W
Michael Hesse Heidemarie Halbritter Reinhard Zetter Martina Weber Ralf Buchner Andrea Frosch-Radivo Silvia Ulrich
...
139 downloads
1792 Views
28MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
W
Michael Hesse Heidemarie Halbritter Reinhard Zetter Martina Weber Ralf Buchner Andrea Frosch-Radivo Silvia Ulrich
Pollen Terminology An illustrated handbook
SpringerWienNewYork
Univ.-Prof. Dr. Michael Hesse DDr. Heidemarie Halbritter Ao.Univ.-Prof. Dr. Reinhard Zetter Ao.Univ.-Prof. Dr. Martina Weber Dipl.-Biol. Dr. Ralf Buchner Andrea Frosch-Radivo Mag. Silvia Ulrich University of Vienna, Austria
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, VSHFLÀFDOO\ WKRVH RI WUDQVODWLRQ UHSULQWLQJ UHXVH RI LOOXVWUDWLRQV EURDGFDVWLQJ reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. This does also refer to information about drug dosage and application thereof. In every individual case the respective user must check its accuracy by consulting other pharmaceutical literature. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence RIDVSHFLÀFVWDWHPHQWWKDWVXFKQDPHVDUHH[HPSWIURPWKHUHOHYDQWSURWHFtive laws and regulations and therefore free for general use.
© 2009 Springer-Verlag/Wien Printed in Austria SpringerWienNewYork is part of Springer Science + Business Media springer.at Cover Illustrations: Agrostemma githago (SEM, HH), Pinus sp. fossil (LM, RZ), Ruellia graecicans (SEM, HH), Phyllanthus x elongatus (SEM, HH), Argyranthemum sp. (TEM, AF-R), Acacia myrtifolia (SEM, HH), Leontodon saxatilis (SEM, HH) Layout: Dr. Ralf Buchner, Wien, Austria Printing: Holzhausen Druck und Neue Medien GmbH, 1140 Wien, Austria
Printed on acid-free and chlorine-free bleached paper SPIN: 12045303 With numerous (partly coloured) Figures
Library of Congress Control Number: 2008941153
ISBN 978-3-211-79893-5 SpringerWienNewYork
Pollen Terminology An illustrated Handbook
Michael HESSE, Reinhard ZETTER, Heidemarie HALBRITTER, Martina WEBER, Ralf BUCHNER, Andrea FROSCH-RADIVO, Silvia ULRICH
GENERAL CHAPTER ILLUSTRATED GLOSSARY ALPHABETIC GLOSSARY ANNEX
In memory of Jan MULLER and Wilhelm KLAUS, who played a prominent role in the study of fossil and extant pollen.
There are more things in heaven and earth, than are dreamt of in our philosophy.
Preface
T
he principal aim in compiling this book ZDVWRSURYLGHWKHUHDGHUZLWKÀUVWKDQG information about the structure and outlook of the extremely manifold pollen in seed plants. Pollen Terminology. An illustrated Handbook should not be seen as a mere collection of striking and/or informative light and electron micrographs. Each of the micrographs is LQWHQGHG WR FRQYH\ D VSHFLÀF PHVVDJH related to properties and functions of the pollen grains shown. The authors hope that the book will be useful for experienced researchers as well as for beginners in palynology, but also for medicine, biochemistry, or even for lawyers and artists as an aid and guide for the evaluation and interpretation of pollen features.
Acknowledgements Many people were involved in various aspects of this book project and the authors would like to acknowledge and thank them for their time, suggestions and encouragement during the various developmental phases of this book and/or for providing plant material. Among the many other colleagues, who contributed substantially, the authors want to thank (in alphabetical order): Wolfram ADLASSNIG Elisabeth ANGER Josef BOGNER Paula BOMBOSI Perica BRODARIC Thomas CROAT Bernadette DIETHART David Kay FERGUSON
Manfred A. FISCHER Alfred GLASER Lynn HANNON Barbara HERMANOWSKI Anton IGERSHEIM Irmgard JÄGER-ZÜRN Christel KASSELMANN Nadja KAVCIK Alexander KOCYAN Wolfgang KOLLER Thomas LENDL Claudia LOOS %RçHQD0,7,ý Wolfgang OBERSCHNEIDER Marianne PEROUTKA Paul RADIVO Saskia SAM-RICHTARZ Johannes SCHACHNER Ursula SCHACHNER Barbara SIMON Susanne SONTAG Robert STANGL Rupert STINGL Matthias SVOJTKA Angelika SYROVATKA Enikö TWERASER Walter TILL Stefan VOGEL Bruno WALLNÖFER Arabella WURZINGER Klaudia ZETTER The staff members of the Botanical Garden of the University of Vienna (HBV) The staff members of the Bundesgärten Wien_Innsbruck A special note of thanks is due to Mag. Franziska BRUGGER and to Mrs. Silvia SCHILGERIUS of the team at Springer Vienna for their great support and patience during the preparation of this book.
GENERAL CHAPTER
GENERAL CHAPTER
CONTENT Introduction _______________________________ 5 Guidelines ________________________________ 7 Rules for Using Prefixes__________________________ 8
Palynology _______________________________ 11 The Science of Pollen and Spores ______________ 11 A Brief History of Palynology ___________________ 12 A Tentative Outlook___________________________ 13
Pollen Morphology________________________ 15 Polarity and Symmetry ________________________ Apertures_____________________________________ Structure and Function ________________________ Pollen Wall ___________________________________ Structure and Sculpture _______________________ Harmomegathy ______________________________
15 17 20 20 23 23
Why Do We Need Categories?_____________ 27 Pollen Development ______________________ 35 Microsporogenesis and Microgametogenesis __ 35
Inherence of Misinterpretation _____________ 39 Tripartite Features _____________________________ 39 Apertures as Pitfalls ___________________________ 42 Pollen Features can be Ambiguous ____________ 44
Controversial or Fuzzy Terms_______________ 47 Acalymmate/Calymmate_____________________ Areolae/Areolate ____________________________ Pseudocolpus ________________________________ Retipilate _____________________________________ Zona-, Zono- etc. _____________________________
47 47 48 48 48
Methods _________________________________ 51 Scanning Electron Microscopy ________________ Acetolysis and Light Microscopy _______________ Single-Grain Technique _______________________ Transmission Electron Microscopy ______________ Acetocarmine Staining for Light Microscopy____
51 51 51 52 52
How to Describe a Pollen Grain ____________ 55
INTRODUCTION
Introduction
P
ollen Terminology. An illustrated Handbook is a collection of useful terms in palynology, well illustrated with light (LM) and electron microscope (0 PLFURJUDSKV 7KH UHDGHU ZLOO QRW ÀQG an encyclopedic compilation of terms; in that respect see KREMP (1968). The focus is on the pollen of seed plants, predominantly angiosperms, while spores are considered only exceptionally. Therefore the terminology rarely includes spore or gymnosperm characteristics (e.g., leptoma, trilete mark). Since 1994, the Glossary of Pollen and Spore Terminology, co-authored by Wim PUNT, Stephen BLACKMORE, Siwert NILSSON and Annick LE THOMAS, was the standard reference publication in palynological terminology. Then, in 1999 the online version by Peter HOEN (http://www. bio.uu.nl/~palaeo/glossary/glos-int.htm) appeared, with several additions. The online version was published by W. PUNT, P.P. HOEN, S. BLACKMORE, S. NILSSON and A. LE THOMAS in 2007 and provides informative schematic drawings containing the essentials of each term and colored to indicate the wall and aperture components, PRVWO\XVLQJ/0ÀQGLQJV Although extremely useful for overview purposes, drawings cannot show the full
range of features. This can be achieved only with micrographs, which demonstrate – a picture is telling more than thousand words – the often stunning diversity of features. For that reason, the explanatory power of micrographs produced with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) is used in the present volume. The numerous SEM micrographs illustrating the astonishing diversity of pollen ornamentation. Where important terms have appeared ambiguous or have been hitherto underrated, the term has been reviewed and brought into focus (e.g. harmomegathy, or pollen class versus pollen type). It is self-evident that such a book cannot renounce the basics of palynology. In this context please consult standard textbooks in palynology, e.g., ERDTMAN (1952), FÆGRI and IVERSEN (1989) or BEUG (2004). The principles of pollen development and morphology are incorporated as separate chapters for purposes of clarity and in order to correctly interpret the detailed structures of the pollen wall and the full range of ornamentation.
GENERAL CHAPTERɕ5
GUIDELINES
Guidelines
T
he aim of this book is to provide a fully illustrated terminology and glossary of the most important palynological terms, including a substantial standardization of GHÀQLWLRQV,IWHUPVDUHQRWFRQVLGHUHGKHUH WKHQWKH\DSSHDUHGWRXVDVLQVLJQLÀFDQWRU they belong to the terminology of fern spores, which is not considered here. A comprehensive description of pollen grains with terms mentioned in "Pollen Terminology. An illustrated Handbook" is easily accomplishable. A strict rationalization of terms on the basis of practical criteria has been attempted. For consistency, phrases are standardized as far as possible; for example, features of RUQDPHQWDWLRQ DUH VWHUHRW\SLFDOO\ GHÀQHG as “pollen wall with ….”, and pollen wall features (or pollen shape and size) as “pollen grain with ….”. :KHUHLWZDVQHFHVVDU\GHÀQLWLRQVKDYH been reworded, newly circumscribed, or brought into focus. In addition, consistent application of EM techniques and the nowadays better understanding of pollen feaWXUHVKDYHPDGHUHGHÀQLWLRQRIVRPHWHUPV QHFHVVDU\ 0RUHRYHU ZH KDYH FODVVLÀHG terms according to applied techniques (LM, SEM, TEM) and their usage in morphological, anatomical and/or functional context. In chapter "Alphabetic Glossary" the entries are DUUDQJHGDOSKDEHWLFDOO\7KHGHÀQLWLRQVDUH provided with numbers in bold referring to the respective page in chapter "Illustrated Glossary"1 and numbers in square brackets referring to important literature (see chapter "Bibliography"). Emphasis is given to the numerous illustrations. The worldwide largest database on pollen, PalDat (http://www.paldat.org/) is the main source of pictures. Each term is illustrated with LM or EM pictures in order to point out the character range of a term (or,
1 Please note: literature references are not necessarily the earliest publication in which the term was used. The comprehensive literature list (see chapter "Bibliography") includes beside the references more and other (and preferably recent) publications which have been selected as sources of further information.
more precisely, to show the full range of a single character). Brief information on the method of preparation is often provided. In preparing pollen for SEM micrographs, acetolysis was avoided as far as possible. Underrated pollen conditions, e.g., the physical condition of the turgescent, life-like pollen, are considered. The SEM micrographs usually represent the turgescent condition, without further notice. Consequently, pollen grains are often shown in dehydrated stage, marked as “dry pollen”. The deviating characters in turgescent and dry pollen grains are designated by descriptive pictorial terms such as cup-shaped, boat-shaped and aperture sunken. Comments are provided where this may help in the application of a term or to qualify the circumstances in which it is used. Self-explanatory general terms are usually QRW GHÀQHG LQ VXFK FDVHV WKH FRQWH[W LV noted (e.g., circular, see outline). For more information on these see the appropriate page(s) in chapter "Illustrated Glossary". Three categories of terms are used: important terms are printed in bold and are usually illustrated; terms of minor importance are printed in regular script, usually without illustrations (if necessary, terms in chapter "Alphabetic Glossary" are sometimes also illustrated in a footnote); terms printed in italics are not recommended and often provided with an explanatory comment. The chapter "Illustrated Glossary" is subdivided into larger topics, e.g., “Shape and Size” or “Ornamentation”. The terms themselves are listed according to their resemblance in order to provide the user with a side-by-side spectrum of similar characters. For a quick orientation please use the last page of "Pollen Terminology. An illustrated Handbook". It is a fold-out page with terms alphabetically arranged. Numbers indicate the page in chapter "Illustrated Glossary". In contrast to chapter "Illustrated Glossary" the terms in chapter "Alphabetic Glossary" are throughout arranged alphabetically as the noun and the corresponding adjectival
GENERAL CHAPTERɕ7
GUIDELINES
form, if appropriate. Few terms are used exclusively as nouns or exclusively as adjectives. Sometimes two adjectival variants (-ate, -ar) are used but, if so, in two different meanings. For example: from the noun granulum (sculptural or structural element of differing size and shape, less than 1 μm in diameter) derive the two adjectival forms granular and granulate (both meaning “with granules”); these are corresponding terms used in two quite different contexts: granular describes a distinct type of infratectum hence a structural feature whereas granulate refers to an ornamentation feature – a sculpturing element. Both the singular and the plural are given consistently for Latin terms. The English spelling of the Latin term is added (porus, pl. pori, engl. pore) if the English form is preferable. Cross-references are given to terms that are synonyms (the preferable one is printed in bold) or that indicate the opposite condition (antonyms), e.g., homo- and heterobrochate. Numbered literature references are given for each term in chapter "Alphabetic Glossary" and are not necessarily the earliest publication in which the term was used. PUNT et al. (2007) provide the basis of the present terminology. Many terms in palynology were coined at a time when only LM observations were available. Mainly for historical reasons, inconsequent nomenclatural applications, enumerations of synonyms, and HYHQ GLIIHULQJ GHÀQLWLRQV KDYH EHHQ IRXQG IRU RQH and the same term. During the 20th century questions of terminology became more and more problematic. The main reasons were the greatly increasing number of publications in palynology, dealing with sometimes insufÀFLHQWO\ GHVFULEHG RU ´XQFRPPRQµ SROOHQ IHDWXUHV and simultaneously the advent of manifold applied ÀHOGV RI SDO\QRORJ\ )RU YDULRXV UHDVRQV QHDUO\ DOO authors used their own terminology. The situation became worse in the 1970s and 1980s, leading to a variety of terminological “schools”. Nonetheless, in the 1950s attempts were made WR UHVWULFW WKH ZRUGLQJ DQG WR VWDWH WKH GHÀQLWLRQV RI terms more precisely. A deserving, widely accepted but all-too restricted list of pollen morphological terms DQG GHÀQLWLRQV ZDV SXEOLVKHG DV HDUO\ DV E\ IVERSEN and TROELS-SMITH. Later, KREMP (1968), in his famous encyclopedia, provided a monumental enumeration of all known terms . Being aware of the danger that pollen terminology
ɕ*(1(5$/&+$37(5
tends to become foggy, REITSMA WRRNWKHÀUVW resolute step to overcome this problem. A concise terminology now became available, though unfortunately not taking account of the range of variation of most of the palynological features, and without drawings or micrographs. FÆGRI and IVERSEN (1989, 4th ed.) restricted their glossary to terms exclusively used in their book. MOORE et al. (1991, 2nd ed.) provided a glossary of selected terms used in their pollen and spore keys. Standardization came with the glossary by PUNT et al. (1994), updated in 2007. The main advance of their concise and comprehensive terminology is the consistent usage of drawings and the critical comments on terms and usage.
Rules for UsinJ3UHÀ[HV If both a Greek and a corresponding Latin IRUPH[LVWIRUDSUHÀ[WKHQWKH*UHHNIRUPLV used consistently: panto- (not peri-), ekto(not ecto-), or the Greek di- (dis-), and not the Latin bi- (bis-). There are few exceptions from this rule. If the Latin form is more widely used, then the term is treated as a nomen conservandum; for example, bisaccate is found exclusively in the literature and not the Greek form disaccate. 6RPH SUHÀ[HV QHHG D FRPPHQWMicrois used to denote features <1 μm: microreticulate, -echinate, -verrucate, -baculate, -clavate, -gemmate, -rugulate. However, some possible combinations are not applicable; for example, micro-striate or microperforate. Striae are not known to be PLQOHQJWKDQGSHUIRUDWHE\GHÀQLWLRQ describes a feature <1 μm. Terms not listed in the glossary belong to fern or moss spores, or are considered as obsolete, diffuse or redundant (e.g., multiSODQDUWHWUDG VXSHUÁXRXVHJSRO\SOLFDWH because plicate pollen grains are always equipped with several to many plicae), or may be a permanent source of confusion (zon-, zona-, zoni-, zono-). "Pollen Terminology. An illustrated Handbook" aims to clearly separate the types and classes of pollen. Pollen type is a general term categorizing pollen grains by distinct combinations of characters and is often used in connection with a distinct taxon (e.g., Polygonum aviculare type).
GUIDELINES
Pollen class2 LV DQ DUWLÀFLDO JURXSLQJ of pollen grains that share a single, distinctive character. Pollen classes refer to pollen units, to aperture form and location, or to an extremely distinctive ornamentation character. Classes include the terms polyads, tetrads, dyads, saccate, inaperturate, sulcate, ulcerate, colpate, col2 "Pollen type" is sometimes (colloquially) misused; for example, Croton type, which is a distinct feature of ornamentation and is correctly termed Croton pattern.
porate, porate, synaperturate, spiraperturate, lophate, clypeate and plicate. These FODVVHV DUH XVHIXO LQ LGHQWLÀFDWLRQ NH\V DV they have a good diagnostic, although mostly no systematic, value. In general, a pollen grain may belong to more than one pollen class; in such cases the more VLJQLÀFDQWIHDWXUHVKRXOGEHUDQNHGÀUVWHJ Pistia: plicate - inaperturate, Hemigraphis: plicate - colporate, Typha: tetrads - ulcerate, Rhododendron: tetrads - colporate).
GENERAL CHAPTERɕ9
PALYNOLOGY
Palynology The Science of Pollen and Spores
T
he term palynology was coined after a written discussion with Ernst ANTEVS and A. Orville DAHL in the Pollen Analysis Circular no. 8 by HYDE and WILLIAMS (1944) and is a combination of the Greek YHUE SDOXQR ǑǂnjǞǎǚ ´, VWUHZ RU VSULQNOHµ SDOXQHLQ ǑǂnjǞǎdžNJǎ ´WR VWUHZ RU VSULQNOHµ WKH *UHHN QRXQ SDOH ǑǂnjLj LQ WKH VHQVH RI ´GXVW ÀQH PHDOµ DQG YHU\ FORVH WR WKH /DWLQZRUGSROOHQPHDQLQJ´ÀQHÁRXUGXVWµ DQG WKH *UHHN QRXQ ORJRV njǐDŽǐǓ ´ZRUG speech”). Palynology is the science of palynomorphs, a general term for all entities found in palynological samples. A dominating object of the palynomorph spectrum is the pollen grain, the point of origin and the carrier for the male gametes (sperm cells). What makes pollen grains so unique? Pollen grains represent an extra generation in seed plants, the highly reduced male gametophyte (the enclosing sporoderm and the cellular content, consisting of two or three cells, and the pollen tube). Pollen grains are therefore not simply parts of a plant, such as leaves or seeds, but are the
haploid counterpart of the much larger diploid plant body "as we see it in nature". During transport pollen grains are completely separated from the parent plant and perfectly adapted for their role – the transfer of male genetic material – and are able to resist hostile environmental stress on their ZD\ WR WKH IHPDOH ÁRZHU SDUWV 7KHVH WLQ\ (male haploid) organisms usually have as variable parameters: the pollen shape and size, the number, type and position of apertures and the pollen wall with its extremely diverse structure and sculpture. The characters of these parameters in comparative pollen (and spore) morphology and plant systematics are at least as important as any other morphological character of the diploid generation. The pollen grains of seed plants and the spores of mosses and ferns share many homologies. However, although probably equivalent, the terminology of spore wall strata differs, mainly for historical reasons, from the terms used for pollen grains. Some elements and/or features of spores are unknown in pollen grains, e.g., the outermost wall layer in many fern spores, called the perine or perispore.
HYDE and WILLIAMS (1944) The right word. Pollen Analysis Circular 8: p. 6
GENERAL CHAPTERɕ11
PALYNOLOGY
A Brief History of Palynology The Very Early Beginnings Assyrians are said to have known the principles of pollination, but it is unclear if they recognized the nature and power of pollen itself. Greeks and Romans, and the Middle Ages up to the 16th century did not contribute substantially, as far as is known. The Era of the Light Microscope A comprehensive historical survey is found in WODEHOUSE (1935) and especially in DUCKER and KNOX (1985). Only the most important scientists can be mentioned here; the list is not exhaustive. It was Nehemiah GREW who as early as 1662 in his famous work "The Anatomy of Plants" described the constancy of pollen form within the same species; in other words, he founded pollen morphology and was the ÀUVWWRUHFRJQL]HWKDWDOOSODQWVKDYH´WKHLUµ pollen. Carl von LINNÉ ÀUVW XVHG WKH term pollen (in Latin). During the 18th and the early 19th centuries there was considerable progress on pollen and the understanding of pollination. For example, Joseph Gottlieb KOELREUTER (1766), together with Christian Konrad SPRENGEL, the founder of ÁRZHU HFRORJ\ SHUFHLYHG WKH LPSRUWDQFH RI LQVHFWV LQ ÁRZHU SROOLQDWLRQ DQG IRXQG IRUWKHÀUVWWLPHWKDWWKHSROOHQJUDLQKDVDQ important part in determining the characters of the offspring. SPRENGEL ZDVWKHÀUVWWRUHFRJQL]H pores and furrows in the pollen wall; he also demonstrated the effects of cross pollination, of dichogamy, and distinguished between entomo- and anemophily. Johannes PURKINJE (1830) and Franz Andreas (Francis) BAUER, among others, also made substantial contributions. BAUER LV IDPRXV IRU KLV ÀQH DQG H[DFW GUDZLQJV and watercolors of pollen, now held in the Botanical Library of the Natural History Museum, London. Only a few facsimiles have been published, e.g., in KESSELER and HARLEY (2004). Robert BROWN (1828, 1833) UHSRUWHG DQG FRQÀUPHG BAUER’s earlier ZRUN DQG JDYH WKH ÀUVW GHVFULSWLRQ RI WKH origin of the pollen tube.
ɕ*(1(5$/&+$37(5
New and better microscopes enabled Hugo von MOHL (1834) and Carl Julius FRITZSCHE (1837) to separate clearly the principal layers of the pollen wall and to publish surveys on pollen morphology of many angiosperm families. The terms pollenin, exine and intine go back to FRITZSCHE. Johann Heinrich Robert GÖPPERT (1837) and Christian Gottfried EHRENBERG (1838) ZHUH WKH ÀUVW WR GHVFULEH DQG GHSLFW IRVVLO pollen grains. Eduard STRASBURGER (1882) achieved ground-breaking insights into the development and internal structure of pollen. Hugo FISCHER ZDV WKH ÀUVW to summarize the arguments for the phylogenetic value of pollen characters. Pollen VWDWLVWLFVUHSUHVHQWHGDÀUVWVWHSWRZDUGVDQ DSSOLHGÀHOGRIVFLHQFHDQGLQ/HQQDUW von POSTSXEOLVKHGWKHÀUVWSROOHQGLDJUDP SROOHQSURÀOH The 20th century up to ca 1960 was dominated by the skilful use of the LM, with many QHZ ÀQGLQJV IRU H[DPSOH WKH /2DQDO\VLV a method for analyzing patterns of exine organization by light microscopy: focusing at different levels distinct features appear bright (L = Lux) or dark (O = Obscuritas). Textbooks by Roger WODEHOUSE (1935), Gunnar ERDTMAN (1943, 1952, 1969), or Knut FÆGRI and Johannes IVERSEN (1950) summarized the knowledge on pollen at that time and to a great extent have maintained their value. ,Q WKH ÀUVW KDOI RI WKH th century palynology as a predominantly basic science “went applied”, giving rise to a series of GLYHUVLÀFDWLRQV $SSOLHG ÀHOGV ZRUOGZLGH in use, include aeropalynology, biostratigraphy, copropalynology, cryopalynology, forensic palynology, iatropalynology, melissopalynology, paleopalynology, pharmacopalynology, among others. The Era of the Electron Microscope As pointed out by KNOX (1984, p. 204): "The terminology applied to the pollen wall is daunting, especially as it has been developed from early light microscopy work, and then transposed to the images seen in the transmission and scanning electron microscopes".
PALYNOLOGY
Electron Microscopy with its two most important types, TEM and SEM, facilitated the major breakthrough in palynology: the ultrastructure of developing and mature pollen and the stunning visualization of pollen morphological characters. During the 1950s and early 1960s considerable progress in TEM preparation PHWKRGV IURP À[DWLRQ WR PLFURWRP\ DQG staining) took place. The resolving power of the TEM was the basis for new information on pollen grain ultrastructure and pollen development. Nevertheless, EM-based information on ornamentation details of pollen grains was rare up to the mid-1960s. Only TEM-based casts or replica methods were available, all of them with limited resolution and depth of focus (e.g., the single-stage carbon replica technique; ROWLEY and FLYNN 1966, FLYNN and ROWLEY 1967). The time-consuming and laborious TEM replica procedures were an obstacle to extensive surveys of pollen morphology and have now been successfully replaced by SEM (HARLEY and FERGUSON 1990). Today barely conceivable, the introduction of SEM in palynology in the second half of the 1970s was a key innovation in the VWXG\ RI WKH ÀQH UHOLHI RI SROOHQ VXUIDFHV Advantages of SEM include the relatively simple and rapid preparation methods, the unsurpassed depth of focus revealing an overwhelming vividness and power. SEM ZDVDFFHSWHGLQWKHYHU\ÀUVWPRPHQWDVWKH quantum leap in EM (HAY and SANDBERG 7KH ÀUVW 6(0V RI SROOHQ JUDLQV ZHUH published by THORNHILL et al. (1965) and ERDTMAN and DUNBAR (1966). Since then palynologists have been provided with a plethora of beautiful micrographs. "The scanning electron microscope has provided a greater impetus to palynology than any other technical development during the history of the subject." (BLACKMORE 1992).
Nowadays the LM (with basic and advanced equipment) and the two main types of EM form an expedient combination of imaging techniques. The LM remains the workhorse method (TRAVERSE 2007; see the compendia by REILLE 1992, 1995 and 1998) but is limiting insofar as morphological and structural features at species level, not observable by LM but of diagnostic value, are routinely determinable only by SEM. The role of SEM as an essential part in illustrating exine sculpture and ornamentation cannot be overrated (HARLEY and FERGUSON 1990).
A Tentative Outlook Nowadays, palynology, as an organismic-based science, can serve as an indispensable tool for various applied sciences, but clearly also can stand alone as one of the most developed basic sciences. In general, compared to the diplont the male gametophyte in seed plants is yet poorly investigated. From at least 250.000 plant species onlyca 10 percent have been studied with respect to pollen grain morphology, and regarding pollen grain anatomy it is much less. In the 21st century, no matter what role SDO\QRORJ\ ZLOO SOD\ EHLQJ D EDVLF ÀHOG of science or more probably a bundle of DSSOLHGÀHOGVDYLWDOLVVXHZLOOEHWKHLQFUHDVH of our knowledge of pollen grains and in this context the enhancement of pollen terminology. Modern palynologists, making use of LM as well as EM, need for descriptive PDWWHUV D FOHDUO\ GHÀQHG DQG SLFWRULDO pollen terminology, covering the richness of features and the enormous spectrum of characters.
GENERAL CHAPTERɕ13
POLLEN MORPHOLOGY
Pollen Morphology
A
diagrammatic representation of the main morphological features of a palynomorph (preferably pollen grains or spores) is called palynogram. It includes parameters of symmetry, shape and size, aperture number and location, RUQDPHQWDWLRQDQGVWUDWLÀFDWLRQ
3RODUD[LVDQG equatorial plane
Polarity and Symmetry Mature pollen is shed in dispersal units. The post-meiotic products either remain permanently united or become partly or usually completely disintegrated. In the latter case the dispersal unit is a single pollen grain, a monad; if the post-meiotic products remain united, dyads (a rare combination), tetrads or polyads (massulae, pollinia) are the result. Pollinaria are dispersal units of two pollinia including the sterile, interconnecting appendage. Tetrad stage orientation of microspores
microspore’s center, perpendicular to the polar axis. Therefore, the equatorial plane divides the pollen grain into a proximal and a distal half. Isopolar pollen grains have identical proximal and distal poles, thus the equatorial plane is a symmetry plane. In heteropolar pollen grains the proximal and distal halves are different.
distal poles shaded green
Polarity
Pollen shape and aperture location directly relate to pollen polarity, which is determined by the spatial orientation of the microspore in the meiotic tetrad and can be examined only in the tetrad stage. The SRODUD[LV of each microspore runs from the SUR[LPDOSROH, orientated towards the tetrad center, to the distal pole at the outer tetrad side. The equatorial plane is located at the
left: isopolar right: heteropolar
GENERAL CHAPTERɕ15
POLLEN MORPHOLOGY
The various arrangements of the four microspores within permanent or disintegrating tetrads depend on the simultaneous or successive type of cytokinesis and on the type of intersporal wall formation. The spatial arrangement of microspores after simultaneous cytokinesis is usually a tetrahedral tetrad. This arrangement is of systematic relevance. The spatial arrangement of microspores after successive cytokinesis leads to different tetrad types without any systematic relevance: planar (tetragonal, linear, T-shaped) or non-planar (decussate or tetrahedral).
(probably restricted to Proteaceae, no permanent tetrads). Aperture arrangement
Fischer‘s law
Tetrad arrangement
tetrad tetrahedral Fagus sp. Fagaceae, fossil (exceptional ÀQGLQJ
Garside‘s law
tetrad planar Typha latifolia Typhaceae
In pollen grains with three apertures, two types of aperture arrangement occur after simultaneous cytokinesis (disintegrating or permanent tetrahedral tetrads). Fischer’s law refers to the most frequent arrangement where the apertures form pairs at six points in the tetrad (e.g., Ericaceae, permanent tetrads). Garside’s law refers to the unusual arrangement of apertures where they form groups of three at four points in the tetrad
ɕ*(1(5$/&+$37(5
Pollen shape refers to the P/E-ratio: the ratio of the length of the polar axis (P) to the equatorial diameter (E). In spheroidal (or isodiametric) pollen grains the polar axis is ± equal to the equatorial diameter. Pollen grains with a polar axis longer than the equatorial diameter are called prolate; grains where the polar axis is shorter than the equatorial diameter are described as oblate. Pollen shape
left: oblate mid: spheroidal right: prolate
POLLEN MORPHOLOGY
Pollen sizeYDULHVIURPOHVVWKDQǍPWR PRUH WKDQ ǍP 7R LQGLFDWH WKH SROOHQ size the largest diameter is used. It also depends on the degree of hydration and the preparation method. Because of this and natural variation, a bandwidth designation is recommended. A diameter indication in the range of, e.g., less than 1 μm is not recommended. The use of the following size categories may be helpful: very small (<10 μm), small (10–25 μm), medium (26–50 μm), large (51–100 μm) and very large (>100 μm).
Apertures The many facets of an allegedly simple character Nomenclature and Typology An aperture is a region of the pollen ZDOOWKDWGLIIHUVVLJQLÀFDQWO\IURPWKHUHVWRI the wall in its morphology and/or anatomy, and is presumed to function usually as the site of germination and to play a role in harmomegathy. Pollen grains lacking
an aperture are called inaperturate. The DSHUWXUHGHÀQLWLRQÀWVERWKDQJLRVSHUPDQG gymnosperm pollen, but in gymnosperms the type of aperture usually differs from that in angiosperms, since often a leptoma is present. Note: unless stated otherwise, the following sections deal with angiosperm aperture constructs only. The polarity of the pollen determines the aperture terminology. A circular aperture is called a porus if situated equatorially or globally; if situated distally it is called an ulcus. An elongated aperture is called a colpus if situated equatorially or globally; if situated distally it is called a sulcus. A combination of porus and colpus is termed a colporus; colpori are situated only equatorially or globally. Colpi and colpori (colpi and pori) may be present simultaneously in some taxa; this condition is called heteroaperturate. A circular or elliptic aperture with indistinct margins is a poroid. The number of equatorial apertures (pori, colpi, colpori) is indicated by the preÀ[HV GL RU WUL +RZHYHU WHWUD SHQWD RU Pollen grain polarity dicots Bellis perennis Asteraceae
polar view
equatorial view
GENERAL CHAPTERɕ17
POLLEN MORPHOLOGY
Pollen grain polarity monocots Allium paradoxum Alliaceae
proximal polar view
distal polar view
equatorial view
equatorial view
ɕ*(1(5$/&+$37(5
POLLEN MORPHOLOGY
Tetrad mark in spores
hexa- are sometimes used. (Writing numbers LQVWHDG RI SUHÀ[HV LV LQ FRPPRQ XVH HJ 4-porate or tetraporate, 6-colpate or hexacolpate. "Pollen Terminology. An illustrated Handbook" SUHIHUVWKHXVHRISUHÀ[HV $Q\ pollen grain with more than three apertures at the equator is also called stephanoaperturate (stephanoporate, stephanocolpate, stephanocolporate). Pollen grains with globally distributed apertures are called pantoaperturate. The polarity gives rise to the polar and the equatorial view. In dicots there is usually one polar and one equatorial view. In monocots, due to the mostly distal aperture, there are four views: a proximal polar, a distal polar, and two different equatorial views. Proximal germination is unknown in seed plants and is restricted to spores, which germinate at the tetrad mark, the so-called laesura (extensive overview: TRYON and LUGARDON 1991). Pre-(prae-)pollen (microspores of certain extinct seed plants) is characterized by proximal and distal apertures, and by presumed proximal germination, producing motile spermatozoids.
Polypodium sp. Polypodiaceae, fossil monolete tetrad mark polar view
Sphagnum sp. Sphagnaceae, fossil trilete tetrad mark polar view
Pre-pollen
indet. Pteridaceae, fossil trilete tetrad mark polar view
polar view
Apertures are normally covered by an exinous layer, the aperture membrane. Aperture membranes can be ornamented, e.g., covered with various exine elements, or can be smooth. In contrast, an operculum is a thick, coherent exine shield and covers the aperture like a lid. In general, aperture membranes are infolded in dry pollen state; after acetolysis the aperture membrane may be lost.
Cryptogramma crispa Pteridaceae trilete tetrad mark
GENERAL CHAPTERɕ19
POLLEN MORPHOLOGY
7D[RLGSROOHQJHUPLQDWLRQ
Number, type and position of apertures are genetically determined and usually À[HG ZLWKLQ D VSHFLHV KRZHYHU LW PD\ sometimes vary (e.g., number of apertures in stephanoaperturate pollen grains).
Cephalotaxus sp. Cephalotaxaceae exine shedding prior to pollen tube formation
Structure and Function The aperture usually acts as the (exclusive) germination site. Pollen tubes in inaperturate angiosperm pollen are produced without a preformed exit zone. In WD[RLG pollen the exine ruptures during hydration at a specialized region, the tenuitas, ulcus, or papilla in the center of a circular leptoma and is subsequently shed. The intine including the protoplast is released and a pollen tube can be formed anywhere (resembling functionally an inaperturate pollen grain). Furthermore some angiosperm taxa shed the exine before pollen tube formation, e.g., in some Annonaceae. During germination, usually a single pollen tube is formed. However, sometimes tube-like structures ("instant pollen tubes") are simultaneously formed in the anther or very quickly in shed pollen immediately after water contact. Their production is interpreted as a pre-germinative process (BLACKMORE and CANNON 1983).
fresh pollen in water
Instant pollen tubes
Pollen Wall
Scabiosa caucasica Dipsacaceae
In general, the pollen wall (sporoderm) of seed plants consists of two main layers: the outer H[LQH and the inner intine. The exine consists mainly of sporopollenins, which are acetolysis- and decay-resistant biopolymers. The intine is mainly composed of cellulose and pectin. Commonly, the pollen wall in apertural regions is characterized by the reduction of exinous structures or by a deviant exine, and a thick, often bilayered intine. Two layers within the exine are distinguished: an inner endexine and an outer ektexine. The ektexine consists of a basal
Morina longifolia Morinaceae
ɕ*(1(5$/&+$37(5
POLLEN MORPHOLOGY
3ROOHQZDOOVWUDWLÀFDWLRQ supratectal elements
pk
pk: pollenkitt
ektexine
sexine
exine
tectum
columellae pk
nexine
pk foot layer endexine
intine
tectate
tectate
atectate
atectate
Costa
foot layer, an infratectum and a tectum, the endexine is a mainly unstructured, single layer. There are many deviations from this principal construction: layers may be thickened, variably structured, or lacking. In apertural regions the pollen wall is characterized by a different exine construction. The terms VH[LQH for the outer, structured, and QH[LQH for the inner, unstructured exine layer are widely used in light microscopy, but do not fully correspond to ekt- and endexine, respectively. The angiosperm pollen wall The HNWH[LQH consists in general of tectum, infratectum and foot layer. The outer layer, the more-or-less continuous tectum, can be covered by supratectal elements. The infratectum beneath is columellate or granular (a second layer of columellae may form an internal tectum). The foot layer may be either continuous, discontinuous or absent. The HQGH[LQH may be characterized as continuous or discontinuous, spongy or compact, is present overall, only in apertures, or even completely absent. Some typical deviations of the wall thickness are named with special terms: arcus, annulus,
Nyssa sp. Nyssaceae, fossil equatorial view
Austrobuxus nitidus Picrodendraceae, fossil broken grain, thickening around the endoaperture
tenuitas (see "Illustrated Glossary") and costa (a thickening of the nexine/endexine bordering an endoaperture).
