NOBELPREISE
2009
A RCH ÄOLO GIE
ER DE 3 .0
Neue Waffen gegen Tuberkulose
Frühe Hochkulturen im steinzeitlichen Afrika
Erneuerbare Energie bis 2030 für die ganze Welt?
DEZEMBER 2009
12/09
MEDI Z IN
Neben Schwarzen Löchern könnten noch seltsamere Objekte existieren, die bekannte Naturgesetze verletzen
Jetzt mit
7 ,40 € (D/A) · 8,– € (L) · 14,– sFr. D6179E
DEUTSCHE AUSGABE DES
EDITORIAL Reinhard Breuer Chefredakteur
Aus für den Kosmischen Zensor ?
SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
aus Singularitäten könnte, so fürchten manche Theoretiker, im Prinzip Unvorhersagbares auf uns einstürzen. Das jedoch würde die Zukunft der Welt in ein Lotteriespiel verwandeln. Dass der Kosmische Zensor immer siegt, bezweifelt nicht nur der indische Theoretiker Pankaj S. Joshi vom Tata Institute in Mumbai. Behielte er Recht, könnte das zu grundsätzlichen Problemen führen, aber auch neue Chancen eröffnen. Probleme in der Theorie: Nackte Singularitäten wecken eben Zweifel an der Vorhersagbarkeit der Welt. Chancen in der Astronomie: Manche noch unverstandenen Himmelsprozesse könnten sich mit nackten Singularitäten erklären lassen und womöglich Beobachtungsdaten zur Quantengravitation liefern. Lesen Sie selbst (S. 24)! Als ich diesen Sommer Ernst Eberlein in Berlin bei einem Vortrag erlebte, staunte ich nicht schlecht. Der Mathematiker von der Universität Freiburg führte eindrucksvoll vor, wie die Finanzkrise von »Experten« in Banken mitverursacht wurde, die ihre Prognosen auf unhaltbare mathematische Modelle stützten. »In den meisten Finanzinstitutionen mangelt es an Kompetenz«, wetterte Eberlein. Neben mehr Fachwissen forderte der Freiburger auch mehr Transparenz, einfachere Produkte, seriösere Ratings sowie eine bessere Validierung der benutzten Finanzmodelle. Es sei mehr als nur angemessen, dass sich die Kreditwirtschaft auch eine anspruchsvollere Mathematik leiste – und natürlich die Experten dazu (S. 92).
Spektrum der Wissenschaft
Es ist eine knifflige Sache, und doch berührt sie das Grundverständnis der Naturwissenschaftler. Theoretische Physiker behaupten spätestens seit Newton, dass alle Naturbeschreibung ohne so genannte Singularitäten auszukommen habe. In anderen Worten: Ausschließlich endliche Zustandsgrößen charakterisieren die Modellierung natürlicher Prozesse – der Rest sind mathematische Artefakte. Eine Theorie, die für das Beobachtbare mit Unendlichkeiten hantiert, ist demnach von Grund auf fehlerhaft. Doch der Kollaps sterbender Sterne zum Schwarzen Loch produziert unweigerlich, so sagt es die allgemeine Relativitätstheorie, eine physikalische Singularität: Druck und Temperatur wachsen im zentralen Punkt formal ins Unendliche. Insbesondere verliert diese Theorie Einsteins ihre Gültigkeit an Singularitäten. Dort, wo die Energien aber ins Unermessliche wachsen, sollten nun – ähnlich wie beim Urknall – Quanteneffekte dominieren, wie sie nur eine Theorie der Quantengravitation beschreiben kann. Um das kollabierte Gebilde formt sich jedoch nach klassischer Lehrmeinung stets eine »Hülle«, der so genannte Ereignishorizont, aus dem selbst Licht nicht entweichen kann. Dieser verhindert zwar nicht die Singularität, jedoch jeden physikalischen Kontakt mit ihr. Der britische Theoretiker Roger Penrose postulierte denn auch einen »Kosmischen Zensor«, der schon dafür sorge, dass alle Singularitäten, wenn sie denn aufträten, doch bitte stets schamhaft verhüllt blieben. Penrose bewegen dabei weniger ästhetische Gründe als die Sorge um die Kausalität der Natur. Denn
Pocht auf mehr Kompetenz: der Finanzmathematiker Ernst Eberlein von der Universität Freiburg
Herzlich Ihr
3
Inhalt
36
52 medizin & biologie Kampf gegen totalresistente Tuberkulosebakterien
60 astronomie & physik Bald Supraleitung bei Raumtemperatur?
medizin & biologie Was macht der Tanz im Gehirn?
aktuell
astronomie & physik
10 Spektrogramm Einbahnstraße für Licht · Warum wird die Banane blau? · In 0,6 Sekunden vom Gedanken zum Wort · Weißer Zwerg vor Explosion · Aerosole doch keine Klimaschützer? u. a.
13 Bild des Monats Tätowierter Mars
14 Nobelpreis für Physik
Die Digitalisierung des Lichts
16 Nobelpreis für Chemie Detailansichten der zellulären Eiweißfabrik
18 Nobelpreis für Medizin Der Anfang der Wissenschaft vom Ende
21 Nobelpreis für Wirtschaftswissenschaften
Warum gibt es Arme und Reiche?
TITEL
24 r Nackte Singularitäten Beim Kollaps eines Sterns entsteht womöglich nicht immer ein Schwarzes Loch. Dann jedoch hätte die Welt direkten Kontakt zu einer Singularität – mit unvorhersehbaren Folgen Physikalische Unterhaltungen
32 Die Freuden der Reibung Ein Gleichrichter für Bewegungen, ein von Geisterhand bewegter Geigenbogen und eine Schüssel mit hüpfendem Wasser Schlichting!
35 Weihnachtliche Krönung
Organisationsformen jenseits des Marktes
22 Springers Einwürfe
Eine durch Beugungseffekte erzeugte Korona verleiht Kerzenflammen Glanz
36 Entschlüsselt Eisen die Hochtemperatur-Supraleitung? Die so genannten Pniktide könnten den Traum von der Supraleitung bei Raumtemperatur nach 20 Jahren endlich wahr machen
medizin & biologie 52 r Neue Strategien gegen Tuberkulose Mit dem Auftauchen totalresistener
Bakterienstämme stehen die Forscher vor einer Wende: Nur mit völlig neuen Behandlungsstrategien besteht Hoffnung für eine erfolgreiche Bekämpfung
60 Können Sie tanzen? Wie bewegen wir uns beim Tanz? Wie
steuern wir unsere Schritte? Forscher enthüllen die komplexen Vorgänge, die während des Tanzens im Gehirn ablaufen
SciTechs nach Seite 100
Jetzt mit ab Seite 108
extra
Erde & Umwelt Emissionsfreie Welt?
Titel dreamstime / Stogafy
Nackte Singularitäten
24 mensch & geist 66 r Afrika als Wiege der Kultur? Einige zehntausend Jahre früher als in Europa schufen Menschen im südlichen Afrika Zeugnisse modernen Denkens. Doch diese Kulturen ver schwanden offenbar wieder
Essay
74 Führen und Folgen Erst aus evolutionstheoretischer Perspektive lässt sich das ambivalente Verhältnis zwischen »Leader« und »Follower« richtig verstehen
80
technik & computer Finanzmodelle und die Krise
erde & umwelt
92
technik & computer Wissenschaft im Alltag
90 Vorsicht, heiß! Thermoskannen scheinen der Physik zu trotzen: Im Winter halten sie warm, im Sommer kühlen sie
80 r Null CO2-Emission bis 2030?
Wie sich das globale Energiesystem in zwei Jahrzehnten komplett auf nachhaltige Ressourcen umstellen ließe
Kommentar
88 Last Exit Copenhagen
Was der Klimagipfel in der dänischen Hauptstadt leisten muss
92 Mathematik und die Finanzkrise
Moderne Finanzinstrumente sind wie große Autos: Die Leistung ist höher, die Bedienung anspruchsvoller – und wenn es kracht, ist der Schaden groß
Wissenschaft & KArriere
106 »Am Ende wird es komplex« Der Festkörperforscher Rudolf Caspary, Technologie-Vorstand der Realtech AG, sorgt für sichere Computer- und Kommunikationsnetzwerke
Titelillustration: Kenn Brown, Mondolithic Studios markierten Artikel Die auf der Titelseite angekündigten Themen sind mit r gekennzeichnet; die mit finden Sie auch in einer Audioausgabe dieses Magazins, zu beziehen unter: www.spektrum.de/audio
Weitere Rubriken 3 Editorial: Aus für den Kosmischen Zensor? 6 Online-Angebote 8 Leserbriefe / Impressum 79 Im Rückblick 114 Vorschau
106 Rezensionen: Ian Stewart Die Macht der Symmetrie Thomas Wieland Neue Technik auf alten Pfaden? Forschungs- und Technolo giepolitik in der Bonner Republik
Heinrich Hemme Düsentrieb contra Einstein. 100 physikalische Kopfnüsse
Werner Bartens Vorsicht Vorsorge!
Albrecht Beutelspacher, Marcus Wagner Wie man durch eine Postkarte steigt und andere spannende mathematische Experimente
Online
spektrumdirekt Die Zukunft der Energie www.spektrumdirekt.de/energie
fotolia / Sandor Jackal
Abu Dhabi Future Energy Company
Dies alles und vieles mehr finden Sie in diesem Monat auf www.spektrum.de. Lesen Sie zusätzliche Artikel, diskutieren Sie mit und stöbern Sie im Heftarchiv!
Interaktiv »Mit 60 Euro den Klimawandel verhindern?« www.spektrum.de/artikel/1013144
Tipps
Interaktiv
Nobelpreise online
Sonderheft per Klick
Wie immer ist die Dezemberausgabe von Spektrum den Nobelpreisen gewidmet. Ausführlich hat aber auch die OnlineZeitung spektrumdirekt berichtet und dabei selbst die Ig-Nobelpreise 2009 nicht vergessen
Es ist nicht jedermanns Sache, statt eines gedruckten Spektrum-Spezials oder -Dossiers »nur« die entsprechende PDF-Datei zu lesen. Doch mancher mag die Vorteile schätzen. Für fünf Euro pro Heft – aus dem Jahr 2009 lassen sich etwa »Die fiebernde Erde«, »Gehirn und Bewusstsein« und »Parallelwelten« herunterladen – ist eine Menge geboten
»Mit 60 Euro den Klimawandel verhindern?«
Nur einen Klick entfernt
Machen Sie mit!
Die Wissenschaftszeitung im Internet
www.spektrumdirekt.de/nobelpreise
Zukunft der Energie Der Energiehunger der Menschheit steigt rapide. Um ihn zu stillen und seine Nebenfolgen beherrschbar zu machen, sind viele Ideen im Umlauf. spektrumdirekt berichtet über eine Öko-Stadt in den Arabischen Emiraten, schonende Elektroautos, Chancen der Kohlendioxideinlagerung und über Satelliten als Energielieferanten
www.spektrumdirekt.de/energie
www.spektrum.de/sonderheftarchiv
Ein weltweiter »Budgetansatz« für den Ausstoß von Treibhausgasen soll helfen, die CO2-Emissionen zu beschränken und so das Klimaproblem zu bewältigen (siehe »Last Exit Copenhagen« auf S. 88 in dieser Ausgabe). Was können wir uns von diesem Plan erhoffen? Und wie realistisch ist er? Diskutieren Sie mit auf
www.spektrum.de/artikel/1013144
Spielen mit dem Molekülbaukasten Verschiedene Zucker, Naturstoffe mit komplexer räumlicher Struktur wie Morphin und auch das ATP-Molekül, dessen fertiges Modell gut einen halben Meter lang wird, lassen sich mit dem »ORBIT Molekülbaukasten Chemie« konstruieren. Lars Fischer hat für spektrum direkt ausprobiert, wie Spieltrieb und Wissenschaft zusammengehen
www.spektrumdirekt.de/artikel/1012504
Alle Publikationen unseres Verlags sind im Handel, im Internet oder direkt über den Verlag erhältlich
FReigeschaltet »Stürmische Zeiten« www.epoc.de/artikel/1012927
Spektrum in den sozialen Netzwerken
www.spektrum.de/studivz
www.spektrum.de/facebook
www.spektrum.de/twitter
ESO
Für Abonnenten »Europas Weg zum weltgrößten Teleskop« www.spektrum-plus.de
Für Abonnenten Ihr monatlicher Plus-Artikel zum Download
»Europas Weg zum weltgrößten Teleskop« Nur 37 Millimeter Durchmesser hatte das Teleskop, mit dem Galilei den Himmel beobachtete. Das europäische Extremely Large Telescope E-ELT soll es nun bald auf 42 Meter bringen – Weltrekord. Und wozu? Unter anderem zur direkten Vermessung des Universums
Freigeschaltet
Ausgewählte Artikel aus epoc und Gehirn&Geist kostenlos online lesen
»Stürmische Zeiten«
Einladung zur Sprechstunde
Am Ende der Bronzezeit fielen ganze Reiche unter dem Ansturm der so genannten Seevölker. Forscher streiten bis heute darüber, wer diese Angreifer waren und woher sie kamen. Jetzt meinen Archäologen der Lösung des Rätsels nahe zu sein
Sie erhoffen sich tiefe Einblicke in den Finanzmarkt? Hans Sauer, Physiker und Volkswirt, versucht, mit Informationsalgorithmen »das Finanzmarkt-Effizienzproblem zu lösen« und entlarvt die Vorstellung »objektiver« Wertpapierkurse als Illusion – das und mehr lässt sich nachlesen in seinem Blog »Der schöpferische Finanzmarkt«. Bodenständiger lädt derweil Susanne Plotz zur medizinischen »Sprechstunde« aus berufenem Munde. Die Medizinerin und Buchautorin, zunächst auf die Behandlung von Kindern mit der Aufmerksamkeits defizitstörung ADS/ADHS spezialisiert und dann in der klinischen Forschung und Medikamentenentwicklung tätig, beschäftigt sich mit Hirnstimulation ebenso wie mit der Frage: »Macht Musik schlau?«
Diesen Artikel finden Sie als KOSTENLOSE Leseprobe von epoc unter
Dieser Artikel ist für Abonnenten frei zugänglich unter
»Mein Körper und Ich«
www.spektrum-plus.de
www.epoc.de/artikel/1012927
Wenn Menschen berichten, sie könnten sich selbst von außen betrachten, klingt das nach Esoterik. Doch »Out-of-Body«-Erlebnisse lassen sich relativ leicht im Labor erzeugen. Schweizer Forscher um den Neurologen Olaf Blanke von der ETH Lausanne wollen so ergründen, wie das Ich-Bewusstsein entsteht Diesen Artikel finden Sie als kostenlose Leseprobe von gehirn&geist unter
www.spektrum.com
[email protected] Telefon 06221 9126-743
Die Wissenschaftsblogs
www.gehirn-und-geist.de/artikel/1011012
www.wissenslogs.de
leserbriefe Hash-Werte sind nicht eineindeutig Big Brother mit Sehschwäche Oktober 2009 Das in dem Artikel erwähnte Verfahren, Hash-Werte zu verwenden, verringert den Aufwand für das Vergleichen von Dat(ei)en enorm, ist aber nicht eineindeutig. Zwar stimmen Daten, die unterschiedliche Hash-Werte erzeugen, mit Sicherheit nicht überein, aber Daten, die gleiche Hash-Werte erzeugen, können durchaus unterschiedlich sein (Kollision). Bei gleichem Hash-Wert müssen also, um völlig sicherzugehen, die Originaldaten verglichen werden – also zu diesem Zeitpunkt noch zu Verfügung stehen. Dies bedingt einen erhöhten Aufwand. Ob die Betreiber von Datenfusion diesen Aufwand treiben wollen oder können?
www.spektrum.de/leserbriefe
Von »Rassen« und »Geschlechtern« Wie hat sich die Menschheit ausgebreitet?, September 2009 Der kleine Unterschied Seit Richard Lewontins Aufsatz »The Apportionment of Human Diversity« von 1972 wissen wir als statistisches Dogma, dass es Rassen nicht gibt: Die größte Variation (80 bis 85 Prozent) innerhalb der Menschheit liegt innerhalb von geschlossenen lokalen geografischen Gruppen, und Unterschiede, die man »Rassen« zuschreiben kann, haben nur eine Variabilität von 1 bis 15 Prozent. Außerdem vermutete man lange, dass es zwei Arten von Menschen (so genannte Geschlechter) gibt, die sich jedoch nur durch ein so genanntes YChromosom unterscheiden. Dieses YChromosom (mit seinen 58 Millionen
Martin Bitter, Mehrhoog
Aluminium geht auch Kalte Platte, heißer Topf, Wissenschaft im Alltag, September 2009 Nachdem mich immer wieder Freunde gefragt haben, wie ein Induktionsherd funktioniert, war ich über Ihren Artikel froh. Leider wird die Vorstellung geweckt, dass der »Boden (des Topfes) aus ferromagnetischem Material bestehen (muss)« (S. 96). Das ist jedoch nicht der Fall. Eine
Chefredakteur: Dr. habil. Reinhard Breuer (v.i.S.d.P.) Stellvertretende Chefredakteure: Dr. Inge Hoefer (Sonderhefte), Dr. Gerhard Trageser Redaktion: Thilo Körkel (Online Coordinator), Dr. Klaus-Dieter Linsmeier, Dr. Christoph Pöppe, Dr. Adelheid Stahnke; E-Mail:
[email protected] Ständiger Mitarbeiter: Dr. Michael Springer Schlussredaktion: Christina Meyberg (Ltg.), Sigrid Spies, Katharina Werle Bildredaktion: Alice Krüßmann (Ltg.), Anke Lingg, Gabriela Rabe Art Direction: Karsten Kramarczik Layout: Sibylle Franz, Oliver Gabriel, Marc Grove, Anke Heinzelmann, Claus Schäfer, Natalie Schäfer Redaktionsassistenz: Eva Kahlmann, Redaktionsanschrift: Postfach 10 48 40, 69038 Heidelberg, Tel. 06221 9126-711, Fax 06221 9126-729 Verlag: Spektrum der Wissenschaft Verlagsgesellschaft mbH, Postfach 10 48 40, 69038 Heidelberg; Hausanschrift: Slevogtstraße 3–5, 69126 Heidelberg, Tel. 06221 9126-600, Fax 06221 9126-751; Amtsgericht Mannheim, HRB 338114 Verlagsleiter: Dr. Carsten Könneker, Richard Zinken (Online) Geschäftsleitung: Markus Bossle, Thomas Bleck Herstellung: Natalie Schäfer, Tel. 06221 9126-733 Marketing: Annette Baumbusch (Ltg.), Tel. 06221 9126-741, E-Mail:
[email protected] Einzelverkauf: Anke Walter (Ltg.), Tel. 06221 9126-744 Übersetzer: An diesem Heft wirkten mit: Dr. Markus Fischer, Angelika Hildebrandt, Dr. Susanne Lipps-Breda, Dr. Andrea PastorZacharias, Gerhard Samulat, Dr. Michael Springer. und Bestellservice: Tel. 06221 9126-743, LeserE-Mail:
[email protected]
8
Basenpaaren) trägt aber nur zu 0,38 Prozent der gesamten DNA einer menschlichen Zelle bei. Offensichtlich ist es nicht sinnvoll, von zwei verschiedenen Geschlechtern innerhalb der Menschheit zu reden, wenn es nur um ein drittel Promille und nicht wie bei den (nicht existenten) Rassen um 15 Prozent geht. Mir ist durchaus klar, dass der kleine Unterschied zwischen den Beinen wesentlich länger zurückliegt als der in der Hautfarbe oder den Augenlidern, aber ich glaube dennoch, die biologischen Dogmatiker müssen nochmals in sich gehen. U. Elsaesser, Brühl
Induktionsspannung kann auch in anderen, nichtmagnetisierbaren Metallen hervorgerufen werden, was zum Beispiel bei Kupferspulen in jedem Dynamo oder in Aluminiumscheiben in Wirbelstrombremsen genutzt wird. Bei ferromagnetischem Topfbodenmaterial werden die Elementarmagnete ständig neu ausgerichtet, und dadurch wird die Effizienz der Wärme-Erzeugung verstärkt. Fazit müsste also sein: Auch ein Aluminiumtopf funktioniert auf einem Induktionsherd – aber nicht so effizient!
Kooperation im Markt
Die Idee des »multiplen Universums« verVertrieb und Abonnementverwaltung: Spektrum der Wissenschaft Verlagsgesellschaft mbH, c/o ZENIT Pressevertrieb GmbH, spricht viel und hält wenig. Die EinbeziePostfach 81 06 80, 70523 Stuttgart, Tel. 0711 7252-192, Fax 0711 7252-366, des E-Mail: Messapparats
[email protected], hung in Vertretungsberechdie quantentigter: Uwe Bronn Bezugspreise: Einzelheft �€� 7,40/sFr. 14,00; ist im Abonnement � theoretische Beschreibung naheliegend €� 79,20 für 12 Hefte; für Studenten (gegen Studiennachweis) und schon �€von J. von Neumann €�� 66,60.wurde Die Preise beinhalten � 7,20 Versandkosten. Bei Versand ins Ausland fallen €� 7,20 Portomehrkosten an. Zahlung sofort (1932) verfolgt. nach Rechungserhalt. Konto: Postbank Stuttgart 22 706 708 (BLZ 600 100 70). Die Mitglieder des Verbands Biologie, BiowissenDas resultierende Messproblem der schaften und Biomedizin in Deutschland (VBio) und von Mensa e. V. erhalten SdW zum Vorzugspreis. Quantentheorie besteht im Kern darin, Anzeigen: iq media marketing gmbh, Verlagsgruppe Handelsblatt GmbH; Bereichsleitung Marianne Anzeigenleitung: dass die lineareAnzeigen: Struktur desDölz; Hilbertraums Jürgen Ochs, Tel. 0211 6188-358, Fax 0211 6188-400; verantwortlich für Anzeigen: Ute Wellmann,Möglichkeiten) Postfach 102663, 40017 mit (quantenmechanische Düsseldorf, Tel. 0211 887-2481, Fax 0211 887-2686 den eindeutigen jeder MesAnzeigenvertretung: Berlin: Ergebnissen Michael Seidel, Friedrichstraße 150, 10117 Berlin, Tel. 030 61686-144, Fax 030 61696-145; Hamburg: sung (klassische Fakten) nicht übereinMatthias Meißner, Brandstwiete 1 / 6. OG, 20457 Hamburg, Tel. 040 30183-210, Fax 040 30183-283; Düsseldorf: Hans-Joachim stimmt. Beier, Kasernenstraße 67, 40213 Düsseldorf, Tel. 0211 887-2053, Fax 0211 887-2099; Frankfurt: Thomas Eschersheimer Dieses Problem wirdWolter, man gerade Landbei straße 50, 60322 Frankfurt am Main, Tel. 069 2424-4507, Fax 069 2424-4555;Anwendung Stuttgart: Andreas Vester, Werastraße 23, universeller der Quantenthe70182 Stuttgart, Tel. 0711 22475-21, Fax 0711 22475-49; München: Jörg Bönsch, Straße 14, 80335 München, orie nicht los. Nymphenburger Zudem lassen sich alle AusTel. 089 545907-18, Fax 089 545907-24 sagen von an: »kopenhagenerisch« in »mulDruckunterlagen iq media marketing gmbh, Vermerk:
tiversisch« übersetzen. Wer statt »Eine Möglichkeit wurde realisiert, und die anderen sind weggefallen« sagt: »Unser Universum hat sich geteilt, und wir sehen nur einen Zweig«, der liefert nicht mehr als ein fantasieanregendes Erklärungs placebo. Denn Universenteilung ist nicht leichter zu verstehen als Faktenentstehung. Schon gar nicht kann sie »aus den Gleichungen selbst« abgelesen werden. Letztlich werden hier einfach nicht realisierte Möglichkeiten mit fernen WirklichISSN 0170-2971 keiten verwechselt. SCIENTIFIC AMERICAN Mein hartes Fazit: Everetts Ansatz wur75 Varick Street, New York, NY 10013-1917 Actingnicht Editor in Chief: Mariette zu DiChristina, President:ignoriert, Steven de damals Unrecht Inchcoombe, Vice President, Operations and Administration: Frances Newburg, Vice President, and Businesshofiert. Developsondern er wird heuteFinance, zu Unrecht ment: Michael Florek, Managing Director, Consumer Marketing: Dorbandt, Vice PresidentHelmut Fink, Nürnberg Christian and Publisher: Bruce Brandfon
Matthias Sickmüller, Unterreichenbach
Spektrum der Wissenschaft, Kasernenstraße 67, 40213 Düsseldorf, Tel. 0211 887-2387, Fax 0211 887-2686 Anzeigenpreise: Gültig ist die Preisliste Nr. 30 vom 01. 01. 2009. Gesamtherstellung: Vogel Druck- und Medienservice GmbH & Co. KG, 97204 Höchberg
Instinktiv in die Katastrophe Oktober 2009 Die Autoren wollen die Evolutionstheorie zur Analyse und sogar Vorhersage von Marktgeschehen nutzen. Dabei wird diese als das Zusammenspiel von Konkurrenz – Mutation – Auslese verstanden. Meines Erachtens fehlt darin ein wichtiges Element: Kooperation. Das erinnert mich doch ein bisschen an Sozialdarwinismus. Manfred Peters, Hamburg
Sämtliche Nutzungsrechte an dem vorliegenden Werk liegen bei der Spektrum der Wissenschaft Verlagsgesellschaft mbH. Jegliche Nutzung des Werks, insbesondere die Vervielfältigung, Verbreitung, öffentliche Wiedergabe oder öffentliche Zugänglichmachung, ist ohne die vorherige schriftliche Einwilligung des Verlags unzulässig. Jegliche unautorisierte Nutzung des Werks berechtigt den Verlag zum Schadensersatz gegen den oder die jeweiligen Nutzer. Bei jeder autorisierten (oder gesetzlich gestatteten) Nutzung des Werks ist die folgende Quellenangabe an branchenüblicher Stelle vorzunehmen: © 2009 (Autor), Spektrum der Wissenschaft Verlagsgesellschaft mbH, Heidelberg. Jegliche Nutzung ohne die Quellenangabe in der vorstehenden Form berechtigt die Spektrum der Wissenschaft Verlagsgesellschaft mbH zum Schadensersatz gegen den oder die jeweiligen Nutzer. Wir haben uns bemüht, sämtliche Rechteinhaber von Abbildungen zu ermitteln. Sollte dem Verlag gegenüber der Nachweis der Rechtsinhaberschaft geführt werden, wird das branchenübliche Honorar nachträglich gezahlt. Für unaufgefordert eingesandte Manuskripte und Bücher übernimmt die Redaktion keine Haftung; sie behält sich vor, Leserbriefe zu kürzen.
