Published by John Wiley & Sons, Inc., Hoboken. New Jersey Copyright © 2008 by Organic Reactions. Inc. All rights reserved. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act. without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.. 222 Rosewood Drive. Danvers, MA 01923. (978) 750-8400. fax (978) 750-4470. or on the web at www.copyright.com. Requests for permission need to be made jointly to both the publisher. John Wiley & Sons. Inc.. and the copyright holder. Organic Reactions. Inc. Requests to John Wiley & Sons, Inc.. for permissions should be addressed to the Permissions Department. John Wiley & Sons. Inc.. 111 River Street, Hoboken, NJ 07030. (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Requests to Organic Reactions. Inc.. for permissions should be addressed to Dr. Jeffery Press, 22 Bear Berry Lane, Brewster, NY 10509, E-Mail:
[email protected]. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974. outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Catalog Card Number: 42-20265 ISBN 978-0-470-43690-5 Printed in the United States of America 109 8 7 6 5 4 3 2 1
CONTENTS
CHAPTER
1.
PAGE
ALLYLBORATION OF CARBONYL COMPOUNDS Hugo Lachance and Dennis G. Hall . . . . . . . . . . . . . . . . . . . . .
1
CUMULATIVE CHAPTER TITLES BY VOLUME . . . . . . . . . . . . . . . . . . . . . . . 575 AUTHOR INDEX, VOLUMES 1–73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 CHAPTER AND TOPIC INDEX, VOLUMES 1–73 . . . . . . . . . . . . . . . . . . . . . . 595
ix
CHAPTER 1
ALLYLBORATION OF CARBONYL COMPOUNDS HUGO LACHANCE and DENNIS G. HALL Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . INTRODUCTION MECHANISM AND STEREOCHEMISTRY . . . . . . . . . Thermal Uncatalyzed Reactions . . . . . . . . . Lewis Acid Catalyzed Reactions . . . . . . . . . Brønsted Acid Catalyzed Reactions . . . . . . . . . . . . . . . . . . . SCOPE AND LIMITATIONS Preparation of Allylic Boron Reagents . . . . . . . . From Hard Allylic Organometallics . . . . . . . . From Alkenylmetal Precursors . . . . . . . . . From Other Organic Fragments . . . . . . . . . From Boron-Containing Fragments . . . . . . . . Stability and Handling of Allylic Boron Reagents . . . . . . Reactivity of Allylic Boron Reagents . . . . . . . . Work-Up Conditions . . . . . . . . . . . Carbonyl Substrate Generality . . . . . . . . . Diastereoselective Additions to Chiral α-Substituted Carbonyl Substrates . . . . . . . . . . . . . Enantioselective Allylations and Crotylations with Chiral Auxiliary Reagents Chiral Boronate Derivatives . . . . . . . . . Chiral Dialkylboranes . . . . . . . . . . Enantioselective Allylations and Crotylations with Chiral α-Substituted Reagents Enantioselective Additions with Chiral Propargyl Reagents . . . . Enantioselective Additions with Chiral Allenyl Reagents . . . . Enantioselective Additions with Chiral 3-Heterosubstituted Reagents . . Preparation of 1,2-Diols . . . . . . . . . . Preparation of 1,4-Diols, Epoxides, and Amino Alcohols . . . . Lewis and Brønsted Acid Catalyzed Enantioselective Additions . . . Double Diastereoselection with Chiral Carbonyl Substrates . . . . Intramolecular Reactions . . . . . . . . . . Reagents for Multiple Additions . . . . . . . . .
[email protected] Organic Reactions, Vol. 73, Edited by Scott E. Denmark et al. 2008 Organic Reactions, Inc. Published by John Wiley & Sons, Inc. 1
. . . . . . . . . . . . . . . .
PAGE 3 3 4 4 6 8 8 8 9 12 14 15 17 18 20 20
. . . . . . . . . . . . . .
22 26 26 30 32 37 37 38 38 40 41 43 46 47
2
ORGANIC REACTIONS
Tandem Reactions . . . . . . . . . . . . . Intramolecular Allylboration . . . . . . . . . . Intermolecular Allylboration . . . . . . . . . . . . . . . . APPLICATIONS TO THE SYNTHESIS OF NATURAL PRODUCTS Enantioselective Additions . . . . . . . . . . . Double Diastereoselection . . . . . . . . . . . Tandem Reactions . . . . . . . . . . . . . Transformations of Residual Groups . . . . . . . . . . . . . . . . . . . COMPARISON WITH OTHER METHODS Methods Employing Allylic Tin Reagents . . . . . . . . Methods Employing Allylic Silicon Reagents . . . . . . . Methods Employing Other Metals . . . . . . . . . . . . . . . . . . . . . EXPERIMENTAL CONDITIONS . . . . . . . . . . . EXPERIMENTAL PROCEDURES (+)-B-Allyl bis(Isopinocampheyl)borane [General Procedure for Preparation of the Reagent Free of MgBr(OMe)] . . . . . . . . . . (R)-1,5-Hexadien-3-ol [Typical Procedure for the Simple Allylation of a Representative . . . . . . . Aldehyde with the AllylB(Ipc)2 Reagent] . (2R,3R)-3-Methyl-4-penten-2-ol [Preparation of (−)-(Z)-Crotyl Bis(isopinocampheyl)borane and a Representative Reaction with Acetaldehyde] . . . (2R,3S)-3-Methyl-4-penten-2-ol [Preparation of (−)-(E)-Crotyl Bis(isopinocampheyl)borane and a Representative Reaction with Acetaldehyde] . . . (R,R)-[(E)-2-Butenyl]diisopropyl Tartrate Boronate [Preparation of the (E)-Crotyl Diisopropyl Tartrate Boronate Reagent] . . . . . . . . (R,R)-[(Z)-2-Butenyl]diisopropyl Tartrate Boronate [Preparation of the (Z)-Crotyl Diisopropyl Tartrate Boronate Reagent] . . . . . . . . (1S,2R)-1-Cyclohexyl-2-methyl-3-buten-1-ol [Representative Procedure for Additions of (E)-Crotyl Diisopropyl Tartrate Boronate to Aldehydes] . . . . (1R,2R)-1-Cyclohexyl-2-methyl-3-buten-1-ol [Representative Procedure for Additions of (Z)-Crotyl Diisopropyl Tartrate Boronate to Aldehydes] . . . . (R)-(+)-1-Phenyl-3-buten-1-ol [Preparation of (1R,2R)-N ,N -Bis(p-Toluenesulfonamide)-1,2-diamino-1,2-diphenylethane Allyldiazaborolidine and a Representative Reaction with Benzaldehyde] . . . . . . . (1R)-2-[1-Chloro-2-(E)-butenyl]pinacol Boronate [Preparation of a Chiral α-Chloro Allylic Boronate] . . . . . . . . . . . . (1S,2S)-(Z)-4-Chloro-2-methyl-1-phenylbut-3-en-1-ol [Representative Addition of Pinacol (1R)-2-[1-Chloro-2-(E)-butenyl]boronate to Aldehydes] . . . (1R,2S,3R,4S)-2,3-O-[(E)-2-Butenylboryl]-2-phenyl-1,7,7-trimethylbornanediol [Preparation of the (E)-Crotyl Camphordiol Boronate Reagent] . . . . (3R,4R)-3-Methyl-1-undecen-5-yn-4-ol [Representative Procedure for Scandium-Catalyzed E-Crotylation of Aldehydes] . . . . . . (1R,2S,3R,4S)-2,3-O-[(Z)-2-Butenylboryl]-2-phenyl-1,7,7-trimethylbornanediol [Preparation of the (Z)-Crotyl Camphordiol Boronate Reagent] . . . . (3S, 4R)-3-Methyl-1-undecen-5-yn-4-ol [Representative Procedure for Scandium-Catalyzed Z-Crotylation of Aldehydes] . . . . . . (3S)-1-Phenylhex-5-en-3-ol [Representative Allylation Catalyzed by a Chiral . . . . . . . . . . . Diol-SnCl4 Complex] (R)-[(2R,6S)-6-Ethoxy-5,6-dihydro-2H -pyran-2-yl]phenylmethanol [Representative Example of a Tandem Catalytic Enantioselective [4+2] Cycloaddition/Allylboration] . . . . . . . . . . . . . TABULAR SURVEY Chart 1. Acronyms for Ligands Used in Tables . . . . . . . Table 1. Addition of Unsubstituted Allyl Reagents . . . . . . . Table 1A. Non-Aromatic Carbonyl Substrates . . . . . . . Table 1B. Aromatic and Heteroaromatic Carbonyl Substrates . . . .
48 48 50 52 52 54 60 62 65 65 66 69 69 70 70 70 71 71 72 73 74 74
75 76 77 77 78 79 80 80 81 82 85 86 86 183
ALLYLBORATION OF CARBONYL COMPOUNDS Table Table Table Table Table Table Table Table
2. 3. 4. 5. 6. 7. 8. 9.
Addition of Z-Crotyl Reagents . . . Addition of E-Crotyl Reagents . . . Addition of α-Substituted Reagents . . Addition of β-Substituted Reagents . . Addition of γ-Substituted Reagents . . Addition of Allenyl and Propargyl Reagents Addition of Cyclic Reagents . . . Intramolecular Additions . . . . . . . . . . . . REFERENCES
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
3
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
212 243 288 338 377 489 513 539 555
ACKNOWLEDGMENTS
The authors are grateful to Prof. Scott Rychnovsky, Prof. Robert Bittman, and Dr. Danielle Soenen for their help in copy-editing and proofreading of this chapter. INTRODUCTION
Allylic boron compounds have gained a prominent position as a useful class of synthetic reagents in the past 25 years. Their general structures, 1 and 2, and their utility in carbonyl additions are shown in Eq. 1. The main use of these reagents is in the stereoselective synthesis of homoallylic alcohols 3 by an allyltransfer reaction to carbonyl compounds. In this process, a new carbon–carbon bond is formed, and up to two new stereogenic centers are created. Moreover, the residual allylic unit can be manipulated through a number of different transformations such as oxidative cleavage, olefin metathesis, and many others. Although less prevalent, the propargyl and allenyl reagents typified by 4 and 5 have also been described (Eqs. 2 and 3). Most examples of allylic boron reagents used in carbonyl additions belong to one of two main classes, boranes (structure 1, Y = alkyl) and boronate derivatives (structure 2, Y = OR or NR2 for bis(sulfonamide) derivatives). This chapter focuses on describing and comparing both classes, and when needed, they will be discussed separately. A chart of ligand structures with the acronyms used in this text can be found preceding the Tables. R3
Y
R1
B R2
Y
R
R4
R6
O
+
R6
5
OH R3 R4
R5 R2 R1
1 Y = alkyl 2 Y = O-alkyl(aryl) or N-alkyl(aryl) Y B 4
O
+ Y
(Eq. 1)
3
R
OH H
R
(Eq. 2)
4
ORGANIC REACTIONS Y B
O
+ Y
R
OH H
R
(Eq. 3)
5
Allylic boron reagents react with several classes of carbonyl compounds and their derivatives, including imines. Their most common use, however, is in nucleophilic additions to aldehydes to produce homoallylic secondary alcohols (i.e., the process of Eq. 1 where R5 = H). This reaction process was discovered by Mikhailov and Bubnov in 1964, who observed the formation of a homoallylic alcohol product from the reaction of triallylborane with aldehydes.1 The first example of allylboration using an allylic boronate was disclosed by Gaudemar and coworkers in 1966.2 The true beginnings of this chemistry in terms of practical synthetic applications can be traced back to the late 1970’s, with Hoffmann’s crucial realization of the regio- and diastereospecific nature of the additions of both crotylboronate isomers to aldehydes (see “Mechanism and Stereochemistry”).3 In the following two decades, the work of Hoffmann, Brown, Roush, and Corey was determinant in maturing carbonyl allylboration chemistry into one of the primary methodological tools in stereoselective synthesis. In particular, numerous syntheses of polyacetate and polypropionate natural products feature stereoselective allylborations as key steps (see “Applications to the Synthesis of Natural Products”). The discovery of the Lewis acid catalyzed manifold by Hall and Miyaura recently opened new doors for further development of this important reaction. In addition to the predominant allyl and crotyl reagents, a large number of allylic borane 1 and boronate derivatives 2 (Eq. 1) with various substituents (R1 –R4 ) have been reported. Interested readers can refer to the comprehensive Tabular Survey at the end of this monograph, which covers the literature up to the end of 2005. Several reviews on allylic boron compounds and other allylmetal reagents and their additions to carbonyl compounds and imines have been written prior to this one,4 – 14 and these sources may be consulted if a more in-depth historical perspective is desired. MECHANISM AND STEREOCHEMISTRY
Thermal Uncatalyzed Reactions Mechanistically, allylic boron reagents belong to the Type I class of carbonyl allylation reagents.15 Type I reactions proceed through a rigid, chairlike transition structure which requires a synclinal orientation of reacting π systems. Although catalytic variants for additions of allylic boronates have been reported recently, the reaction between most allylic boron reagents and aldehydes is spontaneous, irreversible, and requires no external activator. The uncatalyzed reactions of these Type I reagents proceed by way of a six-membered, chairlike transition structure that features a dative bond between the boron and the carbonyl oxygen of the aldehyde (Scheme 1).16 – 20 Competitive kinetics in the addition of
ALLYLBORATION OF CARBONYL COMPOUNDS R3
Y
R1
B R2
5
R1, R2 = H, alkyl, OR, NR2, SiR3, Cl R3 = H, alkyl, CO2R, halogen, B(OR)2 R4 = H, alkyl, aryl, OR, halogen
Y
R4
1 Y = alkyl 2 Y = O-alkyl(aryl) or N-alkyl(aryl)
Y B
RE RZ
R5CHO Y
Y B Y
H RE
O RZR
5
Transition Structure
OBY2
OH
work-up R5
R5 RE 6
RZ
H3O+, or N(CH2CH2OH)3, or H2O2/NaOH
RE
RZ
Scheme 1. Overall aldehyde allylboration process.
an allylboronate to benzaldehyde and deuterobenzaldehyde in different solvents revealed a negative secondary deuterium kinetic isotope effect, which rules out a single-electron transfer mechanism.20 Theoretical studies using ab initio MO and DFT methods strongly suggest that the strength of the dative bond between the boron and the aldehyde carbonyl oxygen in the transition structure is the dominant factor in determining the rate of the reaction.19,20 Indeed, whereas the B–O ˚ and very advanced in the transition state, the incipient bond is short (∼1.6 A) C–C bond between the carbonyl carbon and the allylic unit has merely initi˚ (Fig. 1). A weakly bound B–O coordinated complex was detected ated (∼2.4 A) as an early intermediate in the calculated reaction pathway.19 Not surprisingly, allylboration reactions tend to proceed faster in non-coordinating solvents, and the most electrophilic boron reagents react faster.21
Figure 1. Calculated transition structure for the allylboration reaction between B-allyl-1, 3,2-dioxaborolane (CH2 =CHCH2 B[OCH2 ]2 ) and formaldehyde at the MP2/6-31G** level of theory. Indicated bond distances are in angstrom. Reprinted with permission from J. Org. Chem. 1998, 63, 8331.19 Copyright 1998 American Chemical Society.
6
ORGANIC REACTIONS
The immediate products of additions between carbonyl substrates and allylic boranes 1 or boronate derivatives 2 are borinate or borate esters, respectively. To cleave the covalent B–O bond in these intermediates (structure 6, Scheme 1) and to obtain the desired free alcohol, a hydrolytic or oxidative work-up is required. This issue is discussed in detail in the section “Work-Up Conditions”. In the interest of simplifying chemical equations, specific work-up conditions are not included in most of the examples highlighted in this chapter. One of the main reasons for the popularity of allylic boron reagents in stereocontrolled synthesis is that their additions to aldehydes are reliably highly stereoselective and the outcome is predictable. The diastereospecificity of the reaction was first recognized by Hoffmann and Zeiss using both E- and Z-crotylboronates 7 (Eqs. 4 and 5).3,22 For both crotylboranes and crotylboronates, the additions generally proceed with near-perfect reflection of the olefin geometry of the reagent into the configuration of the product. Specifically, the E-crotylboron reagents (Scheme 1, RE = Me, RZ = H) lead to anti-propanoate products and the Z-crotyl reagents (Scheme 1, RE = H, RZ = Me) lead to syn-products. In both instances, of the two possible chairlike transition structures the favored one places the aldehyde substituent (R5 ) in a pseudo-equatorial orientation. This model, which has been reproduced computationally for both crotylborane17 and crotylboronate18 derivatives, accounts for the high diastereospecificity of most allylborations. Even highly functionalized reagents and most intramolecular additions follow the same trend. O B
+
RCHO
O
(Z)-7 >95:5 Z:E
(Eq. 4)
anti (>85%) 93:7 d.r.
+ O
R
–78° to rt
(E)-7 93:7 E:Z
O B
HO
Et2O
RCHO
Et2O –78° to rt
HO R
(Eq. 5)
syn (>85%) >96:4 d.r.
It is well accepted that the high diastereospecificity of aldehyde allylboration reactions is a consequence of the compact cyclic transition structure. Theoretical calculations have shown that the chairlike transition structure shown in Scheme 1 and Fig. 1 is the lowest in energy relative to other possibilities such as the twistboat conformation.16 With boronate reagents, it has also been suggested that a weak hydrogen bond between the axial boronate oxygen and the hydrogen of the polarized formyl unit contributes to the preference for the transition structure with the aldehyde substituent in the pseudo-equatorial position.23 Lewis Acid Catalyzed Reactions As described above, allylic boron reagents are self-activating, Type I reagents where the allylation is effected by coordination of the aldehyde carbonyl oxygen
ALLYLBORATION OF CARBONYL COMPOUNDS
7
to the boron atom within a cyclic six-membered transition structure. Because of this self-activation mechanism, there would appear to be no advantage to using an external promoter such as a Lewis or Brønsted acid. Furthermore, one could expect an added Lewis acid to compete with the boron atom for the basic aldehyde oxygen, potentially leading to a switch from the highly diastereospecific Type I mechanism to a less selective, open-chain Type II mechanism.15 Recent publications, however, show that the additions of allylic boronates can be efficiently and beneficially catalyzed by several Lewis acids.24 – 28 Allylic boranes are not subject to this catalytic effect.29 For additions of allylic boronates, the rate enhancements observed in the presence of these catalysts are quite dramatic.24,29 For example, the addition of 2-ethoxycarbonyl allylboronate 8 to benzaldehyde to give an exo-methylene butyrolactone requires almost two weeks at room temperature, but only 12 hours in the presence of a catalytic amount of Sc(OTf)3 (Eq. 6).24 Note that in this example the resulting homoallylic alcohol intermediate cyclizes in situ with the carboxy ester group to form a lactone product. O EtO2C Et
O B O
+
Sc(OTf)3 (10 mol%) PhCHO
toluene, rt, 12 h 12 d with no catalyst
8
O Et
(Eq. 6)
Ph (93%) >19:1 d.r.
It is noteworthy that the stereospecificity observed in the thermal reaction is fully preserved under this new catalytic manifold. Furthermore, the presence of a 2-alkoxycarbonyl substituent on the allylic boronate is not necessary for the metal-promoted activation to occur (Eq. 7).24,25 According to mechanistic studies, a chairlike bimolecular transition structure similar to the thermal additions can be proposed for these catalyzed allylborations.29 Control experiments have confirmed the inefficiency of Lewis acids with dialkylallylboranes (Eq. 8). Hence, the catalytic effect is thought to derive from an increase in the electrophilicity of the boron atom through binding of the metal ion to one of the boronate oxygens [transition structure (T.S.) 9], as opposed to coordination of the carbonyl oxygen (T.S. 10).29 O B
OH
PhCHO O
CH2Cl2, –78°, 4 h
Ph
>100X acceleration with Sc(OTf)3 (10 mol%)
OH
PhCHO B
CH2Cl2, –78°, 4 h NO acceleration with Sc(OTf)3 (10 mol%)
(Eq. 7) (—)
Ph
(Eq. 8) (—)
8
ORGANIC REACTIONS H R
R2
4
O
H R2
OR 1
B R 3 OR 1
R
4
OR 1
B R 3 OR 1 LA O
LA
10
9
Coordination of the Lewis acid to the boronate oxygens is thought to decrease the overlap between the oxygen lone electron pairs and the vacant p-orbital of the boron atom. Consequently, the boron center is rendered more electron-deficient, and compensates by strengthening the key boron–carbonyl oxygen interaction and concomitantly lowering the activation energy of the reaction. This idea is consistent with theoretical calculations of the non-catalyzed allylboration19 and from an experimental study consisting of a quantitative survey of steric and electronic effects in the reactions of different allylboronates.21 The latter results led to the conclusion that the rate of a given allylboration can “be rationalized in terms of the relative availability of lone pairs of electrons on the oxygen atoms attached to the boron”. Brønsted Acid Catalyzed Reactions In line with the effect of Lewis acids, the huge rate acceleration in the additions of allylic boronates to aldehydes by strong protic acids such as triflic acid was recently reported.30 In the example of Eq. 9, the reaction yield is almost quantitative after 16 hours at 0◦ under conditions where the use of Sc(OTf)3 gives less than 5% of the product. Interestingly, additions with geometrically defined allylic boronates are not always stereospecific. Although definitive mechanistic studies have not yet appeared, it can be presumed that the origin of the acceleration could be similar to that of Lewis acid catalysis, with activation by protonation of a boronate oxygen in the cyclic chairlike transition structure. O EtO2C
O B O
+
PhCHO
CF3SO3H (10 mol%) toluene, 0°, 16 h
O Ph (99%)
(Eq. 9)
(<5%) with Sc(OTf)3
SCOPE AND LIMITATIONS
Preparation of Allylic Boron Reagents Unlike aldehydes and ketones, allylic boron compounds are not ubiquitous, commercial organic substrates. There are several methods for the preparation of allylic boronates, however, and many of these have been developed in the past decade. This topic has been reviewed recently14 so only the most common methods are emphasized in this section. As a result of the lesser stability of allylic boranes, methods to access these reagents are more limited and it is generally easier to prepare allylic boronates with a wide range of functional groups.
ALLYLBORATION OF CARBONYL COMPOUNDS
9
From Hard Allylic Organometallics. The most common preparation of allylic boranes and boronates is the addition of a reactive allylic metal species to a borinic or boric ester, respectively (Eqs. 10 and 11). Preparations from allyllithium,31 – 34 allylmagnesium,32,35 and allylpotassium22,31,36 – 40 reagents are all well known. These methods are popular because the required allylic anions are quite easy to prepare, and because they generally lead to high yields of products. (R1)2BY Y = OR or Cl
R4 R2
R1
R4 R2
B R
R4 R1
+
R5
R5
3
R
1
M
R3 R5 M = Li, K, Mg
B(OR1)3
R1
(Eq. 10)
R2
regio-1 OR1
R4 R2
B
OR1
R4 +
R5 R3
R5
R3
3
R1 B
2
OR1 B OR1 2 R
(Eq. 11)
regio-2
One potential drawback to this approach is that the allylic metal precursor may not be configurationally stable and may be subject to facile metallotropic rearrangement leading to either constitutional or geometrical isomers (Eq. 12).41 – 43 This is in fact a major problem even with 3-substituted allylic boranes, whose geometrical integrity can be compromised according to Eq. 12 even at temperatures well below 0◦ (see section “Stability and Handling”). Because of their potential configurational instability, and also because of their high sensitivity to air, allylic boranes are not isolated from the process depicted in Eq. 10, but rather are used in situ for their addition to carbonyl substrates. In contrast, allylic boronates are much more stable and can be isolated and purified prior to subsequent carbonyl allylation reactions. R1
M R2
R2
M R
1
R2
M
(Eq. 12)
R1
Another potential problem with the preparations from allylic organometallics is that they often involve highly reactive reagents that can lead to incompatibilities with many functional groups. While these impediments constitute no real problem for simple allyl- or crotylboron reagents, they can lead to poor regio- and stereoselectivities in more substituted examples. Significantly, as shown with the diisopropyl tartrate (DIPT) derivatives (E)-11 and (Z)-11 of Eqs. 13 and 14,37 the use of Schlosser’s “superbase” conditions43 to prepare the configurationally stable crotylpotassium anions allows the preparation of both E- and Z-crotylboronates with very high selectivity from the respective (E)- and (Z)-2-butene. Likewise, the bis(isopinocampheyl)crotylboranes [bis(Ipc)crotylboranes] 12 are prepared by anion trapping with the requisite borinic ester [MeOB(Ipc)2 ] at −78◦ (Eqs. 15 and 16).44 Because of the strong Lewis acidity of the resulting dialkylborane, however, the addition of BF3 is required in order to remove the methoxide anion
10
ORGANIC REACTIONS
and form the desired “free” borane. This additional operation is not required with the less acidic crotylboronates. Moreover, crotyldialkylboranes are too sensitive to be isolated and must be treated immediately with carbonyl substrates (see section on “Stability and Handling”). These approaches using crotylpotassium anions remain the methods of choice for preparing boron-based crotylation reagents, which are very useful in the synthesis of polypropionate natural products (see section “Applications to the Synthesis of Natural Products”). CO2Pr-i t-BuOK/n-BuLi THF, –78° to –50°
– K+
O B
1. (i-PrO)3B, –78° 2. 1 N HCl, Et2O 3. (+)-DIPT, MgSO4
CO2Pr-i
O
(E)-11 (>75%)
(Eq. 13) CO2Pr-i 1. (i-PrO)3B, –78°
t-BuOK/n-BuLi THF, –78° to –25°
K+
O B
2. 1 N HCl, Et2O 3. (+)-DIPT, MgSO4
CO2Pr-i
O
(Z)-11 (>75%)
(Eq. 14) MeOB(Ipc)2 K+
K+
B–
(Ipc) OMe
–78°
(Ipc)
(Ipc) BF3•OEt2
B
–78°
(Ipc)
(E)-12 (>75%)
(Eq. 15)
MeOB(Ipc)2 K+
K+
B–
(Ipc) OMe
–78°
(Ipc)
(Ipc)
B
BF3•OEt2
(Ipc)
–78° (Z)-12 (>75%)
(Eq. 16)
B
OMe
MeOB[(+)-Ipc]2
B
OMe
MeOB[(–)-Ipc]2
A number of other functionalized allylic boron reagents can be made using allylmetal intermediates, including E-3-silyl-substituted reagents,32,38 – 40,45 exemplified by the bis(Ipc) derivative 1345 (Eq. 17), and the useful Z-3-alkoxysubstituted reagents,46 – 48 exemplified by 1448 (Eq. 18). The double bond geometry of 14 arises from the chelated alkyllithium intermediate employed in
ALLYLBORATION OF CARBONYL COMPOUNDS
11
its preparation (Eq. 18).33,46 Like most allylic dialkylboranes, reagents 13 and 14 are not isolated and rather are allowed to react in situ with carbonyl substrates (see section “Stability and Handling”). Me Me Si (i-Pr)2N
Me Me Si (i-Pr)2N
n-BuLi, TMEDA Et2O, 0°
1. MeOB(Ipc)2
Li
2. BF3•OEt2
Me Me Si (i-Pr)2N
B(Ipc)2
(Eq. 17)
13 (—) B(Ipc)2
1. MeOB(Ipc)2
n-BuLi
MeO
MeO
THF, –78°
Li
2. BF3•OEt2
(Eq. 18)
MeO 14 (—)
If the presence of sensitive functional groups poses problems of chemoselectivity in the use of hard allylic metal reagents, allylboronate derivatives also can be accessed by a milder transmetalation of allylic tin species with boron halides.49 This approach has been used by Corey in the synthesis of chiral bis(sulfonamido)boron reagents such as the methallyl reagent 15 (Eq. 19) (see section “Chiral Boronate Derivatives”).50 Ph N Br B N Ph Ts Ts
Sn(Bu-n)3
Ts
Ph
N B
(Eq. 19)
Ph
N Ts 15 (—)
CH2Cl2, 0° to rt
Recently, the enantiomerically enriched α-carbamoyloxycrotylboronate 16 has been synthesized using a similar anti-SE ’ reaction with in situ generated 2-chloro1,3-bis(toluenesulfonyl)-1,3,2-diazaborolidine (Eq. 20). Following a ligandexchange with pinacol, the resulting chiral α-substituted boronate 16 is isolated in a good overall yield with minimal erosion of enantiomeric purity.51 Ts N Cl B N
Ts N B
Ts (n-Bu)3Sn
OC(O)N(Pr-i)2
CH2Cl2, 0° (i-Pr)2N(O)CO
88% ee
N Ts
(Eq. 20) O B
1. HCl, H2O 2. pinacol, pTSA, MgSO4, CH2Cl2
O
(i-Pr)2N(O)CO 16 (83%, 2 steps) 85% ee
12
ORGANIC REACTIONS
From Alkenylmetal Precursors. The reaction of an alkenylmetal with a halomethyl boronic ester also leads to allylic boronates (Eq. 21).52 This strategy takes advantage of the configurational stability of vinylic carbanions and circumvents the rearrangements that can plague allylic metal intermediates. For example, an alkenylmagnesium reagent reacts readily with pinacol chloromethylboronate to give the corresponding isoprenylboronate in good yield (Eq. 22).53 R4 R2
XCH(R5)B(OR1)2 M
R
3
B 3
R
M = Li, Mg, Al, K
MgBr
+ Cl
OR1
R4 R2 R
OR1
(Eq. 21)
5
2
O B
O B
THF O
–78° to rt
(Eq. 22)
O
(73%)
Alkenylmetal reagents are generally more configurationally stable than allylic metal species and so alkylations with these anions are usually more stereoselective than with allylic anions. The low reactivity of many alkenylmetal species, however, can sometimes bring about poor yields in the alkylation step. While the reactions of alkenyllithium54 – 56 and alkenylmagnesium53 reagents with halomethylboronates are well established, the high reactivity of these organometallics limits the type of functional groups that may be present. In this regard, less reactive alkenylaluminum57,58 (Eq. 23) and alkenylcopper26,59,60 reagents (Eq. 24) have been used to produce more sensitive, functionalized allylic boronates such as 2-ethoxycarbonyl derivatives of types 17 and 19 from the corresponding alkyne precursors. In the generic example in Eq. 24, the cis-carbocupration of alkynoic esters provides a weakly nucleophilic and configurationally unstable 1-alkoxycarbonylalkenylcopper intermediate 18, and the presence of hexamethylphosphoric triamide (HMPA) as an additive was found to be crucial to avoid erosion of the E/Z stereoselectivity in the alkylation step with the iodomethylboronate electrophile.26,59,60 Under these conditions, a variety of unsymmetrically substituted 3,3-dialkylated allylboronates 19 have been prepared in over 20 : 1 selectivity, and these reagents have been subsequently employed in the stereoselective preparation of quaternary carbon centers by reaction with aldehydes.
CO2Me
DIBAL-H, HMPA THF, 0°
CO2Me Al(Bu-i)2
Cl
O BO rt
MeO2C
O B
O
17 (80%)
(Eq. 23)
ALLYLBORATION OF CARBONYL COMPOUNDS
CO2R1 R2
3
R2
CO2R1
R 2CuLi THF, –78°
[Cu]
I
O BO
R1O2C R2
HMPA, THF, –78° to 0°
R3 18
13
O B
O
R3 19 >20:1 E:Z
(Eq. 24) One limitation of this preparative method is the concurrent formation of an alkenylboronate, which is formed presumably via α-elimination pathways involving the intermediate ate adduct of addition between the organometallic reagent and the α-haloalkylboronate (Eq. 25).52,61 1. Mg, THF 2.
TBDMSO I
Cl
O BO
TBDMSO
O B
Et2O, –100°
O B
+
O
O OTBDMS (69%) 47:53
(Eq. 25)
The use of enantiomerically pure α-chloroalkyl boronic esters as electrophiles, for example the dicyclohexylboronate 20 obtained from Matteson’s asymmetric homologation method,62 provides access to α-alkyl-substituted allylic boronates. For example, reagent 21 is isolated in very high diastereomeric purity by way of a net inversion of configuration (Eq. 26).63,64 Likewise, the Zn(II)-promoted reaction of alkenylmetal fragments with chiral dichloromethylboronate 22 leads to optically pure α-chloroallylboronates such as 23 (Eq. 27).65 This reagent has a small tendency to isomerize so it is combined directly with aldehydes. Addition of all these α-substituted reagents to aldehydes is highly diastereoselective (see Schemes 8 and 9 under “Enantioselective Allylations”).66,67 Furthermore, the chloride substituent can be displaced with a variety of nucleophiles including metal alkoxides and alkylmetal reagents to provide other useful allylation reagents.68 Cy Li
+
Cl
O B
Cy Cy
O
ZnCl2 THF, –78° to 20°
Cy Cl Cl 22
(Eq. 26)
Cy
Cy Cy
O
Cy O
21 (76%) >99.5:0.5 d.r.
20
O B
O B
MgCl THF, –78°
O B– O Cl2CH
Cy
ZnCl2 (1 eq) –78° to 0°, 5 h
O B
Cy O
Cl 23 (—) >99.5:0.5 d.r.
(Eq. 27)
14
ORGANIC REACTIONS
From Other Organic Fragments. Other direct methods to access allylic boron reagents, including chiral ones such as 2-cyclohexenylborane 24, are based on the hydroboration of 1,3-dienes69 (Eq. 28) and allenes70 (Eq. 29). Allylic boronates can also be accessed by the transition-metal-catalyzed diboration71 (Eq. 30) and silaboration72 (Eq. 31) of dienes and allenes. With allenes as substrates, the use of a chiral phosphoramidite ligand leads to high enantioselectivities in the preparation of chiral 2-borylated α-substituted reagents of type 25 (Eq. 32).73 B[(–)-Ipc]2
THF
+
(Ipc)2BH
(Eq. 28)
–25°, 12 h
from (+)-2-pinene 24 (—) >94% ee
TBDMSO
O
Pt(dba)2 (3 mol%), P(Bu-t)3 (6 mol%)
O
toluene, 50°, 2 h
+ H B 1.5 eq
O
O
O
O B
O
Ni(acac)2 (5 mol%), DIBAL-H (10 mol%)
O +
O O (90%) >99:1 Z:E
2 eq
O
(Eq. 31)
B
PhMe2Si
toluene, 80°, 24 h
O
(Eq. 30)
O
(93%) >99:1 Z:E
1.5 eq
PhMe2Si B
O B
toluene, 80°, 16 h
O
(Eq. 29) O
(86%) Pt(PPh3)4 (3 mol%)
+
B B
O B
TBDMSO
Ph Ph O
P NMe2 O Ph Ph (6 mol%), Pd2(dba)3 (2.5 mol%) O
O
R +
O B B
O
O
O
B
O
toluene, rt, 14 h
(Eq. 32) O B
O R 25 (61-75%) 87-92% ee
(pin2B2)
Allylic boronates with a wide variety of functional groups can also be obtained by the treatment of allylic acetates with pinacolatodiboron [(pin)2 B2 ], although side products of oxidative homodimerization can be observed in some instances (Eq. 33).74
Ph
OAc
(pin)2B2, Pd(dba)2 (5 mol%) DMSO, 50°
Ph
O B (73%)
Ph O
+
Ph (13%)
(Eq. 33)
ALLYLBORATION OF CARBONYL COMPOUNDS
15
Very recently, it was shown that allylic trifluoroborates such as 26 can be prepared stereospecifically from allylic alcohols using a palladium complex made from a pincer ligand (Eq. 34).75 A copper-catalyzed, site selective and stereospecific substitution of allylic carbonates with (pin)2 B2 has been optimized to afford several examples of α-substituted allylic boronates.76 When using the E-isomer of an enantiomerically pure secondary allylic carbonate, the resulting chiral α-substituted allylic boronate 27 is obtained with minimal erosion of enantiomeric purity (Eq. 35). The corresponding Z-configured allylic carbonate affords the other enantiomer, and this stereochemical outcome has been explained with a mechanism involving anti attack of the borylcopper reagent in a conformation minimizing allylic 1,3-strain. Allylic halides are also suitable substrates with pinacolborane as the borylating agent under platinum catalysis.77 As shown in a palladium-catalyzed Stille cross-coupling reaction with soft alkenylmetal electrophiles (Eq. 36),78 transition-metal-catalyzed processes can even tolerate unprotected acidic functionalities. Related Negishi-type coupling strategies have also been employed.79,80
1. PhSe n-Pr
OH
+
[B(OH)2]2
Pd SePh Cl (5 mol%), DMSO/MeOH, 50°, 16 h
BF3–K+
n-Pr
2. aq KHF2
26 (94%)
n-Bu
OCO2Me
Cu(OBu-t) (10 mol%), Xantphos (10 mol%) (pin)2B2 (2.2 eq), THF, 0°, 23 h
98% ee
Sn(Bu-n)3 OH
H + Br
O B O
O B
(Eq. 35)
O
Bu-n 27 (95%) 96% ee
Pd2(dba)3•CHCl3 (3 mol%) PPh3 (12 mol%), HMPA, 50°
(Eq. 34)
H
HO
O B O (63%)
(Eq. 36)
From Boron-Containing Fragments. A number of indirect methods to synthesize more highly functionalized allylic boronates are based on the isomerization or derivatization of organoboron substrates. Selected examples include the homologation of alkenylboronates with chloromethyllithium56,81 (Eq. 37),82 and the allylic rearrangement of 3-siloxyalkenylboronates to give chiral α-chloro derivatives such as 28 (Eq. 38).83 A variant of Eq. 37 using lithiated allyl chloride has also been described.84 The Johnson orthoester Claisen rearrangement of a chiral 3-hydroxypropenylboronic ester leads to an epimeric, separable mixture of α-substituted allylic boronates 29 and 30 (Eq. 39).85,86 A related intermolecular method based on the SN 2’ addition of Grignard reagents has been reported (Eq. 40).87 These reagents are not isolated, rather, they
16
ORGANIC REACTIONS
are immediately combined with aldehydes. Other methods of preparation of allylic boronates involving boronic ester fragments include the isomerization of alkenylboronates (Eq. 41),88 cycloadditions of dienylboronates (Eq. 42),89 and olefin cross-metathesis (Eq. 43).90 OMe
O B
MeO
OBn
ClCH2Li O
THF, –78° to rt
MeO
O B
O
OMe
OBn
(77%)
O B
O B
SOCl2 pet. ether, rt
O
TMSO
(Eq. 37)
(Eq. 38)
O
Cl 28 (75%)
Ph OMe Ph Ph O OMe B O Ph
HO
Ph OMe Ph Ph O OMe B O Ph
MeC(OEt)3, cat. EtCO2H 135° O OEt
Ph OMe Ph Ph O OMe B O Ph
Ph OMe Ph Ph O OMe B O Ph
+
CO2Et 29
O B
Cl
CO2Et (71%) 1:1 (separable)
+
i-PrMgCl
30
O B
THF –15°, 15 min
O
O
(Eq. 40)
i-Pr (—) [IrH2(AcOEt)2(PPh2Me)2]PF6 (3 mol%)
TBDMSO
(Eq. 39)
B(OPr-i)2
TBDMSO
B(OPr-i)2
AcOEt, rt, 10 min (94% conv.) 98:2 E:Z
(Eq. 41) O
B
O
O
O +
toluene Y
B
O
80°, 6 h
O Y
O Y = O, NPh
(quant.)
O
(Eq. 42)
ALLYLBORATION OF CARBONYL COMPOUNDS
Ph
+
O B
cat. (3 mol%) O
CH2Cl2, 40°
O B
Ph
PCy3 cat. = Ru Cl Cl Ph PCy3
17
O
(Eq. 43)
(88%) 91:9 E:Z
Stability and Handling of Allylic Boron Reagents Allylic boronates are more stable to atmospheric oxidation and are thus much easier to handle than the corresponding allylic boranes. The stability of the boronate reagents arises from the partial donation of the lone pairs of electrons on the oxygen atoms into the empty p-orbital of boron. This mesomeric effect is responsible for the upfield shift of the boron atom in 11 B NMR compared to that of allylic boranes (compare allylboronate 31 and allylborane 32).21
O B O
B 2
31 11B NMR (200 MHz, CH Cl ) δ 33 ppm 2 2
32 11B NMR (200 MHz, THF) δ 82 pp m
As a consequence of their superior stability, many types of allylic boronates can be isolated and purified. It should be noted that most pinacol allylic boronic esters and other bulky esters are stable to hydrolysis and can be conveniently purified by chromatography on silica gel. A potential pitfall of all allylic boron compounds is their stereochemical integrity, and substituted allylic boranes are known to undergo reversible borotropic rearrangements at temperatures above −45◦ (see Eq. 12, M = BR2 ).22,91,92 For this reason, allylic boranes are normally not handled under atmospheric conditions, and are rather prepared and employed in situ at low temperatures. These borotropic rearrangements are the bane of stereoselective syntheses since they can scramble the double bond geometry of the reagent. Thus, a major advantage in using allylic boronates compared to boranes is that they are much less prone to such rearrangement. For example, whereas B-crotyl-9-borabicyclo[3.3.1]nonane (B-crotyl-9-BBN) (33) exists as an equilibrating mixture of E- and Z-isomers at room temperature,92 the two isomers of pinacol crotylboronate (7) are sufficiently stable to be independently prepared, isolated, and employed at that temperature (Fig. 2).22,54 The allylic borotropic rearrangement has been studied in detail with a few distinct reagents, including the α-methyl allylic reagents of generic structure 34 (Eq. 44). The dialkylboranes are fluxional at room temperature and exist almost exclusively as the thermodynamically favored crotylborane with a more highly substituted double bond.91 – 93
18
ORGANIC REACTIONS
O B O
O B O
B 33
(Z)-7
(E)-7
inseparable E:Z mixture at room temperature
E:Z isomers readily prepared and handled at room temperature
Figure 2. Comparison of the stereochemical stability of crotylboranes vs crotylboronates. R(Y)
R(Y)
B
B
R(Y)
R(Y)
(Eq. 44)
34 R = alkyl Y = OR Y = NMe2
fast at room temperature stable at room temperature stable up to 200°
The speed of the rearrangement depends on the Lewis acidity of the boron atom.94 Electron-donating substituents that reduce the acidity of boron slow down the process. Thus, whereas a monoamino derivative slowly isomerizes at 150◦ ,95 the corresponding diamino derivative is stable up to a temperature of 200◦ .96 The corresponding boronic esters are less stabilized towards the borotropic rearrangement, but they are stable enough to be conveniently handled at room temperature. The presence of Lewis acids, however, can promote or accelerate the rearrangement.49 These allylic borotropic rearrangements obey first-order kinetics and the absence of crossover products in control experiments demonstrates their intramolecular nature.92 In the case of the B-allyl 9-BBN reagent, the coalescence temperature is 10◦ , which corresponds to a rate of exchange of 330 sec−1 (G= 13.3 kcal/mol).92 Unsurprisingly, bases such as pyridine completely stop the rearrangement.92,94 Activation parameters of several allylic dialkylboranes have been determined by dynamic NMR spectroscopy.91 Reactivity of Allylic Boron Reagents The boron–oxygen mesomeric effect described in the previous section explains the lower reactivity of allylic boronates towards carbonyl compounds compared to that of allylic boranes. The use of Lewis acids, however, allows boronate derivatives, including hindered ones, to react at temperatures comparable to the analogous boranes. As described above (see section “Mechanism and Stereochemistry”), the most reactive allylic boronates are those with the most electrophilic boron centers.19,21 The nucleophilicity of the γ-position of an allylic boron reagent (the position that forms the new C–C bond with the aldehyde) is also important to the reactivity of the reagent. For example, allylic boronates with
ALLYLBORATION OF CARBONYL COMPOUNDS
alkyl B
alkyl
ArO 2S N B N SO 2Ar
CO 2R O B O
CO 2R
faster
O B O
19
O B O slower
reactivity towards carbonyl compounds
Figure 3. Scale of reactivity for selected allylboron derivatives toward carbonyl compounds.
substituents that reduce electron density at this position, such as 2-ethoxycarbonyl groups,58,59 are correspondingly less reactive than similar allylboronates that lack these groups. Between the crotylboronate isomers, the E-isomer reacts noticeably faster than the Z counterpart.22,34 The electronic and steric effects of different allylic borane and boronate derivatives has been studied by qualitative kinetic analysis.21 The resulting scale of reactivity depicted in Fig. 3 emphasizes the importance of both effects in the reactivity of these boron-based reagents. In general, acyclic boronates react faster than cyclic ones. Moreover, the reaction is quite sensitive to electronic effects. For example, N ,N ,N ,N -tartramide derivatives react at a much slower rate than the corresponding esters. Allylic dihaloboranes have been isolated and characterized.97 The highly electrophilic difluoroallylborane is predicted to be extremely reactive in carbonyl allylation.19 Allylic difluoroboranes are postulated intermediates in the Lewis acid promoted additions of allylic trifluoroborate salts.98,99 These reagents combine stability and reactivity as desirable attributes in a single class of allylic boron reagents. They are prepared by reaction of the corresponding allylic boronic acids with aqueous KHF2 , and they can be purified by recrystallization and stored as air- and water-stable solids for extended periods of time at room temperature. For example, the crotyl trifluoroborates (E)- and (Z)-35 do not interconvert. Allylic trifluoroborate salts are inert to carbonyl compounds until activated by an external Lewis acid, at which point they become efficient allylating agents that produce homoallylic alcohols in high yields. Instead of aldehyde coordination, this new method of activation is thought to involve a mechanism whereby the electrophilic additive (usually BF3 •OEt2 ) strips off a fluoride anion from the trifluoroborate salt. The expected product of this equilibration is a highly electrophilic tricoordinate allylic difluoroborane, which is thought to react with aldehydes through the usual Type I mechanism. Consistent with this hypothesis, the crotyl reagents (E)- and (Z)-35 provide, in over 90% yield, the respective anti and syn addition products expected from a cyclic, chairlike transition structure (Eq. 45). Although the reaction is usually carried out using two equivalents of BF3 •OEt2 at −78◦ , it can also be performed with as low as 5 mol% of the same additive, albeit at room temperature. A phase-transfer procedure has also been developed.100
20
ORGANIC REACTIONS BF3–K+
R1
+
OH
BF3
R3CHO
R3
CH2Cl2
R2
R1 R2
(Eq. 45)
BF3 (0.05 eq), rt, 3-6 h; or BF3 (2.0 eq), –78°, 15 min R3 = Ph (>90%) >98:2 d.r. R3 = Ph (>90%) >98:2 d.r.
(E)-35 R1 = Me, R2 = H (Z)-35 R1 = H, R2 = Me
Work-Up Conditions The addition of allylic boron reagents to carbonyl compounds first leads to homoallylic alcohol derivatives 36 or 37 that contain a covalent B–O bond (Eqs. 46 and 47). These adducts must be cleaved at the end of the reaction to isolate the free alcohol product from the reaction mixture. To cleave the covalent B–O bond in these intermediates, a hydrolytic or oxidative work-up is required. For additions of allylic boranes, an oxidative work-up of the borinic ester intermediate 36 (R1 = alkyl) with basic hydrogen peroxide is preferred. For additions of allylic boronate derivatives, a simpler hydrolysis (acidic or basic) or triethanolamine exchange22 is generally performed as a means to cleave the borate intermediate 37 (Y = O-alkyl). The facility with which the borate ester is hydrolyzed depends primarily on the size of the substituents, but this operation is usually straightforward. For sensitive carbonyl substrates, the choice of allylic derivative, borane or boronate, may thus be dictated by the particular work-up conditions required. R1
R4 R2
B R3
R6CHO R1
R4
R12BO R6
R5
R5 R2 R3
1 R1 = alkyl
work-up
(Eq. 46)
H2 O2 aq NaOH
36 HO R6
R4 R
Y
2
B R3
R6CHO Y
R5
2 Y = O-alkyl(aryl) or N-alkyl(aryl)
R4
Y2BO R6
R5
R2 R3
work-up
H3O+, or OH−, or N(CH2CH2OH)3
R4 R5
R2
R3
(Eq. 47)
37
Carbonyl Substrate Generality Additions of allylic boron reagents have been reported on a very wide range of classes of functionalized aldehydes. Some types of aldehydes, however, are very reactive and may lead to side-reactions. For example, β,γ-unsaturated aldehydes are notoriously difficult substrates but an indirect procedure for their in situ generation leads to clean products of allylboration.101 Although most examples
ALLYLBORATION OF CARBONYL COMPOUNDS
21
of additions of allylic boron reagents involve aldehydes as substrates, additions to ketones are also possible. Additions to simple ketones are much slower than similar reactions with aldehydes, and forcing conditions may be required. The stereoselectivity observed in these additions is variable depending on the difference in size between the two substituents on the ketone. As exemplified in Eq. 48, ketones react slowly with allylic boronates, under high pressure, to yield tertiary homoallylic alcohols as products.102 Additions of allylic boranes are also much slower with ketones. For example, additions of methallyl-BBN are performed at room temperature, compared to −78◦ for aldehydes (Eq. 49), and they were found to be highly sensitive to the steric bulk of the ketone.103 Because of the high temperature required, these additions are accompanied by reversible allylic rearrangement in reactions of 3-monosubstituted allylic boranes, which renders them impractical. O B
O
+ O
R
pet. ether
HO
8 kbar, 3 d
R
HO +
R
(Eq. 48)
syn
anti
R = Et (79%) 1:1 anti:syn, ~1:2 E:Z R = i-Pr (—) >99:1 anti:syn, ~1:3 E:Z pentane
O
+
HO
(Eq. 49)
rt, 2 h
B
(95%)
The additions of allylic boronates to ketones are greatly enhanced if an appropriate chelating group is present on the ketone (such as an α- or β-hydroxy or carboxylic acid group).104 – 109 For example, both (E)- and (Z)-diisopropyl crotylboronate exchange 2-propanol and add to α-hydroxyacetone within reasonable time frames to give the expected products in high diastereoselectivity (Eq. 50).109 In the proposed transition structure 38, the ketone residue bearing the α-hydroxy group occupies an axial position due to the formation of a cyclic boronate complex. O
O B(OPr- i)2
RE RZ
OH Et 3N, CH 2Cl 2, –78° to rt, 36 h
B OR RE
O RZ 38
OH HO RE RZ
R E = Me, R Z = H (72%) 97:3 d.r. R E = H, R Z = Me (65%) 94:6 d.r.
(Eq. 50) Moderate levels of diastereomeric differentiation are observed in the additions of achiral allylboronates to β-hydroxy ketones, as exemplified in Eq. 51a.110 The major product is tentatively assigned as the anti diastereomer. Few reports describe the use of carbonyl substrates other than aldehydes and ketones, and these reactions have not led to applications. For instance, low reactivity leading
22
ORGANIC REACTIONS
to modest yields and stereoselectivity are observed in the additions of allylic boranes to acylsilanes (Eq. 51b).111 OH O Ph
B(OH)2 CH2Cl2, rt
Et
HO Et OH
HO HO Et
+
Ph
Ph syn
anti
(Eq. 51a)
(84%) 9:1 anti:syn O
B(Ipc)2
+ SiPh3
Et2O
HO SiPh3
(Eq. 51b)
–78° to rt (61%)
Acid chlorides (which react vigorously), esters, and N ,N -dimethylamides react with two equivalents of the reagent to give diallyl tertiary alcohols after work-up (Eq. 52).103
B 2 eq
pentane
O
+ Ph
Cl
HO Ph
(Eq. 52)
rt, 2 h (89%)
The Lewis acid catalyzed reactions expand the scope of aldehyde substrates with certain boronate reagents. For example, whereas cyclohexanecarboxaldehyde is unreactive under thermal (uncatalyzed) conditions, it does react with allylic boronate 8 under Sc(OTf)3 catalysis at room temperature (Eq. 53, see also Eq. 6).26 EtO2C Et
O B O 8
CHO +
O Sc(OTf)3 (10 mol%) toluene, rt, 24 h no reaction with no catalyst at 80°
O Et
(Eq. 53) Cy (54%)
Diastereoselective Additions to Chiral α-Substituted Carbonyl Substrates The presence of a stereogenic center on the aldehyde can strongly influence the diastereoselectivity in allylboration reactions, especially if this center is in the α-position. Predictive rules for nucleophilic addition on such α-substituted carbonyl substrates such as the Felkin model are not always suitable for closed transition structures.112 For α-substituted aldehydes devoid of a polar substituent, Roush has established that the minimization of “gauche-gauche” (“syn-pentane”) interactions can overrule the influence of stereoelectronic effects.113 This model is valid for any 3-monosubstituted allylic boron reagent. For example, although crotylboronate (E)-7 adds to aldehyde 39 to afford as the major product the diastereomer predicted by the Felkin model (Scheme 2),114,115 it is proposed that the dominant factor is rather the minimization of syn-pentane interactions between the γ-substituents of the allyl unit and the α-carbon of the aldehyde. With this
ALLYLBORATION OF CARBONYL COMPOUNDS
O B O
H H
Et
OH Et
O
H
H 39
Felkin product 40
O Et
23
+
O B
83 17
O
(E)-7 O O B
OH Et
O
H H Et
anti-Felkin product
41
Scheme 2. Stereoinduction model for additions of (E)-7 to α-chiral aldehyde 39.
model, 40 is the favored transition structure leading to the Felkin product because the two smallest substituents on the α-carbon (H, Me) are aligned respectively with a methyl and a hydrogen of the E-crotyl unit. This arrangement leaves the largest group (Et) of the aldehyde “outside” the chair, away from the reactive centers and almost orthogonal with the plane of the carbonyl unit. This conformer, which in this instance also happens to be the reactive one predicted by the Felkin model, best minimizes the so-called gauche-gauche (syn-pentane) interactions. In the alternative transition structure 41 that leads to the minor diastereomer, the ethyl group induces slightly more important gauche-gauche interactions compared to those found in 40 (Et–H for 41 vs. Me–H for 40). Other transition structures with the smallest group (H) outside the chair are less favorable and are not considered in this analysis. These transition structures feature Me–Me or Et–Me “syn-pentane” interactions, and thus are significantly higher in energy. The value of this model is more apparent in rationalizing the results of crotylboronate (Z)-7 for which the possible transition structures, 42–45, are shown in Scheme 3.113 In these examples, the major diastereomer is the anti-Felkin product.115 The Felkin transition structure 45 shows a severe Me–Me syn-pentane interaction. Structure 43, analogous to 40 in Scheme 2, best minimizes these interactions by aligning the smallest groups together. With respect to the minor diastereomer, structure 44 is preferable over 45, but not quite as effective as 43 in minimizing the overall effect of syn-pentane interactions because it places the methyl group outside the chair instead of the larger ethyl group. The stereoinductive effect of the α-substituent is often more powerful when this substituent is a polar group such as an alkoxy or amino group. In this instance as well, minimization of syn-pentane interactions with 3-monosubstituted reagents is important, and the selectivity can be amplified if it acts in concert with other effects. Known models include the stereoelectronic preference
24
ORGANIC REACTIONS
O O B
H H
O Et 42
O O B
OH O
O Et
H 39
+
O B
H
Et
Et H
43
anti-Felkin product 70 30
O
(Z)-7
O B O
H H Et
O
OH Et Felkin product
H 44
O B O
H H H
Et
O
45
Scheme 3. Stereoinduction model for additions of (Z)-7 to α-chiral aldehyde 39.
for the orthogonal polar group dictated by the Felkin–Anh model,116 and the minimization of dipoles (i.e., the Cornforth model117 ). With such aldehydes as glyceraldehyde acetals (e.g., 51 in Scheme 4), Z-crotylboron reagents tend to be more selective than the E-isomers.118 In the absence of any γ-substituents, or with 3,3-disubstituted reagents, syn-pentane interactions are not expected to play a key role. As shown in Scheme 4, the generic addition of pinacol allylboronate (31) to aldehydes substituted with a polar substituent can proceed through four reasonable transition structures 46–49 (high-energy rotamers with the small group, the hydrogen atom, in the “outside” position are not considered).115,118 Comparison of the selectivity among aldehydes 39, 50, and 51 shows an increase in the anti product with a polar aldehyde substituent. By presenting the polar group almost
ALLYLBORATION OF CARBONYL COMPOUNDS
25
O O B O
R
X H
46
O O B
OH R O
O R
H X
+
O 31
R H
syn:anti
anti (Felkin–Anh)
O B O O
49 O
O
O Et
X
48
X R
OH R
O
H H
syn (anti-Felkin–Anh)
O B O
H X
X
X
47
O B
H
R
H
H epi-39
OBz 50
62:38
45:55
H
O O 51 20:80
Scheme 4. Stereoinduction model for additions of allylboronate 31 to aldehydes with a polar α-substituent.
perpendicular to the plane of the aldehyde carbonyl group, structures 46 and 49 are stereoelectronically favorable and probably comparable in energy even if structure 49 is formally the reactive conformer according to the Felkin–Anh interpretation. The results of reactions of allylboronate 31 and the corresponding crotyl reagents suggest that with aldehyde 51, the Cornforth-like conformer 48 (minimizing dipole repulsion between the α-alkoxy substituent and the carbonyl)
26
ORGANIC REACTIONS
is particularly important in explaining the increase of the anti stereoisomer. A computational study supports the importance of the Cornforth model in these allylboration reactions.119 Moreover, this conformer (48) also favorably places the large methylene(oxy) substituent of aldehyde 51 on the “outside” on the chairlike transition structure. To improve the levels of selectivity in additions to chiral aldehydes, it is possible to resort to the tactic of double diastereoselection with the use of chiral allylic boranes and boronates (see section “Double Diastereoselection”). Bis(isopinocampheyl) allylic boranes and the tartrate allylic boronates (see following section), in particular, are very useful in the synthesis of polypropionate natural products by reaction with α-methyl and α-alkoxy functionalized aldehydes. Enantioselective Allylations and Crotylations with Chiral Auxiliary Reagents The most common application of the allylboration reaction is in the allylation and crotylation of aldehydes. Many strategies have been devised for controlling the absolute stereoselectivity.10,11 These strategies involve two general classes of chiral reagents: (1) allylic boronates or boranes containing a stereogenic α-carbon on the allylic unit; (2) allylic boronates fitted with a chiral auxiliary that creates the cyclic boronate, or that is attached to the non-allylic substituents in boranes. The use of chiral auxiliary-based reagents is more popular because it is generally easier to manipulate the non-allylic substituents than it is to make an enantiomerically pure allylic boronate with a stereogenic α-carbon on the allylic unit. Several examples of both classes of reagents have been reported and reviewed recently, both for boronate derivatives and boranes.10,11 Chiral Boronate Derivatives. A large number of chiral auxiliary reagents based on allylic boronates has been reported.10,11 This section provides a brief overview of the historically important ones, but it focuses mainly on the most popular systems and the emerging ones (Fig. 4). The first examples of chiral allylic boronates120 were prepared from rigid camphor-derived 1,2-diols, providing allylation reagents of generic structure 52.114,120 – 122 Although they did not provide very high levels of stereoinduction in their reactions with aldehydes, these reagents inspired more work by several other groups, and these efforts led to significantly improved systems. For example, the class of tartrate-derived allenyl-, allyl- 53, and crotylboronates 11 has evolved into one of the most recognizable class of reagents in organic synthesis.37,123,124 These reagents are very reactive, allowing additions to aldehydes to proceed readily at −78◦ . Their reactivity comes at a price, however, as they are hydrolytically unstable and must be employed in conjunction with molecular sieves to rigorously eliminate adventitious traces of water.125 Nonetheless, when appropriately stored at −20◦ , the crotylboronates 11 can be kept for months without appreciable deterioration. As expected, reagents (E)-11 and (Z)-11 give the respective anti- and syn-propionate units in a diastereospecific manner and with very high diastereoselectivity (Eqs. 54 and 55).37 The enantioselectivity tends to be higher
ALLYLBORATION OF CARBONYL COMPOUNDS R1
Ph R3
CO2Pr-i
O
R1
B
27
R
O H
O B
1
O
O
CO2Pr-i
R2
R2
R3
53 R1, R2 = H (E)-11 R1= Me, R2 = H (Z)-11 R1 = H, R2 = Me
52
R1
56
R2 57 (E)-58 (Z)-58 15
R1
O
54 R1 = CH2Ph 55 R1 = CH2CF3
N Ph B N Ts
N SO2Me
N O
Ph
Ts R3
O B
O B
R2
N
R1, R2, R3 = H R1= Me, R2, R3 = H R1 = H, R2 = Me, R3 = H R1, R2 = H, R3 = Me
Figure 4. Common allylic boronate derivatives used as chiral auxiliary reagents in enantioselective carbonyl additions. (Only one stereoisomer is shown for simplicity.)
with (E)-11, but values are typically less than 85% ee for most aldehydes. In this regard, toluene is the best solvent for aliphatic aldehydes whereas THF is optimal for aromatic ones.125 Although simple stereoselection with these reagents does not provide practical levels of enantioselectivity, their use in double diastereoselection with α-substituted aldehydes126 has been amply demonstrated in the context of numerous total syntheses of complex natural products.11 CO2Pr-i O B
+ RCHO
O (R,R)-(E)-11
CO2Pr-i
4 Å MS, –78°
O
(R,R)-(Z)-11
CO2Pr-i
R
(Eq. 54)
anti (70-95%) >98% d.r., up to 88% ee
CO2Pr-i O B
HO
toluene or THF
+
RCHO
toluene or THF 4 Å MS, –78°
HO R
(Eq. 55)
syn (70-95%) >98% d.r., up to 86% ee
Originally, it was proposed that lone pair repulsions between one of the tartrate ester carbonyl oxygens and the aldehyde oxygen in transition structure 60 were responsible for the preference for transition structure 59 and the consequent enantiofacial selectivity (Scheme 5). Recent theoretical calculations,
28
ORGANIC REACTIONS OPr-i O O B O
H
O B
+ RCHO
O (R,R)-53
R
O
R CO2Pr-i
OH
CO2Pr-i
59 favored diastereomeric T.S.
R = Cy (97%) 87% ee R = t-Bu (56%) 86% ee
CO2Pr-i i-PrO2C i-PrO O
OH
O O B
R O R
60
Scheme 5. Model for absolute stereoinduction in additions of tartrate allylic boronate 53 to aldehydes.
however, point to an attractive nO -π*C=O interaction between the basic oxygen atom of one of the two ester groups and the boron-activated aldehyde carbonyl as the main factor favoring transition structure 59 in these stereoselective allylations.127 Significantly higher levels of enantioselectivity can be obtained with aromatic and unsaturated aldehydes by making use of the corresponding metal carbonyl complexes (Eq. 56).128,129 The selectivity is higher in toluene as solvent, and the resulting product can be easily decomplexed oxidatively to afford enantioenriched material. Likewise, dicobalt hexacarbonyl complexes of propargylic aldehydes provide much improved selectivities.128,130 CHO
CO2Pr-i O B
O
(R,R)-53
CO2Pr-i
OH
1. 4 Å MS, toluene, –78°
+ Cr(CO)3
2. CH3CN, O2, hν
Ph (>90%) 83% ee 56% ee with PhCHO
(Eq. 56) Cyclic derivatives 54 and 55 lead to higher levels of enantioselectivity with several types of aldehydes but their preparation requires more effort than the simpler parent reagents 53 and 11 (Fig. 4).131,132 The mixed O/N boronate derivative 56 provides high enantioselectivities with aliphatic aldehydes (Eq. 57).133 Its preparation, however, is also tedious and requires five steps from enantiomerically pure camphorquinone.
ALLYLBORATION OF CARBONYL COMPOUNDS
O B 56
+
OH
Et2O
RCHO
–78°, 2 h
N SO2Me
29
(Eq. 57)
R (47-92%) up to 96% ee
The bis(sulfonamide)-derived reagents (e.g., 57, 58, and 15 in Fig. 4) are based on a 1,2-diamino-1,2-diphenylethane auxiliary.50 These hydrolytically unstable boronate derivatives are typically prepared by Sn-to-B exchange of allylic tin precursors (e.g., Eq. 19). When employed at −78◦ in toluene or methylene chloride, unsubstituted allyl and methallyl reagents 57 and 15 provide very high enantioselectivities (>95% ee).50 The 2-bromoallyl reagent is also quite efficient but the crotylation reagents 58 provide slightly lower enantioselectivities (90–95% ee). It is thought that in the favored transition state 61 involving a tetracoordinate boron atom, the tolylsulfonyl groups orient away from the phenyl substituents of the chiral auxiliary (Scheme 6). It was proposed that the high enantioselectivity can be rationalized by the presence of a steric interaction between the methylene group of the allyl unit and the sulfonyl substituent on the pseudo-equatorial nitrogen atom in the disfavored transition state 62.50 Several 2-substituted derivatives of these bis(sulfonamide) allylation reagents have been employed in the total synthesis of complex natural products (see section “Applications to the Synthesis of Natural Products”). There are only a few examples where chiral allylic boronates react successfully with ketones, and the enantioselectivities are modest.134 A recent report, however,
Tol Ph
O2S
N B N
H O
R
TolO2S N B
Ph Ph N SO2Tol
+ RCHO
OH
Ph R SO2
Tol 61 favored diastereomeric T.S.
R = Ph (>90%) 95% ee R = Cy (>90%) 97% ee
Tol
(S,S)-57
O2S H R
Ph
N O B N
OH
Ph R SO2 Tol
62
Scheme 6. Model for absolute stereoinduction in additions of bis(sulfonamide) reagent 57 to aldehydes.
30
ORGANIC REACTIONS
describes the use of very reactive binaphthol-derived allylboronates. In particular, high levels of enantioselection (>96% ee) are obtained in the reaction of the 3,3 (CF3 )2 -BINOL reagent 63 with several aromatic ketones, as exemplified with 4-chloroacetophenone (Eq. 58).135 O CF3
HO Cl O B O
(Eq. 58)
toluene, –78° to –40°, 48 h
Cl (94%) >99:1 e.r.
CF3
63
Chiral Dialkylboranes. Several allylic boranes have been developed as chiral auxiliary reagents (Fig. 5). The introduction of terpene-based reagents such as 12 and 64–68 has been pioneered by H.C. Brown, and the most popular class remains the bis(isopinocampheyl) derivatives (structures 12, 64–66).136 A wide variety of substituted analogs have been reported,9,12 including the popular crotylboranes 12,44,137 but also a number of other reagents bearing heteroatomsubstituents. All are made from the inexpensive precursor α-pinene, readily available in both enantiomeric forms.
R3 R1
B R
64 (E)-12 (Z)-12 65 66
R3
R3
R1
R1
2
R
R2
R1, R2, R3 = H R1= Me, R2, R3 = H R1 = H, R2 = Me, R3 = H R1, R2 = H, R3 = Me R1, R2 = Me, R3 = H
R
68
TMS B
R2 69
2
67
R3 1
B
B
R1
B R2
70 R1, R2, R3 = H (E)-71 R1= Me, R2, R3 = H (Z)-71 R1 = H, R2 = Me, R3 = H
Figure 5. Chiral allylic boranes used as chiral auxiliary reagents in enantioselective additions to carbonyl compounds. (Only one isomer is shown for simplicity. For reagents 12 and 64–66, (−)-Ipc is shown.).
ALLYLBORATION OF CARBONYL COMPOUNDS
31
Most of the bis(isopinocampheyl) reagents, which are prepared from hard allylic organometallic precursors (e.g., Eqs. 15 and 16), are very reactive and add rapidly to aldehydes at −78◦ . Like other boranes, they are oxidatively unstable in ambient atmosphere and must be reacted with aldehydes in situ. Moreover, because of the borotropic rearrangement discussed above, the crotylboranes must be preserved and used at a low temperature to avoid geometrical isomerization with consequent formation of mixtures of diastereomeric products (see section on “Stability and Handling”). Not surprisingly, the 3,3-disubstituted reagent 66, which provides quaternary carbon centers in the products, reacts more slowly and necessitates a higher reaction temperature.138 The alcohol products from these additions are most often isolated through a basic hydrolytic oxidative work-up of the borinate intermediate (see Eq. 46). The unsubstituted reagent 64, allyl(Ipc)2 borane, is very enantioselective.136 It provides enantioselectivies over 95% for a wide range of aldehyde substrates. The removal of residual Mg2+ salts from the preparation of 64 leads to a dramatic increase of the reagent’s reactivity, allowing reactions to be carried out at −100◦ with improved enantioselectivities (up to 98% ee).139 Simple allylation reactions have been performed successfully in good to high yields with a wide variety of aliphatic, aromatic and heteroaromatic aldehydes (see section “Applications to the Synthesis of Natural Products”). Crotylations of aldehydes with reagents 12 are less selective, providing enantioselectivities in the range of 88–92% ee at −78◦ .137 The bis(isopinocampheyl)boranes behave poorly with ketones as substrates. For example, the simple allylation of acetophenone with reagent 64 gives the addition product with only 5% ee.140 The enantioselectivity of these reagents is explained by comparison of transition structures 72 and 73 shown in Scheme 7. The disfavored transition structure 73 leading to the minor enantiomer displays a steric interaction between the methylene of the allylic unit and the methyl group of one of the pinane units. Unlike the tartrate boronates described above, the directing effect of the bis(isopinocampheyl) allylic boranes is extremely powerful, giving rise to high reagent control in double diastereoselective additions (see section on “Double Diastereoselection”). Other chiral dialkylallylboranes have been reported, including the borolanes 69 (Fig. 5).141,142 Although the high reactivity and outstanding enantioselectivity of these borolanes make them very attractive reagents, they are notorious for their tedious preparation and have thus remained rather under-utilized. Recently, the 10-TMS-9-borabicyclo[3.3.2]decane allylborane and crotylboranes (70) and (71) were shown to provide remarkable stereoselectivities (>98% d.r., 94–99% ee) and good to high yields for a wide range of aldehydes.143 These reagents require reaction times of just a few hours at −78◦ , and are said to be robust and recyclable. They can be prepared using allylic carbanions in three simple steps that includes, however, a resolution of the borinic ester precursor as a stable and crystalline pseudoephedrine complex. The corresponding allenylborane has been reported.144 Reagent 74, the 10-phenyl analog of reagent 70, is particularly effective in allylations of ketones.145 As exemplified in the reaction between (R)-74 and acetophenone, enantioselectivities are excellent for aromatic ketones
32
ORGANIC REACTIONS
HO
R4 H R2
B
R4 B
72 favored diastereomeric T.S.
O
+ R
1
2 R3 R
up to 98% ee with 64
R3 R2
R1
O
R1
R4
H
>98% d.r., 88-92% ee with 12
R3 64 (E)-12 (Z)-12 65 66
R2, R3, R4 = H R2 = Me, R3, R4 = H R2 = H, R3 = Me, R4 = H R2, R3 = H, R4 = Me R2, R3 = Me, R4 = H
H R1 R2
HO R4 O B
R4
R1 R 3 R2
R3 73
Scheme 7. Model for absolute stereoinduction in additions of (−)-bis(isopinocampheyl) allylic boranes to aldehydes.
(Eq. 59), and even surprisingly high for aliphatic ketones such as 2-butanone, a substrate that offers very little steric discrimination (Eq. 60). Reagent 74 is less effective than 70 in allylations of aldehydes (e.g., 90% ee vs. >98% ee for 70 in the allylation of benzaldehyde). The superior reactivity and selectivity of 74 with ketones is ascribed in part to the lesser steric bulk of the phenyl substituent compared to the trimethylsilyl unit of reagent 70. The smaller phenyl substituent of 74 would provide a better fit for ketones in the chiral “pocket” of the reagent. O Ph Et2O, –78°
OH
(Eq. 59)
Ph (92%) 96% ee
Ph B O (R)-74
Et Et2O, –78°
OH
(Eq. 60)
Et (80%) 87% ee
Enantioselective Allylations and Crotylations with Chiral α-Substituted Reagents One major advantage of chiral auxiliary reagents over chiral α-substituted reagents is the fact that the chiral diol or diamine unit is not modified in the bond-making process and is thus potentially recyclable. The preparation of enantiomerically pure α-substituted reagents requires a stereoinductive transformation
ALLYLBORATION OF CARBONYL COMPOUNDS
33
such as the Matteson asymmetric homologation (see Eqs. 26 and 27), and their addition to aldehydes leads to destruction of the stereogenic α-center. Despite these disadvantages, many such reagents have found extensive use in the total synthesis of complex natural products.11 Examples of chiral α-substituted allylic boronates are shown in Fig. 6.4,5 The possibility for allylic rearrangement precludes the use of chiral α-substituted allylic boranes except in special instances such as the cyclohexenyl derivative 24, which can be prepared by the asymmetric hydroboration of cyclohexadiene (Eq. 28). Enantiomerically enriched reagent 24 (94% ee) adds to aldehydes at −78◦ to give the corresponding homoallylic alcohols with high enantioselectivities (94% ee).70 From the useful α-chloro allylic boronates 23 and 28,65 – 67,83,146 a number of other α-substituted reagents can be obtained by nucleophilic substitution of the chloride substituent (Fig. 6). For example, the α-methoxy reagent 7568,147 and αmethyl substituted reagent 2163 – 65 provide excellent enantiofacial discrimination with levels of enantiocontrol over 95% ee. These reagents provide interesting insight into the important steric and electronic factors involved in the allyboration transition structure. For all of these α-substituted reagents, two competing chairlike transition structure models can be proposed where the α substituent is positioned either in a pseudo-equatorial or in a pseudo-axial orientation.146 These two competing structures lead to opposite configurations for the resulting homoallylic alcohols, and their relative energy difference depends on the nature of the substituent on the α-carbon, on the nature of the diol boronate auxiliary, and also on the presence of γ-substituents on the allylic boronate. For example, in reactions with α-chloro reagent 23, the chloroalkenyl homoallylic alcohol product (Z)-78 is largely predominant (>99:1) over the E-configured product 80, and it is obtained in a very high level of enantioselectivity (Scheme 8).65,66 This very high enantioselectivity of the product reflects the high enantiopurity of reagent 23. The predominance of stereoisomer 78 and its Z-olefin geometry can be explained in
Cy O B O
Cy O B O
Cy
O B O
Cl
Cl
O B O
OMe
23
28
B[(–)-Ipc]2
O B
75
21
Ar
24
O
Ar
CO2R 29, 30 Ar = CPh2(OMe)
O
B
O
O
O
OEt
76
Figure 6. Chiral α-substituted allylic boron reagents.
B
O
O B
R 25
O
Cy
34
ORGANIC REACTIONS Cy
R
Cy R Cl 78 R = i-Pr (89%) >99% ee R = Ph (79%) >99% ee
Cl
Cy O B O
OH
O O B O H
Cy
77 favored T.S. +
RCHO
Cl Cy
23
R
O Cl B O O
OH
Cy
Cl
R 80
79
Scheme 8. Stereoinduction model for the additions of chiral α-chloro allylboronate 23.
terms of one preferred transition structure 77 where the chloro substituent adopts a pseudo-axial orientation to minimize dipole repulsion, and to avoid Coulombic repulsions with the oxygen atoms of the boronate. In transition structure 79, unfavorable steric interactions and electronic repulsions are unavoidable between the pseudo-equatorial chloro substituent and the dioxaborolane substituents. It had been shown previously that the 1,2-dicyclohexyl ethanediol (DICHED) auxiliary had little effect on the stereochemical outcome of the reaction.64 Thus, the stereogenic α-chloro center and not the chiral boronate unit is the main contributor to the highly efficient enantiofacial differentiation in these allylations. The size of the boronate auxiliary, however, influences the relative proportions of isomers by further disfavoring transition structures like 79 where the α-substituent occupies the pseudo-equatorial position.148 Reagent 23 also performs very well in double diastereoselection with chiral α-alkoxy aldehydes.65,66 This reagent, prepared as shown in Eq. 27, has a small tendency to isomerize and thus is combined with aldehydes directly. The E-crotylboronate derivatives 28 and 75 behave similarly. As shown in Eqs. 61 and 62, these reagents were successfully tested with simple aliphatic aldehydes and benzaldehyde and provide very high levels of stereoselectivity in the formation of anti-propionate products.67,68 Although the α-methoxy derivative 75 is more diastereoselective, it provides lower enantioselectivity because it can be obtained only in 90% ee from enantiopure 28 via an SN 2 displacement that causes some erosion of the enantiomeric purity. O B O Cl 28 95% ee
OH
RCHO 20°, 12 h
OH +
R
R
Cl
Cl R = Et (47-65%) 95:5 d.r., 96% ee R = Ph (53-68%) 95:5 d.r., 98% ee
(Eq. 61)
ALLYLBORATION OF CARBONYL COMPOUNDS
O B O
OH
RCHO 20°, 12 h
35
OH +
R
OMe
R
(Eq. 62)
OMe
OMe
R = Et (81%) >99:1 d.r., 90% ee R = Ph (79%) >99:1 d.r., 90% ee
epi-75 90% ee
The α-methyl Z-crotylboronate derivative 21 can be obtained in high enantiomeric purity, and its additions to aldehydes are highly diastereoselective and occur with almost perfect enantiofacial selectivity (Scheme 9).63,64 In this instance, the unfavored transition structure 83 (leading to Z-product 84) with the pseudo-axial α-methyl group develops a strong pseudo-1,3-diaxial interaction between the two methyl substituents of the reagent. The favored transition structure 81 is devoid of such an interaction, and provides the E-configured synpropionate adducts 82 with very high stereoselectivity. Reagents 21, 28, and 75 (Fig. 6) have also been used extensively in double diastereoselective synthesis with chiral aldehydes, and they generally lead to high levels of reagent control (see section “Double Diastereoselection”).63,64,67,68,83,149 The enantiomerically pure α-substituted reagents of type 29/30 (Fig. 6, Eq. 39) react with benzaldehyde to give the expected homoallylic alcohol products such as 86 with high enantioselectivity (Eq. 63).85,86 By analogy with the abovedescribed reagents, the addition is presumed to occur through transition structure 85 with the pseudo-axial α-alkyl substituent. The competing transition structure with the pseudo-equatorial substituent would experience severe non-bonding interactions between this group and the bulky boronic ester moiety.
Cy
OH
O O B O
R
Cy
R 82
Cy O B O
81 favored T.S. Cy +
RCHO
R = Et (79%) 98% ee R = Ph (71%) 99% ee
Cy
21
O B O R
OH
Cy R
O 84 83
Scheme 9. Stereoinduction model for the additions of chiral α-methyl crotylboronate 21.
36
ORGANIC REACTIONS R
R O B
O
R
PhCHO, toluene
R
–100° to rt
O O B O H
CO2Et
OH Ph
86 (91%) 96% ee
CO2Et
29 R = CPh2(OMe)
CO2Et
Ph
85
(Eq. 63)
Recently, the first examples of catalytic enantioselective preparations of chiral α-substituted allylic boronates have appeared. Cyclic dihydropyranylboronate 76 (Fig. 6) is prepared in very high enantiomeric purity by an inverse electrondemand hetero-Diels–Alder reaction between 3-boronoacrolein pinacolate (87) and ethyl vinyl ether catalyzed by chiral Cr(III) complex 88 (Eq. 64). The resulting boronate 76 adds stereoselectively to aldehydes to give 2-hydroxyalkyl dihydropyran products 90 in a “one-pot” process.150 – 152 The diastereoselectivity of the addition is explained by invoking transition structure 89. Key to this process is the fact that the possible “self-allylboration” between 76 and 87 does not take place at room temperature. Several applications of this three-component reaction to the synthesis of complex natural products have been described (see section on “Applications to the Synthesis of Natural Products”). The catalytic asymmetric diboration of allenes provides α-substituted 2-boronyl allylic boronates of type 25 (see Eq. 32). One of them, 91, adds to benzaldehyde, albeit with a slight erosion of stereoselectivity (Eq. 65).73 The major β-hydroxy ketone stereoisomer, isolated after an oxidative work-up, originates from the putative chairlike transition structure 92.
Me
N
O
B
O Cr Cl O
O + OEt (solvent)
B(pin) 88 (1 mol%)
RCHO, 45°
4 Å MS, rt, 1 h O
O 87
OEt
76 96% ee
O
(pin)B H H
R O
R OEt
H H 89
HO
H
O
OEt
90 (80-90%) >99:1 d.r., >95% ee
(Eq. 64)
ALLYLBORATION OF CARBONYL COMPOUNDS
O
B
O
O B
O
O O B
1. PhCHO, rt 2. H2O2
Ph 91 87% ee
O B
O Ph
O
O
37
Ph Ph
OH Ph
(56%) 82% ee
92
(Eq. 65) Enantioselective Additions with Chiral Propargyl Reagents As demonstrated by the example in Eq. 66, propargylboron reagent 93 affords allenic alcohols in very high enantioselectivities.153 Although this reagent has not been widely employed, the selectivity it provides with all classes of aldehydes is truly remarkable (>99% ee for model aliphatic, unsaturated, and aromatic aldehydes). Ph
Ts
N Ph B N Ts 93
O n-C5H11
OH
CH2Cl2
+ H
–78°, 2.5 h
n-C5H11
(Eq. 66)
(82%) >99% ee
Enantioselective Additions with Chiral Allenyl Reagents Although they were among the first examples to illustrate the use of tartrate boronate auxiliaries, allenylboronate reagents are seldom employed. The tartratederived reagent 94 provides homopropargylic alcohols in high enantioselectivity from aliphatic aldehydes (Eq. 67).123 This reagent provides optimal selectivity when substituted with the bulkier diisopropyl tartrate ester, and even in this situation aromatic aldehydes react sluggishly and with low stereoselectivity. The efficacy and scope of bis(sulfonamide) allenylboron reagent 95 has been investigated in detail.153 As exemplified in Eq. 68, this reagent adds to most types of aldehydes with high enantioselectivities. A recently described chiral dialkylallenylborane provides comparable selectivities.144 CO2Pr-i O B
O
+ O
R
CO2Pr-i
–78°, 20 h
H
R
(Eq. 67)
R = n-C5H11 (63%) >95% ee R = Ph (43%) 79% ee
94
Ts
OH
toluene
Ph N Ph B N Ts 95
O +
CH2Cl2 H
OH
(Eq. 68)
–78°, 2.5 h (76%) 94% ee
38
ORGANIC REACTIONS
Enantioselective Additions with Chiral 3-Heterosubstituted Reagents A large number of chiral 3-substituted allylic borane and boronate reagents have been described (Fig. 7). To be effective, these reagents must be prepared in geometrically pure form. Like the corresponding crotyl reagents, additions to aldehydes are diastereospecific as the anti/syn configuration of the resulting homoallylic alcohol products is dependent upon the geometry of the original allyl unit. Preparation of 1,2-Diols. The most direct method of preparation of 1,2 diols from allylic boron reagents involves the use of 3-alkoxy-substituted reagents. Although these reagents are prepared easily from the corresponding lithiated 3-alkoxypropene, only the Z-isomers are prepared directly in this fashion as a result of the preference for a cis-configuration in the lithium-chelated allylic carbanion (see Eq. 18, section “Preparation of Allylic Boron Reagents”). The resulting Z-configured reagents provide the syn-1,2-diol products in excellent diastereoselectivity in agreement with the usual cyclic chairlike transition structure. These reagents are very effective in double diastereoselection with α-substituted aldehydes.11 Several chiral analogues such as 14, 96, 97,48,154 and 98,155 are sufficiently effective for use in absolute stereocontrol (Fig. 7). In particular, the bis(isopinocampheyl)-derived 3-alkoxyallylboranes such as 96 react highly enantioselectively with a wide range of aldehyde substrates, including the notoriously troublesome acrolein (Eq. 69).156
O B
B(Ipc)2 RO 14 R = Me 96 R = CH2OMe 97 R = CH2O(CH2)2TMS
O
O
CO2Pr-i
O
O
O B
TBDMSO 98
O
CO2Pr-i
99
CO2Pr-i
O B
B(Ipc)2
(i-Pr2N)Me2Si
100
B(Ipc)2 13
Me Me Si Ar
O B
101 Ar = Ph 102 Ar = B(Ipc)2 Cl
Ar
N
B(Ipc)2
Ar 103
104
Figure 7. Chiral 3-substituted allylic boron reagents.
O
CO2Pr-i
O
ALLYLBORATION OF CARBONYL COMPOUNDS
39
O B[(–)-Ipc]2 MOMO
HO
H
(Eq. 69)
Et2O, –78°
OMOM (66%) 95% ee
96
To access anti-1,2-diols, indirect methods are required for the preparation of geometrically pure, chiral E-3-alkoxy reagents. To this end, the isomerization of alkenylboronic esters described above (Eq. 41), provides a reliable route to tartrate-derived E-3-siloxy allylboronate 99 (Fig. 7). The latter shows variable enantioselectivities in additions to aldehydes, with cyclohexanecarboxaldehyde affording the highest selectivity (Eq. 70).88 CO2Pr-i TBDMSO
O B
O
CO2Pr-i
HO CyCHO, 4 Å MS toluene, –78°, 5 h
Cy
(Eq. 70)
OTBDMS
(R,R)-99
(85%) >99:1 d.r., 91% ee
Alternatively, masked hydroxy groups may be used as the γ-substituent. For example, following allylation with the E-3-boronyl reagent 100 (Fig. 7), the second hydroxy group is generated upon an oxidative work-up that transforms the alkylboronate unit of intermediate 105 with full retention of configuration (Eq. 71).157 Likewise, provided it can be protodesilylated in the presence of an allylsilane moiety, a suitable silyl substituent can be subjected to stereospecific Tamao–Fleming oxidative conditions to afford the desired anti 1,2-diol. The requisite E-3-silyl-substituted reagents are conveniently prepared by trapping of the corresponding allylic carbanions154 with a borate ester (Eq. 17).38 – 40,45,46 Both borane and boronate reagents, exemplified by the respective pinene- and tartrate-derived reagents 1345 and 102158 (Fig. 7, Eqs. 72 and 73), afford diol products in moderate yields but with high enantioselectivies after a stereospecific Tamao–Fleming protodesilylation/oxidation of the β-hydroxy silyl intermediates (e.g., 106). As with other substituted reagents, however, only the bis(isopinocampheyl) allylic boranes 100 and 13 lead to practical levels of enantioselectivity suitable for absolute stereocontrol. Reagent 100, in particular, has found useful application in the synthesis of complex natural products (see section on “Applications to the Synthesis of Natural Products”). [(–)-Ipc]2BO
O
RCHO, Et2O
O B
B[(–)-Ipc]2
–78°, 4 h
H2O2
R O
B
100 105
O
aq NaOH
HO R OH (63-80%) >97.5:2.5 d.r., >90% ee
(Eq. 71)
40
Y
ORGANIC REACTIONS
B[(–)-Ipc]2
[(–)-Ipc]2BO
RCHO
HO H2O2, KF, KHCO3
R
Et2O, –78°
THF/MeOH, rt
R OH
Y
13 Y = SiMe2N(Pr-i)2
(30-63%) >97.5:2.5 d.r., 75-95% ee
106
(Eq. 72) CO2Pr-i O B
Me Me O Si
HO 1. RCHO, toluene, –78°, 5 h
O
(R,R)-102
CO2Pr-i
2. MeCO2H, CH2Cl2 3. H2O2, KF, KHCO3, THF/MeOH, rt
R OH (—) >99:1 d.r., 74-82% ee
(Eq. 73)
Preparation of 1,4-Diols, Epoxides, and Amino Alcohols. Reagent 101 (Fig. 7) illustrates the complications typically encountered in the design of 3-silylsubstituted allylic boron reagents, which require a selective protolytic desilylation of the resulting allylic silane to afford a 1,2-diol product. As opposed to the closely related 2-menthofuryl-derived reagent 102, this selective desilylation is not possible with reagent 101 (Fig. 7). Epoxidation of the aldehyde addition products of allylic silane (R,R)-101 with dimethyldioxirane, however, followed by an acid-catalyzed Peterson rearrangement, provides E-4-hydroxy3-alkenol products 107 in good enantioselectivities (Eq. 74).40 Reagent 101 is also very efficient in double diastereoselection with several types of chiral αsubstituted aldehydes. The Z-3-chloro-substituted bis(Ipc) reagent 103 (Fig. 7), prepared by lithiation of 3-chloropropene, exists in equilibrium with the α-chloro isomer 108 (Eq. 75). Isomer 103, however, adds faster to a wide range of aldehydes to give syn-chlorohydrins 109 with high enantioselectivities.159 The diastereoselectivity is explained by invoking the usual cyclic chairlike transition structure. Treatment of the chlorohydrins under basic oxidative conditions affords synthetically useful vinyl epoxides. Several aldehyde types (aliphatic, aromatic, unsaturated) have been used successfully with reagent 103. A 3-imino reagent of E-geometry, 104, adds to aldehydes to afford anti amino alcohols with good enantioselectivities (Eq. 76).160 However, even the simplest aldehydes tested (benzaldehyde, cyclohexanecarboxaldehyde) give modest yields of products (ca. 50–60%).
CO2Pr-i Me Me Si Ph
O B
O
(R,R)-101
CO2Pr-i
1. RCHO, 4 Å MS, toluene, –78°
HO OH
2. O O, acetone, rt
R
3. AcOH, MeOH
107 (>80%) 81-87% ee
(Eq. 74)
ALLYLBORATION OF CARBONYL COMPOUNDS
B[(–)-Ipc]2
RCHO –95°, 4 h
Cl
HO
O
H2O2, NaOH
R
R (60-65%) >94:6 d.r., 90-97% ee
Cl
103
41
109
B[(–)-Ipc]2 Cl
(Eq. 75)
108 Ar
N
B[(–)-Ipc]2
HO 1. RCHO, –78° 2. H2O2, aq NaOH 3. MeONH3+Cl–
Ar 104
R
(Eq. 76)
NH2 (50-60%) >90% d.r., 90-93% ee
Lewis and Brønsted Acid Catalyzed Enantioselective Additions The recent advent of the Lewis acid catalyzed allylboration reactions opened new doors for enantioselective allylborations and motivated the reexamination of a number of chiral auxiliary systems. In this perspective, reagents 110–112121 are extremely enantioselective at −78◦ in the presence of Sc(OTf)3 as catalyst (Eq. 77).27,28 These hydrolytically stable reagents can be conveniently purified by silica gel chromatography. Consistently high levels of absolute stereoinduction (>95% ee) are observed with a broad range of aldehydes for the unsubstituted allyl reagent 110 as well as the methallyl reagent 111, and both crotyl reagents (E)- and (Z)-112. Although this method requires a stoichiometric amount of the chiral diol auxiliary, this diol is readily recovered after the hydrolytic workup. Aromatic aldehydes and, unless they are very hindered, aliphatic aldehydes (including functionalized ones) react efficiently to give good to high yields of products. Although α,β-unsaturated aldehydes react poorly, acetylenic aldehydes are very competent substrates even with the crotyl reagents 112 (Eq. 78).28 Ph O R1
+ H
R R2
4
Sc(OTf)3 (2-10 mol%)
O B
O H
R3 110 111 (E)-112 (Z)-112
R2, R3, R4 = H R2, R3 = H, R4 = Me R2 = Me, R3, R4 = H R2, R4 = H, R3 = Me
CH2Cl2, –78°
O B
H
R4
R2 O 1 3 Sc(III) R R
H O
113 HO
R4
R1 2 R3 R
(50-95%) >98% d.r., up to 98% ee
(Eq. 77)
42
ORGANIC REACTIONS O
Ph H
+
O
n-C5H11
B
HO
Sc(OTf)3 (2 mol%) CH2Cl2, –78°
O H (E)-112
n-C5H11 (75%) >98% d.r., 96% ee
(Eq. 78) On the basis of mechanistic studies,29 a closed bimolecular transition structure 113 involving activation of the boronate unit via coordination of the scandium to one of the dioxaborolane oxygen atoms has been proposed (Eq. 77). A possible interpretation to explain the enantioselectivity of this allylation system originates from the accepted stereoinduction model for the non-catalyzed reaction arising from a πphenyl -π*C=O attraction.121,161 It has been proposed that the Sc(III) ion coordinates to the least hindered lone pair (syn to H) of the pseudo-equatorial oxygen, thereby suppressing nO -pB conjugation and maximizing boron-carbonyl bonding.29 The real promise of this catalytic reaction is the eventual development of an efficient enantioselective allylboration catalyzed by chiral Lewis acids. A stereoselective reaction using a substoichiometric amount of a chiral director has been reported, but only modest levels of stereo-induction were achieved with an aluminum–BINOL catalyst system (Eq. 79).25 Recently, a chiral Brønsted acid catalyzed system has been devised based on a diol–tin(IV) complex (Eq. 80).162 In this approach, aliphatic aldehydes provide enantioselectivities (up to 80% ee) higher than those of aromatic aldehydes when using the optimal complex 114.163 Although the levels of absolute stereoselectivity of this method remain too low for practical uses, promising applications are possible in double diastereoselection (see section on “Double Diastereoselection”). O B
+
PhCHO
O
toluene, –78°, 6 h
31
HO OH 114 SnCl4 (~10 mol%)
O
+ O
Ph
(Eq. 79)
(40%) 99% d.r., 51% ee
(E)-7
O B
OH
Et2AlCl/(S)-BINOL (10 mol%)
Ph
H
Na2CO3 (0.2 eq), 4 Å MS, CH2Cl2, –78°, 2 h
HO
(Eq. 80)
Ph (85%) 78% ee
A copper-catalyzed reaction using a chiral diphosphine ligand, DuPHOS, with an added lanthanide salt, provides good levels of enantioselectivity (67–91% ee) in additions of the simple allylboronate 31 to both aromatic and aliphatic ketones that present a large difference of steric bulk on the two sides of the carbonyl group.164 One such example is shown in Eq. 81. On the basis of 11 B NMR experiments and on the lack of diastereoselectivity in crotylation reactions, the
ALLYLBORATION OF CARBONYL COMPOUNDS
43
mechanism of this allylation is believed to involve transmetalation of the boron to an allylcopper species. O O B
+
CuF2•2H2O (3 mol%), (R,R)-i-Pr-DUPHOS (6 mol%)
OH
(Eq. 81)
La(OPr-i)3 (4.5 mol%) DMF, –40°, 1 h
O
(87%) 90% ee
31 (1.2 eq)
Double Diastereoselection with Chiral Carbonyl Substrates Double diastereoselective additions between chiral allylic boron reagents and enantiopure chiral carbonyl compounds can be highly advantageous because the resulting diastereomers are separable (in theory, though not always in practice).165 The most desirable situation is where there is very high reagent control to override the intrinsic effect of the stereogenic center of the aldehyde or ketone on the diastereofacial selectivity. The success of this approach depends heavily on the structure of the particular chiral aldehyde used and the nature of its substituents, including protecting groups. Fortunately, the directing effect of the bis(isopinocampheyl) allylic boranes is extremely powerful, giving rise to high reagent control in double diastereoselective additions. As demonstrated with the simple allylations of chiral, α-substituted aldehydes 39 and 115, reagentcontrolled additions are very effective (Eqs. 82–85).166 Both examples involving aldehyde 39 (Eqs. 82 and 83) are very favorable in comparison to the modest selectivity of the achiral pinacol allylboronates (compare to Scheme 2). Reagent control is observed even in mismatched situations such as the difficult case of α-phenyl aldehyde 115 (Eq. 85).166,167 B[(+)-Ipc]2 64
OH
OH +
(Eq. 82)
THF, –78°, 3 h O (83%) 5:95 d.r. H B[(–)-Ipc]2 64
39
OH
OH +
(Eq. 83)
THF, –78°, 3 h (81%) 96:4 d.r. B[(+)-Ipc]2 64
OH
(Eq. 84)
+
THF, –78°, 3 h
O
Ph
Ph (78%) 2:98 d.r.
H Ph 115
OH
B[(–)-Ipc]2 64
OH
OH +
(Eq. 85)
THF, –78°, 3 h Ph
Ph (74%) 67:33 d.r.
44
ORGANIC REACTIONS
By using a judicious combination of the appropriate double bond geometry and pinene enantiomer, the corresponding crotylboranes present a very nice solution to the problem of full stereocontrol of acyclic dipropionate units when combined with chiral α-methyl β-alkoxy aldehydes such as 116 (Eqs. 86–89).167 In this situation as well, reagent-controlled additions are very selective even in mismatched cases, affording stereotriads in high yields and >90% d.r. Simple α-alkoxy aldehydes provide comparable levels of selectivites but exceptions have been reported with stereogenic β-alkoxy centers and more complex aldehydes.168 B[(+)-Ipc]2
OH
(E)-12 THF, –78°, 3 h
(Eq. 86)
BnO (84%) 95:5 d.r.
B[(–)-Ipc]2 OH
(E)-12 THF, –78°, 3 h
(Eq. 87)
BnO
O (87%) 98:2 d.r.
BnO
H B[(+)-Ipc]2 116
OH
(Z)-12 THF, –78°, 3 h B[(–)-Ipc]2
(78%) 95:5 d.r. OH
(Z)-12 THF, –78°, 3 h
(Eq. 88)
BnO
BnO
(Eq. 89)
(83%) 92:8 d.r.
In comparison, additions of chiral allylic boronates such as tartrate-based reagents tend to be less selective in double diastereoselective additions to α-methyl aldehydes, especially in mismatched cases (Eqs. 90–92).169 Nonetheless, these reagents are advantageous as they can increase, even in the mismatched manifold, the intrinsic levels of selectivities dictated by the chiral aldehyde substrate, and the resulting diastereomeric products are usually separable by chromatography. When used with α-alkoxy aldehydes such as glyceraldehyde acetonide (51, Scheme 4), tartrate-based reagents are highly effective.126,170 Several applications of double diastereoselective additions of tartrate-based allylic boronate reagents have been described in the course of the synthesis of complex natural products (see section on “Applications to the Synthesis of Natural Products”).