GENERAL CHAPTERɕ21
POLLEN MORPHOLOGY
Pollen terminology in saccate gymnosperm pollen Abies sp. Pinaceae, fossil equatorial view
left: corpus right: sacci
left: cappa right: leptoma
Pollen types in saccate Pinus pollen Pinus sp. Pinaceae, fossil left: polar view right: equatorial view
Haploxylon-pollen-type
Diploxylon-pollen-type
ɕ*(1(5$/&+$37(5
POLLEN MORPHOLOGY
Extreme examples of variable ektexine design include massive forms lacking almost DQ\ VXEGLYLVLRQ RU VWUDWLÀFDWLRQ H[WUHPHO\ reduced forms, or even their complete absence. The typical angiosperm aperture shows a thick, bilayered intine. The Gymnosperm Pollen Wall The “Gymnosperms” comprise cycads, Ginkgo, conifers and Gnetales. The gymnosperm pollen wall differs from that in angiosperms in two characters: 1. the endexine is always lamellate in mature pollen stages. 2. the infratectum is never columellate. The four gymnosperm classes exhibit diverse, special constructions of the apertures. 7KH SULQFLSDO VWUDWLÀFDWLRQ HNWH[LQH endexine and intine) of the gymnosperm pollen wall is identical to that of angiosperms. A tectum is present in all cycads, in Ginkgo, in all Gnetales, but not in all conifers: in some taxa the tectum is completely lacking (sculpture elements are situated on the foot layer). The infratectum is either alveolate or granular but never columellate. A special terminology is applied to saccate pollen, i.e., Pinaceae and Podocarpaceae. The saccus is a large hollow projection from the corpus, the central body of saccate pollen grains. It is a typical deviation of the pollen wall conformation, composed only by the exine with an alveolate infrastructure. Most frequently, two sacci are present, in some taxa even three, or only a single one. Saccate pollen grains show on the proximal side of the corpus a region termed cappa, and on the distal side a thinned region, the leptoma. In Pinus two pollen types are recognized as of systematic value. The +DSOR[\ORQpollen-type is characterized by pollen grains with broadly attached half-spherical air sacs – in LM the leptoma shows remarkable thickenings (black spots). The 'LSOR[\ORQpollen-type is characterized by pollen grains with narrowly attached, spherical air sacs - the leptoma does not show any thickenings.
Structure and Sculpture The internal construction of the pollen wall is its structure; ornamenting elements on the pollen surface (ornamentation) are summarized under the term sculpture or sculpturing. However, it is not always possible to distinguish between structure and sculpture (e.g., free-standing columellae). Ornamentation This general term in palynology is applied to surface features. All the ornamenting features (areola, clava, echinus, foveola, fossula, granulum, gemma, plicae, reticulum, rugulae, striae, verruca) are artiÀFLDO FDWHJRULHV WKDW PDUN H[WUHPHV ZLWKLQ a broad morphological series and are therefore regarded as extremely variable; nevertheless, they are important in pollen description. For practical purposes a distinct feature can be subdivided into ornamenting elements extending 1 μm in diameter, or if VPDOOHUWKHQPDUNHGZLWKWKHSUHÀ[micro-. Combinations of sculptural elements are FRPPRQ )UHTXHQWO\ D VSHFLÀF RUQDPHQWDWLRQ LV GLIÀFXOW WR GHVFULEH RQO\ LQ ZRUGV because of the high plasticity of its ornamenting elements. A typical micrograph characterizes sculptural elements to a much higher degree. The arrangement of ornamenting elements on the pollen surface is very often disparate, particularly in apertural regions. Pollen coatings like pollenkitt or tryphine may obscure the ornamentation.
Harmomegathy Harmomegathic Effect (Wodehouse Effect) All living pollen grains are able to absorb and release water; thus, each living grain exists in two morphologically different states: the dry and the hydrated condition. Harmomegathic mechanisms, e.g., infolding of the pollen wall, accommodate the change of the osmotic pressure in the cytoplasm during hydration or dehydration.
GENERAL CHAPTERɕ23
POLLEN MORPHOLOGY
Harmomegathic effect
Cistus creticus Cistaceae left: spheroidal right: dry pollen prolate, lobate
Galium rotundifolium Rubiaceae left: oblate right: dry pollen prolate, lobate
Vriesea pabstii Bromeliaceae left: oblate right: dry pollen boat-shaped
Lamiastrum montanum Lamiaceae left: spheroidal right: dry pollen prolate, outline elliptic
ɕ*(1(5$/&+$37(5
POLLEN MORPHOLOGY
The main purpose of the harmomegathic effect is to protect the male gametophyte against desiccation during pollen presentation and dispersal, and is often related to pollination biology. In mature anthers, pollen is turgescent before shedding. After anther dehiscence and during pollen presentation, water loss takes place and the pollen grain becomes typically infolded, depending on aperture IRUP DQGRU QXPEHU DQG VSHFLÀF ZDOO thinnings or thickenings. The pollen grain in proper dry state represents the genuine harmomegathic effect and its shape is very often typical for a family and/or genus and is therefore of systematic relevance. The harmomegathic effect is to some degree reversible. Rehydrated pollen with water uptake at the stigma, or under laboratory conditions, is again turgescent and largely recalls the shape before shedding. A second dehydration does not necessarily result in the typical dry shape but, if pollen ZDOOVDUHVXIÀFLHQWO\VWDEOHWKHKDUPRPHJathic effect can be induced several times in the same way. In the case of thin walls, the susceptible internal structure may become irreversibly damaged, and the harmomegathic effect may result in differing shapes, often randomly. The harmomegathic effect is also observed in pollen taken from herbarium material, and to some degree in fossil material (HALBRITTER and HESSE 2004).
Infolding of the pollen wall after acetolysis is mostly not comparable with that in dry state. The harmomegathic effect depends predominantly on the various characters of the pollen wall. Several pollen features (harPRPHJDWKLF IDFWRUV FROOHFWLYHO\ LQÁXHQFH the mode of infolding and cannot be considered separately: — apertures (the most important character): their position, number and form. — pollen wall structure: thinned or thickened regions; in particular, internal girdles or endoapertures. If the ektexine is considerably reduced, its role is taken over by other wall strata, namely, by a thick endexine or intine. On the other hand, if the exine is extremely rigid, then the harmomegathic effect is only marginal. — ornamentation type. — pollen size: small pollen grains with thin walls exhibit a lesser degree of infolding. — pollen coatings: if abundant, pollen coatings act as an insulating layer or sheath against desiccation. Terms used for common phenotypes of dry pollen include: apertures sunken, boatshaped, cup-shaped, interapertural area infolded, irregularly infolded, not infolded. In addition, technical terms such as, e.g., barrel-like, disk-like, or kidney-like might be helpful for an adequate description.
GENERAL CHAPTERɕ25
WHY DO WE NEED CATEGORIES?
Why Do We Need Categories?
N
ature itself neither needs categorization nor has any knowledge of categories. However, for the scientist, categories are essential for classifying natural characters in their diversity, for GHÀQLQJWKHLUUDQJHDQGIRUSODFLQJWKHPLQ systematic order. Nevertheless, categories DUH DUWLÀFLDO DQG DOZD\V GHOLPLWHG E\ DQ individual or collective convention, mostly not by nature. In addition to the theoretical concept, categorization always depends on the manner in which a character is perceived: i.e. on the visibility of a character, and/ RU WKHLU VSHFLÀF YDOXH &DWHJRUL]DWLRQ DOVR greatly depends on the technical equipment and method(s) used, as well as on the subjective interpretation of character(s)1. Thus, FDWHJRUL]DWLRQ RI IHDWXUHV LV GLIÀFXOW WR standardize. A well known example is pollen size2. However, depending on the preparation method(s), the pollen sample may show pollen grains of one and the same SODQWVSHFLHVÀWWLQJLQWRPRUHWKDQRQHVL]H category (pollen size categories: see "Pollen Morphology"). Moreover, sometimes the size of pollen grains is found just at the boundary between two adjacent pollen size categories. Placing the pollen grain in one of the size categories therefore depends entirely on the material, the preparation method(s) and the observer’s evaluation. Characterization of pollen ornamenWDWLRQ LV HYHQ PRUH FRPSOH[ PRGLÀFDtions of basic ornamentation characters or combinations of different characters usually
giving rise to a seamless transition between neighboring characters or to a combination of characters. Seamless transitions between related EXW FOHDUO\ GHÀQHG IHDWXUHV H[LVW HJ LQ gemmate pollen and its “neighbor” clavate pollen. Both types of ornamentation are very variable in shape and size and rather rare in their typical form. Combination of ornamenting characters is very common. Often, the ornamentation is composed of two or more characters, such as reticulate and foveolate, or a combination of echinate and perforate (for examples see Illustrated Glossary). From the observer’s viewpoint it is desirable to name WKH RUQDPHQWDWLRQ FKDUDFWHUV LQ D GHÀQHG order: in the case of two or more combined characters, the most eye-catching, prominent character (the “leading term”) should EHPHQWLRQHGÀUVW For example, in Aristolochia, the pollen grain surface bears very prominent verrucae Combination of ornamenting characters Aristolochia arborea Aristolochiaceae
inaperturate, spheroidal verrucate, perforate
1 To be successful in characterization consider the following hints: be familiar with good microscope practice. The microscope, LM or EM, should be in JRRG RUGHU 3ULPDU\ PDJQLÀFDWLRQ VKRXOG EH DGHquately high, but any enlarging of details beyond a EHQHÀFLDO PDJQLÀFDWLRQ LV FRXQWHUSURGXFWLYH )RU KLJK PDJQLÀFDWLRQV LQ 6(0 WKH EHVW SRLQW UHVROXWLRQ should be achieved. Quality of sample preparation is an all-too-often underrated item. 2 The importance for dimension measurements is acknowledged but there is no need for decimal places, since dimensions vary considerably according to different treatments, as already shown by REITSMA (1969).
surface detail verrucae and perforations
GENERAL CHAPTERɕ27
WHY DO WE NEED CATEGORIES?
(the “leading term”) combined with a great number of small perforations. Such ornamentation therefore should be called verrucate, perforate. Sometimes it is debatable which feature represents the “leading term”. As a sample, in Caryophyllaceae, there are numerous, more-or-less regularly arranged microechini Combination of ornamenting characters
Stellaria media Caryophyllaceae microechinate, perforate
6DSRQDULDRIÀFLQDOLV Caryophyllaceae microechinate and perforate
Silene succulenta Caryophyllaceae perforate, microechinate
ɕ*(1(5$/&+$37(5
and perforations. In some taxa the microechini are more prominent (microechinate, perforate), in others the perforations (perforate, microechinate). There are also taxa, where the two features are on a par (microechinate and perforate). Micrographs elucidate the actual situation at a glance.
WHY DO WE NEED CATEGORIES?
Distinct areas of the pollen grain surface may show different ornamentation types. The type of ornamentation may be irregularly distributed over the pollen surface, or restricted to distinct surface regions. Some examples may elucidate this feature: — The polar region of Fallopia convolvulus is psilate to perforate, apertural regions are microechinate.
— In Sideritis montana polar and interapertural areas are perforate to foveolate, apertural regions are psilate. — In Salvia austriaca the polar area is psilate to perforate, all other areas being bireticulate. — 6RODQGUDORQJLÁRUD is an example where the polar areas are reticulate, while in equatorial view the ornamentation is striato-reticulate. Combination of ornamenting characters
left: Fallopia convolvulus Polygonaceae polar view right: Sideritis montana Lamiaceae polar view
Salvia austriaca Lamiaceae left: polar view right: equatorial view
6RODQGUDORQJLÁRUD Solanaceae left: polar view right: equatorial view
GENERAL CHAPTERɕ29
WHY DO WE NEED CATEGORIES?
Interpretation of ornamenting characters
Sometimes it depends on the individual researcher to interpret ornamenting features: for example, to call Sanchezia nobilis (Acanthaceae) plicate and striate, but also reticulate? And should the rod-like elements be termed clavae, or free-standing columellae? Moreover, is the aperture to be interpreted as a porus or a colporus? A special case deserves attention. In heterostylous species two different pollen types occur. Size and number of apertures, e.g., in Primula, or the ornamentation e.g., in Linum, may differ. For better illustration /LQXP ÁDYXP and Primula SROOHQ RI WKH WZR ÁRUDO W\SHV ORQJ styled and short-styled, pin and thrum morphs) is shown here. In /LQXP ÁDYXP the short-styled-morph pollen is baculate, and the long-styledmorph clavate. In Primula veris the pollen of the shortstyled morph (thrum) is larger and has more apertures than the pollen of the long-styled morph (pin).
Sanchezia nobilis Acanthaceae
oblique equatorial view
surface detail
Heterostyly /LQXPÁDYXP Linaceae
short-styled morph baculate
long-styled morph clavate
ɕ*(1(5$/&+$37(5
WHY DO WE NEED CATEGORIES?
Heterostyly Primula veris Primulaceae
left: short-styled morph right: long-styled morph
Terms derived from LM level cannot always EHH[WHQGHGDQGDSSOLHGWR6(0OHYHO. A classical example: Ulmus pollen at LM level was described as rugulate (rugulae: elongated exine elements longer than 1 μm; irregularly arranged). In low SEM magQLÀFDWLRQV WKH WHUP verrucate (verrucae:
wart-like element more than 1 μm, broader than high) would describe the ornamentation in a better manner. High SEM magniÀFDWLRQVVKRZDGGLWLRQDOgranules (structure or sculpture elements of different size and shape; smaller than 1 μm). A typical rugulate ornamentation at SEM level is present in, e.g., Sanicula, which is quite dissimilar to the ornamentation seen in Ulmus at SEM high resolution level. This is a good place to mention interpretative pitfalls. The denotation of ornamentation frequently depends on the optical PDJQLÀFDWLRQ XVHG DQG SDUWLFXODUO\ RQ WKH point resolution. Very many (paleo-)palynologists have relied on LM only. Even lowSRZHU6(0PD\QRWEHVXIÀFLHQWWRGLVWLQJXLVK pollen grains unequivocally which are in LM very similar (for examples and discussion see FERGUSON et al. 2007). Ornamentation in LM and SEM view
Ulmus laevis Ulmaceae left: rugulate (LM) right: verrucate (SEM)
left: Ulmus laevis Ulmaceae surface detail verrucate, granulate right: Sanicula europaea Apiaceae surface detail rugulate
GENERAL CHAPTERɕ31
WHY DO WE NEED CATEGORIES?
A second example is scabrate, a term used for light microscopy only, describing PLQXWH VFXOSWXUH HOHPHQWV RI XQGHÀQHG shape and of a size close to the resolution limit of the light microscope. As an example, Juglans pollen is scabrate in LM and (with some reservation) under low power SEM, but microechinate at high resolution SEM. Ornamentation in LM and SEM view Juglans sp. Juglandaceae
polar view scabrate to psilate (LM)
microechinate (SEM)
Another example for different interpretations in LM and SEM is the term psilate. Many pollen grains are psilate in LM view, but show a distinct ornamentation at SEM level. For example, in LM view pollen of Allium is psilate (see "Illustrated Glossary" – psilate), in SEM view it is striate and perforate (see "Pollen Morphology"). The term granulate (describing minute VFXOSWXUDO HOHPHQWV RI XQGHÀQHG VKDSH and of a size close to the resolution limit of the LM) is adequate for features at low 6(0 PDJQLÀFDWLRQ $W VLJQLÀFDQWO\ KLJKHU resolution a more adequate description is often possible. The actual shape of such
ɕ*(1(5$/&+$37(5
“granules” depends on the much better UHVROXWLRQ RI GHWDLOV DW KLJK 6(0 PDJQLÀcation, where a “granulate ornamentation” emerges as, for example, a great number of very small spines (microechini), the pointed HQGVVHHQEHVWLQSURÀOHQRWIURPWRSYLHZ The allegedly granulate ornamentation of many Poaceae is in fact microechinate; see "Illustrated Glossary". Another interpretative pitfall does QRW GHSHQG RQ RSWLFDO PDJQLÀFDWLRQ Ornamentation sometimes depends entirely or to a high degree on the preparation method. A striking example is the presence or complete absence of distinct echini on pollen of many Araceae/Aroideae: fresh or dry material exhibits a distinct echinate ornamentation, whereas after acetolysis the echini are completely removed. These echini are composed of polysaccharides (singular exception) and lack sporopollenin completely. The pollen is then – correctly – called psilate (WEBER et al. 1999). An example for different possible interpretations in relation with a differing degree of hydration is Trichosanthes anguina (Cucurbitaceae), where the ornamentation UHÁHFWV WKH GLIIHULQJ GHJUHH RI K\GUDWLRQ The overview micrograph on the left shows a fully turgescent pollen, and on the right a less turgescent one. The ornamentation can be described as either areolate, or verrucate or even fossulate. Perforations are clearly visible in fully turgescent pollen only. So ornamentation should better be called verrucate and perforate. Hydration
Trichosanthes anguina Cucurbitaceae pollen grains of different state of hydration
WHY DO WE NEED CATEGORIES?
Hydration
Trichosanthes anguina Cucurbitaceae left: surface detail areolate right: surface detail verrucate, perforate
$ VSHFLÀF RUQDPHQWDWLRQ VRPHWLPHV even depends on peculiarities during pollen development. Ubisch bodies are usually found as isolated particles between pollen grains, or lining the mature locular wall (HUYSMANS et al. 1998, HALBRITTER and HESSE 2005, VINCKIER et al. 2005; equivalents are found in ferns: LUGARDON 1981). Pollen grains of Cupressaceae and Taxaceae are often equipped with adhering (adnate) Ubisch bodies, which are - strictly speaking SDUW RI WKH VSHFLÀF SROOHQ RUQDPHQWDWLRQ (for example Chamaecyparis or Juniperus, see "Illustrated Glossary").
$ FRPSOH[ FDWHJRU\ LVVXH LQ 3DOHR Palynology is the nomenclature question. In Paleopalynology, for morphotaxa often form-generic names are used. The nomenclature of form-genera is HLWKHU DUWLÀFLDO ZKHQ WKH UHODWLRQVKLS LV not known at all (e.g., Oculopollis and Trudopollis from the Normapolles group), or "half-natural", when reference to an extant taxon is suspected but not proven (e.g., Liliacidites). However, if reference to extant taxa is certain, then a "natural" nomenclature is possible (e.g., Quercus sp.).
Nomenclature in Paleopalynology
Oculopollis sp.
Trudopollis sp.
GENERAL CHAPTERɕ33
POLLEN DEVELOPMENT
Pollen Development Microsporogenesis and Microgametogenesis
Microsporogenesis tetrads
T
he unicellular pollen grain represents the microspore of seed plants, the multicellular pollen grain the male gametophytic generation of seed plants and is source and transport unit for the male gametes (or their progenitor cell). The development of a pollen grain includes (micro)sporogenesis [1-4] and (micro)gametogenesis [5-9]. Microsporogenesis starts with the differentiation of microspore mother cells (MMC) resp. pollen mother cells (PMC) [1]. These diploid cells become enclosed by a thick callose wall and undergo meiosis, forming a tetrad of four haploid microspores, each encased in a second callose wall insulating them from each other and from the surrounding diploid tapetal cells [2]. Cytokinesis following meiotic nuclear divisions is accompanied by the formation of cleavage planes determined by the conÀJXUDWLRQ DQG RULHQWDWLRQ RI WKH PHLRWLF spindle axes. In the case of successive cytokinesisSODQHVDUHIRUPHGDIWHUWKHÀUVW and second meiotic divisions leading to the formation of various tetrad types (see "Pollen Morphology"). During simultaneous cytokinesis the cleavage planes are formed concurrently after the second meiotic division; in this case microspores are arranged in a tetrahedral tetrad. Pollen wall formation starts when the microspores are still arranged in tetrads DQGHQFDSVXOHGE\FDOORVH>@7KHÀUVWVWHS consists of the deposition of the SULPH[LQH, D ÀEULOODU SRO\VDFFKDULGLF PDWHULDO RQ WKH surface of the microspores. The primexine forms a template where sporopollenin preFXUVRUV DQG ÀQDOO\ sporopollenin are subseTXHQWO\ GHSRVLWHG EXLOGLQJ WKH ÀQDO SROOHQ wall. Apertures are developed where the endoplasmic reticulum has prevented the deposition of primexine. During pollen formation and maturation the tapetum plays an important role, usually
Scrophularia nodosa Scrophulariaceae tetrad tetrahedral iodid
Spiraea sp. Rosaceae tetrad tetrahedral PA+TCH+SP
Orobanche hederae Orobanchaceae tetrad planar KMnO4
forming a single layer of cells circumscribing the loculus. Tapetal cells are specialized DQG KDYH D VKRUW OLIHVSDQ WKH\ ÀQDOO\ ORVH their cellular organization and are reabsorbed. Two types of tapetum are known: the secretory (or glandular or parietal) and the amoeboid (or periplasmodial). In the secretory type (e.g., in Apiaceae) the tapetal
GENERAL CHAPTERɕ35
POLLEN DEVELOPMENT
FHOOV UHPDLQ VWDWLRQDU\ XQWLO WKH\ ÀQLVK WKHLU physiological functions. In the amoeboid tapetum type (e.g., in Araceae) cells lose their individuality in an early developmental stage by degeneration of the cell walls. The protoplasts then fuse and intrude into the locule where they enclose the pollen grains. The tapetum plays an important role during several stages of pollen development. Its main function is the nourishment of the microspores but it also synthesizes enzymes (e.g., callase), exine precursors, pollen coatings, forms Ubisch bodies and viscin threads (both equivalents to the ektexine). The most striking material produced by the tapetum is pollenkitt (and tryphine in Brassicaceae, elastoviscin in Orchidaceae), a sticky, heterogeneous material composed RIQHXWUDOOLSLGVÁDYRQRLGVFDURWHQRLGVSURteins and polysaccharides. Pollenkitt serves numerous functions: for example, keeping pollen grains together during transport; protecting pollen from water loss, ultraviolet radiation, hydrolysis and exocellular enzymes; maintaining sporophytic proteins inside exine cavities. Microgametogenesis in angiosperms LQFOXGHV ÀUVW DQG VHFRQG SROOHQ PLWRVLV leading to the formation of the male gametes (sperm cells). Gametogenesis starts with formation of a central vacuole within the uninucleate microspore, pushing the nucleus towards the wall [5]. As long as the nucleus is in a central position within the cytoplasm, the cell is called a microspore [4]. With the dislocation of the microspore nucleus the cell becomes the young pollen grain.
ɕ*(1(5$/&+$37(5
The ÀUVW SROOHQ PLWRVLV is followed by an asymmetric cell division, leading to the formation of a smaller generative cell and a larger vegetative cell [6]. When the generative cell is formed it is pressed against the pollen wall; it later separates and is then located within the cytoplasm of the vegetative cell [7]. After detachment, the generative cell, which is sparse in organelles, EHFRPHVPRGLÀHGLQVKDSHIURPVSKHULFDOWR spindle-shaped (the shape of the generative nucleus changes correspondingly). During the second pollen mitosis, which is followed by a symmetric cell division, the generative FHOOLVGLYLGHGLQWRWZRVSHUPFHOOVWKHÀQDO stage of gametophytic development [8]. In DERXWRIÁRZHULQJSODQWVLQYHVWLJDWHG the pollen grains are three-celled at the time RI DQWKHVLV>@ LQ RI ÁRZHULQJ SODQWV pollen grains are shed from the anther at a two-celled stage. In the latter case the second pollen mitosis takes place in the pollen tube, after germination of the pollen grain onto a stigma or a corresponding structure [9]. Microgametogenesis in gymnosperms includes several mitotic divisions. Normally, pollen grains of gymnosperms are multicelled at anthesis, and comprise prothallial cell(s), a large tube cell and a small antheridial cell. The tube cell becomes a pollen tube; the antheridial cell undergoes division into the stalk cell and the spermatogenous FHOO WKH ODWWHU ÀQDOO\ GLYLGLQJ LQWR WKH PDOH gametes (sperm cells or spermatozoids).
POLLEN DEVELOPMENT
Pollen development in angiosperms
GENERAL CHAPTERɕ37
INHERENCE OF MISINTERPRETATION
Inherence of Misinterpretation Tripartite features
I
nvestigation of recent and fossil pollen material often reveals interesting features that in some cases may be misinterpreted. Selected examples are various tripartite surface features that may actually be or only resemble apertures. Other examples are conspicuous, even eye-catching ornamentation features that are potentially misinterpreted as apertures, while the genuine, very inconspicuous apertures might be overlooked. The study of a morphological series can be of help clarifying ambiguous features.
Abies cephalonica Pinaceae proximal polar view indistinct impression mark
Tripartite Features Mature pollen of conifers, such as Abies, Larix and Pseudotsuga, often shows proximally a Y-shaped bulge, comparable to a tetrad mark, which is called an impression mark (HARLEY 1999). The mark results from the close proximity of the four pollen grains at the post-meiotic tetrad phase and is retained afterwards. Impression marks are also found in palm pollen. Note: the term tetrad mark is restricted to spores, where it is the germination feature, the impression mark of pollen grains is no germination feature. 6XSHUÀFLDOO\VLPLODUIHDWXUHVLQDQJLRVSHUPV are not comparable to that in gymnosperms. In recent and fossil Sapindaceae a threearmed feature (more precisely a triangle) is found. Cardiospermum has a narrow triangle (tenuitas) proximally, whereas other
Larix sp. Pinaceae, fossil proximal polar view Y-shaped impression mark
Larix sp. Pinaceae, fossil Y-shaped impression mark
Tripartite features
Cardiospermum corindum Sapindaceae tricolporate left: equatorial view right: proximal pole with triangular area
GENERAL CHAPTERɕ39
INHERENCE OF MISINTERPRETATION
Tripartite features synaperturate pollen
Melaleuca armillaris Myrtaceae syncolporate left: polar view right: polar area
syncolpate left: Primula denticulata Primulaceae polar view right: Primula farinosa Primulaceae dry pollen
Tripartite features trichotomosulcus
recent and fossil Sapindaceae show such a feature at both poles. The triangular pollen as found in Myrtaceae, some Primulaceae (Primula farinosa or P. denticulata) or in some Loranthaceae is characterized by a trianJXODU ÀHOG in both polar areas. The angles elongate to meridional rays (colpi) directed to the roundish pollen tips, the rays crossing the equator and forming an equivalent triangle on the antipodal polar area. Pollen is synaperturate (syncolpate, syncolporate). Another tripartite feature is the trichotomosulcus (HARLEY 2004), a three-armed sulcus found exclusively distally, as, e.g., in Dianella and Cretaceous fossils. Trichotomosulcate pollen has been discussed in relation to the evolution of the tricolpate dicot condition, but so far without success. In contrast to the trichotomosulcus also trisulcate pollen is found. The angiospermlike pollen of the fossil genus Eucommiidites has a distal sulcus and, at angles of ca Ý VHHQ IURP WKH VXOFXV WZR IROGV RQ WKH proximal side of the pollen. This feature was
Dianella tasmanica Phormiaceae
dry pollen
ɕ*(1(5$/&+$37(5
INHERENCE OF MISINTERPRETATION
Tripartite features
erroneously misinterpreted as more-or-less tricolpate pollen (with “colpi” equatorially situated, which has proved to be incorrect). A similar arrangement of a distal sulcus and two small additional "sulci" on the proximal face was described, for example, in some species of Tulipa (Liliaceae) and Tinantia (formerly Commelinantia, Commelinaceae), but these cases were never interpreted as equivalent to a tricolpate condition (HARLEY 2004). In some cases the three sulci are of quite equal size. The aperture condition is very similar to a tricolpate one. The interpretation “trisulcate” is possible and of use only in context with a morphological series.
Thesium alpinum Santalaceae tricolpate, heteropolar
triradiate colpus
Tripartite features
polar view Tulipa kaufmanniana Liliaceae trisulcate equatorial (!) view
Another three-armed feature is the triradiate aperture in Thesium alpinum (Santalaceae) pollen (an additional suggestive feature is the pollen shape forming a tetrahedron, the four triangular faces showing conspicuous reticulate areas that PLJKWEHPLVLQWHUSUHWHGDWÀUVWVLJKWDVIRXU apertures). In fact Thesium alpinum pollen is three-aperturate, the apertures placed in the three tapered edges of the tetrahedron. Each aperture forms a very inconVSLFXRXV WULUDGLDWH ÀJXUH ZKLFK LV VLWXDWHG equatorially. Two of the arms point towards the neighboring tetrahedron edge and are rather short; the third, elongated arm is directed to the rounded edge, which is probably the proximal pole.
equatorial view
polar view
GENERAL CHAPTERɕ41
INHERENCE OF MISINTERPRETATION
Apertures as Pitfalls Sometimes the apertures are inconVSLFXRXVDQGQRWGLVFHUQLEOHDWÀUVWVLJKW,Q Pachira aquatica (Bombacaceae) pollen three large, more-or-less hemispherical areas DUHVHHQHTXDWRULDOO\ZKLFKPD\DWÀUVWVLJKW be interpreted as three pores. However, a detailed observation reveals planaperturate pollen grains with three short colpi.
The monads of the Calliandra emarginata (Mimosaceae) polyad are separated by narrow groove-like depressions. At low PDJQLÀFDWLRQWKHSUHVHQFHDQGORFDOL]DWLRQ of the apertures remain indistinct; high SEM PDJQLÀFDWLRQUHYHDOVWKDWWKHDSHUWXUHVDUH very inconspicuous pores, situated equatorially, usually at the conjunction of three or four monads. Apertures as pitfalls
Apertures as pitfalls
Calliandra emarginata Mimosaceae
Pachira aquatica Bombacaceae
massula dry state polar view
apertures (pores) at the junction of four monads equatorial view
The apertural condition may be hidden by prominent features. The clypeate pollen of Phyllanthus × elongatus (Euphorbiaceae) seems to be inaperturate. Only close-ups reveal the inconspicuous pores between the exine shields. The disk-like pollen of Oryctanthus sp. (Loranthaceae) shows at both poles conspicuous circular depressions that are not apertures (FEUER and KUIJT 1985). The pollen is tricolpate with inconspicuous short slit-like colpi between the polar depressions on
oblique equatorial view (SEM)
ɕ*(1(5$/&+$37(5
INHERENCE OF MISINTERPRETATION
Apertures as pitfalls Phyllanthus × elongatus Euphorbiaceae
left: clypeate pollen seemingly inaperturate right: inconspicuous pores between the exine shields
Apertures as pitfalls Oryctanthus alveolatus Loranthaceae acetolyzed
left: tricolpate (short colpi on both sides, with bridge), pollen grains in polar view right: colpus
Apertures as pitfalls
both sides. The colpi are interrupted by a broad exine bridge at the equator plane; thus calling the aperture condition “hexacolpate” would be a possible interpretation. Trapa (Trapaceae) pollen is triaperturate (colpate or porate). Recent and fossil pollen grains are distinguished by unique meridional exine features (crests); these cover the apertures so that only after removal of the crest the aperture is visible.
Trapa sp. Trapaceae, fossil
equatorial view crest in part broken colpus visible
Apertures as pitfalls
Trapa sp. Trapaceae, fossil
Trapa sp. Trapaceae, fossil
equatorial view crest broken
equatorial view
GENERAL CHAPTERɕ43
INHERENCE OF MISINTERPRETATION
Pollen Features can be Ambiguous Case studies: — LQWHUSUHWDWLRQ RI VSHFLÀF DSHUWXUH conditions — FODVVLÀFDWLRQ RI LQIUDWHFWDO VWUXFWXUH characters — deviating pollen forms Investigation of a morphological series within a genus can provide decisive nomenclature or at least support such a decision; studying only an isolated sample of a morphological series may easily lead to misinterpretations. 3DVVLÁRUD 3DVVLÁRUDFHDH pollen is an example of a morphological series concerning apertures. The apertures in 3DVVLÁRUD cf. incarnata may be interpreted as three ring-like apertures. An interpretation as porate-operculate is likewise possible, and probably more correct, if compared with pollen of other 3DVVLÁRUD species. Not infrequently the apertures in angiosperms show indistinct margins, or appear as thin regions in the pollen wall. The Illustrated Glossary makes use of two terms, Ambiguous features
3DVVLÁRUDcf. incarnata 3DVVLÁRUDFHDH left: polar view right: equatorial view
left: 3DVVLÁRUDFLWULQD 3DVVLÁRUDFHDH stephanocolpate operculate polar view right: 3DVVLÁRUDVXEHURVD 3DVVLÁRUDFHDH stephanocolpate operculate, dry pollen
ɕ*(1(5$/&+$37(5
SRURLG DQG WHQXLWDV LQ GHVFULELQJ VXSHUÀcially quite similar features. A poroid is a circular or elliptic aperture with indistinct margin. A tenuitas is a general term for a pollen wall thinning, which has been applied to many different features (KREMP 1968, HARLEY 2004, PUNT et al. 2007). A tenuitas (in angiosperms) is normally found additional to regular apertures (e.g., in some Myosotis species, see "Illustrated Glossary"). The harmomegathic effect may cause misinterpretations. A distinct infolding type suggests or pretends an erroneous aperture condition, while the correct aperture condition is inconspicuous or even hidden. Pollen of Sparganium erectum (Sparganiaceae) is in dry stage infolded, boat-shaped, and would be considered as sulcate. In fact Sparganium pollen is ulcerate, the ulcus is seen clearly in the hydrated, spherical pollen stage. Nymphaea alba (Nymphaeaceae) pollen has asymmetrical halves. The features
INHERENCE OF MISINTERPRETATION
of the smaller distal half can be interpreted either as a large ulcus with a conspicuous operculum, or as a more-or-less equatorially situated ring-like aperture surrounding the
polar area. Ultrastructural characters and germination experiments support the interpretation as a ring-like aperture (HESSE and ZETTER 2005). Ambiguous features Myosotis palustris Boraginaceae
left: equatorial view heteroaperturate, alternating colpori and colpi (pseudocolpi) right: polar view polar area with triangular tenuitas
Ambiguous features Sparganium erectum Sparganiaceae ulcerate
left: equatorial view right: dry pollen boat-shaped
Ambiguous features Nymphaea sp. Nymphaeaceae ring-like aperture
left: equatorial view right: dry pollen cup-shaped
GENERAL CHAPTERɕ45
INHERENCE OF MISINTERPRETATION
Infratectum is a term which includes in fact a morphological series. The classical angiosperm character states simply comprise columellar and granular. However, as, e.g., DOYLE (2005) has pointed out, intermediate conditions are not uncommon. Even the areolate infratectum, usually UHVWULFWHG E\ GHÀQLWLRQ WR J\PQRVSHUPV LV found in some angiosperms (see "Illustrated Glossary"). Deviating pollen forms – an underrated topic. Abnormal pollen grains occur regularly in small percentages in nearly all anthers and may vary from one individual to another (heterogeneity of pollen forms). A much higher percentage of such deviating, more precisely, malformed pollen grains are found in many cultivated plants (ornamental plants, agricultural crops) or in plants with asexual reproduction (autogamic plants, apomicts). The effect also depends on the ploidy level, hybrids may produce a series of pollen types. Pollen variation is generally underreported, because most studies focus on normal rather than abnormal pollen morphology (BANKS et al. 2007).
ɕ*(1(5$/&+$37(5
Aberrant pollen may occur at a high percentage within a single pollen sac, anther or ÁRZHU These aberrant, deformed pollen grains differ from normal pollen in shape and dimension, in number and form of apertures, in type and arrangement of ornamentation. Very often in hybrids, pollen ornamentation is intermediate between the typical forms of the parent species. Some species produce only malformed pollen, a feature typical for plants with asexual reproduction (e.g., some Alchemilla spp.). The reasons for the production of deviating pollen forms are genetically, chemically or environmentally induced. While many reports dealing with the developmental causes, a tiny minority of papers refers predominantly to the habit of the deviating pollen forms (e.g., POZHIDAEV 2000a, b, focusing on the aperture patterning). As a consequence, these outliers should neither be ignored nor overrated, but we should take notice of this issue as an ordinary feature.
CONTROVERSIAL OR FUZZY TERMS
Controversial or Fuzzy Terms Sometimes terms are ambiguous in GHÀQLWLRQ RU DSSOLFDWLRQ RU PD\ EH VLPSO\ misleading.
Acalymmate
Acalymmate/Calymmate In compound pollen grains or pollen units the individual grains are held together by different physical means of the pollen wall. Van CAMPO and GUINET (1961) recognized calymmate and acalymmate types. The term calymmate denotes a feature describing a dispersal unit of two or more monads enclosed by a continuous ektexine.
Annona muricata Annonaceae tetrad, dry pollen Drosera sp. Droseraceae
Calymmate
tetrad Chlorospatha kolbii Araceae tetrads
Acalymmate denotes a feature describing a dispersal unit of two or more monads enclosed by an exine, which is discontinuous at the junctions between the monads, and is absent from the internal walls. Since these basic types were described a lot of variations have been found, and the question was raised whether the basic distinction can remain (a survey and a detailed discussion was provided by KNOX and McCONCHIE 1986). The micrographs show examples for either a continuous (calymmate) or a discontinuous exine enclosure (acalymmate).
Areolae/Areolate
detail of pollen wall
small, mostly convex exine areas separated by small grooves. Later on, the term was used describing pollen with large, variably ornamented exine areas separated by grooves; this type of ornamentation is better called clypeate, a pollen wall, in which the exine is subdivided into shields. Clypeate, however, also denotes a pollen class; for examples see "Illustrated Glossary".
The term areola/areolate was originally applied to pollen grains ornamented with
GENERAL CHAPTERɕ47
CONTROVERSIAL OR FUZZY TERMS
Pseudocolpus A pseudocolpus is a colpus in heteroaperturate pollen grains and is presumed as non-functional. Pseudocolpi are always associated with colpori, never with colpi. Pseudocolpi mostly alternate with colpori (e.g., in Boraginaceae, Lythraceae) or are situated on both sides of a colporus (in Acanthaceae). Since germination experiments for pseudocolpi are absent, it cannot be assumed that pseudocolpi act as germination sites. Without doubt they play a role in harmomegathy, but their effects have been poorly studied; for examples see "Illustrated Glossary".
