Then i f t h e f i n a l p is changed t o p b l i g h t l y d i f f e r e n t , t h e expression def b e d by (36,l) is coat inuous , klca would l i k e t o consider, f o r t h e o r e t i c a l pwpases, v a r i o w o t h e r current@
beside eleetromagnetie nanat) (i.e.
- we can have various $U3 generalizations
i n a n o c t e t (or
currents with d i f f e r e n t charge n d e r t l ) and a A a l currentls a s well.
Thus we l e t these indices (SU3 and a x i a l ) as w e l l ss t h e P, v i n d i c e s of space be contained i n a s i n g l e l e t t e r A ( c a l l i n g J v ( l )
A(1) e t c . ) t o save w r i t i n g
i n general a r g w n t s , aad can always go back and i n s e r t i n d i c e s a t the end, Thus i f A is any operator of our allowed s e t ( f o r our e x a q l e e , a vector o r
a x t a l vector l o c a l current i n SU3 o c t e t o r possibly s i n g l e t ) we w r i t e (obviously the diagonal proton a t a t e can be generalized i m d i a t e f y too, b u t we leave chat f o r the s t u h n t ) ,
Inelastic Scattering as Propertigs of Operafors And l a s t l y we omit w r i t i n g the l a s t t e r n Ear s h p l i c i t y , but you awt
remxnber t h a t , f o r diagonal lsatrix e l e m a t s i t i s there. %A is the diagonal r ~ a t r i xelerrrent o f t h e product of two operators,
Evidently we c m d;gflne s corresponding thing i n space:
K depends only on the d i f f e r e n c e
Since the diagonal e
q
-
2p
-
Or
We e x p l i c i t l y c a l l t h e coaponents of
2-1, its Fourier transform is KBA(q).
{V, -$l i n the system where t h e p r o t m is a t r e s t (others v i a r e l a t i v i s t i c
tranafomtion),
6)
KBA(v.
Thus
2s a t r e a t
m
-C
a11 x
2 I (6)1p>& ( E ~ - E ~ - V I
2Ex
(36.3)
Since K gives t h e product operator we can f i n d from i t the c o m u t a t o r as w e l l as t h e
ordered operator so useful i n s c a t t e r i n g .
tixntj
kle note, i n our case ( i n the r e s t system of the proton), s i n c e the, proton
Is the lowest =ss o f all, s t a t e s of b a ~ y o nn d e r one (and A dwe not: change baqon n d e r ) that
P;x
E
P
f o r a l l x.
Hance i f
no s t a t e can be reached by A(v, q)Ip> i f v
O
V .c
Q the 8 function is zero
- and (Ip>
-
a t reat)
Now t h e carnuttitor m t r i x element is defined by CBA(Z,l)
m
RgA(2, 1)
- Kh8(1*
2,
sa i t s Fourier t r m s f o m @ a t i s t i e s
We note t h a t X can be obtained from G and d e e versa because of ( 3 6 . 4 ) . %(v.
and CB*(-v,
4) -6)
-
cBA(v I
-
-CmLB(v,
6)
v >
Thus
o
(26' 6 )
6).
Thus 9.1% rar?asur&ng%(v,
w-tator
for
Q) ue a r e w a s u r i n g the Fourier trcrnsfom oE the
o f two c u r r e n t s ,
We s h a l l d-isccrss t h e cmsequenws a f t h i s i n t e r e s t i n g r e s d t i n a craomnt, but while we have these equations before u s we wish to derive a fczv Eomulm f o r the s c a t t e r i n g a q l i t u d e whlch we w i l l need l a t e r i n t h e w a r s @ , Aa we have
discussed the s c a t tering q l i t u d a f a r am inceaing photon ( v i r t u a l o r real) coupled t o J (1) say A(1) t o an outgoing one coupled t o B is detts-dned by the operator
we diacusa the e f f e c t of seaguljta ( i f there are any, 6 (2-X)
type terms) l a t e r
and omit them f o r a wbile,
If i n p a r t i c u l a r we are intezleclted i n the Eomard s c a t t e r i n g aw1itude TBA(4 00" a proton with a photon of mmnturn q we need the Pourier t r a a a f o m
(The superscrfipt F indgcates- t h a t the choice of
siw
of the i m g i n a r y part
f o r negatfve frequencies is taken accordgag t o the convention of Fewmn i n h i s
QED papers; there is a dif f e r e a t choice called u w a l amplitude.
which is
often very useful,) To take the Fourier transfofln of the f i r s t t e r n i n ( 3 6 . 8 ) we have a product o f @(t2-tl) & w e P.T.
i s i/(v+ic) and B(Z)A(1)
we have the convolutlian of these,
whose P.T. i s %A(v,
P
use
&t
hence
In the s m e way the a e c ~ n dterm is the
convolution of -%/(v-%E) (the F.T. of @(tl-tZ) and Km(-v,
NOW
6) and
4).)
Hence
inscvr-v>
where we have exp1icitl-y added possible seagull t e r n aBA which L s sinply an u n k n m ( f i n i t e order) polpemial i n v,
8, Thus
the s c a t t e r i n g m p l i t u d e is,
except: f o r a golynmial, ESfven i n t e r n of the comutator, Megatiw
V,
58 of course, not defined by experimnt,
Hawever i t can be
obcdned from nnssasuremnts of the reaction with a n t i p a r t i c l e s (using
A
f o r A)
v i a the connection implied by (36 ,IQ) m d the r e l a t i o n f o r comutatars ( r e s u l t i n g
f nelasric Scattering as Propertl'es of Operators from the f a c t t h a t
a))* -
(c,,(,
is the adjoint operator t o A)
a, - -c,
(V,
41
(-V.
so t h a t (36,101 i m l l e s
F
TBA(v.
6)
-
T&(-w*
41
h o t h e r more- usual convention (causal a ~ l i t u h )t o define the negative frequency exteasion changes the a i m of the imaggnary p a r t f o r negatlve frequencies
a, -
T;~(~,
T;~(~,
*
C
Thus (TgA(v, 9 ) )
-
a, +
c
CBA(~.
.
4)
T s (-v.
and a l s o (37.1) beeoms n m
(vhlch is j u s t as good a way af describing s c a t t e r i n g
The s i p i f i e a n e e o f F
a s T ) i n coordinate space can a m be seen.
e
(=I
given by an expression 1ik
( 3 6 . 9 ) except t h a t the sign of the +ic i n the l a s t term I s reversed,) In (37 .l) we have expressed
things i a terols of the carnutator but the l a s t t e r n caa be
m r e @%=plyexpressed a s the product operator, from (36.5) and (36.6) we have
6)
@(-v) v,(C ,,
-irC
-
-
-KABf-v,
41,the
F.T. (B(2)A(1)IT
f o r t2 2 tX,we have B(P)A(1) A(1)8(2)
- A(I)B(Z)
P.T. of eA(1)B(Z).
Hence (37.1) says
- FeT.A(1)B(2)
- A(l)B(Zf
P
[BQ2), A(1) 1 and f o r t2
have
1.0
. By retarded e m u r a t o r f o r t2 C t
c tl"V
we mean the c o w t a t o r
1:
froar. t h i s , (37.2) i s d i r e c t l y obvious. (Rmrk,
The (3(t -t ) i n 37.3 a t f i r s t s i g h t &es the r e s u l t not relet2 1 t i v i s t i e a l l y invariant, u n t i l i t f a realized t h a t the comutator Eacmr is zero Ear a p a c e l i u regions so the p l a e t2
t1 c= be t i l t e d a r b i t r a r f l y as requrfreci
172
Photon-Hrzdron Interactions
by Lorentz transformation.
This i s true a t lease i f Eke comutatox is not too
singular a t equal times which
it9
often true,
T i A defined here not r e l a t i v i e t i c a l l y
MEficulties s o m t i w a a r i s e A i n g
isvariant unless corresponding non-invar$ant
terms (called Schwinger t e r n ) a r e added i n t o the '%eagullif part of (37.3) .) Expression (37.3) serves as a general definition of the Chew amplitude, i . e , i n space-tinart lit is the retarded comutbitor, even when we do not have the diagonal e l e m n t a , or lowest s t a t e s (so the product operator is O f o r v
0).
The general definlltion of the Feyman ampiftude is the time ordered operator ( 3 6 . 8 ) . They d i f f e r by the product operator.
Note on various refations b a l l t y conditions
Crossing C
6)I *
fTM (v,
-
-
a, T',
P
T ~ ~ ( ~ .
-6)
T&
(-V,
Imginary Part G
iTa
(V,
a))* -
4,
a, - -~G,(V, a)
~,(T;
(37.8)
The crBA s a t i e f y r e a l i t y and croiilsiag relations required t o keep then
valid f a r T, GM*
(v,
Nmlg
41
m
G Z
(-\?p
-4)
-
0 s (v,
The commutator a t equal times t2
vlth respect t o v f o r a l l v, since equal t i m c ~ m u t a ton i relation
61
tl can be obtained by integrating CBA(v,
e" (t2-rl)dv/2n
6 (t2-t l).
6)
Hence Cell ELann 's
173
Inelastic Scartorirzg as Properties of Operafors becomes upon Fourier t r a n s f o m f o r our diagonal element on t h e proton, a,
a constant, Independent of
6,
This is c a l l e d a s u s r u l e .
We now r e t u r n t o our study of the f a c t t h a t i n xneaeurlag R
BA (v, Q) we a r e
m a s u r i n g t h e F,T,
of t h e c o m u t a t o r of two c u r r e n t s ,
we s h a l l ask a r e ( l ) Mhat limitations on the F.T.
As examples of q m s t i o n s
r e s u l t from t h e f a c t t h a t t h e
c o m u t a t o r vanishes outeide the l i g h t cone?
12) From e x p e r i m e n t ~ lf a c t s about
the behaviar of IZ ( e .g, Bjorken s c a l i n g ) &at
do we Ittarn about the character
of t h e c o m u t a t o r ? It behooves us t o study the general behavior of c o m u t a t o r s , and we begin
our study with the c o m u t a e a r of two a c a l a r f i e l d s of mss nn i n a syhstem without
We can express 4C1) i n t e r n s of c r e a t i o n a d m n l h i l a t i o n operators i a the usual way
Were
W
k
=
is the c o r r e c t frequency t o describe the o p e r a t o r ' s
developmat in time f o r t h e r e 1s no i n t e r a c t i m s o the enerC?;y i e ; t h a t of a f r e e particle.
The
commute with each o t h e r , and the %*'S, only a and a* do n o t
c o m t e i f they belong t o the s m e %:
We work out (37.21)
i m e d i a t e l y by fomhlng t h e c o m u t a t o r , w i n g (37.131, of
an expression l i k e (37.12).
Dropping t e r n which obviaualy c o m u t e we a r e l e f t
with:
The a c t u a l i n t e g r a l can now be done
- i t invobea
Here we w i l l j u s t do t h e s p c i a l caae m
-
Bessel functions,
0, and say what the case 'm
$ 0
174
Phorsn-Hadran Inreractions
gives, l e w i a g d e t a i l s t o the st-nt,
-
In (37.14) put
&OS@,
%
-
L for m
-
O t o get
singular 6 f w c t i o n on the 1i&t cone. For f i n i t e
we obtain &e
s h g u f a r i t y on the ligttt cone, zere
outside i t of coursle, aab a Bessel Emetion inside:
Thus we see t h a t the c-utator
f o r f r e e part?iclea is zero outside the l i g h t
c m @ and singular ( l i k e 6 f m c t i o n ) m the l i g h t cone, We helve discussed the singularit2ea of two f i e l d s , dil~cussthe ~ J n g u X a r i t i e ef r m tnuo currents. f i e l d theory J (1)
(2p+ ap)# ( l )
Also i n s t r u c t i v e i$ t a
Qne suck current ~ g h br e i n a free
@ ( l ) f o r spinor f ?ields. M an e x a w l e we w i l l leave out tlzeee gradients, e t c . asld fgnd the c-utator P
6(1)
or
h
for
"currentsW"tat a r e simply squares of a s c a l a r f i e l d
where s ( 2 , l ) i o the f r e e EgeeM c o m a t a t o r we worked out before. 2
has the s a m s i n g u l a r i t y sgn (t2-tl)6(52)
Clearly K
8s a ~ t c dbefore f o r C, but thts t i m
tnu1t;lplied bp an operator function of two pcsitions F f 2 , l ) called often a b i l o c s l operator,
This operator is needed, of course, only m the l i g h t cone.
Its matrix elements give functions of xZY-xlli
( f o r e x q l e of t2-tl f o r a
dtagonal elemnt: i n a system of a partlclie a t r e s t ) .
So i n g e w r a l the
sinlngularities along the cane a r e raodaated by a f m c t i o n of the distance from the origin of the cane, Far interactgag hadrons the e m u t a t o r of currents outeide the liglnt cone also, and non-zero only i w i d e . h w i t &as
the t r ~ s i t i o na s we cross the l i g h t cone,
ir,
elrpected to be; zero
An i n t e r e s t i n g question is
So-
s o r t of jump Is
i n slope? Or possibly i t has 6
Is i t i n value or on*
expected p r e s m b l y .
Such a question is a f m d m n t a l one
function a s the f r e e p a r t i c l e case does.
Me have the Fourier t r m a f o m e x p e r i w n t a l l y i n K
UV
(v,
$3
, B. olngular
behavior corresponds t o so= s o r t of high v, high 4 l l m i t ; so i t is the b e h a d o r a t large v, Q t h a t gives us the answer t o the question. experiaents indicate R(v, Q) s a t i s f i e s BJorken scaling function of 6
But i n t h i s region
- t h a t Is,it
58 only a
2
-q /2&,
The most otxaightfomard way t o a a l y z e t h i s is t o take the inverse t r a n s f o m of K, using the BJarken l i m i t aad aeeisrg what s l n g u l a r i t i e s i t g i m s
- then
concluding the character of the s i n g u l s r i t i e s , because they depend only on the high v, Q I i d r a r e the ame f o r the c m p l e t e function as they a r e f o r the Bjorkcm X i r n i t .
We wZl2 not t r y t o be rigorous, becauee f o r oae thllng we r e a l l y
do not know, experimentally, R f o r q2 Let Q be along the z axis.
h r g s v , QZ is nearly
V
-q2
p
0, nevertheless we can see what happens. ~
i n f a c t qZ = *MC.
~
(q>v)(qz-v) ~ v
ZMvE, ~ hence f o r
The Fourier inverse of e f m c t i o n
o f F, only would look l i k e
where s ( t ) i s the F,T, of the s t r u c t u r e f u t c t i o n f ( F ) , To put i t in anather s l i g h t l y m r e rigorous way we nors
Now omit f o r
41
xaOfDent the 2Hu (suppose we took the txmsforn of M ) and
a
note f a r l ~ r g ev, qa t h a t t o a good enough approltimatten the 6(q 2+ZWvB) can be replaced by 6 ( q 2 + 2 ~ v ~ + d ~ 2So ) . we get f o r large enough v, (q2+ Z M ~ B + ~=B(q+@p12) '
Now we can i n s e r t , i f ve. wlsh, a sgn(v) t o keep the as f o r a F.T. cf a c o r n t a t o r , m d f o r large v t h l s is j u s t sga(*BH] proton is a t r e s t ) .
Hence a s p p t o t i c a l f y
( i f the
1 76
NW
Phutoa-Hadrm Interactions
the F.T. i s easy f o r we know t h a t F.T.
sgn(t)d(s
2
2 sp(vId(q I
s o that f o r a four vector a
hence P,T.W2
noting P*x
- jf
( ~ ) d 8e-iBP*xapn(t)6(t
2
2
-R )
MC we have our previous r e s u l t
- t h a t the significance of Bjorken
ecaling is t h a t the s h g d a r i t y of the current operators has s i n g u l a r i t y on the l i g h t cone.
a,
6 fuaction-like
To be =re precise we w i l l have t o include all.
&e P P factors, etc., and define everything precisely U v gradients of 6-fwctions involved,
- there w i l l then be
The beat way t o eay i t i n a general way is
t h a t scaling shows t h a t the sfslgularitfee on the l i g h t cone of the current carnutatore a r e J w t of the s a m severity as they would be f o r f r e e p a r t i c l e fields, m i a is, of course, what we expect from the parton interpretation f o r there we a s s w d I n the f f n a l stateax(vhich beeme tlhe h t e m d i a t e s t a t e s of the c m a t a t o r ) the partons can be consfdered a@ free,
Thus there Is no surprise
i n the conclusion, i t is m l y t h a t we whLElh t o s t a t e what we have discussed (scaling) in an a b s t r a c t and general wag (as a r r a n t comatator sialngularities) with m%nimm references t a a model.
Although the s t a t e m n t s t i l l s e e m t o r e f e r
t o f r e e p a r t i c l e f i e l d s , that i a only a shorthand t o writing 8 and 8 ' functions on the l i g h t cone, Each general property of partons we assmed s a i d smathing m x e e x p l i c i t about the character of the singularity.
For exmple, t~ r~aycharged partow
are spin 112 i e t o say the a i n g u l a r i t i e s are l i k e those 6 o r t e r i s t i c of f r e e Dirac f i e l d comutatoro, r e s u l t s a r e related.
ffunctions charac-
Ea addition, vector and iai& vector
I f , f o r exanple, one adds t h a t partona a r e quarks c e r t a i n
n m r i c a l l r e l a t i a n s are implied, aa we have seen, between the s f n g d a r p a r t s of the comutators of variaus klzlds of currents.
( m a t i s t o say f o r examle, our
Inehtie Scattering as Propertiw of Operators r e l a t i o n s among feP and f i p , f i P e t c . implied by expressing everything i n terms of the s i x f m c t i o n s
U,
z, d , 3, s, z,)
Quarks, a s f r e e p a r r i c l e s , have n o t been fowd. a s t o whether the & t a i l e d views sf tbe partan =del
There a r e many questions a r e correct f o r quarks.
In
p a r t i c u l a r , the question whether a s i n g l e parton quark moving out i n recoil, need
o r need not rake i t s non-integral qwatum a m b e r with i t . In addition i t i s o f t e n very useful t o aee, vllen r e s u l t s bave been obtelned from a traodel, J u s t how mu& depends an the rnodel and whether i n f a c t the r e s u l t s carnot be s t a t e d aa a general mathematical p r i n c i p l e without: recourse t o a s p e c i f i c model, =del
In t h a t way, i f i t p r o w s l a t e r t h a t too a m y d e t a i l s of the
a r e f a u l t y , we can r t l l l begin again having learned s o w general properties
of hadrons w%thout being c a m i t t e d t o a11 t h e o t h e r s , m e r e f o r e S t i s i n t e r e s t i n g t o note t h a t t h e parton m&l is equivalent t o the general statement: (and one mueh c l o s e r t o d i r e c t elrperimental r e s u l t s ) t h a t c m u t a t o r s have 6-IXLe Zigbc-coae s i n g u l a r i t i e s
.
Light Cone A
Lecture 38
AR I n t e r e s t i n g qt1138tion mswered by Britzsch i3nd a l l - m n (1971 Coral
Gables conferenca)
Ss haw t h e s c a l i n g r e s u l t s of t h e "partons as quarks" c m
be s t a t e d i n a way wbf ch
- at the end
doesn't involve quark wave f m c t i c n s
o r operators a t a l l , We wish t o s t a t e t h a t t h e Sight cone a i n g u l s r i t i e s a r e l i k e those f a r f r e e
quark (spin 112, SU t r i p l e t ) comutatorB. 3
We man, of course, t h e l a r s s t
6' o r d type of s i a g t t l s r i t p , as we say t h e '%leadingw ( i n high frequency)
singdarity,
F i r s t we s e e what t h e s i n g u l a r i t i e s a r e libre 2 f currents were
represented by quark f i e l d s * ( X ) ,
a M r a e s p i n o r carrygag SUS i n d i c e s on which
3 x 3 rrratriees h can act, a"he conanuratror o f two splnar f i e l d s of m s m is e e s i l y worked o u t (as we did f o r Base f i e l d s ) i t is
( J u s t ss t h e propagator i s
+m
(f + m) /(p2
- m21 i n s t e a d of
l/(pZ
-
2
SB
1 so this
c o w s l i k e v i s e i n t o the commutator ( t h e r e a l p a r t of t h e propagator).
Since we a r e looking f o r the leading s i n g a a r I t y near the l f e t cone Gm Is.
Light Cone A fgebra J(+
2
and the w s t e r n i s
s2t
where
w l l e r than the large gradient, thus
is the square i n t e r v a l from 1 t o 2 and 2 means "the leading
slnguLaritfes near the l i g h t cone are equal. '' It i s e a s i l y v e r i f i e d t h a t the- r e s u l t s we: obtain here f o r the c m a t a t o r s
of two currents each a b i l i n e a r form i n
v,
a m exactly tk s a m ðer we
suppose s ) the f i e l d s obey the usual a n t i c o m t a t l o n r e l a t i o n s a t equal, e l m @
--
T(%)$(i;2)
Y ( x ~ ) # ( x ~+)
-
- Z2) and +(Z1),+(Z2) anticommute a s i s
&'(gl
appropriate t o Fern2 p a r t i c l e s ; o r we suppose b) the spin 1112 f i e l d s abey 3 c-utation r e l a t i o n s ~(%)y(;~) F(xl) +(x2) 6 (g2 and
-
-
cornate
eu3
- 5)
+(z2)
is approprgate t o Bose p a r t f c l e s ,
Thfs i s very Iuterleratl-ng becawa i t says the ""Bose qusrrk" "del
whfch
is appropriate a t low energies i a f a no fundmental way %a contradicttlion t o '"partens
as quarlcsl%t higher enerm.
a8 808e quarks
We
can call t h i s partan ~ltoclel""prtonsr
."
Next a current of SUS type a (deseribedw ha) i s
where f o r e x a w l e f o r e l e c t r i c current h" Is diagonal say hY
-3 ) .
diag.(2/3,
- l/>,
For axial current8 change y p t o
NW when we comute
currente,
WO
r e s u l t (see reference f o r detagla),
find a s h p l i e but tedFousZy complicated
W
Tc i l h s c r a t e the idea, r-Jhich i s a l l we
intend t o do here, we t&e the ease of two electrFc curreate, and also drap several t e r n s which would vanish i f w e took s p i a averaged matrix e h m n t a , then a l l that aumives i a f ~ : ( 2 ) , $:(l)
2
Bp
(
E
(
~
~
-
l
~
~
)
~
(
~
-
,P-&
~ ~s t (~2 . 1~ ) ~ 1 aT ( 1~~ 2~1) Y ~ Y ~ Y (38.3)
(plug other t e m a dropped)
(2,l on ntutwl l i g h t cone) and h
6
is diag, (4/9, 1/9, 119)
hYhY i n our caeee.
Mow we s t i l l see the quark f i e l d s in ( 3 8 . 4 1 , but the Idea n w i s t o dis-
regard
equation (38.4) and t o suggeet t h a t e q w t i o n (38.3) ( i t s generalization
t o a r b i t r a r y currents and i n c h d f n g ola;ttted t e r n of c o ~ r s e )a r e geaerally valid.
They give the l i g h t cone singuXarities and define, on the l i g h t cone a t l e a s t
.
a s e t of new operators Va(2-1).
It Ss t h e matrix elements of these operators
which give us our s t r u c t u r e functions. No d i r e c t inrplication is m d e t h a t they can be expressed a s (38.4). Eqwtion (38.4) as well a s (38.11, (38.2) a r e j u s t s c a f f o l d i n g t o a r r i v e a t (38.3) and a r e henceforth t o be forgotten, quark operators a r e seen.
I n (38.3) no e x p l i c i t
Instead only soae new b i l o c a l operators a r e defined
(mctanfng depending on two points).
They a r e defined only on t h e l i g h t cone by
the very equations (38.3) f\
[This system would be a t r u e "algebra" i f the p r o p e r t i e s of the ,J" could now be defined independeatly,
For e x a m l e , an ideal. s i t u a t i o n ( i n f a c t a
complete theory of t h e hadrans) would r e s u l t i f equations giving the Comutatars of such
ps
could be given i n t e r n of J% and
seem possible,
A l i t t l e can be done, hcwever.
?'S
themselves,
T h i s does not
Wfth the fonn (38.4) t h e
R
e o m u t a t o r s of two :g's which have t h e i r v a r i a b l e s on t h e s a m l i g h t ray (e.ge ~ : 2 ( 3 , 4 ) f*'(l,i?)] ,
3,4,1,2
*ere
cone) again can be expressed a s m but i t is n o t much. reactions l i k e e
+p
a l l l i e on a s i n g l e generator of a l i g h t This r e l a t i o n has been a l s o hypothesized,
E t gives p r e d i c t i o n s f o r c e r t a i n two-current i n c l u s i v e -c
e
+
p+
+ p- + any
those expected fro= t h e garton =del
hadrans.
They a r e , of csurse, J u s t
i n t h e s a m conditions,
Me discuss them
later,]
I n order t o w e equation (38.3) we must take the Fourier t r a n s f o m , and f o r t h a t we can w e t h e r e s u l t (very s i m i l a r t o those we have already derived, we leave d e t a i l s t o you) i f q
(v, 0, 0, u 4- N Q
t h a t is, i t involves only t h e i n t e g r a l along t h e ray t = z camon t o t h e plane t = e(from eiv(t-z))
a d t h e l i g h t cone.
Naturally every r e s u r t of t h i s theory i s a l s o a r e s u l t of t h e "parton as quarkw "eory
f o r t h e l a t t e r is a model of t h e f a m e r ; but n o t every parton.
r e s u l t can be derived from (38,3),
I t i s possible, therefore, t h a t =any of
them a r e wrong and only (38.3) and n o t the conrplete f i e l d model may survive.
Light Cane Algebra Therefore i t is i n t e r e s t i n g t o compare the t h e o r i e s f o r varfous types of predictions raade by t h e parton a s quarks theory,
They seem t o be of t h r e e
classes. A.
Scaling, r e l a t f a n s among scalfslg functions, sum rules.
B,
Sgecial a r g m e a t a about the s t r u c t u r e futlctions derived by a r g u m n t s about hadron c o l l i s i o n s and o t h e r a r g w n t s ; l i k e dx/x behavior, t o x near l, s t r u c t u r e function
r e l a t i o n of form f a c t o r power
{I.-XI~ e t c . C, Applications t o experiments of D r e l l type e+
+P p -t any
+ e-
+
hadrans o r
hadrms, etc. p + p + Glass A a r e e x a c t l y those derlved from Sight-cone algebra, obtained from l i g h t cone algebra by d e f a u l t , discussion of how t h e a a t r i x elemeat of '?{2,l)
Class B a r e aoC
That is, they simply m o u n t t o a mtght behave,
X I is n o t a
s p e c i f i c a s s m p t i o n o f the m d e l but an attempt t o go f u r t h e r t h a t leads t o Class B r e s u l t s
-a
s e r i o u s attefDpt t o discuss the nratrix elements of t h e l i g h t
corn algebra would lead fo r e s u l t s in t h i s c l a s s . Class C a r e very i n t e r e s t i n g , a s they seem beyond (38,3) and require so= extension, even thou*
they appear evident from t h e perton view.
It f e therefore
here, t e s t i n g these t h a t a r e a l choice can be made a s t o ðer the extensions of the parton model beyond t h e expectationcl of (38.3) a r e r e a l l y sound, Tlze reason the c u r r e n t c o m a t a t o r oa t h e l i g h t cone is n o t s u f f i c i e n t f o r reactions l i k e p
+p
+
p
+ + U- + X
is t h a t we do need m t r i x eletaents l i k e
but t h i s time a s we take t h e l i r a i t
M
the anomntum of t h e c u r r e n t operator
increases we a r e a l s o changing t h e s t a t e pp; t h e r e l a t i v e mamentm of t h e two protons mwt a l a o increase,
This f e an a w h a r d l i m i t f o r a theory of operators.
It is a very i n t e r e s t i n g question,
1s t h e r e so= general a b s t r a c t way
without quark f i e l d s (partons) t o describe a l l these Class C parton p r e d i c t i o n s also?
Or a r e they perhaps wrong, m r e l i a b l e extensions of t h e idea?
And what becomes of the questian of how the partons c m @ a p a r t i n t h e proton without exhibiting quark qwntura nu&ers m n g the f i n a l s t a t e s ?
Does
current algebra h e l p us t o solve i t ? Perhaps, i t s e e m t o be t r a m l a t e d i n t o "are there any representations possible of t h e algebra (38.3) &ich do not imply quark quaatuta nu&ers atoong t h e localized s t a t e s ? t h i s anathemtiral f o m than i n physical a r g m n t s .
It may be m r e t r a c t a b l e i n
Properties of Commutators in Momentum Space
Lecture 38
We now cm@t o discuss what general properties a carnutator has t o have i n Hlomnturn space, such t h a t its Fourier trslneforrn w i l l be zero outside the l i g h t cane of configuration space. This is c l e a r l y a prolnising l i n e t o follow t o a u p p k m a t physical, i n t u i t i o n on the properties of Wvv.
At present not a great deal can be s a i d , but f o r your
i n r e r e s t i a your future research &at has been done here m y prove f m i t f u l ,
First we can
so-
obvlous r e m r k s ,
I f we multiply a comutator ( i n
space-tim) by a function G which is 1 inside sad zero outside a l i g k t cone we recover the w m u t a t a r (except, a s is the case, t h a t it is s i n g d a r right m the l @ t cone where our funct%on G is poorly defined). isfi
2 2 l6aP,V,(l/q ) (O.V.
Since the F.T.
of G
pxincfpal value) we have the convolution theoran
( p l w piece@ from the 1igbr cone). (C(q) is the F,T, of a carnutator,) Xn a similar vein, since the F,T, of we see that G mwt b v e the form
182
O
is f b n i sgn(qio)a'(q
2
183
Properties cif Commutatorsin Momentum Space
O f course
plus l i g h t cone pieces,
.wr?
can say a l s o i n (39.1) t h a t the C(u1 sf
the iategrautd is any function F(u) a t a l l , and the C t h a t c o w s out on the l e f t w i l l be the F.%',
o f a ftlnetim zero outside the l i g h t cone,
1 have n a t been
much use aE these observatiom.
able t o m&
I n using the simple views h o v e we awl: be careful of one paint.
'Z"he
f u n c t i ~ nwe multiplied Gix,tZ by, G ( x , t ) , wars &fined as l i n s i d e the l i g h t cone
and O outside; h a t i s i t exactly on the l i g b t cow? ordinarily that is such a fsrnalli region t h a t i t &as
T t i s i n d e f i d t e there, no difference in the i n t e g r a l
over space tiw of C ( x , t ) G(x,r) but i n f a c t i t make@ a great mcextaiaty because Gfx,tlhas a 6 function s i n g u l a r i t y j u s t &ere G(x,t) is poorly defined.
We can
correctly straightctn out our Eomulas f o r t h i s e f f e c t i n the following way,
kle
c a l l Ca(q) the a e m p t a r i c C(q) g i v h g just the light-cone 6 s i n g u l a r i t i e s ,
man
C(q)-Ga(q)
has no l i g h t cone s i n g u l a r i t y m d eo equat20n 139.1) f o r e x a w l e , holds
i f G is replaced by C-C,
on both eridee.
