. Sci., 35, 205 (1959). 246. T. Alfrey, Jr., E. B. Bradford, J. W. Vanderhoff, J. Opt. Soc Am., 44, 603 (1954). 247. R S. Chan, D. A. I. Goring, Can. J. Chem., 44, 725 (1966). 248. W. B. Dandliker, J. Am. Chem. Soc 72, 5110 (1950). 249. W. R. Carroll, H. Eisenberg, J. Polym. Sci. A-2, 4, 599 (1966). 250. J. A. Manson, G. J. Arquette, Makromol. Chem., 37, 187 (1960). 251. A. Ciferri, M. Kryszewski, G. Weill, J. Polym. Sci., 27, 167 (1958). 252. A. R. Shultz, J. Am. Chem. Soc, 76, 3422 (1954). 253. H. Benoit, A. M. Holtzer, P. Doty, J. Phys. Chem., 58, 624 (1954). 254. P. Kratochvfl, Coll. Czech. Chem. Commun., 29, 2767 (1964). 255. G. KaIz, Plaste Kautschuk, 17, 331 (1970). 256. E. Schroeder, Plaste Kautschuk, 15, 2 (1968). 257. M. Hlousek, J. Lanikova, Chem. Prumysel, 16, 160 (1966). 258. C. Wippler-through SOFICA Manual (1962). 259. L. Lapcik, L.-O. Sundelof, Chem. Scripta, 2, 41 (1972). 260. M. Bohdanecky, V. Petrus, P. Kratochvfl, Coll. Czech. Chem. Commun., 33, 4089 (1968). 261. G. KaIz-unpublished results quoted in Ref. 255. 262. P. Doty, H. Wagner, S. Singer, J. Phys. Chem., 51, 32 (1947). 263. M. Freeman, P. P. Manning, J. Polym. Sci., A, 2, 2017 (1964). 264. D. Laker, J. Polym. Sci., 25, 122 (1957). 265. T. Kobayashi, Bull. Chem. Soc Japan, 35, 636 (1962). 266. G. Palma, G. Pezzin, S. Zaramella, J. Polym. Sci. C, 33, 23 (1971). 267. P. Kratochvfl, D. Strakova, Makromol. Chem., 154, 325 (1972). 268. M. L. Wallach, M. A. Kabayama, J. Polym. Sci. A-1,4, 2667 (1966). 269. C. Garbuglio, L. Crescentini, A. MuIa, G. B. Gechele, Makromol. Chem., 97, 97 (1966). 270. M. Miura, Y. Kubota, T. Masuzukawa, Bull. Chem. Soc Japan, 38, 316 (1965). 271. C. Loucheux, Z. Czlonkowska, J. Polym. Sci. C, 16, 4001 (1968). 272. G. Muller-quoted in Ref. 235 273. J. B. Berkowitz, M. Yamin, R. M. Fuoss, J. Polym. Sci., 28, 69 (1958). 274. A. G. Boyes, U. P. Strauss, J. Polym. Sci., 22, 463 (1956). 275. G. R. Seely, Macromolecules, 2, 302 (1969). 276. R. L. Cleland, W. H. Stockmayer, J. Polym. Sci., 17, 473 (1955).
277. T. Shibukawa, M. Sone, A. Uchida, K. Iwahori, J. Polym. Sci. A-I, 6, 147 (1968). 278. R. Chiang, J. C. Stauffer, J. Polym. Sci. A-2, 5, 101 (1967). 279. W. R. Krigbaum, A. M. Kotliar, J. Polym. Sci., 32, 323 (1958). 280. P. F. Onyon, J. Polym. Sci., 37, 315 (1959). 281. N. Fujisaki, Kobunshi Kagaku, 18, 581 (1961). 282. L. H. Peebles, J. Polyrn. Sci. A, 3, 361 (1965). 283. K. Kamide, H. Kobayashi, Y. Miyazaki, C. Nakayama, Chem. High Polymer (Tokyo), 24, 679 (1967). 284. M. P. Zverev, A. N. Barash, L. P. Nikonorova, L. V. Ivanova, P. I. Zubov, Polym. Sci. USSR, 9, 1038 (1967). 285. H. Lange, H. Baumann, Angew. Makromol. Chem., 14, 25 (1970). 286. M. Iwama, H. Utiyama, M. Kurata, J. Macromol. Chem., 1, 701 (1966). 287. M. Matsumoto, Y. Ohyanagi, J. Polym. Sci., 46, 441 (1960). 288. M. Ueda, K. Kajitani, Makromol. Chem., 108, 138 (1967). 289. H.-G. Elias, P. Vogt, Makromol. Chem., 157, 263 (1972). 290. V. Kalpagam, M. Ramakishna, V. S. R. Rao, J. Polym. Sci. A, 1, 233 (1963). 291. H.-G. Elias, F. Patat, Makromol. Chem., 25, 13 (1958). 292. L. M. Hobbs, V. C. Long, Polymer, 4, 479 (1963). 293. R. U. Howard, Thesis, M. I. T, Cambridge, Mass. USA (1952). 294. W. W. Graessley, H. M. Mittelhauser, J. Polym. Sci. A-2, 5, 431 (1967). 295. F. W. Billmeyer, Jr.- quoted in Ref. 582. 296. W. W. Graesssley-quoted in Ref. 582. 297. A. Beresniewicz, J. Polym. Sci., 39, 63 (1959). 298. H. Inagaki, T. Oyama, Kobunshi Kagaku, 1, 20 (1952). 299. H. A. Dieu, J. Polym. Sci., 12, 417 (1954). 300. W. H. Beattie, R. K. Laudenslager, J. Moacanin, N. A. S. A. Tech. Memo No. 33-242, Jet Prop. Lab, California, 1966. 301. S. Matsuzawa, H. Tohara, A. Harada, Rept. Progr. Polym. Phys. Japan, 12, 29 (1969). 302. W. Burchard, M. Nosseir, Makromol. Chem., 82, 109 (1965). 303. K. Ueberreiter, J. Springer, Z. Physik, Chem. (N. F), 36, 299 (1963). 304. G. Sitaramaiah, D. Jacobs, Polymer, 11, 165 (1970). 305. H.-G. Elias, O. Etter, J. Macromol. Chem., 1, 431 (1966). 306. G. B. Levy, J. Polym. Sci., 17, 247 (1955). 307. A. B. Duchkova, N. S. Nametkin, V. S. Khotimskii, L. E. Gusel'nikov, S. G. Durgar'yan, Polym. Sci. USSR, 8, 2002 (1966). 308. H. Eisenberg, J. Chem. Phys., 44, 137 (1966). 309. H.-G. Elias, R. Schumacher, Makromol. Chem., 76, 23 (1964). 310. A. G. Nasini, C. Ambrosino, L. Trossarelli, Ricerca Sci., 25, 625 (Int. Symp. Macromol. Chem., Milan-Turin, 1954) (1955). 311. P. R. Saunders, J. Polym. Sci. A-2, 3755 (1964). 312. H. G. Fendier, H. A. Stuart, Makromol. Chem., 25, 159 (1958). 313. P. R. Saunders, J. Polym. Sci., 57, 131 (1962).
314. H. C. Beachell, D. W. Carlson, J. Polym. Sci., 40, 543 (1959). 315. D. W. Carlson, Thesis, Univ. Delaware, USA, 1959. 316. Z. Tuzar, P Kratochvil M. Bohdanecky, J. Polym. Sci. C, 16, 633 (1967). 317. M. K. Knecht, H.-G. Elias, Makromol. Chem., 157,1 (1972). 318. A. De Chirico, Chim. Ind. (Milan), 42, 248 (1960). 319. G. Sitaramaiah, J. Polym. Sci. A, 3, 2743 (1965). 320. A. R. Shultz, P. L. Wineman, M. Kramer, Macromolecules, 1, 488 (1968). 321. G. C. Berry, H. Nomura, K. G. Mayhan, J. Polym. Sci. A-2, 5, 1 (1967). 322. G. V. Schulz, A. Horbach, Makromol. Chem., 29, 93 (1959). 323. M. L. Wallach, Makromol. Chem., 103, 19 (1967). 324. A. E. Tonelli, P. J. Flory, Macromolecules, 2, 225 (1969). 325. H. L. Wagner, K. F. Wissbrun, Makromol. Chem., 81, 14 (1965). 326. C. Booth, R. Orme, Polymer, 11, 626 (1970). 327. M. Matsushima, M. Fakatsu, M. Kurata, Bull. Chem. Soc. Japan, 41, 2570 (1968). 328. G. Allen, C. Booth, S. J. Hurst, M. N. Jones, C. Price, Polymer, 8, 391 (1967). 329. K. Yamamoto, H. Fujita, Polymer, 8, 517 (1967). 330. J. M. Barrales-Riendo, D. C. Pepper, Eur. Polym. J., 3, 535 (1967). 331. P. J. Akers, G. Allen, M. J. Bethell, Polymer, 9, 575 (1968). 332. H.-G. Elias, H. Lys, Makromol. Chem., 92, 1 (1966). 333. P. Rempp, J. Chim. Phys., 54, 421 (1957). 334. C. Strazielle Makromol. Chem., 119, 50 (1968). 335. T. A. Ritscher, H.-G. Elias, Makromol. Chem., 30, 48 (1959). 336. W. Schnabel, U. Borgwardt, Makromol. Chem., 123, 73 (1969). 337. W. Ring, H.-J. Cantow, W. Holtrup, Eur. Polym. J., 2, 151 (1966). 338. W. Heller, T. L. Pugh, J. Polym. Sci., 47, 203 (1960). 339. A. Teramoto, H. Fujita, Makromol. Chem., 85, 261 (1965). 340. K. Yamamoto, H. Fujita, Polymer, 7, 557 (1966). 341. W. H. Stockmayer, L.-L. Chan, J. Polym. Sci. A-2, 4, 437 (1966). 342. G. Meyerhoff, U. Moritz, Makromol, Chem., 109, 143 (1967). 343. G. Allen, C. Booth, M. N. Jones, Polymer, 5, 195 (1964). 344. V. E. Eskin, A. E. Nesterov, Polym. Sci. USSR, 8, 152 (1966). 345. A. Von Raven, H. Heusinger, Paper No. P-53, IUPAC Internat. Conf. on "Chemical Transformation of Polymers", Bratislava, June 22-24 (1971). 346. A. Stokes, Eur. Polym. J., 6, 719 (1970). 347. N. V. Makletsova, I. V. Epel'baum, B. A. Rozenberg, E. B. Lyudvig, Polym. Sci. USSR, 7, 73 (1965). 348. D. Sims, Ministry of Defence, E. R. D. E. Waltham Abbey, Essex, England-Unpublished results (1966). 349. M. Kurata, H. Utiyama, K. Kamada, Makromol, Chem., 88, 281 (1965).
350. H.-G. Elias, G. Adank, Makromol, Chem., 103, 230 (1967). 351. J. M. Evans, M. B. Huglin, Makromol. Chem., 127, 141 (1969). 352. J. M. Evans, M. B. Huglin, Eur. Polym. J., 6, 1161 (1970). 353. K. Yamamoto, A. Teramoto, H. Fujita, Polymer, 7, 267 (1966). 355. K. V. Ivin, H. A. Ende, G. Meyerhoff, Polymer, 3, 129 (1962). 356. A. J. Bur, D. E. Roberts, J. Chem. Phys., 51, 406 (1969). 357. Z. Tuzar, H. C. Beachell, Polym. Letters, 9, 37 (1971). 358. N. S. Schneider, S. Furusaki, R. W. Lenz, J. Polym. Sci. A-I, 3, 933 (1965). 359. V. N. Tsvetkov, I. N. Shtennikova, E. I. Ryumtsev, L. N. Andreyeva, Yu. P. Getmanchuk, Yu. L. Spirin, R. I. Dryagileva, Polym. Sci. USSR, 10, 2482 (1968). 360. H. Plummer, B. R. Jennings, Eur. Polym. J., 6, 171 (1970). 361. J. Moacanin, J. Appl. Polym. Sci., 1, 272 (1959). 362. Gj. Dezelic, J. R Kratohvil, Kolloid-Z., 173, 38 (1960). 363. G. V. Schulz, A. Haug, Z. Phys. Chem. (Frankfurt), 34, 328 (1962). 364. G. Adank, H.-G. Elias, Makromol. Chem., 102, 151 (1967). 365. H. H. Tokimoto, C. T. Forbes, R. K. Laudenslager, J. Appl. Polym. Sci., 5, 153 (1961). 366. R. Nilson, L.-O. Sundelof, Makromol. Chem., 66, 11 (1963). 367. W. Schnabel, Makromol. Chem., 103, 103 (1967). 368. R. R. Buch, H. M. Klimisch, O. K. Johannson, J. Polym. Sci. A-2,, 7, 563 (1969). 369. V. N. Tsvetkov, K. A. Andrianov, I. N. Shtennikova, G. I. Okhrimenko, L. N. Andreyeva, G. A. Fomin, V. I. Pakhomov, Polym. Sci. USSR, 10, 636 (1968). 370. A. Audsley, J. Aveston, J. Chem. Soc, 2320 (1962). 371. D. E. G. Jones, J. W. Lorimer, Polymer, 13, 265 (1972). 372. P. R. Gupta, D. A. I. Goring, Canad. J. Chem., 38, 270 (1960). 373. G. Sitaramaiah, D. A. I. Goring, J. Polym. Sci., 58, 1107 (1962). 374. M. Marx-Figini, E. Penzel, Makromol. Chem., 87, 307 (1965). 375. W. Brown, R. Wikstroem, Eur. Polym. J., 1, 1 (1965). 376. D. Henley, Arkiv Kemi, 18, 327 (1961). 377. H. Vink, G. Dahlstrom, Makromol. Chem., 109, 249 (1967). 378. N. Gralen, Thesis, Uppsala (1944), quoted in Ref. 583. 379. L. Valtasaari, Tappi, 48, 627 (1965). 380. R. M. Badger, R. H. Blaker, J. Phys. Colloid Chem., 53,1056 (1949). 381. C. Wippler, J. Chim. Phys., 53, 346 (1956). 382. G. V. Schulz, E. Penzel, Makromol. Chem., 112, 260 (1968). 383. M. L. Hunt, S. Newman, H. A. Scheraga, P. J. Flory, J. Phys. Chem., 60, 1278 (1956). 384. A. Sharpies, F. L. Swinton, J. Polym. Sci., 50, 53 (1961). 385. W. R. Krigbaum, L. H. Sperling, J. Phys. Chem., 64, 99 (1960). 386. J. Oehman, Arkiv Kemi., 31, 125 (1969).
387. H. Janeschitz-Kriegl, W. Burchard, J. Polym. Sci. A-2, 6, 1953 (1968). 388. J. Oehman, V. P. Shanbhag, Arkiv Kemi., 31, 137 (1969). 389. W. Burchard, Makromol. Chem., 88, 11 (1965). 390. S. B. Sellen, M. P. Levi, Polymer, 8, 633 (1967). 391. M. M. Huque, D. A. I. Goring, S. G. Mason, Canad. J. Chem., 36, 952 (1958). 392. C. W. Tait, R. J. Vetter, J. M. Swanson, P. Debye, J. Polym. ScL, 7, 261 (1951). 393. S. Claesson, H. H. Bruun, Svensk. Papperstid., 60, 336 (1957). 394. K. K. Ghosh, P. K. Choudhury, Makromol. Chem., 102, 217 (1967). 395. P. F Onyon, J. Polym. Sci., 37, 295 (1959). 396. K. K. Ghosh, J. Appl. Polym. Sci., 15, 537 (1971). 397. R.H. Cornell, H. A. Swenson, J. Appl. Polym. Sci. 5, 641 (1961). 398. P. C. Scherer, A. Tannenbaum, D. W. Levi, J. Polym. Sci., 43, 531 (1960). 399. R. St. J. Manley, Arkiv Kemi 9, 519 (1956). 400. H. A. Swenson, A. J. Morak, S. Kurath, J. Polym. Sci., 51, 231 (1961). 401. M. G. Wirick, M. H. Waldman, J. Appl. Polym. Sci., 14, 579 (1970). 402. W. B. Neely, J. Polym. Sci. A, 1, 311 (1963). 403. W. J. Hillend, H. A. Swenson, J. Polym Sci. A, 2, 4921 (1964). 404. W. Brown, D. Henley, J. Oehman, Makromol. Chem., 62, 164 (1963). 405. N. S. Schneider, P. Doty, J. Phys. Chem., 58, 762 (1954). 406. B. Das, P K. Choudhury, J. Polym. Sci. A-I, 5, 769 (1967). 407. W. G. Yean, D. A. I. Goring, J. Appl. Polym. Sci., 14, 115 (1970). 408. S. R. Erlander, R. Tobin, Makromol. Chem., Ill, 194 (1968). 409. S. R. Erlander, R. Tobin, Makromol. Chem., Ill, 212 (1968). 410. C. J. Stacy, J. F. Foster, J. Polym. Sci., 20, 57 (1956). 411. S. R. Erlander, H. L. Griffin, Starke, 19, 134 (1967). 412. L. P. Witnauer, F. R. Senti, M. D. Stern, J. Polym. Sci., 16, 1 (1955). 413. P. Debye, J. Phys. Colloid Chem., 51, 18 (1947). 414. W. B. Everett, J. F. Foster, J. Am. Chem. Soc, 81, 3459 (1959). 415. H. L. Griffin, S. R. Erlander, F. R. Senti, Starke, 19, 8 (1967). 416. E. F. Paschall, J. F. Foster, J. Polym. Sci., 9, 85 (1952). 417. S. R. Erlander, H. L. Griffin, Starke, 19, 139 (1967). 418. J. M. G. Cowie, J. Polym. Sci., 49, 455 (1961). 419. R. S. Patel, R. D. Patel, Makromol. Chem., 90, 262 (1966). 420. W. Banks, C. T. Greenwood, Starke, 19, 394 (1967). 421. W. Banks, C. T Greenwood, D. J. Hourston, Trans. Faraday Soc, 64, 363 (1968). 422. W. Burchard, E. Husemann, Makromol. Chem., 44, 358 (1961).
423. W. Banks, C. T. Greenwood, J. Sloss, Eur. Polym. J., 7, 263 (1971). 424. Y. Tomimatsu, K. J. Palmer, A. E. Goodban, W. H. Ward, J. Polym. Sci., 36, 129 (1959). 425. Y. Tomimatsu, K. J. Palmer, J. Polym. Sci. A, 1, 1005 (1963). 426. P. J. Van Duin, J. J. Hermans, J. Polym. Sci., 36, 295 (1959). 427. B. Sedlacek, I. Fric, Coll. Czech. Chem. Commun., 24,2834 (1959). 428. W. Burchard, B. Pfannemueller, Makromol. Chem., 121, 18 (1969). 429. F. R. Senti, N. N. Hellman, N. H. Ludwig, G. E. Babcock, R. Tobin, C. A. Glass, B. L. Lamberts, J. Polym. Sci., 17, 527 (1955). 430. L. H. Arond, H. P. Frank, J. Phys. Chem., 58, 953 (1954). 431. K. Frombling, F. Patat, Makromol. Chem., 25, 41 (1958). 432. M. Zebec, Gj. Dezelic, J. Kxatohvil, K. F. Schulz, Croat. Chem. Acta, 30, 251 (1958). 433. E. Antonini, L. Bellelli, M. R. Bruzzesi. A. Caputo, E. Chiancone, A. Rossi-Fanelli, Biopolymers, 2, 27 (1964). 434. S. Levine, H. L. Griffin, F. R. Senti, J. Polym. Sci., 35, 31 (1959). 435. D. H. Juers, H. A. Swenson, S. F. Kurath, J. Polym. Sci. A-2, 5, 361 (1967). 436. J. B. Snell, J. Polym. Sci. A, 3, 2591 (1965). 437. G. V. Koleske, S. F. Kurath, J. Polym. Sci. A, 2,4123 (1964). 438. A. Veis, D. N. Eggenberger, J. Am. Chem. Soc, 76, 1560 (1954). 439. H. A. Swenson, H. M. Kaustinen, O. A. Kaustinen, N. S. Thompson, J. Polym. Sci. A-2, 6, 1593 (1968). 440. L. C. Cerny, R. C. Graham, H. James, Jr., J. Appl. Polym. Sci., 11, 1941 (1967). 441. C. T. Greenwood, D. J. Hourston, Starke, 19, 243 (1967). 442. K. A. Granath, R. Stroemberg, A. N. de Belder, Starke, 21, 251 (1969). 443. B. S. Harrap, E. F. Woods, Austral. J. Chem., 11,581 (1958). 444. B. S. Harrap, E. F. Woods, Austral. J. Chem., 11, 592 (1958). 445. F. C. Mclntire, H. W. Sievert, G. H. Barlow, R. A. Finley, A. Y. Lee, Biochem., 6, 2363 (1967). 446. W. Mackie, S. B. Sellen, Polymer, 10, 621 (1969). 447. P. Buchner, R. E. Cooper, A. Wasserman, J. Chem. Soc, 3974 (1961). 448. M. B. Mathews. Biochem. Biphys. Acta, 35, 9 (1959). 449. A. Pramanik, P. K. Choudhury, J. Polym. Sci. A-I, 6, 1121 (1968). 450. A. Pramanik, P. K. Choudhury, J. Polym. Sci. A-I, 7, 1055 (1969). 451. J. R. Patel, C. K. Patel, R. D. Patel, Starke, 19, 330 (1967). 452. R. Wikstrom, Svensk Papperstid, 71, 399 (1968). 453. D. A. I. Goring, T. E. Timell, J. Phys. Chem., 64, 1426 (1960). 454. R. G. Le Bel, D. A. I. Goring, J. Polym. Sci. C, 2, 29 (1963). 455. W. Mackie, D. B. Sellen, Biopolymers, 10, 1 (1971).
456. 571. 572. 573. 574. 575. 576.
577. 578. 579. 580. 581. 582. 583. 584. 585. 586. 587. 588. 589. 590. 591. 592. 593. 594. 595. 596. 597. 598. 599. 600. 601. 602. 603. 604. 605. 606. 607.
G. Cohen, H. Eisenberg, Biopolymers, 4, 429 (1966). D. Casson, A. Rembaum, Macromolecules, 5, 75 (1972). M. L. Wallach, J. Polym. Sci. A-2, 5, 653 (1967). M. L. Wallach, J. Polym. Sci. A-2, 7, 1995 (1969). L. V. Dubrovina, S. A. Pavlova, V. V. Korshak, Polym. Sci. USSR, 8, 827 (1966). S. A. Pavlova, L. V. Dubrovina, G. I. Timoveeva, J. Polym. Sci. C, 16, 2649 (1967). V. N. Tsvetkov, G. A. Fomin, P. N. Lavrenko, I. N. Shtennikova, T. V. Sheremeteva, L. I. Godunova, Polym. Sci. USSR, 10, 1051 (1968). N. A. Pravikova, Ye. B. Berman, Ye. B. Lyudvig, A. G. Davtyan, Polym. Sci. USSR, 12, 653 (1970). G. L. Hagnauer, N. S. Schneider, J. Polym. Sci. A-2,10, 699 (1972). G. Allen, J. McAinsh, Eur. Polym. J., 6, 1635 (1970). U. P. Strauss, P. L. Wineman, J. Am. Chem. Soc, 80, 2366 (1958). G. C. Berry, L. M. Hobbs, V. C. Long, Polymer, 5, 31 (1964). R. St. John Manley, A. Bengtsson, Svensk, Papperstid., 61, 471 (1958). H. Utiyama, N. Sugi, M. Kurata, M. Tamura, Bull. Inst. Chem. Res., Kyoto Univ., 46, 198 (1968). J. P. Kratohvil, Kolloid-Z, -Z Polym., 238, 455 (1970). W. Kaye, A. J. Havlik, J. B. McDaniel, Polym. Let., 9, 695 (1971). J. C. Ravey, P. Mazeron, Polym. J., 6, 279 (1974). T. Tsui, T. Norisuye, H. Fujita, Polym. J., 7, 558 (1975). J. Stejskai, J. Janca, P. Kratochvil, Polym. J., 8, 549 (1976). T. Ohta, T. Norisuye, A. Teramoto, H. Fujita, Polym. J., 8, 281 (1976). M. Motowoka, T. Norisuye, H. Fujita, Polym. J., 9, 613 (1977). M. Motowoka, H. Fujita, T. Norisuye, Polym. J., 10, 331 (1978). Y. Einaga, T. Mitani, J. Hashizume, H. Fujita, Polym. J., 11, 565 (1979). K. Kamide, Y. Mijazaki, T. Abe, Polym. J., 11, 523 (1979). T. Hirosye, Y. Einaga, H. Fujita, Polym. J., 11, 819 (1979). I. Hirano, Y. Einaga, H. Fujita, Polym. J., 11, 901 (1979). M. Motowoka, T. Norisuye, A. Teramoto, H. Fujita, Polym. J., 11, 665 (1979). H. Matsuda, I. Yamada, M. Okabe, S. Kuroiwa, Polym. J., 9, 527 (1977). M. Kurata, M. Abe, M. Iwama, M. Matshushima, Polym. J., 3, 729 (1972). S. Saruta, Y. Einaga, A. Teramoto, Polym. J., 12, 161 (1980). M. Hara, A. Nakajima, Polym. J., 12, 701 (1980). K. Kamide, M. Saito, T. Abe. Polym. J., 13, 421 (1981). J. Sadanobu, T. Norisuye, H. Fujita, Polym. J., 13,75 (1981). L. Van Minh, T. Nose, Polym. J., 15, 159 (1983). M. Saito, Polym. J., 15, 249 (1983). T. Sato, T. Norisuye, H. Fujita, Polym. J., 16, 341 (1984). K. Sakarai, K. Ochi, T. Norisuye, H. Fujita, Polym. J., 16, 559 (1984). M. Hoffmann, Makromol. Chem., 175, 613 (1974).
608. R. Kuhn, H. Alberts, H. Bartl, Makromol. Chem., 175, 1471 (1974). 609. R. Casper, U. Biskup, H. Lange, U. Pohl, Makromol. Chem., 177, 1111 (1976). 610. J. Scornaux, R. van Leemput, Makromol. Chem., 177, 2721 (1976). 611. F. Candau, C. Dufour, J. Francois, Makromol. Chem., 177, 3359 (1976). 612. D. Rahlwes, R. G. Kirste, Makromol. Chem., 178, 1793 (1977). 613. R. Hammel, C. Gerth, Makromol. Chem., 178, 2697 (1977). 614. H. Hack, G. Meyerhoff, Makromol. Chem., 179, 2475 (1978). 615. B. Carton, V. Bottiglione, M. Morcellet, C. Loucheux, Makromol. Chem., 179, 2931 (1978). 616. M. Morcellet, C. Loucheux, Makromol. Chem., 179, 2439 (1979). 617. B. Millaud, C. Strazielle, Makromol. Chem., 180, 441 (1979). 618. M.-K. Lai, M. Sc. Thesis, Univ. of Salford (1977). 619. W.-M. Kulicke, R. Kniewska, Makromol. Chem., 181, 823 (1980). 620. R. Chandra, R. R Singh, Makromol. Chem. 181, 1637 (1980). 621. O. Chiantore, L. Trossarelli, M. Guaita, Makromol. Chem., 181, 1115 (1980). 622. H. Miiller, D. Neuray, A. Horbach, Makromol. Chem., 182, 177 (1981). 623. T. Tanaka, M. Omoto, H. Inagaki, Makromol. Chem., 182, 2889 (1981). 624. G. L. Hammel, G. V. Schulz, Makromol. Chem., 182, 1835 (1981). 625. W. Wunderlich, Makromol. Chem., 182, 2465 (1981). 626. J. Stejskal, J. Horska, Makromol. Chem., 183, 2527 (1982). 627. G. Vorreux, M. Morcellet, C. Loucheux, Makromol. Chem., 183,711 (1982). 628. R. W. Holmes, M. B. Huglin, M.-K. Lai, Int. J. Biol. Macromols. 1, 23 (1979). 629. A. Lapp, C. Strazielle, Makromol. Chem., 184, 1877 (1983). 630. M. Hert, C. Strazielle, Makromol. Chem., 184, 135 (1983). 631. L. L. Bohm, U. Lanver, M. D. Lechner, Makromol. Chem., 184, 585 (1983). 632. O. Prochazka, Z. Tuzar, P. Kratochvil, Makromol. Chem., 184, 2097 (1983). 633. F. Hooshmand-Mozaffar, M. K. Hosseinalizadeh Khorasani, M. B. Huglin, Polymer, 21, 413 (1980). 634. R. Kniewske, W.-M. Kulicke, Makromol. Chem., 184, 2173 (1983). 635. K. Kajiwara, W. Burchard, M. Kowalski, D. Nerger, K. Dusek, L. Matejka, Z. Tuzar, Makromol. Chem., 185, 2543 (1984). 636. L. Beltzung, C. Strazielle, Makromol. Chem., 185, 1155 (1984). 637. R. Kuhn. Makromol. Chem., 185, 1003 (1984).
638. M. D. Lechner, D. G. Steinmeir, Makromol. Chem. Rapid Commun., 2, 421 (1981). 639. N. Sakamoto, H. Tanaka, K. Yamaguchi, M. Yoshida, S. Arichi, Makromol. Chem., 186, 1881 (1985). 640. A. Lapp. J. Herz. C. Strazielle, Makromol. Chem., 186,1919 (1985). 641. G. BuIt. G. Meyerhoff, Makromol. Chem., Suppl., 1, 359 (1975). 642. E. Penzel, H. Pohleman, J. Swoboda, Makromol. Chem. Suppl, 1, 367 (1975). 643. C. Plachetta, R. C. Schulz, Makromol. Chem. Rapid Commun., 3, 815 (1982). 644. S. F. Sun, Makromol. Chem. Rapid Commun., 4, 203 (1983). 645. V. Grinshpun, A. Rudin, Makromol. Chem. Rapid Commun., 6, 219 (1985). 646. T. C. Chau, A. Rudin, Polymer, 15, 593 (1974). 647. F. Candau, J. Francois, H. Benoit, Polymer, 15, 626 (1974). 648. D. B. Sellen, Polymer, 16, 561 (1975). 649. C. T. Greenwood, D. J. Hourston, Polymer, 16, 474 (1975). 650. J. V. Champion, G. H. Meeten, G. W. Southwell, Polymer, 17, 651 (1976). 651. T. Dumelow, S. R. Holding, L. J. Maisey, Polymer, Commun., 24, 307 (1983). 652. P. Kratochvil, D. Strakova, J. Stejskal, Polymer Commun., 26, 202 (1985). 653. S. Arichi, N. Sakamoto, M. Miki, M. Yoshida, Polymer, 26, 1175 (1985). 654. J. L. Angulo-Sanchez, A. Gallegos, M. A. Ponce-Velez, E. Campos-Lopez, Polymer, 18, 922 (1977). 655. M. Arpin, C. Strazielle, Polymer, 18, 591 (1977). 656. J. Klein, K.-D. Conrad, Makromol. Chem., 179, 1635 (1978). 657. J. SeIb. Y. Gallot, Polymer, 20, 1273 (1979). 658. J. Roovers, Polymer, 20, 843 (1979). 659. B. Millaud, C. Strazielle, Polymer, 20, 563 (1979). 660. A. Bazuaye, M. B. Huglin, Polymer, 20, 44 (1979). 661. B. Millaud, C. Strazielle, G. Weill, Polymer 21, 639 (1980). 662. T. Shimizu, A. Minakata, T Tomiyama, Polymer, 21, 1427 (1980). 663. V. Chrastova, D. Mikulasova, J. Lacok, C. Citovicky, Polymer, 22, 1055 (1981). 664. D. Radic, L. Gargallo, Polymer, 22, 1045 (1981). 665. D. Kokkiaris, C. Touloupis, N. Hadjichristidis, Polymer 22, 63 (1981). 666. C. J. C. Edwards, R. F. T. Stepto, J. A. Semlyen, Polymer 23, 869 (1982). 667. G. H. Meeten, R Navard, Polymer, 23, 483 (1982). 668. K. Weisskopf, G. Meyerhoff, Polymer, 24, 72 (1983). 669. L. Mrkvickova, J. Stejskal. J. Spevacek, J. Horska, O. Quadrat, Polymer, 24, 700 (1983). 670. E. Ozdemir, R. W. Richards, Polymer, 24, 1097 (1983). 671. M. B. Huglin, I. Mohd. Idris, Polymer, 24, 1434 (1983). 672. A. Campos, B. Celda, J. Mora, J. E. Figueruelo, Polymer, 25, 1479 (1984).
673. F. Mabire, R. Audebert, C. Quivoron, Polymer, 25, 1317 (1984). 674. B. Bednaf, J. Devaty, B. Koupalova, J. Kralicek, Z. Tuzar, Polymer, 25, 1178 (1984). 675. A. A. Abdel-Azim, M. B. Huglin, Polymer, 25, 803 (1984). 676. D. Kisakurek, B. M. Bay sal, Polymer, 25, 693 (1984). 677. T. Kato, T. Kotuya, T. Nozaki, A. Takahashi, Polymer, 25, 218 (1984). 678. V. M. Monroy Soto, J. C. Galin, Polymer, 25, 254 (1984). 679. V. M. Monroy Soto, J. C. Galin, Polymer, 25, 121 (1984). 680. M. Wenzel, W. Burchard, K. Schatzel, Polymer, 27, 195 (1986). 681. P. H. Mutin, J. M. Guenet, Polymer, 27, 1098 (1986). 682. S. F. Sun, D. Chao, S. Lin, Polym. Commun, 24, 84 (1983). 683. R. Rymden, J. Carlfors, Polym. Commun., 24, 114 (1983). 684. Y Kambe, C. Honda, Polym. Commun., 24, 208 (1983). 685. R. Jenkins, R. S. Porter, Polymer, 23, 105 (1982). 686. M. Tricot, Polym. Commun., 24, 366 (1983). 687. Y. Kambe, C. Honda, Polym. Commun., 25, 154 (1984). 688. H. Ochiai, K. Kamata, L Murakami, Polym. Commun., 25, 158 (1984). 689. M. R. Gomez-Anton, A. Horta, 1. Hernandez-Fuentes Polym. Commun., 27, 5 (1986). 690. H. Utiyama, K. Takenaka, M. Mizumori, M. Fukuda, Y Tsunashima, M. Kurata, Macromolecules, 7, 515 (1974). 691. K. Takashima, K. Nakae, M. Shibata, H. Yamakawa, Macromolecules, 7, 641 (1974). 692. J. M. G. Cowie, I. J. McEwen, Macromolecules, 7, 291 (1974). 693. J. E. L. Roovers, S. Bywater, Macromolecules, 7, 443 (1974). 694. K. Matsuo, W. H. Stockmayer, Macromolecules, 8, 660 (1975). 695. A. C. Ouano, E. Gipstein, W. Kaye, B. Dawson, Macromolecules, 8, 558 (1975). 696. T. Tanaka, T. Kotaka, H. Inagaki, Macromolecules, 9, 561 (1976). 697. Z. Tuzar, P. Kratochvfl, Macromolecules, 10, 1108 (1977). 698. T Tanaka, T. Kotaka, K. Ban, M. Hattori, H. Inagaki, Macromolecules, 10, 960 (1977). 699. J. J. Bourguignon, J. C. Galin, Macromolecules, 10, 804 (1977). 700. L. W. Fisher, A. R. Sochor, J. S. Tan, Macromolecules, 10, 949 (1977). 701. Y Miyaki, Y Einaga, T. Hirosye, H. Fujita Macromolecules, 10, 1356 (1977). 702. S. Akita, Y Einaga, Y Miyaka, H. Fujita, Macromolecules, 9, 774 (1976). 703. P. M. Toporowski, J. Roovers, Macromolecules, 11, 365 (1978). 704. Y Miyaki, Y Einaga, H. Fujita, Macromolecules, 11, 1180 (1978). 705. M. R. Ambler, D. Mclntyre, L. J. Fetters, Macromolecules, 11, 300 (1978). 706. J. N. Helbert, C-Y Chen, C. U. Pittman Jr., G. L. Hagnauer, Macromolecules, 11, 1104 (1978). 707. L. J. Fetters, H. Yu, Macromolecules, 4, 385 (1971).
708. T. M. Aminabhavi, R Munk, Macromolecules, 12, 1186 (1979). 709. M. Mandel, J. Schouten, Macromolecules, 13, 1247 (1980). 710. T. Kitano, A. Taguchi, I. Noda, M. Nagasawa Macromolecules, 13, 57 (1980). 711. Y. Miyaki, Y Einaga, H. Fujita, M. Fukuda Macromolecules, 13, 588 (1980). 712. B. Appelt, G. Meyerhoff, Macromolecules, 13, 657 (1980). 713. P Munk, T. M. Aminabhavi, P Williams, D. E. Hoffman, M. Chmelir, Macromolecules, 13, 871 (1980). 714. J. A. Guest, K, Matsuo, W. H. Stockmayer, U. W. Suter, Macromolecules, 13, 560 (1980). 715. R. C. Jordan, D. A. Brant, Macromolecules, 13, 491 (1980). 716. H. Murakawi, T. Norisuye, H. Fujita, Macromolecules, 13, 345 (1980). 717. I. Noda, T. Imai, T Kitano, M. Nagasawa, Macromolecules, 14, 1303 (1981). 718. J. S. Tan, A. R. Sochor, Macromolecuies, 14, 1700 (1981). 719. M. G. Prolongo, R. M. Masegosa, I. Hernandez-Fuentes, A. Horta, Macromolecules, 14, 1526 (1981). 720. A. Horta, I. Fernandez-Pierola, Macromolecules, 14, 1519 (1981). 721. M. Mandel, F. A. Varkevisser, C. J. Bloys Van Treslong, Macromolecules, 15, 675 (1982). 722. G. Paradossi, D. A. Brant, Macromolecules, 15, 874 (1982). 723. K. N. Strand, A. Boe, P. S. Dalberg, T. Sikkeland, O. Smidsrd, Macromolecules, 15, 570 (1982). 724. W. F. Polik, W. Burchard, Macromolecules, 16, 978 (1983). 725. P. Kratochvil, D. Strakova, J. Stejskal, Z. Tuzar, Macromolecules, 16, 1136(1983). 726. T Sato, T. Norisuye, H. Fujita, Macromolecules, 16, 185 (1983). 727. B. Sedlacek, V. Petrus, M Bohdanecky, IUPAC Int. Symp. Macromolecules Tashkent (1978). Abstract 5-198. 728. B. Chu, Q. Ying, D.-G. Lee, D.-Q. Wu, Macromolecules, 18, 1962(1985). 729. G. V. Laivins, D. G. Grug, Macromolecules, 18, 1746 (1985). 730. M. Nakata, N. Numasawa, Macromolecules, 18, 1736 (1985). 731. K. Huber, S. Bantle, P. Lutz, W. Burchard, Macromolecules, 18, 1461 (1985). 732. K. Matsuo, W. H. Stockmayer, F. Bangerter, Macromolecules, 18, 1346 (1985). 733. S. Yukioka, I. Noda, M. Nagasawa, M. E. Holtzer, A. Holtzer, Macromolecules, 18, 1083 (1985). 734. M. Terbojevich, A. Cosani, G. Conio, A. Ciferri, E. Bianchi, Macromolecules, 18, 640 (1985). 735. M. Me, W. Schnabel, Macromolecules, 18, 394 (1985). 736. K. Huber, W. Burchard, L. J. Fetters, Macromolecules, 17, 541 (1984). 737. J. Velickovic, J. Filipovic, Macromolecules, 17, 611 (1984). 738. A. Kidera, A. Nakajima, Macromolecules, 17, 659 (1984). 739. G. Wenz, M. A. Muller, M. Schmidt, G. Wegner, Macromolecules, 17, 837 (1984). 740. C. L. McCormick, P. A. Callais, B. H. Hutchinson Jr., Macromolecules, 18, 2394 (1985).
741. B. Sedlacek, J. Spevacek, L. Mrkvickova, J. Stejskal, J. Horska, J. Baldrian, O. Quadrat, Macromolecules, 17, 825 (1984). 742. N. T. M. Klooster, F. van der Touw, M. Mandel, Macromolecules, 17, 2078 (1984). 743. X. Zhongde, N. Hadjichristidis, L. J. Fetters, Macromolecules, 17, 2303 (1984). 744. M. Kuwata, H. Murakami, T. Norisuye, H. Fujita, Macromolecules, 17, 2731 (1984). 745. J. W. Pope, B. Chu, Macromolecules, 17, 2633 (1984). 746. M. T. Bishop, F. E. Karasz, P. S. Russo, K. H. Langley, Macromolecules, 18, 86 (1985). 747. M. B. Huglin, M. B. Sokro, Polymer, 21, 651 (1980). 748. J. W. Mays, W. Ferry, N. Hadjichristidis, L. J. Fetters, Macromolecules, 18, 2330 (1985). 749. H. Garreau, E. Marechal, Eur. Polym. J., 9, 263 (1973). 750. M. Hert, C. Strazielle, Eur. Polym. J., 9, 543 (1973). 751. J. Brzezinski, Z. Czlonkowska-Kohutnicka, B. Czarnecka, A. Kornas-Calka, Eur. Polym. J., 9, 733 (1973). 752. C. Cincu, Eur. Polym. J., 10, 29 (1974). 753. J. M. G. Cowie, A. Maconnachie, Eur. Polym. J., 10, 367 (1974). 754. M. Bohdanecky, H. Bazilova, J. Kopecek, Eur. Polym. J., 10, 405 (1974). 755. B. R. Jennings, J. F. Schweitzer, Eur. Polym. J., 10, 459 (1974). 756. V. N. Tsvetkov, E. I. Rjumtsev, L. N. Andreeva, N. V. Pogodina, P. N. Lavrenko, L. I. Kutsenko, Eur. Polym. J., 10, 563 (1974). 757. R. L. Bartosiewicz, C. Booth, A. Marshall, Eur. Polym. J., 10, 783 (1974). 758. G. Beck, J. Kiwi, D. Lindenau, W. Schnabel, Eur. Polym. J., 10, 1069 (1974). 759. J. M. G. Cowie, A. Maconnachie, Eur. Polym. J., 11,79 (1975). 760. P Biemacki, M. Wlodarczyk, Eur. Polym. J., 11,107 (1975). 761. I. A. Katime Amashta, G. Sanchez, Eur. Polym. J., 11, 223 (1975). 762. J. Velickovic, S. Coseva, R. J. Fort, Eur. Polym. J., 11, 377 (1975). 763. J. T. Guthrie, M. B. Huglin, R. W. Richards, V. I. Shah, A. H. Simpson, Eur. Polym. J., 11, 527 (1975). 764. I. Katime, A. Roig, Eur. Polym. J., 11, 603 (1975). 765. Z. Tuzar, M. Bohdanecky, R. Puffr, J, Sebenda, Eur. Polym. J., 11, 851 (1975). 766. I. Katime, P. Garro, J. M. Teijon, Eur. Polym. J., 11, 881 (1975). 767. J. Velickovic, M. Plavsic, Eur. Polym. J., 12, 151 (1976). 768. R. J. Fort, T. M. Polyziodis, Eur. Polym. J., 12, 685 (1976). 769. M. Dolezalova, V. Petrus, Z. Tuzar, M. Bohdanecky, Eur. Polym. J., 12, 701 (1976). 770. I. Katime, A. Roig, L. M. Leon, S. Montero, Eur. Polym. J., 13, 59 (1977). 771. S. loan, E. Dumitriu, S. Maxim, A. Carpov, Eur. Polym. J., 13, 109 (1977). 772. P. R. M. Nair, R. M. Gohil, K. C. Patel, R. D. Patel, Eur. Polym. J., 13, 273 (1977).
773. I. A. Schneider, A. Onu, N. Aelene, Eur. Polym. J., 13, 725 (1977). 774. L. V. Titkova, E. Prokopova, B. Sedlacek, V. Petrus, K. Dusek, M. Bohdanecky, Eur. Polym. J., 14, 145 (1978). 775. S. L. Malhotra, J. Leonard, E. Ahad, Eur. Polym. J., 14, 257 (1978). 776. A. Campos Munoz, C. Strazeille, Eur. Polym. J., 14, 517 (1978). 777. Z. Kiicukyavuz, S. Kuciikyavuz, Eur. Polym. J., 14, 867 (1978). 778. C. Strazielle, Eur. Polym. J., 15, 55 (1979). 779. S. loan, S. Maxim, Eur. Polym. J., 15, 161 (1979). 780. C. Simionescu, N. Cobianu, Eur. Polym. J., 15, 173 (1979). 781. I. Katime, R. Valenciano, J. M. Teijon, Eur. Polym. J., 15, 261 (1979). 782. H. Maillols, L. Bardet, S. Gromb, Eur. Polym. J., 15, 307 (1979). 783. J. Herold, G. Meyerhoff, Eur. Polym. J., 15, 525 (1979). 784. A. Blau, Dissertation, Techn. Hochschule Karlsruhe (1977). 785. H. Suzuki, Y. Miyazaki, K. Kamide, Eur. Polym. J., 16, 703 (1980). 786. J. W. A. Van Den Berg, G. van de Ridder, C. A. Smolders, Eur. Polym. J., 17, 935 (1981). 787. K. Kishino, T. Kawai, T. Nose, M. Saitoh, K. Kamide, Eur. Polym. J., 17, 623 (1981). 788. Z. Tuzar, O. Prochazka, P. Kratochvfl, Eur. Poiym. J., 17, 87 (1981). 789. Z. Tuzar, P. Kratochvfl, Macromolecules, 10, 1108 (1977). 790. Z. Tuzar, P. Kratochvfl, M. Bohdanecky, Adv. Polym. ScL, 30, 117(1979). 791. J. Carlfors, R. Rymden, Eur. Polym. J., 18, 933 (1982). 792. Z. Czlonkowska-Kohutnicka, Z. Dubkowski, Eur. Polym. J., 18,911 (1982). 793. H. Suzuki, Y. Muraoka, M. Saito, K. Kamide, Eur. Polym. J., 18, 831 (1982). 794. E. Ogawa, M. Sato, N. Yamaguchi, M. Shima, Eur. Polym. J., 18, 257 (1982). 795. D. Radic, L. Gargallo, Eur. Polym. J., 18, 151 (1982). 796. J. Smid, Y. Y. Tan, G. Challa, Eur. Polym. J., 19, 853 (1983). 797. G. HiId, C. Strazielle, P. Rempp, Eur. Poiym. J., 19, 721 (1983). 798. V. N. Tsvetkov, S. O. Tsepelevich, Eur. Polym. J., 19, 267 (1983). 799. J. M. Barrales-Rienda, P. A. Galera Gomez, Eur. Polym. J., 20, 1213 (1984). 800. I. Mohd. Idris, Doctoral Thesis, University of Salford (1983). 801. I. Katime, R. B. Valenciano, M. S. Anasagasti, D. Yoldi, Eur. Polym. J., 21, 485 (1985). 802. K. S. Minsker, R. B. Pancheshnikova, Ya. B. Monakov, G. E. Zaikov, Eur. Polym. J., 21, 981 (1985). 803. T. Ishige, A. E. Hamielec, J. Appl. Polym. ScL, 17, 1479 (1973). 804. E. Dings0yr, O. Smidsr0d, Brit, Polym. J., 9, 56 (1977). 805. J. Kratochvfl, B. Sedlacek, Brit. Poiym. J., 9, 206 (1977). 806. P. Kratochvfl, D. Strakova, Z. Tuzar, Brit, Polym. J., 9, 217 (1977).
807. S. AIi, Brit. Polym. J., 10, 108 (1978). 808. H. Suzuki, Brit. Polym. J., 11, 41 (1979). 809. R. Muqbill, G. Muller, J. C. Fenyo, E. Selegny, J. Polym. Sci., Polym. Lett., 17, 369 (1979). 810. R. Jenkins, R. S. Porter, J. Polym. Sci., Polym. Letters, 18, 742 (1980). 811. N. Numasawa, T. Hamada, T. Nose, J. Polym. Sci., Polym. Lett., 23, 1 (1985). 812. J. Stejskal, M. J. Benes, P. Kratochvil, J. Peska, J. Polym. Sci. Polym. Phys. Ed., 11, 1803 (1973); and Idem, Ibid., 12, 1941 (1974). 813. K. S. V. Srinivasan, M. Santappa, J. Polym. Sci. Polym. Phys. Ed., 11, 331 (1973). 814. H. L. Wagner, C. A. J. Hoeve, J. Polym. Sci. Polym. Phys. Ed., 11, 1189(1973). 815. C. W. Tsimpris, K. G. Mayhan, J. Polym. Sci. Polym. Phys. Ed., 11, 1151 (1973). 816. D. W. Tanner, G. C. Berry, J. Polym. Sci. Polym. Phys. Ed., 12, 941 (1974). 817. J. Stejskal, P. Kratochvil, J. Pouchly, J. Polym. Sci. Polym. Phys. Ed., 12, 891 (1974). 818. N. Doddi, W. C. Forsman, C. C. Price, J. Polym. Sci. Polym. Phys. Ed., 12, 1395 (1974). 819. J. M. G. Cowie, A. Maconnachie, J. Polym. Sci. Polym. Phys. Ed., 12, 407 (1974). 820. M. Fukuda, M. Fukutomi, Y. Kato, T. Hashimoto, J. Polym. Sci. Polym. Phys. Ed., 12, 871 (1974). 821. P Kratochvil, J. Vorlfcek, D. Strakova, Z. Tuzar, J. Polym. Sci. Polym. Phys. Ed., 13, 2321 (1975). 822. H. Kaye, H. J. Chou, J. Polym. Sci. Poiym. Phys. Ed., 13,477 (1975). 823. J. S. Tan, S. P. Gasper, J. Polym. Sci. Polym. Phys. Ed., 13, 1705 (1975). 824. J. Stejskal, P. Kratochvil, J. Polym. Sci. Polym. Phys. Ed., 13, 715 (1975). 825. C. R. Reddy, V. Kalpagam, J. Polym. Sci. Polym. Phys. Ed., 14, 749 (1976). 826. J. Roots, B. Nystrdm, J. Polym. Sci. Polym. Phys. Ed., 16, 695 (1978). 827. T. Kojima, R. Yokota, M. Kochi, H. Kambe, J. Polym. Sci. Polym. Phys. Ed., 18, 1673 (1980). 828. T. Norisuve, T. Yanaki, H. Fujita, J. Polym. Sci. Polym. Phys. Ed., 18, 547 (1980). 829. C. J. Stacy, G. Kraus, J. Polym. Sci. Polym. Phys. Ed., 17, 2007 (1979). 830. E. Bianchi, A. Ciferri, A. Tealdi, W. R. Krigbaum, J. Polym. Sci. Polym. Phys. Ed., 17, 2091 (1979). 831. H. Suzuki, Y Murnoka, H. Inagaki, J. Polym. Sci. Polym. Phys. Ed., 19, 189 (1981). 832. N. Hadjichristidis, L. J. Fetters, J. Polym. Sci. Polym. Phys. Ed., 20, 2163 (1982). 833. C-Y Lin, S. L. Rosen, J. Polym. Sci. Polym. Phys. Ed., 20, 1497 (1982). 834. N. Hadjichristidis, X. Zhongde, L. J. Fetters, J. Polym. Sci. Polym. Phys. Ed., 20, 743 (1982). 835. X. Chen. Z. Chu, N. Hadjichristidis, L. J. Fetters, J. Carella, W. W. Graessley, J. Polym. Sci. Polym. Phys. Ed., 22, 777 (1984).
836. N. Binboga, D. Kisakurek, B. M. Baysal. J. Polym. Sci. Polym. Phys. Ed., 23, 925 (1985). 837. P N. Chaturvedi, C. K. Patel, J. Polym. Sci. Polym. Phys. Ed., 23, 1255 (1985). 838. D. B. Cotts, J. Polym. Sci. Polym. Phys. Ed., 23, 2217 (1985). 839. N. Hadjichristidis, J. Mays, R. D. Vargo, L. J. Fetters, J. Polym. Sci. Polym. Phys. Ed., 21, 189 (1983). 840. P. M. Cotts, G. C. Berry, J. Polym. Sci. Polym. Phys. Ed., 21, 1255 (1983). 841. D. B. Cotts, J. Polym. Sci. Polym. Phys. Ed., 21,1381 (1983). 842. N. Naoki, L-H. Park, S. I. Wunder, B. Chu, J. Polym. Sci. Polym. Phys. Ed., 23, 2567 (1985). 843. J. Danhelka, I. Kossler, V. Bohackova, J. Polym. Sci. Chem. A-I, 14, 287 (1976). 844. G. Muller, J. P. Laine, J. C. Fenyo, J. Polym. Sci. Chem. A-I, 17, 659 (1979). 845. D. K. Carpenter, G. Santiago, A. H. Hunt, J. Polym. Sci. Polym. Symp., 44, 75 (1974). 846. T. E. Helminiak, G. C. Berry, J. Polym. Sci. Polym. Symp., 65, 107 (1978). 847. J. L. Work, G. C. Berry, E. F. Casassa, J. K. Stille, J. Polym. Sci. Polym. Symp., 65, 125 (1978). 848. G. C. Berry, J. Polym. Sci. Polym. Symp., 65, 143 (1978). 849. C-P. Wong, H. Ohnuma, G. C Berry, J. Polym. Sci. Polym. Symp., 65, 173 (1978). 850. M. Carenza, G. Palma, M. Tavan, J. Polym. Sci. Polym. Sym., 42, 1031 (1973). 851. C Holt, W. Mackie, D. B. Sellen, J. Polym. Sci. Polym. Symp., 42, 1505 (1973). 852. N. Segudovic, Gj. Dezelic, D. Fles, J. Polym. Sci. Polym. Symp., 42, 1209 (1973). 853. M. N. Berger, B. M. Tidswell, J. Polym. Sci. Polym. Symp., 42, 1063 (1973). 854. J. J. Burke, J. Macromol. Sci. Chem. A, 7, 187 (1973). 855. N. Hadjichristidis, V. Desreux, J. Macromol. Sci. Chem. A., 6, 1227 (1972). 856. S. H. Carr, E. Baer, A. G. Walton, J. Macromol, Sci. Phys. B, 6, 15 (1972). 857. F. C Lin, S. S. Stivala, J. A. Biesenberger, J. Appl. Polym. Sci., 17, 1073 (1973). 858. E. Ahad, J. Appl. Polym. Sci., 17, 365 (1973). 859. A. L. Spatorico, J. Appl. Polym. Sci., 18, 1793 (1974). 860. G. L. Hagnauer, B. R. Laliberte, J. Appl. Polym. Sci., 20, 3073 (1976). 861. D. Harwood, H. Aoki, Y-D. Lee, J. F. Fellers, J. L. White, J. Appl. Polym. Sci., 23, 2155 (1979). 862. J. Horska, J. Stejskal, P. Kratochvil, J. Appl. Polym. Sci., 24, 1845 (1979). 863. T. B. MacRury, M. L. McConnell, J. Appl. Polym. Sci., 24, 651 (1979). 864. S. H. Agarwal, R. F. Jenkins, R. S. Porter, J. Appl. Polym. Sci., 27, 113(1982). 865. J. Stejskal, J. Horska, P. Kratochvil, J. Appl. Polym. Sci., 27, 3929 (1983). 866. J. Horska, J. Stejskal, P. Kratochvil, J. Appl. Polym. Sci., 28, 3873 (1983).
867. P. R. Dvornic, J. Appl. Polym. Sci., 28, 2729 (1983). 868. F. B. Malihi, C-Y. Kou, T. Provder, J. Appl. Polym. Sci., 29, 925 (1984). 869. W. Dietrich, A. Basch, Angew, Makromol. Chem., 40/41, 159 (1974). 870. M. B. Huglin, R. W. Richards, Angew Makromol. Chem., 38, 207 (1974). 871. J. Schurz, H. Hochberger, K. H. Schmidt, Angew Makromol. Chem., 52, 165 (1976). 872. C. E. Carraher Jr., H. S. Blaxall, Angew Makromol. Chem., 83, 37 (1979). 873. S. M. Aharoni, E. K. Walsh, Angew. Makromol. Chem., 81, 75 (1979). 874. H. Horbach, R. Binsack, H. Miiller, Angew. Makromol. Chem., 98, 35 (1981). 875. G. Pastuska, U. Just, H. August, Angew. Makromol. Chem., 107, 173 (1982). 876. L. Simek, J. Hrncirik, M. Mladek, Z. Tuzar, Angew. Makromol. Chem., 107, 185 (1982). 877. I. Prokopova, Z. Tuzar. Kondelikova, D, Schmiedova, J. Kralicek. Angew Makromol. Chem., 102, 39 (1982). 878. W.-M. Kulicke, H. H. Horl, Angew. Makromol. Chem., 116, 149 (1983). 879. J. Danhelka, L. Mrkvickova, V. Stepan, I. Kossler, Angew. Makromol Chem., 122, 77 (1984). 880. M. D. Lechner, R. Mattern, Angew. Makromol. Chem., 123/ 124, 45 (1984). 881. M. Stickler, Angew. Makromol. Chem., 123/124, 85, (1984). 882. M. B. Huglin, Topics Curr. Chem., 77, 141 (1978). 883. F. F. Khodzhevanov, N. S. Nametkin, S. G. Durgaryan, I. Ye. Chernyakov, Polym. Sci. USSR, 14, 1022 (1972). 884. V. M. Andreyeva, A. A. Tager, I. S. Fominykh, O. L. Zamarayeva, Polym. Sci. USSR, 18, 328 (1976). 885. V. S. Skazka, S. Ya. Lyubina, G. V. Tarasova, S. I. Klenin, V. N. Tsvetkov, Polym. Sci. USSR, 18, 1583 (1976). 886. V. Ye. Eskin, S. Ya. Magarik, U. B. Zhurayev, G. D. Rudkovskaya, Polym. Sci. USSR, 20, 2494 (1979). 887. O. V. Klenina, M. Yu. Prozorova, V. I. Klenin. G. Z. Aksel'rod, Polym. Sci. USSR, 22, 325 (1980). 888. M. G. Vitovskaya, P. N. Lavrenko, O. V. Okatova, E. P. Astapenko, V. B. Novakovskii, S. V. Bushin, S. A. Didenko, L. V. Avrorova, A. V. Tokarov, G. I. Kudryavtsev, V. N. Tsvetkov, Polym. Sci. USSR, 23, 2136 (1982). 889. S. V. Bushin, Ye. V. Korneyeva, I. I. Konstantinov, Yu. B. Amerik, S. A. Didenko, I. N. Shtennikova, V. N. Tsvetkov, Polym. Sci. USSR, 24, 1671 (1982). 890. S. I. Ganicheva, V. M. Belyayev, V. N. Krivobokov, O. V. Kallistov, S. Ya. Frenkel, Polym. Sci. USSR, 24, 1734 (1982). 891. S. V. Bushin, Ye. B. Lysenko, V. A. Cherkasov, K. P. Smirnov, S. A. Didenko, G. N. Marchenko, V. N. Tsvetkov, Polym. Sci. USSR, 25, 2212 (1983). 892. V. N. Tsvetkov, S. O. Tsepelevich, Polym. Sci. USSR, 25, 2221 (1983). 893. A. L. Izyumnikov, G. R. Polyakova, A. R. Gantmakher, Polym. Sci. USSR, 25, 2721 (1983).
894. P. N. Lavrenko, V. B. Novakovskii, O. 1. Mikryukova, V. N. Kolot, G. I. Kudryavtsev, V. N. Tsvetkov, Polym. Sci. USSR, 26, 875 (1984). 895. H. Matsuda, S. Otora, L Yamada, S. Kuroiwa, Reports Progress Polym. Phys. Japan, 15, 55 (1972). 896. Y. Kambe, C. Honda, Reports Progr. Polym. Phys. Japan, 15, 425 (1972). 897. A. Kotera, K. Furasawa, N. Onda, Y. Koya, Rep. Progr. Polym. Phys. Japan, 17, 43 (1974). 898. C. Okada, K. Kamada, T. Yoshihara, Reports Progr. Polym. Phys. Japan, 20, 5 (1977). 899. B. Chu, M. Onclin, J. R. Ford, J. Phys. Chem., 88, 6566 (1984). 900. M. B. Huglin in: J. Brandrup, E. H. Immergut (Eds.), "Polymer Handbook", 2nd ed., Wiley, New York, 1974, p. IV-267. 901. J. Stejskal, D. Strakova, O. Prochazka, P. Kratochvil, Coll. Czech. Chem. Commun., 48, 2656 (1983). 902. A. A. Abdel-Azim, Doctoral Thesis, University of Salford, 1983. 903. J. R. Brown, J. H. O'Donnell, J. Macromol. Sci. A: Chem., 6, 1411 (1972). 904. G. Ribitsch, J. Schurz, V. Ribitsch, Colloid Polym. Sci., 258, 1322 (1980). 905. M. Nakagaki, Y Sano, Bull. Chem. Soc. Japan, 46,791 (1973). 906. S. Arichi, M. Yoshida, Y Ogawa, Bull. Chem. Soc. Japan, 48, 1417 (1975). 907. N. Iso, H. Mizuno, T. Saito, N. Nitta, K. Yoshikazi, Bull. Chem. Soc. Japan, 50, 2892 (1977). 908. M. Yoshida, S. Yamaguchi, N. Sakamoto, S. Arichi, Bull. Chem. Soc. Japan, 58, 1023 (1985). 909. T. Mori, J. Komiyama, T. Iijima, J. Chem. Soc. Faraday Trans I, 74, 2583 (1978). 910. P. M. Sasia, University of Bilbao and University of Salford to be published. 911. M. B. Huglin, S. J. O'Donohue, P. M. Sasia, J. Polym. Sci., Polym. Phys. Ed., 26, 1067 (1988). 912. K. Kamide, T. Terakawa, Y. Miyazaki, Polym. J., 11, 285 (1979). 913. H. L. Wagner, J. Res. Natl. Bur. Stand. A, 76, 151 (1972). 914. A. Burmeister, G. Meyerhoff, Ber. Bunsen. Ges. Phys. Chem., 78, 1366 (1974). 915. R. W. Richards, Doctoral thesis, Univ, of Salford, 1974. 916. M. B. Huglin, R. W. Richards, J. Appl. Polym. Sci., 25, 2513 (1980). 917. M. B. Huglin, R. W. Richards, Polymer, 17, 587 (1976). 918. J. T Guthrie, M. B. Huglin, G. O. Phillips, Polymer, 18, 521 (1977). 919. W. R. Moore, M. Uddin, Eur. Polym. J., 5, 185 (1969). 920. A. R. Schultz, A. L. Bridgman, E. M. Hadsell, C. R. McCullough, J. Polym. Sci. A-2, 10, 273 (1972). 921. L. Gargallo, C. L. Guemos, D. Radic, Eur. Polym. J., 20, 483 (1984). 922. M. B. Sokro, Doctoral thesis, Univ. of Salford (1980). 923. M. L. McConnell, Am. Lab., 10, 63 (1978). 924. Application Notes LS-7, Chromatix, Mountain View, Calif, USA.
925. Ibid-Appendix 1. 926. J. Francois, D. Sarazin, T. Schwartz, G. Weil, Polymer, 20, 969 (1979). 927. R. Boyadjian, G. Seytre, P. Berdicat, G. Vallet, Eur. Polym. J., 12, 401 (1976). 928. O. Z. Korotkina, V. V. Magbinec, M. N. Savickaya, V. E. Eskin, Zh. Prikl. Khim (Leningrad), 38, 2533 (1965). 929. K.-D. Conrad, Dissertation, Technisch. Univ. Braunschweig, (1978). 930. J. Brandrup, E. H. Immergut, (Eds.) "Polymer Handbook" Interscience, New York, p. IV-282, 1967. 931. R. Chiang, J. Phys. Chem., 69, 1645 (1965). 932. C. C. Han, P. H. Verdier, H. L. Wagner, J. Res. Natl. Bur. Stand., 83, 185 (1978). 933. A. Peyrouset, R. Prechner, R. Panaris, H. Benoit, J. Appl. Polym. ScL, 19, 1363 (1975). 934. L. E Shalaeva, V. V. Arafeva, Vysokomol. Soedin Ser. B., 16, 802 (1974). 935. L. F. Shalaeva, A. I. Barkova, K. E. Kosmatych, E. E. Veselovskaya, A. V. Shagilova, Plast. Massy, 12, 59 (1973). 936. T. Koboyashi, A. Chitale, H. P. Frank, J. Polym. ScL, 24,156 (1957). 937. E. Brauer, H. Wiegleb, M. Helmstedt, W. Eifert, Plaste Kautsch. 24, 463 (1977). 938. J. E. Kurz, J. Polym. Sci. A, 3, 1895 (1965). 939. L. Nicolas, C. R. Acad. ScL, 244, 80 (1957). 940. L. Nicolas, J. Polym. Sci., 29, 191 (1958). 941. Application Notes LS-1, Chromatix, Mountain View, Calif., USA. 942. F. J. Schoenes, Z. Angew. Phys., 28, 363 (1970). 943. R Metzger Cotts, Macromolecules, 19, 488 (1986). 944. T. M. Handel, I. S. Ponticello, J. S. Tan, Macromolecules, 20, 264(1987). 945. P M. Cotts, S. Ferline, G. Dagli, D. S. Pearson, Macromolecules, 24, 6730(1991). 946. H. Hasse, H.-P. Kany, R. Tintinger, G. Maurer, Macromolecules, 28, 3540 (1995). 947. Y. Tamai, T. Konishi, Y. Einaga, M. Fujii, H. Yamakawa, Macromolecules, 23, 4067 (1990). 948. S. J. Rathbone, C. A. Haynes, H. W. Blanch, J. M. Prausnitz, Macromolecules, 23, 3944 (1990). 949. D. B. Roitman, R. A. Wessling, J. McAlister, Macromolecules, 26,5174(1993). 950. N. Saito, T. Kanbara, Y. Nakamura, T. Yamamoto, K. Kubota, Macromolecules, 27, 756 (1994). 951. T. Kitagawa, J. Sadanobu, T. Norisuye, Macromolecules, 23, 602 (1990). 952. F. Wang, J. Roovers, P. M. Toporowski, Macromolecules, 26, 3826 (1993). 953. S. Vanhee, R. Rulkens, U. Lehmann, C. Rosenauer, M. Schulze, W. Koehler, G. Wegner, Macromolecules, 29, 5136 (1996). 954. M. Nakata, A. Kaji, Macromolecules, 21, 2514 (1988). 955. M. Nakata, Y. Nakano, K. Kawate, Macromolecules, 21, 2509 (1988). 956. Z. Tong, Y. Einaga, T. Kitagawa, H. Fujita, Macromolecules, 22, 450 (1989).
957. Y. Nakamura, K. Akasaka, K. Katayama, T. Norisuye, A. Teramoto, Macromolecules, 25, 1134 (1992). 958. R. Duran, C. Strazielle, Macromolecules, 20, 2853 (1987). 959. C. Wu, M. Siddiq, S. Bo, T. Chen, Macromolecules, 29, 3157 (1996). 960. C. Wu, S. Bo, M. Siddiq, G. Wang, T. Chen, Macromolecules, 29, 2989 (1996). 961. J. N. Zeng, D. H. Magiera, I. S. Krull, J. Polym. Sci. A: Polym. Chem. Ed., 30, 1809 (1992). 962. N. Binboga, D. Kisakurek, B. M. Baysal, J. Polym. Sci. Poiym. Phys. Ed., 23, 925 (1985). 963. S. Kiugasa, H. Nakahara, J.-I. Kawahara, Y Koga, H. Takaya, J. Polym. Sci. Part B: Polym. Phys. Ed., 34, 583 (1996). 964. S. Alioria, S. Pispas, E. Siakali-Kioulafa, N. Hadjichristidis, J. Polym. Sci. B: Polym. Phys. Ed., 33, 2229 (1995). 965. Y Ju Chen, J. W. Mays, N. Hadjichristidis, J. Polym. Sci. B: Polym. Phys. Ed., 32, 715 (1994). 966. S. Gooda, M. B. Huglin, J. Polym. Sci. A: Polym. Chem. Ed., 30, 1549 (1992). 967. F. Viras, K. Viras, J. Polym. Sci. B: Polym. Phys. Ed., 26, 2525 (1988). 968. W. Volksen, R Cotts, D. Y. Yoon, J. Polym. ScL B: Polym. Phys. Ed., 25, 2487 (1987). 969. L. H. Park, E.-J. Choi, Polymer, 37, 313 (1996). 970. C. H. Chen, J. Wilson, W. Chen, R. M. Davis, J. S. Riffle, Polymer, 35, 3587 (1994). 971. J. M. Corpart, J. SeIb, F. Candau, Polymer, 34, 3873 (1993). 972. S. R. Gooda, M. B. Huglin, Polymer, 34, 1913 (1993). 973. S. Kansara, N. K. Patel, C. K. Patel, Polymer, 34, 1303 (1993). 974. R M. Cotts, R. Siemens, Polymer, 32, 3052 (1991). 975. H. Mutschler, U. Schoeder, E. Fahner, K. H. Ebert, A. E. Harnielec, Polymer, 26, 935 (1985). 976. D. Kisakurek, N. Binboga, J. F. Harrod, Polymer, 28, 1767 (1987). 977. K. Sivadasan, S. Gundiah, Polymer, 28, 1426 (1987). 978. J. Horska, V. Petrus, M. Bohdanecky, Polymer, 28, 1207 (1987). 979. T. Hiraro, A. Teramoto, T. Sato, T. Norisuye, T. Masuda, T. Higashimura, Polymer Journal (Tokyo), 23, 925 (1991). 980. D. Hunkele, A. E. Hamielec, J. Appl. Polym. Sci., 35, 1603 (1988). 981. 982. E. Lathova, D. Lath, J. Pavlinec, Polymer Bulletin (Berlin), 30, 713 (1993). 983. C. Erbii, H. £atalgil-Giz, N. Uyanik, Polymer International, 33, 377 (1994). 984. Y-J. Chen, J. Li, N. Hadjichristidis, J. W. Mays, Polymer Bulletin (Berlin), 30, 575 (1993). 985. K. Kamide, Y. Miyazaki, H. Kobayashi, Polymer Journal (Tokyo), 17, 607 (1985). 986. J. C. Galin, G. Lutringer, M. Galin, J. Appl Polym. Sci., 37, 487 (1989). 987. N. Sakamoto, H. Tanaka, K. Yamaguchi, M. Yoshida, S. Arichi, Makromol. Chem., 186, 1881 (1985). 988. M. B. Huglin, M. A. Radwan, Polymer International, 24,119 (1991).
P a r t i c l e i n
S c a t t e r i n g
R a y l e i g h
F a c t o r s
S c a t t e r i n g
E d w a r d F. C a s a s s a Department of Chemistry, Carnegie-Mellon University, Pittsburgh, PA, USA
A. Introduction: General Relations for a Homogeneous Solute B. Scattering Factors for Various Molecular Models C. Effects of Dispersion in Molecular Weight D. Determination of Molecular Weight and Radius of Gyration E. Calculation of Scattering Factors F. Particle Scattering Factors and Dissymmetries Table 1. Dissymmetries for Monodisperse Systems Table 2. Dissymmetries for Monodisperse and Polydisperse Coils G. References
VII-629
where M is the molecular weight of the solute, c is the concentration in units of mass/volume, Ai is the second virial coefficient, and q is an angle variable
VII-630 VII-631
(A2)
VII-632 VII-633 VII-633 VII-634 VII-634 VII-635
A. INTRODUCTION: GENERAL RELATIONS FOR A HOMOGENEOUS SOLUTE (1,2)
h denoting the refractive index of the solution, and A the vacuum wavelength of the incident radiation. In the optical constant (assuming incident radiation polarized perpendicular to the plane containing angle 9) (A3) dh/dc is the specific refractive index increment at constant pressure and temperature, and NA is Avogadro's number. The intensity R(q, c) is that due to the solute; the (relatively weak) background solvent scattering is assumed to be that measured for the pure solvent. The first term on the right-hand side of Eq. (Al) contains the intramolecular interference function, or particle scattering factor, defined by (4,5)
When electromagnetic radiation interacts with any fluid medium, inhomogeneities in refractive index (dielectric constant) arising from microscopic thermal fluctuations in density and composition cause scattering of a small fraction of the incident radiation. If scattering elements are spatially correlated over distances of the order of magnitude of the wavelength of the exciting radiation, the scattering is subject to optical interferences that affect the angular intensity distribution. This distribution can provide information on the size and shape of macromolecular solutes or suspended colloidal particles: in principle, the molecular radius of gyration is determinable unambiguously, and calculated scattering distributions for idealized models can be compared with experimental data to infer an acceptable molecular conformation. However, an experimental scattering distribution does not permit a unique model assignment in the absence of additional information or supposition. The limiting dilute-solution behavior of the reduced intensity R(q, c) (Rayleigh's ratio) of light scattered through an angle 9 is given by (3)
the superscript zero denoting the limit of infinite dilution. Thus the intensity distribution P(q) is normalized to unity at zero scattering angle. Unless particle dimensions are infinitesimally small compared with A, P(q) is less than unity for q < 0; and for particles of less than colloidal dimensions, it is almost always a monotonously decreasing function of q throughout the accessible range of q with visible light. The second term of Eq. (Al) contains the effects of pairwise interactions between solute molecules (and, implicitly, of interactions involving solvent). The dimensionless angle factor, Q(q), is a function generally unknown, dependent on both intermolecular and intramolecular correlations (3,6). Like P(q) it is normalized to unity at 9 = 0, but usually the approximation is made that Q(q) is unity at all angles so that
(Al)
(A5)
(A4)
replaces Eq. (Al). In all that follows, Eq. (A5), which is Zimm's "single contact" approximation (4), is assumed to hold for any macromolecular species in solution. At 6 = 0, Eqs. (Al) and (A5) revert to a thermodynamic equation of a state in virial form. A scattering entity (polymer molecule, particle) may be represented by n optically isotropic point scattering centers whose spatial arrangement in any given conformation is specified by n(n — l)/2 « n2 J2 vectors r,y, separating pairs of scattering centers ij. The scattering function P(q) is then
where (B4) is Dawson's integral, for which tabulations are available (9). The variable u is defined as in the first equality in Eq. (B2), so that in this case u — 2q2R2ori since the meansquare radius R\sin% is nb2/12. For flexible regular-star branched molecules with / identical arms (/ random-flight chains starting from a common node), P(q) is given by (10,11)
(A6) The vector q is the difference between vectorial wave numbers of incident and scattered rays such that |q| — <j, as defined above. The nonsubscript i has the usual significance of (-1) 1 / 2 , and F(Ty) is the probability distribution function (probability density) for the vector r^. Since the molecules in solution exhibit no preferential orientation in space, F(r,y) is spherically symmetric, and P(q) assumes the form (7) (A7) where the pointed brackets indicate averaging over molecular conformations. It is evident from Eq. (A7) that P(q) can be expanded in the even moments of the intramolecular distances r//. It follows that (7) (A8) where Rg denotes the root-mean-square (rms) radius of gyration of the molecule about its center of mass (A9)
(B5) The mean-square radius of the star model is [ ( 3 / - 2)/f2][nb2/6\. Scattering functions have also been calculated for certain random-flight comb-shaped models of flexible backbones with uniform side chains (11). Provided q2R2g < 2, a good approximation to P(q) for a variety of branched chains and for the ring model is afforded by the form of Eq. (Bl) for a linear chain with u replaced by gu, g denoting the ratio of the mean-square radius of the nonlinear structure to that of the linear chain of the same mass (2,10). Strictly, Eqs. (B1-B5) apply only to flexible chain molecules in a theta solvent. To account approximately for the chain expansion in a good solvent, the most obvious expedient is to increase the statistical mean-square segment length b2 by the same factor as that for the increase of the overall mean-square radius over the unperturbed value and assume that the foregoing equations still apply. Several derivations (12-15) however, recognize the non-Gaussian character of the segment distribution perturbed by the excluded volume effect. Scattering factors have also been obtained for another type of modification of the random flight, the "wormlike" chain of Kratky and Porod, which introduces a persistence length to account for chain "stiffness'' (1,16). For thin cylindrical rods of length L, P(q) is (7,17,18)
B. SCATTERING FACTORS FOR VARIOUS MOLECULAR MODELS (1,2)
The scattering factor P{q) has been calculated for a number of simple molecular geometries. For monodisperse randomflight (Gaussian) coils it is given by (7)
(B6)
(Bl) (B2) (B7) where n is the number of equivalent statistical segments of root-mean-square length b in the chain. For a flexible-ring model (a long chain of Gaussian segments constrained to have ends joined), P(q) is given by (8) (B3)
The "sine integral" function Si(^) is given in standard tabulations (9). For large v this P(q) function asymptotically approaches {n/2y) - (l/2y 2 ); and, in fact, the asymptotic relation is less than 1% in error for v > 4. The four terms of the series form given in Eq. (B6) are within 1% of the correct value for y < 2.
For spheres of diameter D, P(q) is (7,18)
Series expansion of PX{Q) gives an average over the mean-square radii of gyration R2gi of the solute species (C5) (B8)
where v = qD/2; and for thin disks of diameter D, the function is (18) (B9) with w - qD/2, and J\(x), the Bessel function of the first kind, of order one (9). Scattering factors have been calculated for a variety of more complicated particles; e.g., oblate and prolate ellipsoids, cylinders of finite thickness, shells of different forms, particles of nonuniform density, and assemblages of simple geometrical shapes (see Ref. 19 and citations therein). C. EFFECTS OF DISPERSION IN MOLECULAR WEIGHT (2)
(C6) The average R\ is sometimes called the Z-average meansquare radius (for a distribution of random-flight chain species R\ is proportional to the so-called Z-average molecular weight (C7) Angular scattering functions Px{4) have been calculated for various molecular size distributions. In particular, distributions of linear random-flight chains have been studied for the exponential weight-fraction distribution of Schulz and Zimm (20) (C8)
For a mixture of solutes all having the same specific refractive increment, e.g., a polymer heterogeneous in molecular weight, the reciprocal scattering function in Eq. (A5), for the single-contact approximation, is replaced by (2, 20-22) (Cl) Here, M w denotes the weight-average molecular weight Y^jMjWi, Mj being the molecular weight of the /th solute and Wj its weight fraction in the solute mixture; c is the total solute concentration. The measured particle scattering factor is the average (C2) where Pt(q) is the scattering factor for the ith polymer. The quantity i42.app is an apparent, angle-dependent second virial coefficient
with b = (h + 1)/M W ~ h/Mn, F(x) the gamma function, and the dispersion parameter h — 1/[M W /M n ) — I]. For a system of random flight chains with this distribution, the averaged scattering factor is
(C9)
where Ux = Q2R\- For a monodisperse polymer, h is infinite; and for increasing dispersion in molecular weight it decreases towards zero. It is unity for the "most probable" distribution (characteristic of the products of step-growth polymerization at high conversion and of free-radical polymerization at low conversion with chain transfer). In this special case, Px{q) for random-flight linear chains is given by the very simple relation (20) (ClO)
(C3) where By is the virial coefficient for interaction between components i and j (Ba is just A2 for a solution of component / alone). At the limit 9 —» 0, A2,app reduces to a true thermodynamic quantity: (C4) which might be described as a "light-scattering-average" second virial coefficient (to distinguish it from the analogous average obtained from an osmotic pressure experiment).
Plots of [Px{q)\~{ versus Ux for h < 1 curve upward, and for h > 1 curve downward. The asymototic dependence of [Px(q)]~l for heterogeneous chains at large q is (23) (CU) so that, in principle, this dependence could provide information on M n . In practice, the experimental limit on q imposed by the upper bound on 8 of 180° makes it difficult to ascertain whether the asymptotic behavior is accessible, even for polymers of high molecular weight. Calculations for branched monodisperse Gaussian chain models and for systems with certain distributions of References page VII-635
(C12) where yw = (q/2) £VL,-w,-, L{ being the length of the ith rod species. For large qL, the asymptotic dependence of [Kc/R(9)]° on q (not q2) for rods of uniform diameter and density is linear, and the slope of the plot is (L,/M/)/7r: i.e., the slope yields the linear density or mass per unit rod length, independent of any dispersion in L (28). If the rods are heterogeneous in diameter, the limiting slope is k E i ^ ^ i / ^ ' ) ] " • Unlike the asymptotic behavior for Gaussian coils, this asymptotic dependence for rods is manifested in practical situations with both synthetic polymers and biopolymers. Some care in interpretation is needed, however. For thin oblate ellipsoids ("needles"), a model seemingly scarcely different from thin cylinders, the asymptotic dependence of [(Kc/R(O)]0 on q is also linear but with slope 5/6 that for the cylinder system (28). D. DETERMINATION OF MOLECULAR WEIGHT AND RADIUS OF GYRATION In general, information from a light scattering experiment on a polymer/solvent system consists of an array of intensity data determined at a number of concentrations and a number of angles. These are usually represented as values of the reciprocal intensity function KcZR(O1C). The form of Eq. (A5) suggests use of the popular Zimm plot: i.e., the values of Kc/R(O, c) are plotted against Cic + C2 sin2(0/2), with C\ and C2 being arbitrary constants chosen merely to separate data points conveniently, to form a gridlike pattern (4,20). In conformity with Eq. (A5), a homogeneous polymer gives contours at constant angles (0) that form a family of parallel straight (or nearly parallel and straight) lines, and contours at constant concentrations that form another family of curves of similar shape, displaced from one another by translations. This representation, shown schematically in Figure 1, facilitates simultaneous extrapolations of angular data to
Slope Kc I R(q,c)
branching and molecular weight suggest as a reasonable approximation for such heterogeneous systems in general, the Px(q) obtained by replacement of the variable u in Eq. (Bl) by (ux)xR2x/(R2x)v where (ux){ and ( ^ ) 1 denote ux and Rx, as defined above, for the system of linear chains with the same weight distribution as the structurally heterogeneous system. Derivations of P(q) for randomly branched systems have been based on cascade models and moment generating functions (24-26). Branching and molecular-weight dispersion have opposing effects on the P(q) function and in randomly branched systems are largely compensatory (2,26). Interestingly, however, the asymptotic behavior of P(q) for Gaussian chains is unaffected by chain branching; it depends only on molecular weight and weight distribution (10). Px(q) has been obtained in closed analytical form for systems of thin rodlike (cylindrical) particles distributed in length (and therefore in mass) according to Eq. (C8) for integral values of the parameter h (27). For A = I , the result is
q 2 + const x c
Figure 1. Schematic Zimm plot for a solute polydisperse in molecular weight, illustrating empirical determination of averaged molecular weight MW/ scattering factor Px{cj), and radius of gyration Rx according to Eq. 19. The filled circles simulate experimental data; the open circles represent extrapolations to zero scattering angle and zero concentration. zero concentration and concentration data to zero angle, and extrapolation of both limiting dependences to a common intercept [Kc/R(0,c)]°. In general, the ratio of the initial slope to the intercept of the angular plot extrapolated to c ~ 0 is 167r2rc2/?|/3A2; the slope of the concentration dependence extrapolated to (9 = 0 is twice the averaged second virial coefficient A2 , and the double limit [Kc/R(0,c)]° is M~l. The dominant cause of lack of parallelism of the contours in experimental Zimm plots is dispersion in molecular weight (cf. Eqs. C19, C21). If both the molecular architecture of a polymer in solution and its molecular weight dispersion are known, the scattering function Px(q) is known (in principle) and can be combined with limited angular scattering data to deduce Mw and R\. Thus, in the "dissymmetry" method (7) scattered intensities at 90° and the ratio of intensities at 45° and 135° (or another pair of complementary angles) are measured for each concentration. Then the extrapolated transverse scattering function [Kc/R(qgo)}° and the extrapolated dissymmetry ratio (Dl) determine the molecular weight and radius of gyration, given the Px(q) function. Tables correlating Z45 with P~l(#90) and the molecular dimensions have been compiled for monodisperse coils (5,29), rods (5,29), spheres (5,29), and disks (5,29,30), and for polydisperse coils (5,31). Except for routine characterization of systems of well known character exhibiting low dissymmetry, the dissymmetry method cannot be recommended if a photometer is available that is capable of a full complement of angular readings. Apart from the desirability of determining Mw and R\ without assumptions, it is
helpful to have the maximum amount of information as an aid in detecting any spurious angular dependence of scattering due to instrumental artifacts or to contamination by "dust". In current practice, photometers that do not provide scattering measurements over a continuous angular range, are typically dedicated to the limited task of monitoring the output stream in size exclusion chromatography, perhaps on line with other detection modes. In this application, passage of the polymer through the chromatographic column effectively eliminates the problem of contamination by foreign particulate matter. One popular instrument of this kind reads scattering only at right angles and at 15°.
The Bessel function J1(Jc) for x > 3 (Ref. 34):
E. CALCULATIONS OF SCATTERING FACTORS Figure 2 and Tables 1 and 2 illustrate some quantitative comparisons among scattering factors for several molecular models and the effects of dispersion in molecular weight for Gaussian coils. Tables of P{q) and Z45 in the older literature are much more extensive and reflect the needs of a time without widely available computer technology. Today, for careful work to compare experimental R(q, 0) data with theoretical scattering functions, investigators will find it preferable to return to the mathematical functions and write computer routines to do calculations for data analysis rather than to routinely interpolate in tables. For those who may wish to use a traditional programming language such as FORTRAN, the following rational approximation formulas will facilitate accurate calculation of the special functions that appear in the various expressions for P(q). The sine integral Si(x) for x < 1 (Refs. 32,33):
Modern mathematics programs such as Mathematica and Maple constitute higher level languages that make possible direct operations with special functions on a personal computer (35,36). F. PARTICLE SCATTERING FACTORS AND DISSYMMETRIES
sphere disk ring
llP{q)
4-star
coil rod
The Bessel function Jx(x) for 0 < x < 3 (Ref. 34):
Figure 2. Reciprocal scattering factors yP{q) versus q2R2 for monodisperse systems of the models indicated. R2 is: nb2/6 (linear Gaussian coil); 5nb2/48 (4-branch regular star); nb2/M (flexible ring); L2/12 (thin rod); D2/8 (disk); 3D2/20 (sphere). References page VII-635
TABLE 1. DISSYMMETRIES FOR MONODISPERSE SYSTEMS Z45 and P- 1 C^o) R%h/ X
Coil
4-Starfl
Rod
Disk
Sphere
0.00 0.01 0.02 0.03 0.04
1.000 (1.000) * 1.004(1.003) 1.015(1.011) 1.034(1.024) 1.060(1.043)
1.000 (1.000) 1.004(1.003) 1.015(1.011) 1.034(1.024) 1.061(1.043)
1.000 (1.000) 1.004(1.003) 1.015(1.011) 1.034(1.024) 1.060(1.043)
1.000 (1.000) 1.004(1.003) 1.015(1.011) 1.034(1.024) 1.061(1.043)
1.000 (1.000) 1.004(1.003) 1.015(1.011) 1.034(1.024) 1.062(1.043)
0.05 0.06 0.07 0.08 0.09
1.094 (1.067) 1.136(1.097) 1.186(1.133) 1.245(1.175) 1.311 (1.224)
1.095 (1.067) 1.139(1.098) 1.191(1.135) 1.253(1.178) 1.325 (1.229)
1.093 (1.067) 1.137(1.097) 1.187(1.133) 1.245(1.176) 1.311 (1.225)
1.097 (1.068) 1.143(1.099) 1.200(1.138) 1.268(1.183) 1.351 (1.237)
1.098 (1.068) 1.146(1.100) 1.204 (1.139) 1.277 (1.186) 1.365 (1.242)
0.10 0.11 0.12 0.13 0.14
1.386(1.280) 1.469(1.342) 1.559(1.412) 1.657(1.490) 1.761(1.575)
1.407(1.287) 1.500(1.353) 1.604(1.428) 1.720(1.512) 1.848(1.607)
1.384(1.280) 1.463(1.343) 1.546(1.412) 1.632(1.488) 1.717(1.570)
1.448(1301) 1.564(1.374) 1.700 (1.459) 1.859(1.558) 2.044(1.671)
1.473(1.308) 1.604(1.386) 1.765(1.477) 1.963(1.584) 2.208(1.710)
0.15 0.16 0.17 0.18 0.19
1.872(1.669) 1.987 (1.771) 2.108(1.881) 2.231 (2.001) 2.357 (2.129)
1.987(1.712) 2.138 (1.828) 2.299(1.957) 2.470 (2.098) 2.650 (2.253)
1.801(1.659) 1.879 (1.753) 1.951(1.853) 2.013 (1.956) 2.067 (2.063)
2.258(1.800) 2.504 (1.949) 2.783(2.120) 3.096 (2.315) 3.439 (2.538)
2.514(1.858) 2.901 (2.034) 3.397(2.242) 4.045 (2.490) 4.906 (2.789)
0.20 0.21 0.22 0.23 0.24
2.485(2.266) 2.613 (2.413) 2.741(2.568) 2.868 (2.733) 2.993(2.906)
2.837(2.422) 3.030 (2.606) 3.277(2.806) 3.427 (3.022) 3.627(3.254)
2.110(2.171) 2.145 (2.279) 2.173(2.387) 2.195 (2.493) 2.212(2.597)
3.807(2.791) 4.190 (3.079) 4.574(3.403) 4.942 (3.768) 5.278(4.174)
6.080(3.149) 7.724 (3.589) 10.112(4.130)
0.25 0.26 0.27 0.28 0.29
3.116(3.089) 3.236(3.280) 3.353 (3.481) 3.466 (3.690) 3.576 (3.908)
3.826(3.502) 4.022(3.768) 4.214 (4.051) 4.400 (4.350) 4.579 (4.667)
2.226(2.698) 2.238(2.796) 2.249 (2.892) 2.259 (2.985) 2.268 (3.076)
5.566(4.622) 5.797(5.112) 5.970 (5.640) 6.089 (6.202) 6.163 (6.788)
a b
Regular star with four arms. Entries in parentheses indicate P~l(qg0) values.
TABLE 2.
DISSYMMETRIES FOR MONODISPERSE AND POLYDISPERSE COILS*
P-(^)
Z45
p =l
/t> = 1 . 2
and ( ^
(*^ 2 )
/7 = 1 . 5
p = 2.0
p = 5.0
1.00 1.02 1.04 1.06 1.08
1.000(O)6 1.014(23) 1.028 (33) 1.042 (40) 1.056(46)
1.000(0) 1.014(21) 1.028 (30) 1.042 (37) 1.056(43)
1.000(0) 1.014(20) 1.028 (29) 1.042 (35) 1.056(40)
1.000(0) 1.014(19) 1.028 (27) 1.042 (33) 1.056(38)
1.000(0) 1.014(17) 1.028 (24) 1.042 (30) 1.056(35)
1.10 1.12 1.14 1.16 1.18
1.070 (51) 1.085(56) 1.099(61) 1.113(65) 1.128(69)
1.070 (48) 1.085(53) 1.099(57) 1.114(61) 1.129(65)
1.071 (45) 1.086(49) 1.100(53) 1.115(57) 1.130(61)
1.071 (43) 1.086(47) 1.101(51) 1.116(54) 1.131(58)
1.071 (39) 1.087(43) 1.102(47) 1.116(50) 1.133(53)
1.20 1.22 1.24 1.26 1.28
1.142(72) 1.157(76) 1.171(79) 1.186(82) 1.201(85)
1.143(68) 1.159(71) 1.173(75) 1.189(78) 1.204(80)
1.145(64) 1.161(67) 1.176(71) 1.191(73) 1.207(76)
1.146(61) 1.162(64) 1.177(67) 1.193(70) 1.210(73)
1.148(56) 1.164(59) 1.180(62) 1.196(65) 1.213(68)
TABLE 2. conf'c/ P ^ 9 0 ) and ( ^ Z45
P= I
p = 1.2
(Rl)1J^
p = 1.5
p = 2.0
p = 5.0
1.30 1.40 1.50 1.60 1.70
1.215(88) 1.290(102) 1.366(113) 1.444(124) 1.524(134)
1.219(83) 1.297(97) 1.377(109) 1.460(119) 1.546(129)
1.222(79) 1.303(92) 1.387(104) 1.473(115) 1.564(125)
1.225(76) 1.308(88) 1.394(100) 1.484 (111) 1.578(121)
1.229(70) 1.314(82) 1.404(93) 1.498(104) 1.597(114)
1.80 1.90 2.00 2.10 2.20
1.607 (144) 1.693(152) 1.781(161) 1.874(169) 1.969(178)
1.636 (139) 1.729(149) 1.826(158) 1.927(167) 2.032(175)
1.659 (135) 1.758(145) 1.861(154) 1.971(163) 2.084(172)
1.677 (131) 1.782(141) 1.890(150) 2.007(160) 2.128(169)
1.703 (125) 1.815(134) 1.932(144) 2.058(154) 2.190(163)
2.30 2.40 2.50 2.60 2.70
2.069 (185) 2.174(194) 2.283 (201) 2.397 (209) 2.517 (217)
2.143 (184) 2.260(192) 2.382 (201) 2.510 (209) 2.645 (218)
2.205 (181) 2.332(190) 2.466 (199) 2.607 (209) 2.757 (218)
2.257 (178) 2.393(188) 2.538 (198) 2.691 (207) 2.855 (217)
2.332 (173) 2.484(183) 2.645 (193) 2.817 (203) 3.003 (214)
2.80 2.90 3.00 3.50 4.00
2.643 2.776 2.916 3.755 4.948
2.788 2.939 3.099 4.070 5.488
2.916 3.085 3.264 4.375 6.044
3.029 3.215 3.414 4.665 6.601
3.202 (225) 3.416 (236) 3.648 (247) 5.145 (312) 7.588 (397)
11 b
(225) (233) (240) (283) (333)
(227) (235) (244) (292) (349)
(227) (236) (246) (299) (364)
(227) (237) (247) (305) (377)
Polydisperse systems characterized by the Schulz-Zimm distribution: p — A/ w /A/,,. Entries in parentheses denote weight-average value of R2%.
G. REFERENCES 1. H. Yamakawa, "Modern Theory of Polymer Solutions", Harper and Row, New York, 1971, Ch. 5. 2. E. F. Casassa, G. C. Berry, in: P. E. Slade Jr., (Ed.), "Polymer Molecular Weights", Marcel Dekker, New York, 1975, C. 5. 3. A. C. Albrecht, J. Chem. Phys., 27, 1014 (1957). 4. B. H. Zimm, J. Chem. Phys., 16, 1093 (1948). 5. P. Doty, R. F. Steiner, J. Chem. Phys., 18 1211 (1950). 6. E. F. Casassa, J. Polym. Sci., Polym. Phys. Ed., 17, 2077 (1979). 7. P. Debye, J. Phys. Colloid Chem., 51, 18 (1947). 8. E. F. Casassa, J. Polym. Sci. A, 3, 605 (1965). 9. M. Abramovitz, I. A. Stegun (Eds.), "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables", National Bureau of Standards Applied Mathematics Series 55, US Government Printing Office, Washington DC, 10th printing, 1972. 10. H. Benoit, J. Polym. Sci., 11, 507 (1953). 11. E. F. Casassa, G. C. Berry, J. Polym. Sci. A-2, 4, 881 (1966). 12. H. Benoit, Compt. Rend., 245, 2244 (1957). 13. O. B. Ptitsyn, Zh. Fiz. Khim., 31, 1091 (1957). 14. A. J. Hyde, J. H. Ryan, F. T Wall, J. Polym. Sci., 33, 129 (1958). 15. P. J. Flory, R. L. Jernigan, J. Am. Chem. Soc, 90, 3128 (1968). 16. A. Peterlin, in: M. Kerker, (Ed.), "Electromagnetic Scattering", Pergamon Press, New York, 1963, p. 357.
17. T. Neugebauer, Ann. Phys., 42, 509 (1943). 18. O. Kratky, J. Porod, J. Colloid Sci., 4, 35 (1949). 19. M. Kerker, "The scattering of Light and other Electromagnetic Radiation", Academic Press, New York, 1969, Ch. 8. 20. B. H. Zimm, J. Chem. Phys., 16, 1099 (1948). 21. J. G. Kirkwood, R. J. Goldberg, J. Chem. Phys., 18, 54 (1950). 22. W. H. Stockmeyer, J. Chem. Phys., 18, 58 (1950). 23. H. Benoit, J. Polym. Sci., 11, 507 (1953). 24. A. H. Dautzenberg, C. Ruscher, J. Polym. Sci. C, 16, 2913 (1967). 25. K. Kajiwara, W. Burchard, M. Gordon, Brit. Polym. J., 2, 110(1970). 26. W. Burchard, Macromolecules, 10, 919 (1977). 27. M. Goldstein, J. Chem. Phys., 21, 1255 (1953). 28. E. F. Casassa, J. Am. Chem. Soc, 78, 3980 (1956). 29. W. H. Beattie, C. Booth, J. Phys. Chem., 64, 696 (1960). 30. P. Becher, J. Phys. Chem., 63, 1213 (1959). 31. W. H. Beattie, C. Booth, J. Polym. Sci., 44, 81 (1960). 32. M. Abramovitz, I. A. Stegun (Eds.), "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables", National Bureau of Standards Applied Mathematics Series 55, US Government Printing Office, Washington DC, p. 232. 33. C. Hastings, Jr., "Approximations for Digital Computers", Princeton University Press, Princeton, 1955, pp. 197, 199.
34. M. Abramovitz, I. A. Stegun (Eds.), "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables", National Bureau of Standards Applied Mathematics Series 55, US Government Printing Office, Washington DC, p. 370.
35. S. Wolfram, The Mathematica Book, Wolfram Media, Champaign, Illinois, 1996. 36. B. W. Char, K. O. Geddes, K. H. Gonnet, B. L. Leong, M. B. Monagan, S. M, Watt, "First Leaves: ATutorial Introduction to Maple V", Springer, New York, 1992.
D i p o l e
M o m e n t s
o f
P o l y m e r s
i n
S o l u t i o n
J. F. Salort C/Azalea 200, 28109-Madrid, Spain C. Salom Escuela Tecnica Superior de lngenieros Aeronauticos, Universidad Politecnica, Madrid, Spain E. Riande lnstituto de Ciencia y Tecnologfa de Polfmeros, Consejo Superior de Investigaciones Cientfficas, Madrid, Spain
A. Introduction VII-637 B. Dipole Moments of Polymers In Solution VII-638 Table 1. Polyoxides (Polyethers) VII-638 Table 2. Polysulfides (Polythioethers) VII-639 Table 3. Hydroxyl Terminated Oxide/Sulfide Copolymers VII-640 Table 4. Polyesters Derived from Aromatic Diacids VII-640 Table 5. Aliphatic and Cycloaliphatic Polyesters VII-641 Table 6. Polycarbonates VII-641 Table 7. Vinyl Polymers VII-642 Table 8. Acrylic Polymers VII-643 Table 9. Methacrylic Polymers VII-644 Table 10. ltaconate Polymers VII-644 Table 11. Polydienes VII-644 Table 12. Silicon Based Polymers VII-645 Table 13. Styrene Copolymers VII-645 C. References VII-646
A.
INTRODUCTION
Each conformation of a polymer chain has a dipole moment, \x, in Debye units D (=10 ~18 x u.e.e. x 1 cm or 3.338 x 10" 30 C x m), equal to the vectorial sum of the moments of Af dipolar groups along the chain, that is, }JL(Q = Ylimi> where ra, is the dipole moment associated with the skeletal bond / in the conformation (. The mean-square dipole moment {JJL1) can be written as (22,91)
(Al)
where ra, and m; are the dipole moments associated with the skeletal bonds i and j , respectively, and the brackets mean averages. For a freely jointed chain, the last term in Eq. (Al) averages to zero, and the corresponding meansquare dipole moment is given by (A2) The values of the mean-square dipole moment are currently expressed in terms of the dipole moment ratio, Dn — (/i 2 )/ Yl mh o r ^ e dipolar correlation coefficient, g, by means of the following expression: (A3) Debye (13) pioneered the theories which allow calculation of the dipole moments of molecules in the vapor or gas phase. Other theories (23,32,53) developed to determine the dipole moments of molecules in the liquid state were not so successful because of the difficulties involved in defining the internal field in a polar, condensed medium. This problem was circumvented by calculating the dipole moment of polymers and polar liquids in very dilute solutions using nonpolar solvents. In this way, the solute molecules are separated from one another by nonpolar molecules, and the dielectric behavior of the system resembles that of a gaseous condition. The method developed by Guggenheim (27) and Smith (106), based on this approach, permits calculation of the mean-square dipole moments of polymers by means of the following equation: (A4)
where k% and NA are, respectively, the Boltzmann constant and Avogadro's number, M is the molecular weight of the solute, T the absolute temperature, p and e \ the density and the dielectric permitivity of the solvent, respectively. The term de/dw (proportional to the total polarization of the solute) can be obtained from plots of the dielectric permitivity of the solution, e, against the weight fraction of solute w, in the limit w —» 0. The values of dn2/dw (proportional to the electronic polarization) can be obtained from the increments of the indices of refraction of the solution n with respect to that of the solvent n \, also in the limit w —> 0. A shortcoming of this equation is that a ficticious atomic polarization (instead of the true one) is assumed. However, with the exception of the silicones, the atomic polarization for most systems is less than 10% of the electronic polarization and, consequently, the error involved in the determination of (IJL2) with Eq. (A4) is negligible. The mean-square dipole moment presents some advantages over other more traditional conformation-dependent properties such as the mean-square end-to-end distance (r 2 ) 0 . For
example, since the skeletal bonds change much more in polarity than they do in length, (fj,2) is usually more sensitive to structure than {r2}0. Moreover, with the exception of a relatively few number of polymers that have dipole moments in their structure with a component parallel and the other perpendicular to the chain contour, excluded volume effects are negligible. In the tables, the dipole moments are expressed in terms of either the dipolar correlation coefficient g, or the meansquare dipole moment per repeating unit, {JJL2)/X. For relatively long chains in which dipole contributions of the end groups are not important, (^2}/x and g are related by (A5) where x is the degree of polymerization, and ^Q is the sum of the squares of the dipole moments associated with the repeating unit. Below the generic name of each family of polymers, the dipole moments associated with the backbone are indicated.
B. DIPOLE MOMENTS OF POLYMERS IN SOLUTION TABLE 1. POLYOXIDES (POLYETHERS)* Polymer Poly(oxymethylene) Polyformaldehyde With x = l With x = 2 With x = infinite Poly(oxyethylene) Poly(ethylene oxide) x = 2-6 M n = 4000 X= 1-6 x = 4.0-176.2 x = 4.1-153.0 x = 1-33,6 M n = 4000 x = 1-7 x = 2-227 Poly(oxypropylene) Poly(propylene oxide) x = 6.6-69.0 Poly(oxytrimethylene) Poly(trimethylene oxide) Poly[oxy(2,2-dimethyltrimethylene)] Poly(3,3 -dimethyloxetane) M n = 8500 Mn = 19000 Mn = 35000 Poly [oxy( 1 -methyltrimethylene)] Poly(2~methyloxetane) Mn = 13000 Poly[oxy(2-methyltrimethylene)] Poly(3-methyloxetane) Mn = 125000
Solvent
Temp. (0C)
gorDn
(/J2)/JC, D 2
Remarks
0.1 0.29 0.3
Refs.
Benzene Benzene Melt
25 25 202
109 109 56
Benzene Benzene Benzene Benzene Benzene Benzene Benzene Dioxane Benzene
20 20-60 25 25 25 20 20-60 25 20-30
Benzene Benzene Dioxane
25 25 25
0.54 0.49
Benzene
25
0.41
50
Benzene Benzene Benzene
20-60 30-60 30-60
0.25-0.30 0.20-0.22 0.21-0.23
94 25 25
Cyclohexane
30-60
0.36-0.41
78
Cyclohexane
30-60
0.35-0.38
77
1.32-1.23 0.603-0.644 1.30-1.14 2.82-1.28 2.59-1.28 1.99-1.19 0.621-0.693
End groups: -OC 2 H 5 m(CH 2 -O) = 0.99Z) End groups: -OC 2 H 5
W(CH2-O) = 0.99D 2.82-1.66 2.13-1.14 1.96-1.04 Isotactic Isotactic
47 59 34 46 2 45 4 110 47 45 1 1
*If not indicated otherwise, the dipole moments associated with the skeletal bonds used in the calculation of g were m(CH 2 -0) = 1.07D, m(CH 2 -CH 2 ) = 0£>, and m(O-H)= 1.7D.
TABLE 1. cont'd Polymer
Solvent
Temp. (0C)
Poly(oxytetramethylene) Polytfetramethylene oxide) M n =2500 Benzene Mn-408000 Benzene Poly[oxy(2-methyltetramethylene)] Poly(3-methyltetrahydrofuran) M n = 6700 Benzene Poly(oxyhexamethylene) Poly(hexamethylene oxide) M n = 5500 Benzene Mn = 2460 Benzene Poly(oxydecamethylene) Polyidecam ethy Ien e oxide) M n = 2000 Benzene Poly(oxyethyleneoxyrnethylene) Poly(l,3-dioxo!ane) M n = 12000 Benzene M n =16000 Benzene M n =42000 Benzene Poly(oxytetrarnethyleneoxymethylene) PoIy ( 1,3-dioxepane) M n = HOOO Benzene Poly(oxypentamethyleneoxymethylene) Poly( 1,3 -dioxocane) M n = 1850 Benzene Mn = 2560 Benzene M n = 3700 Benzene Poly(oxyhexamethyleneoxymethylene) Poly( 1,3 -dioxonane) M n =4020 Benzene Mn = 2600 Benzene Poly(7/rm.s-oxymethylene-1,4-cyclohexyIeneoxymethylene) Poly( trans-1,4-cyclohexane dimethanol alt-formaldehyde) Mn =6500 Benzene ' Poly(oxypropyleneoxy methylene) Poly [(4-methyl)-1,3-dioxolane] M n =40000 Benzene M n =48000 Benzene Poly(fra/is-7-oxabicyclo-[4.3.0Jnonane) Poly(trans-7-oxabkyclo-[4.3.0]nonane) Benzene
g or Dn
(n2)/x, D2
ra(CH 20-60 20-60
Remarks 2 -O) =
Refs. 0.99D
0.60-0.65 0.59-0.65
30-60
61 4
0.52-0.55
81
ra(CH 35-60 35-60
2 -O) =
0.99D
0.65-0.68 0.64-0.67
59 80
ra(CH 35-60
2-O) =
0.99D
0.64-0.68
61 Polyformals: alternating copolymer of methylene oxide and alkylene oxide
20-60 20-60 20-60
0.160-0.204 0.164-0.213 0.177-0.227
62 62 62
25-60
0.160-0.190
63
20-60 20-60 20-60
0.190-0.232 0.183-0.207 0.168-0.207
64 64 64
20-60 20-60
0.190-0.230 0.180-0.217
64 64
20-60
0.17-0.21
71
20-60 20-60
0.237-0.281 0.216-0.256
73 73
30-60
0.63-0.66
111
TABLE 2. POLYSULFIDES (POLYTHIOETHERS)* Polymer Poly(thiotrimethylene) PoIy(trimethylene su lfide) M n = 14000 Poly(thiopentamethylene) Poly(pentamethylene sulfide) M n = 3200
Solvent
Temp. (0C)
g or Dn
Benzene
20-60
0.60-0.63
Benzene
20-60
0.75-0.78
Benzene Carbon tetrachloride Benzene Carbon tetrachloride Benzene Carbon tetrachloride Benzene
20-60 20-60 20-60 20-60 20-60 20-60 20-60
0.434-0.449 0.362-0.407 0.429-0.458 0.325-0.347 0.448-0.460 0.357-0.389 0.386-0.420
(n2)/x,D2
Remarks
Refs.
75
End bonds: CH 2 -Br; m(CH 2 -Br)=1.96D
74
Poly(thiopropylene) Polyipwpylene sulfide) Mn Mn Mw Mn Mn Mn
= 5000000 =5000000 = 1.6 x l O 6 =5000 =6000 =1.6 x l O 6
Isotactic
Isotactic
67 68 68 68 67 67 68
* Wt(CH2-CH2) = 0A m(CH 2 -S)=1.2LD, m(6-H) = 1.7D.
References page VII - 646
TABLE 2. cont'd Polymer
Solvent
Poly[thio(2,2-dimethyltrimethylene)] Poly {3,3-dimethylthietane) M n = 8200 Benzene Poly(thiopentamethylenethioethylene) Poly(ethylene sulfide-alt-pentamethylene sulfide) Mn = 3800 Benzene
Temp, (0C)
gorDn
30-60
0,62-0.63
30-60
0.64-0.67
Poly(thiopentamethylenethiomethylene) PoIy(1,3-dithiocane) Mn = 14000 Benzene 20-60 Poly(thiomethylene-1,4-cyclohexylenemethylenethiomethylene) trans Mn = 8000 Benzene 30-60
0.26-0.31
TABLE 3. Polymer
(fi2)/x,D2
Remarks
Refs.
72
End bonds: CH 2 -Br, m(CH 2 -Br)=1.96D Alternating copolymer of pentamethylene sulfide and methylene sulfide
0.176-0.207
70
112 54
HYDROXYL TERMINATED OXIDE/SULFIDE COPOLYMERS0 Solvent
Poly(thioethyleneoxyethylene) Poly(thiodiethylene glycol) M n = 13000 Benzene M n = 8000 Benzene Poly(thiomethyleneoxymethylenethiopentamethylene) Poly(3-oxa-1,5-dithiadeca-methylene) M n = 5200 Benzene Poly(oxymethyleneoxyethylenethioethylene) PoIy(1,3-dioxa-6-thiocane) M n = 2500 Benzene M n = 3000 Benzene Poly(oxymethyleneoxyethylenethiomethylenethioethylene) Alternating copolymer of 1,3-dioxolane and 1,3-dithiolane Benzene
Temp. (0C)
g or Dn
Remarks Alternating copolymer of ethylene sulfide and methylene sulfide
Refs.
20-60 20-60
0.607-0.648 0.627-0.659
66 66
30-60
0.323-0.358
84
20-60 20-60
0.419-0.432 0.419-0.432
65 65
30
0.26
66
fl
m(CH2-CH2) = 0Z), m(CH 2 -0)= 1.07D, m(CH2-S)= 1.21D.
TABLE 4. Polymer
POLYESTERS DERIVED FROM AROMATIC DIACIDS* Solvent
Poly[di(oxyethylene) oxyterephthaloyl] Poly(diethyleneglycol terephthalate) M n = 2500 Benzene Poly[di(oxyethylene) oxyisophthaloyl] Poly(diethyleneglycol isophthalate) M n = 5900 Benzene Poly[di(oxyethylene) oxyphthaloyl) Poly(diethyleneglycol phthalate) M n = 10300 Benzene Poly(oxypropyleneoxyterephthaloyl) Poly(propyleneglycol terephthalate) M n = IlOOO Benzene Poly[di(oxypropylene) oxyterephthaloyl) Poly(dipropyleneglycol terephthalate) M n = IOOOO Benzene Poly(tri(oxytrimethylene) oxyterephthaloyl) Poly(triethyleneglycol terephthalate) M n =7800 Benzene Poly[di(oxytrimethylene) oxyterephthaloyl] Poly(ditrimethyleneglycol terephthalate) Mn =15500 Benzene (Poly(thioethyleneoxyethyleneoxyterephthaloyl) Poly(thiodiethyleneglycol terephthalate) M n = 6400 Dioxane
Temp. (0C)
g or Dn
35-60
0.688-0.692
60
30-60
0.691-0.692
79
30-60
0.637-0.679
86
30-60
0.582-0.609
87
30-60
0.715-0.750
14
30-60
0.677-0.695
82
30-60
0.805-0.798
26
40-70
0.540-0.552
Remarks
m(CH 2 -S) = 1.21D
'Hydroxyl terminated polyesters m(C6H5COOCH2) = 1.98Z); m(CH2-O) (ether)= 1.07D; m(CH2-CH2) = 0D; m(O-H) = LlD.
Refs.
69
TABLE 5. ALIPHATIC AND CYCLOALIPHATIC POLYESTERS* Polymer
Solvent
Poly[oxy (2,2-dirnethyltrimethylene) oxysuccinoyl] Poly(neopentylglycol succinate) M n = 6900 Benzene Poly(oxysuccinoyloxymethylene-1,4-cyclohexylenemethylene) trans Poly(trans-l,4-cyclohexane dimethanol succinate) M n = 5800 Dioxane Poly[oxy(2,2-dimethyltrimethylene) oxyadipoyl] Poly(neopentylglycol adipate) M n =5500 Benzene Poly(oxyadipoyloxymethylene-1,4-cyclohexylenemethylene) cis Poly(cis-1,4-cyclohexane dimethanol adipate) M n = IlOOO Benzene M n = IlOOO Dioxane Poly(oxy adipoyloxymethylene-1,4-cyclohexylenemethylene) trans Poly(trans-1,4-cyclohexane dimethanol adipate) M n = IOOOO Dioxane Poly(oxysebacoyloxymethylene-1,4-cyclohexylenemethylene) trans Poly(trans-1,4-cyclohexane dimethanol sebacate) M n =4600 Benzene Poly[oxy(2,2-dimethyltrimethylene) oxyhexafluoroglutaroyl] Poly(neopentylglycol hexafluoroglutarate) M n = 3640 Benzene Poly[oxy(2,2-dimethyltrimethylene) oxyglutaroyl] Poly(neopentylglycol glutarate) M n =4500 Benzene Poly(oxysebacoyloxymethylene-1,4-cyclohexylenemethylene) cis Poly(cis-1,4-cyclohexane dimethanol sebacate) M n = 5200 Benzene Poly[di(oxyethylene) oxycarbonyl-1,4-cyclohexylenecarbonyl] trans Poly(diethyleneglycol-1,4-trans-cyclohexane dicarboxylate) M n = 5300 Benzene
Temp. (0C)
g or Dn
(fi2)/x
30-60
0.548-0.586
88
70
0.454
90
30-60
0.653-0.688
85
30-60 30-60
0.950-0.972 0.914-0.959
90 90
50-70
0.596-0.65
90
30-60
0.631-0.709
83
Refs.
30-60
9.16-9.78
58
30-60
4.26-4.52
58
300-60
0.983-1.04
83
30-60
0.585-0.608
89
* Hydroxyl terminated polyesters m(CH2COOCH2)= 1.89D. TABLE 6.
POLYCARBONATES
Polymer
Solvent
Temp. (0C)
(p2)/x,D2
Remarks
Refs.
Poly(oxycarbonyloxy-1,4-phenylene-1 -(R)-1 -methylmethylene-1,4-phenylene) Polycarbonate x = 97 JC = 88 x — 73
Benzene Benzene Benzene
25 25 25
9.36 11.70 17.64
R = 3-chlorophenyl R = 4-chlorophenyl
28 28 28
Benzene 25 1,4-Dioxane 25 1,4-Dioxane 25 Benzene 25 Benzene 25 2,2/-bis(4-hydroxylphenyl)propane) 2,2/-bis(4-hydroxylphenyl)propane) 1,4-Dioxane 25 l,l/-bis(4-hydroxyphenyl)-l-(3-chlorophenyl)ethane) l,l/-bis(4-hydroxyphenyl)-l-(3-chlorophenyl)ethane) Benzene 25 l,l/-bis(4-hydroxyphenyl)-l-(4-chlorophenyl)ethane) 1,17-bis(4-hydroxyphenyl)-1-(4-chlorophenyl)ethane) Benzene 25
1.69 1.88 2.07 2.76 2.13
R = isobutyl R= H R = phenyl R= H R = ethyl
21 21 21 21 21
Poly(thiocarbonate) Poly(thiocarbonate) x= 128 x = 75 JC = 2 8 0 JC = 7 5 x = 49 Poly(thiocarbonate Poly(thiocarbonate M n =9400 Poly(thiocarbonate Poly(thiocarbonate With JC = 97 Poly(thiocarbonate Poly(thiocarbonate With x = 88
of of of of of of
0.92
97
7.40
99,28
6.05
99,28
References page VII - 646
TABLE 6. cont'd Polymer
Solvent
Temp. (0C)
(fi2)/x,D2
Poly(thiocarbonate of l,l/-bis(4-hydroxyphenyl)-l-(3,4-dichlorophenyl)ethane) Poly(thiocarbonate of 1, l/-bis(4-hydroxyphenyl)~l-(3,4-dichlorophenyl)ethane) With x = 73 * Benzene 25
Remarks
Refs.
12.25
99,28
TABLE 7. VINYL POLYMERS* Polymer Poly (1 -phenylethylene) Poly(styrene) Atactic Atactic Isotactic Poly(2-bromophenylethylene) Poly(o-bromostyrene)
Solvent
Toluene Carbon tetrachloride Toluene
Temp. (0C)
g or Dn
38.4 25 38.4
0.36 0.56 0.53
(n2)/x9D2
Remarks
M0 = 0.60D /i 0 = O.35D /.to = 0.60D
0.50 1.21
Poly(4-bromophenylethylene) Poly(p-bromostyrene) PPBSI /?-Dioxane PPBSI Carbon tetrachloride PPBSII /7-Dioxane Poly( 1 -phenylethylene/(4-pyridyl) ethylene) Poly {sty rene/4-vinylpyridine) Benzene Poly[ 1 -methyl-1 -(4-fluorophenyl) ethylene] Poly(p-fluoromethylstyrene) Benzene Benzene Poly[(4-methoxyphenyl) ethylene] Poly(p-methoxystyrene) Toluene Benzene Benzene Poly[(4-fluorophenyl) ethylene] Poly(p-fluorostyrene) Benzene Benzene Poly[(2-chlorophenyl) ethylene] Poly(o-chlorostyrene)
20-50 20-50 20-50 0.73
25 25
0.62 0.27
25 25 25 25 25
108 108 108 Mo = 2.65D
5
0.89
Mo = 1.82D /*0 = 1-82D
6 5
0.54 0.72 0.64
0.78 1.06 0.94
no = l.2W no = \.2\D /x0 = 1.21D
31 5 6
0.62 0.51
2.05 1.69
Mo = 1.82D Mo = 1-82D
6 5
2.85 Poly[(3-chlorophenyl) ethylene] (Poly(m-chlorostyrene) Poly[(4-chlorophenyl) ethylene] Poly(p-chlorostyrene)
57
Toluene
25
0.63
1.61
Mo = 1-60D
Xylene
30 30-50 30 50 20-50 25 25-65 30 30-90 30-60 25 25 30 20-90 25 30 30 25 30-90 15-70
0.71 0.42-0.56 0.56
2.00
Mo = 1.68
2.10 1.89 2.11-2.46 1.82 1.87-1.73 2.17 2.06-1.98 2.09-2.12
Mo = 1^3
Benzene Carbon tetrachloride /?-Dioxane Toluene Cumene Toluene Isopropylbenzene Toluene Benzene Toluene Isopropylbenzene K-Propylbenzene Carbon tetrachloride Benzene Benzene Toluene Isopropylbenzene Benzene
35 37 35 57 57
2.20-2.49 2.12-2.54 2.44-2.72
25
Refs.