Retipilate There are yet no known examples for retipilate, "a reticulum formed by rows of pila instead of muri”. In contrast to earlier observations, investigations based on LM and SEM have revealed that the examples Callitriche (Plantaginaceae) in PUNT et al. (2007: “describing a reticulum formed by rows of Retipilate
left: drawings from PUNT et al. (2007) right: drawing from ERDTMAN (1952), p. 22, Fig. 5d
left: Callitriche polymorpha Plantaginaceae reticulum cristatum with small gemmae on thin muri right: Cuscuta lupuliformis Cuscutaceae reticulum cristatum with microechini
ɕ*(1(5$/&+$37(5
pila instead of muri”) and Cuscuta lupuliformis (Cuscutaceae) in ERDTMAN (1952, p. 128: „with a reticuloid pattern with pila instead of muri´ GRQRWÀWWKHLUGHÀQLWLRQLQ fact there are muri with prominent sculpture elements (a reticulum cristatum) but no isolated pila. Nota bene: while ERDTMAN (1952) provides a correct drawing, the diagram in PUNT et al. (2007) is erroneous.
Zona-, Zono- etc. 7HUPV FRPELQLQJ WKH EDVLF SUHÀ[ ]RQ together with its linguistic derivatives are a source of endless confusion, misunderVWDQGLQJ DQG VXSHUÁXRXV LQÁDWLRQ RI WHUPV 7KH SUHÀ[HV LQFOXGH zon- (in zonorate, for a ring-like endoaperture, the os, at the equator), the outdated, rarely used zoni(however, with two quite different terminological applications), but especially zona(indicating exclusively a ring-like feature situated anywhere) and zono- (indicating any feature located strictly equatorially). A curious example deserves special attention. Terms for ring-like (aperture)
CONTROVERSIAL OR FUZZY TERMS
features include zona-aperturate, zona-sulculus (addressing the polarity by anazonasulculus and catazona-sulculus), zona-sulcus, zonate, zono-aperturate, and also related names (e.g., “fully zonate condition” sensu GRAYUM 1992). Even the misleading and contradictory zono-sulcus (a sulcus cannot be situated equatorially) is used instead of the correct, but phonetically confusable, zona-sulcus. The trained palynologist may be overstrained. It is proposed that all these terms should be avoided. To avoid any confusion, not more
than two non-interchangeable terms are necessary, without combination of syllables, SUHÀ[HVRUVXIÀ[HVDQ\HQFLUFOLQJDSHUWXUH (“zona-aperturate”), irrespective of meridional or equatorial location, is simply called a ring-like aperture. The location or direction regarding the pollen grains polarity is not easy to address, since the orientation of the pollen grain in tetrad stage is relevant. 2. any case with more than three apertures at the equator (“zono-aperturate”) is called stephanoaperturate.
A typical meeting debating controversial terms at any Thursday within the last three years 14:00 start of meeting, participants in time: MH, HH, SU, RB, AFR, MW 14:38 RZ comes delayed and wants to have “bisaccate” in the glossary 14:40 RZ falls into a deep sleep 14:50 MH wants to include “cryptoaperturate” to the glossary all others: “noooooo…" 15:00 RZ wakes up and again calls for “bisaccate” all others: „nooooooooooo…!” RZ: “Wish to be a squirrel … hide DQG ÀQG QXWV « QR PRUH SROOHQ terminology!” 15:05 RB repeatedly yawns, because of low nicotin and coffeine levels
15:10 emotional discussion about “zona-" and “zono-aperturate”; SU resigns while writing the protocol... MH to HH: “Heidi, think faster...!” MW and SU suffer from paroxysm of laughter AFR asks for more discipline 16:00 HH: “It‘s time for the four o‘clockcoffee!” MH: “Forget about it!” 16:15 RZ (enervated) again calls for “bisaccate” 0:DVNVWKH´WRROIRUÀQDOGHFLVLRQVµ about “bisaccate” 17:00 end of meeting
tool for ÀQDOGHFLVLRQV
frustrate Reinhard Zetter, Ralf Buchner Heidemarie Halbritter, Andrea Frosch-Radivo Martina Weber, Silvia Ulrich, Michael Hesse
GENERAL CHAPTERɕ49
METHODS
Methods Multiple techniques and methods should be used when investigating pollen grains in order to provide comprehensive and accurate information and help to avoid misinterpretations. Good examples of such an approach are the endexine (mentioned below) and the endoaperture, the latter visible only in the light microscope (LM) and hidden in the scanning electron microscope (SEM). The selection of micrographs in "Pollen Terminology. An illustrated Handbook" in cludes both LM and EM pictures.
Scanning Electron Microscopy SEM techniques cannot substitute LM but they can provide a great deal more information, especially about ornamentation. Methods of sample preparation for SEM should preserve the living condition of a pollen grain as far as possible. In addition, pollen coatings should be removed from the pollen surface in such a way that no details of the pollen grain are lost. For the SEM, acetolysis is not an optimal method for cleaning the pollen surface, as it will often destroy apertural details. Pollen with fragile exines may also be destroyed. As a routine, all pollen grains should be observed in an air-dried condition, which gives the best information about the pollen grains at anthesis and their harmomegathic situation. The best results have been obtained using 2,2-dimethoxypropane (DMP) (HALBRITTER 1998). This method can be used for fresh material (pollen grains should be collected when anthesis starts) and for herbarium samples after short rehydration in water. Unless stated otherwise, the pollen grains shown in "Pollen Terminology. An illustrated Handbook" represent the turgescent state.
)UHVKDQWKHUVDUHSXWLQWRDSRXFKPDGHRIÀOWHU SDSHU DQG LPPHGLDWHO\ WUDQVIHUUHG LQWR DFLGLÀHG 2,2-dimethoxypropane (a drop of 0.2 M HCl added to 30 ml DMP). After 20–30 min in DMP (or up to 24 h) samples are transferred to pure acetone for a few minutes and critical-point dried in CO2 using acetone DVLQWHUPHGLDWHÁXLG7KHGULHGSROOHQVDPSOHVDUHWKHQ mounted on stubs using double-sided adhesive tape, sputter-coated with gold and observed with the SEM.
Acetolysis and Light Microscopy Acetolysis is an indispensable method for illustrating pollen grains with the LM. Untreated or stained pollen grains will hide much of the important information for the description of a pollen grain. Acetolysis is a combination of chlorination and acetylation: For chlorination, the samples are transferred to a test tube and covered with a layer (1.5 cm) of glacial acetic acid and a layer (approx. 3 cm) of a freshly prepared solution of saturated sodium chlorate. After adding 3 or 4 drops of concentrated HCl, the mixture is stirred with a glass rod, heated in a bath of boiling water for 3 min, centrifuged, and the liquid fraction decanted. The residue is carefully washed to eliminate DQ\ UHPDLQLQJ FKHPLFDOV DQG WKHQ ÀQDOO\ ZDVKHG in concentrated acetic acid or acetic anhydride to remove the water. For the acetylation step, the samples are put into a mixture of 9 parts acetic anhydride and 1 part concentrated sulfuric acid and heated to 100° C for approximately 4 min. After the mixture has been centrifuged and the liquid fraction decanted, the residue is washed in acetic acid and water. Glycerine is then added to the sample to form a suspension.
Single-Grain Technique (ZETTER 1989, FERGUSON et al. 2007) For fossil pollen grains a combined LM/ SEM investigation should be used. After the LM investigation the same acetolyzed pollen grain is transferred to the SEM. After extracting the pollen grains from the sediment, the samples undergo acetolysis (chlorination plus acetylation as described above). Glycerine is then added to the organic residue to form a suspension and a drop transferred to a glass slide. Using a dissecting needle to which a nasal hair has been DIÀ[HG JUDLQV RI SDUWLFXODU LQWHUHVW DUH EUXVKHG WR the edge of the glycerine, where they can be picked up and transferred to another glass slide for photography under the LM. Because no cover slip is used, it is possible to photograph the same grain in various
GENERAL CHAPTERɕ51
METHODS orientations. After this, the pollen is transferred to an SEM stub to which a drop of absolute ethanol has been added to remove all traces of the glycerine from the surface of the pollen grains, so that these can be examined in great detail under the SEM.
Transmission Electron Microscopy For TEM studies of pollen from different plant species, more than one protocol for À[DWLRQDQGVWDLQLQJPD\EHQHHGHG )RU À[DWLRQ DQWKHUV DUH SODFHG LQ JOXWDUDOdehyde in 0.1 M phosphate buffer (pH 7.4) for 8–18 h at room temperature. After rinsing in buffer and disWLOOHG ZDWHU VDPSOHV DUH SRVWÀ[HG LQ 2V24 plus 0.8 % phosphate-buffered potassium ferrocyanide K4Fe(CN)6 3 H2O (2:1) for 8 h at 6º C. Samples are then washed in distilled water, dehydrated in 2,2-DMP followed by pure acetone, and embedded in Spurr's low-viscosity epoxy resin (SPURR 1969) or Agar lowviscosity resin.
Sections of pollen grains are routinely stained using the following methods: U+Pb URANYL ACETATE-LEAD CITRATE STAINING
In many species investigated uranyl acetate-lead citrate staining has not proved satisfactory. Staining is carried out in uranyl acetate solution (Leica Ultrastain-1) for 45 min followed by lead citrate (Leica Ultrastain-2) for 1 min (all steps at room temperature).
from the ektexine and the intine by thiocarbohydrazide-silver proteinate (TCH+SP) VWDLQLQJ LQ RVPLXPÀ[HG PDWHULDO DQG periodic acid-thiocarbohydrazide-silver proteinate (PA+TCH+SP) staining in osmium-free material. The endexine stains electron dense after TCH+SP staining [2], indicating lipidic compounds, and electron translucent after PA+TCH+SP staining [3], excluding this layer as part of the intine, as it is well known that intine reacts positively for polysaccharides. A morphological characteristic of the endexine is its increasing thickness close to the aperture. PA+TCH+SP staining (localization of neutral polysaccharides): Sections (80–100 nm) from osmium-free material are placed on gold grids and treated with 1 % PA for 45 min, 0.2 % TCH for 8–15 h, and 1 % SP for 30 min (THIÉRY 1967). TCH+SP-staining (detection of unsaturated lipids): 6HFWLRQV ²QP IURP RVPLÀHG PDWHULDO DUH placed on gold grids and treated with 0.2 % TCH for 8–15 h and 1 % SP for 30 min (ROWLEY and DAHL 1977, WEBER 1992).
PA+TCH+SP (short) MODIFIED THIÉRY TEST
7KH PRGLÀHG VKRUW 7KLpU\ WHVW WEBER and FROSCH 1995) is especially effective DIWHU À[DWLRQ RI VSHFLPHQV ZLWK RVPLXP and potassium ferrocyanide and is a good method for general enhancement of contrast in the cytoplasm and the pollen wall.
TCH+SP, PA+TCH+SP THIOCARBOHYDRAZIDE-SILVER PROTEINATE STAINING (TCH+SP) AND PERIODIC ACID-THIOCARBOHYDRAZIDESILVER PROTEINATE STAINING (PA+TCH+SP)
The endexine is a frequently misinterpreted layer of the pollen wall. Using standard TEM staining techniques (uranyl acetate and lead citrate), ektexine and endexine may differ in their electron opaqueness in that the endexine is higher in electron density than the ektexine, or the situation may be reversed [1]. But in many species, especially when the endexine is thin and less compact or discontinuous, the differentiation of the WZROD\HUVLVLQVXIÀFLHQW The endexine can be differentiated
ɕ*(1(5$/&+$37(5
Sections 80–100 nm thick are collected on gold grids and stained with 1 % periodic acid (PA) for 10 min, 0.2 % thiocarbohydrazide (TCH) for 15 min, and 1 % silver proteinate (SP) for 10 min (all steps at room temperature). After the staining steps with PA and SP, sections are intensively washed in distilled water; after staining with TCH, washes are in 3 % acetic acid followed by distilled water.
Acetocarmine Staining for Light Microscopy For the detection of the generative nucleus and the sperm nuclei, fresh pollen grains are put into a drop of acetocarmine, warmed for a few seconds and observed with the LM (GERLACH 1969).
METHODS
Staining methods
U+Pb
TCH+SP
PA+TCH+SP
GENERAL CHAPTERɕ53
HOW TO DESCRIBE A POLLEN GRAIN
How to Describe a Pollen Grain The minimal features for describing a pollen grain are: size, shape, aperture condition, ornamentation, and the method, how the pollen grain was prepared for LM and EM,
respectively. LM- and SEM-diagnosis may be different from each other, due to the methods and techniques used.
LM-diagnosis plant name: Centaurea jacea (Asteraceae) method: pollen grains acetolyzed size: medium (longest axis about 40 μm) shape (determined by equatorial and polar view): prolate aperture: tricolporate ornamentation: echinate peculiarities: remarkable endoaperture
polar view
equatorial view
SEM-diagnosis method: pollen grains critical-point-dried (hydrated condition) and air-dried, respectively size: medium (longest axis about 40 μm) shape: spheroidal (in hydrated condition); prolate, lobate (in dry condition) aperture: tricolporate ornamentation: echinate, perforate peculiarities: —
polar view
equatorial view
detail of exine ornamentation
dry pollen
GENERAL CHAPTERɕ55
ILLUSTRATED GLOSSARY
ILLUSTRATED GLOSSARY
CONTENT Pollen Unit____________________ 59-67 monad _____________________________ 59 dyad _______________________________ 60 pseudomonad______________________ 61 tetrad ___________________________ 62-65 massula ____________________________ 66 pollinium____________________________ 67 pollinarium__________________________ 67
Pollen Class _________________ 68-72 clypeate ___________________________ 68 colpate ____________________________ 68 colporate___________________________ 68 dyad _______________________________ 69 inaperturate ________________________ 69 lophate_____________________________ 69 plicate _____________________________ 70 polyad _____________________________ 70 porate______________________________ 70 saccate ____________________________ 71 spiraperturate_______________________ 71 sulcate _____________________________ 71 synaperturate_______________________ 72 tetrad ______________________________ 72 ulcerate ____________________________ 72
polychotomosulcus __________________139 ring-like aperture _________________140-141 margo ______________________________142 annulus, annulate________________143-144 aperture membrane _____________145-148 operculum, operculate __________149-151 pontoperculum, pontoperculate _____152 bridge_______________________________153 papilla, papillate_____________________154
Ornamentation _____________ 155-198
Pollen size ____________________________73 spheroidal _________________________ 74-75 prolate ____________________________ 76-77 oblate_____________________________ 78-79 outline_____________________________ 80-87 outline, pollen infoldings ____________ 88-93 isopolar_______________________________94 heteropolar________________________ 95-96 saccus, saccate ___________________ 97-99 arcus, arcuate ______________________100
reticulum, reticulate ______________155-167 bireticulate __________________________161 homobrochate ______________________162 heterobrochate _____________________163 microreticulate ______________________164 reticulum cristatum_______________165-167 plicae, plicate _______________________168 striae, striate _____________________169-172 striato-reticulate _________________173-174 rugulae, rugulate ________________175-176 granulum, granulate _________________177 psilate ___________________________178-179 perforate ________________________180-181 foveola, foveolate ___________________182 fossula, fossulate _____________________183 lophae, lacunae, lophate ________184-185 echinus, echinate________________186-189 microechinate_______________________190 verruca, verrucate ___________________191 baculum, baculate __________________192 clava, clavate ___________________193-194 free-standing columellae_____________195 gemma, gemmate __________________196 areola, areolate _____________________197 clypeate ____________________________198
Aperture ___________________ 101-154
Pollen Wall _________________ 199-211
aperture, aperturate _____________101-102 inaperturate _________________________103 angulaperturate _____________________104 planaperturate ______________________105 stephanoaperturate _____________106-109 pantoaperturate ________________110-112 brevicolpus, brevicolpate ____________113 brevicolporus, brevicolporate_________113 synaperturate _______________________114 spiraperturate _______________________115 heteroaperturate ____________________116 pseudocolpus _______________________117 colpus, colpate __________________118-120 porus, porate ____________________121-125 poroid, poroidate ____________________126 tenuitas _____________________________127 colporus, colporate ______________128-132 ulcus, ulcerate ___________________133-134 sulcus, sulcate ___________________135-138 trichotomosulcus_____________________139
pollen wall___________________________199 infratectum ______________________200-202 internal tectum ______________________203 foot layer ____________________________204 endexine ________________________205-208 intine ________________________________209 semitectum, semitectate _____________210 atectate ____________________________211
Shape & Size ________________ 73-100
Miscellaneous______________ 212-223 primexine____________________________212 vegtative nucleus ____________________213 generative cell_______________________214 sperm cell ___________________________215 tapetum_____________________________216 pollenkitt ____________________________217 primexine matrix _____________________218 tryphine _____________________________218 viscin thread _____________________219-220 Ubisch body _____________________221-223
monad
POLLEN UNIT LM SEM TEM
mo ana fnc
monad: dispersal unit consisting of a single pollen grain.
Dactylis glomerata Poaceae
Pinus strobus Pinaceae
ulcerate, equatorial view
bisaccate, equatorial view
Tragopogon orientalis Asteraceae
Leuchtenbergia principis Cactaceae
tricolporate, oblique polar view
tricolpate, oblique polar view
Iris pumila Iridaceae
([DFXPDIÀQH Gentianaceae
sulcate, oblique distal polar view
tricolporate, oblique polar view
ILLUSTRATED GLOSSARYɕ59
dyad LM SEM TEM
POLLEN UNIT mo ana fnc
dyad: dispersal unit of two pollen grains.
Polypleurum stylosum Podostemaceae
Polypleurum stylosum Podostemaceae acetolyzed, pollen collapsed
Zeylanidium olivaceum Podostemaceae
Zeylanidium subulatum Podostemaceae
7KHOHWK\OD[PLQXWLÁRUD Podostemaceae
7KHOHWK\OD[PLQXWLÁRUD Podostemaceae acetolyzed, pollen collapsed
ɕ,//8675$7('*/266$5<
pseudomonad
POLLEN UNIT
LM SEM TEM
mo ana fnc
pseudomonad: dispersal unit of a permanent tetrad with three rudimentary pollen grains.
Carex sp. Cyperaceae
Carex atrata Cyperaceae
Schoenoplectus lacustris Cyperaceae
Scirpus sylvaticus Cyperaceae
Carex distans Cyperaceae
Cyperus longus Cyperaceae
ILLUSTRATED GLOSSARYɕ61
tetrad tetrahedral LM SEM TEM
POLLEN UNIT
mo ana fnc
tetrad tetrahedral: dispersal unit of four pollen grains in which the centers of the grains GHÀQHDWHWUDKHGURQ
Erica herbacea Ericaceae
Arbutus unedo Ericaceae
Drimys granatensis Winteraceae
0RQHVHVXQLÁRUD Ericaceae
Mimosa pudica Mimosaceae
(SLORELXPSDUYLÁRUXP Onagraceae dry pollen, viscin threads
ɕ,//8675$7('*/266$5<
tetrad tetrahedral
POLLEN UNIT
LM SEM TEM
mo ana fnc
tetrad tetrahedral: dispersal unit of four pollen grains in which the centers of the grains GHÀQHDWHWUDKHGURQ
Epilobium montanum Onagraceae
Luzula campestris Juncaceae
viscin threads
Oxyanthus subpunctatus Rubiaceae
Dionaea muscipula Droseraceae
Juncus effusus Juncaceae
Rhododendron hirsutum Ericaceae viscin threads
ILLUSTRATED GLOSSARYɕ63
tetrad LM SEM TEM
POLLEN UNIT mo ana fnc
tetrad: dispersal unit of four pollen grains (spores).
Chlorospatha kolbii Araceae
Chlorospatha ceronii Araceae
tetrads planar (tetrahedral and T-shaped)
tetrad planar (left) and decussate (right)
Chlorospatha dodsonii Araceae
Chlorospatha dodsonii Araceae
tetrad planar
tetrad decussate
Catalpa bungei Bignoniaceae
Epipactis helleborine Orchidaceae
tetrad decussate
tetrads decussate
ɕ,//8675$7('*/266$5<
tetrad planar
POLLEN UNIT
LM SEM TEM
mo ana fnc
tetrad planar: dispersal unit of four pollen grains arranged in one plane; can be: tetragonal, T-shaped, linear.
Typha latifolia Typhaceae
Typha latifolia Typhaceae
tetrad tetragonal
tetrad tetragonal
Typha latifolia Typhaceae
Typha latifolia Typhaceae
tetrad T-shaped
tetrad T-shaped
Typha latifolia Typhaceae
Typha latifolia Typhaceae
tetrad linear
tetrad linear
ILLUSTRATED GLOSSARYɕ65
massula LM SEM TEM
POLLEN UNIT mo ana fnc
massula: dispersal unit of more than four pollen grains and fewer than the locular content.
Acacia myrtifolia Mimosaceae
Acacia binerva Mimosaceae
Calliandra emarginata Mimosaceae
Nigritella rhellicani Orchidaceae massulae connected by elastoviscin threads
Anteriorchis coriophora Orchidaceae
ɕ,//8675$7('*/266$5<
Platanthera bifolia Orchidaceae
POLLEN UNIT
pollinium, pollinarium LM SEM TEM
mo ana fnc
pollinium: dispersal unit of a more or less interconnected loculiform pollen mass.
pollinarium: dispersal unit of pollinium (or pollinia) and a single interconnecting sterile appendage.
Ophrys sphegodes Orchidaceae
Anteriorchis coriophora Orchidaceae
Polystachya sp. Orchidaceae
6WHSKDQRWLVÁRULEXQGD Asclepiadaceae
Vincetoxicum hirundinaria Asclepiadaceae
$HULGHVPXOWLÁRUD Orchidaceae
ILLUSTRATED GLOSSARYɕ67
clypeate, colpate, colporate LM SEM TEM
POLLEN CLASS
mo ana fnc
pollen class: DUWLÀFLDOJURXSLQJRISROOHQJUDLQVWKDWVKDUHDVLQJOHGLVWLQFWLYHFKDUDFWHU pollen class: clypeate
pollen class: colpate
pollen class: colporate
Iris bucharica Iridaceae
Ibicella lutea Martyniaceae
Bunias orientalis Brassicaceae
Corylopsis glabrescens Hamamelidaceae
Viola alba Violaceae
2UOD\DJUDQGLÁRUD Apiaceae
ɕ,//8675$7('*/266$5<
POLLEN CLASS
dyad, inaperturate, lophate LM SEM TEM
mo ana fnc
pollen class: dyad
pollen class: inaperturate
pollen class: lophate
Zeylanidium subulatum Podostemaceae
Polypleurum munnarense Podostemaceae
Hedychium gardnerianum Zingiberaceae
Sauromatum venosum Araceae
Prenanthes purpurea Asteraceae
Gazania sp. Asteraceae
ILLUSTRATED GLOSSARYɕ69
plicate, polyad, porate LM SEM TEM
POLLEN CLASS
mo ana fnc
pollen class: plicate
pollen class: polyad
pollen class: porate
Ephedra distachya Ephedraceae
Welwitschia mirabilis Welwitschiaceae
Acacia myrtifolia Mimosaceae
Himantoglossum adriaticum Orchidaceae
/\FKQLVÁRVFXFXOL Caryophyllaceae
Pachypodium saundersii Apocynaceae
ɕ,//8675$7('*/266$5<
POLLEN CLASS
saccate, spiraperturate, sulcate LM SEM TEM
mo ana fnc
pollen class: saccate
pollen class: spiraperturate
pollen class: sulcate
Abies cephalonica Pinaceae
Pinus mugo Pinaceae
dry pollen
Berberis thunbergii Berberidaceae
Thunbergia alata Acanthaceae dry pollen
Sandersonia aurantiaca Colchicaceae
Gagea villosa Liliaceae ILLUSTRATED GLOSSARYɕ71
synaperturate, tetrad, ulcerate LM SEM TEM
POLLEN CLASS
mo ana fnc
pollen class: synaperturate
pollen class: tetrad
pollen class: ulcerate
Acca sellowiana Myrtaceae
Primula farinosa Primulaceae
polar view
equatorial view
0RQHVHVXQLÁRUD Ericaceae
Listera ovata Orchidaceae
Sesleria uliginosa Poaceae
Typha minima Typhaceae
ɕ,//8675$7('*/266$5<
SHAPE & SIZE
very small, small, medium sized, large, very large LM SEM TEM
mo ana fnc
Myosotis palustris Boraginaceae very small (<10 μm)
Alkanna orientalis Boraginaceae small (10 - 25 μm)
Syringa vulgaris Oleaceae medium sized (25 - 50 μm) Plumbago auriculata Plumbaginaceae large (50 - 100 μm)
Cucurbita pepo Cucurbitaceae very large (>100 μm)
ILLUSTRATED GLOSSARYɕ73
spheroidal LM SEM TEM
SHAPE & SIZE
mo ana fnc
spheroidal
Lavatera thuringiaca Malvaceae
Silene alba Caryophyllaceae
pantoporate
pantoporate
Cirsium oleraceum Asteraceae
Phlox paniculata Polemoniaceae
tricolporate, equatorial view
pantoporate
Pinellia ternata Araceae
Luffa cylindrica Cucurbitaceae
inaperturate
tricolporate, equatorial view
ɕ,//8675$7('*/266$5<
spheroidal
SHAPE & SIZE
LM SEM TEM
mo ana fnc
spheroidal
Oxalis acetosella Oxalidaceae
Adansonia gregorii Bombacaceae
tricolpate, equatorial view
triporate
Stellaria holostea Caryophyllaceae
Cistus creticus Cistaceae
pantoporate
tricolporate, polar view
Ruellia macrantha Acanthaceae
Sagittaria sagittifolia Alismataceae
tricolporate, polar view
pantoaperturate
ILLUSTRATED GLOSSARYɕ75
prolate LM SEM TEM
SHAPE & SIZE mo ana fnc
prolate: pollen grain with the polar axis longer than the equatorial diameter.
&URVVDQGUDÁDYD Acanthaceae
Jurinea mollis Asteraceae
equatorial view
dry pollen
Torilis arvensis Apiaceae
Peucedanum cervaria Apiaceae
dry pollen
equatorial view
Astragalus onobrychis Fabaceae
6\PSK\WXPRIÀFLQDOH Boraginaceae
equatorial view
dry pollen
ɕ,//8675$7('*/266$5<
prolate
SHAPE & SIZE LM SEM TEM
mo ana fnc
prolate: pollen grain with the polar axis longer than the equatorial diameter.
Buglossoides purpurocaerulea Boraginaceae
indet. Sapotaceae, fossil
equatorial view
equatorial view
3ODW\FRGRQJUDQGLÁRUXP Campanulaceae
Stenandriopsis guineensis Acanthaceae
dry pollen
equatorial view
Lathyrus tuberosus Fabaceae
Salvia sclarea Lamiaceae
dry pollen
dry pollen
ILLUSTRATED GLOSSARYɕ77
oblate LM SEM TEM
SHAPE & SIZE mo ana fnc
oblate: pollen grain with the polar axis shorter than the equatorial diameter.
Salvia argentea Lamiaceae
Carya sp. Juglandaceae, fossil
equatorial view
equatorial view
Knautia drymeia Dipsacaceae
Cuphea purpurea Lythraceae
dry pollen
dry pollen
Hakea kippistiana Proteaceae
Corylus avellana Betulaceae dry pollen, equatorial view
ɕ,//8675$7('*/266$5<
oblate
SHAPE & SIZE LM SEM TEM
mo ana fnc
oblate: pollen grain with the polar axis shorter than the equatorial diameter.
Impatiens glandulifera Balsaminaceae
Aechmea caudata Bromeliaceae
Vriesea neoglutinosa Bromeliaceae
Godetia purpurea Onagraceae
equatorial view
dry pollen
Veratrum album Melanthiaceae
Heliconia sp. Heliconiaceae
dry pollen
dry pollen
ILLUSTRATED GLOSSARYɕ79
outline circular LM SEM TEM
SHAPE & SIZE
mo ana fnc
outline circular
Fraxinus ornus Oleaceae
Ligustrum sp. Oleaceae, fossil
polar view
equatorial view
Anthurium trisulcatum Araceae
Ginkgo biloba Ginkgoaceae oblique distal polar view
Galium lucidum Rubiaceae
Phleum pratense Poaceae
polar view
distal polar view
ɕ,//8675$7('*/266$5<
outline elliptic
SHAPE & SIZE
LM SEM TEM
mo ana fnc
outline elliptic
Allium oleraceum Alliaceae
Salvia coccinea Lamiaceae
distal polar view
polar view
Aechmea dealbata Bromeliaceae
Galeopsis tetrahit Lamiaceae dry pollen
,PSDWLHQVSDUYLÁRUD Balsaminaceae
Physostegia virginiana Lamiaceae
polar view
dry pollen
ILLUSTRATED GLOSSARYɕ81
outline quadrangular LM SEM TEM
SHAPE & SIZE
mo ana fnc
outline quadrangular
$QFKXVDRIÀFLQDOLV Boraginaceae
Nonea pulla Boraginaceae
dry pollen
polar view
Viola tricolor Violaceae
/LWKRVSHUPXPRIÀFLQDOH Boraginaceae
polar view
polar view
Herniaria glabra Caryophyllaceae
Impatiens glandulifera Balsaminaceae polar view
ɕ,//8675$7('*/266$5<
outline polygonal
SHAPE & SIZE
LM SEM TEM
mo ana fnc
outline polygonal
Stellaria holostea Caryophyllaceae
Viola arvensis Violaceae
dry pollen
polar view
Arbutus unedo Ericaceae
Opuntia basilaris Cactaceae
tetrads, dry pollen
dry pollen
Talinum paniculatum Portulacaceae
Silene nutans Caryophyllaceae
dry pollen
dry pollen
ILLUSTRATED GLOSSARYɕ83
outline triangular LM SEM TEM
SHAPE & SIZE
mo ana fnc
outline triangular
Callistemon coccineus Myrtaceae
Hypoestes phyllostachya Acanthaceae
polar view
dry pollen
Echinops ritro Asteraceae
Bupleurum rotundifolium Apiaceae
polar view
polar view
Paullinia tomentosa Sapindaceae
Primula denticulata Primulaceae
polar view
dry pollen
ɕ,//8675$7('*/266$5<
outline triangular
SHAPE & SIZE
LM SEM TEM
mo ana fnc
outline triangular
2UOD\DJUDQGLÁRUD Apiaceae
Circaea lutetiana Onagraceae
dry pollen
polar view, viscin threads
Jovibarba hirta Crassulaceae
Cunonia capensis Cunoniaceae
polar view
polar view
Dipsacus fullonum Dipsacaceae
Potentilla inclinata Rosaceae
polar view
polar view
ILLUSTRATED GLOSSARYɕ85
outline lobate LM SEM TEM
SHAPE & SIZE
mo ana fnc
outline lobate
Acer pseudoplatanus Sapindaceae
Artemisia pontica Asteraceae
dry pollen
polar view
6DQJXLVRUEDRIÀFLQDOLV Rosaceae
Orthilia secunda Ericaceae
dry pollen
dry pollen
Gunnera chilensis Gunneraceae
Gunnera chilensis Gunneraceae
polar view
dry pollen, equatorial (left) and polar view (right)
ɕ,//8675$7('*/266$5<
outline lobate
SHAPE & SIZE
LM SEM TEM
mo ana fnc
outline lobate
Sedum rupestre Crassulaceae
Viola alba Violaceae
dry pollen
dry pollen
Clematis heracleifolia Ranunculaceae
Sanicula europaea Apiaceae
dry pollen
dry pollen
Pinguicula ehlersiae Lentibulariaceae
Bellis perennis Asteraceae
dry pollen
dry pollen
ILLUSTRATED GLOSSARYɕ87
outline, pollen infoldings, irregular LM SEM TEM
SHAPE & SIZE
mo ana fnc
outline, pollen infoldings, irregular
Urtica dioica Urticaceae
Populus alba Salicaceae
dry pollen
dry pollen
Sesleria albicans Poaceae
Anthurium radicans Araceae
dry pollen
dry pollen
Coriaria sinica Coriariaceae
Orobanche hederae Orobanchaceae
dry pollen
dry pollen
ɕ,//8675$7('*/266$5<
SHAPE & SIZE
outline, pollen infoldings, apertures sunken LM SEM TEM
mo ana fnc
outline, pollen infoldings, apertures sunken
Artemisia pontica Asteraceae
Carex alba Cyperaceae
tricolporate, dry pollen
pseudomonads with poroids, dry pollen
Lachenalia aloides Liliaceae
Luzula sylvestris Juncaceae
sulcate, dry pollen
tetrads ulcerate, dry pollen
Moehringia muscosa Caryophyllaceae
Anemone hortensis Ranunculaceae
pantoporate, dry pollen
stephanocolpate to spiraperturate, dry pollen
ILLUSTRATED GLOSSARYɕ89
outline, pollen infoldings, interapertural area sunken LM SEM TEM
mo ana fnc
outline, pollen infoldings, interapertural area sunken
Alnus glutinosa Betulaceae
Erica arborea Ericaceae
dry pollen
dry pollen
Bupleurum rotundifolium Apiaceae
Melampyrum arvense Scrophulariaceae
dry pollen
dry pollen
Leucadendron discolor Proteaceae
9HUEHQDRIÀFLQDOLV Verbenaceae
dry pollen
dry pollen
ɕ,//8675$7('*/266$5<
SHAPE & SIZE
SHAPE & SIZE
outline, pollen infoldings, cup-shaped LM SEM TEM
mo ana fnc
outline, pollen infoldings, cup-shaped: characteristic shape of pollen grains caused by infoldings as a consequence of harmomegathy; see "Pollen Morphology"
Bougainvillea sp. Nyctaginaceae
Heliconia sp. Heliconiaceae
dry pollen
dry pollen
Tilia euchlora Tiliaceae
Elaeagnus angustifolia Elaeagnaceae
dry pollen
dry pollen
Luzula campestris Juncaceae
Tsuga canadensis Pinaceae
tetrads, dry pollen
dry pollen
ILLUSTRATED GLOSSARYɕ91
outline, pollen infoldings, boat-shaped LM SEM TEM
SHAPE & SIZE
mo ana fnc
outline, pollen infoldings, boat-shaped: characteristic shape of sulcate pollen grains caused by an infolding as a consequence of harmomegathy; see "Pollen Morphology".
Asphodeline lutea Asphodelaceae
Billbergia seidelii Bromeliaceae
sulcate, dry pollen
sulcate, dry pollen
Lilium candidum Liliaceae
Nuphar luteum Nymphaeaceae
sulcate, dry pollen
sulcate, dry pollen
Ginkgo biloba Ginkgoaceae
Galanthus nivalis Amaryllidaceae
sulcate, dry pollen
sulcate, dry pollen
ɕ,//8675$7('*/266$5<
SHAPE & SIZE
outline, pollen infoldings, boat-shaped LM SEM TEM
mo ana fnc
outline, pollen infoldings, boat-shaped: characteristic shape of sulcate pollen grains caused by an infolding as a consequence of harmomegathy; see "Pollen Morphology".
Lysichiton americanus Araceae
Piper nigrum Piperaceae
sulcate, dry pollen
sulcate, dry pollen
Gagea lutea Liliaceae
Sparganium erectum Sparganiaceae
sulcate, dry pollen
ulcerate (exception), dry pollen
Dioon edule Zamiaceae
Symplocarpus foetidus Araceae
sulcate, dry pollen
sulcate, dry pollen
ILLUSTRATED GLOSSARYɕ93
isopolar LM SEM TEM
SHAPE & SIZE mo ana fnc
isopolar: pollen grain with identical proximal and distal faces.
Cerinthe minor Boraginaceae
Asperula tinctoria Rubiaceae
dry pollen
dry pollen
Viburnum tinus Viburnaceae
Myosotis palustris Boraginaceae
equatorial view
dry pollen
$HVFXOXVÁDYD Hippocastanaceae
Monotropa hypopitys Ericaceae
equatorial view
equatorial view
ɕ,//8675$7('*/266$5<
heteropolar
SHAPE & SIZE
LM SEM TEM
mo ana fnc
heteropolar: pollen grain with different proximal and distal faces.
Onosma visianii Boraginaceae
Billbergia seidelii Bromeliaceae equatorial view
Microrrhinum minus Scrophulariaceae
Limnanthes douglasii Limnanthaceae
dry pollen
dry pollen
Sesleria albicans Poaceae
Elaeagnus angustifolia Elaeagnaceae
oblique view
oblique polar view
ILLUSTRATED GLOSSARYɕ95
heteropolar LM SEM TEM
SHAPE & SIZE
mo ana fnc
heteropolar: pollen grain with different proximal and distal faces.
Heliconia sp. Heliconiaceae
4XHVQHOLDDXJXVWRFREXUJLL Bromeliaceae
dry pollen
Erica arborea Ericaceae
Pinus strobus Pinaceae
tetrad
Nuphar luteum Nymphaeaceae
Sansevieria dooneri Dracaenaceae
equatorial view
dry pollen
ɕ,//8675$7('*/266$5<
saccus, saccate
SHAPE & SIZE
LM SEM TEM
mo ana fnc
saccus: exinous expansion forming an air sac.
