ACS SYMPOSIUM SERIES401 Nucleotide Analogues as Antiviral Agents John C. Martin,
EDITOR
Bristol-Myers Company
Develop...
92 downloads
714 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
ACS SYMPOSIUM SERIES401 Nucleotide Analogues as Antiviral Agents John C. Martin,
EDITOR
Bristol-Myers Company
Developed from a symposium sponsored by the Division of Carbohydrate Chemistry and the Division o f Medicinal Chemistry at the 196th National Meeting of the A m e r i c a n C h e m i c a l Society, Los Angeles, California, September 2 5 - 3 0 , 1988
American Chemical Society, Washington, DC 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Library of Congress Cataloging-in-Publication Data Nucleotide analogues as antiviral agents John C. Martin, editor Developed from a symposium sponsored by the Divisions of Carbohydrate Chemistry and Medicinal Chemisty at the 196th National Meeting of the American Chemical Society, Los Angeles p. cm.—(ACS Symposium Series, 0097-6156; 401). Includes bibliographies and index. ISBN 0-8412-1659-2 1. Antiviral agents—Testing—Congresses. 2. Nucleotides—-Derivatives—Therapeutic use—TestingCongresses. I. Martin, John C., 1951- . II. American Chemical Society. Division of Carbohydrate Chemistry. III. American Chemical Society. Division of Medicinal Chemistry. IV. American Chemical Society. Meeting (196th: 1988: Los Angeles, Calif.). V . Series RM411.N83 1989 616.9'25061—dc20
89-15114
CIP
Copyright ©1989 American Chemical Society All Rights Reserved. The appearance of the code at the bottom of the first page of each chapter in this volume indicates the copyright owner's consent that reprographic copies of the chapter may be made for personal or internal use or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center, Inc. 27 Congress Street, Salem, M A 01970, for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to copying or transmission by any means—graphic or electronic—for any other purpose, such as for general distribution, for advertising or promotional purposes, tor creating a new collective work, for resale, or for information storage and retrieval systems. The copying fee for each chapter is indicated in the code at the bottom of the first page of the chapter. The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor should the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. Registered names, trademarks, etc., used in this publication, even without specific indication thereof, are not to be considered unprotected By law. PRINTED IN T H E U N T I E D STATES O F A M E R I C A
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
ACS Symposium Series M. Joan Comstock, Series Editor 1989 ACS Books Advisory Board Paul S. Anderson Merck Sharp & Dohme Research Laboratories
Mary A. Kaiser Ε. I. du Pont de Nemours and Compan
Alexis T. Bell University of California—Berkeley
Michael R. Ladisch Purdue University
Harvey W. Blanch University of California—Berkeley Malcolm H. Chisholm Indiana University Alan Elzerman Clemson University John W. Finley Nabisco Brands, Inc. Natalie Foster Lehigh University Marye Anne Fox The University of Texas—Austin G. Wayne Ivie U.S. Department of Agriculture, Agricultural Research Service
John L. Massingill Dow Chemical Company Daniel M . Quinn University of Iowa James C . Randall Exxon Chemical Company Elsa Reichmanis A T & T Bell Laboratories C. M . Roland U.S. Naval Research Laboratory Stephen A. Szabo Conoco Inc. Wendy A. Warr Imperial Chemical Industries Robert A. Weiss University of Connecticut
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Foreword The A C S S Y M P O S I U M SERIES was founded in 1974 to provide a medium for publishing symposia quickly in book form. The format of the Series parallels that of the continuing A D V A N C E S IN C H E M I S T R Y S E R I E S except that, in order to save time, the papers are not typeset but are reproduced as they are submitted by the authors in camera-read the supervision of the Editors with the assistance of the Series Advisory Board and are selected to maintain the integrity of the symposia; however, verbatim reproductions of previously pub lished papers are not accepted. Both reviews and reports of research are acceptable, because symposia may embrace both types of presentation.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Preface L A R G E L Y IN RESPONSE T O T H E AIDS EPIDEMIC, the amount of research
directed toward the discovery of antiviral agents has grown dramatically over the last several years. Nucleoside analogues, such as acyclovir and zidovudine, are the most common approved drugs for the treatment of viral infections. In general, these substances have a mechanism of action that involves first phosphorylation in cells to nucleotide analogues and then inhibition of an Analogues of nucleotides (phosphorylated derivatives of nucleosides) are often negatively charged. In the past they were thought to have little potential for efficacy because of the low permeability of cells to charged molecules. Contrary to this expectation, several negatively charged nucleotide analogues have been found during the last five years to exert potent in vivo antiviral effects. This new awareness of the potential therapeutic utility of nucleotide analogues has led a number of laboratories to develop research programs on this topic. The contributors to Nucleotide Analogues as Antiviral Agents are an international group of scientists carrying out research at the forefront of nucleotide drug design. The individual chapters describe many new concepts and results, much of the information unpublished to date. The goal of this book is to provide any chemist, biochemist, or biologist who is interested or involved in antiviral research with a collection of information that will offer insight into this increasingly important research topic. The first chapter provides an overview of the field and also considerable new structure-activity data on analogues of pyrophosphate. Chapters 2-6 describe the chemistry and biological activities of a number of stable acyclic nucleotide analogues that have in vivo activity against herpesviruses and retroviruses. Progress in biochemical and molecular biological research has advanced our understanding of virus replication and resulted in the identification of new targets for inhibition, in addition to the viral D N A polymerases. Chapters 7-9 describe nucleotide analogues that inhibit viral thymidine kinase, glycosylation of viral proteins, and aminoacyl-tRNA synthetase, respectively. Chapter 10 provides, by example, means to design nucleoside analogues to be phosphorylated to nucleotides by host vii
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
enzymes, or in some cases, analogues that are resistant to this phosphorylation. Chapter 11 details the evaluation of nucleotide dimers of nucleosides active against human immunodeficiency virus. The final chapter of this book contains a discussion of the current efforts to design stable oligonucleotides as antisense inhibitors of the transcription or translation of key viral genes. To date, no nucleotide analogues have been approved for use as antiviral drugs. However, a number of the substances described in this book have the potential to be developed as antiviral therapies. As our knowledge of the biological properties (potency, mechanism of action, toxicity, pharmacokinetics, and metabolism) of nucleotide analogues increases, the rational design of superior antiviral agents should become increasingly successful.
Acknowledgments I am very appreciative of the excellent and timely contributions made by authors of chapters in this book. I am also grateful to the many experts in the field of antiviral research who contributed their time to the evaluation of the individual chapters in order to make valuable suggestions for improvements and to Cheryl Shanks of the ACS Books Department. David C. Baker of the Division of Carbohydrate Chemistry and William T. Comer of the Division of Medicinal Chemistry of the American Chemical Society were instrumental in arranging for the financial support of their respective divisions. Also, David C. Baker was especially helpful in his support and advice concerning the organization of the symposium and this book. J O H N C. M A R T I N
Bristol-Myers Company Wallingford, C T 06492-7660 May 18, 1989
viii
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Chapter 1
Inhibitors of Viral Nucleic Acid Polymerases Pyrophosphate
Analogues
Charles E. McKenna , Jeffrey N. Levy , Leslie A Khawli , Vahak Harutunian , Ting-Gao Ye , Milbrey C. Starnes , Ashok Bapat , and Yung-Chi Cheng 1
2
1
1,3
1,4
2
2,5
2,6
Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 Department of Pharmacolog of North Carolina-Chapel Hill, Chapel Hill, NC 27514 1
2
Virus-specific enzymes essential for viral nucleic acid replication or related functions are targets for inhibition by substrate or product nucleotide analogues i n which one or more P-O bonds are replaced by a P-C bond. The simplest examples of these are PFA (phosphonoformic acid ) and PAA (phosphonoacetic acid), representing analogues of 'pyrophosphate' moieties i n nucleotides. The synthesis of a series of α-halogenated and α-οxο PAA and MDP (methanediphosphonate) derivatives i s described and structure/activity relationships in their i n h i b i t i o n of several human (α,β,γ) and viral (HSV, EBV, HIV) DNA polymerases are present ed. Inhibition of HIV RNA-directed DNA polymerase (reverse transcriptase) by PFA, α-oxophosphonoacetate and α-oxomethanediphosphonate is shown to be pH- and template-dependent. Combination of phosphonoacetate derivatives and a n t i - v i r a l nucleo sides into 'hybrid' nucleotide analogues is brief ly discussed. Viruses, i n f e c t i n g and reproducing w i t h i n host c e l l s , have long been an e l u s i v e t a r g e t f o r chemotherapy. However, recent advances i n 3
Current address: Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA 90033 Current address: Wenzhou Institute of Pesticide Research, Huiqiaopu, Wenzhou, Zhejiang, China Current address: Wyeth Laboratories, P.O. Box 8299, Philadelphia, PA 19101-8299 Current address: Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510 0097-6156/89/0401-0001$06.00/0 o 1989 American Chemical Society
4
5 6
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2
NUCLEOTIDE ANALOGUES
molecular v i r o l o g y have increased optimism about the f e a s i b i l i t y of c r e a t i n g r a t i o n a l l y designed, e f f e c t i v e and non-toxic a n t i - v i r a l agents (1). Virus-encoded gene products required f o r DNA r e p l i c a t i o n can s i g n i f i c a n t l y d i f f e r i n substrate s p e c i f i c i t y from normal DNA polymerases involved i n host c e l l reproduction. For example, Herpes simplex v i r u s e s 1 and 2 (HSV-1, HSV-2) induce synthesis of DNA p o l y m e r a s e s h a v i n g Km v a l u e s f o r d e o x y n u c l e o s i d e 5'triphosphate substrates (dNTP's) that are smaller (~10" M) than the Km values of any known mammalian DNA polymerase (2). This confers an advantage to the v i r u s i n competing f o r i n t r a c e l l u l a r s u b s t r a t e s , but a l s o renders i t vulnerable to s e l e c t i v e i n h i b i t i o n . A s i m i l a r r a t i o n a l e underlies ongoing e f f o r t s to develop i n h i b i t o r s f o r other types of v i r u s - s p e c i f i c n u c l e i c acids polymerases, such as the RNA polymerase of influenza viruses and the RNA-dependent DNA polymerase (reverse t r a n s c r i p t a s e ) of Human Immunodeficiency V i r u s (HIV). V i r u s - s p e c i f i c enzymes involved i n r e l a t e d f u n c t i o n s , such as nu cleoside kinases and integrases V i r u s - s p e c i f i c DNA condensation of a nucleoside 5'-triphosphate with a growing polynu c l e o t i d e strand, e l i m i n a t i n g pyrophosphate (Scheme 1). dNTP sub s t r a t e s , and also the pyrophosphate byproduct, are recognized s t a r t ing points f o r i n h i b i t o r design. M o d i f i c a t i o n of mononucleotide may focus on the purine or pyrimidine base, the sugar, the triphosphate, or s e v e r a l m o i e t i e s t o g e t h e r . The r e s u l t i n g analogue c o u l d be intended to i n t e r a c t r e v e r s i b l y or i r r e v e r s i b l y w i t h the targeted v i r a l DNA polymerase. Nucleotides l a c k i n g a 3' h y d r o x y l group can cause chain termination, r e s u l t i n g i n product i n h i b i t i o n . In addi t i o n to i n h i b i t o r potency, p r o p e r t i e s important f o r u s e f u l a n t i v i r a l a c t i v i t y include s e l e c t i v i t y r e l a t i v e to s i m i l a r host enzymes, and a b i l i t y to penetrate c e l l membranes. 7
Triphosphate
Base
ι
1 0
0
Pu/Py
Pu/Py
0
" ^ - o J - o J - o - T ι Her
viral
OH
PolyNu—0—[>—0| OH
| ^0^
polymerase HO
H
HO
I
I
H I
Sugar +
0
PolyNu-3'-0H I
0
HCT
DNA Strand
Chain Termination X)H
Pyrophosphate SCHEME 1
Pyrophosphate analogues might also be thought of as fragmentary nucleotides, with only the oligophosphate moiety mimicked. Perhaps the s t r u c t u r a l l y simplest compound discovered to have s i g n i f i c a n t a n t i - v i r a l a c t i v i t y , phosphonoformic a c i d (PFA, 1), belongs to t h i s category. PFA i s b e l i e v e d to i n t e r a c t d i r e c t l y w i t h v i r a l polymer-
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1.
McKENNA E T AL.
Pyrophosphate Analogues
3
ases, i n t e r f e r i n g with substrate binding and thus b l o c k i n g r e p l i c a t i o n of DNA. Phosphonate analogues of pyrophosphate, which c o n t a i n P-C bonds i n place of P-0 bonds, w i l l be introduced i n more d e t a i l following t h i s background section. More recently discovered nucleoside a n t i - v i r a l agents such as A c y c l o v i r (ACV, 9-(2-hydroxyethoxymethyl)guanine ; a c t i v e against HSV) and AZT (3'-azido-2',3'-dideoxythymidine ; a c t i v e against HIV) r e q u i r e c o n v e r s i o n to n u c l e o s i d e t r i p h o s p h a t e s by v i r a l and/or c e l l u l a r k i n a s e s f o r a c t i v i t y . These drugs are thus l i p o s o l u b l e precursors of corresponding nucleotide analogues and are believed to i n h i b i t the v i r a l polymerases by competing w i t h n a t u r a l dNTP subs t r a t e s f o r a common b i n d i n g s i t e . ACV and AZT triphosphate a l s o exert a n t i - v i r a l a c t i v i t y by f u n c t i o n i n g as v i r a l DNA polymerase mononucleotide substrates, l e a d i n g to t h e i r i n c o r p o r a t i o n i n t o the bound product DNA strand where they act as chain terminators. This dual i n h i b i t i o n mechanism i s o u t l i n e d f o r ACV i n Scheme 2 where ACV-MP and ACV-TP are AC DP represents a Herpes simplex the product DNA strand terminated by ACV-MP, which has no 3' hydroxy l group. The employment of a nucleoside prodrug circumvents two disadvantages inherent i n d i r e c t use of the corresponding nucleoside triphosphate: i t s a n i o n i c charge, which l i m i t s c e l l t r a n s p o r t ; and the s u s c e p t i b i l i t y of i t s triphosphate group to enzymatic hydrolys i s . An a c t i v a t i o n process s o l e l y dependent on host c e l l u l a r enzymes i s indicated f o r AZT (3), but a v i r a l thymidine kinase (TK) has been i m p l i c a t e d i n the i n i t i a l phosphorylation of ACV to ACV-MP O b l i g a t o r y a c t i v a t i o n by another v i r a l enzyme a m p l i f i e s the s e l e c t i v i t y of the i n h i b i t o r (and presents an a d d i t i o n a l a n t i - v i r a l drug target ( 6 ) ) . However, nucleoside analogues phosphorylated s e l e c t i v e l y by v i r a l TK on the path to t h e i r a c t i v e triphosphate forms may have a r e s t r i c t e d spectrum of a c t i v i t y due to virus-dependent v a r i a t i o n i n TK s p e c i f i c i t y (7). ACV-resistant HSV i s o l a t e s o f t e n have a TK" phenotype, whereas mutants with a l t e r a t i o n s i n DNA polymerase appear to a r i s e with lower frequency (8).
D N A - A C V - M P (terminated c h a i n )
HSV ACV
JK
Cellular —
ACV-MP
Kinases
AcV-TP
H S V - D P (inhibition) SCHEME 2
Nucleotide a n t i - v i r a l analogues would be presumed to a f f e c t the target polymerase d i r e c t l y , bypassing a c t i v a t i o n or, i n the case of
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
4
NUCLEOTIDE ANALOGUES
nucleoside monophosphate analogues, r e q u i r i n g only c e l l u l a r kinases f o r f u r t h e r phosphorylation (9). V i r u s - i n f e c t e d c e l l s are o f t e n more permeable to n u c l e o t i d e s than normal c e l l s , which might m i t i gate the p o t e n t i a l problem of l i m i t e d c e l l transport due to i o n i c charge, and n u c l e o t i d e analogues i n which l a b i l e P-0 bonds a r e replaced by P-C or other bonds r e s i s t a n t to enzymatic hydrolysis may be l e s s t o x i c and teratogenic than corresponding nucleosides (10). In support of t h i s idea, a phosphonate analogue o f DHPG (9-[(1,3dihydroxy-2-propoxy)methyl]guanine) monophosphate was found t o e x h i b i t s u b s t a n t i a l a c t i v i t y a g a i n s t Cytomegalovirus (CMV) w i t h s i g n i f i c a n t l y lower t o x i c i t y than corresponding mono- and diphos phate DHPG i n h i b i t o r s (11). Active i n t e r e s t i n nucleotides as a n t i v i r a l agents i s r e l a t i v e l y recent, although other uses o f phosphonates as biophosphate analogues have been known f o r some time (12). Oligonucleotide analogues c o n s t i t u t e a f o u r t h category o f nu c l e o t i d e a n t i - v i r a l agent, designed e.g. to block v i r a l gene expres sion a t the l e v e l o f t r a n s c r i p t i o s p e c i f i c n u c l e i c a c i d segment with complementary v i r a l template ("anti-sense" i n h i b i t i o n ) , and generally have modified 3',5' phosphate linkages to improve s t a b i l i ty to nucleases and enhance transport (13). The v i r a l i n h i b i t o r design s t r a t e g i e s summarized above a r e r e f l e c t e d i n the d i f f e r e n t contributions comprising t h i s volume. Our paper w i l l focus p r i m a r i l y on pyrophosphate analogues as such, and ( b r i e f l y ) as components of 'hybrid' nucleotide analogues. Pyrophosphate
Analogues
The e a r l i e s t pyrophosphate analogue found t o possess a n t i - v i r a l a c t i v i t y was phosphonoacetic a c i d (PAA, 2a) (14) ( f o r convenience, s t r u c t u r a l references f o r the analogues o f t h i s type are given i n f u l l y protonated forms (Scheme 3); the actual i n h i b i t o r s are assumed to be corresponding anionic forms). Both PFA and PAA i n h i b i t r e p l i cation of HSV-1 and HSV-2 and suppress i n i t i a l herpes lesions when applied t o p i c a l l y (14.15). PFA i s more potent than PAA against HSV although IC50 values against HSV-induced DNA polymerases are s i m i l a r f o r the two compounds, suggesting that multiple factors are involved i n o v e r a l l drug effectiveness. Modifications i n the phosphonate/carboxylate groups o f PAA and PFA by e s t e r i f i c a t i o n w i t h simple a l k y l or a r y l groups or by r e placement w i t h other combinations o f a c i d i c f u n c t i o n a l groups have g e n e r a l l y r e s u l t e d i n l e s s a c t i v e compounds (15.) , although excep t i o n s have been reported (16.17). P r i o r s t u d i e s o f PAA-like com pounds (15-20) provide evidence that one phosphonate group, i n close p r o x i m i t y ( p r e f e r a b l y one o r zero i n t e r v e n i n g atoms) t o a carboxyl a t e , i s a s s o c i a t e d w i t h a c t i v i t y . Replacement o f the carboxylate group i n 2a by a phosphonate group (methanediphosphonic acid/methylene b i s [phosphonic a c i d ] , MDP, 3a) r e s u l t e d i n l o s s o f a c t i v i t y (18) . From the p e r s p e c t i v e o f p r o v i d i n g access t o d e r i v a t i v e s u s e f u l f o r probing s t r u c t u r e - f u n c t i o n r e l a t i o n s h i p s , the methylene group present i n PAA o f f e r s s u b s t i t u t i o n a l l a t i t u d e not a v a i l a b l e i n PFA, b u t α-substitution o f PAA has u s u a l l y decreased a c t i v i t y (15.17-18). Apart from t h i s apparent s t e r i c e f f e c t , and the termi nal-group c o r r e l a t i o n s reviewed above, s t r u c t u r e / a c t i v i t y r e l a t i o n ships f o r pyrophosphate analogues are not w e l l understood.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1.
McKENNAETAL.
0 HO.
Pyrophosphate Analogues
0
0
Il
II
HO
;:P—c—OH HO^
X
||
^P HO^
0
0
I
II
H0
— C — C — O H
OH
N
HO'
I
V
Y PFA,
1
PAA,
MDP,
2a
(X.Y =
I
II
ll/OH
HO.
0
0
I II
II
=> — C —
HO
COPAA,
COMDP, 4
SCHEME
3a
(X.Y =
H)
0 HO.
0H
Y
H)
C—OH
5
3
a-Halogenated Pyrophosphate Analogues. Fluorophosphonoacetic and difluorophosphonoacetic acids (2b, 2c) were previously discussed as p o s s i b l e new v i r a l i n h i b i t o r s (21). The p o l a r -CHF- and -CF2groups i n 2b and 2c more c l o s e l y mimic the anhydride oxygen i n P^-OP i than does the -CH2- group of PAA, at a cost of r e l a t i v e l y small s t e r i c perturbation, but the net e f f e c t of such m o d i f i c a t i o n was not c l e a r l y p r e d i c t a b l e . An a n a l y t i c a l advantage of α-fluoromethylene analogues i s the presence of the l ^ F nucleus as a p o t e n t i a l l y useful NMR probe. To e s t a b l i s h s y s t e m a t i c a l l y t h e e f f e c t o f h a l o g e n as u b s t i t u t i o n on the a c t i v i t y of PAA towards p a r t i c u l a r v i r a l poly merases, we prepared an i n t e g r a l set of α-halo analogues: XYPAA, X,Y - H,F ( 2 b ) ; F,F ( 2 c ) ; H,Cl ( 2 d ) ; C l , C l ( 2 e ) ; H,Br ( 2 f ) ; Br,Br ( 2 g ) ; F,Cl ( 2 h ) ; F,Br ( 2 1 ) ; Cl,Br ( 2 j ) ; CH ,F ( 2 1 ) ; CH ,C1 (2m); CH3,Br ( 2 n ) . Reported i n h i b i t i o n of an RNA v i r u s polymerase by C1MDP ( 3 d ) , C1 MDP (3e) and Br MDP ( 3 g ) , but not by MDP i t s e l f (22.23) prompted us to include i n our i n h i b i t i o n studies a compara ble set of α-halo methanediphosphonates (XYMDP, 3 b - 3 j ) . 3
2
3
2
a-0xo Pyrophosphate Analogues. PAA, i n c o n t r a s t to i t s a b i l i t y to i n h i b i t v i r a l DNA polymerases, was recently found to be i n e f f e c t i v e as an i n h i b i t o r of HIV-1 reverse t r a n s c r i p t a s e , whereas PFA was a potent i n h i b i t o r of t h i s enzyme (24). I t was a l s o shown that aoxomethanediphosphonate (carbonyldiphosphonate, COMDP, 4) i s a moderately good i n h i b i t o r of r e v e r s e t r a n s c r i p t a s e , whereas the corresponding methylene compound 3a i s i n a c t i v e ( 2 4 ) . I n these s t u d i e s a r t i f i c i a l homonucleotide templates were used i n reverse t r a n s c r i p t a s e i n h i b i t i o n assays, and considerable v a r i a t i o n i n the
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE
6
ANALOGUES
i n h i b i t o r y a c t i v i t y o f i n d i v i d u a l compounds was observed w i t h d i f ferent templates. The existence of a ketone-hydrate equilibrium f o r 4 i n aqueous s o l u t i o n , p o t e n t i a l l y c o m p l i c a t i n g i d e n t i f i c a t i o n o f the actual i n h i b i t o r y species, was not addressed. Commonality o f an cr-carbonyl group i n the reverse t r a n s c r i p tase i n h i b i t o r s 1 and 4 l e d us t o s y n t h e s i z e and determine the reverse transcriptase i n h i b i t i o n a c t i v i t y of the α-keto analogue of PAA, α-oxophosphonoacetic a c i d (phosphonoglyoxalic a c i d , COPAA, 5 ) . The i n f l u e n c e o f assay template on observed i n h i b i t o r a c t i v i t y was examined f o r 1 and 4, and the e f f e c t of pH on reverse transcriptase i n h i b i t i o n by 1, 4 and 5 was also investigated. Synthetic Aspects. α-Halo Phosphonates. The 9 t r i e t h y l e s t e r s (6b-j) were prepared from a s i n g l e p r e c u r s o r , t r i e t h y l p h o s p h o n o a c e t a t e (6a) (21.25 ; McKenna, C E . et a l . , J d i c h l o r o and dibromo ester (NaOCl or NaOH/Br2) » d i f l u o r o e s t e r 6c was obtained w i t h the monofluoro product 6b by treatment of 6a with tBuOK followed by FCIO3. Reduction o f 6e (Na2S03) and 6g (Sn^+) provided the corre sponding monochloro and monobromo esters 6d and 6f. o f
6 a
OCIO
O H O
6 e
6 d
r
fi? n
6
0 X 0
O H O
*MU-C-OEt •
j
EtO^
J*
"MUJcUoEt EtO^
O H O 6b EtO^
I
0
H
F
0
EtO^
j
6c
Br 0 Et
6 g
6I
NU_y_oEt
E t o /
I
6h
X = Br;
0 X 0 E
Et0
X - CI;
*NU-C-OEt
6α
0
I
in
O H O
X = H;
6k
MLU_
X = F;
6 1
X = CI;
6m
X = Br;
6 η
Et0/
L
0Et
6 f
SCHEME 4
S i m i l a r hypohalogenation procedures y i e l d e d the mixed d i h a l o esters 6h and 61 from 6b, and 6j from 6d. α-Methyl α-halo e s t e r s 61-6n were synthesized by analogous methods from t r i e t h y l 2-phosphonopropionate 6k.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1. M c K E N N A ET AL.
7
Pyrophosphate Analogues
The c o r r e s p o n d i n g a c i d s 2b-2j and 21-2n were p r e p a r e d by r e f l u x i n g the e s t e r s i n cone. HC1 f o r 6 h and were i s o l a t e d as dicyclohexylamine (DCHA) or pyridine (Pyr) s a l t s ( 2 1 ; McKenna, C.E. et a l . . J. Fluorine Chem., i n press; (26). We f i n d that an improved y i e l d o f BrPAA (2f) free from traces o f C1PAA can be obtained by replacing the HC1 by aqueous HBr (25*, r e f l u x , 45 min); a l s o , y i e l d s of d i h a l o acids 2g and 2 j can be optimized by a d j u s t i n g the r e f l u x time i n HC1 (25% recommended) to the minimum necessary (ca. 1/2 h) (Ye, T.-G., unpublished). I n v e s t i g a t i o n o f tetramethyl, t e t r a e t h y l and t e t r a i s o p r o p y l MDP as a common s y n t h e t i c o r i g i n f o r a l l nine XYMDP d e r i v a t i v e s revealed that t e t r a i s o p r o p y l MDP i s p r e f e r a b l e f o r t h i s purpose. Synthetic routes s i m i l a r to those o u t l i n e d above f o r 6b-6j were used to prepare the set of t e t r a i s o p r o p y l esters corresponding to α-halo methanediphosphonic acids 3b-3j, which were then obtained by r e f l u x ing the appropriate ester i n HC1 ( 2 2 ) . α-Keto Phosphonates. Our s y n t h e t i c studies of 5 and i t s t r i e t h y l e s t e r 7 were r e c e n t l y communicated (28). A purported preparation o f e s t e r 7 via Michael i s - A r b u z o v r e a c t i o n between e t h y l o x a l y l c h l o r i d e and t r i e t h y l phosphite (29) i n our hands l e d to other f i n a l products. Attempted a l k a l i n e hydrolysis of CI2PAA (2e) to 5, by analogy to the prepara t i o n of carbonyldiphosphonate 4 from 3e (30), l e d to decomposition; methods used to oxidize d i e t h y l malonate to d i e t h y l oxomalonate (31) could not be r e a d i l y extended to 6a. A l t e r n a t i v e oxidative pathways s t a r t i n g from t r i e t h y l phosphonoacrylate using ozonolysis, Ru04/I04~ and RUO4/CIO" were a l s o explored (Levy, J.N.; McKenna, C.E., Phos phorus Sulfur, i n p r e s s ) . Our p r e f e r r e d route to 5 e x p l o i t s carbene-mediated oxygen t r a n s f e r chemistry o r i g i n a l l y developed f o r deprotection of alkenes protected as epoxides (32): thermal decom p o s i t i o n o f t r i e t h y l diazophosphonoacetate (33.) 8 c a t a l y z e d by rhodium ( I I ) acetate i n the presence o f propylene oxide gives 7 i n good y i e l d . However, we were unable to convert 7 to 5 by d i r e c t hydrolysis with HC1 or HBr, owing to the r e a c t i v i t y o f i t s α-carbonyl group, which a l s o q u a n t i t a t i v e l y adds H2O. S i l y l d e a l k y l a t i o n u s i n g c h l o r o - , bromo- or i o d o t r i m e t h y l s i l a n e a l s o proved u n s a t i s f a c t o r y . We circumvented t h i s problem using a s y n t h e t i c sequence i n which P-OR s i l y l d e a l k y l a t i o n precedes the oxytranfer step, followed by s e l f - c a t a l y z e d a c i d hydrolysis of the remaining (carboxylate) ester group, and i s o l a t i o n o f the ketone 5 as an amine s a l t (Scheme 5 ) . Thus, the f r e e a c i d was prepared by s i l y l d e a l k y l a t i o n o f 8 w i t h bromotrimethyIsilane (34) to e t h y l P , P - b i s ( t r i m e t h y l s i l y l ) diazo phosphonoacetate 9 , oxygenation as described above to the oxophosphonoacetate mixed e s t e r 10 and treatment w i t h water a t 25 °C to selectively hydrolyze the t r i m e t h y l s i l y l groups (11 and i t s hy drate) . Heating the r e s u l t i n g s o l u t i o n to 56 C f o r 26 h removed the carboxyl e t h y l group, g i v i n g the ketone 5 i n e q u i l i b r i u m w i t h i t s hydrate 12. The phosphonic monoacid o f 5 was recovered as the bis(dicyclohexylammonium) s a l t . Sodium carbonyldiphosphonate 4 was prepared by a s l i g h t modi f i c a t i o n of a published method (30). e
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
8
0 N
Eto. H
0
N
TMSO^II
H
0
2
il ll
^;P—c—c—OEt —
H
^P—C—C—OEt —
0
0
0 0 0
TMSO^II
10
9 0
0
-P-U-
0
0
II II II
HO.
OEt
S J _ H _ B - O H
ι—
M M
/Ρ—C—C—OEt TMSO^
Β
HO
0
TMSO^
EtO^
H0
2
HO^
5
11
0 HO. H
H HO^
OH
0
| Il
—C—C—OH
12
| OH
SCHEME 5 Ketone-Hydrate E q u i l i b r i an e q u i l i b r i u m with i t (21; C.E.; Levy, J.N., i n preparation). In the t r i a n i o n , negative charge s t a b i l i z e s the ketone form, which predominates (> 99X) i n H2O. P r o t o n a t i o n s s u c c e s s i v e l y lower the c h a r g e , a c t i v a t i n g the ocarbonyl and thus producing more hydrate. At pH 7-8, the a-carbonyl r e a c t i v i t y i s h i g h e r ( s i g n i f i c a n t f r a c t i o n o f ketone p r e s e n t as d i a n i o n ) , but not s u f f i c i e n t l y to favor the hydrate (present as a few percent at room temperature). Below pH 6, the hydrate becomes the major species. o-Oxomethanediphosphonate 4 d i s p l a y s s i m i l a r behavior but with r e l a t i v e l y greater preference f o r the keto form at a given pH. Biochemical Aspects. P r e p a r a t i o n o f DNA Polymerases. A c t i v a t e d c a l f thymus DNA, DNA polymerases from HSV-1 and HSV-2, EBV ( E p s t e i n - B a r r v i r u s ) , and p e r i p h e r a l b l a s t s from chronic lymphocytic leucophoresed p a t i e n t s undergoing b l a s t c r i s i s were prepared by previously published meth ods (35-38) . Generally, DNA polymerases were p u r i f i e d by sequen t i a l chromatography on DEAE-cellulose, phosphocellulose, and s i n g l e or double-stranded-DNA c e l l u l o s e . The p u r i f i e d enzymes were d i a lyzed against and stored i n 50 mM Tris-HCl (pH 7.5) containing 1 mM each of DTT, EDTA and PMSF, p l u s 30* g l y c e r o l . P u r i f i c a t i o n of r e v e r s e t r a n s c r i p t a s e from HIV-1 w i l l be d e s c r i b e d elsewhere (Stames, M.C. ; Cheng, Y.-C, J . Biol. Chem. , i n press). Herpesvirus and Human DNA Polymerase Assays. Standard v i r a l HSV and EBV polymerase r e a c t i o n mixtures contained the f o l l o w i n g : 50 mM T r i s - H C l , pH 8.0; 4 mM MgCl ; 0.5 mM d i t h i o t h r e i t o l (DTT); 0.2 mg/ml bovine serum albumin; 0.15 M KC1; 0.25 mg/ml a c t i v a t e d c a l f thymus DNA; 0.1 mM each of dATP, dCTP and dGTP; and 10 μΗ [ H]TTP i n a f i n a l r e a c t i o n volume of 50 μΐ. The r e a c t i o n was s t a r t e d by adding the enzyme to the reaction mixture and allowed to proceed f o r 20 min at 37°C. Samples were spotted onto 2.1 cm GF/A f i l t e r d i s c s and processed to determine t r i c h l o r o a c e t i c a c i d i n s o l u b l e , f i l t e r bound r a d i o a c t i v i t y . When determining the i n h i b i t o r y a c t i o n of PAA analogs, the r e a c t i o n mixture c o n t a i n i n g the appropriate amount of 2
3
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1.
Pyrophosphate Analogues
McKENNA ET AL.
9
analogue was kept on i c e before i n i t i a t i o n . Assays w i t h human DNA polymerase α were done s i m i l a r l y except that the pH of the reaction mixture was 7.5 and contained no KC1. For β and 7 DNA polymerases the reaction mixture included 100 mM KC1. HIV-1 Reverse Transcriptase Assays. Standard assays were run a t 37°C and contained: 50 mM T r i s , pH 8.0, 0.5 mM DTT, 8 mM MgCl2, 100 μg/mL BSA, 150 μg/mL gapped c a l f thymus DNA, 100 μΜ each dATP, dCTP, dGTP, 10 μΜ [ H]-dTTP, and 1-5 /iL enzyme i n a f i n a l volume of 50 /iL. Modified assays f o r pH dependence i n h i b i t i o n studies w i t h PFA (1) and α-οχο phosphonates (4 and 5) contained 50 mM Hepes, pH 8.2 6.5, 8 mM MgCl2, 100 mM KC1, 100 Mg/ml BSA, 0.5 A26O u n i t s / m l o f p o l y ( r A ) · (dT)io, 100 μΜ [ H]dTTP, and 1-5 μL enzyme i n a f i n a l volume of 50 μL. Samples were processed as described above. 3
3
Herpesvirus DNA Polymerase I n h i b i t i o n Studies α-Halo Phosphonates. Compound i n h i b i t o r s of HSV-1, HSV-2, and EBV DNA polymerases vs. human α, β and 7 DNA polymerases. IC50 values ( i n h i b i t o r concentrations g i v i n g 50% i n h i b i t i o n ) , i n c l u d i n g data f o r PAA and PFA c o n t r o l s , were p r e v i o u s l y r e p o r t e d i n a p r e l i m i n a r y communication (26.) and are presented i n Table I. S i g n i f i c a n t i n h i b i t i o n of h e r p e s v i r a l polymer ases was observed w i t h FPAA (IC50 2-4 μΜ (HSV-1, HSV-2); 14 μΜ (EBV)), C1PAA ( I C 3-5 μΜ (HSV-1, HSV-2); 15 μΜ (EBV)), and BrPAA (IC50 5-6 μΜ (HSV-1, HSV-2); 25 μΜ (EBV)). The more active compounds had s l i g h t l y l e s s a b s o l u t e potency than PAA or PFA (IC50 1-2 μΜ (HSV-1, HSV-2, EBV)) but showed better s e l e c t i v i t y r e l a t i v e to human α-DNA polymerase. None of the compounds tested s i g n i f i c a n t l y inhib i t e d human β and 7 DNA polymerases. EBV DNA polymerase was somewhat less s e n s i t i v e to 2b, 2d and 2f than the HSV enzymes, i n contrast to the parent compound (PAA) and PFA, f o r which a l l three v i r a l poly merases had s i m i l a r IC50 values. The corresponding d i h a l o PAA group 2c, 2e and 2g showed sub s t a n t i a l l y less i n h i b i t o r y a c t i v i t y (IC50 > 100 μΜ), the most active member of the group being F2PAA which was 5-10x less e f f e c t i v e than FPAA. Among the three mixed d i h a l o PAA compounds (2h-2j), and the three α-halo, α-methyl PAA compounds (21-2n), only FBrPAA had IC50 values < 100 μΜ f o r the v i r a l enzymes (IC50 37-94 μΜ). As expected, the 12 t r i e t h y l esters of the compounds tested showed no i n h i b i t o r y a c t i v i t y i n the v a r i o u s polymerase s c r e e n s ( d a t a not shown i n Table). I n h i b i t i o n data f o r XYPAA samples t e s t e d at a s i n g l e concen t r a t i o n of 100 μΜ d i f f e r e n t i a t e d some o f the compounds having an IC50 > 100 μΜ (26). The r e s u l t s i n d i c a t e that EBV DNA polymerase, but not the HSV-1 and HSV-2 enzymes, had some s e n s i t i v i t y to the amethyl α-halo PAA d e r i v a t i v e s 21-2m (40-50% i n h i b i t i o n ) and t o C1 PAA, Br2PAA and ClBrPAA (30-40% i n h i b i t i o n ) (Table I I ) . None of the corresponding XYMDP s a l t s (3b-3j) had IC50 < 100 μΜ w i t h the three v i r a l enzymes t e s t e d . The compounds CI2MDP, Br2MDP, and C1MDP were reported to show a c t i v i t y against RNA poly merase from influenza v i r u s A, while PAA was a less e f f e c t i v e inhib i t o r (22.23). 5 0
2
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
10
NUCLEOTIDE ANALOGUES
Table I . IC50 values (μΜ) f o r DNA Polymerase I n h i b i t o r s Viral 5
Compound* 1 PFA, PAA, 2a FPAA, 2b C1PAA, 2d BrPAA, 2f F2PAA, 2c CI2PAA, 2e Br2PAA, 2g FC1PAA, 2h FBrPAA, 2i CIBrPAA, 2j CH3FPAA, 21 CH3CIPAA, 2m CH BrPAA, 2n XYMDP. 3b-31 3
a
HSV-•1 1.1 1. 3 2. 5 3.2 6 18 >100 >100 >100 37 >100 >10 >10 >100 >100
a
Human
HSV- 2 1.1 1.2 3.8 5.,4 5.,4 30 >100 >100 >100 70 >100
EBV 1.2 1.6 14 14.5 25 65 >100 >100 >100 94 >100
α 15 21 >100 80 >100 >100 >100 >100 >100 >100 >100
>300 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300
>100 >100
>100 >100
>100 >100
>300 >300
R e p r o d u c e d with permission from réf. 26. Copyright 1987 Pergamon.
b D C H A salts.
Table I I .
Percent I n h i b i t i o n of DNA Polymerases by α-Halo Phosphonoacetates (100 /iM) a
Viral Compound HSV-1 FPAA, 2b 100 2d 96 C1PAA, BrPAA, 2f 87 F PAA, 2c 62 CI2PAA, 2e 0 Br2PAA, 4.5 2g FBrPAA, 21 71 0 CIBrPAA, 2j 0 CH3FPAA, 21 CH3CIPAA, 2m 0 CH^BrPAA. 2n 0 R e s u l t s f o r compounds t e s t e d as averaged. 2
a
HSV-2 100 96 88 65 0 4 70 0 0 0 0 both DCHA and
Human EBV 74 66 85 77 32 34 43 33 42 44 50 Pyr s a l t s
α 11 45 38 16 0 10 40 16 2 2 9 are
V i r a l I n h i b i t i o n R e s u l t s . Table I I I presents i n v i t r o data (IC50 f o r plaque reduction, and V i r a l Ratings) f o r s e v e r a l XYPAA d e r i v a t i v e s , PAA and PFA as i n h i b i t o r s of HSV-1 (F) and two HSV-2 variants (G and Lovelace). Also included are data f o r an RNA v i r u s (Influen za A/Japan). Data are omitted f o r the remaining compounds from Table I , a l l o f which had V i r a l R a t i n g s < 0.4-0.5 f o r a l l v i r u s r e f e r r e d to i n the Table. The HSV r e s u l t s manifest an approximate c o r r e l a t i o n with the HSV DNA polymerase a c t i v i t i e s (Table I ) . FPAA (data f o r two d i f f e r e n t samples) i s seen to be midway between PFA and PAA i n e f f e c t i v e n e s s , although another group found i t t o be somewhat l e s s a c t i v e than PAA i n an HSV-2 plaque r e d u c t i o n assay (12).
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1. M c K E N N A E T AL.
11
Pyrophosphate Analogues
Enantiomers of drugs may d i f f e r i n t h e i r metabolism, pharma c o k i n e t i c s and t o x i c i t y . Although PFA and PAA are a c h i r a l mole c u l e s , α-monosubstituted PAA d e r i v a t i v e s , and PAA d e r i v a t i v e s ad i s u b s t i t u t e d w i t h u n l i k e s u b s t i t u e n t s , possess a c h i r a l center. However, a l l our current data are f o r the racemates. I n some i n stances (Tables I , I I I ) , racemic FPAA compares favorably i n potency with PAA. I t would be of i n t e r e s t to determine the r e l a t i v e c o n t r i butions made by the d i f f e r e n t FPAA enantiomers t o , e.g., HSV v s . human α DNA polymerase i n h i b i t i o n , or to the d i f f e r e n t parameters (39) which enter into c a l c u l a t i o n of the V i r a l Rating. Table I I I .
A n t i - V i r a l A c t i v i t i e s of Some α-Halo Phosphonoacetates i n v i t r o VR/IC o ' 5
Compound
b
a
c
Influenz A/Japan
(G) (Lovelace) (F) PAA, 2a 0.8/190 μΜ 0.5/190 μΜ 0.6/190 μΜ PFA, 1 0.6/52 μΜ 0.8/165 μΜ 0.8/165 μΜ 2d C1PAA, 0.4/320 μΜ 2b FPAA, 0.6/130 μΜ 0.5/130 μΜ 0.8/150 μΜ CI2PAA, 2e 0.4/320 μΜ 2f BrPAA, 0.4/280 μΜ 0.6/890 μΜ CIBrPAA. ?1 0.4/790 uM 0.4/790 uM D a t a obtained at Department of A n t i m i c r o b i a l Research, Syntex Research, Mountain View, CA. W R , the V i r a l Rating index f o r the compound, i s defined as: < 0.5, i n s i g n i f i c a n t a c t i v i t y ; 0.5-0.9, marginal-moderate a c t i v i t y . IC50 i s here d e f i n e d as i n h i b i t o r concentration g i v i n g 50% plaque reduction. For d e t a i l s , and i n f o r mation on assay protocols, see r e f . 39. Data f o r 2b are averages f o r separate experiments with two d i f f e r e n t s a l t s : IC50 values are ± 20 μΜ, VR values are ±0.1. a
c
HIV-1 Reverse Transcriptase I n h i b i t i o n Studies. E f f e c t of Template. The template dependence of HIV-1 reverse trans c r i p t a s e i n h i b i t i o n ( H-dGTP or H-TTP i n c o r p o r a t i o n ) by PFA and PAA was determined using poly rA and poly rC. The r e s u l t s are given i n Table IV. The IC50 v a l u e s f o r PFA c o n f i r m i t t o be an a c t i v e i n h i b i t o r , but d i f f e r e d by a f a c t o r of f i v e depending on the tem p l a t e used i n the assay, p o l y rA producing the lower o f the two values. The same pattern was observed f o r PAA: with poly rA an IC50 of 240 μΜ corresponding to weak i n h i b i t i o n was found, whereas w i t h poly rC the IC50 was a t l e a s t 60% l a r g e r (too large to be measured e x a c t l y under the conditions used). Comparison w i t h the data ob tained f o r PFA and PAA i n h i b i t i o n using an a c t i v a t e d DNA template (Table V ) , i n d i c a t e s that the poly rC and ' n a t u r a l ' templates give s i m i l a r IC50 values. 3
3
q-Oxo Phosphonates. I n h i b i t i o n assay r e s u l t s f o r PFA, PAA, 4, 5 and pyrophosphate as i n h i b i t o r s of human α, β and 7 DNA polymerases, and of HIV-1 reverse transcriptase are summarized i n Table V. Activated DNA template was used i n a l l experiments reported i n t h i s Table.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
12
Pyrophosphate ( P P i ) , the nominal reference s t r u c t u r e f o r the analogues, was not i n h i b i t o r y (IC50 < 400 μΜ) . PFA s e l e c t i v e l y i n h i b i t e d HIV-1 reverse t r a n s c r i p t a s e w i t h an IC50 value (0.6 μΜ), almost 50x lower than i t s IC50 f o r human α DNA polymerase, and a t l e a s t 103 times lower than i t s IC50 values f o r human β and 7 DNA polymerase. The α-οχο phosphonate 4 had an IC50 o f about 20 μΜ under the same conditions. When tested under the same standard assay c o n d i t i o n s , ' 5 ' showed an apparent IC50 about 6x l e s s than that of 4. However, 5 was found to react with one or more assay components. These were i d e n t i f i e d i n P NMR s t u d i e s as T r i s b u f f e r and d i t h i o t h r e i t o l (DTT) (Levy, J.N.; unpublished). Under the same condi t i o n s , s i m i l a r reactions of 4 were not detected. 3 1
Table IV.
Template E f f e c t on HIV-1 Reverse Transcriptase I n h i b i t i o n a
D
oolv r C Compound polv r A 0.4 PFA 0.08 >400 PAA 240 Assay conditions as described i n Biochem i c a l Aspects s e c t i o n on standard Reverse Transcriptase assays, except f o r template and [MgCl2] which here - 6 mM. 0 . 5 A26O units/mL. D
a
b
Table V. I n h i b i t i o n of HIV-1 Reverse Transcriptase by Pyrophosphate Analogues a
Compound PPi
PFA,
1
PAA,
2a
COMDP, 4
'COPAA, 5 '
Polymerase α β 7 HIV α β 7 HIV α β 7 HIV α β 7 HIV α β 7 HIV
IC^o (uH) > 400 > 400 > 400 > 400 25 + 3 > 400 > 400 0.55 + 0.07 19.6 ± 6 > 400 > 400 > 400 > 400 > 400 > 400 20.1 ± 12 210 ± 33 > 400 > 400 130 ± 50
%
I n h i b i t i o n at 400 ι*Μ N.D. N.D. N.D. N.D. N.D. 15 ± 7 40 ± 3 N.D. N.D. 42 ± 9 36 ± 4 43 ± 5 21.5 ± 9. 3 38.4 ± 5.4 32.5 ± 3. 3 N.D. 71 ± 2 25 ± 10 5.2 ± 3. 7 66 ± 0. 7
a
S t a n d a r d assay c o n d i t i o n s as described i n Biochemical Aspects section.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1. M c K E N N A E T A L .
13
Pyrophosphate Analogues
The assay mixture was then modified to replace the T r i s with a demonstrably nonreactive b u f f e r (Hepes), w i t h DTT omitted (Bio chemical Aspects s e c t i o n ) . This assay system was used to determine IC50 values f o r 1, 4 and 5 over a pH range of 6.5-8.2 (Table V I ) . In these experiments poly rA was used as template to maximize s e n s i t i v i t y . I n t e r p o l a t i o n o f the data f o r 1 i n Table VI allows comparison of i t s IC50 value i n the modified and standard assay mixtures a t pH 8.0 with i d e n t i c a l template (poly rA). The difference approaches the l i m i t o f e r r o r i n the two experiments, i n d i c a t i n g that the b u f f e r s u b s t i t u t i o n and omission o f DTT d i d not have a d r a s t i c e f f e c t on the observed i n h i b i t i o n at t h i s pH. COMDP 4 i s estimated to be about 20x more a c t i v e under the modified c o n d i t i o n s (Table VI) than when assayed w i t h the standard mixture using an a c t i v a t e d DNA template (Table V). Due to i t s r e a c t i v i t y i n the standard assay, the same comparison cannot be made f o r COPAA 5, but i t i s seen to be moder a t e l y active at pH 8.0, a l b e i t considerably less active than 1 or 4 The data i n Tabl pH, with a l l three i n h i b i t o r The v a r i a t i o n i n IC50 ranges from 16-17x f o r the t r i b a s i c 1 and 5, to 200x f o r the t e t r a b a s i c 4. An obvious i n f e r e n c e from these r e s u l t s i s the need f o r caution i n extrapolating reverse t r a n s c r i p tase i n h i b i t i o n assay data (pH 8) to p h y s i o l o g i c a l conditions (pH 7) for i o n i c i n h i b i t o r s whose charge varies with pH. A d e t a i l e d discussion of the ketone/hydrate and anionic acidbase e q u i l i b r i a relevant to 4 and 5 i n aqueous solutions w i l l not be attempted here, but q u a l i t a t i v e l y the p a r a l l e l a c t i v i t y trends f o r 1, 4, and 5 appear inconsistent with the hydrate form of 5 (or of 4) being the most important i n h i b i t o r y species over the pH i n t e r v a l examined. Table VI. pH Dependence of HIV-1 Reverse Transcriptase I n h i b i t i o n by Pyrophosphate Analogues a
IC pH 6.,50 6.,83 7.,26 7.,74 8..20
PFA. 1 2.,15 + 0,.14 0.,616 + 0,.013 0.,303 + 0,.079 0.,207 + 0,.037 0.,130 + 0,.072
5 0
(μΜ)
COPAA. 5 510 + 91 154 + 39 74.5 + 9.9 32.4 + 3.8 32.5 + 4.2
COMDP. + 144 34.0 + 10.3 + 1.97 + 0.719 +
4 35 1.9 0.79 1.2 0.021
a
M o d i f i e d assay conditions as described i n Biochemical Aspects section. Nucleotide Halophosphonate
Analogues
The mechanism o f PFA and PAA r e s i s t a n c e by HSV-1 i s r e l a t e d to i n d u c t i o n o f a l t e r e d HSV-1 DNA polymerases i n i n f e c t e d c e l l s (36)· I t has been suggested that f o r future treatment of herpes-associated d i s e a s e s , agents e x e r t i n g t h e i r a c t i o n s independently should be developed and used i n combination t o circumvent drug r e s i s t a n c e (36) . We have r e c e n t l y prepared examples o f s e v e r a l n u c l e o t i d e analogues c o n t a i n i n g phosphonoacetate moieties (e.g. 13, 14), an
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
14
N U C L E O T I D E ANALOGUES
anti-herpetic nucleoside (ACV as monophosphate) and an a n t i - h e r p e t i c phosphonoacetate (McKenna, C E . ; Harutunian, V., i n press) (Scheme 6). The concept underlying "hybrid" drugs i s that a s y n e r g i s t i c or other enhanced e f f e c t might be o b t a i n e d by combining a P A A - l i k e i n h i b i t o r and a nucleoside drug such as ACV or AZT i n t o a s i n g l e n u c l e o t i d e analogue. Such combinations y i e l d a matrix l a r g e r than the sum o f i t s components, e.g., 3 PAA analogues and 3 nucleosides provide 9 hybrid p a i r s . The examples given here were synthesized i n adequate y i e l d u s i n g a m o d i f i e d d i c y c l o h e x y l c a r b o d i i m i d e (DCC) coupling method. While t h i s work was i n progress, synthesis and a n t i - v i r a l data f o r a series of 2'-deoxyuridine and r e l a t e d pyrimidine n u c l e o s i d e and a c y c l o n u c l e o s i d e e s t e r s o f PFA and PAA were reported (40-41). These d e r i v a t i v e s , r e f e r r e d to as 'combined pro drugs', are diphosphate r a t h e r than triphosphate n u c l e o t i d e ana logues. E v a l u a t i o n of t h e i r a n t i v i r a l a c t i v i t y w i t h s e v e r a l her pesviruses produced no evidence f o r a s y n e r g i s t i c a c t i o n o f t h e i r combined drug moieties.
13c : X « H ; Y = Cl SCHEME 6
Conclusion α-Halogenation creates a s e t o f PAA congeners o f v a r y i n g p o l a r i t y with some s t e r i c p e r t u r b a t i o n . These compounds d i s p l a y a s i g n i f i cant range o f a c t i v i t y as i n h i b i t o r s o f HSV and EBV DNA polymerases. FPAA i s the most a c t i v e i n h i b i t o r i n t h i s group and a l s o has the highest a c t i v i t y against HSV plaque formation i n v i t r o . Correspond ing α-halo MDP d e r i v a t i v e s are uniformly i n a c t i v e as HSV and EBV DNA polymerase i n h i b i t o r s . Although PFA and PAA have s i m i l a r IC50 values f o r the herpesvirus DNA polymerases tested, only PFA s i g n i f i cantly i n h i b i t s HIV-1 reverse t r a n s c r i p t a s e . The presence of an ooxo group i n PAA or MDP c o r r e l a t e s with HIV-1 reverse t r a n s c r i p t a s e i n h i b i t i o n a c t i v i t y , the MDP d e r i v a t i v e 4 having the lower IC50. Hydration of the α-keto groups i n 4 and 5 i s pH dependent, increas ing at lower pH, whereas HIV-1 reverse t r a n s c r i p t a s e i n h i b i t i o n by 4 and 5 decreases s i g n i f i c a n t l y as the assay pH i s lowered from 8.2 to 6.5. The pH dependence of HIV-1 reverse t r a n s c r i p t a s e i n h i b i t i o n by PFA shows a s i m i l a r trend. This r e s u l t may be s i g n i f i c a n t i n as sessing d i f f e r e n c e s between i n h i b i t i o n assays o f i s o l a t e d reverse transcriptase and of v i r a l r e p l i c a t i o n , performed a t d i s s i m i l a r pH. The s p e c i f i c i t y differences observed f o r PFA, PAA, MDP and t h e i r ohalo and α-οχο d e r i v a t i v e s (and f o r nucleotide i n h i b i t o r s generally, see elsewhere i n t h i s volume and, e.g. (42.)) a r e l a r g e l y unex p l a i n e d pending d e t a i l e d molecular information on substrate and product b i n d i n g s i t e s of v i r a l polymerases. As progress i n t h i s
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1. M c K E N N A E T A L .
Pyrophosphate Analogues
15
area begins to be made (43.44), a d e t a i l e d basis f o r t r u l y r a t i o n a l design of a n t i - v i r a l agents i s l i k e l y to emerge. Acknowledgments We thank Drs. Anne Bodner and Robert C.Y. Ting (BioTech Research L a b o r a t o r i e s ) f o r HIV-1 r e v e r s e t r a n s c r i p t a s e and Dr. Thomas Matthews (Syntex Research) f o r supplying the i n v i t r o v i r u s i n h i b i t i o n data presented i n Table I I I . Several α-halo methanediphosphonates were prepared a t USC by J.-P. Bongartz and P. Pham. This r e s e a r c h was supported by NIH grants AI-21871, AI-25697 and CA44358. J . N. Levy was a 1987-89 U n i v e r s i t y of C a l i f o r n i a U n i v e r s i t y wide Taskforce on AIDS Postdoctoral Fellow. Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.
Reines, E.D.; Gross 715. Cheng, Y.-C.; Ostrander, M.; Derse, D.; Chen, J.-X. Nucleoside Analogs 1979, 20, 319-335. Cheng,Y.-C.;Dutschman G. E.; Bastow, K. F.; Sarngadharan, M. G.; Ting, R.Y.C. J. Biol. Chem. 1987, 262, 2187-2189. Derse D.; Cheng, Y.-C.; Furman, P.A.; St. Clair, M.H.; Elion, G.B. J. Biol. Chem. 1981, 256, 11447-11451. St. Clair, M.H.; Miller, W.H.; Miller, R.L.; Lambe, C.U.; Furman, P.A. Antimicrob. Agents Chemother. 1984, 25, 191-194. Bone, R.; Cheng, Y.-C.; Wolfenden, R. J . Biol. Chem. 1986, 261, 16410-16413. Wahren, B.; Larsson, Α.; Ruden, U.; Sundqvist, Α.; Solver, E. Antimicrob. Agents Chemother. 1987, 31, 317-320. Christophers, J.; Sutton, R.N. Antimicrob. Agents Chemother. 1987, 2 0 , 389. Lin, J.-C.; DeClercq, E.; Pagano, J.S. Antimicrob. Agents Chemother. 1987, 31, 1431-1433. Robins, R.K. Pharm. Res. 1984, 11-18. Prisbe, E.J.; Martin, J.C.; McGee, D.P.F.; Barker, M.F.; Smee, D.F.; Duke, A.E.; Matthews, T.R.; Verheyden, J.P.H. J. Med. Chem. 1986, 2 9 , 671-675. Blackburn, G.M.; Perree, T.D.; Rashid, Α.; B i s b a l , C.; Lebleu, B. Chemica Scripta 1986, 26, 21-24. Smith, C.C.; Aurelian, L.; Reddy, M.P.; Miller, P.S.; Ts'o, P.O.P. Proc. Nat. Acad. Sci. USA 1986, 8 3 , 2787-2791. Boezi, J.A. Pharmac. Ther. 1979, 4, 231-243. Oberg, B. Pharmac. Ther. 1983, 19, 387-415. Herrin, T.R.; Fairgrieve, J.S.; Bower, R.R.; Shipkowitz, N.L.; Mao, J.C.-H. J. Med. Chem. 1971, 2 0 , 660-663. Noren, J.O.; Helgstrand, E.; Johansson, N.G.; Misiorny, Α.; Stening, G. J. Med. Chem. 1983, 26, 264-270. Eriksson, B.; Larsson, Α.; Helgstrand, E.; Johansson, N.-G.; Oberg, B. Biochim. Biophys. Acta 1980, 607, 53-64. Eriksson, P.; Oberg, B.; Wahren, B. Biochim. Biophys. Acta 1982, 696, 115-123. Mao, J.C.-H.; Otis, E.; Von Esch, A.M.; Herrin, T.R.; Fairgrieve, J.S.; Shipkowitz, N.L.; Duff, R.G. Antimicrob. Agents Chemother. 1985, 27, 197-202.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
16 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44.
McKenna, C.E.; Khawli, L.A. Phosphorus Sulfur 1984, 18, 483. Hutchinson, D.W.; Naylor, M. IRCS Med. Sci. 1985, 13, 1023. Hutchinson, D.W.; Naylor, M.; Semple, G. Chemica Scripta 1986, 26, 91-95. Vrang, L.; Oberg, B. Antimicrob. Agents Chemother. 1986, 29, 867-872. McKenna, C.E.; Khawli, L.A. J. Org. Chem. 1986, 51, 5467-5471. McKenna, C.E.; Khawli, L.A.; Bapat, Α.; Harutunian, V.; Cheng, Y.-C. Biochem. Pharm. 1987, 36, 3103-3106. McKenna, C.E.; Khawli, L.A.; Bongartz, J.P.; Pham, P.; Ahmad, W.Y.; Phosphorus Sulfur 1988, 37, 1-12. McKenna, C.E.; Levy, J.N. J.C.S. Chem. Com. 1989, 246. Kreutzkamp, N.; Mengel, W. Arch. Pharm. 1967, 300, 389-392. Quimby, O.T.; Prentice, J.B.; Nicholson, D.A. J. Org. Chem. 1967, 32, 4111-4114. Dox, A.W. Org. Synth. Coll. 1944, 1, 266-269. Martin, M.G.; Ganem Regitz, M.; Anschutz 101, 3734-3743. McKenna, C.E.; Schmidhauser, J . J. Chem. Soc. Chem. Comm. 1979, 739. B a r i l , Ε.; Mitchner, J.; Lee, L.; B a r i l , Β. Nucleic Acids Res. 1977, 4, 2641-2656. Derse, D.; Barstow, K.F.; Cheng, Y.-C. J. Biol. Chem. 1982, 257, 10251-10260. Tan, R.S.; Datta, A.K.; Cheng, Y.-C. J. Virol. 1982, 44, 893899. Fisher, P.A.; Wang, T.F.-S.; Korn, D. J. Biol. Chem. 1979, 254, 6128-6133. Sidwell, R.W.; Huffman, J.H. App. Microbiol. 1971, 22, 797801. Griengl, H.; Hayden, W.; Penn, G.; De Clercq, E.; Rosenwirth, B. J. Med. Chem. 1988, 31, 1831-1839. Lambert, R.W.; Martin, J.Α.; Thomas, G.J.; Duncan, I.B.; Hall, M.J.; Heimer, E.P. J. Med. Chem. 1989, 32, 367-374. De Clercq, E. Biochem. Pharm. 1988, 37, 1789-1790. Wang, S.-F.; Wong, S.W.; Korn, D. FASEB J. 1989, 3, 14-21. Gibbs, J.S.; Chiou, H.C.; Bastow J.D.; Cheng, Y.-C.; Corn, D.M. Proc. Natl. Acad. Sci. USA 1988, 85, 6672-6676.
RECEIVED June 15, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Chapter 2
Synthesis of Acyclonucleoside Phosphonates for Evaluation as Antiviral Agents E. J . Reist , P. A. Sturm , R. Y. Pong , M. J . Tanga , and R. W. Sidwell 1
1
1
1
1
2
Life Sciences Division, SRI International, Menlo Park, CA 94025 Utah State University, Logan, UT 84322-0300 2
Isosteric phosphonat and ganciclovir have been prepared and found to have significant activity against human and murine cytomegalovirus in vitro. The mono ethyl esters also are active, possibly serving as prodrugs for the diphosphonic acids. Higher homologs of the isosteris resulted in significant loss of a n t i v i r a l activity. The phosphonates appear to have low toxicity and some of them are promising candidates for c l i n i c a l evaluation.
Chemotherapy o f v i r a l i n f e c t i o n s has lagged s i g n i f i c a n t l y behind chemotherapy o f b a c t e r i a l and p a r a s i t i c i n f e c t i o n s . One reason f o r t h i s i s t h a t many o f the metabolic processes t h a t c o n t r o l the reproduction and growth o f b a c t e r i a and p a r a s i t e s a r e unique t o the invading organisms and thus o f f e r a means o f a t t a c k on the invaders by b l o c k i n g a metabolic t r a n s f o r m a t i o n t h a t has no c l o s e p a r a l l e l i n the metabolism o f the host. V i r a l metabolic processes on the other hand resemble the host processes t o a greater extent and a v i r u s i n f a c t w i l l f r e q u e n t l y u t i l i z e host enzymes t o meet i t s metabolic needs. The net r e s u l t i s that i d e n t i f y i n g a nontoxic a n t i v i r a l agent i s much more c h a l l e n g i n g than i d e n t i f y i n g an e f f e c t i v e nontoxic a n t i b a c t e r i a l o r a n t i p a r a s i t i c agent. To t h i s time, there have been only seven compounds that have been l i c e n s e d by the FDA f o r treatment o f v i r a l diseases ( F i g u r e 1). Nucleosides predominate. This i s probably a r e s u l t o f f a l l o u t from the NCI program o f the l a s t 30 years aimed a t the s y n t h e s i s of a n t i c a n c e r agents. There was a heavy n u c l e o s i d e s y n t h e s i s component t o t h i s program and many o f them were a v a i l a b l e f o r e v a l u a t i o n i n a n t i v i r a l screens. IUDR ( 1 ) , Q ) , T r i f l u o r o t h y m i d i n e (2),(2) Ara A (3),(3) and azidothymidime (AZT)(4) were a l l o r i g i n a l l y s y n t h e s i z e d on the NCI program. R i b a v i r i n (5) i s a 0097-6156/89/0401-0017$06.00/0 ο 1989 A m e r i c a n C h e m i c a l Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
18
NUCLEOTCDE ANALOGUES
Figure 1. A n t i v i r a l agents approved by the F o o d and D r u g Administration.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2.
REIST ET
AL.
Synthesis of Acyclonucleoside Phosphonates
19
broad spectrum a n t i v i r a l that i s a c t i v e against a number of RNA and DNA v i r u s e s . ( 5 ) T r i f l u o r o t h y m i d i n e , ( 6 ) IUDR,(6,7) and Ara A(7) have a much narrower spectrum of a c t i v i t y and t h e i r main u t i l i t y i s against the herpes family of v i r u s e s , e s p e c i a l l y herpes simplex v i r u s (HSV). AZT has good a c t i v i t y against human immunodeficiency v i r u s (HIV).(8,9) A l l f i v e of agents have s i g n i f i c a n t t o x i c i t y which l i m i t s t h e i r o v e r a l l u t i l i t y i n the clinic.(6,7) A c y c l o v i r ( 6 ) , the newest member on the l i s t was prepared by Burroughs Wellcome and was found to have outstanding a c t i v i t y against some of the herpes v i r u s e s ( I O ) — n a m e l y herpes simplex 1 and 2 and v a r i c e l l a z o s t e r . To date i t has shown minimal s i d e e f f e c t s at high concentration i n animal s t u d i e s . The only nonnucleoside on the l i s t — a m a n t a d i n e ( 7 ) — i s one of the o l d e s t a n t i v i r a l s and was prepared by DuPont about 25 years ago and was shown to have a c t i v i t y agains its antiviral activity, Parkinson's disease by a f f e c t i n g dopamine metabolism.(V3) This has the unfortunate r e s u l t that amantadine has s i d e e f f e c t s due to CNS involvement—insommia, d i z z i n e s s , mood swings, etc.(14) Thus from t h i s short l i s t of approved compounds, only o n e — a c y c l o v i r — s h o w s good a n t i v i r a l a c t i v i t y with no s i g n i f i c a n t side effects. The mechanism by which a c y c l o v i r expresses i t s a c t i v i t y i s o f i n t e r e s t . (V5,_16) The herpes v i r u s has a number of unique enzyme systems, among them a v i r a l thymidine kinase (TK). The f u n c t i o n of thymidine kinase i s to phosphorylate the deoxynucleoside thymidine (8) to give thymidine monophosphate ( t h y m i d y l i c a c i d ) (9) (Scheme 1). Thymidylic a c i d i s phosphorylated by a thymidylate kinase to give the diphosphate and t h i s i s f u r t h e r phosphorylated by another kinase to y i e l d thymidine triphosphate (10) which i s one of the substrates used by DNA polymerase f o r the s y n t h e s i s of DNA. The nucleoside kinases normally have great substrate s p e c i f i c i t y . Thymidine kinase w i l l only phosphorylate thymidine. Deoxyguanosine kinase w i l l only phosphorylate deoxyguanosine, e t c . In the case of the herpes v i r u s thymidine kinase, the substrate s p e c i f i c i t y i s not so great and i t can accept a c y c l o v i r , a guanine analog, as a substrate to be phosphorylated to the n u c l e o t i d e (11).(7) Subsequently, c e l l u l a r kinases phosphorylate the a c y c l o v i r phosphate (11) to the triphosphate (12). A c y c l o v i r triphosphate then serves as a substrate f o r the v i r a l DNA polymerase but i s a chain terminator s i n c e i t does not have the b i f u n c t i o n a l i t y i n the s i d e chain that i s necessary f o r DNA chain extension (see 13). A c y c l o v i r triphosphate i s not a substrate f o r host DNA polymerase, so i t has no e f f e c t on the host DNA s y n t h e s i s . Thus a c y c l o v i r manifests i t s s e l e c t i v i t y towards HSV i n two ways: (1) I t i s a substrate f o r v i r a l thymidine kinase but not for host thymidine kinase. (2) As the triphosphate, i t i s a substrate f o r v i r a l DNA polymerase but not f o r host DNA polymerase. A change i n the v i r a l TK can r e s u l t i n r e s i s t a n c e of
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20
N U C L E C m D E ANALOGUES
Scheme 1
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2. REIST ET AL.