0.77 0.73-0.70 0.74-0.75 0.64 0.53 0.436-0.499 0.57 0.60 0.493-0.520 0.599-0.562
1.65 1.50 1.641-1.878
M0 = ^0 = Mo = Mo =
1.68 1.68 1 68 2.0
Mo =1-68 Mo = 1 88D
1.49 1.49 1.59 11.854-1.956 2.373-2.224
Isotactic Mo = 1 63
93 11 57 12 108 108 113 113 11 9 9 5 31 Il 114 6 55 55 93 114 114
*In vinyl polymers the dipolar correlation coefficient is expressed by g = (M 2 ) AMO> w h ^re x is the degree of polymerization and MO is the dipole moment of a model compound of the repeating unit.
TABLE 7. cont'd Polymer
Solvent
Poly( 1 -acetoxyethylene) Poly(vinyl acetate)
Poly( 1 -bromoethylene) Polyivinyl bromide) Several fractions
Poly( 1 -chloroethylene) Poly(vinyl chloride) Atactic fraction Atactic fraction Atactic fraction Eight fractions (atactic) Syndiotactic fraction Mn = 26000 (atactic) Mn =47000 (atactic) Poly(isobutoxyethylene) Poly(vinyl isobuts'lether) Isotactic fraction Atactic fraction Isotactic fraction Atactic fraction Poly(carbazolylethylene) Poly(vinyl carbazole)
Temp. (0C)
g or Dn
(fi2)/x,D2
Remarks
Refs.
25 20
0.89 and 0.94 0.84 0.75-0.80
2.59-2.89 2.89
/X0 = 1-80D ^ 0 = 1.86
38 101 107
1.97-3.20 2.29-2.38
^o = 1.93D /x0 = 2.08D ^o = 2.08D
40 95 95
2.65 2.79-3.06 1.716 1.72-1.67 2.59-2.82 1.93 2.72-2.60
/i O = Mo = /xo = /x0 = ^0 = /U0 = /i 0 =
2.80-2.72
^ 0 = 2.00D
33 29 33 33 39 33 8 12 8
1.345 and 1.464
^ 0 = 1.22Z) /xo = 1.22D
107 107 55 55
Benzene and CCl4 Benzene
/>Dioxane p-Dioxane 1-Methylnaphthalene
/?-Dioxane /?-Dioxane Tetrahydrofuran Tetrahydrofuran p-Dioxane Tetrahydrofuran /7-Dioxane
25 30-60 30-60
20 and 40 20-65 40 20 and 40 25 20 25-55
/7-Dioxane
Benzene Benzene Benzene Benzene
25-55
0.59 0.70-0.75 0.64-0.62 0.66-0.72 0.71 0.68-0.65 0.75 0.70-0.68
2.12D 2.00D 1.64D 1.64D 2.00D 1.64D 2.00D
25 and 50 25 30 30
0.90 and 0.98 0.77 and 0.83 0.98
0.98 0.96
25 30-60
0.36 0.41-0.44
3.71 3.52-3.78
/x0 = 3.21D /x0 = 2.93D
30 102
20-50
1.10-1.06
2.34-2.26
^ 0 = 1.46D
100
25
0.28
1.21
/x0 = 2.08D
6
Toluene /7-Dioxane
Poly(ethylenethiophenylene) Pofyfvinylphenyl sulfide) Benzene Poly[ 1 -methyl-1 -(4-bromophenyl) ethylene] Po/vfp-fcroma-a-methylstyrene) Benzene
TABLE 8.
0.53-0.86 0.45-0.46
ACRYLIC POLYMERS*
Polymer Poly[ 1 -methoxycarbonyl) ethylene] Poly(methyl aery late)
Solvent
Benzene Benzene
Temp. (0C)
20 25
Poly[2-(biphenyloxycarbonyl) ethylene] Poly(2-biphenyl acrylate) Benzene 30-60 Poly[ 1 -(cyclohexyloxycarbonyl) ethylene] Poly(cyclohexyl acrylate) Benzene 30-60 PoIy[I -(ethoxycarbonyl) ethylene] Poly(ethyl acrylate) Atactic fraction Benzene 30 Syndiotactic fraction Benzene 30 Poly[ 1 -(phenoxycarbonyl) ethylene] Polyiphenyl acrylate) Benzene 30-60 PoIy[I-((3-chloro) phenoxycarbonyl) ethylene] Polyim-chlorophenyl acrylate) Benzene 30-60 PoIy[I -((2-chloro) phenoxycarbonyl) ethylene] Poly(o-chlorophenyl acrylate) Benzene 30-60 PoIy[I-((4-chloro) phenoxycarbonyl) ethylene] Polyip-chlorophenyl aaylate) Benzene 30-60 PoIy[I-((4-benzoyl) phenoxycarbonyl) ethylene] Poly(4-benzoylphenyl acrylate) 1,4-Dioxane 30-60 PoIy[I-(4-phenoxy) phenyloxycarbonyl) ethylene] Poly(4-phenoxyphenyl acrylate) Benzene 30-60 PoIy[I -(hydroxyethylenedi(oxyethylene) oxycarbonyl) ethylene] Poly(triethyleneglycol acrylate) Benzene 30-60
g or Dn
(n2)/x,D2
Remarks
Refs.
0.717 0.64-0.67
2.22 1.99-2.07
/xo = l-76D /x0 = 1.76D
51 43
0.69-0.74
2.05-2.22
/i 0 = 1.723- 1.732D
16
0.75-0.81
2.79-3.01
/i 0 = 1.93D
15
1.04 1.04
55 55
0.62-0.66
1.73-1.91
/U0 = 1-669-1.700D
98
0.57-0.61
1.85-2.02
/I0 = 1.800- 1.824D
98
1.09-1.09
3.30-3.97
^ 0 = 1.74-1.91D
98
MO = 2 . 5 9 O - 2 . 6 9 4 D
98
^ 0 = 3.561-3.521/)
17
^ 0 =2.10-2.1 ID
18
0.524-0.501 0.81-0.84
10.27-10.41
0.82-0.84
3.61-3.74 7.97-8.16
92
* /to is the dipole moment of a model compound of the side group.
References page VII - 646
TABLE 9. METHACRYLIC POLYMERS* Polymer
Temp. (0C)
Solvent
Poly [ 1 -methoxycarbonyl)-1 -methylethylene] Poly(methyl methacrylate) Atactic fraction Five solvents Atactic fraction Benzene Atactic fraction Benzene Syndiotactic fraction Toluene Isotactic fraction Toluene Syndiotactic fraction Benzene Atactic fraction Benzene Isotactic fraction Benzene Isotactic fraction Benzene Atactic fraction Benzene Atactic fraction Toluene Syndiotactic fraction Benzene Atactic fraction p-Dioxane Poly[l-(ethoxycarbonyl)-l-methylethylene] Poly(ethyl methacrylate) 1,4-Dioxane Carbon tetrachloride Toluene Benzene Poly [ 1 -(propoxycarbonyl)-1 -methylethylene] Poly(propyl methacrylate) Poly [ 1 -(isopropoxycarbonyl)-1 -methylethylene] Poly(isopropyl methacrylate) Poly(butyl methacrylate) Poly(butyl methacrylate) Four solvents Poly(phenylmethacrylate) Poly(phenylmethacrylate) Poly(p-chlorophenylmethacrylate) Poly(p-chlorophenylmethacrylate) Poly(dichlorophenylmethacrylate) Poly(dichlorophenylmethacrylate)
25 25 25 30-90 25-65 25-65 25-65 25-65 30 30 25-65 30 23
0.62 0.53-0.66 0.55-0.72 0.67-0.79 0.65-0.75 0.70-0.78 0.69-0.78 0.77-0.81 0.67 0.56-0.61 0.66-0.78 0.53
25 25 25
0.58 0.54 0.62 0.59-0.62 0.58
25
(fi2)/x,D2
gorD,,
Remarks
^o = 1.73D 1.77-2.31 1.72-2.01 1.66-1.93 1.79-1.99 1.77-1.99 1.96-2.07 2.00 1.66-1.82 1.69-1.99 1.61 2.25
/i 0 = /x0 = ^0 = /^0 = ^0 = ^0 = Mo = /i 0 = /*0 = ^t0 =
1-80D 1-60D 1-60D 1.60D 1-60D 1-60D 0.73D 1.73D 1-60D 1-73D
2.00 1.87 2.14
/i 0 = 1-86D /^0 = 1-86D / i 0 = 1-86D
2.00
/I0 = 1.86D
48 57,107 42 105 105 105 105 105 3 3 105 3 10 36 36 36 57
0.56-0.59
57
0.61-0.66
57 1..93-2.72
23
Refs.
0.55-0.59
10 57
0.55
57
0.35
57
0.38
52
*}IQ is the dipole moment of a model compound of the side group.
TABLE 10. ITACONATE POLYMERS Polymer
Temp. (0C)
Solvent
Poly[ 1 -(cyclohexylmethylene oxycarbonylmethylene)-1 -(carboxy)ethylene] Poly(monocyclohexylmethylene itaconate) 1,4-Dioxane 20-50 Poly[ 1 -(cyclohexylmethyleneoxycarbonylmethylene)-1 -(cyclohexylmethyleneoxycarbonylmethylene) ethylene] Poly(dicyclohexylmethylene itaconate) Benzene 30-60 Poly[ 1 -benzyloxycarbonylmethylene)-1 -(carboxy) ethylene] Poly(monobenzyl itaconate) 1,4-Dioxane 25 Poly [ 1 -(benzyloxycarbonylmethylene)-1 -(benzyloxycarbonylmethylene)ethylene] Polyidibenzyl itaconate) 1,4-Dioxane 25-33
(n2)/x,D2
Refs.
5.75-5.70
20
6.89-7.00
19
3.84
96
2.31-2.79
24
TABLE 11. POLYDIENES
Polymer Poly( 1 -methyl-1 -butenylene) Poly(isoprene) cis 1,4 trans 1,4 Poly( 1 -chloro-1 -butenylene) Poly(chloroprene)
Temp. (0C)
gorD,,
Benzene Benzene
25 25
0.70 0.82
Benzene
20
2.70
Solvent
Remarks
^o = 0.34D ^ 0 = 0.34D
Refs.
41 41 101
TABLE 12. SILICON BASED POLYMERS* Polymer
Solvent
Linear Poly(dimethylsiloxane) Linear Poly(dimethylsiloxane) x+) =188 " A = 9.85 A = I , 102 x = 4, 95.0 .x = 69.6 JC= 14.8 A = 70.55 jc= 15.8 x~ 10.5 A+1=239 A-+1=97 A + 1 = 1038 A+1=239 A + 1 = 188 A+1=97 A + 1 = 1038 Poly (1,1 -dimethylsilazane) PoIy(IJ -dimethylsilazane) M n = 750
Undiluted Cyclohexane, benzene Undiluted
Temp. (0C)
g or Dn
10-60 30 25
0.306-0.297 0.18-0.21
Undiluted Cyclohexane, Cyclohexane, Cyclohexane, Cyclohexane, Cyclohexane, Undiluted Undiluted Cyclohexane Cyclohexane Cyciohexane Cyclohexane Undiluted
(?*2)/x, D2
Cyclic PDMS Linear PDMS; {fi2)1/2 = 2.07D, 14.4D Cyclic PDMS; (/i 2 ) l / 2 = 1.50D, 14.3D
25 benzene benzene benzene benzene benzene
30 30 30 30 30 10-60 10-60 10-60 10-60 10-60 10-60 10-60
Cyclohexane Hexamethyldisilazane Hexane Carbon tetrachloride Benzene
20-50 25 20 20-50 20-50
Poly(methylphenyl siloxane) Poly(methylphenyl siloxane) Mn = 45000 Cyclohexane Poly(dimethyl siloxane-co-methylphenyl siloxane) (35.7/54.3) Poly(dimethyl siloxane-co-methylphenyl siloxane) (35.7/54.3) Mn = 4200 Cyclohexane Poly(dimethylsiloxane-c-methylphenylsiloxane) (90.5/9.5) Poly(dimethylsiloxane'Co-methylphenylsiloxane) (90.5/9.5) Mn = 6400 Cyclohexane Poly(methylsilmethylene) Poly(methylsilmethylene) Cyclohexane
Remarks
0.20,0.33 0.21,0.28 0.21,0.30 0.19,0.26 0.18,0.27 0.305-0.297 0.314-0.306 0.398-0.444 0.377-0.412 0.377-0.369 0.387-0.407 0.308-0.301
Cyclic PDMS
0.370-0.326 0.246 0.330 0.310-0.310 0.342-0.359
Refs.
44 76 7 7 76 76 76 76 76 44 44 44 44 44 44 44 104 104 104 104 104
25
0.31
103
25
0.22
103
25
0.27
103
20
0.391
m(Si-C) = 0.50D
49
fl
m(Si-O) = 0.60D.
TABLE 13.
STYRENE COPOLYMERS*
Polymer
Solvent
Temp. (0C)
g or Dn
(n2)/x,D2
Remarks
Refs.
Poly[ 1 -phenylethylene-c0-(4-methoxyphenyl) ethylene] Poly(styrene-co-p-methoxystyrene) Ap =0.157 .
/i 0 = 121D; (M 2 )/A is referred to the polar unit
Toluene
25
1.07
1.56
3130
Ap =0.328 Toluene Ap =0.480 Toluene A P =0.721 Toluene Ap = 1 Toluene Poly( 1 -phenylethylene-c0-carbazolylethy Iene) Poly(styrene-co-vinykarbazole) AP =0.074 Toluene AP = 1.00 Toluene A P =0.368 Toluene A P =0.665 Toluene PoIy[I -phenylethylene-c0-(4-pyvidyl) ethylene] Poly(styrene-co-4-\nnylpyridine) Ap = 0.028 Toluene A P =0.183 Toluene A P =0.154 Toluene
25 25 25 25
0.84 0.74 0.69 0.54
1.23 1.08 1.01 0.78
25 25 25 25
0.53 0.36 0.53 0.39
/X0 = 3.21Z)
30 30 30 30
25 25 25
0.31 0.50 0.34
/U0 = 2.655D
30 30 30
3130 3130 3130 31 30
* AP is the molar fraction of polar comonomer and /Lto is the dipole moment of the polar repeating unit.
References page VII - 646
TABLE 13. cont'd Polymer
Solvent
JCp = 0.118 Toluene Xp =0.051 Toluene xp = 0.082 Toluene PoIy[I -phenylethylene-co-(4-chlorophenyl) ethylene] Poly(styrene-co-p-chlorostyrene) x p = 0.247 Toluene x p =0.802 Toluene x p = 1.00 Toluene
C.
Temp. (0C)
g or Dn
25 25 25
0.29 0.29 0.23
25 25 25
0.67 0.44 0.41
(fi2)/x,D2
Remarks
Refs. 30 30 30
2.67 1.76 1.4
/z0 = 2.0D
31,30 31,30 31,30
REFERENCES
1. A. Abe, T. Hirano, T. Tsuruta, Macromolecules, 12, 1092 (1979). 2. M. Aroney, R. J. W. Le Fevre, G. M. Parkins, J. Chem. Soc. 2890 (1960). 3. R. Bacskai, H. A. Pohl, J. Polym. Sci., 42, 151 (1960). 4. K. Bak, G. Elefante, J. E. Mark, J. Phys. Chem., 71, 4007 (1967). 5. B. M. Bay sal, H. Yu, W. H. Stockmayer, "Dielectric Dispersion in Dilute Solutions of Several Parasubstituted Polystyrenes", in: F. E. Karasz (Ed.), "Dielectric Properties of Polymers", 1972: p. 329. Plenum Press, New York, 1971. 6. B. M. Baysal, L. Aras, Macromolecules, 18, 1693 (1985). 7. M. S. Beevers, S. J. Mumby, S. J. Carlson, A. J. Semlyen, Polymer, 24, 1565 (1983). 8. F. Blasco-Cantera, E. Riande, J. P. Almendro, E. Saiz, Macromolecules, 14, 138 (1981). 9. F. Blasco, E. Riande, J. Polym. Sci., Polym. Phys. (Ed.), 21, 835 (1983). 10. L. de Brouckere, M. Mandel, "Dielectric Properties of Dilute Polymer Solutions", in: I. Prigogine 1(Ed.), "Advances in Chemical Physics", Interscience, New York, 1958, p. 77. 11. L. L. Burshtein, T. P. Stepenova, Polym. Sci. USSR, 11,2885 (1969). 12. P. Debye, F. Bueche, J. Chem. Phys., 19, 589 (1951). 13. P. Debye, Phys. Z., 13, 97 (1912); "Collected papers, Polar Molecules", Wiley Interscience, New York, 1954, p. 173. 14. R. Diaz-Calleja, E. Riande, J. Guzman, Macromolecules, 22, 3654 (1989). 15. R. Diaz-Calleja, E. Riande, J. San Roman, Macromolecules, 25, 2875 (1992). 16. R. Diaz-Calleja, E. Riande, J. San Roman, J. Phys. Chem., 96, 6843 (1992). 17. R. Diaz-Calleja, E. Riande, J. San Roman, J. Phys. Chem., 97, 4848 (1993). 18. R. Diaz-Calleja, E. Riande, J. San Roman, Polymer, 34,3456 (1993). 19. R. Diaz-Calleja, E. Riande, L. Gargallo, D. Radic, Macromolecules, 26, 3795 (1993). 20. R. Diaz-Calleja, E. Riande, L. Gargallo, D. Radic, J. Polym. Sci., Part B: Polym. Phys., 32, 1069 (1994). 21. M. J. Fabre, I. Hernandez-Fuentes, L. Gargallo, D. Radic, Polymer, 33, 194 (1992).
22. P. J. Flory, "Statistical Mechanics of Chain Molecules", Wiley-Interscience, New York, 1969. 23. H. Frohlich, Trans. Faraday Soc, 44,238 (1948); "Theory of Dielectrics", Oxford University Press, London, 1958. 24. L. Gargallo, M. Yazdani-Pedram, D. Radic, I. HernandezFuentes, Makromol. Chem., 189, 145 (1988). 25. L. Garrido, E. Riande, J. Guzman, J. Polym. Sci., Polym. Phys. Ed., 20, 1805 (1982). 26. C. Gonzalez, E. Riande, A. Bello, J. M. Perena, Macromolecules, 21, 3230 (1988). 27. E. A. Guggenheim, Trans. Faraday Soc, 45, 714 (1949); ibid. 47, 573 (1951). 28. I. Hernandez-Fuentes, F. Rey-Stolle, L. Hernan Tagle, E. Saiz, Macromolecules, 25, 3291 (1992). 29. Y. Imamura, J. Chem. Soc. Japan, 76, 217 (1955). 30. Z. Kuciikyavuz, B. M. Baysal, Macromolecules, 21, 2287 (1988). 31. K. Kuciikyavuz, B. M. Baysal, Polymer, 32, 3418 (1991). 32. J. G. Kirkwood, J. Chem. Phys., 7, 911 (1939). 33. A. Kotera, M. Shima, N. Fujisaki, T. Kobayashi, Bull. Chem. Soc. Japan, 35, 1117 (1962). 34. A. Kotera, K. Suzuki, K. Matsumura, T. Nakano, Y. Oyama, U. Kabayashi, Bull. Chem. Soc Japan, 35, 797 (1962). 35. W. R. Krigbaum, A. Roig, J. Chem. Phys., 31, 544 (1959). 36. A. Kuntman, I. Bahar, B. M. Baysal, Macromolecules, 23, 4959 (1990). 37. C. G. Le Fevre, R. J. W. Le Fevre, G. M. Parkins, J. Chem. Soc, 1468 (1958). 38. C. G. Le Fevre, R. J. W. Le Fevre, G. M. Parkins, J. Chem. Soc, 1814 (1960). 39. R. J. W. Le Fevre, K. M. S. Sundaram, J. Chem. Soc, 1494 (1962). 40. R. J. W. Le Fevre, K. M. S. Sundaram, J. Chem. Soc, 4003 (1962). 41. R. J. Le Fevre, K. M. S. Sundaram, J. Chem. Soc, 3547 (1963). 42. R. J. W. Le Fevre, K. M. S. Sundaram, J. Chem. Soc, 1880 (1963). 43. R. J. W. Le Fevre, K. M. S. Sundaram, J. Chem. Soc, 3188 (1963). 44. S. C. Liao, J. E. Mark, J. Chem. Phys., 59, 3825 (1973). 45. G. D. Loveluck, J. Chem. Soc, 4729 (1961). 46. V. Magnasco, G. Dellepiane, C. Rossi, Makromol. Chem., 65, 16 (1963).
47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82.
J. Marchal, H. Benoit, J. Polym. ScL, 23, 223 (1957). J. Marchal, C. Lapp, J. Polym. ScL, 27, 571 (1958). J. E. Mark, J. H. Ko Macromolecules, 8, 869 (1975). J. E. Mark, D. S. Chiu, J. Chem. Phys., 66, 1901 (1977). R. M. Masegosa, I. Hernandez-Fuentes, E. A. Ojalvo, E. Saiz, Macromolecules, 12, 862 (1979). G. P. Mikhailov, J. Polym. ScL, 30, 605 (1958). L. Onsager, J. Am. Chem. Soc., 7, 911 (1936). J. L. de Ia Pefla, E. Riande, J. Guzman, Macromolecules, 18, 2739 (1985). H. A. Pohl, H. H. Zabusky, J. Phys. Chem., 66, 1390 (1962). C. H. Porter, J. H. Lawler, R. H. Boyd, Macromolecules, 3, 308 (1970). O. B. Ptitsyn, Soviet Phys.-Usp. (English transl.), 2, 797 (1960). R. C. Reis-Nunes, E. Riande, N. Chavez, J. Guzman, Macromolecules, 29, 7989 (1996). E. Riande, J. Polym. ScL, Polym. Phys. Ed., 14, 2231 (1976). E. Riande, J. Polym. ScL, Polym. Phys. Ed., 15,1397 (1977). E. Riande, Makromol. Chem., 178, 2001 (1977). E. Riande, J. E. Mark, Macromolecules, 11, 956 (1978). E. Riande, J. E. Mark, J. Polym. ScL, Polym. Phys. Ed., 17, 2013 (1979). E. Riande, J. E. Mark, Polymer, 20, 1188 (1979). E. Riande, J. Guzman, Macromolecules, 12, 1117 (1979). E. Riande, J. Guzman, Macromolecules, 12, 952 (1979). E. Riande, S. Boileau, P. Hemery, J. E. Mark, J. Chem. Phys., 71, 4206 (1979). E. Riande, S. Boileau, P. Hemery, J. E. Mark, Macromolecules, 12, 702 (1979). E. Riande, J. Guzman, J. San Roman, J. Chem. Phys., 72, 5263 (1980). E. Riande, J. Guzman, Macromolecules, 14, 1234 (1981). E. Riande, J. Guzman, E. Saiz, Polymer, 22, 465 (1981). E. Riande, J. Guzman, E. Saiz, J. de Abajo, Macromolecules, 14, 608 (1981). E. Riande, M. Garcia, J. Mark, J. Polym. ScL, Polym. Phys. Ed., 19, 1739 (1981). E. Riande, J. Guzman, W. J. Welsh, J. E. Mark, Makromol. Chem., 183, 2555 (1982). J. Guzman, E. Riande, W. J. Welsh, J. E. Mark, Makromol. Chem., 183, 2573 (1982). E. Riande, J. E. Mark, Eur. Polym. J., 20, 517 (1984). E. Riande, J. G. de Ia Campa, J. Guzman, J. de Abajo, Macromolecules, 17, 1431 (1984). E. Riande, J. G. de Ia Campa, J. Guzman, J. de Abajo, Macromolecules, 17, 1891 (1984). E. Riande, J. Guzman, J. de Abajo, Makromol. Chem., 185, 1943 (1984). E. Riande, J. Guzman, L. Garrido, Macromolecules, 17, 1234 (1984). E. Riande, J. Guzman, L. Garrido, Macromolecules, 17, 134 (1984). E. Riande, J. Guzman, J. Polym. ScL, Polym. Phys. Ed., 23, 1235 (1985).
83. E. Riande, J. Guzman, J. G. de Ia Campa, J. de Abajo, Macromolecules, 18, 1583 (1985). 84. E. Riande, J. Guzman, H. Addabo, Macromolecules, 19, 2567 (1986). 85. E. Riande, J. E. Mark, Macromolecules, 19, 2956 (1986). 86. E. Riande, J. Guzman, J. G. de Ia Campa, J. de Abajo, J. Polym. ScL, Polym. Phys. Ed., 25, 2403 (1987). 87. E. Riande, J. G. de Ia Campa, D. D. Schlereth, J. de Abajo, J. Guzman, Macromolecules, 20, 1641 (1987). 88. E. Riande, J. Guzman, J. Chem. Soc. Perkin Trans., 2, 299 (1988). 89. E. Riande, J. Guzman, J. G. de Ia Campa, Macromolecules, 21, 2128 (1988). 90. E. Riande, J. Guzman, J. de Abajo, Macromolecules, 22, 4026 (1989). 91. E. Riande, E. Saiz, "Dipole Moments and Birefringence of Polymers", Prentice Hall, Englwood Cliff, NJ, 1992. 92. E. Riande, J. Guzman, Macromolecules, 29, 1728 (1996). 93. A. Roig, I. Hernandez-Fuentes, An. Quim., 70, 668 (1974). 94. E. Saiz, E. Riande, J. Guzman, J. de Abajo, Chem. Phys., 73, 958 (1980). 95. E. Saiz, E. Riande, M. P. Delgado, J. M. Barrales-Rienda, Macromolecules, 15, 1152 (1982). 96. E. Saiz, A. Horta, L. Gargallo, I. Hernandez-Fuentes, D. Radic, Macromolecules, 21, 1736 (1988). 97. E. Saiz, M. J. Fabre, L. Gargallo, D. Radic, I. HernandezFuentes, Macromolecules, 22, 3660 (1989). 98. E. Saiz, E. Riande, J. San Roman, E. L. Madruga, Macromolecules, 23, 785 (1990). 99. E. Saiz, C. Abradelo, J. Mogin, L. Hernan Tagle, I. Hernandez-Fuentes, Macromolecules, 24, 5594 (1991). 100. E. Saiz, C. Mijangos, E. Riande, D. Lopez, Macromolecules, 27, 5716 (1994). 101. I. Sakurada, S. Lee, Z. Phys. Chem. B, 43, 245 (1939). 102. M. Salmeron, J. M. Barrales-Rienda, E. Riande, E. Saiz, Macromolecules, 17, 2728 (1984). 103. C. Salom, J. J. Freire, I. Hernandez-Fuentes, Polymer., 20, 1109(1988). 104. C. Salom, E. Riande, I. Hernandez-Fuente, R. Diaz-Calleja, J. Polym. ScL, Part B: Polym. Phys., 31, 1591 (1993). 105. R. Salovey, J. Polym. ScL, 50, S7 (1961). 106. E. A. Smith, Trans. Faraday Soc, 46, 394 (1950). 107. M. Takeda, Y. Imamura, S. Okamura, T. Higashimura, J. Chem. Phys., 33, 631 (1960). 108. A. E. Tonelli, L. A. Belfiore, Macromolecules, 16, 1740 (1983). 109. T. Uchida, Y. Kurita, M. Kubo, J. Polym. ScL, 19,365 (1956). 110. T. Uchida, Y. Kurita, N. Koizumi, M. Kubo, J. Polym. ScL, 21, 313 (1956). 111. S. Vega, E. Riande, J. Guzman, Macromolecules, 23, 3573 (1990). 112. W. J. Welsh, J. E. Mark, J. Guzman, E. Riande, Makromol. Chem., 183, 2562 (1982). 113. N. Yamaguchi, M. Sato, E. Ogawa, M. Shima, Polymer, 22, 1464 (1981). 114. F. Yilmaz, B. M. Baysal, J. Polym. ScL, Part B: Polym. Phys., 30, 197 (1992).
H e a t ,
E n t r o p y ,
a n d
V o l u m e
P o l y m e r - L i q u i d
C h a n g e s
f o r
M i x t u r e s
Robert A. O r w o l l Department of Chemistry, College of William and Mary Williamsburg, VA, USA
A. Introduction 1. Scope of the Table 2. Experimental Methods B. Key for the Tables C. Tables of Literature References for Heat, Entropy, and Volume Changes for Polymer-Solvent Mixtures Table 1. Main-Chain Carbon Polymers 1.1. Poly(dienes) 1.2. Poly(alkenes) 1.3. Poly(acrylics) 1.4. Vinyl Polymers 1.5. Poly(styrenes) 1.6. Other Compounds Table 2. Main-Chain Carbon Heteroatom Polymers 2.1. Poly(oxides) and Poly(esters) 2.2. Poly(amides) 2.3. Poly(siloxanes) 2.4. Derivatives of Cellulose 2.5. Other Compounds D. References
A.
VII-649 VII-649 VII-649 VII-650
VII-650 VII-650 VII-650 VII-651 VII-654 VII-655 VII-657 VII-659 VII-659 VII-659 VII-661 VII-661 VII-662 VIJ-663 VII-663
INTRODUCTION
Tabulated below are references to the studies of the enthalpy, entropy, and volume changes that occur when polymer and solvent are mixed to form a homogeneous liquid solution. This bibliography follows closely the form employed by C. Booth (Manchester) in his contribution under the same title in the second edition of this Handbook. With several exceptions, references to work reported before 1972 were compiled by Professor Booth for the second edition. 1. Scope of the Table This table includes literature citations to studies from which the thermodynamic properties named in the title can be
deduced. The experimental methods utilized are also identified. This tabulation is limited to reports of measurements on solutions that contain only one nonelectrolyte homopolymer; solutions with a copolymer, polyelectrolyte, or polymer mixture have been excluded. Solvents for the solutions in this compilation are liquids comprising single molecular entities; i.e., references to studies in which the solvent is a binary or ternary mixture or a mixture of oligomers are not included. Most studies whose primary goal is to characterize the individual polymer molecule and its interaction in an infinitely dilute solution will not be found in this table. However, references to studies of dilute solutions are presented in some of the other tables of Part VII ("Solution Properties")- Most of the reports of changes in free energy on mixing or on dilution cited here have been limited to those that also provide sufficient data to determine the change in the enthalpy (or entropy). References to measurements of solvent activities which can yield information about changes in free energy can be found in "Polymer-Solvent Interaction Parameters". These references were collected without regard for the quality of data. 2. Experimental Methods Heat Several different kinds of enthalpy changes are recognized in the formation of solutions. The integral heat of mixing or integral heat of solution, (Al) is the heat absorbed when pure solvent and pure polymer are combined to form a solution at constant temperature and pressure. Here AT80Int # ? , and H\ are the molar enthalpies of solution, pure solvent, and pure solute respectively; and n\ and n2 the number of moles of each component. The value of AHmiX is dependent on the degree of crystallinity for semicrystalline polymers and, usually to a lesser extent, on the thermal history of glassy polymers. However, if a
polymer solution already exists and more solvent is added, the accompanying enthalpy change, which is called the integral heat of dilution, is independent of any crystalline or glassy aspect of the pure polymeric solute. The integral heats, both of mixing and of dilution, are usually determined calorimetrically. The latter is often preferable for experimental reasons, because its measurement is not complicated by the long dissolution times usually required in the direct measurements of integral heats of solution. The partial or differential heat of solution, AH2, is the change in enthalpy when a very small amount of pure solute is added to a large amount of either solution or pure solvent. In the latter instance, the resultant quantity which is properly identified as the partial heat of solution at infinite dilution is sometimes referred to more simply as the heat of solution. For polymer solutions, AHj is often expressed as the heat absorbed per unit mass of solute added and can be found as the derivative of the integral heat of mixing: (A2) Here ni2 is the mass of polymeric solute. Values of AH\ at infinite dilution for some polymer-solvent systems are listed in "Heats of Solution of Some Common Polymers". The partial or differential heat of dilution AH\ differs from AH2 in that it is a consequence of adding solvent, rather than solute, to a solution and is almost always expressed as the heat per mol of added solvent. Accordingly,
(A3) It can also be obtained from the variation with concentration of the integral heat of dilution. Or it may be determined from the temperature dependence of the activity a\ of solvent according to the Gibbs-Helmholtz equation (A4) I turn, the activity a \ of solvent in a polymer solution has a variety of sources including the osmotic pressure of the solution, the vapor pressure of solvent above the solution relative to that of the pure solvent, the gas-chromatographic retention volumes of volatile solvent on columns with polymeric solute as the stationary phase, swelling equilibria for polymer networks, the concentration dependence of Rayleigh scattering, and sedimentation equilibria. The first three methods are the ones used most frequently. Entropy The entropy of mixing pure polymer with pure solvent can be obtained from the difference between the integral heat of mixing and the free energy of mixing (A5) Free energies of mixing can be determined by integrating concentration-dependent functions of the chemical potential of the solvent.
More often, the partial molar entropy of solvent (A6) is reported, using the temperature dependence of the activity of solvent (A7) Volume Volume changes reported in the literature cited below are measured directly (dilatometry) or from density determinations. B. KEY FOR THE TABLES The following abbreviations are used to identify the experimental methods utilized for the studies cited: CD CM D DL GC LS OS SD SW VP XS
Calorimetry: integral heat of dilution Calorimetry: integral heat of mixing Density Dilatometry Gas chromatography with polymeric stationary phase Rayleigh light scattering Osmotic pressure Sedimentation equilibrium Swelling of polymer network Vapor pressure including manometry, isopiestic distillation, vapor phase osmometry, etc. X-ray scattering
A Chemical Abstracts Service registry number accompanies most of the polymers named in the table. Although some polymers have more than one registry number owing to particular stereochemistries, different terminal groups, etc., only the most common number appears in the table for each polymer. C. TABLES OF LITERATURE REFERENCES FOR HEAT, ENTROPY, AND VOLUME CHANGES FOR POLYMER-SOLVENT MIXTURES TABLE 1. MAJN-CHAIN CARBON POLYMERS Polymer-Solvent 1.1. POLY(DIENES) Poly(l,3-butadiene) [9003-17-2] Benzene
ds-Bicyclo[4.4.0]decane rran5-Bicyclo[4.4.0]decane 1,3-Butadiene Butane
Method
Refs.
CD CM GC VP CM CM DL GC DL GC
140 19,84 308,327 73 293 293 374 327 374 327
TABLE 1. cont'd Polymer-Solvent PoIy(1,3-butadiene) cont'd 1-Butene dj-2-Butene tmns-2-Butene Carbon dioxide Carbon tetrachloride 1-Chlorobutane Chloroform Cyclohexane Cyclooctane Cyclopentane Decane 3,3-Diethylpentane 2,2-Dimethylbutane 2,2-Dimethylpentane 2,3-Dimethylpentane 2,4-Dimethylpentane 3,3-Dimethylpentane 1,4-Dioxane Dodecane Ethane Ethylbenzene Ethylene 3-Ethylpentane 2,2,4,4,6,8,8-Heptamethylnonane Heptane Hexadecane Hexane 2-Methylbutane 3-Methylhexane 2-Methylpropane 2-Methylpropene Nonane Octane 1-Octene 2,2,4,6,6-Pentamethylheptane Pentane 2,2,4,4-Tetramethylpentane 2,3,3,4-Tetramethylpentane Toluene 1,3,5-Trimethylbenzene 2,2,4-Trimethylpentane w-Xylene Water Poly(chloroprene) [9010-98-4] Benzene Butyl alcohol Carbon tetrachloride 2-Chloro-l,3-butadiene 1-Chlorobutane Chloroform Decane Octane 1-Octene 2-Pentanone
TABLE 1. cont'd Method
Refs.
DL DL DL SW GC GC GC VP CM GC CM CM GC GC CM GC CM CM CM CM VP CM GC SW GC SW CM CM CM GC CM GC GC CM DL GC DL CM GC CM GC GC CM GC CM CM CD GC GC CM GC SW
374 374 374 350 308 308 308 119 293 327 293 293 327 327 293 327 293 293 293 293 165 294 327 350 327 350 293 294 294 327 294 327 327 293 374 327 374 294 327 294 308,327 308 294 308,327 293,294 293 140 308,327 327 294 327 388
CM GC GC GC VP GC GC GC GC GC GC
19 308 308 308 126 308 308 308 308 308 308
Polymer-Solvent
Method
Refs.
PoIy(Cw-1,3-isoprene) [9003-31-0] and [104389-31-3] Acetone SW 9,120 VP 120 Benzene CM 6,8,55 DL 5,166 OS 5,166 SW 9,121,130 VP 5,8,74,130,166 Butane VP 46 2-Butanone DL 120 SW 9,120 VP 120 Butyl acetate SW 9 Butyl butyrate SW 9 Carbon disulfide SW 9 Carbon tetrachloride SW 9 Chloroform SW 9 Cyclohexane SW 9 2,4-Dimethyl-3-pentanone SW 9 2,2-Dimethylpropane VP 46 Ethyl acetate DL 120 SW 9,120 VP 63,120 Heptane CM 6 SW 9 Hexane VP 59 Isoprene VP 126 Methyl acetate SW 9,120 Methyl alcohol VP 6 2-Methylbutane VP 46 2-Methylpropane VP 46 Octane VP 177 Pentane SW 9 VP 46 2-Pentanone SW 120 Propyl acetate SW 9 Toluene OS 1 SW 9 VP 1 2,2,4-Trimethylpentane VP 177 Polygons-1,3-isoprene) [9003-31-0] and [104389-32-4] Octane VP 177 Toluene OS 2 2,2,4-Trimethylpentane VP 167,177 1.2. POLY(ALKENES) PoIy(I-butene) [9003-28-5J ds-Bicyclo[4.4.0]decane rra/w-Bicyclo[4.4.0]decane Cyclohexane Cyclooctane Cyclopentane Decane 3,3-Diethylpentane 2,2-Dimethylpentane 2,3-Dimethylpentane 2,4-Dimethylpentane 3,3-Dimethylpentane Dodecane 3-Ethylpentane 2,2,4,4,6,8,8-Heptamethylnonane Heptane Hexadecane
CM CM CM CM CM CM CM CM CM CM CM CM VP CM CM CM CM
293 293 293 293 293 248 293 293 293 293 293 248 107 293 294 248 248
References page VII - 663
TABLE 1. confd Polymer-Solvent Hexane 3-Methylhexane Nonane Octane 2,2,4,6,6-Pentamethylheptane Pentane Tetradecane 2,2,4,4-Tetramethylpentane 2,3,3,4-Tetramethylpentane 2,2,4-Trimethylpentane Poly(l-decene) [25189-70-2] Toluene PoIy(I-dodecene) [25067-08-7] Toluene Poly(ethylene) [9002-88-4] Benzene Bromomethane 2-Butanone Butyl acetate Butyl alcohol Carbon tetrachloride Chlorobenzene 1-Chlorobutane Chloroform 1-Chlorohexane 1-Chloronaphthalene Cyclohexane Cyclohexanol Cyclohexanone Cyclohexyl chloride Cyclopentane Decahydronaphthalene Decane 2,6-Di-rerf-butyl-4-methylphenol 1,5-Dichloropentane /V,N-Dimethylacetamide WV-Dimethylformamide 1,2-Dimethylnaphthalene 1,3-Dimethy !naphthalene 1,4-Dimethylnaphthalene 1,5-Dimethylnaphthalene 1,6-Dimethylnaphthalene 1,7-Dimethylnaphthalene 1,8-Dimethylnaphthalene 2,3-Dimethylnaphthalene 2,6-Dimethylnaphthalene 2,7-Dimethylnaphthalene 2,4-Dimethylpentane Dodecane 1-Ethylnaphthalene 2-Ethylnaphthalene Ethyl propionate 2,2,4,4,6,8,8-Heptamethylnonane Heptane Hexadecane Hexane 2-Methylbutane 1-Methylnaphthalene 2-Methylnaphthalene
TABLE 1. Method
Refs.
CM CM CM CM VP CM CM CM GC CM CM CM
248 293 248 248 102 294 248 248 281 293,294 293 294
VP
195
VP
195
GC VP GC GC GC GC GC GC GC GC CM CM GC GC GC GC CM CD CM DL GC VP GC GC GC GC GC GC GC GC GC GC GC GC GC CM VP GC GC GC CM GC VP CM VP CM GC GC
299 87 351 351 299 299 299,351 351,299 299,351 351 151,367 367 299,351 299 299,351 299 367 246 367,369 252 299,351 361 351 351 351 234 234 234 234 234 234 234 234 234 234 367 100,107,351 234 234 351 367 351 38 367 87 367 234 234
confd
Polymer-Solvent
Method
Methyl sulfoxide Nonane Octacosane Octane 1-Octene 2-Pentanone Phenol Phenyl ether Propyl ether Propyl sulfide 1,1,2,2-Tetrachloroethane Tetradecane 1,2,3,4-Tetrahydronaphthalene Toluene 1,2,4-Trichlorobenzene 1,1,2-Trichloroethane /7-Xylene PoIy(I-heptene) [25511-64-2] Toluene Poly(isobutene) [9003-27-4], polyisobutylene Benzaldehyde Benzene
m-Bicyclo[4.4.0]decane fra^Bicyclo[4.4.0]decane Butane 2-Butanone Butyl ether Butyl propionate Carbon tetrachloride
Chlorobenzene
Chloroform Cyclohexane
Cyclooctane Cyclopentane Decahydronaphthalene Decane Decyl alcohol 0-Dichlorobenzene p-Dichlorobenzene 3,3-Diethylpentane
Refs.
GC GC SW GC GC GC GC VP GC GC GC GC CM GC CM GC VP
351 299 93 281,351 299 299 299 180 351 351 351 281 151 351 367 351 131
VP
195
GC CD CM
291 72,98 19,88,94,116, 141,157,184,278 73,82,128,211,254 69,137,159,184 263,287,291,378 61,159 56,73,159,259,318 293 293 35 291 95 105 104 104,116,278 254 105 98 88,94,184 82,254 137,184 96 254 291 255 88,94,104,116, 184,278,293 128 137,155,184 263,378 158 61 26,56,105,155 293 293 254 94 254 137,160 291 254 254 293
D DL GC OS VP CM CM VP GC CM VP CD CM D VP CD CM D DL OS D GC CD CM D DL GC LS OS VP CM CM D CM D DL GC D D CM
TABLE 1. cont'd Polymer-Solvent 2,2-Dimethylbutane 2,3-Dimethylbutane 2,2-Dimethylhexane 2,5-Dimethylhexane 2,2-Dimethylpentane 2,3-Dimethylpentane 2,4-Dimethylpentane 3,3-Dimethylpentane 2,2-Dimethylpropane Dodecane Ethyl acetate Ethylbenzene Ethyl decanoate Ethyl ether Ethyl heptanoate Ethyl hexadecanoate Ethyl hexanoate Ethyl nonanoate Ethyl octanoate 3-Ethylpentane Ethyl tetradecanoate Heptadecane 2,2,4,4,6,8,8-Heptamethylnonane Heptane
Hexadecane Hexane
Hexyl ether Methyl alcohol 2-Methylbutane Methy lcyclohexane 2-Methylheptane 4-Methylheptane 2-Methylhexane 3-Methylhexane 2-Methylpentane 3-Methylpentane 2-Methylpropane Naphthalene Nitrobenzene Nonane Octane
2,2,4,6,6-Pentamethylheptane Pentanal
TABLE 1. cont'd Method
Refs.
GC GC GC GC CM GC CM GC CM GC CM VP CM D GC CM CM CM CM CM CM CM CM CM CM D CM CM
378 378 378 378 293 378 293 378 293 378 293 35 94,278,294 254 291 88,297,378 95 94,95 95 95 95 95 95 293 95 254 294 19,88,94,116,157, 184,278,294 69,137,160,184 263,378 221 94,278,294 160 94,184 254 137,160,184 263,378 221 95 105 94 35 94,116,184 137,184 378 378 378 293 378 378 94 378 35 291 291 94,294 291,378 94,294 254 160 263,378 160 294 291
DL GC OS CM DL CM D DL GC OS CM VP CM VP CM DL GC GC GC CM GC GC CM GC VP GC GC CM GC CM D DL GC OS CM GC
Polymer-Solvent Pentane
Pentyl ether Propyl alcohol Propyl ether Pyridine Tetradecane 1,2,3,4-Tetrahydronaphthalene 2,2,4,4-Tetramethylpentane 2,3,3,4-Tetramethylpentane Toluene
Tridecane 2,2,4-Trimethylpentane
2,3,4-Trimethylpentane Undecane PoIy(I-octadecene) [25511-67-5] Toluene Poly(propylene) [9003-07-0] Benzene ds-Bicyclo[4.4.0]decane rranj-Bicyclo[4.4.0]decane Carbon tetrachloride
Chloroform 1-Chloronaphthalene Cyclohexane Cyclooctane Cyclopentane Decane 3,3-Diethylpentane 2,2-Dimethylpentane 2,3-Dimethylpentane 2,4-Dimethylpentane 3,3-Dimethylpentane 2,4-Dimethyl-3-pentanone Dodecane Ethylbenzene 3-Ethylpentane 2,2,4,4,6,8,8-Heptamethylnonane
Method
Refs.
CD 255 CM 94,278 D 254,338 DL 97,160 GC 263,378 LS 238 OS 221 VP 35,97,156 CM 95 GC 291 CM 95 GC 291 CM 94 D 254 CM 293,294 CM 293 CD 98,104 CM 19,104,184 D 254 DL 69,137,184 GC 291,378 VP 105 CM 94 CM 19,94,104,157,294 D 211 DL 69 GC 287,378 LS 145,158,238 VP 14,237,259 GC 378 CM 94 VP
195
CM D VP CM CD CD CM D VP CD CM D CM CM D CM CM CM GC CM CM CM CM CM VP CM GC VP CM CM CM
315 315 101 293 293 280 315 315 216 280 315 315 151 293,315 315 293 293 315 281 293 293 293 293 293 123 294 281 125,171 315 293 294
References page VII - 663
TABLE 1. cont'd Polymer-Solvent Heptane
Hexadecane Hexane 3-Methylhexane Nonane Nonyl alcohol Octane 2,2,4,6,6-Pentamethylheptane Pentane 3-Pentanone Tetradecane 1,2,3,4-Tetrahydronaphthalene 2,2,4,4-Tetramethylpentane 2,3,3,4-Tetramethylpentane Toluene 2,2,4-Trimethylpentane m-Xylene 0-Xyiene p-Xy lene 1.3.
TABLE 1. cont'd Method
Refs.
CM D VP CM CM D VP CM CM VP CM CM CM D VP VP GC CM CM CM CM CM VP CM CM CM
294,315 315 101,217 294 315 315 101 293 294,315 134 294,315 294 315 315 217 117,123 281 151 293,294 293 315 294 101 315 315 315
CD D
313 196,313
CM CM CD D CD CM CD CM CD CM D VP
381 381 343 343 292 292 292 292 233,292,343 292,381 196,343 366
GC CM GC GC GC GC GC GC GC GC CM GC GC GC GC GC GC GC GC GC
307 55 307 307 307 307 307 307 307 307 260 307 307 307 307 307 307 307 307 307
POLY(ACRYLICS)
Poly(acrylamide) [9003-05-8] Water Poly (acrylic acid) [9003-01-4] Butyl alcohol A^Dimethylformamide Ethyl alcohol Ethylene glycol Formamide Water
Poly(butyl methacrylate) [9003-63-8] Benzene Butyl acetate Butyl alcohol Butylbenzene terf-Butylbenzene Butylcyclohexane Carbon tetrachloride Chlorobenzene 1-Chlorobutane Chloroform Cyclohexane Cyclohexanol Decane Dichloromethane Octane 2-Pentanone 3,4,5-Trimethylheptane 2,2,4 ~ -Trimethylpentane
Polymer-Solvent Poly(WV-dimethylacrylamide) [26793-31 -0] Water Poly(ethyl methacrylate) [9003-42-3] Acetone Acetonitrile Acrylonitrile Benzene Bromobenzene 1-Bromobutane 2-Butanone Butyl acetate Butyl alcohol Butylamine Butyraldehyde Carbon tetrachloride Chlorobenzene Chloroform Cyclohexane Decane Ethane Ethylbenzene Ethylcyclohexane Ethylene Heptane Methylcyclohexane Nitroethane Nitromethane 1-Nitropropane Nonane Octane 1-Octene Pentyl alcohol Propane Propionic acid Propionitrile Propyl acetate Propyl alcohol Propyl ether Toluene Poly(N-isopropylacrylamide) [25189-55-3] Acetic acid Butyl alcohol 1-Chloronaphthalene Hexadecane Naphthalene Water Poly(methacrylic acid) [54193-36-1] Water Poly(Af-methylacrylamide) [25722-14-9] Water Poly(methyl acrylate) [9003-21-8] Benzene Butylbenzene ferr-Butylbenzene Butylcyclohexane Cyclohexane ds-Decahydronaphthalene frans-Decahydronaphthalene Decane Dodecane Ethylbenzene Naphthalene
Method
Refs.
CD D
313 313
CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD D CD CD D CD CD CD CD CD CD CD CD CD D VP CD CD CD CD CD CD
284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 284 360 284 284 360 284 284 284 284 284 284 284 284 284 360 341 284 284 284 284 284 284
GC GC GC GC GC CM OS
198 198,281 198 198 198 353 368
CM
381
CD D
313 313
GC GC GC GC GC GC GC GC GC GC GC
282 282 282 282 282 282 282 282 282 282 282
TABLE 1. cont'd Polymer-Solvent Octane Tetradecane 1,2,3,4-Tetrahydronaphthalene 3,3,4,4-Tetramethylhexane Toluene 3,4,5-Trimethylheptane 2,2,5-Trimethylhexane 2,2,4-Trimethylpentane Poly(methyl methacrylate) [9011-14-7] Acetone
Benzene
2-Butanone Butyl acetate Carbon dioxide Carbon tetrachloride Chlorobenzene Chloroform
Cyclohexane 0-Dichlorobenzene Dichloroethane 1,2-Dichloroethy lene 1,4-Dioxane Ethyl acetate Methyl isobutyrate 3-Pentanone Tetrahydrofuran Toluene
m-Xylene 1.4. VINYL POLYMERS Poly(acrylonitrile) [25014-41-9] Acrylonitrile Benzene WV-Dimethytformamide Poly(vinyl acetate) [9003-20-7] Acetone
TABLEI. cont'd Method
Refs.
GC GC GC GC GC GC GC GC
282 282 282 282 282 282 282 282
CD D OS VP CD CM D OS VP D OS D OS DL VP D CD D CD CM D DL OS OS CD CM D CM VP OS CD D OS D OS CM VP D OS D OS CD D DL OS D OS
148,161 60,178 31,178,261 220 162,186 224 60,178 31,178,261 220 60 261 60 36 387 387 60 162 60 212 193 60 210 31 261 162 266 60 83 83 149 148 60 31,149 60 36,261 83 83 60 31 60 31 148,212 60 210 31,261 60 31
VP CM VP CM
126 47 47 47
CM DL
75,184,345 184
Polymer-Solvent
Acetonitrile Benzene
2-Butanone
Butyl acetate Butyl alcohol Butylbenzene Butylcyclohexane Carbon tetrachloride Chlorobenzene
1-Chlorobutane Chloroform l-Chlorohexane 1-Chloropropane 3-Chloropropene Cyclohexane Cyclohexanol Cyclohexanone Cyclohexyl chloride c/i-Decahydronaphthalene Decane Dichloroethane 1,2-Dichloroethane 1,5-Dichloropentane Diethyl adipate Diethyl malonate Diethyl oxalate Diethyl sebacate Diethyl succinate A^Dimethylacetamide MiV-Dimethylformamide 1,4-Dioxane Dodecane Ethyl acetate
Method
Refs.
GC LS OS VP GC CD CM GC OS VP CD CM DL GC LS OS CM DL GC GC GC GC CM D GC LS GC CM GC GC VP VP GC OS GC GC GC GC GC CD CM GC GC CD D CD D CD D CD D CD D GC GC CM GC GC CM D DL GC LS OS VP
354 158 261 37,75 354 170 41,224 288,295,299,354 261 37,76,85 170 184 184 354 158 15,261 55,184 184 299 288 288 299,354 41 49,82 299,354 158 299 41,345 299,354 354 37 37 288,295,299,354 261 299 299 299 288 288,299 232 41 295,354 354 27 27 27 27 27 27 27 27 27 27 354 354 342 295,354 288 30,184 211 184 354 158 261 237
References page VII - 663
TABLE 1. cont'd Polymer-Solvent Heptane 3-Heptanone Hexane Isopropyl alcohol Isopropylamine Methyl acetate Methyl alcohol
Methyl sulfoxide Nonane 1-Octene 2-Pentanone Propyl acetate Propyl alcohol Propylamine Propyl ether Propyl sulfide 1,1,2,2-Tetrachloroethane Tetrahydrofuran 1,2,3,4-Tetrahydronaphthalene 3,3,4,4-Tetramethylhexane Toluene
1,2,3-Trichloropropane Undecane Vinyl acetate Water Poly(vinyl alcohol) [9002-89-5] Carbon tetrachloride Chloroacetic acid 1,4-Dioxane Ethyl alcohol Water
PoIy(iV-vinylcarbazole) [25067-59-8] Benzene Poly(vinyl chloride) [9002-86-2] Benzene Cyclohexane Cyclohexanone
Cyclopentanone Dibutyl phthalate Dichloroethane 1,2-Dichloroethane Diethyl phthalate Dioctyl phthalate 1,4-Dioxane Dodecane Heptane
TABLEI. Method
Refs.
GC CM DL GC GC VP CM DL CD CM D LS GC GC GC CM DL GC CM DL VP VP GC GC CM GC GC GC CD CM GC OS OS GC VP CM
295,354 141,184 184 354 295 37 184 184 271 41,48,345 211,271 158 354 288,299 299 184 184 299 184 184 37 37 354 354 41,48 354 288 288 64,232 41 295,354 261 15 288 85 342
CM CM CD CM CD CM LS VP
359 112 342 30 57,58 30,55,342 219 86,219
CD VP
161 124
GC GC CD CM D DL CD CM VP CM GC VP VP GC GC GC
295 295 231 106,231 273 106 243 243 250 55 295 250 250 295 281 295
cont'd
Polymer-Solvent Isopropyl alcohol Tetrahydrofuran Toluene Poly(vinylidene fluoride) [24937-79-9] Acetophenone 2-Butanone Butyl acetate Butylbenzene y-Butyrolactone Chlorobenzene 1-Chlorodecane 2-Chloroethyl ether 1-Chlorohexane 1-Chlorooctane Cyclohexanone ds-Decahydronaphthalene 1,2-Dichlorobenzene 1,2-Dichloroethane 1,5-Dichloropentane AW-Dimethylacetamide MN-Dimethylethyleneurea MN-Dimethylformamide AfyV-Dimethylpropyleneurea Dodecane Ethyl acetate Ethylbenzene Ethyl propionate Hexadecane Hexamethylphosphoramide l-Methyl-2-pyrrolidinone Methyl sulfoxide Pentachloroethane Propylene carbonate Propyl sulfide Pyridine 1,1,2,2-Tetrachloroethane Tetradecane Tetrahydronaphthalene Tetramethylene sulfone 1,1,3,3-Tetramethylurea Toluene 1,1,2-Trichloroethane m-Xylene Poly(vinyl methyl ether) [9003-09-2] Cyclohexane Ethylbenzene Toluene Water Poly(2-vinylpyridine) [25014-15-7] Benzene 2-Butanone Butyl alcohol Cyclohexanone 1,4-Dioxane Ethyl alcohol Methyl alcohol Propyl alcohol Poly(#-vinylpyrrolidone) [9003-39-8] Butyl alcohol
Method
Refs.
GC CD CM GC
295 244 244 295
GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC
354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354 354
VP CM D OS CM D OS CM
372 332 332 332 332 332 332 353
D D D D D D LS D D
267 267 267 267 267 267 111 267 267
CD
309
TABLE 1. cont'd Polymer-Solvent Chloroform
Ethyl alcohol Methyl alcohol Propyl alcohol Water
1.5.
TABLE 1. cont'd Method
Refs.
Polymer-Solvent
CD CM D CD CD CD CD CM D OS
330 174 174 309 269 309 269 174 174 214
Butane 2-Butanone
VP
103
GC VP GC GC GC GC GC GC VP
363 199 363 363 363 363 363 363 103
Butyl alcohol sec-Butyl alcohol Buty !benzene
CM VP VP VP
223 136 136,355 355
VP
103
GC CM D GC OS VP GC CD GC CD GC GC CD
306 29,34,43 43,60 306 261 51,220 306,354 279 306 135,279,286 336 306 28,70,81,147, 191,192,225 19,29,32,44,55, 90,184,192 222, 333 24,39,60,128,247, 283,296,329 12,69,184 235,282,305,306, 307,325,336,354 23,114,143, 145,158 12,33,147,261 147 13,28,32,147, 192,220 200 306 279 25
Butyl acetate
POLY(STYRENES)
Poly(p-bromostyrene) [24936-50-3] Toluene Poly(p-chlorostyrene) [24991 -47-7] Benzene Ethyl acetate Heptane Hexane Isopropylbenzene Pentane Propylbenzene Toluene Poly(ot-methylstyrene) [25014-31-7] Benzene Isopropylbenzene a-Methylstyrene Toluene Poly(p-methylstyrene) [24936-41 -2] Toluene Poly(styrene) [9003-53-6] Acetic acid Acetone
Acetonitrile Acetophenone Aniline Anisole Benzaldehyde Benzene
CM D DL GC LS OS SW VP Benzyl alcohol Benzyl ether Bromobenzene
XS GC CD D
terf-Butylbenzene Butylcyclohexane Carbon dioxide Carbon tetrachloride
Chlorobenzene
1-Chlorobutane Chloroform
1-Chlorohexane Cyclohexane
Method VP CD CM D DL GC OS VP CM D GC OS VP GC SW CM DL GC GC GC DL CD CM D GC LS OS VP CD CM D GC LS OS SW GC CD CM D GC OS SW VP GC CD CM D DL GC LS OS SD SW VP
Cyclohexanone Cyclohexene
CD GC CD CM VP
Refs. 337 135,249,255 29,68,146 24,39,45,60 12,207,256 235,306,354 12,18,33, 207,256,261 17 29 60 306 33 13 306 115 184 184 282,325 307 282 339 104,240 104,240 60 235,306,307 114 33 13,220 53 53,146 25,60,82 306,354 114 127 115 307 54,191,225 29 45,60,82 306,307,354 33 115 51 354 53,70,81,192,285 29,34,43,53, 184,192,359 43,45,60,189, 211,296,329 12,69,184, 189,209 282,306, 307,325,354 114,143,190,206 18,33,71,80,261 189,229 115 13,52,80, 192,237,259 289 306,354 192 29,192 201
References page VII - 663
TABLE 1. cont'd Polymer-Solvent Decahydronaphthalene
ds-Decahydronaphthalene frans-Decahydronaphthalene
Decane o-Dichlorobenzene 1,2-Dichloroethane Dichloromethane 1,5-Dichloropentane WV-Dimethylformamide 2,2-Dimethylpropane 1,4-Dioxane
1,3-Diphenylbutane Dodecane Ethane 2-Ethoxyethyl acetate Ethyl acetate
Ethyl alcohol Ethylbenzene
TABLE 1. Method CD CM D DL LS VP GC GC LS OS GC D GC GC GC GC GC VP CD CM D DL GC OS VP CD SW GC VP CM CD CM D DL GC OS VP GC CD CM
D DL GC LS OS SW VP Ethylene glycol Ethyl ether Formamide Heptane Hexadecane Hexane Hexyl alcohol Hexylbenzene Isobutyl alcohol Isopentyl alcohol Isopropyl alcohol
GC GC GC GC SW GC GC SW SW GC GC SW GC
Refs. 192 184,192,359 24 184 114,145 201 282 282 238 290 281,282,305,307 24,60 235 306,354 306,307 354 354 245 135 55,184 24,60 184 235,306,354 127 13 113,147 113,147 281,282 337 29 135,257 29,68 24,60,296 257 306 18,33,261 52 306 50,53,54,81,113, 147,192,228,255 30,44,53,78,90, 104,184,192, 228,264 24,39,113,147,211 69,184,208 235,325,336,354 114 113,147,208 113,115,147 50,90.113,147, 237,259 306 306 306 306,325,335,354 115 281,282 306,325,335,354 115 115 325 306 115 306
cont'd
Polymer-Solvent Isopropyl ether Methyl alcohol 2-Methylbutane 2-Methylheptane 2-Methylpentane 3-Methylpentane Naphthalene Nitrobenzene Nitromethane Nonane Octane
l-Octene c/^-2-Octene Octyl alcohol Pentane
3-Pentanone
Pentyl alcohol Pentylbenzene Propane Propyl acetate Propyl alcohol Propylbenzene
Propyl ether Propyl sulfide Pyridine Styrene
Tetradecane Tetrahydrofuran 1,2,3,4-Tetrahydronaphthalene 3,3,4,4-Tetramethylhexane Toluene
Method GC GC VP GC GC GC GC GC VP GC GC SW VP GC GC GC GC SW VP CD D VP GC GC VP VP GC SW CM DL GC GC VP GC GC CM GC VP GC D GC CM GC GC CD
CM
D DL GC LS OS SD SW VP
Refs. 306 306 245 325 325 325 282 306 13 305,325 305,306,307,325 115 13 325 325 306 306 115 245 319 60 13 306 325 337 51 306 115 184 184 325 354 13 354 306,336,354 10,29 235 126 281,282 60 306 192 282 282 28,53,54,81,135, 183,188,191,192, 225,228,240, 255,286 29,34,43,53,55,90, 146,154,184,192, 226,228,240, 264,332,333 11,24,39,43, 45,60,189,332 12,69,184, 189,210 235,305,306, 325,336,354 114,190 12,18,33,71,144, 203,261,332 189 115 13,17,28,52,103
TABLE 1. cont'd Polymer-Solvent Trichloroethylene 1,3,5-Trimethylbenzene
3,4,5-Trimethylheptane 2,2,4-Trimethylpentane Water m-Xylene
oXylene
1.6. OTHER COMPOUNDS Poly(nitro-l,4-phenylene) 1,4-Dioxane
TABLE 2. cont'd Method
Refs.
GC CM D DL GC GC GC GC CM D DL GC OS VP CM GC OS
306 29,184 60 184 305 307 306,307,325 306 29,184 60 184 305 33 13 29 235,306 33
VP
187
TABLE 2. MAIN-CHAIN CARBON HETEROATOM POLYMERS Polymer-Solvent
Method
2.1. POLY(OXIDES) AND POLY(ESTERS) Epoxy from bis(4-glycidylphenyl) propane and 1,6 hexanediamine Chloroform SW VP 1,4-Dioxane SW VP Poly(oxy-l,4-butanediyl) [25190-06-1], polytetrahydrofuran Acetone GC Acetonitrile GC Benzene GC 2-Butanone GC Butyl acetate GC Carbon tetrachloride GC Chlorobenzene GC Chloroform GC 1-Chlorohexane GC Cyclohexane GC Decane GC 1,2-Dichioroethane GC Dichloromethane GC 1,5-Dichloropentane GC 1,4-Dioxane GC Ethyl acetate GC Ethylbenzene GC Heptane GC Propyl ether GC Propyl sulfide GC Pyridine GC Tetrahydrofuran GC Toluene GC Poly(oxycarbonyloxy-1,4-phenyleneisopropylidene-1,4-phenylene) [24936-68-3J and [25037-45-0J, poly(bisphenol A carbonate), poly (carbonate) Acetone DL Benzene GC Butyl acetate GC Butylbenzene GC te/7-Butylbenzene GC
Refs.
110 110 110 110 376 376 376 376 376 376 376 376 376 376 376 376 376 376 376 376 376 376 376 376 376 376 376
386 362 362 362 362
Polymer-Solvent
Method
Refs.
Butylcyclohexane Carbon dioxide
GC 362 CM 377,385 DL 338,386 Chlorobenzene GC 310,362 Chloroform GC 362 Cyclohexanol GC 362 Cyclohexanone GC 362 Decane GC 310,362 o-Dichlorobenzene GC 310 Dichloromethane GC 362 1,4-Dioxane CD 161 Dodecane GC 362 Ethylbenzene GC 362 Methane DL 386 Methylcyclohexane GC 362 2-Pentanone GC 362 Propyl alcohol GC 362 1,1,2,2-Tetrachloroethane GC 362 Tetradecane GC 362 Toluene GC 362 Water DL 386 Poly(oxyethylene) [25322-68-3] and [9004-74-4], polyethylene glycol), poly(ethylene oxide) Acetone GC 268,302,317,376 Acetonitrile GC 268,320,376 Acetophenone GC 316 Aniline GC 239 Benzaldehyde GC 239 Benzene CD 262,312 CM 138,277,312 D 213,382 GC 239,268,274,276, 302,317,320,376 VP 175,213 Benzyl alcohol GC 239 p-Bromoacetophenone GC 316 2-Butanone GC 268,302,320,376 Butyl acetate GC 268,376 Butyl alcohol CD 218 GC 258,268,302 sec-Butyl alcohol GC 258,302 Carbon tetrachloride CM 129,185,277,357 DL 185 GC 268,302,376 VP 185,357 p-Chloroacetophenone GC 316 Chlorobenzene GC 239,317 Chloroform CD 230 CM 185,230 DL 185 GC 268,302,320,376 VP 117,185 1-Chlorohexane GC 376 Chloromethane CD 230 CM 230 Cyclohexane GC 302,317,320 Decane GC 239,302,320,376 1,2-Dichloroethane GC 268,376 Dichloromethane GC 276,376 1,5-Dichloropentane GC 376 1,2-Dimethoxyethane GC 320 1,2-Dimethylnaphthalene GC 234 1,3-Dimethylnaphthalene GC 234 1,4-Dimethylnaphthalene GC 234 1,5-Dimethylnaphthalene GC 234
References page VII - 663
TABLE 2.
TABLE 2. cont'd
contd
Polymer-Solvent
Method
Refs.
1-Methylnaphthalene 2-Methylnaphthalene c-Nitroacetophenone p-Nitroacetophenone Nitroglycerin Nitromethane Nonane Octane Octyl alcohol Pentane 2-Pentanol Pentyl alcohol Phenol Phenyl acetate Propyl alcohol Propyl ether Propyl sulfide Pyridine Tetrahydrofuran Toluene
GC GC GC GC GC GC CM GC GC GC GC CD CM GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC CD CM GC LS GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC
1,1,2-Trichloroethane
LS GC
234 234 234 234 234 234 129 302,320,376 239,302,320 317 276,317,320,376 218 138,277 258,276,302,317 320,376 302 234 234 316 316 239,302,320,376 302 302 258 239,276,302,317 258 258 302 258 316 316 258,320 316 316 320 302 316 316 218 138,277 258,268,274,317 242 234 234 316 316 346 302 239,302,344 239,302,317 258 302 258 258 239 239 258,317,320,344 376 376 302,320,376 268,376 268,302,317, 320,376 314 268
1,6-Dimethylnaphthalene 1,7-Dimethylnaphthalene 1,8-Dimethylnaphthalene 2,3-Dimethylnaphthalene 2,6-Dimethylnaphthalene 2,7-Dimethylnaphthalene 1,4-Dioxane Dodecane 2-Ethoxyethyl ether Ethyl acetate Ethyl alcohol Ethylbenzene Ethyl ether 1-Ethylnaphthalene 2-Ethylnaphthalene o-Fluoroacetophenone p-Fluoroacetophenone Heptane 3-Heptanone 1-Heptene Heptyl alcohol Hexane 2-Hexanol 3-Hexanol 1-Hexene Hexyl alcohol o-Hydroxyacetophenone /?-Hydroxyacetophenone Isopropyl alcohol 0-Methoxyacetophenone /?-Methoxyacetophenone 2-Methoxyethyl ether Methyl acetate oMethylacetophenone p-Methylacetophenone Methyl alcohol
Polymer-Solvent 2,2,2-Trifluoroet.hanol Undecane Water
Method GC GC CD
GC OS VP GC GC
320 239,302 150,230,303,312, 324,352,365 62,91,139,194, 230,311,312,324, 348,356 62,176,300, 365,382 268 214,368 62,176,375 302 268
GC GC GC GC GC GC GC GC GC GC CD CM D VP GC GC GC GC
234 234 234 231 234 234 234 231 234 234 265 132 265 132,165 234 234 234 234
CM D
m-Xylene o-Xylene Poly(oxyethyleneoxyadipoyl) [24937-05-1 ] 1,2-Dimethylnaphthalene 1,3-Dimethylnaphthalene 1,4-Dimethylnaphthalene 1,5-Dimethylnaphthalene 1,6-Dimethylnaphthalene 1,7-Dimethylnaphthalene 1,8-Dimethylnaphthalene 2,3-Dimethylnaphthalene 2,6-Dimethylnaphthalene 2,7-Dimethylnaphthalene 1,4-Dioxane
Refs.
1-Ethylnaphthalene 2-Ethylnaphthalene 1-Methylnaphthalene 2-Methylnaphthalene Poly(oxyethyleneoxysebacoyl) [26762-06-11 ] Butyl butyrate VP 197 1,4-Dioxane CM 132 VP 132 Poly(oxyethyleneoxysuccinyl) [25667-11-2] 1,4-Dioxane CM 132 VP 132 Poly(oxyhexamethyleneoxyadipoyl) [24937-10-8] 1,4-Dioxane CD 265 D 265 Poly(oxy- 1-oxopentamethylene) [26354-94-9] 1,4-Dioxane CD 265 D 265 Poly(oxypropylene) [25322-69-4], polypropylene glycol), poly(propylene oxide) Benzene CM 347,349 GC 331 VP 215 Butyl alcohol CM 118 DL 118 SW 118 ,sec-Butyl alcohol CM 118 SW 118 tert-Butyl alcohol CM 118 SW 118 Carbon tetrachloride CM 118,163,371 DL 163 SW 118 VP 163,371 Chloroform CM 163 DL 163 VP 163
TABLE 2. cont'd Polymer-Solvent Cyclohexane
Cyclohexene Ethyl alcohol
Heptane 1-Heptene 2-Heptene Hexane
1-Hexene cw-2-Hexene fra/w-2-Hexene Isobutyl alcohol Isopropyl alcohol Methyl alcohol
2-Methylhexane 2-Methylpentane Nonane 2-Pentanol Pentyl alcohol Propyl alcohol
Pyridine Water
TABLE 2. Method
Refs.
CM 118 GC 331 SW 118 GC 331 CM 118,347,348 DL 118 SW 118 GC 331 GC 331 GC 331 CD 241 CM 118,241 D 241 GC 331 SW 118 GC 331 GC 331 GC 331 CM 118 SW 118 CM 118 SW 118 CM 89 D 89 VP 89 GC 331 GC 331 GC 344 CM 118 SW 118 CM 118 SW 118 CM 118 GC 344 SW 118 CM 347 CD 241 CM 62,91,164,241,272, 311,322,348,353,373 D 62,241 VP 62,323
Poly(oxytrimethyleneoxyadipoyl) [36221 -42-8] 1,4-Dioxane CM VP
132 132
2.2. POLY(AMIDES) Poly[L~iminocarbonyl(benzyloxycarbony!ethyl) methylene] [25038-53-3], poly(y-benzyl-L-glutamate) Chloroform CD 179 Dichloroacetic acid CD 179 CM 142 1,2-Dichloroethane CM 142 D 133 VP 133 WV-Dimethylformamide VP 227 Pyridine D 133 VP 133 Poly[L-iminocarbonyl(benzyloxycarbonylmethyl) methylene] [25736-41-8], poly(y-benzyl-L-aspartate) Chloroform D 133 VP 133 Poly[imino(l-oxohexarnethylene)] [25038-54-4], nylon 6 Decyl alcohol VP 197 Water VP 370
cont'd
Polymer-Solvent
Method
Refs.
2.3. POLY(SILOXANES) Poly(oxydimethylsilylene) [9016-00-6], poly(dimethylsiloxane) Acetone SW 182 Benzene CD 253 CM 20,116,169 D 169 SW 182 VP 20,204 ds-Bicyclo[4.4.0]decane CM 293 /ra/?s-Bicyclo[4.4.0]decane CM 293 Bromocyclohexane CM 184 DL 184 Butane VP 99 2-Butanone CM 141,184,205,380 DL 184 GC 383 LS 380 SW 182 Butyl acetate CM 122 Butyl ether CM 122 Butyl propionate CM 122 Carbon dioxide CM 377 Carbon tetrachloride CM 116 Chlorobenzene CM 116 GC 310 OS 168 Cyclohexane CM 116,169,293 D 169 OS 168 Cyclopentane CM 293 Cyclooctane CM 293 Decane CD 253 CM 95 GC 270,310 Decyl acetate CM 122 tf-Dichlorobenzene GC 310 Diethoxymethane CM 122 3,3-Diethylpentane CM 293 1,2-Dimethoxyethane CM 122 2,3-Dimethylbutane GC 270 2,5-Dimethylhexane GC 270 2,2-Dimethylpentane CM 293 GC 270 2,3-Dimethylpentane CM 293 2,4-Dimethylpentane CM 293 3,3-Dimethylpentane CM 293 2,2-Dimethylpropane VP 99 Dodecane CM 95,294 Ethyl acetate CM 122,184,205 DL 184 Ethylbenzene CD 253 CM 169 D 169 VP 204 Ethyl butyrate CM 122 Ethyl decanoate CM 122 Ethyl dodecanoate CM 122 Ethyl ether CM 122,205 Ethyl heptanoate CM 122 Ethyl hexanoate CM 122 Ethyl nonanoate CM 122 Ethyl octanoate CM 122 3-Ethylpentane CM 293 Ethyl pentanoate CM 122
References page VII - 663
TABLE 2. confd Polymer-Solvent Ethyl propionate Ethyl undecanoate 2,2,4,4,6,8,8-Heptamethylnonane Heptane
Heptyl acetate Hexadecane Hexamethyldisiloxane Hexane
Hexyl acetate Hexyl alcohol Hexyl ether Isopropylbenzene Methyl alcohol Methyl butyrate Methylcyclohexane Methyl decanoate Methyl heptanoate 3-Methylhexane Methyl heptanoate Methyl nonanoate Methyl octanoate Methyl pentanoate 2-Methylpropane Methyl propionate Nonane Nonyl acetate Octamethylcyclotetrasiloxane Octamethyltrisiloxane Octane
Octyl acetate 2,2,4,6,6-Pentamethylheptane Pentane
2-Pentanone Pentyl acetate Pentyl ether Pentyl propionate Propyl acetate Propyl alcohol Propyl ether Propyl propionate Tetradecane 2,2,4,4-Tetramethylpentane
TABLE 2. cont'd Method
Refs.
CM CM CM CD CM D DL GC CM CM CD CM DL CD CM DL GC VP CM SW CM CM D SW CM CM D CM CM CM CM CM CM CM VP CM CM GC CM CM DL VP CD CD CM GC VP CM CM CD CM GC VP SW CM CM CM CM DL SW CM CM CD CM CM
122 122 294 253 95,116,169,184 169 184 270 122 95,294 253 181,184 184 253 95,184 184 270 204 122 182 122 169 169 182 122 169 169 122 122 293 122 122 122 122 99 122 95 270 122 40,184 184 40 253 253 95,294 270 204 122 294 253 95 270 99 182 122 122 122 122,184 184 182 122 122 253 95 293,294
Polymer-Solvent 2,3,3,4-Tetramethylpentane Toluene
Tridecane 1,3,5-Trimethylbenzene 2,2,4-Trimethylpentane Undecane m-Xylene -Xylene p-Xylene
2.4. DERIVATIVES OF CELLULOSE Cellulose acetate [9004-35-7J Acetone
Acetonitrile Aniline Chloroform Chlorornethane WV-Dimethylacetamide 1,4-Dioxane Ethyl alcohol Methyl acetate Methyl sulfoxide Phenol Pyridine Tetrachloroethane Cellulose nitrate [9004-70-0], nitrocellulose Acetone
Acetonitrile 2-Butanone Butyl acetate Cyclopentanone Dibutyl phthalate 2,4-Dimethyl-3-pentanone 1,4-Dioxane
Method
Refs.
CM CD CM D OS SW VP CM CM D CM GC CM CM D SW CM D SW CD CM D SW
293 253 169 169 168 182 204,372 95,205 169 169 294 270 95 169 169 182 169 169 182 253 169 169 182
D LS OS VP D D D VP D CM D VP DL D VP CM VP D OS VP D VP D OS
65,152 304 65 65,108 152 152 152 109 152 251 152 108 335 152 108 251 109 65 65 65 152 108 3 3
CD CM D OS VP VP D CM D VP CM VP VP
4,7 21,55 4,7,128 202 4,7,16,42,67,108 42 128 21,55 128 42 21,328,379 42 42
TABLE 2. cont'd Polymer-Solvent Ethyl acetate Ethyl propyl ether 2-Heptanone Methyl acetate Methyl alcohol 3-Methyl-2-butanone Nitroglycerin Nitromethane 2-Pentanone Pinacolone Propyl acetate Triacetin Tritolyl phosphate Ethyl cellulose [9004-57-3] Acetone Benzene Butane 2-Butanone Butyl acetate Carbon tetrachloride Chloroform Dichloromethane 2,2-Dimethylpropane Ethyl acetate Methyl alcohol 2-Methylbutane Pentane 1,1,1 -Trichloroethane Water Hydroxyethyl cellulose [9004-62-0] Water Hydroxypropyl cellulose [9004-64-2] Water Methyl cellulose [9004-67-5] Water Cellulose tricarbanilate [9047-07-8] Cyclohexanol 5-Nonanone
2.5. OTHER COMPOUNDS Dextran [9004-54-0] Ethanolamine Ethylene glycol Formamide Glycerol Methyl sulfoxide Water
Lignin [9005-53-2] N,N-Dimethylformamide 1,4-Dioxane Methyl sulfoxide Starch [9005-25-8] Water
D. Method
Refs.
CM D VP D D VP CM VP VP VP D VP VP D CM CM
21,22 128 42 128 128 108 22,55 42 384 42 128 42 42 128 326,334 21
D VP D VP VP D D D D GC GC VP D VP VP VP GC VP
172 66 172 66 77 172 172 172 172 364 364 77 172 66 77 77 364 79
OS
214
CM
353
CM
321,340
CD D CD D
271 271 271 271
CM CM CM CM CD CM CD CM OS VP
301 298,301 298,301 301 298,301 298,301 298,301 275,298,301 214,358 236,375
VP VP VP
153 153 153
VP
173
REFERENCES
1. K. H. Meyer, E. Wolff, C. G. Boissonas, HeIv. Chim. Acta, 23, 430 (1940). 2. E. Wolff, HeIv. Chim. Acta, 23, 439 (1940). 3. O. Hagger, A. J. A. van der Wyk, HeIv. Chim. Acta, 23, 488 (1940). 4. E. Calvet, Compt. Rend., 213, 126 (1941); 214, 767 (1942). 5. G. Gee, L. R. G. Treloar, Trans. Faraday Soc, 38, 147 (1942). 6. J. Ferry, G. Gee, L. R. G. Treloar, Trans. Faraday Soc, 41, 340 (1945). 7. E. Calvet, Bull. Soc. Chim., 12, 553 (1945). 8. G. Gee, W. J. C. Orr, Trans. Faraday Soc, 42, 507 (1946). 9. G. Gee, Trans. Faraday Soc, 42, 585 (1946). 10. D. E. Roberts, W. W. Walton, R. S. Jessup, J. Polym. Sci., 2, 420 (1947). 11. R. F. Boyer, R. S. Spencer, J. Polym. Sci., 3, 97 (1948). 12. J. W. Breitenbach, H. P. Frank, Monatsh., 79, 531 (1948). 13. E. C. Baughan, Trans. Faraday Soc, 44, 495 (1948). 14. A. A. Tager, V. A. Kargin, Kolloidn. Zh., 10, 455 (1948). 15. G. V. Browning, J. D. Ferry, J. Chem. Phys., 17,1107 (1949). 16. H. Campbell, P. Johnson, J. Polym. Sci., 4, 247 (1949). 17. C. E. H. Bawn, R. F. J. Freeman, A. R. Kamaliddin, Trans. Faraday Soc, 46, 677 (1950). 18. M. J. Schick, P. Doty, B. H. Zimm, J. Am. Chem. Soc, 72, 530 (1950). 19. A. A. Tager, V. Sanatina, Kolloidn. Zh., 12, 474 (1950); Rubber Chem. Technol., 24, 773 (1951). 20. M. J. Newing, Trans. Faraday Soc, 46, 613 (1950). 21. S. M. Lipatov, S. I. Meerson, Kolloidn. Zh., 12, 122 (1950). 22. S. M. Lipatov, S. I. Meerson, Kolloidn. Zh. 12, 427 (1950). 23. P. Debye, A. M. Bueche, J. Chem. Phys., 18, 1423 (1950). 24. D. J. Streeter, R. F. Boyer, Ind. Eng. Chem., 43,1790 (1951). 25. W. Heller, A. C. Thompson, J. Colloid Sci., 6, 57 (1951). 26. L. der Minassian, M. Magat, J. Chim. Phys., 48, 574 (1951). 27. P. Meares, Trans. Faraday Soc, 47, 699 (1951). 28. H. Tompa, J. Polym. Sci., 8, 51 (1952). 29. H. Hellfritz, Makromol. Chem., 7, 191 (1952). 30. A. A. Tager, V. A. Kargin, Kolloidn. Zh., 14, 367 (1952). 31. G. V. Schulz, H. Doll, Z. Elektrochem., 56, 248 (1952). 32. A. A. Tager, Zh. H Dombek, Kolloidn. Zh., 15, 69 (1953). 33. G. V. Schulz, H. Hellfritz, Z. Elektrochem., 57, 835 (1953). 34. K. von Guenner, G. V. Schulz, Naturwissensch., 40, 164 (1953). 35. S. Prager, E. Bagley, F. A. Long, J. Am. Chem. Soc, 75, 2742 (1953). 36. G. V. Schulz, H. Doll, Z. Elektrochem., 57, 841 (1953). 37. R. J. Kokes, A. R. DiPietro, F. A. Long, J. Am. Chem. Soc, 75, 6319 (1953). 38. J. H. van der Waals, J. J. Hermans, Rec Trav. Chim. PaysBas, 69, 971 (1953). 39. M. Griffel, R. S. Jessup, J. A. Cogliano, R. P. Park, J. Res. Nat. Bur. Std., 52, 217 (1954). 40. R. C. Osthoff, W. T. Grubb, J. Am. Chem. Soc, 76, 399 (1954).
41. H. Daoust, M. Rinfret, Can. J. Chem., 32, 492 (1954). 42. E. C. Baughan, A. L. Jones, K. Stewart, Proc. Roy. Soc, A, 225, 478 (1954). 43. G. V. Schulz, K. von Guenner, H. Gerrens, Z. Phys. Chem., NF, 4, 192 (1955). 44. A. A. Tager, R. V. Krivokorytova, P. M. Khodorov, Dokl. Akad. Nauk, SSSR, IGO, 741 (1955). 45. B. Rosen, J. Polym. ScL, 17, 559 (1955). 46. A. Aitken, R. M. Barrer, Trans. Faraday Soc, 51, 116 (1955). 47. A. A. Tager, L. K. Kosova, D. Y. Karlinskaya, I. A. Yurina, Kolloidn. Zh., 17, 315 (1955). 48. M. Parent, M. Rinfret, Can. J. Chem., 33, 971 (1955). 49. A. Horth, M. Rinfret, J. Am. Chem. Soc, 77, 503 (1955). 50. T. V. Gatovskaya, V. A. Kargin, A. A. Tager, Zh. Fiz. Khim., 29, 883 (1955). 51. C. E. H. Bawn, M. A. Wajid, Trans. Faraday Soc, 52, 1658 (1956). 52. K. Schmoll, E. Jenckel, Z. Elektrochem., 60, 756 (1956). 53. E. Jenckel, K. Gorke, Z. Elektrochem., 60, 579 (1956). 54. K. Amaya, R. Fujishiro, Bull. Chem. Soc. Japan, 29, 270 (1956). 55. S. I. Meerson, S. M. Lipatov, Kolloidn. Zh., 18, 447 (1956). 56. C. E. H. Bawn, R. D. Patel, Trans. Faraday Soc, 52, 1664 (1956). 57. K. Amaya, R. Fujishiro, Bull. Chem. Soc Japan, 29, 361 (1956). 58. K. Amaya, R. Fujishiro, Bull. Chem. Soc Japan, 29, 830 (1956). 59. V. A. Kargin, T. V. Gatovskaya, Zh. Fiz. Khim., 30, 1852 (1956). 60. G. V. Schulz, M. Hoffmann, Makromol. Chem., 23, 220 (1957). 61. P. J. Flory, H. Daoust, J. Polym. ScL, 25, 429 (1957). 62. G. N. Malcolm, J. S. Rowlinson, Trans. Faraday Soc, 53, 921 (1957). 63. C. Booth, G. Gee, G. R. Williamson, J. Polym. ScL, 23, 3 (1957). 64. H. J. L. Schuurmans, J. J. Hermans, J. Phys. Chem., 61,1496 (1957). 65. R. Jeffries, Trans. Farday Soc, 53, 1592 (1957). 66. R. M. Barrer, J. A. Barrie, J. Polym. ScL, 23, 331 (1957). 67. H. Takenaka, J. Polym. ScL, 24, 321 (1957). 68. A. A. Tager, L. A. Galkina, Nauch. Dokl. Vysshei Skoly, Khim. Khim. Tekhno., 1, 357 (1958). 69. A. A. Tager, A. Smirnova, N. Sysueva, Nauch. Dokl. Vysshei Skoly, Khim. Khim. Tekhnol., 1, 135 (1958). 70. K. Amaya, R. Fujishiro, Bull. Chem. Soc Japan, 31, 19 (1958). 71. G. Rehage, H. Meys, J. Polym. ScL, 30, 271 (1958). 72. M. A. Kabayama, H. Daoust, J. Phys. Chem., 62, 1127 (1958). 73. R. S. Jessup, J. Res. Nat. Bur. Std., 60, 47 (1958). 74. R. M. Barrer, R. R. Ferguson, Trans. Faraday Soc, 54, 989 (1958). 75. A. A. Tager, M. Iovieva, Zh. Fiz. Khim., 32, 1774 (1958).
76. A. F. Sirianni, R. Tremblay, I. E. Puddington, Can. J. Chem., 36, 543 (1958). 77. R. M. Barrer, J. A. Barrie, J. Slater, J. Polym. ScL, 27, 177 (1958). 78. A. A. Tager, M. M. Gur'yanova, Zh. Fiz. Khim., 32, 1958 (1958). 79. R. M. Barrer, J. A. Barrie, J. Polym. ScL, 28, 377 (1958). 80. W. R. Kiigbaum, D. O. Geymer, J. Am. Chem. Soc, 81, 1859 (1959). 81. G. V. Schulz, A. Horbach, Z. Phys. Chem., NF, 22, 377 (1959). 82. A. Horth, D. Patterson, M. Rinfret, J. Polym. ScL, 39, 189 (1959). 83. A. A. Tager, M. V. Tsilipotkina, V. K. Doronina, Zh. Fiz. Khim., 33, 335 (1959). 84. R. S. Jessup, J. Res. Nat. Bur. Std., 62, 1 (1959). 85. A. Nakajima, H. Yamakawa, I. Sakurada, J. Polym. ScL, 35, 489 (1959). 86. I. Sakurada, A. Nakajima, H. Fujiwara, J. Polym. ScL, 35, 497 (1959). 87. C. E. Rogers, V. Stanett, M. Szwarc, J. Phys. Chem., 63, 1406 (1959). 88. C. Watters, H. Daoust, M. Rinfret, Can. J. Chem., 38, 1087 (1960). 89. M. L. Lakhanpal, B. E. Conway, J. Polym. ScL, 46, 75 (1960). 90. S. I. Meerson, S. M. Lipatov, Kolloidn. Zh., 21, 531 (1959). 91. R. G. Cunninghame, G. N. Malcolm, J. Phys. Chem., 65, 1454 (1961). 92. G. Allen, G. Gee, J. P. Nicholson, Polymer, 2, 8 (1961). 93. P. J. Flory, A. Ciferri, R. Chiang, J. Am. Chem. Soc, 83, 1023 (1961). 94. G. Delmas, D., Patterson, T. Somcynsky, J. Polym. ScL, 57, 79 (1962). 95. G. Delmas, D. Patterson, D. Bohme, Trans. Faraday Soc, 58, 2116(1962). 96. J. Leonard, H. Daoust, J. Polym. ScL, 57, 53 (1962). 97. C. H. Baker, W. B. Brown, G. Gee, J. S. Rowlinson, D. Stubley, R. E. Yeadon, Polymer, 3, 215 (1962). 98. M. Senez, H. Daoust, Can. J. Chem., 40, 734 (1962). 99. R. M. Barrer, J. A. Barrie, N. K. Raman, Polymer, 3, 595 (1962). 100. T. V. Gatovskaya, G. M. Pavlyuchenko, V. A. Berestnev, V. A. Kargin, Dokl. Akad. Nauk, SSSR, 143, 590 (1962); Proc. Acad. Sci. SSSR, 143, 209 (1962). 101. K. P. Kwei, T. K. Kwei, J. Phys. Chem., 66, 2146 (1962). 102. G. M. Pavlyuchenko, T. V. Gatovskaya, V. A. Kargin, Dokl. Akad. Nauk, SSSR, 147,150 (1962); Proc Acad. Sci. USSR, 147, 790 (1962). 103. R. Corneliussen, S. A. Rice, H. Yamakawa, J. Chem. Phys., 38, 1768 (1963). 104. A. A. Tager, A. I. Podlesnyak, Vysokomol, Soedin. A, 5, 87 (1963); Polym. Sci. USSR, 4, 698 (1963). 105. A. A. Tager, M. V. Tsilipotkina V. Ye. Dreval, O. V. Nechayeva, Vysokomol. Soedin. A, 5, 94 (1963); Polym. Sci. USSR, 4, 706 (1963).
106. S. I. Meerson, I. M. Zagrayevskaya, Kolloidn. Zh., 25, 202 (1963). 107. T. V. Gatovskaya, G. M. Pavlyuchenko, V. A. Berestnev, V. A. Kargin, Vysokomol. Soedin. A, 5, 960 (1963); Polym. Sci. USSR, 5, 9 (1963). 108. W. R. Moore, R. Shuttleworth, J. Polym. Sci. A, 1, 733 (1963). 109. W. R. Moore, R. Shuttleworth, J. Polym. Sci. A, 1, 1985 (1963). 110. T. K. Kwei, J. Polym. Sci. A, 1, 2977 (1963). 111. A. J. Hyde, R. B. Taylor, Makromol. Chem., 62,204 (1963). 112. S. I. Meerson, I. M. Zagrayevskaya, Kolloidn. Zh., 25, 197 (1963). 113. J. Biros, K. Sole, J. Pouchly, Faserforsch. Textil., 15, 608 (1964). 114. A. A. Tager, V. M. Andreyeva, E. M. Evsina, Vysokomol. Soedin. A, 6, 1901 (1964); Polym. Sci. USSR, 6, 2107 (1964). 115. G. Rehage, Kolloid Z., 196, 97 (1964); 199, 1 (1964). 116. G. Delmas, D. Patterson, S. N. Bhattacharyya, J. Phys. Chem., 68, 1468 (1964). 117. G. Allen, C. Booth, G. Gee, M. N. Jones, Polymer, 5, 367 (1964). 118. B. E. Conway, J. P. Nicholson, Polymer, 5, 387 (1964). 119. C. Booth, G. Gee, M. N. Jones, W. D. Taylor, Polymer, 5,353 (1964). 120. C. Booth, G. Gee, G. Holden, G. R. Williamson, Polymer, 5, 343 (1964). 121. G. Butenuth, Rubber, Chem. Technol., 37, 326 (1964). 122. D. Patterson, J. Polym. Sci. A, 2, 5177 (1964). 123. W. B. Brown, G. Gee, W. D. Taylor, Polymer, 5, 362 (1964). 124. K. Ueberreiter, W. Bruns, Ber. Bunsenges. Phys. Chem., 68, 541 (1964). 125. G. M. Pavlyuchenko, T. V. Gatovskaya, V. A. Kargin, Vysokomoi. Soedin. A, 6, 1190 (1964); Polym. Sci. USSR, 6, 1309 (1964). 126. A. N. Gudkov, N. A. Fermor, N. I. Smirnov, Zh. Prikl. Khim., 37, 2204 (1964); J. Appl. Chem. USSR, 37, 2179 (1964). 127. J. Leonard, H. Daoust, J. Phys. Chem., 69, 1174 (1965). 128. W. R. Moore, B. M. Tidswell, Makromol. Chem., 81, 1 (1965). 129. M. L. Lakhanpal, M. LaI, R. K. Sharma, Indian J. Chem., 3, 547 (1965). 130. G. Gee, J. B. M. Herbert, R. C. Roberts, Polymer, 6, 541 (1965). 131. A. S. Michaels, R. W. Hausslein, J. Polym. Sci. C, 10, 61 (1965). 132. A. A. Tager, L. Ya. Kasas', Dokl. Akad. Nauk, SSSR, 165, 1122 (1965); Proc. Acad. Sci. USSR, 165, 892 (1965). 133. P. J. Flory, W. J. Leonard, J. Am. Chem. Soc, 87, 2102 (1965). 134. G. M. Pavlyuchenko, T. V. Gatovskaya, V. A. Kargin, Vysokomol. Soedin. A, 7, 647 (1965); Polym. Sci. USSR, 7, 714 (1965). 135. A. Kagemoto, S. Murakami, R. Fujishiro, Bull. Chem. Soc. Japan, 39, 15 (1966).
136. S. G. Canagaratna, D. Margerison, J. R Newport, Trans. Faraday Soc, 62, 3058 (1966). 137. C. Cuniberti, U. Bianchi, Polymer, 7, 151 (1966). 138. M. L. Lakhanpal, H. L. Taneja, R. K. Sharma, Indian J. Chem., 4, 12 (1966). 139. M. L. Lakhanpal, V Kapoor, R. K. Sharma, S. C. Sharma, Indian J. Chem., 4, 59 (1966). 140. A. Kagemoto, S. Murakami, R. Fujishiro, Bull. Chem. Soc. Japan, 39, 1814 (1966). 141. U. Bianchi, E. Pedemonte, C. Rossi, Makromol. Chem., 92, 114(1966). 142. G. Giacometti, A. Turolla, Z. Phys. Chem., NF, 51, 108 (1966). 143. H. Benoit, C. Picot, Pure Appl. Chem., 12, 545 (1966). 144. N. Kuwahara, T. Okazawa, M. Kaneko, J. Chem. Phys., 47, 3357 (1967). 145. A. A. Tager, V. M. Andreyeva, J. Polym. Sci. C, 16, 1145 (1967) 146. U. Bianchi, C. Cuniberti, E. Pedemonte, C. Rossi, J. Polym. Sci. A-2, 5, 743 (1967). 147. J. Pouchly, J. Biros, K. Sole, J. Vondrejsova, J. Polym. Sci. C, 16, 679 (1967). 148. A. Kagemoto, S. Murakami, R. Fujishiro, Bull. Chem. Soc. Japan, 40, 11 (1967). 149. J. Leonard, H. Daoust, Can. J. Chem., 45, 409 (1967). 150. A. Kagemoto, S. Murakami, R. Fujishiro, Makromol. Chem., 105, 154 (1967). 151. H. P. Schreiber, M. H. Waldman, J. Polym. Sci. A-2, 5, 555 (1967). 152. W. R. Moore, J. Polym. Sci. C, 16, 571 (1967). 153. W. Brown, J. Appl. Polym. Sci., 11, 2381 (1967). 154. G. Allen, R. C. Ayerst, J. R. Cleveland, G. Gee, C. Price, J. Polym. Sci. C, 23, 127 (1968). 155. B. E. Eichinger, P. J. Flory, Trans. Faraday Soc, 64, 2061 (1968). 156. B. E. Eichinger, P. J. Flory, Trans. Faraday Soc, 64, 2066 (1968). 157. A. A. Tager, A. I. Podlesnyak, L. V. Demidova, Vysokomol. Soedin. B, 10, 601 (1968). 158. A. A. Tager, A. A. Anikeyeva, V. M. Andreyeva, T. Ya. Gumarova, L. A. Chemoskutova, Vysokomol. Soedin. A, 10, 1661 (1968); Polym. Sci. USSR, 10, 1926 (1968). 159. B. E. Eichinger, P. J. Flory, Trans. Faraday Soc, 64, 2053 (1968). 160. P. J. Flory, J. L. Ellenson, B. E. Eichinger, Macromolecules, 1, 279 (1968). 161. W. Bruns, F. Mehdom, K. Mirus, K. Ueberreiter, Kolloid Z., 224, 17 (1968). 162. H. Daoust, A. Hade, Polymer, 9, 47 (1968). 163. R. W. Kershaw, G. N. Malcolm, Trans. Faraday Soc, 64,323 (1968). 164. M. L. Lakhanpal, H. G. Singh, H. Singh, S. C. Sharma, Indian J. Chem., 6, 95 (1968). 165. Yu. S. Lipatov, L. M. Sergeyeva, G. F. Kovalenko, Vysokomol. Soedin. B, 10, 205 (1968). 166. B. E. Eichinger, P. J. Flory, Trans. Faraday Soc, 64, 2035 (1968).
167. T. A. Bogayevskaya, T. V. Gatovskaya, V. A. Kargin, Vysokomol. Soedin. B, 10, 376 (1968). 168. N. Kuwahara, T. Okazawa, M. Kaneko, J. Polym. Sci. C, 23, 543 (1968). 169. S. Morimoto, J. Polym. Sci. A-I, 6, 1547 (1968). 170. A. Kagemoto, R. Fujishiro, Bull. Chem. Soc. Japan, 41,2201 (1968). 171. T. A. Bogayevskaya, T. V. Gatovskaya, V. A. Kargin, Vysokomol. Soedin. A, 10, 1357 (1968); Polym. Sci. USSR, 10, 1574 (1968). 172. W. R. Moore, Contribution to Chem. Soc. Symposium, "Solution Properties of Natural Polymers", Edinburgh 1968; Chem. Soc. Special Publication No. 23, 185 (1968). 173. M. Masuzawa, C. Stirling, J. Appl. Polym. Sci., 12, 2023 (1968). 174. J. Goldfarb, S. Rodriguez, Makromol. Chem., 116, 96 (1968). 175. M. L. Lakhanpal, H. G. Singh, S. C. Sharma, Indian J. Chem., 6, 436 (1968). 176. M. L. Lakhanpal, K. S. Chhina, S. C. Sharma, Indian J. Chem., 6, 505 (1968). 177. T. A. Bogayevskaya, T. V. Gatovskaya, Vysokomol. Soedin. B, 10, 555 (1968). 178. N. Kuwahara, T. Oikawa, M. Kaneko, J. Chem. Phys., 49, 4972 (1968). 179. A. Kagemoto, R. Fujishiro, Makromol. Chem., 114, 139 (1968). 180. R. Koningsveld, A. J. Staverman, J. Polym. Sci. A-2, 6, 325 (1968). 181. D. Patterson, S. N. Bhattacharyya, P. Picker, Trans. Faraday Soc, 64, 648 (1968). 182. R. D. Seeley, Rubber Chem. Technol., 41, 608 (1968). 183. G. Lewis, A. F. Johnson, J. Chem. Soc. A, 1816 (1969). 184. U. Bianchi, C. Cuniberti, E. Pedemonte, C. Rossi, J. Polym. Sci., A-2, 7, 855 (1969). 185. G. N. Malcolm, C. E. Baird, G. R. Bruce, K. G. Cheyne, R. W. Kershaw, M. C. Pratt, J. Polym. Sci. A-2, 7, 1495 (1969). 186. S. Takagi, R. Fujishiro, Rep. Prog. Polym. Phys. (Japan), 12, 39 (1969). 187. M. Hyodo, K. Kubo, K. Ogino, Rep. Prog. Polym. Phys. (Japan), 12, 21 (1969). 188. G. Lewis, A. F. Johnson, Polymer, 11, 336 (1970). 189. Th. G. Scholte, J. Polym. Sci. A-2, 8, 841 (1970). 190. Th. G. Scholte, Eur. Polym. J., 6, 1063 (1970). 191. S. Morimoto, Nippon Kagaku Zasshi, 91, 31, 117 (1970). 192. A. A. Tager, A. I. Podlesnayak, M. V. Tsilipotkina, L. V. Adamova, A. A. Bakhareva, L. V. Demidova, Vysokomol. Soedin. A, 12, 1320 (1970); Polym. Sci. USSR, 12, 1497 (1970). 193. C. Gerth, F. H. Mueller, Kolloid. Z., 241, 1071 (1970). 194. H. Nakayama, Bull. Chem. Soc. Japan., 43, 1683 (1970). 195. P. J. T. Tait, R J. Livesey, Polymer, 11, 359 (1970). 196. P. Roy-Chowdhury, K. M. Kale, J. Appl. Polym. Sci., 14, 2397 (1970).
197. T. A. Bogayavskaya, T. V. Gatovskaya, V. A. Kargin, Vysokomol. Soedin. A, 12, 243 (1970); Polym. Sci. USSR, 12, 279 (1970). 198. O. Smidsr0d, J. E. Guillet, Macromolecules, 2, 272 (1969). 199. K. Kubo K. Yamatsuta, K. Ogino, Rep. Prog. Polym. Phys. (Japan), 13, 19 (1970). 200. Y. Taru, K. Yosizaki, E. Wada, K. Kanamaru, Rep. Prog. Polym. Phys. (Japan), 13, 21 (1970). 201. S. Higashida, N. Kuwahara, M. Kaneko, Rep. Prog. Polym. Phys. (Japan), 13, 5 (1970). 202. T. Oikawa, N. Kuwahara, M. Kaneko, Rep. Prog. Polym. Phys. (Japan), 13, 9 (1970). 203. K. Kamada, H. Sato, Rep. Prog. Polym. Phys. (Japan), 13,47 (1970). 204. A. Muramoto, Polym. J., 1, 450 (1970). 205. S. Morimoto, Makromol. Chem., 133, 197 (1970) Rep. Prog. Polym. Phys. (Japan), 13, 29 (1970). 206. Th. G. Scholte, J. Polym. Sci. A-2, 9, 1553 (1971). 207. P. J. Flory, H. Hoecker, Trans. Faraday Soc, 67,2258 (1971). 208. H. Hoecker, P. J. Flory, Trans. Faraday Sco., 67, 2270 (1971). 209. H. Hoecker, H. Shih, P. J. Flory, Trans. Faraday Soc, 67, 2275 (1971). 210. G. Lewis, A. F Johnson, J. Chem. Soc. A, 3528 (1971). 211. A. A. Tager, L. V. Adamova, M. V. Tsilipotkina, G. I. Florova, Vysokomol. Soedin. A, 13, 654 (1971); Polym. Sci. USSR, 13, 745 (1971). 212. G. Lewis, A. F. Johnson, J. Chem. Soc. A, 3524 (1971). 213. C. Booth, C. J. Devoy, Polymer, 12, 309 (1971). 214. H. Vink, Eur. Polym. J., 7, 1411 (1971). 215. C Booth, C. J. Devoy, Polymer, 12, 320 (1971). 216. H. Ochiai, K. Gekko, H. Yamamura, J. Polym. Sci., A-2, 9, 1629(1971). 217. A. Takizawa, T. Negishi, K. Ishikawa, Sen-i Gakkaishi, 26, 567 (1971). 218. A. Kagemoto, Y. Itoi, Y Baba, R. Fujishiro, Makromol. Chem., 150, 255 (1971). 219. A. A. Tager, A. A. Anikeyeva, L. V Adamova, V. M. Andreyeva, T. A. Kuz'mina, M. V. Tsilipotkina, Vysokomol. Soedin. A, 13, 659 (1971); Polym. Sci. USSR, 13, 751 (1971). 220. K. Yamatsuta, K. Kubo, K. Ogino, Rep. Prog. Polym. Phys. (Japan), 14, 29 (1971). 221. T. Okazawa, M. Kaneko, Rep. Prog. Polym. Phys. (Japan), 14, 7 (1971); Polym. J., 2, 747 (1971). 222. S. Ichihara, A. Komatsu, T. Hata, Polym. J., 2, 644 (1971). 223. S. Ichihara, A. Komatsu, T. Hata, Polym. J., 2, 650 (1971). 224. S. Ichihara, A. Komatsu, T Hata, Polym. J., 2, 640 (1971). 225. S. Morimoto, Bull. Chem. Soc. Japan, 44, 879 (1971). 226. C. Price, R. C. Williams, R. C. Ayerst, "Amorphous Polymers", Wiley, London, 1972, p. 117. 227. J. H. Rai, W G. Miller, Macromolecules, 5, 45 (1972). 228. S. H. Maron, F. E. Filisko, J. Macromol. Sci., B, 6, 57 (1972). 229. B. J. Reitveld, Th. G. Scholte, J. P. L. Pijpres, Brit. Polym. J., 4, 109 (1972). 230. S. H. Maron, F. E. Filisko, J. Macromol. Sci., B, 6, 79 (1972).
231. S. H. Maron, F. E. Filisko, J. Macromol. Sci. B, 6, 413 (1972); S. H. Maron, M.-S. Lee, J. Macromol. Sci., Phys., 7, 29 (1973). 232. A. A. Tager, A. I. Suvorova, Yu. S. Bessonov, A. I. Podlesnyak, LA. Koroleva, L. V. Adarnova, M. V. Tsilipotkina, Vysokomol. Soedin. A, 13, 2454 (1971); Polym. Sci. USSR, 13, 2755 (1971). 233. J. P. Cartier, H. Daoust, Can. J. Chem., 49, 3935 (1971). 234. S. L. Mel'nikova, A. N. Korol, Zh. Fiz. Khim., 46, 30 (1972); Russian J. Phys. Chem., 46, 17 (1972). 235. F. H. Covitz, J. W. King, J. Polym. Sci. A-1,10 689 (1972). 236. K. Gekko, J. Sci. Hiroshima Univ., Ser. A-2, 35, 111 (1971). 237. A. A. Tager, L. V. Adamova, M. V. Tsilipotkina, R. K. Kuleshova, S. V. Fedotova, Vysokomol. Soedin. B, 14, 235 (1972). 238. M. D. Lechner, G. V. Schulz, B. A. Wolf, J. Colloid Interface Sci., 39, 462 (1972). 239. M. Mitooka, Buneski Kagaku, 21, 717 (1972). 240. P. Davalloo, J. L. Gainer, K. R. Hall, J. Chem. Thermodyn., 4, 691 (1972). 241. A. A. Tager, L. V. Adamova, Yu. S. Bessonov, V. N. Kuznetsov, T. A. Plyusnina, V. V. Soldatov, M. V. Tsilipotkina, Vysokomol. Soedin. A, 14, 1991 (1972); Polym. Sci. USSR, 14, 2233 (1972). 242. B. M. Fechner, C. Strazielle, Makromol. Chem., 160, 195 (1972). 243. S. H. Maron, M.-S. Lee, J. Macromol. Sci. Phys., 7, 47 (1973). 244. S. H. Maron, F. E. Filisko, J. Macromol. Sci. Phys., 6, 413 (1972); S. H. Maron, M.-S. Lee, J. Macromol. Sci. Phys., 7, 61 (1973). 245. H. Horacek, Kolloid-Z. Z. Polym., 250, 863 (1972). 246. D. A. Blackadder, T. L. Roberts, Angew. Makromol. Chem., 27, 165 (1972). 247. F. Candau, J. Francois, C. R. Acad. Sci., Ser. C, 276, 571 (1973). 248. G. Delmas, P Tancrede, Eur. Polym. J., 9, 199 (1973). 249. K. Tamura, S. Murakami, R. Fujishiro, Polymer, 14, 237 (1973). 250. A. Franck, Angew. Makromol. Chem., 29/30, 179 (1973). 251. E. M. Khalik, L. S. Gal'braikh, N. I. Ilieva, S. I. Meerson, Z. A. Rogovin, Vysokomol. Soedin. B, 15, 452 (1973). 252. R. A. Orwoll, J. A. Small, Macromolecules, 6, 755 (1973). 253. R. S. Chahal, W.-P. Kao, D. Patterson. J. Chem. Soc, Faraday Trans. I, 69, 1834 (1973). 254. T. N. Nekrasova, V. E. Eskin, Vysokomol. Soedin. A, 15, 2429 (1973); Polym. Sci. USSR, 15, 2749 (1973). 255. D. Gaeckle, W.-P. Kao, Patterson, M. Rinfret, J. Chem. Soc, Faraday Trans., I, 1849 (1943). 256. A. Nakajima, F. Hamada, K. Yasue, K. Fujisawa, T. Shiomi, Makromol. Chem., 175, 197 (1974). 257. Y. Baba, H. Katayama, A. Kagemoto. Makromol. Chem., 175, 209 (1974). 258. G. Castello, G. D'Amato, J. Chromatogr., 90, 291 (1974). 259. A. A. Tager, L. V. Adamova, V. V. Serpinskii, M. V. Tsilipotkina, Vysokomol. Soedin. A, 16,203 (1974); Polym. Sci. USSR, 16, 240 (1974).
260. Z. Masa, A. Zivny, J. Biros, Collect. Czech. Chem. Commun., 38, 3123 (1973). 261. H. Vink, Eur. Polym. J., 10, 149 (1974). 262. Y. Baba, H. Katayama, A. Kagemoto, Polym. J., 6, 230 (1974). 263. Y-K. Leung, B. E. Eichinger, Macromolecules, 7, 685 (1974). 264. F. E. Fiiisko, R. S. Raghava, G. S. Y. Yeh, J. Macromol. Sci. B: Phys., 10, 371 (1974). 265. G. Manzini, V. Crescenzi, R. Furlanetto, Macromolecules, 8, 198 (1975). 266. R. S. Raghava, F. E. Filisko, J. Appl. Phys., 45, 4155 (1974). 267. S. Arichi, M. Yoshida, Y. Ogawa, Bull. Chem. Soc. Japan, 48, 1417 (1975). 268. Y. H. Chang, D. C. Bonner, J. Appl. Polym. Sci., 19, 2439 (1975). 269. S. Murakami, F. Kimura, R. Fujishiro, Makromol. Chem., 176, 3425 (1975). 270. W. E. Hammers, B. C. Bos, L. H. Vaas, Y. J. W. A. Loomans, C. L. De Ligny, J. Polym. Sci., Polym. Phys. Ed., 13, 401 (1975). 271. A. A. Tager, Yu. S. Bessonov, Vysokomol. Soedin. A, 17, 2377 (1975); Polym. Sci. USSR, 17, 2734 (1975). 272. A. A. Tager, Yu. S. Bessonov, Vysokomol. Soedin. A, 17, 2383 (1975); Polym. Sci. USSR, 17, 2741 (1975). 273. E. Schroeder, U. Duesedau, J. T. Haponiuk, Faserforsch. Textiltech., 27, 67 (1976). 274. M. Kawakami, S. Kagawa, M. Egashira, Nagasaki Daigaku Kogakubu Kenkyu Hokoku, 6, 135 (1975). 275. V P. Kiselev, E. M. Shakhova, E. Z. Fainberg, A. D. Virnik, Z. A. Rogovin, Vysokomol. Soedin. B, 18, 847 (1976). 276. M. Kawakami, M. Egashira, S. Kagawa, Bull. Chem. Soc. Jpn., 49, 3449 (1976). 277. M. L. Lakhanpal, S. C. Sharma, B. Krishan, R. N. Parashar, Indian J. Chem. A, 14, 642 (1976). 278. D. D. Deshpande, C. S. Prabhu, Macromolecules, 10, 433 (1977). 279. Y. Baba, K. Fujimoto, A. Kagemoto, R. Fujishiro, Makromol. Chem., 178, 1439 (1977). 280. H. Ochiai, Y Nishihara, S. Yamaguchi, I. Murackami, J. Sci. Hiroshima Univ., Ser. A: Phys. Chem., 41, 157 (1977). 281. G. DiPaola-Baranyi, J. M. Braun, J. E. Guillet, Macromolecules, 11, 224 (1978). 282. G. DiPaola-Baranyi, J. E. Guillet, Macromolecules, 11, 228 (1978). 283. J. Francois, F. Candau, D. Sarazin, C. R. Hebd. Seances Acad. Sci., Ser. C, 286, 325 (1978). 284. K. A. Karim, D. C. Bonner, J. Appl. Polym. Sci., 22, 1277 (1978). 285. M. Okubo, K. Ueberreiter, Colloid Polym. Sci., 256, 941 (1978). 286. Y Baba, A. Kagemoto, Netsu Sokutei, 4, 57 (1977). 287. A. A. Tager, T. I. Kirillova, T. V. Ikanina, Vysokomol. Soedin. A, 20, 2543 (1978). 288. G. DiPaola-Baranyi, J. E. Guillet, J. Klein, H.-E. Jeberien, J. Chromatogr., 166, 349 (1978).
289. I. Fujihara, K. Tamura, S. Murakami, R. Fujishiro, Polym. J., 11, 153 (1979). 290. J. Roots, B. Nystrom, Eun Polym. J., 14, 773 (1978). 291. A. N. Korol, J. Chromatogr., 172, 77 (1979). 292. J. Klein, W. Scholz, Makromol. Chem., 180, 1477 (1979). 293. H. Phuong-Nguyen, G. Delmas, Macromolecules, 12, 746 (1979). 294. H. Phuong-Nguyen, G. Delmas. Macromolecules, 12, 740 (1979). 295. A. Heintz, R. N. Lichtenthaler, J. M. Prausnitz, Ber. Bunsenges. Phys. Chem., 83, 926 (1979). 296. T. M. Aminabhavi, P. Munk, Macromolecules, 12, 1186 (1979). 297. J.-G. Lee, M. Ono, F. Hamada, A. Nakajima, Polym. Bull. (Berlin), 1, 763 (1979). 298. A. M. Basedow, K. H. Ebert, J. Polym. Sci., Polym. Symp., 66, 101 (1979). 299. G. DiPaola-Baranyi, J. R Guillet, H.-E. Jeberien, J. Klein, Makromol. Chem., 181, 215 (1980). 300. K. Ueberreiter, Makromol. Chem., Rapid Commun., 1, 143 (1980). 301. A. M. Basedow, K. H. Ebert, W. Feigenbutz, Makromol. Chem., 181, 1071 (1980). 302. J. Klein, H. E. Jeberrien, Makromol. Chem., 181, 1237 (1980). 303. H. Schoenert, R Monshausen, Colloid Polym. Sci., 258, 578 (1980). 304. H. Suzuki, K. Kamide, Y. Miyazaki, Netsu Sokutei, 7, 37 (1980). 305. Y. Iwai, M. Nagafuji, Y. Arai, Sekiyu Gakkaishi, 23, 215 (1980). 306. S. Gunduz, S. Dincer, Polymer, 21, 1041 (1980). 307. G. DiPaola-Baranyi, Macromolecules, 14, 683 (1981). 308. J. E. G. Lipson, J. E. Guillet, J. Polym Sci., Polym. Phys. Ed., 19, 1199 (1981). 309. H. Ogawa, Y Baba, A. Kagemoto, Makromol. Chem., 182, 2495 (1981). 310. T. C. Ward, D. P. Sheehy, J. E. McGrath, J. S. Riffle, Macromolecules, 14, 1791 (1981). 311. Z. N. Medved, N. A. Starikova, Zh. Fiz. Khim., 55, 2438 (1981); Russian J. Phys. Chem., 55, 1380 (1981). 312. J. Roller, E. Killmann, Makromol. Chem., 182, 3579 (1981). 313. J. C. Day, I. D. Robb, Polymer, 22, 1530 (1981). 314. R Volatie, D. Sandulescu, Rev. Roum. Phys., 27, 81 (1982). 315. H. Ochiai, T. Ohashi, Y Tadokoro, I. Murakami, Polym. J. (Tokyo), 14, 457 (1982). 316. A. E. Habboush, N. S. Nassory, Iraqi J. Sci., 22, 362 (1981). 317. M. J. Fernandez-Berridi, T. R Otero, G. M. Guzman, J. M. Elorza, Polymer, 23, 1361 (1982). 318. M. J. Fernandez-Berridi, J. I. Eguiazabal, J. M. Elorza, J. J. Iruin, J. Polym. Sci., Polym. Phys. Ed., 21, 859 (1983). 319. I. Fujihara, T. Sakuta, A. Kagemoto, Makromol. Chem., 184, 1231 (1983). 320. M. Galin, Polymer, 24, 865 (1983); Polymer, 25, 1784 (1984). 321. T. Nagao, Hakodate Kogyo Senmon Gakko Kiyo, 17, 103 (1983).
322. Z. N. Medved, N. A. Starikova, Zh. Fiz. Khim., 57, 2590 (1983); Russian J. Phys. Chem., 57, 1563 (1983). 323. Z. N. Meved, N. I. Petrova, O. G. Tarakanov, Vysokomol. Soedin. B, 25, 764 (1983). 324. H. Daoust, D. St-Cyr, Macromolecules, 17, 596 (1984). 325. R. H. Schuster, H. Graeter, H.-J. Cantow, Macromolecules, 17, 596 (1984); Polym. Bull. (Berlin), 14, 379 (1985). 326. K. V. Kir'yanov, Termodin. Org. Soedin, 58 (1983). 327. S. Ituno, M. Ohzono, Y. Iwai, Y Arai, Kobunshi Ronbunshu, 42, 73 (1985). 328. I. B. Rabinovich, T. B. Khlyustova, A. N. Mochalov, Vysokomol. Soedin. A, 27, 525 (1985). 329. D. Sarazin, J. Francois, Macromolecules, 18, 1190 (1985). 330. E. Killmann, M. Bergmann, Colloid Polym. Sci., 263, 381 (1985). 331. K. Naito, N. Ohwada, S. Moriguchi, S. Takei, J. Chromatogr., 330, 193 (1985). 332. T. Shiomi, K. Kohno, K. Yoneda, T. Tomita, M. Miya, K. Imai, Macromolecules, 18, 414 (1985). 333. N. Aelenei, Mater. Plast. (Bucharest), 22, 92 (1985). 334. I. B. Rabinovich, T. B. Khlyustova, A. N. Mochalov, VysokomoL Soedin. A, 27, 1724 (1985). 335. B. A. Boiton, S. Kint, G. F. Bailey, J. R. Scherer, J. Phys. Chem., 90, 1207 (1986). 336. K. Inoue, R. Fujii, Y Baba, A. Kagemoto, C. L. Beatty, Makromol. Chem., 187, 923 (1986). 337. E. Casur, T. G. Smith, J. Appl. Polym. Sci., 31, 1425 (1986). 338. M. D. Sefcik, J. Polym. Sci., Polym. Phys. Ed., 24, 935 (1986). 339. M. D. Sefcik,J. Polym. Sci., Polym. Phys. Ed., 24,957 (1986). 340. T. Nagao, Hakodate Kogyo Koto Senmon Gakko Kiyo, 19, 161 (1985). 341. U. B. Goradia, H. G. Spencer, J. Appl. Polym. Sci., 33, 1525 (1987). 342. P. Schneider, A. Heintz, Thermochim. Acta, 119, 47 (1987). 343. H. Azuma, K. Hanada, Y Yoshikawa, Y Baba, A. Kagemoto, Thermochim. Acta, 123, 271 (1988). 344. H. Becker, R. Gnauck, J. Chromatogr., 410, 267 (1987). 345. M. Bender, A. Heintz, J. Solution Chem., 18, 1 (1989). 346. A. Edelman, A. Fradet, Polymer, 30, 324 (1989). 347. R. Parashar, H. G. Singh, S. C. Sharma, Indian J. Chem. A, 28, 317 (1989). 348. A. Zivny, J. Biros, J. Pouchly, Makromol. Chem., 190, 1345 (1989). 349. R. Parashar, S. C. Sharma, Indian J. Chem. A, 28, 1042 (1988). 350. Y Kamiya, Y Naito, K. Mizoguchi, J. Polym. Sci., Polym. Phys. Ed., 27, 2243 (1989). 351. M. Galin, Polymer, 30, 2074 (1989). 352. B. Andersson, G. Olofsson, J. Solution Chem., 18, 1019 (1989). 353. H. G. Schild, D. A. Tirrell, J. Phys. Chem., 94, 4352 (1990). 354. M. Galin, Macromolecules, 23, 3006 (1990). 355. A. Hamdouni, J. Leonard, V. T. Bui, Polym. Commun., 31, 258 (1990). 356. M. Labadie, J. C. Bollinger, Thermochim. Acta, 162, 445 (1990).