Tsuga sp. Pinaceae, fossil
Tsuga sp. Pinaceae, fossil
monosaccate, polar view
monosaccate, equatorial view
Tsuga canadensis Pinaceae
Pinus nigra Pinaceae
monosaccate
bisaccate, equatorial view
Pinus heldreichii Pinaceae
Pinus sp. Pinaceae, fossil
bisaccate, dry pollen
bisaccate, oblique distal polar view
ILLUSTRATED GLOSSARYɕ97
saccus, saccate LM SEM TEM
SHAPE & SIZE
mo ana fnc
saccus: exinous expansion forming an air sac.
Abies cephalonica Pinaceae
Picea abies Pinaceae
bisaccate, distal polar view
bisaccate, dry pollen
Picea abies Pinaceae
Pinus mugo Pinaceae
bisaccate, equatorial view
bisaccate, equatorial view
Abies nordmanniana Pinaceae
Picea pungens Pinaceae
bisaccate
bisaccate, distal polar view
ɕ,//8675$7('*/266$5<
saccus, saccate
SHAPE & SIZE
LM SEM TEM
mo ana fnc
saccus: exinous expansion forming an air sac.
Podocarpus sp. Podocarpaceae
Podocarpus sp. Podocarpaceae
bisaccate, proximal polar view
bisaccate, oblique equatorial view
Microstrobus niphophilus Podocarpaceae
Microstrobus niphophilus Podocarpaceae
trisaccate, equatorial view
trisaccate, proximal polar view
Dacrycarpos dacrydioides Podocarpaceae
Dacrycarpos dacrydioides Podocarpaceae
trisaccate, distal polar view
trisaccate, proximal polar view
ILLUSTRATED GLOSSARYɕ99
arcus, arcuate LM SEM TEM
SHAPE & SIZE
mo ana fnc
arcus: a curved wall thickening interconnecting apertures.
Alnus glutinosa Betulaceae
Alnus sp. Betulaceae, fossil
equatorial view
polar view
Alnus glutinosa Betulaceae
Alnus viridis Betulaceae polar view
Alnus incana Betulaceae
Alnus incana Betulaceae
dry pollen
polar view
ɕ,//8675$7('*/266$5<
aperture, aperturate
APERTURE
LM SEM TEM
mo ana fnc
aperture: UHJLRQ RI WKH SROOHQ ZDOO ZKLFK GLIIHUV VLJQLÀFDQWO\ PRUSKRORJLFDOO\ and/or anatomically from the rest of the pollen wall, presumed to function usually as germination site and to play a role in harmomegathy.
Eupatorium cannabinum Asteraceae
Clinopodium vulgare Lamiaceae
tricolporate, equatorial view
hexacolpate, polar view
(XFKDULVJUDQGLÁRUD Amaryllidaceae
$OLVPDSODQWDJRDTXDWLFD Alismataceae
sulcate, distal polar view
pantoporate, dry pollen
Sesleria sadleriana Poaceae
Carex alba Cyperaceae
ulcerate, equatorial view
poroids, pseudomonad
ILLUSTRATED GLOSSARYɕ101
aperture, aperturate LM SEM TEM
APERTURE
mo ana fnc
aperture: UHJLRQ RI WKH SROOHQ ZDOO ZKLFK GLIIHUV VLJQLÀFDQWO\ PRUSKRORJLFDOO\ DQG or anatomically from the rest of the pollen wall, presumed to function usually as germination site and to play a role in harmomegathy.
$SLXPQRGLÁRUXP Apiaceae
$SLXPQRGLÁRUXP Apiaceae
PA+TCH+SP
U+Pb
Pseudolysimachion barrelieri Scrophulariaceae
0HQWKDDTXDWLFD Lamiaceae
KMnO4
PA+TCH+SP (short)
Ophiorrhiza sp. Rubiaceae
Geranium robertianum Geraniaceae
PA+TCH+SP apertural intine protrusion; becomes eliminated during pollen maturation
PA+TCH+SP apertural intine protrusion
ɕ,//8675$7('*/266$5<
inaperturate
APERTURE
LM SEM TEM
mo ana fnc
inaperturate: pollen grain without distinct aperture(s).
Pinellia ternata Araceae
Populus alba Salicaceae
Chlorospatha dodsonii Araceae
$JODRGRUXPJULIÀWKLL Araceae
tetrad
Phoebe sheareri Lauraceae
Posidonia sp. Posidoniaceae
ILLUSTRATED GLOSSARYɕ103
angulaperturate LM SEM TEM
APERTURE
mo ana fnc
angulaperturate: pollen grain with an angular outline, where the apertures are situated at the angles.
Leucadendron brunoides Proteaceae
Symplocos sp. Symplocaceae, fossil
dry pollen
polar view
Oenothera biennis Onagraceae
Isopogon dawsonii Proteaceae
polar view, viscin threads
polar view
Tropaeolum majus Tropaeolaceae
Anthyllis vulneraria Fabaceae
dry pollen
polar view
ɕ,//8675$7('*/266$5<
planaperturate
APERTURE
LM SEM TEM
mo ana fnc
planaperturate: pollen grain with an angular outline, where the apertures are situated in the middle of the sides.
Centaurea cyanus Asteraceae
Persicaria bistorta Polygonaceae
polar view
dry pollen
3DFKLUDDTXDWLFD Bombacaceae
3DFKLUDDTXDWLFD Bombacaceae
tricolpate, polar view
Beloperone guttata Acanthaceae
Pedilanthus smallii Euphorbiaceae
dry pollen
polar view
ILLUSTRATED GLOSSARYɕ105
stephanoaperturate LM SEM TEM
APERTURE
mo ana fnc
stephanoaperturate: apertures situated at the equator (term usually used for more than three apertures).
%RUDJRRIÀFLQDOLV Boraginaceae
3ODW\FRGRQJUDQGLÁRUXP Campanulaceae
equatorial view
polar view
Dracocephalum austriacum Lamiaceae
Cyclanthera pedata Cucurbitaceae
polar view
oblique equatorial view
Galium mollugo Rubiaceae
Pinguicula ehlersiae Lentibulariaceae
U+Pb cross section
oblique equatorial view
ɕ,//8675$7('*/266$5<
APERTURE
stephanoaperturate, stephanocolpate LM SEM TEM
mo ana fnc
stephanoaperturate: apertures situated at the equator (term usually used for more than three apertures).
Asperula tinctoria Rubiaceae
Galium glaucum Rubiaceae
hexacolpate, polar view
polar view
,PSDWLHQVSDUYLÁRUD Balsaminaceae
Primula veris Primulaceae
tetracolpate, equatorial view
hexacolpate, polar view
Lycopus europaeus Lamiaceae
Galium lucidum Rubiaceae
hexacolpate, dry pollen
dry pollen
ILLUSTRATED GLOSSARYɕ107
stephanoaperturate, stephanocolporate LM SEM TEM
APERTURE
mo ana fnc
stephanoaperturate: apertures situated at the equator (term usually used for more than three apertures).
Viola arvensis Violaceae
6DQJXLVRUEDRIÀFLQDOLV Rosaceae
pentacolporate, equatorial view
equatorial view
Nicotiana tabacum Solanaceae
Symphytum caucasicum Boraginaceae
tetracolporate, polar view
dry pollen
Justicia menesii Acanthaceae
Polygala chamaebuxus Polygalaceae
polar view
equatorial view
ɕ,//8675$7('*/266$5<
APERTURE
stephanoaperturate, stephanoporate LM SEM TEM
mo ana fnc
stephanoaperturate: apertures situated at the equator (term usually used for more than three apertures).
Campanula alpina Campanulaceae
Carpinus sp. Betulaceae, fossil
equatorial view
polar view
Pterocarya sp. Juglandaceae, fossil
/HJRXVLDVSHFXOXPYHQHULV Campanulaceae
polar view
polar view
Myriophyllum spicatum Haloragaceae
Ulmus minor Ulmaceae
polar view
equatorial view
ILLUSTRATED GLOSSARYɕ109
pantoaperturate, pantocolpate, pantocolporate LM SEM TEM
APERTURE
mo ana fnc
pantoaperturate: pollen grain with apertures distributed more or less regularly over the whole surface.
3RUWXODFDJUDQGLÁRUD Portulacaceae
Opuntia basilaris Cactaceae
pantocolpate
pantocolpate
Sideritis syriaca Lamiaceae
Talinum paniculatum Portulacaceae
pantocolpate, hexacolpate, dry pollen
pantocolpate, dry pollen
Ranunculus lanuginosus Ranunculaceae
Banisteria argentea Malpighiaceae
pantocolpate, dry pollen
pantocolporate
ɕ,//8675$7('*/266$5<
APERTURE
pantoaperturate, pantocolpate, pantoporate LM SEM TEM
mo ana fnc
pantoaperturate: pollen grain with apertures distributed more or less regularly over the whole surface.
Trichostigma peruvianum Phytolaccaceae
Hepatica transsylvanica Ranunculaceae
pantocolpate, dry pollen
pantocolpate
Corydalis cava Fumariaceae
Fumaria vaillantii Fumariaceae
pantocolpate, hexacolpate
pantoporate
Costus barbatus Zingiberaceae
Opuntia sp. Cactaceae
pantoporate
pantoporate
ILLUSTRATED GLOSSARYɕ111
pantoaperturate, pantoporate LM SEM TEM
APERTURE
mo ana fnc
pantoaperturate: pollen grain with apertures distributed more or less regularly over the whole surface.
Cucurbita pepo Cucurbitaceae
)XPDULDRIÀFLQDOLV Fumariaceae
pantoporate
pantoporate
Stellaria graminea Caryophyllaceae
Phaleria capitata Thymelaeaceae
pantoporate
pantoporate
Chenopodium hybridum Chenopodiaceae
Ribes aureum Grossulariaceae
pantoporate, dry pollen
pantoporate
ɕ,//8675$7('*/266$5<
APERTURE
brevicolpus, brevicolpate, brevicolporus, brevicolporate LM SEM TEM
mo ana fnc
brevicolpus: short colpus brevicolporus: short colpus in a compound aperture.
Impatiens columbaria Balsaminaceae
Mendoncia albida Acanthaceae
brevicolpate, equatorial view
brevicolpate, equatorial view
Scabiosa ochroleuca Dipsacaceae
Tilia americana Tiliaceae
brevicolpate, equatorial view
brevicolporate, equatorial view, acetolyzed
Dalechampia roezliana Euphorbiaceae
Symphytum orientale Boraginaceae
brevicolporate, equatorial view
brevicolporate, equatorial view
ILLUSTRATED GLOSSARYɕ113
synaperturate, syncolpate, syncolporate LM SEM TEM
APERTURE
mo ana fnc
synaperturate: pollen grain with anastomosing apertures.
Pedicularis verticillata Scrophulariaceae
Nymphoides peltata Menyanthaceae
syncolpate, dry pollen
syncolpate, polar view
Cuphea purpurea Lythraceae
Onosma visianii Boraginaceae
syncolporate, polar view
syncolporate
Cassia pulcherrima Caesalpiniaceae
Callistemon coccineus Myrtaceae
syncolporate
syncolporate, equatorial view
ɕ,//8675$7('*/266$5<
APERTURE
spiraperturate LM SEM TEM
mo ana fnc
spiraperturate: pollen grain with one or more spiral aperture(s).
Mimulus guttatus Scrophulariaceae
Mimulus guttatus Scrophulariaceae dry pollen
Thunbergia alata Acanthaceae
Crocus speciosus Iridaceae
Claytonia perfoliata Portulacaceae
Berberis vulgaris Berberidaceae
dry pollen
ILLUSTRATED GLOSSARYɕ115
heteroaperturate LM SEM TEM
APERTURE
mo ana fnc
heteroaperturate: pollen grain with two different types of apertures; only one type presumed to function as germination site. Comment: the term "heterocolpate" is commonly used for pollen grains with alternating colpi and colpori but "heterocolpate" means two different types of colpi; therefore we prefer the more general term "heteroaperturate".
Pardoglossum sp. Boraginaceae
Lythrum hyssopifolia Lythraceae equatorial view
Tetramerium nervosum Acanthaceae
&\QRJORVVXPRIÀFLQDOH Boraginaceae
equatorial view
equatorial view
Phacelia tanacetifolia Hydrophyllaceae
Myosotis ramosissima Boraginaceae
polar view
ɕ,//8675$7('*/266$5<
pseudocolpus
APERTURE
LM SEM TEM
mo ana fnc
pseudocolpus: colpus in heteroaperturate pollen grains, presumably non-functional.
Lythrum salicaria Lythraceae
Asperugo procumbens Boraginaceae
equatorial view
equatorial view
Lumnitzera racemosa Combretaceae
&\QRJORVVXPRIÀFLQDOH Boraginaceae
equatorial view
Justicia furcata Acanthaceae
Pachystachys lutea Acanthaceae
HTXDWRULDOYLHZWZRSVHXGRFROSLÁDQNLQJ colporus
HTXDWRULDOYLHZWZRSVHXGRFROSLÁDQNLQJ colporus
ILLUSTRATED GLOSSARYɕ117
colpus, colpate LM SEM TEM
APERTURE
mo ana fnc
colpus: elongated aperture (length : width ratio > 2) situated at the equatorial region or regularly distributed over the pollen grain.
Cruciata laevipes Rubiaceae
Chimonanthus praecox Calycanthaceae
stephanocolpate, equatorial view
dicolpate, polar view
Melampyrum arvense Scrophulariaceae
Clinopodium vulgare Lamiaceae
tricolpate, polar view
hexacolpate, equatorial view
Sherardia arvensis Rubiaceae
Talinum paniculatum Portulacaceae
stephanocolpate, oblique equatorial view
pantocolpate
ɕ,//8675$7('*/266$5<
colpus, tricolpate
APERTURE
LM SEM TEM
mo ana fnc
tricolpate: pollen grain with three colpi.
Lamium maculatum Lamiaceae
Erysimum odoratum Brassicaceae polar view
Nelumbo nucifera Nelumbonaceae
Lonicera fragrantissima Caprifoliaceae
polar view
equatorial view
Stachys palustris Lamiaceae
Acer sp. Sapindaceae, fossil
dry pollen
equatorial view
ILLUSTRATED GLOSSARYɕ119
colpus, tricolpate LM SEM TEM
APERTURE
mo ana fnc
tricolpate: pollen grain with three colpi.
Fraxinus excelsior Oleaceae
Odontites luteus Scrophulariaceae
equatorial view
dry pollen
Nandina domestica Berberidaceae
Corylopsis platypetala Hamamelidaceae
polar view
equatorial view
Trollius europaeus Ranunculaceae
Veronica serpyllifolia Scrophulariaceae
polar view
equatorial view
ɕ,//8675$7('*/266$5<
porus, porate
APERTURE
LM SEM TEM
mo ana fnc
porus: more or less circular aperture situated at the equator or regularly spread over the pollen grain.
Arenaria pungens Caryophyllaceae
Campanula sp. Caryophyllaceae, fossil
pantoporate
stephanoporate, polar view
Urtica dioica Urticaceae
Juglans regia Juglandaceae
triporate, oblique equatorial view
equatorial view pores irregularly spread (exception)
Aechmea allenii Bromeliaceae
Chenopodium glaucum Chenopodiaceae
diporate, equatorial view
pantoporate
ILLUSTRATED GLOSSARYɕ121
porus, diporate LM SEM TEM
APERTURE
mo ana fnc
diporate: pollen grains with two pori.
Colchicum autumnale Colchicaceae
Aechmea drakeana Bromeliaceae equatorial view
Sanchezia nobilis Acanthaceae
:KLWÀHOGLDODWHUDOLV Acanthaceae dry (left) and turgescent pollen (right)
Broussonetia papyrifera Moraceae
ɕ,//8675$7('*/266$5<
Quesnelia lateralis Bromeliaceae
APERTURE
porus, triporate, stephanoporate LM SEM TEM
mo ana fnc
triporate: pollen grain with three pori.
stephanoporate VWHSKDQRSUHÀ[PHDQLQJHTXDWRULDOO\VLWXDWHGVHH$OSKDEHWLF*ORVVDU\
Betula pendula Betulaceae
Cannabis sativa Cannabaceae
equatorial view
equatorial view
Campanula saxatilis Campanulaceae
Carya sp. Juglandaceae, fossil
polar view
polar view
/HJRXVLDVSHFXOXPYHQHULV Caryophyllaceae
Alnus viridis Betulaceae
equatorial view
oblique equatorial view
ILLUSTRATED GLOSSARYɕ123
porus, pantoporate LM SEM TEM
APERTURE
mo ana fnc
pantoporate SDQWRSUHÀ[IRUJOREDOVHH$OSKDEHWLF*ORVVDU\
Bassia scoparia Chenopodiaceae
Thalictrum minus Ranunculaceae dry pollen
Cobaea scandens Polemoniaceae
Ipomoea batatas Convolvulaceae
(FKLQRGRUXVTXDGULFRVWDWXV Alismataceae
Calystegia sepium Convolvulaceae
ɕ,//8675$7('*/266$5<
porus, pantoporate
APERTURE
LM SEM TEM
mo ana fnc
pantoporate SDQWRSUHÀ[IRUJOREDOVHH$OSKDEHWLF*ORVVDU\
Plantago major Plantaginaceae
Aechmea azurea Bromeliaceae
Malva moschata Malvaceae
/LTXLGDPEDUsp. Hamamelidaceae, fossil
Arenaria ciliata Caryophyllaceae
Buxus sempervirens Buxaceae
ILLUSTRATED GLOSSARYɕ125
poroid, poroidate LM SEM TEM
APERTURE
mo ana fnc
poroid: circular or elliptic aperture, with indistinct margin.
Carex remota Cyperaceae
Cercidiphyllum japonicum Cercidiphyllaceae
pseudomonad
triporoidate (in turgescent state)
Sagittaria sagittifolia Alismataceae
Caldesia parnassifolia Alismataceae
Schoenoplectus lacustris Cyperaceae
Scirpus sylvaticus Cyperaceae
ɕ,//8675$7('*/266$5<
tenuitas
APERTURE LM SEM TEM
mo ana fnc
tenuitas: general term for a thinning of the pollen wall.
Agapetes variegata Ericaceae
Agapetes variegata Ericaceae
tetrad
Viola tricolor Violaceae
Viola tricolor Violaceae
polar view
Odontites vulgaris Scrophulariaceae
Odontites vulgaris Scrophulariaceae
dry pollen
dry pollen
ILLUSTRATED GLOSSARYɕ127
colporus, colporate LM SEM TEM
APERTURE
mo ana fnc
colporus: compound aperture composed of a colpus (ektoaperture) combined with an endoaperture of variable size and shape.
Lathyrus vernus Fabaceae
.UDXVVLDÁRULEXQGD Rubiaceae
tricolporate, equatorial view
tricolporate, equatorial view
Hieracium hoppeanum Asteraceae
Erica herbacea Ericaceae
tricolporate, equatorial view
tricolporate, tetrad
Poncirus trifoliata Rutaceae
Cerinthe minor Boraginaceae
tetracolporate, polar view
stephanocolporate, equatorial view
ɕ,//8675$7('*/266$5<
colporus, colporate
APERTURE
LM SEM TEM
mo ana fnc
colporus: compound aperture composed of a colpus (ektoaperture) combined with an endoaperture of variable size and shape.
Justicia xylosteoides Acanthaceae
Adhatoda schimperiana Acanthaceae
dicolporate
dicolporate, equatorial view
Centaurea scabiosa Asteraceae
Rhododendron hirsutum Ericaceae
tricolporate, polar view
tricolporate, tetrad
Tricolporopollenites wackersdorfensis Fabaceae, fossil
Pulmonaria mollissima Boraginaceae
equatorial view
stephanocolporate, equatorial view
ILLUSTRATED GLOSSARYɕ129
colporus, tricolporate LM SEM TEM
APERTURE
mo ana fnc
tricolporate: pollen grain with three colpori.
Fagus sp. Fagaceae, fossil
9HUEHQDRIÀFLQDOLV Verbenaceae
equatorial view
polar view
Rumex acetosa Polygonaceae
Echium vulgare Boraginaceae
equatorial view
equatorial view
Parnassia palustris Parnassiaceae
Fatsia japonica Araliaceae
equatorial view
ɕ,//8675$7('*/266$5<
colporus, tricolporate
APERTURE
LM SEM TEM
mo ana fnc
tricolporate: pollen grain with three colpori.
Antennaria dioica Asteraceae
Erica arborea Ericaceae
equatorial view
tetrad
Lycium barbarum Solanaceae
Myrrhis odorata Apiaceae
equatorial view
dry pollen
Potentilla erecta Rosaceae
Cirsium oleraceum Asteraceae
equatorial view
equatorial view
ILLUSTRATED GLOSSARYɕ131
colporus, stephanocolporate LM SEM TEM
APERTURE
mo ana fnc
stephanocolporate VWHSKDQRSUHÀ[PHDQLQJHTXDWRULDOO\VLWXDWHGVHH$OSKDEHWLF*ORVVDU\
Moltkia petraea Boraginaceae
Symphytum caucasicum Boraginaceae
oblique polar view
oblique polar view
Justicia menesii Acanthaceae
Echinopepon wrightii Cucurbitaceae
equatorial view
equatorial view
Polygala major Polygalaceae
Buglossoides arvensis Boraginaceae
oblique polar view
equatorial view
ɕ,//8675$7('*/266$5<
ulcus, ulcerate
APERTURE
LM SEM TEM
mo ana fnc
ulcus: more or less circular aperture situated distally.
Poa annua Poaceae
Sparganium erectum Sparganiaceae distal polar view
Cephalanthera longifolia Orchidaceae
Luzula luzuloides Juncaceae
oblique distal polar view
tetrads
Sansevieria dooneri Dracaenaceae
Juniperus communis Cupressaceae
dry pollen
distal polar view
ILLUSTRATED GLOSSARYɕ133
ulcus, ulcerate LM SEM TEM
APERTURE
mo ana fnc
ulcus: more or less circular aperture situated distally.
Heliconia sp. Heliconiaceae
Cyrtosperma beccarianum Araceae
equatorial view, dry pollen
distal polar view
Bromus erectus Poaceae
1HRWWLDQLGXVDYLV Orchidaceae
oblique distal polar view
tetrad
Amborella trichopoda Amborellaceae
Drimys granatensis Winteraceae tetrad
ɕ,//8675$7('*/266$5<
sulcus, sulcate
APERTURE
LM SEM TEM
mo ana fnc
sulcus: elongated aperture situated distally.
Lilium martagon Liliaceae
Galanthus nivalis Amaryllidaceae
distal polar view
distal polar view
Doryanthes palmeri Agavaceae
Allium ursinum Alliaceae
dry pollen
distal polar view
Cabomba palaeformis Cabombaceae
Asphodeline lutea Liliaceae
oblique distal polar view
ILLUSTRATED GLOSSARYɕ135
sulcus, sulcate LM SEM TEM
APERTURE
mo ana fnc
sulcus: elongated aperture situated distally.
Lachenalia aloides Hyacinthaceae
Iris reichenbachii Iridaceae oblique distal polar view
&DWRSVLVÁRULEXQGD Bromeliaceae
Vriesea neoglutinosa Bromeliaceae
distal polar view
dry pollen
Paradisea liliastrum Anthericaceae
Chamaedorea microspadix Arecaceae
equatorial view
dry pollen
ɕ,//8675$7('*/266$5<
sulcus, sulcate
APERTURE
LM SEM TEM
mo ana fnc
sulcus: elongated aperture situated distally.
Nuphar luteum Nymphaeaceae
Nuphar luteum Nymphaeaceae
oblique distal polar view
equatorial view
Liriodendron tulipifera Magnoliaceae
Liriodendron tulipifera Magnoliaceae
PA+TCH+SP
PA+TCH+SP detail of sulcus
Anaphyllopsis americana Araceae
Anaphyllopsis americana Araceae
U+Pb
U+Pb detail of sulcus
ILLUSTRATED GLOSSARYɕ137
sulcus, disulcate LM SEM TEM
APERTURE
mo ana fnc
disulcate: pollen grain with two sulci.
7RÀHOGLDFDO\FXODWD 7RÀHOGLDFHDH
7RÀHOGLDFDO\FXODWD 7RÀHOGLDFHDH
equatorial view
dry pollen
8YXODULDJUDQGLÁRUD Convallariaceae
8YXODULDJUDQGLÁRUD Convallariaceae
equatorial view
dry pollen
Eichhornia crassipes Pontederiaceae
Crinum augustum Amaryllidaceae
dry pollen
dry pollen
ɕ,//8675$7('*/266$5<
APERTURE
sulcus, trichotomosulcus, polychotomosulcus LM SEM TEM
mo ana fnc
trichotomosulcus: three-radiate sulcus.
polychotomosulcus: sulcus with more than three arms.
Dianella intermedia Phormiaceae
Dianella intermedia Phormiaceae oblique distal polar view
Dianella tasmanica Phormiaceae
Dianella tasmanica Phormiaceae
distal polar view
dry pollen
Hedyosmum goudotianum Chloranthaceae
Hedyosmum goudotianum Chloranthaceae
polar view, acetolyzed
polar view, acetolyzed
ILLUSTRATED GLOSSARYɕ139
ring-like aperture LM SEM TEM
APERTURE
mo ana fnc
ring-like aperture: circumferential aperture (situated more or less equatorially or, rarely, meridionally).
Limnanthes douglasii Limnanthaceae
Cephalostemon riedelianus Rapateaceae
ring-like aperture running equatorially
oblique equatorial view, ring-like aperture running equatorially
Iris histrioides Iridaceae
Pedicularis rostrato–capitata Scrophulariaceae
dry pollen, ring-like aperture running equatorially
dry pollen, ring-like aperture running meridionally
Pedicularis palustris Scrophulariaceae
Pedicularis palustris Scrophulariaceae
dry pollen, ring-like aperture running meridionally
ring-like aperture running meridionally
ɕ,//8675$7('*/266$5<
ring-like aperture
APERTURE
LM SEM TEM
mo ana fnc
ring-like aperture: circumferential aperture (situated more or less equatorially or, rarely, meridionally).
Zamioculcas zamiifolia Araceae
Zamioculcas zamiifolia Araceae
equatorial view, acetolyzed
REOLTXHSRODUYLHZDUWLÀFLDOO\UXSWXUHG acetolyzed
Zamioculcas zamiifolia Araceae
Monstera deliciosa Araceae
equatorial view
equatorial view
Gonatopus angustus Araceae
Gonatopus angustus Araceae
oblique polar view, dry pollen
equatorial view
ILLUSTRATED GLOSSARYɕ141
margo LM SEM TEM
APERTURE mo ana fnc
margo: exine area surrounding an aperture and differentiated in ornamentation.
Discocleidion rufescens Euphorbiaceae
Medicago minima Fabaceae
tricolporate, polar view
tricolporate
Fatsia japonica Araliaceae
Begonia heracleifolia Begoniaceae
tricolporate
tricolporate, equatorial view
Lysimachia vulgaris Primulaceae
Limnanthes douglasii Limnanthaceae
tricolporate
ring-like aperture, equatorial view
ɕ,//8675$7('*/266$5<
annulus, annulate
APERTURE
LM SEM TEM
mo ana fnc
annulus: ring-like thickening of the pollen wall surrounding a porus or ulcus. Comment: "anulus" orthographical variant of "annulus".
Betula humilis Betulaceae
Secale cereale Poaceae distal polar view
)XPDULDRIÀFLQDOLV Fumariaceae
Trichosanthes anguina Cucurbitaceae
Morina longifolia Morinaceae
Circaea lutetiana Onagraceae
equatorial view
equatorial view, viscin threads
ILLUSTRATED GLOSSARYɕ143
annulus, annulate LM SEM TEM
APERTURE
mo ana fnc
annulus: ring-like thickening of the pollen wall surrounding a porus or ulcus. Comment: "anulus" orthographical variant of "annulus".
Myriophyllum spicatum Haloragaceae
Epilobium angustifolium Onagraceae
dry pollen
viscin threads
Triticum aestivum Poaceae
Triticum aestivum Poaceae
U+Pb
U+Pb
Zea mays Poaceae
indet. Poaceae
U+Pb
acetolyzed
ɕ,//8675$7('*/266$5<
aperture membrane, smooth
APERTURE
LM SEM TEM
mo ana fnc
aperture membrane: exine layer covering an aperture; aperture membrane can be smooth or ornamented. Comment: the terms "smooth" and "ornamented" should be used when the feature is remarkably expressed.
Scrophularia vernalis Scrophulariaceae
Doryanthes palmeri Agavaceae
tricolporate, equatorial view
sulcate, distal polar view
Melampyrum subalpinum Scrophulariaceae
Aechmea caesia Bromeliaceae
tricolpate
diporate
Kickxia spuria Scrophulariaceae
Tragopogon dubius Asteraceae
tricolporate, equatorial view
tricolporate
ILLUSTRATED GLOSSARYɕ145
aperture membrane, ornamented LM SEM TEM
APERTURE
mo ana fnc
aperture membrane: exine layer covering an aperture; aperture membrane can be smooth or ornamented. Comment: the terms "smooth" and "ornamented" should be used when the feature is remarkably expressed.
Convolvulus tricolor Convolvulaceae
Salix alba Salicaceae
tricolpate, polar view
tricolpate, equatorial view
Aesculus hippocastanum Hippocastanaceae
Moltkia petraea Boraginaceae
tricolporate
stephanocolporate
Billbergia macrocalyx Bromeliaceae
Arenaria serpyllifolia Caryophyllaceae
sulcate, distal polar view
pantoporate
ɕ,//8675$7('*/266$5<
APERTURE
aperture membrane, ornamented LM SEM TEM
mo ana fnc
aperture membrane: exine layer covering an aperture; aperture membrane can be smooth or ornamented. Comment: the terms "smooth" and "ornamented" should be used when the feature is remarkably expressed.
Saxifraga vandellii Saxifragaceae
Galeopsis tetrahit Lamiaceae
tricolpate, equatorial view
tricolpate
Veronica cinerea Scrophulariaceae
Clarkia pulchella Onagraceae
tricolpate
triporate
Nuphar luteum Nymphaeaceae
Gagea villosa Liliaceae
sulcate
sulcate
ILLUSTRATED GLOSSARYɕ147
aperture membrane, ornamented LM SEM TEM
APERTURE
mo ana fnc
aperture membrane: exine layer covering an aperture; aperture membrane can be smooth or ornamented. Comment: the terms "smooth" and "ornamented" should be used when the feature is remarkably expressed.
Chenopodium hybridum Chenopodiaceae
Aesculus carnea Hippocastanaceae
U+Pb
U+Pb
Mercurialis perennis Euphorbiaceae
Ulmus minor Ulmaceae
PA+TCH+SP (short)
U+Pb
Lamiastrum montanum Lamiaceae
Aconitum lycoctonum Ranunculaceae
ɕ,//8675$7('*/266$5<
operculum, operculate
APERTURE
LM SEM TEM
mo ana fnc
operculum: coherent exine structure covering an aperture.
Dianthus carthusianorum Caryophyllaceae
Teucrium pyrenaicum Lamiaceae
Babiana velutina Iridaceae
Zea mays Poaceae
sulcate, two opercula oblique equatorial view
Dionaea muscipula Droseraceae
Potentilla arenaria Rosaceae
ILLUSTRATED GLOSSARYɕ149
operculum, operculate LM SEM TEM
APERTURE
mo ana fnc
operculum: coherent exine structure covering an aperture.
Knautia drymeia Dipsacaceae
Tulipa sylvestris Liliaceae distal polar view
Cucurbita pepo Cucurbitaceae
Camellia japonica Theaceae
Agrostemma githago Caryophyllaceae
3DVVLÁRUDFLWULQD 3DVVLÁRUDFHDH oblique equatorial view
ɕ,//8675$7('*/266$5<
operculum, operculate
APERTURE
LM SEM TEM
mo ana fnc
operculum: coherent exine structure covering an aperture.
Rosa pendulina Rosaceae
3DVVLÁRUDVXEHURVD 3DVVLÁRUDFHDH equatorial view
Poa pratensis Poaceae
Triticum aestivum Poaceae
PA+TCH+SP (short)
PA+TCH+SP (short)
Plantago lanceolata Plantaginaceae
Poa angustifolia Poaceae
U+Pb
PA+TCH+SP (short)
ILLUSTRATED GLOSSARYɕ151
pontoperculum, pontoperculate LM SEM TEM
APERTURE
mo ana fnc
pontoperculum: operculum covering a colpus, not completely isolated from the remainder of the sexine.
Veratrum nigrum Melanthiaceae
Sanguisorba minor Rosaceae
dry pollen
polar view
Sanguisorba cretica Rosaceae
Sanguisorba cretica Rosaceae
equatorial view
ɕ,//8675$7('*/266$5<
bridge
APERTURE LM SEM TEM
mo ana fnc
bridge: exine connection between the margins of a colpus in the equatorial region. Comment: the term is often used in a more general context, e.g., for exine connections within tetrads.
Elaeagnus angustifolia Elaeagnaceae
Rehderodendron sp. Styracaceae, fossil equatorial view
Cunonia capensis Cunoniaceae
Epilobium hirsutum Onagraceae
equatorial view
tetrad
Typha latifolia Typhaceae
7KHOHWK\OD[PLQXWLÁRUD Podostemaceae
tetrad
dyad
ILLUSTRATED GLOSSARYɕ153
papilla, papillate LM SEM TEM
APERTURE
mo ana fnc
papilla: small protuberance typical for Taxoidoideae-pollen (Cupressaceae).
Cryptomeria japonica Cupressaceae
Cryptomeria sp. Cupressaceae, fossil
equatorial view
equatorial view
Cryptomeria japonica Cupressaceae
0HWDVHTXRLDJO\SWRVWURERLGHV Cupressaceae dry pollen
0HWDVHTXRLDJO\SWRVWURERLGHV Cupressaceae
Cunninghamia lanceolata Cupressaceae oblique distal polar view
ɕ,//8675$7('*/266$5<
reticulum, reticulate
ORNAMENTATION
LM SEM TEM
mo ana fnc
reticulum: network-like pattern formed by exine elements (muri), where the lumina are wider than 1 μm.
Cardamine pratensis Brassicaceae
Veratrum album Melanthiaceae
Polygala major Polygalaceae
Aechmea azurea Bromeliaceae
Luffa cylindrica Cucurbitaceae
Razisea citrina Acanthaceae equatorial view
ILLUSTRATED GLOSSARYɕ155
reticulum, reticulate LM SEM TEM
ORNAMENTATION
mo ana fnc
reticulum: network-like pattern formed by exine elements (muri), where the lumina are wider than 1 μm.
Persicaria sp. Polygonaceae, fossil
Cephalanthera longifolia Orchidaceae
equatorial view
Ruellia brevifolia Acanthaceae
Beloperone guttata Acanthaceae reticulate, perforate
Buxus sempervirens Buxaceae
ɕ,//8675$7('*/266$5<
Impatiens glandulifera Balsaminaceae
reticulum, reticulate
ORNAMENTATION
LM SEM TEM
mo ana fnc
reticulum: network-like pattern formed by exine elements (muri), where the lumina are wider than 1 μm.
Lupinus polyphyllus Fabaceae
Sollya heterophylla Pittosporaceae
reticulate, perforate
reticulate to rugulate
Opuntia paraguayensis Cactaceae
Ibicella lutea Martyniaceae
free standing columellae
clypeate, reticulate
Poncirus trifoliata Rutaceae
Lathyrus vernus Fabaceae reticulate, perforate
ILLUSTRATED GLOSSARYɕ157
reticulum, reticulate LM SEM TEM
ORNAMENTATION
mo ana fnc
reticulum: network-like pattern formed by exine elements (muri), where the lumina are wider than 1 μm.
Salix daphnoides Salicaceae
Persicaria mitis Polygonaceae
polar view
pantoporate, free standing columellae
Paradisea liliastrum Liliaceae
Trifolium rubens Fabaceae reticulate, perforate
Ecballium elaterium Cucurbitaceae
Ajuga genevensis Lamiaceae reticulate, perforate
ɕ,//8675$7('*/266$5<
reticulum, reticulate
ORNAMENTATION
LM SEM TEM
mo ana fnc
reticulum: network-like pattern formed by exine elements (muri), where the lumina are wider than 1 μm.
Aechmea allenii Bromeliaceae
Adenia fruticosa 3DVVLÁRUDFHDH
reticulate to foveolate
incomplete reticulum
Epipactis helleborine Orchidaceae
0HOLORWXVRIÀFLQDOLV Fabaceae
incomplete reticulum
Tropaeolum majus Tropaeolaceae
Physostegia virginiana Lamiaceae
reticulate, perforate
reticulate, perforate
ILLUSTRATED GLOSSARYɕ159
reticulum, reticulate LM SEM TEM
ORNAMENTATION
mo ana fnc
reticulum: network like pattern formed by exine elements (muri), where the lumina are wider than 1 μm.
Pisum sativum Fabaceae
Harpochilus neesianus Acanthaceae
reticulate, perforate
reticulate, brochi with inclined columellae
Werauhia tarmaensis Bromeliaceae
Plectranthus ornatus Lamiaceae bireticulate
Thladiantha hookeri Cucurbitaceae
Pinguicula alpina Lentibulariaceae
oblique equatorial view, incomplete reticulum
incomplete reticulum
ɕ,//8675$7('*/266$5<
bireticulate
ORNAMENTATION
LM SEM TEM
mo ana fnc
bireticulate: special type of reticulate ornamentation, where the brochi of the largePHVKHGUHWLFXOXPDUHÀOOHGE\DVPDOOPHVKHGUHWLFXOXP
Salvia argentea Lamiaceae
Salvia glutinosa Lamiaceae
3UXQHOODJUDQGLÁRUD Lamiaceae
Phlox paniculata Polemoniaceae
Pachystachys lutea Acanthaceae
Melittis melissophyllum Lamiaceae
ILLUSTRATED GLOSSARYɕ161
reticulum, brochus, homobrochate LM SEM TEM
ORNAMENTATION
mo ana fnc
brochus: mesh of a reticulum consisting of one lumen and the adjoining half of the muri. homobrochate: reticulate pollen wall with lumina of uniform size. Comment: the term "homobrochate" should be used when the feature is remarkably expressed.