ALLYLBORATION OF CARBONYL COMPOUNDS
O BO (Z)-7
OH
toluene, rt
RO
OH +
RO
syn-syn
(—) 55:29 anti-syn:syn-syn + other diastereomers (16%)
CO2Pr-i O B O CO2Pr-i
H
117 R = TBDMS
(Eq. 90)
RO
anti-syn
O
45
(S,S)-(Z)-11 toluene, –78° (R,R)-(Z)-11 toluene, –78°
(71%) 95:1 anti-syn:syn-syn + other diastereomer (4%)
(Eq. 91)
(—) 45:41 anti-syn:syn-syn + other diastereomers (14%)
(Eq. 92)
The use of chiral Brønsted acids is illustrated in Eq. 93 as a method for catalyst-controlled double diastereoselective additions of pinacol allylic boronates.163 Aside from circumventing the need for a chiral boronate, these additions can lead to very good amplification of facial stereoselectivity. For example, compared to both non-catalyzed (room temperature, Eq. 90) and SnCl4 catalyzed variants, the use of the “matched” diol-SnCl4 enantiomer at a low temperature leads to a significant improvement in the proportion of the desired anti-syn diastereomer in the crotylation of aldehyde 117 with pinacolate reagent (Z)-7 (Eq. 93). Moreover, unlike reagent (Z)-11 (Eq. 91) none of the other diastereomers arising from Z- to E-isomerization is observed.
O TBDMSO 117
H
O B
+
HO O
OH [(R,R)-diol]
SnCl4 (10 mol%), Na2CO3 (0.2 eq) toluene, –78°, 24 h
(Z)-7 OH TBDMSO
OH +
TBDMSO syn-syn
anti-syn Conditions SnCl4 alone SnCl4, (R,R)-diol (11 mol%) SnCl4, (S,S)-diol (11 mol%)
(81%) (77%) (50%)
anti-syn:syn-syn 66:34 95:5 68:32
(Eq. 93)
46
ORGANIC REACTIONS
The chiral α-substituted reagents 21, 23, 28, and 75 (Fig. 6) are very powerful controllers of double diastereoselective additions and perform admirably well even in mismatched situations.63 – 66,68,83,147,149 Reagent 75 tends to be more selective than the α-chloro analog 28, and the high stereocontrol displayed by reagent 75 in the examples of Eqs. 94 and 95 can be explained using a transition structure model similar to that of Scheme 8.68,147 Remarkably, even the mismatched pair (Eq. 95) affords outstanding selectivity. Several other examples have been described, including applications to the synthesis of complex polypropionate natural products (see section on “Applications to the Synthesis of Natural Products”: Scheme 19). O BO OMe (R)-75
OH
OH
toluene, –78° to rt, 60 h
OMe
OMe syn-anti
O
(Eq. 94)
+
anti-anti
(59%) >95:5 syn-anti:anti-anti H
O BO
39
OMe (S)-75 toluene, –78° to rt, 60 h
(Eq. 95)
(—) 5:>95 syn-anti:anti-anti
Intramolecular Reactions Intramolecular additions generally follow the same trends of stereoselectivity as observed in the bimolecular reactions.80,82,171,172 For example, allylic boronates (E)- and (Z)-118 provide the respective trans- and cis-fused products of intramolecular allylation.173 As shown with allylboronate (E)-118, a Yb(OTf)3 catalyzed hydrolysis of the acetal triggers the intramolecular allylboration and leads to isolation of the trans-fused product 119 in agreement with the usual cyclic transition structure (Eq. 96). CH(OMe)2
O
O B O (E)-118
H
Yb(OTf)3 H2O, CH3CN, 90°, 2 h
O
O O B O
OH O
H
119 (77%) >92% trans
(Eq. 96) Intramolecular allylations can also provide five-membered rings with ease, and the entropic benefits facilitate additions to ketone substrates. For example, the allylic boronate 121, formed by a Negishi-type coupling between alkenyl
ALLYLBORATION OF CARBONYL COMPOUNDS
47
bromide 120 and a methylzinc dialkoxyboron reagent, cyclizes in situ into a cyclopentanone to provide a [3.3.0] bicyclic alcohol product (Eq. 97).174 This example constitutes a formal 5-exo-trig cyclization, and seven-membered ring systems can also be elaborated using a similar approach.79,80,174 O IZnCH2B O (1.5 eq)
O Br CO2Et 120
Pd(OAc)2 (3 mol%), Ph3P (9 mol%), benzene, 70°, 3 h
OH
O
O B
O
CO2Et
CO2Et (71%)
121
(Eq. 97) Reagents for Multiple Additions A tandem double-allylation strategy, based on the E-3-boronyl allylborane reagent 100,157 has been optimized for the synthesis of 1,5-diol products from two different aldehyde substrates.175 Specifically, reagent 100 undergoes allylation with a limiting amount of an aldehyde, R1 CHO, and the resulting α-substituted allylboronate 122 can then add to a second added aldehyde (R2 CHO) (Eq. 98). The first allylation with the bis(isopinocampheyl)allylic borane unit is highly enantioselective and the resulting configuration of 122 controls the fate of the second allylation. Thus, from intermediate 122, transition structure 123 featuring a pseudo-equatorial α-substituent explains the stereocontrolled formation of 1,5diol 124. The lower reactivity of 122 compared to 100, as well as a tight control of reagent stoichiometry, helps to minimize the formation of the double allylation product of the first aldehyde (R1 CHO). [(–)-Ipc]2BO
O
1
R CHO (0.54 eq)
O B
B[(–)-Ipc]2
R2CHO
R1
Et2O, –78°, 2 h
O
B
O
rt, 24 h
100 122 [(–)-Ipc]2BO O R1 B O O 2 R 123
work-up
HO 1
R
(Eq. 98) OH R2
124 (65-87%) up to 96% ee
With the analogous reagent 125, however, the corresponding allylboronate intermediate 126 is thought to favor a transition structure 127 where the α-substituent is positioned in a pseudo-axial orientation in order to escape nonbonding interactions with the bulky tetraphenyl dioxaborolane (Eq. 99). This way, a Z-configured allylic alcohol unit of opposite configuration is obtained in diol product 128. This type of steric control with chiral α-substituted allylboronates
48
ORGANIC REACTIONS
had been demonstrated before (see section on α-substituted reagents). The usefulness of this powerful tandem allylation/allylation strategy is demonstrated by the preparation of several examples of both types of 1,5-diols 124 and 128, and by a number of successful applications to the synthesis of complex natural products (see section on “Applications to the Synthesis of Natural Products”). [(–)-Ipc]2BO Ph
Ph O Ph B Ph O
R1
R1CHO (0.82 eq)
O
Et2O, –78°, 2 h
B[(–)-Ipc]2
Ph
125
B
R2CHO rt, 24 h
O
Ph Ph
Ph
126
Ph Ph Ph
Ph
O
OH
O B
work-up O
[(–)-Ipc]2BO
HO R2 R1
127
R2
R1 128 (72-95%) up to 95% ee
(Eq. 99) A double Brown-type allylation reagent, 129, gives C2 -symmetric 3methylenepentane-1,5-diols 130 in modest yields but high enantioselectivities with both aliphatic and aromatic aldehydes (Eq. 100).176 This reagent can be prepared by double deprotonation of 2-methylpropene followed by condensation with either antipodes of (Ipc)2 BCl. For example, (S,S)-129 originates from [(+)-Ipc]2 BCl. Double allylboration of an excess of aldehyde with (S,S)-129 affords C2 -symmetric diol product 130 accompanied with approximately 5–15% proportion of “monoallylboration” alcohol after the oxidative work-up. 1. RCHO (2-3 eq), Et2O, –78°, 3 h [(+)-Ipc]2B
B[(+)-Ipc]2 (S,S)-129
2. H2O2, aq NaOH
HO R
OH R
(Eq. 100)
130 (38-55%) >95% ee
Tandem Reactions Many of the recent advances in synthetic applications of allylic boron reagents have focused on the use of these reagents as key components of tandem reactions and “one-pot” sequential processes, including multicomponent reactions. The following examples briefly illustrate the range of possibilities. Most cases involve masked allylboronates as substrates, and the tandem process is usually terminated by the allylboration step. Intramolecular Allylboration. In one rare but impressive example involving a masked aldehyde, a domino hydroformylation/allylboration/hydroformylation reaction cascade has been designed to generate bicyclic annulated
ALLYLBORATION OF CARBONYL COMPOUNDS
49
tetrahydropyrans177 and nitrogen heterocycles.178,179 For example, treatment of allylboronate 131 under hydroformylation conditions first leads to aldehyde intermediate 132 (Eq. 101). With a poised allylic boronate, formation of 132 triggers the key intramolecular allylation to give intermediate 134.179 This intermediate then undergoes a second hydroformylation, followed by a final cyclization to give the bicyclic lactol product 135 in 83% yield as a 1 : 1 mixture of anomers. The final products are obtained in this one-pot process with a very high diastereoselectivity (97 : 3 ratio) as a result of simple diastereocontrol in the allylboration step involving the putative transition structure 133. Similar approaches are employed to access pyran derivatives.177
N
B O
Ts
Rh(CO)2(acac) (1 mol%), biphephos (2 mol%)
O
O N
H2/CO (5 bar), THF, 60°, 4 d
B(pin)
Ts
131
132 H
H
OH
O
OH
O
Ts N
B(pin) H
N H Ts
133
134
N H Ts 135 (83%) 97:3 d.r.
(Eq. 101) A masked allylic boron unit can be revealed through a transition-metalcatalyzed borylation reaction. For example, a one-pot borylation/allylation tandem process based on the borylation of various ketone-containing allylic acetates has been developed.180 The intramolecular allylboration step is very slow in DMSO, which is the usual solvent for these borylations of allylic acetates (see Eq. 33). The use of a non-coordinating solvent like toluene is more suitable for the overall process provided that an arsine or phosphine ligand is added to stabilize the active Pd(0) species during the borylation reaction. With cyclic ketones such as 136, the intramolecular allylation provides cis-fused bicyclic products in agreement with the involvement of the usual chairlike transition structure, 137 (Eq. 102). O CO Et 2
O + O
136
O
Pd(dba)2 (6 mol%), AsPh3 (6 mol%)
O
toluene, 50°, 16 h; 100°, 24 h
B B
OAc
1.1 eq
(Eq. 102) CO2Et O O B O 137
OH
CO2Et (72%)
50
ORGANIC REACTIONS
Intermolecular Allylboration. A tandem aza[4+2] cycloaddition/allylboration three-component reaction181,182 has been designed based on the precedented carbocyclic [4+2] cycloaddition/allylboration89 and a subsequent one-pot variant.183 Thus, the thermal reaction between hydrazonobutadienes 138, N -substituted maleimides, and aldehydes provides polysubstituted α-hydroxyalkylpiperidines 141 via the cyclic allylboronate intermediate 139 and the proposed chairlike transition structure 140 (Eq. 103).181 Monoactivated dienophiles like acrylates fail to react with heterodienes 138 but the scope of aldehydes is very broad; both aliphatic and aromatic aldehydes are suitable, including electron-rich ones.182 An inverse electron-demand variant to access the corresponding dihydropyran derivatives via the intermediacy of enantiomerically enriched pyranyl allylic boronate 76 has been subsequently developed (see Eq. 64).150 – 152
O
B
O
O +
NR
O 3
O
+ R4
toluene H
O
80°, 3 d
NR3
O
N
O
B
N NR1R2
NR1R2 138
O
139 O O O O B 3 R4 NR N H O H H NR1R2 H H
O R4 HO
NR3 N NR1R2
O
141 (50-75%) >97.5:2.5 d.r.
140
(Eq. 103) As described above in Eq. 43, simple allylboronates can be transformed into more elaborated ones using olefin cross-metathesis.184 Treatment of pinacol allylboronate 31 with a variety of olefin partners in the presence of Grubbs’ second-generation catalyst 142 smoothly leads to formation of 3-substituted allylboronates 143 as cross-metathesis products (Eq. 104). Unfortunately, these new allylic boronates are formed as mixtures of geometrical isomers with modest E/Z selectivity. They are not isolated but rather are treated directly with benzaldehyde to give the corresponding homoallylic alcohol products in good yields (Table A). Mes N
O B O 31
+ R
N Mes Cl Ru Ph PCyCl 3 cat. 142 (5 mol%) CH2Cl2, 40°
R
O B O 143
PhCHO rt
OH Ph R (44-79%)
(Eq. 104)
ALLYLBORATION OF CARBONYL COMPOUNDS
51
Table A. Functionalized homoallylic alcohols from olefin cross metathesis and subsequent allylboration reactions with benzaldehyde Cross Partner
Entry
Product
Yield
d.r.
(73%)
3.8:1
(78%)
4.9:1
(58%)
>20:1
(66%)
—
(60%)
>20:1
OH 1
Cl
Ph
Cl Cl
OH 2
Br
Ph
Br Br
OH Ph
3 OH
OH OH
4
Ph OH
5
Ph Br
Br
The main advantage of this one-pot sequence is that it is exceptionally tolerant of sensitive functional groups. Entry 3 (Table A) shows an example with an unprotected alcohol, and entries 1, 2, and 5 all show examples with halogenated groups that are delivered directly from an allylboronate intermediate. These groups, which would not survive the strongly basic conditions or the active metals used in many other preparative methods, are carried through this procedure without incident. Entry 4 is also noteworthy because it shows that quaternary carbon centers can be made with this tandem process. A serious limitation of this approach, however, is that the diastereoselectivity seen in the formation of allylation products is quite variable as a consequence of the low geometric (E/Z) selectivity in the cross-metathesis. Olefin partners with large allylic substituents (entries 3–5) react to give exclusively the anti product shown in Table A. Unfortunately, olefins with smaller substituents (entries 1 and 2) show a much lower preference. Furthermore, both E- and Z-olefins afford the same stereoisomer (compare entries 1 and 2). A mild one-pot procedure based on a platinum-catalyzed diborylation of 1,3butadienes (see Eq. 30) gives doubly allylic boronate 144, which adds to an aldehyde to form a quaternary carbon center in the intermediate 145 (Eq. 105).185 The use of a tartrate auxiliary in this process leads to good levels of enantioselectivity in the final diol product, which is obtained after oxidation of the primary alkylboronate intermediate. Although examples of aliphatic, aromatic, and unsaturated aldehydes have been described, enantioselectivities vary widely (33 to 74% ee), and are good only for aliphatic aldehydes. An intramolecular variant of this interesting tandem reaction is also known.186
52
ORGANIC REACTIONS
EtO2C
O
EtO2C
O
O
CO2Et
O
CO2Et
Pt(dba)2 (2.5 mol%), PCy3 (2.5 mol%)
+
B B
benzene, rt, 12 h
[(L)-tart]B
B[(L)-tart] 144
add 4 Å MS, toluene, –78°;
[(L)-tart]BO
HO NaOH, H2O2
add CyCHO, 3 h
50°, 3 h B[(L)-tart]
OH (72%) >19:1 syn:anti, 74% ee
145
(Eq. 105) The diboration of allenes can also be employed in a similar tandem process. By taking advantage of an improved, more enantioselective variant for the preparation of allylboronates of type 25 (Eq. 32), a one-pot sequence involving allene diboration, aldehyde allylation, and Suzuki cross-coupling has been developed (Eq. 106). It is noteworthy that no change of solvent, nor any addition of palladium catalyst is needed in the last stage involving the cross-coupling of alkenylboronate intermediate 146 to give final product 147.187 Ar Ar O O
O
O B B
O
O
P NMe2 O O Ar Ar (6 mol%)
+
Pd2(dba)3 (2.5 mol%), toluene, 22°, 10 h
C10H21-n
(pin2B2)
Ar = 3,5-Me2C6H3
(pin)BO
B(pin) B(pin)
B(pin)
R 25 R = n-C10H21
HO
Ph
PhI, KOH
i-PrCHO C10H21-n 146
95°
C10H21-n 147 (79%) 88% ee
(Eq. 106) APPLICATIONS TO THE SYNTHESIS OF NATURAL PRODUCTS
Enantioselective Additions The bis(isopinocampheyl)borane reagents described in the sections on enantioselective additions have found extensive use in the total synthesis of complex, bioactive natural products. A synthesis of the potent anticancer agent epothilone
ALLYLBORATION OF CARBONYL COMPOUNDS
53
O
OH H
S
+
B[(–)-Ipc]2
N 148
O
Et2O –100°, 0.5 h
S N (96%) >97% ee
64
O H
149
+
B[(–)-Ipc]2
O
Et2O
OH
–100°, 0.5 h
64
(74%) >98% ee O S
HO
N O O
OH O
epothilone A
Scheme 10
exemplifies particularly well the suitability of the Brown allylation with highly functionalized and hindered aldehydes (Scheme 10). Thus, using the salt-free, low-temperature conditions, reagent 64 is added to unsaturated heterocyclic aldehyde 148 to afford the desired secondary homoallylic alcohol in very high yield and excellent enantioselectivity. The synthesis also featured another Brown allylation on the hindered α-dimethylated β-keto aldehyde 149, thus providing two of the key fragments necessary to assemble the structure of the anticancer agents epothilones.188 The applicability of the bis(isopinocampheyl) reagents is not limited to simple allylations and crotylations. For example, reagent 97 affords syn vicinal diols in very high enantioselectivity (Scheme 11).189 Compared with reagents 14 and 96 (Fig. 7), reagent 97 possesses the added advantage of yielding the alcohol product with an easily removable (2-trimethylsilylethoxy)methyl (SEM) protecting group. In this example, the resulting monoprotected diol has been subsequently converted into the eight-membered ring ether laurencin. With only a small number of substrate types are the tartrate-based allylic boronate reagents enantioselective enough for applications in the control of
B[(–)-Ipc]2
1. EtCHO, –100° to rt 2. aq NaOH, H2O2
OSEM 97
OH OSEM (79%) >95% ee
Br O AcO
H
(+)-laurencin
Scheme 11
54
ORGANIC REACTIONS CO2Pr-i OHC
CHO Fe(CO)3
+
150
O B
4 Å MS
CO2Pr-i O (S,S)-(E)-11
toluene, –78°
H
OH (MeO)2HC H OHC
H
Fe(CO)3
H
OHC as-indacene unit of ikarugamycin
151 (90%) >98% ee
Scheme 12
absolute stereochemistry. One such example involves iron dienyl complexes such as the dialdehyde 150, which reacts with crotylboronate reagent (E)-11 to give the anti-propionate product in the form of complex 151 in over 98% ee (Scheme 12). After a few transformations and decomplexation, the resulting diene is further elaborated into a triene precursor that undergoes an intramolecular Diels–Alder reaction leading to the tricyclic core of ikarugamycin.190 The Corey allylation system based on a chiral bis(sulfonamide) auxiliary was put to use with success in a number of synthetic efforts, including the total synthesis of the anticancer agent leucascandrolide (Scheme 13).191 Chiral reagent 152 is added to an achiral aldehyde, 3-(p-methoxybenzyloxy)propanal, affording intermediate 153 in high stereoselectivity. The latter is transformed into a pyranyl aldehyde, which is subjected to a second allylation (this time, a doubly diastereoselective addition) en route to the completion of leucascandrolide. Double Diastereoselection The powerful directing effect of bis(isopinocampheyl) allylic boranes has been put to great use in the context of several applications of double diasterereoselective allylations in the total synthesis of natural products. As discussed in a previous section, the Brown allylation can be exploited to overcome the stereodirecting effect of chiral α-stereogenic aldehydes, including α-alkoxy substituted ones. Thus, the simple allylation of aldehyde 154 provides as major product the desired diastereomer needed towards a total synthesis of brasilenyne (Scheme 14).192 The yield and stereoselectivity is even increased to over 97 : 3 under the low-temperature, magnesium-free conditions described before.139 A synthesis of the naturally occurring phosphatase inhibitor calyculin C showcased several other interesting examples of doubly diastereoselective additions involving the Brown reagents.168 The addition of tetrasubstituted reagent 155 to 2,3-O-isopropylidene-D-glyceraldehyde (51) provides intermediate 156 in very high selectivity despite a substrate-reagent mismatch, which is overruled by the borane reagent (Scheme 15). The latter is transformed in several steps into aldehyde 157, and a crotylboration of this β-alkoxy aldehyde provided a very high diastereoselectivity for the desired anti-propanoate unit. With the subsequent aldehyde intermediate 158, a third example involves a difficult mismatched case that
ALLYLBORATION OF CARBONYL COMPOUNDS
55
Ts
S
Ph N Ph B Br N Ts rt, 10 h
OR
S
Ts S
OR
N B
S
Sn(Bu-n)3 R = TBDMS
152
Ph
N Ts
O
PMBO
Ph
H CH2Cl2, –78°, 1.5 h
Ts
Ph N B Ph N Ts
S
OR
RO
OH
S
OPMB O
153 (100%) 11:1 d.r.
H H
CH2Cl2, –78°, 1.5 h
O H OPMB
O N
O H
O
OR
O NHCO2Me
H OPMB
HO
O
H
H O
MeO O RO
OR
O
H
(96%) 8.5:1 d.r.
leucascandrolide
Scheme 13 I
O H
O
I
OH +
B[(+)-Ipc]2 64
1. Et2O, –78°, 2 h
O
2. aq NaOH, H2O2
OPMB
OPMB (72%) 93:7 d.r.
154
(89%) >97:3 d.r. when Mg2+ free at –100° HO O
(+)-brasilenyne
Scheme 14
56
O
ORGANIC REACTIONS
O
THF
B[(+)-Ipc]2
+
O
O
–78°
CHO 51
HO
155
156 (73%)
OTBDMS
MEMO O OHC
O
OTBDMS
MEMO
B[(+)-Ipc]2 (E)-12
O O
THF, –78°
OMe
OH OMe OBz 157
OBz (55%) >99:1 d.r.
OTBDMS
MEMO
B[(+)-Ipc]2 (E)-12
O
two steps OHC
O
THF, –78°
OBz OMe OBz 158 OTBDMS
MEMO O O HO
(39%)
O
+
OBz OMe
OTBDMS
MEMO O HO
OBz OMe
OBz
OBz (35%)
calyculin C
Scheme 15
provides an unusually low level of diastereoselectivity (almost 1 : 1), indicating that high selectivity is never guaranteed even with the bis(isopinocampheyl) allylic boranes. In this example of an α-methyl-β-alkoxy aldehyde, reagent control by crotylborane (E)-12 is overruled by the substrate and it was found that the nature of the protecting group on the β-hydroxy substituent is crucial, with the most favorable group a benzoyl. The minor diastereomer of this mismatched double diastereoselective addition possesses the requisite configuration for completing the synthesis of calyculin C. Several allylic boron reagents have been recently employed in a series of doubly diastereoselective additions toward a synthesis of mycalamide.193,194 Thus,
ALLYLBORATION OF CARBONYL COMPOUNDS
57
CO2Pr-i O B
E
O CO2Pr-i (R,R)-159
Et Et O O
H
4 Å MS, toluene, –78°
Et Et O O
two steps
Et Et O O
E
O O Et O Et
HO
160 E = CO2Pr-i
161 (79%) >99:1 d.r.
H
CHO
O B O
B[(+)-Ipc]2 64
Et Et O O
Et2O, –95°
CHO
MeO
MeO
OH
163 (89%) >98:2 d.r.
162
CO2Pr-i TMS
O H
O MeO
O
O Troc
O B
O CO2Pr-i (R,R)-165
4 Å MS, toluene, –78°
OH O TMS MeO
O
O
O Troc
O
166 (93%) >98:2 d.r.
164
OH 1. O O , KHCO3, acetone 2. MeOH, HOAc, rt
O OH
MeO
O
O Troc
(89%)
mycalamide A trioxadecalin unit
O
Scheme 16
the addition of tartrate-derived reagent 159 to 2,3-O-isopropylidene-D-glyceraldehyde provides diastereomer 161 with very high selectivity (Scheme 16). This result contrasts with the formation of 156 using a bis(isocampheyl)-borane reagent (Scheme 15). As described in a previous section, double diastereoselective additions of allylic boron reagents to the glyceraldehyde acetals usually proceed with high selectivity in both matched and mismatched cases due to the lack of a strong bias among the four main rotamers in the transition structures minimizing syn-pentane interactions (see Scheme 4). Unlike the additions of crotyl reagents (see Schemes 2 and 3), transition structures from additions of 3,3-disubstituted reagents cannot escape from syn-pentane interactions and all four of the structures of Scheme 4 display one such interaction between a methyl group and the dioxolane ring. Thus, as substrate control is somewhat mitigated in these instances,
58
ORGANIC REACTIONS
reagent control is more effective, which explains the formation of epimeric alcohols with a judicious choice of the right enantiomer of reagents 155 or 159. In the formation of product 161 from reagent (R,R)-159, the stereoselectivity of this matched manifold can be explained by a Felkin–Anh transition structure 160. Such double diastereoselective additions between tartrate-derived reagents and glyceraldehyde ketals usually proceed with very high stereoselectivity.170 The intermediate 161 is transformed into the hindered α-dimethylated aldehyde 162, which undergoes another doubly diastereoselective addition with Brown’s reagent 64 that results in stereomerically pure product 163. The corresponding tartratederived reagent [(S,S)-53, Fig. 4] gives a much lower selectivity with the same aldehyde. Further transformations of the intermediate 163 leads to α-methoxy aldehyde 164, whose reaction with E-3-trimethylsilyl tartrate reagent 165 (similar to reagent 101, Fig. 7) occurred with high selectivity in the matched manifold to give product 166. The stereoselectivity of this addition can be explained by minimization of syn-pentane interactions just as observed with an E-crotyl reagent (see structure 40 in Scheme 2). As with reagent 101 (see Eq. 74), the allylsilane unit of 166 is oxidized with rearrangement to give an advanced intermediate towards mycalamide A. As demonstrated in the course of a total synthesis of the macrolide bafilomycin,195 double diastereoselective additions can be useful even in the mismatched manifold. For example, the crotylation of chiral α-substituted aldehyde 167 with (E)-11 affords an 85 : 15 ratio of diastereomers favoring the desired anti-anti product (Scheme 17). Without a chiral tartrate reagent, the undesired anti-syn diastereomer would be intrinsically favored from aldehyde 167. The use of the appropriate tartrate reagent, the (R,R) unit in this instance, overturns this preference to afford an acceptable ratio of the two separable diasteomers. Although the class of bis(isopinocampheyl)allylboranes often leads to better levels of double diastereoselectivity, the basic oxidative work-up required in these allylations is not compatible with all substrates. This is true for the crotylation of the aldehyde derived from the terminal alkene of 168 (Scheme 18),
CO2Pr-i
O H
PMBO
O B
+
CO2Pr-i
O
–78°, 8 h
(R,R)-(E)-11
167
OH PMBO
4 Å MS, toluene
4
3
OH +
PMBO 3,4-anti-4,5-syn (—)
3,4-anti-4,5-anti (70%) 85:15
Scheme 17
(–)-bafilomycin A1
ALLYLBORATION OF CARBONYL COMPOUNDS
59
E OPMB
1. OsO4, NMO 2. NaIO4
OAc
3. DEIPSO
O
CO2Pr-i O B
H
R H
O CO2Pr-i (S,S)-(E)-11
168
O O B
E
AcO 169 E = CO2Pr-i
OH
OPMB
O OAc
OH O
OMe O
O
O
O DEIPSO
OH
HO
13-deoxytedanolide
170 (68%, 3 steps)
Scheme 18
which requires the use of boronate (E)-11 because of the milder hydrolytic workup associated with this class of reagents.196 This matched case of double diastereoselection is very efficient, giving intermediate 170 as the exclusive diastereomer, which was further elaborated to reach the targeted natural product, 13-deoxytedanolide. The high stereoselectivity in favor of the Felkin product 170 can be explained through chairlike transition structure 169 using the same stereoinduction model described in Scheme 2, with the largest chain (R) occupying the “outside” position. As demonstrated in a total synthesis of the denticulatins A and B, the class of chiral α-substituted allylic boronates is very effective in double diastereoselection (Scheme 19).197 From aldehyde 171, a simple E-crotylation provides the Felkin product 173. The high stereoselectivity of this crotylation can be explained by invoking transition structure 172 using the same model described in Scheme 2, which minimizes syn-pentane interactions with the largest of the three α-substituents positioned at the outside. Intermediate 173 is then transformed into aldehyde 174, which is subjected to another E-crotylation, however this time with α-methoxy reagent 75. The use of reagent 75 is necessary to optimize the diastereomeric ratio in favor of the desired anti-Felkin stereoisomer 175, which results from a mismatched situation. Thus, the 4 : 1 diastereoselectivity of this reagent-controlled addition is remarkable as additions to α-methyl β-branched aldehydes like 171 and 174 intrinsically favor the Felkin product (e.g., 173 from 171). Here, the stereocontrolling effect of reagent 75 is powerful enough to reverse this trend and to favor diastereomer 175. The latter cyclizes spontaneously into a hemiketal intermediate en route to the synthesis of the denticulatins A and B.
60
ORGANIC REACTIONS
O B TBDMSO
O
O
O O B
(E)-7 H
pet. ether, rt, 14 h
O
H
R H
171 172
O B
TBDMSO
OH
O
173 (95%) 95:5 d.r.
O
OPMB CHO
O OMe 75 toluene, 4 bar
174
O
PMB OH
O
O
PMB OH
+ OMe anti-Felkin product 175
HO
O
H
OMe 4:1 d.r.
Felkin product
OMe denticulatins A and B
OPMB (60%)
Scheme 19
Tandem Reactions Allylic boronates are very suitable for the design of tandem reactions that can be applied in natural product synthesis. Using the strategy illustrated in Eq. 64, an inverse electron-demand hetero-Diels–Alder reaction between 87 and a 2-substituted enol ether, catalyzed by chiral Cr(III) complex 88, leads in high enantioselectivity to cyclic dihydropyranyl boronate 176 (Scheme 20).198 The latter adds stereoselectively, in a one-pot sequential process, to unsaturated aldehyde 177 to give 2-hydroxyalkyl dihydropyran product 178. Interestingly, the large, chiral catalyst 88 promotes the cycloaddition of the requisite Z-enol ether faster than that of the corresponding E-isomer. The remarkable selectivity of this tandem
ALLYLBORATION OF CARBONYL COMPOUNDS
61
O
N
O
B
O Cr O Cl
O
110°, 36 h OEt
O
1.5 eq
(pin)B
O 177
neat, 20°, 5 h
OEt O 87
B(pin)
88 (3 mol%)
+
H
EtO
176
O OEt R2
O
R1
EtO
O
HO
R1 = CH2CH=CMe2 R2 = (E)-MeC=CHCO2Et
H
OEt
O
178 (76%) 98% d.r., 95% ee
OH
OH
HO O HN
O
H N
O O
HO
H
O
thiomarinol H
Scheme 20
reaction allowed an expedient enantioselective synthesis of a potent antibiotic of the thiomarinol family. A related aza[4+2] cycloaddition/allylboration has been applied to the enantioselective synthesis of palustrine alkaloids.199,200 The double allylation reagent 125 described in a previous section (see Eq. 99) has been put to use with remarkable efficiency in the context of natural product synthesis. In the construction of the pyran-containing C43-C67 fragment of the complex marine natural product amphidinol 3, a one-pot double allylation with two different acetonide-protected chiral α-substituted aldehydes is performed (Scheme 21).201 The first allylation involved a stereochemically mismatched case of double diastereoselection, which is resolved by the strong directing power of the bis(isopinocampheyl)boryl unit and the optimal choice of protecting group. The desired intermediate 179 then reacts with the second aldehyde to give product 180 in high yield and with good overall stereoselectivity (9 : 1 d.r.). Functional group manipulations and a subsequent cyclization afford the pyran core of amphidinol 3. Reagent 125 is also used in the construction of the C1C25 fragment of the same natural product.202 The related reagent 100 (see Eq. 98) has been put to use toward the synthesis of peloruside.203
62
ORGANIC REACTIONS
TBDPSO TBDPSO
O
Ph
Ph O + Ph B Ph O
H
O O
CH2Cl2 B[(+)-Ipc]2
OH
O O
–78°
O Ph
125
B
O
Ph Ph
Ph
179 O H
O O
OH TBDPSO
OH
HO
TBDPSO HO
O O
CH2Cl2, rt
O
O O
H
O
180 (70-80%) 9:1 d.r.
O
H
O O
pyran core of amphidinol 3
Scheme 21
Transformations of Residual Groups The residual alkenyl unit obtained in the products of addition of allylic boron reagents offers myriad possibilities for further derivatization in the synthesis of natural products. For instance, earlier sections (see sections on Preparation of 1,2-Diols, and 1,4-Diols) describe oxidative processes involving allylic silane units originating from additions of 3-silyl-substituted reagents. With the recent advent of alkene metathesis reactions, the possibilities of manipulations of the residual alkenyl unit have grown further. One attractive application in the synthesis of γ-lactones is exemplified in a synthesis of goniothalamin.204 Thus, a simple allylation of cinnamaldehyde followed by acryloylation provide intermediate 181 (Scheme 22). The latter then undergoes a ring-closing metathesis using Grubbs’ first-generation ruthenium catalyst to afford the desired natural product. O
B[(–)-Ipc]2 O Ph
OH
64 Et2O, –100°
H
Cl Et3N
Ph (72%) 92% ee
O O
O cat. (10 mol%)
O
CH2Cl2, 40°
Ph
Ph 181
PCy3 cat. = Ru Cl Cl Ph PCy3
Scheme 22
(76%) goniothalamin
ALLYLBORATION OF CARBONYL COMPOUNDS
B[(–)-Ipc]2 65,
1.
CH2Cl2
O (n-Bu)3Sn
63
H
2.
O
Br, KHMDS (n-Bu)3Sn
182 (92%) 98% ee
i-Pr N (CF3)2MeC(O) Mo (CF3)2MeC(O)
Pr-i Ph O
(–)-laulimalide
(n-Bu)3Sn (81%)
Scheme 23
A similar strategy has been employed in the synthesis of a dihydropyran required to achieve the synthesis of (−)-laulimalide (Scheme 23).205 Thus, allylation of the secondary alcohol resulting from a methallylation of 3-tri-nbutylstannylacrolein provided unsymmetrical ether 182, which is closed to a pyran with a ring-closing metathesis using Schrock’s molybdenum catalyst. The class of 3-silyl-substituted reagents provides, upon addition with aldehydes, allylic silanes that offer many options for further derivatization. Oxidative processes are described in previous sections (see the sections on Preparation of 1,2-Diols and 1,4-Diols). If the appropriate silicon substituents are chosen, formal [3+2] cycloadditions with aldehydes can be promoted under Lewis acid catalysis. For example, the mismatched addition of the Z-3-propyl3-benzhydryldimethyl allylsilane 183 to an α-benzyloxy aldehyde proceeds with low diastereofacial selectivity in favor of product 184; however, after protection of the secondary alcohol, an efficient [3+2] annulation provides the polysubsubstituted furan 185 in good yield and acceptable stereoselectivity (Scheme 24).206 The latter is brought forward to a tricyclic unit found in the antitumor natural product angelmicin B. A special α-substituted allylic boronate, reagent 187, has been developed as part of a tandem method for synthesizing trienes through an extended homologation of aldehydes.207 This process, a one-pot aldehyde allylation/ dioxene thermolysis, has been applied to a total synthesis of phenalamide A2 (Scheme 25).208 Thus, reagent 187 is added to unsaturated aldehyde 186 to give dioxene intermediate 188. Upon warming to 120◦ , 188 undergoes a formal retro[4+2] cycloaddition to give the desired dienal as a mixture of geometrical isomers. The addition of iodine promotes a complete Z- to E- isomerization to give the E,E-dienal intermediate 189. A dehydration of the latter then provides the tetraenal 190, an advanced intermediate subsequently transformed into phenalamide A2 .
64
ORGANIC REACTIONS
n-Pr
O
B[(+)-Ipc]2
THF
+
TBDMSO
(Ph2CH)Me2Si
H
–78° to rt
BnO
183
1. TBDMSOTf, Et3N (70%)
OH TBDMSO BnO n-Pr SiMe2(CHPh2) 184 (52%) 3:2 d.r.
2. BnOCH2CHO, SnCl4 (0.5 eq), 4 Å MS, CH2Cl2, –78°
O
Pr-n OH
(Ph2CH)Me2Si BnO TBDMSO
OBn
O Pr-n H
TBDMSO 185 (81%) 3.3:1 d.r.
OTIPS
H OBn
O
A-B subunit of angelmicin B
Scheme 24 O B
TBDMSO CHO +
Ph
O
rt, 2 d
O 186
1. 120°, 2 h
O O B O
toluene
O 187
TBDMSO
O
188
OH
Ph
(MeSO2)2O, (i-Pr)2EtN
O H
2. I2, rt, 0.5 h 3. H3O+
CH2Cl2, rt, 2 h
189 (69%)
TBDMSO
O
Ph
H 190 (85%)
OH
O
Ph
N H phenalamide A2
Scheme 25
OH
O
ALLYLBORATION OF CARBONYL COMPOUNDS
65
COMPARISON WITH OTHER METHODS
Despite the extensive efforts by numerous research groups over the course of more than two decades, there is still no carbonyl allylation methodology that possesses all of the following attributes: mildness and chemoselectivity, substrate generality (for both allylmetal reagent and aldehyde substrate), high levels of diastereo- and enantioselectivity, and high practicality (ease of use, low cost, non-toxicity, and low environmental impact). Very importantly, the ideal enantioselective allylation methodology would circumvent the use of a chiral auxiliary through a simple and efficient chiral catalyst.209 While several systems based on allylic boron reagents do possess many of the above attributes, several other allylation systems based on other metals (mainly tin, titanium, and silicon) demonstrate very interesting properties. It is noteworthy that a wide body of aldol-based reaction methods have been developed to afford chiral secondary alcohols, propionate units, and other useful intermediates closely related to those afforded by allylation processes. These methods are not described in this section but the interested reader will find several excellent reviews and monographs on the topic of aldol reactions.210 – 212 This section focuses on presenting a brief comparison of allylic boron reagents with other enantioselective allylation reagents. Methods Employing Allylic Tin Reagents Allylic trialkyltin reagents can react at high temperatures with aldehydes213 but because of the low acidity of the trialkyltin center, they are always employed as Type II allylation reagents that normally require activation of the carbonyl substrate with an external Lewis acid.15 This behavior contrasts the cyclic, organized transition structure of allylboration reactions. Consequently, additions of allylic tin reagents proceed through open transition structures that tend to demonstrate lower levels of diastereoselectivity (with 3-substituted reagents) compared with the corresponding boron reagents. Allylic trialkyltin reagents are highly nucleophilic in comparison to the corresponding trialkylsilanes. Their reactivity has contributed largely to their popularity. One major drawback of organotinbased reagents, however, is their high toxicity. Moreover, crotylation reagents are rather difficult to synthesize in geometrically pure form, albeit, this point is rather inconsequential because of the stereoconvergent (Type II) behavior of 3substituted tin-based reagents. Catalytic enantioselective methods that make use of achiral reagents constitute the most attractive carbonyl allylation processes. In this respect, the Keck allylation remains the most efficient and most popular system based on achiral allylic tin reagents (Eq. 107).214,215 This system has been employed mainly for simple allylations and methallylations of aldehydes. It makes use of a chiral BINOL-based titanium Lewis acid, which provides enantiomeric excesses as high as 94–96% for several types of aldehydes, both aliphatic and aromatic. The catalyst can be employed in a loading as low as 1 mol% when i-PrSSiMe3 is added.216 Efficient variants of these systems have been described for the allylation of ketones.217 A BINAP–AgOTf complex catalyzes the simple allylation of aldehydes with enantiomeric excesses as high as
66
ORGANIC REACTIONS
96% for benzaldehyde.218 Methallylations and crotylations of aldehydes under this catalytic system provide good enantioselectivities.219
O O RCHO
OPr-i
OPr-i (10 mol%)
SnBu 3
+
Ti
OH
4 Å MS, CH2Cl2, –20°
(Eq. 107)
R (78-98%) 89-96% ee
Additions of enantiomerically enriched allenyltin reagents provide homopropargylic alcohol products with high levels of stereoselectivity (Eq. 108).220 These reagents also function through Lewis acid catalysis. Although their preparation requires several steps through the intermediacy of enantiomerically pure propargylic alcohols, allenyltin reagents are effective with a wide range of aldehydes, including double diastereoselective additions with chiral α-substituted aldehydes.220 C7H15-n Me
OH
BF3•OEt2
+
RCHO
CH2Cl2
Sn(Bu-n)3
C7H15-n
R
(Eq. 108)
(>80%) up to 99:1 d.r.
Methods Employing Allylic Silicon Reagents Allylic trialkylsilicon reagents are less nucleophilic than the corresponding tin reagents. However, they are cheap and safer in terms of toxicity. One of the early successes in the area of catalytic enantioselective carbonyl allylation chemistry makes use of chiral acyloxy borane (CAB) catalysts and methallyltrimethylsilane (Eq. 109).221,222 This system works for aromatic, unsaturated, and aliphatic aldehydes but it gives the highest enantioselectivities in the reactions of 3-alkyl substituted reagents and aromatic aldehydes. Aliphatic aldehydes give noticeably lower selectivities, which probably accounts for the low level of adoption of this allylation method. i-PrO
O
CO2H O O
RCHO
+
O OPr-i O B Ar (10–20 mol%) TMS
EtCN, –78° Ar = 3,5-(CF3)2C6H3
OH
(Eq. 109)
R (55-99%) 54-88% ee
A method using dual activation has been developed in which a Lewis acid activates the aldehyde with concomitant nucleophilic activation of the allylic silicon reagent with fluoride anion. Thus, by using a BINOL-based titanium
ALLYLBORATION OF CARBONYL COMPOUNDS
67
tetrafluoride complex, both aromatic and aliphatic aldehydes can be reacted with allyltrimethylsilane with enantioselectivities up to 94% (Eq. 110).223 Aromatic aldehydes provide lower selectivity but this method is particularly efficient with hindered α,α-dialkylated aldehydes such as pivalaldehyde.224
TMS
+
RCHO
TiF4 (10 mol%), (S)-BINOL (10 mol%) CH2Cl2/CH3CN, 0°
OH
(Eq. 110)
R (69-93%) 60-94% ee
Allylic trialkoxysilanes are effective nucleophiles under the bifunctional Ag(I)–fluoride catalytic system when using a combination of KF and 18crown-6 as catalytic source of soluble fluoride anion (Eq. 111).225 Although this method requires the use of three molar equivalents of allyltrimethoxysilane, only 5 mol% of AgOTf with 2 mol% of BINAP are sufficient to afford enantiomeric excesses in the range of 93–97% for aromatic aldehydes. Aliphatic aldehydes display lower selectivities, and require a higher loading of the catalyst. The corresponding crotylation reactions are stereoconvergent, as both (E)- and (Z)crotyltrimethoxysilane provide the anti-propanoate product in 95% ee.225
Si(OMe)3
+
RCHO
(R)-BINAP (2 mol%), AgOTf (5 mol%), KF (5 mol%), 18-crown-6 (5 mol%) THF, –20°, 4 h
3 eq
OH R (61-95%) 87-97% ee
(Eq. 111) A similar Cu(I)-catalyzed reaction has been reported, and one example represents a modestly enantioselective addition to a ketone (Eq. 112).226
O Ph
+
Si(OMe)3
Me 1.5 eq
CuCl/(R)-tol-BINAP (15 mol%) TBAT (15 mol%) THF, rt
HO Ph (100%) 56% ee
(Eq. 112) Another approach toward activating allylic silanes exploits the ability of some basic solvents and additives to accelerate the additions of allylic halosilanes. In the latest advance, treatment of an allylic trichlorosilane with a dimeric chiral phosphoramide catalyst generates a highly reactive silane species which then allylates aldehydes to give homoallylic alcohols in high stereoselectivity (Eq. 113).227 Aromatic and unsaturated aldehydes react smoothly with the simple allyl reagent and both crotylsilanes to give homoallylic alcohols in good yields and high diastereo- and enantioselectivities.228 The mechanism of these allylations has been studied in detail. The high diastereoselectivity and the dependence of product stereochemistry on the geometry of γ-substituted silanes indicate that these allyltrichlorosilanes react like allylic boron reagents through the Type I pathway.
68
ORGANIC REACTIONS
A significant limitation to this approach is that it is not applicable to aliphatic aldehydes.
H H
R1CHO
R2
+
O N N O P P N N N 5 N Me Me
SiCl3
H H OH
(5 mol%) R1
CH2Cl2, –78°
R3 R2, R3 = H or Me
(Eq. 113)
R2 R3 (57-92%) 80-97% ee
Non-racemic α-substituted allylic silanes, in particular crotylsilanes, are very attractive reagents despite their rather tedious preparation. They were found to provide very high transfer of chirality in their additions to achiral aldehydes under Lewis acid catalysis (Eq. 114).229 These reagents have been tested several times in the context of natural product synthesis. Their diastereoselectivity (syn/anti) depends on several factors, including the nature of the aldehyde substrate, the reagent, and the nature of the Lewis acid employed. For example, the syn product can be obtained predominantly in the reaction of Eq. 114 by switching to the use of a monodentate Lewis acid such as BF3 . O BnO
+
CO2Me
H
SiMe2Ph
MgBr2
OH BnO
CO2Me
CH2Cl2, –25° anti (59%) 12:1 d.r.
(Eq. 114) Another approach for the activation of allylic silanes takes advantage of the fact that constraining silicon in a small ring increases its Lewis acidity. By reacting allyltrichlorosilane with 1,2-diols, diamines, or amino alcohols, allylchlorosilanes are generated in which the silicon is part of a strained heterocyclic 5membered ring. The most interesting aspect of this recent work comes from allylsilanes bearing chiral 1,2-amino alcohols and 1,2-diamines as substituents. The optimal reagents are derived from C2 -symmetrical cyclohexanediamines, and are exceptionally selective for a broad range of aldehydes, including unsaturated and aromatic ones (Eq. 115).230 These novel reagents are stable and easy to handle, and possess a long shelf-life. Interestingly, the corresponding crotylsilanes are also efficient reagents, and behave as Type I reagents by providing stereospecific crotylations of aldehydes.231 C6H4Br-4 Cl
N RCHO
+
Si N C6H4Br-4
OH
CH2Cl2 –10°, 20 h
R (61-93%) 95-98% ee
(Eq. 115)
ALLYLBORATION OF CARBONYL COMPOUNDS
69
Methods Employing Other Metals Several other metals have been examined in allyl transfer reactions to carbonyl compounds. Only modest success has been obtained except for a class of cyclopentadienyl titanium reagents based on a tartrate-derived auxiliary (Eq. 116).232 These reagents display a very high level of enantioselectivity in the simple allylation of several types of aldehydes, including hindered ones like pivalaldehyde (63% yield, 97% ee). A number of 3-substituted derivatives have been examined, including the E-crotyl reagent, which provides the anti propanoate products in excellent yields and over 98% ee for model aromatic and aliphatic aldehydes. These reagents are remarkably effective in double diastereoselective additions. Their inherent disadvantages are their preparation and their stoichiometric mode of stereochemical induction. Ti O
Ph Ph
O
O
Ph Ph O
OH
1. RCHO, –74° 2. NH4F
(Eq. 116)
R (86-93%) 94-97% ee
Allylic chromium species can also add to aldehydes. In this regard, an efficient catalytic enantioselective variant using allylic halides as substrates and manganese as co-oxidant has been described recently (Eq. 117).233 This method provides high enantiomeric excesses in the simple allylation of a wide range of aliphatic, aromatic, and heteroaromatic aldehydes. Crotylation examples are also very enantioselective, albeit with modest anti/syn diastereoselectivity.
N Cl Cr O O N
RCHO
+
Br
Bu-t Bu-t OH
(3 mol%) Mn, TESCl, DME/CH3CN (3:1), rt, 24 h
R (81-93%) 93-98% ee
(Eq. 117) EXPERIMENTAL CONDITIONS
Additions of allylic boron reagents are typically performed under experimentally simple conditions, and under a wide range of temperatures that is dictated by the reactivity of the particular reagent employed. Work-up conditions are discussed in a previous section. For the reaction itself, uncatalyzed additions can be performed in a wide variety of aprotic solvents. Non-coordinating solvents usually lead to shorter reactions times,21 but the identification of an optimal solvent in stereoselective additions is rather unpredictable and may require coordinating
70
ORGANIC REACTIONS
solvents for higher selectivity. The use of molecular sieves is strongly recommended when using water-sensitive allylic boronates. Lewis or Brønsted acid catalyzed additions are also better performed with non-coordinating solvents, typically toluene or methylene chloride. The literature describes only a few examples of allylations with a polymer-supported reagent,234 and with supported aldehydes.235,236
EXPERIMENTAL PROCEDURES MgBr
1. THF, 0° to rt
MeOB[(+)-Ipc]2
2. pentane
B[(+)-Ipc]2
(~100%)
(+)-B -Allyl bis(Isopinocampheyl)borane [General Procedure for Preparation of the Reagent Free of MgBr(OMe)].139 Allylmagnesium bromide in ether (48 mL, 1.0 M, 48 mmol) was added dropwise to a well-stirred solution of (+)-B-methoxy bis(isopinocampheyl)borane (15.8 g, 50 mmol) in THF (50 mL) at 0◦ . After completion of addition, the reaction mixture was vigorously stirred for 1 hour at room temperature, and the solvents were removed under vacuum (14 mm Hg, 2 hours). The residue was extracted with pentane (2 × 100 mL) under nitrogen, and stirring was discontinued to permit the MgBr(OMe) salt to settle. The clear supernatant pentane extract (free from the magnesium salts) was transferred to another flask using a double-ended needle through a Kramer filter. Evaporation of pentane (14 mm Hg, 1 hour; 2 mm Hg, 1 hour) afforded the pure title product in nearly quantitative yield. B[(+)-Ipc]2
+
O
1. ether, –100° H
2. NaOH, H2O2
OH (82%)
(R)-1,5-Hexadien-3-ol [Typical Procedure for the Simple Allylation of a Representative Aldehyde with the AllylB(Ipc)2 Reagent].139 Anhydrous ether (100 mL) was added to allylB[(+)-Ipc]2 , and the resulting solution was cooled to −100◦ . A solution of acrolein (2.8 g, 50 mmol) in Et2 O (50 mL), maintained at −78◦ , was slowly added along the side of the flask, kept at −100◦ . The reaction mixture was stirred for 0.5 hour at −100◦ , and MeOH (1 mL) was added. The reaction mixture was then brought to room temperature (1 hour) and treated with 3 N NaOH (20 mL) and 30% H2 O2 (40 mL). Heating the reaction mixture at reflux for 3 hours ensured the completion of the oxidation. The organic layer was separated, washed with water (30 mL) and brine (30 mL), dried over anhydrous MgSO4 , and filtered and concentrated under reduced pressure. Distillation afforded 4.17 g of the title product (82% yield), bp 54◦ at 20 mm Hg; 1 H NMR (300 MHz, CDCl3 ) δ 5.85 (m, 2H), 5.20 (m, 4H), 4.19 (m, 1H), 2.33 (m, 2H), 1.72 (br, 1H); 13 C NMR (300 MHz, CDCl3 ) δ 139.3, 133.4, 117.9, 115.2, 72.1, 41.0. GC analysis of its Mosher ester on a capillary Supelcowax column (15 m × 0.25 cm) showed the enantiomeric excess to be 96%.
ALLYLBORATION OF CARBONYL COMPOUNDS t-BuOK, n-BuLi, THF, –78°;
_
1. MeOB[(–)-Ipc]2, –78°
71
B[(–)-Ipc]2
2. BF3•OEt2, –78°
–45°, 10 min O 1.
OH
H , –78°, 3 h
(75%)
2. NaOH, H2O2
(2R,3R)-3-Methyl-4-penten-2-ol [Preparation of (−)-(Z )-Crotyl Bis(isopinocampheyl)borane and a Representative Reaction with Acetaldehyde].137 To a stirred mixture of t-BuOK (2.8 g, 25 mmol, dried at 80◦ /0.5 mm Hg for 8 hours), cis-2-butene (4.5 mL, 50 mmol), and THF (7 mL) at −78◦ was added n-BuLi (2.3 M in THF, 25 mmol). After complete addition of n-BuLi, the mixture was stirred at −45◦ for 10 minutes. The resulting solution was cooled to −78◦ , and methoxydiisopinocampheylborane in ether [1 M, 30 mmol, derived from (+)-α-pinene] was added dropwise. After the reaction mixture was stirred at −78◦ for 30 minutes, BF3 •OEt2 (4 mL, 33.5 mmol) was added dropwise. Acetaldehyde (2 mL, 35 mmol) was then added dropwise at −78◦ . The reaction solution was stirred at −78◦ for 3 hours and treated with 3 N NaOH (18.3 mL, 55 mmol) and 30% H2 O2 (7.5 mL). The resulting mixture was heated at reflux for 1 hour. The organic layer was separated, washed with water (30 mL) and brine (30 mL), dried over anhydrous MgSO4 , and filtered and concentrated under reduced pressure to afford the title product (75% yield, 90% ee, ≥99% d.r.), bp 78◦ /85 mm Hg; [α]23 D +19.40◦ (neat); 1 H NMR (CDCl3 ) δ 6.00–5.68 (m, 1H), 5.21–4.91 (m, 2H), 3.70 (p, J = 6 Hz, 1H), 2.25 (sextet, J = 7 Hz, 1H), 2.07 (s, br, 1H), 1.16 (d, J = 6 Hz, 3H), 1.04 (d, J = 7 Hz, 3H). 13 C NMR (CDCl3 , Me4 Si) δ 140.62, 115.06, 70.78, 44.87, 19.96, 14.85. t-BuOK, n-BuLi, THF, –78°;
1. MeOB[(–)-Ipc]2, –78° _
–45°, 10 min
2. BF3•OEt2, –78°
B[(–)-Ipc]2
O 1.
H , –78°, 4 h
2. NaOH, H2O2
OH (78%)
(2R,3S )-3-Methyl-4-penten-2-ol [Preparation of (−)-(E )-Crotyl Bis(isopinocampheyl)borane and a Representative Reaction with Acetaldehyde].137 To a stirred mixture of t-BuOK (2.8 g, 25 mmol, dried at 80◦ /0.5 mm for 8 h), trans-2-butene (4.5 mL, 50 mmol), and THF (7 mL) at −78◦ , was added n-BuLi (2.3 M in THF, 25 mmol). The mixture was stirred at −45◦ for 10 minutes. The resulting solution was recooled to −78◦ , and a solution of methoxydiisopinocampheylborane (1.0 M in ether, 30 mmol, derived from (+)-α-pinene) was added. After the reaction mixture was stirred at −78◦ for 30 minutes, BF3 •OEt2 (4 mL,
72
ORGANIC REACTIONS
33.5 mmol) was added dropwise. Acetaldehyde (35 mmol) was added dropwise at −78◦ . The reaction mixture was stirred at −78◦ for 4 hours and treated with 18.3 mL (55 mmol) of 3 N NaOH and 30% H2 O2 (7.5 mL). After the mixture was heated at reflux for 1 hour, the organic layer was separated, washed with water (30 mL) and brine (30 mL), dried over anhydrous MgSO4 , and filtered and concentrated under reduced pressure to afford the title product (78% yield, 90% ee, ≥99% d.r.); bp 78◦ /85 mm Hg; [α]23 D +9.141◦ (neat); 1 H NMR (CDCl3 ) δ 6.00–5.55 (m, 1 H), 5.30–4.95 (m, 2H), 3.4 (p, J = 7 Hz, 1H), 2.15 (sextet, J = 7 Hz, 1H), 1.70 (s, 1 H), 1.20 (d, J = 7 Hz, 3H), 1.05 (d, J = 7 Hz, 3H); 13 C NMR (CDCl3 , Me4 Si) δ 140.73, 115.76, 70.72, 45.64, 19.94, 15.72. O t-BuOK, n-BuLi THF, –78° to –50°
1. B(OPr-i)3, –78° _
2. (R,R)-DIPT
O B
O (>60%)
OPr-i OPr-i O
(R,R)-[(E )-2-Butenyl]diisopropyl Tartrate Boronate [Preparation of the (E )-Crotyl Diisopropyl Tartrate Boronate Reagent].37 An oven-dried 1-L three-neck round-bottom flask equipped with a magnetic stir bar and a −100◦ thermometer was charged with anhydrous THF (472 mL) and t-BuOK (48.0 g, 425 mmol). This mixture was flushed with Ar and cooled to −78◦ . trans-2Butene (42.0 mL, 450 mmol), condensed from a gas lecture bottle into a rubberstoppered 250-mL graduated cylinder immersed in a −78◦ dry ice–acetone bath, was added via cannula. n-BuLi (2.5 M in hexane, 170 mL, 425 mmol) was then added dropwise via cannula at a rate such that the internal temperature did not rise above −65◦ . After completion of the addition (roughly 2 hours on this scale), the cooling bath was removed and the reaction mixture was allowed to warm until the internal temperature reached −50◦ . The solution was maintained at −50◦ for exactly 15 minutes and then was immediately cooled to −78◦ . Triisopropylborate (80.0 g, 98.2 mL, 425 mmol) was added dropwise via cannula to the (E)-crotylpotassium solution at a rate such that the internal temperature did not rise above −65◦ . On this scale the addition time was approximately 2 hours. After the addition was complete, the reaction mixture was maintained at −78◦ for 10 minutes and then rapidly poured into a 2-L separatory funnel containing 800 mL of 1 N HCl saturated with NaCl. The aqueous layer was adjusted to pH 1 by using aqueous 1 N HCl, and a solution of (R,R)-diisopropyl tartrate (100 g, 425 mmol) in 150 mL of Et2 O was added. The phases were separated, and the aqueous layer was extracted with additional Et2 O (4 × 200 mL). The combined extracts were dried with anhydrous MgSO4 for at least 2 hours at room temperature and then vacuum filtered through a fritted glass funnel under a N2 blanket into an oven-dried round-bottom flask. The filtrate was
ALLYLBORATION OF CARBONYL COMPOUNDS
73
concentrated under reduced pressure to afford a colorless thick liquid, which was then pumped to constant weight (125 g) at 0.5–1.0 mm Hg. It was necessary for the neat reagent to be stirred to remove residual volatile materials, especially THF. Analysis of the crude product by capillary GC [50 m × 0.25 mm fused quartz SE-54 column (0.2 µm polydiphenylvinyl-dimethylsiloxane), 170◦ isotherm; tr of the E-isomer, 10.9 min vs. tr of the Z-isomer, 11.3 min; tr of butylboronate, 10.5 min] indicated that the isomeric purity of this batch of reagent was 99%; 12% of tartrate butylboronate was also present, reflecting incomplete metalation of (E)-2-butene in this experiment. The reagent is moisture sensitive, and it is better handled as a stable solution in toluene or THF. The (S,S)-reagent derived from (S,S)-DIPT had [α]23 D +36.5◦ (neat); 1 H NMR (300 MHz, CDCl3 ) δ 5.63–5.53 (m, 1H), 5.48–5.37 (m, 1H), 5.00–4.83 (m, 2H), 4.89 (s, 2H), 1.86 (br d, J = 6.4 Hz, 2H), 1.53 (br d, J = 6.3 Hz, 3H), 0.90 (d, J = 6.3 Hz, 12H); 13 C NMR (75.4 MHz, C6 D6 ) δ 169.0, 126.1, 125.3, 78.4, 69.6, 21.6, 18.1; 11 B NMR (115.8 MHz, C6 D6 ) δ 34.4; CIMS (NH3 ) (m/z): [M + 1]+ 299; HRMS (m/z): calcd for C14 H23 10 BO6 , 297.1617; found, 297.1618; HRMS (m/z): calcd for C14 H23 11 BO6 , 298.1581; found, 298.1683. O t-BuOK, n-BuLi THF, –78° to –25°
_
1. B(OPr-i)3, –78° 2. (R,R)-DIPT
O B
OPr-i OPr-i
O
O
(70-75%)
(R,R)-[(Z )-2-Butenyl]diisopropyl Tartrate Boronate [Preparation of the (Z )-Crotyl Diisopropyl Tartrate Boronate Reagent].37 The preparation of Z-crotylboronate from (Z)-2-butene is analogous to that described for the corresponding E-reagent with the following modification: on completion of the n-BuLi addition, the reaction mixture was warmed to −20◦ to −25◦ for 30–45 minutes before being cooled to −78◦ . This ensured near quantitative formation of the (Z)-crotylpotassium. Temperature control is less critical here since the (Z)-crotylpotassium species is highly favored at equilibrium (99 : 1). The remainder of this preparation was the same as that described above for the synthesis of the E-crotylboronate reagent. On a 100-mmol scale, the yield of Z-crotylboronate was 70–75% (1–2% of butylboronate) and the isomeric purity was >98% (generally >99%). The (R,R)-(Z)-reagent prepared from (R,R)-DIPT had [α]23 D −80.2◦ (c 2.42, CHCl3 ); IR (thin film) 3500 (br), 3220 (m), 2980 (s), 1745 (s), 1375 (s), 1220 (s), 1100 (s) cm−1 ; 1 H NMR (300 MHz, CDCl3 ) δ 5.76–5.67 (m, 1H), 5.55–5.48 (m, 1H), 5.05–4.99 (m, 2H), 4.92 (s, 2H), 1.91 (d, J = 7.8 Hz, 2H), 1.56 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.3 Hz, 12H); 13 C NMR (75.4 MHz, C6 D6 ) δ 169.0, 124.6, 124.4, 78.4, 69.6, 21.3, 12.7; 11 B NMR (115.8 MHz, C6 D6 ) δ 34.8; CIMS (NH3 ) (m/z): [M+ ] 298; HRMS (m/z): calcd for C14 H23 11 BO6 , 298.1581; found, 298.1624.
74
ORGANIC REACTIONS O O B
OPr-i
O
OPr-i O
OH 4 Å MS H
(94%)
toluene, –78°
O
(1S ,2R)-1-Cyclohexyl-2-methyl-3-buten-1-ol [Representative Procedure for Additions of (E )-Crotyl Diisopropyl Tartrate Boronate to Aldehydes].37 A solution of (R,R)-isopropyl tartrate (E)-crotylboronate (3.19 g, 10.7 mmol, crude reagent, 99.3% isomeric purity) in 32 mL of dry toluene under N2 was ˚ molecular sieves (600 mg) and cooled to −78◦ . A treated with powdered 4 A solution of freshly distilled cyclohexanecarboxaldehyde (1.00 g, 8.92 mmol) in 10 mL of toluene was added dropwise over 30 minutes. The reaction mixture was stirred at −78◦ for 3 hours and then was treated with 10 mL of 2 N NaOH to hydrolyze the DIPT borate. The two-phase mixture was warmed to 0◦ and stirred for 20 minutes before being filtered through a pad of Celite. The aqueous layer was extracted with Et2 O (4 × 10 mL), and the combined organic extracts were dried over anhydrous K2 CO3 and filtered. Flash chromatographic purification on silica gel (60 × 150 mm column, 6 : 1 hexane/ether) provided 1.41 g of the title product (94% yield) in >99% d.r. (capillary GC analysis: Carbowax 20 column; 70◦ for 4 minutes then 10◦ /min to a final temperature of 150◦ ) and 86% ee as determined by chiral capillary GC analysis of the methyl ether. The product had [α]25 D −15.8◦ (c 1.02, CHCl3 , data obtained on a sample with >99% d.r. and 86% ee); 1 H NMR (300 MHz, CDCl3 ) δ 5.80 (ddd, J = 18.0, 10.9, 7.2 Hz, 1H), 5.15–5.10 (m, 2H), 3.11 (dd, J = 5.1, 5.1 Hz, 1H), 2.39 (m, 1H), 1.85–1.60 (m, 5H), 1.48–1.35 (m, 2H), 1.28–1.06 (m, 5H), 1.04 (d, J = 7.2 Hz, 3H); 13 C NMR (75.4 MHz, CDCl3 ) δ 140.4, 116.0, 78.8, 40.5, 40.3, 30.0, 27.0, 26.5, 26.4, 26.1, 17.0; Anal. Calcd for C11 H20 O: C, 78.52; H, 11.98. Found: C, 78.22; H, 12.20. O O B
OPr-i OPr-i
O
O
OH 4 Å MS H
(91%)
toluene, –78°
O
(1R,2R)-1-Cyclohexyl-2-methyl-3-buten-1-ol [Representative Procedure for Additions of (Z )-Crotyl Diisopropyl Tartrate Boronate to Aldehydes].37 The title product was prepared by the procedure described above using (R,R)isopropyl tartrate (Z)-crotylboronate (91% yield); [α]25 D +28.0◦ (c 0.61, CHCl3 , data obtained on a sample with >99% d.r.); 1 H NMR (400 MHz, CDCl3 ) δ 5.80 (ddd, J = 17.3, 10.0, 7.0 Hz, 1H), 5.08 (d, J = 17.3 Hz, 1H), 5.06 (d, J = 10.0 Hz, 1H), 3.18 (ddd, J = 5.0, 5.0, 4.3 Hz, 1H), 2.38 (m, 1H), 1.91 (d, J = 13.0 Hz, 1H), 1.73 (m, 2H), 1.64 (m, 1H), 1.58 (m, 1H), 1.41 (m, 1H), 1.35 (d, J = 4.3 Hz, 1H), 1.30–1.00 (m, 5H), 0.97 (d, J = 6.8 Hz, 3H); 13 C NMR (75.4 MHz, CDCl3 ) δ 142.0, 114.4, 78.6, 40.2, 39.8, 29.6, 27.8, 26.4, 26.2, 25.9, 13.1; MS (m/z): [M+ − crotyl] 113. Anal. Calcd for C11 H20 O: C, 78.51; H, 11.98. Found: C, 78.33; H, 12.03.
ALLYLBORATION OF CARBONYL COMPOUNDS
Ph
Ph
Ts
Ph
BBr3 CH2Cl2, 0°
Ts NH HN Ts
Br
75
N B
Sn(Bu-n)3 N
Ph
rt, 2 h
Ts Ph
Ts N B
N
OH
Ph
PhCHO
(91%)
CH2Cl2, –78°, 2.5 h
Ts
(R)-(+)-1-Phenyl-3-buten-1-ol [Preparation of (1R,2R)-N ,N -Bis(p-Toluenesulfonamide)-1,2-diamino-1,2-diphenylethane Allyldiazaborolidine and a Representative Reaction with Benzaldehyde].50 (+)-(1R,2R)N ,N -Bis(p-toluenesulfonamide)-1,2-diamino-1,2-diphenylethane (0.75 g, 1.44 mmol) was placed in a dry 25-mL round-bottom flask equipped with a magnetic stir bar and sealed with a septum. The flask was evacuated and flushed with argon three times. Freshly distilled CH2 Cl2 (12 mL) was added and the resulting solution was cooled to 0◦ , at which point BBr3 (1 M in CH2 Cl2 , 1.4 mL, 1.4 mmol) was added. The resulting solution was stirred at 0◦ for 10 minutes and then warmed to room temperature and stirred for 40 minutes. The solution was concentrated under vacuum (2 mm Hg) and rigorously protected from moisture. Freshly distilled CH2 Cl2 (5 mL) was added and removed under vacuum to give the bromoborane intermediate; 11 B NMR (96 MHz, CDCl3 ) δ 25.7; 1 H NMR (300 MHz, CDCl3 ) δ 7.32–7.28 (m, 6H), 7.26–7.22 (m, 4H), 7.20–7.09 (m, 4H), 7.02–6.98 (m, 4H), 5.11 (s, 2H), 2.33 (s, 6H). Freshly distilled CH2 Cl2 was added and the homogeneous solution was cooled to 0◦ and allyltri-n-butyltin (435 µL, 464 mg, 1.4 mmol) was added dropwise. The reaction mixture was stirred at 0◦ for 10 minutes, followed by 2 hours at room temperature. A purified aliquot displayed the following spectroscopic data: 1 H NMR (300 MHz, CDCl3 ) δ 7.52–6.92 (m, 18H), 6.21–6.09 (m, 1H), 5.34–5.11 (m, 2H), 4.78 (s, 2H), 2.77 (dd, J = 8.9, 1.9 Hz, 2H), 2.32 (s, 3H). The resulting solution was cooled to −78◦ and a solution of benzaldehyde (1.28 mL, 133.6 mg, 1.26 mmol) in CH2 Cl2 (1 mL) was added dropwise. The reaction mixture was stirred at −78◦ for 2.5 hours, and aqueous buffer (pH 7.5) was added. The aqueous layer was extracted with CH2 Cl2 (5 mL), the combined organic phases were washed with brine, and the solvent was evaporated. The residue was taken up in Et2 O/hexane (2 : 1, 10 mL), and the resulting solution was cooled to 0◦ for 20 minutes to complete precipitation of the solid. After removal of the (R,R)-bis(sulfonamide) (0.694 g, 92%) by filtration through a sintered glass funnel, the filtrate was vigorously stirred with aqueous KF (50%, 15 mL) at room temperature for 40 minutes. The organic layer was separated and dried with anhydrous MgSO4 , filtered, and the solvent was removed under reduced pressure. The product was purified by silica gel chromatography (hexane/Et2 O, 5 : 1) to afford 170 mg (1.12 mmol) of the title product (91% yield) as a colorless liquid; [α]D +44.78◦ (c 1.26, benzene); 1 H NMR (300 MHz, CDCl3 ) δ 7.41–7.28
76
ORGANIC REACTIONS
(m, 5H), 5.92–5.73 (m, 1H), 5.22–5.13 (m, 2H), 4.80–4.61 (m, 1H), 2.51–2.30 (m, 2H), 2.05 (d, J = 3.0 Hz, 1H). OH
Me3SiSiMe3
OTMS
110°, 12 h (99%)
1. Co(NO3)2 • 6H2O, pet. ether 2. SOCl2, rt, 4 h
1. HBCy2, DME, 0° to rt
OTMS
2. Me3NO 3. pinacol, 12 h
B (83%) O
O B
O
O
Cl (—)
(1R)-2-[1-Chloro-2-(E )-butenyl]pinacol Boronate [Preparation of a Chiral α-Chloro Allylic Boronate].83,237 (R)-3-Hydroxy-1-butyne (16.58 g, 236.5 mmol) and hexamethyldisilazane (19.09 g, 118 mmol) were heated to 110◦ for 12 hours. The mixture was then filtered through a short pad of silica gel to give 33.30 g (99%) of 3-trimethylsiloxy-1-butyne as an almost colorless liquid. Under an atmosphere of N2 , borane dimethylsulfide complex (8.4 mL, 84 mmol) was dissolved in DME (120 mL). The solution was cooled to 0◦ and cyclohexene (13.80 g, 168 mmol) was added. The mixture was stirred at 0◦ for 15 minutes and then warmed to room temperature and stirred for another 1 hour. The solution was cooled to 0◦ and 3-trimethylsiloxy-1-butyne (15.0 g, 84 mmol) was added. The reaction mixture was warmed to room temperature to dissolve the dicyclohexylborane, and stirred for an additional 1 hour. Anhydrous trimethylamine oxide (12.65 g, 84 mmol) was added in small portions to maintain the solution at reflux. The mixture was cooled to room temperature and stirred for an additional 1 hour. Pinacol (10.0 g, 84 mmol) was added and the mixture was stirred for 12 hours. The solution was filtered and the solvent was removed under reduced pressure. The resulting liquid was distilled (0.3 Torr) to give 18.60 g of pinacol (R)-(E)-2-(3-trimethylsiloxy-1-butene)boronate (83% yield), bp 68◦ /0.1 Torr; 1 H NMR (400 MHz, CDCl3 ) δ 6.58 (dd, J = 17.9, 4.3 Hz, 1H), 5.58 (dd, J = 17.9, 1.7 Hz, 2H), 4.30 (ddq, J = 6.5, 4.3, 1.7 Hz, 1H), 1.25 (s, 12H), 1.20 (d, J = 6.5 Hz, 3H), 0.09 (s, 9H); 13 C NMR (125 MHz, CDCl3 ) δ 156.5, 83.0, 69.6, 24.7, 23.5, 0.0. Anal. Calcd for C13 H27 BO3 Si: C, 57.78; H, 10.07. Found: C, 57.71; H, 10.16. The excess of trimethylamine was removed by washing the pinacol (R)(E)-2-(3-trimethylsiloxy-1-butene)boronate (5.0 g) in petroleum ether (50 mL) using 5% aqueous AcOH (10 mL), 4% aqueous NaHCO3 (10 mL), and saturated aqueous Na2 SO4 solution. The aqueous phases were back extracted each time with petroleum ether (10 mL). The combined organic layers were dried over anhydrous MgSO4 , filtered, and the solvent was removed under reduced pressure to afford pure pinacol (E)-2-(3-trimethylsiloxy-1-butene)boronate (4.84 g). Co(NO3 )2 •6H2 O (20 mg, 0.069 mmol) was added to a stirred solution of pinacol (R)-(E)-2-(3-trimethylsiloxy-1-butene)boronate (5.70 g, 21.1 mmol) in petroleum ether (130 mL). Freshly distilled SOCl2 (2.75 g, 23.1 mmol) was added, and
ALLYLBORATION OF CARBONYL COMPOUNDS
77
slow evolution of SO2 was observed. After 4 hours, when no more bubbling was observed, the mixture was filtered, and the solvent was removed under reduced pressure to afford 4.39 g of the crude title product (96% yield), which was distilled, bp 30◦ /0.1 Torr; 1 H NMR (400 MHz, CDCl3 ) δ 5.78 (ddq, J = 15.1, 6.4, 0.8 Hz, 1H), 5.65 (ddq, J = 15.1, 9.2, 1.5 Hz, 1H), 3.94 (d, J = 9.2 Hz, 1H), 1.71 (ddd, J = 6.4, 1.5, 0.8 Hz, 3H), 1.28 (s, 12H); 13 C NMR (125 MHz, CDCl3 ) δ 129.0, 128.1, 84.4, 24.4, 17.7. Anal. Calcd for C10 H18 BClO2 : C, 55.47; H, 8.38. Found: C, 55.50; H, 8.64. O B
OH
O + O
pet. ether H
(61%)
rt, 18 h
Cl
Cl
(1S ,2S )-(Z )-4-Chloro-2-methyl-1-phenylbut-3-en-1-ol [Representative Addition of Pinacol (1R)-2-[1-Chloro-2-(E )-butenyl]boronate to Aldehydes].67 To a solution of crude pinacol (1R)-2-[1-chloro-2-(E)-butenyl]boronate (1.80 g, 8.3 mmol) in petroleum ether (15 mL) was added benzaldehyde (0.59 g, 5.5 mmol) at 0◦ . After 18 hours at room temperature, the mixture was evaporated, the residue was dissolved in Et2 O, and triethanolamine (1.24 g, 1.10 mL, 8.3 mmol) was added under vigorous strirring. After 4 hours, the mixture was filtered and the solvent was removed by evaporation. The crude product was purified by flash column chromatography (7 : 3 petroleum ether/ether) to afford 0.66 g of the title product (61% yield); [α]20 D +44.5◦ (c 10, CDCl3 ); 1 H NMR (400 MHz, CDCl3 ) δ 7.34 (m, 5H), 6.13 (dd, J = 0.9, 7.2 Hz, 1H), 5.75 (dd, J = 7.2, 9.4 Hz, 1H), 4.50 (d, J = 7.3 Hz, 1H), 3.14 (dddq, J = 0.9, 6.9, 7.3, 9.4 Hz, 1H), 2.02 (br s, 1H), 0.90 (d, J = 6.9 Hz, 3H); 13 C NMR (100 MHz, CDCl3 ) δ 142.3, 133.6, 128.2, 127.7, 126.6, 119.2, 77.8, 39.8, 16.0. Anal. Calcd for C11 H13 ClO: C, 67.18; H, 6.66. Found: C, 67.27; H, 6.74. t-BuOK, n-BuLi THF, –78° to –50°
_
1. B(OPr-i)3, –78° 2. OH OH Ph
Ph O B
O H
(99%)
(1R,2S ,3R,4S )-2,3-O-[(E )-2-Butenylboryl]-2-phenyl-1,7,7-trimethylbornanediol [Preparation of the (E )-Crotyl Camphordiol Boronate Reagent].28 A 200-mL three-neck round-bottom flask equipped with a magnetic stir bar and a thermometer was charged with 110 mL of THF and t-BuOK (4.65 g, 41.5 mmol). The mixture was flushed with Ar and cooled to −78◦ . trans-2-Butene (2.46 g, 43.9 mmol), condensed into a rubber-stoppered 10-mL round-bottom flask kept at −78◦ , was added via cannula. n-BuLi (1.43 M in hexane, 29 mL, 41.5 mmol) was added dropwise over 1 hour with a syringe pump, so that the internal temperature did not rise at all. After completion of the addition, the reaction mixture
78
ORGANIC REACTIONS
was allowed to warm until the internal temperature reached −52◦ . The solution was maintained at −52◦ for 15 minutes, and then cooled back to −78◦ . Triisopropyl borate (10.53 mL, 45.6 mmol) was added dropwise over 30 minutes through a syringe pump. The reaction mixture was maintained at −78◦ for 2 hours, and was sealed under Ar and stored in a freezer for a few weeks without any noticeable change of its quality. The stored solution (10 mL) was reacted with 15 mL of aqueous 1 N HCl, and extracted with ether three times. The combined organic layers were mixed with (1R,2S,3R,4S)-2-phenyl-1,7,7trimethylbornanediol (220 mg, 0.89 mmol), stirred at ambient temperature for 45 minutes, and then concentrated under reduced pressure. Flash chromatography (5% EtOAc/hexanes, SiO2 pre-treated with 5% Et3 N/hexanes) yielded 277 mg of the title product as a colorless oil (99% yield); [α]25 D +10.5◦ (c 1.84, CHCl3 ); 1 H NMR (500 MHz, CDCl3 ) δ 7.42–7.41 (m, 2H), 7.34–7.24 (m, 3H), 5.43–5.30 (m, 2H), 4.71 (s, 1H), 2.13 (d, J = 5.5 Hz, 1H), 1.84–1.78 (m, 1H), 1.61–1.52 (m, 5H), 1.20–1.13 (m, 5H), 1.04–0.94 (m, 1H), 0.93 (s, 3H), 0.92 (s, 3H); 13 C NMR (125 MHz, CDCl3 ) δ 141.8, 127.4, 127.2, 126.7, 125.7, 125.2, 95.6, 88.5, 52.0, 50.2, 48.8, 29.6, 24.8, 23.6, 20.7, 18.0, 9.3; 11 B NMR (64 MHz, CDCl3 ) δ 34.2; HRMS-EI (m/z): calcd for C20 H27 O2 B, 310.21042; found, 310.20994. Anal. Calcd for C20 H27 O2 B: C, 77.43; H, 8.77. Found: C, 77.24; H, 8.86. O
Ph +
O B
O H
H n-C5H11
HO
Sc(OTf)3 (2 mol%) CH2Cl2, –78°
n-C5H11 (75%)
(3R,4R)-3-Methyl-1-undecen-5-yn-4-ol [Representative Procedure for Scandium-Catalyzed E-Crotylation of Aldehydes].28 Scandium trifluoromethanesulfonate (238 mg, 0.48 mmol) and CH2 Cl2 (5 mL) were introduced in a 50-mL round-bottom flask, and the mixture was cooled to −78◦ . 2-Octynal (1.03 mL, 7.25 mmol) was added, followed by a solution of (1R,2S,3R,4S)2,3-O-[(E)-2-butenylboryl]-2-phenyl-1,7,7-trimethylbornanediol (1.50 g, 4.83 mmol) in CH2 Cl2 (7 mL) dropwise over 30 minutes. The resulting mixture was stirred at −78◦ for 24 hours, then DIBAL-H (1.0 M in toluene, 14.5 mL, 14.5 mmol) was added. The mixture was stirred at −78◦ for 1 hour, then carefully poured into a 250-mL separatory funnel containing aqueous 1 N NaOH (50 mL). After the resulting layers were separated, the aqueous layer was extracted with EtOAc (3 × 25 mL). The combined organic layers were dried over anhydrous MgSO4 , filtered, and the solvent was removed under reduced pressure. Flash chromatography (5% EtOAc/hexanes) afforded 594 mg of the title product as a colorless oil (75% yield); [α]25 D +16.55◦ (c 2.00, CHCl3 ); 1 H NMR (500 MHz, CDCl3 ) δ 5.82 (ddd, J = 17.7, 10.4, 7.6 Hz, 1H), 5.17–5.12 (m, 2H), 4.19 (ddd, J = 6.2, 3.8, 1.9 Hz, 1H), 2.44–2.40 (m, 1H), 2.21 (ddd, J = 9.0, 7.1, 1.9 Hz, 2H), 1.82 (br s, 1H), 1.54–1.48 (m, 2H), 1.40–1.29 (m, 4H), 1.12 (d, J = 7.1 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H); 13 C NMR (125 MHz, CDCl3 ) δ 139.6, 116.4,
ALLYLBORATION OF CARBONYL COMPOUNDS
79
86.6, 79.5, 66.4, 44.7, 31.0, 28.3, 22.1, 18.6, 15.2, 13.9; HRMS-ES (m/z): calcd for C12 H20 ONa, 203.14064; found, 203.14084. 19 F NMR analysis of the Mosher ester derivative indicated 97% ee: (376 MHz, CDCl3 ) δ − 71.88 (major), −72.14 (minor). The fractions containing the diol auxiliary and those containing borate derivatives were concentrated, and treated with a solution of THF (2 mL), 1 N NaOH (1 mL), and H2 O2 (1 mL of a 30% aqueous solution) for 16 hours. The resulting mixture was diluted with water (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over anhydrous MgSO4 , filtered, and concentrated. Flash chromatography (5% EtOAc/hexanes) afforded 891 mg of recovered (1R,2S,3R,4S)-2-phenyl-1,7,7-trimethylbornanediol (75% yield). Ph t-BuOK, n-BuLi THF, –78° to –25°
_
1. B(OPr-i)3, –78°
O
2.
B
OH OH Ph
O H
(99%)
(1R,2S ,3R,4S )-2,3-O-[(Z )-2-Butenylboryl]-2-phenyl-1,7,7-trimethylbornanediol [Preparation of the (Z )-Crotyl Camphordiol Boronate Reagent].28 A 300-mL three-neck round-bottom flask equipped with a magnetic stir bar and a thermometer was charged with 110 mL of THF and t-BuOK (2.86 g, 25.5 mmol). After the mixture was flushed with Ar and cooled to −78◦ , cis-2-butene (1.50 g, 26.8 mmol), condensed into a rubber-stoppered 10-mL round-bottom flask kept at −78◦ , was added via cannula. n-BuLi (1.43 M in hexane, 17.9 mL, 25.5 mmol) was added dropwise over 1 hour such that the internal temperature did not rise above −70◦ . After completion of the addition, the cooling bath was removed and the reaction mixture was allowed to warm up until the internal temperature reached −25◦ . The solution was maintained at −25◦ for 30 minutes, and then cooled back to −78◦ . Triisopropyl borate (6.48 mL, 28.1 mmol) was added dropwise over 30 minutes. The reaction mixture was maintained at −78◦ for 2 hours, and was then rapidly poured into a 500-mL separatory funnel containing 200 mL of aqueous 1 N HCl. The layers were separated, and the aqueous layer was extracted with Et2 O (2 × 100 mL). The combined organic layers were dried over anhydrous MgSO4 , filtered, and concentrated on the rotary evaporator to a volume of about 60 mL. The resulting solution was approximately 0.4 M in (Z)-2-butenylboronic acid, and could be kept at 4◦ for a few weeks without any noticeable change in its concentration or its reactivity with diols. To this solution (3.00 mL, 1.20 mmol) was added (1R,2S,3R,4S)-2-phenyl-1,7,7trimethylbornanediol (246 mg, 1.00 mmol). The resulting mixture was stirred at ambient temperature for 30 minutes, and concentrated under reduced pressure. Flash chromatography (10% EtOAc/hexanes, SiO2 pre-treated with 5% Et3 N/hexanes) yielded 307 mg of the title product as a colorless oil (99% yield); [α]25 D +12.8◦ (c 1.73, CHCl3 ); 1 H NMR (300 MHz, CDCl3 ) δ 7.44–7.38 (m,
80
ORGANIC REACTIONS
2H), 7.35–7.22 (m, 3H), 5.52–5.34 (m, 2H), 4.70 (s, 1H), 2.13 (d, J = 5.2 Hz, 1H), 1.87–1.74 (m, 1H), 1.66–1.61 (m, 2H), 1.54–1.50 (m, 3H), 1.21 (s, 3H), 1.21–1.10 (m, 2H), 1.07–0.96 (m, 1H), 0.94 (s, 3H), 0.91 (s, 3H); 13 C NMR (125 MHz, CDCl3 ) δ 141.8, 127.4, 127.2, 126.7, 124.9, 123.5, 95.7, 88.6, 52.0, 50.2, 48.9, 29.6, 24.7, 23.6, 20.7, 12.5, 9.3; 11 B NMR (128 MHz, CDCl3 ) δ 34.1; HRMS-EI (m/z): calcd for C20 H27 O2 B, 310.21042; found, 310.21036. Anal. Calcd for C20 H27 O2 B: C, 77.43; H, 8.77. Found: C, 77.41; H, 8.77. Ph
O
O B
+ O H
HO
Sc(OTf)3 (2 mol%) H
CH2Cl2, –78°
n-C5H11
n-C5H11 (72%)
(3S , 4R)-3-Methyl-1-undecen-5-yn-4-ol [Representative Procedure for Scandium-Catalyzed Z-Crotylation of Aldehydes].28 The title compound was prepared in 72% yield by using a procedure analogous to that used to prepare (3R,4R)-3-methyl-1-undecen-5-yn-4-ol; [α]25 D +22.7◦ (c 1.27, CHCl3 ); 1 H NMR (300 MHz, CDCl3 ) δ 5.94–5.80 (m, 1H), 5.20–5.17 (m, 1H), 5.15–5.12 (m, 1H), 4.26 (ddd, J = 4.8, 2.0, 2.0 Hz, 1H), 2.50–2.38 (m, 1H), 2.22 (ddd, J = 6.9, 6.9, 2.0 Hz, 2H), 1.72 (br s, 1H), 1.57–1.46 (m, 2H), 1.44–1.26 (m, 4H), 1.11 (d, J = 6.9 Hz, 3H), 0.91 (t, J = 6.9 Hz, 3H); 13 C NMR (125 MHz, CDCl3 ) δ 139.2, 116.8, 86.7, 79.2, 66.3, 44.5, 31.0, 28.4, 22.1, 18.6, 15.6, 13.9; HRMS-EI (m/z): calcd for C12 H20 O, 180.15141; found, 180.15092. 19 F NMR analysis of the Mosher ester derivative indicated an optical purity of 95% ee: (376 MHz, CDCl3 ) δ –71.90 (major), −72.19 (minor). The fractions containing the diol auxiliary and the ones containing diol-borate derivatives were concentrated, and treated with a solution of THF (2 mL), 1 N NaOH (1 mL), and H2 O2 (1 mL of a 30% aqueous solution) for 16 hours. The resulting mixture was diluted with water (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over anhydrous MgSO4 , filtered, and concentrated. Flash chromatography (5% EtOAc/hexanes) afforded 891 mg of recovered (1R,2S,3R,4S)-2-phenyl-1,7,7-trimethylbornanediol (75% yield).
HO O B
O
+ O
Ph
H
OH SnCl4 (~10 mol%)
Na2CO3 (0.2 eq), 4 Å MS, CH2Cl2, –78°, 12 h
HO
(85%)
Ph
(3S )-1-Phenylhex-5-en-3-ol [Representative Allylation Catalyzed by a Chiral Diol-SnCl4 Complex].163 Into a flame-dried 25-mL round-bottom flask equipped with a rice needle stir bar were successively added (R,R)-1,2-dinaphthylethanediol (8.65 mg, 0.025 mmol, 0.11 eq), anhydrous Na2 CO3 (5.6 mg,
ALLYLBORATION OF CARBONYL COMPOUNDS
81
˚ molecular sieves (50 mg), and freshly dis0.05 mmol, 0.05 eq), activated 4 A tilled toluene (0.5 mL). To the stirred mixture under argon at room temperature was added 25 µL (0.025 mmol, 0.10 eq) of a 1.0 M solution of SnCl4 in CH2 Cl2 ; in order to obtain reproducible results, it is necessary to use a gas tight 25 µL syringe, and that all of the SnCl4 drops into the diol solution without touching the side walls. The resulting mixture was stirred for 5 minutes, cooled to −78◦ , and maintained at this temperature for 15 minutes, after which allyl boronic pinacol ester (46.2 mg, 1.1 eq) dissolved in 0.5 mL of toluene was added via syringe and this mixture was maintained at −78◦ for 15 minutes. Freshly distilled hydrocinnamaldehyde (32.6 µL, 0.25 mmol, 1.0 eq) was added and the reaction mixture was stirred at −78◦ for 12 hours. DIBAL-H in toluene (0.5 mL, 0.50 mmol, 2.0 eq) was added to reduce any remaining aldehyde. After 30 minutes, 2 mL of aqueous 1 N HCl was added, after which the reaction mixture was brought to room temperature and stirred for 1 hour. The dark brown biphasic mixture was extracted with Et2 O (2 × 25 mL) to give a clear etheral solution, which was washed with brine and dried over anydrous Na2 SO4 , filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography (5% EtOAc/hexanes) afforded 37.4 mg of the title product (85% yield, 78% ee); HPLC (chiracelOD, 5% i-PrOH/hexane, 0.5 mL/min, 254 nm) tr (major, 89%) = 26.19 min, tr (minor, 11%) = 37.62 min; [α]25 D −4.54◦ (c 0.41, CHCl3 ); IR (thin film) 3370, 1640 cm−1 ; 1 H NMR (300 MHz, CDCl3 ) δ 7.32–7.28 (m, 2H), 7.23–7.18 (m, 3H), 5.90–5.78 (m, 1H), 5.18 (m, 1H), 5.14 (m, 1H), 3.72–3.65 (m, 1H), 2.87–2.79 (m, 1H), 2.74–2.67 (m, 1H), 2.37–2.32 (m, 1H), 2.24–2.16 (m, 1H), 1.86–1.75 (m, 2H), 1.68–1.66 (s, 1H); 13 C NMR (125 MHz, CDCl3 ) δ 142.05, 134.6, 128.43, 128.38, 125.8, 118.3, 69.9, 42.1, 38.5, 32.05; HRMS-EI (m/z): calcd for C12 H16 O, 176.12011; found, 176.12011. Anal. Calcd for C12 H16 O: C, 81.77; H, 9.15. Found: C, 81.80; H, 9.14.
O
B
N
O Cr O Cl 88 (1 mol%)
O
+ O
OEt
B(pin) PhCHO O
(solvent)
Ph
45°
4 Å MS, rt, 1 h OEt
HO
H
O
OEt
(82%)
(R)-[(2R,6S )-6-Ethoxy-5,6-dihydro-2H -pyran-2-yl]phenylmethanol [Representative Example of a Tandem Catalytic Enantioselective [4+2] Cycloaddition/Allylboration].150 A mixture of 3-boronoacrolein pinacolate (364 mg, 2.00 mmol) and ethyl vinyl ether (1.90 mL, 20.0 mmol) was placed in an ovendried 10-mL round-bottom flask with a stir bar. To this solution was added the Jacobsen tridentate chromium(III) catalyst 88 (9.60 mg, 0.020 mmol) and powdered BaO (400 mg). After the mixture had been stirred for 1 hour at room
82
ORGANIC REACTIONS
temperature, benzaldehyde (424 mg, 4.00 mmol) was added. The reaction mixture was stirred at 40–45◦ for 24 hours, and diluted with EtOAc and filtered through Celite. The EtOAc solution was stirred for 30 minutes with an aqueous saturated solution of NaHCO3 . The organic layer was separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with an aqueous saturated solution of NaCl (20 mL), dried over anhydrous MgSO4 , filtered, and concentrated to afford the crude product. Purification by flash column chromatography (deactivated silica gel, 9 : 1 hexanes/Et2 O) afforded 384 mg of the pure title product as a clear oil (82% yield, 96% ee); HPLC (chiralpak AD-RH, 50% i-PrOH/H2 O, 0.300 mL/min, 210.8 nm) tr (major) = 8.60 min, tr (minor) = 10.64 min; [α]23 D +24.9◦ (c 1.0, CHCl3 ); IR (CH2 Cl2 , cast) 3451, 3035, 2877, 1640, 1257 cm−1 ; 1 H NMR (500 MHz, CDCl3 ) δ 7.40–7.26 (m, 5H), 5.79–5.75 (m, 1H), 5.40–5.36 (m, 1H), 4.78 (dd, J = 5.9, 5.9 Hz, 1H), 4.56 (dd, J = 7.4, 1.5 Hz, 1H), 4.32–4.28 (m, 1H), 3.96 (dq, J = 9.7, 7.1 Hz, 1H), 3.58 (dq, J = 9.7, 7.1 Hz, 1H), 3.11 (br s, 1H), 2.12–2.10 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H); 13 C NMR (125 MHz, CDCl3 ) δ 139.8, 128.3, 128.0, 127.2, 125.4, 124.8, 98.5, 78.7, 76.8, 64.5, 31.1, 15.3; HRMS-ESI (m/z): [M + Na]+ calcd for C14 H18 O3 Na, 257.1154; found, 257.1152. TABULAR SURVEY
Within each table, entries are organized in the order of increasing number of carbons in the carbonyl substrate, not including protecting groups. This system was adopted so as to have similar substrates grouped together. The tables cover entries from the literature up until December 31, 2005. In each table, for the same aldehyde, allyl transfer reagents are grouped by the type of boron reagent involved; boranes are followed by boronates, and then the others such as borinates and borate salts. In all tables, entries with the same experimental conditions but differing only in the results (yield and selectivities) are listed under a single entry. In these instances, the results noted correspond to the best reported example. Table 1A contains entries of simple allyl (C3 H5 ) transfer to non-aromatic carbonyl substrates. Table 1B contains entries for aromatic and heteroaromatic substrates. Tables 2 and 3 cover entries of Z-crotylation and Ecrotylation respectively (cis and trans C4 H7 ). In the instances where a mixture of E/Z crotyl reagents is used, these entries are found in Table 2. It should be noted that readers interested specifically in the propionate products of crotylation reactions should also consult Table 4, which contains several entries of α-substituted crotylation reagents. Table 4 includes all entries with reagents having a substituent in the α position of the allylic group. Table 5 lists entries involving allyl transfer where the β position is substituted with a variety of functional groups. Table 6 reports entries where the γ position of the reagent is functionalized with a carbon or heteroatom-containing group. Table 7 presents examples of allenyl and propargyl group transfer. Table 8 consists of entries of cyclic allylic boron reagents, where the allylic unit is part of a ring. Table 9 contains entries of intramolecular allylboration reactions. For multiple substitution patterns, the
ALLYLBORATION OF CARBONYL COMPOUNDS
83
entries are ordered by least to most substituted; entries with the same number of substitutions are prioritized by α > γ > β. The authors would like to mention that some entries employing the Ipc reagents are inconsistent with respect to the nomenclature used for the absolute configuration of the reagent. These inconsistencies originate from the source references. The following abbreviations were used in the text and the Tables: Ac acac Adm AIBN Ald All B2 (cat)2 BBN BEC bmim Bn Boc BPS Bu Bz Cbz Conc. Cy dba DBU DDQ DEIPS DIPT DMB DMF DMPM DMSO dppe dppf d.r. ee emim equiv or eq. e.r. Et HQ 8-HQ
acetyl acetylacetone adamantyl 2,2 -azo(bis)isobutyronitrile aldehyde allyl bis(catecholato)diboron 9-borabicyclo[3.3.1]nonanyl 2-bromoethyloxycarbonyl butylmethylimidazolium benzyl tert-butoxycarbonyl tert-butyldiphenylsilyl butyl benzoyl carbobenzyloxy concentration cyclohexyl dibenzylideneacetone 1,8-diazabicyclo[5.4.0]undec-7-ene 2,3-dichloro-5,6-dicyano-1,4-benzoquinone diethylisopropylsilyl diisopropyl tartrate 3,4-dimethoxybenzyl dimethylformamide 3,4-dimethoxybenzyl dimethyl sulfoxide diphenylphosphinoethane diphenylphosphinoferrocene diastereomeric ratio enantiomeric excess ethylmethylimidazolium equivalent enantiomeric ratio ethyl hydroquinone 8-hydroquinoline
84
Icr IL Ipc Ket L.A. LDA MEM Mes min MOM MS Nph Ph Phth Piv PMB PMP Pr PTC pTSA pyr rt SEM siamyl TBAT TBDMS TBDPS TEAN TES Thex Tf TFA TfOH THF THP TIPS TMP TMS TMSE Tol Ts TPS Tr
ORGANIC REACTIONS
isocaranyl ionic liquid isopinocampheyl ketone Lewis acid lithium diisopropylamide 2-methoxyethoxymethyl mesityl minute methoxymethyl molecular sieves naphthyl phenyl phthalyl pivaloyl p-methoxybenzyl p-methoxyphenyl propyl phase-transfer catalyst p-toluenesulfonic acid pyridine room temperature 2-(trimethylsilyl)ethoxymethyl sec-isoamyl tetrabutylammonium triphenylsilyldifluorosilicate tert-butyldimethylsilyl tert-butyldiphenylsilyl tetraethylammonium nitrate triethylsilyl thexyl (2,3-dimethyl-2-butyl) trifluoromethanesulfonyl trifluoroacetic acid trifluoromethanesulfonic acid tetrahydrofuran tetrahydropyranyl triisopropylsilyl 2,2,6,6-tetramethylpiperidine trimethylsilyl 2-(trimethylsilyl)ethyl p-tolyl p-toluenesulfonyl triphenylsilyl trityl
85 P
P OR
CHMe 2
R=
BIPHEPHOS
Bu-t
OR
Bu-t
CHMe 2
MeO
MeO
(R)-Tol-BINAP
O P O
P(C 6H 4Me-4)2
OH
(R,R)-i-Pr-DUPHOS
Me 2CH
Me 2CH
(R)-BINOL
P(C 6H 4Me-4)2
OH
C HART 1. ACRONYMS FOR L IGANDS USED IN T ABLES
86
C2
O
H
Carbonyl Substrate
I (74), 93 I (—), >99
Ether, –78° to rt Ether, –100° a
"
I (—), 98 I (—), >99
THF, –78°, 3 h Ether, –100° a
"
I
(71), 96
–78°
(70), 94
(—), 98
–25°
B(2-d-Icr)2
OH
(—), 93
Pentane, ether, –100°
(—), 94
rt
(72), 7
(88)
0°
Temp
B[(+)-Ipc]2
B
I
Ether, –100° a
"
Ether, 3 h
I (—), >99
THF, –78°, 3 h
"
TMS
I (—), 98
Ether, –78° to rt
B(4-d-Icr)2 I (72), 99
I (—), 92
"
I THF, –78°, 3 h
B[(–)-Ipc]2
OH
OH
Product(s) and Yield(s) (%), % ee
Ether, –78° to rt
Neat, 0-10°
Conditions
B[(–)-limonene]
BEt2
Allylborane Reagent
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS A. NON-AROMATIC CARBONYL SUBSTRATES
139, 242
240
204
143
139
240
239, 136a
139, 241
240, 136a
240
136, 239,
239, 136a
238
Refs.