357. E. Killmann, F. Cordt, F. Moeller, Makromol. Chem., 191, 2929 (1990). 358. M. M. Selin, Khim.-Farm. Zh., 24, 72 (1990). 359. A. P. Safronov, A. A. Tager, Vysokomol. Soedin. A, 33,2198 (1991). 360. Y. Kamiya, D. Bourbon, K. Mizoguchi, Y. Naito, Polym. J. (Tokyo), 24, 443 (1992). 361. A. P. Mar'in, Yu. A. Shlyapnikov, A. Zh. Makhkamov, A. T. Dzhalilov, Int. J. Polym. Mater., 16, 37 (1992); Oxid. Commun., 20, 57 (1997). 362. G. DiPaola-Baranyi, C. K. Hsiao, M. Spes, P. G. Odell, R. A. Burt, J. Appl. Polym. Sci., Appl. Polym. Symp. 51, 195 (1992). 363. F. Yilmaz, O. G. Cankurtaran, B. M. Baysal, Polymer, 33, 4563 (1992). 364. J. Y. Wang, G. Charlet, Macromolecules, 26, 2413 (1993). 365. D. Eagland, N. J. Crowther, C. J. Butler, Polymer, 34, 2804 (1993); 35, 4704 (1994). 366. A. P. Safronov, A. A. Tager, E. S. Klyuzhin, L. V. Adamova, Vysokomol. Soedin. A, 35, 700 (1993). 367. H. Phuong-Nguyen, G. Delmas, J. Solution Chem., 23, 249 (1994). 368. K. Nagahama, H. Inomata, S. Saito, Fluid Phase Equilib., 96, 203 (1994). 369. H. Phuong-Nguyen, G. Delmas, Thermochim. Acta, 238, 257 (1994). 370. R. J. Hernandez, R. Gavara, J. Polym. Sci., Polym. Phys. Ed., 32, 2367 (1994). 371. E. Killmann, F. Cordt, F. Moeller, H. Zellner, Macromol. Chem. Phys., 196, 47 (1995).
372. H.-M. Petri, N. Schuld, B. A. Wolf, Macromolecules, 28, 4975 (1995). 373. M. Carlsson, D. Hallen, P. Linse, J. Chem. Soc, Faraday Trans., 91, 2081 (1995). 374. Y Kamiya, K. Terada, Y Naito, J.-S. Wang, J. Polym. Sci., Polym. Phys. Ed., 33, 1663 (1995). 375. C. Grossmann, R. Tintinger, J. Zhu, G. Maurer, Fluid Phase Equilib., 106, 111 (1995). 376. M. Galin, Polymer, 36, 3533 (1995). 377. T. Banerjee, M. Chhajer, G. G. Lipscomb, Macromolecules, 28, 8563 (1995). 378. R. C. Castells, L. M. Romero, A. M. Nardillo, Macromolecules, 29, 4278 (1996). 379. Y. N. Matyushin, T. S. Konkova, Int. Annu. Conf. ICT, 27th, 122.1 (1996). 380. S. A. Vshivkov, E. V. Rusinova, G. B. Zarubin, V. N. Dubchak, Vysokomol. Soedin., 38AB, 868 (1996). 381. A. P. Safronov, A. A. Tager, E. V. Koroleva, Vysokomol. Soedin., 38AB, 900 (1996). 382. E. Sabadini, E. M. Assano, T. D. Z. Atvars, J. Appl. Polym. Sci., 63, 301 (1997). 383. F. Yilmaz, O. Cankurtaran, Polymer, 38, 3539 (1997). 384. Y. M. Lotmentsev, D. V. Pleshakov, Propellants, Explos., Pyrotech., 22, 203 (1997). 385. T. Banerjee, G. G. Lipscomb, Polymer, 38, 5807 (1997). 386. P. Gotthardt, A. Grueger, H. G. Brion, R. Plaetschke, R. Kirchleim, Macromolecules, 30, 8058 (1997). 387. Y. Kamiya, K. Mizoguchi, K. Terada, Y. Fujiwara, J.-S. Wang, Macromolecules, 31, 472 (1998). 388. S. Erdal, I. Bahar, B. Erman, Polymer, 39, 2035 (1998).
H e a t s
o f
S o l u t i o n
o f
S o m e
C o m m o n
P o l y m e r s
Robert A . O r w o l l College of William and Mary, Williamsburg, VA, USA
A. Introduction B. Table of Heats of Solution C. References A.
VII-671 VII-671 VII-673
heat of solution for a glass is usually dependent on temperature and, to some extent, on the thermal history of the glass. The dissolving of a semicrystalline polymer (C) requires an additional amount of heat associated with the disordering of crystalline regions. Consequently its heat of solution is usually positive and depends on the extent of crystallinity of the sample. An amorphous polymer above its glass transition temperature (L) usually dissolves with the absorption of a small amount of heat but may also dissolve with the release of heat. Most of the references to measurements made before 1972 were collected by D. R. Cooper (Manchester) for the second edition of this Handbook. A more complete listing of references to heats of solution can be found in the chapter "Heat, Entropy, and Volume Changes for PolymerLiquid Systems."
INTRODUCTION
Heats of solution (at infinite dilution) are tabulated below for some common polymers dissolved in some common solvents. The values were determined calorimetrically and are reported here as the heat (in Joules) absorbed per gram of polymer as pure polymer and a large excess of pure solvent mixed isothermally to form a homogeneous solution. The state of the polymer before dissolution is indicated in the fourth column. It can significantly affect the heat of solution. An amorphous polymer below its glass transition temperature (G) often dissolves with release of heat. The B. TABLE OF HEATS OF SOLUTION Solvent Poly(butadiene) Benzene Cyclohexane /?-Hexadecane Poly(dimethyl siloxane) Benzene Carbon tetrachloride Cyclohexane Cyclohexane /?-Decane Ethyl ether n-Hexadecane /?-Hexadecane /r-Pentane Poly(ethylene) Cyclohexane 1,2,3,4-Tetrahydronaphthalene" 1,2,3,4-Tetrahydronaphthalene" 1,2,3,4-Tetrahydronaphthalene* 1,2,3,4-Tetrahydronaphthalene'7 Toluene Poly(isobutylene) Benzene Benzene
AH (J/g)
Temp. (0C)
State
MW x 10
4
(g/mol)
Refs.
13 5.4 4.9
27 25 25
L L L
8 -
5 23 24
14 2.4 5.1 5.2 3.9 -1.3 5.5 5.5 -0.9
25 25 25 25 25 25 25 25 25
L L L L L L L L L
10 10 10 2.0 10 8 10 2 10
11 11 11 23 7 10 7 24 7
205 39 560 88 1200 262
106 130 80 150 110 126
C L C L C C
90 67 67 14 14 90
32 12 12 12 12 32
19 19
25 30
L L
3 4.8
8 25
Solvent Benzene Carbon tetrachloride Carbon tetrachloride Cyclohexane Cyclohexane Cyclohexane rc-Decane Ethylbenzene Ethylbenzene Ethyl ether n-Hexadecane /i-Hexadecane n-Hexadecane rc-Pentane rc-Pentane Poly(isoprene) Benzene Poly(methyl methacrylate) Chloroform Chloroform Poly(oxyethylene) Benzene Carbon tetrachloridec Carbon tetrachlorided Chloroform Water Waterc Water* Water Water Water Poly(oxypropylene) Carbon tetrachloride Carbon tetrachloridec Carbon tetrachlorided Chloroform Methyl alcohol Poly(propylene) Benzene Carbon tetrachloride Carbon tetrachloride Chloroform Chloroform Cyclohexane Cyclohexane n-Decane Ethylbenzene rc-Hexadecane w-Pentane 1,2,3,4-Tetrahydronaphthalene Toluene Poly(styrene) Carbon tetrachloride Chloroform Cyclohexane Ethylbenzene Ethylbenzene Ethylbenzene Ethylbenzene Toluene Toluene Toluene Toluene Toluene Toluene Poly(vinyl acetate)
State
MW x 10 ~4 (g/mol)
Refs.
25 25 25 25 25 25 69 18 25 25 25 25 25 25
L L L L L L L L L L L L L L L
0.13 200 0.13 3 4.5 0.13 3 4.8 4.8 3 3 0.45 0.13 3 0.13
21 9 21 8 24 21 8 25 25 8 1 24 21 8 21
12
16
L
0.4
2
-84 -37
25 25
G C
170 16 -Yl 52 -120 -160 -200 10 24 40
30 30 30 30 80 25 25 25 30 30
C L L C L L L C C C
4.3 0.06 0.04 0.6 0.5 0.02 0.02 2 0.6 4.3
26 31 31 18 4 30 30 28 18 26
-20 -8 -14 -100 - 7
6 30 30 6 27
L L L L L
0.2 0.2 0.16 0.2 0.1
13 33 33 13 6
31 6.4 6.6 17 17 2.3 3.9 3.1 14 2.3 -4.7 320 16.5
25 25 25 25 25 25 25 25 25 25 25 120 25
L L L L L L L L L L L C L
1.8 1.8 1.8 1.8 1.8 0.6 1.8 1.8 1.8 0.6 1.8 1.8
27 22 27 22 27 23 27 27 27 24 27 12 27
- 20 -24 - 8.2 -6 -24 -22 -5 -3 -26 -22 -21 -7 -2.5
25 45 26 110 35 30 78 100 35 26 30 78 25
G G G L G G G L G G G G G
AH (J/g) 23 4.1 5.0 -0.7 -0.6 1.1 -0.5 3.5 9.3 2.8 0.04 0.9 1.0 -3.6 -3.2
Temp. (0C)
10 -
50 10 70 11 11 6 11 11 11 70 6 11
14 14
19 16 15 20 20 17 20 20 20 15 17 20 29
Solvent Benzene Chloroform Methyl alcohol 0 b c 1
A/f (J/g) 2.3 -45 28
Temp. (0C) 25 25 25
State
MW x 10 ~4 (g/mol)
G G G
14 14 14
Refs. 3 3 3
High-pressure poly(ethylene). Low-Pressure poly(ethylene). Hydroxy terminated. Methoxy terminated.
C. REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
16. 17. 18.
E. Calvet, Bull. Soc. Chim., 12, 553 (1945). G. Gee, W. J. C. Orr, Trans. Faraday Soc, 42, 507 (1946). H. Daoust, M. Rinfret, Can. J. Chem., 32, 492 (1954). G. N. Malcolm, J. S. Rowlinson, Trans. Faraday Soc, 53, 921 (1957). R. S. Jessup, J. Res. Natl. Bur. Std., 62, 1 (1959). M. L. Lakhanpal, B. E. Conway, J. Polym. Sci., 46, 75 (1960). G. Delmas, D. Patterson, D. Bohme, Trans. Faraday Soc, 58, 2116(1962). G. Delmas, D. Patterson, T. Somcynsky, J. Polym. Sci., 57, 79 (1962). A. A. Tager, A. I. Podlesnyak, Polym. Sci. USSR, 4, 698 (1963). D. Patterson. J. Polym. Sci. A, 2, 5177 (1964). G. Delmas, D. Patterson. S. N. Bhattacharyya, J. Phys. Chem., 68, 1468 (1964). H. P. Schreiber, M. H. Waidman, J. Polym. Sci. A-2, 5, 555 (1967). R. W. Kershaw, G. N. Malcolm, Trans. Faraday Soc, 64, 323 (1968). C. Gerth, F. H. Mueller, Kolloid-Z., 241, 1071 (1970). A. A. Tager, A. I. Podlesnayak, M. V. Tsilipotkina, L. V. Adamova, A. A. Bakhareva, L. V. Demidova, Polym. Sci. USSR, 12, 1497 (1970). S. Morimoto, Bull. Chem. Soc Japan, 44, 879 (1971). S. H. Maron, F. E. Filisko, J. Macromol. Sci. B, 6,57 (1972). S. H. Maron, F. E. Filisko, J. Macromol. Sci. B, 6,79 (1972).
19. P. Davalloo, J. L. Gainer, K. R. Hall, J. Chem. Thermodyn., 4, 691 (1972). 20. F. E. Filisko, R. S. Raghava, G. S. Y. Yeh, J. Macromol. Sci. B: Phys., 10, 371 (1974). 21. D. D. Deshpande, C. S. Prabhu, Macromolecules, 10, 433 (1977). 22. H. Ochiai, Y. Nishihara, S. Yamaguchi, I. Murakami, J. Sci. Hiroshima Univ. Ser. A: Phys. Chem., 41, 157 (1977). 23. H. Phuong-Nguyen, G. Delmas, Macromolecules, 12, 746 (1979). 24. H. Phuong-Nguyen, G. Delmas, Macromolecules, 12, 740 (1979). 25. J.-G. Lee, M. Ono, F. Hamad, A. Nakajima, Polym. Bull. (Berlin), 1, 763 (1979). 26. J. Koller, E. Killmann, Makromol. Chem., 182, 3579 (1981). 27. H. Ochiai, T. Ohashi, Y. Tadokoro, I. Murakami, Polym. J. (Tokyo), 14, 457 (1982). 28. H. Daoust, D. St-Cyr, Macromolecules, 17, 596 (1984) 29. S. Morimoto, Thesis, Osaka City Univ, 1970, as cited in T. Shiomi, K. Kohno, K. Yoneda, T. Tomita, M. Miya, K. Imai, Macromolecules, 18, 414 (1985). 30. J. Biros, J. Pouchly, A. Zivny, Makromol. Chem., 188, 379 (1987). 31. E. Killmannn, F. Cordt, F. Moller, Makromol. Chem., 191, 2929 (1990). 32. H. Phuong-Nguyen, G. Delmas, J. SoIn. Chem., 23, 249 (1994). 33. E. Killmannn, F. Cordt, F. Moller, H. Zellner, Makromol. Chem. Phys. 196, 47 (1995).
S o l u b i l i t y
P a r a m e t e r
V a l u e s
Eric A . G r u l k e Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
A. Introduction VII-675 B. Miscibility of Solvents and Polymers VII-676 1. Cohesive Energy Density and the Solubility (Hildebrand) Parameter VII-676 2. Cohesive Energy Parameters for Polar Systems VII-677 3. Relationship Between Solubility Parameters and Other Thermodynamic Parameters VII-677 C. Solubility Parameter Measurements, Calculations, and Correlations VII-679 1. Solvents VII-679 2. Polymers VII-680 2.1. Indirect Measurements VII-680 2.2. Correlation Methods VII-682 Table 1. Selected Solvents for Use in Polymer Solvency Testing VII-683 Table 2. Group Contribution to Cohesive Energy Density VII-684 2.1. Carbon-Containing Groups VII-684 2.2. Oxygen-Containing Groups VII-684 2.3. Nitrogen-Containing Groups VII-684 2.4. Other Groups VII-684 2.5. Structural Features VII-685 Table 3. Contribution to Ecoh and V VII-685 Table 4. Solubility Parameter I: Component Group Contributions VII-686 Table 5. Solubility Parameter II: Component Group Contributions VII-686 Table 6. Equations to be Used for Hoy's System VII-687 D. Solubility Parameter Tables VII-688 Table 7. Solubility Parameters of Solvents in Alphabetical Order VII-688 Table 8. Solubility Parameters of Solvents in Increasing Order of 8 VII-694 Table 9. Hansen Solubility Parameters of Liquids at 25°C VII-698 9.1. Paraffinic Hydrocarbons VII-698 9.2. Aromatic Hydrocarbons VII-698
9.3. 9.4. 9.5. 9.6. 9.7. 9.8.
Halohydrocarbons Ethers Ketones Aldehydes Esters Nitrogen-Containing Compounds 9.9. Sulfur-Containing Compounds 9.10. Acid Halides and Anhydrides 9.11. Alcohols 9.12. Acids 9.13. Phenols 9.14. Water 9.15. Polyhydric Alcohols Table 10. Solubility Parameters of Polymers 10.1. Main Chain Carbon Polymers 10.2. Main Chain C-O Polymers 10.3. Main Chain C-N Polymers 10.4. Other Polymers E. References A.
VII-698 VII-699 VII-699 VII-699 VII-699 VII-700 VII-700 VII-700 VII-700 VII-701 VII-701 VII-701 VII-701 VII-702 VII-702 VII-708 VII-709 VII-710 VII-711
INTRODUCTION
Applications of solubility parameters include selecting compatible solvents for coating resins, predicting the swelling of cured elastomers by solvents, estimating solvent vapor pressure in polymer solutions for devolatilization and reaction systems (16), and predicting phase equilibria for polymer-polymer (107), polymer-binary (93), random copolymer (102), and multicomponent solvents (38, 98,108,109). Cohesive energy density and solubility parameters are defined in the section on miscibility of solvents and polymers (Section B). In addition, the applicability of solubility parameters to thermodynamic calculations and their limitations are discussed. Section C contains methods for measuring, calculating and correlating solubility parameters of solvents and polymers. Section D contains
alphabetical listings of solubility parameters (Table 7), a list of solubility parameters in rank order (Table 8), a list of three-component solubility parameters of solvents (Table 9), and a list of solubility parameters of polymers (Table 10). With the exception of Table 7, solubility parameter values are reported in MPa 1 / 2 units. The table showing solubility parameter value ranges for polymers (Table 3.4 in the third edition) has not been reproduced here. B. MISCIBILITY OF SOLVENTS AND POLYMERS
The solubility parameter can be interpreted as the "internal pressure" of the solvent (9-11). 5,- is called the Hildebrand parameter by some authors. Other researchers (13) prefer the term, "cohesion parameter", since it correlates with a large number of physical and chemical properties, and not just the miscibility of the components. The solubility parameter of a mixture is often taken as the sum of the products of the component solubility parameters with their volume fractions: (B5)
1. Cohesive Energy Density and the Solubility (Hildebrand) Parameter Dissolution of an amorphous polymer in a solvent is governed by the free energy of mixing (Bl) where AGm is the Gibbs free energy change on mixing, AHm is the enthalpy change on mixing, T the absolute temperature, and AS m is the entropy change on mixing. A negative value of the free energy change on mixing means that the mixing process will occur spontaneously. Otherwise, two or more phases result from the mixing process. Since the dissolution of a high molecular weight polymer is always connected with a small or modest increase in entropy, the enthalpy term (the sign and magnitude of A / / m ) is the deciding factor in determining the sign of the Gibbs free energy change. Solubility parameters were developed to describe the enthalpy of mixing of simple liquids (nonpolar, nonassociating solvents), but have been extended to polar solvents and polymers. Hildebrand and Scott (59) and Scatchard (101) proposed that (B2) where V is the volume of the mixture, AEJ the energy of vaporization of species /, Vj the molar volume of species /, and (j>i the volume fraction of / in the mixture. AEJ is the energy change upon isothermal vaporization of the saturated liquid to the ideal gas state at infinite volume (94). The cohesive energy density (CED), A£, v , is the energy of vaporization per cm 3 . The solubility parameter has been defined as the square root of the cohesive energy density and describes the attractive strength between molecules of the material. (B3)
Relation between S1 and AHm Equation (B2) can be rewritten to give the heat of mixing per unit volume for a binary mixture: (B6) Equation (B6) gives the heat of mixing of regular solutions in which the components mix with: (a) no volume change on mixing at constant pressure, (b) no reaction between the components, and (c) no complex formation or special associations (114). The heat of mixing must be smaller than the entropic term in E)q. (Bl) for polymer-solvent miscibility (AGm < 0). When 6\ = 62, the free energy of mixing will always be less than zero for regular solutions and the components will be miscible in all proportions. In general, the solubility parameter difference, (8\ — S2) must be small for miscibility over the entire volume fraction range. Relation between S1 and AHJ The energy change on isothermal vaporization can be related to the enthalpy of vaporization: (B7) where AHJ is the enthalpy of vaporization at standard conditions, AH^ the molar increase in enthalpy on isothermally expanding the saturated vapor to zero pressure, R the ideal gas constant, and ps the saturation vapor pressure at temperature, T. At pressures below 1 atm, the AHf0 and psVj terms are usually much less than the AHJ and RT terms, and Eq. (B7) reduces to Eq. (B8): (B8) The solubility parameter of volatile materials (solvents for example) can be determined by measuring their enthalpy of vaporization or using a correlation for this quantity, and using Eq. (B9):
The dimensions of <5/ are (B9)
(B4)
Equation (B9) should be used at pressures near 1 atm. Near the critical point, AHJ = 0, and Eq. (B8) incorrectly
predicts a negative value for the cohesive energy density while Eq. (B7) yields a small positive value.
permanent dipole-dipole interactions and hydrogen bonding forces:
Dissolution of crystalline polymers The free energy of mixing for crystalline polymers contains terms for the free energy of fusion for the crystalline volume fraction of the material. The free energy of fusion may contain terms that account for the loss of crystallite surface area and the mixing of amorphous material with oriented material. These terms would be added to Eq. (Bl). The enthalpy of mixing could still be modeled using Eqs. (B2) or (B6). Some crystalline polymers obey the solubility parameter model at temperatures near their melting point, T>0.9Tm (123). Solvent swelling experiments with crystalline polymers may fit Eq. (Bl), particularly if the solvent is a poor one for the polymer and does not significantly dissolve crystalline regions.
(BH)
2.
Cohesive Energy Parameters for Polar Systems
The solubility parameter describes well the enthalpy change on mixing of nonpolar solvents but does not always give reliable results when extended to polar systems. The free energy change of mixing for polar systems is dominated by hydrogen-bonding forces between various groups in the solvent and polymer. Hydrogen-bonding forces are much stronger than van der Waals or dipole forces and often dominate the free energy of mixing. Complete miscibility is expected to occur if the solubility parameters are similar and the degree of hydrogen bonding (p: poor, m: moderate and s: strong) is similar between the components. Hydrocarbons, chlorinated hydrocarbons and nitrohydrocarbons are considered to be poor hydrogen-bonding solvents. Ketones, esters, and glycol monoethers give moderate hydrogen bonding. Alcohols, amines, acids, amides and aldehydes are strong hydrogen-bonding solvents. Table 7 classifies materials using these categories (21-24). Alternative classifications have been given by Lieberman (69), Gardon (41,85,86) and Dyck and Hoyer (32). Other investigators have decomposed the Hildebrand parameter into several terms representing different contributions to the free energy of mixing. Hildebrand (59) used dispersive and polar solubility terms for solvents, with the complete parameter being given by (BlO) where S^ is the dispersive term and 6P the polar term. The additional term improved agreement between 6 and experimental data. Prausnitz and coworkers accounted for polar bonding by including parameters for permanent dipole interactions and dispersion type interactions. This approach has been applied to polymer solutions (15) and complex formation (57). Crowley et al. (26,27) proposed a three-parameter system. Hansen (49-53,56) and Hansen and Skaarup (54) assume that the cohesive energy arises from dispersive,
where <5h accounts for a variety of association bonds, including hydrogen bonds and permanent dipole-induced dipole (47). The values of these components for solvents were calculated from a large number of solubility data sets. Polymer solubility parameters can also be decomposed to a three-term set. The Hansen parameters give improved agreement with data but are still not completely accurate in predicting solutions thermodynamics for every system. Peiffer (172) has related dispersion, polar and induced solubility parameters to intermolecular forces and molecular size. The dispersive component increases with molecular size, while the polar component decreases with molecular size. Temperature effects The solubility parameter decreases with temperature. The individual terms have varied dependence on temperature, namely (Ref. 55)
(B12)
where a (K"1) is the volumetric thermal expansion coefficient. 3. Relationship between Solubility Parameters and other Thermodynamic Parameters
Hildebrand and Hansen parameters can be calculated using other thermodynamic quantities. This section contains some of the relationships for binary systems. Extensions to multicomponent systems are described by Flory (37) and Olabisi et al. (89). Activity coefficients Excess free energy calculations for regular solutions (93) can be used to relate solubility parameters and solvent activity coefficients: (B13) (B14) where 7, is the activity coefficient of component i. Equations (B 13) and (B 14) depend on the use of the geometric mean, 512 = (6\ x ^2)1//2. Funk and Prausnitz (40) show that there are deviations from this rule for aromatic hydrocarbons. Molar excess free energy of mixing The molar excess free energy of mixing for binary solutions is (B15) where Sj-i is the solubility term of group / for species j . References page VII - 711
Polymer-solvent interaction parameter The polymersolvent interaction parameter, x> is modeled as the sum of entropic and enthalpic components: (B16) where XH is the enthalpic component and Xs is the entropic component. Xs is usually taken to be a constant between 0.3 and 0.4 for nonpolar systems: Xs — 0-34 is often used (15,104). The enthalpic component can be related to the Hildebrand parameters: (B17) Substituting Eq. (B 17) into Eq. (B 16) (B18) Equation (B 18) permits only positive values of the interaction parameter. Since the Flory-Huggins criterion for complete solvent-polymer miscibility is x < 0-5, the enthalpic contribution must be small and the solubility parameters of the solvent and polymer must be similar (21). The molar volume of the solvent also affects miscibility and phase equilibria: a Hildebrand parameter needed for phase separation or miscibility cannot be specified without specifying Vi. Interchange energy density Equation (B 18) works well for nonpolar systems for which Eq. (B 17) is a good description of the enthalpic component of the interaction parameter. The geometric mean assumption of regular solution theory is not appropriate for polar systems, and better models include an extra term describing the interchange energy density for the solvent-polymer pair. For example (B19) with (B20) where I^ characterizes the intermolecular forces between molecules (rather than using the geometric mean assumption). Equation (B20) allows the modeling of specific interactions between components 1 and 2. Mixed solvents can be treated as a single solvent by determining the solubility parameter of the solvent mixture, and then using this value in Eq. (B 18). If both the solvents and the polymers interact, the description is more complicated. An alternative definition of An uses the two-component solubility parameter (Ref. 25) (B21) The Hansen parameters may also be used to model An-
Several recent theories for polymer solution thermodynamics include entropic, enthalpic and free-volume contributions to the free energy of mixing. The free-volume contributions modify the entropic components, and have the opposite temperature dependence from the combinatorial term, helping to explain the lower critical solution temperature. Since Eq. (B 18) assumes a constant value for the entropic component, it may not be valid over large temperature ranges. However, Eq. (B 18) will predict the upper critical solution temperature, and, from this standpoint, is adequate for a number of phase equilibria applications near this condition. The Lattice Fluid model (170) can be used to predict the solubilities of hydrocarbon and chlorinated hydrocarbons in nonpolar polymers. Three-dimensional solubility parameters can be used to provide an empirical correction to the geometric mean approximation (171). This correction predicts the solubility of polar and nonpolar solvents in polymers using only the pure component equation-of-state and solubility parameters. Guide to polymer solvent miscibility A region of solubility has been characterized by the distance between solvent and solute coordinates (Ref. 14)
(B22) A more general definition of the region of solubility is (B23) where a and b are empirical weighing factors. If the distance between the solvent and the solute Hansen coordinate position exceeds /?/,, the two components are not soluble, or swelling is less than expected. R(J reduces the need for three-dimensional plots. Some investigators have used two-dimensional plots for polar and hydrogen bonding terms, but the technique may be misleading for materials with large dispersion contributions. Barton (12) gives a number of models and contour map examples. As mentioned previously, Eqs. (B 17)-(B 19) suggest that the solvent molar volume can have a significant effect on miscibility. Zeller (131) reviewed graphical three-dimensional solubility parameter estimation methods (12,14,49,55,172,173) as applied to solvent swelling of crosslinked elastomers. In general, the graphical method (Eqs. B22 and B23) does not account for the known influence of molar volume and crosslink density of solubility, and incorrectly assumes a linear relationship between the solubility parameter difference and solubility. An improved method used the FloryRehner equation to modify the interaction parameter for the effects of crosslink density (132).
Guide to polymer-polymer miscibility In many polymer-polymer systems, miscibility can be predicted by comparing the solubility parameters (139). The following table proposes misciblity guidelines. Polymer-polymer miscibility is enhanced when hydrogen bonding is present.
correlations. When AHJ is known at the normal boiling point, it can be converted to the appropriate value at a second temperature using (126) (Cl)
0
TABLE OF MISCIBILITY GUIDELINES
Intermolecular Polymer blend interaction example
Critical value of the interaction parameter, Xcrit
Upper limit of the non-hydrogen bonded solubility parameter difference, A^ (MPa 1/2 )
Dispersive forces only Dipole-dipole interactions
Polyisoprene-Poly- < 0.002 (vinylethylene) Poly(methyl 0.002-0.001 methy aery late )poly(ethylene oxide) Weak hydrogen Poly(vinyl chloride)- 0.02-0.2 bonds polycaprolactone Moderate Poly(vinyl phenol)- 0.2-1.0 hydrogen poly (vinyl acetate) bonds Strong hydrogen Poly(vinyl phenol)- 1.0-1.5 bonds poly(vinyl methyl ether 0
<0.02 0.2-1.0 1.0-2.0 2.0-5.0 5.0-6.0
Ref. 139.
C.
SOLUBILITY PARAMETER MEASUREMENTS,
CALCULATIONS, A N D CORRELATIONS
Solubility parameters can be determined by direct measurements, indirect calculations, or correlations with other physical parameters. The solubility parameters of solvents usually can be determined directly by measuring the energy of vaporization. The solubility parameters of polymers can only be determined indirectly and may be affected by variations in their chemical constitutions, i.e., the number of crosslinks and the distribution of chain branches or substitutive groups along the polymer backbone. The methods presented in this section can be used to develop correlations of solubility parameters with other physical properties for specific commercial polymer products or to estimate the solubility parameters of new polymers. 1.
This corresponding state-type procedure gives estimates within 2% of experimental values over a wide range of temperatures (13). Hildebrand and Scott (59) proposed an empirical correlation between AHJ at 25°C and the normal boiling point, Tb\
Solvents
Calculation of the solubility term (5) by relating the enthalpy of vaporization to the energy of vaporization
Equation (B8) can be used to calculate AEJ when AHJ is available. The molar volume of the solute is needed to complete the calculation of 6, using Eq. (B3). This is the most direct and accurate method of determining the solubility parameter. However, <5's determined in this way may not give the best prediction of solution behavior. The solubility parameter values in Tables 7-9 reflect the solvent's behavior in a variety of systems. Correlations Both the enthalpy of vaporization and the molar volume of a solvent can be estimated from
(C2)
with enthalpy units of kcal/mol. Lawson (67) suggests different coefficients to include fluorocarbon liquids. The Clausius-Clapeyron equation can be applied if vapor pressure data are available. Eq. (C2) is reasonably accurate only for liquids that are not hydrogen bonded. The Hildebrand parameter calculated by Eq. (C2) should be adjusted as follows for different solvents (24): add 1.4 (cal/cm3)1/2 for alcohols, add 0.6 (cal/cm3)1/2 for esters, and add 0.5 (cal/cm3)1/2 for ketones if the boiling point is less than 1000C. Jayasri and Yaseen (64) suggest adding 1.7 (cal/cm3)1/2 for alcohols. Solvent molar volumes are available or can be calculated by group molar volume methods at 25°C (35,163-165). The molar volume for solids at 25°C can be extrapolated from liquid state values (the liquid is assumed to be subcooled). Thermodynamic coefficients defined as (Ref. 88)
The internal pressure, ?r, is
(C3)
where /J is the constant volume thermal pressure coefficient (the ratio of the coefficient of thermal expansion, a, to the isothermal compressibility, K). Since the external pressure is usually small with respect to TP, the internal pressure is approximated by (C4)
The Hildebrand parameter is the square root of the internal pressure. Eq. (C4) provides a method for scaling the Hildebrand parameter with temperature. This equation also provides a method for the direct estimation for 6 of polymers; a and K are measurable when AH] is not meaningful (B7). The thermal pressure coefficient (C4) can be evaluated from vapor-pressure data and is easier to apply than the Clausius-Clapeyron equation. For high pressure applications, such as phase equilibria in reverse osmosis membranes, the external pressure term in Eq. (C3) may not be negligible. Solubility parameters generally decrease with increasing pressure. References page VII - 711
van der Waals gas constant Tables are available in many Handbooks for the van der Waals correction constants to the ideal gas law, a and b, where a has units of l2/atm. For some liquids, these values may be at hand when other data are not available. They can be used to check Hildebrand parameter values obtained from other sources. (C5) The form of Eq. (C5) can be obtained by substituting the van der Waals equation of state into Eq. (C3). Critical pressure The solubility parameter is related to the critical pressure, Pc of a substance through the empirical equation (C6) where the critical pressure is expressed in atmospheres. Equation (C6) is not very accurate, but is simple to apply when critical pressure data are available. Surface tension Michaels (83) has shown that the surface tension can be related to the cohesive energy density: (CI) where *yL is the surface tension and A is a constant. Koenhen and Smolders (65) correlated surface tension and two Hansen parameters: (C8) <5h is probably not related to the liquid-vapor interfacial energy as these interactions do not involve breaking hydrogen bonds. Eq. (C8) does not describe cyclic compound, acetonitrile, carboxylic acids, polyfunctional alcohols, and other polar compounds well. Hildebrand and Scott (59) have proposed a different equation, which has been discussed by Lee (68). Index of refraction The dispersive Hansen parameter can be related to the index of refraction, no (65,105). (C9) The interaction energy between nonpolar molecules should depend on polarizability (London dispersion forces) and, therefore, on the index of refraction. Dipole moment Hansen and Skaarup (54) related the polar Hansen parameter to the dielectric constant, e, and the dipole moment, \x\ (ClO)
Beerbower and Dicky (14) proposed an empirical relationship: (CU) Kauri butanol values Proprietary hydrocarbon solvents are usually mixtures with boiling ranges and unknown molecular weights. Solubility parameter values may be estimated from Kauri butanol values (ASTM Method D1133-54T) using the equation 6 = 6.3 -f 0.03 KB
(C12)
2. Polymers Hildebrand parameters cannot be calculated for polymers from heat of vaporization data because of their nonvolatility. Indirect methods are described below. The solubility parameter values in Table 10 may only be representative of a given polymer since variations in compositions can lead to changes in 6. 2.1. Indirect Measurements Solvency testing (screening procedure) The classic method for determining solubility parameter of a commercial polymer is solvency testing, or the solvency screening procedure. This technique compares polymer solubility in solvent groups with different hydrogen bonding characteristics (poor, moderate and strong). The midpoints of the polymer's solubility range may be used as single-valued quantities for some purposes, but may not agree with values determined by other methods (43). A gram or two of solid polymer is placed in a test tube and an approximate amount of a selected solvent is added such that the final solution would have about the correct solid content for the expected commercial use, e.g., 50% for alkyds, 20% for vinyls, etc. The exact amount is often unimportant, except for poor solvents. A typical phase diagram for binary polymersolvent systems may show upper and lower critical solution temperatures. The one-phase region expands away from the UCST and LCST points, which often occur in the range of 20-80 wt.% polymer. The usual purpose of these experiments is to find good solvents for commercial product formulation, and this screening procedure will help identify such solvents. The mixture may be warmed and stirred to speed up solution, but it should be cooled and observed at room temperature. The resulting mixture should be a single phase, clear and free of gel particles or cloudiness, otherwise the polymer is judged insoluble. The solvents to be used are selected from Table 1. This grouping of solvents has been selected so that the Hildebrand parameter values increase by reasonably constant steps within each hydrogen bonding class. The object of using these solvent spectra is to establish a solubility parameter range for a polymer rather than a single-valued number. This range has the advantage of showing the difference, (6\ — ^ ) 2 (see Eqs. B13, B14 and
B18), which can be tolerated between the solubility values of the polymer and solvent for miscibility. Van Dyk et al. (120) have shown that the molar volume improves the correlation between solvency and the solubility parameters. A better measure of solubility might be the group, Vi(S1-S2)2. In carrying out the procedure, it is convenient to select the first trials about 1/2 and 2/3 of the way down the column; for example, in the poorly hydrogen bonded group, toluene and nitroethane would be chosen. If the polymer is soluble in both, there is no need to try intermediate solvents because experience has shown that the polymer will be soluble in every case. The solvents at the end of the spectrum should be tried next. If the polymer is soluble in one but not both of the initial trials, the third trial should be half-way between the two. By successive choices, sets of two adjacent solvents will be found, one of which dissolves the polymer and one that does not. The parameter values of the solvents which do dissolve the polymer mark the ends of the range. The procedure is repeated for the other two hydrogen bonding classes. Osmotic pressure Fedors (35) used the osmotic pressure of polymer solutions to determine solubility parameters. Swelling values Another method for measuring the solubility parameter of polymers is to prepare a sparsely crosslinked sample and immerse it in a series of liquids of varying 8 (166,167). The crosslinked material will swell to varying degrees, with the maximum amount of swelling occurring when the solvent has the same Hildebrand parameter as the polymer. The amount of swelling can be measured by length, weight, or volume changes. By inference, the soluble, uncrosslinked materials has the same value. An example of a crosslinked sample is styrene polymerized with 1% divinyl benzene. Turbidity Polymer can be precipitated from dilute solution by adding a non-solvent. The cloud point defines the onset of two phases. The enthalpic component of the interaction parameter, x#> can be related to the solubility parameter difference between the solvent and the polymer (Eq. B17). Two different non-solvents are used: one having a solubility parameter above that of the solvent, and another having a solubility parameter below that of the solvent. The enthalpic components of the interaction parameter for each phase are equal at the cloud point, which can be used to measure the solubility parameter of the polymer (116). The two expressions for XH &re
parameters of the mixed solvents. The mixture properties are calculated using (C14) (C15) where the subscripts, 1 and 3, refer to the solvent and the nonsolvent. Eq. (C 13) is simplified to determine the solubility parameter of the polymer:
(ci6) The volume fraction of the nonsolvent at the cloud point is used to compute the solvent mixture solubility parameter and molar volume. Cloud point experiments are done for a series of solvents with the two nonsolvents, generating a set of points, (6\, 82). The intersection of the line defined by this set of points with the line, 61 =62, determines the polymer's solubility parameter. Specific volume The specific volume of polymers varies with the solvent. Good solvents give higher values of the specific volume while poor solvents give lower values. A plot of the polymer specific volume as a function of solubility parameter gives a maximum value, which is taken to be the solubility parameter of the polymer. High precision density measurements at carefully controlled temperatures are needed for this method (168). The partial specific volume is defined as (C17) The specific volume of a nonideal two-component system is (C18) where V2 is the rate of change in volume of the solution when a very small amount of polymer is added. As the solvent volume fraction goes to one, the partial molar volume of solvent is constant and Eq. (C 18) becomes (C19) The maximum of the polymer partial specific volume is estimated by fitting a quadratic to the data (Ref. 142): (C20)
(C13)
where Vm\ and Vmh represent the molar volumes at the cloud points of the solvent-lower solubility parameter nonsolvent and solvent-higher solubility parameter nonsolvent, respectively. 8m\ and <5mh are the solubility
It is possible to estimate the polymer solubility parameter with only two reference solvents (168), but more reliable values are found by using a range of solvents. Intrinsic viscosity A number of researchers have used intrinsic viscosity to estimate Hildebrand parameters (74). References page VII-711
Flory (37) related intrinsic viscosity to polymer molecular weight and the chain-expansion factor. The chain-expansion factor can, in turn, be related to the polymer-solvent interaction parameter using the Flory-Huggins theory. Maximum coil extension should occur in solvents near the polymer's solubility parameter. A variety of models can be used to relate the interaction parameter to Hildebrand parameters (19,80,115,167-169). These equations are quadratic (Eq. C21) or take the form of a gaussian curve (Eq. C22): (C21) (C22) where [rj] is the intrinsic viscosity, [r?]max the maximum intrinsic viscosity, and A the constant. These researchers have shown that Eq. (C 14) gives a good correlation between solvency and Hansen parameters for methacrylate polymers. Inverse phase gas chromatography This method has been used by a number of investigators to measure infinite dilution weight fraction activity coefficients (6,2931,63,71,72,84,90,91,113). These coefficients can be related to Hildebrand parameters by using a thermodynamic theory for polymer solutions, such as Flory-Huggins theory. The polymer is the stationary phase in a gas chromatography column. Both binary and multicomponent equilibria (46,99,100) can be studied using this method. Chromatographic techniques have the advantage of rapid measurement of thermodynamic values once the columns have been made. The solubility parameter can be related to the specific retention volume of the solvent on the column. Both Vi and AHJ must be known at the temperature of the column. Molar volumes for the solvents can be determined by using literature density equations or generating equations from density data. Values for the enthalpy of vaporization can be determined at the experimental temperature (71). The inverse phase gas chromatography method has the advantage of providing values for the infinite dilution solubility parameter, Sf0, over a range of temperatures. This is particularly valuable for the prediction of phase equilibria at elevated temperatures. The value of 6f° at 25°C can be estimated by using the expected temperature dependence for x (Eq. B18) of (C23) One potential problem with this technique is that x *s known to be a function of concentration and the polymer Hildebrand parameter is determined at infinite dilution of solvent. For a number of binary systems, the change in \ with solvent weight fraction is the largest as u —» 0. The concentration dependence of the interaction parameter can be modeled using methods given in the chapter on interaction parameters in this Handbook.
2.2. Correlation Methods Refractive index Koenhen and Smolders (65) have predicted dispersive Hansen parameters from refractive index measurements of polymers. Wu (128) has suggested an effective cross-sectional area to relate the cohesive energy density and surface tension (C24) where n$ is the number of atoms in a segment, V,s the molar volume of a segment, and 7^ the dispersion contribution to the free surface energy of the polymer. Dipole moment Equation (ClO) has been applied to polymers by Koenhen and Smolders (65). The dipole moments of polymers are between 70% and 90% of those of the corresponding monomer units. Hydrogen-bonding parameter Hansen and Beerbower (55) compiled enthalpy data for hydrogen bonding groups. The following values are suggested: Group Alcohol Amide Ester Nitrile Ether Monochloro substituent Phenylene ring
Cohesive energy, E\x, (kj/mol) 20.9 16.3 5.2 2.1 2.3 0.4 0.4
Refs. 83 54 54 54 54 54
The hydrogen-bonding parameter is given by
*l=Y
(C25)
Group contribution methods These methods have been used to estimate the solubility parameter (17,20,28,33,35, 58,60,61,96,112,121,122). van Krevelen (123), Fedors (35), and Barton (12) have reviewed these techniques and given tables of group values. The molar volume of solvents and polymers can also be estimated by group contribution techniques (108). The sets of group constants of Small (112), Hoy (61) van Krevelen (121) and van Krevelen and Hoftyzer (122) seem to be most comprehensive. Table 2 gives the group molar attraction constants at 25°C. Small's values were derived from measurements of the heat of vaporization. Hoy's values were derived from vapor pressure measurements. The group contribution values of van Krevelen and Hoftyzer are based on cohesive energy data of polymers. The group contribution techniques are based on the assumption that the contributions of different functional groups to the thermodynamic property are additive. The energy of vaporization of a solvent or polymer is (C26)
where Aej is the energy of vaporization contribution of group jf, and ny the number of groups of type j in the molecule. The solubility parameter is obtained by combining Eqs. (B3) and (C26):
(C27)
Small (112) defined the molar attraction constant as (C28) that can be used to calculate the solubility parameter by
(C29)
where p{ is the polymer density and M/ is the polymer molecular weight. <5/ can be evaluated for polymer repeating group by using group contribution calculations for the molar volume and the cohesive energy density or molar attraction constant. Table 2 gives sets of molar attraction constants and the energy of vaporization provided by several different authors. It is preferrable to use parameters from only one set when determining the solubility parameter of a repeating unit. Table 3 gives the cohesive energy densities and group molar volumes determined by Fedors. This set may give less accurate estimates than those in Table 2, but it has value because it is more comprehensive and can be applied to more systems. Hansen parameters The terms in Eq. (BH) can be estimated by group contribution methods. In general, the resulting factors are known less accurately than the group molar attraction constants or energy of vaporizations. The interaction of structural groups within molecules may not follow simple additive rules. However, the estimate of Hansen parameters can be very useful. Under the method of Hoftyzer and van Krevelen (Table 4), the terms are estimated as
(C30)
The dispersive Hansen parameter treats the molar attraction constants as additive. The polar Hansen parameters also are additive, unless more than one polar group is present. Methods for treating additional polar groups are given in
the last three rows of Table 4: additional polar groups do not add linearly to the polar Hansen term. The molar attraction constant is not applied to the hydrogen-bonding Hansen parameter. Rather, a hydrogen bonding energy, E^, is used. Hoy (178-179) has an alternative group contribution method (Table 5). It includes a molar attraction function, Ftj a polar component of this function, Fp>;, the molar volume of the solvent or polymer structural unit, the Lyderson correction for solvent non-ideality, A J / , and a similar correction for polymer non-ideality, Bicerano (164) and Porter (165) have developed new group contribution techniques for a wide variety of polymer properties. These approaches consider how the different functional groups are connected in the molecule or in the polymeric repeating unit. Bicerano's method uses Fedor's (35) and van Krevelen's (123,163) group contribution values. Both references provide solubility parameter predictions of a number of polymers.
TABLE 1. SELECTED SOLVENTS FOR USE IN POLYMER SOLVENCY TESTING Solvent POORLY HYDROGEN BONDED rc-Pentane rc-Heptane Methylcyclohexane Solvesso 150 Toluene Tetrahydronaphthalene o-Dichlorobenzene 1-Bromonaphthalene Nitroethane Acetonitrile Nitromethane
<5 (MPa 1Z2)
14.3 15.1 16.0 17.4 18.2 19.4 20.5 21.7 22.7 24.1 26.0
MODERATELY HYDROGEN BONDED Diethyl ether Diisobutyl ketone n-Butyl acetate Methyl propionate Dibutyl phthalate Dioxane Dimethyl phthalate 2,3-Butylene carbonate Propylene carbonate Ethylene carbonate
15.2 16.0 17.4 18.2 19.0 20.3 21.9 24.8 27.2 30.1
STRONGLY HYDROGEN BONDED 2-Ethyl hexanol Methyl isobutyl carbinol 2-Ethyl butanol /?-Pentanol H-Butanol ;?-Propanol Ethanol Methanol
19.4 20.5 21.5 22.3 23.3 24.3 26.0 29.7
References page VII - 711
TABLE 2. GROUP CONTRIBUTIONS TO COHESIVE ENERGY DENSITY F[MPa1Z2CiIi3ZmOl] Small (112)
A£(v(J/mol)
van Krevelen (121)
Group
Hoy (61)
2.1. CARBON-CONTAINING GROUPS -CH 3 437 N
van Krevelen and Hoftyzer (163)
420
303
9630
CH2
272
280
269
4190
^CH-
57
140
176
420
-190 388 277 39 495 685 454 265
0 222 82
-5580
560 841 444 304
65 259 249 173 240 201 (479) (672) 497 421
(704)
724
(725)
583 454 1500 1350 2340
1380 1660 1520 1380 -
143 562 634 -
255 754 685 511 651 767 767
235 360 462 350 538 688 (998) (904) 1160
1120 982 1290 1480
464 368 125 (901) 725 (906) (1040)
-
_
734
164-205 460 644 (250) 552 695 870 307 561 900 900 1020 -77
140 460 164 471 614 -
- 103 (acidic dimer) 428
8800
84 420 528
4470 12990 15500
^C x ' = CH2 = CH= cf - C H = (aromatic) -C = (aromatic) -CH(CH3)-C(CH 3 ) 2 -CH = CH-C = CHCH 3 H N C=c' H-C = C -C =C Cyclopentyl Cyclohexyl Phenyl /7-Phenylene Naphthyl
2.2. OXYGEN-CONTAININGGROUPS - O - , ether - O - , epoxide -OH -OH, aromatic -(C = O ) -(C = O)-O-(C = O)-OH -0-(C = O)-O-(C = O)-O-(C = O ) -
2.3. NITROGEN-CONTAINING GROUPS -NH 2 -NH-N' -CH-CN (896) -CN 839 -(C = O)-NH-0-(C = O)-NH -
-N=C=O 2.4. OTHERGROUPS -H -S-SH -F -Cl (primary) -Br (primary) -I -CF2-CF 3 -O-N = O -NO2 -PO 4 -Si-
1300 1470 (1400) (1440)
(10060) (13700) 10200 4860 (14500)
31000 25140
6290 -
13410
25420 25000 60760
TABLE 2. cont'd F [MPa 1 / 2 cm 3 /mol] Small (112)
AE*(J/mo\)
van Krevelen (121)
Group 2.5. STRUCTURAL FEATURES Conjugation cw trans Ring, 4 member 5 member 6 member Subscription, ortho meta
41-61 215-235 194-215 -
-
E coh (J/mol)
-CH3 N CH
4710 4940
X
CH, CN =CH2
V(cm 3 /mol)
3430 1470 4310
-19.2 28.5
'
Group HCOO-, formate - C O 2 C O 2 - , oxalate -HCO 3 -COF -COCl _COBr ~CO1
-NH, -p/ H-C= 3850 -C7070 Phenyl 31940 Phenylene:,,m,p 31940 Phenyl (trisubstituted) 31940 (tetrasubstituted) 31940 (pentasubstituted) 31940 (hexasubstituted) 31940 Ring closure, 5 + atoms 1050 3 or 4 atoms 3140 Conjugation in ring for each double bond 1670 Halogen attached to carbon atom - 20% of Ecoh of with double bond halogen -F
-F, disubstituted trisubstituted - C F 2 - , perfluoro compounds -CF 3 , perfluoro compounds -Cl -Cl, disubstituted trisubstituted -Br -Br, disubstituted trisubstituted -I -1, disubstituted trisubstituted -CN -OH -OH, disubstituted or adjacent C atoms -O-CHO, aldehyde -CO-COOH -COO- C O 3 - , carbonate - C 2 O 3 - , anhydride
48 -15 -28 159 3 -48 20 14
-
TABLE 3. cont'd
33.5 16 1 ' -1.0
'
4
-
TABLE 3. CONTRIBUTIONS TO fcoh AND Va Group
van Krevelen and Hoftyzer (163)
Hoy (61)
27.4 6.5 71.4 52.4 33.4 14.4 -4.6 -23.6 16.0 18.0 —2.2 4.0
\ -N= "NHNH2 "N(NH 2 )H \ .Nx N H -N 2 , diazo -N = N ^C-N=N-C/ / X N _ r _ N ~M-<- ~ "
Ecoh (J/mol)
V (cm3/mol)
18000 26790 12560 13400 17580 24150
32.5 37.3 18.0 29.0 38.1 41.6
29300
487
,«.
,„
4190
-9.0
11720
50
21980 16740
16.0
16740
16.0
8370 4190 20090 11470 IRRZLO
23 r\ \
4190
18.0
-IN=L,
155W
Z^.i
3560 2300 4270 4270 11550 9630 7530 15490 12350 10670 19050 16740 16330 25530 29800 21850 3350 21350 17370 27630 18000 17580 30560
20^0 22.0 23.0 57.5 24.0 26.0 27.3 30.0 31.0 32.4 315 33^ 37.0 24.0 10.0 13.0 3.8 22.3 10.8 28.5 18.0 22.0 30.0
"NF2 rr^u PONH -LAJINH^ ^N^ C" ^ O ^\ ^ ^ C N H HCONH-NHCOO-NHCONHIl ^isrC^N^ , \ H Q Ii "N" ^N" i i NH 2 COO-NCO -ONH 2
7660 AVRZ VvM)
33.1 Ins o
W W 29510
~1J
27630
11.3
43950 26370 50230
27.0 18.5
4186
°
37000 28460 19050
35.0 20.0
References page VII - 711
TABLE 3. cont'd — Group
TABLE 4. SOLUBILITY PARAMETER I: COMPONENT GROUP CONTRIBUTIONS0 £COh (J/mol)
V(cm 3 /mo!)
— — — — r1^
^d/
HH
9S190
UH I -CH=: NOH -NO 2 , aliphatic -NO 2 , aromatic -NO 3 -NO 2 , nitrate -NHNO 2 -NNO-SH -S-S2-S3)s=O 503 504 -SO 2 Cl -SCN -NCS P PO 3
Structural Group 25120 29300 15360 20930 11720 39770 27210 14440 14150 23860 13400 39140 18840 28460 37070 20090 25120 9420 14230
^° -°
H
24.0 24.0 32.0 33.5 33.5 28.7 10.0 28.0 12.0 23.0 47.2 27.6 31.6 43.5 37.0 40.0 - 1.0 22.7
h
mol)
mol)
-CH 3 VH
420 270
0 0
0 0
CH\ , ^ -CH2 =CH= Q/ /—, -\_J / ^ -(Q) )=f " O " ^ ^ ^ J ^
80
/
2
^
0
0
~~ 400 200 70
° 0 0 0
° 0 0 0
1620
0
0
*10
°
1270
H 0
°
^ ^
550
400
143
°
'
7?'?
-CN
430
u0
3
-OH
210
500
!?J°
J
2
91770
5
SlS
IzS
Ge Sn Pb As Sb Bi Se Te Zn
8080 11300 17160 12980 16330 21350 17160 20090 14480
-1.5 1.5 2.5 7.0 8.9 9.5 16.0 17.4 2.5
Cd
n790
Hg
22810
0 ,-,O1n \H\l
, L _2; 20 4 Vn I "
-O-COH -C°-COOH H COO-
6 5
20000
40
3000
290
770
2000
° 800
530 390
NH?-
2500
°
10
° 470
-N"~ -Nx -NO2 -S=PO4Ring One plane of symmetry Two planes of symmetry More planes of symmetry _ ^
(J/mol)
10
vmn
SO 1' 0 ^ BO3 .. -
0
V
3
Po" OH 3
F pi
^J
111
4500
420
SS 160
: 210
20 500 440 740 190 -
10000
310
800 1070
° 5000 1500
1890
13000
0.50x 0.25 x Ox
Ox
R e t 163>
7.5
Ref. 35.
TABLE 5.
SOLUBILITY PARAMETER II: COMPONENT GROUP CONTRIBUTIONS 0
Group
Fa ((J cm^ 1 / 2 /mol)
Fpi ((J cm 3 ) 1 / 2 /mol)
V1 (cm 3 /mol)
-CH 3
303.5
0
21.55
0.023
0.022
X
CH 2
269.0
0
15.55
0.020
0.020
^CH-
176.0
0
9.56
0.012
0.013
^cf ^CH 2 = CH^c( CHaromatic C aromatic -HC = O
65.5 259 249 173 241 201 600
0 67 59.5 63 62.5 65 532
3.56 19.17 13.18 7.18 13.42 7.42 23.3
0 0.018 0.018 0 0.011 0.011 0.048
0.04 0.019 0.0185 0.013 0.018 0.015 0.045
An*
A£?
TABLE 5. cont'd Group
Fu ((Jcm 3 ) 1/2 /mol)
-CO-COOH -COO-CO-O-CO-CN -N = C= O -N(HCO)-CONH 2 -CONH-OCONH-OH-+H-bonded -OH, primary secondary tertiary phenolic - O - , ether acetal epoxide -NH2 -NH-
Fp,((J cm3)1/2/"!©!)
538 565 640 1160 725 736 1020 1200 1131 1265 485 675 591 (500) 350 235 236 361 464 368
525 415 528 1160 725 8.2 725 900 895 890 485 675 591 (500) 350 216 102 156 464 368
Vi (cm 3 /mol)
Ar/
A^
17.3 26.1 23.7 41.0 23.1 25.9 35.8 34.3 28.3 34.8 10.65 12.45 12.45 12.45 12.45 6.45 6.45 6.45 17.0 11.0
0.040 0.039 0.047 0.086 0.060 0.054 0.062 0.071 0.054 0.078 0.082 0.082 0.082 0.082 0.031 0.021 0.018 0.027 0.031 0.031
0.040 0.039 0.050 0.086 0.054 0.054 0.055 0.084 0.073 0.094 0.034 0.049 0.049 0.049 0.006 0.018 0.018 0.027 0.035 0.275
-N' -S-F -Cl, primary secondary aromatic
125 428 845 419.5 426 330
125 428 73.5 307 315 81.5
12.6 18.0 11.2 19.5 19.5 19.5
0.014 0.015 0.018 0.017 0.017 0.017
0.009 0.032 0.006 0.031 0.032 0.025
<
705
572
39.0
0.034
0.052
528 422 277 159 43 -48 92 47.5 -14.6 -27.6 20.2 13.5 83
123 100
25.3 25.3
0.010 0.010
0.039 0.031
Cl -Br, aliphatic aromatic Base value, B Ring, non-aromatic 4-member 5-member 6-mernber 7-member Conjugation, isomerism cis trans Aromatic substitution, ortho meta para
203 85 61 0 -19.8 -14.6 -27.6 -13.3 -24.3 -34.0
-
0 0 0
-
0.012 0.003 -0.0035 0.007 0.0035 -0.001 -0.002 0.0015 0.001 0.006
0 -
0 0 0 0 0 0
° Ref. (178-179).
TABLE 6. EQUATIONS TO BE USED FOR HOY'S SYSTEM ' Formulae Additive molar functions
Solvents Ft = E w /F/./
F
F
F
> ~ E' 7 '^/<
P = X>/Fp.,V = Ew1-V1Ar = E ^ A 7 , Tb
Auxiliary equations
Amorphous polymers
log a = 339
0.1585 - log V, T ci Tb — boiling point, TCi = critical temp.
( £ ) = 0.567+ Ar-(A,r-.
P =E " < / V v = E"/V,A = E»/A
n = 2±
Lyderson equation Expressions for b and 6-components
6, = ~
; B — 277
6, = — — ~ ; B — 277
References page VII - 711
Next Page TABLE 6. cont'd Formulae
a
Solvents
Amorphous polymers
In the equations given here, Ft is always combined with a Base value, a is the molecular aggregation number, and n the number of repeating units per polymer chain segment.
D.
SOLUBILITY PARAMETER TABLES
TABLE 7.
SOLUBILITY PARAMETERS OF SOLVENTS IN ALPHABETICAL ORDER
Solubility parameter 3 Solvent
CAS number
Acetaldehyde Acetic acid Acetic anhydride Acetone Acetonitrile Acetophenone Acetyl chloride Acetylmorpholine (AO Acetylpiperidine (AO Acetylpyrrolidine (AO Acrolein Acrylic acid Acrylonitrile AHyI acetate Allyl alcohol Allyl chloride Ammonia Amyl acetate (iso) (normal) (secondary) Amyl alcohol Amyl alcohol (normal) Amylamine (normal) Amyl bromide (1-bromopentane) Amyl chloride (1-chloropentane) Amylene (2-methyl-2-butene) Amyl ether (pentyl ether) Amyl formate (iso) (normal) Amyl iodide (1-iodopentane) Anethole (para) Aniline Anthracene Apco #18 solvent Apco #140 solvent Apco thinner Aroclor 1248 Benzaldehyde Benzene Benzonitrile Benzyl alcohol Bicyclohexyl Bromobenzene 1-Bromonaphthalene Bromostyrene (ortho) 1,3-Butadiene
75-07-0 64-19-7 108-24-7 67-64-1 75-07-8 98-86-2 75-36-5 1696-20-4 618-42-8 1072-83-9 107-02-8 79-10-7 107-13-1 591-87-7 107-18-6 107-05-1 7664-41-7 625-16-1 628-63-7 626-38-0 75-85-4 71-41-0 110-58-7 110-53-2 543-59-9 513-35-9 693-65-2 110-45-2 638-49-3 628-17-1 4180-23-8 65-53-3 120-12-7
12672-29-6 100-52-7 71-43-2 100-47-0 100-51-6 92-51-3 108-86-1 90-11-9 2039-88-5 106-99-0
(MPa1/2)
(cal/cm)1/2
21.1 20.7 21.1 20.3 24.3 21.7 19.4 23.7 22.9 23.3 20.1 24.6 21.5 18.8 24.1 18.0 33.4 16.0 17.4 17.0 20.5 22.3 17.8 15.6 17.0 14.1 14.9 16.4 17.2 17.2 17.2 21.1 20.3 15.3 14.9 16.0 18.0 19.2 18.8 17.2 24.8 17.4 20.3 21.7 20.1 14.5
10.3 10.2 10.3 9.9 11.9 10.6 9.5 11.6 11.2 11.4 9.8 12.0 10.5 9.2 11.8 8.8 16.3 7.8 8.5 8.3 10.0 10.9 8.7 7.6 8.3 6.9 7.3 8.0 8.5 8.4 8.4 10.3 9.9 7.5 7.3 7.8 8.8 9.4 9.2 8.4 12.1 08.5 09.9 10.6 9.8 7.1
H-bonding group m s s m p m m m s s s s p m s m s m m m s s s m m p m m m m m s p p p p p m p p s p p p p p
Previous Page TABLE 6. cont'd Formulae
a
Solvents
Amorphous polymers
In the equations given here, Ft is always combined with a Base value, a is the molecular aggregation number, and n the number of repeating units per polymer chain segment.
D.
SOLUBILITY PARAMETER TABLES
TABLE 7.
SOLUBILITY PARAMETERS OF SOLVENTS IN ALPHABETICAL ORDER
Solubility parameter 3 Solvent
CAS number
Acetaldehyde Acetic acid Acetic anhydride Acetone Acetonitrile Acetophenone Acetyl chloride Acetylmorpholine (AO Acetylpiperidine (AO Acetylpyrrolidine (AO Acrolein Acrylic acid Acrylonitrile AHyI acetate Allyl alcohol Allyl chloride Ammonia Amyl acetate (iso) (normal) (secondary) Amyl alcohol Amyl alcohol (normal) Amylamine (normal) Amyl bromide (1-bromopentane) Amyl chloride (1-chloropentane) Amylene (2-methyl-2-butene) Amyl ether (pentyl ether) Amyl formate (iso) (normal) Amyl iodide (1-iodopentane) Anethole (para) Aniline Anthracene Apco #18 solvent Apco #140 solvent Apco thinner Aroclor 1248 Benzaldehyde Benzene Benzonitrile Benzyl alcohol Bicyclohexyl Bromobenzene 1-Bromonaphthalene Bromostyrene (ortho) 1,3-Butadiene
75-07-0 64-19-7 108-24-7 67-64-1 75-07-8 98-86-2 75-36-5 1696-20-4 618-42-8 1072-83-9 107-02-8 79-10-7 107-13-1 591-87-7 107-18-6 107-05-1 7664-41-7 625-16-1 628-63-7 626-38-0 75-85-4 71-41-0 110-58-7 110-53-2 543-59-9 513-35-9 693-65-2 110-45-2 638-49-3 628-17-1 4180-23-8 65-53-3 120-12-7
12672-29-6 100-52-7 71-43-2 100-47-0 100-51-6 92-51-3 108-86-1 90-11-9 2039-88-5 106-99-0
(MPa1/2)
(cal/cm)1/2
21.1 20.7 21.1 20.3 24.3 21.7 19.4 23.7 22.9 23.3 20.1 24.6 21.5 18.8 24.1 18.0 33.4 16.0 17.4 17.0 20.5 22.3 17.8 15.6 17.0 14.1 14.9 16.4 17.2 17.2 17.2 21.1 20.3 15.3 14.9 16.0 18.0 19.2 18.8 17.2 24.8 17.4 20.3 21.7 20.1 14.5
10.3 10.2 10.3 9.9 11.9 10.6 9.5 11.6 11.2 11.4 9.8 12.0 10.5 9.2 11.8 8.8 16.3 7.8 8.5 8.3 10.0 10.9 8.7 7.6 8.3 6.9 7.3 8.0 8.5 8.4 8.4 10.3 9.9 7.5 7.3 7.8 8.8 9.4 9.2 8.4 12.1 08.5 09.9 10.6 9.8 7.1
H-bonding group m s s m p m m m s s s s p m s m s m m m s s s m m p m m m m m s p p p p p m p p s p p p p p
TABLE 7. cont'd Solubility parameter S Solvent >?-Butane 1,3-Butanediol 1,4-ButanedioI 2,3-Butanediol Butyl acetate (iso) Az-Butyl acetate sec-Butyl acetate Butyl acrylate (iso) M-Butyl acrylate Butyl alcohol (iso) (2-methyl-1-propanol) «-Butyl alcohol (1-butanol) sec-Butyl alcohol (2-butanol) terf-Butyl alcohol (2-methyl-2-propanoI) rc-Butylamine n-Butyl bromide (1-bromobutane) s
CAS number
(MPa 1/2 )
(cal/cm) l/2
106-97-8 107-88-0 110-63-4 513-85-9 540-88-5 123-86-4 105-46-4 1663-39-4 141-32-2 78-83-1 71-36-3 15892-23-6 75-65-0 109-73-9 109-65-9 78-76-2 539-90-2 109-21-7 507-20-0 4437-85-9 115-11-7 142-96-1 762-75-4 592-84-7 542-69-8 138-22-7 97-88-1 590-01-2 123-95-5 123-72-8 79-31-2 107-92-6 96-48-0 78-82-0 109-74-0 105-60-2 502-44-3 124-12-9 75-15-0 56-23-5
13.9 23.7 24.8 22.7 17.0 17.4 16.8 17.4 18.0 21.5 23.3 22.1 21.7 17.8 17.8 17.2 16.0 16.6 16.6 24.8 13.7 16.0 16.8 18.2 17.6 19.2 16.8 18.0 15.3 18.4 21.1 21.5 25.8 20.1 21.5 26.0 20.7 19.2 20.5 17.6 18.8 25.8 19.4 19.8 19.0 19.4 18.0 20.9 22.5 16.8 23.3 20.3 17.8 21.3 16.8 18.0 13.5 16.8 18.8 16.8 28.0 18.6 19.2
6.8 11.6 12.1 11.1 8.3 8.5 8.2 8.5 8.8 10.5 11.4 10.8 10.6 8.7 8.7 8.4 7.8 8.1 8.1 12.1 6.7 7.8 8.2 8.9 8.6 9.4 8.2 8.8 7.5 9.0 10.3 10.5 12.6 9.8 10.5 12.7 10.1 9.4 10.0 8.6 9.2 12.6 9.5 9.7 9.3 9.5 8.8 10.2 11.0 8.2 11.4 9.9 8.7 10.4 8.2 8.8 6.6 8.2 9.2 8.2 13.7 9.1 9.4
920-37-6 108-90-7 542-58-5 67-66-3 2039-87-4 106-43-4 108-39-4 14406-53-3 110-82-7 108-93-0 108-94-1 287-92-3 120-92-3 99-87-6 91-17-8 124-18-5 2156-96-9 123-42-2 107-70-0 18940-57-3 131-18-0 103-50-4
H-bonding group p s s s m m m m m s s s s s m m m m m m p m m m m m m m m m s s m p p m m p p p m p p m p p p s m p s m p m p p p m m m m m m
References page VII - 711
TABLE 7. cont'd Solubility parameter 5 Solvent Dibromoethane-1,2 Dibromoethylene-1,2 (cis and trans) Dibutoxyethyl phthalate (Kronisol) Dibutyiamine Dibutyl fumarate Dibutyl maleate Dibutyl phenyl phosphate Dibutyl phthalate Dibutyl sebacate Dichloroacetic acid Dichlorobenzene (ortho) Dichlorodifluoromethane (Freon 12) Dichloroethyl ether Dichloroethylene, cis-1,2 trans-1,2 Dichlorofluoromethane (Freon 21) Dichloropropane-1,2 Dichloropropane-2,2 Diethylacetamide (N3N) Diethylamine Diethyl carbonate Diethylene glycol Diethylene glycol monobutyl ether (normal) Diethylene glycol monobutyl ether Diethylene glycol monobutyl ether acetate Diethylene glycol monolaurate Diethyl ether Diethylformamide (N9N) Diethyl ketone Diethyl maleate Diethyl oxalate Diethyl phthalate Diethyl-2,2-propanediol-1,2 (heptylene glycol) Diethyl sulfone Difluorotetrachloroethane (Freon 112) Diformylpiperazine (NJN) Dihexyl ether Di-n-hexyl phthalate Diisobutylene Diisobutyl ketone Diisodecyl phthalate Diisopropyl ether Diisopropyl ketone Dimethylacetamide (N9N) Dimethylaniline Dimethyl-2,2-butanediol-l,2 (isobutylene glycol) Dimethyl-2,2-butanediol-l,3 Dimethyl carbonate Dimethyl ether Dimethylformamide (N,N) Dimethyl malonate Dimethylnitroamine (N,N) Dimethyl oxalate Dimethyl phosphite Dimethyl phthalate Dimethyl siloxane Dimethyl sulfide Dimethyl sulfoxide Dimethyltetramethylene sulfone Dioctyl adipate Dioctyl phthalate Dioctyl sebacate Dioxane-1,4
CAS number 106-93-4 540-49-8 117-83-9 111-92-2 105-75-9 105-76-0 2528-36-1 84-74-2 109-43-3 79-43-6 95-50-1 75-71-8 623-46-1 156-59-2 156-60-5 75-43-4 78-87-5 594-20-7 685-91-6 109-89-7 105-58-8 111-46-6 112-34-5 112-34-5 124-17-4 141-20-8 60-29-7 617-84-5 96-22-0 141-05-9 95-92-1 84-66-2 115-76-4 597-35-3 76-11-9 4164-39-0 112-58-3 108-83-8 107-39-1 108-83-8 26761-40-0 108-20-3 565-80-0 127-19-5 121-69-7 558-43-0 76-09-3 616-38-6 115-10-6 68-12-2 108-59-8 62-75-9 553-90-2 868-85-9 131-11-3 9016-00-6 75-18-3 67-68-5 1003-78-7 103-23-1 117-81-7 1222-62-3 123-91-1
(MPa1/2) 21.3 20.7 16.4 16.6 18.4 18.4 17.8 19.0 18.0 22.5 20.5 11.3 20.1 18.6 18.4 17.0 18.4 16.8 20.3 16.4 18.0 24.8 19.4 20.9 17.4 17.8 15.1 21.7 18.0 20.3 17.6 20.5 20.3 25.4 16.0 31.5 16.4 18.2 15.8 16.0 14.7 14.1 16.4 22.1 19.8 22.9 20.5 20.3 18.0 24.8 22.5 26.8 22.5 25.6 21.9 10.0-12.1 19.2 29.7 24.6 17.8 24.8 17.8 20.5
(cal/cm)1/2 10.4 10.1 8.0 8.1 9.0 9.0 8.7 9.3 9.2 11.0 10.0 5.5 9.8 9.1 9.0 8.3 9.0 8.2 9.9 8.0 8.8 12.1 9.5 10.2 8.5 8.7 7.4 10.6 8.8 9.9 8.6 10.0 9.9 12.4 7.8 15.4 8.0 8.9 7.7 7.8 7.2 6.9 8.0 10.8 9.7 11.2 10.0 9.9 8.8 12.1 11.0 13.1 11.0 12.5 10.7 4.9-5.9 9.4 14.5 12.0 8.7 12.1 8.7 10.0
H-bonding group p p m s m m m m m s p p m p p p p p m s m s m m m m m m m m m m s m p m m m p m m m m m m s s m m m m s m m m p p m m m m m m
TABLE 7. cont'd Solubility parameter 6 Solvent Dioxoiane-1,3 Dipentene Diphenyl ether Diphenyl 2-ethylhexyl phosphate Dipropylene glycol Dipropylene glycol monomethyl ether Dipropyl phthalate Dipropyl sulfone Dodecane Dodecanol-1 Epichlorohydrin Ethane Ethylacetamide (AO Ethyl acetate Ethyl acrylate Ethyl alcohol Ethylamine Ethyl amyl ketone (3-octanone) Ethylbenzene Ethyl benzoate Ethyl bromide (bromoethane) Ethyl-2-butanol-l Ethyl fl-butyrate Ethyl caprylate Ethyl chloride Ethyl cyanoacetate Ethylene bromide Ethylene carbonate Ethylene chlorohydrin (2-chloroethanol) Ethylene cyanohydrin (3-hydroxypropionitrile) Ethylenediamine Ethylene dichloride (1,2-dichloroethane) Ethylene glycol Ethylene glycol diacetate Ethylene glycol diethyl ether Ethylene glycol dimethyl ether Ethylene glycol methyl ether acetate Ethylene glycol monobenzyl ether Ethylene glycol monobutyl ether Ethylene glycol monoethyl ether (2-ethoxyethanol; Cellusolve) Ethylene glycol monomethyl ether (2-rnethoxyethanol) Ethylene glycol monophenyl ether Ethylene oxide Ethylene formamide (N) Ethyl formate Ethyl-2-hexanediol-l,3 (octylene glycol) Ethylhexanol Ethyl hexyl acrylate Ethylidene chloride Ethyl iodide (iodoethane) Ethyl isobutyl ether Ethyl isobutyrate Ethyl lactate Ethyl mercaptan (ethane thiol) Ethyl methacrylate Ethyl morpholine (AO Ethyl orthoformate (triethyl orthoformate) Ethyl propionate Fluorocarbons, aliphatic aromatic Formamide Formic acid
H-bonding group
CAS number
(MPa 1Z2)
(cal/cm)l'2
646-06-0 138-86-3 101-84-8 1241-94-7 110-98-5 34590-94-8 131-16-8 598-03-8 112-40-3 112-53-8 106-89-8 74-84-0 625-50-3 141-78-6 140-88-5 64-17-5 75-04-7 106-68-3 100-41-4 93-89-0 74-96-4 97-95-0 105-54-4 106-32-1 75-00-3 105-56-6 593-60-2 96-49-1 107-07-3 109-78-4 107-15-3 107-06-2 307-21-1 111-55-7 629-14-1 110-71-4 110-49-6 622-08-2 111-76-2 110-80-5
17.6 20.5 20.9 17.4 20.7 17.6 20.5 23.1 16.2 20-21 22.5 12.3 25.2 18.6 17.6 26.0 20.5 16.8 18.0 16.8 19.6 21.5 17.4 14.9 18.8 22.5 19.8 30.1 25.0 31.1 25.2 20.1 29.9 20.5 17.0 17.6 18.8 22.3 19.4 21.5
8.6 10.0 10.2 8.5 10.1 8.6 10.0 11.3 7.9 9.8 11.0 6.0 12.3 9.1 8.6 12.7 10.0 8.2 8.8 8.2 9.6 10.5 8.5 7.3 9.2 11.0 9.7 14.7 12.2 15.2 12.3 9.8 14.6 10.0 8.3 8.6 9.2 10.9 9.5 10.5
m m m p m m s m p s s p s m m s s m p m m s m m m m p m s s s p s m m m m m m m
11.4 11.5 11.1 13.9 9.4 9.4 9.5 7.8 8.9 9.4 7.5 7.9 10.0 9.2 8.3 8.9 8.3 8.4 5.5-6.2 7.5-8.2 19.2 12.1
m m m s m s s m p m m m m p m s m m p p s s
109-86-4 122-99-6 75-21-8 109-94-4 94-96-2 104-76-7 103-11-7 75-34-3 75-03-6 627-02-1 97-62-1 687-47-8 75-08-1 97-63-2 100-74-3 122-51-0 105-37-3 75-12-7 64-18-6
23.3 23.5 22.7 28.4 19.2 19.2 19.4 16.0 18.2 19.2 15.3 16.2 20.5 18.8 17.0 18.2 17.0 17.2 11.3-12.7 15.3-16.8 39.3 24.8
References page VII - 711
TABLE 7. cont'd Solubility parameter S Solvent
CAS number
Formylmorpholine (AO Formylpiperidine (AO Furan Furfural (2-furaldehyde) Furfuryl alcohol Glycerol Heptane (normal) Heptyl alcohol (normal) Hexamethylphosphoramide Hexane (normal) Hexanediol-2,5 Hexene-1 Hexyl alcohol (normal) Hydrazine Hydrogen Hydrogenated terphenyl (Monsanto HB-40) Hydrogen cyanide Iodobenzene Isophorone Isoprene Lauryl alcohol Low odor mineral spirits Maleic anhydride Malononitrile Mesitylene Mesityl oxide Methacrylic acid Methane Methanol Methoxy-4-methyl-4-pentanol-2 Methoxy-4-methyl-4-pentanone-2 Methylacetamide Methyl acetate Methyl acrylate Methylamine Methyl amyl acetate Methyl amyl ketone Methyl benzoate Methyl bromide Methyl n-butyl ketone Methyl n-butyrate Methyl caprolactone Methyl chloride Methylcyclohexane Methylcyclohexanone Methylene chloride Methylene glycolate Methylene iodide Methyl ethyl ketone Methyl ethyl sulfone Methylformamide (AO Methyl formate Methyl n-hexyl ketone Methyl iodide Methyl isoamyl ketone Methyl isobutyl carbinol Methyl isobutyl ketone Methyl isobutyrate Methyl isopropyl ketone Methyl isovalerate Methyl methacrylate Methyl nonyl ketone Methyl-2-pentanediol-l,3
4394-85-8 2591-86-8 110-00-9 98-01-1 98-00-0 56-81-5 142-82-5 111-70-6 680-31-9 110-54-3 2935-44-6 592-41-6 111-27-3 302-10-2 1333-74-0 74-90-8 591-50-4 78-59-1 78-79-5 112-53-8 108-31-6 109-77-3 108-67-8 141-79-7 79-41-4 74-82-8 67-56-1 107-70-0 79-16-3 79-20-9 96-33-3 74-89-5 108-84-9 110-43-0 95-58-3 74-83-9 591-78-6 623-42-7 74-87-3 10120-28-2 589-92-4 75-09-2 61192-32-3 75-11-6 78-93-3 594-43-4 123-39-7 107-31-3 111-13-7 74-88-4 110-12-3 108-11-2 108-10-1 547-63-7 563-80-4 624-24-8 80-62-6 112-12-9 149-31-5
MPa 1/2
(cal/cm) 1/2
26.6 23.5 19.2 22.9 25.6 33.8 15.1 21.7 21.5 14.9 21.2 15.1 21.9 37.3 6.9 18.4 24.8 20.7 18.6 15.1 16.6 14.1 27.8 30.9 18.0 18.4 22.9 11.0 29.7 17.4 17.0 29.9 19.6 18.2 22.9 16.4 17.4 21.5 19.6 17.0 18.2 18.2 19.8 16.0 19.0 19.8 25.4 24.1 19.0 27.4 32.9 20.9 17.0 20.9 17.2 20.5 17.2 17.0 17.4 16.2 18.0 16.0 21.1
13.0 11.5 9.4 11.2 12.5 16.5 7.4 10.6 10.5 7.3 10.3 7.4 10.7 18.1 3.0 9.0 12.1 10.1 9.1 7.4 8.1 6.9 13.6 15.1 8.8 9.0 11.2 5.4 14.5 8.5 8.3 14.6 9.6 8.9 11.2 8.0 8.5 10.5 9.6 8.3 8.9 8.9 9.7 7.8 9.3 9.7 12.4 11.8 9.3 13.4 16.1 10.2 8.3 10.2 8.4 10.0 8.4 8.3 8.5 7.9 8.8 7.8 10.3
H-Bonding Group m m m m s s p s s p s p s s p p s p m p s p s p p rn s p s s m s m m s m m rn m m m m m p m p m p m m s m m m m s m m m m m m s
TABLE 7. cont'd Solubility parameter S Solvent Methyl-2-pentanediol-2,4 Methyl-2-pentanediol monoethyl ether (Pentoxol) Methyl propionate Methyl propyl ketone Methyl propyl sulfone Methyl pyrrolidone-2 (l-methyl-2-pyrrolidinone) Methyl salicylate Methyl styrene (a) Methyltetramethylene sulfone Methyl n-valerate Morpholine Naphthalene Neopentane Neopentyl glycol Nitrobenzene Nitroethane Nitromethane Nitro-«-octane Nitro-1-propane Nitro-2-propane Nonyl phenol Octane (normal) Octyl alcohol (normal) Pentachloroethane Pentane (normal) Pentanediol-1,5 Pentanediol-2,4 Perchloroethylene Perfluoroheptane Perfluoromethylcyclohexane Phenanthrene Phenylhydrazine Pine oil Piperidine Piperidone Propane Propiolactone Propionic acid Propionic anhydride Propionitrile Propyl acetate (iso) Propyl acetate (normal) Propyl alcohol (2-propanol) Propyl alcohol (1-propanol) Propylbenzene (normal) Propyl bromide (l~bromopropane) Propyl butyrate Propyl butyrate (iso) Propyl chloride (2-chloropropane) Propyl chloride (1-chloropropane) Propylene-l,2-carbonate Propylene glycol (1,2-propanediol) Propylene glycol methyl ether (1,2-dimethoxypropane) Propylene oxide Propyl ether (di-, normal) Propyl ether (iso) Propyl formate Propyl propionate Pyridine Pyrone(y) Pyrrolidine (a) Quinoline Santicizer 8
CAS number 107-41-5 554-12-1 107-87-9 1977-37-3 872-50-4 119-36-8 98-83-9 624-24-8 110-91-8 91-20-3 463-82-1 126-30-7 98-95-3 79-24-3 75-52-5 108-03-2 79-46-9 25154-52-3 111-65-9 111-87-5 76-01-7 109-66-0 111-29-5 625-69-4 127-18-4 335-57-9 355-02-2 85-01-8 100-63-0 110-89-4 675-20-7 74-98-6 57-57-8 79-09-4 123-62-6 107-12-0 108-21-4 109-60-4 67-63-0 71-23-8 103-65-1 106-94-5 105-66-8 638-11-9 75-29-6 540-54-5 108-32-7 57-55-6 7778-85-0 75-56-9 111-43-3 108-20-3 110-74-7 106-36-5 110-86-1 504-31-4 123-75-1 00-02-2
(MPa1/2)
(cal/cm)1/2
19.8 17.4 18.2 17.8 25.6 23.1 21.7 17.4 26.4 16.2 22.1 20.3 12.9 22.5 20.5 22.7 26.0 14.3 21.1 20.3 19.2 15.6 21.1 19.2 14.3 23.5 22.1 19.0 11.9 12.3 20.1 25.6 17.6 17.8 27.8 13.1 27.2 20.3 20.5 22.1 17.2 18.0 23.5 24.3 17.6 18.2 17.2 16.2 16.6 17.4 27.2 25.8 20.7 18.8 16.0 14.5 18.8 17.4 21.9 27.4 30.1 22.1 24.3
9.7 8.5 8.9 8.7 12.5 11.3 10.6 8.5 12.9 7.9 10.8 9.9 6.3 11.0 10.0 11.1 12.7 7.0 10.3 9.9 9.4 7.6 10.3 9.4 7.0 11.5 10.8 9.3 5.8 6.0 9.8 12.5 8.6 8.7 13.6 6.4 13.3 9.9 10.0 10.8 8.4 8.8 11.5 11.9 8.6 8.9 8.4 7.9 8.1 8.5 13.3 12.6 10.1 9.2 7.8 7.1 9.2 8.5 10.7 13.4 14.7 10.8 11.9
H-bonding group s m m m m m m p m m s p p s p p p p P p s p s p p s s p p p p s p p s p m s s p m m s s p m m m m m m s m m m m m m s m s s m
References page VII - 711
TABLE 7. cont'd Solubility parameter S Solvent
CAS number
Shell Sol 72 Shell TS28 solvent Silicon tetrachloride Socal solvent No. 1 Socal solvent No. 2 Socal solvent No. 3 Solvesso 100 Solvesso 150 Styrene Styrene oxide Succinic anhydride Terpene B Tetrachloroethane-1,1,2,2 Tetrachloroethylene (perchloroethylene) Tetraethylene glycol Tetrahydrofuran Tetrahydronaphthalene (tetralin) Tetramethylene sulfone (sulfolane, tetrahydrothiophene 1,1-dioxide) Tetramethyloxamide Thiophene Toluene Tolylene diisocyanate (4-methy 1-1,3-phenylene diisocyanate) Tributylamine Trichloroethane-1,1,2 Trichloroethylene Trichlorofiuoromethane Trichlorotrifiuoroethane (1,1,2-trichlorotrifluoroethane) Tricresyl phosphate (tritolyl phosphate) Triethylamine Triethylene glycol Triethylenetetramine Trimethyl-3,5,5-hexanol (nonyl alcohol) Triphenyl phosphate Triphenyl phosphite Tripropylene glycol Tripropylene glycol methyl ether Turpentine Valeric acid (normal) Valeronitrile (normal) Varnolene (Varsol #2) Vinyl acetate Vinyl chloride Vinyl toluene V M & P naphtha Water Xylene (p-xylene)
100-42-5 96-09-3 108-30-5 79-34-5 127-18-4 112-60-7 109-99-9 119-64-2 126-33-0 110-02-1 108-88-3 584-84-9 102-82-9 79-00-5 79-01-6 75-69-4 76-13-1 1330-78-5 121-44-8 112-27-6 112-24-3 3452-97-9 115-86-6 101-02-0 24800-44-0 20324-33-8 8006-64-2 109-52-4 110-59-8 108-05-4 75-01-4 622-97-9 7732-18-5 106-42-3
TABLE 8. SOLUBILITY PARAMETERS OF SOLVENTS IN INCREASING ORDER OF 8 Solvent
_____ d (MPa1^2)
Hydrogen Dimethyl siloxane Methane Dichlorodifluoromethane (Freon 12) Fluorocarbons, aliphatic Perfluoroheptane Ethane Perfluoromethylcyclohexane Neopentane
6.9 10.0-12.1 1L0 11.3 11.3-12.7 11.9 12.3 12.3 12.9
H-bonding group
(MPa1/2)
(ca!/cm)1/2
14.7 15.1 15.1 16.6 16.2 15.8 17.6 17.4 19.0 21.5 31.5 17.2 19.8 19.0 20.3 18.6 19.4 27.4
7.2 7.4 7.4 8.1 7.9 7.7 8.6 8.5 9.3 10.5 15.4 8.4 9.7 9.3 9.9 9.1 9.5 13.4
p p p p p p p p p m s p p p s m p m
23.3 20.1 18.2 23.7 15.8 19.6 18.8 15.5 14.9 17.2 15.1 21.9 22.7 17.2 17.6 19.0 18.8 17.8 16.6 20.1 19.6 15.6 18.4 16.0 18.6 15.6 47.9 18.0
11.4 9.8 8.9 11.6 7.7 9.6 9.2 7.6 7.3 8.4 7.4 10.7 11.1 8.4 8.6 9.3 9.2 8.7 8.1 9.8 9.6 7.6 9.0 7.8 9.1 7.6 23.4 8.8
m m p s s p p p p m s s s s m m s m p s p p m m p p s p
TABLE 8. cont'd Solvent Propane Decane (normal) Butylene (iso) (2-methylpropene) w-Butane Amylene (2-methyl-2-butene) Diisopropyl ether Low odor mineral spirits Nitro-;?-octane Pentane (normal) 1,3-Butadiene
S(MPa 1/2 ) 13.1 13.5 13.7 13.9 14.1 14.1 14.1 14.3 14.3 14.5
TABLE 8. cont'd Solvent Propyl ether (iso) Diisodecyl phthalate Shell Sol 72 Amyl ether (pentyl ether) Apco #140 solvent Ethyl caprylate Hexane (normal) Trichlorotrifluoroethane (1,1,2-trichlorotrifluoroethane) Diethyl ether Heptane (normal) Hexene-1 Isoprene Shell TS28 solvent Silicon tetrachloride Triethylamine Apco #18 solvent Butyl stearate Ethyl isobutyl ether Fluorocarbons (aromatic) Trichlorofluoromethane Amyl bromide (1-bromopentane) Octane (normal) Varnolene (varsol #2) V M & P naphtha Diisobutylene Socal solvent No. 3 Tributylamine Amyl acetate (iso) Apco thinner Butyl (iso) butyrate (normal) Butyl ether Difluorotetrachioroethane (Freon 112) Diisobutyl ketone Ethyl hexyl aery late Methylcyclohexane Methyl nonyl ketone Propyl ether (di-, normal) Vinyl chloride Dodecane Ethyl isobutyrate Methyl isovalerate Methyl n-valerate Propyl butyrate (iso) Socal solvent No. 2 Amyl formate (iso) Dibutoxyethyl phthalate (Kronisol) Diethylamine Dihexyl ether Diisopropyl ketone Methyl amyl acetate Butyl (normal) butyrate (normal) Butyl chloride (iso) (2-chloro-2-methylpropane) Dibutylamine Lauryl alcohol Propyl chloride (2-chloropropane) Socal solvent No. 1 Turpentine sec-Butyl acetate Butyl formate (iso) Butyl methacrylate Cyclohexane Cymene {para) (2-isopropyl toluene) Decyl acrylate (iso) Diacetone alcohol methyl ether (Pentoxone) Dichloropropane-2,2
TABLE 8. cont'd 2
<5(MPa*/ ) 14.5 14.7 14.7 14.9 14.9 14.9 14.9 14.9 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.3 15.3 15.3 15.3-16.8 15.5 15.6 15.6 15.6 15.6 15.8 15.8 15.8 16.0 16.0 16.0 16,0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.2 16.2 16.2 16.2 16.2 16.2 16.4 16.4 16.4 16.4 16.4 16.4 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8
,5(MPa1/2)
Solvent Ethyl amyl ketone (3-octanone) Ethyl benzoate Ethyl benzoate (secondary) Amyl chloride (1-chloropentane) Butyl acetate (iso) Dichlorofluoromethane (Freon 21) Ethylene glycol diethyl ether Ethyl methacrylate Ethyl orthoformate (triethyl orthoformate) Methoxy-4-methyl-4-pentanone-2 Methyl «-butyl ketone Methyl rc-hexyl ketone Methyl isobutyrate Amylformates (normal) Methyl isobutyrate (normal) Amyl iodide (1-iodopentane) Anethole (para) Benzonitrile sec-Butyl bromide (2-bromobutane) Ethyl propionate Methyl isoamyl ketone Methyl isobutyl ketone Propyl acetate (iso) Propyl butyrate Terpene B Tricresyl phosphate (tritolyl phosphate) Trimethyl-3,5,5-hexanol (nonyl alcohol) Trimethyl-3,5,5-hexanol (normal) Bicyclohexyl n-Butyl acetate Butyl acrylate (iso) Diethylene glycol monobutyl ether acetate Diphenyl 2-ethylhexyl phosphate Ethyl n-butyrate Methoxy-4-methyl-4-pentanol-2 Methyl amyl ketone Methyl isopropyl ketone Methyl-2-pentanediol monoethyl ether (Pentoxol) Methyl styrene (a) Propyl chloride (1-chloropropane) Propyl propionate Solvesso 150 Butyl iodide (normal) (1-iodobutane) Carbon tetrachloride Diethyl oxalate Dioxolane-1,3 Dipropylene glycol monomethyl ether Ethyl acrylate Ethylene glycol dimethyl ether Pine oil Propylbenzene (normal) Solvesso 100 Triphenyl phosphate Amylamine (normal) «-Butylamine n-Butyl bromide (1-bromobutane) Cyclopentane Dibutyl phenyl phosphate Diethylene glycol monolaurate Dioctyl adipate Dioctyl sebacate Methyl propyl ketone Piperidine Tripropylene glycol methyl ether Aroclor 1248
16.8 16.8 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 18.0
References page VII - 711
TABLE 8.
TABLE 8. cont'd
cont'd
Solvent AUyI chloride rc-Butyl acrylate Butyl propionate Chlorotoluene (para) Decahydronaphthalene (cis and trans) (decalin) Dibutyl sebacate Diethyl carbonate Diethyl ketone Dimethyl ether Ethylbenzene Mesitylene Methyl methacrylate Propyl acetate (normal) Xylene (p-xylene) Butyl formate(normal) Di-/i-hexyl phthalate Ethylidene chloride Ethyl morpholine (normal) Methyl acrylate Methyl n-butyrate Methyl caprolactone Methyl propionate Propyl bromide (1-bromopropane) Toluene Butyraldehyde Dibutyl fumarate Dibutyl maleate Dichloroethylene trans-1,2 Dichloropropane-1,2 Hydrogenated terphenyl (Monsanto HB-40) Mesityl oxide Vinyl acetate Diamyl phthalate Dichloroethylene, as-1,2 Ethyl acetate Isophorone Tetrahydrofuran Vinyl toluene Allyl acetate Benzene Celanese solvent 601 Diacetone alcohol (4-hydroxy-4-methyl-2-pentanone) Ethyl chloride Ethylene glycol methyl ether acetate Ethyl mercaptan (ethane thiol) Propylene oxide Propyl formate Trichloroethylene Tripropylene glycol Chloroform Dibutyl phthalate Methylcyclohexanone Methyl ethyl ketone Perchloroethylene Styrene Tetrachloroethylene (perchloroethylene) Triphenyl phosphite Benzaldehyde Butyl lactate (normal) Capronitrile (heptyl cyanide) Dibenzyl ether Dimethyl sulfide Ethyl formate Ethyl-2-hexanediol-l,3 (octylene glycol) Ethyl iodide (iodoethane)
1 2
5 (MPa / ) 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.6 18.6 18.6 18.6 18.6 18.6 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
Solvent Furan Nonyl phenol Pentachloroethane Acetyl chloride Chlorobenzene Chlorostyrene (ortho or para) Diethylene glycol monobutyl ether (normal) Ethylene glycol monobutyl ether Ethylhexanol Tetrahydronaphthalene (tetralin) Ethyl bromide (bromoethane) Methyl acetate Methyl bromide Trichloroethane-1,1,2 Valeronitrile (normal) Chloroethyl acetate (P) Dimethylaniline Ethylene bromide Methyl chloride Methylene chloride Methyl-2-pentanediol-2,4 Tetrachloroethane-1,1,2,2 Dodecanol-1 Acrolein Bromostyrene {ortho) Butyronitrile (iso) Dichloroethyl ether Ethylene dichloride (1,2-dichloroethane) Phenanthrene Thiophene Valeric acid (normal) Acetone Anthracene Bromobenzene Cyclohexanone Diethylacetamide (N1N) Diethyl maleate Diethyl-2,2-propanediol-l,2 (heptylene glycol) Dimethyl carbonate Naphthalene Nitro-2-propane Propionic acid Tetraethylene glycol Amyl alcohol Carbon disulfide Dichlorobenzene (ortho) Diethyl phthalate Dimethyl-2,2-butanediol-1,3 Dioxane-1,4 Dipentene Dipropyl phthalate Ethylamine Ethylene glycol diacetate Ethyl lactate Methyl isobutyl carbinol Nitrobenzene Propionic anhydride Acetic acid Caprolactone (s) Dibromoethylene-1,2 (cis and trans) Dipropylene glycol Iodobenzene Propylene glycol methyl ether (1,2-dimethoxypropane) Cresol (meta) Diethylene glycol monobutyl ether
S (MPa1/*) 19.2 19.2 19.2 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.6 19.6 19.6 19.6 19.6 19.8 19.8 19.8 19.8 19.8 19.8 19.8 20-21 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.7 20.7 20.7 20.7 20.7 20.7 20.9 20.9
TABLE 8. cont'd Solvent Diphenyl ether Methyl formate Methyl iodide Acetaldehyde Acetic anhydride Aniline Butyric acid (iso) (2-methylpropionic acid) Methyl-2-pentanediol-1,3 Nitro-1 -propane Octyl alcohol (normal) Hexanediol-2,5 Cy clopentanone Dibromoethane-1,2 Acrylonitrile Butyl alcohol (iso) (2-methyl-1-propanol) Butyric acid (normal) Butyronitrile (normal) Ethyl-2-butanol-l Ethylene glycol monoethyl ether (2-ethoxyethanol; Cellusolve) Hexamethylphosphoramide Methyl benzoate Styrene oxide Acetophenone 1 -Bromonaphthalene terf-Butyl alcohol (2-methyl-2-propanol) Diethylformamide (N,N) Heptyl alcohol (normal) Methyl salicylate Dimethyl phthalate Hexyl alcohol (normal) Pyridine Triethylene glycol s
TABLE 8. cont'd 1 2
5(MPa / ) 20.9 20.9 20.9 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.2 21.3 21.3 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.7 21.7 21.7 21.7 21.7 21.7 21.9 21.9 21.9 21.9 22.1 22.1 22.1 22.1 22.1 22.1 22.3 22.3 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.7 22.7 22.7 22.7 22.9 22.9 22.9 22.9 22.9 23.1 23.1 23.3 23.3 23.3 23.3 23.3 23.5 23.5
Solvent
d (MPa1/2)
Pentanediol-1,5 Propyl alcohol (2-propanol) Acetylmorpholine (N) 1,3-Butanediol Tolylene diisocyanate (4-methyl-l,3-phenylene diisocyanate) AHyI alcohol Methylene iodide Acetonitrile Propyl alcohol (1-propanol) Santicizer 8 Acrylic acid Dimethyltetramethylene sulfone Benzyl alcohol 1,4-Butanediol Butylene-2,3 carbonate Diethylene glycol Dimethylformamide (Af5AO Dioctyl phthalate Formic acid Hydrogen cyanide Ethylene chlorohydrin (2-chloroethanol) Ethylacetamide (normal) Ethylenediamine Diethyl sulfone Methylene glycolate Dimethyl phosphite Furfuryl alcohol Methyl propyl sulfone Phenylhydrazine Butyrolactone (y) Chloroacetonitrile Propylene glycol (1,2-propanediol) Caprolactam (e) Ethyl alcohol Nitromethane Methyltetramethylene sulfone Formylmorpholine (N) Dimethylnitroamine (N1N) Propiolactone Propylene-1,2-carbonate Methyl ethyl sulfone Pyrone (y) Tetramethylene sulfone (sulfolane, tetrahydrothiophene 1,1-dioxide) Maleic anhydride Piperidone Diacetylpiperazine (N,N) Ethylene formamide (N) Dimethyl sulfoxide Methanol Ethylene glycol Methylacetamide Ethylene carbonate Pyrrolidine (a) Malononitrile Ethylene cyanohydrin (3-hydroxypropionitriIe) Diformylpiperazine (AW) Succinic anhydride Methylformamide (AO Ammonia Glycerol Hydrazine Formamide Water
23.5 23.5 23.7 23.7 23.7 24.1 24.1 24.3 24.3 24.3 24.6 24.6 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 25.0 25.2 25.2 25.4 25.4 25.6 25.6 25.6 25.6 25.8 25.8 25.8 26.0 26.0 26.0 26.4 26.6 26.8 27.2 27.2 27.4 21A 27.4 27.8 27.8 28.0 28.4 29.7 29.7 29.9 29.9 30.1 30.1 30.9 31.1 31.5 31.5 32.9 33.4 33.8 37.3 39.3 47.9
References page VII-711
TABLE 9. HANSEN SOLUBILITY PARAMETERS OF LIQUIDS AT 25°C Solubility parameters (MPa 1/2 ) Solvent
CAS Number
Molar volume (cm3/mol)
S^
^P
^h
^
9.1. PARAFFINIC HYDROCARBONS n-Butane n-Pentane Pentane(iso) rt-Hexane M-Heptane rc-Octane 2,2,4-Trimethylpentane rc-Nonane rc-Decane rc-Dodecane n-Hexadecane n-Eicosane Cyclohexane Methylcyclohexane ds-Decahydronaphthalene rrans-Decahydronaphthalene
106-97-8 109-66-0 78-78-4 110-54-3 142-82-5 111-65-9 540-84-1 111-84-2 124-18-5 112-40-3 544-76-3 112-95-8 110-82-7 108-87-2 493-01-6 493-02-7
101.4 116.2 117.4 147.4 147.4 163.5 166.1 179.7 195.9 228.6 294.1 359.8 108.7 128.3 156.9 159.9
14.1 14.5 13.7 14.9 15.3 15.6 14.3 15.8 15.8 16 16.4 16.6 16.8 16 18.8 18.8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.2 1 0 0
14.1 14.5 13.7 14.9 15.3 15.6 14.3 15.8 15.8 16 16.4 16.6 16.8 16 18.8 18.8
9.2. AROMATIC HYDROCARBONS Benzene Toluene Naphthalene'7 Styrene o-Xylene Ethylbenzene 1-Methylnaphthalene Mesitylene Tetrahydronaphthalene Biphenyl /7-Diethylbenzene
71-43-2 108-88-3 91-20-3 1-42-5 95-47-6 1-41-4 90-12-0 108-67-8 119-64-2 92-52-4 105-05-5
89.4 106.8 111.5 115.6 121.2 123.1 138.8 139.8 136.0° 154.1 156.9
18.4 18 19 18.6 17.8 17.8 20.6 18 19.6° 21.5 18
0" 1.4 2 1 1 0.6 0.8 0 0 1 0
2 2 5.9 4.1 3.1 1.4 4.7 0.6 2.9 2 0.6
18.6 18.2 20 19 18 17.8 21.2 18 20 21.7 18
9.3. HALOHYDROCARBONS Methyl chloride Methylene dichloride Bromochloromethane Chlorodifluoromethane Dichlorofluoromethane Ethyl bromide 1,1-Dichloroethylene Ethylene dichloride Methylene diiodidec Chloroform 1,1-Dichloroethane Ethylene dibromide Bromoform rc-Propyl chloride Trichloroethylene Dichlorodifluoromethane Trichiorofluoromethane Bromotrifluoromethane Carbon tetrachloride 1,1,1-Trichloroethane Tetrachloroethylene Chlorobenzene rt-Butylchloride 1,1,2,2-Tetrachloroethane Bromobenzene o-Dichlorobenzene Benzyl chloride l,l,2,2-Tetrabromoethanec 1,2-Dichlorotetrafluoroethaner 1,1,2-Trichlorotrifluoroethane Cyclohexyl chloride
74-87-3 75-09-2 74-97-5 75-45-6 75-43-4 74-96-4 75-35-4 107-06-2 75-11-6 67-66-3 75-34-3 106-93-4 75-25-2 540-54-5 79-01-6 75-71-8 75-69-4 75-63-8 56-23-5 71-55-6 127-18-4 108-90-7 109-69-3 79-34-5 222-22-2 95-50-1 100-44-7 79-27-6 76-14-2 76-13-1 542-18-7
55.4 63.9 65 72.9 75.4 76.9 79 79.4 80.5 80.7 84.8 87 87.5 88.1 90.2 92.3 92.8 97 97.1 1.4 101.1 102.1 104.9 105.2" 105.3 112.8 115 116.8 117 119.2 121.3
15.3 18.2 17.4 12.3 15.8 16.6 17 19.0° 17.8 17.8 16.6 19.6 21.5" 16 18 12.3 15.3 9.6 17.8 17 19 19 16.4 18.8 20.5 19.2 18.8° 22.7 12.7 14.7 17.4
6.1 6.3 5.7 6.3 3 8 6.8 7.4 3.9 3.1 8.2 6.8 4.1 7.8 3.1 2 2 2.5 0 4.3 6.5" 4.3 5.5 5.1 5.5 6.3 7.2 5.1 1.8 1.6 5.5
3.9 6.1 3.5 5.7 5.7 5.1 4.5 4.1 5.5 5.7 0.4 12.1 6.1° 2 5.3 0 0 0 0.6 2 2.9" 2 2 9.4 4.1 3.3 2.7 8.2 0 0 2
17 20.3 18.6 14.9 17 19 18.8 20.9 19 19 18.4 23.9 22.7 17.8 19 12.5 15.5 10 17.8 17.6 20.3 19.6 17.4 21.7 21.7 20.5 20.3 24.8 12.9 14.7 18.4
TABLE 9. cont'd Solubility parameters (MPa 1/2 ) Solvent
CAS Number
1-Bromonaphthaiene Trichlorobiphenylf/ Perfluoromethylcyclohexane Perfluorodimethylcyclohexane Perfluoro-/7-heptane 9.4. ETHERS Furan Epichlorohydrin Tetrahydrofuran 1,4-Dioxane Methylal (dimethoxymethane) Diethyl ether Bis(2-chloroethyl) ether Anisolec Bis-(2-methoxyethyl) ether Dibenzyl etherc Di-(chloro-iso-propyl) ether Bis-(m-phenoxyphenyl) ether 9.5. KETONES Acetone Methyl ethyl ketone (2-butanone) Cyclohexanone Diethyl ketone (3-pentanone) Mestiyl oxide (4-methyl-3-pentene-2-one) Acetophenone Methyl iso-butyl ketone (2-hexanone) Methyl iso-amyl ketone Isophorone Di-iso-butyl ketone (2,6-dimethyl-4-heptanone) 9.6. ALDEHYDES Acetaldehyde 2-Furfuraldehyde (furfural) Butyraldehyde Benzaldehyde
Molar volume (cm3/mol)
#d
^P
^h
90-11-9 7012-37-5 355-02-2 335-27-3 335-57-9
140 187 196 217.4 227.3
20.3 19.2 12.5 12.5 12.1
3.1 5.3 0 0 0
4.1 4.1 0 0 0
20.9 20.5 12.5 12.5 12.5
110-00-9 106-89-8 109-99-9 123-91-1 109-87-5 60-29-7 107-30-2 100-66-3 111-96-6 103-50-4 108-60-1 748-30-1
72.5 79.9 81.7 85.7 88.8 104.8 117.6 119.1 142 192.7 146 373
17.8 19 16.8 19 15.1 14.5 18.8 17.8 15.8 17.4 19 19.6
1.8 10.2 5.7 1.8 1.8 2.9 9 4.1 6.1 3.7 8.2 3.1
5.3 3.7 8 7.4 8.6 5.1 5.7 6.8 9.2 7.4 5.1 5.1
18.6 21.9 19.4 20.5 17.6 15.8 21.7 19.4 19.2 19.2 21.3 20.5
67-64-1 78-93-3 108-94-1 96-22-0 141-79-7 98-86-2 591-78-6 78-59-1 108-83-8
74 90.1 104 106.4 115.6 117.4 125.8 142.8 150.5 177.1
15.5 16 17.8 15.8 16.4 19.6° 15.3 16 16.6 16
10.4 9 6.3 7.6 7.2 8.6 6.1 5.7 8.2 3.7
7 5.1 5.1 4.7 6.1 3.7 4.1 4.1 7.4 4.1
20.1 19 19.6 18.2 18.8 21.7 17 17.4 19.8 16.8
75-07-0 98-01-1 123-72-8 100-52-7
57.1 83.2 88.5 101.5
14.7 18.6 14.7 19.4
8 14.9 5.3 7.4
11.3 5.1 7 5.3
20.3 24.3 17.2 21.5
66 76.8 79.7 80.2 85
19.4 19 15.5 15.5 20.1
21.7 16.6 7.2 8.4 18
5.1 7.4 7.6 8.4 4.1
29.5 26.2 18.8 19.6 27.2
95.6 98.5 99.9 121 131.5 132.5 133.5 136.2 148.8 163 163 166.8 171 198 266 306 613 345
15.5 15.8" 16.8 16.6 15.8 15.8 15.1 16 15.3 15.1 18.6" 18.4 16.8 17.6 17.8° 19 19 16.4
10 5.3 16 3.1 14.7 3.7 3.7 4.7 3.1 2.9 10.8* 8.2 11.5 9.6 8.6 11.3 12.3 6.3
6.8 7.2* 10.2 6.1 7.2 6.3 6.3 10.6 7 5.9 4.9 4.1 9.2 4.5 4.1 3.1 4.5 4.3
19.6 18.2 25.4 18 22.7 17.4 16.8 19.6 17.2 16.6 22.1 20.5 22.3 20.5 20.3 22.3 23.1 18
9.7. ESTERS Ethylene carbonate (l,3-dioxolan-2-one) 96-41-9 y-Butyroiactone (4-hydroxybutryic acid 7-lactone) 96-48-0 Methyl acetate 79-20-9 Ethyl formate 109-94-4 Propylene carbonate (1,2-propanediol cyclic 108-32-7 carbonate) Ethyl chloroformate 541-41-3 Ethyl acetate 141-78-6 Trimethyl phosphate 512-56-1 Diethyl carbonate 105-58-8 Diethyl sulfate 64-67-5 n-Butyl acetate 123-86-4 Iso-butyl acetate 540-88-5 2-Ethoxyethyl acetate (Cellusolve acetate) 111-15-9 Iso-amyl acetate 628-63-7 Iso-butyl iso-butyrate 109-21-7 Dimethyl phthalate 131-11-3 Ethyl frans-cinnamate 103-36-6 Triethyl phosphate 78-40-0 Diethyl phthalate 84-66-2 Di-rc-butyl phthalate 84-74-2 n-Butyl benzyl phthalate 85-68-7 Tricresyl phosphate (tritolyl phosphate) 1330-78-5 Tri-n-butyl phosphate 126-73-8
S
References page VII - 711
TABLE 9. cont'd Solubility parameters (MPa 1/2 ) Solvent Iso-propyl palmitate c Di-n-butyl sebacate Methyl oleaterf Dioctyl phthalate (bis(2-ethylhexyl) phthalate) Di-butyl stearatec
CAS Number 2239-78-3 109-43-3 112-62-9 117 81-7
9.8. NITROGEN-CONTAINING COMPOUNDS Acetonitrile 75-05-8 Acrylonitrile 107-13-1 Propionitrile 107-12-0 Butyronitrile 109-74-0 Benzonitrile 100-47-0 Nitromethane 75-52-5 Nitroethane 79-24-3 2-Nitropropane 79-46-9 Nitrobenzene 98-95-3 Ethanolamine (2-aminoethanol) 141-43-5 Ethylene diamine 107-15-3 l,l-Dimethylhydrazine c 57-14-7 2-Pyrrolidone (2-pyrrolidinone) 616-45-5 Pyridine 110-86-1 rc-Propylamine 107-10-8 Morpholine 110-91-8 Aniline 62-53-3 Af-Methyl-2-pyrrolidone (1 -methyl872-50-4 2-pyrrolidinone) n-Butylamine 109-73-9 Diethylamine 109-87-7 Diethylenetriamine 111-40-0 Cyclohexylamine 108-91-8 Quinoline 91-22-5 Di-rc-propylamine 142-84-7 Formamide 75-12-7 Dimethylformamide 68-12-2 MN-Dimethylacetamide 127-19-5 1,1,3,3-Tetramethylurea 632-22-4 Hexamethyl phosporamidec (hexamethyl 680-31-9 phosphoric triamide)
Molar volume (cm 3 /mol)
— 8d
S9
5h
d
330 339 340 377 382
14.3 14.5 14.5 16.6 14.5
3.9 3.9 3.9 7 3.7
3.7 3.7 3.7 3.1 3.5
15.3 15.5 15.5 18.2 15.3
52.6 67.1 70.9 87 102.6 54.3 71.5 86.9 102.7 60.2 67.3 76 76.4 80.9 83 87.1 91.5 96.5
15.3 16.5 15.3 15.3 17.4 15.8 16 16.2 20.1 17.2 16.6 15.3 19.4 19 17 18.8 19.4 18
18 17.4 14.3 12.5 9 18.8 15.5 12.1 8.6 15.5 8.8 5.9 17.4 8.8 4.9 4.9 5.1 12.3
6.1 6.8 5.5 5.1 3.3 5.1 4.5 4.1 4.1 21.3 17 11 11.3 5.9 8.6 9.2 10.2 7.2
24.6 24.8 21.7 20.5 19.8 25 22.7 20.7 22.1 31.5 25.4 19.8 28.4 21.7 19.6 21.5 22.5 22.9
99 103.2 108 115.2 118 136.9 39.8 77 92.5 120.4 175.7
16.2° 14.9 16.8 17.4 19.4 15.3 17.2 17.4 16.8 16.8 18.4
4.5* 2.3 13.3 3.1 7 1.4 26.2 13.7 11.5 8.2 8.6
8 6.1 14.3 6.5 7.6 4.1 19 11.3 10.2 11 11.3
18.6 16.4 25.8 18.8 22.1 16 36.6 24.8 22.7 21/7 23.3
20.5 18.4 15.8 19 17
0 16.4 6.5 19.4 3.1
0.6 10.2 7.2 12.3 2
20.5 26 6 18.4 29 9 17.4
9.9. SULFUR-CONTAINING COMPOUNDS Carbon disulfide Dimethyl sulfoxide (methyl sulfoxide) Ethanethiolc (ethyl mercaptan) Dimethyl sulfoneb (methyl sulfone) Diethyl sulfide (ethyl sulflde)
75-15-0 67-68-5 75-08-1 67-71-0 352-93-2
60 71.3 74.3 75 108.2
9.10. ACID HALIDES AND ANHYDRIDES Acetyl chloride Succinic anhydride 6 Acetic anhydride
75-36-5 108-30-5 108-24-7
71 66.8 94.5
15.8 18.6 16.0"
10.6 19.2 11.7"
3.9 16.6 10.2°
19.4 31.5 22.3
67-56-1 64-17-5 109-78-4
40.7 58.5 68.3
15.1 15.8 17.2
12.3 8.8 18.8
22.3 19.4 17.6
29.7 26.6 30.9
107-18-6 71-23-8 67-63-0 627-30-5 98-00-0 71-36-3 4221-99-2
68.4 75.2 76.8 84.2 86.5 91.5 92
16.2 16 15.8 17.6 17.4 16 15.8
10.8 6.8 6.1 5.7 7*6 5.7 5.7
16.8 17 4 16.4 14.7 15*1 15 8 14 5
25 8 246 23.5 23 7 24*3 23 1 22 1
9.11. ALCOHOLS Methanol Ethano1
Ethylene cyanohydrin (hydracrylonitrile; 3-hydroxypropionitrile) Ally 1 alcohol (2-propen-l-ol) 1-Propanol 2-Propanol 3-Chloropropanol (trimethylene chlorohydrin) Furfuryl alcohol 1-Butanol (butyl alcohol) 2-Butanol
TABLE 9.
cont'd Solubility parameters (MPa 1/2 )
Solvent 2-Methyl-l-propanol (isobutyl alcohol) Benzyl alcohol Cyclohexanol 1-Pentanol 2-Ethyl-l-butanol Diacetone alcohol (4-hydroxy-4-methyl2-pentanone) 1,3-Dimethyl-l-butanol Ethyl lactate n-Butyl lactate Ethylene glycol monomethyl ether (2-methoxyethanol) Ethylene glycol monoethyl ether (2-ethoxyethanol) Cellusolve Diethylene glycol monomethyl ether (2-(2-methoxyethoxy)ethanol) Diethylene glycol monoethyl ether (2-(2-ethyoxyethyoxy)ethanol) Ethylene glycoi mono-rc-butyl ether (2-butoxyethanol) Butyl Cellusolve 2-Ethyl-l-hexanol 1-Octanol (capryl alcohol) 2-Octanol Diethylene glycol mono-n-butyl ether (2-(2-butoxyethoxy)ethanol) 1-Decanol Tridecyl alcohol* Nonylphenoxyethanol^ Oleyl alcohol' Triethylene glycol mono-oleyl ether 9.12. ACIDS Formic acid Acetic acid Benzoic acid* fi-Butyric acidc n-Octanoic acidc Oleicacid Stearicacid* 9.13. PHENOLS Phenol 1,3-Benzenediol*7 (resorcinol) m-Cresol 0-Methoxyphenol (guaiacol) Methyl salicylate Nonyl phenol' 9.14. WATER Waterc 9.15. POLYHYDRIC ALCOHOLS Ethylene glycol Glycerol Propylene glycol (1,2-propanediol) 1,3-Butanediol Diethylene glycol Triethylene glycol Hexylene glycol (2-methyl-2,4-pentanediol) Dipropylene glycol'
CAS Number
Molar volume (cm3/mol)
^d
78-83-1 100-51-6 108-93-0 71-41-0 97-95-0 123-42-2
92.8 103.6 106 109 123.2 124.2
105-30-6 687-47-8 138-22-7 109-86-4 111-15-9
dp
Sh
S
15.1 18.4 17.4 16 15.8 15.8
5.7 6.3 4.1 4.5 4.3 8.2
16 13.7 13.5 13.9 13.5 10.8
22.7 23.7 22.5 21.7 21.3 20.9
127.2 115 149 79.1
15.3 16 15.8 16.2
3.3 7.6 6.5 9.2
12.3 12.5 10.2 16.4
19.8 21.7 19.8 24.8
97.8
16.2
9.2
14.3
23.5
111-77-3
118
16.2
9.2
12.3
22.3
111-90-0
130.9
16.2
9.2
12.3
21.9
111-76-2
131.6
16
5.1
12.3
22.3
104-76-7 111-87-5 123-96-6 112-34-5
157 157.7 159.1 170.6
16 17 16.2 16
3.3 3.3 4.9 7
11.9 11.9 11 10.6
20.1 20.9 20.3 20.5
112-30-1 112-70-9 27986-36-3 143-28-2
191.8 242 275 316 418.5
17.6 14.3 16.8 14.3 13.3
2.7 3.1 10.2 2.7 3.1
10 9 8.4 8 8.4
20.5 17.2 21.3 16.6 16
64-18-6 64-19-7 65-85-0 107-92-6 124-07-2 112-80-1 57-11-4
37.8 57.1 100 110 159 320 326
14.3 14.5 18.2 14.9 15.1 14.3 16.4
11.9 8 7 4.1 3.3 3.1 3.3
16.6 13.5 9.8 10.6 8.2 5.5 5.5
25 21.3 21.9 18.8 17.6 15.8 17.6
108-95-2 108-46-3 108-39-4 90-05-1 119-36-8 25154-52-3
87.5 87.5 104.7 109.5 129 231
18 18 18 18 16 16.6
5.9 8.4 5.1 8.2 8 4.1
14.9 21.1 12.9 13.3 12.3 9.2
24.1 28.8 22.7 23.7 21.7 19.4
7732-18-5
18
15.5°
16.0"
42.4°
47.9
107-21-1 56-81-5 57-55-6 107-88-0 111-46-6 112-27-6 107-41-5 110-98-5
55.8 73.8 73.6 89.9 95.3 114 123 131.3
17 17.4 16.8 16.6 16.2 16 15.8 16
11 12.1 9.4 10 14.7 12.5 8.4 20.3
26 29.3 23.3 21.5 20.5 18.6 17.8 18.4
32.9 36.2 30.3 28.8 29.9 27.4 25.2 31.7
° Altered from previously published value. * Solid, treated as supercooled liquid. c Values uncertain. d Impure commercial product of this nominal formula.
References page VII - 711
TABLE 10. SOLUBILITY PARAMETERS OF POLYMERS Molar volume (cm3/gmol)
Polymer
Solubility parameters (MPa) 1/2 -—— — <5d <5P Sh <*
Method
J( 0 C)
Refs.