Acantholimon glumaceum Plumbaginaceae
Abeliophyllum distichum Hamamelidaceae
Eranthemum wattii Acanthaceae
Strobilanthes roseus Acanthaceae
polar view
Ruellia graecizans Acanthaceae
ɕ,//8675$7('*/266$5<
Thlaspi montanum Brassicaceae
ORNAMENTATION
reticulum, brochus, heterobrochate LM SEM TEM
mo ana fnc
brochus: mesh of a reticulum consisting of one lumen and the adjoining half of the muri. heterobrochate: reticulate pollen wall with lumina of different sizes. Comment: the term "heterobrochate" should be used when the feature is remarkably expressed.
Hedera helix Araliaceae
Lachenalia aloides Hyacinthaceae
equatorial view
Fritillaria meleagris Liliaceae
Anthericum ramosum Anthericaceae
Billbergia seidelii Bromeliaceae
Limodorum abortivum Orchidaceae
ILLUSTRATED GLOSSARYɕ163
reticulum, microreticulate LM SEM TEM
ORNAMENTATION
mo ana fnc
microreticulate PLFURSUHÀ[IRUVPDOOIHDWXUHVVPDOOHUDVPVHH$OSKDEHWLF*ORVVDU\
Kickxia spuria Scrophulariaceae
Pseudolysimachion longifolium Scrophulariaceae
Lamium purpureum Lamiaceae
Cytisus nigricans Fabaceae
Dianella tasmanica Phormiaceae
Reseda luteola Resedaceae
ɕ,//8675$7('*/266$5<
reticulum cristatum
ORNAMENTATION
LM SEM TEM
mo ana fnc
reticulum cristatum: special type of reticulum; muri with prominent sculpture elements.
Lilium martagon Liliaceae
Fumana procumbens Cistaceae
equatorial view
Lilium candidum Liliaceae
Mercurialis perennis Euphorbiaceae reticulum with microechini
3DFKLUDDTXDWLFD Bombacaceae
Phaleria capitata Thymelaeaceae reticulum with gemmae or clavae
ILLUSTRATED GLOSSARYɕ165
reticulum cristatum LM SEM TEM
ORNAMENTATION
mo ana fnc
reticulum cristatum: special type of reticulum; muri with prominent sculpture elements.
Pachysandra terminalis Buxaceae
Aponogeton masoalaensis Aponogetonaceae reticulum with microechini
Geranium canariense Geraniaceae
Thymelaea passerina Thymelaeaceae
reticulum with clavae
reticulum with echini, croton pattern
Erdtmanipollis sp. Buxaceae, fossil
Garcia nutans Euphorbiaceae croton pattern
ɕ,//8675$7('*/266$5<
ORNAMENTATION
reticulum cristatum, croton pattern LM SEM TEM
mo ana fnc
croton pattern: special type of reticulum cristatum formed by regularly arranged sculpture elements on muri.
&URWRQWULTXHWHU Euphorbiaceae
&URWRQWULTXHWHU Euphorbiaceae
Jatropha podagrica Euphorbiaceae
Daphne laureola Thymelaeaceae
Daphne cneorum Thymelaeaceae
Thymelaea passerina Thymelaeaceae surface detail with porus
ILLUSTRATED GLOSSARYɕ167
plicae, plicate LM SEM TEM
ORNAMENTATION
mo ana fnc
plicae: cirumferential, parallel ridge-like folds.
Ephedra distachya Ephedraceae
Pistia stratiotes Araceae
Ephedra sp. Ephedraceae, fossil
Pistia stratiotes Araceae
equatorial view
PA+TCH+SP cross section of pollen grain and plicae
Hemigraphis primulaefolia Acanthaceae
Pseudodracontium siamense Araceae
polar (left) and equatorial view (right)
ɕ,//8675$7('*/266$5<
striae, striate
ORNAMENTATION
LM SEM TEM
mo ana fnc
striae: elongated exine elements separated by grooves predominantly parallel arranged. Comment: the term "striae" is used inconsistently in the literature. We use the term for the elevated elements and not for the grooves.
Acer pseudoplatanus Sapindaceae
Prunus avium Rosaceae
striate, perforate
dry pollen
Potentilla inclinata Rosaceae
Veronica cinerea Scrophulariaceae
striate, perforate
striate, perforate
Datura suaveolens Solanaceae
Gentiana lutea Gentianaceae
polar view, striate, foveolate
striate, perforate
ILLUSTRATED GLOSSARYɕ169
striae, striate LM SEM TEM
ORNAMENTATION
mo ana fnc
striae: elongated exine elements separated by grooves predominantly parallel arranged. Comment: the term "striae" is used inconsistently in the literature. We use the term for the elevated elements and not for the grooves.
Saxifraga rotundifolia Saxifragaceae
Aesculus hippocastanum Hippocastanaceae
striate, microgemmate
equatorial view, striate, perforate
Lycium barbarum Solanaceae
Cydonia sinensis Rosaceae striate, perforate
Rubus caesius Rosaceae
$OOLXPÁDYXP Alliaceae
striate, perforate
striate, perforate
ɕ,//8675$7('*/266$5<
striae, striate
ORNAMENTATION
LM SEM TEM
mo ana fnc
striae: elongated exine elements separated by grooves predominantly parallel arranged. Comment: the term "striae" is used inconsistently in the literature. We use the term for the elevated elements and not for the grooves.
Menyanthes trifoliata Menyanthaceae
Saxifraga tridactylites Saxifragaceae
oblique polar view
striate, microechinate
Sanguisorba minor Rosaceae
Begonia heracleifolia Begoniaceae
striate, granulate
Crataegus laevigata Rosaceae
Cabomba palaeformis Cabombaceae striate, perforate
ILLUSTRATED GLOSSARYɕ171
striae, striate LM SEM TEM
ORNAMENTATION
mo ana fnc
striae: elongated exine elements separated by grooves predominantly parallel arranged. Comment: the term "striae" is used inconsistently in the literature. We use the term for the elevated elements and not for the grooves.
Geum reptans Rosaceae
Helianthemum nummularium Cistaceae
polar (left) and equatorial (right) view
striate, perforate
Prunus laurocerasus Rosaceae
Ruta graveolens Rutaceae
striate, perforate
polar view
Neoalsomitra sarcophylla Cucurbitaceae
Malus sylvestris Rosaceae
polar view
striate, perforate, polar area
ɕ,//8675$7('*/266$5<
striato-reticulate
ORNAMENTATION
LM SEM TEM
mo ana fnc
striato-reticulate: ornamentation intermediate between striate and reticulate.
Pelargonium ferulaceum Geraniaceae
Erodium cicutarium Geraniaceae
Gentianella austriaca Gentianaceae
Polemonium caeruleum Polemoniaceae
Pelargonium tetragonum Geraniaceae
6RODQGUDORQJLÁRUD Solanaceae
polar view
ILLUSTRATED GLOSSARYɕ173
striato-reticulate LM SEM TEM
ORNAMENTATION
mo ana fnc
striato-reticulate: ornamentation intermediate between striate and reticulate.
Ailanthus altissima Simaroubaceae
Gentiana acaulis Gentianaceae
polar view
Pelargonium carnosum Geraniaceae
Ptelea trifoliata Rutaceae striato-microreticulate
Veronica prostrata Scrophulariaceae
Campanula persicifolia Campanulaceae
striato-microreticulate
microechinate, striato-microreticulate
ɕ,//8675$7('*/266$5<
rugulae, rugulate
ORNAMENTATION
LM SEM TEM
mo ana fnc
rugulae: elongated exine elements longer than 1 μm; irregularly arranged.
Securigera varia Fabaceae
Zelkova sp. Ulmaceae, fossil polar view
Peucedanum cervaria Apiaceae
Fagus sp. Fagaceae, fossil
Sedum acre Crassulaceae
Circaea lutetiana Onagraceae
rugulate, perforate
rugulate, perforate
ILLUSTRATED GLOSSARYɕ175
rugulae, rugulate LM SEM TEM
ORNAMENTATION
mo ana fnc
rugulae: elongated exine elements longer than 1 μm; irregularly arranged.
Carpinus betulus Betulaceae
Acer negundo Sapindaceae
rugulate, granulate
rugulate, perforate
Nymphoides peltata Menyanthaceae
Leucadendron discolor Proteaceae rugulate, perforate
Nicotiana tabacum Solanaceae rugulate, perforate
ɕ,//8675$7('*/266$5<
Myrrhis odorata Apiaceae
granulum, granulate
ORNAMENTATION
LM SEM TEM
mo ana fnc
granulum: structure- or sculpture element of different size and shape; smaller than 1 μm.
Larix decidua Pinaceae
Humulus lupulus Cannabaceae
Rhaphidophora africana Araceae
Clarkia pulchella Onagraceae
Quercus robur Fagaceae
Luzula campestris Juncaceae
ILLUSTRATED GLOSSARYɕ177
psilate LM SEM TEM
ORNAMENTATION mo ana fnc
psilate: pollen wall with smooth surface.
Hedychium gardnerianum Zingiberaceae
Anthyllis vulneraria Fabaceae
inaperturate
/LWKRVSHUPXPRIÀFLQDOH Boraginaceae
Vinca minor Apocynaceae
equatorial view
oblique polar view
Dorycnium germanicum Fabaceae
Jovibarba hirta Crassulaceae
oblique view
dry pollen
ɕ,//8675$7('*/266$5<
psilate
ORNAMENTATION LM SEM TEM
mo ana fnc
psilate: pollen wall with smooth surface.
Allium ursinum Alliaceae
Lathyrus niger Fabaceae
equatorial view
equatorial view
Trigonia nivea Trigoniaceae
Maxillaria densa Orchidaceae
equatorial view
tetrad, part of massula
Costus speciosus Zingiberaceae
:KLWÀHOGLDODWHUDOLV Acanthaceae
pantoporate
equatorial view
ILLUSTRATED GLOSSARYɕ179
perforate LM SEM TEM
ORNAMENTATION mo ana fnc
perforate: pollen wall with holes less than 1 μm in diameter.
Colutea arborescens Fabaceae
Gonatopus angustus Araceae
equatorial view
Myosotis arvensis Boraginaceae
Euphorbia palustris Euphorbiaceae
Lysimachia nemorum Primulaceae
Cucumis sativa Cucurbitaceae
ɕ,//8675$7('*/266$5<
perforate
ORNAMENTATION LM SEM TEM
mo ana fnc
perforate: pollen wall with holes less than 1 μm in diameter.
3XOPRQDULDRIÀFLQDOLV Boraginaceae
Hippocrepis emerus Fabaceae equatorial view
Napoleonaea imperialis Napoleonaeaceae
Euphorbia helioscopia Euphorbiaceae
Rumex acetosa Polygonaceae
Trifolium montanum Fabaceae
perforate, granulate
ILLUSTRATED GLOSSARYɕ181
foveola, foveolate LM SEM TEM
ORNAMENTATION
mo ana fnc
foveola: roundish lumen more than 1 μm in diameter; distance between two adjacent lumina larger than their diameter.
Streptocalyx poeppigii Bromeliaceae
Canistrum camacaense Bromeliaceae
Lavandula angustifolia Lamiaceae
Smilacina stellata Convallariaceae
Cyrtosperma beccarianum Araceae
Hohenbergia stellata Bromeliaceae foveolate to reticulate
ɕ,//8675$7('*/266$5<
fossula, fossulate
ORNAMENTATION
LM SEM TEM
mo ana fnc
fossula: irregularly shaped groove in the surface of a pollen wall.
Mendoncia albida Acanthaceae
Erica herbacea Ericaceae
fossulate, granulate
Rhododendron hirsutum Ericaceae
Ledum palustre Ericaceae
Aristolochia manshuriensis Aristolochiaceae
0RQHVHVXQLÁRUD Pyrolaceae
fossulate, perforate
WHWUDG\VKDSHGÀVVXUHEHWZHHQWKH monads
ILLUSTRATED GLOSSARYɕ183
lophae, lacunae, lophate LM SEM TEM
ORNAMENTATION
mo ana fnc
lophae: a network-like pattern of ridges (= lophae) formed by the outer exine surrounding window-like spaces or depressions (= lacunae).
Leontodon saxatilis Asteraceae
Cichorium intybus Asteraceae
equatorial view, lophae colored
polar view, lacunae colored
Opuntia basilaris Cactaceae
3IDIÀDWXEHURVD Amaranthaceae
Gazania sp. Asteraceae
Hieracium hoppeanum Asteraceae
polar view
dry pollen
ɕ,//8675$7('*/266$5<
lophae, lacunae, lophate
ORNAMENTATION
LM SEM TEM
mo ana fnc
lophae: a network-like pattern of ridges (= lophae) formed by the outer exine surrounding window-like spaces or depressions (= lacunae).
Taraxacum sp. Asteraceae, fossil
Crepis biennis Asteraceae
equatorial view
polar view
Scorzonera cana Asteraceae
Tragopogon dubius Asteraceae
polar view
equatorial view
Opuntia polyacantha Cactaceae
Ipomoea caerulea Convolvulaceae
ILLUSTRATED GLOSSARYɕ185
echinus, echinate LM SEM TEM
ORNAMENTATION
mo ana fnc
echinus: pointed ornamentation element longer and/or wider than 1 μm.
Galinsoga ciliata Asteraceae
Carduus acanthoides Asteraceae
Hibiscus trionum Malvaceae
Pinellia ternata Araceae
Lavatera thuringiaca Malvaceae
Pinellia ternata Araceae PA+TCH+SP (short)
ɕ,//8675$7('*/266$5<
echinus, echinate
ORNAMENTATION
LM SEM TEM
mo ana fnc
echinus: pointed ornamentation element longer and/or wider than 1 μm.
Stratiotes aloides Hydrocharitaceae
Zomicarpa riedeliana Araceae
Ipomoea batatas Convolvulaceae
Knautia drymeia Dipsacaceae
Campanula alpina Campanulaceae
Ulearum sagittatum Araceae
ILLUSTRATED GLOSSARYɕ187
echinus, echinate LM SEM TEM
ORNAMENTATION
mo ana fnc
echinus: pointed ornamentation element longer and/or wider than 1 μm.
Patrinia gibbosa Valerianaceae
Hieracium hoppeanum Asteraceae
Ambrosia artemisiifolia Asteraceae
Aster amellus Asteraceae
3RUWXODFDJUDQGLÁRUD Portulacaceae
Nuphar luteum Nymphaeaceae
ɕ,//8675$7('*/266$5<
echinus, echinate
ORNAMENTATION
LM SEM TEM
mo ana fnc
echinus: pointed ornamentation element longer and/or wider than 1 μm.
Petasites albus Asteraceae
Antennaria dioica Asteraceae
dry pollen
Malva neglecta Malvaceae
Tanacetum corymbosum Asteraceae
Lonicera fragrantissima Caprifoliaceae
Pharbitis purpurea Convolvulaceae
ILLUSTRATED GLOSSARYɕ189
echinus, microechinate LM SEM TEM
ORNAMENTATION
mo ana fnc
microechinate PLFURSUHÀ[IRUVPDOOIHDWXUHVVPDOOHUDVPVHH$OSKDEHWLF*ORVVDU\
Claytonia perfoliata Portulacaceae
Babiana velutina Iridaceae
microechinate, perforate
microechinate, perforate
Pulsatilla pratensis Ranunculaceae
3ODW\FRGRQJUDQGLÁRUXP Campanulaceae
microechinate, perforate
microechinate, striato-microreticulate
Galium lucidum Rubiaceae
Petrorhagia prolifera Caryophyllaceae
microechinate, perforate
microechinate, perforate
ɕ,//8675$7('*/266$5<
verruca, verrucate
ORNAMENTATION
LM SEM TEM
mo ana fnc
verruca: wart-like element more than 1 μm broad, broader than high.
Aristolochia salvadorensis Aristolochiaceae
Plantago media Plantaginaceae
verrucate, perforate
verrucate, microechinate
Aristolochia tricaudata Aristolochiaceae
Calliandra emarginata Mimosaceae
verrucate, perforate
Corydalis cava Fumariaceae
Teucrium chamaedrys Lamiaceae
dry pollen
microverrucate, perforate
ILLUSTRATED GLOSSARYɕ191
baculum, baculate LM SEM TEM
ORNAMENTATION
mo ana fnc
baculum: rod-like, free standing element, more than 1 μm in height and never pointed.
Viscum laxum Viscaceae
Viscum laxum Viscaceae
Viscum album Viscaceae
Nymphaea alba Nymphaeaceae
polar view
Erythrochiton brasiliensis Rutaceae
Erythrochiton brasiliensis Rutaceae
equatorial view
large bacula and smaller bacula or clavae
ɕ,//8675$7('*/266$5<
clava, clavate
ORNAMENTATION
LM SEM TEM
mo ana fnc
clava: club-shaped element, higher than 1 μm.
Iris alata Iridaceae
Ilex sp. Aquifoliaceae, fossil equatorial view
,OH[DTXLIROLXP Aquifoliaceae
Plumbago auriculata Plumbaginaceae
equatorial view
/LQXPÁDYXP Linaceae
Aratitiyopea lopezii Xyridaceae
heterostylous, long-styled morph
clavae of two different sizes
ILLUSTRATED GLOSSARYɕ193
clava, clavate LM SEM TEM
ORNAMENTATION
mo ana fnc
clava: club-shaped element, higher than 1 μm.
Geranium robertianum Geraniaceae
Geranium robertianum Geraniaceae
toluidine blue
PA+TCH+SP (short)
Geranium pratense Geraniaceae
Geranium sibiricum Geraniaceae
reticulum cristatum with clavae
reticulum cristatum with clavae
ɕ,//8675$7('*/266$5<
ORNAMENTATION
free-standing columellae LM SEM TEM
mo ana fnc
free-standing columellae: columellae in the infratectal layer not covered by a tectum in semitectate pollen grains.
Dipteracanthus devosianus Acanthaceae
,PSDWLHQVSDUYLÁRUD Balsaminaceae
Erophila verna Brassicaceae
Bougainvillea sp. Nyctaginaceae
Viburnum opulus Caprifoliaceae
Thladiantha hookeri Cucurbitaceae
ILLUSTRATED GLOSSARYɕ195
gemma, gemmate LM SEM TEM
ORNAMENTATION
mo ana fnc
gemma: globular exine element more than 1 μm in diameter.
Dionaea muscipula Droseraceae
Cephalopentandra ecirrhosa Cucurbitaceae
gemmate, clavate
gemmate, reticulate, polar view
Stenandrium dulce Acanthaceae
Asarum europaeum Aristolochiaceae
large and small gemmae and granules
gemmate, microgemmate
Fatsia japonica Araliaceae
Hakea kippistiana Proteaceae
gemmate, reticulate
gemmate, microreticulate
ɕ,//8675$7('*/266$5<
areola, areolate
ORNAMENTATION
LM SEM TEM
mo ana fnc
areola: small, mostly convex exine island.
Peperomia rubella Piperaceae
Dracunculus vulgaris Araceae
Mimosa pudica Mimosaceae
Poikilacanthus macranthus Acanthaceae
tetrad
areolae reticulate
Cynodon dactylon Poaceae
Beloperone guttata Acanthaceae areolae in apertural area
ILLUSTRATED GLOSSARYɕ197
clypeate LM SEM TEM
ORNAMENTATION mo ana fnc
clypeate: pollen wall where the exine is subdivided into shields.
Ibicella lutea Martyniaceae
Corydalis lutea Fumariaceae
inaperturate
pantocolpate, syncolpate
Phyllanthus sp. Euphorbiaceae
Iris bucharica Iridaceae
pantoporate
inaperturate
Banisteria argentea Malpighiaceae
Catalpa bignonioides Bignoniaceae
pantocolporate
tetrads, inaperturate, dry pollen
ɕ,//8675$7('*/266$5<
pollen wall
POLLEN WALL
LM SEM TEM
mo ana fnc
pollen wall: layer(s) enclosing the cytoplasm of a pollen grain.
supratectal elements
pk
ektexine
exine
sexine
tectum
columellae
nexine
pk foot layer endexine
intine
structure of the pollen wall schematic drawing
Ambrosia artemisiifolia Asteraceae
pollenkitt (pk)
acetolyzed
Ambrosia artemisiifolia Asteraceae
Ambrosia artemisiifolia Asteraceae PA+TCH+SP (short)
Scrophularia nodosa Scrophulariaceae
Scrophularia nodosa Scrophulariaceae KMnO4
ILLUSTRATED GLOSSARYɕ199
infratectum, alveolate LM SEM TEM
POLLEN WALL
mo ana fnc
infratectum: layer between tectum and foot layer or endexine (if foot layer is missing); infratectum can be alveolate, columellate, granular or absent.
Abies sp. Pinaceae, fossil
Pinus sp. Pinaceae, fossil
fractured pollen wall, proximal area (cappa)
alveolae inside detached saccus
Pinus sp. Pinaceae, fossil
Tsuga sp. Pinaceae, fossil
Gonatopus angustus Araceae
Zamioculcas zamiifolia Araceae
PA+TCH+SP
U+Pb
ɕ,//8675$7('*/266$5<
infratectum, columellate
POLLEN WALL
LM SEM TEM
mo ana fnc
infratectum: layer between tectum and foot layer or endexine (if foot layer is missing); infratectum can be alveolate, columellate, granular or absent.
0HQWKDDTXDWLFD Lamiaceae
Microrrhinum minus Scrophulariaceae
KMnO4
PA+TCH+SP (short)
Melampyrum pratense Scrophulariaceae
Bassia scoparia Chenopodiaceae
PA+TCH+SP (short)
U+Pb
Gladiolus illyricus Iridaceae
indet. Asteraceae
fractured pollen wall
acetolyzed honey sample fractured pollen wall
ILLUSTRATED GLOSSARYɕ201
infratectum, granular, absent LM SEM TEM
POLLEN WALL
mo ana fnc
infratectum: layer between tectum and foot layer or endexine (if foot layer is missing); infratectum can be alveolate, columellate, granular or absent.
infratectum: layer between tectum and foot layer or endexine (if foot layer is missing); infratectum can be alveolate, columellate, granular or absent.
Amydrium medium Araceae
Corylus colurna Betulaceae
U+Pb
PA+TCH+SP (short)
Viola tricolor Violaceae
Juglans regia Juglandaceae
U+Pb
PA+TCH+SP (short)
Dieffenbachia humilis Araceae
0DKRQLDDTXLIROLXP Berberidaceae
U+Pb
U+Pb
ɕ,//8675$7('*/266$5<
internal tectum
POLLEN WALL
LM SEM TEM
mo ana fnc
internal tectum: a ± continuous layer between foot layer and tectum, separated from them by columellae.
Argyranthemum sp. Asteraceae U+Pb
Agrimonia eupatoria Rosaceae
Centaurea cyanus Asteraceae
PA+TCH+SP (short)
PA+TCH+SP (short)
ILLUSTRATED GLOSSARYɕ203
foot layer LM SEM TEM
POLLEN WALL mo ana fnc
foot layer: inner layer of the ektexine; foot layer can be continuous, discontinuous, perforated or absent.
Microrrhinum minus Scrophulariaceae
Plantago maritima Plantaginaceae
PA+TCH+SP (short) continuous
TCH+SP continuous
Clinopodium vulgare Lamiaceae
Acinos alpinus Lamiaceae
PA+TCH+SP (short) discontinuous
KMnO4 discontinuous
Pachypodium succulentum Apocynaceae
Fraxinus excelsior Oleaceae
PA+TCH+SP (short) absent
PA+TCH+SP (short) absent
ɕ,//8675$7('*/266$5<
endexine
POLLEN WALL LM SEM TEM
mo ana fnc
endexine: distinct exine layer between ektexine and intine; endexine (E) can be compact, spongy or lamellar as well as continuous, discontinuous, absent or in aperture only.
Odontites luteus Scrophulariaceae
Ailanthus altissima Simaroubaceae
KMnO4 compact, continuous
TCH+SP compact, continuous
3XOPRQDULDRIÀFLQDOLV Boraginaceae
Microrrhinum minus Scrophulariaceae
PA+TCH+SP compact, continuous
U+Pb compact, continuous
ILLUSTRATED GLOSSARYɕ205
endexine LM SEM TEM
POLLEN WALL mo ana fnc
endexine: distinct exine layer between ektexine and intine; endexine (E) can be compact, spongy or lamellar as well as continuous, discontinuous, absent or in aperture only.
0HQWKDDTXDWLFD Lamiaceae
Arophyton buchetii Araceae
KMnO4 spongy, continuous
U+Pb spongy, continuous
Pistia stratiotes Araceae
Spathiphyllum blandum Araceae
PA+TCH+SP spongy, continuous
TCH+SP spongy, continuous
Orobanche hederae Orobanchaceae
7KDOLFWUXPÁDYXP Ranunculaceae
KMnO4 lamellar, continuous
PA+TCH+SP (short) lamellar, continuous
ɕ,//8675$7('*/266$5<
endexine
POLLEN WALL LM SEM TEM
mo ana fnc
endexine: distinct exine layer between ektexine and intine; endexine (E) can be compact, spongy or lamellar as well as continuous, discontinuous, absent or in aperture only
*ODXFLXPÁDYXP Papaveraceae
Odontites vulgaris Scrophulariaceae
U+Pb compact, discontinuous
PA+TCH+SP (short) compact, discontinuous
Ranunculus trichophyllos Ranunculaceae
Delphinium elatum Ranunculaceae
PA+TCH+SP compact, discontinuous
PA+TCH+SP (short) compact, discontinuous
ILLUSTRATED GLOSSARYɕ207
endexine LM SEM TEM
POLLEN WALL mo ana fnc
endexine: distinct exine layer between ektexine and intine; endexine (E) can be compact, spongy or lamellar as well as continuous, discontinuous, absent or in aperture only.
Brassica napus Brassicaceae
Chenopodium album Chenopodiaceae
PA+TCH+SP (short) absent
PA+TCH+SP absent
7ULVHWXPÁDYHVFHQV Poaceae
Cereus sp. Cactaceae
PA+TCH+SP (short) absent
PA+TCH+SP (short) absent
Corylus avellana Betulaceae
Corylus avellana Betulaceae
U+Pb in aperture only
TCH+SP in aperture only
ɕ,//8675$7('*/266$5<
intine
POLLEN WALL LM SEM TEM
mo ana fnc
intine: part of the pollen wall next to the cytoplasm, mainly consisting of polysaccharides.
$SLXPQRGLÁRUXP Apiaceae U+Pb ektintine (electron dense) endintine (electron transparent)
$SLXPQRGLÁRUXP Apiaceae
Quercus robur Fagaceae
PA+TCH+SP
TCH+SP
ILLUSTRATED GLOSSARYɕ209
semitectum, semitectate LM SEM TEM
POLLEN WALL
mo ana fnc
semitectum: discontinuous tectum, covering less than 50 % of pollen grain surface.
Salix fragilis Salicaceae
Salix fragilis Salicaceae
reticulate
U+Pb
Quesnelia lateralis Bromeliaceae
Alangium sp. Cornaceae, fossil
reticulate
reticulate, equatorial view
Lomatogonium carinthiacum Gentianaceae
Pachysandra terminalis Buxaceae
striato-microreticulate, polar area
reticulum cristatum
ɕ,//8675$7('*/266$5<
atectate
POLLEN WALL LM SEM TEM
mo ana fnc
atectate: pollen grain lacking a tectum.
Rhaphidophora africana Araceae
Orobanche hederae Orobanchaceae
U+Pb
KMnO4
Sauromatum venosum Araceae
Globba schomburgkii Zingiberaceae
PA+TCH+SP
U+Pb
ILLUSTRATED GLOSSARYɕ211
primexine LM SEM TEM
MISCELLANEOUS mo ana fnc
primexine: polysaccharidic layer formed during early developmental stage wherein the later exine structures are preformed.
Smyrnium perfoliatum Apiaceae
Smyrnium perfoliatum Apiaceae
U+Pb pollen mother cell, primexine within callose wall
U+Pb pollen mother cell, primexine within callose wall
Smyrnium perfoliatum Apiaceae
Smyrnium perfoliatum Apiaceae
U+Pb WHWUDGVWDJHÀUVWH[LQHHOHPHQWVYLVLEOH within primexine
U+Pb free microspore stage, ektexine developed
ɕ,//8675$7('*/266$5<
vegetative nucleus
MISCELLANEOUS
LM SEM TEM
mo ana fnc
vegetative nucleus ( )
Iris pumila Iridaceae
Consolida regalis Ranunculaceae
PA+TCH+SP (short) complex vegetative nucleus in mature pollen grain
PA+TCH+SP (short) vegetative nucleus enclosing generative cell
Acinos alpinus Lamiaceae
Zantedeschia aethiopica Araceae
PA+TCH+SP (short)
U+Pb complex vegetative nucleus in mature pollen grain
ILLUSTRATED GLOSSARYɕ213
generative cell LM SEM TEM
MISCELLANEOUS
mo ana fnc
generative cell ( )
Melampyrum nemorosum Scrophulariaceae
%HWRQLFDRIÀFLQDOLV Lamiaceae
acetocarmine
acetocarmine
Melampyrum nemorosum Scrophulariaceae
%HWRQLFDRIÀFLQDOLV Lamiaceae
PA+TCH+SP (short)
PA+TCH+SP (short)
Acinos alpinus Lamiaceae
Ajuga reptans Lamiaceae
PA+TCH+SP (short)
PA+TCH+SP (short)
ɕ,//8675$7('*/266$5<
sperm cell
MISCELLANEOUS
LM SEM TEM
mo ana fnc
sperm cell: male gamete.
Smyrnium perfoliatum Apiaceae
Triticum aestivum Poaceae
acetocarmine
acetocarmine
Smyrnium perfoliatum Apiaceae
Galium mollugo Rubiaceae
PA+TCH+SP sperm cells in Apiaceae extremely poor in organelles
PA+TCH+SP
Zantedeschia aethiopica Araceae
-DVPLQXPQXGLÁRUXP Oleaceae
PA+TCH+SP (short) sperm cells still in contact with each other; enclosed by the vegetative nucleus
TCH+SP
ILLUSTRATED GLOSSARYɕ215
tapetum LM SEM TEM
MISCELLANEOUS mo ana fnc
tapetum: specialized layer of cells lining the locule and participating in the nourishment of pollen grains, pollen wall formation and synthesis of pollen coatings.
+DFTXHWLDHSLSDFWLV Apiaceae
Zantedeschia aethiopica Araceae
PA+TCH+SP secretory tapetum in young anther
U+Pb amoeboid tapetum
ɕ,//8675$7('*/266$5<
pollen coatings, pollenkitt
MISCELLANEOUS
LM SEM TEM
mo ana fnc
pollenkitt: pollen coating consisting of sticky substances, mainly lipids.
Salvia nemorosa Lamiaceae
Ambrosia artemisiifolia Asteraceae
unstained
acetocarmine
-DVPLQXPQXGLÁRUXP Oleaceae
Nigella arvensis Ranunculaceae
TCH+SP
PA+TCH+SP
Melampyrum nemorosum Scrophulariaceae
%HWRQLFDRIÀFLQDOLV Lamiaceae
PA+TCH+SP (short)
PA+TCH+SP (short)
ILLUSTRATED GLOSSARYɕ217
pollen coatings, primexine matrix, tryphine LM SEM TEM
MISCELLANEOUS
mo ana fnc
primexine matrix: pollen coating consisting of primexine remnants in mature pollen grains.
tryphine: pollen coating consisting mainly of lipids mixed with membrane remnants.
$SLXPQRGLÁRUXP Apiaceae
Convolvulus tricolor Convolvulaceae
without osmium, PA+TCH+SP
PA+TCH+SP (short)
Pseudolysimachion barrelieri Scrophulariaceae
Sambucus nigra Sambucaceae
PA+TCH+SP (short)
PA+TCH+SP
Brassica nigra Brassicaceae
Sinapis alba Brassicaceae
PA+TCH+SP (short)
PA+TCH+SP (short)
ɕ,//8675$7('*/266$5<
viscin thread
MISCELLANEOUS
LM SEM TEM
mo ana fnc
viscin thread: acetolysis resistant thread arising from the exine.
Epilobium angustifolium Onagraceae
(SLORELXPÁHLVFKHUL Onagraceae
acetolyzed
Oenothera biennis Onagraceae
Oenothera biennis Onagraceae
oblique view
Kalmia latifolia Ericaceae
Godetia purpurea Onagraceae
tetrads
ILLUSTRATED GLOSSARYɕ219
viscin thread LM SEM TEM
MISCELLANEOUS
mo ana fnc
viscin thread: acetolysis resistant thread arising from the exine.