Synthesis ofAcyclonucleoside Phosphonates
21
the herpes v i r u s to a c y c l o v i r . This has been demonstrated i n the laboratory and herpes v i r u s that does not have i t s own thymidine kinase i s indeed r e s i s t a n t to a c y c l o v i r . Fortunately thymidine kinase negative herpes has not developed i n t o a c l i n i c a l problem at t h i s time, although i t i s always a t h r e a t . An analog o f a c y c l o v i r , g a n c i c l o v i r ( 1M) (Figure 2) a l s o has outstanding a c t i v i t y against HSV-1, HSV-2 and v a r i c e l l a zoster.(_18) In a d d i t i o n to these v i r u s e s , g a n c i c l o v i r has i n vivo a c t i v i t y against cytomegalovirus (CMV), a member o f the herpes family that does not have a s p e c i f i c v i r a l thymidine kinase.(19) I t i s probable that g a n c i c l o v i r i s phosphorylated by the v i r a l thymidine kinase of herpes simplex to the triphosphate. However, due to the e x t r a f u n c t i o n a l i t y , i t i s not n e c e s s a r i l y a chain terminator, so i t s a n t i v i r a l e f f e c t must be somewhat d i f f e r e n t from that o f a c y l o v i r . The a c t i v i t y o f g a n c i c l o v i r against CMV i s a l s o not f u l l y understood kinase the mechanism by obvious. I t has been speculated that the CMV i s able to s t i m u l a t e the host thymidine kinase to excessive phosphorylation.(20) P o s s i b l y i n the process, the s e l e c t i v i t y o f the c e l l u l a r thymidine kinase i s somewhat compromised. I t i s i n t e r e s t i n g to note that a c y c l o v i r with i t s monofunctional character must be a DNA chain terminator, has minimal s i d e e f f e c t s and i s e s s e n t i a l l y nontoxic. G a n c i c l o v i r , a c l o s e s t r u c t u r a l r e l a t i v e with i t s b i f u n c t i o n a l character can get incorporated i n t o DNA and has many t o x i c s i d e e f f e c t s — n e u t r o p e n i a , leukopenia, t e s t i c u l a r atrophy, azospermia, atrophy o f the G.I. mucosa, e t c . ( 2 j 0 Although g a n c i c l o v i r i s the only drug to show adequate i n v i v o a c t i v i t y against CMV to date, i t has not y e t been c l e a r e d by the FDA f o r t h i s purpose because o f concern over these s i d e e f f e c t s . The a c y c l o v i r / g a n c i c l o v i r s t o r y o f f e r e d an unusual opportunity f o r analog development to prepare new compounds that maintain the desired a n t i v i r a l a c t i v i t y while a t the same time, the s i d e e f f e c t s observed f o r g a n c i c l o v i r could p o s s i b l y be decreased or e l i m i n a t e d . The preparation o f i s o s t e r i c phosphonates o f ACV and g a n c i c l o v i r was an e s p e c i a l l y a t t r a c t i v e t a r g e t f o r analog development. As can be seen, a c y c l o v i r phosphate (11) and the i s o s t e r i c phosphonate (15) are q u i t e s i m i l a r . Space f i l l i n g models i n d i c a t e that both are o f very s i m i l a r bulk. Since a c y c l o v i r phosphate can be phosphorylated to the triphosphate (12) by c e l l u l a r kinases, i t could be hoped that the i s o s t e r i c phosphonate (15) could a l s o be a substrate f o r these same kinases to give an analogous triphosphate (16) (Scheme 2 ) . Generally speaking, nucleoside phosphates have d i f f i c u l t y c r o s s i n g the c e l l membrane to enter a c e l l because the h i g h l y polar nature o f the phosphate moiety i s not compatible with the l i p o p h i l i c character o f the c e l l membrane. However, i t has been demonstrated(22) that c e l l s that have been i n f e c t e d by v i r u s have a modified c e l l membrane that i s more permeable to a p o l a r molecule, such as a phosphate. In a d d i t i o n , a phosphonate i s somewhat l e s s polar than phosphate, so i t i s p o s s i b l e that a
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
N U C L E O T I D E ANALOGUES
Ο
Ο HNf
3JC.> A
A HN
Ν
2
HN
Ν
2
HOCH
2
CH
HOCH
2
CH
2
2
HC 2
HC
I
DHPG, 2'-NDG BW759U, Biolf 62 CH OH
Acyclovir
Figure Against
2.
Acyclic
the
Nucleosides
Herpes
Family
Active
of
Viruses
ο
HN 2
Ο Ο Ο
Il II II (HO) POCH 2
(HO) POPOPOCH 2
2
I I
2
CH
HC 2
HO CH H C^
2
2
11
CH
2
CH
2
12 Ο
Ο HN^
cellular kinases
Ν
Η Ν'
HN
2
2
Ο Ο Ο
Il II II (HO) PCH CH 2
2
(HO) POPOPCH CH 2
2
2
2
HO CH HC 2
CH
H C 2
2
US
J_5 Scheme 2
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2. REIST E T AL.
Synthesis ofAcyclonucleoside Phosphonates
23
nucleoside phosphonate such as shown here could have some degree of s e l e c t i v e absorption i n t o an i n f e c t e d c e l l and thus be concentrated i n the c e l l s that need i t . With t h i s as the r a t i o n a l e , a number o f acyclonucleoside phosphonates have been prepared f o r e v a l u a t i o n as a n t i v i r a l s . The syntheses s t a r t e d as o u t l i n e d i n Scheme 3 with the r e a c t i o n o f t r i e t h y l p h o s p h i t e (17) with 1,3-dibromopropane (18) t o give d i e t h y l 3-bromopropyl phosphonate (19) i n 71? y i e l d . Replacement of the bromide by acetate was accomplished using sodium acetate i n DMF. Acid catalyzed h y d r o l y s i s o f the O-acetate (20) using Dowex 50 (H ) gave the 3-hydroxypropyl phosphonate (21) i n 50? o v e r a l l y i e l d from the bromide. Chloromethylation was accomplished using paraformaldehyde and hydrogen c h l o r i d e to give the 3-chloromethoxy propyl phosphonate (22) s u i t a b l e f o r coupling with an appropriate purine. A number o f approache couple the chloromethyl suga convenient from the standpoint o f ease o f handling, s o l u b i l i t y c h a r a c t e r i s t i c s , e t c . u t i l i z e d 2-amino-6-chloropurine (23) as s t a r t i n g m a t e r i a l . Treatment o f t h i s purine with hexamethyld i s i l a z a n e gave a d i - t r i m e t h y l s i l y l d e r i v a t i v e (24) which was condensed with the chloromethyl ether (22) to give a 47? y i e l d o f c r y s t a l l i n e 2-amino-6-chloropurine nucleoside phosphonate as the d i e t h y l e s t e r . Treatment o f the blocked acyclonucleoside with tetraethylammonium hydroxide and trimethylamine h y d r o l i z e d the 6-chloro group and gave a 72? y i e l d o f c r y s t a l l i n e guanine nucleoside phosphonate (28) as the d i e t h y l e s t e r . Heating the d i e t h y l e s t e r (28) with cone, ammonium hydroxide gave a 65? y i e l d of the monoethyl e s t e r (30) that was homogeous on TLC and HPLC with s a t i s f a c t o r y UV spectrum f o r a 9-substituted guanine. An a l t e r n a t i v e synthesis was developed, s t a r t i n g from guanine (26). S i l a t i o n of (26) was accomplished by standard procedures t o y i e l d a very l a b i l e d i s i l y l guanine d e r i v a t i v e (27) that was a l k y l a t e d d i r e c t l y with the chloromethyl ether (22). When 1 mole o f mercuric cyanide was present,a y i e l d o f 35? o f 9-substituted guanine (28) was obtained with small amounts (*2?) o f 7s u b s t i t u t e d isomer (29). I f mercuric cyanide was omitted during the condensation, y i e l d s up to 55? were obtained, however the product obtained contained 10? o f (29) which could be separated by reverse phase chromatography o f the monoesters (30 and 32). +
Complete d e e s t e r i f i c a t i o n o f the phosphonate (30) was r e a d i l y accomplished by treatment o f the mono e t h y l e s t e r with bromot r i m e t h y l s i l a n e to y i e l d the d i a c i d (3D i n good y i e l d a f t e r purification. By a s i m i l a r sequence, s t a r t i n g from 1,7-dibromo heptane (33), a h e p t y l analog (35) was prepared (Scheme 5 ) . The r a t i o n a l e t o prepare such a compound was based on the idea that such a molecule i s very s i m i l a r i n chain length t o the t r i p h o s p h o r y l a t e d s i d e chain o f a c y c l o v i r that i s b e l i e v e d to be the u l t i m a t e a c t i v e a n t i v i r a l , although c e r t a i n l y the h e p t y l phosphonate i s s i g n i f i c a n t l y d i f f e r e n t i n polar character.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
24
N U C L E O T I D E ANALOGUES
(C H 0) P 2
5
3
•
(C H 0) PCH CH CH Br
BrCH CH CH2Br 2
12
2
2
5
2
2
2
2
11
13.
Ο
II (C H O) PCH CH CH OH
(C H 0) PCH CH CH OCH CI 2
5
2
2
2
2
2
2
12
s
2
2
2
(C H 0) PCH CH CH OAc
2
2
6
2
2
2_Q
2_L
Scheme 3
2_3
IA
Ο
II (EtO) P(CH )30CH 2
U
2
2
I
Scheme 4
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2
2
2. R E I S T E T AL.
Synthesis of Acyclonucleoside Phosphonates
25
The preparation o f the next higher homolog (39) o f a c y c l o v i r phosphonate was accomplished by the sequence o f r e a c t i o n s i n Scheme 6. Hydroboration o f d i e t h y l 3-butene phosphonate (36) gave the 4-hydroxybutyl phosphonate (37). Chloromethylation followed by r e a c t i o n with s i l a t e d 2-amino-6-chloropurine gave the expected 2-amino-6-chloropurine butyloxymethyl phosphonate (38) as the d i e t h y l e s t e r . S e l e c t i v e h y d r o l y s i s gave the monoester (39). Bromination o f the monoester (30) gave the 8-bromo d e r i v a t i v e (40) i n good y i e l d (Scheme 7 ) . Hydrogenolysis o f the 2-amino-6-chloropurine d i e t h y l e s t e r (25) gave the 2-aminopurine d i e t h y l ester which was then s e l e c t i v e l y h y d r o l i z e d to give the mono ester phosphonate o f 2-aminopurine (42) (Scheme 7). The r a t i o n a l e f o r the preparation o f t h i s compound i s based on the observation that the 2-aminopurine analog of a c y c l o v i r i s an e x c e l l e n f i c a n t l y higher o r a l b i o a v a i l a b i l i t r e a d i l y f u n c t i o n a l i z e d i n v i v o by xanthine oxidase t o produce a c y c l o v i r i n s i t u . However, the 2-aminopurine analog o f a c y c l o v i r i s s i g n i f i c a n t l y more t o x i c than a c y c l o v i r , p o s s i b l y due t o cleavage i n v i v o t o 2-aminopurine which i s i t s e l f q u i t e t o x i c . In the above syntheses, the end products are g e n e r a l l y the monoethyl e s t e r s rather than the d i a c i d s . We have observed that the monoethyl ester appeared to have comparable or even better a c t i v i t y than the d i a c i d and seemed to have superior s o l u b i l i t y c h a r a c t e r i s t i c s . A monoester would a l s o be l e s s p o l a r than the d i a c i d hence could p o s s i b l y penetrate the c e l l membrane more e a s i l y and could conceivably be h y d r o l i z e d to the d i a c i d by esterases w i t h i n the c e l l . Thus i t seemed reasonable t o evaluate the e f f e c t o f higher e s t e r s and the mono b u t y l (50) e s t e r was prepared by an i d e n t i c a l r e a c t i o n sequence as described f o r the preparation o f the e t h y l ester (Scheme 8 ) . Phosphonate d e r i v a t i v e s o f g a n c i c l o v i r were prepared by a sequence of r e a c t i o n s s t a r t i n g from d i e t h y l methylphosphonate (51) (Scheme 9). Preparation o f the l i t h i u m s a l t , using b u t y l lithium/cuprous i o d i d e , followed by r e a c t i o n with a l l y l bromide gave an 80? y i e l d of d i e t h y l 3-butenyl phosphonate (36). Epoxidation o f the o l e f i n with meta chloroperbenzoic a c i d gave a 75? y i e l d o f the epoxide (52). Acid catalyzed cleavage o f the epoxide with g l a c i a l a c e t i c a c i d gave a 50? y i e l d o f d i e t h y l 4-acetoxy-3-hydroxy butylphosphonate (53). The M/S cracking pattern showed the presence o f CH 0Ac, i n d i c a t i n g that the desired isomer was formed. 2
Chloromethylation gave the desired chloromethyl ether (54) which was condensed with the di(TMS) d e r i v a t i v e o f 2-amino-6chloropurine t o give the blocked nucleoside. Treatment with aqueous 1N NaOH gave the monoethyl phosphonate (55) i n 21? o v e r a l l y i e l d . The mono ester was a l s o completely deblocked by treatment with bromotrimethy1 s i l a n e followed by water t o give the phosphonic d i a c i d (56). C y c l i z a t i o n o f the d i a c i d using DCC i n
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
26
N U C L E O T I D E ANALOGUES
Br(CH ) Br
(EtO) P(CH ) OH
13
1A
2
2
7
2
7
HN
Ν
2
EtOP(CH )sCH 2
I
2
I I ^ O
HO
v
*CH
Scheme 5
(EtO) PCH CH CH=CH 2
2
2
(EtO) PCH CH CH CH OH
2
2
2
2
11
2
2
1Z CI TMS Ν
Λ
TMSNH
Ν
14
HN
Ν
2
Ο EtO-P-CH CH CH 2
CH
2
HC
II (EtO) PCH CH CH
2
2
CH
2
2
2
I
2
2
11
CH
HC 2
Scheme 6
11
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2
2
2. REIST E T AL.
Synthesis of Acyclonucleoside Phosphonates
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
28
N U C L E C m D E ANALOGUES
(BuO) P 3
4-2
•
Br(CH2) Br
Ο
Ο
Il
II
(BuO)2PCH CH2CH Br
3
2
(BuO)2PCH CH2CH OAc
2
2
2
±
LA
Ο
Ο
Il
II
(BuO) PCH CH CH OCH CI 2
2
2
2
(BuO) PCH CH CH OH
2
2
4-8
2
2
AI
Cl
HN 2
Ο
Ο
II
BuOPCH CH 2
(BuO) PCH CH 2
2
2
HO H C ^ 2
HC 2
2
CH
*CH
2
51
A3. Scheme 8
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2
2
Synthesis of Acyclonucleoside Phosphonates
2. R E I S T E T A L .
ο
ο
Il
II
(EtO) PCH 2
ρ
II
(EtO)2PCH CH CH=CH2
3
29
2
_
(EtO) PCH CH CH
2
2
2
CH
2
2
Ο
11
1&
11
II
(EtO) P(CH ) CHCH OAc 2
H
2
N ^ N ^
2
2
(EtO) P(CH ) CHCH OAc
2
2
I
N
2
2
OCH CI
CH
2
Ο EtOPCH CH 2
ι HO
11
1A 2
ι I / O
v
"CH
HC
2
I O^OH
Ο ΗΝ
Λ
HN 2
HN
Ν
2
Ο
II
CH ÇH 2
(HO) PCH CH 2
2
2
CH
2
Ρ HC
*CH
»'\
2
CH
2
I Ο — CH
2
CH OH 2
11
il
2
I
Scheme 9
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
30
N U C L E O T I D E ANALOGUES
p y r i d i n e gave the c y c l i c phostonate (57) i n reasonable y i e l d . The HPLC behavior of the monoester was i n t e r e s t i n g . I t c o n s i s t a n t l y showed a double peak that was not adequately resolved f o r separation. The u l t r a v i o l e t spectrum and a n a l y s i s were as expected f o r the assigned product. On complete d e e s t e r i f i c a t i o n , t h i s behavior disappeared and the m a t e r i a l was homogeneous i n HPLC, UV and a n a l y s i s were as expected. On preparation of the phostonate, two peaks again appeared, again with s a t i s f a c t o r y UV and elemental a n a l y s i s . We assume t h i s i s due to 2 isomeric p a i r s due to 2 asymétrie centers. The branched methyl analog o f g a n c i c l o v i r phosphonate (60) (Scheme 10) was prepared f o r two reasons: (1) The analogous d e r i v a t i v e o f g a n c i c l o v i r showed a n t i v i r a l a c t i v i t y comparable to g a n c i c l o v i r f o r r a t e of phosphorylation by HSV-1 thymidine kinase(24) thus showing that the methyl group was compatible with the HSV enzyme system. (2) I f i t showe i n t e r e s t i n g monofunctiona propagate the DNA chain. Opening the epoxide (52) using borohydride gave the expected secondary a l c o h o l (58). Chloromethylation followed by coupling w i t h 2-amino-6-chloropurine gave a f t e r deblocking the deoxygancic l o v i r phosphonic a c i d , mono e t h y l e s t e r (60). Some of the b i o l o g i c a l a c t i v i t y that we have obtained i s shown i r 1. A c y c l o v i r phosphonate (3D and i t s monoethyl e s t e r (32) both show moderate a c t i v i t y against HSV-1 although n e i t h e r as a c t i v e as a c y c l o v i r or g a n c i c l o v i r . S u r p r i s i n g l y , (3D was i n a c t i v e against murine cytomegalovirus a t doses up to 1000 yg/rr although the mono ester showed good a c t i v i t y and a very good therapeutic index.
Table
The h e p t y l analog (35) showed low a c t i v i t y against both HSV-1 c human cytomegalovirus. Likewise the d i e t h y l e s t e r (28) and 8bromo analog (40) were e s s e n t i a l l y i n a c t i v e . The r e s u l t s o b t a i n s f o r the monobutyl ester (50) were somewhat s u r p r i s i n g . There was no a c t i v i t y against HSV-1. Although there was a c t i v i t y against HCMV, i t was s i g n i f i c a n t l y lower than that observed f o r the mono e t h y l e s t e r (32). The a c t i v i t y of the g a n c i c l o v i r analogs prepared so f a r i s c o n s i s t e n t l y low a g a i n s t HSV-1. However some o f them show good a c t i v i t y against human cytomegalovirus. The d i a c i d (56) shows a t h e r a p e u t i c index o f 500 with an E D of 2 yg/mL, comparable to g a n c i c l o v i r i n a c t i v i t y . The monoethyl e s t e r (55) i s n e a r l y as e f f e c t i v e with a t h e r a p e u t i c index of 258 and an E D o f 5.8 yg/mL. The c y c l i c phostonate (57) i s l e s s a c t i v e w i t h a t h e r a p e u t i c index of 64 and an E D of 75 yg/mL, while the deoxy analog (60) has only low a c t i v i t y w i t h a t h e r a p e u t i c index o f 5 and an E D of 400 yg/mL. 50
50
50
50
We have done some s t u d i e s on the t o x i c i t y of the monoethyl e s t e r (30) o f ACV phosphonate i n the mouse. An acute dose of 2000 mg/kg i n the t a i l v e i n o f the mouse gave no s i g n i f i c a n t adverse r e a c t i o n . On chronic dosage once d a i l y over 5 days a t 2000 mg/kg
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2.
REIST E T AL.
(EtO) PCH CH CH — C H 2
2
12
2
31
Synthesis of Acyclonucleoside Phosphonates
2
-
(EtO) PCH CH CHCH 2
2
2
3
(EtO) PCH CH CHCH 2
12
12
12 Scheme
2
10
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2
3
NUCLECOTDE ANALOGUES
32
Table 1.
A n t i v i r a l A c t i v i t y o f A c y c l i c Phosphonates Against Herpes Viruses
ο χ
JL^"
î
x
I
ROPtCHi^CHOCHt
I
I
ED ue/ml T . I . 50
Cpd
X
11
Η
R
R"
R* H
H
Η
η
V.R. »
2
0.6
100
2
EDso UK/ml
T.I.
110
10
C H 2
5
H
H
2
19
Η
C H 2
5
H
H
3
35
Η
C H
5
H
H
6
0.1
>1000-
28
Η
C H 2
5
C H
H
2
0.1
1000 ·
40
Br
C H
H
H
2
0
<500
>2
5
2
0
100
15
2
0.3
1
5.8
258 5
50
Η
55
Η
2
C H 2
5
2
5
H
H
H
CH 0H 2
1000*
1000* 1000
u
CH
3
2
0.1
320
0.3
H
CH 0H
2
0.3
320
3
2
500
2
0.1
320
0.1
5
64
Acyclovir
1.8
4
375
25
60
Ganciclovir
1.8
2
500
2
500
6
20
Η
C H
Η
H
57
Η
H
2
5
2
CH
2
DHPG C y c l i c Phosphate
10-20
300
1.3
700
1.6
75
1
H
60
10
N. A. 3
400
56
2
N.A.3
>320
4
1.6
94
16
Η
2
EDso yg/ml T . I .
0
>10
10
0.9
V.R.»
2
5
V. R. i s virus rating and represents a measure of a n t i v i r a l a c t i v i t y . ( 2 5 ) A r a t i n g between 0 and 0.5 i s low a c t i v i t y . A r a t i n g between 0.5 and 1.0 i s moderate a c t i v i t y . A rating greater than 1.0 i s strong a c t i v i t y . T . I . i s therapeutic index and i s the r a t i o o f cytotoxic dose ( C D ) to minimum e f f e c t i v e dose ( E D ) . N.A. i s not a c t i v e . ••Top dose tested i s 1000 yg/mL. Data from ref. 26. 1
2
50
5 0
3
5
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
5
5
2.
REIST ET AL.
33
Synthesis ofAcyclonucleoside Phosphonates
and a l s o as 1000 mg/kg, there was 1 death each i n 5 mice. mg/kg there were no t o x i c e f f e c t s .
At 500
The d i a c i d o f g a n c i c l o v i r phosphonate (56) has a l s o been prepared by P r i s b e , e t a l . ( 2 6 ) They a l s o observed that the herpes a c t i v i t y was minimal but that there was good a c t i v i t y a g a i n s t HCMV i n v i t r o . 56 a l s o showed e x c e l l e n t a c t i v i t y when a p p l i e d subcutaneously against MCMV. They reported low t o x i c i t y f o r the compound and b e l i e v e i t i s a good candidate f o r c l i n i c a l e v a l u a t i o n against HCMV. Acknowledgment This work was supported i n part by c o n t r a c t N01-AI-72643 from the N a t i o n a l I n s t i t u t e o f A l l e r g y and I n f e c t i o u s Diseases. References 1. 2.
3.
4. 5. 6. 7. 8. 9. 10. 11.
12. 13. 14.
15. 16. 17.
Prusoff, W. H. Biochim. Biphys. Acta. 1959, 32, 295. a) Heidelberger, C.; Parsons D.; Remy, D. C. J. Am. Chem. Soc. 1962, 84, 3597. b) Ryan, K. J.; Acton, Ε. M.; Goodman, L. J. Org. Chem. 1966, 31, 1181. a) Lee, W. W.; Benitez, Α.; Goodman, L.; Baker, B. R. J. Am. Chem. Soc. 1960, 82, 2648. b) Reist, E. J.; Benitez, Α.; Goodman, L.; Baker, B. R.; Lee, W. W. J. Org. Chem. 1962, 27, 3274. Horowitz, J. P.; Chua, J.; Noel, M. J. Org. Chem. 1964, 29, 2076. Sidwell, R. W.; Huffman, J. H.; Khare, G. P.; Allen, L. B.; Witkowski, J. T.; Robins, R. K. Science 1972, 177, 705. Nicholson, K. G. Lancet II 1984, 617. Nicholson, K. G. Lancet II 1984, 503. Mitsuya, H., et a l . Proc. Nat. Acad. Sci. USA 1985, 82, 7096. Fischl, Μ. Α., et al. New Eng. J. Med. 1987, 317(4), 185. Collins, P.; Bauer, D. J. J. Antimicrob. Chemoth. 1979, 5, 431. a) Galbraith, A. W.; Oxford, J. S.; Schild, G. C.; Watson, G. I. Lancet 1969, 1026. b) Bull. WHO 1969, 41, 677. Nicholson, K. G. Lancet II 1984, 562. Allen, R. M., et a l . Clin. Neuropharmacol. 1983, 6, (Suppl. 1), S64. a) Bryson, Y. J.; Monahan, C.; Pollack, M.; Shields, W. D. J. Infec. Dis. 1980, 141, 543. b) Flaherty, J. Α.; Bellur, S. N. J. Clin. Psychiat. 1981, 42, 344. Elion, G. B.; Furman, P. A.; Fyfe, J. Α.; de Miranda, P.; Beauchamp, L.; Schaeffer, H. J. Proc. Nat. Acad. Sci USA 1977, 74, 5716. Furman, P. Α.; de Miranda, P.; St. Clair, M. H.; Elion, G. B. Antimicrob. Agts. Chemother. 1981, 20, 518. Elion, G. B. Amer. J. Med. 1982, 73, 7.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
34 18.
19. 20. 21. 22. 23.
24. 25. 26.
RECEIVED
NUCLE(mDE
ANALOGUES
a) Smith, K. O.; Galloway, K. S.; Kendall, W. L.; Ogilvie, K. K.; Radatus, Β. K. Antimicrob. Agts. Chemother. 1982, 22, 55. b) Martin, J. C.; Dvorak, C. Α.; Smee, D. F.; Matthews, T. R.; Verheyden, J. P. H. J. Med. Chem. 1983, 26, 759. Mar, E.-C.; Cheng, Y.-C.; Huang, E.-S. Antimicrob. Agts. Chemother. 1983, 24, 518. Estes, J. E.; and Herang, E.-S. J. Virol. 1977, 24, 3. Koretz, S. H., et a l . New Eng. J. Med. 1986, 314, 801. Carrasco, L. Nature 1978, 272, 694. Krenitsky, T. Α.; Hall, W. W.; deMiranda, P.; Beauchamp, L. M.; Schaeffer, H. J.; and Whiteman, P. D. Proc. Nat. Acad. Sci, USA 1984, 81, 3209. Fyfe, J. Α.; McKee, S. Α.; and Keller, P. M. Mol. Pharmacol. 1983, 24, 316. Sidwell, R. W. Vira Systems; In "Chemotherap Gadebusch, ed.) pp. 31-54, CRC Press, Cleveland. Prisbe, E. J.; Martin, J. C.; McGee, D. P. C.; Barker, M. F.; Smee, D. F.; Duke, A. E.; Matthews, T. R.; Verheyden, J. P. H. J. Med. Chem. 1986, 29, 671. February 22, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Chapter 3
Structural Requirements for Enzymatic Activation of Acyclonucleotide Analogues Relationship to Their Mode of Antiherpetic
Action
Richard L. Tolman Merck Sharp & Dohme Research Laboratories, Box 2000, Rahway, NJ 07065 The structure-substrat thymidine kinase (TK enzymes ( G M P kinase) have been studiea and relevant acyclonucleoside conformations amenable to phosphorylation have been proposed based o n molecular modelling. The modes of action of other acyclonucleoside antiviral agents, which are not viral DNA polymerase inhibitors, and therefore TK-independent, e.g. 2'nor-cGMP, have also been discussed. The most safe and effective agents of the present generation of antivirals for members of the group of herpes viruses are guanine acyclonucleosides. These agents have been shownQL,2) to ultimately inhibit the viral replication process as their triphosphate derivatives.
Ganciclovir
Thymidine
It is a viral-specified enzyme, thymidine kinase (TK), which accomplishes the first phosphorylation® of guanine acyclonucleosides, such as acyclovir (ACV), to monophosphate tnereby accounting for the great selectivity of their antiviral action. Our initial interest i n this area was i n understanding the manner of this remarkable enzymatic event i n accepting a guanine derivative as a surrogate for the natural substrate thymidine. The structuresubstrate relationships for acyclonucleoside derivatives were examined for herpes (HSV-1) thymidine kinase as well as for the host enzyme G M P kinase, which converts monophosphate to diphosphate(4). There are many 0097-6156/89/0401-0035$06.00/0 © 1989 A m e r i c a n Chemical Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE
36
ANALOGUES
enzymes® which convert acyclonucleoside diphosphate to triphosphate, the final agent which inhibits viral D N A polymerase and thereby viral replication (Fig. 1). Molecular modelling was found to be a source of stimulation toward the synthesis of new chemical entities and to provide plausible scenarios for enzymatic phosphorylation. Molecular modelling studies are arguably less relevant in their application to substrate studies as there are two components in substrate activity, binding and efficacy. It is the binding component which is more easily dealt with in the absence of an X-ray structure ot the enzyme. H S V Thymidine Kinase Keller et Λ/.(6) have examined in a cursory fashion the substrate requirements of herpes thymidine kinase (HSV-TK) particularly with regard to guanine derivatives. The structural requirements of pyrimidine nucleoside analogs have been examined(7-10) for substrate activity. It has been demonstrated that 5-substitution of the pyrimidin Thymidine is a much bette 5-substituent. The ability of other bulkier and more hydrophobic 5substituents to function even more effectively than thymidine as substrates has led to the thesis that the binding site of T K which accommodates the 5methyl of thymidine is in fact a long cylindrical hydrophobic pocket©. 2'Deoxy-cytidme is also a quite a good substrate(one-twentieth as effectively phosphorylated as thymidine, Π) despite the fact that it has hydrogen at C5. The phosphorylation of ganciclovir (GCV) by H S V - T K has been shown to be stereospecific for the pro-S hydroxyl(12) as evidenced by the fact that enzymaticallv-prepared G C V - M P is rapidly converted by G M P kinase to G C V - D P , wnereas the chemically-prepared M P (racemic) is only 50% converted to D P under the same conditions. Molecular Models. A statement of Garland Marshall's(13) describes the promise of molecular modelling for studies of the type of the thymidine kinase structure-substrate study: "Without detailed information about the three-dimensional nature of the receptor, conventional physicochemically based approaches are not possible. One can only attempt to deduce an operational model of the receptor that gives a consistent explanation of the known data and, ideally, provides predictive value when considering new compounds for synthesis and biological testing." U s i n g a modified M M 2 force field(14), tnree dimensional energy maps were generated for thymidine and ganciclovir (Figs 2 & 3) using two sidechain dihedral angles(15). The conformationally-constrained thymidine was seen to have a number of low energy wells corresponding to anti-conformers with gauche- or gauche+ 5'-hydroxyls, whereas permutations of G C V ' s side chain position produced little variation i n energy (total energy range = 10 kcal). The C 8 - N 9 - C l ' - 0 torsion angles from the X-ray structures of A C V Q 6 18) and GCV(19,15) (-91 and -110° respectively) fell i n a low energy portion of the contour plot, but were not the lowest energy structures i n that energy well. The key to understanding how H S V - T K could accept a guanine acyclonucleoside as a substrate seemed to be i n the positioning of the purine on the active site of the enzyme. The effect of some purine substituent changes upon T K substrate ability have been examined by others(20,6). Table I shows the relative substrate ability of various substituted guanine derivatives within any of three side-chain series. A n y change of the 6-oxo function abolished substrate activity [the substrate activity of 2'β
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Structural Requirements for Enzymatic Activation
3. T O L M A N
Ο
Ganciclovir (GCV)
OH
OH HSV Thymidine Kinase
GMP kinase (host)
/
HN
II
Ν
Μ
[Ι
cr
o-
2
OH
host enzymes Ν
HN 2
}
if
ο
?
Î
o'NHS^Nr o- o- oOH
Figure 1. Viral Activation of Acyclonucleosides
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
37
38
N U C L E O T I D E ANALOGUES
Thymidine
Energy -30.00
-0
90
180
270
Figure 2. Energy Contour Plot for Thymidine (X-ray Structure) for Two Torsions, θΐ (C8-N9-Cl'-0) and Θ2 (0-C4'-C5'-05')
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
360
3.
TOLMAN
39
Structural Requirements for Enzymatic Activation
Ganciclovir
Energy ι
-0
90
180 θ
270
36
2
Figure 3. Energy Contour Plot for Gandclovir (X-ray Structure) for T w o Torsions, θΐ (C8-N9-Cl'-0) and Θ2 ( Ο Ζ ^ ' ^ ' - Ο δ ' )
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
40
deoxycytidine might have predicted the 6-amino derivative to be a substrate]. Similarly, changes were not tolerated at the purine-2-position of guanine, except for the 2-methylamino(6) which retained weak substrate activity. However, hydrophobic substituents at the 8-position (particularly halogen or alkyl) enhanced substrate activity, while hydrophilic substituents were not substrates. A likely explanation for the substrate activity of 8-substituteduanines is that the hydrophobic 8-bromo or -methyl fits into the postulated ydrophobic pocket which exists i n our model to account for the enhanced substrate activity of 5-substituted thymidines. Table I. Structure-Substrate Relationship for Modified Guanines
R = C H 2 O C H 2 C H 2 O H (+) R = C H 2 0 C H ( C H 2 0 H ) 2 (+++) R = C H 2 C H 2 C H 2 C H 2 O H (++)
N O T E :
A = OH(-), H(-), NHMe(+) NHCH2Ph(-), N H N H 2 ( - ) , Cl(-) Β = H , SH, NH2, N H M e , OMe, N H n P r , N H C H 2 P h , all(-) C = OH(-),NH2(-),SH(-) 8-aza(+), Br(++), Me(+++)
- , not a substrate; +, poor substrate; + + ,
good substrate; and + + + ,
excellent
substrate. Assay protocol, ref. 21.
In order to test the hypothesis by superposition of molecular models, randomly generated ganciclovir conformational structures were optimized and grouped into families when atoms differed i n position by <0.l Â. The lowest energy family (A141, -42 kcal) when rigidly superimposed upon the X-ray structure of thymidine produced 'scenario A ' (Fig. 4), which could account for many of the observed substrate requirements. Five probable points of interaction between the substrate (thymidine) and enzyme were postulated based on this scenario: (a) the hydrophobic pocket at C5, (b) the 3'- and 5'-hydroxyls, (c) the furanose ring oxygen, and (d) the 4-oxo group. In each case the low energy ganciclovir conformer possessed a binding counterpart. Distances between corresponding binding functions of the two molecules i n the superposition were generally small (<1.0 Â). The largest displacements of these binding counterparts were (a) the pyrimidine-40x0//the guanine-6-oxo (this disparity could perhaps be accommodated if the interacting group on the enzyme were the terminal carboxyl of A s p or Glu), and (b) the 3'-hydroxyl//pro-R hydroxyl (rotation of the G C V pro-R hydroxymethyl 60° produced a virtual overlap with the thymidine counterpart). In this binding scenario, the two heteroaromatic systems are nearly coplanar. M o v i n g the purine out of this plane does not markedly effect any of the hypothetical oinding interactions except the positioning of the purine C8 substituent into the thymidine C 5 hydrophobic pocket.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
3.
TOLMAN
Structural Requirements for Enzymatic Activation
41
Figure 4. Binding Scenario A : Rigid Superposition of a Low-energy Ganciclovir Conformation (dotted) and Thymidine X-ray Structure (solid)Front and Top Stereo-Views
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
42
Taking note that the Ν2-3Ό distance is 4.5 Â i n the superposition suggests that, if that space were a cavitv i n the enzyme, an N2-substituent bearing a hydrophilic terminus and reacning into the postulated 3'-hydroxyl binding site mignt pick up substrate activity. The extended length of the 2-hydroxyethyl group is close to 4.5 Â whereas the 2,3-dihydroxypropyl derivative, which was also prepared, is somewhat longer and may not have the proper geometry for good binding. To check that the N2-hydroxyalkyl was not being phosphorylated by HS VTK, the two methylated side-chains were prepared. Table II shows that N 2 (2-methoxy)ethyl was still a substrate while the 9-(2-methoxy)ethoxymethylderivative was not a substrate, lending additional credence to 'binding scenario A ' as a predictive model. These compounds were shown not to be converted to higher phosphates in HSV-infected cells. Table II. N2-Hydroxyalkyl-guanines as H S V - T K Substrates
Purine 2-substituent
9-Substituent
Substrate
NÎÏ2 NHCH2CH2OH NHCH2CHOHCH2OH NHCH2CH2OCH3 NHCH2CH2OH
CH2OCH2CH2OH CH2OCH2CH2OH CH2OCH2CH2OH CH2OCH2CH2OH CH2OCH2CH2OCH3
+(ACV) +++ + ++ -
N O T E : - , not a substrate; +,
poor substrate; + +,
good substrate; and + + + ,
excellent
substrate. Assay protocol, ref. 21.
Other superpositions did not explain the data as well, but 'binding scenario B' (Fig. 5) received serious consideration because it was able to accommodate the fact that 2'-deoxycytidine was a good substrate for the enzyme. In this superposition there is excellent overlap of the 2-amino of G C V with the 4-oxo of thymidine as well as good positional agreement between the 3' and 5' hydroxyls of each of the two structures. Although the ' f i f of the two structures is not as eood and this is a higher energy conformer of G C V , this superposition clearly predicts that 8-hydroxyalkyl guanines should be substrates. However, when 8-(3-hydroxypropyl)-9-methylguanine(22) and 8-(2-aminoethylamino)-GCV(23) were prepared, they were found not to be substrates although molecular models of these structures were well accommodated i n binding scenario B'. This scenario also could not account for the fact that an 8-(methyl or bromo) substituent enhanced substrate activity. Acyclosugar Structure Substrate Activity. A great number of 9-side-chain variants were made by us and others(25^27). It is obvious from Figure 6 that the best substrate activity is achieved when the potential substrate has a In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
3. T O L M A N
Structural Requirements for Enzymatic Activation
Figure 5. Binding Scenario B: Rigid Superposition of a Ganciclovir Conformation (dotted) and Thymidine X-ray Structure (solid)-Front and Top Stereo-Views
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
43
N U C L E O T I D E ANALOGUES
44
G
G
R R = CI (+)
F(++) N (++) 3
OCH (+) 3
SCH
3
SCH
2
(-) Ph (-)
SCH CH 2
2
X«2(+++)
O(-)
X = 3( )
SCH CH C0 H(-) 2
2
+
2
G
G
G
G = Guanine
Figure 6. Structure Substrate Relationship for the 9-Side-chain of Guanine Acyclonucleosides
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
3.
TOLMAN
Structural Requirements for Enzymatic Activation
45
binding functionality i n both the 5' and 3' hydroxy binding sites for thymidine. Modified G C V s lose significant substrate activity wnen one of the hydroxyl's is replaced with a large or less hydrophilic group. Substitution of the Γ-position is not tolerated for substrate activity® and surprisingly the 2'-carba derivatives are better substrates than tneir oxa counterparts. The m i n i m u m side-chain length for substrate activity is 5 atoms (excluding hydrogen), the A C V side-chain length; longer side-chains are even better substrates for H S V - T K , but are more poorly converted to higher phosphates. There appears to be a chiral preference of the enzyme for the [SI configuration at the 4'-position(26) and considerable bulk tolerance. It has been shown that there is poor bulk tolerance on the carbon bearing the hydroxyl which is phosphorylated(26). Some conformationally-constrained acyclonucleosides(28) have been shown to have enhanced substrate activity, but the conformationally-restricted derivatives i n which a phenyl ring(23) is employed to give directionality to the side chain do not serve as substrates, possibly due to their excessive bulk. It should be noted that since 'substrate ability is a measure not onl this receptor, that these poo lack the proper geometry for efficient phosphorylation. 7
G M P Kinase This enzyme which converts the H S V - T K product (monophosphate) to diphosphate(DP) has itself been shown to be very selective® i n choice of substrates. The chiral G C V - M P ' s have both been shown to be substrates for G M P kinase but at vastly different rates(26). The [S] enantiomer, the one most analogous to the natural configuration, is the better substrate by two orders of magnitude. Figure 7 shows the substrate ability of various monophosphate derivatives. A s in the case of thymidine kinase, branching of the acyclo side-chain at 1' abolished any substrate activity. Unlike TK, which preferred longer side-chains as substrates (8 > 7 > 6 > 5), G M P kinase phosphorylates the shorter side-chains best and 8-membered side-chains not at all. Therefore, the monophosphates of the best T K substrates (with respect to side-chain length) are not substrates for G M P kinase. The 2'-oxa substitution increases K m and retards Vmax- It is not surprising that [S] chirality at position 4' favors phosphorylation by the enzyme since this w o u l d aid in the recognition of tne natural substrate. A hydroxyl in the region of the 3'-hydroxyl of G M P enhances substrate activity, but phosphorylation of the hydroxyl at this position (3') abolishes substrate activity. Conversion to Triphosphate Use of the 'staggered assay'(21) permits the comparison of the relative phosphorylation rates of various acyclonucleosides. Although all compounds shown i n Table III are converted to triphosphate, they differ i n the facility with which this occurs. It should also be noted is that not all of the triphosphates (TP) inhibit H S V D N A polymerase and have antiherpes activity. In particular, the unsaturated acyclonucleoside in line 3 is relatively poorly converted to a TP which does not inhibit the viral D N A polymerase, out the compound nonetheless has antiherpes activity (the acyclonucleoside may be an SA H hydrolase inhibitor). It is also interesting that the trishydroxymethyl acyclonucleoside and the cyclopropyl compound (lines 4 & 5, respectively) are equally well converted to TP, are also equally devoid of viral polymerase inhibition, and yet only one of the materials (the latter one) still has antiherpes activity by some as yet unidentified mechanism. In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
m
V ax (nmol/min) (μΜ)
m
Figure 7. Kinetic Data for Phosphorylation b y G M P Kinase
K Vmax (nmol/min)
87.5 43
(μΜ) m
K 5-GMP
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
3.
Structural Requirements for
TOLMAN
47
Enzyme
It is more desirable for an acyclonucleoside to be poorly converted to a triphosphate which is an efficient inhibitor of viral replication (e.g. A C V ) , than one which is efficiently converted to triphosphate. Efficient phosphorylation by viral-specified kinases w i l l undoubtedly mean more phosphorylation (although orders of magnitude less) by host cell kinases i n an uninfected cell. A n y significant level of phosphorylated acyclonucleoside i n uninfected cells can disturb the balance of nucleotide pool sizes(30) and lead to side effects i n one of the myriad of various cell types and their metabolic systems for regulation of nucleic acid synthesis. Table ΠΙ. Relative Phosphorylation Rates of Acyclonucleosides by H S V - T K and HSV-Infected Cell Extracts and H S V D N A Polymerase Inhibition HSV-TK
% Inh'n
ED50
DNApol
HSV-1(29)
79 22
3 0.16
3 3
9 60 10 64
0
9
25
50
51
0
8
86
>100
45
0
0
76
80
0
5
82
17 90
ACV GCV
%
OH OH
|\—OH ^OH
>100
2'Nor-cGMP Still another type of antiherpetic mode of action employing phosphorylated acyclonucleosides is typified by 2'nor-cGMP(31-33). This antiviral agent has potent activity against members of the herpes group and other D N A viruses, including cytomegalovirus(34,35), adenovirus(36), papilloma virus(31), varicella-zoster(31), and herpes keratitis(37). Cell culture studies and animal studies have shown that 2'nor-cGMP is equally effective against TK-deficient (or minus) H S V strains, indicating that this activity i n independent of viral thymidine kinase. Although some hydrolysis of the cyclic pnosphate occurs intracellularly in vivo to produce levels of G C V - M P (and therefore GCV-TP),
American Chemical Society Library
1155as 16th S t Agents; . N.W.Martin, J.; In Nucleotide Analogues Antiviral Washington, C 20036 ACS Symposium Series; American Chemical D Society: Washington, DC, 1989.
N U C L E O T I D E ANALOGUES
48
the amount of T P produced is not enough to account for the antiviral activity observed(38).
Unlike G C V - M P , 2'nor-cGMP is taken up intact from the gut [10% of a labelled dose (10mg/kg p.o., rats) is recovered i n the urineQS)] and is relatively stable i n plasma (80% of drug recovered from urine is intact cyclic phosphate). The mechanism of antiherpetic action of 2'nor-cGMP remains unknown, since the cyclic phosphate directly inhibits neither HSV-1 D N A polymerase nor C M V polymerase Summary Molecular modelling has proven to be a positive factor i n the development of structure-activity relationships as a source of stimulation and predictive models. Although the means is available to design acyclonucleoside substrates which w i l l be phosphorylated i n herpes-infected cals, there is no assurance that the resultant monophosphates w i l l be converted to higher phosphates by G M P and other kinases. It is also not possible to predict a rion whether these triphosphates w i l l inhibit viral polymerases and/or ave antiherpetic activity. Other acyclonucleoside or acyclonucleotides have antiviral activity whicn is independent of D N A polymerase or viral activation by viral thymidine kinase or both.
K
Acknowledgments The author is very grateful to the many contributors to this work, especially to Dr. Malcolm MacCoss, Dr. Wallace T. Ashton, and Dr. John D. Karkas who helped to shape and guide this work and to Dr. Dennis Underwood who helped to solve the molecular modelling problems. Literature Cited Elion, G. B. Am. J. Med. 1982, 73, 7 (Acyclovir Symposium). Elion, G. B.; Furman, P. Α.; Fyfe, J. Α.; de Miranda, P.; Beauchamp, L.; Schaeffer, H. J. Proc. Natl. Acad. Sci. USA 1977, 74, 5716. 3. Fyfe, J. Α.; Keller, P. M.; Furman, P. Α.; Miller, R. L.; Elion, G. B.J.Biol. Chem. 1978, 253, 8721. 4. Miller, W. H.; Miller, R. L.J.Biol. Chem. 1980, 255, 7204. 5. Miller, W. H.; Miller, R. L. Biochem. Pharmacol. 1982, 31, 3879. 6. Keller, P. M.; Fyfe, J. Α.; Beauchamp, L.; Lubbers, C. M.; Furman, P. Α.; Schaeffer, H. J.; Elion, G. B. Biochem. Pharmacol. 1981, 30, 3071. 7. Schildkraut, I.; Cooper, G. M.; Greer, S. Mol Pharmacol. 1975 11, 153. 8. Cheng, Y.-C.; Dutschman, G.; De Clercq, E.; Jones, A. S.; Rahim, S. G.; Verhelst, G.; Walker, R. T. Mol. Pharmacol. 1981, 20, 230. 9. Sim, I. S.; Goodchild, J.; Meredith, D. M.; Porter, R. Α.; Raper, R. H.; Viney, J.; Wadsworth, H. J. Antimicrob. Ag. Chemother. 1983, 23, 416. 10. Cheng, Y.-C. Ann. Ν. Y. Acad. Sci. 1977, 284, 594. 1. 2.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
3.
11. 12. 13. 14.
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.
TOLMAN
Structural Requirements for Enzymatic Activation
Cheng, Y.-C.; Ostrander, M. J. Biol. Chem. 1976, 251, 2605. Karkas, J. D.; Germershausen, J. G.; Tolman, R. L.; M . MacCoss; Wagner, A . F.; Liou, R.; Bostedor, R. Biochem. Biophys. Acta 1987, 911, 127. Marshall, G.; Trends Biol. Sci. 1988, 236. The MM2-extended force field (MM2-X), developed internally at Merck, shares many parameters with M M 2 ; it differs principally i n that lone pairs on neteroatoms are not used (compensating changes have been made in torsional parameters and charge distributions), and that electrostatic interactions take place between atom-centered charges, thus allowing proper treatment of charged systems: M M 2 - X has been parameterized for a wide ranee of systems. Birnbaum, G . I.; Shugar, D. i n Nucleic A c i d Structure, Part 3, Topics i n Molecular and Structural Biology, ed. S. Neidle, M a c M i l l a n (London, 1987) p. 1. Birnbaum, G . I.; Cygler, M . ; Kusmierek, J. T.; Shugar, D. Biochem. Biophys. Res. Commun. Birnbaum, G. I.; Cygler, M . ; Shugar, D. Can. J. Chem. 1984, 62, 2646. Birnbaum, G . I.; Johansson, N. G.; Shugar, D. Nucleosides & Nucleotides 1987, 6(4), 775. Stolarski, R.; Lassota, P.; Kazimierczuk, Z.; Shugar, D. Z. Naturforsch 1988, 43c, 231. Beauchamp, L. M . ; Dolmatch, B. L.; Schaeffer, H . J.; Collins, P.; Bauer, D. J.; Keller, P. M . ; Fyfe, J. A . J. Med. Chem. 1985, 28, 982. Ashton, W. T.; Canning, L. F.; Reynolds, G. F.; Tolman, R. L.; Karkas, J. D.; L i o u , R.; Davies, M.-E. M . ; DeWitt, C. M . ; Perry, H . C.; Field, A. K. J. Med. Chem. 1985, 28, 926. Stein, J. M . ; Stoeckler, J. D.; Li, S.-Y.; Tolman, R. L.; MacCoss, M . ; Chen, Α.; Karkas, J. D.; Ashton, W. T.; and Parks, R. E., Jr. Biochem. Pharmacol. 1987, 36, 1237. Tolman, R. L.; Ashton, W. T.; MacCoss, M . ; Karkas, J. D.; Underwood, D.; Meurer, L. C.; Cantone, C. C.; Johnston, D. B. R.; Hannah, J.; Liou, R. J. Med. Chem. 1989, submitted. Martin, J. C.; McGee, D. P.C.; Jeffrey, G. Α.; Hobbs, D. W.; Smee, D. F.; Matthews, T. R.; Verheyden, J. P. H. J. Med. Chem. 1986, 29, 1384. McGee, D. P. C.; Martin, J. C.; Smee, D. F.; Matthews, T. R.; Verheyden, J. P. H . J. Med. Chem. 1985, 28, 1242. Karkas, J. D.; Ashton, W. T.; Canning, L. F.; Liou, R.; Germershausen, J.; Bostedor, R.; Arison, B.; Field, A . K.; Tolman, R. L. J. Med. Chem. 1986, 29, 842. Larsson, Α.; Tao, Pei-zhen Antimicrob. Ag. Chemother. 1984, 25, 524. Ashton, W. T.; Meurer, L. C.; Cantone, C. L.; Field, A . K.; Hannah, J.; Karkas, J. D.; L i o u , R.; Patel, G. F.; Perry, H . C.; Wagner, A . F.; Walton, E.; Tolman, R. L. J. Med. Chem. 1988, 31, 2304. Field, A . K.; Perry, H . C. personal communication. Bradley, M. O.; Sharkey, N. A . Nature 1978, 274, 608. Tolman, R. L.; Field, A. K.; Karkas, J. D.; Wagner, A . F.; Germershausen, J.; Crumpacker, C.; Scolnick, Ε. M. Biochem. Biophys. Res. Comm. 1985, 128, 1329. Field, A. K.; Davies, M.-E.; DeWitt, C. M . ; Perry, H . C.; Schofield, T. L.; Karkas, J. D.; Germershausen, J . ; Wagner, A . F.; Cantone, C. L.; MacCoss, M . ; Tolman, R. L. Antiviral Res. 1986, 6, 329. Prisbe, E. J . ; Martin, J. C.; Baker, M . F.; Smee, D. F.; Duke, A . E.; Matthews, T. R.; Verheyden, J. P. H. J. Med. Chem. 1986, 29, 671. Duke, A . E.; Smee, D. F.; Chernow, M . ; Boehme, R.; Matthews, T. R. Antiviral Res. 1986, 6, 299. In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
49
50 35. 36. 37. 38.
39.
N U C L E O T I D E ANALOGUES
Yang, Ζ. H . ; Lucia, H. L.; Hsiung, G. D.; Tolman, R. L.; Colonno, R. J. Antimicrob. Ag. Chemother. 1989 submitted. Baba, M . ; M o r i , S.; Shigeta, S.; DeClercq, Ε. Antimicrob. Ag. Chemo. 1987, 31, 337. Gordon, Y. J.; Capone, Α.; Sheppard, J.; Gordon, Α.; Romanowski, E.; Araullo-Cruz, Τ Current Eye Res. 1987, 6, 247. Germershausen, J. G.; L i o u , R.; Field, A . K.; Wagner, A . F.; MacCoss, M . ; Tolman, R. L.; Karkas, J. D. Antimiaob. Ag. Chemother. 1986, 29, 1025. Hucker, H . ; Germershausen, J. personal communication.
R E C E I V E D June 9,
1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Chapter 4
Phosphonylmethyl Ethers of Nucleosides and Their Acyclic Analogues Antonin Holý , Erik De Clercq , and Ivan Votruba 1
2
1
Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Praha 6, Czechoslovakia Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
1
2
Structure-activit of a c y c l i c nucleotide analogs bearing a modified phosphoric acid residue at the s i d e - c h a i n revealed two novel classes of a n t i v i r a l s : N-(3-hydroxy-2-phosphonylmethoxypropyl)(HPMP-) and N-(2-phosphonylmethoxyethyl) (PME-) d e r i v a t i v e s of h e t e r o c y c l i c bases. Adenine, guanine, 2-aminoadenine and ( i n the HPMP-series) c y t o sine d e r i v a t i v e s act s p e c i f i c a l l y against DNA viruses (herpes viruses,adenoviruses,poxviruses). The PME-compounds are also active against retroviruses (MSV,HIV)and exhibit a c y t o s t a t i c effect on L-1210 mouse leukemia cells.The drugs are converted by the action of c e l l u l a r nucleotide kinases into t h e i r diphosphates and i n h i bit v i r a l and, to a lesser extent, c e l l u l a r DNA synthesis. These metabolites exert a comparatively low i n h i b i t o r y effect on v i r a l (HSV-1) DNA polymerase. The diphosphates derived from PME-compounds strongly i n h i b i t v i r a l (HSV-1) r i b o nucleotide reductase and AMV reverse t r a n s c r i p tase. The
m a j o r i t y
exert
t h e i r
d i r e c t b r i n g
b i o l o g i c a l l y
f o r
apparent
c e r t a i n e t c . )
membranes these
cases than
i s
d e p h o s p h o r y l a t i o n s vent
t h e
which
and
i n
c a t a b o l i c t o
t h e
e a s i l y
l a t t e r i n
which
t h e
parent i n
analogs However,
does
t h e
t h e
by
many o f
h a s
( i n c r e a s e d (1_>-
r a p i d
serum,
not
a c t i v i t y
n u c l e o t i d e
n u c l e o s i d e
c y t o p l a s m . I n
analogs
o f
parameters
e x p l a i n e d
r e a c t i o n s ,
s y n t h e s i z e
compounds
improvement
occur
t h e
n u c l e o s i d e
5 * - n u c l e o t i d e s .
pharmacological
paradox
undertaken
o f
a c t i v e
t h e i r
any s u b s t a n t i a l
favorable
s o l u b i l i t y ,
l u l a r
v i a
a p p l i c a t i o n about
except more
o f
e f f e c t s
i n
order
T h i s
enzymatic t h e
t o
attempts
n u c l e o t i d e s
c e l -
c i r c u m -
have with
0097-6156/89/0401-0051$06.25/0 o 1989 A m e r i c a n C h e m i c a l Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
been mo-
52
N U C L E O T I D E ANALOGUES
d i f i e d both
p h o s p h o r i c chemical
e x h a u s t i v e s u l t e d d i e d
the
many
l o g i c a l r e a c t i o n s
i n
i n t e r e s t i n g a n t i v i r a l , of
d e s i g n
important s t e r i c
the
same
bond
s i m i l a r i t y ,
o f
o n l y
c o m p l e t e l y
(e.g.
to
i n
the
type
d i r e c t l y a
for
o f
to
of
the
above
a
sugar
R - P ( 0 ) ( 0 H )
2
major
a d d i t i o n
always
have
c o u n t e r p a r t s .
a n a l o g s
ETHER o f
the
portance
the
on
the
(3) to
p o l a r
i s o s t e r i c
n e a r l y
p a r t s .
These
i c a l l y
r é s i s t e n t means
a d a p t a t i o n
d e r i v a t i v e s e t h e r
sugar of
of
changing e t h e r
r e s i d u e
a
of
R - 0 C H
2
e v i -
r e s i d u e
n u c l e o s i d e
P ( 0 ) ( O H )
2
2
r e s i d u e )
i n a c t i v i t y
led
i n
to
of
c l a s s
analogs
which
are
(type with
C33)
c o n t a i n
j o i n i n g the
the
u n i t .
m o l e c u l a r
c o n f o r m a t i o n
the
pK
of
the
with
an
T h i s
phosi s o -
c o u n t e r enzymatof
a
group-
e n a b l e s
not
r e s u l t i n g
the
im-
phosphoof
a c i d
u n i t
o f
the
h y d r o x y l
p h o s p h o r i c
methylene
our
both
phosphate
a
value
r e a l i z e
v i c i n i t y
t h e i r
phosas
requirements
novel
with
comparison
the
well
a
linkage
moiety
us
the
o f
C23)as
the i n
are
a c i d
s t r u c t u r a l
atom
n u c l e o t i d e
n u c l e o s i d e
c o n d i t i o n s
p h o s p h o r i c
i n v e s t i g a t e
p h o r u s - m o d i f i e d and
above
t h i s
analogous
cleavage,
(type
which
oxygen us
o f
are
DERIVATIVES.
n u c l e o t i d e s
enzymes
of
which
3
b i o l o g i c a l
experience
s t i m u l a t e d
component
v a r i a t i o n
2
n u c l e o l y t i c
methyl
the In
linkage-
mentioned
p r e c e d i n g
a l l y
o f
a l c o h o l
enzymatic
b e a r i n g the
C-P
PHOSPHONYLMETHYL
by
i n v e s t i g a t i o n
phosphomonoester
must
c h e m i c a l
( R = 5 ' - d e o x y n u c l e o s i d e - 5 ' - y 1
ing
e f f e c t s .
phosphate
f u l f i l l
the
1
rus
i s o l a t e d
s i g n i f i c a n t
f i e l d :
compounds
CI 3,
compounds
C23)by
phonate
e x h i b i t e d
some
one
a n a l o g s
t h e i r
b i o -
a n a l o g s
d e t a i l e d as
s t u -
enzymatic
posses
t h i s
were t h e i r
o f
s e l e c t e d
nature
f i e l d
r e s i s t
RO-P(O)(OH)
The
o f
s p l i t t i n the
narrow
The
l i n k e d
the
An r e -
occurenc
capable very
d e n t l y
by
r e s i s t (2.)·
decades
which
b i o l o g i c a l
a c t i v e as
two
against
isopolarity
phosphomonoesters
and
o f
of
f e a t u r e s
d i s s o c i a b i 1 i t y
l i n k a g e . to
s p e c i f i c i t i e s
past
a n a l o g s
found
o t h e r
would
i n h i b i t i o n
some
complemented
d i s r e g a r d i n g
leaves
as
was
or
which
h y d r o l y s i s
e v a l u a t i o n
a c t i v i t i e s
uncovered
wide
enzymes
well
them
s t r u c t u r a l
to
numerous
Though
a n t i c a n c e r
h y d r o l a s e s ,
the
i n c l u d i n g
as
o f
s t u d i e s
s t r u c t u r a l
The
o f
v i t r o .
l i n k a g e
enzymatic
d u r i n g
i n h i b i t o r y
(1_),none
These
as
r e s p e c t s
a c t i v i t i e s
enzymes
e s t e r
well
i n v e s t i g a t i o n
i n
i n
a c i d
as
an
s u b s t a n t i p h o s p h o n y l -
c o r r e s p o n d i n g
phos-
phomonoester . 5
1
-O-Phosphony1methyl
a n a l o g s
i n v e s t i g a t e d
pounds by
an
d e r i v e d
s y n t h e s i s
was
a l k o x i d e
a n i o n
with
from
e t h e r i f i c a t i o n
d i a l k y l
N u c l e o s i d e s . i n
t h i s
n a t u r a l l y of
t h e i r
s e r i e s
The
f i r s t
group
encompasses
o c c u r i n g
r i b o n u c l e o s i d e s
5 ' - h y d r o x y l
a c c o m p l i s h e d
by
treatment
(generated
by
sodium
o f
com-
of
group. a
h y d r i d e
T h e i r
n u c l e o s i d e r e a c t i o n )
p - t o l u e n e s u l f o n y l o x y m e t h y l p h o s p h o n a t e
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
C43-
4.
53
Phosphonylmethyl Ethers of Nucleosides
HOLY E T AL.
The intermediary d i e s t e r i s then cleaved by b r o m o t r i m e t h y l s i l a n e t r e a t m e n t f o l l o w e d by a c i d h y d r o l y s i s a n d RO
" + TsOCH P(0) COAlk> 2
2
** C R O C H P < 0 ) ( A 1 k ) 3 2
2
*-C33
4 (R-ribonucleosid-5'-yl
residue)
Scheme 1 removal o f t h e p r o t e c t i n g g r o u p (Scheme 1) ( 4 ) . T h e s e compounds r e s i s t t h e a c t i o n o f ρ h ο s ρ h ο mο η ο e s t e r a s e s ( 3 . ) ; also the internuc1eotidic linkage containing this group ing SD as well as the cyclic esters of this type (6) are s t a b l e a g a i n s t t h e r e l e v a n t ribonuc1 eases and phos phodiesterases. The s u b s t r a t e and i n h i b i t o r y a c t i v i t y o f ribonucleoside 5 *-triphosphate a n a l o g s c o n t a i n i n g modi f i e d α-phosphorus atom, a s o b s e r v e d w i t h u r i d i n e kinase Z» Q · , P y n u c leot· i d e p h o s p h o r y l a . s e ( 9 ) a n d E > N A - d e p e n d e n t RNA polymerase < 1Q. might r e p l a c e t h e 5'-phosphate cer nucleoside analogs at their target enzymes and i n t e r f e r e with metabolic pathways o f n u c l e o t i d e s . The de termination of a n t i v i r a l a c t i v i t y against both RNA a n d DNA v i r u s e s d i s p r o v e d t h i s e x p e c t a t i o n f o r 5 ' - O - p h o s p h o nylmethyl r i b o n u c l e o s i d e s (E.De C l e r c q and A-Holy, un published data). We h a v e a l s o prepared t h e 5'-0-phosphonylmethyl ethers o f those sugar-modified nucleoside analogs which p e r se e x h i b i t an outstanding antiviral and/or c y t o s t a t i c effect: 6-azauridine, cytosine arabinoside, adenine arabinoside, thymine arabinoside, adeni ne x y l o s i d e and R i b a v i r i n (J.Brokes, A.Holy, J . Z a j i c e k , C o l l e c t • C z e c h . Chem•Commun.. i n p r e s s ) b y t h e a b o v e m e t hod. However, a l l o f them a r e d e v o i d o f a n t i v i r a l activ ity i n vitro against a l l v i r u s e s t e s t e d (E-De C l e r c q : unpublished data). The reason f o rthis failure remains to be e l u c i d a t e d ; s i n c e a l l t h e above compounds e x e r t only marginal ( i f any) c y t o t o x i c i t y on t h e host cell lines, i t might be a n t i c i p a t e d t h a t they a r e unable t o penetrate the cell membrane t o t h e e x t e n t that i s requi red t o cause a b i o l o g i c a l effect. (
(
}
o
1
Phosphonylmethyl Ethers o f A c y c l i c Nucleotides. Acyclic nucleoside analogs i n which t h e carbohydrate moiety i s r e p l a c e d by an open c h a i n m i m i c k i n g t h e p a r t o f t h epentafuranose r i n g , have a t t r a c t e d a major i n t e r e s t i n many laboratories including oursThe development i n this f i e l d was l a r g e l y s t i m u l a t e d by t h e a n t i v i r a l activity found f o r numerous r e p r e s e n t a t i v e s o f t h i s group. In t h e guanine s e r i e s , a c y c l o v i r C53and i t s congeners (gan c i c l o v i r C63, buciclovir C 73)are active against herpes v i r u s e s , whereas t h e adenine d e r i v a t i v e s 9 - ( S ) - ( 2 , 3 - d i hydroxypropyl)adenine (DHPA) C 8 3 a n d 3 - ( a d e n i n - 9 - y 1 ) - 2 -hydroxypropanoic acid and i t s e s t e r s C93 i n h i b i t t h e multiplication of certain DNA a n d RNA v i r u s e s with a preference f o r (-)-stranded and (+)-stranded RNA v i r u s e s (12-16). The a c t i v i t y o f t h e former group o f a n t i v i r a l s , i.e. acyclovir and a l l o f i t s analogs,depends on t h e i r
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
54
NUCLECmDE
p h o s p h o r y l a t i o n f u r t h e r h i b i t i o n
of
(1_2_).
by
An
of
v i r u s - s p e c i f i c
circumvent
of
s t a b l e )
the
loss
the
of o f
the
i n (TK)
phosphate
these
group
equivalent
drugs
high
i s
k i n a s e "
s t r u c t u r a l
s p e c i f i c i t y
with
undergo
i n
p h o s p h o r y l a t i o n
"thymidine
i n t r o d u c t i o n
the
a l b e i t ,
then
u l t i m a t e l y
s y n t h e s i s . T h i s
( e n z y m a t i c a l l y
v i r u s e s , act
a
which
r e s u l t i n g
DNA
a r t i f i c i a l
i t s
might
monophosphates
v i r a l
c a t a l y z e d or
to
t r a n s f o r m a t i o n s
ANALOGUES
for
T K
s e l e c t i v i t y
+
of
ion. G
HOCH
2
0
χ
^ C H
G H0CH
I ^ C H
2
/ Ο
2
CH
2
G HOCH
I C H
^
2
^ C H
2
C H
|
2
^ C H
2
2
HOCHg 5
The
6
1 , 3 - c y c l i c
l o v i r
phosphat
C9-(1,3-dihydroxy-2-propoxymethy1)guanine3
p l a y s
s i g n i f i c a n t
other
DNA
i n h i b i t o r y
v i r u s e s
( 1_7) .
the
above
h y p o t h e s i s .
i t y
which
has
been
l e o t i d e s
with
linkage a l s o
being
might
t a i n i n g t h e i r
exert
any
or
t h e i r
shown
c o n s i d e r e d
cannot mic a
it
1,which
mixture
a l l y
of
from
against any
RNA
i n t e r e s t of
DHPA
v i r u s e s towards
of
T h i s
CH
2
I I OH
0-phoswhich
the
r a c e -
( 22_)
obtained
effect
(vide
was
those
an
a
I ^ C H R00C-CH
OH
I OH 9
r a -
e t h e r s
e x c e p t i o n
s p e c i f i c a l l y
observed
with
by
a f f o r d s
0-phosphonylmethyl
p a r t i c u l a r
the
d e s c r i b e d
d i o l s
d i r e c t e d
No
the
analogs
method we
(21)
context,
from
e x h i b i t e d
CH
8
the
v i v o
t h i s
as
on are
mediate
i n v e s t i g a t e
product
(23.). DHPA
In
a c y c l i c
the
against greatest
s u p r a " ) ·
A
2
of
depend
i n
not
a c t i v i t y
A ' ^ C H
c o n
analogs
or
do
isomers,
isomeric
of
not
These
(20)
DHPA)
v i c i n a l
p o s i t i o n
two
do
i o n . S t a r t i n g
case
v i r u s e s , i n
s e n s i t i v i t y
(19.)-
to
the
a n t i v i r a l
DNA
e f f e c t s
o b s t a c l e
a c t i v i t i e s
enantiomers
i n
two
nuc
phosphate
phosphonate
compound.
u t i l i z i n g
DHPA.
high
parent
and
of
of
and
u l t i m a t e
v i t r o
C83 the
mixture
d e r i v e d
the of
the
adenine
from
dephosphory1at
compound
cemic
i n
(e.g.
e t h e r s
undergo
Scheme
by
of
the
from
e i t h e r
phosphates
phonylmethyl
be
p h o s p h o r y l a t i o n
phosphorylated
analogs
moiety
b i o l o g i c a l
d e r i v e d
and
w - h y d r o x y a l k y l
that
a c t i ν i t i e s . T h e s e
p o l a r i t y not
a c t i v
9-(w-phospho-
a c t i o n .
other
not
a c t i v i t y
the
and
analogs
preceding
carbohydrate
might
p e n e t r a t i o n
" p a r e n t "
b i o l o g i c a l
that
A n t i v i r a l
(the
and
supports
a n t i v i r a l
v a r i o u s
suggests
CWV
f u l l y
marked
for
d i s
against
d i s c o v e r y
the
(1_8)
i n a c t i v e )
molecule
n u c l e o s i d e
T h i s
Also,
m o d i f i e d
i n d i c a t e
a c t i v i t y
d e s c r i b e d
n y l a l k y l )hypoxanthines compounds
we
7
G
2
0
/0-CH2 Ρ
/ HO
N
\
CH /
0 - C H
II
^ 0
2
10
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
^
C H
2
Phosphonylmethyl Ethers ofNucleosides
4. H O L Y E T A L
Structure-activity Investigatign
55
qf Acyclic Nucleotide
Analogs. T h i s
d i s c o v e r y
a d d i t i o n a l modified
prompted
a c y c l i c phosphate
a c y c l i c
s i d e
groups:
c h a i n (a)
to
by
other
i d e n t i f i c a t i o n
a n t i v i r a l
a c t i v i t y
(b)
changes
of
the
s i d e - c h a i n
t e m a t i c a l l y
i n
the
s e r i e s
v a t i v e s
( c ) v a r i a t i o n
and of
ional
of
of
which
might
i n t o
isomer(s) were
the
r e s p o n s i b l e
from
e t h e r s , s y s -
adenine
h e t e r o c y c l i c
a r i s e
The three
i n t r o d u c e d
d e r i v a t i v e s
a
the
linkage.
d i v i d e d
9 - s u b s t i t u t e d
of
to
phosphonylmethyl
which
2,3-dihydroxypropy1
s e r i e s
of
DHPA
d e t a i l c o n t a i n
l i n k e d
e s t e r
was
i n
which
group
than
i n v e s t i g a t i o n
for
s e r i e s
i n v e s t i g a t e analogs
(phosphonate)
s t r u c t u r e - a c t i v i t y main
us
n u c l e o t i d e
d e r i -
base
and
i n
any
the
a d d i t -
the
s i d e - c h a i n
v a r i -
r e a c t i o n
o r i g i n a l l y
deve-
ât i o n . Phosphonylmethyl n i n e .