Qne c m then s i q l i f y o r rearrmge tfie
equation t a obtain one flke (39.2) but with s a m ~ d d i t i o n a lt e r n r e l a t e d t o the litght cone beethaiviar, A f sr more s u b t l e and useful observation was ~nzadeby Dyson,
i n m a y probless we a l s a know C(qf
He noticed,
O f a r c e r t a i n regions of q space (where
oo incermodiate s t a r a a may be available).
For example, f o r qO
v > O the
lawest s t a t e avall&lle f o r the f i a a l s t a t e x is the pratan i t s e l f , aroving with lasoaentlzla Q (space p a r t a t q ) hence with energy
v
hen-
and f i b w i s e v < + H -
*
&son he@ proved that the necessary a d suf f i c i e n t condf tioton f o r G(q)
veniah i n repion S
S1(q)
to
q0 < S2(q) and t o have a Povrier transform vanish
oufsi4e the l i @ t cone i a t b s t C(q) cam be written tldt
where @ vanfbshr?cr outside a regiaa R, but i s othbtmlsrst a r b i t r a r y ,
The regllon R
i s such t h a t t h e (q-u)2-s2
hyperboloid does not penetrate region S.
That i t i s a s u f f i c i e n t conditian i s easy t o see ( t h e g r e a t d i f f i c u l t y of t h e proof i s t o show i t i s necessary),
We have already seen t h a t the f r e e
p a r t i c l e c o m u t a t o r Cm(x,t) is zero a u t s i d e the l i g h t cone, s o t h e F,T. 2
2
1
(q -m 1 s p ( q
is zero o u t s i d e the l i g h t cone,
by anything, i n parCicular by P
iu-X
But i f C,,(x,t)
of
is m l t i p l i e d
( o r any superposition over U) It i s s t i l l
zero o u t s i d e the l i g h t cone, hence F.T. eiue"~m(n,f)
sgn(qo-uo ) 6 ( ( q - ~ 1 2 - d ) . 2 2 Hence superposing with weight @ ( u , s ) various cases of u and m s2 we g e t
I t i~ easy t o see, by drawing hypczrbolzls t h a t f o r our caee t h e region R
2 o f i n t e g r a t i o n where @(u,s ) does n o t vanish i s a s follows
i n s i d e two canes For a2 >
2
For s2
M!
h0k/4
U
i n s f de region bounded by M -lug/
-
u
h c i d e n t a l f y , t h e s c a t t e r i n g a q f i t u d e t h a t corresponds t o t h i s c m u t a t o r ( w i n g 337.2) becorns
where o (from s e a g u l l s ) is a polynomial i n q u ( f o r the amplitude
replace
LE(qo-aO) by i h ) . One of the d i f f i c u l t i e s I n w i n g the Dyeon representation is t h a t the function @
is n o t unique, m n y can give t h e s a m G(q).
has Been derived (I suspect not: aa rigorously
Another very s i m i l a r representatian asj
Dyaon's) by b s e r , C i f b e r t and
Sudarshm e s p e c i a l l y f o r a problern l i k e eure where C is a function only of t h e two i n v a r i a n t s
QL,
v,
i t is
185
Propertb of Commutatorsin &mefiturn S p c e This is, of course, j u s t Dyeon's representation i f the four vector
U
can be
a s s m d t o have only a time component, t h a t is, only a contponent i n t h e p
P
df r e c t i o n . There is again the expectation t h a t B(a,B) is zero o u t s i d e a more l i m i t e d
-G/Mt o
Leave our expressions i n t a c t , j u s t rentexnbexing If(a,B)
6 for
6
2 H
.
2 M , B only runs from
range i f o
In f a c t i f a
.t.
&/M, but we in
this region of a .
L t is c2ear t h a t if C is zero on t h e l i g h t cone various gradients a r e s o s e v e r a l p o s s i b i l i t i e s e x i s t with d i f f e r e n t i n t e g r a l p w e r s of v [from
&so,
zero up t o any f i n i t e v a l m ) with correrrpanding B functions; h u t we have taken the one appropriate t o 2Wl.
Equivalently we c m w r i t e our f o m with a new
definition f a r o,
I n addition, f o r our c m e , t h e a s y m e t r y i n
tlrtnas
f o r the e o m u t a t o r becorns
t h e property t h a t
T h t ~representation is very nice, and h is prob&ly tyQiq2y deter&ned by HI.
The weaicnera, h w e e r , i s t h a t no physical i n t e r p r e t a t i o n o r ezrpressfon
i n t e m of nratrix e l e m n t s is given f o r h(cr,@), T'hereEore we cannot use any physical i n t u i t i o n I n g w s f r h g haw h should behave? (other than using our h w l e d g e of how M brsheves and trorking bakward), @ay
- such a f w c t i o n f o r h(a,f3)
4.8
m a t 8s t o say we c a m o t a t any s t a g e
too 'krazy" "yeically
behave s o and fro i n t h i s mgion, e t c .
- or
i t ought ta
As we s h a l l see, t h i s i a a s e r i o u s
weakaess i n t h i s carse. We am t u r n t o s e e how h(a,B)
=WC
behave In order t o produce a function
2MWl behavlng a s we expect (see UcCWcs 3l)for l a r g e
F i r s t of a11 we have t h e s e a l i n g l%&t
Bere
= f ( X ) a Emetion of
X
only.
v
+ m.
Eq. (39.7)
V
(we t a b v
2
-q
givemt
O throughout).
.r m, - q 2 / 2 ~ v
-
x finite.
(sgn(v+BM) = I f o r
large v, s i n c e v > M).
Now i f we a s s u m b(a ,B) lnvcalved here, so
v
f a l l s away rapidly enouejrt with a only f i n i t e
c;
are
the
a c m be dropped i n the 6 function and we have
X believe i t was t h i s a r g
t with t h e Dyson retpresentacican which e i t h e r
+
OD
l e d Bjorken t o Iris s c a l i n g hypothesis, o r helped t o confilaa h i e e w p i c i o n e of
its t r u t h , qL >
o
scaling
We have here a ISOR=+ should go i n the p o s i t i v e q 4-q
2
jJe:
2
2
c m n w deternine how the f m c t i o n 2M1(q r v )
s e a l i n g region.
Letting v
+ m,
q2
-r
such t h a t
m
/22Vfv = x' is f f n i t e we have 2Wl =
(D, -xt))da which again s c a l w ; but
even m r e , from the s
NW c m we s e e t h i s rernarkablle r e s u l t from the partan model? equally well derive t h e funetion f o r qZ
; .
Can we
0 by using physical a r g u m ~ t s l We
w i l l explain q u a l i t a t i v e l y haw P t corns etbout. Por p o s i t i v e q2 we muat be concerned i n the c o m a f a t o r (36.1) with the 2 subtracted v a c u w p i e m , I n the vacurn we eaa a e p a i r s , and a t high q jwt
kle a r e concerned with hcrw t h i s p a i r production probability is tllodified by t h e presence of a proton
At f i r s t one oofght think the niodification must c o w throwgIr i n t e r a c t i o n of
187
Proparties of Commutaforsin Momentum Space the newly fnade paxtons with those i n the proton
- in
i n t e r a c t i o n about which
we know l i t t l e except t h a t i t is f i n i t e and i a not involved i n our derivation o f f(x) f o r negative q
2
exclueion principle
.
But a t high energy a: =re important effect: Ss the
- partons c a n o t be m d e i f
the proton ( i f F e d s t a t i a t i w is a s s m d ) . b i l i t y t o produce a the charge is 2/31,
Thus i n our diagram the proba-
t o the l e f t mid u t o the r i g h t a t x ' i s 4 / h U i t s (for Hmever, i t is a l t e r e d a t those x by the chance, u(x), that:
a u parton is present i n the protan. t o (4/9u(x9; i f the
they a r e already pre8ent Sn
G
Thus we have a contribution p r o p o r t i o n d
parton is w v i n g fomard i t is (4/13)~(xV. ZE a d par-
ton p a i r is produeed the probability Ss 119, mdifsed by the chance af f i n a n g
a d partoa already i n the proton, the contribution i s (1/9)d(xV, e t c . ) the e n t i r e contribution is 4/9[u(x8 f&(x")l+
1/9[d(x')+d"(xt) )l
Thus
+ 1/53 [a(x ")+;(X"
)l
o r fep(xt) ss required.
I n =king atstisties,
2
the analysis f o r q positive we aae-d
the quarks obeyad F e d
I f Bose s t a t i s t i c s a r e used i n the f o m l expression of the con-
pLeted surn over s t a t e s (34.1) we kave aoae changes,
F i r s t there is a change i n
s i g n of the F e w exclueion e f f e c t turning i n t o a Base tendency t o increase m i s s i o n beeawe a p a r t i c l e is already present,
sip
iin
men there is =other
chage in
the closed-loop diagram 4 [JJIO> when changing f rorn F e d t o Boae
s t a t i e t S e s [see, f o r exmple, R,P, Fe
, Phys,
756 (1949) 1,
Rev.
On the other Ixmd with the Botle s t a t i s t i c s sign the iaagiaary p a r t of
< O ~ J J ~ Ois> negative and i t cmnat be written ae a sum of positive p r o b a b i l i t i e s C l l
2
, but
1s minus t h a t
SW.
'Fais circurnstmce i s the b w i a of the
X
w u a l proofs of the r e l a t i o n of s p i n md ~ l t a t i s t i e s ;spin one-half p a r t i c l e s c m o t be consftltently gncerpreted ss Bose p a r t i c l a s , incerpre t a t i o n o f Base qmrlcs would
e e 3.
-I.
l%e mst s t r a i g h t f o w a r d
the "'Dxelf Constant" defined f o r the
any hctdrons ctose section waufd have the impassible value -21 3 ,
a%
course a c o w l e t e l y naive i n t e r p r e t a t i o n af quarks a s Bose p a r t i c l e s would a l s o lead t o the wrong r e s u l t t h a t the wave function would be s the i n t e r e h a n p o f two protm&. problem would be? remved.
I f quarks obey para-stetretics both of these
Me c o n t i n w our discussion of equation (39.7) now turning t o the region v
+
-, -q2 f i n i t e .
Here we expect 2W
which we have wrftten a s 2F?tW3
1
t o go a s v times a function of q
2
2Hv g(-q )I(-q
2
)
.
2
I n t h i s region c u r equation
(39.7) reads
a t f i r s t sight, for v
-+
=, we could forget -'-a
i n the 6 and obtain ZW1
9D
h(cr,o)da,
a czcnstant indepndent of q
2
asld evidently i n c o r r e c t ,
-
Elmever,
0 the "ceanstant" would, by (39.3) be f(o) which we know is i n f i n i t e , a s f o r small
% i s suggests t h a t we assume f o r smll 13 chat h ( o , ~ ) is singular.
ajx.
f(x)
X,
Sllbstitutfng i n the Antegral above gives
f o r small 8 ,
Thus
gives t h e -q g(-
2
) a s -q
2 2
dewndence of the t o t a l - v i r t u a l photon cross s e c t i o n , g e t s l a r g e approache
Finally we t u r n t o region 111: kept f i n i t e .
of MH -; '
There we expect 2MWl
only.
(~:-d)
v
+
-, large
-q
2
but
m
2Hv
- (-g 2 3
2 2 (-q2)-yh(~x -M )ZHv where h i s a fvncrion
The ( q q 2 ) ~is t y p i f i e d by t h e e l a s t i c s c a t t e r i n g (H:-M~
and y i n perhaps 4 o r 5. h
Tke I&&tof
goes ss A(H:-M~I'-'.
Far n near 1, f(n) A ~ ( l - x ) y - l and f o r l a r g e M:+~~
0)
Properties Ilf Cczmmuratavs in Nortleii;tttnSpace I n t h i s region our equation (39. '7) reads
dg &(H~-M~+~MV(B-X)-B)~(~,B>
Again a "natural" gvess (neglect
M:-$*
(40.1)
r e l a t i v e t o 2Mv(~-l) in the 6 function)
OJ
l e a d s t o t h e wmng answer:
do h (a ,l),
2Wl
a c a a s t a n t indepenrtenr of
JO But again we can f i x i t up by a more eomplicared guess f o r the behavior
*$-:M
of h(o,B) near B = I.
-
X
y
Because, from (39.9
do h(a,x)
$8
zero a8
X
+
1 (like
Therefore one way t o g e t t h e answer would bc t o aesume t h a t h(o,B)
goes t o zero near B
I, For e m q l e suppose
D(o) (l-Bjy-'
h(a,8)
D(a)da
A,
wf(*l
(Xf we =sum y &pen& on a we c m be m r e general and
g e t n e a r l y t h e s a w f i n a l r e s u l t except: wSth e o m slow logarithmic dependence@, which &ght i n f a c t be &ere i n t h i s region, eweriarrzntally) X-@
.
This is not: k s r m very w e l l
S u b s t i t u t i n g i n t o (4a.l) and i n t e g r a t i n g ( t h e B f w c t i o n s a y s
2 2 (Hx -M -a)/2Mv) we g a t
hence of t h e c o r r e c t farm i f ( c a l$l-:H
= 13
X
%is appears a t f i r s t s a t i s f a c t o r y ; h w i l l hawe the r i g h t m p p t o t i c behavfor hiy-' f o r l a r g e h i f D(o) f e l l s o f f fast enough with
U,
and
mwever, we w i l l agaLn be fooled i n our q u a l i t a t i v e expectations f o r h(X) fro= t h i s equrztion i f
W@
suppose t h a t D(U) is a sinrple funetion,
llhe operation of
i n t e g r a t i o n i n ( 4 0 . 3 ) is a very poverful sraoothing operation; f a r no siarpXf?
D(@) would we be l e a d t o guess what we k n w i s t r u e
- t h a t h ( ~ )shows a s e r i e s
of peab and v a l l e y s f o r s m l l h , t h e r e s o n a c e p e a s ,
I t f s n o t t h a t (40.3)
aays resonance p e a b a r e inqpossible
- i t is t h a t
( 4 0 . 3 ) plus a @-ss t h a t D(#)
is not too c o w l i c a t e d (i.e. does not vary ia a rapid and peculiar way) f a i l s t o do so. D(A)
To s e e t h i s take the case
g1
dS
y
4 and note t h a t (lr0,3) can be solved as
(40.4)
h(&)
J
The fourth d e r i v a t i v e of a reaonmce o s c i l l a t e s i n a very s p e c i a l nrmner
.
(For
a mueh more i n t e l l i g e n t way t o &a1 with t h e resonance regfan s e e Cornwall, Corrigan and Norton, Phys, Rev,
536, (l"31)
a d the next section.)
r i z e t h i s i n v e s t i g a t i o n , the Deser, Gilbert, fudarslhan representation
is useful a s a f o m l t o o l t o g e t dispersion r e l a t i o n s , e t c .
It is, eis of course
i t ought t o be, cs;pabfe of representing what we know of the experimental d a t a
with s o m function h(o,B). utility
- by
But i t i s disappointing i n t h a t its p r e d i c t i v e
-
gwasine, ""reasonable" hbrsv%or f o r h(~r,t?;) is not very g r e a t f i r s t
becausie we have no physical. p i c t u r e of what the function f s , lad second I t s e e m l i k e a function t h a t behaves I n a way a s cornglicated. a s ( I f n o t = r e
coqlicated
&an) the data i t s e l f .
It s e e m t h a t h ( # , @ ) Is n o t , i n f a c t , a function t h a t has much d i r e c t physical s i g n i f i c a n c e md is purely an a r t i f i c i a l expression i n a c e r t a i n m t h e m t i c c r l form of t h e f a c t t h a t the c a m t a t o r vmgsbes outside the l & t COne * It h g h t pay t o try t o Elind another representation of t h i s f a c t i n which
the k e r n e l Eunctions may have s o w d i r e c t physical representation,
Scattering i n the Deser, G i l b e r t , Sudarshan representation Given the c o m a t a t o r i n any f o m we c m find the s c a t t e r i n g amplitude
2
T(q ,v) correspandfng t o i t by w i n g the dispersion r e l a t i o n (37.2) , f t is e a y t o s e e by d i r e c t s u b s t i t u t i o n of (39.7) t h a t t h e s c a t t e r i n g kThich has 2 t h e rLght s p i n depsndence (i.e. 6uv q -q Irq v p a r t ) t o corxespond t o 2 N 1 ( c a l l i t
191
Properties af Commutators in Momentum Space This is t h e causal m p l i t u d e c o n v ~ n t i o n ,i n the Feynmn convention t h e 2 The "eeagufls" a r e a polynomfal i n q ,v,
i e sgn(v+MB) is replaced siarply by i t s .
2 This can be r e a d i l y v e r i f i e d ( s i w 1 y n o t i c e t h a t rsgn(vM8)6(q +;?Hvfl*)
-
s~R(v+MB)
2 2 2 112 where we have w r i t t e n E = +(G+M B +q ) ).
~ @ * N B ) ~ - E ~ )(6(v+MB-E)-6(v+MB+E))/ZE
& t e 1: Bftcauee we a r e expressing Tl
8bi
an i n t e g r a l with a v f a c t o r times t h e
i n t e g r a l we have r e a l l y been working with W/v and Tlv; but there is a pole i n v(%
+
0 as v
+
To avoid t h l s use i n our dispersion r e l a t i o n
0 but Tl does n o t ) ,
V1/v t o g e t fT1(q
2
,v)-T1(4
2
,O))/v.
Note 2: X t is evident Eroar (40.5) and (4Q.B) t h a t although derived front the
P
dispersion r e l a t i o n PR
V
f o r fixed Q {space p a r t of q) they a l s o s a t i s f y a
dispersion r e l a t i o n i n v f o r fixed q
2
2 (for q
Q) (a one@ s d t r a e t e d dispersion
relation)
2 ( h s d n g =a eeagulla beyond a conatcurt term absorbed i n Tl ( q ,Q).
This c m be
seen by d i r e c t s u b s t i t u t i o n of (40.6) i n t o (4Q.6a), relnembering t h a t W ( ~ ~ , - V =. ) 2
-W(q , v t ) , i.e.
t h a t h(cr,B) m-h(a,-S).
Consider
everything i s c l e a r except t h e icegrctft should be icsgn(*M6). work with v
Q (T is s ~ e t r i l c i n
V).
Then f o r q 2
Let us choose t o
O t h e r e i@ no pole i n
( s 2 + 2 ~ ~ v a + i c ) - ' i f fl is negative, the s i p of i c is a r b i t r a r y ; we may replace by sgn(v.t.4il8).
I f B > 0, sgnB
(For v negative the s i g n reversea.)
-b
= sgn(*m)
Itence we have
s o i t is s t i l l , c o r r e c t ,
I92
Photon-Hdrsn Interactions
Wl/vp is a y m e t r i c s o we? c m s e t t h e range front Q t o l&u
'- ( v + i ~ ))
-
2 -h/( - v ' ~ + ( v + ~ c ))
.
with l/(v'-(v+ik))
.t
F r w t h i s equation (40.6a) follows.
For W which c o n v e r p e Easter we expect a corresponding uneubtracred 2
d%apersion r e l a t i o n
2
for q
W2 (q , v ' )
For qZ
Q these a r e of course t h e Kronig-Kramers
2
4
.
O
formula9 r e l a t i n g r e a l and
i m g i n a r y p a r t s of the index of r e f r a c t i o n ( f o w a r d l i g h t s c a t t e r i n g ) which
is necessary i f s i g n s l s a r e not t a corn out before they go i n t o a block of s c a t t e r i n g nratsrial,
We t r y now once again (msucc;essFully a s i t w i l l turn a u t ) t o t r y t o oBtktin s o w expected l i d t a t i m s on 2MWI b e c a w e we kaow i t is a caueaf (zero outside the l i g h t cone i n space) c m u t a t a r , v a l i d not only f o r l a r g e
V
Ttris time we s h a l l use behavior
For e x a q l e we h o w f o r t h e
but f o r my xeglon.
e l a s t i c s c a t t e r i n g , i f t h e proton were a point &arge we would have f o r v > 0, 2 2W1 Z H ~ 6 ( ( p + q ) ~ - d )= 2Hv6(q +ZHv). (To g e t the c o r r e c t s
-
p o s i t i v e and negative t h i s can be w r i t t a n = r e 2 6 ( q +2m?rv)
- sgn(v-M)S(q
2
-2Mv)).
2 Mv(sgnCv+M)
c o r r e c t l y a s 2Wl
This is o b d o u s l y cauaal
- as
W@
have seen
-
Ear i t coaes from perturbation theory o f fielcls. Now in the r e a l world t h i s is a d t i p l i e d by a f a c t o r ( t h e square of t h e 2 e l s e t i c form f a c t o r ) , a f a c t i o n of qZ, say f (q 1 which f e l l s o f f gradually. 2 f o r negative q , from q2
-
Q, to behave a s (_q2)-y f o r l a r g e -q
2
.
One would
expect such m d u l a t i a n of the f w c t i o n expected f a r point-like particles r o represent some kind of s m a r i a g of t h e point and t o perhaps irayrly a lack of causality
-a
lack which must be balanced by c o r r e c t contributions from t e w
o f f t h e e l a s t i c mass s h a l l (correeponding t o o t h e r resanances, e t c ) .
qlhue, c m
we n o t tnake so= requirelnents of behavfor i n o t h e r relZions, especially non-
2 2 e l a s t i c regions by our knowledge? of f ( q ) f o r negative q ?
trnfortunately n o t
(aa Cornwall, Corrigan and Mortm, (Phys, Rev, I)3 537 (1971)) show) i t i s possible t o s t a y m t h e e l a s t i c w s s h e l l fox negative q
2
and only a f t e r the
2 behavior f o r p o s i t i v e qZ and s t i l l arrange v i r t u a l l y any f f q ) which f a l l s o f f
Properties of Commutatorsin, Momentum Space Eafrly smoothly.
2
I n p a r t i c u l a r i f f ( q ) can be w r i t t e n i n the f o m
01
f o r negative qZ, i t can b e done.
W e can s e e why t h i s i s , and a l s o g e t a
b e t t e r physical f e e l f o r constructing causal functions by the following conI t is e m l e s t t o deal with the s c a t t e r i n g Emctioas T, fox these
siderations.
t o be carnal they must be t h e R u r i e r t r a n s f o m of a retarded c o m u t a t o r and thus zero outside a. fortsard l i g h t cone, its F.T.
Let a ( x , t ) he such a function and A(q)
and l e t b(x,t) be another such fmctlon,B(qj its F.T.
Thus the con-
volution of a(x, t ) and b ( x , ~ )is obviously, by g e o e t r y , such a function (zero outsirfe Eomard l i g h t c m e ) and hence its P,T.
o r s i m l y A(q)B(q) is again
s a t i s f a c t o r y (a clausal s c a t t e r i n g function). We s e e t h a t cc&inatioas by arultiplieation (and addition of causal s c a t t e r i n g
The s h p l e s t causal s c a t t e r i n g
fuaetians a r e causal s c a t t e r i n g functions, function is
lq2 -
m
2
+ ic
(40.82
sgn q4]-1
We can generalize t h i s (multiply by eiu*' vector u
i n space time) t o find f o r any four-
that
is a c a u s a l function,
((qe)2-g+ i c
Thus the e l a s t i c s c a t t e r i n g function f o r point p a r t i c l e s
sgn( +M)I-'
(40 .IQ)
evidentfg i a causal ( a s we11 a s what you g e t by p u t t i n g -q f o r q).
tJe can
multiply t h i s by an expression l i k e (40.81, we see iq2-m2+ic
i s causal.
sgn v]-'
f(q+pjZ-d + i r sga(+~>j-'
This i s t r u e f o r any
m"
12 and hence arty s u p e r p o s i t i a a with v e i g h t
p ( u ) d p is, s o a s c a t t e r i n g amplitude l i k e (note ( q - ) ' d
is, by i t s e l f causal.
To g e t t h e c o r r e c t s
try for
= q2+2~\3
V
one need only add the
corresponding expression with u replacetd by -v; we w i l l suppose It is always; d w e awl n o t w r i t e i t : e x p l i c i t l y .
[you olight f i a d i t physically more s a t i s f a c t o r y and e a s i e r t o h t e r p r e t i f the f a c t o r is considered ss a form f a c t o r due t o v i r t u a l p a r t i c l e s l i k e a t each vertex,
p's
"Coae a t one v e r t e x would contribute a f a c t o r
CD.
&ere
id
is t h e mass squared of t h e v i r t u a l p a r t i c l e and v znea-slurerr t h e weight
of i t s contribution; g i s causal, (g(:]12,
We would then exlpect t o znultiply (40.10) by
one f a c t o r f o r each coupling; t h e r e s u l t would s t i l l be causal,
and possibly physically e a s i e r t o understand.) To g e t ul/v ( c a m a t a t o r ) from (40.11) we need only take i t s inraginary parC
In t h e region q2
G
O t h e l a s t term disappears and we a r e j u s t l e f t with
the e l a s t i c point charge s c a t t e r i n g a d t i p l i e d by a factor: f (g 2 ) given by (40.7) I t is disappointing t h a t t h e r e s t r i c t i o n s of c a u s a l i t y do a o t a f f e c t our
region of exper%aental observation p r a c t i c e t o g e t p(u)
even i f f a i r l y exact, knowledge of P(&
2
((1
< 02, F u r t h e m r e , i t w i l l be hard i n
exactly from Lnwledge o f t h e i n t e g r a l (-q2=)'Q
It Is n o t easy t o reverse the i n t e g r a l I n t o accurate
mless physical axgumnts (P dornlnance e t c .) e r e a v a i l a b l e .
Thus again we a r e t h r a m back i n t h i g p r o b l m t o understand the pracess physically ; the mthentatical properties da not help a s much a@we had hoped. 2
(We know t h a t i f f (9 ) f a l l s f a s t e r than l/$, nay a s (l/q214; then we
1
can conclude, by (4Q.14), t h a t
p(p)du
0. Such a r e l a t i o n is c a l l e d a
2 2 superconvergence r e l a t i o n -£(Q ) converges f o r l a r g e Q more rapidly Chan
.
199 .
Properriw af;Commutators in Momentum S p c e ttre f o m would suggest.
Again s l n e e f f a l l s ae (1/Q 2 ) 4 we can concjlude that.
wnp(w)dv vanish f o r n 2 2 2 expressed a s f g t q 1) with g(q 1 =
1
0, 1, 2 ,
kbternativsly, f can be
Lecture 4 1 The i d e s dfseussed a t the end of the previous l e c t u r e is i m e d i a t e l y genelcalizrible t a s c a t t e r i n g through an f a t e r ~ l e d i a t eresonance, say of mass Iv&2 , = h.
c a l l E?M-:
A point coupling would give s c a t t e r i n g a s (q 2+2Mv -h
We can m d t i p l g by m y form f a c t o r , say with a p(h,w).
+ ic
sgn(v+M)) -l.
We; are thus representing
things by a e m of a charnel rczsonances each of which has a square f o m f a c t o r
Tlre t o t a l s c a t t e r i n g fronn a l l t h i s
(S
c b a e 1 resanmce representation)
would t-hen be
The W2 which goes with t h i s (the i m g i n a r y p a r t of ?/v)
For q
2
c
0 O t h e f a s t t e r n vanishes end v: have f o r v
0 a suparpcaitlon of contr%butlons f a r each e f f e c t i v e
Bave we not gone i n a c q l e t e c i r e l e ?
3
is
O slaply
with a f o m f a c t o r
Ckzr o r i g i n a l expression giving
196
Photon-Hadron Interactions
(except f o r photon p o l a r i z a t i o n f a c t o r s ) W was of t h e f o w l
This looks j u s t l i k e (41.4).
2 The 6 is of course 6(q +~Mv-X) s o we i n t e r p r e t
f(i, -q2) a s
S
Z~G~/J(~)/X>~~ d over s t a t e s of
B
given massZ =
$+
A.
(At f i r s t t h i s would seem t o meke a function of Q ~ ,t h e space p a r t of the momentwn t r a n s f e r squared, i n s t e a d of qZ = v2 -9 2 ; but i t is t h e same because the 6 f m c t i o n r e l a t e s v t o 'Q
and i t can be e q r e s a e d e i t h e r way.)
63e s e e
2
f ( h , -q ) must be p o s i t i v e f o r -q2 > 0 ; of course, s i n c e the lowest e l a a r i c
Mx = EI (X = O) is separated from the eontinuutn a t Mx =
2 (hth. = 2 % M n ) ,
The function f (h, q2) and hence p (A, p) w i l l have a 6 (A)
cont riburion and a f t e r
t h a t the i n t e g r a l i n (41.3) w i l l s t a r t a t an I n e l a s t i c threshold hth t o *, We m y noE have gone i n a coerplete c t r c l e ,
F i r s t we now know (a) t h a t the
2
weight f a c t o r f ( h, -4 ) mst be e x p r e s s i b l e i n t h e form ((31.1) a d (b) we know what t h e f m c t i o n looks l i k e i n t h e experimentally unavailable region +q2> O (see 41.3) and, of course, t h e s c a t t e r i n g Emetion
(41.2) t h a t goes with i t ,
But do we know t h i s ?
IJe only proved t h a t the f o m (111.2) was causal; we have n o t proven t h a t every c a r n a l function must be expressfile as (41.2) and a t the m m n t we do n o t Chink we can. Since (41.2) i s causal i t mst be expressible i n t h e BGS form (39.6).
Qne
way t o do t h i s (suggested by Cornwall, Corrigan and Norton, Phys. Rev. I)3 536 (19711) is t o co&ine dens&aatora ( f t is e a s i e r t o use the Fegnma amplitudes replacing
t o gat a s i n g l e denorainator.
Thus we e a l 1 a =h@+y(1-8) m d i n t e g r a t e on a by
p a r t s t o prove 00
00
Of course t h i s can now be simplified.
I f frotn b(o,B2 we could always fSnd a
Properties of Cornmufatorsin Momentirr?~ Space r>(h,p) which would give t h i s h we would have a proof ( a s s d n g the DES repres e n t a t i o n is proved) t h a t (41.2) is a l s o a necessary f o m . cmnot be done a d
We suspect i t
i r i s poBBible t h a t (41,2), although very physical, is not
the complete expression; but o t h e r f o r m (other types of d i a g r a m o t h e r than e channels) &@fithave t o be added t o sentation,
it
- o r "abaonels"
t o g e t a c e w l e t e repre-
This is a good problem.
W for a l l q
2
i n t e r n of W f o r q
2
61
We have a f o m t h a t s u g p s t s t h e qaestion a s t o whether knowledge of the f a c t t h a t W is causal, and knowledge of
r. t o f i n d i t f a r a l l q2, v.
irs value f o r negative g' only, enables
We a r e nor now concerned with t h e p r a c t i c a l f a c t
2
t h a t knowledge; of f ( h , -q ) t o a ggven l i m i t e d e x p e r i m n t a l accuracy does n o t p e d t discovering p (?,,p) 2
f(A, -q ) f o r q2 > 0.
very well. and does n o t m t h e m t i c a l l y alone d e f i n e
Rather we suppose W
2 p e r f e c t l y koom f o r q < O and ask
f
t o what e x t e n t T is defined e v e r M e r c l , This has g r e a t i n t e r e s t f o r there a r e q u a n t i t i e s , such a s e l e c t r o ~ ~ l a g n e t i e s e l f energies, which can be defined I n t e r n o f T as i n t e g r a l s perhaps (e.g. 2 4 T(q ) d q/q2).