87 B
B
MeO
B
"
B
O
O
O
N
O
N
O
O
SO2Me
Ph
Ph
O
Ph
Ether, –78° to rt, 2 h
Hexane, –40°
Hexane, –40°
rt, 12 h
Hexane, –40°, 1 h;
Hexane, –40° I
I
I (47), 96
OH
I (82), 33
I (92), 65
OH
I (67), 34
B[(+)-longifolene]2
O
I (72), 93
B[(+)-10-methyl-Ipc]2 Ether, –78° to rt
Ether, –78° to rt
I (65), 11
Ether, –78° to rt
B[(+)-β-pinene]2
(92), 38
(86), 86
133
122
122
244
122, 243
239, 136a
239, 136a
239, 136a
88
C2
CF3
O
O
O
R
H
H
Carbonyl Substrate
B
B(2-d-Icr)2
B[(+)-Ipc]2
BBN
B[(–)-Ipc]2
O
N
O S O
Allylborane Reagent
Pentane, ether, –100°
Pentane, ether, –100°
Pentane, rt, 2 h
Pentane, ether, –100°
Ether, –78°, 7 h
Conditions
I I (—), >99
CF3
OH
OH
OH
OH
2
(84)
NMe2 OBBN
(50), 99
(90) (50-57)
OEt
(95)
(95) OAc
Cl
R
(71), 94
(51), 92
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
248
248, 249
103
247
245, 246
Refs.
89
RO
R = TBDMS
R = Bn
R = Bn, TBDMS, TBDPS
R = Bn, TBDPS
R = PMB
H R = Bn
O
O
B
O
B
O
O
O
O
O
Ph
O B O
B
O
O
N Bn
O
OPr-i
OPr-i
O
N
Bn
O
OPr-i
OPr-i
B(2-d-Icr)2
B[(+)-Ipc]2
Pentane, ether, –100°,
B[(–)-Ipc]2
4 Å MS, toluene, –78°
46 h
4 Å MS, toluene, –78°,
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
4 Å MS, toluene, –78°
Ether, –78°, 4 h
12 h
Ether, –78° to rt,
1h
—
B[(–)-Ipc]2
OH
I
OH
I
OH
TBDPS
TBDMS
Bn
(45), 86
(61), 90
(76), 90
(62), 77
(42-70), 56
R
(42-70), 59
TBDPS
(95), 71
(—)
Bn
R
I (42-70), 59
RO
I
I
I (75), 94
RO
I (74), 92
RO
170
131
27, 28
170
253
252
251
250
90
C2
O
O
O
O
MeO
Br
H H
O
O
OH
H
O
OEt
OBu-n
O
H
Carbonyl Substrate
3
3
B
B
B[(–)-Ipc]2
B(4-d-Icr)2
B[(+)-Ipc]2
2
BC6H13
B(Bu-n)2
B[(+)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
Ether, –100°, 1 h
15 min
Ether, –110° to 20°,
15 min
Ether, –110° to 20°,
Neat, 0-20°
Neat, 0°
Neat, 0°
Neat, 0°
THF, –100°, 4 h
THF, –100°, 4 h
Conditions
MeO
Br
Br
I (80)
I (70)
I (88)
I
OH
O
OH
OH
OH
OH
2
OH
OH
OH
(82), 94
(50), 92
(50), 89
(85)
(82), >98, 97:3 d.r.
(80), >98, 97:3 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
257
256
256
238
238
238
238
254
254, 255
Refs.
91
C3
I
O
O
H
O
H
H
B
TMS
O Ph
B[(–)-Ipc]2
B[(+)-Ipc]2
O
Ether, –78°
Ether, –90°
Hexane, –40°
I
I
OH
I
OH
OH
I (71), >99
I (—), >99
(49), 90
(49), 95
(86), 50
Ether, –100° a
"
B
THF, –78°, 3 h
B(2-d-Icr)2
Ether, –78°, 3 h
I (—), 98
Ether, –100° a
" OH
240
I (—), 93
THF, –78°, 3 h
259
258
122
143
139
240
139
239, 136a
I (79), 86
Ether, –78° to rt
139
240
B(4-d-Icr)2
(—), 95
(—), 92
"
I (—), 96
I
OH
Ether, –100° a
THF, –78°, 3 h
"
B[(–)-Ipc]2
92
C3
TMS
O H
O H
Carbonyl Substrate
TMS
B
I (76), 91 I (—), 91
Ether, –78° to rt THF, –78°, 3 h
THF, –78°, 3 h
B(4-d-Icr)2 "
B(2-d-Icr)2
OH
240
240
240
239, 136a
136, 136a I (—), 86
141
I (71), 86
(—), 94
(80), 96
238
238
262, 1
261
Ether, –78°, 3 h
I
OH
I (90)
(71)
(48), 98
Refs.
THF, –78° to rt
Ether, –100°, 3 h
Neat, 0-10°
I (92)
I
OH
OH
Product(s) and Yield(s) (%), % ee
"
Pr-n
Neat, 0-10°
–70° to 130°
Ether, –100°, 1 h
Conditions
B[(–)-Ipc]2
B
B
B(Bu-n)2
3
B[(+)-Ipc]2
Allylborane Reagent
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
93
O
O
O
N
B
O
BBN
B
BEt2
B
O
B
O
Ph
Pr-n
Ph
O
SO2Me
N
O
O
MeO
B
B
Neat, 80-100°
Pentane, rt, 2 h
Neat, 0-10°
Neat, 0-10°
Neat, 80-100°
Ether, –78° to rt, 2 h
Hexane, –40°
Hexane, –78°
O
I (99)
I (92)
I
B
O
OH
O
OH
B
O
I (85), 44
I
OH
(96)
(91)
(85)
(92), 92
(91), 77
263
103
238
238
263
133
122
122, 244
94
C3
RO
CF3
C 2F 5
CF3
O
R = TBDMS
H
SiMe2Ph
CF3
H
R = Bn
O
O
O
O
Carbonyl Substrate
TMS
Ether, –78°, 4 h Ether, –100° to –78°
Ether, –100°, 3 h
Ether, –78° to rt, 3 h
Neat, 0-10°
"
Pr-n
Neat, 0-10°
Pentane, ether, –100°
Pentane, ether, –100°
Neat, 80-100°
Conditions
B[(–)-Ipc]2
B
B[(+)-Ipc]2
B
BEt2
B(2-d-Icr)2
B[(+)-Ipc]2
B
O
Allylborane Reagent
I
OH
O
I
265
141
264
(92), 84
111
238
238
248
248
263
I (82), 85
I
(66), 6
(78)
(65), >99
(70)
Refs.
I (90), 85
RO
OH
HO SiMe2Ph
I (83)
CF3
CF3 OH
I (—), >99
C2F5
CF3
B
O
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
95
Ether, –78° to rt,
THF, –78°, 3 h
Toluene, –78° Ether, THF
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
" B(2-d-Icr)2
R = PMB
R = Bn
R = TBDPS
R = TBDPS
R = TBDMS
R = Bn, TBDPS
R = PMB
R = Bn
O
O
O
Ph
O B O
B
O
B
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B(2-d-Icr)2
"
Ether, –78°
"
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Ether, –78°
3h
Ether, –78° to rt,
4h
THF, –78°
B[(–)-Ipc]2
R = TBDPS
RO
RO
I
OH
(—), 63
OH
OH
(—), 66 TBDPS
I
Bn
R
I (96)
I (87), >95
I (98), 84
RO
I (83), 94
(90), 94
(86), 93
(—), 66
27, 28
170
170
273
272
271
264
269, 270
253, 268
267
I (97), 91 I (90), 85
266
I (99), 88
96
C3
O H
Boc
H
B
O
B
O
"
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
–78°, 4 h
4 Å MS, toluene,
–78°, 4 h
4 Å MS, toluene,
THF, –78° to rt, 12 h
— O
O B
R = Bn
Ether, –78°, 3 h
Ether, –78°, 3 h
—
Conditions
Ether, –78°, 3 h
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
B[(+)-Ipc]2
Carbonyl Substrate
R = TBDMS
OR R = Bn
HN
O
OH
OH
Boc
I
OR
OR
OH
OH
I (97), 65:35 d.r.
I (—), 55:45 d.r.
I (82), 92:8 d.r.
OR
OR
HN
OH
(16), 84:16 d.r.
(—), 72:28 d.r.
(75), 96:4 d.r.
(80), 94:6 d.r.
(75), 97:3 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
170
170
275
118
167, 166
167, 166
167, 166
274
Refs.
97
H
O
O
N
N
O
O N
OH
Boc
O
B
O
"
B
O
O
O
O
O OPr-i
O
OEt
OEt
O
OPr-i
Toluene
Toluene, –78°, 3 h
4 Å MS, –78°
CH2Cl2, rt
O B
—
"
Boc
I
N
N
Boc
OH
Boc
I
I (77), 89:11 d.r.
I (84), 83:17 d.r.
O
O
OH
I (80), 96:4 d.r.
N
OH Ether
Ether
I
I (95), 70:30 d.r.
OTBDMS
OH
O B[(+)-Ipc]2
B[(–)-Ipc]2
CH2Cl2/H2O, rt, 30 min
n-Bu4NI (10 mol%),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (0.05 mol%),
Boc
H
H
"
BF3–K+
Boc
O
OTBDMS
O
ether
(—)
(—)
85:15
85:15
toluene THF
d.r. 89:11
Solvent (77)
(—), 66:34 d.r.
(—), 88:12 d.r.
(52), 97:3 d.r.
(69), 70:30 d.r.
278
282
277
277
279, 280
277, 278
281
276
99
98
C3
N
N
N
Boc
O
Et
O
Boc
TBDPSO
O
O
O
O
O
O H NHBoc
H
H
H
Carbonyl Substrate
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B
O
O
O
OEt
OEt
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
"
B
O
O
Allylborane Reagent
Ether, –78°, 3.5 h
Toluene, –78°, 3 h
Toluene, –78°, 3 h
THF, –78° to rt
Ether
Toluene, –78°, 3 h
4 Å MS, –78°
Conditions
N Boc
I
N
N
N
Boc
OH
Boc
OH
Et
TBDPSO
O
O
O
O
OH
OH
NHBoc
I (84), 90:12 d.r.
I (78), 82:18 d.r.
O
OH
(84)
(89)
(75)
Et2O
THF (84)
(—)
(—)
d.r.
90:10
87:13
85:15
(68), 12:1 d.r.
toluene
Solvent
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
285
282
282
283, 284
278
282
277
Refs.
99
O
HO
HO2C
TPSO
O
O
O
H
O H
NHBoc
O
B
TMS
O
"
24-48 h
Toluene, –78°,
24-48 h
CH2Cl2, –78°,
–78° to rt, 13 h
"
Petroleum ether,
O
Ether, –78°
Ether, –78°
Ether, –100°, 6 h
–10° to rt, 15 h
Et3N, CH2Cl2,
–10° to rt, 13 h
Et3N, CH2Cl2,
Ether, –78°, 3.5 h
B
B
TMS
B[(+)-Ipc]2
B(OPr-i)2
B(OPr-i)2
B[(–)-Ipc]2
O
HO
OH
I
NHBoc
O
I (—), 71:29 d.r.
I (75), 80:20 d.r.
I (60), 78:22 d.r.
O
OH
I (—), 95:5 d.r.
O
HO
HO2C
HO
TPSO
OH
(—), >99:1 d.r.
(88), 97:3 d.r.
(84)
(86)
(—), 12:1 d.r.
124
124
288
143
143
287
109
105
286
100
C3
O
O
O H
Carbonyl Substrate
B
O
B
O
"
B
O
B
O
O
O
O
O
O
O
OPr-i
OPr-i
Allylborane Reagent
4 Å MS, toluene
24-48 h
CH2Cl2, –78°,
24-48 h
Toluene, –78°,
24-48 h
CH2Cl2, –78°,
See table
Conditions
O
O O
OH
I
I (—), 68:32 d.r.
I (—), 76:24 d.r.
(—)
d.r.
77:23 93:7
–78°
70:30
64:36 –23°
0°
rt
Temp
58:42
77:23 71:29
79:21 rt
ether
0° to rt
75:25 rt
hexane
DMF
73:27
–78°
hexane
rt
71:29
rt
toluene
THF
77:23
rt –78°
toluene
–78°
CH2Cl2
d.r. 80:20
Temp
CH2Cl2
(—) Solvent
I
I (—), 81:19 d.r.
O
OH
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
125
124
124
124
118
Refs.
101 N
"
B
O
B
O
O
O
O
OPr-i
OPr-i
O
N
Toluene, –78°, 24-48 h
CH2Cl2, –78°, 24-48 h
CF3 4 Å MS, toluene, –78°, 8h
Toluene, –78°, 24-48 h
"
O
CH2Cl2, –78°, 24-48 h
"
CF3
4 Å MS, toluene, –78°
"
O
I (—)
4 Å MS
"
–78° –30° –23° –78° –78° –78° –63°
CH3CN CCl4 THF CH2Cl2 ether CHCl3
O
I
I (86), 93:7 d.r.
O
OH
I (86), 95:5 d.r.
I (79-83), 92:8 d.r.
I (—), 61:39 d.r.
(91), 96:4 d.r.
Temp
toluene
89:11
1 Solvent
93:7
0.2
d.r. 94:6
x 0.1
I (—), 93:7 d.r.
I (—)
4 Å MS, toluene, –78°
" xM
d.r.
25:75
64:36
61:39
70:30
71:29
72:28
97:3
124
124
132
124
124
170
125
125
102
C3
O
O
O H
Carbonyl Substrate
O
B
O
B
O
B
O
"
B
O
O
O
O
O
O
O
O
N
Bn N
n
Bn
CF3
N O
N
O
OPr-i
OPr-i
Allylborane Reagent
CH2Cl2, H2O, rt, 5 h
43 h
4 Å MS, toluene, –78°,
CF3 4 Å MS, toluene, –78°, 8h
4 Å MS, toluene
4 Å MS, –78°
Conditions
O
93:7 94:6 96:4 98:2
0° –23° –78°
81 84
R,R S,S
Reagent % Conv.
I (81), 67:33 d.r.
I
d.r.
d.r.
CH2Cl2
toluene
Solvent
2:98
99.7:0.3
(—)
rt
Temp
I
I (73), >99:1 d.r.
I (—)
O
OH
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
d.r. 96:4
98:2
234
131
132
125
125, 170
Refs.
103
C4
O
O
O
H
O H
TMS
O
B
O
B
O
B
O
O
O Ph
Cy
N O
N
Ph
B(2-d-Icr)2
B
BBN
O
O
O
0.5 M
B
O
B
n
Cy
Neat, 80-100°
CH2Cl2, H2O, rt, 3 h
Hexane, –40°
Ether, –100° a
Ether, –100°, 3 h
Pentane, rt, 2 h
36 h
4 Å MS, toluene, –78°,
t-BuCHO (0.1 equiv),
–78° to rt, 13 h
Petroleum ether,
O
O
OH
OH
OH
OH
OH
O
B
O
OH
I (87), 96:4 d.r.
(87)
(70)
(84), 30
(—), >99
(85), 97
(91)
(53), >99:1 d.r.
263
234
122
241
141
103
132
288
104
C4
n-Pr
O
O
O
H
Carbonyl Substrate
Ph B
THF, –78° to rt
B[(–)-Ipc]2
THF, –78° to rt
"
B
Ether, –78°, 3 h
Ether, –78° to rt
"
TMS
Ether, –100° a
Neat, 0-10°
B[(–)-Ipc]2
BEt2
Pentane, rt, 2 h
BBN
Ether, –78°
Neat, 0-10°
THF, –78° to rt
Conditions
BEt2
B[(–)-Ipc]2
Allylborane Reagent
I
OH
I
OH
I (79), >99
I (88), 83
I (72), 87
n-Pr
n-Pr
OH
I (77), 81
I (94)
I
OH
OH
(—), 96
(89)
(79), 35
(77)
(76), 79
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
143
166
240
136, 136a
139, 289
238
145
136a
103
238
136a
Refs.
105 "
B
B
B
O
O
O
O
N
O
O
Ph
SO2Me
O
NHBn
NHBn
rt, 12 h
Hexane, –40°, 1 h;
Hexane, –40°
Ether, –78° to rt, 2 h
Toluene, –78°, 18 h
—
B(OBu-n)2
I
OH
I I (93), 72
n-Pr
OH
I (78), 96
n-Pr
n-Pr
OB(OBu-n)2
I (—), 94
(93), 72
(—), 95
(50-60)
THF, –78°, 3 h
"
I
(—), >99
Ether, –100° a
B(2-d-Icr)2 n-Pr
I (—), 88
THF, –78°, 3 h
"
OH
239, 166,
I (73), 89
Ether, –78° to rt
"
244
122
133
290
2
240
242
139, 241,
240
240
139
I (—), 98
Ether, –100° a
B(4-d-Icr)2
106
C4
i-Pr
O
O
H
Carbonyl Substrate
B
t-Bu
i-Pr
TMS
TMS
Ph
240
I (—), 88 I (—), 96
Ether, –100° a
"
139
136, 136a
I (86), 90
141
141
141
141
263
145
Ether, –78°, 3 h
I (95), 72
I (87), 24
(85), 96
(86)
(80), 87
Refs.
Ether, –78° to rt
Ether, –100°, 3 h
Ether, –100°, 3 h
I
I (82), 71
i-Pr
O B
OH
O
HO
Product(s) and Yield(s) (%), % ee
"
TMS
Ether, –100°, 3 h
Ether, –100°, 3 h
Neat, 80-100°
Ether, –78°
Conditions
B[(–)-Ipc]2
B
B
B
B
B
O
Allylborane Reagent
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
107
C 3F 7
O
O
SiMe2Ph
H
B
TMS
O N SO2Me
Ph
B[(+)-Ipc]2
B(2-d-Icr)2
B[(+)-Ipc]2
B
B
O
THF, –78°, 3 h
"
O
Ether, –100° a
B(2-d-Icr)2
Ether, –78° to rt, 3 h
Pentane, ether, –100°
Pentane, ether, –100°
Ether, –78° to rt, 2 h
Hexane, –40°
Ether, –78°, 3 h
I (—), 98
Ether, –100° a
"
OH
OH
OH
I
I
HO SiMe2Ph
I (—), >99
C3F7
i-Pr
i-Pr
i-Pr
OH
I (—), 94
i-Pr
I (—), 95
THF, –78°, 3 h
OH
I (73), 97
Ether, –78° to rt
B(4-d-Icr)2 "
(65)
(55), 99
(51), 94
(88), 70
(70), >99
(—), >99
111
248
248
133
122, 244
143
240
139
139, 241
240
239, 136a
108
C4
RO
N H
O
B
B
O
O
3
R = TBDPS
H
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
O
B[(–)-Ipc]2
BEt2
B(OPr-i)2
Allylborane Reagent
H R = TBDMS, TBDPS, Bn
O
H
Et
O
TBDMSO
I
Cl
HO2C
O
Carbonyl Substrate
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
THF, reflux, 2 h
3h
Ether, –100° to –78°,
Ether, –100°, 0.5 h
Neat, 0-10°
–10° to rt, 13 h
Et3N, CH2Cl2,
Conditions Et
I (—), 82
RO
N H
I
OH
OH
(90)
OH
OH
TBDMSO
I
Cl
HO2C
OH
(91)
(73)
(90)
Bn
TBDPS
TBDMS
R
(—), 78
(—), 74
(—), 77
(68), 91
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
131
170
293, 294
292
291
238
105
Refs.
109
RO
H
R = TBDPS
R = Bn
R = PMB
O
O
O
CF3
N
Ether, –78°, 3 h
Ether, –78°, 3 h
—
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
Ether, –110°, 3 h a
5h
4 Å MS, THF, –78°,
t-BuCHO (0.1 equiv),
36 h
4 Å MS, toluene, –78°,
t-BuCHO (0.1 equiv),
Ether, –100°
CF3
Cy
37 h
4 Å MS, toluene, –78°,
"
O
N
Bn
Cy
N O
N
O
N
Bn N
B[(–)-Ipc]2
B O 0.5 M
O
O
B O 0.5 M
O
B
O
O
I
OH
RO
RO
OH
OH
I (80), 96:4 d.r.
I (70)
RO
I (80), 95
I (72), 94
I (58), 94
(76), 99:1 d.r.
(78), 98:2 d.r.
(92)
280
167
167
296
295
132
132
131
110
C4
RO
H
R = TBDMS
R = TBDPS, TBDMS
R = TBDPS
R = TBDMS, TBDPS, Bn
O
Carbonyl Substrate
B
O
B
O
0.5 M
B
O
B
O
B
O
O
O
O
O
O
O
O
O
O
CF3
N O
N
CF3
N O
N
Cy
N O
N
O
OPr-i
OPr-i
Allylborane Reagent
CF3 4 Å MS, THF, –78°, 9h
CF3 4 Å MS, THF, –78°
Cy 4 Å MS, THF, –78°, 36 h
4 Å MS, toluene, –78°
Toluene, rt
Conditions
RO
I
54:46
(76), 94:6 d.r.
95:5
(72) 9h TBDMS
OH
92:8
(82)
d.r.
54:46
Bn
8h
Time
83:17
d.r.
Refs.
132
132
132
170
169, 297,
52:48 169
TBDPS
TBDMS
R
TBDPS
R
(—)
79:21
(—)
TBDPS Bn
d.r. 89:11
(71)
TBDMS
(—)
R
I
I (71), 95:5 d.r.
I
RO
OH
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
111
RO
H
R = TBDMS, TBDPS, Bn
R = Bn
O
R = TBDPS
R = TBDMS, TBDPS, Bn
O
O
O
B
O O
O N O
N
Bn
B[(+)-Ipc]2
Bn
CF3
N O
N
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
O
CF3
4 Å MS, toluene
Ether, –78°, 3 h
Ether, –78°, 3 h
8h
4 Å MS, THF, –78°,
4 Å MS, toluene, –78° I
OH
OH
(76) (43) (48) (35) (68) (56) (53)
37 h 21 h 36 h 44 h 25 h 21 h 23 h 23 h
–78° –50° –78° –78° –78° –50° –50° –50°
TBDMS TBDMS TBDPS TBDPS TBDPS Bn Bn
S,S R,R S,S R,R R,R S,S R,R
7:93
93:7
5:95
3:97
95:5
3:97
95:5
d.r. 97:3 (46)
Time Temp TBDMS
(—), 95:5 d.r.
(—), 98:2 d.r.
80:20
131
167
167
132
87:13 170
(—)
(72)
Bn
TBDPS
d.r. 81:19 169, 297,
(—)
TBDMS
R
S,S
Reagent R
RO
RO
RO
OH
I (83), 97:3 d.r.
RO
OH
112
C4
Br
O
H
OH
O
O
H
R = TBDMS
O
H
MeO B
O
O
O
B
–
O
O
OMe
O
NHBn
NHBn
MgBr+
B[(–)-Ipc]2
B[(+)-Ipc]2
OMe,
–78° to rt, 3 h
THF, –78° to rt, 1.5 h MgBr,
OMe B O
Toluene, –78°, 18 h
2.
1.
O
Ether, –78°, 1 h
Ether, –78°, 1 h
Ether, –78°, 1 h
B[(+)-Ipc]2
R = TBDMS
OR
Ether, –78° to 0°, 3 h
Ether, –78°, 1 h
Conditions
B[(–)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
R = Bn
H R = TBDMS
OR
Carbonyl Substrate
Br
OH
OR
OR
I (67)
OR
OR
OH
OH
OH
I
OH
OH
OH (—), 95
(62), 70:30 d.r.
(67)
(67)
(67), 92:8 d.r.
(67)
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
290
299
298
298
298
253
298
Refs.
113
O H
HN
O
N
Me
O
N
Me
BzO
O
O
Cl
R
O
O
O
H
H
O Ph
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B
O
0° to rt
–78° to –25°, 5 h
Ether, THF,
–78° to –25°, 5 h
Ether, THF,
–78° to –25°, 5 h
Ether, THF,
–78° to –25°, 5 h
Ether, THF,
Hexane, –40°
O
N
Me
I
OH
OH
O
HO
HN
O
N
Me
BzO
O
O
N
Me
R
OH
OH
I (79), 85:15 d.r.
O
Cl
9:1 19:1
(94) Cbz
d.r. (96) Boc
R
(55), 97:3 d.r.
(53), 75:25 d.r.
(79), 85:15 d.r.
(83), 70
301
300
300
300
300
122, 244
114
C4
O
TBDMSO
TBDMSO
BnO
TBDMSO
O
O
O
O
O
O
H
H
H
O H
Carbonyl Substrate
B
O
B
O
B
O
B
O
B
O
B
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Allylborane Reagent
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Conditions
O
O
TBDMSO
TBDMSO
BnO
BnO
TBDMSO
TBDMSO
O
O
OH
OH
OH
OH
OH
O
O
OH
70:30 d.r.
(82), >97,
(—), 75:25 d.r.
(79), 84:16 d.r.
(83), 96:4 d.r.
74:26 d.r.
(86), >97,
96:4 d.r.
(95), >96,
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
302
302
170
170
302
302
Refs.
115
O
O
O H
B
O
"
B
O
B
O
O
O
O
O
O
OEt
OEt
O
OPr-i
Toluene, –78°, 24-48 h
CH2Cl2, –78°, 24-48 h
4 Å MS, toluene, –78°
CH2Cl2, –78°, 24-48 h
CH2Cl2, –78°, 24-48 h
See table
Toluene, –78°, 24-48 h
OPr-i
O
4 Å MS, toluene, –78°
"
O
O
O
OPr-i
OPr-i
"
B
O
B
O
O
toluene
O
O
I (94), 98:2 d.r. OH
I (—), >300:1 d.r.
I (—), 86:14 d.r.
I (—), 90:10 d.r.
I (85), 90:10 d.r.
(—)
(63), 68:32 d.r.
79:21
87:13
90:10
87:13
90:10
d.r.
(96), >98, 99:1 d.r.
–78° to rt
rt
toluene n-BuLi, THF
rt –78°
CH2Cl2
–78°
I Temp
OH
CH2Cl2
O
OH
Solvent
O
O
TBDMSO
124
124
170
124
124
124
118
302
116
C4
O
O
O
O
O
O
O
O
O H
H
H
O
O
O H
Carbonyl Substrate
O
O
O
O
B(2-d-Icr)2
B[(–)-Ipc]2
B[(–)-Ipc]2
O
OEt
OEt
O
Ether, –75°, 2 h
Ether, –75°, 2 h
–70°
Ether, –78° to rt
–78° to rt, 24 h
4 Å MS, CH2Cl2,
O(Adm-1) Toluene, –78°, 24-48 h
O(Adm-1)
B[(+)-Ipc]2
B
O
B
O
4 Å MS, toluene, –78° O
Toluene, –78°, 24-48 h
O
CH2Cl2, –78°, 24-48 h
"
O
OPr-i
OPr-i
Conditions
"
B
O
Allylborane Reagent
O
O
O
I
OH
OH
OH
OH
I (52), 93:7 d.r.
O
O
O
O
O
(93), >99:1 d.r.
(40), 9:1 d.r.
(60-65), 9:1 d.r.
(72), 6:1 d.r.
309
309
306
305
303, 304
124
170
I (—), 60:40 d.r.
124
124
I (63), 73:27 d.r.
I
(—), 71:29 d.r.
Refs.
I (—), 64:36 d.r.
O
O
OH
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
117
O
O
O
N H
H N
O
TBDMSO
O
Et
MeO
Et
O
O
O
O
O
H
H
H
O
O
O
3
B
B[(–)-Ipc]2
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
O
B[(+)-Ipc]2
THF, reflux, 15 h
Ether, –78°
Ether, –100°, 1 h
4 Å MS, THF
4 Å MS, toluene
2h
Toluene, –78° to rt, O
Et O
OH
O
O
O
TBDMSO
O
Et
MeO
Et
N H
H N
O
OH
OH
OH
I (—), 88:12 d.r.
Et
(90)
(93), >95:5 d.r.
(82), >99
(—), 87:13 d.r.
(75), 95:5 d.r.
293
310
257
170
170
307, 308
118
C5
C4
t-Bu
N H
H N
O H
O
O H
Carbonyl Substrate
I (—), 99 I (—), >99
— THF, –78°, 3 h Ether, –100° a
" B(2-d-Icr)2 "
Ether, –78°, 3 h
I (—), >99
Ether, –100° a
"
TMS
I (88), 83
THF, –78° to rt
I (79), >98
I (60), 99
I (—), 83
THF, –78°, 3 h
"
I
OH
B[(–)-Ipc]2
t-Bu
OH
I
OH (66), 99
(90), 97
(97)
(90)
Product(s) and Yield(s) (%), % ee
I (66), 95
N H
H N
t-Bu
Ether, –100°, 3 h
Pentane, rt, 2 h
Ether, –78°
Ether, –100° a
THF, reflux, 15 h
Conditions
B
BBN
"
B
TMS
B
B[(–)-Ipc]2
3
Allylborane Reagent
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
143
139
240
313
139
136, 136a
240
141
103
312
311
294
Refs.
119 MeO
B
B
B
O
B
O
B O
O
O
N
O
O
O
O
O
O
Ph
O
Ph
N O
N
Bn
O
Bn
OPr-i
OPr-i
O
NHBn
NHBn
Hexane, –40°
Hexane, –40°
67 h
4 Å MS, toluene, –78°,
4 Å MS, toluene, –78°
Toluene, –78°, 18 h
I
I (87), 48
I (85), 45
I (—), 96
t-Bu
OH
I (—), 98
I (—), >99
Ether, –100° a
"
O
I (—), 88
THF, –78°, 3 h O
I (80), 88
THF, –78° to rt
"
I
B(4-d-Icr)2
t-Bu
OH Ether, –100° a
B[(+)-Ipc]2
(56), 86
(—), 99
122
122, 244
131
131, 170
290
139
240
239, 136a
241
120
C5
i-Pr
n-Bu
t-Bu
O
O
O
H
H
H
Carbonyl Substrate
O N
O
SO2Me
B
B
B
O
O N
O
SO2Me
BF3–K+
O
N
O S O
B
B
O
n
n
Allylborane Reagent
Ether, –78° to rt, 2 h
CH2Cl2, H2O, rt, 3 h
15 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
Ether, –78°, 7 h
Ether, –78° to rt, 2 h
CH2Cl2, H2O, rt, 4 h
Conditions
I
OH
i-Pr
n-Bu
t-Bu
OH
OH
OH
I (84), 84
t-Bu
t-Bu
OH
(69), 90
(82)
(95)
(80), 88
(49)
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
133
234
100
245, 246
133
234
Refs.
121
Et
n-Pr
i-Pr
O
O
O
H
O
O
Ph B
Neat, rt, 3 d
O O
THF, –78°, 3 h
B[(+)-Ipc]2
B
THF, –78°, 3 h
Neat, 80-100°
Ether, –78°
Pentane, rt, 2 h
Neat, 0-10°
B[(–)-Ipc]2
B
O
BBN
B
Pentane, rt, 2 h
BBN Pr-n
Neat, 0-10°
BEt2
Et
Et
Et
n-Pr
i-Pr
HO
I (77)
B
O
OH
OH
OH
OH
O
I (100)
I
OH
(—), 62:38 d.r.
(83), 95:5 d.r.
(81), 96:4 d.r.
(87)
(74), 92
(96)
(72)
115
166, 167
166, 167
263
145
103
238
103
238
122
C5
O
O
OR
NH
O
O
OR
Boc
i-Pr
N H
O
H
H
H
R
Carbonyl Substrate
B
B
O
B
O
O
O
B[(+)-Ipc]2
B[(–)-Ipc]2
3
B[(+)-Ipc]2
Allylborane Reagent
Neat, rt, 3 d
Neat, rt, 3 d
Ether, –78°
Ether, –78°
THF, reflux, 2 h
Ether, –78° to rt, 3 h
Conditions
OH
OR
OH
OH
NH
OH
NH
OR
Boc
i-Pr
Boc
i-Pr
N H
HO R
(79)
(53), 81 (44), 79
SiMe2Ph SiMe2Bn
(—)
(—)
MOM
TBDMS
R
MOM
TBDMS
R
(61), 92:8 d.r.
61:39
49:51
d.r.
79:21
79:21
d.r.
(61), 92
TPS
(61), 93:7 d.r.
(32), 59
(72), 89
TES
TMS
R
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
115
115
314
314
293, 294
111
Refs.
123
3
N
O
H
O
O
H
O
O
H
O
H
NH
Cbz
N
Cbz
TBDMSO
Boc
TBDMSO
H
O
O
R = PMB
R = Bn
TBDMSO
RO
H
H
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
—
Ether, –78°
THF, –78° to rt
THF, –100°, 4 h
—
N
3
O
NH
OH
OH
OH
OH
OH
Cbz
N
Cbz TBDMSO
Boc
TBDMSO
OH
TBDMSO
I (93), 95:5 d.r.
Ether, –100° a
"
B[(–)-Ipc]2
I (88), 96
Ether, –100° a
B[(–)-Ipc]2
I
OH
I (75), 96:4 d.r.
RO
THF, –100°
Ether, –100°
"
B[(–)-Ipc]2
(70), 2:1 d.r.
(65), 10:1 d.r.
(60), >95:5 d.r.
(97), >98, 95:5 d.r.
(92), 88
(75), 96:4 d.r
324
274
322, 323
254, 321
319, 320
318
317
316
315
124
C5
TIPSO
BnO
PMBO
OBn
H
O
H
H
H
O
H
H
OMe O
O
OBn O
O
PMBO
O
O
O
O
i-Pr
O
TBDMSO
BnO
TBDMSO
H
Carbonyl Substrate
B
O O
O
O
OPr-i
OPr-i
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
Toluene, –78°
Ether, –78°
Ether, –78°
Ether, –78° to rt
Ether, –78° to rt, 16 h
Ether, –78°, 4 h
2h
Ether, –78° to rt,
Conditions
O
O
TIPSO
BnO
PMBO
OBn
PMBO
i-Pr
O
TBDMSO
BnO
OH
OH
(75), 96:4 d.r
(92), 83
328, 329
327
326
325
264
270
Refs.
(74), 80, 5.5:1 d.r. 330
(74)
(66), 91.5:8.5 d.r.
(94)
(44)
OMe OH
OH
OBn OH
OH
O
OH
TBDMSO
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
125
O
O
S
H
O
H
—
—
Neat, rt, 3 d
O
O N
TBDMSO
O
O
OH
(87), 92
OH
OTES OH
S
H
O
(79), 78
(86), 78
HO
O
O
PMBO
O
O
PMBO B[(–)-Ipc]2
B[(+)-Ipc]2
O
Ether, –93°
–78° to rt
4 Å MS, toluene,
HO
O
PMBO H
O B
O
OPr-i
OPr-i
O
–78° to rt
4 Å MS, toluene,
HO
Boc O
H
H
O
O
O
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B
O
O
Boc
N
TBDMSO
O
OTES O
H
O
O
PMBO
O
O
(82)
(76)
(—), 73:27 d.r.
280, 280a
280, 280a
115
332, 333
331
328, 329
126
C5
O
MeO
O
O
O 3
O
O
PMBO
O
BnO
O
BnO2C
O
O
BnO
O
H
H
O
O
O
OMe O
H
H
H
H
Carbonyl Substrate
B[(–)-Ipc]2
B[(+)-Ipc]2
B(4-d-Icr)2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
Ether, –100°, 1 h
Ether, –78°
Ether, –78°
Ether, –78°
Ether, –78°
Ether, –78°
Conditions
O
MeO
O
O
O 3
OH
OH
OH
OH
OH
PMBO
O
BnO
O
BnO2C
O
O
BnO
O
OMe OH
(88), 96
(80), 94
(95), 78:8 d.r.
(72)
(71), 83:17 d.r.
(75)
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
257
338
337
335
336
335
Refs.
127
C6
n-Bu
O
n-C5H11
O H
O
O
O
N Ts
BBN
"
B
Ts N
0.5 M
B
O
0.5 M
B
O
Ph
Ph
N O
N
CF3
N O
N Cy
CF3
Pentane, rt, 2 h
Toluene, –78°, 2 h
CH2Cl2, –78°, 2 h
5h
4 Å MS, THF, –78°,
t-BuCHO (0.1 equiv),
7h
4 Å MS, toluene, –78°,
t-BuCHO (0.1 equiv),
—
" O
—
B[(+)-Ipc]2
Cy
Pentane, ether, –100°
Pentane, rt, 2 h
B[(–)-Ipc]2
BBN
I
OH
I
n-Bu
OH
I (>90), 95
n-C5H11
I (95), 95
n-C5H11
OH
I
OH
OH
I (91), 88
n-C5H11
n-C5H11
n-C5H11
OH
(100)
(>90), 90
(93), 97
(63), 96
(71), 97
(92)
103
50
50
132
132
339
250
204
103
128
C6
t-Bu
O
O
O
Carbonyl Substrate
CF3
Pr-n
Neat, 0-10°
BEt2
B
Neat, 0-10°
Pentane, rt, 2 h
Pentane, rt, 2 h
BBN
BBN
Neat, 0-10°
BEt2
DMF, –40°, 1 h
(R,R)-i-Pr-DuPHOS, B
CF3
CuF, La(OPr-i)3, O
O
THF, –78° to –40°, 48 h
Ether, –78°
Conditions
O
B
O
B
Ph
Allylborane Reagent HO I
I (88)
I (100)
I
I (94)
t-Bu
HO
I
OH
OH
I (75), 90
t-Bu
(75)
(92)
(99), 91
(70), 99
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
238
103
238
103
238
164
135
145
Refs.
129
t-Bu
O
O
O
SiMe2Ph
SiMe2Ph
Fe(CO)3 H
O
Fe(CO)3 H
Fe(CO)3 H
O
O
O
O
O
B[(+)-Ipc]2
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B
O
O
B[(–)-Ipc]2
B[(–)-Ipc]2
B
Ether, –78° to rt, 3 h
Ether, –78° to rt, 3 h
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Ether, –78° to rt, 18 h
Ether, –78° to rt, 2 h
Neat, 80-100° O
B
t-Bu
OH
OH
OH
OH
(80)
HO SiMe2Ph
HO SiMe2Ph
Fe(CO)3
Fe(CO)3
(4), 41
Fe(CO)3
Fe(CO)3
O
(35), 41
Fe(CO)3
(34), 29
(70), 42
(85-90), 75:25 d.r.
(85-90), 99:1 d.r.
+
(24), 10
OH
111
111
129
129
340
340
263
130
C6
RO
O O
O
O H
H
Fe(CO)3 H
H
OBz O
O
O
O
TBDMSO
N H
H
Carbonyl Substrate
B
O
O
O
B[(–)-Ipc]2
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
O
B[(–)-Ipc]2
3
Allylborane Reagent
—
Ether, –100° to –78°, 3 h
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
—
THF, reflux, 2 h
Conditions
RO
H
O
H
O
O O
(—), 90
(83), 88
65:35
>99:1
d.r.
(—), >98, >50:1 d.r.
PMB HO
(93)
(82), 45:1 d.r.
(79), 89
OH
OH
OH
OBz OH
(50)
TBDMS
R
Fe(CO)3
Fe(CO)3
TBDMSO
N H
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
343
292
342
129
341
293, 294
Refs.
131
EtO
O H
Fe(CO)3 H
MeO
O
O
Pr-i
H
O
HO
O
O
O
TBDMSO
i-Pr
H
O
i-Pr
OH
i-Pr
O
O
O O
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
O
B(OPr-i)2
"
OPr-i
OMe
MgBr+
BF3–K+
– B O O
MeO
–78° to rt, 3 h
MgBr,
i-Pr OMe, THF, –78° to rt, 1.5 h
OMe B O
Ether, –100°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Ether, –10°, 18 h
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
CH2Cl2/H2O, rt, 30 min
n-Bu4NI (10 mol%),
2.
1.
O
I
OH
OH
Fe(CO)3
O
OH
OH
(85-90), 82:18 d.r.
MeO
O
EtO
Fe(CO)3
(81)
(87), 95.5:4.5 d.r.
(97), 65:35 d.r.
(83), 72:28 d.r.
OH
(85-90), 98.5:1.5 d.r.
MeO
O
HO
O HO Pr-i
I (90), 65:35 d.r.
i-Pr
TBDMSO
i-Pr
OH
318
129
129
108
99
276
299
132
C6
i-Pr
O
H
CO2H
4
O
O
MeO
O
O
O H
Fe(CO)3 H
MeO
B(OPr-i)2
B[(–)-Ipc]2
"
B[(–)-Ipc]2
–10° to rt, 13 h
Et3N, CH2Cl2,
Ether, –100°, 1 h
Ether, –78° to rt, 14 h
—
O
O
HO2C i-Pr
MeO
O
I
MeO
I (88)
O
MeO
O Ether, –78° to rt, 2 h
O
O B[(–)-Ipc]2
MeO
O
Fe(CO)3 H
Ether, –78° to rt, 2 h
OH
4
OH
OH
Fe(CO)3
(87)
+
345
344, 340,
253
Refs.
(80), 92
105
257
347
346
345
(82-86), >95:5 d.r. 344, 340,
(28), 52
(33-42), 55
OH
(77)
OH
Fe(CO)3
Fe(CO)3
OH
(91), 92:8 d.r.
Product(s) and Yield(s) (%), % ee OBn OMe OH
MeO
B[(–)-Ipc]2
18 h
Ether, –78° to 0°,
Conditions
O
H
B[(+)-Ipc]2
Allylborane Reagent
O
OBn OMe O
Carbonyl Substrate
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
133
C7
MeO2C O
O
H
4
O H
TMS
O
O
O
O
" 0.03 M
B
O
B
O
N O
N
Bn
O
Bn
OPr-i
47 h
4 Å MS, toluene, –78°,
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
toluene, –78°, 16 h
B
OPr-i
L.A. (10 mol%),
O O
THF, –85°, 18 h
Ether, –100°, 3 h
Ether, –78°
B[(+)-Ipc]2
B
B[(+)-Ipc]2
17 h 2h
47 h –50° rt
(97), 87
97
84
80
(74)
(48)
(—), 87
(—), 94
(40), 97
Sc(OTf)3
AlCl3
L.A.
(66)
(92), 96
(44), 86
Time % Conv.
4
OH
–78°
Temp
I
OH
OH
OH
OH
I (40), 97
I
MeO2C
O
132
131
125
25
348
141
314
134
C7 O H
Carbonyl Substrate
O 0.5 M
B
O
"
B
O
O
O
O
O
" xM
" 0.5 M
B
O
O N
O
OR
OR
O
OPr-i
OPr-i
O
N
Cy
Allylborane Reagent
Cy
4 Å MS, toluene, –78°
Toluene
4 Å MS, –78°
4 Å MS, –78°
t-BuCHO (0.1 equiv),
5h
MeCHO (0.1 equiv), 4 Å MS, toluene, –78°,
4 Å MS, toluene, –78°
Conditions
I
I
I
1h 5h
toluene THF
0.1 0.5
(—), 82 (—), 57 (—), 50
–50° 0° rt
(—), 84 (—), 86 (—), 86
C10H19-c CH(Pr-i)2
(—), 86 Me
(—), 86
(—), 59
Et
(—), 78 CH2Cl2
(—), 82 THF
Pr-i
R
(—), 87
–78°
Temp
I
ether
toluene
(—), 87
(91), 94
(71), 94
(82), 95
(—), 91
(—), 62
Solvent
7h
toluene
0.5
OH
Time
Solvent
3h
5h
Time
x
I (—), 90
I
OH
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
125
131
131, 125
132
132
132
Refs.
135 CF3
O
O
O
O
B
O O
O
OEt
OEt
O
n
NHBn
NHBn
CF3
Ph
O B O
B
O
B
O
B
O
O
O OAc,
O
OEt
OEt
2
CH2Cl2, H2O, rt, 3 h
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
THF, –78°, 1 h
toluene, 40°, 66 h
Pd2(dba)3, DMSO,
O B
O
Toluene, –78°, 18 h
OH
I (53), 92
I (90), 76
I (58), 48
I (—), 99
(92)
234
28
135
349
290
136
C7
xM
0.05 M
xM
0.05 M
O H
Carbonyl Substrate
Bn
O
B
O
B
O
B
O
B
O
O
N
O
N
O
O
Pr-i
O
N
O
N
Pr-i
O
O
O
OPr-i
OPr-i
Allylborane Reagent
Bn
–25°, 40 h
–78°
–78°
–78°
Conditions
I
I
I
29 56
30 CHCl3 0.07
37
% ee 10
18
% Conv.
46
30
27
% ee
THF
toluene
80
14
27
0.07
0.06
Solvent
18 h
CH2Cl2
x
8
16 h THF
40
24
16 h toluene
% Conv.
18 h
CH2Cl2
0.1
Time
20 h
ether
0.08
Solvent
16 h
toluene
Solvent
% Conv.
53
32
21
% ee
59 —
—
Time
78
70
1.5 h
THF
0.08
x
87
95
toluene CH2Cl2
% ee
% Conv.
Time 0.25 h
Solvent
I
OH
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
350
350
350
350
Refs.
137
O
See table
I
B
O O
C6H4NO2-p –78°
I
C6H4NO2-p
CH2Cl2
toluene
15 h
40 h
40 h
40 h
21
94
91
75
80
2
46
46
7
13
4
1
18 h
15 h
85
64
21
95
82
% Conv.
21 h
16 h
5h
6
11
% ee S
R
13
6
11
Time % Conv. % ee
19 h
15 h
20 h
20 h
6
15
S
R
R
S
R
S
S
30
27
23
25
% Conv. % ee
67
CH2Cl2
Time
50
toluene
Solvent % Conv. % ee
Time % Conv. % ee
Time
–58°
–78°
–78°
Temp
Solvent
CHCl3
0.08
0.05 M
CH2Cl2
0.07
Solvent toluene
x
0.08
B
CHCl3
0.15
xM
–78°
CH2Cl2
0.2
–25°
–25°
Temp
–78°
–25°
–25°
–25°
Temp
CH2Cl2
I
OH
CH2Cl2
CH2Cl2
THF
toluene
Solvent
0.1
Ph
See table
I
–25°
O
See table
toluene
Ph
O
O
O
I
OH
Solvent
O
O
O H
H
O
NBn2
–78°, 16 h
x
O
B
O
B
O
B
O
NBn2
0.1
xM
0.08 M
0.06 M
O
350
350
350
350
350
138
C7
0.1 M
0.1 M
O
O
OH
H
Carbonyl Substrate
O
O
N Ts
N
n-Bu3SnH, THF, reflux
n-Bu3P, PhSeCl, AIBN,
15 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
—
B
Ph
Ph
–78°, 2 h
Toluene
Toluene
Conditions
O O
BF3–K+
3,5-(CF3)2C6H3O2S
B
N
Ph
Ph
3,5-(CF3)2C6H3O2S
B
Ts N
B
O
B
O
Allylborane Reagent
I
OH
–25°
–78°
Temp
I (56)
I
OH
I (84), 92
I
I
OH
20 h
15 h
(97)
toluene
CH2Cl2
Solvent
73
15
Time % Conv.
–25°
–78°
Temp 4 46
(>90), 97
(>90), 93
20 h
72 h
Time % Conv.
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
352
100
351
50
350
350
Refs.
139
n-C5H11
n-C6H13
O
i-Pr
O
O
O OH
O
Pr-i
O O
O
B(OPr-i)2
B
O
BBN
BBN
B
O
BBN
B
O
O
OEt
OEt
bmimBr, rt, 3 h
reflux
n-Bu3SnH, THF,
n-Bu3P, PhSeCl, AIBN,
Pentane, rt, 2 h
Pentane, rt, 2 h
Neat, 80-100°
Pentane, rt, 2 h
n-Bu3SnH, THF, –78°
n-Bu3P, PhSeCl, Et3B,
OH
B
+
(94)
(65)
(98)
(30), 8
n-C5H11
OH
OH
(82)
(79)
I + II (100), I:II = 95:5
HO
O
O
OH
n-C6H13
I
i-Pr
i-Pr
OH
II
OH
353
352
103
103
263
103
352
140
C7
BnO
t-Bu
n-Bu
OH
OH
TBDMSO
O
O
H
H
O
TBDMSO
H
O
O
H
H
Carbonyl Substrate
O
B[(–)-Ipc]2
B(OH)2
B(OH)2
B O
OEt
OEt
Ether, –100°
CH2Cl2, rt
CH2Cl2, rt
4 Å MS, toluene, –78°
CH2Cl2, –78°
B[(+)-Ipc]2
O
CH2Cl2, –78°
"
O
4 Å MS, toluene, –78°
Ether, –100°, 2 h
Conditions
B[(–)-Ipc]2
B[(+)-Ipc]2
Allylborane Reagent
BnO
t-Bu
n-Bu OH
OH
TBDMSO
TBDMSO
OH
OH
I
OH
OH
OH
I (73), 2:1 d.r.
TBDMSO
TBDMSO
OH
OH (60), 80
(86), 70:30 d.r.
(84), 68:32 d.r.
(76), 1:1 d.r.
(77), 2:1 d.r.
(98), 9:1 d.r.
(95), 10:1 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
358
110
110
357
357
357
357
356
354, 355,
Refs.
141
PhO2S
Et
O
AcO
TBDPSO
BnO
O
TBDPSO
H
TBDPSO
O
O
H
O
H
H
H
O
O
H
O
H
O
PhO2S
I (75), 88
Ether, –78° a
"
Et
O
AcO
TBDPSO
BnO
OH
TBDPSO
Ether, –100°
Ether, –100°, 0.5 h
Ether, –100°, 2 h a
THF, –78°, 1 h
Ether, –100°
Ether, –78°
4 Å MS, toluene, –78°
TBDPSO
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
O
OH
I
(74), >98
OH
(95), 8:1 d.r.
(62), 86
(80), >90
(80), 96:4
(75), 95:5 d.r.
(91), 97:3 d.r.
OH
OH
OH
OH
H
285
358
188, 671
363
362
361
360
359
142
C7
BnO
TBDMSO 2
O
racemic
OH
O H
H
TBDMS O O
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
Ether, –78° to rt, 2 h
Ether, –78°, 1 h
2. K2CO3, MeOH
1. Allylation
Ether, –78°
Ether, –78°
—
O
I
H
H
TBDMSO
TBDMSO
BnO
O
OH
2
OH
TBDMS OH
Cbz
N
H
OH
OH
TBDMSO
TIPSO
AcO
AcO
H
I (48), 8.6:1 d.r.
O
Cbz
H
O
4 Å MS, toluene, –78°
365
365
364
364
Refs.
(95)
OH 95:5 d.r.
(88),
270
367
(78), >95, 42:36 d.r. 366
(65), 10:1 d.r.
(76), 10:1 d.r.
(85), 4:1 d.r.
Product(s) and Yield(s) (%), % ee
Cbz
O
O
B[(–)-Ipc]2
B
OPr-i
OPr-i
Conditions
N
H
H
O
O
Allylborane Reagent
N
TIPSO
H
O
TBDMSO
O
TBDMSO
TMS
AcO
O
Carbonyl Substrate
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
143
OR
Et
O Fe(OC)3 H
MeO
H
O
O
O
OMe O
O
O
O
R = Me2CHCH2C(O)
MeO2C
Et
O
AcO
RO
OAc O
H
H
H
B[(–)-Ipc]2
B(2-d-Icr)2
B(4-d-Icr)2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
Ether, –78° to rt, 18 h
Ether, –78°
Ether, –78°
Ether, –95°
Ether, –78°, 1 h
Ether, –78°
—
Et
O
O
MeO
MeO
O
MeO2C
MeO2C
Et
O
AcO
AcO
RO
O
O
OH
OH
OH
OH
OH
OH
(17), 54
(35), 62
+
(58), 90
(70), 92
(89), >98:2 d.r.
(48)
(71-79), 5:1-8:1 d.r.
Fe(CO)3
Fe(CO)3
OMe OH
(60), 90:10 d.r.
O
O
OR
OAc OH
340
310
338
193
370
369
368
144
C7
Cl
Ph
O
Bn
O
H
H
H
O
N
H
O
O
H
O H
OTBDMS OTBDMS
O
O
PhMe2Si
PhMe2Si
CO2H
Carbonyl Substrate
TBDMSO
O
O
O
N
O
MeO
n-Pr
O
H
O O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
O
B(2-d-Icr)2
B(4-d-Icr)2
B(2-d-Icr)2
B(OPr-i)2
Allylborane Reagent
Ether, –100°
CH2Cl2, –78°
Ether, –78°, 1 h
Ether, –78°, 1 h
Ether, –78°, 1 h
–10° to rt, 13 h
Et3N, CH2Cl2,
Conditions
Cl
Ph
O
Bn
O
Bn
N
N
O
H
H
H
O
N
OH
OTBDMS
OH
(66), 12:1 d.r.
OH
OTBDMS
O
(62), 80-88
PhMe2Si
(60), 80-88
OH
OH
(80)
PhMe2Si
PhMe2Si
CO2H
TBDMSO
O
O
O
O
O
HO
O
MeO
n-Pr
(91)
(56)
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
374
364
372, 373
372, 373
371
105
Refs.
145
C8
S
N
n-C5H11
n-C7H15
Br
O H
H
H
H
O
O
O
BF3•OEt2 (2 equiv),
BF3–K+
B[(–)-Ipc]2
Ph
O B O
B[(+)-Ipc]2
"
"
bmimBr, rt, 3 h
B(OPr-i)2
Ether, pentane
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
Ether, pentane, –100°
CH2Cl2, H2O, rt, 15 min
n-Bu4NI (10 mol%),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
CH2Cl2, –78°, 15 min
THF, –100°, 1 h
Ether, –100° to –48°
Ether, –78°
"
B[(–)-Ipc]2
B[(+)-Ipc]2 S
N
I (87), 95
n-C5H11
I (94)
I (84)
I (82)
n-C7H15
I (44), 90
n-C7H15
Br
I
OH
I
OH
OH
I
OH
OH
(86)
(85)
(80), 99
(55), 92
(70), 54
380
28
379
99
99
98
353
378
376, 377
375
146
C8
BnO
t-Bu
t-Bu
Ph
O
O
O
H
O
Pr-n
Pr-i
O
O
O
H
H
Carbonyl Substrate
Ether, –80°, 3 h
DMF, –40°, 1 h
B
B[(+)-Ipc]2
La(OPr-i)3, CuF,
(R,R)-i-Pr-DuPHOS,
Pentane, rt, 2 h
O O
BBN
Pentane, rt, 7 d
DMF, –40°, 1 h
BBN
La(OPr-i)3, CuF,
B
(R,R)-i-Pr-DuPHOS,
6h
O, Sc(OTf)3, THF, –78,
CH2Cl2, –78°
Conditions
O O
B[(–)-Ipc]2
B[(+)-Ipc]2
Allylborane Reagent
BnO
t-Bu
n-Pr
t-Bu
OH
OH
OH
OH
HO
i-Pr
Ph
OH (92), 96
OH
(98), 84
(97)
(74)
(65), 93:7 d.r.
(87), 90
(—)
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
382
164
103
103
164
101
381
Refs.
147
Ph
O
OH
OH
H
O
O
O
OTBDMS
n-Bu
i-Pr
PivO
TBDMSO
n-Bu
TBDMSO
H
H
H
H
O
O
i-Pr
O
MeO
O O
– O OMe
MgBr+
"
BF3–K+
B(OH)2
B
O
OPr -i
OPr- i
B[(–)-Ipc]2
B
O
B(2-d-Icr)2
i-Pr
O
OMe B O OMe,
CH2Cl2, rt, 6 h
BF3•OEt2 (5 mol%),
CH2Cl2/H2O, rt, 30 min
n-Bu4NI (10 mol%),
CH2Cl2, rt
–78° to rt, 3 h
THF, –78° to rt, 1.5 h MgBr, 2.
1.
—
–78° to rt
4 Å MS, toluene,
—
OH
OH
OTBDMS
OH
OH
OH
I (91), 65:35 d.r.
Ph
n-Bu
i-Pr
PivO
TBDMSO
n-Bu
HO TBDMSO
I
(94), 65:35 d.r.
(87), 88:12 d.r.
(60)
(70), 80
(77), 70:30 d.r.
OH
OH
(79)
99
276
110
299
385
384
383
148
C8
Ph
O
Ph
O
O
O
Bn
N O
O
H
O
O
OBn O
OMEM
4
H
H
TBDMSO
S
S
TIPSO
O
O
O
H
O
Carbonyl Substrate
H
O
O
O
O
B(4-d-Icr)2
B[(+)-Ipc]2
B[(–)-Ipc]2
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
Allylborane Reagent
Ether, –78°, 1 h a
—
Ether
Toluene, –78°
–78° to rt
4 Å MS, toluene,
–78° to rt
4 Å MS, toluene,
Conditions
Ph
Ph
O
O
O
Bn
4
N O
O
(77), 91
(77), 91
HO
OH
OBn OH
OMEM
TBDMSO
S
S
TIPSO
O
HO
O
HO
331
328, 329
Refs.
OH
(65), 87
(52)
(56), 3:1 d.r.
389, 390
388
386, 387
(64), >90, 14:1 d.r. 330
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
149
O
O
O H
O
OBn
O
OR
R = TBDMS
OR
O
O
H
OTIPS
OTBDMS O
Bu-n OTBDMS
O
MOMO
TBDMSO
OTBDMS
TESO
O
H
H
O H
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
Ether, –78°
Ether, –78°
Ether, pentane, –100°
Ether, –78° to rt, 2 h
Toluene, –78°, 5 h
Ether, –78°
Ether, –78°
O
O
O
OH
O
OBn
O
OTIPS
OR
O
OR
O
OR
OR
OH
OH
(78)
(72), 96:4 d.r.
(84), 96:4 d.r.
(85), 88:12 d.r.
(85), 8:1 d.r.
OH
OH
(79), >19:1 d.r.
OTBDMS OH
(85), 85:15 d.r.
OTBDMS OH
Bu-n OTBDMS
O
MOMO
TBDMSO
OTBDMS
TESO
OTBDMS
TESO
396
396, 397
395
394
393
392, 391
391
150
C8
i-Pr
S
OR
N
O
O
MOMO
O H
O H
O
OMOM
OTBDMS
R = TBDMS
OR
O
TBDPSO
O
O
H
O H
Carbonyl Substrate
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
Allylborane Reagent
Ether, –100°, 0.5 h
CH2Cl2, –78° to rt
Ether, –78°, 3 h
Ether, –78°
Ether, –78°
Conditions
OR
O
OR
O
S
i-Pr
OR
OR
N
O
OH
OH
I
OH
O
OH
(83)
(88), >19:1 d.r.
(80), 96:4 d.r.
(89-96), >97
OH
(74), 88:12 d.r.
OMOM
OTBDMS
O
MOMO
TBDPSO
O
O
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
188, 400
399
398
396
396
Refs.
151
C9
PMBO
I
O
O
H
O H
B
B
O O
TMS
Ph
Ether, –100° to –78°,
B[(–)-Ipc]2
Hexane, –40°
Ether, –78°, 3 h
3h
Pentane, ether, –100°
2h
Ether, –95° to –100°,
B[(+)-Ipc]2
"
2ha
Ether, –95° to –100°,
Ether, –100°
B[(–)-Ipc]2
B[(–)-Ipc]2
—
"
I
I (81), 24
I (92), 97
OH
I
OH
OH
O
I (72), 93:7 d.r.
I
PMBO
I (83), >95
I (96), >91
(73), 94
(72), 92
(89), 97:3 d.r.
122
143
292
204
192
403, 192
402
401
152
C9 O H
Carbonyl Substrate
CF3
O
– +
N Ts
"
Ph
Ph
CF3
BF3 K
B
Ts N
B
CH2Cl2, H2O, rt, 15 min
n-Bu4NI (10 mol%),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
–78°, 2 h
THF, –78°, 1 h
toluene, –78°, 24 h
B
O
L.A. (10 mol%),
O O
bmimBr, rt, 3 h
Conditions
B(OPr-i)2
Allylborane Reagent
CH2Cl2
toluene
Solvent
Sc(OTf)3
AlCl3
L.A.
I (95)
I
I (74)
(69)
I
OH
(>90), 98
(>90), 97
I
OH
I
OH
(91)
(98), 76
(84)
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
100
99
50
135
25
353
Refs.
153
BnO
n-C5H11
C 6F 5
MeO
O
O
H
O
H
H
O
O
H
O
H
H
B(OPr-i)2
Ph
O B O
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
O,
bmimBr, rt, 3 h
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
1h
Pentane, ether, –100°,
—
–78°, 6 h
Sc(OTf)3, THF,
n-C5H11
3h
Ether, –100° to –78°,
Ether, –78°, 2 h
BnO
n-C5H11
C6F5
MeO
OH
OH
OH
OH
OH
OH
(77), 93
(85), 82:18 d.r
(64), 97
(76), 96
(75), 94
(80), 97
(74), 93
OH
353
27, 28
251
405
101
292
404
154
C9
Cy
OH
O
OH
N
Bu-t
TBDMSO
Ph
O
O
t-Bu
O
H
O
O
O
Ph
H
H
H
Carbonyl Substrate
O
B(OH)2
"
BF3–K+
B(OH)2
B
O
BBN
BBN
Allylborane Reagent
CH2Cl2, rt
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
30 min
CH2Cl2, H2O, rt,
n-Bu4NI (1 mol%),
CH2Cl2, rt
CH2Cl2, rt, 16 h
Pentane, rt, 2 h
Octane, 125°, 5 d
Conditions t-Bu
OH
N
OH
Cy
OH
I
OH
OH
OH
OH
(94), 65:35 d.r.
(85), 72:28 d.r.
(70)
(85), 67:33 d.r.
(25)
(85)
Ph
I (86), 70:30 d.r.
TBDMSO
Ph
O
HO
t-Bu
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
110
347
276
110
235
103
103
Refs.
155
O
O
O
O
PMPO
TBDMSO
i-Pr
PMBO
i-Pr
TBDMSO
HO
HO
HO
O
O
Cy
H
O
Ph
H
Ether, pentane, –100°
O
PMPO
TBDMSO
i-Pr
PMBO
i-Pr
O
OH
OMEM
Ph
OH
OH
OH
OH B[(+)-Ipc]2
Ether, pentane, –100°
Ether, pentane, –100°
Ether, –90° to rt
O HO Cy
O HO C6H13-n
TBDMSO
HO
HO
HO
O HO Ph
O
B[(+)-Icr]2
B[(+)-Icr]2
B[(+)-Ipc]2
Ether, –78° to rt, 14 h
Ether, –10°, 18 h
Ether, –10°, 18 h
Ether, –10°, 18 h
OPMP
H
H
B[(–)-Ipc]2
B(OPr-i)2
B(OPr-i)2
B(OPr-i)2
OPMP
O
H
O
C6H13-n
Ph
OMEM
O
O
O
(71), 10:1 d.r.
(84)
(75), 97.5:2.5 d.r.
(—), 96:4 d.r.
(—)
(70)
(80)
(89)
407
407
407
406
347
108
108
108
156
C9
O
Bn
N O
O
TBDMSO
O
O
O
O
Ph
O
Ph
O
H
H
H
O H
O
Carbonyl Substrate
H
O H
O
B(2-d-Icr)2
B(4-d-Icr)2
B[(–)-Ipc]2
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
O
B[(–)-Ipc]2
Allylborane Reagent
Ether, –78°, 1 h
Ether, –78°, 1 h
Ether, –78°
a
a
Ether, pentane, –100°
Ether, –78°
Ether, 18°
Conditions
O
Bn
O
Bn
N
N
O
O
O
O
TBDMSO
O
O
O
O
O
O
Ph
OH
Ph
OH
Ph
OH
OH
OH
OH
O H H (71), >95:5 d.r.
(—)
(89), 11:1 d.r.
(50), 1:1 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
(52)
(56)
389
389, 373, 390
310
407
408
408
Refs.
157
Ph
O
PMBO
O
TBDPSO
O
O
TBDPSO
MeO
O
O
OMe O
OR
O
H
OAc
H
racemic
H
O
H
O O
H H
H
H
H
TBDMS O
H
O
H
OTBDMS
OBn OBn O
H
O
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
Ether, –78°
THF, –78°
3.5 h
THF, –78° to rt,
Ether, –78°
Toluene, –78° a
Ether, –78°
Ph O
PMBO
O
TBDPSO
O
O
H
O
OH
H
(65-70), 95:5 d.r.
O OH
H
OTBDMS
(73), >15:1 d.r.
OBn OBn OH
H
(95)
(92)
414, 415
413
412
(72) 411
(42)
409, 410
TES
OH
(41) +
310
TBDMS
R
OH
TBDMS OH
OH
O
H OAc
OMe O
OR
H
OAc
O H H (71), >95:5 d.r.
TBDPSO
TBDPSO
MeO
O
158
C10
C9
n-C9H19
Me
N
O
Boc
O
H
H
CO2Et O
OMOM
Bn
H
O
MeO2C
O
O
TBDMSO
O
H
O O
OMe
OTBDMS
Carbonyl Substrate
TMS
B(2-d-Icr)2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B
B[(+)-Ipc]2
Allylborane Reagent
Ether, –50°, 17 h
Pentane, ether, –100°
THF, –78° to rt, 3.5 h
Ether, –78°
Ether, –100°, 3 h
Ether, –100°, 2 h
Conditions
O
I
O
OMe
OTBDMS
(70), 95
O
(74), 92
(64), 95:5 d.r.
(80), 89
OH (95), 9.5:1 d.r.
OH
Boc
I (22), 76
n-C9H19
Me
N
OH
OMOM
O
TBDMSO
Bn
O
MeO2C
HO
O
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
423
204
420, 421, 422
419
418
416, 417
Refs.
159
Ph
n-C7H15
n-C6H13
O H
O H
H O
O
O
O
O
O
O
O
B[(–)-Ipc]2
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B
O
B
O
"
B
O
CONMe2
–78°, 6 h; work-up
O, BF3•OEt2, THF,
Ph
–78°, 6 h
O, Sc(OTf)3, THF,
Ph
toluene, –78°
Cr(CO)3, 4 Å MS,
toluene, –78°
Cr(CO)3, 4 Å MS,
4 Å MS, toluene, –78°
Toluene, –78°, 24 h
CH2Cl2, –78°, 24 h
Ph
Ph
I
OH
OH
(85-95), 92
(55-70), 31
(55-70), 70
(48), 93 (80), 96
NH4Cl NaOH, H2O2
(96), 96
(36), 47
OH
OH
OH
Work-up
n-C7H15
n-C6H13
n-C6H13
I (29), 28
n-C9H19
OH
101
101
128
130
130
424
424
160
C10
Ph
O H
Carbonyl Substrate
O
O
B N Ts
Ts N
B
O
"
"
Ph
Ph
O
OPr-i
OPr-i
B[(–)-Ipc]2
Allylborane Reagent
O,
–78°, 6 h
O, BF3•OEt2, THF,
Ph
O, L.A., THF, –78°, 6 h
Ph
O, L.A., THF, –78°, 6 h
Ph
–78°, 6 h
Sc(OTf)3, THF,
Ph
O, Sc(OTf)3, THF, 6 h
Ph
Conditions
(18), 83 (33), 94 (65), 94 (92), 96 (59),96
Ag(OTf) Y(OTf)3 Sc(OTf)3 BF3•OEt2
(40), 27 (70), 47
none BF3•OEt2
L.A.
(28), 96
SnCl4
I
Sm(OTf)3
L.A.
I (33), 37
I
I
I (88), 96
Ph
OH (96), 97 (100), 95 (100), 89 (100), 86
–78° –78° –78°
(94), >98
–78°
–96°
Temp
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
101
101
101
101
101
Refs.
161
MeO
Ph
R
O
NO2
H
O
O
H
H
O OH
"
B
O O
O
O
OEt
reflux
n-Bu3SnH, THF,
n-Bu3P, PhSeCl, AIBN,
n-Bu3SnH, THF, –78°
n-Bu3P, PhSeCl, Et3B,
reflux
B
n-Bu3P, PhSeCl, AIBN,
3h
n-Bu3SnH, THF,
OEt
O,
Ether, –100° to –78°,
–78°, 6 h
Sc(OTf)3, THF,
R
–78°, 4 h; –70°, 36 h
O, Sc(OTf)3, THF,
O O
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
Ph
I (85), 46
MeO
MeO
Ph
R
OH
NO2
OH
OH
I
OH
OH
(73), 91
(61), 73
(80)
(35), 96
352
352
352
292
(68), 96 101
NO2
101
OMe
R
(88), 96
162
C10
Ph
Ph
Ph
Ph
O
O
O
O
H
O
H
H
H
H
Carbonyl Substrate
B
O O
O
O
OPr-i
OPr-i
B[(–)-Ipc]2
B(2-d-Icr)2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
Toluene, –78°
—
Ether, –78°, 4 h
Ether, –78°
Ether, –78°
Ether, –78°
Ether, –78°
Conditions
Ph
Ph
Ph
Ph
Ph
Ph
OH
OH
OH
OH
OH
OH
OH
(94), 81:19 d.r.
(—)
(63), 98.5:1.5 d.r.
(74), 74:26 d.r.
(74), 97:3 d.r.
(72), 98:2 d.r.
(72), 67:33 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
427
426
425
166, 167
166, 167
166, 167
166, 167
Refs.
163
Ph
Ph
O
O
O
O
H
H
O H
CF3
CF3
DMF, –40°, 1 h
O
(R,R)-i-Pr-DuPHOS,
48 h
THF, –78° to –40°,
B
CF3
CF3
La(OPr-i)3, CuF,
O
O
48 h
THF, –78° to –40°,
Neat, 0-10°
Neat, 0-10°
Neat, 0-10°
Neat, 0-10°
O
B
O
B
O
BEt2
BEt2
BEt2
BEt2
HO
Ph
HO
I (98), 50
Ph
Ph
I
OH
OH
OH
OH
(96), 67
(91), 76
(97)
(84)
(80)
(73)
164
135
135
238
238
238
238
164
C10
Ph
MeO
t-Bu
O
OEt
(85) (90) (90)
p-Tol 4-(t-Bu)Bn DMPM
(80)
(80)
R
Bn
R
I
(80)
HN
OH
OH
(94)
Ph
I (61), 73
I
Ac
CH2Cl2, rt
n-Bu3SnH, THF, –78°
n-Bu3P, PhSeCl, Et3B,
n-Bu3SnH, THF, reflux MeO
n-Bu3P, PhSeCl, AIBN,
OH
Ts
O
OEt
I
+ t-Bu I + II (100), I:II = 55:45
OH II
88:12
99:1
85:15
85:15
80:20
79:21
80:20
d.r.
(85), 46
(80)
OH
Product(s) and Yield(s) (%), % ee
4-(t-Bu)Bn, DMPM
BBN
"
B
O
n-Bu3SnH, THF, reflux MeO
O
n-Bu3P, PhSeCl, AIBN, O
O
t-Bu
B
Pentane, rt, 2 h
Conditions
Boc
R
O
OH
BBN
Allylborane Reagent
R = Boc, Ts, Ac, Bn, p-Tol,
HN
O
O
Carbonyl Substrate
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
107
352
352
352
103
Refs.
165
HO
Ph
BnO
O
OH
9
O
R = Bz
O
O
H
Ph
H
B(OPr-i)2
B(OH)2
B[(–)-Ipc]2
Ether, –10°, 18 h
CH2Cl2, rt
Ether, –78°, 1.5 h
Base, CH2Cl2, rt
HO
Ph
BnO
I
–78°
toluene toluene
45 h
Et3N
OH
9
Ph
OH
45 h
DBU
OH
15 h
d.r.
93:7
91:9
94:6
92:8
83:17
84:16
53:47
88:12
85:15
74:26
(83), 73:27 d.r.
(65)
(29)
(26)
d.r. 52:48
(66), 92
0°
CH2Cl2
(85)
–78°
CH2Cl2
Time
0°
ether
—
Base
0° –78°
ether
–78°
Temp
Solvent THF
91:9
0°
85:15
CH2Cl2 toluene
THF
73:27
ether
d.r. 52:48
THF
Solvent
O HO
I (—)
—
"
B(OPr-i)2
I (—)
rt
BBN
108
110
316
107
107
107
166
C10
MeO
O
O O
O
Bn
N
H
BnO
TBDMSO
BnO
n-C5H11
HO
O
O
O
H H
O
O
Tol
O
H
O
H
O
H
H
O
H
O
O
H
Carbonyl Substrate
O O
B(4-d-Icr)2
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B[(–)-Ipc]2
B[(–)-Ipc]2
B(OPr-i)2
Allylborane Reagent
Ether, –78°, 1 h a
THF, –78°
Toluene, –78°
Ether, –78°
Ether, –78° to rt
Ether, –10°, 18 h
Conditions
MeO
O
O
Bn
BnO
N O
O
H
TBDMSO
BnO
n-C5H11
HO
O
O
(79)
H
OH
OH
(56)
(82), >10:1 d.r.
(78), 8:1 d.r.
OH
OH
OH
(83)
(73), 85:15 d.r.
H H
O
O
O HO Tol
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
390
431, 432
430
429
428
108
Refs.
167
C11
O
O
O
O
n-C10H21
Ph
N
TBDMSO
O
H
TBDMSO
TBDMSO
O
H
Ether, –100° to rt,
O
O
OH
O
O
Br
O
B
O O
B[(+)-Ipc]2
B[(–)-Ipc]2
B(2-d-Icr)2
toluene, –78°, 16 h
L.A. (10 mol%),
2h
Ether, –78° to rt,
2h
Ether, –78° to rt,
Ether, –78°, 3 h
1.5 h
N O
HO
O
n-C10H21
Ph
Ph
N
HO
TBDMSO
TBDMSO
TBDMSO
O
O
Br
OH
(52), 4:1 d.r.
(71), 98
(71), >20:1 d.r.
Sc(OTf)3
AlCl3
L.A. (73)
(54)
(89-91), 96:4-92:8 d.r.
(89-91), 96:4-92:8 d.r.
TBDMS OH
OH
O
O B[(+)-Ipc]2
Ether, –78° 2
H
B[(+)-Ipc]2
2
H
TBDMS O
O
H
O
25
435
435
434
261
433
168
C11
O 2N
1-Adm
Ph
Ph
OH
O
O
H
OMe
H
H
OMe
OMOM
O
n-C10H21
O
O H
Carbonyl Substrate
O
O
B[(–)-Ipc]2
B
O
B[(–)-Ipc]2
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
O
Allylborane Reagent
O, Ph
Ph
— O2N
OH
OMe
(54)
OMe
OMOM
OH
OH
OH
(82), 9:1 d.r.
(92), >95, 1:1 d.r.
(83), 96
(86), 86
Product(s) and Yield(s) (%), % ee
OH
n-C10H21
n-Bu3SnH, THF, reflux 1-Adm
n-Bu3P, PhSeCl, AIBN,
6h
Sc(OTf)3, THF, –78°,
Ph
6h
O, Sc(OTf)3, THF, –78°,
Ph
4 Å MS, toluene, –78°
Conditions
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
436
352
101
101
125
Refs.
169
TBDPSO
Et
O H
TBDMSO
O
OH
OH
BnO
i-Pr
Ph
Ph
OTBDPS
OTBDMS
O
H
H
OH
O
O
H
O H
B[(+)-Ipc]2
B[(–)-Ipc]2
B(OH)2
B(OH)2
B[(–)-Ipc]2
"
B[(–)-Ipc]2
Ether, –78°
—
CH2Cl2, rt
CH2Cl2, rt
Ether, –78°, 4 h
Ether, –78°, 4 h
Ether, –100°, 1 h a
TBDPSO
OH
OH
(92), 3:1 d.r.
OH
OH
OH
(—)
(90), 60:40 d.r.
(63), 93
(84), 90:10 d.r.
OH
I (70), >20:1 d.r.
TBDMSO
OH
OH Et
BnO i-Pr
Ph
Ph
OTBDPS
I (79), >96
OTBDMS
OH
364, 441
440
110
110
439
438
437
170
C11
O
O
O
O
MeO2C
BnO2C
O
PMP
TBDMSO
O
O H
OTES O
O
O
PMBO
H
O
O
H
H
Carbonyl Substrate O H
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
Allylborane Reagent
Ether, –100°, 2 h
THF, –78° to rt, 2 h
Ether, –78°
Ether, –100°
Ether, –78°, 1 h
Ether, –78°
Conditions
O
O O
O
MeO2C
BnO2C
BnO2C
O
PMP
TBDMSO
O
OH
OH
OH
OTES OH
(87), 17.6:1 d.r.
O
OH
(—), 2:1 d.r.
O
OH
(62)
(74), 81:19 d.r.
(85), 95:5 d.r.
(80), >10:1 d.r.
O
PMBO
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
416, 417
445
444
444
443
442
Refs.
171
C12
i-Pr
9
HO
N H
Ph
Ph
H
H
O
O
O
O
H OMOM
O
OBn OBn OBn O
O
Pr-n
n-C11H23
PMBO
TBDMSO
Ph
O
H
B
B(OH)2
3
B[(–)-Ipc]2
"
"
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
CH2Cl2, rt
THF, reflux, 2 h
3h
Ether, –100° to –78°,
Ether, –78°
6h
Ether, –78° to 0°,
Ether, –100°
THF, –78°
Ether, –90°
Ether, –90°
i-Pr
N H
Ph
(83)
OH
OH
I
OH
HO Ph
9
OMOM
OH
OMOM
OH
(94)
(69)
(89), 92:8 d.r.
(71), 91
(84), 91
(67), 15:1 d.r.
OBn OBn OBn OH
O
O
Pr-n
I (60), 90
I (75), 99
n-C11H23
PMBO
TBDMSO
Ph
O
TBDMSO
Ph
O
110
293, 294
292
449
448
447
413
446
446
172
C13
C12
O
OTBDPS
BnO
i-Pr
O
O
O
O
O
O
Br
H
O
O
Bu-t
H
H
Carbonyl Substrate
B[(–)-Ipc]2
BEt2
BEt2
B(2-d-Icr)2
"
B[(–)-Ipc]2
Allylborane Reagent
Ether, –78°, 4 h
Neat, 0-10°
Neat, 0-10°
Ether, –78°
Ether, –78°
CH2Cl2, –78° to rt
Conditions
O
OTBDPS
BnO
I (67)
i-Pr
O
O
OH
OH
I
O
Br
OH
(84)
OH
(86)
(90)
(48)
(92), >98:2 d.r.
OH
Bu-t
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
451
238
238
450
326
399
Refs.
173 2
OR
MeO2C
O
OR
OMOM
OMe
R = TBDMS
O
OMe O
R = TBDMS
MeO
H
OMe
OMe
H
OMe OR
O
H
O MeO
OMe
H
OTES O
2
O
OAc O
TIPS OR
O
O
H
H O
BEt2
B[(+)-Ipc]2
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
O
B[(+)-Ipc]2
B[(+)-Ipc]2
Ether, –10°
Ether, –100°
Ether, –100°
5h
4 Å MS, toluene, –78°,
Ether, –90°, 1 h
6h
Ether, THF, –78° to rt,
MeO2C
MeO
O
TIPS OR
O
TIPS OR
OMOM
O MeO
OMe
OH 2
OTES OH
(80), >98, >15:1 d.r.
2
OR
2
OH
OAc OH
(80), >98, >15:1 d.r.
2
OR
OMe
OH
OH
O
(>70), 91:1 d.r.
OMe O
OH
(77), >19:1 d.r.
(55), >99:1 d.r.
OR
OMe OMe OMe OR
HO
(94)
458
457
457
456, 297
455
454
452, 453,
174
C14
C13
OPr-i
OPr-i
n-C5H11
n-C5H11
O OMe
O
4
O
OMe O
O
O
2
O
OH
O
O
O
O
H
H
OH
O
O
n-C11H23
BnO
H
O
O
Carbonyl Substrate
H
O
O
OBn
H
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B(OH)2
B(4-d-Icr)2
Allylborane Reagent
Ether, –78°, 1.5 h
Ether, –78° to rt
Toluene, –78°
Ether, –78°
CH2Cl2, rt
Ether, –78°, 2 h
Conditions
O
OPr-i
OPr-i
n-C5H11
n-C5H11
O
n-C11H23
BnO
OMe
O
4
O
2
OH
(60), 71
O
OMe OH
O
O
OH
OH
(71), 20:1 d.r.
O
OH
O
O
OH
(90)
(99), 5:1 d.r.
HO
O
(88), 65:35 d.r.
OBn
(93), 94:6 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
460
428
459
433
110
434
Refs.
175
C15
NC
Ph
O
4
Ph
O
O
O
O
2
H
O
OTIPS
O
n-C14H29
BnO
O
O
O
H
H
H
O H
O H
O O O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B(2-d-Icr)2
Ether, –78° to rt
1h
4 Å MS, toluene, –78°,
Ether, –78°
Ether, –78°
Ether, THF, –100°, 4 h
Ether, –100°, 1 h
Ether, –78°
NC
Ph
Ph
O
4
Ph
Ph
OH
O
O
OH
OH
(—), 3.5:1 d.r.
(—), 2.5:1 d.r.
(87), >19:1 d.r.
OH
OH
OH (78)
(92), >97:3 d.r.
(75), 92
OH
(75), >10:1 d.r.
O
O
O
2
OTIPS
O
4
O
n-C14H29
BnO
464
463
444
444
462
461
450
176
C16
C15
O
O
O
MeO
O
O
O
O
O
CO2Me
O
O
OTBDMS
O
H O
3
B
B[(–)-Ipc]2
B[(–)-Ipc]2
Toluene, 20°, 0.5 h
Ether, –78°
Ether, –100°, 2 h
HO
O
O
MeO
O
O
O
HO
O
OH
O
(98)
(65), 77:23 d.r.
O
OTBDMS
(74), 90:5 d.r.
O
OAc
Ether, –78°, 3 h
CO2Me
OH
OH
(77), 9:1 d.r.
Product(s) and Yield(s) (%), % ee
OAc
B[(–)-Ipc]2
Conditions
OTBDMS
H
H
Allylborane Reagent
OTBDMS
O
O
Carbonyl Substrate
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
467
466
416, 417
465
Refs.
177
C17
Ph
O
O
MOMO
OBn OBn
6
H
O O
AcHN OTBDMS OBn
O
H
OPMP
H
OMOM
O
H
H
O
O
OBn
OMe
TBDMSO
OPr-i
OPr-i
Ph
O
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
THF, –78° to rt, 18 h
23 h
Ether, THF, –78° to –20°,
23 h
Ether, THF, –78° to –20°,
Ether, –78°, 1.5 h
6h
O, Ph Sc(OTf)3, THF, –78°,
Ph
OPr-i
OPr-i
Ph
O
HO
MOMO
OBn OBn
6
OH
OMOM
O
O
(70)
(52), >97.5:2.5 d.r.
(65), 58
(94), 95
468
468
460
101
O (48), 6:1 d.r. 469, 470 AcHN OTBDMS OBn
OH
OPMP
OH
OH
OBn
OMe
TBDMSO
Ph
178
C18
C17
MOMO
Ph
i-Pr
O
Ph
O
O
H
O H
O
O
H
Carbonyl Substrate C6H4Br-p
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
Ph
–78° to –20°, 23 h
Ether, THF,
4 h; –70°, 36 h
O, Sc(OTf)3, THF, –78°,
Ph
6h
O, Sc(OTf)3, THF, –78°,
Ph
Ph
Ether, –78°
Conditions
MOMO
Ph
Ph
i-Pr
O
Ph
Ph
OH
OH
OH
O
O
(48), 3:1 d.r.
(76), 93
(23), 93
OH
(78)
C6H4Br-p
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
468
101
101
326
Refs.
179
C20
H
n-C14H29
AcO
H
O
H
O
OTBDMS
TBDMSO
O
OTBDMS
OTBDPS
n-C14H29
H
O
H
H
OH
O
SO2Ph
O
H
Ether, –100°, 1 h
n-Bu3SnH, THF, reflux
B[(+)-Ipc]2
n-Bu3P, PhSeCl, AIBN,
O
0.5 h
Ether, pentane, –100°,
Ether, –100°
–78° to –20°, 23 h
Ether, THF,
B O
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
H
O O
OTBDMS
OH
OH
n-C14H29
AcO
OTBDMS
TBDMSO
H
H H
HO
OH (64)
(88), 72:28 d.r.
OH
SO2Ph
(55), 96:4 d.r.
(54), 6:1 d.r.
OTBDPS (70), >20:1 d.r.
n-C14H29
MOMO
461
352
471
461
468
180
C23
C22
C20
MOMO
n-C14H29
n-Pr
H
O
TBDMSO
O
H
2
O
2
H
H
O
H
OMOM
6
H
H
H
O
OMe O
OTBDMS
OMe
n-C14H29
TBDMSO
n-C10H21
MOMO
Carbonyl Substrate
H
O
H H
O
O
B[(–)-Ipc]2
B[(–)-Ipc]2
O
OPr-i
OPr-i
B[(+)-Ipc]2
BBN
B
O
O
Allylborane Reagent
Ether, –100°
Toluene, –78°
Ether, –100°, 1 h
—
3h
4 Å MS, toluene, –78°,
Conditions
2
H
6
O
(83), 88:12 d.r.
2
OMe OH
OH
(88), 88:12 d.r.
H
OH
OH
OH
H
H H MOMO OMOM (78), >95:5 d.r.
n-C14H29
TBDMSO
H
O
OTBDMS (65), 95:5 d.r. OMe
n-C14H29
TBDMSO
n-Pr
O
(78), 3.8:1 d.r.
n-C10H21
MOMO
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
475
474
461
473
472
Refs.
181
C24
AcO
n-Pr
OMe
n-C14H29
MOMO
MOMO
n-C14H29
H
HO
2
O
H
O H O
H
O
H
7
OMe O
OMOM
MOMO
H
H
H
O
O
O
H
H
n-Bu3P, PhSeCl, AIBN, n-Bu3SnH, THF, reflux
O
Toluene, –78°
Ether
Ether
Ether, –100°
B O
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
AcO
H
O
O
O
OMe
7
H
H
H H
OH
(95), 86:14 d.r.
2
OMe OH
OMOM (95), 96:4 d.r.
n-C14H29
MOMO
n-Pr
O
MOMO
H
OMOM (91), 96.5:3.5 d.r.
n-C14H29
MOMO
MOMO
n-C14H29
H
(79), 52:48 d.r.
OH
OH
O
(50), >95:5 d.r.
OH
352
474
476
476
475
182
C32
C24
a
CO2Me
H
O
H
CO2Me
H
O
The reaction mixture was free of Mg2+ ions.
N
HN
N
NH
N
H
NH
HN
H
H
O
N
CO2Me
MeO2C
AcO
H
HO
Carbonyl Substrate
O
B(OH)2
B(OH)2
B
O
O
O
OEt
OEt
Allylborane Reagent
0.33 h
CH2Cl2, ether, 0°,
0.33 h
CH2Cl2, ether, 0°,
n-Bu3SnH, THF, –78°
n-Bu3P, PhSeCl, Et3B,
Conditions
H
NH
N
CO2Me
CO2Me
MeO2C
AcO
N
HN
N
NH
H
H
HN
N
H
OH
OH
H
(95)
(95)
CO2Me
OH
(60), 85:15 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) A. NON-AROMATIC CARBONYL SUBSTRATES (Continued)
477
477
352
Refs.
183
C5
O
Cl
O
Me
N
N
PMBO
N
O
O
O
O
H
H
O
N
H
O
H
O
H
Carbonyl Substrate
N Ts
Ph
Ph
BEt2
B[(–)-Ipc]2
B[(+)-Ipc]2
B
Ts N
B[(–)-Ipc]2
Allylborane Reagent
Neat, 0-10°
Ether, –100°, 1 h
Ether, –100°
CH2Cl2, –78°
Ether, –100° to rt, 18 h
Conditions
O
Cl
N
O
Me
N
PMBO
N
OH
OH
O
HO
O
N
OH
(92)
(78), >99
(84), >95
OH
(44), 92
(—), >95
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES
238
478
374
280
378
Refs.
184
C5
S
O
O
O
O
H
H
O
H
Carbonyl Substrate
O
B[(–)-Ipc]2
B(2-d-Icr)2
B[(–)-Ipc]2
BF3–K+
B
O
B[(–)-Ipc]2
B
n
Pr-n
Allylborane Reagent
Ether, –100°, 1 h
Ether, –100°, 1 h
Ether, –100°, 1 h
15 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
CH2Cl2, H2O, rt, 6 h
Ether, –100°, 1 h
Neat, 0-10°
Conditions
I
S
O
HO
O
HO
I (95)
I
O
O
O
OH
OH
OH
OH
(80), 90
(88), >99
(80), >91
(88)
(91), >99
(71)
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
478
478
478
100
234
478
238
Refs.
185
C6
N
S
S
O
O
O
H
H
SiMe2Ph
O
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
Ether, –100°, 1 h
THF, –100°, 1 h
Ether, –78° to rt, 3 h
Ether, –100°, 1 h
B(2-d-Icr)2
Ether, –100°, 1 h
Ether, –100°, 1 h
n
CH2Cl2, H2O, rt, 14 h
Ether, –78°, 3 h
B[(+)-Ipc]2
B[(–)-Ipc]2
B
O
TMS B
I
N
N OH
OH
S PhMe2Si
OH
OH
I (83), >99
S
HO
S
HO
S
I (86), 97
(84), >99
(94), 94
(81), 17
(90), 79
(75), 82
(95)
478
480, 481
111
478
479
478
234
143
186
C6
N
R1
R2
N
N
O
O
H
H
O H
Carbonyl Substrate
O
O O
n
NHBn
NHBn
B(4-d-Icr)2
B
O
B
O
O
B[(–)-Ipc]2
B[(+)-Ipc]2
Allylborane Reagent
Ether, –100°, 1 h
CH2Cl2, H2O, rt, 3 h
Toluene, –78°, 18 h
Ether, –100°, 1 h
Ether, –100°, 1 h
Conditions
N
N
OH
N
N
OH
OH
I (92), 94
R1
R2
OH
(73), 90 (75), 91.5 (78), 88
Cl MeO H
H MeO
(78), >99
(79)
(85), >99
(74), 85.5
H
Cl
(75), 66
Cl
(94), 94
Br
H
R2 H
H
R1
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
478
234
290
478
479
Refs.
187
C7
O
H
S
O
O
S
H
O
H
3,
Ph Bn
Et Et
I (83), 95
COPh
Bu
I (76), 98
COPh
Ether, –100°, 1 h
R2
R1
S
6h
16 h; 4 h
4h
Time
(59)
(74)
(68)
(93), >98, 98:2 d.r.
rt; 50° 45 h; 17 h (47)
rt
rt; 40°
rt
Temp
(89)
OH
(84), 85
Et
I
OH
—
Pd(PPh3)4,
OR2,
I (96)
I (95)
I
OH
HO
"
THF
BR1
Pentane, rt, 2 h
Neat, 0-10°
–70° to 130°
THF, –100°, 4 h
S
HO
B[(+)-Ipc]2
B(R )2
1
BBN
B(Bu-n)2
3
B
B[(–)-Ipc]2
CuF, La(OPr-i)3, DMF, –40°, 1 h
O
O B
(R,R)-i-Pr-DuPHOS,
479, 484
250
483
103
238
262, 1
482
164
188
C7 O H
Carbonyl Substrate
B
TMS
93 94
0° –25°
I (—), 94 I (—), 96
I (—), 87 I (—), 98
Ether, –78°, 3 h Ether, –100° a
THF, –78°, 3 h Ether, –100° a
" "
B(4-d-Icr)2 "
I
(81), 96
90
rt
% ee
(—), 95
Product(s) and Yield(s) (%), % ee
Temp
OH
I (82), 90
I (—)
Ether, –78° to rt
Ether, –78°
Ether, 3 h
I (80), >98
I (—), >99
I
OH
B[(–)-Ipc]2
B
Ph
"
Ether, –100° a
"
Ether, –78°, 3 h
THF, –78°, 3 h
Conditions
B(2-d-Icr)2
Allylborane Reagent
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
139
240
139, 289
240
136, 136a
145
143
143
139, 241
240
Refs.
189 O
O
B
O
B
O
O
O
O
MeO
B
O
"
B
O
NHBn
NHBn
MeO
CONMe2
See table
12 h
4 Å MS, CH2Cl2, –78°,
12 h
4 Å MS, CH2Cl2, –78°,
Toluene, –78°, 24 h
CH2Cl2, –78°, 24 h
toluene, –78°, 16 h
B
O
L.A. (10 mol%),
O O
Ionic liquid, rt, 3 h
B(OPr-i)2
I
OH
Sc(OTf)3
AlCl3
L.A.
I
(85)
TEAN
18 h 14 h
–78° –78° toluene
14 h ether
14 h –20° toluene
Time
(87.8), 90
(87), 83
(80.5), 46
(77.7), 34
(88)
emimBr
(76), 59
(89)
bmimBF4
0°
Temp
(80)
(88)
(87)
bmimBr
Ionic liquid
toluene
Solvent
I (72), 23
I (62), 19
I (82), 37
I
I
OH
290
485
485
424
424
25
353
190
C7 O H
Carbonyl Substrate
O
O
O B O
B Ph
Ph
L.A. (10 mol%)
Hexane, –40°
CH2Cl2, –78°, 2 h
Sc(OTf)3 (10 mol%),
toluene, –78°
Cr(CO)3, 4 Å MS, 4 Å MS, toluene, –78°
O
4 Å MS, THF, –78°
"
O
O
OPr-i
OPr-i
Conditions
"
"
B
O
Allylborane Reagent
I
CH2Cl2 CH2Cl2 CH2Cl2 CH2Cl2 CH2Cl2 toluene hexane
TfOH Cu(OTf)2 Yb(OTf)3 Sc(OTf)3 Sc(OTf)3 Sc(OTf)3
–78°
–78°
–78°
–40°
–40°
–78°
–78°
–78°
CH2Cl2 AlCl3 TiCl4
rt
Temp CH2Cl2
Solvent
(78), 72
none
L.A.
I (90), 36
I (100), 7
I (—), 60
I (90), 83
I
OH
2h
2h
2h
2h
2h
2h
2h
2h
72 h
20
30
90
4
4
72
22
14
50
8
46
92
38
52
84
78
63
11
Time % Conv. % ee
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
27, 28
122
27, 28
131
128
125
Refs.
191
O
O
O
Ph
O B O
Ph
O B O
B
O
N
O
O
O
MeO
B
B
O
B
O
Ph
O
O
N
Bn N Bn
CH2Cl2, –78°, 2 h
Sc(OTf)3 (10 mol%),
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
Ether, –78° to rt
Hexane, –40°
CH2Cl2, –78°, 2 h
Sc(OTf)3 (10 mol%),
47 h
4 Å MS, toluene, –78°,
I (100), 84
I
OH
I (92), 88
I (76), 46
I (100), 9
I (—), 85
(85), 92
27, 28
27, 28
486
122
27, 28
131
192
C7
O H
Carbonyl Substrate
O
B
O
B
O
"
B
O
O
O
O
O
O
O
NHR
NHR
O
OEt
OEt
O
OPr-i
OPr-i
Allylborane Reagent
O OAc,
O
OPr-i
OPr-i
2
O OAc,
O
OEt
OEt
2
See table
toluene, 20°, 63 h
Pd2(dba)3, DMSO,
O B
O
4 Å MS, –78°
toluene, 20°, 44 h
Pd2(dba)3, DMSO,
O B
O
Conditions
I
72
THF
–60° –78° –78°
toluene THF toluene Ph
THF Bn Ph
–40°
ether Bn
rt
Solvent Ph
Temp
59
59
CH2Cl2
60
ether
% ee
toluene
Solvent
(63), 42
R
I (83), 45
I (—)
I
OH
18 h
14 h
16 h
16 h
18 h
Time
(82.3), 80
(76.2), 72
(83.5), 85
(79.6), 61
(62.5), 6.4
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
290
349
125
349
Refs.
193
O
"
B N Ts
Ts N
B
O
N
SO2Me
B
N
Ts N
O
O
B
3,5-(CF3)2C6H3O2S
B
N
Ph
Ph
R
3,5-(CF3)2C6H3O2S
R
Ph
Ph
–78°
Ether, –78° to rt, 2 h
Toluene, –78°, 2 h
Toluene, –78°, 2 h
CH2Cl2, –78°, 2 h
THF, –78°, 1 h (91), 74 (91), 86 (90), 46 (89), 62 (94), 60 (92), 66 (92), 80 (90), 50 (90), 96
Me Ph 4-MeOC6H4 3,5-Me2C6H3 3,5-(t-Bu)2C6H3 3,5-(CF3)2C6H3 2-naphthyl CF3
(88), 74 (90), 81
THF ether
Solvent
I (91), 88
I (92), 96
I (>90), 95
I
(50), 42
I
H
R
I (>90), 94
I
245, 246
133
351
50
50
135
194
C7 O H
Carbonyl Substrate
O
O
O
O
N
N
N B
S
B
S
B
MeO2S
B
O
O
O
O
Ts N
Ts N B O
Ph
Ph
Ph
Ph
Allylborane Reagent
Ether, –78°, 7 h
Ether, –78°, 7 h
Ether, –78°
Ether, –78°, 7 h
Ether, –78°, 7 h
Conditions
I
OH
I (93), 75
I (90), 66
I (93), 75
I
OH
(93), 75
(89), 71
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
245, 246
245, 246
246
245, 246
245, 246
Refs.