Erhältlich im Zeitschriften- und Bahnhofs buchhandel und beim Pressefachhändler
SPEKTRUMmit DER WISSENSCHAFT · Dezember 2009 diesem Zeichen.
LLY22
M173
M242
M343 M17
Jen Christiansen, nach: National Geographic Maps
M170 M9 M172, M304 M35 M96 YAP
M201
M89 M168 M69
M60 M2
M45
M174 M3
M122 M20
ungefähres Alter eines neuen Markers
M130
M175
in Jahren
60 000 50 000 45 000 40 000 35 000 30 000 25 000 20 000 10 000
M4
M91 M130
Rassen statt Gradienten? »Rassen gibt es nicht«, meint der Autor, sondern nur »Gradienten«, weil die »scharfe Abgrenzung« fehle. Mit derselben Berechtigung ließe sich behaupten, es gebe keine Farben – bei Farbspektren sind die Übergänge von einer Wellenlänge zur anderen eher noch unschärfer. Und für das Spektrum der Wissenschaft gilt Entsprechendes – gibt es deswegen keine Wissenschaften, sondern nur Gra-
dienten? Die heute verbreitete Distanzierung vom Rassebegriff hat ideologische wie wissenschaftliche Gründe: Gegen Schimpansen-Unterarten hat niemand etwas einzuwenden, aber von Menschenrassen zu reden gilt als unanständig, weil man sie als Träger menschlicher Biodiversität nicht beachtet und in ihnen nur noch Quellen von Ungerechtigkeit und Gewalt sieht.
Keine Fernwirkung Bedroht die Quantenverschränkung Einsteins Theorie?, September 2009 Bedeutet »Verschränkung« nicht, dass das ganze System – im Beispiel zwei Photonen mit einer bestimmten Spinkombination (Polarisation) – derselben (kohärenten) Wellenfunktion gehorcht? Das sind doch nicht einfach Wahrscheinlichkeiten, sondern es ist so, dass die »beiden Teile« zu jedem Zeitpunkt das der Wellenfunktion Entsprechende machen, solange die Verschränkung nicht gestört wird. Wird nun eine Messung vorgenommen, zeigt die Apparatur eine zum Messzeitpunkt geltende Eigenschaft an. Selbstverständlich hat dann das entfernte Teilchen just die konjugierte Eigenschaft. Das gehört zur gerade festgestellten Systemeigenschaft. Dazu bedarf es meiner Meinung nach keiner (Fern-)Wirkung. Dr. Ekkard Brewig, Overath
Dr. H. Schleip, Birkenfeld
der erdzugewandten Seite nur 20 bis 30 Kilometer beträgt, lässt sich vielleicht so erklären: Zum Zeitpunkt der Entstehung des Monds vor 4527 Millionen Jahren war auch die nahe gelegene Erde flüssig und strahlte Wärme ab. Ihr Abstand zum Mond soll lediglich 20 000 bis 30 000 Kilometer betragen haben, und von dort aus hatte sie einen Durchmesser von 24 bis 35,4 Grad. Eine glühende Scheibe am Himmel mit einer Oberflächentemperatur von nur 1000 Grad Celsius muss die der Erde zugewandte Seite des Monds erheblich erwärmt haben und hat sicher die Abkühlung auf dieser Seite verlangsamt. So ist es natürlich, dass sich zuerst auf der erdabgewandten Seite feste Kruste gebildet hat. Da von diesem Material nicht beliebig viel zur Verfügung stand, blieb für die Krustenbildung auf der erdzugewandten Seite weniger übrig, so dass die Kruste hier dünner gebildet wurde. Wolfgang Gahr, Berlin
Überraschung Die zwei Gesichter des Monds November 2009 Warum die Kruste des Monds auf der erdabgewandten Seite 100 bis 110 Kilometer dick ist, während ihre Dicke auf SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Antwort des Autors P. Surdas Mohit: Es ist sicherlich möglich, dass die Erde die zugewandte Seite des Monds hätte wärmen können. Doch das hätte eine relativ kleine Temperaturdifferenz zwischen den Seiten hervorgerufen, und es ist unklar, ob dadurch die beobachtete Asymmetrie hätte entstehen können.
Aus genetischen Markern (M) schlossen Populationsgenetiker, wie sich das Y-Chromosom verbreitete.
Ketzerische Frage Mir drängt sich der Gedanke auf, dass der Mensch als »Rasse« – beziehungsweise besser: der Mensch als »Gradient« – wissenschaftlich nicht nur über seinen Genotyp, sondern auch über seinen Phänotyp zu definieren sei. Wo bliebe sonst sein wohl mehr als gradueller Unterschied zum Schimpansen – bei 98,8 Prozent Übereinstimmung im Genom? Überdies haben mich frühere »SdW«Hefte gelehrt, dass das so genannte Epigenom in den Augen der Forscher eine immer größere Rolle bei der individuellen Prägung des Menschen spielt. Prof. Paul Kalbhen, Gummersbach
Das im Artikel erwähnte Modell von Loper und Werner ist ein Versuch, aus dieser kleinen Temperaturdifferenz einen großskaligen Effekt abzuleiten. Einfluss der Erdgravitation? In Ihrem ausgezeichneten Artikel vermisse ich eine Diskussion des möglichen Effekts der Gravitationswirkung der Erde auf den Mond. Da die gebundene Rotation des Monds schon sehr früh begann und er anfangs der Erde noch viel näher war, könnte die gleichförmig einwirkende erhebliche Gravitationskraft der Erde doch ebenfalls einen differenzierenden Einfluss auf Magmabewegungen und Krustenbildung von Mondvorder- und -rückseite gehabt haben. Dr. Stephan Zschocke, Halstenbek
Briefe an die Redaktion … … sind willkommen! Schreiben Sie uns auf www.spektrum.de/leserbriefe oder direkt am Artikel: Klicken Sie bei www.spektrum.de auf das aktuelle Heft oder auf »Magazin«, »Magazinarchiv«, das Heft und dann auf den Artikel. Oder schreiben Sie mit kompletter Adresse an: Spektrum der Wissenschaft Redaktion Leserbriefe Postfach 104840 69038 Heidelberg E-Mail:
[email protected]
9
Spektrogramm ALTERUNG
Warum wird die Banane blau?
Bernhard Kräutler und Simone Moser, Universität Innsbruck / PNAS
q Wenn eine Banane zu verderben beginnt, zeigen sich auf der Schale bei Bestrahlung mit ultraviolettem Licht blau fluoreszierende Stellen. Das hat nun ein internationales Forscherteam um Bernhard Kräutler von der Universität Innsbruck (Österreich) entdeckt. Verantwortlich für das Leuchten sind, wie chemische Analysen ergaben, stabile Moleküle, die auf bislang unbekanntem Weg aus einem kurzlebigen Zwischenprodukt des regulären Chlorophyll abbaus entstehen. In Verlauf der weiteren Alterung bekommen Bananen auf der gelben Schale dann dunkle Flecken aus absterbendem Gewebe, die sich ausbreiten und dadurch signalisie-
Rund um braune Flecken aus abgestorbenem Gewebe auf der Schale einer überreifen Banane leuchten noch lebende Zellen im UVLicht hellblau.
ren, dass die Frucht ungenießbar wird. Die noch lebenden Zellen um diese nekroti schen Bereiche sind zwar ebenfalls schon im Rahmen des programmierten Zelltods zum Absterben bestimmt. Doch bevor es dazu kommt, reichern sie ein Molekül mit dem vorläufigen Namen Mc-FCC-49 an. Um die braunen Flecken erscheinen dadurch im UV-Licht hellblaue Ringe. Der Grund dafür ist unklar. Eventuell lockt die Bananenstaude damit Tiere an, welche die Fluoreszenz als Zeichen für besonders leckere, überreife Früchte wahrnehmen. Der natürliche Marker für alterndes Gewebe, den die Innsbrucker Forscher bei Bananen gefunden haben, verrät vielleicht auch bei anderen Pflanzen die beginnende Seneszenz. Er könnte es so erleichtern, am lebenden Objekt jene Entwicklungs stadien zu erforschen, die dem programmierten Zelltod vorausgehen.
PNAS, Bd. 109, S. 15538
Physik
Einbahnstraße für Licht q Selbst moderne hochtransparente Glasfasern können Licht nur etwa 100 Kilometer weit leiten. Kabel über Ozeane hinweg brauchen deshalb Dutzende Verstärker. Hohle Wellenleiter in photonischen Kristallen versprechen eine Lösung des Problems. Durch Rückstreuung treten allerdings auch hier Verluste auf. Nun konnten Forscher um Zheng Wang vom Massachusetts Institute of Technology in Cambridge photonische Wellenleiter konstruieren, die Licht nur in einer Richtung passieren lassen. Damit wären transozeanische Glasfaserkabel möglich, die ganz ohne Verstärker auskommen. Im Grunde schufen die Forscher eine optische Analogie zum Quanten-Hall-Effekt. Dabei können sich Elektronen, die in einem Feldeffekttransistor (FET) auf eine Ebene eingeengt sind, bei tiefen Temperaturen in einer Richtung widerstandslos bewegen. An ihre Stelle treten bei Wang und seinen
Zwischen einem photonischen Kristall aus Ferritstäbchen und einer Metallwand (grün) bewegen sich Mikrowellen (farbig) von rechts nach links und werden auch an einem Hindernis nicht gestreut.
10
Kollegen Lichtquanten, während ein photonischer Kristall die Rolle des Halbleiters übernimmt. Er besteht, da zusätzlich Magnetfelder benötigt werden, aus magneti schen Ferritstäben. An einer Seite wird er von einer Wand aus nichtmagnetischem Metall begrenzt. An ihr entlang sollten sich die Photonen in derselben Weise bewegen wie die Elektronen an der Grenze zwischen Halbleiter und Isolator im FET.
Tatsächlich breitete sich das Licht, wie Wang und seine Kollegen beobachteten, im Halbleiter nur in einer Richtung aus und wurde dabei weder absorbiert noch gestreut. Zwar verwendeten die Forscher für ihren Versuch Mikrowellen und kein sichtbares Licht. Es gibt jedoch bereits magnetooptische Materialien auch für den visuellen Spektralbereich.
Nature, Bd. 461, S. 772
Zheng Wang, John D. Joannopoulos, Marin Soljacic, Massachusetts Institute of Technology
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Hirnforschung
In 0,6 Sekunden vom Gedanken zum Wort
Science, Bd. 326, S. 445
»
«
Ned T. Sahin, UCSD
Der erste Zacken in der elektrischen Ableitung vom Gehirn zeigt, dass die Versuchsperson das gelesene Wort (»walk«) erfasst hat, der zweite markiert dessen grammatikalische Umformung (»walked«) und der dritte die phonetische Umsetzung für das Aussprechen.
Asteroideneinschlag
Wie Algen die Katastrophe verkrafteten q Vor 65 Millionen Jahren löschte der Einschlag eines mehrere Kilometer großen Himmelskörpers auf der Erde rund die Hälfte aller Tierarten aus. Wie schnell erholte sich das Leben danach wieder? Wichtig für die Regeneration waren vor allem Primärproduzenten von Biomasse, an Land also die Pflanzen und im Meer die Algen. Da Letztere keine fossilen Überreste hinterlassen, ist es allerdings schwierig, ihr Schicksal zu rekonstruieren. Doch Julio Sepulveda und sein Team an der Universität Bremen nahmen die Herausforderung an. Sie untersuchten an der Küste Dänemarks Ablagerungen von der Kreide-Tertiär-Grenze in einer 37 Zentimeter dicken Lehmschicht, die aus verschiedenfarbigen Lagen besteht. Die unterste, SPEKTRUM DER WISSENSCHAFT · Dezember 2009
die kurz nach dem Einschlag entstand, ist zwei Millimeter dick und schwarz. Darüber wird jede Lage heller. Algen sind darin nicht erkennbar, aber chemische Spuren von ihnen: so genannte Biomarker. In diesem Fall handelt es sich um algentypi sche Kohlenwasserstoff-Moleküle, die zur Stoffgruppe der Sterane gehören. Am unteren Ende der schwarzen Lehmschicht fanden sich nur sehr wenige davon – ein Zeichen dafür, dass unmittelbar nach dem Einschlag, als Auswurfprodukte und Rußschwaden von globalen Bränden den Himmel verfinsterten, auch die lichtabhängigen Algen nicht mehr wachsen und sich vermehren konnten. Aber noch innerhalb der schwarzen Lehmschicht steigt die Konzentration von Steranen rasant an.
Julio Sepulveda, MARUM, Universität Bremen
q Wie Sprache im Gehirn entsteht, ist noch immer ziemlich unklar. Das liegt vor allem daran, dass Erkenntnisse darüber Versuche am Gehirn von lebenden Menschen erfordern. Schließlich können nur wir sprechen. Um festzustellen, welche Nervenzellen dabei wann, wo und wie aktiv sind, müssen Elektroden ins Gehirn implantiert werden. Das verbietet sich jedoch bei gesunden Personen. Der Neurologe Ned Sahin von der University of California in San Diego und sein Team machten sich nun zu Nutze, dass manchen Epilepsiepatienten Elektroden ins Gehirn eingesetzt werden, um einen sich anbahnenden Anfall mit elektrischen Impulsen zu unterdrücken. Drei dieser Patienten waren zu der Untersuchung bereit. Sie mussten Wörter am Bildschirm lesen, grammatikalisch verändern und dann stumm vor sich hin sprechen. So wurden die drei grundlegenden Komponenten des Sprechens erfasst: Finden eines Worts, seine grammatikalische Umformung und seine Artikulation. Bei jedem dieser Schritte traten in der Messkurve Zacken auf, die von elektrischer Aktivität an bestimmten Stellen im Sprachzentrum herrührten. Der erste Peak erschien nach nur etwa 200 Millisekunden und zeigte das Erkennen des Wortes an. Nach 320 Millisekunden wurden Neuronen an einer anderen Stelle aktiv; sie vollzogen die grammatikalische Änderung. 450 Millisekunden dauerte es schließlich, bis von einer dritten Region Signale an die Motoneuronen gingen, um dort die vorgestellte Sprechbewegung auszulösen. Der gesamte Prozess vom Denken zum Sprechen dauerte weniger als 0,6 Sekunden.
An der dänischen Küste untersuchten Wissen schaftler in Ablagerungen von der KreideTertiär-Grenze Biomarker von Algen.
Demnach erholten sich die Algen sehr schnell wieder – in einem Zeitraum von nur 50 bis 100 Jahren, wie sich aus der Dicke der Schicht folgern lässt.
Science, Bd. 326, S. 129
11
BIOLOGIE
Weißer Zwerg vor Explosion
Dem Aal auf den Flossen
q Weiße Zwerge, die von einem Begleiter Masse absaugen, kollabieren irgendwann unter ihrer eigenen Schwerkraft und explodieren in der Folge als Supernovae vom Typ Ia. Deren Leuchtkraft ist immer gleich, und so dienen sie als »Standardkerzen« zur Vermessung des Kosmos. Bisher verriet stets erst die Supernova-Explosion, dass da ein sich mästender Weißer Zwerg gewesen sein musste. Nun ist es erstmals gelungen, solch ein gefräßiges Objekt kurz vor dem Kollaps zu beobachten. Schon 1997 entdeckten Astronomen eine pulsierende Röntgenquelle, die mit dem hellen Stern HD 49798 in nur gut 2000 Lichtjahren Entfernung von der Erde ein Binärsystem bildet. Mit Hilfe des Röntgensatelliten XMM-Newton der europäischen Raumfahrtbehörde ESA ließ sich dieses mysteriöse Objekt nun als Weißer Zwerg identifizieren. Zudem konnte seine Bahn und daraus schließlich seine Masse bestimmt werden. Das Ergebnis war eine Überraschung. Weiße Zwerge sind das kompakte Endstadi-
Francesco Mereghetti, Hintergrund: NASA / ESA, STScI, Thomas M. Brown
Illustration des neu entdeckten Weißen Zwergs, der von seinem Begleiter HD49798 Materie absaugt
um von relativ leichtgewichtigen Sternen wie unserer Sonne. Auf etwa die Größe der Erde geschrumpft, enthalten sie ungefähr 0,6 Sonnenmassen. Die nun genau untersuchte Röntgenquelle bringt es – offenbar durch Materieraub von ihrem Begleiter – dagegen auf mehr als das Doppelte. Damit ist sie nahe an den 1,4 Sonnenmassen, bei denen ein Weißer Zwerg aus theoretischen Gründen zusammenbricht. Allerdings wird es wohl immer noch einige Millionen Jahre dauern, bis die Explosion stattfindet. Dann aber darf man ein spektakuläres Schauspiel erwarten. Dank der Nähe zur Erde wird die Supernova so hell wie der Mond leuchten.
q Europäische Aale schwimmen nach Erreichen der Geschlechtsreife rund 5000 Kilometer weit bis in die Sargassosee südlich der Bermuda-Inseln, um sich dort zu paaren. Die dänische Biologin Kim Aarestrup und ihr Team konnten die Tiere nun erstmals auf ihrer Reise verfolgen. Sie befestigten an insgesamt 22 Aalen, die sie im Westen Irlands aussetzten, so genannte Pop-up Satellite Archival Transmitter (PSAT). Die Geräte sind kleiner und leichter als bisher verwendete Satellitensender und behindern die nur 60 bis 150 Zentimeter großen Fische dadurch nicht ernstlich. Sie melden kontinuierlich Bewegungsrichtung, Tiefe und Geschwindigkeit. So konnten die Forscher die Aale zumindest auf den ersten 1300 Kilometern ihrer Reise verfolgen, bevor die Batterien der PSATs erschöpft waren. Doch auch das erlaubte bereits interessante Einblicke. So halten sich die Tiere zunächst ziemlich Bernt René Grimm
Spektrogramm Mitarbeit: Julia Eder und Lisa Nigrelli
ASTRONOMIE
Science, Bd. 325, S. 1222
Meteorologie
Aerosole doch keine Klimaschützer?
Wolken reflektieren Sonnenlicht ins All. Die Rolle von Aerosolen bei ihrer Bildung erweist sich nun als unerwartet komplex.
Max-Planck-Institut für Meteorologie, Björn Stevens
q Einer gängigen Theorie zufolge wirken feine Schwebeteilchen in der Atmosphäre, so genannte Aerosole, der Erderwärmung entgegen. Der Grund: An ihnen kondensiert Luftfeuchtigkeit, und die entstehenden Wolken reflektieren das Sonnenlicht in den Weltraum. Je mehr Schwebeteilchen als Kondensationskeime fungieren, desto kleiner werden die Tröpfchen und desto
länger bleiben sie als Sonnenschirm in der Luft, bevor sie ausregnen. Diese Vorstellung klingt einleuchtend. Doch als Bjorn Stevens vom Max-Planck-Institut für Meteorologie in Hamburg und sein US-Kollege Graham Feingold die Fachliteratur zu dem Thema aus den letzten vier Jahrzehnten sichteten, stießen sie auf Befunde, die ihr widersprechen. So lassen Aerosole in der Passatwindregion Wolken schneller abregnen statt langsamer. Die beiden Forscher halten das gängige Bild deshalb für zu einfach. Bisher seien Vorgänge übersehen worden, die dem kühlenden Effekt entgegenwirken. Zum Beispiel steigt in von Aerosolen erzeugten Kumuluswolken die feuchte Luft durch die frei werdende Kondensationswärme weiter auf, kühlt dabei ab und bildet zusätzliche Wassertröpfchen in größerer Höhe. Die Wolke dehnt sich nach oben aus und regnet deshalb schneller ab als zuvor.
12
Nature, Bd. 461, S. 607
Europäische Aale wie dieser wurden mit Satellitensendern auf ihrer Reise von Irland in die Sargassosee verfolgt.
südlich und erreichen nur eine Durchschnittsgeschwindigkeit von knapp 20 Kilometern am Tag, was für die rechtzeitige Ankunft am Ziel nicht ausreicht. Doch auf dieser Etappe schwimmen sie gegen den Strom, während sie ab den Kanaren in eine günstige westliche Strömung geraten. Überraschend ist auch die Feststellung, dass die Aale die Nächte an der warmen Meeresoberfläche verbringen und bei Sonnenaufgang auf bis zu 1000 Meter Tiefe tauchen. Wie die Forscher vermuten, erhält die Wärme nachts den Stoffwechsel der Fische aufrecht, während das kalte Wasser tagsüber die Entwicklung der Keimdrüsen bis zur Ankunft in den tropischen Gewässern hemmt.
Science, Bd. 325, S. 5948
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
bild des monats
Tätowierter Mars
NASA, JPL / University of Arizona
Wer hat den Roten Planeten mit solch kunstvollen ornamentalen Mustern verziert? Die verschlungenen, sich überkreuzenden Linien erscheinen auf einer neuen Aufnahme der Kamera HiRISE an Bord des NASA-Satelliten Mars Reconnaissance Orbiter. Sie zeigt einen 1,1 Kilometer breiten Ausschnitt aus einem Dünenfeld in einem kleinen, namenlosen Krater. Gezeichnet wurden die Linien von Windhosen, die auf dem Mars bis zu acht Kilometer hoch werden können. Sie wirbeln den feinen, hellbraunen Staub auf, so dass der dunklere Sand darunter zum Vorschein kommt, der in dieser Falsch farbenaufnahme bläulich erscheint – auch dort, wo er in dünnen Streifen vom Dünenkamm herabgerieselt ist.