The
t i t l e
E t h e r
s y n t h e s i
compound
loped
for
the
makes
r i b o n u c l e o s i d e s Scheme
2
treatment a
isomers
with
aqueous T h i s
o f
can
tography
(22)·
s t a r t s
mixture
and
a of
2 ' ( 3 ' ) - O - p h o s p h o n y l m e t h y l
r e a c t i o n
(S)-
or
sequence
(R ) - D H P A
chloromethylphosphonyl separated f u r t h e r to
by
i s
r a c e m i z a t i o n
proceeds not
which
ion
exchange
by
h e a t i n g e t h e r s
v i a
an
accompanied
+
2
C1CH
2
P(0)C1
These chroma-
with
i n t r a m o l e c u l a r by
any
i s o m e r i -
2
8 f o
'
» A-CH
2
I
9
CH-CH
2
I
0P(0)CH C1
0-P(0)CH
C1
2
I
OH
9
OH
I OH 11
.
12
I A-CH
2
CH-CH
2
OCH
2
P(0)(0H)
A~CH CH-CH 0H
2
2
OH
2
0CHP(0)(0H) 13
14 A
=
a d e n i n - 9 - y l Scheme
an
C13,143-
OH
A-CH CH-CH 0H
by on
a f f o r d s
C11,123-
(25.):
A-CH CH-CH 0H 2
or
d e s c r i b e d
(2j4)
d i c h l o r i d e
phosphonylmethyl
which
mechanism
HPLC
transformed
the
t r a n s f o r m a t i o n or
the
from
a l k a l i
s a t i o n
of
chloromethylphosphonates
be
c y c l i s a t i o n
use
p r e p a r a t i o n
(HPMPA)
r e s i d u e
2
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2
NUCLEOTIDE ANALOGUES
56 The
e v a l u a t i o n
reoisomers C143
i . e - 9 - (
adenine v i t y ,
i s
The
that
the
are
compound
V a r i a t i o n
o f
the
of
o f
s i m p l i c i t y
nine
which
ion
i t s
a l l
four
s t e
( S ) - s e r i e s
The
parent
at
two
the
s t r a t e g y )
or,
a c t i
two
(R)-
e f f i c i e n c y
HPMPA.
m o d i f i c a t i o n s C143concerned F o r
d e r i v e d
p o s i t i o n
N9.
g r o u p i n g
the
from
approaches
( u s i n g
(23.).
as
f e a t u r e s .
were
general
backbone
the
c h e m i c a l
p h o s p h o r u s - c o n t a i n i n g
9 - a l k y l a d e n i n e
as
s t r u c t u r e
s t r u c t u r a l
s u b s t i t u t e d
a n t i v i r a l
a b b r e v i a t e d
compounds
o f
the well
a n t i v i r a l
C h a i n .
important
was
f o r as
c u r r e n t l y
the
c o n s i s t e d a
the
any
i s
Side
o f
o f
o f
(S)-C143
sake
ponding
the
o f
r e s p o n s i b l e
d e v o i d
s e v e r a l
t i o n
o f
2 ' - i s o m e r
( S ) - 3 ' - i s o m e r
s i d e - c h a i n
s y n t h e s e s
a c t i v i t i e s
the
S ) - ( 3 - h y d r o x y - 2 - p h o s p h o n y l m e t h o x y p r o p y l ) -
whereas
the
a n t i v i r a l
e n t i r e l y
enantiomers
of
o f
r e v e a l e d
ade
Chemical : i n t r o d u c
i n t o
c o r r e s
s u i t a b l e
p r o t e c t
a l k y l a t i o
p h o s p h o r u s - c o n t a i n i n group
( a l k y l
s y n t h o n s ) .
halogenide
These
paper
C263-
bear
the
well
as
or
T h i s
s e r i e s
of
a d d i t i o n a l d e r i v a t i v e s the
o f
(vide
i t s the
the
replacement l o s s
o f
methyl
e t h e r
C273,
C32,333
HPMPA
which
part
i n o f
apart
the
from
the
s i d e
the
2 ' -
or
3 ' - p o s i t i o n
ted
i n v a r i a b l y Though
the
importance of
of
i n
above the
the
HPMPA
(23).
and
i t s
can
be
the
base
C183
h o x y a l k y l C20-223 ion
m o d i f i e d as
hydroxymethy1
m e t h y l -
o f
nor
the
o f
a c t i v i t y
analog
C
a
methylene
s t r e s s e s
o f
phosphonate u n i t
at
C23-253
i n
de
homolog
a n t i v i r a l
group
203,
1 ' - C - a l k y l
the
r e s u l
a c t i v i t y .
the
a b s o l u t e
HPMPA,
the
a c t i v i t y
o f
which
i n
i s
s t u
a
with
r e f e r r e d
congeners
as
P M E - d e r i v a t i v e s .
s i m p l i f i e d
a n a l o g the
o f
a c t i v i t y atom
HPMPA
by
o f
PMEA PMEA
l a c k i n g
w-phosphonylmet-
d e r i v a t i v e s
whatsoever,
c h a i n
as
phosphonylmethoxy-
s t r a i g h t - c h a i η p e n t y l )
t o
q u a l i that
be
b u t y l ,
two-carbon
r e s p e c t s
comparable
g r o u p . N e i t h e r
any
9-(2-phosphony1methomany
w i l l
o t h e r
( p r o p y l ,
e x h i b i t
l a c k
s u b s t i t u t i o n
o f
o f
u l t i m a t e
the
by
o f
C15,163)
o f
with
s k e l e t o n
l o s s
com
9-(tt-phosphony1methoxyalkyl)adenines
compound
regarded
the
d i s t a n c e
the
HPMPA
q u a n t i t a t i v e l y
T h i s
these
by
any
i n t e r p r e t a t i o n
C193,
and
s h i f t e d
hydroxymethy1
a n t i v i r a l
x y e t h y l ) a d e n i n e t a t i v e l y
the
i n
i s
and
A l s o ,
complete
homologous
u n v e i l e d
28-303
g r o u p i n g i s
as phos-
C 1 7 3 ) r e s u l t e d
deoxy
e v i d e n t l y
C263-
i n
the
but
o f a
by i t s
C
whole
o f
base
homologs most
and
atom
r e l a t i v e
the
o n l y
C133,
1)
e t h e r i f i c a t i o n
(as
the
from
not
HPMPA
oxygen
an
group
group
which
(Table
HPWPA(compounds
A l s o
c h a i n
base
i n
type
o r i g i n a l
compounds
a c t i v i t y
that
methyl
witnessed
r i v a t i v e s
dy
group
by
o f
the
2).
a n t i v i r a l
a c t i v i t y .
3 ' - i s o m e r
the
(Table
r e v e a l e d
phosphonylmethoxy the
o f
i n
r e s i d u e
l a c k i n g
the
h y d r o x y l
importance,as of
of
i n f r a )
primary
in
composed e t h e r
phosphorus
E v a l u a t i o n
or
i s
p - t o l u e n e s u l f o n a t e
d e s c r i b e d
p h o s p h o n y l a l k o x y a l k y l -
v i c i n i t y
the
are
phosphonylmethyl
p h o n y l a l k y l
pounds
a l k y l
s y n t h e s e s
and
of
adenine
s u b s t i t u t
hydroxymethy1
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
group,
4.
Phosphonylmethyl Ethers ofNucleosides
H O L Y ET AL. which
i n
t a l l y
i n e f f e c t i v e
p o s i t i o n
However, mutual not
2
o f
i n
the
s u f f i c i e n t The C343
butyl)adenine Table
1.
o f
with
t o
compounds.
c h a i n
o f
t o
PMEA, carba
exert
t o
HPMPA,
(compound
σ-phosphonyl
a n t i v i r a l
and t h e
C383
1
respect
cause
isomer
leads
p o s i t i o n
presence
o r i e n t a t i o n
d e r i v a t i v e
t h e
t h e
57
no
t h e
t o
group
and
adenine
base
a c t i v i t y
i n
t h e
i t s i s
above
2-phosphonylethoxymethyl analog,
9-(4-phosphony1-
a n t i v i r a l
a c t i v i t y .
Nor
was
9-(Phosphonylmethoxyalky1)adenines Side
No.
Chain
15
-CH CH(0CH P(0)(OH)2 > CH 0CH
16
-CH CH(0CH P(0)(OH) )CH 0C H ^
1 7
-CH CH(0CH P(0)(OH)2)CH
18
-CH 0CH -CH CH 0CH P(0)(OH)
2
2
2
2
2
2
2
3
8
7
2
2
19
2
20 21 22
-CH2CH2CH2OCH2P(0)(OH)2 - C H
2
( C H
> CH 0CH P(0)(OH)2
2
2
2
2
23
-CH (CH ) CH 0CH P(0)(OH)2 -CH CH(0CH P(0)(OH)2 >CH(OH)CH 0H
24
-CH C(CH )(0CH P(0)(OH) )CH 0H
25
-CH CH(0CH P(0)(OH) )CH(OH)CH
26
-CH CH CH(0CH P(0)(OH) )CH 0H
27
-CH CH(0CH )CH 0CH P(0)(OH)
28
-CH CH CH(OH)CH 0CH P(0)(OH)
29
-CH^CH(OH)CH(OH)CH 0CH P(0)(OH)
30
-CH2CH(0H)CH(CH )0CH P(0)(0H)
31
-CH(CH 0H)CH 0CH P(0)(OH)
32
-CH(CH )CH(OH)CH 0CH P(0)(OH)
33
- C H ( C
34
-CH2OCH2CH2OCH2P(0)(OH)2
2
2
3
2
2
2
2
2
2
3
2
2
2
2
2
2
2
3
2
2
2
2
2
2
2
f i e d
any
can
be
an
concluded
methoxy
group
a c t i v i t y
o f
presence rus
i s
o f
not
compounds The
2
plays
and o f
d e r i v a t i v e s base
on
to
from
the
t h e
C34,383-
atom
o f
r o l e
n u c l e o t i d e
atom as
i n
t h e
the
homologs
c h a i n
oxygen
2
with
t h e i r
determining
at i n
the i n
t h e
t h e
o r
Thus,
i t
a n t i v i r a l
analogs. by
s i m p l i with
phosphonyl-
v i c i n i t y
witnessed
l i m i t e d
the t h e
our
s i d e - c h a i n design
o f
subsequent
base-modified
The o f
sole
phospho
i n a c t i v i t y
o f
analogs
defined a c y c l i c
s t u d i e s o f
t o
HPMPA
and
a
narrow
n u c l e o t i d e t h e
inves
PMEA.
N-(3-Hydroxy-2-phosphonylmethoxypropyl)
o f
h e t e r o c y c l i c
i n v e s t i g a t e
the
d e r i v a t i v e s
2
2
C 413-
margin
Base-modi f i e d order
a
oxygen and
2
observed
with
i n
a c y c l i c
m o d i f i c a t i o n
t i g a t i o n
o r
t h e
s u f f i c i e n t , C403
2
2
2
2
a c t i v i t y
that
2
)CH(0H)CH 0CH P(0)(0H)
λ
linkage
t h e t h e
s t r u c t u r a l analogs
1
C36,373
ether
2
2
a n t i v i r a l
molecules
without
H
2
2
3
3
3
2
2
2
6
2
2
2
2
there
In
i s
C313).
a n t i v i r a l o f
racemic
t h e
type
the
bases
(HPMP-derivatives)-
effect
a c t i v i t y , C143 were
o f
purine
t h e
h e t e r o c y c l i c
and
s y n t h e s i z e d
N-(2,3-dihydroxypropy1)
p y r i m i d i n e at
f i r s t
d e r i v a t i v e s
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
58
NUCLEOTIDE
Table
2.
9-(Phosphony1alky1)adenines
No.
Side
35
- C H
0 C H
2
Chain
C H
2
2
P ( 0 ) ( 0 H )
2
36
- C H
2
P ( 0 ) ( O H )
37
- C H
2
C H
38
- C H
39
~CH CH(0H)CH(0H)CH P(0)(0H)
40
"CH
41
)
2
2
2
P ( 0 > ( 0 H )
2
2
CH(0H)P(0)(0H)
2
2
a c c e s s i b l e
(24).
bed
by
The Scheme
2
by
the used
2.
those
In
i n v e s t i g a t i o n
confirme
ty,
2 ' - i s o m e r
the a
v i a
pure
route
which
a f f o r d s
s p e c i f i c a l l y B-CH
2
followed
2
cases
of
h e t e r o c y c l i c
e x a c t l y where
u n e q u i v o c a l l y
p r o t e c t e d
-CH-CH
2
a l k y l a t i o n
method
2
2
-CH CH CH(OH)Ρ(0)(OH)
e a s i l y
by
P ( 0 ) ( 0 H )
2
( C H
2
2
2
ses
ANALOGUES
the
the
i n t e r m e d i a t e s
0H
»
that
ba
d e s c r i
p r e l i m i n a r y
s i n g l e
isomer
(Scheme
3)«.
B-CH -CH-CH 0DWTr 2
2
ι
OH
. OH
B-CH CH-CH 0H 2
«
2
«
B-CH CH-CH OH 9
I
2
I
0 C H
2
P ( 0 ) ( 0 H )
OBz
2
43
42
Scheme 3 ( B z . . . b e n z o y l , T h i s
method
use
of
group
a
at
and
developed
s p e c i f i c the
zoylated)
d e t r i t y l a t i o n
r i d e und the
a f f o r d
by
T h i s
r e a c t i o n
purine,
guanine c y t o s i n e
of
r e q u i r e d cause
to
was
e l i m i n a t e
the
to
d e r i v a t i v e s ,
u r a c i l
I.,
Dvorékovâ,
H .
in
The
compounds
C433
p r e s s ) . are
Another bed
in
the
- d i t r i t y l phosphorus a f f o r d s
l i s t e d
in
s t r a t e g y
for
l i t e r a t u r e d e r i v a t i v e synthon
HPMPA
on
the
C43
:
compo
a p p l i e d
whereas
t h i s
for
2 , 6 - d i a m i n o i n
the
procedure
treatment
which
d e r i v a t i v e
prepared
was would
(Holy,
Α.,
by
the
above
pro
3.
p r e p a r a t i o n t h i s
(S)-DHPA a c c o r d i n g
subsequent
a f f o r d s
Collect•Czech•Chem.Commun.
Table
(27.)· of
of
on
d i c h l o -
a l k a l i
2-aminopurine,
Rosenberg, cedures
which
r e q u i r e d
s u c c e s s f u l l y
a l k a l i n e
the
the
(ben-
b e n z o y l a t i o n C423
aqueous
m o d i f i c a t i o n
makes
b a s e - p r o t e c t e d
subsequent
with
other
a
deamination
a
(250
d i m e t h o x y t r i t y l
2-0-benzoate
adenine,
and
HPMPA
the
debenzoy1 at ion)
of
case
of
group)
chloromethylphosphony1
r e a c t i o n
p r e p a r a t i o n
for
by
The
the
with
simultaneous
C433-
hydroxyl
m a t e r i a l .
treatment
followed
(under
o r i g i n a l l y
p r o t e c t i o n
primary
s t a r t i n g
s u c c e s s i v e
D W T r . . . d i m e t h o x y t r i t y l
of
HPMPA
route which to
treatment
was
s t a r t s
d e s c r i -
from
r e a c t s
the of
Scheme the
N
with 1
6
, 0
3
the and
p r o t e c t e d
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
-
Phosphonylmethyl Ethers ofNucleosides
4. HOLY ET AL.
59
i n t e r m e d i a t e w i t h b r o m o t r i m e t h y l s i l a n e and aqueous a c i d S i m i l a r method makes use o f N - b e n z o y 1 - 3 * - O - t r i t y 1 - ( S ) -DHPA a s a s t a r t i n g m a t e r i a l ( H o l y , Α., R o s e n b e r g , I . , Dvorâkovâ, H. Co11ect.Czech.Chem•Commun - i n p r e s s ) . An a l t e r n a t i v e g e n e r a l p r o c e d u r e f o r t h e s y n t h e s i s o f H P M P - d e r i v a t i v e s i s b a s e d on a l k y l a t i o n o f t h e h e t e r o c y c l i c bases w i t h c h i r a l synthons which possess a preformed s t r u c t u r e o f t h e s i d e - c h a i n . Such a method was u s e d f o r t h e s y n t h e s i s o f HPMPC; t h e key-compound, t o s y l a t e (or mesylate) of d i e t h y l (2S)-(3-benzyloxy-1-hydr o x y - 2 - p r o p o x y ) m e t h y l p h o s p h o n a t e was p r e p a r e d f r o m ( R ) -glycerol a c e t o n i d e and s y n t h o n C43 by a multi-step p r o c e d u r e (28)· 6
:
N-(2-Phosphony1methoxvethvl) D e r i v a t i v e s o f H e t e r o c y c l i c Bases ( P M E - D e r i v a t i v e s ) The o r i g i n a l p r o c e d u r e f o r t h e p r e p a r a t i o n o f compoun the treatment o f 9-(2-hydroxyethyl)adenin t h o n C43 and s u b s e q u e n t h y d r o l y s i s ( 2 9 ) was r e p l a c e d by an a l t e r n a t i v e p r o c e d u r e r e p r e s e n t e d i n Scheme 4. C1CH CH 0CH C1 2
2
m» C 1 C H C H 0 C H P ( 0 ) ( 0 C H )
2
2
2
2
2
5
2
44
B-CH CH OCH P(0)(0H) 46 2
2
2
2
~+
B-CH CH 0CH P(0)(0C H ) 45 2
2
2
2
5
2
Scheme 4
The c h l o r o m e t h y l a t i o n o f 2 - c h l o r o e t h a n o l by 1 , 3 , 5 - t r i oxane/HCl a f f o r d s an i n t e r m e d i a t e w h i c h i n an A r b u z o v reaction with t r i e t h y l phosphite unequivocally gives the s t a b l e phosphorus-synthon C443 ( t h i s s y n t h e s i s i s more f a v o r a b l e t h a n t h e a l t e r n a t i v e r o u t e s t a r t i n g from d i e t hyl 2 - h y d r o x y e t h o x y m e t h y l p h o s p h o n a t e (29.))Alkylation o f t h e h e t e r o c y l i c b a s e ( p r e f e r a b l y i t s s o d i u m s a l t ) by t h i s r e a g e n t a f f o r d s compound C453 w h i c h i s e a s i l y c o n v e r t e d t o t h e f i n a l p r o d u c t C463by b r o m o t r i m e t h y l s i l a n e t r e a t m e n t (Holy,Α., R o s e n b e r g , I . , Dvofâkovâ,H.: C o l l e c t . Czech.Chem.Commun.. i n p r e s s ) . The b a s e - m o d i f i e d PME-der i v a t i v e s C463which were o b t a i n e d by t h i s p r o c e d u r e a r e l i s t e d i n T a b l e 3. Anti v i r al
acti v ity.
HPMPA i s e f f e c t i v e a g a i n s t a l l m a j o r herpesviruses at c o n c e n t r a t i o n s which a r e f a r below t h e t o x i c i t y f o r t h e host c e l l s (23.). I t s potent a c t i v i t y was d e m o n s t r a t e d not o n l y w i t h HSV-1 and HSV-2; a l s o a n i m a l h e r p e s v i r u s e s , e . g . s u i d , b o v i d and e q u i d h e r p e s v i r u s e s t y p e 1 ( 2 3 ) as w e l l as s e a l herpes v i r u s (30) a r e s e n s i t i v e towards the a c t i o n o f t h i s a n a l o g . E p s t e i n - B a r r v i r u s ( 3j_) and all strains o f v a r i c e l l a - z o s t e r v i r u s e s and c y t o m e g a l o viruses t e s t e d s o f a r were a l s o effectively inhibited (23.32.33).Most importantly,HPMPA i s equally active against w i l d - t y p e i T K * ) a n d TK" mutant s t r a i n s o f herpes
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
60
NUCUXmDE
v i r u s e s kedly
In
that
d i f f e r
r e s p e c t ,
from
a c t i v i t y
of
encoded)
thymidine
which
Poxviruses fever
pond
very
(32,)
a
congeners
anti-HSV
23.),
and
to
HPMPA ASFV
was
mar
agents by
the
( v i r u s -
i r i d o v i r u s e s
adenoviruses
(35.)
treatment.
(34.)
a
In
HPMP-
formula
r e s
some
s e l e c t i v i t y
and
B-CH
2
cases,
index
P M E - d e r i v a t i v e s
CH(R)OCH
2
P(0)(OH)
of
4
of
the
2
Abbrev.
C46 3
Abbrev.
( R =H)
(R= C H 0 H )
)
( A f r i c a n a l s o
achieved.
C433 Β
i t s
of
p h o s p h o r y l a t i o n
v i r u s ,
Base-modified general
on
34.) or
magnitude
3.
and
k i n a s e .
v i r u s ,
VZV
of
Table
depends
markedly
with
orders
HPMPA
majority
( v a c c i n i a
swine e.g.
the
ANALOGUES
2
Adenine 2-Aminoadenine
43b
2-Methyladenine
43c
2 - M e t h y l t h i o a d e n i n e
43d
N 6 - D i met h y 1 a d e n i ne
43e
6 - H y d r a z i n o p u r i n e
43f
6-Hydroxylaminopurine
43g
PMEDAP
46b
HPMPDAP
46d 46f 46h
6 - M e t h y l t h i o p u r i n e Hypoxanthine
43i
HPMPHx
46i
PMEHx
2-Aminopurine
43j
HPMPMAP
46j
PMEMAP
Guanine
43k
HPMPG
46k
PMEG
Isoguanine
431
461
U r a c i l
43m
HPMPU
46m
PMEU
Thymi ne
43n
HPMPT
46n
PMET
C y t o s i n e
43o
HPMPC
46o
PMEC
5 - M e t h y l c y t o s i n e
43p
5-F1uorourac
43q
a
^
In
a d d i t i o n
2,
same
to
C43k3
potent
and
against
these
purine
C43g3
- 3 - y l
or
s t i t u t e d were
ve
with
C43p3-
C43n3
v i r u s e s
was
the
of
herpes
the
v a c c i n i a
of
a n t i v i r a l
6
the
as
in
43f 3 of
well
analogs
HPMPA as
i t s
p y r i m i d i n e
HPMPC
i n a c t i v i t y
of
5 - m e t h y l c y t o s i n e
d e r i v a t i v e s
are
C
4 3 i 3 ,
v i r t u a l l y
2-subC43e3
u r a c i l
C43o3 C
s h a r p l y
43m3
s t r i c t
s e r i e s
of
or
of
(adenin-
d e r i v a t i v e
a c t i v i t y
Hypoxanthine
v i r u s .
a c t i v i t y
a c t i v i t y . S i m i l a r
the
1
The
6-hydroxylamino
C
- s u b s t i t u t e d
encountered
4)
a n t i v i r a l
by
C43J3)
N
type
against
isomers
or
v i r u s e s (Table
marked
43b3,
emerged
HSV-1(32)
shown
hand,
C
d e r i v a t i v e s
6 - h y d r a z i n o p u r i n e
devoid
marked
2-aminoadenine
43o3
a c t i v e
s t i l l
C43c,d,13
the
t r a s t s
a l s o
other
i s
C
against
2-aminopurin-9-y1
s p e c i f i c i t y
i t s
s t r a i n
but
and
the
t o t a l l y
which
are
l e s s ,
On
C43a3,
agents
res i due.
p u r i n - 9 - y l
c y t o s i n e
TK"mutant
compounds
HPMPA.
HPMPA and
a n t i v i r a l
and
S l i g h t l y
or
p y r i m i d i n -1 - y l
B a s e . . .
guanine as
i1
46p
i n
c o n
d e r i v a t i thymine
i n a c t i v e -
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Phosphonylmethyl Ethers ofNucleosides
4. H O L Y E T A L . Table
4.
A n t i v i r a l ves
o f
HPMP-
and
w i c
b
P M E - d e r i v a t i -
(33)
A b b r e v .
Compound
a c t i v i t y
61
a
)
43a
HPMPA HPMPDAP
)
0
( U g / m l ) W
HSV-2
HSV-1
43b
5
2
4
10
20
HSV-1
T K "
2
0.7
10
2
43c
>400
>400
>400
>400
43d
>400
>400
>400
>400
43e
>400
>400
>400
>400
43f
70
70
20
40
43g
10
20
7
7
>400
>400
>400
>400
100
200
150
>400
43i
HPMPHx
43j
HPMPMAP
43k
HPMPG
431 43m
HPMPU
>400
>400
>400
>400
43n
HPMPT
70
70
300
>400
43o
HPMPC
4
10
4
2
43p
>400
>400
>400
>400
43q
300
300
>400
>300
150
7
46a
PMEA
7
7
46b
PMEDAP
2
0 ., 7
1
>400
>400
>400
46d
>400
46f
>400
>400
>400
>400
46h
>400
>400
>400
>400
>400
>400
>400
>400
70
10
>200
150
46i
PMEHx
46j
PMEMAP
46k
PMEG
c
)
0.2
0.2
0. 2
7
7
70
10
461
1
46m
PMEU
>400
>400
>400
>400
46n
PMET
>400
>400
>400
>400
46o
PMEC
>400
>400
>400
>400
>300
>400
>400
>300
46p a
20
^ A b b r e v . ,
r e q u i r e d primary lues
see to
rabbit
for
(KOS,
Lyons)
and
v a r i a n t s
The
same
nine,
two
the four to
5
to
other
A l l
the
Minimum
i n h i b .
induced
c y t o p a t h o g e n i c i t y
c u l t u r e s
c e l l s
kinase
at
W
DNA
compounds
ous
s t r a i n s
and
adenoviruses.
Average
type
1
s t r a i n s
d e f i c i e n t
i . e .
i n v a -
(HSV-1) (G,
(TK")
v i r u s .
adenine,
d e r i v a t i v e s ,
t h e i r
The
196, HSV-1
^ C y t o -
d e r i v a t i v e s
data l i s t e d
are o f
proved
i n -
summarized with i n
i n h i b i t o r y
v i r u s ,
comparison
2-aminoade-
a l s o
s u p e r i o r i t y
mentioned
v a r i c e l l a - z o s t e r The
50%.
v a c c i n i a
:
v i r u s e s .
demonstrate
HSV-2
c o n c e n t r a t i o n
>4ug/ml.
HPMP-compounds, c y t o s i n e
by
v i r u s
three
VMW-1837).
other
o f
)
simplex
thymidine
base-modified
four
c e l l
herpes
and
(33.)
D
M c l n t y r e ) ,
host
guanine
h i b i t o r y Table
F,
(B2006,
for
3; v i r u s
kidney
three
s t r a i n s
t o x i c
Table
reduce
i n
respect Table to
3.
v a r i -
cytomegaloviruses
s e l e c t i v i t y
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
indexes
62
NUCLEOTIDE
is
c l e a r l y
HPMPC
i s
C43k3
favor
though
pound A
i n
s u p e r i o r
of
very
t h i s
in
out
the
others
a c t i v e ,
was
VZV
i n
CMV
the
s t r u c t u r a l
the
to
i n a c t i v e
be
c y t o s i n e
C46a3,
C46k3
d e r i v a t i v e s
about
e q u a l l y
and
whereas HPMPG
c y t o t o x i c
com-
i n
d e r i v a t i v e
as
an
emerged
as
of
the
the
(PMEC)
agent.
C
46b3
potent
and
t u r -
Thus,
and
only
guanine
a n t i v i r a l
HSV-1
a n t i -
P M E - s e r i e s :
C46o3
a n t i v i r a l
against
(Table
agents,
HSV-2
as
t h e i r
4).
a c t i v i t y
i v i r a l
dependence a l s o
of
HPMP-
PME - d é r i v â t
and
ives
Abbrev.
Compound
v z v
c
CMV
)
43m
HPMPU
0.33
15
C1673
2
2.8
C >1003
C453
100
>125
>400 C1 3
HPMPG
)
1
HPMPHx
43k
e
C >200 3
HPMPDAP
43 i
A V
)
C1333
C10003 43b
d
0.
0.02
HPMPA
43a
0.07 M C>1
C>4 3
C1 1
0.
2.6
15
43 3
C673
C2.73
300
25
>125
.33
C163 100
C1 3 >125
43n
HPMPT
70 C>6 3
C>4 3
C1 3
43o
HPMPC
0.25
0.08
3.4
C6253
C>373 >125
C200 3
46b
PMEDAP
46j
PMEMAP PMEG
46k
)
i n
t i o
10
25
C103
C43
2
10
>125
C203
C43
C<0.53
150
200
>125
C >2 3
C >2 3
M
0.05
0.25
2.7
C503
C103
CO.933
PMEA
46a
a
AV,
i n h i b i t i o n .
most
2-aminoadenine
a c t i v e
HPMP-counterparts
5. Ant
i s
for
encountered
case,
adenine
Table
HPMPA
the
s i m i l a r
a c t i v i t y
t h i s
ned
of
s e r i e s .
s t r i k i n g l y
v i r a l
to
ANALOGUES
human of
v i r a l
embryonic
minimum
lung
c y t o t o x i c
c o n c e n t r a t i o n ;
c e l l a - z o s t e r s t r a i n s
v i r u s
(07-1,
σ
(CMV)
three
adenovirus
s t r a i n s (AV)
d
)
b
)
s e l e c t i v i t y
c o n c e n t r a t i o n
a v e r a g e
value
( V Z V ) s t r a i n s
YSR);
v i r u s
c e l l s ;
a v e r a g e
(Davis, types
value
AD169); and
to
for
(YS,0ka)
(2,3
C1 3
for e
)
i n d e x
minimum two
and
TK* two
two
a v e r a g e
:
3
r a -
a n t i v a r i
TK"
VZV
cytomegalo value
4).
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
for
4.
In
t h i s
s e r i e s ,
a l s o
d e r i v a t i v e
C4613
whereas
isomers
were to
the
much be
i s
less v i r u s
against
Another
by
foci of
at
and
i n
host
low
i v i t y
at
ably
as
r i v a t i v e against
i n f e r i o r
a c t i v i t y
^ - d e r i v a t i v e turned
(Table
5)
a c t i v i t y
o f
Also
to
that
PME-compounds
C463
i s
and
i t s
reduced
t h e i r
t h e i r
number
The
c l e a r l y against
c e l l s
i n f e c t e d
2-aminoadenine
the
of
d e r i v a t i v e
M S V - i n f e c t e d
s e l e c t i v i t y
guanine
indexes
d e r i v a t i v e
thes None
l i s t e d
of
i n
up
HPMPA
a c t i v e
the
as
C43b3
were
3
to
and
against
well
a d d i t i o n a l
Table
showed
at
In
MSV:
C43k3
or
the
least
10
times
than
m o d i f i e d
anti-MSV
c o n t r a s t
congeners
Moloney
HPMPG
base
any
200μΜ.
i t s
6 . A n t i - H I V
t h e i r
effect
a c t i v i t y on
of
were
the
parent
l e s s
and
c e l l
5
P M E - d e r i v a t i v e s
transformat (
0
M )
U
a
'
b
ion(34)
)
Abbrev. c
MSV
)
d
)
HPMPA
>125
C<13
>8
C<53
>125
C<13
6
C333
43 i
HPMPHx
>125
C<13
>200
43k
HPMPG
>25
C<13
46a
PMEA
2.0
C33 3
46d
PMEDAP
1.0
C183
0.6
46 i
PMEHx
>125
C<53
>200
46j
PMEMAP
4 5 . 0 0 2 8 3
46k
PMEG
3.8 0.47
ddCyd
:
the
c e l l s
v i a b i l i t y
dose against
r e q u i r e d HIV
determined
number
s e l e c t i v i t y C3H
de
PME-counterparts
HPMPDAP
the
com
e f f i c i e n t
43a
0
the
c o n s i d e r
43b
5
a c t -
to
2-aminopurine
t h e i r
HPMP-
MSV-induced
HIV
E D
PMEG
analo
E D
;
PMEG
6).
Compound
the
out and
t h e i r
of
a c t i v i t y
(C3H)
i o n s , w i t h
MSV-transformation
(Table
apparent
f i b r o b l a s t
c o n c e n t r a t i o n s
less
Table
the
concentrât
P M E - d e r i v a t i v e s , pound,
Ν
c y t o t o x i c i t y ) .
i s
r e s p e c t i v e l y .
(36.).
PME-compounds
and
PMEA
However,
c e l l s
(the
CMV
which
2-aminopurine
e f f e c t s .
the
P M E - d e r i v a t i v e s
high
murine
MSV,
67,
and
adenoviruses
HPMP-series,
In
very and
The
4)
and
s i g n i f i c a n t l y
200
C46J3
a n t i v i r a l
s.
the
Moloney
C46b3
PMEA
i t s
(2-hydroxyadenine)
marked
against
VZV
item
from
r e t r o v i r u s e s . with
of
(Table
HPMP-count erpart d i f f e r
isoguanine
e f f i c i e n t .
c o u n t e r a c t e d
potency
the
d i s p l a y e d
i n e f f e c t i v e
v a c c i n i a
63
Phosphonylmethyl Ethers ofNucleosides
H O L Y ET AL.
of
5
days
MSV-induced
index
C33
to
CSI3(see
by
Table
1
C200 3 C673 C13
0.12C2.53 29
achieve
a f t e r
f o c i
C6.73
1.21C1.33
C1703
i n f e c t i o n
C13
6
50%
(as
C>6.93 p r o t e c t i o n
monitored
i n f e c t i o n ) o r 50%. 4 ) .
c
D
> i n
^ i n
by to
of
c e l l reduce
parentheses,
MT-4
c e l l s ;
c e l l s .
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
d
)
i n
64
NUCLEOTIDE
PMEA,
PMEG,
b i t o r s
of
PMEDAP
HIV
Complete
p r o t e c t i o n
PMEDAP.
The
in
c e l l s
ATH8
ive
same
was
MT-4
the
with
group
those
in
w i l l
be
v i v o
l e s s
than
important
to
at
for
apt
the
to
undergo
n u c l e o s i d e
f u r t h e r
pursue
most
5
a c t
value
0
of
and/or
e.g.
i t s
d é g r a d â t i v e as
are
a n t i v i r a i s ,
PMEA
a n t i v i r a l s , them
and
observed
P M E - d e r i v a t i v e s
other
Since
was E D
(36)•
PMEA
the
an
i n h i
6)
with
was
with
s e l e c t e d
reported
potent
(Table
p a t t e r n
:
of
be
5μΜ
HIV PMEDAP t e s t e d ,
2 ' , 3 ' - d i d e o x y r i b o n u c l e o s i d e s . logs
to
c e l l s
achieved
p o t e n c i e s
to
proved
i n
s t r u c t u r e - a c t i v i t y
of
(36).The
comparable
PMEMAP
i n f e c t e d
a n t i v i r a l
1.5μΜ
and
r e p l i c a t i o n
ANALOGUES
ana
processes
it
might
p o t e n t i a l
seem
a n t i - H I V
agents. The
a n t i v i r a l
pounds
was
potency
f u r t h e r
i n
models:
HSV-1
k e r a t i t i s
(33.37).
HSV-1
i n f e c t i o
treatment), (38)
and
ments
HSV-1
demonstrate f e s t a t i o n s E
D
5 0
o
t i o n
in
50
AZT
Thus,
it
the
PMEG
mg/kg
( i . ρ . ) a g a i n s t
(compared mice (40.)
c e l l s ,
the μΜ
ne
the
the
of
of
The
(S)-C
1
HSV-2
have
i n f e c
a c y c l o v i r ) ( 3 9 ) . and
by
a s s o c i a t e d
90-100%
at
20-
of
PMEA
a n t i r e t r o v i r a l
f u r t h e r
in
of
explore
the
a n t i v i r a l s
for
humans.
was
HPMPA
c e l l χ
k i n a s e s . from
of
18 of
T h i s HPMPA
a f t e r in
L-1210
the
5x
HPMPA was
h
higher 6
c e l l
the
HEL
l i n e on in
i s o l a t e d with
15
mock-
used
(41).
the HEL
c e l l
l i
than
Vero
c e l l s . by
a l s o
confirmed
by
leukemia
of
c e l l s :
than
c a t a l y z e d
presence
pool
extent
i s
the
phospho
treatment
c e l l
was mock-
5 ' - t r i p h o s
diphosphate
depended
pmole/10
mouse
i s
v i r u s - i n f e c t e d
of
It
m o c k - i n f e c t e d 6
and HSV-1
into
it
between
and
i n
with
(41.42)-
where
of
(HEL)
a c i d - s o l u b l e
mono-
pool
approximately
of
c e l l s
c o n c e n t r a t i o n to
a c t i o n
penetrates
and
higher
of c e l l s
i n f e c t e d
C3HPMPA
v i r u s -
i r r e s p e c t i v e
amounted
p h o s p h o r y l a t i o n
4
and
d i f f e r e n c e
i n
mode
embryonic
( r i b o n u c l e o s i d e
a n a l y s i s
p h o s p h o r y l a t i o n
pernatant
to
compound
some
2-2-5
c e l l s
n u c l e o t i d e
mani-
to
combination
c l a s s
and
human
diphosphate
i n t r a c e l l u l a r
The
for
g r e a t e r
i n f e c t i o n s
the
labeled
was
and
the
r e p o r t e d
alone.
new
v i r u s - i n f e c t e d
i t s
a c i d - s o l u b l e
c e l l s
t h i s
i n
p h o s p h o r y l a t i o n
it
a
metabolism
use
i n d i c a t e d
used;
i n
e x p e r i c l e a r l y
against i s
MSV
the
drugs
n o n - i n f e c t e d
that
a n a l o g ) .
HPMPA
with
ingl y,
The
(23.33)
systemic
mg/kg
mandatory of
v i r a l
both
and to
- i n f e c t e d The
seem
on
with
sum
from
the
performed
demonstrated
HPMPA
com-
animal
Studi es
Vero
f u r t h e r
of
treatment)
mice.
formation
r e s u l t s
of
p o t e n t i a l
were
phate
. Interest
of
50
tumor
i n o c u l a t e d
e i t h e r
HPMPA
- i n f e c t e d
with
suppressed
s t u d i e s
r y l a t e d
i n HPMPA
e f f e c t
B i ochemi c a l
(K0S),
with
i n f e c t i o n .
treatment
The
( t o p i c a l
p r o t e c t i v e
would
t e r a p e u t i c
i n f e c t i o n
performed
( R e t r o v i r )
than
r a b b i t s
v i r a l
i n
effect
s e r i e s several
marked
mg/kg/day
with
both with
a
PMEA
m o r t a l i t y
of v i v o
of
mice
Also,
i n
v i r u s
were
0.125
f
i n
an
v a c c i n i a
which
v i t r o
confirmed
of
c e l l s .
c e l l u l a r i n
100000 T h i s
v i t r o g
s u
phospho-
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
4.
r y l a t i o n
r e q u i r e s
s t i m u l a t e d
by
OTP
and
t h i s
r e a c t i o n
the
the
CTP
presence
being
l e s s
(41).
PMEA
c o n d i t i o n s ;however,the was
approximately i n h i b i t s
The
e f f e c t
i n c o r p o r a t i o n
o f
HSV-1- i n f e c t e d
i f
HPMPA
was
same
HPMPA.
A
a n t i v i r a l
i n h i b i t e d
that
r e q u i r e d
o n l y
porated drug DNA
a
DNA
DNA
Vero
pmole/10 r e f l e c t s
an
n a t i o n . HPMPA a l s o
The
The
l a b e l l e d L-1210
as
The
DNA
i s
low
as
suggests
a l s o
57μΜ
c y t o s t a t i c
a c t i v i t y
HSV-1
novo
Polymerase.
diphosphate proven
pted
to
phate me
with
used
that
r e f e r
the
the
by
The
the
c e l l s .
The
i n h i b i t o r y
s t r u c t u r a l l y
based
it
t e r m i of
s y n t h e s i s
upon by
r a d i o
the
15.5μΜ
for
at
than
1
and CD-
4
c e l l
I C
5
on v a l
0
PMEA,
c e l
c o n c e n t r a t i o n s
PMEA(43.)in
C
compounds
Whilst 50%
HPMPA of
leukemia
both
T h i s
the
d i s c r e p
case
of
i n h i b i t i o n
i n v o l v e d ,
at
t r a n s f o r m a t i o n o f
analog)
v i r a l
DNA
i n t e r a c t i o n
polymerase
purpose
DNA
mouse
s t r i k i n g
t r i p h o s p h a t e
DNA
0.5
whether
least
PMEA
of
DNA
i n
the
drugs.
i n h i b i t i o n
HSV-1
for
Hela
and
the
i n v e s t i g a t e
i n f e c t e d to
of
and
250μΜ
be
DNA
c o n c e n t r a t i o n
s y n t h e s i s
o f
o t h e r
might
(a
mentally us
and
or
exceed
c h a i n
v i r a l
L-1210
HPMPA
v i r a l
c e l l u l a r
not
DNA
of
c e l l u l a r equivalent
i n c o r p o r a t i o n
reduced
mechanisms
de
DNA
i n
the
d e t e c t i o n .
DNA
the
by
i n c o r
with
the
i n t o
or
i n
i n h i b i t i o n
d i s c e r n
i n h i b i t
e f f e c t s
for
HPMPA
to
of
f u l l y
into
does
determined.
was
s y n t h e s i s
i t s
than
(41)•
i n h i b i t e d
under
HPMPA and
process
c e l l u l a r by
i s
50%
c e l l s
of
l e v e l
p a r t i c u l a r l y
that
of
c e l l s
lower
treatment
i n c o r p o r a t i o n
the
o f
were
i s
HEL
c e l l s
i s
i n t r a c e l l u l a r
c y t o s t a t i c
185μΜ
0·5μΜ
terms
i n
i n c o r p o r a t i o n HEL
to
HPMPA
s y n t h e s i s
which
i n
i n f l u e n c e
d i f f i c u l t
followed
to
whereas at
s i g n i f i c a n t l y
24h
low
2 ' - d e o x y t h y m i d i n e
c e l l s
high
ancy
It
why
amounted
l u l a r
no
novo
i s
not
i n
extremely
i n h i b i t i o n
c u l t u r e .
μΜ
1000x
causes
i n c o r p o r a t i o n
below
a l s o
DNA
suppressed
only
Vero
used.
v i r a l
500
s y n t h e s i s
a f t e r
does
s u f f i c i e n t
f a l l s
was
(and
extremely i s
l i n e
into
of
i n
de
which
found
i s
e x p l a i n s
PMEA
DNA
i n t e r n u c l e o t i d i c
that
a c t i v i t y
ues
The
DNA
HPMPA
However,
c e l l s .
6
v i r a l
c e l l s ,
was
c e l l s
c e l l
r e p l i c a t i o n
s y n t h e s i s
c e l l u l a r
s y n t h e s i s ) .
s y n
c e l l s
c o n c e n t r a t i o n
c o n c e n t r a t i o n
c o n d i t i o n s . in
DNA
s y n t h e s i s
c e l l u l a r
(43)
(HSV-1)DNA
a l s
Vero
i n t o
at
v i r a l
In
HPMPA
observed
i n h i b i t i o n
where
c e l l u l a r
50%.
HEL
was
HSV-1
HPMPA
c o n d i t i o n s
h i b i t e d ,
i n
i n
under
t r a n s f o r m
of
completely
c o n c e n t r a t i o n
v i r u s
experiments
e n t a l
a
the
at
host
was
d i f f e r e n c e
for
v i r a l
the
achieved
a c t i v i t y :
was Our
at
donors
t h i s
that
2
was
s i m i l a r
of
than
C^ P3-orthophosphate c e l l s
i s GTP,
phosphorylated
e f f i c i e n t l y
Vero
r e a c t i o n
phosphate
e f f i c a c y
on
the
system(41.43)
was
lower
depends of
added
e f f e c t
5x
very
The
the
ATP;
e f f i c i e n t
A l s o ,
a t i o n
t h e s i s .
o f
A T P - r e g e n e r a t i n g
these
HPMPA
65
Phosphonylmethyl Ethers ofNucleosides
HOLY ET AL.
was
i n
r e s u l t s a c t i v i t i e s
r e l a t e d
(44.)from
HPMPA
diphosphates
o f
into
e x p e r i
t h i s
presented of
HPMPA the
s y n t h e s i s of
v i t r o
p u r i f i e d
of
and
prom d i p h o s
The
enzy
HSV-1
(KOS)
in
Table
7
diphosphate N - ( 2 - p h o s -
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
66
N U C L E O T I D E ANALOGUES
phonylmethoxyethyl) ne bases· These
r e s u l t s
demonstrate
c o m p a r a t i v e l y (
m
K
/
K
i
HSV-1
weak
from
the
t h e i r
r e l a t i v e
^m'^i
v a l u e s
h i g h e r
enzyme
ever,
HPMPA
e x p l a i n e d
by
ion
to PMEA
Table
most
i s
the
7.
o f
a
more
o f
for
HPMPA
e f f i c i e n t T h i s
d i f f e r e n c e
i n
corresponded
The
i n d i c a t e d
against
the
diphosphate.
How
of
c o u l d
the
extent
i s
h i g h e r
which
to
HSV-1.
s e r i e s
i n h i b i t o r
d i s c r e p a n c y
for
diphosphates
against
t h i s
a
a c t i v i t y
i n h i b i t o r s
the
i s
polymerase
the
C473
o f
p y r i m i d i -
DNA
i n h i b i t o r y
s e r i e s
these
noted
and
diphosphate
v i r a l
e f f i c i e n c y
o f
diphosphate
(vide
HPMPA
of
compounds
PMEA. a
purine
P M E - d e r i v a t i v e s
than
than
the
a n t i v i r a l
o f
p l i c a t i o n
order
i n
e f f i c i e n c y
v i r a l
for
The
polymerase
of
that
i n h i b i t o r
v a l u e : 0 - 6 3 ) DNA
d e r i v e d
a
d e r i v a t i v e s
HSV-1
r e
p o s s i b l y
of
be
t r a n s f o r m a t
for
HPMPA
than
supra)•
I n h i b i t i o
n u c l e o s i d e
t r i p h o s p h a t e
analogs
Com-
C o m p e t i t i v e
pound*)
Substrate
C47,483 K
Ki
m
(μΜ)
/K
^m i
(μΜ)
PMEApp
dATP
0 .. 7 3
o..
PMEGpp
dGTP
1 .. 1 2
0. 090
PMECpp
dCTP
0 .. 9 0
1 . 27
PMETpp
dTTP
1 .. 2 5
1 . 01
1 .. 2 4
PMEUpp
dTTP
1 .. 2 5
5.. 9 0
PMEDAPpp
dATP
o..
o.
o.. 2 1
HPMPApp
dATP
0 .. 7 3
AZT-TP
dTTP
1 .. 2 5
3 2 7 ..0
ddTTP
dTTP
1 ,. 2 5
21 . 1
)
A b b r e v i a t i o n s ,
see
Table
R i b o n u c l e o t i d e
Reductase.
which
p l a y s
important
c y c l e
and
s p e c i f i c
an
a f f e c t s
i t s
s t e r i c a l l y
r e g u l a t e d
(dATP,
and
by
ATP
c o m p e t i t i o n
t i c
s i t e .
s i b l e
It
t a r g e t s
HPMP-
and
the
Table
8
zyme
for
by
REF
(46.).
or
demonstrate mono-
and
P M E - d e r i v a t i v e s
most
free
P a r t i a l l y of
was
s i g n i f i c a n t
diphosphates C473-
The
r e s i d u e
i s
HSV-1 ( r i b o enzyme
not
a l l o -
5 ' - t r i p h o s p h a t e s probably the
one
of
data
pos
of
v i r a l
the r i b o
(according from
HSV-1
summarized
i n h i b i t i o n i s
c a t a l y the
analogs
enzyme
d e r i v e d
r e g u l a t e d
common
i s o l a t e d
enzyme
the
v i r a l
it
p u r i f i e d
The
enzyme
r e p l i c a t i o n i s
The
as
c e l l u l a r
c e l l s .
o.. 0 0 4 o.. 0 6
reductase
n u c l e o t i d e
c r i t e r i a ) Vero
for
regarded
a c y c l i c
reductase
i n f e c t e d
but
t h e r e f o r e
immunological
(K0S)
and
was
s y n t h e s i s
s u b s t r a t e s
o.. 5 1
v i r u s
n u c l e o s i d e
(45),
the
PME-type
n u c l e o t i d e to
dTTP) of
the
c o u n t e r p a r t :
by
2 5 .. 1
029
v i r u s - i n d u c e d
i n
r e d u c t a s e ) .
e u k a r y o t i c
1 .. 4 1
diphosphate
r i b o n u c l e o t i d e
5 ' - d i p h o s p h a t e
from
p p . . .
DNA
1 2 .. 4
1 .. 4 2
Another r o l e
v i r a l
( v i r u s - e n c o d e d )
n u c l e o s i d e d i f f e r s
the
3;
73
6 .. 9 5
105
o f
t h i s
i n e n
from
HPMP-C48D
not
modulated
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
4.
by
n a t u r a l
t e s
and
2 ' - d e o x y not
(data
67
Phosphonylmethyl Ethers ofNucleosides
H O L Y E T AL.
5
r i b o n u c l e o s i d e
1
- t r i p h o s p h a
shown)· B-CH
2
CH
2
OCH
2
0
0
0
P-0 OH
0-P-OH OH OH
47 0
0
Q
0-P-OH
B-CH ÇH-OCH P-0 2
2
CH 0H
Table
8.
OH
OH
OH 48
2
encoded
r i b o n u c l e o t i d e
In h i b i t i o n
of
HSV-1
r e d u c t i o n
of
r i b o n u c l eot ide
reductase
IC 50
Compound * 0
5
- d i p h o s p h a t e s
1
3
tuM]
CD PMEA
96
2 6 . 0
4. 6
PMEApp PMEGp
2 5 . 7
)
ND
ND
1460
ND
ND
180
ND
ND
ND
ND
>2000
ND
ND
1600
ND
ND
>2000
ND
ND
PMEGpp
19. 2
PMEDAPpp PMECpp PMETp
σ
>2000
PMEDAPp PMECp
ND 86*>
ND<*> 320C)
>2000
PMEAp
ND
ND
PMEUp
>2000
ND
ND
PMEUpp
>2000
ND
PMETpp
1 1
480^ )
HPMPAp
a
)
CSD=16
phate, not
μΜ;
D
Reverse
T r a n s c r i p t a s e .
tase
-
a
The
assay
key
the for
as
depended
the
and
3;
C S 3
p . . .
=
22
)
monophos μΜ;
upon
order >
of
u r a c i l was
ddTTP
=
while
The
d
)
N D . . .
the
compounds.
c h a r a c t e r
of
thymine.
>
The
than
adenine
diphosphates reverse
are
we
have C473
t r a n s c r i p
m u l t i p l i c a t i o n reverse 2
- 1 8
a c t i v i t y
the
[463
Therefore
(47)•
d e t e r g e n t - d i s r u p t e d
compared
i n h i b i t
the
the
o l i g o ( d T ) ^
was
potent
o f
towards
o f
2-aminoadenine
more
P M E - d e r i v a t i v e s
with
source
r e f e r e n c e C473
C473-
)
r e t r o v i r u s
the
diphosphates
ddTTP
for
r e a c t i o n .
diphosphates
s i n e
G
c
0.5C )
)
(MSV,HIV).
a f f i n i t y
performed
as
template
Several
compounds
enzyme
was
t r a n s c r i p t i o n t i o n e d
the
these
r e t r o v i r i o n s
the
C
Table
r e s i d u e ;
r e t r o v i r u s e s
i n v e s t i g a t e d from
and
A b b r e v i a t i o n s , s e e
against
d e r i v e d
and
5
1 8 . 0
determined.
a c t i v e a l s o
c
p p . . - d i p h o s p h a t e
)
ND 3 7 0
>2000 >
0 . 9c )
HPMPApp
C
-primed
of
with It
the
was
the
found
and >
AZT
d e r i v a t i v e
that
decreased
guanine 5
the
i n h i b i t i o n
2-aminoadenine
e i t h e r
men
t r i p h o s p h a t e
the
base
adenine
reverse
above
AZT
enzyme;
AMV
t r a n s c r i p t a s e
>
in
c y t o
d e r i v a t i v e
' - t r i p h o s p h a t e
(PMEA
diphospha-
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE
68 te)
h a d approximately
rence
compounds
i n h i b i t e d t i o n s
both
Table
9 .
9 ) .
potency
by
r e f e
compound r e a c
t r a n s c r i p t a s e . t r a n s c r i p t a s e
reverse
o f AMV
5 ' - t r i p h o s p h a t e
n u c l e o s i d e
o f
t h e two
mentioned
a n d DNA-dependent
t h e reverse
I n h i b i t i o n
analogs
a s
The last
t h e RNA-dependent
c a t a l y z e d
a c y c l i c
t h e same
(Table
ANALOGUES
Compound *) 3
I
( μ Μ )
5 0
C
min
3
ο
by
C483
)
5 m i n 0 . 18
PMEDAPpp
o. 2 3
PMEApp
1 .. 3 5
1 .00
PMEGpp
2 .50
2. 10
PWETpp
3 .60
3.25
AZT-TP
1 .05
1 . 13
ddTTP
1 .50
1 .00
PHEUpp
a
)
A b b r e v i a t i o n s , s e e
c e n t r a t i o n p o r a t i o n
Footnote
c a u s i n g
i n t o
i n c u b a t i o n
o f
Table
50% d e p r e s s i o n
t h e growing
8 .
o f
D
)
I n h i b i t o r
l a b e l l e d
DNA c h a i n ,
a f t e r
NTP
a
3
c o n i n c o r
o r
5 m i n
time.
Conclusion Two
groups
analogs
o f
b i o l o g i c a l l y
which
r e s u l t e d
i n v e s t i g a t i o n general
c a n f o r m a l l y
formula B - C H
2
a c t i v e
from be
a c y c l i c
o u r
n u c l e o t i d e
s t r u c t u r e - a c t i v i t y
r e p r e s e n t e d
by
a
s i n g l e
C493:
C H ( R ) - 0 C H
2
P ( 0 ) ( 0 H )
C463 R C433 R
2
H (
S)-CH 0H 2
C493 Nevertheless, t h e i r as
well
a s
systems,
o n
i n c l u d i n g and
t h e i r
The
o f
t h e understanding
o f
i n
may
analogs,
enzyme
d i f f e r e n t
which
excludes
s t r u c t u r e s , t o
these
t h e i m
molecules
T h e c o m p a r a t i v e l y bases
p r o t o n a t i o n o f
i s o l a t e d
p o i n t s
o f
c o n t a i n i n g
might
t h e i r
o n
a c t i v i t y ,
a c t by
margin
f e a t u r e s
arrangement.
capable
a v a i l a b l e
t h e parent
h e t e r o c y c l i c
lead i c a l
o f
a n d carba
mutual f o r
f a r
a n t i v i r a l
e f f e c t s
s t r u c t u r a l
group(s) f o r
s o
groups
v a r i a t i o n s
t h e s t r u c t u r a l
t h e i r
s e l e c t i v i t y
both
narrow
i s o s t e r s o f
a r e
i n v i t r o
that
t h e smallest
portance
which
a n d i n p a r t i c u l a r
suggest
mechanisms. even
t h e data
b i o l o g i c a l ,
be
a n
behavior
high amino
important i n
b i o l o g
systems. P e n e t r a t i o n
l i m i t e d . T h i s between c e l l
these perhaps
t h e a c t i v i t i e s
systems.
prodrugs, i t a t e d
o f
fact
F u r t h e r
i n p a r t i c u l a r
t r a n s p o r t ,
might
compounds e x p l a i n s i n
i n t o
i s o l a t e d
development with lead
new
c e l l s
i s
d i s c r e p a n c i e s
enzyme i n t h e
p r o t r a c t e d t o
l i v i n g
c e r t a i n
a n d
i n t a c t
d i r e c t i o n
a c t i o n
avenues
o f
o r
f a c i l
f o r
t h e r a -
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
4.
p e u t i c point
a p p l i c a t i o n . t o
s e r i e s
a
HPMPG),
a n
analogs
might
q u i t e
HPMPA),
i n c r e a s e d well
be
t h e animal
lower
than
o f
t o x i c i t y
i n t r a c e l l u l a r a
e x h a u s t i v e .
- c h a i n
m o d i f i e d o r
n u c l e o t i d e
developments
i n t h i s
adenine (PMEG,
c o n c e n t r a t i o n were
p o s s i b l e
that
n u c l e o t i d e
p r o p e r t i e s .
mode
t h e
s e r i e s
o f t h e
disadvantage.
i s
a c y c l i c
o t h e r
b i o c h e m i c a l
a c y c l i c
It
experiments o f
t h e guanine
s t r u c t u r e - a c t i v i t y s t u d i e s
a n t i v i r a l the
Although
c o m p a r a t i v e l y
(PMEA,
Our
69
Phosphonylmethyl Ethers of Nucleosides
H O L Y ET AL.
o f
a c t i o n
analogs new
A
might
n e c e s s a r i l y a d d i t i o n a l
analogs
b e t t e r o f
might
e x h i b i t
u n d e r s t a n d i n g
t h e two
h e l p
not
s i d e -
t o
c l a s s e s
f o s t e r
o f o f
f u r t h e r
f i e l d .
Literature cited 1. Robins,R.K. Pharm.Res- 1984, 11-18. 2. Scheit,K.H. Nucleotid New York, 1980 3. Holý,A.in Phosphorus Chemistry D i r e c t e d Towards B i o logy; Stec,W.J.,Ed.;Pergamon Press-Oxford,1980,pp. 53-64. 4. Holý, Α., Rosenberg,I. Collect.Czech.Chem.Commun. 1982, 47, 3447-3463. 5. Rosenberg,I., Holý,A. Collect.Czech.Chem.Commun. 1987, 52, 2572-2588. 6. Rosenberg,I., Holý,A. Collect·Czech.Chem.Commun. 1985, 50, 1507-1513. 7. Vesely,J.,Rosenberg,I.,Holý,A. Collect.Czech.Chem. Commun. 1982, 47, 3464-3469. 8. Vesely,J.,Rosenberg,I.,Holý,A. Collect.Czech.Chem. Commun. 1983, 48, 1783-1787. 9. Holý,A.,Nishizawa,M.,Rosenberg,I.,Votruba,I. C o l lect.Czech.Chem.Commun. 1987, 52, 3042-3057. 10. Horskà,Κ.,Rosenberg,I.,Holý,A.,šebesta,Κ. Collect. Czech.Chem.Commun. 1983, 48, 1352-1357. 11. Horskà, K., Cvekl,A.,šebesta,K.,Rosenberg,I., Holý,A. Abstr.14th IUB Congress. F r 355; Prague,1988. 12. Shannon,w.m. i n A n t i v i r a l Agents and V i r a l Diseases of Han: Galasso,G.J., Merigan,Τ.C., Buchanan,R.A., Eds.; Raven Press: New York, 1984; pp.55-121. 13. Robins,R.K., Revankar,G.R. i n Antiviral Drug Deve lopment. A M u l t i d i s c i p l i n a r y Approach; De C l e r c q , E . , Walker,R.T.,Eds.; Plenum Press: New York, 1988; pp. 11-36. 14. Holý,A. i n Approaches t o A n t i v i r a l Agents: Harnden, M.R., Ed.; Macmillan Press: Basingstoke, 1985; pp. 101-134. 15. De Clercq,Ε.,Holý,A. J.Med.Chem. 1979, 22, 510-513. 16. De C l e r c q , E . Nucleosides&Nucleotides 1985, 4, 3-11. 17. Tolman,R.L., Field,A.K., Karkas,J.D., Wagner,A.F., Germershausen,J., Crumpacker,C., Scolnick,Ε.M. Bio chem.Biophys.Res.Commun. 1985, 128, 1329-1335. 18. Hutchinson,D.W., Naylor,M. N u c l e i c Acids Res. 1985, 13, 8519-8530. 19. Holý,A. Chemica S c r i p t a 1986, 26, 83-89.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
70
NUCLEOTIDE
20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43.
ANALOGUES
Votruba.I., Η ο l ý , Α . , De Clercq.E. Acta V i r o l . 1983, 27, 273-276. H o l y , Α . , Čihák,A. Biochem.Pharmacol. 1981, 30, 2359 -2361. Rosenberg,I., Holý,A. Collect.Czech.Chem.Commun. 1883, 48, 778-789. DeClercq,E., Holý,Α., Rosenberg,I., Sakuma,T., Balzarini,J., Maudgal,P.C. Nature 1986, 323, 464-467, Holy,A. Collect.Czech.Chem.Commun. 1978, 43, 3103-3117. Holý,Α., Rosenberg,I. Collect.Czech.Chem.Commun. 1987, 52, 2775-2791. Rosenberg,I., Holý,A. Collect.Czech.Chem.Commun. 1988, 53, 2753-2777. Webb,R.R., M a r t i n , J . C . Tetrahedron Letters 1987, 28, 4963-4964. Webb,R.R., Wos,J.A. Tetrahedron Letter Holý,Α., Rosenberg,I. Collect.Czech.Chem.Commun. 1987, 52, 2801-2809. O s t e r h a u s , A . D . Μ . Ε . , G r o e n , J . , D e C l e r c q , Ε . Antiviral Res. 1987, 7, 221-226. Lin,J.C., De Clercq, Ε., Pagano,J.S. Antimicrob.Ag. Chemother. 1987, 31, 1431-1433. Baba,M., Κοnnο,Κ., Shigeta,S., De C l e r c q , Ε . E u r . J . C l i n . M i c r o b i o l . 1987, 6, 158-160. De C l e r c q , Ε . , Sakuma,T., Baba,M., Pauwels,R.,Balzarini.J., Rosenberg,I., Holý,A. Antiviral Res. 1987, 8, 261-272. Gil-Fernandez,C., De C l e r c q , Ε . Antiviral Res. 1987, 7, 151-160. B a b a , Μ . , M o r i , S . , S h i g e t a , S . , D e C l e r c q , Ε . Antimicrob. Ag.Chemother. 1987, 31, 337-339. Pauwels,R.,Ba1zarini,J.,Schols,D.,Baba,M.,Desmyter, J., Rosenberg,I., Η ο Ι ý , Α . , De C l e r c q , Ε . Antimicrob. Ag.Chemother. 1988, 32, 1025-1030. Maudgal,P.C.,De C l e r c q , Ε . , H u y g h e , Ρ . Invest.Ophtal. mol.Vis.Sci. 1987, 28, 243-248. Hitchcock,M.J.M.,Ghazzouli,I., T s a i , Y . H . , B a r t e l l i , C . A . , Webb,R.R., Martin,J.C. Abstr.2nd Int.Conf.on Antiviral Research. Williamsburg (USA): 1988. Bronson,J.J.,Kim,C.U.,Ghazzouli,I.,Hitchcock,M.J.M. Martin,J.C.Abstr.2nd Int.Conf.on Antiviral Research Williamsburg (USA) 1988. B a l z a r i n i , J . , Naesens,L., Rosenberg,I., Holý,Α., De Clercq.E.Abstr.Int.Symp.on AIDS,San Marino:1988. Votruba,I., Bernaerts,R., Sakuma,T., De C l e r c q , Ε . , Merta,A.,Rosenberg,I., Holý,A. Mol.Pharmacol. 1987, 32, 524-529. Sakuma,T., De C l e r c q , Ε . , Bernaerts,R., Votruba,I., Holý,A. in Frontiers in Microbiology, Martinus N i j hoff Publishers; Dordrecht: 1987, pp.300-304. Veselý,J.,Merta,A.,Votruba,I.,Rosenberg,I., Holý,A. Abstr.14th IUB Congress, Tu 431; Prague,1988.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
4.
H O L Y ET AL.
44. 45. 46. 47.
Phosphonylmethyl Ethers of Nucleosides
71
Merta,A.,Votruba,I.,Rosenberg,I.,Otmar,Μ., Holý,A. A b s t r . 1 4 t h IUB Congress, Tu 433; Prague,1988. Averett,D.R., Lubbers,C., E l i o n , G.B., Spector,T. J . B i o l . C h e m . 1983, 258, 9831-9838. Černý,J., Vonka,V.,Votruba,I., Rosenberg,I.,Holý,A. Abstr.14thIUB Congress, Tu 621; Prague,1988. V o t r u b a , I . , T r á v n i č e k , M . , R o s e n b e r g , I . , Otmar,M., H o l ý . A . A b s t r . 1 4 t h I U B Congress. Tu 432; Prague,1988.