195
B
THF, –70°, 17 h
CH2Cl2, –40° to rt
2
BX2•OEt2
B
CH2Cl2, –40° to rt
O
Neat, 80-100°
Ether, –78°, 7 h
See table
BX2
B
O
S O N B O
O
O
O S N
O
I
I
I
(93), 85
–78°
ether
(53)
(67) (38)
Cl Br
X
(57) Br
I
OH
O
Cl
X
(91), 72
–78°
toluene
B
(96), 88
–100°
THF
(—), 18
(81)
(92), 74
(94), 78
–78°
OH
(91), 65
–40°
THF
Temp
THF
O
Solvent
97
97
487
263
245, 246
245, 246
196
C7
O 2N
O
O
O
OH
R
H
Carbonyl Substrate
O
B
O
B
O
O
O
OEt
O
OEt
OAc,
O
O
O
OAc,
O
OEt
OEt
2
toluene, 20°, 22 h
Pd2(dba)3, DMSO,
O B
O
toluene, 20°, 21 h
Pd2(dba)3, DMSO,
O
B B
reflux
B
O
n-Bu3SnH, THF,
n-Bu3P, PhSeCl, AIBN,
See table
Conditions
O O
BBN
Allylborane Reagent
O2N
O2N
pentane
NMe2
OH
rt
68°
rt
rt
Temp
(92), 49
(73)
hexane
OEt
OH
pentane
OC(O)Ph
(79)
pentane
OH
Solvent
Cl
2
R
OH
(89) (82) (59) (91)
2h 2h 50 h 3h
Time
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
349
349
352
103
Refs.
197 B
O
B
O
B
O
B
O
O
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OEt
OEt
O
NMe2
NMe2
O OAc,
O 2
NMe2
NMe2
O OAc,
O
OEt
OEt
2
O OAc,
O
OPr-i
OPr-i
2
O OAc,
2
toluene, 20°, 21 h
Pd2(dba)3, DMSO,
O B
toluene, 20°, 20 h
Pd2(dba)3, DMSO,
O B
O
toluene, 20°, 19 h
Pd2(dba)3, DMSO,
O B
O
toluene, 20°, 21 h
Pd2(dba)3, DMSO,
O B
O
I (62), 1
I (76), 45
O2N
I (73), 3
I
OH (83), 53
349
349
349
349
198
C7
MeO
O 2N
H NO2
O
O
O
H
H
Carbonyl Substrate
CH2Cl2/H2O, rt, 15 min
n-Bu4NI (10 mol%),
toluene, –78°, 36 h
B
BF3–K+
L.A. (10 mol %),
THF, –78° to rt, 2 h
15 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
15 min
L.A., CH2Cl2, –78°,
Conditions
O O
B[(–)-Ipc]2
BF3 K
– +
BF3–K+
Allylborane Reagent
MeO
MeO
MeO
O2N
NO2
OH
OH
OH
OH
OH
(99)
(0)
(41) (93)
BF3•OEt2
(98)
Sc(OTf)3
AlCl3
L.A. (84)
(82)
(28)
SnCl4
(72), 89
(20)
TMSCl
(16)
Ti(OPr-i)4
AlCl3
B(OMe)3
L.A.
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
100
25
488
100
99
Refs.
199
Br
HO
Br
Cl
O
O
H
H
O
O
H
H
BF3–K+
B[(–)-Ipc]2
B(OPr-i)2
B[(–)-Ipc]2
BF3–K+
B[(–)-Ipc]2
CH2Cl2/H2O, rt, 15 min
n-Bu4NI (10 mol%),
THF, –78° to rt, 2 h
bmimBr, rt, 3 h
Ether, –78° to rt, 3 h Br
OH
(58-73)
HO
Br
Cl
OH
OH
(97) (97)
Ph3PMeCl
(99)
(77), 94
(86)
(98)
Et3NBnCl
(99)
n-Bu4NBr
(15)
n-Bu4NI
PTC none
OH
OH
CH2Cl2/H2O, rt, 15 min Br
Br
(58-73)
PTC (10 mol%),
Ether, –78° to rt, 3 h
OH
100
488
353
489
100
489
200
C7 H
R = H, MeO, MeS, O2N
R = H, MeO, Cl, O2N
R R = MeO, O2N
O
Carbonyl Substrate
CF3
O
O CF3
"
BF3–K+
B
O
B
O
B
TMS
n
Allylborane Reagent
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
CH2Cl2, –78°, 15 min
BF3•OEt2 (2 equiv),
CH2Cl2, H2O, rt
THF, –78°, 1 h
Ether, –78°, 3 h
Conditions
I
I
R
I
R
(95) (90) (96)
MeO MeS O2N
(91) (89) (93) (95)
H MeO MeS O2N
R
(93)
H
R
I
OH
(96), 92
(93), 94
Cl O2N
(93), 94
(90), 96
MeO
H
R
I
OH
4h 3h
Cl O2N
7h
6h MeO
Time H
(87), 97
O2N
R
(90), 96
MeO
R
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
(90)
(85)
(93)
(87)
99
98, 99
234
135
143
Refs.
201
O
F
F
R1
H
AcO
F
F
R2
N
O
F
O
OAc
H
H
H
O
O
H
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
"
BF3–K+
B[(–)-Ipc]2
THF, –100°, 4 h
–100°, 2 h
Ether/pentane,
—
CH2Cl2, –78°, 15 min
BF3•OEt2 (2 equiv),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
–78°
F
F
F
F
I
R1
AcO
F
F
F
F
HO
Cl
R1
I
OH
F
N
OH
F
OH
MeO
Cl
R2
OH
R2
OAc
OH
OH
(84)
(85)
(89), 99
(86), 97
HO
Cl
R1 (85)
(86)
(95), >98, 96:4 d.r.
MeO
Cl
R2
(76), 90
254, 482
491
250
98
99
490
202
C8
C7
O
EtO2P
R3
R2
R4
R1
R5
O H
O H
Carbonyl Substrate
B[(–)-Ipc]2
B(2-d-Icr)2
B[(+)-Ipc]2
Allylborane Reagent
–78°
Pentane, ether, –100°
Pentane, ether, –100°
Conditions
EtO2P
O
I (—)
R3
R2
H H F H H F
H F H H F H
F H F F H H
OH
F
F
R3
R2 R1 F
H
H
H
F
H
H
F
H
H
F
H
F
F
H
H
F
H
H
F
H
H
H
F
F
F
F
F
R4
H
R3
I
R2
R5
OH
R1
R4
R1
H
H
H
H
F
H
F
H
H
H
H
H
F
F
R5
98
97
96
96
98
97
96
% ee
(90), 98.0
(85), 95.0
(80), 98.1
(86), 95.3
(90), 95.2
(88), 99.6
(86), 99.8
(98)
R4
H
H
H
H
H
F
F
R5
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
492
248, 249
248
Refs.
203
CF3
n-Bu
N
MeO2C
NC
O
O
O
H
O
H
O
H
H
CF3
B
O
B
O
B
O
O
O
O
CF3
B[(–)-Ipc]2
"
BF3–K+
n
THF, –78°, 1 h
CH2Cl2, rt, 16 h
CH2Cl2, H2O, rt, 4 h
Ether, –78° to rt, 3 h
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
CH2Cl2, –78°, 15 min
BF3•OEt2 (2 equiv),
CF3
n-Bu N
MeO2C
MeO2C
I (95)
NC
O
OH
OH
OH
I
OH
OH
(100)
(95)
(58-73)
(94), 94
(95)
135
235
234
489
99
98, 99
204
C8
R
R
H
CF3
O
O H
O SiMe2Ph
R = MeO2C, NC
R = CF3, Me
O
Carbonyl Substrate
BBN
B(2-d-Icr)2
B[(+)-Ipc]2
B[(+)-Ipc]2
Pentane, rt, 2 h
Pentane, ether, –100°
Pentane, ether, –100°
Ether, –78° to rt, 3 h
CH2Cl2/H2O, rt, 15 min
n-Bu4NI (10 mol%),
toluene, –78°
B
BF3–K+
L.A. (10 mol%),
Conditions
O O
Allylborane Reagent
I CF3
HO
(98)
(97)
97 97
meta para
(100)
96
ortho
Isomer
para
meta
ortho
(81), 95.2
(80), 99.9
24 h
24 h
16 h
16 h
Time
(96), 96.8
(65), 26 Me
Isomer
(81), 36 CF3
R
Sc(OTf)3
AlCl3
Me Me
Sc(OTf)3
AlCl3
L.A.
CF3
CF3
R
% ee
HO SiMe2Ph
OH
NC
MeO2C
R
I (—)
R
I
R
I
OH
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
(62)
(47)
(69)
(80)
103
248
248
111
100
25
Refs.
205
O
CF3
B
O
B
O O CF3
B(OPr-i)2
Neat, 80-100°
–78° to –40°, 48 h
bmimBr, rt, 3 h
DMF, –40°
B x equiv
La-additive, CuF,
(R,R)-i-Pr-DuPHOS,
THF, –78° to rt
O
B[(–)-Ipc]2
I
I
3
O
15
3
B O
HO
HO
3 15
1.2
15
15
3
3
x % Cat.
HO
1h
3.5 h
20 h
Time
(60), 96
(90)
(88), 92 toluene
20 h
THF
Solvent
(83)
(S)-BINOL-La(OPr-i)3
(R)-BINOL-La(OPr-i)3 20 h
La(OPr-i)3
La(OPr-i)3
none
La-additive
(63), 5
(48), 79
(52), 80
(94), 82
(95), 77
(42), 79
263
135
353
164
166
206
C8
O
O
Ph
Br
R = MeO, Cl
R = MeO, Br
R = H, O2N
HO2C
R
O
Carbonyl Substrate
B
CF3
CF3
Ph
CF3
B(OPr-i)2
–10° to rt, 13 h
Et3N, CH2Cl2,
48 h
B CF3
THF, –78° to –40°,
O O
48 h
B O
THF, –78° to –40°,
Ether, –78°
Ether, –78°
Conditions
O
B
Ph
Allylborane Reagent
O
HO
HO
HO Ph HO2C
R
R
R
HO
O2N
(96), 98
Br
Cl
(94)
(87), 92
(95), 98 (94), >98
MeO
R
(89), 94
MeO
R
(92), 96 (90), >98
H
R
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
105
135
135
145
145
Refs.
207
C9
R1
R2
H
H
O
O
O
O
O
O
H
H
O
O
H
H
Ph B
DMF, –40°, 1 h
B
Ether, –78°
La(OPr-i)3, CuF,
(R,R)-i-Pr-DuPHOS,
THF, –100°, 4 h
THF, –100°, 4 h
THF, –100°, 4 h
THF, –100°, 4 h
O O
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
R1
R2
HO
HO
OH
OH
OH
OH
OH
OH (94), >98, 99:1 d.r.
H
Me
R1
(70), 94
OH
Me
H
R2 (83), 83
(89), 84
(89), >98, 94:6 d.r.
(91), >98, 99:1 d.r.
(94), >98, 99:1 d.r.
OH
145
164
254
254
254
254
208
C11
C10
O Ph
H
O
OMe OMe
OMe OMe O
t-Bu
Fe
O
N
O
H
H
Carbonyl Substrate
B[(+)-Ipc]2
BBN
B(OPr-i)2
Ether, –78°, 30 min
Pentane, rt, 4 h
bmimBr, rt, 3 h
Ether, –100°, 1 h
DMF, –40°, 1 h
B
B[(+)-Ipc]2
La(OPr-i)3, CuF,
(R,R)-i-Pr-DuPHOS,
Conditions
O O
Allylborane Reagent
OH
(82)
N
(82)
OH
(88), 85
OMe OMe
OMe OMe OH
t-Bu
Ph
Fe
HO
(78), 82
(75), 92
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
493
103
353
479
164
Refs.
209
C15
C14
C13
Ph
Cy
Ph
Ph
OH
HO
Ph
O
OH
O
O
O
O
Ph
H
Ph
Ph
H
TBDMS O
OMe OTBDMS
OMe O
B(OH)2
B(OH)2
B(OPr-i)2
BBN
BEt2
B(OPr-i)2
B[(–)-Ipc]2
CH2Cl2, rt
CH2Cl2, rt
–10° to 40°, 15 h
Et3N, CH2Cl2,
Pentane, rt, 2 h
Neat, 0-10°
bmimBr, rt, 3 h
Ether, –78° to rt, 2-3 h
Ph
I
OH
HO
Ph
HO HO Ph
OH
HO Ph
HO HO Ph
Cy
Ph
I (100)
Ph
TBDMS OH +
OTBDMS
(93), 86:14 d.r.
(90), 91:9 d.r.
(84), 72
OMe OTBDMS
OMe OH
(94), >99:1 d.r.
(79)
(86)
OMe OTBDMS (—)
OMe O
110
110
109
103
238
353
494
210
C17
C16
H
H
HO
TBDMSO
H
HO
Ph Ph
H O OTBDMS
OTBDMS
O
O
O
Carbonyl Substrate
B
B[(+)-Ipc]2
3
3
B
B(OH)2
Allylborane Reagent
THF
0.5 h
CH2Cl2, –78° to rt,
0.5 h
CH2Cl2, –78° to rt,
CH2Cl2, rt
Conditions HO Ph
TBDMSO
H
HO
Ph
0.01 M
1:3
d.r.
(60)
(85)
(93)
(98)
>99:1
>99:1
(95), 86
0.08 M
1:3
OH OTBDMS
0.08 M
0.08 M
Conc.
(87)
1:2
1:1
All3B/Ald
2:1
1:1 (85)
(93), 92:8 d.r.
All3B/Ald
OTBDMS
OH
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 1. ADDITION OF UNSUBSTITUTED ALLYL REAGENTS (Continued) B. AROMATIC AND HETEROAROMATIC CARBONYL SUBSTRATES (Continued)
7:1
1.8:1
1.5:1
1:1
d.r.
495
487, 464
487, 464
110
Refs.
211
C19
C18
a
OR
N H
N H
N H
The reaction mixture was free of Mg2+ ions.
O
O
TBDMS O
R = TBDMS
OR
OMe
OMe
OMe O
O
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
3
B
THF
THF
THF
CH2Cl2, 40°, 5 h
OR
OMe
OMe
OR HO
O HO
TBDMS
OMe HO
OH
0.04 M
2:1
N H
N H
N H
0.04 M
1:1 (95)
(90)
(93)
(75)
(95), 90
(95), 90-95, 1:1 d.r.
(95), 69
0.08 M
1:1
Conc. 0.08 M
1:2
All3B/Ket
d.r.
>99:1
>99:1
>99:1
>99:1
495, 496
495, 496
496
487, 464
212
C2
C1
H
O
O
H
H
Carbonyl Substrate
B(4-d-Icr)2
"
B[(–)-Ipc]2
B
TMS
B(2-d-Icr)2
"
B[(+)-Ipc]2
B(Bu-n)2
BBN
Ether, –78°, 3 h
THF, –78°, 3 h
Ether, –78°, 3 h
Ether, –78°, 3 h
Ether, –78°, 3 h
Ether, –78°, 3 h
THF, –78°, 3 h
Neat, 0-5°
Pentane, rt, 2 h
Conditions
(72), 96, >99:1 d.r.
(92)
(88)
Product(s) and Yield(s) (%), % ee
(75), 90, >99:1
I (—), 94, >99:1 d.r.
I (75), 95, >99:1 d.r.
I
OH
I (68), 95, >98:2 d.r.
I (75), 94, >99:1 d.r.
I (72), 92, >99:1 d.r.
I
OH
OH
HO
TABLE 2. ADDITION OF Z-CROTYL REAGENTS Allylborane Reagent
497
137
497
143
497
497
137
238
103
Refs.
213
RO
O
O
R = TBDMS
R = Bn
H R= Bn
R
B
TMS
O
O O
O
Ph
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
BBN
"
B
"
B
THF, –78°, 12 h
THF, –78°
THF, –78°, 3 h
Pentane, rt, 2 h
Hexanes, –55° to –20°
—
Ether, –78° to rt
—
Ether, –78°, 3 h
I
OH
I
OH
I (86), 94
RO
RO
OH
2
I (93), 95:5 d.r.
(97)
(93)
(80)
(70), >90, >20:1 d.r.
OAc
Cl
R
I (93), 60-70, 98:2 d.r.
I (20), 97:3 d.r.
I (92), 97:3 d.r.
I (68), 95, >98:2 d.r.
505
503, 504,
502
295
273, 500,
103
499
498
22
3
143
214
C3
C2
RO
O
O
H
H
H R= TBDMS
O
Carbonyl Substrate
B(2-d-Icr)2
"
B[(+)-Ipc]2
B(4-d-Icr)2
"
B[(–)-Ipc]2
B
B[(–)-Ipc]2
Ph
O B O
Ether, –78°, 3 h
THF, –78°, 3 h
THF, ether, –78°, 3 h
THF, –78°, 3 h
THF, ether, –78°, 3 h
THF, –78°, 3 h
THF, –78°, 4 h
THF, –78°, 3 h
CH2Cl2, –78°, 24 h
Sc(OTf)3 (10 mol%),
Conditions
I
OH
OH
OH
(73), 86, 93:7 d.r.
(63), 90, >99:1 d.r.
(57), 96, >49:1 d.r.
(70), 95-96, 98.5:1.5 d.r.
I (78), 96, >99:1 d.r.
I (78), 92, 99:1 d.r.
I
OH
I (75), 94, >99:1 d.r.
I (70), 95-96, 98.5:1.5 d.r.
I (70), 90, 99:1 d.r.
RO
Product(s) and Yield(s) (%), % ee
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
497
137, 497
506
137, 497
506
137, 497
142
137
27, 28
Refs.
215
TES
CF3
O
O
O
O
B
O
CF3
H
O H
O
O O O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B(Bu-n)2
BBN
B(Bu-n)2
B
O
B(OMe)2
THF, –78°, 4 h
4h
4 Å MS, toluene, –78°,
Neat, 0-5°
Pentane, rt, 2 h
Neat, 0-5°
Ether, –78° to rt
Ether, –78° to rt
TES
CF3
O
O
B
CF3 OH
I (100)
I
OH
OH
(88)
(82)
(62), 96:4 d.r.
(85)
OH
I (20), 97:3 d.r.
I
OH
(43), 80
356
354, 355,
507
238
103
238
22
43
216
C3
R = Bn
R = PMB
R = TBDMS
R= TBDMS
R = TBDMS
O
R = 3,4-DMB
H R = TBDPS
TBDPSO
RO
O
H
Carbonyl Substrate
B
O O
O
O
OPr-i
OPr-i
B(2-d-Icr)2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
4h
4 Å MS, toluene, –78°,
THF, –78°
THF, –78°, 3 h
—
3h
BF3•Et2O, THF, –78°,
THF, –78°
THF, –78°
THF, –78°, 5 h
THF, ether, –78°
THF, –78°
Conditions
I
OH
RO
I (62)
OH
I (82), >98, >99:1 d.r.
I (—)
TBDPSO
I (78), 90
I (72), 97, >95:5 d.r.
I (82)
I (72), >97.5:2.5 d.r.
RO
OH
(68), 72, >98:2 d.r.
(81)
(82), 90
Product(s) and Yield(s) (%), % ee
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
519, 37
518
501
517
533
515
514
512, 513, 501
511
510
508, 509,
Refs.
217
H
H
H
H
R = Bn
OR R = TES
O
OBn
O
NBn2
O
NHBoc
O
R = TBDPS
O
BIpc2(+)
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B
O
B[(–)-Ipc]2
B[(+)-Ipc]2
Ph
O B O
–78°
THF, ether, –78°, 1.5 h
THF, –78°, 3 h
THF, –78°, 3 h
Neat, rt, 4 d
—
—
CH2Cl2, –78°, 24 h
Sc(OTf)3 (10 mol%),
OH
I
OR
OR OH
OH
OBn
OH
OBn
OH
NBn2
OH
I (—), 1:1 d.r.
BocNH
RO
OH
(83), 98.5:1.5 d.r.
(75), >99:1 d.r.
(74), 90, 73:27 d.r.
(78), 92, 99:1 d.r.
(50), 51:49 d.r.
(—), >97:3 d.r.
(57), 96, >49:1 d.r.
523
522
167
167
521
520
520
27, 28
218
C3
OR
H
O
O
O
N
O
THF, –78°, 4 h
THF, rt, 72 h
O
O N
OH
I (95), 95:5 d.r.
TBDMSO
OH
I (98), >99:1 d.r.
I
B
B
THF, –78°, 4 h
O O
O
I
OH
OH
B
30 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
CH2Cl2, rt, 6 h
BF3•OEt2 (5 mol%),
1.5 h
4 Å MS, toluene, –78°,
OR
OH
Boc
H
H
O
"
O
OPr-i
OPr-i
Neat, rt, 4 d
I
(66), 57:1 d.r., 93:7 syn:anti
(65), 5.3:1 d.r., 97:3 syn:anti
(46), 75:25 d.r.
(73), 95:5 d.r.
(98), 88:12 d.r.
Product(s) and Yield(s) (%), % ee
O
O
H
O
O
O
BF3–K+
B
O
B
O
Conditions
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
Boc
TBDMSO
O
R =TBDPS
R= Bn
O
Carbonyl Substrate
142
142
525
276
99
524
521
Refs.
219
HO
O
O
O
O
O
O
O
O
O
O
Ph
CF3
N O
N
CF3
N O
N
Ph
B(OPr-i)2
racemic
B
B
B
O
B
O
B
O
B
CF3
CF3
–10° to rt, 36 h
Et3N, CH2Cl2,
–78° to rt, 18 h
Petroleum ether,
–78° to rt, 18 h
Petroleum ether,
12 h
4 Å MS, toluene, –78°,
–78° to rt, 10 h
4 Å MS, toluene,
24-48 h
CH2Cl2, –78° to rt,
THF, –78°, 4 h
HO
HO
I (—), 97:3 d.r.
I (86), >99:1 d.r.
I (58), 61:39 d.r.
I (95), >99:1 d.r.
(65), 94:6 d.r.
I (75-85), 96:4 d.r., 94:6 syn:anti
I (57), 4.2:1 d.r., 96:4 syn:anti
106
288
288
132
132
118
142
220
C4
C3
i-Pr
n-Pr
O
O
EtO2C
HO2C
H
H
O
O
Carbonyl Substrate
O O
OPr-i
OPr-i
B
O
B
B
O
TMS
B(OC6H13-n)2
BF3–K+
B
O
O
B(OPr-i)2
Ether, –78°
THF, –78°, 4 h
Ether, –78°, 3 h
Ether, rt
–78°, 2 h
BF3•OEt2, CH2Cl2,
–78° to rt, 6 h
4 Å MS, toluene,
–10° to rt
Et3N, CH2Cl2,
Conditions
I
OH
OH
(70), 93, 96:4 d.r.
(91), 94, >98:2 d.r.
(79)
(90), >98:2 d.r.
(87), 9, 5.4:1 d.r.
(96), 99:1 d.r.
Product(s) and Yield(s) (%), % ee
I (51), 94:6 d.r.
i-Pr
n-Pr
n-Pr
OH
EtO2C
HO
EtO2C
HO
HO2C
HO
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
22
142
143
31
98
134
106
Refs.
221
RO
O
H
H
R = PMB
R = TBDPS, TBDMS
R = TBDMS
R = TBDMS, TBDPS, Bn
R = Bn
Cl
O O
O
B
O
B
O
O
O
O
O
CF3
N
O
OPr-i
OPr-i
O
N
B[(+)-Ipc]2
B
O
B[(–)-Ipc]2
CF3
18 h
4 Å MS, toluene, –78°,
–78° to rt, 10 h
4 Å MS, toluene,
THF, –78°, 3 h
Toluene, rt
THF, –78°, 3 h
I (—)
RO
RO
I (—)
RO
I (70)
THF, –90°, 16 h
"
I
OH
86:14
81:19
84:16
Syn:Anti
— 96:4
TBDMS (83) 95:5
d.r. Syn:Anti TBDPS (74) >99:1
R
(75), >95:5 d.r.
61:39
Bn OH
53:47
TBDPS
d.r. 62:38
TBDMS
(83), 92:8 d.r.
(78), 95:5 d.r.
(71), 90:10 d.r.
R
I
OH
I (70), 87.5:12.5 d.r.
–78°, 4 h
"
I
OH
I (73)
RO
Cl
OH
Ether, THF, –100°
THF, –78°, 3 h
Neat, rt, 4 d
"
B[(+)-Ipc]2
B
O
531
132
250
169, 297
167
530
529
527, 528
167, 295
521
222
C4
H
H R = TES
O
R = Bn
O H
R = TBDPS, TBDMS
R = TBDMS, TBDPS, Bn
OR
RO
RO
O
Carbonyl Substrate
O
O
O
O
O
B[(+)-Ipc]2
"
B[(–)-Ipc]2
CF3
N O
N
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B
O
B
O
O
CF3
THF, ether, –78°, 3 h
THF, –90°, 16 h
THF, –78°, 3 h
THF, –78°, 3 h
–78° to rt
4 Å MS, toluene,
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Conditions
10 h
TBDMS
I
OH
OH
12 h
OR
I
OH
Bn
95:5 99:1 63:37
(—), 94:6 d.r.
(—), 99:1 d.r.
(82)
90:10
88:12
86:14
Syn:Anti
53:47
73:27
88:12
d.r.
TBDPS
97:3
89:11
d.r. Syn:Anti
(—) 91:9
TBDMS 53:47
R
(90)
Bn
TBDPS (—) 97:3
96:4
d.r. Syn:Anti
TBDMS (71) 99:1
R
(41), 3:1 d.r.
Time
TBDPS
R
I (—)
OH
I (72), 9:1 d.r.
RO
RO
I
RO
RO
OH
Product(s) and Yield(s) (%), % ee
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
522
269
167
167
132
169
169, 297
Refs.
223
O
PMBO
O
O
TBDPSO
MeO
O
O
H
H
H
O
OMe O
O
R = MOM
H
B
O O
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
24-48 h
CH2Cl2, –78° to rt,
THF, –78°, 4 h
THF, –78°, 4 h
THF, –78°, 6 h
THF, –78°, 2 h
Ether, THF, –78°, 3 h
O
TBDPSO
TBDPSO
O
O
PMBO MeO
O
OH
OMe OH
OMe OH
OH
OH
I (—), 3:1 d.r.
97:3 syn:anti
(75-85), 98:2 d.r.,
(72), >97.5:2.5 d.r.
(70), >97.5:2.5 d.r.
(98)
(76)
537, 118
536
536
354, 355
534, 535
532
224
C5
C4
Et
t-Bu
HO2C
O
O
Et
H
H
O
O
Carbonyl Substrate
B
TMS
O
O
O
OPr-i
OPr-i
B[(–)-Ipc]2
BF3–K+
B
O
B
B(OPr-i)2
B(OPr-i)2
Ether, –78°, 3 h
CH2Cl2, H2O, rt, 15 min
n-Bu4NI (10 mol%),
7d
4 Å MS, toluene, –78°,
Ether, –78°, 3 h
THF, –78°, 4 h
Neat, 0-5°
–10° to rt
Et3N, CH2Cl2,
Conditions
I
OH
OH
Et
OH
I (96), >98:2 d.r.
I (66), 70, 99:1 d.r.
I (92), 94, >98:2 d.r.
t-Bu
HO2C
HO Et
(73), 82:18 d.r.
(75), 97, 95:5 d.r.
(81)
(92), 99:1 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
538, 167
100
519, 37
143
142
238
106
Refs.
225
Et
racemic
O H
racemic
B
B
racemic
B
B
"
"
B
O
O
O
O
O
O
O
O
O
O
Ph
Ph
Ph
Ph
B[(+)-Ipc]2
–78° to rt
Petroleum ether,
–78° to rt
Petroleum ether,
–78° to rt
Petroleum ether,
–78° to rt
Petroleum ether,
Neat
–78° to rt
Petroleum ether,
Neat, rt, 3 d
Ether, –78°, 3 h I
OH
Et
Et
Et
Et
I (—)
OH
OH
OH
OH
70:30 69:31 68:32
42° 61° 81°
(94), 66:34 d.r.
(95), 70:30 d.r., >99:1 syn:anti
(90), 70:30 d.r., >99:1 syn:anti
(74), 55:45 d.r., >99:1 syn:anti
72:28
d.r.
(79), 96:4 d.r.
rt
Temp
I (98), 70:30 d.r.
I (49), 70:30 d.r.
Et
114
114, 540
114, 540
114, 540
539
114
539, 113
538, 167
226
C5
R
H
H
Boc
O
Boc
N
N
O
Carbonyl Substrate
B
O
B
O
B
O
B
O
O
O
O
O
O
O
O
OEt
OEt
O
OEt
OEt
B[(–)-Ipc]2
B[(+)-Ipc]2
THF
—
—
THF, rt, 72 h
—
—
Conditions
Boc
I
(50), >95:5 d.r.
R
N Boc
OH
I (68), 96:4 d.r.
I (72), 87:13 d.r.
Me
H
R
0°
rt
96 h
24 h
Temp Time
I (70), 93:7 d.r., 89:11 syn:anti
I (50), 80:20 d.r.
N
OH
d.r.
278, 525
278, 525
525, 541
278, 525
278, 525
Refs.
(85) 86:14
(78) 72:28 525
Product(s) and Yield(s) (%), % ee
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
227
MeO
O
OR
OR
BnO
TrO
O
H
B[(–)-Ipc]2
B[(–)-Ipc]2
O
O
THF, –78°, 7 h
THF, –78°
Neat, rt, 3 d
Neat, rt, 3 d
THF, –78°
THF, –78°
MeO
O
OR
OR
BnO
TrO
TIPSO 4
OH
OH
4
OH
OH
OH
OH
OH 4
O
H
O
B
O
B
O
B[(+)-Ipc]2
B[(–)-Ipc]2
THF, –78°
O
O
H
H
H
H
H
B[(–)-Ipc]2
O
O
O
4
4
O
4
O
O
TIPSO
(72)
MOM
TBDMS
R
MOM
TBDMS
R
d.r.
59:41
60:40
d.r.
78:22
91:1
(39), 85, >99:1 d.r.
(—)
(—)
(—), 93
(68), 90
(65), 90, >20:1 d.r.
544
411
115
115, 113
543
542
330
228
C6
C5
O H
OMe
H O
O
BBN
B
O
B
O
B[(–)-Ipc]2
—
Neat, rt, 3 d
—
—
BnO
H
TBDMSO
TBDMSO
BnO
BnO
TBDMSO
I
Pentane, rt, 2 h
n-C5H11
OH
OH
OH
OH
OH
OMe
OH
I (—), 1:1 d.r.
O
TBDMSO
O
H
H
B[(+)-Ipc]2
THF/ether, –78°
O
TBDMSO
O
O
B[(+)-Ipc]2
THF/ether, –78°
(89), 60:40 d.r.
(—), >99:1 d.r.a
(—), 68:32 d.r.
(49-82)
(49-82)
(—), 97, 15:1 d.r.
Product(s) and Yield(s) (%), % ee
S
H
H
B[(–)-Ipc]2
Conditions
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
S
n-C5H11
BnO
O
TBDMSO
O
TBDMSO
BnO
O
Carbonyl Substrate
103
545
115
341
341
522
522, 532
Refs.
229
O
BnO
O
OBn O
TIPSO
O
H
O H
O
N O
N
CF3
B
O
B
O
B
O
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B(OC6H13-n)2
B
O
O
B(OMe)2
B[(+)-Ipc]2
CF3
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene
Ether, rt
9h
4 Å MS, toluene, –78°,
–120° to –75°
—
O
O
BnO
I
OH
O
O
OH
(78)
OBn OH
OBn OH
TIPSO
OH
I (76), 92
n-C5H11
n-C5H11
OH
97:3 syn:anti
(—), 82:18 d.r.,
99:1 syn:anti
(73), 94:6 d.r.,
(64), >20:1 d.r.
(51), 98:2 d.r.
(56), 95, >99:1 d.r.
549
548, 549
547
31
132
546
250
230
C7
Ph
O H
Carbonyl Substrate
B
TMS
B
O O
O
O
, Pd(PPh3)4
HB
,
toluene, –78°, 4 h
L.A. (10 mol%),
"
Ether, –78° —
O
Ether, –78°
Ether, –78°, 3 h
THF, –78°, 3 h
—
Pentane, rt, 2 h
"
B
O
B(OMe)2
B[(–)-Ipc]2
B[(+)-Ipc]2
BBN
Conditions
I
OH
OH
(72), 88, 99:1 d.r.
(60), 96, >99:1 d.r.
(87)
Product(s) and Yield(s) (%), % ee
(89)
Sc(OTf)3
99:1
99:1 (87)
AlCl3
I (81)
I
d.r. L.A.
I (97), 20:1 d.r.
I (22), 96:4 d.r.
I (40), 96:4 d.r.
I (72), 98, >98:2 d.r.
Ph
Ph
Ph
OH
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
550
25
52
22
43
143
137
250
103
Refs.
231
F
F
F
F
F
O H
O
O
O
O
Cy
B[(–)-Ipc]2
"
O
OPr-i
OPr-i
Cy
B[(+)-Ipc]2
Ph
O B O
B
O
B
O
B
O
THF, –78°, 3 h
–100°
Pentane/ether (1:1),
—
CH2Cl2, –78°, 24 h
Sc(OTf)3 (10 mol%),
–78°, 6 h
(10 mol%), toluene,
Et2AlCl/(S)-BINOL
6h
4 Å MS, THF, –78°,
12 h
Petroleum ether, rt,
F
F
F
OH
F
F
F
F
F
OH
I (75), 94, >19:1 d.r.
F
F
I (53), 59, >49:1 d.r.
I
OH
I (90), 55, 98:2 d.r.
I (62)
I
(75), 94, >95:5 d.r.
(77), 97, >99:1 d.r.
(19), 8, 99:1 d.r.
491
249
250
27, 28
25
37
64
232
C7
R
OR
OR
O H
O H
O H
R = H, MeO
R = H, MeO, O2N
O2N
Carbonyl Substrate
O
B
O
B
O
O
O
O
O
BF3–K+
"
BF3–K+
B
O
O
CF3
N O
N
O
OPr-i
OPr-i
O
OPr-i
OPr-i
CF3
I d.r.
9h
4 Å MS, toluene, –78°,
6h
4 Å MS, toluene, –78°,
15 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
I
OH
MeO
H
(98)
(96)
(95)
(90), 83, 98:2 d.r.
>98:2
>98:2
d.r.
>98:2
(94)
O2N R
96:4
>98:2
(93)
(92)
MeO
H
I (80), 92
I
I
O2N
(91)
MeO
R
TBDMS
Me
R
CH2Cl2, –78°, 15 min R
OH
OH
(91)
OR
OR
H R
O2N
Product(s) and Yield(s) (%), % ee
BF3•OEt2 (2 equiv),
CH2Cl2, –78° to rt
Conditions
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
>98:2
96:4
>98:2
d.r.
(99)
(100)
132
519, 37
100
99
98, 99
551
Refs.
233
O
TBDPSO
i-Pr
i-Pr
MeO
PMBO
TBDPSO
O
p-MeOC6H4
t-Bu
O
O
O
H
H
H
O
O
H
H
O
H
H
TBDMS O
OH
O
O
B
O O
O
O
OPr-i
OPr-i
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B(OPr-i)2
B[(–)-Ipc]2
B
O
4 Å MS, toluene, –78°
THF, –78°, 4 h
THF, –78°, 4 h
THF, –78°, 6 h
THF, –78°, 6 h
Toluene, –23°
THF, ether, –78°, 2 h
CDCl3, 4 kbar, rt
OH
O
TBDPSO
i-Pr
i-Pr OH
OH
I (—), 1:1 d.r.
MeO
PMBO
TBDPSO
O
p-MeOC6H4
t-Bu
O
OH
(60)
(—), 6:1 d.r.
(78), 1.6:1 d.r.
OH (85), 5:1 d.r.
(62)
(56)
TBDMS OH
OH
OH
(50), 60:40 d.r.
364, 441
554
554
354
354
553
552
521
234
C8
C7
O
Ph
O
n-C7H15
MeO
H
O H
OMe
O
H
Carbonyl Substrate
O
THF, –78° to rt, 2 h —
"
THF, –78°, 18 h
CH2Cl2, H2O, rt, 15 min
n-Bu4NI (10 mol%),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
CH2Cl2, –78°, 15 min
BF3•OEt2 (2 equiv),
"
B[(+)-Ipc]2
"
"
BF3–K+
BF3•OEt2 THF, –78° to rt, 3.5 h
"
–78° to rt
BF3•OEt2, THF,
THF, –78° to rt
6h
4 Å MS, toluene, –78°,
"
"
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
O
Conditions
O
I
OH
OMe
(90), 95:5 d.r.
(99)
I
OH
I (85-90), >95
I (80)
Ph
I (94), >98:2 d.r.
I (76), >98:2 d.r.
558
557
556
100
99
98, 99
420
I (74), >98:2 d.r.
421
422
420
555
I (90), 95:5 d.r.
(75), >95, >95:5 d.r.
OH
Refs.
I (90)
I (72), 95:5 d.r.
n-C7H15
MeO
Product(s) and Yield(s) (%), % ee
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
235
Ph
O
BnO 4
PMBO
TBDMSO
Ph
O
O
O
H
H
O
O
B[(–)-Ipc]2
B[(+)-Ipc]2
"
BF3–K+
B
O
B
O
BBN
THF, –78°
THF, –78°
CH2Cl2, rt, 6 h
BF3•OEt2 (5 mol%),
CH2Cl2/H2O, rt, 30 min
n-Bu4NI (10 mol%),
–40°, 4 h
La(OPr-i)3, CuF, DMF,
(R,R)-i-Pr-DuPHOS,
–40°, 5 h
La(OPr-i)3, CuF, DMF,
(R,R)-i-Pr-DuPHOS,
Pentane, rt, 2 h
Ph
HO
OH
OH
4
BnO 4
PMBO
BnO
PMBO
I
OH (—), 2:1 d.r.
(—)
(97), 90:10 d.r.
(90), 92, 62:38 d.r.
(94), 87, 84:16 d.r.
(97)
OH
I (85), 90:10 d.r.
TBDMSO
Ph
HO
Ph
543
543
99
276
164
164
103
236
C9
C8
Ph
H
OBn O
O
O
Ph
H
O H
OBn OBn
4
O
n-C5H11
HO2C
n-Pr
PMBO
BnO
PMBO
H
Carbonyl Substrate
O
O
O
BF3–K+
Ph
O B O
B(OPr-i)2
B
O
B
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B[(+)-Ipc]2
15 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
CH2Cl2, –78°, 24 h
Sc(OTf)3 (10 mol%),
–10° to rt
Et3N, CH2Cl2,
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
THF, –78°
THF, –78°
Conditions
PMBO
BnO
Ph
n-C5H11
HO2C
OH
HO Ph
OH
(—), >99:1 d.r.
(—)
(—), 2:1 d.r.
(99), >98:2 d.r.
(61), 95, >49:1 d.r.
(95), 99:1 d.r.
OBn OH
OH
OH
OBn OBn I
4
I (—), 1.5:1 d.r.
n-Pr
4
PMBO
BnO
PMBO
Product(s) and Yield(s) (%), % ee
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
100
28
106
559
559
543
543
Refs.
237
Br
i-Pr
i-Pr
Ph
Ph
O
7
O
H
O
H
H
O
O
H
H
B
O
B
O
B
O
B
O
B
O
O
O
O
O
O
O
O
O
O
Ph
O B O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Toluene, –78°
Toluene, –78°
2h
4 Å MS, toluene, –78°,
2h
4 Å MS, toluene, –78°,
Neat, rt, 4 d
CH2Cl2, –78°, 24 h
L.A. (10 mol%),
Br
Br
i-Pr
i-Pr
Ph
Ph
7
OH
7
OH
OH
OH — — —
(48), — (<10), — (65), —
TfOH TFA
OH
(91), 76
(91), 74
(70), 96:4 d.r.
(70), 96.4:3.6 d.r.
(92), 77:23 d.r.
OH
d.r. >49:1
TiCl4
Sc(OTf)3 (52), 96
L.A.
560
560
526
526
521
27, 28
238
C10
C9
n-C7H15
n-C7H15
n-C6H13
Ph
TBDMSO
O
O
O
H
H
H
H
O
Carbonyl Substrate
B
O
B
O
"
B
O
"
O
O
O
O
O
O
BF3–K+
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
6h
4 Å MS, toluene, –78°,
toluene, –78°
n-C7H15
n-C7H15
OH
OH
(83), 62, 97:3 d.r.
(85-95), 86, 97:3 d.r.
(55-70), 88
Cr(CO)3, 4 Å MS,
(55-70), 83
Temp
(55-70), 61
–90°
OH
OH
(96), 75:25 d.r.
–78°
OH
(84), 75:25 d.r.
toluene
n-C6H13
n-C6H13
Ph
TBDMSO
Ph
OH
Product(s) and Yield(s) (%), % ee TBDMSO
Cr(CO)3, 4 Å MS,
4 Å MS, toluene, –78°
30 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
Conditions
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
519, 37
128
130
130
276
99
Refs.
239
O
SEMO
MeO
TBDPSO
MeO
TBDMSO
MeO
Ph
Ph
O
n-C9H19
O
O
O
H
H
O H
O
O
O
H
H
H
O
B
O O
O
O
OPr-i
OPr-i
B[(–)-Ipc]2
B[(–)-Ipc]2
O
OPr-i
OPr-i
B[(+)-Ipc]2
B(Bu-n)2
"
B
O
O
91 h
4 Å MS, toluene, –78°,
Ether, –78°, 1.5 h
THF, –78°
—
Neat, 0-5°
6h
4 Å MS, toluene, –95°,
6h
4 Å MS, toluene, –78°,
MeO
O
O
SEMO
MeO
TBDPSO
MeO
TBDMSO
Ph
Ph
I (69), 86
n-C9H19 I
O
OH
OH
H OH
OH
OH
OH
(77)
561
238
519
519, 37
564
(51), 6.2:1 d.r. 563, 430
(90), 19:1 d.r. 562
(98), 2.4:1 d.r.
(78)
(80), 82, 99:1 d.r.
240
C11
C10
O
n-Pr
BnO
O
H
O H
OBn
O O
O H
O
H
H
OBn O
H
OTBDMS
O
MOMO
TIPSO
MOMO
O
3
H
O
Carbonyl Substrate
H
O
B
O
B
O
B
O
B
O
O
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Toluene, –80° to –70°
THF, –78°
Conditions
O
O
H
I
O
H
OBn
O
H
OH
OBn OH
O
H
OTBDMS
I (—), 1:1 d.r.
n-Pr
BnO
O
MOMO
TIPSO
MOMO
O
OH
3
(52)
(79)
(59), >95
(—), 1:1.3 d.r.
OH
Product(s) and Yield(s) (%), % ee
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
559
559
570
568, 569,
566, 567,
566
565
Refs.
241
C14
C13
O
TIPSO
OBn
Ph
H
OBn
Ph
O
OH
O
H
n-Bu
AcS
Br
Ph
Ph
n-Pr
BnO
OTIPS
OBn O
O
O
H
OMe
H
H
O
O
O
O O O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B(OPr-i)2
BBN
B
O
B
O
O
–78°
4 Å MS, toluene, –78°
–10° to 40°, 32 h
Et3N, CH2Cl2,
Pentane, rt, 2 h
4 Å MS, toluene, –78°
4 Å MS, toluene, –78° H I
O H
OBn
OH
n-Bu
TIPSO
OBn
OH
HO Ph
AcS
Br
Ph
Ph
Ph
(—), >99:1 d.r.
OTIPS
OH
OMe
OH
109
103
559
559
(61), >97.5:2.5 d.r. 572
(80), 20:1 d.r. 571
(80), >99:1 d.r., 5:95 syn:anti
(96)
OBn OH
I (—), >99:1 d.r.
n-Pr
BnO
242
C16
C14
a
O
O
CO2Me
O
NH
O
H
OTIPS
O
O
H
H
O O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
O
B[(+)-Ipc]2
B[(+)-Ipc]2
THF, –78°, 2 h
–90° to rt, 18 h
4 Å MS, toluene,
THF, –78°, 2 h; rt
–78°
Conditions
I
O
OH
OTIPS
CO2Me
O
NH
O
I (60), >95:5 d.r.
TBDMSO
RO
PhO2S
n-Bu
TIPSO
(67), 3:1 d.r.
573, 574
572
Refs.
575, 576
(80), 67:33 d.r. 575, 576
(67), 7:1 d.r. TES
(65), 11:1 d.r.
H
R
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 2. ADDITION OF Z-CROTYL REAGENTS (Continued) Allylborane Reagent
The reference reports uncertainty over the stereochemical assignment of the product.
TBDMSO
RO
PhO2S
n-Bu
TIPSO
Carbonyl Substrate
243
C2
Boc
O
H N
H
O H
Carbonyl Substrate
B
TMS
B[(+)-Ipc]2
B(Bu-n)3–Li+
B O
Ether, –78°, 3 h
B(4-d-Icr)2
O
THF, –78°, 3 h
B[(–)-Ipc]2
—
, – Li+ B(Bu-n)3, ether, –70°
Ether, –78° to rt
Ether, –78°, 3 h
Ether, –78°, 3 h
THF, –78°, 3 h
B(2-d-Icr)2
B[(+)-Ipc]2
Conditions
(76), 96, 99:1 d.r.
Product(s) and Yield(s) (%), % ee
(78), 95, 99:1 d.r.
Boc
H N
OH (—), 97
I (—), 80:20-92.5:7.5 d.r.
I (40), 93:7 d.r.
I (73), 97, >98:2 d.r.
I (—), 94, >99:1 d.r.
I
OH
I (75), 96, >99:1 d.r.
I
OH
TABLE 3. ADDITION OF E-CROTYL REAGENTS Allylborane Reagent
517
577
22
143
497
44, 497
497
44, 497
Refs.
244
C3
C2
RO
O H
R = TBDMS
R = Bn
R = TIPS
R = PMB
H R = TBDPS
O
Carbonyl Substrate
O
O O
O
O
O
Ph
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
Ph
O B O
B
B
O
B
O
B[(–)-Ipc]2
Allylborane Reagent
THF, –78°, 3 h
CH2Cl2, –78°, 24 h
Sc(OTf)3 (10 mol%),
Ether, rt
Toluene, –78°
4 Å MS, toluene, –78°
THF, ether, –78°
Conditions
RO
OH
OH (74), 95, >49:1 d.r.
(61), 92, >99:1 d.r.
(65), 90, 99:1 d.r.
I (86), 52, >95:5 d.r.
I (80), 92, 20:1 d.r.
I
OH
Product(s) and Yield(s) (%), % ee
I (79)
RO
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
137
27, 28
581
330
559
580
578, 579,
Refs.
245
O H
B(Bu-n)3–Li+
, – Li+ B(Bu-n)3, ether, –70°
Ether, –78°
O O
Ether, –78° to rt
B(OMe)2
B
I (—), 94, >99:1 d.r.
I (—), 80:20-92.5:7.5 d.r.
I (62), 97:3 d.r.
I (61), 97:3 d.r.
I (75), 94, >99:1 d.r.
Ether, –78°, 3 h
577
22
43
497
137
506
THF, –78°, 3 h
137, 497
I (70), 95-96, 98:2 d.r.
142
I (70), 90, 99:1 d.r.
B(4-d-Icr)2
THF/ether, –78°, 3 h
I
(81), 96, 93:7 d.r.
506
OH
137, 497
497
I (70), 95-96, 98:2 d.r.
(76), 98, >99:1 d.r.
I (78), 92, 99:1 d.r.
I
OH
"
Ether, –78°, 3 h
B[(–)-Ipc]2 "
THF, –78°, 4 h
THF, ether, –78°, 3 h
B
THF, –78°, 3 h
B[(+)-Ipc]2
Ether, –78°, 3 h
"
B(2-d-Icr)2
246
C3
R
O H
Boc
H
R = Boc
R = Ac
R = Boc
HN
HN
O
Carbonyl Substrate
B
O
B
O
B
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Conditions
–78°, 15 h
4 Å MS, toluene,
acetone, –78°
4 Å MS, toluene,
–78°, 15 h
4 Å MS, toluene,
–78°, 15 h
4 Å MS, toluene,
–78°, 4 h
"
B[(–)-Ipc]2
—
—
B[(–)-Ipc]2
B[(+)-Ipc]2
Allylborane Reagent
Boc
Boc
OH
R
OH
R
I
I (68), 75:25 d.r.
I (67), 87:13 d.r.
HN
HN
OH
I
(53), 75:25
(85), >95:5 d.r.
(—), >97:3 d.r.
(—), >97:3 d.r.
Product(s) and Yield(s) (%), % ee OH
I (81)
HN
HN
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
278
584, 278
278
278
583
520, 582
520
Refs.
247
H
H
O
R = PMB
R = TBDMS
RO
NBn2
O
NBn2
O
H
O
O
O
O OH
R
—
THF, –78°
Ether, THF, –78°,
"
B[(+)-Ipc]2
"
3h
I (67), >99, >99:1 d.r.
–78°
"
I (76), 91
RO
RO
I (48)
I
OH
OH
I (71), >85, >50:1 d.r.
2h
I
OH
(62), 92
(70)
(55)
(92), 9:1 d.r.
(94), >95:5 d.r.
(68), >95:5 d.r.
–78° to rt
RO
NBn2
OH
NBn2
HN
OH
"
THF, –78° to –30°
Neat, rt, 4 d
acetone, –78°
4 Å MS, toluene,
–78°, 15 h
4 Å MS, toluene,
"
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B
O
B
O
O
588, 589
413, 339
341
587
586
585
406
521
278
278
248
C3 H
H
R = Bn
O
R = TBDPS
R = TBDMS
OR
RO
O
Carbonyl Substrate
O
B[(+)-Ipc]2
Ph
O B O
B O
OPr-i
OPr-i
THF, –78° , 3 h
CH2Cl2, –78°, 24 h
Sc(OTf)3 (10 mol%),
–78°, 4 h
4 Å MS, toluene,
THF, –78° to rt, 4 h
B[(+)-Ipc]2
O
THF, –78°, 2 h
"
O
THF, –78°
THF, –78°
Conditions
"
B[(–)-Ipc]2
Allylborane Reagent
I
OH
OR
RO
RO
RO
OH
I (68)
OH
I
OH
OH
(85), 97:3 d.r.
(63), 94, >49:1 d.r.
(71), 85, >98:2 d.r.
(70), >95, >20:1 d.r.
(72), 95, 20:1 d.r.
Product(s) and Yield(s) (%), % ee
I (81), 95, 20:1 d.r.
RO
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
167, 538
27, 28
519, 37
595
594
592, 593
590, 591
Refs.
249
TES
TMS
HO
O
TBDMSO
H
H
H
O
O
O
B[(+)-Ipc]2
B[(–)-Ipc]2
B(OPr-i)2
"
BF3–K+
THF, –78°
THF, –78°
–10° to rt, 15 h
Et3N, CH2Cl2,
30 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
CH2Cl2, rt, 6 h
BF3•OEt2 (5 mol%),
Neat, rt, 4 d
O
R = Bn O
Ether, –78°
B[(–)-Ipc]2
R = PMB
B
THF, –78°, 3 h
B[(–)-Ipc]2 I
I
HO
TES
TMS
HO
OH
OH
I (95), 75:25 d.r.
TBDMSO
OH
I (46), 77:23 d.r.
I (64)
OR
OH
(67)
(66), 90
(72), 97:3 d.r.
(72), 75:25 d.r.
(80), 95:5 d.r.
573
266
109
276
99
521
597
167, 538
250
C3
O
EtO2C
HO2C
RO
O
O
O
Carbonyl Substrate
O
O
O
Ph
BF3–K+
B
O
B
O
B(OPr-i)2
BBN
O
OPr-i
OPr-i
Ph
Allylborane Reagent
–78°, 2 h
BF3•OEt, CH2Cl2,
6h
4 Å MS, –78° to rt,
–78° to rt, 6 h
4 Å MS, toluene,
–10° to rt
Et3N, CH2Cl2,
30 min
Ether, –76° to 0°,
Conditions
75:25 65:35 70:30 100:0
(79) (88) (80) (90)
2,6-Me2C6H3 3,5-Me2C6H3 2,3,6-Me3C6H2 2,6-(t-Bu)2-3-MeC6H2
5:1 2:1
(80), 62 (83), 33
3.2:1
7:1
d.r.
CH2Cl2
(82), 53
(84), 73
(86), 6, 53:47 d.r.
ether
THF
toluene
Solvent
I (92), >98:2 d.r.
I
EtO2C
HO
I
80:20
(89)
Ph
(95), 99:1 d.r.
80:20
(94)
PhCH2
HO
85:15
(90)
t-BuCH2
d.r. 73:27
(96)
OH
Product(s) and Yield(s) (%), % ee
Me
O R
HO2C
RO
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
98
134
134
106
598
Refs.
251
O
O
O H
"
B
O
B
O
B[(–)-Ipc]2
B
B
CH2Cl2, 24 h
24-48 h
CH2Cl2, –78° to rt,
THF, –78°, 4 h
I (—)
O
O
O
O
I
Anti:Syn 94:6 95:5 97:3 >99:1
d.r. 52:42 51:44 51:46 53:47
Temp –78° to rt rt –20° –78°
(75-85), 52:42 d.r., 94:6 anti:syn
OH
(74), 6.9:1 d.r., 98:2 anti:syn
OH
I (72), >20:1 d.r.
(71), 34:1 d.r., 99:1 anti:syn
I
—
O
I (62), 2:1 d.r., 89:11 anti:syn
O
THF, –78°, 4 h
THF, –78°, 4 h
OH
118
537, 118
142
599
142
142
252
C3
O
O
O H
Carbonyl Substrate
O
CF3
CF3
(37)
B
B
O
B
O
B
O
O O
O
O
O
O
O
O N
Ph
CF3
N O
N
O
OPr-i
OPr-i
O
N
CF3
–78° to rt, 18 h
Petroleum ether,
9h
4 Å MS, toluene, –78°,
4 Å MS, toluene, –78°
7h
4 Å MS, toluene, –78°,
–78° to rt, 18 h
(87), 91:9 d.r., 96:4 anti:syn
O
I (—), 72:28 d.r.
I (77), 95:5 d.r.
O
OH
I (84), >99:1 d.r.
I (65)
I
4 Å MS, toluene,
O
"
O
I (85), 98:2 d.r., 98:2 anti:syn
O
—
OH
Product(s) and Yield(s) (%), % ee
4 Å MS, toluene, –78°
O
OPr-i
OPr-i
Conditions
"
B
O
Allylborane Reagent
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
288
132
602, 170
126, 548,
132
603
170
601, 602,
600
Refs.
253
C4
O
O
O
O
O
H
O
O
O
O
H
O
H
O
H
H
racemic
O
O
O
O
O
O
O
O
B[(–)-Ipc]2
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Ph
B[(–)-Ipc]2
B
O
B
O
B
O
B
Ether, THF, –78°, 3 h
Ether, –78°, 2 h
1.5 h
4 Å MS, toluene, –78°,
4 Å MS, toluene, –78°
1.5 h
4 Å MS, toluene, –78°,
–78° to rt, 18 h
Petroleum ether,
O
O
O (77), 88:12 d.r.
OH
O
OH
(—), 84, 9:1 d.r.
(58), 99, 14:1 d.r.
(84), 91:9 d.r.
(85), 98:2 d.r., 98:2 anti:syn
OH
O
OH
O
OH
I (—), 2:1 d.r.
605, 606
604
524
549
524
288
254
C4
BnO
i-Pr
Cl
O
O
H
H
O H
Carbonyl Substrate
B
O
B
O
B
O
O
O
O
O
OPr-i
OPr-i
B(Bu-n)3–Li+
B
O
TMS
B[(–)-Ipc]2
B
Allylborane Reagent
4 Å MS, toluene, –78°
Neat, rt, 4 d
– Li+ B(Bu-n)3, ether, –70°
Ether, –78°
Ether, –78°, 3 h
Ether, –78°, 3 h
THF, –78°, 4 h
Conditions
I
OH
I
OH (59), 96:4 d.r.
(94), 96, >98:2 d.r.
BnO
Cl
OH
OH (87), 80
(71), 53:47 d.r.
I (—), 80:20-92.5:7.5 d.r.
i-Pr
i-Pr
OH
(76), 97, 96:4 d.r.
Product(s) and Yield(s) (%), % ee
I (80), 88:12 d.r.
i-Pr
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
609
521
577
22
143
608
305, 607,
142
Refs.
255
RO
O
Toluene, rt
O
R = TBDMS, TBDPS, Bn B
Ether/THF, –100°
B[(–)-Ipc]2
R = TBDPS
THF, –78°, 3 h I
I (—), >99:1 anti:syn
I (74)
RO
(87), 98:2 d.r.
d.r. 62:38 68:32
Bn
61:39 TBDPS
TBDMS
R
B[(–)-Ipc]2
R = Bn
OH
I (74)
THF/ether, –85°,
B[(+)-Ipc]2
R = TBDPS
169, 297
527
167
530
513
20 h
167
R = TES I (68), >98:2 d.r.
611
167, 610,
I (76), >98:2 d.r.
I
(48), 95:5 d.r.
THF, –78°
RO
OH
THF/ether, –78°
THF, –78°, 4 h
"
H
B[(+)-Ipc]2
B[(+)-Ipc]2
R = Bn
O
256
C4
RO
H
R = TBDPS, TBDMS
R = TBDPS, TBDMS
R = TBDMS, TBDPS, Bn
O
Carbonyl Substrate
B
O
B
O
B
O
B
O
B
O
O
O
O
O
O
O
O
O
O
O
CF3
N O
N
CF3
N O
N
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
CF3
CF3
Allylborane Reagent
–55° to 0°
4 Å MS, toluene,
–55° to 0°
4 Å MS, toluene,
–78°, 18 h
4 Å MS, toluene,
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Conditions
RO
I
RO
RO
RO
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
10 h
TBDMS
10 h
12 h
TBDPS TBDMS
Time
R
OH
12 h
Time TBDPS
R
(81), —
97:3 99:1 99:1
(78)
90:10
96:4
d.r.
>97:3
(85)
(80)
95:5
(87)
d.r.
>97:3 d.r.
— TBDMS
>99:1 98:2 98:2
Anti:Syn
d.r.
I
81:16 88:11 85:14
d.r.
97:3 82:16 93:5
Anti:Syn
TBDPS
(77), 60
(—) (85) (—)
(80) (—) (—)
d.r.
R
TBDMS TBDPS Bn OH
R
TBDMS TBDPS Bn OH
R
OH
Product(s) and Yield(s) (%), % ee
132
132
596
615
297, 169,
613, 614
169, 612,
297, 456,
Refs.
257
RO
R = TBDMS, t-Bu
R = TBDMS
R = t-Bu
R = PMB
B
O
B
O
B
O
B
O
O
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4h
4 Å MS, toluene, –78°,
8h
4 Å MS, toluene, –78°,
THF, –78°, 3 h
B[(–)-Ipc]2
R = Bn
O
THF, –90°, 16 h
THF, –78°, 3 h
B[(+)-Ipc]2
H
B[(+)-Ipc]2
R = TIPS
R = Bn
O
I
I
I
RO
— 4h
t-Bu
Time TBDMS
R
I
OH
I (71), 82:18 d.r.
I (78), 85:15 d.r.
RO
OH
I (50), 93:7 d.r.
RO
OH
(74)
(—)
18:1
9:1
d.r.
(86), 89:11 d.r.
(—), 94:6 d.r.
(—), 98:2 d.r.
271
364
615
619, 266,
618
195, 617
167
616
167
258
C4 O
O
O
O
O
TBDPSO
BnO
O
O
TBDMSO
BnO
H
H
O
O
O
H
H
H
OMe O
O
O
H
Carbonyl Substrate
O
B
O
B
O
B
O
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B
O
Allylborane Reagent
Toluene, –78°
1h
4 Å MS, toluene, –78°,
4 Å MS, toluene, –78°
THF, –78°, 4 h
THF, –78°, 4 h
THF, –78°, 3 h
—
Conditions
O
O
O
O
O
TBDPSO
TBDPSO
BnO
O
O
OH
OH
OH
(82)
(95), 9:1 d.r.
(88), 95:5 d.r.
(88), 95:5 d.r.
(63), 87:13 d.r.
(75), >97.5:2.5 d.r.
OMe OH
(73), >97.5:2.5 d.r.
OMe OH
OH
OH
Product(s) and Yield(s) (%), % ee
TBDMSO
BnO
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
622
621
620
536
536
250
52
Refs.
259
O
O
O
HO2C
Boc
H N
O
O
O
H
H
H
Et
OTBDMS
O
O
O
O
O
O
O
O
O
O
O
O
O
B(OPr-i)2
B
O
B
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
B
O
–10° to rt
Et3N, CH2Cl2,
Toluene, 20°
Toluene, 0°
THF, ether, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
24-48 h
CH2Cl2, –78° to rt,
O
O
OH
HO2C
HO Et
O
O (80), 7:1 d.r.
(68), 90, >99:1 d.r.
93:7 anti:syn
(88), 93:4 d.r.,
92:8 anti:syn
(80), 96:4 d.r.,
98:2 anti:syn
(75-85), 52:48 d.r.,
(93), 99:1 d.r.
OTBDMS
OH
I
OH
OH
OH
I (—), 16, 99:1 d.r.
Boc
H N
O
O
O
O
O
O
106
624
623
623
126
126
537, 118
260
C5
Et
t-Bu
O
O
H
H
Carbonyl Substrate
B
O
O
I
(65), >90, >3:1 d.r.
Ether, –70°, 3 h
B[(+)-Ipc]2
OH
I (65), 92, 78:22 d.r., 85:15 anti:syn
Ether, –78°, 3 h
Et
I (75), 96:4 d.r.
Ether, –78°
"
(75), 96:4 d.r.
(41), 73, 95:5 d.r.
(69), 99, >98:2 d.r.
"
I
OH
I (95), >98:2 d.r.
t-Bu
OH
OH
(72), 95, 96:4 d.r.
Et
15 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
6d
4 Å MS, toluene, –78°,
t-Bu
t-Bu
OH
Product(s) and Yield(s) (%), % ee
THF, –78°, 3 h
O
OPr-i
OPr-i
Ether, –78°, 3 h
THF, –78°, 4 h
Conditions
B[(–)-Ipc]2
BF3–K+
B
O
TMS
B
Allylborane Reagent
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
306
607
538
167
100
519, 37
143
142
Refs.
261
Et
O H
racemic
racemic
O
O
O
O
O
O
Ph
Ph
Ph
B
B
O
O
O
O
Ph
Ph
B[(+)-Ipc]2
B
B
B
O
–78° to rt
Petroleum ether,
–78° to rt
Petroleum ether,
Ether, –78°, 3 h
–78° to rt
Petroleum ether,
–78° to rt
Petroleum ether,
–78° to rt
Petroleum ether,
I
(46), 77:23 d.r.
(70), 91:9 d.r.
I
OH
OH
I (96), 76:24 d.r.
Et
Et
>99:1 anti:syn
(98), 75:25 d.r.,
(65), 54, 78:22 d.r.
I (—), 76:24 d.r., >99:1 anti:syn
I (99), 92:8 d.r., >99:1 anti:syn
I (95), 76:24 d.r., >99:1 anti:syn
Et
Neat, rt, 4 d
O B
OH
I I (70), 91:9 d.r.
Ether, –78°
"
OH Et
THF, –78°, 3 h
B[(+)-Ipc]2
114
114, 540
607
540
114, 540
114
113
539, 115,
538
167
262
C5
H
H
O
O
OR
OR H
H
H
R = DMPM
O
TBDMSO
4
O
Boc
OR
BnO
BnO
N
O
O H
Carbonyl Substrate
O
B
O
B
O
B
O
O
O
O
O
O
OPr-i
OPr-i
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B
O
Allylborane Reagent
4 Å MS, toluene, –78°
Neat, rt, 3 d
Neat, rt, 3 d
—
—
THF, –78°
THF, rt, 60 h
Conditions
4
OH
Boc
OR
OR
OH
OH
OH
TBDMSO
TBDMSO
OR
BnO
BnO
BnO
N
MOM
TBDMS
R
MOM
TBDMS
R
(49-82)
(49-82)
(85), >98:2 d.r.
(—)
(—)
OH
OH
(—), 75
74:26 anti:syn
(81), 95:5 d.r.,
94:6
98:2
d.r.
89:11
98:2
d.r.
Product(s) and Yield(s) (%), % ee OH
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
625, 626
115
115, 113
341
341
543
525
Refs.
263
C6
O
n-C5H11
O
O
PMBO
TBDMSO
R = TES
H
S
H
O
O
H
H O
O
O
O
O
O
N Ts
0.4 M
B
O
B
O
B
Ts N
CF3
N O
N
O
OPr-i
OPr-i
Ph
Ph
B[(+)-Ipc]2
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
O
CF3
6h
4 Å MS, toluene, –78°,
4h
4 Å MS, toluene, –78°
THF, –78°
—
—
Neat, rt, 3 d
4h
4 Å MS, toluene, –78°,
O
I
OH
S
H
I (83), 92
n-C5H11 I
OH
I (74-82), 91-95
n-C5H11
O
PMBO
TBDMSO
I (70), >98:2 d.r.
OH
OH
(84), 86, 99:1 d.r.
(67), 95, >99:1 d.r.
(58)
(—), 90:10 d.r.
132
519, 37
50
250
627
115
617
264
C6
AcN
O
TBDPSO
Et
O
O
H
H
Fe(CO)3 H
H
TBDMSO
O
O
O H
Carbonyl Substrate
B
O
B
O
B
O
B
O
O
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Allylborane Reagent
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
0° to rt, 14 h
Petroleum ether,
4 Å MS, toluene, –78°
Conditions
(90), >98, >50:1 d.r.
AcN
O
TBDPSO
OH (76), 80:20 d.r.
(87), 94:6 d.r.
OH
(99), 95:5 d.r., >99:1 anti:syn
Et
OH
OH
Product(s) and Yield(s) (%), % ee
Fe(CO)3
TBDMSO
H
O
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
584, 278
629, 630
197
149, 628,
342, 190
Refs.
265
N
BnO
BnO
O
O
PMBO
TBDMSO
TESO
O
O
H
O
H
H B
O
B
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
–78° to rt, 18 h
4 Å MS, toluene,
2h
4 Å MS, toluene, –78°,
THF, –78°
THF, –78°
Ether, –78°
–78°, 4 h
N
BnO
BnO
O
OH
PMBO
TBDMSO
TESO
O
OH
OH
OH (76), 80:20 d.r.
(75), 4:1 d.r.
(—), 3.5:1 d.r.
(62), 95:5 d.r.
(60), 98, 10:1 d.r.
(83), 6:1 d.r.
(80)
OH
OH
OBn OH
Boc
O
TBDMSO
O
AcN
PMBO B[(–)-Ipc]2
B[(+)-Ipc]2
O
4 Å MS, toluene, –78°
PMBO H
O
B[(+)-Ipc]2
B
OPr-i
OPr-i
PMBO
H
H
H
O
O
PMBO
O
O
O
OBn O
Boc
TBDMSO
O
AcN
O
633
632
631
413
597
583
278
266
C7
C6
O
O
N
O
O
O
O
H
H
OBn O
OAc O
H
H
Carbonyl Substrate
O
O
O
O
OCOPh,
—
THF, –78°, 3 h
B[(–)-Ipc]2
40°, 2 h
THF, rt, 24 h;
BEt3, Pd(PPh3)4,
OCOPh,
THF, rt, 24 h
BEt3, Pd(PPh3)4,
3h
THF, ether, –78°,
4 Å MS, toluene, –78°
–78° to rt, 18 h
4 Å MS, toluene,
Conditions
B[(+)-Ipc]2
"
BEt2
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
Allylborane Reagent
OBn OH
(60)
N
I
OH
OH
I
OH
I (59), 96, >99:1 d.r.
(79), 88, 99:1 d.r.
(64), 2.6:1 d.r.
(31), 83, >96:4 d.r.
O (—), 86:14 d.r., 97:3 anti:syn
O
OAc OH
Product(s) and Yield(s) (%), % ee
I (60), 2.2:1 d.r.
O
O
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
137
250
483
483
634
549
603
Refs.
267
B
TMS
B
O
"
"
O
O OEt
O
OEt
L.A. (10 mol%),
"
O
2
OAc,
O
OEt
OEt
toluene, 20°, 21 h
Pd2(dba)3, DMSO,
O B
O
toluene, –78°, 6 h
(10 mol%),
Et2AlCl/(S)-BINOL
toluene, –78°, 4 h
(10 mol%),
AlCl3/(S)-BINOL
toluene, –78°, 4 h
—
"
O
Ether, –78°
O B
Ether, –75°
B(OMe)2
Ether, –78°, 3 h
I
OH
Sc(OTf)3
AlCl3
L.A.
I (76), 33
I (40), 51, 99:1
I
I (97), 10:1 d.r.
I (80), 94:6 d.r.
I (50), 99:1 d.r.
(94)
(92)
I (82), 97, >98:2 d.r.
d.r.
(92), 39, >99:1
>99:1
>99:1
349
25
25
25
52
22
43
143
268
C7
R
O
H
H
R = H, MeO, O2N
R = BocO
O
Carbonyl Substrate
O O
N Ts
BF3–K+
B[(–)-Ipc]2
Ph
O
OPr-i
OPr-i
Ph
BR3–Li+
B
Ts N
"
B
O
O B O Ph
Allylborane Reagent
CH2Cl2, –78°, 15 min
BF3•OEt2 (2 equiv),
4.5 h
THF, ether, –78°,
, – Li+ BR3, ether, –70°
CH2Cl2, –78°
toluene, –78°
Co(CO)3, 4 Å MS,
3h
4 Å MS, THF, –78°,
CH2Cl2, –78°, 24 h
Sc(OTf)3 (10 mol%),
Conditions
I
OH
OH
I
R
I
(94) (91) (96)
H MeO O2N
R
I
OH
d.r.
>98:2
97:3
>98:2
(82), >99:1 d.r.
90:10-91.5:8.5
(—) n-Bu
d.r. 90:10-91.5:8.5
(—) Et
R
I (74-82), 91-95
(91), 67, >99:1 d.r.
(60), 97, >49:1 d.r.
Product(s) and Yield(s) (%), % ee
I (90), 92, 98:2 d.r.
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
98, 99
635
577
50
128
519, 37
27, 28
Refs.
269
F
F
F
F
F
O H
O
"
O
OEt
OEt
B[(+)-Ipc]2
O B
O
O
O
R = O2N B
BF3–K+
R = H, MeO
"
O OAc,
2
O 2
OAc,
O
OEt
OEt
—
–100°
Pentane/ether,
toluene, 20°, 21 h
Pd2(dba)3, DMSO,
O B
O
60°, 21 h
Pd2(dba)3, DMSO,
O B
15 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
(95) (98)
H MeO
F
F
F
OH
I I (84), 97, >99:1 d.r.
F
F
O2N
OH (67), 50
(72), 92, >19:1 d.r.
>98:2
>98:2
d.r.
>98:2
(94)
O2N R
97:3
(95)
MeO
d.r. >98:2
(93)
H
R
I (81), >99:1 d.r.
I
I
250
249
349
636, 349
100
99
270
C7
F
F
F
F
O H
F
O H
Carbonyl Substrate
O
O
B
O
O
N Ts
Ts N
0.4 M
B
O
"
"
B
O
Ph
Ph
CF3
N O
N
O
OPr-i
OPr-i
B[(+)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
CF3
THF, –78°
6h
4 Å MS, toluene, –78°,
3h
4 Å MS, toluene, –78°,
1h
4 Å MS, toluene, rt,
3h
4 Å MS, toluene, –95°,
THF, –85°, 18 h
THF, –78°, 3 h
Conditions
F
F
I
OH
OH
F
OH
(87), 77 (88), 70 (87), 62
toluene ether THF CH2Cl2
OH (74-82), 91-95
>99:1
>99:1
>99:1
d.r. 96:4
(85), 87
Solvent
I (85), 94
I
(100), 91, >99:1 d.r.
(68)
(72), 92, >95:5 d.r.
Product(s) and Yield(s) (%), % ee
I (96), 46, >99:1 d.r.
F
F
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
50
132
37
37
519, 37
348
491
Refs.
271
O
AcO
OR
TBDMSO
TBDPSO
i-Pr
i-Pr
t-Bu
O
O
O
H
H
H
H
O H
O H
O H
O
O O
B
O
B
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B[(–)-Ipc]2
B[(–)-Ipc]2
B
O
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
THF, –78°, 6 h
4 Å MS, toluene, –78°
THF, –78°, 4 h
THF, –78°, 4 h
Neat, rt, 4 d
AcO
OR
OH
OH
OH
OH
TBDMSO
TBDPSO
i-Pr
i-Pr
t-Bu
OH
(54)
H
(—)
1:1
2:1
(—) Ac
d.r. 50:1
(71) Bz
R
OH
(75), 94:6 d.r.
OH
(70)
(56)
(72), 98:2 d.r.
(65), >97:3 d.r.
640
639
638
637
554
554
521
272
C7
TBDPSO
TBDPSO
TBDMSO
TBDMSO
O
O
H
H
Carbonyl Substrate
O
O
O
O B O
O
O
OPr-i
OPr-i
B[(+)-Ipc]2
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
O
B[(+)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
18 h
4 Å MS, toluene, –78°,
12 h
BF3•OEt2, THF, –78°,
12 h
BF3•OEt2, THF, –78°,
18 h
4 Å MS, toluene, –78°,
18 h
4 Å MS, toluene, –78°,
12 h
BF3•OEt2, THF, –78°,
12 h
BF3•OEt2, THF, –78°,
Conditions
OH
I (45), 85:15 d.r.
TBDMSO
I (78), 98:2 d.r.
I (72), 98:2 d.r.
TBDPSO
OH
(85), 90:10 d.r.
TBDMSO
I (70), 98:2 d.r.
I (75), 98:2 d.r.
TBDPSO
OH
I (70), 70:30 d.r.
TBDMSO
Product(s) and Yield(s) (%), % ee
TBDPSO
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
641
641
641
641
641
641
641
Refs.
273
HO O
H
O
OBn
TBDMSO
TESO
O
OH
OTBDMS
TBDMSO
TBDPSO
TBDMSO
TBDPSO
OMe
OTBDMS
O
O
O
O
H
H
H
O H
O
O
O
O
O
O
O
O
O
O B O
CF3
N
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
N
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
B
O
B
O
B
O
O
CF3
100°, 3.5 d
4 Å MS, 40°, 25 h;
BF3•OEt2, THF, –78°
toluene, –78°, 1.5 h
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Toluene, –75°
18 h
4 Å MS, toluene, –78°,
OH
O
OH
O
OH TBDMS
(67), >10:1 d.r.
O
OBn
(72), >98:2 d.r.
OH
(90)
(53)
OH
(78)
(—), >9:1 d.r.
TESO
OH
TBDMSO
OH
TBDMSO
TBDPSO
TBDMSO
TBDPSO
OMe
OTBDMS
I (52), 98:2 d.r.
643
464
649
364
553
642
641
274
C8
Ph
O
n-C7H15
n-C5H11
O
O H
O
O
H
H
Carbonyl Substrate
DMF, –40°, 3 h
(R,R)-i-Pr-DuPHOS,
DMF, –40°, 1 h
CuF, La(OPr-i)3,
(R,R)-i-Pr-DuPHOS,
4h
4 Å MS, toluene, –78°,
B
O
OPr-i
OPr-i
CuF, La(OPr-i)3, O
O
O
O
CH2Cl2:H2O, rt, 15 min
n-Bu4NI (10 mol%),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
CH2Cl2, –78°, 15 min
BF3•OEt2 (2 equiv),
THF, –78° to rt
CH2Cl2, –78°, 24 h
Sc(OTf)3 (10 mol%),
Conditions
O
B
O
B
O
"
"
BF3–K+
B[(+)-Ipc]2
Ph
O B O
Allylborane Reagent
I
OH
OH
OH
Ph
HO
HO
(72), 95:5 d.r.
(80), 93, 73:27 d.r.
(73), 90, 70:30 d.r.
OH
I (96), >98:2 d.r.
(84), >98:2 d.r.
(86), >95, >97.5:2.5 d.r.
(60), 97, >49:1 d.r.
Product(s) and Yield(s) (%), % ee
I (85), >98:2 d.r.
n-C7H15
n-C7H15
n-C5H11
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
164
164
644, 645
100
99
98, 99
322
28
Refs.
275
TIPSO
BnO
TBDMSO
4
4
PMBO
BnO
PMBO
TBDMSO
Ph
O
O
H
H
H
OTBDMS
O
O
O
H
H
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
"
BF3–K+
THF, –78°
Ether, –78°, 3 h
Ether, –78°, 3 h
THF, –78°
THF, –78°
THF, –78°
THF, –78°
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
30 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
OH
4
4
4
TBDMSO
TIPSO
TIPSO
I (—)
BnO
PMBO
BnO
PMBO
BnO
PMBO
OH
OH
(85), >97.5:2.5 d.r.
OH
(—)
(—), 1:1 d.r.
(—)
(99), 90:10 d.r.
OTBDMS
(56), 9:1 d.r.
(51), 9:1 d.r.
I
OH
OH
OH
I (82), 90:10 d.r.
TBDMSO I
Ph
590
646
646
543
543
543
543
99
276
276
C8
O
n-Pr
PMBO
HO2C
BnO
TBDPSO
OBn O
Ph
OTES O
O H
OBn O
H
H
TBDMSO
OBn OBn
TBDMSO
Carbonyl Substrate
H
O
O
O
O
O
O B O
O
B(OPr-i)2
B
O
B
O
B
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Allylborane Reagent
4 Å MS, toluene, –78°
–10° to rt
Et3N, CH2Cl2,
–78° to rt, 15 h
4 Å MS, toluene,
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Conditions
n-Pr
PMBO
HO2C
OBn OH (—), 9:1 d.r.
(96), 99:1 d.r.
OTES OH (93), >99:1 d.r.
OBn OH
(—), 2.5:1
OBn OBn
HO Ph
BnO
TBDPSO
OH
(78), >99:1 d.r.
TBDMSO
Product(s) and Yield(s) (%), % ee
TBDMSO
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
559
106
648
647
619
Refs.
277
C9
Ph
Et
O
n-C5H11
Ph
O
N
H
O
O H
OPMB O
O
H
H
O H
O
N Ts
Ph
O
O O
O
O
Ph
O B O
B
O
B
O
B
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
BF3–K+
B
Ts N
Ph
B[(–)-Ipc]2
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
O
CH2Cl2, –78°, 24 h
Sc(OTf)3 (10 mol%),
3h
4 Å MS, toluene, –78°,
—
—
THF, ether, –78°, 15 h
n-Bu4NI (10 mol%), CH2Cl2, H2O, rt, 15 min
THF, –78°
Ether, –78°, 5 h
THF, –70°, 6 h
4 Å MS, toluene, –78°
O
N
Ph
Ph
Et
HO
Et
HO
H
OH
OH
OH
OH
OH
OPMB
OH
OBn OBn OH
OBn OH
OPMB H O
O
n-C5H11
Ph
Ph
Ph
n-Pr
PMBO
(71), 96, >49:1 d.r.
(89), 86, 99:1 d.r.
(90), 68:32 d.r.
(83), 80:20 d.r.
(34), 4:1 d.r.
(99), >98:2 d.r.
(74-82), 91-95
(69), 89, >99:1 d.r.
(67), >92, >96:4 d.r.
(—), 1.2:1 d.r.
27, 28
519, 37
197
197
650, 651
100
50
292
374
559
278
C10
C9 O
n-C6H13
n-C7H15
Ph
TBDMSO
i-Pr
i-Pr
Ph H
O
O
H
H
H
O
O
O
H
H
Carbonyl Substrate
O
O
O
O
O
B
O
B
O
"
O
O
O
O
BF3–K+
B
O
B
O
B
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Allylborane Reagent
4 Å MS, toluene, –78°
toluene, –78°
Cr(CO)3, 4 Å MS,
30 min
CH2Cl2/H2O, rt,
n-Bu4NI (0.1 eq),
CH2Cl2, rt, 3-6 h
BF3•OEt2 (5 mol%),
2h
4 Å MS, toluene, –78°,
2h
4 Å MS, toluene, –78°,
Neat, rt, 4 d
Conditions OH
n-C6H13
n-C7H15
Ph
TBDMSO
Ph
OH
OH
OH
OH
OH
OH
(55-70), 69
(85-95), 96, 97:3
(96), 75:25 d.r.
(87), 75:25 d.r.
(70), 95.5:4.5 d.r.
(70), 97:3 d.r.
(53), 75:25 d.r.
Product(s) and Yield(s) (%), % ee
TBDMSO
i-Pr
i-Pr
Ph
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
130
128
276
99
526
526
521
Refs.
279
PMBO
PMBO
t-Bu
PMBO
n-C9H19
n-C7H15
O H
O
O
H
OR
H
DEIPSO
O
H
H OAc
O
OAc
O
O
O
O
O
O
B
O
B
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
B
O
B
O
O
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
12 h
THF, –100° to –78°,
3h
4 Å MS, toluene, –78°,
4h
4 Å MS, toluene, –78°,
toluene, –78°
Cr(CO)3, 4 Å MS,
OH
PMBO
PMBO
(67)
OR
DEIPSO
TBDMS
R
O
OAc
OH
OAc
OH
(97)
(91), 74, >99:1 d.r.
(55-70), 28
(90), 88, >99:1 d.r.
OH
OH
OH
(53), >97.5:2.5 d.r.
t-Bu
PMBO
n-C9H19
n-C7H15
n-C6H13
653, 196
652
313
519, 37
519, 37
130
280
C11
C10
n-Pr
BnO
MeO
H
TBDPSO
TBDPSO
TBDPSO
O H
OBn
OMe
O
H
O
O
O
O
O
TESO
OBn O
O
O
O
H
O
O
Carbonyl Substrate
N
O
N
O
O
O
H Pr-i
O
H
H
B
O
B
O
B
O
B
O
B
O
O
O
O
O
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Allylborane Reagent
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
Conditions
BnO
MeO
n-Pr
O
O H I H
OBn
OMe
O
OH
O
O
O
O
TESO
OBn OH
(—), 85:15 d.r.
TBDPSO
(—), 3:2 d.r.
TBDPSO
O
(90), >99:1 d.r.
O
O
O
(71)
O
OH Pr-i
O
(80), 2.2:1 d.r.
N
N
OH
OH
Product(s) and Yield(s) (%), % ee
TBDPSO
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
559
655
654
654
654
Refs.
281
C12
MeO
MeO
Cy
Ph
n-Pr
BnO
O
N
H
O
O
O
H
H
H
OBn O
PMBO
H
OBn
O
O
H
H
O
O
O
O
O
B[(+)-Ipc]2
THF/ether, –78°, 15 h
THF/ether, –78°, 15 h
—
"
B[(+)-Ipc]2
THF/ether, –78°, 15 h
THF
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
B[(+)-Ipc]2
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
B
O
B
O
O
H I
O H
OBn OBn OH
MeO
MeO
Cy
I (80)
Ph
O
N
OH
OH
(65), 7:1 d.r.
(79), 7:1 d.r.
(80), >99:1 d.r.
(52), 5:1 d.r.
OH
I
OH
(53), 6:1 d.r.
PMBO
I (80), >99:1 d.r.
n-Pr
BnO
I (80), >99:1 d.r.
650, 651
650, 651
656
650, 651
374
559
559
559
282
C13
C12
O
OTBDMS
TMSEO2C
TBDPSO O
O
O
TESO
H
OAc
O
O
O
BnO
O
OBn O
H
H
H
O H
OBn O
OAc O
O
O
Carbonyl Substrate
H
H
O
O
O B O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
O
O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
O
Allylborane Reagent
—
THF, –78° to rt, 1 h
4 Å MS, toluene, –78°
—
Toluene, –78°
Conditions
OTBDMS
TMSEO2C
O H
O
O H
OAc
OH
(77), 14.1:1 d.r.
O
OBn OH
(77)
(71)
(82)
OAc OH
OH
OH
TESO (82), >98.5:1.5 d.r.
O
O
O
Product(s) and Yield(s) (%), % ee
TBDPSO
BnO
O
OBn O
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
657, 658
445
654
561
334
Refs.
283
C14
Et
Et
OH
O Ph
TsO
TBDMSO
Ph
Ph
TBDMSO O
O
O
H
O
O
O
N O
OAc O
O
H
H
H O O
O O
OPr-i
OPr-i
B[(–)-Ipc]2
B
O
O
B(OPr-i)2
B[(–)-Ipc]2
"
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
Ether, THF, –78°
—
0-40°, 24 h
Et3N, CH2Cl2,
Et
Et
OH
OH
O
N
O
TsO (61)
(—), 5:1 d.r. OH
OH
(60), 7:1 d.r.
(69), 7:1 d.r.
O (90), 88, >99:1 d.r.
O
OAc OH
OH (83), 99:1 d.r., >99:1 syn:anti
HO Ph
TBDMSO
Ph
Ph
—
I I (80), >99:1 d.r.
Ph
O
THF, ether, –78°, 15 h
THF, –78°, 15 h
3h
4 Å MS, toluene, –78°,
TBDMSO
629, 630
629
109
660
659
656
260
284
C15
C14
PMBO
O H
O
OPr-i
OPr-i
THF, –78°, 18 h
—
—
—
30 min
CH2Cl2, H2O, rt,
n-Bu4NI (10 mol%),
O
t-Bu
O
Si O
Bu-t
Pr-i
B
O O
O
O
OPr-i
OPr-i —
I
Ph
OBn O
t-Bu
O
Si
O
Bu-t PMBO
OH
(70), 4:1 d.r.
(65), 1.5:1 d.r.
Pr-i
(68), 75:25 d.r.
(—), 4:1 d.r.
C6H13-n
OH
Pr-i
OH
I (—), 3:1 d.r.
I (—), 2:1 d.r.
Ph
N
MeO2C OH
n-C11H23
TBDMSO
N
O
O
O
B[(+)-Ipc]2
B
O
B
O
B[(+)-Ipc]2
BF3–K+
Product(s) and Yield(s) (%), % ee
MeO2C H
H
n-C6H13
Conditions
N
O
Pr-i
H
O
Allylborane Reagent
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
MeO2C O
N
OBn O
Ph
Ph
MeO2C O
n-C11H23
TBDMSO
Carbonyl Substrate
334
661, 662
661
661
661
276
Refs.
285
C18
C17
C16
O
i-Pr
BnO
R 1O
H
O
O
O
O
O H
H
O
OMe O
OMEM
BnO
OTBDPS
OTBDMS
O
OTBDMS
O
H
O
O
H
OR2
OMe
O
NH2 n-C13H27
MEMO
R
H
H
O O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
O
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
THF, –78°, 3 h
–78°
THF, –78°, 4 h
1h
BF3•Et2O, THF, –78°,
15 h
THF, ether, –78°,
i-Pr
BnO
R1O
R
OH
O
H (73)
OTBDMS
OTBDMS
O
NH2 n-C13H27
O
OH
(82)
(55)
Bz O
(66)
TBDMS TBDMS
OMEM
OMe OH
(60)
TBDMS
O
BnO
OTBDPS
(72)
(70)
R2
OR2
OMe
H
O
O
2-Nph
1-Adm
R
R1
O
OH
MEMO
OH 8:1
5:1
d.r.
607
663
168
533
650, 651
286
C19
H
O
MeO
O O H
OPiv
H
O OPiv
O
H
O
O
OTES O
OBn OMe
MEMO
H
BnO
MeO MOMO
MeO
O H
H
O
OTBDPS
BnO
H
Carbonyl Substrate
O
B
O O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
B
O
O
B[(–)-Ipc]2
Allylborane Reagent
4 Å MS, toluene, –78°
1h
BF3•Et2O, THF, –78°,
1.5 h
4 Å MS, toluene, –78°,
–78°
Conditions
MeO
H
H
H (92), 4:1 d.r.
O
OPiv
OPiv
O
OBn OMe
MEMO
O
OH
O
BnO
MeO MOMO
OTES OH
OTBDPS
OH
(40), 1.3:1 d.r.
BnO
OH
(92), 4:1 d.r.
H
O
O
(83)
Product(s) and Yield(s) (%), % ee MeO
TABLE 3. ADDITION OF E-CROTYL REAGENTS (Continued)
665
533
664
361
Refs.
287
C24
C22
H
O
TBDMSO
OR1
O
OR2 O
H
H
OH MeO
H
O
H
OMEM
H
OMe
H
OMe OR3
O
O
H
O
H
H
B
O
B
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B[(+)-Ipc]2
4 Å MS, toluene, –78°
4 Å MS, toluene, –78°
THF, –78°, 4 h
OH MeO
H
H H
(—)
OH
OMe
H
d.r.
30:40
39:35
31:22
48:0
OH
OH
(92)
TBDPS
TBDMS
TBDMS
TBDMS
(97), 9:1 d.r.
H
Bz
Bz
O
Bz
Bz
O
TBDMS
Bz
H
TBDMS
TBDMS
R3
OMe OR3
OMEM
H
R2
O
R1
O
TBDMSO
OR1
OR2
666, 667
579
630, 578,
168
288
C2
C1
O
O
O
H
O
Carbonyl Substrate
Ph
Ph
Ph
O
B
Br
Cl
Cl
Cl
O
O
O
O
O
O
Ph
O
Cy
OBn
Cy
R
Ph
OH
B
O
B
O
B
O
B
B
OH
Allylborane Reagent
–78°, 2 h; rt, 24 h
Neat, 0°, 15 h
THF, –78° to rt, 18 h
Neat, 0°, 15 h
Neat, 0°, 15 h
Toluene, 80°
Conditions
Ph
OH
OH
OH
OH
Br
Cl
Cl
Cl
4:1
(78)
i-Pr n-Pr
OBn
(95), >95
(78), 7:93 E:Z
(78), >99, >78:1 Z:E
(—), 92, 5:95 E:Z
6:1
d.r. (79)
R
(63), 7:93 E:Z
R
OH
Product(s) and Yield(s) (%), % ee
HO
OH
OH
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS
670
146, 668
65
66, 669
146, 668
236
Refs.
289 Me
Me
O
B
O
O
Cl
O
O
O
B
O
B
O O
O
SO2Me
B
O
Ts
OPh
N
N
B
O
OMe "
B
CH2Cl2, 0° to rt, 15 h
24 h
Petroleum ether, rt,
2. H+, MeOH
1. 4 kbar, rt, 3 d
4 kbar, rt, 3 d
–78° to rt, 2 d
Petroleum ether,
20°, 60 h
Ether, –70° to rt, 16 h
OH
OH
MeO
OH
I (64), 94
I
OH
OH
O
Cl
OPh
(48), 96:4 d.r.
(69), 97:3 d.r.
(53-64), 95:5 d.r., 5:95 E:Z
(54), 5:95 E:Z
N Ts
(64), 94, >95:5 Z:E
Me
OMe
(71), 21:79 E:Z
67
68
672
672
68
147
148
290
C2
O
H
Carbonyl Substrate
n-Bu
n-Bu
n-Bu
Cl
Cl
B
O
B
O
Cl
O
O
"
B
O
B
O
B
O
B
O
O
O
O
O
Allylborane Reagent
Neat, rt, 5-8 d
Neat, rt, 5-8 d
Neat, rt, 5-8 d
CH2Cl2, 0° to rt, 15 h
CH2Cl2, 0° to rt, 15 h
12 h
Petroleum ether, rt,
18 h
Petroleum ether, rt,
Conditions
Cl
Cl
Cl
I
Bu-n
OH
Bu-n
I (73), 97:3 d.r
OH
(70), 87, 97:3 d.r.
(79), 96:4 d.r.
(70), 97:3 d.r., 85:12 E:Z
(53-60), 92, 95:5 d.r.
(53-64), 95, 95:5 d.r.
I (70), 73, 97:3 d.r.
I
OH
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
673
673
673
67
67
83
67
Refs.
291
RO H
R = TBDMS
R = Bn
O
O
B
Ph
n-C5H11
Bu-n
Bu-n
Bu-n
O
OH
B
O O
HO
B
O
B
O
B
O
B
O
O
O
Cy
Cy
OPMB
O B O
—
45 min; rt, 24 h
PhMgCl, –15°,
Cl
THF, –15° to rt
Neat, rt, 5-8 d
Neat, rt, 5-8 d
Neat, rt, 5-8 d
,
RO
RO
Bu-n
Bu-n
Bu-n
OH
OH
C5H11-n
OH
OH
OH
OH
OH
(35), 2:98 E:Z
OPMB
(76), 50, 96:4 d.r.
(73), 94
Ph
Cy
(53), 91, 97:3 d.r.
(70), 93, 96:4 d.r.
(69), 96:4 d.r
202
87
674
673
673
673
292
C3
O H
Carbonyl Substrate
O
B
O
B
O
B
O
B
O
O
O
O
O
Cl
B
O
B
O
SiMe2Ph
Br
Cl
Cl
Cl
B
O
O
O
Cy Cy
Allylborane Reagent
CH2Cl2, 0° to rt, 15 h
–78° to rt
Petroleum ether,
THF, 100°, 24 h
Neat, 0°, 15 h
THF, –78° to rt, 18 h
Neat, 0°, 15 h
Neat, 0°, 15 h
Conditions
Cl
I
OH
OH
OH
OH
OH
(74), 15:85 E:Z
(82), 6:94 E:Z
Cl
(47-65), 95:5 d.r., 5:95 E:Z
(81), 35:65 E:Z
SiMe2Ph
Br
Cl
(86), 6:94 E:Z
(81), >99, >81:1 Z:E
I (—), 89, 4:96 E:Z
I
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
67
676
675
146, 668
65
66, 669
146, 668
Refs.
293 Me
Me
B
O
B
O
N
N
O
O
O
O
O
O
SO2Me
B
O
Ts
B
O
OPh
B
O
OMe "
Cl
O B
CH2Cl2, rt, 20 h
2. H+, MeOH
1. 4 kbar, rt, 3 d
4 kbar, rt, 3 d
24 h
Petroleum ether, rt,
20°, 60 h
–78° to rt, 2 d
Petroleum ether,
12 h
Petroleum ether, rt,
OMe
MeO
OH
OH
OH
O
(62), 97:3 d.r.
(92), 96:4 d.r.
(81), 97:3 d.r.
N
Ts
(57), 5:95 E:Z
(81), 90, 97.5:1.5 d.r.
Me
OPh
I (81), 90, >95:5 Z:E
OH
I (47-65), 96, 95:5 d.r.
676
672
672
68
147
68
83, 67
294
C3
O H
Carbonyl Substrate
O
B
O
B
TBDMSO
BnO
RO
Cl
Cl
B
O
B
O
Cl
Cy
Cl
O
O
O
Cl
O
B
O
B
O
O
Cy
O
Allylborane Reagent
Neat, rt, 10 h
Neat, rt, 10 h
Neat, rt, 10 h
Petroleum ether
CH2Cl2, 0° to rt, 15 h
CH2Cl2, 0° to rt, 15 h
Conditions
OR
Cl
TBDMSO
OH
Cl
OBn Cl
OH
OH
OH
I (81), 85, 97:3 d.r.
I
OH
TBDMS
Bn
R
(62)
(62)
(55)
(81), 97:3 d.r., 91:6 E:Z
(85), 99
(55)
Cl
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
67
67
67
628, 197
67
67
Refs.
295
O
"
Bu-n
n-Bu
O
B
B
O
O
Pr-i
O
O
O
BBN
B
O
B
O
C5H11-n
B
O
O
, rt, 24 h
HBBN, pentane,
8 kbar, 3 d
Petroleum ether,
8 kbar, 3 d
Petroleum ether,
2. Ketone, rt, 2 h
1.
Pentane, rt, 2 h
Neat, rt, 5-8 d
Neat, rt, 5-8 d
CH2Cl2, rt, 18 h
Bu-n
Bu-n
Pr-i
(—), 98:2 E:Z
(85)
(80), 97:3 d.r.
(85), 97:3 d.r.
(51), 1:9 E:Z C5H11-n
I (—), 33:67 E:Z
I
OH
I (80)
I
OH
OH
OH
OH
102
102
103
103
673
673
677
296
C3
O
O
O
OBn
BnO
O
H
n-C5H11S
H
O H
O H
Carbonyl Substrate
O
Cl
Cl
Cl
Cl
B
O
B
O
B
O
B
O
B
O
O
OH
O
O
O
O
Cy
Cy
Cy
Cy
O
C5H11-n
B
O
Cy
Cy
Cy
Cy
OBu-t
Allylborane Reagent
–30° to rt, 18 h
(MeO)2CH2,
–30° to rt, 18 h
(MeO)2CH2,
–30° to rt, 18 h
(MeO)2CH2,
–30° to rt, 18 h
(MeO)2CH2,
–78° to rt
CH2Cl2, rt, 18 h
Conditions
OH
O
O
O
O
OBn
OH
OH
OH
I
Cl
Cl
OH O
Cl
Cl
(72), 96:4 d.r.
(67), 92:8 d.r.
(74), 97:3 d.r.
OBu-t
(64), 1:9 E:Z C5H11-n
(73), 92:8 d.r.
(36-77), 83->95
OH
OBn
BnO
n-C5H11S
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
65
65
65
65
203
677
Refs.