FORSCHUNG AKTUELL Nobelpreis für Physik
Diesen Artikel können Sie als Audiodatei beziehen; siehe www.spektrum.de/audio
Die Digitalisierung des Lichts Sie sind die Augen und die Nerven unserer digitalen Informationsgesellschaft: CCD-Bild sensoren und Licht leitende Glasfasern. Für ihre Erfindung wurden Charles K. Kao, Willard
Charles K. Kao (links) erkannte, wie eine Glasfaser beschaffen sein muss, um Licht über mehr als einige Meter zu leiten. Willard S. Boyle (Mitte) und George E. Smith schufen mit der Erfindung der CCD-Sensoren die Grundlage der modernen Digitalfotografie.
Von Bernd Müller
H
eute umspannen Glasfasernetze die Erde auf einer Gesamtlänge von etwa einer Milliarde Kilometer und bilden das Rückgrat der modernen Telefonund Internetkommunikation. Der Ausgangspunkt dieser Entwicklung lässt sich genau benennen: eine Veröffentlichung des jungen Elektroingenieurs Charles K. Kao von den Standard Telecommunication Laboratories in London vom Juni 1966. Darin schwärmte der 1933 in Schanghai geborene und gerade frisch promovierte Wissenschaftler von einem Glasfasermaterial mit »Potenzial als neues Kommunikationsmedium«. »Kao war nicht nur ein inspirierter Physiker, sondern auch ein guter Kommunikator seiner Vision«, heißt es nun in der Erklärung, mit der die Jury in Stockholm die Verleihung der einen Hälfte des PhysikNobelpreises an den Pionier begründet. Die Idee, Licht durch Glas zu übertragen, stammt schon aus der Mitte des 19. Jahrhunderts. In der Folge gab es immer wieder Versuche, Signale oder gar Bilder auf diese Weise zu übermitteln. Sie gipfelten in den 1950er Jahren in GlasfaserEndoskopen zur Magenspiegelung. Einen neuen Schub erhielt die Forschung durch die Erfindung des Lasers 14
1960. Nun gab es einen guten Lichtsender, doch das Übertragungsmedium Glas hielt nicht Schritt, weil die Verluste mit 1000 Dezibel pro Kilometer viel zu groß waren. Nach einer Strecke von 20 Metern blieb so nur ein Prozent des Lichts übrig. Schon damals experimentierte man mit Glasfasern aus einem Kern und einer Hülle mit unterschiedlichen Brechzahlen. An der Grenze zwischen beiden wird das Licht reflektiert und sollte so laut Theorie unendlich weit durch die Faser laufen. Kao zeigte in seinen Experimenten, warum das zu jener Zeit nicht funktionierte: Verunreinigungen im Glas – insbesondere Eisenionen – absorbieren und streuen das Licht. Ohne sie sollte, wie Kao abschätzte, die Dämpfung bei 20 Dezibel pro Kilometer liegen. Nach etlichen Versuchen in den folgenden Jahren präsentierte der Visionär schließlich ein Material mit der nötigen Reinheit: Quarzglas. Es hat allerdings einen sehr hohen Schmelzpunkt und ist deshalb schwierig zu verarbeiten. Und so gelang es erst 1970, Fasern daraus herzustellen.
Die Firma Corning Glass Works in den USA nutzte die Methode der chemischen Gasphasenabscheidung, um den Kern der Faser mit einer geringen Menge Titan zu dotieren, während die Hülle aus reinem Quarzglas mit einem geringfügig niedrigeren Brechungsindex bestand. Bei den physikalischen Grundlagen wie auch bei der Wahl des Materials lag Kao also richtig. Doch mit einer Vorhersage hatte er zum Glück Unrecht. Die von ihm geschätzte Untergrenze für die Dämpfung erwies sich als zu pessimistisch: Heutige hochtransparente Glas fasern erreichen Werte von nur 0,2 Dezibel pro Kilometer. Auf dieser Strecke gehen folglich nicht mehr als fünf Prozent des Lichts verloren, und das bei Übertragungsraten von derzeit einigen Billionen Bit pro Sekunde. Eine weitere technische Revolution fand am 17. Oktober 1969 statt. An diesem Tag trafen sich Willard S. Boyle (siehe seinen Artikel in Spektrum der Wissenschaft 10/1978, S. 60) und George E. Smith im Büro ihres Chefs Jack Morton, Leiter der Elektronik-Abteilung bei den Bell Laboratories in Murray Hill (New Jersey). Dieser war Anhänger der damals NASA
National Academy of Engineering
Richard Epworth
National Academy of Engineering
S. Boyle und George E. Smith nach vier Jahrzehnten nun mit dem Physik-Nobelpreis geehrt.
Dieser hochempfindliche CCD-Sensor wird für astronomische Beobachtungen verwendet. SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Aktuell
Ein CCD-Sensor ist in ein Gitternetz aus Pixeln unterteilt. Unter jedem solchen Bildpunkt sammeln sich bei der Belichtung Elektronen – und zwar umso mehr, je mehr Licht darauffällt. Anschließend werden die Ladungspakete über elektrische Spannungen nach Art einer Eimerkette schrittweise von Pixel zu Pixel bis zu einem Messgerät verschoben, das die Anzahl der jeweils enthaltenen Elektronen ermittelt. Aus diesen Zahlenwerten lässt sich dann das Bild rekonstruieren.
Foto: A-C Reibekiel; Illustration: Airi Iliste / The Royal Swedish Academy of Sciences
Bild fällt auf einen CCD-Sensor.
Licht setzt in gitterartig angeordneten Fotozellen proportional zu seiner Intensität Elektronen frei. Die in den Zellen (Pixeln) gespei cherten Elektronen werden zeilenweise ausgelesen. Dabei überträgt jede Zeile ihren Inhalt auf die nächste.
viel versprechenden Magnetblasenspeicher-Technologie. Um deren Entwicklung zu forcieren, wollte er notfalls auch Geld aus anderen Forschungsprojekten abziehen – etwa dem von Boyle und Smith, die sich mit Metalloxid-Halbleiter-Systemen (Metal Oxide Semiconductor, kurz MOS) beschäftigten. Um der drohenden Mittelkürzung zu entgehen, sollten sich die beiden, so Mortons Aufforderung, ebenfalls mit Blasenspeichern beschäftigen, nur eben auf Halbleiterbasis. Smith erinnert sich: »Die Diskussion dauerte nicht viel länger als eine Stunde, in der wir unsere Ideen auf eine Tafel schrieben.«
Eimerkette im Chip
Was dort stand, sollte die Foto- und Videotechnik revolutionieren. Die darauf beruhenden CCD-Sensoren (charge-coupled device, ladungsgekoppeltes Bauteil) haben Filme inzwischen so gut wie abgelöst. Sie stecken heute als elektronische Augen in digitalen Videokameras und Fotoapparaten sowie in vielen bildgebenden medizinischen Geräten wie Mikroskopen zur Zelluntersuchung oder Endoskopen für die »Schlüsselloch«-ChiSPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
1 01 1 0 Der Inhalt der letzten Zeile wandert nach Art einer Eimerkette zu einem Messgerät. Dort wird er Zelle für Zelle bestimmt und in eine Zahlenfolge übersetzt.
rurgie. Auch die faszinierenden Aufnahmen des Hubble-Teleskops stammen von CCD-Kameras. Als Väter dieser Revolution erhielten Boyle und Smith im Alter von 85 beziehungsweise 79 Jahren nun je ein Viertel des Physik-Nobelpreises. CCD-Chips nutzen den Fotoeffekt, dessen theoretische Erklärung Albert Einstein 1921 gleichfalls den Physik-Nobelpreis eingetragen hatte. Fällt Licht auf eine Halbleiteroberfläche, erzeugen die Photonen Ladungsträger – und zwar umso mehr, je mehr von ihnen eintreffen. Die Ladungsverteilung ist also ein Abbild des Helligkeitsmusters. Smith und Boyle fanden eine raffinierte Methode, sie in ein digitales Foto zu überführen. Dazu unterteilten sie den Sensor schachbrettartig in Kästchen: die so genannten picture elements oder kurz Pixel. Unter jedem brachten sie eine Elektrode an, welche die bei der Belichtung freigesetzten Elektronen durch Anlegen einer Spannung jeweils in einer Art Blase im Halbleiter sammelt – und stellten so die von ihrem Chef geforderte Analogie zu Magnetblasenspeichern her. Zum Auslesen der Pixel dienen Spannungsimpulse, welche die unter einer
Elektrode angehäuften Ladungen verschieben. Das geschieht wie in einer Eimerkette: Jede Elektrode reicht ihre Ladung an die nächste weiter. Am Ende der Kette wird die pro Eimer ankommende Elektronenmenge gemessen und in einen binären Zahlenwert umgewandelt. Den Anfang macht die unterste Zeile. Sobald sie geleert ist, rücken die Zeilen darüber nach. So lässt sich der Reihe nach die Ladungsmenge in sämtlichen Kästchen ermitteln, speichern und daraus ein Digitalbild erzeugen (Kasten oben). Der erste CCD-Bildsensor, den Fairchild Semiconductors wenig später vorstellte, hatte nur 100 mal 100 Pixel. Heute sind es in jeder Handykamera mehrere Millionen. Allmählich gewinnen zwar so genannte CMOS-Sensoren, bei denen die einzelnen Pixel separat und damit schneller ausgelesen werden, an Popularität. Doch sind CCD-Sensoren dank ihrer kompakten Bauweise und hohen Bildqualität bei vielen Anwendun gen immer noch erste Wahl. Bernd Müller ist Wissenschaftsjournalist in Esslingen.
15
Detailansichten der zellulären Eiweißfabrik Ada Yonath, Thomas A. Steitz und Venkatraman Ramakrishnan erhielten den Chemie-Nobelpreis für die Strukturaufklärung des Ribosoms: einer extrem komplizierten molekularen Maschine, welche in der Zelle die lebenswichtigen
MRC Laboratory of Molecular Biology, Cambridge
Yale University, Michael Marsland
Proteine herstellt.
Weizmann Institute of Science
FORSCHUNG AKTUELL
Diesen Artikel können Sie als Audiodatei beziehen; siehe www.spektrum.de/audio
Nobelpreis für Chemie
Ada Yonath (links) schaffte das Kunststück, Ribosomen zu kristallisieren und sie so einer Röntgenstrukturanalyse zugänglich zu machen. Die ersten hoch aufgelösten Röntgenaufnahmen der großen beziehungsweise kleinen Untereinheit gelangen dann Thomas A. Steitz (Mitte) und Venkatraman Ramakrishnan.
Von Michael Groß
E
ine der spannendsten Fragen in der Biologie ist die nach der Umsetzung der Erbinformation in ein funktionsfähiges Lebewesen. Viele Teilaspekte dieses »Wunders« sind inzwischen aufgeklärt. Dazu gehört auch das Rätsel, wie Zellen die Reihenfolge der vier verschiedenen Basen in der Erbsubstanz DNA in Proteine übersetzen – also in jene Aminosäureketten, die als Bauelemente wie Funktionsträger eine zentrale Rolle im Körper spielen. Die drei Wissenschaftler, die den diesjährigen Chemie-Nobelpreis erhielten, haben die letzten, entscheidenden Beiträge zur Aufklärung dieser »Translation« geleistet, indem sie die genaue räumliche Struktur der dafür zuständigen Maschinerie ermittelten: eines Ribosom genannten Zellorgans (Organells). Den ersten Mosaikstein zu dem jetzt vollendeten Bild lieferte in den 1960er Jahren die Entschlüsselung des geneti schen Kodes, der jeder Kombination von drei Basen eine bestimmte Aminosäure (oder den Befehl zum Beenden der Translation) zuordnet. Realisiert wird dieser Kode mit so genannten Transfer-Ribo nukleinsäuren (tRNAs). Sie enthalten jeweils eine Aminosäure sowie ein zugehöriges, charakteristisches Basen-Triplett. 16
Dieses kann sich spezifisch an eine genau passende (komplementäre) Sequenz aus drei anderen Basen binden, die sich in den Boten-Ribonukleinsäuren (mRNAs) befinden. Das sind Abschriften einzelner Gene, die im Verlauf der Translation durch die Ribosomen hindurchgefädelt werden. Das Organell verknüpft dabei die Aminosäuren der sich anlagernden tRNAs zur Proteinkette. Obwohl dieser Vorgang in den Grundzügen schon bald bekannt war, blieben die Details lange unklar. Das Ribosom erwies sich nämlich als so komplex, dass seine Struktur und Funktionsweise unergründlich schienen. In den 1970er und 1980er Jahren war nur sein grober Aufbau bekannt. Man wusste, dass es sich durch Ultrazentrifugation in zwei unterschiedlich große Komponenten auftrennen lässt, die nach der Schnelligkeit, mit der sie sich dabei absetzen, als 50S- und 30S-Untereinheit bezeichnet wurden (das S steht für Svedberg, die Einheit der Sedimentationsgeschwindigkeit). Beide enthalten ein Rückgrat aus RNA, das in der großen aus zwei Strängen und in der kleinen aus einem besteht. Um es gruppieren sich jeweils Dutzende von Proteinen. Mit chemischen und biophysikalischen Methoden ließ sich die ungefähre Anordnung dieser Bauelemente
ermitteln, und es gelang sogar, ein Ribosom in seine Einzelteile zu zerlegen und wieder zusammenzubauen – oder richtiger: zuzusehen, wie es sich von selbst wieder zusammenbaute. Diese Informationen genügten allerdings nicht, um die Funktionsweise des Ribosoms bis in atomare Details zu verstehen. Die Forscher mussten sich mit heu ristischen Modellen begnügen: etwa dem von Knud Nierhaus und Kollegen am Max-Planck-Institut für molekulare Genetik in Berlin, das drei Bindungsstellen für tRNAs postulierte. Doch die genaue Natur dieser Bindungsstellen blieb unklar. Bis in die 1990er Jahre hinein untersuchten und beschrieben die Ribosomenforscher Funktionselemente, die gerade hinter dem Auflösungshorizont der verfügbaren Methoden verborgen blieben. Abhilfe konnte nur eine detaillierte Röntgenstrukturanalyse bringen. Doch davor standen zwei unüberwindlich scheinende Hürden. Eine solche Analyse funktioniert nur mit Kristallen, und sie ist umso komplizierter, je mehr Atome das zu untersuchende Molekül enthält. Die Ribosomen aber sind vergleichsweise riesig und zeigen so gut wie keine Neigung zu kristallisieren.
Ein extrem schwieriges Problem
Die Preisträgerin Ada Yonath aus Israel war die Erste, die sich an diesen extrem harten Brocken wagte. In der Abteilung von Heinz Günter Wittmann am Berliner Max-Planck-Institut, wo sie von 1979 bis 1984 forschte, versuchte sie das Kristallisationsproblem mit Ribosomen aus thermophilen (Hitze liebenden) Bakterien zu lösen. Diese sind bei den hohen Temperaturen ihres natürlichen Lebensraums flexibel und funktionstüchtig; in einer kühleren Umgebung werden sie dagegen starr und unbeweglich. Von ihnen war deshalb am ehesten zu erwarten, dass sie sich unter geeigneten Bedingungen zu einem stabilen Kristallgitter zusammenfügen. SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Aktuell talls, lassen sich Rückschlüsse auf die fehlende Phaseninformation ziehen. Dieser »isomorphe Ersatz« funktioniert allerdings nur bei relativ kleinen Molekülen. Bei sehr großen reicht die damit gewinnbare Information nicht aus. Andere Verfahren wie das Ausnutzen von Relationen zwischen einzelnen Beugungsreflexen versagen dann gleichfalls. Deshalb gelang es auch nach der erfolgreichen Kristallisation der 50S-Untereinheit lange nicht, durch Röntgenbeugung deren Struktur mit hoher Auflösung zu ermitteln. Dieses Kunststück vollbrachte erst mehr als zehn Jahre später der zweite Preisträger, Thomas A. Steitz, mit seiner Arbeitsgruppe an der Yale University in New Haven (Connecticut). Zur Lösung des Phasenproblems verwendete er auch Informationen, die unabhängig von der Kristallografie erhalten worden waren – darunter eine elektronenmikroskopische Grobstruktur, die Joachim Frank vom Wadsworth Center in Albany (New York) und seine Kollegen ermittelt hatten.
the Royal Swedish Academy of Sciences / Nobelprize.org
Die Rechnung ging auf. Von Ribosomen des Bakteriums Geobacillus stearothermophilus konnten Yonath und ihre Kollegen in Berlin und am WeizmannInstitut in Rehovot (Israel) Anfang der 1980er Jahre erstmals die 50S-Untereinheit kristallisieren und röntgenografisch untersuchen – was immerhin grobe Strukturdetails enthüllte. Untereinheiten von anderen an Extrembedingungen angepassten Bakterien wie Haloarcula marismortui und Thermus thermophilus folgten. Die Röntgenbeugungsmuster von Kristallen sind allerdings mehrdeutig. Die dreidimensionale Struktur des betreffenden Moleküls lässt sich daraus nicht direkt ableiten, weil die so genannte Phaseninformation fehlt. Es gibt Tricks, diese Information ganz oder teilweise zu rekonstruieren. So kann man versuchen, Atome im Molekül durch andere, aber chemisch gleichartige – am besten stark streuende Schwermetalle – zu ersetzen, welche die Gesamtstruktur nicht verändern. Vergleicht man das resultierende Beugungsmuster dann mit dem des Originalkris-
In diesem hoch aufgelösten Strukturbild eines bakteriellen Ribosoms sind die RNAStränge orange, die Proteine der großen Untereinheit grün und der kleinen blau dargestellt. In Rot erscheint ein gebundenes Antibiotikum, das die Eiweißsynthese an dem Organell unterbinden soll.
SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Trotzdem gelang es Steitz und seinen Mitarbeitern 1998 zunächst nur, die dreidimensionale Gestalt der 50S-Untereinheit von H. marismortui mit einer Auflösung von 0,9 Nanometern zu bestimmen. Das war sehr viel genauer als bisher, reichte aber noch nicht, um die Position jedes einzelnen Atoms zu erkennen. Ein Jahr später konnte der nun mit dem Nobelpreis Geehrte die Auflösung dann auf 0,5 Nanometer steigern, ehe er 2000 schließlich 0,24 Nanometer erreichte und damit alle Atome sichtbar machte. Da die 50S-Untereinheit die Hauptaufgabe des Ribosoms ausführt, nämlich das Anhängen einer neuen Aminosäure an die wachsende Proteinkette, gewann Steitz in den folgenden fünf Jahren mit Hilfe der immer detaillierteren Strukturbilder auch wichtige Erkenntnisse über diesen Vorgang – insbesondere über die Natur der katalytisch wirksamen Stelle, an der er stattfindet: Handelt es sich um ein RNA-Stück, einen Proteinabschnitt oder eine Kombination von beidem? Die im Jahr 2000 veröffentlichte 50S-Struktur zeigte keinerlei Eiweißkomponente in der Nähe des aktiven Zentrums. Thomas R. Cech, der Entdecker der ersten Ribozyme (Enzyme, die aus RNA bestehen), verkündete sogleich: »Das Ribosom ist ein Ribozym.« Das wäre von Bedeutung für die Entstehungsgeschichte des Lebens und würde die Vermutung des Chemie-Nobelpreisträgers von 1989 untermauern, dass die heutige Arbeitsteilung zwischen DNA, RNA und Proteinen aus einer simpleren RNA-Welt hervorging, in der diese Nukleinsäure sowohl Biokatalysator als auch Informationsträger war. Wie spätere Strukturuntersuchungen an vollständigen Ribosomen mit angelagerten tRNAs ergaben, könnten allerdings doch Proteinkomponenten am Verknüpfen der Aminosäuren mitwirken. Cechs Jubelruf war also vielleicht verfrüht. Die Detailansicht des Ribosoms komplettierte der dritte Laureat, Venkatraman Ramakrishnan vom Laboratory of Molecular Biology in Cambridge (England), das damit seinen 14. Nobelpreis einheimste. Er und sein Team präsentierten im August 2000 – fast gleichzeitig mit der Publikation von Steitz – ein hoch aufgelöstes Strukturbild der 30S-Untereinheit. Damit war der dreidimensionale Aufbau des Ribosoms vollständig ermittelt. Es handelt sich um die komplizierteste Molekülstruktur, die bis heute bekannt ist. 17
Verknüpfungsreaktion steuerte auch Marina Rodnina an der Universität WittenHerdecke bei, die inzwischen Direktorin am Max-Planck-Institut für biophysikalische Chemie in Göttingen ist. Das Ribosom verrichtet seine Arbeit nicht völlig allein: Proteinfaktoren helfen ihm dabei. Auch darüber gibt es seit 2000 neue Erkenntnisse. Abgeleitet wurden sie aus Röntgenstrukturanalysen von exakt definierten Funktionskomplexen aus Ribosomen und bestimmten Helfern in mechanistisch definierten Zuständen. Rund die Hälfte aller Antibiotika richtet sich gegen die Proteinbiosynthese der Mikroben. Auch zur Erforschung ihrer Wirkungsweise und zur Entwicklung neuer antibakterieller Wirkstoffe leiste
ten die Arbeiten der diesjährigen Nobelpreisträger daher wichtige Beiträge. Angesichts der rasanten Zunahme von Resistenzen gegen heutige Antibiotika ist das detaillierte Verständnis ihrer Wirkung, das die rasche Entwicklung von neuen Varianten erleichtert, von enormer medizinischer Bedeutung. So profitieren letztlich alle Menschen von der Hartnäckigkeit und dem Einfallsreichtum der drei Nobelpreisträger, die eigentlich nur eine Grundsatzfrage der Biologie beantworten wollten. Michael Groß hat in seiner Diplom- und Doktorarbeit die Reaktion von bakteriellen Ribosomen auf hydrostatischen Druck untersucht. Heute ist er freier Wissenschaftsautor in Oxford (England).
Diesen Artikel können Sie als Audiodatei beziehen; siehe www.spektrum.de/audio
Nobelpreis für Medizin
Der Anfang der Wissenschaft vom Ende Der Medizin-Nobelpreis ging an Elizabeth H. Blackburn, Carol W. Greider und Jack W. Szostak für ihre Erkenntnisse über die Endstücke der Chromosomen. Die drei Forscher haben mehrere große Fragen der Genetik beantwortet, Alterungsprozesse erhellt und womöglich den Weg zu
Massachusetts General Hospital
Johns Hopkins University
neuen Krebstherapien gebahnt.
wikimedia / Gerbil
FORSCHUNG AKTUELL
Auch bei der kleinen Untereinheit erlaubten die molekularen Details tiefere Einblicke in die Funktionsweise des Ribosoms. So konnten Ramakrishnan und andere Forscher die erstaunlich geringe Fehlerquote der Translation aufklären, indem sie den Mechanismus aufdeckten, durch den das Organell die Unterschiede zwischen den Bindungsenergien korrek ter und falscher tRNAs verstärkt. Ferner fanden sie heraus, wie das Ribosom mit der Tatsache umgeht, dass bei vielen Kodewörtern die dritte Base unwichtig ist, und wie sich Mutationen und Antibiotika auf seine Fehlerquote auswirken. Wesentliche thermodynamische Untersuchungen zur Genauigkeit der Proteinbiosynthese und zum Mechanismus der
Elizabeth H. Blackburn (links) fand heraus, dass Telomere aus langen Wiederholungen kurzer DNA-Sequenzen bestehen. Carol W. Greider (Mitte) identifizierte das Enzym Telomerase, das Telomere verlängert, und Jack W. Szostak wies die Bedeutung der Telomere für die Stabilität der Chromosomen nach.