RECEIVED February 14, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Chapter 5
Synthesis and Antiviral Activity of Phosphonylmethoxyethyl Derivatives of Purine and Pyrimidine Bases Joanne J . Bronson , Choung Un Kim , Ismail Ghazzouli , Michael J . M. Hitchcock , Earl R. Kern , and John C. Martin 1
1
1
1
2
1
1
Bristol-Myers Company, Pharmaceutical Research and Development Division, 5 Research Parkway, Wallingford, CT 06492-7660 University of Alabama, Birmingham, AL 35294 2
Acyclic nucleotid phonylmethoxy)ethyl (PME) side chain attached to a purine or pyrimidine base were prepared and selected for in vivo studies based on in vitro antiviral activity against retroviruses and herpesviruses. The adenine derivative PMEA (2) showed good in vitro activity against human immunodeficiency virus (HIV) and Rauscher murine leukemia virus (R-MuLV), and was more potent in vivo than 3'-azido-3'-deoxythymidine (AZT) in the treatment of R-MuLV infection in mice. PMEA also had a significant antiviral effect in vivo against murine cytomegalovirus. The guanine derivative PMEG (10) was exceptionally potent in vitro against herpesviruses. In vivo, PMEG was >50-fold more potent than acyclovir against HSV 1 infection in mice. A number of analogues of PMEG were also prepared, but these derivatives were less potent than PMEG or devoid of antiviral activity. The report by De Clercq and Holy (J.) on the broad-spectrum a n t i v i r a l a c t i v i t y of ( S ) - 9 - ( ( 3-hydroxy-2-phosphonylmethoxy)propy1)adenine (HPMPA, 1) has prompted i n t e r e s t i n the synthesis and evaluation of related a c y c l i c nucleotide analogues. Replacement of the adenine base i n HPMPA with d i f f e r e n t purine and pyrimidine bases has provided other HPMP-derivatives with potent and s e l e c t i v e anti-DNA v i r u s a c t i v i t y (2). A series of phosphonate d e r i v a t i v e s s i m i l a r t o HPMPA, but lacking the hydroxymethy1 appendage present on the HPMP side chain, have also shown s i g n i f i c a n t a n t i v i r a l a c t i v i t y . The adenine d e r i v a t i v e i n t h i s s e r i e s , 9-((2-phosphonylmethoxy)ethyl)adenine (PMEA, 2) (3), was f i r s t reported t o have i n v i t r o a c t i v i t y against a murine r e t r o v i r u s (1). Further studies have shown that PMEA and related PME-dérivâtives are e f f e c t i v e i n h i b i t o r s of human immunodeficiency v i r u s (HIV), the human r e t r o v i r u s which causes acquired immunodeficiency syndrome (AIDS) (4). In addition, members of the PME-series have shown i n v i t r o potency s i m i l a r t o the HPMPd e r i v a t i v e s against DNA viruses such as herpes simplex viruses (2). 0097-6156/89/0401-0072$06.00/0 o 1989 American Chemical Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
5.
BRONSON ET
AL.
Phosphonylmethoxyethyl Derivatives ofPurine
73
A further aspect of the a n t i v i r a l a c t i v i t y of HPMPA and r e l a t e d phosphonate derivatives i s t h e i r i n h i b i t o r y e f f e c t on DNA viruses that lack v i r a l thymidine kinase (TK) a c t i v i t y , including TK-deficient s t r a i n s of herpes simplex v i r u s (HSV), as w e l l as viruses that do not encod A c t i v i t y against CMV i s p a r t i c u l a r l one of the leading cause opportunisti patients, and there i s c u r r e n t l y no therapy approved i n the U.S. f o r treatment of CMV i n f e c t i o n . These types of viruses are generally r e s i s t a n t t o nucleoside analogues such as a c y c l o v i r (ACV) that are dependent on i n i t i a l phosphorylation by v i r a l TK i n order t o exert an a n t i v i r a l e f f e c t . For example, the mechanism of action of ACV against HSV 1 involves p r e f e r e n t i a l monophosphorylation by HSVencoded TK and then further phosphorylation by c e l l u l a r kinases t o a triphosphate analogue. I t i s the triphosphate metabolite of ACV which acts as an i n h i b i t o r of v i r a l DNA polymerase and consequently v i r a l r e p l i c a t i o n (5). By contrast, the potent a n t i v i r a l a c t i v i t y of HPMP- and PME- derivatives against CMV and TK" s t r a i n s of HSV (2) demonstrates that t h e i r mode of action i s not dependent on v i r u s s p e c i f i e d TK. These phosphonate derivatives act as stable monophosphate equivalents and can therefore bypass the virus-dependent phosphorylation step. In biochemical studies on the mechanism of action of these nucleotide analogues, HPMPA was shown to be converted d i r e c t l y by c e l l u l a r kinases t o d i - and triphosphate analogues (6). In addition, HPMPA was shown t o i n h i b i t v i r a l DNA synthesis at a concentration much lower than required for i n h i b i t i o n of c e l l u l a r UNA synthesis (6). While s u b s t i t u t i o n of a phosphonic acid group for a phosphate monoester i s a common strategy i n designing metabolically stable phosphate equivalents (2), HPMPA and r e l a t e d compounds are unique nucleotide analogues i n that they are phosphonylmethyl ether derivatives [O-CH -P(0)(OH) ] rather than simple a l k y l phosphonates [R-CH -P(0)(OH) J. The electron-withdrawing oxygen substituent adjacent t o the phosphonate group may serve an important r o l e by providing a s i t e for binding t o target enzymes and i n f l u e n c i n g the e l e c t r o n i c nature of the phosphorous moiety. For example, the e f f e c t of the electron-withdrawing substituent on the degree of d i s s o c i a t i o n can be seen by comparison of the second pK values for d i f f e r e n t phosphorous derivatives (7,8). For the phospfionylmethyl ether d e r i v a t i v e PMEA, pK i s 6.8, c l o s e l y resembling that of phosphate esters [R-O-P^KOH^] which are i n the range of 6.5 7.0; a l k y l phosphonates are less a c i d i c with p K ^ values of 7.7 8.2. The i s o e l e c t r o n i c nature of the phosphorous moiety may be an 2
2
9
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
74
N U C L E O T I D E ANALOGUES
important
factor
demonstrated
Following the
in
Our
focus
this
of
because
of
potent of
order
to
on
antiviral
Synthetic
quantities
various
of
along
derivative agent in
in
vivo
murine
the
PMEG, w h i c h
the
evaluation infection
Synthesis
was
PME-series.
of
of
are
synthesis
which
Synthesis process with
phosphite overall
the
ethanol),
key
the
at
°C
using with
sodium
of
deprotection carried
mesylate
5a
the of out
and
the
mesylate ester
phosphite
salt
of
in
of
in
the
the by
also
observed;
with
was
in
a
the
4a
100
mesyl
chloride
over
90% y i e l d
are
without
used
in
prepared Arbuzov
in
R =
a
similar
reaction. provided
the
b,
R =
PMEA
5 with
access
the
sodium
to
provide
the
(2) The
salt
ethyl
was
to
of
3
the
0
as
competitive ester
c,
R =
Me
achieved followed
alkylation of
diethyl
9-ethyladenine from
i-Pr;
adenine
moiety.
of
phosphonate
manner
Reaction
Oflf
Et;
derivative
arises
from
purification.
5
derivative
product
was
with
0
°C
60% group
treated
phosphite
Formation of
in
acetate
aqueous
5a
acid
Arbuzov
acid,
OAc
phosphonic
treatment (10).
hydrochloric
5c.
adenine
a
triethyl
ether
of
base with four-step
by
3 with
For
employed group.
chloride
ether
derivative
treatment
this
zinc
was
the
Derivatives.
4
side-chain
55% y i e l d . salt
extended
derivatives
ether
mesylate
5 b was in
dimethyl
ester
i n DMF a t
(6a)
adenine
are
antiviral
neterocyclic
achieved
of
alcohol
OAc
Synthesis
was
certain
guanine
and
ether
1,3-dioxolane
(cone,
a,
of
potent
approach
Removal
3
coupling
and
the
activity
phosphonylmethyl
furnish
methyl
^
q
5 was
chloromethyl
conditions
phosphonate
corresponding
o—\
of
Pyrimidine
general
presence
resulting to
triisopropyl the
the
multigram
derivatives
phosphonylmethyl
opening
the
and
a
distillation.
alcohol
Diisopropyl
most
appropriate
the
ring in
acidic the
the
provided
after
and
of
resulting
100
under
the
the
is
interest
retroviruses
providing
phosphonylmethyl
intermediate
with
triethylamine both
particular
analogues
be
Purine
bearing
chloride
yield
effected
4;
of
of
of
antiviral
analogues
presented.
(PME)
coupling
fragment
acetyl
of
antiviral
PME-dérivâtives,
starting
reaction
and
of
involves
side-chain
continued ether
Phosphonylmethy
Phosphonylmethoxyethyl the
of
against
to
vitro
selected
models
are
and p y r i m i d i n e
found In
have
as
nucleotide
capable
preparation
we
potential
of
activity
(9),
activity
analogues.
phosphonylmethyl
compounds
routes
antiviral
nucleotide
i n HPMPA
their
PME p u r i n e
with
of
related
PME-series These
DNA v i r u s e s . described
of
determine
the
chapter.
their
class
interest
evaluation
work
and b r o a d - s p e c t r u m
this
initial
and
agents.
the
members our
synthesis
derivatives
in
by
adenine ester
by by
reaction with
of
PMEA
a byproduct reaction
a n d was
of
separated
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
was the from
5.
B R O N S O N E T AL.
Phosphonylmethoxyethyl Derivatives ofPurine
75
6a by c a r e f u l chromatography. On larger scales, i t was more conven ient to use the iso-propvl phosphonate d e r i v a t i v e 5b i n the coupling reaction, since formation of an a l k y l a t e d adenine byproduct i s minimized and p u r i f i c a t i o n i s simpler i n the absence of the comigrating byproduct; a s i m i l a r y i e l d of the coupled product 6b was obtained. Reaction of 6a or 6b with bromotrimethy l s i lane (JL1) i n a c e t o n i t r i l e , followed by concentration and then aqueous hydrolysis of the r e s u l t i n g s i l y l a t e d intermediate, afforded PMEA as a z w i t t e r i o n i c c r y s t a l l i n e s o l i d i n 90-95% y i e l d .
a, R = Et; b, R = i - P r Formation of regioisomeric N-9 and N-7 s u b s t i t u t i o n products i s t y p i c a l l y observed i n a l k y l a t i o n reactions of guanine and r e l a t e d d e r i v a t i v e s . In i n i t i a l e f f o r t s d i r e c t e d toward the synthesis of t j e guanine d e r i v a t i v e PMEG (10), reaction of mesylate 5a with Ν -acetyl guanine was found t o give a 2:1 mixture of a l k y l a t e d products with the N-7 isomer predominating. The desired N-9 a l k y l a t e d product was i s o l a t e d i n only 15% y i e l d . Improved r e s u l t s were obtained when 6-0-(2-methoxyethyl)guanine or 6-0-benzylguanine was employed i n the coupling reaction: the r a t i o of N-9/N-7 isomers was 1-2:1, and the N-9 isomer could be i s o l a t e d i n 30-45% y i e l d . The high degree of r e g i o s e l e c t i v i t y (up t o 15:1 r a t i o s of N-9/N-7 isomers) reported for a l k y l a t i o n of these 6-0-protected guanine derivatives with 4-bromobutyl acetate (.12) was not observed f o r coupling with the mesylate 5a. Further i n v e s t i g a t i o n showed 2-amino-6-chloropurine t o be more u s e f u l i n our a l k y l a t i o n procedure (13). Reaction of t h i s guanine synthon with sodium hydride and then 5a gave a >6:1 r a t i o of the a l k y l a t e d products 7 and 8, with the desired N-9 isomer 7 i s o l a t e d as the major product i n 55-65% y i e l d .
The structure assignments f o r 7 and 8 were based on Η and C NMR spectroscopic data (14) and confirmed by a 2D NMR experiment: for the N-9 isomer 7, a three-bond coupling i n t e r a c t i o n was observed between C-4 of the purine base and the protons at C - l on the side chain, while t h i s long range coupling was seen between C-5 and H-l* 1
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
76
NUCLEOTIDE ANALOGUES
for the N-7 a l k y l a t e d product 8. Conversion of 7 to PMEG (10) was achieved i n 70-80% o v e r a l l y i e l d by d e e s t e r i f i c a t i o n with bromotrimethy l s i lane i n DMF to provide the phosphonic acid 9, followed by hydrolysis of the chloro group with aqueous a c i d at r e f l u x .
9
10
The 2-amino-6-chloropurine intermediate 7 proved u s e f u l for the synthesis of other PME-purine d e r i v a t i v e s . For example, removal of the chloro group v i a t r a n s f e r hydrogénation (20% Pd(0H)« on carbon, cyclohexene/ethanol) an phonate ester provided th 80% o v e r a l l y i e l d . The 2,6-diaminopurine d e r i v a t i v e 12 (PMEDAP) was prepared v i a displacement of the chloro group with sodium azide, followed by reduction of the azido group and d e e s t e r i f i c a t i o n of the phosphonate ester. In t h i s sequence, use of the d i i s o p r o p y l ester d e r i v a t i v e of 7 was found to give better y i e l d s i n the reaction with sodium azide, probably because of decreased side reactions at the phosphonate ester moiety. The o v e r a l l y i e l d for PMEDAP (12) was 50% from the 2-amino-6-chloropurine intermediate 7. NH
11
t
12
For synthesis of the pyrimidine d e r i v a t i v e PMEC (15), coupling of cytosine with the side-chain mesylate 5 was required. This transformation was c a r r i e d out by treatment of a mixture of 5a and cytosine with potassium carbonate i n DMF to a f f o r d a 4:1 r a t i o of Ν and O-alkylated products 13 and 14. The N-l isomer 13 was i s o l a t e d i n 45% y i e l d a f t e r separation from the less polar isomeric product by chromatography. Conversion of 13 to PMEC was achieved i n 80% y i e l d by deprotection using bromotrimethylsilane.
13
14
15
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
5.
B R O N S O N ET AL.
Phosphonylmethoxyethyl Derivatives ofPurine
77
Structure assignments f o r 13 and 14 were based on comparison of t h e i r NMR spectra with those f o r known cytosine d e r i v a t i v e s . For example, the chemical s h i f t s of the carbons on the pyrimidine r i n g are nearly i d e n t i c a l f o r 13 and c y t i d i n e (Table I ) , while for the O-alkylated isomer 14, the pattern of the aromatic carbon peaks i s s u b s t a n t i a l l y d i f f e r e n t . For the product assigned as the N-isomer 13, the chemical s h i f t of C - l ' i s also u p f i e l d r e l a t i v e t o that f o r the 0-isomer 14 (48 vs. 66 ppm). Furthermore, a 2D NMR experiment showed three-bond coupling between C - l and the proton at C-6 of the cytosine base for the N-alkylated isomer 13 but not f o r the isomeric product 14. f
Table I.
C NMR Data f o r Cytosine Derivatives Chemical S h i f t (δ)
Compound 13 (N-l isomer) 14 (0-2 isomer) cytidine
93 100 95
166 165 166
156 165 157
146 157 143
Analogues of 9-(2-Phosphonylmethoxy)ethylguanine (PMEG). The f i n d i n g that the guanine d e r i v a t i v e PMEG (10) i s an exceptionally potent antiherpesvirus agent (vide i n f r a ) has prompted e f f o r t s t o synthesize a number of guanine d e r i v a t i v e s r e l a t e d t o t h i s lead compound. The synthesis of monoesters of PMEG was of i n t e r e s t t o determine the e f f e c t of changing the i o n i c character of the phos phorous moiety. These d e r i v a t i v e s might exert a d i r e c t a n t i v i r a l e f f e c t or be metabolized t o PMEG. Preparation of the monoethyl ester of PMEG (16) was accomplished i n 75% y i e l d by treatment of 2-amino-6-chloropurine d e r i v a t i v e 7 with sodium hydroxide s o l u t i o n at r e f l u x for 2 hours t o e f f e c t cleavage of one of the ester groups and hydrolysis of chloro group on the purine base. Under these conditions, formation of the d i a c i d occurred only t o a small extent (<0.2% by HPLC), although up t o 1% PMEG was obtained a f t e r prolonged heating (>8 hours) of the reaction mixture. The monoisopropyl and monomethyl esters of PMEG (17 and 18) were prepared from the corresponding d i e s t e r d e r i v a t i v e s analogous t o 7. A l t e r n a t i v e l y , d i e s t e r s of PMEG served as precursors t o the desired monoesters. The required d i e s t e r s were prepared by coupling of the sodium s a l t 0 16:
UJ
R = Et
17 : R = i - P r -OR
1 8 : R = Me
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
78
NUCLEOTIDE ANALOGUES
of 6-0-benzylguanine with mesylate 5, followed by removal of the benzyl group under t r a n s f e r hydrogénation conditions. The desired PMEG monoester derivatives were then obtained upon treatment of the d i e s t e r with 1 Ν sodium hydroxide at room temperature f o r 1 h. Analogues of PMEG with longer a c y c l i c side chains (15) are of i n t e r e s t because of t h e i r s i m i l a r i t y t o phosphorylated metabolites of a c y c l o v i r . For example, 9-(3-phosphonylmethoxy)propylguanine (PMPG, 22) can be considered an i s o s t e r i c analogue of ACV mono phosphate since the same number of atoms separate the guanine base and the phosphorous group. The synthesis of PMPG i s representative of the procedure used t o prepare the longer chain ( b u t y l , pentyl, hexyl, and heptyl) d e r i v a t i v e s . The side chain required f o r PMPG was prepared by chloromethylation [paraformaldehyde, hydrogen chloride (g)] of 3-bromopropanol (19), followed by reaction with the sodium s a l t of d i e t h y l phosphite t o a f f o r d bromide 20 i n 75% y i e l d . Coupling of 6-0-benzylguanine with 20 gave a 2:1 mixture of N-9/N-7 isomeric products; reactio cleavage of the phosphonat PMPG (22) i n 30% o v e r a l l y i e l d from bromide 20. OR
Br l
Br
\ ^ 0 H
— *
^
K
^(K^y<0Et>
H
H> > ^
Q
r
e
*
H
ο
J%J^7
<0R')»
19
ao 21 : R = CHgPh, R
1
= Et
2 2 : R = R' = H To determine the e f f e c t of increased s t e r i c bulk adjacent t o the phosphorous group, α-methyl and a,α-dimethyl d e r i v a t i v e s of PMEG (23 and 24) were prepared. The synthetic approach t o these compounds i s based on the a b i l i t y of the phosphonate group t o s t a b i l i z e an α-carbanion which can then undergo s u b s t i t u t i o n reactions with e l e c t r o p h i l e s such as methyl iodide. The key 0
Η,ϋ^Λ^
|°| P<0H>,
substrate f o r the a l k y l a t i o n reaction, the s i l y l ether 25b, was prepared by treatment of alcohol 25a with t e r t - b u t y l d i m e t h y l s i l y l chloride and t r i e t h y l amine. Note that 25a i s an intermediate i n the PME side-chain synthesis. Reaction of 25b with 1.2 equivalents of seç-BuLi (16) and then methyl iodide at -78 °C gave the a l k y l a t e d
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
5.
product the
26b
85-90% y i e l d .
Repetition of
dimethylated phosphonate
silyl
protecting
mesylation chain was of
in
of
group
the
derivative
obtained α-methyl
using
the
in
in
26b
resulting 28
a
in
in
(acetic
acid,
alcohol,
yield
by
aq
provided the
the
process
THF), the
for
the by
side-
mesylate The then
completed of
PMEG.
0
OR
28 Antiviral In
A c t i v i t y of
Vitro
report
and
by
In
De
Vivo
on
HPMPA
included
a
of
of
PMEA o n
a murine
a
subsequent
activity than
PMEA w a s
DNA v i r u s e s
(2).
More
significant
antiviral
least
of
The
toxic
vivo
to
be
using
more
caused
by
Our
effect
of
of
in vivo
examined
herpes
simplex
as
demonstrated
by
it
was
against
ganciclovir
its
potent
in vitro
(HIV),
(HCMV).
potent
sarcoma
virus
(HSV)
inhibitory
(DHPG),
simplex
but
showed
types good
virus
potent
and
to
the
(4). further
PMEA was
found
formation
(17). evaluation
II)
in vitro The
against leukemia
1 and
2,
results
human virus
and
human
anti-retroviral o n HIV
to
antiviral
activity
and R-MuLV,
both
viruses.
PMEA w a s
than
acyclovir
(ACV)
a c t i v i t y to
DHPG
similar
be
activity
using
murine
effect
t h a n AZT a g a i n s t
herpes
(Table
In
have
tumor
experiments.
Rauscher
PMEA s h o w e d
HIV,
further
agent,
less
to
demonstrated of
effect (_1).
antiviral
i n mice:
virus
on
(MSV)
was
anti-HIV
suppression
focused
it
shown
been
virus
inhibitory
virus
against
PMEA h a s
original
anti-DNA
in vitro
been
having
selection
cytomegalovirus
have
in vitro
in
The
the
although
antiviral
virus
of
sarcoma
PMEA h a s
Moloney
i n PMEA h a s
PMEA w a s
less
well,
an
immunodeficiency (R-MuLV),
to
u t i l i t y as
for
PMEA.
i n f e c t i o n model
t h a n AZT
infection with
guide
as
a c t i v i t y of
effective
its
shown
activity
retrovirus
interest
determine a
a
Moloney
recently,
Derivatives
broad-spectrum
description
PME-dérivâtives
anti-retroviral
in
as
the
the
retrovirus,
report,
against
HPMPA
A n t i v i r a l A c t i v i t y of and H o l y
properties
29
Phosphonylmethyl Ether
Clercq
29
syntheses
synthesis
0
OR
required
were
the
of
followed
sequence.
PMEG ( 2 4 )
described
provided
Removal
a,α-dimethyl
same
and a , α - d i m e t h y l
0
this
90-95% y i e l d .
80-85% y i e l d ;
similar
PMEG ( 2 3 )
27b
chemistry previously
OR
79
Piwsphonylmethoxyethyl Derivatives ofPurine
BRONSON ET AL.
although less
or against
HCMV. The the
Rauscher
antiviral
infection
in vivo
was
by
shown
murine
a c t i v i t y of (Table
significant
leukemia
virus
PMEA c o m p a r e d III).
The
model with
antiviral
i n h i b i t i o n of
the
was
chosen
AZT a g a i n s t effect
of
splenomegaly
to
study
retrovirus each
drug
caused
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
by
80
NUCLEOTIDE ANALOGUES
Table
II.
In
Vitro
Antiviral
A c t i v i t y of
Retroviruses
and
ID Compound
HIV
R-MuLV
PMEA
57Ô
0.05
(2)
ACV
-
DHPG
-
AZT -
0.1-0.5
The by
50% i n h i b i t o r y reduction
assay
(18)
ation
in
cells
and
was
used
cells
virus At
a
AZT
of
0.3
effect
as
lower the
compared
in
of
vitro
against
seen
than
dose
per
-
0.23
0.94
this
AZT
with
40
in HIV-infected
(enzyme
capture
MuLV.
CEM
assay).
50% i n h i b i t i o n o f In
data
In
placebo-treated administration
the AZT
development at
this
in preventing
mg/kg
per
which
murine
III.
with
cells
T h e XC
syncitia
form
HSV-infected
vero
day.
Vivo
Antiviral Rauscher
Dose
Efficacy
Spleen
0.14
80
0.18
40
0.36
100
0.22
80
0.58
40
Control
Mice were
infected was
30
Wt.
Control
i.p.
initiated
consecutive
days.
with
PMEA
A was
the
disease
are
in
at
contrast
effective
than
ρ
AZT
% Inhibition
0.03
99*
0.11
96*
0.14
85*
0.12
94*
0.64
± ± ±
1.65
±
0.80
0.12
±
0.02
value
0.53
71*
0.47
67*
murine <
of
Splenomegaly
± ± ±
Rauscher =
PMEA a n d
Administration)
(g)
4 h post-infection *
of
Ave.
100
Treatment
less
(I.P.
PMEA
Uninfected
results be
in
splenomegaly.
although
MuLV
(mg/kg/day)
Placebo
dose,
PMEA t o
Compound
AZT
of
control.
PMEA r e s u l t e d
induction of These
showed
infected
of
retrovirus.
against
for
1.8
-
Rauscher
day,
inhibition of was
effective
Table
-
38
assays
100 m g / k g
complete
similar
with
2/7
9Λ
0.5
determine
HCMV
HCMV-infecte
infection
almost
the
HSV 2
21.0
determined
with
1
AD-169.
dose
more
to
HSV
-
protein
infected
ρlaque-reduction HCMV,
gag
Against
(pg/mL)
5 0
0.002
d o s e was
i n p24
PMEA
Herpesviruses
leukemia
and
virus.
continued
BID
0.05.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
5.
Evaluation CMV was
also
infection used
in
model was is
these
for
by from
per
day
this
significant antiviral with
Table
(Table
IV)
similar
of
the
a
dose
effect of
of
especially
excitin
IV.
In
Vivo
in
up
For
Antiviral
Cytomegalovirus
at
Placebo
The
HIV
of
good
these
PMEA o r
Infection
(I.P.
Treatment
Delay:
6
-
DHPG a g a i n s t
Survival 24
h
27
20
13
0
-
7
-
33
33.3
93*
67*
33
11.2
67*
80*
73*
53
13
0
20
-
27 i.p.
a n d was
with
given
MCMV. BID
Treatment
for
PME-Derivatives
and p y r i m i d i n e activity
deficient
strain
in Table as
replication. antiviral
h
5
initiated
consecutive
at
days.
*
the =
ρ
0.05.
antiviral
expressed
48
h
67*
A c t i v i t y of
summarized
Murine
60*
inoculated
kinase
make
47*
times
vitro
coupled
infections,
67*
indicated
PME-purine
vitro
93*
Control
Antiviral
similar
in
Control
<
with
a
20
Mice were value
resulted
100
3.8 Placebo
almost 100
Administration)
Control
Untreated
data
of
a n d human CMV,
of
Control
DHPG
dose
DHPG p r o v i d e d
4
Untreated
compound
regimen
%
(mg/kg/day)
PMEA
a
was
compared
comparison,
Dose Compound
the
as
PMEA p r o v i d e d this
day.
both
viral
model
E v e n when t r e a t m e n t
models
Efficacy
against
animal
h post-infection,
per
i n murine
no of
time
DHPG.
observed.
mg/kg
is
effect
survival
48
PMEA
infection
administration
to
of
there
antiviral
using
PMEA a g a i n s t
potency
since
animals.
was
33.3
in vivo
CMV (MCMV)
6 h post-infection:
infected delayed
antiviral
activity
common o p p o r t u n i s t i c
controls.
systemic
when g i v e n d o s e was
at
The
increase
experiment
upon
a
(19),
and p l a c e b o - t r e a t e d a
activity
its
an
CMV i s
A murine
significant
protection
protection
it
a
93% s u r v i v a l
PMEA a t
antiviral
since
patients.
studies
untreated
shown
fcAs
in
in vivo
h u m a n CMV i n f e c t i o n .
complete m
the
interest
i n AIDS
shown
with
of
of
81
Phosphonylmethoxyethyl Derivatives ofPurine
BRONSON ET A L
the
derivatives against
of
HSV
Against were
HSV t y p e s
1,
and
Herpesviruses.
evaluated 1 and
h u m a n CMV.
V show t h e
in vitro
potency
concentration
required
for
The
activity
guanine against
derivative each
virus
2,
for a
The of
results compound
50% i n h i b i t i o n o f
a n d was
the
in
thymidine
each
PMEG e x h i b i t e d
The
their
viral
significant
most
potent
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
of
the
NUCLEOTIDE ANALOGUES
82
phosphonate antiviral
derivatives
effect
substantially
than
more
thymidine
kinase
antiviral
activity
HCMV,
PMEG was
derivative was PMEC
of
in
agreement
these
strain
PMEG i s more
also
less
PMEG e x e r t e d
DHPG a g a i n s t
than
deficient
20-fold
exhibited
relative
potent
PMEDAP
somewhat
tested.
ACV o r
not
than
the
antiviral
effect
activities
the
V.
results
Comparison
of
Compound
HSV
by
the
In
HSV
(11)
>100
PMEDAP
(12)
2.4
De
Clercq
purine
although PMEMAP
HSV t y p e the
1 and
and
2.
Holy
it
and The
PME-dérivâtives
Antiviral
1 (TK
are
HCMV
2
0.09
0.06
-
>100
5.0
3.2 >100
-
ACV
0.5
4.3
0.3
38
DHPG
0.23
>10
0.94
1.8
-
The in
50% i n h i b i t o r y HSV-infected
strains:
HSV
Based for
on
further
1,
i n mice effect
mice
(Table
similar
while
response.
At
day.
its
efficacy
although
The
at
a
dose
systemic model,
a
PMEG was
>40-fold i n mice at
a
was
potent
a dose
Administration
of
and
where
of
of
at
doses
As
in
than
lower
PMEG e v e n
at
mg/kg for
a
was HSV
and dose
5
mg/kg by
antiviral observed. 1
of
HSV
2
infection
exhibited
than where a
in
upon
demonstrated
treatment the
acyclovir
0.125
above
toxicity
VII).
effect
required
substantial the
as
complete
clearly
in
The
infection
only
A C V was
effect
10-50-fold
time
antiviral
dose
its
selected
significant
1 systemic
PMEG i s
AD-169.
virus
a
survival
of
Virus
acyclovir. by
PMEG a f f o r d e d
than
(Table
a
observed
doses
lower
at
HCMV,
PMEG was
with
HSV
day
G;
assays
cells.
simplex
significant
utility of
2,
indicated
per
reduction
MRC-5
potency,
i n mean
doses,
antiviral
much more
activity
observed.
range
HSV
herpes
Against
10 m g / k g
toxicity
similar
infection
antiviral was
a
increase
higher
plaque
treatment was
administration of
therapeutic over
PMEG h a d
to
control.
(i.p.)
vitro
compound
and
Z826;
against
PMEG e x h i b i t e d dose
per
in
compared
by
HCMV-infected
1 (ΤΚ'),
in vivo
each
a
protection,
effect
and
placebo
VI),
determined and
exceptional
in mortality with
day,
HSV
of
intraperitoneal per
BW ; S
its
infection
compared
cells
evaluation
antiviral reduction
d o s e was
vero
in
(2).
Activity
HSV
)
-
>100
(15)
activity,
a
the Against
The
0.04
0.08
(10)
that
TK.
compounds.
of
was against
PME-Dérivâtives
1
PMEMAP
analogues
on v i r a l
Vitro
greater
but
ganciclovir.
against
reported
2,
indicating
antiviral
antiviral
with
1,
control
no
of
PMEC
than
vitro
Table
PMEG
HSV
dependent
showed good
potent
slightly
1 and
nucleoside
of
potent
a
HSV
of
toxicity 0.125
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
mg/kg
5.
BRONSON ET AL.
Phosphonylmethoxyethyl Derivatives oj Purine
83
per day resulted i n a s u b s t a n t i a l reduction i n mortality. The greater i n vivo potency of PMEG compared with a c y c l o v i r i s i n contrast with the i n v i t r o data which show PMEG t o be only s l i g h t l y more potent against both HSV 1 and 2.
Table VI. In Vivo A n t i v i r a l E f f i c a c y of PMEG against HSV 1 Systemic Infection i n Mice (I.P. Administration) Dose (mg/kg/day)
PMEG % survival
MST
10 5 1.25 0.50 0.25 0.125 0.031
9 100* 100* 100*
10.8 21.0* 21.0* 21.0*
10
8.9
0
7.3
Placebo Control
Acyclovir % survival MST 50* 17 0
14.1* 11.3* 7.8
- Mice were inoculated i.p. with HSV 1 (HL-34 s t r a i n ) . Treatment was i n i t i a t e d 3 h p o s t - i n f e c t i o n and continued BID f o r f i v e consecutive days. MST = mean s u r v i v a l time; experiment was terminated at day 21. * = ρ value < 0.05.
Table VII.
Dose (mg/kg/day) 50 25 10 5 1 0.25 0.125 0.031 Placebo Control
In Vivo A n t i v i r a l E f f i c a c y of PMEG against HSV 2 Systemic Infection i n Mice (I.P. Administration) PMEG % survival
MST
Acyclovir % survival MST 40 20
0 92* 100* 90* 60* 20
7.6 20.1* 21.0* 20.3* 17.2* 12.1
10
9.0
13.0* 13.0*
Mice were inoculated i.p. with HSV 2 (G s t r a i n ) . Treatment was i n i t i a t e d 3 h p o s t - i n f e c t i o n BID f o r 5 days. MST = mean s u r v i v a l time; experiment was terminated at day 21. * = ρ value < 0.05.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
84
NUCLE(mDE ANALOGUES
Antiviral
Activity
monoesters, and
ester
effect
(18)
were
showed
herpes
less
Overall,
activity
with
increasing
ester
PMEG ( 1 6 )
of
showed o n l y
weak
modifications antiviral additional analogue herpes chain
in
the
carbon
of
the
tolerated:
HSV
2 and
the
a
of
PMEG, of
activity.
PME-backbone with
alkyl
PMEG.
side
similar
α
and
to
were
the
the
monoethyl
also in
(22),
and
and
antiviral
iso-propyl
resulted is
PMEG
showed a
(17)
that
decrease
which an
vitro The
monomethyl
acyclovir
results
showed no
results
Substitution
to
in
VIII).
although
PMPG
chain
their
(Table
group:
18,
The
for
PMEG
analogues,
decreasing
ester
than
PMEG
evaluated viruses
trend
monophosphate,
viruses;
Herpesviruses.
comparable
the
potent
acyclic
in
derivatives.
not
size
compared
acyclovir
simplex
was
less
antiviral
activity
than
activity
there
was
were
simplex
potent
antiviral
ganciclovir.
Against
phosphonylmethoxy(alkyl)
PMEG d e r i v a t i v e s against
derivatives
PMEG
PMEG A n a l o g u e s
chain
α-substituted
antiviral
of
longer
has
in
an
isosteric
activity
obtained
phosphonate
against
for
the
longer
g r o u p was
also
α-methyl α,α-dimethy
activity.
Table
VIII.
Comparison
of of
the
In
Vitro
Analogues
of
Antiviral
ID Compound .
Ester
HSV
Derivatives
Monoethyl
Chain
PM(Propyl)G PM(Butyl, or .
5
PMEG ( 1 7 )
1.2
75
35
>100
>100
>100
>100
Derivatives
Pentyl,
Hexyl,
PMEG
Derivatives
PMEG ( 2 3 ) PMEG ( 2 4 )
>100
48
>100
>100
PMEG
0.08
0.06
ACV
0.5
0.3
DHPG
0.23
0.94
The
50% i n h i b i t o r y HSV-infected
The
ester
evaluation In
2
Heptyl)G
a-diMe
in
HSV
1.6
(22)
α-Substituted α-Me
1
5
PMEG ( 1 8 )
Monoisopropyl
(vg/mL)
5 0
PMEG
PMEG ( 1 6 )
Monomethyl
Longer
of
Activity
PMEG
cells.
derivatives
based
preliminary
d o s e was
vero
on
their
studies
16 in
determined Virus
and
18 w e r e
vitro
comparing
by
HSV
reduction 1,
considered
activity
the
plaque
strains:
against
toxicity
of
the
BW
for HSV
;
assays
HSV
2,
further 1 and
ester
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2.
G.
5.
BRONSON ET
derivatives, toxicity
to
determine with
an
IX).
As
phosphonate prodrug
results toxic
in
of
derivative
IX.
In
a
ethyl
that of
was
in vivo to
an
ester
and
than
16 w a s
antiviral of
PMEG
efficacy
for
mice provided
day,
at
protection of
from
Whether
obtained
in
per
complete
effect
ongoing
To
selected
infection
indicated
acyclovir.
similar
c o u l d be
monoethyl
the
85
toxic.
100 m g / k g
before
studies,
had
less
advantage
while
50
seen
greater
subject
Vivo
16 was
HSV 2 s y s t e m i c
doses
was
16
without
was
this its
in
vitro
acts
as
a
cleavage
of
studies.
Antiviral Efficacy
of
Monoethyl
PMEG
against
2 Systemi
Dose
Monoethyl %
(mg/kg/day)
PMEG
Acyclovir %
MST
survival
MST
survival
200
84*
19. 9 *
80*
2 0 . 1*
100
92*
2 0 ., 6 *
67*
19. 2 *
50
80*
1 9 ., 8 *
38*
1 7 .. 1 *
25
46*
1 5 ., 8 *
17
1 3 ., 8 *
12.5
25
13. 4 *
13
11. 8 *
10
1 0 .. 2
6.25 Placebo -
of
showed
at
exerts
is
HSV
PMEG,
relative
PMEG o r group
of
ester
therapeutic
effect
other
m o n o m e t h y l PMEG (18)
ethyl
treatment
activity
ester
Table
a
that
the
in vivo
protection
doses,
antiviral
an
the The
achieved.
found
derivative
in
substantial higher
was
whether
evaluation
the
it
PMEG, w h i l e
ester
(Table
Phosphonylmethoxyethyl Derivatives ofPurine
Al»
Control
Mice were
inoculated i.p.
initiated
3 h post-infection
days. 21.
MST = *
=
mean
ρ value
with
survival <
HSV
and
time;
(G
2
Treatment
strain)
c o n t i n u e d BID experiment
for
was
5
was
consecutive
terminated
at
day
0.05.
Summary
from the
The
phosphonate
our
studies
treatment
particular HIV,
the
cause
of
as
of
derivatives promising
retrovirus
interest
because
human r e t r o v i r u s opportunistic
effect
of
i n f e c t i o n models.
PMEA w a s of
PMEA a g a i n s t less
PMEA a t
murine the
dose
leukemia
same
murine
a
potent
dose.
CMV,
of
virus
giving
of
its
good
responsible
these
for
viruses
was
40 mg/kg provided
per
showed
significant
day
greater good
to
AIDS,
and
CMV, The
demonstrated results
than AZT, mice
at
a
common
antiviral
in vivo
using that
administration with
Rauscher
t h a n AZT g i v e n
activity a
dose
of
against
indicated
infected
in vivo
in
PMEA w a s
activity
protection
protection
identified
evaluation
infections.
patients.
in vitro
retroviruses
been
further
in vitro
i n AIDS
Although
against
PMEA a l s o
PMEG h a v e for
and h e r p e s v i r u s
infection
murine
PMEA a n d
candidates
of
at
against 100 m g / k g
day.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
per
86
N U C L E O T I D E ANALOGUES
The
guanine
phosphonates herpesviruses. against
a dose
guanine
The
HSV t y p e
significantly at
derivative
evaluated
high
1 and
more
>40-fold
for
potency
2
lower
than
modifications
of
the
complete
of
antiviral
loss
derivatives activity the
of
less
potent
herpes
ester
against
improvement
over
will
subject
the
be
phosphonate
being AIDS
the
the
was
some
infection
therapeutic further
derivatives
a particularly
as
i n both
generally
seen.
led
having
types
than
i n mice
index
of
antiviral
A number
a
decrease
good
in
2.
Both
into
agents,
of
the
with
or ester
vitro
In it
and p r o v i d e d
investigations
was
activity
and monoethyl
however,
PMEG.
vivo PMEG
however,
to
1 and
PMEG;
the
in
cases,
substantial
Monomethyl
virus
toxic
all
against
demonstrated
showed
promise,
of
activity
t o x i c i t y was
activity.
less
potent
PMEG w e r e p r e p a r e d ;
simplex
HSV 2 of
PMEG w a s
ACV a n d
PMEG s k e l e t o n
PMEG s h o w e d
against
monoethyl
to
most
i n mice:
t h a n where
related
the
antiviral
of
infection
potent
derivatives
PMEG was in vitro
vivo, was
only much
no
PMEA a n d
PMEG
potential
of
PMEA
promisin
patients.
Literature Cited J.; J.;
1.
De Clercq, E . ; Holy, Α.; Rosenberg, I.; Sakuma, T . ; Balzarini, Maudgal, P. C. Nature 1986, 323, 464-467. 2. De Clercq, E . ; Sakuma, T . ; Baba, M.; Pauwels, R.; Balzarini, Rosenberg, I.; Holy, A. Antiviral Res. 1987, 8, 261-272. 3. Holy, Α.; Rosenberg, I. Collect. Czech. Chem. Commun. 1987, 52, 2801-2809. 4. Pauwels, R.; Balzarini, J.; Schols, D.; Baba, M.; Desmyter, J.; Rosenberg, I.; Holy, Α.; De Clercq, Ε. Antimicrob. Agents Chemother. 1988, 32, 1025-1030. 5. Elion, G. B.; Furman, P. Α.; Fyfe, J . A.; de Miranda, P.; Beauchamp, L.; Schaeffer, H. J . Proc. Natl. Acad. Sci. USA 1977, 74, 5716-5720. 6. Votruba, I.; Bernaerts, R.; Sakuma, T . ; De Clercq, Ε.; Merta, Α.; Rosenberg, I.; Holy, A. Mol. Pharmacol. 1987, 32, 524-529. 7. Engel, R. Chem. Rev. 1977, 77, 349-367. 8. Blackburn, G. M.; Eckstein, F . ; Kent, D. E . ; Perree, T. D. Nucleosides Nucleotides 1985, 4, 165-167. 9. Webb, R. R.; Martin, J . C. Tetrahedron Lett. 1987, 28, 4963-4964. 10. Bailey, W. F.; Rivera, A. D. J . Org. Chem. 1984, 49, 4958-4964. 11. McKenna, C. E . ; Schmidhauser, J . J . Chem. Soc., Chem. Commun. 1979, 739. 12. Kjellberg, J.; Liljenberg, M.; Johansson, N. G. Tetrahedron Lett. 1986, 27, 877-890. 13. For a related example, see: Harnden, M. R.; Jarvest, R. L.; Bacon, T. H.; Boyd, M. R. J . Med. Chem. 1987, 30, 1636-1642. 14. Kjellberg, J.; Johansson, N. G. Tetrahedron 1986, 42, 6541-6544.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
5.
15.
16. 17. 18. 19.
B
R
O
N
S
O
N
E
T
A L .
Phosphonylmethoxyethyl Derivatives ofPurine
87
Kim, C. U.; Luh, Β. Y.; Misco, P. F . ; Bronson, J.; Hitchcock, M. J. M.; Ghazzouli, I.; Martin, J. C. 8th International Round Table Meeting on Nucleosides, Nucleotides, and their Biological Applications, Orange Beach, AL, October 1988, Abstract No. 41. Binder, J.; Zbiral, E. Tetrahedron Lett. 1986, 27, 5829-5832. Balzarini, J.; Naesens, L.; Herdewijn, P.; Rosenberg, I.; Holy, Α.; Pauwels, R.; Baba, M.; Johns, D. G.; De Clercq, E. Proc. Natl. Acad. Sci. USA 1989, 86, 332-336. Lin, T-S.; Chen, M. S.; McLaren, C.; Gao, Y-S.; Ghazzouli, I.; Prusoff, W. H. J. Med. Chem. 1987, 30, 440-444. Kelsey, D. K.; Kern, E. R.; Overall, J . C., J r . ; Glasgow, L. A. Antimicrob. Agents Chemother. 1976, 9, 458-464.
RECEIVED February 23, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Chapter 6
Synthesis and Antiviral Activity of Nucleotide Analogues Bearing the (S)-(3-Hydroxy-2-phosphonylmethoxy)propyl Moiety Attached to Adenine, Guanine, and Cytosine Joanne J . Bronson , Ismail Ghazzouli , Michael J . M. Hitchcock , Robert R. Webb II , Earl R. Kern , and John C. Martin 1
1
1
1
1
2
1
Bristol-Myers Company, Pharmaceutical Research and Development Division, 5 Research Parkway, Wallingford, CT 06492-7660 University of Alabama, Birmingham, AL 35294 2
The nucleotide analogue methoxy)propyl)adenine (HPMPA, 1), (S)-9-((3-hydroxy-2phosphonylmethoxy)propyl)guanine (HPMPG, 3) and (S)-1((3-hydroxy-2-phosphonylmethoxy)propyl)cytosine (HPMPC, 4) have been synthesized on a multigram scale and evaluated in vitro and in vivo for antiviral efficacy against herpesviruses. HPMPC emerged as the most selective antiherpes agent of this series. It showed a much greater in vivo efficacy than acyclovir against herpes simplex virus types 1 and 2 and also was more potent than ganciclovir in a murine cytomegalovirus infection model. Much o f t h e r e s e a r c h antiviral
activity
nucleoside acyclovir that
analogues.
involves
which
and thus
are
nucleotide
called
analogues,
virus
which
been
reported
discovery
b y De C l e r c q
antiviral
analogues acyclic
structurally
nucleoside
additional variety
studies,
1 and 2 ) ,
(5),
Epstein-Barr
of
(HPMPA,
1)
(Maloney
sarcoma
type
virus
(6),
virus).
a n d DHPG
(S)-9-((3-hydroxy-2as a p o t e n t , of
broad
nucleotide ethers
In that
and i n
publication
simplex
in vitro virus
varicella-zoster
adenovirus
In vivo
species
nucleotide
o f A C V (J.)
t o be a c t i v e
(CMV),
Ultimately,
s p e c i f i e d DNA
as p h o s p h o n y l m e t h y l
i n c l u d i n g herpes
1 was d e m o n s t r a t e d
administration
(4).
action
mono
activity.
a new c l a s s
characterized
cytomegalovirus
stable
and Holy
HPMPA w a s f o u n d
a
(Τ),
activity
with
of
as
of
The phosphorylated
antiviral
has defined
derivatives
o f DNA v i r u s e s
(HSV
virus
agent
give
the virus
derivatives
phosphonylmethoxy)propyl)adenine spectrum
to first
a n d some
t o have
such
a mechanism
to a diphosphate.
replication.
analogues,
o f compounds
and e v a l u a t i o n
analogues,
have
inhibits
i n c l u d i n g phosphonate
have
these
(DHPG),
i s converted
formed
polymerase
The
cases,
phosphorylations
i n turn is
the discovery
on the synthesis
I n most
enzymatic
triphosphate
(2,3),
towards
(ACV) and g a n c i c l o v i r
phosphate the
directed
has focused
and a against
of
against
types virus
(VZV)
retrovirus herpes
by t h e i . p . and t o p i c a l
a
1 and 2
simplex
routes
(4). 0097-6156/89/0401-0088$06.00/0 ο 1989 A m e r i c a n C h e m i c a l Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
of
6.
HPMPA
(1)
has
2 -deoxyadenylic involves then to
two
that
HPMPA at
this
must
out
acyclovir
against These HPMPA
is
to
deficient,
analogue
equivalent.
lack In
against
have
acyclovir
the
of
for
is
action
which
bypassing
this
activity
resistant
In
(4).
strain
of
is
1 in
The the
structural
provides active
chirality isomer,
form as
is
The have
been
this
been
kinase
rabbit
model
of
2
analogy
rationale of
HPMPA
phosphate
of
for
HPMPA t o the
This
(4). The
2.
fact
2 -deoxyadenylic the
S
S enantiomer
opposite
acid
!
that
isomer has
enantiomer
as
the
of
(2)
drawn
is
same
HPMPA,
the
R
inactive.
guanine,
cytidine,
described
DNA v i r u s e s , synthesis
a
of
(JjO).
1
also
mutants
activation,
HPMPA h a s
a
is
active
substrate. of
fact,
result
not
deficient step
whereas,
efficiently
is
a thymidine HSV
that
the
a
which
similar
selectivity
only
and
it
first
against
is
is
derives
However,
(9).
that
monophosphate;
thymidine kinase
such viruses
in vivo
keratitis
enzymes
a kinase
CMV a n d
virus.
The d i f f e r e n c e to
phosphorylation
l i m i t e d spectrum
that
mechanism
Acyclovir
has
a
This
(8).
specified
active
reported
action
a triphosphate
acyclovir.
the
of
give
phosphorylated
in that
include
simplex
herpes
for
be
an analogue
a mechanism o f
virus
viruses
viruses
herpes
above
step
to
be
have
DNA p o l y m e r a s e s
first
by
to
and t o
a monophosphate first
carried that
viral
described
is
proposed
(2)
phosphorylations
inhibits
acyclovir
been
acid
1
89
Adenine, Guanine, and Cytosine
BRONSON E T AL.
but
and
series,
HPMPT ( 5 )
antiviral HPMPA,
3
and
thymidine
HPMPG ( 3 )
(5).
is
not.
comparison
HPMPG,
and
analogues
a n d HPMPC In of
this the
(4)
chapter,
three
related
are
to
active we
active
describe members
HPMPC.
4
HPMPA against
5
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
of
the
90
NUCLEOTIDE ANALOGUES
Chemistry The p r e p a r a t i o n requires to
the
bases
the
well to
the
side
chains.
should
hydroxy1
on the
secondary Two
1.
In
to 7,
strategy
A
used
the
be
used
used
A second
issue
protected
analogues
in
addition
coupling
of
nucleoside
only
active
the
starting is
so
S
material
that
that
introduced
X,
for
with
the
for
terminal
the
selectively
on
the
for
to
this
terminal
hydroxyl
phosphonylmethyl via
an
series
labeled
are A,
represented
a
preformed
protected
ether
electrophilic
with
P,
functionality. side
is The
chain
alkylat base for
the ideal
the
to
analysis
contain provides
the
preparation is
the
the
proceeds
the
best
approaches
retrosynthetic
6,
(B)
of
is
alternative was
that the
be
nucleotide
the
therefore,
chiral.
synthetic the
which
group
introduction
can
is
of
complications
with
requirement
c h a i n must
introduce
strategy
derivative
for
series
synthetic
associated
One
be
this
f u n c t i o n a l i t y may b e
nucleoside
leaving
in two
prepared:
side
possible
alkylated second
of
alcohol.
Scheme
acyclic
be
c h a i n must
phosphonylmethyl
in
compounds
known p r o b l e m s
side
enantiomer
of
recognition
of
HPMPA.
alkylation of for
the
synthesis
more
synthesis
of
crystalline
of
a
Since
specific the
intermediates, compound
preformed
many h e t e r o c y c l e s ,
preparation HPMPG a n d
of
a number
the of
and
second analogues
HPMPC.
Base
OH
X
•OP
Scheme 1
was
electrophile
7
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
and
HPMPA S y n t h e s i s . appeared
Our
(JJL).
The
account
chiral
dihydroxypropyl)adenine adenine
and
chloride
and
to
then
diethyl
protected then
cleavage ten
as
reaction
the
in
the
all
multigram
quantities
was
the
prepared
procedure
worked
(13)
(15).
to
the
to
HPMPA
removal
(90
of
of
all
treatment groups
acetone
were
was
11
(JL4)
caused
NaH
and
fully removed
(85
%),
by
and
accomplished i n DMF a t
The workup the
hydroxy
with
give
11
volatiles
of
trityl
secondary
furnish
%).
in hydrolysis
exchange HPMPA
in
well
reverse
36 % o v e r a l l
prepared
side
on of
4-dimethylaminopyridine,
by a 13
for
by
of
room
this
evaporation.
intermediate
silyl
precipitation of
acid large with
and
phase
the
yield
by
HPMPA
transfer
general
benzylation
to
give
the
of
approach
B.
functionality R-glycerol
literature
(S)-1-0-benzylglycerol
monomethoxytrityl
triethylamine
of
adenine.
more
by
This
preparation
a phosphonate
hydrolysis scale
purifications.
efficient from
the
chain bearing
Phase
3).
followed
Reaction
or
allowed
HPMPG was
(Scheme
(12)
trityl
acid
with
from
was
(8)
nucleotid
appropriate
acetonide
The
i n DMF t o
functionalities
furnish
ion
approach
HPMPG S y n t h e s i s .
The
(13)
has
synthesized
DHPA
reaction 2).
HPMPA
zwitterion the
tedious
readily
successive
acetic
then d i l u t i o n with
for
by
of
(S)-9-(2,3-
Briefly,
t r i m e t h y l s i l y l bromide
resulted
synthetic
First,
ester of
involved
crystalline
avoids
by
90 % y i e l d .
5 h to
water
and
effective and
of
for
of
(12).
65 % y i e l d
alkylated
was
w h i c h was
8),
i n DMF ( S c h e m e
80 % a q u e o u s
equivalents
Addition esters,
9 was 10
with
temperature
in
9
synthesis
material
tosyloxymethylphosphonate
with final
of
HPMPA
hydrolysis
afford
a multigram
acetonide
triethylamine
functionality
of
starting
(DHPA,
(S)-glycerol
bis-protected
91
Adenine, Guanine, and Cytosine
6. BRONSON E T AL.
chloride,
i n dichloromethane
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
gave
92 14
NUCLEOTIDE ANALOGUES
In
NaH (0 (55
quantitative
i n THF at °C
to
y i e l d without
reflux
then
room t e m p e r a t u r e ,
% yield
from
13,
acetate/hexanes). (steam bath, 16 h )
and
purification.
diethyl
14 h )
furnished
chromatographed,
Detritylation
20 m i n )
of
Amberlyst-15
86
-
afforded
16
in
acetate/hexane
to
8 % ethanol/ethyl
tosyl
in pyridine
chloride
chromatography. mesylate the
18
chloride
in
synthesis
and
quantitative of
18 m a k e s
after
reaction
of
an
without
in
compound in
o
•
n
T
16
superior
to
to
acetate)
a
byproduct the (18). to
with ester
0 R
OBn
•
OBn
17, R=Ts; 18, R=Ms
17
i n DMF a t
80
°C
was
2-amino-6-benzyloxypurine
give
was
after
workup
and
of
19
as
identified
as
the
20
were
of
first
19
and
step
of
hydrogénation a
ο
0 H
•
59 % y i e l d
The
afford
of
of
structures
transfer
of
17.
3
mixture
carbonate
ease
14
OBn
A solution solid
gave
The
1—OBn
16
Scheme
with
after
with
purification.
OBn
15
% ethyl
OflTr
ο
r
15
acid
16
dichloromethane
13
o
(75 of
91 % y i e l d
OH
12
(13)
ether
temperature,
Treatment
intermediate
•
with
acetic
(room
chromatography
triethylamine
it
80 % a q u e o u s
acetate). 17
yield
14
75 % e t h y l
i n methanol
tosylate
Alternatively,
methanesulfonyl
50 % t o
90 % y i e l d gave
of
phosphonylmethyl
15 w i t h
or
Treatment
tosyloxymethylphosphonate
90 % y i e l d
the
(20 of
an
N-7 as
based
deprotection 2
as
a
foam
10 % m e t h a n o 1 / d i c h l o r o m e t h a n e ) . 21 w i t h
a
ten
room t e m p e r a t u r e recrystallization
for
fold
excess
5 h gave
from
of
HPMPG
(5
4).
20,
one
and
t
(Scheme
isomer
in
(16 17)
chromatography oil
% Pd(0H) /C, 21
treated
and
the
polar
of
19 w a s
achieved
treatment
68 % y i e l d
of
of
data
by
ethanol,
(chromatographically Finally,
a
minor
assignments
o n NMR s p e c t r o s c o p i c
cyclohexene,
in
with
% methanol/ethyl
A more
bromotrimethylsilane (3)
batch
cesium
reflux) purified
diethyl
i n DMF following
ethanol/water.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
at
6.
B
R
O
N
S
O
N
E
T
A
93
Adenine, Guanine, and Cytosine
L
OBn
HPMPC
Synthesis.
Mesylate
HPMPC
(Scheme
(19).
5)
and
cesium carbonate
for
2.5
h.
After
chromatography desired (23
The
(5
next
on
repeated
for
the
by
conversion
the
were
converted
to
was give
water
(20
adjusted the
to
to
the
mL p e r
(7.5
heated
was
with
soluble
sodium and
on
23
C-13
isomer
4 h
and
22
then a
forms
treated
with
solutions
to
foam
minimize
yield
material (4) of
as
after a white
these
highly
powder
nucleotide analogues
substances 1.00
partial bromide
solution.
nucleotide
were
a
was
trimethylsilyl
HPMPC
The
tic
reduction,
the
aqueous
other
white,
the
byproduct
HPMPC 2 4 a s
over
that
salts.
resulting as
the
for
of
fresh
of
°C
by
10 % m e t h a n o l / d i c h l o r o -
typical an
mmol)
90
% palladium
reflux
from
found
from
give
The d e s i r e d
ester to
at
23 were b a s e d (20
of
(29
purified
to
monitored by
95 % y i e l d
analogues
and
ethanol,
the
highly
gram)
The
22
cytidine.
we
HPMPC a n d
soluble
nucleotide
cytosine
an O - a l k y l a t e d
resulting
ethanol
studies,
of
catalyst a
and
carefully
Finally,
needed.
7.
preparation
DMF w a s
product
diethyl
Also,
the
afforded
more
the
mmol),
hydrogénation
byproduct
product.
in vivo
%)
chromatography
replacing
analogues with
to
precipitation with For
(66
transfer
derivative.
to
crude
assignments
r e a c t i o n was
deesterification after
22
comparison to
after
dihydrouracil
for
(24
10 % m e t h a n o l / d i c h l o r o m e t h a n e )
furnish
of
18
5 0 mL o f
the
cyclohexene,
This
of
in
8 h)
formation
maximized
utilized
carbon,
70 % y i e l d
methane).
mmol)
isomer
in
subjected
hydroxide in
-
structural
NMR s p e c t r o s c o p y was
(49
evaporation,
N-alkylated
%).
18 w a s
A mixture
were
Ν NaOH u n t i l then
soluble
the
lyophilized powders.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
were
mixed pH to
94
In
NUCLEOTIDE ANALOGUES
Vitro
Data
The
50 %
HSV
1 and
closely these
inhibitory parallel (ACV)
potent
strain
of
analogues
to
do
1, not
which rely
experimental three that
phosphonates of
DHPG,
therapeutic
index
against
animal
model
to
have
is on
for
an
this
infection these
in vitro
Clercq ten
2. a
for
in
vitro
experiments
compounds
the
with
against
by
the
to
HPMPA which
i n mice. human
than
phosphonates
these
are
deficient
nucleotide
pathogen this
potencies shown
(21).
showing
potent
Ganciclovir
caused
recently
series
(4)
against data
activation.
patients.
infections
These
thymidine kinase
cytomegalovirus,
activity
less
an o p p o r t u n i s t i c
AIDS
in vitro
I).
and H o l y
fold
However,
kinase
is
HPMPC
(Table
indication that
exhibited of
yg/ml
De
1 and
this
(CMV)
murine
by
against
a n d HPMPC was
active
phosphonates,
HSV
i n many
therapy
HPMPG a n d
25.2
approximately
acyclovir
infections
HPMPA, to
reported
be
Cytomegalovirus severe
of
2.3
against
than
HSV
doses from
that
substances
acyclovir more
2 ranged
HPMP
causing
(DHPG)
virus
slightly
have
the
and
HPMPC
the
In
contrast
side
are
virus
in
to
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
in
other not
virus
(22-24).
to
vitro
also
used
c h a i n were
immunodeficiency
an All
superior
best
is
is
(20).
found
6.
Adenine, Guanine, and Cytosine
BRONSON ET A L
Table
I.
Antiviral
Activity
I D
Virus HSV
1
(BWS)
HSV
2
(G)
HSV
1
(TK-)
In
Vitro
ug/ml
50>
HPMPA
HPMPG
HPMPC
ACV
DHPG 0.2
9.3
2.3
5.4
0.5
25.2
7.3
2.3
0.3
3.2
0.7
0.7
4.3
0.9 >10
HCMV
(AD169)
0.27
0.39
0.22
1.8
MCMV
(Smith)
0.02
--
0.02
0.06
In
vitro
relative
antiviral
in vivo
potency
comparable
viruses
in vitro
a number
of
antiviral studies Toxicity To
set
were
to
only
for
for
route,
the
at
of
HPMPA
rather
Table
two
orders In
of
reliable an
predictor
in
magnitude
order
nucleotide
studies, oral
route the
were
where
mice
to
of
vitro
more
assay
analogues,
for
potent
in
the
true
in
vivo
extended
even
the
toxicities
animals
given
twice
a
the
animals toxic,
at
the
toxicity i.p.
route
Presumably slightly
II.
the
i.p.
Toxicity
route.
of
were
low
dose
but
because
less
five
days
dosed
once
a
HPMPG,
by
and
by
of
10
the
day
for
i.p.
for
all
at
fewer given
the
mice
the days
by
least
HPMPC t o %
to
mg/kg/day.
toxic
when
far
the
death
not of
toxic
and
assigned
for
in
was
phosphonates
(i.p.), were
especially
HPMPC was
HPMPA ,
day
resulting
10 m g / k g / d a y .
than
the
Three
and
HPMPG w e r e
of
intraperitoneal
II).
highly
intermediate by
the
(p.o.),
(Table
HPMPG was
all
an
by
100 m g / k g / d a y
level
these
routes
i.v.
killing
dosed
i.v.
of
to
(25,26).
Compounds
days.
showed
dosing,
one
in vivo
(i.v.)
HPMPA dose
a
DHPG h a s
tha is
i n mice
group.
three
not
instance,
Mice
intravenous except
sometimes
initiated.
doses
dose
is For
models
potential
assessed
each
to
but
in vivo
were
data
potencies.
of
the
toxic
Mice
Survival HPMPG
HPMPC
Route
HPMPA
200
p.o.
100
33
100
100
p.o.
100
100
100
10
p.o.
100
100
100
200
i.p.
0
0
100
100
i.p.
0
0
100
10
i.p.
100
0
100
200
i.v.
0
0
100
100
i.v.
100
0
100
10
i.v.
100
100
100
Dose,
mg/kg/day
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
96
NUCLEOTIDE ANALOGUES
and
showed no
three
effect
on
the
HPMPA P h a r m a c o k i n e t i c s In a
order study
to of
100 m g / k g 5 % by
evaluate HPMPA
of
oral
recovery
indicate
of
that
the
to
200
mg/kg/day
of
a phosphonate
are
dosing
after
one
m i c e was
of
which
by
all
time
indicating
A possible
half-life
is
that
the
cells
is
only
slowly
enhanced
in vivo
Table
of
this the
or
The
i.v.
routes.
as
duplicate
the
data
and
use
i n Table
i.p.
of
routes
the
more
be
dose
of
i.v.
to
that
III of
easily
substance
for
this
nucleotide
released.
persistence
this
explanation
phosphonate
The
i n plasma
analogue
slow
which
has
release
could
a
long does of
result
the in
an
effect.
III.
Pharmacokinet i c s of Plasma
Time,
the
supports
terminal
lead
for
the
Because
i.p.
mice.
of
to
evaluations
HPMPA w e r e m e a s u r e d three
with
determined
point
half-life.
compound w o u l d
the
analogue, dosed
percent
averaged.
by
was
fo
dramatically
but
was
the
efficacy
out
from
get
into
i n which
initial
exposure
similar
hour
slows
pooled
Each animal
bioavailability
carried
overall
i.p.
terminal
the
concentrations plasma
administration the
oral
HPLC a s s a y
were
performed plasma
undertaken.
individual
analogues
assays
long
up
pharmacokinetics
First,
five
The plasma
the
dosed
Mice
bioavailability,
nucleotide HPLC
the
HPMPA.
from
in
i n m i c e was
a urinary
recovered low
mice
routes.
min
HPMPA
Concentration
Mice of
HPMPA,
ug/ml p.o.
i.p.
i.v.
5
in
0.40
117
196
0.63
15
63.4
30
25.5
52.6
0.63
45
10.6
27.5
0.78
110
60
4.54
8.65
0.86
90
3.45
5.76
0.56
120
3.94
5.11
150
3.50
3.32
---
Systemic
Treatment
HPMPA,
HPMPG,
herpes
simplex
to
acyclovir
survival
virus
in
infected
i.p. by
Herpes
a n d HPMPC w e r e
since
analogue
of
an
types
with
the
of
virus,
and
then
routes
indicated
tables
significance
of
<0.05
model,
by
of
were twice the
Infections
i n mice
These
die
Animals
the
2.
mice
post-infection. in
Virus
evaluated
1 and
encephalitis
untreated
various
Simplex
and
the
for
efficacy
with
a
for
day
Fisher
half
the
5 days.
exact
were
is
infection.
treatment
Mice
activity
substances
a d m i n i s t r a t i o n was dosed
in
with
measured
Animals a
total
as
were
nucleotide
initiated A *
against compared
3
h
daily
indicates
test.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
dose a
%
6.
Adenine, Guanine, and Cytosine
BRONSON E T AL.
HPMPA a n d HPMPG A g a i n s t in
mouse
and t h e s e
compounds
HPMPG i s t h e m o r e exaggerated
started
route.
complete
An important
who w e r e
able
systemic
mouse
toxicity
o f HPMPG i s s i m i l a r
al.
to achieve model
f o r r a c e m i c HPMPG
Table
IV.
point
but poor
by the
to that
both
c o u l d be
somewhat HPMPA o r
substances
achieved. index.
The
b y De C l e r c q
and Holy
protection, i n a
of the higher recently
is
less
therapeutic
but not complete,
The r e s u l t
manner.
neither
doses
reported
IV),
dependent
i s that
At higher
that
efficacious (Table
the difference
100 % s u r v i v a l
with
some,
(4).
i n a dose
although
protection.
consistent
infections
HPMPA w a s g i v e n
compound h a d a s i m i l a r
f o r HPMPA i s
simplex
t h e mice
analogue
IV b e c a u s e
t o show t o x i c i t y b e f o r e
each
data
potent
oral
HPMPG p r o v i d e d
HPMPA a n d HPMPG w e r e b o t h
o f herpes
did protect
i n Table
bioavailable
Thus,
HSV.
m o r t a l i t y models
97
potency and
described
by T e r r y
et
(27).
In Vivo
Efficac an % Survival
Dose,
mg/kg/day
HPMPA,
p.o.
ACV,
300
40*
90*
200
70*
67*
100
59*
50*
50
25*
34*
25
17
10
-----
----
1 0.1 0.05 Placebo
provided
HSV.
nucleotide
analogue
what was o b s e r v e d toxicity
to that
selected
gave
survived
when
dosed
Acyclovir This for
given
by the i . p . route at the high
o f HPMPC w a s
superior
less
in this
to that
of
---
dose
than
of at
index
since
A l l of
evidence
efficacious
a
potency
In the f i r s t
V.
over
HPMPC s h o w e d
o f HPMPA a n d y e t a HPMPG.
HPMPC
ether
therapeutic
In fact,
Table
i n vivo
a l l the doses t h e HPMPC
o f drug
treated
toxicity
mg/kg/day.
and gave
at best
a 75 %
200 mg/kg/day. lower
The data
doses
t o determine
indicate
1 mg/kg/day
experiment
5
HSV w i t h
a t 2 0 0 , 1 0 0 , a n d 10
less
m o d e l was r e p e a t e d
orally
active
protection,
t h e a c t i v i t y o f HPMPC.
dose
an improved
a n HSV 1 i n f e c t i o n w i t h o u t
was c o n s i d e r a b l y
protection
20
a phosphonylmethyl
o f HPMPC w a s u n d e r e s t i m a t e d
complete
60* 50* 5
than that
o f t h e more
the potency
mice
less
---
30
f o r HPMPA a n d HPMPG.
substantially
comparable study,
c o u l d have
70* 50*
10
against
i.p.
75*
--
results
indication that
ACV,
0
0
The i n v i v o
the f i r s t
i.p.
----
--
0
HPMPC A g a i n s t
HPMPG,
p.o.
(Table
and found
that VI).
t o have
an end p o i n t
t h e 50 %
effective
HPMPC w a s
a potency
also
slightly
acyclovir.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
98
NUCLEOTIDE ANALOGUES
Table
V.
In Vivo
Efficacy
o f HPMPC
(i.p.) %
Dose,
mg/kg/day
HPMPC,
Against
HSV 1
Survival ACV,
i.p.
75*
200
100*
100
100*
70*
10
100*
20
Placebo
Table
5
5
VI.
In Vivo
Efficacy
o f HPMPC
(i.p. %
Dose,
mg/kg/day
and p . o . )
Against
HSV 1
Survival
HPMPC
200
78*
70*
60*
100
----
90*
40
0
23
--
16
---
16
10
100*
1
90*
0.1
50
Placebo
16
The
data
infection
obtained
with
of
2 virus
was a c h i e v e d
found
at t h e dose
again
Table
from
more
VII.
at
level
(Table
VII)
Significant
0 . 1 mg/kg/day, of
10.