I f T were uniquely determined by W i n the ertperimentally
a c c e s s i b l e region we might search f o r expressions f o r these I n t e g r a l s d i r e c t l y i n t e r n of t h i s W a t q Given W(q
2
,V)
2
Q.
(Gottinghsarn farraula f o r s e l f e n e r ~ , )
2 i n the a v a i l a b l e region f-moraftntuar l i k e q 1 how m i q u e i s
2 W(q ,v) i n t h e energy-like region?
2 2 let Wa(q ,v) and Wb (q ,v) be two c a u s a l
2 functions i d e n t i c a l i n t h e q .r Q region,
t h e i r difference W
Wa
What form must i t have?
- Wb.
Let
2
Wd(q ,v)
m
study what is p o s s i b k f o r
O f o r q Z < O and hence is causal.
We s e e i m d i a t e l y
sgnv6(q2-m2) is such a function.
W
t r need nor be zero because
To g e t the most general f o m we use wnon's
theorem rJkridir says Caince i t is c a w a l ) t h a t i t mwt be e x p r e s s i b l e fn t h e fom
where @ is non-zero i n s i d e t h e region where the hyperboloid ( q - u ~ ~ mdoes s ~ not p e n e t r a t e t h e region S of q space where we know Wd vimishes.
S Le t h e
e n t i r e q2 < O region.
It is seen that every hyperbolofd cute S unless
3 % ~the m s t general Earn f o r
-
U
0.
% is
er,
*ere:
by definition
#(X)
= O f o r x < O,
Thus complete bowledge of W ~ ( ~ ' , Vi n) the experimentally available 2
q c O region p e m i t s defini tion of kfl e v e w h e r e within an a r b i t r a r y constant, 2 2 (indtependeat o f v) f m c t i o n of q f o r positive q , T f a d e t e d n e d a l s o up
t o the function
S t r i c t l y t h i s s x g w n t is not valid, gradients of S fmctfons i n space time could be vled i n @son's theorem.
Hore correctly, a t each positive qZ the
f m c t i o n W is d e t e M n e d bp the bebavior of W{q 2 ,v) f o r q2
4
O up t o an mknom
2 p o l p o d r a l i n v, the coefficients of which a r e a r b i t r a r y functions of q
.
Physical argmenta about large v as~raptoticbehavior would have t o be wed t o li&t the degree of these p o l p o a a l s .
The scaling lidt f o r
t of the farm vQl{q f a c t that W is odd t e l l s us that (41.7) a u ~ be rurd that T1 is dete-aed
up t o a function of q
fmetiou is not zero f o r q2 by W.
4
2
0 and the
X
2
1 (for v
&vcm by (41.8).
7
0)
Note tt?ls
O so Tl i a not completely deternlned f o r q
2
O
This agrees with the dispersion r e s u l t (40,6a) where a subtraction had
to be made aad m a r b i t r a e f m e t i o a IT1@
2
,0)) l e f t u n b t e w n e d .
Electromagnetic Se
We now diacuss a flew places where knowledp of W o u l d h e l p ua caJeulare the e l e c t m d p a & c p r o p e r t i e s of protons and neutrons,
Since we have masured, i n W,
t h e eleetroanagnetic coupling of protons we nd.@t herpe t o use t h e a x p e r i m n t a l knmledge t o d e t e w n e the electromagnetic energy of proton and neutron and t h e i r w a s u r e d difference, t o comare t o e x p e r i m n t ,
Aa we s h a l l s e e t h e hope
is, a t present, f r u s t r a t e d because knmledge of W f o r q2
O where i t is avail-
able is not q u l t e enough t o d e t e d n e t h e e l e c t r o m g n e t i c coupling e v e r p h e r e (T)
- the a r b i t r a r y f w c t i o n of Slnce the
rfetemtned,
EmstJer
+(a) m a t t o n e d i n the prevliom l e c t u r e is not
f o r the p-n msa difference Le only one a m b e r we
a r e fruiirtrated w t l l we Can find a t h e o r e t i c a l o r experimmtel way t o deternine T uniquely
- f o r e ~ a l a p l et o
2 deternine Tl(q ,Q) of t h e dfsperslon r e l a t i o n (40.6a)
2 f o r q .: 8. Before we discuss t h i s by f o m l mathemtics l e t As La wefl k n m , the s e l f
micallg.
W
see what we can expect,
mss of a point spSn 112 p a r t i c l e diverges l a g a r i t h -
2 For the e l e c t r o n b(m ) = m2
Zn i n
J
where A i a some upper cut o f f
f o r e l e c t r a d y a a d c s i f we replace the photon propagator
This bra
2
A s i @ l a r i n f i n i t y f o r the AM
i a experilnentally undefinable,
m p a t i c f o r t h e proton xrould a l s o '""proton
- by i t s e l f
electro-
not be observilble, but
'""neutron
is, i n f a c t , observable and is nzeasured t o 5 s i g n i f i c a n t f i g u r e s .
calculate i t
2
- o r even
s e e what order of arapitude i t i s ?
-
Can we
f o r e x m p l e does
our present theory say i t must be i n f i n i t e ? As long a s t h e electromagnetic i n t e r a c t i o n of t h e nucleons were v s t e r i o u s
- but now t h a t we have so=
one could always sag anything could happen
knwledige
of them we must tursver m r e s p e c i f i c a l l y , The divergence occurs from high frequeaciers and a t f i r s t it was thought the hadrons d g h t be s o f t a t high frequency and t h e electrorrtagnetic s e l f energy convergent.
But now we know f o r i n e l a s t i c s c a t t e r i n g a t l e a a t they look l i k e they of p a i n t - l i k e c o m t i t u e n t s .
a r e nra&
energy must: dfvergel
Qf course, the proton could diverge and the neutron also-
only the difference need conwrge
Wlp-Win
Does t h i s point-like behavior mean t h e
- but
t h e d i f f e r e n c e i n point-like s t r u c t u r e i s
is a l s o f i n i t e and point-like i n the s c a l i n g l i m i t .
I t is t h e coincidence
of the &-function of t h e photon prepagator aad of the e l e c t r o n propagator which &es
t h e divergent s e l f energy
- and natir we s e e t h e protonI
t h e neutron, and
proton minus neutron a l l have s i n g u l a r behavkor an the l i g h t cone s o i t a t f i r s t looks l i k e dfvergenw i s inevAt&le, Let us estimate haw much,
Since we a r e d i ~ c a s ~ ~ ti hneg h i & energ?r b e h a d o r
we can use t h e i d e a t h a t protoampartons,
Clearly t h e s e l f e n e r e d i a g r m of
rnost i w o r t a n c e a t high energy i n the s c a l i n g lidt a r e when a photon i s e ~ t t e d 2 and absorbed by the same parton therefore, ss far a s t h e divergttnt (Rn h )
-
p a r t is concerned i t i s a s i f each perton g e t s a. s h i f t i n mss p r a p o r t i o n a l t o 2 rn?eiZ~nh /mi'
&mi2
where ei, mi a r e t h e charge and mass of a parton.
m c h does t h i s change t h e mss of t h e proton? acight t r y t o c a l c u l a t e t h e change i n E the changes i n e-p 2
'nuclean
2px
-C
2
blil partons x
We caslnot honestly awe One
- PZ = M2/2P by c a l c u l a t i n g the sum of
of each parton, -=a
Hw
We would f i n d
PP(,)gnh2dK
There a r e objections t o t h i s (by the way i t i e a l s o even m r e divergent since f
ea
l f x and the x i n t e g r a l cannot be c a r r i e d t o 0).
The energy is n o t
Electromagnetic Self Energy j u s t t h e sum a f the k i n e t i c energiers of t h e partana, interaction energies a w n & the partons a r e a l s o involved,
%is Is r e f l e c t e d i n t h e dangerous Eomula con-
t a i n i a g t h e mms squared of a partan 2A
up t o now.
- a thing we s a i d was meaningless t o
The d i e t r i b u t i o a of partclns I s r changed h f i r s t order a l s o s o
2
(Et d g h t be thou&t we a r e
t h e t o t a l ro change Is not c o r r e c t l y evaluated, r i g h t t o take wave funetion
$I
1 AV!$I>
- but
of the Lagrangian
AV
- in
fox t h e perturbation on t h e B d l t a n i a n w i n g t h e o l d 2
hro a*a i s not t h e change f n the Wamiltonian, only
the Haaltoniitn there are
o t h e r e f f e c t s on the
i n t e r a c t i o n t e r n throu&h l/6Eactsrs e t c . , s o we? have nob computed t h e e f f e c t of t h e perturbation c o r r e c t l y ,) It may well be t h a t mfZ
0, o r is e f f e c t i v e l y zero (a suggestion t o me
due t o Zachariasen) due t o i n e r a c t i o n s (or ae a nnatter of p r i n c i p l e ) s o t h e 2 logarithmically divergent perturbations bi " l p n d l n g on RnA n e w r a r i s e , m y be so, but we do not know,
Thie
We mst t u r n t o w r e d e t a i l e d qurtntitativt?
analyaesl i f we a r e t o t r y t o study ?&is
further.
E l e c t r o w g n e t i s mm8 s h l f t s come from t h e emission a d r e i b b s ~ r p t iof ~~
qED f e l l us i t is of t h e photon.
P / f JP (2) J U ( l ) lT fp>6+(s21Z)d~ where 6+(s212) is t h e propagator
Hence by trzkiag Fouxier t r m s f a r t n
Me, have w r i t t e n
aa t h a t
T M LJ
42 ( T ~ +([l ~ Z / q Z l ~ 2 w ~ 1 1 / 4 )
The expression i n square brackets has the imaginary p a r t (l-v 2 /q2 )W2-Wl which i s t h e contribution froon l o n g i t u d i a a l photoas,
Zf partons a r e s p i n 1/22 i t
f a l l s f a s t e r with v thao does Tl whose imsginary p a r t W1 s i n p l y s c a l e s t o f ( x )
i n t h e Bjorken l i m i t .
Ue w i l l hereaf t e r just write T f o r T1+l (1-v 2 /q2) T -T ) / 4 2 l
and suppose the imaginary p a r t W
2 2 Wl+[l-v f q )W2-W4/6 s c a l e s t o f(x) i n the
Bjorken l i M t .
h c t u r e 43
h we have seen we can write f o r the e l e c t r o a p e t i c w s e e f f e c t
e r e OT
m
TUll
.
We must i n t e g r a t e t h i s over a l l q
2
but we have seen T is
determined by i t s behavior f o r qZ ' O (where experiment can say eoaething about i t ) sa i t is possible that mybe (43.1) can be written I n t e r n of T for q2
O only. How t h i s can i n f a c t be d m e
was shown by CottIngham.
Be showed
that i n the four-dimeasianal i n t e g r a l the contour on v could be &=gad passing any s i n g u l a r i t i e s ) Erm the r e a l l i n e v axis v
iw, w =
-oo
to
we can then write d4q
Now replace
-(U
2
2
-oo
to
(hshaw how i t Is done l a t e r ,)
a?,
dw2n9d~'
) by {-q
2
1,
,
q2
v2q2
m
(without
t o the imginary Suppose i t is t r u e ,
-u2-Q2
Q =
t o get
(Cot tin&=
formula)
Nw the quantify is a l l right f o r -qZb u t is completely unphysfcal. f o r v is
laaginary.
Me can define i t however by a n a l y t i c continuation by our disparsfon
r e l a t i o n {SO,ba), settXng
V
iw
We can carry out the i n t e g r a l s on u t o get
This then succeeds i n g e t t i n g an e x p l i c i t f o m u l a f o r the s e l f energy in f e r n of wtq2,v) i n a region accessible t a experiment. 2
by the unknam term T(q ,O)
However, we a r e f r u s t r a t e d
.
2 Z t i s e s s e n t i a l t o kn&w somthing about T(q (0) if we a r e t o be a b l e even t o deternine ðer the s e l f energy divergee.
Let us look f i r s t a t the c s n t r i -
bution f r m t h e eecand t e r n i n ((43.5) i n the e c a l i ~ gregion fraxn whlch divergences could c o m e Put -q2 = ZMvx and consider W a s a fvnetion of x and v, W(..") Tor l a r g e v cmverges t o the lMt f(x),
dx vdv
-1
- 1;
vhieh
"&e t e r n becotlles
utx,v>
o r f o r l a r g e v, where t h e square bracket f s -(2&/v)
2
14 we g e t
xf ( X ) dx, the
The v i n t e g r a l diverges logsritharically with coefficient
f r a e t ion
of trrcmentma c a r r i e d by the charged partons each wei@ed by the b a r g e squared, 2 2 Of course a cut-off of electromagnetkm is used i n (43,5), d ( q )/(+I ) is replaced by This provides a cut-off f o r our v i n t e g r a l (of order f / 2 & ) diverging as ko A
2
so the parr
f
has a eoef f i c i e n t zf(X) h. 2
However, t h e other t e r . in T(q $ 0 ) could a l s o produce a fin A' term f f i t only f a l l s aa C/(+ 2 ) a s -q2 -, G*,
2
(Zf T(q ,O)
cei(s)ds/(q
2
44
2
1 this C
1,
Z t is therefore possible t h a t these divergences from 1: ernd W cancel and t h a t the
s e l f energy (or a t l e a ~ tthe protm-neuf ron dLf ference) is f i a i t e and calculable, m e r e a r e two viesrs we c o d d take a t present,
We know of course the p*
=ss difference converges so Let us t a l k about T snd W f o r the p-n dlfferenca a t least.
In p r i n c i p l e T could be determined bp experfirnent and is therefore defined
phyaicall*y, e i t h e r of the f ollowing could happen. (a)
Equation (43.5) with t h i s T s t i l l ggves a logarithmic divergence, The re-ason is t h a t our theories a r e wrong f o r high energy; t h i s and the e l e c t r o m g n e t i c s e l f m e r g y calculatLon of QED a r e both wrong and w l l l both be fixed by t h e s a m modification of r e l a t i v i s t i c quantum mechanics a t high energ?t e o m day s o be found,
Cb)
The T is such t h a t the i n t e g r a l s converge and agree with t h e experim n t a l mas8 d i f f e r e n c e s
(c)
2
The TCq ,O) ( f o r q
2
G
.
0) is i n f a c t n o t p r e c i s e l y definable experimentally,
t h a t i t Is t o soroe e x t e n t a r b i t r a r y
- hence
that, our theory is not a b l e
t o c a l c u l a t e t h i s =ss d i f f e r e n c e p r e c i s e l y and rnust be " r e n o m 1 i z e d e t ' 1 believe i n t h i s case, i f partons a r e quarks only one r e n o m l i z a t i o n
constant, corresponding t a the e l e c t r o m ~ e t i c=ss
difference of u
and d quarks, would s u f f i c e t o make a l l the hadron s e l f e n e r m d i f f e r e n c e s converge simultaneously, As Zachariasen has suggested t o rae, t h e b e s t (.roost l i m i t i n g ) t h i n g t o
do today IS t o aseum (b] is t r u e , and may have p r e d i c t i v e value, l e a r n t h a t (a) must be s s .
This puts r e s t r i c t i o n s on possible t h e o r i e s
Xf i t leads t o a paradox o r inconsistency we
Zachariasen has shown t h a t a l l w i l l be convergent
i f t h e equal time c o w u t a t o r o f J and =del
3 vanishes
[J
P'
iy] 0. I n
the q u a r t
i t c o r ~ s g o a d st o quarks having zero r e s t =ss.
Z believe, t h i s Is a very good problem t o work an.
I myself haven"
found
enough t i e while preparing theae notes t o analyze i t i n a more elenensary o r c l e a r fashion f o r you,
2 Now can we ever hope t o g e t a t T(q ,0) experimentally o r t h e o r e t i c a l l y ?
Xt is t h e forward s c a t t e r i n g amplitude on a proton of a v i r t u a l photon of 2 mass -q
.
It would be iavolved i n a wo*lectron
forward s c a t t e r i n g e+e+p
-+
e++p v i a t h e dlagram
R i s i s not aa expergmnt t h a t can be done,
2 But knwledge of T(q ,v) a n p h e r e
EIecrromagnetie Self Etiergr would be of a s s i s t a n c e because the dispersioa r e l a t i o n s can be used t o convert i t t o knowledge of T(q
2
,Q); s t i f f no experiment suggests i t s e l f .
It is i n t e r e s t i n g t h a t T(O,O)
can be obtained t h e o r e t i c a l l y
Coapton s c a t t e r i n g from a proton ofIP a r e a l (on s h e l l ) photon,
- the forward
For Q
-+
0, v
-+
O
we have vary long wave length slow f i e l d s to whsctr, of course, the proton looks t o be simply a raassivr: point charge of =ss
M,
It s c a t t e r s then as i t would
clczssicslly [or man-rela t l v i s t l c a l l y v i a Schrddinger equation from t h e
Q2 +
-b
AeG
tern) thus (called Ray1eigh s c a t t e r i n g ) It glves 2 T(O,O) m
- %.
NOTE: Wow to r o t a t e contour to get Gottingkara f o m l a ; Use WS t e p r e s e n t a t i a n f o r T
Call E
P
mid note t h e slingufarities a r e a t v
F
Since E > BM, t h e palea below the a x i s a r e a l l f o r v > O,
;
Q - i ~ , +ic
llhe contour goes l i k e
the dotted l i n e , i t can evidently be r o t a t e d t o the i m g i n a r y axis.
Lecture 44
W e d i & k succeed i n representing AM
2
2 i n t e r m of W(q ,Q) f o r negative
2 q only, wilthout a t the s a w tim invalving ourselvee with another w h a m 2 f m c t i m T(q ,Q); and f u r t h e r each of two p a r t s i a i n f i n i t e and i t Is hard t o guess a t the difference, 2
Perbpps we should abandon t h i s and take 2
8
l a s t lnok 2
at: jwt the bI4 expressed i n t e m of W ( q ,v) for posirive and rmegaeive q
is given by
.
Zt
206
Photon-Hadron Interactions
(This is obtained by expressing
and i n s e r t i n g i n t o (42, l ) , W (v
i n the form
$6) depends
only on Q, the =pitude
of
4; and
To study the possible divergence of tf-re i n t e g r a l a t l e a s t , we go t o large 2 v and i n f a c t t o the s c a l i n g region -g 12Mv
x , hence Q =
v+m. We can write
is kinematically I.
2MM approaches the
; .
(consider 2W a function of x and v, ZW(x,v))
For l a r g e v the upper
lintit
for
X
fuaetfon f fx) f o r poeitlve x I n the scaling l i m i t ,
Far negative
i c approaches a s we have seen -f(-X); note, hotsever,that
-X
X
2 (positive q )
is not k i n e m t i e a l l y
DyndcalZy -x i s l i b t e t l i , W(x,v) e d s t a f o r x < -l but f o r large v f a l l s rapidly u n t i l there is nothing l e f t of order one. The eontributian of the scafing region gives But t h L s n l y says t h a t a dlmrgence h i & e r than l a g a r i t h a c vanishes, a Uling we expect a n p a y , Wx/Zv leading t o
Expanding the faetor ( /xf(x)(dv/v)&;
)/(2v+m)
s e e m t o give a tarn
t h i e i s not a l l , we s h a l l have t o Lnw to
2 order l / v haw M d i f f e r s from i t s Bjorken f i a t f o r bath positive and negative q ,
This suw up the probleni; experimat c m i n principle kelp m with the approach t o the limit f o r q
2
negative.
But we s h a l l have t o r e l y on theory t a
obtain the cmtribut?tans t o order I l v f o r positive q
2
before we can decide
whether d g diverges according t o present theories.
Waving f a i l e d wfth ftnrdamntal theory t o get i a f o m t i o n on etctrornagnetic
mass differences, we now turn t o nnrch cruder pictures t o diacms the possfble relatSons of 4 2 i n d i f f e r e n t terns ctf an $Uj o r $U6 multiplef. the laaguage of the quark made1 althou*
We do i t i n
mny af the r e s u l t s come from weaker
~eunuptiana, Iflire s i q l e SU3 sec. The proton, f o r e x a q l e , i n the low energy qmrk model is made af three
Electromagnetic Self Energy quarks, two
U
quarks and a d quark with t o t a l s p i n l 12 with wave function (2 uud
]p>
- udu - duu)
(+S+) symetrieed
.
(44.3)
The electromagnetic s e l f energy can be thought of as being ntade of two parts: a)
The s e l f enerp;y of the i n d i v i d u a l quarks.
We suppose & i s
t o t h e change squared o f each, thua 4a : a: a f o r u: 4: 2
proton t h i s csntr-lbutes bM f 2 N to
P
S
ifs
proportional
respect%veIy.
To a
= 9a (we s h a l l n o m l i z e a l l mass squared changes 2
2P1 of t h e proton a s a s c a l e f o r laeasaring a , t h e true. change i n M i s than P
2M a,) P b)
An interaction energy bemeen p a i rs which we take as proportkonaf
t o t h e product o f charges. r e l a t i o n of the p a i r ,
The i n t e r a c t i o n mmt depend on the wtwl s p t n
'&M w r i t e
@(l*)
i f s p i n is p a r a l l e l and B(1-y)
if
s p i n %sa n t i p a r a l l e l ; t h i s i s B(1WP) where P i s t h e s p i n exchange o p e r a t o r , We a d t i p l y by -2 f o r ud o r us, 3.4 f o r uu and + I f o r dd, ds, s d , ss p a i r s ,
call t h i s factor x
il "
The electromagnetic s e l f
operator
cam t h e r e f o r e be w r i t t e n
Thus
X t i s easy t o get the e x p e c t a t i a n of t h i s o p e r a t o r fox e v e q s l a t e .
on t h e proton t h e o p e r a t o r Bx alone does n o t s e e t h e s p i n s and gives (2(4-2-2)uud (4-2-2)udu
- (4-2-2)duu)+l.+/&
which is zero,
For the neutron, change a
t h e c o e f f i c i m t is -3 s o t h e r e is a c o n t r i b u t i o n
- 3f3,
Next we study 6yxP
therefore xf"(2uud
- udu - d u u ) + f + / g =
=1/8.t.2)uud
+ (-4-4+2)udu
+
(-4+2-4)duu)++C/&
and
Adding up the v a r i o u s c o n r r i b u t i a n s w e have f o r the proton
AM'/ZM
P
-
9a
+ 68y
U
t o d,
-
3.
We c m uldlculate the E=M s e l f naasses for evesJl p a r t i c l e of the l12
octet:
a s was done i n the previous l e c t u r e f a r the proton, the r e s u l t is:
Hence hM
We have three constants f o r four ms8 dJbfferances s o we have Ehe relation (m SSU3 r e l a t i o n ) (E+-c-)
- (p41 -
(We choose t o use P$
w h i e h f i t s well.
f o r no extremely good reason, the r e l a t i o n
AM but there l a l i t t l e t o chooole,it is -Snsi& the ewerimanta%
f f t s b e t t e r with
e r r o r f o r dk?
B@- 3 -)i. a
&Q.)
The values of the constants t h a t we get are 3a
-2.0
@(l*)
.24
B(1-r) = f .32
B
m
-78 NeV
MeV %V
p a r a l l e l spins
M V
a n t i p a r a l l e l @pins y
= -.69 HeV
The s i g n of tt 1s the oppczeice of h a t you would expect but then yort expect
+
and
it
m e t be r e n o m l i z e d , possibly t o a newtivcc value,
It man@generally
209
Electromagnetic Self Energy p a r t i c l e s wlth fewer u quarks a r e heavier, i . e . m r e p o s i t i v e l y eharged baryons are l i e t a r .
The s i g n of the 8 term from e l e e t r o s t a t l c repulsion is p o s i t i v e
as expected.
We f i n d a t t r a c t i o n of p a r a l l e l raagneto i n m s s t a t e but repulsion
of a n t i p a r a l l e l (the magnets a r e
OR
t a p o f each o t h e r ) which is c o r r e c t ; the
n e t repulsion i n the p a r a l l e l case is l e a s . GontinuFng i n t h e 56 $U6 raultiplet t o Che d e e i m t and supposing the constants a r e t h e s a w we can p r e d i c t everything:
nn2/2n (predicted) P
ss:a if-
110
G-
=2-
m
Sa
- 313(29)
- 4.72 - 1.28
an-- 3a + 3B(l+)
Tfie expexiunentarl d a t a is not good but there is a s e r i o u s discrepancy with a very recent experiment on b0
-
A
~ except ; f o r t h i s t h e s i g n s and
general order of s i z e s i s good, For pseudoscalar tnesons, noting t h a t t h e s i g n of the charges is reversad f a r i m t i p a r r i c l e s , and t h a t only a n t t s m e t r l e s p i n c o a t r i b u t e s we g e t ( c a l l B ' = @(l-y))
W e have two constants t o f i r with two p a r a m t e r a and have no predictilon,
We g e t B'
* l 4 , 3a
-2.38 again e a n f i a r z g t h a t a is negative.
close t o its value f o r t h e baryons r*rhich is what =R%
Xn f a c t a is
a e l a t i v f s t i c quark rmdel
t~-auldexpect, m g n i tudet
F u r t h e m r e the 8'
.
F i n a l l y we do t h e vector m s o n s ,
Here we need g(1-y)
*K The only d a t a on AM is t h a t f o r ' 2
is n e a r l y of the s a w order of
@(l-y)
- K*'
b f o r p a r a l l e l spina
which i a -5.7 2 1.7 HeV o r
-5.1 2 1.5 = 3a + 3b. X£ 3a = -2.38 t h i s gives B = -,9 2 5, which is P very bad, i t is of the wrong sign. X f t h e values f a r t h e o c t e t baryons a r e f2M
2
w e d we p r e d i c t bm /2M 2 1.91 P h t h i g system we a l s o have two o t h e r e f f e c t s (discussed i n Lecture 15)
a) t h e e l e c t r o m g n e t i c rnixing rnatrix between p' 3a
- 3b12,
aad wo, with off dlagonal t e r n asld wo which we fotlnd t o be
b) The a n n i h i l a t i o n term between
'fhe o f f diagoaal elernent 6 i n t h e Htasa matrix
is deterninczd by
p ,w i n t e r f e r e n c e t. be -3.7
m n i h i l s t i o n t e r n + , 5 l gives -4.2 2
energy. Sa
bm /2M
-2 &V
P
+
.9 &V.,
then corresponds t o 3e
+
.9 MeV.
Subtracting t h e
f o r t h e contribution of the s e l f
- 3b/2
t h a t b is i n f a c t p o e l t i v e and near
3.7 2 .7, 4-
% i s suggests i f
1.1 2 .4 MeV, not too con-
s 2 8 t e a t with the baryon va2ue of ' 2 4 f o r p a r a l l e l spins. rise:
This i s generally w s u c c e s s f u l .
SU6 does n o t , predsctgng b0 the *sons
- A*
things a r e very poor,
(comnpared t o 1.3 f o r baryons)
.
+
For thie baryons SU3 works but For 0.3 f o r t h e experimental 2.9 2.9.
Far pseudoscalars we g e t 3a
.X4
For t h e vector mesons the s i t u a t i o n is czonfur~td.
2
If we use mass d i f f e r e n c e s inatead of dn~/2M
P
c o n a t m t s c a m our 3a
-2.4, 8"
--1.9t @(l+)
= 6.20,
f o r the r u l e s , t h e baryon
t((1-y) = 0.98.
The predicted
211
Eleerromagnerie Self Energy .l0
- tit+ i n 0.8 s o only l i t t l e is gained here.
a l t e r e d (beeawe of t h e snrall s c a l a r s 3a = 7.0,
8'
1.0.
n
But the meson situation is
The constants c o w o u t f o r the peeudo-
mass),
For the vector m s o n s we have 3a
-4.8,
-0.3.
b
for
The B ( 1 9 ) fox baryans m y d i f f e r from b f o r vector nresoas and baxyonhj nay a l s o d i f f e r from B y o r pseu&oecalar =sons because t h e s i z e af the wave function is s o d i f f e r e n t s o the man I / r d i f f e r s .
The e l e c t r i c and
mgncttle i n t e r a c t i o n need rtot change i n the same r a t i o so i t is poseibla t h a t
b is negative f o r nreeons and p o s i t f v e f i r baryons, but i t is d i f f i c u l t t o s e e 2 why 8 s o d i f f e r e n r a s the Am gives. Wfig the v a l w of 3a should d i f f e r i n one c a e from t h e o t h e r i s n o t
2 Were It n o t f o r experiment X would deci& 3a c a l c u l a t e d f a r bar /2M is
clear, the s
P
e f o r pseudoscalar and pseudovector *ems
m d is 0.6 of t h a t f o r
9111s is because we a l g h t guess t h a t mass squared s h i f t @ due t o
baryonrrr,
s t r m g m e s a come
from a w s change i n t h e s quark.
2 The d i f f e r e n c e lin na
f o r t h e baryons i s about .40, f a r the mm088 about .2S o r 0.6 aa such, t h e self energy c o r r e c t i o n e f f e c t
- if
Thus
i t i s t o be associated a i q l y with a
proper mass chmge of t h e u quark w i l l a h o be 0.6 a s e f f e c t i v e i n IBesons a s i n baryons
.
Evidently t h e naive theory doea not work well, we do not understartd things s o well.
A m r e d e t a i l e d d p a d c a l theory 19 necessary.
case, mast p a r t i c u l a r l y the l a r g e bo AI
+
- P*
But i n m y
is most disquieting.
2 mss d i f f e r e n c e s There 58 one obsarvation ehar c m be made h e r e which suggest8 t h a t d p m t c
calculation8 rnight be posslble f o r s o m caabinatiolorus,
Hotice t h a t a is the
s e l f energy t a r n , pcrssibly involving h i & fireqmncy behavior, but f311Cy) is due to m t u a l
i n t e r a c t i o n and ought t o show no diverg;enccz?. Certain co&inatfons
of w s 8qr;tared d.iffc?rences do n o t iavolve a .
Arl these involve t h e b I energy.
They a r e
2 i s o s p i n p a r t of t h e electroaragnetic & e l f
This energy depends on t h e products of two current operators JJ each
c f which. contain8 61
O o r l, and can w k e t e r m Khose p a r t s a r e
dX
0, I o r 2 ,
-
1 I(I4-1) respectively. and IZ2 5
I n terms of Iz these go a s constant, Tz. The constant (AI
-
the A I T'
- L-
0) p a r t i s e q e r i m n t d l y l o s t i n the s t r o n g i n t e r a c t i o n s ,
1 o r Iz t e r n . a r e measured by differences proportional t o Iz, l i k e
o r p-n.