Von Bernhard Epping
N
icht immer findet die Entscheidung des Nobelkomitees ungeteilten Beifall. Doch in diesem Jahr stieß die Verleihung des Preises für Physiologie oder Medizin an Elizabeth H. Blackburn von der University of California in San Francisco, Carol W. Greider von der Johns Hopkins School of Medicine in Baltimore und Jack W. Szostak vom Massachusetts General Hospital in Bos18
ton auf breite Zustimmung. »Die drei haben schließlich ein ganz neues Forschungsfeld begründet«, meint Joachim Lingner von der Ecole Polytechnique Fédérale in Lausanne. Die Laureaten erhielten die Ehrung für Untersuchungen, die zeigen, »wie Chromosomen durch Telomere geschützt werden«, und für die »Entdeckung des Enzyms Telomerase«, so die Stockholmer Jury. Als in den 1930er Jahren die US-Genetikerin Barbara McClintock (Medizin-
Nobelpreis 1983) und ihr Kollege Herman Joseph Muller (Medizin-Nobelpreis 1946) Untersuchungen am Erbgut anstellten – sie vor allem beim Mais, er bei Taufliegen –, wunderten sie sich über ein merkwürdiges Phänomen. Brechen Chromosomen, können sich die Fragmente neu verknüpfen. Das geschieht aber nur an den Bruchstellen; niemals fusioniert ein Fragment mit dem Ende eines Chromosoms. Für diesen speziellen Abschnitt prägte Muller deshalb 1938 einen eigenen Begriff: Telomer (nach griechisch télos für Ende und méros für Teil). Was ihn schützt, blieb zunächst offen. Im Jahr 1953 erkannten James Watson und Francis Crick (Medizin-Nobelpreis für beide 1962) die Doppelhelixstruktur der Erbsubstanz DNA. Schon bald war auch klar, wie DNA-Stränge verdoppelt werden. Doch bei dieser Replikation gibt es ein Problem. Wie eine winzige Zahnradbahn arbeitet sich die dafür zuständige DNA-Polymerase aus dem Innern eines lokal aufgetrennten Doppelstrangs nach außen vor. Allerdings kann sie nur in einer Richtung operieren: vom so genannten 5’- zum 3’Ende hin. Der zweite Strang ist jedoch SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Bei menschlichen Chromosomen wurden hier die Telomere mit einem gelb fluoreszierenden Farbstoff markiert.
andersherum orientiert. Deshalb kann ihn das Enzym nicht durchgehend kopieren. Vielmehr muss es immer ein Stück vorspringen und dann den betreffenden Abschnitt im Rückwärtsgang verdoppeln. Außerdem kann die DNA-Polymerase III nicht aus dem Nichts starten, sondern braucht ein Anfangsstück, das eine so genannte Primase jeweils in Form einer kurzen RNA synthetisiert – ein Hilfskonstrukt, das ein weiteres Enzym später durch DNA ersetzt. Dieser komplizierte Mechanismus verhindert, dass das letzte Strangstück am Rand des Chromosoms verdoppelt wird. Dadurch ist die Kopie jeweils kürzer als das Orginal. Nach einigen Teilungsrunden würden am Ende eines Chromosoms also beträchtliche Teile fehlen. Die von Jack W. Szostak konstruierten künstlichen Hefechromosomen wurden zunächst in der Zelle rasch abgebaut (links). Erst nach Zugabe von Telomeren aus dem Wimpertierchen Tetrahymena waren sie stabil.
Dieses Endreplikationsproblem hat erstmals Alexey M. Olovnikov im Jahr 1971 formuliert. Der russische Wissenschaftler sah auch einen Zusammenhang mit einem weiteren zunächst rätselhaften Befund. 1961 hatten die US-Forscher Leonhard Hayflick und Paul S. Moorhead beobachtet, dass im Labor gezüchtete menschliche Zellen nach 50 bis 70 Teilungsrunden ihr Wachstum einstellen. Der Grund war unklar. Olovnikov vermutete nun, »Telogene« am Ende der Chromosomen könnten als Schutzgruppen fungieren, die bei jeder Zellteilung kürzer werden. Sobald sie aufgebraucht seien, verliere die Zelle ihre Teilungsfähigkeit. Vier Jahre später kam die gebürtige Australierin Elizabeth H. Blackburn zu Joseph Gall an die Yale University in
Chromosomen mit Telomeren
New Haven (Connecticut), um dort mit den gerade erst entwickelten Methoden zur DNA-Entzifferung Telomere zu analysieren. Als möglichst einfaches Studien objekt wählte sie die Minichromosomen des einzelligen Wimpertierchens Tetra hymena thermophila. Ende 1977 hatte sie herausgefunden, dass die Telomere aus unzähligen Wiederholungen der immer gleichen Abfolge jener vier DNA-Basen bestehen, die als Buchstaben des genetischen Alphabets fungieren. In diesem Fall ist es die Sechserfolge TTGGGG. Wie sich später zeigte, variiert die Grundeinheit je nach Organismus. Bei Säugetieren, uns Menschen eingeschlossen, hat sie die Zusammensetzung TTAGGG. Monoton wiederholter Nonsens am Ende der Chromosomen? Keineswegs, wie Blackburn 1982 gemeinsam mit Jack W. Szostak demonstrierte. Der tüftelte in Boston daran, Hefen mit fremder Erbsubstanz auszustatten, musste aber feststellen, dass lineare DNA-Stückchen von seinen Schützlingen rasch verdaut wurden. Etwas fehlte. Von Blackburn besorgte sich Szostak deshalb Telomere aus Tetrahymena. Als er sie an seine Konstrukte anhängte, blieben diese intakt. Telomersequenzen fungierten demnach als universaler Schutz von Chromoso menenden über Artgrenzen hinweg. Wenn diese Endstücke, wie Olovnikov vermutet hatte, bei jeder DNA-Replika tion verkürzt werden, dann sollte es auch einen Mechanismus geben, der sie zumindest bei Keimzellen, aus denen neue Lebewesen hervorgehen, wieder auf die
Tetrahymena
Annika Röhl / The Nobel Committee for Physiology or Medicine 2009
Robert K. Moyzis, UCI School of Medicine
Aktuell
Telomer-DNA künstliche Minichromosomen Hefezelle
SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Hefezelle
19
FORSCHUNG AKTUELL
Telomerase G
RNA-Matrize
A T
A
C
C
T G
DNA
T
CA A C G
T
C G
G Nukleotid
Tomo Narashima
Das Enzym Telomerase besteht aus einem Protein und einem RNA-Strang. Der enthält eine Matrize für die in den Telomeren vielfach wiederholte DNA-Sequenz. Durch Anlagerung dazu komplementärer Nukleotide wird das Endstück verlängert.
Ausgangslänge bringt. Folglich ließ Blackburn ihre Doktorandin Carol Greider danach suchen. Am 24. Dezember 1984 hielt diese den Beweis für die Existenz des vermuteten Mechanismus in Händen: ein Foto mit einem regelmäßigen Treppenmuster radioaktiv markierter DNA-Fragmente, von denen jedes jeweils eine Grundeinheit aus sechs Nukleotiden mehr enthielt als das vorherige. Zusammengesetzt hatte diese Fragmente eine Komponente in einem Zellextrakt von Tetrahymena, bei der es sich höchstwahrscheinlich um ein Enzym handelte. Die beiden Forscherinnen tauften dieses Enzym Telomerase. Als Hauptbestandteil enthält es, wie genauere Untersuchungen in den folgenden Jahren ergaben, eine RNA. Diese liefert die Vorlage für die Synthese einer Telomer-Grundeinheit nach der anderen, während sich das Enzym am freien DNA-Strang entlanghangelt (siehe den Artikel von Blackburn und Greider in Spektrum der Wissenschaft 4/1996, S. 30). »Damit war das Endreplikationsproblem gelöst«, sagt Lingner, der in der Gruppe von Thomas R. Cech an der University of Colorado in Boulder 1997 erstmals ein Telomerase-Gen identifizierte. Dessen Basensequenz wurde ebenso wie die von analogen Genen aus etlichen anderen Organismen, einschließlich des Menschen, inzwischen bestimmt. Sie zeigt, dass Telomerasen zu den reversen Transkriptasen gehören: Enzymen, die auch bestimmte Viren wie der Aidserreger besitzen und deren Vorläufer vermutlich vor Milliarden von Jahren erstmals RNA in DNA umschrieben. Noch heute 20
sind DNA-Organismen bei der Replikation demnach auf Hilfe aus einer längst vergangenen RNA-Welt angewiesen. Auch Olovnikovs Vermutung über die Ursache der zellulären Seneszenz sollte sich bestätigen. Im Jahr 1990 konnte Greider zeigen, dass die Telomere im Labor gezüchteter menschlicher Zellen tatsächlich mit jeder Teilung kürzer werden. Eine »kritische Telomerlänge«, die bis heute allerdings nicht exakt bestimmt ist, löst dann den Teilungsstopp aus. Damit wurde aber auch die Unsterblichkeit machbar – im Labor: Zellen mit künstlich angekurbelter Telomeraseaktivität teilen sich auf ewig.
Schutz vor Krebs?
Im menschlichen Organismus folgt die Aktivität des Enzyms einem Auf und Ab: In Keimzellen und während der frühen Embryonalentwicklung ist sie hoch, in spezialisierten Geweben hingegen fast völlig erloschen. Nur in Stammzellen bremst eine Telomerase-Aktivität, die mit dem Alter aber nachlässt, die Verkürzung. Vermutlich dient der Zählmechanismus dem Schutz vor Krebs, bei dem Zellen sich immer weiter teilen. »Indem der Organismus eine Obergrenze für Teilungen setzt, friert er womöglich bereits entstandene Tumorfrühstadien gleich mit ein«, vermutet Lenhard Rudolph von der Universtität Ulm. Alte Menschen hätten oft Tausende derart inaktivierter Mikrotumoren im Körper. Tatsächlich fand schon 1994 eine Gruppe um den US-Forscher Jerry W. Shay von der University of Texas in Dallas Telomerase-Aktivität in Krebszellen. Diese scheinen demnach unter anderem dadurch, dass sie die Endstücke der Chromosomen immer wieder verlängern, die zelluläre Seneszenz zu durchbrechen – eine hochinteressante Erkenntnis, könnte sie doch neue Möglichkeiten zur Krebsbekämpfung eröffnen. Bisher ist es freilich bei der Hoffnung geblieben. Telome-
rase-Hemmstoffe wurden zwar entwickelt, stecken aber noch in Phase I oder II der klinischen Prüfung. Geschichte ist hingegen der Rummel um das »Unsterblichkeitsenzym«, als das die Telomerase in den 1990er Jahren durch die Medien geisterte. Lingner hat nie an diese lebensverlängernde Wirkung geglaubt. »Altern eines Organismus ist etwas anderes als die Teilungsunfähigkeit einzelner Zellen«, erläutert er. Einige statistische Befunde sind jedoch nicht von der Hand zu weisen. So hat Richard Cawthon von der University of Utah in Salk Lake City 2003 gezeigt, dass Menschen mit relativ langen Telomeren in Immunzellen im Durchschnitt länger leben als solche mit kürzeren. Bezahlt der Organismus den Schutz vor Krebs also doch mit einer schnelleren Alterung? »Das ist völlig unbewiesen«, beharrt Lingner. Eine aktuelle Untersuchung von Blackburn, Cawthon und Kollegen deutet jedoch ebenfalls darauf hin, dass die Telomerlänge etwas darüber verraten könnte, wie viele Jahre ohne ernstliche Erkrankung jemand noch vor sich hat. »Da tickt eine Uhr«, ist auch Rudolph überzeugt. Das letzte Wort dürfte jedenfalls noch nicht gesprochen sein, und viele Forscher wittern hier weiterhin eine wissenschaftliche Goldgrube. »Das ist ein von scharfem Wettbewerb geprägtes Feld«, weiß Lingner. Einer hat sich deshalb schon früh ein anderes Gebiet gesucht: Szostak widmet sich seit Anfang der 1990er Jahre der Erschaffung künstlichen Lebens. Er ziehe es vor, so seine Begründung, an Fragen zu arbeiten, »die nicht so großes Interesse finden«. Doch damit dürfte es vorbei sein; auch die synthetische Biologie ist inzwischen schwer en vogue. Pate beim neuen Forschungsfeld standen übrigens wiederum die Telomere. Mit denen, die Szostak Anfang der 1980er von Elizabeth Blackburn bekam, konnte er schließlich die ersten künstlichen Chromosomen bauen (siehe seinen Artikel in Spektrum der Wissenschaft, 1/1988, S. 86). Aus denen wurden bald immer raffiniertere Kassetten für das Klonieren von DNA. Die Kenntnis der Telomere hat so auch die moderne Molekularbiologie mit ermöglicht – bis hin zur Konstruktion synthetischer Genome. Bernhard Epping ist promovierter Biologe und freier Journalist in Tübingen. SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Aktuell Nobelpreis für Wirtschaftswissenschaften
Diesen Artikel können Sie als Audiodatei beziehen; siehe www.spektrum.de/audio
Organisationsformen jenseits des Marktes Für Untersuchungen zu der Frage, welche Mechanismen verschiedenartige Institutionen und Organisationsformen entstehen lassen, wurde Elinor Ostrom und Oliver E. Williamson
UC Berkeley
Indiana University
der Nobelpreis für Wirtschaftswissenschaften verliehen.
Elinor Ostrom (links) untersuchte an praktischen Beispielen und in Spielsituationen Bedingungen für eine nachhaltige Nutzung von Gemeingütern. Oliver E. Williamson konnte theoretisch ableiten, wann und warum es besser ist, Geschäfte innerhalb der Grenzen einer Firma statt auf dem freien Markt zu tätigen.
Von Claudia Keser, Ralf Paquin und Christian Wey
A
uf den ersten Blick mag man sich wundern, weshalb der Nobelpreis gemeinschaftlich an zwei Wissenschaftler mit ganz verschiedenen Forschungsmethoden und -gegenständen ging. Oliver E. Williamson von der University of California in Berkeley argumentiert rein theoretisch und beschäftigt sich vor allem mit Unternehmen. Elinor Ostrom von der Indiana University in Bloomington analysiert dagegen auf empirischer
Basis die Selbstorganisation bei gemeinschaftlich genutzten Ressourcen. Dennoch gibt es verbindende Elemente zwischen den Arbeiten beider Laureaten. So betrachten sie übereinstimmend Situationen, in denen freie Märkte versagen, sehen aber die Lösung nicht im Eingreifen des Staats. Ihr Interesse gilt vielmehr der zur Mikroökonomik zählenden Frage, wie aus dem Verhalten einzelner Wirtschaftssubjekte auf natürliche Weise Institutionen – auch im Sinn von Regularien oder Steuerungsmechanismen – erwachsen. Dabei nutzen sie interdisziplinäre Ansätze und gehen nicht wie die meisten Wirtschaftswissenschaftler vom Idealbild des Homo oeconomicus aus, dem Egoisten, der stets nur nach dem größtmöglichen eignen Vorteil strebt. Elinor Ostrom erhält den Preis für ihre Untersuchungen zu Gemeingütern, nach einem alten Begriff für die Gemeindeflur oft auch Allmende genannt. Damit sind zum einen gemeinschaftlich genutzte natürliche Ressourcen wie Almweiden oder Fischbestände gemeint. Zum anderen zählen dazu aber auch vom Menschen geschaffene Institutionen, von denen die Allgemeinheit profitiert, wie die Polizei, das Internet oder die Teeküche im Büro. Der US-Ökologe Garrett J. Hardin beklagte 1968, dass die übermäßige Ausbeutung von Umweltgemeingütern weltweit zunehme, und sprach in diesem Zu-
sammenhang von der »Tragik der Allmende«. Als einziger Ausweg erscheint meist eine staatliche Regulierung oder die Vergabe exklusiver privater Eigentumsrechte. Ostrom konnte jedoch zeigen, dass das keineswegs notwendig ist, sondern manchmal sogar eher schadet. Nutzer gemeinsamer Ressourcen sind sehr wohl bereit, zur Mehrung des kollektiven Ertrags Kosten verursachende Aktivitäten zur Gestaltung, Überwachung und Durchsetzung von Regeln auf sich zu nehmen – in klarem Widerspruch zu den Vorhersagen der ökonomischen Theorie. Auf der Suche nach den Gründen dafür reiste Ostrom um die ganze Welt. Sie analysierte unter anderem Hochgebirgs almen in der Schweiz und in Japan, Bewässerungssysteme in Spanien, auf den Philippinen und in Sri Lanka sowie Fischfanggemeinschaften in Kanada, der Türkei und ebenfalls Sri Lanka. Dabei trieb sie die Frage um, wie es kommt, dass manche dieser gemeinschaftlich genutzten Ressourcen über sehr lange Zeit erhalten bleiben, andere jedoch zu Grunde gerichtet werden. Aus der vergleichenden Analyse ihrer Fallstudien – einige davon beschreibt sie in ihrem Buch »Governing the Commons: The Evolu tion of Institutions for Collective Action« (1990) – leitete Ostrom induktiv eine Reihe von Gestaltungsprinzipien für erfolgreiche Formen der Selbstorganisa tion ab (siehe Kasten unten).
1. Es gibt eindeutig definierte Grenzen, das heißt insbesondere klare Regeln, wer berechtigt ist, die Ressource zu nutzen. Auch die Grenzen der Ressource selbst müssen klar abgesteckt sein. 2. Regeln und lokale Bedingungen sind aufeinander abgestimmt. 3. Die Betroffenen können bei der Festsetzung der Regeln mitwirken. 4. Der Zustand der Ressource wird überwacht. 5. Es gibt Sanktionen bei Regelverstoß. 6. Externe Autoritäten (staatliche Stellen) machen den Nutzern nicht das Recht streitig, sich ihre Institutionen zu gestalten. 7. Große Nutzergruppen werden in mehreren Verbänden organisiert, deren Mitgliederzahl überschaubar bleibt.
SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
fotolia / Marc Dietrich
Bedingungen für die erfolgreiche Selbstverwaltung von Gemeingütern
21
FORSCHUNG AKTUELL
Springers Einwürfe Warum gibt es Arme und Reiche? Wie soziale Unterschiede sich vererben Die Wahl ist gelaufen, die Regierung steht. Als Koalition vereint sie die freiheitliche Parole »Leistung muss sich wieder lohnen« mit dem christlichen Versprechen »Wir lassen keinen im Regen stehen«. Das Wahlvolk blieb skeptisch und teils zu Hause. Am stärksten abgestraft wurde diejenige Volkspartei, die sich traditionell die »soziale Gerechtigkeit« auf ihre Fahnen schreibt. Der Glaube daran scheint erschüttert. Das gibt mir Anlass zu der Frage: Wieso gibt es überhaupt Ungleichheit? Und weiter: Wie entstehen soziale Unterschiede? Sind sie unausweichlich? Lassen sie sich ausgleichen? Vielleicht kann uns die Wissenschaft Auskunft geben. Wie gut, dass just zu diesem Thema soeben in den USA eine umfangreiche Studie unter Führung der Anthropologin Monique Borgerhoff Mulder und des Ökonomen Samuel Bowles veröffentlicht wurde (Science, Bd. 326, S. 682). Das Team hat 21 kleine vorindustrielle Gesellschaften aus aller Welt unter die Lupe genommen – von umherstreifenden Gruppen aus Jägern und Sammlern bis zu recht ausdifferenzierten Gesellschaften sesshafter Ackerbauern und Viehzüchter –, und zwar unter dem Aspekt der in ihnen herrschenden Ungleichheit. Als entscheidender Faktor erweist sich in der Analyse das Hinterlassen und Erben, der Übergang privaten Besitzes von einer Generation zur nächsten. Wo es etwas zu vermachen gibt wie in der Agrargesellschaft, da sorgt das Herkommen dafür, dass Vieh und Saatgut, Grund und Boden in der Familie bleiben. Darum finden die Forscher unter Viehzüchtern und Landwirten deutlich größere Ungleichheit als bei Jägern und Sammlern. Allerdings warnt Borgerhoff Mulder vor einer Idealisierung des einfachen Lebens von der Hand in den Mund, als wären dabei alle automatisch gleich reich oder besser gesagt gleich arm. Das Erben und die Ungleichheit gehen schon lange vor der neolithischen Revolution los, das heißt lange vor der sesshaften Lebensweise. Sobald Nomaden bestimmte Tiere als ihr Eigentum verteidigen – oder Bodenfruchtsammler ein Stück Land als ihren Garten –, beginnt das Hinterlassen und damit die perpetuierte Ungleichverteilung des Besitzes. Dennoch: Jäger-und-Sammler-Gesellschaften sind relativ egalitär, während Agrargesellschaften via Erbrecht starke soziale Unterschiede produzieren. Im Extremfall steht der Großgrundbesitzer dem landlosen Bauern gegenüber. Was sagt uns das? Die Autoren der Studie ziehen aus ihren quantitativen Analysen kühne Vergleiche mit modernen Industriestaaten. Der Grad erblicher Ungleichheit ist in den skandinavischen Ländern ungefähr so gering wie bei Jägern und Sammlern, hingegen ist der Gegensatz von Arm und Reich in den USA und Italien fast so hoch wie unter Hirten und Bauern. Diese Antwort auf die Frage, woher soziale Ungleichheit kommt, betont damit das Gewicht der Institution »erblicher Besitz« gegenüber dem unterschiedlichen Stand der Technik. Aha! Das heißt doch: Ein restriktives Erbrecht, etwa ein gebremstes Weiterreichen von relativ bescheidenen Besitztümern wie in Skandi navien, könnte ein modernes Land mit starken sozialen Gegensätzen mit der Zeit auf den nivellierten Zustand einer Jäger-und-Sammler-Population bringen, sofern das politisch gewollt ist. Ohnehin meinen Anthropologen, der moderne Trend zur Wissensgesellschaft verlagere das Gewicht des Erbes allmählich weg von materiellen Besitztümern hin zu kognitiven Kompetenzen. Die lassen sich ja auch schlecht im Safe bunMichael Springer kern, füge ich hinzu, die kann man eh nur jagen und sammeln.
22
Da reale Situationen aber letztlich zu komplex sind, um daraus ideale Rahmenbedingungen für Kooperation abzuleiten, setzte die Nobelpreisträgerin ihre Untersuchungen im ökonomischen Experimentallabor fort. Mit ihren Kollegen Roy Gardner und James Walker bildete sie das Allmendeproblem in einem mathematischen Interaktionsmodell ab, das sich theoretisch lösen, aber auch als Spiel realisieren lässt. Das geschah mit Studenten der Indiana University in Bloomington. Die Teilnahme war freiwillig und anonym und wurde durch eine erfolgsabhängige Prämie belohnt. Die Probanden spielten das Spiel über mehrere Runden. Dabei bestätigte sich zunächst die Vorhersage des mathemati schen Modells, wonach es zu einer Überausbeutung der Ressource kommt. Danach modifizierten Ostrom und ihre Kollegen jedoch die Regeln, indem sie Kommunikation und/oder Bestrafung der Nutzer untereinander zuließen. Dadurch nahm die Bereitschaft zur Zusammenarbeit zu. Am kooperativsten verhielten sich die Teilnehmer, wenn sie das Bestrafungssystem selbst untereinander ausmachen konnten.