10.1. MAIN CHAIN CARBON POLYMERS 10.1.1. POLY(DIENES) Poly(butadiene)
3.42
1465 17.19 17.09 17.15 17.2-17.6 16.6 17.6 16.2 ±0.2 17.19 17.6 16.6 17.09 16.6 16.47 16.6 17.02 16.1 17.06 17.39 17.06 17.60 18
4.2
17.90-17.72 18.4 19.4 18.93 19.19 19.4 18.2 19.4 20.11-20.26 19.19 21.1 21.28-21.38 20.5 ±0.6 21
Emulsion Sodium Hydrogenated 16.98 PoIy(I f2-butadiene) Poly(3-methyl 1,2-butadiene) PoIy(I f3-butadiene) Poly(2,3-dimethyl 1,3 butadiene) Poly(cw-butadiene) elastomer (Bunahyls CBlO, Chemische Werke Huels) Poly(butadiene-co-acrylonitrile) BUNA N (82/18) (82/20)
-a
1.02
58.85 73.88 58.85 88.91 17.53
2.25
BUNA N (75/25)
(70/30) (61/39) Hycar (BFGoodrich) Poly(butadiene-co-styrene) BUNA S (94/6) (90/10) (87.5/12.5) (85/15)
(75/25)
18.6
8.8
16.45-16.64 17.13 16.39-16.57 16.55 17.6 17.31 17.19 17.35 17.4 17.39 17.41 17.39 17.5 17.29 17.47 16.55 16.49 16.6 17.5 17.56 17.5 17.6
CaIc. CaIc. Obs. IPGC
75
CaIc. Swelling Av. 129
Xe shift CaIc.HK" CaIc.HK CaIc.HK CaIc.HK
CaIc. Obs. CaIc. Obs. Obs.
25
IPGC
75
CaIc. Obs. CaIc. Obs. CaIc. Obs. Obs. CaIc. Obs.
28 66 110 112 112 118 72 70 79 79 62 104 75 75 75 98 152 3 3 3 3 56 19 66 66 112 42 104 118 79 19 43 19 19 70 56 19 110 19 43 104 112 110 112 112 79 66 66 104 UO 112 112 112 118 79 66 66 104
TABLE 10. cont'd Molar volume (cm3/gmol)
Polymer
Solubility parameters (MPa) 1 / 2 — — Sd £P ^h S
(71.5/28.5) (70/30) (60/40)
Poly(butadiene-co-styrene) (Polysar 5630, Polymer Corp.) Poly(butadiene-a?-vinylpyridine) Poly(chloroprene)
17.55
3.36
2.7
PoIy(1,4-cis-isoprene)
Poly(isoprene) elastomer (Cariflex IR 305, Shell) Natural Rubber
16.57
Guttapercha Chlorinated 10.1.2. POLY(ALKENES) Poly(2,3-dimethyl 1-butene) Poly(3,3-dimethyl 1-butene)
93.15 93.15
1.41
-0.82
16.55-16.72 17.51 17.35 17.5 17.7 17.74 17.74 17.76 17.74 17.8 18.07 19.13 18.42 16.59 19.19 16.74 18.93 17.6 16.8 18.8 16.6 17.6 17.54-17.74 15.18 18.0 ±0.4 17.6 15.18 16.64 16.68 16.57 20.46 16.47 16.47 16.57 16.68 16.6 16.4 16.47 16.82 16.68 16.2 16.33 17.09 16.2 16.65 16.2 16.6 16.68 17.09 17 16.6 16.4 17.09 16.33 16.6 16.42-16.49 16.2 16.6 19.2 18.05 18.05
Method
T(0C)
19 112 110 110 112 112 79 66 66 104 56
CaIc. Obs. CaIc. Obs.
25 CaIc. CaIc. Obs. Obs.
Swelling IPGC 129 Xe shift CaIc.
Swelling Av. Swelling Swelling CaIc. Swelling
75 25 25 35 35 35 35 35 35
Av. CaIc. Obs. Obs. Obs.
129 Xe shift CaIc.
Calc.HK CaIc.HK
Refs.
25 25
79 110 28 112 42 104 118 44 72 79 43 19 19 70 152 28 42 74 74 74 74 74 74 74 75 76 76 110 112 112 112 112 72 56 43 19 112 104 124 118 19,10 79 43 19 19 152 73 21-24 3 3
References page VII - 711
TABLE 10.
contd Solubility parameters (MPa) i / 2
Polymer Poly(3-methyl 1-butene) Poly(2-methyl 1-butene) Poly(2-methyl 2-butene) Polyethylene
Poly(ethylene) Poly(l,l-diphenyl ethylene) Poly(methylene) Poly(ethylene-co-vinyl acetate)
Molar volume (cm3/gmol)
<5d
Sp
Sh
78.12 78.12 78.12
33.03 166.29
Poly(isobutene)
Poly(isobutylene) (Lutonal IC/123, BASF)
14.53
2.52
4.66
Poly(isobutene-co-isoprene) butyl rubber Poly(propylene) Poly(propylene) 48.06 Poly(propylene), isotactic (Profax 6701, Hercules) Poly(propylene), chlorinated (Parlon PlO, Hercules) Poly(2-methyl propene) 63.09 10.1.3. POLY(ACRYLICS) AND POLY(METHACRYLICS) Poly(acrylic acid), butyl ester
Poly(acrylic acid), ethyl ester
17.19 20.26
6.32
5.4
5 17.76 17.92 17.68 15.76 16.6 16 16.2 17.09 16.4 16.2 16.2 16.8 16.2 18.4 17.99 16.96 19.93 14.3 18.6 ± 0.9 17.0 ±0.4 14.5 16.06 16 16.47 16.25 16.06 15.76 16.47 16.4 16.47 16.6 16 17 16.47 16.47 15.47 15 15.9-16.06 16.47 15.76 18.8 19.2 17.49 17.19 21.89 17.72 18 18.01 18.52 17.4 18.6 18.52 19.77 19.13 19.2 19.8 19.2 19.13 19.19 18.8 20.4
Method
T( 0 C)
Calc.HK CaIc.HK CaIc.HK CaIc.
CaIc. CaIc. Obs. 129 Xe shift CaIc. CaIc.HK Calc.HK Extrapol. IPGC IPGC CaIc. Av. Swelling Swelling
20 25 75 35
25 CaIc. Obs.
CaIc.
129
Xe shift
25 CaIc. CaIc.HK CaIc.HK 35 Av. Swelling CaIc. Swelling CaIc. Av. Swelling CaIc. Swelling CaIc. CaIc.
Refs. 3 3 3 110 112 58 97 8 124 118 72 97 73 152 119 3 3 45 71 70 28 74 74 74 19,10 110 112 112 58 104 21-24 19 124 72 79 56 152 19 104 112 58 124 3 81 56 3 75 75 75 75 77 77 119 75 75 75 77 77 45 62 119
TABLE 10. cont'd Molar volume (cm3/gmol)
Polymer
Solubility parameters (MPa)1/2 —— dd Sp Sh S
Poly(acrylic acid), isobornyl ester Poly(acrylic acid), methyl ester
Poly(acrylic acid), propyl ester Poly(a-chloroacrylic acid), methyl ester Poly(methacrylic acid), butyl ester
Poly(methacrylic acid), isobutyl ester Poly(methacrylic acid), sec-butyl ester Poly(methacrylic acid), ethoxyethyl ester Poly(methacrylic acid), ethyl ester Poly(ethyl methacrylate) (Lucite 2042, DuPont) Poly(methacrylic Poly(methacrylie Poly(methacrylic Poly(methacrylic
18.64
10.52
7.51
acid), n-hexyl ester acid), isobornyl ester acid), lauryl ester acid), methyl ester
Poly(methyl methacrylate) (Rohm and Haas) Poly (methacry lie acid), octyl ester Poly(methacrylic acid), propyl ester Poly(methacrylic acid), stearyl ester Poly(methacrylonitrile)
18.64
10.52
7.51
10.1.4. POLY(VINYL ALCOHOLS) Poly(vinyl alcohol)
10.1.5. POLY(VINYL ESTERS) Poly(vinyl acetate)
acetate) (Mowilith 50, Hoechst) acetate-co-vinyl alcohol) butyral) (Butvar B76, Shawinigan) propionate)
T(0C)
CaIc. Av. Swelling CaIc. Swelling Swelling Av. CaIc. CaIc. Swelling Swelling CaIc. IPGC IPGC IPGC Swelling
140 140 140
Swelling CaIc. 129 Xe shift CaIc.
CaIc. 25 Swelling CaIc. CaIc. CaIc. CaIc. CaIc. CaIc.
25.78 21.7 22.5
Poly(4-vinyl phenol)
Poly(vinyl Poly(vinyl Poly(vinyl Poly(vinyl
16.8 20.7 20.77 20.1 20.77 21.3 20.7 18.52 18.42 18.4 20.7 17.9 17.8 18.01 17.9 17 14.7 14.7 14.7 18.4 20.3 18.31 18.2 18.6 22.69 20.4 17.6 16.6 16.8 18.58 18.52-18.66 19.4 19.34 26.27 18.93 18.4-19.4 18.58 19.5 22.69 17.2 18 16 21 21.9
Method
20.93
11.27
9.66
18.6
4.36
13.03
19.62 19.13 20.93 19.2 18 22.61 19.2 19.2 25.66 21.94 23.12 18.01 18.52
Refs. 62 75 75 75 77 77 77 75 75 75 112 77 77 77 77 73 31 31 31 77 77 77 77 73 56 152 73 62 73 19 19 77 77 110 112 7 118 119 56 73 73 73 118 112 110 139 139
CaIc.
25 35
CaIc. CaIc. 25 CaIc. CaIc. 35 CaIc.
28 78 119 78 78 110 112 118 56 119 56 78 78
References page VII - 711
TABLE 10. cont'd Solubility parameters (MPa) 1 / 2 Polymer
Molar volume (cm 3 /gmol)
<5d
Sp
Sh
10.1.6. POLY(ALLYL ETHERS) AND POLY(VINYL ETHERS) Poly(allyl methyl ether) 70.79 Poly(allyl ethyl ether) 85.82 Poly(allyl propyl ether) 100.85 Poly(allyl isopropyl ether) 100.85 Poly(allyl phenyl ether) 122.39 Poly(allyl 2, tolyl ether) 137.41 Poly(allyl 3, tolyl ether) 137.41 Poly(allyl 4, tolyl ether) 137.41 Poly(diallyl ether) 96.61 Poly(vinyl methyl ether) 55.76 Poly(vinyl ethyl ether) 70.79 Poly(vinyl propyl ether) 85.82 Poly(vinyl butyl ether) 100.85 Poly(vinyl isopropyl ether) 85.82 Poly(vinyl isobutyl ether) 100.85 Poly(vinyl isoamyl ether) 115.88 Poly(vinyl-l-amyl methyl ether) 119.91 Poly(vinyl-2-ethyl hexyl ether) 160.96 Poly(vinyl-2-methoxyethyl ether) 93.52 Poly(vinyl phenyl ether) 107.36 Poly(vinyl-1 -phenyl methyl ether) 122.39 Poly(vinyl-1-methyl phenyl ether) 122.39 Poly(vinyl-1 -phenyl phenyl ether) 174.01 PoIy(I-methyl vinyl ethyl ether) 85.82 PoIy(I-ethyl vinyl ethyl ether) 100.85 PoIy(I-phenyl vinyl ethyl ether) 137.41 Poly(divinyl ether) 66.55
19.44 19.29 19.21 19.21 20.19 20.03 20.03 20.03 18.84 19.66 19.44 19.29 19.21 19.29 19.21 19.13 20.83 18.99 20.44 20.19 20.19 20.19 20.50 19.29 19.21 20.03 18.93
10.1.7. POLY(VINYL HALIDES) AND POLY(VINYL NITRILES) Poly(acrylonitrile)
18.21 Poly(allyl acetonitrile) Poly( 1-methyl acrylonitrile) Poly(2-methyl acrylonitrile) Poly(acrylonitrile-co-isopropyl methacrylate) Poly(tetrafluoroethylene)
16.16
6.75
81.13 66.09 66.09
Poly(vinyl bromide) Poly(vinyl chloride)
Poly(vinyl chloride) (Vipla KR, K = 50, Montecatini) Poly(vinyl chloride) Poly(vinyl chloride), high molecular weight
Poly(vinyl chloride), chlorinated
5
18.23 18.72 18.82
7.53 10.03 10.03
8.35 3.07 3.07
25.27 25.6 26.09 31.5 25.27 24.18 25.45 25.45 19.84 12.7 12.7 19.42 19.6 19.19-19.34 19.28 20.67 19.54 19.8 19.2 19.8 22.1 20.1 19.5 19.8 20.32 21.42 21.46 21.54 20.13 20.25 20.3 19
Method
T( 0 C)
CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK Calc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
CaIc. CaIc.
25
CaIc. HK CaIc. HK CaIc. HK CaIc.
CaIc. CaIc. Obs.
CaIc.
Turbidity Swelling Vise. Vise.
Refs.
25
119 66 112 118 98 3 3 3 141 112 118 34 112 19 28 110 112 72 19 21-24 58 124 118 72 119 56 33 98 162 162 162 117
TABLE 10. cont'd Solubility parameters (MPa) 1 / 2 Polymer
Molar volume (cm3/gmol)
dd
dp
6h
Poly(vinyl chloride-co-vinyl acetate) (87/13) VYHH Poly(vinyl chloride-o?-vinyl acetate-comaleic acid) Poly(vinyl chloride-c-vinyl acetate-covinyl alcohol) Poly(allyl cyanide) 66.09 Poly(allyl isocyanide) 66.09 Poly(vinylidene chloride) Poly(vinylidene cyanide-o^-vinyl acetate) Poly(vinylidene fluoride)
17.2 16.6, 17.9 16.6 13.7
12.5
9.2
10.6
8.2
10.1.8. POLY(STYRENES) Poly(styrene)
Poly(styrene) (Polystyrene LG, BASF) Poly(o-methyl styrene) Poly(m-methyl styrene) Poly(/?-methyl styrene) PoIy(I-methyl styrene) Poly(methoxy styrene) PolyCcyano styrene) Poly(nitro styrene) Poly(2-nitro styrene) Poly(styrene-c<9-divinylbenzene) 5% crosslinking 10% crosslinking 20% crosslinking Poly(styrene-o?-rc-butyl methacrylate) Poly (sty rene-co-isobutyl methacrylate) Poly(4-chlorostyrene) Poly(a-methylstyrene-co-acrylonitrile) Poly(4-acetoxystyrene) Poly(4-hydroxystyrene)
21.28
5.75
4.3
114.69 114.69 114.69 114.69 122.39 124.28 113.29 113.29
17.6 17.8 17.6
6.1 9 10
4.1 8.4 13.7
d 21.7 21.3 20.42 20.44 20.77 25.45 25.45 25 22.67 23.2 23.2 19.2 24.6, 25.2
17.52 17.45-17.58 20.16 17.86-17.92 17.84-18.56 18.6 18.72 18.62 18.62 18.66 19.09 18.66 18.6 17.6-19.8 17.4 17.6 18.4 19.28 21.1 17.52 17.84 18.6 17.6-17.8 18.6 15.6 22.47 19.33 19.33 19.33 19.33 20.19 22.36 22.71 22.20 18.6 17.39 14.8 15.7 17.8 15.1 15.1 19.02 16.4 21.7 24.55
Method
T(0C)
CaIc.
28 21-24 119 119 119 3 3 21-24 128 147 147 147 147 149 148
CaIc. CaIc. CaIc. CaIc.HK CaIc.HK CaIc. Vise. Obs. CaIc. Refract, index Contact ang. Swelling
CaIc. Vise. 35 Av. Swelling CaIc. 25 CaIc. Obs. Obs.
CaIc. CaIc.
IPGC
Refs.
140
CaIc.HK CaIc.HK CaIc.HK CaIc.HK CaIc.HK CaIc.HK CaIc.s< CaIc. s Obs.
IPGC IPGC
140 140
IPGC
140
19 19 28 48 116 66 74 74 74 74 110 112 112 112 18 19 58 119 124 118 19,97 104 72 79 31 56 3 3 3 3 3 3 3 3 112 18 137 137 137 31 31 151 111 138 138
References page VII - 711
TABLE 10. confd Solubility parameters (MPa) 1 / 2 Polymer
Molar volume (cm 3 /gmol)
Poly(4-a-acetoxystyrene), -CH2-C-(OCOCH3)-(C6H5-OCOR)-, R = C H 3 , C 2 H 5 , W-C3H7, OCH 3 Poly(vinylidene cyanide-co-4-a-acetoxystyrene),
dh
5
Method
T( 0 C)
S6
dp
Refs.
15.7
10.2
7.4
21.9
161
21.5
11.3
7.2
25.3
161
17
13.5
6.5
23.5
161
17
12.1
8.2
22.4
161
17
11.9
7.2
21.9
161
-CH2-C(CN)2-CH2-C-(OCOCH3)-
(C6H5-OCOR)-, R = C H 3 Poly(vinylidene cyanide-cc-4-a-acetoxystyrene), R=OCOCH3 Poly(vinylidenecyanide-C(?-4-a-acetoxystyrene), R=OCOCH3 Poly(vinylidene cyanide-co-4-oc-acetoxystyrene), R=OCOCH3 10.2.
MAIN CHAIN C-O POLYMERS
10.2.1. POLY(VINYL ESTERS) Poly(vinyl acetate) Poly(allyl acetate) Poly(diethylaminoethyl acrylate)-palladium ion Poly(methyl acrylate) Poly(ethyl acrylate) Poly(allyl acrylate) Poly(butyl acrylate) Poly(isobutyl acrylate) Poly(2-ethyl hexyl acrylate) Poly(2-cyanoethyl acrylate) 0 Poly(benzyl acrylate) Poly(vinyl butyrate) Poly(dimethyl citraconate) Poly(diethyl citraconate) Poly(vinyl crotonate) Poly(methyl dimethyl fumarate) Poly(methyl diethyl fumarate) Poly(dimethyl fumarate) Poly(diethyl fumarate) Poly(dipropyl fumarate) Poly(di-n-butyl fumarate) Poly(di-H-amyl fumarate) Poly(di-isopropyl fumarate) Poly(di-isobutyl fumarate) Poly(di-isoamyl fumarate) Poly(dinitrile fumarate) Poly(diphenyl fumarate) Poly(vinyl-2-ethyl hexoate) Poly(dimethyl maleate) Poly(diethyl maleate) Poly(di-«-propyl maleate) Poly(di-n-butyl maleate) Poly(di-n-amyl maleate) Poly(di-isobutyl maleate) Poly(di-isoamyl maleate) Poly(diphenyl maleate) Poly(3-chloropropyl methacrylate) Poly(methyl methacrylate) Poly(ethyl methacrylate) Poly(propyl methacrylate) Poly(butyl methacrylate) Poly(hexyl methacrylate) Poly(allyl methacrylate) Poly(isopropyl methacrylate) Poly(isobutyl methacrylate) Poly(vinyl propionate)
74.25 89.28 74.25 89.28 100.07 119.34 119.34 179.46 89.36 140.88 104.31 130.5 160.58 100.07 130.5 160.56 115.47 145.53 165.58 205.65 235.71 165.58 205.65 235.71 46.32 217.67 157.83 115.47 145.53 165.58 205.65 235.71 205.65 235.71 217.67 89.28 110.9 119.34 134.37 191.91 115.1 119.34 134.37 89.32
18.21 18.27 20.50 18.21 18.27 17.94 20.42 18.37 18.45 31.77 19.38 18.33 18.58 18.58 17.94 18.58 18.58 18.56 18.58 19.72 18.60 18.60 19.72 18.60 18.60 48.45 19.91 19.21 18.56 18.58 19.70 18.60 18.60 18.60 18.60 19.91 19.60 18.27 17.25 18.37 18.41 15.80 17.51 18.39 18.39 18.27
CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK Calc. HK CaIc. HK CaIc. HK CaIc. HK CaIc. HK Calc. HK CaIc. HK CaIc. s CaIc. HK CaIc. HK CaIc. HK
3 3 136 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 160 3 3 3 3 3 3 3 3 3
TABLE 10.
cont'd Solubility parameters (MPa)1/2
Polymer
Molar volume (cm3/gmol)
<5d
<5P
Sh
S
Method
T(0C)
Refs.
10.3. MAIN CHAIN C-N POLYMERS 10.3.1. POLY(AMIDES) Poly(lactams) Nylon 3 Nylon 4 19.44
-a
14.12
Nylon 5 Nylon 6 Nylon 7 Nylon 8 Nylon 9 Nylon 10 Nylon 11 Nylon 12 Nylon 2-1 Nylon 34 Nylon 4-1 Nylon 5-1 Nylon 6-1 Nylon 61, poly(hexamethylene isophthalamide) Nylon 7-1 Nylon 8-1 Nylon 9-1 Nylon 10-1 Nylon 12-1 Nylon 66 Nylon 66 (Zytel, DuPont) Poly(iminohexamethylene iminoadipoyl) Poly(amide), thermoplastics (Versamid 930, General Mills) Poly(p-benzamide) Poly(/7-phenylene terephthalamide) Poly(/?-benzanilide terephthalamide) Poly(n-isopropyl acrylamide) Gel
18.62 18.62
5.11 0
12.28 14.12
17.43
- 1.92
14.89
11.9 11.9 11.9
7.9 7.9 7.9
18 18 18
10.3.2. CELLULOSE AND DERIVATIVES Benzyl cellulose Cellulose Cellulose Cellulose-alkylketene dimer treatment Cellulose acetate (56% acetate groups) (48% acetate groups) Cellulose acetate (Cellidore A. Bayer) Cellulose acetate Cellulose acetate butyrate Cellulose acetate propionate Cellulose diacetate
12.69 8.27 8.1
-a 8 12.35
22.3 13.88 7.96
18.6 15.55 15.75 15.75
12.73 -a -a -a
11.01 11.87 8.59 10.23
Cellulose nitrate (11.83% N)
(11.4% N) Cellulose nitrate (1/2 sec; H-23 Hagedon) Cellulose triacetate Cellulose tridecanoate Ethyl cellulose
15.41 15.55 19.85
14.73 -° -a
8.84 10.64 6.14
26.2 23.9 24.02 22.5 21.5 20.7 20.3 19.8 19.4 19.2 19 27.2 26 25 24.1 23.5 26.3 23.2 22.9 22.5 22.1 21.7 21.1 22.87 23.37 27.8 23.02 23 23 23 22.8 23.5
25.23 32.02 25.66 18.03 16.78 27.83 27.19 25.08 19.56 17.94 18.76 23.22 22.3 22.3 30.39 21.44 21.7 23.5 21.93 23.08 18.84 20.77 21.1
CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc. CaIc.HK CaIc.H" CaIc. CaIc. CaIc. CaIc. CaIc.
Swelling Swelling Swelling CaIc. Swelling
CaIc.
139 139 81 139 139 139 139 139 139 139 139 139 139 139 139 139 150 150 139 139 139 139 139 98 56 118 56 143 143 143 154 153
110 110 81 140 140 110 110 56 81 81 18 112 118 72 110 112 72 21-24 72 56 81 81 21-24
References page VII - 711
TABLE 10. cont'd Solubility parameters (MPa) 1 / 2 Polymer 10.4. OTHER POLYMERS Alcohol soluble resin (Pentalyn 255, Hercules) Alcohol soluble rosin resin (Pentalyn 830, Hercules) Alkyd, short oil (coconut oil 34% phthalic anhydride, Plexal C34) Alkyd resin, medium oil length Alkyd, long oil (66% oil length, Plexal P65, Polyplex) Coumarone-indene resin (Piccoumarone 450L, Penn. Ind. Chem.) Epoxy resin Epoxy (Epikote 1001, Shell) Epoxy DBEBA-DDMe* DGEBA-DMM TGAP-DDMe TGAP-ANI TGAP-DDM TGAP-DDS Ester gum (ester gum BL, Hercules) Furfuryl alcohol resin (Durez 14383, Hooker Chemical) Hexamethoxymethyl melamine (Cymel 300, American Cyanimid) Pentaerythritol ester of rosin, modified (Cellolyn 102, Hercules) Petroleum hydrocarbon resin (Piccopale 110, Penn. Ind. Chem.) Phenolic resin (resole, Phenodur 373U Chemische Werke Albert) Phenolic resin (Super Beckacite 1001, Reichhold) Poly(2 acrylamide-2-methyl propane sulphonamide) (tested in formamide/water mixtures) Poly(3,3-dimethyl oxetane) Poly(3,3-diethyl oxetane) Poly(l,3-dioxolane) Poly(ether urethane)
Molar volume (cm 3 /gmol)
S9
^h
17.5
9.3
14.3
24.4
56
20
5.8
10.9
23.5
56
18.5
9.21
4.91
21.24
56
20.42
3.44
4.56
19.2 12.2
19.42
5.48
5.77
20.99
56
20.36
12.03
11.48
Method
Refs.
118 56 135 135 135 135 135 135 56 56
21-24 56
19.64 21.16
4.73 13.56
7.77 12.81
22.3 26.29 22 22.2 22.5 23.9 24.8 27.1 21.65 28.21
20.36
8.53
10.64
24.51
56
21.73
0.94
8.53
23.37
56
17.55
1.19
3.6
17.96
56
19.74
11.62
14.59
27.15
56
23.26
6.56
8.35
25.57
56
32 22 22.4
43.6
15.35 15.55
2.46 2.05
4.09 3.48
Poly(DL-lactic acid)
Poly(oxetane) Poly(oxydimethylsilylene)
d
T( 0 C)
5d
17.39
5.12
5.12
16.16 16.16 20.66 17.99 db.02 17.38 ± 0 . 1 6 17.20 ± 0 . 1 5 17.14±0.14 17.06 db 0.15 16.96 ±0.15 21.0 ± 0 . 3 20.5 ± 0 . 4 19.8 20.3 19.2 19.23 15.04 14.9 15.45 15.6 14.9 15.59 15.4 15 15.1
35 35 35 35 35 35
Vise.
Vise. Vise. Vise. IPGC IPGC IPGC IPGC IPGC IPGC Density Vise. CaIc. s CaIc. H CaIc. HK
25
25 25 100 120 130 140 150 25 25 25 25 25
Obs. Swelling Av.
25 Vapor sorp. IPGC
159
92 92 175 158 158 158 158 158 158 142 142 142 142 142 92 110 21-24 76 76 118 45 125 145 146
* DGEBA - diglycidyl ether of bisphenol A; DDMe - tetraethyl derivative of DDM; DDM - diamino diphenyl methane; TGAP - triglycidyl derivative of amino phenol; ANI aniline; DDS - diamino diphenylsulfone.
TABLE 10. cont'd Solubility parameters (MPa) 1 / 2 Polymer
Molar volume (cm3/gmol)
dd
dp
<5h
S1 = (15.7 - 0.026)f, t in 0 C Polyethylene adipate) Polyethylene oxide)
16.47
0.37
2.84
15.1 17.5 19.8±2 20.2 ±2 19.9 ±2.2 17.8 19.64 21.9 21.9 19.2 16.2 16.2 16.3 16.2 16.1 18.5±1.2 15.9 20.26 19.23 19.19 18.4 19.0 ± 1.0 20.5 20.5 22.9 16.5 25.6 22.92 22.14 19.52 20.28 16.72
20.81 17
8.29 10.3
12.71 6.1
25.74 20.8
16.3±2
6.1 ±0.5
9.4±0.1
17.3±2
3.0 ± 1
9.4±0.5
Poly(oxyethyleneoxyterephthaloyl) Poly(oxytrirnethylene) polyoxetane -3,3 dimethyl -3,3 diethyl Polypropylene oxide) 16.3 ± 1 Poly(sulfone), Bisphenol A (Udel) Poly(thioethylene)
19.03
4.7±0.5 0
7.4±0.5 6.96
Poly(thiophenylethylene) Poly(urethane) (unknown composition) Poly(urethane), amorphous Poly(vinyl ethylene) Poly(vinyl pyrroiidone) Poly(vinyi methyl ketone) Poly(vinyl ethyl ketone) Poly(vinyl methyl sulfide) Poly(vinyl phenyl sulfide) Teipene resin (Piccolyte S-1000, Penn. Ind. Chem.) Urea-formaldehyde resin (Plastopal H, BASF) Viton a
Altered ^Method 'Method rf Method
E.
S
66.59 81.58 66.63 118.35
Method
T(0C)
IPGC 129 Xe shift IPGC
25
CaIc. IPGC
70
Vise. Vise. Vise.
CaIc. Swelling Swelling Swelling Av. 129 Xe shift Vise. CaIc.HK Calc.HK CaIc.HK CaIc.HK
25 25 25 81 86 91
Refs. 144 152 157 31 157 157 176 118 112 31 92 92 156 156 156 157 157 81 110 43 43 87 76 76 155 152 177 3 3 3 3 56 56 130
from previously published value. of van Krevelen and Hoftyzee. of Small. of Hoy.
REFERENCES
1. H. Ahmad, M. Yaseen, J. Oil Chem. Assoc, 60, 488, (1977). 2. H. Ahmad, M. Yaseen, Farbe Lack, 85, 356, (1979). 3. H. Ahmad, M. Yaseen, Polym. Eng. SdL, 19 (2), 858 (1979). 4. H. Ahmad, J. Oil Col. Chem. Assoc, 63, 263 (1980). 5. H. Ahmad, J. Colour Soc, 20, 108 (1981). 6. P. Alessi, I. Kikic, G. Torriano, A. Papo, J. Coatings Technol., 51 (560), 62 (1979). 7. J. Alfrey, A. O. Goldberg, J. A. Price, J. Colloid ScL, 5, 251 (1950). 8. G. Allen, G. Geen, D. Mangaraj, D. Dims, G. J. Wilson, Polymer, 1, 467 (1960). 9. E. Bagley et al, J. Paint Tech., 41, 495 (1969). 10. E. B. Bagley, T. P. Nelson, J. W. Barlow, S. A. Chen, Ind. Eng. Chem. Fund., 9, 93 (1970). 11. E. Bagley et al., J. Paint Tech., 43, 35 (1971).
12. A. F. M. Barton, "CRC Handbook of Solubility Parameters and Other Cohesion Parameters", CRC Press, Boca Raton, FL, 1983, Ch. 15. 13. A. F. M. Barton, Pure Appl. Chem., 57 (7), 905 (1985). 14. A. Beerbower, J. R. Dickey, Am. Soc. Lubr. Eng., Trans., 12, 1 (1969). 15. R. G. Blanks, J. M. Prausnitz, Ind. Eng. Chem. Fund., 3 (1), 1 (1964). 16. R. F. Blanks, Polym.-Plast. Technol. Eng., 8 (1), 13 (1977). 17. S. T. Bowden, W. J. Jones, Phil. Mag., 39, 155 (1948). 18. R. F. Boyer, R. S. Spencer, "High Polymer Physics", Paper 5, Part III, Remoen Press, New York, 1948. 19. G. M. Bristow, W. F. Watson, Trans. Faraday Soc, 54, 1731 (1958). 20. C. W. Bunn, J. Polym. Sci., 16, 323 (1955). 21. H. Burrell, Interchem. Rev., 144, 3 and 31 (1955).
22. H. Burrell, Off. Dig., Fed. Paint Varn. Prod. Clubs, 27, 726 (1955). 23. H. Burrell, Off. Dig., Fed. Paint Varn. Prod. Clubs, 29, p. 1069, p. 1159 (1955). 24. H. Burrell, J. Paint Technol., 40, 197 (1968). 25. S. A. Chen, J. Appl. Polym. ScL, 15, 1247 (1971). 26. J. D. Crowley, G. S. Teague, J. W. Lowe, J. Paint Technol., 38 (496), 296 (1967). 27. J. D. Crowley, G. S. Teague, J. W. Lowe, J. Paint Technol., 39 (504), 19 (1967). 28. A. T. DiBenedetto, J. Polym. Sci. A, 1, 3459 (1963). 29. G. DiPaola-Baranayi, J. E. Guillet, Macromolecules, 11,228 (1978). 30. G. DiPaola-Baranayi, J. E. Guillet, J. Klein, H.-E. Jeberien, J. Chromatogr., 166, 349 (1978). 31. G. DiPaola-Baranayi, Macromolecules, 15, 622 (1982). 32. M. Dyck, P. Hower, Farbe Lack, 70, 522 (1964). 33. M. Dunkel, J. Phys. Chem. A, 138, 42 (1928). 34. D. Edelson, R. M. Fuoss, J. Am. Chem. Soc, 71,3548 (1949). 35. R. F. Fedors, Polym. Eng. Sci., 14 (2), p. 147, p. 472 (1974). 36. M. J. Fernandez-Berridi, T. F. Otero, G. M. Guzman, J. M. Elorza, Polymer, 23, 1361 (1982). 37. P J. Flory, "Principles of Polymer Chemistry", Cornell University Press, Ithaca, NY, 1953. 38. P. E. Froehling, L. T. Hillegers, Polymer, 22, 261 (1981). 39. P. E. Froehling, D. M. Koenhen, A. Bantjes, C. A. Smolders, Polymer, 17, 835 (1976). 40. E. W. Funk, J. M. Prausnitz, Ind. Eng. Chem., 62 (9), 8 (1970). 41. J. L. Gardon, J. Paint Technol., 38, 43 (1966). 42. G. Gee, Trans. Faraday Soc, 38, 418 (1942). 43. G. Gee, Trans. Inst. Rubber Ind., 18, 266 (1943). 44. G. Gee, Trans. Faraday Soc, 40, 468 (1944). 45. G. Gee, G. Allen, G. Wilson, Polymer (London), 1,456 (1960). 46. G. J. Glover, W. R. Lau, AIChE Jr., 29 (1), 73 (1983). 47. R. J. Good, in: R. L. Patrick (Ed.), "Treatise on Adhesion and Adhesives", Marcel Dekker, NY, 1967. 48. J. H. S. Green, Nature, 183, 818 (1959). 49. C. M. Hansen, Ind. Eng. Chem. Prod. Res. Dev., 8, 2 (1969). 50. C. M Hansen, Doctoral Dissertation, Technical University of Denmark, Danish Technical Press, Copenhagen, 1967. 51. C. M. Hansen, Farg Lack, 14 (1), 18;(2),23 (1968). 52. C. M.Hansen, J. Paint Technol., 39 (505), 104 (1967). 53. C. M. Hansen, J. Paint Technol., 39 (511), 505 (1967). 54. C. M. Hansen, K. Skaarup, J. Paint Technol., 39 (511), 511 (1967). 55. C. Hansen, A. Beerbower, Solubility Parameters, in: KirkOthmer (Ed.), "Encyclopedia of Chemical Technology", Supp. vol. (A. Standen (Ed.)),, 2nd ed., Interscience, New York, 1971, p. 889. 56. C. M. Hansen, Skaud. Tidskr. Faerg. Lack, 17, 69 (1971). 57. H. G. Harris, J. M. Prausnitz, Ind. Eng. Chem. Fundamentals, 8, 180 (1969). 58. R. A. Hayes, J. Appl. Polym. Sci., 5, 318 (1961). 59. J. H. Hildebrand, R. L. Scott, "The Solubility of Nonelectrolytes", (3rd ed.) Reinhold, NY 1959.
60. P. J. Hoftyzer, D. W. van Krevelen, Paper No. Ills-15, presented at International Symposium on Macromolecules of IUPAC, Lyden, 1970. 61. K. L. Hoy, J. Paint Technol., 42, 76 (1970). 62. I. J. Hughes, private communication to H. Burrell, "Polymer Handbook", 1st ed., J. Brandrup, E. H. Immergut (Eds.), Wiley, New York, 1966. 63. K. Ito, J. E. Guillet, Macromolecules, 12, 1163 (1979). 64. A. Jayasri, M. Yaseen, J. Oil Col. Chem. Assoc, 63, 61 (1980). 65. D. M. Koenhen, C. A. Smolders, J. Appl. Polym. Sci., 19, 1163 (1975). 66. M. Lautout, M. Magat, Z. Physik. Chem. (Frankfurt), 16, 292 (1958). 67. D. D. Lawson, Appl. Energy, 6, 241 (1980). 68. L.-H. Lee, J. Paint Technol., 42, 365 (1970). 69. E. P. Lieberman, Off. Dig., Fed Soc. Paint Technol., 349 (444), 30 (1962). 70. J. E. G. Lipson, J. E. Guillet, J. Polym. Sci. Polym. Phys. Ed., 19, 1199(1981). 71. J. E. G. Lipson, J. E. Guillet, J. Coatings Technol., 54 (684), 90 (1982). 72. M. Magat, J. Chem. Phys., 46, 344 (1949). 73. L. Mandelkern, private communcation to H. Burrell, "Polymer Handbook", 1st ed., J. Brandrup, E. H. Immergut (Eds.), Wiley, New York, 1966. 74. D. Mangaraj, S. K. Bhatnagar, S. B. Rath, Makromol. Chem., 67, 75 (1963). 75. D. Mangaraj, S. Patra, S. B. Rath, Makromol. Chem., 67, 84 (1963). 76. D. Mangaraj, Makromol. Chem., 65. 29 (1963). 77. D. Mangaraj, S. Patra, S. Rashid, Makromol. Chem., 65, 39 (1963). 78. D. Mangaraj, S. Patra, P C. Roy, S. K. Bhatnagar, Makromol. Chem., 84, 225 (1965). 79. H. Mark, A. V. Tobolsky, "Physical Chemistry of High Polymers", Interscience, New York, 1950, p. 263. 80. T. Matsuo, Preprints ACE/JSC, 20, 895 (1979). 81. T. Matsuura, P Blais, S. Sourirajan, J. Appl. Polym. Sci., 20, 1515 (1976). 82. A. McLellan, G. Pimentel, The Hydrogen Bond, Freeman, San Francisco, 1960. 83. A. S. Michaels, ASTM Technical Publications, 340, 1963, p. 3. 84. W. Merk, R. N. Lichtenthaler, J. M Prausnitz, J. Phys Chem., 84, 1694 (1980). 85. R. C. Nelson, R. W. Hemwall, G. D. Edwards, J. Paint Technol., 42 (550), 636 (1970). 86. R. C. Nelson, V. F. Figurelli, J. G. Walsham, G. D. Edwards, J. Paint Technol., 42 (550), 644 (1970). 87. A. Noshay, C. C. Price, J. Polym. Sci., 54, 533 (1961). 88. O. Olabisi, R. Simha, J. Appl. Polym. Sci., 21, 149 (1977). 89. O. Olabisi, L. M. Robeson, M. T. Shaw, "Polymer-Polymer Miscibility", Academic Press, NY, 1979. 90. D. Patterson, Macromolecules, 4, 30 (1971). 91. D. Patterson, Y B. Tewari, H. P. Schreiber, J. E. Guillet, Macromolecules, 4, 356 (1971).
92. E. Perez, M. A. Gomez, A. Bello, J.G. Fatou, J. Appl. Polym. ScL, 27, 3721 (1982). 93. S. Piccarolo, G. Titomanlio, Ind. Eng. Chem. Proc. Des. Dev., 22, 146 (1982). 94. J. M. Prausnitz, "Molecular Thermodynamics of Fluid Phase Equilibria", Prentice-Hall, Englewood Clifffs, NJ, 1969, p. 269. 95. J. Polak, Coll. Czech. Chem. Commun., 31, 1483 (1966). 96. A. E. Theineck, K. F. Lin, J. Paint Technol., 40, 611, (1968). 97. R. B. Richards, Trans. Faraday Soc, 42, 10 (1946). 98. Z. Ribgi, Polymer, 19, 1229 (1978). 99. W. A. Ruff, C. J. Glover, A. T. Watson, AIChE Jr., 32 (12), 1948 (1986). 100. W. A. Ruff, C. J. Glover, A. T. Watson, W. R. Lau, J. C. Holste, AIChE Jr., 32 (12), 1954 (1986). 101. G. Scatchard, Chem. Rev., 44, 7 (1949). 102. B. Schneier, Polym. Lett., 10, 245 (1972). 103. R. L. Scott, M. Magat, J. Chem. Phys., 13, p. 172, p. 178 (1945). 104. R. L. Scott, M. Magat, J. Polym ScL, 4, 555 (1949). 105. J. H. Sewell, R. A. E. Technical Report No. 66185, June, 1966. 106. J. H. Sewell. J. Appl. Polymer. ScL, 17, 1741 (1973). 107. M. T. Shaw, J. Appl. Polym. ScL, 18, 449 (1974). 108. Shell Chemicals, Solubility Parameters, 2nd Ed., Tech. Bull., ICS(X)/78/l, 1978. 109. Shell Chemicals, Solvent Systems Design, Tech. Bull. ICS (X)/78/2, 1987. 110. A. G. Shvarts, Kolloid Zh., 18, 755 (1956). 111. K. S. Siow, S. H. Goh, K. S. Yap,Polym. MaterialsSci. Eng., 51, 523 (1984). 112. P. A. Small, J. Appl. Chem., 3, 71 (1953). 113. C. Smidsrod, J. E. Guiilet, Macromolecules, 2, 272 (1968). 114. H. M. Spurlin, J. Polym. Sci., 3, 714 (1948). 115. W. H. Stockmayer, M. Fixman, J. Polym. Sci. C, I1 137 (1963). 116. K. W. Suh, D. H. Clarke, J. Polym. Sci. A-I, 5, 1671 (1967). 117. R. S. Tillaev, M. Khasaukhanova, S. A. Tashmukhamedov, Kk. U. Usmanov, J. Polym. Sci. C, 39, 107 (1972). 118. A. V. Tobolsky, "Properties and Structure of Polymers", Wiley, NY, I960, p. 64, p. 66. 119. Union Carbide Corp., private communication to H. Burrell, "Polymer Handbook", 1st ed., J. Brandrup, E. H. Immergut (Eds.), Wiley, New York 1966. 120. J. W. van Dyk, H. L. Frisch, D. T. Wu, Ind. Eng. Chem. Prod. Res. Dev., 24 (3), 473 (1985). 121. D. W. van Krevelen, Fuel, 44, 229 (1965). 122. D. W. van Krevelen, P. J. Hoftyzer, J. Appl. Polym. Sci., 11, 2189 (1967). 123. D. W. van Krevelen, P. H. Hoftyzer, Properties of Polymers. Correlations with Chemical Structure, Elsevier, NY, 1972, Chs. 6 and 8. 124. F. Vocks, J. Polym. Sci. A, 2, 5319 (1964). 125. H. Watanabe, T. Miyauchi, J. Chem. Eng. Japan, 6 (2), 109 (1973).
126. K. M. Watson, Ind. Eng. Chem., 23, 360 (1931); 35, 398 (1948). 127. S. Wu, J. Phys. Chem., 27, 3332 (1968). 128. J. A. Yanko, J. Polym. Sci., 22, 153 (1956). 129. T. Yamaguchi, S-I. Nakao, S. Kimura, Ind Eng. Chem. Res., 32, 848 (1993). 130. E. T. Zellers, J. Appl. Polym. Sci., 50, 513 (1993). 131. E. T. Zellers, G-Z. Zhang, J. Appl. Polym. ScL, 50, 531 (1993). 132. E. T. Zellers, D. H. Anna, R. Sulewski, X. Wei, J. Appl. Polym. Sci., 62 (12), 2069 (1996). 133. E. T. Zellers, D. H. Anna, R. Sulewski, X. Wei, J. Appl. Polym. Sci., 62 (12), 2081 (1996). 134. D. G. Peiffer, J. Appl. Polym. Sci., 25 (3), 369 (1980). 135. V. Bellenger, E. Morel, J. Verdu, J. Appl. Polym. ScL, 37 (9), 2563 (1989). 136. H. Jiadong, W. Ruofend, L. Lu, F. Peirong, J. Appl. Polym. Sci., 38(7), 1211 (1989). 137. L. A. Errede, J. Phys. Chem. 94 (1), 466 (1990). 138. S. Arichi, S. Himuro, Polymer, 30 (4), 686 (1989). 139. M. M. Coleman, C. J. Serman, D. E. Bhagwagar, P. C. Painter, Polymer, 31 (7), 1187 (1990). 140. H. L. Lee, P. Luner, J. Wood Chem. Technol., 11 (2), 247 (1991). 141. B. Bixamaiah, R. P. Raghunath, E. V. Sundaram, J. Appl. Polym. Sci., 44 (8), 1415 (1992). 142. U. Siemann, Europ. Polymer J., 28 (3), 293 (1992). 143. S. M. Aharoni, J. Appl. Polym. Sci., 45 (5), 813 (1992). 144. M. Roth, J. Polym. Sci., Phys. Ed., 28(13), 2715 (1990). 145. A. J. Ashworth, G. J. Price, Macromolecules, 19, 362 (1986). 146. G. J. Price, J. E. Guiilet, J. Solution Chem., 16, 605 (1987). 147. A. Bottino, G. Capannelli, S. Munari, A. Turturro, J. Polym. Sci., Polym. Phys., 26 (4), 785 (1988). 148. A. Chapiro, Z. Mankowski, N. Schmitt, J. Polym. Sci., Polym. Chem. Ed., 20, 1791 (1982). 149. C. M. Hansen, J. Paint Technol., 42, 660 (1970). 150. W. Liu, B. Breault, J. Brisson, J. Polym. Sci., Part B: Polym. Physics, 33 (4), 619 (1995). 151. Y. Izumi, Y Miyake, Polym. J., 3, 647 (1972). 152. J. B. Miller, J. H. Walton, C. M. Roland, Macromolecules, 26 (21), 5602 (1993). 153. Y. Yagi, H. Inomata, S. Saito, Macromolecules, 25 (11), 2997 (1992). 154. H. Ahmad, J. Macromol. Sci. A: Chem., 17, 585 (1982). 155. M. M. Coleman, J. Hu, Y. Park, P. C. Painter, Polymer, 29, 1659 (1988). 156. E. Morales, J. L. Acosta, Polymer J., 28 (2), 127 (1996). 157. R. Mieczkowski, Eur. Polym. J., 27 (4/5), 377 (1991). 158. A. M. Farooque, D. D. Deshpande, Eur. Polym. J., 28 (12), 1597 (1992). 159. S. R. Gooda, M. B. Huglin, Eur. Polym. J., 29 (2/3), 365 (1993). 160. S. M. Low, S. Y. Lee, S. H. Goh, Eur. Polym. J., 29 (8), 1075 (1993).
161. A. Belfkira, J.-R Montheard, J. Appl. Polym. ScL, 51 (11), 1849 (1994). 162. J. Zhang, C. Zheng, Y. Yang, Polymeric Mat. Sci. Eng. (China) [Gaofenzi Cailiao Kexue Yu Gongcheng], 10 (5), 50 (1994). 163. D. W. van Krevelen, "Properties of Polymers", 3rd ed., Elsevier, New York, 1990, Ch. 7. 164. J. Bicerano, "Prediction of Polymer Properties", 2nd ed., Marcel Dekker, New York, 1996, Ch. 5. 165. D. Porter, "Group Interaction Modeling of Polymer Properties", Marcel Dekker, New York, 1995. 166. M. B. Huglin, D. J. Pass, J. Appl. Polym. Sci., 12,473 (1968). 167. L. A. Errede, Macromolecules, 19, 1522 (1986). 168. Z. Liron, S. Cohen, J. Pharm. Sci., 72, 499 (1983). 169. C. Marco, A. Bello, J. G. Faton, J. Garza, Makromolek. Chem., 187, 177 (1986). 170. I. C. Sanchez, P. A. Rodgers, Pure Appl. Chem., 62, 2107 (1990).
171. R A. Rodgers, I. C. Sanchez, J. Polym. Sci., Part B: Polym. Phys., 31 (3), 273 (1993). 172. D. G. Peiffer, J. Appl. Polym. Sci., 25, 369 (1980). 173. J. L. Perkins, A. D. Tippit, Am. Ind. Hyg. Assoc. J., 46, 455 (1985). 174. J. L. Perkins, M. C. Ridge, A. B. Holcombe, M. K. Wang, W. E. Nonidez, Am. Ind. Hyg. Assoc. J., 47, 803 (1986). 175. R. Alamo, J. G. Fatou, A. Bello, Polym. J., 15 (7), 491 (1983). 176. M. Galin, Polymer, 24 (7), 865 (1983). 177. L. S. Huppenthal, U. Danuta, J. Nowacki, Polimery, 27(11), 427 (1982). 178. K. L. Hoy, "Tables of Solubility Parameters", Solvent and Coatings Materials Research and Development Department, Union Carbide Corporation, 1985. 179. K. L. Hoy, J. Coated Fabrics, 19, 53 (1989).
O p t i c a l l y
A c t i v e
P o l y m e r s
Katsuhiro l n o m a t a Department of Polymer Chemistry, Tokyo Institute of Technology, Tokyo, Japan Akihiro Abe Department of Industrial Chemistry, Tokyo Institute of Polytechnics, Atsugi, Japan A. Abbreviations used B. Optically Active Polymers from Chiral Monomers Table 1. Main-Chain Acyclic Carbon Polymers 1.1. Poly(alkenes) 1.2. Poly(acrylics) and Related Polymers 1.3. Poly(methacrylics) and Related Polymers 1..4. Poly(vinyl ethers), Poly(vinyl ketones), and Poly(vinyl esters) 1.5. Poly(styrenes), Poly(carbazoles) 1.6. Poly(dienes) 1.7. Poly(isonitriles) 1.8. Poly(alkynes) 1.9. Poly(maleimides) and Related Polymers 1.10. Other Compounds Table 2. Main-Chain Acyclic Heteroatom Polymers 2.1. Poly(oxides) 2.2. Poly(esters) 2.3. Poly (su If ides), Poly(thioesters) 2.4. Poly(urethanes), Poly(ureas) 2.5. Poly(amides) 2.6. Poly(isocyanates) 2.7. Poly(imines) 2.8. Poly(amino acids) Table 3. Poly(saccharides) C. Optically Active Polymers from Achiral Monomers Table 4. Main-Chain Acyclic Carbon Polymers 4.1. Poly(acrylics) and Related Polymers 4.2. Poly(methacrylics) and Related Polymers 4.3. Polytvinyl ethers)
VII-715 VII-716 VII-716 VII-716 VII-716 VII-717 VII-718 VII-719 VII-720 VII-720 VII-721 VII-722 VII-723 VII-723 VII-723 VII-724 VII-725 VII-725 VII-726 VII-728 VII-728 VII-729 VII-732 VII-733 VII-733 VII-733 VII-734 VII-735
4.4. Poly(styrenes) 4.5. Poly(dienes) 4.6. Poly(isonitriles) 4.7. Poly(maleimides) 4.8. Other Compounds Table 5. Main-Chain Acyclic Heteroatom Polymers 5.1. Poly(oxides) and Poly(sulfides) 5.2. Poly(isocyanates) D. References
VII-735 VII-735 VII-736 VII-736 VII-737 VII-737 VII-737 VII-738 VII-739
By definition the optical activity, [M] A, of polymers and their low molecular weight analogs is given by [M] A = [a\x x (mean residue weight)/100
A. ABBREVIATIONS USED AcAc Acetylacetonate AIBN Azobisisobutyronitrile BPO Benzoyl peroxide DBP Dibenzoyl peroxide DCA Dichloroacetic acid DCM Dichloromethane DDB 2,3-Dimethoxy-1,4-bis(dimethylamino)butane DMAc Dimethylacetamide DMF Dimethylformamide DMSO Dimethylsulfoxide DPEDA-Li iV^/V'-diphenylethylenediamine monolithium amide EDC Ethylene dichloride M Monomer MC Model compound NCA iV-Carboxylic anhydride P Polymer RT Room temperature TMEDA A^N,A/^JV'-tetramethylethylenediamine TCA Trichloroacetic acid TFA Trifluoroacetic acid TFEL Trifluoroethanol THF Tetrahydrofuran
B. OPTICALLY ACTIVE POLYMERS FROM CHIRAL MONOMERS TABLE 1.
MAIN-CHAIN ACYCLIC CARBON POLYMERS
Polymer Catalyst or initiator 1.1.
Polymerization system
Polymer (P) values
T(0C)
[M] D
Benzene
30-40
-20to -120 -35.3 to -144 - Ill
Isooctane
RT
Isooctane Isooctane Isooctane
Solvent
Monomer (M) or model compound (MC) values [M)0
Optical activity measured Solvent
T (0C)
Refs.
POLY(ALKENES)
Poly[(/?)(- )3,7-dimethyl-1 -octene] Al(Z-C4Hg)3ZTiCl4 Al(Z-C 4 H 9 ) 3/TiCl3 LiAlH 4/TiCl 4/monomer Poly[(S)( + )5-methyl-1 -heptene] Al(J-C4Hg)3ZTiCl3 Poly [(S)( + )4-methyl-l -hexenej Al(I-C4Hg)3ZTiCl4 Al(z-C4H9)3/TiCl3 Poly[(£)( + )6-methyl-1 -octene] Al(Z-C4Hg)3ZTiCl3 Poly[(S)( + )3-methyM-pentene] Al(Z-C4H9)3/TiCl4 Al(Z-C 4 Hg) 3 ZTiCl 3 Poly [(5)5-pheny 1-1-heptene] Al(Z-C 4 Hg) 3 ZTiCl 3 PoIy[Cff)4-phenyl-1 -hexene] Al(Z-C 4 H 9 ) 3 /TiCl 3
4,7
14.4 (MC) 14.4 (MC) 8.88 (MC)
Toluene Toluene Carbon tetrachloride
27.4-68.1
11.7 (MC)
Benzene
RT RT
205-288 149-279
21.3 (MC) 21.3(MC)
Benzene (MC); toluene (P) Benzene (P)
25 25
2-6,9
RT
16.0 20.4
13.3(MC) 13.3(MC)
Benzene
25
4 5
20-25
29.4-158
- 11.4 (MC)
Tetralin (P)
20-25
75.8-157 161
- 11.4 (MC)
Tetralin (P)
25 (P); 20 (MC) 2-6, 8,9 25 (P); 20 (MC) 5
-78.1
6.25
25 25 25
2-6
26.6
4.80 (M)
Cyclohexane (P); neat (M)
25
118
60
-61.6
- 8.99 (M)
Chloroform (P); neat (M)
25
118
Dioxane
60
-21.0
-21.0 (MC)
Dioxane
25
12
65 60 35 -70 -78
-46.1 -47.2 -47.4 -43.0 -47.2
Toluene Toluene Toluene Toluene Toluene
25 25 25 25 25
10
Benzene Toluene Toluene Toluene Dioxane
50-100 RT
23.4 17.9
55.5 (M) 42.2 (M)
Chloroform (P); neat (M) Dioxane
21 (P); 22 (M) 25
13 14
Dioxane
RT
15.3
37.4 (M)
Dioxane
30
13
Benzene
50 60
Benzene Chloroform (P); neat (M)
22 25
11 215
2,2,4-Trimethylpentane 25-60 2,2,4-Trimethylpentane
1.2. POLY(ACRYLICS) AND RELATED POLYMERS Poly(acryloyl-L-glutamic acid) AIBN Poly(L-bornyl acrylate) AIBN AIBN AIBN C 6 H 5 MgBr UV benzoin Po\y(d-sec-butyl a-chloroacrylate) BPO BPO Poly{d-sec-butyl a-bromoacrylate) BPO Poly(L-menthyl acrylate) AIBN AIBN
-79.0 -73.9
- 56.4 (M) - 56.4 (M) - 56.4 (M) - 56.4 (M) - 56.4 (M)
-99.3(M) - 88.3 (M)
PoIyU + ^-methyl-Af-a-methylbenzyl-acrylamidel AIBN Toluene n-BuLi Toluene C 6 H 5 MgBr Toluene Poly[( - W-propyl-N-a-methylbenzyl-acrylamide] Toluene AIBN Toluene /1-BuLi
(M) (M) (M) (M)
Benzene Benzene Benzene Benzene
25 25 25 25
29
- 167 -318
_ 444 (M) _ 444 (M)
Benzene Benzene
25 25
29
Toluene
20
10
-70.8
-50.1 (M) - 32.2 (M) -28.8(M)
EDC (P); ethanol (M) Benzene
25 20
23,24 25-27
- 8.6 (M)
Benzene
19
26
DCM
20
17,18
Benzene (M); methanol -0.01% CH3SO3H(P) Methanol- 0.01%CH3SO3H after 1 h Methanol-13%CH3SO3H
25
225
25
Benzene Chloroform Chloroform Benzene Benzene Chloroform
25 20 20 25 25 25
16,11
Dioxane
25
28
Water
20
119
Water
20
215
Dioxane
25
28
Water
20
222
Dioxane Dioxane Dioxane Dioxane (P); neat (M)
25 25 25 25
19-21
Chloroform (P); isooctane (M) 20 Chloroform (P); isooctane (M) 20
16,22
60 22 -50 -50
278 397 366 337
70 22
504 504 504 504
1.3. POLY(METHACRYLICS) AND RELATED POLYMERS Poly(L-bornyl methacrylate) 55 Benzene AIBN PoIy(1,2; 5,6-diisopropylidene-D-glucofuranosyl-3-methacrylate) Benzene 80 BPO 40-50 AIBN Benzene Poly(2,3 ; 4,6-diisopropylidene-L-sorbofuranosyl-1 -methacrylate) Carbon tetrachloride 60 AIBN PoIyK + M ,3-dimethylbutyl methacrylate] BPO 82-110 PoIyK + )(S)-diphenyl(l-methyl-pyrrolidin-2-yl)methyl methacrylate] DPEDA-Li/TMEDA Toluene -78
-49.0 -48.4 -84.5 18.2 780(LaJ 365 )
23.4 (MC) 30.9
43.5 (MC) -82.2(M)([aJ 365 )
-410(LaJ 365 ) 779(LaJ 365 ) Poly( 1 -menthyl methacrylate) AIBN Benzene BPO C 6 H 5 MgBr Toluene C 6 H 5 MgBr Toluene 7-Ray BuLi THF Poly(methacryloyl-D-alanine) AIBN Dioxane Poly(Af-methacryloyl-L-alanine) AIBN Dioxane Pory(N-methacryloyl-L-asparagine) AIBN Dioxane PoIy(methacryIoyl-L-glutamic acid) AIBN Dioxane Poly(s-N-methacryloyl-L-lysine] Potassium persulfate Water Poly( 1 -a-methylbenzy 1 methacrylate) UV AIBN UV benzoin /i-BuLi Toluene AIBN Dioxane Poly(2-methylbutyl methacrylate) BPO C 6 H 5 MgBr Toluene PolyL(5)4-methyl-2-M^V-dimethylaminopentyl methacrylate] AIBN Benzene
- 202 - 202 - 202 - 202 - 202
- 193 - 256.8 -158.9 - 177.0 - 194.0
55 40-85 RT -75 -75 -78
-96.9
60
42.0
48.9 (MC)
-42(La] 546 )
-41 (M) ([a]
546)
60
-24.4(La] 546 )
-36(MC)(La] 546 )
60
-23.0
- 26.0 (MC)
65
12.1
35 -65 -60 35
- 79,5 -72.5 -100
60
7(M) -151 -138 -190 -147
- 54.4 (M) - 54.4 (M) - 54.4 (M)
5.93 6.84
100 RT 2.2
(M) (M) (M) (M) (M)
- 103 (M) - 103 (M) - 103 (M) -78.8(M) 6.99 (M) 6.99 (M)
-2.1 (M)
Benzene
25
205
120
References page VII-739
TABLE 1.
cont'd
Polymer Catalyst or initiator
Polymerization system Solvent
PoIyK' + )phenyl-2-pyridyl-0-tolylmethyl methacrylate] /t-BuLi THF Diisopropyl peroxydicarbonate
Polymer (P) values
Toluene
Monomer (M) or model compound (MC) values
[M]D -78 40
395 -321 -617([aJ 365 )
[Ml0
Solvent
2T( 0 C)
Refs.
Benzene (M); THF (P) THF Chloroform(M); 90% chloroform-10% TFEL (P)
- 78 (P); 25 (M) 25 (P) 25
223
Chloroform (P); benzene (M) Chloroform (after heating at 600C) Chloroform (P); benzene (M) Chloroform (after heating at 600C)
25 25
224
25 25
224
- 47.6 (M) -47.6(M)
Chloroform Chloroform
25 25
121
- 37.7 (M) - 37.7 (M)
Chloroform Chloroform
25
121
-99.7 (M)
Chloroform
88.6 (M) 190.1 (M)(M 365 )
PoIvK + )phenYl-2-pyridyl-m-tolYlmethyl methacrylate I DPEDA-Li/(- )DDB Toluene
-78
-845(La] 365 ) 1481 (La] 365 )
14.0(M)(LaJ 3 6 5 )
DPEDA-Li/TMEDA
-78
262(LaJ 365 ) 1370(La] 365 )
14.0(M)(La] 365 )
Toluene
Optical activity measured
185
1.4. POLY(VINYL ETHERS), POLY(VINYL KETONES), POLY(VINYL ESTERS) 1.4.1. POLY(VINYL ETHERS) PoIyK- )(5)2,2/-bis(2-vinyloxyethoxy)-l,l/-binaphthyl] DCM 0 -131.6 SnCl4 Nitromethane 0 -131.9 BF 3 OEt 2 PoIyK- )(5)2,2/-bisl2-(2-vinyIoxyethoxy)ethoxy]-l ,1 '-binaphthylj -93.9 SnCl4 DCM O -95.8 BF 3 OEt 2 DCM O PoIyK-)(5)2,2 / -bisL2-(2-vinyloxyethoxy)ethoxy]-3,3 / ~dimethyl-l,r-binaphthyl] DCM O SnCl4 44.5 Poly( 1 -bornyloxyethylene) BF 3 OEt 2 PoIy(I -cholesteryloxyethylene) Poly( 1,2: 5,6-diisopropylidene-a-D-glucofuranosyl-3-oxyethylene) BF3 OEt2 n-Hexane + DCM -78 Poly( 1 -menthyloxyethylene) C 4 H 9 MgBr Toluene 80 BF 3 OEt 2 M-Hexane -78 SnCl4 Petroleum ether 25 Mn-MoO 3 -H 2 SO 4 /i-Hexane -10 Mn-MoO 3 -H 2 SO 4 Az-Hexane -30 A1(/-OC 3 H 7 ) 3 /H 2 SO 4 rc-Pentane - 15 to RT -198 BF 3 OEt 2 Toluene -78 -220 Poly( 1 -a-methy lbenzyloxyethylene) BF 3 OEt 2 Propane -78 Polyt(S)2-methylbutyloxyethylene] Al(Z-C 4 H 9 )Cl 2 Propylene + Toluene -78
25 25 (P); 29 (M) -142 -93
-122.4(M) - 131.4 (M)
5.7
-77.2
-358 -396 -373 -357 -353
- 121.9(M) -121.9(M) -121.9(M) - 118.8(M) - 118.8(M) - 72.2 (M) -61.5 (M)
68.6
-71.9 (M)
4.9
1.1 (MC) 7.6 (M) 1.1 (MC) 7.6 (M) 1.1 (MC) 7.6 (M)
A1(/-C 4 H 9 ) 3 /H 2 SO 4
Ether
15-20
-5.9
A1(/-OC 3 H 7 ) 3 /H 2 SO 4
Ethyl acetate
0-20
6.4
Benzene
245
25
31 31
EDC (P); ethanol (M)
25
36,24
Benzene (P); chloroform (M) Benzene (P) Benzene (P) Chloroform (M); benzene (P) Benzene (P) Neat (M); benzene (P) Toluene (M); benzene (P)
25 25 25 25 25 25 25 (P)
Benzene
25
35
Toluene (P); neat (M1MC)
25
34
Toluene (P)
25
Toluene (P)
25
31 33 123 124
Po Iy [(S) 1 -methylpropyloxyethylenej Al(Z-C 4 H 9 )Cl 2 Propylene -f Toluene -78 AI(Z-C 4 H 9 )SZH 2 SO 4 15-20 Diethyl ether Al(Z-OC 3 H 7 ) 3/H 2 SO 4 - 15 to RT rc-Pentane Polyl(S)2-phenylvinyl 2-methylbutyl ether] -78 BF 3 OEt 2 Toluene -78 SnCl4 Toluene Poly[(S)2-phenylvinyl 3-methylpentyl ether] BF 3 OEt 2 -78 Toluene SnCl4 Toluene -78 1.4.2. POLY(VINYL KETONES) Poly[(5)2-methylbutyl vinyl ketone] Spontaneous LiAlH 4 Toluene Poly[(S)3-methylpentyl vinyl ketone] Spontaneous Toluene LiAlH 4 Poly[(S) 1 -methylpropyl vinyl ketone] LiAlH4 Toluene Spontaneous Toluene AIBN Toluene LiAlH4 1.4.3. POLY(VINYL ESTERS) Poly(
Dioxane
246 206
13.24 (M) 13.67 (M)
285
13.8(M)
Toluene (P); neat (M) Toluene (P) Benzene (P); neat (M)
25 25 25
11.4 12.0
3(MC) 3 (MC)
DCM DCM
25 (MC) 25 (MC)
125
7.8 7.8
7.12(MC) 7.12 (MC)
DCM DCM
25 (MC) 25 (MC)
125
32 123
20-25 - 16 to 50
- 10.0 -43.0
11.5 (MC) 11.5(MC)
Chloroform (P); neat (MC) Chloroform (P)
25 25
30
20-25 0
15.6 11.7
15.2(MC) 15.2 (MC)
Chloroform (P); neat (MC) Chloroform (P)
25 25
30
0 RT 60 -15
-118 -42.5 -39.1 -139.0
33.4 (MC) 33.4 (MC)
25 25 25 25
30
44.08 (M) 44.08 (M)
Chloroform (P); neat (MC) Chloroform (P) EDC EDC
126
40
22.9
24.0 (M)
Benzene
50
40
100
-29.1
- 20.4 (M)
Dioxane
25
13
55
10.15
12.07 (M)
Dioxane
25
41
60 -78 0
-2.5 -6.2 -3.8
3.5 (M) 3.5 (M) 3.5 (M)
DCM (P); acetone (M) DCM (P) DCM (P)
25 25 25
127
-78 25 60
-13.4 -39.4 -21.4
-11.6(M) -11.6(M) - 11.6 (M)
DCM (P); heptane (M) DCM (P) DCM (P)
25 25 25
127
60 200
-14.5 -19.6 -12.2
- 7.5 (M) -7.5(M) -7.5 (M)
DCM (P); heptane (M) DCM (P) DCM (P)
25 25 25
127
76
9.57
13.97 (M)
Benzene (P); neat (M)
24.7
70
-8.5 to -11.0
2.70 (M)
Chloroform
20
1.5. POLY(STYRENES), POLY(CARBAZOLES) Poly(4-5£c-butoxymethylstyrene) BPO Dioxane Poly[(S)3-sec-butyl-9-vinylcarbazole] AIBN Benzene EtAlCl 2 Toluene C 7 H 7 SbCl 6 DCM Poly[(S)9-(2-methylbutyl)-2-vinylcarbazole] EtAlCl2 DCM n-BuLi THF AIBN Poly[(5)9-(2-methylbutyl)-3-vinylcarbazole] AIBN Benzene C 7 H 7 SbCl 6 DCM Poly[2-(2-thio-3-methylpentyl)styrene] AIBN Poly[p-(/?-tolylsulfinyl)styrene] Benzene AIBN
42 128
References page VII - 739
TABLE 1.
confd
Polymer Catalyst or initiator 1.6.
Polymerization system Solvent
T (0C)
Monomer (M) or model compound (MC) values [M]0
[M]0
Optical activity measured Solvent
:r (
0
C)
Rets.
POLY(DIENES)
Polyl 1 -(d-bornylammonium carboxylate)-1,3-butadieneJ AlBN Methanol 50 Poly[ 1 -((- ) 1 -cyclohexylethylammonium carboxylate)-1,3-butadiene] AIBN Methanol 50 Poly [(3£)(55)3,5-dimethyl-1,3-heptadieneJ K2S2O8 Aq. emulsion 55 Al(I-C 4 H 9 )SVTiCl 4 Benzene 25 Poiy[(3Z)(5S)3,5-dimethy 1-1,3-heptadiene] KaSiOg Aq. emulsion 55 AlO-C 4 H 9 J 3 ZTiCl 4 Benzene 25 PoIy[I-((- )menthy!oxycarbonyl)-1,3-pentadieneJ AlBN Benzene 50 PoIy[I -((5)(- )a-phenylethy!ammonium carboxylate)-1,3-butadiene] AlBN Methanol 50 Po\y[trans-(R)6-pheny\-1,3-heptadiene] Al(Z-C 4 Hg) 3 ZTiCl 3 rc-Heptane 25 AlEt3A^Cl3 rc-Heptane 25 w-BuLi w-Heptane 25 PolyUra/w-(/?)5-phenyl-1,3-hexadiene] A10-C 4 H 9 ) 3 /TiCl 3 n-Heptane 25 AlEt 3 ZVCl 3 /i-Heptane 25 n-BuLi rc-Heptane 25
1.7.
Polymer (P) values
14.4
6.8 (M)
Methanol
25
177
-3.6
- 3.7 (M)
Methanol
25
177
44.0 33.2
42.8 (M) 42.8 (M)
Benzene Benzene
20 (P); 25 (M) 20(P)
129
41.4 31.7
41.6(M) 41.6(M)
Benzene Benzene
20 (P); 25 (M) 20(P)
129
-71.3
- 84.5 (M)
THF (P); benzene (M)
25
190
-11.4
- 8.0 (M)
Methanol
20
178
-46.87 -45.82 -40.30
- 16.6 (M) -16.6(M) -16.6(M)
Benzene Benzene Benzene
25 (P); 15 (M) 25(P) 25 (P)
130
- 39.84 -42.86 - 37.54
- 18.74 (M) - 18.74 (M) - 18.74 (M)
Benzene Benzene Benzene
25 (P); 15 (M) 130 25(P) 25(P)
POLY(ISONITRILES)
Poly[((S)( 1 -(acetoxymethyl)ethy l)imino)methy lene] NiCI 2 -6H 2 O Methanol RT PoIyK(SX 1 -(acetoxymethyl)-2-methylpropyl)imino)methy lene J NiCl 2 6H 2 O Methanol RT Poly[((/?)(2-acetoxy-l-phenylethyl)imino)methylene] NiCl 2 6H 2 O Methanol RT Poly[(L-alanyl-(6>-acetyl)L-serine methylester)methylenej NiCl 0 -6H 2 O Chloroform
-190([M] 578 )
58.3 ([OCj 578)
74.0(M) ([MJ 57 S).
Chloroform
20-22
132
- i l l ([a].™) -172([M] 578 )
46.8 ([(X]578)
72.5 (M) [[M]5n)
Chloroform
20-22
132
-129 (M) ([M] 578 )
Chloroform
20-22
132
-58.1 (M)
Chloroform-methanol (5 :2) (P); chloroform (M)
20
231
-12.0(M)
Chloroform-methanol
20
231
40.6 (La] 578)
Chloroform
22
249
18.6 ([a]578)
Chloroform
22
249
-13.5(M)
Chloroform-methanol (5:2) (P); chloroform (M)
20
230
-82(IaJ 5 7 8 ) 205
Poly[(L-alanyl-(O-acetyl)D-serine methylester)methylenej -33 NiCl 2 -6H 2 O Chloroform Poly[(L-alanyl-(Af(Im)-tosyl)L-histidine methylester)methylenej NiCl 2 -6H 2 O Chloroform/Methanol RT 144(Ia] 578 ) Poly[(D-alanyl-(Ar(Im)-tosyl)L-histidine methylester)methylenej NiCl 2-6H 2 O Chloroform/Methanol RT -170 (N 578 ) Poly[(L-alanyl-(/V(Im)~tosyl) L-histidyl-(O-acetyl)L-serine methylester)methylenej -58.9 NiCl 2 6H 2 O Chloroform
-156([M] 5 7 8 )
-68.5
([a]578)
Poly[(L-alanyl-(A^(Im)-tosyl)L-histidyl-(O-acetyl)D-serine methylester)methylene] NiCl 2 6H2O Chloroform - 29.3 Poly[(D-alanyl-(Af(Im)4osyl)L-histidyl-(0-acetyl)L-serine methylester)methylene] NiCl 2 6H 2 O Chloroform -8.0 Poly [ ((S)( 1 -benzylethyl)imino)methylene] NiCl 2 -6H 2 O Methanol RT 15 (La] 578 ) PolyL(((5)l-(ferf-butoxycarbonyl)-2-methylpropyl)imino)methylene] NiCl 2 45 32.5 Poly[((S)( 1 -carbethoxyethyl)imino)methylene] NiCl 2 6H 2 O RT -280(La] 5 7 8 ) Poly [(((1S ,2S) 1 -carbomethoxy-2-methylbutyl)imino)methy lene] NiCl 2 45 -32.2 Poly[((S)(— )a-cyclohexylethylimirio)methylene] NiCl 2 -6H 2 O Neat 65 -295 Poly[(((S)2,2-dimethyl-13-dioxolane-4-yl)methylimino)methylene] NiCl 2 6H 2 O RT 68.5(La] 546 ) Poly [(((R) 1,2-dimethylpropyl)imino)methylene] NiCl 2 -6H 2 O Methanol RT 16.7(La] 578 ) Poly[((/?)(2-(diphenyl phosphinyl)propyl)imino)methylene] NiCl 2 -6H 2 O Methanol RT -338(La] 578 ) PoIyK(SX 1 -ethyl-2-propenyl)imino)methylene] NiCl 2 -6H 2 O Methanol RT 29(La] 578 ) PoIyK(SX 1 -ethyl-2-propynyl)imino)methylene] NiCl 2 -6H 2 O Methanol RT -HO(La] 5 7 8 ) PolyL(((S)l-(isopropyloxycarbonyl)-2-methylpropyl)imino)methylene] NiCI 2 5 -24 Poly[((-)menthylimino)methyleneJ NiCl 2 -6H 2 O Methanol 65 -207 Poly [(((S) 1 -(methoxycarbonyl)-2-methylpropyl)imino)methylene] NiCl2 RT -UO Poly[((/?)3-methyl-2-butyl)imino)methylene] NiCl 2 -6H 2 O Methanol RT -16.7 ([a]578) Poly[((i?)4-methyl-2-pentyl)imino)methylene] NiCl 2 6H2O RT 62([aJ 578 ) Poly[((/?)2-octylimino)methylene] NiCl 2 -6H 2 O Methanol RT 34 (M 578 ) Poly[(d-a-phenylethylimino)methylene] DBP-O2 Heptane 60 365 Poly[(l-a-phenylethylimino)methylene] H 2 SO 4 -O 2 Heptane 50 -382 NiCl 2 -6H 2 O 0-5 -350 (M 578 )
20
230
Chloroform-methanol (5:2) (P); chloroform (M)
20
230
Chloroform
20-22
132
Chloroform
20
236
Chloroform
20-22
132
Chloroform
20
236
THF (P); hexane (MC)
24 (P); 20 (MC) 209
38.5(M)(La] 5 4 6 )
Dioxane
25
227
-24.2 (M) (La) 578 )
Chloroform
22
236
(M)
9.2 (M)
22(LM] 5 7 8 )
48.7(LaJ 5 7 8 )
70.6(M)(LM] 5 7 8 )
29.5 (M) -355([M] 578 )
16.7 (LaJ 578 )
21.2(M)(LM] 5 7 8 )
35.0 (M) 27.4 (MC)
-910([M] 578 )
13.1 (La]578)
35.3 (M) ([M]578)
Chloroform
20-22
132
27.6(LM] 578 )
95 (La] 578 )
90.2 (M) ([M]578)
Chloroform (P); neat (M)
20
132
-102(LM] 5 7 8 ) -12.8 ([a]578)- 11.9(M)(LM] 5 7 8 )
Chloroform (P); neat (M)
20-22
132
Chloroform
20
236
Hexane
25 (P); 20 (MC) 209
Chloroform
20
236
- 16.2 (LM] 578 ) -24.2(La] 578 )- 23.5(M)(LM] 5 7 8 )
Chloroform
22
131
68.9([MJ 578 )
-61.9 (La] 578 )- 68.8(M)(LM] 578 )
Chloroform
22
131
47.3 ([M]578)
-47.6
Chloroform
22
131
Toluene
27
39
Toluene Chloroform (P); methanol (M)
27 20
39 132
n-Heptane (P); neat (MC)
25
133
-68.8(M)
Chloroform
20
197
5.90 (M)
Chloroform
20
197
32.7 (M) - 106.4 (MC) 5.5 (M)
(La] 578 )- 66.3(M)(LM] 5 7 8 )
37.2 (M)
-458([M] 578 )
- 35.8 (M) -40.9
-179.7(M) 55.0(M)(LM] 578 )
POLY(ALKYNES)
Poly[(S)3,4-dimethyl-1 -pentyne] Al(Z-C 4 H 9 ) 3/Fe(AcAc) 3 n-Heptane Poly [p-(L-( - )-menthoxycarbonyl)phenylacety lene] [Rh(norbornadiene)Cl] 2 Triethylamine Poly [/?-((-f )-2-methylbutoxy)phenylacetylene] [Rh(norbornadiene)Cl] 2 Triethylamine
20-35 RT RT
42.2 (MC)
470 -605 19.2
6££-IIA 3^d S90U3J9J9H
1.8.
Chloroform -methanol (5 :2) (P); chloroform (M)
-2.1
TABLE 1. cont'd Polymer Catalyst or initiator Poly [(S)4-methyl-1 -hexyne] Al(Z-C 4 H 9 ) 3/Fe(AcAc) 3 AlO-C 4 H 9 ) 3/Fe(AcAc) 3 Poly[(S)5-methyl-1 -heptyne] Al(I-C 4 Hg) 3 ZFe(AcAc) 3 Poly[(5)6-methyl-1 -octynej Al(i-C 4 H 9 ) 3 ZFe(AcAc)3 Poly [(S)3-methyl-1 -pentynej Al(Z-C 4 H 9) 3/Fe(AcAc) 3
Polymerization system Solvent
T(0C)
Isooctane w-Heptane
20-30 20-35
^-Heptane
Polymer (P) values WD
[M] D
Monomer (M) or model compound (MC) values MD
[M]D
Optical activity measured Solvent
T( 0 C)
Refs.
-10.6
- 3.0 (MC)
Isooctane >2-Heptane (P); neat (MC)
25 25
133
20-35
-146
12.2(MC)
n-Heptane (P); neat (MC)
25
133
n- Heptane
20-35
-34
13.7(MC)
rc-Heptane (P); neat (MC)
25
133
/7-Heptane
20-35
498
32.1 (MC)
/i-Heptane (P); neat (MC)
25
133
THF (P); ethanol (M) THF (P) THF (P)
25(P) 25(P) 25(P)
-2.97 (MC)
-22.9
1.9. POLY(MALEIMIDES) AND RELATED POLYMERS Poly(AMx>myl maleimide) BPO THF 50 AIBN THF 50 n-BuLi THF 50 Poly[A^(cholesteroxycarbonylmethyl)maleimide] AIBN THF 70 «-BuLi THF 0 Poly(/V-maleoyl-L-alanine) AIBN THF 60 Poly(/V-maleoyl-L-phenylalanine) AIBN THF 60 Poly[7V-maleoyl-L-phenylalanine ethyl esterj AIBN Dioxane 60 BuLi THF 0 Poly[Ar-((N/-((Z?)-a-methylbenzyl)aminocarbonyl)methyl)maleimideJ AIBN DCM 70 Polyt/V^./V'^^-a-methylbenzyOaminocarbonyl-fz-pentyl) maleimide] AIBN Dioxane 60 Poly[Ar-(4^/-((/?)-a-methylbenzyl)aminocarbonylphenyl)maleimideJ AIBN THF 50 rc-BuLi THF 0 Poly[A^-(4-A^'-((5)-a-methylbenzyl)aminocarbonylpheny))ma]eimideJ AIBN THF 50 Poly[W
43
8.4 10.1 -9.1
-9.6(M) -9.6(M) -9.6(M)
-25.9 -37.1
- 26.8 (MC) - 26.8 (MC)
THF THF
RT RT
203
-42.1
-49.9(MC)
THF
25
201
-144.1
-138.3(MC)
THF
25
201
- 120.0 - 222.0
-136.3(MC) -136.3 (MC)
THF THF
25 25
252
59.9
115.5 (MC)
THF
25
200
50.1
56.6 (MC)
THF
25
183
-141.4 -78.0
- 26.9 (MC) - 26.9 (MC)
THF THF
25 25
192
163.4
28.9 (MC)
THF
25
206
44.6
44.8 (MC)
THF
25
183
56.7
55.3 (MC)
THF
25
233
11.1-13.0
57.9 (M)
THF
25
137
-69.7 -65.2
-106.8(MC) -106.8 (MC)
THF THF
25 25
187
1.10.
OTHERCOMPOUNDS
Poly [(2,2/-bis(hexyloxy)-1,1 '-binaphthyl-6,6 '-ylene)-1,4-phenylenevinylene-1,4-phenylenevinylene-1,4-phenylene] Pd(PPh 3 )4 THF/K2CO3(aq.) -351 35.6 (M) Poly(bis-2-methylbutyl itaconate) 4.92 4.97 (M) RT 5.57 (M) 4.75 BPO 40-85 PoIy[A/ 3-( 1,2-diethoxycarbonylethyl)ureidoethylene] 24.3 63.1 43.5 (M) AJBN Benzene 60 31.7 82.0 43.5 (M) PoIy[N3 -(1,3-diethoxycarbonylpropyl)ureidoethyleneJ 21.6(M) AIBN Benzene 60 7.83 21.3 Poly[(/?)3,7-dimethyloctanal divinylacetal] AIBN 80 3.18 7.19 2.48 (MC) BF 3 OEt 2 -78 -6.78 -14.32 2.48 (MC) PoIy[Af3 -(1 -ethoxycarbonyl-3-methylbutyl)ureidoethylene] AIBN Benzene 60 0.5 t.l 20.3 (M) Poly(ethylidene-l-propenylidene) (from (#)2,3-pentadiene) 7i-allyl-Ni-iodide - 20 -232.10 -47.39 (M) Poly(L-menthyloxycarbonylaminoethylene) AIBN 95 AIBN Benzene 60 y-ray Benzene 22 tert-BuOOH SO2 -25 Poly[Ar-(4-Af/-((/?)-a-methylbenzyl)aminocarbonylphenyl)itaconimide] AIBN THF 60 Poly[( - )3-((3-styryloxy)menthane] BF 3 OEt 2 DCM -72 Poly[iV-(/?-(/?-tolylsulfinyl)phenyl)-2,5-dioxo-pyrrolidin-3,4-diyl] BPO THF 60 Poly(m-tolyl vinyl sulfoxide) rc-BuLi/(- )-sparteine Toluene - 78 Poly(/7-tolyl vinyl sulfoxide) rc-BuMgBr THF 30 Poly[(S) Af-vinyl-3-methyl-2-pyrrolidone] AIBN Water 95
TABLE 2.
-60.4 -60.4 -58.5 -66.2
-136.0 -136.0 -131.8
- 79.9 (M) - 79.9 (M) - 79.9 (M) - 79.9 (M)
166
THF (P); DMSO (M)
112.5 (M) 112.5 (M)
58.9 (M)
46.3 (M) -179.7 (M) - 179.7 (M) - 179.7 (M) - 179.7 (M)
15 16
Heptane
20
Dioxane Benzene
25 25
38
Benzene
25
38
Chloroform Chloroform
25 25
72
Benzene
25
38
Carbon tetrachloride (P); neat (M)
25
243
Benzene Benzene Benzene Benzene
25 25 25 25
38
52.1
-23.8(MC)
THF
25
191
- 114
- 15.9 (M)
THF
25(P)
122
-22.0
- 25.9 (M)
Chloroform
20
135
311
486 (M)
194
443 (M)
Acetone
23
134
28
69.3 (M)
Methanol (P); benzene (M)
25
136
246
MAIN-CHAIN ACYCLIC HETROATOM POLYMERS
Polymer Polymerization system Catalyst or Initiator 2.1. POLY(OXIDES) Poly[(/?)( + )citronellal] Al(i-C 4 H 9 )3 n-BuLi BF 3 OEt 2
Polymer (P) values T (0C)
Solvent
Ether rt-Hexane Ether
-78 — 78 -78
WD
[M] D
-82.7 to -90.1-127 to -139 -91.1 -140 -89.5 -138
Monomer (M) or model compound (MC) values HD
[M]D
11.2(MC) 11.2(MC) 11.2(MC)
Optical activity measured Solvent
Chloroform Chloroform Chloroform
T (0C)
25 25 25
Refs.
44
References page VII - 739
TABLE 2.
confd Polymer (P) values
Polymer Polymerization system Catalyst or Initiator Poly(D-oxy-2,3-dimethylethylene) AlO-C4H9) 3/H2O
Solvent n-Heptane
Poly[(/?)( + )oxy-5-methoxy-3-methyl-hexylidene] ZnEt 2 n-Hexane Poly[(/?)oxy-2-methylbutylidene] ZnEt2 n-Hexane Poly[( + )oxy-l-methyl-2-carbomethoxyethylene] BF3 OEt3/AlEt3 Poly[oxymethylene-(/?,/?)-dibenzo-19-crown-6] KOH DMSO Poly [oxymethylene-(S,S)-dibenzo-19-crown-6] KOH DMSO Poly(L-oxypropylene) KOH
T( 0 C)
[M] D
[M]D
58.8 (M)
-78 52.8
2.47 (M)
8.24 (MC)
Optical activity measured Solvent
T( 0 C)
Refs.
Benzene or chloroform (P); neat (M)
25
47
Chloroform
25
45
-75
36.7
-75
36.7
30.7 (M)
Chloroform
25
45
25
- 36.9
24.6 (M)
DCM (P); neat (M)
25
48
1.22 (M) ([a]435)
Chloroform
25 (P); 24 (M)
208
Chloroform
25 (P); 28 (M)
208
Benzene (P); ether (M) Chloroform (P) Benzene (P) Chloroform (P) Cyclohexane (P); neat (M) Benzene (P) Benzene (P); ethyl ether (M) Dibutyl ether (P)
20 (P); 21 (M) 20(P) 20(P) 20(P) 25 25 25 (P); 27 (M) 25(P)
46
Chloroform Chloroform
25 20
51 175
Cyclohexane Chloroform
20 (P); 25 (M)
52 140
DCM (P); chloroform (M)
20 (P); 25 (M)
140
TFEL
25
49
Benzene
25
49
TFEL
25
53
TFEL (P); chloroform (M)
25
53
TFEL (P1MC); chloroform (M)
25
53
Fuming sulfuric acid
25
237
RT RT
-6.0(M435)
-1.07 (M) ([a]435)
RT
-16±5 25±5 -20±5 25 ±5 24.9 -32.0
15(M) 15(M) 15(M) 15 (M) 11.55(M) 11.55(M) 15.0 (M) 15.0(M)
FeCl 3 -monomer
Ether
RT
ZnEt2/CH3OH
Benzene
33
Ferric acetate hydroxide
Heptane
70
2.2.
WD
Monomer (M) or model compound (MC) values
-9.50 7.36
138 139
POLY(ESTERS)
Poly[L(— )oxycarbonylethylidene] 175-195 -153.3(M 578 ) ZnCl 2 Heptane -275.8 (M) (M578) - 19.2 (M) Pyridine Pyridine 20 - 140.0 Poly(L-oxycarbonylisobutylidene) -50(MC) 180-190 ZnO -20 - 256(M) -67 180-190 ZnO Poly(L-a-oxycarbonylisopentylidene) - 226 (M) 175 -50 ZnO Poly[(/?)( -f )oxycarbonyl-3-methylhexamethylene] 0.94 (M) 215 8.55 Sb2O3/Zn(CH3COO)2 Poly [(/?)(-)oxycarbonyl-3-methylhexamethyleneJ 215 -0.96(M) 3.36 Sb2O 3/Zn(CH3COO) 2 Poly[(/?)(- )oxycarbonyl-2-methylpentamethylene] (Poly [(/?)(- )-(3-methylcaprolactone]) A10-C 4 H 9 ) 3 /H 2 O Benzene 50 32.57 (M450) 29.78 (MC) (M350) Poly[(/?)oxycarbonyl-3-rnethylpentamethylene] AlO-C 4 Hg) 3 ZH 2 O Benzene 50 26.95 (M450) 51.77 (M) Poly[(/?)oxycarbonyl-4-methylpentamethylene] A10-C4H9)3/H2O Benzene 50 8.78 (M450) - 15.91 (MC) (M350) -36.11 (M) Poly[oxycarbonyl-1,4-phenylene-oxyterephthaloyloxy-1,4-phenylene-carbonyloxy-OS1) 1 -methylethylene] EDC Reflux 42
22.3 (M)
Poly[oxycarbonyl-1,4-phenylene-oxyterephthaIoyloxy-1,4-phenylene-carbonyloxy-1,2-bis(2,2-dimethyl-1,3-dioxolane-4-yl)ethyleneJ DCM 85 228 4.0 (M) Poly(D-oxycarbonylpropylene) AIEt 3 Ether RT 19 (LaJ 300 ) Natural polymer 44 ([a] 3Oo) Poly(oxycarbonyl-1,2,3-trimethoxytetramethylene) (Poly(2,3,4-trimethyl-1 -arabonolactone)) CH3COC1/HC1 RT 39 QaJ 546 ) 203.5 (M) (LaJ 546 ) Poly[oxyisophthaloyloxy-(2-acetamide-1 -phenyl)trimethylene] Chloroform 60 - 30.8 24.9 (M) Poly foxy terephthaloyloxy-( 1 /?,3/?)-1,3-dimethyltrimethyleneJ EDC 82 -295 -136(MC) Poly[oxyterephthaloyloxy-( 1 -methyl-3-oxo)trimethylene-oxyethyleneoxy-(3-methyl-1 -oxo)trimethylene-oxycarbony IJ DCM Reflux -62 -41.8(M)
Dioxane (P); methanol (M)
25
Chloroform Chloroform
226 50
Benzene
21
54
DMF (P); methanol (M)
25
167
Chloroform
25
202
Chloroform
25
189
Benzene (P); neat (M) Benzene (P); neat (M)
25 25
142
Benzene
25
232
DMF
24 (M)
143
2.3. POLY(SULFIDES), POLY(THIOESTERS) Poly(terf~butyl thiirane) tert-BnOK DMSO RT ZnEt 2 Toluene RT Poly [thio-1 -(yV-^j^c-butyl-^-methylaminomethyOethyleneJ ZnEt2/methanol RT PolyL(5)thio(carbonyl)-l-(p-chlorobenzenesulfonamide)ethyleneJ PhCH2SH DMF 25 Poly[(/?)thio(carbonyl)-1 -methyl-1 -ethylethylenej Tetrabutylammonium versatate 100 Poly[(1S)thio(carbonyl)-l-(/?-methyloxybenzenesulfonamide)ethyleneJ PhCH2SH DMF 25 Poly[(/?)(-)thiocarbonyl-3-methylpentamethyleneJ «-BuLi RT PolyL(/?)( + )thiocarbonyl-2-methylpentamethylene] AZ-BuLi 190 PolyL(5)thio(carbonyl)-1 -(p-nitrobenzenesulfonamide)ethylenej PhCH2SH DMF 25 Poly[thio(carbonyl)-1 -tosylaminoethylenej PhCH2SH DMF 25 112 PolyL(- )thiopropylenej BF 3 OEt 2 KOH
DCM -
15
268 231-240
- 39.0 (M) - 39.0 (M)
26.1 - 85.52
- 11.08 (M)
151.7
56.9 (M)
Benzene
23 (P); 26 (M)
141
- 92.44
25.25 (M)
DMF
20(M)
143
-5.39
-3.21 (M)
Dioxane
25
57
15.66 18.62
9.03 (M)
Dioxane THF
25 25
57
-100.25
-46.01 (M)
DMF
28 (M)
-90.6 -80.6
19.87 (M) 19.87 (M)
DMF DMF
-62.8 - 126.9 -189 -159
-32.6 (M) 32.6 (M) - 35 (MC) - 35 (MC)
DCM Chloroform Chloroform Benzene (P)
143 143
22 22 18(P); 20(MC) 18(P)
55 56
2.4. POLY(URETHANES), POLY(UREAS) 2.4.1. POLY(URETHANES) Poly[oxycarbonylimino-(l-ethoxycarbonyl)pentamethyleneiminocarbonyloxyethyleneJ Neat 140-160 -12 Poly[oxycarbonylimino-(L)2-isobutylethylene-ureylene-(L)l-isobutylethylene)J Na 2 CO 3 H2O/THF <0 -48.2 Poly[oxycarbonylimino-(L)2-isobutylethyIene-ureyIene-(L)l-isopropylethylene)J Na 2 CO 3 H2O/THF <0 -27.2 PolyLoxycarbonylimino-(L)2-isobutylethylene-ureylene-(L)l-methylethylene)J Na 2 CO 3 H2O/THF <0 -19.2
174
DMSO Methanol
20
63
Methanol
20
63
Methanol
20
63
References page VII - 739
TABLE 2.
cont'd
Polymer
Catalyst or Initiator
Polymerization system
Solvent J( 0 C)
[a]D
Polymer (P) values [M]D
Monomer (M) or model compound (MC) values
MD
[M] D
Polyfoxycarbonyliminomethylene-1,3-phenylenemethy lene-urey lene-( 1 -(methoxymethyl)-2-phenyl)ethyleneJ Dibutyltin dilaurate DMSO 80 20.48 15.20 (MC) Poly[oxycarbonyliminomethylene-l,3-(I,5,5-trimethyl)cyclohexylene-iminocarbonyloxy-2,3-bornanediyl] Methyl ethyl ketone 80 - 7.4 - 11.67 (MC) Poly[oxycarbonylimino-(D)2-methylethylene-ureylene-(L)l-isobutylethylene)J Na 2 CO 3 H2O/THF <0 -54.7 Poly[oxycarbonylimino-(L)2-methylethylene-ureylene-(L)l-isobutylethylene)J Na 2 CO 3 H2O/THF <0 -47.9 Poly[oxycarbonylimino-(D)2-methylethyiene-ureylene-(L)l-isopropylethylene)] Na 2 CO 3 H2O/THF <0 -53.2 Poly[oxycarbonylimino-(L)2-methylethylene-ureylene-(L)l-isopropylethylene)j Na 2 CO 3 H2O/THF <0 -26.0 Poly[oxycarbonylimino-(D)2-methylethylene-ureylene-(L)I-methylethylene)J Na 2 CO 3 H2O/THF <0 - 16.0 Poly[oxycarbonylimino-(L)2-methylethylene-ureylene-(L)l-methylethylene)] Na 2 CO 3 H2O/THF <0 -50.0 Poly[oxycarbonylimino-1,4-phenylenemethylene-1,4-phenylene-ureylene-( l-(methoxymethyl)-2-phenyl)ethyleneJ - 8.72 (MC) Dibutyltin dilaurate DMSO 80 -14.40 Poly[oxycarbonylimino-2,4-toluyleneiminocarbonyloxy-(2-acetamide-l-phenyl)trimethylenej Chloroform 75 -20.6 -38.6 (MC) Poly[oxycarbonylimino-2,4-toluyleneiminocarbonyloxy-2,3-bornanediylJ Methyl ethyl ketone 80 - 27.6 - 14.8 (MC) 2.4.2. POLY(UREAS) Poly[((/?)5-ethyl-l,3-diazolidin-2-one-l,3-diyl)ethyleneoxyethylene] Methyl iodide Benzonitrile 150 -19.4 Poly[((/?)5-ethyl-1,3-diazolidin-2-one-1,3-diyl)methylene-1,2-phenylenemethylenej Methyl iodide Benzonitrile 150 -28.0 Poly[((/?)5-ethyl-l,3-diazolidin-2-one-l,3-diyl)tetramethyleneJ Methyl iodide Benzonitrile 150 -54.0 PoIy[((S)5-isopropyl-1,3-diazolidin-2-one-1,3-diyl)tetramethylene] Methyl iodide Benzonitrile 150 -40.5 Poly [((S)5-phenylmethyl-1,3-diazolidin-2-one-1,3-diy l)tetramethylenej Methyl iodide Benzonitrile 150 -71.4 2.5.
Optical activity measured Solvent
T( 0 C)
Refs.
DMSO
25
168
DMF
30
216
Methanol
20
63
Methanol
20
63
Methanol
20
63
Methanol
20
63
m-Cresol
20
63
m-Cresol
20
63
DMSO
25
168
DMF
25
167
DMF
30
216
39.4 (M)
Chloroform
24
250
32.1 (M)
Chloroform
24
250
38.8 (M)
Chloroform
24
250
- 34.4 (M)
Chloroform
24
250
32.0 (M)
Chloroform
24
250
POLY(AMIDES)
Poly [iminocarbonyl-l,2-(3,4-bis(2-hydroxypheny l))cy clobutylenecarbonyliminohexamethylene] DMAc 80 -241 Poly(iminocarbonyl-l,2-(3,4-bis(2-hydroxyphenyl))cyclobutyienecarbonylimino-i,4-phenyleneJ DMAc 80 - 358 Polyfiminocarbonyl-l,2-(3,4-bis(2-methoxyphenyl))cyclobutylenecarbonyliminohexamethylenej Benzyltriethylammonium chloride 1.OM NaOH/chloroform RT —70.3 Polyjiminocarbonyl-1,2-(3,4~bis(2-methoxyphenyl))cyclobutylenecarbonylirnino-1,4-phenylenej Benzyltriethylammonium chloride 1.0MNaOH/chloroform RT 5.7 Poly(/ra«$-iminocarbonyl-1,2-cyclohexyIene) Triethyiamine DMF 60 75.2-84.8
-295 (MC)
DMAc
235
- 456 (MC)
DMAc
235
-81.0 (MC)
m-Cresol
20
218
- 32.7 (MC)
DMAc
20
218
- 60.0 (MC)
DCA (P); ethanol (M)
20
144
Poly [iminocarbonyl-( 15,25) 1,2-rrans-cyc!ohexylene-carbonylirninoethylene] DMAc 56.5 Poly[iminocarbonyl-( 15,25) 1,2-fratts-cyclohexylene-carbonylimino-1,4-phenylene] DMAc 239 Poly[imino-((25,35)-2,3-dimethoxytetramethylene)-imino-(l,4-dioxotetramethylene)] Chloroform 50 -14.1 Poly [irnino-( 1,5-dioxohexamethylene)imino-( 1 R,2R) 1,2-rra«$-cyclohexylene] DMAc 65.4 PoIy[iminoethy!ideneimino-(2,3-dimethoxy-l,4-dioxo)tetramethyleneJ Chloroform RT 175.2 Poly[threo-imino-( 1 -oxo-2,3-dimethyltrimethylene)J AT-Pyrrolidone DMSO 25 -25.0 Poly[(5)imino-( 1 -oxo-3-ethyltrimethylene)] (Poly[(5)p-aminovalerate]) AT-Pyrrolidone DMSO 25 -32.7 PoIyK- )imino-(l-oxo-3-methylhexamethylene)] H2O 200 39.7 NaH 160 43.07 Poly[( 4- )imino-(l-oxo-4-methylhexamethylene)j NaH 150 19.24 Poly[( -I- )imino-(l-oxo-5-methylhexamethylene)j NaH 194 25.15 Poly[( -f )imino-( 1 -oxo-3-methyl-6-isopropylhexamethylene)] ^-C6H5COCl 150 9.5 Poly[(5)imino-( 1 -oxo-3-methyltrimethylene)] (Poly[(5)-P-aminobutyrate]) tf-Pyrrolidone DMSO 25 -9.3
DCA (P); acetone (M)
25 (P); 20 (M)
221
19.4(M)
DCA (P); acetone (M)
25 (P); 20 (M)
221
- 8.2 (M)
Formic acid (P); chloroform (M)
23
184
- 33.4 (M)
DCA (P); water (M)
25 (P); 20 (M)
221
- 38.25 (M)
Formic acid (P); chloroform (M)
23
199
-50.6(M)
TFA (P); neat (M)
25
62
- 2.4 (M)
DCA (P); neat (M)
25
62
Cresol (P); water (M) Cresol (P); water (M)
25 25
59,60
TFEL
25
TFEL
25
- 53.6 (M)
Formic acid
19
- 8.3 (M) - 8.3 (M) - 8.3 (M)
TCA (P); neat (M) DCA (P) TCA-chlorobenzene (P)
25 25 25
62
25(M)
DCA (P); neat (M)
25
62
-33.4(M)
DCA (P); water (M)
25 (P); 20 (M)
THF
21
-36.15 (M) -36.15 (M)
61 61 61 58 -26.1 -33.5
Poly t(/?)imino-( 1 -oxo-3-vinyltrimethylene)] tf-Pyrrolidone DMSO 25 -19.5 Poly [iminoterephthaloylimino-( 1 R,2R) 1,2-fra/w-cyclohexylene] DMAc Poly[(-f)iminoterephthaloylimino-2,8-naphthylene-8,2-naphthyleneJ
19.4 (M)
-211
66.6 (MC) ([a]578) -15(M 5 7 8 ) Poly[methyliminocarbonyl-l,2-(3,4-bis(2-hydroxyphenyl))cyclobutylenecarbonyl-methylimino-hexamethylene] DMAc 80 -437 Poly[A^-(phenylethylidene)iminoethylene-A^-(phenylethylidene)iminoterephthaloyl] -74 ([a]289) -294 (M 289 ) Poly[A/-(phenylethylidene)iminohexamethylene-N-(phenylethylidene)iminodipicolinoyl] -139(M 289 ) -610(M 2 8 9 ) PoIy[1,4-piperazinediylcarbonyl-1,2-(3,4-bis(2-hydroxyphenyl))cyclobutylenecarbonyl] DMAc 80 116 Poly[ 1,4-piperazinediylcarbonyl-1,2-(3,4-bis(2-methoxyphenyl))cyclobutylenecarbonyl] Benzyltriethylammonium chloride 1.0 M NaOH/chloroform RT - 40.7 - 83.0 (MC) O2N NO2
H3C CH3 (- ) R = 1,2-phenylene ( + ) R = 1,3-phenylene ( + ) R = 1,4-phenylene
- 4.94 - 0.50 6.53
- 474 (MC)
-391 (MC)
221 71 235
DMAc 20
70
20
70 235
DMAc DMAc
20
218
5% LiCl-DMF 5% LiCl-DMF 5% LiCl-DMF
20 20 20
73 73 73
References page VII-739
TABLE 2.
confd Polymerization system
Polymer Catalyst or Initiator
T (0C)
Solvent
(-) R = 1,2-pyrazolidene (- ) R = 2,5-dimethyl-l ,4-piperazinediyl Cl
Polymer (P) values
Monomer (M) or model compound (MC) values [M]D
[M]0
Optical activity measured Solvent
r(°C)
Refs.
5.4
TFEL
20
73
28.0
TFEL
20
73
5% LiCl-DMF 5% LiCl-DMF 5% LiCl-DMF TFEL TFEL TFEL
20 20 20 20 20 20
73 73 73 73 73 73
Chloroform (P); neat (M)
25
229
Chloroform(P); ethylether (M) 25
228
Chloroform
25
64
TFA
25
182
Chloroform
25
65
Cl
+COHQMQ)- CONH-R-NHi1 CH3 CH3 (-) R=l,2-phenylene (-) R=l,3-pnenylene ( ) R = 1,4-phenyiene (-) R = 1,2-piperazinediyl ( — ) R = 1,4-piperazinediyl (-) R = 2,5-dimethyl-1,4-piperazinediyl 2.6.
-19.6 -19.4 -18.2 -6.7 -10.0 -6.7
POLY(ISOCYANATES)
Poly [((R) 1 -deuterio-1 -hexyl)iminocarbonyl] NaCN DMF - 58 Poly[(((S)2,2-dimethyl-1,3-dioxolane-4-yl)methyl)iminocarbonyl] NaCN DMF - 65 Poly((5)( + )Ar-(2-methylbutyl)iminocarbonyl] NaCN DMF - 75 Poly[AH3-methyl-1 -carbomethoxybutyl)iminocarbonyl] Methyllithium DMF - 50 Poly [d- Af-(phenylpropyl )i minocarbony 1 ] NaCN DMF RT
2.7.
-367
0.65 (M)
-311 (M546)
-21.1 (M)(M 546 )
160
180.8
3.08 (M) - 6 (MC)
- 10.3 (MC)
62 -468.0
- 754.8
35(M) 114.4(MC)
44.8 (M)
POLY(IMINES)
Poly(D-conidine) BF 3 OEt 2 Ether Poly(L-conidine) BF 3 OEt 2 Ether Poly[(S)decyliminoisobutylethyIene] BF 3 OEt 2 Neat Poly[(/?)ethyliminoethylethylene] BF 3 OEt 2 Neat Polyfimino-1 -butyl-(/?)2-ethylethyleneJ BF 3 OEt 2 Poly [imino-1 -(/?)2-diethylethylene] BF 3 OEt 2 Poly[(/?)imino-2-ethylethylene] BF 3 OEt 2 -
RT
- 140.8
71.7(M)
Chloroform
69
RT
140.8
-71.0(M)
Chloroform
69
-78
-68.6
17.9 (M)
-78
155.13
-41.80(M)
98-100
137.66
2.73 (M)
Benzene (P); ethanol (M)
98-100
155.13
-20.33(M)
Dioxane (P); ethanol (M)
25
100
-127.4
17.6(M)
Benzene (P); neat (M)
23 (P); 18(M)
Benzene (P); ethanol (M)
19-21
173
Dioxane (P); methanol (M)
25
234 145 145 67
AlCl3 From (/?)-2-amino-1 -bromobutane Poly[imino-(/?)2-ethyl-1 -pentylethylene] BF 3 OEt 2 Poly(imino-N-formyl-isopropylethylene) Methyl triflate Acetonitrile BF 3 OEt 2 Acetonitrile Poly(imino-ALformyl-propyIene) Ethyl trifluoromethane-sulfonate Acetonitrile Dimethyl sulfate Poly[(S)iminoisobutyIethyIene] BF 3 OEt 2 Poly(iminoisopropylethylene) BF 3 OEt 2 Poly [imino-(S)A^-1 -methylbenzylethylene] BF 3 OEt 2 Poly(D-iminopropylene) BF 3 OEt 2 Poly(L-iminopropylene) BF 3 OEt 2 Poly[(S)methyliminoisobutylethylene] BF 3 OEt 2 Neat 2.8.
100
- 108.9 - 109.2
17.6 (M)
Benzene (P) Benzene
98-100
132.39
4.16 (M)
Benzene (P); ethanol (M)
80 80
1993 86.8
-130.5(M) - 130.5 (M)
80 120
130 107
80-100
16(P) 16 145
Chloroform (P); ethanol (M) Chloroform (P)
25 25
146
- 148 (M) 14.4 (M)
Methanol (P); ethanol (M) H 2 O (P); neat (M)
25 (P); 30 (M) 20
148 149
66.7
- 24.6 (M)
Benzene
20 (P); 32 (M)
68
80
82.8
-27.1 (M)
Ethanol
24
146
0-60
7.09 -8.15
-81.8(M) -81.8(M)
Benzene (P); neat (M) Chloroform (P)
20 20
147
80
-101.5
12.4 (M)
22
66
80
109.3
- 12.8 (M)
22
66
-78
- 163.5
33.7 (M)
Benzene (P); ethanol (M)
19-21
25 (Form I) - 175 (Form U)
90% HCOOH 90% HCOOH after 6 h
25 25
31 (W 546) 159 (M546)
DCA 10% DCA-90% EDC
25 25
173
POLY(AMINOACIDS)
Poly(6>-acetyl-L-hydroxyproline) NCA
Pyridine
Poly(O-acetyl-L-serine) NCA, triethylamine
Nitrobenzene
Poly(L-alanine) NCA, tributylamine
Benzene-dioxane
21 ([m'] D ) -90([m'] D )
99% CHCI3-1% DCA TFA
81,84
Poly(D-a-amino-n-butyric acid) NCA, benzylamine
Nitrobenzene
-19(InV] 0 ) 107([m'] D )
90% CHCl 3-10% DCA TFA
81,84
Poly(L-arginineHCl) From poly(L-nitroarginine) Poly(a-L-aspartic acid) From poly(p-benzyl-L-aspartate) (NCA, 1200C in vac.)
-21.3
Poly(p-L-aspartic acid) Active ester method
140
H2O
20
114
85
6.2
c =31 NNaOH
87
-11.2
c =51 NNaOH
88
-14(M 5 4 6 ) -23(M 5 4 6 )
0.2 M NaCl7 pH 2 0.1 M NaCl, pH 4
25 25
89
22 22
86
Poly(p-benzyl-D-aspartate) NCA, NaOMe
Chloroform
174(M 546 ) 19 (M546)
Chloroform DCA
Poly(P-benzyl-L-aspartate) NCA, NaOMe
Chloroform
-168(M 5 4 6 ) -18(M 5 4 6 )
Chloroform DCA
22 86 22 References page VII - 739
TABLE 2.
confd
Polymer Catalyst or Initiator Poly(y-benzyl-D-glutamate) NCA, NaOMe
Polymerization system Solvent
T( 0 C)
Chloroform Chloroform
NCA, NaOMe NCA, Ni-dl-2-methylbutyrate-n-Bu.^P NCA, benzylamine NCA, benzylamine Poly( 1 -benzyl-L-histidine) NCA, triethylamine Triethylamine NCA, triethylamine Poly(£-yV-carbobenzoxy-L-Jysine) NCA, NaOMe
Chloroform Chloroform Chloroform Chloroform Dioxane
30
Dioxane
30
THF
30
Dioxane Dioxane Dioxane
Poly(S-carbobenzoxymethyl-L-cysteine) NCA, NaOMe Nitrobenzene Poly(3,4-dehydro-L-proline) NCA
Pyridine
WD
[M]D
Solvent
T( 0 C)
Refs.
22 22
86
Hydrazine TFA Chloroform DCA Chloroform DCA DCA (P); ethylacetate (NCA) Chloroform (P) DCA (P); ethylacetate (NCA) Chloroform (P) DCA (P); ethylacetate (NCA)
20 20 22 22 25 25 20 20 20 20 25
96
11 (W 546 ) -208(LaJ 546 ) -21.1
Chloroform DCA-CHCl3 Acetic acid
25 25 20
101
5 (IaJ 546 ) -25(IaJ 5 4 6 )
Chloroform 50% CHCl 3 -50% DCA
25 25
84,103
-128(Ia] 546 ) -125(M 5 4 6 ) -33(M 5 4 6 )
0.2 M NaCl, pH 7 0.2 M NaCl, pH 5 0.2 M NaCl, pH 3
25 25 25
90
99% formic acid TFA
25 25
109
Dioxane-H2O, 0.2 M NaCl, pH4.7 Dioxane-H2CX 0.2 M NaCl, pH 6.5 2-Chloroethanol-HoO, 0.1 M RbCl, pH 5 2-Chloroethanol-H2O, 0.1 M RbCl, pH 7.5 0.2 M NaCL pH 4.5
22
84,92
-102
0.2 M NaCl, pH 8.0
20
23.6
H2O
23
95
-23.6
H2O
23
95
-30 -46 14(W 546 ) -15(IaJ 5 4 6 ) 15 -14 -17.0 15.3 - 17.0 16.0 -15.3
-500 -1250
-77 7 -75
Poly(y-D-glutamic acid) Active ester method PolyCy-L-glutamic acid) Active ester method
WD
Optical activity measured
Chloroform DCA
Poly(L-glutamic acid) From poly(y-benzyl-L-glutamate) (NCA, aliphatic amine, DMF)
From poly(y-benzyl-L-glutamate) (NCA, NaOMe)
[MID
Monomer (M) or model compound (MC) values
17 (M 546 )
Poly(Y-benzyl-L-glutamate) NCA NCA, NaOMe
Polymer (P) values
-6
-17.1 (NCA) -17.1 (NCA) -17.1 (NCA) - 17.1 (NCA) - 17.6 (NCA)
86,98 86 97 151
152
102
22 84,93
20
84,94
Poly(L-histidine) From poly(l-benzyl-L-histidine) (NCA, triethylamine, dioxane)
Poly(L-hydroxyproline) From poly(O-acetyl hydroxy-L-proline) Poly(L-leucine) NCA, tributylamine
0.2 M NaCl, pH 2.4 0.2 M NaCl, pH 5.85 0.2 M NaCl, pH 6.00 DCA Acetic acid
25 25 25 25 22
10.1 (LaJ 546 ) -26.5(LaJ 5 4 6 ) -31.4(La] 546 )
DMF TFEL DCA
25 25 25
83
H2O
25
no
-65(LaJ 5 4 6 )
Poly(8-hydroxy-O-acetyl-L-oc-aminovaleric acid) NCA, triethylamine Nitrobenzene
-400
Benzene -HI
Poly(L-lysine) From poly(£-/V-carbobenzoxyL-lysine)
Poly(L-lysine hydrochloride) From poly(e-/V-carbobenzoxyL-lysine) Poly(L-methionine) NCA, NaOMe
Nitrobenzene
PoIy(L- methionine-S-carboxyrnethylthetin) From poly(L-methionine) Poly(L-methionine-5-rnethylsulfonium bromide) From poly(L-methionine) Poly(/V-methyl-L-alanine) NCA, benzylamine Poly(Y-methyl-L-glutamate) NCA
Dioxane
Poly(L-nitroarginine) NCA DMF Poly(y-phthalimidomethyl-L-glutamate) NCA, triethylamine Poly(L-pipecolic acid) NCA, diethylamine Benzene or dioxane
101
-210([0Cj 546 ) -67(LaJ 5 4 6 ) 28 (LaJ 546 ) -20
([m'] D )
Benzene TFA
102
81,84 81
- 144
H 2 O, pH 7
-35 -51 -77 -108
H2O, H2O, H 2 O, H 2 O,
-78.8
6 N HCl
25
106
24.4(LaJ 546 ) 16.8 ([aj 546 ) -115.3(La] 546 ) 22(La] 546 ) -107(LaJ 5 4 6 )
90% CHCl 3-10% DCA DCA TFA Chloroform 80% TFA - 20% DCA
25 25 25
107
-44(LaJ 546 )
HCI, H 2 O (pH 1.1-2.0)
25
107
H2O 1OM LiBr
24 24
107
-3.04
TFEL
24
82
-31.3 -76.1 10
DCA TFA DMF
25 25 25
99 100
-16.6
DMF
30
85
12.5
DMF
25
91
Acetic acid Acetic acid after 2 h
25 25
109
-74.3(LaJ 5 4 6 ) -38.6(LaJ 546 )
- 325 (Form I) - 50 (Form II)
pH pH pH pH
12 10.10 9.98 9.72
105
21.4 23.2 25.6
108
References page VII - 739
TABLE 2.
confd Polymerization system
Polymer Catalyst or Initiator
T (0C)
Solvent
Polymer (P) values [a] D
[M]0
Monomer (M) or model compound (MC) values [«1D
MD
Poly(L-proline)
Poly((3-proline) Triethylamine DMF Poly(L-serine) From poIy(O-acetyl-L-serine)
Poly(6-Ar-trifluoroacetyl-L-lysine) NCA, diethylamine
DMF
Poly(L-tryptophan) NCA, diethylamine
Dioxane
Ill
25
150
H2O 1OM LiBr 8 M urea Hydrazine DCA
25 25 25 25 25
114
0 (Form i) -120 (Form U)
Acetic acid Acetic acid after 3 h
25
110
-6.8 (M 546) -36.8 ([a]546)
Methanol DCA
20 20
218 (Ia]546) 343 ([a] 546)
DMF 40% DMF - 60% DCA
20 20
184 73 150 28 8.7
DMF 20% DMF-80% DCA 0.15 MNaCl, pH 10.85 0.15MNaCl, pH 12.27 1 N NaOH
Poly(L-tyrosine) From poly(O-carbobenzoxy-L-tyrosine) (NCA, 1100C in vac.)
TABLE 3.
Refs.
Chloroform
7.6 (MC)
-22 [a] 546 -7.3 [aj 546 -25.2 M546 -9.3 [a] 546 -9.7 [a] 546
Poly(O-/?~tolylsulfonyloxy-L-proline) NCA Pyridine
T(0C)
25 25
-10 to -11
30
Solvent Acetic acid Acetic acid 10% Pyridine 90% H 2 O 10% Pyridine after 5Oh H2O 0.1 M KCl
50 (Form I) - 540 (Form 11) 48 (Form I) - 420 (Form II) 33 (Form I) - 540 (Form II)
NCA, pyridine
Optical activity measured
112 113
115
116
20
117
POLY(SACCHARIDES)
Polymer (P) values
Polymer Polymerization system Catalyst or initiator
Solvent
PoIyK 1 ->6)-2,5-anhydro-3,4-di-0-decyl-D-glucitol J BFvOEt 9 DCM 0 tert-BuOK THF 60 PoIyK l->6)-2,5-anhydro-3,4-di-<9-ethy]-D-gluritol] BF 3 OEt 2 DCM -30
T (0C)
MD
16.0 23.7 32.7
[M] D
MD
Monomer (M) or model compound (MC) values [M] D 6.8 (M) 6.8 (M)
54.1 (MC); -5.2(M)
Optical activity measured Solvent
T (0C)
Refs.
Chloroform Chloroform
22 22
211
Chloroform
22
210
Poly[( 1 -^6)-2,5-anhydro-3,4-di-O-methyl-D-glucitol] tert-BuOK Toluene 60 KOH Toluene 60 BF 3 OEt2 (from D-rnannitol) DCM 0 BF3 OEt2 (from L-iditol) DCM 0 Poly(2,5-anhydro-3,4-di-O-methyl-r>mannitol) BF 3 OEt 2 DCM 0 Poly[(l-»6)-2,5-anhydro-3,4-di-O-pentyl-D-glucitol] BF 3 OEt 2 DCM 0 tert-BuOK THF 60 Poly [a-( 1 —>6 ')-anhydro-D-galactopyranose] From 2,3,4-tri-O-benzyl derivative Poly( 1,6-anhydro- p-D-glucopyranose) Chloroacetic acid 21 -127 Poly(a-1,6-anhydro-D-mannopyranose) From 2,3,4-tri-O-benzyl derivative PoIy(Ot-1,6-anhydro-2,3,4-tri-(9-acetyl-p-D-mannopyranose) PF5 DCM 0 Poly[a(l —>6 O-anhydro^^^-tri-O-benzyl-p-D-galactopyranose] PF5 DCM -78 Polyfoc-1,6-anhydro-2,3,4-tri-<9-benzyl-p-D-mannopyranose] PF5 DCM -78 Poly[l,6-anhydro-2,3,4-tri-O-methyl-p-D-glycopyranose] BF 3 OEt 2 Toluene RT BF 3 OEt 2 Toluene RT Poly(D-galactose) HCl DMSO 40 Poly(D-glucose) HCl DMSO 40 Polyphosphate formamide 50-60 Poly(D-mannose) HCl DMSO 40 PoIy(2,3,6-tri-(9-methyl-D~glucose) HBr-HCl-P2O5 DMSO RT Poly(D-xylose) HCl DMSO 40
-12.3(M)(M 546 ) -9.8(M)(W 546 )
Chloroform Chloroform Chloroform Chloroform
23 23 22 22
50.2(M 546 )
-9.6 (M) (M546); 44.1 (MC)
Chloroform
22 (P, M); 23 (MC) 214
25.8 32.8
9.3 (M) 9.3 (M)
Chloroform Chloroform
22 22
211
10% LiOH - 0.5% borate
25
75
H2O
22
77
1%DMSO
30
80
DMSO
30
80
84.5 (M546) 75.5 (M 546) 41.3(M 546 ) 43.1 (M546)
207.1 91 122.8 96
212 213
105.1
-46.1 (M)
Chloroform
25
75
57.5
-32(M)
Chloroform
30 (P); 25 (M)
80
199 204
-63.7(M) -63.7(M)
Chloroform Chloroform
25 (P); 20 (M) 25 (P); 20 (M)
78
79.1
H2O
20
74
90.3 16
H2O
20
74 76
102.9
H2O
20
74
136.6
Chloroform
20
79
96.1
H2O
20
74
C. OPTICALLY ACTIVE POLYMERS FROM ACHIRAL MONOMERS TABLE 4.
MAIN-CHAIN ACYCLIC CARBON POLYMERS
Polymer Polymerization system Catalyst or initiator
Solvent
Optical activity measured
Polymer (P) Values T (0C)
WD
[M] D
Origin of optical activity
Solvent
T (0C)
Refs.