(SLORELXPSDUYLÁRUXP Onagraceae
Circaea lutetiana Onagraceae
tetrads
Ledum palustre Ericaceae
Clarkia pulchella Onagraceae
tetrad
equatorial view
Epilobium dodonaei Onagraceae
Rhododendron hirsutum Ericaceae
ɕ,//8675$7('*/266$5<
Ubisch body
MISCELLANEOUS
LM SEM TEM
mo ana fnc
Ubisch body: sporopolleninous element produced by the tapetum. Comment: the "Ubisch body" is named after Gerta von Ubisch, who described these bodies for WKHÀUVWWLPH
7ULVHWXPÁDYHVFHQV Poaceae
Corylus avellana Betulaceae two pollen grains attached to locular wall
Atriplex sagittata Chenopodiaceae
Stellaria graminea Caryophyllaceae
Acacia binerva Mimosaceae
Beloperone guttata Acanthaceae
ILLUSTRATED GLOSSARYɕ221
Ubisch body LM SEM TEM
MISCELLANEOUS
mo ana fnc
Ubisch body: sporopolleninous element produced by the tapetum. Comment: the "Ubisch body" is named after Gerta von Ubisch, who described these bodies for WKHÀUVWWLPH
Quercus robur Fagaceae
Gladiolus illyricus Iridaceae
Cyperus longus Cyperaceae
Ruspolia seticalyx Acanthaceae pollen grain attached to reticulate locular wall
Chamaecyparis lawsoniana Cupressaceae
Chamaecyparis lawsoniana Cupressaceae
Ubisch bodies on locular wall
Ubisch bodies attached on pollen surface
ɕ,//8675$7('*/266$5<
Ubisch body
MISCELLANEOUS
LM SEM TEM
mo ana fnc
Ubisch body: sporopolleninous element produced by the tapetum. Comment: the "Ubisch body" is named after Gerta von Ubisch, who described these bodies for WKHÀUVWWLPH
Nigella arvensis Ranunculaceae
Odontites luteus Scrophulariaceae
PA+TCH+SP (short)
U+Pb
Ruspolia seticalyx Acanthaceae
Sauromatum venosum Araceae
U+Pb
U+Pb
5DQXQFXOXVÀFDULD Ranunculaceae
Tilia platyphyllos Tiliaceae
PA+TCH+SP (short)
U+Pb
ILLUSTRATED GLOSSARYɕ223
a- | acalymmate | acetolysis | actuopalynology | aeropalynology turate | aperture | aperture membrane | apocolpium | apoporium baculate | baculum | bi- | biporate | bireticulate | bisaccate | bisul | brevicolporus | brevicolpus | bridge | brochus | calymmate | cap | clavate | clypeate | colpate | colporate | colporoidate | colporu compact | compound aperture | copropalynology | corpus | costa di- | diaperturate | dicolpate | dicolporate | diploxylon-pollentype | | echinolophate | echinus | ektexine | ektintine | ekto- | ektoapertu | endoplica | equator | equatorial | equatorial diameter | equatoria | Fischer‘s rule | foot layer | forensic palynology | fossula | fossulate | Garside‘s rule | gemma | gemmate | generative cell | geniculum harmomegathy | hetero- | heteroaperturate | heterobrochate | hete | impression mark | in- | inaperturate | infoldings | infra- | infratectu internal tectum | interporium | interstitium | intine | intra- | irregular | | lamellar | leptoma | LO-analysis | lobate | lolongate | LO-pattern lynology | melittopalynology | meridian | meridional | meso- | mes monad | mono- | monoaperturate | monocolpate | monolete | mo Normapolles | oblate | oblique view | omniaperturate | oncus | op | outline in equatorial view | outline in polar view | P/E-ratio | palae panto- | pantoaperturate | pantocolpate | pantoporate | papilla | | pilate | pilum | planaperturate | plicae | plicate | pluricolumella pollen | pollen analysis | pollen class | pollen coatings | pollen gra wall | pollenkitt | pollinarium | pollination | pollinium | poly- | polya | polyplicate | pontoperculate | pontoperculum | porate | poroid prae(pre)-pollen | primexine | primexine matrix | prolate | proximal drangular | reticulate | reticulum | reticulum cristatum | retipilate | | scabrate | sculpture | semi- | semitectate | semitectum | sexine spiraperturate | spongy | spore | sporoderm | sporopollenin | stenop nocolporate | stephanoporate | stephano- | striae | striate | striato | syn- | synaperturate | syncolpate | syncolporate | tapetum | tec | tetrad mark | tetrad planar | tetrad stage | tetrad tetrahedral | tri mosulcus | tricolpate | tricolporate | trilete | triporate | tryphine | U nucleus | verruca | verrucate | vesiculate | vestibulum | viscin thre
ALPHABETIC GLOSSARY
| alveolate | angulaperturate | annulate | annulus | aper| arcuate | arcus | areola | areolate | atectate | atrium | cate | boat-shaped | brevi- | brevicolpate | brevicolporate ppa | cappula | caput | cavea | caveate | circular | clava us | colpus | colpus membrane | columella | columellate | | costate | croton pattern | cryopalynology | cup-shaped | diporate | dispersal unit | distal | disulcate | dyad | echinate ure | elliptic | endexine | endintine | endo- | endoaperture al view | eu- | eurypalynous | eutectate | exine | fenestrate e | foveola | foveolate | free-standing columellae | frustrate | granular | granulate | granulum | haploxylon-pollentype | eropolar | hexa- | homo- | homobrochate | iatropalynology um | intectate | inter- | interapertural area | intercolpium | iso- | isodiametric | isopolar | lacuna | laesura | lalongate | lophae | lophate | lumen | margo | massula | melissopasocolpium | micro- | microspore | microspore mother cell | onoporate | monosaccate | monosulcate | muri | nexine | perculate | operculum | orbicule | ornamentation | outline eopalynology | palynogram | palynology | palynomorph | pedium | penta- | perforate | peri- | pharmacopalynology ate | polar area | polar axis | polar view | polarity | pole | ain | pollen mother cell | pollen tube | pollen type | pollen ad | polychotomosulcate | polychotomosulcus | polygonal | poroidate | pororate | porus | porus membrane | prae- | | pseudocolpus | pseudomonad | psilate | punctate | quaring-like aperture | rugulae | rugulate | saccate | saccus | shape | size | sperm cell | spheroidal | spine | spinose | palynous | stephanoaperturate | stephanocolpate | stephao-reticulate | structure | sub- | sulcate | sulcus | symmetry ctate | tectum | tenuitas | tetra- | tetrad | tetrad decussate i- | triangular | triaperturate | trichotomosulcate | trichotobisch body | ulcerate | ulcus | vegetative cell | vegetative ead | zona-aperturate | zono-aperturate | Zwischenkörper
ALPHABETIC GLOSSARY
A strict rationalization of terms on the basis of practical criteria has been attempted. For consistency, phrases are standardized as far as possible; for example, features of ornamentation are VWHUHRW\SLFDOO\GHÀQHGDVpollen wall with ….”, and pollen wall features (or pollen shape and VL]H DVpollen grain with ….”. Three categories of terms are used: important terms are printed in bold and are usually illustrated; terms of minor importance are printed in regular script, usually without illustrations; terms printed in italics are not recommended and often provided with an explanatory comment. 1XPEHUVLQVTXDUHEUDFNHWVUHIHUULQJWRLPSRUWDQWOLWHUDWXUHVHH%LEOLRJUDSK\
a-
aSUHÀ[PHDQLQJDEVHQW acalymmate ___________________________ 47 feature describing a dispersal unit of two or more monads enclosed by an exine, which is discontinuous at the junctions between the monads, and is absent from the internal walls. Antonym: calymmate acetolysis _______________ 7, 19-20, 25, 32, 51 widely used technique for preparing pollen and spore exines especially for light microscopy. [23] actuopalynology the study of pollen grains and spores of extant plants. aeropalynology ________________________ 12 the study of palynomorphs found in the atmosphere. [24] alveolate _____________________ 23, 200-202 infratectum with compartments of irregular size and shape. [122] angulaperturate _______________________ 104 pollen grain with an angular outline where the apertures are situated at the angles. [21] Antonym: planaperturate annulate __________________________143-144 pollen grain with an annulus or annuli. annulus (lat., pl. annuli) ________ 21, 143-144 ring-like thickening of the pollen wall surrounding a porus or ulcus. [4] Comment: "anulus" is an orthographical variant of "annulus". aperturate __________________________41, 49 pollen grain with one or more apertures. [20] Antonym: inaperturate. aperture _______15-17, 19-20, 23, 25, 101-154 region of the pollen wall which differs sigQLÀFDQWO\ PRUSKRORJLFDOO\ DQGRU DQDtomically from the rest of the pollen wall, presumed to function usually as germination site and to play a role in harmomegathy. [20] aperture membrane ___________ 19, 145-148 exine layer covering an aperture; aperture membrane can be smooth or ornamented. [21] Comment: the terms "smooth" and "ornamented" should be used when the
boat-shaped
feature is remarkably expressed. apocolpium, see polar area Comment: "polar area" is the more general term independent of the aperture type apoporium, see polar area Comment: "polar area" is the more general term independent of the aperture type. arcuate _______________________________ 100 pollen grain with curved wall thickenings interconnecting apertures. [18] arcus (lat., pl. arcus) ________________21, 100 a curved wall thickening interconnecting apertures. [18] areola (lat., pl. areolae)_________ 23, 47, 197 small, mostly convex exine island. areolate _________________ 32-33, 46-47, 197 pollen wall with areolae. atectate ______________________________ 211 pollen grain lacking a tectum. [128] Antonym: tectate atrium (lat., pl. atria) space between diverging exine layers within the aperture. [115] baculate ________________________ 8, 30, 192 pollen wall with bacula. [64] baculum (lat., pl. bacula) ______________ 192 rod-like, free standing element, more than 1 μm in height and never pointed. [83] biSUHÀ[IRUWZR biporate, see diporate Comment: "diporate" is the more common term. bireticulate____________________ 29, 160-161 special type of reticulate ornamentation, where the brochi of the large-meshed UHWLFXOXP DUH ÀOOHG E\ D VPDOOPHVKHG reticulum. bisaccate __________________ 8, 49, 59, 97-99 pollen grain with two sacci. [84] Comment: nomen conservandum bisulcate, see disulcate [20] Comment: "disulcate" is the more common term. boat-shaped _________ 7, 24-25, 44-45, 92-93 characteristic shape of sulcate pollen grains caused by an infolding as a conVHTXHQFHRIKDUPRPHJDWK\VHH3ROOHQ 0RUSKRORJ\
$/3+$%(7,&*/266$5<ɕ227
brevi
corpus
breviSUHÀ[PHDQLQJVKRUW brevicolpate __________________________ 113 pollen grain with brevicolpi. [21] brevicolporate ________________________ 113 pollen grain with brevicolpori. brevicolporus (lat., pl. brevicolpori) _____ 113 short colpus in a compound aperture. brevicolpus (lat., pl. brevicolpi)_________ 113 short colpus. [21] bridge _____________________________43, 153 exine connection between the margins of a colpus in the equatorial region. [30] Comment: the term is often used in a more general context, e.g., for exine connections within tetrads. brochus (lat., pl. brochi)____________162-163 mesh of a reticulum consisting of one lumen and the adjoining half of the muri. [21] calymmate ____________________________ 47 feature describing a dispersal unit of two or more monads enclosed by a continuous ektexine. Antonym: acalymmate cappa (lat., pl. cappae)_____________ 22-23 the thick-walled proximal side of the corpus of a saccate pollen grain. [22] cappula, see leptoma [22] Comment: may be confused with "cappa" which points to the proximal side, while "cappula" refers to distal. caput (lat., pl. capita) apex of a clava. [21] cavea (lat., pl. caveae) infratectal cavity in the interapertural area. [109] caveate pollen wall with caveae.
caput Iris alata ,ULGDFHDH pollen surface with clavae
colporoidate Eucommia sp. (XFRPPLDFHDHIRVVLO equatorial view
ɕ$/3+$%(7,&*/266$5<
circular, see outline clava (lat., pl. clavae) ______ 23, 30, 193-194 club-shaped element, higher than 1 μm. [20, 64, 83] clavate __________________ 8, 27, 30, 193-194 pollen wall with clavae. [20, 64] clypeate _______________ 9, 42-43, 47, 68, 198 pollen wall, in which the exine is subdivided into shields. colpate ___________________9, 19, 43, 68, 118 pollen grain with colpi. colporate ___________________ 9, 68, 128-132 pollen grain with colpori. colporoidate pollen grain with compound apertures composed of a colpus (ektoaperture) with an indistinct endoaperture. [21] Comment: a rare character, e.g., for deciduous Quercus pollen. colporus (lat., pl. colpori) ____ 17, 30, 45, 48, 128-132 compound aperture composed of a colpus (ektoaperture) combined with an endoaperture of variable size and shape. colpus (lat., pl. colpi) ____ 17, 41, 43, 48, 113, 118-120 HORQJDWHG DSHUWXUH OHQJWKZLGWK UDWLR > 2) situated at the equatorial region or regularly distributed over the pollen grain. [18] colpus membrane aperture membrane of a colpus; see aperture membrane. columella (pl. columellae) _______ 21, 23, 30 200-202 rod-like structure element, supporting a tectum. [64] columellate ________________ 21, 23, 200-202 infratectum with rod-like elements. [117] compact, see endexine compound aperture __________ 113, 128-129 aperture with two or more components that are situated in more than one wall layer, e.g., colporus. [24] copropalynology the study of palynomorphs in coprolites or faeces. [24] corpus (lat., pl. corpora) _____________ 22-23 body of a saccate pollen grain. [22]
costa
costa (lat., pl. costae) __________________ 21 WKLFNHQLQJ RI WKH QH[LQHHQGH[LQH ERUdering an endoaperture. [64] costate pollen grain with costae. croton pattern__________________ 8, 166-167 special type of reticulum cristatum formed by regularly arranged sculpture elements on muri. cryopalynology ________________________ 12 the study of palynomorphs found in ice. cup-shaped___________________ 7, 25, 45, 91 characteristic shape of pollen grains caused by infoldings as a consequence of KDUPRPHJDWK\VHH3ROOHQ0RUSKRORJ\ diSUHÀ[PHDQLQJWZR diaperturate pollen grain with two apertures. dicolpate _____________________________ 118 pollen grains with two colpi. [107] dicolporate pollen grain with two colpori. [107] diploxylon-pollen-type _______________ 22-23 bisaccate pollen grain with balloon-like sacci. diporate _____________________ 121-122, 145 pollen grains with two pori. dispersal unit _________________ 15, 47, 59-67 unit in which pollen is shed (monad, dyad, tetrad, polyad, massula, pollinium, pollinarium). distal _______________ 15, 18-19, 23, 40-41, 44 pollen features that face or are directed outwards in the tetrad. [65] Antonym: proximal disulcate______________________________ 138 pollen grain with two sulci. [20, 107] dyad _______________________________60, 69 dispersal unit of two pollen grains. echinate _____________ 8, 27, 32, 55, 186-189 pollen wall with echini. [133] echinolophate lophate pollen grains with echinate ridges. [133] echinus (lat., pl. echini) __23, 28, 32, 186-189 pointed ornamentation element longer DQGRUZLGHUWKDQP>@ ektexine ___________ 20-21, 23, 25, 36, 47, 52 the outer layer of the exine. [18]
exine
ektintine ______________________________ 209 the outer layer of a two-layered intine which is adjacent to the exine. [72] ektoSUHÀ[PHDQLQJRXWHU ektoaperture ______________________128-129 outer part of a compound aperture. [121] elliptic, see outline endexine ______20-21, 23, 25, 51-52, 205-208 distinct exine layer between ektexine and intine; endexine can be compact, spongy or lamellar as well as continuous, discontinuous, absent or in aperture only. [83, 107] endintine _____________________________ 209 inner layer of a two-layered intine which is adjacent to the cytoplasm. [72] endoSUHÀ[PHDQLQJLQQHU endoaperture _______ 21, 48, 51, 55, 128-129 inner part of a compound aperture. [121] endoplica fold of the inner exine layer. [115] equator _____________________________ 15-19 imaginary line around a pollen grain at the distance half-way between the (proximal and distal) poles. [134] equatorial___________________________ 15-19 preposition indicating a direction on the pollen surface; see equator. equatorial diameter ____________________ 16 diameter of a pollen grain or spore in the equatorial plane. [18] equatorial view______________________ 15-19 the view of a pollen grain or spore perpendicular to the polar axis. [18] euSUHÀ[PHDQLQJWUXH eurypalynous SODQWWD[DFKDUDFWHUL]HGE\DVLJQLÀFDQW variation in pollen (or spore) morphology. [21] Antonym: stenopalynous eutectate pollen grain with a continuous tectum. exine _____ 12-13, 19-21, 23, 25, 205-208, 210 outer layer of the pollen wall which is usually resistant to acetolysis. [36]
$/3+$%(7,&*/266$5<ɕ229
fenestrate
fenestrate, see lophate Comment: as there is no corresponding substantive to "fenestrate", we prefer the terms "lophate" and "lophae". Fischer‘s law/rule ____________________12, 16 VHH3ROOHQ0RUSKRORJ\>@ foot layer __________________ 21, 23, 200-204 inner layer of the ektexine; foot layer can be continuous, discontinuous, perforated or absent. [29] forensic palynology ____________________ 12 the study of palynomorphs found in forensic samples. fossula (lat., pl. fossulae) ____________23, 183 irregularly shaped groove in the surface of a pollen wall. [30] fossulate ___________________________32, 183 pollen wall with fossulae. [30] foveola (lat., pl. foveolae) __________23, 182 roundish lumen more than 1 μm in diameter; distance between two adjacent lumina larger than their diameter. [21] foveolate ______________________ 27, 29, 182 pollen wall with foveolae. [21] free-standing columellae ____________23, 30 columellae in the infratectal layer not covered by a tectum in semitectate pollen grains. frustrate ________________________________ 49 special mental condition of palynologists discussing terminology of pollen DQGVSRUHVVHH&RQWURYHUVLDODQG)X]]\ 7HUPV>@ Garside‘s law/rule ______________________ 16 VHH3ROOHQ0RUSKRORJ\ gemma (lat., pl. gemmae) ______ 23, 48, 196 globular exine element more than 1 μm in diameter. [64] gemmate _______________________ 8, 27, 196 pollen wall with gemmae. [64]
geniculum Quercus sp. Fagaceae, fossil equatorial view
ɕ$/3+$%(7,&*/266$5<
heteropolar
generative cell ________________ 36, 213-214 VHH3ROOHQ'HYHORSPHQW geniculum (lat., pl. genicula) bulge of a colpus in the equatorial region of a pollen grain. [83] granular _____________ 8, 21, 23, 46, 200-202 infratectum composed of granula, cluster of granula or elements of different size and shape (never solid and rod-like). [124] Comment: not to be confused with "granulate", which is a type of ornamentation. granulate ____________________________ 8, 32 pollen wall with granula. [20] Comment: not to be confused with "granular", which is a feature of the pollen wall structure. granulum (lat., pl. granula) _______ 8, 23, 177 structure- or sculpture element of different size and shape; smaller than 1 μm. [20, 124] haploxylon-pollen-type ______________ 22-23 bisaccate pollen grain with hemispherical sacci. harmomegathy _______________23-25, 91-93 mechanism permitting changes in shape and size of the pollen grain (by varying the hydration status). [134] heteroSUHÀ[PHDQLQJGLIIHUHQW heteroaperturate ________17, 45, 48, 116-117 pollen grain with two different types of apertures; only one type presumed to function a germination site. Comment: the term "heterocolpate" is commonly used for pollen grains with alternating colpi and colpori; but "heterocolpate" [64] means two different types of colpi; therefore we prefer the more general term "heteroaperturate". heterobrochate _____________________8, 163 reticulate pollen wall with lumina of different sizes. [21] Comment: the term should be used when the feature is remarkably expressed Antonym: homobrochate heteropolar __________________ 15, 41, 95-96 pollen grain with different proximal and distal faces. [21] Antonym: isopolar
hexa-
hexaSUHÀ[PHDQLQJVL[ homoSUHÀ[PHDQLQJHTXDO homobrochate ________________________ 162 reticulate pollen wall with lumina of uniform size. [21] Comment: the term should be used when the feature is remarkably expressed Antonym: heterobrochate iatropalynology ________________________ 12 the study of palynomorphs causing human allergies. impression mark________________________ 39 D OLQHDU RU <VKDSHG PDUN RQ WKH SUR[Lmal polar area of a pollen grain retained from the tetrad stage. inSUHÀ[PHDQLQJDEVHQW inaperturate________________________17, 103 pollen grain without distinct aperture(s). [64, 113] Antonym: aperturate. infoldings ___________________________ 88-93 a consequence of harmomegathy (aperture sunken, interapertural area sunken, irregularly infolded). infraSUHÀ[PHDQLQJEHQHDWK infratectum ________________ 21, 23, 200-202 layer between tectum and foot layer or endexine (if foot layer is missing); infratectum can be alveolate, columellate, granular or absent. [1] intectate, see atectate Comment: "atectate" is the more common term interSUHÀ[IRULQEHWZHHQ interapertural area __________________25, 29 region between apertures. intercolpium, see interapertural area Comment: "interapertural area" is the more general term independently from the aperture type. internal tectum _____________________21, 203 a ± continuous layer between foot layer and tectum, separated from them by columellae. [109]
lobate
interporium, see interapertural area Comment: "interapertural area" is the more general term independently from the aperture type interstitium, see infratectum Comment: outdated term intine part of the pollen wall next to the cytoplasm, mainly consisting of polysaccharides. [36] intraSUHÀ[IRUZLWKLQ irregular, see outline isoSUHÀ[PHDQLQJLGHQWLFDO isodiametric , see shape isopolar _____________________________15, 94 pollen grain with identical proximal and distal faces. [20] Antonym: heteropolar. lacuna (lat., pl. lacunae)___________184-185 depressed area surrounded by ridges (lophae) in lophate pollen grains. [133] laesura (lat., pl. laesurae) _______________ 19 a single arm of a tetrad mark; abbreviaWLRQLVOHWHVHHDOVRWHWUDGPDUNPRQROHWHWULOHWH lalongate endoaperture elongated equatorially. lamellar, see endexine leptoma (gr., pl. leptomata)___ 17, 20, 22-23 thinning of the pollen wall at the distal pole (of a pollen grain) in conifers, presumed to function as germination area; special case of tenuitas. [22, 27] LO-analysis ____________________________ 12 light microscopical method for analysing SROOHQVXUIDFHVVHH3DO\QRORJ\ lobate, see outline
lalongate Symplocos sp. 6\PSORFDFHDHIRVVLO equatorial view
$/3+$%(7,&*/266$5<ɕ231
lolongate
lolongate endoaperture elongated meridionally. LO-pattern RUQDPHQWDWLRQLGHQWLÀHGE\/2DQDO\VLV VHH3DO\QRORJ\ lophae (lat., sing. lopha) ___________184-185 a network-like pattern of ridges (=lophae) formed by the outer exine surrounding window-like spaces or depressions (=lacunae). lophate ___________________________184-185 pollen wall with lophae. [133] lumen (lat., pl. lumina) _________________ 182 general term for the space enclosed by e.g., muri. [83] margo (lat., pl. margines) ______________ 142 exine area surrounding an aperture and differentiated in ornamentation. [64] massula (lat., pl. massulae) __ 15, 42, 66, 179 dispersal unit of more than four pollen grains and fewer than the locular content. [83] melissopalynology _____________________ 12 the study of palynomorphs found in honey. [21] melittopalynology, see melissopalynology Comment: the term melittopalynology is the Greek variant of the Latin "melissopalynology". meridian imaginary line on the pollen surface connecting proximal and distal poles. [64] meridional preposition indicating a direction on the pollen surface; see meridian. [64] mesoSUHÀ[PHDQLQJPLGGOH
lolongate Rumex sp. Polygonaceae, fossil equatorial view
ɕ$/3+$%(7,&*/266$5<
nexine
mesocolpium, see interapertural area Comment: "interapertural area" is the more general term independent of the aperture type. microSUHÀ[ IRU VPDOO IHDWXUHV VPDOOHU DV 1 μm: -baculate, -clavate, -echinate, -gemmate, -pilate, -rugulate, -reticulate, -verrucate; not used in combination with striate, foveolate, perforate. microspore_________________15-16, 19, 35-36 VHH3ROOHQ'HYHORSPHQW microspore mother cell, see pollen mother cell DQG3ROOHQ'HYHORSPHQW monad ________________________________ 59 dispersal unit consisting of a single pollen grain. [107] monoSUHÀ[PHDQLQJRQH monoaperturate pollen grain with a single aperture. [80] monocolpate, see sulcate [134] &RPPHQW VXSHUÁXRXV WHUP DV IDU DV known there is no example of a pollen grain with a single colpus (situated equatorially); in all pollen grains with a single elongated aperture the latter is situated distally (sulcus). monolete, see laesura and tetrad mark monoporate, see ulcerate &RPPHQW VXSHUÁXRXV WHUP DV IDU DV known there is no example of a pollen grain with a single porus (situated equatorially); in all pollen grains with a single porus the latter is situated distally (ulcus). monosaccate __________________________ 97 pollen grain with a single saccus. [84] monosulcate, see sulcate [20] &RPPHQW VXSHUÁXRXV WHUP EHFDXVH "sulcate" implies a single elongated aperture (sulcus). muri (lat., sing. murus)__________ 48, 155-167 exine elements forming the meshes in a reticulum. [18] nexine _________________________________ 21 term used for light microscopy, describLQJ WKH LQQHU XQVWUXFWXUHG OD\HUSDUW RI the exine. [21, 30]
Normapolles
Normapolles ___________________________ 33 JURXS RI &UHWDFHRXV DQG /RZHU 3DOHRgene pollen, usually triaperturate, with a complex pore apparatus. oblate _______________________ 16, 24, 78-79 pollen grain with a polar axis shorter than the equatorial diameter. [21] Antonym: prolate oblique view view of a pollen grain neither in polar nor in equatorial view. omniaperturate, see inaperturate Comment: the term refers to the functional aspect only, therefore we prefer "inaperturate". oncus (lat., pl. onci) lens-shaped body located in the apertural region. [62] operculate ________________________149-152 aperture with an operculum. [89] operculum (lat., pl. opercula) _______ 19, 44, 149-152 coherent exine structure covering an aperture. [89] orbicule, see Ubisch body [25] Comment: "orbicule" implies a globular element, a too restrictive term; we recommend "Ubisch body" because they are polymorphic. ornamentation ________________ 23, 155-198 general term, applied in palynology to surface features. [89] outline ___________________________24, 80-93 general term used to describe the FRQWRXU RI SROOHQ JUDLQV LQ SRODU DQGRU equatorial view (can be circular, elliptic, triangular, quadrangular, polygonal, irregular, lobate). [70] outline in equatorial view outline of a pollen grain formed by two opposite meridians. outline in polar view outline of a pollen grain formed by the equator. P/E-ratio _______________________________ 16 ratio of the length of the polar axis to the equatorial diameter. palaeopalynology the study of fossil palynomorphs. palynogram____________________________ 15 diagram summarising the main morpho-
polar axis
logical features of a palynomorph. [21] palynology__________________________ 11-13 the study of palynomorphs. palynomorph _______________________11, 15 general term for all entities found in palynological preparations. pantoSUHÀ[IRUJOREDO pantoaperturate_______________ 19, 110-112 pollen grain with apertures distributed more or less regularly over the whole surface. pantocolpate, see pantoaperturate pantoporate, see pantoaperturate papilla (lat., pl. papillae) ____________20, 154 small protuberance typical for TaxodioiGHDHSROOHQ&XSUHVVDFHDH >@ pedium, see foot layer Comment: outdated term pentaSUHÀ[PHDQLQJÀYH perforate___________________ 27-29, 180-181 pollen wall with holes less than 1 μm in diameter. [64, 83] peri-, see pantopharmacopalynology __________________ 12 the study of palynomorphs in drugs. pilate, see clavate [20] Comment: see pilum pilum (lat., pl. pila), see clava [83] Comment: the term "pilum" does not refer to the palynological feature; "pilum" means "dart" or "javelin". planaperturate _____________________42, 105 pollen grain with an angular outline, where the apertures are situated in the middle of the sides. [21] Antonym: angulaperturate plicae (lat., sing. plica)______________23, 168 cirumferential, parallel ridge-like folds. [21] plicate _________________________ 30, 70, 168 pollen wall with plicae. [21] pluricolumellate reticulate pollen wall with more than one row of columellae beneath a murus. polar area region at and around the pole(s). polar axis ___________________________ 15-16 imaginary line between the proximal and the distal pole of a pollen grain. [134]
$/3+$%(7,&*/266$5<ɕ233
polar view
pororate
polar view view of a pollen grain in which the polar axis is directed towards the observer. [18] polarity ___________________ 15, 17-19, 35, 49 orientation of a pollen grain in tetrad stage. pole RXWHUPRVWSUR[LPDODQGRUGLVWDOSRLQWRI a pollen grain. [20] pollen, see pollen grain pollen analysis _________________________ 11 study of assemblages of dispersed palynomorphs. Comment: it does not mean the morphological description of a pollen grain; see palynogram. pollen class _____________________ 8-9, 68-72 DUWLÀFLDO JURXSLQJ RI SROOHQ JUDLQV WKDW share a single distinctive character. pollen coatings__________23, 25, 36, 217-218 generic term applied to organic compounds usually produced by the WDSHWXPORFDWHGRQWKHH[LQHDQGRULQ exine cavities. pollen grain (pl. pollen grains or pollen) the male gametophyte of seed plants; the point of origin and the carrier for the male gametes (spermatozoids or sperm cells). pollen mother cell VHH3ROOHQ'HYHORSPHQW pollen tube VHH3ROOHQ'HYHORSPHQW pollen type_______________ 5, 8, 22-23, 30, 46 a general term categorising pollen grains; often used in connection with a distinct taxon.
pororate Corylus sp. %HWXODFHDHIRVVLO polar view
equatorial view
ɕ$/3+$%(7,&*/266$5<
pollen wall ______________ 20-21, 23, 199-211 layer(s) enclosing the cytoplasm of a pollen grain. pollenkitt____________________ 21, 23, 36, 217 pollen coating consisting of sticky substances, mainly lipids. pollinarium (lat., pl. pollinaria) ________15, 67 dispersal unit of pollinium (or pollinia) and a single interconnecting sterile appendage. pollination __________________________12, 25 transfer of pollen from the male to the female reproductive organs in seed plants. pollinium (lat., pl. pollinia) ____________15, 67 dispersal unit of a more or less interconnected loculiform pollen mass. [65] polySUHÀ[IRUPDQ\ polyad______________________________42, 70 dispersal unit of more than four united pollen grains. [64] polychotomosulcate pollen grain with a polychotomosulcus. polychotomosulcus sulcus with more than three arms. polygonal, see outline polyplicate, see plicate Comment: a "plicate" pollen grain has always more than one plica, therefore WKHWHUPSRO\SOLFDWHLVVXSHUÁXRXV pontoperculate _______________________ 152 aperture with a pontoperculum. pontoperculum (lat., pl. pontopercula) _ 152 operculum covering a colpus, not completely isolated from the remainder of the sexine. porate _______________ 17, 43-44, 70, 121-125 pollen grain with pori. [21] poroid _____________________ 17, 44, 126-127 circular or elliptic aperture, with indistinct margin. [20] poroidate pollen grain with poroid aperture(s). pororate pollen grain with compound apertures composed of a circular ekto- (porus) and endoaperture. [21]
porus
porus (lat., pl. pori; engl. pore, pl. pores) __8, 17, 30, 121-125 more or less circular aperture situated at the equator or regularly spread over the pollen grain. [84] porus membrane aperture membrane of a porus; see aperture membrane. praeSUHÀ[IRUEHIRUH prae(pre)-pollen _______________________ 19 microspores of certain extinct seed plants characterised by proximal and distal apertures, and presumed proximal germination. primexine _____________________ 35, 212, 218 polysaccharidic layer formed during early developmental stage wherein the later exine structures are preformed. primexine matrix ______________________ 218 pollen coating consisting of primexine remnants in mature pollen grains. prolate____________________ 16, 24, 55, 76-77 pollen grain with a polar axis longer than the equatorial diameter. [18] Antonym: oblate proximal _________________________ 15, 18-19 pollen features that face or are directed towards the centre of the tetrad. [83] Antonym: distal pseudocolpus ______________________48, 117 colpus in heteroaperturate pollen grains, presumably non-functional. [64] pseudomonad _________________________ 61 dispersal unit of a permanent tetrad with three rudimentary pollen grains. [107] psilate _____________________ 29, 32, 178-179 pollen wall with smooth surface. [134]
scabrate Fagus sp. Fagaceae, fossil polar view
semitectum
punctate, see perforate [83] Comment: "punctum" [21] does not describe the three dimensional character of a perforation. quadrangular, see outline reticulate _______________ 27, 29-30, 155-167 pollen wall with reticulum. [134] reticulum (lat., pl. reticula) _________155-167 network like pattern formed by exine elements (muri), where the lumina are wider than 1 μm. [134] reticulum cristatum ____________ 48, 165-167 special type of reticulum; muri with prominent sculpture elements. [84] retipilate [21] ___________________________ 48 Comment: to the best of our knowledge there is no example of a reticulum formed by rows of pila instead of muri. Earlier observations where based on light microscopy, SEM-investigations reveal that the given examples of Cuscuta and &DOOLWULFKHGRQRWÀWWKHGHÀQLWLRQ ring-like aperture ________ 44-45, 49, 140-141 circumferential aperture (situated more or less equatorially or, rarely, meridionally). rugulae (lat., sing. rugula) ___ 23, 31, 175-176 elongated exine elements longer than 1 μm; irregularly arranged. rugulate ____________________ 8, 31, 175-176 pollen wall with rugulae. saccate_________________ 9, 22-23, 71, 97-99 pollen grain with one or more air sacs. saccus (lat., pl. sacci)__________22-23, 97-99 exinous expansion forming an air sac. scabrate _______________________________ 32 a term used for light microscopy only, describing minute sculpture elements of unGHÀQHGVKDSHDQGRIDVL]HFORVHWRWKH resolution limit of the light microscope. sculpture_______________________________ 23 elements of ornamentation on the pollen surface. semiSUHÀ[IRUKDOI semitectate ___________________________ 210 pollen grain with a semitectum. semitectum ___________________________ 210 discontinuous tectum, covering less than 50 % of pollen grain surface.
$/3+$%(7,&*/266$5<ɕ235
sexine
sexine _____________________________21, 152 term used for light microscopy, describLQJWKHVWUXFWXUHGVFXOSWXUHGRXWHUOD\HU of the exine. shape____________________ 15-16, 25, 74-100 VHH3ROOHQ0RUSKRORJ\ size ____________________________________ 74 VHH3ROOHQ0RUSKRORJ\ sperm cell _____________________ 11, 36, 215 PDOH JDPHWH VHH 3ROOHQ 'HYHORSPHQW spheroidal, see shape spine, see echinus Comment: the terms "spine", "spinulate", "spinus", "spinous" and "spinose" are linguistically inconsequent. spinose, see echinate Comment: see spine spiraperturate _____________________ 71, 115 pollen grain with one or more spiral aperture(s). spongy, see endexine spore general term for a reproductive unit (sexual, asexual) of cryptogams and fungi. sporoderm __________________________11, 20 JHQHUDOWHUPIRUWKHZDOORIVSRUHVDQG or pollen. sporopollenin __________________________ 35 the main component of the exine, consisting of acetolysis-resistant biopolymers. stenopalynous plant taxa characterised by only slight variation in pollen (or spore) morphology. [21] Antonym: eurypalynous stephanoaperturate _____ 19-20, 49, 106-109 apertures situated at the equator (term usually used for more than three apertures). stephanocolpate, see stephanoaperturate stephanocolporate, see stephanoaperturate stephanoporate, see stephanoaperturate stephanoSUHÀ[PHDQLQJHTXDWRULDOO\VLWXDWHG striae (lat., sing. stria)___________ 23, 169-174 elongated exine elements separated by grooves predominantly parallel arranged. [64]
ɕ$/3+$%(7,&*/266$5<
tetrad
Comment: the term "striae" is used inconsistently in the literature. We use the term for the elevated elements and not for the grooves. striate______________________ 30, 32, 169-172 pollen wall with striae. [64] striato-reticulate_______________ 29, 173-174 ornamentation intermediate between striate and reticulate. [21] structure ____________________ 20, 23, 25, 199 the construction of a pollen wall. subSUHÀ[IRUOHVVWKDQ sulcate ____________________ 44, 71, 135-137 pollen grain with a sulcus. [20, 134] sulcus (lat., pl. sulci)___ 17, 40-41, 49, 135-139 elongated aperture situated distally. [20, 134] symmetry ___________________________15, 35 VHH3ROOHQ0RUSKRORJ\ synSUHÀ[IRUWRJHWKHU synaperturate ________________ 9, 40, 72, 114 pollen grain with anastomosing apertures. syncolpate _________________________40, 114 pollen grain with anastomosing colpi. syncolporate _______________________40, 114 pollen grain with anastomosing colpori. tapetum ________________________35-36, 216 specialized layer of cells lining the locule and participating in the nourishment of pollen grains, pollen wall formation and synthesis of pollen coatings. tectate pollen grain with a tectum. [30] Antonym: atectate tectum (lat., pl. tecta) outer more or less continuous ektexine layer; tectum condition can be eutectate, semitectate or atectate. [30] tenuitas (lat., pl. tenuitates) ______20-21, 127 general term for a thinning of the pollen wall. [84] tetraSUHÀ[PHDQLQJIRXU tetrad _______________15-16, 35, 39, 62-65, 72 dispersal unit of four pollen grains (spores). [83, 128]
tetrad decussate
tetrad decussate dispersal unit of four pollen grains arranged in two planes with two pairs at right angles. tetrad mark _________________________18, 39 a mark on the proximal face of a spore retained from the postmeiotic stage functioning as germination area (linear = monolete, y-shaped = trilete). tetrad planar ___________________________ 16 dispersal unit of four pollen grains arranged in one plane; can be: tetragonal, T-shaped, linear. tetrad stage VHH3ROOHQ0RUSKRORJ\DQG3ROOHQ'HYHORSPHQW tetrad tetrahedral_______________________ 16 dispersal unit of four pollen grains in ZKLFKWKHFHQWHUVRIWKHJUDLQVGHÀQHD tetrahedron. triSUHÀ[PHDQLQJWKUHH triangular, see outline triaperturate pollen grain with three apertures. trichotomosulcate __________________40, 139 pollen grain with a trichotomosulcus. [21] trichotomosulcus ___________________40, 139 three-radiate sulcus. [21] tricolpate pollen grain with three colpi. [64] tricolporate pollen grain with three colpori. [64] trilete __________________________________ 19 VHHODHVXUDDQGWHWUDGPDUN triporate pollen grain with three pori. [30] tryphine________________________ 23, 36, 218 pollen coating consisting mainly of lipids mixed with membrane remnants. [24]
Zwischenkörper
Ubisch body _______________ 33, 36, 221-223 sporopolleninous elements produced by the tapetum. [25] Comment: the "Ubisch body" is named after Gerta von Ubisch, who described WKHVHERGLHVIRUWKHÀUVWWLPH ulcerate ______________________ 72, 133-134 pollen grain with an ulcus. [21] ulcus (lat., pl. ulci) __________ 17, 20, 133-134 more or less circular aperture situated distally. [21] vegetative cell VHH3ROOHQ'HYHORSPHQW vegetative nucleus ____________________ 213 VHH3ROOHQ'HYHORSPHQW verruca (lat., pl. verrucae) __________23, 191 wart-like element more than 1 μm, broader than high. [64] verrucate ________________ 27-28, 31-33, 191 pollen wall with verrucae. [64] vesiculate, see saccate Comment: "saccate" is the more general term. vestibulum (lat., pl. vestibula), see atrium Comment: "atrium" is the more common term. viscin thread ______________________219-220 acetolysis resistant thread arising from the exine. [65] zona-aperturate, see ring-like aperture Comment: source of constant confusion. zono-aperturate, see stephanoaperturate Comment: source of constant confusion. Zwischenkörper, see oncus Comment: "oncus" is the more common term.