But the bI
2 t e r n e f f e c t is proportional t o :I
measured by the differences (I* ' C We a r e calculating the
&IZ
-
+ C-
- 2z0) mantioned above,
O coarponent of t h e A I
but t o i s o l a t e i t think of c a l c u l a t i n g an a r t i f i c i a l P I z i f electromagnetic current J were AIz
and is
-
+ l (instead of A I z
2 e f f e c t , of course, +2 U a t would a r i s e
1. UP
Q), A I
mm t then think o f c a l c u l a t i n g an e f f e c t of two currents l i k e J+ J-1.
.
Now we s e e why a does not a r i s e , and why i n general, &oesib&y the i n t e g r a l @
i n calculating t h i s might converge rapidly a t high v, provllded parcons a r e quarks.
For i f all, t h e current c a r v i n g fwd-ntal f
isospin 112 i t Is i w o s s i b l e f o r two J succession a t high enc;r@, contribute only t o A I
operators (partons) have
t o operate on the @amet parton i n
%us t h e v i r t u a l photon exchange d i a g r a m l i k e A
1 and a r e I q o s s i b l e f o r bZ
p
2 , only B a r e a l l w e d f o r tar rong interaction photon
.-.-.-
Baryon
parton
Large v i r t u a l lnoeaenta of the phbton is posegble i n A no m t t e r how s o f t the s t r o n g i n t e r a c t i o n s a r e
- if
the i n i t i a l rrrrmntw distribution o f t h e
partoncl involves only slow ones so can the final, s t a t e .
But i n B, i f the
virtual, photon wmntum is very h i & i t is unlikely t h a t t h e s o f t s t m n g int;ersction can p u l l the partons back together t o give rnuch o f a diagonal m p l i t u d e tlo be i n the wdieturbed baryan atate. again.
As we found. i n the previous l e c t u r e , d p m i c c s l c d a t i o n s of bT
a
2 ass
differences should be f e a s i b l e by s we know t h e o r e t i c a l l y and e x p e r i m n t a l l y &out the expected behavior of the
Electromagnetic: Self Ettergy Of p a r t i c u l a r i n t e r e s t would be a study of the
necessary m t r i x elements, 'lt
213
- no .atass difference, .c.
The e l a s t i c . t e r n t o n t r i b u t e s alarost a l l of t h e n
as a s i q l e c a l c u l a t i o n w i l l show.
- no mass
difference
The d i a g x w a r e
p/s
P, v
71
The pion form f a e t o r is d o d n a t e d by the f a c t o r on P
2
p
reaonrtnce, we t h e r e f o r e F n c l d e a
2 2 / < q -m ) a t each photon coupling s o fke -ss It
( 2 ~ ~@P 3 ~ -q )1 p - 6
(P+ 2 To order zero i n mr /$2
2
2 - aann
difference is
d4q/ (2711
4 (46 ,l1
2
UU
9
the f i r s t term i n t h e square brackets is 1, t h i s gives
S The i n t e g r a l is r e a d i l y p e r f o m d r e m a k e r f a g t h a t fn four diraensions d q
a f t e r I n t e g r a t i n g over angles. (&m210
The r e s u l t of the zero*
order caltculatlon is
3e2m 2/4n, doing the next order gives P
h t e m of &m m n t a l 4.6 &V,
Ir
2 + Am /2on thSs i s n
- no
a:
4.1 &V
a s conrpared ts the experk-
E s t i m t e s of contributions of higher i n r e m e d i a t e s t a r e s
(&%eh could be done using FKR's
m d e l ) should be small.
A s i m t l a r r e s u l t is fovnd f o r E+
+ E-
- 2z0.
It seems as though t h e
e l a s t i c t e r n &ready gives a l m s t t h e complete r e s u l t .
2 2 2 n q dq
Bstimtez, of h i @ e r
resonmces give l e s s than 20%, and the r e s u l t is i n good agreeraent with t h e data, The contributfons of t h e e l m t i c term t o s e l f energy differences o f
172 l381
b a v o n s were calculated by Grose and Fagelis, Phys, h v . Sli
3
f o r the magnetic momants, and GE and C& varying l i k e ( 1
619681 using
+ q2/.71)-2.
They get bM(elastic2
P* C'
+0.79
-
C"
6'
- 6-
-0
.".-2
::
AM(exp. )
- 1.29
MeV
+ 0,16
- 3.06
- 0.88
- 4.86
- 1.10
- 6,5
&V
1 .7
( M s t of t h i s i s due t o the charge, s i a e e there a r e factors of q f r m i n the ntagnetic part.) to +1,8 e x p e r i w n t a l , tern.
Nate & a t atl
+ C 4 C-
- 2~'
4-1.54 &V
y 44y
Ir.
1.1
( e l a s t i c ) cornpared
we e x p c t e d this should be dominated by the e l w t i ~
(kcinrcirt i n t e m d i a t e s t a t e s give less than .l and pres
ones even l e a s ,l Note t h a t other c d & w t A ~ n s(other t h AE
-
2) do not involve "a@'
(see l e c t u r e s 44 and 45, "a" i s the EM s e l f energy of a quark) such as (p-n)
- ( 9 '-3 -1,
In t h i s case one carnot skaw t h a t these dif fereacer, a l s o h v o l v e
a product of currents su& t h a t each current does not a c t on the same quark, C suggesta t h a t we may be able t o g e t a t But the f a c t t h a t "a" i s ~ R O involved
t h i s difference a l s o by estimating m t r i r e l e m n t e t o varioua know s t a t e s w i n g , f o r e x m l e , the quark ~tadel. Wwever, tkr? e l a e t i e term f a i l s u t t e r l y t h i s t i m Am(e1astfc)
+1.9, A M e q . = 4.2 2 .7.
look a t the contributions from the sealing region.
ay? To explain t h i s we Let u(x) , :(X),
s G), ;(X) be aa described i n l e c t u r e 31, then vW2/x
3
d(x)
f (X) f o r p, n, 2
, ;(X), and
iki
(Tkre neutron is obtalned from the proton by replacing u by d and vice versa, The 3'
i s l i k e the neutron but s replaces u and vice versa.
'E but u replaces d and vice versa,)
m e 3 - i s lib the
B e r e f o r e the scaling Emetion f o r (p-nl-
21.5
Electromagnetic Self Energy
- 2 ""1 is $ ( u +
(Z0
+s+a
h i & frequencies can corn i n .
- 2d - 22)
which is n o t n e c e s s a r i l y zero s o
I n the w d e l of valence quarks plus s e a i t is
zero but we do not b e l i e v e t h i s t o be likel_y, For f u r t h e r d e t a i l s on a l l these w t t e r s of EM s e l f energy s e e an a r t i c l e by W, B, Cotringham i n "H~adronic I n t e r a c t i o n s of Electrons and Pro tons ", C~umings and Osbom E d , Academic Press, N.V.
1971,
Mcturre 47
Ve now go on to discuss o t h e r e f f e c t s involving two photon couplings. The Cowton e f f e c t is t h e most c l o s e l y r e l a t e d t o what we have done,
I f the
s c a t t e r i n g is e x a c t l y i n the f a m a r d d i r e c t i o n the s c a t t e r i n g m p l i t u d e i a given by T
QV
2 (q ,v) f o r q2
thus T is the
spin
0. We previously meant the average over proton spina. averaged f o w a r d s c a t t e r i n g , we could a l s o measure f a r
s p e c i a l s p i n d i r e c t i o n s of t h e proton.
The imal5;inary p a r t o f tfte f o m a r d
s c a t t e r i n g is, of course, the t o t a l c r a s s s e c t i o n cr discussed before.
l i k e ((97
+
(E.g.
67/&jub,
a
YP
YP
or a
Yn
wtrich we have
showd resonances a t low v, a f a n o f f perhaps
and (97 4- 43/&/pb]
f o r neutrons.
The d i f f e r e n t i a l cross secegan can be f i t t e d with
For m e r g i e s from 2 t o 7 GeV we g e t around 6
16 GeY, A with A
IJ
-
8
&vd
7.4, B
P
For energies from 8 t o
is c l o s e r ; there i s some s i g n o f a quadratic term A t 2.0,
np a t 9 GeV has A
9, B
+
Et
2
(This is lnuch l i k e hadron d i f f r a c t i o n s c a t t e r i n g , @,g, 2.S,)
Thus photon d i f f r a c t i o n looks very much the
s a w a s w o d d be expected f o r hadrons except f o r t h e very lauch snraller c r o s s s e c t i o n , of course.
kle now discuss the forward s c a t t e r i n g i n mere d e t a i l including s p i n e f f e c t s . The f o m a r d amplitude w y be w r i t t e n
as a s p i n m t r i x operating between s p i n statess of t h e proton i n t h e lab. systeas,
The various laeasured q u m t i t i e s a r e expressed i n t e r n of El and E2 a s follows:
The t o t a l cross section is the imaginary p a r t of the diagonal ( i n spln) scattering
The foxward d i f f e r e f l t i a l cross section f o r =polarized
This is h-.
forward
scattering i s
The r e a l p a r t of f l c m be obtained f r m the imaginary p a r t by a dispersion r e l a t i o n , (Eq. (40.6a) f o r q2 = 0) where we use the f a c t t h a t fx(o)
2
-e
/M.
This has been evaluated (see Dammhek and GiXmn, Phye. Rev. X)1 l319 (l9705 o r Busckihorn e t a l ,
241 (11970) and the sw of the f i r s t two
Phye;, L e t t ,
t e r m of ( 4 7 . 3 ) is compared t o the expcrrimntal (do/dtIo t o see how b i g the l a s t t e r n is.
They agree within e r r o r s f o r v from 2 " 5 t o 17 GeY s o the
emtr2bution is l e e s than 10% over t h e e n t i r e range.
( B e contribution
g r e a t e a t from the f l r e t t e r n i n (47.35 above about 5 &V,
W
I f212 /v
l8
The second is 15%
a t 2 GeV and f a l l s away a t hip;her v ) ,
-
2
: p v where iiAis the 2M molazlow p a r t of the = m e t i e mrownt of the nucleon i n nuclear =ametens.
W e a l s o how, f o r small v, a s v
G =-
'=L
"1. where a
i
+
and B
-r
0, IZ(v) =
?l
(47.5)
91 II
a r e d i f f e r e n t i a l cross s e c t i o n s a t fixed t Ear in~oraing
photons polarized pergendlcular o r p a r a l l e l t o the plane of callisiczn, t = O
For
Z must be zero, of course; but within the l i d t s of experimental e r r o r
(210% f o r -t e .2, e20X up t o -t
' 6 ) i t is zera up t o t:
-0.6,
(The
average of C f a r t = .l t o . 7 is .Q2 ".Q6,)
Me have discussed the s i z e of da/dt f o r yp i n r e l a t i o n t o (VDM)pp cross section (see l e c t u r e 201, i t is twice l a r g e r than VDM expects,
The a s ~ e t r y
produces no problem f o r the correspandi-ng a s F e t r y I n t h e p c m e , i t 1s a l s o very snnall;.
'This is not w e ~ p e c t e d , s channel h e l t c i t y conservation a l a o
Electromagneiic Self Energy expects the s a r e s u l t ,
The question is:
With i n c i d e n t 1i&t i n t h e z d i r e c t l o n
with x p o b r i z a t i o n do m r e photons s c a t t e r a t a snzall angle
i n t h e d i r e c t i o n x o r i n the d i r e c t i o n y l
SQ
Ctraneve~se)/v
From t h e point of view of d i f f r a c t i o n ,
c u r r e n t s generated by t h e incident. wave must be adequate t o produce t h e c o r r e c t f o m a r d s c a t t e r e d wave t o i n t e r f e r e with t h e incident wave t o a c c o m t f o r t h e mese
l o s s of i n t e n s i t y o f t h i s wave represented by the t o t a l cross s e c t i o n .
c u r r e n t s a r e obviously l i a t e d t o the s p a t i a l region of t b e proton, and s o they produce s c a t t e r e d waves i n o t h e r d i r e c t i o n s , t h e w v a l eAt of d i f f r a c t i o n from the proton, jwt a s i n hadronic c o l l i s i o n s .
But these c u r r e n t s m a t make pure
x p o l a r i z a t i o n a t l e a s t i n t h e forward d i r e c t i o n , they a r e x d i r e c t e d c u r r e n t s . In o t h e r d i r e c t i o n s a t sm11 m g l e s we have the same i n t e n s i t y f o r d e f l e c t i o n except f o r a cos Blab, therefore E -t
m
(1
P
1
- cos 4ab) / ( l + cos
X
and y
- eZlab profection f o r x d e f l e c t i o n , 4ab,)
0 . 6 , v 2 3 . 5 where t h e d a t a is taken.
@iab-t/2v2 */2
;-
+
.03 f o r
m u s we expect: small 6, i f any,
c l o s e enough t o zero t o not be I n disagreement w i t h experiment wi&in i t s e r r o r s . r i z e , t h e Campton s c a t t e r i n g as a function of t above 2 CeV a h w s no s u r p r i s e s o t h e r than what w e can expect from d i f f r a c t i o n from the k n a m t o t a l photon absorption cross s e c t i o n . Below 2 GeV, t h e r e f o r e i n t h e r e s o n m m region, there is no d a t a ,
But i t
should be possible t e make a p r e t t y good theory of angular d i s t r i b u t i o n a d enargy variatlion by considering a s w c e s s l o n of s-chaanel resonances (mny of t h e m t r i x elienrents of which a r e kn5m from t h e study of y p * ap i n the s a m energy region, m h o m ones m y be guessed from t h e quark =del). There i s a l s o a coerputabbe n e u t r a l pion exchange t e r n
The coupling of two photons t o a neutraf pion is
from the no * 2y decay.
A l l these c a l c d a t i o n s can be c h e c k d and controlled bp f i t t i n g the c a l c u l a t e d
imaglinary p a r t of the s c a t t e r i n g t o the n i c e l y m a s u r e d t o t & cross s e c t i o n otot which shows t h e expected resonance b w s i n t h i s region of energy. YN
S c a t t e r i n g of very low Q, v is l i k e t h e s c a t t e r i n g o f radio waves, o r (if q
2
6 Q)
i t depends on the reaction of a p a r t i c l e t o nearly constant e l e c t r i c
and mag;netic f i e l d s ,
This is, of course, gives by two experimental constants,
(obtahed by nreasuremnts i n such f i e l b ) the eharge and the mgnetfc mroent ( r e s t r i c t t o s p b 112 case),
Therefore we expect the Gompton e f f e c t f o r Sow
enou& v, Q to be given e n t i r e l y i n t e r n of these constiurts. should a c t exactly a@ i f they were point p a r t i c l e s .
'.%C?! p ~ r t i ~ l e s
One can cornpute rhc e f f e c t
s e d e l a a ~ s i c a l f yo r fro= the non-relativistic approximation to the S&roedlslger equation with spfn (Pauli equartion) o r again by diagrp a r t i c l e with no i n t e r n a l excited s t a t e s ,
a s s d n g a pure
Sueh a tern is called a Barn t e w .
Thus we write T
(not averaged over spin directions of the proton) a s a sm uv from the Born t e r n and the r e s t from other diagram
B do&natsa a t Tow
The reaaon T
-
V
is t h a t i t has an energy d e n s a n a t o r
due to the i n t e m d i a t a s t a t e A of s i z e (M + v -EA) EA is M
P
(as Q
P
80
if A
%S
0) and we have a leading l / v factor which doesn't appear i n
B the rearalnlng t e r n T
.
& you expect the lestrix e l e m n t of the charge density St i s - the t o t a l charge a d
vation) ; SO aee t h a t
V
Y
is diagonal. thrrs
c xlp (Q) /p>
P a t (7
m
O
2 order Q if x is not
To show Chat the off dlisgonal nratrix e l e m n t s of other
the proton s t a t e . coqonenta of J
a l s o a proton
I
O (charge? ccmserc X / J p> M Y hence i f v , Q go t o zero together we
also go t o zero we look art q
lP>,
x [ ~ / ~Q > .cx~~[o)
3 tnatrix
e l e m n t a go t o zero.
A m r e rjgorow (but har&er t o i n t e r p r e t )
a r w m n t is &even below,
B
We now cowute Ehe lirnit of T a s v ,
9
4
O,
Xf uA is the anonralous
m m n t i n nuclear nametons, the coupling of a photon is yu
For srmll q and tq2
O t h i s l a e r s f i y worked out t o be
F"A ( y u l +5
so
EEecrrontagnetic$4Energy
while the contribution from T
--
fl(ct)
s t a r t s aa uZ nnd thus we have as v
+
O
eL/~
f
v
R
B
To show how
2 2 uA/2H
- e2
o
(47.8)
ssnrall. atore f o r d l y (at leasre f o r the f l tern) note
B
t h a t Iyvt o t a l s. well as T each separarely s a t i s f y the gauge condition qvTBv
-
hence we must have q T
Ci W'
0. NW we can w r i t e T
C
duv
+
.
B
(peQP a+ ( p q l q v b + q
2
it
pM b
kfe cannot solve this by a = +q
--
therefore s
%
peqb, b * o
W
+ pvqy) + W total h e r e must be no poles l i k e l / p * q i n a,b,c (unlike TMv
vhich hae such poles comtog from T
Clearly c
0,
apypv + b(puqv
averaged case a t l e a s t ) a s a power s e r i e s T 2 order qv
-
( f o r the symmetric @pin
-
2
-
1. NW q51 Tliv
+ qv
e
+ order q3
O requtres m
O
/peq because n s 1lp.q t e r n are alLowad.
2 peqa/q with a
$, b .r - o(paq),
c
%
oq2 a r e the only p o s s i b i l i t i e s .
2 a(p*q) and the term s t a r t s out as second d T~~~ can alao be shown t o be of
the same order imd therefore T COmpfon dtscwaion s e c Low, PPlps, Rev,
T~~~ to order 1 and v.
916 1428 (1954)
m$ Gel1
(Par a complete
n, Phya. b v .
96 1433
Forward Compton s c a t t e r i n g from non-relativis b t c Schroedinger equation The equation is (with f i r s t o r b r r e l a t i d e t i c corrections)
3%.
$
h e t d e n t amplitude is
b = Zi, 2
-
tvgi
and
d
is zero, hence the leading term cores from the
contrgbut%ng t o fl,
-+
i-
-
ig x
2.x
gi.
I n the laboratory
- $ + farm and i e -(a 2 /2M)ei*ef
Next we have the terrn a 08 operating i n second order, two
d i a g r m with energy denodnators -v and +v
220
Photon-Hadr~~ lntmctiorrs
-
2
1
+v
r gf) contributing t o f2
2 2
i
F h a l l y t h e l a s t t e m i n (47.9) with rha terln
g.2
x
d
gives
2 which c~labineawith the previous t e r n t o change rhe (1 + U&) to U
therefore have 2
Amp,
-2M &
-
t
ei
*
+
ef
- i2 2
2 - t - b -c v c*(@fx e ) A t
.
Other Two-Current Effects
Other quantities involving T
W
h o t h e r experimental quantity that i n m l v e s our function T
t,lv
4
p/( J ~ J ~ p3 ) ~ /
(not averaged over the spin of the p r s t m , i t involves the a n t i s $8 the byperfine s p l i t t f n g energy i n hydrogen resgon~ziblef o r the 142Q+egacycle line.
I t i s the differeace I n energy i n the gromd
8
s t a t e of a t o d c hydrogen
depending on whether the spZna of the elects011 and proton axe p a r a l l e l o r a a t i parallel,
In non-relativistic approxiwtion
it
depends on the prob&iIity t h a t
2 the electron i s on top of the proton I@(o]f i n the gratrnd etste wave EunctSon. h l a t i v i s r l e a l l y we can write
e , v,
(Rio
= Rydberg,
u , P
~na$neticntawnts of p and
Bohr m p e t a n )
The f a c t o r ( l
+ m / ~ ) - c~o w s
from reduced =ss corrections t o the Schroedinger 2
equation i n getting l+(o) 12;
1 + 3a /2 is a modificaf2on due t o the Dirac
equation,
g, %R..ti" a r e
The other factors
a13 near one and a r e due to higher
order quantum electlcody~&dccorrections.
They have been separated i n to three
factors f o r convenience of discuarp5on. g corns f rorn QED sodif ications of the
221
Pbton-l"iadronInteractions m t i o n o f t h e e l e c t r o n , d i a g r a m l i k e A below.
c o w s From t h e proton r e c o i l d i a g r m of type B i n which the f a c t t h a t the proton i s not a point charge
113
included by using m a s u r e d f o m f a c t o r s . r" c m s
fronr two photon exchmge t e m of t h e f a m C, D.
A l l theere f a c t o r s except y w h i c h depend@on a s y e t m k n m p r o p e r t i e s of t h e p r o t m have been c a l c u l a t e d t o very high accuracy
- f u r t h e r &E is
raetaaured t o a b ~ ~ r d hf iy@ accuracy,
The c o m t m t s l i k e a, 11 e t c , a r e new P knom wels enough t o d e t e d n e r"l t o about four p a r t s per raillion, Theor e t i c a l l y , the deviation due t o AB long a s F r e m i n r ~ = , certain
P
is about t h i s sam order of mgnitude.
we cannot use these accurate m a s u r e m n t s and
c a l c u l a t i o n s t o b p r o v e our knawledge of t h e constants
- or
t o put t h e problem
t h e o t h e r way i f more accurate v a l w s of t b e o t h e r constants becorn a v a i l a b l e that will t e l l
u9e an e l e c t r o m g n e t i c property of
be challenged t o c a f c u l a t e i t , w r i t e f'= f Obvioua3ly t h e proton coupling is t o
+ A,
t h e proton
Let
W
t r ~ acurrents.
- and we would
s e e what is involved, Ve s e p a r a t e t h e caaea
t h a t the photons a r e of low energy mid nromentum fro= t h e cases where they a r e high.
Where they a r e low, binding of t h e e l e c t r o n i n f n i t i a l and inte-diate
s t a t e s e t c . m a t be considered
- b u t here for law v ,
Q, t h e proton a c t s , a s we
have seen, l i k e a. p a r t i c l e of charge and raagnetic mment and thus we c m do t h i s p a r r of the c a f c t l l a t i m .
For defgniteness we do it p u t t i n g i n the exper&-
mental f o m f a c t o r s once f o r each p h o t m and i n t e g r a t e over a l l mraents, c a l l t h i s hl.
Wrlte d
AI f A2.
Now f o r high v i r t u a l moPlentwn e l e c t r o n binding,
even t h e e l e c t r o n =ss can be neglected and we can ionagine the e l e c t r o n and proton t o be f r e e and a t r e s t before and a f t e r t h e s c a t t e r i n g
- thus our two
223
Other Two-Current Efleets c u r r e n t operator
p l J~ )i
a l l t h a t is involived. a r e involved. butions i n AI
T
vv
v
jp>
f o r proton i n m d out of s a m nroanturn ( r e s t ) is
Naturally s t a t e s
X
o t h e r than pure proton Born a t a t e s
Qf course we have already c o m t e d so= high mrnenturn c o n t r i and we s h a l l have t o sllbtraet them, thus we s h a l l have not j u s t
but r a t h e r TPv
e l a s t i c where
-
elastic wv
term alone with form f a c t o r s .
C a l l t h i s TMv'
is c a i c u l a t e d from t h e Born
- TvVe l a s t l c
T vv
Then h2 is
proportional t o d i a g r a m C, D with e l e c t r o n a t r e s t i n i t i a l l y and f i n a l l y .
If Tllvt is
B y
Ear t h e proton
matrix on the proton s p i n i t depends on the s p i n f l i p amplitude
- thus
OR
t h e a n t i s y m t r i e a l p a r t of T
St v
"(proton
2 2
The f a c t o r l / ( q 1 is f o r the two photon propagators.
a t rest),
The f i r s t t r a c e
i s t h e Coonpton s c a t t e r i n g by t h e e l e c t r o n
neglecting the ntanrrctntm p aad mass o f the e l e c t r o n .
The second f a c t o r is the
coupling of ltwo photons t o t h e proton, which we do not know but which we a r e discussing; we need i t s a n e i s y = t r i c
imginary part M
where G
UV
part.
I and C? a r e functions of
be c a l l e d S1 and S2. liv
kre
wrote its
i n the form
q L and v defining t h e imaginary p a r t .
the c o w f e t e s e a t t e r f n g functions of which G
for W
I n Lecture 33
1
and G a r e the itnaginary p a r t 2
That I s , we w r i t e a fona f o r T
except S1, S2 replace G1,
G+and G1,
PV
j u s t 1Pke the above
G2 a r e i m S1,
errbstitution we can express C12 d i r e c t l y i n t e r n s of S1, S2,
Drell and Suflivan, Phys. Rev.
154 1477
Let
Im
S2.
Then by
Qne g e t s (see
61967) aod C ,N. Iddings, Phys
. Rev,
Now we can do m n y things with t h i s t o t r y t o e s t i m t e i t o r c o w a r e i t t o things measurable i n p r i n c i p l e i n ways e n t i r e l y mslogous t o our d i s -
c u s s i a a f e l e e t r o m m e t i c s e l f energy.
For an e x a p l e , we can use Cottingham'a
i d e a of r o t a t i n g t h e Contour on t h e dqo I n t e g r a l from the r e a l t o the i m g i n a r y axes, thus t h e i n t e g r a l s depend only an Sl, S2 i n the negative q2 region. F i n a l l y we can express these coaplete S1,
SZ i n t e r n of G l A 2
( t h e i r iraaginary
p a r t s ) by a dispersion r e l a t i o n , and t h u s express h2 in t e r n s of G1, C$.
Two questions coM up: F i r s t , a r e these wlinom functions, l i k e T 1 0 , ~ ' ) necessary i n the d i s -
1
persion r e l a t i o n o r a r e they a s f o r T2 without constants? q w s t i o n i s almost c e r t a i n l y h o r n , ) s c a l i n g bebavior of Gl,
C2.
(The answer t o t h i s
We can wears because we h a w t h e w p ~ t o t f c
I f t h e r e a r e s u b t r a c t i o n s , t h i s m t h o d is f r u s t r a t e d .
Second, supposing t h e r e a r e no undetterdned functions i n the dispersion r e l a t i o n and b2 can be e n t i r e l y e w r e s s e d i n tern8 of Cl, G2 i n t h e e x p e r l m t a l region; what can we do u n t i l Gl,
G2 is d i r e c t l y measured?
Zt b e c o w s a research
problem t o guess a s completely a s possible t o s e e i n what ranges of =q2, v the &l i2 s ms-ensitive
and use whatever w d e l s o r ideas a r e most r e l i a b l e t h e r e ,
W could t f y t o incorporate a l l that: is Ianm of low energy t h e e r e m and i n t e g r a l s ( l l k e I g2dx
0) t o l i m i t the p o s s i b i l i t i e s ,
At worst, c e r t a i n l i m i t a of un-
c e r t a i n t y can be e s t a b l i s h e d sknce, f o r e x a w l e , 28, which is t h e d i f f e r e n c e of up m d down s p i n partonr h+(x)
- &_(X) (see Lecture 33) cannot exceed the
sum hS(x) l- h_(x) which i s f(x) and i s w a s u r e d , t r a c e of fa T
vv
2 i a e o m way.
W
Generally p o s i t i v i t y of t h e
on any d ; t a p ~ a ls t a t e l i n r f t t h e s i z e of G1,
G2 i n t e r n of W%,
Tfiis problem should bc: pursued
And i f the answer t o t h e f i r s t questlilon i s yes and there a r e d n m
functions brought i n i n t h e fixed q
2
dispersion r e l a t i o n s ?
Then Cottfngbm'a
scheme doee nof work and we s h a l l have t o uge o t h e r mth-ods of a n a l y s i s such a s t h e f i x e d Q dispersion r e l a t i o n s t a abrain expressions on &ich we can apply our p a r t i a l physical understimding of photon badron i n t e r a c t i o n s s c a l i n g , quark nrodel, e r e . ,
- i n conjwnction with a s m n y
stap
- partans,
rules etc.,
we know (as w e l l a s possibly even the n u w x i c a l value of the n-p
that
mss differences)
t o guide us a s much a s possible t o c a l c u l a t e t h i s quantity A2 as accurately a$ possible, a d with an honest e s t i m t e of t h e possible t h e o r e t i c a l l i d t s of uncertainty.
Other Two-Current.Egecrs b c t v r e 49 Other two-current e f f e c t s I should j u s t l i k e t o add a few miscellaneous r e m r k s of s i t u a t i o n s i n
which the double operation of two c u r r e n t s is involved, namely, i n the d i s i n t e g r a t i o n of pseudoscahr =sans.
They a l l present i n t e r e s t i n g q w s t i o n s Of course m t r i x elements
f o r study; t h i s i s Beant raerely a s an introduction.
of one 3 a r e involved LR s i n g l e photon decays l i k e o
-+
1.
ny and we
have already
discussed them. Two 3% a r e obvIousIy involved i n two photon decays Like nQ q0
-+
2y.
-t
2y o r
An honest c a l c u l a t i o n af e i t h e r one of these would be very i n t e r e s t i n g
(one i n which t h e v a l i d i t y of the i l s s w t i o n s is baeked up by considerably more than t h e mere f a s t t h a t the answer agrees with t h i s one experiaent). % a t does Q l (U; + da 2s;) t o g e t SUS say? Use the quark m d e l no 2 (U; da), Q J;Z" Ji;" 1 (ij4 F)/ l L &+ l 2); t h e r a t i o of amplitudes amp nolaw 'Q 15. It say@
-
-
-
- --
-
4-2'
t h a t t h e amplitude f o r n i s high,
8t h a t
-+
2y
is r ( q
-r-
1.0
2y)
+
-
-
48-
f o r q, s o t h e r a r e should be t h r e e tims azi
Experlarentally the widths a r e r(no
width
-
-r-
2y)
+
7.2
1.0 eV, and the; p a r t i a l
The r a t i o is 11140 i n s t e a d of 3:
. 3 KeV.
Qf course, the reason f o r the a b j e c t f a i l u r e i s the very l a r g e -ss difference of r it.
and
FI
2 (mx /m
n
2
m
1/15) and we must be much more c a r e f u l of
This is where SU3 is i n d e f i n i t e
km.
- and no universal way of
&in& t h i s is
F i r s t t h e r e i s phase space: t h e general f o m u l a f o r d i s i n t e g r a t i o n of
an o b j e c t of mss nz a t r e s t i n t o two p a r t i c l e s each of whose mmatura is Q is
where K 1s t h e r e l a t i v i s t i c roatrfx elenromt. space ( i . e . i f we ass-
Xn our carte (2y) Q
m12 s o phase
K i s given by SU3) w r k a agaixlst t h e rt and the d i s -
2 crepancy is another f a c t o r of m /mn worse (i.e. MW /H
rr
'
1/540 i n s t e a d of 3/1).
Plore s e n s i b l y we should w r i t e M in its sienplest: r e l a t i v i s t i c f o m which f o r a pseudoscalar meson d i s i n t e g r a t i n g i n t o 21's of p o l a r i z a t i m el, e 2 , m a n t a kl,k2 is N
a
E
pvap
e
lil e2u
4p *
NW t h e g m s s would be t h a t a l s i d e t e d n e d by SUB. This ~ll?.ans M pea a 3 2 a s Q o r m2 ~ a t e ~ / ~ a -3t e ~, aw2/aq2 = -L %is a t l e a a t m v e s i n IPL f 40
.*.