4.1. POLY(ACRYLICS) AND RELATED POLYMERS Poly(JV-acryloylcarbazole) Fluorenyllithium/(- )-sparteine Poly(Ar-acryloyliminodibenzyl) Fluorenyllithium/(— )-sparteine
Toluene Toluene
- 97 — 97
57.4
Helix-sense asymmetry
Chloroform
25
188
-0.5
Helix-sense asymmetry
Chloroform
25
188
References page VII - 739
TABLE 4.
confd
Polymer Catalyst or initiator
Polymerization system Solvent
Poly(iV-acryloylphenothiazine) Fluorenyllithium/(- )-sparteine Toluene Poly(iV,JV-diphenylacrylamide) BuLi/(- )-sparteine Toluene Fluorenyllithium/(- )-sparteine Toluene Poly(W,iV-di(2-pyridyl)-acrylamide] Fluorenyllithium/(- )-sparteine Toluene Poly[A^-methyl-N-triphenylmethyl-acrylamide] «-BuLi/(— )-sparteine Toluene Poly( 1 -phenyldibenzosuberyl aery late) DPEDA-Li/( + )-DBB Toluene Poly(N-phenyl-iV-1 -naphthylacrylamide) BuLi/(- )-sparteine Toluene Poly(Af-phenyl-Af-2-naphthyIacrylamide) BuLi/(- )-sparteine Toluene Poly [Af-phenyl-AK 1 -phenylethyl)-acrylamide] Fluorenyllithium/(— )-sparteine Toluene Poly(triphenylmethyl acrylate) DPEDA-Li/( + )l-(2-pyrroliToluene dinylmethyl)pyrrolidine 4.2.
T(0C)
Polymer (P) Values WD
[M] D
Optical activity measured Origin of optical activity
Solvent
T (0C)
Refs.
-97
8.2
Helix-sense asymmetry
Chloroform
25
188
-96 -97
-44.2 to-50.9 -101
Helix-sense asymmetry
THF Chloroform
25 25
153 188
-97
-23.7
Helix-sense asymmetry
Chloroform/DC A (22/1)
25
188
-78
-2.4
Helix-sense asymmetry
THF
25
188
-40
-129
Helix-sense asymmetry
Chloroform
25
219
-78
8.7
Helix-sense asymmetry
Toluene
25
153,188
-78
81.7
Helix-sense asymmetry
Toluene
25
153,188
-97
-0.3
Helix-sense asymmetry
THF
25
188
-78
102(M365)
Helix-sense asymmetry
Chloroform
25
186
Miscellaneous
THF
25
164
Miscellaneous
THF
25
164
Helix-sense asymmetry
THF
25
220
Helix-sense asymmetry
Chloroform
25
240
Chloroform Chloroform after 1 h
60 60
Helix-sense asymmetry
Chloroform
25
240
Helix-sense asymmetry
THF
25
220
Helix-sense asymmetry
90% Chloroform - 10% TFEL 25
155
Helix-sense asymmetry
90% Chloroform - 10% TFEL 25
154
Induced asymmetry
Benzene
162
POLY(METHACRYLICS) AND RELATED POLYMERS
Poly(benzyl methacrylate) (5)2,3:4,5-bis[ 1,2-(3-methylnaphtho)]-1,6,9,12,15,18-hexaoxacycloeicosa-2,4-diene-A:0-terr-Bu 95% Toluene-5% THF- 78 350 ([a] 578) Poly(rerr-butyl methacrylate) (5)2,3:4,5-bis[ 1,2-(3-methylnaphtho)]-1,6,9,12,15,18-hexaoxacycloeicosa-2,4-diene-#0-terr-Bu 95% Toluene-5% THF- 78 117 ([a] 578) Poly(m-chlorophenyldiphenylmethyl methacrylate) DPEDA-Li/(-h)-DDB Toluene -78 314 Poly(cyclohexyldiphenylmethyl methacrylate) DPEDA-Li/( + )1 -(2-pyrroToluene - 78 758 ([a] 365) lidinylmethyl)pyrrolidine 770(Ia]365) -480(M 365 ) Poly(cyclopropyldiphenylmethyl methacrylate) DPEDA-Li/( + )-DDB Toluene -78 -44 (M365) Poly(diphenyl-m-fluorophenylmethyl methacrylate) DPEDA-Li/( + )-DDB Toluene -78 297 Poly(diphenyl-2-pyridylmethyl methacrylate) DPEDA-Li/(- )-DDB " Toluene - 78 -1403 ([a] 365) Poly(diphenyl-4-pyridylmethyl methacrylate) BuLi/(- )-sparteine Toluene - 78 - 40 ([a] 546) Poly(methyl methacrylate) From poly(methacrylic acid) (potassium persulfate/dextrin, water, 00C) 6.4(M 350 )
25
From poly(methacrylic acid) (potassium persulfate/chitosan, water, 300C) 16.6 (5)2,3:4,5-bis[ 1,2-(3-methylnaphtho)]-1,6,9,12,15,18-hexaoxacycloeicosa-2,4-diene-/ft>-ter/-Bu 95% Toluene-5% THF -78 250 (M57S) From poly(2,3-O-isopropylidene-l,4-di-O-methacryloyl-L-threitol) (AIBN, toluene, 600C) -4.3(W 405 ) PoIy(I -phenyldibenzosuberyl methacrylate) Diisopropyl peroxydicarbonate (4- )Menthol/toluene 50 - 200 (W 365) Diisopropyl peroxydicarbonate (-)Menthol/toluene 50 180 (W 365) Diisopropyl peroxydicarbonate/ Toluene 40 ~140([a] 36 5) (-f- )neomenthanethiol (-)Dimethyl peroxydicarbonate Toluene 50 40 ([aJ365) DPEDA-Li/(-)-sparteine Toluene -78 1670 (W 365 ) Poly[ 1 -(2-pyridyl)dibenzosuberyl methacrylate] DPEDA-Li/(- )-sparteine Toluene - 78 1290 ([a] 365) Poly(triphenylmethyl methacrylate) Li(R)-AK 1 -phenylethyl)anilide THF - 78 -104 BuLi/(- )-sparteine Toluene -78 363 (S)-6-(2-dimethylaminoethyl)-1,11 -dimethyl-6?7-dihydro-5H-dibenz[c,e]azepine Toluene - 78 373 Poly[tris(m-chlorophenyl)methyl methacrylate] DPEDA-Li/(-)-DDB Toluene -78 -251 Poly[tris(m-tolyl)methyl methacrylate] DPEDA-Li/(- )-DDB Toluene - 78 - 234 (W 546) 4.3.
Chloroform
21
163
Miscellaneous
THF
25
164
Induced asymmetry
Chloroform
20
244
Helix-sense asymmetry
THF THF THF
25 25 25
196 196 253
THF Chloroform
25 25
253 196
Helix-sense asymmetry
Chloroform
25
251
Helix-sense asymmetry
Toluene Toluene
20 20
156
THF
25
157
Helix-sense asymmetry
THF
25
220
Helix-sense asymmetry
Chloroform
25
220
Induced asymmetry
Benzene Benzene
18
169 242
Induced asymmetry
Chloroform
20
170
Induced asymmetry
Chloroform
20
170
Induced asymmetry
Chloroform
20
198
Chloroform
20
198
THF
30
179,180
THF
30
179,180
Methanol
25
177
POLY(VINYLETHERS)
Poly(benzofuran) AlCl3/phenylalanine Toluene -75 24-56.7 AlCl3/Et3SnCl/(-)menthoxyToluene -75 73.8 triethyltin Poly(a-naphthofuran) 2A1C13/(- )-p-phenylalanine Toluene - 75 41 Poly(p-naphthofuran) 2A1C13/(- )-(3-phenylalanine Toluene - 75 - 145 Poly(2-phenyl-l,3-dioxane-4,6-diyl) (Poly(benzaldehyde divinyl acetal)) ZnCl 2 OEt 2 /(-h)-10Toluene 0 ~17.1 (W435) camphor-sulfonic acid ZnCl2OEt2/(-)-10Toluene 0 13.7 (W435) camphor-sulfonic acid 4.4.
Induced asymmetry
POLY(STYRENES)
Poly(4-iodostyrene) From copolymer of 3,4-O-cyclohexylidene-D-mannitol-l,2:5,6-bis~O-[(4-vinylphenyl)boronate] and styrene (AIBN, toluene, 60-700C) 0 to —4.5 (W 436) Induced asymmetry Polystyrene From copolymer of 3,4-O-cyclohexylidene-D-mannitol-l,2:5,6-bis-O-[(4-vinylphenyl)boronate] and styrene (AIBN, toluene, 60-700C) -0.5 to -3.5 (W365) Induced asymmetry 4.5.
POLY(DIENES)
Poly (3-carboxy-1 -butenylene) From poly[l-(d-bomylammonium carboxylate)-l,3-butadiene] (AEBN, methanol, 500C. See Section B. Table 1, 1.6) 0.2 Induced asymmetry
References page VII-739
TABLE 4.
confd
Catalyst or initiator
Solvent
Optical activity measured
Polymer (P) Values
Polymer Polymerization system T (0C)
WD
[M]0
Solvent
Origin of optical activity
From poly[l-(S(-)a-phenylethylammonium carboxylate)-1,3-butadiene] (AlBN, methanol, 500C. See Section B. Table 1, 1.6) -4.8 -4.7 Poly(3-carboxy-4-methyI-l-butenylene) (Poly(sorbic acid)) Potassium persulfate/chitosan Water 50 2.32 Induced asymmetry From polyl1-((-)menthyloxycarbonyl)-l,3-pentadiene] (AlBN, benzene, 500C. See Section B. Table 1, 1.6) -58.3 Polyl3-(ethoxycarbonyl)-1 -butenylene] Induced asymmetry - 14.0 -78 /2-BuLi/sodium 1-menthoxide Toluene 6.0 -78 n-BuLi/sodium d-bornoxide Toluene Poly [3-(methoxycarbonyl)-1 -butenylene] Induced asymmetry -2.4 -78 rt-BuLi/sodium 1-menthoxide Toluene 2.7 -78 /2-BuLi/sodium d-bornoxide Toluene Poly(/r<my-2-methyl-1,3-pentadiene) Induced asymmetry - 106 50 y-ray/apocholic acid 90 50 y-ray/deoxycholic acid Poly(c/s-2-methyl-1,3-pentadiene) Induced asymmetry -66 y-ray/apocholic acid 50 320 y-ray/deoxycholic acid 50 Poly( 1,3-pentadiene) Induced asymmetry Al(C2H5)/(- )titanium Benzene -22.8 0 tetramenthoxide Poly (trans-1,3-pentadiene) Induced asymmetry y-ray/apocholic acid -6.5 50 y-ray/deoxycholic acid RT 0.3 y-ray/rra«s,anti,frans,anti,fram-perhydrotriphenylene Po]y(cis-1,3-pentadiene) 2.5 y-ray/apocholic acid Induced asymmetry -3.7 50 y-ray/deoxycholic acid RT -21 4.6.
Refs.
Methanol
20
178
Methanol
20
161
THF
25
190
Benzene Benzene
RT RT
176
Benzene Benzene
RT RT
176
Carbon tetrachloride Carbon tetrachloride
20 20
159 160
Carbon tetrachloride Carbon tetrachloride
20 20
159 160
Hexane
18
171
Carbon tetrachloride Chloroform
20 26
159 158
Chloroform Carbon tetrachloride Chloroform
25 20 26
172 159 158
Chloroform
20
207
POLY(ISONITRILES)
Poly[(terf-butylimino)methylene] tris(terf-butyl isocyanide)[(S)(- )-(1 -phenylethyl)amino(te^butylamino)carbene]-nickel(ll) perchlorate Neat RT - 28.7 Helix-sense asymmetry Poly[5,8-dimethyl-6,7-bis(propoxymethyl)-quinoxaline-2,3-diyl] (PoIy[1,2-diisocyano-3,6-dimethyl-4,5-bis(propoxymethyl)benzeneJ) (+ )oligo(5,8-di-/?-tolylquinoxaline-2,3-diyl)/Pd(II) THF RT - 171 Helix-sense asymmetry 4.7.
T( 0 C)
204
POLY(MALEIMIDES)
Poly(yV-benzyl maleimide) n-BuLi/(— )-sparteine Poly(/V~/7-butyl maleimide) /i-BuLi/(— )-sparteine Poly(Af~sec-butyl maleimide) n-BuLi/(- )-sparteine
Toluene
0
11.3
Induced asymmetry
Chloroform or THF
181
Toluene
0
-7.1
Induced asymmetry
Chloroform or THF
181
Toluene
6
-21.0
Induced asymmetry
Chloroform or THF
181
Poly(/V-terf-butyl maleimide) A7-BuLi/(— )-sparteine Poly(/V-cyclohexyl maleimide) n-BuLi/(— )-sparteine PoIy(ZV-2-fluorenyl maleimide) n-BuLi/(— )-sparteine Poly(yV-isobutyl maleimide) /i-BuLi/(—)-sparteine Poly(N-isopropyl maleimide) n-BuLi/(— )-sparteine PoIy(N-1 -naphthyl maleimide) /7-BuLi/(— )-sparteine Poly(iV-phenyl maleimide) fl-BuLi/(-)-sparteine n-BuLi/(— )-sparteine/CuI Poly^-n-propyl maleimide) /?-BuLi/(— )-sparteine
Toluene
0
2.8
Induced asymmetry
Chloroform or THF
181
Toluene
0
-39.5
Induced asymmetry
Chloroform or THF
181
Toluene
0
-0.4
Induced asymmetry
Chloroform or THF
181
Toluene
0
- 13.4
Induced asymmetry
Chloroform or THF
181
Toluene
0
-18.7
Induced asymmetry
Chloroform or THF
181
Toluene
0
0.9
Induced asymmetry
Chloroform or THF
181
Toluene Toluene
0 0
- 15.4
Induced asymmetry
Chloroform or THF Chloroform
Toluene
0
-23.7
(IaJ 435 )
181 241 181
Induced asymmetry
-4.9
4.8. OTHER COMPOUNDS
Chloroform or THF
Poly(methylene-l,3-cyclopentylene) (from 1,5-hexadiene) (H-)(5,5)ethylene-l,2-bis(?75-4,5,6,7-tetrahydro-l-indenyl)zirconium-l,l '-bi-2-naphtholate/methylaluminoxane Toluene RT 51.0([M] 4 Os) Induced asymmetry Poly[ 1 -(m-tolylsulfonyl)ethylenej From poly(m-tolyl vinyl sulfoxide) («-BuLi/(- )-sparteine, toluene, -78°C. See Section B, Table 1, 1.10) 42 Miscellaneous
TABLE 5.
25
28 Chloroform
239 246
MAIN-CHAIN ACYCLIC HETROATOM POLYMERS
Polymer Catalyst or initiator
Polymerization system Solvent
7( 0 C)
Optical activity measured
Polymer (P) values WD
[M]0
Origin of optical activity
Solvent
T (0C)
Refs.
5.1. POLY(OXIDES) AND POLY(SULFIDES) Poly(chloral) Tetramethylammonium ( — ) acetyl mandelate Lithium coprostan-3(3-oxide Hexane Poly(oxy-1,2-cyclohexylidene) ZnEt 2/( 1S,2/?)-ephedrine Poly(oxy-1,2-dimethylethylene) ZnEt 2/( 15,2/?)-ephedrine Poly(thio-1,2-cyclohexylidene) ZnEt 2/(R,R)-1,2-diphenyl-1,2-ethandiol Toluene Poly(thio-1,2-dimethylethylene) ZnEt2KRM)-1,2-diphenyl-1,2-ethandiol
0-75 <58 80
242-668 2970 -9.1 to 12.3
Helix-sense asymmetry
Film (soaked in diphenyl ether) 25 Film (soaked in diphenyl ether) RT
Induced asymmetry
Benzene
25 25
80
15
Induced asymmetry
Benzene
RT
59
Induced asymmetry
Trichlorobenzene
25
RT
154
Induced asymmetry
Chloroform
25
165 247 194 238 238
238 References page VII - 739
TABLE 5.
confd
Polymer Catalyst or initiator Solvent 5.2.
Polymerization system T( 0 C)
[a]D [M] D
Polymer (P) values Origin of optical activity
Optical activity measured Solvent
T( 0 C)
Refs.
POLY(ISOCYANATES)
Poly [(butyl )iminocarbony IJ (/?)iV-benzyl-l-phenylethylamine lithium amide Toluene Poly [iV-(p-chiorophenyl )iminocar bony 1] ^rr-BuLi/(5)(-)-(2-methyoxymethyl)pyrrolidine THF Poly[AH3,4-dimethylphenyl)iminocarbony!J tert-Buhi/(S)(- )-(2-methyoxymethyl)pyrrolidine THF Poly[A^(/>methoxyphenyl)iminocarbonylJ r^r/-BuLi/(5)(-H2-methyoxymethyl)pyrrolidine THF Poly[A/-(m-methylphenyl)iminocarbonyl] tert-BuL\/{S)( — )-(2-methyoxymethyl)pyrrolidine THF Poly[A^-(y?-methylphenyl)iminocarbonylJ /^rr-BuLi/(5)(-)-(2-methyoxymethyl)pyrrolidine THF PoIy[N-(I-naphthyl)iminocarbonylj tert-BuLi/(S){ — )-(2-methy oxymethy l)pyrrolidine THF Poly[(4-phenylbutyl)irninocarbonyl] (/?)/V-benzyH-phenylethylamine lithium amide Toluene
- 78
-40 (La] 365)
Helix-sense asymmetry
- 98
377 ([a] 365)
Helix-sense asymmetry
- 98
569([aJ 365 )
Helix-sense asymmetry
- 98
588 ([aj365)
Helix-sense asymmetry
- 98
819([a] 36 5)
Helix-sense asymmetry
- 98
748([0Cj 365 )
Helix-sense asymmetry
- 98
529 ([a]365)
Helix-sense asymmetry
- 78
- 17 (IaJ 365)
Helix-sense asymmetry
Chloroform
THF
25
25
DCM
193
25
Chloroform
THF
193
25
25
Chloroform
DCM
193
193
25
25
Chloroform
248
193
193
25
248
D.
REFERENCES
1. F. Ciardelli, E. Benedetti, O. Pieroni, Makromol. Chem., 103, 1 (1967). 2. P. Pino, G. P. Lorenzi, L. Lardicci, Chim. lnd. (Milan), 42, 712(1960). 3. P. Pino, G. P. Lorenzi, J. Am. Chem. Soc, 82, 4745 (1960). 4. P. Pino, F. Ciardelli, G. P. Lorenzi, G. Montagnoli, Makromol. Chem., 61, 207 (1963). 5. P. Pino, P. Salvadori, E. Chiellini, P. L. Luisi, Pure Appi. Chem., 16,469 (1968). 6. P. Pino, G. P Lorenzi, L. Lardicci, F. Ciardelli, Vysokomol. Soedin., 3, 1567 (1961). 7. M. Goodman, K. J. Clark, M. A. Stake, A. Abe, Makromol. Chem., 72, 131 (1964). 8. W. J. Bailey, E. T. Yates, J. Org. Chem., 25, 1800 (1960). 9. S. Nozakura, S. Takeuchi, H. Yuki, S. Murahashi, Bull. Chem. Soc. (Japan), 34, 1673 (1961). 10. R. C. Schulz, H. Hilpert, Makromol. Chem., 55, 132 (1962). 11. R. C. Schulz, Z. Naturforsch 19b, 387 (1964). 12. R. K. Kulkarni, H. Morawetz, J. Polym. ScL, 54,491 (1961). 13. C. S. Marvel, J. Dec, H. G. Cooke, Jr., J. Am. Chem. Soc, 62, 3499 (1940). 14. J. W. C. Crawford, D. Plant, J. Chem. Soc, 4492 (1952). 15. P. Walden, Z. Phys. Chem., 20, 383 (1896). 16. E. I. Klabunovskii, I. I. Petrov, M. I. Schvartmen, Vysokomol. Soedin., 6, 1487 (1964). 17. C. L. Arcus, D. W. West, Chem. lnd. (London), 230 (1958). 18. C. L. Arcus, D. W. West, J. Chem. Soc, 2699 (1959). 19. K. J. Liu, J. S. Lignowski, R. Ullrnan, Makromol. Chem., 105,8(1967). 20. N. Beredjick, C. Schuerch, J. Am. Chem. Soc, 78, 2646 (1956). 21. N. Beredjick, C. Schuerch, J. Am. Chem. Soc. 80, 1933 (1958). 22. E. I. Klabunovskii, M. I. Schvartmen, I. I. Petrov, Vysokomol. Soedin., 6, 1579 (1964). 23. T. P. Bird, W. A. P. Black, E. T. Dewar, D. Rutherford, Chem. lnd. (London), 1331 (1960). 24. W. A. P. Black, E. T. Dewar, D. Rutherford, J. Chem. Soc, 4433 (1963). 25. S. Kimura, M. Imoto, Makromol. Chem., 50, 155 (1961). 26. S. Kimura, K. Hirano, M. Imoto, Kogyo Kagaku Zasshi (Japan), 65, 688 (1962). 27. M. Imoto, S. Kimura, Makromol. Chem., 53, 210 (1962). 28. R. K. Kulkarni, H. Morawetz, J. Polym. Sci., 54,491 (1961). 29. V E. Kaiser, R. C. Schulz, Makromol. Chem., 81, 273 (1965). 30. O. Pieroni, F. Ciardelli, C. Botteghi, L. Lardidi, P. Salvadori, P. Pino, J. Polym. Sci. C, 22, 993 (1967). 31. G. Anzuino, V. Crescenzi, M. D'Alagni, A. M. Liquori, F. Quadrifoglio, F. Ascoli, Communication at the IX, Natl. Meeting of Italian Chem. Soc, Naples, 1962. 32. G. P. Lorenzi, E. Benedetti, E. Chiellini, Chim. lnd. (Milan), 46, 1474 (1964). 33. D. Basagni, A. M. Liquori, B. Pispesa, J. Polym. Sci. B, 2, 241 (1964).
34. P. Pino, G. P. Lorenzi, Makromol. Chem., 47, 242 (1961). 35. G. J. Schmitt, C. Schuerch, J. Polym. Sci., 45, 313 (1960). 36. W. A. P. Black, E. T. Dewar, D. Rutherford, Chem. lnd. (London) 1624 (1962). 37. R. C. Schulz, R. H. Jung, Makromol. Chem., 96, 295 (1966). 38. R. C, Schulz, H. Hartman, Makromol. Chem., 65, 106 (1963). 39. F. Millich, G. K. Baker, Macromolecules 2, 122 (1969). 40. C. S. Marvel, C. G. Overberger, J. Am. Chem. Soc, 68, 2106 (1946). 41. C S . Marvel, C. G. Overberger, J. Am. Chem. Soc, 66, 475 (1944). 42. C. G. Overberger, L. C. Palmer, J. Am. Chem. Soc, 78, 666 (1956). 43. H. Yamaguchi, Y. Minoura, J. Polym. Sci. A-I, 8, 929 (1970). 44. A. Abe, M. Goodman, J. Polym. Sci. A, 1, 2193 (1963). 45. A. Abe, M. Goodman, J. Polym. Sci., 59, S37 (1962). 46. C. C. Price, M. Osgan, R. E. Hughes, C. Shambelan, J. Am. Chem. Soc, 78, 690 (1956); 4787 (1956). 47. E. J. Vandenberg, J. Am. Chem. Soc, 83, 3538 (1961). 48. H. Shimazaki, J. Chem. Soc (Japan), 87, 462 (1966). 49. C G . Overberger, S. Ozaki, D. M. Braunstein, Makromol. Chem., 93, 13 (1966). 50. J. R. Shelton, J. B. Lando, D. E. Agostini, Polym. Lett. 9,173 (1971). 51. R. C Schulz, J. Schwaab, Makromol. Chem., 87, 90 (1965). 52. Y. Iwakura, K. Iwata, S. Matsuo, A. Tohara, Makromol. Chem., 122, 275 (1969). 53. C. G. Overberger, H. Kaye, J. Am. Chem. Soc, 89, 5649 (1967). 54. H. D. K. Drew, W. N. Haworth, J. Chem. Soc, 775 (1927). 55. N. Spassky, P. Sigwalt, Bull. Chim. Soc France, 4617 (1967). 56. T. Tsunetsugu, J. Furukawa, T. Fueno, J. Polym. Sci. A-I, 9, 3541 (1971). 57. C. G. Overberger, J. K. Weise, J. Am. Chem. Soc, 90, 3538 (1968). 58. M. Imoto, H. Sakurai, T. Kono, J. Polym. Sci., 50, 467 (1961). 59. C. G. Overberger. H. Jabloner, J. Polym. Sci., 55, 32 (1961). 60. C. G. Overberger, H. Jabloner, J. Am. Chem. Soc, 85, 3431 (1963). 61. C G . Overberger, G. M. Parker, J. Polym. Sci. C, 22, 387 (1968). 62. E. Schmidt, Angew. Makromol. Chem., 14, 185 (1970). 63. Y Iwakura, K. Hayashi, K. Inagaki, Makromol. Chem., 110, 84 (1967). 64. M. Goodman, S. Chen, Macromolecules, 4, 625 (1971). 65. M. Goodman, S. Chen, Macromolecules, 3, 398 (1970). 66. Y. Minoura, S. Takebayashi, C. C Price, J. Am. Chem. Soc, 81,4689 (1959). 67. K. Tsuboyama, S. Tsuboyama, M. Yanagita, Bull. Chem. Soc (Japan), 40, 2954 (1967).
68. S. Tsuboyama, Bull. Chem. Soc. (Japan), 35, 1004 (1962). 69. M. S. Toy, C. C. Price, J. Am. Chem. Soc, 82, 2613 (1960). 70. A. P. Terentev, V. V. Dunina, E. G. Rukhadze, Vysokomol. Soedin. A, 9, 599 (1967). 71. R. C. Schulz, R. H. Jung, Makromol. Chem., 116, 190 (1968). 72. A. Abe, M. Goodman, J. Polym. Sci. A, 2, 3491 (1964). 73. C. G. Overberger, T. Yoshimura, A. Ohnishi, A. S. Gomes, J. Polym. Sci. A-I, 8, 2275 (1970). 74. R Micheel, A. Bockmann, W. Meckstroth, Makromol. Chem., 48, 1 (1961). 75. T. Uryu, H. Libert, J. Zachoval, C. Schuerch, Macromolecules, 3, 345 (1970). 76. G. Schramm, H. Grotsch, W. Pollman, Angew. Chem., 74, 53 (1962). 77. J. Das. Carvalho, W. Trins, C. Schuerch, J. Am. Chem. Soc, 81, 4054 (1959). 78. C. C. Tu. C. Schuerch, J. Polym. Sci. B, 1, 163 (1963). 79. F. Micheel, A. Bockmann, Makromol. Chem., 51, 97, (1962). 80. F. Frechet, C. Schuerch, J. Am. Chem. Soc, 91, 1161 (1969). 81. A. R. Downie, A. Elliot, W. E. Hanby, B. R. Malcolm, Proc. Roy. Soc A, 242, 325 (1957). 82. M. Goodman, Fu Chen, F. R. Prince, Biopolymers, 12, 2549 (1973). 83. M. Goodman, A. M. Felix, Biochemistry, 3, 1529 (1964). 84. P. Urnes, P. Doty, Advan. Protein Chem., 16, 401 (1961). 85. T. Hayakawa, Y. Fujiwara, J. Noguchi, Bull. Chem. Soc. (Japan), 40, 1205 (1967). 86. E. R. Blout, R. H. Karlson, J. Am. Chem. Soc, 80, 1259 (1958). 87. M. Frankel, A. Berger, J. Org. Chem., 16, 1513 (1951). 88. A. Berger, E. Katchalski, J. Am. Chem. Soc, 73, 4084 (1951). 89. J. Kovacs, R. Ballina, R. L. Rodin, D. Balasurkamanium, H. Applequist, J. Am. Chem. Soc, 87, 119 (1965). 90. S. Ikeda, Biopolymers, 5, 359 (1967). 91. M. Wilchek, A. Fransdorff, M. SeIa, Arch. Biochem. Biophys., 113, 742 (1966). 92. W. Moffitt, J. T. Young, Pro. Nat. Acad. Sci. USA, 42, 596 (1956). 93. L. Goldstein, E. Katchalski, Bull. Research Council Israel, A9, 138 (1960). 94. A. Wada, MoL Phys., 3, 409 (1960). 95. J. Kovacs, G. H. Schmit, E. J. Jonson, Can. J. Chem., 47, 3690 (1960). 96. J. T. Yang, P. Doty, J. Am. Chem. Soc, 79, 761 (1957). 97. E. R. Blout, R. H. Karlson, J. Am. Chem. Soc, 78, 941 (1958). 98. W. E. Hanby, S. G. Ealey, J. Eatson, J. Chem. Soc, 3239, (1950). 99. M. Goodman, E. Schmitt, I. Listowoky, F. Boardman, I. G. Rosen, M. Stake, in M. A. Stahmann (Ed.), "Polyamino Acids, Polypeptides and Proteins", Univ. Wisconsin Press, Madison, 1962. 100. M. Goodman, E. E. Schmitt, J. Am. Chem. Soc, 81, 5507 (1959).
101. K. S. Norland, G. D. Fasman, E. Katchalski, E. R. Blout, Biopolymers, I1 277 (1961). 102. A. Patchornik, A. Berger, E. Katchalski, J. Am. Chem. Soc, 79, 5227 (1957). 103. G, D. Fasman, M. Idelson, E. R. Blout, J. Am. Chem. Soc, 83, 709 (1961). 104. M. SeIa, R. Arnon, I. Jacobson, Biopolymers, 1, 517 (1963). 105. J. Applequist, P. Doty, in: M. A. Stahmann (Ed.), "Polyamino Acids, Polypeptides and Proteins", Univ. Wisconsin Press, Madison, 1962. 106. H. Devoe, I. Tinoco, J. MoI. BioL, 4, 518 (1962). 107. G. E. Perlmann, E. Katchalski, J. Am. Chem. Soc, 84, 452 (1962). 108. G. D. Fasman, in: M. A. Stahmann (Ed.) "Polyamino Acids, Polypeptides and Proteins", Univ. Wisconsin Press, Madison, 1962. 109. E. Katchalski, A. Berger, J. Kurtz, in: G. N. Ramachandran (Ed.) ,"Aspects of Protein Structure", Academic Press, New York, 1963, p.205. 110. J. Kurtz, G. D. Fasman, A. Berger, E. Katchalski, J. Am. Chem. Soc, 80, 393 (1958). 111. E. Katchalski, I. Z. Steinberg, Ann. Rev. Phys. Chem., 12, 433 (1961). 112. J. Kurtz, A. Berger, E. Katchalski, Nature, 178, 1066 (1956). 113. W. F. Harrington, M. SeIa, Biochem. Biophys. Acta, 27, 24 (1958). 114. G. D. Fasman, E. R. Blout, J. Am. Chem. Soc, 82, 2262 (1960). 115. M. SeIa, I. Z. Steinberg, E. Daniel, Biochem. Biophys. Acta, 46, 433 (1961). 116. J. D. Coombes, E. Katchalski, P. Doty, Nature, 185, 534 (1960). 117. E. Katchalski, M. SeIa, J. Am. Chem. Soc, 75, 5284 (1953). 118. C. Carlini, F. Ciardelli, D. Pino, Makromol. Chem., 174, 15 (1974). 119. J. M. Sauvage, M. Morcellet, C. Loucheux, Macromolecules 16, 1564 (1983). 120. T. Sato, T. Kadowaki, H. Takeda, T Otsu, J. Macromol. Sci., Chem. A, 12, 1225 (1978). 121. T. Kakuchi, K. Yokota, Makromol. Chem., Rapid Commun., 6, 551 (1985). 122. H. Yamaguchi, K. Sekioka, M. Kurokawa, T. Doiuchi, Makromol. Chem., 184, 455 (1983). 123. E. Chiellini, Macromolecules 3, 527 (1970). 124. M. Kurokawa, H. Yamaguchi, Y Minoura, J. Polym. Sci., Polym. Chem. Ed., 17, 485 (1979). 125. R. Vukovic, D. Fles, J. Polym. Sci., Polym. Chem. Ed., 13, 49 (1975). 126. N. Thien, U. W. Suter, P. Pino, Makromol. Chem., 184, 2335 (1983). 127. E. Chiellini, R. Solaro, A. Ledwith, Makromol. Chem., 179, 1929 (1978). 128. N. Kunieda, J. Shibatani, Y Fijiwara, M. Kinoshita, Makromol. Chem., 175, 2509 (1974). 129. Z. Janovic, D. Fles, J. Polym. Sci. A-I, 9, 1103 (1971). 130. R. R. Kiprijanova, D. Fles, J. Polym. Sci., Polym. Chem. Ed., 13, 1141 (1975).
131. A. J. M. Beijnen, R. J. M. Nolte, W. Drenth, A. M. F. Hezemans, P. J. F. M. Coolwijk, Macromolecules, 13, 1386 (1980). 132. A. J. M. Beijnen, R. J. M. Nolte, A. J. Naaktgeboren, J. W. Zwikker, W. Drenth, A. M. F. Hezemans, Macromolecules, 16, 1679 (1983). 133. F. Ciardelii, S. Lanzillo, O. Pieroni, Macromolecules 7, 174 (1974). 134. N. Kunieda, M. Kinoshita, M. Imoto, J. Polym. Sci. B, 9,241 (1971). 135. N. Kunieda, H. Wada, J. Shibatani, M. Kinoshita, Makromol. Chem., 172, 237 (1973). 136. J. Huguet, M. Vert, Polym. Bull., 5, 505 (1981). 137. T. Oishi, M. Fujimoto, J. Polym. Sci., Polym. Chem. Ed., 22, 2789 (1984). 138. T. Hirano, A. Sato, T. Tsuruta, W. C. Johnson, J. Polym. Sci., Polym. Phys. Ed., 17, 1601 (1979). 139. E. Chiellini, P. Salvadori, M. Osgan, P. Pino, J. Polym. Sci. A-I, 8, 1589 (1970). 140. Y. Iwakura, K. Iwata, S. Matsuo, A. Tohara, Makromol. Chem., 146,21 (1971). 141. B. Jerman, D. Fles, J. Polym. Sci., Polym. Chem. Ed., 14, 1117(1976). 142. P. Dumas, N. Spassky, P. Sigwalt, Makromol. Chem., 156,55 (1972). 143. D. Fles, V. Tomasic, M. Samsa, D. Ahmetovic, B. Jerman, M. Fles, J. Polym. Sci., Symposium Ed., 42, 321 (1973). 144. K. Ehara, T. Miura, W. Urahashi, H. Kitahara, H. Nohira, Kobunshi Ronbunshu (Japan), 37, 463 (1980). 145. N. Yahiro, K. Asakawa, Kobunshi Ronbunshu (Japan), 39, 507 (1982). 146. Y. Kawakami, T. Sugiura, Y. Mizutani, Y. Yamashita, J. Polym. Sci., Polym. Chem. Ed., 18, 3009 (1980). 147. A. D. Aliev, E. P. Tiurina, A. Y. Koschevnik, S. L. Aliev, B. A. Krentsel, Eur. Poiym. J., 16, 679 (1980). 148. T. Saegusa, S. Kobayashi, M. Ishiguro, Macromolecules 7, 958 (1974). 149. J. G. Hamilton, K. J. Ivin, L. C. K. Essig, P. Watt, Macromolecules, 9, 67 (1976). 150. H. Yuki, Y. Okamoto, Y. Kobayashi, J. Polym. Sci., Polym. Chem. Ed., 17, 3867 (1979). 151. S. Yamashita, K. Waki, N. Yamawaki, H. Tani, Macromolecules, 7, 410 (1974). 152. N. Oguni, H. Kuboyama, A. Nakamura, J. Polym. Sci., Polym. Chem. Ed., 21, 1559 (1983). 153. Y. Okamoto, M. Adachi, H. Shohi, H. Yuki, Poiym. J., 13, 175 (1981). 154. Y. Okamoto, M. Ishikura, K. Hatada, H. Yuki, Polym. J., 15, 851 (1983). 155. Y. Okamoto, H. Mohri, M. Ishikura, K. Hatada, H. Yuki, J. Polym. Sci., Polym. Symposium Ed., 74, 125 (1986). 156. Y. Okamoto, K. Suzuki, H. Yuki, J. Polym. Sci., Polym. Chem. Ed., 18, 3043 (1980). 157. S. Kanoh, H. Suda, N. Kawaguchi, M. Motoi, Makromol. Chem., 187,53 (1986). 158. G. Audisio, A. Silvani, J. Chem. Soc, Chem. Commun., 481, (1976).
159. M. Miyata, Y. Kitahara, K. Takemoto, Polym. Bull., 2, 671 (1980). 160. M. Miyata, Y. Kitahara, K. Takemoto, Polym. J., 13, 111 (1981). 161. S. Kataoka, T. Ando, Kobunshi Ronbunshu (Japan), 37, 375 (1980). 162. K. Nozaki, Y. Matsubara, M. Yoshihara, T. Maeshima, Makromol. Chem., Rapid Commun., 5, 723 (1984). 163. S. Kataoka, T. Ando, Kobunshi Ronbunshu (Japan), 37, 185 (1980). 164. D. J. Cram, D. Y. Sogah, J. Am. Chem. Soc, 107, 8301 (1985). 165. W. J. Harris, O. Vogl, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem., 22 (2), 309 (1981). 166. Q.-S. Hu, D. Vitharana, G.-Y. Liu, V. Jain, M. W. Waganam, L. Zhang, T. R. Lee, L. Pu, Macromolecules, 29, 1082 (1996). 167. Y. Chen, J.-J. Tsay, Polym. J., 24, 263 (1992). 168. Y. Chen, H.-H. Tseng, J. Polym. Sci., Polym. Chem. Ed., 31, 1719 (1993). 169. M. Farina, G. Bressan, Makromol. Chem., 61, 79 (1963). 170. G. Bressan, M. Farina, G. Natta, Makromol. Chem., 93, 283 (1966). 171. G. Natta, L. Porri, S. Valenti, Makromol. Chem., 67, 225 (1963). 172. M. Farina, G. Audisio, G. Natta, J. Am. Chem. Soc, 89, 5071 (1967). 173. N. Yahiro, S. Ito, Kobunshi Ronbunshu, 42, 427 (1985). 174. R. D. Katsarava, T. M. Kartvelishvili, M. M. Zaalishvili, Dokl. Chem., 281, 99 (1985). 175. 175 H. R. Kricheldorf, J. M. Jonte, Polym. Bull., 9, 276 (1983). 176. T. Tsunetsugu, T. Fueno, J. Furukawa, Makromol. Chem., 112, 220 (1968). 177. H. Yamaguchi, T. Iwama, T. Hayashi, Makromol. Chem., 191, 1243 (1990). 178. Y. Bando, H. Yamaguchi, Y. Minoura, Eur. Polym. J., 15,497 (1979). 179. G. Wulff, P. K. Dhal, Angew. Chem. Int. Ed. Engl., 28, 196 (1989). 180. G. Wulff, P. Kemmerer, B. Vogt, J. Am. Chem. Soc, 109, 7449 (1987). 181. T. Oishi, H. Yamasaki, M. Fujimoto, Polym. J., 23, 795 (1991). 182. F. Sanda, T. Tanaka, T. Endo, J. Polym. Sci., Polym. Chem. Ed., 33, 2353 (1995). 183. T. Oishi, K. Kagawa, M. Fujimoto, J. Polym. Sci., Polym. Chem. Ed., 33, 1341 (1995). 184. J. J. Bou, I. Iribarren, S. M.-Guerra, Macromolecules, 27, 5263 (1994). 185. Y. Okamoto, M. Nishikawa, T. Nakano, E. Yashima, K. Hatada, Macromolecules, 28, 5135 (1995). 186. S. Habaue, T. Tanaka, Y. Okamoto, Macromolecules, 28, 5973 (1995). 187. K. Kagawa, T. Oishi, Polym. J., 27, 579 (1995). 188. Y. Okamoto, H. Hayashida, K. Hatada, Polym. J., 21, 543 (1989).
189. T. Kobayashi, M. Kakimoto, Y. Imai, Polym. J., 26, 758 (1994). 190. T. Doiuchi, T. Dodoh, H. Yamaguchi, Makromol. Chem., 191, 1253 (1990). 191. T. Oishi, T. Kawamoto, Polym. J., 26, 920 (1994). 192. T. Oishi, M. Fujimoto, J. Polym. Sci., Polym. Chem. Ed., 30, 1821 (1992). 193. Y. Okamoto, M. Matsuda, T. Nakano, E. Yashima, J. Polym. Sci., Polym. Chem. Ed., 32, 309 (1994). 194. M. Sepulchre, A. Kassamaly, N. Spassky, Makromol. Chem., Macromol. Symp., 42/43, 489 (1991). 195. L. Angiolini, C. Carlini, M. Tramontini, Macromol. Chem., 191, 2083 (1990). 196. Y. Okamoto, T. Nakano, Y. Shikisai, M. Mori, Macromol. Symp., 89, 479 (1995). 197. T. Aoki, M. Kokai, K. Shinohara, E. Oikawa, Chem. Lett., 2009, (1993). 198. O. Haba, T. Kakuchi, K. Yokota, Macromolecules. 26, 1782 (1993). 199. J. J. Bou, A. Rodriquez-Galan, S. Munoz-Guerra, Macromolecules, 26, 5664 (1993). 200. T. Oishi, K. Kagawa, M. Fujimoto, Macromolecules, 26, 24 (1993). 201. T. Oishi, K. Matsusaki, M. Fujimoto, Polym. J., 24, 1281 (1992). 202. T. Kobayashi, M. Kakimoto, Y. Imai, Polym. J., 25, 741 (1993). 203. T. Oishi, Y. Otsubo, M. Fujimoto, Polym. J., 24, 527 (1992). 204. Y. Ito, E. Ihara, M. Murakami, Angew. Chem. Int. Ed. Engl., 31, 1509 (1992). 205. A. Altomare, F. Ciardelli, R. Lima, R. Solaro, Chirality 3, 292 (1991). 206. T. Oishi, M. Fujimoto, J. Macromol. Chem., Pure Appl. Chem. A, 29, 1187 (1992). 207. P. C. Kamer, R. J. M. Nolle, W. Drenth, J. Am. Chem. Soc, 110, 6818 (1988). 208. H. Hashimoto, T. Kakuchi, O. Haba, K. Yokota, Macromolecules, 25, 1828 (1992). 209. D. Pini, A. Iuliano, P. Salvadori, Macromolecules, 25, 6059 (1992). 210. H. Hashimoto, T. Kakuchi, K. Yokota, J. Org. Chem., 56, 6470 (1991). 211. T. Kakuchi, T. Satoh, J. Muta, S. Umeda, H. Hashimoto, K. Yokota, J. Macromol. Sci., Pure Appl. Chem. A, 33, 352 (1996). 212. T. Satoh, T. Hatakeyama, S. Umeda, H. Hashimoto, K. Yokota, T. Kakuchi, Macromolecules, 29, 3447 (1996). 213. T. Kakuchi, T. Satoh, S. Umeda, H. Hashimoto, K. Yokota, Macromolecules, 28, 5643 (1995). 214. T. Satoh, T. Hatakeyama, S. Umeda, K. Yokota, T. Kakuchi, Polym. J., 28, 520 (1996). 215. A. Lekchiri, J. Morcellet, M. Morcellet, Macromolecules 20, 49 (1987). 216. J.-H. Liu, F-R. Tsai, Y-C. Lai, Angew. Makromol. Chem., 231, 35 (1995). 217. A. Lekchiri, J. Morcellet, M. Morcellet, Macromolecules 20, 49 (1987).
218. Y. Chen, K. Saigo, N. Yonezawa, M. Hasegawa, Bull. Chem. Soc. Japan, 60, 1895 (1987). 219. T. Tanaka, S. Habaue, Y Okamoto, Polym. J.. 27, 1202 (1995). 220. Y. Okamoto, E. Yashima, M. Ishikura, K. Hatada, Polym. J., 19, 1183 (1987). 221. Y. Okamoto, N. Nagamura, T. Fukumoto, K. Hatada, Polym. J., 23, 1197 (1991). 222. A. Castellano, A. Lekchiri, J. Morcellet, M. Morcellet, J. Polym. Sci., Polym. Chem., 25, 1419 (1987). 223. Y Okamoto, E. Yashima, K. Hatada, J. Polym. Sci., Polym. Lett., 25, 297 (1987). 224. Y. Okamoto, T. Nakano, T. Asakura, H. Mohri, K. Hatada, J. Polym. Sci., Polym. Chem., 29, 287 (1991). 225. Y. Okamoto, T. Nakano, E. Ono, K. Hatada, Chem. Lett., 525, (1991). 226. E. Chiellini, G. GaIH, R. Po, Polym. Bull., 23, 397 (1990). 227. M. M. Green, R. A. Gross, F. C. Schilling, K. Zero, C. Crosby III, Macromolecules, 21, 1839 (1988). 228. M. M. Green, R. A. Gross, C. Crosby III, F. C. Schilling, Macromolecules, 20, 992 (1987). 229. S. Lifson, C. Andreola, N. C. Peterson, M. M. Green, J. Am. Chem. Soc, 111, 8850 (1989). 230. H. G. J. Visser, R. J. M. Nolte, J. W. Zwikker, W. Drenth, J. Org. Chem., 50, 3133 (1985). 231. H. G. J. Visser, R. J. M. Nolte, J. W. Zwikker, W. Drenth, J. Org. Chem., 50, 3138 (1985). 232. J. Huguet, D. Vallin, M. Vert, Polym. J., 14, 335 (1982). 233. T. Oishi, M. Fujimoto, J. Macromol. Sci., Chem. A, 23, 619 (1986). 234. N. Yahiro, Kobunshi Ronbunshu, 40, 371 (1983). 235. K. Saigo, Y. Chen, N. Yonezawa, T. Kanoe, K. Tachibana, M. Hasegawa, Macromolecules, 19, 1552 (1986). 236. P. C. Kamer, M. C. Cleij, R. J. M. Nolte, T. Harada, A. M. F. Hezemans, W. Drenth, J. Am. Chem. Soc, 110, 1581 (1988). 237. E. Chiellini, R. Po, S. Carrozzino, G. GaIIi1 and B. Gallot, MoI. Cryst. Liq. Cryst., 179, 405 (1990). 238. N. Spassky, A. Momtaz, A. Kassamaly, M. Sepulchre, Chirality, 4, 295 (1992). 239. G. W. Coates, R. M. Waymouth, J. Am. Chem. Soc, 115, 90 (1993). 240. Y Okamoto, T. Nakano, T. Fukuoka, K. Hatada, Polym. Bull, 26, 259 (1991). 241. Y Okamoto, T. Nakano, H. Kobayashi, K. Hatada, Polym. Bull., 25, 5 (1991). 242. Y. Takeda, Y Hayakawa, T. Fueno, J. Furukawa, Makromol. Chem., 83, 234 (1965). 243. L. Porri, R. Rossi, G. Ingrosso, Tetrahedron Lett., 1083, (1971). 244. T. Kakuchi, H. Kawai, S. Katoh, O. Haba, K. Yokota, Macromolecules, 25, 5545 (1992). 245. K. Yokota, T. Kakuchi, H. Sasaki, H. Ohmori, Makromol. Chem., 190, 1269 (1989). 246. F. Toda, K. Mori, J. Chem. Soc, Chem. Commun., 1059, (1986). 247. G. D. Jaycox, O. Vogl, Makromol. Chem., Rapid Commun., 11, 61 (1990).
248. Y. Okamoto, M. Matsuda, T. Nakano, E. Yashima, Polym. J., 25, 391 (1993). 249. J. M. van der Eijk, R. J. M. Nolte, W. Drenth, A. M. F. Hezemans, Macromolecules, 13, 1391 (1980). 250. M. Miyamoto, T. Umezawa, Polym. J., 28, 432 (1996).
251. T. Nakano, A. Matsuda, M. Mori, Y. Okamoto, Polym. J., 28, 330 (1996). 252. K. Kagawa and T. Oishi, Polym. J., 28, 1 (1996). 253. T. Nakano, Y. Shikisai, Y. Okamoto, Polym. J., 28, 51 (1996).
A n i s o t r o p y
o f
S e g m e n t s
U n i t s
o f
P o l y m e r
a n d
M o n o m e r
M o l e c u l e s
V . N . T s v e t k o v , L. N . A n d r e e v a , N . V . T s v e t k o v Institute of High Molecular Weight Compounds, Russian Academy of Sciences, St. Petersburg, Russian Federation
A. Introduction B. Tables of Anisotropy of Segments and Monomer Units of Polymer Molecules Table 1. Main-Chain Acyclic Carbon Polymers 1.1. Poly(dienes) 1.2. Poly(alkenes) 1.3. Poly(acrylic acid) and Derivatives 1.4. Poly(methacrylic acid) and Derivatives 1.5. Poly(acrylic acid) Derivatives with Mesogenic Side Groups 1.6. Poly(methacrylic acid) Derivatives with Mesogenic Side Groups 1.7. Vinyl Polymers 1.8. Poly(vinyl) Derivatives with Mesogenic Side Groups 1.9. Copolymers, Graft and Block Copolymers Table 2. Main-Chain Carbocyclic Polymers Table 3. Main-Chain Heteroatom Polymers 3.1. Poly(oxides) 3.2. Poly(esters) 3.3. Poly(amides) 3.4. Poly(peptides) and Nucleic Acids 3.5. Poly(phosphazenes) 3.6. Poly(siloxanes) Table 4. Main-Chain Heterocyclic Polymers 4.1. Poly(imides) 4.2. Poly(pyrromellitimides) 4.3. Poly(quinoxalines) 4.4. Poly(benzimidazoles), Poly(benzoxazoles) 4.5. Poly(saccharides) C. References
VII-745 Vli-746 VII-746 VII-746 VII-747 VII-747
A.
INTRODUCTION
Segmental anisotropy (a i — a2) of a chain molecule may be determined experimentally from measurements of flow birefringence in the solution of a polymer with a sufficiently high molecular weight, so that the conformation of its molecules would correspond to that of a Gaussian coil. For calculating (^ 1 — OL1) , Kuhn's equation was used (Ref. 1):
VII-748 VII-748 (Al) VII-749 VII-750 VII-751 VII-751 VII-752 VII-752 VII-752 VII-752 VII-755 VII-755 VII-755 VII-756 VII-756 VII-756 VII-756 VII-757 VII-757 VII-758 VII-760
where A r is the tangential flow stress (shearing stress), An is the observed flow birefringence of the solution, g is the velocity gradient, c and 77 are the concentration and the viscosity of the solution, respectively, [77] and [n] are intrinsic values of viscosity and flow birefringence of the solution, and 770 and n are the viscosity and the refractive index of the solvent. The value A n / A r = [n]/[rj\ may be called the shear optical coefficient. Another method of determining segmental anisotropy (which is seldom used) is through the measurement of stress birefringence in swollen polymers (74). The stress optical coefficient e = An/Ap (where Ap is the normal stress in the sample) determined experimentally is equal to AnjlAr (2), where An/Ar is also related to (a 1 - a2) * according to Eq. (Al). Data obtained by this method are marked in the table with the symbol sw. p. (swollen polymer). If the refractive indices of the polymer and the solvent are not equal, the experimental value of (OLi-Oi1) includes not only the intrinsic segmental (a\ -OL1), but also a part produced by the form effect (3,4). In this case the value a ] -OL1 may be calculated using (a 1 -OL1) and the theoretical equation for macro- and micro-form effects (3,4).
For determining a\ — Ot2, it is preferable to use the "matching" solvent in which the increment of index of the polymer, dn/dc, is equal to zero The tables give the intrinsic segmental anisotropy, a i — a 2 , obtained directly from measurements in the "matching" solvent, as well as the (a\-a2)* values including the form effect. The corresponding figures are marked with the symbol *. In some of the reviewed works in which measurements were carried out in "nonmatching" solvents, the segmental anisotropy was calculated on the basis of the theory of the form effect (3,4). In these cases the figures are marked with the symbol **. Intrinsic segmental anisotropy of the polymer chain in various solvents, even in the absence of the form effect, may differ owing to a "specific" effect of the solvent (see, e.g., poly(vinyl acetate)) (5-11). "Specific" effect may probably includes phenomena such as a change in the type of rotation of the side groups (5,6,8,12), a change in the polarizability of its bonds, and the short-range ordering of the solvent molecules (11). Principal values which effect the intrinsic segmental anisotropy of the chain are the anisotropy of the monomer unit and the equilibrium rigidity of the chain. The Kuhn segment with the length A is the measure of the equilibrium rigidity of the chain. If the chain adopts the conformation of the Gaussian coil, then we have A = (r2)/L, where L is the complete length of the extended chain and (r 2 ) is the mean square end-to-end distance. Also, a\\—a± is the difference between the polarizabilities of the monomer unit in the parallel and perpendicular directions of the chain. Values of a ^ —a^ presented in the table were calculated from
Many rigid-chain polymers have been investigated in the molecular-weight range in which their molecules exhibit a conformation intermediate between the rodlike conformation and the Gaussian coil. The best model for these polymers is the wormlike chain. Under these conditions the shear optical coefficient An/Ar varies with the molecular weight M of the polymer and is given by the equation (100) (A3) where B = (4n/45kT)(n2 4- I)1Jn, (71 - 72) is the mean value of the wormlike chain optical anisotropy, (h2) and (Zi4) are the mean square and fourth degree end-to-end distance of the wormlike chain. For the wormlike chain, the value of (71 - 7 2 ) as a function of the reduced chain length x = 2L/A is given by the equations
(A4)
According to Eqs. (A3) and (A4) the limit values of An/Ar for wormlike chains are as follows: at x —* 0, (An/Ar)0 = B(^i — 7I)JC —> 0 as for a thin rod, and at x —> 00, (An/Ar)^ x = B(a\ — Ct2) as for a kinetically flexible Gaussian coil. The dependence of An/Ar on M for the wormlike chains given by the Eqs. (A3) and (A4) may be approximated (100,101) by a linear relationship (A5) between the inverse values {An/Ar)" and M~[\
(A2) where A is the length of the monomer unit in the chain direction. For cellulose esters, a\\ —a\_ and correspondingly, a i — a 2 depend on the degrees of substitution (DS), which are also given in the table. For heterocyclic polycondensation polymers, the term "monomer unit" means the repeat unit of the polymer chain.
(A5) where MQ is the molecular weight of the repeat unit of the chain. If the experimental dependence of {An/Ar) ~ on \/M is plotted, the slope of the straight line obtained makes it possible to calculate Aa = a^ —a±, and its intercept with the ordinate gives ct\ -Qt2.
B. TABLES OF ANISOTROPY OF SEGMENTS AND MONOMER UNITS OF POLYMER MOLECULES TABLE 1. MAIN-CHAIN ACYCLIC CARBON POLYMERS Polymer
(a Il - a ;)
(fljj - a )
Solvent
xl02scm3
xl025cm3
Benzene, sw. p. Carbon tetrachloride, sw. p. sw. p. Cyclohexane, sw. p. Toluene, sw. p. /;-Xylene, sw. p.
61.3-63 53.5* 55.2* 57.3 72 86.9
Refs.
1.1. POLY(DIENES) Poly (butadiene) \A-cis
30.8 31.7* 33.9 42.6 51.4
52-54 53 54 53 53 53
TABLE 1. cont'd Polymer
Solvent
Poly(butadiene) \A-trans
Benzene sw. p. Carbon tetrachloride, sw. p. sw. p. Cyclohexane, sw. p. Toluene, sw. p. />Xylene, sw. p. a-Bromonaphthalene Carbon tetrachloride Chlorobenzene Dichloroethane cx-Methylnaphthalene Tetrachloroethylene Toluene p-Xylene Benzene Squalene, sw. p. Benzene
Poly(chloroprene)
Poly(isoprene) cis trans
1.2.
(«||
x 10 2S cm 3
71 70.4 58.1* 61.1* 57.3 81.6 101 110* 33 64 39 99 * 46 67 88 48 53.1 49
~«±)
37.4
36.3* 33.1* 48.6 60.2
30.5 31
Refs. 52 53 55 53 53 53 53 11 11 11 11 11 11 11 11 52 56 52
POLY(ALKENES)
PoIy(I-butene) atactic isotactic PoIy(I-decene) isotactic PoIy(I -dodecene) Polyethylene) PoIy(I-heptene) isotactic PoIy(I-hexadecene) isotactic Poly(l-hexene) atactic isotactic Poly(isobutene)
Poly( 1-octadecene) isotactic PoIy(I-octene) isotactic PoIy(I-pentene) isotactic Poly(diphenylpropylene) Polypropylene) atactic
isotactic Poly(l-tetradecene) isotactic
1.3.
(«-I - « i )
x 10 2 5 c m 3
Toluene Toluene Toluene Toluene Tetralin, xylene Decalin Toluene Toluene Toluene Toluene Benzene, chlorobenzene, tetrachloroethylene, m-xylene Carbon tetrachloride Decalin /7-Xylene Toluene Toluene Toluene Bromoform Benzene, xylene Carbon tetrachloride Decalin Toluene Carbon tetrachloride Toluene
33.4 25.2 -82.5 - 120 60 30 -24.5 -205 to-213 12.1 -6.5 45-59 35 30 69 -257 -39 8.0 9.3 80 45 30 30 55 30 -176 -171
13 13 13 13 14 14 13 13 13 13 11,14,15
3.5
3.5
11 14 11 13 13 13 13 16 14 17 14 13 17 13 13
POLY(ACRYLIC ACID) AND DERIVATIVES
Poly(acrylic acid) - , sodium salt Poly(H-butyl acrylate)
Poly(cetyl acrylate) Poly(cholesteryl acrylate)
Dioxane 0.0012MNacl, pH 7 Water, pH 6.1 Benzene Decalin Toluene Decalin Toluene Benzene
~-0.5** 20** -4**to-flO** - Ii -17.8 -10.1 -6.5 -141 -164 - 360
^-0.1**
18
- 1-5 -1.9 -1.1 -0.9 -6.5 -7.5 - 16
19 20 21 21 20 22 21 23
References page VII/760
TABLE 1. cont'd Polymer
Solvent
Poly(decyl acrylate)
Decalin Toluene Benzene, sw. p. Bromobenzene, sw. p. Bromoform, sw. p. Dibromoethane, sw. p. Dimethylformamide, sw. p. Benzene Toluene
Poly (ethyl acrylate)
Poly(methyl acrylate) Poly(octadecyl acrylate) Poly(octyl acrylate)
1.4.
(aH - « ± ) x 10 2S cm 3
Decalin Toluene Decalin Toluene
-74 -95 3.0 10** -37** - 1 4 ** -11** 17 16 26 - 190 -232 - 57.4 -47.9
Benzene Benzene Benzene Benzene Bromobenzene o-Toluidine Dioxane 0.1 M NaCl Benzene 0-Toluidine Dimethylformamide Ethyl alcohol Water Benzene Carbon tetrachloride Methanol 0.002 M HCl 0.012M NaCl, pH 7 0.0012 M NaCl, pH 7 Water Dibromoethane Benzene Benzene Tetrabromoethane Benzene Carbon tetrachloride o-Toluidine Bromobenzene
-14 -2.0 2.1 19.3 - 90 -230 180 * 370* - 160 — 160 1.0 - 6.0 ** -6.0** -40 - 9.7 50 * 150* 150 * 400 56 *-300 * — 77 2.0 25 -60 -47 -12.5 - 103 -10.5
(a\\ ~ « i ) x 10 2S cm 3 -3.7 -4.7 0.36 1.2** 4.5** ~ 1.7** -1.7** 2.5 1.9 3.6 - 6.6 -8.0 - 4.3 -3.6
Refs. 21 21 24 24 24 24 24 20 21 20 21 21 21 21
P O L Y ( M E T H A C R Y L I C ACID) AND DERIVATIVES
Poly(«-butyl methacrylate) atactic isotactic Poly(terf-butyl methacrylate) atactic isotactic Poly(p-te/t-butylphenyl methacrylate) Poly(p-carbethoxy-Af-phenylmethacrylamide) Poly(p-carboxyphenyl methacrylate) Poly(cetyl methacrylate) Poly(p-chloro-/V-phenylmethacrylamide) Poly(glycol methacrylate) Poly(hexyl methacrylate) Poly(methacrylic acid) -, sodium salt Poly(p-methylcarboxy-phenyl methacrylate) Poly(methyl methacrylate) atactic isotactic Poly(P-naphthyl methacrylate) Poly(octyl methacrylate) Poly(Af-phenylmethacrylamide) Poly(phenyl methacrylate)
—2.1 -0.3 0.3 3.0 - 7.5 -23 8.0* - 8.9 — 20 0.18 -1.1** -1.1** -4.6 -1.1
- 7 0.3 3.5 -8.5 -5.9 - 1.6 - 13 -1.5
25 26 20 20 22,28 40 35 35 29 40 30 30 30 31 31 32 32 33 33 34 35 38 38 4 31 31 40 4
1.5. POLY(ACRYLIC ACID) DERIVATIVES WITH MESOGENIC SIDE GROUPS
Tetrachloroethane
- 520 *
100
Tetrachloroethane
-520*
100
TABLE 1. cont'd C« H — « JL) Polymer
Solvent
x 10 2S cm 3
(flu-aj x 10 2S cm 3
Refs.
Tetrachloroethane
-630*
100
Tetrachloroethane
- 810 *
100
Tetrachloroethane
-800*
100
Tetrachloroethane
-450*
-19*
100,102
Tetrachloroethane
-510*
-21
100,102
Benzene
- 300 *
- 15 *
100,103
1.6. POLY(METHACRYLIC ACID) DERIVATIVES WITH MESOGENIC SIDE GROUPS
Carbon tetrachloride
- 445 *
- 18 *
100,105
Dimethylformamide
- 240 *
100,106
Tetrachloroethane
-500*
100
-320*
36,100
Benzene
-370*
100,107
Dioxane
- 1200*
100,106
Dimethylformamide/ toluene (1/1)
Carbon tetrachloride
- 600 *
- 40 *
100,108
Carbon tetrachloride
- 2700 *
- 110 *
100,109
Carbon tetrachloride
- 2350 *
100
References page VII/760
TABLE 1. cont'd Polymer
Copolymer with cetylmethacrylate mol% 70/30 50/50
Solvent
(«i| ~ a L) 10 2 5 cm 3
Refs.
Benzene Bromoform Chloroform Carbon tetrachloride Tetrahydrofuran Benzene/heptene (52/48), (66/34)
- 1600* -1000* - 1400* - 2700* -890* -4200*
Carbon tetrachloride Carbon tetrachloride
-1050* - 680 *
-44* - 28 *
100,93 100,93
Benzene
-3000*
-150*
100,111
Chloroform
- 4900 *
- 100 *
100,111
Carbon tetrachloride
Dioxane
Tetrachloromethane
1.7.
(«U ~ « i ) xl025cm3
-40* - 1 K)*
36 36 36 37,100 36 36
-117*
100,109
-90*
100,109
- 180* -250*
153 153
VINYL POLYMERS
Poly(acrylonitrile) PoIyO?-chlorostyrene) Poly(2,5-dichlorostyrene) Poly(3,4-dichlorostyrene) Poly(a-methylstyrene) Poly(/>methylstyrene) atactic isotactic Poly(2,5-dimethylstyrene) Poly(2-methyl-5-vinyl-/V-butylpyridinium bromide) Poly(2-methyl-5-vinyl-pyridine) Poly(2-methyl-5-vinyl-pyridinium chloride) Poly(styrene) atactic isotactic Poly(vinyl acetate)
Dimethylformamide Bromoform Bromoform Tetrabromoethane Tetrabromoethane Bromoform Bromoform Bromoform 0.01 M NaCl 0.1 M NaCl Bromoform 0.1 M HCl Bromoform Bromoform Acetone sw. p. Benzene sw. p. Bromobenzene. sw. p. Bromoform sw. p. Carbon tetrachloride sw. p. Chlorobenzene Chloroform sw. p. Cyclohexanone Dichloroethane
- 23 -230 -265 -300 -133 — ) 47 - 140 -180 - 900 * -270* - 260 - 300 * - 145 - 224 -20** _37** 4.0-5.9 5.1** 9.4** - 20 ** -18.7** - 16 -26 -25.2 14** -34.9** -24 - 17.9 -23 -36 - 39
-1.8 -35 -30 -25 -17 — 20 - 19 -25
- 29 - 18 — 23 -5.3** -5.3** 0.5 to 0.8 0.75** 1.3** -2.7** - 2.0 -3.6 1.75** -2.6** -3.0 -2.9 -4.5 - 4.9
4 41 41 15 128 42 42 41 43 43 44 45 46,41 46 7 10 6,8,9,11 10 10 7 10 9,11 6 10 11 6 9,11 10 9,11 11 11
TABLE 1.
cont'd
Polymer
Solvent Tetrabromoethane sw. p. Toluene
Poly(vinyl butyral) Poly(vinyl butyrate) Poly(vinyl chloride) Poly(vinyl cinnamate) Poly(p-vinylnaphthalene) Poly (vinyl propionate)
Poly(4-vinylpyridine) Poly(4-vinylpyridiniurn chloride) Poly(vinylpyrrolidone) Poly(vinyl stearate)
sw. p. o-Xylene sw. p. Chloroform Toluene/phenol (79/21) Benzene Carbon tetrachloride Chloroform Tetrahydrofuran Bromoform Tetrabromoethane Bromoform Benzene Carbon tetrachloride Chloroform Toluene Bromoform 0.1 M HCl 0.05 M HCl Benzyl alcohol Carbon tetrachloride
(«0-ax) xl02Scm3 -25** -33** -46.4** 10 13.5 19 9.4** 2.0 9.8** 81 173 - 8.0 - 36 -48 40 - 420 — 430 - 440 —4.4 —31 -40 1.3 -240 - 260 * -440* — 75 —130
(a\\~aL) 25 cm3
fxl0
-3.1** -6.6** 1.25 2.0 1.3** 0.25 1.4**
- 35 — 30 - 20 to - 30
-22 - 10 —4.7
Refs. 11 7 10 9,11 8 6 10 9,11 10 11,47 11,47 11,47 11,47 11,47 48 49 4 39 11,47 11,47 11,47 11,47 50 50 50 4 51
1.8. POLY(VINYL) DERIVATIVES WITH MESOGENIC SIDE GROUPS Poly[4-(4-nonyloxy-benzamido)styrene]
Benzene
-2500*
-100*
100,104
1.9. COPOLYMERS, GRAFT AND BLOCK COPOLYMERS Poly(acryl amide-comethacrylic acid ether)
R = -C 2 H 5 ;X- = - C r nmol%= 0 6 30 69 80 100 Poly(p-(4-cetoxybenzoxy)-phenyl methacrylate-co-cetyl methacrylate)
mol% 81/19 60/40 59/41 22/78 15/85 8/92 4/96
0.001 M NaCl
Water
2.5* 15 35 * 90 * 80 * 40 *
Carbon tetrachloride
157
93
-2000* -920* 540* -400* -277* -180* -16* References page VII/760
TABLE 1. cont'd Polymer
Solvent
Poly(methyl methacrylate-a>/?-r
TABLE 2.
Chlorobenzene
Carbon tetrachloride Bromoform
Bromoform Bromobenzene Chlorobenzene Chlorobenzene Bromoform Bromoform Bromoform
Chlorobenzene Benzene
(a!I - « ± ) x 10 2 S c m 3
1.5 -7.4 - 30.4 - 44 12 * -165 - 172 -198 - 202 -226 — 26 - 34 ~ 88 - 68 - 34 - 8 1190 540 700-7000 30 100-1100 22 330 180 155 110
(*||-«±) xl025cm3
Solvent
Poly(acenaphthylene) helix 4! trans PoIy(1,2,3-trimethyl-2,3-dihydro-1,6-indendiyl) Poly( 1,2,3-trimethyl-2,3-dihydro-1,6indendiyl-l,4-phenylene-ethylene)
Bromoform Bromoform Bromoform
- 300 ** - 300 ** 78
Bromoform
142
60 95
63 96
97 98 98 98,99 98 16 93 48
(«|| -«±) xl025cm3 - 13.6** - 20 **
Refs. 39 39 92 92
Solvent
((XH-(X 1 )
(aH - f l j . )
xl025cm3
xl025cm3
Refs.
POLY(OXIDES)
Poly(oxypropylene) 3.2.
94
MAIN-CHAIN HETEROATOM POLYMERS
Polymer 3.1.
Refs.
MAINCHAIN CARBOCYCLIC POLYMERS
Polymer
TABLE 3.
(«-:| ~~«±) x 10 2 5 c m 3
Cyclohexanone
18
6
57
-114
-76
58
POLY(ESTERS)
Poly(oxycarbonyloxy-1,4-phenylenecyclohexylidene-1,4-phenylene)
Bromoform Poly(oxyethyleneoxyterephthaloyl)
Dichloroethane/phenol (1/1) Dichloroacetic acid
70 48.7*
33.7*
59 89
TABLE 3. cont'd Polymer
Solvent
(«||-a±)
(fl||-«i)
x 10 2 S cm 3
x 10 2 S cm 3
Refs.
Poly(oxy-tt-methyleneoxycarbonyl-1,4-phenyleneoxyterephthaloyloxy-1,4-phenylene-carbonyl)
n=4 n=5 n=\0
Dichloroacetic acid Dichloroacetic acid Dichloroacetic acid
280 * 250 * 200 *
Dichloroacetic acid Tetrachloroethane
1800 * 1800 *
158 158
Dichloroacetic acid
3000 *
159
Dichloroacetic acid Dioxane
1600 * 1600 *
160 160
Dichloroacetic acid
600 *
161
132 * -165 *
89 89 89
Poly[ 1,4-phenylene (phenylterephthalate)]
Poly[(phenyl( 1,4-phenylene)-terephthalate]
Dichloroacetic acid
18.2*
162
Dioxane
375*
163
Dioxane
185*
163
Tetrachloroethane
153*
315 *
164
Tetrachloroethane
150*
136 *
165
Tetrachloroethane
200*
365
166
References page VII/760
TABLE 3. cont'd («l|-«±)
Polymer
(«||
-«i)
Solvent
x 1025 cm 3
x 1025 cm 3
Dioxane
260*
Tetrachloroethane Chloroform Dioxane Tetrachloroethane
186* 270* 254* 256*
168 168 168 168
Dichloroacetic acid Trifluoroacetic acid Tetrachloroethane Trifluoroacetic acid Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane
268* 594* 221* 396* 249* 187* 179* 188* 196*
169
Tetrachloroethane
380*
170
Tetrachloroethane
228*
170
513*
Refs. 167
Tetrachloroethane 57.5*
170
Tetrachloroethane 259*
144*
171
139*
146*
171
353*
196*
171
Tetrachloroethane
Tetrachloroethane
Dichloroacetic acid
2120*
172
TABLE 3. cont'cl Polymer
N N : T: D (moWc) =
3.3.
Solvent
T 0:1:1 0.1:1:0.9 0.2:1:0.8 0.3:1:0.7 0.4:1:0.6 0.5:1:0.5 0.6:1:0.4 0.7:1:0.3
Refs.
Tetrachloroethane
229 * 250* 335* 410* 510* 630* 740* UOO*
91
280*
91
POLY(AMIDES)
Poly(chlorohexyliminocarbonyl) Poly(hydrazocarbonyl-1,4-phenylene iminoterephthaloyl) Poly(iminocarbonyl-cyclohexylene) Poly(iminocarbonyl-1.4-phenylene) Poly[imino-(4,6-dicarboxyisophthaloyl -imino) biphenyl-4,4'-diyl] Polylimino (l-oxohexamethylene)J (PoIy(E-caprolactam)) Poly[imino-1.4-phenyleneimino-(4,6dicarboxyisophthaloylimino)-1,4phenyleneimino-terephthaloyl] Poly(imino-1.3-phenyleneiminoisophthaloyl.) Poly (imino- 1,4-phenyleneiminoterephthaloyl) Poly( imino-1,4-phenyleneimino-terephthaloyl), copolymer with poly(iminocarbonyl-l,4-phenylene) (ratio 1/9) Poly(iminio-terephthaloylimino-l,4phenylenediphenylmethyl-1,4-phenylene) Poly(/Molyliminocarbonyl)
Carbon tetrachloride Carbon tetrachloride/ pentafluorophenol (0.9/0.1) Carbon tetrachloride Dimethylsulfoxide Sulfuric acid Sulfuric acid Dimethylacetamide
4100
11
60,100
800 3000
1)
100 60
3630* 390* 10500* 75*
85* 103*
100,123 100,115 100.117,118 100
Sulfuric acid
63*
100.115
Dimethylacetamide
88*
100
Sulfuric acid Sulfuric acid Sulfuric acid
360* 5250* 4380*
Sulfuric acid
130*
Bromoform
-39
100* 206*
100,121,122 100,119,120 110,119
100.127 -5
60,100
POLY(PEPTIDES) AND NUCLEIC ACIDS
Poly("-benzyl-L-glutamate) helix coil Poly(S-carbobenzoxyniethyl-i.-cystein) Poly(s,/V-carbobenzoxy-L-lysine) helix coil Poly(L-glutamic acid) helix coil DNA
3.5.
x 10 2 5 c m 3
D
Poly(/i-butyliminocarbonyl) (Poly(butylisocyanate))
3.4.
x 10 2 5 c m 3
Dichloroethane Dichloroacetic acid Dichloroacetic acid Dimethylformamide Dichloroacetic acid Phosphate buffer 0.1 M, pH 4.2 0.1 M, pH 12.5 aqueous 0.2 M NaCl < 2MNaCl >3MNaCl
25000* 230* 22* 3600* <-f 1900* 136* - 30000 * -33000* -41000*
25* 25* 12*
- 67 *
86,87,100 88,100 86 86 86 86 86 100 154,157 154,157
POLY(PHOSPHAZENES)
PoIy(Muoroalkoxy phosphazene) -PR 2 - NR^-OCH 2 -CF., -OCHn-(CFOv-H -OCHr-(CF2)^-H
Ethyl acetate Ethyl acetate Ethyl acetate
160 145 106
155 156 156
References page VII/760
TABLE 3. cont'd Polymer 3.6.
Solvent
(«l|-ai)
(fly-fli)
x 10 25 cm 3
x 10 25 cm 3
Refs.
POLY(SILOXANES)
Poly(oxydimethylsilylene) Poly(oxyethylphenylsilylene) 14:86 Poly(oxymethylphenylsilylene) 90:10 87.5:12.5 75:25 62.5:37.5 50:50 atactic isotactic Poly(oxyphenylsilylene)
Petroleum ether Benzene Petroleum ether Decalin Benzene Decalin Decalin Benzene Decalin, tetralin Decalin, tetralin Benzene
4.7 - 230 * - 2.3 -10 -13.6 -21 - 36 ** - 25.5 - 52 ** -82** -85
0.96 77 - 29.5 173 - 0.47 77 -2.0 78 -2.7 79 -4.0 78 - 7.2 ** 78 - 5.1 79 - 10 ** 78 - 1 6 * * 78 -17 79
LADDER POLYMERS Poly(isobutylphenyl-silsesquioxane) ( 1 : 1) Poly(isohexylphenyl-silsesquioxane) ( 1 : 1) Poly(m-chlorophenyl-silsesquioxane) Poly(dichloropheny 1-silsesquioxane) Poly(3-methyl-l-butene-silsesquioxane) Poly(phenyl-silsesquioxane)
Benzene Benzene Carbon tetrachloride Bromoform Tetrabromoethane Benzene Butylacetate Bromoform
-840 -980 -4700 * - 4450 -4700 -570* -400* - 1060 to - 1800
-22 80,100 - 1 9 . 5 80,100 - 40 * 100,80 - 50 100,112 -53 100,112 - 6 . 5 * 81,100 - 4 . 2 * 81,82,100 - 23 to - 31 83-85, 100
TABLE 4. MAIN-CHAJN HETEROCYCLIC POLYMERS Ca 1 J-ax)
Polymer 4.1.
Solvent
«J|-«JL
x 10 25 cm 3
Refs.
POLY(IMIDES)
Poly(/V-2,4-dimethylphenylmaleimide) Poly(iV-isobutylmaleimide) Poly(Af-methylcitraconimide) Poly(Af,A^piperazindiyl-2,5-diketo-l,3-pyrrolidindiylhexamethylene-2,5-diketo-l,3-pyrrolidindiyl) Poly(/?-tolylmaleimide)
Bromoform Chlorobenzene Bromoform Benzyl alcohol Bromoform/cyclohexanol (60:40) Bromoform
H 2 SO 4 , 101%
4.2.
x 102S cm 3
-200 160 150 56 30 - 160
500 *
-12.5 10 16.7 31 - 10
50 *
61,100 62,100 63 64 64 65
110
POLY(PYRROMELLITIMIDES)
Poly[l,3,5,7-tetraoxo-2,3,6,7-tetrahydro-lH,5H-benzo-[l,2-c,4,5-c' dipyrrol-2,6-diyl)-1,4-phenylene] Poly[(l,3,5,7-tetraoxo-2,3,6,7-tetrahydro-lH,5H-benzo [l,2-c,4,5-c' dipyrrol-2,6-diyl)1,4-phenyleneimino-terephthaloyl-imino-1,4-phenylene]
H 2 SO 4
2500 * -4400 *
100
H 2 SO 4
3400 *
100
TABLE 4. cont'd («U-«i)
Polymer 4.3.
Solvent
xlD 2 5 cm 3
(«||
-fli)
xl025cm3
Refs.
POLY(QUINOXALINES)
Rl = nought, R2 -
Tetrachloroethane, chloroform
1750 *
100,116
Rl = nought, R2 =
Tetrachloroethane, chloroform
1060 *
100,116
Rl =
Tetrachloroethane, chloroform
650 *
100,116
4.4.
- O - , R2 =
POLY(BENZIMIDAZOLES), POLY(BENZOXAZOLES)
Poly(benzimidazole-2,6-diyl-iminoterephthaloylimino-l,4-phenylene)
5080*
360*
100,124
4900*
100
3625*
150
1250*
150
1250*
150
750*
150
Poly(benzoxazole-2,6-diyl-iminoterephthaloyliminio-l,4-phenylene)
Poly(benzoxazole-2,6-diyl-iminoterephthaloylimino1,4-(3-hydroxyphenylene))
Poly(benzoxazole-2,4-diyl-iminoterephtaloylimino1,3-(4-hydroxyphenylene)) Poly(benzoxazole-2,6-diyl-iminocarboxy-1,4-phenyleneiminoterephthaloy limino-1,4-phenylene-carboxyimino-1,4-phenylene)
5940*
360*
100,125
5940*
320*
100,126
2340*
300*
100,126
4100*
152
Poly(oxadiazole-2,5-diyl~ 1,4-phenylene) 1750*
80*
100,114
References page VII/760
TABLE 4.
cont'd
Polymer 4.5.
Solvent
(a j - a _) x K)2S cm 3
Dioxane Cadoxene 2MNaOH 0.5MNaOH Aniline Dioxane Pyridine Trichloromethane Tetrachloroethane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Benzene oDichlorobenzene Dichloromethane Trichloromethane Tetrachloromethane Pentachloroethane /;«ra-Chlorotoluene a-Bromonapthaline Tetrachloromethane Tetrachloromethane Tetrachloromethane Dioxane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dioxane Dimethylformamide Chloroform Bromobenzene Dimethylphthalate Dioxane Dioxane Tetrachloroethane Bromoform Dioxane Methyl ethyl ketone Dioxane Trichloromethane Tetrachloroethane
294* 310 * 450* 560* 260* 39* 0 - 8.4* - 57 * - 1330 * - 870 * -575* -350* -1900* -1300* -450* 1280* 1200* 1345* 1020* 405* - 110* -164* -190* -210* -223* -194* -171* 142* -228* -217* -240* -72* -150* -100* -66* -25* 365* 250* 90* 50* 65* 70 * 70* 55* - 115 * 1100* -617* -763* -914* -830* - 447 * -1350* - 34 35* 61* 144* 90* < 111 * -47.3*
(a | — r/ L) x 102? cm 3
Refs.
POLY(SACCHARIDES)
CELLULOSE ESTERS Benzyl cellulose, DS = 2.5 Carboxymethyl cellulose, DS = 0.9 Cellulose acetate, D S - 2 . 4
Cellulose acetate benzoate, D S = 55/245 Cellulose acetate benzhydroxamate, DS = 15/285 60/240 90/170 Cellulose acetate cinnamate, DS = 60/200 160/140 250/50 Cellulose acetate diphenylacetate, DS = 10/290 40/150 20/130 130/115 270/30 Cellulose acetate myristate, D S = 10/290
D S = 25/275 50/250 100/200 150/150
Cellulose
Cellulose Cellulose Cellulose Cellulose
200/100 245/55 290/10 acetate monophenylacetate, DS = 40/260 100/150 200/70 246/32 285/5 acetate a-naphthylacetate, DS = 250/50 275/25 290/10 acetate nitrobenzoate, DS = 275/25 acetate triphenylmethylate, DS = 110/145 benzoate, DS = 3.0
2.16 Cellulose butyrate, DS = 3.0
2.75
5*
5.3* 0.78* 0 - 0.21 * - 1.6 * - 26.6* - - 17.4 * -11.5* -7* -38* -26* -9* 25.6* 24.0* 26.9* 20.4* 8.1* - 2.2* -3.1* -3.8* -4.2* -4.5* -4.5* - 3.6 * 3.6* -4.6* -4.3* -4.8* -1.4* -4.3* -3.0* -1.8* -0.6* 7.3* 5.0* 1.8* 1.0* 1.3* 1.4* 1.4* 1.1* - 2.3 * 22 * -10.4* -16.4* -19.6* -17.8* 67 -27* - 26 2.7* 1.0* 5.6* 1.8* < |0.03| -1.6*
67,100 147 147 147 136 136 100 136 136 137 137 137 137 137,138 137,138 137,138 137,138 137,138 137,138 137,138 137,138 137 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 137 137 137 137 137 137 137 137 137 137 66,100 66,100 66.100 66,100 137 72,100 72,100 67 72,100 136 136 136
TABLE 4. cont'd Polymer
Solvent
Cellulose dimethylphosphonocarbamate DS = 2.0 Cellulose diphenylacetate
0.Oi M NaCl 0.2 M NaCl Acetophenone Dioxane Dioxane Dioxane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Bromobenzene Bromoform Cyclohexanone Cyclohexanone Amyl acetate Acetone Butyl acetate Ethyl acetate Cyclohexanone Cyclohexanone Dioxane Acetophenone Benzophenone 55° 80° Dioxane 21° 65° Ethyl acetate Dioxane Dioxane Ethyl acetate/dioxane (0.017/1) (0.034/1) (0.063/1) (0.091/1) (0.224/1) (0.469/1) Dioxane Ethyl acetate Cyclohexanone Dimethylacetamide Tetrachloroethane Cyclohexanone Cyclohexanone Cyclohexanone Cyclohexanone, sw. p. Acetone Dimethylformamide Cyclohexanone Cyclohexanone Cyclohexanone, sw. p. Cyclohexanone Cyclohexanone Cyclohexanone Cyclohexanone Cyclohexanone Cyclohexanone Cyclohexanone Cyclohexanone Carbon tetrachloride Dioxane Dimethylacetamide Tetrachloroethane Water
DS = 2.9 Cellulose diphenylphosphonocarbamate DS = 2.2 Cellulose hydroxypropylacetate, DS = 3.3, 2.3 Cellulose hydroxypropylbutyrate, DS = 3.3, 2.2 DS = 3.3, 0.6 Cellulose hydroxypropylcaprinate, DS = 3.3, 2.0 Cellulose hydroxypropylstearate, DS = 3.3, 0.9 Cellulose monophenylacetate DS = 2.8 Cellulose nitrate, DS = 2.8 2.7
2.3 1.9 Cellulose phenylcarbamate DS = 3.0
2.2 2.3
2.7
Cellulose stearate DS = 2.0 Cyanoethyl cellulose DS = 2.6 2.66 2.37 Cyanoethylacetyl cellulose Cyanoethyl hydroxyethyi cellulose DS= 1.8 Cyanoethyl hydroxypropyl cellulose DS = 2.4 Cyanoethyltrityl cellulose Cyanoethyl nitrate cellulose DS = 248/26 233/52 181/79 100/117 62/192 36/213 34/226 19/242 Ethyl cellulose DS = 2.5 Hydroxypropyl cellulose, DS = 2.5-3.8
(«H~«i)
(«||-«±)
x 10 25 cm 3
x 10 2S cm 3
710 * 640 * 1360 1030 * 1760* 626 *-640 400 270 490 230 230 600 478 -820 -540 - 320 * -115* - 300 * - 140 * -330 -62 149 -1100 -742 -572 - 1830 * -872* -560* -1880* - 1700 * - 1440 * -1664* -1440 * -1360* -1260* -962* -2030* -1216 * - 1254 * - 1280 * - 500 900 970 * 715 * -1-15 390 * 90 900 660 220 855 * 890 * 470 * 165 * 35 * - 190 * -115 * -190* 430 512 450 * 505
Refs.
16 * 16 * 22 22 * 35.2* 10*-13.7* 12 8.3 12
68 68 69 67 137,138 100,129 144,145 145,146 145,146 145 145 13 100,129 10.3 100,129 -14 70,100 - 9 . 0 100,130 - 5.4* 100,130 - 1 . 9 * 100,130 - 5.0 * 100,130 - 2.3* 100,130 - 8 . 4 100,131 - 2 . 0 100,132 4.8 100,132 ~ 18 69 71 71 -45.8* 100,134 100,134 -15.2* 100,134 -47.0* 100,133 - 34 * 140 - 45 * 140 -52* 140 -45 * 140 -40* 140 - 3 5 * 140 -26* 140 -40* 141 - 32 * 141 - 38 * 141 -40 * 141 72 17.8 100,135 139 139 0.4 73,74 17.0* 73,100 3.9 73,100 148 148 74 139,151 139,151 139,151 139,151 139,151 139,151 139,151 139,151 11 75 4.6 100,129 9.9* 142,143 11.3 142,143 12.4* 143
References page VII/760
TABLE 4. cont'd x 10 2S cm 3
Polymer
Solvent
Polymaltotriose
Dimethylsulfoxide Water Aqueous NaCl 0.2 M 0.15M 0.10M 0.01 M 0.005 M 0.001 M
33 to 39 109* 634* 645* 680* 980* 1300* 1750*
Acetic acid 4- NaCl, IS = 0.1 to 0.5
670*
Sulfate cellulose, sodium salt DS = 0.4
CHITINS Chitozane
x 10 25 cm 3
7 16 * 17* 16 * 16* 16* 16*
Refs.
149 149 76, 100 76,100 76,100 76,100 76,100 76,100 174
C. REFERENCES 1. W. Kuhn, H. Kuhn, HeIv. Chim. Acta, 20, 1394 (1943). 2. A. Lodge, Trans. Faraday Soc, 42, 273 (1946). 3. V. N. Tsvetkov, Chapter XIV in Bacon Ke (Ed.) "Newer Methods of Polymer Characterization", Interscience, New York, 1964. 4. V. N. Tsvetkov, V. E. Eskin, S. Ya. Frenkel, "Structure of Macromolecules in Solutions", National Lending Library for Science and Technology, Boston Spa, Yorkshire, England, 1971. 5. V. N. Tsvetkov, J. Polym. SdL, 57, 727 (1962). 6. E. V. Frisman, V. A. Andreichenko, Vysokomol. Soedin., 4, 1559 (1962). 7. E. V. Frisman, A. B. Chzu, Vysokomol. Soedin., 4, 1564 (1962). 8. V. N. Tsvetkov, N. N. Boitsova, M. G. Vitovskaja, Vysokomol. Soedin., 6, 267 (1964). 9. E. V. Frisman, G. A. Dyuzev, A. K. Dadivanyan, Vysokomol. Soedin., 6, 341 (1964). 10. V. N. Tsvetkov, A. E. Grishchenko, L. E. De-Millo, E. N. Rostovskii, Vysokomol. Soedin., 6, 384 (1964). 11. E. V. Frisman, A. K. Dadivanyan, J. Polym. Sci. C, 16, 1001 (1967). 12. V. N. Tsvetkov, Leningrad. Univ. Vestnik, Ser. Fiz. Khim, N22, 39 (1961). 13. W. Philippoff, E. G. M. Tornqist, J. Polym. Sci. C, N23, 881 (1968). 14. T. I. Garmonova, Leningrad. Univ. Vestnik, Ser. Fiz. Khim, N22, 72 (1961). 15. V N . Tsvetkov, V. E. Bychkova, S. M. Savvon, I. K. Nekrasov, Vysokomol. Soedin., 1, 1407 (1959). 16. P. Gramain, J. Leray, H. Benoit, J. Polym. Sci. C, 16, 3983 (1968). 17. V N. Tsvetkov, O. V. Kallistov, E. V. Korneeva, I. K. Nekrasov, Vysokomol. Soedin., 5, 1538 (1963). 18. V N. Tsvetkov, S. Ya. Ljubina, T. V Barskaya, Vysokomol. Soedin., 6, 1806 (1964). 19. W. Kuhn, H. Oswald, H. Kuhn, HeIv. Chim. Acta, 36, 1209 (1953).
20. V. N. Tsvetkov, N. N. Boitsova, M. G. Vitovskaja, Vysokomol. Soedin., 6, 297 (1964). 21. V. N. Tsvetkov, L. N. Andreeva, E. V. Korneeva, P. N. Lavrenko, Dokl. Akad. Nauk SSSR, 205, 895 (1972). 22. V. N. Tsvetkov, L. N. Andreeva, E. V. Korneeva, P. N. Lavrenko, N. A. Plate, V. P. Shibaev, B. S. Petrukhin, Vysokomol. Soedin., 13A, 2226 (1971). 23. V. N. Tsvetkov, E. V Korneeva, I. N. Shtennikova, P. N. Lavrenko, G. F. Kolbina, D. Hardi, K. Nitrai, Vysokomol. Soedin., 14A, 427 (1972). 24. A. E. Grishchenko, E. P. Vorobjeva, Vysokomol. Soedin., 15A, 895 (1973). 25. V. N. Tsvetkov, S. Ya. Ljubina, Vysokomol. Soedin., 1, 577 (1959). 26. V. N. Tsvetkov, M. G. Vitovskaja, S. Ya. Ljubina, Vysokomol. Soedin., 4, 577 (1962). 27. V. N. Tsvetkov, S. Ya. Magarik, Doki. Akad. Nauk SSSR, 115,911 (1957). 28. V N. Tsvetkov, I. N. Shtennikova, Zh. Tekh. Fiz., 29, 885 (1959). 29. V N. Tsvetkov, D. Hardi, I. N. Shtennikova, E. V Korneeva, G. F. Pirogova, K. Nitrai, Vysokomol. Soedin., HA, 349 (1969). 30. A. E. Grishchenko, R. I. Esrielev, Vysokomoi. Soedin., 14A, 521 (1972). 31. A. E. Grishchenko, M. G. Vitovskaja, V. N. Tsvetkov, L. N. Andreeva, Vysokomol. Soedin., 8A, 800 (1972). 32. V N. Tsvetkov, S. Ya. Ljubina, K. L. Bolevskii, Vysokomol. Soedin. Sb. Karbotsepnie Soedin., 4, 26 (1959). 33. V N. Tsvetkov, S. Ya. Ljubina, K. L. Bolevskii, Vysokomol. Soedin. Sb. Karbotsepnie Soedin., 4, 33 (1959). 34. W. Kuhn, O. Kuenzle, A. Katchalsky, HeIv. Chim. Acta, 31, 1994 (1948). 35. E. N. Zakharova, P. N. Lavrenko, G. A. Fomin, I. I. Konstantinov, Vysokomol. Soedin., 13A, 1870 (1971). 36. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, G. F. Kolbina, I. I. Konstantinov, Ju. B. Amerik, B. A. Krentsel, Vysokomol. Soedin., HA, 2528 (1969).
37. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, G. F. Kolbina, I. I. Konstantinov, Ju. B. Amerik, B. A. Krentsel, Vysokomol. Soedin., 15A, 2158 (1973). 38. V. N. Tsvetkov, N. N. Boitsova, Vysokomol. Soedin., 2, 1176(1960). 39. V. N. Tsvetkov, M. G. Vitovskaja, R N. Lavrenko, E. N. Zakharova. Vysokomol. Soedin., 13A, 2532 (1971). 40. V. N. Tsvetkov, V. E. Bychkova Vysokomol. Soedin., 6, 600 (1964). 41. E. V. Frisman, A. M. Maztsinivsky, N. A. Domnicheva, Vysokomol. Soedin., 2, 1148 (1960). 42. V. N. Tsvetkov, N. N. Boitsova, Vysokomol. Soedin., 5, L263 (1963). 43. V. N. Tsvetkov, S. Ya. Ljubina, V. E. Bychkova, I. A. Strelina, Vysokomol. Soedin., 8, 846 (1966). 44. I. N. Shtennikova, E. V. Korneeva, V. E. Bychkova, G. M. Pavlov, G. S. Sogomonyants, Vysokomol. Soedin., 14B, 118 (1972). 45. S. Ya. Ljubina, I. A. Strelina, G. S. Sogomonyants, S. I. Dmitrieva, O. Z. Korotkina, G. V. Tarasova, V. S. Skazka, V M. Jamschchikov, Vysokomol. Soedin., 12A, 1560 (1970). 46. V. N. Tsvetkov, S. Ja. Magarik, Dokl. Akad. Nauk SSSR, 127, 840 (1959). 47. E. V. Frisman, A. K. Dadivanyan, G. A. Dyuzhev, Dokl. Akad. Nauk SSSR, 153, 1062 (1963). 48. S. P. Micengendler, K. I. Sokolova, G. A. Andreeva, A. A. Korotkov, T. Kadirov, S. I. Klenin, S. Ja. Magarik, Vysokomol. Soedin., 9A, 1133 (1967). 49. V. N. Tsvetkov, E. N. Zakharova, G. A. Fomin, P. N. Lavrenko, Vysokomol. Soedin., 14A, 1956 (1972). 50. S. Ya. Ljubina, I. A. Strelina, G. V. Tarasova, V. S. Skazka, V. M. Jamschchikov, Vysokomol. Soedin., 14A, 1371 (1972). 51. V S . Skazka, G. A. Fomin, G. V Tarasova, I. G. Kirillova, V. M. Jamschchikov, A. E. Grishchenko, I. A. Shefer, I. S. Alekseeva, Vysokomol. Soedin., 15A, 2561 (1973). 52. I. Ja. Poddubnyi, E. G. Erenburg, M. A. Eruomina, Vysokomol. Soedin., 10A, 1381 (1968). 53. M. Fukuda, G. L. Wilkes, R. S. Stein, J. Polym. Sci. A-2, 1417 (1971). 54. T. Ishikava, K. Nagai, J. Polym. Sci. A-2, 1123 (1969). 55. T. Ishikava, K. Nagai, Polym. J. (Japan), 1, 116 (1970). 56. L. R. G. Treloar, Trans. Faraday Soc, 43, 234 (1947). 57. V. N. Tsvetkov, T. I. Garmonova, R. P. Stankevitch, Vysokomol. Soedin., 8, 980 (1966). 58. T. I. Garmonova, M. G. Vitovskaja, P. N. Lavrenko, V N. Tsvetkov, E. V. Korovina, Vysokomol. Soedin., 13, 884 (1971). 59. S. M. Savvon, K. K. Turoverov, Vysokomol. Soedin., 6, 205 (1964). 60. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, Ju. P. Getmanchuk, Eur. Polym. J., 1, 767 (1971). 61. V N . Tsvetkov, G. V. Tarasova, E. L. Vinogradov, N. N. Kuprijanova, V. M. Jamshchikov, V. S. Skazka, V. S. Ivanov, V. K. Smirnova, I. I. Migunova, Vysokomol. Soedin., 10A, 620 (1968). 62. V. N. Tsvetkov, G. A. Fomin, P. N. Lavrenko, I. N. Shtennikova, T. V. Sheremeteva, Vysokomol. Soedin., 10A, 903 (1968).
63. M. G. Vitovskaja, V. N. Tsvetkov, L. I. Godunova, T. V. Sheremeteva, Vysokomol. Soedin., 9A, 1682 (1967). 64. T. I. Garmonova, M. G. Vitovskaja, S. V. Bushin, T. V Sheremeteva, Vysokomol. Soedin., 16A, 265 (1974). 65. V N. Tsvetkov, N. N. Kuprijanova, G. V. Tarasova, P. N. Lavrenko, I. I. Migunova, Vysokomol. Soedin., 12A, 1974 (1970). 66. V. N. Tsvetkov, I. N. Shtennikova, Vysokomol. Soedin., 6, 1041 (1964). 67. V. N. Tsvetkov, E. I. Rjumtsev, I. N. Shtennikova, T. V. Peker, N. V. Pogodina, Dokl. Akad. Nauk SSSR, 207, 1173 (1972). 68. E. N. Zakharova, L. I. Kutsenko, V N. Tsvetkov, V. S. Skazka, G. V. Tarasova, V. M. Jamschikov, Leningrad. Univ. Vestnik, Ser. Fiz. Khim., N16, 55 (1970). 69. G. I. Okhrimenko, Thesis, Inst. Macromolecular Compounds Ac. Sci. SSSR, Leningrad, 1969. 70. V. N. Tsvetkov, I. N. Shtennikova, N. A. Megeritskaya, L. S. Bolotnikova, Vysokomol. Soedin., 5, 74 (1963). 71. H. Janeschitz-Kriegl, W. Burhard, Adv. Polym. Sci., 6, 170 (1969). 72. V N. Tsvetkov, S. Ya. Ljubina, I. A. Strelina, S. I. Klenin, V. I. Kurljankina, Vysokomol. Soedin., 15A, 691 (1973). 73. V. N. Tsvetkov, A. E. Grischchenko, P. A. Slavetskaja, Vysokomol. Soedin., 6, 856 (1964). 74. V. N. Tsvetkov, A. E. Grischchenko, J. Polym. Sci. C, 16, 3195 (1968). 75. V. N. Tsvetkov, I. N. Shtennikova, Vysokomol. Soedin., 2, 808 (1960). 76. V. N. Tsvetkov, E. N. Zakharova, M. M. Krunchak, Vysokomol. Soedin., 10A, 685 (1960). 77. V. N. Tsvetkov, E. V. Frisman, N. N. Boitsova, Vysokomol. Soedin., 2, 1001 (1960). 78. V. N. Tsvetkov, K. A. Andrianov, E. L. Vinogradov, S. E. Yakushkina, Ts. V. Vardasanidze, Vysokomol. Soedin., 9B, 893 (967). 79. V. N. Tsvetkov, K. A. Andrianov, E. L. Vinogradov, V. I. Pakhomov. S. E. Yakushkina, Vysokomol. Soedin., 9A, 3 (1967). 80. V N. Tsvetkov, Makromol. Chem., 160, 1 (1972). 81. V N . Tsvetkov, K. A. Andrianov, M. G. Vitovskaja, N. N. Makarova, E. N. Zakharova, S. V. Bushin, P. N. Lavrenko, Vysokomol. Soedin., 14A, 369 (1972). 82. V. N. Tsvetkov, K. A. Andrianov, M. G. Vitovskaja, N. N. Makarova, S. V. Bushin, E. N. Zakharova, P. N. Lavrenko, A. A. Gorbunov, Vysokomol. Soedin., 15A, 872 (1973). 83. V. N. Tsvetkov, K. A. Andrianov, E. L. Vinogradov, I. N. Shtennikova, S. E. Yakushkina, V I. Pakhomov, J. Polym. Sci. C, 23, 385 (1968). 84. V. N. Tsvetkov, K. A. Andrianov, I. N. Shtennikova, G. I. Okhrimenko, L. N. Andreeva, G. A. Fomin, V. I. Pakhomov, Vysokomol. Soedin., 10A, 547 (1968). 85. V. N. Tsvetkov, K. A. Andrianov, G. I. Okhrimenko, I. N. Shtennikova, G. A. Fomin, M. G. Vitovskaja, V. I. Pakhomov, A. A. Jarosh, D. N. Andreev, Vysokomol. Soedin., 12A, 1892(1970). 86. V N. Tsvetkov, I. N. Shtennikova, V. S. Skazka, E. I. Rjumtsev, J. Polym. Sci. C, 16, 3205 (1968).
87. V. N. Tsvetkov, E. I. Rjumtsev, I. N. Shtennikova, G. I. Okhrimenko, Vysokomol. Soedin., 8, 1466 (1966). 88. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, G. F. Pirogova, Vysokomol. Soedin., 9A, 1575 (1967). 89. V. N. Tsvetkov, L. N. Andreeva, P. N. Lavrenko, E. V. Beliaeva, O. V. Okatova, A. Yu. Bilibin, S. S. Skorokhodov, Eur. Polym. J., 20, 817 (1984). 90. V. N. Tsvetkov, L. N. Andreeva, R N. Lavrenko, O. V. Okatova, E. V. Beliaeva, A. Yu. Bilibin, S. S. Skorokhodov, Eur. Polym. J., 21, 933 (1985). 91. V. N. Tsvetkov, L. N. Andreeva, S. V. Bushin, A. I. Mashoshin, V. A. Cherkasov, Z. Edlinski, D. Sek, Eur. Polym. J., 20, 371 (1984). 92. V. N. Tsvetkov, S. Ya. Magarik, Dokl. Acad. Nauk SSSR, 115,911 (1957). 93. V. N. Tsvetkov, E. I. Rjumtsev, I. N. Shtennikova, E. V. Korneeva, G. 1. Okhrimenko, N. A. Mikhailova, A. A. Baturin, Ju. A. Amerik, B. A. Krentsel, Vysokomol. Soedin., 15A, 2570 (1973). 94. S. Ja. Magarik, Zh. Fiz. Khim., 33, 835 (1959). 95. T. M. Birshtein, V. P. Budtov, E. V. Frisman, N. K. Janovskaja, Vysokomol. Soedin., 4, 455 (1962). 96. E. V. Frisman, N. N. Boitsova, Leningrad. Univ. Vestnik, N4, 26 (1959). 97. A. Romanov, S. Ja. Magarik, M. Lazar, Vysokomol. Soedin., 9B, 292 (1967). 98. V. N. Tsvetkov, G. A. Andreeva, I. A. Baranovskaja, V. E. Eskin, S. I. Klenin, S. Ja. Magarik, J. Polym. Sci. C, 16, 239 (1967). 99. V. N. Tsvetkov, S. Ja. Magarik, T. Kadirov, G. A. Andreeva, Vysokomol. Soedin., 1OA, 943 (1968). 100. V. N. Tsvetkov, "Rigid-Chain Polymers", Consultants Bureau, Plenum, New York, 1989. 101. V. N. Tsvetkov, Vysokomol. Soedin., 25A, 1571 (1983). 102. G. M. Pavlov, E. V. Korneeva, T. I. Garmonova, D. Hardi, K. Nitrai, Vysokomol. Soedin., 2OA, 1634 (1978). 103. V. N. Tsvetkov, E. V. Korneeva, I. N. Shtennikova, P. N. Lavrenko, G. F. Kolbina, D. Hardi, K. Nitrai, Vysokomol. Soedin., 14A, 427 (1972). 104. E. I. Rjumtsev, I. N. Shtennikova, N. V. Pogodina, G. F. Kolbina, I. I. Konstantinov, Ju. B. Amerik, Vysokomol. Soedin., 18A, 439 (1976). 105. V. N. Tsvetkov, I. N. Shtennikova, E. I. Rjumtsev, N. V. Pogodina, G. F. Kolbina, E. V Korneeva, P. N. Lavrenko, O. V. Okatova, Ju. B. Amerik, A. A. Baturin, Vysokomol. Soedin., 18A, 2016 (1976). 106. G. F. Kolbina, Theses, Inst. MacromolecuJar Compounds Ac. Sci. SSSR, Leningrad, 1981. 107. V. N. Tsvetkov, E. I. Rjumtsev, I. I. Konstantinov, Ju. B. Amerik, B. A. Krentsel, Vysokomol. Soedin., 14A, 67 (1972). 108. V N. Tsvetkov, I. N. Shtennikova, E. 1. Rjumtsev, G. F. Kolbina, E. V. Korneeva, B. A. Krentsel, Ju. B. Amerik, 1.1. Konstantinov, Vysokomol. Soedin., 15A, 2158 (1973). 109. I. N. Shtennikova, T. V. Peker, G. F. Kolbina, V R. Petrov, V. S. Grebneva, I. I. Konstantinov, Ju. B. Amerik, Vysokomol. Soedin., 24A, 2047 (1982). 110. T. I. Garmonova, V N. Artem'eva, Ye. M. Nekrasova, Vysokomol. Soedin., 32A, 2062 (1990).
111. V N . Tsvetkov, I. N. Shtennikova. G. F. Kolbina, A. 1. Mashoshin, P. N. Lavrenko, S. V Bushin, A. A. Baturin, Ju. A. Amerik, Vysokomol. Soedin., 27A, 319 (1985). 112. L. N. Andreeva, E. V. Beliaeva, A. A. Boikov, A. M. Muzafarov, V. N. Emelianov, K. A. Andrianov. V. N. Tsvetkov, Vysokomol. Soedin., 21A, 362 (1979). 113. V N. Tsvetkov, K. A. Andrianov, N. N. Makarova, Wl. G. Vitovskaja, Vysokomol. Soedin., 15A, 400 (1973). 114. V N. Tsvetkov, N. A. Mikhailova, V. B. Novakovsky, A. V. Volokhina, A. B. Raskina, Vysokomol. Soedin., 22A, 1028 (1980). 115. N. V. Pogodina, L. V Starchenko, V. N. Tsvetkov. Eur. Polym. J., 16, 387 (1980). 116. V. N. Tsvetkov, V V. Korshak, I. N. Shtennikova. Kh. Raubakh, E. S. Krongauz, G. M. Pavlov, G. F. Kolbina, S. O. Tsepelevich, Vysokomol. Soedin., 21A. 83 (1979); Macromolecules, 12, 645 (1979). 117. V. N. Tsvetkov, G. I. Kudryavtsev, I. N. Shtennikova. T. V. Peker, E. N. Zakharova, V. D. Kalmykova. A. V. Volokhina, Eur. Polym. J., 12, 517 (1976). 118. V N. Tsvetkov, N. V. Pogodina. I. N. Bogatova, L. V. Starchenko, Vysokomol. Soedin., 26A, 122 (1984). 119. N. V. Pogodina, L. V. Starchenko, K. S. Pozhivilko, V. D. Kalmykova, T. A. Kulichikhina, A. V. Volokhina, G. I. Kudryavtsev, V. N. Tsvetkov, Vysokomol. Soedin., 23A, 2185 (1981). 120. V. N. Tsvetkov, I. N. Shtennikova, T. V. Peker. Eur. Polym. J., 13, 455 (1977). 121. V N . Tsvetkov, E. N. Zakharova, N. A. Mikhailova. Dokl. Akad. Nauk SSSR, 224, 1365 (1975). 122. N. A. Mikhailova, Theses, University of Leningrad. 1982. 123. V. N. Tsvetkov, N. V. Pogodina, L. V. Starchenko. Eur Polym. J., 19, 837 (1983). 124. I. N. Shtennikova, T. V Peker, T. I. Garmonova. G. F Kolbina, L. V Avrorova, A. B. Tokareva. G. I. Kudryavtsev, V. N. Tsvetkov, Vysokomol. Soedin., 23A. 2510 (1981). 125. N. A. Mikhailova, V. N. Tsvetkov, V. B. Novakovsky, Vysokomol. Soedin., 24B, 770 (1982). 126. N. V. Pogodina, L. V. Starchenko. V. N. Tsvetkov. Eur. Polym. J., 19, 841 (1983). 127. P. D. Sybert, W. H. Beever. J. K. Stille, Macromolecules, 14, 493 (1981). 128. L. N. Andreeva, E. V. Beliaeva, A. A. Boikov, P. N. Lavrenko, V. N. Tsvetkov. Vysokomol. Soedin.. 25A, 1631 (1983). 129. L. N. Andreeva, T. I. Garmonova, I. N. Shtennikova, V. N. Tsvetkov, The Fifth Meeting on Cellulose, Vladimir 1976. 130. N. V. Pogodina, K. S. Pozhivilko, A. B. Melnikov, S. A. Didenko, G. N. Marchenko, V N. Tsvetkov. Vysokomol. Soedin., 23A, 2454 (1981). 131. N. V. Pogodina, P N. Lavrenko, K. S. Pozhivilko, A. B. Melnikov, T. A. Kolobova, G. N. Marchenko, V. N. Tsvetkov, Vysokomol. Soedin., 24A, 332 (1982). 132. N. V. Pogodina, Y. B. Tarabukina, L. V. Starchenko. G. N. Marchenko, V. N. Tsvetkov, Vysokomol. Soedin., 22A, 2219 (1980). 133. L. N. Andreeva, V. Yu. Elohovski, Vysokomol. Soedin.. 19B, 111 (1977).
134. P. N. Lavrenko, E. U. Urinov, L. N. Andreeva, K. J. Linow, H. Dautzenberg, B. Philipp, Vysokomol. Soedin., 18A, 2579 (1976). 135. V. N. Tsvetkov, P. N. Lavrenko, L. N. Andreeva, A. I. Mashoshin, V. Okatova, O. I. Mikriukova, L. I. Kutsenko, Eur. Polym. J., 20, 823 (1984). 136. N. V. Tsvetkov, A. K. Khripunov, E. P. Astapenko, S. A. Didenko, Vysokomol. Soedin. 37A, 1306 (1995). 137. V. N. Tsvetkov, N. V. Tsvetkov, Russian Chem. Rev., 62, 851 (1994). 138. N. V. Tsvetkov, G. N. Marchenko, M. A. Bezrukova, S. A. Didenko, V. M. Denisov, A. K. Khripunov, A. V. Lezov, V. N. Tsvetkov, Polym. Sci. (Russ.), 35, 345 (1993). 139. N. V. Tsvetkov, L. I. Kutsenko, S. A. Didenko, Vysokomol. Soedin., 37A, 1300(1995). 140. N. V. Tsvetkov, S. A. Didenko, Vysokomol. Soedin., 35A, 1640(1993). 141. V. N. Tsvetkov, A. V. Lezov, N. V. Tsvetkov, L. N. Andreeva, Eur. Polym. J., 26, 1103 (1990). 142. I. N. Stennikova, G. F. Kolbina, V. P. Shibaev, I. V. Ekaeva, Eur. Polym. J., 26, 787 (1990). 143. I. N. Stennikova, G. F. Kolbina, Vysokomol. Soedin., 37A, 1314 (1995). 144. 1. N. Stennikova. E. V. Korneeva, G. F. Kolbina, I. A. Strelina, P. N. Lavrenko V. P. Shibaev, I. V. Ekaeva, Eur. Polym. J., 28, 353 (1992). 145. G. F. Kolbina. E. V. Korneeva, I. N. Stennikova, MoI. Mat., 5, 79 (1995). 146. I. N. Stennikova, G. F. Kolbina, E. V. Korneeva, I. A. Strelina, V. P. Shibaev. I. V. Ekaeva, Polym. Sci., 34, 1022 (1992). 147. I. N. Stennikova, T. V. Filippova, H. Dautzenberg, Vysokomol. Soedin., 35, 1459 (1993). 148. P. N. Lavrenko, I. A. Strelina, S. Ya. Magarik, L. I. Kutsenko, Vysokomol. Soedin., 37, 2007 (1995). 149. G. M. Pavlov, N. P. Evlampieva, Biophisica, 40 (6), 1220 (1995). 150. G. M. Pavlov, A. N. Kozlov, S. M. Yakopson, S. V. Usova, L. S. Efros. Vysokomol. Soedin., 27A, 30 (1985). 151. N. V. Tsvetkov, S. A. Didenko, V. N. Tsvetko, Dokl. A Nauk. SSSR, 337, 483 (1994). 152. P. N. Lavrenko. T. I. Garmonova, M. M. Gel'mont, L. S. Efros, I. M. Kralina, Vysokomol. Soedin., 34B, 45 (1992). 153. I. P. Kolomiets, P. N. Lavrenko, A. V. Lezov, A. M. Ovsipyan, H. Finkelmann, Vysokomol. Soedin., 35A, 1620 (1993). 154. E. V. Frisman. N. A. Kas'yanenko, MoI. Biol., 24 (2), 318 (1990). 155. E. 1. Rumtsev, I. N. Shtennikova, D. R. Tur, G. F. Kolbina, E. V. Korneeva. V G. Kulichikhin, Vysokomol. Soed., 31B, 648 (1990). 156. E. 1. Rumtsev, I. P. Kolomiets, I. N. Shtennikova, G. F. Kolbina, D. R. Tur, V. G. Kulichikhin, Polym. Sci., 34, 541 (1992).
157. N. A. Kas'yanenko, E. V. Frisman, S. I. Klenin, Ye. N. Bykova, I. S. Kochetkova, Vysokomol. Soedin., 29A, 1129 (1987). 158. V. N. Tsvetkov, S. V. Bushin, L. N. Andreeva, K. P. Smirnov, E. V. Belyaeva, A. Yu Bilibin, and A. R. Stepanova, Polym. Sci., 34, 229, (1992). 159. V. N. Tsvetkov, L. N. Andreeva, S. V. Bushin, E. V. Belyaeva, V. A. Cherkasov, A. I. Mashoshin, A. Yu. Bilibin, S. S. Skorokhodov, Vysokomol. Soedin., 3OA, 713 (1988). 160. V. N. Tsvetkov, L. N. Andreeva, A. P. Filippov, E. V. Belyaeva, A. Yu. Bilibin, and A. R. Stepanova, Eur. Polym. J., 27, 319(1991). 161. V. N. Tsvetkov, L. N. Andreeva, P. N. lavrenko, O. V. Okatova, E. V. Beliaeva, A. Yu. Bilibin, and S. S. Skorokhodov, Eur. Polym. J., 21, 933 (1985). 162. V. N. Tsvetkov, L. N. Andreeva, P. N. Lavrenko, O. V. Okatova, E. V. Beliaeva, A. Yu. Bilibin, and S. S. Skorokhodov, Vysokomol. Soedin. A, XXX, 1263 (1933). 163. V. N. Tsvetkov, S. V. Bushin, L. N. Andreeva, K. P. Smirnov, E. V. Belyaeva, E. P. Astapenko, A. Yu. Bilibin, A. V. Ten'kovtsev, A. R. Stepanova, Polym. Sci., 34, 536 (1992). 164. S. V. Bushin, N. V. Tsvetkov, E. P. Astapenko, V. N. Tsvetkov, E. V. Belyaeva, V. V. Zuev, S. S. Skorokhodov, Vysokomol. Soedin., 38A, 1308 (1996). 165. N. V. Tsvetkov, V. N. Tsvetkov, S. S. Skorokhodov, Vysokomol. Soedin., 38A, 1032 (1996). 166. V. N. Tsvetkov, S. V. Bushin, E. P. Astapenko, N. V. Tsvetkov, S. S. Skorokhodov, V. V. Zuev, R. Zentel, H. Potsch, Polym. Sci., 36A, 813 (1994). 167. N. V. Tsvetkov, V. N. Tevetkov, V. V. Zuev, S. S. Skorokhodov, R. Zentel, Vysokomol. Soedin., 38A, 1831 (1996). 168. N. V. Tsvetkov, N. V. Pogodina, V. V. Zuev, Vysokomol. Soedin., 38A, 1133 (1996). 169. N. V. Tsvetkov, V. V. Zuev, 1. V. Ksenofontov, S. A. Didenko, Vysokomol. Soedin. 38A, 1840 (1996). 170. V. N. Tsvetkov, L. N. Andreeva, S. V. Bushin, A. I. Mashoshin, A. Yu. Bilibin, S. S. Skorokhodov, Vysokomol. Soedin., 3OA, 2128 (1988). 171. S. V. Bushin, V. N. Tsvetkov, L. N. Andreeva, E. P. Astapenko, E. V. Belyaeva, D. N. Asinovskaya, S. S. Skorokhodov, Polym. Sci., 39, 943 (1997). 172. L. N. Andreeva, S. V. Bushin, A. I. Mashoshin, M. A. Bezrukova, V. N. Tsvetkov, A. Yu. Bilibin, S. S. Skorokhodov, Vysokomol. Soedin., 32A, 1754 (1990). 173. I. N. Stennikova, G. F. Kolbina, S. V. Bozhko, N. N. Makarova, Vysokomol. Soedin., 37B, 1585 (1995). 174. S. Ya. Lyubina, I. A. Strelina, L. A. Nud'ga, Ye. A. Plisko, I. N. Bogatova, Vysokomol. Soedin., 25A, 1467 (1983).
G e l a t i o n
P r o p e r t i e s
A.
o f
P o l y m e r
S o l u t i o n s
Hiltner
Department of Macromolecular Science, School of Engineering, Case Western Reserve University, Cleveland, O H , USA
Some polymer solutions show the phenomenon of gelation. The polymeric chains form association complexes at widely separated points at a certain reduced solvent power of the medium. This leads to the formation of a continuous physical network structure extending throughout the volume of the system. The association producing quasi-crosslinkages is a reversible process, so that the gel may be liquified and reset many times. The nature of the linkages is rather imperfectly understood, but the phenomenon is usually encountered with more or less crystalline polymers. Sometimes, sharp X-ray diffraction patterns are observed which disappear at the melting point of the gel. The table contains data for a selected number of synthetic polymers which are capable of forming physical, thermoreversible gels with various solvents. Since no standard definition or standard measurement methods have been established for physical polymer gels, the gelation properties are taken from the references cited.
EXPLANATION OF ABBREVIATIONS USED Mw
A 5 Polymer
The molecular weight of polymer refers to the weight average molecular weight unless otherwise stated. The branch density of branched polymer. The syndiotacticity diad content in %. Solvent
Poly(ethylene), low density A = 2.9 Decalin A = 6.8 Decalin A = 5.6 Decalin A = 8.9 Decalin A = 6.8 Toluene A = 6.8 o-Xylene A = 6.8 A = 6.8 Tetralin A = 3.1 Cyclohexane-CS A =4.7 (1/1, v/v) A= 12.2 A = 7.18 Cyclohexane-CS2 A=O (1/1, v/v) A = 4.07
Mw 74000 161000 137000 175000 161000 161000 161000 161000 30000 65000 222000 30000 10100 15100
Cone, (g/1) 50-140 40-140 50-140 50-140 60-150 50-140 50-150 60-140 40-75 40-75 30-75 65-95 30-65 50-95
TgQ\
Tm A//m
The temperature (in degrees centigrade) at which the gel forms when the solution is cooled; the solgel transition temperature. The melting temperature (in degrees centigrade); the gel-sol transition temperature. When DSC was used, this is the enthalpy associated with the endotherm. When other methods are used, AH is obtained from the van't Hoff plot.