297
Cl
Cl
O
R
Ph Ph
O
B
Ph OMe OMe
Ph O
R
Ph Ph
O
B
Ph OMe OMe
Ph
O
O
O
B
O
B
Toluene, –100° to rt
Toluene, –100° to rt
CH2Cl2, 15 h
CH2Cl2, 15 h
O
O
O Cl
d.r.
(75)
C(O)NMe2
68:32
d.r. 69:31 (89)
>99:1
>99:1
CO2Et
R
R
R
O
(63)
C(O)NMe2
OH
(86)
CO2Et
R
O
OH
(39), 72, 90:10 d.r., 12:88 E:Z
O
OH
I (45), 96, 96:4 d.r., 6:94 E:Z
85
85
66
66
298
C3
O
O
O H
Carbonyl Substrate
Ph
B
O
Ph
O
B
O
Ph
O
O
Ph
Ph
O
OR
B
OR
OH OTBDPS
Allylborane Reagent
O
O
2
B ,
P NMe2,
Pd2(dba)3, 22°, 10 h
O
O
Ph,
O
Ar Ar
Ar Ar O
Ar = 3,5-Me2C6H3
3. NaOH, H2O2
2. Aldehyde, 22°, 14 h
1.
CH2Cl2, rt
Conditions
O
O
O
OH
O Ph
9:1
4:1
t-Bu (70-90)
d.r. (57)
PMB
OR
OH
R
O
OH
OTBDPS
(73), 21:1 d.r.
OR
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
187
201
Refs.
299
MeO
O
O
O
O
BBN
O
B
O
B
SnMe3
B
O
B
O
O Ph
O
O
O
2
B ,
P NMe2,
Pd2(dba)3, 22°, 10 h
O
O
Ph,
O
Ar Ar
Ar Ar O
30 min
Ether, –76° to 0°,
24-48 h
CH2Cl2, –78° to rt,
24-48 h
CH2Cl2, –78° to rt,
Ar = 3,5-Me2C6H3
3. NaOH, H2O2
2. Aldehyde, 22°, 14 h
1.
MeO
O
O
O
OH
O Ph (60), >21:1 d.r.
O
OH
SnMe3
(60)
(75-85), 92, 94:6 d.r., 94:6 anti:syn
O
OH
(75-85), 56:44 d.r., >99:1 anti:syn
O
O
OH
598
537, 118
537, 118
187
300
C4
C3
MeO
O
O
O
H
O
H
Carbonyl Substrate
R
Cl
B
O
B
O
TMS
O
O
BBN
Allylborane Reagent
CH2Cl2, rt, 18 h
5d
Petroleum ether, rt,
30 min
Ether, –76° to 0°,
Conditions
MeO I
E:Z 1:9 9:91 11:89 12:88 12:88 1:9
(80) (75) (79) (62) (83)
Cl
t-Bu Ph
I:II = 63:37
I + II (65),
(82)
(65), >90
TMS
+
n-C5H11
R
II
Cl
O
OH
TMS
R
OH
OH
MeO
O
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
677
678, 679
598
Refs.
301
n-Pr
O H i-Pr
O
O
N
N B
B
O
O
Pr-i
O
Ts
B R
O
Ts
N
O
2
B ,
P NMe2,
Pd2(dba)3, 22°, 10 h
O
O
R,
O
O Ar Ar
Ar Ar O
Ar = 3,5-Me2C6H3
3. NaOH, H2O2
2. Aldehyde, 22°, 14 h
1.
Toluene, 60°, 72 h
n-Pr
n-Pr
OH
OH
(85), 94 (89), 86 (88), 91 n-C10H21
Pr-i
(58), 85, >95:5 Z:E
Cy
R
N
O
Ph
R
O
i-Pr
O
187
51
302
C4
i-Pr
O H
Carbonyl Substrate
Cl
Cl
Cl
Br
B
O
B
O
B
O
O
O
O
BCy2
R R
Allylborane Reagent
Cy2BH
Br,
Neat, 0°, 15 h
Neat, 0°, 15 h
Neat, 0°, 15 h
n-Bu4NBr, 0°
2. Aldehyde,
1.
Conditions
i-Pr
i-Pr
i-Pr
i-Pr
61:39 (78) (74)
CH2OMe OCH2C6H4Cl-p
82:18
E:Z 34:66 (68)
Cl
(—), 92, 5:95 E:Z
(83), 4:96 E:Z
Ph
Cl
Cl
Br
(46), 16:84 E:Z
R
OH
OH
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
146
66
669
146, 668,
680
Refs.
303 SR
Br
Cl
B
O
B
O
B
O
B
O
O
O
O
O
Cy Cy
Neat, 0°, 15 h
Neat, 0°, 15 h
Neat, 0°, 15 h
THF, –78° to rt, 18 h
i-Pr
i-Pr
i-Pr
i-Pr
OH
OH
OH
OH
SR
Br
Cl
(63)
(84)
E:Z 20:80
15:85
(72), 21:79 E:Z
Bu-t
Et
R
(83), 4:96 E:Z
(89), >99, >89:1 Z:E
146
146, 668
146, 668
65
304
C4
i-Pr
O H
Carbonyl Substrate
O O
B
O
B
O
OMe
B
O
B
O
O
O
O
O
Allylborane Reagent
2. I2, 110°
1. Toluene, rt, 2 d
Neat, 0°, 15 h
Neat, 0°, 15 h
16 h
Ether, –70° to rt,
Conditions
i-Pr
i-Pr
i-Pr
i-Pr
OH
OH
OH
OH
OMe
O H
(90-94)
(94), 60:40 E:Z
(55), >95:5 Z:E
(72), 21:79 E:Z
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
207, 208
146
146, 668
148
Refs.
305 Me
B
O
B
O
"
N Ts
B
O
"
OMe
Cl
Cl
B
O
O
O
O
O
4 kbar, rt, 3 d
20°, 60 h
–78° to rt, 2 d
Petroleum ether,
CH2Cl2, 0° to rt, 15 h
18 h
Petroleum ether, rt,
12 h
Petroleum ether, rt, I
Cl
(54-84), 95
I
OMe
i-Pr
OH
N
Me
I (82), 90, >95:5 Z:E
i-Pr
OH
Ts
(75), 98:2 d.r.
(82), 90
I (55-84), 95:5 d.r., 5:95 E:Z
I (55-84), 96, 5:95 E:Z
i-Pr
OH
672
147
68
67
67
83
306
C4
i-Pr
O H
Carbonyl Substrate
BnO
O
O
Ts
N
O
B
O
B
Pr-i
Cl
Cl
B
O
O
B
N
B
O
Cy
Cl
O
O
O
O
Cy
Ts
N
SO2Me
N(Pr-i)2
Me
B
O
Allylborane Reagent
Neat, rt, 10 h
3d
Petroleum ether, rt,
15 h
CH2Cl2, 0° to rt,
15 h
CH2Cl2, 0° to rt,
Toluene, 60°, 72 h
2. H+, MeOH
1. 4 kbar, rt, 3 d
Conditions
I
OH
OH
O
O
O
Cl
i-Pr
i-Pr
OBn Cl
OH
OH
(62)
Pr-i
(77), 99, 80:20 d.r.
96:4 E:Z
(58), 91, 96:4 d.r.,
(71), 84, 6:94 E:Z
(76), 96:4 d.r.
N(Pr-i)2
Pr-i
I (58), 97:3 d.r., 91:6 E:Z
i-Pr
i-Pr
MeO
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
67
681
67
67
51
672
Refs.
307
R
"
B
O O
B
O O
Ar = 3,5-Me2C6H3
Bu-n
n-Bu
B
O
Ar = 3,5-Me2C6H3
O
B
O
O
O
O
2
B ,
O
O
2
B ,
22°, 14 h
Neat, rt, 5-8 d
Neat, rt, 5-8 d
i-Pr
i-Pr
I
P NMe2,
Pd2(dba)3, aldehyde,
O
O
R,
O
Ar Ar
Ar Ar O
2. NaOH, H2O2
1.
3. NaOH, H2O2
i-Pr
P NMe2,
Pd2(dba)3, 22°, 10 h
O
O
R,
O
Ar Ar
Ar Ar O
2. Aldehyde, 22°, 14 h
1.
O
OH
OH
Bu-n
Bu-n
n-C10H21
Ph
R
I
OH
Cy
n-C10H21
Ph
R
(83), 87
(96), 91
(89), 95
(76), >99:1 d.r.
(85), 98:2 d.r.
(68), 88
(80), 92
R
673
673
187
187
308
C5
C4
N
H
O
O
OMe
Cy
O
MeO
Et
i-Pr
O
O
H
H
O H
Carbonyl Substrate
O
O
Ts
B
O
O
B
N B
O
Ts
N
BBN
B
O
O
TMS
B
O
HO
N(Pr-i)2
n-C5H11 Ipc-(–)
Ipc-(–)
Allylborane Reagent
CH2Cl2, rt, 20 h
Toluene, 60°, 48 h
30 min
Pyr, ether, –78°,
8 kbar, 3 d
Petroleum ether,
8 kbar, 3 d
Petroleum ether,
THF, –15° to 15°
Conditions
MeO
Et
Et
i-Pr
O
O
OH
OMe
OH
OH
OH
O
(60), 85, >95:5 Z:E
(90), 90:10 d.r.
N(Pr-i)2
O
TMS
(40)
(—), 72:28 d.r., 29:71 E:Z
(—), 1:1 d.r., 98:2 E:Z
Ipc-(–) (62), 85, 96:4 d.r.
OH
C5H11-n
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
676
51
682
102
102
674
Refs.
309
i-Pr
n-Bu
Et
O
O
H
O
H
H
O H
Me
BnO
Cl
Br
O
Cl
Cy
Ts
B
O
O
O
O
B
O O
B(OMe)2
N
B
O
B
O
B
O
B
O
Cy
O
Ether, –70° to rt, 16 h
Ether, –70° to rt, 16 h
2. H+, MeOH
1. 4 kbar, rt, 3 d
Neat, rt, 10 h
THF, –78° to rt, 18 h
Neat, rt, 15 h
–78° to rt
Petroleum ether,
I
OH
O
OH
OH
Cl
Cl
(85), 8:92 E:Z
(90), 23:77 E:Z
(—), 76:24 E:Z
(87), 98:2 d.r.
(61)
(76), 99, 1:76 E:Z
Br
Bu-n
OBn
I (—), 51:49 E:Z
i-Pr
MeO
n-Bu
Et
OH
OH
148
148
672
67
65
146, 668
676
310
C5
Et
i-Pr
i-Pr
O
O
O
H
H
Carbonyl Substrate
O
B
N
O
O
Cl
B
O
B
O
B
O
O
N(Pr-i)2
O
Ts
B
B
O
O
O
Ts
N
O
Allylborane Reagent
0° to rt, 12 h
Petroleum ether,
8 kbar, 3 d
Petroleum ether,
8 kbar, 3 d
Petroleum ether,
Toluene, 60°, 72 h
Ether, –70° to rt, 16 h
Ether, –70° to rt, 16 h
Conditions
I
OH
i-Pr
i-Pr
Et
OH
O
I
OH
OH
OH (—), 49:51 d.r., 98:2 E:Z
N(Pr-i)2
O
(75), 31:69 E:Z
Cl
(—), 80:20 d.r.
(—), >99:1 d.r., 25:75 E:Z
(69), 85, >95:5 Z:E
i-Pr
I (—), 41:59 E:Z
i-Pr
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
149
102
102
51
148
148
Refs.
311
Et
O H
B
O
B
O
B
O
B
O
"
OMe
B
O
OMe
Cl
Cl
O B
O
O
O
O
O
O
0° to rt, 18 h
Petroleum ether,
18 h
Toluene, 0° to rt,
20°, 60 h
60 h
Toluene, –78° to rt,
60 h
Toluene, –78° to rt,
12 h
Petroleum ether, rt,
12 h
Petroleum ether, rt,
I
OH
OH
OH
Et
Et
OH
OH
I (48), >95:5 d.r.
Et
Et
Et
(50-60), 98:2 d.r.
(59), 90, >99:1 d.r.
Cl
(44), 90:10 d.r.
(56), >98:2 d.r.
OMe
(59), 99, >99:1 d.r.
OMe
I (50-60), 90:10 d.r.
149
149
147
68
68
83
83
312
C6
n-C5H11
Et
O
O
H
H
H
O
Carbonyl Substrate
TMS
TMS
TMS
BBN BBN BCy2 BCy2 BBN BBN BCy2 BCy2
Me Me Me Me n-Bu n-Bu n-Bu n-Bu
R2
Cy
R2
O
Cy
R1
R1
B
O
BCy2
BBN
Allylborane Reagent
—
3d
Petroleum ether, rt,
—
—
Conditions
TMS
I
III
R1
+
(77) (80) (78) (70) (68) (65) (77) (73)
H2SO4 NaOH H2SO4 NaOH H2SO4 NaOH H2SO4
II
R1
IV
R1
+
0:0:9:91
0:0:97:3
1:93:2:4
97:1:2:0
0:0:8:92
0:0:98:2
1:90:3:6
94:1:4:1
I:II:III:IV
n-C5H11
n-C5H11
(81), 99
>95:5 Z:E
(93), >98:2 d.r.,
I + II + III + IV
R1
+
NaOH
Work-Up
n-C5H11
n-C5H11
Et
OH
I (92), >99:1 d.r., >95:5 Z:E
I
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
684
681
683
683
Refs.
313 n-C5H11
BnO
Br
B
O
B
O
B
O
O
HO
Cl
OPh
B
O
OMe
Cl
Cl
B
O
B
B
O
O
O
O
O
Ipc-(–)
Ipc-(–)
O
THF, –15° to 15°
Neat, rt, 10 h
24 h
Petroleum ether, rt,
–78° to rt, 2 d
Petroleum ether,
CH2Cl2, 0° to rt, 15 h
12-18 h
Petroleum ether, rt,
Neat, 0°, 15 h
I
OH
Cl
Br
(60-91), 92, 95:5 d.r.
(69), 8:92 E:Z
n-C5H11
n-C5H11
n-C5H11
n-C5H11
C5H11-n
OH
(61)
96:4 d.r.
(62), 85,
(49), 5:95 E:Z
(87), 88
Ipc-(–)
OPh
OMe
OBn Cl
OH
OH
OH
I (60-91), 95:5 d.r., 5:95 E:Z
n-C5H11
n-C5H11
OH
674
67
68
68
67
67
83, 67,
146, 668
314
C6
O
Et
TBDMSO
t-Bu
O
O H
Carbonyl Substrate
O O
Pr-n
(80)
Et
TBDMSO
Et
TBDMSO
OH
OMe
H
(66), 88:12 d.r.
(93), 6:1 d.r.
OH
O
(84), >90:10 E:Z
(75)
Bu-n
(—), >99:1 d.r., 25:75 E:Z
t-Bu
I (66), >99:1 d.r. Toluene, rt
4 kbar, 60°, 12 h
2. I2, 110°
1. Toluene, rt, 2 d
8 kbar, 3 d
OH
OH
OH
"
O
O
Petroleum ether,
Ether, rt
Ether, rt
THF, –100°
OH
Product(s) and Yield(s) (%), % ee
I
B
O
O
B
O
O n-BuLi, B(Bu-n)3,
N
H N
Conditions
OMe
B
O
Pr-n
B(OC6H13-n)2
B(OC6H13-n)2
Bu-n
B(Bu-n)2
Allylborane Reagent
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
68
147
207
102
31
31
685
Refs.
315 S
TBDMSO
Et
TBDMSO
O
O
H
H Cl
B
O
Cl
B
O
B
O
O
B
O
B
O
OMe
B
O
O
O
Cy
O
O
O
Cy
–78° to rt
Petroleum ether,
60 h
Toluene, 0° to rt,
—
–78° to rt
Petroleum ether,
Toluene, 4 kbar, 8 h
Toluene, 4 kbar, 8 h
S
TBDMSO
Et
TBDMSO
Et
OH
OH
OH
OH
(94), 86:14 d.r.
TBDMSO
Et
OH
OH
Cl
OMe
(67), 60:6.5 d.r.
(86), 75:25 d.r.
Cl (69), >99:1 d.r.
(86)
(53), 81:19 d.r., >99:1 anti:syn
TBDMSO
Et
TBDMSO
Et
TBDMSO
676
149
694, 687
676
149
68
316
C7
C6
Ph
O
O
Et
H
O
O H
Carbonyl Substrate
Br
O
Cy Cy
Bu-n
B(Bu-n)2
SnMe3
BBN
TMS
BBN
BCy2
B
O
Allylborane Reagent
Cy2BH
Br,
N
H N O
THF, –100°
n-BuLi, B(Bu-n)3,
30 min
Base, ether, –78°,
30 min
Base, ether, –78°,
n-Bu4NBr, 0°
2. Aldehyde,
1.
Benzene, 80°, 3 d
Conditions
2 1 1
pyr pyr n-BuLi s-BuLi OH
1
Base
Br
TMS Equiv
OH
OH
O
OH
(56)
(50)
(90)
(75)
Bu-n
(84), >95:5 d.r., >90:10 E:Z
Ph
OH
>98:2
>98:2
>92:1
88:5
d.r.
(56), 15:85 E:Z
>98:2
>98:2
92:7
93:5
Z:E
(81), >96:4 d.r.
Product(s) and Yield(s) (%), % ee
SnMe3 (90), >98:2 d.r., >98:2 Z:E
Ph
Ph
Ph
O
Et
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
685
682
682
680
688, 681
Refs.
317
TMS
BCy2 BBN BBN BCy2 BCy2
Me n-Bu n-Bu n-Bu n-Bu
Cl
B
O
B
O
BCy2
Me
Cl
BBN
Me
O
BBN
Me
O
R2
R2
R1
R1
Et
BEt2
O
Neat, 0°, 15 h
Neat, 0°, 15 h
—
–100°
n-BuLi, BEt3, THF,
N
H N
Ph
Ph
Ph
Ph
III
R1
+
Ph
(82) (83) (86) (85) (79)
H2SO4 NaOH H2SO4 NaOH H2SO4
OH
Cl
(83)
NaOH
Cl
(87)
H2SO4
R1
+
(—), 92, 6:94 E:Z
0:0:3:97
0:0:97:3
1:92:2:5
92:1:4:2
0:0:8:92
0:0:97:3
1:91:2:6
92:1:5:2
I:II:III:IV
IV
R1
(82), 5:95 E:Z
(86)
OH
Ph
II
>90:10 E:Z
(67), >95:5 d.r.,
I + II + III + IV
R1
+
Et
NaOH
Work-Up
Ph
I
OH
66, 669
146, 668
684
685
318
C7
Ph
O H
Carbonyl Substrate
Ph
O
Ph
O
O
Ph
B
O
B
O
O
O
O
R
OH
Ph
O
Cy
R
OH
TMS
Br
B
B
Cl
B
O Cy
Allylborane Reagent
Neat, 0°, 15 h
Neat, rt, 15 h
Ether, rt, 24 h
Ether, rt, 24 h
THF, –78° to rt, 18 h
Conditions
Ph
Ph
Ph
Ph
Ph
OH
OH
(89), 12:88 E:Z TMS
Br
CH2CH2Ph
Cy
Ph
R
(80), 3:97 E:Z
R
OH
CH2CH2Ph
Pr-i
R
(79), >99, >79:1 Z:E
R
OH
Cl
>20:1 d.r.
OH
>14:1 d.r.
OH
OH
(83), 92
(83), 92
(65), 95
(92), 94
(88), 92
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
146
146, 668
175
175
65
Refs.
319 O
O
R
R
O
Ph Ph
B O
OMe
O
Ph
Ph OMe
Ph Ph
O
B
Ph OMe OMe
Ph
O
O
O
B
O
SiMe2Ph
B
O
TMS
B
O
"
Toluene, –100° to rt
Toluene, –100° to rt
2. I2, 110°
1. Toluene, rt, 2 d
THF , 100°, 24 h
120°, 36 h
Pyr, ether to neat,
Ether, reflux, 36 h
Ph
Ph
Ph
Ph
Ph
Ph
OH
OH
OH
OH
OH
OH
R
R
H
(92)
CH2C(O)NMe2
CH2CO2Et
R
OMe
CH2C(O)NMe2
CH2CO2Et
R
O
(89), 9:91 E:Z
(91), 22:78 E:Z
(89), 12:88 E:Z
SiMe2Ph
TMS
TMS
(91), 96
(78), >94
(89), >94
(—)
(78), >94
85
85
207
675
689
689
320
C7
Ph
O H
Carbonyl Substrate
Bu-n
B
O
Pr-i
B
O
Pr-i
B
O
Pr-i
B
O
B
O
O
O
O
O
O
Allylborane Reagent
–15°, 45 min
O i-PrMgCl, THF,
O B
–15°, 15 min
O i-PrMgCl, THF,
O B
–78° to rt
O i-PrMgCl, THF,
O B
–15°, 45 min
O n-BuMgCl, THF,
O B
2. Aldehyde, rt, 24 h
1. Cl
2. Aldehyde, 24 h
1. Cl
2. Aldehyde, rt, 24 h
1. Cl
2. Aldehyde, rt, 24 h
1. Cl
Ether, –70° to rt, 16 h
Conditions
I Pr-i
OH
OH
Pr-i
+
II
Bu-n (6), >99:1 d.r.
Ph
OH +
Pr-i
(59), 20:80 E:Z
Ph
OH
Bu-n
(52), 30:70 E:Z
Ph
OH
(55), 30:70 E:Z
(73), 23:77 E:Z
I (13), >99:1 d.r. + II (32), 30:70 E:Z
(13), >99:1 d.r.
Ph
Ph
Ph
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
87
87
87
87
148
Refs.
321
R
O
B
O
B
O
B
O
O
OPh
Cl
Cl
B
O
O
O
–78° –78° 0°
— — —
Sc(OTf)3 TfOH —
TMS TMS SiMe2Ph
24 h
Petroleum ether, rt,
CH2Cl2, 0° to rt, 15 h
12-18 h
Petroleum ether, rt,
I
Cl
Ph
OH
(26)
(11)
(22)
(43)
(40)
(46)
(24)
(50)
(75)
(99)
(63)
(75)
(53-73), 96-98, 95:5 d.r.
40 h
40 h
15 h
40 h
40 h
15 h
40 h
40 h
15 h
40 h
40 h
15 h
Time
OPh
(63), 5:95 E:Z
I (53-73), 95:5 d.r., 5:95 E:Z
Ph
OH
–78°
0°
—
—
TMS
–78°
–78°
4 Å MS
TfOH
Br
—
–78°
4 Å MS
Sc(OTf)3
Br
—
0°
4 Å MS
—
Br
TfOH
–78°
4 Å MS
TfOH
Et
Sc(OTf)3
–78°
4 Å MS
Sc(OTf)3
Et
SiMe2Ph
0°
4 Å MS
—
SiMe2Ph
Temp
Additive
Catalyst
R
Et
Ph
OH
R
additive, CH2Cl2
Catalyst (10 mol%),
4:1
4:1
1:6.2
3:1
4:1
1:6.7
9:1
10:1
13:1
1:1.7
1:1.3
2:1
E:Z
68
67
83, 67
690
322
C7
Ph
O H
Carbonyl Substrate
Me
Me
O
O
O
Cl
B
O
B
O
TMS
B
O
O
O
O
SO2Me
B
O
Ts
B
TMS
N
N
TBDMSO B
O O
Allylborane Reagent
CH2Cl2, rt, 20 h
120°, 36 h
Pyr, ether to neat,
16 h
Ether to neat, 125°,
2. H+, MeOH
1. 4 kbar, rt, 3 d
4 kbar, rt, 3 d
Neat, rt, 10 h
Conditions
OH
Ph
Ph
Ph
OH
OH
OH
MeO
Ph
Ph
OH
O
(—), 96:4 E:Z
(95), 94:6 d.r.
TMS
(—), 90:10 E:Z
(56), 99:1 d.r.
(64), 99:1 d.r.
(55)
Ts
TMS
Ph
N
Me
OTBDMS
Cl
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
676
689
689
672
672
67
Refs.
323 R
R
R
TBDMSO Cl
O
Ph Ph
B
B
O O
CO2Et
O
OMe
O
Ph
CO2Et Ph OMe
Ph Ph
O
B
Ph OMe
B
O
OMe
Ph
O
O
"
OMe
B
O
Toluene, 60°, 12 h
CH2Cl2, rt
CH2Cl2, rt
Neat, rt, 10 h
20°, 60 h
–78° to rt, 2 d
Petroleum ether, I OMe
(79), 90
Ph
Ph
Ph
Ph
OH
R
OH
R
OH
TBDMSO
OH
R
Cl
(78), >99
(90), >98
(65), >99
(95), >98
(57), 83 (46), 84 (59), 85
Cy Ph t-Bu
(28), 85
1:3
9:1
1:2
1:3
1:4 n-Bu
E:Z Me
(51), 84
Ph
Me
R
Ph
Me
R
R
CO2Et
CO2Et
(55)
I (65), 90, >95:5 Z:E
Ph
OH
691
86
86
67
147
68
324
C7
Ph
O H
Carbonyl Substrate
n-Pr
O
B
O
B
TMS
Cl
Cl
B
O
B
O
B
O
O
O
O
O
O
O
Cy Cy
SiMe2Ph
B
O
Allylborane Reagent
16 h
Ether to neat, 125°,
CH2Cl2, 0° to rt, 15 h
CH2Cl2, 0° to rt, 15 h
Petroleum ether, 12 h
–78° to rt
Petroleum ether,
—
Conditions
Ph
Ph
Ph
Ph
Ph
Ph
OH
OH
OH
OH
OH
OH
Pr-n
(56), 96:4 d.r., 93:3 E:Z
(56), 97, 96:4 d.r.
TMS
(—), 13:87 E:Z
Cl
Cl
(71), 99
(95), 94:6 d.r.
SiMe2Ph
(89), 9:91 E:Z
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
689
67
67
64, 63
676
675
Refs.
325
O
O
B
O
B
O
B
O
O
O
SiMe2Ph
Bu-n
n-Bu
Pr-n
B
O
O
O
R
O B
B
O
O
O
2
B ,
P NMe2,
Pd2(dba)3, 22°, 10 h
O
O
R,
O
Ar Ar
Ar Ar O
Neat, rt, 5-8 d
Neat, rt, 5-8 d
Ether, –78°
Ar = 3,5-Me2C6H3
3. NaOH, H2O2
2. Aldehyde, 22°, 14 h
1.
—
Ph
Ph
Ph
Ph
Ph
OH
OH
OH
OH
OH
Bu-n
Bu-n
O
Pr-n
R
(83), 84
(83), >99:1 d.r.
(72), >99:1 d.r.
(42), 97:3 d.r.
Cy
(96), 87
(81), 93
(46), 94:6 E:Z
n-C10H21
Ph
R
SiMe2Ph
673
673
22
187
675
326
C7
R
Ph
O H
O H
Carbonyl Substrate
i-Pr
Et
B
HO
Cy
Cy
B
O
B–Et2SePh
HO
n-C5H11
R
B
O
Ipc-(–)
Ipc-(–)
Allylborane Reagent
, LDA,
2. Et3B, –78° to 0°, 1 h
THF, –78°, 30 min
1. PhSe
THF, –15° to 5°
THF, –15° to 5°
CH2Cl2, rt, 18 h
Conditions
R
Ph
Ph
Ph R
5:95 4:96
(65) (88)
t-Bu Ph
(88) (80) (65)
MeO O2N
Cy
H
I
OH
5:95 (77)
77:23
71:29
94:6
I:II
R
+
Et
—
—
86:14
E:Z
II
OH
(70), 60, 99:1 d.r.
Et
Ipc-(–) (72), 79, 98:2 d.r.
6:94
(72)
I + II
Pr-i
E:Z
Refs.
692
674
674
6:94 677 5:95
(86) (82)
Cl
n-C5H11
R
R
OH
C5H11-n
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
327
Cy
O
Si
OH
i-Pr
R
H
O
Pr-i
O
H
H
O
O
H
Br
O
Ts
N
O
BCy2
"
B Ph
C5H11-n
B
O
N(Pr-i)2
O
N B
Pr-n OH
O
Ts
Cy2BH
Br,
n-Bu4NBr, 0°
2. Aldehyde,
1.
2. HF•pyr, pyr, THF
1. Toluene, 80°
Toluene, 80°
CH2Cl2, rt, 18 h
Toluene, 60°, 48 h
Cy
HO
HO
OH
OH
O
Pr-i
HO
Si
OH
i-Pr
R
OH
Br
Pr-n
OH Ph
(63), 14:86 E:Z
Pr-n
Ph
(—)
(—)
OH
(35), 1:9 E:Z
>95:5
(74), 84
p-Br
C5H11-n
>95:5
(66), 85
p-MeO
Z:E 95:5
(87), 84
N(Pr-i)2
O
H
R
O
680
236
236
677
51
328
C7
Cy
O H
Carbonyl Substrate
Ph
Ph
Ph
Ph
O B
–15°, time 1
PhMgCl, THF,
Cl
O B
–78° to rt
PhMgCl, THF,
Cl
O B
B O
O
O
O B
–15°, 30 min
PhMgCl, THF,
Cl
O
2. Aldehyde, rt, 24 h
1.
2. Aldehyde, rt, 24 h
–15°, 45 min
PhMgCl, THF,
1.
2. Aldehyde, 24 h
1.
B
O
O
O
2. Aldehyde, rt, 24 h
1.
2. Aldehyde, 24 h
–78° to rt
PhMgCl, THF,
O B
Cl O
O
O
1. Cl
Conditions
O
B
O
"
B
O
Allylborane Reagent
I Ph
30 min
15 min
Time 1
II
d.r. 98:2 >99:1
I (34)
(15)
(41)
II
II (60), 2:98 E:Z
I (21), >99:1 d.r. + II (21), 2:98 E:Z
98:2
2:98
E:Z
Ph (39), 2:98 E:Z
Cy
(17)
+
OH
I (8), >99:1 d.r. + II (32), 98:2 E:Z
I + II
(9), >99:1 d.r.
Cy
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
87
87
87
87
87
Refs.
329
MeO
O
n-C6H13
O H
O H
Ph Ph
O Ph
B
O
B
O O
OMe
B
O
O
O
Cy
O
BCy2
Ph
O
OH
TMS
Br
B
Ph
B
O
Cy
–15°, 30 min
O PhMgCl, THF,
O B
Cy2BH
Br,
—
20°, 60 h
36 h
Ether to neat, 130°,
n-Bu4NBr, 0°
2. Aldehyde,
1.
Ether, rt, 24 h
2. Aldehyde, rt, 24 h
1. Cl
O
n-C6H13
n-C6H13
n-C6H13
MeO
OH
Ph
OH
OH
OH
OH
OMe
TMS
Br
(91), 94, >14:1 d.r.
OH
OH
(67)
(87), 88, >95:5 Z:E
(80), 33:67 E:Z
(55), 12:88 E:Z
(67), 20
64
147
689
680
175
87
330
C8
C7
Ph
O
MeO
O
O
O
H
H
O H
O H
Carbonyl Substrate
O
O
O
Ts B
N
Cy
Bu-n
B(Bu-n)2
Ts
N
C5H11-n
B
O
N(Pr-i)2
Et
O
Cy
B–Et2SePh
B
O
Allylborane Reagent
,
THF, –100°
O N n-BuLi, B(Bu-n)3,
H N
Toluene, 60°, 48 h
CH2Cl2, rt, 18 h
2. Et3B, –78° to 0°, 1 h
30 min
LDA, THF, –78˚,
1. PhSe
rt, 7 d
Conditions
Ph
OH
I
OH
OH
H
O
Et
O
+
I:II >99:1
I + II (90),
>90:10 E:Z
(75), >95:5 d.r.,
>95:5 Z:E
(69), 85,
(87), 5:95 E:Z
N(Pr-i)2
Bu-n
O
C5H11-n
II
OH
Et
(80), 97.5:2.5 d.r.
Product(s) and Yield(s) (%), % ee
OH
O
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
685
51
677
692
693
Refs.
331
C9
Ph
MeO
O H
OMe OBn O H O
B
O
O
B O
TMS
O
Cy
O
BBN
BCy2
Pr-i
Br
Cl
B
O
B
O
Cy
Cy2BH
Br,
–15°, 45 min
O i-PrMgCl, THF,
O B
2. Aldehyde, rt, 24 h
1. Cl
30 min
Pyr, ether, –78°,
n-Bu4NBr, 0°
2. Aldehyde,
1.
3d
Petroleum ether, rt,
8 kbar, 3 d
Petroleum ether,
8 kbar, 3 d
Petroleum ether,
Ph
Ph
Ph
MeO
Ph
Ph
OH
OH
OH
OH
OH
(85)
Pr-i
102
102
87
682
680
(95), 4:1 d.r. 53
(60), 30:70 E:Z
TMS
Br
Cl
(65), 18:82 E:Z
OMe OBn OH
(—), 95:5 d.r., 30:70 E:Z
(—), 98:2 d.r., 6:94 E:Z
332
C9
Ph
Ph
O
O
H
H
Carbonyl Substrate
Ph
O
Ph
O
B
B
O
Ph
B
O O
C5H11-n
O
R
OH
Ph
O
R
OH
Et
BEt2
C5H11-n
B
O
Allylborane Reagent
CH2Cl2, rt, 18 h
Ether, rt, 24 h
Ether, rt, 24 h
THF, –100°
O N n-BuLi, BEt3,
H N
CH2Cl2, rt, 18 h
Conditions
Ph
Ph
Ph
Ph
Ph
OH (75), 5:95 E:Z C5H11-n
50:1 (69), 92 i-Pr
d.r. >20:1 (87), 91
R Ph
R
>14:1
(95), 95
OH
>14:1
(95), 95
R d.r.
OH
>90:10 E:Z
Et (52), 97:3 d.r.,
i-Pr
OH
(77), 91:9 Z:E C5H11-n
Ph
R
OH
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
677
175
175
685
677
Refs.
333
O
O
Et
Et
O
TBDMSO
Et
`
Et
O
H
H
H
PMB O
PMB O
O
H
PMB O O
O
PMBO
n-C6H13
O
H
O
B
O
O
B
O
Cl
O
B
O
"
OMe
B
O
OMe
B
O
Cy
O
O
O
Cy
C5H11-n
B
O
Cy
Cy
2d
Petroleum ether, rt,
60 h
4 Å MS, toluene, rt,
4 kbar, 20°
60 h
4 Å MS, toluene, rt,
Toluene, 4 kbar, 12 h
4 kbar, rt, 3 d
Petroleum ether,
CH2Cl2, rt, 18 h
O
I
O
O
Et
Et
O
TBDMSO
PMB OH
PMB OH
OH
O
PMB OH
(56), >99:1 d.r.
PMB O OH
(85), 1:9 E:Z 677
149, 197
147
197
(79), >95:5 d.r. 688, 681
Cl
OMe
OMe
(60-85), 75:25 d.r. 628
(95), 80:16 d.r. 681
C5H11-n
(60-85), 75:25 d.r.
O
I (65), 77:23 d.r.
Et
TBDMSO
Et
Et
PMBO
n-C6H13
OH
334
C11
C10
i-Pr
O
O
O
OH
3
H
OH
H
O
O
O
2
H
H
O H
Carbonyl Substrate
O
O
TMS
O
O
O
B
O
B
O
B
O
B
O
B
O
O
O
O
O
Cy
Cy
Cy
Cy
Allylborane Reagent
Ether, reflux, 16 h
(10 mol%), 10 kbar
2-Hydroxypyridine
2. I2, 110°
1. Toluene, rt, 2 d
2. I2, 110°
1. Toluene, rt, 2 d
4 kbar, 12 h
Conditions
i-Pr
OH
H
O
HO
OH
O
3
2
OH
2
O H
2
H
(71)
O
(35)
(35), 63:27 d.r.
(63), 16:84 E:Z
TMS
OH
(82)
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
689
694, 687
207
207
693
Refs.
335
C13
C12
Ph
Ph
OH
Et
3
TBDMSO
O
2
H
O
O H
OH
O
O
O
N B
O
O
B
O
B
O
B
O
O
O
O
N(Pr-i)2
O
Ts
Cy Cy
Ts
N
2. I2, 110°
1. Toluene, rt, 2 d
2. I2, 110°
1. Toluene, rt, 2 d
(10 mol%), 10 kbar
2-Hydroxypyridine
Toluene, 60°, 48 h
Ph
OH
Et
3
TBDMSO
Ph
O
OH
2
OH
2
O H
2
H
(40)
O
OH
N(Pr-i)2
O
(100), 94:6 d.r.
OH
(67), 85, >95:5 Z:E
OH
(80)
207
207
694, 687
51
336
C18
C15
C14
C13
Ph
H
O
O
Et
Et
R=
O
O
O
5
O
O
O
O
R
O
PMP
O
PMP
O H
OBn OTBDMS
O
O
OH
PMBO
O
Carbonyl Substrate
H
O B
O
B
O
Cl
TBDMSO
O
O
B
O
Cy
Cy
O
OTBDMS
Cy
Cy
TBDMSO
B O
OH O
Allylborane Reagent
3d
Petroleum ether, 10 kbar,
3d
Petroleum ether, 10 kbar,
4d
Petroleum ether, rt,
48 h
CH2Cl2, –78° to rt,
Conditions
Ph
O
O
Et
Et
O
O
TBDMSO
O
O
OH
O
R (55)
OH
OH
(53)
OH
Cl
OTBDMS
PMBO
(70), 89:11 d.r.
O
PMP
(79), >95:5 d.r.
O
PMP
OH
O
OTBDMS
5
OH O
O
Product(s) and Yield(s) (%), % ee
TABLE 4. ADDITION OF α-SUBSTITUTED REAGENTS (Continued)
688, 696
688, 696
695, 208
202
Refs.
337
C20
Ph
TBDMSO
O H O O
B
O O 2. I2, 110°
1. Toluene, rt, 2 d
Ph
(69), 9:1 E:Z
TBDMSO
OH
H
O
208
338
C2
O
H
Carbonyl Substrate
N3
B
B
O O
O
Ph
B[(–)-Ipc]2
BBN
B(Pr-n)2
B[(+)-Ipc]2
B
O
3
B(Pr-n)2
Allylborane Reagent
Hexane, –40°
Ether, 0°, 1 h
THF, ether, –78°, 1 h
THF, ether, –78°, 1 h
–70° to rt
Ether, –78° to rt
Neat, 0-20°
Neat, 0-20°
Conditions
OH
OH
OH
I (65)
I
OH
OH
I (93)
I
OH
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS
N3
(82), 74
(75)
(65), 90
(84)
(56), 90
(92)
Product(s) and Yield(s) (%), % ee
122, 244
701
699, 700
699
698
697, 136a
238
238
Refs.
339
C3
O
EtO
H
RO
O
O
O
H
H
H
H
O
O
Ph
O Ph
B[(+)-Ipc]2
B
O
B(OMe)2
B(OMe)2
B(2-d-Icr)2
OPh
MeO2C
B
O B O
O
N
O S O
THF, –78° a
Ether, –78° to rt
rt, 7 d
MeOH, 0° to rt, 15 h
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
Ether, –78°
EtO
RO
OH
H
H
OH
OH
OH
O
OH
OPh
(75), 70 (47), 63
pentane
(60), 72
(57), 92
(67), 42 CH2Cl2
(86), 77
(67), 78
(70), 97
(90), 95
THF
ether
toluene
Solvent
Bn
TBDMS
R
(34)
CO2Me
OH
OH
(69), 84
704
697, 136a
703
702
27
246
340
C3
O
O H
Carbonyl Substrate
MeO2C Ph
Ph
O
B(Pr-n)2
3
O
O
B
O
B
B
[(+)-Ipc]2B
B(2-d-Icr)2
OPh
B[(+)-Ipc]2
B[(+)-Ipc] 2
Allylborane Reagent
Neat, 0-20°
Neat, 0-20°
Hexane, –40°
rt, 7 d
Ether, –78° a
THF, –78° a
Ether, –78° to rt
Conditions
I (94)
I
OH
OH
OH
(100), 68 (99), 67 neat
(90)
(95), 70
(99), 78 pentane
ether
toluene
(85), 70
CO2Me
Solvent
(67), 76
OH
OPh
(54), 90
(45), >95, 93:7 d.r.
OH
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
238
238
122, 244
703
176, 705
704
697, 136a
Refs.
341
RO
CF3
O
CF3
H
R = TBDPS
R = THP
O
Ph
O B O
[(+)-Ipc]2B
B
B(Pr-n)2
B(Pr-n)2
B(Pr-n)2
B(Pr-n)2
BBN
B
B[(+)-Ipc] 2
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
Ether, –78° a
Neat, 0-20°
Neat, 0-20°
–70° to rt
Ether, –70° to rt
Pentane, rt, 2 h
Neat, 0-20°
I
RO
RO
I (86)
CF3
CF3 OH
OH
HO
I (95)
I (91)
OH
OH
(89)
(94)
OR
(73)
(77), 97
OH
OH
(45)
27
176
238
238
698
706, 702
103
238
342
C3
O
O
PMBO
O H
O H
Carbonyl Substrate
R=
N
O
Ether, –78° a
O
O
O
O
THF, –78°, 3 h
Ether, –78°
Ether, –78°
O
O
O
O
O
Ph SnBu3, N PMBO Ph, Br B N Ts CH2Cl2, –78°, 1.5 h Ts
a B[(–)-Ipc] 2 Ether, –78°
Ts
N
Ph
[(–)-Ipc] 2B
B
TBDMSO R
B[(+)-Ipc] 2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
S
S
Ts
Ph
Conditions
[(+)-Ipc]2B
TMS
R
TBDMSO
Allylborane Reagent
TMS
OH
OH
(50), 160:22:1 d.r.
OH
O
O
O
O
(31), 85:15 d.r.
(—), 97:3 d.r.
(—)
(38), 66:14.5:1 d.r.
OH
OH
OH
OH
R
OTBDMS
(100), 11:1 d.r.
OH
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
176, 705
176, 705
707
571
571
191
Refs.
343
C4
n-Pr
O H
O
TBDPSO
H
O H
R
R
N3
Br
R=
R=
S
Ts
S
Ts
O
N
B
B[(+)-Ipc]2
B
O
B(OPh)2
S
S
N
B
Ph
N
Ph
Ts
N
Ts
Ph
Ph Ph,
Ph BBr3, CH2Cl2
Ts
Ts HN H N
SnBu3,
SnBu3,
Ph,
Ph BBr3, CH2Cl2
Ts
Ts HN H N
Ether, –78° to rt
Ether, 0°, 1 h
THF, 0° to rt, 18 h
2. Aldehyde, –78°, 1 h
1.
R
2. Aldehyde, –78°, 1 h
1.
R
n-Pr
OH
OH
OH
TBDPSO
TBDPSO
N3
Br
(56), 91
(64)
(85)
(80), 4:1 d.r.
OH
(85), 7.7:1 d.r.
OH
R
R
697, 136a
701
709
708
708
344
C4
i-Pr
n-Pr
O
O
H
H
Carbonyl Substrate
Ph
B[(+)-Ipc]2
B[(–)-Ipc]2
B
B
[(+)-Ipc] 2B
TMS
O
BBN
B
O
B(2-d-Icr)2
OPh
Ether, –78° to rt
1h
THF, hexane, –78°,
Ether, –100°, 3 h
Ether, –100°, 3 h
1h
THF, hexane, –78°,
Hexane, –40°
Ether, –78° a
Conditions
a B[(+)-Ipc]2 Ether, –78°
Allylborane Reagent
I
OH
OH
OH
i-Pr
i-Pr
i-Pr
OH
OH
OH
I (80), 27
i-Pr
i-Pr
n-Pr
n-Pr
OH
Pr-i
(41), >95, 93:7 d.r.
(57), 96
(65), 92
(78), 81
(65)
(84), 65
(78), 74
OH
OPh
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
176, 705
697, 136a
699
141
141
699
122, 244
704
Refs.
345 O
TBDMSO
N H
O
O H
O Ph
3
B
B
O
B
O
O
B
Ph
B[(–)-Ipc] 2
SO2Ph
N
Ph
O
B(OPh)2
O
PhO2S N Bu3Sn
MeO2C
N3
Br
B
[(–)-Ipc]2B
CH2Cl2, –78°, 2-3 h
THF, reflux, 2 h
Neat, rt, 9 d
Ether, 0°, 1 h
THF, 0° to rt, 18 h
Hexane, –40°
Ether, –78° a
OH
OH
OH
OH
TBDMSO
N H
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
OH
(80)
(71)
(80)
OH
(85), 3.2:1 d.r.
O
(91)
CO2Me
N3
Br
Pr-i
SnBu3
(38), >95, 91:9 d.r.
(87), 76
OH
710
294
57
701
709
122, 244
176, 705
346
C4
TBDPSO
O H
Carbonyl Substrate
R
R
R
Ts
S
N
B
S
S
N
Ph
Ts
Ts
N
B
Ph
Ph
Ph
N
Ts
N
R = (CH2)3OTBDPS
OBz
R=
R=
S
Ts
N
B
Ts
Allylborane Reagent
Ph
Ph
Ts HN H N
SnBu3,
Ph,
Ph BBr3, CH2Cl2
Ts
R
Ts HN H N
SnBu3,
Ph,
Ph BBr3, CH2Cl2
Ts
R
Ts HN H N
OBz
Ph,
SnBu3,
2. Aldehyde, –78°, 1 h
Ph BBr3, CH2Cl2
Ts
1. R
2. Aldehyde, –78°, 1 h
1.
2. Aldehyde, –78°, 1 h
1.
Conditions
TBDPSO
I (80), 4:1 d.r.
TBDPSO
R OBz (56), >20:1 d.r.
OH
I (77), 15:1 d.r.
OH
R
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
708
708
708
Refs.
347
TBDPSO
O H
R
R
R
R=
S
S
OBz
S
OTBDMS
R=
R=
S
N
B
N
B
N
Ts
Ts
Ts
B
Ph
Ph
Ts
Ph
N
N
Ts
N
Ts
Ph
Ph
Ph
SnBu3,
Ph,
Ph BBr3, CH2Cl2
Ts
Ts HN H N
Ts HN H N
SnBu3,
Ph,
Ph BBr3, CH2Cl2
Ts
R
Ts HN H N
Ph,
OTBDMS Bu3Sn
OBz
2. Aldehyde, –78°, 1 h
Ph BBr3, CH2Cl2
Ts
1. R
2. Aldehyde, –78°, 1 h
1.
2. Aldehyde, –78°, 1 h
1.
R
,
TBDPSO
TBDPSO
TBDPSO
OBz (56), >25:1 d.r.
OH
(76), 1.7:1 d.r.
OH
(75), 5.4:1 d.r.
OH
R
OTBDMS
R
R
708
708
708
348
C5
C4
O
O
PMBO
O H
THPO
TBDPSO
O
O
H
H
Carbonyl Substrate
N
B
N
Ph
Ts
B(Pr-n)2
B[(–)-Ipc]2
BBN
B(Pr-n)2
B(Pr-n)2
Ph
B[(+)-Ipc] 2
R = (CH2)3OTBDPS
Ts
[(+)-Ipc]2B
R
OBz
Allylborane Reagent
Ts HN H N
OBz
Ph,
SnBu3,
THF, ether, –78°, 1 h
THF, ether, –78°, 1 h
–70° to rt
Ether, –70° to rt
Ether, –78° a
2. Aldehyde, –78°, 1 h
Ph BBr3, CH2Cl2
Ts
1. R
Conditions
I (60)
PMBO
OH
I
OH
THPO
TBDPSO
OH
OH
OH
R
OH
OBz
(60), 96
(96)
(50)
(48)
(83), >20:1 d.r.
OH
PMBO
OTHP
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
699, 700
699
698
702
176
708
Refs.
349
t-Bu
O H
B
O
B
O
O Ph
B
O O Ph
Hexane, –40°
Ether, –78° to rt
rt, 8 d
rt, 8 d
OCH(Pr-i) 2 4 Å MS, toluene, –78°, 1h O
OCH(Pr-i)2
Ph
THF, ether, –78°, 1 h
OCH(Pr-i) 2 4 Å MS, toluene, –78°, 1h O
OCH(Pr-i)2
B[(+)-Ipc]2
B
CO2Me O
B
O
O
O
O
CO2Me O
Br
Br
O
B[(+)-Ipc]2
t-Bu
t-Bu
OH
OH
OH
OH
OH
OH
OH
(82), 88
(—), 20
(98), 88
(93), 87
(92), 70
(55), 90
CO2Me
CO2Me
Br
Br
(60), 96
122, 244
697, 136a
713
713
711, 712
711, 712
699, 700
350
C5
i-Pr
t-Bu
O
O
H
H
Carbonyl Substrate
O
B
B[(–)-Ipc]2
B[(+)-Ipc]2
BBN
B(Pr-n)2
B
O
[(+)-Ipc]2B
N3
O
N
O S O
B[(+)-Ipc]2
Allylborane Reagent
Ether, –78° a
THF, ether, –78°, 1 h
THF, ether, –78°, 1 h
THF, ether, –78°, 1 h
–70° to 0°
Ether, 0°, 1 h
Ether, –78°
Conditions
i-Pr
i-Pr
i-Pr
I (65)
i-Pr
t-Bu
t-Bu
N3
OH Pr-i
(60), 94
(65), 96
(94)
(68)
(89), 91
(53), >95, 93:7 d.r.
OH
OH
OH
I
OH
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
176, 705
699, 700
699, 700
699
698
701
246
Refs.
351
n-Bu
O H
B
O
B
O
O
B
O O
O
n
OCH(Pr-i)2
OCH(Pr-i)2
O
OCH(Pr-i)2
OCH(Pr-i)2
Ph
Ph
Ph
O B O
B
CO2Me O
B
O
O
O
O
CO2Me O
Br
Br
O
CH2Cl2, rt; H2O, 1 h
CH2Cl2, –78°, 16 h
Sc(OTf)3 (10 mol%),
rt, 8 d
rt, 8 d
–78°, 1 h
4 Å MS, toluene,
–78°, 1 h
4 Å MS, toluene,
n-Bu
n-Bu
i-Pr
i-Pr
i-Pr
i-Pr
OH
OH
OH
OH
OH
OH
(—), 82
(68)
(89), 98
CO2Me
(—), 25
(90), 93
(83), 90
CO2Me
Br
Br
234
28
713
713
711, 712
711, 712
352
C5
O
O
OH
PMBO
Et
O
O
O
OEt
H
N
H
O
O
O H
Carbonyl Substrate
B
O
OPiv
PhO2S
O
B(OPh)2
B(OH)2
B(OPh)2
TBDMSO
Br
Br
B(Pr-n)2
B(Pr-n)2
B(Pr-n)2
B
N
Ph
CH2Cl2, rt; H2O, 2 h
THF, 0° to rt, 18 h
—
THF, 0° to rt, 18 h
Ether, –70° to rt
Neat, 0-20°
Conditions
Ph CH2Cl2, –78°, 2-3 h SO2Ph
N
n
Allylborane Reagent
O
O
OH
PMBO
O
Et
HO
HO
HO
OH
O
N
OH
Br
Br
(87)
I OPiv
OTBDMS
(92), >20:1 d.r.
OH
(46)
(64), 54:46 d.r.
OH
(80)
(80)
(82)
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
710, 715
234
709
714
709
706, 702
238
Refs.
353
C6
n-C5H11
O H
Ts
PhO2S
[(+)-Ipc]2B
B[(–)-Ipc]2
SiMe2R
OPiv
TBDMSO
OPiv
TBDMSO
OPiv
TBDMSO
Ts N
Ts
N
Ph
Ph
SnBu3,
Ph, N Ts CH2Cl2, –78°
OPiv Ts N Br B
TBDMS
Ph
SnBu3,
Ether, –78° a
THF, –78°, 3 h
Ph, N Ts CH2Cl2, –78°
Ph
TBDMS
OPiv Ts N Br B
O
Ph CH2Cl2, –78°, 2-3 h
SO2Ph
N
Ph
Ts
N
Ph
B[(+)-Ipc]2
B
N
B
N
B
Ph
O
O
n-C5H11
n-C5H11
I
Ph
Me
R
C5H11-n
OH
SiMe2R
(43), 30
(62), 28
OPiv
OTBDMS
(98), >20:1 d.r.
OH
(43), >95, 92:8 d.r.
OH
OH
I (98), >20:1 d.r.
PMBO
N
I (98), >20:1 d.r.
176, 705
707
708
710
708
354
C6
n-C5H11
O H
Carbonyl Substrate
Cl
Br
Br
Br
Br
Ts
Ts
Ts
B
N
B
N
B
O
B
O
B
N
Ph
Ts
N
Ph
Ts
N
O
O
O
O
Ts
N
Ph
B(OPh)2
Ph
Ph
O
OCH(Pr-i)2
OCH(Pr-i)2
O
OCH(Pr-i)2
OCH(Pr-i)2
Ph
Allylborane Reagent
CH2Cl2, –78°, 2.5 h
CH2Cl2, –78°, 2.5 h
–78°, 1 h
4 Å MS, toluene,
–78°, 1 h
4 Å MS, toluene,
CH2Cl2, –78°, 2.5 h
THF, 0° to rt, 18 h
Conditions
n-C5H11
n-C5H11
n-C5H11
I (86), 88
n-C5H11
n-C5H11
OH
OH
OH
I
OH
OH
Cl
Br
Br
Br
(79), 88
(77), 99
(78), 92
(71), 94
(87)
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
50
50
712
712
50
709
Refs.
355
N H
OH
PivO
Et
O
O
O
O
O
H OTBDPS
O
B(Pr-n)2
B
Ts
N
B
OTBDMS
3
N
Ph
Ts
B(OH)2
B(OMe)2
B(OMe)2
B(Pr-n)2
Ph
Ph,
SnBu3,
Ph BBr3, CH2Cl2
Ts
Ts HN H N
OTBDMS
2. Aldehyde, –78°, 1 h
1.
THF, reflux, 2 h
—
MeOH, 0° to rt, 15 h
Ether, –70° to rt
N H
OH
PivO
Et
HO
OH
OH
OTBDPS
OH
(84)
OTBDMS
(70), 60:40 d.r.
(96), 7.2:1 d.r.
OH
(40)
OH (58)
716, 717
294
714
702
706, 702
356
C6
PivO
H OTBDPS
O
Carbonyl Substrate
Ts TBDPS
O
Ts TBDPS
O
Ts TBDPS
O
N
B
N
B
N
B
Ph
Ph
N
Ph
Ts
N
Ts
N
Ts
Ph
Ph
Ph
Allylborane Reagent
Ph,
SnBu3,
Ph BBr3, CH2Cl2
Ts
HN H N
O TBDPS Ts
Ph,
SnBu3,
Ph BBr3, CH2Cl2
Ts
HN H N
O TBDPS Ts
Ts
HN H N
O TBDPS Ts Ph,
SnBu3,
Ph BBr3, CH2Cl2 2. Aldehyde, –78°, 1 h
1.
2. Aldehyde, –78°, 1 h
1.
2. Aldehyde, –78°, 1 h
1.
Conditions
PivO
OTBDPS
OTBDPS I (60), 7:1 d.r.
OH
I (80), 1.2:1 d.r.
I (70), 4:1 d.r.
PivO
OH
OTBDPS
OTBDPS
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
708
708
708
Refs.
357 R
R
R=
R=
S
S
Ts TBDPS
O
S
S
N
B
Ts
Ts
N
B
N
B
Ph
Ts N
Ph
N
Ph
Ts
N
Ts
Ph
Ph
Ph
Ph BBr3, CH2Cl2
Ts
HN H N
O TBDPS Ts Ph,
SnBu3,
Ts HN H N
SnBu3,
Ph,
Ph BBr3, CH2Cl2
Ts
R
SnBu3,
Ph, Ph BBr3, CH2Cl2
Ts
Ts HN H N
2. Aldehyde, –78°, 1 h
1.
R
2. Aldehyde, –78°, 1 h
1.
2. Aldehyde, –78°, 1 h
1.
OTBDPS
OH
I (82), 4.2:1 d.r.
I (82), 1.5:1 d.r.
PivO
I (77), 1.4:1 d.r.
R
708
708
708
358
C6
N
N
PMBO
O
O
H
H
O
O H
Carbonyl Substrate
TMS
TBDPSO
Ts
PhO2S
B[(–)-Ipc]2
OMe
OPiv
TBDMSO
OPiv
TBDMSO
Ts
B
N
B
N
B
N
Ph
Ph
Ph
SO2Ph
N
Ph
Ts
N
Ph
Ts
N
Ph
Allylborane Reagent
N B
SnBu3,
N B
SnBu3,
THF, –78°, 3 h
CH2Cl2, –78°, 2-3 h
Ph, N Ts CH2Cl2, –78°
Br
Ts
Ph
TBDMS
OPiv
O
Ph, N Ts CH2Cl2, –78°
Br
Ts
Ph
TBDMS
OPiv
O
Conditions
N
N
PMBO
PMBO
OH
OH
O
O
TMS
OMe
(36), 54
(55), >20:1 d.r.
OTBDPS
OPiv
OTBDMS
(98), >25:1 d.r.
OH
OPiv
OTBDMS
(98), >25:1 d.r.
OH
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
707
710
716
716
Refs.
359
Ph
O H
3
B
B(Pr-n)2
O B(2-d-Icr)2
Ph
B(2-d-Icr)2
OPh
[(+)-Ipc]2B
"
BEt2
B[(+)-Ipc]2
OCOPh,
Ether, –78° a
–78°
a
Ether, –78° a
Neat, 0-20°
Neat, 0-20°
Et3N, THF, rt, 20 h
BEt3, Pd(PPh3)4,
OCOPh,
40°, 4 h
THF, rt, 9 h;
BEt3, Pd(PPh3)4, I
I
Ph
Ph
Ph
OH
OH
OH
I (78)
Ph
OH
I (63)
Ph
OH
O
OPh
OH
(89)
(60)
Ph
ether
THF
(39), 91
(74), 88
(72), 84
(55), >95, 84:16 d.r.
Solvent
Ph
704
704
176, 705
238
238
483
483
360
C7
Ph
O H
Carbonyl Substrate
O
B
B
O O
Ph
O B O
O
N
O S O
B
O
Ph
B[(–)-Ipc]2
BBN
Allylborane Reagent
O B O
Hexane, –40°
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
Ether, –78°
Cl
Li,
THF, ether, –78°, 1 h
THF, ether, –78°, 1 h
Conditions
I
OH
OH
OH
Ph
OH
I (64), 98
Ph
Ph
Ph
Ph
OH
(83), 40
(92), 89
(80)
(60), 93
(60)
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
122
27
246
52
699
699
Refs.
361 B
Br
N3
O
MeO2C
O
B
O
B
O
B
O
O
O
O
O
B
O
B(OPh)2
B
O
O
(EtO)3C
MeO2C
O B
Li,
2
,
50°, 16 h
allene, dioxane,
O B O
O
THF, 0° to rt, 18 h
Ether, 0°, 1 h
90°, 16 h
KOH (aq), dioxane,
2. PhI, PdCl2(dppf),
1.
Neat, rt, 14 d
Cl
(EtO)3C
Neat, rt, 6 d
Ph
Ph
Ph
Ph
Ph
Ph
OH
OH
OH
OH
OH
OH
Br
N3
Ph
(70), 10
(56)
(98)
(89)
(70)
(75)
CO2Me
C(OEt)3
CO2Me
709
701
718
58
52
57
362
C7
R
1
Ph H
O
R1
H
= H, MeO, O2N
R1 = H, O2N
O
Carbonyl Substrate
O
O
O
Ph
Ph
B
O O
O
n
OCH(Pr-i)2
OCH(Pr-i)2
O
OR
OR
B[(–)-Ipc]2
Ts
N
N B
Ts
B
O
B
O
SiMe2R2
R
Br
Br
O
Allylborane Reagent
CH2Cl2, H2O, rt
THF, –78°, 3 h
CH2Cl2, –78°, 2.5 h
–78°, 1 h
4 Å MS, toluene,
–78°, 1 h
4 Å MS, toluene,
Conditions
R1
R1
Ph
Ph
Ph
OH
OH
OH
R
Br
Br
Me
O2N
O2 N
(98), 84
(97), 47
(92), 47
3h
5h
2h
Time
(72), 33
(63), 22
(46), 75
MeO
H
R1
Ph
H
OH
Me
R2
SiMe2R2
(79), 84
(73), 79
H
R1
OH
Cl
Br
R
(98), 84
CH(Pr-i)2
Pr-i
Et
R
(96)
(95)
(87)
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
234
707
50
712
712
Refs.
363
Cl
NO2
O
N H
O
Cl
O
O
H
Ts
H
H
H O
O
B
O O
MeO
B
O
O
B[(–)-Ipc]2
B[(+)-Ipc]2
OMe
O
OEt
OEt
O
NHBn
NHBn
B[(+)-Ipc]2
[(+)-Ipc]2B
MeO2C
MeO2C
O B
O
Ether, –78° a
THF, –78° a
THF, –78° a
Neat, rt, 14 d
Neat, rt, 14 d
Toluene, –78°, 18 h
NO2
Ts
Ts
OH
I
(30), 20
OH
NO2
(84), 82
(80), 84
CO2Me
(87), 92
(47), >95, 94:6 d.r.
OH
N H
OH
N H
OH
I (90), 20
Cl
Cl
OH
176, 705
719
719
58
58
290
364
C7
MeO
MeO
O
O
R
H
H
OMe
O
O
H
H
OTBDMS
O
O
Carbonyl Substrate
MeO2C
MeO2C
MeO2C
B
O
B
O
B
O
O
H
O
O
B[(–)-Ipc]2
B[(+)-Ipc]2
[(+)-Ipc]2B
B[(+)-Ipc]2
Allylborane Reagent
a
Neat, rt, 14 d
Neat, rt, 14 d
Neat, rt, 14 d
THF, –78°
THF, –78°
a
Ether, –78°
a
Conditions
I (95), 6
MeO
MeO
O
O
R
OMe
I
OH
OH
OTBDMS
OH
OTBDMS
(92)
(98)
CO2Me
CO2Me
(74), 80
(79), 80
95:5
(55), >95
OH
95:5
(51), >95
O2N
d.r.
OH
MeO
R
OH
R
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
58
57
57
719
719
176, 705
Refs.
365
O H
Br
Br
N3
Ts
B
O O Ph
B
O
B
N
B
O
Ph
O
O
Ts
N
O
Ph
O B O
O
OCH(Pr-i)2
OCH(Pr-i)2
Ph
B(2-d-Icr)2
OPh
MeO2C
a
–78°, 1 h
4 Å MS, toluene,
CH2Cl2, –78°
Ether, 0°, 1 h
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
THF, –78°
rt, 7 d OMe
I
OH
OH
OH
OH
I (98), 88
MeO
MeO
Br
N3
(91), 80 (80), 82 (89), 71
ether THF CH2Cl2 pentane
(75), 94
(64)
(63), 92
(81), 71
(88), 82 (100), 76
toluene
Solvent
CO2Me
OPh
OH
712
50
701
28
704
703
366
C7 O H
Carbonyl Substrate
B
O O
EtO
Cl
O
O
Ts
O
O
Ph
O
B
OEt
O
Ph
Ts
N
EtO
B
B
N
O
O
3,5-(CF3)2C6H3O2S
B N
O
OEt
Ph
Ph
OCH(Pr-i)2
OCH(Pr-i)2
3,5-(CF3)2C6H3O2S Cl N
Br
O
Allylborane Reagent
,
O
OEt
OEt
2
14 h
(5 mol%), THF, 80°,
(Ph3P)2Pt(CH2CH2)
O
2. H2O2
1.
O B
O
CH2Cl2, –78°
—
–78°, 1 h
4 Å MS, toluene,
Conditions
OH
OH
OH
OH
OH
Cl
Cl
Br
(75)
(81), 99
(76), 88
(95), 85
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
186
50
351
712
Refs.
367
O
MOMO
R1
O H
O H
O H
PivO
Br
SiMe2
Ts
B(Pr-n)2
B(Pr-n)2
B(OPh)2
N
B
B[(–)-Ipc]2
R2
N
Ph
Ts Ph
Ph,
SnBu3,
Ph BBr3, CH2Cl2
Ts
Ts HN H N
OPiv
2. Aldehyde, –78°
1.
Ether, –70° to rt
THF, 0° to rt, 18 h
THF, –78°, 3 h
MOMO
HO
R1
(98), 10:1 d.r.
OH
OH (58)
(91)
Me
2-CF3
Br
(51), 34
Ph
OH
(69), 48
Me
4-CF3
(76), 51
R2
R1
SiMe2R2
4-CF3
OH
OPiv
720
706, 702
709
707
368
C7
Bu3Sn
Bu3Sn
OTIPS
OTIPS
O
O
O
O
H
H
Carbonyl Substrate
OTBDMS
OTBDMS
OBz
OBz
Ts
Ts
B
N
B
N
Ts
N
Ph
Ts
N
Ph
Allylborane Reagent
Ph
Ph Bu3Sn Ts Ph N Br B N Ph, Ts CH2Cl2, rt, 16 h
OBz
OTBDMS
Bu3Sn Ts Ph N Br B N Ph, Ts CH2Cl2, rt, 16 h
OBz
OTBDMS
2. Aldehyde, –78°, 3 h
1.
2. Aldehyde, –78°, 3 h
1.
Conditions
,
,
SnBu3 OTIPS
SnBu3 OTIPS
OH
OBz
OH
OBz (65), 15:1 d.r.
O
(75), 17:1 d.r.
O
OTBDMS
OTBDMS
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
708
710
Refs.
369
C8
Ph
O
OTIPS
C6H13-n
O
MeO
O
n-C5H11
Bu3Sn
O
O
H
O
H
H
Br
OBz
Ts
B(Pr-n)2
B(Pr-n)2
B[(+)-Ipc]2
B(OPh)2
Ph
O B O
OTBDMS B
N
Ts
N
Ph Ph Bu3Sn Ts Ph N Br B N Ph, Ts CH2Cl2, rt, 16 h
OBz
OTBDMS
Ether, –70° to rt
Ether, –78° to rt, 4 h
THF, 0° to rt, 18 h
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
2. Aldehyde, –78°, 3 h
1.
,
HO
Ph
MeO
n-C6H13
n-C5H11
OH
OBz
Ph
OH
(95)
OH
OH
OTBDMS
(38)
(85), 95.4
(95), 97
(72), 17:1 d.r.
OH Br
SnBu3 OTIPS
O
702
722
709
28
708, 721
370
C9
C8
Ph
Ph
O
N
O
O
H
H
O
N
O H
Carbonyl Substrate
R
Br
S
Ts
Ts
Ts B
Ph
N
Ph
Ts
N
O B O
B
N
B(OPh)2
OBz
OTBDPS
S
OPiv N
Ph
Ts
N
Ts
N
Ph
B
Ph
Ph Ph
Allylborane Reagent
CH2Cl2, –78°, 2-3 h
CH2Cl2, –78°, 12 h
Sc(OTf)3 (10 mol%),
Toluene, –78°
THF, 0° to rt, 18 h
CH2Cl2, –78°, 2-3 h
Conditions
Ph
Ph
Ph
Ph
O N
R
Br
Br
Cl
R
(76), 97
OBz
OPiv S S
OTBDPS
(79), 87
(84), 92
(95), 10.5:1
(95)
OH
(94), 1:1 d.r.
OH
OH
OH
OH
O
N
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
710, 708
27, 28
50
709
710
Refs.
371
C10
R
Ph
R
OH
OH
O
O
O
O
H
H
H
Br
Br
Ts
O
O
O
B(OH)2
B
O
B
O
O
N B
B(OH)2
[(–)-Ipc]2B
OBz
OTBDPS
Ph
O
OCH(Pr-i)2
OCH(Pr-i)2
O
OCH(Pr-i)2
OCH(Pr-i)2
B[(–)-Ipc]2
Ts
N
Ph
—
–78°, 1 h
4 Å MS, toluene,
–78°, 1 h
4 Å MS, toluene,
—
Ether, –78° a
CH2Cl2, –78°, 2-3 h
R
Ph
Ph
R
Ph
OH
OH
OH
OH
OH
OH
OH
Br
Br
(90)
Cy
Ph
R (75)
(60)
(98), 89
95:5
80:20
d.r.
59:41
58:42
d.r.
OTBDPS
(83)
(98), 85
Cy
Ph
R
(57), 46:6:1 d.r.
OH
OBz (96), >20:1 d.r.
OH
714
712
712
714
176, 705
710, 708
372
C10
PMBO
Ph
OH
O
O
H
O
Carbonyl Substrate
H
R
R
S
S
S
S
B
Ts OTBDPS N
R=
R=
B
N
B
N
Ts
Ph
Ts
Ts
N
B(OH)2
Ph
Ts
N
Ph
Ts
N
Ph
Ph
Ph
Allylborane Reagent
N B
Ph
SnBu3,
Ts N B
Ph
SnBu3,
N B
Br
Ph, N Ts CH2Cl2, –78°, 2 h
Ts
Ph
SnBu3,
OTBDPS
Br
Ph, N Ts CH2Cl2, –78°, 2 h
R
Ph, N Ts CH2Cl2, –78°, 2 h
Ts Br
R
—
Conditions
PMBO
PMBO
PMBO
Ph
OH
R
O
(93), 7:1 d.r.
TBDPSO
O
(78), 2.5:1 d.r.
R
O
(100), 91:9 d.r.
OH
OH
OH
OH
(81), 55:45 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
708
708
723, 708
714
Refs.
373 OTBDMS
Ph
Ts
N
B
N
Ph
Ts
N
Ph
Ts
N
Ts
OTBDMS
B
Ts OTBDPS N
B
Ts OTBDPS N
B
Ts OTBDPS N
Ph
Ts
N
Ph
Ph
Ph
Ph
N B
N B
N B
OTBDMS
SnBu3,
OTBDMS Ph Ts N Ph, B N Br Ts CH2Cl2, –78°, 1.5 h
Br
Ph, N Ts CH2Cl2, –78°, 2 h
Ts
Ph
SnBu3,
OTBDPS
Br
Ph, N Ts CH2Cl2, –78°, 2 h
Ts
Ph
SnBu3,
OTBDPS
Br
Ph, N Ts CH2Cl2, –78°, 2 h
Ts
Ph
SnBu3,
OTBDPS
TBDPSO
O
(96), 8.5:1 d.r.
O
(97), 2:1 d.r.
TBDPSO
O
(98), 2:1 d.r.
TBDPSO
O
(100), 10:1 d.r.
TBDMSO
PMBO
PMBO
PMBO
PMBO
OTBDMS
OH
OH
OH
OH
191
708
708
708
374
C11
C10
N
Ph
OPMB
O
H
OH
N
OTBDPS O
O H
OSEM
O
O
N
O H
O H
Carbonyl Substrate
S
OBz
TBDMSO
OPiv
B
N
Ts
Ts
OPiv
B(OH)2
TBDMSO
S
PhO2S Ph
B
N
B
N
Ts
N
Ph
Ts
N
Ph
SO2Ph
N
Ph
Allylborane Reagent
Ph CH2Cl2, –78°, 2-3 h
Ph CH2Cl2, –78°, 2-3 h
—
CH2Cl2, –78°
Conditions
N
N
Ph
OPMB
O
OPMB
O
H
H
OH
N
OTBDPS O
S
OH
H
OH
(88), 4:1 d.r.
O
OSEM
BzO
OTBDMS
PivO
OTBDMS
(60), 80:20 d.r.
(99), 11.4:1 d.r.
H
OSEM
O
OPiv
OH
(95), 10.5:1 d.r.
OH
S
O
N
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
710
710
714
724
Refs.
375
C22
C13
OPMB
O
OPMB
O
H
AcO
MeO
TBDMSO
N
N H
H
O
H
O
O
H
H
H
OAc
MOMO
OTIPS
O
OTBDPS
O
O
H
H
OTMS
O
AcO
Ts B
N
Ph
B
N
Ph
Ts
B
N
B[(–)-Ipc]2
Ts
N
OPiv
TBDMSO
OPiv
TBDMSO
PhO2S Ph CH2Cl2, –78°, 2-3 h
Ts
N
Ph
THF, –78°, 1 h
1.5 h
Toluene, –78° to rt,
Ph —
SO2Ph
N
Ph
OPMB
O
OPMB
O
H
AcO
MeO
TBDMSO
N
N H
OH
MOMO
OH
H
H
H
OAc O
HO
OTMS
OAc
OH
PivO
OTBDMS
PivO
OTBDMS
(69), 1.7:1 d.r.
(92), 17:1 d.r.
(—)
O
OTIPS
(96), 11.8:1 d.r.
O
OTBDPS
726, 727
725
280
715, 716
376
C26
a
H
H
O
The reaction mixture was free of Mg2+ ions.
AcO
H
Carbonyl Substrate
B(Pr-n)2
Allylborane Reagent
THF, –70° to 0°, 30 min
Conditions
AcO H
(64)
H HO
Product(s) and Yield(s) (%), % ee
TABLE 5. ADDITION OF β-SUBSTITUTED REAGENTS (Continued)
728
Refs.
377
C2
C1
O
O
O
H
O
Carbonyl Substrate
Ph2N
OMEM
OPMP
OMe
OMe
O
"
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B
OPr-i
Allylborane Reagent
THF, –78° to 0°, 3 h
THF, –78°, 3 h
THF, –78°, 10 h
THF, –100°, 10 h
THF, –78°, 3 h
THF, –78°, 3 h
Toluene, 80°, 12 h
Conditions
+ H
OH
(27)
(—), 93, >99:1 d.r.
(—), 95, >99:1 d.r.
(59), 92, >99:1 d.r.
Ph2N (40), >95, >95:5 d.r.
OH
I (75), >95
I OMEM
OH
NPh2
(68), >98, >20:1 d.r.
(57), 90, >99:1 d.r.
OH
Product(s) and Yield(s) (%), % ee
OPMP
OH
OMe
OH
OMe
OH
OH
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS
730, 731
505
388
407
48, 503
48
729
Refs.
378
C2
O
H
Carbonyl Substrate
O
B
O
PhMe2Si
Ph
Ph2N
BR2
2. H2O2, NaOH
4h
1. Ether, –78° to 0°,
THF, –78° to rt, 4 h
–70° to 0°
THF, –78° to 0°, 3 h
Conditions
THF, –78°, 12 h
B[(+)-Ipc]2 THF, –78°, 4 h
B[(–)-Ipc]2
B[(+)-Ipc]2
BEt2
BEt2
B[(+)-Ipc]2
Allylborane Reagent
+
Ph
OH
PhMe2Si
OH
OH
OH
OH
HO
HO
(73), 91
(—)
(75), 92, >97:3 d.r.
(75), 84
(–)-Ipc
(28)
(82), —
H
OH
Cy
R
(61)
(41), >95, >95:5 d.r.
Ph2N
OH
>99:1
>99:1
d.r.
NPh2
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
138, 136a
734
157
733
732
730, 731
Refs.
379 O
B
O
B
O
B
O
B
O
B
O
O
O
O
O
O
TMS
OMe
OMOM
OMe
OTHP
OTHP
TMS
BBN
Neat, rt, 2 d
Neat, rt, 2 d
Neat, rt, 7 d
—
Neat, rt, 48 h
THF, –78°, 3 h
(50)
H2SO4
I OTHP
O
OH
2:98
98:2
II I:II
(86), 88:12 d.r.
(89), 92:8 d.r.
(85), 93:7 d.r.
OMe
OMOM
OH
OMe
OH
H
(70-80), 78:22 d.r.
(61)
KOH
OH
I + II
+ I Work-Up
TMS
I (70-80), 78:22 d.r.
H TMS
47, 36
47, 36
36
47, 33,
104
34a
735, 736
380
C2
O
H
Carbonyl Substrate
B
O
B
O
"
B
O
O
O
O
TMS
O
SEt 0.65 equiv 30:70 E:Z
SMe 8:92 E:Z
Ph
MeO
O
B
O
B
O O
Allylborane Reagent
O B O
,
—
—
50°, 3 h; rt, 16 h
Br, Ph Cl2Pd(PPh3)2, THF,
IZn
THF, rt, 16 h
rt, 36 h
Petroleum ether,
Neat, rt, 2 d
Conditions
Ph
OH
OH
SEt
SMe
(91), 93:7 d.r.
(80), 9:1 d.r.
(86), 92:8 d.r.
(57), >99:1 d.r.
(76), 95:5 d.r.
TMS
I (57), >99:1 d.r.
I
OH
OMe
OH
O
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
737
737
79
79
47, 36
47
Refs.
381
Si
Ph
Cl
PhMe2Si
CyO
Me
TMS
Me
O B
"
O
O
O
B
O
B
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OCH(Pr-i)2
OCH(Pr-i)2
B
O
B
O
O
50°, 3 h
–100°
Toluene/pentane (10:3),
2. Aldehyde, rt, 16 h
O B
, O I, Cl2Pd(PPh3)2, THF,
1. IZn Ph
THF, rt, 16 h
–78°, 3-4 h
4 Å MS, toluene,
–78°, 3-4 h
4 Å MS, toluene,
Petroleum ether
SiMe2Ph
(70), 75
(61), >99:1 d.r.
(95), 84, >99:1 d.r.
Cl
I (61), >99:1 d.r.
OH
(94), 69, >99:1 d.r.
(92), 94:6 d.r.
SiMe2(OCy)
TMS
I Ph
OH
OH
OH
OH
738
79
79
39, 40
38, 40
47
382
C2
O
H
Carbonyl Substrate
n-Bu
n-Bu
Bu-n
n-Bu
MeO
OMe
B
O
B
O
B
O
B
O
O
B
O
B
O
O
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Allylborane Reagent
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
Neat, rt, 5-8 d
Neat, rt, 5-8 d
6d
Petroleum ether, 20°,
3d
Petroleum ether, 20°,
Conditions
n-Bu
OH
OH
OH
OH
OH
MeO
OH
Bu-n
Bu-n
Bu-n
OMe
(86), 67, 96:4 d.r.
(88), 72, 96:4 d.r.
(83), 88:12 d.r.
(83), 95:5 d.r.
(61), 95:5 d.r.
(50), 70:30 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
740
740
55
55
739
739
Refs.
383
RO
CF3
H
O H
R = Bn
TBDMSO TBDMSO
R=
O
OTBDMS
OTBDMS O
Ph
Ph
Ph
O
O
Ph
B
O
OMOM
MEMO
O
O
O
B
O
O
OCH(Pr-i)2
OCH(Pr-i)2
O
OCH(Pr-i)2
OCH(Pr-i)2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B
O
B
O
O
–78°, 2 h
rt, 24 h
Ether, –78°, 2 h;
THF, –85°, 18 h
–100°
Pentane/ether (1:1),
–78°, 72 h
4 Å MS, toluene,
–78°, 72 h
4 Å MS, toluene,
RO
RO
RO
CF3
OH
Ph Ph
O
OH
B
Ph
O Ph
(—)
(40), 93, >20:1 d.r.
OH
(65)
OR
(75), 96, >19:1 d.r.
(82), 60
(75), 61
OMOM
OH
OMEM
OH
OH
OH
670
175
742
249
741
741
384
C2
RO
R = Bn
H R = Bn, TBDPS
O
Carbonyl Substrate
EtO2C
PhMe2Si
PhMe2Si
O
B
O
B
O
B
O
O
O
O
O
O
B(OPr-i)2
O
OCH(Pr-i)2
O
OCH(Pr-i)2
OCH(Pr-i)2
O
THF, –78°, 4 h
Conditions
rt, 24 h
Sc(OTf)3, toluene,
–78°, 72 h
4 Å MS, toluene,
–78°, 72 h
4 Å MS, toluene,
CH2Cl2, rt, 3 d
OPr-i 4 Å MS, toluene, –78° O
OPr-i
OCH(Pr-i)2
B
O
B[(+)-Ipc]2
Allylborane Reagent
RO
RO
RO
RO
RO
RO
O
OH
OH
OH
PhMe2Si
OH
PhMe2Si
OH
O
(70), 90
(85), 88
(33), >20:1 d.r.
(29), 48
(36), 50
(59)
(99)
TBDPS
Bn
R
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
26
741
741
741, 744
743
734
Refs.
385
C3
O
n-BuO
H
O
O
R= PMB
H
OMe
OMe
PhMe2Si
Et
EtO2C
O O 2
B[(+)-Ipc]2
O
OEt
OEt
O
B[(–)-Ipc]2
B[(+)-Ipc]2
B
O
B
O
O ,
O
benzene, rt
2
OEt
OEt
Pt(dba)2, PCy3,
O B ,
THF, –78°, 3 h
THF, –78°, 3 h
THF, –78°, 4 h
3. NaOH, H2O2
2. Aldehyde, –78°, 3 h
1.
O
rt, 24 h
Sc(OTf)3, toluene,
O
OMe
OH
OMe
OH
(68), 90, >99:1 d.r.
(65), 88, >99:1 d.r.
(85), 95
(58), 66, >19:1 d.r.
(53), 19:1 d.r.
SiMe2Ph
Et
O
OH
OH
OH
n-BuO
RO
RO
O
48
48
734
185
26
386
C3
O
O
H
H
Carbonyl Substrate
OMe
OMe
Ph2N
Ph2N
O
B
O
OMOM
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
"
B[(+)-Ipc]2
Allylborane Reagent
THF, –78°, 3 h
THF, –78°, 3 h
THF, –78°, 12 h
THF, –78° to 0°, 3 h
THF, –78° to 0°, 3 h
2. H2O2, NaOH
4h
1. Ether, –78° to 0°,
—
THF, –78°, 3 h
Conditions
OMe
OH
OMe
OH
OH
Ph2N
OH
Ph2N
OH
OH
OH
I (66), >95
I OMOM
OH
(68), 90, >99:1 d.r.
(65), 88, >99:1 d.r.
(70), 95
(47), >95, >95:5 d.r.
(45), >95, >95:5 d.r.
(63), >97:3 d.r.
(62), 90, >99:1 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
48
48
138, 136a
730, 731
730, 731
157
745
48, 156
Refs.
387
B
Ph
N
OMOM
OMe
Ph
O
O
OSEM
B
O
B
O
O
O
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
N
,
Neat, 60°, 6 h
Neat, 20°, 2 d
Ether, pentane, –100°
–78°, 3 h
2. Aldehyde, THF,
MeOB[(–)-Ipc]2
Ph LDA,
1. Ph
2. H2O2, NaOH
4h
1. Ether, –78° to 0°,
THF, –100° to rt
Ph
Ph
OMOM
OH
OMe
OH
OH
N
OH
OH
OH
OSEM
OH
(88), 89:11 d.r.
(94), 92:8 d.r.
(81), 97
(48), >95:1 d.r.
(67), 90, >97:3 d.r.
(70), >95
47, 36
36
47, 33,
505
746
157
189
388
C3
O H
Carbonyl Substrate
SR
MeO
OTHP
OTHP
O
O
O
O
(90) (94) (95)
Et Et Et
1.0 1.0 0.4
44:56 73:27 44:56
91:9
27:73
56:44
d.r. 91:9
(91)
SR
(68), 95:5 d.r.
Me
OH
OMe
R
—
rt, 36 h
OH
I (70-80), 80:20 d.r.
(70-80), >80:20 d.r.
1.0
O
Petroleum ether,
(94), 93:7 d.r.
(88), 80:20 d.r.
TMS
OMe
Equiv
B
O
—
I OTHP
OH
O
OH
O
OH
Product(s) and Yield(s) (%), % ee
E:Z
O
O
O
Neat, rt, 48 h
Neat, 20°, 4 d
Neat, rt
Conditions
8:92
B
O
B
O
B
O
TMS
B
O
OMe
B
O
Allylborane Reagent
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
737
47, 33
104
34a
47
47, 36
Refs.
389 Bu-n
n-Bu
MeO
TMS
Et
B
O O
B
O
B
O
B
O
O
O
O
B(OMe)2
B(OMe)2
B(OMe)2
Neat, rt, 5-8 d
Neat, rt, 5-8 d
20°, 9 d
Petroleum ether,
rt, 3 d
Petroleum ether,
Ether, –75°
Ether, –75°
Ether, –75°
n-Bu
OH
OH
OH
OH
OH
OH
OH
Bu-n
OMe
TMS
Et
(82), 90:10 d.r.
(70), 95:5 d.r.
(74), 98:2 d.r.
(70), 94:6 d.r.
(36)
(44), 90:10 d.r.
(31)
55
55
739
47
43
43
43
390
C3
O H
H
Co2(CO)6
O
O
Carbonyl Substrate
MeO
OMe
"
B[(–)-Ipc]2
B[(–)-Ipc]2
BBN
BEt2
BEt2
B(OMe)2
B(OPr-i)2
Allylborane Reagent
, HBBN, pentane, rt, 24 h
THF, –78° to rt, 15 h
THF, –78° to rt, 15 h
2. Ketone, rt, 2 h
1.
Pentane, rt, 2 h
–70° to 0°
Ether, –75°
rt
Conditions
OH
(CO)6Co2
(CO)6Co2
I (80)
I
HO
HO
OH
OH
(80)
OMe
OH
OMe
OH
(93)
1h
3h
Time (82)
(84)
>97.5:2.5 d.r.
(20), >95,
94:6 d.r.
(76), >96,
(34), 98:2 d.r.
neat
toluene
Solvent
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
747
747
103
103
732
43
744
Refs.
391
RO
H
R = Bn
R = PMB
R = TBDMS
R = Bn, PMB
R = TBDMS
R = PMB
R = Ac
O
OMe
PhMe2Si
Cl
OMOM
OMe
B
O O
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc] 2
B[(–)-Ipc]2
B[(+)-Ipc]2
B(OBu-n) 2
benzene, –100° to rt
THF, cyclohexane,
Ether, pentane, –100°
12 h
Ether, –78° to rt,
—
THF, –78°, 4 h
Ether, –78°
–78° to 0°
OMe FB(OBu-n)2
–
RO
OH
Cl
OH
OMOM
OH
OMe
I
OMe
OH
OH
OH
PhMe2Si
I (82), 95
RO
RO
RO
RO
RO
RO
OH
(72), 95
PMB
(46), 88
(49), 95
(—), 99
(74), 90
Bn
R
(85), >95, >95:5 d.r.
(80), 90
(59)
545
505
749
749
734
631
748
46
392
C3
R = Bn
R = Ac
TBDPSO
RO
O H
O H
Carbonyl Substrate
EtO2C
Bu-n
Bu-n
n-Bu
n-Bu
THPO
B
O
B
O
B
O
O
O
O
O
O
B
O
B
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
B
O
Allylborane Reagent
Neat, rt, >12 d
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
—
Conditions
TBDPSO
RO
RO
RO
RO
RO
I
OH
OH
OH
OH
OH
O
Bu-n
Bu-n
Bu-n
Bu-n
O
OTHP
(75)
(46), 80, 97:3 d.r.
(56), 73, 97:3 d.r.
(57), 82, 97:3 d.r.
(56), 85, 97:3 d.r.
(71), 13:1 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
59
740
740
740
740
52
Refs.
393
O B O
R1 = see table
"
R1 = (–)-8-phenylmenthyl
R1O2C
rt
(51), 80 (95), 82 (86), 75 (74), 56 (24), 66 (6), 62
Ph 2-Nph 2-Nph 4-MeOC6H4 4-PhC6H4 3,5-Me2C6H3
" " " " " "
26 d
8d
36 d 14 d 14 d 14 d 14 d 14 d
toluene
neat
toluene toluene CH2Cl2 toluene toluene toluene
R
2
Ph
(70), 10
(78), 7
—
H
(64), –6
—
14 d
(89), 22
—
neat
O
8d
neat
(92), 0
Et
>12 d
neat O
R2 —
R1
Time
I
I (80), 82
Solvent
2. pTSA
1. Neat, rt, 14 d
59, 26
59
394
C3
O
OBn
PhS
H
O H
Carbonyl Substrate
TMS
TMS
MeO
O
OMe
THPO
O
O
O
TMS
B
O
B
O
B
O
B
O
O
O
B
O O
B
O O
Allylborane Reagent
O B O
Neat, rt, 4 d
22°, 4 d
Petroleum ether,
22°, 7 d
Petroleum ether,
22°, 7 d
Petroleum ether,
—
Cl
THPO
Li,
Conditions
OH
OBn TMS
OH
OBn O
OH
OBn OMe
OH
OBn O
OH
OBn OMe
PhS
OH
(52), 58:42 d.r.
TMS
(94), 92, 60:40 d.r.
(97), 92, 57:43 d.r.
TMS
(87), 92, 82:18 d.r.
(—), 88:12 d.r.
OTHP
(50), 13:1 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
521
275
275
275
275, 750
52
Refs.
395
H
H
NBn2
O H
R = TBDMS
R = TBDMS, Bn, THP
OR
O
OBz
O
TMS
Cy
MeO
CyO
Me
CyO
Me
Si
Si
Me
Me
O
B
O O
BBrCy
B
O
B
O
B
O
O
O
O
O
O
–78° to 0°, 1 h
HBCy2, n-Bu4NBr,
Br ,
Neat, rt, 4 d
1h
2. Aldehyde, 0° to rt,
1.
6-8 kbar
OPr-i 4 Å MS, toluene, –78°, 3-4 h
OPr-i
O
OPr-i 4 Å MS, toluene, –78°, 3-4 h
OPr-i
OMe
III
Cy
II I+II
OMe
+
III
(71), >95:5 d.r.
(8)
(46)
(15) (82)
(83), 50:50 d.r.
THP
Bn
TBDMS (24) (57)
R
RO
OMe
+
OH
(90), 23:1 d.r. SiMe2(OCy)
OH
OH
(80), 84:16 d.r. SiMe2(OCy)
NBn2 TMS
OR
I
OH
RO
RO
OH
OBz
OH
OBz
OH
521
751, 680
739
38, 40
38, 40
396
C3
O
O
N
N
Boc
O
Boc
O
H
H
Carbonyl Substrate
N Ph
B[(–)-Ipc]2
B[(+)-Ipc]2
TMS
Ph
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
TMS
Cl
Cl
Cl
BBN
(i-Pr)2NMe2Si
(i-Pr)2NMe2Si
Allylborane Reagent
THF, –78°
2. KF, H2O2
1. KHCO3
2. KF, H2O2
1. KHCO3
6h
Ether, THF, –95°,
6h
Ether, THF, –95°,
6h
Ether, THF, –95°,
2. KF, H2O2
1. Ether, –78°, 3.5 h
2. KF, H2O2
1. Ether, –78°, 3.5 h
Conditions
N Boc
OH
N Boc
Cl
N Boc
O
I
N Boc
N
OH
I
I
I
Ph
OH
I (45), 67:33 d.r.
O
OH
I (72), >97:3 d.r.
I (37), 62:38 d.r.
O
OH
I (45), 2:1 d.r.
O
OH
Ph
(58), 1.2:1 d.r.
(57), >98:2 d.r.
(68), 95:5 d.r.
(57), >95:5 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
160
278
278
753, 754
753
753, 754
511
752, 45,
752
Refs.
397
O O
TBDMSO
O H
OBn
O H
"
B[(+)-Ipc] 2
B[(–)-Ipc]2
B[(–)-Ipc]2
B(OMe) 2
SiMe2Bn
SiMe2Ph
Ph
N
OMOM
n-Pr
n-Pr
Ph
"
N
N
2d
THF, hexane, rt,
THF, –78° to rt
THF, –78° to rt
THF, –78°
–78°, 3 h
2. Aldehyde, THF,
MeOB[(+)-Ipc]2,
Ph LDA,
1. Ph
–78°, 3 h
2. Aldehyde, THF,
MeOB[(–)-Ipc]2,
Ph LDA,
1. Ph
,
,
O OMOM
OH
(52), 1.8:1 d.r.
BnO n-Pr SiMe2Bn
OH
(56), 1.8:1 d.r.
BnO n-Pr SiMe2Ph
OH
(75-85), >20:1 d.r.
O
TBDMSO
TBDMSO
I (40), >95:5 d.r.
I (40), >95:5 d.r.
I (48), 1.2:1 d.r.
755
206
206
160
746
746
398
C3
O
O
O H
Carbonyl Substrate
Ph
Ph
Cl
Cl
Ph
Ph
N
N
"
"
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
N
N
THF, –78°
–78°, 3 h
2. Aldehyde, THF,
MeOB[(+)-Ipc]2,
Ph LDA,
1. Ph
THF, –78°
–78°, 3 h
2. Aldehyde, THF,
MeOB[(–)-Ipc]2,
Ph LDA,
1. Ph
Ether, –95°, 4 h
Ether, –95°, 4 h
,
,
Conditions
O
O
O
I
N
OH
Cl
OH
Cl
I (41), 2.7:1 d.r.
I (41), 2.7:1 d.r.
I (43), >95:5 d.r.
O
O
O
OH
Ph
Ph
(43), >95:5 d.r.
(68), 61:39 d.r.
(65), 99.5:0.5 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
160
746
160
746
756
756
Refs.
399 RMe2Si
PhMe2Si
PhMe2Si
TBDPSO
B
O
B
O
B
O
O
O
O
O
O
B
O
O
B[(+)-Ipc]2
CH2Cl2, rt, 12-24 h
O
OPr-i –78°
4 Å MS, toluene,
OPr-i 4 Å MS, toluene, –78° O
OPr-i
OPr-i 4 Å MS, toluene, –78° O
OPr-i
OPr-i
O
–78°, 1 h
BF3•Et2O, THF,
O
O
O
O
O
(79) (82)
menthofuryl CyO
>95:5
>96:4
d.r. 95:5
(96), 20:1 d.r.
(90), 23:1 d.r.
(93)
SiMe2R
SiMe2Ph
SiMe2Ph
OTBDPS
(55), 10:1 d.r.
2-(5-methyl)furyl
OH
OH
OH
OH
(73)
R
O
O
O
O
O
OH
40
158, 38,
39, 40
39, 40
61
533
400
C3
O
O
O H
Carbonyl Substrate
B
O
B
B
"
B(OPr-i)2
R = menthofuryl
RMe2Si
O
R = menthofuryl
RMe2Si
RMe2Si
O
O
O
O
O
O
O
–78°
4 Å MS, toluene,
–78°
4 Å MS, toluene,
Conditions
Toluene, rt, 3 h
CH2Cl2, 12 h
OPr-i 4 Å MS, toluene, –78° O
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Allylborane Reagent
O
O
I
OH
OH
SiMe2R
SiMe2R
0°
rt
Temp (—)
(93)
(85), 92:8 d.r.
d.r. 92:8
87:13
(79), >96:4 d.r.
(88)
CyO
O
92:8 85:15
(85)
menthofuryl
OH
94:6
2-(5-methyl)furyl (90)
d.r.
SiMe2R
R
O
I (90), 89:11 d.r.
O
O
O
O
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
741
741, 744
757
757
40
158, 38,
Refs.
401
O
O
O H
Ph2N
Ph2N
Cy
O B O
O
2
B[(+)-Ipc]2
B[(–)-Ipc]2
BBrCy
O
OEt
OEt
–78° to 0°, 1 h
HBCy2, n-Bu4NBr,
Br ,
THF, –78° to 0°, 3 h
THF, –78° to 0°, 3 h
1h
2. Aldehyde, 0° to rt,
1.
2. NaOH, H2O2
1. –78°, 3 h
O
O
O
O
OH
OH
O
+
O
O Ph2N
+
O
O
Cy
OH
OH
O Ph2N
O
O
OH
H
OH
H
OH (19)
NPh2
(26)
(28), >95, >95:5 d.r.
NPh2
(23), >95, 23:6 d.r.
(40), 85:15 d.r.
(71), >19:1 d.r.
730, 731
730, 731
751, 680
185
402
C4
C3
O
EtO
O
O
O
O
O
O
O
H
O
H
H
Carbonyl Substrate
OSEM
OTHP
O
O
B
O
O
O
O
2
B[(–)-Ipc]2
B[(+)-Ipc]2
O
OPr-i
OPr-i
O
OEt
OEt
B[(+)-Ipc]2
B
O
B
O
Allylborane Reagent
THF, –78°
THF, –78°
THF, –78°
6 kbar, 45°, 80 h
Petroleum ether,
–78°
4 Å MS, toluene,
2. NaOH, H2O2
1. –78°, 3 h
Conditions
O
EtO
O
O
HO
O
OTHP
OH
OH
OSEM
OH
O
OH
OH
OH
(83), 96
(85), 96
(65-68), 82
(85), 14:1 d.r.
(79), >99:1 d.r.
(66), 1:1 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
138, 140
138, 140
759
104
194, 758
185
Refs.
403 O
H
H
Co2(CO)6
O
R
Cy
Et O
BBN
BBN
B[(–)-Ipc]2
BBrCy
B
O
TMS
TMS
EtO2C
TMS
n-Bu
–78° to 0°, 1 h
HBCy2, n-Bu4NBr,
Br ,
15 h
THF, –78° to rt,
1h
2. Aldehyde, 0° to rt,
1.
rt, 16-24 h
Sc(OTf)3, toluene,
2. KOH
1. THF, –78°, 3 h
2. NaOH
1. THF, –78°, 3 h
H
+
TMS H
II
(61), 1:1 d.r.
>97.5:2.5 >97.5:2.5
(73), >96 (65), >96 OMOM
d.r.
(84), >98:2 d.r.
R
OH
Et
O
TMS
n-Bu
OMe
R
+
I + II (59), I:II = 98:2
Cy
(CO)6Co2
n-Bu
II I + II (53), I:II = 93:7
O
I
I
OH
H
H
747
751, 680
26
735
736
404
C4
n-Pr
H
O H
O H
Co2(CO)6
O
Carbonyl Substrate
Cl
Cl
OTHP
PhMe2Si
MeO
B
O
B
O
B
O
O
O
O
O
O
O
OCH(Pr-i)2
OCH(Pr-i)2
O
OCH(Pr-i)2
OCH(Pr-i)2
B[(+)-Ipc]2
B(Pr-n)2
B[(–)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
(10:3), –100°
Toluene/pentane
(10:3), –100°
Toluene/pentane
Neat, rt, 48 h
Ether, –78°, 12 h
Neat, 60°
THF, –78°
THF, –78° to rt, 15 h
Conditions
n-Pr
n-Pr
n-Pr
n-Pr
n-Pr
OMe
OH
OH
OH
Cl
(77), 98
Cl
(82), 93
(85), 96
(70-80), >80:20 d.r.