$/3+$%(7,&*/266$5<ɕ237
127(6
ɕ$/3+$%(7,&*/266$5<
127(6
$/3+$%(7,&*/266$5<ɕ239
ANNEX
ANNEX
APLF
ERDTMAN
BIBLIOGRAPHY
REFERENCES AND SUGGESTIONS FOR FURTHER READING
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
APLF (1975) Morphologie pollinique: problèmes de terminologie, taxonsguides et pollens périporés. Bull Soc Bot France 122: 1-272 BANKS H (2003) Structure of pollen apertures in the Detarieae sensu stricto (Leguminosae: Caesalpinioideae), with particular reference to underlying structures (Zwischenkörper). Ann Bot 92: 425-435 BANKS H, STAFFORD P, CRANE PR (2007) Aperture variation in the pollen of Nelumbo (Nelumbonaceae). Grana 46: 157–163 BEUG HJ (1961) Leitfaden der Pollenbestimmung. Lief. 1. Gustav Fischer, Stuttgart BEUG HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München BLACKMORE S (1992) Scanning electron microscopy in palynology. In: Nilsson S, Praglowski J (eds) Erdtman’s Handbook of Palynology. 2nd ed. Munksgaard, Copenhagen, pp 403-431 BLACKMORE S (2000) The palynological compass: the contribution of palynology to systematics. In: Nordenstam B, El-Ghazaly G, Kassas M (eds) Plant Systematics for the 21st Century. Portland Press, London, pp 161-177 BLACKMORE S, BARNES SH (1995) Garside’s rule and the microspore tetrads of Grevillea rosmarinifolia A. Cunningham and Dryandra polycephala Bentham (Proteaceae). Rev Palaeobot Palynol 85: 111-121 BLACKMORE S, CANNON MJ (1983/84) Palynology and systematics of Morinaceae. Rev Palaeobot Palynol 40: 207-226 BLACKMORE S, CRANE PR (1998) The evolution of apertures in the spores and pollen grains of embryophytes. In:
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
Owens SJ, Rudall PJ (eds) Reproductive Biology. Royal Botanic Gardens, Kew BLACKMORE S, WORTLEY A, SKVARLA JJ, ROWLEY JR (2007) Pollen wall deveORSPHQWLQÁRZHULQJSODQWV1HZ3K\WRO 174: 483-498 BOR J (1979) Pollen morphology and the bi-reticulate exine of the Phyllanthus species (Euphorbiaceae) from Mauritius and Réunion. Rev Palaeobot Palynol 27: 149-172 BUCHNER R, WEBER M (2000 onwards) PalDat - a palynological database: 'HVFULSWLRQVLOOXVWUDWLRQVLGHQWLÀFDWLRQ and information retrieval. http://www. paldat.org/ DICKINSON HG, ELLEMAN CJ, DOUGHTY J (2000) Pollen coatings - chimaeric genetics and new functions. Sex Pl Reprod 12: 302-309 DOYLE J (2005) Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44: 227-251 DUCKER S, KNOX B (1985) Pollen and pollination: a historical review. Taxon 34: 401-419 EHRENBERG CG (1838) Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Abh Kgl Akademie Wiss Berlin: 59-147 ERDTMAN G (1943) An introduction to pollen analysis. Chronica Botanica, Waltham, Massachusetts ERDTMAN G (1945) Pollen morphology and plant taxonomy. Vol. 3 Morina L. Svensk Bot Tidskr 39: 187-191 ERDTMAN G (1947) Suggestions for the FODVVLÀFDWLRQRIIRVVLODQGUHFHQWSROOHQ grains and spores. Svensk Bot Tidskr 41: 104-114 ERDTMAN G (1952) Pollen Morphology and Plant Taxonomy. Angiosperms. Almqvist & Wiksell, Stockholm
ANNEXɕ243
ERDTMAN
22.
23. 24.
25.
26.
27.
28.
29. 30.
31.
32.
33.
34.
35.
ERDTMAN G (1957) Pollen and Spore Morphology. Plant Taxonomy. Gymnospermae, Pteridophyta, Bryophyta. Almqvist & Wiksell, Stockholm ERDTMAN G (1960) The acetolysis method. Svensk Bot Tidskr 54: 561-564 ERDTMAN G (1969) Handbook of Palynology - An Introduction to the Study of Polllen Grains and Spores. Munksgaard, Copenhagen ERDTMAN G, BERGLUND B, PRAGLOWSKI L, NILSSON S (1961) An Introduction to D6FDQGLQDYLDQSROOHQÁRUD$OPTYLVW Wiksell, Stockholm ERDTMAN G, DUNBAR A (1966) Notes on electron micrographs illustrating the pollen morphology in Armeria maritima and Armeria sibirica. Grana Palynol 6: 338-354 ERDTMAN G, STRAKA H (1961) CormoSK\WH VSRUH FODVVLÀFDWLRQ *HRO )|UHQ Förenhandl 83: 65-78 ERDTMAN G, VISHNU-MITTRE (1956) On terminology in pollen and spore morphology. The Palaeobotanist 5: 109-111 (reprinted in Grana Palynologica 1: 6-9, 1958) FÆGRI K (1956) Recent trends in palynology. Bot Rev 22: 639-664 FÆGRI K, IVERSEN J (1950) Textbook of modern pollen analysis. Munksgaard, Copenhagen FÆGRI K, IVERSEN J (1989) Textbook of Pollen analysis. 4th ed. John Wiley & Sons, Chichester FERGUSON DF, ZETTER R, PAUDAYAL KN (2007) The need for the SEM in paleopalynology. C R Palevol 6: 423-430 FEUER SM, KUIJT J (1985) Fine strucWXUH RI PLVWOHWRH SROOHQ 9, 6PDOO ÁRZered neotropical Loranthaceae. Ann Missouri Bot Gard 72: 187-212 FISCHER H (1890) Beiträge zur vergleichenden Morphologie der Pollenkörner. Thesis, Berlin FLYNN JJ, ROWLEY JR (1967) Methods for direct observation and single-stage surface replication of pollen exines. Rev Palaeobot Palynol 3: 227-236
ɕ$11(;
HALBRITTER
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
FRITZSCHE J (1837) Über den Pollen. Mém Sav Étrang Acad Sci Pétersbourg 3: 649-672 FUJIKI T, ZHOU Z, YASUDA Y (2005) Asian enviromental history 1. The Pollen Flora of Yunnan, China. Vol. I. Lustre Press/ Roli Books FURNESS CA (2007) Why does some pollen lack apertures? A review of inaperturate pollen in eudicots. Bot J Linn Soc 155: 29-48 FURNESS CA, RUDALL PJ (1999) Microsporogenesis in Monocotyledons. Ann Bot 84: 475-499 FURNESS CA, RUDALL PJ (2003) AperWXUHV ZLWK OLGV GLVWULEXWLRQ DQG VLJQLÀcance of operculate pollen in Monocotyledons. Int J Plant Sci 164: 835-854 FURNESS CA, RUDALL PJ, SAMPSON FB (2002) Evolution of microsporogenesis in angiosperms. Int J Plant Sci 163: 235-260 GARSIDE S (1946) The developmental morphology of the pollen of Proteaceae. J S African Botany 11: 27-34 GERLACH D (1969) Botanische Mikrotechnik. Georg Thieme Verlag, Stuttgart GÖPPERT HR 'HÁRULEXVLQVWDWX fossili, commentatio botanica. Grass, Bart & Co, Vratislaviae (Thesis of University) GRAYUM MH (1992) Comparative external pollen ultrastructure of the Araceae and putatively related taxa. Monogr Syst Bot Missouri Bot Gard 43 GUPTA A, UDAR R (1986) Palyno-Taxonomy of Selected Indian Liverworts. J. Cramer, Berlin-Stuttgart HALBRITTER H (1998) Preparing living pollen material for scanning electron microscopy using 2,2-dimethoxypropane (DMP) and critical-point drying. Biotech Histochem 73: 137-143 HALBRITTER H, HESSE M (1995) The convergent evolution of exine shields in Angiosperm pollen. Grana 34: 108-119 HALBRITTER H, HESSE M (2004) Principal modes of infoldings in tricolp(or)ate Angiosperm pollen. Grana 43: 1-14
HALBRITTER
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
HALBRITTER H, HESSE M 6SHFLÀF ornamentation of orbicular walls DQG SROOHQ JUDLQV DV H[HPSOLÀHG E\ Acanthaceae. Grana 44: 308-313 HALBRITTER H, WEBER M, ZETTER R, FROSCH-RADIVO A, BUCHNER R, HESSE M (2008) PalDat - Illustrated Handbook on Pollen Terminology. http://www. paldat.org/, Wien HARLEY MM (1999) Tetrad variation: LWVLQÁXHQFHRQSROOHQIRUPDQGV\VWHmatics in the Palmae. In: Kurmann MH, Hemsley AR (eds) The Evolution of Plant Architecture. Royal Botanic Gardens, Kew, pp 289-304 HARLEY MM (2004) Triaperturate pollen LQ WKH PRQRFRW\OHGRQV FRQÀJXUDtion and conjecture. Pl Syst Evol 247: 75-122 HARLEY MM, FERGUSON IK (1990) The role of the SEM in pollen morphology and plant systematics. In: Claugher D (ed) Scanning Electron Microscopy in Taxonomy and Functional Morphology. Syst Ass Special Volume 41: 45-68. Clarendon Press, Oxford HARRIS WF (1955) A manual of the spores of New Zealand Pteridophyta. A discussion of spore morphology and GLVSHUVDOZLWKUHIHUHQFHWRWKHLGHQWLÀcation of the spores in surface samples and as microfossils. New Zealand Dept Sci Industr Res Bull 116: 1-186. R.E. Owen, Government Printer, Wellington. HAY WW, SANDBERG PA (1967) The Scanning Electron Microscope, a major break-through for micropaleontology. Micropaleontology 13: 407-418 HESLOP-HARRISON J, HESLOPHARRISON Y (1980) Cytochemistry and function of the Zwischenkörper in grass pollens. Pollen Spores 22: 5-10 HESSE M, HALBRITTER H, WEBER M, BUCHNER R, FROSCH-RADIVO A, ULRICH S (1999) Frustrate. In: Buchner R, Weber M (2000 onwards) PalDat - a palynological database: Descriptions, illustUDWLRQV LGHQWLÀFDWLRQ DQG LQIRUPDWLRQ retrieval. http://www.paldat.org/ HESSE M, ZETTER R (2005) Ultrastructure and diversity of recent and fossil-zona-
KRESS
60.
61. 62.
63. 64.
65.
66.
67.
68.
69.
70.
71.
72.
aperturate pollen grains. Pl Syst Evol 255: 145-176 HUYSMANS S, EL-GHAZALY G, SMETS E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Bot Rev 64: 240-272 HYDE HA (1944) Pollen analysis and the museums. Mus J 44: 145-149 HYDE HA (1955) Oncus, a new term in pollen morphology. New Phytologist 54: 255 HYDE HA, WILLIAMS DW (1944) The right word. Pollen Analysis Circular 8: 6 IVERSEN J, TROELS-SMITH J (1950) 3ROOHQPRUSKRORJLVFKH 'HÀQLWLRQHQ und Typen. Danm Geol Unders, ser 4, 3: 1-54 JACKSON DD (1928) A glossary of botanic terms. 4th ed. Duckworth, London KESSELER R, HARLEY MM (2004) Pollen. 7KH KLGGHQ VH[XDOLW\ RI ÁRZHUV 3DSDdakis Publisher, London KLAUS W (1987) Einführung in die 3DOlRERWDQLN)RVVLOH3ÁDQ]HQZHOWXQG Rohstoffbildung, Band I. Grundlagen Kohlebildung - Arbeitsmethoden/Palynologie. Franz Deuticke, Wien KNOX RB (1984) The pollen grain. In: Johri BM (ed) Embryology of Angiosperms. Springer, Berlin, pp 197-271 KNOX RB, McCONCHIE CA (1986) Structure and function of compound pollen. In: Blackmore S, Ferguson IK (eds) Pollen and Spores, Form and Function. Linnean Society of London, London, pp 265-282 KOSANKE RM (1950) Pennsylvanian spores of Illinois and their use in correlation. Illinois State Geol Survey Bull 74: 1-128 KREMP GOW (1968) Morphologic Encyclopedia of Palynology. 2nd ed. Arizona Press, Tucson KRESS WJ, STONE DE (1982) Nature of the sporoderm in monocotyledons, with special reference to the pollen grains of Canna and Heliconia. Grana 21: 129-148
ANNEXɕ245
KUPRIYANOVA
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
KUPRIYANOVA LA (1956) K voprosu o stroenii obolochki pyl’tsevykh zeren [The structure of the membrane of the pollen grains]. Bot Zhurn 41: 1212-1216 LUGARDON B (1981) Les globules des Filicinées, homologues des corps d’Ubisch des Spermatophytes. Pollen Spores 23: 93-124 MOAR NT (1993) Pollen Grains of New Zealand Dicotyledonous Plants. Lincoln, Canterbury, New Zealand MOHL H (1834) Über den Bau und die Formen der Pollenkörner. Beiträge zur Anatomie und Physiologie der Gewächse. Erstes Heft. Chr. Fischer und Comp., Bern MOON H-K, VINCKIER S, SMETS E, HUYSMANS S (2008) Comparative pollen morphology and ultrastructure of Mentheae subtribe Nepetinae (Lamiaceae). Rev Palaeobot Palynol: 149: 174-186 MOORE PD, WEBB JA, COLLINSON ME (1991) Pollen analysis. 2nd ed. Blackwell, Oxford NADOT S, FORCHIONI A, PENET L, SANNIER J, RESSAYRE A (2006) Links between early pollen development and aperture pattern in monocots. Protoplasma 228: 55-64 NOREM WL (1958) Keys for the classiÀFDWLRQ RI VSRUHV DQG SROOHQ - 3DOHontol 32: 666-676 PACINI E (1997) Tapetum character states: analytical keys for tapetum types and activities. Can J Bot 75: 14481459 PACINI E, HESSE M (2005) Pollenkitt - its composition, forms and functions. Flora 200: 399-415 POTONIÉ R (1934) I. Zur Morphologie der fossilen Pollen und Sporen. Arb Inst Paläobotanik Petrographie Brennsteine 4: 5-24 POTONIÉ R, KREMP GOW (1954) Die Gattungen der paläozoischen Sporae dispersae und ihre Stratigraphie. Geol Jahrb 69: 111-194 POTONIÉ R, KREMP GOW (1955) Die Sporae dispersae des Ruhrkarbons,
ɕ$11(;
REITSMA
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
ihre Morphographie und Stratigraphie mit Ausblicken auf Arten anderer Gebiete und Zeitabschnitte. Palaeontographica Abt B 98: 1-136 POZHIDAEV AE (2000a) Pollen variety and aperture patterning. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and Spores: Morphology and Biology. Royal Botanic Gardens, Kew, pp 205-225 POZHIDAEV AE (2000b) Hypothetical way of pollen aperture patterning. 2: Formation of polycolpate patterns and pseudoaperture geometry. Rev Palaeobot Palynol 109: 235-254 PRAGLOWSKI J, PUNT W (1973) An elucidation of the micro-reticulate structure of the exine. Grana 13: 45-50 PUNT W, BLACKMORE S, NILSSON S, LE THOMAS A (1994) Glossary of Pollen and Spore Terminology. LPP Contributions Series 1, LPP Foundation, Laboratory of Palaeobotany and Palynology, University of Utrecht, Utrecht PUNT W, HOEN PP, BLACKMORE S, NILSSON S, Le THOMAS A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143: 1-81 PURKINJE J (1830) De cellulis antherDUXP ÀEURVLV QHF QRQ GH JUDQRUXP pollinarium formis commentatio phytotomica. Accedunt Tabulae Lithographicae XVIII. Vratislaviae REILLE M (1992) Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille REILLE M (1995) Pollen et Spores d’Europe et d’Afrique du Nord, Supplement 1. Laboratoire de Botanique Historique et Palynologie, Marseille REILLE M (1998) Pollen et Spores d’Europe et d’Afrique du Nord, Supplement 2. Laboratoire de Botanique Historique et Palynologie, Marseille REITSMA TJ 6L]H PRGLÀFDWLRQ RI recent pollen grains under different treatments. Rev Palaeobot Palynol 9: 175-202
REITSMA
96.
97.
98.
99.
100.
101. 102.
103.
104.
105.
106.
107.
REITSMA TJ (1970) Suggestions towards XQLÀFDWLRQ RI GHVFULSWLYH WHUPLQRORJ\ of Angiosperm pollen grains. Rev Palaeobot Palynol 10: 39-60 RESSAYRE A, DREYER L, TRIKI-TEURTROY S, FORCHIONI A, NADOT S (2005) Postmeiotic cytokinesis and pollen aperture pattern ontogeny: comparison of development in four species differing in aperture pattern. Am J Bot 92: 576-583 RODRÍGUEZ-GARCÍA MI, FERNÁNDEZ MC (1988) A review of the terminology applied to apertural thickenings of the pollen grain: Zwischenkörper or oncus? Rev Palaeobot Palynol 54: 159-163 ROWLEY JR, DAHL AO (1977) Pollen development in Artemisia vulgaris with special reference to Glycocalyx material. Pollen Spores 19: 169-284 ROWLEY JR, FLYNN JJ (1966) Singlestage carbon replicas of microspores. Stain Technol 41: 287-290 ROWLEY JR, SKVARLA JJ (2000) The elasticity of the exine. Grana 37: 1-7 ROWLEY JR, SKVARLA JJ (2006) Pollen development in Epilobium (Onagraceae): Late microspore stages (a review). Rev Palaeobot Palynol 140: 91-112 SAMPSON FB (2000) Pollen diversity in some modern Magnoliids. Int J Plant Sci, Suppl 6: S193-S210 SAMPSON FB (2007) Variation and similarities in pollen features in some basal angiosperms, with some taxonomic implications. Pl Syst Evol 263: 59-75 SCHOLS P, FURNESS CA, MERCKX V, WILKIN P, SMETS E (2005) Comparative pollen development in Dioscoreales. Int J Plant Sci 166: 909-924 SCHWENDEMANN AB, WANG G, MERTZ ML, MCWILLIAMS RT, THATCHER SL, OSBORN JM (2007) Aerodynamics of saccate pollen and its implications for wind pollination. Am J Bot 94: 13711381 SELLING O (1947) Studies in Hawaiian pollen statistics. Bernice P Bishop Mus, Spec Publ 38: 1-430
TRYON
108. SKVARLA JJ, DEVORE ML, CHISSOE WF (2004) Lophate sculpturing of Vernonieae (Compositae) pollen. Rev Palaeobot Palynol 133: 51-68 109. SKVARLA JJ, LARSON DA (1965) An electron microscopic study of pollen in the Compositae with special reference to the Ambrosieae. Grana Palynol 6: 210-269 110. SPURR AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31-43 111. TAKAHASHI M (1989) Pattern determination of the exine in Caesalpinia japonica (Leguminosae: Caesalpinioideae). Am J Bot 76: 1615-1626 112. THANIKAIMONI G (1980 «1978») Complexities of aperture, columella and tectum. Proc IVth Intern Palynol Conf I., Lucknow, p. 228-239 113. THANIKAIMONI G, CARATINI C, NILSSON S, GRAFSTRÖM E (1984) Omniaperturate Euphorbiaceae pollen with striate spines. Bull Jard Bot Belg 54: 105-125 114. THIÉRY J-P (1967) Mise en évidence GHV SRO\VDFFKDULGHV VXU FRXSHV ÀQHV en microscopie électronique. J Microscopie 6: 987-1018 115. THOMSON PW, PFLUG H (1953) Pollen und Sporen der mittel-europäischen Tertiärs. Palaeontographica, Abt B 94: 1-138 116. THORNHILL JW, MATTA RK, WOOD WH (1965) Examining three-dimensional microstructures with the scanning electron microscope. Grana Palynol 6: 3-6 117. TRAVERSE A (1955) Pollen analysis of the Brandon Lignite of Vermont. US Dept Interior Washington, Washington 118. TRAVERSE A (1988) Paleopalynology. Unwin Hyman, Boston 119. TRAVERSE A (2007) Paleopalynology. 2nd ed., Springer, Dordrecht 120. TRYON AF, LUGARDON B (1991) Spores of the Pteridophyta: Surface, wall structure and diversity based on electron microscopy studies. Springer, New York
ANNEXɕ247
Van CAMPO
121. Van CAMPO M (1958) Palynologie africaine. 2 Bull IFAN (A) 20: 753-759 122. Van CAMPO M (1971) Palynologie et evolution - Précisions nouvelles sur les structures comparées des pollen de Gymnospermes et d’Angiospermes. C Rend Acad Sci Paris, sér D 272: 20712074 123. Van CAMPO M, GUINET P (1961) Les pollens composés. L’exemple des Mimosacées. Pollen Spores 3: 201-218 124. Van CAMPO M, LUGARDON B (1973) Structure grenue infratectal de l’ectexine des pollens de quelques Gymnospermes et Angiospermes. Pollen Spores 15: 171-189 125. Van der HAM R, GROB G, HETTERSCHEID W, STAR W, Van HEUVEN BJ (2005) Notes on the genus Amorphophallus (Araceae) – 13. Evolution of pollen ornamentation and ultrastructure in Amorphophallus and Pseudodracontium. Grana 44: 252-265 126. VINCKIER S, SMETS E (2002) Morphological and ultrastructural diversity of orbicules in relation to evolutionary tendencies in Apocynaceae s. l. Ann Bot 90: 647-662 127. VINCKIER S, CADOT P, SMETS E (2005) The manifold characters of orbicules: structural diversity, systematic signiÀFDQFH DQG YHFWRUV IRU DOOHUJHQV Grana 44: 300-307 128. WALKER JW, DOYLE JA (1975) The bases of angiosperm phylogeny: palynology. Ann Missouri Bot Garden 62: 664-723
ɕ$11(;
ZETTER
129. WALKER JW, WALKER AG (1981) Comparative pollen morphology of the Madagascan genera of Myristicaceae (Maloutchia, Brochneura, Haematodendron). Grana 20: 1-17 130. WEBER M (1992) Nature and distribution of the exine-held material in mature pollen grains of $SLXP QRGLÁRUXP L. (Apiaceae). Grana 31:17-24 131. WEBER M, FROSCH A (1995) The development of the transmitting tract in the pistil of Hacquetia epipactis (Apiaceae). Int J Plant Sci 156: 615-621 132. WEBER M, HALBRITTER H, HESSE M (1999) The basic pollen wall types in Araceae. Int J Plant Sci 160: 415-423 133. WODEHOUSE RP (1928) The phylogenetic value of pollen grain characters. Ann Bot 42: 891-934 134. WODEHOUSE RP (1935) Pollen grains. 7KHLUVWUXFWXUHLGHQWLÀFDWLRQDQGVLJQLÀFDQFH LQ VFLHQFH DQG PHGLFLQH McGraw-Hill, New York 135. WORTLEY AH, FUNK VA, ROBINSON H, SKVARLA JJ, BLACKMORE S (2007) A search for pollen morphological synapomorphies to classify rogue genera in Compositae (Asteraceae). Rev Palaeobot Palynol 146: 169-181 136. ZETTER R (1989) Methodik und Bedeutung einer routinemäßig kombinierten lichtmikroskopischen und rasterelektronenmikroskopischen Untersuchung IRVVLOHU 0LNURÁRUHQ &RXU )RUVFK,QVW Senckenberg 109: 41-50
ABELIOPHYLLUM
ARGYRANTHEMUM
INDEX TO PLANT TAXA A Abeliophyllum distichum _______________ 162 Abies 39 Abies cephalonica ______________ 39, 71, 98 Abies nordmanniana ___________________ 98 Abies sp. ___________________________22, 200 Acacia binerva ____________________66, 221 Acacia myrtifolia ____________________66, 70 Acanthaceae_________ 30, 48, 71, 75, 76, 77, 84, 105, 108, 113, 115, 116, 117, 122, 129, 132, 155, 156, 160, 161, 162, 168, 179, 183, 195, 196, 197, 221, 222, 223 Acantholimon glumaceum ____________ 162 Acca sellowiana _______________________ 72 Acer negundo ________________________ 176 Acer pseudoplatanus_______________86, 169 Acer sp._______________________________ 119 Acinos alpinus ________________ 204, 213, 214 Aconitum lycoctonum _________________ 148 Adansonia gregorii _____________________ 75 Adenia fruticosa_______________________ 159 Adhatoda schimperiana_______________ 129 Aechmea allenii__________________ 121, 159 Aechmea azurea ________________ 125, 155 Aechmea caesia______________________ 145 Aechmea caudata ____________________ 79 Aechmea dealbata ____________________ 81 Aechmea drakeana___________________ 122 $HULGHVPXOWLÁRUD _______________________ 67 Aesculus carnea ______________________ 148 $HVFXOXVÁDYD__________________________ 94 Aesculus hippocastanum _________ 146, 170 Agapetes variegata ___________________ 127 Agavaceae______________________ 135, 145 $JODRGRUXPJULIÀWKLL ___________________ 103 Agrimonia eupatoria __________________ 203 Agrostemma githago__________________ 150 Ailanthus altissima ________________ 174, 205 Ajuga genevensis _____________________ 158 Ajuga reptans _________________________ 214 Alangium sp. __________________________ 210 Alchemilla _____________________________ 46 Alisma plantago-aquatica _____________ 101 Alismataceae _____________75, 101, 124, 126 Alkanna orientalis ______________________ 73 Alliaceae _____________ 18, 81, 135, 170, 179
Allium 32 $OOLXPÁDYXP__________________________ 170 Allium oleraceum_______________________ 81 Allium paradoxum ______________________ 18 Allium ursinum ____________________ 135, 179 Alnus glutinosa _____________________90, 100 Alnus incana __________________________ 100 Alnus sp. ______________________________ 100 Alnus viridis _______________________ 100, 123 Amaranthaceae ______________________ 184 Amaryllidaceae ___________92, 101, 135, 138 Amborella trichopoda _________________ 134 Amborellaceae _______________________ 134 Ambrosia artemisiifolia ________ 188, 199, 217 Amydrium medium ____________________ 202 Anaphyllopsis americana ______________ 137 $QFKXVDRIÀFLQDOLV______________________ 82 Anemone hortensis _____________________ 89 Annona muricata ______________________ 47 Annonaceae _______________________20, 47 Antennaria dioica ________________ 131, 189 Anteriorchis coriophora ______________66, 67 Anthericaceae___________________ 136, 163 Anthericum ramosum__________________ 163 Anthurium radicans_____________________ 88 Anthurium trisulcatum___________________ 80 Anthyllis vulneraria ________________ 104, 178 Apiaceae__ 31, 35, 68, 76, 84, 85, 87, 90, 102, 131, 175, 176, 209, 212, 215, 216, 218 $SLXPQRGLÁRUXP ____________ 102, 209, 218 Apocynaceae ________________ 70, 178, 204 Aponogeton masoalaensis_____________ 166 Aponogetonaceae ___________________ 166 Aquifoliaceae_________________________ 193 Aquifoliaceae, fossil ___________________ 193 Araceae ___________________________ 32, 36, 47, 64, 69, 74, 80, 88, 93, 103, 134, 137, 141, 168, 177, 180, 182, 186, 187, 197, 200, 202, 206, 211, 213, 215, 216, 223 Araliaceae_______________130, 142, 163, 196 Aratitiyopea lopezii ____________________ 193 Arbutus unedo ______________________62, 83 Arecaceae ___________________________ 136 Arenaria ciliata________________________ 125 Arenaria pungens _____________________ 121 Arenaria serpyllifolia ___________________ 146 Argyranthemum sp. ___________________ 203
ANNEXɕ249
ARISTOLOCHIA
CARDAMINE
Aristolochia arborea ____________________ 27 Aristolochia manshuriensis______________ 183 Aristolochia salvadorensis ______________ 191 Aristolochia tricaudata ________________ 191 Aristolochia ____________________________ 27 Aristolochiaceae __________27, 183, 191, 196 Aroideae ______________________________ 32 Arophyton buchetii ____________________ 206 Artemisia pontica ___________________86, 89 Asarum europaeum ___________________ 196 Asclepiadaceae _______________________ 67 Asperugo procumbens ________________ 117 Asperula tinctoria___________________94, 107 Asphodelaceae________________________ 92 Asphodeline lutea __________________92, 135 Aster amellus __________________________ 188 Asteraceae _ 17, 55, 59, 69, 74, 76, 84, 86, 87, 89, 101, 105, 128, 129, 131, 145, 184, 185, 186, 188, 189, 199, 201, 203, 217 Asteraceae, fossil______________________ 185 Astragalus onobrychis __________________ 76 Atriplex sagittata ______________________ 221 Austrobuxus nitidus _____________________ 21
Boraginaceae____________ 45, 48, 73, 76, 77, 82, 94, 95, 106, 108, 113, 114, 116, 128, 129, 130, 132, 146, 178, 180, 181, 205 %RUDJRRIÀFLQDOLV ______________________ 106 Bougainvillea sp. ___________________91, 195 Brassica napus ________________________ 208 Brassica nigra _________________________ 218 Brassicaceae______________ 36, 68, 119, 155, 162, 195, 208, 218 Bromeliaceae _________________________ 24, 79, 81, 92, 95, 96, 121, 122, 125, 136, 145, 146, 155, 159, 160, 163, 182, 210 Bromus erectus ________________________ 134 Broussonetia papyrifera ________________ 122 Buglossoides arvensis __________________ 132 Buglossoides purpurocaerulea __________ 77 Bunias orientalis ________________________ 68 Bupleurum rotundifolium _____________84, 90 Buxaceae________________125, 156, 166, 210 Buxaceae, fossil _______________________ 166 Buxus sempervirens _______________ 125, 156
B
Cabomba palaeformis ___________ 135, 171 Cabombaceae __________________ 135, 171 Cactaceae ___________ 59, 83, 110, 111, 157, 184, 185, 208 Caesalpiniaceae______________________ 114 Caldesia parnassifolia _________________ 126 Calliandra emarginata _________ 42, 66, 191 Callistemon coccineus______________84, 114 Callitriche polymorpha _________________ 48 Callitriche sp.___________________________ 48 Callitriche ______________________________ 48 Calycanthaceae______________________ 118 Calystegia sepium_____________________ 124 Camellia japonica_____________________ 150 Campanula alpina _______________ 109, 187 Campanula persicifolia ________________ 174 Campanula saxatilis ___________________ 123 Campanula sp. _______________________ 121 Campanulaceae ________ 77, 106, 109, 123, 174, 187, 190 Canistrum camacaense _______________ 182 Cannabaceae ___________________ 123, 177 Cannabis sativa _______________________ 123 Caprifoliaceae _______________ 119, 189, 195 Cardamine pratensis __________________ 155
Babiana velutina _________________ 149, 190 Balsaminaceae ____________ 79, 81, 82, 107, 113, 156, 195 Banisteria argentea_______________ 110, 198 Bassia scoparia___________________ 124, 201 Begonia heracleifolia _____________ 142, 171 Begoniaceae ____________________ 142, 171 Bellis perennis _______________________17, 87 Beloperone guttata ______105, 156, 197, 221 Berberidaceae ____________71, 115, 120, 202 Berberis thunbergii ______________________ 71 Berberis vulgaris _______________________ 115 %HWRQLFDRIÀFLQDOLV _______________ 214, 217 Betula humilis__________________________ 143 Betula pendula________________________ 123 Betulaceae ___________ 78, 90, 100, 123, 143, 176, 202, 208, 221 Betulaceae, fossil _____________ 100, 109, 234 Bignoniaceae ______________________64, 198 Billbergia macrocalyx__________________ 146 Billbergia seidelii ________________ 92, 95, 163 Bombacaceae_____________ 42, 75, 105, 165
ɕ$11(;
C
CARDIOSPERMUM
Cardiospermum ________________________ 39 Cardiospermum corindum ______________ 39 Carduus acanthoides _________________ 186 Carex alba_________________________89, 101 Carex atrata ___________________________ 61 Carex distans___________________________ 61 Carex remota _________________________ 126 Carex sp. ______________________________ 61 Carpinus betulus ______________________ 176 Carpinus sp.___________________________ 109 Carya sp. __________________________78, 123 Caryophyllaceae ___________ 28, 70, 74, 75, 82, 83, 89, 112, 121, 123, 125, 146, 149, 150, 190, 221 Caryophyllaceae, fossil ________________ 121 Cassia pulcherrima ____________________ 114 Catalpa bignonioides _________________ 198 Catalpa bungei ________________________ 64 &DWRSVLVÁRULEXQGD ____________________ 136 Centaurea cyanus _______________ 105, 203 Centaurea scabiosa___________________ 129 Cephalanthera longifolia _________ 133, 156 Cephalopentandra ecirrhosa __________ 196 Cephalostemon riedelianus ____________ 140 Cephalotaxaceae _____________________ 20 Cephalotaxus sp._______________________ 20 Cercidiphyllaceae ____________________ 126 Cercidiphyllum japonicum _____________ 126 Cereus sp. ____________________________ 208 Cerinthe minor _____________________94, 128 Chamaecyparis lawsoniana ___________ 222 Chamaecyparis ________________________ 33 Chamaedorea microspadix____________ 136 Chenopodiaceae _______ 112, 121, 124, 148, 201, 208, 221 Chenopodium album__________________ 208 Chenopodium glaucum _______________ 121 Chenopodium hybridum__________ 112, 148 Chimonanthus praecox________________ 118 Chloranthaceae ______________________ 139 Chlorospatha ceronii ___________________ 64 Chlorospatha dodsonii______________64, 103 Chlorospatha kolbii __________________47, 64 Cichorium intybus _____________________ 184 Circaea lutetiana _________85, 143, 175, 220 Cirsium oleraceum _________________74, 131 Cistaceae _________________ 24, 75, 165, 172 Cistus creticus _______________________24, 75 Clarkia pulchella _____________ 147, 177, 220 Claytonia perfoliata ______________ 115, 190
CYCLANTHERA
Clematis heracleifolia___________________ 87 Clinopodium vulgare _________ 101, 118, 204 Cobaea scandens ____________________ 124 Colchicaceae _____________________71, 122 Colchicum autumnale_________________ 122 Colutea arborescens __________________ 180 Combretaceae _______________________ 117 Commelinaceae _______________________ 41 Commelinantia ________________________ 41 Consolida regalis ______________________ 213 Convallariaceae _________________ 138, 182 Convolvulaceae ____________ 124, 146, 185, 187, 189, 218 Convolvulus tricolor_______________ 146, 218 Coriaria sinica __________________________ 88 Coriariaceae___________________________ 88 Cornaceae, fossil ______________________ 210 Corydalis cava ___________________ 111, 191 Corydalis lutea ________________________ 198 Corylopsis glabrescens__________________ 68 Corylopsis platypetala _________________ 120 Corylus avellana ______________ 78, 208, 221 Corylus colurna________________________ 202 Corylus sp. ____________________________ 234 Costus barbatus _______________________ 111 Costus speciosus ______________________ 179 Crassulaceae ______________ 85, 87, 175, 178 Crataegus laevigata __________________ 171 Crepis biennis _________________________ 185 Crinum augustum _____________________ 138 Crocus speciosus ______________________ 115 &URVVDQGUDÁDYD _______________________ 76 Croton triqueter _______________________ 167 Cruciata laevipes _____________________ 118 Cryptogramma crispa __________________ 19 Cryptomeria japonica _________________ 154 Cryptomeria sp. _______________________ 154 Cucumis sativa ________________________ 180 Cucurbita pepo _______________ 73, 112, 150 Cucurbitaceae____ 32, 73, 74, 106, 112, 132, 143, 150, 155, 158, 160, 172, 180, 195, 196 Cunninghamia lanceolata _____________ 154 Cunonia capensis __________________85, 153 Cunoniaceae ______________________85, 153 Cuphea purpurea __________________78, 114 Cupressaceae ____________33, 133, 154, 222 Cupressaceae, fossil ___________________ 154 Cuscuta lupuliformis ____________________ 48 Cuscutaceae __________________________ 48 Cyclanthera pedata __________________ 106
ANNEXɕ251
CYDONIA
Cydonia sinensis _______________________ 170 Cynodon dactylon ____________________ 197 &\QRJORVVXPRIÀFLQDOH ___________ 116, 117 Cyperaceae __________ 61, 89, 101, 126, 222 Cyperus longus _____________________61, 222 Cyrtosperma beccarianum _______ 134, 182 Cytisus nigricans _______________________ 164
D Dacrycarpos dacrydioides ______________ 99 Dactylis glomerata _____________________ 59 Dalechampia roezliana________________ 113 Daphne cneorum _____________________ 167 Daphne laureola ______________________ 167 Datura suaveolens ____________________ 169 Delphinium elatum ____________________ 207 Dianella intermedia____________________ 139 Dianella tasmanica____________ 40, 139, 164 Dianella________________________________ 40 Dianthus carthusianorum ______________ 149 Dieffenbachia humilis__________________ 202 Dionaea muscipula____________ 63, 149, 196 Dioon edule____________________________ 93 Dipsacaceae _________ 78, 85, 113, 150, 187 Dipsacus fullonum ______________________ 85 Dipteracanthus devosianus ____________ 195 Discocleidion rufescens ________________ 142 Doryanthes palmeri_______________ 135, 145 Dorycnium germanicum _______________ 178 Dracaenaceae ____________________96, 133 Dracocephalum austriacum ___________ 106 Dracunculus vulgaris___________________ 197 Drimys granatensis__________________62, 134 Drosera sp. _____________________________ 47 Droseraceae _______________ 47, 63, 149, 196
E Ecballium elaterium ___________________ 158 Echinodorus quadricostatus ____________ 124 Echinopepon wrightii __________________ 132 Echinops ritro___________________________ 84 Echium vulgare________________________ 130 Eichhornia crassipes ___________________ 138 Elaeagnaceae _________________ 91, 95, 153 Elaeagnus angustifolia __________ 91, 95, 153 Ephedra distachya _________________70, 168 Ephedra sp. ___________________________ 168
ɕ$11(;
FUMARIACEAE
Ephedraceae ______________________70, 168 Ephedraceae, fossil____________________ 168 Epilobium angustifolium ___________ 144, 219 Epilobium dodonaei ___________________ 220 (SLORELXPÁHLVFKHUL ____________________ 219 Epilobium hirsutum_____________________ 153 Epilobium montanum ___________________ 63 (SLORELXPSDUYLÁRUXP _______________62, 220 Epipactis helleborine _______________64, 159 Eranthemum wattii ____________________ 162 Erdtmanipollis sp. ______________________ 166 Erica arborea __________________ 90, 96, 131 Erica herbacea _______________ 62, 128, 183 Ericaceae______ 16, 62, 63, 72, 83, 86, 90, 94, 96, 127, 128, 129, 131, 183, 219, 220 Erodium cicutarium ____________________ 173 Erophila verna_________________________ 195 Erysimum odoratum ___________________ 119 Erythrochiton brasiliensis________________ 192 (XFKDULVJUDQGLÁRUD ___________________ 101 Eucommia sp. _________________________ 228 Eucommiaceae, fossil _________________ 228 Eucommiidites__________________________ 40 Eupatorium cannabinum ______________ 101 Euphorbia helioscopia _________________ 181 Euphorbia palustris ____________________ 180 Euphorbiaceae ___________ 42, 43, 105, 113, 142, 148, 165, 166, 167, 180, 181, 198 ([DFXPDIÀQH__________________________ 59