Although
efficacious
In Vivo
--
than
Efficacy
mg/kg/day
HPMPC,
i.p.
were
very
protection
and complete
of
potent
systemic
similar
T h e i . p . HPMPC d a t a less
to the
against
the
protection is
by t h e o r a l
a
type
was
combination
route,
HPMPC
acyclovir.
HPMPC %
Dose,
16
t h e u s e o f HPMPC a g a i n s t
t h e HSV 1 s t u d y .
two e x p e r i m e n t s .
was
(p=0.08)
HSV 2 i n m i c e
results
of
i.p.
(i.p.
and p . o . )
Against
HSV 2
Survival
ACV, i . p .
HPMPC,
p.o.
ACV, p . o .
200
100*
100*
90*
50*
100
100*
20
70*
10
10
100*
10
30
0
1
60*
0.1
40*
Placebo
0
0
5
5
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
6.
Topical
Efficacy
Acyclovir
has
clinical
of
on
HPMPC was
compared
in
pigs
guinea
infected
on
in
was
5 days.
The
commercial
lesion,
and
disease.
topical
not
of
of
a
to
the
In
reduce
this
and
the
of
formulation
day
for
1 through
lesion
score
overall
of
a
treated
a
of
was
A score
commercial
provided
a
VIII.
benefit
Topical
even
in
Efficacy
a
of
dilute
Lesion 0.8*
% HPMPC
1.0*
0.1
% HPMPC
1.4*
5.0
% ACV
2.4
Control
disease
model
with
the
started The than
data
whereas,
4
or
and
at 5.
this
the
to
48 time
h
after point
apparent
these
due
already
to
at with
also
a
acyclovir
of
0.1
%.
1
Score
was
of
24, is
efficacy BID and
i.p. 48
about
low
which
mice
are for
at
drug
but
for HPMPC
a
the
and infected was
more
given
1.2
potent dose.
only
sick
highest
at
and
by
the
the
11.2
initiation regimen die
doses
48 h p o s t - i n f e c t i o n toxicity
For
mg/kg/day;
challenging
quite
use
human
post-infection.
fold
achieved a
the
the
when t r e a t m e n t is
Mice
treatment
at of
in
were
hours
ten
dose
DHPG was
of
Animals
survivors
efficacy the
predictive
IX).
then
the
initiated of
be
the
of
infection,
lack
Cytomegalovirus
efficacious
untreated
enhancement
sick
6,
HPMPC
number
effect
DHPG w h e n t r e a t m e n t
probably
that
HPMPC was
and
of
protective
significant
The
HSV
cytomegalovirus,
to
(Table
route
the
human
model,
times
demonstrate
Murine
thought
mouse
i.p.
increasing
that
for
is
compared
indicated
dose.
delayed
since
available
were
HPMPC was a
mg/kg/day
HPMPC A g a i n s t
i n mice
In by
the
DHPG i n
instance,
was
is
(DHPG)
virus at
of
virus
(3,31).
ganciclovir
indicates of
3.0
Efficacy
mouse
(*
2.8
Control
in vivo
no
severe
derived
HPMPC A g a i n s t
% HPMPC
the
indicates
formulation
1.0
of
The
0
disease
5.0
No
used.
5 % formulation
Mean
Systemic
day
vehicle.
highl
substantial
Compound
Placebo
a
80/PEG
statisticall
HPMPC was
Virus
were
topical
lesions.
increasingly
the
pigs
with twice
of
statistically of
model
the
tween
acyclovir
severity
The
was
in (28).
guinea
continued
represent
is
infection
severity and
route
herpes
study,
then
severity. 4
topical
genital
cutaneous
regions
formulation
each
the
However,
Table
in
by
primary
VIII).
six
the
<0.01).
provide
of
3 h post-infection
HPMPC,
T h e mean
significance
(Table in
1
efficacy
acyclovir
attempt
scores
HSV
treatment
backs
scored
representation did
to
an
For
were
limited
started
for
lesions
a the
(29.30)
their
formulations Treatment
HPMPC A g a i n s t
shown
trials
99
Adenine, Guanine, and Cytosine
BRONSON ET A L
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
day
HPMPC
was
disease
animals.
on
of
in
100
NUCLEOTIDE ANALOGUES
Table
IX.
In
Vivo
Efficacy
Murine
of
(i.p.)
HPMPC
% Dose,
mg/kg/day
Treatment
Against
Cytomegalovirus
Start,
h
Survival
HPMPC
DHPG
33.3
6
100*
93*
33.3
24
87*
67*
33.3
48
33
33
11.2
6
100*
67*
11.2
24
93*
80*
11.2
48
67*
3.8
6
100*
53 13
73*
3.8
24
53
3.8
48
67*
48
60
24
20
20
27
27
0
1.2 1.2 1.2 Placebo Control
20
(p=.06)
Summary Although
possessing
HPMPC e m e r g e d in
vivo
against
demonstrated mg/kg/day in m
g/kg/day,
acyclovir
which
In
a murine
significantly
limited
since
commercial
of
therapeutic
index
of
infections
agent
dramatically only
index
0.1
(32),
than
more formulation
HPMPC w a s s h o w n
Ganciclovir
t o b e n o more cells
t o be
potent
by p r o v i d i n g
CMV i n f e c t i o n s
for possible
f o r HPMPC.
pigs.
model,
ganciclovir
Also
found
more
in a topical
i n guinea
is
this
therapy
i n immunocompromised
currently (20).
toxic
to
protection
i n the c l i n i c
due t o m y e l o s u p p r e s s i o n
marrow
acyclovir,
up t o 200
HPMPC w a s
0 . 1 % HPMPC w a s
infection
reported
evaluation
at doses
therapeutic
5 % acyclovir
than
of
b u t i t was s t i l l
1.2 mg/kg/day.
t o human b o n e
cytomegalovirus
low i . p . dose
high
infection
potent
HPMPC w a s r e c e n t l y further
o f HPMPC w a s
bioavailability,
cytomegalovirus
to
antiviral
o f HSV 1 a n d 2 i n f e c t i o n s .
In addition,
for the treatment
ganciclovir merits
down t o a models
relative
efficacious
The potency
administration,
more
potency
a highly
i n a very
low o r a l
route.
low dose
evaluation
as
t o x i c i t y was a p p a r e n t
results
by o r a l than
of
a n HSV 1 c u t a n e o u s
down t o a a
mortality
of
by t h i s
efficacious
be
by i t s a c t i v i t y
because
active
in vitro
study
herpesviruses.
no evidence
Probably
against
moderate this
i n mouse
mice,
less
from
under
but has
Especially
than
nucleotide
analogue
against patients.
Literature Cited 1.
Sidwell, R. W.; Huffman, J . H.; Barnard, D. L.; Reist, E. J. 8th International Round Table Meeting on Nucleosides, Nucleotides and Their Biological Applications Abstract 14, Orange Beach, AL, October 3, 1988.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
6.
BRONSON ET A L
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.
Adenine, Guanine, and Cytosine
101
Prisbe, E. J.; Martin, J . C.; McGee, D. P. C.; Barker, M. F.; Smee, D. F.; Duke, A. E . ; Matthews, T. R.; Verheyden, J . P. H. J . Med. Chem. 1986, 29, 671-675. Duke, A. E . ; Smee, D. F.; Chernow, M.; Boehme, R.; Matthews, T. R. Antiviral Research 1986, 6, 299-308. De Clercq, E . ; Holy, Α.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P. C. Nature 1986, 323, 464-467. De Clercq, E . ; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.; Holy, A. Antiviral Research 1987, 8, 261-272. Lin, J-C.; De Clercq, E . ; Pagano, J . S. Antimicrob. Agents Chemother. 1987, 31, 1431-1433. Baba, M.; Mori, S.; Shigeta, S.; De Clercq, Ε. Antimicrob. Agents Chemother. 1987, 31, 337-339. Votruba, I.; Bernaerts, R.; Sakuma, T . ; De Clercq, Ε.; Merta, Α.; Rosenberg, I.; Holy, A. Mol. Pharmacol. 1987, 32, 524-529. Elion, G. B.; Furman, P. Α.; Fyfe, J . Α.; de Miranda, P.; Beauchamp, L.; Schaeffer 74, 5716-5720. Maudgal, P. C.; De Clercq, E . ; Huyghe, P. Invest. Ophthamol. Vis. Sci. 1987, 28, 243-248. Webb, R. R.; Martin, J . C. Tetrahedron Lett. 1987, 28, 4963-4964. Holy, A. Collect. Czech. Chem. Commun. 1975, 40, 187-214. Holy, Α.; Rosenberg, I. Collect. Czech. Chem. Commun. 1982, 47, 3447-3463. McKenna, C. E . ; Schmidhauser, J . J . Chem. Soc. Chem. Commun. 1979, 739. Golding, B. T.; Ioannou, P. V. Synthesis 1977, 423-424. MacCoss, M.; Chen, Α.; Tolman, R. L. Tetrahedron Lett. 1985, 26, 1815-1818. Robins, M. J.; Robins, R. K. J . Org. Chem. 1969, 34, 2160-2163. Kjellberg, J.; Johansson, N. G. Tetrahedron 1986, 42, 6541-6544. Webb, R. R.; Wos, J . Α.; Bronson, J . J.; Martin, J . C. Tetrahedron Lett. 1988, 29, 5475-5478. Collaborative DHPG Treatment Study Group, N. Engl. J . Med. 1986, 314. 801-805. Snoeck, R.; Sakuma, T.; De Clercq, Ε.; Rosenberg, I.; Holy, A. Antimicrob. Agents Chemother. 1988, 32, 1839-1844. Pauwels, R.; Balzarini, J.; Schols, D.; Baba, M.; Desmyter, J.; Rosenberg, I.; Holy, Α.; De Clercq, Ε. Antimicrob. Agents Chemother. 1988, 32, 1025-1030. Balzarini, J.; Naesens, L.; Herdewijn, P.; Rosenberg, I.; Holy, Α.; Pauwels, R.; Baba, M.; Johns, D. G.; De Clercq, E. Proc. Natl. Acad. Sci. USA 1989, 86, 332-336. Ghazzouli, I.; Bronson, J . J.; Russell, J . W.; Klunk, L. J.; Bartelli, C. Α.; Franco, C.; Hitchcock, M. J . M.; Martin, J . C. J . Cell. Biochem. 1989, S13B. 300. Martin, J . C.; Dvorak, C. Α.; Smee, D. F.; Matthews, T. R.; Verheyden, J . P. H. J . Med. Chem. 1983, 26, 759-761. Smee, D. F,; Martin, J . C.; Verheyden, J . P. H.; Matthews, T. R. Antimicrob. Agents Chemother. 1983, 23, 676-682. Terry, B. J.; Mazina, Κ. E . ; Tuomari, Α. V.; Haffey, M. L.; Hagen, M.; Feldman, A.; Slusarchyk, W. A.; Young, M. G.; Zahler, R.; Field, A. K. Antiviral Research 1988, 10, 235-252.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
102
N U C L E O T I D E ANALOGUES
28. Corey, L.; Nahmias, A. J.; Guinan, M. E . ; Benedetti, J . K.; Critchlow, C. W.; Holmes, Κ. Κ. N. Engl. J . Med. 1982, 306, 1313-1319. 29. Mansuri, M. M.; Ghazzouli, I.; Chen, M. S.; Howell, H. G.; Brodfuehrer, P. R.; Benigni, D. Α.; Martin, J . C. J . Med. Chem. 1987, 30, 867-871. 30. Alenius, S.; Oberg, B. Arch. Virol. 1978, 58, 277. 31. Kelsey, D. K.; Kern, E. R.; Overall, J . C., J r . ; Glasgow, L. A. Antimicrob. Agents Chemother. 1976, 9, 458-464. 32. Snoeck, R.; Lagneaux, L.; Bron, D.; De Clercq, E. 28th Interscience Conference on Antimicrobial Agents and Chemotherapy Abstract 739, Los Angeles, CA, October 25, 1988. RECEIVED February 23, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Chapter 7
Design of Inhibitors of Herpes Simplex Virus Thymidine Kinase J. A. Martin, I. B. Duncan, and G. J . Thomas Research Division, Roche Products Limited, Ρ.Ο. Box 8, Welwyn Garden City, Hertfordshire AL7 3AY, England The role of herpe the pathogenesis of infection, i t s mechanism of action and the current status with regard to the design of inhibitors are reviewed. Examples of inhibitors based on substrate and product analogues are described, some of which are very potent and highly selective for the viral enzymes. One class of inhibitors with high in vitro potency and selectivity has shown a protective effect in mice under certain conditions and i t is possible that compounds of this type may have potential as antiviral agents in man. Herpes simplex v i r u s (HSV) t y p e s 1 and 2 c a u s e m i l d t o s e v e r e d i s e a s e i n man, p r i m a r i l y o r o f a c i a l and g e n i t a l i n f e c t i o n s . A f e a t u r e o f t h e s e v i r u s e s i s t h e i r a b i l i t y t o become l a t e n t i n neuronal g a n g l i a , from whence r e - e x p r e s s i o n c a u s e s recurrent c l i n i c a l episodes. Thus f a r , t h e d e s i g n o f a n t i v i r a l agents a g a i n s t HSV i n f e c t i o n s has c e n t e r e d on compounds t h a t i n h i b i t major v i r a l enzymes i n t h e l y t i c c y c l e , whereas p r o c e s s e s t h a t c o n t r o l l a t e n c y and r e a c t i v a t i o n have been r e l a t i v e l y n e g l e c t e d t a r g e t s . The
R o l e o f Thymidine K i n a s e i n Herpes Simplex
Virus Infections
Under normal growth conditions, eukaryotic cells obtain the t h y m i d i n e n u c l e o t i d e s r e q u i r e d f o r DNA s y n t h e s i s t h r o u g h a ds. novo pathway, i n w h i c h t h y m i d i n e monophosphate i s s y n t h e s i s e d f r o m d e o x y u r i d i n e monophosphate. Thus, t h y m i d i n e k i n a s e (TK) i s not r e q u i r e d f o r normal c e l l growth but t h e s y n t h e s i s o f a new s p e c i e s o f TK by HSV i s p r e s u m a b l y n e c e s s a r y t o accommodate t h e i n c r e a s e d demand f o r t h y m i d i n e t r i p h o s p h a t e t o f u e l v i r a l DNA s y n t h e s i s . It is more t h a n twenty-five years s i n c e the first report (D e s t a b l i s h i n g t h e p r e s e n c e o f a v i r u s - e n c o d e d TK i n H S V - i n f e c t e d mouse f i b r o b l a s t s . The r e l e v a n c e o f t h i s v i r u s - i n d u c e d enzyme t o p r o d u c t i v e and l a t e n t i n f e c t i o n b o t h i n c e l l c u l t u r e and i n v i v o has been d e s c r i b e d 11-4). 0097-6156/89A)401-0103$06.00A) ο 1989 A m e r i c a n C h e m i c a l Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
104
NUCLEOTIDE
ANALOGUES
V i r u s m u t a n t s have b e e n i s o l a t e d w h i c h do n o t p r o d u c e a t h y m i d i n e k i n a s e (TK~) but r e t a i n an u n i m p a i r e d a b i l i t y t o r e p l i c a t e i n c e l l c u l t u r e (υ). S i n c e TK~ mutants have r e d u c e d p a t h o g e n i c i t y in experimental animal models (6-11) t h e e x p r e s s i o n o f TK i s p r o b a b l y an i m p o r t a n t d e t e r m i n a n t of v i r u l e n c e i n v i v o . These f i n d i n g s t o g e t h e r w i t h i d e n t i f i a b l e d i f f e r e n c e s between t h e v i r a l enzyme and i t s c e l l u l a r c o u n t e r p a r t w i t h r e g a r d t o i m m u n o g e n i c i t y , molecular weight, t h e r m o s t a b i l i t y and particularly substrate specificity (12-16) make t h i s f u n c t i o n an a t t r a c t i v e t a r g e t f o r a n t i v i r a l chemotherapy. W h i l s t i t has been s u g g e s t e d ( 17.18) t h a t s p e c i f i c i n h i b i t o r s o f v i r a l TK may s u p p r e s s one o r more a s p e c t s o f HSV d i s e a s e c o m p l e x , t h e r e have b e e n r e m a r k a b l y few reported a t t e m p t s t o d e v e l o p p o t e n t and s p e c i f i c i n h i b i t o r s o f t h i s v i r a l enzyme. S e v e r a l s t u d i e s have d e s c r i b e d compounds t h a t i n h i b i t TK f r o m E s c h e r i c h i a c o l i (12) , Walker 256 c a r c i n o m a 120.21), Yoshida sarcoma (22. 23) and L1210 cells (2_£) D i f f e r e n c e s have been identified between th s u r p r i s i n g l y these studie
Mechanism of Action Thymidine k i n a s e c a t a l y s e s the p h o s p h o r y l a t i o n of thymidine i n the presence o f d i v a l e n t c a t i o n s s u c h as magnesium w i t h adenosine triphosphate (ATP) as t h e c o n v e n t i o n a l p h o s p h a t e d o n o r . The phosphoryl t r a n s f e r occurs with i n v e r s i o n of c o n f i g u r a t i o n at p h o s p h o r u s , which has been e x p l a i n e d (26) by a s i n g l e i n - l i n e g r o u p t r a n s f e r between ATP and t h y m i d i n e w i t h i n t h e enzyme complex. A more e x t e n s i v e s y s t e m has been d e s c r i b e d (22) i n w h i c h ADP o r AMP may a l s o a c t as t h e p h o s p h a t e d o n o r i n 5 - p h o s p h o t r a n s f e r a s e r e a c t i o n s t o t h y m i d i n e and i n s u p p o r t o f t h i s t h e r e i s e v i d e n c e (2&) t h a t HSV-1 TK i s t r a n s l a t e d as t h r e e p o l y p e p t i d e s t h a t may e x i s t as a heteromultimer with a p o t e n t i a l m u l t i p l i c i t y of s u b s t r a t e b i n d i n g sites. Earlier studies (2 9-31 ) h a d been r e p o r t e d i n which p h o s p h o r y l a t e d s p e c i e s o f t h y m i d i n e a f f e c t e d TK c a t a l y s e d r e a c t i o n s b u t t h i s work u s e d c r u d e enzyme p r e p a r a t i o n s and t h e p r e s e n c e o f i n t e r f e r i n g components cannot be r u l e d o u t . However, now t h a t t h e n u c l e o t i d e and p r i m a r y amino a c i d s e q u e n c e s o f v i r a l TK a r e known ( 3 2 - 3 4 ) , t h e enzyme has been c l o n e d and e x p r e s s e d i n p r o k a r y o t e s (35 36), and d i r e c t e d m u t a g e n e s i s s t u d i e s have begun (37.38), t h e r e i s t h e p r o s p e c t t h a t a f u l l s t r u c t u r a l a n a l y s i s o f t h e enzyme may be a v a i l a b l e soon. E v i d e n c e c o u l d t h e n be o b t a i n e d t o e x p l a i n t h e s e e a r l i e r o b s e r v a t i o n s and e n a b l e t h e d e s i g n o f b e t t e r i n h i b i t o r s f r o m molecular modelling studies. Thus f a r , t h e d e s i g n o f i n h i b i t o r s has been based i n s t e a d on either an understanding of the enzyme-catalysed c h e m i c a l t r a n s f o r m a t i o n s t h a t o c c u r o r on the b i o c h e m i c a l p r o p e r t i e s o f t h e enzyme i t s e l f . Future s y n t h e t i c programmes c o u l d be b a s e d on s u b s t r a t e a n a l o g u e s , p r o d u c t analogues, metal c h e l a t i o n or a l l o s t e r i c i n h i b i t i o n . 1
r
S u b s t r a t e A n a l o g u e s as
Inhibitors
W h i l s t t h e mammalian TK has a v e r y s t r i n g e n t s u b s t r a t e the v i r a l enzyme i s c o n s i d e r a b l y more t o l e r a n t of analogues ( ϋ ) . More p r e c i s e l y , t h e c e l l u l a r enzyme can
specificity nucleoside process
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7. MARTIN E T AL.
Inhibitors of Herpes Simplex Virus
105
o n l y t h y m i d i n e and a few c l o s e a n a l o g u e s , whereas t h e v i r a l enzyme has an a b i l i t y t o p h o s p h o r y l a t e a wide range o f p y r i m i d i n e s and even some p u r i n e n u c l e o s i d e s . T h i s marked d i f f e r e n c e has been e x p l o i t e d by many r e s e a r c h g r o u p s i n t h e s e a r c h f o r new a n t i v i r a l agents, r e s u l t i n g n o t a b l y i n t h e d i s c o v e r y o f a c y c l o v i r (40-42) . Such compounds depend on s e l e c t i v e a c t i v a t i o n by v i r a l TK and c e l l u l a r k i n a s e s t o t h e i r t r i p h o s p h a t e s , which t h e n i n h i b i t t h e v i r a l DNA p o l y m e r a s e . C l e a r l y t h e mode o f a c t i o n o f such a n t i v i r a l n u c l e o s i d e s i s not i n h i b i t i o n o f TK p e r s e . a l t h o u g h t h e y do compete w i t h t h e n a t u r a l s u b s t r a t e , t h y m i d i n e , f o r p h o s p h o r y l a t i o n and w i l l t h e r e f o r e d e p l e t e the p o o l of thymidine n u c l e o t i d e s i n i n f e c t e d c e l l s .
1 A n a l o g u e s o f a c y c l o v i r have been s y n t h e s i s e d w i t h m o d i f i c a t i o n s i n t h e g u a n i n e and s i d e c h a i n m o i e t i e s (43 4 4 ) . These compounds had e i t h e r weak o r no a c t i v i t y a g a i n s t HSV-1 i n a plaque reduction assay. In an attempt t o r a t i o n a l i s e t h e l a c k o f a n t i v i r a l a c t i v i t y t h e a c c e p t a b i l i t y o f t h e s e compounds as s u b s t r a t e s f o r v i r a l TK was measured. As m i g h t have been e x p e c t e d none o f t h e compounds, i n c l u d i n g t h e a c y c l i c a n a l o g u e s 1 and 2, were p h o s p h o r y l a t e d . Both 1 and 2 i n h i b i t e d t h e p h o s p h o r y l a t i o n o f a c y c l o v i r , i n d i c a t i n g t h a t t h e y d i d b i n d t o t h e enzyme. The development o f more p o t e n t and s e l e c t i v e i n h i b i t o r s b a s e d on t h e s e l e a d s t r u c t u r e s has n o t been reported. A s e r i e s of N - p h e n y l s u b s t i t u t e d guanine d e r i v a t i v e s was s c r e e n e d a g a i n s t HSV-1 TK i n o r d e r t o i d e n t i f y l e a d s t r u c t u r e s t h a t c o u l d be m o d i f i e d t o g i v e p o t e n t and s e l e c t i v e i n h i b i t o r s (45. 46) . From t h e r a n g e o f g u a n i n e s s c r e e n e d ( T a b l e I) i t i s c l e a r t h a t substitution i n t h e N 2 - p h e n y l m o i e t y has a marked e f f e c t on potency; f o r example, an e l e c t r o n - w i t h d r a w i n g group i n e i t h e r the meta o r p a r a p o s i t i o n e n h a n c e d p o t e n c y , whereas a l k y l g r o u p s s u c h as m e t h y l o r b u t y l i n t h e p a r a p o s i t i o n r e d u c e d a c t i v i t y . However, a m e d i u m - s i z e d a l k y l r e s i d u e s u c h as e t h y l was t o l e r a t e d i n t h e meta p o s i t i o n . G l y c o s y l a t i o n o f t h e u n s u b s t i t u t e d g u a n i n e 3 gave t h e c o r r e s p o n d i n g 2'-deoxyguanosine d e r i v a t i v e 9 which was t h e most a c t i v e compound r e p o r t e d . D e t a i l e d s t u d i e s have shown 9 t o be s e l e c t i v e f o r t h e i s o l a t e d v i r a l enzyme and i t a l s o i n h i b i t e d TK i n i n f e c t e d c e l l s as m e a s u r e d by t h e e n t r a p m e n t o f r a d i o l a b e l l e d t h y m i d i n e as nucleotides. At h i g h c o n c e n t r a t i o n and with p r o l o n g e d e x p o s u r e 9 d i d e x e r t some t o x i c i t y a g a i n s t t h e mammalian h o s t c e l l s b u t t h e l e a d s g e n e r a t e d i n t h i s s t u d y may provide a s t a r t i n g p o i n t f o r t h e d e v e l o p m e n t o f more p o t e n t and selective inhibitors. P
2
W i g d a h l and P a r k h u r s t (Al) have shown 5 - t r i f l u o r o t h y m i d i n e t o be a c o m p e t i t i v e i n h i b i t o r o f t h y m i d i n e p h o s p h o r y l a t i o n by b o t h c e l l u l a r and more e f f e c t i v e l y HSV-1 TK. I t has a l s o been p r o p o s e d t h a t the t r i p h o s p h a t e of t h i s compound m i g h t m i m i c thymidine t r i p h o s p h a t e f e e d b a c k r e g u l a t i o n o f b o t h enzymes. I t has been
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
106
ΝϋίΧΕΟΉΌΕ ANALOGUES
I . I n h i b i t i o n o f H S V - 1 Thymidine K i n a s e by Derivatives
Table
R
N2-Phenylguanine
3
IC50
[μΜ]
HSV-1
Rl
R2
R3
3
Η
Η
Η
8
4 5 6
Me n-Bu
Η
Η
50
Η
Η
50
7
Br
8 9
Η
Cl
Η
Η
Compound
Η 1.3
Η
2-deoxy-fi-Dribofuranosyl
0.3
shown (A3.) t h a t 5 - t r i f l u o r o t h y m i d i n e i s a s u b s t r a t e f o r b o t h v i r a l and host cell TK, and a l s o t h a t 5·'-amino-5 -deoxythymidine s e l e c t i v e l y i n h i b i t s i t s p h o s p h o r y l a t i o n by t h e c e l l u l a r r a t h e r t h a n t h e v i r a l enzyme, so i t i s p o s s i b l e t h a t c l o s e l y related a n a l o g u e s may s e l e c t i v e l y i n h i b i t t h e v i r a l enzyme. 1
Product
A n a l o g u e s as I n h i b i t o r s
D e r i v a t i v e s of 2'-Deoxy-5-iodouridine. I n an attempt t o improve the a n t i v i r a l e f f i c a c y o f 5 ' - a m i n o - 2 ' , 5 - d i d e o x y - 5 - i o d o u r i d i n e a s e r i e s o f N - a c y l d e r i v a t i v e s was p r e p a r e d as p o t e n t i a l prodrugs (AiL) . W h i l s t none o f t h e compounds showed a n t i v i r a l a c t i v i t y i n t i s s u e c u l t u r e , some were f o u n d t o be i n h i b i t o r s o f H S V - 1 TK ( T a b l e II) . R e c e n t l y , a d d i t i o n a l d a t a have b e e n r e p o r t e d (5SL) w h i c h i n c l u d e a c t i v i t y a g a i n s t t h e t y p e 2 enzyme. 1
A l l o f t h e compounds shown i n T a b l e I I were more a c t i v e a g a i n s t H S V - 2 TK t h a n a g a i n s t t h e t y p e 1 enzyme w h i c h may be a p r o p e r t y o f t h e 5 - i o d o s u b s t i t u e n t as was o b s e r v e d w i t h t h e p a r e n t 5'-amino n u c l e o s i d e . I n h i b i t o r y a c t i v i t y against both viral enzymes a p p e a r e d t o c o r r e l a t e r e a s o n a b l y w e l l w i t h c h a n g e s i n l i p o p h i l i c i t y a r i s i n g from m o d i f i c a t i o n s i n t h e 5 ' - s u b s t i t u e n t . The most a c t i v e compound i n t h e s e r i e s , 14, c o n t a i n e d t h e v a l e r y l s i d e c h a i n and was a p p r o x i m a t e l y twenty t i m e s more a c t i v e a g a i n s t t h e t y p e 2 enzyme. Interestingly, the separation i n a c t i v i t y between t h e two v i r a l enzymes i n c r e a s e d w i t h i n c r e a s i n g o v e r a l l potency of these i n h i b i t o r s . The m e t h a n e s u l p h o n a m i d e 16 was a p p r o x i m a t e l y t w i c e as a c t i v e as t h e c o r r e s p o n d i n g a c e t a m i d e 10 a g a i n s t H S V - 2 TK b u t from t h i s s i n g l e example i t i s i m p o s s i b l e t o p r e d i c t whether s u l p h o n a m i d e s a r e i n g e n e r a l more p o t e n t t h a n t h e c o r r e s p o n d i n g amides. In a l l c a s e s a c y l a t i o n o f t h e 3 - h y d r o x y 1 1
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7. MARTIN E T AJL
107
Inhibitors of Herpes Simplex Virus
f u n c t i o n markedly reduced potency. None o f t h e amides i n T a b l e I I showed a n t i v i r a l a c t i v i t y i n c e l l c u l t u r e and t h e s e compounds were i n a c t i v e a g a i n s t an HSV-1 i n f e c t i o n i n vivo· Table
II.
I n h i b i t i o n o f Thymidine K i n a s e by N - A c y l D e r i v a t i v e s 5'-Amino-2 ,5 -dideoxy-5-iodouridine 1
IC50
Compound
[μΜ]
R HSV-1
10 11 12 13 14 15 16
of
1
HSV-2
CH3CO
>200
78
C2H5CO
159
21
(CH3)2CHCO
55
7
(CH3)2CHCH2CO
68
8
CH3(CH2)3CO
38
2
PhCO
85 >200
16 35
CH3SO2
The 5 ' - a z i d o d e r i v a t i v e 17 has been r e p o r t e d (4_&) t o be an i n h i b i t o r o f HSV-1 TK ( I C 5 0 280 μ Μ ) . A l t h o u g h 17 was a n t i v i r a l i n v i v o i t was n o t a c t i v e i n c e l l c u l t u r e . Mechanism o f a c t i o n s t u d i e s have n o t been r e p o r t e d , and so t h e r e i s no e v i d e n c e t o a s s o c i a t e t h e o b s e r v e d a n t i v i r a l a c t i v i t y w i t h i n h i b i t i o n o f TK.
HO 17
D e r i v a t i v e s of Thymidine. S'-amino-S'-deoxythymidine
A s e r i e s of sulphonamide d e r i v a t i v e s of ( T a b l e I I I ) have been shown t o i n h i b i t
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
108
NUCLEOTIDE ANALOGUES
HSV TK (5JL) a n d have b e e n compared described i n the previous section. Table I I I .
with
t h e amide
I n h i b i t i o n o f Thymidine K i n a s e by Sulphonamide D e r i v a t i v e s of 5 -amino-5 -deoxythymidine 1
1
IC50
Compound
[μΜ]
R HSV-1
18 19 20 21 22 23 24
derivatives
HSV-2
P-CH3C6H4SO2
>200
88
P-CH3OC6H4SO2
>200
116
P-NO2C6H4SO2
127
21
p-BrCgH4S02
171
13
CF3SO2
>200
>200
P-HOSO2C6H4SO2
>200
>200
HOS02(CH2)3S02
>200
>200
In common w i t h amide d e r i v a t i v e s ( T a b l e I I ) a l l o f t h e a c t i v e s u l p h o n a m i d e s were s i g n i f i c a n t l y more p o t e n t a g a i n s t t h e t y p e - 2 enzyme. In the case of the benzenesulphonamides an e l e c t r o n - w i t h d r a w i n g group i n t h e benzene r i n g m a r k e d l y enhanced t h e potency, p a r t i c u l a r l y against t h e t y p e - 2 enzyme. Compounds c o n t a i n i n g an a c i d i c m o i e t y i n t h e 5 ' - s i d e c h a i n were t o t a l l y i n a c t i v e a g a i n s t b o t h enzymes. An e v a l u a t i o n o f t h e a n t i v i r a l e f f i c a c y o f t h e s e compounds has n o t been r e p o r t e d .
1
I t i s p o s s i b l e t h a t 5 - e t h y n y l t h y m i d i n e 26 (ILL) was d e v e l o p e d f r o m t h e i n h i b i t o r s 17 and 25 (4_£) , and i t i s n o t e w o r t h y t h a t 2 6 has a t o t a l l y d i f f e r e n t s p e c t r u m o f a c t i v i t y compared w i t h t h e
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
109
Inhibitors of Herpes Simplex Virus
MARTIN E T AL.
i n h i b i t o r s d e s c r i b e d t h u s f a r , b e i n g more p o t e n t a g a i n s t t h e t y p e 1 ( K i 0.09 μΜ) t h a n t h e t y p e 2 enzyme ( K i 0.38 μΜ) . S i n c e 26 d i d n o t i n h i b i t human c y t o s o l i c TK, i t must a l s o be s e e n as h i g h l y s e l e c t i v e f o r t h e v i r a l enzymes. I t was n o t c y t o t o x i c i n c e l l c u l t u r e and d i d not i n h i b i t h o s t c e l l u l a r DNA s y n t h e s i s . Thymidine kinases with altered substrate specificity isolated from bromovinyldeoxyuridine (BVDU) and a c y c l o v i r - r e s i s t a n t v i r u s s t r a i n s were a l s o i n h i b i t e d by t h i s compound. Mechanism o f a c t i o n s t u d i e s i n c e l l c u l t u r e showed t h a t t h e p o o l s i z e o f t h y m i d i n e t r i p h o s p h a t e was r e d u c e d but not t h e c o r r e s p o n d i n g p o o l s o f t r i p h o s p h a t e s d e r i v e d f r o m a d e n o s i n e , g u a n o s i n e and c y t o s i n e r e s p e c t i v e l y . As e x p e c t e d c o m p o u n d 26 was not a n t i v i r a l i n v i t r o . i n agreement w i t h the o b s e r v a t i o n t h a t v i r a l TK i s not e s s e n t i a l f o r HSV r e p l i c a t i o n i n c e l l culture. However, 26 d i d r e v e r s e t h e a n t i v i r a l e f f e c t o f a c y c l o v i r , DHPG, FIAC, BVDU and 5 - a m i n o - 5 ' - d e o x y t h y m i d i n e , a l l o f which r e q u i r e an i n i t i a of a c t i v i t y . The e v a l u a t i o so f a r . 1
1
D e r i v a t i v e s of 2 -Deoxy-5-ethyluridine. A r a t i o n a l approach t o the d e s i g n o f p o t e n t and s e l e c t i v e i n h i b i t o r s o f HSV TK has been d e s c r i b e d r e c e n t l y (52-56). The d i s s o c i a t i o n c o n s t a n t s o f a s e r i e s o f 5 - s u b s t i t u t e d u r i d i n e a n a l o g u e s a g a i n s t HSV and c e l l u l a r TK (ϋ2) were examined (Table IV) i n o r d e r t o i d e n t i f y t h e n u c l e o s i d e m o i e t y most l i k e l y t o c o n f e r s e l e c t i v i t y f o r t h e v i r a l enzyme. Table
IV.
D i s s o c i a t i o n Constants
of Nucleoside D e r i v a t i v e s
D i s s o c i a t i o n Constant Compound
R
Viral HSV-1
27 28
I CF
29 30 31
TK HSV-2
[μΜ]
Cellular Cytosol 7.4 4.2
TK
Mitochondria 8 2 30
0 6 0 4
0 3 0 5
C2H5 n-C3H
0 7
0 3
82
30
0 6
0 7
21
18
n-C4H9
1 6
4 0
100
40
32
CH=CH2
0 5
0 5
35
33
CH=CHBr
0 4
3 0
3
7
>100
1 7 0 9
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
N U C L E O T I D E ANALOGUES
110
The h i g h a f f i n i t y o f i d o x u r i d i n e 27 and t r i f l u o r o t h y m i d i n e 28 f o r t h e c e l l u l a r c y t o s o l i c enzyme a n d t h e s t r o n g a f f i n i t y o f vinyldeoxyuridine 32 a n d b r o m o v i n y l d e o x y u r i d i n e 33 f o r t h e m i t o c h o n d r i a l enzyme was i n d i c a t i v e o f p o o r s e l e c t i v i t y . The e t h y l , p r o p y l a n d b u t y l d e r i v a t i v e s , 2 9 , 30 and 31 r e s p e c t i v e l y , were more s e l e c t i v e f o r t h e v i r a l enzymes and i t was r e a s o n e d t h a t i n h i b i t o r s b a s e d on 29 c o u l d be e x p e c t e d t o show t h e h i g h e s t p o t e n c y and s e l e c t i v i t y f o r HSV TK. T a b l e V.
Product
Analogues
HO
IC50
Compound
[μΜ]
R HSV-1
HSV-2 40
34 35 36 37
i-PrOP(0)(OH)O MeP(0)(0H)0 PhP(O) (0H)0 MeS020
208 320 72.6 8.1
38
p-MeC6H4S020
12.7
4.1
39
MeS02NH
6.0
7.5
40
PhS02NH
15.2
4.6
41 42 43
MeCONH PhCONH PhCH2C0NH
15.8 3.1 1.0
4.7 3.2 0.3
44
Ph0CH2C0NH
0.7
0.3
-
20.3 4.8
Having i d e n t i f i e d 29 as t h e p r e f e r r e d n u c l e o s i d e m o i e t y , d e r i v a t i v e s c o n t a i n i n g f u n c t i o n a l groups i s o s t e r i c and i s o e l e c t r o n i c w i t h t h e p h o s p h a t e r e s i d u e were p r e p a r e d ( T a b l e V) . The p h o s p h a t e 34 and p h o s p h o n a t e s 35 and 36 were r a t h e r p o o r i n h i b i t o r s , whereas several other s t r u c t u r a l classes showed s i g n i f i c a n t l y better inhibition o f b o t h t h e HSV-1 a n d HSV-2 enzyme. In g e n e r a l , s u l p h o n a t e s and s u l p h o n a m i d e s were more p o t e n t a g a i n s t t h e t y p e 2 t h a n t h e t y p e 1 enzyme, w h i l e t h e benzamide 42 was i d e n t i f i e d as a p o t e n t i n h i b i t o r o f b o t h enzymes w i t h scope f o r e a s y m a n i p u l a t i o n t o a f f o r d a n a l o g u e s w i t h enhanced p o t e n c y . I t was n o t e d d u r i n g t h e s e s t u d i e s t h a t h o m o l o g a t i o n o f t h e benzamide 42 i n c r e a s e d p o t e n c y , suggesting the presence of a hydrophobic i n t e r a c t i o n i n the v i c i n i t y of the i n h i b i t o r b i n d i n g s i t e . I n t h i s s e r i e s 43 and 44 w e r e i d e n t i f i e d as good i n h i b i t o r s , e s p e c i a l l y a g a i n s t t h e t y p e 2 enzyme.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7. MARTIN ET A K
111
Inhibitors of Herpes Simplex Virus
H a v i n g o p t i m i s e d t h e l e n g t h o f t h e l i n k a g e between t h e a r y l r e s i d u e and t h e n u c l e o s i d e r e s i d u e i n 4 3 , additional analogues were p r e p a r e d t h a t c o n t a i n e d s p a c e r groups t h a t were i s o s t e r i c w i t h t h e acetamide moiety. Whereas c a r b a m a t e (OCONH NHCOO) and u r e a (NHCONH) d e r i v a t i v e s were l e s s a c t i v e , amine ( C H 2 C H 2 N H ) , ketone ( C H 2 C O C H 2 ) and a l k a n e ( C H 2 C H 2 C H 2 ) a n a l o g u e s had s i m i l a r p o t e n c y t o the amide 4 3 , s u g g e s t i n g t h a t t h e s p a c e r group i s n o t i n v o l v e d i n i n t e r a c t i o n s w i t h t h e enzyme b u t s e r v e s o n l y t o l o c a t e t h e a r y l r e s i d u e i n t h e optimum p o s i t i o n . f
A number o f a n a l o g u e s o f t h e p h e n y l a c e t a m i d e 43 w h i c h were s u b s t i t u t e d e i t h e r i n t h e p h e n y l r i n g , o r on t h e α - c a r b o n atom were prepared. I t was f o u n d t h a t a medium s i z e d s u b s t i t u e n t i n t h e o r t h o p o s i t i o n o f t h e p h e n y l r i n g i n c r e a s e d p o t e n c y by as much as t e n - f o l d , as d i d a m e t h y l o r e t h y l g r o u p on t h e α - c a r b o n . In c o n t r a s t , s u b s t i t u t i o n on t h e α - c a r b o n w i t h p o l a r g r o u p s s u c h as h y d r o x y l o r amino l e d t were e x t e n d e d t o p o l y - s u b s t i t u t e 2, β - d i s u b s t i t u t e d analogues were particularly active, the 2 , 6 - d i c h l o r o and 2 , 6 - d i m e t h y l d e r i v a t i v e s , 45 and 4 6 , had IC50 v a l u e s o f 0.003 μΜ and 0.008 μΜ r e s p e c t i v e l y a g a i n s t t h e t y p e 2 enzyme. As had been o b s e r v e d w i t h t h e p h e n y l a c e t a m i d e 43 t h e c o r r e s p o n d i n g amine, k e t o n e and a l k a n e d e r i v a t i v e s a l s o showed enhanced p o t e n c y when 2 , 6 - d i c h l o r o o r 2 , 6 - d i m e t h y l s u b s t i t u t i o n was i n t r o d u c e d i n t o the phenyl r i n g . I n f a c t , compound 47 i s one o f the most p o t e n t i n h i b i t o r s o f HSV-2 TK known, w i t h an I C 5 0 o f 0.0024 μΜ.
A similar series of substituted analogues of the phenoxyacetamide 44 was also studied. As i n t h e c a s e o f p h e n y l a c e t a m i d e s , s u b s t i t u t i o n i n t h e s i d e c h a i n by an a l k y l group gave an i n c r e a s e i n p o t e n c y o f a l m o s t t w e n t y - f o l d . I n c o n t r a s t t o the p h e n y l a c e t a m i d e s , however, o p t i m a l a c t i v i t y was o b s e r v e d w i t h a 2 , 4 - d i s u b s t i t u t e d phenyl residue.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
112
NUCLEOTIDE ANALOGUES
Replacement o f t h e e t h e r l i n k a g e by a s u l p h i d e , s u l p h o x i d e , s u l p h o n e o r m e t h y l e n e group gave analogues with s i g n i f i c a n t l y reduced activity. One o f t h e more p o t e n t compounds i n t h e p h e n o x y a c e t a m i d e s e r i e s was 48 w i t h an I C 5 0 o f 0.004 μΜ a g a i n s t t h e t y p e 2 enzyme. The p o t e n t i n h i b i t o r s 4 5 , 47 and 48 were e v a l u a t e d a g a i n s t c y t o p l a s m i c TK d e r i v e d from two mammalian c e l l l i n e s ( T a b l e V I ) , and a h i g h d e g r e e o f s e l e c t i v i t y f o r t h e v i r a l enzyme was o b s e r v e d i n each c a s e . Table VI.
I n h i b i t i o n of V i r a l
IC
5 0
and C e l l u l a r Thymidine
[μΜ] Selectivity
Compound
45 47 48
Kinase
HSV-2
Hela
Vero
0.003 0.0024 0.004
>200
>200
>54,000
A s t u d y o f t h e k i n e t i c s o f i n h i b i t i o n o f HSV-2 TK by t h e amide 48 showed i t t o be c o m p e t i t i v e w i t h r e s p e c t t o t h y m i d i n e , a n d n o n - c o m p e t i t i v e w i t h r e s p e c t t o ATP. I t was c o n c l u d e d t h a t t h i s compound l o c a t e d , as e x p e c t e d , a t t h e t h y m i d i n e b i n d i n g s i t e o f t h e enzyme, and that the additional binding a f f o r d e d by t h e 2,4-dichlorophenoxypropionamide r e s i d u e , which c o n t r i b u t e d t o t h e marked p o t e n c y o f t h i s i n h i b i t o r , d i d n o t i n v o l v e t h e ATP b i n d i n g site. As e x p e c t e d , none o f t h e s e p o t e n t i n h i b i t o r s showed a n t i v i r a l a c t i v i t y i n t i s s u e c u l t u r e , b u t compound 48 d i d show a m a r k e d antagonism of the a n t i v i r a l a c t i v i t y of a c y c l o v i r i n a plaque reduction assay, which p r o b a b l y resulted from i n h i b i t i o n of i n t r a c e l l u l a r v i r a l TK. Thymidine, a t t h e same c o n c e n t r a t i o n , e x h i b i t e d a s i m i l a r antagonism o f t h e a n t i v i r a l e f f e c t o f a c y c l o v i r . Compound 48 d i d p r o d u c e a p r o t e c t i v e e f f e c t i n mice i n f e c t e d w i t h HSV-2, b u t t h e e f f e c t was v a r i a b l e and p a r t i c u l a r l y s e n s i t i v e t o t h e s t r a i n o f mouse, s i z e o f v i r u s inoculum, formulation of test compound a n d r o u t e o f a d m i n i s t r a t i o n . This i n v i v o antiviral a c t i v i t y has not as y e t been c o n c l u s i v e l y a s c r i b e d t o i n h i b i t i o n o f v i r a l TK. Conclusions I t i s e v i d e n t from d a t a p r e s e n t e d i n t h i s r e v i e w t h a t a number o f r e s e a r c h groups have p r e p a r e d p o t e n t and s e l e c t i v e i n h i b i t o r s o f HSV TK. Thus f a r , i n h i b i t o r s have been d e s i g n e d a n d d e v e l o p e d from e i t h e r s u b s t r a t e o r product analogues but a l t e r n a t i v e approaches could i n v o l v e metal c h e l a t i o n , a l l o s t e r i c i n h i b i t i o n o r b i s u b s t r a t e mechanisms. Indeed, the b i s u b s t r a t e approach (58 59) has b e e n successful i n the design of i n h i b i t o r s of b a c t e r i a l (£_Q_) a n d mammalian d e o x y n u c l e o s i d e k i n a s e s (61-63) . I n h i b i t o r s o f HSV TK t h a t a r e a v a i l a b l e now may p r o v e t o be u s e f u l b i o c h e m i c a l t o o l s t o probe t h e s t r u c t u r e and f u n c t i o n o f t h e a c t i v e s i t e o f t h e v i r a l enzymes. Improved knowledge o f t h e enzyme a c t i v e s i t e t h r o u g h r
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7. MARTIN E T A K
Inhibitors of Herpes Simplex Virus
113
f u r t h e r b i o c h e m i s t r y and m o l e c u l a r b i o l o g y s h o u l d p r o v i d e a b e t t e r understanding of the molecular i n t e r a c t i o n s t h a t occur with both s u b s t r a t e s and i n h i b i t o r s . Meanwhile, t h e c u r r e n t g e n e r a t i o n o f i n h i b i t o r s may p r o v i d e a means o f s t u d y i n g t h e r o l e o f TK i n t h e development o f HSV i n f e c t i o n i n a n i m a l models, and may f i n d a p l a c e i n t h e management o f herpes i n f e c t i o n s i n man.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.
23. 24.
Kit, S.; Dubbs, D. R. Biochem. Biophys. Res. Comm. 1963, 11, 55. Klemperer, H. G.; Hayes, G. R.; Shedden, W. J. H.; Watson, D. H. Virology 1967, 31, 120. Cheng, Y.-C. Biochim. Biophys. Acta 1976, 31, 120. Cheng, Y.-C.; Ostrander, M. J. Biol. Chem. 1976, 251, 2605. Dubbs, D. R.; Kit S Virology 1964 22, 493 Field, H. J.; Wildy Tenser, R. B.; Miller 915. Stanberry, L. R.; Kit, S.; Myers, M. G. J. Virol. 1985, 55, 322. Gordon, Y.; Gilden, D. H.; Shtram, Y.; Asher, Y.; Tabor, E.; Wellish, M.; Snipper, D.; Hadar, J.; Becker, Y. Arch. Virol. 1983, 76, 39. Field, H. J.; Darby, G. Antimicrob. Agents Chemother. 1980, 17, 209. Tenser, R. B.; Ressel, S.; Dunstan, M. E. Virology 1981, 112, 328. Jamieson, A. T.; Gentry, G. Α.; Subak-Sharpe, J. H. J. Gen. Virol. 1974, 24, 465. Thouless, M. E. J. Gen. Virol. 1972, 17, 307. Cheng, Y.-C.; Dutschman, G.; Fox, J. J.; Watanabe, Κ. Α.; Machida, H. Antimicrob. Agents Chemother. 1981, 20, (3), 420. Kit, S.; Leung, W. C.; Jorgensen, G. N.; Dubbs, D. R. Int. J. Cancer 1974, 14, 598. Thouless, M. E.; Skinner, G. R. B. J. Gen. Virol. 1971, 12, 195. Sim, I. S.; McCullagh, K. G. In Approaches to Antiviral Agents; Michael R. Harnden., Ed.; Macmillan: London, 1985; Chapter 2. Cheng, Y.-C.; In Antiviral Drugs and Interferon: The Molecular Basis of Their Activity; Becker, Y., Ed.; Martinus Nijhoff Publishing: Boston, 1984; Chapter 4. Rohde, W. FEBS Lett. 1977, 82, 118. Baker, B. R.; Neenan, J. P. J. Med. Chem. 1972, 15, 940. Neenan, J. P.; Rohde, W. J. Med. Chem. 1973, 16, 580. Harrap, K. R.; Stringer, M.; Browman, G. P.; Dady, P. J.; Cobley, T. In Advances in Tumour Prevention, Detection and Characterisation; Davis, W., Harrap, K. R., Eds.; Excerpta Medica: Amsterdam, 1978; Vol. 4, p.93. Stringer, M. Ph.D. Thesis, University of London, 1974. Barrie, S. E.; Davies, L. C.; Stock, J. Α.; Harrap, K. R. J. Med. Chem. 1984, 27, 1044.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
114 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50.
NUCLE(mDE A N A L O G U E S
Hampton, A.; Kappler, F.; Chawla, R. R. J. Med. Chem. 1979, 22, 1524. Arnold, J. R. P.; Cheng, M. S.; Cullis, P. M.; Lowe, G. J. Biol. Chem. 1986, 261, 1985. Labenz, J.; Müller, W. E. G.; Falke, D. Arcn. Virol. 1984, 81, 205. Marsden, H. S.; Haar, L.; Preston, C. M. J. Virol. 1983, 46, 434. Fyfe, J. Α.; McKee, S. Α.; Keller, P. M. Mol. Pharmacol. 1983, 24, 316. Labenz, J.; Friedrich, D.; Falke, D. Arch. Virol. 1982, 71, 235. Just, I.; Dundaroff, S.; Falke, D.; Wolf, H. U. J. Gen. Virol. 1975, 29, 69. Wagner, M. J.; Sharp, J. Α.; Summers, W. C. Proc. Nat. Acad. Sci. USA 1981, 78, 1441 Swain, Μ. Α.; Galloway Kit, S.; Kit, M.; Qavi Biophys. Acta 1983, 741 158. Colbere-Garapin, F.; Chousterman, S.; Horodniceanu, F.; Kourilsky, P.; Garapin, A-C. Proc. Nat. Acad. Sci. USA 1979, 76, 3755. Waldman, A. S.; Haeusslein, E.; Milman, G. J. Biol. Chem. 1983, 258, 11571. Inglis, M. M.; Darby, G. J. Gen. Virol. 1987, 68, 39. Liu, Q. Y.; Summers, W. C. Virology 1988, 163, 638. Cheng, Y.-C. Ann. Ν. Y. Acad. Sci. 1977, 284, 594. Elion, G. B.; Furman, P. Α.; Fyfe, J. Α.; de Miranda, P.; Beauchamps, L.; Schaeffer, H. J. Proc. Nat. Acad. Sci. USA 1977, 74, 5716. Schaeffer, H. J.; Beauchamps, L.; de Miranda, P.; Elion, G. B.; Bauer, D. J.; Collins, P. Nature, London 1978, 272, 583. Fyfe, J. Α.; Keller, P. M.; Furman, P. Α.; Miller, R. L.; Elion, G. B. J. Biol. Chem. 1978, 253, 8721. Beauchamp, L. M.; Dolmatch, B. L.; Schaeffer, H. J.; Collins, P.; Bauer, D. J.; Keller, P. M.; Fyfe, J. A. J. Med. Chem. 1985, 28, 982. Keller, P. M.; Fyfe, J. Α.; Beauchamp, L.; Lubbers, C. M.; Furman, P. Α.; Schaeffer, H. J.; Elion, G. B. Biochem. Pharmacol. 1981, 30, 3071. Focher, F.; Hildebrand, C.; Freese, S.; Ciarrocchi, G.; Noonan, T.; Sangalli, S.; Brown, Ν.; Spadari, S.; Wright, G. J. Med. Chem. 1988, 31, 1496. Focher, F.; Sangalli, S.; Ciarrocchi, G.; Delia Valle, G.; Talarico, D.; Rebuzzini, Α.; Wright, G.; Brown, Ν.; Spadari, S. Biochem. Pharmacol. 1988, 37, 1877. Wigdahl, B. L.; Parkhurst, J. R. Antimicrob. Agents Chemother. 1978, 14, 470. Fischer, P. H.; Murphy, D. G.; Kawahara, R. Mol. Pharmacol. 1983, 24, 90. Markham, A. F.; Newton, C. R.; Porter, R. Α.; Sim, I. S. Antiviral Res. 1982, 2, 319. Sim, I. S.; Picton, C.; Cosstick, R.; Jones, A. S.; Walker, R. T.; Chamiec, A. J. Nucleosides and Nucleotides 1988, 7, 129. In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
7.
M
51. 52.
53.
54. 55. 56. 57. 58. 59. 60. 61. 62. 63.
A
R
T
I
N
E T
A
L
Inhibitors ofHerpes Simplex Virus
115
Nutter, L. M.; G r i l l , S. P.; Dutschman, G. E.; Sharma, R. A.; Bobek, M.; Cheng, Y.-C. Antimicrob. Agents Chemother. 1987, 31, 368. Martin, J. Α.; Duncan, I. B.; Hall, M. J.; Lambert, R. W.; Thomas, G. J.; Wong-Kai-In, P. Second International Conference on Antiviral Research. Williamsburg, Virginia, U. S. Α., 10-14 April 1988; Antiviral Res. 1988, 9, 84. Martin, J. A. Second Symposium on Medicinal Chemistry in Eastern England. Hatfield, Hertfordshire, England, 21 April 1988. Lambert, R. W.; Martin, J. Α.; Thomas, G. J. E. P. 257378. Lambert, R. W.; Martin, J. Α.; Thomas, G. J. E. P. 256400. Lambert, R. W.; Martin, J. Α.; Thomas, G. J. E. P. 255894. Cheng, Y.-C. In Antimetabolites in Biochemistry, Biology and Medicine; Skoda, J., Langen, P., Eds.; Pergamon Press: London, 1979, p.263 Wolfenden, R. Accts. Lienhard, G. E. Annu. Ikeda, S.; Chakravarty, R.; Ives, D. H. J. Biol. Chem. 1986 261, 15836. Bone, R.; Cheng,Y.-C.;Wolfenden, R. J. Biol. Chem. 1986, 261, 5731. Davies, L. C.; Stock, J. Α.; Barrie, S. E.; Orr, M.; Harrap, K. R. J. Med. Chem. 1988, 31, 1305. Hampton, Α.; Hai, T. T.; Kappler, F.; Chawla, R. R. J. Med. Chem. 1982, 25, 801.
RECEIVED January 4, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Chapter 8
Nucleotides as Herpesvirus-Specific Inhibitors of Protein Glycosylation Roelf Datema and Sigvard Olofsson 1
2
Bristol-Myers Company, Pharmaceutical Research and Development Division, 5 Research Parkway, Wallingford, CT 06492-7660 Göteborgs Universitet, Department of Clinical Virology, Guldhedsgatan 10B, S-41346 Göteborg, Sweden 1
2
We describe a strategy to obtain herpesvirus-specific glycosylation inhibitors. This involves selective phosphorylation in infected cells of a nucleoside analog to a 5'-monophosphate, which inhibits translocation of sugar nucleotides from the cytoplasm into the Golgi-compartment where the terminal glycosyltransferases are located. Such an inhibitor may be useful in antiviral chemotherapy, or could serve as a tool to study the role of terminal glycosylation of viral glycoproteins in the intact host organism. V i r a l p r o t e i n s a r e N - g l y c o s y l a t e d i n i t i a l l y by t h e t r a n s f e r en b l o c o f a g l u c o s y l a t e d high-mannose t y p e o l i g o s a c c h a r i d e f r o m t h e l i p i d d o l i c h o l - d i p h o s p h a t e u s u a l l y t o a n a s c e n t p r o t e i n (1). T r a n s f e r o f n o n - g l u c o s y l a t e d o l i g o s a c c h a r i d e s has been o b s e r v e d ( 2 ) , b u t , as y e t , n o t w i t h v i r a l p r o t e i n s . The N - l i n k e d o l i g o s a c c h a r i d e s a r e p r o c e s s e d by g l y c o s i d a s e s , and some o f t h i s p r o c e s s i n g o c c u r s i n t h e rough e n d o p l a s m i c r e t i c u l u m ( 3 ) . The e x t e n t o f p r o c e s s i n g i s dependent on a v a r i e t y o f c o n d i t i o n s , which may i n c l u d e t h e l o c a t i o n o f a p a r t i c u l a r o l i g o s a c c h a r i d e on the p r o t e i n ( 4 ) , b u t t h e removal o f g l u c o s e r e s i d u e s a p p e a r s t o be u b i q u i t o u s . The t r i m m i n g o f s u g a r r e s i d u e s and t h e subsequent a d d i t i o n o f p e r i p h e r a l sugars, t o r e s u l t i n s o - c a l l e d hybrid-type o r complex-type o l i g o s a c c h a r i d e s , o c c u r s by c o n c e r t e d a c t i o n o f g l y c o s i d a s e s and g l y c o s y l t r a n s f e r a s e s i n t h e G o l g i a p p a r a t u s ( 9 ) , and c a n r e s u l t i n a p l e t h o r a o f o l i g o s a c c h a r i d e s . (See F i g u r e 1 f o r one example.) Some v i r a l g l y c o p r o t e i n s c o n t a i n 0 - l i n k e d o l i g o s a c c h a r i d e s , u s u a l l y i n a d d i t i o n t o N - l i n k e d o l i g o s a c c h a r i d e s ( 5 ) . The 0 - l i n k e d o l i g o s a c c h a r i d e s a r e assembled by s t e p w i s e a d d i t i o n o f sugar r e s i d u e s o n t o a p r o t e i n i n t r a n s i t t h r o u g h t h e G o l g i a p p a r a t u s ( 6 ) . Thus, t h e s y n t h e s i s o f 0 - l i n k e d o l i g o s a c c h a r i d e s occurs simultaneously with the a d d i t i o n o f p e r i p h e r a l sugars t o 0097-45156/89/0401-0116S06.00/0 o 1989 A m e r i c a n C h e m i c a l Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8.
DATEMA AND OLOFSSON
Inhibitors of Protein Glycosylation
N - l i n k e d o l i g o s a c c h a r i d e s , and t h e s e p r o c e s s e s "terminal glYCOsylation" (7).
a r e r e f e r r e d t o as
The b i o l o g i c a l r o l e o f t e r m i n a l g l y c o s y l a t i o n o f v i r a l glycoproteins S e v e r a l l o w - m o l e c u l a r w e i g h t compounds ( s u g a r a n a l o g s and a l k a l o i d s ) a r e known t o i n h i b i t d i s c r e t e s t e p s o f t h e t r i m m i n g pathway, as shown i n F i g u r e 1, and have been u s e d t o s t u d y t h e b i o l o g i c a l r o l e o f the o l i g o s a c c h a r i d e processing using v i r u s - i n f e c t e d c e l l s i n c u l t u r e . I t became r a p i d l y a p p a r e n t t h a t t h e b i o l o g i c a l e f f e c t s were s t r o n g l y dependent on t h e p a r t i c u l a r p r o t e i n o r v i r a l system ( 8 ) . Examples i n c a s e a r e two r e t r o v i r a l systems. I n b o t h Rous Sarcoma V i r u s (RSV)- and murine l e u k e m i a v i r u s (MuLV)-infected c e l l s , b l o c k i n g N - g l y c o s y l a t i o n i n t e r f e r e s with c o r r e c t p r o t e o l y t i c p r o c e s s i n g o f the envelope g l y c o p r o t e i n s t o s t a b l e e n d - p r o d u c t s an i n t o v i r i o n s (9-10). Allowin o l i g o s a c c h a r i d e t r i m m i n g by any o f t h e g l u c o s i d a s e i n h i b i t o r s o f F i g u r e 1 p r e v e n t e d t h e f o r m a t i o n o f complex-type o l i g o s a c c h a r i d e s of the envelope g l y c o p r o t e i n s , but d i d not prevent t h e formation of f u l l y i n f e c t i o n s RSV-particles (11). In c o n t r a s t , formation o f i n f e c t i o u s MuLV was i n h i b i t e d by d e o x y n o j i r i m y c i n , an i n h i b i t o r of glucosidase I (10). S i n d b i s - v i r u s i n f e c t e d c e l l s p r e s e n t e d an i n t e r e s t i n g system to study the r o l e o f p r o c e s s i n g o f N - l i n k e d o l i g o s a c c h a r i d e s . The E l and E2 g l y c o p r o t e i n s o f S i n d b i s v i r u s e a c h c o n t a i n two g l y c o s y l a t i o n s i t e s ( 1 2 ) , and one g l y c o s y l a t i o n s i t e on E l and E2 c a r r i e s e x c l u s i v e l y complex-type o l i g o s a c c h a r i d e s when t h e v i r u s i s grown i n a v i a n o r mammalian c e l l s . H s i e h e t a l . (4) c o u l d show t h a t t h e f o l d i n g o f t h e p o l y p e p t i d e c h a i n s d e t e r m i n e d t h e extent of processing. I t i s shown i n T a b l e 1 t h a t when N - g l y c o s y l a t i o n i s i n h i b i t e d by t u n i c a m y c i n , t h e p r e c u r s o r p r o t e i n o f E2 (pE2) i s n o t c l e a v e d t o E2, t h e c e l l - s u r f a c e e x p r e s s i o n o f pE2 i s i n h i b i t e d , and v i r u s b u d d i n g d e c r e a s e s ( 1 3 ) . O t h e r work has shown t h a t c l e a v a g e o f pE2 t o E2 i s r e q u i r e d f o r v i r u s release (14). Allowing g l y c o s y l a t i o n t o occur, but p r e v e n t i n g g l u c o s e - t r i m m i n g by t h e g l u c o s i d a s e I - i n h i b i t o r s N-methyl d e o x y n o j i r i m y c i n o r c a s t a n o s p e r m i n e and t h u s e q u i p p i n g the v i r a l g l y c o p r o t e i n s with the o l i g o s a c c h a r i d e s Glc^Man^ ^GlcNAc , s t i l l p r e v e n t e d c l e a v a g e o f p E ( a n d hence v i r u s r e l e a s e ) , But a l l o w e d c e l l - s u r f a c e e x p r e s s i o n o f PE2 (15-16). The same r e s u l t was o b t a i n e d e a r l i e r w i t h bromoconduritol, t h a t caused equipping the v i r a l g l y c o p r o t e i n s w i t h GlcMan^ Q G 1 C N A C ( 1 7 ) . A l l o w i n g the removal o f the glucose group ( b u t p r e v e n t i n g mannose-trimming u s i n g deoxymannojirimycin), equipping the g l y c o p r o t e i n with Man^ g G l c N A c ^ - o l i g o s a c c h a r i d e s , p e r m i t t e d c l e a v a g e o f pE2 and allowed v i r u s budding (16). Thus, t h e p r e s e n c e o f a s i n g l e g l u c o s e group p e r o l i g o s a c c h a r i d e c h a i n d e t e r m i n e d whether o r n o t t h e p r o t e i n c a n be p r o t e o l y t i c a l l y c l e a v e d . These and o t h e r s t u d i e s (5) i n d i c a t e an e s s e n t i a l r o l e o f g l u c o s e t r i m m i n g i n t h e m a t u r a t i o n o f some v i r u s e s . 2
2
S i n d b i s v i r u s c u l t u r e d i n t h e presence o f t h e mannosidase-I
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTCDE ANALOGUES
I —
-
F i g u r e 1. Processing of N-linked oligosaccharides. a b b r e v i a t i o n s , see T a b l e 1. •, GlcNAc; 0, Man; X, G l c ; ·, G a l ; •, NeuAc. DIM,1,4-dideoxy-1,4-imino-D-mannitol; 2,5-dihydroxymethYl-3,4-dihydroxYpyrrolidine
For
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8.
DATEMAANDOLOFSSON
Inhibitors of Protein Glycosylation
i n h i b i t o r d e o x y m a n n o j i r i m Y c i n buds p r e f e r e n t i a l l y from i n t e r n a l membranes, r a t h e r t h a n t h e c e l l - s u r f a c e membrane (16)· I n t h e presence o f the mannosidase-II i n h i b i t o r swainsonine (see F i g u r e 1) t h e r e l e a s e o f i n f e c t i o u s S i n d b i s v i r u s i s n o t d i f f e r e n t f r o m that of untreated c u l t u r e s . In f a c t , the maturation o f a l l e n v e l o p e d v i r u s e s s o f a r s t u d i e d seems n o t t o be a f f e c t e d by blocking oligosaccharide processing a t the l e v e l of the G o l g i enzymes N - a c e t y l g l u c o s a m i n y l t r a n s f e r a s e I o r mannosidase I I ( 5 ) . Y e t , many o l i g o s a c c h a r i d e s o f v i r a l g l y c o p r o t e i n s a r e p r o c e s s e d p a s t t h i s s t a g e t o form complex-type o l i g o s a c c h a r i d e s . What, t h e n , i s t h e b i o l o g i c a l r o l e o f t e r m i n a l g l y c o s y l a t i o n of v i r a l glycoproteins? Based on e v i d e n c e p r e s e n t e d e l s e w h e r e , we s u g g e s t e d ( 5 ) , t h a t t e r m i n a l g l y c o s y l a t i o n o f v i r a l g l y c o p r o t e i n s may p l a y a r o l e a t t h e v i r u s - h o s t l e v e l , f o r example i n v i r a l s p r e a d and p a t h o g e n e s i s . To s t u d y t h e s e phenomena i n t h e i n t a c t o r g a n i s m i n h i b i t o r s active only i n v i r u s - i n f e c t e d c e l l s ar I n h i b i t i o n o f T e r m i n a l N- and O - G l y c o s y l a t i o n Herpesvirus-Infected C e l l s
Specific for
We c h o s e t o s t u d y t h e p o s s i b i l i t y o f development o f v i r u s - s p e c i f i c i n h i b i t o r s o f g l y c o s y l a t i o n i n t h e herpes simplex v i r u s (HSV) system, b e c a u s e HSV has been w i d e l y u s e d t o s t u d y mechanisms o f s p e c i f i c a n t i v i r a l a g e n t s ( 1 8 ) , and t h e p a t h o g e n e s i s o f HSV has been s t u d i e d i n s e v e r a l a n i m a l models (19) a l l o w i n g e v a l u a t i o n i n v i v o . The HSV-1 s p e c i f i e d g l y c o p r o t e i n gC-1 i s u s e d as a m o l e c u l a r p r o b e b e c a u s e t e r m i n a l g l y c o s y l a t i o n o f gC-1 may be i m p o r t a n t i n v i v o . Evidence f o r t h i s a r e : r e m o v a l o f t e r m i n a l s u g a r s from gC-1 changes t h e a n t i g e n i c i t y o f t h e p e p t i d e p a r t o f t h e m o l e c u l e ( 2 0 ) , and t h e C 3 b - r e c e p t o r a c t i v i t y o f gC-1 i s s i a l i d a s e - d e p e n d e n t ( 2 1 ) . F u r t h e r m o r e , gC-1 c o n t a i n s N- and 0 - l i n k e d o l i g o s a c c h a r i d e s , which c a n be s t u d i e d s e p a r a t e l y s i n c e t u n i c a m y c i n - t r e a t m e n t does not j e o p a r d i z e t h e p r o t e o l y t i c s t a b i l i t y o f gC-1 ( 2 2 ) . A l s o , e x p e r i m e n t a l t o o l s t o r a p i d l y p r o b e changes i n N- and 0 - l i n k e d o l i g o s a c c h a r i d e s o f gC-1 have been d e v e l o p e d (23-24). Terminal g l y c o s y l t r a n s f e r a s e s are located i n s i d e the t r a n s - G o l g i compartment as i s t h e a c c e p t o r g l y c o p r o t e i n (_1). However, t h e s u b s t r a t e s o f t h e t r a n s f e r a s e s , t h e s u g a r n u c l e o t i d e s a r e p r e s e n t i n t h e c y t o s o l . H i r s c h b e r g and co-workers (25) c o u l d show t h a t s u g a r n u c l e o t i d e t r a n s l o c a t o r p r o t e i n s i n t h e G o l g i membranes t r a n s p o r t s u g a r n u c l e o t i d e s i n t o t h e G o l g i compartment and t h i s t r a n s l o c a t i o n i s c o u p l e d t o e x p o r t o f t h e c o r r e s p o n d i n g n u c l e o s i d e 5 *-monophosphate, as shown f o r UDP-Gal i n F i g u r e 2. The t r a n s l o c a t i o n o f s u g a r n u c l e o t i d e s i n t o t h e G o l g i compartment c a n be i n h i b i t e d by n u c l e o s i d e 5 -monophosphates ( 2 6 ) , and t h i s phenomenon r e p r e s e n t s t h e t a r g e t f o r the design of v i r u s - s p e c i f i c g l y c o s y l a t i o n i n h i b i t o r s . The i n h i b i t i o n o f s u g a r n u c l e o t i d e t r a n s l o c a t i o n l i m i t s t h e amount o f t h e s u b s t r a t e f o r t h e g l y c o s y l t r a n s f e r a s e , and c a u s e s a b l o c k i n glycosylation. H e r p e s v i r u s s p e c i f i c i t y i s o b t a i n e d by s e l e c t i v e p h o s p h o r y l a t i o n o f a n u c l e o s i d e t o an i n h i b i t o r y n u c l e o s i d e 5'-monophosphate i n i n f e c t e d c e l l s . 1
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
120
N U C L E C m D E ANALOGUES
Table 1.