(79), 92
(62)
SiMe2Ph
OTHP
OH
OH
OH
OH
(44), >95, >97.5:2.5 d.r.
(CO)6Co2
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
738
738
34a
138, 136a
238
760
747
Refs.
405
i-Pr
O H
OMe
OPh
Et
Ph
PhMe2Si
Bu-n
n-Bu O
B[(+)-Ipc]2
B(OBu-n)2
B–Et2SePh
O
O
O B
B
O
B
O
,
O O
O
,
FB(OBu-n)2
–
THF, –78°, 3 h
OPh
12 h
2. Et3B, –78° to rt,
–78°, 30 min
LDA, THF,
1. PhSe
80°, 5 h
I Pd2(dba)3, EtOAc,
Ph
PhMe2Si B
Neat, rt, 5-8 d
Neat, rt, 5-8 d
,
,
i-Pr
i-Pr
n-Pr
n-Pr
n-Pr
n-Pr
Et
Ph
OMe
OH
i-Pr II
OH
(57), 88, >99:1 d.r.
I + II (72), I:II = 3:1
+
(85), 75:25 d.r.
OPh
(70), >99:1 d.r.
(79), 90:10 d.r.
(76), 95:5 d.r.
SiMe2Ph
Bu-n
Bu-n
I OPh
OH
OH
OH
OH
OH
48
46
692
761
55
55
406
C4
i-Pr
O H
Carbonyl Substrate
O
Ph Ph
Ph
Cl
OMe
"
"
O
Ph
B
O
B
O
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
Cl, LDA, ether, –78°
MeOB[(–)-Ipc]2,
–78°, 12 h
Ether, pentane, –100°
Ether, –78°, 2 h
Ether, –78°, 2 h
rt, 24 h
Ether, –78°, 2 h;
3. Aldehyde
2. BF3•OEt2
1.
THF, –78°, 3 h
Conditions
I
OH
Ph
O
OH
O
OH
OH
B
B
Cl
OH
Ph
O
O
OMe
I (73), 89
i-Pr
Ph
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
OH
Ph
Pr-i
(34), 84, >20:1 d.r.
(85), 95
(—)
(—)
OH
(—), 77
(62), 88, >99:1 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
138, 136a
505
175
175
175
159, 762
48
Refs.
407 MeO
O
O
OTHP
O
B
O
B
O
O
O
O
O
O
B
TMS O
TMS
B
O
B
O
OMe
OMOM
OMe
B
O
B
O
O
O
rt, 36 h
Petroleum ether,
rt, 2 d
Petroleum ether,
Neat, 20°, 14 d
—
Neat, rt, 2 d
Neat, rt, 2 d
Neat, 20°, 2 d
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
OMe
OH
O
OH
O
OH
OTHP
OH
O
OH
(77), >98:2 d.r.
TMS
(86), >95:5 d.r.
TMS
(76), 89:11 d.r.
(70-80), 80:20 d.r
(57), 68:32 d.r.
(90), 80:20 d.r.
(94), 89:11 d.r.
OMe
OMOM
OH
OMe
OH
47, 33
47
47
104
47, 36
47, 36
36
47, 33,
408
C4
i-Pr
O H
Carbonyl Substrate
MeO
"
B
O
O
B
O
O B O
O
B(OPr-i)2
B
O
O
OCH(Pr-i)2
OCH(Pr-i)2
0.4
56:44
O
1.0
O
Equiv
Z:E
O
>95:5
Bu-n
n-Bu
SR
B
O
Allylborane Reagent
–78°, 72 h
4 Å MS, toluene,
Toluene, rt, 8 h
8 kbar, 46°, 5 h
Petroleum ether,
20°, >20 d
Petroleum ether,
Neat, 4 kbar, rt
Neat, 4 kbar, rt
—
Conditions
OH
OH
OH
i-Pr
i-Pr
OH
OH
(95)
Me Et
OMe I
Bu-n
(79), 88
(80)
(31), 98:2 d.r.
(87), 92:8 d.r.
(81), 99:1 d.r.
5:95
Z:E >95:5
(90)
R
Bu-n
SR
I (70), 97:3 d.r.
i-Pr
i-Pr
i-Pr
i-Pr
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
741
741, 744
739
739
55
55
737
Refs.
409
Cl
O H TMS
c-C5H9
Cy
Bu-n
EtO2C B O
O
O
O
B
O
O
OPr-i
OPr-i
O
OCH(Pr-i)2
OCH(Pr-i)2
O
BBr(C5H9-c)
BBrCy
O
B
O
B
O
O
–78° to 0°, 1 h
HBCy2, n-Bu4NBr,
Br ,
–78° to 0°, 1 h
n-Bu4NBr,
HB(C5H9-c)2,
Br ,
Neat, rt, 4 d
1h
2. Aldehyde, 0° to rt,
1.
1h
2. Aldehyde, 0° to rt,
1.
rt, 24 h
Sc(OTf)3, toluene,
–78°, 72 h
4 Å MS, toluene,
–78°, 72 h
4 Å MS, toluene,
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
OH
TMS
C5H9-c
OH
Cl
O
Cy
OH
n-Bu
O
OH
OH
(90), 65:35 d.r.
(60), >98:2 d.r.
(72), >98:2 d.r.
(32), >20:1 d.r.
(80), 81
(82), 88
521
751, 680
751, 680
26
741
741
410
C4
TBDMSO
TBDMSO
Et
O
O H
O H
Carbonyl Substrate
RMe2Si
OMOM
Cl
Cl
OMEM
TMS
B(OMe)2
B
O
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
TMS
O
O
BBN
O
OPr-i
OPr-i
Allylborane Reagent
–78°
4 Å MS, toluene,
THF, rt
Ether, –95°, 4 h
Ether, –95°, 4 h
—
THF, –78°, 3 h
Conditions
I
Et
OH
TBDMSO
TBDMSO
TBDMSO (58), 86:14 d.r.
(55), 95:5 d.r.
TMS
(67) (82) (76)
menthofuryl CyO
SiMe2R 2-(5-methyl)furyl
OH
>95:5
94:6
>96:4
d.r.
OMOM (40), 70:30 d.r.
OH
Cl
OH
Cl
OH
OMEM (69), 94, >99:1 d.r.
TBDMSO
R
+ II I + II (68), I:II = 55:45
TBDMSO
Et
TMS
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
40
158, 38,
602
651
651
388
735, 736
Refs.
411
RO
H
R = TBDMS
R = TES
R = PMB
O
O B
B
O
OMOM
OMOM
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
R = menthofuryl
RMe2Si
Cl
O B
R = menthofuryl
RMe2Si
RMe2Si
O
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Ether, –95°, 4 h
THF, –89°, 18 h
THF, –78° to rt
–78°
4 Å MS, toluene,
–78°
4 Å MS, toluene,
–78°
4 Å MS, toluene,
RO
RO
RO
TBDMSO SiMe2R
Cl
OH
OMOM
OH
OMOM
OH
64:36
(55), 85:15 d.r.
(60), >95:5 d.r.
(83), 8:1 d.r.
(80), 55:45 d.r.
OH
(82), 96:4 d.r.
SiMe2R
(70)
CyO
TBDMSO
(80)
menthofuryl
OH
67:33
(58)
2-(5-methyl)furyl 55:45
d.r.
SiMe2R R
TBDMSO
OH
651
764
763
757
757
40
158, 38,
412
C4 H
OH
O H
O H
R = TBDMS
R= TBDPS
R = PMB
R= TBDMS
TBDPSO
RO
O
Carbonyl Substrate
Cl
O
B
PhMe2Si
PhMe2Si
Cl
O OMe
B[(–)-Ipc]2
B
O
"
B
O
B[(+)-Ipc]2
B[(+)-Ipc]2
O
O
O
O
–100°
Ether, pentane,
Ether, –95°, 4 h
Conditions
OMe B O OMe, –78° to rt, 1.5 h
O
B(NMe2)2,
2. L.A., –78° to rt, 3 h
1.
Ether, –95°, 4 h
OPr-i 4 Å MS, toluene, –78° O
OPr-i
–78°
OPr-i 4 Å MS, toluene, –78° O 4 Å MS, toluene,
OPr-i
Allylborane Reagent
I SiMe2Ph
OH
OH
Cl
Solvent THF ether THF
FeCl3 Ti(OPr-i)4 ZrCl4
OH
Cl
OH
SiMe2Ph
L.A.
OH
TBDPSO
RO
OH
I (91), >20:1 d.r.
RO
RO
RO
OH
(72)
(84)
(61)
77:23
72:28
87:13
d.r.
(68), 93:7 d.r.
(92), 1.5:1 d.r.
(75)
(90), 96:4 d.r.
(56), 95:5 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
299
765
39, 40
39, 40
743
505
651
Refs.
413
MeO
BzO O
OMe O
O
H
H
PhO
Me
PhO
Me
Si
Si
Me
Me
PhMe2Si
PhMe2Si
O B O
O
O
O
O
O
O
O
B[(+)-Ipc]2
B
O
B
O
B
O
B
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
4 kbar, 3 d
Petroleum ether,
–100°
Ether, pentane,
–78°
4 Å MS, toluene,
–78°
4 Å MS, toluene,
OPr-i 4 Å MS, toluene, –78° O
OPr-i
OPr-i 4 Å MS, toluene, –78° O
OPr-i
OH
OH
OH
OH
(89), 8:1 d.r.
(82), 15:1 d.r.
I (93), 97.5:2.5 d.r.
(80), 13:1 d.r.
SiMe2(OPh)
(53), 2:1 d.r.
SiMe2(OPh)
SiMe2Ph
SiMe2Ph
OMe OH
O
O
O
I (82), 2:1 d.r.
MeO
BzO
BzO
BzO
BzO
O
53
505
38, 40
38, 40
40, 39
40, 39
414
C4
TBDPSO
O
O
O
PhthN
O
O
O
O
O
H
H
RO
OR
O
OH
O
H
Carbonyl Substrate
Ph Ph
Ph O
Ph
OMOM
OMEM
OMe
OMe
O
B
O
B[(–)-Ipc]2
B[(–)-Ipc]2
B
O
B(OMe)2
B[(+)-Ipc]2
Allylborane Reagent
CH2Cl2, –78°
THF, –78°
rt
THF, –95°, 3 h;
24-48 h
CH2Cl2, –78° to rt,
THF, –78°
Conditions
O
O
OH
OMe
OMOM
(83)
(—) (—)
t-Bu
Ph
RO
OR
Ph
O
OH
B
Ph
O Ph
(60), >96.5:3.5 d.r.
O
PMB
R
TBDPSO
O
OH
OMEM (87), 95, >99:1 d.r.
O
PhthN
HO
I (70-75), 95:5 d.r.
I
O
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
201
771
769, 770
768
118, 767,
766, 767
Refs.
415
C5
Et
O H
O
O
H
H
RO
Cl
n-Pr
B[(+)-Ipc]2
O
R = TBDMS
B O
O
B[(–)-Ipc]2
B[(+)-Ipc]2
O
OPr-i
OPr-i
B[(+)-Ipc]2
B[(–)-Ipc]2
SiMe2Ph
PhMe2Si
Cl , LiNCy2, ether, –78°
MeOB[(–)-Ipc]2,
–78°, 5 h
4 Å MS, toluene,
–78°, 12 h
–78°, 12 h
3. Aldehyde
2. BF3•OEt2
1.
THF
THF, –78°
Et
OTBDMS
OH
OH
OH
14 h
–50°
(84), 69
(83), 96
(85), 96
(78), 99, 99:1 d.r.
8:1 10:1
(67)
6h
–23°
Cl
3:1
(79)
6h
rt
OH
3:1
(77)
6h
66°
d.r. (76)
Time
SiMe2Ph
SiMe2Ph
(86), 94
Temp
n-Pr
OH
OH
88
138
138
159, 762
760
760
416
C5
n-Bu
O H
O H
Carbonyl Substrate
O B O
Bu-n
Bu-n
EtO2C
n-Bu
n-Bu
B
O O
B
O
B
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
B(OPr-i)2
B(OPr-i)2
R = CH2CO2Me
n-Bu
R
O
Allylborane Reagent
rt, 6-24 h
Sc(OTf)3, toluene,
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
18 h
THF, –78° to rt,
18 h
THF, –78° to rt,
–78°, 5 h
Conditions
I
OH
n-Bu
n-Bu
n-Bu
O
OH
Bu-n
Bu-n
Bu-n O
(78), 82
(62), 19:1 d.r.
(77), 71, 96:4 d.r.
(89), 95:5 d.r.
(81), 89:11 d.r.
CO2Me
I (83), 73, 97:3 d.r.
n-Bu
n-Bu
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
24, 26
740
740
772
772
90
Refs.
417
i-Pr
t-Bu
O
O
H
H
Ph
Cl
O
Ph
B
O
N
B(Pr-n)2
B[(–)-Ipc]2
B(OPr-i)2
B[(+)-Ipc]2
B[(–)-Ipc]2
"
B[(–)-Ipc]2
Cl ,
N
Neat, 60°
–78°, 3 h
2. Aldehyde, THF,
MeOB[(–)-Ipc]2,
Ph LDA,
1. Ph
Toluene, rt, 3 d
–100°
Ether, pentane,
3. Aldehyde
,
LiNCy2, THF, –78°
MeOB[(–)-Ipc]2, 2. BF3•OEt2
1.
rt, 24 h
Ether, –78°, 2 h;
2. H2O2, NaOH
4h
1. Ether, –78° to 0°,
i-Pr
i-Pr
t-Bu
t-Bu
t-Bu
t-Bu
t-Bu
OH
OH
N
OH
OH
OH
Cl
OH
Ph
Ph
(65)
(41), >95:5 d.r.
(60)
(88), 95
(65), 78
Bu-t
(59), >95, >97:3 d.r.
(34), 92, >20:1 d.r.
OH
OH
OH
238
746
741, 744
505
159
175
157
418
C5
i-Pr
O H
Carbonyl Substrate
Bu-n
EtO2C
Et
EtO2C
Bu-n
Bu-n
n-Bu
n-Bu
B
O O
O
O
O
O
O B
B
O
B
O
O
B
O
B
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Allylborane Reagent
rt, 6-24 h
Sc(OTf)3, toluene,
rt, 24 h
Sc(OTf)3, toluene,
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
Conditions
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
n-Bu
O
O
n-Bu
OH
OH
OH
n-Bu
OH
O
Et
O
Bu-n
Bu-n
(53), 19:1 d.r.
(46), >20:1 d.r.
(76), 66, 96:4 d.r.
(72), 63, 96:4 d.r.
(85), 72, 96:4 d.r.
(93), 84, 96:4 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
24, 26
26
740
740
740
740
Refs.
419
O
i-Pr
Et
HN Boc
H
H
O
O
Cl
R
R3Si
TMS
Cl
Cl
B
O
O
O
B
O O
B[(–)-Ipc]2
BEt2
BEt2
B
O
B[(+)-Ipc]2
B[(–)-Ipc]2
Ether, –95°, 4 h
–70° to 0°
rt, 3 d
Pentane, 4 kbar,
Neat, rt, 4 d
Neat, rt, 4 d
Ether, –95°, 4 h
Ether, –95°, 4 h
i-Pr
HO
HO
Et
Et
Et
Et
Et
HN
SiR3
TMS
Cl Boc
OH
R
OH
OH
OH
Cl
OH
Cl
OH
(66)
(50)
(70)
(79)
d.r.
75:25
72:28
d.r.
74:26
73:27
(61), 85:15 d.r.
(70)
t-Bu
TIPS
R
Et
Me
R
(82), 72:28 d.r.
(57), 95:5 d.r.
(59), 85:15 d.r.
651
732
539
539
539, 521
539
651
651
420
C5
HN
S
PhS
S
H
O
O
Boc
O
TBDMSO
PMBO
i-Pr
H
H
O H
O H
Carbonyl Substrate
O
B
O
OMe
OMOM
OSEM
OSEM
Cl
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
Allylborane Reagent
THF, –78°
THF, –78° to rt, 3 h
THF, ether, –78°
THF, ether, –78°
—
Ether, –95°, 4 h
Conditions
HN
Cl Boc
OH
O
OH
B
S
PhS
S
OMe
OH
OMOM
OH
(47)
(73)
OSEM (49), >95, >19:1 d.r.
TBDMSO
OH
O
(—)
(60), 99:1 d.r.
OSEM (60), >95, >97.5:2.5 d.r.
TBDMSO
PMBO
i-Pr
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
515
773
513
511
202
651
Refs.
421
O
OBn
H
TESO
OBn O
PMBO
t-BuO
O H
O H
n-Pr
PhMe2Si
PhMe2Si
PhMe2Si
OMOM
O
B
O
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
BR2
THF
—
—
3h
THF, –95° to rt,
–78° O
69 36
(+)-Ipc toluene 2-d-Icr TESO
SiMe2Ph
SiMe2Ph
77:16
(79) –78°
d.r. 69:19
(90) –30°
Temp
BnO n-Pr SiMe2Ph
OBn OH
OBn
OBn OH
OBn
OBn OH
83
85
85
>95
(79), 1:1 d.r.
(83), 9:1 d.r.
OMOM
OH
74
ether
77
(+)-Ipc CH2Cl2
Solvent Yield ee
B
(+)-Ipc ether
R
O
OH
(91), >10:1 d.r.
PMBO
t-BuO
O
760
774
774
458
203
422
C5
O
O
O
O
O O H
(i-Pr)2NMe2Si
OMe
B[(+)-Ipc]2
B[(–)-Ipc]2
–78°
–78°
12.5 h
THF, –78° to –23°,
2. KF, H2O2
1. Ether, –78°, 3 h
O
O
O
O
S
PhthN
O
O
O
O
d.r.
8:20
19:4
OH
OH
OH
OMe
OH
OMe
(73)
21:6
2:21
Syn:Anti
(44), >95:5 d.r.
(60), >99:1 d.r.
(79), >99:1 d.r.
OBn OBn OMOM
OBn OH
(86)
(85)
OMe R
(CH2)2OTBDMS
R
BnO
OH
Product(s) and Yield(s) (%), % ee TBDMSO
O O
B[(+)-Ipc]2
B[(–)-Ipc]2
O
—
O
OMe
OMOM
R
B
O
Conditions
O
H
H
O
OBn OBn
H
H
OBn O
OMe
O
Allylborane Reagent
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
O
O
S
PhthN
BnO
TBDMSO
Carbonyl Substrate
45
776
776
775
545
Refs.
423
C6
n-C5H11
O H
O H
OPh
OMe
TMS
Bu-n
EtO2C
Ph
PhMe2Si B
BBN
B(OBu-n)2
B(OBu-n)2
B
O
O
O
O
(i-Pr2)NMe2Si B[(+)-Ipc]2
O O
O
–
OPh
FB(OBu-n)2
–
OMe FB(OBu-n)2
—
rt, 16-24 h
Sc(OTf)3, toluene,
80°, 5 h
I Pd2(dba)3, EtOAc,
Ph
PhMe2Si B
2. KF, H2O2
1. Ether, –78°, 3 h
O
OH
n-C5H11
n-C5H11
OH
+
n-C5H11 II
OH
I + II (61), I:II = 3.5:1
I OPh
OH
(65)
(94), >95:5 d.r.
(45), 2.5:1 d.r.
(74), >99:1 d.r.
TMS
OMe
OH
(47), >95:5 d.r.
SiMe2Ph
O
Ph
OH
S n-Bu
S
S
OH
OPh
46
46
683
26
761
45
424
C6
n-C5H11
O H
Carbonyl Substrate
TMS
BCy2
B[(+)-Ipc]2
Ph2N
R
B[(–)-Ipc]2
Ph2N
OMEM
B[(+)-Ipc]2
Allylborane Reagent
THF
3h
THF, –78° to 0°,
3h
THF, –78° to 0°,
—
Conditions
Ph2N
OH
OMEM
Ph2N
3h 7h 4h 20 h
rt 50° 0° 50° reflux
n-Bu n-Bu CH2TMS CH2TMS CH2TMS
4h
52 h
6h
–15° n-Bu
rt
3h
rt
i-Pr
Time
Temp
(92)
(73)
(78)
(81)
(91)
(86)
(90)
H
OH
H
OH
(93)
n-C5H11
n-C5H11
Me
R TMS
+
+
NPh2
97:3
4:96
17:83
94:6
9:91
70:30
96:4
3:97
d.r.
(25)
NPh2
(25)
(59), 97, >99:1 d.r.
R
n-C5H11
OH
(40), >95, >95:5 d.r.
n-C5H11
OH
(43), >95, >95:5 d.r.
n-C5H11
n-C5H11
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
777
730, 731
730, 731
250
Refs.
425
+
(55) (79) (69)
NaOH NaOEt H2SO4
rt rt –15° rt 50°
BCy2 BBN BCy2 BCy2 BCy2 BBN
n-Bu n-Bu n-Bu n-Bu CH2TMS
reflux rt rt
BCy2 BBN BCy2
CH2TMS i-Pr i-Pr
0°
CH2TMS
50°
BCy2 BCy2
CH2TMS
rt
rt
4h
24 h
52 h
20 h
4h
4h
7h
3h
6h
4h
3h
3h
R TMS Temp Time
1
OH
I + II
Work-Up
I
H
II
(92)
(75)
(73)
(78)
(81)
(93)
(91)
(86)
(90)
(89)
(93)
(89)
72:28
29:71
41:59
I:II
II
3:97
96:4
I:II
n-C5H11
(70)
H2SO4 Bu-t
(81)
NaOH
Me
n-C5H11
n-C5H11
H
H n-C5H11 I + II
I
+
Work-Up
Bu-n
BBN
THF
THF, rt, 1 h
n-C5H11
H
Me
R2
BBN
THF, rt, 1 h
R2
R1
TMS
TMS
BBN
R1
TMS
t-Bu
n-Bu
3:97
88:12
94:6
83:17
6:94
>99:1
91:9
30:70
4:96
97:3
97:3
98:2
d.r.
Bu-t
Bu-n
777
736
736
426
C6
n-C5H11
O H
Carbonyl Substrate
BBN
BBN
BBN
BBN
TMS
TMS
TMS
TMS
i-Pr
TMS
Ph
Allylborane Reagent
THF, rt, 1 h
THF, rt, 1 h
THF, rt, 1 h
THF, rt, 1 h
Conditions
n-C5H11
H
n-C5H11
H
n-C5H11
H
n-C5H11
H
(67) (80) (84)
NaOH NaOEt H2SO4
(82) (65)
NaOEt H2SO4
I
H
(82) (85) (87)
KOH NaOEt H2SO4
H
I + II (73) (72) (65)
Work-Up NaOH NaOEt H2SO4
Pr-i
Ph
3:97
98:2
95:5
II I:II
0.5:99.5
97:3
97:3
II I:II
11:89
88:12
88:12
II I:II
n-C5H11
I + II
Work-Up
+
5:95
95:5
n-C5H11
(77)
NaOH
+
I + II
TMS
H
II I:II
96:4
n-C5H11
I + II
Pr-i
H n-C5H11
Work-Up
+
+
Work-Up
I
I
I
Ph
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
TMS
736
735, 736
736
736
Refs.
427
O
B
Ph
PhMe2Si
Bu-n
BEt2
BEt2
O
O
O
O
O
O B
B
O
B
O
O
R = TBDMS
Bu-n
RO
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
,
O O
O
,
,
–70° to 0°
80°, 5 h
I Pd2(dba)3, EtOAc,
Ph
PhMe2Si B
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
OH
HO
HO
n-C5H11
OH
n-C5H11 n-Bu
n-C5H11
OH
(73), 73, 96:4 d.r.
(75), 79, 96:4 d.r.
(86), 82
(83)
(67), >99:1 d.r.
SiMe2Ph
Bu-n
Ph
TBDMSO
n-C5H11
OH
732
761
740
740
88
428
C6
O
O
O
O
3
O
O
H
H
O H
Carbonyl Substrate
B
O
BBN
B[(–)-Ipc]2
B(OBu-n) 2
O
TMS
OMe
PhMe2Si
n-Pr
OPh
O
TMS
TMS
BBN
Allylborane Reagent
FB(OBu-n) 2
THF, –50°
OPh
–
Neat, 10 d
THF, rt, 1 h
2. NaOH
1. THF, rt, 1 h
Conditions
O I
O
O
O
O
OH
OPh
OH
OMe
H2SO4
KOH
Work-Up
+
n-Pr
OH
SiMe2Ph
(73), 83:10 d.r.
OPh
(77), 94:6 d.r.
(61)
(58)
I + II (50), I:II = 1.85:1
II
O
3
OH
TMS
(67)
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
760
46
47, 36
735, 736
736
Refs.
429
Br 3
TBDPSO
i-Pr
OH
O
O
O
O
O
O
H
H
OMe
H
O
H
O
B
RMe2Si
PhMe2Si
R
O OMe
B
O
B
O O
O
O
O
B[(–)-Ipc]2
O
OPr-i
OPr-i
O
–78°
4 Å MS, toluene,
–78°
OPr-i 4 Å MS, toluene,
OPr-i
OMe, i-Pr ether, –78° to rt, 1.5 h
OMe B O O
B(NMe2)2,
2. L.A., –78° to rt, 3 h
1.
— O
Br
(81) (78)
menthofuryl CyO
67:33
90:10
d.r. 90:10
(69)
SiMe2R
97.5:2.5
2-(5-methyl)furyl
OH
d.r. 98:2
R
3
O
(86), >99:1 d.r.
OMe SiMe2Ph
OH
(96)
B(OMe)3
78:22
d.r. 70:30
(98)
(—), 95
(—), 89
ZrCl4
OH
O O
O
R
OH
L.A.
TBDPSO
i-Pr
OH
(CH2)3
Ph
R
O
158
194, 758
299
343
430
C6
BnO
MeO
Br
N
3
O
O
H
H
OBn
O
O
H OPMB
O
H
Carbonyl Substrate
Ph
Ph
"
Ph
"
Ph
OTHP
N
N
RMe2Si
O
B[(–)-Ipc]2
O O
OPr-i
OPr-i
B[(+)-Ipc]2
B[(–)-Ipc]2
B
O
Allylborane Reagent
N
N
THF, –78°
–78°, 3 h
2. Aldehyde, THF,
MeOB[(+)-Ipc]2
Ph LDA,
1. Ph
THF, –78°
–78°, 3 h
2. Aldehyde, THF,
MeOB[(–)-Ipc]2
Ph LDA,
1. Ph
3h
THF, –78° to rt,
–78°
4 Å MS, toluene,
,
,
Conditions
N
H
I
N
OH
OBn
O
Ph
Ph
I
N Ph
Ph
I (51), 90, >95:5 d.r.
N
OH (51), 90, >95:5 d.r.
(49), 91, >95:5 d.r.
(52), >97.5:2.5 d.r.
OTHP OPMB
OH
96:4
(82)
d.r.
menthofuryl
SiMe2R (68) 90:10
OH
2-(5-methyl)furyl
R
3
O
I (49), 91, >95:5 d.r.
BnO
MeO
Br
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
160
746
160
746
778
158
Refs.
431
C7
Ph
O H
X
OPMP
OMOM
"
OMEM
OMe
OMe
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
X,
ether, –78°
MeOB[(+)-Ipc]2
LiNCy2,
3. Aldehyde
2. BF3•OEt2
1.
THF, –100°, 10 h
THF, –78°
THF, –78°, 10 h
THF, –100°
THF, –78°, 3 h
THF, –78°, 3 h
I OMEM
OH
OMe
OH
OMe
(71), 98
(75), 90, >99:1 d.r.
(72), 90, >99:1 d.r.
Ph
Ph
Ph
(75), 97 (68), 93
Br
94:6
98:2
d.r.
(76), 96, >99:1 d.r.
(62)
Cl
X
X
OH
OPMP
OH
OMOM
OH
I (—), 95, >99:1 d.r.
Ph
Ph
Ph
OH
159
407
779
388
407, 250
48
48
432
C7
Ph
O H
Carbonyl Substrate
B[(–)-Ipc]2
B[(+)-Ipc]2
Ph2N
B[(–)-Ipc]2
Ph2N
X
Cl
B[(+)-Ipc]2
Allylborane Reagent Cl,
ether, –78°
MeOB[(+)-Ipc]2,
LDA,
LiNCy2, –78°
MeOB[(–)-Ipc]2,
X,
3h
THF, –78° to 0°,
3h
THF, –78° to 0°,
3. Aldehyde
2. BF3•OEt2
1.
3. Aldehyde
2. BF3•OEt2 (x equiv)
1.
Conditions
THF ether
Cl Br
Ph2N
OH
ether
+
Solvent
Cl
X
X
OH
Cl
Ph2N (47), >95, >95:5
Ph
OH +
x
Ph H
OH
H
(12)
NPh2
(15)
NPh2
96:4
(77), 95
Ph
99:1
(77), 76
OH
98:2
d.r.
(—), 95
(—), 84
(78), 98
1.33
2.5
(48), >95, >95:5 d.r.
Ph
Ph
Ph
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
730
730, 731
159
159
Refs.
433 Cy
Ph
Ph
Ph
Ph
"
BR2
BEt2
BR2
BEt2
BEt2
OCOPh,
OCOPh,
4h
THF, –78° to rt,
45°, 21 h
THF, rt, 4 h;
BEt3, Pd(PPh3)4,
Ph,
OCOPh
THF, rt, 14 h
Ph BEt3, Pd(PPh3)4,
4h
THF, –78° to rt,
THF, rt, 14 h
Ph BEt3, Pd(PPh3)4,
OCOPh,
THF, rt, 23 h
BEt3, Pd(PPh3)4,
Ph
I Ph
Ph
Ph
Ph
Ph
Ph
Ph
Cy
OH
OH
OH
OH
Ph
I (83), 2.2:1 d.r.
Ph
OH
(84), 84
(–)-Ipc
(–)-Ipc
Cy
R (80), 80
(77), —
(76), 1.6:1 d.r.
(77), 2.3:1 d.r.
(90), —
Cy
R
(74), 2.3:1 d.r.
d.r.
4:1
96:4
d.r.
>99:1
>99:1
733
483
483
733
483
483
434
C7
Ph
O H
Carbonyl Substrate
Ph
Ph
Ph
Ph
N
N
n-C6H13
n-Bu
Cy
"
B[(+)-Ipc]2
B[(–)-Ipc]2
BR2
BR2
BCy2
Allylborane Reagent
N
THF, –78°
THF, –78°, 3 h
2. Aldehyde,
MeOB[(+)-Ipc]2
Ph LDA,
1. Ph
THF, –78°
4h
THF, –78° to rt,
4h
THF, –78° to rt,
CCl4, 0°
,
Conditions
N
OH
N
OH
I
Bu-n
Cy
R
(–)-Ipc
Cy
R
Ph
Ph
Ph
Ph
(52), 90, >95:5 d.r.
(53), 93, >95:5 d.r.
(81), 74
(82), —
(78), 78
(81), —
(—), 96:4 d.r.
C6H13-n (–)-Ipc
OH
OH
Cy
I (52), 90, >95:5 d.r.
Ph
Ph
Ph
Ph
Ph
OH
9:1
88:12
d.r.
88:12
87:13
d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
160
746
160
733
733
733
Refs.
435 Ph
O
Ph
Ph
B
O
O
Ph
PhMe2Si
B
O
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
(i-Pr)2NMe2Si
B[(–)-Ipc]2
B[(–)-Ipc]2
Ph
N
(i-Pr)2NMe2Si
Ph
N
2. H2O2, NaOH
4h
1. Ether, –78° to 0°,
Ether, –78°, 2 h
THF, –78°, 4 h
2. KF, H2O2
1. Ether, –78°, 3 h
2. KF, H2O2
1. Ether, –78°, 3 h
THF, –78°, 3 h
2. Aldehyde,
MeOB[(–)-Ipc]2
Ph LDA,
1. Ph
,
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
B
Ph
O Ph
SiMe2Ph
OH
OH
Ph
O
OH
OH
OH
OH
OH
OH
N
OH
(76), >95, >97:3 d.r.
(—)
(81), 93
(47), >95:5 d.r.
(50), >95:5 d.r.
(53), 93, >95:5 d.r.
157
175
734
45, 752
45, 752
746
436
C7
Ph
O H
Carbonyl Substrate
X
O
O
B
O
B
O
B[(+)-Ipc]2
B[(–)-Ipc]2
"
"
B[(–)-Ipc]2
Allylborane Reagent
Cl, LiNCy2, ether
MeOB[(–)-Ipc]2,
3. Aldehyde
2. BF3•OEt2 (x equiv)
1.
rt, 24 h
Ether, –78°, 2 h;
2. H2O2, NaOH
4h
1. Ether, –78° to 0°,
rt, 24 h
Ether, –78°, 2 h;
Ether, –78°, 2 h
Conditions
Ph
Ph
Ph
Ph
Ph B
III
OH
I X
OH
OH
Ph
O
OH
OH
OH
O
OH
OH
X
+
Ph
(40), 93, >20:1 d.r.
Ph
Ph
II X
OH +
(42), 95, >20:1 d.r.
(80), >95, >97:3 d.r.
OH
(—)
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
159, 762
175
157
175
175
Refs.
437
X
X = Cl
"
X = Cl, Br
BBN
–78° –95° –95° –95° –95° –95° –95° to –78° –95° to –78°
2.63 2.63 2.65 2.65 1.33 1.66 2.63 1.33
LDA, THF
MeOBBN,
X,
–78°
Cl, LiNCy2, THF
MeOBBN,
3. Aldehyde
2. BF3•OEt2 (x equiv)
1.
3. Aldehyde
2. BF3•OEt2
1.
Temp
x 2.63 99:1 98:2 >99:1 >99:1 >99:1 >99:1 >99:1
Cl Br Cl Cl Cl Cl Cl
–78° –95°
Br Cl
–95° –95° to –78° –95° to –62° –95° to –41° –95° –95°
1.33 1.33 1.33 1.33 1.5
(77)
(76)
(79)
2.63
Temp x
I + II + III, II:I = 99:1
–78°
II:I
99:1
99:1
99:1
99:1
99:1
94:6
99:1
9:1
91:9
91:9
88:12
85:15
II:(I+III)
85
86
97
98
87
86
88
74
78
II % ee
96:4
>99:1
>99:1
99:1
99:1
95:5
(I+II):III
I + II + III
96:4
Br
Temp
98:2
Cl
Cl
X
I + II + III
(I+II):III
X
159
159
438
C7
Ph
O H
Carbonyl Substrate
TMS
n-Bu
t-Bu
TMS
TMS
TMS
BBN
BBN
BBN
B[(+)-Ipc]2
Allylborane Reagent
THF, rt, 1 h
THF, rt, 1 h
THF, rt, 1 h
–100°
Ether, pentane,
Conditions
Ph
H
Ph
H
Ph
H
Ph
I + II (88) (83)
Work-Up KOH H2SO4
I
(75)
H2SO4
+
(81)
TMS
I + II NaOH
Ph
H
Ph
H
(68)
H2SO4
+
(83)
NaOEt
Bu-n
(70)
I:II
2:98
98:2
I:II
II
2:98
98:2
TMS
Bu-n
62:38
29:71
41:59
I:II
Bu-t
II
II
NaOH
Ph
H
I + II
+
Work-Up
Bu-t
(92), 95
Work-Up
I
I
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
735, 736
736
736
505
Refs.
439 B
O
TMS
TMS
OMe
i-Pr
Ph
TMS
O
BBN
BBN
BBN
OMe, Cl
–
THF, rt, 1 h
THF, rt, 1 h
THF, rt, 1 h
O B
O
Ph
Ph
H
Ph
H
Ph
H
(84)
H2SO4
OMe
H
Ph
H
Ph
II
Ph
II 91:9
I:II
Pr-i
<0.5:99.5
>99.5:0.5
I:II
II
2:98
98:2
I:II
11:89
H
Ph
(95)
(85)
NaOH
OH
I + II
Work-Up
I
(56)
H2SO4
+
(58)
NaOH
Pr-i
I + II
Work-Up
I
(69)
H2SO4
+
(71)
NaOH
Ph
I + II
I Work-Up
+
46
736
736
736
440
C7
Ph
O H
Carbonyl Substrate
O
OTHP
OTHP
B
O
B
O
B
O
B
O
B
O
OMe
OMOM
OMEM
OMe
B
O
O
O
O
O
O
O
Allylborane Reagent
O
Neat, rt
—
Neat, rt, 48 h
Neat, 60°, 4 h
Cl
O B
– OMOM,
Neat, 20°, 2 d
Conditions
I
OTHP
OH
OMOM
OH
OMEM
OH
OMe
Ph O
OH
OMe
I (70-80), 93:7 d.r.
Ph
Ph
Ph
Ph
OH
(93), 94:6 d.r.
(70-80), 93:7 d.r.
(82), >95:5 d.r.
(59)
(86), >95:5 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
47, 36
104
34
47, 36
46
36
47, 33,
Refs.
441
B
O
B
O
O
O
TMS
O
B
TMS O
TBDMSO
O
MeO
OPh
OPh
O
O B
O
B
O
O B
O
O
—
rt, 2 d
Petroleum ether,
20°, 36 h
Petroleum ether,
O – B O OPh, Cl
O – B OPh, Cl O
Neat, 20°, 2 d
+
TMS
Ph
Ph
Ph
OTBDMS
OH
O
OH
OMe
OH
Ph II
OH
(98), >95:5 d.r.
I + II (80), I:II= 4.7:1
I OPh
OH
O
(67), 96:4 d.r.
TMS
(92), 94:6 d.r.
(87), 95:5 d.r.
I + II (69), I:II = 3.3:1
Ph
Ph
OH
OPh
780
47
47, 33
46
46
47
442
C7
Ph
O H
Carbonyl Substrate
SR
"
O B
1.0 0.65
30:70
B
O
Equiv
Z:E
O
O
O
O
O
>95:5
B
O
B
O
R = TBDMS
SiMe2Ph
AcO
RO
O
O
OEt
OEt
O
OPr-i
OPr-i
Allylborane Reagent
O OAc
O 2
OEt
OEt
O
O
CH2Cl2, rt
octane, 50°
Pt(C2H4)(PPh3)2,
,
PhMe2Si B
—
toluene, 20°, 21 h
OAc, Pd2(dba)3, DMSO,
O B
O
–78°, 5 h
4 Å MS, toluene,
,
Conditions
OTBDMS
I
OH
SiMe2Ph
(63), 95:5 d.r.
5:95
(95) Et
d.r. 98:2
(95)
SR
(59), 45
(82), 67
Me
R
OH
OAc
OH
I (85)
Ph
Ph
Ph
Ph
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
72
781
737
349
88
Refs.
443 R
Br
Ph
B
O
B
O
B
O
O
O
O
O
O
OEt
OEt O 2
OAc,
O
OEt
OEt
O
CH2Cl2, 40°
R
O B O R,
,
5 2 5 2
BnO Cl Cl
2. Aldehyde, rt
x BnO
R
Br
2
5
x (72)
(73)
(79)
(78)
(63)
(60)
(44-67)
(83), 43
CH2Cl2, 40°
R
OH
OH
Ph
5
Ph
Ph
Ph
OH
TBDMSO
Mes N N Mes Cl Cl Ru PCy3 Ph (x mol%),
1.
, Br,
Mes N N Mes Cl Cl Ru PCy3 Ph (x mol%),
Br
O B
2. Aldehyde, rt
1.
toluene, 20°, 21 h
Pd2(dba)3, DMSO,
Ph
O B
O
d.r.
4.6:1
4.9:1
3.2:1
4.7:1
4:1
d.r.
3.6:1
3.8:1
184
184
349
444
C7
Ph
H
x equiv
O
Carbonyl Substrate
B O
O
B O
O
OCH(Pr-i)2
OCH(Pr-i)2
O
OPr-i
OPr-i
O
O
B
N
O
O
B
Ac
Cl
O
R = CH2CO2Me
AcO
Cy
R
O
O
Allylborane Reagent
AcO
(y equiv),
O B O OAc,
2. Aldehyde, rt
Mes N N Mes Cl B Cl Ru Ph, PCy3 CH2Cl2, 40°
PCy3 A Cl Ru Cl PCy Ph, 3
1.
Neat, 60°, 5 h
(10:3), –100°
Toluene/pentane
–78°, 5 h
Conditions
Ph
Ph
Ph
Ph
3
3
1.5 0.75
3
1.5
0.5
3
1.5
1.5
OAc y
Cy
B
B
B
B
A
Cat.
(80), 83
(30), 49
(52)
Cl
CO2Me
x
OH
Ac
N
OH
OH
OH
(75)
(57)
(75)
(75)
(32)
4.5:1
4.7:1
4.5:1
4.5:1
1.8:1
d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
184
178
738
90
Refs.
445 i-Pr
i-Pr
TMS
O
O
O
B
O
B
O
B
O
O
O
O
B O
O
O
O ,
O B ,
O B
O B
2. Aldehyde, 24 h
–15° to rt
O i-PrMgCl, THF,
1.Cl
2. Aldehyde, rt, 24 h
–15°, 30 min
,
O i-PrMgCl, toluene,
1. Cl
Ether, rt, 1-3 d
,
I Pr-i
TMS
I (30), 99:1 d.r.
Ph
OH
OH
(69)
2
2. Aldehyde, rt
(44), >99:1 d.r.
(89)
>20:1
d.r. >20:1
(68)
5
O
x
O
CH2Cl2, 40°
Ph
Ph
OH
(x mol%),
Mes N N Mes Cl Ru Cl PCy3 Ph
1.
87
87
32
184
446
C7
Ph
O H
Carbonyl Substrate
R2
Bu-n
n-Bu
n-Bu
R1
B
O
B
O
O
O
O
O
O
B(OPr-i)2
B
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
Allylborane Reagent
R2
,
(x equiv),
O
CH2Cl2, 40°
(y mol%),
Mes N N Mes Cl Cl Ru PCy3 Ph
R1
O B
18 h
THF, –78° to rt,
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
2. Aldehyde, rt
1.
Conditions
H
2-BrC6H4
OH
Ph n-Bu
OH
Bu-n
H
2-BrC6H4
10
5
20
20
(35) (51) (17) (49) (58) (34) (66) (45) (25) (60)
5 5 2 5 5 5 5 5 5 5
y
(96), 88:12 d.r.
(96), 40, 96:4 d.r.
(99), 37, 98:2 d.r.
H
2-BrC6H4
OH
H
Ph
10
—(CH2)5—
20 10
H
Me2COH
20
—(CH2)4—
H
Me2COH
5
x
3
H
—(CH2)4—
R2
t-Bu
R1
R1
R2
Ph n-Bu
Ph
Ph
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
772
740
740
184
Refs.
447 MeO
OMe
Bu-n
n-Bu
n-Bu
B
O
O
O
O
O
B
O O
O
B(OPr-i)2
B
O
B
O
B
O
O
OCH(Pr-i)2
OCH(Pr-i)2
B(OPr-i)2
72 h
4 Å MS, toluene, –78°,
Toluene, rt, 0.5 h
9d
Petroleum ether, 20°,
2d
Petroleum ether, 20°,
Neat, rt, 5-8 d
Neat, rt, 5-8 d
THF, –78° to rt, 18 h I
Bu-n
Ph
Ph
Ph
Ph
OH
OH
MeO
OH
MeO
OH
Ph n-Bu
OH
I (71), 99:1 d.r.
Ph
OH
(89), 38
(85)
(70), 90:10 d.r.
(55), 73:27 d.r.
(69), 93:7 d.r.
(95), 97:3 d.r.
741
741, 744
739
739
55
55
772
448
C7
Ph
O H
Carbonyl Substrate
B
O
B
O
O
O
B
O
B
O
B
O
O
O
O
O
O
O
B
O O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
OCH(Pr-i)2
OCH(Pr-i)2
Allylborane Reagent
O
O
,
O
,
Pd(PPh3)4
,
, O (CH2)2CH=C(Me)2
HB
Pd(PPh3)4
HB
—
–78°, 72 h
4 Å MS, toluene,
–78°, 72 h
4 Å MS, toluene,
–78°, 72 h
4 Å MS, toluene,
Conditions
I
I
OH
Ph
OH
I (89)
Ph
Ph
OH
I (90), 49
Ph
OH
(77)
(80), 9:1 d.r.
(95), 43
(86), 37
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
550
550
52
741
741
741
Refs.
449
B
O
B O
O
O
MeO2C B
O O
O
R = (+)-menthyl
RO2C
MeO2C
O
OEt OEt
(83) (87)
7d 4d 1d
rt 70° 100°
THF toluene
0° –25° –78° –25° 0° 0° 0° 0° 0° 0°
DMF/THF DMF/THF DMF/THF THF THFb CH2Cl2 4 Å MS, CH2Cl2 toluene 4 Å MS, toluene
rt
DMF
Temp
DMF
I
2d
2d
2d
2d
2d
2d
7d
6d
6d
3d
2d
Time
98:2 98:2 98:2
(74), 25 (76), 12
98:2
(75), 22
98:2
98:2
(56), 21
(67), 22
94:6
(40), 20
98:2
96:4
(76), 25
(64), 16
95:5
(52), 27
(69), 19
94:6
(80), 26
d.r.
87:13
85:15
d.r. 84:16
(64)
Time
Temp
Solvent THF
I
O
I (50), 25, 87:13 d.r.
Ph
Solvent
See table
THF, rt, 5 d
See table
O
782
782
782
450
C7
Ph
O H
Carbonyl Substrate
Et
O
B
B
O
B
O
B
O O
O
O
O
Ph
EtO2C B
O O
R = (–)-8-phenylmenthyl
RO2C
EtO2C
MeO2C
Allylborane Reagent
O
O
,
,
L.A., rt, 6-24 h
2. pTSA
1. Neat, rt, 14 d
Pd(PPh3)4
HB
16-120 h
Toluene, 80°,
See table
Conditions
toluene
THF
I Solvent
Ph
Ph
Ph
I
O
O
OH
Et
O
O
toluene toluene
Yb(OTf)3
toluene Cu(OTf)2
Sc(OTf)3
Solvent CH2Cl2
Sc(OTf)3
(80), 8
(75), 10
L.A.
(55), >95
3d
7d
Time
(81)
100°
rt
Temp
I (60), >20:1 d.r.
Ph
O
O
(91)
(67)
(93)
(72)
83:17
79:21
d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
24, 26
59
550
59, 26
782
Refs.
451
x equiv
"
SiMe2Ph
B
4h 8h 4h 4h
80° 50° 80° 80° I (87)
2h
120°
CH2Cl2, rt
Time
SiMe2Ph Temp
I
Pt(C2H4)(PPh3)2,
Ph
TfOH
TfOH
Sc(OTf)3
TfOH
TfOH
Tf2NH
CF3CO2H
none
Catalyst
CO2R
octane
,
2.0
(–)-menthyl
O
1.5
(–)-menthyl
OH
0.9
(–)-menthyl
,
0.9
(–)-menthyl
O
0.9
Me
O
0.9
Me
O
0.9
Me
PhMe2Si B
x
Ph
OH
0.9
O
Catalyst, toluene
I (89), >20:1 d.r.
Me
B
O
Toluene, rt, >12 d
R
RO2C
"
(85)
(63)
(61)
(78)
(74)
0°
0°
0°
0°
rt
rt
rt
rt
Temp
96:4
93:7
98:2
95:5
81:19
d.r.
16 h
16 h
16 h
16 h
24 h
24 h
24 h
24 h
Time
(99)
(96)
(<5)
(78)
(99)
(99)
(77)
(<5)
72
781
30
59, 26
452
C7
Ph
O H
Carbonyl Substrate
Cy
O
B
BBr(Thex)
BBrCy
O
O
PhMe2Si B
O
3. NaOH, H2O2
–78° to 0°, 1 h
HBCy2, n-Bu4NBr,
Br ,
–78° to 0°, 1 h
n-Bu4NBr,
HB(Thex)2,
Br ,
2. Aldehyde, 0° to rt, 1 h
1.
2. Aldehyde, 0° to rt, 1 h
1.
Pt(C2H4)(PPh3)2, octane, 80°
,
2. Aldehyde, –78°, 3 h
benzene, rt
2
OEt ,
Pt(dba)2, PCy3,
,
,
2
O
OEt
O
O
O B
O
O
OEt
OEt
1.
O
Conditions
SiMe2Ph
B
O
Allylborane Reagent
Ph
OH
OH
Ph
Ph
OH
Cy
OH
PhMe2Si
Ph
OH
(40), >98:2 d.r.
(68), >98:2 d.r.
(60), 99:1 d.r.
(65), 33, >19:1 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
680
680
781
185
Refs.
453
R
c-C5H9
BBrR
BBr(siamyl)
BBr(C5H9-c) –78° to 0°, 1 h
n-Bu4NBr,
HB(C5H9-c)2,
Br ,
–78°, time 1
n-Bu4NBr (x equiv),
HBR2,
Br ,
Cy Cy
2h 2h 3h 3h 3h
12 h 1h 1h 12 h 12 h
none 0.1 none none 0.1
1h
2. Aldehyde, 0° to rt,
–78° to 0°, time 1
n-Bu4NBr,
HB(siamyl)2,
Br ,
Cy
1.
Cy
2h
2h
none
OH
siamyl
siamyl
siamyl
R
2h
x 0.5 h
R
OH
C5H9-c
Time 1 Time 2
Ph
Ph
Ph
OH
none
time 2
2. Aldehyde, 0° to rt,
1.
1h
2. Aldehyde, 0° to rt,
1.
15 h
1h
Time 1
(46)
(26)
(1)
(85)
(73)
(63)
(22)
(38)
(13)
(45), >98:2 d.r.
d.r. >98:2
>98:2
680
751
751, 680
454
C7
O 2N
Ph
O H
O H
Carbonyl Substrate
AcO
Ph2N
R
B
O O
B[(–)-Ipc]2
BR3– M+
Allylborane Reagent
OAc
2
toluene, 20°, 91 h
OAc, Pd2(dba)3, DMSO,
O B O
3h
THF, –78° to 0°,
– , M+ BR3, –70°, 1 h
Conditions
THF ether, HMPA (83) ether ether
Li Li Li Li
Et Et n-Bu s-Bu
O2N
O2N
I
H
OH
OAc
(74)
d.r.
61:39
83:17
83:17
83:17
50:50
82:18
NPh2
(85)
(11), >95, >95:5 d.r.
OH
(—)
NPh2
+
(91)
MgBr ether
Et
OH
(95)
ether
Li
(89)
(90)
Solvent
M
Et
R R
O2N
Ph
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
349
730
783
Refs.
455 EtO2C
Ph
AcO
B
O
B O
B
O
O
O
O
O
O
OEt
OEt
O OAc
O 2
OEt
OEt
2
, OAc,
, OAc
2
toluene, 20°, 24 h
CO2Et, Pd2(dba)3, DMSO,
O B O
40°, 21 h
Pd2(dba)3, DMSO,
Ph
O B O
toluene, 20°, 21 h
OAc, Pd2(dba)3, DMSO,
O B
O
O2N
O2N
I (67), 50
Ph
CO2Et
OH
OH
(75), 8:1 d.r.
(86), 33:1 d.r.
349
349, 636
349
456
C7
O 2N
O H
Carbonyl Substrate
R
AcO
H2N(O)C
O B O
B
O
B
O
O
O
Allylborane Reagent
, OAc
2
2
,
, OAc,
2
R Pd2(dba)3, DMSO
O B O
OAc, OAc Pd2(dba)3
O B O
toluene, 20°, 21 h
C(O)NH2, Pd2(dba)3, DMSO,
O B O
Conditions
OAc
40°
21 h 21 h 21 h 91 h
C6H4OMe-p CO2Et C(O)NH2 OAc
20°
20°
40°
Temp
Time R
O2N
R
OH
93 h
DMSO, toluene 20°
DMSO
21 h
Temp Time
OH
(74)
(61)
(75)
(83)
349
d.r.
>99:1
8:1
8:1
10:1
636
636 —
(69)
349
Refs.
(59) >99:1
d.r.
(61), 8:1 d.r.
40°
Solvent
O2N
O2N
C(O)NH2
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
457 Ph
EtO2C
Ar
MeO2C
R
MeO2C
B
O
O
O
B
O
B
O
O
,
CO2Me,
2
Pd2(dba)3, toluene, rt
R
OAc
O B O
16-120 h
Toluene, 60-80°,
rt, 24 h
BF3•SiO2, toluene,
rt, 2 d
2. BF3•OEt2 (30 mol%),
1.
O2N
O2N
O2N
(68) (69) (56) (64)
1-Nph 2-ClC6H4 2-furyl n-C8H17
Ph
(26)
(84)
4-MeOC6H4
O
(73)
4-ClC6H4
O
(80)
4-MeC6H4
Ar
Ar
CO2Me
(59)
OH
(81)
n-C8H17
CO2Me
Ph
R
R
OH
26
785
784
458
C7
O2N
O H
Carbonyl Substrate
EtO2C
Ph
O
O
O
O
B
–K+
B
O
B
BF3
CO2Me
Bu-s
EtO2C
Bu-n
EtO2C
n-Bu
TBDPSO
EtO2C
O
B
O O
Allylborane Reagent
rt, 5 h
CH2Cl2/H2O (1:1),
n-Bu4NI (0.1 equiv),
Toluene, rt, 12 d
CH2Cl2, 40°, 48 h
16-120 h
Toluene, 80°,
16-120 h
Toluene, 80°,
Conditions
O2N
O2N
O2N
O2N
O2N
OH
(75), >20:1 d.r.
(89)
(26), 15:1 d.r.
(67), >20:1 d.r.
(76), >20:1 d.r.
CO2Me
O
O
Bu-n
O
OTBDPS
O
Ph
s-Bu
O
n-Bu
O
O
O
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
784
59
59, 26
59, 26
59, 26
Refs.
459
R
MeO
O H
O H
EtO2C
Ph
MeO2C
allyl
EtO2C
Bu-i
EtO2C
Et
O
B
O
B
O
B
O
O
O
O B O
Catalyst, toluene
Toluene, 110°, 16-24 h
Toluene, 110°, 16-24 h
Toluene, 110°, 16-24 h
R
rt
Sc(OTf)3 BF3•OEt2 BF3 BF3 none BF3
O2N O2N O2N H MeO Cl
rt
90°
rt
rt
rt
rt
none
24 h
48 h
48 h
24 h
(78)
(62)
(67)
(83)
(81)
(48)
62 h 48 h
(74)
192 h
Time
(48)
(65), >20:1 d.r.
(55), 20:1 d.r.
allyl
Temp
Catalyst
Ph
CO2Me
O
Et
O
R
OH
O
i-Bu
O
Et
O
O2N
MeO
MeO
MeO
O
785
59, 26
59, 26
59, 26
460
C7
R
1
O H
Carbonyl Substrate
Et
EtO2C
R2
PhMe2Si
B
O
B
O
O
O
Allylborane Reagent
,
16-120 h
Toluene, 80°,
80°, 5 h
I Pd2(dba)3, EtOAc,
R2
O O O
PhMe2Si B
,
,
Conditions
R1
R
1
Ph Ph 4-MeC(O)C6H4 4-MeOC6H4 4-EtO2CC6H4 n-Bu Cy c-Pr
MeO Cl H H H H H H
MeO (70)
O2N (81) >20:1
d.r. 19:1
R1
Et
O
Ph
H
O
R2
SiMe2Ph
R1
R2
OH
>99:1 >99:1 >99:1 >99:1 >99:1 95:5 97:3 97:3
(55) (92) (86) (87) (70) (92) (75) (85)
d.r. >99:1
(96)
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
59, 26
761
Refs.
461 R2
R2 R3
EtO2C O
O
Me n-Bu Me n-Bu n-Bu n-Bu
Et Me Et Me Et Me
AcO O2N MeO MeO MeS Me
12 h
2. BR23, –78° to rt,
30 min
LDA, THF, –78°,
,
OH
R1
R2 Et n-Bu Et Et Et
R1 H H Me MeO O2N
I
R1
R2
(93)
(81)
(92)
(92)
(89)
+
d.r.
>20:1
2.5:1
1.8:1
2:1
>20:1
>20:1
>20:1
d.r. 76:24 88:12 64:36 86:14 82:18
100:0 100:0 92:8 100:0
R2 I:II
II
OH
(40), >95
(55), >95
(75)
(69)
(39)
(66)
(58)
(57)
(62)
91:9
Br
1. PhSe
H
R
2. pTSA, 4 h
I + II
Me
Me
O
R3
R2
R1 Br
O
R3
B R1
R1
R2
O
1. Toluene, rt, 14 d
rt, 6-24 h
Sc(OTf)3, toluene,
O
O O
Ph
B–R22SePh
O
Ph
B
O
692
26
26
462
C7
O
O
MeO
MeO
I
R
OMe
Br
OMe
O
O
O
Br
O
H
H
H
H
Carbonyl Substrate
B
O
MeO2C
Bu-n
EtO2C
SiMe2Ph
Ph
O
1. Toluene, 110°, 2 d 2. pTSA, rt, 6 h
B
Ether, –78° a
rt, 6-24 h
Sc(OTf)3, toluene,
octane, 120°
Pt(C2H4)(PPh3)2,
,
O PhMe2Si B Ph O ,
Conditions
O O
B[(+)-Ipc]2
B
O
O
Allylborane Reagent
O
O
MeO
MeO
I
R
OMe
Br
OMe
O
Br
OH
n-Bu
O
(74)
(97), 90, 4:3 d.r.
(55), 19:1 d.r.
99:1
(83)
2-MeO
O
99:1
(77)
4-MeO
d.r. 99:1
(79)
O
SiMe2Ph
Ph
H
R
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
30
786, 787
24, 26
781
Refs.
463
F
F
F
F
F
O H
MEMO
OMEM
OMEM
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
"
–100°
Pentane/ether (1:1),
24 h
THF, –100° to –78°,
—
toluene, 0°, 16 h
TfOH (20 mol%),
F
F
F
F
F
F
F
F
F
F
OMEM
OH
F
OMEM
OH
(65), 95, >19:1 d.r.
F
F
F (65), 95, >95:5 d.r.
F
O
OMEM
OH
OMe
O
(59), 97, >99:1 d.r.
MeO
MeO
Br (57), >19:1 d.r.
249
491
250
30
464
C7
Cy
F
F
O H
F
F
F
O H
Carbonyl Substrate
X
X
Bu-n
EtO2C
Ph
MeO2C
O
O
B[(–)-Ipc]2
BBN
B
O
B
O
Allylborane Reagent
X, MeOBBN
X,
LiNCy2, ether, –78°
MeOB[(–)-Ipc]2,
3. Aldehyde
2. BF3•OEt2
1.
3. Aldehyde
THF
2. LDA, BF3•OEt2,
1.
rt, 6-24 h
Sc(OTf)3, toluene,
24 h
BF3, toluene, rt,
Conditions
Cy
Cy
F
F
F
F
X
Br
Cl
X (71), 94
(72), 95
95:5
89:11 –95°
Cl
(76)
II:(I+III)
II X
–78°
(78)
Cy
OH
94:6
98:2
d.r.
+
(53), 19:1 d.r.
(87)
Br
X
+
O
Bu-n
Ph
CO2Me
Temp
III
F
O
F
OH
X
OH
Cy
OH
I X
OH
F
F
F
F
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
159, 762
159
24, 26
785
Refs.
465 Ph
Ph
Cl
X
Ph
Ph
N
N
"
"
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
X,
Cl,
base, ether, –78°
MeOB[(+)-Ipc]2,
N
N
THF, –78°
–78°, 3 h
2. Aldehyde, THF,
MeOB[(+)-Ipc]2,
Ph LDA,
1. Ph
THF, –78°
–78°, 3 h
2. Aldehyde, THF,
MeOB[(–)-Ipc]2,
Ph LDA,
1. Ph
3. Aldehyde
2. BF3•OEt2
1.
3. Aldehyde
,
,
LiNCy2, ether, –78°
MeOB[(+)-Ipc]2, 2. BF3•OEt2
1.
I
N
OH
Cl
Ph
Ph
97:3
93
LiCy(Pr-i)
(56), 91, >95:5 d.r.
>99:1
94
LiTMP
d.r. 97:3
96
I
N Ph
Ph
95:5
% ee
(61), 93, >95:5 d.r.
I (61), 93, >95:5 d.r.
Cy
OH
d.r. 98:2
LDA
(70), 94
(78), 96
Base
Br
Cl
X
I (56), 91, >95:5 d.r.
Cy
X
OH
(—)
Cy
Cy
OH
160
746
160
746
159
159
466
C7
Cy
O H
Carbonyl Substrate
Ph
O
Ph
Ph
B
O
O
Ph
PhMe2Si
B
O
(i-Pr)2NMe2Si
"
"
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
Allylborane Reagent
2. H2O2, NaOH
4h
1. Ether, –78° to 0°,
Ether, –78°, 2 h
Ether, –78°, 2 h
THF, –78°, 4 h
2. KF, H2O2
1. Ether, –78°
2. KF, H2O2
1. Ether, –78°, 3.5 h
Conditions
I OH
Cy
Cy
Ph
Cy
Cy
B
B
O
Ph
O Ph
SiMe2Ph
OH
OH
O
OH
Ph
O
OH
OH
I (63), >95:5 d.r.
Cy
OH
(70), 94, >97:3 d.r.
(—)
(—)
(85), 91
(45), >95:5 d.r.
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
157
175
175
734
45
752
Refs.
467
O
O
O
B
O
B
O
RMe2Si
B
O
B
O
O
O
O
O
R = TBDMS
Cl
n
B
O
B
R = CH2CO2Me
RMe2Si
RO
R
Ph
O
O
O
O
O
O
OPr-i
OPr-i
O
OPr-i
OPr-i
OPr-i
OPr-i
O
–78°, 5 h
2. Aldehyde, rt, 24 h
–15°, 30 min
–78°
4 Å MS, toluene,
–78°
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
OCH(Pr-i)2 Toluene/pentane (10:3), –100° O
OCH(Pr-i)2
O
OPr-i
OPr-i
O B
O PhMgCl, toluene,
1. Cl
,
Cy
Cy
Cy
Cy
Cy
Cy
n
Ph
Cl
OH
OH
SiMe2R
SiMe2R
(80), 97
(82), 98
(85), 91
2
1
n
(60), 65
(49), >99:1 d.r.
Ph
CyO
R (88), 87
(95), 72
menthofuryl
(87), 81
2-(5-methyl)furyl (83), 82
R
CO2Me
OTBDMS
OH
OH
OH
OH
158
158
88
738
90
87
468
C7
Cy
O H
Carbonyl Substrate
Bu-n
n-Bu
Ph
Ph
O
O
O O
O
B(OPr-i)2
B
O
OEt
OEt
O
OCH(Pr-i)2
OCH(Pr-i)2
B(OPr-i)2
B(OPr-i)2
B
O
B
O
O
Allylborane Reagent
O O OAc,
2
OEt
OEt
O B O
–78°, 72 h
4 Å MS, toluene,
rt
18 h
THF, –78° to rt,
18 h
THF, –78° to rt,
2. Aldehyde, rt, 24 h
–15°, 24 h
PhMgCl, THF,
1. Cl
toluene, 20°, 69 h
,
Conditions
Pd2(dba)3, DMSO,
Ph
O B
O
OH
OH
OH
Cy
Cy
OH
OH
Cy n-Bu
Cy
Cy
Cy
OH
Bu-n
Ph
Ph
4h 1h
neat (94), 89
30 h toluene
Time CH2Cl2
Solvent
(84), 95:5 d.r.
(82), 89:11 d.r.
(36), 96:4 d.r.
(77), 53
(90)
(91)
(91)
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
741
744, 741
772
772
87
349
Refs.
469 O OEt
O
O
EtO O
B
O
B
B
O OEt
O
O
O
O
O
OEt
O
O
SiMe2Ph
Ph
B
O
B
O
O
O
OPr-i
OPr-i
O
OCH(Pr-i)2
OCH(Pr-i)2
O
O
,
O 2
benzene, 80°
Pt(C2H4)(PPh3)2,
O
OEt
OEt
,
3. NaOH, H2O2
2. Aldehyde, –78°, 3 h
1.
O B
O
octane, 120°
Pt(C2H4)(PPh3)2,
,
Ph
PhMe2Si B
–78°, 72 h
4 Å MS, toluene,
–78°, 72 h
4 Å MS, toluene, I
Cy
Cy
OH
OH
I (94), 84
Cy
OH
(60), 96:4 d.r.
OH
(65), 74, >19:1 d.r.
SiMe2Ph
Ph
(92), 90
185
781
741
741
470
C7
Cy
O H
Carbonyl Substrate
Et
O
Cy
O
B
O
B
O
O
O
O
B
O
2
2
OR
OR
O
OEt
OEt
O
O
,
O
benzene, rt
2
OEt
Pt(dba)2, PCy3,
O B
OEt
I
CH(Pr-i)2
Et
Me
R
OH
Pr-i
I
OH
Et
Pt(dba)2, PCy3,
,
2
OR O
Cy
Cy
O
O
3. NaOH, H2O2
(17), 60
(38), 58
(68), 74
(21), 72
(72), 74, >19:1 d.r.
(54), 19:1 d.r.
(32), >20:1 d.r.
Product(s) and Yield(s) (%), % ee
benzene, rt
O
OR
2. Aldehyde, –78°, 3 h
1.
O B
O
3. NaOH, H2O2
2. Aldehyde, –78°, 3 h
1.
O
60°, 16 h
Cu(OTf)2, toluene,
O
rt, 24 h
Sc(OTf)3, toluene,
EtO2C
O n-Bu O
O B
Conditions
Bu-n
EtO2C
Allylborane Reagent
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
185
185
24, 26
26
Refs.
471
n-C6H13
O H
Si
Cy
B
O
Me
SiMe2Ph
Ph
PhMe2Si
CyO
Me
O
(i-Pr)2NMe2Si
O
BBrCy
B
O
B
O
O
O
O
2. KF, H2O2
1. Ether, –78°, 3 h
,
–78° to 0°, 1 h
HBCy2, n-Bu4NBr,
Br ,
octane, 120°
1h
2. Aldehyde, 0° to rt,
1.
O
O
Pt(C2H4)(PPh3)2,
,
Ph
PhMe2Si B
OPr-i 4 Å MS, toluene, –78°, 3-4 h O
OPr-i
OPr-i 4 Å MS, toluene, –78°, 3-4 h O
OPr-i
B[(–)-Ipc]2
n-C6H13
n-C6H13
n-C6H13
n-C6H13
n-C6H13
(86), 64, >99:1 d.r.
(52), >95:5 d.r.
(82)
(82)
>98:2
—
d.r.
(71), 93:7 d.r. SiMe2Ph
Ph
SiMe2Ph
(95), 81, >99:1 d.r.
SiMe2(OCy)
Cy
OH
OH
OH
OH
OH
OH
680
751
781
40
38, 40
45
472
C8
C7
NC
BPSO
OBn
OMe OH
H
H
O H
OMOM
O
TBDMSO
t-Bu
t-Bu
O
O
O H
H
Carbonyl Substrate
B
O
B
O O
B[(–)-Ipc]2
O
B[(–)-Ipc]2
SiMe2Ph
Ph
OMOM
PhMe2Si
TMS
OPh
B(OBu-n)2
Allylborane Reagent
FB(OBu-n)2
O
O
octane, 120°
Pt(C2H4)(PPh3)2,
,
Ph
PhMe2Si B
THF, –78°
THF, –78°, 4 h
Neat, rt, 4 d
OPh
–
,
Conditions
NC
BPSO
I
OPh OH
+
OBn
OH
SiMe2Ph
(48), 89:11 d.r.
OH
(80), 99:1 d.r.
OMOM
OH
SiMe2Ph
Ph
(75)
OMe OH
(77), >90, 9:1 d.r.
TMS
OMOM
OH
II OPh I + II (73), I:II = 37.3:1
t-Bu
TBDMSO
t-Bu
t-Bu
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
781
335
734, 788
521
46
Refs.
473
H
O H
R = MeO2C, Me, NC
R = CF3, NC
n-C7H15
R
O
Ph2N
Ph2N
Ph
PhMe2Si
Ph
MeO2C B
B
B[(+)-Ipc]2
B[(–)-Ipc]2
O
O
O
O
,
O O
O
,
,
3h
THF, –78° to 0°,
3h
THF, –78° to 0°,
80°, 5 h
I Pd2(dba)3, EtOAc,
Ph
PhMe2Si B
BF3, toluene, rt
+
Ph2N
+
(47), >95, >95:5 d.r.
n-C7H15
OH
(46), >95, >95:5 d.r.
Ph2N
OH
>99:1 d.r.
Ph
20 h
(81)
(84)
n-C7H15
(25)
NPh2
NPh2
(85)
(70)
(93)
(24)
H
OH
H
OH
NC
Me
MeO2C
R
n-C7H15
SiMe2Ph
24 h
NC
OH
Time
CF3
Ph
CO2Me
R
n-C7H15
R
R
OH
730
730
761
785
474
C8
n-C7H15
O
O
H
H
Carbonyl Substrate
Cl
Cl
Cl
TMS
O O
B[(+)-Ipc]2
O 2
OEt
OEt
O
B[(–)-Ipc]2
BBN
B
O
B
O
Allylborane Reagent
, benzene, rt
2
OEt O
Pt(dba)2, PCy3,
O
OEt
3. DBU
2. 8-HQ
6h
1. Ether, –95° to rt,
3. DBU
2. 8-HQ
6h
1. Ether, –95° to rt,
6h
Ether, –95° to 0°,
3. NaOH, H2O2
2. Aldehyde, –78°, 3 h
1.
O B
O
Ether, rt, 1-3 d
Conditions
H
H
n-C7H15
n-C7H15
O
(—), 88
(—), 95
O H
H
O +
+
(57), 97:3 d.r.
(—), 90
O
Cl
(68), 70, >19:1 d.r.
(79)
(—), 77
HO
TMS
OH
OH
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
790
790
789
185
32
Refs.
475
Ph
O
H
H
H
O
O
H
H
Cl
Cl
Cl
Cl
Cl
BBN
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
Cl,
LDA, THF, –78°
MeOBBN,
3. Aldehyde
2. BF3•OEt2
1.
3. DBU
2. 8-HQ
6h
1. Ether, –95° to rt,
3. DBU
2. 8-HQ
6h
1. Ether, –95° to rt,
3. DBU
2. 8-HQ
6h
1. Ether, –95° to rt,
3. DBU
2. 8-HQ
6h
1. Ether, –95° to rt,
I
III
OH
Cl
OH
O
O
O
O
Cl
+ Ph II
(—), >97
(—), 90
(—), 97
(—), 96
Cl
OH
I + II + III (86), II:(I+III) = 87:13
+ Ph
Ph
H
H
H
H
159
790
790
790
790
476
C9
C8
n-C8H17
O
Ph
O
O
H
H
O H
Carbonyl Substrate
Cl
Cl
Ph
PhMe2Si
Cl
O
B[(–)-Ipc]2
B[(–)-Ipc]2
B
O
B[(–)-Ipc]2
Allylborane Reagent Cl,
Cl,
3. Aldehyde
2. BF3•OEt2 (x equiv)
LDA, ether, –78°
MeOB[(–)-Ipc]2,
Cl,
3. Aldehyde
1.
,
,
LiNCy2, ether, –78°
MeOB[(–)-Ipc]2,
80°, 5 h
2. BF3•OEt2
1.
,
O O
I Pd2(dba)3, EtOAc,
Ph
PhMe2Si B
3. Aldehyde
O
LiNCy2, ether, –78°
MeOB[(–)-Ipc]2, 2. BF3•OEt2
1.
Conditions
I
x 1.33
2.5
OH
Ph
(—), 92
(70), 98, 99:1 d.r.
(60), >99:1 d.r.
SiMe2Ph
(85), 90, 99:1 d.r.
(—), 93
I Cl
OH
Cl
OH
n-C8H17
O
Ph
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
159
159, 762
761
159, 762
Refs.
477
Ph
Ph
H
H
Co2(CO)6
O
O
OMe
OR
OMe
O O
B
N
Ph
B[(+)-Ipc]2
B[(–)-Ipc]2
O 2
OEt
OEt
Ts
N
B[(–)-Ipc]2
B
O
Ts Ph
,
O
benzene, rt
2
OEt
Pt(dba)2, PCy3,
O
OEt
THF, –78° to rt, 15 h
THF, –78° to rt, 15 h
THF, –78°
3. Me2Zn, H2O
2. Aldehyde, –78°, 3 h
1.
O B
O
CH2Cl2, –78°
OH
OMe (75), >98, >97.5:2.5 d.r.
Ph
OH
>97.5:2.5
(62), >96 MOM
(CO)6Co2
>97.5:2.5
(75), >98 Me
d.r.
(5-10), 65
(60)
OR
OH
OMe
OH
O B
(78), 98
Ph R
(CO)6Co2
Ph
n-C8H17
n-C8H17
OH
747
747
747
185
791
478
C9
Ph
Ph
H
O H
Co2(CO)6
O
Carbonyl Substrate
THPO
OTHP
Cl
OMEM
MeO
B
O O
B
O
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
O
B[(–)-Ipc]2
Allylborane Reagent
Cl,
LiNCy2, ether, –78°
MeOB[(–)-Ipc]2,
Cl
THPO O B
O
Li,
O – B O OTHP, Cl
–100°
Ether, pentane,
3. Aldehyde
2. BF3•OEt2
1.
Ether, –78°, 5 h
15 h
THF, –78° to rt,
Conditions
Ph
Ph
Ph
Ph
Ph
OMe
II
I OTHP OH
OH
OH
Cl
OH
OMEM
OH
OH
OTHP
>97.5:2.5 d.r.
(50), >95,
OTHP
+
(90), 87
(85), 98, 98:2 d.r.
(76), 94, >99:1 d.r.
(62), 13:1 d.r.
I + II (76), I:II = 5.9:1
Ph
Ph
(CO)6Co2
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
52
46
505
159
292
747
Refs.
479 Bu-n
n-Bu
n-Bu
n-Bu
B O
B
O
O
O
O
B
O
B
O
O
O
OPr-i
O
OPr-i
OPr-i
O
OPr-i
OPr-i
OPr-i
O
O
O
OPr-i
OPr-i
B(OPr-i)2
B(OPr-i)2
R = TBDMS
Bu-n
RO
O
O
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
–78°, 5 h
4 Å MS, toluene,
18 h
THF, –78° to rt,
18 h
THF, –78° to rt,
–78°, 5 h
4 Å MS, toluene,
n-Bu
OH
OH
I
TBDMSO
Bu-n
Ph
Ph
OH
OH
Bu-n
Bu-n
I (98), 71, 98:2 d.r.
Ph
Ph
Ph
OH
(100), 62, 96:4 d.r.
(93), 70, 96:4 d.r.
(96), 95:5 d.r.
(95), 90:10 d.r.
(98), 73
740
740
740
772
772
88
480
C9
O2N
Ph
O H
O H
Carbonyl Substrate
Et
EtO2C
Bu-n
O B
O
O B
O
O
O
O 2
OEt
OEt
O
OPr-i
OPr-i
B(OPr-i)2
B
O
O
Allylborane Reagent
,
O
benzene, rt
2
OEt
Pt(dba)2, PCy3,
O
OEt
rt, 16-24 h
Sc(OTf)3, toluene,
3. NaOH, H2O2
2. Aldehyde, –78°, 3 h
1.
O B
O
CH2Cl2, rt, 5 h
–78°, 5 h
4 Å MS, toluene,
Conditions
O2N
Ph
Ph
Ph
O
Et
O
(59), 40, >19:1 d.r.
(95)
(100), 68, 96:4 d.r.
(—), 2.8:1 d.r.
OH
OH
OH
n-Bu
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
26
185
744
740
Refs.
481
Ph
O H
Ph
Ph
Ph
O
O
O
O
Ph
B
O
B
O
B
O
PhMe2Si
"
B
O B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
rt, 24 h
Ether, –78°, 2 h;
Ether, –78°, 2 h
Ether, –78°, 2 h
rt, 24 h
Ether, –78°, 2 h;
rt, 24 h
Ether, –78°, 2 h;
THF, –78°, 4 h
Ph
Ph
Ph
Ph
Ph
Ph SiMe2Ph OH
OH
OH
Ph
B
B
Ph
O
O
OH
Ph
(—)
(—)
(72), 91, >14:1 d.r.
Ph
O
OH
O
OH
(42), 95, >20:1 d.r.
OH
Ph
(76), 95
(40), 93, >20:1 d.r.
OH
OH
Ph
Ph
175
175
175
175
175
734
482
C9
Ph
Ph
O H
O H
Carbonyl Substrate
TMS
Et
EtO2C
PhMe2Si
OMOM
B
O
B
O
O
O
B
O
O
O
B
O
O
O
O
OPr-i
OPr-i
–78° to 0°, 1 h
4 Å MS, toluene,
Conditions
Neat, rt, 4 d
L.A., rt, 24 h
OPr-i 4 Å MS, toluene, –78° O
OPr-i
Allylborane Reagent
Ph
Ph
Ph
Ph
(62)
toluene CH2Cl2 CH2Cl2 CH2Cl2
Yb(OTf)3 Sc(OTf)3 Cu(OTf)2 Yb(OTf)3
TMS
(66)
toluene
OH
(63)
toluene Cu(OTf)2
(—), 90:10 d.r.
(38)
(52)
(64)
Solvent Sc(OTf)3
Et
O
SiMe2Ph
(75), 75
(70), 90
L.A.
O
OH
OMOM
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
521
26, 24
743
792
Refs.
483
C10
8
O H
O
O
H
H
O TrocO
n-C9H19
Ph
O
O
AcO
OMe
O H
EtO2C
Et
EtO2C
OMEM
TMS
TMS
O
O
O
B
O
B
O
"
O Ph
O
B[(–)-Ipc]2
B
O
B
O
O
OEt
OEt
24 h
L.A., toluene, rt,
2. pTSA
1. Neat, rt, 14 d
Toluene, rt, >12 d
Ether, –78°, 5 h
–78°
4 Å MS, toluene,
Ether, rt, 1-3 d TMS
(31), 13 (37), 21
Yb(OTf)3
(53), 3
(—), 60
(68), 18:1 d.r.
(78), 93, >99:1 d.r.
Cu(OTf)2
Sc(OTf)3
O
Et
O
OMEM
OH
O
I
OMe TMS
OH
(92)
(89), >98:2 d.r.
O
L.A.
n-C9H19
I
8
OH
O TrocO
n-C9H19
Ph
O
O
AcO
26
59, 26
59
292
193
32
484
C10
n-C9H19
O H
Carbonyl Substrate
R
O
B
O
B
O
O
B
O O Ph
B
O O Ph
B
O O
R = (–)-8-(2-naphthyl)menthyl
RO2C
R = (–)-8-phenylmenthyl
RO2C
R = (–)-8-phenylmenthyl
RO2C
R = (–)-8-phenylmenthyl
RO2C
EtO2C
Allylborane Reagent
2. pTSA, 3 h
1. Toluene, rt, 14 d
2. pTSA
1. Neat, rt, 14 d
2. pTSA
1. Neat, rt, 14 d
24 h
L.A., toluene, rt,
Toluene
Conditions
n-C9H19
n-C9H19
n-C9H19
n-C9H19
O
O
O
O
O
O
O
110°
Et
O
60-80°
Me
R Temp
R
n-C9H19
O
O
(30), 31
Yb(OTf)3
(—), 82
(75), 98
(—), 10
(93), 71
(29), –10
(68)
(40)
Cu(OTf)2
Sc(OTf)3
L.A.
16-24 h
16-120 h
Time
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
26
59, 26
59, 26
26
26
Refs.
485
C12
C11
OR
OPMB
O
OMe
OMe
H
R = TBDMS
PMBO
RO
O
AcO
OR
O H
O
H
O O
Ph
OMe
Bu-n
EtO2C
Ph
Me
H
Ph Ph
Et
B
O O
B(OPr-i)2
B[(+)-Ipc]2
B
O B[(+)-Ipc]2
B–Et2SePh
,
2h
THF, –78° to –20°,
rt, 24 h
Sc(OTf)3, toluene,
TMSCl
–78° to rt
CH2Cl2, MeOH,
12 h
2. Et3B, –78° to rt,
30 min
LDA, THF, –78°,
1. PhSe
OPMB
O
PMBO
RO
n-C9H19
OR
OMe
Bu-n
O
OH
(89.5), 76:13.5 d.r.
OMe
OH
(44)
(40)
AcO
O
B
OH
(83), 61:39 d.r.
(63), 10:1 d.r.
Et
OMe
O
OR
OH
O
794, 795
26
793
202
692
486
C13
BnO
MeO
MeO
MeO
n-C12H25
H
H
O H
OMe
O
O
O CH(OMe)2
OMe
OMe
O
OBn O
Carbonyl Substrate
H PhMe2Si
OMOM
MeO2C
OMEM
B[(+)-Ipc]2
O
O OPr-i
B
O
OPr-i 4 Å MS, toluene, –78° O
–78° to –20°, 23 h
Ether, THF,
BF3•SiO2, rt, 3 d
"
rt, 3 d
90°, 3 d
O
Sc(OTf)3 (10 mol%),
Ether, –90°
Conditions
"
B
O
B[(+)-Ipc]2
Allylborane Reagent
BnO
I (15)
I (19)
MeO
MeO
MeO
n-C12H25
O
I
(80)
O
OBn OH
SiMe2Ph
(96), >97.5:2.5 d.r.
(12)
(81), 95, >98:2 d.r.
CO2Me
OMOM
OH
OMe
OH CH(OMe)2
OMe
OMe
OMEM
OH
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
788
468
797
797
797
796
Refs.
487
C18
C17
MeO
MeO
OBn OBn
O
TBDPSO
OBn
Ph
O
O
O
O
OMe
O
O AcHN OBn
H
OTBDMS
H
H
OMe
OMOM
OMOM
OMOM
B[(+)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(+)-Ipc]2
—
16 h
THF, –78° to 10°,
–78° to rt, 3 h
Ether, THF,
THF, –78°
MeO
MeO
OBn OBn
O
TBDPSO
TBDPSO
Ph
OBn
O
O O
(78), 99:1 d.r.
(70), 10:1 d.r.
OMe
OMe
OH
(56), 6:1 d.r.
(77)
AcHN OTBDMS OBn
OMOM OH
OMOM
OH
OMOM
OH
798
469
452, 453
452, 453
488
C25
C20
H
2
R1
O
O
B
O
B
O
B
The starting material was prepared using different conditions.
H
O
OMOM
TMS
TMS
TMS
O
The reaction mixture was free of Mg2+ ions.
H
H
O
OR2 O
OR
2
b
H O H O
= MOM
H O H
R2
OR1
OR1
O
O
O
O
O 1. Toluene, 0°, 1 h
Conditions
1. Toluene, 0°, 1 h
rt, 1 h
2. KOBu-t, THF,
1. CH2Cl2, rt, 1 h
OPr-i 2. KH, THF, 0°, 10 min O
OPr-i
OPr-i 2. KH, THF, 0°, 10 min O
OPr-i
Allylborane Reagent
I
I
TMSO
H
(83), 15:1 Z:E
H O H
H O H
(70), >20:1 Z:E
OR1
(80), >20:1 Z:E
OR1
H
O
O
OR1
OR1
H
O
O
OMOM
OR2
OR2
Product(s) and Yield(s) (%), % ee
TABLE 6. ADDITION OF γ-SUBSTITUTED REAGENTS (Continued)
a
O
= TIPS,
OR1
R = TIPS, R = MOM
1
TMSO
I
I
OR
1
Carbonyl Substrate
801
800
799
Refs.
489
C2
C1
H
O
O
H
H
Carbonyl Substrate
n-Pr
Ph
R2
B(R1)2
B(Bu-n)2
Bu-n
B(Bu-n)2
BOMe(Thex)
C6H13-n
B(C6H13-n)2
C6H13-n
R1
Allylborane Reagent
n-BuLi, THF
O
n-BuLi, THF
O
O n-BuLi, THF
OMe,
OMe,
n-BuLi, THF
O
3. BCl3, –78° to rt
2. B(Bu-n)3, –78°
1.
Ether, 0°
3. BCl3, –78° to rt
–78°
OMe,
2. (n-C6H13)BOMe(Thex),
1.
Ph
3. BCl3, –78° to rt
2. B(C6H13-n)3, –78°
1.
3. BCl3, –78° to rt
OMe,
Conditions
2. BR13, –78°
1.
R2
HO
OH
HO
HO
HO
Pr-n
Ph
R2
(89)
Ph
Bu-n
(65)
(60), 56:44 d.r.
C6H13-n
(65)
(71)
(84)
Ph
(68)
(45)
n-Bu
Ph
Me
R2
n-C6H13
Ph
C6H13-n
R
1
n-Bu
R1
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS
802
803
802
802
802
Refs.
490
C3
C2
CCl3
O
O
O
H
H
H
Carbonyl Substrate
B
B(C5H9-c)2
B(C5H9-c)2
B(Bu-n)2
B
TMS
B[(–)-Ipc]2
B[(–)-Ipc]2
TMS
C5H9-c
c-C5H9
n-Pr
TMS
TMS
R
Allylborane Reagent
Cl ,
Cl ,
1.5 h
2. Aldehyde, –78° to rt,
–90° to rt
B(C5H9-c)3, THF,
1. Li
1.5 h
2. Aldehyde, –78° to rt,
B(C5H9-c)3, THF, –90°
1. Li
Ether, –78°, 3 h
Ether, 0°
THF, –78°, 3 h
Ether, –100°, 3 h
Ether, –100°, 2 h
Conditions
CCl3
OH
C5H9-c
OH
OH
Pr-n
TMS
TMS
(68), 89
(84)
C5H9-c
(75)
(74), 87
(74), 94
(72)
(71), 94
(72), 87
n-Pr
Me
R
Product(s) and Yield(s) (%), % ee
OH
OH
OH
R
OH
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
807
807
144
803
806
805
804
Refs.
491
Et
O H
Pr-n
R
n-Pr
R
R
B(Bu-n)2
B(OBu-n)2
B(OBu-n)2
BR2
BR2
BBN
Cl ,
Cl ,
Ether
Ether
1.5 h
2. Aldehyde, –78° to rt,
–90° to rt
BR3, THF,
1. Li
Ether, 0°
1.5 h
2. Aldehyde, –78° to rt,
BR3, THF, –90°
1. Li
Ether, rt, 15 min
Et
Et
Et
Et
Et
Et
Pr-n
OH
OH
Pr-n
R
OH
OH
OH
OH
(70)
R
n-Pr
Et
R
n-C6H13
(85)
(89)
(78)
(60)
(73)
(80)
(77)
n-C6H13
c-C5H9
R
c-C5H9
Cy
R
(70)
R
(82)
810
810
807
803
807
808, 809
492
C3
Et
O
O H
Carbonyl Substrate
TMS
Ph
Ph
Ph
BBN
B(C6H13-n)2
C6H13-n
Cl
B(Thex)
C6H13-n
B(OBu-n)2
B(OBu-n)2
Allylborane Reagent
Cl , C6H13-n
O n-BuLi, THF
Ph OMe,
THF, rt, 1.5 h
3. BCl3, –78° to rt
2. B(C6H13-n)3, –78°
1.
1.5 h
2. Aldehyde, –78° to rt,
THF, –90°
(Thex)B Cl ,
1. Li
Ether
Ether
Conditions
HO
HO
Et
Et
Et
OH
OH
OH
TMS
Ph
Ph
Ph
(86)
(62)
C6H13-n
(50)
C6H13-n
(52)
(76)
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
811
802
807
810
810
Refs.
493
C4
EtO
MeO
O
O
O
O
O
O
H
H
TMS
TMS
B[(–)-Ipc]2
B(C5H9-c)2
C5H9-c
BBN
BBN
TMS
BBN
TMS
B(OBu-n)2
BBN
Pr-n
,
Cl ,
Ether, –100°, 3 h
1.5 h
2. Aldehyde, –78° to rt,
B(C5H9-c)3, THF, –90°
1. Li
THF, 0°, 4 h
Sc(OTf)3 (7.5 mol%),
O
Ether, –78°, 3 h
Ether, 3 h
Ether
THF, rt, 1.5 h
EtO
MeO
HO
I
HO
O
O
HO Pr-n
OH
OH
OH
TMS
OH
OH
TMS 0º
–78°
Temp
83:17
85:15
d.r.
TMS
(68), 87
(84)
(90), 75:25 d.r.
C5H9-c
(62)
TMS
(95)
(55)
II TMS I + II (71), I:II = 91:9
+
Pr-n
805
807
812
598
598
810
811
494
C4
n-Pr
O H
O H
Carbonyl Substrate
TMS
TMS
Ts
Et
c-C5H9
B
TMS
N
B
N
Ph
Ts Ph
B(OBu-n)2
B
TMS
BBN
B(C5H9-c)2
Allylborane Reagent Cl ,
Ether, –78°, 3 h
CH2Cl2, –78°, 2-5 h
Ether
THF, –78°, 3 h
THF, rt, 1.5 h
1.5 h
2. Aldehyde, –78° to rt,
–90° to rt
B(C5H9-c)3, THF,
1. Li
Conditions
n-Pr
OH
OH
OH
OH
OH
TMS
TMS
C5H9-c
OH
(75-80), 97-98
(82), 94
Et
(30)
(87), 97
(79)
(84)
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
144
153
810
806
811
807
Refs.
495
i-Pr
O H
TMS
n-Pr
B
TMS
B
TMS
TMS B
B[(–)-Ipc]2
B(Bu-n)2
Ether, –100°, 3 h
Ether, 0°
Ether, –78°, 3 h
Ether, rt, 15 min
Ether
"
BBN
—
B(OBu-n)2
TMS
THF, –78°, 3 h
Ether, –78°, 3 h
i-Pr
i-Pr
i-Pr
i-Pr
n-Pr
n-Pr
n-Pr
n-Pr
TMS
OH
OH
OH
OH
TMS
Pr-n
OH
OB(OBu-n)2
OH
OH
(76), 99
(78)
(81), 93
(88)
(60)
(50-60)
(87), 98
(80), 93
805
803
144
808, 809
810
2
806
144
496
C4
i-Pr
O H
Carbonyl Substrate
TMS
Ts
B
TMS
TMS
c-C5H9
R
N
B
Ph
Ts N Ph
BBN
Pr-n
TMS
BBN
B(C5H9-c)2
B[(–)-Ipc]2
Allylborane Reagent
Cl ,
CH2Cl2, –78°, 2.5 h
THF, rt, 1.5 h
THF, –78°, 3 h
THF, rt, 1.5 h
1.5 h
2. Aldehyde, –78° to rt,
–90° to rt
B(C5H9-c)3, THF,
1. Li
Ether, –100°, 2 h
Conditions
i-Pr
I
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
OH
OH
OH
OH
+
Pr-n i-Pr
OH
(77), 97
(82)
Pr-n
(70), 96
Ph
(78)
(80), 96
(72), 96
n-Pr
Me
R
(76), 94
II TMS I + II (74), I:II = 88:12
TMS
TMS
C5H9-c
OH
R
OH
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
TMS
153
811
806
811
807
804
Refs.
497
C5
t-Bu
i-Pr
O
O
O
H
O H
TMS
O
O OCH(Pr-i)2
O
OCH(Pr-i)2
B[(–)-Ipc]2
B(C5H9-c)2
C5H9-c
B
TMS
BBN
x equiv
O
B
BBN
BBN
Cl ,
Ether, –100°, 3 h
1.5 h
2. Aldehyde, –78° to rt,
B(C5H9-c)3, THF, –90°
1. Li
Ether, –78°, 3 h
Ether, rt
Toluene, –78°, 20 h
Ether, rt, <5 min
Ether, rt, <5 min
t-Bu
t-Bu
t-Bu
t-Bu
i-Pr
OH
OH
OH
OH
TMS
OH
OH
OH
x 3.0
1.5
(75), 92
C5H9-c
(75), 94
90 min
15 min
Time
(89)
(71)
(86)
(88)
(89)
(74), 99
(78), 99
805
807
144
808, 809
813
809
809
498
C5
t-Bu
O H
Carbonyl Substrate
Ts
B
TMS
TMS
c-C5H9
N
B
O
B
N
Ph
Ts
O
O OPr-i
O
Ph
OPr-i
B(OBu-n)2
TMS
BBN
B(C5H9-c)2
Allylborane Reagent Cl ,
CH2Cl2, –78°, 2.5 h
Toluene, –78°
Ether, 40°, 48 h
THF, –78°, 3 h
THF, rt, 1.5 h
1.5 h
2. Aldehyde, –78° to rt,
–90° to rt
B(C5H9-c)3, THF,
1. Li
Conditions
OH
OH
t-Bu
t-Bu
OH
TMS
TMS
C5H9-c
OH
HO
t-Bu
t-Bu
t-Bu
t-Bu
OH
(74), 98
(47), 93
(50)
(80), 98
(85)
(79)
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
153
123
814
806
811
807
Refs.
499
Et
O
O Et
TMS
TMS
Ts
Ph
OEt
OEt
O
BBN
B(OBu-i)2
BBN
Pr-n
BBN
Ph
Ts N
O
O
BBN
N
B
O
B
DMSO, 150°, 2 h
THF, rt, 1.5 h
THF, rt, 1.5 h
Ether, rt, <5 min
Ether, rt
CH2Cl2, –78°, 2.5 h
Toluene, –78°, 46 h
Et
Et
Et
Et
Et
Et
Et
Et
I
t-Bu
t-Bu
OH
OH
OH
OH
Pr-n +
(91)
Et
Et
II
OH
Pr-n
(87)
(87)
(88)
1h 15 min
Time
(78), >99
(53), 88
(60)
I + II (75), I:II = 83:17
TMS
TMS
OH
OH
HO
TMS
814
811
811
809
808, 809
812
153
123
500
C6
C5
O
O
n-C5H11
n-Pr
HO
EtO
O
O
H
O
H
H
O
O H
Carbonyl Substrate
TMS
R
TMS
O
B
O
B
O
O
O
O
BBN
BBN
OR
OR
O
OEt
OEt
O
B(Bu-n)2
Bu-n
BBN
Allylborane Reagent
O n-BuLi, THF
R O ,
THF, rt, 1.5 h
Toluene, –78° to rt
Toluene, –78°, 46 h
Ether, rt, 15 min
3. BCl3, –78° to rt
2. B(Bu-n)3, –78°
1.
THF, rt, 2 h
Conditions
O
O
(55)
Ph
OH
TMS
HO
(82)
Pr-i
Et
R
(50), 70
(79)
60:40
d.r. 60:40
(65)
Me
R
OH
TMS
(39), —
(39-66), 62-66
Bu-n
(90)
R
HO
OH
HO
O
n-C5H11
n-Pr
HO
EtO
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
811
123
123
808, 809
802
815
Refs.
501
x equiv
TMS
Ts
Ts
Et
Ts
N
B
N
B
N
B
O
B
O
B
Ph
Ph
N
Ph
Ts
N
Ts
N
Ts
O
O
O
O
Ph
Ph
Ph
OR
OR
O
OCH(Pr-i)2
OCH(Pr-i)2
O
BBN
Pr-n
CH2Cl2, –78°, 2.5 h
CH2Cl2, –78°, 2.5 h
CH2Cl2, –78°, 2.5 h
Toluene
Toluene, –78°, 20 h
THF, rt, 1.5 h
n-C5H11
n-C5H11
n-C5H11
I
n-C5H11
R
OH
OH
OH
(63), >95
(75-80), 97-98
(82), >99
Et
(72), 97
(81), 94
(75), 88
(81), 91
–78º
Pr-i
Temp –78° to –20°
Et
I
5.0
1.5
x
I:II = 88:12
OH
I + II (78), Pr-n
TMS
+
II
OH
TMS
Pr-n
n-C5H11
I
n-C5H11
OH
153, 816
153
153
123
813
811
502
C7
C6
Ph
t-Bu
O H
O
O
Carbonyl Substrate
TMS
TMS
"
BBN
BBN
BBN
B(OBu-n)2
BBN
Pr-n
BBN
Allylborane Reagent
Ether, rt, 15 min
Ether, rt, 1 h
Ether, 40°, 12 h
THF, rt, 1.5 h
THF, rt, 1.5 h
Ether, rt, 15 min
Ether, rt, 1 h
Conditions
Ph
t-Bu
OH
I (88)
OH
OH
Pr-n
OH
TMS
OH
TMS
OH
OH
TMS
(88)
(68)
II
(82)
I
Pr-n +
(91)
(94)
I:II = 91:9
I + II (76),
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
808, 809
812
814
811
811
808, 809
812
Refs.