Methods Used for the Measurement of Melting Temperature of the Gel 1. Flow: A U-tube in which the two limbs are joined by a capillary section is used. The gel is allowed to set with different heights in the two links and the melting point is the temperature at which flow starts from one limb to the other. 2. Ball drop: A steel ball with a known diameter or weight is placed on the gel and the gel warmed at a certain heating rate. The ball drops at the gel melting temperature. 3. DSC: Differential scanning calorimetry. 4. Tilting: The gel is warmed in the test tube and the melting point is observed when the gel begins to flow under its own weight when the upright test tube is tilted. Tgel (0C)
Tm (0C) 54-72 58-72 60-74 50-67 68-76 67-76 68-75 72-78 30-41 36-43 34-44 40-55 73-75 55-65
AH m (kj/mol)
Method
Refs.
Ball drop
6
Ball drop
8
Polymer
Solvent
Mw
Cone, (g/1)
Tgel ( C)
T 111 ( 0 C)
A / / m (kj/mol)
Method
Poly(ethylene), high density -Dichlorobenzene Poly(ethylene-co-butene-1) Decalin
Poly(ethy]ene-c<94-methylpentene-i) Poly(ethylene-ro-octene-1)
Poly(propylene) Poly(4-methylpentene-1) Poly(acrylonitrile) Poly(acrylonitrile-a?vinyl acetate)
Poly(cetyl acrylate)
Decahydronaphthalene Cyclopentane Cyclohexane Dimethyl sulfoxide DimethyJacetarnide Dimethyl sulfoxide Dimethylformamide Ethylene carbonate y-Butyrolactone n-Aliphatic alcohols C= 7 C= 8 C= 9 C=IO C=12 Hydrocarbons C=IO C=12 C =14 C = 16 /7-Decane
Cetane
Alcohols
Poly(docosyl acrylate)
Poly(octadecyl acrylate)
/7-Aliphatic alcohols C= 7 C= 8 C=IO C=12 /?-Aliphatic alcohols C= 7 C= 8 C=IO C = 12 Hydrocarbons C= 6 C= 8 C=12
220000 113000 104000 71000 55000 80000 84000 87000 83000 119000 80000 90000
200000 200000 200000 200000 200000
120 50-140 60-140 50-140 60-140 60-140 50-120 60-120 50-120 50-100 60-120 50-115 50 100 5-100 72 240-280 270-320 290-310 230-300 250-270
Tilting
26 23
Visual observation
10 22
Flow
15 18
DSC
24
DSC
24
57 57 56 56
DSC
24
38 38 37 37
DSC
24
89
10
129 86-91 87-90.5 83-88 82-89 88.5-92.5 89.5-93 89-93 91-94.5 92-95 91-94 90.5-94 97.7 80 45 35 42-75 34-46 56-66 41-72 66-73 28 28 27 26 25
100 200 400 500 700 800 900 300 500 700 900 100 200 300 400 500 600 700 800 900
Refs.
12 15 24 26 17 18 18 20 25 26 30 30 31 32 34 29 29 28 27 27 27 27 28 29
18 20 28
35 (J/g) 79 96 8 12 21 29 38 46 50 59
Polymer
Solvent
Poly(methyl methacrylate) Dimethylformamide Poly(vinyl acetate)
Poly(vinyl alcohol)
highly syndiotactic 5 = 65%
Glycerin/water (40/60)
Mw
Cone, (g/1)
Tm (0C)
AHm (kj/mol)
(60/40)
60000
(80/20)
60000
20 50 100 200 20 50 100 200 100 151 200 250
82 94 99 106 96 101 112 123 35 58 73 78
Af-Methylpyrrolidone
60000
50 100 200
87.5 101 120
54
Formamide
60000
20 50 100 200
62 68 98 106
48
90 140 200 300 0.6 0.8 1 2 3 5 0.4 0.8 1 2 3 4 5
Phenol/water
4
Bromobenzene
Dichloroethane Dimethyl phthalate
Dioxane
34000 59000 145000 235000 98000 145000 154000 34000 62000 145000 135000 154000 200000 154000 56000 103000 114200 133000 62000 145000 235000
19 5 6.5 10 12.5 100 100 100 100 100 100 80-120 100 100 100 100 10-100 100 (w/w) 50-120 50-140 40-100 30-100 20-80 100 100 100
19
15
7 20 47 58 75 82 86 102 105 118 42 59 60 72 79 88 93 28 20 29 37 42 27.3 48.0 88.3 116 44 73 42-72 85.5 99.0 116 133 52.0-104.0 50-67* 42.0-84.0 45-70 50-75 50-80 60-85 43.5 79.8 96.9
14
71
60000
Water
Refs.
54
Methanol/water (40/60)
45%
Method
A very special case of gelation is observed in cosolutions of isotactic and syndiotactic PMMA. 60000 50 77 55 100 89 200 101
57%
Poly(vinyl chloride)
7gei (0C)
58
Tilting
27
DSC
20
51
Ball drop
2
2 13.0 2
50.6 50.6 36 35 37 45
3,4 2 1
Ball drop
2
References page VII - 768
Polymer
Solvent Bromobenzene 1,2-Dichlorobenzene Nitrobenzene Butanone Tritolyl phosphate Di-isopropyl ketone Dimethyl phthalate Nitrochlorobenzene Dibutyl phthalate
Poly(styrene), atactic
Dipentyl phthalate Dihexyl phthalate Diheptyl phthalate Dinonyl phthalate Pentan-3-one Dimethylformamide Tetrachloroethane Chlorobenzene Methoxybenzene Carbon disulfide
Poly(styrene), isotactic
w-Amyl acetate Isoamyl acetate n-Butyl acetate fl-Propyl acetate 1-Chloropentane 1-Chlorobutane 1-Chloropropane Decalin
1-Chlorodecane Nitrobenzene Aniline Benzaldehyde Poly(oxy-2,6-dimethyl1-Bromonaphthalene phenylene) 1-Chloronaphthalene Carbon disulfide Poly(y-benzyl L-glutamate) Benzyl alcohol
a b
Mw
Cone, (g/1)
40-120 100 (w/w) 92 100 (w/w) 100 (w/w) 200000 100 (w/w) 56000 92 200000 100 (w/w) 56000 92 200000 100 (w/w) 200000 100 (w/w) 200000 100 (w/w) 100 (w/w) 148000 40-70 56000 92 148000 40-70 148000 40-70 148000 40-70 148000 50 56000 92 56000 92 56000 92 56000 92 56000 92 2000000 5-135 670000 10-140 410000 17-170 200000 20-150 30000 70-190 20000 90-170 4000 120-180 670000 166 670000 166 670000 166 670000 166 670000 166 670000 166 670000 166 190000 50 670000 10 670000 10 670000 10 670000 10 670000 10 25000 (Mv) 25000 (Mv) 25000 (Mv) 50000 (Mv) 30 80000 30 150000 30 300000 30 150000 50 150000 100 150000 200 150000 300 150000 400 150000 500
Tgel (0C)
154000 200000 56000 200000
12 25 -2 -20 -35 25 25
Tm (0C) 38.0-82.5 40-63° 76.2 44-68° 55-90 a 40-55° 32.7 56-76° 51.0 58-87° 54-89° 54-74° 43-75° 90-105 93.7 97-112 101-119 107-123 126 46.7 20.0 69.1 78.4 85.1 -53-7 -63-0 - 56 to - 1 0 - 70 to - 20 - 76 to - 1 2 - 72 to - 22 -55 to-23 -52 -56 -65 -68 -76 -79 -86 670 63 88 52 5 20 110 86 0 50 55 58 58 55 56 58 58.5 59 60
AHm (kj/mol) 21.0 90-110* 34.0 87-103* 90-137* 57-75* 23.1 98-102* 17.2 96-142* 89-120* 100-150* 116-139* 22.3
Method DSC
Flow Flow
10.9 35.7 61.7 43.1 31 27 26 24 10 6 5 11.7 11.4 10.6 10.6 12.2 8.0 5.8 62
Refs. 2 3,4 1 3,4 3,4 3,4 1 3,4 1 3,4 3,4 3,4 3,4 25 1 25
Tilting
1 1 1 1 1 13
DSC Tilting
11 12
Tilting
12
Ball drop
21
Ti endotherm. Ti endotherm.
REFERENCES
1. M. A. Harrison, P. H. Morgan, G. S. Park, Eur. Polym. J., 8, 1361 (1972). 2. Y. C. Yang, P. H. Geil, J. Macromol. Sci. B: Phys., 22, 463 (1983).
3. S. J. Guerrero, A. Keller, J. Macromol. Sci. B: Phys., 20 (2), 167 (1981). 4. S. J. Guerrero, A. Keller, P. L. Soni, P. H. Geil, J. Polym. Sci., Polym. Phys. Ed., 18, 1533 (1980).
5. S. J. Guerrero, A. Keller, P. L. Soni, P. H. Geil, J. Macromol. Sci. B: Phys., 20(2), 161 (1981). 6. H. Matsuda, M. Imaizumi, H. Fujimatsu, S. Kuroiwa, M. Okabe, Polym. J., 16 (2), 151 (1984). 7. H. Matsuda, K. Araki, H. Fujimatsu, S. Kuroiwa, Poiym. J., 13 (6), 587 (1981). 8. A. Takahashi, M. Sakai, T. Kato, Polym. J., 12 (5), 335 (1980). 9. P. J. Barham, Polymer, 23 (8), 1112 (1982). 10. JP 57,180,635 [82,180,635] (1982)). 11. M. Giroiamo, A. Keller, K. Miyasaka, N. Overberg, J. Polym. Sci., Polym. Phys. Ed., 14, 39 (1976). 12. S. Wellinghoff, J. Shaw, E. Baer, Macromol., 12 (5), 932 (1979). 13. H. -M. Tan, A. Moet, A. Hiltner, E. Baer, Macromol., 16 (1), 28 (1983). 14. C. F. Ryan. P. C. Fleischer, Jr., J. Phys. Chem., 69, 3384 (1965). 15. S. Vladimir, Czech. Patent 178, 638 (1979). 16. J. Bisschops. J. Polym. Sci., 17, 89 (1955).
17. J. Bisschops, J. Polym. Sci., 12, 583 (1954). 18. D. R. Paul, J. Appl. Polym. Sci., 11, 439 (1967). 19. L. Z. Rogovina, G. L. Slonimskii, L. S. Gembitskii, Ye. A. Serova, V. A. Grigor'eva, Ye. N. Gubenkova, Vysokomol Soyed. A, 15 (6), 1256(1973). 20. S. Matsuzawa, K. Yamaura, H. Kobayashi, Colloid Polym. Sci., 259, 1147 (1981). 21. S. Sasaki, M. Hikata, C. Shiraki, I. Uematsu, Polym. J., 14, 205 (1982). 22. G. Charlet, H. Phuong-Nguyen, G. Delmas, Macromol., 17, 1200(1984). 23. H.-M. Tan, B. H. Chang, E. Baer, A. Hiltner, Eur. Polym. J., 19, 1021 (1983). 24. R. V. Tal'roze, V. P. Shibaev, N. A. Plate, J. Polym. Sci. Symp., 44, 35 (1974). 25. S. A. Leharne, G. S. Park, Eur. Polym. J., 21, 383 (1985). 26. M. Okabe, M. Isayama, H. Matsuda, Polym. J., 17, 369 (1985). 27. M. Komatsu, T. Inoue, K. Miyasaka, J. Polym. Sci., Polym. Phys. Ed., 24, 303 (1986).
S E C T I O N
A
B
B
R
E
V
P
O
L
Y
M
I
A E
T R
I
V I I I
O N
N A
S M
O E
S
F
A b b r e v i a t i o n s F i b e r s ,
f o r
T h e r m o p l a s t i c s ,
E l a s t o m e r s ,
a n d
T h e r m o s e t s ,
A d d i t i v e s
H a n s - G . Elias Michigan Molecular Institute, 1910 West St. Andrews Rd., Midland, Ml 48640, USA
A. Introduction B. Abbreviations in Alphabetical Order C. Abbreviations and Acronyms Based on Poly(monomer) Names D. Abbreviations for Polymers Named After a Characteristic Polymer Croup E. Abbreviations for Polymers Produced by Chemical Transformation of Other Polymers F. Abbreviations for Blends, Reinforced Polymers, etc. G. ISO Codes for Thermoplastic Materials 1. Codes for ISO Data Blocks 1-5 1.1. ISO and DlN Codes for Data Block 1 1.2. ISO Codes for Items in Data Block 2 1.3. ISO Codes for Items in Data Block 3 1.4. ISO Codes for Extending and Reinforcing Fillers (Data Block 4) 1.5. ISO Codes for Data Block 5 H. SPI Codes for the Recycling of Plastics I. Recommended Abbreviations and Acronyms for Names of Elastomers J. Abbreviations for Textile Fibers A.
VIII-1 VIII-2 VIII-15 VIII-17
The following tables report abbreviations either found in the scientific or technical literature or recommended or proposed by the organizations listed below. Note that * and ** are part of the recommended ASTM abbreviations and acronyms and not symbols for footnotes. ANSI/ASTM
VIII-18 VIII-19 VIII-19 VIII-19 VIII-19 VHI-20 VHI-20 VIII-20 VIII-21 VIII-21 VIII-21 VIII-22
INTRODUCTION
Abbreviations and acronyms for the names of thermoplastics, thermosets, fibers, elastomers, and additives have been proposed by many national and international organizations. Some of these abbreviations were introduced by law, others are trademarks in certain countries. As a result, the same abbreviation is often used for different polymers. The same polymer may also have different abbreviations or acronyms. Furthermore, some abbreviations refer to chemical compounds (IUPAC) whereas abbreviations recommended by ASTM, BS, DIN, and ISO usually refer to plastics, fibers, elastomers, etc., that are based on the corresponding polymers, i.e., polymers plus additives, modifiers, fillers, etc.
ASTM BS DIN EDV EC ISO IUPAC WTR
American National Standards Institute (ASTM D 1600-75; D 1600-86a; D 1418-77) American Society for Testing of Materials (ASTM D 1600-64; D 1600-86a; D 1418-67; D 4020-81) British Standards (Standard 3502-1862) German Industrial Standard (DIN 7723, 7728, 16913, 55950, 60001) Data processing key of the European Textile Characterization Law European Community International Organization for Standardization (ISO 1043-1980, 1629-1980) International Union for Pure and Applied Chemistry [Pure Appl Chem., 18, 583 (1969); 40, 473 (1974); 59, 691 (1987)] Working Group Toxicology of Rubber Auxiliaries
Section B lists, in alphabetical order, the abbreviations and acronyms for thermoplastics, thermosets, fibers, elastomers, and additives. Sections C and D list the abbreviations for polymers, based on their monomeric units and characteristic groups, respectively. Section E contains abbreviations and acronyms for polymers obtained by chemical transformation of base polymers. Section F contains special abbreviations for blends, reinforced polymers, etc., and Section G the ISO and DIN codes for plastics. Section H lists the special abbreviations connected with the recycling of plastics. Recommended abbreviations and acronyms for elastomers and fibers are given in Sections I and J, respectively. The material presented has been reproduced (with small corrections and additions) with the permission of the following publishers:
Hiithig Verlag, Heidelberg (H.-G. Elias, Makromolektile, vol. II, 5th ed. 1992; Tables 2 - 5 and 8-10); VCH Verlag, Weinheim (H.-G. Elias, An Introduction to Plastics, 1993; Table 6 (incl. text)). B. ABBREVIATIONS IN ALPHABETICAL ORDER AB ABR
ABS
AC ACM
ACS
ACSP ADA ADC ADCK ADEC ADPA AE AES
AF AFK AFMU
AG Ag AI AIBN Ak AL AMMA
A/MMA
Manila hemp fibers (Abaca) (EDV); see also Ma Acrylate-butadiene rubber; elastomeric copolymer from an acrylic ester and butadiene (ANSI/ASTM, IUPAC); see also AR Acrylonitrile-butadiene-styrene; a thermoplastic from acrylonitrile, butadiene and styrene (ASTM, DIN, ISO, IUPAC) Fiber from deacetylated cellulose acetate (EDV) Elastic copolymer from an acrylic ester and a small proportion of a vulcanizable monomer, e.g., 2-chlorovinyl ether (ANSI, ASTM) Thermoplastic blend of a copolymer from acrylonitrile and styrene with chlorinated poly(ethylene) Acetyl cyclohexylsulfonyl peroxide Adipic acid Azodicarbonamide (WTR), see also ADEC Activated azodicarbonamide (WTR) Ammonium diethyl dithiocarbamate (WTR); see also ADC Condensation product from acetone and diphenylamine (WTR) Aminoethyl (with cellulosics) Thermoplastic quaterpolymer from acrylonitrile, ethylene, propylene, and styrene Other fibers (i.e., those not specified by the EDV system) Asbestos fiber reinforced plastic Elastomeric terpolymer from tetrafluoroethylene, trifluoronitrosomethane, and a small amount of nitrosoperfluorobutyric acid; nitroso rubber (ANSI/ASTM); see also CNR Alginate fiber (EDV) 1. Silver (IUPAC) 2. Esparto grass fiber (DIN) Amide-imide polymers A^/V-Azobisisobutyronitrile Angora wool (DIN) 1. Alfalfa fibers (EDV) 2. Alginate fibers (DIN); see also AG Thermoplastic copolymer from acrylonitrile and methyl methacrylate (ASTM); see also A/MMA See AMMA
An AN An-AE ANM AO Ap AP
APH APR APT
APTK
Aq AR
As AS ASA
AJS/A
ASE ASR ATE ATH ATO AU
AU-I AU-P BA BAA BBP BD BDMA BDP BDSH BFE
Calatropis fiber (DIN) Acrylonitrile Elastomeric copolymer from acrylonitrile and acrylic ester; see also ANM See AN-AE Antioxidant Alpaca wool (DIN) Elastic copolymer from ethylene and propylene; see also APR, E/P, EPM, and EPR (older German literature) Alkylated phenol See AP Elastomeric copolymer from ethylene, propylene, and an unsaturated termonomer; see also APTK, EPD, EPDM, EPT, EPTR Elastomeric copolymer from ethylene, propylene, and an unsaturated termonomer; see also APT, EPD, EPDM, EPT, EPTR Anthraquinone 1. Elastomeric copolymer from acrylic esters and olefins; see also ABR 2. Ardein fibers (DIN) 1. Arsenic (IUPAC). 2. Asbestos (DIN); see also AS Asbestos fiber (EDV); see also As Thermoplastic copolymer from acrylonitrile, styrene, and acrylic esters (ASTM); see also A/S/A Thermoplastic copolymer from acrylonitrile, styrene, and acrylic esters (DIN, ISO); see also ASA Alkylsulfonic acid ester (ISO) Alkylene sulfide rubber Aluminium triethyl Alumina trihydrate Antimony trioxide 1. Elastomeric polyurethane with polyester segments (ANSI/ASTM, ISO) 2. Polyester rubbers with carbon, oxygen, and nitrogen in the chain. Both classifications probably refer to the same type of elastomer AU, cross-linkable with isocyanates AU, cross-linkable with peroxides Condensation product of butyraldehyde and aniline (WTR) Condensation product of butyraldehyde and aniline Benzylbutyl phthalate (DIN, ISO) 1. 1,4-Butanediol 2. Derivative of benzofuran Butanediol 1,4-dimethacrylate (WTR) Butyldecyl phthalate (WTR) Benzene-1,3-disulfonyI hydrazide (WTR) Bromotrifluoroethylene polymers
BFK BHA BHET BHT BiDMC BIIR
BMC BMDC BOA BOP BOPP BP BPH BPO BR
BSH BT BTDA BTX Buna
Butyl
BVE Bw
Boron fiber reinforced plastic (German technical literature) Butylated hydroxyanisole; /-butyl-4-methoxyphenol Bis(2-hydroxyethyl) terephthalate Butylated hydroxytoluene; 2,6-di(r-butyl)p-cresol Bismuth dimethyl dithiocarbamate (WTR); see also BMDC Brominated elastomer from isobutene and isoprene; bromobutyl rubber (ANSI/ ASTM) Bulk molding compound Bismuth dimethyl dithiocarbamate (WTR) Benzyl octyl adipate ( = benzyl 2-ethylhexyl adipate) (ISO) Benzyl octyl phthalate ( = benzyl 2-ethylhexyl phthalate) Biaxially oriented polypropylene) film; balanced oriented poly(propylene) film Poly(butadiene) rubber; see also BR and CBR 2,2 '-Methylene-bis(4-methyl-6-f-butylphenol) (WTR) Dibenzoyl peroxide Elastomeric poly(butadiene); butadiene rubber (ANSI/ASTM, IUPAC); see also BP and CBR Benzene sulfonyl hydrazide (WTR) Thermoplastic poly(l-butene); see also Pb, PBT 3,3 ',4,4 '-Benzophenonetetracarboxylic dianhydride Benzene, toluene, and xylenes Butadiene elastomers (old German literature). The first types were synthesized by sodium ('Wtftrium") initiated totadiene polymerizations, hence the name "Buna"; the various grades were differentiated by numbers (hence "number Buna"). Later Buna types were copolymers from the free-radical copolymerization of butadiene with various comonomers. These types were called ''letter Buna" (Buna S = copolymer of butadiene and styrene, Buna N = copolymer of butadiene and acrylonitrile, etc.). Elastomeric copolymer from isobutene and isoprene; butyl rubber (BS); see also GR-I, IIR, PIBI Butyl vinyl ether (WTR) Cotton ("Baumwolle") (DIN); see also CO
C CA
CAB CAP CAR CBA CBR CBS CC
CDB CdDEC CDP CdPDC CE CEM CF
CFK
CFM
CFRP CHC
CHDM CHR CUR
CL CM CMBT
C
1. Carbon (IUPAC) 2. Channel black 3. Cellophane (ASTM); "Cellophan " " is a registered trademark in Germany
CMC
Saran coated cellophane (ASTM) 1. Cellulose acetate (ASTM, DIN, ISO, IUPAC); see also AC 2. Hemp fibers (EDV) Cellulose acetate-butyrate (ASTM, DIN, ISO, IUPAC) Cellulose acetate-propionate (ASTM, DIN, ISO, IUPAC) Carbon fiber Chemical blowing agent Butadiene rubber; l,4-c/.s-poly(butadiene); see also BP and BR /V-Cyclohexyl-2-benzothiazolesulfene amide 1. Cocos fiber (EDV) 2. Cupro (regenerated cellulose fibers via the copper/ammonia process (DIN); see also CU Conjugated diene butyl elastomer Cadmium diethyl dithiocarbamate (WTR); also Cd-DEDC Cresyl diphenyl phosphate Cadmium pentamethylene dithiocarbamate (WTR) Cellulose plastics in general (ASTM) Poly(chlorotrifluoroethylene) (ASTM); see also CFM, CTFE, PCTFE Thermoset from cresol and formaldehyde; cresol-formaldehyde resin (ASTM, DIN, ISO, IUPAC) 1. Man-made fiber reinforced plastic (German technical literature: "Chemie/aserverstarkter Xiinststoff") 2. Carbon fiber reinforced plastic (German technical literature); see also CRP I. Poly(chlorotrifluoroethylene) (ANSI/ ASTM); see also CEM, CTFE, PCTFE 2. Copolymer from chlorotrifluoroethylene and vinylidene fluoride Carbon fiber reinforced plastics Elastomeric copolymer from epichlorohydrin and ethylene oxide; see also ECO 1,4-Cyclohexanedimethylol Elastomeric poly(epichlorohydrin) (ISO); see also CO Postchlorinated elastomeric copolymer from isobutene and isoprene (ANSI/ ASTM) Poly(vinyl chloride) fiber (EWG; EDV); see also PVC Postchlorinated poly(ethylene) (ANSI/ ASTM); see also CPE Copper mercaptobenzothiazole, see also CuMBT 1. Carboxymethylcellulose (ASTM, DIN, ISO, IUPAC) 2. Critical micelle concentration
CMHEC CMF CN C/N CNR
CO
COX CP CP. CP2 CP4 CPE CPET
CPI CPP
CPVC
CR CRP CS CSM CSPR CSR CT
CTA CTFE CTP CTS CU
(Carboxymethyl/hydroxyethyl) cellulose Classified mineral filler Cellulose nitrate (ASTM, DIN, ISO, IUPAC); see also NC, C/N Cellulose nitrate, see also CN, NC Elastomeric terpolymer from tetrafluoroethylene, trifluoronitrosomethane, and a small amount of an unsaturated termonomer, e.g., nitrosoperfluorobutyric acid; nitroso rubber, carboxynitroso rubber; see also AFMU 1. Elastomeric poly(chloromethyl)oxirane; poly(epichlorohydrin) (ANSI/ASTM; ISO); see also CHR 2. Cotton (EDV); see also Bw Carboxylic rubber Cellulose propionate (ASTM, DIN, ISO, IUPAC) Chemically pure Alternating copolymer from vinyl ether and maleic acid Copolymer from acrylic acid and maleic acid Chlorinated poly(ethylene) (ASTM); see also CM Crystallizable poly(ethylene terephthalate) (i.e., a PET with fast-acting nucleating agents) (trade journals) cw-Poly(isoprene); see also IR, PIP Spinning paper (small cut strips from sodium cellulose or sulfite cellulose paper) or cellulon (wet strips from cellulose pulp) (DIN) 1. Postchlorinated poly(vinyl chloride) (ASTM); see also PC, PeCe, PVCC 2. Critical pigment concentration Poly(chloroprene) (ANSI/ASTM, BS, IUPAC) Carbon fiber reinforced plastics; see also CFK Casein (ASTM, DIN, ISO, IUPAC) Chlorosulfonated poly(ethylene) (ANSI/ ASTM); see also CSPR, CSR Chlorosulfonated poly(ethylene) (BS); see also CSM, CSR Chlorosulfonated poly(ethylene); see also CM, CSPR 1. Cellulose triacetate (DIN); see also CTA, TA 2. Continuous thread Cellulose triacetate (ASTM); see also CT, TA Poly(chlorotrifluoroethylene) (ASTM); see also CEM, CFM, PCTFE N-Cyclohexylthiophthalimide (WTR) Compact tension specimen Copper silk ("cupro silk" = regenerated cellulose fibers) (EDV); see also CC
CuDEC CuDMC CuMBT Culhp CV DABCOll DAC
DADI DAF DAIP DAM DAP DATBP DBDPO DBEEA DBEP DBF DBNPG DBP DBPPD DBS DBTDL DBTU DCBS DCHP DCP DDP DE DEA DEAE DEG DEHP DEP DETA DETU DGEBA DHA DHBP DHP DHS DHXP DIBA DIBP DIDA
Copper diethyl dithiocarbamate (WTR); also CDC, CuDC Copper dimethyl dithiocarbamate (WTR); see also CuDMDC Copper mercaptobenzothiazole; see also CMBT Copper laminated hard paper (German technical literature) Viscose (rayon) (DIN); see also VI Triethylenediamine = Diazabicyclo [2.2.2] octane Diallyl chlorendate; diallyl 1,4,5,6,7,7hexachlorobicyclo[2.2.2]hept-5 ene-2,3dicarboxylate (ASTM) Dianisidine diisocyanate (WTR) Diallyl fumarate (ASTM) Diallyl isophthalate resin (ASTM) Diallyl isophthalate resin (ASTM) Diallyl phthalate resin (ASTM, DIN); see also FDAP Diallyl tetrabromophthalate Decabromodiphenyl oxide Dibutoxyethoxyethyl adipate (WTR) Bis(2-butoxyethyl) phthalate Dibutyl fumarate Dibromoneopentyl glycol Dibutyl phthalate (ASTM, DIN, ISO, IUPAC) A^r,A^/-Di(5-butyl)-/7-phenylenediamine (WTR) Dibutyl sebacate Dibutyltin dilaurate Dibutyl urea (WTR) Benzothiazyl-2-dicyclohexylsuIfene amide (WTR) Dicyclohexyl phthalate Dicapryl phthalate (ASTM, DIN, ISO, IUPAC) Didecyl phthalate Diatomaceous earth A^iV-Diethylaniline (Diethylamino)ethyl- (with cellulose) Diethylene glycol Bis(2-ethylhexyl) phthalate; see also DOP Diethyl phthalate (ISO) Diethylenetriamine (WTR) Diethyl thiourea (WTR) Diglycidyl ethers of bisphenol A Dehydroacetic acid, acetic anhydride 2,4-Dihydroxy benzophenone (WTR) Diheptyl phthalate (ISO) Dihexyl sebacate (WTR) Dihexyl phthalate (ISO) Diisobutyl adipate Diisobutyl phthalate (DIN, ISO) Diisodecyl adipate (ASTM, DIN, ISO, IUPAC)
DIDG DIDP DINA DINP DIOA DIOF DIOM DIOP DIOS DIOZ DIPP DITDP DITP DLTDP DMA DMAA DMAC DMBPPD DMBS DMC DME DMEP DMF DMG DMHPPD DMP DMPTD DMSO DMT DMTD DMTDP DMTDS DNA DNHZ DNODA DNPDP DNP DNPT DNS
DOA DODP
Diisodecyl glutarate Diisodecyl phthalate (ASTM, DIN, ISO, IUPAC) Diisononyl adipate (ISO) Diisononyl phthalate (DIN, ISO) Diisooctyl adipate (ASTM, DIN, ISO, IUPAC) Diisooctyl fumarate Diisooctyl maleate (WTR) Diisooctyl phthalate (ASTM, DIN, ISO, IUPAC) Diisooctyl sebacate Diisooctyl azelate Diisopentyl phthalate Diisotridecyl phthalate (DIN, ISO); see also DITP Diisotridecyl phthalate (DIN); see also DITDP Dilauryl 3,3 '-thiodipropionate A^Af-Dimethylacetamide /V,/V-Dimethylacetoacetamide /V,/V-Dimethylacetamide AH1,3~Dimethylbutyl)-N '-phenyl-/?-phenylenediamine (WTR) Dimethylbenzothiazylsulfeneamide (WTR) Dough molding compound (UP resin) (DIN) 1. Dimethylethanolamine, 2-(dimethyla~ mino)ethanol Bis(2-methoxyethyl) phthalate 1. /V,AT-Dimethyl phthalate (ISO); 2. NJVdimethyl formamide Dimethyl glutarate Ar,A^r/-Di(3-methylheptyl)-/?-phenylenediamine (WTR) Dimethyl phthalate (ISO) Dimethylphenyl thiuram disulfide (WTR) Dimethyl sulfoxide Dimethyl terephthalate 2,5-Dimercapto-l,3,4-thiadiazole (WTR) Dimyristyl-3,3 '-thiodipropionate 2,5-Dimercapto-1,3,4-thiadiazole disulfide (WTR) 1. Deoxyribonucleic acid 2. Dinonyl adipate Di(w-hexyl) azelate Di(fi-octadecyl) adipate Di(w-octadecyl) phthalate (ASTM) Dinonyl phthalate (ASTM, ISO, IUPAC) AyV~Dinitrosopentamethylene tetramine 1. Di(3,5,5-trimethylhexyl) sebacate (WTR) 2. Deoxyribonucleic acid (German: Des oxyribonukleinsaure) Dioctyl adipate, bis(2-ethylhexyl)adipate (ASTM, DIN, ISO, IUPAC) Di(octadecyl) phthalate (ISO)
DOF DOIP DOM DOP DOS DOTG DOTP DOZ DPA DPCF DPCP DPG DPOF DPOP DPP DPPD DPQD DPTD DPTH DPDM DPTT DPTU DR DRC DS DSTDP DTBP DTDC DTDM DTDP DTPD
DUP DVB
EA EAA EAM EBM
Dioctyl fumarate Dioctyl isophthalate, bis(2-ethylhexyl) isophthalate (DIN, ISO) Dioctyl maleate, bis(2-ethylhexyl) maleate (WTR) Dioctyl phthalate, bis(2-ethylhexyl) phthalate (ASTM, DIN, ISO, IUPAC) Dioctyl sebacate, bis(2-ethylhexyl) sebacate (ASTM, DIN, ISO, IUPAC) M/V'-DKo-tolyOguanidine (WTR) Dioctyl terephthalate, bis(2-ethylhexyl) terephthalate (DIN, ISO) Dioctyl azelate, bis(2-ethylhexyl) azelate (ASTM, DIN, ISO, IUPAC) Diphenylamine Diphenyl cresyl phosphate (ASTM, ISO); see also DPCP Diphenyl cresyl phosphate (ASTM, ISO); see also DPCF AW'-Diphenylguanidine (WTR) Diphenyl 2-ethylhexyl phosphate (ASTM, ISO); see also EHDPP Diphenyl octyl phosphate 1. Diphenyl phthalate 2. Dipropyl phthalate Af5Af'-Diphenyl-/?-phenylene diamine (WTR) Dibenzoyl-/?-quinone dioxime Di(pentamethylene)thiuram hexasulfide, see also DPTH Di(pentamethylene)thiuram hexasulfide (WTR), see also DPTD Di(pentamethylene)thiuram monosulfide (WTR) Di(pentamethylene)thiuram tetrasulfide (WTR) Diphenyl thiourea (WTR) Degree of reaction Dry rubber content Degree of substitution Distearyl 3,3 '-dithiopropionate Di(r-butyl) peroxide (WTR) Dithiodicaprolactam (WTR) 4,4-Dithiodimorpholine (WTR) Di(tridecyl) phthalate 1. Di(tridecyl) phthalate 2. N,N '-Ditolyl-p-phenylenediamine (WTR) Di(undecyl) phthalate Divinyl benzene
Segmented polyurethane fiber (Elasthan fiber) (EDV); see also PUE Ethylene acrylic acid copolymers Elastomeric copolymer of ethylene and vinyl acetate (ANSI/ASTM) Extrusion blow molding
EC ECB ECO
ECTFE E-CTFE EDA EDC EDMA EDTA EEA E/EA EG EHDPP EHEC EL ELO EMA
EOT EP E/P EPC EPD
EPDM
EPE EP-G-G EP-K-L EPM
EPR
EPS EPT
Ethyl cellulose (ASTM, DIN, ISO, IUPAC) Blends from ethylene copolymers with bitumen Elastomeric copolymer from ethylene oxide and epichlorohydrin, chloromethyloxirane (ANSI/ASTM); see also CHC Poly(ethylene-co-chlorotrifluoroethylene); see also E-CTFE Poly(ethylene-cr>chlorotrifluoroethylene); see also ECTFE Ethylene diamine (WTR) Ethylene dichloride, 1,2-dichloroethane Ethylene glycol dimethacrylate Ethylenediaminetetraacetic acid Elastomeric copolymer from ethylene and ethyl acrylate (ASTM); see also E/EA Elastomeric copolymer from ethylene and ethyl acrylate (ISO); see also EEA Ethylene glycol 2-Ethylhexyldiphenyl phosphate; see also DPOF Hydroxyethylcellulose Elastodiene fiber (EDV); see also EU, LA Epoxidized linseed oil (DIN, ISO) 1. Copolymer from ethylene and methacrylic acid (ASTM) 2. Alternating copolymer from ethylene and maleic anhydride Ethylene oxide polysulfide Epoxy resin (ASTM, DIN, ISO, IUPAC) Copolymer from ethylene and propylene (ISO); see also AP, APR, EPM, EPR Easy processing channel black Elastomeric terpolymer from ethylene, propylene, and a nonconjugated diene (ASTM); see also APT, EPDM, EPT, EPTR Elastomeric terpolymer from ethylene, propylene, and a nonconjugated diene (ASTM); see also, APT, APTK, EPD, EPT, EPTR Ester of an epoxy resin (DIN) Prepreg from an epoxy resin and a textile glass fabric (German technical literature) Prepreg from an epoxy resin and a carbon fiber fabric (German technical literature) Elastomeric copolymer of ethylene and propylene (ANSI/ASTM, ISO); see also AP, APR, E/P, EPM, EPR Elastomeric copolymer of ethylene and propylene (BS); see also AP, APR, E/P, EPM Expanded poly(styrene) [poly(styrene) foam] Elastomeric terpolymer from ethylene, propylene and a diene; see also APT, APTK, EPD, EPDM, EPTR
EPTD EPTM EPTR
E-PVC ERM E-SBR ESC ESCR ESO ET ETCH ETFE E/TFE ETG ETMQ EU
EVA
E/VAC EVAL K E/VAL EVE EVOH H EVM
F FC FDAP FE FEF FEP
FF
Diethyl diphenyl thiuram disulfide (WTR) Diethyl diphenyl thiuram monosulfide (WTR) Elastomeric terpolymer from ethylene, propylene and a diene (BS); see also APT, APTK, EPD, EPDM, EPT Emulsion-polymerized poly(vinyl chloride) Elastin reservoir molding Copolymer from styrene and butadiene, polymerized in emulsion Environmental stress cracking Environmental stress cracking resistance Epoxidized soy bean oil (DlN, ISO) Ethylene polysulfide Ethylene chlorohydrine; 2-chloroethanol Copolymer of ethylene and tetrafluoroethylene (ASTM) Copolymer of ethylene and tetrafluoroethylene Ethylene triglycol 2,2,4-Trimethyl-1,2-dihydro-6-ethoxy quinoline (WTR) 1. Elastomeric polyurethane with polyether segments (ANSI/ASTM) 2. Polyether rubber with carbon, oxygen, and nitrogen in the polymer chain (ISO) 3. Elastodiene fibers (ASTM); see also EL, LA Classifications 1 and 2 probably refer to the same polymer Copolymer from ethylene and vinyl acetate (ASTM, DIN, ISO); see also E/VAC, EVM, VAE Copolymer from ethylene and vinyl acetate (ASTM, DIN); see also E/VAC, EVM, VAE Copolymer of ethylene and vinyl alcohol Copolymer of ethylene and vinyl alcohol Ethylene vinyl ether Copolymer with ethylene and vinyl alcohol units Elastomer from ethylene and vinyl acetate; see also EVA, E/VAC, VAE 1. Fluorine (IUPAC) 2. Furnace black Fluorocarbon Diallyl phthalate or resins therefrom, see also DAP Fluorine containing elastomer Fast extruding furnace black Copolymer from tetrafluoroethylene and hexafluoropropyiene (ASTM, DIN, ISO, IUPAC); see also PFEP 1. Resin from furan and formaldehyde (ASTM) 2. Fine furnace black
Fi FK FKM
FL Fl FMQ FPM
FPVC FQ FR FRP FSI FT FVMQ FVSI GC GEP GF GF-EP GFK GF-PF GF-UP GI GL GP GPF GPO
GR
GR-A GRAS GR-I GR-N GRP GR-P
Fique (DIN) Fiber reinforced plastic ("faserverstarkter Kunststoff"; German technical literature) Elastomer with saturated main chain and fluoro, perfluoroalkyl, or perfluoroalkoxy substituents (ANSI/ASTM); see also FPM Fluorofiber (EDV); probably fibers from poly(tetrafluoroethylene) Flax (DIN) Methyl fluorosilicone rubber; see also MFQ 1. Elastomeric copolymer from vinylidene fluoride and hexafluoropropylene (ASTM) 2. Fluoroelastomers in general 3. Rubbers having fluoro and fluoroalkyl or fluoroalkoxy substituent groups at the polymer chain (ISO) Flexible PVC film Elastomeric silicone with fluorine containing substituents (ASTM); see also FSI Flame retardant Glass fiber reinforced polyester Fluorinated silicone (ASTM); see also FQ Fine thermal black Silicone rubber with fluorine, vinyl, and methyl substituents (ANSI/ASTM) Fluorosilicone Glass coupled Glass fiber reinforced epoxy resin Glass fiber reinforced plastic; see also GFK Glass fiber reinforced epoxy resin Glass fiber reinforced plastic (German technical literature) Glass fiber reinforced phenolic resin Glass fiber reinforced unsaturated polyester (German technical literature) Broom (fibers from) (EDV) Glass fiber (DIN, EDV) 1. Gutta percha 2. General purpose (ASTM) General purpose furnace black Elastomeric copolymer from propylene oxide and allyl glycidyl ether (ANSI/ ASTM) 1. Glass fiber reinforced 2. Former US symbol for "government rubber" Former US symbol for nitrile rubber; see also GR-N Generally recognized as safe Former US symbol for butyl rubber Former US symbol for nitrile rubber; see also GR-A Glass fiber reinforced plastic Glass fiber reinforced plastic
GR-S Gu GU GUP GUR GV HA HAF HBPA HDI HDPE
He HE HEC HEMA HEXA HF HFIP HFP Hgw HIPS Hm HM HMC HMDAC HMDI HMF HMPT HMT HMWPE H-NBR HP HPA HPC HPMC HPT
Former US symbol for styrene-butadiene rubber Guanaco wool (DIN) Fibers from diene rubbers (old German technical literature) Glass fiber reinforced unsaturated polyester resins (German technical literature) Ultrahigh molecular weight polyethylene); see also UHMPE Glass fiber reinforced thermoplastics Human hair (EDV) High abrasion furnace black 2,2-bis(4-hydroxycyclohexyl)propane Hexamethylene-1,6-diisocyanate (WTR) High-density poly(ethylene) (ASTM); in the older German technical literature, HDPE was sometimes used for polyethylene) from high pressure polymerizations ("Hochdruck"), i.e., for poly(ethylene)s with mostly low densities; see also PEH 1. Helium 2. Henequen (DIN); see also HE Henequen (EDV); see also He Hydroxyethylcellulose 2-Hydroxyethyl methacrylate Hexamethylene tetramine (WTR); see also HMT Half linen (EDV) Hexafluoroisopropanol; 1,1,1,3,3,3-hexafluoro-2-propanol; see also HFP 1. Hexafluoroisopropanol; see also HFIP 2. Hexafluoropropene Hard fabric ('' Hartgewebe'', German technical literature) High impact poly(styrene) Hard mat (German technical literature) Hot melt adhesive Sheet molding compound with high glass fiber content (UP resin) (DIN) Hexamethylene diamine carbamate (WTR) Hydrogenated diphenylmethane diisocyanate High-modulus furnace black Hexamethylphosphoric acid triamide; see also HPT Hexamethylene tetramine Poly(ethylene) with very high molar mass (molecular weight) Hydrogenated nitrile rubber Hard paper (German technical literature) Hydroxypropyl acrylate 1. Hydroxypropyl cellulose 2. Hard processing channel black (Hydroxypropyl)methyl cellulose Hexamethyl phosphorotriamide; see also HMPT
HR Hs HS HTBA HTE HTST Hz ICR IEN IFR IHPN HR
IM IMW IPA IPDI IPN IPO IPP IPPD IR IRT IS IT IVE
High resiliency foam Hare hair (DIN) 1. Heat stabilized 2. High percent solids High temperature blowing agent Hydroxyl terminated polyether High-temperature, short-term processing Goat hair ("Haar von der Ziege"; DIN) Initial concentration rubber (from undiluted natural rubber latex) Interpenetrating elastomeric network Intumescent flame retardant Interpenetrating homopolymer network Elastomeric copolymer from isobutene and isoprene (ANSI/ASTM, IUPAC); see also Butyl, GR-I, PIBI Poly(isobutylene); see also PIB Intermediate molecular weight Isophthalic acid 3-Isophorone diisocyanate (WTR) Interpenetrating polymer network Isopropyl oleate Isopropyl percarbonate; diisopropyl peroxydicarbonate iV-Isopropyl-N '-phenyl-p-phenylenediamine (WTR) Synthetic ds-i,4-poly(isoprene) (ANSI/ ASTM, BS, IUPAC); see also CPI, PIP Insect resistant treated Insoluble sulfur (WTR) Interrupted or split thread Isobutyl vinyl ether
Ju JU
Jute (DIN); see also JU Jute (EDV); see also Ju
KA KE KEK Kf KFA Km Kn Ko Kp KP Kz
Casein fibers (DIN) Kenaf (EDV); see also Kf Carbon fiber reinforced plastic (DIN) Kenaf (DIN); see also KE Potassium fatty acid soap Camel hair (DIN) Rabbit hair (DIN) Coir (DIN) Kapok (DIN); see also KP Kapok (EDV); see also Kp Cashmere goat wool (DIN)
LA
Fibers from diene rubbers (DIN); see also EL, EU Low-density poly(ethylene) (ASTM); in the older German technical literature, LDPE was sometimes used for polyethylene) from low pressure polymerizations, i.e., for poly(ethylene)s with mostly high densities; see also NDPE
LDPE
LI LIM LIPN LLDPE Lm LRM LRMR L-SBR M Ma MA MABS MAN MBI MBS
MBSS MBT MBTS MC MCB MD MDA MDAC MDI MDPE ME MEK MEKP MF MFK MFQ
MG MMA Mo MOCA MOD MP MPE
Linen, flax (EDV) Liquid impingement molding (now RIM) Latex interpenetrating polymer network Linear low-density poly(ethylene) (ASTM) Llama wool (DIN) Liquid reaction molding (now RIM) Reinforced liquid reaction molding Solution polymerized SBR Medium thermal carbon black Manila hemp fibers (Abaca) (DIN) 1. Modacrylic fiber (EDV); see also PAM 2. Maleic anhydride Copolymer from methyl methacrylate, acrylonitrile, butadiene, and styrene Methacry lonitri Ie Mercaptobenzimidazole; 2-benzimidazolethiol 1. Copolymer from methyl methacrylate, butadiene, and styrene 2. Benzthiazyl-2-sulfene morpholide (WTR) 2-(4-Morpholinyldithio)benzothiazole (WTR) Mercaptobenzothiazole; 2-benzthiazolethiol 2-Benzthiazolyl disulfide Methyl cellulose Monochlorobenzene Modal fiber (EDV) 1. Methylenediamine 2. 4,4 '-Diaminodiphenylmethane 4-Methyl-7-(diethylarnino)coumarine 4,4 '-Diphenylmethane diisocyanate; methylene di-/>phenylene diisocyanate Poly(ethylene) with medium density ( « 0.93-0.94 g/cm3) (ASTM) Metal fiber (EDV) Methyl ethyl ketone; 2-butanone Methyl ethyl ketone peroxide Melamine-formaldehyde resin (ASTM, DIN, ISO, IUPAC) Metal fiber reinforced plastic (German technical literature) Silicone rubber having both methyl and fluorine substituent groups on the polymer chain (ISO); see also FMQ Maguey (EDV) Methyl methacrylate (ASTM) 1. Molybdenum (IUPAC) 2. Mohair wool (DIN) 4,4/-Methylenebis(2-chloroaniline); 3,3 'dichloro-4,4'-diaminodiphenylmethane Modacryl fiber (EWG) Melamine-phenol -formaldehyde resin; see also MPF Metallized polyester film
MPF MPPPD MPQ
MPTD M-PVC MPVQ
MQ MR Ms MSA MT MTI MTM MVQ
MWR
NBR
NC NCR NDBC NDGA NDI NDOP NDPA NDPE NEM Nf NHDP NIR NK NMP NODA NODP NPG NPP NR
Melamine-phenol-formaldehyde resin (ISO); see also MP ^MethyI-2-pentyl-N'-phenyl-/?-phenylene diamine (WTR) Silicone rubbers having both methyl and phenyl substituent groups on the polymer chain (ISO); see also PMQ Dimethyl diphenyl thiuram disulfide (WTR) PVC, polymerized in bulk (mass) (German technical literature) Silicone rubbers having methyl, phenyl, and vinyl substituent groups on the polymer chain (ISO); see also PVMQ Elastomeric silicones with methyl substituents (ANSI/ASTM) Mold resistant Silk from the silkworm (mulberry spinner; Bombyx inori L) (DIN) Maleic anhydride (German technical literature) Metal fibers (DIN); see also ME Methylene tri(/?-phenylene isocyanate) Mixed tertiary mercaptans Silicone rubbers having both methyl and vinyl substituent groups on the polymer chain (ISO); see also VMQ Molding with rotation
Elastomeric copolymer from butadiene and acrylonitrile; nitrile rubber (ANSI/ ASTM, BS, IUPAC); see also GR-N, PBAN Cellulose nitrate; see also SN Elastomeric copolymer from acrylonitrile and chloroprene (ANSI/ASTM, IUPAC) Nickel dibutyl dithiocarbamate (WTR) Nordihydroguaiaretic acid 1,5-Diisocyanatonaphthalene (WTR) n-Decyl-w-octyl phthalate; see also ODP Af-Nitrosodiphenylamine (WTR) Low-density poly(ethylene); see also LDPE iV-Ethylmorpholine Phormium (DIN) /?-Hexyl-f7-decyl phthalate Elastomeric copolymer from acrylonitrile and isoprene (ANSI/ASTM) Natural rubber; see also NR /V-Methylpyrrolidone 7?-Octyl-7?-decyl adipate /7-Octyl-«-decyl phthalate; see also ODP Neopentyl glycol /?-Propyl percarbonate; dipropyl peroxydicarbonate Natural rubber (ANSI/ASTM, IUPAC); see also NK
OBSH ODP ODPA ODPP OER OPET OPP OPR OPS OPVC OT OTBG OTOS
P3FE PA
PA* PA** PAA PAB PABM PAC PAE PAI PAM PAMS PAN
PAPA PAPDC PAPI
^,p'-Oxybisfaenzenesulfonyl hydrazide) Octadecyl phthalate (ISO); see also NODP Octylated diphenylamine (WTR) Octyldiphenyl phthalate Oil-extended rubber Oriented poly(ethylene terephthalate) Oriented poly(propylene) film or bottles; see also PP Elastomeric polymer from propylene oxide Oriented poly(styrene) film Oriented poly(vinyl chloride) Polysulfide rubber o-Tolyl biguanide (WTR) /V-Oxydiethylenedithiocarbamyl-N '-oxydiethylenesulfamide (WTR) Poly(trifluoroethylene) (IUPAC) 1. Polyamide (ASTM, DIN, ISO, IUPAC); the acronym PA is normally followed by a number, a combination of numbers, a letter, or a combination of letters and numbers. A single number / refers to a polyamide from an oc,co-amino acid or its lactam with / carbon atoms in the aliphatic chain of the monomeric unit. A combination of two numbers indicates polyamides from the polycondensation of a diamine and a dicarboxylic acid; the first number gives the number of methylene groups of aliphatic diamines, the second number the number of carbon atoms of straight-chain aliphatic dicarboxylic acids. Both numbers are sometimes separated by a period. 44 I" stands for isphthalic acid, " T " for terephthalic acid. 2. Phthalic anhydride Saran coated polyamide (ASTM) Metal coated polyamide (ASTM) Poly(acrylic acid) (ASTM) p-Aminobiphenyl Polyaminobismaleimide Poly(acrylonitrile) fiber (DIN, IUPAC); see also PAN, PC Phthalate ester plasticizer Polyamide-imide (ASTM) Modacryl fiber (DIN); see also MA Poly(cx-methyl styrene) 1. Poly(acrylonitrile) fiber (ASTM, IUPAC, EDV); see also PAC, PC. PAN K is also a German trademark. 2. Phenyl-a-naphthylamine (WTR) Polyazelaic polyanhydride Pentamethylene ammonium /V-pentamethylene dithiocarbamate (WTR) Polymethylenepolyphenylene isocyanate; see also PMPPI
PARA PAS
PAT PB
PBA PBAN PBB PB I PBMA PBNA PBR PBS PBT
PBTP PC
PCB PCD PCDT PCF PCO PCTFE
PCU PDAP PDMS PE
PEA PEC PeCe
Polyarylamide (ASTM) 1. Polyaryl sulfone 2. Poly(acrylic acid) (German technical literature) Polyaminotriazole 1. PoIy(I-butene) (ASTM, DIN, ISO); see also BT, PBT 2. Polyurea fiber (EDV); see also PUA 3. Elastic polydiene fiber (German technical literature) Physical blowing agent Copolymer from butadiene and acrylonitrile (ASTM); see also GR-N, NBR Polybrominated biphenyl Poly benzimidazole Poly(rc-butyl methacrylate) Phenyl-p-naphthylamine; N-phenyl-2naphthylamine Copolymer from butadiene and vinylpyridine (ANSI/ASTM, IUPAC) Copolymer from butadiene and styrene (ASTM); see also SB, GR-S, SBR 1. Poly(butylene terephthalate) (ASTM); see also PBTP, PTMT 2. PoIy(I-butene), see also BT, PB 3. Poly(p-phenylenebenzobisthiazole) Poly(butylene terephthalate) (DIN, ISO); see also PTMT 1. Polycarbonate (ASTM, DIN, ISO, IUPAC); see also PCO 2. Poly(acrylonitrile) fiber (EWG, EDV); see also PAC, PAN 3. Formerly: chlorinated PVC; see also CPVC, PeCe, PVCC Polychlorinated biphenyl Polycarbodiimide Poly (1,4-cyclohexylenedimethylene terephthalate) Poly(chlorotrifluoroethylene) fiber (DIN) Polycarbonate; see also PC Poly(chlorotrifluoroethylene) (ASTM, DIN, ISO, IUPAC); see also CEM. CFM, CTFE Unchlorinated poly(vinyl chloride) (old German technical literature) Poly(diallyl phthalate) (ASTM, DIN, ISO, IUPAC); see also DAP, FDAP Poly(dimethyl siloxane) 1. Polyethylene) (ASTM, DIN, ISO, IUPAC); see also PL 2. Polyester fiber (EWG) 3. Pentaerythritol Poly(ethyl acrylate) Chlorinated poly(ethylene) (DIN, ISO); see also CPE Chlorinated PVC; see also CPVC, PC, PVCC
PEE PEEK
PEEKK PEG PEH PEHA PE-HD PEK PEKEKK PEKK PEL PEM PEO PEOX PEP PES
PESU PET PET* PETP PETS PF PFA
PFEP PF-P-B PG PHAS PHA PHB
PHEMA PHP PI
PIB
Polyester ether fibers (containing diol and /7-hydroxybenzoate units) (DlN) Polyether ether ketone = Poly(oxy-1,4phenylene~oxy~ 1,4-phenylene-carbonyl-1, 4~phenylene) Polyether ether ketone ketone Polyethylene glycol) Poly(ethylene) with high density; see also HDPE Pentaethylenehexamine (WTR) Poly(ethylene) with high density (DIN, ISO); see also HDPE, PEH Polyether ketone Polyether ketone ether ketone ketone Polyether ketone ketone Poly(ethylene) with low density; see also LDPE, PE-LD Poly(ethylene) with medium density; see also MDPE Polyethylene oxide) (ASTM, IUPAC); see also PEOX Polyethylene oxide) (DIN, ISO); see also PEO Thermoplastic copolymer from ethylene and propylene 1. Polyester fiber (DIN); see also PET, PL 2. Polyether sulfone (ASTM); see also PSU Polyether sulfone (ASTM); see also PES Poly(ethylene terephthalate) (ASTM); see also PETP, PE, PES Saran coated PET (ASTM) Polyethylene terephthalate) (ASTM, DIN, ISO, IUPAC); see also PET, PE, PES Pentaerythryl tetrastearate (WTR) Phenol-formaldehyde resin (ASTM, DIN, ISO, IUPAC) Perfluoroalkoxy resins, copolymers of tetrafluoroethylene and perfluorinated alkyl vinyl ethers Copolymer from tetrafluoroethylene and hexafluoropropylene; see also FEP Phenolic resin-paper prepreg Propylene glycol Poly(a-hydroxy acrylic acid) Poly(hydroxyalkanoate) 1. Poly(/?-hydroxybenzoate); see also POB 2. Poly(oc-hydroxybutyrate) Poly(2-hydroxyethyl methacrylate) Physiological hydrophilic polymers 1. fra/u?-l,4-Poly(isoprene), gutta percha (BS) 2. Polyimide (ASTM) 3. Paper (EDV) Poly(isobutene) (ASTM, BS, DlN, ISO, IUPAC)
PlBl
PIBO PIP PIR PIS PL
PMA
PMAC PMCA PMF PMI PMMA PMMI PMP PMPPI PMQ PMTT PNA PNAH PNF PNR PO
POB POM POP POR PP PP* PPA PPC PPI PPO l{ PPOX PPP PPS
Elastomeric copolymer from isobutene and isoprene (butyl rubber); see also Butyl, GR-I, HR Poly(isobutylene oxide) Synthetic m-l,4-poly(isoprene); see also CPI, IR Poly(isocyanurate) (DIN) Poly(isobutylene) 1. Poly(ethylene) (EWG); see also PE 2. Polyester fiber (EDV); see also PES, PET 1. Pyromellitic acid 2. Pyromellitic dianhydride 3. Poly(methyl acrylate) Polymethoxy acetal Poly(methyl a-chloromethacrylate) (ASTM) Processed mineral fiber Poly(methacrylimide) (Poly(methyl methacrylate) (ASTM, DIN, ISO, IUPAC) Poly(pyromellitimide) Poly(4-methyM-pentene) (ASTM, DIN, ISO); see also TPX Polymethylenepolyphenylene isocyanate; see also PAPI Silicon rubbers with methyl and phenyl substituents (ANSI/ASTM) 3-Phenyl-5-mercapto-1,3,4-thiadiazole-2thione (WTR) Poly nuclear aromatics Polynuclear aromatic hydrocarbons Phosphorus nitrile fluoroelastomer Poly(norbornene) rubber 1. Elastomeric poly(propylene oxide) (ASTM) 2. Poly(olefin) 3. Phenoxy resin Poly(p-hydroxybenzoate); see also PHB Poly(oxymethylene), poly (formaldehyde) (ASTM, DIN, ISO, IUPAC) PoIy(1,4-phenylene oxide) (ASTM); see also PPO Elastomeric copolymer from propylene oxide and allyl glycidyl ether Poly(propylene) (ASTM, DIN, EDV, ISO, IUPAC) Metallized poly(propylene) (ASTM) 1. Poly(parabanic acid) 2. Poly(propylene adipate) Chlorinated poly(propylene) (DIN) Polymeric polyisocyanate Poly(oxy-1,4-phenylene) = "poly(phenylene oxide)"; see also POP Polypropylene oxide) (ASTM, DIN, ISO) Poly(p-phenylene) Poly(p-phenylene sulfide) (ASTM)
PPSU PPT PQ PQD PR PS P-S PSA PSAB
PSAN PSBR
PSF PSI PSO PST PS-TSG
PSU PSUL PTA PTF PTFE PTMA PTMEG PTMG PTMT PU PUA PUE PUR PVA
PVAC PVAL
Poly(phenylene sulfone) (ASTM, DIN, ISO); see also PSU Poly(propylene terephth^Uite) Elastomeric silicone with phenyl substituents (ASTM) p-Quinone dioxime (WTR) Regenerated protein fiber (EDV) Poly(styrene) (ASTM, DIN, ISO, IUPAC) Pressure-sensitive adhesive Pressure-sensitive adhesive Thermoplastic copolymer from styrene, acrylic ester and butadiene (DIN); see also SBV, S/B Thermoplastic copolymer from styrene and acrylonitrile (DIN), see also SAN Elastomeric terpolymer from vinylpyridine, styrene, and butadiene (ANSI/ ASTM) Polysulfone; see also PSO Poly(methyl phenyl siloxane) (ASTM) Polysulfone; see also PSF Poly (styrene) fiber with at least 85% styrene units (DIN) Poly(styrene) foam, processed by thermoplastic injection (German technical literature) Poly(phenylene sulfone); see also PPSU Polysulfone (ASTM) 1. Purified terephthalic acid 2. Phthalic anhydride Pole(tetrafluoroethylene) fiber Poly(tetrafluoroethylene) (ASTM, DIN, ISO, IUPAC) Polyftetramethylene adipate) Poly(tetramethylene ether glycol) Poly(oxytetramethylene glycol) Poly(tetramethylene terephthalate) = poly(butylene terephthalate) see also PBTP 1. Polyurethane elastomer (BS) 2. Polyurethane fiber (EDV) Polyurea fiber (DIN); see also PB Segmented polyurethane fiber (DIN); see also EA Polyurethane (ASTM, DIN, ISO, IUPAC); see also PU 1. Poly(vinyl acetate); see also PVAC 2. Poly(vinyl alcohol) (ASTM); see also PVAL, PVOH 3. Poly(vinyl alcohol) fiber with at least 85% vinyl alcohol units (DIN); see also VY 4. Poly (vinyl ether) (old German technical literature); see also PVOM, PVME Poly(vinyl acetate) (ASTM, DIN, ISO, IUPAC); see also PVA Poly(vinyl alcohol) (ASTM, DIN. ISO, IUPAC)
PVC
PY
1. Poly(vinyl chloride) (ASTM., DIN, ISO, IUPAC); see also CL 2. Poly(vinyl chloride) fiber with at least 50 wt.% vinyl chloride units (DIN) 3. Pigment volume concentration Copolymer from vinyl chloride and vinyl acetate (ASTM, DIN1 IUPAC); see also PVCAC Copolymer from vinyl chloride and vinyl acetate (ASTM); see also PVCA Chlorinated PVC (DIN, ISO); see also CPVC, PC, PeCe Poly(vinylidene chloride) fiber with at least 50 wt.% vinylidene chloride units (DIN); see also PVDC Poly(vinylidene chloride) (ASTM5 DIN, ISO, IUPAC); see also PVD Poly(vinylidene fluoride) (ASTM, DIN, ISO, IUPAC); see also PVF 1. Poly(vinyl fluoride) (ASTM, DIN, ISO, IUPAC) 2. Poly(vinylidene fluoride); see also PVDF Poly(vinyl formal) (ASTM, DIN, ISO, IUPAC); see also PVFO Poly(vinyl formal) (DIN); see also PVFM Poly(vinyl isobutyl ether) Poly(vinylidene cyanide) Poly(Af-vinylcarbazole) (ASTM, DIN, ISO) 1. Copolymer from vinyl chloride and vinyl methyl ether 2. Fiber from the copolymer of vinyl and/ or vinylidene compounds with a main component of at least 85 wt.% (DIN) Poly(vinyl methyl ether) Silicone rubber with methyl, phenyl. and vinyl substituents (ANSI/ASTM) Poly(vinyl alcohol); see also PVA, PVAL Poly(iV-vinylpyrrolidone) (ASTM, DIN, ISO) Poly(dimethyl siloxane) with phenyl and vinyl substituents (ASTM) Unsaturated polyester resins (BS)
QMC
Quick molding change
Ra RA RAM RAN
Ramie (DIN) Ramie (EDV) Restricted area molding Residual acrylonitrile (monomer in polymer) Resorcine- formaldehyde resin 1. Rhenium (IUPAC) 2. Horse hair ("Rosshaar") (DIN) Reheat blow molding Rubber hydrocarbon content Cow hair ("Rind") (DIN)
PVCA
PVCAC PVCC PVD
PVDC PVDF PVF
PVFM PVFO PVI PVID PVK PVM
PVME PVMQ PVOH PVP PVSI
RF Rh RHB RHC Ri
RIM Ro RP RP/C RP/M RPVC RRIM RTP RTV RVCM RUC
Reaction injection molding Rosella (DIN) Reinforced plastics Reinforced plastics (composite) Reinforced polyester (mortar) Rigid PVC film Reinforced reaction injection molding Reinforced thermoplastic Room temperature vulcanization Residual vinyl chloride monomer Chlorinated isoprene rubber (DIN)
S SAF SAF-HS SAF-LS SAIB SAL SAN
Styrene Super abrasion furnace black High structure SAF Low-structure SAF Sucrose acetate isobutyrate Salicylic acid Thermoplastic copolymer from styrene and acrylonitrile (ASTM, DIN, ISO, IUPAC); see also PSAN Thermoplastic copolymer from styrene and butadiene (ASTM); see also S/B Thermoplastic copolymer from styrene and butadiene (ANSI/ASTM, ISO, IUPAC); see also SB 1. s-Butyl percarbonate; di~,? -butyl peroxydicarbonate 2. Styrene- butadiene resin Elastomeric copolymer from styrene and butadiene (ASTM, BS, IUPAC); see also GR-S 1. Solid bleached sulfate 2. Styrene-butadiene-styrene triblock copolymer Elastomeric copolymer from styrene and chloroprene (ANSI/ASTM, IUPAC) Sodium dimethyldithiocarbamate Aralkylated diphenylamines (WTR) 1. Sulfoethyl- (with cellulose) 2. Silk ("Seide") (EDV) Styrene-ethylene/butylene-styrene triblock copolymer ( = hydrogenated styrene-isoprene-styrene triblock copolymer) Selenium diethyl dithiocarbamate (WTR) Sulfonated ethylene-propylene-diene ter~ polymer Structural foam Synthetic fiber reinforced plastic (German technical literature) Scrapless forming process Super-high impact poly(styrene) 1. Silicon (IUPAC) 2. Sisal (DIN); see also SI 1. Silicones in general (ASTM, DIN, ISO) 2. Poly(dimethyl siloxane) (ASTM) 3. Thermoplastic silicone (IUPAC) 4. Sisal (EDV); see also S3
SB S/B
SBP
SBR
SBS
SCR SDD SDPA SE SEBS
SEDC S-EPDM SF SFK SFP SHIPS Si SI
SIN SIPN SIR
SIS SL SM SMA SMC SMR SMS S/MS Sn SN SP SPF SPH SPPF SPSF S-PVC SR SRF SRF-HM SRF-HM-NS SRF-LM SRF-LM-NS SRP SS
ST SWP
T TA TAC TATM TBBS TBC TBP TBPA TBPB TBS TBT
1. Simultaneous interpenetrating network 2. Semi-interpenetrating network Sequential interpenetrating poJymer network 1. Elastomeric copolymer from styrene and isoprene (ANSI/ASTM, IUPAC) 2. Standardized Indonesian rubber Siyrene-isoprene-styrene triblock copolymer Slag wool (DIN) Styrene monomer Copolymer from styrene and maleic anhydride (ASTM) Sheet molding compound (UP resin) Standardized Malaysian rubber Copolymer from styrene and a-methylstyrene (ASTM, DIN); see also S/MS Copolymer from styrene and a-methylstyrene (DIN, ISO); see also SMS 1. Tin (IUPAC) 2. Sunn hemp fibers (DIN); see also SN Sunn hemp fibers (EDV) Superior processing rubber (a grade of natural rubber) Superior processing furnace black Styrenated phenol (WTR) Solid-phase pressure forming Solid-phase stretch forming Poly(vinyl chloride), polymerized in suspension Synthetic rubber Semi-reinforcing furnace black High-modulus SRF Nonstaining high-modulus SRF Low-modulus SRF Nonstaining low-modulus SRF Rubber reinforced poly(styrene) (ASTM) 1. Single stage (ASTM) 2. Steam-stripped (to remove residual monomer) Stone wool (DIN) 1. Sol vent-welded plastics pipe 2. Synthetic wood pulp 1. Polysulfide rubber; see also OT, TR 2. Thermal black Cellulose triacetate (EDV); see also CT, CTA Triallyl cyanurate (ASTM) Triallyl trimellitate (WTR) Benzothiazyl-2-r-butyl sulfenamide (WTR) Total Broadhurst Lee process f-Butyl perbenzoate; see also TBPB Tetrabromophthalic anhydride f-Butyl perbenzoate; see also TBP r-Butylstyrene Tetrabutyl titanate
TBTD TBTU TBUT TC TCE TCEF TCF
TCM TCP
TDEC TDI
TDID TDM TEAE TEDMA TEGDA TEP TEPA TETA TETD TFE THBP THF THT TIOTM TKP Tl TM TMA TMC TMETD TMP TMPT TMQ TMS TMTD TMTS TMTT TMTU TMU TNPP TOF
Tetrabutyl thiuram disulfide (WTR); see also TBUT Tributyl thiourea (WTR) Tetrabutyl thiuram disulfide (WTR) Technically classified natural rubber Trichloroethylene Trichloroethyl phosphate (ASTM, ISO); see also TCEP Tricresyl phosphate, tritolyl phosphate (ASTM, DIN, ISO); see also TCP, TKP, TTP Trichloromelamine (WTR) Tricresyl phosphate (IUPAC); TCP 5 is a registered trademark in the United Kingdom; see also TCF, TKP, TTP Tellurium diethyl dithiocarbamate (WTR) Tolylene diisocyanate; tolylene isocyanate; methylphenylene diisocyanate; usually an 80:20 mixture of the 2,4- and 2,6-isomers Dimeric tolylene diisocyanate r-Dodecyl mercaptan (WTR) Triethylaminoethyl- (with cellulose) Triethylene glycol dimethacrylate (WTR) Triethylene glycol diacetate (WTR) Triethyl phosphate Tetraethylene pentamine (WTR) Triethylene tetramine Tetraethyl thiuram disulfide (WTR) Tetrafluoroethylene (ASTM) 2,4,5-Trihydroxybutyrophenone Tetrahydrofuran Tetrahydrothiophene (WTR) Triisooctyl trimellitate (DIN, ISO) Tricresyl phosphate; see also TCE, TCP, TTP 1. Thallium (IUPAC) 2. American moss (DIN) Thioplastics Trimellitic anhydride Thick molding compound Tetramethyl tetraethyl thiuram disulfide (WTR) 1. Thermal mechanical pulp 2. Trimethylol propane (WTR) Trimethylol propane trimethacrylate (WTR) 2,2,4-Trimethyl-1,2-dihydroquinone (WTR) Tetramethylsilane Tetramethyl thiuram disulfide (WTR) Tetramethyl thiuram monosulfide (WTR) Tetramethyl thiuram tetrasulfide (WTR) Tetramethyl urea (WTR); see also TMU Tetramethyl urea; see also TMTU Trinonyl phenyl phosphate (WTR) Trioctyl phosphate = tris(2-ethylhexyl) phosphate (ASTM, DIN, ISO); see also TOP
TOP
TOPM TOR TOTM TPA
TPE TPEL TPES TPF TPI TPO TPP TPR
TPS TPTD TPU TPUR TPX TR
TRIM Ts TSH TSUR TTP TTT TU TV Tz UE UF UFS UHMPE UHMW-PE
UP
Trioctyl phosphate = tris(2-ethylhexyl) phosphate (ASTM, DIN, ISO); see also TOF Tetraoctyl pyromellitate, i.e., tetrakis(2ethylhexyl) pyromellitate (DIN, ISO) /ra;?j-Poly(octenamer) Trioctyl mellitate = tris(2-ethylhexyl) pyromellitate (DIN, ISO) 1. l,4-frans-Poly(pentenamer); see also TPR 2. Terephthalic acid Thermoplastic elastomer Thermoplastic rubber or elastomer (ASTM) Thermoplastic polyester in general (ASTM) Triphenyl phosphate (DIN, ISO); see also TPP Thermoplastoid (WTR) Thermoplastic olefin elastomer Triphenyl phosphate (ASTM, IUPAC); see also TPF 1. l,5-fra/?s-Poly(pentenamer); see also TPA 2. Thermoplastic elastomer; see also TR, TPE Toughened poly(styrene) (in the UK for HIPS) Tetraisopropyl thiuram disulfide (WTR) Thermoplastic polyurethanes Thermoplastic urethane (ASTM) Poly(4-methyl-l-pentene); see also PMP 1. Thermoplastic elastomer 2. Thio rubber (in the UK for polysulfide) 3. Textile residues or fiber or fabric of unknown composition (EDV) Trimethylolpropane trimethacrylate Tussah silk (DIN) Toluene sulfonyl hydrazide (WTR) Thermoset polyurethane (ASTM) Tricresyl phosphate, tritolyl phosphate (ISO); see also TCE, TCP, TKP Triethyltrimethylenetnamine (WTR) Thiourea Trivinyl fiber (EDV) Tibet goat hair (goat = "Ziege") (DIN) Polyurethane elastomer (ASTM); see also UR Urea-formaldehyde resin (ASTM, DIN, ISO, IUPAC) Urea-formaldehyde foam Poly(ethylene) with ultrahigh molar mass Poly(ethylene) with ultrahigh molar mass (molar mass over 3 100 000 g/mol) (ASTM) Unsaturated polyester (ASTM, DIN, ISO, IUPAC)
UP-G-G UP-G-M UP-G-R Ur UR VA VAC VAE VC VC/E VC/E/MA VC/E/VAC VCI VCM VC/MA VC/MMA VC/OA VC/VAC VC/VDC VDC Vf VF/HFP Vi VI VMQ VPE VQ VRI VSI VT VVO VY
WA WB WFK WG
Prepreg from unsaturated polyesters and textile glass fibers Prepreg from unsaturated polyesters and textile glass mats Prepreg from unsaturated polyesters and textile glass rovings Urena (DIN) Poiyurethane elastomers (BS); see also UP Vinyl acetate Vinyl acetate Vinyl acetate-ethylene copolymers; see also EVA, E/VAC Vinyl chloride Copolymer from ethylene and vinyl chloride (ISO) Copolymer from ethylene, vinyl chloride, and maleic anhydride (ISO) Copolymer from ethylene, vinyl chloride, and vinyl acetate (ISO) Volatile corrosion inhibitor Vinyl chloride (monomer); see also VC Copolymer from vinyl chloride and methyl acrylate (ISO) Copolymer from vinyl chloride and methyl rnethacrylate (ISO) Copolymer from vinyl chloride and octyl acrylate (ISO) Copolymer from vinyl chloride and vinyl acetate (ISO) Copolymer from vinyl chloride and vinylidene chloride (ISO) Vinylidene chloride 1. Vulcan fiber 2. Vinyl fluoride Copolymer from vinylidene fluoride and hexafl uoropropy lene Vicuna wool (DIN) Viscose (rayon) (EDV); see also CV Silicone rubber with methyl and phenyl substituents (ANSI/ASTM) Cross-linked poly(ethylene) (DIN) Elastomeric silicone with vinyl substituents (ASTM) Volatile rust inhibitor Poly(dimethyl siloxane) with vinyl groups (ASTM) Vinyl toluene Vulcanized vegetable oil = factice (WTR) Vinal (— poly(vinyl alcohol) fiber) (ASTM, EDV) Angora (rabbit) wool (EDV) Beaver wool (EDV) Whisker reinforced plastic (German technical literature) Vicuna wool (EDV)
WK WL WM
Wo WO WP WS WT WU WV WY XABS
XLPE XNBR
XPS XSBR
YSBR
YXSBR
Z5MC
Camel wool (EDV) Llama wool (EDV) 1. Plasticizer (German technical literature: "Weichmacher") 2. Mohair wool (EDV) 1. Tungsten (IUPAC) 2. Sheep's wool (DIN); see also WO Sheep's wool (EDV); see also Wo Alpaca wool (EDV) Cashmere goat wool (EDV) Otter wool (EDV) Guanaco wool (EDV) Virgin sheep wool (EDV) Yak wool (EDV) Elastomeric copolymer from acrylonitrile, butadiene, styrene, and a carboxylic group containing monomer (ASTM) Crosslinked poly(ethylene) Elastomeric copolymer from acrylonitrile, butadiene, and a carboxylic group containing monomer (ANSI/ASTM) Expandable (or expanded) poly(styrene) Elastomeric copolymer from butadiene, styrene, and a carboxylic group containing monomer (ANSI/ASTM)
ZBDC ZBPD ZBX ZDBC ZDEC ZDMC ZE ZEH ZEPC ZIX ZMBI ZMBT
Zinc dibenzyl dithiocarbamate (WTR) Zinc dibutyl dithiophosphate (WTR) Zinc dibutyl xanthate (WTR) Zinc dibutyl dithiocarbamate (WTR) Zinc diethyl dithiocarbamate (WTR) Zinc dimethyl dithiocarbamate (WTR) Zein fibers (DIN) Zinc ethylhexanoate (WTR) Zinc ethylphenyl dithiocarbamate (WTR) Zinc isopropyl xanthate (WTR) Zinc 2-mercaptobenzimidazole Zinc-2-mercaptobenzthiazole
C. ABBREVIATIONS AND ACRONYMS BASED ON POLY(MONOMER) NAMES
Thermoplastic triblock copolymer from styrene and butadiene (ANSI/ASTM); see also SBS Thermoplastic block copolymer from styrene and butadiene containing carboxylic groups (ANSI/ASTM)
The following table contains the abbreviations and acronyms of names of polymeric materials whose base polymers were obtained by chain polymerization (addition polymerization), copolymerization, polycondensation (condensation polymerization), and polyaddition. Note that these abbreviations and acronyms do not apply in industry to polymers per se but to polymeric materials, i.e. polymers with or without additives, fillers, plasticizers, etc. Abbreviations and acronyms are in part based on the poly(monomer) nomenclature, i.e., on the names of the monomers used in the manufacture of polymers, sometimes however, without a prefix " P " for "poly". The names of monomers for copolymers are given in alphabetical order without regard to their prevalence.
Zinc pentamethylene (WTR)
Registered trademarks: a) SAN in Japan and the USA; b) PAN in Europe.
dithiocarbamate
Polymers of
ASTM
DIN
ISO
Acrylic ester 4- acrylonitrile 4- butadiene Acrylic ester + acrylonitrile + styrene Acrylic ester -f ethylene Acrylic acid Acrylonitrile Acrylonitrile -I- butadiene Acrylonitrile -f- butadiene + methyl methacrylate 4- styrene Acrylonitrile-K butadiene 4-styrene Acrylonitrile 4- chlorinated poly(ethylene) 4- styrene Acrylonitrile 4-ethylene-propylene-diene 4-styrene Acrylonitrile 4 methyl methacrylate Acrylonitrile 4-styrene Adipic acid 4- hexamethylenediamine Adipic acid 4- hexamethylenediamine 4-sebacic acid Adipic acid 4-tetramethylene glycol Allyl diglycol carbonate /7-Aminobenzoic acid
ABA ASA EEA PAA PAN PBAN
A/B/A A/S/A
A/B/A A/S/A E/EA
ABS
ABS
ABS
A/PE-C/S
A/CPE/S
A/EPDM/S A/MM A SAN PA 66
A/EPDM/S A/MMA SAN PA 66
IUPAC
Other
PAS PAC
PAN
MABS
AMMA SAN PA 6.6
ABS ACS
SAN PA 6.6
AS
PA 66/610 PTMA ADC PAB
Polymers of Aminotriazol Aminoundecanoic acid, 11Azelaic acid anhydride Bisphenol A + phosgene Bitumen + ethylene Butadiene + methyl methacrylate -f styrene Butadiene -f styrene (thermoplastic) Butene-1 Butyl acrylate Butylene glycol + terephthalic acid Butyl methacrylate 8-Caprolactam s-Caprolactam + co-dodecanolactam Chlorotrifluoroethylene Chlorotrifluoroethylene + ethylene Cresol + formaldehyde 1,4-CycIohexanedimethylol + terephthalic acid Diallyl chloroendate ( = diallyl ester of 4,5,6,7,7-hexachlorobicyclo-[2,2,1]5-heptane-2,3-dicarbonic acid) Diallyl fumarate Diallyl isophthalate Diallyl maleate Diallyl phthalate 1,4-Dichlorobenzene + disodium sulflde 2,6-Dimethylphenol -I- oxygen co-Dodecanolactam (laurolactam) Ethyl acrylate Ethyl acrylate + ethylene Ethylene -, chlorinated polymer -, cross-linked polymer -, high-density polymer -, high impact polymer ~, linear low-density polymer -, low density polymer -, medium density polymer -, very low density linear polymer -, ultra-high molar mass polymer Ethylene + methacrylic acid Ethylene 4- maleic anhydride + vinyl chloride Ethylene + methyl methacrylate Ethylene + propylene Ethylene + propylene (4- diene) Ethylene + tetrafluoroethylene Ethylene+ vinyl acetate Ethylene + vinyl acetate + vinyl chloride Ethylene + vinyl chloride Ethylene glycol Ethylene glycol + maleic anhydride Ethylene glycol + terephthalic acid(ester) - , with glycol comonomer -, fast crystallizing polymer - , oriented polymer Ethylene oxide Formaldehyde (or trioxane) Formaldehyde + furan Formaldehyde + melamine Formaldehyde + melamine + phenol Formaldehyde + phenol Formaldehyde + urea Furfural + phenol Hexafluoropropylene + tetrafluoroethylene Hexamethylenediamine + sebacic acid
ASTM
DIN
ISO
IUPAC
PA 11
PA 11
PC
PC
PBT
MBS S/B PB PBA PBTP
MBS S/B PB PBA PBTP
PA 6
PA 6
PA 6
PCTFE
PCTFE
PA 6 PA 6/12 PCTFE
CF
CF
CF
CF
Other PAT PAPA
PC PBS PB
PC ECB S/B
SB BT
PBA PTMT PBMA PCTFE ECTFE PCDT
PDAC PDAF PDAIP PDAM PDAP PPS POP PA 12
PDAP PPS
PDAP
PDAP
PA 12
PA 12
PA 12
EEA PE CPE
E/EA PE PE-C
HDPE
PE-HD
LLDPE LDPE MDPE
PE-LD
E/EA PE PE-C PE-X PE-HD PE-HI PE-LLD PE-LD PE-MD
DAP PPO ™ PEA
PE
PL VPE
VLDPE UHMW-PE EMA
EPDM ETFE EVA
PE-UHMW VC/E/MA E/MMA E/P EPDM E/TFE E/VA VC/E/VAC VC/E
VC/E/MA E/MMA E/P EPDM E/TFE E/VAC
UP PET
UP PET
PEP EVAC VC/E/VAC
VC/E PEG
UP PET PETG
UP PETP
PETE CPET OPET
PEO POM FF MF PF UF PFF FEP PA 6.10
PEOX POM MF MPF PF UF FEP PA 610
PEOX POM FF MF
PEO POM
PF UF
PF UF
FEP PA 610
MF
PA 6.10
Polymers of
ASTM
p-Hydroxybenzoic acid 3-Hydroxybutyric acid 2-Hydroxyethylmethacrylate Isobutene (isobutylene) Isocyanurates Laurolactam (dodecanolactam) Linseed oil, epoxidized Maleic anhydride 4- styrene Methacrylimide Methyl acrylate Methyl acrylate 4-vinyl chloride Methyl a-chloromethacrylate Methyl methacrylate Methyl methacrylate 4- vinyl chloride 4-Methylpentene-1 a-Methylstyrene oc-Methylstyrene 4- styrene Octyl acrylate+ vinyl chloride Perfluoro alkoxy alkane Phosphoric acid (polymer) Propylene - , oriented polymer - , biaxially oriented polymer Propylene 4- tetrafluoroethylene (alt.) Propylene oxide Soybean oil, epoxidized Styrene - , expanded (foamed) polymer - , high-impact polymer - , impact resistant polymer - , oriented polymer - , biaxially oriented polymer Tetrafluoroethylene Tetrahydrofuran - , polymer with hydroxy endgroups Trially] cyanurate Trifluoroethylene Trioxane (4-Co-monomers) Vinyl acetate Vinyl acetate 4 vinyl chloride W-Vinylcarbazole Vinyl chloride - , polymerized in bulk - , polymerized in emulsion - , polymerized in suspension - , polymer as flexible - , polymer as oriented - , polymer as rigid Vinyl chloride 4 vinylidene chloride Vinyl fluoride Vinylidene chloride Vinylidene fluoride Vinyl methyl ether N-Vinylpyrrolidone
POB
D.
PlB
DIN
ISO
IUPAC
Other
PIB
PHB PHB PHEMA IM
PIB PIR PA 12 ELO S/MA PMI
PIB PIR PA 12 ELO SMA PMI
VC/MA
VC/MA
PMMA
PMMA
PFA
PMP PMS S/MS VC/OA PFA
PMMA VC/MMA PMP PMS S/MS VC/OA PFA
PP
PP
PP
PP
PA 12 SMA
PA 12
PMA PMCA PMMA PMP SMS
TPX PAMS
PPA OPP BOPP TFE-P PPOX
PPOX ESO PS
PS
PPOX ESO PS
PS EPS HIPS
PS-HI SRP
IPS OPS BPS
PTFE
PTFE
PTFE
PTFE PTHF PTMEG
PTAC POM PVAC PVCA PVK PVC
P3FE POM PVAC
POM PVAC VC/VAC PVK PVC
POM PVAC VC/VAC PVK PVC
PVC
PVF PVDC PVDF
VC/VDC PVF PVDC PVDF
VC/VDC PVF PVDC PVDF
PVF PVDC PVDF
PVP
PVP
PVP
film film film
PVA
PCU;V M-PVC E-PVC S-PVC FPVC OPVC RPVC
PVME
ABBREVIATIONS FOR POLYMERS N A M E D AFTER A CHARACTERISTIC POLYMER G R O U P
Characteristic polymer group
ASTM
DIN
ISO
Amide Amide, aromatic (aryl amide) - , metal coated - , saran coated Amide-imide
PA PARA PA*! PA: PAI
PA
PA
films films
IUPAC
Other
PAR
PAI
PAI
Characteristic polymer group Arylene sulfone Benzimidazole Bisphenol A-sulfone Carbodiimide Carbonate, aromatic Epoxide (epoxy) - , glass fiber reinforced Ester, saturated (polyester) - , thermoplastic - , - , metallized polymer film Ester, unsaturated (polyester) - , - , glass fiber reinforced Ester-alkyd Ester-ether (thermoplastic elastomer) Ester-imide Ester-urethane Ether-fc/odfc-amide Ether ether ketone Ether-imide Ether-sulfone Imide Parabanic acid Phenylene ether Phenylene sulfide Phenylene sulfone Silicone (plastics) Sulfone Urethane - , thermoplastic - , thermoset
ASTM
DIN
ISO
IUPAC
Other PAS PBl PSF PCD
PC EP
PC EP
PC EP
SP
SP
UP
UP
PC EP GEP
TPES MPE UP
UP FRP
PAK TEEE PEi PEBA PEEK PES PESU PI PPE PPS PPSU SI PSU PUR TPUR TSUR
PEBA
PEI PEUR PEBA PEEK
PEI PES
PES
PI
PI
PPE
PPE PPS PPSU Sl PSU PUR
PPSU SI PSU PUR
PES
PPA PPO ™ PSU PSU PUR TPU
E. ABBREVIATIONS FOR POLYMERS PRODUCED BY CHEMICAL TRANSFORMATION OF OTHER POLYMERS Resulting polymer
ASTM
DIN
ISO
IUPAC
Carboxymethyl cellulose Carboxymethyl hydroxyethyl cellulose Casein, crosslinked with formaldehyde Cellulose, as Cellophan " - , coated with Saran Cellulose acetate Cellulose acetobutyrate Cellulose acetopropionate Cellulose nitrate Cellulose plastics, unspecified Cellulose propionate Cellulose triacetate Ethyl cellulose Hydroxyethyl cellulose Hydroxypropyl cellulose Hydroxypropyl methyl cellulose Methyl cellulose Poly(ethylene), chlorinated - , chlorosulfonated Po]y(ethylene-co-vinyl alcohol)
CMC
CMC
CMC
CMC
CS C C* CA CAB CAP CN CE CP CTA EC
CS
CS
CS
CA CAB CAP CN
CA CAB CAP CN
CA CAB CAP CN
CP CTA EC
CP CTA EC
CP
Other
CMHEC
NC
TA EC HEC HPC HPMC
CPE CSM
MC PE-C
MC PE-C
E/VAL
EJVAL
CSR
EVAL™ EVOH Poly(propylene), chlorinated Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride), chlorinated Poly(vinyl formal)
PVAL PVB CPVC PVFM
PPC PVAL PVB PVC-C PVFM
PVAL PVB PVC-C PVFM
PVAL
PVOH PC. PeCe
PVFM
F. ABBREVIATIONS FOR BLENDS, REINFORCED POLYMERS, ETC.
For mixtures of polymers, ISO recommends that the symbols for the parent polymers be put in parentheses, Resulting polymer Bulk molding compound Elastomers, thermoplastic - , - , containing ester and ether groups - , - , olefin-based - , - , styrene-based Epoxide, glass fiber reinforced Plastic, carbon fiber reinforced - , glass fiber reinforced - , man-made fiber reinforced ~, metal fiber reinforced Poly(acrylonitrile-co-styrene) -f chlorinated polyethylene) Poly(styrene), rubber-modified Sheet molding compound - , with high glass fiber content
G.
separated by a plus sign; for example, (PMMA -f ABS) for a physical blend of poly(methyl methacrylate) and ABS. ASTM recommends GP for "general purpose" and SS for "single stage".
ASTM
DIN
ISO
IUPAC
Other BMC
TEEE TEO TES EP-G
GEP CFP GFK CFK MFK
KEK
SRP
ISO CODES FOR THERMOPLASTIC MATERIALS
The standard designation of a thermoplastic material consists of - a description block (giving the type of material), - a standard number block (consisting of the number of the ISO standard or a national standard such as DIN), followed by a hyphen, and - an individual item block (with five data blocks). An example is Molding material DIN 7744-PA 12, XF, 22-030, GF 30 The code letters are arranged after the symbol for the base polymer according to ISO and DIN; in the technical literature, however, they are commonly placed in front of the base symbol, following ASTM, which uses similar code letters and asterisks. A designation system similar to the above ISO/DIN system has been recommended by ASTM. A typical ASTM designation, for example, would read Molding material ASTM D-4000 PI000G42360 This molding material is a polyimide (PI), whose properties have been specified via cell table G of the ASTM standard D-4000. This particular cell table identifies five different properties by designating cell limits to the five digits following the letter G. According to cell table G, the " 4 " indicates a tensile strength of at least 85MPa. The measured flexural modulus is characterized by " 2 " , the Izod impact strength of 50J/m by " 3 " , and the heat deflection temperature of 3000C by " 6 " . The fifth digit is undetermined; the t c 0" indicates an unspecified property.
ACS u HIPS SMC
IPS HMC
1.
Codes for ISO Data Blocks 1 - 5
T. /. ISO and DIN Codes for Data Block 1 Data block 1 of the individual item block contains the abbreviation of the chemical name of the material, e.g., PA 12 (see example). This abbreviation may be followed by analytical data with respect to the composition of the material; an example is the content of vinyl acetate units in ethylenevinyl acetate copolymers. Such chemical structure data may be composition, such as content of vinyl acetate (VAC) or acrylonitrile units (AN), configuration as measured by isotacticity ("isotaxy") (IT), branching as revealed by density (D). These analytical data are, however, not the exact analytical data but rather code numbers for the range (called "cell") which will permit this material to substitute for a similar one. Separated by a hyphen, other supplementary may be given too, e.g., H — homopolymer, P = plasticized, E — polymerized in emulsion, Q = mixture of different polymers, etc. (see ISO and DIN codes for data block 1). Furthermore, ASTM uses * for saran coated polymer films and ** for metallized polymer films. The technical literature indicates biaxially oriented films by BO and oriented films by O (see Abbreviations in alphabetical order). Code
ISO data block 1
A B C D E F
-
G H
-
Block copolymer Chlorinated Polymerization in emulsion -
Homopolymer
DIN data block 1
Chlorinated Density Expanded or expandable Flexible or fluid (liquid state) High
Code 1 J K L M N O P Q R
ISO data block 1
DIN data block 1
-
Impact resistant
Bulk polymerization -
Linear or low Medium or molecular Normal or novolac
Plasticized Mixtures of different polymers Random copolymer
Plasticized Resol; formerly also: raised (enhanced)
-
-
S T U V W X
Polymerization in suspension Unplasticized No indication
Y Z
Ultra or unplasticized Very Weight (mass) Crosslinked or crosslinkable —
—
1.2. ISO Codes for Items in Data Block 2 Data block 2 may comprise up to four letters which give qualitative information. The first letter denotes the intended application, e.g., B = blow molding, G = general purpose, X = no indication (see example). The following letters 2, 3, and 4 can code up to three essential additives or supplementary information, for example, D = powder (dry blend), F = special burning characteristics (see example), L = light and weather stabilizer, etc.
Code Position 1
Code
Positions 2-4
A B C D E
A B C D E
Antioxidant for processing Antiblocking agent Colored Powder (dry blend) Additive for expansion
F
Adhesives Blow molding Calendering Disc manufacture Extrusion (pipes, profiles, sheets) Extrusion (films, foils)
F
G H K L
General purpose Coating Cable and wire insulation Extrusion (monofilament)
G H K L
Special burning characteristics Granules (pellets) Heat aging stabilizer
Injection molding
M N P Q R S T W
M N P Q R S T W X Y Z
Paste resin Compression molding Rotational molding Powder spray sintering Tape manufacture No indication Textile yarn -
X Y Z
Light and weather stabilizer Natural (not colored) Polymer modifier Mold release agent Slip agent, lubricant Improved transparency Stabilized against hydrolysis Antistatic agent
1.3. ISO Codes for Items in Data Block 3 Data block 3 contains quantitative information about the designated properties. Such properties include Molar mass indicators Intrinsic viscosity ("viscosity number") Fikentscher's K value (viscosity-based quantity for PVC) Macrostructure data Bulk density Rheological data Melt flow rate (melt flow index) Thermal data Vicat temperature Torsional stiffness temperature Mechanical properties Modulus of elasticity Tensile stress at 100% strain Shore hardness Impact strength (notched)
IV FK BD MFR VST TST E TS SH ISN
Each material is characterized by one or more than one property. The following leading criteria are used for the various polymers: Poly(ethylene) Poly(propylene) Poly(styrene) and acrylonitrilestyrene copolymer Styrene-acrylonitrile copolymer Styrene-butadiene copolymer Acrylonitrile-butadiene-styrene, and acrylonitrile-styreneacrylic acid copolymers Ethylene- vinyl acetate copolymer Poly(vinyl chloride) Poly(vinyl chloride), unplasticized Poly(vinyl chloride), plasticized Polyamide Polycarbonate Poly(methyl methacrylate) Polyethylene terephthalate)
D, MFR I, MFR VST, MFR VST, MFR, AN VST, MFR, ISN VST, MFR, ISN, AN VAC, MFR IV, (FK), BD VST, E, ISN TS, SH, TST IV, E IV, MFR, E IV, VST IV
In the example for a polyamide 12, the code "22-030" of data block 3 indicates a polymer with an intrinsic viscosity of 210ml/g ("cell 22"), and a modulus of elasticity of 280MPa ("cell 030"). On the other hand, "20-D050" in data block 3 for a poly(ethylene) tested according to DIN 16776 means a material with a density within cell "020" (e.g., 0.918 g/cm3) and a melt flow rate within the cell "050" (e.g., 4.2g/min), measured under condition D (a temperature of 1900C under a load of 2.16 kg). The definition of cells for each material and testing procedure can be found in special tables. 1.4. ISO Codes for Extending and Reinforcing Fillers (Data Block 4) Data block 4 gives information about the type and content of fillers or reinforcing materials. The first
letter gives the type of filler: C = carbon, G = glass, etc. The second letter indicates the shape of the filler: F —fiber, S = spheres, etc. The third position is a code for the weight content of the filler, e.g., "30" for the "cell" (range) 27.532.5 wt.%.
1.5. ISO Codes for Data Block 5 Data block 5 is reserved for specifications based on individual agreements between supplier and customer. It may code additional requirements, restrictions, or supplemental information. H. SPI CODES FOR THE RECYCLING OF PLASTICS
Code Position 1 (material)
Code
B Boron C Carbon D E Clay F G Glass H K Calcium carbonate L Cellulose M Mineral, metal N P Mica Q Silicon R Aramid S Synthetic, organic T Talcum V W Wood X Not specified Z Others
B C D E F G H K L M N P Q R S T V W X Z
Position 2 (form or structure) Balls, beads, spheres Chips, cuttings Powder (dry blend) Fiber Ground, grinding stock Whisker Knitted fabric Layer Mat (thick) Non-woven (fabric, thin) Paper Roving Scale, flake (spheres: now B) Cord Veneer Woven fabric Not specified Others
Number code
Letter code
Polymer
1 2 3 4 5 6 7
PETE HDPE V LDPE PP PS -
Polyethylene terephthalate) High-density poly(ethylene) Vinyl chloride polymers Low-density poly(ethylene) Poly(propylene) Poly(styrene) All other plastics, including multilayered materials
I. RECOMMENDED ABBREVIATIONS A N D ACRONYMS FOR NAMES OF ELASTOMERS
Names of elastomers are listed in alphabetical order of the names of their monomers, regardless of their proportions. A "PM" indicates an after-treatment of the polymer; "Other" refers to old or often used "unofficial" abbreviations; # indicates that the abbreviation is recommended by IUPAC.
Monomers (incl. after-treatment of PM)
ASTM
Acrylic ester 4- acrylonitrile Acrylic ester 4- butadiene Acrylester (4- saturated vulcanizable comonomer) Acrylonitrile -f butadiene -, PM contains carboxylic groups -, PM is hydrogenated Acrylonitrile 4- butadiene -f styrene, PM contains COOH groups Butadiene Butadiene 4- styrene Butadiene -I- styrene, PM contains COOH groups Butadiene 4- styrene, elastomeric triblock copolymers Butadiene -I- styrene, elastomeric block copolymers with COOH groups Butadiene 4- 2-vinylpyridine Butadiene 4- 2-vinylpyridine 4- styrene Chloroprene Chloroprene 4- acrylonitrile Chloroprene 4- styrene Cyclooctene (trans polymer) Cyclopentene (trans polymer) Epichlorohydrine Epichlorohydrine 4- ethylene oxide Ethylene (PM postchlorinated) Ethylene (PM perchlorosulfonated) Ethylene 4- acrylic ester Ethylene 4- ethyl acrylate Ethylene 4-propylene Ethylene 4- propylene f non-conjugated diene Ethylene 4- vinyl acetate Ethylene 4- tetrafluoroethylene Fiuorinated carbon chains (substituents: fluoroperfluoroalkyl-, perfluoroalkoxy-) Hexafluoropropylene 4- tetrafluoroethylene Hexafluoropropylene + vinylidenefluoride Isobutylene
ANM ABR# ACM NBR# XNBR
BS
ISO
Other AR GR-N H-NBR
XABS BR# SBR# XSBR YSBR YXSBR PBR# PSBR CR# NCR# SCR# CO# ECO CM CSM EAM EEA EPM EPDM EVM
BP, CBR GR-S
SBR
SBS
CR
CO CSPR EPR EPTR
TOR TPA, TPR CHR CHC CSR
E/EA EPM
AP APT, EPT ETFE
FKM
FPM FEP
FPM PIB#
PIB
PIB
PIS
Monomers (incl. after-treatment of PM)
ASTM
BS
Isobutylene + isoprene Isobutylene 4- isoprene (postbrominated PM) Isobutylene -f isoprene (postchlorinated PM) Isoprene (natural rubber) Isoprene (natural rubber, easy-processing) Isoprene (natural rubber, standardized Indonesian) Isoprene (natural rubber, standardized Malaysian) Isoprene (natural rubber, technical classification) Isoprene (synthetic rubbers) Isoprene (chlorinated PM) Isoprene + acrylonitrile Isoprene -h styrene Isoprene -f styrene (triblock copolymer) Isoprene 4- styrene (hydrogenated triblock copolymer) Norbornene Phosphonitrile dichloride, with fluorine-containing substituents Propylene oxide Propylene oxide + allylglycidyl ether Silicone with fluoro substituents Silicone with fluoro + methyl substituents Silicone with fluoro 4- methyl 4- vinyl substituents Silicone with methyl substituents Silicone with phenyl substituents Silicone with phenyl 4- methyl substituents Silicone with phenyl 4- vinyl 4- methyl substituents Silicone with vinyl substituents Silicone with vinyl 4- methyl substituents Sulfides (thioplastics) Tetrafluoroethylene 4- trifluoronitrosomethane 4- nitrosoperfluorobutyric acid (nitroso rubber) Urethane elastomers Urethane elastomers with polyester segments Urethane elastomers with polyether segments Urethane-polyester elastomers, crosslinkable by isocyanates Urethane-polyester elastomers, crosslinkable by peroxides Vinylidenefluoride 4- hexafluoropropylene Tetrafluoroethylene 4- perfluoralkylvinyl ether Thermoplastic elastomers, in general Thermoplastic olefin elastomers Thermoplastic elastomers on basis styrene-diene Thermoplastic elastomers on basis ester Thermoplastic elastomers on basis ether-amide
IIR# BIIR CIIR NR#
Butyl
IR#
IR
ISO
Other GR-I, PIBI NK SP SIR SMR TC CPI, PIP RUC
NIR SIR# SIS SEBS PNR PNF OPR POR
PO GPO FQ FMQ FVMQ MQ PQ PMQ PVMQ VQ VMQ
MFQ
MPQ MPVQ MVQ T, TR, OT
AFMU UE AU EU AU-I AU-P FPM
CNR UR AU EU FPM PFA TPE, TPR TPE-O, TPO TPE-S TPE-E TPE-A
TPEL
The following abbreviations are also used. ICR: rubber from undiluted latex of natural rubber (initial concentration rubber); OER: oil-extended rubber; RTV: room temperature vulcanization.
J.
ABBREVIATIONS FOR TEXTILE FIBERS*
Short Name Name NATURAL PROTEIN FIBERS (SILK) Mulberry spinner (Bombyx mori L) Tussah NATURAL PROTEIN HBERS (WOOL) Alpaca (Llama pacos) Angora rabbit ("Angorakaninchen") Beaver
ISO
FTC
Abbreviation DIN
ASTM
ETG
Ms
SE Ts
Ap Ak
WP WA "rB
* ISO: International Standardization Organization; FTC: US Federal Trade Commission; DIN: German Standards (Deutsches Institut fur Normung), DIN 60001; '*..." indicates the German word from which the abbreviation or acronym was derived; ASTM: American Society for Testing and Materials; ETG: European Textile Characterization Law.
Short Name Name
ISO
FTC
Cashmere goat ("Kaschmir-Ziege") Guanaco Llama Mohair Otter Sheep - , virgin wool Vicuna Yak
DIN
ASTM
Kz
ETG WS WU WL WM WT WO WV WG WY
Lm Mo Wo Vi
NATURAL PROTEIN FIBERS (HAIRS) Camel ( " K a m e D Cow ("Rind") Goat ("Haar der Ziege") Hare ("Hase") Horse ("Rosshaar") Human ("Haar") Rabbit ("Kaninchen") Tibetan goat ("Tibetziege")
Km Ri
WK Hz Hs
Rh HA Kn Tz
NATURAL CELLULOSE FIBERS (TEXTILE FIBERS) Cotton ("Baumwolle") Flax - , linen - , half-linen Ramie
Bw Fl
CO LI LI HF RA
Ra
NATURAL CELLULOSE FIBERS (HARD FIBERS AND OTHERS) Alfalfa Broom ("Ginster") Calatropis CoirrKokos") Esparto grass [alfa) Hemp (Cannabis) - , Bombay (Sunn hemp) --, Manila (Abaca) Henequen (Agave) Jute Kapok Kenaf Maguey Mauritius fiber (Fique) Moss, American Phormium (New Zealand flax) Rosella Sisal Urena
AL Gl An Ko Ag
CC CA SN AB
Sn Ma He Ju Kp Kf
JU KP KE MG
Fi Tl Nf Ro Si Ur
REGENERATED POLYSACCHARIDE FIBERS Alginate Cellulose
Cupro
Cellulose 2 1/2 acetate Cellulose triacetate
Viscose Modal Deacetylated Acetate Acetate triacetate
REGENERATED PROTEIN FIBERS Ardein fibers Casein fibers Regenerated protein fibers, in general Zein fibers
Abbreviation
Cupra (rayon) Rayon Rayon Rayon
AL CC
AG CU
CV
VI MD
Acetate triacetate
CA CT
AR KR Protein
SI
Azlon
CA CTA
AC TA
CS PR
ZE
Short Name Name SYNTHETIC FIBERS Elastodiene Fluoro Poly(acrylonitrile) Poly(acrylonitrile), copolymeric Polyamide, aliphatic Polyamide, aromatic Polyester [poly(ethylene terephthalate] - , [from ethylene glycol, terephthalic acid and p-hydrooxybenzoic acid] Poly(ethylene) Polypropylene) Poly(styrene) (>88% sty) Polyurea Polyurethane - , segmented Poly(vinyl alcohol) Poly(vinyl chloride) (>85% VC) Poly(vinyl chloride), copolymeric Poly(vinylidene chloride), copolymeric Trivinyl
ISO
fibers
DIN
ASTM
ETG
LA
EU
PAC PAM
PAN
EL FL PAN MA
PA
PA
PA
PES
PET
PL
PE PP
PE PP
fiber Acrylic Modacrylic Nylon, Polyamide Aramide
Acrylic Modacrylic Nylon, Polyamide Aramide
Polyester
Polyester
Elastan Vinylal Chlorofiber Chlorofiber
Vinyon
PEE PE PP PST PUA PUR PUE PVA PVC PVM
Chlorofiber
Saran
PVD
Polyethylene Olefin Polypropylene Olefin
Spandex Vinal
fiber
INORGANIC FIBERS Asbestos Glass Metal Mineral (rock wool) Slag wool OTHER FIBERS Unspecified Unknown
FTC
Abbreviation
PB PU EA VY
TV
Glass
fibers fibers
PUR
Glass
As GL MT ST SL
AS GL ME
AF TR
C h e m i c a l a n d
A b s t r a c t
O n l i n e f o r
R e g i s t r y
D a t a b a s e
P o l y m e r
N u m b e r s
S e a r c h i n g
L i t e r a t u r e
M . J o h n s o n , E. A . G r u l k e University of Kentucky, Lexington, KY 40506, USA A. Nomenclature B. CAS Registry Numbers C. Indexing and CAS Registry Number Assignment D. Example Searches 1. Example of a Search Using the Polymer CAS Registry Number 2. Example of a Search Using the Monomer CAS Registry Number 3. Example of a Combined Search 4. Example of a Copolymer Search 5. Example of an Engineering Database Search 6. Example of a Search with Punctuation in the Polymer Name 7. Example of an Engineering Materials Abstracts Search 8. Example of a Polymer Trademark Search E. List of CAS Regisry Numbers of Common Polymers
VIII-25 VIII-25 VIH-26 VIH-26 VIH-26 VIH-26 VIH-26 VIII-28 VIII-29 VIII-29 VIII-29 VIII-29 VIII-32
The advent of computerized database searching for polymer literature has made locating technical information both easier and harder. While computers greatly increase the speed and completeness of a search, the algorithms and conventions used are often quite different from those used for hardcopy (paper) indexes. The following discussion and tables give basic information needed to start identifying and searching the most common polymers in the most used databases and paper indexes. A.
NOMENCLATURE
The Common Name is the name used by many scientists and engineers, and is used for listing polymers in catalogs such as Aldrich, and engineering indexes such as Engineering Index. Various other common Synonyms or Trade Names are also listed in the table and used in the literature. The Chemical Abstracts (CA) Index Name is the most recent name used by Chemical Abstracts Service (CAS). In general, Chemical Abstracts follows IUPAC
guidelines when naming polymers. The CAS Registry Number (CAS Reg. No.) is a unique identifying number given to each of the 18 million chemical compounds CAS has indexed. The Molecular Formula is the formula for the smallest repeating unit of the polymer. In some cases, such as cellulose, the exact molecular formula is not known. B. CAS REGISTRY NUMBERS CAS Registry Numbers provide a consistent method of identifying and searching for polymers in literature databases, and have been used to develop the table in this section. CAS indexes the chemical and chemical engineering literature from about 80000 worldwide journals, conference papers, books, and patent literature. The way that CAS (or IUPAC) names a compound is often very different from that used in scientific journals or the popular press. Polyethylene provides an excellent example of this problem. The name in CA is currently Ethene, homopolymer. CAS used to index it under Ethylene, polymers. Over 2000 synonyms or trade names are listed for polyethylene compounds, ranging from Alathon (registered trademark of the Lyondell Petrochemical Company) to Suzulon (a tradename used by Aicello Chemical Corporation, but not trademarked). As CAS understates in its publication, "Polymer Searching", "Unfortunately, naming conventions for polymers have not achieved widespread understanding, and molecular formulas are not unique search terms." CAS Registry Numbers are used not only by CAS in their database indexing but by the US Federal Government in their Toxic Substances Inventory, by the US Department of Transportation for regulating transport of chemicals, and by other indexes such as Merck and Aldrich. They are the most precise and unique compound identification. Authors of polymer literature may not always be able to report the precise structure of their materials. However, they usually do report the monomers used in the polymerization. Thus, while polymers are represented in two ways, as monomers and by final structure (Structural Repeating Unit or SRU), the primary registration of a polymer is by its component monomers. The Registry Number for most
polymers in the table can be used to find the component Registry Numbers for their corresponding monomers. Similarly, the Registry Number for copolymers will lead to the monomer registry numbers. Searching just by the SRU, the homopolymer, or the copolymer number will not retrieve a complete citation list. C. INDEXING AND CAS REGISTRY NUMBER ASSIGNMENT Chemical Abstracts assigns Registry Numbers to polymers based on both their monomers and their final structure. The table here usually lists the Registry Number for the homopolymer or copolymer. However, searches that use only one Registry Number for a polymer are often incomplete. Polymers based on more than one monomer should be searched using all the component monomers. All the copolymer references of a specific monomer can be found by searching the monomer's Registry Number. The polymers having the same final structure can be found by searching the final structure's Registry Number. Some compounds are so well characterized that they do not follow the rules and are indexed only under their structural repeating unit (SRU). These are marked (R) in the table and include common polymers such as Nylon 6 or PET Some polymers are not indexed by registry numbers at all but only by subject. These include tung oil, cellulose, and linseed oil, which are marked (S) in the table. These materials are exceptions and, in most searching, registry numbers must be used in the CAS online files. Some registry numbers in the Registry File are marked with an asterisk (*). STN gives the message on-line that these "represent substances of unknown or variable composition, complex reaction products, or biological substances that do not meet the criteria for Chemical Abstracts indexing". These substances generally have been registered for regulatory agencies and receive a CA Index Name. Searching these substances in STN files can be done by using the Registry Number(s) from the record, terms derived from the name, terms that are more or less specific than those in the name (which may include other CAS Registry Numbers), or associated trade names. Every likely term should be tried, and additional help should be sought if other references seem likely. Section E gives the common names and CA Registry Numbers for a number of important polymers. A list of Registry Numbers in numerical order with their corresponding names is available from the authors. Additional synonyms and trade names are provided, as are the CA Index names. Molecular formulae are provided, and can be helpful in searching with structural-related databases. The Search Guide indices have the following meanings: S search by CA Index names as a subject in the citation file * search using every likely term - Registry Numbers, name, synonyms, etc. R search by Registry Numbers for components, copolymers, SRU's U search using the single Registry Number provided.
The CAS database system is available commercially, most commonly through STN (1-800-848-6538) and Dialog (1-800-334-2564). Most academic and industrial libraries have ready access to these systems and may be consulted for assistance. For illustrative purposes, searches from each system are demonstrated here. The logic of searching each system is the same, but commands and features can vary. For more information about online searching, consult a librarian or the database vendors. The Chemical Abstracts Service book, "Searching for Polymer Information in CAS Online", American Chemical Society, Chemical Abstracts Service, 1990, p. 173, is the best starting source for polymer information within Chemical Abstracts. It may be ordered by calling the STN toll-free number or using the web page. D.
EXAMPLE SEARCHES
1. Example of a Search Using the Polymer CAS Registry Number The first step in a CA search is to identify the registry numbers. Section E lists registry numbers for many common polymers. The Registry Number for poly-(acrylamide) is 9003-05-8. Leading zeros should be disregarded when searching online, for example, search 009003-05-8 as 9003-05-8. Using the CA Registry Number to search the chemical compound registry file would return the following information (Fig. 1) from the Dialog database. The Dialog File number at the beginning of each output refers to a specific work session for the user. This particular database provides the molecular formula, related CAS Registry Numbers, the CA name, a list of synonyms including tradenames, the CA Registry Number for the monomer, and the number of literature references over the specified time interval. 2. Example of a Search Using the Monomer CAS Registry Number The CAS Registry Number for the monomer from the previous example, acrylamide, is 79-06-1. Searching by the component Registry Number in the Registry File gives the following record (Fig. 2). 3. Example of a Combined Search The results of both searches (polymer and monomer CAS Registry Numbers) would be combined to generate a more complete listing of the literature. The following answers (Fig. 3) are found by searching the abstracts file for CA (399 on Dialog) with the monomer and polymer Registry Numbers. Searching by the homopolymer Registry Number (RN), 9003-05-8, produced most citations. However, over 6000 additional articles containing information about the monomer would have been missed if the monomer Registry Number, 79-06-1, had not been used. Some of these may contain needed information about the polymer. Only 539 articles were indexed using both Registry Numbers.
(Dialog File 398) CAS REGISTRY NUMBER: 9003-05-8 (POLYMER) MOLECULAR FORMULA: (C3H5NO)x REPLACED CAS REGISTRY NUMBER(S): 9082-06-8 12624-24-7 25038-45-3 27754-57-0 33338-03-3 39355-07-2 39387-77-4 51312-40-4 57679-11-5 68247-81-4 72270-86-1 79079-15-5 104981-89-7 114265-35-9 143180-09-0 143180-13-6 143180-22-7 CA NAME(S): HP = 2-Propenamide (9CI) NM = homopolymer HP = Acrylamide (8CI) NM — polymers SYNONYMS: Acrylarmde homopolymer; Acrylamide polymer; Alcoflood 1175; Alcoflood 935; American Cyanamid KPAM; American Cyanamid P 250; AMF; Aminogen PA; AP 273; Aron F 40; BanDrift; Boze Floe N 46BT; Calgon 470; Calgon 800; Cogum 2OP; Cogum 25H; Cyanamer N 300LMW; Cyanamer P 250; Cyanamer P 35; Cytame 5; Diaclear MA 3000H; Diaclear MN 3000H; DK Dry Capsule ESP; Dow ET 597; Dow J 100; Dow 164; DP 1916; DP 9-6193; Drew Floe 41; E 936; ET 597; Flygtol GB; Formula 358; Gelamide 250; Get-Down ; GPA-u; Himoloc OK 507; Himoloc SS 200; Hiset P 700; Hyset P 700SN; Instar NS; J 100; J lOO(polymer); K 4; K 4(acrylic polymer); K-PAM; KAL 13; KW 677; Magnifloc 900N; Maquat 100; Migunon NS; Mirbane 301; Nalco Lp 3033; Nalco 7871; Nalco 8871; NL; P 250; P 250(polymer); P 300; P 300(polyacrylamide); PAA 1; PAA 7OL; PAM; PAM 50; PAM(homopolymer); Pamid; PC 305; Percol 333; Plex 4847D; Polias 320; Polyacron KR 143; Polyacrylamide; Polyacrylamide resin; Polyhall 2J; Polyhall 5J; Polymerset C 305; Polysic; Polystron 117; Polystron 145; Polystron 191; Polystron 194-7; Pomosist 117; Praestol 2800; Praestol 2810/73; Praestol 6000; Sanpoly A 520; Santac SP 66; Santac SP 67; Seabetter AD; Sedipur TF; Sedipur TF 514; Sepaflux CE 5174; Solidokoll K; Solvitose 433; Stargum AD-S; Stokopol D 2624; Sumifloc FN 10H; Sumirez A 17; Sumirez A 27: Sursolan P 5; Texapret AM; Tulsepar PNS 1; TY 007; Versicol W I l : Versicol W 17; Versicol W 25; Versicol WN 15; Viterra II ; X-Coat P 130C; X-Coat P 180S; Zonen A; 2J; 3330s; 38F COMPONENT CAS REGISTRY NUMBER(S): (79-06-1) Component RN
Component Molecular Formula
1) 79-06-1 C3H5NO SUBFILE: CHEMNAME LASTUPDATE: 199611
13873 LITERATURE REFERENCES) IN FILE 399.
Figure 1. Dialog database output from searching CAS Registry No. 9003-05-8.
CAS REGISTRY NUMBER: 79-06-1 MOLECULAR FORMULA: C3H5NO CA NAME(S): HP = 2-Propenamide (9CI) HP = Acrylamide (8CI) SYNONYMS: Acrylic amide; Ethylenecarboxamide; Propenamide; Vinyl amide SUBFILE. CHEMNAME 6574 LITERATURE REFERENCES) IN FILE 399. LAST UPDATE: 199608 Figure 2.
Dialog database output from searching CAS Registry No. 79-06-1.
Set Items Description ?srn-9003-05-8
51 14051 R N = 9003-05-8 ?srn = 79-06-1 52 6622 R N = 79.06-1 ?s si or s2 14051 Sl 6622 S2 53 20134 Sl O R S2 ?s si and s2 14051 Sl 6622 S2 54 539 Sl A N D S2 Figure 3. Dialog database output from combining the polymer and monomer searches.
4. Example of a Copolymer Search Poly(acrylonitrile-co-butadiene) is a common commercial product. The STN database was searched for this copolymer, using its CAS Registry Number along with those of the monomers. The search method is similar to that for homopolymers; the copolymer and the two monomers are searched separately, and the results are combined. Some records have been edited for clarity and conciseness. In Fig. 4, component 1 is acrylonitrile and component 2 is butadiene.
(STN Registry File) Ll ANSWER 1 OF 1 REGISTRY COPYRIGHT 1997 ACS RN ***9003-18-3*** REGISTRY CN 2-Propenenitrile, polymer with 1,3-butadiene (9CI) (CA INDEX NAME) OTHER CA INDEX NAMES: CN 1,3-Butadiene, polymer with 2-propenenitrile (9CI) CN 1,3-Butadiene, polymer with acrylonitrile (8CI) CN Acrylonitrile, polymer with 1,3-butadiene (8CI) OTHER NAMES: CN 1,3-Butadiene-acrylonitrile copolymer CN 1,3-Butadiene-acrylonitrile polymer CN Acrylonitrile-1,3-butadiene copolymer (30 other chemical names or synonyms or trade names are listed) MF (C4 H6 . C3 H3 N)x CM 1 (Component One) CRN 107-13-1 (Component Registry Number) CMF C3 H3 N (Component Molecular Formula) CM 2 (Component Two) CRN 106-99-0 (Component Registry Number) CMF C4 H6 (Component Molecular Formula) Figure 4.
STN database output from a copolymer search.
Searching by the two component Registry Numbers given above, (107-13-1, acrylonitrile; 106-99-0, butadiene), gives the following records in the Registry File (Fig. 5). Figure 6 shows the output when all the separate searches (Figs. 4 and 5) are combined. Search strings for each command are shown. In this case, there are fewer articles for the copolymer (9003-18-3) than for either of the component monomers individually. On the other hand, 550 citations have the two components together, with very little overlap between that set and the copolymer. This once again illustrates the importance of including the monomers to get a complete search in CA files online. A similar search in the paper version of CA could be done by finding the latest CA name for the homopolymer or copolymer and all related monomers in the Chemical Substance Index, and then referring to the abstracts. The Chemical Substance Index also lists the Registry !Numbers for all compounds indexed, and should be checked prior to online work. Additional search methods include using the trade name, chemical name, and molecular formula in the Registry File to start the search for a polymer Registry Number. The table gives a starting point for common polymers, but with over 700000 polymeric entries, it is impossible to list them all.
L2 ANSWER 1 OF 2 REGISTRY COPYRIGHT 1997 ACS RN ***i07-13-l*** REGISTRY CN 2-Propenenitrile (9CI) (CA INDEX NAME) OTHER CA INDEX NAMES: CN Acrylonitrile (8CI) OTHER NAMES: CN Acrylon CN Carbacryl CN Cyanoethene CN Cyanoethylene CN Fumigrain CN Propenenitrile CN VCN CN Ventox CN Vinyl cyanide L2 ANSWER 2 OF 2 REGISTRY COPYRIGHT 1997 ACS RN **• 106-99-0*** REGISTRY CN 1,3-Butadiene (8CI, 9CI) (CA INDEX NAME) OTHER NAMES: CN .alpha.,.gamma.-Butadiene CN Biethylene CN Bivinyl CN Butadiene CN Butadiene-1,3 CN Divinyl CN Erythrene CN Vinylethylene MF C4 H6 Figure 5. STN database output of comonomer searches.