Role of G l y c o s y l a t i o n i n the Sindbis Virus/BHK C e l l System
Cleavage
Cell-surface expression Virus budding PE , E
Location of block
Inhibitor used
LLO assembly
TM
No
No
Decreased
Glc trimming
Be
No
Yes
Decreased
Glc trimming
dN, cas
Man I trimming
dMM
Yes
Yes
Yes, but intracellularly
Man I I trimming
swa
Yes
Yes
Yes
P
V 2 E
2
2
Abbreviations: LLO, l i p i d - l i n k e d oligosaccharide; TM, tunicamycin; Be, bromoconduritol; dN, 1-deoxynojirimycin; cas, castanospermin; MdN, N-methyl-l-deoxynojirimYcin; dMM, l-deoxymannojirimYcin; swa, swainsonin. For references, see t e x t .
out in
Golgi vesicle Substrate + acceptor . UDP-Gal + HO-R
PORT: UDP-Gal i_
Galactosyl transferase ANTIPORT: UMP
UMP
UDP t Gal-O-P,
I I Figure
2.
J I
etc.
Schematic diagram of sugar n u c l e o t i d e
translocation.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8.
Inhibitors of Protein Glycosylation
DATEMA AND OLOFSSON
We have s t u d i e d (24, 27) t h e f e a s i b i l i t y o f t h i s a p p r o a c h with the n u c l e o s i d e analog (E)-5-(2-bromovinyl)-2 -deoxyuridine (BVdU). BVdU i s a s e l e c t i v e anti-HSV-1 agent i n t e r f e r i n g w i t h v i r a l DNA s y n t h e s i s ( 1 8 ) . The s e l e c t i v i t y o f BVdU i s due i n p a r t t o i t s p h o s p h o r y l a t i o n by t h e HSV-induced t h y m i d i n e k i n a s e . In a d d i t i o n t o i n t e r f e r i n g w i t h v i r a l DNA s y n t h e s i s , t h e drug a f f e c t s t h e s y n t h e s i s o f v i r a l g l y c o p r o t e i n s (24, 28-29), an e f f e c t a l s o dependent on i n d u c t i o n o f t h e v i r a l t h y m i d i n e k i n a s e . The e f f e c t on g l y c o p r o t e i n s can be s t u d i e d s e p a r a t e l y from t h e e f f e c t on DNA s y n t h e s i s by a d d i n g t h e drug a f t e r t h e o n s e t o f v i r a l DNA s y n t h e s i s ( i . e . , 6 h p . i . ) . An a n a l y s i s o f the e f f e c t on g l y c o p r o t e i n gC-1 showed t h a t i n c o r p o r a t i o n o f g a l a c t o s e and s i a l i c a c i d i n t o N - l i n k e d o l i g o s a c c h a r i d e s and i n c o r p o r a t i o n o f s i a l i c a c i d , and t o a l e s s e r e x t e n t , o f g a l a c t o s e i n t o 0 - l i n k e d o l i g o s a c c h a r i d e s was b l o c k e d ( 2 7 ) . This r e s u l t e d i n formation of normal amounts o f gC-1, b u t w i t h d i f f e r e n t o l i g o s a c c h a r i d e s i . e . , w i t h t e r m i n a l GlcNA and t e r m i n a l 0 - l i n k e d GalNAc f
T h i s i n h i b i t i o n o f t e r m i n a l g l y c o s y l a t i o n was not c a u s e d by i n h i b i t i o n o f f o r m a t i o n o f UDP-hexoses, i n h i b i t i o n o f i n t r a c e l l u l a r transport of glycoproteins i n a g a l a c t o s y l t r a n s f e r a s e - d e f i c i e n t c e l l l i n e , nor by i n h i b i t i o n o f a c c e p t o r glycoprotein synthesis. No e v i d e n c e f o r f o r m a t i o n o f a s u g a r n u c l e o t i d e a n a l o g o f BVdU was o b t a i n e d . The i n h i b i t i o n o f terminal g l y c o s y l a t i o n d i d require formation of BVdU-5 -monophosphate, and was t h e r e f o r e not o b s e r v e d i n c e l l s i n f e c t e d w i t h T K - n e g a t i v e v a r i a n t s o f HSV-1. The b l o c k d i d o c c u r a l s o i n HSV-2 i n f e c t e d c e l l s , which can p h o s p h o r y l a t e BVdU t o i t s 5'-monophosphate (BVdUMP), b u t not any f u r t h e r . In a c e l l - f r e e system BVdUMP i n h i b i t e d t h e t r a n s p o r t o f p y r i m i d i n e s u g a r n u c l e o t i d e s ( s u c h as UDP-Gal, CMP-NeuAc) a c r o s s G o l g i membranes and, as a consequence, i n h i b i t e d t h e t e r m i n a l g l y c o s y l a t i o n . No i n h i b i t i o n o f t r a n s l o c a t i o n o f p u r i n e sugar n u c l e o t i d e was o b s e r v e d , nor d i d BVdUMP i n h i b i t g a l a c t o s y l t r a n s f e r a s e . 1
Taken t o g e t h e r , t h e s e r e s u l t s (27) show t h a t i t s h o u l d be p o s s i b l e t o o b t a i n a n u c l e o s i d e s e l e c t i v e l y p h o s p h o r y l a t e d by HSV t h y m i d i n e k i n a s e t o a 5 -monophosphate which w i l l i n h i b i t s u g a r n u c l e o t i d e t r a n s l o c a t i o n , i n o t h e r words a v i r u s - s e l e c t i v e glycosylation inhibitor. F u r t h e r m o r e , i t s h o u l d be. p o s s i b l e t o obtain HSV-specific i n h i b i t o r s of f u c o s y l a t i o n or mannosylation by u s i n g g u a n o s i n e a n a l o g s s e l e c t i v e l y p h o s p h o r y l a t e d by HSV-coded t h y m i d i n e k i n a s e (17, 3 0 ) . 1
Implications With the e x c e p t i o n of c h r o n i c a d m i n i s t r a t i o n o f o r a l a c y c l o v i r , chemotherapy has not been i m p r e s s i v e l y u s e f u l i n t h e management o f r e c u r r e n t HSV i n f e c t i o n s (32)· U s i n g t h e r a p e u t i c regimens o f a c y c l o v i r , b u c i c l o v i r or foscarnet e f f e c t i v e l y blocking HSV-1 r e p l i c a t i o n and d i s e a s e development i n s y s t e m i c , c u t a n e o u s and c e n t r a l nervous s y s t e m - i n f e c t i o n i n m i c e , no c l i n i c a l b e n e f i t was o b t a i n e d when t h e v i r u s (HSV-1) i n f e c t e d t h e s k i n o f mice v i a sensory nerves ( i n z o s t e r i f o r m - s p r e a d models), d e s p i t e the p r e s e n c e o f immunity and d r u g a v a i l a b i l i t y ( 3 2 ) . Thus, i n t h e s e
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
121
122
N U C L E O T I D E ANALOGUES
models o f r e c r u d e s c e n t d i s e a s e , as i n c l i n i c a l t r i a l s o f a c u t e t r e a t m e n t o f r e c u r r e n t HSV i n f e c t i o n s , t h e b e n e f i t s o f p o t e n t and s e l e c t i v e i n h i b i t o r s o f HSV r e p l i c a t i o n were m i n i m a l . This i m p l i e s t h a t management o f r e c u r r e n t H S V - i n f e c t i o n s r e q u i r e s an a p p r o a c h o t h e r t h a n i n h i b i t i n g HSV DNA s y n t h e s i s . Selective i n t e r f e r e n c e with v i r a l p r o t e i n g l y c o s y l a t i o n , r e s u l t i n g i n a l t e r e d immunogenicitγ o f t h e v i r a l g l y c o p r o t e i n s may be such an approach.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.
Kornfeld, R.; Kornfeld, S. Annu. Rev. Biochem. 1985, 54, 631-64. Romero, P. Α.; Herscovics, A. Carbohydr. Res. 1986, 151, 21-28. Dunphy, W. G.; Rothman Hsieh, P.; Rosner, 1983, 258, 2555-61. Datema, R.; Olofsson, S.; Romero, P. A. Pharmac. Ther. 1987, 33, 221-86. Roseman, S. In Biology and Chemistry of Eucaryotic Cell Surfaces; Lee, E. Y. C.; Smith, Ε. E., Eds.; Academic: New York, 1974; pp. 317-54. Schachter, H. Biol. Cell. 1984, 51, 133-46. Schwarz, R. T.; Datema, R. Trends Biochem. Sci. 1984, 9, 32-34. Schwarz, R. T.; Rohrschneider, J. M.; Schmidt, M. F. G. J. Virol. 1976, 12, 782-91. Pinter, Α.; Honnen, W. J.; L i , J. S. Virology. 1984, 136, 196-210. Bosch, J. V.; Schwarz, R. T. Virology. 1984, 132, 95-109. Strauss, E. G.; Strausse, J. H. In The Togavividae and Flaviviridae; Schlesinger, S.; Schlesinger, M. J., Eds.; Plenum Publishing Corp.: New York, 1986; pp. 35-90. Schlesinger, M. J. In Virology; Fields, Β. N.; Knipe, D. M.; Chancok, R. M.; Melnick, J. L.; Roizman, B.; Shope, R. E., Eds.; Raven Press: New York, 1985; pp. 1021-32. Garoff, J.; Kondor-Koch, C.; Riedel H. Curr. Top. Microbiol. Immunol. 1982, 99, 1-50. Schlesinger, S.; Koyama, A. H.; Malfer, C.; Gee, S. L.; Schlesinger, M. J. Virus Res. 1985, 2, 139-49. McDowell, W.; Romero, R. Α.; Datema, R.; Schwarz, R. T. Virology. 1987, 161, 37-44. Datema, R.; Romero, P. Α.; Rott, R.; Schwarz, R. T. Arch. Virol. 1984, 81, 25-39. De Clercq, E. Biochem. J. 1982, 2051, 1-13. Stanberry, L. R. Progr. Med. Virol. 1986, 33, 61-77. Sjöblom, I.; Lundström, M.; Sjögren-Jansson, E.; Glorisoso, J. C.; Jeansson, S.; Olofsson, S. J. Gen. Virol. 1987, 60, 545-54. Smiley, M. L.; Friedman, H. M. J. Virol. 1985, 55, 857-61. Svennerholm, B.; Olofsson, S.; Lundén, R.; Vahlne, Α.; Lycke, E. J. Gen. Virol. 1982, 63, 343-49.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8.
DATEMA AND OLOFSSON
23. 24. 25. 26. 27. 28. 29. 30. 31.
32.
Inhibitors of Protein Glycosylation
Lundström, M.; Olofsson, S.; Jeansson, S.; Lycke, Ε.; Datema, R.; Månsson, J.-E. Virology. 1987, 161, 385-94. Olofsson, S.; Lundström, M.; Datema, R. Virology. 1985, 147, 201-05. Hirschberg, C. B.; Snider, M. D. Annu-Rev. Biochem. 1987, 56, 63-88. Capasso, J. M.; Hirschberg, C. B. Biochim. Biophys. 1984, 777, 133-239. Olofsson, S.; Milla, M.; Hirschberg, C.; De Clercq, E.; Datema, R. Virology. 1988, 166, 440-450. Misra, V.; Nelson, R. C.; Babiuk, L. A. Antimicrob. Agents Chemother. 1983, 23, 857-65. Siegel, S. Α.; Otto, M. J.; De Clercq, E.; Prusoff, W. H. Antimicrob. Agents Chemother. 1984, 25, 566-70. Datema, R.; Ericson,A.-C.;Field, J . J., Larsson, Α.; Stenberg, K. Antiviral Res 1987 7 303-16 Douglas, J. M.; Critchlow Connor, J. D.; Hintz Μ. Α.; Α.; Winter, C; Corey, L. New Engl. J. Med. 1984, 310, 1551-56. Kristofferson, Α.; Ericson,A.-C.;Sohl-Åkerlund, Α.; Datema, R. J . Gen. Virol. 1988, 69, 1157-66.
RECEIVED January 4, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
123
Chapter 9
Antiviral Activity of the Nucleotide Analogue Ribavirin 5'-Sulfamate Donald F. Smee Nucleic Acid Research Institute, 3300 Hyland Avenue, Costa Mesa, CA 92626
Ribavirin 5'-sulfamat replication in cel protecte lethal virus challenge. This activity was unexpected since ribavirin was not inhibitory to the virus. De tailed mode of action studies showed that the analog inhibited viral polypeptide and RNA syntheses to a greater extent than comparable host cell functions. Viral RNA synthesis inhibition was caused by the in hibited synthesis of the viral RNA polymerase protein. The compound's primary mode of action was on amino acyl-tRNA synthesis, the first step required for mRNA translation into protein. Other cellular processes affected as a result of protein synthesis inhibition included DNA and polyamine syntheses, and methylation and sulfuration reactions.
For years i n v e s t i g a t o r s have explored the p o t e n t i a l of nucleotide analogs as i n h i b i t o r s of v i r a l i n f e c t i o n s (1), with much of the e f f o r t focused on modifications at the 5'-monophosphate p o s i t i o n . To date, 5'-phosphonate d e r i v a t i v e s of e i t h e r n a t u r a l l y occurring nucleosides (2) or of nucleoside analogs (3) have not possessed the desired b i o l o g i c a l a c t i v i t y i n c e l l culture. Part of the reason f o r this lack of a c t i v i t y i s that these polar compounds do not r e a d i l y penetrate into c e l l s . One approach to reduce p o l a r i t y i s to construct 3',5'-cyclic phosphate analogs. The strategy i s for the compounds to enter c e l l s and be cleaved to 5'-monophosphate d e r i v a t i v e s by phosphodiesterases. The free 5'-monophosphates can then be further phosphorylated to nucleoside d i - and triphosphates. Some of these compounds, such as adenosine 3',5'-cyclic phosphorothioates ( 4 ) , rather than being catabolized to 5'-monophophate forms, have turned out to be i n h i b i tors of nucleoside 3',5',-cyclic phosphodiesterases, or i n other ways i n h i b i t c e l l p r o l i f e r a t i o n . The charges on the 5'-phosphate moiety can also be reduced by a l k y l blocking groups. Examples of active compounds include c e r t a i n 0097-6156/89/0401-€124$06.00/0 ο 1989 A m e r i c a n C h e m i c a l Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
125
Antiviral Activity of Ribavirin 5'-Sulfamate
9. SMEE nucleoside
5'-phosphonoformate
2'-deoxyuridines
(5)
and
(PFA)
purines
viruses.
For
each
of
the
reported
felt
cleavage
of
the
PFA g r o u p
that
activity
was
nucleoside
due
either
analog,
to
which
its
that
a
free
5-substituted
herpes
compounds,
occurred,
to
of
inhibit
active
PFA o r
in
derivatives
(6)
and
that
combination
state
would
simplex
the
authors
the
of
antiviral
PFA and
inhibit
the
the
virus
anyway. Phosphate 5'-sulfates penetrate this
into
series
possesses of
cells.
was
The
synthesis,
makes
growth
it of
too
both
African
antiviral
a c t i v i t y when 1,
analog
the
(11);
selective herpes
The sides
it
was
hexose
diphosphate inhibited
of
in
enveloped
proteins
o n DNA
The
to
see that
antiviral
nucleotide
in
and
the
was
to
is
an
that
inhibitor
parasite
(8),
5'-sulfamate, shown
inhibit
to
a
inhibit
protein
agent
in
swine
vitro
The at
to
20
viral
The
5'-
recently
screens.
In
5'-sulfamates
were
fever,
a
also
more
the
was
and
to
a
found
lesser
(12).
preparation
synthesis
antiviral
our
uridine
African in
cytotoxicity.
tiazofurin
used of
a
active
to
100
to
link
series of
these
ug/ml
i n h i b i t i o n of
nucleo
of
uridine structures
(14).
The
anti
glycosylation
of
(14).
program
at
this
institution,
ribavirin
(5'-0-sulfamoyl-l-£-D-ribofuranosyl-l,2,4-triazole-3-
carboxamide; similar
the
(9)
inactive
viruses
viral
of
and
Adenosine
nucleocidin,
(13).
attributed
part
cell
considerable
the
a c t i v i t y was As
host
certain
viral
5'-sulfamate
identified
Nucleocidin
f u n c t i o n a l i t y was
analogs
and
of
viruses
moieties
sugar
many
also
inhibitors simplex
5'-sulfamate
to
the
be
as
readily
occurring antibiotic
human u s e .
had
communication,
be
(7).
antiviral
preliminary to
to
such
will
teste it
synthesized
extent,
compound
and
(10)
and
of
non-polar
naturally
trypanosomes
coli
in Table
of
for
analog
in
sulfamate
first a
5'-monophosphates
are
activity
toxic
synthesis listed
(1)
nucleocidin,
chemically-synthesized the
nucleoside
5'-sulfamates
anti-parasitic
protein
which
mimics of
and
structure used
to
a c t i v i t y and
analog
are
below)
was
synthesize mode
of
presented
synthesized
using
a
adenosine
5'-sulfamate
action
this
of
scheme (15).
interesting
new
here.
Ο
OH
HO Antiviral Initially, ral
activity
ribavirin
activity
human
in
in
a
(CPE)
culture
5'-sulfamate
primary
cytomegalo-,
cytopathology
cell
herpes in
a
screen
was
in
and
mice
evaluated
(Table
simplex, narrow
and
1).
The
in
vitro
compound
parainfluenza
concentration
range,
for
antivi
inhibited
virus-induced but
had
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
a
more
NUCLEimDE ANALOGUES
126 pronounced
effect
against
Forest
virus-induced
μΜ
suppression
the
ribavirin
was
not
The
analog
showed
and
it
toxic
was
concentrations inhibited extent At
the
morphology some
actively
active no to
the
Vero
cells
toxic
50% a t
Table
of
1.
in
50%, Forest
influenza to
In
uninfected
cell
cell
Vero
at
and
<1000
viruses
to
a
virus
μΜ. at
lesser type
altered
monolayers, were
320
since
markedly
proliferation
cells
to
unique
these
5'-sulfamate
stationary
32
rhinoviruses,
ribavirin
A virus,
Semliki
at
virus
parainfluenza
ribavirin
1 0 μΜ,
A and
replicate
influenza and
At
whereas
a c t i v i t y was
contrast,
1-A
effects.
1-3
Semliki
used In
rhinovirus
replicating
by
cells
1 0 μΜ.
virus.
by
This
against
concentrations,
of
100%.
against
effect
Forest
inhibited
C P E was
replication
partially
growth
of
above
inhibited
antiviral
Semliki
C P E was
3. the
indicating
assays,
arrested
in
their
μΜ.
Inhibitor and
Virus Human
(Strain)
cytomegalo
Herpes
simplex
Influenza
A
Rhino
1-A
Semliki
3
(C243)
(2060) Forest(Original)
*Fifty
percent
cytopathic
ratings
of
indicate
<0.5
tivity;
1.0
The virus
viruses the
are
of
above,
the
to
The
as
a
on
the
for in
tion
was
Μ0Ι.
decreased The
10 a n d
virus
48
nucleotide
hours
virus at
even
and
50-100 at
with
analog
method
an
about
the 2
were
virus the was
Sidwell
0.6-0.9,
(17)·
Ratings
moderate
performed
is
a
ac
many
family
the
inhibitors
that
these
effects
of
by
reduction
RNA
Toga-
diseases might
ribavirin
5'-
methods
(19).
multiplicities
refers
the
of
added >1
degree
of
be
viruses.
quantifying
assay
to
in
understanding
different
virus
to
of
cell
simultaneously
log
μΜ c o n c e n t r a t i o n s , the
by
information of
replication
(Μ0Ι
Semliki
(18).
encephalitic
thought
the
using
positive-stranded
togavirus
detail,
where
increasing
from
activity.
reduction
1 0 0 μΜ
Μ0Ι
of
compound were a
determined
(16).
activity;
plaque
used
2),
destroyed at
by
were
(Table
achieved
However,
yield
(Μ0Ι)
the
concentration,
virus
conditions
When
>1000/0.0
determined
Forest yield
monolayers
320/0.4
10/0.8
some
under
ratio).
>10/0.0
It
virus
cell
HeLa Vero
selective
experiment
virus
100/0.8
causing
extracellular infecting
10/0.4
of
world.
more
Semliki
done
32/1.2
Vero
The
This
was
>10/0.0
the
member
activity
design
next
sulfamate
>1000/0.0
MDCK
marked
cells.
responsible
compound's
>1000/0.0
investigations
i n Vero
throughout
helpful
1/0.4 10/0.4
weak a n t i v i r a l
classified
humans
by
(μΜ)
Vero
i n h i b i t i o n assay
calculated
and
rest
virus
Rib.5'-Sulf.
virus-inhibitory
effect
**Virus
Forest
(G)
(Chile)
Parainfluenza
ED50*
Line MRC-5
(AD-169)
2
/ Virus Rating** Ribavirin
Cell
of
virus
to
produc
regardless
of
i n h i b i t i o n of
the
virus
Μ0Ι.
cell
monolayer
of
0.01.
to
6 hours
It to
in
usually
12
hours
takes
equilibrate
a
MOI
of
nucleoside
at
or
into
an
cells,
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
and
9.
S
M
E
Table
E
Antiviral Activity of Ribavirin 5" -Sulfamate
2.
Antiviral
activity
multiplicities
of
of
ribavirin
Semliki
Log
1
5'-sulfamate
Forest
Plaque
Q
127
virus
Forming
under
varying
infection
Units/ml Pre-Treatment* Actinomcyin
Inhibitor Conc.(yM)
0.01**
0.1
D
Present
(5
None
Treatment**
Simultaneous
μΜ)
1
10
10
10
0
9.3
9.3
9.7
8.3
9.4
9.5
6.25
9.5
9.0
8.6
8.6
9.4
9.0
12.5
9.6
8.9
8.6
8.3
7.7
9.1
25
9.3
8.7
8.3
7.5
6.6
6.9
50
5.6
6.8
6.7
7.3
5.6
5.9
3.5
4.6
5.7
6.3
5.2
5.3
5.8
4.7
4.0
2.0
4.2
4.2
100 Log
reduction
at
100
μΜ
•Ribavirin
5'-sulfamat
replication. **Ribavirin the
Actinomyci
5'-sulfamate
and
virus
were
added
simultaneously
to
cells.
***Multiplicity
of
virus
infection
(Μ0Ι).
S O U R C E : R e p r o d u c e d with permission from ref. 23. Copyright 1988 Elsevier. if
necessary
Μ0Ι
the
complete this, 2).
be
virus
its
way
equilibration
of
the
inhibitor
cells
were
experiment
pre-treated was
since
in
of
antiviral
mode virus
inoculation,
i n h i b i t i o n of
a
(antagonism)
25-100 rin's
μΜ.
in
In
uninfected
dividing
the
7
In
days.
daily
with
infection was loss the as
daily and
with
at
40
at
10
treated
controls. provided of
A no
effects
uridine
subsequent
and
of
at
became
and
their
appeared study
to
an
the
a
The
more less
at
ribavi
<40
3),
due
at
most
a
doses
tested By
mg/kg
mice
lethal in
encephalitic
day to
than
effect
survivors
induced
for
treated
protective
was
severe
of
drug
appearance.
healthy
that
reverse
analog
each
i l l
overall
cause
analog
first
compound With
the
dose.
increase
20.
more not
was
of
later
(21,22)•
otherwise Less
the
showed
infected
of
to
of
treatment
tolerated
(Table
virus.
loss
mice
loss
10 mg/kg
antiviral
survived although
known
for
(Table
needed
caused
activity
maximum
before
absence
tool
starting
inhibits
infection
Forest
some
protection
By
high
compensate
or
important
5'-sulfamate
tolerated
significant.
control
weight at
mg/kg
To
the
Actinomycin D did
it
its
culture
5'-sulfamate
5'-sulfamate
ribavirin
at
presence
an
antiviral
viruses
mice
mg/kg,
and
the
studies.
determine
Semliki
mg/kg by
the
that cell
occurred.
actinomycin D is
dose, 40
in
the
ribavirin
yield.
the
experimental
uninfected
Mode
to
statistically
judged
mice
The
mice
20
of
experiments
an
achieved
s t i l l
against
animal
with
ribavirin virus
contrast,
activity In
action
means
destroy
actinomycin D is
pronounced reversal
to
conducted
D,
before
This
on
actinomycin the
(20,21).
well
the The
metabolized
was
weight
treatment toxicity, Even
the
saline-treated
below
10
mg/kg
mice.
action
ribavirin
[3-H]amino
5'-sulfamate
acids
into
on
the
incorporation
acid-precipitable
of
[3-H]-
macromolecules
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
128
ΝϋΟ,ΕΟΉΌΕ ANALOGUES
Table 3.
E f f e c t s of r i b a v i r i n 5 '-sulfamate on a l e t h a l Semliki Forest v i r u s i n f e c t i o n i n mice
T o x i c i t y Controls % Weight Difference** Survivors/ Dose* Day 14 Day 7 Total (%) (mg/kg) 0 0 0/12 (0) 0 +2 -1 7/12 (58)*** 10 -13 -6 11/12 (92)*** 20 -32 -13 10/12 (83)*** 40 *Compound or s a l i n e was administered twice a day i n a divided dose for 7 days s t a r t i n g 2 hours before virus inoculation. **The percent difference i n mouse weight between the untreated and treated uninfected mice. * * * S t a t i s t i c a l l y s i g n i f i c a n t (p<0.01), determined by the two-taile S O U R C E : Reproduced wit of uninfected and Semliki Forest v i r u s - i n f e c t e d Vero c e l l s was determined. These standard assays (19) are an i n d i c a t i o n of e f f e c t s on RNA and protein syntheses, r e s p e c t i v e l y . The i n t r a c e l l u l a r , unincorporated (acid-soluble) amounts of these and a l l subsequently used radioactive compounds were also determined (19). Unless other wise mentioned, treatment of c e l l s with r i b a v i r i n 5'-sulfamate did not a l t e r the uptake of these molecules i n t o acid-soluble pools r e l a t i v e to untreated c e l l s . In uninfected c e l l s , a dose-dependent i n h i b i t i o n of amino acid incorporation occurred, with >50% i n h i b i tion at 6 μΜ (Table 4). The e f f e c t of r i b a v i r i n 5'-sulfamate on u r i d i n e incorporation was not dose-dependent (a 30% i n h i b i t i o n was observed at a l l concentrations tested). An o v e r a l l 30% i n h i b i t i o n i n acid-soluble counts also occurred at the same concentrations, which i n d i c a t e a moderate i n h i b i t i o n of [3-H]uridine uptake i n t o the c e l l . These r e s u l t s show that r i b a v i r i n 5'-sulfamate i n h i b i t e d c e l l u l a r protein synthesis, but had only a weak e f f e c t on RNA synthesis. In v i r u s - i n f e c t e d c e l l s , the a c t i v i t y of the analog was studied i n the presence or absence of actinomycin D (Table 4). Actinomycin D was used to suppress c e l l u l a r mRNA synthesis and subsequent protein expression without i n t e r f e r i n g with the corresponding v i r a l proces ses. R i b a v i r i n 5'-sulfamate i n h i b i t e d amino acid incorporation i n infected c e l l s to about the same degree whether actinomycin D was present or not. This was s l i g h t l y l e s s than the degree of i n h i b i t i o n observed i n uninfected c e l l s . For this reason i t was not possible to conclude at this stage of experimentation that the analog i n h i b i t e d v i r a l protein synthesis. A d i f f e r e n t i a l e f f e c t was noted between the incorporation of u r i d i n e into infected c e l l s treated with actinomycin D compared to c e l l s r e c e i v i n g no actinomycin D (Table 4). In the absence of actinomycin D, an o v e r a l l 50% i n h i b i t i o n of incorporated uridine occurred at 6 to 100 μΜ, which was s i m i l a r i n nature to the lack of dose-responsiveness of r i b a v i r i n 5'-sulfamate i n uninfected c e l l s . However, i n infected c e l l s treated with actinomycin D where primar i l y v i r a l RNA synthesis took place, a marked suppression of u r i d i n e incorporation was evident at >12.5 uM. These data i n d i c a t e that r i b a v i r i n 5'-sulfamate i n t e r f e r e d with v i r a l RNA synthesis.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
9.
S
M
E
E
Antiviral Activity of Ribavirin 5 'Sulfamate
Table 4.
129
E f f e c t s of r i b a v i r i n 5'-sulfamate on incorporation of u r i d i n e and amino acids into Semliki Forest v i r u s - i n f e c t e d and uninfected c e l l s
Percent of Untreated Control Uninfected Virus-Infected Inhibitor* Uridine Amino Amino Acids Amino +Act.D** Acids +Act.D** Cone.(μΜ) Uridine Uridine Acids 65 80 54 72 6.25 37 49 39 47 16 42 12.5 69 26 37 38 9 21 44 25 71 23 27 10 69 18 46 50 9 16 9 54 100 68 11 *Treatment with r i b a v i r i n 5'-sulfamate before and during radiol a b e l i n g (with [3-H]uridine or [3-H]amino acids) was as follows: uninfected c e l l s , 22 hrs pre-treated/2 hrs labeled; infected c e l l s , 18 hrs pre-treated/4 hr labeled. **Actinomycin D (5 μΜ) was added at the time of v i r u s i n f e c t i o n . S O U R C E : Reproduced with permission from ref. 23. Copyright 1988 Elsevier. In order to determine whether v i r a l protein synthesis was i n h i b i t e d i n treated c u l t u r e s , v i r a l and c e l l u l a r polypeptides were separated and v i s u a l i z e d by PAGE/fluorography methods (24,25). Infected c e l l s devoid of i n h i b i t o r exhibited d i s t i n c t new bands of protein (lane 2 of Figure 1) not present i n uninfected cultures (lane 1). In lanes 3-5, treatment with r i b a v i r i n 5'-sulfamate at 25-100 μΜ completely blocked the expression of these v i r a l proteins. Also, the i n t e n s i t y of c e l l u l a r proteins i n these lanes was somewhat diminished r e l a t i v e to the untreated, uninfected c o n t r o l . These r e s u l t s show that r i b a v i r i n 5'-sulfamate i n h i b i t e d v i r a l and c e l l u l a r protein synthesis, but not necessarily to the same degree under these treatment conditions. Since the above studies demonstrated that r i b a v i r i n 5'-sulfa mate i n h i b i t e d v i r a l and c e l l u l a r protein synthesis and v i r a l RNA synthesis, i t was hypothesized that the i n h i b i t i o n of v i r a l RNA synthesis was a consequence of the i n h i b i t e d expression of the v i r a l RNA polymerase protein. An alternate hypothesis i s that r i b a v i r i n 5'-sulfamate d i r e c t l y i n h i b i t e d the function of the v i r a l RNA polymerase. To discriminate between the two hypotheses, v i r a l RNA polymerase a c t i v i t y was p a r t i a l l y p u r i f i e d from c e l l s (26). The v i r a l polymerase located i n the c e l l u l a r P15 f r a c t i o n (mitochondria and membranes) was q u a n t i f i e d from treated and untreated infected c e l l s (Table 5). In these enzyme assays, the RNA polymerase reac tion mixtures (26) did not contain r i b a v i r i n 5'-sulfamate. The r e s u l t s show that the amount of enzymatic a c t i v i t y recovered from i n h i b i t o r - t r e a t e d c e l l s was a function of the concentration present during the time the v i r u s was r e p l i c a t i n g i n c e l l culture. When 1 mM r i b a v i r i n 5'-sulfamate was added d i r e c t l y to a v i r a l RNA polymerase reaction obtained from untreated, v i r u s - i n f e c t e d c e l l s , only a 27% decrease i n the rate of polymerization occurred, i n d i cating that the analog was only a weak i n h i b i t o r of the enzyme. These r e s u l t s demonstrate that v i r a l RNA synthesis was i n h i b i t e d
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
130
NUCLEOTCDE ANALOGUES
Table
5.
Effects of
of
ribavirin
Semliki
Forest
recovered
5'-sulfamate
virus
from
Inhibitor*
Polymerase Activity**
on
the
polymerase
infected
Conc.(pM)
cells Percent
3,698
100
1,673
45
12.5
670
18
25
148
4
50
0
0
virus
0
0 was
present
replication
absent
••Expressed
from as
18
hours
period
(4
of
Control
6.25
100
amount
activity
0
*Inhibitor was
RNA
before
hrs)
in
and
cell
during
the
RNA
polymerase
reaction.
counts
per
minute
million
per
the
culture,
but
cells.
S O U R C E : R e p r o d u c e d with as
a
consequence
(i.e.,
the
to
inhibited
the
Inhibition A
series
site
of
mRNA
to
effect
of
of
the
RNA
translation
studies of
rabbit
was
test
analog
Puromycin
was
also
Ribavirin
was
system also
result sites
a
When
(Table from
on
the
it
a
it
similar were
(24,25).
The
5
of
hand
2)
5'-sulfamate diminished the
treated
intensity that
the
way
sulfamate
did
of
the
To
of
a
more were
drug the
from
potent
effect
(Table
positive
15-100
μΜ.
in
at
in
Puromycin
the
the
the
6).
control
inhibitor
occurred.
compounds
translating evaluate
translation
present
protein
of
the
same This
same
can
be
at
the
aminoacyl
into
the
polypeptide
result see
is
using the
the
whether
reaction could
or
different
the
many
chain of
steps.
site
incomplete
5'-sulfamate
the
show
that
presence
(lane
fragments
3)
untreated
polypeptide
puromycin
weight
were but
the in
and
of
rate
would
of
produced
the
of
(lane gel.
polypeptide
since
in
On
not
the
ribavirin
based
These do
only
(lane
synthesis 2),
each methods
caused
40,000.
puromycin
translation,
chain-terminate
be
synthesized
control
bands
5'-sulfamate
to
on
where
electrophoresis/fluorography
assay
protein
in
at
acceptor
formation
formed
polypeptides
cells to
inhibited
ribavirin
maximum m o l e c u l a r of
inhibit
not
be
polypeptide
ribavirin to
to
a
polypeptides
a
of
as
of
The
weight
relative
indicate same
(27).
sizes
capable
conducted
protein
intracellular
commercially
simultaneously
incorporated
with
system
a
vitro
to
to
visualized
a l l
specific
Using
in
interacts
effect,
molecular Figure
other
mRNA
results
the
were
manner
due
synthesis
find
inhibited
cells
complex.
fragments.
inhibitor small
is
DNA
expression
treated
translation
additive
puromycin
terminates
have
of
to
inhibitors
interaction
and
polypeptide
proved
an
and
lysate
protein
two
ribosomal
example,
ribosomes,
on
and
Translation For
mRNA).
reactions
dose-dependent
6),
an
tube
evaluated
the
its
protein from
5'-sulfamate.
5'-sulfamate
active,
reaction. mixture
in
absent
conducted
reticulocyte
protein, the
this
of
viral
was
translation
ribavirin
of
(27).
i n h i b i t i o n of
polymerase
protein
action
available
of
viral
was upon
results act
ribavirin
synthesis.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
in 5'-
9. SMEE
Antiviral Activity of Ribavirin 5 ''Sulfamate
1
2
3
4
131
5
Figure 1. Effects of ribavirin 5'-sulfamate on viral and cellular polypeptide synthesis. Treatment with the inhibitor began 18 h before virus; cells were exposed to [3-H]amino acids 4-6 h after virus adsorption. Lane 1, uninfected untreated; lanes 2-5, infected and treated with 0, 25, 50, and 100 μΜ inhibitor, respectively. Designations at left indicate positions in lane 2 where viral-specific nonstructural (ns86 and ns97) and structural (C, capsid; E l , E2, and E3, glycoproteins; p62, precursor to E1-E3) polypeptides occur. (Reproduced with permission from ref. 23. Copyright 1988 Elsevier.)
Figure 2. Inhibition of proteins translated by a rabbit reticulocyte lysate system. Lane 1, background control (mRNA absent); lane 2, untreated control; lanes 3-4, ribavirin 5'sulfamate at 30 and 300 μΜ, respectively; lanes 5-6, puromycin at 3 and 30 μΜ, respectively. Molecular weight markers appear at left of figure. (Reproduced with permission from ref. 23. Copyright 1988 Elsevier.)
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
132
NUCLE(ynDE A N A L O G U E S
Table 6.
E f f e c t s of r i b a v i r i n 5'-sulfamate and puromycin on protein t r a n s l a t i o n * i n v i t r o (23)
Percent of Control Conc.(yM) 102 10 76 15 45 30 14 100 76 1 Puromycin 21 3 0 10 52 (58)** 15/1 Rib.5'-Sulf./Puromycin 37 (34) 30/1 *Reactions contained a rabbit r e t i c u l o c y t e lysate system, rabbit globin mRNA, and [35-S]methionine. **( ) = expected value for a d d i t i v e drug i n t e r a c t i o n . S O U R C E : Reproduced wit Inhibitor R i b a v i r i n 5'Sulfamate
Once i t was known that r i b a v i r i n 5'-sulfamate i n h i b i t e d protein t r a n s l a t i o n , i t became evident that the compound may be s i m i l a r to adenosine 5'-sulfamate i n i t s action. I n i t i a l l y i t was thought that the two compounds had d i s s i m i l a r modes of action, because adenosine 5'-sulfamate was i n a c t i v e against Semliki Forest v i r u s i n cytopathic e f f e c t i n h i b i t i o n assays. From the l i t e r a t u r e , adenosine 5'-sulfamate was shown to i n h i b i t aminoacyl-tRNA synthetase reactions (10), which are very early steps required i n protein synthesis. Aminoacyl-tRNA synthetases l i n k amino acids to respective tRNA's, which then carry the amino acids to the ribosome complex. The experiment i n Table 7 shows that r i b a v i r i n 5'-sulfamate i n h i b i t e d methioninetRNA synthetase (the only synthetase that was tested; there i s at least one aminoacyl-tRNA synthetase f o r each amino a c i d ) . The experimental method (10) used to derive the data i n Table 7 may not be obvious to the reader so w i l l be explained. The protein t r a n s l a t i o n experiment i n Table 6 reports t o t a l i n h i b i t i o n of polypeptide synthesis and of aminoacyl-tRNA synthesis. This i s because radioactive proteins and radioactive aminoacyl-tRNA's are a l l trapped onto f i l t e r s counted i n the assays. Referring to Table 7, by b o i l i n g the f i l t e r s i n hot p e r c h l o r i c acid (PCA), the aminoacyl-tRNA' s degrade and elute o f f . Thus, the difference i n counts from boiled versus unboiled f i l t e r s represents a c t i v i t y associated with aminoacyl-tRNA synthesis. R i b a v i v i n 5'-sulfamate i n h i b i t e d t o t a l synthesis, polypeptide synthesis, and aminoacyl-tRNA synthesis a l l to approximately the same degree. Adenosine 5'-sulfamate was also i n h i b i t o r y to t h i s process, and by further experimentation was shown not to i n h i b i t the elongation of polypeptides i n the presence of pre-formed aminoacyl-tRNA's (10). By inference the same may be true for r i b a v i r i n 5'-sulfamate. DNA synthesis i s a process that i s dependent upon protein synthesis (28), so one would expect r i b a v i r i n 5'-sulfamate to i n h i b i t that process. This was confirmed by the experimental r e s u l t s of Table 8, using [3-H]thymidine incorporation as an i n d i c a t o r . Some of the a n t i p r o l i f e r a t i v e and anti-DNA v i r u s a c t i v i t i e s of the analog are related to i n h i b i t i o n of DNA synthesis, but t h i s probably would not i n t e r f e r e with Semliki Forest v i r u s r e p l i c a t i o n .
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Antiviral Activity of Ribavirin 5'Sulfamate
9. S M E E Table
7.
Effects of
of
ribavirin
rabbit
globin
5'-sulfamate
mRNA a n d
Percent Cold
Cold
Hot
Cone.(μΜ)
PCA
PCA**
on
Hot
protein
synthesis
Control
Untreated
of
translation
aminoacyl-tRNA
Reaction*
Minute
60
Reaction*
10 M i n u t e Inhibitor
on
Minus
Cold
Hot
Cold
PCA
PCA
PCA
Hot
Minus PCA
30
40
50
37
30
36
28
100
13
10
14
14
17
13
8
1
9
5
7
300 *A rabbit as
reticulocyte
indicator
**Filters
for
were
the
boiled
lysate
s y s t e m was
run
using
5 [35-S]methionine
reactions. in
3.5%
perchloric
acid
(PCA)
to
degrade
the
aminoacyl-tRNA's.
Inhibition The
of
methylation
structure
naturally
of
ribavirin
occurring
methionine
(AdoMet),
adenosine,
and
play
processes
show
AdoMet which
were
effects
as
a
transfer
from
been
such
as
cellular an
methylation have
viruses
treated AdoMet by
reactions
been
shown
components
with
methylthio-
A marked to
or
(29).
or
as
a
to
that of
inhibit
reactions.
Specific
The AdoHcy,
inhibitors
antiviral
activity
methylation.
dose-dependent
macromolecules
set
accumulation of
possess require
(PAPS)
next
ribavirin-5'-sulfamate
i n h i b i t i o n of
inhibition,
and
In
Table
labeled
i n h i b i t i o n of
occurred.
This
enzymes
in
the
general
consequence
with methyl-
effect
AdoMet of
of (30),
could
pathway protein
both.
Effects of
8.
to
certain
S-adenosyl-
in.
to
caused
Table
as
5'-sulfamate
involved in
AdoHcy h y d r o l a s e ,
synthesis
ribavirin are
The
leads
[3-H-(methyl)]AdoMet. have
of
molecules
metabolism.
donor
certain
cells
the
cellular
methyl
hydrolase
because 8,
mimics
such
(AdoHcy),
AdoHcy h y d r o l a s e
inhibits
AdoHcy
in
these
serves of
S-adenosylhomocysteine
roles
that
inhibition
potentially
derivatives
3'-phosphoadenosine-5'-phosphosulfate
important
experiments
5'-sulfamate
5'-thioadenosine
ribavirin 5'-sulfamate cellular Percent
of
on
various
functions Untreated
Control
Thymidine
Sulfate
Methyl
Methionine
Incorp.
Incorp.
Transfer
Incorp.
48
35
47
33
12.5
22
16
31
21
Inhibitor* Conc.(yM) 6.25 25
15
10
24
15
50
10
6
19
12
100
8
3
13
9
5 ' -- s u l f a m a t e b e f o r e a n d d u r i n g * C e l l s were t r e a t e d w i t h r i b a v i r i n l a b e l i n g as f o l l o w s : [3-H]thymidine, 22 h r s p r e - t r e a t e d / 2 hrs labeled;
[35-S]sulfate,
(methyl)JAdoMet
and
20 h r s
pre-treated/4
[35-S]methionine,
5 hrs
hrs
labeled;
pre-treated/1
[3-Hhr
labeled.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
134
NUCLE(mDE ANALOGUES
Cells with
soluble cells, this
with
which
could
possibility,
amounts
liquid of
AdoHyc
6-100
showed
radioactivity
pressure and
treated
[35-S]methionine
at
each
represent extracts
protein
[35-S]methionine same d e g r e e
AdoMet,
between
the
two
that
weakly
9.
affected
Metabolites
amounts
AdoHcy
of
9),
cysteine suggesting
hydrolase,
as
a
(measured
by
inhibited
to
the
buildup lack
nearly
reactions, of
of
reactions,
indicating
methionine
and
utilization
for
respectively.
of
inhibitors
of
AdoHcy
[35-S]methionine
ribavirin
in
cells
treated
per Minute
10^ C e l l s
per
Rib.5'--Sulf.* (177)**
16,151
AdoHcy
1,417
864
(64)
AdoMet
31,039
56,180
(181)
=
also
inhibitor
of
serves
which
the
metabolism was
inhibition
of
ribavirin
effect
5'-sulfamate
it
synthesis
of as
to
28)
before
and
1
a
at
30-100
were
inhibited was
at
try
the
hr
synthesis
active and
of
data
inhibiting
the
activity to
was
run
showing
proteins to
whereas
s a m e was affected
protein
at
of
general (Table
10).
protein 30-100
generally
that
to
that
due
indicate
indirectly
following useful
whether
inhibitory
The
by
not
or
into
synthesis,
The
was
direct
study
more
inhibited. μΜ.
a
pathway
parallel
spermidine
concentrations
to
Cells
(another
in
discriminate
due
(33).
determined
Puromycin
was
was
to
cycloheximide
[3-H]methionine
synthesis
consequence
leading
proliferation
This (34).
polyamine
equally
protein a
of
and
polyamine
5'-sulfamate
was
were
cycloheximide
inhibitors
the
inhibition,
ribavirin than
To
step cell
10).
synthesis on
At
processes
in
because
toxic.
incorporation
synthesis
5 hrs
control.
first
role
[3-H]ornithine
polyamine
synthesis
the a
(Table
inhibited 1 0 μΜ,
in
synthesis,
overtly
of
present
5'-sulfamate
syntheses
inhibitory
compound
was
untreated
play
protein
spermine an
of
ribavirin
and
μΜ)
(66)
radiolabeling. percent
polyamines, with
(6.25
(32).
5'-sulfamate
23,785
treated
The
hydrolase
13,438
AdoMet
of
synthesis
24,472
)
but
consequence
Cysteine
**(
high
elevated
Methionine
during
for
by
showed
(Table
Untreated
*Inhibitor
both
results
was
their
Counts
protein
investigate
analyzed
reactions
The
of
by
Compound
show
To
were
methyltransfe
with
of
AdoHcy.
replication
only
Table
untreated
protein
methyltransfer
i n h i b i t i o n of
virus is
and
result
acid-
to
methyltransfer
processes.
the
labeled in
compared
cells
8)
and
180% e l e v a t i o n
decreased
Table
i n h i b i t i o n of
in
inhibit
Also,
incorporation,
synthesis
and
not
the
protein
virus
did
synthesis.
probably
a
The
methyltransfer
as
were
Forest
(31).
inhibitor-treated
5'-sulfamate
5'-sulfamate
cells
and
in
affected
role
these
present
ribavirin
link
increase
methionine
generally
a
an
chromatography
that
AdoMet
ribavirin
concentration
from
more
inhibiting
μΜ
approximately
μΜ true
these
polyamine
synthesis.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
The
Table
10.
Effects on
of
ribavirin
methionine
5'-sulfamate
incorporation Percent
Inhibitor* Ribavirin
(μΜ)
Incorp.
follows:
of
of
RNA
PAPS
61
33
89
12
9
100
8
95
6
5
10
85
91
253
141
30
56
110
42
23
107
11
is
polyamine viruses,
whether
a
5 hrs
before
and
during
pre-treated/1 hrs
hr
4
labeling
labeled;
as [3-H]-
labeled.
synthesi but
substrate
such
effects
of
probably
this
protein
compounds
as
would
could
have
have
that
not
lead
to
studies,
cells
capacity
to
8).
treated
By
of
then
decreased
in
incorporation
into
was
5'-sulfamate
sulfuration
reactions.
Table
11.
this
was
of
an
inhibition
(35),
the
as
time,
5'-sulfamate acid
of
intracellular
results
of
to
that
inhibit
the
i n h i b i t i o n of
Untreated
over
(hrs)
Incorp.
Incorp. 94
1
160
2
65
74
3
34
52
4
30
27
5
25
27
6
25 pulse-labeled
or
[3-H]amino
at
0
acids.
The
sulfate time
Acids
Sulfate
were
may
Control*
Amino
23 hourly
using
inhibitor
(25
[35-S]sulfate μΜ)
acid
suggest
Time
*Cells
treatment,
sulfuration
incorporations
Percent
decreased
[3-H]amino
non-specifically
amino
a
hour
acting
Ribavirin
present
macromolecules
the
11).
a
the
had
into
first
protein
as In
i n h i b i t i o n of
that
inhibitors as
(Table role
and
Other
well
(36).
These
know
non-selectively
5'-sulfamate
the
to
reactions,
specific
[35-S]sulfate over
structural
interest
consequences.
of
synthesis
during
intracellular other
sulfuration
reactions
effect
with
The
and
was
chlorate
ribavirin
enhanced
protein
It
activities
inorganic
parallel
for
on
sodium
protein
with
following
sulfuration
the as
sulfuration
inhibiting
certain and
virus-inhibitory
such
incorporate
rate
ribavirin
any
of
(35)
sulfate.
5'-sulfamate
reported
inhibit
of
sulfuration molecules
chondroitin
sulfurases,
consequence
for
tyrosine
ribavirin
investigators
(Table
17 inhibitor
pre-treated/12
containing
components
of
Spermine
viruses.
proteins the
to
Spermidine
Putrescine 107
6 hrs
of
Control
Metabolism
14
100 treated with
DNA
Untreated
Ornithine
synthesis
24
[3-H]methionine,
inhibition cation
cycloheximide
10
Cycloheximide
ornithine,
and
polyamine
30
5'-
Sulfamate
were
and
of
Methionine
Cone.
*Cells
135
Antiviral Activity of Ribavirin 5-Sulfamate
9. SMEE
was
added
time.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
play
136 on
NUCLEOTIDE ANALOGUES
the
cells
replication with
Uptake The
of
last
inside taken
ribavirin questions
of up
by
lites
by
To
a
and
compound upon
an
nanomole to
the
of of
from about
formed, have
taken
generate (21). mate
is
Table
a
fully
cells
to
of to
if
completely
For
example,
Uptake
the
for
of
Ribavirin culture toxic mode
at of
6
nm)
and to
inhibited
were
the
time
it
its
active
did
took
maximal
present of
the
which
relied
not
allow
for
the
the
protein
hours
were
ribavirin
was
were
which
being
synthesis
required
would
to
fully
5'-triphosphate
in
that
5'-sulfa-
and
ribavirin
anticellular
5'-sulfamate
into
Cone.
cells
effects.
cells*
(yM) 18
at
hours
1005
using
ribavirin 0.02
analog
effect,
metabolites
inhibit
16 m i n u t e s
a
C-18
HPLC
5'-sulfamate at
1 ml/minute
M potassium
column.
(detected flow
phosphate,
by
rate.
pH
3.5.
in
cell
discussion
mice,
inhibited although
of on
or
action the
this
Semliki was that
detected
in
cellular
synthesis,
action.
provided
synthesis,
methyltransferase
its
Since
cells
Forest
considered
nucleotide
anticellular
i n h i b i t i o n of for
it
doses
of
protein
aminoacyl-tRNA
target
system,
Hours
assayed
of
was
buffer
All
syntheses,
compound
time
viral
attributed major
method,
965 were
concentrations of
assay,
were
71
in
synthesis.
the
(HPLC)
the
metabolites
233
antiviral
inhibition
inhibitor no
Intracellular
5'-sulfamate
and
of
137
and
cells metabo-
chromatographic
368
210
intra-
possible
100
Elution
Conclusions
and
analog
treated
the of
the
5'-sulfamate
300
elution
inactive.
formed
from
and
ribavirin
(yM)
extracts
UV a t
are
variability
hypothesis
1000 The
of
of
antiviral
Extracellular
*Cell
fate
12),
exert
12
metabolite
support
responsible
Cone.
any
liquid
detection
Presumably
antiviral
12.
if
inherent
bioassay
into
studies
solely
treating be
ribavirin
extracts
sensitivity
light
the
is
compound
concentrations The
by to
was
is
longer.
the
the
(Table
found
with
extent
pressure the
cells
(UV)
process
These
high
of
tested
was
quantitie
4 hours.
the
presence
the
11
deal
what
was
cells
questions,
account
compound
Table
into
it
metabolites,
these
detected.
equilibrate
was
what
same
minute
To
virus
where
addressed
phase
into
ultraviolet
detection data
the
outside
were
be
cells. and
reverse
Taking
Forest
chlorate,
answer
for
approximately inside
to
cells,
analyzed
method.
Semliki
5'-sulfamate
mammalian
cellular^? were
of
1 0 mM s o d i u m
and
on
(within
DNA
was
on
and
the
viral
mRNA
polyamine
reactions The
considered
limits
The
involved
synthesis.
metabolites the
partially
protection.
sulfuration
which
be
impacted
protein no
to
analog
which
effects
virus
to
were analog
be
the
of
the
parent
of
detectability
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
by
UV
spectroscopy),
responsible into
a
puromycin
and
RNA
of
the
class
of
protein
Forest
is
reported
translation
(18),
virus
requires
amplify,
5'-sulfamate
effects
cycloheximide
which can
ribavirin
a l l
Semliki
viruses), the
for
larger
tion.
137
Antiviral Activity of Ribavirin 5 'Sulfamate
9. SMEE
that
(and
an
initial
appears The
inhibit
other
sensitive
it
that
of to
be fits
including
virus
replica-
positive
translation
particularly
to
compound
inhibitors,
will
probably
itself here.
its
stranded
genome
these
before
types
of
inhibitors. In
a
possess to
ADP
recent
report
to
ATP and
vice
5'-sulfamate
interacts
of
Its
enzymes.
(10)
which
also
much g r e a t e r activity it
was
of
toxicity In
whereas being
the this
other
quantity
Other further
early
of the
To
been
the
arsenal
Whether
cesses
Clearly,
that
modes
viruses
interest
to
5'-sulfamate
simplex
viruses
inhibition not
a
first
of
unique
is
class
to
the
antiviral
conclusion
that
to
be
an
of
will to
rather
than Along
action of
be
of
African of
led
However,
to
the
human
conducted ribavirin analog
their
these
way
remains
swine
antiviral
ribavirin
into to
lines,
have
fever study
it
and
will
be
herpes
show
activity, a
pro-
reported
5'-sulfamate
v i r u s - i n h i b i t o r y as
be
which
cellular
recently
present
has
model.
identified
the
substan(Table
was
affect
but
against
infection
find
be
study
test,
potential
the
antiviral
was
animal
that
that
viruses,
the
This
cell
polymerase
cells.
nucleotide
virus
host
RNA
may a l s o
reported
In the
animal
on.
here
a
continually
expressed
since
the
only
translation,
favor
viral
experiment
mice.
need
that
was
was
expressed.
for
infected
low.
in
activity
results
be
fact
the
reported
clinical
synthesis to
the
unwarranted
in
synthesis
partially
positive-stranded
Otherwise,
depend
aminoacyl-tRNA
visualized.
present
inside
those
1),
action,
observation.
to was
after
manifested
mode
were
sufficiently
appears
other
The
reported
be
than
inhibitors
(12).
only
especially
inhibitors
the
be
and
increase
with
to
would
5'-sulfamates
also
protein
compound
inhibiting
any
of
learn
uridine
the
ribosomes
(Table
compounds
virus-specific
to
abundance
the
antiviral
vitro
in
relates
probably
the
nucleoside of
determined.
of
is
inactive.
evaluated
Due the
for
cytomegalovirus
was
this
5'-sulfamate
polypeptide
proteins message
can
toxicity
on
in
inhibit
greater It
substance
up
murine
5'-sulfamate not
in
viruses
overt
cytomegalovirus against
virus
compound,
this
follow
cell
proteins
investigation
tiated
leading
viral
mRNA w o u l d of
to
AMP
ribavirin
adenosine
synthetases.
effect
probably of
mRNA was
the
masked,
that
5'-sulfamate,
studies,
Competition
kinds
potential 3).
effect
viral
by
by
adenosine
of
antiviral
circumstance.
key of
inhibited
the
amount
host
site
that
synthetases
interconvert
selective
electrophoresis
produced.
mRNA i n and
more
small
to
aminoacyl-tRNA was
They
hypothesized
AMP b i n d i n g
similar
i n h i b i t e d whereas
and
is
aminoacyl-tRNA
(37).
viru
allowed
differential
finite
a
It
the
is
compound as
was
which
completely
at
action
that
the
versa.
inhibits
inactive
shown
activities
c y t o t o x i c i t y of
5'-sulfamate
This
was
phosphotransferase
that
which is
consequence
synthesis.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
is
the of
138
NUCLEOTIDE
ANALOGUES
Literature cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.
Robins, R. K. Pharmaceut. Res. 1984, 1, 1-50. Martin, J. C.; Verheyden, J. P. H. Nucleosides Nucleotides 1988, 7, 365-374. Fuertes, M.; Witkowski, J. T.; Streeter, D. G.; Robins, R. K. J. Med. Chem. 1974, 17, 642-645. Pereira, M. E.; Segaloff, D. L.; Ascoli, M.; Eckstein, F. J. Biol. Chem. 1987, 262, 6093-6100. Griengl, H.; Hayden, W.; Penn, G.; De Clercq, E.; Rosenwirth, B. J. Med. Chem. 1988, 31, 1831-1839. Vaghefi, M.; McKernan, P. Α.; Robins, R. K. J. Med Chem. 1986, 29, 1389-1393. Tobie, E. J. J. Parasitol. 1957, 43, 291-293. Florini, J. R.; Bird, Η. H.; Bell, P. H. J. Biol Chem. 1966, 241, 1091-1098. Jaffee, J. J.; McCormack 1970, 28, 535-543. Bloch, Α.; Coutsogeorgopoulos, C. Biochem. 1971, 10, 4394-4398. Andres, J. I.; Garcia-Lopez, M. T.; De las Heras, F. G.; MendezCastrillon, P. P. Nucleosides Nucleotides 1986, 5, 423-429. Perez, S.; Fiandor, J.; Perez, C.; Garcia-Lopez, M. T.; Garcia-Gancedo, Α.; De las Heras, F. G.; Fernandez, C. G.; Vilas, P.; Mendez-Castrillon, P. P. VII Internatl. Congr. of Virology, 1987,p222. Camarasa, M.-J.; Fernandez-Resa, P.; Garcia-Lopez, M. T. De las Heras, F. G.; Mendez-Castrillon, P. P.; Alarcon, B.; Carrasco, L. J. Med. Chem. 1985, 28, 40-46. Gil-Fernandez, G.; Perez, S.; Vilas, P.; Perez, C.; De las Heras, F. G.; Garcia-Gancedo, A. Antiviral Res. 1987, 8, 299310. Shuman, D. Α.; Robins, R. K.; Robins, M. J. J. Am. Chem. Soc. 1969, 91, 3391-3392. Smee, D. F.; McKernan, P. Α.; Nord, L. D.; Willis, R. C.; Petrie, C. R.; Riley, T. M.; Revankar, G. R.; Robins, R. K.; Smith, R. A. Antimicrob. Agents Chemother. 1987, 31, 1535-1541. Sidwell, R. W. In Chemotherapy of Infectious Diseases; Gadebusch, H. H., Ed.; CRC: Cleveland, Ohio, 1976; pp 31-53. Schlesinger, M. J.; Kaariainen, L. In The Togaviruses; Schlesinger, R. W., Ed.; Academic: New York, 1980; pp 371-392. Smee, D. F.; Martin, J. C.; Verheyden, J. P. H.; Matthews, T. R. Antimicrob. Agents Chemother. 1983, 23, 676-682. Votruba, I.; Holy, Α.; De Clercq, E. Acta Virol. 1983, 27, 273-276. Smee, D. F.; Matthews, T. R. Antimicrob. Agents Chemother. 1986, 30, 117-121. Malinsoki, F.; Stollar, V. Virology 1980, 102, 473-476. Smee, D. F.; Alaghamandan, H. Α.; Kini, G. D.; Robins, R. K. Antiviral Res. 1988, 7 (in press) Laemmli, U. K. Nature (London) 1970, 227, 680-685. Bonner, W. M.; Lasky, R. A. Eur. J. Biochem. 1974, 46, 83-88. Ranki, M.; Kaariainen, L. Virology 1979, 98, 298-307. Nathans, D. Proc. Natl. Acad. Sci. USA 1964, 51, 585-592.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
9. S M E E
28. 29. 30. 31. 32. 33. 34. 35. 36. 37.
Antiviral Activity ofRibavirin 5 -Sulfamate
139
Seki, S.; Mueller, G. C. Biochim. Biophys. Acta 1975, 378, 354-362. Glazer, R. I.; Hartman, K. D.; Knode, M. C.; Richard, M. M. Chiang, P. K.; Tseng, C. K. H.; Marquez, V. Ε. Biochem. Biophys. Res. Commun. 1986, 135, 688-694. De Clercq, Ε. Biochem. Pharmacol. 1987, 36, 2567-2575. Wagner, J.; Danzin, C.; Mamont, P. J. Chromatogr. 1982, 227, 349-368. De Clercq, E.; Montgomery, J. A. Antiviral Res. 1983, 3, 17-24. Pegg, A. E.; Coward, J. K.; Talekar, R. R.; Secrist, J. A. Biochem. 1986, 25, 4091-4097. Seiler, N.; Knodgen, B. J. Chromatogr. 1980, 221, 227-235. Baeuerle, P. Α.; Huttner, W. B. Biochem. Biophys. Res. Commum. 1986, 141, 870-877. Huttner, W. B.; Lee R W H J Cell Biol 1982 95 389a Rapaport, E.; Pemy P. C. Proc. Natl
RECEIVED January 4, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
C h a p t e r 10
Design, Synthesis, and Antiviral Activity of Nucleoside and Nucleotide Analogues Victor E. Marquez Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
Several categorie designed by exploiting important differences in viral and cellular biochemistry, as well as differences in chemical stability and reactivity between parent "lead" molecules and their modified structures. The synthesis, antiviral activity and mechanism of action of two carbocyclic nucleoside analogues related to the natural product neplanocin A are discussed. While the cytosine carbocycle, cyclopentenyl cytosine (CPE-C, 3), requires activation to form the biologically active nucleotide 5'-triphosphate analogue, a more selective antiviral effect is realized in the purine series by the modified 3-deazaneplanocin A (6c) analogue, due to its resistance to form nucleotide metabolites. In the area of dideoxy nucleoside analogues with anti-HIV activity, dideoxy -fluoro-ara-adenosine (ddF-ara-A, 15) and dideoxy -fluoro-ara-inosine (ddF-ara-I, 16), were designed as hydrolytically stable compounds. Although the beta stereochemistry of the fluorine atom proved not to be essential for chemical stability, i t was critical for retaining the potent anti-HIV activity of the parent compounds. In the area of nucleotide analogues which incorporate in their structure an isosteric phosphate group, the complete synthesis of the phosphonate analogue of adenosine-2'-phosphate (26) is discussed. This compound was designed as a hydrolytically stable component of a 2',5'-oligoadenylate trimer analogue (17) whose synthesis is in progress. N u c l e o t i d e analogues can be d i v i d e d i n t o t h r e e c a t e g o r i e s : 1) b a s e - m o d i f i e d , 2) s u g a r - m o d i f i e d , and 3) p h o s p h a t e - m o d i f i e d . Most o f t h e commonly known a n t i v i r a l agents belong t o t h e f i r s t two g r o u p s , which a r e generated i n t r a c e l l u l a r ! y from t h e i r c o r r e s p o n d ing nucleoside precursors by e i t h e r c e l l u l a r or virus-coded This chapter not subject to U.S. copyright Published 1989 A m e r i c a n C h e m i c a l Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
10.
MARQUEZ
Nucleoside and Nucleotide Analogues
141
enzymes. For the most p a r t , t h e s e n u c l e o t i d e s e x e r t t h e i r a n t i v i r a l a c t i v i t y as the c o r r e s p o n d i n g mono-, o r t r i p h o s p h a t e forms ( e . g . , r i b a v i r i n (1) and a c y c l o v i r (2)) which i n t e r f e r e with critical metabolic steps required for v i r a l i n f e c t i v i t y (See Figure 1). However, s i n c e these p h o s p h o r y l a t e d forms are a l s o r e s p o n s i b l e f o r the t o x i c i t y observed a g a i n s t normal c e l l s , t h e i r s e l e c t i v e generation in j u s t v i r a l l y infected c e l l s , or t h e i r s p e c i f i c i n t e r a c t i o n w i t h key v i r a l p r o c e s s e s , become i m p o r t a n t f a c t o r s i n a c h i e v i n g a good t h e r a p e u t i c r a t i o . The t h i r d c a t e g o r y c o m p r i s e s t h o s e n u c l e o t i d e analogues i n which a m o d i f i e d phosphate g r o u p , o r i t s e q u i v a l e n t , i s a l r e a d y i n c o r p o r a t e d i n t o the m o l e c u l e ( e . g , DHPG phosphonate) ( 3 ) . These compounds are i n t e n d e d t o overcome r e s i s t a n c e from v i r u s e s which e i t h e r n a t u r a l l y or by m u t a t i o n do not have the c a p a c i t y to phosphorylate the nucleoside substrates. Increase in their c e l l u l a r u p t a k e , which becomes a l i m i t i n g f a c t o r , i s a c h i e v e d by the p a r t i a l o r t o t a l maskin A t the o t h e r end o n u c l e o s i d e s f o r which the d e s i r e d a n t i v i r a l e f f e c t can o n l y be uncovered when formation of the nucleotide metabolites is prevented. In t h e s e c a s e s , the a n t i v i r a l s e l e c t i v i t y i s r e l a t e d t o the s p e c i f i c i n t e r a c t i o n o f the n u c l e o s i d e , o r a non-phosphorylated metabolite of it, with a v i t a l viral process (e.g. n e p l a n o c i n A) (4). The d e s i g n , s y n t h e s i s , and a n t i v i r a l a c t i v i t y o f s e v e r a l new a n t i v i r a l agents t h a t f a l l i n t o t h e s e d i f f e r e n t c l a s s e s w i l l be discussed. Cvclopentenvl
C v t o s i n e (3,
CPE-C).