503 TMS
R
B
TMS
B[(–)-Ipc]2
B(C5H9-c)2
BBN
B(Bu-n)2
B(C5H9-c)2
C5H9-c
c-C5H9
TMS
n-Pr
TMS B
Cl ,
Cl ,
THF, –78°, 3 h
Ether, –100°
1.5 h
2. Aldehyde, –78° to rt,
–90° to rt
B(C5H9-c)3, THF,
1. Li
THF, rt, 1.5 h
Ether, 0°
1.5 h
2. Aldehyde, –78° to rt,
–90°
B(C5H9-c)3, THF,
1. Li
Ether, –78°, 3 h
Ph
Ph
Ph
Ph
Ph
Ph
Ph
TMS
Pr-n
OH
TMS
R
OH
C5H9-c
OH
OH
OH
OH
OH
(60), 98
TMS
n-Pr
R
(85)
(88)
(79)
C5H9-c
(78), 93
3h
2h
Time
(86)
(74), 89
(77), 87
806
805
804
807
811
803
807
144
504
C7
Ph
O H
Carbonyl Substrate
O
B
O
Ts
N
B
O
B
N
Ph
Ts
O
O
Ph
OEt
OEt
O
R = CH(Pr-i)2, C10H21-n
"
OR
O
OR
B(OBu-n)2
O R = Et, Pr-i
TMS
BBN
Pr-n
Allylborane Reagent
CH2Cl2, –78°, 2.5 h
Toluene, –78°, 44 h
Toluene, –78°, 20 h
Toluene
Ether, 40°, 3 h
THF, rt, 1.5 h
Conditions
Pr-n + Ph
OH
I
OH
C10H21-n
CH(Pr-i)2
44 h
21 h
Time
(70), 63
(<50), 79
(<50), 73
–78°
Pr-i R
Temp –78° to –20°
Et
(72)
I R
OH
HO
(43), 79
(52), 60
II Pr-n I TMS I + II (72), I:II = 87:13
I (76), 96
Ph
I
Ph
Ph
Ph
OH
TMS
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
153
123
813
123
814
811
Refs.
505
R
H
R = O2N, MeO
R = H, MeO, O2N
O
H
Ts
O
B
O
N
O
O
Ph
Ts
O
B
O
B O
BBN
N
B
H
OEt
OEt
O
Ph
O
O
,
,
Toluene, –78° to –20°, 20 h
Ether, rt, 1 h
CH2Cl2, –78°, 2.5 h
Pd(PPh3)4
HB
CDCl3, –78°
R
R
Ph
Ph
Ph
OH
OH
OH
OH
OH
(58), 72 (66), 72
O2N MeO
R
(94)
(99)
MeO O2N
(96)
H
R
(72), >99
(57)
(43), 34, 3.4:1.4 d.r.
123
812
153
550
817
506
C7
Cy
O H
Carbonyl Substrate
O
B
O
B
x equiv
TMS
c-C5H9
O
O
O
O
OEt
OEt
O
OEt
OEt
O
B[(–)-Ipc]2
B(C5H9-c)2
B(C5H9-c)2
C5H9-c
BBN
Allylborane Reagent
Cl ,
Cl ,
Toluene, –78°, 44 h
Toluene, –78° to rt, 20 h
Ether, –100°, 3 h
1.5 h
2. Aldehyde, –78° to rt,
–90° to rt
B(C5H9-c)3, THF,
1. Li
1.5 h
2. Aldehyde, –78° to rt,
–90°
B(C5H9-c)3, THF,
1. Li
Ether, rt, 1 h
Conditions
Cy
Cy
Cy
Cy
Cy
Cy
OH
OH
OH
TMS
C5H9-c
OH
OH
OH
(74), 87
1.5
1.0
x
(78), 96
(86)
C5H9-c
(91)
(56), 92
(85), 86
(88)
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
123
123
805
807
807
812
Refs.
507
O
O
O
O
B
x equiv
O
B
O
B
O
B
O
O
O
O
O
O
O
O
x equiv O
O
B
O
B
OCH(Pr-i)2
OCH(Pr-i)2
O
OCH(Pr-i)2
OCH(Pr-i)2
O
O(menthyl)
O(menthyl)
O
OR
OR
O
OPr-i
OPr-i
O
OPr-i
OPr-i
O
Toluene, –78°, 20 h
Toluene, –78°, 20 h
Toluene, –78°, 20 h
Toluene, –78°, 20 h
Toluene, –78°, 22 h
Toluene, –78°, 24 h
Cy
Cy
Cy
Cy
Cy
Cy
OH
OH
OH
OH
OH
OH
(82), 99
3.0
1.0
x
(69), 92
(89), 99
(88), 98
(85), 98
(37), 93 c-C10H19
(42), 91 menthyl
(88), 92
(81), 91
(81), 95
(70), 91
c-C5H9
i-Pr
Et
R
1.5
1.0
x
(42), 90
813
813
813
813
123
123
508
C8
C7
Ph
Cy
O
O H
Carbonyl Substrate
TMS
TMS
Et
Ts
Ts Ph
Ph
BBN
BBN
Pr-n
BBN
N
Ts
Ph
Ph
N
Ph
B
N
Ts
N
Ts
N
B
N
B
Ts
Ph
Allylborane Reagent
THF, rt, 1.5 h
THF, rt, 1.5 h
Ether, rt
CH2Cl2, –78°, 2.5 h
CH2Cl2, –78°, 2.5 h
CH2Cl2, –78°, 2.5 h
Conditions
Ph
Ph
Ph
Cy
Cy
Cy
Et
Ph
(93)
TMS
+
1h
15 min
Time
(78), 95
(78), >99
(82), 92
Pr-n
II Pr-n
I TMS OH
OH
TMS
OH
OH
OH
OH
OH
I:II = 54:46
I + II (88),
(97)
(86)
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
811
811
812
808, 809
153
153
153
Refs.
509
C9
Ph
n-Bu
O
O
O
O
H
O
H
H
TMS
Ts
N
B
O
B
N Ph
OEt
OEt
O
BBN
Ph
Ts
O
O
BBN
BBN
B(OBu-n)2
,
O ,
Toluene, –78°, 2.5 h
Toluene, –78° to 0°, 20 h
THF, –78° to –10°, 1.5 h
THF, 0°, 4 h
Sc(OTf)3 (7.5 mol%),
n-Bu
THF, 0°, 4 h
Sc(OTf)3 (7.5 mol%),
O
Ether, 40°, 95 h
Ph
Ph
n-Bu
Ph
O
OH
OH
OH
OH
TMS
OH
OH
(44)
(79), 98
(67), 79
(65)
(71)
(76)
153
123
815
812
812
814
510
C10
C9
Ph
Ph
R
O
O
O H
OMe
H
R = H, NO2
R = H, OMe, NO2
H
O
H
O
O
O
Carbonyl Substrate
TMS
TMS
Ts
N
BBN
BBN
BBN
N
B Ph
BBN
BBN
Ph
Ts
Allylborane Reagent
,
O ,
O ,
THF, 20°, 4 h
BF3•OEt2 (15 mol%),
R
THF, 0°, 4 h
Sc(OTf)3 (7.5 mol%),
R
Ether, rt, 1 h
THF, rt, 2 h
THF, –78° to –15°, 1.5 h
Toluene, –78°, 2.5 h
Conditions
I
Ph
Ph
NO2
H
R
R
(22)
O
OH
TMS
(73)
I
OH
TMS OH
OH O
OH
(99)
OMe
(86)
(98)
(77) OMe NO2
(73) H
R
(82)
(74), >99
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
812
812
812
815
815
153
Refs.
511
Ph
Ph
O
Br
O
O
O
O
O
OMe
H
H
H
H
TMS
x equiv
"
O
B
O
B
O
B
O
O
O
O
O
O
BBN
BBN
OEt
OEt
O
OCH(Pr-i)2
OCH(Pr-i)2
O
OCH(Pr-i)2
OCH(Pr-i)2
O
O ,
,
2. BF3•OEt2
1. THF, rt, 2 h
Toluene, –78°, 22 h
Toluene, –78°, 20 h
Toluene, –78°, 20 h
THF, 20°, 4 h
Br BF3•OEt2 (15 mol%),
Ph
O
THF, 0°, 4 h
Br Sc(OTf)3 (7.5 mol%),
Ph
Ph
I (70)
Ph
O
OH
O
(90), 99
(82)
OH
(74), 92
OH
5.0
x
OH
1.5
TMS
I
Br
(67), 98
(52), >95
(83)
815
123
813
813
812
812
512
C16
C13
C11
Ph
Ph
Ph
Ph
Ph
O Ph
R
O
O
O
H
H
H
Carbonyl Substrate
"
BBN
BBN
BBN
BBN
Allylborane Reagent
O ,
O ,
THF, 0°, 4 h
Sc(OTf)3 (7.5 mol%),
Ph
Ph
Ether, rt, <5 min
THF, 0°, 4 h
Sc(OTf)3 (7.5 mol%),
Ph
R
THF, 20°, 4 h
BF3•OEt2 (15 mol%),
Ph
O ,
THF, 0°, 4 h
Sc(OTf)3 (7.5 mol%),
Ph
O ,
Conditions
Ph
Ph Ph
Ph
Ph
OH
OH
(90)
1:1 (70)
Me
(93)
1.2:1
d.r. (89)
(77)
CH2OBn
R
OH
I
OH
R
I (78)
Ph
Product(s) and Yield(s) (%), % ee
TABLE 7. ADDITION OF ALLENYL AND PROPARGYL REAGENTS (Continued)
812
809
812
812
812
Refs.
513
C2
C1
H
O
O
H
H
Carbonyl Substrate
O
N Ph
O
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B Ph
O
O B
B(Pr-n)2
B(Pr-n)2
THF, –78°
THF, –78°
THF, –78° to rt
Ether, –78° to rt
2. DDQ
1. 100°
–60° to 0°
–60° to 0°
Conditions
TABLE 8. ADDITION OF CYCLIC REAGENTS Allylborane Reagent
O
OH
OH
OH
O
(29), >95:5 d.r.
(24), 95, >99:1 d.r.
(36), 93, >99:1 d.r.
(66), 94, >99:1 d.r.
(94), >97.5:2.5 d.r.
Ph
OH
(91)
(50)
N
B Ph
O
OH
OH
Product(s) and Yield(s) (%), % ee
820
820
69, 820
819
818
545
545
Refs.
514
C2
H
O
CCl3
O
O
O
H
H
H
Carbonyl Substrate
B[(–)-Ipc]2
B Ph
B Ph
B(Pr-n)2
B(Pr-n)2
B(Pr-n)2
THF, –78°, 4 h
Ether, –78° to rt
Ether, –78° to rt
–60° to 0°
–60° to 0°
–70° to 0°
Conditions
OH
+ II
O
(81), >98, 98:2 d.r.
(95), >97.5:2.5 d.r.
(94), >97.5:2.5 d.r.
(74)
(70)
B Ph
OH
OH
O
B Ph
OH
OH
OH
Product(s) and Yield(s) (%), % ee
I + II (65-80), I:II = 53:47
CCl3
I
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
255
819
819
545
545
545
Refs.
515
C3
Cl
O
Cl
H
TBDMSO
O
O H
O
OEt
B Ph
B[(–)-Ipc]2
B Ph
B Ph
O
B
O
O
OEt, O 1 (1 mol%), 4 Å MS, neat
B
Cl
O
OH
O
B Ph
(41)
(82)
(94), >97.5:2.5 d.r.
B Ph
B Ph
O
OEt
(92), >97.5:2.5 d.r.
Cl
O
Ether, –78° to rt
Cl
O
H OH
(58), 92, >99:1 d.r.
1
Cr
TBDMSO
THF, –78° to rt
Ether, –78° to rt
Ether, –78° to rt
O
N
2. Aldehyde, 45°, 48 h
1.
O
819
820
819
819
150
516
C3
O
O
H
H
Carbonyl Substrate
Bn
O
N
N
B
O
N Ph
Bn
H
H
O
N O
S
+
O
–
B R1
R2
Ph
B[(–)-Ipc]2
O
O B
O
N N
B
Bn
O
O
O– S+ N
Ph ,
toluene, 80°, 70 h
Bn
O
—
THF, –78° to rt
2. DDQ
1. 40°
Conditions
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
(89)
Cy Cy
N H H OH N Bn Bn
O
S+ N
(62)
(72)
n-C6H13 Thex
Ph
(85)
Cy Thex
O–
(70)
H
I + II
R
Cy
HO
Thex
R2 +
I:II
54:46
54:46
97:3
98:2
II
R2
OH
(65), 93, >99:1 d.r.
Ph
(71), >95:5 d.r.
2
OH
N
O
R1
I
OH
OH
O
HO
Product(s) and Yield(s) (%), % ee
199
601
820
818
Refs.
517
"
B
O
O
Br
B
B
Me N
O
H
H
O
H
H
O
B
O
O
O
O
O
N Ph
O
CO2Me
N Me
CO2Me
80°
rt
CH2Cl2, –78° to 20°
60°, 12 h
Et3N, CH2Cl2
OH
OH
OH
Br
I (22)
OH I
O
O
O
O
(70)
N Ph
O
(8)
CO2Me
(40)
CO2Me
(66)
89
89
821
183
821
518
C3
O
O H
Carbonyl Substrate
"
O
N
B(Pr-n)2
B(Pr-n)2
BBN
B Ph
O
O B Ph
O
, HBBN, pentane, rt, 24 h
–60° to 0°
–70° to 0°
2. Ketone, rt, 2 h
1.
Pentane, rt, 2 h
Ether, –78° to rt
2. DDQ
1. 40°
Conditions
I
O
N
+
OH
(87)
OH
(61), >95:5 d.r.
II I + II (65-80), I:II = >100:1
OH
O
(88)
Ph
(86)
B Ph
O
HO
Product(s) and Yield(s) (%), % ee
OH
I (68)
I
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
545
545
103
103
819
818
Refs.
519
C4
n-Pr
O
O
H
O
O
H
B[(–)-Ipc]2
B(Pr-n)2
B(Pr-n)2
B R1
R2
B Ph
B Ph
THF, –78° to rt
–60° to 0°
–60° to 0°
—
Ether, –78° to rt
Ether, –78° to rt
n-Pr
OH
OH
OH
(69), 90, >99:1 d.r.
(69)
(75)
94:6 (84)
53:47
(85) n-C6H13
Thex
Cy
Thex
I:II
II
99:1
HO
R2
OH
(82) Cy
Thex
R2 +
(44)
(90)
I + II
R2
R1
I
OH
B Ph
B Ph
OH
O
O
820
545
545
601
819
819
520
C4
i-Pr
O H
Carbonyl Substrate
O
O
O
B
B
B
O
H
H
O
H
H
O
CO2Me
O
O
O
O
N Ph
O
B R1
R2
Benzene, 20°, 4 h
80°
rt
—
Conditions
i-Pr
i-Pr
i-Pr
i-Pr
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
OH
OH
OH
(75)
(67)
(76), 9:1 d.r.
CO2Me
O
O
O
O
N Ph
O
53:47
(81)
C5H9-c
Thex
I:II 97:3
(85)
Cy
Thex
R2 Pr-i
I + II
R2
R1
HO II
OH
R2 +
I
OH
OH
Product(s) and Yield(s) (%), % ee
822
89
89
601
Refs.
521
BnO
O H
B
"
B
B
O
O
O
x equiv
O
O
O
CO2Me
CO2Me
CO2Me 80°
O B
O CO2Me,
See table
Benzene, 20°, 4 h
Benzene, 20°, 4 h
2. Aldehyde, benzene, rt
1.
I
Pressure — 10 kbar — —
1.5 1.5 2 3
OH
OH
x
BnO
I (63), 9:1 d.r.
I (67), 9:1 d.r.
BnO
80°
80°
rt
80°
Temp
16 h
16 h
24 h
15 h
Time
CO2Me
(50)
(38)
(22)
(29)
(69), 9:1 d.r.
CO2Me
183, 821
821, 822
824
823
522
C4
MeO2C
BnO
O
O
H
H
Carbonyl Substrate
B
O B
O
i-PrO2C
O
O
B CO2Me
CO2Me
O
CO2Pr-i
CO2Me
OBn
O
80°
O B
O CO2Me,
CO2Pr-i
Benzene, 20°, 4 h
2. Aldehyde, benzene, rt
1.
i-PrO2C
80°, 15.5 h
Conditions
O
BnO
BnO
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
O
OH
OH
(67), 9:1 d.r.
CO2Me
(49), 70
CO2Me
OBn
(33)
CO2Me
Product(s) and Yield(s) (%), % ee
822
823
183, 821
Refs.
523
C5
i-Pr
n-Bu
O
O
O
H
O
H
H
O
O
O
B
O
B
B(Pr-n)2
B(Pr-n)2
OEt
O
OEt
B[(–)-Ipc]2
O
O
OEt, O 1a (1 mol%), 4 Å MS, neat
B
O
OEt, O 1a (1 mol%), 4 Å MS, neat
B
2. Aldehyde, 45°, 24 h
1.
O
THF, –78° to rt
–60° to 0°
–70° to 0°
2. Aldehyde, 45°, 48 h
1.
O
+
O
II
i-Pr
H OH
OH
O
OH
OEt (81)
(67), 90, >99:1 d.r.
(91)
OH
OEt (61)
I + II (65-80), I:II = >100:1
n-Bu
I
OH
H OH
150
820
545
545
150
524
C5
t-Bu
i-Pr
O H
O H
Carbonyl Substrate
O
B
O
O
O
N Ph
O
N Ph
O
B Ph
B Ph
O
NMe2
N
B
TESO
O
O O
N Ph, N NMe2 O
B
B
O
N Ph,
O
Ether, –78° to rt
Ether, –78° to rt
O toluene, 80°, 24 h
TESO
O
toluene, 80°, 72 h
O
Conditions
t-Bu
t-Bu
i-Pr
i-Pr
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
O
O
B Ph
B Ph
OTES OH
H OH NMe2
N
(88)
(50)
(94), >97.5:2.5 d.r.
(95), >97.5:2.5 d.r.
O
N Ph
O
O
N Ph
O
Product(s) and Yield(s) (%), % ee
819
819
825
181
Refs.
525
C6
O
O
EtO2C
O H
O H
O
O
B(Pr-n)2
B Ph
B(Pr-n)2
–70° to 0°
Ether, –78° to rt
–60° to 0°
Ether, –78° to rt
2. Aldehyde, 110°, 48 h
20°, 5 h
R
OEt
O
O OEt, 1a (3 mol%), BaO, neat,
B
R
B Ph
O
B
1. O
I
O
(40)
B Ph
II I + II (65-80), I:II = 9:1
+
99:1
—
d.r.
OH
(96), >97.5:2.5 d.r.
B Ph (92)
OH
O
O
OH
O
(76), 95
OEt
CH2CH=C(Me)2
O
(74), —
H OH
C7H15-n
R
EtO2C
R
545
819
545
819
198
526
C7
Ph
O H
Carbonyl Substrate
B Ph
B(Pr-n)2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B[(–)-Ipc]2
B Ph
Ether, –78° to rt
–70° to 0°
THF, –78°
THF, –78°
THF, –78°
THF, –78° to rt
Ether, –78° to rt
Conditions
Ph
I
Ph
Ph
O
OH
+ II
O
B Ph
(94), >97.5:2.5 d.r.
Ph
OH
(40), 79, 24:1 d.r.
(28), 93, >99:1 d.r.
(38), 95, >99:1 d.r.
(71), 94, >99:1 d.r.
(97), >97.5:2.5 d.r.
I + II (65-80), I:II = 3:2
Ph
OH
B Ph
Product(s) and Yield(s) (%), % ee
OH
OH
HO
Ph
Ph
Ph
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
819
545
826
820
820
820
819
Refs.
527 O
O
R1
O
O
R2
O
H
O
H NMe2
N
B
NMe2
N
B
N
N
B
B
O
O
S+ N R
O–
O
N Me
O
O
N Ph
O
O
O
O
,
B
O
2
O
N Ph,
O
,
B
O O
B
O O– S+ N R,
N NMe2 O toluene, 80°, 70 h
O
N Me, N NMe2 O toluene, 80°, 72 h
O
R R toluene, 80°, 72 h
N 1N
O
Rh4(CO)12
HB
Ph
Ph
Ph
Ph
N Ph
O
(92)
H H OH NMe2
N
H
H OH NMe2
N
O
S+ N R
O–
O
N Me
O
N H OH 1 N 2 O R R
OH
(52) (69) Bu-t
Ac
Ph
Ph
R2
Pr-n
R
(50)
H
Me
H
R1
(42)
(46)
199
181
(46) 181
550
528
C7
Ph
O H
Carbonyl Substrate
H
O
B
O
R R
O
O
H NMe2
N
B
MeO
O O
N
N
B
O
S+ N
–
O
O
N Ph
O
Ph
O O– S+ N
N NMe2 O
B Ph ,
N N
B
O
O
—
N Ph,
O
toluene, 80°, 72 h
MeO
R R
O
toluene, 80°, 70 h
O
Conditions
Ph
Ph
Ph
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
O–
R
9:1 (55)
Me
(90), >100:1
>97.5:2.5
d.r. (55)
OMe
R O
H
OH
Ph
N Ph
O
O
S+ N
R
H OH N
N
H H OH NMe2
N
H (65)
Product(s) and Yield(s) (%), % ee
52
181, 182
182
199
Refs.
529
R
"
R = H, O2N, MeO
B
O
H
O
R = H, MeO, Cl, F
O
B
H
H
O
O
O
B OMe
O
O
Y
O
OEt
O
O B
O
O
O
OEt, O 1a (1 mol%), 4 Å MS, neat
B
2. Aldehyde, 25-45°, 24 h
1.
O
Neat, 70°
2. NaOH, H2O2, THF
1. Ether, 0°, 20 h
2. DDQ
1. 40°
See table
I
R
Ph
Ph
O
(82) (92) (81) MeO
H OH
O
O
OH
O
Ph
O2N
I
O
HO
H
R
OH
OH
Y
O
rt
(69)
(80)
OEt
F
Cl
827
818
89
(80), 96
(77), 93
150
(85), 95 151 MeO (84), 96
H
R
(90), 3:1 d.r.
(59), >95:5 d.r.
80°
NPh
Temp
O
Y
530
C7
R1 = H, Br
H
R1 = H, O2N, MeO
R1
O
Carbonyl Substrate
O
R2
O
R3
O
O
N Y
O
O
NMe2
N
B
O
N Ph
O
Y = C6H4CO2-p
N
N
B
N N
B
O
N Y
O
O N Ph,
O
N NMe2 O
B
toluene, 80°, 72 h
O
O R2 R3 toluene, 80°, 72 h
O
Conditions
R1
R1
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
(47) (48) (52)
H O2N MeO
H OH NMe2
H
Me
H
N
Me
Me
Br
R3 Me
Me
R2
H
R1
R1
H OH N R2 R3
N
O
N Ph
O
(60)
(54)
(62)
O
N Y
O
Product(s) and Yield(s) (%), % ee
181
182
Refs.
531
O 2N
R
O H
R1 = see table
O H
TESO
O B
O
B
O
O B
TESO
O
O
O
O
R2
O
N
Ph
O
N
O
N
O
O
B
O N R2,
O
B
O
O N
toluene, 110°, 18 h
TESO
O
2. DDQ
1. 40°
O O,
O toluene, 80-100°, 16-24 h
TESO
O
O2N
R1
Ph Ph Me Me Me
MeO Br O2N MeO Br
O
R
O
(78)
(67)
(89)
(93)
(82)
(92)
(76)
O
(67)
N
O
p-Cl
p-NO2
O
(56)
(48)
m-NO2 (77)
o-NO2
R
OTES OH (71), 4:1 d.r.
>95:5 d.r.
O
Ph
Ph
O2N
N
Ph
H
HO
R2
R1
OTES OH
N R2
O
825
818
825
532
C7
Cl
NO2
O H
O H
Carbonyl Substrate
O
O B
O
O B
O
O B
CO2Et
CN
O
N
CO2Et
CN
Ph
O
2. DDQ
1. 40°
2. DDQ
1. 40°
2. DDQ
1. 40°
Conditions
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
N Ph
O
CN
CO2Et (30), >95:5 d.r.
CO2Et
HO
(52), >95:5 d.r.
CN
HO
(83), >95:5 d.r.
O
HO
Cl
NO2
NO2
Product(s) and Yield(s) (%), % ee
818
818
818
Refs.
533
R1
R2 O H
R3
O
O
N
N
B
O
B
R4
O
O
O
N R5
O
OEt
O
N N
B
O N R5,
O
O R3 R4 toluene, 80°, 72 h
O
2. Reflux, 12 h
O
B
OEt, CH2Cl2, rt, 24 h
1. O
(81) (95) (80)
H H H O2N
Cl F O2N H
R3 Me Me Me Me H H H Me Me H H
R2 H H H H H H H H MeO H H
H H O2N MeO H H H H H H H
Me Me Ph Ph Ph Me
p-CF3C6H4 p-MeOC6H4 Ph Ph Ac Boc
Ph
Ph
Me
Ph
R5
Ph
O
N R5
O
Ph
Me
Me
Me
Me
R4
H OH N R 3 R4
(66)
H
R2
(70)
H
MeO
N
(77)
R2
OEt
H
O
R1
R2
H OH
R1
R1
R1
(61)
(42)
(68)
(65)
(55)
(77)
(76)
(48)
(52)
(50)
(75)
182
828
534
C7
Cy
O
O H
O
Carbonyl Substrate
O
O
O
O
N Me
O
OEt
B Ph
B(Pr-n)2
NMe2
N
B
O
B
O
O
B
O O
Ether, –78° to rt
–70° to 0°
N Me, N NMe2 O toluene, 80°, 72 h
O
2. Reflux, 12 h
O
B
OEt, CH2Cl2, rt, 24 h
1. O
Conditions
Cy
Cy
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
N
O
I
+
(45)
O
II
N Me
O
OEt
OH
(39)
O
B Ph (53)
I + II (65-80), I:II = 98:2
OH
H OH NMe2
H OH
Product(s) and Yield(s) (%), % ee
819
545
182
828
Refs.
535
C8
Ph
O
O
H
H
O H
O
O
O
"
O
B
O
NMe2
N
B
OEt
O
N Me
O
B Ph
B Ph
O N Me,
O
N NMe2 O
B
O
Neat, 70°
2. Reflux, 12 h
O
B
OEt, CH2Cl2, rt, 24 h
1. O
toluene, 80°, 72 h
O
Ether, –78° to rt
Ether, –78° to rt
O
B Ph
H OH
I
O
(95)
N Me O
OEt
H OH NMe2
N
O
(94), >97.5:2.5 d.r.
I (82), 96
Ph
B Ph
(97), >97.5:2.5 d.r.
O
(50)
151
828
182
819
819
536
C9
C8
Ph
O 2N
Ph H
O
OTBDPS
O
H
O H
Carbonyl Substrate
O
O
O
"
O
B
O
B
"
O
B
O
O
O
OEt
OEt
OEt
O
B
O
OEt,
O
B
O
OEt,
Neat, 70°
2. Reflux, 12 h
CH2Cl2, rt, 24 h
1. O
2. Aldehyde, 40°, 24 h
1a (1 mol%), 4 Å MS, neat
1. O
70°
Neat, 70°
Conditions
10 h
O H OH I
48 h
neat
Time
toluene
Solvent
I (87), 96
Ph
O2N
I
Ph O H I OH
OEt
H OH
(65)
(78)
OEt
(92)
O
OEt
(82), 96
Product(s) and Yield(s) (%), % ee
TBDPSO
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
(81)
151
828
150
829
151
Refs.
537
C11
C10
n-C10H21
O
O
O
H
O H OTBDPS
O
O
B
O
O
B
TMS
O
O
OEt
OEt
BBN
B(Pr-n)2
SPh
O
O
B
O
OEt,
2. Aldehyde, 45°, 24 h
1a (1 mol%), 4 Å MS, neat
1. O
2. NaOH, 4 h
1. THF, 0° to rt, 5.5 h
–70° to 0°
Neat, 70°
OH
H OH
+
O
II
OEt
O
H OH
O
O
OEt
(89)
OTBDPS
SPh (73)
OH
(87), 96
I + II (65-80), I:II = >100:1
n-C10H21
I
Ph
150
830
545
151
538
C14
a
Ph
O
B Ph
B Ph
Ether, –78° to rt
Ether, –78° to rt
Conditions
Ph
Ph
Ph
Ph
TABLE 8. ADDITION OF CYCLIC REAGENTS (Continued) Allylborane Reagent
The structure for catalyst 1 appears on the third page of Table 8.
Ph
Carbonyl Substrate
O
O
B Ph
B Ph
(94)
(90)
Product(s) and Yield(s) (%), % ee
819
819
Refs.
539
C7
H
H
H
H
O
O
O
O
O
OBn
O
B
O
B
O
O
B
Carbonyl Substrate
B
O
O
O
O
OMe
OMe
OMe
OBn
O
B O
Yb(OTf)3, H2O, 90°, 2 h
MeO
OMe
HCl, H2O, THF, 1 d
MeO
TFA, H2O, THF, 1 d
MeO
HCl, H2O, THF, 1 d
MeO
B O
O
B O
O B
O
O
Conditions
O
,
,
,
,
TABLE 9. INTRAMOLECULAR ADDITIONS
O
BnO
H
H
H
H
OH
H
OH
OH
H
H
H
OH
(28) (18)
DMF
(58) THF
CH2Cl2
Solvent
(66), 53:47 d.r.
(55)
(48)
Product(s) and Yield(s) (%), % ee
173
82
82
82
Refs.
540
C7
H
H
O
O
O
O
B
O O
B
O O
Carbonyl Substrate
O
O B
OMe O
O B O
O
Me
O
O
O B
O
O B O
Yb(OTf)3, H2O, CH3CN, 90°, 2 h
MeO
OMe
rt, 30 min
O N Li O
Me
Yb(OTf)3, H2O, CH3CN, rt, 12 h
MeO
MeO L.A., H2O, CH3CN, 90°, 2 h
OMe
Conditions
,
,
,
, I
O H
H
H
OH
OH
— >96:4
(58) (77)
Er(OTf)3 Yb(OTf)3
H2O (pH 7)
pH 7 buffer, THF
(70-74)
(60)
—
(55)
Conditions
—
(42)
—
—
d.r.
Sm(OTf)3
(44)
(56)
AgOTf
CuOTf
LiBF4
L.A.
Product(s) and Yield(s) (%), % ee
I (61), >93.5:6.5 d.r.
I
O
H
I (66)
TABLE 9. INTRAMOLECULAR ADDITIONS (Continued)
173
832
831
177
173
Refs.
541
H
H
H
H
O
O
O
O
R
N
B
O B
N
Ac N
B
O
O
B
N
Cbz
O
R
O
O
O
O
R N
O
O B
O B
O
O B O
,
CH3CN, rt, 1 d
L.A., H2O
MeO
OMe
Ac N O B
H2/CO (5 kbar), THF, 65°, 5 d
Rh(CO)2acac, BIPHEPHOS,
Cbz N
H2/CO (5 kbar), 60°, 4 d
Rh(CO)2acac, BIPHEPHOS,
MeO
OMe
MeO acetal cleavage
OMe
O
O
,
,
,
H
H
R
N
H
Yb(OTf)3
LiBF4
I
OH
L.A.
H Cbz
N
R
N
CO2Me
Boc
R
CH2Cl2
CH3CN
Solvent
(66)
Cbz
Ts
R
(49)
(51)
(45)
(43)
(66)
(80)
(60)
LiBF4, 2% H2O/CH3CN, rt
OH
(56)
DMSO, dioxane, H2O, 100°
O
(30)
(21)
SnCl2 • 2H2O, CH2Cl2, rt
dppe, Pd(OTf)2, acetone, rt
Acetal Cleavage
H
H OH
I
I
172
178
178
179
832
542
C8
C7
H
H
H
H
H
O
O
O
O
O
O
O
Cl
B
O
O
B
B
O
B
O
O
O
O
B
O
O
O
Carbonyl Substrate
acetal cleavage
MeO
OMe
acetal cleavage
MeO
OMe
HCl, H2O, THF, 1 d
MeO
OMe
CH3CN, rt, 1 d
CH3CN, rt, 1 d
Cl
O B
B O
O B
O
O
Conditions
O
,
,
,
H
H
TABLE 9. INTRAMOLECULAR ADDITIONS (Continued)
H
O
H
H
H
H
OH
OH
OH
H
H
Cl
82
172
(9) (74)
LiBF4, H2O, CH3CN
(51)
(51) 80
(55)
TMSOTf, acetone
SnCl2 • 2H2O, CH2Cl2
TFA, H2O, CHCl3, 0°
Acetal Cleavage
TFA, H2O, CHCl3, 0°
Refs.
172
dppe, Pt(OTf)2, acetone (17) 80
Acetal Cleavage
(17), 20:80 E:Z
(72)
(70), 94:6 d.r.
Product(s) and Yield(s) (%), % ee
H
OH
O
OH
543
H
H
H
H
H
O
O
O
O
O
OBn
OBn
OBn
OBn
OBn
B
O
B
O
B
O
O
B
O
O
B
O
O
O
O
OBn
O
OBn O B O
O B O
O B
OMe OBn
O
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
O B
O OBn TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
OBn TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
O B
,
,
,
,
,
BnO
BnO
BnO
BnO
BnO
H
H
H
H
H
H
H
H
H
H
OH
OH
OH
OH
OH
(54), >99:1 d.r.
(75), 51:49 d.r.
(57), 53:47 d.r.
(46), 70:30 d.r.
(35), >99:1 d.r.
171
171
171
171
171
544
C8
H
H
H
H
H
O
O
O
O
O
2
2
OBn
B
O
O
B
N
O
O
B
O
B
Ts
O
O
O
B
O
O
O
O
Carbonyl Substrate O B O
OMe 2
O
O B O
2
O
O B O
Ts N O B O
,
,
,
,
B O
O
Br,
,
Pd(OAc)2, PPh3 (3 equiv)a
I
O
60°, 4 d
Rh(CO)2acac, BIPHEPHOS, H2, CO, 5 kbar,
MeO
OMe
Yb(OTf)3, H2O, CH3CN, 90°, 2 h
MeO
OMe
Yb(OTf)3, H2O, CH3CN, 90°, 2 h
MeO
H
OMe OBn
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
Conditions
O
O
BnO
TABLE 9. INTRAMOLECULAR ADDITIONS (Continued)
N
Ts
H
H
O
OH
OH
OH
H
H
H
H (58), 51:49 d.r.
(47)
(83), 97:3 d.r.
(66), >90.5:9.5 d.r.
(56), >98.5:1.5 d.r.
OH
OH
Product(s) and Yield(s) (%), % ee
174
179
173
173
171
Refs.
545
C9
H
H
H
H
H
O
O
O
O
O O B O
O
B
B
O
B
O
O
O
B
O
O
B
O
O
O
O ,
O B O
O
O B O
O B
O
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
O B
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
2. NaOH, H2O2
THF, 60°, 24 h
B2(catechol)2, (Ph3P)2Pt(C2H4),
1. H
,
,
,
,
HO
H
H
H
H
H
H
H
H
H
OH
OH
OH
OH
OH
(42), >99:1 d.r.
(65), 93:7 d.r.
(46), >99:1 d.r.
(66), 85:15 d.r.
(10), >19:1 d.r.
833
833
833
833
186
546
C9
H
H
O
CO2Et
O
O
O
O
B
O
B O
O
O
B
O O
B
O O
Carbonyl Substrate O B O
O B O
B O O
B B O
O
OAc,
,
toluene, 100°
Pd(dba)2, AsPh3 (2 equiv)a,
CO2Et
O
O
O
pH 7 buffer, THF, rt, 30 min
O
Me N O Me O Li,
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
TFA, CHCl3/H2O (4:1), 0°, 3 h
MeO
OMe
Conditions
,
,
HO
TABLE 9. INTRAMOLECULAR ADDITIONS (Continued)
CO2Et
O
H
H
H
H
OH
OH
OH
(62)
(35)
(47), >99:1 d.r.
(44), 95:5 d.r.
Product(s) and Yield(s) (%), % ee
180
834
833
833
Refs.
547
C10
H
O
H
H O
TBDMSO
O
O
B
O
O
B
O
O
B
O
O
O
O
B O
O
,
B O O
O Me O Li,
Me N
H
O N Me
O Me
O Li,
O
pH 7 buffer, THF, rt, 30 min
O
H
O B
pH 7 buffer, THF, rt, 16 h
TBDMSO O
THF, 60°, 24 h
B2(catechol)2, (Ph3P)2Pt(C2H4),
H
2. NaOH, H2O2
1.
O
O
H
H
O
H
H
OH
TBDMSO
OH
OH
O
(51)
OH
(56), >19:1 d.r.
(38)
831
834
186
548
C10
O
O
I
O OMe,
O B O
CO2Et
O B O
O
2
CO2Et
O
OAc,
O
O
O
Br,
,
Pd(OAc)2 , PPh3 (3 equiv)a
CO2Et
B
toluene, 100°
Pd(dba)2, AsPh3 (2 equiv)a,
O B
LiBF4, H2O, CH3CN, rt, 1 d
H
O
O
O
B
H
H
O
O
Conditions
O
I (71)
I
H
H
EtO2C
TABLE 9. INTRAMOLECULAR ADDITIONS (Continued)
H MeO
H
Carbonyl Substrate
OH
O
H
H
OH
(82)
(76)
Product(s) and Yield(s) (%), % ee
174
180
177
Refs.
549
O
O
C(O)Me
Me(O)C
Me(O)C
O
O
B
O
B
O
O
B
O
O
O
O
O
O
Br,
,
O B O
OAc,
O
2
C(O)Me
O
OAc,
toluene, 100°
Pd(dba)2, AsPh3 (2 equiv)a,
O
O B
toluene, 100°
Pd(dba)2, AsPh3 (2 equiv)a,
2
O Pd(OAc)2, dppf, PPh3 (3 equiv)a
B
Me(O)C Me(O)C
I
COMe
HO
O
O
HO
HO
O
(52)
(71)
(50)
180
180
174
550
C10
H
H
H
O
O
O
O
B
O
B
O
B
O
O
O
B
O
B
O
B
O
O
O
O
Carbonyl Substrate O
,
O
,
O
,
2. NaOH, H2O2
THF, 60°, 24 h
B2(catechol)2, (Ph3P)2Pt(C2H4),
1. H
2. NaOH, H2O2
THF, 60°, 24 h
B2(catechol)2, (Ph3P)2Pt(C2H4),
1. H
2. NaOH, H2O2
THF, 60°, 24 h
B2(catechol)2, (Ph3P)2Pt(C2H4),
1. H
Conditions
TABLE 9. INTRAMOLECULAR ADDITIONS (Continued)
OH
OH
OH
OH
OH
OH (64), >19:1 dr
(57), >19:1 d.r.
(44), >19:1 d.r.
Product(s) and Yield(s) (%), % ee
186
186
186
Refs.
551
C11
O
H
O
O
H
H
H O
B
O
O
O
O
H
O B O
O
O
O
O B O
,
O B
O B
O H Br Pd(OAc)2, PPh3 (3 equiv)a
I
,
, O Br H dioxane/THF (3:1), Pd(PPh3)4, 70°, 3 h
, IZn
H2/CO, 65°, 3 d
H Rh(CO)2acac, BIPHEPHOS,
O
H
B O
H2/CO (5 kbar), 65°, 3 d
O
O B
, O Rh(CO)2acac, BIPHEPHOS,
O
H
I (78)
HO
O
I
O
H
H
H
O
O
H
(67)
H
H
O
H
O
H
H
H
H
H
O
O
H
OH
I
+
II
I + II (52), I:II = 1:1
II
+
I + II (48), I:II = 1:1
O
I
O
OH
174
79
177
177
552
C11
O
CO2Et
O
CO2Me
O
O
B
O
B
O
B
O
O
O
O
Carbonyl Substrate
I
O
B B O
O
OAc,
,
O O
,
Br,
O
CO2Et
O
2
,
OAc,
a
toluene, 100°
Pd(dba)2, AsPh3 (2 equiv)a,
O B
Pd(OAc)2, PPh3 (3 equiv)
CO2Me
O B
toluene, 100°
O Pd(dba)2, AsPh3 (2 equiv)a,
O
O
Conditions
TABLE 9. INTRAMOLECULAR ADDITIONS (Continued)
O
CO2Et
OH
CO2Me
OH
OH
(72)
(71)
(77)
Product(s) and Yield(s) (%), % ee
180
174
180
Refs.
553
C13
C12
O
H
H O
H
H
CO2Et
O
CO2Et
O
O
O
B
O
O
B
B
O
O
O
O
I
O
,
CO2Et
O
2
OAc,
,
CO2Et
O
O
H
O
H
H
O
Br,
B O
O
Me N O Me O Li,
equiv)a
pH 7 buffer, THF, rt, 30 min
O
H
Pd(OAc)2 , PPh3 (3
O B
toluene, 100°
Pd(dba)2, AsPh3 (2 equiv)a,
O B
O
H
H
O
H
H
CO2Et
OH
O
H
H
(64)
OH
(71)
(46)
831
174
180
554
C13
a
H
O
B O
Equivalents are relative to catalyst.
O
Carbonyl Substrate
O
Br
, I
O B O
Pd(OAc)2, PPh3 (3 equiv)a
H
Conditions
,
TABLE 9. INTRAMOLECULAR ADDITIONS (Continued)
OH (80)
Product(s) and Yield(s) (%), % ee
174
Refs.
ALLYLBORATION OF CARBONYL COMPOUNDS
555
REFERENCES 1
Mikhailov, B. M.; Bubnov, Y. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1964, 1874. Favre, E.; Gaudemar, M. C. R. Hebd. Seances Acad. Sci. Ser. C 1966, 263, 1543. 3 Hoffmann, R. W.; Zeiss, H.-J. Angew. Chem., Int. Ed. Engl. 1979, 18, 306. 4 Hoffmann, R. W. Pure Appl. Chem. 1988, 60, 123. 5 Hoffmann, R. W.; Niel, G.; Schlapbach, A. Pure Appl. Chem. 1990, 62, 1993. 6 Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207. 7 Hoffmann, R. W. In Stereoselective Organic Synthesis; Trost, B. M., Ed.; Blackwell Scientific Publications: Cambridge, U.K., 1994, pp 259–274. 8 Roush, W. R. In Methoden der Organischen Chemie (Houben-Weyl); Georg Thieme: Stuttgart, 1995; Vol. E21b, pp 1410–1486. 9 Brown, H. C.; Ramachandran, P. V. J. Organomet. Chem. 1995, 500, 1. 10 Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000, pp 299–402. 11 Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000, pp 403–490. 12 Ramachandran, P. V. Aldrichim. Acta 2002, 35, 23. 13 Kennedy, J. W. J.; Hall, D. G. Angew. Chem., Int. Ed. 2003, 42, 4732. 14 Kennedy, J. W. J.; Hall, D. G. In Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2005, pp 241–277. 15 Denmark, S. E.; Weber, E. J. Helv. Chim. Acta 1983, 66, 1655. 16 Li, Y.; Houk, K. N. J. Am. Chem. Soc. 1989, 111, 1236. 17 Gennari, C.; Fioravanzo, E.; Bernardi, A.; Vulpetti, A. Tetrahedron 1994, 50, 8815. 18 Vulpetti, A.; Gardner, M.; Gennari, C.; Bernardi, A.; Goodman, J. M.; Paterson, I. J. Org. Chem. 1993, 58, 1711. 19 Omoto, K.; Fujimoto, H. J. Org. Chem. 1998, 63, 8331. 20 Gajewski, J. J.; Bician, W.; Brichford, N. L.; Henderson, J. L. J. Org. Chem. 2002, 67, 4236. 21 Brown, H. C.; Racherla, U. S.; Pellechia, P. J. J. Org. Chem. 1990, 55, 1868. 22 Hoffmann, R. W.; Zeiss, H.-J. J. Org. Chem. 1981, 46, 1309. 23 Corey, E. J.; Rohde, J. J. Tetrahedron Lett. 1997, 38, 37. 24 Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586. 25 Ishiyama, T.; Ahiko, T.-a.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 12414. 26 Kennedy, J. W. J.; Hall, D. G. J. Org. Chem. 2004, 69, 4412. 27 Lachance, H.; Lu, X. S.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 10160. 28 Gravel, M.; Lachance, H.; Lu, X. S.; Hall, D. G. Synthesis 2004, 1290. 29 Rauniyar, V.; Hall, D. G. J. Am. Chem. Soc. 2004, 126, 4518. 30 Yu, S.-H.; Ferguson, M. J.; McDonald, R.; Hall, D. G. J. Am. Chem. Soc. 2005, 127, 12808. 31 Blais, J.; L’Honor´e, A.; Souli´e, J.; Cadiot, P. J. Organomet. Chem. 1974, 78, 323. 32 Tsai, D. J. S.; Matteson, D. S. Tetrahedron Lett. 1981, 22, 2751. 33 Hoffmann, R. W.; Kemper, B. Tetrahedron Lett. 1981, 22, 5263. 34 Hoffmann, R. W.; Kemper, B. Tetrahedron 1984, 40, 2219. 34a Hoffmann, R. W.; Kemper, B.; Metternich, R.; Lehmeier, T. Liebigs Ann. Chem. 1985, 2246. 35 St¨urmer, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 59. 36 Hoffmann, R. W.; Kemper, B. Tetrahedron Lett. 1982, 23, 845. 37 Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. 1990, 112, 6339. 38 Roush, W. R.; Grover, P. T.; Lin, X. F. Tetrahedron Lett. 1990, 31, 7563. 39 Roush, W. R.; Grover, P. T. Tetrahedron Lett. 1990, 31, 7567. 40 Roush, W. R.; Grover, P. T. Tetrahedron 1992, 48, 1981. 41 Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1982, 21, 555. 42 Schlosser, M.; Rauchschwalbe, G. J. Am. Chem. Soc. 1978, 100, 3258. 43 Fujita, K.; Schlosser, M. Helv. Chim. Acta 1982, 65, 1258. 44 Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293. 45 Barrett, A. G. M.; Malecha, J. W. J. Org. Chem. 1991, 56, 5243. 2
556 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
90 91
92 93 94
ORGANIC REACTIONS
Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1982, 47, 2498. Hoffmann, R. W.; Kemper, B.; Metternich, R.; Lehmeier, T. Liebigs Ann. Chem. 1985, 2246. Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110, 1535. Hoffmann, R. W.; Feussner, G.; Zeiss, H.-J.; Schulz, S. J. Organomet. Chem. 1980, 187, 321. Corey, E. J.; Yu, C.-M.; Kim, S. S. J. Am. Chem. Soc. 1989, 111, 5495. Beckmann, E.; Hoppe, D. Synthesis 2005, 217. Wuts, P. G. M.; Thompson, P. A.; Callen, G. R. J. Org. Chem. 1983, 48, 5398. Hoffmann, R. W.; Schlapbach, A. Tetrahedron 1992, 48, 1959. Brown, H. C.; De Lue, N. R.; Yamamoto, Y.; Maruyama, K.; Kasahara, T.; Murahashi, S.-i.; Sonoda, A. J. Org. Chem. 1977, 42, 4088. Hoffmann, R. W.; Schlapbach, A. Liebigs Ann. Chem. 1990, 1243. Matteson, D. S.; Majumdar, D. J. Am. Chem. Soc. 1980, 102, 7588. Nyzam, V.; Belaud, C.; Villi´eras, J. Tetrahedron Lett. 1993, 34, 6899. Nyzam, V.; Belaud, C.; Zammattio, F.; Villi´eras, J. Bull. Soc. Chim. Fr. 1997, 134, 583. Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 898. Zhu, N.; Hall, D. G. J. Org. Chem. 2003, 68, 6066. Roush, W. R.; Peseckis, S. M.; Walts, A. E. J. Org. Chem. 1984, 49, 3429. Matteson, D. S. Tetrahedron 1998, 54, 10555. Ditrich, K.; Bube, T.; St¨urmer, R.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1986, 25, 1028. Hoffmann, R. W.; Ditrich, K.; K¨oster, G.; St¨urmer, R. Chem. Ber. 1989, 122, 1783. St¨urmer, R.; Hoffmann, R. W. Synlett 1990, 759. Hoffmann, R. W.; Landmann, B. Chem. Ber. 1986, 119, 2013. Hoffmann, R. W.; Dresely, S.; Lanz, J. W. Chem. Ber. 1988, 121, 1501. Hoffmann, R. W.; Dresely, S. Chem. Ber. 1989, 122, 903. Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1985, 107, 2564. Yamamoto, Y.; Fujikawa, R.; Yamada, A.; Miyaura, N. Chem. Lett. 1999, 1069. Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem. Commun. 1996, 2073. Suginome, M.; Matsuda, T.; Yoshimoto, T.; Ito, Y. Org. Lett. 1999, 1, 1567. Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328. Ishiyama, T.; Ahiko, T.-A.; Miyaura, N. Tetrahedron Lett. 1996, 37, 6889. Olsson, V. J.; Sebelius, S.; Selander, N.; Szab´o, K. J. J. Am. Chem. Soc. 2006, 128, 4588. Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034. Murata, M.; Watanabe, S.; Masuda, Y. Tetrahedron Lett. 2000, 41, 5877. Falck, J. R.; Bondlela, M.; Ye, J.; Cho, S.-D. Tetrahedron Lett. 1999, 40, 5647. Watanabe, T.; Miyaura, N.; Suzuki, A. J. Organomet. Chem. 1993, 444, C1. Hoffmann, R. W.; Sander, T.; Hense, A. Liebigs Ann. Chem. 1993, 771. Sadhu, K. M.; Matteson, D. S. Organometallics 1985, 4, 1687. Hoffmann, R. W.; Niel, G. Liebigs Ann. Chem. 1991, 1195. Hoffmann, R. W.; Dresely, S. Angew. Chem., Int. Ed. Engl. 1986, 25, 189. Brown, H. C.; Rangaishenvi, M. V.; Jayaraman, S. Organometallics 1992, 11, 1948. Pietruszka, J.; Sch¨one, N. Angew. Chem., Int. Ed. 2003, 42, 5638. Pietruszka, J.; Sch¨one, N. Eur. J. Org. Chem. 2004, 5011. Lombardo, M.; Morganti, S.; Tozzi, M.; Trombini, C. Eur. J. Org. Chem. 2002, 2823. Yamamoto, Y.; Miyairi, T.; Ohmura, T.; Miyaura, N. J. Org. Chem. 1999, 64, 296. Vaultier, M.; Truchet, F.; Carboni, B.; Hoffmann, R. W.; Denne, I. Tetrahedron Lett. 1987, 28, 4169. Yamamoto, Y.; Takahashi, M.; Miyaura, N. Synlett 2002, 128. Bubnov, Y. N.; Gurskii, M. E.; Gridnev, I. D.; Ignatenko, A. V.; Ustynyuk, Y. A.; Mstislavsky, V. I. J. Organomet. Chem. 1992, 424, 127. Kramer, G. W.; Brown, H. C. J. Organomet. Chem. 1977, 132, 9. Zweifel, G.; Horng, A. Synthesis 1973, 67, 672. Jutzi, P.; Seufert, A. Chem. Ber. 1979, 112, 2481.
ALLYLBORATION OF CARBONYL COMPOUNDS 95
557
Hancock, K. G.; Kramer, J. D. J. Am. Chem. Soc. 1973, 95, 6463. Hancock, K. G.; Kramer, J. D. J. Organomet. Chem. 1974, 64, C29. 97 Le Serre, S.; Guillemin, J. C. Organometallics 1997, 16, 5844. 98 Batey, R. A.; Thadani, A. N.; Smil, D. V. Tetrahedron Lett. 1999, 40, 4289. 99 Batey, R. A.; Thadani, A. N.; Smil, D. V.; Lough, A. J. Synthesis 2000, 990. 100 Thadani, A. N.; Batey, R. A. Org. Lett. 2002, 4, 3827. 101 Lautens, M.; Maddess, M. L.; Sauer, E. L. O.; Ouellet, S. G. Org. Lett. 2002, 4, 83. 102 Hoffmann, R. W.; Sander, T. Chem. Ber. 1990, 123, 145. 103 Kramer, G. W.; Brown, H. C. J. Org. Chem. 1977, 42, 2292. 104 Metternich, R.; Hoffmann, R. W. Tetrahedron Lett. 1984, 25, 4095. 105 Wang, Z.; Meng, X.-J.; Kabalka, G. W. Tetrahedron Lett. 1991, 32, 4619. 106 Wang, Z.; Meng, X.-J.; Kabalka, G. W. Tetrahedron Lett. 1991, 32, 5677. 107 Pace, R. D.; Kabalka, G. W. J. Org. Chem. 1995, 60, 4838. 108 Kabalka, G. W.; Yang, K.; Wang, Z. Synth. Commun. 2001, 31, 511. 109 Wang, Z.; Meng, X. J.; Kabalka, G. W. Tetrahedron Lett. 1991, 32, 1945. 110 Kabalka, G. W.; Narayana, C.; Reddy, N. K. Tetrahedron Lett. 1996, 37, 2181. 111 Buynak, J. D.; Geng, B.; Uang, S.; Strickland, J. B. Tetrahedron Lett. 1994, 35, 985. 112 Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 9, 2199. 113 Roush, W. R. J. Org. Chem. 1991, 56, 4151. 114 Hoffmann, R. W.; Zeiss, H.-J.; Ladner, W.; Tabche, S. Chem. Ber. 1982, 115, 2357. 115 Hoffmann, R. W.; Weidmann, U. Chem. Ber. 1985, 118, 3966. 116 Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61. 117 Cornforth, J. W.; Cornforth, R. H.; Mathew, K. K. J. Chem. Soc. 1959, 112. 118 Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J. Am. Chem. Soc. 1986, 108, 3422. 119 Gung, B. W.; Xue, X. W. Tetrahedron: Asymmetry 2001, 12, 2955. 120 Hoffmann, R. W.; Herold, T. Angew. Chem., Int. Ed. Engl. 1978, 18, 768. 121 Herold, T.; Schrott, U.; Hoffmann, R. W.; Schnelle, G.; Ladner, W.; Steinbach, K. Chem. Ber. 1981, 114, 359. 122 Hoffmann, R. W.; Herold, T. Chem. Ber. 1981, 114, 375. 123 Haruta, R.; Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Am. Chem. Soc. 1982, 104, 7667. 124 Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186. 125 Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Park, J. C. J. Org. Chem. 1990, 55, 4109. 126 Roush, W. R.; Halterman, R. L. J. Am. Chem. Soc. 1986, 108, 294. 127 Gung, B. W.; Xue, X. W.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 10692. 128 Roush, W. R.; Park, J. C. J. Org. Chem. 1990, 55, 1143. 129 Roush, W. R.; Park, J. C. Tetrahedron Lett. 1990, 31, 4707. 130 Roush, W. R.; Park, J. C. Tetrahedron Lett. 1991, 32, 6285. 131 Roush, W. R.; Banfi, L. J. Am. Chem. Soc. 1988, 110, 3979. 132 Roush, W. R.; Grover, P. T. J. Org. Chem. 1995, 60, 3806. 133 Reetz, M. T.; Zierke, T. Chem. Ind. (London) 1988, 663. 134 Chen, Y.; Eltepu, L.; Wenthworth, J. P. Tetrahedron Lett. 2004, 45, 8285. 135 Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. 2004, 6, 2701. 136 Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092. 136a Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432. 137 Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919. 138 Brown, H. C.; Jadhav, P. K. Tetrahedron Lett. 1984, 25, 1215. 139 Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401. 140 Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432. 141 Short, R. P.; Masamune, S. J. Am. Chem. Soc. 1989, 111, 1892. 142 Garcia, J.; Kim, B. M.; Masamune, S. J. Org. Chem. 1987, 52, 4831. 143 Burgos, C. H.; Canales, E.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127, 8044. 144 Lai, C.; Soderquist, J. A. Org. Lett. 2005, 7, 799. 145 Canales, E.; Prasad, K. G.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127, 11572. 146 Hoffmann, R. W.; Landmann, B. Chem. Ber. 1986, 119, 1039. 96
558 147 148 149 150 151 152
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
171 172 173
174 175 176
177 178 179 180 181 182
183 184 185 186 187 188
189 190 191 192 193 194
ORGANIC REACTIONS
Hoffmann, R. W.; Dresely, S. Tetrahedron Lett. 1987, 28, 5303. Hoffmann, R. W.; Weidmann, U. J. Organomet. Chem. 1980, 195, 137. Hoffmann, R. W.; Dresely, S.; Hildebrandt, B. Chem. Ber. 1988, 121, 2225. Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 9308. Deligny, M.; Carreaux, F.; Toupet, L.; Carboni, B. Adv. Synth. Catal. 2003, 345, 1215. Gao, X.; Hall, D. G.; Deligny, M.; Favre, A.; Carreaux, F.; Carboni, C. Chem.—Eur. J. 2006, 13, 3132. Corey, E. J.; Yu, C.-M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112, 878. Tamao, K.; Nakajo, E.; Ito, Y. J. Org. Chem. 1987, 52, 957. Wuts, P. G. M.; Bigelow, S. S. J. Chem. Soc., Chem. Commun. 1984, 736. Coleman, R. S.; Kong, J.-S. J. Am. Chem. Soc. 1998, 120, 3538. Brown, H. C.; Narla, G. J. Org. Chem. 1995, 60, 4686. Hunt, J. A.; Roush, W. R. J. Org. Chem. 1997, 62, 1112. Hu, S.; Jayaraman, S.; Oehlschlager, A. C. J. Org. Chem. 1996, 61, 7513. Barrett, A. G. M.; Seefeld, M. A.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1994, 1053. Chataigner, I.; Zammattio, F.; Lebreton, J.; Villi´eras, J. Synlett 1998, 275. Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179. Rauniyar, V.; Hall, D. G. Angew. Chem., Int. Ed. 2006, 45, 2426. Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8910. Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1. Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1987, 52, 319. Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570. Ogawa, A. K.; Armstrong, R. W. J. Am. Chem. Soc. 1998, 120, 12435. Roush, W. R.; Palkowitz, A. D.; Palmer, M. A. J. J. Org. Chem. 1987, 52, 316. Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Straub, J. A.; Palkowitz, A. D. J. Org. Chem. 1990, 55, 4117. Sander, T.; Hoffmann, R. W. Liebigs Ann. Chem. 1993, 1193. Hoffmann, R. W.; Hense, A. Liebigs Ann. 1996, 1283. Yamamoto, Y.; Kurihara, K.; Yamada, A.; Takahashi, M.; Takahashi, Y.; Miyaura, N. Tetrahedron 2003, 59, 537. Watanabe, T.; Sakai, M.; Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1994, 467. Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 13644. Barrett, A. G. M.; Braddock, D. C.; de Koning, P. D.; White, A. J. P.; Williams, D. J. J. Org. Chem. 2000, 65, 375. Hoffmann, R. W.; Kr¨uger, J.; Bruckner, D. New J. Chem. 2001, 25, 102. Hoffmann, R. W.; Br¨uckner, D.; Gerusz, V. J. Heterocycles 2000, 52, 121. Hoffmann, R. W.; Br¨uckner, D. New J. Chem. 2001, 25, 369. Ahiko, T.-a.; Ishiyama, T.; Miyaura, N. Chem. Lett. 1997, 811. Tailor, J.; Hall, D. G. Org. Lett. 2000, 2, 3715. Tour´e, B. B.; Hoveyda, H. R.; Tailor, J.; Ulaczyk-Lesanko, A.; Hall, D. G. Chem. Eur. J. 2003, 9, 466. Six, Y.; Lallemand, J.-Y. Tetrahedron Lett. 1999, 40, 1295. Goldberg, S. D.; Grubbs, R. H. Angew. Chem., Int. Ed. 2002, 41, 807. Morgan, J. B.; Morken, J. P. Org. Lett. 2003, 5, 2573. Ballard, C. E.; Morken, J. P. Synthesis 2004, 1321. Woodward, A. R.; Burks, H. E.; Chan, L. M.; Morken, J. P. Org. Lett. 2005, 7, 5505. Nicolaou, K. C.; Ninkovic, S.; Sarabia, F.; Vourloumis, D.; He, Y.; Vallberg, H.; Finlay, M. R. V.; Yang, Z. J. Am. Chem. Soc. 1997, 119, 7974. Bratz, M.; Bullock, W. H.; Overman, L. E.; Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958. Roush, W. R.; Wada, C. K. J. Am. Chem. Soc. 1994, 116, 2151. Williams, D. R.; Plummer, S. V.; Patnaik, S. Angew. Chem., Int. Ed. 2003, 42, 3934. Denmark, S. E.; Yang, S.-M. J. Am. Chem. Soc. 2002, 124, 15196. Marron, T. G.; Roush, W. R. Tetrahedron Lett. 1995, 36, 1581. Roush, W. R.; Marron, T. G. Tetrahedron Lett. 1993, 34, 5421.
ALLYLBORATION OF CARBONYL COMPOUNDS 195
196
197 198 199 200 201 202 203 204 205
206 207 208 209 210 211 212 213 214 215
216 217
218 219 220 221 222
223 224 225 226 227 228 229 230 231 232 233 234 235
236 237 238
239
559
Scheidt, K. A.; Tasaka, A.; Bannister, T. D.; Wendt, M. D.; Roush, W. R. Angew. Chem., Int. Ed. 1999, 38, 1652. Smith, A. B., III; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. J. Am. Chem. Soc. 2003, 125, 350. Andersen, M. W.; Hildebrandt, B.; Dahmann, G.; Hoffmann, R. W. Chem. Ber. 1991, 124, 2127. Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2005, 127, 1628. Tour´e, B. B.; Hall, D. G. Angew. Chem., Int. Ed. 2004, 43, 2001. Tour´e, B. B.; Hall, D. G. J. Org. Chem. 2005, 69, 8429. Hicks, J. D.; Flamme, E. M.; Roush, W. R. Org. Lett. 2005, 7, 5509. Flamme, E. M.; Roush, W. R. Org. Lett. 2005, 7, 1411. Owen, R. M.; Roush, W. R. Org. Lett. 2005, 7, 3941. Ramachandran, P. V.; Reddy, M. V. R.; Brown, H. C. Tetrahedron Lett. 2000, 41, 583. Nelson, S. G.; Cheung, W. S.; Kassick, A. J.; Hilfiker, M. A. J. Am. Chem. Soc. 2002, 124, 13654. Lambert, W. T.; Roush, W. R. Org. Lett. 2005, 7, 5501. Hoffmann, R. W.; Sch¨afer, F.; Haeberlin, E.; Rohde, T.; K¨orber, K. Synthesis 2000, 2060. Hoffmann, R. W.; Rohde, T.; Haeberlin, E.; Sch¨afer, F. Org. Lett. 1999, 1, 1713. Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763. Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2004. Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1. Mukaiyama, T.; Kobayashi, S. Org. React. 1994, 46, 1. Konig, K.; Neuman, W. P. Tetrahedron Lett. 1967, 493. Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467. Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001. Faller, J. W.; Sams, D. W. T.; Liu, X. J. Am. Chem. Soc. 1996, 118, 1217. Kim, J. G.; Waltz, K. M.; Garcia, I. F.; Kwiatkowski, D.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 12580. Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 4723. Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. Synlett 1997, 88. Marshall, J. A. Chem. Rev. 1996, 96, 31. Furuta, K.; Mouri, M.; Yamamoto, H. Synlett 1991, 561. Ishihara, K.; Mouri, M.; Gao, Q.; Maruyama, T.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 11490. Gauthier, D. R.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2363. Bode, J. W.; Gauthier, D. R.; Carreira, E. M. Chem. Commun. 2001, 2560. Wadamoto, M.; Ozasa, N.; Yanagisawa, A.; Yamamoto, H. J. Org. Chem. 2003, 68, 5593. Yamasaki, S.; Fujii, K.; Wada, R.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 6536. Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488. Denmark, S. E.; Fu, J. Chem. Commun. 2003, 167. Masse, C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293. Kubota, K.; Leighton, J. L. Angew. Chem., Int. Ed. 2003, 42, 946. Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2004, 6, 4375. Duthaler, R. O.; Hafner, A. Chem. Rev. 1992, 92, 807. Xia, G.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 2554. Arnauld, T.; Barrett, A. G. M.; Seifried, R. Tetrahedron Lett. 2001, 42, 7899. Cavallaro, C. L.; Herpin, T.; McGuiness, B. F.; Shimshock, Y. C.; Dolle, R. E. Tetrahedron Lett. 1999, 40, 2711. Micalizio, G. C.; Schreiber, S. L. Angew. Chem., Int. Ed. 2002, 41, 3272. Hoffmann, R. W.; Dresely, S. Synthesis 1988, 103. Mikhailov, B. M.; Bubnov, Y. N.; Tsyban, A. V.; Grigoryan, M. S. J. Organomet. Chem. 1978, 154, 131. Brown, H. C.; Jadhav, P. K. J. Org. Chem. 1984, 49, 4089.
560 240
241 242 243 244 245 246 247 248
249
250
251 252 253
254 255 256
257
258
259 260 261 262 263 264 265
266 267 268
269
270 271
272 273 274 275 276 277 278 279 280
ORGANIC REACTIONS
Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewicz, M.; Racherla, U. S. J. Am. Chem. Soc. 1990, 112, 2389. Brown, H. C.; Kulkarni, S. V.; Racherla, U. S. J. Org. Chem. 1994, 59, 365. Brown, H. C.; Kulkarni, S. V.; Racherla, U. S.; Dhokte, U. P. J. Org. Chem. 1998, 63, 7030. Redlich, H.; Schneider, B.; Hoffmann, R. W.; Geueke, K. J. Liebigs Ann. Chem. 1983, 393. Herold, T.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1978, 17, 768. Itsuno, S.; Watanabe, K.; El-Shehawy, A. A. Adv. Synth. Catal. 2001, 343, 89. Itsuno, S.; El-Shehawy, A. A.; Sarhan, A. A. React. Funct. Polym. 1998, 37, 283. Reddy, M. V. R.; Yucel, A. J.; Ramachandran, P. V. J. Org. Chem. 2001, 66, 2512. Kumar, D. J. S.; Madhavan, S.; Ramachandran, P. V.; Brown, H. C. Tetrahedron: Asymmetry 2000, 11, 4629. Ramachandran, P. V.; Padiya, K. J.; Rauniyar, V.; Reddy, M. V. R.; Brown, H. C. Tetrahedron Lett. 2004, 45, 1015. Ramachandran, P. V.; Prabhudas, B.; Chandra, J. S.; Reddy, M. V. R. J. Org. Chem. 2004, 69, 6294. Reddy, M. V. R.; Brown, H. C.; Ramachandran, P. V. J. Organomet. Chem. 2001, 624, 239. Bonini, C.; Chiummiento, L.; Pullez, M.; Solladie, G.; Colobert, F. J. Org. Chem. 2004, 69, 5015. Paterson, I.; Coster, M. J.; Chen, D. Y. M.; Gibson, K. R.; Wallace, D. J. Org. Biomol. Chem. 2005, 3, 2410. Ramachandran, P. V.; Chen, G. M.; Brown, H. C. Tetrahedron Lett. 1997, 38, 2417. Chen, G. M.; Ramachandran, P. V. Tetrahedron: Asymmetry 1997, 8, 3935. Bubnov, Y. N.; Lavrinovich, L. I.; Zykov, A. Y.; Ignatenko, A. V. Mendeleev Commun. 1992, 86. Ramachandran, P. V.; Krzeminski, M. P.; Reddy, M. V. R.; Brown, H. C. Tetrahedron: Asymmetry 1999, 10, 11. Trost, B. M.; Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.; Shin, S.; Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666. Smith, A. B., III; Ott, G. R. J. Am. Chem. Soc. 1996, 118, 13095. Roush, W. R.; Palkowitz, A. D. J. Org. Chem. 1989, 54, 3009. Reddy, Y. K.; Falck, J. R. Org. Lett. 2002, 4, 969. Mikhailov, B. M.; Bubnov, Y. N. Russ. Chem. Bull. 1964, 13, 1774. Zhou, W.; Liang, S.; Yu, S.; Luo, W. J. Organomet. Chem. 1993, 452, 13. Paterson, I.; Wallace, D. J.; Gibson, K. R. Tetrahedron Lett. 1997, 38, 8911. White, J. B.; Blakemore, P. R.; Browder, C. C.; Hong, J.; Lincoln, C. M.; Nagornyy, P. A.; Robarge, L. A.; Wardrop, D. J. J. Am. Chem. Soc. 2001, 123, 8593. Dineen, T. A.; Roush, W. R. Org. Lett. 2004, 6, 2043. Smith, A. B., III; Safonov, I. G.; Corbett, R. M. J. Am. Chem. Soc. 2002, 124, 11102. Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Schelhaas, M. J. Am. Chem. Soc. 2001, 123, 10942. Diez-Martin, D.; Kotecha, N. R.; Ley, S. V.; Mantegani, S.; Menendez, J. C.; Organ, H. M.; White, A. D.; Bank, B. J. Tetrahedron 1992, 48, 7899. Nicolaou, K. C.; Ahn, K. H. Tetrahedron Lett. 1989, 30, 1217. Smith, A. B., III; Lin, Q. L.; Nakayama, K.; Boldi, A. M.; Brook, C. S.; McBriar, M. D.; Moser, W. H.; Sobukawa, M.; Zhuang, L. Tetrahedron Lett. 1997, 38, 8675. Crimmins, M. T.; Washburn, D. G. Tetrahedron Lett. 1998, 39, 7487. Wu, Y. S.; Esser, L.; De Brabander, J. K. Angew. Chem., Int. Ed. 2000, 39, 4308. Shi, Y.; Peng, L. F.; Kishi, Y. J. Org. Chem. 1997, 62, 5666. Hoffmann, R. W.; Metternich, R.; Lanz, J. W. Liebigs Ann. Chem. 1987, 881. Thadani, A. N.; Batey, R. A. Tetrahedron Lett. 2003, 44, 8051. Roush, W. R.; Hunt, J. A. J. Org. Chem. 1995, 60, 798. Yakelis, N. A.; Roush, W. R. J. Org. Chem. 2003, 68, 3838. Pattenden, G.; Plowright, A. T. Tetrahedron Lett. 2000, 41, 983. Pattenden, G.; Gonzalez, M. A.; Little, P. B.; Millan, D. S.; Plowright, A. T.; Tornos, J. A.; Ye, T. Org. Biomol. Chem. 2003, 1, 4173.
ALLYLBORATION OF CARBONYL COMPOUNDS 280a 281 282 283
284
285 286 287
288 289
290 291
292 293 294
295
296 297 298 299 300
301 302 303 304 305 306 307
308
309 310 311 312
313 314
315 316 317 318
319 320
561
Pattenden, G.; Plowright, A. T.; Tornos, J. A.; Ye, T. Tetrahedron Lett. 1998, 39, 6099. Deng, L.; Scharer, O. D.; Verdine, G. L. J. Am. Chem. Soc. 1997, 119, 7865. Jingensons, A.; Marinozzi, M.; Pellicciari, R. Tetrahedron 2005, 61, 373. Nicolaou, K. C.; Groneberg, R. D.; Stylianides, N. A.; Miyazaki, T. J. Chem. Soc., Chem. Commun. 1990, 1275. Groneberg, R. D.; Miyazaki, T.; Stylianides, N. A.; Schulze, T. J.; Stahl, W.; Schreiner, E. P.; Suzuki, T.; Iwabuchi, Y.; Smith, A. L.; Nicolaou, K. C. J. Am. Chem. Soc. 1993, 115, 7593. Nicolaou, K. C.; Koide, K.; Bunnage, N. E. Chem. Eur. J. 1995, 1, 454. Nicolaou, K. C.; Bunnage, M. E.; Koide, K. J. Am. Chem. Soc. 1994, 116, 8402. Nicolaou, K. C.; Pihko, P. M.; Diedrichs, N.; Zou, N.; Bernal, F. Angew. Chem., Int. Ed. 2001, 40, 1262. Hoffmann, R. W.; Endesfelder, A.; Zeiss, H. J. Carbohydr. Res. 1983, 123, 320. Barrett, A. G. M.; Beall, J. C.; Gibson, V. C.; Gilles, M. R.; Walker, G. L. P. Chem. Commun. 1996, 2229. Chen, W.; Liu, Y.; Chen, Z. Eur. J. Org. Chem. 2005, 8, 1665. Nicolaou, K. C.; King, N. P.; Finlay, M. R. V.; He, Y.; Roschangar, F.; Vourloumis, D.; Vallberg, H.; Sarabia, F.; Ninkovic, S.; Hepworth, D. Bioorg. Med. Chem. 1999, 7, 665. Ramachandran, P. V.; Burghardt, T. E.; Reddy, M. V. R. J. Org. Chem. 2005, 70, 2329. Nieczypor, P.; Mol, J. C.; Bespalova, N. B.; Bubnov, Y. N. Eur. J. Org. Chem. 2004, 812. Bubnov, Y. N.; Pastukhov, F. V.; Yampolsky, I. V.; Ignatenko, A. V. Eur. J. Org. Chem. 2000, 1503. Nicolaou, K. C.; Patron, A. P.; Ajito, K.; Richter, P. K.; Khatuya, H.; Bertinato, P.; Miller, R. A.; Tomaszewski, M. J. Chem. Eur. J. 1996, 2, 847. Aissa, C.; Riveiros, R.; Ragot, J.; F¨urstner, A. J. Am. Chem. Soc. 2003, 125, 15512. Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc. 1990, 112, 6348. Judd, T. C.; Bischoff, A.; Kishi, Y.; Adusumilli, S.; Small, P. L. C. Org. Lett. 2004, 6, 4901. Hoffmann, R. W.; Froech, S. Tetrahedron Lett. 1985, 26, 1643. Matsushima, Y.; Nakayama, T.; Tohyama, S.; Eguchi, T.; Kakinuma, K. J. Chem. Soc., Perkin Trans. 1 2001, 569. Chen, Z.; Ye, T. Synlett 2005, 2781. Roush, W. R.; Straub, J. A.; Vannieuwenhze, M. S. J. Org. Chem. 1991, 56, 1636. Roush, W. R.; Straub, J. A. Tetrahedron Lett. 1986, 27, 3349. Roush, W. R.; Lin, X. F.; Straub, J. A. J. Org. Chem. 1991, 56, 1649. Steel, P. G.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1997, 371. Merifield, E.; Steel, P. G.; Thomas, E. J. J. Chem. Soc., Chem. Commun. 1987, 1826. Smith, A. B., III; Chen, S. S. Y.; Nelson, F. C.; Reichert, J. M.; Salvatore, B. A. J. Am. Chem. Soc. 1995, 117, 12013. Smith, A. B., III; Chen, S. S. Y.; Nelson, F. C.; Reichert, J. M.; Salvatore, B. A. J. Am. Chem. Soc. 1997, 119, 10935. Barth, M.; Bellamy, F. D.; Renaut, P.; Samreth, S.; Schuber, F. Tetrahedron 1990, 46, 6731. Paterson, I.; Anderson, E. A.; Dalby, S. M.; Loiseleur, O. Org. Lett. 2005, 7, 4125. White, J. D.; Kim, T. S.; Nambu, M. J. Am. Chem. Soc. 1995, 117, 5612. Nagle, D. G.; Geralds, R. S.; Yoo, H. D.; Gerwick, W. H.; Kim, T. S.; Nambu, M.; White, J. D. Tetrahedron Lett. 1995, 36, 1189. Xu, Z.; Chen, Z.; Ye, T. Tetrahedron: Asymmetry 2004, 15, 355. Ramachandran, P. V.; Krezminski, M. P.; Reddy, M. V. R.; Brown, H. C. Tetrahedron: Asymmetry 1999, 10, 11. Ghosh, A. K.; Wang, Y. Tetrahedron Lett. 2000, 41, 2319. Naito, H.; Kawahara, E.; Maruta, K.; Maeda, M.; Sasaki, S. J. Org. Chem. 1995, 60, 4419. Mulzer, J.; Hanbauer, M. Tetrahedron Lett. 2000, 41, 33. Ahmed, A.; Hoegenauer, E. K.; Enev, V. A. S.; Hanbauer, M.; Kaehlig, H.; Ohler, E.; Mulzer, J. J. Org. Chem. 2003, 68, 3026. Provencal, D. P.; Gardelli, C.; Lafontaine, J. A.; Leahy, J. W. Tetrahedron Lett. 1995, 36, 6033. Lafontaine, J. A.; Provencal, D. P.; Gardelli, C.; Leahy, J. W. J. Org. Chem. 2003, 68, 4215.
562 321 322 323 324 325 326 327 328
329
330
331
332 333 334 335 336 337
338 339
340 341 342 343 344
345 346 347 348
349 350 351 352 353 354
355
356 357 358 359
360 361 362 363
ORGANIC REACTIONS
Takahata, H.; Ouchi, H.; Ichinose, M.; Nemoto, H. Org. Lett. 2002, 4, 3459. Dinh, T. Q.; Du, X.; Smith, C. D.; Armstrong, R. W. J. Org. Chem. 1997, 62, 6773. Dinh, T. Q.; Smith, C. D.; Armstrong, R. W. J. Org. Chem. 1997, 62, 790. McAlpine, I. J.; Armstrong, R. W. Tetrahedron Lett. 2000, 41, 1849. Rychnovsky, S. D.; Griesgraber, G.; Schlegel, R. J. Am. Chem. Soc. 1995, 117, 197. Wender, P. A.; Clarke, M. O.; Horan, J. C. Org. Lett. 2005, 7, 1995. Wender, P. A.; Koehler, M. F. T.; Sendzik, M. Org. Lett. 2003, 5, 4549. Kang, S. H.; Kang, S. Y.; Kim, C. M.; Choi, H. W.; Jun, H. S.; Lee, B. M.; Park, C. M.; Jeong, J. W. Angew. Chem., Int. Ed. 2003, 42, 4779. Kang, S. H.; Kang, S. Y.; Choi, H. W.; Kim, C. M.; Jun, H. S.; Youn, J. H. Synthesis 2004, 1102. Hayward, M. M.; Roth, R. M.; Duffy, K. J.; Dalko, P. I.; Stevens, K. L.; Guo, J.; Kishi, Y. Angew. Chem., Int. Ed. 1998, 37, 192. Kang, S. H.; Choi, H. W.; Kim, C. M.; Jun, H. S.; Kang, S. Y.; Jeong, J. W.; Youn, J. H. Tetrahedron Lett. 2003, 44, 6817. Murai, A. J. Toxicol.: Toxin Rev. 2003, 22, 617. Ishihara, J.; Yamamoto, Y.; Kanoh, N.; Murai, A. Tetrahedron Lett. 1999, 40, 4387. Grieco, P. A.; Speake, J. D.; Yeo, S. K.; Miyashita, M. Tetrahedron Lett. 1998, 39, 1125. Liu, B.; Zhou, W. S. Org. Lett. 2004, 6, 71. Ghosh, A. K.; Kim, J. H. Tetrahedron Lett. 2003, 44, 3967. Jirousek, M. R.; Cheung, A. W. H.; Babine, R. E.; Sass, P. M.; Schow, S. R.; Wick, M. M. Tetrahedron Lett. 1993, 34, 3671. Bhattacharjee, A.; Soltani, O.; De Brabander, J. K. Org. Lett. 2002, 4, 481. Barry, C. S.; Bushby, N.; Harding, J. R.; Hughes, R. A.; Parker, G. D.; Roe, R.; Willis, C. L. Chem. Commun. 2005, 3727. Prahlad, V.; El-Ahl, A. A. S.; Donaldson, W. A. Tetrahedron: Asymmetry 2000, 11, 3091. White, J. D.; Hong, J.; Robarge, L. A. Tetrahedron Lett. 1999, 40, 1463. Roush, W. R.; Wada, C. K. Tetrahedron Lett. 1994, 35, 7347. Truesdale, L. K.; Swanson, D.; Sun, R. C. Tetrahedron Lett. 1985, 26, 5009. Barmann, H.; Prahlad, V.; Tao, C.; Yun, Y. K.; Wang, Z.; Donaldson, W. A. Tetrahedron 2000, 56, 2283. Prahlad, V.; Donaldson, W. A. Tetrahedron Lett. 1996, 37, 9169. Rychnovsky, S. D.; Rodriguez, C. J. Org. Chem. 1992, 57, 4793. Rychnovsky, S. D.; Hoye, R. C. J. Am. Chem. Soc. 1994, 116, 1753. Ahmed, M.; Barrett, A. G. M.; Beall, J. C.; Braddock, D. C.; Flack, K.; Gibson, V. C.; Procopiou, P. A.; Salter, M. M. Tetrahedron 1999, 55, 3219. Sebelius, S.; Szab´o, K. J. Eur. J. Org. Chem. 2005, 2539. Roush, W. R.; Banfi, L.; Park, J. C.; Hoong, L. K. Tetrahedron Lett. 1989, 30, 6457. Corey, E. J.; Kim, S. S. Tetrahedron Lett. 1990, 31, 3715. Ollivier, C.; Panchaud, P.; Renaud, P. Synthesis 2001, 1573. Kabalka, G. W.; Venkataiah, B.; Das, B. C. Green Chem. 2002, 4, 472. Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.; Li, Y. W.; Weyershausen, B.; Mitchell, H. J.; Wei, H. X.; Guntupalli, P.; Hepworth, D.; Sugita, K. J. Am. Chem. Soc. 2003, 125, 15433. Nicolaou, K. C.; Li, Y.; Fylaktakidou, K. C.; Mitchell, H. J.; Wei, H. X.; Weyershausen, B. Angew. Chem., Int. Ed. 2001, 40, 3849. Nicolaou, K. C.; Li, Y. W.; Weyershausen, B.; Wei, H. X. Chem. Commun. 2000, 307. Smith, A. B., III; Barbosa, J.; Wong, W.; Wood, J. L. J. Am. Chem. Soc. 1996, 118, 8316. Hoemann, M. Z.; Agrios, K. A.; Aube, J. Tetrahedron 1997, 53, 11087. Vong, B. G.; Kim, S. H.; Abraham, S.; Theodorakis, E. A. Angew. Chem., Int. Ed. 2004, 43, 3947. Williams, D. R.; Ihle, D. C.; Plummer, S. V. Org. Lett. 2001, 3, 1383. White, J. D.; Smits, H. Org. Lett. 2005, 7, 235. Nadolski, G. T.; Davidson, B. S. Tetrahedron Lett. 2001, 42, 797. Ito, H.; Imai, N.; Tanikawa, S.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 1795.
ALLYLBORATION OF CARBONYL COMPOUNDS 364
365
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
400 401 402
403 404
405 406 407 408
409 410
563
Fujiwara, K.; Goto, A.; Sato, D.; Ohtaniuchi, Y.; Tanaka, H.; Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron Lett. 2004, 45, 7011. Danieli, B.; Lesma, G.; Passarella, D.; Sacchetti, A.; Silvani, A.; Virdis, A. Org. Lett. 2004, 6, 493. Hilli, F.; White, J. M.; Rizzacasa, M. A. Org. Lett. 2004, 6, 1289. Ding, F.; Jennings, M. P. Org. Lett. 2005, 7, 2321. Fan, X.; Flentke, G. R.; Rich, D. H. J. Am. Chem. Soc. 1998, 120, 8893. Bonini, C.; Racioppi, R.; Viggiani, L. Tetrahedron: Asymmetry 1993, 4, 793. Bonini, C.; Giugliano, A.; Racioppi, R.; Righi, G. Tetrahedron Lett. 1996, 37, 2487. Schneider, C.; Rehfeuter, M. Tetrahedron Lett. 1998, 39, 9. Schneider, C.; Rehfeuter, M. Chem. Eur. J. 1999, 5, 2850. Schneider, C. Synlett 2001, 1079. White, J. D.; Kranemann, C. L.; Kuntiyong, P. Org. Lett. 2001, 3, 4003. Le Flohic, A.; Meyer, C.; Cossy, J. Org. Lett. 2005, 7, 339. Yang, H. W.; Romo, D. J. Org. Chem. 1997, 62, 4. Yang, H. W.; Zhao, C. X.; Romo, D. Tetrahedron 1997, 53, 16471. Salmon, A.; Carboni, B. J. Organomet. Chem. 1998, 567, 31. Ramachandran, P. V.; Reddy, M. V. R.; Brown, H. C. J. Indian Chem. Soc. 1999, 76, 739. Pitts, M. R.; Mulzer, J. Tetrahedron Lett. 2002, 43, 8471. Kumar, V. S.; Wan, S.; Aubele, D. L.; Floreancig, P. E. Tetrahedron: Asymmetry 2005, 16, 3570. Ghosh, A. K.; Kim, J. H. Tetrahedron Lett. 2003, 44, 7659. Reddy, M. V. R.; Rearick, J. P.; Hoch, N.; Ramachandran, P. V. Org. Lett. 2001, 3, 19. Gingras, K.; Avedissian, H.; Thouin, E.; Boulanger, V.; Essagian, C.; McKerracher, L.; Lubell, W. D. Bioorg. Med. Chem. Lett. 2004, 14, 4931. Nagasawa, K. J. Synth. Org. Chem. Jpn. 2000, 58, 877. Liu, B.; Duan, S.; Sutterer, A. C.; Moeller, K. D. J. Am. Chem. Soc. 2002, 124, 10101. Liu, B.; Moeller, K. D. Tetrahedron Lett. 2001, 42, 7163. Ramachandran, P. V.; Liu, H.; Reddy, M. V. R.; Brown, H. C. Org. Lett. 2003, 5, 3755. Schneider, C.; Schuffenhauer, A. Eur. J. Org. Chem. 2000, 73. Schneider, C. Synlett 1997, 815. Garcia-Fortanet, J.; Murga, J.; Carda, M.; Marco, J. A. Tetrahedron 2004, 60, 12261. Murga, J.; Garcia-Fortanet, J.; Carda, M.; Marco, J. A. Tetrahedron Lett. 2003, 44, 1737. Wolbers, P.; Hoffmann, H. M. R. Tetrahedron 1999, 55, 1905. Yadav, J. S.; Prakash, S. J.; Gangadhar, Y. Tetrahedron: Asymmetry 2005, 16, 2722. Trost, B. M.; Yeh, V. S. C. Org. Lett. 2002, 4, 3513. Falomir, E.; Murga, J.; Ruiz, P.; Carda, M.; Marco, J. A. J. Org. Chem. 2003, 68, 5672. Falomir, E.; Murga, J.; Carda, M.; Marco, J. A. Tetrahedron Lett. 2003, 44, 539. Diaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Marco, J. A. Tetrahedron 2004, 60, 2979. Wender, P. A.; De Brabander, J.; Harran, P. G.; Hinkle, K. W.; Lippa, B.; Pettit, G. R. Tetrahedron Lett. 1998, 39, 8625. F¨urstner, A.; Mathes, C.; Lehmann, C. W. Chem. Eur. J. 2001, 7, 5299. Taylor, R. E.; Chen, Y. Org. Lett. 2001, 3, 2221. Meng, D. F.; Bertinato, P.; Balog, A.; Su, D. S.; Kamenecka, T.; Sorensen, E. J.; Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10073. Denmark, S. E.; Yang, S. M. J. Am. Chem. Soc. 2004, 126, 12432. Ritter, T.; Kvaerno, L.; Werder, M.; Hauser, H.; Carreira, E. M. Org. Biomol. Chem. 2005, 3, 3514. Jennings, M. P.; Clemens, R. T. Tetrahedron Lett. 2005, 46, 2021. Dreher, S. D.; Leighton, J. L. J. Am. Chem. Soc. 2001, 123, 341. Ramachandran, P. V.; Chandra, J. S.; Reddy, M. V. R. J. Org. Chem. 2002, 67, 7547. Banwell, M. G.; Coster, M. J.; Edwards, A. J.; Karunaratne, O. P.; Smith, J. A.; Welling, L. L.; Willis, A. C. Aust. J. Chem. 2003, 56, 585. Greer, P. B.; Donaldson, W. A. Tetrahedron 2002, 58, 6009. Greer, P. B.; Donaldson, W. A. Tetrahedron Lett. 2000, 41, 3801.
564 411 412 413 414 415
416 417
418 419
420 421 422 423
424 425 426 427 428 429 430 431 432 433 434 435 436
437 438 439 440 441 442 443 444 445
446 447 448 449
450 451 452
453
454
ORGANIC REACTIONS
Kadota, I.; Oguro, N.; Yamamoto, Y. Tetrahedron Lett. 2001, 42, 3645. Chattopadhyay, S. K.; Pattenden, G. Tetrahedron Lett. 1995, 36, 5271. Tan, C. H.; Kobayashi, Y.; Kishi, Y. Angew. Chem., Int. Ed. 2000, 39, 4282. Kadota, I.; Park, C. H.; Sato, K.; Yamamoto, Y. Tetrahedron Lett. 2001, 42, 6195. Kadota, I.; Kadowaki, C.; Park, C. H.; Takamura, H.; Sato, K.; Chan, P. W. H.; Thorand, S.; Yamamoto, Y. Tetrahedron 2002, 58, 1799. Nicolaou, K. C.; Kim, D. W.; Baati, R. Angew. Chem., Int. Ed. 2002, 41, 3701. Nicolaou, K. C.; Kim, D. W.; Baati, R.; O’Brate, A.; Giannakakou, P. Chem. Eur. J. 2003, 9, 6177. Duplantier, A. J.; Masamune, S. J. Am. Chem. Soc. 1990, 112, 7079. Sun, L. Q.; Takaki, K.; Chen, J.; Bertenshaw, S.; Iben, L.; Mahle, C. D.; Ryan, E.; Wu, D. D.; Gao, Q.; Xu, C. Bioorg. Med. Chem. Lett. 2005, 15, 1345. Dinh, T. Q.; Du, X.; Armstrong, R. W. J. Org. Chem. 1996, 61, 6606. Nishiyama, S. J. Synth. Org. Chem. Jpn. 2001, 59, 938. Dinh, T. Q.; Armstrong, R. W. J. Org. Chem. 1995, 60, 8118. Fuhrhop, J. H.; Bedurke, T.; Hahn, A.; Grund, S.; Gatzmann, J.; Riederer, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 350. Hoeper, F.; Montforts, F. P. Tetrahedron: Asymmetry 1993, 4, 1439. Paterson, I.; Fessner, K.; Finlay, M. R. V. Tetrahedron Lett. 1997, 38, 4301. Crimmins, M. T.; Stanton, M. G.; Allwein, S. P. J. Am. Chem. Soc. 2002, 124, 5958. Pietruszka, J.; Wilhelm, T. Synlett 2003, 1698. Sarraf, S. T.; Leighton, J. L. Org. Lett. 2000, 2, 3205. Vitale, J. P.; Wolckenhauer, S. A.; Do, N. M.; Rychnovsky, S. D. Org. Lett. 2005, 7, 3255. Goulet, M. T.; Boger, J. Tetrahedron Lett. 1990, 31, 4845. Koert, U.; Stein, M.; Harms, K. Angew. Chem., Int. Ed. Engl. 1994, 33, 1180. Koert, U.; Stein, M.; Wagner, H. Chem. Eur. J. 1997, 3, 1170. Schreiber, S. L.; Goulet, M. T. J. Am. Chem. Soc. 1987, 109, 8120. Crimmins, M. T.; Emmitte, K. A.; Choy, A. L. Tetrahedron 2002, 58, 1817. Mascavage, L. M.; Lu, Q.; Vey, J.; Dalton, D. R.; Carroll, P. J. J. Org. Chem. 2001, 66, 3621. Andrus, M. B.; Hicken, E. J.; Meredith, E. L.; Sommons, B. L.; Cannon, J. F. Org. Lett. 2003, 5, 3859. Muir, J. C.; Pattenden, G.; Ye, T. J. Chem. Soc., Perkin Trans. 1 2002, 2243. Muir, J. C.; Pattenden, G.; Ye, T. Tetrahedron Lett. 1998, 39, 2861. Wipf, P.; Xu, W. J. J. Org. Chem. 1996, 61, 6556. Rychnovsky, S. D.; Khire, U. R.; Yang, G. J. Am. Chem. Soc. 1997, 119, 2058. White, J. D.; Ohba, Y.; Porter, W. J.; Wang, S. Tetrahedron Lett. 1997, 38, 3167. Williams, D. R.; Brugel, T. A. Org. Lett. 2000, 2, 1023. Mulzer, J.; Mantoulidis, A. Tetrahedron Lett. 1996, 31, 9179. Bolshakov, S.; Leighton, J. L. Org. Lett. 2005, 7, 3809. Kang, E. J.; Cho, E. J.; Ji, M. K.; Lee, Y. E.; Shin, D. M.; Choi, S. Y.; Chung, Y. K.; Kim, J. S.; Kim, H. J.; Lee, S. G.; Lah, M. S.; Lee, E. J. Org. Chem. 2005, 70, 6321. Ruiz, P.; Murga, J.; Carda, M.; Marco, J. A. J. Org. Chem. 2005, 70, 713. Hanessian, S.; Tehim, A.; Chen, P. J. Org. Chem. 1993, 58, 7768. Jadhav, P. K. Tetrahedron Lett. 1989, 30, 4763. Dirat, O.; Kouklovsky, C.; Langlois, Y.; Lesot, P.; Courtieu, J. Tetrahderon: Asymmetry 1999, 10, 3197. Crimmins, M. T.; Powell, M. T. J. Am. Chem. Soc. 2003, 125, 7592. Wipf, P.; Reeves, J. T.; Balachandran, R.; Day, B. W. J. Med. Chem. 2002, 45, 1901. Beumer, R.; Bayon, P.; Bugada, P.; Ducki, S.; Mongelli, N.; Sirtori, F. R.; Telser, J.; Gennari, C. Tetrahedron 2003, 59, 8803. Beumer, R.; Bayon, P.; Bugada, P.; Ducki, S.; Mongelli, N.; Sirtori, F. R.; Telser, J.; Gennari, C. Tetrahedron Lett. 2003, 44, 681. Telser, J.; Beumer, R.; Bell, A. A.; Ceccarelli, S. M.; Monti, D.; Gennari, C. Tetrahedron Lett. 2001, 42, 9187.
ALLYLBORATION OF CARBONYL COMPOUNDS 455 456 457 458 459 460 461 462 463 464 465
466 467
468
469 470 471 472 473 474
475 476 477 478 479 480
481 482 483
484 485 486 487
488 489 490 491
492 493
494
495
496 497
565
Murga, J.; Garcia-Fortanet, J.; Carda, M.; Marco, J. A. Tetrahedron Lett. 2004, 45, 7499. Roush, W. R.; Palkowitz, A. D. J. Am. Chem. Soc. 1987, 109, 953. Wang, Z.; Deschenes, D. J. Am. Chem. Soc. 1992, 114, 1090. Liao, X. B.; Wu, Y. S.; De Brabander, J. K. Angew. Chem., Int. Ed. 2003, 42, 1648. Nakata, T.; Suenaga, T.; Nakashima, K.; Oishi, T. Tetrahedron Lett. 1989, 30, 6529. Lemarchand, A.; Bach, T. Synthesis 2005, 1977. Murga, J.; Garc´ıa-Fortanet, J.; Carda, M.; Marco, J. A. Tetrahedron Lett. 2003, 44, 7909. Du, Y.; Wiemer, D. F. J. Org. Chem. 2002, 67, 5701. Vong, B. G.; Abraham, S.; Xiang, A. X.; Theodorakis, E. A. Org. Lett. 2003, 5, 1617. Hornberg, K. R.; Hamblett, C. L.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 12894. Lewis, A.; Stefanuti, I.; Swain, S. A.; Smith, S. A.; Taylor, R. J. K. Org. Biomol. Chem. 2003, 1, 104. Bhattacharjee, A.; De Brabander, J. K. Tetrahedron Lett. 2000, 41, 8069. Vorontsova, N. V.; Rozenberg, V. I.; Vorontsov, E. V.; Antonov, D. Y.; Starikova, Z. A.; Bubnov, Y. N. Russ. Chem. Bull., Int. Ed. 2002, 51, 1483. Castoldi, D.; Caggiano, L.; Bayon, P.; Costa, A. M.; Cappella, P.; Sharon, O.; Gennari, C. Tetrahedron 2005, 61, 2123. Sutherlin, D. P.; Armstrong, R. W. J. Org. Chem. 1997, 62, 5267. Sutherlin, D. P.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118, 9802. Carter, R. G.; Bourland, T. C.; Zhou, X. T.; Gronemeyer, M. A. Tetrahedron 2003, 59, 8963. Hwang, C. H.; Keum, G.; Sohn, K. I.; Lee, D. H.; Lee, E. Tetrahedron Lett. 2005, 46, 6621. Yamamoto, Y.; Nishii, S.; Yamada, J. I. J. Am. Chem. Soc. 1986, 108, 7116. Mori, Y.; Kohchi, Y.; Noguchi, H.; Suzuki, M.; Carmeli, S.; Moore, R. E.; Patterson, G. M. L. Tetrahedron 1991, 47, 4889. Hanessian, S.; Giroux, S.; Buffat, M. Org. Lett. 2005, 7, 3989. Takahashi, S.; Ogawa, N.; Koshino, H.; Nakata, T. Org. Lett. 2005, 7, 2783. Hopner, F.; Montforts, F. P. Liebigs Ann. Chem. 1995, 1033. Racherla, U. S.; Liao, Y.; Brown, H. C. J. Org. Chem. 1992, 57, 6614. Felpin, F. X.; Bertrand, M. J.; Lebreton, J. Tetrahedron 2002, 58, 7381. Felpin, F. X.; Girard, S.; Vo-Thanh, G.; Robins, R. J.; Villieras, J.; Lebreton, J. J. Org. Chem. 2001, 66, 6305. Felpin, F. X.; Vo-Thanh, G.; Robins, R. J.; Villieras, J.; Lebreton, J. Synlett 2000, 1646. Chen, G. M.; Brown, H. C.; Ramachandran, P. V. J. Org. Chem. 1999, 64, 721. Kimura, M.; Kiyama, I.; Tomizawa, Y.; Horino, Y.; Tanaka, S.; Tamaru, Y. Tetrahedron Lett. 1999, 40, 6795. Felpin, F. X.; Lebreton, J. J. Org. Chem. 2002, 67, 9192. Mears, R. J.; DeSilva, H.; Whiting, A. Tetrahedron 1997, 53, 17395. Thormeier, S.; Carboni, B.; Kaufmann, D. E. J. Organomet. Chem. 2002, 657, 136. Vorontsova, N. V.; Rozenberg, V. I.; Vorontsov, E. V.; Tok, O. L.; Bubnov, Y. N. Russ. Chem. Bull. 2000, 49, 912. Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett. 2002, 4, 577. Koide, K.; Finkelstein, J. M.; Ball, Z.; Verdine, G. L. J. Am. Chem. Soc. 2001, 123, 398. Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett. 2002, 4, 3407. Ramachandran, P. V.; Padiya, K. J.; Rauniyar, V.; Reddy, M. V. R.; Brown, H. C. J. Fluorine Chem. 2004, 125, 615. Wang, X. Z.; Burke, J., T. R. Synlett 2004, 469. Couladouros, E. A.; Plyta, Z. F.; Strongilos, A. T.; Papageorgiou, V. P. Tetrahedron Lett. 1997, 38, 7263. Couladouros, E. A.; Strongilos, A. T.; Papageorgiou, V. P.; Plyta, Z. F. Chem. Eur. J. 2002, 8, 1795. Ku, Y. Y.; Grieme, T.; Raje, P.; Sharma, P.; King, S. A.; Morton, H. E. J. Am. Chem. Soc. 2002, 124, 4282. Ku, Y. Y.; Grieme, T. Curr. Opin. Drug Discov. Devel. 2002, 5, 852. Brown, H. C.; Randad, R. S. Tetrahedron 1990, 46, 4457.