Kosten der Unvernunft
Oliver E. Williamson wird für Arbeiten geehrt, die sich mit der Frage befassen, wann und warum Geschäfte innerhalb der Grenzen einer Firma stattfinden sollten und nicht auf dem freien Markt. Ausgangspunkt war ein Ansatz von Ronald Coase (Wirtschaftsnobelpreis 1991), wonach die Abwicklung von wirtschaftlichen Aktivitäten mit Kosten verbunden ist. So muss man sich über Angebote mit ihren jeweiligen Vor- und Nachteilen informieren, eventuell einen Vertrag aushandeln, die erhaltene Ware prüfen und so weiter. Während Coase nur allgemein auf die Existenz und Bedeutung dieser so genannten Transaktionskosten hinwies, konnte Williamson aufdecken, welche »unvernünftigen« Verhaltensweisen dahinterstecken und welche Faktoren sie beeinflussen. Dabei griff er die Annahme einer beschränkten Rationalität von Herbert A. Simon aus dem Jahr 1957 auf, wonach wir Menschen wegen unserer begrenzten geistigen Kapazität nicht alle relevanten Informationen sammeln und fehlerfrei verarbeiten können. Außerdem neigen wir dazu, uns opportunistisch zu verhalten und einen Partner, wenn sich SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Aktuell
NOAA
Die Überfischung der Meere ist ein notorisches Beispiel für die rücksichtslose Ausbeutung eines Gemeinguts.
die Chance dazu bietet, zu übervorteilen. Dies kann dazu führen, dass auch nach Abschluss eines Geschäfts noch Transaktionskosten anfallen. Vor dem Hintergrund dieser Überlegungen widmete sich Williamson vor allem der Frage, unter welchen Umständen welche Organisationsform für einzelne Transaktionen optimal ist. Wie er herausfand, kann es manchmal vorteilhafter sein, Geschäfte nicht über den Markt, sondern innerhalb einer Unternehmenshierarchie abzuwickeln. Das gilt insbesondere, wenn eine Transaktion sehr häufig vorkommt, ungewöhnlich komplex ist oder hohe spezifische Investitionen erfordert, die beim Wechsel des Handelspartners verloren wären. In diesem Fall erweist es sich als sinnvoll, nicht etwa immer von Neuem nach dem günstigsten Zulieferer zu suchen, sondern sich einen einmal ausgewählten Betrieb einzuverleiben und dann das Gut unternehmensintern zu beziehen. Weil Reibungsverluste minimiert werden, ist die hierarchische Abwicklung von Transaktionen innerhalb einer Firma besonders effizient. Wie Williamsons Analysen ergaben, stehen dem jedoch Kosten der Unternehmensführung gegenüber, die aus Interessenkonflikten zwischen Eigentümer und Manager entspringen. Anreize und Möglichkeiten der Betriebsleitung, sich unkontrolliert zu bereichern, wachsen mit der Unternehmensgröße an. Letztlich ist bei der Wahl der optimalen Organisationsform zwischen Markt, Unternehmen oder einer Mischform also abzuwägen, ob die Senkung von Transaktionskosten die Verluste durch eine ineffiziente Unternehmensführung übersteigt. Williamson hat mit seinen Arbeiten insbesondere die lange Zeit feindliche Einstellung der Wettbewerbspolitik gegenüber Unternehmenszusammenschlüssen untergraben, indem er die dadurch mögliche Steigerung der Effi SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
zienz betonte. Diese heute gängige Ar gumentation kann vielleicht als der bedeutendste wirtschaftspolitische Einfluss der Arbeiten von Williamsons betrachtet werden. Aber auch die Betriebswirtschaftslehre wurde von ihm nachhaltig befruchtet. Zu nennen ist hier sein Beitrag zum Management und zur Finanzierung von Unternehmen. Abschließend kann man sagen, dass Elinor Ostrom und Oliver E. Williamson die Forschung zur mikroökonomischen Fundierung von Institutionen wesentlich vorangetrieben haben. Beide gehen davon aus, dass Menschen im ökonomi schen Sinn nur beschränkt rational handeln. Williamson sieht die Ursachen vor allem im kognitiven Bereich, wodurch komplexe Vertragssituationen nicht vollständig erfasst werden können. Ostrom betrachtet dagegen auch die von Reinhard Selten (Wirtschaftsnobelpreis 2003) postulierten Motivationsschranken. Wir Menschen erkennen gewöhnlich sehr wohl die sozial unerwünschten Ergebnisse egoistischen Verhaltens und sind dann unter bestimmten Bedingungen bereit, unsere individuellen Interessen denen der Gemeinschaft unterzuordnen. Beide Laureaten haben gezeigt, wie die Grenzen der Rationalität eine wichtige Rolle bei der organisatorischen Lösung konkreter ökonomischer Probleme spielen. Nun gilt es, die Ursachen und Wirkungen dieser Schranken genauer zu erforschen. Da gibt es weiterhin viele offene Fragen, welche die Ökonomen noch eine Weile beschäftigen werden. Claudia Keser ist Professorin für Mikroökonomik an der Universität Göttingen und dort Leiterin des Göttingen Laboratory of Behavioral Economics. Ralf Paquin lehrt ebenfalls in Göttingen Internationale Wirtschaft. Christian Wey ist Professor für Volkswirtschaftslehre an der Technischen Universität Berlin und leitet die Abteilung Informationsgesellschaft und Wettbewerb am Deutschen Institut für Wirtschaftsforschung Berlin.
@
wichtigeonlineadressen
CONTOO Das Konferenzportal zur Organisation, Verwaltung und Präsentation wissenschaftlicher Tagungen www.contoo.de
Managementwissen per Fernlehre kostengünstig ortsunabhängig erwerben Qualitätsmanager, Qualitätsbeauftragter www.cqa.de
Kernmechanik Kernstrukturen + Dipolmomente Neutrino-Quantengravitation Kernmechanische Chemie www.kernmechanik.de
SciLogs Die größte deutschsprachige Webseite mit Wissenschaftsblogs www.scilogs.de
FASZINATION WELTALL ! Leuchtglobus »Der Mond«, Ø 26cm, EUR 89,95 Leuchtglobus »Sternenhimmel«, Ø 34cm, EUR 119,95 www.weltraum-versand.de
Hier können Sie den Leserinnen und Lesern von Spektrum der Wissenschaft Ihre WWW-Adresse mitteilen. Für € 98,00 pro Monat (zzgl. MwSt.) erhalten Sie einen maximal fünfzeiligen Eintrag, der zusätzlich auf der Internetseite von Spektrum der Wissenschaft erscheint. Mehr Informationen dazu von iq media-marketing gmbh Susanne Förster Telefon 0211 61 88-563 E-Mail:
[email protected]
23
Titelthema: Kosmologie
Nackte
Singularitäten Ein Schwarzes Loch – singulärer Endpunkt eines massereichen Sterns – wird nach gängiger Meinung umhüllt vom Ereignishorizont, der die Grenze herkömmlicher Physik markiert. Aber muss das so sein?
Kenn Brown, Mondolithic Studios
In Kürze r Wenn der Strahlungs druck eines großen Sterns erlahmt, kollabiert er zu einem Schwarzen Loch. Zu diesem Schicksal gibt es nach herrschender Auffas sung keine Alternative. r Doch theoretische Überle gungen zeigen eine andere Möglichkeit: Der Stern endet als nackte Singularität (siehe die Beschreibung rechts). r Die Entdeckung nackter Singularitäten würde die Suche nach einer einheit lichen Theorie der Physik voranbringen: Konsequen zen dieser neuen Physik wären durch astronomische Beobachtungen überprüfbar.
24
Von Pankaj S. Joshi
D
ie moderne Naturwissenschaft hat viele höchst ungewohnte Ideen hervorgebracht, aber kaum eine ist so seltsam wie das Schicksal eines massereichen Sterns. Nachdem er im Lauf von Millionen Jahren seinen Brennstoff verbraucht hat, vermag er seiner eigenen Schwere nicht mehr zu widerstehen und beginnt zu kollabie ren. Auch bescheidene Sterne wie die Sonne brechen schließlich zusammen, stabilisieren sich aber als kleinere Gebilde. Hingegen überwindet bei einem genügend massereichen Himmelskörper seine Gravitation alle Kräfte, die den Kollaps aufhalten könnten. Ein Mil lionen Kilometer großes Objekt schrumpft praktisch auf einen Punkt zusammen. Die meisten Physiker und Astronomen glauben, das Resultat sei ein Schwarzes Loch –
ein Körper, dessen ungeheure Schwerkraft al les in seiner unmittelbaren Nachbarschaft ver schlingt. Dieses Monstrum besteht aus zwei Teilen. In seinem Zentrum liegt eine Singula rität – der unendlich kleine Punkt, in dem sich die gesamte Materie des Sterns zusammen ballt. Die Singularität ist von einem Gebiet umgeben, dessen Rand Ereignishorizont heißt und aus dem es kein Entkommen gibt. Sobald etwas in diese Zone eindringt, verschwindet es auf Nimmerwiedersehen. Falls das hinein stürzende Objekt Licht aussendet, wird auch dies von der Singularität eingefangen; ein äu ßerer Beobachter sieht es niemals wieder. Aber ist dieses Bild wirklich wahr? Aus den bekannten physikalischen Gesetzen geht klar hervor, dass eine Singularität entsteht, aber über den Ereignishorizont sind die Aussagen ver schwommen. Den meisten Physikern kommt der Horizont als wissenschaftliches Feigenblatt SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Astronomie & Physik
sehr gelegen, denn sie müssen erst herausfin den, was bei einer Singularität genau vor sich geht: Materie wird zermalmt, aber was wird dann aus ihr? Indem der Ereignishorizont die Singularität versteckt, kaschiert er diese Wis senslücke; an der Singularität können alle mög lichen unbekannten Prozesse auftreten, ohne die Außenwelt zu beeinflussen. Wenn Astro nomen die Bahnen von Planeten und Sternen berechnen, dürfen sie die durch Singularitäten verursachte Ungewissheit einfach ignorieren und sich auf die üblichen Gesetze der Physik verlassen. Was auch immer in einem Schwar zen Loch geschehen mag – es bleibt drin. Doch neue Forschungen ziehen diese Ar beitshypothese zunehmend in Zweifel. In vie len Kollapsszenarien bildet sich kein Ereignis horizont, und die Singularität bleibt sichtbar oder, wie Physiker sagen, nackt. Sowohl Ma terie als auch Strahlung können hineinfallen und wieder herauskommen. Während der Be such der Singularität in einem Schwarzen Loch eine Reise ohne Wiederkehr wäre, könn te man sich im Prinzip einer nackten Singula rität beliebig weit nähern und zurückkehren, um davon zu berichten. Falls nackte Singularitäten existierten, wä ren die Folgen enorm; sie würden fast jeden Aspekt der Astro- und Grundlagenphysik be SPEKTRUM DER WISSENSCHAFT · Dezember 2009
rühren. Wenn es keine Horizonte gibt, kön nen mysteriöse Vorgänge in der Nähe der Sin gularitäten die Außenwelt beeinflussen. Viel leicht erklären nackte Singularitäten gewisse rätselhafte astronomische Phänomene bei ho hen Energien, und vielleicht bieten sie die Möglichkeit, das Gewebe der Raumzeit bei kleinsten Größenordnungen zu erforschen.
Kosmische Zensur
Der Ereignishorizont gilt als der einfache Teil eines Schwarzen Lochs. Wirklich rätselhaft ist die Singularität. Dort wird die Schwerkraft unendlich stark, und die bekannten physikali schen Gesetze brechen zusammen. Nach Ein steins allgemeiner Relativitätstheorie entsteht beim Kollaps eines riesigen Sterns unweiger lich eine Singularität. Allerdings berücksich tigt die Relativitätstheorie nicht die für mi kroskopische Objekte wichtigen Quanten effekte, die vermutlich verhindern, dass die Gravitation tatsächlich ins Unendliche wächst. Doch Physiker basteln weiter angestrengt an einer Quantentheorie der Gravitation, mit der sie Singularitäten erklären könnten. Was mit der eng benachbarten Raumzeit region geschieht, erscheint vergleichsweise ein fach. Der Ereignishorizont eines Sterns ist viele Kilometer groß und übersteigt damit bei Wei
Nackt oder verhüllt? Der finale Kollaps eines massereichen Sterns kann zu einem Schwarzen Loch, aber auch zu einer nackten Singularität führen. In beiden Fällen entsteht eine Singula rität – eine derart dichte Zusammenballung von Materie, dass dort neue physi kalische Gesetze gelten. Alles, was die Singularität trifft, wird zerstört. In einem Schwarzen Loch ist die Singularität »verhüllt« vom so genannten Ereignis horizont. Was durch diese Grenze fällt, kommt niemals wieder heraus. Eine nackte Singularität steckt nicht in einer solchen Hülle. Sie bleibt für externe Beobachter sichtbar, und Objekte können sich ihr im Prinzip beliebig nähern, ohne für immer eingefangen zu werden.
25
Titelthema: Kosmologie
Vaterfiguren
Photo Researchers / AIP
Die Debatte um die Existenz nackter Singularitäten hat eine lange Vorgeschichte, die sich um Schwarze Löcher dreht.
Corbis / Bettmann
Die allgemeine Relativitäts theorie sagte zwar Schwarze Löcher voraus, aber Einstein bezweifelte, dass sie jemals wirklich entstehen könnten.
Corbis / Matt Dunham
J. Robert Oppenheimer und andere Physiker zeigten: Es kann Schwarze Löcher geben.
Getty images / Bob Mahoney
Stephen Hawking und Roger Penrose (unten) bewiesen, dass Singularitäten unver meidlich sind.
Roger Penrose mutmaßte, dass Singularitäten stets von einem Ereignishorizont umhüllt sein müssen.
26
tem die Größenordnung typischer Quantenef fekte. Wenn wir annehmen, dass keine neuen Naturkräfte ins Spiel kommen, sollte der Ho rizont ausschließlich der allgemeinen Relativi tätstheorie gehorchen – einer Theorie, die auf wohl bekannten Prinzipien beruht und seit 90 Jahren durch Beobachtungen bestätigt wird. Dennoch bleibt die Anwendung der Theo rie auf kollabierende Sterne eine komplizierte Aufgabe. Einsteins Gravitationsgleichungen sind für ihre Schwierigkeit berüchtigt, und um sie zu lösen, müssen die Physiker vereinfachen de Annahmen machen. Einen ersten Versuch unternahmen die amerikanischen Physiker J. Robert Oppenheimer und Hartland S. Snyder – sowie unabhängig von ihnen der indi sche Physiker B. Datt – Ende der 1930er Jah re. Um die Gleichungen zu vereinfachen, be trachteten sie nur perfekt kugelförmige Sterne homogener Dichte und ignorierten den Gas druck. Wenn diese idealisierten Sterne zusam menbrechen, wächst die Schwerkraft an der Oberfläche und wird schließlich so stark, dass sie jegliche Strahlung und Materie einfängt und somit einen Ereignishorizont bildet. Der Stern wird für äußere Beobachter unsichtbar und kollabiert kurz darauf zu einer Singularität. Echte Sterne sind natürlich komplizierter. Ihre Dichte ist inhomogen, das Gas in ihnen übt Druck aus, und sie können andere Formen annehmen. Verwandelt sich jeder genügend massereiche Stern beim Kollaps in ein Schwarzes Loch? Im Jahr 1969 beantwortete der Mathematiker und Physiker Roger Penrose von der University of Oxford die Frage mit Ja. Er mutmaßte, die Entstehung einer Singulari tät beim Sternkollaps führe notwendigerweise zur Bildung eines Ereignishorizonts. Die Natur verbietet uns demnach, jemals eine Singularität zu sehen, weil sie stets ein Horizont umhüllt. Diese Vermutung – die so genannte Hypothese der kosmischen Zensur – liegt der modernen Theorie Schwarzer Löcher zu Grunde. Die Physiker hofften, sie könnten diese These mit derselben mathematischen Strenge beweisen wie die Unvermeidlichkeit von Singularitäten. Das ist nicht gelungen. Statt einen direkten Beweis für die Zensur zu finden, der unter al len Umständen gilt, mussten wir mühsam ein zelne Fälle analysieren und unsere theoreti schen Modelle allmählich mit Eigenschaften ausstatten, die den ersten Versuchen gefehlt hatten. 1973 berücksichtigte der deutsche Physiker Hans Jürgen Seifert die Inhomogeni tät. Interessanterweise fand er, dass Schichten einstürzender Materie vorübergehend Singula ritäten bilden konnten, die nicht von einem Horizont bedeckt waren. Doch dieser Singula ritätstyp war ziemlich gutartig. Zwar wurde die Dichte an einem Ort unendlich, aber die
Schwerkraft nicht; darum ballte die Singulari tät Materie und einfallende Objekte nicht zu einem unendlich kleinen Punkt zusammen. Somit brach die allgemeine Relativitätstheorie nie zusammen, und die Materie durchwander te diesen Ort, ohne ihr Ende zu finden. Im Jahr 1979 gingen Douglas M. Eardley von der University of California in Santa Bar bara und Larry Smarr von der University of Illinois in Urbana-Champaign einen Schritt weiter. Sie simulierten numerisch einen Stern mit einem realistischen Dichteprofil: am höchsten in der Mitte und langsam abneh mend zur Oberfläche hin. 1984 gelang De metrios Christodoulou vom Schweizer Bun desinstitut für Technologie eine exakte Be rechnung derselben Situation. Beiden Studien zufolge schrumpft der Stern auf einen Punkt und bildet eine nackte Singularität. Doch das Modell ignorierte noch immer den Druck, bis Richard P. A. C. Newman an der University of York (England) zeigte, dass die Singularität wiederum »schwach« ist, das heißt keine un endliche Schwerkraft aufweist.
Realistische Kollapsszenarien
Durch diese Befunde angeregt, versuchten nun viele Forscher, darunter auch ich, ein strenges Theorem zu formulieren: Nackte Sin gularitäten sind immer schwach. Wir hatten keinen Erfolg. Der Grund wurde bald klar: Nackte Singularitäten müssen nicht schwach sein. Wir fanden Szenarien für inhomogenen Kollaps, die zu Singularitäten mit starker Schwerkraft führen – das heißt zu echten Sin gularitäten, die Materie völlig zermalmen – und dennoch für externe Bobachter sichtbar bleiben. 1993 bestätigten Indresh Dwivedi, damals an der Agra University (Indien), und ich diese Aussage, indem wir den Sternkollaps ohne Gasdruck genau analysierten. Anfang der 1990er Jahre berücksichtigten Physiker die Wirkung des Gasdrucks. Amos Ori vom Technion-Israel Institute of Techno logy und Tsvi Piran von der Hebrew Universi ty of Jerusalem führten numerische Simulati onen durch, und mein Team löste die entspre chenden Gleichungen exakt. Sterne mit einem völlig realistischen Zusammenhang zwischen Dichte und Druck konnten zu nackten Sin gularitäten kollabieren. Ungefähr zur selben Zeit betrachteten Giulio Magli von der Polytechnischen Uni versität Mailand (Italien) und Kenichi Nakao von der Osaka City University (Japan) den speziellen Druck, den Teilchen erzeugen, die in einem kollabierenden Stern rotieren. Auch sie fanden, dass der Kollaps in vielen unter schiedlichen Situationen mit einer nackten Singularität endet. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Astronomie & Physik
Zwei kosmische Monstren Eine nackte Singularität ist im Wesentlichen ein Schwarzes Loch, das gar nicht »schwarz« ist. Da dieses hypothetische Gebilde nicht von einem Ereignishorizont verhüllt wird, vermag es Materie und Strahlung aufzusaugen und wieder auszuspucken. Darum sieht es
für einen externen Beobachter anders aus als ein Schwarzes Loch und wirkt anders auf seine unmittelbare Umgebung ein. Durch diese Unterschiede müsste eine nackte Singularität sich bei genauer Beobachtung verraten.
Schwarzes Loch
nackte Singularität
E
Querschnitt
Akkretionsscheibe
einfallendes Material
shorizo igni nt re
ausgeworfenes Material
Singularität Singularität einfallendes Material Ein Schwarzes Loch verbirgt sich hinter seinem Ereignishorizont, durch den Material von außen eindringen, aber niemals wieder entkommen kann. Oft ist der Horizont von einer rotierenden Gasscheibe umgeben. Außenansicht
Der nackten Singularität fehlt der Ereignishorizont. Sie kann wie ein Schwarzes Loch Material aufsaugen, es aber – anders als ein Schwarzes Loch – auch wieder auswerfen.
ausgeworfenes Material
Jet
einfallende Materie
Ereignishorizont Singularität Akkretionsscheibe
Stoßwelle
Von außen sieht das Schwarze Loch wie eine tiefschwarze Kugel aus. Die Singularität liegt darin und bleibt unsichtbar. Reibung in der umgebenden Scheibe erzeugt intensive Strahlung. Ein Teil des Umgebungsmaterials wird als Jet ausgestoßen; ein anderer Teil stürzt ins Loch.
Eine nackte Singularität sieht aus wie ein winziges Staubkorn, ist aber unvorstellbar dicht. Einfallende Materie bleibt bis zu ihrem Zusammenstoß mit der Singularität sichtbar. Die intensive Gravita tion kann energiereiche Stoßwellen erzeugen.
Raum-Zeit-Diagramm
Lichtstrahlen
Singularität Ereignishorizont
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Wenn der Stern inhomogen ist, reicht die Intensität seiner Schwer kraft mitunter nicht aus, um Lichtstrahlen am Entkommen zu hindern. Der Stern kollabiert zu einer Singularität, aber sie bleibt sichtbar.
27
Alfred T. Kamajian
Ein homogener Stern ohne Gasdruck kollabiert zu einem Schwarzen Loch. Die Schwerkraft des Sterns intensiviert sich und krümmt die Bahn von Objekten und Lichtstrahlen schließlich so stark, dass sie nicht mehr entkommen.
Raum
Zeit
Raum
Zeit
Inneres des Sterns
Titelthema: Zwei Arten, Kosmologie einen Stern zu zermalmen Aus Computersimulationen geht hervor, unter welchen Umständen ein Stern entweder zu einem Schwarzen Loch oder zu einer nackten
Singularität kollabiert. Die hier gezeigten Simulationen behandeln den Stern als einen Schwarm von Körnern, deren Schwerkraft so über-
Schwarzes Loch
1 Der Stern beginnt als abgeflachte Kugel.
2 Beim Kollaps wird er zunächst noch flacher ...
3 … und zieht sich dann zusammen.
4 Schließlich wird die Schwerkraft so
5 Das Material innerhalb des Horizonts
6 Der Endzustand lässt sich simulieren, aber
intensiv, dass sie Licht einfängt; ein Ereignis horizont entsteht.
Unsere Gegenbeispiele lassen vermuten, dass die kosmische Zensur keine allgemeine Regel ist
28
kollabiert weiter und bildet letztlich eine Singularität.
Diese Arbeiten gingen von perfekt sphäri schen Sternen aus; das ist eine weniger starke Einschränkung, als es scheinen mag, denn die meisten Sterne sind fast vollkommene Ku geln. Da sie außerdem bessere Voraussetzun gen für die Horizontbildung bieten als andere Formen, werden die Aussichten für kosmische Zensur fragwürdig, wenn diese sogar für Ku geln versagt. Dennoch ist auch der nichtsphä rische Kollaps erforscht worden. 1991 haben Stuart L. Shapiro von der University of Illi nois und Saul A. Teukolsky von der Cornell University in Ithaca (New York) numerische Simulationen präsentiert, bei denen längliche Sterne zu einer nackten Singularität kolla bierten. Ein paar Jahre später untersuchten Andrzej Królak von der Polnischen Akademie der Wissenschaften und ich den nichtsphä rischen Kollaps und fanden ebenfalls nackte Singularitäten. Wohlgemerkt: Beide Studien ignorierten den Gasdruck. Skeptiker haben eingewandt, diese Situa tionen seien unnatürlich. Würde eine leichte Veränderung der Anfangsbedingungen plötz lich einen die Singularität bedeckenden Ereig nishorizont hervorrufen? Dann wäre die nackte Singularität wohl ein Artefakt der in den Rechnungen benutzten Näherungen und käme in der Natur nicht vor. Einige Szenarien mit ungewöhnlichen Materieformen sind in der Tat sehr heikel. Doch wie unsere Resultate
wegen des Horizonts niemals beobachten.
bisher zeigen, sind die meisten nackten Singu laritäten stabil gegenüber kleinen Variationen der Anfangsbedingungen. Somit scheinen die se Situationen mehr zu sein als bloße Gedan kenspiele.
Wie überlistet man den Zensor?