-
.
the r i g h t d i r e c t i o n , it g h e e
0.4
a:/anZ
i n s t e a d of 3.0
.
This i s not bad b u t (a) what of the r-iaing
discrepancy astd (b) why 2
should a be given by SSU and n o t say a/m o r a/m ?
Evidently we have been dolng
3
too much e m p a r i s o n t o e x p e r i m n t and too l i t t l e thinking. Can we reason o u t f r m o t h e r things we know j u s t bow t h e r r a t e and
rl
r a t e should be compared, o r
bcw e i t h e r might be calculated o r e s t i m t e d absolutely? With regard t o the mchajniaul of t h e decay e v e r s i n c e i t was suggested by Gell-Mnn,
Sharp and Wagner, Phys,
&V.
Jcetters
8 261
(1962) i t is supposed
t o be do&nated by t h e diagrlstro going through an inre-diate
This connects i t t o t h e npy coupling constant, o r through SU
p o r w wson like
3
t o the paeudoscalar
v e c t o r photon coupling constants h general; d e t e d n e d d i r e c t l y f o r e x a w l e by t h e u
-*
ny r a t e .
Again rr
+
nny is i n t e r p r e t e d i n t h e same way a s
The pnn coupUng being k n m one e m campare t h i s with tl t h e r a t i o l"(n
+
nny)/r(n
-*
yy) with good success,
e x p e r i m a t is .l2 ( G a d e g , IPIrys. h v ,
g 501
+
yy
and p r e d i c t
Gel1
(1970)), (For two calculat&lons
corresponding t o different: choices of how t h e coupling constlznts s dewnd on t h e rnasses of the s t a t e s s e e Brown, Muncak and Singler, Phys, Rev, Letters (1369).
22 707
(1968) and Cban, @ l a v e l l %and Torgerson, Fhys. Rev.
The choice made i n the l a t t e r paper f i t s very n i c e , )
185 l754
%%is is i n t e r -
e s t l n g f o r a t f i r s t s i g h t t h e a m r a t o r is order a and deno&aator is order a
2
s o t h e order should be 137 but here m a y n w e r i c a l constants a c c w u b a t e t o o v e ~ e l n rt h i s f a c t o r and taaka the r a t i o n e a r l y 1000 tiws smaller. p i c t u r e t h e r e i s a f a c t o r i n the matrix element f o r where
is t h e i n v a r i a n t mass squared (p+
of the two pions,
+
For t h i s
-
rl + nny l i k e l/(mp2 mn:) 2 of the four-vector slrm p-)
This d i s t o r t s t h e spicsctruar away from t h e simplest Eom toward
Orher Tw-Ctrrrgnr Eflects l a r g e r p r o b a b i l i t i e s f o r l a r g e r rann
2
.
The experiments (Wrarley) a r e s o
accurate t o s e e t h i s e f f e c t , even q u a n t i t a t i v e l y , s o t h e r e can be no do&t of It is l i k e l y t h e r e f o r e t h a t no deep olysteries l i e
t h e mchanisan i n t h i s case,
I n the 2y d i s i n t e g r a t i o n a e i ther. Rowever t h e rt
is
-, of
0 +
the n is
+
+ so
-, charge
0 la a n
t h e d i s i n t e g r a t i o n is n o t allowed, s t r o n g l y ,
W'S
Consider
conjugation (which we think Ss s u r e l y s a t i s f i e d f o r decarys
a t t h i s r a t e ) (Q and no a r e charge conjugation 3.
=quires t h a t t h e a
mis
The G p a r i t y of t h e
3% does present a challenge.
, a- must
+ because
they can go i n t o 2y)
be s m e t r i c , they m w t be i n m T
added t o the X = 1 of t h e t h i r d w e o n y i e l d s only t o t a l L
O o r 2 state. 1, l, 2 , 3 a s
p o s s f b i l i t i e a , t h e r e i a no f = 0, m e r e f o r e the decay cannot occur except by Psospin is, of course, v i o l a t e d try e l e c t r a d ~ a d c s
v i o l a t l o o of i s o t o p i c spin.
s o an eleetrodpna&c v i r t u a l e f f e c t (order a i n rnatrix e l e w n t ) i s involved and the? r a t e is a f order cr
2
510
rl
swaqed by what S t would be i f
2y can compete with i t r a t h e r than being c o q l e t s l y Q -*
371 were a s t r o n g i n t e r a c t i o n ,
(The d a t a on
rr decays is Branching r a t i o X
* 1.1
23.1
'&e change i n X s p i n can be bX G parity
.
. ;
Hence the f i n a l s t a t e of t h r e e pions must have
can get ao estimate af t h e r a t i o
I part violates
O, 1, 2 but only t h e BP,
r(n
3n0)/r(n
+
a+71-n').
P,
= 1. From t h i s we
Conrbining t h r e e
s t a t e a of i s o s p i n ,none we can get f o r t h e t o t a l I spin:
tric
2,2,1,1
Pf we suppose t h e 3% a r e i n t h e i r l w e s t space wave, since they a r e Base we w i l l have f spln 3 o r 1;
by proper use of space s t a t e s t h e skew-S
S
wave m d sy-tric,
EM p e d t e only t h e l (but
t r i c X = l s t a t e s could c o w i n ) ,
Foa t h i s s t a t e
r(n
; .
3no)lr(n
-i
n'n-no)
= 3/2.
Sf
t h e r e is s m e skew s y a m t r i c
( m m e n t m dependent) space s t a t e the o t h e r Z = 1 can come i n reducing t h e 312; s i n c e i t corns i n with h i g h e r angular wmtentm i t i s probably s a t a l l e r s o t h e r a t i o m y be f a i r l y c l o s e t o 312. Bow do we c a l c u l a t e t h e r a t e
f t is 1.3 e x p e r i m n t a l l y , i~ -s
3n?
%ere does t h e i n t e r m e d i a t e photon
a c t ; can w e guess whl& i n t e r m d i a l r e s t a t e s a r e mast likely t o be i q o r t a n t ? A quilntitave e s t i m t e f o r t h i s r a t e is a problem t h a t no d i s c u s s i o n o f t h e
e f f e c t s of v i r t u a l s e l f e n e r e photon a c t i o n can f a i l t o arention.
Hypotheses in the Parton Mode
Lecture 50
We should now l i k e t o discuss what we can say about what t h e products
R would look l i k e i n deep i a c l a s t i c e e a t t e r f n g e
+p
+
e C X,
There a r e s o w
wasurerolcsnta f o r c e r t a b dcSef?lnite fSnal s t a t e s X f o r satall energies and low 2
q
of t h e v i r t w l photon (see Berkelmn, 1371 CorneZi conference),
Most
of these can be w d e r f ~ t o o dEron d t r e c t e r t m s i o n s o f our theorfefir f o r photon (qZ
0 ) reactions.
We have already d i s e a s e d pion production from v i r t u a l
pion exchrange a s y i e l d i n g info=tfon
on t h e pian f o m f a c t o r .
Xn addieion
c praductian has been s t u d i e d from v i r t u a l photons, wPth no surprises gives a f a i t account
- VBM
- s e e our theory d%scweed i n Lectures 16 t o 21 where we
2 2 = r e l y have t o replace kout by q i n the equations t h e r e yieldling a f a c t o r
m 2 l (mp'-q2) P
2 (q i s negative) r e l a t i v e t o t h e
-
O ease.
Zt i s necessary a l s o ts m k e an a s s m p t l o n of how the l o n g i t u d i n a l l y
polarized photon (possible when q
2
f 0) couples i n r e l a t i o n t o the l o a g t t u d i n a l l y
s a s s m d t h a t these a q l i t u d e s a r e r e l a t e d by a f a c t o r 2 t h e e x t r a f a c t o r q /m
P
is anansat z made because gauge
invariaace require8 chat J longfrudinal vandahea aa qL
-t
0, Thie m y be v a l i d
f o r n o t too l a r g e qZ, b u t of course i f q2 becomes r e a l l y vary l a r g e the
229
230
*
assumptions about small p + p production may begin t o f a i l . What happens a t l a r g e q2, and how i t ties on t o small q2, i n every case
€or very
v w i l l be our present concern.
W e s h a l l have t o be guided by
theory and I w i l l take t h i s opportunity t o review t h e parton model and some assumptions t h a t can be made about i t .
W e s h a l l list assumptions t h a t we can
- without today being s u r e of which a r e r i g h t and whicb wrong - j u s t t o
make
see what t h e i r consequences a r e with t h e hope t h a t experiment may later make the s e l e c t i o n (e.g.
are charged partons quarks?),
Therefore i n our list
some assumptions w i l l (perhaps) be i n c o n s i s t e n t with others.
The assumptions
w i l l come from a mixture of t h e o r e t i c a l guesses and known experimental
facts so-
- so
one might be warned t h a t i f a p a r t i c u l a r asswnption n e a t l y explains
experimental f a c t i t may not r e a l l y be a s i g n i f i c a n t confirmat
assumption might have been made with t h a t f a c t i n mind. e f f o r t w i l l be made t o derive one assumption from another n o t independent.
Finally, l i t t l e
- they are c e r t a i n l y
T h i s w i l l t h e r e f o r e unfortunately not be a m a t h e m t i c a l and
sound system, but r a t h e r a lengthy " i n t u i t i v e " o r physical discussion, For a good discussion along the same l i n e s see J . Bjorken's paper i n the 1971 Cornell Conference. General Framework W e suppose a s i n f i e l d theory, a wave function f o r a s t a t e can be given
by giving t h e amplitude f o r finding various n m b e r s of f i e l d quanta, o r partons of various momenta.
I n p a r t i c u l a r we discuss the wave functions of s i n g l e
p a r t i c f e s (eiomrttimes two p a r t i c l e s i n c o l l i s i o n ) with extremely l a r g e momentum P i n the z d i r e c t i o n (P
-c
The wave function i s being described i n Fock
QD).
space giving f o r a s t a t e the amplitude
etc.
where JIo is t h e amplitude t o f i n d no partons (usually zero); ql(pl)
is t h e
amplitude t h e r e is one parton (of such and such a type, an Lndex we are omitting)
231
Hypothese$in the Parton Model A i c h has mnrentm pl; J"Z i s t h e a w l l t u d e t h e r e a r e plS p2 e t c .
represent the vaeum s t a t e and a
p.
P
partons of Qtolltenta
For example l e t /VAC>
This can be w r i t t e n i n o t h e r ways. rL
WO
t h e operator c r e a t i n g a parton of m m n t u n
= P* /VAC> where
Then we can w r i t e the wave function e t a t e
is s o m function o f the c r e a t i o n operators,
Then we make the following assumptions : A&, -
The amplitucte t o f i n d a l a r g e
)&I on any parton f a l l s rapidly with
such Char e f f e c t i v e l y we c m i n f i r s t approximtion consider a l l Pi a r e f i n i t e (as P
+ W),
AZ. Tlne '*wave function" f o r Longitudinal m m n t m of order P, i . e . g t t = s
This r e q u i r e s some conrplicating r e m r k s t o m k e its d e f i n i t i o n c l e a r f o r t h e r e is, a s P
+
-, an
ever increasing c s n t r l b u t i o n t o $I for small
More p r e c i s e l y consider t h e density ntatrix. t o f i n d n partons of m e n t a p1 t o pn,
Let *m(plpZ...pn)
X.
be t h e m p l i t u d e
Then f o r exaraple t h e density f o r one a t
k is
That t h i s cfepends only on kL and x = kL/p when a s s w t l o n we want t o make
- with
p a r t i c l e density matrix [ l i k e dpl,,.dp,
1
X
is f i n i t e as P
a l l its generalizations.
/$i(P1pP2s * *kg .P,)
p(k,kl) depends only on hl,k;,kL/P;ki/P
wave f w c t i o n i n p
It is a l w e t but not q u i t e X%
-
is t h e
E.g. t h e one
(plp2. * k t .*P,)
e t c . , when
1
X
is f i n i t e .
6 (pi-kl) 6 fpJ-k2) )
Again t h e two p a r t i c l e density (the expectation of behaves likewise e t c .
$ ,
+
t'ki same a s saying
PLI/P, has a d e f i n i t e l i m i t .
the
The wave function
is a function of a l l of t h e mracmta including those of f i n i t e mmntuan The s c s l i n g d o e s n t t work f o r those
(which we c a l l weea).
- in
m a n a w e r of p a r t i c l e s r i a e s wlth P s o the wave f u r c t i o n JI
f a e t the f o r any fixed
n f a l l s with P ( l i k e a power of P) but t h e ' k e l a t i v e wave function" e.g., r a t i o i n which only one p a r t i c l e f o r a f i n i t e n a b e r ) is mved depends f o r finire
X,
A3. -
p mly
on
X,
pL.
I n the wave function the a q l i t u d e t o f i n d
a
232
Photon-Hadron Interations That is t o say again t h a t t h e
density matrix, e.g.
the density Ear finding p a r t i c l e s with f i n i t e (e.g.
behavior as P values of pL have a d e f i n i t e l i ~ t i n g nmbex o f such wee
-3.
m,
4-4 GeV)
and the expected
partons is f i n i t e e
& 4 .- To have continuity between A3 and A2 the mm n a e r of partons of
a given type
z&
The n d e r Ear pZ negative f a l l s o f f rapidly 80 t h a t f o r p, =
as B finite x
X$?,
negative t h e r e a r e no partane; although f o r pZ negatlve and f i n i t e t h e r e a r e some (a fixed =aunt
f a l l i n g rapidly with negative p Z ) .
(As a t r i v i a l e x a q l e of the kind of bhthavior envisaged i n the wee region where a* c r e a t e s s p a r t i c l e of consider a wave function l i k e exp (I: C ~ < ) [ O > Er l o n g i t u d i n a l mooentum h and Ck v a r i e s a s $ . / ( w - ~ ) Y ~ / ~ with W say,
-
- \fi
and a = constant.)
A%, The bE?hwior of the wees is nearly (as P of t h e d i s t r i b u t i m of t h e f a s t ( f i n i t e
X)
-3.
partoas.
a
completsly) i a d e p e n d ~ t
This again is connplicated,
I f we s t r e t c h o u t t h e v a r i a b l e pz by, f a r example, defining y
+ pz)
so f o r f i n i t e pz, y i s f i n i t e ; f o r f i n i t e n,y is &nZF
We have p a r t i c l e s a t every y fro= f l n i t e
0
Ln (
; . 03
f i n i t e RnZP-y ( f i n i t e
X)
+ 1 GeY2
+ enx.
t o Rn2P.
Rn2P
We have d r a m a graph oE t h e mean rider of p a r t i c l e s i n dye look near f i n i t e y, P
\/p:
I f we
we s e e the behavior of t h e wees; i f we look a t
we s e e t h e behavior of t h e s c a l i n g f a s t ones;
in
between i s a plateau with a E i n i t e density o f partons so the mean a m b e r of partons r i s e s a s EnP, It i s easy t o m d e r s t a n d the density but how do we mderstand the wave function?
"Phis gives t h e amplitude far every configuration, whi& &B a s e t
Hyporhesgs in rhe firton Modd of values of y f o r partons present
Ln2P
0
Y
It behaves
Bow does t h i s w l i t u d e vary with t h e p o s i t i o n of the data?
l i k e a wave funetian f a r a f i n i t e one d%mnsional drop of llqrtfd of thickness Ln2P. The a a p l i t u d e is l a r g e only i f p a r t i c l e s a r e rtlazrs o r l e a s e v e v h e n ? , with a uniform density except near t h e surfaces a t &n2P and 0 .
The behavior
a t one s u r f a c e is not s t r a n g l y influenced by what the configuration is a t the other: s u r f a c e
- they a r e i n s u l a t e d
from each o t h e r by the long
c?,
Rn2P is
never r e a l l y very l a r g e ) i n t e r w d f a r y plateau. Mathematically we a r e discuhising the prolution of W+ = Eiy f o r a rstate of
If
fined Pz (but we do n o t knnr H, of course). (e.g. l i k e
E pz a;ak
e t c . ) we want?
eigeovector of the operator W
iy
m
- - z,
F*.
qzis t h e momentum operator Cansider then t h a t
f o r a s t a t e of masn H.
H
@
is an
Now as P
+
m
2
P+% IZP) we eaa consider t h e lirnlt
(E
-
(ZPW)$
nZiy
(li1.1)
so we a r e Looking a t eigeavectors with fixed efgenvafues o f t h e operator PW a s P
+
=.
Wi,
axe a s s u d n g t h a t i t loolrcs a s i f , 8s P
d i s t i n c t l i n t i t , e x p r e s s i b l e i n x = pC/P and
is t r o d l e on t h e s m s l l mnrentm end,
p,.
This would be n i c e , but t h e r e
The equation is l i k e a cadieade, l a r g e x
genkrates staaller x through i n t e r a c t i o n t e m (I%& c o s e e ray showers).
t h e o p e r a t a r PM has s
+
turbulence equation8 , o r
Smiler matenta p i l e up m t L f new ptzenomna s e c s i n t o
change the equations (lLke viscoajtty i n turbulence, o r i o n i z a t i o n l o s s i n cos&e rays) t o f i n a l l y h t e d n e t h e wee
X
(EInlte pZZ behavior,
(The approxi-
aaatim I n showing t h a t PW depends only on x is wrong, f o r e x m p l e we c m no
longer: w r i t e
pZ,)
But by t h a t time the "'shower fkr f u l l y deveiopedf'
and t h e behavior of t h e weaa (except f o r n o m l i z a t i o n wee#) is indepenrient of t h e way i t e t a r t e d a t f i n i t e
- t o t a l strmgck
X,
of
(In the wee region
i n t e r a c t i o n e n e r g i e s a r e comparable t o k i n e t i c energies.) l'be behavior a t t h i s md Is a e o l u t i o n of t h e equation
W=O (Note the e ~ a s i a nof P , )
Tn general the operator W dioea n a t have a zero
Photon-MadronInteractions eigenvalue i f a l l boundary conditions a r e used condStion of f i n i t e n e s s a s pz equation H$
m
E@ f o r E
say the condition a t r =rely
J.
+ m. I l t
- b u t here we r e l a x the boundary
is l i k e s o l v i n g t h e Schroedinger
O when i t does not have t h i s eigenvalue by relaxing + m
and thus studying open s c a t t e r i n g s t a t e s spproxi-
t o which t h e r e a l l a r g e r behavior will. have t o be attached
- here we
mmt ultilnatelg r e a l l y a t t a c k t h e f i n i t e x s o l u t i o n of ZPW* = mL$,) It can b e s h o w t h a t s i n c e equation (51.2) is i n v a r i a n t un&r a boost
Lorenta t r a n s f o m a t i o n i n the z d i r e c t i o n by v e l o c i t y v, c a l l E i n which a l l l a r g e pZ a r e multiplied by f , t h a t JI c m be of t h e f o (so boosting does n o t change 9 , only t h e n o m l i z a t i o n ) .
This m a n s t h a t f o r
f i n i t e but smsll x the p m b a b i l i t y of one parton a t n v a r i e s a s nZ8dx/x. i n A4 corresponds t o B
lowest B s o l u t i o n we asstheory).
The
O ( f r o a e x p e r i m n t , not
Other s o l u t i a w e x i s t f o r higher B and the general s o l u t i o n i s a
l i n e a r conibinatlon of these d o s e c o e f f i c i e n t s a r e d e t e d n e d by how they f i t on t o (51.1).
S;
had hoped t o g e t a f i e l d theorqr i n t e q r e t a t i o n of b g g e
theory t h i s way but I have n o t c m p l e t e d t h e analyeis. A6. -
The d i s t r i b u t i o n of the wees is the s a m f o r a l l hadrons; Wng
a bold assumption p a r t l y guided by e x p e r i w n t ,
This is
o t h e r things i t m a n s
t h e weee a r e neutral. t o i s o t o p i c s p i n ; the wee8 f o r t h e proton look j u s t a s they do f o r the neutron.
f i e d i f f e r a c e c m only corn fro= a higher & and
hence f a l l s i n amplitude r e l a t i v e l y as P-@ (B t r i c w i ll with experiment
f;n
7
0).
I h e assumption t h a t the
Be made, (P think i t leads t o d i s a g r e e m n t
the expected r a t i o s o f n's t o K ' s f n c e r t a i n experilacmts)
f o r we imagine i n t e r a c t i o n forces a r e e f f e c t i v e i n d e t e r d n f n g t h e wee diat r i b u t i o n and such forces a r e not $Ug i n v a r i a n t .
(It s t r i k e s W*
nte a t t h i s mannear, t h a t s i n c e t h e wees a r e d e t e w n e d by
0, i , e , , a s t a t e a f zero =ss squared, and t h a t s i n c e pions have a small
nraea, t h e s t a t e of the wees m y be approximtely only pions (with kaone, of l a r g e r mass lauch reduced, hence l a r g e SU3 breaking,)
Knam pion i n t e r a c t i o n s
(perhaps described by intremediary p nzesans) might p e d t a s o l u t i o n of W$
I n t e r m a p p m p r i a t e pion base s t a t e s .
If you do t h i s 1 would suggest i t
mi@t be e a s i e r i f you work a t f i r e t with t h e
S
t r i c (inrpz) wee d i a t r i -
bution corresponding t o two f a s t h s d r m s c o l f i d i n g , r a t h e r than t h i s onesided, one-particle d i e t r i b u t i o n , )
0
23.5
Hypotheses in the Parton Mode1 A6 is a c t a w l e t e l g obvious from f i e l d theory
The a r p s u q t i m
- far
there might be so=
long range d i r e c t e f f e c t of the f a s t partons on the slow
ones i n principle.
The choice i s guided by expctrimnt (which shows t h a t the
right-mving products of hadronic co3LlisPons depend only on the right-moving i n i t i a l collidkng p a r t i c l e and not on what i t c o l l i d e d with. a s a m p tfan is wed s e e B1, a i d J, k n e c k e e t a l , Fhys, Rev. The physlcal a s s u w t i o n B 1 t h a t we
m&@
To aee how t h i s
,188 2159 (1969).
l a t e r says specifically t h a t there is
no such long range e f f e c t .
G. Continuity
demands, s i n c e the wees a r e adjacent t o the s e a (plateau
region) t h a t we a l e o have t h a t the s e a (e.g. =an n m e r s and corselationa of
rnI?kY2 where y
depends on the q u a n t a numbers
(angular mmntlmt, isospin, strangeness) c a r r i e d by the gap.
E,g, suppoee we
have a proton e t a t e and we ask f o r c e r t a i n partons s , b ,c, f o r y
y
1 and others
below y2
?J2
Perhaps t h e i r strangeness is contributim S
yl
+ 1, t h e
- 1 across t h e gap.
O s o there is a
e n t i r e proton h a s S
It 2s evident t h a t t h i s "quantura a d e r 8
carried across the gag" defined a s the qumttas a d e r s of the s t a t e d n u s Phase t o the r i g h t o f t h e gap (a,b ,c) is j u s t the sm of those t o t h e l e f t (S, t l
.
This more c q l i c a t a t d aethod of exprwslon ts zm a n t i c i p a t f o n of the
s a m i d e a f o r distr&b,butioaswhen two hadrons a r e c o l l i d i n g ,
Then i t is the
q u a n t m riders of the h a d r m taovgng t o the ri&t ntlnw the t o t a l qwntran a m b e r s of the partons t o t h e rilJht of t h e gap, A s s q t i o n A8 i s not stated, c l e a r l y , chmlgc?d.
f t is used i n two cases:
l)
We have t o say haw the gap by is
&@ion a,b,c and s,t a r e both s t a t e d
completely ancl t h e gap vldents s i ~ l became y P Increases; hence dy = Rn2P mn td the m l t u d e Earls a s . '-P
This was used i n ernslyzing the proton form f a c t o r
i n l e c t u r e 29, f a r e x a m l e .
2 ) The gap 1s i n a plateau.
there i s a l a r g e a t r e t c h of plateau,
On one s i d e or both
Here a,b,c i s flxed and s , t e t c . , is
m y t h i n g a t a l l over a rJ-ide r a g e of y up t o the o t h e r boundary (order Rn2P
236
Photon-Hdron Interactions
away) by i e k e p t fixed as %n2P rises. x,l
X
2
a r e the
X
ProbabilLty goes as (x2/i17
where
v a l u e s a t each end af the gap (used for aeyntptotle b e h w i a r
of deep l n e l a s r l c scattering n e a r
X
=
51,
Hadron-Hadron Co isions at Extreme Energies
Altlrou&tt our subject is photon-hadm i n t e r a c t i o n s we s h a l l review the a s s w t i o n s made in describdng hadron-hadron c o l l i s i o n s A energies,
+B
a t extreme
kle f i r s t leave out e l a a t i c s c a t t e r f a g and d i f f r a c t i o n dissociation
and aim t w a r d t h e l a r g e p a r t af t h e cross s e e t i o n where s e m r a f p a r t i c l e s a r e exaltted A
+
8
-+
C
+D +E +
---.
Far a hard c o l k i s i a n suppose the matenta of A, B a r e PA, PB reepectfvely
in the z d i r e c t i o n
- for e x a q l e
take eenter of mss P
f i n i t e z-vefociry v t r a s t s f o m t l o n from t h i s PA We only work with FI\,FP o r P
i .
fP,
=,
The a s p p t o t i c a l l y inco&ng wave f w c t i o n w i l l be, of course, (i.e.
before "interactdon'"
),
so= kind o f product wave functicn of A of mmncunr PI
t o r i g h t a d B of =matrun PB t o l e f t ,
Technical problem a r i s e here.
Ia f i e l d
theory t h i s e m n o t siarply be a product of the wave Emctions of each, p a r t i c l e t h a t we have been describing f o r t h a t Ss not m i q u e (for exmple suppose A contains a Fernion parton a t =maturn p, and B arcto contains one of t b s s a m
kind a t t h e s a m momatu~a,but there cannot be two In the f i e l d a s they a r e Femions).
Thw %f A is represented aa a creation operator :P
an t h e vacuum,
+A
which c r e a t e s a l l our partons, and B by :F we can define the
F:IVAC>
i n c o d n g asymptotic wave function a s
**
m e r e i s so=
trouble i n the wee regfoa where PBFa do not c o m u t e (note
*
t h a t no c r e a t i o n operators f o r f a s t partons p ^ xPA appear both i n FA and F; because A and B a r e m v i n g i n opposite d i r e c t i o n s ) ,
Actually t h i s is only
technical b e c s w e we only want t h e s t a t e a f t e r the i n t e r a c t i o n .
The problem
would a r i s e only i f we were q w n t i t a t i v e l y c a l c u l a t i n g the i n t e r a c t i o n s ; b u t now
WC
wish t o t a l k about how the wave function looks a f t e x i n t e r a c t i o n hence
say a f t e r "2nteractfon plus correction f o r overlap i n defining the i n i t i a l matate".
%C o w r l a p a f f e c t s only t h e wees, but we s h a l l as@=
the i n t e r a c t i o n
a f f e c t s only the wees a l s o .
(Ely i n t e r a c t i o n we
t h a t although P ;
/VAC> a r e both eigenfunctions of H $> =
/VAC> and :F
* * / W> is n o t .l
t h e rzffecte o f the f a c t
/
F o l l w i n g we s t a t e t h e a s s q t i o n s we s h a l l d
E /$P,
e regarding t h e i n t e r a c t i n g
wave f unc t ion. 81, -
Partons i n t e r a c t anly i f t h e i r r e l a t i v e four-mntm
-
w s m i n g they have s o w f i n i t e m s s of order L CeV.
is f i n i t e ,
This is equitrelent t o
-y f o r p o ~ i r i v ep=) t h a t partons 1, 2 i n t e r a c t only i f t h e i r r e l a t i v e y value , y l ~ Z is of order one o r smiler.
(I use L GeV off e t c .
f o r t h e general energy values a t which i n t e r a c t i o n s f a l l
Z suapect i n aeveral a p p l i c a t i o n s even a s m l i l e r value (e.g. pi,
average) m y be c o r r e c t , althouhJh possibly l a r g e r i n so=@ c i r c m t a a c e s
-
Z t of course cannot be defined p r e c i s e l y wethaut a q u a n t i t a t i v e theory.)
We umae t h i s a s s m p t i o n t o gee a t the wave function ( i n t e r n of parcon distributionsl) f o r the outgoing f i n a l s t a t e a f t e r i n t e r a c t i o n ,
The d i s t r i -
bution i n y of partons f o r the i n s t a t e s A and B have ranges of y snrall t o Ln2PA m d
- Ln2PB t o small respectively.
( e f f e c t of i n t e r a c t i o n ) over a range by
We put them together smearing things .r
l, %is srnetlring near y = O j o i n s
the p o s l t i v e and negative y regions (fro= G and B respectively)
.
Since these
regions were the s a m far both A, E (see A7) t h i s can be done most mairnply by
Wradron-HadrunCollisions st Extreme Energies j u s t extending the c o m a p l a t e a u region f r o a m e t o the other. p o s i t i o n of t h e CM Leaves no t r a c e then,
The exact
as a general p r i n c i p l e .
We a s s m e t h i s
Longitudinal t r a n s f o m t i a n s with a velocity v not too eLose t o c feave t h e (Assumption due t o
distributions of such p a r t i c l e s e s s e n t i a l l y unchanged.
C.N. Vang.) t n our a p p l i e a t i a n t h e p a r t i c l e s a r e partons, t h e t r a n s f o m t i o n a l t e r s t h e p o s i t i o n of the o r i g i n of y by &nf
1 Rn
1.t.v F
[a f i n i t e m u n t ) and tbe
assumption says t h e distribution should look t h e s a m .
Hence the s ~ a r l n g
j u s t has the e f f e c t o f extending the p l a t e a u region of A ermothly back i n t o B.
Me tni&t ask kif the srnearing of hx = X changes t h e dilstribution of partantl f o r y near Rn2P where they were determined a n t i r e l y by A .
(This region Is
c a l l e d t h e A fragmentation region, near -Rn2PB t h e B f r a w n t a t i o n region.) But near A the d i s t r i b u t i o n already s a t i s f i e s (in t h e sense t h a t a l i q u i d surface 1s nearly independent of what goes on deep below i f forces extend over f i n i t e d i s t m c e s ) the wave e q w t i o n , s o we as@-
It
it3
not chrmged,
Therefare we irnagincz t h a t the f i n a l r e a l hadron p a r t i c l e e c o w from the d i s i n t e g r a t i o n of an ""original" parron s t a t e which has the following p r o p e r t i e s .
fragmentation region (y near En2P
, i,e,
for
X
< 0 ) and l i k e
Thus t h i s is campletely described i n t e r n of t h e wave function8 f o r
s i n g l e p a r t i c l e s described i n a s s q t i o n s A 1 t o A8.