Chemistry. C y c l o p e n t e n y l c y t o s i n e (3, CPE-C, Scheme 1) i s a p y r i m i d i n e analogue o f t h e f e r m e n t a t i o n p r o d u c t , n e p l a n o c i n A. The compound was i n d e p e n d e n t l y s y n t h e s i z e d i n our l a b o r a t o r y (5,6) and t h a t o f Ohno i n Japan (7,8) by two d i s t i n c t c h e m i c a l approaches t h a t c e n t e r e d around the s t e r e o s p e c i f i c g e n e r a t i o n o f the c h i r a l c y c l o p e n t e n y l amine p r e c u r s o r 1. A simplified version o f our most r e c e n t approach t o CPE-C i s shown i n Scheme 1 ( 6 ) . Limited structure-activity studies have indicated that the i n t e g r i t y o f the c a r b o c y c l i c component o f CPE-C i s e s s e n t i a l f o r antiviral activity. For example, the c o r r e s p o n d i n g 2 ' - d e o x y and a r a - C P E - C analogues were i n e f f e c t i v e as a n t i v i r a l agents w i t h o n l y the a r a isomer showing some a c t i v i t y against influenza (9). I n t e r e s t i n g l y , both analogues were a l s o d e v o i d o f the e x c e l l e n t a n t i t u m o r p r o p e r t i e s c h a r a c t e r i s t i c o f CPE-C ( 1 0 ) . Antiviral Activity. CPE-C has demonstrated s i g n i f i c a n t a n t i v i r a l a c t i v i t y a g a i n s t s e v e r a l DNA v i r u s e s w i t h h i g h v i r u s r a t i n g s (VR = 2.7 - 4.6) a t doses r a n g i n g from 0.1 t o 2.7 jug/ml ( 6 ) . Of p a r t i c u l a r i n t e r e s t was the e f f e c t t h a t t h i s drug d i s p l a y e d a g a i n s t the t h y m i d i n e k i n a s e d e f i c i e n t s t r a i n o f HSV-1 ( 6 , 1 1 ) . The a n t i v i r a l a c t i v i t y o f CPE-C was a l s o e v i d e n c e d i n v i v o as demonstrated by the r e s u l t s i n the murine v a c c i n i a t a i l p o x model where i t s i g n i f i c a n t l y reduced the development o f v i r u s - i n d u c e d t a i l l e s i o n s ( T a b l e I) ( 1 2 ) . In t h i s a s s a y , CPE-C was e v a l u a t e d
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE
142
ANALOGUES
2 Bn =CH C H 2
6
5
Scheme 1.
S y n t h e s i s o f CPE-C.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
10.
M
A
R
Q
U
E
143
Nucleoside and Nucleotide Analogues
Z
for efficacy against the IHD s t r a i n o f vaccinia c h a l l e n g e d w i t h the v i r u s by the i n t r a v e n o u s r o u t e ( t a i l
in mice, vein).
T a b l e I. A n t i v i r a l A c t i v i t y o f CPE-C (Murine V a c c i n i a T a i l p o x Model) PBS C o n t r o l
a
b c
CPE-C
Ara-A
a
Pox Count
Dose (mg/kg)
Pox C o u n t
45.8
300
2.8
b
D i l u e n t - t r e a t e d mice (phosphate the v i r u s QD 1-7 s t a r t e d on th Mean v a l u e (20 mice)
buffer
0
Dose Pox C o u n t (mg/kg) b
1.5
saline)
c
0.8
challenged with
Other DNA v i r u s e s s e n s i t i v e t o CPE-C were c y t o m e g a l o v i r u s and v a r i c e l l a - z o s t e r , as demonstrated i n t h e y i e l d r e d u c t i o n assay and plaque r e d u c t i o n a s s a y , r e s p e c t i v e l y (6). CPE-C a l s o demonstrated significant activity against a spectrum o f RNA v i r u s e s i n v i t r o ( 6 ) . V i r u s r a t i n g s g r e a t e r than two were o b t a i n e d a g a i n s t v e s i c u l a r s t o m a t i t i s , Punta Toro and Hong Kong v i r u s e s . However, the u t i l i t y o f t h e s e a c t i v i t i e s i s moderated by low t h e r a p e u t i c index v a l u e s . By c o n t r a s t , t h i s does not appear t o be the case f o r the Japanese e n c e p h a l i t i s v i r u s , where CPE-C showed a VR o f 2 . 4 , w i t h g r e a t e r potency and h i g h e r t h e r a p e u t i c index than r i b a v i r i n ( 6 ) . No a n t i r e t r o v i r a l a c t i v i t y a g a i n s t HIV was observed f o r CPE-C i n ATH8 c e l l s . Mechanism o f A c t i o n . CPE-C i s c o n v e r t e d t o the nucleotide t r i p h o s p h a t e analogue o f c y t i d i n e (CPE-CTP), and as such it behaves as a powerful i n h i b i t o r o f CTP s y n t h e t a s e i n c e l l s (13). A l t h o u g h a d i r e c t c o r r e l a t i o n between the i n h i b i t i o n o f t h i s enzyme and i t s a n t i v i r a l a c t i v i t y has not been d e m o n s t r a t e d , i t a p p e a r s , as suggested by De C l e r c q e t a l . , t h a t t h i s r a t e - l i m i t i n g enzyme i n the de novo p y r i m i d i n e pathway may be a t h e r a p e u t i c a l l y e x p l o i t a b l e t a r g e t f o r some v i r u s e s ( 1 1 ) . The r e m a r k a b l y broad spectrum o f activity observed for t h i s compound indirectly supports t h i s assumption. 3-Deazaneplanocin A
(6cK
Chemistry. T h i s compound was prepared by a s i m i l a r approach t o the s i m p l i f i e d v e r s i o n o f the s y n t h e s i s o f n e p l a n o c i n A t h a t we had e a r l i e r developed ( 1 4 ) . Thus, t h e c y c l o p e n t e n y l m e s y l a t e 4 was r e a c t e d w i t h the sodium s a l t o f 4-chloro-imidazo[4,5-ç]pyridine (6-chloro-3-deazapurine) t o g i v e a m i x t u r e o f both N - l and N-3 isomers (Scheme 2 ) . A f t e r c h r o m a t o g r a p h i c s e p a r a t i o n and removal o f the p r o t e c t i v e groups i n each i s o m e r , the major com ponent was i d e n t i f i e d as the d e s i r e d compound (6a) by NMR s p e c t r o s c o p y and d i a g n o s t i c NOE measurements. The c h l o r o p u r i n e
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
144
NUCLEOTIDE
ANALOGUES
i n t e r m e d i a t e 6a was then c o n v e r t e d i n two s t e p s t o 3 - d e a z a n e p l a n o c i n A which was i s o l a t e d as a c r y s t a l l i n e s o l i d . The m o l e c u l a r s t r u c t u r e of 3-deazaneplanocin A was a l s o c o n f i r m e d by X - r a y crystallography (15). Antiviral Activity. 3 - D e a z a n e p l a n o c i n A was f i r s t e v a l u a t e d in. v i t r o a g a i n s t v i r u s e s f o r which n e p l a n o c i n A and o t h e r adenosine analogues are known t o be p a r t i c u l a r l y e f f e c t i v e ( 1 6 , 1 7 ) . These i n c l u d e d a DNA v i r u s ( v a c c i n i a ) and two (-)RNA v i r u s e s ( p a r a i n f l u e n z a and v e s i c u l a r s t o m a t i t i s ) . In T a b l e I I , t h e minimum inhibitory concentration capable of reducing virus-induced cytopathogenic e f f e c t s by 50% ( I D C Q ) , v i r u s r a t i n g (VR), and t h e r a p e u t i c index ( T I ) , are compared f o r 3 - d e a z a n e p l a n o c i n A and three positive control standards for each o f the viruses. Treatment w i t h 3 - d e a z a n e p l a n o c i n A r e s u l t e d i n a marked i n h i b i t i o n o f p a r a i n f l u e n z a type 3 v i r u s (Huebner C243 i n H.Ep-2 c e l l s ) and V e s i c u l a r s t o m a t i t i s (VS a g a i n s t VSV i s p a r t i c u l a r l structurally related standard 3-deazacarbocycl i c adenosine analogue (3-deaza-C-Ado) (18) w i t h which 3 - d e a z a n e p l a n o c i n is structurally related. With o t h e r RNA v i r u s e s , such as RSV (respiratory syncytial) and human i n f l u e n z a ( t y p e Ao/PR/8/34), however, 3 - d e a z a n e p l a n o c i n A d i d not show any p r o m i s i n g a n t i v i r a l selectivity. S i m i l a r l y , a g a i n s t a number o f p i c o r n a v i r u s e s , t h e compound was m a r g i n a l l y e f f e c t i v e . The compound r e s u l t e d i n a c t i v e a g a i n s t r h i n o v i r u s and C o x s a c k i e t y p e B l , and o n l y a m a r g i n a l e f f e c t was observed on C o x s a c k i e t y p e A 2 1 . The i n h i b i t i o n o f p o l i o v i r u s - i n d u c e d c y t o p a t h o g e n i c e f f e c t s was a l s o v a r i a b l e and not d o s e - r e s p o n s i v e . A g a i n s t a DNA v i r u s , such as v a c c i n i a , 3 d e a z a n e p l a n o c i n A demonstrated a remarkable e f f e c t . These r e s u l t s prompted the i_n v i v o study o f the drug a g a i n s t v a c c i n i a which i s summarized i n T a b l e I I I . Treatment w i t h 3 - d e a z a n e p l a n o c i n A, a d m i n i s t e r e d s u b c u t a n e o u s l y once d a i l y from day -1 through day +5, r e s u l t e d i n a s i g n i f i c a n t r e d u c t i o n i n v a c c i n i a induced t a i l p o x compared t o d i l u e n t - t r e a t e d c o n t r o l m i c e . The t h e r a p e u t i c e f f e c t was e v i d e n t at dose l e v e l s o f 8 and 4 mg/Kg/day, a l t h o u g h t h e h i g h e r dose r e s u l t e d i n w e i g h t l o s s i n the t o x i c i t y control animals. Mechanism o f A c t i o n . V a r i o u s adenine n u c l e o s i d e analogues w h i c h function as inhibitors of S-adenosylhomocysteine hydrolase (AdoHcy-ase) have been i d e n t i f i e d as a n t i v i r a l agents ( 1 9 , 2 0 ) . F u r t h e r m o r e , a r e c e n t study has r e v e a l e d the e x i s t e n c e o f a c l o s e c o r r e l a t i o n between t h e i r i n h i b i t o r y potency a g a i n s t AdoHcy-ase and t h e i r a n t i v i r a l a c t i v i t y (VSV i n v i t r o ) ( 1 7 ) . In v a c c i n i a , as w e l l as i n o t h e r s e n s i t i v e v i r u s e s t h a t r e q u i r e a m e t h y l a t e d 5 ' cap on t h e i r mRNAs, i n h i b i t i o n o f AdoHcy-ase r e s u l t s i n t h e marked e l e v a t i o n o f AdoHcy l e v e l s and the consequent feedback i n h i b i t i o n o f S - a d e n o s y l m e t h i o n i n e (AdoMet)-dependent m e t h y l a t i o n r e a c t i o n s . T h i s enzyme i s a unique t a r g e t f o r the development o f a n t i v i r a l nucleoside analogues t h a t does not r e q u i r e a n a b o l i s m o f t h e drugs
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
145
Nucleoside and Nucleotide Analogues
MARQUEZ
10.
Table I I .
A n t i v i r a l A c t i v i t y of 3-Deazaneplanocin A (In V i t r o ) P o s i t i v e Control
3-DeazaneDlanocin A RNA V i r u s e s I D
5 0
iua/ml) VR T I a
b
Compound ID50 i u a / m l ) VR
TI
Parainflu enza type 3
0.05
3 . 6 2.0
Ribavirin
17.50
2.5
5.7
Vesicular Stomatitis
0.07
3.6 4 . 6
3-Deaza-CAdo
2.6
3.2
3.8
0.32
3.1 3.1
Ara-A
2.0
3 . 7 16.3
DNA V i r u s e s Vaccinia
a b
V i r u s r a t i n g (Shannon and A r n e t t , SoRI) T h e r a p e u t i c i n d e x : minimum t o x i c c o n c e n t r a t i o n /ID50 Table I I I .
PBS C o n t r o l Pox Count
72.7
a
b c
A n t i v i r a l A c t i v i t y of 3-Deazaneplanocin-A (Murine V a c c i n i a T a i l p o x Model) 3-Deazaneplanocin-A
Ara-A
a
Dose (mg/kg)
Pox C o u n t
300
2.1
b
c
Dose (mg/kg) b
Pox C o u n t
0
4.3
D i l u e n t - t r e a t e d mice (phosphate b u f f e r s a l i n e ) c h a l l e n g e d w i t h the v i r u s QD 1-7 s t a r t e d on t h e day p r e c e d i n g t h e c h a l l e n g e Mean v a l u e (20 mice)
to the corresponding nucleotide l e v e l . N e p l a n o c i n A, which ranked among t h e most p o t e n t i n h i b i t o r s o f AdoHcy-ase, reduced v i r a l c y t o p a t h o g e n i c i t y a g a i n s t VSV a t t h e l o w e s t dose l e v e l (ID50 0.01 jug/ml) when compared w i t h o t h e r AdoHcy-ase i n h i b i t o r s (17). However, d e s p i t e i t s s u p e r i o r potency w i t h r e s p e c t t o 3 - d e a z a - C Ado ( t h e c a r b o c y c l i c analogue o f 3 - d e a z a a d e n o s i n e ) , n e p l a n o c i n A r e s u l t e d more c y t o t o x i c ( 1 6 ) . In v a r i o u s c e l l l i n e s t h e m e t a b o l i c c o n v e r s i o n o f n e p l a n o c i n A t o t h e n u c l e o t i d e t r i p h o s p h a t e and t h e subsequent t r a n s f o r m a t i o n o f t h e l a t t e r i n t o t h e AdoMet a n a l o g u e , S - n e p l a n o c y l m e t h i o n i n e , has been demonstrated ( 2 1 ) . Moreover, t h e conversion of neplanocin A to these metabolites has been c o r r e l a t e d t o t h e i n h i b i t i o n o f RNA s y n t h e s i s and c y t o t o x i c i t y (22). Because t h e a n t i v i r a l e f f e c t s o f n e p l a n o c i n A appeared t o be mediated s o l e l y by i t s i n h i b i t i o n o f AdoHcy-ase, b l o c k a g e o f i t s a n a b o l i s m t o t h e n u c l e o t i d e l e v e l was c o n s i d e r e d t o be an a t t r a c t i v e strategy to achieve higher a n t i v i r a l s e l e c t i v i t y . To
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
146
NUCLEOTIDE
ANALOGUES
t h i s e n d , based on the knowledge t h a t 3-deazaadenosine n u c l e o s i d e s are very poor s u b s t r a t e s f o r adenosine k i n a s e (18) (the first enzyme i n the a c t i v a t i o n pathway t o t h e t r i p h o s p h a t e ) , the s y n t h e s i s o f 3 - d e a z a n e p l a n o c i n A was proposed ( 2 3 , 2 4 ) . T h i s new member o f the c a r b o c y c l i c n u c l e o s i d e f a m i l y r e t a i n e d the p o t e n t i n h i b i t i o n o f AdoHcy-ase t o even h i g h e r l e v e l s than t h o s e a c h i e v e d w i t h n e p l a n o c i n A ( 2 3 , 2 4 ) , and as a n t i c i p a t e d , i t showed a more s e l e c t i v e a n t i v i r a l e f f e c t both i n v i t r o and j_n v i v o ( v i d e s u p r a ) . In t h i s r e g a r d i t i s i n t e r e s t i n g t o note t h a t n e p l a n o c i n A f a i l e d t o show any a p p r e c i a b l e a n t i v i r a l e f f e c t vn v i v o where i t proved t o be e x t r e m e l y c y t o t o x i c and l e t h a l t o mice ( 1 6 ) . 2 ' , 3 ' - D i d e o x v - 2 - f 1 u o r o - a r a - A (13, 2 ' - f l u o r o - a r a - I (14. ddF-ara-I). /
ddF-ara-A)
and
2' ,3'-dideoxy-
Chemistry. T h e , chemical r a t i o n a l e f o r the s y n t h e s i s o f t h e s e compounds was based o i n s t a b i l i t y o f the p a r e n sine (ddl) nucleosides. Both ddA and d d l have h a l f l i v e s o f a p p r o x i m a t e l y h a l f a minute a t pH 1 (37°C) which makes them u n s u i t a b l e f o r o r a l use ( 2 5 ) . Based on t h e mechanism o f a c i d catalyzed cleavage of purine nucleosides (26), i t was reasoned t h a t an e l e c t r o n e g a t i v e s u b s t i t u e n t a t the 2 - p o s i t i o n , such as f l u o r i n e , would d e s t a b i l i z e the r e s u l t i n g oxonium i o n and t h u s increase the s t a b i l i t y of the g l y c o s y l i c bond ( F i g u r e 2). F l u o r i n e was a l s o c o n s i d e r e d an i d e a l isostere for hydrogen because o f i t s r e l a t i v e s m a l l s i z e . The o n l y r e m a i n i n g i s s u e was the s e l e c t i o n o f t h e s t e r e o c h e m i c a l o r i e n t a t i o n o f t h e f l u o r i n e s u b s t i t u e n t (α o r β) t h a t was r e q u i r e d t o m a i n t a i n the a n t i - H I V activity of the parent d i d e o x y n u c l e o s i d e s . Both fluorines u b s t i t u t e d isomers o f ddA were s y n t h e s i z e d and shown t o be h y d r o l y t i c a l l y v e r y s t a b l e (no d e c o m p o s i t i o n d e t e c t e d a f t e r 24 h at pH 1/37° C ) . However, o n l y the isomer w i t h the / 3 - f l u o r i n e atom (ddF-ara-A) r e t a i n e d the p o t e n t a n t i - H I V a c t i v i t y o f the p a r e n t ddA ( 2 5 ) . The i n a c t i v e α - f l u o r i n e isomer (ddF-A, 8, Scheme 3) was o b t a i n e d i n f o u r s t e p s from 3 ' - d e o x y - a r a - A ( 2 7 ) . The procedure i n v o l v e d p r o t e c t i o n o f the the 5 ' - h y d r o x y l group w i t h dimethoxyt r i t y l c h l o r i d e t o g i v e 7, a c t i v a t i o n o f the 2 ' - h y d r o x y l group v i a f o r m a t i o n o f the c o r r e s p o n d i n g t r i f l a t e d e r i v a t i v e , i n v e r s i o n o f c o n f i g u r a t i o n at t h e 2 ' - p o s i t i o n by S^2 d i s p l a c e m e n t u s i n g t e t r a n - b u t y l ammonium f l u o r i d e , and removal o f t h e d i m e t h o x y t r i t y l group with dichloroacetic acid. A similar displacement reaction s t r a t e g y employing c o r d y c e p i n ( 3 ' - d e o x y a d e n o s i n e ) f a i l e d i n our hands t o produce 15. Instead, t h e e l i m i n a t i o n p r o d u c t was isolated. R e c e n t l y , however, t h i s type o f d i s p l a c e m e n t has been r e a l i z e d by Herdewijn e t a l . , a l b e i t i n v e r y low y i e l d ( 2 8 ) . Two d i f f e r e n t s y n t h e t i c a p p r o a c h e s , both c o n v e r g i n g on the i m p o r t a n t known i n t e r m e d i a t e (6-amino-9-/3-û-2-deoxy-2-fluroarab i n o f u r a n o s y l ) - 9 H - p u r i n e (11), were developed f o r the s y n t h e s i s o f t h e a c t i v e compounds d d F - a r a - A and d d F - a r a - I . This intermediate, o r i g i n a l l y s y n t h e s i z e d by Fox and coworkers ( 2 9 ) , was p r e p a r e d u s i n g the improved, g e n e r a l procedure o f Montgomery e t a l (30), which i n v o l v e d c o n d e n s a t i o n o f 6-chloropurine with 3-0-acetyl-5/
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
10.
Scheme 2.
H N 2
147
Nucleoside and Nucleotide Analogues
MARQUEZ
S y n t h e s i s o f 3 - d e a z a n e p l a n o c i n A.
H
HO
F i g u r e 2.
Mechanism o f a c i d h y d r o l y s i s o f d i d e o x y n u c l e o s i d e s and a c i d s t a b i l i z a t i o n r a t i o n a l e .
NH
NH
2
ο
I
1
>
C
W
!
2
o |
DMTO
Scheme 3.
Synthesis o f 2',3'-dideoxy-2'-fluoro-ribo-A.
American Chemical Society Library 1155 16th St.. N.W. In Nucleotide Analogues asD.C. Antiviral Agents; Martin, J.; Washington, 20036 ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
148
NUCLEOTIDE
ANALOGUES
0-benzoyl-2-deoxy-2-fluoro-D-arabinofuranosyl bromide ( 2 5 ) . The r e q u i r e d , f u n c t i o n a l i z e d haTosugar was p r e p a r e d i n e s s e n t i a l l y the same manner as d e s c r i b e d by Fox et a l . (31) and, as e x p e c t e d , f o u r isomers were o b t a i n e d from the c o n d e n s a t i o n r e a c t i o n . After s e p a r a t i o n and c h a r a c t e r i z a t i o n o f the c o r r e c t 6 - c h l o r o i s o m e r , the r e q u i r e d i n t e r m e d i a t e (11) was o b t a i n e d upon ammonolysis. All c h e m i c a l , o p t i c a l , and s p e c t r a l p r o p e r t i e s o f t h e compound matched t h o s e r e p o r t e d p r e v i o u s l y f o r 11 ( 2 5 ) . More r e c e n t l y , we have employed the more a c c e s s i b l e l,3,5-tri-(0-benzoyl)-2-fluoro-a-Da r a b i n o s e (9a) as s t a r t i n g m a t e r i a l (Scheme 4). The c o r r e s p o n d i n g bromo sugar 9b, r e a d i l y formed a f t e r t r e a t m e n t w i t h HBr i n a c e t i c a c i d , was used d i r e c t l y i n a f u s i o n r e a c t i o n (neat 8 5 ° c ) w i t h the t r i m e t h y l s i l y l ( T M S ) - p r o t e c t e d 6 - c h l o r o p u r i n e t o g i v e the d e s i r e d c o n d e n s a t i o n p r o d u c t 10 i n 25% y i e l d . Treatment o f 10 w i t h methanolic ammonia under pressure produced the identical i n t e r m e d i a t e 11. S e l e c t i v e p r o t e c t i o n o f the p r i m a r y a l c o h o l function of 11, accomplishe c h l o r i d e , gave compoun phenyl c h l o r o t h i o n o c a r b o n a t e / D M A P , a f f o r d e d the c o r r e s p o n d i n g 3 ' O-phenoxythionocarbonate 13. R e d u c t i v e d e o x y g e n a t i o n t o 14 w i t h t r i - n - b u t y l t i n hydride/AIBN i n r e f l u x i n g t o l u e n e , and removal o f the tert-butyldimethylsilyl group with .tetra-n-butylammonium f l u o r i d e i n THF, a f f o r d e d d d F - a r a - A (15). The c o r r e s p o n d i n g i n o s i n e analogue d d F - a r a - I (16) was prepared from d d F - a r a - A e i t h e r by enzymatic (adenosine deaminase) o r c h e m i c a l d e a m i n a t i o n (NaNOo/HOAc). Antiviral Activity. In ATH8 c e l l s i n f e c t e d w i t h the HIV v i r u s , both d d F - a r a - A (25) and d d F - a r a - I were a p p r o x i m a t e l y as a c t i v e and p o t e n t as AZT, ddA, and d d l , i n p r o t e c t i n g the c e l l s a g a i n s t the c y t o p a t h i c e f f e c t s o f the v i r u s . As shown i n F i g u r e 3 , d d F - a r a - I a f f o r d e d complete p r o t e c t i o n a t 10 μΜ c o n c e n t r a t i o n and beyond. S i g n i f i c a n t a n t i - H I V a c t i v i t y w i t h d d F - a r a - A was a l s o r e p o r t e d i n i n f e c t e d MT-4 c e l l s ; however, the compound proved t o be i n f e r i o r t o i t s p a r e n t ddA i n such t e s t system ( 3 1 ) . As i t i s the case w i t h ddA, adenosine deaminase r e a d i l y t r a n s f o r m e d d d F - a r a - A t o d d F - a r a - I w i t h o u t d e t r i m e n t t o the measured a n t i - H I V a c t i v i t y . It was t h e r e f o r e i m p o r t a n t t o i n v e s t i g a t e the e f f e c t s o f the f l u o r i n e s u b s t i t u e n t on a second d e g r a d a t i v e enzyme, p u r i n e n u c l e o s i d e p h o s p h o r y l a s e , which i s c a p a b l e o f r a p i d l y c l e a v i n g the g l y c o s y l i c l i n k a g e o f d d l and r e n d e r i n g the compound i n a c t i v e . Consistent with its i n c r e a s e d chemical s t a b i l i t y towards acid-catalyzed c l e a v a g e o f the g l y c o s y l i c bond, d d F - a r a - I was shown t o be t o t a l l y i n e r t towards the a c t i o n o f p u r i n e n u c l e o s i d e p h o s p h o r y l a s e (32). In o r d e r t o study the e f f e c t o f the f l u o r i n e s u b s t i t u e n t on the g a s t r i c s t a b i l i t y and o r a l b i o a v a i l a b i l i t y o f the a c t i v e ddFa r a - A , the NCI conducted c o m p a r a t i v e s t u d i e s i n dogs t r e a t e d s e p a r a t e l y w i t h ddA o r d d F - a r a - A . Under the same c o n d i t i o n s , w i t h o u t any b u f f e r i n g , d d F - a r a - A showed s u p e r i o r b i o a v a i l a b i l i t y (87%) compared t o t h a t o f ddA (30%) ( 3 3 ) . The o r a l b i o a v a i l a b i l i t y o f d d F - a r a - A was even g r e a t e r than t h a t o b t a i n e d w i t h b u f f e r e d (61%), o r e n t e r i c coated (67%) ddA ( 3 3 ) .
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
S y n t h e s i s o f 2 ' , 3 ' - d i d e o x y - 2 ' - f l u o r o - a r a - A and 2',3'-dideoxy-2'-f1uoro-ara-I. Scheme 4. In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
150
NUCLEOTIDE
ANALOGUES
Mechanism o f A c t i o n . A l t h o u g h no d i r e c t m e c h a n i s t i c s t u d i e s as y e t have been performed w i t h e i t h e r d d F - a r a - A o r d d F - a r a - I , i t i s expected t h a t both compounds w i l l be a n a b o l i z e d t o t h e c o r r e s p o n d i n g n u c l e o t i d e 5 ' - t r i p h o s p h a t e analogues i n a s i m i l a r f a s h i o n as t h e i r p a r e n t d i d e o x y n u c l e o s i d e s (ddA and d d l ) ( 3 4 ) . Dideoxynucl e o t i d e t r i p h o s p h a t e analogues are known t o f u n c t i o n as e f f e c t i v e i n h i b i t o r s o f HIV r e v e r s e t r a n s c r i p t a s e t h a t b l o c k DNA s y n t h e s i s by c h a i n t e r m i n a t i o n ( 3 5 ) . M e t a b o l i c a l l y i t i s p o s s i b l e , as demonstrated f o r d d l , t h a t d d F - a r a - I M P w i l l be c o n v e r t e d t o d d F ara-AMP v i a t h e same e f f i c i e n t pathway t h a t c o n v e r t s IMP t o AMP (34). 9-
(2-Deoxv-2-dihvdroxvDhosDhinvlmethv1-/?-D-ribofuranosv1)adenine
1261. Chemistry. Compound 26 c o r r e s p o n d s t o u n i t s one and two o f a proposed m o d i f i e d 2 ' - 5 ' - l i n k e Figure 4), which due phosphorous l i n k a g e , i s expected t o be s t a b l e towards d e g r a d a t i o n by the interferon (IF)-induced 2'-phoshodiesterase (2'-PD). P r e v i o u s s t u d i e s o f s y n t h e t i c analogues o f the t r i m e r "core", A 2 ' p 5 ' A 2 ' p 5 ' A ( l a c k i n g the t r i p h o s p h a t e group a t t h e 5 ' - e n d ) , which i n c l u d e d m o d i f i c a t i o n s on t h e sugar moiety d e s i g n e d t o make the m o l e c u l e s more s t a b l e towards 2 ' - P D , showed s i g n i f i c a n t l y b e t t e r a n t i p r o l i f e r a t i v e and a n t i v i r a l a c t i v i t y t h a n t h e u n s t a b l e parent "core" (36). However, i t was l a t e r demonstrated t h a t a l l o f t h e b i o l o g i c a l a c t i v i t i e s o f t h e so c a l l e d " s t a b l e c o r e s " were due t o the monomeric components which were r e l e a s e d from t h e t r i m e r s by n o n s p e c i f i c serum enzymes ( 3 6 b , e ) . T h u s , the s e a r c h f o r s t a b l e analogues which would not y i e l d a c t i v e a n t i m e t a b o l i t e s upon n o n s p e c i f i c h y d r o l y s i s c o n t i n u e s ( 3 7 ) . The f i r s t o b j e c t i v e o f t h i s p r o j e c t , which was t h e s y n t h e s i s and b i o l o g i c a l t e s t i n g o f the phosphonate monomer 26, has been a c h i e v e d , and the assembly o f the r e q u i r e d t r i m e r 17 i s i n p r o g r e s s . We have a c c o m p l i s h e d t h e s y n t h e s i s o f 26 as shown i n Scheme 5. S t a r t i n g w i t h the versatile intermediate l,2:5,6-di-0isopropylidene-a-û-glucofuranose, the phosphonate 18 was p r e p a r e d essentially i n the same manner as r e p o r t e d by M o f f a t t and coworkers ( 3 8 ) . S e l e c t i v e h y d r o l y s i s of the 5 , 6 - 0 - i s o p r o p y l i d e n e f u n c t i o n , f o l l o w e d by p r o t e c t i o n o f t h e r e s u l t i n g p r i m a r y a l c o h o l i c group o f t h e d i o l w i t h the benzoyl g r o u p , a f f o r d e d compound 20. Removal o f the 1 , - 2 - 0 - i s o p r o p y l i d e n e group gave the i n t e r mediate p y r a n o s i d e 21, which was s u b j e c t e d t o p e r i o d a t e o x i d a t i o n t o g i v e the d e s i r e d phosphonate f u r a n o s i d e 22. As r e p o r t e d i n s i m i l a r r i n g c o n t r a c t i o n s , t h e e x c i s e d carbon atom ends up as a 3 ' - 0 - f o r m y l moiety ( 2 9 ) . S e l e c t i v e removal o f t h i s formate g r o u p , and r e a c y l a t i o n o f both t h e Γ - and t h e 3 ' - h y d r o x y l s w i t h a c e t i c a n h y d r i d e , s e t the stage f o r t h e c o n d e n s a t i o n o f t h e phosphonate sugar 24 w i t h p e r s i l y l a t e d 6 - c h l o r o p u r i n e , which was performed under Lewis a c i d c a t a l y s i s ( t r i m e t h y l s i l y l t r i f l a t e ) . The conden s a t i o n r e a c t i o n gave a r e m a r k a b l y good y i e l d (82%) o f t h e d e s i r e d / M s o m e r 25, which upon t r e a t m e n t w i t h s a t u r a t e d methanol i c ammonia, gave t h e d e s i r e d t a r g e t compound 26. The structural
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
10. M A R Q U E Z
151
Nucleoside and Nucleotide Analogues
assignment o f 26 r e s t s on s o l i d e v i d e n c e e x p e r i m e n t s as i l l u s t r a t e d i n F i g u r e 5 .
from
UV, CD, and NOE
Antiviral Activity. The monomeric s t r u c t u r e 26 showed n e i t h e r antitumor nor a n t i v i r a l a c t i v i t y . Upon i n v i t r o evaluation a g a i n s t herpes s i m p l e x v i r u s t y p e 1 (HSV-1) and i n f l u e n z a v i r u s t y p e A£, no e v i d e n c e o f i n h i b i t i o n o f v i r a l c y t o p a t h o g e n i c i t y was d e t e c t e d a t doses e x c e e d i n g 320 Mg/ml ( 3 9 ) .
Ô
π
X
a
—I LU Ο LU —I CÛ < > u_ Ο ce
LU CO
Έ D Ζ
0
2
10 20 100 200
CONCENTRATION (μΜ)
Figure 3.
Figure 4.
I n h i b i t i o n o f t h e c y t o p a t h i c e f f e c t o f HIV by ddF-ara-I.
Chemical s t r u c t u r e o f t h e o l i g o a d e n y l a t e ate t r i m e r .
phosphon
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
152
NUCLE(mDE
HOCH πυυπ2
Q
BzOÇH Τ *
2
1 — r ? CH
"
CH
ÇH
BzOCH
N-OH
\
/
HO
ÇH
^ NH4OH, EtOH
(EtO) P=0
BzOCH
2
2
\ ^ 0 H /
\
ÇH
«
^ "
,)-OH
C H OH 2
(EtO) P=0
2
23
Κ
2
(EtO) P=0
2
f
2
20
OHCO
2
o
2
(EtO) P=0
19
0
Κ
-20°C
2
18
2
0-Γ
2
Ί — r ?
R
(EtO) P=0
2
BzOCH
2
ι — r ?
Of"
2
(EtO) P = 0
ANALOGUES
2
22
21
A c 0 , Py 2
CI
NH
N ^ V ^ HMDS, Δ
l ^* .N U
Ci
V
BzOCH „ 2
AcO
CH I 2
N^V\V
M
2
(EtO) P=0 2
24 Scheme 5.
J L /
Tf
L ^?
BzOCH
A c 0
1)NH /MeOH
J
2
(EtO) P=0 2
\
I
CH
•
2) 1N NaOH
C H
\
A
I 2
MeCN
\
3
2
HOÇH
2
HO
0=P(OH)
25
26
Synthesis of 9-(2-deoxy-2-dihydroxyphosphinylmethyl ) - 0 - D - r i b o f u r a n o s y l ) a d e n i n e
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2
2
MARQUEZ
153
Nucleoside and Nucleotide Analogues
UV SPECTRUM OF 9-(2'-DEOXY 2'-DIHYDR0XYPH0SPHINYLMETHYLβ -D-RIBOFURANOSYL)ADENINE (26)
-1000* 200
" 220
« 240
1 260
" 280
WAVELENGTH (nm) Figure
5.
Spectral
data
i n support of
structure
26.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
' 300
NUCLEimDE ANALOGUES
154 Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
19. 20. 21. 22. 23. 24. 25.
Robins, R.K.; Revankar, G.; McKernan, P.Α.; Murray, B.K.; Kirsi, J.J.; North, J.A. Adv. Enzyme Res. 1985, 24, 29. Lin, J-C.; Pagano, J.S. Pharmac. Ther. 1985, 28, 135. Prisbe, E.J.; Martin, J.C.; McGee, D.P.C.; Barker, M.F.; Smee, D.F.; Duke, A.E.; Matthews, T.R.; Verheyden, J.P.H. J. Med. Chem. 1986, 29, 671. De Clercq, E. Antimicrob. Agents Chemother. 1985, 28, 84. Lim, M-I.; Moyer, J.D.; Cysyk, R.L.; Marquez, V.E. J. Med. Chem. 1984, 27, 1536. Marquez, V.E.; Lim, M-I.; Treanor, S.P.; Plowman, J.; Priest, M.A.; Markovac, Α.; Khan, M.S.; Kaskar, B.; Driscoll, J.S. J. Med. Chem. 1988, 31, 1687. Arita, M.; Adachi, K.; Ohno, M. Nucleic Acid Res., Symp. Ser. 1983, 12, 25. Arita, M.; Okumoto Shuto, S.; Tsujino Res. 1987, 171, 233. Kim, S.K.; Marquez, V.E.; Driscoll, J.S. Laboratory of Medicinal Chemistry, NCI, NIH. Unpublished results. Kim, S.K.; Marquez, V.E. 194th National Meeting of the American Chemical Society, New Orleans, Louisiana, August 30September 4, 1987, CARB 6. De Clercq, E.; Beres, J.; Benrude, W.G. Mol. Pharmacol. 1987, 32, 286. Marquez, V.E.; Driscoll, J.S., Laboratory of Medicinal Chemistry, NCI, NIH. Unpublished results. Kang, G.J.; Cooney, D.A.; Moyer, J.D.; Kelley, J.Α.; Kim, H -Y.; Marquez, V.E.; Johns, D.G. J. Biol. Chem. 1988, in press. Tseng, C.K.H.; Marquez, V.E. Tetrahedron Lett. 1985, 26, 3669. X-ray crystallographic analysis for 3-deazaneplanocin A was performed by Dr. Barry M. Goldstein, Department of Biophysics, Medical Center, University of Rochester, Rochester, N.Y. De Clercq, E. Antimicrob. Agents Chemother. 1985, 28, 84. De Clercq, E.; Cools, M. Biochem. Biophys. Res. Commun. 1985, 129, 306. Montgomery, J.Α.; Clayton, S.J.; Thomas, H.J.; Shannon, W.M.; Arnett, G.; Bodner, A.J.; Kion, I.; Cantoni, G.L.; Chiang, P.K. J. Med. Chem. 1982, 25, 626. De Clercq, E.; Bergstrom, D.E.; Holy, Α.; Montgomery, J.A. Antiviral Res. 1984, 4, 119. Marquez, V.E.; Lim, M-I. Med. Res. Rev. 1986, 6, 1. Keller, B.T.; Borchardt, R.T. Biochem. Biophys. Res. Commun. 1984, 120, 131. Glazer, R.I.; Knode, M.C. J. Biol. Chem. 1984, 259, 12964. Glazer, R.I.; Hartman, K.D.; Knode, M.C.; Richard, M.M.; Chiang, P.K.; Tseng, C.K.H.; Marquez, V.E. Biochem. Biophys. Res. Commun. 1986, 135, 688. Glazer, R.I.; Knode, M.C.; Tseng, C.K.H.; Haines, D.R.; Marquez, V.E. Biochem. Pharmacol. 1986, 35, 4523. Marquez, V.E.; Tseng, C.K.H.; Kelley, J.Α.; Mitsuya, H.; Broder, S.; Roth, J.S.; Driscoll, J.S. Biochem. Pharmacol. 1987, 36, 2719.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
10.
M
A
R
Q
U
E
Z
Nucleoside and Nucleotide Analogues
155
26. York, J.L. J. Org. Chem. 1981, 46, 2171. 27. 3'-deoxy-ara-A was synthesized by Dr. Terrence C. Owen (University of South Florida) by the method of Hansske, F. and Robins, M.J. (J. Am. Chem. Soc. 1983, 105, 6736) under contract N01-CM-437639 to the DS&CB, NCI. 28. Herdewijn, P.; Pauwels, R.; Baba, M.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1987, 30, 2131. 29. Wright, J.Α.; Taylor, N.F.; Fox, J.J. J. Org. Chem. 1969, 34, 2632. 30. Montgomery, J.Α.; Shortnacy, A.T.; Carson, D.A.; Secrist III, J.A. J. Med. Chem. 1986, 29, 2389. 31. Reichman, U.; Watanabe, K.A.; Fox, J.J. Carbohydr. Res. 1975, 42, 233. 32. Cooney, D.A., Laboratory of Pharmacology, NCI, NIH. Unpublished results. 33. Tomaszewski, J.E. Grieshaber C.K. Toxicolog Branch NCI NIH. Unpublished results 34. Ahluwalia, G.; Cooney K.P.; Hao, Z.; Dalai, M.; Broder, S.; Johns, D.G. Biochem. Pharmacol. 1987, 36, 3797. 35. Mitsuya, H.; Broder, S. Proc. Natl. Acad. Sci. USA 1986, 83, 1911. 36. a. Baglioni, C.; D'Alessandro, S.B.; Nilsen, T.S.; den Hartog, J.A.J.; Crea, R.; Van Boom, J.H. J. Biol. Chem. 1981, 156, 3253. b. Chapekar, M.S.; Glazer, R.I. Biochem. Biophys. Res. Commun. 1983, 115, 137. c. Doetsch, P.; Wu, J.M.; Sawada, Y.; Suhadolnik, R.J. Nature. 1981, 291, 355. d. Eppstein, D.A.; Marsh, Y.V.; Schryver, B.B.; Larsen, M.A.; Barnett, J.W.; Verheyden, J.P.H.; Prisbe, E.J. J. Biol. Chem. 1982, 257, 13390. e. Eppstein, D.A.; Marsh, Y.V.; Schryver, B.B. Virology, 1983, 131, 341. f. Eppstein, D.A.; Van der Pas, M.A.; Schryver, B.B.; Sawai, H.; Lesiak, K.; Imai, J.; Torrence, P.F. J. Biol. Chem. 1985, 260, 3666. g. Imai, J.; Johnston, M.I.; Torrence, P.F. J. Biol. Chem. 1982, 257, 12739. h. Lee, C.; Suhadolnik, R.J. FEBS Lett. 1983, 157, 205. i. Sawai, H.; Imai, J.; Lesiak, K.; Johnston, M.I.; Torrence, P.F. J. Biol. Chem. 1983, 258, 1671. j . Suhadolnik, R.J.; Devash, Y.; Reichenbach, N.L.; Flock, M.B.; Wu, J.N. Biochem. Biophys. Res. Commun. 1983, 111 205. 37. Eppstein, D.A.; Schryver, B.B.; Marsh, Y.V. J. Biol. Chem. 1986, 261, 5999. 38. Albrecht, H.P.; Jones, G.H.; Moffatt, J.G. Tetrahedron, 1984, 40, 79. 39. Marquez, V.E.; Tseng, C.K.H., Laboratory of Medicinal Chemistry, NCI, NIH. Unpublished results. RECEIVED January 25, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Chapter 11
Nucleotide Dimers as Anti Human Immunodeficiency Virus Agents Elliot F. Hahn , Mariano Busso , Abdul M. Mian , and Lionel Resnick 1
2
3
2
IVAX Corporation, 8800 NW 36th Street, Miami, F L 33178 Departments of Dermatology and Pathology, Mount Sinai Medical Center, 4300 Alto Department of Oncology F L 33131 1
2
3
A series of nucleotide homo and heterdimers were synthesized from nucleosides which include azidothymidine, 2', 3'-dideoxyadenosine and 2'3'-dideoxyinosine. The compounds were evaluated with respect to anti-HIV a c t i v i t y , cytotoxicity, i n v i t r o s t a b i l i t y and i n vivo distribution. On an equimolar basis, greater anti-HIV potency and enhanced cytotherapeutic indices were obtained with heterodimers relative to the corresponding monomers. In v i t r o s t a b i l i t y of the dimer phosphate linkage was found to be species dependent. After intravenous administration to rats, the distribution of 3'-azido-3'3'-deoxythymidilyl-(5'5')-2',3'-dideoxy;-5'-adenylic acid, 2-cyanoethyl ester (AZT-P(CyE)ddA) and AZT i n plasma and brain was similar. In 1981, the acquired immunodeficiency syndrome (AIDS) was reported as a new c l i n i c a l entity (1-3). An intensive research effort led to the i d e n t i f i c a t i o n of the e t i o l o g i c agent responsible for the disease. (4-7). The pathogen, human immunodeficiency virus (HIV), i s a non-oncogenic retrovirus closely associated with the l e n t i v i r u s family (8,9). The discovery of HIV led to the development of therapeutic strategies directed against the virus. The different stages i n the replicative cycle of HIV provide various targets at which a n t i v i r a l agents may intervene. 0097-6156/89/0401 -0156$06.00/0 ο 1989 A m e r i c a n C h e m i c a l Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
HAHNETAK
157
Nucleotide Dinners
T h e s e have been t h e s u b j e c t o f a number o f r e v i e w s (10.11) and i n c l u d e : ( 1 ) t h e b i n d i n g s t a g e a t w h i c h CD4 r e c e p t o r d e c o y s a n d d e x t r a n s u l f a t e s a c t , (2) e n t r y i n t o t h e t a r g e t cell where drugs that block fusion or uncoating might intervene, ( 3 ) t r a n s c r i p t i o n o f RNA t o D N A , t h e l e v e l at which reverse t r a n s c r i p t a s e i n h i b i t o r s would f u n c t i o n , (4) i n t e g r a t i o n o f DNA a n d e x p r e s s i o n o f v i r a l genes, where "integrase" inhibitors or "anti-sense" construct would act, (5) viral p r o t e i n p r o d u c t i o n and assembly c o u l d be m o d i f i e d by p r o t e a s e i n h i b i t o r s and agents which affect, myristylation or glycosylation and f i n a l l y , (6) budding o f t h e v i r u s w h i c h may b e p r e v e n t e d b y interferons. The most e f f e c t i v e approach has i n v o l v e d t h e s y n t h e s i s o f i n h i b i t o r s o f r e v e r s e t r a n s c r i p t a s e , t h e u n i q u e enzyme a s s o c i a t e d w i t h t h e r e p l i c a t i o n o f HIV. The r a t i o n a l e for the use of a n t i v i r a l agent on t h e assumption t h a development of progressive d i s e a s e . I n h i b i t i o n o f H I V may permit the regeneration or prevent additional deterioration o f t h e immune s y s t e m . These drugs would p r o v i d e the g r e a t e s t p o s s i b i l i t y of o b t a i n i n g an immediate c l i n i c a l i m p a c t on t h e c o u r s e o f t h e d i s e a s e . Since the discovery of reverse t r a n s c r i p t a s e occurred i n 1970 (12.13) . compounds t h a t inhibit t h e enzyme had been d e v e l o p e d and were a v a i l a b l e f o r e v a l u a t i o n a t the a d v e n t o f t h e AIDS c r i s i s . To d a t e , t h e most p o t e n t and selective anti-HIV compounds a r e a series of 2', 3 dideoxynucleoside analogs. These compounds a r e thought t o be s u c c e s s i v e l y p h o s p h o r y l a t e d by h o s t c e l l enzymes t o y i e l d 2 , 3 - d i d e o x y n u c l e o s i d e - 5 - t r i p h o s p h a t e s , which are analogs of 2 -deoxynucleoside-5 -triphosphates, the natural substrates for cellular DNA polymerases and reverse transcriptase. The 2 ,3 -dideoxynucleoside-5 triphosphates function as substrates for HIV reverse t r a n s c r i p t a s e a n d t e r m i n a t e v i r a l DNA c h a i n e l o n g a t i o n b y i n c o r p o r a t i o n i n t o t h e v i r a l genome ( 1 4 ) . Only 3'-azido2 ,3 -dideoxythymidine (AZT) h a s b e e n a p p r o v e d b y t h e FDA f o r t h e t r e a t m e n t o f HIV i n f e c t i o n . AZT was c h o s e n for c l i n i c a l e v a l u a t i o n on t h e b a s i s o f i t s s e l e c t i v e i n v i t r o antiviral e f f e c t a g a i n s t HIV. The c l i n i c a l t r i a l s with AZT have f o c u s e d on p a t i e n t s w i t h AIDS and AIDS-related complex (ARC). In t h e s e p a t i e n t s , AZT i n d u c e d clinical and l a b o r a t o r y improvements. AZT t h e r a p y a l s o exhibits a degree of success in reversing HIV induced dementia (15.16.17). C u r r e n t s t u d i e s aim t o d e t e r m i n e i f AZT is effective in preventing the development of AIDS in a s y m p t o m a t i c HIV s e r o p o s i t i v e individuals. AZT therapy was a s s o c i a t e d w i t h t o x i c i t i e s t h a t may l i m i t its use, which p r i m a r i l y i n v o l v e d bone marrow s u p p r e s s i o n i n the form of anemia and n e u t r o p e n i a ( 1 5 . 1 6 ) . Therefore, other s t r a t e g i e s w h i c h i n v o l v e c o m b i n a t i o n s o f a n t i HIV agents are also being pursued. The most p r o m i s i n g o f t h e 2 ' , 3 · 1
1
1
1
1
1
1
1
1
1
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1
158
NUCLEOTIDE
ANALOGUES
dideoxynucleosides to be used individually or in c o m b i n a t i o n w i t h AZT a r e 2 · , 3 · - d i d e o x y c y t i d i n e (ddC), and 2·,3 -dideoxyadenosine (ddA). The u l t i m a t e success of t h e s e a g e n t s a g a i n s t HIV is determined in the clinical arena. Combinations of drugs which permit a reduction in i n d i v i d u a l d o s e s w o u l d be a means o f d e c r e a s i n g t o x i c i t y . 1
Another approach to combination therapy involves the use of either homo or heterodimers of specific dideoxynucleosides. We hypothesized that when the dideoxynucleosides are linked v i a a phosphate bridge the d i m e r i z e d compounds c o u l d p r o v i d e s u p e r i o r p h a r m a c o l o g i c a l effects for the following reasons 1) two different nucleosides are delivered to the c e l l simultaneously, 2) a masked phosphate i s p r e s e n t w i t h masking u n i t a l s o b e i n g active, 3) t h e a g e n t c o u l d f u n c t i o n a s a p r o d r u g , a n d 4) a c t i v i t y as the i n t a c the i n i t i a l phosphorylatio mononucleotides is a l i m i t i n g step for the formation of these a c t i v e metabolites (18). However, AZT i s u n i q u e and the i n i t i a l phosphorylation i s not rate l i m i t i n g . If the nucleotide dimers cross the cell membrane (passive diffusion) and are hydrolysed intracellularly (data indicate that at least part of the dimer crosses the c e l l membrane and i s h y d r o l y s e d intracellularly manuscript i n preparation) , they would y i e l d 1 mole of mononucleotide and nucleoside. It is possible that the nucleotide p r o d u c e d w i l l be f u r t h e r anabolized to its triphosphate l e v e l r a t h e r than be a s u b s t r a t e f o r t h e p h o s p h a t a s e s and produce the nucleoside. Therefore, this process will eliminate the need for the initial obligatory phosphorylation step and may result in a superior therapeutic index. If the nucleotide dimers are hydrolysed before their uptake, the nucleotide phosphatases will convert the mononucleotide into the nucleoside. I n t h i s f a s h i o n , t h e d i m e r s may a c t a s " d e p o t forms" for t h e i r r e s p e c t i v e n u c l e o s i d e s a n d may y i e l d a favorable therapeutic index. We h a v e s y n t h e s i z e d a s e r i e s o f c o m p o u n d s w h i c h are homodimers or heterodimers of s p e c i f i c dideoxynucleosides and h a v e shown t h a t t h e s e a g e n t s p o s s e s s a c t i v i t y against HIV. The phosphate linked dimers of the d i d e o x y n u c l e o s i d e s have t h e g e n e r a l f o r m u l a shown i n F i g . 1 where R and R may b e A Z T , ddA o r d d l and R may b e hydrogen, cyanoethyl or e i t h e r a metal anion or organic anion salt. It should be noted t h a t R and R may b e d e r i v e d f r o m t h e same o r d i f f e r e n t d i d e o x y n u c l e o s i d e s to g e n e r a t e p h o s p h a t e - l i n k e d c o m p o u n d s t h a t a r e e i t h e r homo or hetero dimers. T h e d i m e r s may b e p r e p a r e d b y c o u p l i n g the nucleoside to be e s t e r i f i e d with a nucleoside 5 phosphate in the presence of a a r y l s u l f o n y l condensing agent and a base such as i m i d a z o l e (Fig. 2) . A general procedure for the synthesis of AZT-P-ddA, which is 2
3
1
2
1
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
HAHNETAL.
159
Nucleotide Dimers
applicable for the synthesis of a l l nucleotide dimers is as follows: T h e n u c l e o s i d e - 5 - c y a n o e t h y l p h o s p h a t e was synthesized using a modification of the procedure described by Tener (19). Thus, the barium salt of cyanoethyl phosphate (5.0g) was converted to the pyridinium salt under anhydrous conditions and reacted with AZT (2.0g) in the presence of dicyclohexylcarbodiimide (6.18g) a t room t e m p e r a t u r e f o r 48 h o u r s . T h e r e a c t i o n was s t o p p e d b y a d d i t i o n o f w a t e r (10ml) and the product was purified by column chromatography to o b t a i n 2 . 0 7 g (69%) o f t h e d e s i r e d p r o d u c t . A solution of AZT 5 - c y a n o e t h y l p h o s p h a t e (600mg, 1.5mmol) and 2 , 3 dideoxyadenosine (352mg, 1.5mmol) was p r e p a r e d i n 60 m l of d i s t i l l e d pyridine. T o t h i s s o l u t i o n , 1 . 2 1 g (4mmol) of 2,4,6-triisopropylbenzenesulfonyl c h l o r i d e was a d d e d a n d s t i r r e d f o r 30 m i n , f o l l o w e d b y t h e a d d i t i o n o f 0 . 9 8 4 ml (12 mmol) o f N - m e t h y l - i m i d a z o l e room t e m p e r a t u r e f o under vacuum and the residue was purified by column chromatography using s i l i c a g e l . The c y a n o e t h y l phosphate e s t e r w a s h y d r o l y z e d a t r o o m t e m p e r a t u r e w i t h 6 0 m l o f 15% ammonium h y d r o x i d e s o l u t i o n a n d t h e p r o d u c t was purified by f l a s h chromatography u s i n g s i l i c a g e l t o o b t a i n A Z T - P ddA i n 73% y i e l d . 1
1
1
1
To o b t a i n the c y a n o e t h y l phosphate e s t e r , the crude product prior to hydrolysis w i t h ammonium h y d r o x i d e was p u r i f i e d by chromatography. In initial studies, we determined the anti-HIV activity of the dimers using assays which measured i n h i b i t i o n of syncytium formation, reverse transcriptase p r o d u c t i o n a n d HIV a n t i g e n e x p r e s s i o n . Anti-HIV
Evaluation:
A syncytium i n h i b i t i o n assay that i s a safe, simple, rapid, quantitative and s e n s i t i v e screening system has been developed to detect p o t e n t i a l a n t i - H I V drugs. The assay has been standardized and validated for high capacity anti-HIV screening. Compounds c a n be i d e n t i f i e d and p r i o r i t i z e d b a s e d upon a n t i - H I V e f f e c t s . Potency is expressed as effective dose 50%(ED50), toxicity as i n h i b i t o r y d o s e 50% ( I D 5 0 ) a n d t h e c y t o t h e r a p e u t i c index as ID50/ED50. 1) I n h i b i t i o n o f s y n c y t i u m f o r m a t i o n . MT-2 c e l l s a r e used as targets because of their sensitivity to HIV i n f e c t i o n and the f o r m a t i o n of g i a n t syncytia that are quantifiable. The number and t h e t i m e n e c e s s a r y f o r the production of syncytia i s a function of the input virus inoculum. Target MT-2 c e l l s a r e exposed t o DEAE-Dextran ( 2 5 u g / m l , S i g m a ) f o r 20 m i n u t e s , w a s h e d , a n d i n f e c t e d w i t h
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
160
N U C L E O T I D E ANALOGUES
HIV-l(III-6) (MOI = 0 . 0 0 1 ) a t 37°C in humidified a i r c o n t a i n i n g 5% C 0 . A f t e r 9 6 h o u r s s y n c y t i a a r e c o u n t e d i n a microtiter configuration and compared t o controls. Uninfected and infected MT-2 c e l l s without exposure to drug and uninfected c e l l s exposed t o drugs a r e used as controls. A l l c u l t u r e s a r e performed i n t r i p l i c a t e on two sets of experiments. 2
To i n v e s t i g a t e t h e i n h i b i t o r y e f f e c t s o f t h e d r u g s on H I V - i n d u c e d s y n c y t i a f o r m a t i o n (20) , t h e n u c l e o t i d e d i m e r s were c o m p a r e d t o t h e i r monomers a n d t h e i r c o m b i n a t i o n s a t multiple concentrations ( F i g . 3) . AZT-P-ddA and AZTP(CyE)-ddA exerted the strongest protective e f f e c t against the development of HIV-induced syncytia. AZT-P-ddA and i t s cyanoethyl phosphate d e r i v a t i v e a t a concentration of 0.5um c o m p l e t e l y p r o t e c t e d M T - 2 c e l l s from t h e f o r m a t i o n of syncytia. AZT r e q u i r e lOuM, and t h e c o m b i n a t i o achieve f u l l protection. No a n t i - H I V i n h i b i t o r y effects were seen a t c o n c e n t r a t i o n s below O.OluM.
2)
I n h i b i t o r y e f f e c t on r e v e r s e t r a n s c r i p t a s e p r o d u c t i o n .
Reverse transcriptase assays were performed as p r e v i o u s l y d e s c r i b e d ( 2 0 ) . When M T - 2 c e l l s w e r e i n f e c t e d by HIV, peak r e v e r s e t r a n s c r i p t a s e l e v e l s i n t h e c o n t r o l cultures without d r u g were g r e a t e r than 50,000 CPM/ml (uninfected control cultures gave background counts of 300cpm/ml) ( F i g . 4) . A significant inhibition o f HIV r e v e r s e t r a n s c r i p t a s e p r o d u c t i o n was o b s e r v e d i n a d o s e dependent manner when HIV-infected MT-2 c e l l s were cultured i n the presence of nucleosides and nucleotide dimers. AZT-P-ddA, AZT-P(CyE)-ddA and the combination of AZT + d d A , c o m p l e t e l y i n h i b i t e d t h e p r o d u c t s o f r e v e r s e t r a n s c r i p t a s e a t c o n c e n t r a t i o n s >luM. In comparison t o c o n t r o l s , r e v e r s e t r a n s c r i p t a s e p r o d u c t i o n was p a r t i a l l y inhibited when these compounds were tested at levels >0.1uM. The detection of HIV from culture supernatants (infectious v i r a l yield) correlated with detectable levels of reverse transcriptase and HIV-induced syncytia formation. The n u c l e o t i d e dimers exhibited a higher degree of i n h i b i t i o n f o r the detection of i n f e c t i o u s v i r a l y i e l d when c o m p a r e d t o t h e m o n o m e r s .
3) Inhibition effect.
o f HIV a n t i g e n
expression
and c v t o p a t h i c
A f t e r fourteen days o f i n f e c t i o n , 84% o f M T - 2 c e l l s expressed HIV p24 a n t i g e n as detected by indirect immunofluorescence. At a f i n a l concentration of luM of AZT-P-ddA, AZT-P(CyE)-ddA, o r t h e combination o f AZT + ddA, a >70% i n h i b i t i o n of viral a n t i g e n e x p r e s s i o n was
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
161
Nucleotide Dimers
H A H N ET AL.
ο
R0 J
II
Ρ
OR
2
OR
3
Figure 1.
Structure of Dimers.
0 HO-
II
IB]
IB]
AISOJX
-p—
I
°
OR Figure 2.
v
-
r
°
OR
Coupling Scheme for Dimer Synthesis.
120
ddA ·•- AZT -o AZT • ddA AZT-P(CyE)ddA • AZT-P-ddA
log c o n c e n t r a t i o n
(uM)
Figure 3. Syncytium Inhibition. The number of syncytia was determined 96 hours after exposure of HIV infected MT-2 cells to drug concentrations (lOOuM, lOuM, luM, 0.5uM, O.luM, 0.05uM, O.OluM and 0.005uM). Each value represents the arithmetic mean of triplicate cultures from two sets of experiments. The mean syncytium number in infected cultures without drug was 421 ± 27
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
162
N U C L E O T I D E ANALOGUES
achieved. AZT (luM) or ddA (luM) alone exhibited no inhibition. S i m i l a r r e s u l t s were o b t a i n e d when a s s e s s i n g the i n h i b i t i o n of cytopathic e f f e c t by t h e s e compounds (Fig. 5).
4)
Cvtotherapeutic
evaluation.
The c o m p a r a t i v e HIV i n h i b i t o r y e f f e c t s o f n u c l e o s i d e s and n u c l e o t i d e d i m e r s a r e shown on T a b l e 1 . Using a 14day a s s a y , m o n i t o r i n g c e l l v i a b i l i t y and the expression of HIV a n t i g e n by c e l l u l a r fluorescence, studies were performed t o determine the potency and t o x i c i t y of the compounds. L i n e a r r e g r e s s i o n a n a l y s i s was p e r f o r m e d to d e t e r m i n e t h e ID50 a n d ED50 f o r e a c h c o m p o u n d . The growth i n h i b i t o r 2 cells which were not exposed to the virus, were compared. According to their ID50, t h e compounds c o u l d be c l a s s i f i e d i n t o t h r e e m a j o r g r o u p s . The compounds w i t h the highest toxicity were AZT-P-AZT, AZT + ddA, AZTP(CyE), and AZT. Compounds w i t h m o d e r a t e t o x i c i t y were A Z T - P - d d A , A Z T - P - d d l , and A Z T - P ( C y E ) - d d A . The compounds w i t h t h e l e a s t t o x i c i t y were d d l , ddA, and ddA-P(CyE) . When t h e c y t o t o x i c e f f e c t s o f t h e compounds were tested a g a i n s t t h e h u m a n c e l l l i n e s , H9 a n d U 9 3 7 , s i m i l a r t o x i c p r o f i l e s were s e e n . The a n t i - H I V a c t i v i t y o f t h e compounds a c c o r d i n g to t h e i r ED50 r e v e a l e d two m a j o r p r o f i l e s . The most p o t e n t compounds were AZT + ddA, A Z T - P - d d A , A Z T - P ( C y E ) - d d A , AZTP - d d l , and A Z T - P - A Z T . AZT, ddA, d d l , ddA-P(CyE) , and AZTP(CyE) e x h i b i t e d weaker activities. However, the cytotherapeutic indices of AZT-P-ddA, A Z T - P - d d l , and A Z T - P ( C y E ) - d d A were t h e highest. Based on t h e data obtained from these studies we f o c u s e d on f u r t h e r e v a l u a t i o n o f A Z T - P - d d A and A Z T - P ( C y E ) ddA. F i g u r e 6 shows t h e r e s u l t s o f i n c u b a t i o n o f A Z T - P ddA i n human p l a s m a a t v a r i o u s t e m p e r a t u r e s . The compound is m e t a b o l i z e d a t a r a t e o f a p p r o x i m a t e l y 10% p e r hour. T h i s v a l u e appears t o be s p e c i e s dependent as i s seen i n Fig. 7. A n a l y s i s o f t h e m e t a b o l i t e s i n human p l a s m a ( F i g . 8) s h o w s t h a t t h e p r i n c i p a l c o m p o u n d s f o r m e d a r e A Z T a n d ddl. A s i m i l a r study of the s t a b i l i t y of AZT-P(CyE)-ddA (Fig. 9) at 37° shows that it is metabolized more e x t e n s i v e l y o v e r 3 h o u r a s s a y p e r i o d when c o m p a r e d t o A Z T P-ddA. F i g u r e 10 s h o w s t h a t t h e n a t u r e o f t h e products formed i s also species related. In human p l a s m a , the major metabolite is AZT-P-ddA which is a result of hydrolysis of the triester.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11. H A H N E T A L
163
Nucleotide Dimers
80000
Mi no drug B ddA • AZT 0 AZT • ddA • AZT-P(CyE)ddA 1 AZT-P-ddA
0. concentration
(uM)
F i g u r e 4 . I n h i b i t i o n o f Reverse T r a n s c r i p t a s e A c t i v i t y . I n h i b i t i o n o f r e v e r s e t r a n s c r i p t a s e a c t i v i t y from c u l t u r e s u p e r n a t a n t s was determined on day 8 . Each v a l u e r e p r e s e n t s the a r i t h m e t i c mean o f t r i p l i c a t e c u l t u r e s from two s e t s o f experiments. Detectable l e v e l s i n reverse t r a n s c r i p t a s e a c t i v i t y o c c u r when CPM/ml a r e g r e a t e r than 5,000 ( L i n e s , S D ) .
c
EN?
a
b
c
d
e
F i g u r e 5. Assessment o f HIV I n h i b i t i o n by F l u o r e s c e n t and V i a b l e C e l l Count. The i n h i b i t o r y e f f e c t o f luM o f drug on HIV e x p r e s s i o n was a s s e s s e d on day 14 by i n d i r e c t immunofluorescence ( s o l i d columns) and v i a b l e c e l l numbers (open c o l u m n s ) : (a) ddA, (b) AZT, (c) AZT + ddA, (d) AZT-P(CyE)-ddA, and (e) AZT-P-ddA. The r e s u l t s a r e the a r i t h m e t i c mean o f t r i p l i c a t e c u l t u r e s from two s e t s o f experiments ( L i n e s , S D ) .
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
164
NUCLE(XnDE ANALOGUES
Table 1. Comparative Inhibitory Effects o f C o m p o u n d s
25 57 60
4.0 7.0 7.5
100 400 450
AZT ddA ddl AZT + ddA AZT-P-AZT AZT-P(CyE)-ddA AZT-P-ddA AZT-P(CyE) AZT-P-ddl ddA-P(CyE)
CTI
ED50
ID50
Drug
133 40 300 250 30
0.6 1.5 0.7 0.8 3
80 60 210 200 90
ID50: of
uninfected
MT-2
cells
by
50% o n
day
14.
ED50:
D r u g c o n c e n t r a t i o n a c h i e v i n g 50% i n h i b i t i o n of HIV e x p r e s s i o n a s s e s s e d by i m m u n o f l u o r e s c e n c e o n day 14.
CTI:
Cytotherapeutic
index:
ID50/ED50.
The results are expressed as the arithmetic mean of t r i p l i c a t e c u l t u r e s f r o m two s e t s o f e x p e r i m e n t s . Linear r e g r e s s i o n a n a l y s i s was u s e d t o d e t e r m i n e t h e ID50 and ED50.
100 60 Percent
60
40 20
2
3 Hours
F i g u r e 6. S t a b i l i t y o f AZT-P-ddA i n Human Plasma ( i n v i t r o ) a t V a r i o u s Temperatures (4 u g / m l ) .
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
H A H N ET AL.
Nucleotide Dimers
Time (hours)
Figure 7. Stability of AZT-P-ddA in Plasma of Various Species at 37 C (4 ug/ml).
l
3
2
4
Hours
Figure 8 . Disposition of AZT-P-ddA in Human Plasma at 37° (4 ug/ml).
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
166
NUCLEOTIDE
ANALOGUES
Time (hours)
Figure 9 . Stability of AZT-P(CyE)ddA at 37°C.
2
3
Time (hours)
1
2
3
Figure 10. Stability of AZT-P(CyE)ddA in Human and Rat Plasma.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
HAHNETAL.
167
Nucleotide Dimers
T a b l e 2. Radioactivity i n Rats Following I.V. Administration o f A Z T (5 mg/kg) A Z T - P ( C y E ) d d A (11.5 mg/kg)
Total
Radioactivity (% o f d o s e )
(H ) 3
a
Time
AZT-P
AZT
(CyE)ddA
Plasma
10
min
7.1
0.069
6.6
0.073
20
min
4.1
0.056
4.6
0.063
40
min
2.9
0.047
2.5
0.032
1 hr 0.028
1. 4
2
1. 1
hr
0 . 030
1.4
0 . 028
0.7
0 . 024
0.6
0.022 3 hr 0.026
a.