Die Gegenbeispiele zur Hypothese von Pen rose lassen vermuten, dass die kosmische Zen sur keine allgemeine Regel ist. Die Physiker können nicht sagen »Jeder massereiche Stern kollabiert nur zu einem Schwarzen Loch« oder »Jeder physikalisch realistische Kollaps endet mit einem Schwarzen Loch«. Manche Szenarien führen zu einem Schwarzen Loch und andere zu einer nackten Singularität. In einigen Modellen ist die Singularität nur zeit weilig sichtbar und wird schließlich von einem Ereignishorizont verhüllt. In anderen Fällen bleibt die Singularität für immer sicht bar. Typischerweise entwickelt sich die nackte Singularität im geometrischen Mittelpunkt des Kollapsvorgangs, aber das muss nicht im mer so sein, und sie kann sich in andere Regi onen ausbreiten. Außerdem tritt die Nackt heit abgestuft auf: Ein Ereignishorizont ver birgt die Singularität vielleicht nur vor weit entfernten Beobachtern, während jemand, der durch den Ereignishorizont gefallen ist, die Singularität sehen könnte, bevor er sie trifft. Die Vielfalt der Ergebnisse ist verwirrend. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Astronomie & Physik mächtig ist, dass andere Naturkräfte, insbesondere der Gasdruck, im Vergleich zur Gravitation keine Rolle spielen.
1 Der Stern hat die Form einer dicken Zigarre.
2 Er verengt sich beim Kollaps.
3 Der Stern ähnelt einer schlanken Spindel.
5 Die Dichte ist an den Enden der Spindel am
6 Da kein Horizont entsteht, der die Singula
größten, und dort bilden sich Singularitäten.
ritäten verbirgt, bleiben sie für externe Beobachter sichtbar.
4 Die Schwerkraft intensiviert sich, reicht aber nie aus, um Licht einzufangen und einen Horizont zu bilden.
Meine Kollegen und ich haben verschiedene Eigenschaften dieser Szenarien herausgearbei tet, die entscheiden, ob ein Ereignishorizont entsteht oder nicht. Insbesondere untersuchen wir die Rolle der Inhomogenitäten und des Gasdrucks. Gemäß Einsteins Theorie ist die Gravitation ein komplexes Phänomen, das nicht nur eine Anziehungskraft umfasst, son dern auch Schereffekte, bei denen verschiedene Materialschichten seitlich in entgegengesetzte Richtungen verschoben werden. Ist die Dich te eines kollabierenden Sterns groß – so groß, dass er eigentlich Licht einfangen sollte –, aber obendrein auch inhomogen, dann können die Schereffekte Fluchtwege erzeugen. Beispielswei se kann die Scherung von Material in der Nähe einer Singularität kräftige Stoßwellen auslösen, die Licht und Materie emittieren – im Grund ein gewaltiger Gravitationswirbel, der die Bil dung eines Ereignishorizonts verhindert. Betrachten wir zunächst einen homogenen Stern und vernachlässigen den Gasdruck. Der Druck ändert nur Details, nicht den Verlauf der Ereignisse im Großen und Ganzen. Beim Kollaps nimmt die Schwerkraft zu und krümmt die Bahn bewegter Objekte immer stärker. Auch Lichtstrahlen werden gebeugt, und zwar irgendwann so sehr, dass sich das Licht nicht mehr aus dem Bannkreis des Sterns zu befreien vermag. Das Gebiet, dem das Licht nicht entkommt, ist anfangs klein, SPEKTRUM DER WISSENSCHAFT · Dezember 2009
wächst aber und erreicht schließlich eine sta bile Größe, die proportional zur Masse des Sterns ist. Unterdessen ballt sich der gesamte Stern gleichmäßig zu einem Punkt zusam men, weil seine Dichte räumlich gleichförmig ist und nur zeitlich variiert. Da der Lichtein fang schon einige Zeit vor diesem Moment auftritt, bleibt die Singularität verborgen. Nun betrachten wir dieselbe Situation, wo bei aber jetzt die Dichte mit dem Abstand vom Zentrum abnimmt. Der Stern ähnelt praktisch einer Zwiebel aus konzentrischen Materieschalen. Die Stärke der Schwerkraft, die auf eine bestimmte Schale wirkt, hängt von der mittleren Dichte der innerhalb dieser Schale liegenden Materie ab. Da die dichteren inneren Schalen eine stärkere Gravitationsan ziehung erfahren, kollabieren sie schneller als die äußeren. Der ganze Stern bricht nicht si multan zu einer Singularität zusammen, son dern zuerst kollabieren die innersten Schalen, dann kommen die äußeren Schalen eine nach der anderen hinzu. Diese Verzögerung kann die Entstehung eines Ereignishorizonts aufschieben. Falls er sich überhaupt bildet, dann in den dichten inneren Schalen. Doch wenn die Dichte mit dem Abstand allzu rasch abnimmt, enthalten diese Schalen vielleicht nicht genug Masse, um Licht einzufangen. Die Singularität wird bei ihrer Entstehung nackt sein. Darum gibt
Wie sich nackte Singularitäten verraten Astronomen könnten ver schiedene Indizien für nackte Singularitäten entdecken:
➤ Sternexplosionen bei hohen Energien, die nackte Singularitäten erzeugen, würden in auffälliger Weise heller und schwächer.
➤ Bestimmte Klassen von Gammastrahlungsausbrü chen werden vielleicht von ihnen verursacht.
➤ Nackte Singularitäten beugen das Licht von Hintergrundsternen anders als Schwarze Löcher.
➤ Wenn ein mutmaßliches Schwarzes Loch schneller rotiert, als seine Masse erwarten lässt, muss es sich um eine nackte Singularität handeln. Das geplante SKA-Radioteleskop (Square Kilometer Array) wäre für diesen Nachweis genügend präzise.
29
Lila Rubenstein, nach: Stuart L. Shapiro (University of Illinois) und Saul A. Teukolsky (Cornell University)
nackte Singularität
Titelthema: Kosmologie
Kann ein Schwarzes Loch platzen? Eine nackte Singularität könnte nicht nur durch den Kollaps eines Sterns entstehen, sondern auch bei der Zerstörung eines Schwarzen Lochs. Das mutet zwar unmöglich und obendrein gefährlich an, doch nach den Gleichungen der allgemeinen Relativitätstheorie kann kein Ereignishorizont existieren, wenn das Loch zu schnell rotiert oder zu viel elektrische Ladung hat. Die meisten Physiker glauben, dass das Loch jedem Versuch widersteht, seine Rotation oder Ladung über die vorgeschriebene Grenze zu erhöhen. Doch einige meinen, das Loch könnte schließlich nachgeben, wodurch der Horizont sich auflösen und die Singularität freilegen würde. Ein Schwarzes Loch in schnellere Drehung zu versetzen ist nicht allzu schwer. Die Materie fällt stets mit einem gewissen Drehimpuls ins Loch und treibt es an wie einen Kreisel. Es aufzuladen ist schwieriger, weil ein geladenes Loch gleichnamig geladene Teilchen abstößt, ungleichnamige anzieht und dadurch elektrisch neutral wird. Doch ein heftiger Materiesturz könnte diese Tendenz überwinden. Die wichtigste Eigenschaft eines Schwarzen Lochs – dass es rundum Materie verschlingt und dadurch immer weiter wächst – bedeutet vielleicht seinen Untergang. Die Forscher diskutieren noch, ob es sich am Ende zu retten vermag oder aufplatzt und seine Singularität enthüllt.
30
es eine Schwelle: Wenn das Ausmaß der Inho mogenität so klein ist, dass es unter einer kri tischen Grenze bleibt, wird sich ein Schwarzes Loch bilden; bei genügend großer Inhomoge nität entsteht eine nackte Singularität. In anderen Szenarien ist entscheidend, wie schnell der Kollaps vor sich geht. Der Effekt tritt besonders deutlich bei Modellen zu Tage, in denen das stellare Gas sich vollständig in Strahlung verwandelt hat und der Stern prak tisch zu einem gigantischen Feuerball wird; dieses Szenario hat der indische Physiker P. C. Vaidya schon in den 1940er Jahren betrachtet, als er einen strahlenden Stern modellierte. Wiederum gibt es eine Schwelle: Langsam kollabierende Feuerbälle werden zu Schwar zen Löchern, doch wenn ein Feuerball schnell genug zusammenbricht, wird das Licht nicht eingefangen, und die Singularität ist nackt.
Grüner Schleim und verlorene Socken
Die Physiker haben lange gebraucht, um solche Möglichkeiten zu akzeptieren, denn nackte Sin gularitäten werfen eine Reihe begrifflicher Rät sel auf. Häufig heißt es, damit würde die Natur an sich unvorhersehbar. Da die allgemeine Re lativitätstheorie an den Singularitäten scheitert, vermag sie nicht vorherzusagen, was sie anstel len. John Earman von der University of Pitts burgh hat das drastisch so ausgedrückt: Auch grüner Schleim und verlorene Socken könnten dort auftauchen. Es handelt sich um magische Orte, an denen die Wissenschaft versagt. Solange die Singularitäten in Ereignishori zonten versteckt bleiben, gerät diese Sponta neität nicht außer Rand und Band; die Relati vitätstheorie behält – zumindest außerhalb des Horizonts – ihre volle Gültigkeit. Doch wenn Singularitäten nackt sein können, steckt ihre Hemmungslosigkeit das übrige Universum an. Zum Beispiel müssten Physiker, wenn sie die allgemeine Relativitätstheorie auf die Bahn der Erde um die Sonne anwenden wollen, prak tisch die Möglichkeit einräumen, dass eine Sin gularität irgendwo im Weltall einen zufälligen Gravitationspuls aussendet und unseren Pla neten weit aus der Umlaufbahn katapultiert. Diese Sorge ist aber unbegründet. Unvor hersagbarkeit ist in der allgemeinen Relativi tätstheorie eigentlich nichts Besonderes; sie hängt durchaus nicht immer direkt mit einer Verletzung der Zensur zusammen. Die Theorie lässt Zeitreisen zu, die Kausalschleifen mit un vorhersehbaren Folgen erzeugen, und sogar ge wöhnliche Schwarze Löcher können verrückt spielen. Wenn wir beispielsweise eine elek trische Ladung in ein ungeladenes Schwarzes Loch werfen, verändert sich die Form der Raumzeit um das Loch radikal und lässt sich nicht mehr vorhersagen. Ähnliches gilt, wenn
das Schwarze Loch rotiert: Die Raumzeit schei det sich nicht länger säuberlich in Raum und Zeit, und die Physiker können nicht angeben, wie das Schwarze Loch sich von irgendeinem anfänglichen Zeitpunkt aus in die Zukunft entwickelt. Nur ein lupenreines Schwarzes Loch, ohne die geringste Ladung oder Rota tion, benimmt sich ganz vorhersehbar. Der Verlust der Vorhersagbarkeit und an dere Probleme mit Schwarzen Löchern wer den grundsätzlich durch das Auftreten von Singularitäten verursacht; ob sie verborgen sind oder nicht, spielt keine Rolle. Für die Lö sung dieser Probleme brauchen wir wohl eine Quantentheorie der Gravitation, die über die allgemeine Relativitätstheorie hinausgeht und eine vollständige Erklärung der Singularitäten liefert. Innerhalb dieser künftigen Theorie müsste jede Singularität eine zwar hohe, aber endliche Dichte haben. Eine nackte Singulari tät wäre ein »Quantenstern« – ein hyperdich tes Objekt, das den Regeln der Quantengra vitation gehorcht. Das vermeintlich Zufällige bekäme eine logische Erklärung. Eine andere Möglichkeit ist, dass Singulari täten wirklich unendliche Dichte haben; dann lassen sie sich nicht durch Quantengravitation wegerklären, sondern müssen so akzeptiert werden, wie sie sind. Das Versagen der allge meinen Relativitätstheorie an einem solchen Ort ist vielleicht kein Mangel der Theorie an sich, sondern ein Zeichen, dass Raum und Zeit einen Rand haben. Die Singularität mar kiert die Stelle, an der die physikalische Welt endet. Wir sollten sie uns nicht als ein Objekt vorstellen, sondern als ein Ereignis – einen Moment, in dem die kollabierende Materie den Rand erreicht und zu sein aufhört, wie ein Urknall im Rückwärtsgang. In so einem Fall haben Fragen wie »Was kommt aus einer nackten Singularität heraus?« keinen rechten Sinn. Es gibt nichts, woraus etwas kommen kann, denn die Singularität ist nur ein Moment in der Zeit. Was wir aus der Ferne sehen, ist nicht die Singularität selbst, sondern Prozesse in den extremen Materie zuständen, die in der Nähe dieses Ereignisses herrschen – zum Beispiel Stoßwellen, die durch Inhomogenitäten in dem ultradichten Medium verursacht werden, oder Quanten gravitationseffekte in dessen Nachbarschaft. Außer der Unvorhersagbarkeit stört viele Physiker ein zweites Problem. Nachdem sie provisorisch annahmen, dass die Zensurhypo these gilt, haben sie in den vergangenen Jahr zehnten verschiedene Gesetze formuliert, de nen Schwarze Löcher gehorchen sollen, und diese Gesetze haben den Anschein tiefer Wahr heiten. Doch die Gesetze bergen enorme Para doxien. Zum Beispiel besagen sie, dass ein SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Astronomie & Physik
Wie Sterne zu Grunde gehen Sterne durchlaufen charakteristische Entwicklungsphasen. Sie entstehen in gigantischen Staubwolken, strahlen Millionen Jahre lang und verlöschen schließlich. Ihre Strahlung entsteht, indem sie ihren nuklearen Brennstoff – anfangs vorwiegend Wasserstoff – zu Helium und später auch zu schwereren Elementen fusionieren. Jeder Stern hält ein Gleichgewicht zwischen der Gravitationsanziehung und den durch Kernfusion nach außen wirkenden Drücken. Doch am Ende hat sich der ganze Brennstoff in Eisen verwandelt, die Kernfusion erlahmt, die Schwerkraft setzt sich durch, und der Stern beginnt zu kollabieren. Wenn unserer Sonne der Brennstoff ausgeht, wird ihr Kern sich unter der eigenen Schwerkraft zusammenziehen, bis er nicht größer ist als die Erde. Nun wird er durch den so genannten Entartungsdruck zwischen den Elektronen stabilisiert.
Schwarzes Loch Information verschlingt und zerstört – und das widerspricht anscheinend den Grundprinzipien der Quantentheorie (sie he »Das Informationsparadoxon bei Schwar zen Löchern« von Leonard Susskind, Spek trum der Wissenschaft 6/1997, S. 58). An dem Paradoxon und anderen Zwickmühlen trägt der Ereignishorizont Schuld. Wenn er verschwindet, lösen sich wohl auch die Pro bleme auf. Falls der Stern beispielsweise den größten Teil seiner Masse im Endstadium des Zusammenbruchs abstrahlen könnte, würde er keine Information zerstören und keine Sin gularität hinterlassen. In diesem Fall wäre eine Quantentheorie der Gravitation nicht nötig, um Singularitäten zu erklären; die allgemeine Relativitätstheorie würde es allein schaffen.
Ein Labor für die Quantengravitation
Statt nackte Singularitäten als Problem zu be trachten, sollten die Physiker sie als Chance begreifen. Ein Endstadium massereicher Sterne, das externen Beobachtern zugänglich bleibt, er laubt Einblicke in Quantengravitationseffekte. Halb fertige Gedankengebäude wie Stringtheo rie oder Schleifen-Quantengravitation haben jede Art von Beobachtung bitter nötig; sonst er sticken sie geradezu am Übermaß theoretischer Möglichkeiten. Meist suchen die Forscher sol che Hinweise im frühen Universum, denn da mals herrschten derart extreme Bedingungen, dass Quantengravitationseffekte dominierten. Doch der Urknall war ein einmaliges Ereignis. An nackten Singularitäten könnten Astrono men, wenn ein massereicher Stern sein Ende findet, das Äquivalent eines Urknalls studieren. Um zu erforschen, wie eine nackte Singu larität den Einblick in sonst unbeobachtbare Phänomene ermöglicht, simulierten wir kürz lich den Kollaps eines Sterns mit Hilfe der Schleifen-Quantengravitation. Gemäß dieser SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Dieses Objekt heißt Weißer Zwerg. Sterne von drei- bis vierfacher Sonnenmasse nehmen einen anderen Endzustand ein: Sie werden zu Neutronensternen, in deren übermächtiger Schwerkraft sogar Atome zusammenbrechen. Diese kaum zehn Kilometer großen Gebilde werden durch den Entartungsdruck der Neutronen aufrechterhalten. Noch massereichere Sterne können weder als Weiße Zwerge noch als Neutronensterne enden, weil nicht einmal ein Entartungsdruck sie zu stabilisieren vermag. Falls nicht eine andere, unbekannte Art von Druck ins Spiel kommt, hält nichts mehr den Kollaps auf. Nun herrscht die Schwerkraft unangefochten, und das Schicksal des Sterns wird durch Einsteins Gravitationstheorie bestimmt. Ihr zufolge ist das Resultat eine Singularität – und die Frage bleibt, ob dieses Sternengrab sichtbar ist oder nicht.
Theorie besteht der Raum aus winzigen Ato men, die sich nur bemerkbar machen, wenn die Materie genügend dicht wird; dann ent steht eine extrem starke Abstoßung, die ver hindert, dass die Dichte jemals unendlich wird (siehe »Der Ur-Sprung des Alls« von Martin Bojowald, Spektrum der Wissenschaft 5/2009, S. 26). In unserem Modell treibt eine solche abstoßende Kraft den Stern auseinan der und löst die Singularität auf. Fast ein Vier tel der Sternmasse wird im letzten Bruchteil einer tausendstel Sekunde ausgestoßen. Kurz vorher würde einem fernen Beobachter ein plötzlicher Abfall in der Intensität der vom kollabierenden Stern emittierten Strahlung auffallen – ein direktes Resultat von Quanten gravitationseffekten. Die Explosion entfesselt hochenergetische Gammastrahlen sowie kosmische Strahlen und Neutrinos. Bevorstehende Experimente werden vielleicht empfindlich genug sein, um solche Emissionen zu registrieren – insbeson dere das Extreme Universe Space Observatory, das 2013 an Bord der Internationalen Raum station ISS den Betrieb aufnehmen soll. Die Details der Beobachtungen könnten die Ent scheidung zwischen verschiedenen Theorien der Quantengravitation erleichtern. Sowohl ein Beweis als auch eine Widerle gung der kosmischen Zensur würde die Physik verändern, denn nackte Singularitäten berüh ren grundlegende Aspekte gängiger Theorien. Schon heute geht aus theoretischen Arbeiten hervor, dass die Zensur nicht, wie oft unter stellt, ohne Wenn und Aber gilt. Singularitäten sind nur verhüllt, wenn passende Bedingungen herrschen. Offen bleibt, ob diese Bedingungen in der Natur jemals entstehen konnten. Jeden falls ist die nackte Singularität kein physika lisches Schreckgespenst, sondern ein faszinie rendes Objekt künftiger Forschung.
Pankaj S. Joshi ist Physikprofessor am Tata Institute of Fundamental Research in Mumbai (Indien). Seine Spezialgebiete sind Gravitation und Kosmologie.
Earman, J.: Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetime. Oxford University Press, 1995. Goswami, R. et al.: Quantum Evaporation of a Naked Singularity. In: Physical Review Letters 96(3), Paper Nr. 031302, 2006. Joshi, P. S.: Gravitational Collapse and Spacetime Singularities. Cambridge University Press, 2007. Shapiro, S. L., Teukolsky, S. A.: Black Holes, Naked Singularities and Cosmic Censorship. In: Ame rican Scientist 79(4), S. 330 – 343, 1991. Thorne, K. S.: Gekrümmter Raum und verbogene Zeit. Einsteins Vermächtnis. Droemer Knaur, München 1994.
Weblinks zu diesem Thema finden Sie unter www.spektrum.de/artikel/ 1010642.
31
PHYSIKALISCHE UNTERHALTUNGEN Mechanik
Schöne Welt ohne Reibung? Wäre eine Welt ohne Reibung schöner oder aber ganz schrecklich? Es kommt darauf an, was mit »Reibung« gemeint ist. Von Norbert Treitz
D
as Gerät im Bild rechts besteht vor allem aus zwei Rollen mit je zwei Rillen, die etwa den Rollendurchmesser als Abstand voneinander haben. Ihre reibungsarmen Achsen sind windschiefrechtwinklig zueinander montiert. Ein geschlossener Faden führt so um die Rollen herum, dass er ungefähr an vier parallelen Kanten eines gedachten Quaders entlangführt. Nun greifen wir den Faden an einer Stelle, etwa dort, wo er zusammengeknotet ist, und bewegen ihn abwechselnd vor und zurück. Dabei dreht sich jeweils eine der beiden Rollen mit, während die andere stillsteht. Jede Rolle dreht sich aber stets nur in einer Richtung. Die ganze Anordnung wirkt also wie ein Gleichrichter für die Drehung der Rollen. Aber wieso? Wenn statt des Fadens über die Rollen eine Fahrradkette über Zahnräder laufen würde, könnte sich gar nichts bewegen. Der Faden aber kann überall, wo er es für nötig hält, auch gleiten. Indem
»Haftreibung« zu vermeiden und spricht von Haftung oder Haftwiderstand. Dabei übertragen Haft- und Gleitreibung gleichermaßen Impulse. Der Unterschied zwischen beiden besteht im Energieumsatz: Nur wenn eine solche Kraft mit Relativbewegung verbunden ist, wird Reibungsarbeit geleistet und damit die »schöne« kinetische Energie in Wärmeenergie verwandelt, die sich in aller Regel unwiederbringlich in die Umgebung verkrümelt. Die Relativbewegung muss dabei nicht unbedingt sichtbar sein. Es ist bekanntlich anstrengend, einen Koffer mit einer Hand zu halten, kaum weniger, als ihn einige Male hochzuheben. In beiden Fällen verbrauchen unsere Muskeln Nahrung und Atemluft. Dagegen verbraucht ein Kran, an den wir den Koffer hängen, nur beim Heben Energie. Machen unsere Muskeln da etwas falsch? Na ja, sie sind nicht auf statische Belastung optimiert, sondern auf schnelle Bewegungen. Statisches Halten können sie nur behelfsmäßig, so wie man ein Auto statt mit den
wir am Knoten ziehen, machen wir die Fadenspannung in Zugrichtung voraus etwas kleiner und dahinter etwas größer. Entsprechend unterschiedlich sind die Andruckkräfte zwischen dem Faden und den Rollen. Wenn nun auf einer Rolle der Faden sich in den beiden Rillen gegenläufig bewegt, nimmt er die Rolle dort mit, wo er stramm aufliegt, und gleitet in der anderen Rille. Die Gleichrichtung der Rollendrehungen kommt also durch ein Wechselspiel der Effekte zu Stande, die man als Gleit- und Haftreibung bezeichnet. Das Wort »Haftreibung« ist zunächst gewöhnungsbedürftig. Wieso soll man etwas »Reibung« nennen, wenn sich die beiden Partner gerade nicht aneinander reiben, also relativ zueinander bewegen? Zum Ende eines Bahnstreiks im vorigen Jahr titelte eine Zeitung: »Die Bahn fährt wieder reibungsfrei«, und eine andere fand das sehr lustig, weil ja nur Zahnradbahnen ohne (Haft-)Reibung funktionieren können. Aus diesen Gründen versucht man gelegentlich das Wort
Die Unbestimmtheitsrelation für den Kontrabass Je genauer ein Zeitpunkt festgelegt ist, desto ungenauer ist die Energie bestimmbar; Entsprechendes gilt für die Bestimmung von Orts- und Impulskomponenten. Das ist die qantenmechanische Unbestimmtheitsrelation. Sie macht sich bei atomaren Systemen drastisch bemerkbar, bei Verkehrsmitteln dagegen weniger. Bemerkenswerterweise kann man ihre Grundlage aus der Mathematik von Schwingungen herleiten und daher auch auf die Akustik anwenden. Steht zur Frequenzmessung eine Zeit Dt zur Verfügung, so kann die Frequenz f nur mit einer (Un-)Genauigkeit Df – was ungefähr gleich 1/Dt ist – gemessen oder gehört werden. Das leuchtet ein, wenn die Frequenz durch Abzählen der Schwingungen im Zeitintervall Dt bestimmt wird: Wer zehn Schwingungen zählt, weiß nicht, ob innerhalb dieser Zeit etwas mehr als 10 oder fast 11 Schwingungen stattgefunden haben. Es gilt aber auch für Frequenzmessungen mit Resonanzerscheinungen, etwa mit dem Zungenfrequenzmessgerät oder im menschlichen Innenohr.