(File CA on STN) = > s 9003-18-3 L3 7648 9003-18-3 = > s 107-13-1 L4 16353 107-13-1 = > s 106-99-0 L5 12917 106-99-0 = > s 14 and 15 L6 550L4ANDL5 = > s 13 and 16 L7 19 L3 AND L6 Figure 6. STN database output from a combined search for a coplymer and its monomers. 5. Example of an Engineering Database Search
Searching the engineering databases is a less formidable task. In most cases, the searches for polymers are started using the common names of the compound. The indexing of the answer set is then evaluated for other terms to use. The following search is from the Engineering Index (file 8) on Dialog (Fig. 7). Set Items Description ?s polyoxymethylene (compound entered as one word) 51 396 POLYOXYMETHYLENE ?s poly()oxymethylene (compound entered as two words) 39391 POLY 155 OXYMETHYLENE 52 87 POLYQOXYMETHYLENE ?s si or s2 396Sl 87 S2 53 459 Sl OR S2 ?t 1/8/1 1/8/1 DIALOG(R)FiIe 8:(c) 1997 Engineering Info. Inc. All rts. reserv. 04628455 Title: Hybrid effects on mechanical properties of polyoxymethylene Descriptors: *Polymers; Fracture toughness; Strain rate; Tensile strength; Bending strength; Impact resistance; Elastic moduli Identifiers: Polyoxymethylene; Hybrid strength; Impact strength; Flexural modulus 2/8/2 DIALOG(R)FiIe 8:(c) 1997 Engineering Info. Inc. All rts. reserv. 04572617 Title: Spatially resolved in situ analysis of polymer additives by two-step laser mass spectrometry Descriptors: *Additives; Polyvinyl chlorides; Polypropylenes; Polyethylene terephthalates; Composition effects; Desorption; Stabilizers (agents); Carbon dioxide lasers; Laser ablation; Antioxidants Identifiers: Polyoxymethylene; Hydroxyphenylbenzotriazole; Polymer additives Figure 7.
Engineering Index output for poly(oxymethylene).
In this case, poly(oxymethylene) is indexed as one word so the search term was appropriate to this database. The two-word search (S2 and S3) was taken from the authors' abstracts, which are searched automatically in this database (unlike in CAS files). 6. Example of a Search with Punctuation in the Polymer Name Poly(L-proline) is a more difficult search because most databases do not index punctuation. In this case, the compound is entered as if it were three words. In the first search, each word is specified to bedn that specific order (adjacent to each other). This search yielded 26 hits (Fig. 8), but the specific records show that the term was found just in the abstract, not in the indexing. Searching by the broader term "polypeptides" would get a larger, less specific, answer set since any polypeptide could be included. The database also shows that "polypeptides" has been an index term since 1977. Searching poly(L-proline) as three separate words would pull the terms from anywhere in the database record. This method gives more answers than the first search strategy (Fig. 9) but less than the broad polypeptide search. 7. Example of an Engineering Materials Abstracts Search Similar strategies of searching chemical names and checking indexing should be used for other engineering databases such as Engineering Materials Abstracts. A search of the word, nylon, retrieves a larger answer set than the search of the sequence, nylon 6 (Fig. 10). A check of the indexing determines that nylon 6 is a valid term and would be a more specific, focused search on the topic. Chemical Abstracts, Engineered Materials, Engineering Index, and other indexes such as Current Contents or the National Technical Information Service are available online through many vendors, on CDROM, at libraries, and over the Internet, via accounts with security and passwords. They are still available in paper copy at many libraries. Before doing any kind of literature search, the researcher must first decide how much information is needed, for what time period, what limits such as language or type of material are to be applied, and how much time is to be devoted to the search. Then each resource can be evaluated for what is covered and how it is indexed so that the proper tools will be used. Finding information is a lot like doing an experiment. Many paths can be explored and different techniques are tried until the researcher is satisfied. 8. Example of a Polymer Trademark Search A trademark is either a word, phrase, symbol or design, or combination of words, phrases, symbols or designs, which identifies and distinguishes the source of the goods or services of one party from those of others. US trademark rights arise from either (a) actual use of the mark, or (b) the filing of a proper application to register a mark in the Patent
?s poly()l()proline 39391 POLY 71166 L 259 PROLINE Sl
26 P O L Y ( ) L ( ) P R O L I N E
?t 7/5 7/5/1 DIALOG(R)FiIe 8:Ei Compendex(R) (c) 1997 Engineering Info. Inc. All rts. reserv.
03979891 E.I. No: EIP94112411957 Title: Optical activity measurements in solids 7. Polylactides and poly ( beta -hydroxybutyrates) Author: Bartus, Jan; Weng, Dexi; Vogl, Otto Corporate Source: Polytechnic Univ, Brooklyn, NY, USA Source: Polymer International v 34 n 4 Aug 1994. p 433-442 Publication Year: 1994 CODEN: PLYIEI ISSN: 0959-8103 Language: English Document Type: JA; (Journal Article) Treatment: X; (Experimental) Journal Announcement: 9412W4 Abstract: The optical activities of poly-(R)-lactide, poly-(S)-lactide, poly (beta -hydroxybutyrate) and two beta -hydroxyvalerate copolymers were measured in solution, as solid powders in suspension, and where possible, as films. Poly-(plus)-3-methyl-l-pentene was also reinvestigated. In some cases the specific rotation values of powder samples showed significant differences from the values of the solution measurements. The discrepancies of the data observed seem to reflect the local environment of the polymer chains in supermolecular assemblies and consequently the solid state structure (morphology) of the polymers. The circular dichroism (CD) spectra of the polymers were also measured in solution and in the form of their films. For comparison, the CD spectra of the naturally occurring protein casein and of the synthetic polypeptide poly-(L)-proline were also measured. (Author abstract) 21 Refs. Descriptors: *Polymers; Optical variables measurement; Powders; Plastic films; Molecular structure; Morphology; Proteins; Casein; Polypeptides; Sodium compounds Identifiers: Polylactides; Polyhydroxybutyrates; Circular dichroism ?s polypeptides Sl 1783 POLYPEPTIDES (January 1977) Figure 8.
Engineering Index output for an adjacent word search.
?s poly and 1 and proline 39391 POLY 71166 L 259 PROLINE S8 39 POLY AND L AND PROLINE Title: Synthesis of crosslinked poiy(vinyl alcohol) with L- proline pendant as the chiral stationary phase for resolution of ammo acid enantiomers Abstract: The porous crosslinked poly (vinyl alcohol) beads with the L -proline pendant was synthesized as the chiral stationary phase (CSP) for ligand-exchange chromatography of amino... ...and triallyl isocyanurate as a crosslinker, methanolysis of the copolymer, glycidylation of the formed crosslinked poly (vinyl alcohol), and final functionalization with L-proline. After the polymer with the chiral ligand was complexed with copper(II) cations, it was... Figure 9.
Engineering Index output for a general word search.
?s nylon 57 3241 NYLON ?s nylon()6 3241 NYLON 18621 6 58 1615NYLON()6 t 8/8/1 Engineering composites with nylon 6 matrix. Descriptors: Conference Paper; Nylon 6 - Composite materials; Styrene butadiene resins- Composite materials; Thermoplastic elastomersMechanical properties; Tensile strength; Impact strength Section Headings: D2 Materials Development Subfile: P Polymers Figure 10. Engineering Materials Abstracts output.
ALATHON
Stylized Letters INTL CLASS: 1 (Chemicals) U.S. CLASS: 6 (Chemicals and Chemical Compositions) STATUS. Renewed SERlALNO.: 71-569,356 REG. NO.: 543,580 REGISTERED: June 12, 1951 PUBLISHED: March 13, 1951 ORIGINAL REGISTRANT: E.I. DU PONT DE NEMOURS AND COMPANY (Delaware Corporation), J007 MARKET STREET. WILMINGTON, DE (Delaware). USA (United States of America) 3RD NEW OWNER ENTERED AFTER REGISTRATION: OCCIDENTAL CHEMICAL 2400, HOUSTON, TX (Texas), 77046. USA (United States of America) RENEWAL OWNER: (New Samek Corporation), 5 GREENWAY PLAZA, SUITE Renewed: June 12, 1971ARENEWAL OWNER: OCCIDENTAL CHEMICAL CORPORATION (New York Corporation), 5 GREENWAY PLAZA, SUITE 2400, HOUSTON, TX (Texas), 77046, USA (United States of America) Renewed: June !2, 1991 ASSIGNEE(S). CHASE MANHATTAN BANK. THE (NATIONAL ASSOCIATION)
AS AGENT FOR THE BANKS Assignor(s): CAIN CHEMICAL INC. (Delaware Corporation) Reel/Frame: 0564/0786 Recorded: June 8, 1987 Brief: SECURITY INTEREST ASSIGNEE(S): CAIN CHEMICAL INC. (Delaware Corporation), ELEVEN GREENWAY PLAZA. SUITE 2700, HOUSTON. TX (Texas). USA (United States of America) Assignor(s): E. I. DU PONT DE MEMOURS AND COMPANY (Delaware Corporation), 1007 MARKET ST., WILMINGTON, DE (Delaware). USA (United States of America) Reel/Frame: 0574/0432 Acknowledged: June 9. 1987 Recorded: August 24. 1987 Brief: ASSIGNS THE ENTIRE INTEREST AND GOOD WILL ASSIGNEE(S): CAIN CHEMICAL INC. (Delaware Corporation) Assignor(s): CHASE MANHATTAN BANK, THE (NATIONAL ASSOCIATION), AS AGENT Reel/Frame: 0648/0279 Recorded: December 19, 1988 Brief: RELEASE BY SECURED PARTY OF THE SECURITY AGREEMENT RECORDED ON JUNE 8, 1987, AT REEL 0564, FRAME 786. ASSIGNEE(S): OXY PETROCHEMICALS INC. Assignor(s): CAIN CHEMICAL INC. (Delaware Corporation) Reel/Frame: 0738/0721 Recorded June 14, 1990 Brief. CHANGE OF NAME EFFECTIVE SEP. 21, 1989 ASSIGNEE(S): OCCIDENTAL CHEMICAL CORPORATION (New York Corporation), FIVE GREENWAY PLAZA, SUITE 2400, HOUSTON, TX (Texas), USA (United States of America) Assignor(s): OXY PETROCHEMICALS INC. (Delaware Corporation), FIVE GREENWAY PLAZA, SUITE 2500, HOUSTON. TX (Texas). USA (United States of America) Reel/Frame: 0738/0728 Recorded: June 14, 1990 Brief: ASSIGNS THE ENTIRE INTEREST AND GOOD WILL ASSIGNEES): LYONDELL PETROCHEMICAL COMPANY (New York Corporation), 1221 MCKINNEY ST., SUITE 1600. HOUSTON. TX (Texas). 77010, USA (United States of America) Assignor(s): OCCIDENTAL CHEMICAL CORPORATION (New York Corporation) Reel/Frame: 1434/0830 Recorded: February 13. 1996 Brief: ASSIGNS THE ENTIRE INTEREST AND GOOD WILL Figure 11. Trademark database search for Alathon.
and Trademark Office (PTO) stating that the applicant has a bonafide intention to use the mark in commerce regulated by the US Congress. Federal registration is not required to establish rights in a mark, nor is it required to begin use of a mark. However, federal registration can secure benefits beyond the rights acquired by merely using a mark. For example, the owner of a federal registration is presumed to be the owner of the mark for the goods and services specified in the registration, and to be entitled to use the mark nationwide. There are two related but distinct types of rights in a mark: the right to register and the right to use. Generally, the first party who either uses a mark in commerce or files an application in the PTO has the ultimate right to register that mark. The PTO's authority is limited to determining the right to register. The right to use a mark can be more complicated to determine.
Information on polymer trademarks can be found by searching in trademark databases on Dialog. The search is complicated because a name may be trademarked in one country, and yet not in another. Trademarks may be sold, or they may be assigned by one business to another. A search for Alathon, a registered trademark for polyethylene, is given as an example (Fig. 11). Dialog's trademark scan software provides a description of the goods or services the trademark describes, gives the trademark status, the application number, the registration number and type, and the dates of the action. Previous owners or assignees of the trademark can be identified. Usually, the trademark database of each country of interest must be checked to determine whether the name is registered.
E. LIST OF CAS REGISTRY NUMBERS OF COMMON POLYMERS
Common name Alginic acid Alginic acid, sodium salt Bayberry wax Beeswax, refined, yellow Boron nitride Candelilla wax, natural Carboxymethyi cellulose Carboxymethyi cellulose, sodium salt Carnauba wax, refined, No. 1, yellow Carrageenan, type I (tt-carrageenan) Carrageenan, type II (t-carrageenan) Cellulose Cellulose acetate Cellulose acetate butyrate
Synonyms
CAS Registry No.
Myrtle wax
Carboxymethylated cellulose sodium salt; cellulose glycolate Ambergum, carboxymethyicellulose; sodium carboxylmethyl cellulose
9005-32-7 9005-38-3 8038-77-5 8012-89-3 10043-11-5 8006-44-8 9004-32-4 9004-32-4
CA name
Alginic acid Alginic acid, sodium salt Fats and Glyceridic oils, bayberry Beeswax Boron nitride Beeswax Cellulose, carboxymethyl ether, sodium salt Cellulose, carboxymethyi ether, sodium salt
8015-86-9
Acetic acid, cellulose ester Acetobutyrate cellulose; cellulose acetobutyrate
Cellulose acetate butyrate, acrylamidomethyl
Search method R R S* S* R S* R R
Unk
9000-07-1
Carrageenan
R
Unk
9062-07-1
i-Carrageenan
R
Unk
9004-34-6 9004-35-7 9004-36-8
Cellulose Cellulose, acetate Cellulose, acetate butanoate
R R R
Cellulose, acetate butanoate, ((1 -oxo-2-propenyl)amino)methyl ether
R
Unk (C2H4O2)*; Unk (C 4HsO2)* (C2H 4O2 ) x; Unk (C 4 H 8 O 2 )* (C4H 7 NO 2)x (C 2 H 4 O 2 ) X ; Unk (C 8 H 6 O 4 )* (C 2 H 4 O 2 )*; Unk (C 3 H 6 O 2 )* (C 2 H 4 O 2 )*; Unk (C 4 H 7 NO 2 )* (C 3 H 6 O 2 )* (C 2 H 4 O 2 )*; Unk (C 9 H 6 O 6 )* (C 2 H 4 O 2 )*; Unk (C 2 H 4 O 2 ) 1/2; Unk
91313-01-8
Acetyl phthalyl cellulose; cellulose acetate phthalate
9004-38-0
Cellulose, acetate hydrogen 1,2-benzene dicarboxylate
R
Cellulose acetate propionate
Acetylpropionyl cellulose
9004-39-1
Cellulose, acetate propanoate
R
Cellulose acetate propionate, acrylamidomethyl
97635-64-8
Cellulose, acetate propanoate, ((l-oxo-2-propenyl)amino)methyl ether
R
Cellulose acetate trimellitate
52907-01-4
Cellulose, acetate 1,2,4-benzenetricarboxylate
R
Cellulose, diacetate
R
Diacetyl cellulose
* Indicates that the precise molecular formula is unknown.
Unk* Unk Unk Unk BN Unk (CiHUO3)* Nax; Unk (C2H4O3)* Nax; Unk
S*
Cellulose acetate hydrogen phthalate
Cellulose diacetate
Molecular formula
9035-69-2
Common name
Synonyms
CAS Registry No.
Cellulose nitrate Cellulose propionate Cellulose sulfate
Collodion; soluble gun cotton Sodium cellulose sulfate
9004-70-0 9004-48-2 9005-22-5
Cellulose triacetate
Poroplastic; triacetyicellulose
9012-09-3
Cellulose tributyrate
Cellulose xanthate Cellulose, cyanoethylated
Cellulose carbonodithioate; cellulose hydrogen dithiocarbonate Cellulose cyanoethyl ether; cellulose ethylcyanide
Cellulose, tributanoate
R
9047-07-8
Cellulose, tris (phenylcarbamate)
R
9032-37-5
Cellulose, hydrogen carbonodithioate
R
(HNO3).,; Unk (C3H6O2)A; Unk (H2O4S).V Na.t; Unk (C 2 H 4 O 2 ) 1/3; Unk (C 4 H 8 O 2 ) 1/3; Unk (C 7 H 7 NO 2 ) 1/3; Unk (CH2OS2).,; Unk
9004-41-5
Cellulose, 2-cyanoethyl ether
R
(C3H5NO)x; Unk
Cellulose, mixt. with cellulose carboxymethyl ether sodium salt Chitin Chitosan Ethene, chloro-, homopolymer, chlorinated Rubber, synthetic, chlorinated polyethylene Coconut oil Cellulose, ethyl ether
R
(C 2 H 4 O 3 )* Nav; Unk
S* R *
Unk Unk Unk
S
Unk
S* R
Unk (C2H6O)A; Unk
R R
Unk Unk
R
9004-62-0
Carbon fluoride Guar gum, carboxymethyl 2-hydroxypropyl ether, sodium salt Cellulose, hydroxybutyi methyl ether Cellulose, 2-hydroxyethyl ether
R
(C4Hi0O2).v (CH4O)x; Unk (C 2 H 6 O 2 ),; Unk
9004-64-2
Cellulose, 2-hydroxypropyl ether
R
(C 3 H 8 O 2 ).,; Unk
9004-65-3
Cellulose, 2-hydroxypropyl methyl ether Cellulose, hydrogen 1,2-benzenedicarboxylate, 2-hydroxypropyl methyl ether Lignin, alkali Lignin, alkali, 2-hydroxypropyl ether Lignin, alkali, carboxymethyl ether
R
R R
(C3H8O2)A (CH4O)x; Unk (C 8 H 6 O 4 )* (C3H8O2)., (CH4O).V; Unk Unk (C 3 H 8 O 2 )/, Unk
R
(C2H4O3Xx; Unk
Lignin, hydrolytic Lignin, organosolv Lignin, organosolv, 2-hydroxyethyl ether Lignosulfonic acid, sodium salt Linseed oil Maltodextrin Benzene, (chloromethyl)ethenyl-, polymer with diethenylbenzene and ethenylbenzene
R R R
Unk Unk (C 2 H 6 O 2 ).,; Unk
R S* R R
Unk Unk Unk (C10H10C9H9 Cl-C 8 H 8 ).,
R
(C2H6O2),(CH4O).,-; Unk (CH4O),-; Unk
51395-75-6
Chitin, crab shells Chitosan Chlorinated poly(vinyl chloride) Chlorinated polyethylene
1398-61-4 9012-76-4 68648-82-8
Graphite, fluorinated, polymer Guar gum carboxymethyl 2-hydroxypropyl ether, sodium salt Hydroxybutyl methyl cellulose
63231 66-3 Fats and glyceridic oils Cellulose ethyl ether; cellulose ethylate; ethocel, ethyl cellulose ether Sodium carboxymethyl hydroxypropyl guar
Cellosize; cellulose hydroxyethyl ether; cellulose hydroxyethyl ate; glycol cellulose Hydroxypropyl cellulose Cellulose hydroxypropyl ether; hydropropyl cellulose; hydroxypropyl cellulose Hydroxypropyl methyl cellulose Cellulose hydroxypropyl methyl ether Hydroxypropyl methyl Cellulose phthalate hydroxypropyl cellulose phthalate methyl ether
Lignin, alkali Lignin, alkali, 2-hydroxypropyl ether Lignin, alkali, carboxymethyl ether Lignin, hydrolytic Lignin, organosolv Lignin, organosolv, 2-hydroxyethyl ether Lignosulfonic acid, sodium salt Linseed oil Maltodextrin Merrifield's peptide resin, cross-linked
lnduHn A Kraft lignin carboxymethyl ether Dioxane lignin
Fats and glyceridic oils
Chloromethylstyrene/;-divinylbenzene-styrene copolymer; A221481; chloromethylstyrene-styrene divinylbenzene copolymer Methyl 2-hydroxyethyl cellulose Hydroxyethyl methyl cellulose
Methyl cellulose
8001-31-8 9004-57-3 51311-17-2 68130-15-4 9041-56-9
Hydroxyethyl cellulose (2-hydroxyethyl cellulose)
Methyl ether cellulose
Molecular formula
R R R
Cellulose, microcrystalline, colloidal
Coconut oil Ethyl cellulose
Search method
Cellulose, nitrate Cellulose, propanoate Cellulose, hydrogen sulfate, sodium salt Cellulose, triacetate
39320-16-6
Cellulose tricarbanilate
CA name
9050-31-1 8068-05-1 88402-77-1 102962-28-7 8072-93-3 8068-03-9 90881-34-8 8061-51-6 8001-26-1 9050-36-6 55844-94-5
9032-42-2 9004-67-5
Cellulose, 2-hydroxyethyl methyl ether Cellulose, methyl ether
R
R
R
Common name
Synonyms
CAS Registry No.
Net-Poly (acrylic acid)-internet-poly(siloxane)
143106-82-5
CA name
Search method
2-Propenoic acid, 2-methyl-. 3-(dimethoxymethylsilyl)propyl ester, polymer with butyl 2-propenoate, decamethylcy-
R
clopentasiloxane, etc.
Nylon 6 Nylon 9 Nylon Il Nylon 12
Nylon 46
Polyamide 6 Polynonanamide; poly(imino1 -oxononamethylene) Poly(imino-l-oxoundecamethylene) Polydodecanamide; poly(iminocarbonylundecamethylene); poly(imino-1 -oxododecamethylene) Adipic acid-l,4-butanediamine copolymer, SRU; poly(tetramethylene adipamide)
Nylon 46, monomer-based Nylon 6, 6
Nylon 6, 9 Nylon 6/66
Nylon 610
Adipic acid-1, 6-hexanediamine copolymer; adipoyl dichloridehexamethylenediamine polymer, SRU; polyamides, nylon 66; poly(hexamethylene adipamide); poly(iminoadipoyl iminohexamethylene) Azelaic acid-1,6-hexanediamine salt polymer, SRU Adipic acid-£-caprolactam1,6-hexanediamine copolymer; nylon 6-nylon 66 copolyamide; nylon 6-nylon 66 copolymer; poly(hexamethyleneadipamide) Poly(iminohexamethylene iminosebacoyl); poly(hexamethylenesebacamide)
Nylon 612
25038-54-4 25748-72-5 25035-04-5 24937-16-4
(C 1n H 30 O 3 SiS Ci0H2OO4Si • CsHi 4 O 4 Si 4 • C 7 Hi 2 O 2 C7H KIOI •
U R
C 6 H 18 O 3 Si 3 QsH8O2)V (C6HMNO)1, (Ct)Hi 7 NO),
R
(C M H 2 |NO)
R
(Ci 2 H 23 NO),,
50327-22-5
Poly(imino-1,4butartediylimino (1.6-dioxo-1,6-hexanediyi))
R
(C I0H I 8 N 2 O 2 ),,
50327-77-0
Hexanedioic acid, polymer with 1,4-butanediamine Poly(imino(l,6-dioxol,6-hexanediyl)imino1,6-hexanediyl)
R U
(C 6 H I0O4 • C4Hi2N2)v (C I 2 H 22 N 2 O 2 ),,
Poly(imino-l,6-hexanediylimino (1,9-dioxo-1,9-nonanediyl)) Hexanedioic acid, polymer with hexahydro-2H-azepin-2-one and 1,6-hexanediamine
R
(Ci 5 H 2 8 N 2 O 2 ),,
R
(C 6 Hi 6 N 2 C 6 HnNOC 6 H I 0 O 4 ),
Poly(imino-l,6-hexanediyliminol,10-dioxo-l,10-decanediyl))
R
(C I 6 H 30 N 2 O 2 ),,
32131-17-2
28757-63-3 24993-04-2
9008-66-6
24936-74-!
(Ci 8 H 3 4 N 2 O 2 ),,
30525-89-4
Poly(imino-l,6-hexanediylimino R (1,12-dioxo- 1,12-dodecanediyl)) 1,4-Benzenedicarboxylic acid, R polymer with 1,6-hexanediamine Paraffin waxes and hydrocarbon S* waxes Paraformaldehyde R
9003-35-4
Phenol, polymer with formaldehyde R
(C 6 H 6 OCH 2 O), (C 3 H 7 NO 2 ), (C 3 H 7 NO 2 ), (C 3 H 7 NO 2 ), (C 4 Hc)NO 2 ),
Nylon 6/T, poly(hexamethylene terephthalamide) Paraffin wax, chunks
Hexamethylenediamine-terephthalic acid polymer
24938-03-2
Paraformaldehyde
Paraform
Phenol-formaldehyde resin
Formaldehyde-phenol polymer
Poly(D-alanine) Poly(L-alanine) Poly(D,L-alanine) Poly(Y-aminobutyric acid)
Poly-D-alanine Polyalanine Poly(4-aminobutyric acid)
26701-36-0 25191-17-7 25281-63-4 53504-43-1
Poly(L-aspartic acid), sodium salt Poly(acenaphthylene) Poly(aerylamide) Poly(acrylamide-co-acrylic acid)
Poly(aspartic acid) sodium salt
34345-47-6
8002-74-2
Oligoacenaphthylene Acrylamide polymer Acrylamide-acrylate polymer; acrylamide-acrylic acid polymer; poly(acrylic acid-acrylamide) Poly(acrylamide-cc-diallyl Acrylamide-diallyldimethyldimethyl ammonium chloride) ammonium chloride polymer
Poly(imino(l-oxo-l,6-hexanediyl)) Nonanoic acid, 9-amino-, homopolymer Poly(imino(l-oxo1,11-undecanediyl)) Poly(imino(l-oxo1,12-dodecanediyl.))
Molecular formula
25036-01-5 9003-05-8 9003-06-9
26590-05-6
D-Alanine, homopolymer L-Alanine, homopolymer DL-Alanine, homopolymer Butanoic acid, 4-amino-, homopolymer L-Aspartic acid, homopolymer, sodium salt Acenaphthylene, homopolymer 2-Propenamide, homopolymer 2-Propenoic acid, polymer with 2-propenamide
R R R R
2-Propen-l-aminium, N,Ndimethyl-./V-2-propenyl-, chloride, polymer with 2-propenamide
R
R R R R
(C 8 H 6 O 4 C 6 H 1 6 N 2 ), link (CH 2 O),
(C 4 H 7 NO 4 ), vNa (Ci 2 H 8 ), (C3H5NOXv (C 3 H 5 NOC3H4O2), (C 8 Hi 6 N C 3 H 5 NO-Cl) v
Common name
Synonyms
CAS Registry No.
Poly(2-acrylamido. 2-methyl, 1-propane suJfonic acidco-acrylonitrile) Poly(2-acrylamido-2-methyl1-propane sulfonic acid) Poly(2-acryiamido-2-methyl1-propane sulfone acid-costyrene) Poly(acrylic acid) Poly(acrylic acid), ammonium salt Poly(acrylic acid), potassium salt, crosslinked Poly(acrylic acid), sodium salt Poly(acrylic acid-co trimethylolpropane), sodium salt
54640-82-3
27119-07-9
51121-85-8
Acrylic acid polymer Ammonium polyacrylate; ammonium polyacrylic acid Potassium polyacrylate Acrylic acid polymer, sodium salt Acrylic acid-sodium aery latetrimethylolpropane triacrylate copolymer
9003-01-4 9003-03-6 25608-12-2 9003-04-7 76774-25-9
Poly(acrylic acid, sodium Acrylic acid-vinyl alcohol polymer, 27599-56-0 salt-gra//-poly(ethyiene oxide)), sodium salt crosslinked Poly(acrylic acid-cr;-acrylamide), Acrylamide-potassium acrylate 31212-13-2 potassium salt, crosslinked copolymer Poly(acrylic acid-cu-maleic acid) 29132-58-9 Poly(acrylic acid-comaleic acid), sodium salt Poly(acrylonitnle) Poly(acrylonitrile-cY;-butadiene)
Acrylic acid-maleic anhydride copolymer, sodium salt
52255-49-9
Acrylonitrile polymer; poly( 1 -cyanoethylene) Acrylonitrile-butadiene polymer
25014-41-9 9003-18-3
Poly(acrylonitrile-cY;-butadiene), amine terminated
68683-29-4
Poly(acrylonitrile-a;-butadiene), hydrogenated Poly(acrylonitrile-£Y>butadieneco-acrylic acid), dicarboxy terminated
88254-10-8
Poly(acrylonitrile-c<7butadiene-cc?-styrene) Poly(acrylonitrile-(Y;-vinylidene chloride-tw-methyl methacrylate)
68891-50-9
Acrylonitrile-butadiene-styrene polymer; cycolac; styreneacrylonitrile-butadiene polymer Acrylonitrile-methyl methacrylatevinylidene chloride polymer
9003-56-9
25214-39-5
Poly(allyl amine hydrochloride)
Allylamine hydrochloride
71550-12-4
Poly(p-aminobenzaldehyde)
Poly(4-aminobenzaldehyde)
28107-09-7
Poly(anethole sulfonic acid). sodium salt
Polyanethole sulfonate; sodium polyanetholesulfonate
52993-95-0
Poly((oc,(3)-D,L-aspartic acid), sodium salt Poly(azelaic anhydride) PoIy(1,4-benzene dicarboxyfl/f-bis(4-phenoxyphenyl) methanone)
94525-01-6 Azelaic acid polymer
26776-28-3 55088-54-5
CA name
Search method
1 -Propanesulfonic acid, 2-methyl2-((l-oxo-2-propenyl)amino)-, polymer with 2-propenenitrile 1-Propanesulfonic acid, 2-methyl2-((l-oxo-2-propenyl)amino)-, homopolymer 1-Propanesulfonic acid, 2-methyl2-((l-oxo-2-propenyl)amino)-, polymer with ethenylbenzene 2-Propenoic acid, homopolymer 2-Propenoic acid, homopolymer, ammonium salt 2-Propenoic acid, homopolymer. potassium salt 2-Propenoic acid, homopolymer, sodium salt 2-Propenoic acid, polymer with 2-ethyl-2-(((l-oxo-2-propenyl)oxy)methyl)-l,3-propanediyl di-2-propenoate and sodium 2-propenoate 2-Propenoic acid, polymer with ethenol, sodium salt 2-Propenoic acid, potassium salt, polymer with 2-propenamide 2-Butenedioic acid (Z)-, polymer with 2-propenoic acid 2-Propenoic acid, polymer with 2,5-furandione, sodium salt 2-Propenenitrile, homopolymer
R
(C 7 HI 3 NO 4 SC3H3N)X
R
(C 7 Hi 3 NO 4 S)V
R
(C 8 H 8 C 7 Hi 3 NO 4 S) x
R R R
(C 3 H 4 O 2 ) x (C 3 H 4 O 2 ), • A-H3N (C 3 H 4 O 2 J x A-K
R
(C 3 H 4 O 2 ) x A-Na
R
(Ci 5 H 2 OO 6 C3H4O2 C 3 H 4 O 2 Na)x
R
(C3H4O2 • C 2 H 4 O) vA"Na
R
(C 3 H 5 NO C 3 H 4 O? K)v (C 4 H 4 O 4 • C3H4O2Xx (C 4 H 2 O 3 • C^HtOi)x • A-Na (C 3 H 3 N).,
R R
R
2-Propenenitrile, polymer with R 1,3-butadiene 2-Propenenitrile, polymer with R 1,3-butadiene, 1-cyano-l-methyl4-oxo-4-((2-(l-piperazinyl)ethyl)amino)butyl-terminated 2-Propenenitrile, polymer with * 1,3-butadiene, hydrogenated 2-Propenoic acid, polymer with * 1,3-butadiene and 2-propenenitrile, 3-carboxy-l-cyano-l-methylpropylterminated 2-Propenenitrile, polymer with R L3-butadiene and ethenylbenzene 2-Propenoic acid, 2-methyl-, methyl ester, polymer with l.l-dichloroethene and 2-propenenitrile 2-Propen-1 -amine, hydrochloride, homopolymer Benzaldehyde, 4-amino-, homopolymer Benzene, l-methoxy-4(1-propenyl)-, (E)-, homopolymer, sulfonated, sodium salt DL-Aspartic acid, homopolymer, sodium salt Nonanedioic acid, homopolymer 1,4-Benzenedicarbonyl dichloride, polymer with bis(4-phenoxyphenyDmethanone
Molecular formula
(C 4 H 6 C 3 H 3 N) x (C 4 H 6 C 3 H 3 N) x
(C 4 H 6 • C 3 H 3 N) x (C 4 H 6 • C3H4O2 • C 3 H 3 N)., (C 8 H 8 C 4 H 6 C 3 H 3 N) x
R
(CsH 8 O 2 C 3 H 3 NC 2 H 2 C 2 )V
R
(C 3 H 7 N ClH)x
R
(C 7 H 7 NO),
R
Unk
R
(C 4 H 7 NO 4 ). X A-Na (C9H J6O4)x (C 2 5 Hi 8 O 3 C 8 H 4 C1 2 O 2 ) V
R R
Common name Poly(benzimidazole)
Synonyms
CAS Registry No.
Diphenyl isophthalate3,3',4,4/-tetraaminodiphenyl polymer
25928-81-8
Poly(benzoguanamine-coformaldehyde), methylated/ ethylated
68037-08-1
PolyCbenzophenone tetraBenzophenonetetracarboxylic carboxylic dianhydride-codianhydride-4,4'-oxydianilinephenylene diamine) ra-phenylenediamine copolymer
31942-21-9
Poly(2-(4-benzoyl-3-hydroxyphenoxy) ethyl acrylate)
2-Hydroxy-4-acryloxyethoxybenzophenone polymer
29963-76-6
Poly(benzyl methacrylate)
Benzyl methacrylate polymer
25085-83-0
Poly((3-cydodextrin-c
25655-42-9 68555-36-2 93975-09-8
Poly(bis(ethyl thio)acetylene)
93975-08-7
Poly(bis(methyl thio)acetylene)
93975-07-6
Poly(bisphenol A-co-4-nitrophthalic anhydrideC0-l,3-phenylene diamine)
2,2-Bis(4-(3,4-dicarboxyphenoxy)phenyl)propane dianhydridem-phenylenediamine copolymer
Poly(bisphenol A-coepichlorohydrin)
61128-46-9
25036-25-3
Poly(bisphenol A-coepichlorohydrin)
Bisphenol A epoxy resin; phenoxy resin
25068-38-6
Poly(bisphenyl tetracarboxylic dianhydride-co-phenylene diamine) Poly(4-bromostyrene)
Biphenyl dianhydride-p-phenylenediamine copolymer
29319-22-0
/?-Bromostyrene polymer
24936-50-3
Poly(butadiene) Poly(butadiene); cis and trans Poly(butadiene), cis Poly(butadiene), dicarboxy terminated
PoIy(I-butenylene); butadiene homopolymer PoIy(I-butenylene)
9003-17-2 25038-44-2 40022-03-5 68891-79-2
Poly(butadiene), hydroxyl functionalized Poly( 1,4-butanediol bis(4-aminobenzoate))
69102-90-5
PoIy(1,4-butanediol/neopentyl glycol-a/f-adipic acid)
36609-31-1
Poly(butene) PoIy(I-butene)
54667-43-5
Polybutene; polybutylene Polybutene
9003-29-6 9003-28-5
CA name
Search method
1,3-Benzenedicarboxylic acid, R diphenyl ester, polymer with (1,1 '-biphenyl)3,3',4,4/-tetramine Formaldehyde, polymer with * 6-phenyl-l,3,5-triazine2,4-diamine, ethylated/ methylated 1,3-Isobenzofurandione, R 5,5'-carbonylbis-, polymer with 1,3-benzenediamine and 4,4' -oxybis(benzenamine) 2-Propenoic acid, 2-(4-benzoylR 3-hydroxyphenoxy)ethyl ester, homopolymer 2-Propenoic acid, 2-methyl-, R phenylmethyl ester, homopolymer (3-Cyclodextrin, polymer with R (chloromethyl)oxirane Urea, ^N'-bis(3~(dimethylammo)- R propyl)-, polymer with l,l'-oxybis(2-chloroethane) Benzene, l,r-(l,2-ethynediylbisR (thiomethylene) )bis-, homopolymer Ethyne, bis(ethylthio)-, R homopolymer Ethyne, bis(methylthio)-, R homopolymer 1,3-Isobenzofurandione, R 5,5/-((l-methylethylidene) bis(4,l-phenyleneoxy)) bis- polymer with 1,3-benzenediamine Phenol, 4,4/-(l-methylethylidene)- R bis-, polymer with 2,2/-((l-ethylethylidene) bis(4,1 -phenyleneoxymethylene))bis(oxirane) Phenol, 4,4/~(l-methylethylidene)- R bis-, polymer with (chloromethyl)oxirane (5,5'Biisobenzofuran)R l,l',3,3'-tetrone, polymer with 1,4-benzenediamine Benzene, l-bromo-4-ethenyl-, R homopolymer 1,3-Butadiene, homopolymer R PoIy(I-butene-l,4-diyl) Poly(l-butene-l,4-diyl), 1,3-Butadiene, homopolymer, 3-carboxy-1 -cyano-1 -methy lpropyl-terminated 1,3-Butadiene, homopolymer, hydroxy-terminated Poly(oxy-1,4-butanediyl), oc-(4-aminobenzoyl)co-((4-aminobenzoyl)oxy)Hexanedioic acid, polymer with 1,4-butanediol and 2,2-dimethyl-l,3-propanediol Butene, homopolymer 1-Butene, homopolymer
Molecular formula (C 20 H 14 O 4 CI2HHN4)V Unk
(Ci 7 H 6 O 7 CJ2HJ2N2O C 6 H 8 N 2 ), (Ci8H I6O5)A (CnHi 2 O 2 ) v (C 42 H 70 O 35 • C3H5ClO)V (C J1H26N4OC 4 H 8 Cl 2 O), (Ci 6 H u S 2 ) v (C 6 HI 0 S 2 XV (C4H6S2)., (C3JH20Og C 6 HgN 2 ),
(C 2 iH 24 O 4 Ci 5 Hi 6 O 2 ),
(C I 6 H 6 O 6 C 6 HgN 2 ), (CgH7Br), (C 4 H 6 ),
R R *
(C4H6),, (C4H6),, Unk
*
Unk
R
(C4H 8O) „ Ci 4 Hi 2 N 2 O 3
R
(C 6 H 10 O 4 • C 5 Hj 2 O 2 C 4 Hi 0 O 2 )., (C 4 H 8 ), (C4H8).,
R R
Common name
Synonyms
CAS Registry No.
Po)y(butenes), hydrogenated
68937-10-0
Poly(butenes), monoepoxide
119275-53-5
Poly(butyl acrylate)
Butyl acrylate polymer
Poly(4-ter/-butylcyclohexyi methacrylate)
9003-49-0 34903-89-4
Poly(butyl methacrylate)
Butyl methacrylate polymer
9003-63-8
Poly(butyl methacrylate-rtfisobutyl methacrylate)
Butyl methacrylate - isobutyl methacrylate polymer
9011-53-4
Po!y(butyl methacrylate-cr;methyl methacrylate)
Methyl methacrylate - butyl methacrylate polymer
25608-33-7
Poly(4-terf-butylphenyl methacrylate)
p-tert-Butylphenyl methacrylate polymer
29696-27-3
Poly(4-terf-butylstyrene)
p-terf-Butylstyrene polymer
26009-55-2
Poly(l,4-butylene adipate)
Adipic acid-butylene glycol 25103-87-1 copolymer; adipic acidbutylene glycol polymer; PBAG; poly(butylene adipate); poly(tetramethylene adipate) Adipic acid-l,4-butanediol-HMDI- 119553-67-2 succinic acid copolymer
Poiy(l,4-butylene adipateco-i,4-butylene succinate) PoIy(1,2-butylene glycol)
1,2-Epoxybutane-propylene glycol polymer
PoIy(1,2-butylene glycol), monobutyl ether PoIy(1,4-butylene glutarate), hydroxy terminated PoIy(1,4-butylene succinate) Poly(1,4-butylene succinate-ct? HMDI) Poly( 1,4-butylene terephthalate)
Poly(caprolactone diol) Poly(caprolactone triol)
144437-84-3 1,4-Butanediol-glutaric acid copolymer Butylene glycol-succinic acid copolymer; poly(tetramethylene succinate) 1,4-Butanediol-HMDI-succinic acid copolymer
52256-54-9 25777-14-4 143606-53-5
Butanediol-terephthalic acid 24968-12-5 copolymer; poly(oxytetramethyleneoxyterephthalic acid-terephthaloyl); tetramethylene glycol polymer, SRU Caprolactone - diethylene glycol 36890-68-3 polymer e-Caprolactone - trimethylolpropane 37625-56-2 polymer
Poly(caprolactone triol)
Poly(caprolactone) Poly(chloroprene)
31923-86-1
54735-63-6
Chlorobutadiene polymer
24980-41-4 9010-98-4
CA name
Search method
Butene, homopolymer, hydrogenated 1-Butene, polymer with 2-butene and 2-methyl1-propene, epoxidized 2-Propenoic acid, butyl ester, homopolymer 2-Propenoic acid, 2-methyl-, 4-( 1,1 -dimethylethyl)cyclohexyl ester, homopolymer 2-Propenoic acid, 2-methyl, butyl ester, homopolymer 2-Propenoic acid, 2-methyl, butyl ester, polymer with 2-methylpropyl 2-methyl2-propenoate 2-Propenoic acid, 2-methyl-, butyl ester, polymer with methyl 2-methyl-2-propenoate 2-Propenoic acid, 2-methyl-, 4-(l,l-dimethylethyl)phenyl ester, homopolymer Benzene, l-(l,l-dimethylethyi)4-ethenyl-, homopolymer Hexanedioic acid, polymer with 1,4-butanediol
Molecular formula
*
Unk
*
(C 4 H 8 • C 4 H 8 • C4H8)*
R
(C7Hi2O2Xv
R
(Ci4H24O2Xv
R
(C8Hi4O2Xv
R
(C 8 HI 4 O 2 C8H]4O2Xv
R
(C 8 Hi 4 O 2 • C5H8O2)x
R
(Ci 4 Hi 8 O 2 )*
R
(C I2Hi6)A-
R
(C 6 Hi 0 O 4 C4Hi0O2Xy
Hexanedioic acid, polymer with butanedioic acid, 1,4-butanediol and 1,6-diisocyanatohexane
R
1,2-Propanediol, polymer with ethyloxirane Oxirane, ethyl-, homopolymer, mono(2-butoxy-l-methylethyl) ether Pentanedioic acid, polymer with 1,4-butanediol Butanedioic acid, polymer with 1,4-butanediol
R
(C 8 Hi 2 N 2 O 2 • C 6 H 10 O 4 C 4 Hi 0 O 2 C4H6O4) (C 4 H 8 O CiH8O2).*(C 7 Hi 6 O 2 • C 4 H 8 O) x
Butanedioic acid, polymer with 1,4-butanediol and 1,6-diisocyanatohexane Poly(oxy-l,4-butanediyloxycarbonyl-l,4-phenylenecarbonyl)
R
2-Oxepanone, polymer with 2,2'-oxybis(ethanol) 2-Oxepanone, polymer with 2-ethyl-2-(hydroxymethyl)1,3-propanediol Poly(oxy(l-oxo-l,6-hexanediyl)), a-hydro-co-hydroxy-, ester with 2-ethyl-2-(hydroxymethyl)1,3-propanediol (3:1) 2-Oxepanone, homopolymer 1,3-Butadiene, 2-chloro-, homopolymer
R
R R R
R
R R
R R
(C 5 H 8 O 4 C 4 Hi 0 O 2 ) A (C 4 Hi 0 O 2 • C4H6O4Xx (C 8 Hi 2 N 2 O 2 C 4 Hi 0 O 2 C 4 H 6 O 4 )* (Ci 2 Hi 2 O 4 ),,
(C 6 Hi 0 O 2 C4Hi0O3)A (C 6 Hj 4 03C 6 Hi 0 O 2 ) A (C 6 Hi 0 O 2 ),, (C 6 Hi 0 O 2 ),, (C6H I0O2),, C 6 Hi 4 O3 (C6H I0O2) A (C4H5Cl).,-
Common name
Synonyms
Poly(chlorostyrene)
Chlorostyrene polymer
Poly(4-chlorostyrene)
/;-Chlorostyrene polymer 4-Chlorostyrene polymer
Poly(chlorotrifluoroethylene)
Halocarbon oil
Poly(chlorotrifluoioethyleneco-vinylidene fluoride)
CAS Registry No.
CA name
9022-52-0
Benzene, chloroethenyl-, homopolymer Benzene, l-chloro~4-ethenyl-, homopolymer
Chlorotrifiuoroethylene-vinylidene fluoride polymer; trifluorochloroethylene-vinylidene fluoride polymer
24991-47-7
9002-83-9 9010-75-7
Poly(coumarone-cr;-indene)
35343-70-5
Poly(o-cresol glycidyl ether-coformaldehyde)
29690-82-2
Poly(-cresyl glycidyl etherco-formaldehyde)
Cresol-epichlorohydrinformaldehyde polymer
37382-79-9
Poly(2-cyanobutyl acrylate)
Butyl 2-cyanoacrylate polymer; poly (butyl cyanoacrylate) Poly(ethyl cyanoacrylate);
25154-80-7
Poly(2-cyanoethyl acrylate) Poly(2-cyanoheptyl acrylate)
25067-30-5 26936-29-8
Poly(2~cyanohexyl acrylate)
Poly(hexyl cyanoacrylate)
26877-39-4
Poly(2-cyanoisobutyl acrylate) Poly(2-cyanoisopropyl acrylate)
Isobutyl 2-cyanoacrylate polymer Poly(isopropyl cyanoacrylate)
26809-38-1 25931-02-6
Poly(cyclododecyl acrylate) PoIy(1,4-cyclohexane dimethylene terephthalateco-ethylene terephthalate)
56710-66-8 Dimethyl terephthalate-ethylene glycol-l,4-bis(hydroxymethyl)cyclohexane copolymer
Poly(cyclohexyl methacrylate)
25640-14-6
25768-50-7
Poly(di(ethylene glycol) glycerol-a/r-adipic acid)
Diethylene glycol-glycerol-adipic acid copolymer
26760-54-3
Poly(diallyl dimethyl ammonium chloride)
Diallyldimethylammonium chloride polymer
26062-79-3
Poly(diallyl isophthalate)
Diallyl isophthalate polymer
25035-78-3
Poly(diallyl phthalate)
Diallyl phthalate polymer
25053-15-0
Poly(diaminobenzophenoneco-benzophenone tetracarboxylic dianhydride)
Benzophenone tetracarboxylic acid dianhydridem,m'*diaminobenzophenone polymer, SRU
51518-44-6
Poly((dibenzo-18-crown-6)co-formaldehyde)
53660-42-7
Poly(dibromostyrene)
62354-98-7
Poly(dichlorophosphazene)
Dichlorophosphazine polymer; Poly(nitrile(dichlorophosphoranylidyne))
26085-02-9
Search method
Molecular formula
R
(CsH7CDv
R
(C 8 H 7 Cl) 1
Ethene, chlorotrifluoro-, homopolymer Ethene, chlorotrifluoro-, polymer with 1,1 -difluoroethene
R
(C2ClF3)V
R
(C 2 H 2 F 2 C2ClF-Ov
Benzofuran, polymer with 1 H-indene Formaldehyde, polymer with (chloromethyi)oxirane and 2-methylphenol Formaldehyde, polymer with (chloromethyl)oxirane and methylphenol 2-Propenoic acid, 2-cyano-, butyl ester, homopolymer 2-Propenoic acid, 2-cyano-, ethyl ester, homopolymer 2-Propenoic acid, 2-cyano-, heptyl ester, homopolymer 2-Propenoic acid, 2-cyano-, hexyl ester, homopolymer 2-Propenoic acid, 2-cyano2-Propenoic acid, 2-cyano-, 1 -methylethyl ester, homopolymer 2-Propenoic acid, cyclododecyl ester, homopolymer 1,4-Benzenedicarboxylic acid, dimethyl ester, polymer with 1,4-cyclohexanedimethanol and 2-ethanediol 2-Propenoic acid, 2-methyl-, cyclohexyl ester, homopolymer Hexanedioic acid, polymer with 2,2/-oxybis(ethanol) and 1,2,3-propanetriol 2-Propen-l-aminium, N,Ndimethyl-N-2-propenyl-, chloride, homopolymer 1,3-Benzenedicarboxylic acid, di-2-propenyl ester, homopolymer 1,2-Benzenedicarboxylic acid, di-2-propenyl ester, homopolymer Poly((l,3-dihydro-l,3-dioxo2H-isoindole-2,5-diyl)carbonyl(l,3-dihydro-l,3-dioxo-2Hisoindole-5,2-diyl)-l,3-phenylenecarbonyl-1,3-phenylene) Formaldehyde, polymer with 6,7,9,10,17,18,20,21 -octahydrodibenzo(b,k)( 1,4,7,10,13,16) hexaoxacyclooctadecin Benzene, dibromoethenyl-, homopolymer Poly(nitrilo(dichlorophosphoranylidyne))
R
(CgH8 C 8 H 6 O) 1
R
R
(C 7 H 8 O C3H5CIO CH 2O) v (C 7 H 8 O C 3 HsClO CH 2 O) 1 ( C 8 H N NO 2 ) v
R
(C 6 H 7 NO 1 J) 1
R
(CNHI7NO2)v
R
(C K)Hi5NO2) v
R R
( C 8 H N NO 2 ).v (C 7 HyNO?) v
R
(Ci 3 H 26 O 2 ).,
R
(C K)HK)O 4 C 8 Hi 6 O 2 • C2H6O2)
R
(CK)HI6O2)V
R
R
(C6Hi0O4' C 4 Hi 0 O 3 C3H8O3) (C 8 H) 6 N Cl) 1
R
(C i4H I 4 O 4 ).,
R
(C I 4 H| 4 O 4 ) V
R
(C 3 OHi 4 N 2 O 6 ),,
R
(C 2 0 H 2 4 O 6 CH 2O) v
R
(C8H6Br2)A
R
(Cl2NP),,
R
Common name
Synonyms
Poly(diethyl fumarate) Poly(diethylene glycol adipate) Poly(diethylene glycol/trimethylol propanetf/f-adipic acid), polyol
2698-06-6 Adipic acid-diethylene glycol polymer Adipic acid-diethylene glycoltrimethylolpropane polymer
PoIy(1,2-dihydro-2,2,4-trimethyl quinoline) Polyfdimer acid--ethylene glycol), hydrogenated
Antioxidant HS; trimethyldihydroquinoline polymer
Poly(AW-dimethylacrylamide)
/V./V-Dimethylacrylamide polymer
Poly(dimethyl siloxane), distearate terminated
Poly(dimethyl siloxaneo?-( 3-hydroxypropyl )-methyl siloxane). ethoxylated/ propoxylated Poly(dimethyl siloxane-romethyl(3-OH-propyl) siloxane)-y-PEG 3-aminopropyl ether) Poly(dimethyl siloxane), hydroxy terminated Poly(dimethylamine-£Y;epichlorohydrin) Poly(dimethylamine-tY;epichlorohydriiwflethylene diamine) Poly(dimethylsiloxane) Poly(dimethylstloxane), vinyl terminated Poly(dimethylsiloxane-C0methylphenyl siloxane) Poly(dipropylene glycol). phenyl phosphite
9010-89-3 28183-09-7
26780-96-1 68855-78-7
PoIy(Kl-dimethyl 3,5-dimethylene piperidinium chloride) Poly(2,6-dimethyl-l, Poly(2,6-xylenol) 4-phenylene oxide) Poly(2,2-dimethyl-l,3-propylene) Polyneopentyl glycol succinate
Poly(dimethyl siloxane), hydride terminated Poly(dimethyl siloxane), methoxy terminated Poly(dimethyl siloxane), vinyl terminated
CAS Registry No.
26793-34-0 32168-43-7
25134-01-4 28776-65-0
130169-63-0
Hydrogen-terminated di-Me silicones
70900-21-9 68951-97-3 68951-99-5
68937-55-3
133779-15-4
Silanol-terminated di-Me siloxanes
70131-67-8
Epichlorohydrin-dimethylamine copolymer
25988-97-0 42751-79-1
Dimethyl silicone; dimethylsilanediol polymer Dimethylsiloxanes, dimethylvinylsilyl-terminated Methylphenylsiloxane polymer
9016-00-6 68083-19-2 9005-12-3 116265-68-0
Poly(3-dodecyl thiophene), regioregular Poly(epichlorohydrin)
3-Dodecylthiophene homopolymer
104934-53-4
Poly(chloromethyl)ethylene oxide
24969-06-0
Polylethyl acrylate)
Ethyl acrylate polymer
9003-32-1
Poly(ethyl methacrylate)
Ethyl methacrylate polymer
9003-42-3
CA name
Search method
2-Butenedioic acid (E)-, diethyl ester, homopolymer Hexanedioic acid, polymer with 2,2'-oxybis(ethanol) Hexanedioic acid, polymer with 2-ethyl-2-(hydroxymethyl)1,3-propanediol and 2,2'-oxybis(ethanol) Quinoline, l,2-dihydro-2,2,4trimethyl-, homopolymer Fatty acids, C18-unsatd., dimers, hydrogenated, polymers with ethylene glycol 2-Propenamide,/V,N-dimethyl-, homopolymer PoIy(0,1-dimethylpiperidinium3,5-diyl)methylene chloride)
Molecular formula
R
(C 8 Hi 2 O 4 )V
R R
(Cr 1 Hi 0 O 4 C 4 Hi 0 O 3 )V (C6Hj 4 O 3 • CGHI0O4 C4Hi0O3),
R
(C 1 2 Hi 5 N),
S
Unk
R
(C5H9NO)V
R
(C 8 Hi 6 N),, -Cl
Phenol, 2,6-dimethyk homopolymer Poly(oxy(2,2-dimethyl1,3-propanediyl)oxy( 1,4-dioxo1,4-butanediyl)) Siloxanes and silicones, di-Me, ((l-oxooctadecyl)oxy)terminated Siloxanes and silicones, di-Me, hydrogen-terminated Siloxanes and silicones, di-Me, methoxy-terminated Siloxanes and silicones, di-Me, Me vinyl, mono(vinyl group)terminated Siloxanes and silicones, di-Me, 3-hydroxypropyl Me, ethoxylated propoxylated
R
(C 8 H] 0 O),.
R
(C 9 Hj 4 O 4 ),,
S
Unk
S
Unk
S
Unk
S
Unk
S
Unk
Siloxanes and silicones, di-Me, 3-hydroxypropyl Me, ethers with polyethylene glycol mono(3-aminopropyl) ether Siloxanes and silicones, di-Me, hydroxy-terminated Methanamine, ./V-methyl-, polymer with (chloromethyl)oxirane 1,2-Ethanediamine, polymer with (chloromethyl)oxirane and A^-methylmethanamine Poly(oxy(dimethylsilylene))
S
Unk
S
Unk
R
R
(C 3 H 5 ClO C 2 HyN) 1 (C 3 H 5 ClO C 2 HgN 2 C 2 HyN) x (C2HeOSi),,
*
Unk
R
(C7HgOSi),,
R
C IgHj 5 O 3 P • CgHi 4 O 3
R
(Ci6H2gS)v
R
(C3H5C1O)V
R
(C 5 H 8 O 2 ),
R
(C6HI0O2),
Siloxanes and Silicones, di-Me, vinyl group-terminated Poly(oxy(methylphenylsilylene)) Phosphorous acid, triphenyl ester, reaction products with dipropylene glycol Thiophene, 3-dodecyl-. homopolymer Oxirane, (chloromethyl)-, homopolymer 2-Propenoic acid, ethyl ester, homopolymer 2-Propenoic acid, 2-methyl-, ethyl ester, homopolymer
R
Common name Poly(ethyl methacrylate-comethyl acrylate) Poly(ethylene adipate)
Polyethylene adipate), tolylene 2,4-diisocyanate terminated Poly(ethylene azelate) Poly(ethylene glycol methyl ether methacrylate) Poly(ethylene glycol)
Synonyms
CAS Registry No.
Molecular formula (C6H I0O2 • C 4 H 6 O 2 )* (C6H ((,O4 • C2H6O2Jv
26572-20-3
2-Propenoic acid, 2-methyl-
R
24938-37-2
Hexanedioic acid, polymer with 1,2-ethanediol
R
R
Carbowax; oxirane polymer; PEG, poly(ethylene oxide), poly(oxyethylene); poly(vinyl oxide)
25322-68-3
Hexanedioic acid, polymer with 1,3-diisocyanatomethyibenzene and 1,2-ethanediol Nonanedioic acid, polymer with 1,2-ethanediol HP = Poly(oxy-l,2-ethanediyl)t a-(2-methyl-l-oxo-2-propenyl)co-methoxyPoly(oxy-l,2-ethanediyl), a-hydroco-hydroxy-
U
(C2H4O),,H2O
Poly(oxy-l,2-ethanediyl), a-methyl(jo-(2~propenyloxy)Poly(oxy-l,2-ethanediyl), oc-(2ethyl-l-oxohexyi)-co-((2-ethyll-oxohexyl)oxy)Poly(oxy-l,2-ethanediyl), a-butylco-hydroxyPoly(oxy-l,2-ethanediyl), a-O-oxo-2-propenyl)©-(( 1 -oxo-2-propenyl)oxy )Poly(oxy-l,2-ethanediyl), a-benzoyl-co-(benzoyloxy)Poly(oxy-l,2-ethanediyl), a-(2-methyl- l-oxo-2-propenyl)o-((2-methyl- 1-oxo2-propenyl)oxy)Poly(oxy-l,2-ethanediyl), a-methyi-co-methoxyPoly(oxy-l,2-ethanediyl), a-( 1 -oxooctadecyl)co-((l-oxooctadecyl)oxy)Poly(oxy-l,2-ethanediyl), ot-methyl-oo-hydroxy-
R
(C2H4O),, C 4 HsO (C2H4O),, C I6HwO3
9019-92-5 26760-99-6 26915-72-0
27252-80-8 9004-93-7
Poly(ethylene glycol), butyl Polyoxyethylene butyl alcohol ether 9004-77-7 ether Poly(ethylene glycol), diacrylate 26570-48-9 Polyoxyethylene dibenzoate
9004-86-8
Polyethylene glycol methacrylate
25852-47-5
Poly(ethylene glycol), dimethyl ether Poly(ethylene glycol), distearate
Polyoxyethylene dimethyl ether
24991-55-7
Polyethylene oxide distearate
9005-08-7
Polyethylene glycol), methyl ether
9004-74-4
Polyethylene glycol), methyl ether acrylate
Carbowax; methoxypoly(ethylene glycol); methyl polyglycol; monomethoxy poly(ethylene oxide) Acrylic acid-methoxy(polyethylene glycol) ester
Poly(ethylene glycol), 4-nonylphenyl ether acrylate
Tetraethylene glycol nonyiphenyl ether acrylate
87079-63-8
Polyethylene glycol), bis carboxymethyl ether
Carboxymethylpolyethylene glycol
39927-08-7
32171-39-4
Poly(ethylene glycol), bis(3-aminopropyl) terminated Poly(ethylene glycol), divinyl ether Polyethylene glycol), ethyl ether methacrylate
34901-14-9
Polyethylene glycol), methyl glutarate
79934-70-6
Poly(ethylene glycol), phenyl ether acrylate
Search method
Acrylic acid methyl ester, polymer with ethyl methacrylate Adipic acid-ethylene glycol polymer; PEGA; polyethylene glycol adipate) Adipic acid-ethylene glycoltoluene diisocyanate copolymer Azelaic acid-ethylene glycol polymer Methoxypolyethylene gtycol monomethacrylate
Polyethylene glycol), allyl methyl ether Poly(ethylene glycol), bis-2-ethyl-hexanoate
Poly(ethylene glycol), dibenzoate Poly(ethylene glycol), dimethacrylate
CA name
50856-26-3 35625-93-5
Phenol ethoxylate acrylate, polyethylene glycol monophenyl ether acrylate
56641-05-5
Poly(oxy~l,2-ethanediyl), *-(l-oxo-2-propenyl)co-methoxy2-Propenoic acid, 2-(2-(2-(2(nonylphenoxy)ethoxy)ethoxy)ethoxy)ethyl ester Poly(oxy-l,2-ethanediyl), 7.-(carboxymethyl)co-(carboxymethoxy)Poly(oxy-l,2-ethanediyl), a-(3-aminopropyl)©-(3-aminopropoxy)Poly(oxy-l,2-ethanediyl), a-ethenyl-Q)-(ethenyloxy)Poly(oxy-l,2-ethanediyl), a-(2-methyl-l-oxo-2-propenyl)co-ethoxyPoly(oxy-l,2-ethanediyl), a-(4-carboxy-l-oxobutyl)co-methoxyPoly(oxy-l,2-ethanediyl), oc-(l-oxo-2-propenyl)co-phenoxy-
R R
R R R R R
R
(C 9 H 6 N 2 O 2 C6HK)O4C2H6O2Jv (C 9 Hi 6 O 4 C2H6O2) v (C2H4O),, C5H8O2
(C2H4O),, C4Hu)O (C2H4O)/? C6H6O3 (C2H4O),, Ci4HiOO3 (C^H4O),, C«H I0O3
R
(C2H4O),, C2H6O (C2H4O),, C36H 70O ^
R
(C^H4O),,CH4O
R
(CiH4O)1, C4H6O2
R
C26H4^O6
R
(C2H4O),, C4H6O5
R
(C2H4O),, C 6 HI 6 N 2 O
R
(C2H4O),, C4H6O (C2H4O),, C6H U ) 0 2
R R
(C2H4O),, C 6 H 10 O 4
R
(C2H4O),, C9H8O2
Common name
Synonyms
CAS Registry No.
Polyethylene glycol), reacted with bisphenol A diglycidyl ether
Bisphenol A diglycidyl etherpolyethylene glycol polymer
37225-26-6
Polyethylene glycol), tetrahydrofurfuryl ether
Glycofurol; tetrahydrofurfuryl alcohol polyethylene glycol
31692-85-0
Poly(ethylene glycol), methacrylate
25736-86-1
Poly(ethylene glycol-c<9propylene glycol)
Polyethylene-polypropylene glycol monobutyl ether
Poly(ethylene imine) Poly(ethylene imine)
Polyaziridine, polyethenimide 9002-98-6 Ethylenediamine-ethylenimine 25987-06-8 polymer Aziridine-ethylene oxide copolymer 26658-46-8
Poly(ethylene imine), ethoxylated Poly(ethylene monoalcohol) Poly(ethylene succinate) Poly(ethylene terephthalate) Poly(ethylene) Poly(ethylene), chlorinated
Ethylene glycol-succinic acid polymer Dimethyl terephthalate-ethylene glycol polymer; PET; poly(oxyethylene oxyterephthaloyl) Poly(methylene)
Poly(ethylene), chlorosulfonated Polyethylene), oxidized Poly(ethylene-c//rchlorotrifluoroethylene) Poly(ethylene-a//-maleic anhydride) Poly(ethylene block-po\y (ethylene glycol)) Poly (ethylene-cY>-1-butene) Poly(ethylene-a>- 1-butenecr;-l-hexene) Poly(ethylene-co-l-octene) Poly(ethylene-cY?-acrylic acid) Poly(ethylene-cc;-acrylic acid), sodium salt Poly(ethylene-c-c;-acrylic acid), zinc salt Polyethylene-r^-butyl acrylate)
25038-59-9 9002-88-4 63231-66-3
68441-17-8 Chlorotrifluoroethene-ethene 25101-45-5 copolymer; ethylene-trifluorochloroethylene copolymer Maleic anhydride-ethyiene polymer 9006-26-2 97953-22-5 Butene-ethylene polymer; 25087-34-7 ethylene-1-butene copolymer; 1-butene-ethene polymer Butene-ethene~hexene-l copolymer 60785-11-7 Ethylene-1-octene polymer Acrylic acid-ethylene polymer; ethylene-acrylic acid polymers; primacor Ethylene-acrylic acid polymer, sodium salt
26221-73-8 9010-77-9 25750-82-7 28208-80-2
Butyl acrylate-ethylene copolymer
25750-84-9 64652-60-4
Carbon monoxide-ethylene copolymer Ethyl acrylate-ethylene polymer
Poly(ethylene-cr;-ethyl acrylatectf-maleic anhydride) Poly(ethylene-a>-glycidyl methacrylate)
71750-71-5 25569-53-3
68037-39-8
Poly(ethylene-™-butyl acrylateo?-maleic anhydride) Poly(ethylene-cY;-Ccirbon monoxide) Poly(ethylene-cr;-ethyl acrylate)
9038-95-3
25052-62-4 9010-86-0 41171-14-6
2,3-Epoxypropyl methacrylateethylene copolymer
26061-90-5
CA name
Search method
Oxirane, 2,2'-((l-methylethylidene) bis(4,l-phenyleneoxymethylene))bis-polymer with oc-hydro-co-hydroxypoly (oxy-l,2-ethanediyl) Poly(oxy-l,2-ethanediyl), a-((tetrahydro-2-furanyl)methyl)co-hydroxyPoly(oxy-l,2-ethanediyl), ot-(2-methyl-l-oxo-2-propenyl)co-hydroxyOxirane, methyl-, polymer with oxirane, monobutyl ether Aziridine, homopolymer 1,2-Ethanediamine, polymer with aziridine Aziridine, polymer with oxirane
R
(C21H24O4 • (C2H4O),, H 2 O),
R
(C2H4O),, C5H10O2
R
(C2H4O),, C4H6O2
R
C4H10O • (C 3 H 6 O C 2 H 4 O) 1 (C 2 H 5 N) 1 (C 2 H 8 N 2 C 2 H 5 N) x (C2H5NC 2 H 4 O), Unk (C 4 H 6 O 4 C 2 H 6 O 2 ), (CiOH8O4),,
R R R
Alcohols, c> 14 S Butanedioic acid, polymer with R 1,2-ethanediol Poly(oxy-l,2-ethanediyloxyU carbonyl-l,4-phenylenecarbonyl) Ethene, homopolymer Rubber, synthetic, chlorinated polyethylene Ethene, homopolymer, chlorinated, chlorosulfonated Ethene, homopolymer, oxidized Ethene, chlorotrifluoro-, polymer with ethene
Molecular formula
R S
(C2H4),Unk
*
Unk
* R
Unk (C 2 H 4 C 2 ClF 3 ),
2,5-Furandione, polymer with ethene Alcohols, C>30, ethoxylated
R S
(C 4 H 2 O 3 C 2 H 4 ), Unk
i-Butene, polymer with ethene
R
(C 4 H 8 C 2 H 4 ) v
1-Hexene, polymer with 1-butene and ethene 1-Octene, polymer with ethene 2-Propenoic acid, polymer with ethene
R
(C 6 Hi 2 C4H8C2H4), (C 8 H 16 C 2 H 4 ) v (C 3 H 4 O 2 C 2 H 4 ),
2-Propenoic acid, polymer with ethene, sodium salt 2-Propenoic acid, polymer with ethene, zinc salt 2-Propenoic acid, butyl ester, polymer with ethene 2-Propenoic acid, butyl ester, polymer with ethene and 2,5-furandione Ethene, polymer with carbon monoxide 2-Propenoic acid, ethyl ester, polymer with ethene 2-Propenoic acid, ethyl ester, polymer with ethene and 2,5-furandione 2-Propenoic acid, 2-methyl-, oxiranylmethyl ester, polymer with ethene
R R R R R R R R R R
(C 3 H 4 O 2 • C 2 H 4 ), -xNa (C 3 H 4 O 2 • C2H4),--.xZn (C 7 Hi 2 O 2 C 2 H 4 ), (C 7 Hi 2 O 2 • C4H2O3 • C 2 H 4 ), (C 2 H 4 CO), (C 5 H 8 O 2 • C 2 H 4 ), (C 5 H 8 O 2 • C4H2O3 • C 2 H 4 ), (CvHio0 3 C 2 H 4 ),
Common name Poly(ethylene-cc>-methacrylic acid) Poly(ethylene-c-methacrylic acid), sodium salt Poly(ethylene-co-methacrylic acid), zinc salt Poly(ethylene-c-methyl acrylate) Poly(ethylene-c<2-methyl acrylate-co-acrylic acid)
Synonyms
Ethylene-methacrylic acid 25053-53-6 copolymers; Poly(ethylenemethacrylic acid) Ethylene-methacrylic acid polymer. 25608-26-8 sodium salt 28516-43-0 Ethylene-methyl aery late polymer
Poly(ethylene-c<9-propylene-a?5-methylene-2-norbornene)
Poly(ethylene-c
51541-08-3
Ethylene-propene copolymer; 9010-79-1 poly(ethylene-propylene); polypro, polypropylene-polyethylene copolymer Ethylene-ethylidenebicycloheptene- 25038-36-2 propene copolymer; ethyleneethylidenenorbornene-propylene polymer Ethylene copolymer with 25038-71-5 tetrafluoroethylene Vinyl acetate-ethylene polymer 24937-78-8 Carbon monoxide-ethylene-vinyl acetate polymer
Poly(4-ethylstyrenec'o-divinylbenzene) Poly(furfuryl alcohol) Poly(D-glutamic acid), sodium salt Poly(L~glutamic acid), sodium salt Poly(glycine) Poly(glycolide)
26337-35-9 106343-08-2 68954-09-6
2-Ethylhexyl acrylate polymer
Poly(2~ethylhexyl methacrylate) Poly(2-ethyl-2-oxazoline)
25103-74-6 41525-41-1
Poly(ethylene-o?-methyl acrylate-co-glycidyl methacrylate) Poly(ethylene-c-propylene)
CAS Registry No.
9003-77-4 25719-51-1
2-Ethyl-2-oxazoline polymer; 2-ethyloxazoline homopolymer Divinylbenzene-ethylstyrene polymer
25805-17-8 9043-77-0 25212-86-6 30811-79-1
Poly(glutamic acid) sodium salt
26247-79-0
Poly(hexadecyl methacrylate)
Nylon 2, poly(imino(l-oxoethylene)) 25718-94-9 Hydroxyacetic acid polymer; 26124-68-5 poly(glycolic acid) Poly(cetyl methacrylate) 25986-80-5
Poly(hexafluoroisopropylidene diphthalic anhydride-cooxydianiline)
Hexafluoroisopropylidenebis032240-73-6 (phthalic anhydride)-oxydianiline copolymer
PoIy(1,6-hexamethylene adipate) Adipic acid-hexanediol polymer
25212-06-0
Poly(l,6-hexanediol/neopentyl glycol/di(ethylene glycol)fl/f-adipic acid) diol
68492-71-7
CA name
Search method
Molecular formula
2-Propenoic acid, 2-rnethyl-, polymer with ethene
R
(C4H6O2 • C2H4),
2-Propenoic acid, 2-methyl, polymer with ethene, sodium salt 2-Propenoic acid, 2-methyl-, polymer with ethene, zinc salt 2-Propenoic acid, methyl ester, polymer with ethene 2-Propenoic acid, polymer with ethene and methyl 2-propenoate
R
(C4H6O2 C 2 H 4 ) v -.vNa
R
(C4H6O2 C 2 H 4 ) v vZn (C4H6O2 C2H4) v (C4H6O2 C3H4O2 C2H4), (C7HK)OV C4H6O2 C 2 H 4 )v
2-Propenoic acid, 2-methyl-, oxiranylmethyl ester, polymer with ethene and methyl 2-propenoate 1-Propene, polymer with ethene
R R
R
R
(C3H6-C2H4) v
Bicyclo(2.2.1)hept-2-ene, 5-ethylidene-, polymer with ethene and 1-propene
R
(C 9 Hi 2 - C 3 H 6 C2H4) v
Ethene, tetrafluoro-, polymer with ethene Acetic acid ethenyl ester, polymer with ethene Acetic acid ethenyl ester, polymer with carbon monoxide and ethene 2,5-Furandione, polymer with ethene, graft 1,3-Butadiene, homopolymer, hydrogenated 2-Propenoic acid, 2-ethylhexyl ester, homopolymer 2-Propenoic acid, 2-methyl-. 2-ethylhexyl ester, homopolymer Oxazole, 2-ethyl-4,5-dihydro-. homopolymer Benzene, diethenyl-polymer with ethenylethylbenzene 2-Furanmethanol, homopolymer D-Glutamic acid, homopolymer, sodium salt L-Glutamic acid, homopolymer. sodium salt Glycine, homopolymer Acetic acid, hydroxy-, homopolymer 2-Propenoic acid, 2-methyl-, hexadecyl ester, homopolymer 1,3-Isobenzofurandione, 5,5'-(2,2, 2-trifluoro-l-(trirluoromethyl)ethylidene)bis-, polymer with 4,4 '-oxybisCbenzenamine) Hexanedioic acid, polymer with 1,6-hexanediol Hexanedioic acid, polymer with 2,2-dimethyl-l,3-propanediol, 2-ethyl-2-(hydroxymethyl)1,3-propanediol, 1,6-hexanediol and 2,2'-OXyMsIe^aIiOl)
R
(C 2 H 4 C 2 F 4 ) v
R
*
(C4H6O2 C2H4) v (C4H6O2 C 2 H 4 C0)A (C4H2O3 C2H4), Unk
R
(C M H 2 0 O 2 ) v
R
(CI2H22O2),
R
(C 5 H q NO) v
R
R R
(C u,H )2 • C|oH| O ) v (C 5 H 6 O 2 ) V (C.sH 9 NO 4 ) v • vNa (C 3 H 9 NO 4 )V vNa (C 2 H 5 NO 2 ) V (C 2 H 4 O V ) V
R
(C 2 ( ) H 3 8 O 2 ) V
R
(C I 9 H 6 F 6 O 6 • C ) 2 H 1 2 N 2 O) V
R
(C6Hi4O2 C6 HinO 4 ) v (C 6 H U O 3 • C6HI4O2 • C6H | 0 O 4 • CsHi2O2 C 4 Hi 0 O 3 )V
R R
R R R
R
Common name
Synonyms
CAS Registry No.
Poly( 1.6-hexanediol/neopentyl glycol-*///-adipic acid)
Adipic acid-hexamethylene glycol- 25214-14-6 neopentyl glycol polymer
PoJy(hexamethylene diisocyanate) Poly(hexyl methacrylate)
HMDI homopolymer
28182-81-2
Hexyl methacrylate polymer
25087-17-6
PoIy(I-hexene) Poly(3-hexyl thiophene), regioregular Poly(L-histidine) Poly(L-histidine hydrochloride)
25067-06-5 140934-50-1 Polyhistidine Polyhirtidine hydrochloride
26062-48-6 61857-39-4
Poly(4-hydroxybenzoate) Poly(4-hydroxy benzoic acid-cv>6-hydroxy2-naphthoic acid) Poly(3-hydroxybutyric acid)
Poly(p-acetoxybenzoic acid) /?-Acetoxybenzoic acid-6-acetoxy2-naphthoic acid polymer
26099-71-8 70679-92-4
Poly(p-hydroxybutyric acid)
26063-00-3
Poly(3-hydroxybutyric acidcY>-3-hydroxy valeric acid)
Bipol PHBV; 3-hydroxy butanoic acid-3-hydroxy valeric acid copolymer Ethylene glycol monomethacrylate polymer
80181-31-3
Search method
Molecular formula
R
R
(C6Hi4O2 C6HK)O4 C 5 Hi 2 O 2 )., (C 8 Hi 2 N 2 O 2 )V
R
(CI0HI8O2).,
R R
(C 6 H 12 )V (Ci 0 Hi 6 S) A
R R
(C6H7N3Ov (C6HyN3O2),-
R R
(C 7 H 4 O 2 ),, (C I 3 Hi 0 O 4 • CgH8O4),
R
(C 4 H 8 O 3 )V
R
(C5Hi0O3 • C 4 H 8 O 3 Jv
R
(C 6 Hi 0 O 3 )V
R
(C7Hi2O3),
R
(C|4H|4 Cl 4 N 2 O 2 ),,
R
(C| 4 H 2 2 O 2 ) V
R
(C8H|4O2)V
R
(C 4 H 8 )*
2,5-Furandione, polymer with 2-methyl- 1-propene 1,3-Butadiene, 2-methyl, polymer with 2-methyl-1 -propene 1,3-Butadiene, 2-methyl-, polymer with 2-methyl-1-propene, chlorinated 1,3-Butadiene, 2-methyl-, polymer with 2-methyl-1-propene, brominated 2-Propenoic acid, 2-methyl-. isodecyl ester, homopolymer Cyclohexane, 5-isocyanato1 -(isocyanatomethyl )1,3,3-trimethyl-, homopolymer Poly(oxy(methyl-l,2-ethanediyl)). 2-hydro-co-hydroxy-, polymer with
R R
(C4H8C4H2O3) v (C^H8-C4H8) v
*
(C 5 H 8 C 4 H 8 ) ,
*
(C 5 H 8 C 4 H 8 ) ,
R
(C I 4 H 2 6 O 2 ) v
R
(C !2 H I 8 N 2 O 2 ) v
R
(Ci2Hi8N2O2 (C 3 H 6 O),, H 2 O).,
1.3-Butadiene, 2-methyl-. homopolymer Poly( 1 -methyl-l-butene-1,4-diyl). (E)-
R
(C5H8),
CA name Hexanedioic acid, polymer with 2,2-dimethyl-l,3-propanediol and 1,6-hexanediol Hexane, 1,6-diisocyanato-. homopolymer 2-Propenoic acid, 2-methyl-, hexyl ester, homopolymer 1-Hexene, homopolymer Thiophene, 3-hexyl-, homopolymer L-Histidine, homopolymer L-Histidine, homopolymer. hydrochloride
Poly(2-hydroxyethyl methacrylate) Poly(2-hydroxypropyl methacrylate)
25249-16-5
25703-79-1
Poly(imino(tetrachloroterephthaloyl)-iminohexamethylene) Polydsobornyl methacrylate)
Hexamethylenediamine-perchlorolerephthaloyl dichloride copolymer, SRU Methacrylic acid, isobornyl ester, polymers
Poly(isobutyl methacrylate)
lsobutyl methacrylate polymer
9011-15-8
Poly(isobutylene)
PoIy(1,1-dimethylethylene); isobutene polymer; isobutylene polymer; polyisobutene
9003-27-4
Poly(isobutylene-c///-maleic anhydride) Poly(isobutylene-rr;-isoprene)
071164-49-3
64114-51-8
26426-80-2 Isobutylene-isoprene polymer
9010-85-9
Poly(isobutylene-(Y>-isoprene)
68081-82-3
Poly(isobutylene-<7J-isoprene), brominated
68441-J4-5
Polydsodecyl methacrylate)
27300-12-7
Polydsophorone diisocyanate)
53880-05-0
Poly(isophorone diisocyanaten?-poly(propylene glycol))
lsophorone diisocyanate039323-37-0 polypropylene ether glycol polymer; polypropylene glycoltsophorone diisocyanate copolymer PoIy(I-methyl-1-butenylene) 9003-31-0
Poly(isoprene), c/.v Poly(isoprene), trans
104389-32-4
Poly(oxy-l,4-phenylenecarbonyl) 2-Naphthalenecarboxylic acid, 6-(acetyloxy)-, polymer with 4-(acetyloxy)benzoic acid Butanoic acid, 3-hydroxy-, homopolymer Pentanoic acid. 3-hydroxy-, polymer with 3-hydroxybutanoic acid 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, homopolymer 2-Propenoic acid, 2-methyl, 2-hydroxypropyl ester, homopolymer Poly(iminocarbonyl(2,3,5,6tetrachloro-1.4-phenylene)carbonylimino-1.6-hexanediyl) 2-Propenoic acid. 2-methyl-. 1.7,7-trimethylbicyclo(2.2.1) hept-2-yl ester, exo-, homopolymer 2~Propenoic acid, 2-methyl-, 2-methylpropylester, homopolymer 1-Propene, 2-methyl. homopolymer
YCIH
R
(C 5 H 8 )//
Common name Poly(isoprene)-b/oc/cpoly(butadiene)
Synonyms
CAS Registry No.
Butadiene-isoprene polymer; 1,3-Butadiene-isoprene polymer
25102-52-7
Poly(isoprene-£ra/r-maleic acid monomethyl ester)
128000-08-8
Poly(2>isopropenyl-2-oxazolineco-methyl methacrylate) Poly(isopropyl methacrylate)
27341-60-2 26655-94-7
Poly(isopropyl vinyl ether)
Isopropyl vinyl ether polymer
25585-49-3
Poly(itaconic acid)
Poly(2-methylenesuccinic acid)
25119-64-6
Poly(lactide)
Lactide polymer; poly(DL-lactide)
26680-10-4
Poly(D,L-lactide-co-glycolide)
Glycolide-DL-lactide polymer; polyglactin
26780-50-7
Poly(laury 1 lactam)-blockpoly(tetrahydrofuran) Poly(lauryl methacrylate)
Maleic anhydride-1-tetradecene polymer Poly(dodecyl methacrylate)
31473-53-7
Poly (laury 1 methacrylate-Coethylene glycol dimethacrylate)
Ethylene glycol dimethacrylatelauryl methacrylate copolymer
Poly(D,L-lysine hydrobromide) Poly(L-leucine) Poly(L~leucine hydrobromide)
25719-52-2 61181-29-1
73565-55-6 Polyleucine Poly-L-lysine hydrogen bromide; polyIysine hydrobromide
Poly(D-lysine hydrobromide)
25248-98-0 25988-63-0 27964-99-4
CA name
Search method
1,3-Butadiene, 2-methyl-, polymer with 1,3-butadiene
R
(CsHg -C4H6Xv
1,3-Butadiene, 2-methyl-, homopolymer, maleated, mono-methyl esters 2-Propenoic acid, 2-methyl-, methyl ester, polymer 2-Propenoic acid, 2-methyl-, 1-methylethyl ester, homopolymer Propane, 2-(ethenyloxy)-, homopolymer Butanedioic acid, methylene, homopolymer l,4-Dioxane-2,5-dione, 3,6-dimethyl-homopolymer l,4-Dioxane-2,5-dione, 3,6-dimethy !polymer with 1,4-dioxane- 2,5-dione 2,5-Furandione, polymer with 1-tetradecene 2-Propenoic acid, 2-methyl-, dodecyl ester, homopolymer 2-Propenoic acid, 2-methyl-, 1,2-ethanediyl ester, polymer with dodecyl 2-methyl2-propenoate DL-Lysine, homopolymer, hydrobromide L-Leucine, homopolymer L-Lysine, homopolymer, hydrobromide D-Lysine, homopolymer,
*
link
R R
(C6H9NO CsH8O2)V (C7H12O2)V
R
(CsHioO)v
R
(CsH6O4)V
R
(C6H8O4)V
R
(C 6 H 8 O 4 • C4H4O4K
R
(C I4H28C4H2O3) v (C I6H30O2).,
R R
(Ci6H3OO2 C I 0 Hi 4 O 4 ) v
R
R
(C 6 H 14 N 2 O 2 ) V • vBrH (C6H I3NO2)v (C6H I4N2O2) v • ABIH (C6H I 4 N 2 O 2 ), •
R
(C 6 H l4 N 2 O 2 ) v •
R R
(C 6 Hi 4 N 2 O 2 ) v (Ci8H36 C 4 H 2 O 3 ), (C 3 H 6 N 6 CH2O)V
R R
hydrobromide
Poly(L~lysine hydrochloride)
Lysine homopolymer hydrochloride
28826-16-6
Poly(L-lysine) Poly(maleic anhydride-a/r1-octadecene) Poly(maleic anhydride-a/fa-olefin)
Lysine homopolymer 1-Octadecene-maleic anhydride polymer
25104-18-1 25266-02-8
L-Lysine, homopolymer,
ABIH
hydrochloride
68036-97-5
Poly(melamine-co-formaldehyde), butyiated
68002-25-5
Poly(melamine-co-formaldehyde), butylated Poly(melamine-co-formaldehyde), butylated/methylated Poly(melamine-coLaurolactam-polytetramethylene formaldehyde), methylated glycol copolymer
68459-79-0
Poly(melamine-coformaldehyde), isobutylated Poly(methacrylic acid), sodium salt Poly(L-methionine) Poly(4-methoxystyrene) Polymethylene polyphenylene isocyanate
70750-53-7 84732-38-7 68002-21-1 54193-36-1
Methionine homopolymer Poly(p-methoxystyrene); poly(4-vinylanisole) Poly(phenyl isocyanate-coformaldehyde), poly(methylene poly(phenyl isocyanate))
26242-79-0 24936-44-5 9016-87-9
Molecular formula
L-Lysine, homopolymer 2,5-Furandione, polymer with 1-octadecene l,3,5-Triazine-2,4,6-triamine, polymer with formaldehyde, butylated methylated l,3,5-Triazine-2,4,6-triamme, polymer with formaldehyde, butylated Alkenes, C24-28 a-, polymers with maleic anhydride Teipenes and terpenoids, limonene fraction, polymd. Azacyclotridecan-2-one, polymer with a-hydro-co-hydroxypoly(oxy- 1,4-butanediyl) l,3,5-Triazine-2,4,6-triamine, polymer with formaldehyde, isobutylated 2-Propenoic acid, 2-methyl-, homopolymer, sodium salt L-Methionine, homopolymer Benzene, l-ethenyl-4-methoxy-, homopolymer Isocyanic acid, polymethylenepoiyphenylene ester
ACIH
* *
(C 3 H 6 N 6 CH2O)x
S
Unk
S
Unk
R
(Ci2H23NO(C4H8O)7, H2O)v (C 3 H 6 N 6 CH 2 O) 1
!|:
R
(C 4 H 6 O 2 ) v xNa
R R
(C5H nNO2S).v (C9Hi()O)v
R
link
Common name PolyCmethyl acrylate)
Synonyms
CAS Registry No.
Methyl acrylate polymer
Poly(4,4'-methylene bis(phenyl isocyanateH///-butanediol/ di-PG/polycaprolactone))
9003-21-8 68084-39-9
Poly(4,4'-methylene bisphenyl isocyanate)
1,4-Butanediol-methylenedi-/;phenylene isocyanate-polytetramethylene-ether glycol copolymer
9018-04-6
Poly(methyl methacrylate)
9011-14-7
Poly(methyl methacrylate-cobutadiene-costyrene)
Methacrylic acid methyl ester; methyl methacrylate polymer Butadiene-methyl methacrylatestyrene polymer
Polydnethyl methacrylate-a;ethyl acrylate)
Methyl methacrylate-ethyl acrylate polymer
Poly(3-methyl 1,5-pentanediol adipate) Poly(4-methyl-l-pentene)
Adipic acid-3-methyl1,5-pentanediol copolymer Methylpentene polymer; 4-methylpentene homopolymer
Polydnethyl sorbate) Poly(4~methyl styrene) Poly(a-methyl styrene) Poly(methyl styrene-cY?indene), hydrogenated Polydnethyl vinyl eiher-altmaleic acid monoethyl ester)
Polydnethyl vinyl ether-altmaleic acid monoisopropyl ester) Polydnethyl vinyl ether-altmaleic acid) Polydnethyl vinyl ether-altmaleic anhydride) Polydnethyl vinyl ether-altmaleic anhydride) Poly(methylhydrosiloxane) Poly(neopentyl glycol adipate)
25053-09-2 9010-88-2 39751-34-3 25068-26-2 30813-48-0
/;-Methylstyrene polymer; 4-methylstyrene homopolymer 2-Methylstyrene polymer
24936-41-2 25014-31-7 69430-35-9
Ethyl maleate-methyl vinyl ether 25087-06-3 polymer; maleic acid monoethyl ester-methyl vinyl ether polymer; monoethyl maleate-methyl vinyl ether polymer 31307-95-6 Maleic acid-methyl vinyl ether copolymer; maleic acid-methyl vinyl ether polymer Maleic anhydride-methyl vinyl ether polymer 1,9-Decadiene-maleic anhydridemethyl vinyl ether copolymer Methyl hydrogen siloxane Adipic acid-neopentyl glycol copolymer
25153-40-6 9011-16-9 136392-67-1 9004-73-3 27925-07-J
Polylneopentyl glycol sebacate)
28759-54-8
Polydieopentyl methacrylate)
34903-87-2
Poly(norbornene)
25038-76-0
Poly(octadecyl methacrylate)
Poly(2-norbornene); polynorbornenylene Stearyl methacrylate homopolymer
Poly(octadecyl vinyl eiher-comaleic anhydride) PolyCoctyl acrylate)
Maleic anhydride-octadecyl vinyl ether polymer Octyl acrylate polymer
28214-64-4
25639-21-8
25266-13-1
CA name
Search method
Molecular formula
2-Propenoic acid, methyl ester, homopolymer 2-Oxepanone, polymer with 1,4-butanediol, 1,1'-methylenebis(isocyanatobenzene) and oxybis(propanol) 1,4-Butanediol, polymer with a-hydro-ohydroxypoly(oxy-l,4-butanediyl) and 1,1'-methylenebis(4-isocyanatobenzene) 2-Propenoic acid, 2-methyl, methyl ester, homopolymer 2-Propenoic acid,2-methyl-, methyl ester, polymer with 1,3butadiene and ethenylbenzene 2-Propenoic acid, 2-methyl-, methyl ester, polymer with ethyl 2-propenoate Hexanedioic acid, polymer with 3-methyl-1,5-pentanediol 1-Pentene, 4-methyl-, homopolymer 2,4-Hexadienoic acid, methyl ester, (EJB)-, homopolymer Benzene, l-ethenyl-4-methyl-, homopolymer Benzene, (1-methylethenyl)-, homopolymer Hydrocarbons, C6-C20, polymers, hydrogenated 2-Butenedioic acid (Z)-, monoethyl ester, polymer with methoxyethene
R
(C 4 H 6 O 2 ) V
R
(Ci 5 Hi 0 N 2 O 2 • C 6 Hi 4 O 3 C6HI0O2C 4 H I0O2) v (C 15Hi0N2O2 • C4HI 0 O 2 (C4HgO)7, H 2 O) 1
R
R
(C 5 H 8 O 2 ) v
R
(C 8 H 8 C5H8O2 C4H6Xx(C 5 H 8 O 2 • C5H8O2) v
R R R
(C 6 H) 4 O 2 C6Hi0O4Xx (C6Hi2)Jc
R
(C 7 Hi 0 O 2 K
R
(CgHi0)V
R
(CQHJOXV
S
Unk
R
(C 6 H 8 O 4 C3H6O)x
2-Butenedioic acid (Z)-, mono(l-methylethyl) ester, polymer with methoxyethene 2-Butenedioic acid (Z)-, polymer with methoxyethene
R
(C 7 Hi 0 O 4 • CaH6O)x
R
(04H 4 O 4 C 3 H 6 O),
2,5-Furandione, polymer with methoxyethene 2,5-Furandione, polymer with 1,9-decadiene and methoxyethene Poly(oxy(methylsiiylene)) Hexanedioic acid, polymer with 2,2-dimethyl-l,3-propanediol Poly(oxy(2,2-dimethyl-l,3propanediyl)oxy(l,10-dioxo1,10-decanediyl)) 2-Propenoic acid, 2-methyl-, 2,2-dimethylpropyl ester, homopolymer Bicyclo(2.2.1)hept-2-ene, homopolymer 2-Propenoic acid, 2-methyl-, octadecyl ester, homopolymer 2,5-Furandione, polymer with l-(ethenyloxy)octadecane 2-Propenoic acid, octyl ester, homopolymer
R
R
(C4H2O3 • C3H6O)., (Ci 0 H, 8 C4H2O3C 3 H 6 O) x (CH4OSi),, (C 6 Hi 0 O 4 . C 5 HI 2 OT) X (Ci 5 H 26 O 4 ),,
R
(CgHi6O2)V
R
(C7Hl0).v
R
(C22H42O2).,
R
(C20H40OC4H2O3).X (Ci1H20O2)V
R R R
R
Common name Poly(3-octyl thiophene), regioregular Poly(L-ornithine) Poly(L-ornithine hydrobromide)
Synonyms
CAS Registry No. 104934-51-2
Polyornithine Polyorthine hydrobromide
Poly(D,L-ornithine hydrobromide)
25104-12-5 27378-49-0 82682-33-5
Poly(L-ornithine hydrochloride)
Poly-L-ornithine-hydrochloride
26982-21-8
Poly[oxy(2,6-dimethyl1,4-phenylene)]
Poly(2.6-dimethyl-/;-phenylene ether); poly(2,6-dimethyl1,4-phenylene oxide). SRU 4.4'-Difluorobenzophenonehydroquinone copolymer, SRU; PEEK Bisphenol A polycarbonate; poly (4,4'-isopropylidenediphenyl carbonate) Poly(formaldehyde); formaldehyde polymer Poly(oxymethylene) diacetate
24938-67-8
Butanediol formal-trioxane copolymer; formaldehyde tetramethylene acetal-trioxane copolymer; 1,3-dioxepanetrioxane polymer Starburst 2nd generation
25214-85-1
PoIy(OXy-1,4-phenylene oxy1,4-phenylene carbonyl 1,4-phenylene) Poly(oxycarbonyloxy1,4-phenylene.isopropylidene1,4-phenylene) Poly(oxymethylene) Poly(oxymethylene), acetate end-capped Poly(oxymethylene-c1,3-dioxepane)
PoIy(PAMAM), starburst dendrimer
31694-16-3
24936-68-3
9002-81-7 25231-38-3
93376-66-0
Poly(perfluoropropylene oxideco-perfluoro formaldehyde) Poly(/?,/?'-l,4-phenylene-3,3/, 4,4/-benzophenone tetracarboxylic imid/amic acid
69991-67-9 Benzophenonetetracarboxylic dianhydride-/.?-phenylenediamine polymer, SRU
26023-21-2
Poly(/7,/7'-l,3-phenylene isophthalamide)
Isophthaloyl chloride1.3-phenylenediamine polymer
25765-47-3
Poly(/?,/?-1,4-phenylene terephthalamide)
/;-Phenylenediamine-terephthaloyl chloride copolymer
26125-61-1
Poly((phenyl glycidyl ether)ro-dicyclopentadiene) PolyCphenyl glycidyl etherco-formaldehyde) Poly(phenyl vinyl ketone)
119345-05-0
28064-14-4 Poly(acrylophenone)
26742-84-7
Poly( 1,4-phenylene diisocyanatea?-poly(l,4-butanediol))
89339-41-3
Poly( 1,4-phenylene ether ether sulfone)
28212-68-2
Poly( 1,4-phenylene ether sulfone) Poly(phenylene oxide) Poly( 1,4-phenylene sulfide)
25667-42-9
Poly(/;-phenylene terephthalamide)
Poly(phenylene ether) /?-Dichlorobenzene-sodium sulfide polymer; poly(/;-phenylene sulfide) PPTA
9041-80-9 25212-74-2
24938-64-5
CA name
Search method
!Molecular formula
Thiophene, 3-octyl-, homopolymer
R
(C|2H2oS).v
L-Omithine, homopolymer L-Ornithine, homopolymer. hydrobromide DL-Ornithine, homopolymer, hydrobromide L-Ornithine, homopolymer, hydrochloride Poly(oxy(2,6-dimethyl1,4-phenylene))
R R
(C^H^NiO])., (C 5 H 12N2O2)V • vBrH (C 5 H I 2 N 2 O 2 ). v • \BiH (C 5 Hi 2 N 2 O 2 )A \C1H
Poly(oxy-l,4-phenyleneoxy1,4-phenylenecarbonyl1,4-phenylene) Poly(oxycarbonyloxy-l,4phenylene(l-methylethylidene)1,4-phenylene) Poly(oxymethylene)
R R R
R
(C[C)Hi2O;,),,
R
(CI6HI4OI),,
R
(CH2O),,
Poly(oxymethylene), ot-acetylco-(acetyloxy)1,3-Dioxepane, polymer with 1,3.5-trioxane
R
(CH2O),, C 4Hc1O 3 (C5H 10O2 • C3H6O3) v
4,7.11,14.18,21,25,28,32,35Decaazaoctatriacontanediamide. etc 1-Propene, 1,1,2,3,3,3-hexafluoro-, oxidized, polymd. PoIy(O 3-dihydro-l,3-dioxo2H-isoindole-2,5-diyl)carbonyl(l,3-dihydro-l,3-dioxo-2Hisoindole-5,2-diyl)1,4-phenylene) 1,3-Benzenedicarbonyl dichloride, polymer with 1,3-benzenediamine 1,4-Benzenedicarbonyl dichloride, polymer with 1.4-benzenediamine Phenol, polymer with 3a,4,7,7atetrahydro-4,7-methanoIH-indene, glycidyl ether Phenol, polymer with formaldehyde. glycidyl ether 2-Propen-i-one, 1-phenyl-, homopolymer Poly(oxy-l,4-butanediyl),c/.-hydroa)-hydroxy-. polymer with 1,4-diisocyanatobenzene Poly(oxy-l,4-phenyleneoxy1,4-phenylenesulfonyl1,4-phenylene) Poly(oxy-l,4-phenylenesulfonyl1,4-phenylene) Poly(oxyphenylene) Poly(thio- 1,4-phenylene)
R
C142H288N58O28
*
Link
U
(C23H 10N2O5),,
R
(C 8 H 4 Cl 2 O 2 C6H8N2) v
R
(C 8 H 4 Cl 2 O 2 C6H8N2)v
Poly(imino-l,4-phenyleneiminocarbonyl-1,4-phenylenecarbonyl)
R
*
(C m H !2 C 6 H 6 O),
R
(C 6 H 6 O CH2O).V (C 9 H 8 O),
R R
R
(C 8 H 4 N 2 O 2 • (C 4 H 8 O),, H 2 O) v (CI8HI2O4S),,
U
(Ci 2 H 8 O 3 S),,
R U
(C 6 H 4 O),, (C 6 H 4 S),,
U
(C 14H K)N2O2),,
Common name
Synonyms
CAS Registry No.
Poly(2-pinene)
70750-57-1
Poly(poly(tetrahydrofuran) carbonate), diol
92538-66-4
CA name
Search method
Terpenes and terpenoids, turpentine-oil, oc-pinene fraction, polymd. Carbonic acid, diethyl ester, polymer with a-hydro-oo-
S
Unk
R
(C5Hi0O3 • (C 4 HgO),,
L-Proline, homopolymer 2-Propenoic acid, 2-methyl-, oxiranylmethyl ester, polymer with ethene and ethyl 2-propenoate Oxirane, methyl-, polymer with carbon dioxide Pentanedioic acid, polymer with 1,3-propanediol Poly(oxy(methyl-l,2-ethanediyl)), a-(2-arninornethylethyl)o)-(2-aminomethylethoxy)Poly(oxy(methyl-l,2-ethanediyl)), a-hydro-co-hydroxy-
R R
(C5HgNOi) 1 (C7Hi0O3C^HgO 2 C 2 H 4 ). V
R
(C 3 HeO C 0 2 ) v
R
(C^HgO 4 C 3 HgOz)V (C 3 H 6 O),, C6Hi6N2O
U
(C 3 H 6 O),,H 2 O
Poly(oxy(methyl-l,2-ethanediyl)), ot-( 1 -oxo-2-propenyl)(O-(nonylphenoxy)Poly(oxy(methyl-l,2-ethanediyl)), oc-(l -oxo-2-propenyl)co-(( I -oxo-2-propenyl )oxy)Poly(oxy(methyl-l,2-ethanediyl)), ot~(2-methyl-l -oxo-2-propenyl)to-((2-methyl-1-oxo2-propenyl)oxy)Poly(oxy(methyl-l,2-ethanediyl)), oc-(2-methyl-l -oxo-2-propenyl)co-hydroxyPoly(oxy(methyl-l,2-ethanediyl)), a-benzoyl-co-(benzoyloxy)Poly(oxy(methyl-l,2-ethanediyl)), a-(oxiranylmethyl)oo-(oxiranylmethoxy)Poly(oxy(methyl-l,2-ethanediyl)), a-butyl-co-hydroxyOxirane methyl, polymer with oxirane
R
(C 3 H 6 O),, CIgH 2 6 O 2
R
(C 3 H 6 O),, C6H6O3
R
(C 3 H 6 O),, CgHmO 3
R
(C 3 H 6 O),, C 4H 6 O 2
R
(C 3 H 6 O),, CuHiOO 3 (C 3 H 6 O),, C6Hi0O3
hydroxypoly(oxy-l,4-butaned ; )l)
Poly(L-proline) PoIy(1,3-propylene adipate)
Polyproline; proline homopolymer Ethyl acrylate-ethyleneglycidyl methacrylate polymer
25191-13-3 35830-43-4
Poly(propylene carbonate)
Carbon dioxide-propylene oxide polymer Poly(trimethylene glutarate)
25511-85-7
Poly(propylene glycol bis(2-aminopropyl ether))
Poly(oxypropylene)diamine
9046-10-0
Poly(propylene glycol)
Oxirane, methyl-, homopolymer; poly(propylene oxide); PPG: propylene glycol -propylene oxide polymer
Poly( 1,3-propylene glutarate)
52256-48-1
25322-69-4
Poly (propylene glycol), 4-nonyl phenol ether acrylate
71926-19-7
Poly(propylene glycol), diacrylate
52496-08-9
Poly(propylene glycol), dimethacrylate
25852-49-7
Poly(propylene glycol), methacrylate
39420-45-6
PoIy(propylene glycol), dibenzoate Polypropylene glycol), diglycidyl ether
72245-46-6
PoIy(propylene glycol), monobutyl ether Poly(propylene glycol )-copoly(ethylene glycol)
Polypropylene glycoi-blockPEG-block-PPG bis (2-aminopropyl ether)) Poly( 1,3-propylene succinate)
26142-30-3
Butoxypolypropylene glycoi; 9003-13-8 polyoxypropylene monobutyl ether Ethylene glycol-propylene glycol 9003-11-6 copolymer; ethylene glycolpropylene oxide copolymer; ethylene oxide-propylene oxide copolymer ethylene glycol ether; methyloxirane-oxirane copolymer Ethylene oxide-propylene oxide 65605-36-9 copolymer bis(2-aminopropyl)ether Poly(trimethylene succinate) 28158-21-6
Poly (propylene) Poly(propylene), chlorinated
Poly(propene); propene polymer
Poly(propylene). isotactic Poly(propylene-<7//-ethylene, multiarm
lsotactic propylene polymer; polypro 25085-53-4 127883-08-3
Poly(propylene-cY;-l-butene) Poly(propylene-cY;tetrafliioroethy lene)
Propene-tetrafluoroethene polymer
9003-07-0 68442-33-1
29160-13-2 27029-05-6
Molecular formula
Oxirane, methyl-, polymer with oxirane, bis(2-aminopropyl) ether Butanedioic acid, polymer with 1,3-propanediol 1-Propene, homopolymer 1-Propene, homopolymer, chlorinated 1-Propene, homopolymer isotactic Benzene, diethenyl-. polymer with 2-methyl- 1,3-butadiene, hydrogenated 1-Butene, polymer with 1-propene 1-Propene, polymer with tetrafluoroethene
HTO)X
R
R
R R
R
(C 3 H 6 O),, C4H10O (C 3 H 6 O C2H4O)x
R *
(C 3 HgNO) | / 2 (C3H6OC2H4O)1 (C 4 H 6 O4C 3 HgO 2 ) v (C 3 H 6 K Unk
R *
(C 3 H 6 ) v (C| 0 H| 0 -C.^Hg),
R R
(C 4 H 8 C 3 H 6 ). V (C3H6-C2F4)v
R
Common name Poly(propylene-gra/f-maleic anhydride) PolyCpyromellitic dianhydridecfl-4,4'-oxydianiline) Poly(sebacic anhydride) Poly(L-serine) Poly(sodium 4-styrene sulfonate) Poly(styrene) Poly(styrene-a//-maleic acid), sodium salt Poly(styrene-fr-butadiene)
Poly(styrene-£-poly(ethyleneran-butylene)-bpoly(styrene)) Poly(styrene-6/0cA:-poly(oxyethylene)) Pory(styrene-£>/ock-polyisoprene-b/-allyl alcohol) Poly(styrene-cc?-a-methylstyrene) Poly(styrene-cc?-divinyl benzene)
Synonyms
CAS Registry No.
Molecular formula
2,5-Furandione, polymer with 1-propene, graft IH, 3H-Benzo(l,2-c:4,5-c')difuran-l,3,5,7-tetrone, polymer with 4,4/-oxybis(benzenamine)
R
Decanedioic acid, homopolymer L-Serine, homopolymer Benzenesulfonic acid, 4-ethenyl-, sodium salt, homopolymer
R R R
(C I0Hi8O4)V (C 3 H 7 NO 3 ), (C 8 H 8 O 3 S • Na),-
Benzene, ethenyk homopolymer
R
(C8H8)V
2,5-Furandione, polymer with ethenylbenzene, sodium salt
R
(C 8 H 8 C 4 H 2 O 3 ),
Benzene, ethenyl-, polymer with 1,3-butadiene
R
(C8Hs C4H6)A
Benzene, ethenyl-, polymer with 1,3-butadiene, hydrogenated
*
Unk
Ethylene oxide-styrene polymer
25267-79-2
R
(C 8 H 8 C 2 H 4 O),
Isoprene-styrene polymer
25038-32-8
Oxirane, polymer with ethenylbenzene Benzene, ethenyl-, polymer with 2-methyl-l,3-butadiene 2-Propenenitrile, polymer with ethenylbenzene
R
(C 8 H 8 C 5 H 8 ),
R
(C 8 H 8 C 3 H 3 N) 1
2-Propen-l-ol, polymer with R ethenylbenzene Benzene, ethenyl-, polymer R with (l-methylethenyl)benzene Benzene, diethenyi-, polymer * with ethenylbenzene and ethenylethylbenzene, chloromethylated Methanamine, TV-methyl-, reaction * products with chloromethylated divinylbenzene-ethenylethylbenzene-styrene polymer 2-Butenedioic acid (Z)-, R monomethyl ester, polymer with ethenylbenzene, 2,5furandione and (Z)-2-methylpropyl hydrogen 2-butenedioate 2,5-Furandione, polymer with R ethenylbenzene, 2-butoxyethyl ester 2,5-Furandione, telomer with R ethenylbenzene and (1-methylethyl)benzene, 2-butoxyethyl ester 2,5-Furandione, telomer with R ethenylbenzene and (1-methyl ethyl)benzene, cyclohexyl 1-methylethyl ester 2,5-Furandione, polymer with R ethenylbenzene, cyclohexyl 1-methylethyl ester 2-Butenedioic acid (Z)-, mono R (2-methylpropyl) ester, polymer with ethenylbenzene 2,5-Furandione, polymer with R ethenylbenzene, isooctyl ester
(C 8 H 8 C 3 H 6 O) x
Acrylonitrile-styrene polymer; poly styrene-aery lonitrile; styrene-acrylonitrile polymer AHyI alcohol-styrene polymer Styrene-a-methylstyrene polymer
9003-54-7 25119-62-4 9011-11-4 69011-14-9
69011-17-2
Poly(styrene-co-maleic acid), isobutyl/methyl mixed ester
63528-92-7
Poly(styrene-comaleic acid), partial 2-butoxyethyl ester Poly(styrene-a?-maleic acid), partial 2-butoxyethyl ester, cumene terminated Poly(styrene-co-maleic acid), partial cyclohexyl/1-PR ester, cumene terminated
68890-84-6
Poly(styrene~a?-maleic acid), partial isooctyl ester
Search method
Maleic anhydride-PN 240 graft 107001-49-0 copolymer Diaminodiphenyl ether-pyromellitic 25038-81-7 dianhydride polymer; oxydianiline-pyromeliitic dianhydride polymer Sebacic acid polyanhydride 26776-29-4 Polyserine 25821-52-7 Poly (sodium /?-styrenesulfonate); 25704-18-1 poly(sodium /?-vinylbenzenesulfonate) PoIy(I-phenylethylene); poly9003-53-6 (vinylbenzene) Maleic acid anhydride-styrene 25736-61-2 polymer, sodium salt; 2,5-furandione-styrene copolymer, sodium salt Butadiene-styrene polymer, 9003-55-8 poly butadiene- polystyrene copolymer, styrene-butadiene polymer 66070-58-4
Poly(styrene-a?-divinyl benzene), amine functionalized
Poly(styrene-c«9-maleic acid), partial cyclohexyl/ isopropyl ester Poly(styrene-co-maleic acid), partial isobutyl ester
CA name
160611-50-7 160611-51-8
68890-82-4 Hydrogen isobutyl maleatestyrene copolymer
28571-95-1 68441-87-2
(C 4 H 2 Ov C 3 H 6 ), (Ci 2 Hi 2 N 2 O CK)H 2 O 6 )V
R
A Na
(C9H10 C8H8)A (Ci0H12 C | 0 H )0 • C 8 H 8 ), (C 10H [2 • C] 0 Hi 0 C8H8 • C 2 H 7 N) x (C 8 Hi 2 O 4 • C8H8 C5H6O4 • C 4 H 2 O 3 ), Unk C9H l2 (C 8 H 8 C 4 H 2 O 3 ), • AC 6 H i4 O 2 C 9 Hi 2 • (C 8 H 8 C 4 H 2 O 3 ), AC 6 H t 2 O AC3H8O Unk (C 8 Hi 2 O 4 • C 8 H 8 ), Unk
Common name
Synonyms
CAS Registry No.
Poly(styrene-cc>-maleic acid), partial propyl ester Poly(styrene-(Y;-maleic acid), partial propyl ester, cumene terminated Poly(styrene-co-maleic acid), ^c-butyl/methyl mixed ester
Maleic anhydride-styrene polymer, propyl ester
Poly(styrene-co-maleic anhydride) Polystyrene-co-maleic anhydride), cumene terminated Poly(styrene sulfonic acid-o?maleic acid), sodium salt
Maleic anhydride-styrene polymers
Poly(sulfone)
Bisphenol A-bis(chlorophenyJ) sulfone copolymer, SRU
160611-48-3
65652-36-0
9011-13-6 26762-29-8
68037-40-1
Poly(//7-but.yl methacrylate)
25135-51-7
25189-00-8
Poly(tetrafluoroethylene)
Poly(difluoromethylene); fluoropolymers; perfluoroethylene polymer Poly (tetrahy drof man) Poly(butylene oxide); tetrahydrofuran homopolymer, SRU; THF polymer, SRU Poly( tetrahy drofuran), Polytetramethylene glycol bis(3-aminopropyl) terminated bis(3-aminopropyl) ether Poly(tetrahydrofuran), linear
68890-81-3
9002-84-0
R
CgH l2 • ( C 8 H 8 C4HiOi)V • ACiH 8 O (C8Hj2O4C8H8C5H6O4 • C4H2O^v) v
R
R R
(C 8 H 8 C 4 H 2 O - Ov CqH )2 • (C 8 H 8 • C4H2O-O
*
(C8H8C 4 H 2 O ^ Na) v
U
(C 2 7 H 2 2 O 4 S),,
R
(C 8 H| 4 O 2 ). V
R
(C2F 4 ) v
72088-96-1
Poly(oxy-l,4-butanediyl), 7.-(3-aminopropyl)co-( 3-aminopropoxy )Furan, tetrahydro-, polymer with oxirane
R
(C 4 H 8 O) 1 , C6Hi6N2O
R
(C4H8OC2H4O)1
R
(C 4 H 8 S),
U R
(C 6 H 4 S) v (C?H9NO 2 SCH 2 O) v (CyH^N 2 O 2 ) V
9016-75-5 25035-71-6
Poly(tolylene 2,4-diisocyanatecY>-poly(l,4-butanediol))
Poly(tetramethylene ether glycol)TDI copolymer; polytetramethylene glycol-tolylene isocyanate polymer Potyoxypropylene glycol-tolylene diisocyanate polymer; polypropylene glycol-TDI polymer
9069-50-5
Poly(urea-rr;-formaldehyde), butylated Poly(urea-t^-formaldehyde), methylated
Unk
(C 4 H 8 O),,H 2 O
Poly(phenylene sulfide) Formaldehyde-/;-toluenesulfonamide polymer 2.4-Toluene diisocyanate polymer
27637-03-2
26373-01-3
26006-20-2
9057-91-4
68133-07-3
Polytyrosine
R
R
PolyCthio^henylene) Poly(p-toluene sulfonamideco-formaldehyde) Poly(tolylene 2,4-diisocyanate)
Poly(L-tyrosine) Poly(L-tyrosine hydrobromide)
2,5-Furandione, polymer with ethenylbenzene, propyl ester 2,5-Furandione, telomer with ethenylbenzene and (1-methyl ethylJbenzene, propyl ester 2-Butenedioic acid (Z)-, monomethyl ester, polymer with ethenylbenzene, 2,5furandione and (Z)-I-methylpropyl hydrogen 2-butenedioate 2.5-Furandione, polymer with ethenylbenzene 2,5-Furandione, telomer with ethenylbenzene and (l-methylethyl Jbenzene 2,5-Furandione, polymer with ethenylbenzene, sulfonated, sodium salt Poly(oxy-l,4-phenylenesulfonyll,4-phenyleneoxy-l,4phenylene( 1 -methylethylidene)1,4-phenylene) 2-Propenoic acid, 2-methyl-, 1,1-dimethylethyl ester, homopolymer Ethene, tetrafluoro-homopolymer
Molecular formula
Poiy(oxy-l,4-butanediyl), a-hydro-co-hydroxy-
Poly(thioisobutylene)
Poly(trimethylolpropane/ di(propylene glycol)-/radipic acid/phthalic anhydride))
Search method
25190-06-1
Oxirane-THF copolymer; polyethylene-poly(tetramethylene) glycol lsobutylene sulfide polymer
Poly(tolylene 2,4-diisocyanatectf-poly(propylene glycol))
CA name
25619-78-7 27378-49-0 68002-19-7 68071-45-4
Thirane. 2,2-dimethyl-, homopolymer Poly(thiophenylene) Benzenesulfonamide. 4-methyl-, polymer with formaldehyde Benzene, 2,4-diisocyanatol-methyl- homopolymer Poly(oxy-l,4-butanediyl), 7.-hydro-co-hydroxy-, polymer with 1,3-diisocyanatomethylbenzene Poly(oxy(methyl-l,2-ethanediyl)), a-hydro-co-hydroxy-, polymer with 1,3-diisocyanatomethylbenzene Hexanedioic acid, polymer with 2-ethyl-2-(hydroxymethyl)1,3-propanediol, 1,3-isobenzofurandione and 1,1'-oxybis(2-propanol) L-Tyrosine, homopolymer i.-Tyrosine, homopolymer. hydrobromide Urea, polymer with formaldehyde. butylated Uiea. polymer with formaldehyde, methylated
R R
(C9H6N2O2 (C 4 H 8 O),, H 2 O) V
R
(CgH6N2O2(C^H 6 O),, H 2 O) v
R
(C 8 H 4 O^C6H|4O3C 6 Hi 4 O^iC 6 H 10O4)v
R R
(CqHnNOi); (C5H I 2 N 2 O 2 ) v • vBrH Unk
:;:
*
(CH 4 N 2 OCH 2 O) x
Common name PolyCvinyl acetate)
Synonyms
CAS Registry No.
PoIy(I-acetoxyethylene): PVAC
9003-20-7
Poly(vinyl acetate-cobutyl maleate-cY?isobornyl acrylate)
136392-68-2
Poly(vinyl acetate-cocrotonic acid) Poly(vinyl alcohol)
Crotonic acid-vinyl acetate polymer 25609-89-6
Poly(vinyl alcohol-co-ethylene) Poly(vinyl alcohol -covinyl acetate) Poly(4-vinyl biphenyl) Poly (vinyl bromide) Poly(vinyl butyral) PolyCvinyl butyral-co-vinyl alcohol-co-vinyl acetate)
Poly( l-hydroxyethylene): gohsenal; 9002-89-5 lemol; polyvinol; polyviol Ethylene-vinyl alcohol polymer 25067-34-9 Vinyl alcohol-vinyl acetate polymer 25213-24-5 25232-08-0 Bromoethylene polymer
Poly(vinyl butyrate) Poly(vinyl chloride) PolyCvinyl chloride-co-vinyl acetate) PolyCvinyl chloride-co-vinyl acetate-etf-2-hydroxypropyl acrylate) PolyCvinyl chloride-a;-vinyl acetate-co-maleic acid) PolyCvinyl chloride-co-vinyl acetate-vinyl alcohol)
25951-54-6 63148-65-2 27360-07-2
24991-31-9 PoIy(I-chloroethylene) Vinyl chloride-vinyl acetate polymer
9002-86*2 9003-22-9 41618-91-1
Maleic acid-vinyl acetate-vinyl: vinyl acetate-vinyl chloridemaleic acid polymer Vinyl acetate-vinyl alcohol-vinyl chloride polymer; vinyl chloridevinyl acetate-vinyl alcohol copolymer
PolyCvinyl cinnamate)
9005-09-8
(C 4 H 6 O 2 Jv
R
(Ci3H2nO2 C I2H2nO4 • C 4 H 6 O.? ).v
R
(C 4 Hf 1 O 2 C4H6O2), (C2H4O),
R R R R R S R
R R R R
R
(C 2 H 4 O C 2 H 4 ),v (C4H6O2 C 2 H 4 O) x (C 14H l 2 ),. (C 2 H 21 Br) x Unk (CsHi 4 O 2 C4H6O2 C 2 H 4 O) x (C 6 H 1( )O 2 ) V (C 2 H 3 Cl) x (C4H6O2 C 2 H^Cl) x (C 6 H mOj • C4H6O2 C 2 H 3 Cl) x (C4H6O2 C4H4O4 C 2 H3Cl) 1 (C4H6O2 C2H4O C 2 H 3 Cl) x
24968-99-8
2-Propenoic acid,3-phenyl-. ethenyl ester, homopolymer Ethene. ethoxy-, homopolymer Ethene, fluoro-, homopolymer l.r-(methylenebis(oxy))bis-, homopolymer Acetamide, N-ethenyl-/V~methyl-, homopolymer Ethene methoxy, homopolymer 3-Buten-2-one, homopolymer Naphthalene. 2-ethenyl-, homopolymer Carbamic acid, octadecyl-, ethenyl ester, homopolymer Phenol. 4-ethenyl-. homopolymer
R
(C N H 1,,O2),.