We emphasize again t h a t
our a s s m p t i o n s a r e not independent,for e x q l e , f o r B 3 t o work the p l a t e a m from each p a r t i c l e must be t h e @ a m a s A7 stays,
@e a r e n o t t r y i n g t o develop a
l o g i c a l system of asrsusptioas, but J w t s t a t e a n m b e r of mutually conraistent (or possibly i n c o n s i s t e n t
- s e e quark
assumptions l a t e r on) i d e a s ,
The p i c t u r e we a r e developing i n B3 is a wave fanetion l i k e a l i q u i d i n t h e varPabSe p wSth s u r f a c e s A, B a t which the d i s t r i b u t i o n s a r e unique but an f n t e r i o r plateau o r s e a region which s e p a r a t e s them,
%ey can be well
separated by taking P l a r g e enough, f o r they a r e separated by Rn2P is u n i v e r s a l ,
Further the r e l a t i o n a o r c o r r e l a t i o n s from one place i n y
t o another have a f i n i t e y r m g e of order one t h i s s e a i s l i k e a Mtlrkov chain weorrelated.
- which
- s o t h e general behavior
- with enougb separation i n p
in
thSngs beconre
Many obvious p r o p e r t i e s expected f o r such a &aSn can be
expected here but they w112 n o t be a l l e x p l i c i t l y s t a t e d ( f o r e x a q l e , t h e p r o b a b i l i t y t h a t t h e r e w i l l be no partan a t a l l of a given type i n a rsrnge by gwa a s e x g ( 4 h y ) f o r stollte C f o r l a r g e enough Ay, e t c . )
The ward "appropriate" 5n defining the wave fuslction i s purposely vague
f o r I a s n o t s u r e h e t h e r I am describing the f i n a l outgoing wave function a f t e r i n t e r a c t t a n when a l l the p a r t i c l e s a r e eeparating o r one i n btlrween t h e i n i r j l a l and f i n a l ,
I have not c l e a r l y reeolved aty c o n f w i o n on thLs toattar
-
but as Z oalyuste the function q u a l i t a t i v e l y i n a m n n e r described i n t h e next l e c t u r e Z have not had t o c l a r i f y i t .
On drawing the p plotcl t o deracrlLbe the partoa wave f m c t i m of asrswptions
B2 and B3 we a s a m d the wee region near y
1
O where A, B tnteract,as being
completely healed over and j u s t a srnooch continuation of a pfrlteau through y
O.
TI.li8 is physically what 1 want and lea& t o 62 (next l e c t u r e ) with
Hadron-Hadron Cotlisions af Extreme E~ergr'es u n i f o d t y i n t h e y defined there f o r physical p a r t i c l e s rsnd i n a c c o r h c e with invariance under f i n i t e v e l o c i t y t r a n s f o m t l a n s which applies t o p a r t i c l e s , But t e c h n i c a l l y t h e cume in the y space y = %n d g h t s h w a b m p near y = 0, a b w p which m v e s when we m k e a f i n i t e Lorenrz transfo-tion,
which is f%ne s i n c e wave f m e r i o n s need n o t be r e l a t i v i s t i c But i t a w e be a b a p
i n v a r i a n t s (X thank F. M e r r i t t f o r p o i n t i a g t h i s o u t ) . (90 c ~ n s t r u c t e dt o
have no p h y s i c d e f f e c t a s a b m p i n the f i n a l r e a l hadron
d i s t r i b u t i o n C2.
It is a "theoretical a r t i f a c t " due t o earelesaness i n finding
t h e ri&t no-lization
and d e f a i t i o n of v a r i a b l e s f o r the wave functian.
Rn
r e s u l t cannot r e a l l y be s m o t h i n t h e s c a l e of y would n o t be s m o t h (near y
0) i f Z had a r b i t r a r i l y chosen t o w e
f a r dyldy ' i s not c o n s t m t
y ' = Ogn
The
.
Latcture 53
We naw go on t o describe what t h e products &&t
look l i k e i n hadronic
m l l i s i o a s (astill leaving o u t d i f f r a c t i o n diseociation).
We have, of course,
no q?lantitative way t o g e t from the wave function described i n p a r t m e t o t h e wave f m c t i o n described i a outgoing r e a l hadrons, t h a t i n y space the r e l a e i o n of: p a r t m hadrone
+
partons described i n A .
-+
But we s h a l l s i ~ l p l ya s s m e
hadrons is muck l i k e t h e r e l a t i o n
Later on we s h a l l have t o describe t h e
produces expected from s t a t e s wfifch m l i k e that: i n B3, have gaps i n them, f o r e x q l e , a s t a t e with J u s t two parteas a t opposite ends of the y w a l e , separated by 2P, W assume ( t h e "conrplement" of B3):
partons
It h a s been ptoposed t h a t t h i s "sea correspondmg t o a parton gap" be
i t s e l f a gap.
This w i l l not be i n c g n s i s t e n t with what we w i l l say next (C2),
and which we w e i n hadron c o l l i s i m s ,
But i t does n o t seem reasonable by
i t s e l f t o ale i f liadron~m k e a un;ivereaI s e a a s 82 supposea
- f o r Z think
that
m a n s t h a t i f there were any d f s t r i b u t i o n a f two lmpbs of hadrons with a gap between, they would w k e a s e a of partons, s o i f there i s no s e a o f partons t h e r e is no separated l-e any r a t e i t i s
n?y
of hadrons, but there must be a hadron s e a ,
At
s t r o n g b e l i e f t h a t there is i n f a c t such a s e a Sn t h i s case
m d not a gap i n hadron m m n t a corresponding t o t h e gap i n parton w m n t a , A63.
A. CSsneros points o u t t h e two outgoing I m p s c a r q l n g oppoeite
+
hadronic quantusn n d e r s (in the case e e-
-t
hadrons) would generate a dipole
s t r o n g current ulhich would tend t o r a d i a t e s o f t e r hadtrons i n t o Low x,
To pre-
vent t h i s r a d i a t i o n becorns fnereasing1y m r e d i f f i c u l t a s t h e energy increases, (as f o r m - b o d y exchange r e a c t i o n s ) .
Gny exclusive m - l u q p r o b a b i l i t y w i l l
f a l l a s a p w e r of energy r e l a t i v e t o tha t o t a l inclusive reaction i n which the r a d i a t i o n , generating an i n t e r n a d l a t e plateau, is penair fed, Now f o r a wave function a s i n B3 we can iraagine the various partons d i s i n t e g r a t i n g more o r Less l i k e i n Cl but n o t r e a l l y independently, tholse a t the ends of the y raage deternine the. hadrons t h e r e , and those i n t h e c e n t e r a f f e c t i n g the hatirons i n the center, but i n a universal manner independent of y i n t h i s region,
Thus
W@
again g e t a hadron d i s t r i b u t i o n l i k e t h a t i n C 1
w i t h t h r e e regions, but the plateau may be a new and d i f f e r e n t d i s t r i b u t i o n
but a s e a nevertheless,
( m e t h e r the two plateau regions, t h e one i n C1
corresponding t o an i n i t i a l parton gap, and t h i s one f o r wave function B3, a r e t h e s a m o r n o t is a d i f f i c u l t problem I have not y e t been able t o decide, We s h a l l
call t h e assamptian t h a t they a r e equal C6, s e e l e c t u r e $5.)
This
a e s m p t i o n can be m d e by J u s t repeating t h e wording of Cl j u s t changing t h e naolcs of t h e s e a , o r i t can be put i n m o t h e r t o t a l l y equivalent way.
H~dron-HIrdronCollisions at Extreme Energies There i s a possible confusion here bemeen t h e "'initiaLWwave
Remrk;
function of C1 and the "appropriate" wave function of 83.
C l i n ece-
c o l l i s i o n s is j u s t a f t e r t h e i n t e r a c t i o n with the photons
- t h e parron
p a i r is j u s t t r e a t e d , like a
** ac a
There s t i l l remains tlrne f o r i n t e r a c t i o n s (via t e r w
i n t h e Wm%Itonim) t o a c t before we reach t h e partan representation
of t h e "final" h i t i a l s t a t e fumction i n t h e sense of B3,
- i.e.
before we reach the '"appropriate"
wave
%%is i n t e r a c t i o n converts t h e i n i t i a l f a s t
parton i n t o two o r Illore, and these aggan a r e broken up e t c . , i n a c s c a d e fashion naitkfng profound changes, f o r e x m p l e by f i l l i n g i n the gap i n tfie low pZ region md c r e a t i n g so= s o r t of parton plateau i n t h e f i n a l outgoing s t a t e ""appropriate" t o t h e i n i t i a l s t a t e CL, The reason no such extensive m d i f i c a t f o n is raade i n going front the i n i t i a l s t a t e i n a h a d r m c o l l i s i a n t o t h e f i n a l appropriate s t a t e B3 i s t h i s , "Prhe d i s t r i b u t i o n of the f a s t s a t i s f i e s W*
( n o n e e e ) partons i n the i n i t i a l s t a t e already
EJI s o l i t t l e disturbance is worked t h e r e by t h e m i l t a n i a n ,
Only i n t h e w t u a l l y overlappfng wee cegicras does the f u r t h e r a c t i o n of M linodify t h i n g s ( t o slnooth o u t t h e plateau).
This f a t r u e n o t became d i s t a n t partons have no e f f e c t , b u t r a t h e r b e c a w e
they have a rmiversal a f f e c t ,
Eere (and i n Cl) y c m be more p r e c i s e l y defined
f o r t h e hadrons a r e an t h e i r mss s h e l l and have a d e f i n i t e mass. y
gn(E9,)
an
We take
say i n L n G (&anlge of s c a l e m a n s j u s t a
change An o r i g i n of y ) F
C3. -
P u t t i n g t h i s a11 together i t naems that. i n a hadron c o l l i s i o n A
m y t h i n g i n t h e GM systera p l o t t i n g x
+B
-J.
P /P f o r x negative the d i s t r i b u t i o n of produces Z
The i d e a t h a t t h e rlglrt mrovers depend only on A and t h e l e f t Hlovers only li k e 8 is c a l l e d l i d t i n g ( I ,e. a s P suggested by C.N. Yaag e t a l , &ys, Rev,
; .69)
framntation.
188 2159
It: was
(1969) but a t t h e time i t
was supposed t h e e regions separated and had ao m m m i c a t i o n , but i n f a c t
there i s a s e a bemeen,
This s e a , hotrrever, we suppose is universal and
(although i t l o g i c a l l y could) we a s s m e i t c a r r i e s no information from t h e r i g h t t o l e f t region. kle have o d t t e d t h e d i f f r a c t i o n d i s s o c i a t i o n but i t is evident t h a t i f i t is added. i n a d e f i n i t e percentage t o the i n e l a s t f c w i l l not change our
conclur3ion,
However, the f r a c t i o n t h a t e l a s t i c s c a t t e r i n g is of the t o t a l
cross s e c t i o n does not Beem t o be universal ( f o r e x a q l e , f o r pp a t l a r g e P aeg/ctot
%
.25 whereas f o r 'n
p i t is c l o s e r t o . l 7 , s e e G. Giacomelli i n
Proceedings h t e r d a r n Conference an Bleaentary P a r t i c l e s , North Holland Press (2971)).
Thua lim%ting f r a e e n t a t i o n cannot be absolutely exact.
It
is probably generally nearly c o r r e c t ; perhaps i n a f u t u r e more exact under-
standing i t w i l l be t r u e f o r p a r t s of the c o l l i s i o n characterized by a o m other p a r m e t e r (e,g. impact, paratweter) b u t when i n t e g r a t e d over t h i s p a r a w t e r i t i s no longer exact f o r d i f f e r e n t cases give variocls d i f f e r e n t r e l a t i v e
weights t o t h e various values of the p a r a m t e c ,
Nevertheless even with t h i s
evidence a g a i n s t its p e r f e c t universal v a l i d i t y we continue to ancllyze i n a naive and s h p T e way leaving refinements t o some f u t u r e date, m e r e a r e a n m b e r a f a d d i t i o n a l conclusions m d e by assumning the b r k o v i a n fdea and extending our ideas such a s about gaps A8 from parton t o hadron wave functions.
M e s h a l l not discuas the= i n d e t a i l f o r hadron
c o f l i s f o n s i s n o t our caain s u b j e c t but give s o m e a w l e z ; .
We a s e m a ,
analogously t o A8 t h a t
(right
whiag
p a r t i c l e q u a n t m a m b e r s of A ncFnus quantum n d e r s of
a l l hadrons t o t h e ri&t of t h e gap), A+B
121
-c
For e x a w l e , f o r t h e exclusive c o l l i s i o n
C+D s o the outgoing s t a t e is pure C t a r i & r , B t o Ieft, the gap is
~ +fin2 ~ 1 PB/ 1
an4 1 P
~ = Pens ~and~ e-aby = ( 4 ~ ~ =~ B-'~ 1where ~ ' a depends
on t h e quantum nu&ers of A-C,
should go a s s-~('-')
Looked a t fuon a Regge point of view t h i s
whose a depends on the quantm. nunabera exchanged i n t h e
t channel, which is the @ama s A-C,
Thus a is i d e n t i f i e d with 2 f l - a ) ( o r
whatever the c o r r e c t pawer law of e n e r a f a l l - o f f turns o u t t o be) m d we mke a contact with t h e theory of exelusive r e a c t i o n s ,
(The s a w goes i f C is
two p a r t i c l e s l i k e n f p of fixed t o t a l mass2 n o t n e c e s s a r i l y a t resonance. X do not know of examples o f f resonance where t h i s pawer law has been checked
-
again we s e e the universal p r i n c i p l e t h a t going t o higher energy does not. l i f t a resonance ever higher against '"on-reamant'$
badground
- the
l a t t e r can
always a l s o be thought of a s taiLa of o t h e r resonanceo,) Again applying t h i s t o the case t h a t C only is near t h e end of its range, i o nearly 1 but D is anything, even m a y p a r t i c l e s , we s e e we a r e
so x
generating a gap of en(l-nc)
and the q l i t u d e goes a s e-aPn('-xc' a(l-xc )a-ldxc with a
The d i s t r i b u t i o n of xc is then d(l-xcla
Thie r e s u l t , though "'legally" t r u e a s P a nearly unobservable. collision. of rnllss from x
xc
-*
1,
2-2o.
is i n p r a c t i c a l eases
For example suppose C i s a proton produced i n a p+
Protons a l s o come from d i f f r a c t i o n d i s s o c i a t i o n of a reeonanee of
% say
-
m,
= (I-X~)~.
going t o proton W and pion.
(E -p )/$ t o x P P
-
and mmnturn of the proton
9;n
)/S
(as P + -1, where Ep, pp are the energy P the r e s t f r a m of the resonmce, Although t h e
(E +p P
This s p i l l s protans over a raage
l a t t e r is l e s s than one, t h e r e is a vary 811li311 gap (of range .98 t a l f o r %2
2.16) f r e e of d f f f r a c t i o n generated procons i t is too small t o i s o l a t e
experlentally.
Z f a gross p l o t is made f o r xc not s u f f i c i e n t l y near l
various nu&ers o f d i s s o c i a t i o n proton& a r e included and the v a r f a t i a n of numbers appaars f a r from ( l - ~ ~ 1 ' ' ~ ' d x ~ . This d i f f i c u l t y does not a r i s e f o r pions when t h e i n c i d e n t p a r t i c l e i s a proton,
Lecture 54
I should l i k e t o m k e a few coments about, our "conclu6sion" fraza C2, PSrst slnccz t h e m a n number of p a r t i c l e s goes as dxlx i n t h e smll region and continues across x
O a s dp/f
i t is evident t h a t the t o t a l n u d e r of particles
of a given kind ( t h e m u l t i p l i c i t y f o r t h a t kind) r i s e s logarithmlclal1y with fLnP o r with Ilns.
This i s a l s o obviow i n tha a r e a of the y pilot where the
plateau expands logarithmically with s.
But the plateau region is ( s t a t i s t i c a l l y )
n e u t r a l , f t s average f o r any a d d i t i v e qucsntm n u d e r such as charge, t h i r d component o f isospin, bargon nu&er, hypercharge, z cawonent o f angular
mmnturn e t c . , must be zero (because i f not
would give a Rns dependent
&/X
value fox one of these fixed conserved quantuna riders). t h e cascade i d e a of how the plateau is f a m e d , 1 -
dx (Number of a* a t x
- Number
of n- a t
X]
We expect t h i s from
Thus such i n t e g r a l s a s
conver*
t o nurabers which a r e
O c h a r a c t e r i s t i c of the p a r t i c l e A ( i n i t i a l l y taaving t o t h e r f g h t ) independent of P a s P
-t
=.
i n t e g r a l Ear
Independently carrespanding "&eft numbers" l i k e t h e s&m -1 t o O can be deflned, tJhich should iiepend on B.
X
I n p a r t i c u l a r then we. can d e f i n e d e f i n i t e q u a n t m nuoibers ( f o r the a d d i t i v e quantum n m b e r s ) f o r t h e right-rrroving particless3,by simply adding the t o t a l nuniber f o r a l l f o r kihich
X
0) i n t h e CM system.
O ( i . e . pZ
This nuaber w i l l vary from event t o event, of course, but we want t h e s t a t i s t i c a l
expected man over many events.
a constant a s s
+ we
This "mean r i @ t quanturn rider" w i l l approach
Thus we can t a l k of the "right mean 3-isospfn" o r the
"right m a n strangeness".
I t is evident t h a t these mean r i g h t q u a n t m n w b e r s
must, under t h e i d e a s of C2, be t h e same a s those of t h e i n c o d n g right-moving particle.
The plateau region does n o t l e t any qwntum nmbexs s l i p through i t .
( I f f o r a x m p l e we take a s p e t r i c c o l l i s i o n A nmbar conservation and must be t h a t of b. t o ntake A
+B
+A
then by o v e r a l l quantum
t r y the r i g h t q u a n t m a m b e r s (and t h e l e f t )
S
But by l i m i t i n g f r a ~ e a t a t i o nreplacing the l e f t A by B
does nog change t h e d i s t r i b u t i o n of r i g h t movers hence they
s t i l l carry t h e quantrna n u h e r s of A,) 'I'hus f n t e r e s t t n g l y a s P
+
the right-moving p a r t i c l e s t n the mean carry
t h e energy, t h e atowntuna ( d n w a constant), the 3 i s a s p i n , strangeness, baryon number, z angular w-mentum, e t c . , of t h e incoming r i g h t mover. NOB: -
We show t h a t , disregarding q m n t i t i e s of order 1/P, the difference of
t o t a l energy E and t o t a l ~ o m e n t wP of t h e p a r t i c l e e moving t o t h e ri+t is a constant D
.P
C(ci
- pZi)
(independent of P a s P
-t
"10
and i n f a c t i f t h e plateau For f i n i t e
is universal, t h e same constant D f o r every p a r t i c l e A).
positive) the difference from one hadranic p a r t i c l e i s c (p
2 2 .(m
A
X
(say
- Px
-p
)/2Px (m i s the m ~ of s the hadron) which is of order 1/P and t h e r e f o r e
negligible.
I"fie main contribution cornea from x near zero where the d i s t r i b u t i o n
of a p a r t i c u l a r type is edplc, hence the contribution t o
E
- p of
these is
Hadron-Hdron Collisions af Extreme Enargitls
c
j
( E - P ~ ) ~ P ~ / E~
.
m
The i n t e g r a l gives
so D
C
P ,"""Q
i n the plateau.
I f t h e p l a t e a w a r e universal, the constant II i s universal
and m y be e a s i l y calculated i n t e r n of already nreasured quzmtities, Xbua i n a c o l l i s i o n of 8 and B each p a r t i c l e i s converted i n t o a t r a i n of p a r t i c l e s rnoving i n i t s own d i r e c t i o n .
The " t r a i n A"
the q u a a t m numbers
"S
of t h e p a r t i c l e A and its energy (by the cansertvation of energy) but has l o s t a c e r t a i n m o e n t m D i n the i n t e r a c t f a n , i t i r s held back a b i t by the i n t e r (Such a f i n i t e moment= t r a n s f e r
a c t i o n , A and B each l o s e D t o the o t h e r ,
is, of course, c o n s i s t e n t and understandable i f only wees i n t e r a c t i n the collision.) (For the wave function of a s i n g l e hadron described i n a s s m p r i o n s
A2 t o A6, t h e t o t a l aomentunt of t h e partons is, of course P, the t o t a l ntomentm of t h e s t a t e , but t h e t o t a l energy energy E
is not the t o t a l
C i
P because of i n t e r a c t i o n energy which compensates t h e expected
f l n i t e excess of Cci above CpzI.) As a f i r e t s t e p t o describe these things f o m a l l y , we a r e t r y i n g t o describe t h e s t a t e /Ain right' Bin left' ( h e r e "h riight" Beans having very l a r g e p o s i t i v e Iongftudinal momntum: P, and "in l e f t " m a a s -P) i n t e r m of autgaing hadron s t a t e s the a w t r f x ,
- an e l e w n t
of
O f course the mst l i k e l y thing is t h a t the two p a r t i c l e s
do n o t c o l l i d e , making simply
/aut
Bout
left>.
Ve wish t o d e a l with
t h e wave functions i f they c o l l i d e , s o we w r i t e as usual S a r e speaking of the T la;atrk, o u t l i n e our ideas.
l
+ iT
and we
kfe s h a l l not n o m l i z e i t c o r r e c t l y , but j u s t
F o m l l y t h i s wave function can be given i n t e r m of the
amplitude t o f i n d various outgoing hadrons.
I f c* is the (formal) operator
t o represent the c r e a t i o n a f so@ kind of a hadron (kind, transverse momntm pk, and l ~ n g l t u d i n a lmowntum p a r e i n d i c e s of c*) we can represent such s t a t e s by
XIVAC,where
d i s c w a i n g how X looks,
X is some operator function of the c*.
We have been
let M be an operator t o c r e a t e a p l a t e a u
r r p i c a l u a i v e r s a l plateau f o r s o w range of x around O
- say x
- say
a
-.2 t o +.2
Photon-HadronInteractions [ t h e exact way the plateau of M c u t s off f o r f i n i t e x i s arbitrary; its choice a f f e c t s the d e f i n i t i o n of G ~ , Gdefined ~ l a t e r , but the f i n a l operator Next we w r i t e X a s G ~ G % where G R is t o mrrdify
X i s n o t dependent on t h i s ] .
the s e a on the r i g h t ( f o r x r 0. X t involves c r e a t i o n operators c
*
t o add
p a r t i c l e s t o (and beyond) t h e plateau operator M, and m a i h i l b t i o n o p e r a t o r s c t o take p a r t i c l e s o u t (which were put i n by our a r b i t r a r y choice 05 how the 3 O ( t h a t i s the meaning af the R). L * Likewise G is an operator function of c , c s n l y f o r x < Q. The operators L R
plateau M i s defined) but a l l these f o r x
G ,G c o m u t e s i n c e they contain operators of d i f f e r e n t p a r t i c l e s (soate s i g n s must be adjusted f o r Fermi p a r t i c l e s ) , R,
L)
Thus we w r i t e
G ~ G % IVAC, A B
where we have w r i t t e n [M-plateau3 = H/VAC>. on the p a r t i c l e A, e t c .
(54.3)
R
The operator GZ depends only
I f you want things t o look even n i c e r w r i t e the l e f t
s i d e i n terms of operators too, say d* which c r e a t e incantag p a r t i c l e s , and then have
R*% L* VAC, = ~ , " ~ i / ~ - ~ l a r e a u ,
TdA
* is equivalent ( i n t h i s two-body equation a t l e a s t ) t o R* B but i n an odd representation i n which dA a c t s on the vacuum and CA on
Thus t h e operator d: G:,
the i4-plateau s t a t e . A rasearch problem which f s very intportant, and v i r t u a l l y u n k n m
t h e o r e t i c a l l y , is ( t h e very r a r e ) c o l l i s i o n s a t e x t r e w e n e r m i n which the r e l a t i v e moaenta t o t h e o r i g i n a l d i r e c t f o n .
p a r t i c l e s come out a t
Fox:
example, proton-protm e l a s t l c s c a t t e r i n g a t f i n i t e angle, e.g. go0, where t i s the same order a s s a s
S
-r"
m.
What kind of physical view accounts f o r these
c o l l i s i o n e , I s h a l l not discuss ideas which have been t r i e d here, f o r our s u b j e c t is photons, but s h a l l only Coment t h a t nothing is c l e a r l y understood and you can s t a r t from s c r a t c h on your own. have t o be abandoned o r quantified?)
(For example w i l l assumption B1
(You s t a r t by looking f i r s t roughly a t
the experimental r e s u l t s t o r e m & e r q u a l i t a t i v e s a l i e n t f e a t u r e s t h a t d g h t need explanation,) nts:
P
By assuming t h a t the wee region is t h e same f o r each hadron and t h a t
Hadron-Hdmn Collisionsat Extreme Energies only vees i n t e r a c t have we not a s s m e d t h a t a l l t o t a l c r o s s s e c t i o n s a or a PP =P e t c . a r e equal, c l e a r l y contrary t o f a c t ? 1 have n o t thought t h i s out c l e a r l y but have always supposed t h a t t h e p a r t of t h e wave function which does i n t e r a c t (which i s always i n f i n i t e s i m a l conrpared t o t h e p a r t where they go past each o t h e r without i n t e r a c t h g ) could s t i l l have soare a o m l b z a t i o n r e l a t e d t o the t o t a l c r o s s s e c t i o n f o r t h a t p a r t i c u l a r c o l f i s i o n without being inconsistent: with o t h e r ideas. each G
A
Ta the forrnal expression above, f o r example,
could carry a numerical c o e f f i c i e n t gA proper t c A. 2 2
t o t a l c r o s s s e c t i o n s proportional t o gAgg,
00
'This would ntalse
a s is s a i d , f a e r a r f z a b l e ,
It
m y be. t h a t the previous a s s m p t i o n s do n o t i a p l y t h a t the totall c r o s s s e c t i o n s
a r e n e c e s s a r i l y equal, but r a t h e r perhaps t h a t they a r e f a c t o r i z a b l e , imply f o r example, t h a t a
- \/I;-
/b
PP \ ns
etc.
I C would
W e do not have any evidence on
whether t h i s is t r u e .
Tn these s t u d i e s we have made no r e m r k s which p e m i t us t o understand transverse =ownturn behavior (except t o say t h a t transverse nrromenta i a hadronic c o l l i s i o n s a r e limited, a r e s u l t taken d i r e c t l y from rrxperirnent].
Obviously
l o t s of i n t e r e s t i n g t h e o r e t i c a l questions r e m i n , such a s what functfon is t h e trcinsverw mmntuar d i s t r i b u t i o n , how does i t d i f f e r f o r various values of o r f o r n%
arid K's?
X,
Now should exclusive cross sectiona vary with t , e t c . ?
This e n t i r e realm of phenomena has been l e f t out of our a n a l y s i s , an e x c e l l e n t f u t u r e opportunity f o r advance l i e s here,
Hadronic States in Deep
astic Scattering
Lecture 55
We a s s u m t h a t i n the o r i g i n a l f i e l d Ea<oniain describing hadrons i n t;em of partons t h e r e a r e t e m givlrrg t h e coupling of partons wllth the
vector p o t e n t i a l of t h e quclntunn e l e c t r o w g n e t i c f i e l d .
We s h a l l assuvle i n
the s p i r i t of .olinIaum e l e c t r o ~ g n e t i ccoupling t h a t they couple i n t h e sixnplest m y expected Eram t h e propagation operators v i a gauge inrrariance.
That is we
IBSUIEIB:
That is a l ~ at h e coupling t h a t would be vtllid i f they were i d e a l f r e e p a r t i c l e s , This coupling Is not unique i f t h e partons a r e spin. 2 o r higher, but f o r t h e present t h i s w i l l not coneem us f o r we s h a l l suppose partons a r e e i t h e r s p i n O o r s p i n 112,
AZthou*
we a r e i n danger of not having t h e moat
general caae we s h a l l nevertheless explicitly next take the working hypothesis (suggested, of course, a s we have discussed by experixaent on vWZ and W1 and not a p r i o r i by theory) t h a t
(a i s an index f o r the kind of partan).
250
251
Final Hadronic Smrm in Deep l ~ e l ~ z sSc~tterr'ng ti~ We have seen how t h e assumptions AP-A8 plus these two D1 m d D2 l e a d t o the s c a l i n g expectations f o r t h e deep i n e l a s t i c seattergng ( l e c t u r e 27) m d Urnever, here w e s h a l l
there i s no reason t o repeat a l l t h a t h e r e again.
discuss what we can say about the products i n photon c o l l i s i o n s , i n p a r t i c u l a r we begin with the deep i n e l a s t i c ep s c a t t e r i n g regian cg2
-2Mvx.
Mv
tm of the proton, q t h a t of the v i r t w l photon) s o
P*q
virtual
V
photon energy i n laboratory (proton at r e s t ) system* kt us use the coordinate
-
system wfth t h e v i r t u a l photon purely spacelike qufi (0, -ZPx,O,O) PMm(P,P,O,O) 2 92 4 p 2 x 2 , 2 Hv 4P x. Then a s a r e s u l t of our avsvmptions t h e parton wave function before and a f t e r the c o l l i s i o n s looks l i k e :
Imdiately
A f tl?r
&up l i n g
That Is, one parton (say type a) moving t o the l e f t , the r e m i n i n g partons mvin,ng t o r i g h t j u s t a s i n o r i g i n a l proton, l e s s the individual parton a of mmentum x.
The r e l a t i v e p r o b a b i l i t y of t h i s p i c t u r e is e t n a ( x )
is t h e nunber of partons of type cr wSth pz/P
fi
X
where na(x)
i n the origilzsl proton s t a t e .
Then:
.
The t o t a l cross s e c t i o n i n t h i s sca3e
is a superp o s i t i o n of cases of d i f f e r e n t typee a of partons with weights,
on t h e character of the c o l l i s i o n through x ;
wa(x)
kla depending
2
e;na(x)/T
eg ng(x) ; l3
the s m of the weights being l.
h e obvious consequence of t h i ~and our other a s s m p t i o n s is t h a t i n t h i s system
{for fixed x a s we very F,
o r i f you l i k e v). The longitudinal m o a n t a w i l l s c a l e as P, %.e, i f they a r e s t a t e d i n
u n i t s of P a s say 1-tP t h e d i s t r i b u t i o n s w i l l be independent of P a s P (depend only on
Q),
We expect aZso near q equal zero t o find a dq/n behavior, Q
+
For p o s i t i v e
(night movers) we expect. i t behaves likrtt t h e universal H-plateau charaetlerirstic
of a wave function l i k e B3, which we know from hadron colZisione,
Pox negative
1-t wcs axe i n the ""plateau regian of i n i t i a l parton gap" Mefined i n connectfan
252
Photon-Hadron Interactions
with Cl),
We have not assmecl these two p l a t e a w a r e t h e s a w s o t h e c o e f f i c i e n t
of dr1ll-r need n o t be the same.
1 E they a r e not we s h a l l have trollible defining
what happens i n t h e t r m s i t i o n regian
- i t cannot
Leads t o the same c o e f f i c i e n t f o r plus and minus
go simply a s Cipz/c f o r t h a t
n. We s e e however t h a t t h i s
question is t o some e x t e n t an a r t i f a c t of aur p a r t i c u l a r choice of caardinate system.