566 498 499
500
501 502 503
504 505
506 507 508 509 510
511
512
513
514 515
516 517 518 519
520 521 522
523 524 525
526 527
528 529 530
531 532 533
534 535
ORGANIC REACTIONS
Hoffmann, R. W.; Ladner, W. Tetrahedron Lett. 1979, 4653. Hoffmann, R. W.; Ladner, W.; Steinbach, K.; Massa, W.; Schmidt, R.; Snatzke, G. Chem. Ber. 1981, 114, 2786. Richter, P. K.; Tomaszewski, M. J.; Miller, R. A.; Patron, A. P.; Nicolaou, K. C. J. Chem. Soc., Chem. Commun. 1994, 1151. N’Zoutani, M. A.; Pancrazi, A.; Ardisson, J. Synlett 2001, 769. Ireland, R. E.; Highsmith, T. K.; Gegnas, L. D.; Gleason, J. L. J. Org. Chem. 1992, 57, 5071. Ramachandran, P. V.; Prabhudas, B.; Pratihar, D.; Chandra, J. S.; Reddy, M. V. R. Tetrahedron Lett. 2003, 44, 3745. La Cruz, T. E.; Rychnovsky, S. D. Org. Lett. 2005, 7, 1873. Ramachandran, P. V.; Chandra, J. S.; Prabhudas, B.; Pratihar, D.; Reddy, M. V. R. Org. Biomol. Chem. 2005, 3, 3812. Bates, R. B.; Gangwar, S. Tetrahedron: Asymmetry 1993, 4, 69. Wu, B.; Liu, Q.; Sulikowski, G. A. Angew. Chem., Int. Ed. 2004, 43, 6673. Brimble, M. A.; Furkert, D. P. Org. Biomol. Chem. 2004, 2, 3573. Brimble, M. A.; Fares, F. A.; Turner, P. Aust. J. Chem. 2000, 53, 845. Boeckman, R. K.; Charette, A. B.; Asberom, T.; Johnston, B. H. J. Am. Chem. Soc. 1987, 109, 7553. Anderson, O. P.; Barrett, A. G. M.; Edmunds, J. J.; Hachiya, S. I.; Hendrix, J. A.; Horita, K.; Malecha, J. W.; Parkinson, C. J.; VanSickle, A. Can. J. Chem. 2001, 79, 1562. Berque, I.; Le Menez, P.; Razon, P.; Mahuteau, J.; Ferezou, J. P.; Pancrazi, A.; Ardisson, J.; Brion, J. D. J. Org. Chem. 1999, 64, 373. Barrett, A. G. M.; Edmunds, J. J.; Hendrix, J. A.; Horita, K.; Parkinson, C. J. J. Chem. Soc., Chem. Commun. 1992, 1238. Meilert, K.; Brimble, M. A. Org. Lett. 2005, 7, 3497. Smith, A. B., III; Friestad, G. K.; Barbosa, J.; Bertounesque, E.; Hull, K. G.; Iwashima, M.; Qiu, Y. P.; Salvatore, B. A.; Spoors, P. G.; Duan, J. J. W. J. Am. Chem. Soc. 1999, 121, 10468. Vidya, R.; Eggen, M.; Georg, G. I.; Himes, R. H. Bioorg. Med. Chem. Lett. 2003, 13, 757. Statsuk, A. V.; Liu, D.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 9546. Schinzer, D.; Schulz, C.; Krug, O. Synlett 2004, 2689. Roush, W. R.; Ando, K.; Powers, D. B.; Halterman, R. L.; Palkowitz, A. D. Tetrahedron Lett. 1988, 29, 5579. Giordano, A.; Spinella, A.; Sodano, G. Tetrahedron: Asymmetry 1999, 10, 1851. Brinkmann, H.; Hoffmann, R. W. Chem. Ber. 1990, 123, 2395. Nakata, M.; Ishiyama, T.; Akamatsu, S.; Hirose, Y.; Maruoka, H.; Suzuki, R.; Tatsuta, K. Bull. Chem. Soc. Jpn. 1995, 68, 967. Ireland, R. E.; Wipf, P.; Roper, T. D. J. Org. Chem. 1990, 55, 2284. Roush, W. R.; Koyama, K.; Curtin, M. L.; Moriarty, K. J. J. Am. Chem. Soc. 1996, 118, 7502. Niel, G.; Roux, F.; Maisonnasse, Y.; Maugras, I.; Poncet, J.; Jouin, P. J. Chem. Soc., Perkin Trans. 1 1994, 1275. Guo-qiang, L.; Wei-chu, X. Tetrahedron Lett. 1993, 34, 5931. Boons, G. J.; Brown, D. S.; Clase, J. A.; Lennon, I. C.; Ley, S. V. Tetrahedron Lett. 1994, 35, 319. Boons, G. J.; Clase, J. A.; Lennon, I. C.; Ley, S. V.; Staunton, J. Tetrahedron 1995, 51, 5417. Zampella, A.; Sorgente, M.; D’Auria, M. V. Tetrahedron: Asymmetry 2002, 13, 681. Ley, S. V.; Brown, D. S.; Clase, J. A.; Fairbanks, A. J.; Lennon, I. C.; Osborn, H. M. I.; Stokes, E. S. E.; Wadsworth, D. J. J. Chem. Soc., Perkin Trans. 1 1998, 2259. Francavilla, C.; Chen, W.; Kinder, J., F. R. Org. Lett. 2003, 5, 1233. Nakata, M.; Ishiyama, T.; Hirose, Y.; Maruoka, H.; Tatsuta, K. Tetrahedron Lett. 1993, 34, 8439. Scarlato, G. R.; DeMattei, J. A.; Chong, L. S.; Ogawa, A. K.; Lin, M. R.; Armstrong, R. W. J. Org. Chem. 1996, 61, 6139. Czuba, I. R.; Zammit, S.; Rizzacasa, M. A. Org. Biomol. Chem. 2003, 1, 2044. Czuba, I. R.; Rizzacasa, M. A. Chem. Commun. 1999, 1419.
ALLYLBORATION OF CARBONYL COMPOUNDS 536
537 538 539 540 541 542
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
560 561
562 563 564 565 566 567
568
569 570 571 572
573
574
575
576
577 578
567
Zampella, A.; Bassarello, C.; Bifulco, G.; Gomez-Paloma, L.; D’Auria, M. V. Eur. J. Org. Chem. 2002, 785. Roush, W. R.; Adam, M. A.; Harris, D. J. J. Org. Chem. 1985, 50, 2000. Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1987, 52, 3701. Hoffmann, R. W.; Brinkmann, H.; Frenking, G. Chem. Ber. 1990, 123, 2387. Hoffmann, R. W.; Zeiss, H. J. Angew. Chem., Int. Ed. Engl. 1980, 19, 218. Roux, F.; Maugras, I.; Poncet, J.; Niel, G.; Jouin, P. Tetrahedron 1994, 50, 5345. Terauchi, T.; Morita, M.; Kimijima, K.; Nakamura, Y.; Hayashi, G.; Tanaka, T.; Kanoh, N.; Nakata, M. Tetrahedron Lett. 2001, 42, 5505. Kobayashi, Y.; Lee, J.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2177. Monica, C. D.; Maulucci, N.; De Riccardis, F.; Izzo, I. Tetrahedron: Asymmetry 2003, 14, 3371. Wuts, P. G.; Bigelow, S. S. J. Org. Chem. 1988, 53, 5023. Moret, E.; Schlosser, M. Tetrahedron Lett. 1984, 25, 4491. Lipomi, D. J.; Langille, N. F.; Panek, J. S. Org. Lett. 2004, 6, 3533. Roush, W. R.; Brown, B. B.; Drozda, S. E. Tetrahedron Lett. 1988, 29, 3541. Roush, W. R.; Brown, B. B. J. Am. Chem. Soc. 1993, 115, 2268. Satoh, M.; Nomoto, Y.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1989, 30, 3789. Wang, X.; Porco, J., J. A. Angew. Chem., Int. Ed. 2005, 44, 3067. Nakata, M.; Ishiyama, T.; Akamatsu, S.; Suzuki, R.; Tatsuta, K. Synlett 1994, 601. Chemler, S. R.; Roush, W. R. J. Org. Chem. 2003, 68, 1319. Turk, J. A.; Visbal, G. S.; Lipton, M. A. J. Org. Chem. 2003, 68, 7841. Burke, S. D.; Hong, J.; Lennox, J. R.; Mongin, A. P. J. Org. Chem. 1998, 63, 6952. Cundy, D. J.; Donohue, A. C.; McCarthy, T. D. J. Chem. Soc., Perkin Trans. 1 1999, 559. Bauer, S. M.; Armstrong, R. W. J. Am. Chem. Soc. 1999, 121, 6355. Cundy, D. J.; Donohue, A. C.; McCarthy, T. D. Tetrahedron Lett. 1998, 39, 5125. Zheng, W. J.; DeMattei, J. A.; Wu, J. P.; Duan, J. J. W.; Cook, L. R.; Oinuma, H.; Kishi, Y. J. Am. Chem. Soc. 1996, 118, 7946. Knapp, S.; Dong, Y. Tetrahedron Lett. 1997, 38, 3813. Ireland, R. E.; Armstrong, J. D.; Lebreton, J.; Meissner, R. S.; Rizzacasa, M. A. J. Am. Chem. Soc. 1993, 115, 7152. Andrus, M. B.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 10420. Ireland, R. E.; Gleason, J. L.; Gegnas, L. D.; Highsmith, T. K. J. Org. Chem. 1996, 61, 6856. White, J. D.; Toske, S. G.; Yakura, T. Synlett 1994, 591. Hermitage, S. A.; Roberts, S. M.; Watson, D. J. Tetrahedron Lett. 1998, 39, 3567. Inoue, M.; Yamashita, S.; Tatami, A.; Miyazaki, K.; Hirama, M. J. Org. Chem. 2004, 69, 2797. Uehara, H.; Oishi, T.; Inoue, M.; Shoji, M.; Nagumo, Y.; Kosaka, M.; Le Brazidec, J. Y.; Hirama, M. Tetrahedron 2002, 58, 6493. Oishi, T.; Nagumo, Y.; Shoji, M.; Le Brazidec, J. Y.; Uehara, H.; Hirama, M. Chem. Commun. 1999. Tatami, A.; Inoue, M.; Uehara, H.; Hirama, M. Tetrahedron Lett. 2003, 44, 5229. Inoue, M.; Hirama, M. Synlett 2004, 577. Jiang, X.; Garc´ıa-Fortanet, J. G.; De Brabander, J. K. J. Am. Chem. Soc. 2005, 127, 11254. Smith, A. B., III; Adams, C. M.; Kozmin, S. A.; Paone, D. V. J. Am. Chem. Soc. 2001, 123, 5925. Nicolaou, K. C.; Murphy, F.; Barluenga, S.; Ohshima, T.; Wei, H.; Xu, J.; Gray, D. L. F.; Baudoin, O. J. Am. Chem. Soc. 2000, 122, 3830. Nicolaou, K. C.; Xu, J. Y.; Murphy, F.; Barluenga, S.; Baudoin, O.; Wei, H. X.; Gray, D. L. F.; Ohshima, T. Angew. Chem., Int. Ed. 1999, 38, 2447. Paterson, I.; Cumming, J. G.; Smith, J. D.; Ward, R. A.; Yeung, K. S. Tetrahedron Lett. 1994, 35, 3405. Paterson, I.; Ward, R. A.; Smith, J. D.; Cumming, J. G.; Yeung, K. S. Tetrahedron 1995, 51, 9437. Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Am. Chem. Soc. 1981, 103, 1969. Oikawa, M.; Ueno, T.; Oikawa, H.; Ichihara, A. J. Org. Chem. 1995, 60, 5048.
568 579 580 581 582
583 584 585 586
587 588
589 590 591 592 593
594
595
596 597 598 599 600 601 602 603 604
605 606 607 608
609 610 611 612 613 614
615
616 617
618 619
ORGANIC REACTIONS
Oikawa, M.; Ueno, T.; Oikawa, H.; Ichihara, A. J. Synth. Org. Chem. Jpn. 1995, 53, 1123. Oikawa, M.; Oikawa, H.; Ichihara, A. Tetrahedron Lett. 1993, 34, 4797. Hoffmann, R. W.; Helbig, W. Chem. Ber. 1981, 114, 2802. Giordano, A.; Della Monica, C.; Landi, F.; Spinella, A.; Sodano, G. Tetrahedron Lett. 2000, 41, 3979. Zampella, A.; D’Auria, M. V. Tetrahedron: Asymmetry 2001, 12, 1543. Roush, W. R.; Hertel, L.; Schnaderbeck, M. J.; Yakelis, N. A. Tetrahedron Lett. 2002, 43, 4885. White, J. D.; Hong, J.; Robarge, L. A. Tetrahedron Lett. 1998, 39, 8779. Feutrill, J. T.; Holloway, G. A.; Hilli, F.; Hugel, H. M.; Rizzacasa, M. A. Tetrahedron Lett. 2000, 41, 8569. Dhokte, U. P.; Khau, V. V.; Hutchison, D. R.; Martinelli, M. J. Tetrahedron Lett. 1998, 39, 8771. Eggen, M.; Mossman, C. J.; Buck, S. B.; Nair, S. K.; Bhat, L.; Ali, S. M.; Reiff, E. A.; Boge, T. C.; Georg, G. I. J. Org. Chem. 2000, 65, 7792. Eggen, M. J.; Georg, G. I. Bioorg. Med. Chem. Lett. 1998, 8, 3177. Andrus, M. B.; Argade, A. B. Tetrahedron Lett. 1996, 37, 5049. McRae, K. J.; Rizzacasa, M. A. J. Org. Chem. 1997, 62, 1196. Paterson, I.; Ashton, K.; Britton, R.; Knust, H. Org. Lett. 2003, 5, 1963. Paterson, I.; Britton, R.; Delgado, O.; Meyer, A.; Poullennec, K. G. Angew. Chem., Int. Ed. 2004, 43, 4629. Cuzzupe, A. N.; Hutton, C. A.; Lilly, M. J.; Mann, R. K.; McRae, K. J.; Zammit, S. C.; Rizzacasa, M. A. J. Org. Chem. 2001, 66, 2382. Nicolaou, K. C.; Bertinato, P.; Piscopio, A. D.; Chakraborty, T. K.; Minowa, N. J. Chem. Soc., Chem. Commun. 1993, 619. Cossy, J.; Bauer, D.; Bellosta, V. Tetrahedron 2002, 58, 5909. Yu, W. S.; Zhang, Y.; Jin, Z. D. Org. Lett. 2001, 3, 1447. Yamamoto, Y.; Maruyama, K.; Komatsu, T.; Ito, W. J. Org. Chem. 1986, 51, 886. White, J. D.; Wang, G. Q.; Quaranta, L. Org. Lett. 2003, 5, 4109. Hermitage, S. A.; Murphy, A.; Nielsen, P.; Roberts, S. M. Tetrahedron 1998, 54, 13185. Zweifel, G.; Shoup, T. M. J. Am. Chem. Soc. 1988, 110, 5578. Coe, J. W.; Roush, W. R. J. Org. Chem. 1989, 54, 915. Liu, B.; Zhou, W. Tetrahedron Lett. 2003, 44, 4933. Jyojima, T.; Katohno, M.; Miyamoto, N.; Nakata, M.; Matsumura, S.; Toshima, K. Tetrahedron Lett. 1998, 39, 6003. Merifield, E.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1999, 3269. Merifield, E.; Thomas, E. J. J. Chem. Soc., Chem. Commun. 1990, 464. Menager, E.; Merifield, E.; Smallridge, M.; Thomas, E. J. Tetrahedron 1997, 53, 9377. Khandekar, G.; Robinson, G. C.; Stacey, N. A.; Steel, P. G.; Thomas, E. J.; Vather, S. J. Chem. Soc., Chem. Commun. 1987, 877. Kang, S. H.; Jeong, J. W. Tetrahedron Lett. 2002, 43, 3613. Paterson, I.; Yeung, K. S.; Watson, C.; Ward, R. A.; Wallace, P. A. Tetrahedron 1998, 54, 11935. Zampella, A.; D’Auria, M. V. Tetrahedron: Asymmetry 2002, 13, 1237. Cossy, J.; Bauer, D.; Bellosta, V. Synlett 2002, 715. Toshima, H.; Ichihara, A. Biosci. Biotechnol. Biochem. 1998, 62, 599. Minguez, J. M.; Kim, S. Y.; Giuliano, K. A.; Balachandran, R.; Madiraju, C.; Day, B. W.; Curran, D. P. Bioorg. Med. Chem. 2003, 11, 3335. Archibald, S. C.; Barden, D. J.; Bazin, J. F. Y.; Fleming, I.; Foster, C. F.; Mandal, A. K.; Parker, D.; Takaki, K.; Ware, A. C.; Williams, A. R. B.; Zwicky, A. B. Org. Biomol. Chem. 2004, 2, 1051. Stenkamp, D.; Hoffmann, R. W.; G¨ottlich, R. Eur. J. Org. Chem. 1999, 2929. Scheidt, K. A.; Bannister, T. D.; Tasaka, A.; Wendt, M. D.; Savall, B. M.; Fegley, G. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 6981. Spino, C.; Allan, M. Can. J. Chem. 2004, 82, 177. White, J. D.; Tiller, T.; Ohba, Y.; Porter, W. J.; Jackson, R. W.; Wang, S.; Hanselmann, R. Chem. Commun. 1998, 79.
ALLYLBORATION OF CARBONYL COMPOUNDS 620 621 622 623 624 625 626
627 628 629
630 631 632
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
648 649 650 651 652 653
654 655 656 657 658 659 660 661
662
663 664
569
Williams, D. R.; Rojas, C. M.; Bogen, S. L. J. Org. Chem. 1999, 64, 736. Smith, A. B., III; Zheng, J. Tetrahedron 2002, 58, 6455. Smith, A. B., III; Zheng, J. Synlett 2001, 1019. Ooi, H.; Ishibashi, N.; Iwabuchi, Y.; Ishihara, J.; Hatakeyama, S. J. Org. Chem. 2004, 69, 7765. Kang, S. H.; Kim, C. M. Synlett 1996, 515. Roush, W. R.; Bannister, T. D. Tetrahedron Lett. 1992, 33, 3587. Roush, W. R.; Bannister, T. D.; Wendt, M. D.; Jablonowski, J. A.; Scheidt, K. A. J. Org. Chem. 2002, 67, 4275. Kende, A. S.; Koch, K.; Dorey, G.; Kaldor, I.; Liu, K. J. Am. Chem. Soc. 1993, 115, 9842. Andersen, M. W.; Hildebrandt, B.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1991, 30, 97. Oikawa, H.; Yoneta, Y.; Ueno, T.; Oikawa, M.; Wakayama, T.; Ichihara, A. Tetrahedron Lett. 1997, 38, 7897. Oikawa, H. Curr. Med. Chem. 2002, 9, 2033. Paterson, I.; Anderson, E. A.; Dalby, S. M.; Loiseleur, O. Org. Lett. 2005, 7, 4121. Fisher, M. J.; Myers, C. D.; Joglar, J.; Chen, S. H.; Danishefsky, S. J. J. Org. Chem. 1991, 56, 5826. Labrecque, D.; Charron, S.; Rej, R.; Blais, C.; Lamothe, S. Tetrahedron Lett. 2001, 42, 2645. Barrett, A. G. M.; Lebold, S. A. J. Org. Chem. 1991, 56, 4875. Barrett, A. G. M.; Lebold, S. A. J. Org. Chem. 1990, 55, 5818. Sebelius, S.; Wallner, O. A.; Szab´o, K. J. Org. Lett. 2003, 5, 3065. Dineen, T. A.; Roush, W. R. Org. Lett. 2003, 5, 4725. Maurer, K. W.; Armstrong, R. W. J. Org. Chem. 1996, 61, 3106. Lin, G. Q.; Xu, W. C. Tetrahedron 1996, 52, 5907. Kang, S. H.; Jun, H. S.; Youn, J. H. Synlett 1998, 1045. Zampella, A.; Sepe, V.; D’Orsi, R.; D’Auria, M. V. Lett. Org. Chem. 2004, 308. Hori, K.; Kazuno, H.; Nomura, K.; Yoshii, E. Tetrahedron Lett. 1993, 34, 2183. Harada, T.; Kagamihara, Y.; Tanaka, S.; Sakamoto, K.; Oku, A. J. Org. Chem. 1992, 57, 1637. White, J. D.; Johnston, A. T. J. Org. Chem. 1994, 59, 3347. White, J. D.; Johnston, A. T. J. Org. Chem. 1990, 55, 5938. Hoffmann, R. W.; G¨ottlich, R.; Schopfer, U. Eur. J. Org. Chem. 2001, 1865. Chen, S. H.; Horvath, R. F.; Joglar, J.; Fisher, M. J.; Danishefsky, S. J. J. Org. Chem. 1991, 56, 5834. May, S. A.; Grieco, P. A. Chem. Commun. 1998, 1597. Tatsuta, K.; Ishiyama, T.; Tajima, S.; Koguchi, Y.; Gunji, H. Tetrahedron Lett. 1990, 31, 709. Andrus, M. B.; Turner, T. M.; Sauna, Z. E.; Ambudkar, S. V. J. Org. Chem. 2000, 65, 4973. Hu, H. S.; Jayaraman, S.; Oehlschage, A. C. J. Org. Chem. 1998, 63, 8843. Roush, W. R.; Lane, G. C. Org. Lett. 1999, 1, 95. Smith, A. B., III; Adams, C. M.; Barbosa, S. A. L.; Degnan, A. P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12042. Roush, W. R.; Coffey, D. S.; Madar, D.; Palkowitz, A. D. J. Braz. Chem. Soc. 1996, 7, 327. Sengoku, T.; Arimoto, H.; Uemura, D. Chem. Commun. 2004, 1220. Andrus, M. B.; Lepore, S. D.; Turner, T. M. J. Am. Chem. Soc. 1997, 119, 12159. Akita, H.; Yamada, H.; Matsukura, H.; Nakata, T.; Oishi, T. Tetrahedron Lett. 1990, 31, 1735. Oishi, T.; Akita, H. J. Synth. Org. Chem. Jpn. 1991, 49, 657. Zeng, X.; Zeng, F.; Negishi, E. Org. Lett. 2004, 6, 3245. Andrus, M. B.; Lepore, S. D. J. Am. Chem. Soc. 1997, 119, 2327. Nagamitsu, T.; Sunazuka, T.; Tanaka, H.; Omura, S.; Sprengeler, P. A.; Smith, A. B., III J. Am. Chem. Soc. 1996, 118, 3584. Sunazuka, T.; Nagamitsu, T.; Matsuzaki, K.; Tanaka, H.; Omura, S.; Smith, A. B., III J. Am. Chem. Soc. 1993, 115, 5302. Kohyama, N.; Yamamoto, Y. Synlett 2001, 694. Danishefsky, S. J.; Armistead, D. M.; Wincott, F. E.; Selnick, H. G.; Hungate, R. J. Am. Chem. Soc. 1989, 111, 2967.
570 665
666 667 668 669 670 671
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
703 704
705 706 707 708 709 710 711 712 713
ORGANIC REACTIONS
Danishefsky, S. J.; Armistead, D. M.; Wincott, F. E.; Selnick, H. G.; Hungate, R. J. Am. Chem. Soc. 1987, 109, 8117. Liu, B.; Zhou, W. S. Tetrahedron 2003, 59, 3379. Liu, B.; Zhou, W. Tetrahedron Lett. 2002, 43, 4187. Hoffmann, R. W.; Landmann, B. Tetrahedron Lett. 1983, 24, 3209. Hoffmann, R. W.; Landmann, B. Angew. Chem., Int. Ed. Engl. 1984, 23, 437. Mandal, A. K.; Schneekloth, J., J. S.; Crews, C. M. Org. Lett. 2005, 7, 3645. Yang, Z.; He, Y.; Vourloumis, D.; Vallberg, H.; Nicolaou, K. C. Angew. Chem., Int. Ed. Engl. 1997, 36, 166. Schlapbach, A.; Hoffmann, R. W. Eur. J. Org. Chem. 2001, 323. Hoffmann, R. W.; Schlapbach, A. Liebigs Ann. Chem. 1991, 1203. Midland, M. M.; Preston, S. B. J. Am. Chem. Soc. 1982, 104, 2330. Shimizu, M.; Kitagawa, H.; Kurahashi, T.; Hiyama, T. Angew. Chem., Int. Ed. 2001, 40, 4283. Andersen, M. W.; Hildebrandt, B.; Koster, G.; Hoffmann, R. W. Chem. Ber. 1989, 122, 1777. Zheng, B.; Srebnik, M. J. Org. Chem. 1995, 60, 486. Hoffmann, R. W.; Dahmann, G.; Andersen, M. W. Synthesis 1994, 629. Hoffmann, R. W.; Dahmann, G. Tetrahedron Lett. 1993, 34, 1115. Lombardo, M.; Morganti, S.; Trombini, C. J. Org. Chem. 2000, 65, 8767. Hoffmann, R. W.; St¨urmer, R. Chem. Ber. 1994, 127, 2511. Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Am. Chem. Soc. 1981, 103, 3229. Andemichael, Y. W.; Wang, K. K. J. Org. Chem. 1992, 57, 796. Wang, K. K.; Gu, G.; Liu, C. J. Am. Chem. Soc. 1990, 112, 4424. Yamaguchi, M.; Mukaiyama, T. Chem. Lett. 1980, 993. Patron, A. P.; Richter, P. K.; Tomaszewski, M. J.; Miller, R. A.; Nicolaou, K. C. J. Chem. Soc., Chem. Commun. 1994, 1147. Hoffmann, R. W.; Rolle, U.; G¨ottlich, R. Liebigs Ann. Chem. 1996, 1717. St¨urmer, R.; Ritter, K.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1993, 32, 101. Tsai, D. J. S.; Matteson, D. S. Organometallics 1983, 2, 236. Carosi, L.; Lachance, H.; Hall, D. G. Tetrahedron Lett. 2005, 46, 8981. Beckmann, E.; Desai, V.; Hoppe, D. Synlett 2004, 2275. Yamamoto, Y.; Saito, Y.; Maruyama, K. J. Org. Chem. 1983, 48, 5408. Hoffmann, R. W.; Ladner, W.; Ditrich, K. Liebigs Ann. Chem. 1989, 883. Hoffmann, R. W.; Rolle, U. Tetrahedron Lett. 1994, 35, 4751. Hoffmann, R. W.; Haeberlin, E.; Rohde, T. Synthesis 2002, 207. St¨urmer, R.; Hoffmann, R. W. Chem. Ber. 1994, 127, 2519. Brown, H. C.; Jadhav, P. K.; Perumal, P. T. Tetrahedron Lett. 1984, 25, 5111. Bubnov, Y. N.; Etinger, M. Y. Tetrahedron Lett. 1985, 26, 2797. Brown, H. C.; Randad, R. S. Tetrahedron 1990, 46, 4463. Brown, H. C.; Randad, R. S. Tetrahedron Lett. 1990, 31, 455. Salunkhe, A. M.; Ramachandran, P. V.; Brown, H. C. Tetrahedron Lett. 1999, 40, 1433. Gurskii, M. E.; Golovin, S. B.; Ignatenko, A. V.; Bubnov, Y. N. Russ. Chem. Bull. 1993, 42, 139. Chataigner, I.; Lebreton, J.; Zammattio, F.; Villieras, J. Tetrahedron Lett. 1997, 38, 3719. van der Heide, T. A. J.; van der Baan, J. L.; Bijpost, E. A.; de Kanter, F. J. J.; Bickelhaupt, F.; Klumpp, G. W. Tetrahedron Lett. 1993, 34, 4655. Barrett, A. G. M.; Braddock, D. C.; de Koning, P. D. Chem. Commun. 1999, 459. Gurskii, M. E.; Golovin, S. B.; Bubnov, Y. N. Russ. Chem. Bull. 1990, 39, 433. Barrett, A. G. M.; Wan, P. W. H. J. Org. Chem. 1996, 61, 8667. Williams, D. R.; Meyer, K. G.; Shamim, K.; Patnaik, S. Can. J. Chem. 2004, 82, 120. Hara, S.; Suzuki, A. Tetrahedron Lett. 1991, 32, 6749. Williams, D. R.; Brooks, D. A.; Meyer, K. G.; Clark, M. P. Tetrahedron Lett. 1998, 39, 7251. Yamamoto, Y.; Hara, S.; Suzuki, A. Synth. Commun. 1997, 27, 1029. Hara, S.; Yamamoto, Y.; Fujita, A.; Suzuki, A. Synlett 1994, 639. Draillard, K.; Lebreton, J.; Villieras, J. Tetrahedron: Asymmetry 1999, 10, 4281.
ALLYLBORATION OF CARBONYL COMPOUNDS 714 715 716
717
718 719 720 721 722 723 724 725 726 727 728
729 730 731 732
733 734 735 736 737 738 739 740 741 742
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
759 760
571
Brzezinski, L. J.; Leahy, J. W. Tetrahedron Lett. 1998, 39, 2039. Williams, D. R.; Clark, M. P.; Berliner, M. A. Tetrahedron Lett. 1999, 40, 2287. Williams, D. R.; Kiryanov, A. A.; Emde, U.; Clark, M. P.; Berliner, M. A.; Reeves, J. T. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12058. Williams, D. R.; Kiryanov, A. A.; Emde, U.; Clark, M. P.; Berliner, M. A.; Reeves, J. T. Angew. Chem., Int. Ed. 2003, 42, 1258. Ishiyama, T.; Kitano, T.; Miyaura, N. Tetrahedron Lett. 1998, 39, 2357. Goujon, J. Y.; Zammattio, F.; Chretien, J. M.; Beaudet, I. Tetrahedron 2004, 60, 4037. Williams, D. R.; Clark, M. P.; Emde, U.; Berliner, M. A. Org. Lett. 2000, 2, 3023. Williams, D. R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765. Zhai, H. B.; Luo, S. J.; Ye, C. F.; Ma, Y. X. J. Org. Chem. 2003, 68, 8268. Williams, D. R.; Patnaik, S.; Plummer, S. V. Org. Lett. 2003, 5, 5035. Williams, D. R.; Brooks, D. A.; Berliner, M. A. J. Am. Chem. Soc. 1999, 121, 4924. Corey, E. J.; Huang, H. C. Tetrahedron Lett. 1989, 30, 5235. Kim, S.; Sutton, S. C.; Guo, C.; LaCour, T. G.; Fuchs, P. L. J. Am. Chem. Soc. 1999, 121, 2056. Kim, S. K.; Sutton, S. C.; Fuchs, P. L. Tetrahedron Lett. 1995, 36, 2427. Thaper, R. K.; Zykov, A. Y.; Bubnov, Y. N.; Reshetova, I. G.; Kamernitsky, A. V. Synth. Commun. 1993, 23, 939. Jernelius, J. A.; Schrock, R. R.; Hoveyda, A. H. Tetrahedron 2004, 60, 7345. Barrett, A. G. M.; Seefeld, M. A. Tetrahedron 1993, 49, 7857. Barrett, A. G. M.; Seefeld, M. A. J. Chem. Soc., Chem. Commun. 1993, 339. Gurskii, M. E.; Geiderickh, A. V.; Ignatenko, A. V.; Bubnov, Y. N. Russ. Chem. Bull. 1993, 42, 144. Narla, G.; Brown, H. C. Tetrahedron Lett. 1997, 38, 219. Roush, W. R.; Pinchuk, A. N.; Micalizio, G. C. Tetrahedron Lett. 2000, 41, 9413. Wang, K. K.; Liu, C. J. Org. Chem. 1986, 51, 4733. Wang, K. K.; Liu, C.; Gu, Y. G.; Burnett, F. N.; Sattsangi, P. D. J. Org. Chem. 1991, 56, 1914. Hoffmann, R. W.; Kemper, B. Tetrahedron Lett. 1980, 21, 4883. Brown, H. C.; Phadke, A. S. Synlett 1993, 927. Hoffmann, R. W.; Metternich, R. Liebigs Ann. Chem. 1985, 2390. Yamamoto, Y.; Hara, S.; Suzuki, A. Synlett 1996, 883. Soundararajan, R.; Li, G. S.; Brown, H. C. J. Org. Chem. 1996, 61, 100. Barrett, A. G. M.; Beall, J. C.; Braddock, D. C.; Flack, K.; Gibson, V. C.; Salter, M. M. J. Org. Chem. 2000, 65, 6508. Micalizio, G. C.; Roush, W. R. Org. Lett. 2000, 2, 461. Soundararajan, R.; Li, G.; Brown, H. C. Tetrahedron Lett. 1995, 36, 2441. Coleman, R. S. Synlett 1998, 1031. Barrett, A. G. M.; Seefeld, M. A.; White, A. J. P.; Williams, D. J. J. Org. Chem. 1996, 61, 2677. Ganesh, P.; Nicholas, K. M. J. Org. Chem. 1997, 62, 1737. Wang, X.; Porco, J. A. J. Am. Chem. Soc. 2003, 125, 6040. Schinzer, D.; Limberg, A.; Bohm, O. M. Chem. Eur. J. 1996, 2, 1477. Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1983, 48, 3489. Gaddoni, L.; Lombardo, M.; Trombini, C. Tetrahedron Lett. 1998, 39, 7571. Barrett, A. G. M.; Malecha, J. W. J. Chem. Soc., Perkin Trans. 1 1994, 1901. Hertweck, C.; Boland, W. J. Org. Chem. 1999, 64, 4426. Hertweck, C.; Goerls, H.; Boland, W. Chem. Commun. 1998, 1955. Roush, W. R.; Michaelides, M. R. Tetrahedron Lett. 1986, 27, 3353. Hu, S. J.; Jayaraman, S.; Oehlschlager, A. C. J. Org. Chem. 1998, 63, 8843. Hunt, J. A.; Roush, W. R. Tetrahedron Lett. 1995, 36, 501. Roush, W. R.; Grover, P. T.; Marron, T. G. In Current Topics in the Chemistry of Boron, Proceedings of the Eighth International Meeting, Knoxville, Tennessee, 1993; Kabalka, G. W., Ed.; Royal Society of Chemistry: Cambridge, U.K., 1994. Roush, W. R.; Follows, B. C. Tetrahedron Lett. 1994, 35, 4935. Heo, J. N.; Micalizio, G. C.; Roush, W. R. Org. Lett. 2003, 5, 1693.
572 761 762 763 764
765 766
767
768 769
770
771 772 773 774 775
776 777 778 779 780 781 782
783 784 785 786 787 788 789 790 791 792 793 794
795
796 797 798 799 800 801 802 803 804 805
ORGANIC REACTIONS
Chang, K. J.; Rayabarapu, D. K.; Yang, F. Y.; Cheng, C. H. J. Am. Chem. Soc. 2005, 127, 126. Jayaraman, S.; Hu, S.; Oehlschlager, A. C. Tetrahedron Lett. 1995, 36, 4765. Micalizio, G. C.; Pinchuk, A. N.; Roush, W. R. J. Org. Chem. 2000, 65, 8730. Barrett, A. G. M.; Bennett, A. J.; Menzer, S.; Smith, M. L.; White, A. J. P.; Williams, D. J. J. Org. Chem. 1999, 64, 162. Barluenga, S.; Lopez, P.; Moulin, E.; Winssinger, N. Angew. Chem., Int. Ed. 2004, 43, 3467. Roush, W. R.; Michaelides, M. R.; Tai, D. F.; Chong, W. K. M. J. Am. Chem. Soc. 1987, 109, 7575. Roush, W. R.; Michaelides, M. R.; Tai, D. F.; Lesur, B. M.; Chong, W. K. M.; Harris, D. J. J. Am. Chem. Soc. 1989, 111, 2984. Roush, W. R.; Harris, D. J.; Lesur, B. M. Tetrahedron Lett. 1983, 24, 2227. Smith, A. L.; Pitsinos, E. N.; Hwang, C. K.; Mizuno, Y.; Saimoto, H.; Scarlato, G. R.; Suzuki, T.; Nicolaou, K. C. J. Am. Chem. Soc. 1993, 115, 7612. Smith, A. L.; Hwang, C. K.; Pitsinos, E.; Scarlato, G. R.; Nicolaou, K. C. J. Am. Chem. Soc. 1992, 114, 3134. Burgess, K.; Henderson, I. Tetrahedron Lett. 1990, 31, 6949. Sato, M.; Yamamoto, Y.; Hara, S.; Suzuki, A. Tetrahedron Lett. 1993, 34, 7071. Duan, J. J. W.; Smith, A. B., III J. Org. Chem. 1993, 58, 3703. Heo, J. N.; Holson, E. B.; Roush, W. R. Org. Lett. 2003, 5, 1697. Burgess, K.; Chaplin, D. A.; Henderson, I.; Pan, Y. T.; Elbein, A. D. J. Org. Chem. 1992, 57, 1103. Jadhav, P. K.; Woemer, F. J. Tetrahedron Lett. 1994, 35, 8973. Gu, Y. G.; Wang, K. K. Tetrahedron Lett. 1991, 32, 3029. Sutherlin, D. P.; Armstrong, R. W. Tetrahedron Lett. 1993, 34, 4897. Kim, J. D.; Kim, I. S.; Hua, J. C.; Zee, O. P.; Jung, Y. H. Tetrahedron Lett. 2005, 46, 1079. Moriya, T.; Suzuki, A.; Miyaura, N. Tetrahedron Lett. 1995, 36, 1887. Suginome, M.; Nakamura, H.; Matsuda, T.; Ito, Y. J. Am. Chem. Soc. 1998, 120, 4248. Ramachandran, P. V.; Pratihar, D.; Biswas, D.; Srivastava, A.; Reddy, M. V. R. Org. Lett. 2004, 6, 481. Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Chem. Soc., Chem. Commun. 1980, 1072. Kabalka, G. W.; Venkataiah, B.; Dong, G. J. Org. Chem. 2004, 69, 5807. Kabalka, G. W.; Venkataiah, B.; Dong, G. Tetrahedron Lett. 2005, 46, 4209. Coleman, R. S.; Gurrala, S. R.; Mitra, S.; Raao, A. J. Org. Chem. 2005, 70, 8932. Coleman, R. S.; Gurrala, S. R. Org. Lett. 2005, 7, 1849. Micalizio, G. C.; Roush, W. R. Org. Lett. 2001, 3, 1949. Hertweck, C.; Boland, W. Tetrahedron 1997, 53, 14651. Hertweck, C.; Boland, W. J. Org. Chem. 2000, 65, 2458. Suginome, M.; Yamamoto, Y.; Fujii, K.; Ito, Y. J. Am. Chem. Soc. 1995, 117, 9608. Jadhav, P. K.; Man, H. W. Tetrahedron Lett. 1996, 37, 1153. Taylor, R. E.; Hearn, B. R.; Ciavarri, J. P. Org. Lett. 2002, 4, 2953. Nakata, M.; Osumi, T.; Ueno, A.; Kimura, T.; Tamai, T.; Tatsuta, K. Tetrahedron Lett. 1991, 32, 6015. Nakata, M.; Osumi, T.; Ueno, A.; Kimura, T.; Tamai, T.; Tatsuta, K. Bull. Chem. Soc. Jpn. 1992, 65, 2974. Zhang, Q.; Lu, H.; Richard, C.; Curran, D. P. J. Am. Chem. Soc. 2004, 126, 36. Kabalka, G. W.; Venkataiah, B. Tetrahedron Lett. 2005, 46, 7325. Carter, K. D.; Panek, J. S. Org. Lett. 2004, 6, 55. Harried, S. S.; Lee, C. P.; Yang, G.; Lee, T. I. H.; Myles, D. C. J. Org. Chem. 2003, 68, 6646. Harried, S. S.; Yang, G.; Strawn, M. A.; Myles, D. C. J. Org. Chem. 1997, 62, 6098. Zakarian, A.; Batch, A.; Holton, R. A. J. Am. Chem. Soc. 2003, 125, 7822. Carri´e, D.; Carboni, B.; Vaultier, M. Tetrahedron Lett. 1995, 36, 8209. Favre, E.; Gaudemar, M. J. Organomet. Chem. 1975, 92, 17. Kulkarni, S. V.; Brown, H. C. Tetrahedron Lett. 1996, 37, 4125. Brown, H. C.; Khire, U. R.; Narla, G. J. Org. Chem. 1995, 60, 8130.
ALLYLBORATION OF CARBONYL COMPOUNDS 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
573
Hernandez, E.; Soderquist, J. A. Org. Lett. 2005, 7, 5397. Zweifel, G.; Backlund, S. J.; Leung, T. J. Am. Chem. Soc. 1978, 100, 5561. Brown, H. C.; Khire, U. R.; Racherla, U. S. Tetrahedron Lett. 1993, 34, 15. Brown, H. C.; Khire, U. R.; Narla, G.; Racherla, U. S. J. Org. Chem. 1995, 60, 544. Favre, E.; Gaudemar, M. J. Organomet. Chem. 1974, 76, 297. Wang, K. K.; Nikam, S. S.; Ho, C. D. J. Org. Chem. 1983, 48, 5376. Maddess, M. L.; Lautens, M. Org. Lett. 2005, 7, 3557. Ikeda, N.; Arai, I.; Yamamoto, H. J. Am. Chem. Soc. 1986, 108, 483. Favre, E.; Gaudemar, M. J. Organomet. Chem. 1974, 76, 305. Wang, K. K.; Liu, C. J. Org. Chem. 1985, 50, 2578. Corey, E. J.; Jones, G. B. Tetrahedron Lett. 1991, 32, 5713. Matsumoto, Y.; Naito, M.; Uozumi, Y.; Hayashi, T. J. Chem. Soc., Chem. Commun. 1993, 1468. Hilt, G.; Luers, S.; Smolko, K. I. Org. Lett. 2005, 7, 251. Herberich, G. E.; Englert, U.; Wang, S. Chem. Ber. 1993, 126, 297. Brown, H. C.; Bhat, K. S.; Jadhav, P. K. J. Chem. Soc., Perkin Trans. 1 1991, 2633. Lallemand, J. Y.; Six, Y.; Ricard, L. Eur. J. Org. Chem. 2002, 503. Renard, J. Y.; Lallemand, J. Y. Bull. Soc. Chim. Fr. 1996, 133, 143. Renard, P. Y.; Lallemand, J. Y. Tetrahedron: Asymmetry 1996, 7, 2523. Ohanessian, G.; Six, Y.; Lallemand, J. Y. Bull. Soc. Chim. Fr. 1996, 133, 1143. Gao, X.; Hall, D. G. Tetrahedron Lett. 2003, 44, 2231. Schleth, F.; Vogler, T.; Harms, K.; Studer, A. Chem. Eur. J. 2004, 10, 4171. Brown, H. C.; Jayaraman, S. Tetrahedron Lett. 1993, 34, 3997. Deligny, M.; Carreaux, F.; Carboni, B.; Toupet, L.; Dujardin, G. Chem. Commun. 2003, 276. Deligny, M.; Carreaux, F.; Carboni, B. Synlett 2005, 1462. Grieco, P. A.; Dai, Y. J. J. Am. Chem. Soc. 1998, 120, 5128. Hoffmann, R. W.; Munster, I. Tetrahedron Lett. 1995, 36, 1431. Hoffmann, R. W.; Munster, I. Liebigs Ann. Rec. 1997, 1143. Hoffmann, R. W.; Sander, T. Liebigs Ann. Chem. 1993, 1185. Kruger, J.; Hoffmann, R. W. J. Am. Chem. Soc. 1997, 119, 7499.
AUTHOR INDEX, VOLUMES 1-73
Volume number only is designated in this index
Adam, Waldemar, 61, 69 Adams, Joe T., 8 Adkins, Homer, 8 Agenet, Nicolas, 68 Ager, David J., 38 Albertson, Noel F., 12 Allen, George R., Jr., 20 Angyal, S. J., 8 Antoulinkis, Evan G., 57 Alonso, Diego A., 72 Apparu, Marcel, 29 Archer, S., 14 Arseniyadis, Simeon, 31 Aubert, Corinne, 68
Boswell, G. A., Jr., 21 Brand, William W., 18 Brewster, James H., 7 Brown, Herbert C , 13 Brown, Weldon G., 6 Bruson, Herman Alexander, 5 Bublitz, Donald E., 17 Buck, Johannes S., 4 Bufali, Simone, 68 Buisine, Olivier, 68 Burke, Steven D., 26 Butz, Lewis W., 5 Cahard, Dominique, 69 Caine, Drury, 23 Cairns, Theodore L., 20 Carmack, Marvin, 3 Carpenter, Nancy E., 66 Carreira, Eric M., 67 Carter, H. E., 3 Cason, James, 4 Castro, Bertrand R., 29 Casy, Guy, 62 Chamberlin, A. Richard, 39 Chapdelaine, Marc J., 38 Charette, Andrd B., 58 Chen, Bang-Chi, 62 Cheng, Chia-Chung, 28 Ciganek, Engelbert, 32, 51, 62, 72 Clark, Robin D., 47 Confalone, Pat N., 36 Cope, Arthur C , 9, 11 Corey, Elias J., 9 Cota, Donald J., 17
Bachmann, W. E., 1,2 Baer, Donald R., 11 Banfi, Luca, 65 Baudoux, J6r6me, 69 Baxter, Ellen W., 59 Beauchemin, Andre\ 58 Behr, Lyell C , 6 Behrman, E. J., 35 Bergmann, Ernst D., 10 Berliner, Ernst, 5 Biellmann, Jean-Francois, 27 Birch, Arthur J., 24 Blatchly, J. M., 19 Blatt, A. R , 1 Blicke, F. F., 1 Block, Eric, 30 Bloom, Steven H., 39 Bloomfield, Jordan J., 15, 23 Bonafoux, Dominique, 56
Organic Reactions, Vol. 73, Edited by Scott E. Denmark et al. © 2008 Organic Reactions, Inc. Published by John Wiley & Sons, Inc. 589
AUTHOR INDEX. VOLUMES 1-73
Cowden, Cameron J., 51 Crandall, Jack K., 29 Crich, David, 64 Crimmins, Michael T., 44 Crouch, R. David, 63 Crounse, Nathan N., 5
Govindachari, Tulicorin R., 6 Grieco, Paul A., 26 Grierson, David, 39 Gschwend, Heinz W., 26 Gung, Benjamin W., 64 Gutschc, C. David, 8
Daub, Guido H., 6 Dave, Vinod, 18 Davies, Huw M. L., 57 Davis, Franklin A., 62 Denmark, Scott E., 45 Denny, R. W., 20 DeLucchi, Ottorino, 40 DeTar, DeLos F., 9 Dickhaut, J., 48 Djerassi, Carl, 6 Donaruma, L. Guy, 11 Drake, Nathan L., 1 DuBois, Adrien S., 5 Ducep, Jean-Bernard, 27 Dunogues, Jacques, 37
Habermas, Karl L., 45 Hageman, Howard A.. 7 Hall, Dennis G., 73 Hamilton, Cliff S., 2 Hamlin, K. E., 9 Hanford, W. E., 3 Hanson, Robert M., 60 Harris, Constance M., 17 Harris, J. F., Jr., 13 Harris, Thomas M., 17 Hartung, Walter H., 7 Hassall, C. H., 9 Hauser, Charles R., 1,8 Hayakawa, Yoshihiro, 29 Heck, Richard F., 27 Hcldt, Walter Z., 11 Heintzelman, Geoffrey R., 65 Henne, Albert L., 2 Hofferberth, John E., 62 Hoffman, Roger A., 2 Hoiness, Connie M., 20 Holmes, H. L., 4, 9 Houlihan, William J., 16 House, Herbert O., 9 Hudlicky\ MiloS, 35 Hudlicky, TomaS, 33, 41 Hudson, Boyd E., Jr., 1 Hughes, David L., 42 Huie. E. M., 36 Hulce, Martin, 38 Huyscr, Earl S., 13 Hyatt, John A., 45
Eliel, Ernest L., 7 Emerson, William S., 4 Engel, Robert, 36 England, D. C. 6 Fan, Rulin, 41 Farina, Vitlorio, 50 Ferrier. Robert J., 62 Fettes, Alec, 67 Fieser. Louis F., 1 Fleming, Ian, 37 Folkcrs, Karl, 6 Fry, James L., 71 Fuson, Reynold C , 1 Gadamasetti, Kumar G., 41 Gandon, Vincent, 68 Gawley, Robert E., 35 Geissman, T. A., 2 Gcnslcr, Walter J., 6 Giese, B., 48 Gilman, Henry, 6, 8 Ginsburg, David, 10 Gobel, T., 48
Idacavage, Michael J.. 33 Idc, Walter S„ 4 Ingcrsoll, A. W.. 2 Itsuno, Shinichi, 52 Jackson, Ernest L., 2 Jacobs, Thomas L., 5 Jahangir, Alam, 47
AUTHOR INDEX. VOLUMES 1-73
Jakka. Kavitha. 69 Johnson, John R., I Johnson, Roy A., 63 Johnson, William S., 2. 6 Jones, Gurnos, 15, 49, 56 Jones, Reuben G., 6 Jones, Todd K., 45 Jorgenson, Margaret J., 18 Kanai, Motomu, 70 Kappe. C. Oliver, 63 Katsuki, Tsutomu, 48 Kende, Andrew S., 11 Kloctzcl, Milton C , 4 Knochel, Paul, 58 Kobayashi, Shu, 46 Kochi, Jay K., 19 Kopping, B., 48 Kornblum, Nathan, 2, 12 Kosolapoff, Gennady M., 6 Krcider, Eunice M., 18 Krimcn, L. L, 17 Krishnamurthy, Vcnkat, 50 Krow, Grant R., 43 Kuhlmann, Heinrich, 40 Kulickc, K. J.. 48 Kulka, Marshall, 7 Kutchan, Toni M., 33 Kyler, Keith S., 31 Lachance, Hugo, 73 Lane, John F., 3 Larson. Gerald L., 71 Leffler, Marl in T.. 1 Letavic. Michael A., 66 Lim, Linda B. L., 64 Link, J. T., 60 Little, R. Daniel, 47 Lipshutz. Bruce H., 41 Luzzio, Frederick A., 53 Malacria, Max, 68 McCombic, Stuart W., 66 McElvain. S. M., 4 McKeever, C. H., 1 McLoughlin, J. I., 47 McMurry, John E., 24 McOmie, J. F. W., 19
Maercker, Adalbert, 14 Magerlein, Barney J., 5 Mahajan. Yogesh R., 65 Malek, Jaroslav, 34, 36 Mallory, Clelia W., 30 Mallory, Frank B., 30 Manskc. Richard H. F., 7 Marcinow, Zbigniew, 42 Marti, Christiane, 67 Martin, Elmore L.. 1 Martin. Victor S., 48 Martin, William B., 14 Masjedizadeh, Mohammad R., Mcigh, Ivona R., 65 Meijcr, Egbert W., 28 Melikyan, G. G., 49 Mikami, Koichi, 46 Miller. Joseph A., 32 Millot, Nicolas, 58 Miotti. Umberto, 40 Mita, Tsuyoshi, 70 Modena, Giorgio, 40 Molander, Gary, 46 Moore, Maurice L., 5 Morgan, Jack F., 2 Moriarty, Robert M., 54, 57 Morton, John W., Jr., 8 Moscttig, Erich, 4, 8 Mozingo. Ralph, 4 Mukaiyama, Tcruaki, 28. 46
Nace, Harold R., 12 Nagata, Wataru, 25 Najera, Carmen, 72 Nakai, Takeshi, 46 Nakamura, Eiichi. 61 Naqvi. Saiyid M., 33 Negishi, Ei-Ichi, 33 Nelke, Janice M., 23 Nelson, Todd D., 63 Newman, Mclvin S., 5 Nickon, A., 20 Nielsen, Arnold T., 16 Noe, Mark C , 66 Noyori, Ryoji, 29
Ohno, Masaji, 37 Ojima. Iwao, 56
592
AUTHOR INDEX. VOLUMES 1-73
Otsuka, Masami. 37 Oveman, Larry E., 66 Owsley, Dennis C , 23 Pappo, Raphael, 10 Paquette, Leo A., 25, 62 Parham, William E., 13 Parmerter, Stanley M., 10 Pasto, Daniel J., 40 Patcrson, Ian, 51 Pettit, George R., 12 Phadke, Ragini, 7 Phillips, Robert R., 10 Picrini, Adriana B., 54 Pigge, F. Christopher, 51 Pine, Stanley H., 18,43 Pinnick, Harold W., 38 Porter, H. K., 20 Posner, Gary H., 19, 22 Prakash, Om, 54, 57 Price, Charles C . 3 Rabideau, Peter W., 42 Rabjohn, Norman, 5. 24 Rathke, Michael W., 22 Raulins, N. Rebecca, 22 Raynolds, Peter W., 45 Reed, Josephine W., 41 Reich, Hans J., 44 Rcinhold, Tracy L., 44 Reitz, Allen B., 59 Rhoads, Sara Jane, 22 Rickborn, Bruce. 52. 53 Rigby, James H., 49, 51 Rinehart, Kenneth L., Jr., 17 Ripka, W. C , 21 Riva, Renata. 65 Roberts, John D., 12 Rodriguez, Alain L., 58 Rodriguez, Herman R., 26 Roe, Arthur. 5 Rondcstvcdt, Christian S., Jr., 11, 24 Rossi, Roberto, 54 Ruh-Polenz, Carmen, 55 Rytina, Anton W., 5 Saha-Moller, Chantu R., 61 Santiago, Ana N., 54
Sauer, John C , 3 Schaefer, John P., 15 Schore, Neil E., 40 Schulenberg, J. W., 14 Schwcizcr, Edward E., 13 Scott, William J., 50 Scribner, R. M., 21 Seeberger. Peter H., 68 Scmmelhack, Martin F., 19 Sengupta, Saumitra, 41 Sethna, Suresh, 7 Shapiro, Robert H., 23 Sharts, Clay M., 12, 21 Sheehan, John C , 9 Sheldon, Roger A., 19 Sheppard. W. A., 21 Shibasaki, Masakatsu, 70 Shirley, David A., 8 Shriner, Ralph L„ 1 Simmons, Howard E., 20 Simonoff, Robert, 7 Slowinski, Franck, 68 Smith, Lee Irvin, 1 Smith, Peter A. S., 3, 11 Smithers, Roger, 37 Snow, Sheri L., 66 Spielman. M. A., 3 Spoerri, Paul E., 5 Stacey, F. W., 13 Stadler. Alexander, 63 Stanforth, Stephen P., 49, 56 Stcttcr, Hermann, 40 Struve, W. S., 1 Suter, C. M., 3 Swamer, Frederic W., 8 Swern, Daniel, 7
Takai, Kazuhiko, 64 Tarbell, D. Stanley, 2 Taylor. Richard J.K.. 62 Taylor, Richard T., 40 Thoma. G., 48 Tidwell. Thomas T., 39 Todd, David, 4 Toustcr, Oscar, 7 Trach, F., 48 Truce, William E., 9, 18 Trumbull, Elmer R., 11 Tsai, Chung-Ying, 56
AUTHOR INDEX, VOLUMES 1-73
Tucker. Charles E.. 58 Tullock, C. W„ 21 Tzamarioudaki, Maria. 56 Ucmura. Motokazu. 67
van Leusen. Albert M., 57 van Leusen. Daan, 57 van Tamclen, Eugene E., 12 Vcdejs, E., 22 Vladuchick. Susan A., 20 Vorbruggcn. Helmut. 55 Wadsworth, William S.. Jr., 25 Walling. Cheves, 13 Wallis, Everett S.. 3 Wallquist, Olof, 47 Wang, Chia-Lin L.. 34 WarnhoiT. E. W., 18 Waters. Marccy L., 70 Watt, David S., 31 Weinreb, Steven M., 65
Weston. Arthur W., 3. 9 Whalcy, Wilson ML, 6 Wilds, A. L., 2 Wiley, Richard H., 6 Williamson. David H., 24 Wilson, C. V., 9 Wilson. Stephen R.. 43 Wolf. Donald E.. 6 Wolff, Hans, 3 Wollowitz, Susan, 44 Wood. John L.. 3 Wulff, William D., 70 Wynberg, Hans, 28 Yamago, Shigcru. 61 Yan, Shou-Jcn. 28 Yoshioka, Mitsuru, 25 Zaugg. Harold E.. 8, 14 Zhao, Cong-Gui, 61, 69 Zhou. Ping, 62 Zubkov, Oleg A., 62 Zweifcl. George. 13, 32
593
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Many chapters contain brief discussions of reactions and comparisons of alternative synthetic methods related to the reaction that is the subject of the chapter. These related reactions and alternative methods are not usually listed in this index. In this index, the volume number is in boldface, the chapter number is in ordinary type. Acetoacetic ester condensation, 1, 9 Acetylenes: cotrimerizations of, 68, 1 oxidation by dioxirane, 69, 1 reactions with Fischer carbene complexes, phenol and quinone formation, 70, 2 synthesis of, 5, 1; 23, 3; 32, 2 Acid halides: reactions with esters, 1, 9 reactions with organometallic compounds, 8, 2 α-Acylamino acid mixed anhydrides, 12, 4 α-Acylamino acids, azlactonization of, 3, 5 Acylation: of esters with acid chlorides, 1, 9 intramolecular, to form cyclic ketones, 2, 4; 23, 2 of ketones to form diketones, 8, 3 Acyl fluorides, synthesis of, 21, 1; 34, 2; 35, 3 Acyl hypohalites, reactions of, 9, 5 Acyloins, 4, 4; 15, 1; 23, 2 Alcohols: conversion to fluorides, 21, 1, 2; 34, 2; 35, 3 conversion to olefins, 12, 2 oxidation of, 6, 5; 39, 3; 53, 1
replacement of hydroxy group by nucleophiles, 29, 1; 42, 2 resolution of, 2, 9 Alcohols, synthesis: by allylstannane addition to aldehydes, 64, 1 by base-promoted isomerization of epoxides, 29, 3 by hydroboration, 13, 1 by hydroxylation of ethylenic compounds, 7, 7 by organochromium reagents to carbonyl compounds, 64, 3 by reduction, 6, 10; 8, 1; 71, 1 from organoboranes, 33, 1; 73, 1 Aldehydes, additions of allyl, allenyl, propargyl stannanes, 64, 1 addition of allylic boron compounds, 73, 1 Aldehydes, catalyzed addition to double bonds, 40, 4 Aldehydes, synthesis of, 4, 7; 5, 10; 8, 4, 5; 9, 2; 33, 1 Aldol condensation, 16;67, 1 catalytic, enantioselective, 67, 1 directed, 28, 3 with boron enolates, 51, 1 Aliphatic fluorides, 2, 2; 21, 1, 2; 34, 2; 35, 3
Organic Reactions, Vol. 73, Edited by Scott E. Denmark et al. 2008 Organic Reactions, Inc. Published by John Wiley & Sons, Inc. 595
596
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Alkanes: by reduction of alkyl halides with organochromium reagents, 64, 3 of carbonyl groups with organosilanes, 71, 1 oxidation of, 69, 1 Alkenes: arylation of, 11, 3; 24, 3; 27, 2 asymmetric dihydroxylation, 66, 2 cyclopropanes from, 20, 1 cyclization in intramolecular Heck reactions 60, 2 from carbonyl compounds with organochromium reagents, 64, 3 dioxirane epoxidation of, 61, 2 epoxidation and hydroxylation of, 7, 7 free-radical additions to, 13, 3, 4 hydroboration of, 13, 1 hydrogenation with homogeneous catalysts, 24, 1 reactions with diazoacetic esters, 18, 3 reactions with nitrones, 36, 1 reduction by: alkoxyaluminum hydrides, 34, 1 diimides, 40, 2 organosilanes, 71, 1 Alkenes, synthesis: from amines, 11, 5 from aryl and vinyl halides, 27, 2 by Bamford-Stevens reaction, 23, 3 by Claisen and Cope rearrangements, 22, 1 by dehydrocyanation of nitriles, 31 by deoxygenation of vicinal diols, 30, 2 from α-halosulfones, 25, 1; 62, 2 by palladium-catalyzed vinylation, 27, 2 from phosphoryl-stabilized anions, 25, 2 by pyrolysis of xanthates, 12, 2 from silicon-stabilized anions, 38, 1 from tosylhydrazones, 23, 3; 39, 1 by Wittig reaction, 14, 3 Alkenyl- and alkynylaluminum reagents, 32, 2 Alkenyllithiums, formation of 39, 1 Alkoxyaluminum hydride reductions, 34, 1; 36, 3
Alkoxyphosphonium cations, nucleophilic displacements on, 29, 1 Alkylation: of allylic and benzylic carbanions, 27, 1 with amines and ammonium salts, 7, 3 of aromatic compounds, 3, 1 of esters and nitriles, 9, 4 γ-, of dianions of β-dicarbonyl compounds, 17, 2 of metallic acetylides, 5, 1 of nitrile-stabilized carbanions, 31 with organopalladium complexes, 27, 2 Alkylidenation by titanium-based reagents, 43, 1 Alkylidenesuccinic acids, synthesis and reactions of, 6, 1 Alkylidene triphenylphosphoranes, synthesis and reactions of, 14, 3 Allenylsilanes, electrophilic substitution reactions of, 37, 2 Allylboration of carbonyl compounds, 73, 1 Allyl transfer reactions, 73, 1 Allylic alcohols, synthesis: from epoxides, 29, 3 by Wittig rearrangement, 46, 2 Allylic and benzylic carbanions, heteroatom-substituted, 27, 1 Allylic hydroperoxides, in photooxygenations, 20, 2 Allylic rearrangements, transformation of glycols into 2,3-unsaturated glycosyl derivatives, 62, 4 Allylic rearrangements, trihaloacetimidate, 66, 1 π-Allylnickel complexes, 19, 2 Allylphenols, synthesis by Claisen rearrangement, 2, 1; 22, 1 Allylsilanes, electrophilic substitution reactions of, 37, 2 Aluminum alkoxides: in Meerwein-Ponndorf-Verley reduction, 2, 5 in Oppenauer oxidation, 6, 5 Amide formation by oxime rearrangement, 35, 1 α-Amidoalkylations at carbon, 14, 2
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Amination: electrophilic, of carbanions and enolates, 72, 1 of heterocyclic bases by alkali amides, 1, 4 of hydroxy compounds by Bucherer reaction, 1, 5 Amine oxides: Polonovski reaction of, 39, 2 pyrolysis of, 11, 5 Amines: from allylstannane addition to imines, 64, 1 oxidation of, 69, 1 synthesis from organoboranes, 33, 1 synthesis by reductive alkylation, 4, 3; 5, 7 synthesis by Zinin reaction, 20, 4 reactions with cyanogen bromide, 7, 4 α-Aminoacid synthesis, via Strecker Reaction, 70, 1 α-Aminoalkylation of activated olefins, 51, 2 Aminophenols from anilines, 35, 2 Anhydrides of aliphatic dibasic acids, Friedel-Crafts reaction with, 5, 5 Anion-assisted sigmatropic rearrangements, 43, 2 Anthracene homologs, synthesis of, 1, 6 Anti-Markownikoff hydration of alkenes, 13, 1 π-Arenechromium tricarbonyls, reaction with nitrile-stabilized carbanions, 31 η6 -(Arene)chromium complexes, 67, 2 Arndt-Eistert reaction, 1, 2 Aromatic aldehydes, synthesis of, 5, 6; 28, 1 Aromatic compounds, chloromethylation of, 1, 3 Aromatic fluorides, synthesis of, 5, 4 Aromatic hydrocarbons, synthesis of, 1, 6; 30, 1 Aromatic substitution by the SRN 1 reaction, 54, 1 Arsinic acids, 2, 10 Arsonic acids, 2, 10 Arylacetic acids, synthesis of, 1, 2; 22, 4 β-Arylacrylic acids, synthesis of, 1, 8
597
Arylamines, synthesis and reactions of, 1, 5 Arylation: by aryl halides, 27, 2 by diazonium salts, 11, 3; 24, 3 γ-, of dianions of β-dicarbonyl compounds, 17, 2 of nitrile-stabilized carbanions, 31 of alkenes, 11, 3; 24, 3; 27, 2 Arylglyoxals, condensation with aromatic hydrocarbons, 4, 5 Arylsulfonic acids, synthesis of, 3, 4 Aryl halides, homocoupling of, 63, 3 Aryl thiocyanates, 3, 6 Asymmetric aldol reactions using boron enolates, 51, 1 Asymmetric cyclopropanation, 57, 1 Asymmetric dihydroxylation, 66 2 Asymmetric epoxidation, 48, 1; 61, 2 Asymmetric reduction, 71, 1 Asymmetric Strecker reaction, 70, 1 Atom transfer preparation of radicals, 48, 2 Aza-Payne rearrangements, 60, 1 Azaphenanthrenes, synthesis by photocyclization, 30, 1 Azides, synthesis and rearrangement of, 3, 9 Azlactones, 3, 5 Baeyer-Villiger reaction, 9, 3; 43, 3 Bamford-Stevens reaction, 23, 3 Barbier Reaction, 58, 2 Bart reaction, 2, 10 Barton fragmentation reaction, 48, 2 B´echamp reaction, 2, 10 Beckmann rearrangement, 11, 1; 35, 1 Benzils, reduction of, 4, 5 Benzoin condensation, 4, 5 Benzoquinones: acetoxylation of, 19, 3 in Nenitzescu reaction, 20, 3 synthesis of, 4, 6 Benzylic carbanions, 27, 1; 67, 2 Biaryls, synthesis of, 2, 6; 63, 3 Bicyclobutanes, from cyclopropenes, 18, 3 Biginelli dihydropyrimidine synthesis, 63, 1 Birch reaction, 23, 1; 42, 1
598
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Bischler-Napieralski reaction, 6, 2 Bis(chloromethyl) ether, 1, 3; 19, warning Boron enolates, 51, 1 Borane reagents, for allylic transfer, 73, 1 Borohydride reduction, chiral, 52, 2 in reductive amination, 59, 1 Boyland-Sims oxidation, 35, 2 Bucherer reaction, 1, 5 Cannizzaro reaction, 2, 3 Carbanion, electrophilic amination, 72, 1 Carbenes, 13, 2; 26, 2; 28, 1 Carbene complexes in phenol and quinone synthesis, 70, 2 Carbenoid cyclopropanation, 57, 1; 58, 1 Carbohydrates, deoxy, synthesis of, 30, 2 Carbo/metallocupration, 41, 2 Carbon-carbon bond formation: by acetoacetic ester condensation, 1, 9 by acyloin condensation, 23, 2 by aldol condensation, 16; 28, 3; 46, 1;67, 1 by alkylation with amines and ammonium salts, 7, 3 by γ-alkylation and arylation, 17, 2 by allylic and benzylic carbanions, 27, 1 by amidoalkylation, 14, 2 by Cannizzaro reaction, 2, 3 by Claisen rearrangement, 2, 1; 22, 1 by Cope rearrangement, 22, 1 by cyclopropanation reaction, 13, 2; 20, 1 by Darzens condensation, 5, 10 by diazonium salt coupling, 10, 1; 11, 3; 24, 3 by Dieckmann condensation, 15, 1 by Diels-Alder reaction, 4, 1, 2; 5, 3; 32, 1 by free-radical additions to alkenes, 13, 3 by Friedel-Crafts reaction, 3, 1; 5, 5 by Knoevenagel condensation, 15, 2 by Mannich reaction, 1, 10; 7, 3 by Michael addition, 10, 3 by nitrile-stabilized carbanions, 31 by organoboranes and organoborates, 33, 1
by organocopper reagents, 19, 1; 38, 2; 41, 2 by organopalladium complexes, 27, 2 by organozinc reagents, 20, 1 by rearrangement of α-halosulfones, 25, 1; 62, 2 by Reformatsky reaction, 1, 1; 28, 3 by trivalent manganese, 49, 3 by Vilsmeier reaction, 49, 1; 56, 2 by vinylcyclopropane-cyclopentene rearrangement, 33, 2 Carbon-fluorine bond formation, 21, 1; 34, 2; 35, 3; 69, 2 Carbon-halogen bond formation, by replacement of hydroxy groups, 29, 1 Carbon-heteroatom bond formation: by free-radical chain additions to carbon-carbon multiple bonds, 13, 4 by organoboranes and organoborates, 33, 1 Carbon-nitrogen bond formation, by reductive amination, 59, 1 Carbon-phosphorus bond formation, 36, 2 Carbonyl compounds, addition of organochromium reagents, 64, 3 Carbonyl compounds, α,β-unsaturated: formation by selenoxide elimination, 44, 1 vicinal difunctionalization of, 38, 2 Carbonyl compounds, from nitro compounds, 38, 3 in the Passerini Reaction, 65, 1 oxidation with hypervalent iodine reagents, 54, 2 reactions with allylic boron compounds, 73, 1 reductive amination of, 59, 1 Carbonylation as part of intramolecular Heck reaction, 60, 2 Carboxylic acid derivatives, conversion to fluorides, 21, 1, 2; 34, 2; 35, 3 Carboxylic acids: synthesis from organoboranes, 33, 1 reaction with organolithium reagents, 18, 1 Catalytic enantioselective aldol addition, 67, 1
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Chapman rearrangement, 14, 1; 18, 2 Chloromethylation of aromatic compounds, 2, 3; 9, warning Cholanthrenes, synthesis of, 1, 6 Chromium reagents, 64, 3; 67, 2 Chugaev reaction, 12, 2 Claisen condensation, 1, 8 Claisen rearrangement, 2, 1; 22, 1 Cleavage: of benzyl-oxygen, benzyl-nitrogen, and benzyl-sulfur bonds, 7, 5 of carbon-carbon bonds by periodic acid, 2, 8 of esters via SN 2-type dealkylation, 24, 2 of non-enolizable ketones with sodium amide, 9, 1 in sensitized photooxidation, 20, 2 Clemmensen reduction, 1, 7; 22, 3 Collins reagent, 53, 1 Condensation: acetoacetic ester, 1, 9 acyloin, 4, 4; 23, 2 aldol, 16 benzoin, 4, 5 Biginelli, 63, 1 Claisen, 1, 8 Darzens, 5, 10; 31 Dieckmann, 1, 9; 6, 9; 15, 1 directed aldol, 28, 3 Knoevenagel, 1, 8; 15, 2 Stobbe, 6, 1 Thorpe-Ziegler, 15, 1; 31 Conjugate addition: of hydrogen cyanide, 25, 3 of organocopper reagents, 19, 1; 41, 2 Cope rearrangement, 22, 1; 41, 1; 43, 2 Copper-Grignard complexes, conjugate additions of, 19, 1; 41, 2 Corey-Winter reaction, 30, 2 Coumarins, synthesis of, 7, 1; 20, 3 Coupling reaction of organostannanes, 50, 1 Cuprate reagents, 19, 1; 38, 2; 41, 2 Curtius rearrangement, 3, 7, 9 Cyanation, of N-heteroaromatic compounds, 70, 1 Cyanoborohydride, in reductive aminations, 59, 1
599
Cyanoethylation, 5, 2 Cyanogen bromide, reactions with tertiary amines, 7, 4 Cyclic ketones, formation by intramolecular acylation, 2, 4; 23, 2 Cyclization: of alkyl dihalides, 19, 2 of aryl-substituted aliphatic acids, acid chlorides, and anhydrides, 2, 4; 23, 2 of α-carbonyl carbenes and carbenoids, 26, 2 cycloheptenones from α-bromoketones, 29, 2 of diesters and dinitriles, 15, 1 Fischer indole, 10, 2 intramolecular by acylation, 2, 4 intramolecular by acyloin condensation, 4, 4 intramolecular by Diels-Alder reaction, 32, 1 intramolecular by Heck reaction, 60, 2 intramolecular by Michael reaction, 47, 2 Nazarov, 45, 1 by radical reactions, 48, 2 of stilbenes, 30, 1 tandem cyclization by Heck reaction, 60, 2 Cycloaddition reactions, of cyclenones and quinones, 5, 3 cyclobutanes, synthesis of, 12, 1; 44, 2 cyclotrimerization of acetylenes, 68, 1 Diels-Alder, acetylenes and alkenes, 4, 2 Diels-Alder, imino dienophiles, 65, 2 Diels-Alder, intramolecular, 32, 1 Diels-Alder, maleic anhydride, 4, 1 [4 + 3], 51, 3 of enones, 44, 2 of ketenes, 45, 2 of nitrones and alkenes, 36, 1 Pauson-Khand, 40, 1 photochemical, 44, 2 retro-Diels-Alder reaction, 52, 1; 53, 2 [6 + 4], 49, 2 [3 + 2], 61, 1 Cyclobutanes, synthesis : from nitrile-stabilized carbanions, 31
600
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Cyclobutanes, synthesis (Continued ) by thermal cycloaddition reactions, 12, 1 Cycloheptadienes, from divinylcyclopropanes, 41, 1 polyhalo ketones, 29, 2 π-Cyclopentadienyl transition metal carbonyls, 17, 1 Cyclopentenones: annulation, 45, 1 synthesis, 40, 1; 45, 1 Cyclopropane carboxylates, from diazoacetic esters, 18, 3 Cyclopropanes: from α-diazocarbonyl compounds, 26, 2 from metal-catalyzed decomposition of diazo compounds, 57, 1 from nitrile-stabilized carbanions, 31 from tosylhydrazones, 23, 3 from unsaturated compounds, methylene iodide, and zinc-copper couple, 20, 1; 58, 1; 58, 2 Cyclopropenes, synthesis of, 18, 3 Darzens glycidic ester condensation, 5, 10; 31 DAST, 34, 2; 35, 3 Deamination of aromatic primary amines, 2, 7 Debenzylation, 7, 5; 18, 4 Decarboxylation of acids, 9, 5; 19, 4 Dehalogenation of α-haloacyl halides, 3, 3 Dehydrogenation: in synthesis of ketenes, 3, 3 in synthesis of acetylenes, 5, 1 Demjanov reaction, 11, 2 Deoxygenation of vicinal diols, 30, 2 Desoxybenzoins, conversion to benzoins, 4, 5 Dess-Martin Oxidation, 53, 1 Desulfonylation reactions, 72, 2 Desulfurization: of α-(alkylthio)nitriles, 31 in alkene synthesis, 30, 2 with Raney nickel, 12, 5 Diazo compounds, carbenoids derived from, 57, 1
Diazoacetic esters, reactions with alkenes, alkynes, heterocyclic and aromatic compounds, 18, 3; 26, 2 α-Diazocarbonyl compounds, insertion and addition reactions, 26, 2 Diazomethane: in Arndt-Eistert reaction, 1, 2 reactions with aldehydes and ketones, 8, 8 Diazonium fluoroborates, synthesis and decomposition, 5, 4 Diazonium salts: coupling with aliphatic compounds, 10, 1, 2 in deamination of aromatic primary amines, 2, 7 in Meerwein arylation reaction, 11, 3; 24, 3 in ring closure reactions, 9, 7 in synthesis of biaryls and aryl quinones, 2, 6 Dieckmann condensation, 1, 9; 15, 1 for synthesis of tetrahydrothiophenes, 6, 9 Diels-Alder reaction: intramolecular, 32, 1 retro-Diels-Alder reaction, 52, 1; 53, 2 with alkynyl and alkenyl dienophiles, 4, 2 with cyclenones and quinones, 5, 3 with imines, 65, 2 with maleic anhydride, 4, 1 Dihydrodiols, 63, 2 Dihydropyrimidine synthesis, 63, 1 Dihydroxylation of alkenes, asymmetric, 66, 2 Diimide, 40, 2 Diketones: pyrolysis of diaryl, 1, 6 reduction by acid in organic solvents, 22, 3 synthesis by acylation of ketones, 8, 3 synthesis by alkylation of β-diketone anions, 17, 2 Dimethyl sulfide, in oxidation reactions, 39, 3 Dimethyl sulfoxide, in oxidation reactions, 39, 3
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Diols: deoxygenation of, 30, 2 oxidation of, 2, 8 Dioxetanes, 20, 2 Dioxiranes, 61, 2; 69, 1 Dioxygenases, 63, 2 Divinyl-aziridines, -cyclopropanes, -oxiranes, and -thiiranes, rearrangements of, 41, 1 Doebner reaction, 1, 8 Eastwood reaction, 30, 2 Elbs reaction, 1, 6; 35, 2 Electrophilic amination, 72, 1 fluorination, 69, 2 Enamines, reaction with quinones, 20, 3 Enantioselective: aldol reactions, 67, 1 allylation and crotylation, 73, 1 Ene reaction, in photosensitized oxygenation, 20, 2 Enolates: Fluorination of, 69, 2 α-Hydroxylation of, 62, 1 in directed aldol reactions, 28, 3; 46, 1; 51, 1 Enone cycloadditions, 44, 2 Enzymatic reduction, 52, 2 Enzymatic resolution, 37, 1 Epoxidation: of alkenes, 61, 2 of allylic alcohols, 48, 1 with organic peracids, 7, 7 Epoxide isomerizations, 29, 3 Epoxide formation, 61, 2 migration, 60, 1 Esters: acylation with acid chlorides, 1, 9 alkylation of, 9, 4 alkylidenation of, 43, 1 cleavage via SN 2-type dealkylation, 24, 2 dimerization, 23, 2 glycidic, synthesis of, 5, 10 hydrolysis, catalyzed by pig liver esterase, 37, 1 β-hydroxy, synthesis of, 1, 1; 22, 4 β-keto, synthesis of, 15, 1
601
reaction with organolithium reagents, 18, 1 reduction of, 8, 1; 71, 1 synthesis from diazoacetic esters, 18, 3 synthesis by Mitsunobu reaction, 42, 2 Ethers, synthesis by Mitsunobu reaction, 42, 2 Exhaustive methylation, Hofmann, 11, 5 Favorskii rearrangement, 11, 4 Ferrocenes, 17, 1 Fischer carbene complexes, 70, 2 Fischer indole cyclization, 10, 2 Fluorinating agents, electrophilic, 69, 2 Fluorination of aliphatic compounds, 2, 2; 21, 1, 2; 34, 2; 35, 3; 69, 2 of carbonyl compounds, 69, 2 of heterocycles, 69, 2 Fluorination: by DAST, 35, 3 by N-F reagents, 69, 2 by sulfur tetrafluoride, 21, 1; 34, 2 Formylation: by hydroformylation, 56, 1 of alkylphenols, 28, 1 of aromatic hydrocarbons, 5, 6 of aromatic compounds, 49, 1 of non-aromatic compounds, 56, 2 Free radical additions: to alkenes and alkynes to form carbon-heteroatom bonds, 13, 4 to alkenes to form carbon-carbon bonds, 13, 3 Freidel-Crafts catalysts, in nucleoside synthesis, 55, 1 Friedel-Crafts reaction, 2, 4; 3, 1; 5, 5; 18, 1 Friedl¨ander synthesis of quinolines, 28, 2 Fries reaction, 1, 11 Gattermann aldehyde synthesis, 9, 2 Gattermann-Koch reaction, 5, 6 Germanes, addition to alkenes and alkynes, 13, 4 Glycals, fluorination of, 69, 2 transformation in glycosyl derivatives, 62, 4
602
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Glycosides, synthesis of, 64, 2 Glycosylating agents, 68, 2 Glycosylation on polymer supports, 68, 2 Glycosylation, with sulfoxides and sulfinates, 64, 2 Glycidic esters, synthesis and reactions of, 5, 10 Gomberg-Bachmann reaction, 2, 6; 9, 7 Grundmann synthesis of aldehydes, 8, 5 Halides, displacement reactions of, 22, 2; 27, 2 Halide-metal exchange, 58, 2 Halides, synthesis: from alcohols, 34, 2 by chloromethylation, 1, 3 from organoboranes, 33, 1 from primary and secondary alcohols, 29, 1 Haller-Bauer reaction, 9, 1 Halocarbenes, synthesis and reactions of, 13, 2 Halocyclopropanes, reactions of, 13, 2 Halogen-metal interconversion reactions, 6, 7 α-Haloketones, rearrangement of, 11, 4 α-Halosulfones, synthesis and reactions of, 25, 1; 62, 2 Heck reaction, intramolecular, 60, 2 Helicenes, synthesis by photocyclization, 30, 1 Heterocyclic aromatic systems, lithiation of, 26, 1 Heterocyclic bases, amination of, 1, 4 in nucleosides, 55, 1 Heterodienophiles, 53, 2 Hilbert-Johnson method, 55, 1 Hoesch reaction, 5, 9 Hofmann elimination reaction, 11, 5; 18, 4 Hofmann reaction of amides, 3, 7, 9 Homocouplings mediated by Cu, Ni, and Pd, 63, 3 Homogeneous hydrogenation catalysts, 24, 1 Hunsdiecker reaction, 9, 5; 19, 4 Hydration of alkenes, dienes, and alkynes, 13, 1 Hydrazoic acid, reactions and generation of, 3, 8
Hydroboration, 13, 1 Hydrocyanation of conjugated carbonyl compounds, 25, 3 Hydroformylation, 56, 1 Hydrogenation catalysts, homogeneous, 24, 1 Hydrogenation of esters, with copper chromite and Raney nickel, 8, 1 Hydrohalogenation, 13, 4 Hydroxyaldehydes, aromatic, 28, 1 α-Hydroxyalkylation of activated olefins, 51, 2 α-Hydroxyketones,: rearrangement, 62, 3 synthesis of, 23, 2 Hydroxylation: of enolates, 62, 1 of ethylenic compounds with organic peracids, 7, 7 Hypervalent iodine reagents, 54, 2; 57, 2 Imidates, rearrangement of, 14, 1 Imines, additions of allyl, allenyl, propargyl stannanes, 64, 1 additions of cyanide, 70, 1 as dienophiles, 65, 2 synthesis, 70, 1 Iminium ions, 39, 2; 65, 2 Imino Diels-Alder reactions, 65, 2 Indoles, by Nenitzescu reaction, 20, 3 by reaction with TosMIC, 57, 3 Ionic hydrogenation, 71, 1 Isocyanides, in the Passerini reaction, 65, 1 sulfonylmethyl, reactions of, 57, 3 Isoquinolines, synthesis of, 6, 2, 3, 4; 20, 3 Jacobsen reaction, 1, 12 Japp-Klingemann reaction, 10, 2 Katsuki-Sharpless epoxidation, 48, 1 Ketene cycloadditions, 45, 2 Ketenes and ketene dimers, synthesis of, 3, 3; 45, 2 α-Ketol rearrangement, 62, 3 Ketones: acylation of, 8, 3
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
alkylidenation of, 43, 1 Baeyer-Villiger oxidation of, 9, 3; 43, 3 cleavage of non-enolizable, 9, 1 comparison of synthetic methods, 18, 1 conversion to amides, 3, 8; 11, 1 conversion to fluorides, 34, 2; 35, 3 cyclic, synthesis of, 2, 4; 23, 2 cyclization of divinyl ketones, 45, 1 reaction with diazomethane, 8, 8 reduction to aliphatic compounds, 4, 8 reduction by: alkoxyaluminum hydrides, 34, 1 organosilanes, 71, 1 reduction in anhydrous organic solvents, 22, 3 synthesis by oxidation of alcohols, 6, 5; 39, 3 synthesis from acid chlorides and organo-metallic compounds, 8, 2; 18, 1 synthesis from organoboranes, 33, 1 synthesis from organolithium reagents and carboxylic acids, 18, 1 synthesis from α,β-unsaturated carbonyl compounds and metals in liquid ammonia, 23, 1 Kindler modification of Willgerodt reaction, 3, 2 Knoevenagel condensation, 1, 8; 15, 2; 57, 3 Koch-Haaf reaction, 17, 3 Kornblum oxidation, 39, 3 Kostaneki synthesis of chromanes, flavones, and isoflavones, 8, 3 β-Lactams, synthesis of, 9, 6; 26, 2 β-Lactones, synthesis and reactions of, 8, 7 Leuckart reaction, 5, 7 Lithiation: of allylic and benzylic systems, 27, 1 by halogen-metal exchange, 6, 7 heteroatom facilitated, 26, 1; 47, 1 of heterocyclic and olefinic compounds, 26, 1 Lithioorganocuprates, 19, 1; 22, 2; 41, 2 Lithium aluminum hydride reductions, 6, 2 chirally modified, 52, 2 Lossen rearrangement, 3, 7, 9
603
Mannich reaction, 1, 10; 7, 3 Meerwein arylation reaction, 11, 3; 24, 3 Meerwein-Ponndorf-Verley reduction, 2, 5 Mercury hydride method to prepare radicals, 48, 2 Metalations with organolithium compounds, 8, 6; 26, 1; 27, 1 Methylenation of carbonyl groups, 43, 1 Methylenecyclopropane, in cycloaddition reactions, 61, 1 Methylene-transfer reactions, 18, 3; 20, 1; 58, 1 Michael reaction, 10, 3; 15, 1, 2; 19, 1; 20, 3; 46, 1; 47, 2 Microbiological oxygenations, 63, 2 Mitsunobu reaction, 42, 2 Moffatt oxidation, 39, 3; 53, 1 Morita-Baylis-Hillman reaction, 51, 2 Nazarov cyclization, 45, 1 Nef reaction, 38, 3 Nenitzescu reaction, 20, 3 Nitriles: formation from oximes, 35, 2 synthesis from organoboranes, 33, 1 α,β-unsaturated: by elimination of selenoxides, 44, 1 Nitrile-stabilized carbanions: alkylation and arylation of, 31 Nitroamines, 20, 4 Nitro compounds, conversion to carbonyl compounds, 38, 3 Nitro compounds, synthesis of, 12, 3 Nitrone-olefin cycloadditions, 36, 1 Nitrosation, 2, 6; 7, 6 Nucleosides, synthesis of, 55, 1 Olefin formation, by reductive elimination of β-hydroxysulfones, 72, 2 Olefins, hydroformylation of, 56, 1 Oligomerization of 1,3-dienes, 19, 2 Oligosaccharide synthesis on polymer support, 68, 2 Oppenauer oxidation, 6, 5 Organoboranes : formation of carbon-carbon and carbon-heteroatom bonds from, 33, 1
604
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Organoboranes (Continued ) in allylation of carbonyl compounds, 73, 1 isomerization and oxidation of, 13, 1 reaction with anions of α-chloronitriles, 31, 1 Organochromium reagents: addition to carbonyl compounds, 64, 3; 67, 2 addition to imines, 67, 2 Organohypervalent iodine reagents, 54, 2; 57, 2 Organometallic compounds: of aluminum, 25, 3 of chromium, 64, 3; 67, 2 of copper, 19, 1; 22, 2; 38, 2; 41, 2 of lithium, 6, 7; 8, 6; 18, 1; 27, 1 of magnesium, zinc, and cadmium, 8, 2; of palladium, 27, 2 of silicon, 37, 2 of tin, 50, 1; 64, 1 of zinc, 1, 1; 20, 1; 22, 4; 58, 2 Organosilicon hydride reductions, 71, 1 Osmium tetroxide asymmetric dihydroxylation, 66, 2 Overman rearrangement of allylic imidates, 66, 1 Oxidation: by dioxiranes, 61, 2; 69, 1 of alcohols and polyhydroxy compounds, 6, 5; 39, 3; 53, 1 of aldehydes and ketones, Baeyer-Villiger reaction, 9, 3; 43, 3 of amines, phenols, aminophenols, diamines, hydroquinones, and halophenols, 4, 6; 35, 2 of enolates and silyl enol ethers, 62, 1 of α-glycols, α-amino alcohols, and polyhydroxy compounds by periodic acid, 2, 8 with hypervalent iodine reagents, 54, 2 of organoboranes, 13, 1 of phenolic compounds, 57, 2 with peracids, 7, 7 by photooxygenation, 20, 2 with selenium dioxide, 5, 8; 24, 4 Oxidative decarboxylation, 19, 4
Oximes, formation by nitrosation, 7, 6 Oxochromium(VI)-amine complexes, 53, 1 Oxo process, 56, 1 Oxygenation of arenes by dioxygenases, 63, 2 Palladium-catalyzed vinylic substitution, 27, 2 Palladium-catalyzed coupling of organostannanes, 50, 1 Palladium intermediates in Heck reactions, 60, 2 Passerini Reaction, 65, 1 Pauson-Khand reaction to prepare cyclopentenones, 40, 1 Payne rearrangement, 60, 1 Pechmann reaction, 7, 1 Peptides, synthesis of, 3, 5; 12, 4 Peracids, epoxidation and hydroxylation with, 7, 7 in Baeyer-Villiger oxidation, 9, 3; 43, 3 Periodic acid oxidation, 2, 8 Perkin reaction, 1, 8 Persulfate oxidation, 35, 2 Peterson olefination, 38, 1 Phenanthrenes, synthesis by photocyclization, 30, 1 Phenols, dihydric from phenols, 35, 2 oxidation of, 57, 2 synthesis from Fischer carbene complexes, 70, 2 Phosphinic acids, synthesis of, 6, 6 Phosphonic acids, synthesis of, 6, 6 Phosphonium salts: halide synthesis, use in, 29, 1 synthesis and reactions of, 14, 3 Phosphorus compounds, addition to carbonyl group, 6, 6; 14, 3; 25, 2; 36, 2 addition reactions at imine carbon, 36, 2 Phosphoryl-stabilized anions, 25, 2 Photochemical cycloadditions, 44, 2 Photocyclization of stilbenes, 30, 1 Photooxygenation of olefins, 20, 2 Photosensitizers, 20, 2 Pictet-Spengler reaction, 6, 3 Pig liver esterase, 37, 1 Polonovski reaction, 39, 2
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Polyalkylbenzenes, in Jacobsen reaction, 1, 12 Polycyclic aromatic compounds, synthesis by photocyclization of stilbenes, 30, 1 Polyhalo ketones, reductive dehalogenation of, 29, 2 Pomeranz-Fritsch reaction, 6, 4 Pr´evost reaction, 9, 5 Pschorr synthesis, 2, 6; 9, 7 Pummerer reaction, 40, 3 Pyrazolines, intermediates in diazoacetic ester reactions, 18, 3 Pyridinium chlorochromate, 53, 1 Pyrolysis: of amine oxides, phosphates, and acyl derivatives, 11, 5 of ketones and diketones, 1, 6 for synthesis of ketenes, 3, 3 of xanthates, 12, 2 Quaternary ammonium N-F reagents, 69, 2 salts, rearrangements of, 18, 4 Quinolines, synthesis of, by Friedl¨ander synthesis, 28, 2 by Skraup synthesis, 7, 2 Quinones: acetoxylation of, 19, 3 diene additions to, 5, 3 synthesis of, 4, 6 synthesis from Fischer carbene complexes, 70, 2 in synthesis of 5-hydroxyindoles, 20, 3 Ramberg-B¨acklund rearrangement, 25, 1; 62, 2 Radical formation and cyclization, 48, 2 Rearrangements: allylic trihaloacetamidate, 66, 1 anion-assisted sigmatropic, 43, 2 Beckmann, 11, 1; 35, 1 Chapman, 14, 1; 18, 2 Claisen, 2, 1; 22, 1 Cope, 22, 1; 41, 1, 43, 2 Curtius, 3, 7, 9 divinylcyclopropane, 41, 1 Favorskii, 11, 4
605
Lossen, 3, 7, 9 Ramberg-B¨acklund, 25, 1; 62, 2 Smiles, 18, 2 Sommelet-Hauser, 18, 4 Stevens, 18, 4 [2,3] Wittig, 46, 2 vinylcyclopropane-cyclopentene, 33, 2 Reduction: of acid chlorides to aldehydes, 4, 7; 8, 5 of aromatic compounds, 42, 1 of benzils, 4, 5 of ketones, enantioselective, 52, 2 Clemmensen, 1, 7; 22, 3 desulfurization, 12, 5 with diimide, 40, 2 by dissolving metal, 42, 1 by homogeneous hydrogenation catalysts, 24, 1 by hydrogenation of esters with copper chromite and Raney nickel, 8, 1 hydrogenolysis of benzyl groups, 7, 5 by lithium aluminum hydride, 6, 10 by Meerwein-Ponndorf-Verley reaction, 2, 5 chiral, 52, 2 by metal alkoxyaluminum hydrides, 34, 1; 36, 3 by organosilanes, 71, 1 of mono- and polynitroarenes, 20, 4 of olefins by diimide, 40, 2 of α,β-unsaturated carbonyl compounds, 23, 1 by samarium(II) iodide, 46, 3 by Wolff-Kishner reaction, 4, 8 Reductive alkylation, synthesis of amines, 4, 3; 5, 7 Reductive amination of carbonyl compounds, 59, 1; 71, 1 Reductive cyanation, 57, 3 Redutive desulfonylation, 72, 2 Reductive desulfurization of thiol esters, 8, 5 Reformatsky reaction, 1, 1; 22, 4 Reimer-Tiemann reaction, 13, 2; 28, 1 Reissert reaction, 70, 1 Resolution of alcohols, 2, 9 Retro-Diels-Alder reaction, 52, 1; 53, 2 Ritter reaction, 17, 3
606
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Rosenmund reaction for synthesis of arsonic acids, 2, 10 Rosenmund reduction, 4, 7 Samarium(II) iodide, 46, 3 Sandmeyer reaction, 2, 7 Schiemann reaction, 5, 4 Schmidt reaction, 3, 8, 9 Selenium dioxide oxidation, 5, 8; 24, 4 Seleno-Pummerer reaction, 40, 3 Selenoxide elimination, 44, 1 Shapiro reaction, 23, 3; 39, 1 Silanes: addition to olefins and acetylenes, 13, 4 electrophilic substitution reactions, 37, 2 oxidation of, 69, 1 reduction with, 71, 1 Sila-Pummerer reaction, 40, 3 Silyl carbanions, 38, 1 Silyl enol ether, α-hydroxylation, 62 1 Simmons-Smith reaction, 20, 1; 58, 1 Simonini reaction, 9, 5 Singlet oxygen, 20, 2 Skraup synthesis, 7, 2; 28, 2 Smiles rearrangement, 18, 2 Sommelet-Hauser rearrangement, 18, 4 SRN 1 reactions of aromatic systems, 54, 1 Sommelet reaction, 8, 4 Stevens rearrangement, 18, 4 Stetter reaction of aldehydes with olefins, 40, 4 Strecker reaction, catalytic asymmetric, 70, 1 Stilbenes, photocyclization of, 30, 1 Stille reaction, 50, 1 Stobbe condensation, 6, 1 Substitution reactions using organocopper reagents, 22, 2; 41, 2 Sugars, synthesis by glycosylation with sulfoxides and sulfinates, 64, 2 Sulfide reduction of nitroarenes, 20, 4 Sulfonation of aromatic hydrocarbons and aryl halides, 3, 4 Swern oxidation, 39, 3; 53, 1 Tetrahydroisoquinolines, synthesis of, 6, 3 Tetrahydrothiophenes, synthesis of, 6, 9 Thia-Payne rearrangement, 60, 1
Thiazoles, synthesis of, 6, 8 Thiele-Winter acetoxylation of quinones, 19, 3 Thiocarbonates, synthesis of, 17, 3 Thiocyanation of aromatic amines, phenols, and polynuclear hydrocarbons, 3, 6 Thiophenes, synthesis of, 6, 9 Thorpe-Ziegler condensation, 15, 1; 31 Tiemann reaction, 3, 9 Tiffeneau-Demjanov reaction, 11, 2 Tin(II) enolates, 46, 1 Tin hydride method to prepare radicals, 48, 2 Tipson-Cohen reaction, 30, 2 Tosylhydrazones, 23, 3; 39, 1 Tosylmethyl isocyanide (TosMIC), 57, 3 Transmetallation reactions, 58, 2 Tricarbonyl(η6 -arene)chromium complexes, 67, 2 Trihaloacetimidate, allylic rearrangements, 66, 1 Trimethylenemethane, [3 + 2] cycloaddtion of, 61, 1 Trimerization, co-, acetylenic compounds, 68, 1 Ullmann reaction: homocoupling mediated by Cu, Ni, and Pd, 63, 3 in synthesis of diphenylamines, 14, 1 in synthesis of unsymmetrical biaryls, 2, 6 Unsaturated compounds, synthesis with alkenyl- and alkynylaluminum reagents, 32, 2 Vilsmeier reaction, 49, 1; 56, 2 Vinylcyclopropanes, rearrangement to cyclopentenes, 33, 2 Vinyllithiums, from sulfonylhydrazones, 39, 1 Vinylsilanes, electrophilic substitution reactions of, 37, 2 Vinyl substitution, catalyzed by palladium complexes, 27, 2 von Braun cyanogen bromide reaction, 7, 4 Vorbr¨uggen reaction, 55, 1
CHAPTER AND TOPIC INDEX, VOLUMES 1–73
Willgerodt reaction, 3, 2 Wittig reaction, 14, 3; 31 [2,3]-Wittig rearrangement, 46, 2 Wolff-Kishner reaction, 4, 8
Ylides: in Stevens rearrangement, 18, 4 in Wittig reaction, structure and properties, 14, 3
Xanthates, synthesis and pyrolysis of, 12, 2
Zinc-copper couple, 20, 1; 58, 1, 2 Zinin reduction of nitroarenes, 20, 4
607