0. 5
Percent of radioactivity radioactivity
dose was calculated by present in plasma or brain administered
dividing by total
To assess in vivo disposition of AZT-P-ddA we synthesized radiolabelled substrate containing H in a b i o l o g i c a l l y s t a b l e p o s i t i o n i n t h e AZT m o l e c u l e . This compound was d i l u t e d w i t h u n l a b e l l e d d r u g a n d a d m i n i s t e r e d intravenously (6mg/kg) into rats. B l o o d samples were o b t a i n e d a t 1, 2 and 3 h o u r s a f t e r i n j e c t i o n and a n a l y z e d for radioactive content. The r e s u l t s showed a b o u t 5.5% o f t h e d o s e was p r e s e n t i n s e r u m a f t e r 1 h o u r . This value remained constant over the 3 hour sampling p e r i o d . A s i m i l a r s t u d y was c a r r i e d o u t u s i n g r a d i o l a b e l l e d AZTP ( C y E ) - d d A a n d t h e r e s u l t s w e r e c o m p a r e d t o A Z T ( T a b l e 2) . The d a t a shows t h a t at each time period examined the concentration of both drugs present i n p l a s m a was not significantly different. 3
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
168
NUCLEOTIDE ANALOGUES
Additional studies are ongoing to determine whether i n v i v o a d v a n t a g e s e x c e e d i n g t h o s e o b s e r v e d i n v i t r o may be a s s o c i a t e d w i t h a d m i n i s t r a t i o n of the dimers. This possibility arises because first they do not have to contend with the fate of the individual components in terms of in vivo metabolism, and second, as intact nucleosides both components will reach the cell simultaneously. Acknowledgment: The a u t h o r s would l i k e thank Dr. C.C. L i n for h i s collaboration. LITERATURE
to
CITED
1.
M. S. G o t t l i e b , R. S c h r o f f , H. M. Schanker, J . D. Weisman New E n g l . J
2.
H. Masur, M. A. Michelis, J . B. Greene, I . Onorato, R. A. Vande Stouwe, R. S. Holzman, G. Wormser, L. Brettman, M. Lange, H. W. Murray and S. Cunningham-Rundles, New Engl. J . Med. 305, 1431 (1981).
3.
F. P. S i e g a l , C. Lopez, G. S. Brown, S. J. K o r n f i e l d , J . Gold, Z. Hirschman, Parham, M. S i e g a l , Rundles and D. Armstrong , New 305, 1439 (1981).
4.
F. B a r r e - S i n o u s s i , J . C. Chermann, R. Rey, M. T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. A x l e r - B l i n , F. Brun-Vezinet, C. Rouzioux, W. Rozenbaum and L. Montagnier, Science 220, 868 (1983).
5.
R. C. G a l l o , S. Z. Salahuddin, M. Popovie, G. M. Shearer, M. Kaplan, B. F. Haynes, T. J. P a l k e r , R. R e d f i e l d , J . Oleske, B. S a f a i , G. White, P. F o s t e r and P. D. Markham, Science 224-500 (1984).
6.
S. Broder and R. C. G a l l o , New E n g l . J. Med. 311. 1292 (1984).
7.
M. Popovie, M. G. Sarngadharan, E. Read and R. C. G a l l o , Science 224, 497 (1984).
8.
F. Brun-Vezinet, C. Katlama, D. Roulot, L. Lenoble, M. A l i z o n , J . J. Madjar, M.A. Rey, P. M. Ginard, P. Yeni, F. C l a v e l , S. G a d e l l e , and M. H a r z i c . Lancet i:128 (1987).
Hammer, A. E. J. H a s s e l l , S. S. CunninghamEngl. J . Med.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
HAIIN ET AL.
169
Nucleotide Dimers
9.
F. C l a v e l , D. Guetard, F. Brun-Vezinet, S. Chamaret, M. A. Rey, M. O. S a n t o s - F e r r i e r a , A. G. Laurent, C. Dauget, C. Katlama, C. Rouzioux, D. Klatzman, J. L. Champalimaud, and L. Montagnier, Science 233:34 (1986).
10.
E. DeClercq TIPS 8,39
11.
H. Mitsuga and S. Broder Nature 325, 773
12.
D. Baltimore Nature; 226:1209 (1970).
13.
H.M
14.
H. Mitsuya, R. J a r r e t , M. Matsukura, N a t l . Acad S c i , USA 84, 2033 (1987)
15.
S. Broder, Lane, P. D. Markham, R e d f i e l d , H. Mitsuya, D. E. Groopman, L. Resnick, and A. S. F a u c i ; Lancet
(1987). (1987).
Temin, S. M i z u t a n i , Nature; 226:1211 (1970). e t al Proe
R. W. K l e c k e r , R. R. F. Hoth, E. Gelmann, J . R. C. G a l l o , C. E. Myers ii, 627 (1985).
16.
R. Yarchoan, R. W. Klecker, K. J . Weinhold, P. D. Markham, H. K. L y e r l y , D. T. Durack, E. Gelmann, S. N u s i n o f f Lehrman, R. M. Blum, D. W. Barry, G. M. Shearer, M. A. F i s c h l , H. Mitsuya, R. C. G a l l o , J . M. C o l l i n s , D. P. B o l o g n e s i , C. E. Myers and S. Broder; Lancet i, 575 (1986).
17.
R. Yarchoan, G. Berg, P. Brouwers, M. A. F i s c h l , A. R. S p i t z e r , A. Wichman, J . Grafman, R. V. Thomas, B. S a f a i , A. B r u n e t t i , C. F. Perno, P. J . Schmidt, S. M. Larson, C. E. Myers and S. Broder; Lancet i, 132 (1987).
18.
M. A. Wagar, M. J . Evans, K. F. Manly, e t J . C e l l P h y s i o l . 121:402 (1984).
19.
G. M. Tener, J . Amer. Chem. Suc. 83, 159
20.
D. D. Richman. Antimicrob. Ag. Chemoth. 31, (1987).
al.
(1961).
RECEIVED April 17, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1879
C h a p t e r 12
Oligonucleotide Analogues as Potential Chemotherapeutic Agents G. Zon Applied Biosystems, Inc., 850 Lincoln Centre Drive, Foster City, C A 94404
In p r i n c i p l e , r e l a t i v e l t i d e s (ca. 15-2 s p e c i f i c a l l y h y b r i d i z e with DNA or RNA and thus be used for novel drug design s t r a t e g i e s i n v o l v i n g targeted i n t e r f e r e n c e of genetic expression at the l e v e l of t r a n s c r i p t i o n or t r a n s l a t i o n . Conceivable chemotherapeutic a p p l i c a t i o n s predicated on sequence-specific h y b r i d i z a t i o n ("antisense" i n h i b i t i o n ) require o l i g o n u c l e o t i d e analogues that are r e s i s t a n t to i n vivo degradation by enzymes such as nucleases. Nuclease-resistant analogues having modified i n t e r n u c l e o s i d e linkages (e.g., methylphosphonates or phosphorothioates) or modified nucleosides (e.g., 2'-O-methylribose or 1'-alpha-anomers) are now r e a d i l y a v a i l a b l e by means o f automated synthesis. Through c o l l a b o r a t i v e i n v e s t i g a t i o n s of various d i f f e r e n t backbone-modified o l i g o n u c l e o t i d e s , we have comparatively studied h y b r i d i z a t i o n (Tm), i n v i t r o i n h i b i t i o n of gene expression (CAT and ras genes), and i n v i t r o i n h i b i t i o n of HIV. Phosphorothioate oligomers at ca. 1 uM e x h i b i t e d potent anti-HIV a c t i v i t y . The mechanism(s) for t h i s a n t i - r e t r o v i r a l a c t i v i t y i s (are) under f u r t h e r i n v e s t i g a tion. Normal c e l l g r o w t h and r e p l i c a t i o n r e q u i r e t r a n s c r i p t i o n o f DNA a n d s u b s e q u e n t t r a n s l a t i o n o f mRNA t o a f f o r d n e c e s s a r y enzymes, s t r u c t u r a l components, r e g u l a t o r y f a c t o r s , and o t h e r t y p e s o f p r o t e i n s . These b i o c h e m i c a l p r o c e s s e s and p r o t e i n p r o d u c t s i n a b e r r a n t o r f o r e i g n form may l e a d t o d i s e a s e , as t h e e n d r e s u l t o f e i t h e r an 0097-6156/89/0401-0170$06.00/0 o 1989 A m e r i c a n Chemical Society
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
12.
ZON
Chemotherapeutic Oligonucleotide Analogues
171
i n h e r i t e d genetic defect, mutagenesis, o r v i r a l infections. A p o t e n t i a l l y general therapeutic strategy i n such cases involves i n h i b i t i o n o f aberrant o r f o r e i g n ("target") gene e x p r e s s i o n by use o f s y n t h e t i c o l i g o n u c l e o t i d e analogues t h a t have sequences c o m p l e m e n t a r y t o s p e c i f i c s e q u e n c e s known t o b e p r e s e n t i n t h e t a r g e t DNA o r RNA. Substrategies include t a r g e t i n g these s i n g l e - s t r a n d e d (ss) analogues a t e i t h e r d o u b l e - s t r a n d e d ( d s ) DNA, t h u s f o r m i n g t r i p l e x e s , o r s s DNA o r RNA, t h u s f o r m i n g d u p l e x e s . A l t e r n a t i v e l y , ss or ds o l i g o n u c l e o t i d e a n a l o g u e s c o u l d b e t a r g e t e d a t regulatory proteins that bind nucleic acids. Early s t u d i e s (1,2) i n t h i s g e n e r a l a r e a b e g a n m o r e t h a n t w o decades ago; however, o n l y w i t h i n t h e l a s t few y e a r s has t h e r e been s i g n i f i c a n t l y i n c r e a s e d a t t e n t i o n and e f f o r t , p e r h a p s due i n p a r t t i biology, sequencing techniques of o l i g o n u c l e o t i d e s . Moreover e n c o u r a g i n g r e s u l t s i n v a r i o u s a n t i v i r a l model s t u d i e s : R o u s s a r c o m a v i r u s Q ) , h e r p e s s i m p l e x v i r u s (HSV) t y p e 1 (4.), v e s i c u l a r s t o m a t i t i s v i r u s ( 5 ) , human i m m u n o d e f i c i e n c y v i r u s (HIV) (£-£), a n d t y p e A i n f l u e n z a v i r u s (2.) . A n u m b e r o f r e v i e w a r t i c l e s ( 1 0 - 1 4 ) o n s u c h " a n t i s e n s e o l i g o n u c l e o t i d e s " have appeared r e c e n t l y and c a n b e c o n s u l t e d f o r much more i n f o r m a t i o n t h a n c a n b e given here. The p r e s e n t r e p o r t i s l i m i t e d t o a n i n t r o d u c t i o n t o concepts i n the design o f anti-RNA o l i g o m e r s , b r i e f comments on t h e i r p r e p a r a t i o n a n d p r o p e r t i e s , and p r e s e n t a t i o n o f p r e l i m i n a r y r e s u l t s obtained w i t h o l i g o n u c l e o t i d e analogues c o n t a i n i n g phosphorothioate l i n k a g e s , which a r e under development by the author through various c o l l a b o r a t i v e i n v e s t i g a t i o n s . This account w i l l h o p e f u l l y provide medicinal and c a r b o h y d r a t e c h e m i s t s w i t h an i n d i c a t i o n o f t h e c u r r e n t p o t e n t i a l , and problems t o address, i n t h e development o f a n t i s e n s e o l i g o n u c l e o t i d e s a s a new c l a s s o f a n t i v i r a l agents. Design of Anti-RNA Oligonucleotide
Analogues
Important Design Factors. Therapeutic applications of o l i g o n u c l e o t i d e s b y means o f s e q u e n c e - s p e c i f i c inhibition o f t h e f u n c t i o n o f RNA r e q u i r e c o n s i d e r a t i o n o f t h e following factors. P r a c t i c a l methods f o r s y n t h e s i s and p u r i f i c a t i o n o f r e l a t i v e l y l a r g e amounts o f s t r u c t u r a l l y m o d i f i e d o l i g o n u c l e o t i d e s (analogues) t h a t have adequate r e s i s t a n c e t o d e p o l y m e r i z a t i o n by nucleases, adequate b i o a v a i l a b i l i t y , and a r e t a k e n up by c e l l s . The c o m p l e m e n t a r y t a r g e t sequence must be a c c e s s i b l e t o t h e a n a l o g u e a n d t h e r e must be an a d e q u a t e r a t e a n d e x t e n t o f a s s o c i a t i o n t o form t h e r e s u l t a n t , p e r f e c t l y base-paired duplex, which adequately i n h i b i t s the intended RNAfunction. There s h o u l d be m i n i m a l s i d e - e f f e c t s (e.g.,
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
172
t h a t r e s u l t f r o m a f i n i t e amount o f n o n - s p e c i f i c b i n d i n g t o p o l y n u c l e o t i d e sequences h a v i n g p a r t i a l homology, r e l a t i v e t o the analogue-target duplex. T h e same i s true f o rnon-specific binding t o other c e l l u l a r c o n s t i t u e n t s o r enzymes. Formally analogous design c r i t e r i a obtain f o r conventional (small molecule) a n t i v i r a l agents; nevertheless, because o f t h e comparatively unique nature o f antisense oligonucleotides, i ti s worthwhile t o consider these c r i t e r i a i n a b i t more detail. Structural Modifications. O l i g o n u c l e o t i d e s undergo nuclease-mediated depolymerization a t r a t e s which can be q u i t e f a s t ( h a l f - l i f e < l h ) i n serum (lu). S u b s t i t u t i o n o f one o f t h e n o n - b r i d g i n g oxygens i n t h e n a t u r a l l y o c c u r r i n g l i n k a g e (I) w i t h e i t h e r s u l f u r ( I I ) (1£) , m e t h y l ( I I I (V) (IS.) affords chemicall o l i g o n u c l e o t i d e analogues. ο
ο
ο
II 3Ό-Ρ-05"
I
3Ό-Ρ-05
I
3O-P-05'
I CH
I
II
3
III
0
II 3O-P-05'
3O-P-05'
I
I
NR2
OR
IV
V
3Ό-Ρ-05*
I S"
VI
Rather than modify every linkage, only several o f these m o d i f i c a t i o n s a t t h e 5 ' a n d 3 ' e n d s o f a n o l i g o m e r may provide adequate s t a b i l i t y toward exonucleases (12), although endonucleolytic cleavage s t i l l occurs. This p r o v i d e s a means f o r c o n t r o l l i n g b o t h t h e b i o l o g i c a l h a l f - l i f e o f an o l i g o n u c l e o t i d e analogue and i t s partition coefficient. A d d i t i o n a l l y , i n view of the c h i r a l i t y at phosphorus i n II-V, which r e s u l t s i n 2 d i a s t e r e o m e r s (n=number o f c h i r a l l i n k a g e s ) , u s e o f o n l y terminal modifications reduces t h e stereoisomeric h e t e r o g e n e i t y o f an o l i g o n u c l e o t i d e a n a l o g u e . Another approach along t h i s l i n e i s t o use a c h i r a l linkages, such as V I ( 2 Û ) . A c h i r a l l i n k a g e s w i t h o u t p h o s p h o r u s have n
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
12. Z O N
173
Chemotherapeutic Oligonucleotide Analogues
also been studied, namely, carboxymethyl (2), 3 0-CH C(O)0 5 , carbamate (21,22), 3 0 - C ( 0 ) - N H 5 ' , and s u l f i d e (22), ,
1
2
1
3'C-CH CH2S-C5 , 2
F
moieties.
Among the modified nucleosides that might provide adequate r e s i s t a n c e to nucleases, oligomers c o n t a i n i n g alpha-2'-deoxynucleoside anomers have a t t r a c t e d considerably more a t t e n t i o n (21,25) than those with other types of stereoisomerism (H) or with 2 - O - m e t h y l r i b o nucleosides (2£). Oligonucleotides with base modifications that impart r e s i s t a n c e to nucleases apparently have not been reported. 1
B i o a v a i l a b i l i t y and Uptake by C e l l s . M i l l e r and T s ' o have reported (H) that methylphosphonate analogues (III) prevent expression of h e r p e t i c l e s i o n s when a p p l i e d i n the form of a cream to the HSV-infected ear of a mouse. A t r i t i u m - l a b e l e d methylphosphonat (11) to be d i s t r i b u t e d to a l l organs and t i s s u e s , with the exception of the b r a i n , when i n j e c t e d i n t o the t a i l v e i n of a mouse. By c o n t r a s t , i n a s i m i l a r study with carbon-labeled methylphosphonate analogues, Maguire and Han (22) reported t h a t , on a wet weight b a s i s , peak r a d i o a c t i v i t i e s were i n the order: brain > l i v e r > kidney > lung > heart > muscle. The occurrence times for these peaks were i n the order: muscle > b r a i n = heart = lung > l i v e r > kidney. Indirect evidence for adequate b i o a v a i l a b i l i t y of o l i g o n u c l e o t i d e s with unmodified linkages, and t h e i r uptake by c e l l s , i s provided by reports of i n v i v o a c t i v i t y i n mice against HSV-1 (28.), t i c k - b o r n e e n c e p h a l i t i s v i r u s (22), and c-myc QQ.) . Uptake by c e l l s can be studied with r a d i o l a b e l e d o l i g o n u c l e o t i d e s , by e i t h e r counts alone or autoradiography to v i s u a l i z e the d i s t r i b u t i o n . A l t e r n a t i v e l y , one can use f l u o r e s c e n t l y l a b e l e d oligomers, with e i t h e r f l u o r e s c e n c e - a c t i v a t e d c e l l s o r t i n g (FACS) or fluorescence microscopy. Methylphosphonate analogues are thought to be taken up by passive d i f f u s i o n (H) whereas uptake of n e g a t i v e l y charged, unmodified o l i g o n u c l e o t i d e s and phosphorothioate (II) analogues may involve a more complex process. Our preliminary FACS measurements (Egan, W., Food and Drug A d m i n i s t r a t i o n , personal communication, 1988) with the l a t t e r analogues i n d i c a t e a very r a p i d (<10 min) increase i n c e l l - a s s o c i a t e d fluorescence followed by further increase very slowly or an apparent p l a t e a u . At t h i s time i t i s unknown whether t h i s represents uptake alone or involves an i n i t i a l fast a s s o c i a t i o n with p o s i t i v e l y charged groups on the c e l l surface. A p o t e n t i a l l y major discovery i n t h i s area involves a p u t a t i v e o l i g o n u c l e o t i d e receptor ( S t e i n , C , National I n s t i t u t e s of Health, personal communication, 1988). Also noteworthy are several promising schemes for o b t a i n i n g
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
174
NUCLECmDE ANALOGUES
f a c i l i t a t e d uptake: conjugation of oligonucleotides t o p o l y ( L - l y s i n e ) (21) o r s t e r o i d s (22) a n d p a c k a g i n g o f o l i g o n u c l e o t i d e s i n l i p o s o m e s (22/22) , S e n d a i v i r u s e n v e l o p e (22) , o r e r y t h r o c y t e " g h o s t s " {23.) . S p e c i f i c Binding t o Target and I n h i b i t i o n o f Function. I n 1 9 7 8 Z a m e c n i k a n d c o w o r k e r s (2) c o i n e d t h e w o r d "hybridon" t o refer t o competitive hybridization o f s y n t h e t i c o l i g o n u c l e o t i d e s t o t a r g e t sequences i n order t o b l o c k e i t h e r (1.) R N A D N A polymerization (reverse t r a n s c r i p t i o n ) , ( 2 . ) DNA i n t e g r a t i o n , ( 3 . ) D N A R N A t r a n s c r i p t i o n , (4.) t r a n s l a t i o n , o r (5.) r i b o s o m a l association. A s p l i c e - j u n c t i o n c a n a l s o b e t a r g e t e d (4.) . C a l c u l a t i o n s o f RNA t e r t i a r y s t r u c t u r e t o d e t e r m i n e a c c e s s i b l e s s t a r g e t sequences have been c a r r i e d o u t (24); h o w e v e r , t h e s e a r f questionabl value d t r e p o r t s t o date have t e s t e complementary t o region t r a n s l a t i o n , w h i c h a r e assumed t o be g e n e r a l l y accessible. An i m p o r t a n t development has been recognition that formation o f oligodeoxyribonucleotideRNA h e t e r o d u p l e x e s may l e a d t o s c i s s i o n o f t h e r i b o s t r a n d b y R N a s e H (25), w h i c h a p p a r e n t l y i spresent i n a l l (or most) c e l l s . This allows f o r c a t a l y t i c turnover o f RNA a s o p p o s e d t o 1:1 s t o i c h i o m e t r i c b l o c k a g e . S i g n i f i c a n t l y , phosphorothioate but not alpha-anomeric o l i g o n u c l e o t i d e analogues can function e f f i c i e n t l y i n t h i s m a n n e r (2£). S t a t i s t i c a l l y , a s e q u e n c e o f c a . 17 n u c l e o t i d e s s h o u l d b e f o u n d o n l y o n c e i n t h e human g e n o m e , a n d s h o r t e r s e q u e n c e s (ca. 12-mers) c a n , i n p r i n c i p l e , b e o f u s e a t t h e l e v e l o f mRNA. F r o m DNA p r o b e t e c h n o l o g y , i t i s r e a s o n a b l e t o i n f e r t h a t one base p a i r mismatch i n an RNA t a r g e t - o l i g o n u c l e o t i d e a n a l o g u e d u p l e x c a u s e s s u f f i c i e n t d e s t a b i l i z a t i o n so as t o favor a high degree of b i n d i n g s p e c i f i c i t y , i n t h i s range o f lengths. But t h i s i s t r u e only under thermodynamic c o n t r o l ( a t equilibrium) and s o - c a l l e d stringent conditions ( r e l a t i v e l y high temperature, low s a l t concentration, and l o w c o n c e n t r a t i o n o f o l i g o m e r ) . In contrast, uptake of an o l i g o n u c l e o t i d e analogue by a l i v e c e l l i n v i v o involves non-equilibrium conditions, with regard t o f o r m a t i o n o f o l i g o m e r - R N A ( o r DNA) d u p l e x e s , a n d n o n adjustable non-stringent conditions. This indicates that t h e d e s i r e d d e g r e e o f s p e c i f i c i t y o f d u p l e x f o r m a t i o n may be o f f s e t b y k i n e t i c a l l y c o n t r o l l e d phenomena a n d t h e r a t e a t which t h e "system" approaches a s t a t e o f pseudoequilibrium. I t may t h e r e f o r e b e p o s s i b l e t o m a x i m i z e s p e c i f i c i t y , a t l e a s t i n p a r t , by a d o p t i n g a s t r a t e g y i n which "shorter i sbetter". Y e t t o be determined i s whether t h e synergy o f contiguous antisense oligomers e v i d e n c e d i n c e l l - f r e e s t u d i e s (22) e x t e n d s t o applications i n vivo.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
12. Z O N
ChemotherapeutwOligomwleotia^Ana^
175
Schemes f o r e i t h e r d e c r e a s i n g o r p r e v e n t i n g d i s a s s o c i a t i o n o f an a n t i s e n s e o l i g o m e r from i t s t a r g e t , or displacement by p o l y n u c l e o t i d e / p r o t e i n , i n c l u d e t h e use o f pendant a l k y l a t i n g groups, i n t e r c a l a t o r s , and p h o t o a c t i v a t a b l e groups (10-14). P r e p a r a t i o n and P h y s i c a l C h a r a c t e r i s t i c s o f O l i g o n u c l e o t i d e Analogues S y n t h e s i s and P u r i f i c a t i o n . Oligodeoxyribonucleotides and o l i g o r i b o n u c l e o t i d e s a r e r e a d i l y p r e p a r e d by automated v e r s i o n s o f t h e solid-phase phosphoramidite m e t h o d d e v e l o p e d b y C a r u t h e r s a n d c o w o r k e r s Q2.) (Figure 1). In each c y c l e , coupling a f f o r d s a phosphite linkage w h i c h c a n be e i t h e r o x i d i z e d w i t h I /H20/base t o a phosphotriester precurso sulfurized with S /CS t o a p h o s p h o r a m i d a t e ( I V ) , o r s t a b l e p h o s p h o t r i e s t e r (V) (23.) . O b v i o u s e x t e n s i o n t o m e t h y l p h o s p h o n a m i d i t e s (ΑΏ.) a f f o r d s methylphosphonate l i n k a g e s . I t i s thus p o s s i b l e t o i n t r o d u c e i n t o an o l i g o n u c l e o t i d e a n a l o g u e one o r more o f t h e same o r d i f f e r e n t m o d i f i c a t i o n s i n a n y o r d e r . The a b i l i t y t o assemble oligomers w i t h combinations o f c h a r g e d and n e u t r a l l i n k a g e s p r o v e d t o be u s e f u l , as o u r i n i t i a l work w i t h methylphosphonate and i s o p r o p y l p h o s p h o t r i e s t e r analogues i n d i c a t e d low s o l u b i l i t y i n water, compared t o c h a r g e d o l i g o m e r s , l e a d i n g t o problems w i t h handling and b i o l o g i c a l t e s t i n g , w h i c h w e r e a d d r e s s e d b y s y n t h e s i s o f η-mer a n a l o g u e s having a l t e r n a t i n g linkages: ( I - I I I ) n / 2 and (I-V)n/2. Another approach t o a d j u s t i n g s o l u b i l i t y i s t h e use o f aminoalkyl s u b s t i t u e n t s attached t o e i t h e r phosphorus (41) o r base moieties. N i e l s e n and Caruthers (42.) have described r e g i o s e l e c t i v e Arbuzov-type reactions of internucleoside 2-cyano-l,1-dimethylethylphosphites as a n o v e l and v e r s a t i l e route t o mixed-linkage analogues. Such m o l e c u l e s c a n a l s o be c o n s t r u c t e d by a p p r o p r i a t e a l t e r n a t i o n o f phosphoramidite and H-phosphonate c h e m i s t r y c y c l e s ( Z o n , G., u n p u b l i s h e d d a t a ) , t h e l a t t e r o f w h i c h f e a t u r e s c o u p l i n g b y a c t i v a t i o n o f t h e Hp h o s p h o n a t e monomer w i t h a d a m a n t a n e c a r b o n y l c h l o r i d e t o g i v e a mixed anhydride, and capping by s i m i l a r r e a c t i o n with isopropyl phosphite (42) ( F i g u r e 2 ) . The r e s u l t a n t i n t e r n u c l e o s i d e H-phosphonate l i n k a g e ( s ) c a n be e i t h e r o x i d i z e d t o an u n m o d i f i e d l i n k a g e o r c o n v e r t e d into m o d i f i e d l i n k a g e s such as I I , IV, V (17-44). Stec and c o w o r k e r s (Αϋ) h a v e r e p o r t e d t h e u s e o f a b i s - a m i d i t e r e a g e n t as an a l t e r n a t i v e e n t r y t o e i t h e r phosphoramiditeor H-phosphonate-like chemistry during each c y c l e o f chain extension. 2
8
P o l y a c r y l a m i d e g e l e l e c t r o p h o r e s i s has been t r a d i t i o n a l l y used t o p u r i f y s y n t h e t i c o l i g o n u c l e o t i d e s
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
176
NUCLEOTCDE ANALOGUES
PHOSPHORAMIDITE REAGENT
F i g u r e 1. S c h e m a t i c r e p r e s e n t a t i o n o f t h e p h o s p h o r a m i d i t e method f o r o l i g o n u c l e o t i d e s y n t h e s i s on a s o l i d s u p p o r t . F o rd e f i n i t i o n s and d e t a i l s , see r e f . 38.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
ZON
Chemotherapeutic Oligonucleotide Analogues
Β
0=P-H
Β
Ο
L.
F i g u r e 2. Schematic representation of the hydrogen p h o s p h o n a t e method f o r o l i g o n u c l e o t i d e s y n t h e s i s on s o l i d support. F o r d e f i n i t i o n s and d e t a i l s , see r e f
43.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
178
NUCLEOTIDE ANALOGUES
i n s m a l l a m o u n t s (< 1 mg), w h i l e i o n - e x c h a n g e H P L C a n d r e v e r s e d - p h a s e ( p a i r e d - i o n ) HPLC h a v e become more p r e v a l e n t methods o f p u r i f i c a t i o n b e c a u s e t h e y c a n be s c a l e d - u p and automated. R e c e n t r e v i e w s (1£) of o l i g o n u c l e o t i d e p u r i f i c a t i o n can be c o n s u l t e d f o r details. An i n c r e a s i n g g r a d i e n t o f a c e t o n i t r i l e i n triethylammonium acetate i s frequently used f o r reversedp h a s e HPLC o f o l i g o n u c l e o t i d e s b e c a u s e t h e e l u e n t s a r e r e l a t i v e l y e a s y t o remove f r o m t h e f i n a l p r o d u c t . Highr e s o l u t i o n p r o t o n NMR c a n b e e m p l o y e d t o c h e c k f o r r e s i d u a l e l u e n t s , w h i l e p h o s p h o r u s NMR i s useful for a n a l y s i s of the chemical homogeneity of the oligomer b a c k b o n e when a p p r o p r i a t e . S t e r e o c h e m i s t r y and S t r e n g t h o f B i n d i n g . A p l o t o f UV a b s o r b a n c e a t 260 nm (A 6o) v s temperature g e n e r a l l y g i v e s an " S " - s h a p e d c u r v inflection point tha which a duplex i s h a l f d i s s o c i a t e d , at the s p e c i f i e d c o n c e n t r a t i o n o f o l i g o m e r s , a d d e d s a l t ( c a t i o n ) a n d pH. A p l o t o f Tm v s . l o g [ c a t i o n a c t i v i t y ] provides thermodynamic c o n s t a n t s f o r duplex f o r m a t i o n , which can be i n t e r p r e t e d i n t e r m s o f t h e s t r e n g t h o f b i n d i n g . The i n f l u e n c e o n Tm o f c o n v e r t i n g a n unmodified p h o s p h o d i e s t e r l i n k a g e (I) i n t o a c h i r a l l i n k a g e , 3ΌP ( 0 ) ( Χ ) - 0 5 ' , s h o u l d d e p e n d o n t h e e l e c t r o n i c n a t u r e o f X, i t s s t e r i c " b u l k " , and t h e a b s o l u t e s t e r e o c h e m i s t r y a t phosphorus. An e l e c t r o n i c a l l y n e u t r a l ( e . g . , X = m e t h y l ) or p o s i t i v e l y charged s u b s t i t u e n t (e.g., X=aminoalkyl) s h o u l d d e c r e a s e t h e d e p e n d e n c e o f Tm o n t h e c a t i o n c o n c e n t r a t i o n , b u t a p p a r e n t l y i t i s n o t known w h e t h e r t h i s i s b e n e f i c i a l under p h y s i o l o g i c a l s a l t c o n d i t i o n s . W i t h r e g a r d t o a b s o l u t e s t e r e o c h e m i s t r y a t p h o s p h o r u s (R or 2 c o n f i g u r a t i o n ) , i n s p e c t i o n of molecular models of d u p l e x e s s u g g e s t s two d i f f e r e n t o r i e n t a t i o n s o f s u b s t i t u e n t X, r e l a t i v e t o t h e h e l i c a l a x i s , e a c h h a v i n g d i f f e r e n t l o c a l i n t e r a c t i o n s with the flanking residues and a s s o c i a t e d w a t e r m o l e c u l e s . We h a v e u t i l i z e d a s e r i e s of backbone m o d i f i e d , self-complementary o c t a d e o x y r i b o n u c l e o t i d e s ( e . g . , R o r ΐ GGAA TTCC) t o e s t a b l i s h the a b s o l u t e c o n f i g u r a t i o n s at phosphorus, by c h e m i c a l a n d NMR m e t h o d s , a n d m e a s u r e t h e c h a n g e i n Tm (ATm) a s s o c i a t e d w i t h the "outward" and "inward" o r i e n t a t i o n s o f X, r e l a t i v e t o t h e u n m o d i f i e d duplex. The l a t t e r o r i e n t a t i o n f o r X = s u l f u r (12), m e t h y l (!&) / o r a l k o x y (12) d e p r e s s e s t h e Tm, w h i c h h a s b e e n a s c r i b e d t o r e p u l s i v e s t e r i c i n t e r a c t i o n s b e t w e e n X a n d t h e 3* proton. The i n f l u e n c e o n Tm o f m u l t i p l e m e t h y l p h o s p h o n a t e m o d i f i c a t i o n s , a n d t h e i n f l u e n c e o n Tm o f t h e n a t u r e o f t h e f l a n k i n g b a s e s , h a s b e e n i n v e s t i g a t e d ( W i l s o n , W. D., Georgia State U n i v e r s i t y , p e r s o n a l communication,1988) i n the self-complementary tetradecadeoxyribonucleotide X
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
12.
179
Chemotherapeutic Oligonucleotide Analogues
ZON
T ( A A T T ) A , w h i c h w h e n u n m o d i f i e d h a s Tm = 35.8°C i n 0.16 M N a C l , as n o t e d i n T a b l e I . Separated m o d i f i c a t i o n s i n t h i s s e r i e s , r e l a t i v e t o c l u s t e r e d ones, h a v e a somewhat l e s s d i s r u p t i v e e f f e c t on h e l i c a l s t a b i l i t y . Incorpor a t i o n o f t w e l v e c o n t i g u o u s m o d i f i c a t i o n s l o w e r e d t h e Tm by o n l y 12.6 C. 3
e
Table
Tm
35.8 31.7 30.5
I.
e
( C)
L o c a t i o n of Methylphosphonate Linkages C o r r e s p o n d i n g Tm V a l u e s a t 0.16 M N a C l
Τ
A
A
τ
Τ
A
unmodified X X
τ
Τ
A
Τ
Α
Α
(X),
Τ
and
Α
Χ
X
χ
X
30.4
32.2 33.5 20.9
X
X
X
X
X
X X
χ χ
χ χ
Χ
χ
χ
χ
We h a v e o b t a i n e d o t h e r d a t a o f t h i s s o r t f o r a d d i t i o n a l sequences and f o r p h o s p h o r o t h i o a t e l i n k a g e s ( I I ) , w h i c h l i k e w i s e c a u s e a r o u g h l y 10°C d r o p i n Tm w h e n a r r a n g e d c o n t i g u o u s l y i n 10- t o 3 0 - m e r s . Both methylphosphonate a n d p h o s p h o r o t h i o a t e a n a l o g u e s s h o w Tm c u r v e s t h a t a r e d i s p l a c e d but not s i g n i f i c a n t l y broadened, r e l a t i v e t o the unmodified duplex. The l a t t e r f e a t u r e m i g h t h a v e been unexpected, i n view of the presence o f 2 d i a s t e r e o m e r s , d e p e n d i n g on o n e ' s t h e o r e t i c a l a n a l y s i s and assumptions. n
Anti-HIV A c t i v i t y
of Phosphorothioate
Analogues
P r e l i m i n a r y S t u d i e s . Among t h e g o a l s o f o u r i n i t i a l s t u d i e s were comparison o f t h e e f f i c a c y o f v a r i o u s t y p e s of analogues and t h e use o f q u a n t i t a t i v e a s s a y s . At t h a t time the n e u t r a l methylphosphonates and c h a r g e d , u n m o d i f i e d o l i g o m e r s w e r e known Q,4.)to be a n t i s e n s e i n h i b i t o r s o f p r o t e i n s y n t h e s i s , a n d i t was o f i n t e r e s t to compare them w i t h p a r t i a l l y c h a r g e d methylphosphonates and p h o s p h o t r i e s t e r s , as w e l l as c h a r g e d phosphorothioates. We c h o s e a r e l a t i v e l y s i m p l e e u k a r y o t i c t i s s u e c u l t u r e (CV-1 c e l l s ) t r a n s f e c t i o n a s s a y of p l a s m i d c o n t a i n i n g t h e gene f o r e x p r e s s i o n o f t h e b a c t e r i a l enzyme c h l o r a m p h e n i c o l a c e t y l t r a n s f e r a s e (CAT) c o u p l e d t o v i r a l (SV 40) r e g u l a t o r y s e q u e n c e s a s a m o d e l i n v i t r o system f o r gauging the r e l a t i v e e f f e c t i v e n e s s of these analogues i n the r e g u l a t i o n o f e x p r e s s i o n of a s p e c i f i c p r o t e i n (uQ.) . The t a r g e t was a 2 1 - b a s e s e q u e n c e t h a t b e g a n w i t h AUG, w h i c h c o d e s f o r t h e i n i t i a l methionine. T r a n s f e c t i o n i n t h e p r e s e n c e o f 30 μΜ oligomer l e d to the following order of oligomer
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
180
NUCLEOTIDE
ANALOGUES
inhibitory effect: phosphorothioate > methylphosphonate > a l t e r n a t i n g methylphosphonate and u n m o d i f i e d > a l t e r n a t i n g e t h y l p h o s p h o t r i e s t e r and u n m o d i f i e d > u n m o d i f i e d = a l t e r n a t i n g i s o p r o p y l p h o s p h o t r i e s t e r and u n m o d i f i e d , w i t h t h e f i r s t c a s e b e i n g 84% and t h e l a s t two c a s e s b e i n g 35% and 0%, r e s p e c t i v e l y . A c e l l - f r e e t r a n s l a t i o n assay i n r a b b i t r e t i c u l o c y t e l y s a t e , w h i c h had been d e v e l o p e d f o r e v a l u a t i n g methylphosphonate a n a l o g u e s as i n h i b i t o r s o f r a s - p 2 1 , was made a v a i l a b l e t o us f o r c o m p a r a t i v e s t u d i e s w i t h p h o s p h o r o t h i o a t e s (Chang, Ε . H., Uniformed S e r v i c e s U n i v e r s i t y o f H e a l t h S c i e n c e , p e r s o n a l communication, 1988). An 11-mer m e t h y l p h o s p h o n a t e complementary t o t h e 5 end o f t h e mRNA c a u s e d -45% and -95% i n h i b i t i o n o f p21 t r a n s l a t i o n a t 50 μΜ and 200 μΜ, r e s p e c t i v e l y . Oligomers h a v i n g u n m o d i f i e d l i n k a g e s o r a l t e r n a t i n g u n m o d i f i e d and methylphosphonate linkage the phosphorothioate i n h i b i t i o n a t 12.5 μΜ and 50 μΜ, r e s p e c t i v e l y . The s p e c i f i c i t y o f the p h o s p h o r o t h i o a t e s i n t h i s system i s s t i l l under i n v e s t i g a t i o n . 1
A n t i - H I V A c t i v i t y In v i t r o . Based on t h e presumed i m p o r t a n c e o f t h e a r t / t r s (rev) e n c o d e d p r o t e i n i n t h e r e g u l a t i o n o f HIV, a 14-mer sequence and v a r i o u s presumed i r r e l e v a n t ( c o n t r o l ) sequences were s t u d i e d i n a c y t o p a t h i c e f f e c t i n h i b i t i o n a s s a y ( 2 ) . None o f t h e t e s t e d methylphosphonate and u n m o d i f i e d s e q u e n c e s showed s t a t i s t i c a l l y s i g n i f i c a n t a c t i v i t y , whereas t o o u r s u r p r i s e a l l o f the p h o s p h o r o t h i o a t e s (except v e r y s h o r t ones, 5-mers) e x h i b i t e d some l e v e l o f a c t i v i t y . A 28-mer p o l y m e r o f dC was t h e most p o t e n t p h o s p h o r o t h i o a t e t e s t e d , showing complete i n h i b i t i o n a t 0.5 - 1.0 μΜ. Subsequent e x p e r i m e n t s w i t h t h i s m a t e r i a l a t 1 μΜ employed a S o u t h e r n b l o t a n a l y s i s t o d e m o n s t r a t e complete i n h i b i t i o n o f de novo v i r a l DNA s y n t h e s i s . Recent u n p u b l i s h e d r e s u l t s suggest t h a t p h o s p h o r o t h i o a t e o l i g o m e r s can i n h i b i t R N A — D N A t r a n s c r i p t i o n by b i n d i n g t o v i r a l r e v e r s e t r a n s c r i p t a s e (RT) (Cohen, J . S. National I n s t i t u t e s of Health, Private communication, 1988). In a d d i t i o n t o t h i s p r e s u m p t i v e mechanism f o r s e q u e n c e - n o n s p e c i f i r. R T - d i r e c t e d a n t i v i r a l a c t i v i t y o f phosphorothioate oligomers i n non-infected c e l l s , a s e q u e n c e - s p e c i f i c mechanism has b e e n f o u n d more r e c e n t l y i n an a s s a y f o r i n h i b i t i o n o f v i r a l e x p r e s s i o n o f HIV i n c h r o n i c a l l y i n f e c t e d T - c e l l s (Matsukura, M., N a t i o n a l I n s t i t u t e s o f H e a l t h , p r i v a t e cummunication, 1988). The a c t i v e p h o s p h o r o t h i o a t e sequence i s t h e e x t e n d e d (28-mer) v e r s i o n o f t h e a f o r e m e n t i o n e d a n t i - a r t / t r s (rev) oligomer. The r e s u l t s o f N o r t h e r n b l o t a n a l y s i s s u g g e s t t h a t t h e r e a r e marked e f f e c t s on RNA; however, t h e d e t a i l s have y e t t o be e s t a b l i s h e d . In any e v e n t , a t t h i s time the phosphorothioate analogues are e s p e c i a l l y r
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
12.
ZON
Chemotherapeutic Oligonucleotide Analogues
i n t e r e s t i n g as p o t e n t i a l a n t i - r e t r o v i r a l a g e n t s i n t h a t t h e y t h a t may h a v e t w o , i n d e p e n d e n t m e c h a n i s m s o f a c t i o n which operate at d i f f e r e n t points i n the v i r u s lifecycle.
Literature Cited 1.
Belikova, A. M.; Zarytova, V. F., Grineva, Ν. I. Tetrahedron Lett. 1967, 3557.
2.
Halford, M. H.; Jones, A. S. Nature 1968,
3.
Zamecnik, P. C.; Stephenson, M. L. Proc Natl. Acad. Sci. USA 1978, 75, 280.
4.
Smith, C. C.; Aurelian S.; Ts'o, P. O. 83, 2787.
5.
Agris, C. H., Blake, K. R.; M i l l e r , P. S. Reddy, M. P.; Ts'o, P.O.P. Biochemistry 1986, 25, 6268.
6.
Zamecnik, P. C.; Goodchild, J.; Taguchi Y., Sarin, P. S. Proc. Natl. Acad. Sci USA 1986, 83 4143.
7.
Matsukura, M.; Shinozuka, K.; Zon, G.; Mitsuya, H.; Reitz, M.; Cohen, J. S.; Broder, S. Proc. Natl. Acad. S c i . USA 1987, 84, 7706.
8.
Goodchild, J.; Agrawal, S.; Civeira, M. P.; Sarin, P. S.; Sun, D.; Zamecnik, P. C. Proc. Natl. Acad. Sci., USA 1988, 85, 5507.
9.
Z e r i a l , Α.; Thuong, N. T.; Helene, C. Nucleic Acids Res. 1987, 15, 9909.
217,
638.
10.
Knorre, D. G.; Vlassov V. V.; Zarytova, V. F. Karpova, G. G. Adv. Enz. Reg. 1985, 24, 277.
11.
M i l l e r , P. S.; Ts'o, P. O. P. Anti-Cancer Drug Design 1987, 2, 117.
12.
P a o l e t t i , C. Anti-Cancer Drug Design 1988, 2,
13.
Stein, C. Α.; Cohen, J. S. Cancer Res. 1988, 2659.
14.
Zon, G. Pharm Res. 1988, 5, 539.
15.
Wickstrom, E. J . J. Biochem. Biophys. Methods 1986, 13, 97.
325. 48,
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
182 16.
Stec, W. J.; Zon, G.; Egan. W.; Stec, B. J . Am. Chem. Son. 1984, 106, 6077.
17.
Froehler, B. C. Tetrahedron
18.
Stec, W. J.; Zon, G.; Gallo, Κ. Α.; Byrd, R. Α.; Uznanski, B.; Guga, P. Tetrahedron Lett. 1985, 26, 2191.
19.
Agrawal. S.; Goodchild, J . Tetrahedron 28, 3539.
20.
Brill, W. K.-D.; Caruthers, M. H. Abstracts I n t l . Workshop on Perspectives i n Therapeutic and Diagnostic Applications of Oligonucleotide Derivatives, 1988
21.
Coull, J . M.; Carlson, D. V.; Weith, H. L. Tetrahedron Lett. 1987, 28, 745.
22.
Stirchak, E. P.; Summerton, J . Ε.; Weller, D. D. J. Org. Chem. 1987, 52, 4202.
23.
Kawai, S. H.; Just, G.; Chin. J . Abstract Org. Chem. Third Chem. Congress of Ν. America, 1988, No. 318.
24.
Sun, J.-S.; Asseline, U.; Rouzaud, D.; MontenayGarestier, T.; Thoung, N. T.; Helene, C. Nucleic Acid Res. 1987, 15, 6149.
25.
Gautier, C.; Morvan, F.; Rayner, B; Huynh-Dinh, T.; Igolen, J.; Imbach, J.-L.; P a o l e t t i , C. P a o l e t t i , J . Nucleic Acids Res. 1987, 15, 6625.
26.
Inoue, H. Hayase, Y.; Iwai, S,; Ohtsuka, E. FEBS Lett. 1987, 215, 327.
27.
Maguire, D. J.; Han, H. Proc. Australian Biochem Soc., 1988, P26.
28.
U. S. Patent No. 4,689,320, 1987.
29.
Vlassov, V. V. Abtsracts I n t l . Workshop on Perspectives i n Therapeutic and Diagnostic Applications of Oligonucleotide Derivatives, 1988.
30.
Japanese Patent No. 61-122215, 1984.
31.
Lemaitre, M.; Bayard, B.; Lebleu, B.. Prnn. Natl. Acad. S c i . USA 1987, 84, 648.
Lett. 1986, 27, 5575.
Lett. 1987,
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
12.
ZON
Chemotherapeutic Oligonucleotide Analogues
183
32.
Ivanova, E. M.; Chasovskikh, M. I.; Zarytova, V. F. Abstract I n t l . Workshop on Perspectives i n Therapeutic and Diagnostic Applications of Oligonucleotide Derivatives, 1988.
33.
Loke, S. L.; Stein, C.; Avigan, M.; Cohen, J . ; Neckers, L. M. C l i n . Res. 1988, 36, 443A.
34.
Wickstrom, E.; Simonet, W. S.; Medlock, K.; RuizRobles, I. Biophys. J. 1986, 49, 15.
35.
Walder, R. Y.; Walder, J. A. Proc. Natl. Acad. S c i . USA 1988, 85, 5011.
36.
Cazenave, C.; Cohen, J. S.; Helene, C.; Loreau, N.; Stein, C. Α.; Thoung I n t l . Workshop o Diagnostic Application of Oligoncleotide Derivatives, 1988.
37.
Maher, L. J.,III; Dolnick, B. J. Arch. Biochem. Biophys. 1987, 253, 214.
38.
Caruthers, M. H. Science 1985, 230, 281.
39.
Koziolkiewicz, M. Uznanski, B.; Stec, W. J.; Zon, G. Chem. Scr. 1986, 26, 251.
40.
Applied Biosystems DNA Synthesizer Model 380 User Bulletin, Issue No. 43, October 1, 1987.
41.
Letsinger, R. L.; Singman, C. N.; Histand, G.; Salunkhe, M. J. Am. Chem Soc. 1988,. 110, 4470.
42.
Nielsen, J.; Caruthers, M. H. J. Am. Chem. Soc. 1988, 110, 6275.
43.
Andrus, Α.; Efcavitch, J. W.; McBride, L. J . ; Giusti, B. Tetrahedron Lett. 1988, 29, 861.
44.
Froehler, B.; Ng, P.; Matteucci, M. Nucleic Acids Res. 1988, 16, 4831.
45.
Uznanski, B.; Wilk, Α.; Stec, W. J. Tetrahedron Lett. 1987, 28, 3401.
46.
Zon, G.; Thompson, J. A. BioChromatography 1986, 1, 22.
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
184
NUCLEOTIDE
ANALOGUES
47.
LaPlanche, L. A.; James, T. L.; Powell. C.; Wilson, W. D.; Uznanski, B.; Stec, W. J.; Summers, M. F.; Zon, G. Nucleic Acids Res. 1986 14, 9081.
48.
Bower, M.; Summers, M. F.; Powell, C.; Shinozuka, K.; Regan, J. B.; Zon, G.; Wilson, W. D. Nucleic Acids Res. 1987, 15, 4915.
49.
Lawrence, D. P.; Wenqiao, C.; Zon, G.; Stec, W. J . ; Uznanski, B.; Broido, M. S. J. Biomol. Struct. Dyn. 1987, 4, 757.
50.
Marcus-Sekura, C. J.; Woerner, A. M.; Shinozuka, K.; Zon, G.; Quinnan, G. V. J r . Nucleic Acid Res. 1987, 15, 5749.
RECEIVED January 4, 1989
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Author Index Bapat, Ashok, 1 Bronson, Joanne J., 72,88 Busso, Mariano, 156 Cheng, Yung-Chi, 1 Datema, Roelf, 116 De Clercq, Erik, 51 Duncan, I. B., 103 Ghazzouli, Ismail, 72,88 Hahn, Elliot F., 156 Harutunian, Vahak, 1 Hitchcock, Michael J. M., 72,88 Holy, Antonin, 51 Kern, Earl R., 72,88 Khawli, Leslie Α., 1 Kim, Choung Un, 72 Levy, Jeffrey Ν., 1 Marquez, Victor E., 140 Martin, J. Α., 103
Martin, John C, 72,88 McKenna, Charles Ε., 1 Mian, Abdul M., 156 Olofsson, Sigvard, 116 Pong, R. Y., 17 Reist, E. J., 17 Resnick, Lionel, 156 Sidwell, R. W., 17 Smee, Donald F., 124 Starnes, Milbrey C, 1 Sturm, P. Α., 17 Tanga, M. J., 17 Thomas, G. J., 103 Tolman Votruba Webb, Robert R., II, 88 Ye, Ting-Gao, 1 Zon, G., 170
Affiliation Index Applied Biosystems, Inc., 171 Bristol-Myers Company, 72,88,116 Czechoslovak Academy of Sciences, 51 Gôteborgs Universitet, 116 IVAX Corporation, 156 Katholieke Universiteit Leuven, 51 Merck Sharp & Dohme Research Laboratories 35 Mount Sinai Medical Center, 156
National Cancer Institute, NIH, 140 Nucleic Acid Research Institute, 124 Products Limited, 103 International, 17 University of Alabama, 72,88 University of Miami Medical School, 156 University of North Carolina-Chapel Hill, 1 University of Southern California, 1 University, 17
R
S
U
o
R
t
c
h
e
I
a
h
S t a t e
Subject Index A
Acyclonucleoside phosphonates antiviral activity against herpes viruses, 30,32* syntheses, 23-28 toxicity, 30,33 Acyclovir activation by viral thymidine kinase, 105 antiviral activity, 19 selectivity for herpes simplex virus, 19,21 structure, 18f,22/ Acyclovir phosphate, structure, 21—22 Adenosine 5'-sulfamate, antiviral activity, 125
Acyclic nucleoside analogues antiviral activity, 53-54 structures, 54 Acyclic nucleotide analogues, structure—activity investigation, 55-59 Acyclo sugar structure, relationship with substrate activity, 42,44/,45 Acyclonucleoside(s) relative phosphorylation rates, 45,47/ viral activation, 35-36,37/
185
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Author Index Bapat, Ashok, 1 Bronson, Joanne J., 72,88 Busso, Mariano, 156 Cheng, Yung-Chi, 1 Datema, Roelf, 116 De Clercq, Erik, 51 Duncan, I. B., 103 Ghazzouli, Ismail, 72,88 Hahn, Elliot F., 156 Harutunian, Vahak, 1 Hitchcock, Michael J. M., 72,88 Holy, Antonin, 51 Kern, Earl R., 72,88 Khawli, Leslie Α., 1 Kim, Choung Un, 72 Levy, Jeffrey Ν., 1 Marquez, Victor E., 140 Martin, J. Α., 103
Martin, John C, 72,88 McKenna, Charles Ε., 1 Mian, Abdul M., 156 Olofsson, Sigvard, 116 Pong, R. Y., 17 Reist, E. J., 17 Resnick, Lionel, 156 Sidwell, R. W., 17 Smee, Donald F., 124 Starnes, Milbrey C, 1 Sturm, P. Α., 17 Tanga, M. J., 17 Thomas, G. J., 103 Tolman Votruba Webb, Robert R., II, 88 Ye, Ting-Gao, 1 Zon, G., 170
Affiliation Index Applied Biosystems, Inc., 171 Bristol-Myers Company, 72,88,116 Czechoslovak Academy of Sciences, 51 Gôteborgs Universitet, 116 IVAX Corporation, 156 Katholieke Universiteit Leuven, 51 Merck Sharp & Dohme Research Laboratories 35 Mount Sinai Medical Center, 156
National Cancer Institute, NIH, 140 Nucleic Acid Research Institute, 124 Products Limited, 103 International, 17 University of Alabama, 72,88 University of Miami Medical School, 156 University of North Carolina-Chapel Hill, 1 University of Southern California, 1 University, 17
R
S
U
o
R
t
c
h
e
I
a
h
S t a t e
Subject Index A
Acyclonucleoside phosphonates antiviral activity against herpes viruses, 30,32* syntheses, 23-28 toxicity, 30,33 Acyclovir activation by viral thymidine kinase, 105 antiviral activity, 19 selectivity for herpes simplex virus, 19,21 structure, 18f,22/ Acyclovir phosphate, structure, 21—22 Adenosine 5'-sulfamate, antiviral activity, 125
Acyclic nucleoside analogues antiviral activity, 53-54 structures, 54 Acyclic nucleotide analogues, structure—activity investigation, 55-59 Acyclo sugar structure, relationship with substrate activity, 42,44/,45 Acyclonucleoside(s) relative phosphorylation rates, 45,47/ viral activation, 35-36,37/
185
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
186 Amantadine antiviral activity, 19 structure, 18f A n t i - R N A oligonucleotide analogues bioavailability and uptake by cells, 173-174 design factors, 171-172 inhibition of function, 174-175 specific binding to target, 174-175 structural modifications, 172-173 Antiviral activity, phosphonylmethyl ethers of nucleosides, 59-64 Antiviral activity of phosphonylmethyl ether derivatives, 9-[2-(phosphonylmethoxy)ethyl]adenine, 79,80-81/ Antiviral agents chemical structures, 141,142/" FDA-licensed compounds, 17,18/"
Cyclic 2'-norguanine monophosphate antiviral activity against herpes virus, 47-48 structure, 48 Cyclopentenylcytosine antiviral activity, 141,143/ chemistry, 141-142 mechanism of action, 143 Cytomegalovirus, inhibition by (phosphonylmethoxy)ethyl derivatives of purine and pyrimidine bases, 73
D 3-Deazaneplanocin A antiviral activity, 144,145/ chemistry, 142,144,147
important properties, 2 nucleoside analogues, 3 nucleotide analogues, 3 - 4 oligonucleotide analogues, 4 pyrophosphate analogues, 2—14 Ara A antiviral activity, 19 structure, 17,l$f 3'-Azido-2'3'-dideoxytnymidine in vivo disposition, 167/,168 stability in plasma, 162,164-165/ treatment of human immunodeficiency virus infection, 157-158 viral inhibition mechanism, 3 Azidothymidine antiviral activity, 19 structure, 17,18f
Β
£-D-ribofuranosyl)adenine antiviral activity, 151 chemistry, 150,151/,152,153/ 2'-Deoxy-5-ethyluridine derivatives, inhibition of thymidine kinases, 109-110r,lll,112/ 2'-Deoxy-5-iodouridine derivatives, inhibition of thymidine kinase, 106,107/ 2 '3 '-Dideoxy-2 ' -fluoro-flra -adenosine antiviral activity, 148 chemistry, 146,147/,148-149 mechanism of action, 150 2'3'-Dideoxy-2'-fluoro-flrfl-inosine antiviral activity, 148,151/ chemistry, 146,147/,148-149 mechanism of action, 150 D N A polymerases assays for herpes virus and human reaction mixtures, 8 - 9 preparation, 8
Base-modified nucleotide analogues, antiviral activity, 140-141 Biochemical studies, phosphonylmethyl ethers of nucleosides, 64-68 Biological role of terminal glycosylation of viral glycoproteins processing of N-linked oligo saccharides, 117,118f role in Sindbis v i r u s - B H K cell system, 117,119,120r (£)-5-(2-Bromovinyl)-2'-deoxyuridine, inhibition of viral glycoproteins, 121
C Chemotherapy of viral infections, problems, 17 Combined prodrugs, description, 14
G Ganciclovir antiviral activity, 21 energy contour plot, 36,3
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
187
INDEX H α-Halo phosphonates antiviral activities, 10,11/ inhibitor concentrations for DNA polymerases, 9,10r percent inhibition of DNA polymerases, 9,10ί synthesis, 6-7 α-Halogenated pyrophosphate analogues, antiviral activity, 5 Herpes simplex virus(es) disease symptoms, 103 role of thymidine kinase in infections, 103-104 system treatment by (5)-9-[3-hydroxy2-(phosphonylmethoxy)propyl] derivatives, 96-98 Herpes simplex virus infections, therapeuti regimens, 121-122 Herpes thymidine kinase acyclo sugar structure-substrate activity, 42,44/",45 molecular models, 36-43 substrate requirements, 36 Herpes virus antiviral activity 9- [2-(phosphonylmethoxy)ethyl]adenine, 79,80/ (phosphonylmethoxy)ethyl derivatives, 81,82-83/ 9-[2-(phosphonylmethoxy)ethyl]guanine, 84-85/ Herpes virus DNA polymerase inhibition studies antiviral activities, 10,11/ α-halo phosphonates, 9,10/ inhibitor concentrations, 9,10/ HIV-1 reverse transcriptase inhibition studies effect of template, 11,12/ α-οχο phosphonates, 11,12-13/ HSV—1 DNA polymerase, inhibition by nucleoside triphosphate analogues, 65,66/ Human immunodeficiency virus development of therapeutic strategies, 156 inhibition of reverse transcriptase, 157—168 stages in replicative cycle, 156-157 N -(Hydroxyalkyl)guanines, herpes thymidine kinase substrates, 42/ 9-[(2-Hydroxyethoxy)methyl]guanine antiviral activity, 3 viral inhibition mechanism, 3 AT-[3-Hydroxy-2-(phosphonylmethoxy)propyl] derivatives of heterocyclic bases abbreviations, 60/ activity against retroviruses, 63/,64 antiviral activity, 57,60,61-62/,63 biochemical studies, 64-68 synthesis, 57-59
(S)-9-[3-Hydroxy-2-(phosphonylmethoxy)propyljadenine antiviral activity, 59-60,88 biochemical studies, 64—68 broad-spectrum antiviral activity, 72 effect of structure on antiviral activity, 73 in vitro antiviral activity, 94,95/ inhibition of cytomegalovirus, 73 of HSV-1 DNA polymerase, 65,66/ of reverse transcriptase, 67,68/ ofribonucleotidereductase, 66,67/ mechanism of antiviral activity, 89 pharmacokinetics in mice, 96/ structure, 73,89 structure-antiviral activity relationship, 56,57/
infections in mice, 96,97/ toxicity to mice, 95/,96 (5)-9-[3-Hydroxy-2-(phosphonylmethoxy)propyljcytidine in vitro antiviral activity, 94,95/ structure, 89 synthesis, 90,93-94 systemic efficacy against murine cytomegalovirus in mice, 99,100/ systemic treatment of herpes simplex viral infections in mice, 96-97,98/ topical efficacy against herpes simplex virus, 99/ toxicity to mice, 95/,96 (S)-9-[3-Hydroxy-2-(phosphonylmethoxy)propyljguanine in vitro antiviral activity, 94,95/ structure, 89 synthesis, 90-93 systemic treatment of herpes simplex virus infection, 96,97/ toxicity to mice, 95/,96 (S)-9-[3-Hydroxy-2-(phosphonylmethoxy)propyljthymidine, structure, 89
2
Inhibition of terminal N~ and O-glycosylation specific for herpes virus infected cells by (£)-5-(2-bromovinyl)2'-deoxyuridine, 121 development of inhibitors, 119 of sugar nucleotide translocation, 119,12Qf Inhibition studies herpes virus DNA polymerases, 9,10-11/ HIV-1 reverse transcriptase, 11,12-13/ Inhibitors of viral nucleic acid polymerases, design, 2
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
188
Isopolarity, requirement of analogues for antiviral activity, 52 Isosteric phosphonate, structure, 21-22 IUDR antiviral activity, 19 structure, 17,18/
Nucleotide dimers—Continued structure, 158,161/ treatment of human immunodeficiency virus infection, 158 Nucleotide halo phosphonate analogues inhibition of HIV-1 reverse transcriptase, 13-14 structures, 13-14
Κ α-Keto phosphonates ketone-hydrate equilibria, 8 synthesis, 7-8
M
O-linked oligosaccharides, synthesis, 116-117 Oligonucleotide analogues anti human immunodeficiency virus activity, 179-181 antiviral activity, 4
Molecular modeling for thymidine structure-substrate study binding scenarios, 40,41/,42/,43/ energy contour plots, 36,38-39/ structure-substrate relationship for modified guanines, 36,40/ Murine cytomegalovirus, systemic efficacy of (S)-9-[3-hydroxy-2-(phosphonylmethoxy)propyljcytidine, 99,100/
Ν N-linked oligosaccharides, processing, 116-117,118/* Nucleocidin, activity, 125 Nucleoside antiviral agents, examples, 3 Nucleoside derivatives, dissociation constants, 109/.110 Nucleotide antiviral activity, 88 herpes virus specific inhibitors of protein glycosylation, 116-122 Nucleotide analogues categories, 140—141 formation, 88 Nucleotide antiviral analogues, viral inhibition mechanism, 3—4 Nucleotide dimers comparative inhibitory effects of compounds, 162,164/ coupling scheme for synthesis, 158-159,161/ cytotherapeutic evaluation, 162-168 inhibition of human immunodeficiency antigen expression and cytopathic effect, 160,162,163/ inhibition of reverse transcriptase activity, 160,163/ inhibition of syncytium formation, 159-160,161/
inhibition of aberrant gene expression, 171 phosphoramidite synthetic method, 175,176/ purification, 175,178 stereochemistry, 178 strength of binding, 178,179/ synthesis, 175,176-177/ α-Οχο phosphonates inhibition of HIV-1 reverse transcriptase, 11,12/,13 pH dependence of HIV-1 reverse transcriptase inhibition, 13/ α-Οχο pyrophosphate analogues, antiviral activity, 5
Ρ 2
N -Phenylguanine derivatives, inhibition of thymidine kinase, 105,106/ Phosphate-modified nucleotide analogues, antiviral activity, 140-141 5'-Phosphonate derivatives of nucleotides, inhibition of viral infections, 124-125 Phosphonoacetic acid antiviral activity, 4 effect of substituents on antiviral activity, 5—6 structure, 4—5 Phosphonoformic acid antiviral activity, 2—3 structure, 4-5 9-(Phosphonylalkyl)adenines, side chains, 56-57,58/ 9-[(Phosphonylmethoxy)alkyl]adenines, side chains, 56,57/ (Phosphonylmethoxy)ethyl derivatives, antiviral activity against herpes viruses, 81,82-83/
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
189
INDEX
N-[2-(Phosphonylmethoxy)ethyl] derivatives of heterocyclic bases abbreviations, 60/ activity against retroviruses, 63/,64 antiviral activity, 61-62/,63 biochemical studies, 64-68 inhibition of HSV-1 DNA polymerase, 66/ of ribonucleotide reductase, 66,67/ synthesis, 59 (Phosphonylmethoxy)ethyl purine and pyrimidine derivatives, synthesis, 74-77 9-[2-(Phosphonylmethoxy)ethyl]adenine antiviral activity, 72,79,80-81/ structure, 73 synthesis, 74-75 9-[2-(Phosphonylmethoxy)ethyl]guanine analogues antiviral activity against herpes viruses, 84—85/ synthesis, 77-79 9-[3-(Phosphonylmethoxy)propyl]guanine, synthesis, 78 Phosphonylmethyl ether derivatives antiviral activity, 79-85 synthesis, 74-79 Phosphonylmethyl ethers of acyclic nucleotides antiviral activity, 53-54 structures, 54 Phosphonylmethyl ethers of 9-(2,3-dihydroxypropyl)adenine structure-antiviral activity relationship, 56 synthesis of isomers, 55 Phosphonylmethyl ethers of nucleosides antiviral activity, 59-64 biochemical studies, 64-68 effect of ether linkage on antiviral activity, 52-54 structures, 52 5'-0-Phosphonylmethyl nucleosides antiviral activity, 53 synthesis, 52-53 Phosphorothioate analogues, anti human immunodeficiency virus activity, 179-181 Pyrophosphate analogues antiviral activity, 4 structure, 2,4—5 synthesis, 6—8
Reverse transcriptase function in human immunodeficiency virus, 157 inhibition by acyclic nucleoside triphosphate analogues, 67,68/ inhibitors, 157 production inhibition by nucleotide dimers, 160,163/ Ribavirin antiviral activity, 19 structure, 17,18/ Ribavirin 5'-sulfamate antiviral activity against various viruses, 125,126/ antiviral activity under varying multiplicities of viral infection, 126,127/ effects
on incorporation of uridine and amino acids into virus-infected cells, 128,129/ on lethal viral infection in mice, 127,128/ on viral and cellular polypeptide synthesis, 129,131/ future research, 137 inhibition of DNA synthesis, 132,133/ of methylation, 133 of polyamine synthesis, 134,135/ of protein translation, 130,131/132-133/ of sulfuration, 134-135/,136 mode of antiviral action, 127-131 structure, 125 uptake into cells, 136/ Ribonucleotide reductase, inhibition by acyclic nucleoside triphosphate analogues, 66,67/
Structure-activity relationship, acyclic nucleotide analogues, 55-59 Sugar-modified nucleotide analogues, antiviral activity, 140-141 Sugar nucleotide translocation, schematic diagram, 119,120f Syncytium formation, inhibition by nucleotide dimers, 159-160,161/ Syncytium inhibition assay, description, 159
R
Τ
Rauscher MuLV, antiviral efficacy of 9-[2(phosphonylmethoxy)ethyl]adenine, 79,80/ Retroviruses, antiviral efficacy of 9-[2-(phosphonylmethoxy)ethyl]adenine, 79,80/
Terminal glycosylation description, 116-117 of viral glycoproteins, biological role, 117,118f,l 19,120/
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
NUCLEOTIDE ANALOGUES
190 Thymidine energy contour plot, 36,38/" structure, 35 Thymidine derivatives, inhibition of thymidine kinase, 107,108*,109 Thymidine kinase function, 19-20,35 herpes, See also Herpes thymidine kinase inhibition by acyclovir, 105 by 2'-deoxy-5-ethyluridine derivatives, 109-1 10*,111,112* by 2'-deoxy-5-iodouridine derivatives, 106,107* by N -phenylguanine derivatives, 105,106* by product analogues, 106-112 by substrate analogues, 104-105,106* by thymidine derivatives, 107,108*,10 by trifluorothymidine, 106 mechanism of action, 104 2
Thymidine kinase—Continued role in herpes simplex viral infections, 103-104 substrate specificity, 19 Trifluorothymidine antiviral activity, 19 inhibition of thymidine kinase, 106 structure, 17,18/"
V Viral diseases, FDA-licensed compounds, 17,18/ Viral glycoproteins, biological role of terminal glycosylation, 117,118/*,119,120*
In Nucleotide Analogues as Antiviral Agents; Martin, J.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.