Note t h a t the s t a t e described here a s "immdiatelp a f t e r coupling" i s
an i n i t i a l parton s t a t e ( i n the sense discussed i n t h e xemrk following the discussion on Cl)
- there
s t i l l must be i n t e r a c t i o n s from t h e Hamiltonian
before i t becomes the '%appropriatem outgoing wave function.
%is w i l l produce
cascading a f t h e left-moving parton i n t o t h e gap smearing the wee region i n t o negative
Q
and making l a r g e readjustments f o r the r i & t - m v i n g
(because, f o r f i n i t e
X,
system a l s o
they a r e no longer t h e c o r r e c t s o l u t i o n of W$ = EJf
s i n c e one parton is missing), This a l l appears q u i t e complicated and i t is d i f f i c u l t t o make firm predictions,
However, we might cant inue to assume i n t e r a c t i o n s a r e each Limited
i n range on a r a p i d i t y p l o t I n gaps, e t c .
- although t h e r e
a r e m n y of them possible f i l l i n g
But we s h a l l t r y t o adhere t o t h e grincllple a t l e a s t t h a t the
parton mavfng t o the l e f t
d e t e m i n e a t h e f i n a l hadrons t o t h e l e f t
and lgke-
wise f o r t h e r i g h t . We put t h i s idea f o m l l y i n t o t h e following a s s m p t i o n ,
a g e n e r a l i z a t i o n of Cl, 62 (we w r i t e i t independently, f o r i t may n o t be t r u e while t h e s p c i a l case Cl o r C2 m y be).
C5. I n the c e n t e r of massi system ( o r one m v i n g l o n g i t u d i n a l l y a t m y v e l o c i t y not near c)
(Lfkewise , exchanging l e f t and r i g h t . ) Assumption CS, i f i t were r i g h t and t h i s c o n t i n u i t y i n iLndPZ/c, would seem t o suggest t h a t both plar;eatts f i t tagether.
I arn not s u r e of myself
h e r e but s h a l l put i t down as an e x p l i c i t a s s m p t i o n which would, i f i t i s t r u e , r e w v e a l l our d i f f i c u l t i e s t h a t of hadron-hadxon c o l l i s i o n s .
- the
dtl/rl
region i s always universal,
233
Final Hadronic States in Deep Ittelastic Scatrcrifrg
This a s m t i o a i s a t present, very weakly based and m y e a s i l y be wrong
- it i s an i n t e r e s t i n g conjecture,
We now make a more d e t a i l e d discussion of our expectations f o r the l e f t -
moving p a r t i c l e s , (1 have p r o f i red g r e a t l y from conversations with A. Cisneros on these m t t e r s , )
For these p a r t i c l e s a v a r i a b l e more convenient than rt (which
goes d m t o -x) i s z
- rl/x
-p,/Px
= P*p/Psq the f ractton that the l e f t Since t h i s
nnovhg p a r t i c l e ' s moraenturln i s of the t o t a l left-moving nroaentuta.
is z = P.p/Peq i t is t h e energy of t h e p a r t i c l e i n t e r n of t h e energy v of t h e photon i n the laboratory system, how t h e v i r t u a l photon f r a g m n c s ,
X t is t h e proper v a r i a b l e f o r seeing
Of course a@ v
4 m,
x fixed, t h e d i s t r i b u t i o n s
i n z s c a l e a s we have s a i d ,
If we could be s u r e t h a t only a partoa of type a c m e out (which by t h e
way, can be much more n e a r l y done f a r neutrZno s c a t t e r i n g
- i n the quark m d e l ,
neutrino scattering can l e a d t o unique quarks t o t h e l e f t ) t h e d i s t r i b u t i o n t o the l e f t would be unique
- say
a function of r only D : ( , )
the p r o b a b i l i t y of n y K a t zl,z2 depends on
z l ~ Z as
7ite
Da (z 1"z )
- and
Dty(z).
"fhe n a b e r of v % with a given z i s
these functions do i n no wily depend on
X.
m e y do not
depend on x because the hadrons t o t h e l e f t d e ~ e n donly on the parton t o t h e l e f t ( a ) axld the adjacent wees from t h e hadron ( i f a t a l l )
- and
these
l a t t e r a r e m i v e r s a l and unaffected by the ternoval of t h e parton a t x from the proton,
The l a t t e r does not a f f e c t l e f t - m v i n g h a d r o n ~ f o r its r e l a t i v e
mmntrura t o l e f t - m v i n g hadrons i s not f l n i t e but g r w s a s P
4 0,
TIze a c t u a l d i s t r i b u t i o n seen a t a given x w i l l depend on x because the r e l a t i v e p r o b a b f l i t i e s of produchtng d i f f e r e n t kinds of partons or w i l l depend on x,
The a c t u a l dSstributions DD(x,z) w i l l be the weighted average f o r each
where the weights wa(x) proportional here t o eeLna(x) a r e defined by
These functions D (z), o r equivalently t h e i r c r e a t i o n operator
R on
K-plateau ( i f 65) isolates sontethinlg charaetaristic: of gartons and, i f our
254
Photon-Hadron Interactions
a s s w t i o n s a r e a l l c o r r e c t , therefore very fundamntal. indeed,
Me s h a l l
discuas l a t e r a s p e c i f i c parton -&l (quarks) a s well a s s o w p r a c t i c a l questions about t h e possible e x t r a c t i o n of t h e i s o l a t e d R (z) f r o a experilaent, a s well a s t h e p o s s i b i l i t i e s of finding t h e u
D
may behave,
(2)
(X)
by s p e c i a l guesses about hou
To raa t h e p o s s i b i l i t y of s p e c i a l f u n c t i o m c h a r a c t e r i s t i c
of each kind of parton i s a very i n t e r e s t i n g p o s e i b i l f t y , and one t h a t could be an entrance t o a path i n t o t h e h e a r t of t h e m c h a n l s w of strong i n t e r actims, These same functions D
(2)
- for
w i l l appear i n c e r t a i n o t h e r experilsents
e x a m l e , of course, i n deep neutrino proton
i.
p
+ products
experimnts.
The
a n a l y s i s is nearly t h e saae a s h e r e except t h a t t h e f m d m n t a l coupling m y be d i f f e r e n t so although n Agein i n the e*e-
(X)
a r e the s a a the weights wo(x) c o w o u t d i f f e r e n t l y ,
collision the a s s q t i m D2 says our i n i t i a l s t a t e
is j u s t a p a i r , parton o and a n t i p a r t o n
2 R L C6 t h e f i n a l s t a t e would be C ea (Da D;
with weight eo2,
+ :Da
a
Thus, ass&ng
/ ~ - ~ l . a t e a uagain > producing
hadrozls i n any one d i r e c t i o n characterized by the dlstributioln
where we sum an a over parrcns and a n t i p a r t o n s , I f , f o r e x a w l e , i n a o m experio~sntwe could be s u r e t h a t a c e r t a i n parton a erne o u t t o t h e l e f t say, then a s we have seen we would expect t h a t t h e t o t a l "leeft-mvbg quantrrrn rider" "he
sm, f o r so= a d d i t i v e quasltm
a m b e r of t h a t n d e r f o r a l l hadrons arrving t o t h e l e f t averaged over a l l events) w u l d be t h a t of the parton a ,
Thus i n p r i n c i p l e we could define
o r d e t e d n e I n tern of e ~ p e r i m n tt h e q u a n t m n m b e r s of the partons, the s t a t e i s not pure we s h a l l have t o Imm something of: the weights d
e t h i s useful
- but there are s o
\(X)
If to
different: kinds of e x p e r i w n t s
possible t h a t i n p r i n c i p l e the wa(x) can be d e t e m i n e d a s well. a s t h e o v e r a l l q m n t m a m b e r s of the partons, The p a r t i c l e s t o t h e r i g h t u n d e r h e p i n e l a s t i c e-p s c a t t e r i n g corn f r o n Erawentation of a proton with one cr parton of wroentw f r a c t l o n say E (p_a,x) ( E ) .
They a r e evidently not very fundamental.
X
remved,
But i t is c l e a r
t h a t the sam kind of f h a Z s t a t e r e a u l t a (on both s i d e s , l e f t and r i @ t ) i n Rrell"
experiment p
+p
J-
p
+ + 1-1- + any
hadrons s o t h e products i n t h i s
255
Final Hadrank States in Deep Inelastic Scattering e x p e r i m n t can be e n t i r e l y expressed i n t e r n of these E (p-cr,x)
and hence
has been worked out) i n t e r n of the products for deep
(supposing n,(x) ep s c a t t e r i n g .
"
We
leave i t f a r you t o w r i t e t h e e x p l i c i t r e l a t i o n s and t o
suggest p r a c t i c a l experfmn ts t o t e s t your ideas.
Our f i n a l hadron s t a t e is according t o our assunptions
NOTE:
L
V,'"' 4,
R
1%
(p-~,3
plateau,
,.I i s t h e operator f o r a l e f t partan a , and EB
where B
moving f r a g m n t s .
for the right(p-a,x> But t h i s can be considered a s a lanemnic only f o r the
expression i s probably ilnpossible f o r one operator M allways. would seem t o prevent us from w r i t i n g quanturo n u a e r s of two quarks (or
+ B)
a
Cz
plateau, which would have t o t a l
whi& is impossible t a w r i t e i n termss
of the hadron operators having m l y i n t e g r a l quantufo nmbers. to J, Wndula f o r pointing t h i s o u t , )
Because nothing
(1 a a indebted
A v a l i d m t h e m a t i c a l representation
f o r these ideas is an e x c e l l e n t problem. The reader shauld be warned t h a t a n d e r of these s c a l i n g predictions
f o r s p e c i a l produets of r e a c t i o n s may only hold a t much higher energies than t h a t a t which s c a l i n g f o r t h e t o t a l cross s e c t i o n (vW2 and Ml) s e t s I n , This warning r e s u l t s from t h e o r e t i c a l experience with a n m b e r of e x a w l e s of a n a l o g ~ u st h e o r e m i n n o n - r e l a t i v i s t i c quantum nogchanis where the sum works we11 before the i n d i v i d u a l t e r n do,
This is becautlre i f c e r t a i n i n t e r -
a c t i o n s a r e disregarded I n working t h e t o t a l p r o b a b i l i t y by assuming c e r t a i n s t a t e s only a r e "entered" subsequent gnteractions naay not change the t o t a l p r o b a b i l i t y t h e s t a t e was ' % ~ ? ~ e r e db"u t atay r e d i s t r i b u t e t h a t p r o b a b i l i t y over d i f f e r e n t f i n a l s t a t e s than were expected,
In t h e s p e c i a l case of s w f l
X
t h e predictions a r e e s p e c i a l l y sitaple,
F i r s t consider t h e r i g h t s i d e ( o r i g i n a l proton).
Here we? have a parton d-is-
t r l b u t i o n j u s t l i k e t h a t of a proton with only a very low x parton rernoved aad the wees disturbed (by i n t e r a c t i o n with t h e plateau developing from the left). a proton
Thus a l l t h e partons o r any s u b s t a n t i a l x a r e exactly l i k e t h a t of
- and we
(at least for z
can expect the saate d i s t r i b u t i o n of hadrms t o c o w out X)
a s do coae out f o r a hadron c o l l i s i o n of a proton, say
or $(E).
Hence f o r n small ER
Jil
(p-a,x> p' Next f o r amall x a l l na(x)dn go a s Ca &/X where Ca is a constant, ~o
t h a t wafx)
small
C,/):
CB
m
y
approaches a constaat y
B
Next call. llL t h e mixture :D
X.
r
parton, each wei@&witb f o r smll
X,
weight ya.
-
independent of x f o r
z ~ ~ D o: f t h e d i s t r i b u t i o n s f o r each
Our hadron d i s t r t b u t i o a becoma thus,
nearly
That is, f o r small m t h e proton f x a p e n t e i n r o a f o r a independent of x and the ss=
a s i t does f o r a hadron c o l l i s i o n .
E r a p n t a i n a unfversal way independent of X
Bnd the v i r t u a l photon a l s o X.
Sfnce we have afisawd t h e low
region the sam f o r a l l hadrons, t h e Col and yap and heace By do not depend
on the p a r t i c l e s t r u c k by t h e photon f n o m l i z e d t o t h e t o t a l cross-section f o r c o l l f s i a n , of course).
A sntall,
X
photon and
rt
hsdron behave j u s t l i k e the
c o l l i s f o n of two hadrons, each f r s g m n t s i n its m c h a r a c t e r i s t i c way,
That
of t h e photon f s independent of X,
2 For f t n i t e q, negative q we can s t i l l use our system of coordinates i n rJhtch q has only a space component Q.
exrzept i f Q
0.
It fs c l e a r h e r e hor~evelrt h a t only x near zero can be
a f f e c t e d by t h e *ocon
They a r e ,
Q; t h a t i s only t h e wees a r e e f f e c t e d .
however, a f f e c t e d i n a very conrplicated way f o r i n t e r a c t i o n i s important i n t h e wee region.
%a cannot t h e r e f o r e p r e d i c t whet vi3.3, happen t h e r e , but we
can note (a) t h a t i t is the s m f o r every hadroll A, A
+y
-c
products f o r
we have the @amweea f o r every hadron accordLng t o A&, and (b) t h e fragm n t a t i o n of the f i n i t e m i n t h e above system is c h a r a c t e r i s t i c of partons of system A only, f o r only t h e wees a r e e f f e c t e d by t h e photon.
In consequence of (a) the products on t h e l e f t rJhillh can be Ctczscribed
2 &ere Peq
i n t e r n of z
P Is t h e proton f o u r + ~ n t u n r , p is t h a t of a
product and q t h a t of the photon, f o r f i n i t e z m v distribution D
Y19
+
=, is so= kind of a
Z ( ~ ) . The d i s t r i b u t i o n c l e a r l y depends on
the v i r t u a l
257
Fhail Hadronic States in Dwp fnelastie Scatterkg QE the photon, b e e a w e the c o q l i c a t e d i n t e r a c t i o n s of the wees depend
=ss
on t h i s nrawntusn.
I n the o t h e r d i r e c t i o n ( t h e v a r i a b l e (q*p/q*P) the proton
f r a p e n t s i n t h e B a E way a s i t does f o r hadron c o l l i s i o n s , tions hold f o r q2
These eonsidera-
O a l s o , of course, but our coordinate system is inconvenient
f a r such a c a s e , kfe could a l s o use the c e n t e r of =ss
system f o r any fin.nite q
Conservation of energy and momentm meaQs t h e v i r t u a l photon (P'
2
+ m,qZ
finite)
i n t e r a c t s only wlth t h e wee partons of t h e t a r g e t proton ( o r hadran G).
This
i n t e r a c t i o n i s conrplicated but produces t h e s a w d i s t r i b u t i o n f o r any hadron f o r given q
2
.
The h a d r m behaves a s i t always does where
turbed whether by another hadron o r by a photon,
i t s wees a r e dis-
P o m a l l y our f i n a l hadran
s t a t e is
%us a s f a r a s h i @ energy i n e l a s t i c c o l l i s i o n e a r e concerned t h e (virtuill o r r e a l ) photon s e t s j u s t l i k e a hadron inasmuch as It appears t o have
itcl
2
2
own (q dependent, o r q 4 1 £ r a m a t a t i o n products, i n its;
d i r e c t i o n , the hadron f r a p e n t i n g a l a o i n Its c h a r a c t e t i s t l c way, IPhis af course makes a n i c e union with the- i d e a of vector =son
dodnance,
t h a t a f r e e photon (q2-0) has a c e r t a i n reasonable p r o b a b i l i t y t o be a v i r t u a l vector meson and a s such would behave i n hadrotl c o l l i s i o n s l i k e a hadron, note now
W@
We
s h a l l n o t have t o d e t e d n e with what prabab2lity i t looks l i k e
a badran and how t h i s varieJLee with q 2 , f o r i n any event i t , a s a whole, should a r t j u s t l i k e a hadron does i n v
In t h e c e n t e r of a r e te-
-S
+
-,a"
~olli~~eeion~r
p i c t u r e (and a l s o kn t h e spacelike q f i p r e ) t h e r e
of coupling i n which t h e p h ~ t o nE f r e t divides i n t o partons on the
way %n3 f o r e x a m l e one f a s t one slow, and these slow partons i n t e r a c t o r lsaxnihilate with t h e wee partons of the hadron.
Thus t h e p i c t u r e t h a t the
inco&ng photon loofts with some m p l f r u d e l i k e partons i t s e l f i s r e i n s t a t e d . lLsi g
2
r i s e s (and c e r t a i n l y where
X
2
= -q 12Mv is f i n i t e ) t h e contribution sf
aueh d2agram £falls away and only t h e d i r e c t coupllng t e r n of photon s c a t t e r i n g
a parton of the hadran reraain important.
F i n a l l y we a h a l l mateh our f i n i t e qZ region t o our smll we have done before we s h a l l suppose when
2
-
V +
.D
region.
ks
v is very l a r g e and -q2 l a r g e but
-q / ~ H vsmall the 1 i ~m ty be r a b n i n e i t h e r order:
r e s u l t e i t h e r from our f i n i t e q2, v
X
- i.e.,
formula o r from
X
we can get t h e
f i n i t e , but small,
fomula. mus (55.1) mwt agree with (55.2) f o r Large q
2
.
%is i s
easily done,
t h e r e s u l t s agree i f only we add t h e r e s u l t : DYsq2 = Dr f o r l a r g e g
2
.
mat
is:
2
The f r a p n t a t i o n produces of a photon of l a r g e -q becam independent of
2 2 -q a s -q r i s e s ,
(We a r e i n a l l czzsaaj, n o m l i z i a g t o the t o t a l cross s e c t i o n
which is varying, as l / q 2 , of course.)
Partons as Quarks
Lecture 56
We could now go on t o discuss various ntadels of what quantm n u d e r s partons carry, but we s h a l l l i m i t ourselves t o one e x a w l e , the one t h a t i s aost interesting,
The student should t r y other examples, suck a s the Sakata
nradef, t o see whether we t a n eliminate them by experivrents now done, or proposed, We s h a l l suppose the charged partom c m @ i n s i x v a r i e t i e s , three plus their antiparticles,
The three called u,d,s carry the quantum nu&ere of the
three quark ~ t a t e s(of the lw energy quark m d e l ) .
El..
This we s u m a r i z e by:
, Most o f our previous a s s w p t i o n s
were guided, o r we thought they were guided by f i e l d theory o r considerations based on hi& energy experimnts, guess,
Tkfs, of course, is not, i t i s an inspired
But tt i s a l s o contrary t o what can be t r u e i f the f i e l d ttreol-y i s too
ordinary,
For i a such a theory there would be a b m e s t a r e of quark nmber
me (and non-integral charge i n a localized wave packet) and, i n view of the cansemation of quark n u d e r , sone eigenstate of the system of quark nwaber one is expected.
I n other words we expect t o see r e a l p a r t i c l e s with quark
quantum n u a e r s .
They have not been seen.
they have very large =ss
- but t h i s makes
It is possible t o imgin~1:t h a t
i t very bard t o take a l l the
259
previous a s s m p t i o n s about a l l parton i n t e r a c t i o n s l i m i t e d t o t h e GeV region, etc.
There may be some way
t o reconcile a l l tlnis
intriguing; of t h e o r e t i c a l problms.
- i t is one of
t h e moat
I n order t o emphasize i t 1 w i l l make
another unneteeaary assumption t h a t I w i l l n o t use but I add t o remind you of t h e problem,
-
E2.
I f you p r e f e r t o replace i t by
"'physical quarks have high mass", go ahead
- you s t i l l have t h e o r e t i c a l work
t o do reconciling i t with E l and t h e r e s t of our a a s m p t i o n s , slay be wrong
- one of
Of c m r s e E l
the most important e x p e r i m n t a l jobs of the f u t u r e i s
t o f i n d out whether E l is indeed c o r r e c t o r impossgble and s o we should work o u t a s rnany t e s t a b l e consequences of i t a s p o s s i b l e ,
So f a r we have, a s
discussed i n l e c t u r e 32, corn t o t h e conclusion from expertmeat t h a t i n any ease :
.
E3,
%at they may be l i k e we do not now
know, except perhaps they m y not be vector (because the @ , p degeneracy i s not l i f t e d )
.
Although t h e problem of reconciling E l , E2 and f f e l d theory sl?igPtt be very d i f f i c u l t , i t appears ( a t l e a s e a t f i r s t s i g h t ) t o be n o t a t a l l d i f f i c u l t t o reconcile El, E2 and t h e o t h e r a s s m p t i o n s we have e x p l i c i t l y aade about parton and hadron d f a t r i b u t i o n s ! A c a r e f u l review of our assumptions shows t h i s ,
as already mentioned, i n
There i s possible doubt,
B1 ( i n t e r a c t i o n only between partons of small
r e l a t i v e y) but t h i s i s only used t o m k e the l a t e r asstznrptions = r e
plausible
and nraybe replaced by t h e s e l a t t e r aaswptfonap, A place where t h e r e Is an e s p e c i a l l y i n t e r e s t i n g , but n o t I n c o n s i s t e n t ,
conclusion is i n connectlon with '%ight+ov%ng q u a n t m nmbars" "iscussed
a
i n l e c t u r e 54) f o r the parton f a c t f a n Da and which should aow be non-integral, These n m b e r s a r e defined s t a t i s t i c a l l y a s t h e average over a l l events
-
although each event must give i n t e g r a l values t h e average, of course, need n o t be,
For e x a m l e i f we know one quark (and no antiquark) is s e n t t a t h e f f g h t ,
the mean n u d e r of basyon l e s s antibaxyons found on the r i g h t should (at extremely high e n e r m , a t Least) be
+
113.
The a r g u e n r s leadizleg t o t h i s concfusion a r e not obviated by the f a c t t h a t t h e partons do not have i n t e g r a l quantunr a m b e r s .
Xmgine f o r a very
Parterrs as Quarks l a r g e %nP t h a t the quarks are d i s t r i b u t e d i n the ( f h a l s t a t e ) wave function i n a long plateau:
( t h e l e f t end of the plateau is generated by a long chain
*
il:
of cascades v i a t e r n s l i k e a a a from t h e i n i t i a l s i n g l e pubirk)
Then i n turning i n t o f i n a l hadrons various bundles of quarks go together t o make l e g i t i m a t e hadron quantum numbers.
I n doing so they take combinations
of quarks over a f i n i t e range o f y a s i l l u s t r a t e d above.
(The o v e r a l l t o t a l
t r i a l i t y must be zero, of course, f o r the i n i t i a l s t a t e has zero t r i a l i t y ; our i l l u s t r a t i o n t h e i n i t i a l s t a t e has baryon n u d e r one,)
in
Me assume t h a t
t h e r e i s s o w non-zero p r o b a b i l i t y p e r dy t o pick of 3 quarks ( o r 3 antiquarks1 t o m k e a baryon ( o r antiibaqyon). t o pick up s t r a n g e quarks.
Likewise t h e r e should be a f i n i t e p r o b a b i l i t y
Pt is then seea t h a t a s a s t a t i s t i c a l matter with
a s u f f i c i e n t l y Long plateau kn y ((sufficiently long Wrkovian chain) t h e quark number (and strangeness) becows randomized m d the c e n t r a l region of t h e plateau is n e u t r a l oa t h e average i n these v a r i & l e s ,
This means t h a t the
r i g h t and l e f t mean q u a n t m n u d e r s of t h e f i n a l kadrons approach a constant t h a t depends a s we have supposed on t h e i n i t i a l r i g h t o r l e f t quark character. Pt doesn't m k e any difference exactly where you c u t t h e p l a t e a u i n deciding which is r i g h t o r which l e f t , a s long a s yclu c u t sowwhere n w r t h e ntlddle.
%is result: is s o i n t e r e s t i n g and Its e x p e r i m n t a l v e r i f i c a t i o n would represent such a d i r e c t measure of the supposed non-lntegral q u w t m numbers of t h e parton quarks t h a t we should say s o w wards about its possible v e t i fication,
F i r s t i n e l e c t r o n production i n general we do n o t have a s i n g l e
type of quark t h r m t o the l e f t ea t h e beauty of t h e result: would be confuged by having t o f i r s t know t h e wa(xl by ane e t h o d o r m o t h e r (see m t h o d s below). On the other hand f o r x near I we have been l e d by e x p e r i m n t ( r a t i o of
vWZn t o vWZp, l e c t u r e 31) t o suppose t h a t only t h a t is t r u e , near x
U
quarks survive
- hence i f
1 our left-moving quark may be a pure u quark.
h o t h e r way t o insure pure quarlcs is by neutrino s c a t t e r i n g which we discuss below, Secondly, although i t m y be easy t o f o m pions i n the plateau region
i t m y be harder t o f o m R's and s t i l l =re of t h e i r m s s e a ? ) ,
d i f f i c u l t t o f o r a baqona (becawe
If: t h i s is t h e case we should need a very lmng plateau
indeed t o g e t equilibriuan i n baryon a d e r , althou& hyperon charge a g h t be e a s i e r aad i s o s p i n e a s i e s t of a l l .
I n the e n e r m r m g e s a v a i l a b l e t o experi-
a n t therefore I would expect t h e quantum n d e r r u l e s t o work b e s t f o r iaospin, next f o r hypereharge, and b a v o n n h e r last ( i .e. requiring the l a r g e s t enerl3y)
.
The e a s i e s t would be i s o s p i n , l e f t - w v f n g z isospln: C IZiHiB
For e x q l e we would expect t h a t the
t h e @urnof each product hadron . s o e n s t o the
l e f t ( f o r e x a ~ l ei n the s y s t m with q pure @spacelike, o r myba the center of M -S), w i l l per c o l l i s i o n , f a r a g i v m x be given by
t h a t is, i t w i l l risae from zero f o r sm1l x (where u(x) r i s e sitrove
+ 112
( o r f a l l below
- 112)
etc,)
;(X)
and approach C 112 f o r
X
, never
near 1 (&ere,
we think u(x) d o ~ n a t e s ,) This r e l a t i o n can serve as can a n e e r of o t h e r s of t h i s type I n one of two ways,
In one case we ~ i g j n ttpuppose u(x), ;(X) e t c . , already knom frorn
eomc? other atethod a n s l y s f s of p f u r t h e r an.
-b
p
- such as neutrino -t
+ B B"" C anything,
scattering explained in l e c t u r e 33
- or
o r by perhapis one of t h e equsrtions developed
I n t h a t ease (36.1) is a q u a n t i t a t i v e prediction t o t e s t the
m s i s t e n c y of a l l the i d e m t h a t partons are! quarrks.
Alternatively
it
cm
i t s e l f be used t o give f u r t h e r i n f o m t i o n on t h e s i x separate functions u(x),
;(X)
etc., s o t h a t they m y be separately dete*ned,
Thieae could then
be cowared t o the r e s d t s of o t h e r raethods of ~ [ e t t i n gthem, but do n o t serve d i r e c t l y a s a check of the m d e l , Nonewr, even wlthout coaplete separation of a l l the functions a r e l a t i o n such a s (55.1) m y be used t o cheek t h e quark model because of the existence l l o f surrr m l e s (Equation 31.2) such a s (u(x) L(x))dx 2, (d(x) a(x))dx
-
-
so the integral, over x of the a m r a t o r of (56.1) should be 7/18.
I do not know a t t h i s tgne which kind of exper-ntal
infomtion w i l l
becorn available f i r s t and so my generat discussion s u f f e r s from a canfusfon Sn m a l y z i n g these t h e o r e t i c a l expectatlonra
a s t o which corns f i r s t the
m
1
horse o r c a r t .
There a r e a very l a r g e n&er
of such r e i a t i o n s whose
I w i l l therefore merely i n d i c a t e
organization is thereby m d e d i f f i c u l t .
some of t h e general r e l a t i o n s expected from our theofy and leave the choice of the b e s t way t o use them o r contbine them t o cowitre t o e x p e r i m a t up t o you,
Lecture 57
There is m o t h e r way t o insure t h a t m e g e t s a pure quark of one type r e c o i l i n g i n t h e f i n a l s t a t e , and t h a t is with deep i n e l a s t i c n e u t r i n o o r antiaeutrgnfno s c a t t e r i n g , a s we d i s m s s e d i n l e c t u r e 33.
We a s s m e of course,
weak coupling with t h e hadron p a r t of the weak current given t h e usual GJ*J U 1.l i n t e r n of q u a r b a s Cabibbo suggested, That is, we e x p l i c i t l y a s s m e :
We s h a l l a s e m f o r our d i s c w s i o n t h a t t h e current i n t e r a c t i o n is polnt-like, but t h a t i s a B a t t e r f o r e x p e r i m n t t o decide,
This very
i n t e r e s t i n g question i s , however, beside the scope of our discussion;
after
i t is d e t e d n e d t h e s a m kinds of questions and r e m a r h w i l l apply t o products generated by t h e aforementioned curneat operator.
I n aall cases
we can m a l y z e things a s i f they were the effect: of a v i r t u a l W meon f i e l d W of m a n t m q (generated by the lepton) coupled with t h e current: i n E4, li U J u s t as before (Equation 33.2) the t o t a l square rnatrix eleronent of J can Ir
be expressed i n t e r m of W2, W1, Wg s o t h e products, s u m d over spins and angles, a t l e a s t , c m a l s o be s o aslalyzed, each be s p l i t i n t o p a r t i a l Wl,
W2,
dlscuss oaXy t h e s c a l i n g region.
W
3
We have seen vW;! i o r e l a t e d t o W
- -
f i P - f y ( j u s t the s c a l e d function WV
WZ, WWg can
f o r s p e c i a l types of products.
r e l a t i o n should hold f a r products a b o ,
protons) was J u s t purely u(x).
That is t h e total, W1,
But =re
We
l and t h e
Lnteresting we noticed
ZHW3 f o r a n t i n e u t r i n o s c a t t e r i n g on
I-
Hence the s a m holds f o r t h e products, i e . ,
the p r o b a b i l i t y of a product i n M1, ( d e t e d n e d a s t h e appropriate c o e f f i c i e n t i n t h e v a r i a t i o n of cross s e c t i o n with laboratory n e u t r i n o angle klteepag q ,
V
fixed) minus t h a t i n W3 f o r ;p e c a t t e r i n g a r e purely the products f o r a u quark
being knocked backwards (Eomarda is a proton l e s s a d q w r k with p r o b a b i l i t y 2 cos BC
- the
.O6),
Thus by studying the products t o t h e l e f t i n t h i s cooibination we a r e
2 l a t t e r can i n f i r s t approxinration be negleczed a s s i n BC is only
studying the fragnaentacion products, Du(z), e~cpectedof one s i n g l e quark, a u quark i n f a c t . Ey choosing o t h e r ca&inations we can s e l e c t r e c o i l quarks of d i f f e r e n t types.