32
Auf richtig gestimmten Instrumenten mit Tasten oder mit Bünden (wie auf der Gitarre) kann man nur um volle Halbtöne danebengreifen, bei einer Geige oder einem Kontrabass aber auch beliebig weniger. Das zu vermeiden erfordert Übung. Nehmen wir an, dass wir einen relativen Fehler von 3 Prozent, also etwa einem Viertelton, als störend empfinden, so wären das bei gewünschten f = 400 Hertz etwa Df = 12 Hertz. Wir würden das schon nach rund 1/12 Sekunde merken. Machen wir den gleichen relativen Fehler aber bei 100 Hertz, so wären das nur Df = 3 Hertz, und wir hören das als Fehler erst nach Dt = 1/3 Sekunde. Obertöne haben die gleichen prozentualen Fehler, aber höhere absolute, die daher noch früher erkannt werden. Beim gezupften Bass haben wir tiefe Töne mit schnell abklingenden Obertönen und können uns daher mehr Ungenauigkeit erlauben als beim Streichen einer Geige mit ihren hohen Dauertönen. Wer den Übungsaufwand für das saubere Spielen nicht treiben kann oder will, ist daher gut beraten, tiefe Töne zu zupfen (Bass) oder Gitarren oder Tasteninstrumente zu verwenden.
SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Merkwürdig – jede Rolle dreht sich immer nur in ein und dieselbe Richtung.
Bremsen auch mit dem Motor und rutschender Kupplung daran hindern kann, den Berg hinunterzurollen. In den Muskelfasern können sich nämlich gewisse Moleküle unter Energieaufnahme knickend verformen und dabei in engen Röhrchen wandern, was die Muskelfasern verkürzt. Sie können aber in dieser Position nicht einrasten, sondern rutschen danach wieder zurück. Das Halten gleicht daher einem Tauziehen am glitschigen Tau mit Gleitreibung und Energieumsatz auch ohne äußere Bewegung. Wenn man etwas über Kräfte lernen will, sollte man unsere eigene Muskelkraft nicht als Musterbeispiel nehmen. Sie ist nämlich auch in der Statik nicht ohne Leistung zu haben und damit völlig untypisch. Dass wir dauernd mit ihr zu tun haben, macht die Sache auch nicht besser!
Reibungskoeffizienten und die Folgsamkeit der Konservendose
Für den Fall, dass ein Objekt mit einer Kraft Fquer (meist der Schwerkraft oder einer Komponente von ihr) rechtwinklig zu einer Kontaktfläche gegen ein anderes Objekt gedrückt wird, gibt es zwei wichtige (Faust-)Formeln. Der Kraftschluss,
das ist genau genommen die zeitliche Ableitung des übertragenen Impulses, in einer tangentialen Richtung ist oft annähernd proportional zu Fquer und im Prinzip von der Relativgeschwindigkeit abhängig, im Wesentlichen aber oft nur davon, ob diese null ist oder nicht. Ist sie null, so haben wir Haftreibung und für den Kraftschluss einen Maximalwert Fhaft,max = khaft Fquer. Versucht man diesen zu überschreiten, reißt die Haftung ab und geht in Gleiten über mit einem etwas kleineren Wert Fgleit = kgleit Fquer. Die beiden Koeffizienten k sind im Wesentlichen nur von den beiden Materialien und deren Oberflächen abhängig. Für die Haftreibung kann man das mit einer stark idealisierenden Modellvorstellung plausibel machen: Man stelle sich die Oberflächen mit sägezahnartigem Profil mit einem Böschungswinkel f vor und nimmt an, dass die Flanken dieser Sägezähne reibungsfrei gleiten können. Werden nun beide Flächen mit Fquer gegeneinandergedrückt, bleiben sie bei Tangentialkräften kleiner als Fquer tan(f) eingerastet und gleiten bei größeren aus der »Verzahnung« heraus. Ein sehr schönes Experiment zur Haftreibung wird oft im Sinn eines
SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Christoph Pöppe
Astronomie und Physik
»Nachweises der Trägheit« gedeutet. Man legt einen Papierstreifen auf den Tisch und stellt auf einen Teil von ihm eine Konservendose. Zieht man nun den Streifen schwach beschleunigt zur Seite, kommt die Dose mit, zieht man aber stark beschleunigt, bleibt sie stehen. Wäre dabei die träge Masse entscheidend, müsste man mit diesem Versuch eine leere von einer vollen Dose mit sonst gleichen Eigenschaften unterscheiden können. Das ist jedoch nicht der Fall: Stellt man beide Dosen nebeneinander auf den Streifen, so wandern entweder beide mit, oder beide bleiben stehen. Nach unseren Formeln ist das klar: Beschleunigen wir mit weniger als dem khaft -Fachen der Fallbeschleunigung, so greift die Haftreibung; sonst nicht. Die Massen der Dosen kürzen sich aus der Rechnung weg, nicht anders als beim freien Fall, mit dem man ja bekanntlich auch nicht die leere Dose von der vollen unterscheiden kann. Will man das Experiment etwas exakter als freihändig ausführen, kann man ein sehr großes Fallgewicht mit wählbaren Zahnrad-Untersetzungen zum Ziehen des Papierstreifens verwenden. Wir legen ein langes, geschlossenes Seil über die Rille einer Rolle mit waage33
Daniel Gatz
rechter Achse, die von einem Motor zu gleichmäßiger Drehung angetrieben wird. An den untersten Punkt, der auch der Knoten sei, hängen wir eine Last. Zuerst nimmt die Haftreibung das Seil in Drehrichtung mit und lenkt die Last entsprechend nach oben und zur Seite aus. Dazu ist mit zunehmender Winkelauslenkung ein größerer Kraftschluss nötig. Reißt die Haftung ab, rutscht das Pendel zurück, wie ein gewöhnliches Pendel mit Gleit reibung. Wenn es dann wieder vorwärtsschwingt, haben irgendwann Seil und Rolle die gleiche Umfangsgeschwindigkeit. Dann greift die Haftreibung wieder, wodurch abermals etwas Energie von der Rolle in die Pendelschwingung eingespeist wird. So treibt also die mit konstanter Winkelgeschwindigkeit getriebene Rolle eine entdämpfte (ungenauer gesagt: ungedämpfte) annähernd harmonische Schwingung an. Entscheidend ist dabei, dass der Koeffizient der Haftreibung zwischen Seil und Rolle (etwas) größer als derjenige der Gleitreibung ist. Diese Anordnung heißt Froude-Pendel.
Dasselbe Prinzip finden wir an unerwarteter Stelle realisiert: beim Streich instrument. Obwohl ein Geigenbogen heutzutage fast ganz gerade ist, funktioniert er mechanisch wie ein Flitzebogen: Fäden (nämlich Pferdehaare) werden von einem elastisch verformten hölzernen Gegenstand gespannt. Wenn man als Falschspieler in einem Orchester nicht auffallen möchte, kann man den Bogen mit Seife einschmieren. Zum richtigen Spielen nimmt man aber ein Harz namens Kolophonium, das die Haftreibung zwischen Bogen und Saite sehr groß macht.
Der folgsame Bogen
Im chinesischen Fischbrunnen hüpft das Wasser. Norbert Treitz
PHYSIKALISCHE UNTERHALTUNGEN
Der passive Bogen folgt dem streichenden – in Gegenrichtung.
34
Beim Streichen nimmt der Bogen die Saite mit Haftreibung relativ langsam mit, bis ihre Spannung zu groß wird und sie mit Gleitreibung zurückschnellt. Die Kontaktstelle der Saite schwingt also fast genau so wie das Froude-Pendel an der rotierenden Rolle, das heißt, sie macht eine asymmetrische, sägezahnförmige Bewegung. Die ganze Saite – genauer: der Teil zwischen dem Steg einerseits und dem Sattel beziehungsweise dem abgreifenden Finger andererseits – schwingt mit einer Überlagerung aus den auf ihr möglichen Partialschwingungen, und zwar mit solchen Amplituden, dass sich am Kontaktpunkt die genannte Sägezahnschwingung ergibt. Wir halten eine Geige so, dass eine ihrer Saiten zuoberst und waagerecht liegt, streichen sie an der üblichen Stelle in der Nähe des Stegs mit einem Bogen und legen einen anderen Bogen – natürlich mit den Haaren zuunterst – auf die »gegenüberliegende« Stelle der Saite, das heißt ebenso weit entfernt vom Sattel, wie der streichende Bogen vom Steg entfernt ist. Diesen »passiven« Bogen hän-
gen wir mit dem Ende, an dem man ihn sonst anfassen würde (dem »Frosch«), an einem Stativ auf. Beide Bögen werden gleichermaßen mit Kolophonium behandelt. Streicht man nun mit dem ersten Bogen über die Saite, so wandert der hängende Bogen punktsymmetrisch gegenläufig mit, sozusagen wie von Geis terhand geführt (Bild links). Die geradzahligen Oberschwingungen der Saite sind stets punktsymmetrisch zu ihrem Mittelpunkt; offensichtlich sind sie es, die den Weg des passiven Bogens bestimmen. Immer wenn der aktive Bogen relativ langsam einen Punkt der Saite per Haftreibung mitnimmt, nimmt der gegenüberliegende Punkt der Saite den anderen Bogen in der Gegenrichtung mit, ebenfalls per Haftreibung. Zu den übrigen Zeiten rutschen die Bögen mit Gleitreibung schnell über die Saite.
Chinesischer Fischbrunnen
Diese Bronzeschüssel (Bild links unten) hat mir ein Kollege aus seiner chinesischen Heimat mitgebracht. Sie hat zwei Henkel und Reliefverzierungen, die wie Fische aussehen. Stellt man sie bis zur Markierung mit Wasser gefüllt auf eine weiche Unterlage und reibt mit fettfrei gewaschenen feuchten Händen von den Handwurzeln bis zu den Mittelfingerspitzen über die Griffe, so sieht man an vier Stellen senkrecht bis zu 10 Zentimeter hoch springende Wassertropfen, fast so, als würden die Fische spucken. Ein mitfühlender Beobachter, der einen Finger in das Wasser tunkt, spürt es kribbeln. Dieser »chinesische Fischbrunnen« hat mehr Gemeinsamkeiten mit der gestrichenen Geige, als man zunächst meinen könnte. Die Griffe übernehmen zugleich die Rollen der Saite und des Stegs, indem sie sich (ganz wenig!) verformen und Schwingungen auf die Schüssel übertragen, und zwar auf vier Stellen, in deren Nähe dann das Wasser sprudelt. Norbert Treitz ist pensionierter Professor für Didaktik der Physik an der Universität Duisburg-Essen. Seine Vorliebe für erstaunliche Versuche und Basteleien sowie für anschauliche Erklärungen dazu nutzt er auch zur Förderung hoch begabter Kinder und Jugendlicher. SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Schlichting! Eine Kerzenkorona (links), wie sie beim Blick durch eine Overheadfolie entsteht, verdankt sich deren nahezu perfekten Streuzentren (schwarze Punkte unten, mikroskopisch vergrößert).
Weihnachtliche Krönung
Kreisdurchmesser: 4 Millimeter alle Fotos: H. Joachim Schlichting
Eine durch Beugungseffekte erzeugte Korona verleiht Kerzenflammen wahrhaften Glanz.
A
ls Wohnungen noch mit Öfen beheizt wurden und Fenster nur einfach verglast waren, sorgten die kälteren Monate oft für einen schönen Effekt: Kerzenflammen, betrachtet durch eine beschlagene Fensterscheibe, erschienen dann von mehr oder weniger farbigen Ringen umgeben. Auf diese Veredelung des Lichts muss man aber auch heute nicht verzichten. Ganz zeitgemäß kann als Ersatz für die (beschlagene) Scheibe eine (trockene) Overheadfolie dienen. Blickt man hindurch, erscheint die Flamme wie ehedem von einer (meist noch schöneren) Korona umgeben, deren Farbintensität und -diversität kaum zu wünschen übrig lässt. Wie aber kommt es zum eindrucksvollen Phänomen der »Lichtkrone«? Betrachten wir den wohl einfachsten Fall. Zur Vorbereitung sticht man mit einer feinen Nadel ein winziges Loch von einigen hundertstel Millimetern Durchmesser in ein Stück Papier, etwa eine Karteikarte. Diese presst man dazu fest auf eine Glasplatte, so dass sich der Durchstich auf die vorderste Nadelspitze beschränkt. Als Lichtquelle eignet sich der Sonnenreflex auf einer verspiegelten Weihnachtskugel, wie sie zurzeit ja leicht zu beschaffen ist. Nun endlich blickt man durch die Karte hindurch ins Licht. Weil dieses am winzigen Loch gebeugt wird, kommt es im Auge zu richtungsabhängigen Auslöschungen und Verstärkungen einzelner Wellenlängen, sprich Lichtfarben. Und weil weißes Licht sämtliche Spektralfarben beinhaltet, erscheinen schließlich farbige, konzentrisch um das helle Zentrum gelegene Ringe. SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
Ganz ähnliche Koronen erzeugen auch kleine Partikel. Damit halten sie sich an das babinetsche Prinzip: Die Beugungsbilder zweier komplementärer Blenden entsprechen sich, ein »Loch« führt zum selben Effekt wie ein entsprechend großes Scheibchen. Das kann das Tröpfchen an einer beschlagenen Scheibe sein, aber auch eine dünne Tröpfchenwolke, die sich vor Sonne oder Mond schiebt. Eine kleine Schwierigkeit tut sich allerdings auf: Damit die Intensität der so erzeugten Korona hinreichend groß wird, müssen sich die Beugungsbilder vieler Tröpfchen überlagern. Störungsfrei geschieht dies aber nur im Fall gleich großer Streuzentren. Je stärker hingegen die Tröpfchengröße variiert, desto mehr weichen die Beugungsbilder voneinander ab. Dann mischen sich die Farben zunehmend, so dass am Ende möglicherweise nur ein weißer Hof rund um die Lichtquelle zu sehen ist. Die Overheadfolie hingegen sorgt ganz mühelos für Farbenpracht. Denn sie ist nicht völlig homogen, sondern besitzt einen mikroskopisch feinen Belag, der nahezu gleich große, kreisrunde Partikel enthält. Welcher Funktion sie dort auch immer nachkommen: Uns dienen sie als ideale Streuzentren für lichtstarke Beugungsbilder. Natürlich ließe sich, was jetzt an Formen und schillernden Farben zu sehen ist, schlicht als Lösung der maxwellschen Gleichungen für elektromagnetische Wellen auffassen. Das Phä nomen in Gänze erfasst man so aber nicht. Der Zauber der Kerzenkorona bleibt bestehen – und lässt sich nicht weiter reduzieren.
Ein in Pappe gestochenes Loch führt zu einer Korona geringerer Intensität. Zudem sind ihre Konturen durch den ungleichmäßigen Rand des Lochs weniger ausgeprägt.
H. Joachim Schlichting ist Professor und Direktor des Instituts für Didaktik der Physik an der Universität Münster.
35
Materialforschung
Ein eiserner Schlüssel zur
Hochtemperatursupraleitung Die Entdeckung im letzten Jahr, dass Eisenpniktide bei über 50 Kelvin supraleitend sein können, versetzte die Fachwelt in neue Aufregung. Nach 20 Jahren Rätselraten um den Mechanismus der Hochtemperatursupraleitung könnte hier der Heilige Gral der Disziplin liegen.
Von Graham P. Collins
In Kürze r Konventionelle Supra leiter transportieren elektri schen Strom nur dann verlustfrei, wenn sie fast auf den absoluten Temperatur nullpunkt heruntergekühlt werden. Erst seit Ende der 1980er Jahre werden mit Kupraten weit höhere Arbeitstemperaturen erreicht. r Supraleitung bei Raumtemperatur bleibt bislang ein Traum – vor allem auch deshalb, weil der Mecha nismus, der in Kupraten zur Supraleitfähigkeit führt, noch nicht aufgeklärt ist. r Doch 2008 entdeckten Physiker, dass spezielle Verbindungen, so genannte Pniktide, bei höheren Temperaturen ebenfalls supraleitend sind. Durch Vergleiche mit den Kupraten hoffen Forscher, nun das Rätsel der Supraleitung lösen zu können.
36
E
igentlich hielt Hideo Hosonos Forschergruppe am Tokioter In stitut für Technologie gar nicht nach einem Supraleiter Ausschau. Im Jahr 2006 suchte sein Team einfach ei nen neuen transparenten Halbleiter für den Einsatz in Flachbildschirmen. Als die Wis senschaftler dann aber die Eigenschaften der von ihr hergestellten Substanz genauer analysierten, waren sie überrascht: Unter halb einer Temperatur von vier Kelvin, das sind minus 269 Grad Celsius, verlor sie ih ren elektrischen Widerstand. Die Kombi nation aus Lanthan, Sauerstoff, Eisen und Phosphor war supraleitend. Beeindrucken konnten sie damit vorerst niemanden. Der gewünschte Effekt ließ sich nur mit extremer Kühlleistung erkau fen, zudem liegt der Laborrekord für su praleitendes Material derzeit (und schon seit 1995) bei 138 Kelvin. Selbst damit ist niemand so recht glücklich, schließlich gel ten rund 300 Kelvin, also Raumtempera tur, als höchstes Ziel der Disziplin. Und doch reagieren Experimentatoren auf die Entdeckung eines neuen Supraleiters ähn lich wie Segelsportler, die sich ein neues Boot zugelegt haben. Die Segler wollen he rausfinden, wie sie das Optimum an Ge schwindigkeit aus dem neuen Design he rauskitzeln können. Und Physiker wollen
wissen, wie sie einen Supraleiter optimie ren müssen, damit er seine faszinierende Fähigkeit auch bei höheren Temperaturen beibehält. Heutige industrietaugliche Supraleiter funktionieren nur dank teurer, aufwän diger und sperriger Kühlsysteme auf Basis von flüssigem Helium. Jede Erhöhung der so genannten kritischen Temperatur oder Sprungtemperatur, bei der die normale Leitfähigkeit in Supraleitung übergeht, würde den Umgang mit ihnen erleichtern. Dann ließen sich neue technische Verfah ren und dank geringerer Kosten auch neue Anwendungen entwickeln: Kabel etwa, die hohe Ströme verlustfrei transportieren, oder kompakte, superstarke Magnete für Kernspintomografen, Magnetschwebebah nen, Teilchenbeschleuniger und andere technische Wunderwerke. So machte sich die Gruppe von Hosono daran, ihr Material zu dotieren. Sie fügte ihm also Atome anderer Elemente hinzu, um die Sprungtemperatur zu erhöhen. Der Standardtrick funktionierte. Als sie einige Sauerstoffatome gegen Fluor austauschten, stieg die Sprungtemperatur auf sieben Kel vin. Der Austausch von Phosphor gegen Arsen brachte einen noch höheren Wert: 26 Kelvin. Als die Forscher Ende Februar 2008 dieses Ergebnis veröffentlichten, horchten bereits Physiker auf der ganzen Welt auf. Ende März erreichten chinesische Teams mit
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Foto: Jamie Chung; Styling: Brian Bryn
Astronomie & Physik
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
37
Materialforschung
Was den Strom verlustfrei fließen lässt gewöhnlicher Leiter
Weg der Leitungselektronen Strom im Leiter
Fließende Elektronen in einem Draht stoßen immer wieder an Metallionen des Drahts, verlieren dadurch Energie und erwärmen den Leiter. +
+
+ +
+
Gitter aus positiv geladenen Atomrümpfen
+
+ +
+ +
+ + + +
+
+ + + +
+
+ _
+
+ +
+
+ + + +
+
_
+
Wärme (Energieverlust)
+
Elektron eines Cooperpaars Strom im Supraleiter
_
+ +
+ +
+ +
Supraleiter
+
+ +
+ +
+ + + +
+
+ + + +
+ +
+
_
+
+
+
+ +
ad
in
g-
Ik
ka
nd
a
Bewegungsrichtung
cy
Re
Durch eine anziehende Wechselwirkung (rot) verbinden sich Elektronen zu Cooperpaaren, die, ohne anzuecken, durch den Supraleiter fließen können. Wie es in konven tionellen Supraleitern, die erst bei wenigen Kelvin supraleitend werden, zu dieser Wechselwirkung kommt, konnten die Forscher bereits aufklären. Hochtemperatursupraleiter wie Kuprate, Eisenpniktide und einige andere Materi alien geben aber noch Rätsel auf.
+
+ +
+
_
Lu
Ein gewöhnlicher Leiter entzieht dem elektrischen Strom Energie, weil die Elektronen, die den Strom tragen, mit den Atomrümpfen des Leiters zusammenstoßen (oben). Im Gegensatz dazu bilden die Elektronen in einem Supraleiter »Cooperpaare« (unten), die sich alle in einem einzigen Quantenzustand niedrigster Energie zusammenfinden, ein Prozess, der als BoseEinstein-Kondensation bekannt ist. Der »See« von Cooperpaaren bewegt sich dann wie eine Einheit. Wollte man ein einzelnes Exemplar herausfischen, müsste man es zuerst in einen Quantenzustand höherer Energie versetzen. Dazu aber reicht, wenn nur die Temperatur ausreichend niedrig ist, eine Kollision mit einem Metallion nicht aus. Bei tiefen Temperaturen fließt der Strom daher ohne Verlust.
Cool down 1911 entdeckte der Nieder länder Heike Kamerlingh Onnes (Nobelpreis für Physik 1913), dass Strom in extrem abgekühltem Queck silber verlustfrei fließen kann. Als Kühlmittel diente flüssiges Helium, dessen Siedepunkt bei 4,2 Kelvin liegt und das Kamerling Onnes 1908 als Erster hergestellt hatte. Heute sind vor allem NiobLegierungen als Supraleiter im Einsatz, die auf mindes tens 18 Kelvin abgekühlt werden müssen. Manche Anwendungen bedürfen allerdings starker Magnetfelder und hoher Stromdichten. Dann ist zusätzliche Kühlung erforderlich. So arbeiten etwa die starken Magnete des Teilchenbe schleunigers LHC bei nur 2,9 Kelvin.
38
ähnlichen Verbindungen dann 40 Kelvin, ei nen Monat später 56 Kelvin (siehe »Nach dem Kupfer die Eisenzeit?«, SdW 7/2008, S. 20). Nun war die Forschergemeinde begeistert. Die Rekorde, die in den letzten zwei Dekaden mit Kupferoxid-Supraleitern, so genannten Kupraten, erzielt worden waren, lagen zwar noch außer Reichweite. Doch das musste nicht so bleiben. Außerdem vermuteten die For scher, dass Eisenverbindungen technisch leich ter einsetzbar sind: Lange Stromleitungen oder Magnete lassen sich aus Kupraten nur mit ho hem technischem Aufwand herstellen; Eisen verbindungen sind zwar auch spröde, aber här ter, bruchfester und einfacher synthetisierbar. Ungewöhnlich war das neue Material au ßerdem. Eisenatome sind stark magnetisch, was den Effekt der Supraleitung in der Regel unterdrückt. Charakteristisch für einen Supra leiter ist nämlich auch, dass er ein äußeres ma gnetisches Feld daran hindert, sich durch ihn auszubreiten; stattdessen zwingt er es, sich um ihn herumzuwinden. Anders herum gilt: Sind Felder stark genug, um in den Supraleiter ein zudringen, zerstören sie den Effekt des verlust freien Stromflusses. Warum der Magnetismus ausgerechnet in diesem Fall nicht weiter stört, ist bislang allerdings unbeantwortet.