R R R
(C4HNO), (C 2 H 3 F) x (C 5 HsO 2 )V
R
(C5HMNO)X
R R R
(C 3 H 6 O) x (C 4 H 6 O) x (Ci 2 Hm) x
R
(C2|H4|NO2)V
R
(CsH <s O) v
Propanoic acid, ethenyl ester, homopolymer Pyridine, 2-ethenyl-. homopolymer Pyridine, 2-ethenyl-. polymer with styrene 2-Pyrrolidinone. 1-ethenyl-, homopolymer
R
(C 5 HsO 2 ) v
R
(C 7 H 7 N) x
R R
(CsHs C7H7NXv (C 6 I-UNO),
2-Pyrrolidinone, 1-ethenyl-, homopolymer, compd. with iodine
R
(C6H1)NO) x -vl 2
PolyC/V-vinyl-methylacetamide)
Poly(A^methyl-/V-vinylacetamide)
26616-03-5
PolyCvinyl methyl ether) PolyCvinyl methyl ketone) Poly(2-vinyl naphthalene)
Methyl vinyl ether homopolymer Methyl vinyl ketone polymer
9003-09-2 25038-87-3 28406-56-6 36671-85-9
Poly(vinyl propionate)
/?-Vinylphenol polymer; /?-vinylphenol polymer Vinyl propionate polymer
25035-84-1
Poly(2-vinyl pyridine)
2-Vinylpyridine polymer
25014-15-7
Poly(2-vinyl pyridine-c"6>styrene) PolyCvinyl pyrrolidone)
2-Vinylpyridine-styrene polymer
24980-54-9
PolyCvinyl pyiTolidone), iodine complex
Ethenol, polymer with ethene Acetic acid ethenyl ester, polymer with ethenol 1,1 '-Biphenyl, 4-ethenylhomopolymer Ethene, bromo-, homopolymer Vinyl acetal polymers, butyrals Acetic acid ethenyl ester, polymer with l.l-bis(ethenyloxy)butane and ethenol Butanoic acid, ethenyl ester, homopolymer Ethane, chloro-homopolymer Acetic acid ethenyl ester, polymer with chloroethene 2-Propenoic acid. 2-hydroxypropyl ester, polymer with chloroethene and ethenyl acetate 2-Butenedioic acid (Z)-, 2-Butenedioic acid (Z)-
R
R
25104-37-4 24981-14-4 9003-33-2
Poly(/?-pyrrolidinylethylene): poly(vinylpyrrolidone); vinylpyrrolidone polymer
Acetic acid ethenyl ester, homopolymer 2-Butenedioic acid (Z)-, dibutyl ester, polymer with ethenyl acetate and exo-1.7,7-trimethylbicyclo(2.2.1)hept-2-yl 2-propenoate 2-Butenoic acid, polymer with ethenyl acetate Ethenol, homopolymer
Molecular formula
Acetic acid ethenyl ester, polymer with chloroethene and ethenol
Poly(ethyl vinyl ether) Monofluoroethylene polymer Poly(divinyl formal)
Poly(4-vinyl phenol)
Search method
25086-48-0
Poly(vinyl ethyl ether) PolyCvinyl fluoride) PolyCvinyl formal)
PolyCvinyl /?-octodecylcarbamate)
CA name
24979-70-2
9003-39-8
25655-41-8
Common name
Search method
Molecular formula
Synonyms
CAS Registry No.
CA name
Poly( 1-vinyl pyrrolidoneco-acrylic acid) Poly(l-vinyl pyrrolidoneco-2-dimethylamino-ethyl methacrylate)
Acrylic acid-vinylpyrrolidone polymer
28062-44-4
R
PoIy(I-vinyl pyrrolidoneco-styrene)
Styrene-Af-vinylpyrrolidone polymer; 25086-29-7 vinylpyrrolidinone-styrene polymer N-Vinyl-2-pyrrolidone-vinyl acetate 25086-89-9 copolymer; poly(vinyl acetatevinylpyrrolidinone); vinyl acetate-vinylpyrrolidone copolymer 136445-69-7
2-Propenoic acid, polymer with l-ethenyl-2-pyrrolidinone 2-Propenoic acid, 2-methyl-, 2-(dimethylamino)ethyl ester, polymer with l-ethenyl2-pyrrolidinone 2-Pyrrolidinone, 1-ethenyl-, polymer with ethenylbenzene
R
(C 8 H 8 C 6 HQNO) X
Acetic acid ethenyl ester, polymer with l-ethenyl-2-pyrrolidinone
R
(C6H9NOC4H6O2)x
Alkenes, C> 10 a-, polymers with vinylpyrrolidone 2-Pyrrolidinone, 1-ethenylhexadecyl-, homopolymer Octadecanoic acid, ethenyl ester, homopolymer Sulfuric acid, monoethenyl ester, potassium salt, homopolymer Ethenesulfonic acid, homopolymer, sodium salt
S
Unk
R
(C22H4iNO)x
R
(C 20H38O 2)*
R
(C 2 H 4 O 4 S • K)x
R
(C 2 H 4 O 3 S) x *Na
R
(C9H 10)*
R
(C 9 Hi 0 -C9H10) x
PoIy(I-vinyl pyrrolidoneCo-vinyl acetate)
PoIy(I-vinyl pyrrolidoney-(l-triacontene)) Poly(l-vinyl pyrrolidoney-1-hexadecene) Poly(vinyl stearate)
30581-59-0
63231-81-2 Vinyl stearate polymer
Poly(vinyl sulfate), potassium salt Poly (vinyl sulfonic acid), sodium salt Poly(vinyl toluene) Poly (vinyl toluene-co-alphamethylstyrene) Poly(vinylcarbazole); Poly(9-vinyl carbazole) Poly(vinylcyclohexane) Poly(vinylferrocene) Poly(vinylidene chloride) Poly(vinylidene chloride-coacrylonitrile) Poly(vinylidene chloride-comethyl acrylate)
9003-95-6 26182-60-5
Ethenesulfonic acid polymer sodium salt; ethenesulfonic acid polymer sodium salt Poly(methylstyrene); vinyltoluene polymer a-Methylstyrene-vinyltoluene polymer Poly(n-carbazolylethylene); poly(Af-vinylcarbazole)
25053-27-4 9017-21-4 9017-27-0 25067-59-8 25498-06-0
Poly(l,l-dichloroethylene) Acrylonitrile-vinylidene chloride polymer Methyl acrylate-vinylidene chloride polymer
34801-99-5 9002-85-1 9010-76-8 25038-72-6
Poly(vinylidene chloride-coVinyl chloride-vinylidene chloride 9011-06-7 vinyl chloride) polymer Poly(vinylidene fluoride) Poly(l,l-difluoroethylene); PVDF 24937-79-9 Poly(vinylidene fluoride-coHexafluoropropene-vinylidene 9011-17-0 hexafluoropropylene) fluoride polymer Poly(vinylidene fluoride-coHexafluoropropene-tetrafluoro25190-89-0 hexafluoropropylene-coethylene-vinylidene fluoride tetrafluoroethylene) polymer; vinylidene fluoridetetrafluoroethylene-perfluoropropylene copolymer Poly (vinylidene fluoride-Co- Propene- tetrafluoroethylene54675-89-7 tetrafluoroethylene-covinylidene fluoride copolymer propylene) Poly(vinylisobutyl ether) Isobutyl vinyl ether polymer 9003-44-5 Poly(4-vinyl pyridine) Poly(4-vinyl pyridine-co-butyl methacrylate) Poly(4-vinyl pyrideneCo-styrene) Poly(4-vinyl pyridine hydrochloride), crosslinked Poly(4-vinyl pyridine), crosslinked
4-Vinylpyridine homopolymer Butyl methacrylate-4-vinylpyridine polymer
25232-41-1 53761-76-5 26222-40-2 29323-87-3
Divinylbenzene-4-vinylpyridine polymer
9017-40-7
Benzene, ethenylmethylhomopolymer Benzene, ethenylmethyl-, polymer with (l-methylethenyl)benzene 9H-Carbazole, 9-ethenyl-, homopolymer Cyclohexane, ethenyl-, homopolymer Ferrocene, ethenyl-, homopolymer Ethene,l,l-dichloro-, homopolymer 2-Propenenitrile, polymer with 1,1-dichloroethene 2-Propenoic acid, methyl ester, polymer with 1,1-dichloro ethene Ethene, 1,1-dichloro-, polymer with chloroethylene Ethene, 1,1-difluoro-, homopolymer 1-Propene, 1,1,2,3,3,3-hexafluoro-, polymer with 1,1-difluoroethene 1-Propene, 1,1,2,3,3,3-hexafluoro-, polymer with 1,1-difluoroethene and tetrafluoroethene 1-Propene, polymer with 1,1-difluoroethene and tetrafluoroethene Propane, l-(ethenyloxy)2-methyl-, homopolymer Pyridine, 4-ethenyl-, homopolymer 2-Propenoic acid, 2-methyl-, butyl ester, polymer with 4-ethenylpyridine Pyridine, 4-ethenyl-, polymer with ethenylbenzene Pyridine, 4-ethenyl-, hydrochloride, homopolymer Pyridine, 4-ethenyl-, polymer with dietheny!benzene
R
R
(C6H9NOC 3 H 4 Oi) x (C 8 Hi 5 NO 2 • C6HgNO)x
(Ci 4 HnN) x
R
(C 8 Hi 4 ),
R R R
(Ci 2 Hi 2 Fe) x (C 2 H 2 Cl 2 )* (C 3 H 3 NC2H2C12)X (C 4 H 6 O 2 • C2H2Cl 2 ) x
R R R R R
R R
(C2H3Cl C 2 H 2 Ch) x (C 2 H 2 F 2 ) X (C 3 F 6 C2H2F2)X (C 3 F 6 C 2 H 2 F 2 • C2F4)X
(C 3 H 6 C2H2F2C2F4)X (C 6 Hi 2 O) x
R R
(C 7 H 7 N) x (C 8 Hi 4 O 2 . C 7 H 7 N) x
R
(C 8 H 8 -C 7 H 7 N) x
R
(C 7 H 7 NClH) x
R
(CioHioC 7 H 7 N) x
Common name
Synonyms
CAS Registry No.
Poly(4-vinyl pyridinium dichromate)
82246-45-5
Poly(4-vinyl pyridinium tribromide)
91650-35-0
Poly(/?-xylylene)
25951-90-0
Rosin, ester with glycerol
8050-31-5
Rosin, ester with pentaerythritol
8050-26-8
Rubber, chlorinated Safflower seed oil Silicone oil Soybean oil Starch Starch, soluble Starch-gra/3f-poly(acrylic acid), sodium salt Tri-o-benzyl cellulose Tung oil Zein
Methyl phenyl silicones Fats and glyceridic oils Arrowroot starch; potato starch; rice starch; tapioca starch Acrylic acid-starch polymer sodium salt Fats and glyceridic oils
9006-03-5 8001-23-8 63148-58-3 8001-22-7 9005-25-8 9005-84-9 60323-79-7 91104-69-7 8001-20-5 9010-66-6
CA name
Search method
Chromic acid (H 2 Cr 2 O 7 ), salt with diethenylbenzene polymer with 4-ethenylpyridine Hydrogen tribromide, compd. with 4-ethenylpyridine (1:1), homopolymer Benzene, 1,4-dimethyl-, homopolymer Resin acids and rosin acids, esters with glycerol Resin acids and rosin acids, esters with pentaerythritol Rubber, chlorinated Safflower oil Siloxanes and Silicones, Me Ph Soybean oil Starch Amylodextrin Starch, polymer with 2-propenoic acid, sodium salt Cellulose, tris(phenylmethyl) ether Tung oil Zeins
R
Molecular formula
R
(Ci 0 H 10 . C7H7N)* • ^Cr 2 H 2 O 7 (C7H7N Br 3 H) x '
R
(C8H iO)x
S*
Unk
S*
Unk
R S* S S* R
Unk Unk Unk Unk Unk
R R
Unk (C 3 H 4 O 2 • Unk) ^xNa (C7H8O) }/3 ; Unk Unk Unk
R S* S*
Index
This index lists only physical constants of polymer classes and a few selected specific polymers. Information on specific polymers can be found under the polymer class name. Specific polymers in the index, mostly from Section V, do not necessarily represent the only place of reference of that polymer. Additional references may be found under the respective polymer class name.
Index terms
Links
A Abbreviations and acronyms: alphabetical order
VIII/2
blends, reinforced polymers, etc.
VIII/19
chemical transformation of other polymers
VIII/18
elastomers
VIII/21
ISO codes for thermoplastics
VIII/19
polymer characteristic group based
VIII/17
poly(monomer) based
VIII/15
SPI codes for plastics recycling
VIII/21
textile fibers
VIII/22
Acetylene monomers, physical constants Acetylene oligomers
III/4 IV/19
Acid anhydrides, solubility parameter Acid dichloride monomers, physical constants
VII/700 III/4
Acid halides, solubility parameter
VII/700
Acids, solubility parameter
VII/701
Acoustic properties, and glass transition temperature Acrolein monomers, physical constants
VI/194 III/4
Acronyms, see Abbreviations and acronyms Acrylamide monomers, physical constants
III/4
Acrylate monomers, acids/esters, physical properties
III/8
Acrylic fibers
V/61
Acrylic monomers: oligomers
IV/22
propagation/termination activation energies
II/417
propagation/termination constants
II/80
Acrylic polymers, see Poly(acrylic acid) and derivatives Activation energy, free radical initiator decomposition Activation energy, of propagation and termination
II/1 II/415
acrylic derivatives
II/417
dienes
II/416
methacrylic derivatives
II/418 This page has been reformatted by Knovel to provide easier navigation.
IX/1
IX/2
Index terms
Links
Activation energy, of propagation and termination (Continued) miscellaneous compounds
II/423
olefins
II/416
styrene derivatives
II/421
vinyl esters
II/421
vinyl ethers
II/421
vinyl halogens
II/420
vinyl heteroaromatics
II/422
Activation enthalpies, of stereocontrol
II/445
Activation entropies, of stereocontrol
II/445
Activation volume
II/429
chain propagation
II/435
chain termination
II/436
chain transfer
II/436
copolymerization
II/439
initiator decomposition
II/435
selected polymerization reactions
II/432
Acyl peroxide initiators, decomposition rates
II/29
Addition polymerization: living polymers with partial deactivation
II/344
with termination
II/341
Additives: ISO codes for
VIII/20
transfer constants to
II/110
Adhesive hard spheres
VI/594
characteristic parameters
VI/600
Adhesives, surface properties
VI/534
Adsorption chromatography
VII/330
Alcohol monomers, physical properties Alcohols, solubility parameter
III/16 VII/700
Aldehydes: propagation/termination constants
II/90
solubility parameter
VII/699
Alfrey-Price equation
II/309
Alkane-diol monomers: physical properties
III/16
surface properties
VI/534
Alkanes, permeability through Santoprene TM Alkyl peroxide initiators, decomposition rates
VI/566 II/23
Allene oligomers
IV/17
Allyl functional monomers, physical properties
III/18
This page has been reformatted by Knovel to provide easier navigation.
II/321
IX/3
Index terms
Links
Alternating copolymers, fractionation systems American Chemical Society Nomenclature Committee Amine monomers, difunctional, physical properties Ammo sugar oligomers
VII/366
VII/425
I/1 III/20 IV/103
Amorphous fluoropolymers, physical constants Amorphous polymers
V/52 VI/194
heat capacity
VI/484
Anhydride monomers, physical properties
III/20
Anisotropy of segments, see Segmental anisotropy Annealing
VI/195
Area: conversion factors
I/14
SI units
I/13
Aromatic hydrocarbons, solubility parameter
VII/698
Aromatic polymers, see Poly(aromatics) ATHAS Data Bank, of heat capacities
VI/484
Avrami constants, see Bulk crystallization rates Avrami equation
VI/282
Azo derivative initiators, decomposition rates
II/9
Azonitrile initiators, decomposition rates
II/2
B Baker-Williams method
VII/330
Barrier polymers
V/160
physical constants
V/164
Baumann-Kurata-Stockmayer procedure
VII/222
Baumann-Stockmayer-Fixman procedure
VII/242
VII/243
Blends: abbreviations and acronyms
VIII/19
crystallization
VI/280
VI/287
poly(alkenes)
VI/312
VI/353
poly(dienes)
VI/312
VI/353
poly(esters)
VI/329
VI/377
poly(oxides)
VI/319
VI/371
poly(urethanes)
VI/383
poly(vinyls)
VI/312
VI/353
VII/395
VII/438
crystallization rates
fractionation systems radiation chemical yield
II/493
Block copolymers: fractionation systems
VII/382 This page has been reformatted by Knovel to provide easier navigation.
VII/427
IX/4
Index terms
Links
Block copolymers: (Continued) segmental anisotropy
VII/751
solvent-nonsolvent tables
VII/533
Boiling point: monomers, see Monomer physical constants oligomers, see Oligomer physical constants polymer solvents
III/59
Branched phenol-formaldehyde oligomers Brownian motion fractionation
IV/94 VII/333
Bulk crystallization rates: composites
VI/389
miscellaneous polymers
VI/385
poly(alkenes)
VI/341
poly(amides)
VI/379
poly(carbonates)
VI/372
poly(dienes)
VI/341
poly(esters)
VI/373
poly(oxides)
VI/365
poly(phosphazenes)
VI/384
poly(siloxanes)
VI/384
poly(urethanes)
VI/383
poly(vinyls)
VI/341
Burchard-Stockmayer-Fixman procedure
VII/240
Butadiene monomers, physical properties
III/24
1,3-Butadiene oligomers
IV/14
Butene monomers, physical properties
III/26
Butyl rubber, physical constants
IV/16
V/4
C CA Index polymer names
I/1 VI/113
Carbon-sulfur chains, theta solvents CAS Registry Numbers
VII/317 I/8
common polymers
VIII/32
example searches
VIII/26
indexing and assignment
VIII/25
Catalysts, transfer constants to
II/106
Ceiling temperature: copolymers
II/401
defined
II/393
gaseous monomer
II/397
monomers in solution
II/398 This page has been reformatted by Knovel to provide easier navigation.
I/8 VIII/25 VIII/25
IX/5
Index terms
Links
Ceiling temperature: (Continued) pure liquid monomer
II/394
Cell models
VI/592
Cellulose and derivatives: diffusion coefficients
VI/561
heat, entropy, and volume change of solution
VII/662
Huggins constant
VII/282
permeability coefficients
VI/561
physical constants
V/135
radiation chemical yield
II/487
solubility coefficients
VI/561
solution properties
V/147
solvent-nonsolvent tables
VII/529
specific refractive index increments
VII/609
surface properties
VI/533
thermal degradation
II/475
unperturbed dimensions of linear chains
VII/66
viscosity-molecular weight relationship
VII/43
Cellulose esters, solvent-nonsolvent tables
VII/530
Cellulose ethers, solvent-nonsolvent tables
VII/529
Cellulose nitrate, solvent-nonsolvent tables
VII/531
Cellulose sulfate, solvent-nonsolvent tables
VII/531
Chain conformation: isomorphous polymer pairs
VI/399
poly(amides)
VI/33
poly(aromatics)
VI/15
poly(dienes)
VI/22
poly(diynes)
VI/22
poly(esters)
VI/40
poly(ethers)
VI/51
poly(imides)
VI/15
poly(olefins)
VI/6
poly(oxides)
VI/52
poly(peptides)
VI/26
poly(saccharides)
VI/59
poly(sulfides)
VI/57
poly(sulfones)
VI/57
poly(ureas)
VI/49
poly(urethanes)
VI/49
poly(vinylidenes)
VI/13
poly(vinyls)
VI/13
Chain propagation activation energy, see Propagation activation energy This page has been reformatted by Knovel to provide easier navigation.
VI/593
IX/6
Index terms
Links
Chain propagation activation volumes
II/435
Chain propagation constants, see Propagation constants Chain termination activation energy, see Termination activation energy Chain termination activation volumes
II/436
Chain termination constants, see Termination constants Chain transfer activation volumes Chemical Abstracts
II/436 VIII/29
Chemical Abstract Service Registry Numbers, see CAS Registry Numbers Chemical Abstracts Index polymer names Chlorinated poly(ethylene)
I/1 VI/113
I/8 VIII/25
V/161
Chlorocarbon surfaces
VI/524
Chromatographic fractionation
VII/330
Classical cross fractionation
VII/332
Cleavage rate constants, photopolymerization
II/170
Cloud point titration
VII/294
Cloud temperature titration
VII/294
Coacervate extraction
VII/329
Cocrystallization
VI/280
Cohesion parameter, see Solubility parameter Cohesive energy density
VII/676
group contributions
VII/684
polar systems
VII/677
Colligative properties
VII/163
Column chromatography
VII/330
Column extraction
VII/329
Common names
I/8
Compendium of Macromolecular Nomenclature
I/1
Competitive selective adsorption
VII/330
Composites: abbreviations and acronyms
VIII/19
bulk crystallization rates
VI/389
radiation chemical yield
II/493
radiation resistance
VI/588
Compressibility equations, Isothermal Concentration dependence, polymer-solvent interaction parameter Condensation polymerization
VI/592 VII/249 II/346
molecular weight distribution
II/354
Constitutional base units
VI/113
Constitutional repeating units
I/3
This page has been reformatted by Knovel to provide easier navigation.
VIII/25
IX/7
Index terms
Links
Continuous film extraction
VII/329
Continuous polymer fractionation
VII/329
Continuum equations of state
VI/594
Conversion factors
I/14
English-American units
I/17
Copolymer abbreviations, see Abbreviations and acronyms Copolymers, see also Free radical copolymerization CAS Registry Number search example ceiling temperatures
VIII/28 II/401
crystallization rates poly(alkenes)
VI/353
poly(dienes)
VI/353
poly(esters)
VI/331
poly(siloxanes)
VI/334
poly(vinyls)
VI/353
entropy of polymerization
II/392
glass transition temperature
VI/196
heat of polymerization
VI/377
VI/252
II/380
isomorphous polymer pairs
VI/401
metallocene-catalyzed
II/329
nomenclature
I/2
radiation chemical yield
I/10
II/490
segmental anisotropy
VII/751
unperturbed dimensions of linear chains
VII/58
VII/65
viscosity-molecular weight relationship
VII/27
VII/42
Cowie-Bywater procedure
VII/241
Critical pressure, and cohesive energy density
VII/680
Cross fractionation
VII/332
Crosslinking: and glass transition temperature
VI/196
with thermal degradation
II/350
Crystal growth rates: poly(alkenes)
VI/291
poly(dienes)
VI/291
poly(oxides)
VI/300
poly(vinyls)
VI/291
Crystal habit
VI/194
Crystallinity, and glass transition temperature
VI/196
Crystallization
VI/280
blends
VI/280
cocrystallization
VI/280
composites
VI/389 This page has been reformatted by Knovel to provide easier navigation.
VI/287
IX/8
Index terms
Links
Crystallization (Continued) computer simulation
VI/290
epitaxial
VI/289
flow-induced
VI/289
kinetics
VI/282
lamellar structure growth kinetics
VI/284
mesophases
VI/282
nonisothermal
VI/286
orientational
VI/289
pressure-induced
VI/288
solvent-induced
VI/288
thermodynamics
VI/284
Crystallization analysis fractionation
VII/330
Crystallization rates: bulk crystallization rates composites
VI/389
miscellaneous polymers
VI/385
poly(alkenes)
VI/341
poly(amides)
VI/379
poly(carbonates)
VI/372
poly(dienes)
VI/341
poly(esters)
VI/373
poly(oxides)
VI/365
poly(phosphazenes)
VI/384
poly(siloxanes)
VI/384
poly(urethanes)
VI/383
poly(vinyls)
VI/341
crystal growth rates poly(alkenes)
VI/291
poly(dienes)
VI/291
poly(oxides)
VI/300
poly(vinyls)
VI/291
radial spherulite growth rates miscellaneous polymers
VI/336
poly(alkenes)
VI/304
poly(amides)
VI/331
poly(carbonates)
VI/326
poly(dienes)
VI/304
poly(esters)
VI/327
poly(oxides)
VI/315
poly(siloxanes)
VI/334
poly(vinyls)
VI/304 This page has been reformatted by Knovel to provide easier navigation.
VI/288
IX/9
Index terms
Links
Crystallization rates: (Continued) study principles/techniques
VI/282
Crystallographic data: miscellaneous polymers
VI/64
poly(amides)
VI/33
poly(aromatics)
VI/15
poly(dienes)
VI/22
poly(diynes)
VI/22
poly(esters)
VI/40
poly(ethers)
VI/51
poly(imides)
VI/15
poly(olefins)
VI/6
poly(oxides)
VI/52
poly(peptides)
VI/26
poly(saccharides)
VI/59
poly(sulfides)
VI/57
poly(sulfones)
VI/57
poly(ureas)
VI/49
poly(urethanes)
VI/49
poly(vinylidenes)
VI/13
poly(vinyls)
VI/13
Cumulative volume of precipitate
VII/328
Current Contents
VIII/29
Cyclic formaldehyde-thioformaldehyde oligomers
IV/62
Cyclic oligo(alkynes)
IV/20
Cyclic oligo(ethersulfides)
IV/63
Cyclic oligo(heterocyclics)
IV/99
Cyclic oligo(selenomethylenes)
IV/62
Cyclic oligo(thioalkylenes)
IV/62
Cyclic oligo(thioethylenes), substituted
IV/62
Cyclic oligo(thiomethylenes)
IV/62
Cyclic oligo(xylylenes)
IV/90
Cyclic phenol-formaldehyde oligomers
IV/94
1,3-Cyclohexadiene oligomers
IV/17
Cyclopentadiene oligomers
IV/17
D Data block 1, ISO codes for
VIII/19
Data block 2, ISO codes for
VIII/20
Data block 3, ISO codes for
VIII/20
Data block 4, ISO codes for
VIII/20 This page has been reformatted by Knovel to provide easier navigation.
IX/10
Index terms
Links
Data block 5, ISO codes for
VIII/21
Decomposition rates, free radical initiators
II/1
acyl peroxides
II/29
alkyl peroxides
II/23
azo derivatives
II/9
azonitriles
II/2
hydroperoxides
II/43
ketone peroxides
II/43
miscellaneous initiators
II/67
peresters
II/48
peroxy carbonates
II/48
Demixing solvents
VII/329
Dendrimers, solvent-nonsolvent tables
VII/534
Density: conversion factors
I/14
and glass transition temperature
VI/194
isorefractive and isopycnic solvent pairs
III/43
monomers, see Monomer physical constants oligomers, see Oligomer physical constants poly(amides)
VI/33
poly(aromatics)
VI/15
poly(dienes)
VI/22
poly(diynes)
VI/22
poly(esters)
VI/40
poly(ethers)
VI/51
poly(imides)
VI/15
polymer solvents
III/59
poly(olefins)
VI/6
poly(oxides)
VI/52
poly(peptides)
VI/26
poly(saccharides)
VI/59
poly(sulfides)
VI/57
poly(sulfones)
VI/57
poly(ureas)
VI/49
poly(urethanes)
VI/49
poly(vinylidenes)
VI/13
poly(vinyls)
VI/13
SI units
I/13
Density gradient technique
VII/333
Description block, ISO codes
VIII/19
Dianhydride monomers, physical properties Dielectric coefficients, and glass transition temperature This page has been reformatted by Knovel to provide easier navigation.
III/24 VI/194
II/415
IX/11
Index terms
Links
Dielectric thermal analysis, for glass transition temperature measurement
VI/196
Diene monomers: propagation/termination activation energies propagation/termination constants
II/416 II/79
Diene oligomers
IV/14
Diepoxide monomers, physical properties
III/26
Differential heat of dilution
VII/650
Differential heat of solution
VII/650
Diffusion, and glass transition temperature
VI/194
Diffusion coefficient: alkanes through Santoprene TM
VI/566
cellulose and derivatives
VI/561
esters through poly(epichlorohydrin)
VI/567
fluorinated polymers
VI/552
inorganic polymers
VII/141
molar mass averages determined from
VII/89
poly(acrylics)
VII/96
poly(alkanes)
VI/545
poly(alkenes)
VII/92
poly(amides)
VI/559
poly(aryl ether ether ketone)
VI/561
poly(carbonates)
VI/555
VII/134
poly(dienes)
VI/553
VII/165
poly(esters)
VI/555
VII/134
poly(ethers)
VII/134
poly(imides)
VI/559
poly(methacrylates)
VI/548
poly(nitriles)
VI/549
poly(nucleotides)
VII/137
VII/157
poly(oxides)
VI/555
poly(saccharides)
VII/144
poly(siloxanes)
VI/558
poly(styrenes)
VI/547
poly(sulfones)
VI/560
poly(ureas)
VII/109
VII/137
poly(urethanes)
VI/560
VII/137
poly(vinyls)
VI/549
VII/105
poly(xylylenes)
VI/555
proteins
VII/157
theory
VII/87
various compounds through high-density poly(ethylene)
VI/564
various compounds through high-density poly(propylene)
VI/564
This page has been reformatted by Knovel to provide easier navigation.
IX/12
Index terms
Links
Diffusion coefficient-molecular weight relationship, polymolecularity correction factors
VII/229
Diffusion fractionation
VII/333
Dilatometry, for glass transition temperature determination
VI/194
Diluents, and glass transition temperature
VI/197
DIN codes
VIII/19
Diphenyliodonium salts, electron transfer reaction of radicals with Dipole moments in solution
VI/195
II/176 VII/637
and cohesive energy density
VII/680
poly(acrylics)
VII/643
poly(carbonates)
VII/641
poly(dienes)
VII/644
poly(esters)
VII/640
poly(ethers)
VII/638
poly(itaconates)
VII/644
poly(methacrylics)
VII/644
poly(oxides)
VII/638
poly(sulfides)
VII/639
poly(thioethers)
VII/639
poly(vinyls)
VII/642
silicon polymers
VII/645
styrene copolymers
VII/645
Direct extraction
VII/329
Dosimetry
VI/584
Double-strand organic polymer nomenclature
I/6
E Elastomers
V/161
abbreviations and acronyms
VIII/21
permeability of gases through
VI/566
physical constants
V/168
radiation resistance
VI/586
Electrical conductivity, SI units
I/13
Electrical resistance, SI units
I/13
Electron microscope counting method
VII/333
Electron transfer rate constants, photopolymerization
II/170
Electron transfer reaction, radicals with diphenyliodonium salts
II/176
Empirical 3-parameter equations of state
VI/593
Energy: conversion factors
I/16
SI units
I/13
Engineered Materials
VIII/29 This page has been reformatted by Knovel to provide easier navigation.
II/177
IX/13
Index terms
Links
Engineering Index
VIII/29
VIII/30
Engineering Materials Abstract search
VIII/29
VIII/30
Engineering thermoplastics
V/166
English-American unit conversions
I/17
Entropy, SI units
I/13
Entropy of polymerization: copolymers
II/392
monomers giving main-chain carbon polymers
II/382
monomers giving main-chain heteroatom polymers
II/387
Entropy of solution
VII/649
cellulose and derivatives
VII/662
main-chain acyclic heteroatom polymers
VII/659
main-chain acyclic polymers
VII/650
poly(acrylics)
VII/654
poly(alkenes)
VII/651
poly(amides)
VII/661
poly(dienes)
VII/650
poly(esters)
VII/659
poly(oxides
VII/659
poly(siloxanes)
VII/661
poly(styrenes)
VII/655
poly(vinyls)
VII/655
Epitaxial crystallization
VI/289
Epoxide monomers, physical properties
III/26
Epoxy resins: interfacial tension with other polymers
VI/539
surface properties
VI/530
Equations of state
VI/591
characteristic parameters AHS + vdW equation of state
VI/600
Flory-Orwell-Vrij equation of state
VI/59
Hartmann-Haque equation of state
VI/597
Sanchez-Cho equation of state
VI/597
Sanchez-Lacombe equation of state
VI/600
Simha-Somcynsky equation of state
VI/599
simple cell model equation of state
VI/598
continuum models
VI/594
isothermal compressibility equations
VI/592
lattice models
VI/593
3-parameter equations
VI/593
Equilibrium monomer concentration: copolymers
II/401 This page has been reformatted by Knovel to provide easier navigation.
IX/14
Index terms
Links
Equilibrium monomer concentration: (Continued) gaseous monomer
II/397
monomers in solution
II/398
pure liquid monomer
II/394
Equilibrium polymerization
II/347
Esters: permeability though poly(epichlorohydrin) solubility parameter
VI/567 VII/699
Ether diol monomers, physical properties Ethers, solubility parameter
III/18 VII/699
Ethylene-acrylic acid copolymers
V/160
Ethylene copolymers, radiation chemical yield
II/490
Ethylene halide monomers, physical properties
III/28
Ethylene-methacrylic acid copolymers
V/159
Ethylene-propylene-diene terpolymers
V/161
physical constants
V/6
Ethylene-styrene interpolymers
V/160
Ethylene-vinyl acetate copolymers
V/160
Ethylene-vinyl alcohol copolymers
V/160
e values: monomers
II/310
monomers by e values
II/317
pressure effects
II/440
telogens
II/314
Excitation transfer rate constants, thioxanthones and photoinitiators
II/178
Extending fillers, ISO codes for
VIII/20
Extraction
VII/329
F Field How fractionation
VII/331
Fillers, ISO codes for
VIII/20
Film extraction
VII/329
First-order Markov mechanism
II/445
metallocene-catalyzed copolymerization
II/330
Flash point: monomers, see Monomer physical constants polymer solvents, most common Flexible poly(vinyl chloride)
III/59 V/159
Flory-Huggins interaction parameter, see Polymer-solvent interaction parameter Flory-Huggins lattice theory
VI/288
This page has been reformatted by Knovel to provide easier navigation.
II/449
IX/15
Index terms
Links
Flory-Orwoll-Vrij equation of state
VI/594
characteristic parameters
VI/599
Flow-induced crystallization
VI/289
Fluorocarbon surfaces
VI/524
Fluoropolymers: diffusion coefficients
VI/552
VI/562
permeability coefficients
VI/552
VI/562
physical constants
V/31
radiation chemical yield
II/488
solubility coefficients
VI/552
VI/562
Force: conversion factors
I/15
SI units
I/13
Formaldehyde resins: fractionation systems
VII/397
solvent-nonsolvent tables
VII/523
Formaldehyde-thioformaldehyde cyclic co-oligomers Formula index table
IV/62 VI/113
Formula weight, see Molecular weight Fox-Flory relationship
VII/235
Fractional crystallization
VII/329
Fractional precipitation
VII/328
Fractionation
VII/327
by chromatography
VII/330
cross fractionation
VII/332
by diffusion
VII/333
electron microscope counting method
VII/333
by sedimentation
VII/333
by solubility
VII/328
by ultrafiltration
VII/333
by zone melting
VII/333
Fractionation systems: blends
VII/395
VII/438
copolymers, block
VII/382
VII/427
copolymers, graft
VII/389
VII/430
VII/438 copolymers, random and alternating
VII/366
formaldehyde resins
VII/397
main-chain acyclic polymers
VII/333
main-chain carbocyclic polymers
VII/397
main-chain heteroatom polymers
VII/398
poly(acrylic acids)
VII/344 This page has been reformatted by Knovel to provide easier navigation.
VII/425
VII/351
IX/16
Index terms
Links
Fractionation systems: (Continued) poly(alkenes)
VII/336
poly(amides)
VII/411
poly(amino acids)
VII/414
poly(carbonates)
VII/404
poly(dienes)
VII/333
poly(esters)
VII/405
poly(imines)
VII/411
poly(methacrylic acids)
VII/346
poly(oxides)
VII/398
poly(phenylenes)
VII/397
poly(phosphazenes)
VII/422
poly(saccharides)
VII/431
poly(silanes)
VII/418
poly(siloxanes)
VII/418
poly(styrenes)
VII/356
poly(sulfides)
VII/416
poly(sulfonamides)
VII/416
poly(sulfones)
VII/416
poly(ureas)
VII/410
poly(urethanes)
VII/410
poly(vinyl alcohol)
VII/353
poly(vinyl esters)
VII/355
poly(vinyl ethers)
VII/353
poly(vinyl ketones)
VII/353
poly(vinyl nitriles)
VII/353
Free radical copolymerization
II/181
activation volumes
II/439
e values monomers
II/310
monomers by e values
II/317
pressure effects
II/440
telogens
II/314
pressure effects
II/437
Q values monomers
II/310
monomers by Q values
II/314
pressure effects
II/440
telogens
II/314
reactivity pattern scheme
II/321
monomer parameters
II/323
transfer agent parameters
II/326 This page has been reformatted by Knovel to provide easier navigation.
IX/17
Index terms
Links
Free radical copolymerization (Continued) transfer constant prediction
II/322
reactivity ratios
II/182
Quick Basic program for calculating
II/288
terpolymerization
II/438
Free radical initiators: active volumes
II/435
decomposition rates, see Decomposition rates, free radical initiators half life
II/2
photoinitiators
II/169
transfer constants to
II/106
Free radical polymerization
II/77
See also Free radical copolymerization activation energies, Initiator decomposition activation volumes
II/1 II/429
initiator decomposition rates
II/1
photopolymerization
II/169
propagation constants
II/79
stereocontrol activation enthalpies/entropies
II/445
temperature dependence
II/415
termination constants
II/79
transfer constants to catalysts and initiators
II/106
to monomers
II/98
to polymers
II/103
to solvents and additives
II/110
to sulfur compounds
II/150
transfer reaction
II/97
Frequency, SI units
I/13
Frequency function
II/352
Frictional ratio: inorganic polymers
VII/141
poly(acrylics)
VII/96
poly(alkenes)
VII/92
poly(amides)
VII/137
poly(carbonates)
VII/134
poly(dienes)
VII/165
poly(esters)
VII/134
poly(ethers)
VII/134
poly(nucleotides)
VII/157
poly(saccharides)
VII/144
poly(styrenes)
VII/109 This page has been reformatted by Knovel to provide easier navigation.
IX/18
Index terms
Links
Frictional ratio: (Continued) poly(ureas)
VII/137
poly(urethanes)
VII/137
poly(vinyls)
VII/105
proteins
VII/157
theory
VII/89
Fumaric monomers: physical properties of acids/esters
III/30
propagation/termination constants
II/87
G G, see Crystal growth rates; Spherulite growth rates Gamma function values
VII/223
Gaussian molecular weight distribution
II/352
Gelation
VII/765
Gelation properties, selected polymers
VII/765
Gel permeation chromatography
VII/330
Generalized exponential molecular weight distribution Generalized Flory model
II/354 VI/595
General purpose poly(styrene)
V/160
Gladstone-Dale equation
VI/571
Glass transition temperature: carbohydrates
VI/243
copolymers
VI/196
defined
VI/194
estimation methods
VI/197
factors affecting
VI/196
liquid crystals
VI/244
main-chain acyclic carbon polymers
VI/198
main-chain acyclic heteroatom polymers
VI/219
main-chain carbocyclic polymers
VI/218
main-chain heterocyclic polymers
VI/243
measurement methods
VI/195
natural polymers
VI/244
nitroso-polymers
VI/231
as nonequilibrium transition
VI/194
poly(acetals)
VI/244
poly(acrylamides)
VI/201
poly(acrylic acid esters)
VI/198
poly(acrylic acids)
VI/198
poly(acrylics)
VI/198
poly(alkenes)
VI/205 This page has been reformatted by Knovel to provide easier navigation.
VI/252
IX/19
Index terms
Links
Glass transition temperature: (Continued) poly(amides)
VI/235
poly(anilines)
VI/241
poly(benzimidazoles)
VI/245
poly(benzothiazinophenothiazines)
VI/245
poly(benzothiazoles)
VI/245
poly(benzoxazines)
VI/245
poly(benzoxazoles)
VI/245
poly(carbonates)
VI/219
poly(carboranes)
VI/245
poly(dibenzofurans)
VI/246
poly(dienes)
VI/207
poly(dioxoisoindolines)
VI/246
poly(esters)
VI/221
poly(ether ketones)
VI/226
poly(fluoresceins)
VI/247
poly(furan tetracarboxylic acid diimides)
VI/247
poly(imides)
VI/241
poly(imines)
VI/241
poly(methacrylamides)
VI/205
poly(methacrylic acid esters)
VI/201
poly(methacrylic acids)
VI/201
poly(methacrylics)
VI/198
poly(oxabicyclononanes)
VI/247
poly(oxadiazoles)
VI/248
poly(oxides)
VI/226
poly(oxindoles)
VI/248
poly(oxoisoindolines)
VI/248
poly(phenylenes)
VI/218
poly(phosphazenes)
VI/242
poly(phthalazines)
VI/248
poly(phthalides)
VI/248
poly(piperazines)
VI/248
poly(piperidines)
VI/249
poly(pyrazinoquinoxalines)
VI/249
poly(pyrazoles)
VI/249
poly(pyridazines)
VI/249
poly(pyridines)
VI/249
poly(pyromellitimides)
VI/249
poly(pyrrolidines)
VI/250
poly(quinones)
VI/250
poly(quinoxalines)
VI/250
This page has been reformatted by Knovel to provide easier navigation.
IX/20
Index terms
Links
Glass transition temperature: (Continued) poly(silanes)
VI/243
poly(silazanes)
VI/243
poly(siloxanes)
VI/231
poly(styrenes)
VI/209
poly(sulfides)
VI/233
poly(sulfonamides)
VI/234
poly(sulfonates)
VI/233
poly(sulfones)
VI/234
poly(thioesters)
VI/235
poly(triazines)
VI/252
poly(triazoles)
VI/252
poly(ureas)
VI/242
poly(urethanes)
VI/229
poly(vinyl alcohols)
VI/212
poly(vinyl esters)
VI/213
poly(vinyl ethers)
VI/214
poly(vinyl halides)
VI/215
poly(vinyl ketones)
VI/212
poly(vinyl nitriles)
VI/215
poly(vinyl thioethers)
VI/214
and surface tension
VI/522
Glassy polymers
VI/194
Graft copolymers: fractionation systems
VII/389
VII/430
VII/438 segmental anisotropy
VII/751
Gutta percha, solvent-nonsolvent tables
VII/529
G values, see Radiation chemical yield
H Halogenated hydrocarbons: solubility parameter
VII/698
surface properties of polymers
VI/525
Hansen parameter
VII/677
Hard sphere chain models
VI/592
Hartmann-Haque equation of state
VI/592
characteristic parameters
VI/597
Heat: conversion factors
I/16
SI units
I/13
This page has been reformatted by Knovel to provide easier navigation.
VI/593
IX/21
Index terms
Links
Heat capacity: conversion factors
I/16
data tables for specific polymers
VI/486
defined
VI/483
experimental curves
VI/485
SI units
I/13
Heat of fusion: poly(amides)
VI/33
poly(aromatics)
VI/15
poly(dienes)
VI/22
poly(diynes)
VI/22
poly(esters)
VI/40
poly(ethers)
VI/51
poly(imides)
VI/15
poly(olefins)
VI/6
poly(oxides)
VI/52
poly(peptides)
VI/26
poly(saccharides)
VI/59
poly(sulfides)
VI/57
poly(sulfones)
VI/57
poly(ureas)
VI/49
poly(urethanes)
VI/49
poly(vinylidenes)
VI/13
poly(vinyls)
VI/13
Heat of polymerization: copolymers
II/380
monomers giving main-chain carbon polymers
II/365
monomers giving main-chain heteroatom polymers
II/373
Heat of solution
VII/649
cellulose and derivatives
VII/662
common polymers
VII/671
main-chain acyclic heteroatom polymers
VII/659
main-chain acyclic polymers
VII/650
miscellaneous polymers
VII/659
poly(acrylics)
VII/654
poly(alkenes)
VII/651
poly(amides)
VII/661
poly(dienes)
VII/650
poly(esters)
VII/659
poly(oxides)
VII/659
poly(siloxanes)
VII/661
poly(styrenes)
VII/655 This page has been reformatted by Knovel to provide easier navigation.
VII/663
IX/22
Index terms
Links
Heat of solution (Continued) poly(vinyls)
VII/655
Heterocyclic oligomers
IV/99
Hexose oligomers
IV/102
High density poly(ethylene)
V/160
High impact poly(styrene)
V/160
Hildebrand parameter, see Solubility parameter Hoffman-Lauritzen spherulite growth equation
VI/285
Hole models
VI/592
Homologous oligomers
VI/594
IV/2
Homopolymer nomenclature
I/2
Hoy’s system
VII/687
Huggins constant: cellulose and derivatives
VII/282
defined
VII/265
poly(acrylic acids)
VII/268
poly(alkenes)
VII/266
poly(amides)
VII/279
poly(dienes)
VII/266
poly(esters)
VII/278
poly(methacrylic acids)
VII/268
poly(oxides)
VII/277
poly(saccharides)
VII/282
poly(vinyls)
VII/272
Hydrocarbon polymers: interfacial tension with other polymers
VI/535
surface properties
VI/524
Hydrocarbon surfaces
VI/524
Hydrodynamic chromatography
VII/332
Hydroperoxide initiators, decomposition rates Hydroquinone oligomers
II/43 IV/95
I Immiscible solvent partitioning
VII/329
Indexing, CAS Registry Numbers
VIII/25
Index of refraction, see Refractive index Individual item block, ISO codes
VIII/19
Initiators, free radical, see Free radical initiators Inorganic fibers
VIII/24
Inorganic polymers: diffusion coefficients
VII/137 This page has been reformatted by Knovel to provide easier navigation.
VI/533
IX/23
Index terms
Links
Inorganic polymers: (Continued) frictional ratios
VII/137
partial specific volumes
VII/137
second virial coefficients
VII/192
sedimentation coefficients
VII/137
solvent-nonsolvent tables
VII/532
Integral heat of dilution
VII/650
Integral heat of solution
VII/649
Interchange energy density
VII/678
Interfacial tension
VI/521
VI/523
See also Surface tension epoxy resins vs. others
VI/539
hydrocarbon polymers vs. others
VI/535
miscellaneous polymers
VI/540
poly(acrylics) vs. others
VI/538
poly(amides) vs. others
VI/539
poly(esters) vs. others
VI/539
poly(ethers) vs. others
VI/539
poly(methacrylics) vs. others
VI/538
poly(siloxanes) vs. others
VI/539
poly(styrenes) vs. others
VI/537
poly(vinyls) vs. others
VI/537
International System of Units (SI) International Union of Pure and Applied Chemistry (IUPAC) nomenclature Intrinsic birefringence
I/13 I/1 VI/573
Intrinsic viscosity
VII/2
Ion-exchange chromatography
VII/332
Irregular polymer nomenclature
I/7
ISO codes
VIII/19
Isocyanate monomers, physical properties
III/30
Isomorphism
VI/287
Isomorphous polymer pairs
VI/399
Isoprene oligomers
IV/15
Isopycnic solvent pairs
III/43
Isopycnic solvents
III/43
Isorefractive solvent pairs
III/43
Isorefractive solvents
III/43
Isotactic polymers
VI/6
Isothermal compressibility equations
VI/592
Isothermal crystallization
VI/281
This page has been reformatted by Knovel to provide easier navigation.
VI/399
IX/24
Index terms
Links
Itaconic derivatives: dipole moments in solution
VII/644
propagation/termination constants IUPAC (International Union of Pure and Applied Chemistry) nomenclature
II/85 I/1
K Kauri butanol values, and cohesive energy density
VII/680
kD see Decomposition rates, free radical initiators Kelen-Tudos method
II/181
Quick Basic program for implementing Ketone peroxide initiators, decomposition rates
II/288 II/43
Ketones: light stabilizer interactions
II/179
solubility parameter
VII/699
kP, see Propagation constants kT, see Termination constants
L Lactam monomers, physical properties
III/32
Lactone monomers, physical properties
III/32
Lamellae
VI/281
growth kinetics
VI/284
Lattice fluid model
VI/594
Lattice models
VI/593
Length: conversion factors
I/14
SI units
I/13
Light stabilizers
II/169
ketone interactions
II/179
Linear acetylene oligomers
IV/19
Linear low density poly(ethylene)
V/160
Linear oligo(xylylenes)
IV/90
Linear phenol-formaldehyde oligomers
IV/92
Liquid crystals
VI/280
glass transition temperature
VI/244
Logarithmic normal molecular weight distribution Lorentz-Lorentz equation
II/353 VI/571
Low density poly(ethylene)
V/160
Lyotropic phases
VI/280
This page has been reformatted by Knovel to provide easier navigation.
VII/678
IX/25
Index terms
Links
M Macleod exponent: cellulose and derivatives
VI/533
epoxy resins
VI/530
halogenated hydrocarbon polymers
VI/525
hydrocarbon polymers
VI/524
methacrylic hydrogels
VI/527
miscellaneous polymers
VI/533
organosilanes
VI/532
phenoxy resins
VI/530
poly(acrylics)
VI/526
poly(amides)
VI/530
poly(carbonates)
VI/530
poly(esters)
VI/529
poly(ethers)
VI/528
poly(imides)
VI/531
poly(imines)
VI/531
poly(methacrylics)
VI/527
poly(peptides)
VI/533
poly(siloxanes)
VI/531
poly(styrenes)
VI/525
poly(sulfones)
VI/530
poly(urethanes)
VI/531
poly(vinyl esters)
VI/526
poly(vinyls)
VI/526
Macleod’s relation
VI/522
Macromolecular assembly nomenclature Macromolecular isomorphism
I/3 VI/405
Main-chain acyclic carbon polymers: ceiling temperatures
II/394
entropy of polymerization
II/382
fractionation systems
VII/333
glass transition temperature
VI/198
heat, entropy, and volume change of solution heat of polymerization
VII/650 II/365
oligomer physical constants
IV/3
optically active polymers from achiral monomers
VII/733
optically active polymers from chiral monomers
VII/716
segmental anisotropy
VII/746
solubility parameter
VII/702
solvent-nonsolvent tables
VII/499
specific refractive index increments
VII/551
This page has been reformatted by Knovel to provide easier navigation.
II/398
IX/26
Index terms
Links
Main-chain acyclic carbon polymers: (Continued) thermal degradation
II/451
unperturbed dimensions of linear chains
VII/47
viscosity-molecular weight relationship
VII/5
Main-chain acyclic heteroatom polymers: ceiling temperatures
II/395
entropy of polymerization
II/387
fractionation systems
VII/398
glass transition temperature
VI/219
heat, entropy, and volume change of solution
VII/659
heat of polymerization
II/373
oligomer physical constants
IV/33
optically active polymers from achiral monomers
VII/737
optically active polymers from chiral monomers
VII/723
segmental anisotropy
VII/752
solubility parameter
VII/708
solvent-nonsolvent tables
VII/511
specific refractive index increments
VII/594
thermal degradation
II/465
unperturbed dimensions of linear chains
VII/60
viscosity-molecular weight relationship
VII/32
Main-chain carbocyclic polymers: fractionation systems
VII/397
glass transition temperature
VI/218
oligomer physical constants
IV/90
segmental anisotropy
VII/752
solvent-nonsolvent tables
VII/509
specific refractive index increments
VII/594
thermal degradation
II/464
unperturbed dimensions of linear chains
VII/47
viscosity-molecular weight relationship
VII/31
Main-chain carbonyl polymers, solvent-nonsolvent tables
VII/510
Main-chain heterocyclic polymers: glass transition temperature
VI/243
oligomer physical constants
IV/99
polymerizability
II/401
segmental anisotropy
VII/756
solvent-nonsolvent tables
VII/523
specific refractive index increments
VII/608
thermal degradation
II/473
Maleic anhydride copolymers: unperturbed dimensions of linear chains This page has been reformatted by Knovel to provide easier navigation.
VII/65
II/399
IX/27
Index terms
Links
Maleic anhydride copolymers: (Continued) viscosity-molecular weight relationship
VII/42
Maleic monomers, acids/esters, physical properties
III/32
Mark-Houwink-Sakurada equation
VII/2
Markov first-order mechanism, see First-order Markov mechanism Markov second-order mechanism, see Second-order Markov mechanism Mass: conversion factors
I/14
SI units
I/13
Mayo-Lewis equation
II/329
Mean-square end-to-end distance, Interconversion of different averages
VII/236
Mean-square radius of gyration, Interconversion of different averages
VII/236
Mean-square radius of gyration-molecular weight relationship
VII/232
Mechanical properties, and glass transition temperature
II/331
VI/194
Melting point: monomers, see Monomer physical constants oligomers, see Oligomer physical constants poly(amides)
VI/33
poly(aromatics)
VI/15
poly(dienes)
VI/22
poly(diynes)
VI/22
poly(esters)
VI/40
poly(ethers)
VI/51
poly(imides)
VI/15
polymers
VI/71
polymer solvents
III/59
poly(olefins)
VI/6
poly(oxides)
VI/52
poly(peptides)
VI/26
poly(saccharides)
VI/59
poly(sulfides)
VI/57
poly(sulfones)
VI/57
poly(ureas)
VI/49
poly(urethanes)
VI/49
poly(vinylidenes)
VI/13
poly(vinyls)
VI/13
Melting temperature
VI/194
See also Glass transition temperature Memory
VI/195
Mesophases: crystallization
VI/282
This page has been reformatted by Knovel to provide easier navigation.
VI/288
IX/28
Index terms
Links
Mesophases: (Continued) polydisperse high-molecular-weight polymeric Metallocene-catalyzed copolymerization Methacrylamide monomers, physical constants Methacrylate monomers, physical properties Methacrylic hydrogels, surface properties Methacrylic monomers, propagation/termination activation energies
VI/280 II/329 III/6 III/12 VI/527 II/418
Methacrylic polymers, see Poly(methacrylic acid) and derivatives Methyl methacrylate copolymers, radiation chemical yield Miscibility
II/490 VII/676
polymer-polymer guidelines
VII/679
polymer-solvent guidelines
VII/678
Miscible polymers
VI/409
polymer pairs chemically dissimilar
VI/411
having both lower and upper critical solution temperatures
VI/458
having lower critical solution temperature above room temperature
VI/454
high temperature miscible
VI/450
molecular weight dependence
VI/450
with one monomer in common
VI/411
polymer triads/tetrads, chemically dissimilar
VI/448
Molar refraction
VI/571
Molecular formula
VIII/25
Molecular Nucleation model
VI/286
Molecular weight, see also Viscosity-molecular weight relationship crystallizable polymers
VI/71
dispersion, and scattering
VII/631
and glass transition temperature
VI/197
monomers, see Monomer physical constants oligomers, see Oligomer physical constants and polymer miscibility
VI/450
and polymer-solvent interaction parameter polymer solvents
VII/250 III/59
and surface tension
VI/522
Molecular weight distribution: condensation polymers
II/354
generalized exponential distribution
II/354
logarithmic normal distribution
II/353
normal (Gaussian) distribution
II/353
Poisson distribution
II/354
and reactor conditions/design
II/352
This page has been reformatted by Knovel to provide easier navigation.
IX/29
Index terms
Links
Molecular weight distribution: (Continued) Stockmayer distribution
II/354
and viscosity constant
VII/5
Monoanhydride monomers, physical properties Monodisperse oligomers
III/20 IV/2
Monoepoxide monomers, physical properties
III/26
Monomer physical constants: acetylene monomers
III/4
acid dichloride monomers
III/4
acrolein monomers
III/4
acrylamide monomers
III/4
acrylate monomers, acids/esters
III/8
alcohol monomers
III/16
alkanediol monomers
III/16
allyl functional monomers
III/18
amine monomers, difunctional
III/20
anhydride monomers
III/20
1,2-butadiene monomers
III/24
1,3-butadiene monomers
III/24
butene monomers
III/26
dianhydride monomers
III/24
diepoxide monomers
III/26
epoxide monomers
III/26
ether diol monomers
III/18
ethylene halide monomers
III/28
fumaric monomers, acids/esters
III/30
isocyanate monomers
III/30
lactam monomers
III/32
lactone monomers
III/32
maleic monomers, acids/esters
III/32
methacrylamide monomers
III/6
methacrylate monomers, acids/esters
III/12
monoanhydride monomers
III/20
monoepoxide monomers
III/26
propene monomers
III/32
styrene monomers
III/34
vinyl monomers
III/36
Monomer quenching rate constants, photopolymerization
II/170
Monomer reactivity ratios, free radical copolymerization
II/182
Quick Basic program for calculating Monomers
II/288 III/1
See also Monomer physical constants; specific Monomers This page has been reformatted by Knovel to provide easier navigation.
II/177
IX/30
Index terms
Links
Monomers (Continued) bimolecular rate constants, photopolymerization
II/176
CAS Registry Number search example
VIII/26
compensation temperatures/enthalpies
II/449
e values
II/310
isomorphous polymer pairs
II/317
VI/399
propagation/termination activation energies
II/415
Q values
II/310
reactivity pattern parameters
II/323
transfer constants to
II/98
N National Technical Information Service
VIII/29
Natural cellulose fibers
VIII/23
Natural polymers: glass transition temperature
VI/244
solvent-nonsolvent tables
VII/528
Natural protein fibers
VIII/22
Natural rubber: physical constants
V/5
solvent-nonsolvent tables
VII/528
Nitrogen-containing compounds, solubility parameter
VII/700
Nitroso-polymers, glass transition temperature
VI/231
Nomenclature
VIII/25
See also CAS Registry Numbers Chemical Abstracts index names
I/8
common and systematic names
I/8
crystallizable polymers
VI/2
polymer classes
I/111
source-based
I/2
VI/2
structure-based
I/3
VI/3
Non-classical cross fractionation
VII/332
Nonisothermal crystallization
VI/286
Nonlinear macromolecule nomenclature Nonlinear polymerization
I/3 II/348
Nonsolvents, see Solvent-nonsolvent tables Normal molecular weight distribution
II/353
Normal-phase liquid chromatography
VII/330
Nucleation
VI/281
Nylon 6: heat capacity
VI/511 This page has been reformatted by Knovel to provide easier navigation.
IX/31
Index terms
Links
Nylon 6: (Continued) physical constants
V/121
Nylon 12, physical constants
V/121
Nylon 66
V/161
heat capacity
VI/512
physical constants
V/121
Nylon 610, physical constants
V/121
Nylon 612, heat capacity
VI/512
Nylons
V/161
heat capacity
VI/486
physical constants
V/121
O Olefin monomers: propagation/termination activation energies propagation/termination constants Olefin oligomers
II/416 II/79 IV/3
Oligo(acetals)
IV/33
Oligo(acteylenes)
IV/19
1,4-Oligo(alkadienes)
IV/16
Oligo(1-alkenylenes)
IV/9
Oligo(alkynes)
IV/20
Oligo(amides)
IV/64
Oligo(benzyls)
IV/91
Oligo(carbonates)
IV/47
Oligo(cyclopentylenes)
IV/90
Oligo(dienes)
IV/14
Oligo(diphenylmethanes)
IV/91
Oligo(esters)
IV/48
Oligo(ethers)
IV/33
Oligo(ethylenes)
IV/3
Oligo(furans)
IV/99
Oligo(imines)
IV/88
Oligo(isobutenes)
IV/8
Oligomeric α-ω-diynes
IV/20
Oligomer physical constants: with aliphatic side chains with heteroatoms with main-chain acyclic carbon only
IV/22 IV/3
with main-chain cyclic units
IV/90
with main-chain heteroatoms
IV/33
with main-chain heterocyclic rings
IV/99
This page has been reformatted by Knovel to provide easier navigation.
IX/32
Index terms
Links
Oligomers
IV/2
Oligo(methylenes)
IV/3
Oligo(olefins)
IV/3
Oligo(peptides)
IV/72
Oligo(perfluoroethylenes)
IV/6
Oligo(perfluoromethylenes)
IV/6
Oligo(p-phenoxy phenylmethanes)
IV/91
Oligo(p-phenylene oxides)
IV/91
Oligo(phenylenes)
IV/96
Oligo(p-phenylene sulfides)
IV/91
Oligo(pyridines)
IV/99
Oligo(pyrroles)
IV/99
Oligo(p-quinones)
IV/98
Oligo(saccharides)
IV/101
Oligo(selenides)
IV/62
Oligo(spiranes)
IV/90
Oligo(stilbenes)
IV/91
Oligo(styrenes)
IV/30
Oligo(sulfides)
IV/62
Oligo(thiophenes)
IV/99
Oligo(ureas)
IV/89
Oligo(urethanes)
IV/58
Oligo(vinyl) derivatives
IV/26
Oligo(xylylenes)
IV/90
Optical anisotropy
IV/27
VI/572
Optically active polymers: achiral monomers
VII/733
chiral monomers
VII/716
main-chain acyclic heteroatom polymers achiral monomers
VII/737
chiral monomers
VII/723
main-chain acyclic polymers achiral monomers
VII/733
chiral monomers
VII/716
poly(acrylics)
VII/716
poly(alkenes)
VII/716
poly(alkynes)
VII/721
poly(amides)
VII/726
poly(amino acids)
VII/729
poly(carbazoles)
VII/719
poly(dienes)
VII/720 This page has been reformatted by Knovel to provide easier navigation.
VII/733
VII/735
IX/33
Index terms
Links
Optically active polymers: (Continued) poly(esters)
VII/724
poly(imines)
VII/728
poly(isocyanates)
VII/728
VII/738
poly(isonitriles)
VII/720
VII/736
poly(maleimides)
VII/722
VII/736
poly(methacrylics)
VII/717
VII/734
poly(oxides)
VII/723
VII/737
poly(saccharides)
VII/732
poly(styrenes)
VII/719
VII/735
poly(sulfides)
VII/725
VII/737
poly(thioesters)
VII/725
poly(ureas)
VII/725
poly(urethanes)
VII/725
poly(vinyl esters)
VII/718
poly(vinyl ethers)
VII/718
poly(vinyl ketones)
VII/718
Organic free radical initiators, see Free radical initiators Organic pigments, surface properties
VI/534
Organosilanes, surface properties
VI/532
Orientational crystallization
VI/289
Orthogonal chromatography
VII/332
Oscillating load methods, of glass transition temperature measurement
VI/196
P Paraffinic hydrocarbons, solubility parameter
VII/698
Partial heat of dilution
VII/650
Partial heat of solution
VII/650
Partial specific volume: inorganic polymers
VII/141
poly(acrylics)
VII/96
poly(alkenes)
VII/92
poly(amides)
VII/137
poly(carbonates)
VII/134
poly(dienes)
VII/165
poly(esters)
VII/134
poly(ethers)
VII/134
poly(nucleotides)
VII/157
poly(saccharides)
VII/144
poly(styrenes)
VII/109
poly(ureas)
VII/137
poly(urethanes)
VII/137 This page has been reformatted by Knovel to provide easier navigation.
VII/735
IX/34
Index terms
Links
Partial specific volume: (Continued) poly(vinyls)
VII/105
proteins
VII/157
theory
VII/89
Particle scattering factors
VII/629
Partition chromatography
VII/331
Partition function
VI/591
Patterns A,S scheme
II/322
Patterns of reactivity scheme
II/321
monomer parameters
II/323
transfer agent parameters
II/326
transfer constant prediction
II/322
Patterns U,V scheme
II/322
Pentose oligomers
IV/102
Perester initiators, decomposition rates
II/48
Pericyclynes
IV/21
Permeability
VI/543
Permeability coefficient
VI/543
alkanes through Santoprene TM
VI/566
cellulose and derivatives
VI/561
conversion factors for
VI/545
esters through poly(epichlorohydrin)
VI/567
fluorinated polymers
VI/552
gases through elastomers
VI/566
poly(alkanes)
VI/545
poly(amides)
VI/559
poly(aryl ether ether ketone)
VI/561
poly(carbonates)
VI/555
poly(dienes)
VI/553
poly(esters)
VI/555
poly(imides)
VI/559
poly(methacrylates)
VI/548
poly(nitriles)
VI/549
poly(oxides)
VI/555
poly(siloxanes)
VI/558
poly(styrenes)
VI/547
poly(sulfones)
VI/560
poly(urethanes)
VI/560
poly(vinyls)
VI/549
poly(xylylenes)
VI/555
various compounds through chemically crosslinked poly(oxypropylene)
VI/565
various compounds through high-density poly(ethylene)
VI/564
This page has been reformatted by Knovel to provide easier navigation.
VI/562
IX/35
Index terms
Links
Permeability coefficient (Continued) various compounds through high-density poly(propylene)
VI/564
various compounds through low-density poly(ethylene)
VI/562
various compounds through low-density poly(ethylene), Irradiation crosslinked
VI/564
Peroxy carbonate initiators, decomposition rates
II/48
Phase distribution chromatography
VII/331
Phase equilibrium, and theta solvent determination
VII/293
Phenol alcohol oligomers
IV/93
Phenol formaldehyde oligomers
IV/92
Phenols, solubility parameter
VII/701
Phenoxy resins, surface properties
VI/530
Phosphonyl radicals
II/176
Phosphorus-containing polymers, thermal degradation
II/472
Phosphorus-oxygen chains, theta solvents
VII/318
Photo-induced polymerization
II/169
Photoinitiators
II/169
compound chemistries
II/173
Photopolymerization
II/169
Photosensitizes
II/169
Physical constants, see also specific Physical constants cellulose and derivatives
V/135
fluoropolymers
V/31
monomers, see Monomer physical constants oligomers, see Oligomer physical constants poly(acrylonitrile)
V/59
poly(amides)
V/121
poly(ethylenes)
V/9
polyethylene terephthalate)
V/113
polymer solvents
III/59
poly(methyl methacrylate)
V/87
poly(oxyethylene-oxyterephthaloyl) poly(oxymethylene)
V/113 V/97
poly(oxytetramethylene-oxyterephthaloyl)
V/119
poly(propylenes)
V/21
poly(styrenes)
V/91
poly(vinyl acetate)
V/77
poly(vinyl chloride)
V/67
rubbery polymers
V/1
selected important polymers
V/159
Pigments, surface properties
VI/534
Plasticizers, surface properties
VI/534 This page has been reformatted by Knovel to provide easier navigation.
IX/36
Index terms
Links
Plastics recycling, SPI codes
VIII/21
Poisson molecular weight distribution
II/354
Polarity: cellulose and derivatives
VI/533
epoxy resins
VI/530
halogenated hydrocarbon polymers
VI/525
hydrocarbon polymers
VI/524
methacrylic hydrogels
VI/527
miscellaneous polymers
VI/533
organosilanes
VI/532
phenoxy resins
VI/530
poly(acrylics)
VI/526
poly(amides)
VI/530
poly(carbonates)
VI/530
poly(esters)
VI/529
poly(ethers)
VI/528
poly(imides)
VI/531
poly(imines)
VI/531
poly(methacrylics)
VI/527
poly(peptides)
VI/533
poly(siloxanes)
VI/531
poly(styrenes)
VI/525
poly(sulfones)
VI/530
poly(urethanes)
VI/531
poly(vinyl esters)
VI/526
poly(vinyls)
VI/526
Poly(acetals): glass transition temperature
VI/244
solvent-nonsolvent tables
VII/504
theta solvents
VII/313
Poly(acetylenes): solvent-nonsolvent tables
VII/499
unperturbed dimensions of linear chains
VII/48
Poly(acrylamides): glass transition temperature
VI/201
radiation chemical yield
II/486
solvent-nonsolvent tables
VII/503
Poly(acrylic acid) and derivatives: diffusion coefficients
VII/96
dipole moments in solution
VII/643
fractionation systems
VII/344
frictional ratios
VII/96 This page has been reformatted by Knovel to provide easier navigation.
VII/351
IX/37
Index terms
Links
Poly(acrylic acid) and derivatives: (Continued) glass transition temperature
VI/198
heat entropy, and volume change of solution
VII/654
Huggins constant
VII/268
interfacial tension with other polymers nomenclature
VI/198
VI/538 VI/2
optically active
VII/716
partial specific volumes
VII/96
radiation chemical yield
II/483
second virial coefficients
VII/170
sedimentation coefficients
VII/96
segmental anisotropy
VII/747
solvent-nonsolvent tables
VII/501
specific refractive index increments
VII/557
surface properties
VI/526
thermal degradation
II/454
theta solvents
VII/307
unperturbed dimensions of linear chains
VII/49
Poly(acrylonitrile): heat capacity
VI/508
physical constants
V/59
Poly(alkanes): permeability, diffusion, and solubility coefficients theta solvents
VI/545 VII/295
Poly(alkenes): bulk crystallization rates
VI/341
crystal growth rates
VI/291
diffusion coefficients
VII/92
fractionation systems
VII/336
frictional ratios
VII/92
glass transition temperature
VI/205
heat, entropy, and volume change of solution
VII/651
Huggins constant
VII/266
optically active
VII/716
partial specific volumes
VII/92
second virial coefficients
VII/165
sedimentation coefficients
VII/92
segmental anisotropy
VII/747
solvent-nonsolvent tables
VII/500
specific refractive index increments
VII/553
spherulite growth rates
VI/304
thermal degradation
II/452 This page has been reformatted by Knovel to provide easier navigation.
VII/733
VII/748 VII/573
IX/38
Index terms
Links
Poly(alkenes): (Continued) theta solvents
VII/299
unperturbed dimensions of linear chains
VII/48
Poly(alkynes): optically active
VII/721
second virial coefficients
VII/165
Polyamide 6: heat capacity
VI/511
physical constants
V/121
Polyamide 12, physical constants
V/121
Polyamide 66: heat capacity
VI/512
physical constants
V/121
Polyamide 610, physical constants Polyamide 612, heat capacity
V/121 VI/512
Poly(amides): bulk crystallization rates
VI/379
crystallographic data
VI/33
diffusion coefficients
VI/559
fractionation systems
VII/411
frictional ratios
VII/137
glass transition temperature
VII/137
VI/235
heat, entropy, and volume change of solution
VII/661
Huggins constant
VII/279
interfacial tension with other polymers nomenclature
VI/539 VI/2
optically active
VII/726
partial specific volumes
VII/137
permeability coefficients
VI/559
physical constants
V/121
second virial coefficients
VII/191
sedimentation coefficients
VII/137
segmental anisotropy
VII/755
solubility coefficients
VI/559
solvent-nonsolvent tables
VII/518
specific refractive index increments
VII/600
spherulite growth rates
VI/331
surface properties
VI/530
thermal degradation
II/470
theta solvents
VII/316
unperturbed dimensions of linear chains
VII/63
viscosity-molecular weight relationship
VII/36
This page has been reformatted by Knovel to provide easier navigation.
VI/4
IX/39
Index terms
Links
Poly(amines), nomenclature
VI/4
Poly(amino acids): crystallographic data
VI/26
fractionation systems
VII/414
optically active
VII/729
radiation chemical yield
II/487
segmental anisotropy
VII/755
specific refractive index increments
VII/604
surface properties
VI/533
unperturbed dimensions of linear chains
VII/63
viscosity-molecular weight relationship
VII/38
Poly(anhydrides): glass transition temperature solvent-nonsolvent tables thermal degradation
VI/219
VI/244
VII/515
VII/527
II/468
Poly(anilines), glass transition temperature
VI/241
Poly(aromatics): crystallographic data
VI/15
radiation resistance
VI/587
Poly(aryl ether ether ketone), permeability, diffusion, and solubility coefficients
VI/561
Poly(benzimidazoles): glass transition temperature
VI/245
segmental anisotropy
VII/757
solvent-nonsolvent tables
VII/526
Poly(benzimides), solvent-nonsolvent tables Poly(benzothiazinophenothiazines), glass transition temperature
VII/524 VI/245
Poly(benzothiazoles): glass transition temperature
VI/245
solvent-nonsolvent tables
VII/524
Poly(benzoxazines), glass transition temperature
VI/245
Poly(benzoxazoles): glass transition temperature
VI/245
segmental anisotropy
VII/757
solvent-nonsolvent tables
VII/523
cis-1,4-Poly(butadiene), heat capacity
VI/486
trans-1,4-Poly(butadiene), heat capacity
VI/487
1,4-cis(96-98%)Poly(butadiene), physical constants
V/1
Poly(butadiene-co-acrylonitrile), physical constants
V/2
Poly(butadiene-co-styrene), physical constants
V/3
Poly(1-butene), heat capacity
VI/490
Poly(n-butyl acrylate), heat capacity
VI/502
This page has been reformatted by Knovel to provide easier navigation.
IX/40
Index terms
Links
Poly(n-butyl methacrylate), heat capacity
VI/506
Poly(carbazoles), optically active
VII/719
Poly(carbodiimides), solvent-nonsolvent tables
VII/521
Poly(carbonate)
V/161
Poly(carbonates): bulk crystallization rates
VI/372
diffusion coefficients
VI/555
dipole moments in solution
VII/641
fractionation systems
VII/404
frictional ratios
VII/134
glass transition temperature
VII/134
VI/219
partial specific volumes
VII/134
permeability coefficients
VI/555
second virial coefficients
VII/188
sedimentation coefficients
VII/134
solubility coefficients
VI/555
solvent-nonsolvent tables
VII/513
spherulite growth rates
VI/326
surface properties
VI/530
thermal degradation
II/468
unperturbed dimensions of lienar chains
VII/61
viscosity-molecular weight relationship
VII/34
Poly(carboranes), glass transition temperature Poly(chloroprene), physical constants
VI/245 V/3
Poly(chlorotrifluoroethylene): heat capacity
VI/497
physical constants
V/55
Poly(dibenzofurans), glass transition temperature
VI/246
Poly(dienes): bulk crystallization rates
VI/341
crystal growth rates
VI/291
crystallographic data
VI/22
diffusion coefficients
VI/553
dipole moments in solution
VII/644
fractionation systems
VII/333
frictional ratios
VII/94
glass transition temperature
VI/207
heat, entropy, and volume change of solution
VII/650
Huggins constant
VII/266
optically active
VII/720
partial specific volumes
VII/94
permeability coefficients
VI/553 This page has been reformatted by Knovel to provide easier navigation.
VII/94
VII/735
IX/41
Index terms
Links
Poly(dienes): (Continued) radiation chemical yield
II/482
second virial coefficients
VII/168
sedimentation coefficients
VII/94
segmental anisotropy
VII/746
solubility coefficients
VI/553
solvent-nonsolvent tables
VII/499
specific refractive index increments
VII/551
spherulite growth rates
VI/304
unperturbed dimensions of linear chains
VII/47
Poly(dioxoisoindolines), glass transition temperature
VI/246
Polydisperse high-molecular-weight polymeric mesophases
VI/280
Poly(disubstituted esters), solvent-nonsolvent tables
VII/502
Poly(dithiazoles), solvent-nonsolvent tables
VII/524
Poly(diynes), crystallographic data Poly(electrolytes), solvent-nonsolvent tables Polyenyne oligomers
VI/22 VII/533 IV/20
Poly(epichlorohydrin), permeability of esters through
VI/567
Poly(esters): bulk crystallization rates
VI/373
crystallographic data
VI/40
diffusion coefficients
VI/555
dipole moments in solution
VII/640
fractionation systems
VII/405
frictional ratios
VII/134
glass transition temperature
VII/134
VI/221
heat, entropy, and volume change of solution
VII/659
Huggins constant
VII/278
interfacial tension with other polymers nomenclature
VI/539 VI/2
optically active
VII/724
partial specific volumes
VII/134
permeability coefficients
VI/555
radiation chemical yield
II/488
second virial coefficients
VII/188
sedimentation coefficients
VII/134
segmental anisotropy
VII/752
solubility coefficients
VI/555
solvent-nonsolvent tables
VII/513
specific refractive index increments
VII/594
spherulite growth rates
VI/327
surface properties
VI/529 This page has been reformatted by Knovel to provide easier navigation.
VI/4
IX/42
Index terms
Links
Poly(esters): (Continued) thermal degradation
II/466
theta solvents
VII/315
unperturbed dimensions of linear chains
VII/61
viscosity-molecular weight relationship
VII/34
Poly(ether ketones), glass transition temperature
VI/226
Poly(ethers): crystallographic data
VI/51
diffusion coefficients
VII/134
dipole moments in solution
VII/638
frictional ratios
VII/134
interfacial tension with other polymers
VI/539
partial specific volumes
VII/134
second virial coefficients
VII/188
sedimentation coefficients
VII/134
surface properties
VI/528
theta solvents
VII/313
unperturbed dimensions of linear chains
VII/60
viscosity-molecular weight relationship
VII/32
Poly(ethyl acrylate), heat capacity
VI/502
Poly(ethylenes)
V/160
heat capacity
VI/486
permeability of various compounds through high-density
VI/564
permeability of various compounds through low-density
VI/562
permeability of various compounds through low-density, Irradiation crosslinked
VI/564
physical constants
V/9
Polyethylene terephthalate)
V/159
physical constants
V/113
Poly(ethylene terephthalate, 1,4-cyclohexane dimethanol)
V/159
Poly(ethylene-co-tetrafluoroethylene), physical constants
V/45
Poly(ethyl methacrylate), heat capacity
VI/505
Poly(fluoresceins), glass transition temperature
VI/247
Poly(furan tetracarboxylic acid diimides), glass transition temperature
VI/247
Poly(heterocyclics): unperturbed dimensions of linear chains
VII/64
viscosity-molecular weight relationship
VII/41
Poly(1-hexene), heat capacity
VI/491
Poly(hexyl methacrylate), heat capacity
VI/507
Poly(hydrazides), solvent-nonsolvent tables
VII/520
Polyhydric alcohols, solubility parameter
VII/701
This page has been reformatted by Knovel to provide easier navigation.
VI/488
IX/43
Index terms
Links
Poly(imides): crystallographic data
VI/15
diffusion coefficients
VI/559
glass transition temperature
VI/241
permeability coefficients
VI/559
segmental anisotropy
VII/756
solubility coefficients
VI/559
solvent-nonsolvent tables
VII/524
surface properties
VI/531
Poly(imines): fractionation systems
VII/411
glass transition temperature
VI/241
optically active
VII/728
surface properties
VI/531
viscosity-molecular weight relationship
VII/39
Poly(iminoadipoyl-iminododecamethylene) (Polyamide 612), heat capacity
VI/512
Poly(iminoadipoyl-iminohexamethylene) (Polyamide 66): heat capacity
VI/512
physical constants
V/121
Poly[imino(1-oxododecamethylene)] (Polyamide 12), heat capacity
VI/512
Poly[imino(1-oxohexamethylene)] (Polyamide 6): heat capacity
VI/511
physical constants
V/121
Poly(isobutene), heat capacity
VI/492
Poly(isobutene-co-isoprene), physical constants
V/4
Poly(isobutyl acrylate), heat capacity
VI/503
Poly(isobutyl methacrylate), heat capacity
VI/506
Poly(isocyanates): optically active
VII/728
specific refractive index increments
VII/600
Poly(isonitriles), optically active
VII/720
Poly(isoprene), physical constants
VII/738 VII/736
V/5
Poly(ketones): radiation chemical yield
II/488
thermal degradation
II/465
Poly(lacticacid)
V/160
Poly(maleimides), optically active
VII/722
Polymer abbreviations, see Abbreviations and acronyms Polymer characteristic groups, abbreviations and acronyms based on Polymer classes
VIII/17 I/111
Polymer degradation, see Thermal degradation This page has been reformatted by Knovel to provide easier navigation.
VII/736
IX/44
Index terms
Links
Polymerizability, heterocyclic ring compounds: 5-membered ring compounds
II/402
6-membered ring compounds
II/403
7-membered ring compounds
II/404
unsubstituted 5-, 6-, and 7-membered ring compounds
II/405
Polymerization, see also Addition polymerization; Condensation polymerization; Free radical copolymerization; Free radical polymerization equilibrium
II/347
nonlinear
II/348
photopolymerization
II/169
Polymer liquids, experimental T-P range
VI/596
Polymer miscibility, see Miscible polymers Polymer-solvent interaction parameter
VII/678
concentration dependence
VII/249
determination methods
VII/248
equations
VII/247
molecular weight dependence
V1I/250
selected polymer solutions
VII/250
temperature dependence
VII/249
Polymer trademark search
VIII/29
Poly(methacrylamides): glass transition temperature
VI/205
heat capacity
VI/508
solvent-nonsolvent tables
VII/503
Poly(methacrylic acid) and derivatives: diffusion coefficients
VI/548
dipole moments in solution
VII/644
fractionation systems
VII/346
glass transition temperature
VI/198
VI/201
heat capacity
VI/501
VI/504
Huggins constant
VII/268
interfacial tension with other polymers oligomers
VI/538 IV/24
optically active
VII/717
permeability coefficients
VII/734
VI/548
propagation/termination constants radiation chemical yield
II/82 II/484
segmental anisotropy
VII/748
solubility coefficients
VI/548
solvent-nonsolvent tables
VII/501
specific refractive index increments
VII/561
surface propertis
VI/527 This page has been reformatted by Knovel to provide easier navigation.
VII/749
IX/45
Index terms
Links
Poly(methacrylic acid) and derivatives: (Continued) thermal degradation
II/454
theta solvents
VII/308
cis-1,4-Poly(2-methylbutadiene), heat capacity Poly(methyl methacrylate)
VI/488 V/161
heat capacity
VI/504
physical constants
V/87
Poly(4-methyl-1-pentene), heat capacity
VI/492
Poly(a-methylstyrene), heat capacity
VI/500
Polymolecularity correction factors: defined
VII/217
diffusion coefficient-molecular weight relationship
VII/229
intrinsic viscosity-molecular weight relationship
VII/223
macromolecular dimension determination
VII/235
mean square radius of gyration-molecular weight relationship
VII/232
second virial coefficient-molecular weight relationship
VII/234
sedimentation coefficient-molecular weight relationship
VII/227
unperturbed macromolecule dimension determination
VII/240
Polymorphism
VI/287
Poly(nitriles): diffusion coefficients
VI/549
permeability coefficients
VI/549
radiation chemical yield
II/486
solubility coefficients
VI/549
Poly(nucleotides): diffusion coefficients
VII/157
frictional ratios
VII/157
partial specific volumes
VII/157
second virial coefficients
VII/196
sedimentation coefficients
VII/157
segmental anisotropy
VII/755
Polyolefin elastomers
V/161
Polyolefin plastomer
V/160
Poly(olefins)
V/160
crystallographic data
VI/6
nomenclature
VI/2
physical constants
V/164
radiation chemical yield
II/482
Poly(organosiloxanes)
V/161
See also Poly(siloxanes) Poly(oxabicyclononanes), glass transition temperature
This page has been reformatted by Knovel to provide easier navigation.
VI/247
IX/46
Index terms
Links
Poly(oxadiazoles): glass transition temperature
VI/248
solvent-nonsolvent tables
VII/523
Poly(oxadiazolidines), solvent-nonsolvent tables
VII/523
Poly(oxides): bulk crystallization rates
VI/365
crystal growth rates
VI/300
crystallographic data
VI/52
diffusion coefficients
VI/555
dipole moments in solution
VII/638
fractionation systems
VII/398
glass transition temperature
VI/226
heat, entropy, and volume change of solution
VII/659
Huggins constant
VII/277
nomenclature optically active permeability coefficients
VI/2
VI/4
VII/723
VII/737
VI/555
segmental anisotropy
VII/752
solubility coefficients
VI/555
solvent-nonsolvent tables
VII/511
specific refractive index increments
VII/594
spherulite growth rates
VI/315
thermal degradation
II/465
unperturbed dimensions of linear chains
VII/60
viscosity-molecular weight relationship
VII/32
Poly(oxindoles), glass transition temperature
VI/248
Poly(oxoisoindolines), glass transition temperature
VI/248
Poly(oxycarbonyloxy-1,4-phenylene-isopropylidine-1,4-phenylene), heat capacity
VI/518
Poly(oxy-2,6-dimethyl-1,4-phenylene), heat capacity
VI/517
Poly(oxy-2,6-diphenyl-1,4-phenylene), heat capacity
VI/517
Poly(oxyethylene), heat capacity
VI/514
Poly(oxyethylene-oxyterephthaloyl): heat capacity
VI/485
physical constants
V/113
Poly(oxymethylene)
V/161
heat capacity
VI/486
physical constants
V/97
Poly(oxymethylene-carbonyloxyethylene), heat capacity
VI/485
Poly(oxy-1-oxoethylene), heat capacity
VI/509
Poly(oxy-1-oxohexamethylene), heat capacity
VI/510
Poly(oxy-1,4-phenylene), heat capacity
VI/516
This page has been reformatted by Knovel to provide easier navigation.
VI/510
VI/513
IX/47
Index terms
Links
Poly(oxypropylene): heat capacity
VI/515
permeability of various compounds through chemically crosslinked
VI/565
Poly(oxyetramethylene), heat capacity
VI/515
Poly(oxytrimethylene), heat capacity
VI/514
Poly(1-pentene), heat capacity
VI/490
Polypeptides, see Poly(amino acids) Poly(phenylenes): fractionation systems
VII/397
glass transition temperature
VI/218
solvent-nonsolvent tables
VII/509
Poly(phosphates): unperturbed dimensions of linear chains
VII/64
viscosity-molecular weight relationship
VII/39
Poly(phosphazenes): bulk crystallization rates
VI/384
fractionation systems
VII/422
glass transition temperature
VI/242
segmental anisotropy
VII/755
solvent-nonsolvent tables
VII/522
Poly(phthalazines), glass transition temperature
VI/248
Poly(phthalides), glass transition temperature
VI/248
Poly(piperazines): glass transition temperature
VI/248
solvent-nonsolvent tables
VII/526
Poly(piperidines), glass transition temperature Poly(propylene)
VI/249 V/160
diffusion of various compounds through high-density
VI/564
heat capacity
VI/489
physical constants
V/21
Poly(pyrazinoquinoxalines), glass transition temperature
VI/249
Poly(pyrazoles), glass transition temperature
VI/249
Poly(pyridazines), glass transition temperature
VI/249
Poly(pyridines), glass transition temperature
VI/249
Poly(pyromellitimides): glass transition temperature
VI/249
segmental anisotropy
VII/756
solvent-nonsolvent tables
VII/525
Poly(pyrrolidines), glass transition temperature
VI/250
Poly(quinones), glass transition temperature
VI/250
This page has been reformatted by Knovel to provide easier navigation.
IX/48
Index terms
Links
Poly(quinoxalines): glass transition temperature
VI/250
segmental anisotropy
VII/757
solvent-nonsolvent tables
VII/526
Poly(saccharides): crystallographic data
VI/59
diffusion coefficients
VII/144
fractionation systems
VII/431
frictional ratios
VII/144
glass transition temperature
VI/243
Huggins constant
VII/282
partial specific volumes
VII/144
second virial coefficients
VII/194
sedimentation coefficients
VII/144
segmental anisotropy
VII/758
solvent-nonsolvent tables
VII/531
specific refractive index increments
VII/611
theta solvents
VII/316
unperturbed dimensions of linear chains
VII/66
viscosity-molecular weight relationship
VII/43
Poly(silanes): fractionation systems
VII/418
glass transition temperature
VI/243
solvent-nonsolvent tables
VII/522
specific refractive index increments
VII/606
Poly(silazanes): glass transition temperature
VI/243
solvent-nonsolvent tables
VII/522
specific refractive index increments
VII/606
Poly(silmethylenes), unperturbed dimensions of linear chains
VII/64
Poly(siloxanes): bulk crystallization rates
VI/384
diffusion coefficients
VI/558
fractionation systems
VII/418
glass transition temperature
VI/231
heat, entropy, and volume change of solution
VII/661
interfacial tension with other polymers
VI/539
permeability coefficients
VI/558
radiation chemical yield
II/487
segmental anisotropy
VII/756
solubility coefficients
VI/558
solvent-nonsolvent tables
VII/515 This page has been reformatted by Knovel to provide easier navigation.
IX/49
Index terms
Links
Poly(siloxanes): (Continued) spherulite growth rates
VI/334
surface properties
VI/531
thermal degradation
II/471
unperturbed dimensions of linear chains
VII/64
viscosity-molecular weight relationship
VII/40
Poly(silsesquioxanes): unperturbed dimensions of linear chains
VII/64
viscosity-molecular weight relationship
VII/40
Poly(styrene)
V/160
diffusion coefficients
VI/547
fractionation systems
VII/356
frictional ratios
VII/109
glass transition temperature
VII/109
VI/209
heat, entropy, and volume change of solution
VII/655
heat capacity
VI/485
interfacial tension with other polymers
VI/537
optically active
VII/719
partial specific volumes
VII/109
permeability coefficients
VI/547
physical constants
V/91
propagation/termination constants
II/88
radiation chemical yield
VI/499 VII/735
V/166
II/485
second virial coefficients
VII/179
sedimentation coefficients
VII/109
solubility coefficients
VI/547
solvent-nonsolvent tables
VII/507
specific refractive index increments
VII/574
surface properties
VI/525
thermal degradation
II/461
theta solvents
VII/300
unperturbed dimensions of linear chains
VII/54
Poly(sulfides): crystallographic data
VI/57
dipole moments in solution
VII/639
fractionation systems
VII/416
glass transition temperature
VI/233
nomenclature
VI/4
optically active
VII/725
solvent-nonsolvent tables
VII/516
thermal degradation
II/468
unperturbed dimensions of linear chains
VII/63
This page has been reformatted by Knovel to provide easier navigation.
VII/737
IX/50
Index terms
Links
Poly(sulfides): (Continued) viscosity-molecular weight relationship
VII/39
Poly(sulfonamides): fractionation systems
VII/416
glass transition temperature
VI/234
Poly(sulfonates): glass transition temperature
VI/233
solvent-nonsolvent tables
VII/515
Poly(sulfones): crystallographic data
VI/57
diffusion coefficients
VI/560
fractionation systems
VII/416
glass transition temperature
VI/234
permeability coefficients
VI/560
radiation chemical yield
II/488
solubility coefficients
VI/560
solvent-nonsolvent tables
VII/517
specific refractive index increments
VII/599
surface properties
VI/530
thermal degradation
II/468
Poly(tetrafluoroethylene)
V/160
heat capacity
VI/493
physical constants
V/31
Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), physical constants
V/41
Poly[tetrafluoroethylene-co-perfluoro(alkoxy vinyl ether)] (PFA), physical constants
V/41
Poly(thioesters): glass transition temperature
VI/235
optically active
VII/725
Poly(thioethers), dipole moments in solution
VII/639
Poly(thiophenes), solvent-nonsolvent tables
VII/527
Poly(triazines), glass transition temperature
VI/252
Poly(triazoles), glass transition temperature
VI/252
Poly(trifluoroethylene), heat capacity
VI/495
Poly(ureas): crystallographic data
VI/49
diffusion coefficients
VII/137
fractionation systems
VII/410
frictional ratios
VII/137
glass transition temperature
VI/242
optically active
VII/725
partial specific volumes
VII/137
second virial coefficients
VII/191 This page has been reformatted by Knovel to provide easier navigation.
IX/51
Index terms
Links
Poly(ureas): (Continued) sedimentation coefficients
VII/137
solvent-nonsolvent tables
VII/521
theta solvents
VII/316
viscosity-molecular weight relationship Poly(urethane) elastomers
VII/39 V/161
Poly(urethanes): bulk crystallization rates
VI/383
crystallographic data
VI/49
diffusion coefficients
Vl/560
fractionation systems
VII/410
frictional ratios
VII/137
glass transition temperature
VI/229
nomenclature
VI/4
optically active
VII/725
partial specific volumes
VII/137
permeability coefficients
VI/560
second virial coefficients
VII/191
sedimentation coefficients
VII/137
solubility coefficients
VI/560
solvent-nonsolvent tables
VII/515
specific refractive index increments
VII/600
surface properties
VI/531
thermal degradation
II/471
theta solvents
VII/316
unperturbed dimensions of linear chains
VII/63
viscosity-molecular weight relationship
VII/39
Poly(vinyl acetate): heat capacity
VI/498
physical constants
V/77
Poly(vinyl alcohol): fractionation systems
VII/353
glass transition temperature
VI/212
heat capacity
VI/498
solvent-nonsolvent tables
VII/504
unperturbed dimensions of linear chains Poly(vinyl benzoate), heat capacity Poly(vinyl chloride)
VII/53 VI/500 V/159
heat capacity
VI/496
physical constants
V/67
Poly(vinyl esters): fractionation systems
VII/355 This page has been reformatted by Knovel to provide easier navigation.
VII/137
IX/52
Index terms
Links
Poly(vinyl esters): (Continued) glass transition temperature
VI/213
optically active
VII/718
solvent-nonsolvent tables
VII/506
surface properties
VI/526
unperturbed dimensions of linear chains
VII/53
Poly(vinyl ethers): fractionation systems
VII/353
glass transition temperature
VI/214
optically active
VII/718
solvent-nonsolvent tables
VII/503
thermal degradation
II/461
unperturbed dimensions of linear chains
VII/53
Poly(vinyl fluoride), heat capacity
VII/735
VI/494
Poly(vinyl halides): glass transition temperature
VI/215
solvent-nonsolvent tables
VII/505
unperturbed dimensions of linear chains Poly(vinylidene chloride), heat capacity
VII/53 VI/496
Poly(vinylidene fluoride): heat capacity
VI/494
physical constants
V/48
Poly(vinylidenes): crystallographic data
VI/13
heat capacity
VI/494
physical constants
VI/496
V/48
Poly(vinyl ketones): fractionation systems
VII/353
glass transition temperature
VI/212
optically active
VII/718
solvent-nonsolvent tables
VII/504
thermal degradation
II/461
Poly(vinyl nitriles): fractionation systems
VII/353
glass transition temperature
VI/215
solvent-nonsolvent tables
VII/506
Poly(vinyls): bulk crystallization rates
VI/341
crystal growth rates
VI/291
crystallographic data
VI/13
diffusion coefficients
VI/549
dipole moments in solution
VII/642 This page has been reformatted by Knovel to provide easier navigation.
VII/105
IX/53
Index terms
Links
Poly(vinyls): (Continued) frictional ratios
VII/105
heat, entropy, and volume change of solution
VII/655
Huggins constant
VII/272
interfacial tension with other polymers nomenclature
VI/37 VI/2
partial specific volumes
VII/105
permeability coefficients
VI/549
radiation chemical yield
II/486
second virial coefficients
VII/177
sedimentation coefficients
VII/105
segmental anisotrophy
VII/750
solubility coefficients
VI/549
spherulite growth rates
VI/304
surface properties
VI/526
thermal degradation
II/459
theta solvents
VII/305
Poly(vinyl thioethers), glass transition temperature
VI/214
Poly(xylylenes), permeability, diffusion, and solubility coefficients
VI/555
Power: conversion factors
I/16
SI units
I/13
Precipitation chromatography
VII/330
Pressure: conversion factors
I/15
and glass transition temperature
VI/197
SI units
I/13
Pressure-induced crystallization
VI/288
Propagation activation energy
II/415
acrylic derivatives
II/417
dienes
II/416
methacrylic derivatives
II/418
miscellaneous compounds
II/423
olefins
II/416
styrene derivatives
II/421
vinyl esters
II/421
vinyl ethers
II/421
vinyl halogens
II/420
vinyl heteroaromatics
II/422
Propagation constants
II/77
acrylic derivatives
II/80
aldehydes
II/90 This page has been reformatted by Knovel to provide easier navigation.
IX/54
Index terms
Links
Propagation constants (Continued) dienes
II/79
fumaric derivatives
II/87
itaconic derivatives
II/85
methacrylic derivatives
II/82
miscellaneous compounds
II/90
olefins
II/79
styrene derivatives
II/88
vinyl esters
II/87
vinyl ethers
II/88
vinyl halides
II/87
vinyl heteroaromatics
II/90
Propene monomers, physical properties
III/32
Proteins: diffusion coefficients
VII/157
fibers
VIII/22
frictional ratios
VII/157
partial specific volumes
VII/157
second virial coefficients
VII/196
sedimentation coefficients
VII/157
Pulse laser polymerization (PLP) method PVT relationship
II/78 VI/591
See also Equations of state miscellaneous polymers
VI/597
polymer liquids
VI/596
and second virial coefficients
VII/164
zero pressure volume and bulk modulus
VI/593
VI/595
II/309
II/321
Q Q-e scheme Quasi-lattice models
VI/593
Quasi-single-strand coordination polymer nomenclature Quenching rate constants, photopolymerization
I/7 II/170
Q values: monomers
II/310
monomers by Q values
II/314
pressure effects
II/440
telogens
II/314
R Radial spherulite growth rates: miscellaneous polymers
VI/336 This page has been reformatted by Knovel to provide easier navigation.
II/177
IX/55
Index terms
Links
Radial spherulite growth rates: (Continued) poly(alkenes)
VI/304
poly(amides)
VI/331
poly(carbonates)
VI/326
poly(dienes)
VI/304
poly(esters)
VI/327
poly(oxides)
VI/315
poly(siloxanes)
VI/334
poly(vinyls)
VI/304
Radiation chemical yield
II/481
blends
II/493
cellulose and derivatives
II/487
composites
II/493
copolymers
II/490
fluoropolymers
II/488
poly(acrylamides)
II/486
poly(acrylates)
II/483
poly(amino acids)
II/487
poly(dienes)
II/482
poly(esters)
II/488
poly(ketones)
II/488
poly(methacrylates)
II/484
poly(nitriles)
II/486
poly(olefins)
II/482
poly(siloxanes)
II/487
poly(styrenes)
II/485
poly(sulfones)
II/488
poly(vinyls)
II/486
vinyl monomers
II/486
Radiation resistance
VI/583
composites
VI/588
elastomers
VI/586
poly(aromatics)
VI/587
thermoplastics
VI/585
Random copolymers, fractionation systems
VII/366
Rayleigh scattering
VII/629
Reactivity pattern scheme
II/321
monomer parameters
II/323
transfer agent parameters
II/326
transfer constant prediction
II/322
Reactivity ratios
II/182
Quick Basic program for calculating This page has been reformatted by Knovel to provide easier navigation.
II/288
VII/425
IX/56
Index terms
Links
Reactivity ratios (Continued) terpolymerization
II/438
Refractive index
VI/571
See also Specific refractive index increments and cohesive energy density
VII/680
heterogeneous polymers
VI/572
isorefractive and isopycnic solvent pairs molar refraction
III/43 VI/571
monomers, see Monomer physical constants optical anisotropy
VI/572
polymers in alphabetical order
VI/578
polymers in order of increasing index
VI/574
polymer solvents
III/55
Refractometric calibration data
VII/550
Regenerated polysaccharide fibers
VIII/23
Regenerated protein fibers
VIII/23
Regular polymer nomenclature
I/3
Reinforced polymers, see Composites Reinforcing fillers, ISO codes for
VIII/20
Reptation
VI/286
Reverse-phase liquid chromatography
VII/330
Rigid poly(vinyl chloride)
V/159
Rubber-modified styrene-acrylonitrile copolymers
V/160
Rubbery polymers
VI/194
physical constants
V/1
S Sanchez-Cho equation of state
VI/592
characteristic parameters
VI/597
Sanchez-Lacombe equation of state, characteristic parameters
VI/600
Santoprene TM, permeability of alkanes through
VI/566
Scattering factors
VII/629
Scattering methods, solutions
VII/163
Schulz-Blaschke constant: defined
VII/265
selected polymers
VII/284
Screw dislocations
VI/281
Second-order Markov mechanism metallocene-catalyzed copolymerization Second virial coefficient-molecular weight relationship
This page has been reformatted by Knovel to provide easier navigation.
II/445 II/330 VII/234
VI/593
IX/57
Index terms
Links
Second virial coefficients: averages
VII/164
factors affecting
VII/164
inorganic polymers
VII/192
poly(acrylics)
VII/170
poly(alkenes)
VII/165
poly(alkynes)
VII/165
poly(amides)
VII/191
poly(carbonates)
VII/188
poly(dienes)
VII/168
poly(esters)
VII/188
poly(ethers)
VII/188
poly(nucleotides)
VII/196
poly(saccharides)
VII/194
poly(styrenes)
VII/179
poly(ureas)
VII/191
poly(urethanes)
VII/191
poly(vinyls)
VII/177
proteins
VII/196
theory
VII/163
for theta solvent determination
VII/293
Sedimentation coefficient: inorganic polymers
VII/141
molar mass averages determined from
VII/89
poly(acrylics)
VII/96
poly(alkenes)
VII/92
poly(amides)
VII/137
poly(carbonates)
VII/134
poly(dienes)
VII/165
poly(esters)
VII/134
poly(ethers)
VII/134
poly(nucleotides)
VII/157
poly(saccharides)
VII/144
poly(styrenes)
VII/109
poly(ureas)
VII/137
poly(urethanes)
VII/137
poly(vinyls)
VII/105
proteins
VII/157
theory
VII/86
Sedimentation coefficient-molecular weight relationship
VII/227
Sedimentation equilibrium
VII/164
fractionation application
VII/333 This page has been reformatted by Knovel to provide easier navigation.
IX/58
Index terms
Links
Sedimentation fractionation
VII/333
Sedimentation velocity
VII/163
fractionation application
VII/333
Segmental anisotropy: copolymers
VII/751
defined
VII/745
main-chain acyclic heteroatom polymers
VII/752
main-chain acyclic polymers
VII/746
main-chain carbocyclic polymers
VII/752
main-chain heterocyclic polymers
VII/756
poly(acrylic acids)
VII/747
poly(alkenes)
VII/747
poly(amides)
VII/755
poly(benzimidazoles)
VII/757
poly(benzoxazoles)
VII/757
poly(dienes)
VII/746
poly(esters)
VII/752
poly(imides)
VII/756
poly(methacrylic acids)
VII/748
poly(nucleotides)
VII/755
poly(oxides)
VII/752
poly(peptides)
VII/755
poly(phosphazenes)
VII/755
poly(pyromellitimides)
VII/756
poly(quinoxalines)
VII/757
poly(saccharides)
VII/758
poly(siloxanes)
VII/756
poly(vinyls)
VII/750
Semiempirical 3-parameter equations of state
VI/593
Silicone polymers
V/161
Silicone surfaces
VI/524
Silicon-oxygen chains, theta solvents
VII/317
Silicon polymers, dipole moments in solution
VII/645
Siloxane copolymers, unperturbed dimensions of linear chains
VII/65
Simha-Somcynsky equation of state
VI/594
characteristic parameters
VI/599
Simple cell model equation of state characteristic parameters
VI/593 VI/598
Single-strand inorganic and coordination polymer nomenclature
I/6
Single-strand organic polymer nomenclature
I/3
SI units
I/13
prefixes
I/14 This page has been reformatted by Knovel to provide easier navigation.
VII/748
VII/749
IX/59
Index terms
Links
Solid-state multiphase systems
VI/280
Solubility coefficient: alkanes through Santoprene TM
VI/566
cellulose and derivatives
VI/561
esters through poly(epichlorohydrin)
VI/567
fluorinated polymers
VI/552
poly(alkanes)
VI/545
poly(amides)
VI/559
poly(aryl ether ether ketone)
VI/561
poly(carbonates)
VI/555
poly(dienes)
VI/553
poly(esters)
VI/555
poly(imides)
VI/559
poly(methacrylates)
VI/548
poly(nitriles)
VI/549
poly(oxides)
VI/555
poly(siloxanes)
VI/558
poly(styrenes)
VI/547
poly(sulfones)
VI/560
poly(urethanes)
VI/560
poly(vinyls)
VI/549
poly(xylylenes)
VI/555
Solubility fractionation
VII/328
Solubility parameter: acid anhydrides
VII/700
acid halides
VII/700
acids
VII/701
alcohols
VII/700
aldehydes
VII/699
aromatic hydrocarbons
VII/698
esters
VII/699
ethers
VII/699
group contributions
VII/686
halohydrocarbons
VII/698
ketones
VII/699
main-chain C-N polymers
VII/709
main-chain C-O polymers
VII/708
main-chain polymers
VII/702
nitrogen-containing compounds
VII/700
paraffinic hydrocarbons
VII/698
phenols
VII/701
polyhydric alcohols
VII/701 This page has been reformatted by Knovel to provide easier navigation.
IX/60
Index terms
Links
Solubility parameter: (Continued) solvents in alphabetical order
VII/688
solvents in increasing order
VII/694
sulfur-containing compounds
VII/700
water
VII/701
Solvent-induced crystallization
VI/288
Solvent-nonsolvent tables
VII/498
block copolymers
VII/533
cellulose and derivatives
VII/529
cellulose esters
VII/530
cellulose ethers
VII/529
cellulose nitrate
VII/531
cellulose sulfate
VII/531
dendrimers
VII/534
formaldehyde resins
VII/523
gutta percha
VII/529
inorganic polymers
VII/532
main-chain acyclic heteroatom polymers
VII/511
main-chain acyclic polymers
VII/499
main-chain carbocyclic polymers
VII/509
main-chain carbonyl polymers
VII/510
main-chain heterocyclic polymers
VII/523
natural polymers
VII/528
natural resins
VII/532
natural rubber
VII/528
poly(acetals)
VII/504
poly(acetylenes)
VII/499
poly(acrylamides)
VII/503
poly(acrylates)
VII/501
poly(acrylic acids)
VII/501
poly(acrylics)
VII/501
poly(alkenes)
VII/500
poly(amides)
VII/518
poly(anhydrides)
VII/515
poly(benzimidazoles)
VII/526
poly(benzimides)
VII/524
poly(benzothiazoles)
VII/524
polybenzoxazoles)
VII/523
poly(carbodiimides)
VII/521
poly(carbonates)
VII/513
poly(dienes)
VII/499
poly(disubstituted esters)
VII/502 This page has been reformatted by Knovel to provide easier navigation.
VII/527
IX/61
Index terms
Links
Solvent-nonsolvent tables (Continued) poly(dithiazoles)
VII/524
poly(electrolytes)
VII/533
poly(esters)
VII/513
poly(hydrazides)
VII/520
poly(imides)
VII/524
poly(methacrylamides)
VII/503
poly(methacrylates)
VII/501
poly(methacrylics)
VII/501
poly(oxadiazoles)
VII/523
poly(oxadiazolidines)
VII/523
poly(oxides)
VII/511
poly(phenylenes)
VII/509
poly(phosphazenes)
VII/522
poly(piperazines)
VII/526
poly(pyromellitimides)
VII/525
poly(quinoxalines)
VII/526
poly(saccharides)
VII/531
poly(silanes)
VII/522
poly(silazanes)
VII/522
poly(siloxanes)
VII/515
poly(styrenes)
VII/507
poly(sulfides)
VII/516
poly(sulfonates)
VII/515
poly(sulfones)
VII/517
poly(thiophenes)
VII/527
poly(ureas)
VII/521
poly(urethanes)
VII/515
poly(vinyl alcohol)
VII/504
poly(vinyl esters)
VII/506
poly(vinyl ethers)
VII/503
poly(vinyl halides)
VII/505
poly(vinyl ketones)
VII/504
poly(vinyl nitriles)
VII/506
starches
VII/531
Solvent pairs, Isorefractive and isopycnic
III/43
Solvents, see also Miscibility; Solubility parameter and free radical initiator decomposition
II/1
isorefractive and isopycnic solvent pairs
III/43
physical constants of most common for polymers
III/59
refractive index of common
III/55
transfer constants to
II/110 This page has been reformatted by Knovel to provide easier navigation.
IX/62
Index terms
Links
Source-based nomenclature
I/2
VI/2
Space groups: poly(amides)
VI/33
poly(aromatics)
VI/15
poly(dienes)
VI/22
poly(diynes)
VI/22
poly(esters)
VI/40
poly(ethers)
VI/51
poly(imides)
VI/15
poly(olefins)
VI/6
poly(oxides)
VI/52
poly(peptides)
VI/26
poly(saccharides)
VI/59
poly(sulfides)
VI/57
poly(sulfones)
VI/57
poly(ureas)
VI/49
poly(urethanes)
VI/49
poly(vinylidenes)
VI/13
poly(vinyls)
VI/13
Specific heat: conversion factors
I/16
and glass transition temperature
VI/194
SI units
I/13
Specific refractive index increments
VII/547
cellulose and derivatives
VII/609
main-chain acyclic heteroatom polymers
VII/594
main-chain acyclic polymers
VII/551
main-chain carbocyclic polymers
VII/594
main-chain heterocyclic polymers
VII/608
poly(acrylic acids)
VII/557
poly(alkenes)
VII/553
poly(amides)
VII/600
poly(amino acids)
VII/604
poly(dienes)
VII/551
poly(esters)
VII/594
poly(isocyanates)
VII/600
poly(methacrylic acids)
VII/561
poly(oxides)
VII/594
poly(saccharides)
VII/611
poly(silanes)
VII/606
poly(silazanes)
VII/606
poly(styrenes)
VII/574 This page has been reformatted by Knovel to provide easier navigation.
VII/573
IX/63
Index terms
Links
Specific refractive index increments (Continued) poly(sulfones)
VII/599
poly(urethanes)
VII/600
Specific volume-temperature curves
VI/194
Spherulite growth rates
VI/284
miscellaneous polymers
VI/336
poly(alkenes)
VI/304
poly(amides)
VI/331
poly(carbonates)
VI/326
poly(dienes)
VI/304
poly(esters)
VI/327
poly(oxides)
VI/315
poly(siloxanes)
VI/334
poly(vinyls)
VI/304
Spherulites
VI/280
SPI codes, for plastics recycling
VIII/21
Standard number block, ISO codes
VIII/19
Starches, solvent-nonsolvent tables
VII/531
Statistically associated fluid theory
VI/595
Stockmayer molecular weight distribution
II/354
Stress: conversion factors
I/15
SI units
I/13
Structural repeating units
I/10
CAS Registry Number indexing by Structure-based nomenclature
VIII/25 I/3
Styrene-acrylonitrile copolymers
V/160
rubber-modified
V/160
Styrene copolymers: dipole moments in solution
VII/645
radiation chemical yield
II/490
Styrene monomers: physical properties
III/34
propagation/termination activation energy
II/421
Styrene oligomers
IV/30
Styrene polymers, see Poly(styrene) Sugars, see Poly(saccharides) Sulfone copolymers: unperturbed dimensions of linear chains
VII/65
viscosity-molecular weight relationship
VII/42
Sulfur, surface properties
VI/534 This page has been reformatted by Knovel to provide easier navigation.
VI/3
IX/64
Index terms
Links
Sulfur compounds: solubility parameter
VII/700
transfer constants to
II/150
Sulfur dioxide copolymers, radiation chemical yield
II/490
Summative precipitation
VII/328
Surface exclusion chromatography
VII/331
Surface tension
VI/521
See also Interfacial tension cellulose and derivatives
VI/533
and cohesive energy density
VII/680
conversion factors
I/16
epoxy resins
VI/530
halogenated hydrocarbon polymers
VI/525
hydrocarbon polymers
VI/524
methacrylic hydrogels
VI/527
miscellaneous polymers
VI/533
organosilanes
VI/532
phenoxy resins
VI/530
poly(acrylics)
VI/526
poly(amides)
VI/530
poly(carbonates)
VI/530
poly(esters)
VI/529
poly(ethers)
VI/528
poly(imides)
VI/531
poly(imines)
VI/531
poly(methacrylics)
VI/527
poly(peptides)
VI/533
poly(siloxanes)
VI/531
poly(styrenes)
VI/525
poly(sulfones)
VI/530
poly(urethanes)
VI/531
poly(vinyl esters)
VI/526
poly(vinyls)
VI/526
SI units
I/13
and surface chemical constitution Syndiotactic polymers
VI/524 VI/6
Syndiotactic poly(styrene)
V/160
Synonyms
VIII/25
common polymers
VIII/32
Synthetic fibers
VIII/24
Systematic polymer names
I/8
This page has been reformatted by Knovel to provide easier navigation.
IX/65
Index terms
Links
T Tacticity
II/445
Tait equation
VI/593
Telogens, Q and e values
II/314
Temperature: and polymer-solvent interaction parameter and radiation resistance
VII/249 VI/584
SI units
I/13
and solubility parameter
VII/677
and surface tension
VI/522
Temperature-rising elution fractionation Termination activation energy
VII/329 II/415
acrylic derivatives
II/417
dienes
II/416
methacrylic derivatives
II/418
miscellaneous compounds
II/423
olefins
II/416
styrene derivatives
II/421
vinyl esters
II/421
vinyl ethers
II/421
vinyl halogens
II/420
vinyl heteroaromatics
II/422
Termination constants
II/77
acrylic derivatives
II/80
aldehydes
II/90
dienes
II/79
fumaric derivatives
II/87
itaconic derivatives
II/85
methacrylic derivatives
II/82
olefins
II/79
styrene derivatives
II/88
vinyl esters
II/87
vinyl ethers
II/88
vinyl halides
II/87
vinyl heteroaromatics
II/90
Terpolymerization reactivity ratios
II/438
Textile fibers: abbreviations and acronyms
VIII/22
acrylic fibers
V/61
Tg, see Glass transition temperature Thermal conductivity: conversion factors
I/16 This page has been reformatted by Knovel to provide easier navigation.
IX/66
Index terms
Links
Thermal conductivity: (Continued) SI units
I/13
Thermal degradation
II/451
cellulose and derivatives
II/475
with crosslinking
II/350
main-chain acyclic carbon polymers
II/451
main-chain carbocyclic polymers
II/464
main-chain heteroatom polymers
II/464
main-chain heterocyclic polymers
II/473
Thermal diffusion fractionation
VII/333
Thermal history, and glass transition temperature
VI/197
Thermodynamic perturbation theory
VI/595
Thermodynamics: and cohesive energy density
VII/679
crystallization
VI/284
glass transition temperature
VI/195
theta solvents
VII/291
Thermoplastics
V/159
ISO codes for
VIII/19
physical constants
V/162
radiation resistance
VI/585
Thermotropic phases
VI/280
Theta solvents: carbon-sulfur chains
VII/317
defined
VII/291
determination methods
VII/293
phosphorus-oxygen chains
VII/318
poly(acetals)
VII/313
poly(acrylics)
VII/307
poly(alkanes)
VII/295
poly(alkenes)
VII/299
poly(amides)
VII/316
poly(esters)
VII/315
poly(ethers)
VII/313
poly(methacrylics)
VII/308
poly(saccharides)
VII/316
poly(styrenes)
VII/300
poly(ureas)
VII/316
poly(urethanes)
VII/316
poly(vinyls)
VII/305
silicon-oxygen chains
VII/317
unperturbed dimensions of linear chains
VII/292
This page has been reformatted by Knovel to provide easier navigation.
VII/294
IX/67
Index terms
Links
Theta state
VII/291
Thiacyclophanes
IV/63
Thin layer chromatography
VII/330
Thioxanthones, excitation transfer rate constants 3-Parameter equations of state
II/178 VI/593
Time, SI units
I/13
Tm, see Melting point; Melting temperature Trademark search
VIII/29
Trade names
VIII/25
Transfer agents
II/97
reactivity pattern parameters
II/326
Transfer constants: to catalysts and initiators
II/106
to monomers
II/98
to polymers
II/103
prediction by reactivity patterns
II/322
to solvents and additives
II/110
to sulfur compounds
II/150
Trigonal selenium, heat capacity
VI/519
Triplet state lifetimes, of photosensitizers Turbidimetric titration
II/170 VII/328
U Ultrafiltration fractionation
VII/333
Ultra-low density poly(ethylene)
V/160
Unit cell parameters: poly(amides)
VI/33
poly(aromatics)
VI/15
poly(dienes)
VI/22
poly(diynes)
VI/22
poly(esters)
VI/40
poly(ethers)
VI/51
poly(imides)
VI/15
poly(olefins)
VI/6
poly(oxides)
VI/52
poly(peptides)
VI/26
poly(saccharides)
VI/59
poly(sulfides)
VI/57
poly(sulfones)
VI/57
poly(ureas)
VI/49
poly(urethanes)
VI/49
This page has been reformatted by Knovel to provide easier navigation.
II/179
IX/68
Index terms
Links
Unit cell parameters: (Continued) poly(vinylidenes)
VI/13
poly(vinyls)
VI/13
Units
I/13
English-American unit conversions Unperturbed dimensions, linear chain molecules
I/17 VII/4
cellulose and derivatives
VII/66
copolymers
VII/58
poly(acetylenes)
VII/48
poly(acrylic acids)
VII/49
poly(alkenes)
VII/48
poly(amides)
VII/63
poly(amino acids)
VII/63
poly(carbonates)
VII/61
poly(dienes)
VII/47
poly(esters)
VII/61
poly(ethers)
VII/60
poly(heterocyclics)
VII/64
polymolecularity correction factors
VII/240
poly(oxides)
VII/60
poly(phosphates)
VII/64
poly(saccharides)
VII/66
poly(silmethylenes)
VII/64
poly(siloxanes)
VII/64
poly(silsesquioxanes)
VII/64
poly(styrenes)
VII/54
poly(sulfides)
VII/63
poly(urethanes)
VII/63
poly(vinyl alcohol)
VII/53
poly(vinyl esters)
VII/53
poly(vinyl ethers)
VII/53
poly(vinyl halides)
VII/53
theta solvents
VII/292
UV curing technologies
II/169
V Very low density poly(ethylene)
V/160
Vinyl ester monomers: propagation/termination activation energy propagation/termination constants
II/421 II/87
Vinyl ether monomers: propagation/termination activation energy This page has been reformatted by Knovel to provide easier navigation.
VII/65
II/421
VII/294
IX/69
Index terms
Links
Vinyl ether monomers: (Continued) propagation/termination constants
II/88
Vinyl halide monomers: propagation activation energy
II/420
propagation/termination constants
II/87
Vinyl heteroaromatic monomers: propagation/termination activation energy propagation/termination constants Vinylidene chloride copolymers
II/422 II/90 V/160
Vinyl monomers: copolymerization
II/181
copolymerization reactivity ratios
II/181
pattern of reactivity parameters
II/32
physical properties aryl monomers
III/36
ester monomers
III/36
ether monomers
III/38
N-substituted monomers
III/38
sulfonate monomers
III/40
propagation/termination activation energies
II/420
propagation/termination constants
II/87
Q and e values
II/309
radiation chemical yield
II/486
Vinyl oligomers
IV/27
β-alkyl substituted
IV/26
Vinyl polymers, see Poly(vinyls) Viscosity: conversion factors
I/15
dilute solutions, Huggins and Schulz-Blaschke constants and glass transition temperature
VII/265 VI/194
polymer solvents
III/59
SI units
I/13
Viscosity-molecular weight relationship
VII/2
cellulose and derivatives
VII/43
copolymers
VII/27
main-chain acyclic carbon polymers
VII/5
main-chain carbocyclic polymers
VII/31
main-chain heteroatom polymers
VII/32
molecular weight distribution and viscosity constant
VII/5
poly(acetylenes)
VII/7
poly(acrylic acids)
VII/10 This page has been reformatted by Knovel to provide easier navigation.
VII/42
IX/70
Index terms
Links
Viscosity-molecular weight relationship (Continued) poly(alkenes)
VII/7
poly(amides)
VII/36
poly(amino acids)
VII/38
poly(carbonates)
VII/34
poly(dienes)
VII/5
poly(esters)
VII/34
poly(ethers)
VII/32
poly(heterocyclics)
VII/41
poly(imines)
VII/39
polymolecularity correction factors
VII/223
poly(oxides)
VII/32
poly(phosphates)
VII/39
poly(saccharides)
VII/43
poly(siloxanes)
VII/40
poly(silsesquixanes)
VII/40
poly(styrenes)
VII/17
poly(sulfides)
VII/39
poly(ureas)
VII/39
poly(urethanes)
VII/39
poly(vinyl alcohol)
VII/17
poly(vinyl esters)
VII/17
poly(vinyl ethers)
VII/17
poly(vinyl halides)
VII/17
Volume: conversion factors
I/14
SI units
I/13
Volume change of solution
VII/650
cellulose and derivatives
VII/662
main-chain acyclic heteroatom polymers
VII/659
main-chain acyclic polymers
VII/650
poly(acrylics)
VII/654
poly(alkenes)
VII/651
poly(amides)
VII/661
poly(dienes)
VII/650
poly(esters)
VII/659
poly(oxides)
VII/659
poly(siloxanes)
VII/661
poly(styrenes)
VII/655
poly(vinyls)
VII/655
Volumetric thermal expansion coefficient
This page has been reformatted by Knovel to provide easier navigation.
VI/194
IX/71
Index terms
Links
W Water, solubility parameter
VII/701
Work, SI units
I/13
Z Zero pressure bulk modulus
VI/593
VI/595
Zero pressure volume
VI/593
VI/595
Ziegler-Natta catalysis
II/329
Zone melting fractionation
VII/333
This page has been reformatted by Knovel to provide easier navigation.