F Fabaceae ________________ 76, 77, 104, 128, 142, 157, 158, 159, 160, 164, 175, 178 Fabaceae, fossil _______________________ 129 Fagaceae ___________________ 177, 209, 222 Fagaceae, fossil ______ 16, 130, 175, 230, 235 Fagus sp.__________________16, 130, 175, 235 Fallopia convolvulus ____________________ 29 Fatsia japonica_______________ 130, 142, 196 Fraxinus excelsior _________________ 120, 204 Fraxinus ornus __________________________ 80 Fritillaria meleagris _____________________ 163 Fumana procumbens__________________ 165 )XPDULDRIÀFLQDOLV ________________ 112, 143 Fumaria vaillantii ______________________ 111 Fumariaceae _______ 111, 112, 143, 191, 198
GAGEA
G Gagea lutea ___________________________ 93 Gagea villosa ______________________71, 147 Galanthus nivalis ___________________92, 135 Galeopsis tetrahit___________________81, 147 Galinsoga ciliata ______________________ 186 Galium glaucum ______________________ 107 Galium lucidum _______________ 80, 107, 190 Galium mollugo __________________ 106, 215 Galium rotundifolium ___________________ 24 Garcia nutans_________________________ 166 Gazania sp. ________________________69, 184 Gentiana acaulis ______________________ 174 Gentiana lutea________________________ 169 Gentianaceae _______ 59, 169, 173, 174, 210 Gentianella austriaca__________________ 173 Geraniaceae _______ 102, 166, 173, 174, 194 Geranium canariense _________________ 166 Geranium pratense____________________ 194 Geranium robertianum ___________ 102, 194 Geranium sibiricum ____________________ 194 Geum reptans_________________________ 172 Ginkgo biloba _______________________80, 92 Ginkgo_________________________________ 23 Ginkgoaceae _______________________80, 92 Gladiolus illyricus _________________ 201, 222 *ODXFLXPÁDYXP ______________________ 207 Globba schomburgkii__________________ 211 Godetia purpurea __________________79, 219 Gonatopus angustus _________ 141, 180, 200 Grossulariaceae_______________________ 112 Gunnera chilensis_______________________ 86 Gunneraceae__________________________ 86
H Hacquetia epipactis___________________ 216 Hakea kippistiana __________________78, 196 Haloragaceae ___________________ 109, 144 Hamamelidaceae_____________ 68, 120, 162 Hamamelidaceae, fossil _______________ 125 Harpochilus neesianus _________________ 160 Hedera helix __________________________ 163 Hedychium gardnerianum __________69, 178 Hedyosmum goudotianum_____________ 139 Helianthemum nummularium __________ 172 Heliconia sp. ________________ 79, 91, 96, 134
JUNCUS
Heliconiaceae ______________ 79, 91, 96, 134 Hemigraphis primulaefolia _____________ 168 Hemigraphis_____________________________ 9 Hepatica transsylvanica _______________ 111 Herniaria glabra ________________________ 82 Hibiscus trionum _______________________ 186 Hieracium hoppeanum _______ 128, 184, 188 Himantoglossum adriaticum ____________ 70 Hippocastanaceae _______94, 146, 148, 170 Hippocrepis emerus ___________________ 181 Hohenbergia stellata __________________ 182 Humulus lupulus _______________________ 177 Hyacinthaceae __________________ 136, 163 Hydrocharitaceae_____________________ 187 Hydrophyllaceae______________________ 116 Hypoestes phyllostachya _______________ 84
I Ibicella lutea __________________ 68, 157, 198 Ilex aquifolium_________________________ 193 Ilex sp. ________________________________ 193 Impatiens columbaria _________________ 113 Impatiens glandulifera __________ 79, 82, 156 ,PSDWLHQVSDUYLÁRUD ___________ 81, 107, 195 Ipomoea batatas ________________ 124, 187 Ipomoea caerulea ____________________ 185 Iridaceae ________ 59, 68, 115, 136, 140, 149, 190, 193, 198, 201, 213, 222, 228 Iris alata__________________________ 193, 228 Iris bucharica_______________________68, 198 Iris histrioides___________________________ 140 Iris pumila __________________________59, 213 Iris reichenbachii ______________________ 136 Isopogon dawsonii ____________________ 104
J -DVPLQXPQXGLÁRUXP _____________ 215, 217 Jatropha podagrica___________________ 167 Jovibarba hirta _____________________85, 178 Juglandaceae ________________ 32, 121, 202 Juglandaceae, fossil___________ 78, 109, 123 Juglans regia_____________________ 121, 202 Juglans sp. _____________________________ 32 Juglans ________________________________ 32 Juncaceae ____________ 63, 89, 91, 133, 177 Juncus effusus __________________________ 63
ANNEXɕ253
JUNIPERUS
Juniperus communis ___________________ 133 Juniperus ______________________________ 33 Jurinea mollis ___________________________ 76 Justicia furcata________________________ 117 Justicia menesii___________________ 108, 132 Justicia xylosteoides ___________________ 129
K Kalmia latifolia ________________________ 219 Kickxia spuria_____________________ 145, 164 Knautia drymeia_______________ 78, 150, 187 .UDXVVLDÁRULEXQGD ____________________ 128
L Lachenalia aloides ____________ 89, 136, 163 Lamiaceae _________________ 24, 29, 77, 78, 81, 101, 102, 106, 107, 110, 118, 119, 147, 148, 149, 158, 159, 160, 161, 164, 182, 191, 201, 204, 206, 213, 214, 217 Lamiastrum montanum _____________24, 148 Lamium maculatum ___________________ 119 Lamium purpureum____________________ 164 Larix decidua _________________________ 177 Larix sp. ________________________________ 39 Larix _________________________________ 39 Lathyrus niger _________________________ 179 Lathyrus tuberosus ______________________ 77 Lathyrus vernus ___________________ 128, 157 Lauraceae ____________________________ 103 Lavandula angustifolia_________________ 182 Lavatera thuringiaca _______________74, 186 Ledum palustre___________________ 183, 220 Legousia speculum-veneris________ 109, 123 Lentibulariaceae ______________ 87, 106, 160 Leontodon saxatilis ____________________ 184 Leucadendron brunoides ______________ 104 Leucadendron discolor _____________90, 176 Leuchtenbergia principis________________ 59 Ligustrum sp. ___________________________ 80 Liliaceae ___________________________ 41, 71, 89, 92, 93, 135, 147,150, 158, 163, 165 Liliacidites ______________________________ 33 Lilium candidum____________________92, 165 Lilium martagon __________________ 135, 165 Limnanthaceae _______________ 95, 140, 142 Limnanthes douglasii __________ 95, 140, 142 Limodorum abortivum _________________ 163 Linaceae __________________________30, 193
ɕ$11(;
MERCURIALIS
/LQXPÁDYXP _______________________30, 193 Linum _________________________________ 30 Liquidambar sp. _______________________ 125 Liriodendron tulipifera__________________ 137 Listera ovata ___________________________ 72 /LWKRVSHUPXPRIÀFLQDOH_____________82, 178 Lomatogonium carinthiacum __________ 210 Lonicera fragrantissima ___________ 119, 189 Loranthaceae___________________ 40, 42, 43 Luffa cylindrica _____________________74, 155 Lumnitzera racemosa__________________ 117 Lupinus polyphyllus ____________________ 157 Luzula campestris_______________ 63, 91, 177 Luzula luzuloides _______________________ 133 Luzula sylvestris _________________________ 89 /\FKQLVÁRVFXFXOL_______________________ 70 Lycium barbarum ________________ 131, 170 Lycopus europaeus____________________ 107 Lysichiton americanus __________________ 93 Lysimachia nemorum __________________ 180 Lysimachia vulgaris ____________________ 142 Lythraceae ___________ 48, 78, 114, 116, 117 Lythrum hyssopifolia ___________________ 116 Lythrum salicaria ______________________ 117
M Magnoliaceae ________________________ 137 Mahonia aquifolium ___________________ 202 Malpighiaceae___________________ 110, 198 Malus sylvestris ________________________ 172 Malva moschata ______________________ 125 Malva neglecta _______________________ 189 Malvaceae _______________74, 125, 186, 189 Martyniaceae_________________ 68, 157, 198 Maxillaria densa _______________________ 179 Medicago minima_____________________ 142 Melaleuca armillaris ____________________ 40 Melampyrum arvense ______________90, 118 Melampyrum nemorosum_________ 214, 217 Melampyrum pratense ________________ 201 Melampyrum subalpinum ______________ 145 Melanthiaceae _______________ 79, 152, 155 0HOLORWXVRIÀFLQDOLV _____________________ 159 Melittis melissophyllum _________________ 161 Mendoncia albida _______________ 113, 183 Mentha aquatica ____________ 102, 201, 206 Menyanthaceae _____________ 114, 171, 176 Menyanthes trifoliata __________________ 171 Mercurialis perennis_______________ 148, 165
METASEQUOIA
Metasequoia glyptostroboides _________ 154 Microrrhinum minus ________95, 201, 204, 205 Microstrobus niphophilus ________________ 99 Mimosa pudica ____________________62, 197 Mimosaceae____42, 62, 66, 70, 191, 197, 221 Mimulus guttatus ______________________ 115 Moehringia muscosa ___________________ 89 Moltkia petraea __________________ 132, 146 0RQHVHVXQLÁRUD _______________ 62, 72, 183 Monotropa hypopitys___________________ 94 Monstera deliciosa ____________________ 141 Moraceae ____________________________ 122 Morina longifolia ___________________20, 143 Morinaceae________________________20, 143 Myosotis arvensis ______________________ 180 Myosotis palustris ________________ 45, 73, 94 Myosotis ramosissima __________________ 116 Myosotis _______________________________ 44 Myriophyllum spicatum ___________ 109, 144 Myrrhis odorata __________________ 131, 176 Myrtaceae__________________ 40, 72, 84, 114
N Nandina domestica ___________________ 120 Napoleonaea imperialis _______________ 181 Napoleonaeaceae ___________________ 181 Nelumbo nucifera _____________________ 119 Nelumbonaceae ______________________ 119 Neoalsomitra sarcophylla ______________ 172 Neottia nidus-avis _____________________ 134 Nicotiana tabacum ______________ 108, 176 Nigella arvensis ___________________ 217, 223 Nigritella rhellicani ______________________ 66 Nonea pulla____________________________ 82 Nuphar luteum ________ 92, 96, 137, 147, 188 Nyctaginaceae ____________________91, 195 Nymphaea alba ___________________44, 192 Nymphaea sp. _________________________ 45 Nymphaeaceae ___________________ 44, 45, 92, 96, 137, 147, 188, 192 Nymphoides peltata______________ 114, 176 Nyssa sp. _______________________________ 21 Nyssaceae, fossil _______________________ 21
O Oculopollis _____________________________ 33 Odontites luteus ______________ 120, 205, 223 Odontites vulgaris ________________ 127, 207
PELARGONIUM
Oenothera biennis________________ 104, 219 Oleaceae ________ 73, 80, 120, 204, 215, 217 Oleaceae, fossil ________________________ 80 Onagraceae____________ 62, 63, 79, 85, 104, 143, 144, 147, 153, 175, 177, 219, 220 Onosma visianii_____________________95, 114 Ophiorrhiza sp. ________________________ 102 Ophrys sphegodes _____________________ 67 Opuntia basilaris_______________ 83, 110, 184 Opuntia paraguayensis ________________ 157 Opuntia polyacantha _________________ 185 Opuntia sp. ___________________________ 111 Orchidaceae ___________________ 36, 64, 66, 67, 70, 72, 133, 134, 156, 159, 163, 179 2UOD\DJUDQGLÁRUD ___________________68, 85 Orobanchaceae ___________ 35, 88, 206, 211 Orobanche hederae _______ 35, 88, 206, 211 Orthilia secunda________________________ 86 Oryctanthus alveolatus _________________ 43 Oryctanthus sp. ________________________ 42 Oxalidaceae___________________________ 75 Oxalis acetosella _______________________ 75 Oxyanthus subpunctatus________________ 63
P Pachira aquatica _____________ 42, 105, 165 Pachypodium saundersii ________________ 70 Pachypodium succulentum ____________ 204 Pachysandra terminalis ___________ 166, 210 Pachystachys lutea_______________ 117, 161 Papaveraceae________________________ 207 Paradisea liliastrum _______________ 136, 158 Pardoglossum sp. ______________________ 116 Parnassia palustris _____________________ 130 Parnassiaceae ________________________ 130 3DVVLÁRUDcf. incarnata__________________ 44 3DVVLÁRUDFLWULQD ____________________44, 150 3DVVLÁRUDVXEHURVD__________________44, 151 3DVVLÁRUD _______________________________ 44 3DVVLÁRUDFHDH_____________44, 150, 151, 159 Patrinia gibbosa _______________________ 188 Paullinia tomentosa_____________________ 84 Pedicularis palustris ____________________ 140 Pedicularis rostrato–capitata ___________ 140 Pedicularis verticillata__________________ 114 Pedilanthus smallii _____________________ 105 Pelargonium carnosum ________________ 174 Pelargonium ferulaceum_______________ 173 Pelargonium tetragonum ______________ 173
ANNEXɕ255
PEPEROMIA
Peperomia rubella_____________________ 197 Persicaria bistorta______________________ 105 Persicaria mitis_________________________ 158 Persicaria sp. __________________________ 156 Petasites albus ________________________ 189 Petrorhagia prolifera___________________ 190 Peucedanum cervaria______________76, 175 3IDIÀDWXEHURVD _______________________ 184 Phacelia tanacetifolia _________________ 116 Phaleria capitata_________________ 112, 165 Pharbitis purpurea _____________________ 189 Phleum pratense _______________________ 80 Phlox paniculata ___________________74, 161 Phoebe sheareri _______________________ 103 Phormiaceae _________________ 40, 139, 164 Phyllanthus sp._________________________ 198 Phyllanthus x elongatus ______________42, 43 Physostegia virginiana ______________81, 159 Phytolaccaceae ______________________ 111 Picea abies ____________________________ 98 Picea pungens _________________________ 98 Picrodendraceae, fossil _________________ 21 Pinaceae ________________ 23, 39, 59, 71, 91, 96, 97, 98, 177 Pinaceae, fossil______________ 22, 39, 97, 200 Pinellia ternata ________________ 74, 103, 186 Pinguicula alpina ______________________ 160 Pinguicula ehlersiae ________________87, 106 Pinus heldreichii ________________________ 97 Pinus mugo _________________________71, 98 Pinus nigra _____________________________ 97 Pinus sp. _______________________ 22, 97, 200 Pinus strobus ________________________59, 96 Pinus _________________________________ 23 Piper nigrum ___________________________ 93 Piperaceae ________________________93, 197 Pistia stratiotes____________________ 168, 206 Pistia __________________________________ 9 Pisum sativum _________________________ 160 Pittosporaceae________________________ 157 Plantaginaceae______ 48, 125, 151, 191, 204 Plantago lanceolata __________________ 151 Plantago major________________________ 125 Plantago maritima_____________________ 204 Plantago media _______________________ 191 Platanthera bifolia______________________ 66 3ODW\FRGRQJUDQGLÁRUXP ______ 77, 106, 190 Plectranthus ornatus ___________________ 160 Plumbaginaceae______________ 73, 162, 193
ɕ$11(;
PTERIDACEAE
Plumbago auriculata _______________73, 193 Poa angustifolia _______________________ 151 Poa annua ____________________________ 133 Poa pratensis__________________________ 151 Poaceae ____ 32, 59, 72, 80, 88, 95, 101, 133, 134, 143, 144, 149, 151, 197, 208, 215, 221 Podocarpaceae ____________________23, 99 Podocarpus sp. ________________________ 99 Podostemaceae _______________ 60, 69, 153 Poikilacanthus macranthus_____________ 197 Polemoniaceae ___________74, 124, 161, 173 Polemonium caeruleum _______________ 173 Polygala chamaebuxus________________ 108 Polygala major ___________________ 132, 155 Polygalaceae ________________ 108, 132, 155 Polygonaceae _______ 29, 105, 130, 158, 181 Polygonaceae, fossil______________ 156, 232 Polygonum aviculare ____________________ 8 Polypleurum munnarense _______________ 69 Polypleurum stylosum ___________________ 60 Polypodiaceae, fossil ___________________ 19 Polypodium sp. _________________________ 19 Polystachya sp._________________________ 67 Poncirus trifoliata _________________ 128, 157 Pontederiaceae_______________________ 138 Populus alba _______________________88, 103 3RUWXODFDJUDQGLÁRUD _____________ 110, 188 Portulacaceae ___ 83, 110, 115, 118, 188, 190 Posidonia sp. __________________________ 103 Posidoniaceae ________________________ 103 Potentilla arenaria _____________________ 149 Potentilla erecta ______________________ 131 Potentilla inclinata__________________85, 169 Prenanthes purpurea ___________________ 69 Primula denticulata__________________40, 84 Primula farinosa _____________________40, 72 Primula veris ____________________ 30, 31, 107 Primula ________________________________ 30 Primulaceae ____ 31, 40, 72, 84, 107, 142, 180 Proteaceae ________ 16, 78, 90, 104, 176, 196 3UXQHOODJUDQGLÁRUD ____________________ 161 Prunus avium __________________________ 169 Prunus laurocerasus____________________ 172 Pseudodracontium siamense __________ 168 Pseudolysimachion barrelieri ______ 102, 218 Pseudolysimachion longifolium _________ 164 Pseudotsuga ___________________________ 39 Ptelea trifoliata ________________________ 174 Pteridaceae ___________________________ 19
PTERIDACEAE, FOSSIL
Pteridaceae, fossil ______________________ 19 Pterocarya sp._________________________ 109 Pulmonaria mollissima _________________ 129 3XOPRQDULDRIÀFLQDOLV _____________ 181, 205 Pulsatilla pratensis _____________________ 190 Pyrolaceae ___________________________ 183
Q Quercus robur________________ 177, 209, 222 Quercus sp. ________________________33, 230 Quesnelia augusto-coburgii _____________ 96 Quesnelia lateralis ________________ 122, 210
R Ranunculaceae _______ 87, 89, 110, 111, 120, 124, 148, 190, 206, 207, 213, 217, 223 5DQXQFXOXVÀFDULD _____________________ 223 Ranunculus lanuginosus________________ 110 Ranunculus trichophyllos _______________ 207 Rapateaceae_________________________ 140 Razisea citrina _________________________ 155 Rehderodendron sp.___________________ 153 Reseda luteola ________________________ 164 Resedaceae __________________________ 164 Rhaphidophora africana _________ 177, 211 Rhododendron hirsutum ___63, 129, 183, 220 Rhododendron__________________________ 9 Ribes aureum _________________________ 112 Rosa pendulina _______________________ 151 Rosaceae______________ 35, 85, 86, 108, 131, 149, 151, 152, 169, 170, 171, 172, 203 Rubiaceae______________________ 24, 63, 80, 94, 102, 106, 107, 118, 128, 190, 215 Rubus caesius _________________________ 170 Ruellia brevifolia _______________________ 156 Ruellia graecizans _____________________ 162 Ruellia macrantha______________________ 75 Rumex acetosa __________________ 130, 181 Rumex sp._____________________________ 232 Ruspolia seticalyx_________________ 222, 223 Ruta graveolens _______________________ 172 Rutaceae ___________ 128, 157, 172, 174, 192
S Sagittaria sagittifolia ________________75, 126 Salicaceae __________ 88, 103, 146, 158, 210
SIDERITIS
Salix alba _____________________________ 146 Salix daphnoides ______________________ 158 Salix fragilis ____________________________ 210 Salvia argentea ____________________78, 161 Salvia austriaca ________________________ 29 Salvia coccinea ________________________ 81 Salvia glutinosa________________________ 161 Salvia nemorosa_______________________ 217 Salvia sclarea __________________________ 77 Sambucaceae ________________________ 218 Sambucus nigra _______________________ 218 Sanchezia nobilis ___________________30, 122 Sandersonia aurantiaca ________________ 71 Sanguisorba cretica ___________________ 152 Sanguisorba minor________________ 152, 171 6DQJXLVRUEDRIÀFLQDOLV ______________86, 108 Sanicula europaea __________________31, 87 Sanicula _______________________________ 31 Sansevieria dooneri_________________96, 133 Santalaceae ___________________________ 41 Sapindaceae __________ 39, 84, 86, 169, 176 Sapindaceae, fossil ____________________ 119 6DSRQDULDRIÀFLQDOLV ____________________ 28 Sapotaceae, fossil ______________________ 77 Sauromatum venosum_________ 69, 211, 223 Saxifraga rotundifolia __________________ 170 Saxifraga tridactylites __________________ 171 Saxifraga vandellii _____________________ 147 Saxifragaceae _______________ 147, 170, 171 Scabiosa caucasica ____________________ 20 Scabiosa ochroleuca __________________ 113 Schoenoplectus lacustris ____________61, 126 Scirpus sylvaticus ___________________61, 126 Scorzonera cana ______________________ 185 Scrophularia nodosa _______________35, 199 Scrophularia vernalis___________________ 145 Scrophulariaceae _______________ 35, 90, 95, 102, 114, 115, 118, 120, 127, 140, 145, 147, 164, 169, 174, 199, 201, 204, 205, 207, 214, 217, 218, 223 Secale cereale ________________________ 143 Securigera varia_______________________ 175 Sedum acre___________________________ 175 Sedum rupestre ________________________ 87 Sesleria albicans_____________________88, 95 Sesleria sadleriana_____________________ 101 Sesleria uliginosa _______________________ 72 Sherardia arvensis _____________________ 118 Sideritis montana _______________________ 29
ANNEXɕ257
SIDERITIS
Sideritis syriaca ________________________ 110 Silene alba _____________________________ 74 Silene nutans ___________________________ 83 Silene succulenta_______________________ 28 Simaroubaceae __________________ 174, 205 Sinapis alba ___________________________ 218 Smilacina stellata______________________ 182 Smyrnium perfoliatum_____________ 212, 215 Solanaceae_ 29, 108, 131, 169, 170, 173, 176 6RODQGUDORQJLÁRUD _________________29, 173 Sollya heterophylla ____________________ 157 Sparganiaceae _____________ 44, 45, 93, 133 Sparganium erectum ________ 44, 45, 93, 133 Sparganium ____________________________ 44 Spathiphyllum blandum________________ 206 Sphagnaceae, fossil ____________________ 19 Sphagnum sp.__________________________ 19 Spiraea sp. _____________________________ 35 Stachys palustris _______________________ 119 Stellaria graminea ________________ 112, 221 Stellaria holostea ____________________75, 83 Stellaria media _________________________ 28 Stenandriopsis guineensis _______________ 77 Stenandrium dulce ____________________ 196 6WHSKDQRWLVÁRULEXQGD __________________ 67 Stratiotes aloides ______________________ 187 Streptocalyx poeppigii_________________ 182 Strobilanthes roseus____________________ 162 Styracaceae, fossil ____________________ 153 Symphytum caucasicum__________ 108, 132 6\PSK\WXPRIÀFLQDOH___________________ 76 Symphytum orientale __________________ 113 Symplocaceae, fossil _____________ 104, 232 Symplocarpus foetidus__________________ 93 Symplocos sp. ____________________ 104, 231 Syringa vulgaris _________________________ 73
T Talinum paniculatum __________ 83, 110, 118 Tanacetum corymbosum ______________ 189 Taraxacum sp. ________________________ 185 Taxaceae______________________________ 33 Tetramerium nervosum ________________ 116 Teucrium chamaedrys _________________ 191 Teucrium pyrenaicum__________________ 149 Thadiantha hookeri ____________________ 195 7KDOLFWUXPÁDYXP______________________ 206
ɕ$11(;
ULMACEAE
Thalictrum minus_______________________ 124 Theaceae_____________________________ 150 7KHOHWK\OD[PLQXWLÁRUD ______________60, 153 Thesium alpinum _______________________ 41 Thladiantha hookeri ___________________ 160 Thlaspi montanum _____________________ 162 Thunbergia alata ___________________71, 115 Thymelaea passerina _____________ 166, 167 Thymelaeaceae__________112, 165, 166, 167 Tilia americana ________________________ 113 Tilia euchlora ___________________________ 91 Tilia platyphyllos _______________________ 223 Tiliaceae ______________________ 91, 113, 223 Tinantia ________________________________ 41 7RÀHOGLDFDO\FXODWD____________________ 138 7RÀHOGLDFHDH _________________________ 138 Torilis arvensis___________________________ 76 Tragopogon dubius_______________ 145, 185 Tragopogon orientalis __________________ 59 Trapa sp. _______________________________ 43 Trapaceae_____________________________ 43 Trapaceae, fossil _______________________ 43 Trichosanthes anguina __________ 32, 33, 143 Trichostigma peruvianum ______________ 111 Tricolporopollenites wackersdorfensis ___ 129 Trifolium montanum____________________ 181 Trifolium rubens ________________________ 158 Trigonia nivea _________________________ 179 Trigoniaceae __________________________ 179 7ULVHWXPÁDYHVFHQV _______________ 208, 221 Triticum aestivum _____________ 144, 151, 215 Trollius europaeus______________________ 120 Tropaeolaceae __________________ 104, 159 Tropaeolum majus ________________ 104, 159 Trudopollis______________________________ 33 Tsuga canadensis ___________________91, 97 Tsuga sp.___________________________97, 200 Tulipa sylvestris ________________________ 150 Tulipa kaufmanniana ___________________ 41 Typha latifolia __________________ 16, 65, 153 Typha minima __________________________ 72 Typha 9 Typhaceae _________________ 16, 65, 72, 153
U Ulearum sagittatum____________________ 187 Ulmaceae ____________________ 31, 109, 148
ULMACEAE, FOSSIL
Ulmaceae, fossil _______________________ 175 Ulmus laevis ____________________________ 31 Ulmus minor ______________________ 109, 148 Ulmus 31 Urtica dioica _______________________88, 121 Urticaceae_________________________88, 121 8YXODULDJUDQGLÁRUD____________________ 138
V Valerianaceae ________________________ 188 Veratrum album____________________79, 155 Veratrum nigrum ______________________ 152 9HUEHQDRIÀFLQDOLV__________________90, 130 Verbenaceae______________________90, 130 Veronica cinerea_________________ 147, 169 Veronica prostrata ____________________ 174 Veronica serpyllifolia___________________ 120 Viburnaceae___________________________ 94 Viburnum opulus ______________________ 195 Viburnum tinus _________________________ 94 Vinca minor ___________________________ 178 Vincetoxicum hirundinaria ______________ 67 Viola alba___________________________68, 87 Viola arvensis_______________________83, 108 Viola tricolor __________________ 82, 127, 202 Violaceae ______68, 82, 83, 87, 108, 127, 202 Viscaceae ____________________________ 192
ZOMICARPA
Viscum album _________________________ 192 Viscum laxum _________________________ 192 Vriesea neoglutinosa _______________79, 136 Vriesea pabstii _________________________ 24
W Welwitschia mirabilis ____________________ 70 Welwitschiaceae _______________________ 70 Werauhia tarmaensis __________________ 160 :KLWÀHOGLDODWHUDOLV________________ 122, 179 Winteraceae _______________________62, 134
X Xyridaceae ___________________________ 193
Z Zamiaceae ____________________________ 93 Zamioculcas zamiifolia____________ 141, 200 Zantedeschia aethiopica _____ 213, 215, 216 Zea mays ________________________ 144, 149 Zelkova sp. ____________________________ 175 Zeylanidium olivaceum _________________ 60 Zeylanidium subulatum ______________60, 69 Zingiberaceae _______ 69, 111, 178, 179, 211 Zomicarpa riedeliana__________________ 187
ANNEXɕ259
PICTURE CREDITS Except the below mentioned micrographs, all pictures in "Pollen Terminology. An illustrated Handbook" are courtesy of PalDat (http://www.paldat.org/) and the Society for the Promotion of Palynological Research in Austria (http://www.autpal.at/), respectively. The picture of $SLXP QRGLÁRUXP in chapter "Illustrated Terminology – aperture, aperturate" is from Weber M (1992), Fig. 1B. The two pictures of Cistus creticus in chapter "General Chapter - Pollen
Morphology – Harmomegathy" are from HALBRITTER and HESSE (2004), Figs. 2C, D. The two pictures of Iris histrioides in chapter "Illustrated Terminology – ringlike aperture" are from HESSE and ZETTER (2005), Figs. 6B, D. The picture of Ruspolia seticalyx in chapter "Illustrated Terminology – Ubisch body" is from HALBRITTER and HESSE (2005), Fig. 1A. Drawings by Heidemarie HALBRITTER and Ralf BUCHNER.
ANNEXɕ261
NOTES
NOTES
NOTES
3UHÀ[HV$EEUHYLDWLRQVDQG,FRQV 3UHÀ[HV a- _________________ SUHÀ[PHDQLQJDEVHQW EL ___________________________SUHÀ[IRUWZR EUHYL _________________SUHÀ[PHDQLQJVKRUW GL_____________________SUHÀ[PHDQLQJWZR eu- ___________________ SUHÀ[PHDQLQJWUXH KHWHUR ___________ SUHÀ[PHDQLQJGLIIHUHQW KH[D ___________________ SUHÀ[PHDQLQJVL[ KRPR _______________SUHÀ[PHDQLQJHTXDO LQ _________________ SUHÀ[PHDQLQJDEVHQW LQIUD______________ SUHÀ[PHDQLQJEHQHDWK LQWHU_________________ SUHÀ[IRULQEHWZHHQ LQWUD ______________________ SUHÀ[IRUZLWKLQ LVR _______________ SUHÀ[PHDQLQJLGHQWLFDO PHVR _____________ SUHÀ[PHDQLQJPLGGOH PLFUR _____________________ SUHÀ[IRUVPDOO IHDWXUHV VPDOOHU DV P EDFXODWH FODYDWH HFKLQDWH JHPPDWH SLODWHUXJXODWHUHWLFXODWHYHUUXFDWH QRWXVHG LQ FRPELQDWLRQZLWK VWULDWH IRYHRODWHSHUIRUDWH PRQR________________ SUHÀ[PHDQLQJRQH SDQWR ____________________ SUHÀ[IRUJOREDO SHQWD _________________ SUHÀ[PHDQLQJÀYH SHULVHHSDQWR SRO\_______________________ SUHÀ[IRUPDQ\ prae- _____________________ SUHÀ[IRUEHIRUH VHPL_________________________ SUHÀ[IRUKDOI VWHSKDQR______SUHÀ[PHDQLQJHTXDWRULDOO\ VLWXDWHG VXE_____________________ SUHÀ[IRUOHVVWKDQ V\Q _____________________ SUHÀ[IRUWRJHWKHU WHWUD _________________ SUHÀ[PHDQLQJIRXU WUL ___________________ SUHÀ[PHDQLQJWKUHH
,FRQV LM WHUPXVHGLQ/0REVHUYDWLRQV
LM WHUP127XVHGLQ/0REVHUYDWLRQV
SEM WHUPXVHGLQ6(0REVHUYDWLRQV
SEM WHUP127XVHGLQ6(0REVHUYDWLRQV
TEM WHUPXVHGLQ7(0REVHUYDWLRQV
TEM WHUP127XVHGLQ7(0REVHUYDWLRQV
mo WHUPXVHGLQPRUSKRORJLFDOFRQWH[W
mo WHUP127XVHGLQPRUSKRORJLFDOFRQWH[W
$EEUHYLDWLRQV DMP _______________ GLPHWKR[\SURSDQH .0Q24 __________ SRWDVVLXPSHUPDQJDQDWH LM _______________________/LJKW0LFURVFRSH PA __________________________ SHULRGLFDFLG PA+TCH+SP _____________________ 7KLpU\WHVW 3$7&+63VKRUW ______PRGLÀHG7KLpU\WHVW 3E ____________________________ OHDGFLWUDWH SEM_________6FDQQLQJ(OHFWURQ0LFURVFRSH SP ________________________ VLOYHUSURWHLQDWH TCH___________________ WKLRFDUERK\GUD]LGH TEM ______ 7UDQVPLVVLRQ(OHFWURQ0LFURVFRSH U __________________________ XUDQ\ODFHWDWH
ana WHUPXVHGLQDQDWRPLFDOFRQWH[W
ana WHUP127XVHGLQDQDWRPLFDOFRQWH[W
fnc WHUPLPSOLHVIXQFWLRQDOUHOHYDQFH
fnc WHUPLPSOLHV12IXQFWLRQDOUHOHYDQFH
,OOXVWUDWHG7HUPV DOYHRODWH __________________200-202 DQJXODSHUWXUDWH________________ DQQXODWH ___________________ DSHUWXUH __________________ DSHUWXUHPHPEUDQH_______ DUFXDWH________________________ DUFXV _________________________ DUHROD ________________________ DUHRODWH ______________________ DWHFWDWH _______________________ EDFXODWH______________________ EDFXOXP _______________________ ELUHWLFXODWH________________ ELVDFFDWH________________ ERDWVKDSHG ________________ EUHYLFROSDWH ___________________ EUHYLFROSRUDWH _________________ EUHYLFROSRUXV __________________ EUHYLFROSXV ____________________ EULGJH ________________________ EURFKXV ____________________ FODYD _____________________ FODYDWH ___________________ FO\SHDWH ___________________ FROSDWH ____________________ FROSRUDWH ______________ FROSRUXV __________________ FROSXV ________________ FROXPHOOD _________________ 200-202 FROXPHOODWH _______________ 200-202 FRPSRXQGDSHUWXUH___ FURWRQSDWWHUQ ____________ FXSVKDSHG____________________ GLFROSDWH ______________________ GLSRUDWH ______________ GLVSHUVDOXQLW ________________ GLVXOFDWH_______________________ G\DG _______________________ HFKLQDWH __________________ HFKLQXV ___________________ HNWLQWLQH _______________________ HNWRDSHUWXUH _______________ HQGH[LQH _________________ HQGLQWLQH ______________________ HQGRDSHUWXUH _____________ H[LQH _________________ IRRWOD\HU _________________ 200-204 IRVVXOD ________________________
JHQHUDWLYHFHOO ____________ JUDQXODU __________________ 200-202 JUDQXODWH ______________________ JUDQXOXP _____________________ KDUPRPHJDWK\ _____________ KHWHURDSHUWXUDWH__________ KHWHUREURFKDWH _______________ KHWHURSRODU _________________ KRPREURFKDWH_________________ LQDSHUWXUDWH __________________ LQIROGLQJV ____________________ LQIUDWHFWXP _______________ 200-202 LQWHUQDOWHFWXP ________________ LVRSRODU ________________________ ODFXQD_____________________ ORSKDH_____________________ ORSKDWH ____________________ OXPHQ__________________________ PDUJR _________________________ PDVVXOD ____________________ PRQDG _________________________ PRQRVDFFDWH ___________________ PXUL ______________________ REODWH ______________________ RSHUFXODWH_________________ RSHUFXOXP _________________ RUQDPHQWDWLRQ ____________ RXWOLQH ______________________ SDQWRDSHUWXUDWH __________ SDSLOOD ________________________ SHUIRUDWH _________________ SODQDSHUWXUDWH________________ SOLFDH ________________________ SOLFDWH_____________________ SROOHQFODVV _________________ SROOHQFRDWLQJV____________ SROOHQZDOO ________________ SROOHQNLWW ______________________ SROOLQDULXP _____________________ SROOLQLXP _______________________ SRO\DG_________________________ SRQWRSHUFXODWH ________________ SRQWRSHUFXOXP ________________ SRUDWH _________________ SRURLG ____________________ SRUXV ______________________ SULPH[LQH _________________ SULPH[LQHPDWUL[________________
IRVVXODWH ______________________ IRYHROD _______________________ IRYHRODWH _____________________ JHPPD _______________________ JHPPDWH _____________________
SURODWH______________________ SVHXGRFROSXV _________________ SVHXGRPRQDG __________________ SVLODWH ____________________ UHWLFXODWH _________________
UHWLFXOXP___________________ UHWLFXOXPFULVWDWXP ________ ULQJOLNHDSHUWXUH __________ UXJXODH ___________________ UXJXODWH __________________ VDFFDWH _________________ VDFFXV ______________________ VHPLWHFWDWH ____________________ VHPLWHFWXP ____________________ VH[LQH_________________________ VKDSH _____________________ VL]H _____________________________ VSHUPFHOO_____________________ VSLUDSHUWXUDWH ______________ VWHSKDQRDSHUWXUDWH _______ VWULDH _____________________ VWULDWH _____________________ VWULDWRUHWLFXODWH ___________ VWUXFWXUH ______________________ VXOFDWH ________________ VXOFXV _____________________ V\QDSHUWXUDWH ______________ V\QFROSDWH ____________________ V\QFROSRUDWH __________________ WDSHWXP ______________________ WHQXLWDV _______________________ WHWUDG____________________ WULFKRWRPRVXOFDWH _____________ WULFKRWRPRVXOFXV ______________ WU\SKLQH_______________________ 8ELVFKERG\ ______________ XOFHUDWH _______________ XOFXV______________________ YHJHWDWLYHQXFOHXV _____________ YHUUXFD _______________________ YHUUXFDWH _____________________ YLVFLQWKUHDG _______________
48,&.5()(5(1&(