For example, f i P + f i p f o r neutrinos on protons gives pure
and should give various praducts with p r o b a b i l i t y ~;(z);(xl; t r i b u t i o n independent of
X,
the t o t a l cross s e c t i o n being
fiP-fgP f o r neutrinos on protons gives 2 d quark, s i n BC
a.
quarko
a f i x e d dis-
;(X),
Again
a pure d quark (cos
2
-94
.06 s quark),
From these d i s t r i b u t i o n s t h e t o t a l quantunt n m b e r s of the q m r k s can be deteracained. can n o t ,
Xn t h i s wag alone c e r t a i n m d e l s can be eliminated, but o t h e r s
For e x a w l e we cannot d i s c i n g d s h t h e quark model from t h e three-
t r i p l e t w d e l where t h e r e a r e 9 partons (and 9 antipartons) i n s e t s of three. A, B, and C each s e t having three s t a t e s l i k e quarks wi th various i n t e g e r
qwntum numbers,
Thus what would c o w out i n t h e experiment on fa-fg f o r
up s c a t t e r i n g , where we expect a pure u quark i n t h e q w r k rrrsdel, would, i n the t h r e e - t r i p l e t m d e l , be a -k l12 i s o s p l n parton b u t e i t h e r of type A o r
B o r C with equal p r o b a b i l i t y s o the mean charge on o t h e r n m b e r s can be l 1 3 i n t e g r a l and j u s t equal t o t h e u value, f o r t h a t is how t h e i n t e g e r charges f o r A, B, C were chosen.
(Other experiments, such a s e'e-
-t
anything o r
c o r r e l a t i o n s of l e f t and r i g h t s i d e d i s i n t e g r a t i a n s might d i s t i n g u i s h these models, )
There a r e a l a r g e nuniber of predictions i m p l i c i t i n the r e l a t i o n t h a t the d i s t r i b u t i o n of a given final hadron i n the l e f t (photon) d i r e c t i o n ( f o r convenience not n o m l i z e d ) is i n general given f o r deep i n e l a s t i c ep s c a t t e r i n g by: (Equation 55.1)
265
Bartans as Quarks where DU(z) e t c . , a r e t h e d i s t r i b u t i o n s of t h e product i n question f o r pure There a r e s i x f m c t i o n s i n general
up quarks, e t c .
80
analyze unless u(x) e t c . , were a l l alreadly a v a f l a b l e ,
i t is d i f f i c u l t t a
Howver, by taking
c e r t a i n co&inatfma of Eaewuremnts fewer functions axe involved,
%
i l l u s t r a t e t h i s with an e x a q l e ,
+
=4
Suppose we ask t o produce a etc.
WCg
c a l l t h e d i s t r i b u r i ~ n'D
By isospin r e f l e c t i o n t h e p r o b a b i l i t y a
t h a t a d produces a produces a
S-;
(z)
y i e l d s a n+ is t h e same a s
and by charge conjugation again t h e s a E a s t h a t a
In t h i s way
W-,
U
and :D
(x,z)
s e e f o r n production t h r e a r e r e a l l y only
WQ
t h r e e independent functions
In fact i f
kre
4"
measure t h e nu&er of n a n u s t h e a d e r of
R-
at a
given z i t (Equation 57.1) a l l reduces t o one function: 4"
D" (X,z>
- 'D
". ( x , ~ ) = A(z)
- V1 (d(x)-a(x)
(u(x)-;(x))
( f o r v i r t u a l y on proton) where A(z)
-
-k
:D
(x)
- :D
Thus we expect t h e d i s t r i b u t i o n ( p r o b a b i l i t y
(z).
as a function of z) t o be the same f o r a l l 4
(u(x)-;(X))
1
- $d(x)-8(x)),
X.
Aa we vary x we can deternine
within a constant.
This is j u s t a s i n 56.1, but
we do n o t have t o e a s u r e over a l l z t o i n t e g r a t e , and m a a u r e o t h e r p a r t i c l e s A =re
a s well,
wrzsurenaent of
3.
W
md
71-
a t soare convenient z would be enough.
The absolute c o e f f i c i e n t can be d e t e w n e d i n two ways, e i t h e r from t h e sum
-
r u l e s (Equations 31.21, o r by the hypothesis t h a t a s 4 a s ~ u ( x ) fep(x)
known function a s n
+
l.
X
-, 1 only u ( x ) s u m i v e s
Additional information would
came from t h e eame eltperiment on t h e neutmn, of course, (we g e t
g1
(U-;))
4
(dd)
+
e
The sum of the number of
W+
and
n- does not give
about the d i s t r i b u t i o n s , but we can roughly p r e d i c t its
US X
m& t h a t iet new dependence
The expression i n c u r l y brackets is t h e same a s fep(x) except f o r t h e c o e f f i c i e n t of t h e l a s t t e r n (which should be s l w l y 1 Is probably small ( f o r not only should
S
However, t h a t t e r n
,H be l e a s t h m say
i n a proton
U,:
4 r e l a t i v e t o $1 l but a l s o u is enhanced by F s o the d i s t r i b u t i o n of n' plus nis probably n e a r l y i n d e p e n d a t of x, and i f no-lized
t o fePfx) depend@ on
Arturo Gianeros haa suggested an, hypothesis which we explain i n w r e d e t a i l below, which a m u n t s t o a s e w n g t h a t near z
1 t h e f m c t i o n a ;D,(z)
f a l l o f f with variouhl powers of (I-z) and i n p a r t i c u l a r chat a s z
+
+
function :D
i s much l a r g e r than
+
o r :D
:D
.
-t.
l the
This .lakes t h e c o e f f i c i e n t s
of (57,3), (57.4) equal. a s z -, l, Thus i t m a n s t h a t ia t h i s region t h e p r o b a b i l i t y of f i n d i n g a n' a s we vary x is a d i r e c t measure of ufx) and t h e p r o b a b i l i t y of fgnding a n- m a s u r e e ;(X)
+
+ a(.),
d(x) i n t h e s a a e e a l e ,
This i s s t i l l another suggestion of how the i n d i v i d u a l determination of the f m c t i o n s na(x) m y be f a c i l i t a t e d . pe-ts
Xn f a c t , t h i s hypothesis, i f t r u e ,
a d e t e d n a t t o n of the s i x functions u(x), 5(x) e t c . (up t o an
o v e r a l l a u m r i c a l canstant) , by memuring the dia t r i b u t i o n functions f o r charged m s o n s only near z proton i s
l, f o r both proton asld neutron.
used a s a t a r g e t t h e n
(X)
Sf only t h e
cannot be d a t e m i n e d without =king
.trzemuremnts o f neutral. plebsons which is d i f f i c u l t experinrttntallg, Me can do eintilar things f o r t h e production of o t h e r p a r t i c l e s , f o r example K-mesons
.
Here t h e r e a r e s i x independent functions Df(z),
o t h e r s a r e obtained by f s o s p i n r e f l e c t i o n o r charge conjugation.
D 5 $ - 6' -
-d
D$
.
the (For e x m l e ,
The student e m v e r i f y t h a t f o r u on protons
+(2)
i f we m a s u r e p a r t i c l e s a t a given z t o t h e l e f t , i f N 4-
K e t c . , we f i n d t h e following r e s u l t s : on one f w c t i o n , with t h e s a w
m o t h e r coIlrbination (*ich
X
i s t h e n m b e r af
The i s o t o p i c s p i n difference depends
dependent c o e f f i c i e n t as before:
does not require R'
and
a l s o f a c t o r i z e s i n t o one f w c t i o n OE x , one of z:
p to
be distinguished)
P a r t m as Quarks
Ttre suxtl of a l l four depend@ s t r i c t l y on two functions o f z :
but the last f a c t o r i n curly brackets is l i k e l y t o be close t o fepfx) f o r any z , F i n a l l y t h e fourth r e l a t i o n , illrrolving two funetions is
(a measure of hyperckarge, but unequally s e n s i t i v e t o stxmge- a d non-stirange
quarks s i n c e we do a o t a s s m e SUj invariance). Cisneros' aassmption E(i(be1ow) h e r e a m @t h a t , a s z survive, c a l l them a , @ respectively. as z
+
-, 1,
4-
3.
only DU a d D@
Then a rseasure of K mesons t o t h e l e f t
1 is a dSLrect marsure of v a r i o m c d i n a t i o r a s of the u,d functions.
In t h i s , a s i n a l l cases, data on vn gives a d d i t i o n a l infornation, change ufx)
d(x) and
;(X)
*-+
Z(x) fi t h e f o m u l a a ,
Me have n o t discussed t h e r i g h t d i s t r i b u t i o n s , but t h e r e a r e r e l a t i o n s h e r e too f o r various e x p e r i m n t s ,
I?ftz mgneion only one as an e x a q l e , ""
Llewellyn Smith' s sum r u l e (Equation 33.6) neglecting s i n2 BC f;p(x)-f;p 4(ap{x)
- fen(x))
works f o r every x a a a t o t a l cross seetlton,
-
k now
s e e t h a t t h e o b j e c t s produced a t t h e right ( i n the hadran f r a v n t e t i c m region) a r c the s a w on both a i d e s f o r t h e proton but n o t f o r t h e neutron f o r &a en experiment we nrwt observe the ieoepin r e f l e c t e d products.
-
If
t h i s is done, the r e l a t i o n holds f o r t h e p a r t i a l cross s e c t i o n s f a r any products t o the ri&t i f the l e f t producta a r e n o t observed. Finally
CO
b r i n g a l l t h e hypotheses we have- made &out pertons together
i s t o one l i s t we note f i n a l l y our suggestion t h a t the $"ifep suggests t h a t when a protan h a s a quark near x
mmatuol, t h a t quark Is a
U
quark.
3
r a t e s strongly
1 and a remainder of snslllf,
We t r y t o genara2ltze t h i s t o any barnon
of t h e 56 nrultiplet i n $U6 language a m i n g our $U6 only quatlitativaly, n a t e z a ~ t l yq w n e i t a e l v e l y .
Photon-Hadran Interaetiom
268
A %&er
of t h e deciroet: 4, h a s a s w f l e r probability of having a quark
near x = 1 than does t h e o c t e t . f a r t o t a l c r o s s sections,
We have already discussed t h e i a p l i c a t i o n s
X t has i q l i c a t i o n s f o r products a l s o , of course.
klcz a l s o a s s u m t h a t i f a s t a t e i s a pure quark t o t h e l e f t i t has an
m l i t l x d e t o be a b a q o n t o the l e f t with z n e a r l y 1 which is proportional the the chance t h e baryan contains a f a s t quark near m e r e a r e them w a y implleations Eor products
X
= Z of the s a w kind,
- and we have ~ t i o n e dso=
t h a t came from u(x) being 1arlger than a l l t h e o t h e r s a s x
-+
I,
There a r e
o t h e r s , of another type, f o r e x a q l e (Claneroa, p r i v a t e comunication) i n eke 4"
e e
-
-c
hrrdrons s i n e e 5u haa four times t h e p r o b a b i l i t y of ad the chance o f
producing a proton with x n e a r l ( i n t h e c e n t e r of =ss)
and anything, e l s e is
f o u r times the probabi l i t y of producing a neutron, I f &S 5s c o r r e c t we shauld l i k e t o a s s u w solnething analogous f o r t h e The analogoos a s s m p t i o n Fa t h a t when one quark takes m e t of the
=ems.
mwatufn i t i s of a type t h a t t h e low e n e r m quark =del t o be m b e o f .
Cbe t h e r e f o r e (Zn agreemeat with Zisneros) aserne:
( f o r t h e charge conjugate i t i a it8
Q
supposes t h e meon
@
near x = l and the remainder
.
We have b u i l t a very t a l l house of cards asking s o m a y weakly-based eonJectures one upon t h e o t h e r and a g r e a t d e a l anay be wrong.
(Probably
- s a m p l a t e a u f o r gap and hadron - b u t i f i t were wrong i t does not a l t e r t h e t h r w t of any of t h e o t h e r s - j u s t i n t h e operator expreesions the weakest is C6
we s h a l l have t o be c a r e f u l t o u l ~ et h e rgght plateauh),] tdevertheless t h i a is the b e s t guess I can riitaake
ROW
- and we- can t r y t o use them has warking hypotheses.
Probably t h e g r e a t e s t challenge t o e x p e r i w n t and theory is t o get soracr, evidence o f quark qumurturn n u d e r s i n high-energy collisions,
The low-energy
quark ausdel, good a s i t is, i a n o t enough, t h e r e i s always l i n g e r i n g doubt that: the r e g u l a r i t i e s observed have so=
e n t i r e l y d i f f e r e n t bask8 o r arc?,
i n part, accidental,
The establSshment of evidence f o r the quark model
( m d we have i n d i c a t e d very nrany ways
- both
i n the l a s t few l e c t u r e s a s w e l l
a s e a r l i e r -(Llewellyn S ~ t ' sh sum r u l e (Equation 33.61, t h e s p i n sum r u l e f o r glp-gIn
e t c . ) by high energy e n p e r i m n t s would c o n f i w a t once the r e a l i t y
of the r e g u l a r i t i e s i n t e r p r e t e d by the low energy quark aaotlel.
This would
m k e f i r m a e m j e c t u r e of deepest s i g n i f i c a n c e t o understanding high energy physics
-
t h e intgortance of quark q u a a t m n m b e r s .
Supposing f o r a m m n t t h i s i s done, t h a t h e next s e r i o u s question w i l l become t h e o r e t i c a l
- what
e x a c t l y is t h e r e l a t i o n of t h e quark q u a l i t i e s a t
high energy and, t h a s e a t low e n e r m .
"I"heW"prtans a s q u a r b " "del
does not
iarply t h e low energy model ( i . e . why a r e the wave f m c t i o n s n o t m r e c o q l i c a t e d involving quark antiquark p a i r s ) n o r v i c e versa. would n o t b e understood. courage
- you mi&t
confirmed,
A t present t h e i r relation
To s t a r t working on t h i s n m w i l l take a l i t t l e
waste your time
- mybe
partons a s quarks w i l l not be
I f you do s t a r t , p o s s i b l y one place t o s t a r t might be t o t h i n k
about low energy m a t r i x eferoents l i k e d
-c
p
+y
i n a fahit m v i n g systetn i n
which a l l ( o r some) m m n t a a r e of t h e o r d e r P s o parton wave f m c t i o n s can be used,
(We have one r e l a t i o n of t h i s kind i n Bjorken"
sslun
r u l e f a r g,
Equation 3 3 - 1 6 . ) F i n a l l y i t should be noted t h a t even i f our house of cards s u r v i v e s and proves t o be r i g h t , we have n o t thereby proved t h e e x i s t e n c e a f partons.
'Ilhe
final, r e s u l t of o u r c o n s i d e r a t i o n s has been t o d a a c r i b e ehe r e s u l t of t h e
-
operation of a c u r r e n t on a proton s t a t e .I /p> ( f o r l a r g e v , -q2 ZMur) a s U a l i n e a r corobination of o p e r a t o r s l i k e D ~ E ~ ( ~ - ~ , ~ ~ M /c Yr eAact i,n g f i n a l outgoing hadron s t a t e s only,
It might be wise t o follow t h i s o u t f o m a l l y
without mentioning partons (analogous t o t h e way Gel1-Mann and F r i t z s c h d e s c r i b e parton r e s u l t s f o r t o t a l i n c l u s i v e c r o s s s e c t i o n s i n tevma of c a r n u t a t i o n r u l e s f o r q u a n t i t i e s , c u r r e n t s , defined i n general whether partans
""exist" o r r o t ) . From t h f s p o i n t a f view t h e partons would appear as an unnecessary s c a f f o l d i n g t h a t was used i n b u i l d i n g our house of cards. On t h e o t h e r hand, t h e partons would have been a u s e f u l psychological guide a s t o what r e l a t i o n s t a expect
- and
i f they continued t o s e r v e t h i s
270
PIZO~OB-R~TOP~ Intemctioll~
way to produce other valjid expectations they would of course b e d n to becclr~e "'real'"
pposiibly as real as any other thczoretjlcal structure invented to
bscrjlbe lature. A t any rate we shall see.
to,
It is good to have sowthing to look forvard
Appendix A. The sospin of Quark Fragmentatior Products
The dfseussion (Lecture 56) Leading t o the idea t h a t a d d i t i v e quark quantum n d e r s could appear a s mean t o t a l quantum n d e r s of p r ~ d u c t sm v i n g i n one d i r e c t i o n i s s u r p r i s i n g
- e s p e c i a l l y when i t
is
noted t h a t what holds f o r 3-isospin holds a l s o f o r any o t h e r c o q o n e a t such a s l-isospin o r 2-isospin (although of course i n p r a c t i c e they a r e nearly inrpossible t o measure).
It looks l i k e m isaospin 112 o b j e c t
could be represented by a group a f i s o s p i n l obJects (e.g. pions) which a t f i r s t s e e m irapossible
- except
-
t h a t we have an i n d e f i n i t e
n m b e r of such o b j e c t s , It i s t h e r e f o r e of i n t e r e s t t o make a very simgle s p e c i a l =the-
m t i c a l -del,
t o show t h a t indeed such things can be done i n p r i n c i p l e .
This i s e s p e c i a l l y i a p a r t a n t when i t is r e a l i z e d t h a t our previous attempts a t m a t h e m t i c a l f o m u l a t i o n cannot be copletcr; and m w t be looked a t a s mere m e m n i c s (see note i n Iazeture SS on the D and E operators).
This l i t t l e ntodel may h e l p by its exalngle t o l e a d t o c o r r e c t
pososfble formal expressians of our ideas. I n t h i s model suppose quarks c a r r y only fsospfn 112 m d hadrons a r e
271
only pions of isospin 1
- made
of quark antiquark p a i r s .
Zmgine t h a t we s t a r t with some current a n n i h i l a t i o n (analogous t o eie- but i n more general. isospin d i r e c t i o n ) i n i t i a l l y d i s i n t e g r a t i n g i n t o a p a i r of quarks Qa,
GB
(a,@ a r e SU2 i n d i c e s fixed i n t h i s problem.
I a e d i a t e l y a f t e r interaction:
-P
P
Q@
N quark p a i r s i n s i n g l e t s t a t e
a f t e r M m i l t m i a n operates;
m k e s hirdrons
o f type
Next the a c t i o n of the Wamiltonian f s t o produce p a i r s of quarks i n a s i n g l e t s t a t e uniformly spaced i n y space
- a t y p i c a l one i s qihi
The number o f such p a i r s M is then proportional
d on a l l I, equally.
t o Rn2P whlch we take t o be very l a r g e ,
( h e could a l s o ass-
the
n u d e l : d i s t r i b u t e d v i a Poisson with a man M e t c . , but we avoid compli-
- choose N
cations which only serve t o confuse our point
fixed.)
Next t h i s row of: quarks is a a s m d t a convert t o pions by a simple Thus ( i n
r u l e , each pion is f o ~ by d a p a i r adjacent i n t h e y space. figure) I f the f i r s t new s h g l e t p a i r had index 1, the next f i r et n
3 e t c . the
f o m d front an antiqmrtr index fl and a quark, index f ;
igi
next by an antiquark index
1,
and a qusrk index
3;
- the
- etc. ?.
To describe the i s o s p i n a t a t e of a n we we an isospin 3-vector
+
Thus i f the s is a n e u t r a l pion wo we have V with only a z cowoneat,
(0,0,1).
4-
For a a we have
1 ?=(l,f,O) 42-
etc.
antiquark of index y and a quark of index 6 fom a vector
if
The amplitude t h a t an 7~
characterized by
i s then proportianal t a the yd m t r i x element of the two-
by-rwo ~ o a t r i xoeif where
U
a r e the Pauli m t r i c e s ,
m i t e t h i s a s .
(WE! work i n r e l a t i v e m p l i t u d e e and p r o b a b i l i t i e s l a v i n g overall.
n o m l i z a t i m r o the end. )
Bus t h e t o t a l amplitude t o f i n d t h e n ' s i n d i r e c t i o n s ?l$2. ..qH i s Amp =
2
........ ~ * ? ~ l o,>the
< ~ / o l . ? ~ 1 ie>i j l ~ = 5 ~ 1<~~%l a * $ ~
i,.j.**
SW
on
273
Appendix A. The lsogpin of Quark Fragmanrati~nProducts i, j e t c . , being became the newly forrnd
(TQ
pairs are i n singlet states.
Waving t h e a w l i t u d e (fn an $U2 i n v a r i a n t f o m , of course) we can ask m a y questions,
The r e l a t i v e p r o b a b i l i t y of f i n d i n g any eonffguration
is the square
(A2 1
h e r e p a , p g a r e 2x2 density matrices corresponding to the s t a t e s ,
= a**;,
say
a i s 112 i n z,
b**%.
p@ 21 .
I.>,
For s t a t e
p@
/o%
=
112, Az = 112, Ax
Thus i n t h a t case a
0, A
Y
0. If. a is a e t a t e
spinning i n the d i r e c t i o n of a u n i t vector then A/a is t h a t u n i t vector. The expected v a l u e o f z isoapin is e v i d e n t l y A /2a. Now suppose we observe the i s o s p i n character of only a l i m i t e d n d e x of pions, e
I n f a c t we
ng over the elzaracrer a f the r e s t ,
s h a l l do two cases; s m i n g over a l l t o g e t the n o m l i z a t i o n of our p r o b a b i l i t y , and s
n number k
-lanything,
ng over a l l but one, a s i f we s t u d i e d products
h any case a sum over an unobserved n mans a
on V over 3 perpendicular values, s p b a l i z e d by
-
We need t h e f o m u l a
which is e a s i l y v e r i f i e d , Now f i n d t h e n o m l i z a t i o n
3
1 VV I 2"
over Vl,
P(Vl,. ,VN).
p@ is c m v e r t e d from b i a s % t o 3b-o4% by (A3).
2 i t is converted t o 3 b4-a.5.
smming
' *VE
Next sum Y
2
and
N
Continue f o r N terms t o 3Nb+(-l) o.B whose
t r a c e wiCh pa gives (suppose t r ( l ) = 3)
2 - 3Nab + (-l)N (A-%) N For l a r g e N t h i s f s a l m s t e x a c t l y 3 ab and s o we s h a l l divide by t h i s t o get n o m l i z e d p r o b a b i l i t i e s , Chat the kth pion is o f type Yt i s
Thus t h e n o m l i r e d p r o b a b i l i t y
except Vk
4
Now again we can sum over V1,
g2 up
t o *k-l
converting p
; and a l s o sum i n an analagoup way f i r s t on
(a
gH,
B
t o 3k-'b+(-l)k-1 -*
then VN-l
etc. to
Ihw t h e n e t is ( s c a l e t r ( 1 )
?k+k+lt o convert pa t o 3N-ka+(-l)N'k(o.~).
-
from which m y question about the one p a r t i c l e d i s t r i b u t i o n function can
now be answered.
For exemple, sum over a l l p o s s i b i l i t i e s f o r
gk
and check
n o m f i z a t i o n (for large N I , The mean p r o b a b i l i t y t h e kth neson ie n cr.?
5.
-
(ax+Ioy) i n (As).
+ i s PkzC
For n- put a -3=
42-
+
-
-
m a n i s o s p i n of t h e kLh hadron is P ~ " :P 3.
"placed
o-V
by - i o
only the one coming from p
42"
obtained by s e t t i n g
(ox-Lay).
Thus t h e
a term l i k e (A53 with
...
o o l u s %a ox. Note f i r s t using Y Y t h i s is 2a and hence gives
Ilkewise t h e t e r n i n a * t only c o n t r i b u t e s i f a i s i n t h e z d i r e c t i o n . kie f i n d
%is
r e s u l t canfirats a l l our expectations,
F i r s t I f k is I n t h e middle -t-
of the plateau, o f o r d e r N/2, n o t near e i t h e r end, then P' which is very snra2S. C pkli
-
-
-
%
5
small i f e i t h e r k i s small (i.e. near In the f o m r case neglecttng
the B end) o r near N ( i . e . near the a end). we have
i f k i s EinSte, near the g a d , a r e s u l t t h a t depends only on 8 , the quark a t t h a t tmd, and p r a c t i c a l l y ( a s N a t the other end, result, 2
N/2
%%us tbe plateau region has becornrr n e u t r a l .
plrW can only avoid being
t s m of order 3-'
- P"
m)
n o t a t a l l on the quark
(Evkdently f o r k near N we have the e x a c t opposite
l)
Appendix A. The lsospin of Quark Fragnzentet-ion Products F i n a l l y t h e t o t a l z-isospin q u a n t m n m b e r of a l l t h e pions t o the l e f t is
the z-conrponenf q m n t m n u e e r of the l e f t - m v i n g quark!
is t o be taken frm k
The sum on k
l t o near N12 t o hold only t h e l e f t m v e r s , the
contribution from t h e a-dependent t e r n a s only of order 3-N'2,
and the
sus is of the s a m order; the same as if we e u m d the l e f t t e r n above to i n f i n i q ,
Obviously t h e r e s u l t is i n s e n s i t i v e t o exactly where i n
t h e plateau we s t o p , i t is only necessary t h a t we s t o p the sum on k a t s o m point f a r from e i t h e r end, (One might f u r t h e r n o t i c e t h a r
neglecting
for e v e q k.
'+ Pk - ZP; o r-
l e zero,
This is a consequence of the f a c t t h a r
the quark has t o t a l Isospin 112, and n o t higher.
We leave
t o t h e reader
t o show t h a t t h i s genexalizea t o t h e r e a l case and eould i n principle becow a t e s t of the t o t a l i e o s p i a character of the partons. 3.
N;~)
-
+ N;~)
% a t is
0
- 2 ~ ; ~ is) zero f o r any r
t o the l e f t i f the l e f t m v e r s
c o w from a s i n g l e parton (of any kind o r superpoeition) and i f the isospfn of partons i s e i t h e r zero o r me-half
,l
Appendix B. A Test of Partons as Quarks
A Test of Partons a s Quarka
Following J, D, Bjorken we note t h a t the sum of nautrino and anti-neutrino cross-sections can be predicted f a i r l y c l o s e l y i n t e r n s of q a n t i t i e s alreaGZy known,
Sfnce nteaeuremnts of these t o t a l cross
s e c t i o n s a r e tha e a s i e s t t e s t of quark quantunr a m b e r s , we give m analyfiis here, Let us w a s u r e a l l cross s e c t i o n s i n u n i t s of Gs/2n where G i s the FemS constant and s the square of t h e eenter of mss energy.
Par
nucleans, then, our u n i t is GENJn where E is the laboratory energy. The t o t a l c r a s s s e c t i o n of a neutrino wirh a s p i n 112 p a r t i c l e Ss 2,
With a n a n t i p a r t i c l e i t i s 213,
Hence on a proton the cross s e c t i o n
t h e f a c t o r x c o d n g because t h e crose s e c t i o n v a r i e s with neutrons we replace d by
U,
6.
For
e t c . , s o the m a n neutrino cross s e c t i o n of
Appendix B, A Test tlf Partons as Quarks
0
t h e anti-eutrlno
cross s e c t i o n is
0
Since ;/G
3,
a r e p o s i t i v e , but undout3tedly l e s s than d,
U,
we s e e t h a t
aust be s u b a t a n t i a l l y l e s s than 1 b u t g r e a t e r than 113. The sum 28 l
Emever, i n t e g r a t i n g t h e a m of (3l,3) and (31,4) we have
Experinentally t h i s i n t e g r a l i s 0.31 s o i f we c o d d f o r g e t t h e i n t e g r a l /x(s&)dx
we would have o G
mwt aurely be l e s s than much l e s s ,
and
rf+a
It would be hard ts -age
t e r n produce m r e than a 10% e f f e c t . t e s t of our parton quark =del:
34
*
9 F (.31)
0.74.
Bur
8 4
and, when wei&ed by X , s u r e l y
t o lnake i n c l m i o n of the l a s t Thus we have a very strjbngenr
o - 6 c m n o t exceed 0.74 rrcnd y e t a l m s t
s u r e l y c e m o t f a l l below 0.74 bp noore than 18%. One can a l s o c a l c u l a t e upper lialts f o r oVP .t
.'.
m .
and ova
+ gvn
s e p a r a t e l y (u6tlng o t h e r proportions o f fep and fen}; they a r e 0.64 and 0.84 reepectivelp. m e s e n u m r i c a l e s t i m t e s w s t be revised by a few percent, f o r we 2 have neglected s i n BC.
course, b u t T,D.
meg a r e v a l i d only a t tzsyerptotic energy, of
h e has pointed out t h a t e l e c t r o n data i n d i c a t e s Chat
t h i s should only reqtrire a few GeV,
This page intentionally left blank
Anam1aus threshold,
122-523
B
Bjorken" s m rule,
158
C
Carnutator function,
29-30
Contpton scattering $44 $H,
225-220
Conservation of current,
5, 13-15
Conservation of generalized currents,
18
Cotcinghirn?f omula ,
201-203
Deep inelastic scattering with spin,
155-159
I)
Beser, Gflbert, Sudarsfsan representation, 185-185
9,
102-108
ftfspersion relations for pion f o m factor,
"119-122
Wson representation,
183-384
Elastic tern In self energy,
213-215
Electromagnetic eurtent (defined for hadran@)
5
Diffractive productian of p, W ,
E
Electromagnetic self energy, quark mdel, F
Final hadrone in high eaerg;y photon col1isions,
250-258
Index
Form factors, high, energy,
Gell-peyg; foggual time comutation Generalized currents eonservatioa, Wigh energy hadran-hadron colfisions, IXtJperffne splitting in hydrogen, Impact: parameter viemoint,
Inelastic electron nucleon scattering, Inelastic neutrino-nucleon scattering, Zsaspia o f quark fragments, Light cone, singularittea on, Light cone algebra, Light cone behwlor of comutatcrs, Limiting frapentation Elewellyn Smlth and Gross s m rule, Mamentm carried by qrtark~, Neutrino-nucleon total cross sections Nucleon electromagnetic Som factors Operators in inelastic scattering, Particle Erawntation, Parton frasentation, Partan model
fndex
Partan model hypotheses Partons as quarks,
Low energy pion photoproduction Parton wave function Pfon absorption Pion form factor, dispersion relations, Pion photoproductfon, Propagator function, P~eudnecalarmeson photoproduction, h i s h energy,
Q
Qwnk fragmentation Quark fragmentation products, Quark fragntents, iaospin of, Quark model, dpamfcal relativistic, dynmical non-relativistic,
R
Regge pole fomula,
Re~~onances, Resonancee in scaling function,
S
s-channel resonances, S matrix, Scattering in the DGS representation,
Index
T
Second-order electromagnetic coupling,
7
Second order unitarity,
8-10
Shadowing in nuclei,
108-112
Singulariries on the light cone,
21-22
Spin scaling funetfans,
156-157
Spin structure functions,
l55
t-channel exchange phenomena, Time ordered product,
V
Vacurn expectation o f comatator,
24-25
Vacurn expectation of time-ordered product product 25
W
Vacurn polarization due ta hodrons
22, 164-165
Valence quarks
152-153
W H in yM-Z)at
96-102
Vector meson dominance model,
89-113
Vector mesons,
82-85, 88-89
Veneziano f omula,
78-73
Mee partons,
232, 234