Wohl am faszinierendsten für die Forscher war aber, dass sich mit den Pniktiden – Ver bindungen mit Elementen aus der Stickstoff gruppe des Periodensystems – endlich eine zweite Klasse von Hochtemperatursupralei tern zu den Kupraten gesellte. Letztere haben seit über 20 Jahren allen Versuchen der For scher widerstanden, eine Theorie zu formulie ren, die alle ihre Eigenschaften und insbeson dere die hohe Sprungtemperatur erklärt. Jetzt aber ließen sich Vergleiche zwischen zwei Ma terialarten anstellen. So könnten die Experi mentatoren auf entscheidende Effekte stoßen, die Theoretiker dann in ihren Modellen be rücksichtigen würden. Diese Hoffnung war und ist durch viele Ähnlichkeiten gerechtfertigt. Beide Material arten besitzen höhere Sprungtemperaturen als alle anderen supraleitenden Materialien, und bei beiden stellte sich heraus, dass sich die maximale Sprungtemperatur durch optimales Dotieren erreichen lässt. Dotiert man das Ma terial schwächer oder stärker, sinkt also auch die kritische Temperatur wieder. Die bemer kenswerteste Analogie liegt jedoch darin, dass sowohl Kuprate als auch Eisenpniktide aus ei nander abwechselnden Atomlagen bestehen. Kuprate sind aus Kupferoxidschichten (CuO2 ) SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Astronomie & Physik aufgebaut, während das neue Material Ebenen aus Eisen besitzt, das an Elemente aus der Stickstoffgruppe des Periodensystems – wie Phosphor, Arsen oder Antimon – gebunden ist. So wechseln sich etwa in Hosonos 26-Kel vin-Material Ebenen aus Lanthanoxid (LaO) mit Eisen-Arsenid-Ebenen (FeAs) ab. In den Kupferoxid- beziehungsweise Eisenpniktid schichten vermuten die Physiker die Ursachen der Supraleitung. Die zwischen ihnen liegen den Schichten liefern einfach zusätzliche Elek tronen oder ziehen sie ab. Ersetzt man etwa in LaOFeAs ein Sauerstoff- durch ein Fluoratom, gewinnt das Material ein zusätzliches Elektron, das dann in die FeAs-Schichten wandert.
Die ganze Zeit lang einer Finte aufgesessen?
Schweben Supraleiter sind perfekt diamagnetisch, hindern Mag netfelder also daran, in sie einzudringen. Dank dieses Effekts kann ein Supraleiter (obere Scheibe) über einem Magneten (dicke Scheibe) schweben. Supraleiter vom so genannten Typ 2 erlauben das Eindringen dünner Schläuche des magnetischen Flusses dort, wo Material defekte vorliegen. Man kann sie auch an einem Magneten »aufhängen« (untere Scheibe).
Ein weiteres Eisen im Feuer
kan da
39
g-Ik
Fe
adin
Die Aufregung der physikalischen Gemeinde über die Entdeckung der Kupferoxid-Hochtemperatursupraleiter im Jahr 1986 ist schon legendär. Die Vorträge über die neue Materialklasse der Kuprate, die Anfang 1987 auf einer Konferenz der Amerikanischen Physikalischen Gesellschaft stattfanden, wurden gar als das »Woodstock der Physik« bezeichnet. Rund 1800 Wissenschaftler drängten sich im Saal, mehr noch warteten davor, und die Präsentationen und Diskus sionen dauerten bis um 3 Uhr nachts. Dem fieberhaften Beginn folgte allerdings schnell die Enttäuschung, denn die Arbeit an den Kupraten ging nur quälend langsam voran. In mehr als zwei Jahrzehnten stellten die Experimentatoren zwar ein veritables Arsenal von Techniken auf, um diese Materialien zu untersuchen: Neutronenstreuexperimente, Elektronenspektroskopie sowie Scanning-SQUID-Mikroskope (SQUID: superconducting quantum interference device) zum Abtasten schwacher magnetischer Felder). Doch die entscheidende Frage, welcher physikalische Prozess für das Phänomen der Hochtemperatursupraleitung verantwortlich ist, bleibt weiterhin unbeantwortet. 2008 aber sorgte die Entdeckung, dass die Sprungtemperaturen der Eisenpniktide vergleichsweise nah an jene der Kuprate heranreichen und die Materialien ähnliche Strukturen aufweisen, für neue Begeisterung. Physiker wenden seither ihre an den Kupraten er5,85 5 probten experimentellen Techniken auf das neue Material 26 an und hoffen, aus Ähnlichkeiten oder Unterschieden neue Erkenntnisse zu gewinnen. Ist der Heilige Gral ihrer Disziplin, Supraleitung bei Raumtemperatur und damit verbundene revon Eise lutionäre technische Neuerungen, jetzt in Reichweite?
y Re
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Corbis / Charles O’Rear
Lu c
Von oben betrachtet erscheinen die FeAs-La gen wie ein nanometerkleines Schachbrett: Auf jedem schwarzen Feld findet sich ein Ei senatom, auf jedem weißen ein Arsenatom. Im Fall der CuO2-Schichten ist nur die Hälfte der schwarzen Quadrate von Kupferatomen belegt. Außerdem ist jede CuO2-Schicht abso lut flach, alle Atome liegen in derselben Ebe ne. Die Arsenatome der FeAs-Schichten hin gegen, von denen jeweils vier einen Tetraeder um ein Eisenatom bilden, sitzen ober- und unterhalb der Ebene der Eisenatome. Kuprate verhalten sich unterschiedlich, je nachdem ob der verlustfrei geleitete Super strom parallel oder senkrecht zu den Atomla gen fließt. So hängt der Einfluss, den ein Ma gnetfeld auf den Superstrom gewinnen kann, von der Richtung des Felds im Kupratkristall ab: Verläuft es parallel zu den Kupratebenen, kann der Supraleiter einem deutlich stärkeren Feld widerstehen. Diese Asymmetrie ist für Anwender inte ressant, die häufig Magnetfelder einsetzen, aber auch für Theoretiker. Solche Anhalts punkte für die Ursache der Supraleitung neh men sie sehr ernst. In den mittlerweile zwei Jahrzehnten, in denen sie untersuchen, wie sich Supraleitung in einer einzelnen Kuprat ebene ausbilden kann, galt ihnen die Zwei dimensionalität der Struktur stets als zentrale Voraussetzung für den Effekt. Das erscheint auch durchaus plausibel, denn in vielen ma thematischen und physikalischen Systemen treten bestimmte Eigenschaften oder Phäno mene nur im zweidimensionalen Fall auf, im dreidimensionalen aber nicht oder höchstens in einer deutlich komplexeren Variante. Zu dem haben mittlerweile viele Experimente die Bedeutung der CuO2-Schichten bestätigt, und erste Untersuchungen an den Eisenpnik tiden schienen die gleiche Botschaft zu ver mitteln.
Zumindest bis Ende Juli 2008: Damals fanden zwei Forschergruppen, eine um NanLin Wang von der Chinesischen Akademie der Wissenschaften, die andere um Paul C. Canfield von der Iowa State University – bei de kooperierten mit Forschern des Los Ala mos National Laboratory –, unabhängig von einander heraus, dass ein spezieller Eisenpnik tid-Supraleiter auf starke magnetische Felder stets ähnlich reagiert, auch wenn diese unter schiedliche Orientierungen aufweisen. Das Material, dessen Sprungtemperatur bei 38 Kelvin liegt und in dem sich kaliumdotierte Bariumschichten mit FeAs-Lagen abwechseln, scheint also dreidimensionale Supraleitung aufzuweisen. Für die Theoretiker war das eine echte Überraschung. Mit ihrer Konzentration auf die Zweidimensionalität seien sie, so sagte etwa Jan Zaanen von der niederländischen Universität Leiden und selbst Theoretiker, möglicherweise »die ganze Zeit lang einer Fin te aufgesessen« – zumindest dann, wenn der entscheidende Mechanismus für die Hoch temperatursupraleitung bei den Eisenpnikti den derselbe sein sollte wie bei den Kupraten. Die Grundfrage harrt aber dennoch weiter einer Antwort: Welche Wechselwirkung zwi schen Elektronen im Leiter bringt den Effekt der Supraleitung hervor? In einem gewöhn
mit frdl. Gen. von Hideo Hosono
Materialforschung schritt für Schritt auf einem langen Weg In der bald hundertjährigen Geschichte der Supraleitung stießen Wissenschaftler auf unterschiedliche Materialien, die den Strom verlustfrei transportieren.
1911 Quecksilber – Sprungtemperatur:
4,2 Kelvin Vor knapp 100 Jahren entdeckte Heike Kamerlingh Onnes den ersten Supraleiter. Zum Kühlen benutzte er flüssiges Helium. Die Sprungtemperatur von Quecksilber, so zeigte sich, liegt bei 4,2 Kelvin (K).
1941 Niob-Legierungen – 16 bis 23 K Nach der Entdeckung verschiedener supraleitender Niob-Legierungen setzte der industrielle Gebrauch der Leiter allerdings erst zu Beginn der 1960er Jahre ein, denn die Materialien mussten auch große Ströme leiten und starken Magnetfeldern widerstehen können.
1971 Niob-Germanium – 23 K Nb3Ge hielt von 1971 bis 1986 den Rekord für die höchste bekannte Sprungtemperatur.
-
40
1979 Schwere-Fermionen-Supraleiter –
0,5 bis 1,0 K Warum Schwere-Fermionen-Supraleiter wie UPt3, eine Verbindung aus Uran und Platin, Strom verlustfrei leiten, kann die konventionelle BCS-Theorie zur Supraleitung nicht erklären. Sie besitzen Elektronen mit einer effektiven Masse, die jene gewöhnlicher Elektronen um ein Mehrhundertfaches übersteigt.
1986 Kuprate – 35 bis 138 K Diese Keramiken waren die ersten Hochtemperatursupraleiter. Sie konnten mit flüssigem Stickstoff gekühlt werden, dessen Siedetemperatur bei 77 K liegt.
1991 Fullerene – 18 bis 33 K Kristalle aus Buckminster-Fullerenen (C60-Moleküle) leiten Strom verlustfrei, wenn sie mit Alkalimetallatomen wie
lichen Metall wird der Strom von so genann ten Leitungselektronen getragen. Diese kön nen sich frei im Material bewegen, stoßen je doch ständig mit den positiv geladenen Atomrümpfen zusammen und verlieren so Energie. Makroskopisch äußert sich das in der Erwärmung des Metalls, also letztlich im elek trischen Widerstand. Supraleitung entsteht erst, wenn jeweils zwei solcher Leitungselektronen zu so genann ten Cooperpaaren zusammenfinden und sich diese Paare dann zu einem einzigen Quanten zustand vereinigen – ein Vorgang, der als Bose-Einstein-Kondensation bekannt ist. Nun kann sich der so transformierte Schwarm ge ladener Teilchen im Gleichschritt durch das Material bewegen, ohne durch Stöße Energie zu verlieren; der Widerstand fällt auf null. Messungen sowohl an Kupraten wie auch an Eisenpniktiden bestätigen tatsächlich, dass die Träger des elektrischen Stroms die zweifache Ladung eines Elektrons besitzen. Zur Beschreibung von Supraleitern hatten John Bardeen, Leon N. Cooper und John R. Schrieffer im Jahr 1957 die BCS-Theorie ent wickelt. In ihr spielen Vibrationen die Haupt rolle. Das Quant der Vibration in einem Fest körper – in Analogie zum Photon, dem Quant der elektromagnetischen Schwingung – be zeichnet man als Phonon. Phononen wiede rum sind es, die eine Wechselwirkung zwi schen zwei Leitungselektronen vermitteln. Vereinfacht geschieht dabei Folgendes: Das
Kalium, Rubidium oder Zäsium dotiert werden.
1995 HgBa2Ca2Cu3O8 – 138 K Mit Thallium dotiert besitzt dieses Kuprat die höchste bekannte Sprungtemperatur. Unter hohem Druck leitet es Strom sogar bis zu 164 K verlustfrei. 2001 Magnesiumdiborid – 39 K Magnesiumdiborid mit seiner ungewöhn lich hohen Sprungtemperatur stellte sich als Sonderfall eines konventionellen Supraleiters heraus. 2006 Eisenpniktide – 4 bis 56 K Hideo Hosono (Foto) entdeckte die erste supraleitende Eisenpniktidverbindung. 2008 fand er eine schon ab 26 Kelvin supraleitende Verbindung. Eisenpniktide stellen seither die zweite bekannte Gattung von Hochtemperatursupraleitern dar.
elektrische Feld eines Elektrons zerrt an einem positiv geladenen Atomrumpf, während es da ran vorbeifliegt. Es hinterlässt also ein Pho non, nämlich eine vorübergehende Störung in der Gitterstruktur des Festkörpers. Ein nach folgendes Elektron erfährt durch diesen tem porären Defekt – einen kurzen Moment lang erhöht sich am Ort des Geschehens die Dich te positiver Ladung – eine schwache anzie hende Kraft. Diese kleine Kraft reicht aus, um Cooperpaare entstehen zu lassen; zumindest solange die Temperatur gering genug ist, der Effekt also nicht durch thermische Stöße zer stört wird. Für dieses heuristische Bild fand die BCSTheorie eine gesicherte mathematische Basis. Dank ihrer lassen sich die Sprungtempera turen aus den Materialeigenschaften berech nen. Entwickelt worden war sie für konventi onelle Supraleiter, solche also, deren Sprung temperatur bei nur wenigen Kelvin liegt. Ihre Bestätigung fand sie in mittlerweile klassi schen Experimenten zum so genannten Isoto peneffekt. So leitet beispielsweise Quecksil ber-198 Strom ab 4,18 Kelvin verlustfrei, Quecksilber-202 erst ab 4,14 Kelvin. Abhän gig vom Anteil des jeweiligen Isotops in einer Probe ändert sich darum die Sprungtempera tur. Die etwas schwereren Atome von Queck silber-202, so interpretierte dies die BCS-The orie, vibrieren nämlich weniger stark, so dass die Elektron-Phonon-Kraft schwächer ausfällt. Dann reicht auch geringere thermische Ener SPEKTRUM DER WISSENSCHAFT · Dezember 2009
[Vergleich] Anatomie zweier Materialien
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Bei geringer Dotierung sind Kuprate Isolatoren und antiferromagnetisch (rot) – in jeder Kupferoxid schicht richten sich die Kupferatome wie kleine Kompassnadeln entgegengesetzt zu ihren nächsten Nachbarn aus. Das Erhöhen der Dotierung lässt den Antiferromagnetismus verschwinden, und das Material wird zu einem Leiter (weiß). Unterhalb einer Sprungtemperatur, die vom Grad der Dotierung abhängt, leitet es Strom widerstandslos (blau). Das tatsächliche Phasendiagramm enthält allerdings viele weitere Phasen des normalleitenden Mate rials, die von einer Theorie ebenso wie die Supra leitung erklärt werden müssen.
Sauerstoff Kupfer
Lanthan Barium (Dotierung)
Antiferromagnet
Supraleiter 0 0
Dotierung Arsen
Pniktide Pniktide sind bei schwacher Dotierung ebenfalls antiferromagnetisch (rot), in diesem Zustand aber keine Isolatoren, sondern schwach leitende Metalle. Wie bei den Kupraten entsteht bei tiefen Temperaturen und unterschiedlicher Dotierung eine supraleitende Phase (blau). Typischerweise verändert sich die Struktur des Materials (graue Linie) von einer sehr symme trischen Anordnung der Eisenatome bei schwacher Dotierung und niedrigen Tempera turen hin zu einer gedehnten Anordnung bei 0 höherer Dotierung und höheren Temperaturen. 00 Experimente lassen vermuten, dass diese Einige 0 strukturellen Verschiebungen für das Verhalten der Pniktide verantwortlich sind.
Eisen
Lanthan Sauerstoff Fluor (Dotierung)
Molekülstrukturen: BioGrafx, Kenneth Eward
Eine Ausnahme von dieser 30-Kelvin-Regel macht seit 2002 das Magnesiumdiborid, das schon bei 39 Kelvin supraleitend wird (siehe »Heiße Aussichten für Tieftemperatur-Supra leiter«, SdW 6/2005, S. 56). Weil bei dieser Verbindung der Isotopen-Effekt auftritt, gilt sie dennoch als BCS-Supraleiter, wenn auch als Sonderfall. Die ungewöhnlich hohe Sprung temperatur des Magnesiumdiborids ist zum ei nen Folge der außerordentlich starken Kopp lung zwischen bestimmten Elektronen und den Gitterschwingungen. Zum anderen besitzt das Material zwei Elektronenpopulationen, ge nauer: Elektronen in unterschiedlichen Ener giebändern, die jeweils ein separates Konden sat aus Cooperpaaren bilden können. Indessen lassen auch Supraleiter auf Eisen basis nicht immer klare Schlüsse zu. Nur we nige Wochen nachdem Hosonos Entdeckung, dass fluordotiertes LaOFeAs eine Sprungtem peratur von 26 Kelvin aufweist, im Internet publiziert worden war, erschien eine weitere Online-Veröffentlichung. Auch der Klebstoff, der die Cooperpaare in LaOFeAs zusammen hält, könne nicht die in der BCS-Theorie be schriebene Elektron-Phonon-Kopplung sein, schrieben Lilia Boeri vom Stuttgarter MaxPlanck-Institut für Festkörperforschung und ihre Kollegen. Das Team hatte berechnet, dass die Sprungtemperatur unterhalb von einem Kelvin läge, wenn Phononen auf konventio nelle Art dafür verantwortlich wären. Andererseits wies das Material dennoch Ei genschaften auf, die vom Verhältnis der Isoto pe abhängig sind – so, wie das auch die BCSTheorie behauptet. Im Mai 2009 berichtete das Team um Xian Hui Chen von der Univer sity of Science and Technology of China in Heifei, die Verwendung unterschiedlicher Ei senisotope in Eisenarsenid-Supraleitern hätte starke Auswirkungen auf die Sprungtempera tur, so dass die Elektron-Phonon-Wechselwir kung also durchaus eine Rolle zu spielen scheint.
Kuprate
Temperatur
Was ist der Klebstoff?
Kuprate und Eisenpniktide haben vieles gemeinsam, unterscheiden sich aber auch deutlich. Physiker versuchen noch immer zu erfassen, welche Eigenschaften für die Supraleitung ausschlaggebend sind. Beide Materialien bestehen aus wechselnden Schichten von Atomen, so wie hier für das Kuprat La2CuO4 (obere Grafik rechts) und das Eisenpniktid LaOFeAs (untere Grafik) gezeigt. In beiden Fällen hängen die Materialeigenschaften vom Grad der Dotierung ab: Bariumatome ersetzen einige Lanthanatome in den Kupraten, und Fluoratome ersetzen einige Sauerstoffatome in den Pniktiden. In Phasendiagrammen (links) stellen Physiker dar, wie sich die Materialeigenschaften mit der Dotierung und der Temperatur ändern.
Antiferromagnet
Temperatur
gie aus, um die Cooperpaare aufzubrechen und der Supraleitung ein Ende zu setzen. Stu dien an Kupraten, die gegenüber konventio nellen Supraleitern als Hochtemperatursupra leiter bezeichnet werden, zeigen indessen kei nerlei Isotopen-Effekt. Phononen kommen also nicht als entscheidender Klebstoff in Fra ge, der die Cooperpaare zusammenhält. Theo retiker wissen dies allerdings schon lange. Die Elektron-Phonon-Wechselwirkung des BCSModells ist bei Sprungtemperaturen über 30 Kelvin nicht stark genug, um Cooperpaare in einem potenziell supraleitenden Material zu sammenzuhalten.
Strukturveränderung
Supraleiter 0 0
Dotierung
Diagramme: lucy reading-ikkanda, nach: Steven A. Kivelson und Hong Yao, »Iron-Based Superconductors: Unity or diversity?«, nature materials 7 , 927-928 (2008)
41
Photo Researchers / Science Source
Materialforschung
NASA / Lockheed Martin Corporation, Russ Underwood
Relativistic Hadron Ion Collider
US-Schwerkraftsatellit Gravity Probe B
Kernspintomograf
Konventionelle Supraleiter finden Anwendung bei Teilchenbeschleunigern wie dem Relativistic Hadron Ion Collider (RHIC, oben) und dem Large Hadron Collider (LHC, ohne Bild), bei supraleitenden Gyroskopen und Magnetfelddetektoren im Satelliten Gravity Probe B (Mitte) sowie bei Kernspintomografen (unten).
Co r
42
bis /
Med
ical
RF.c
om
Offenbar sind aber auch weitere Wechsel wirkungen von Bedeutung, die weder von der BCS-Theorie beschrieben werden noch bei Boeris Kalkulationen berücksichtigt wurden. Sind sie das noch unbekannte Geheimnis, das die beiden Gattungen von Hochtemperatur supraleitern teilen? Bei Messungen der Sprungtemperatur in Abhängigkeit von der Dotierung der Eisenpniktide könnten ent sprechende Hinweise zu Tage treten, ebenso wie bei der Untersuchung der Materialeigen schaften im normal leitenden Zustand. Physiker veranschaulichen solche Informa tionen in so genannten Phasendiagrammen, aus denen sich die Änderung des physikali schen Zustands einer Substanz abhängig von verschiedenen Zustandsgrößen ablesen lässt (siehe Kasten S. 41). Trägt man etwa den Grad der Dotierung auf der horizontalen und die Temperatur auf der vertikalen Achse auf, markiert eine grob halbkreisförmige Region am Boden des Graphen den Bereich, in dem ein Kuprat oder ein Eisenpniktid supraleitend wird. Der höchste Punkt dieser Region zeigt dann die maximal erreichbare Sprungtempe ratur bei optimaler Dotierung an. Außerdem lässt sich ablesen, dass das Material bei zu ho her Dotierung selbst bei null Kelvin nicht su praleitend wird. Bei bestimmten Temperaturen und Dotie rungen weisen Pniktide und Kuprate einige weitere aufschlussreiche Ähnlichkeiten auf. So sind beide antiferromagnetisch, wenn die Do tierung zu schwach für die Supraleitung ist. Dieser magnetische Zustand lässt sich gut durch sein Gegenteil erklären. Gewöhnliches magnetisiertes Eisen ist ferromagnetisch: Jedes Atom des Materials neigt dazu, sein magne tisches Moment, sozusagen seine individuelle Kompassnadel, in dieselbe Richtung zeigen zu lassen wie die jeweils nächsten Nachbarn. Ins gesamt erzeugen all diese magnetischen Mo mente dann ein äußeres Magnetfeld. In einem Antiferromagneten hingegen richten sich die magnetischen Momente benachbarter Atome entgegengesetzt zueinander aus – so erzeugen sie in der Summe kein Feld. Undotierte Kuprate sind typischerweise Antiferromagnete; zumindest gilt das, so lange ihre Temperatur deutlich über der höchsten Sprungtemperatur dotierter Proben liegt. Mit steigender Dotierung sinkt allerdings die Temperatur, bei der das Material noch antiferromagnetisch ist. Mehr noch: Erst wenn die Dotierung so stark ist, dass diese Temperatur auf null Kelvin gefallen ist, tritt Supraleitung ein. Physiker interpretieren dies als Zei chen dafür, dass die beiden Zustände – die antiferromagnetische Ausrichtung der SPEKTRUM DER WISSENSCHAFT · Dezember 2009
atomaren magnetischen Momente und das Aus bilden eines Kondensats aus Cooperpaaren – miteinander unverträglich sind und miteinan der konkurrieren. Damit es zur Supraleitung kommt, muss gewissermaßen erst einmal der Antiferromagnetismus überwunden werden. Die Pniktide verhalten sich ähnlich. Im De zember 2008 fand eine über verschiedene USamerikanische und chinesische Labore verteilte Wissenschaftlergruppe heraus, dass der Anti ferromagnetismus ihres Eisenpniktids – ein fluordotiertes Cer-Sauerstoff-Eisenarsenid (Ce OFeAs) – ähnlich wie in den Kupraten mit steigender Dotierung rasch verschwand.
Schlagartig in einen Supraleiter verwandelt
Im Fall von LaO(1–x)F(x)FeAs allerdings, so ent deckten jüngst deutsche und Schweizer For scher (siehe »Supraleiter mit Überraschungs effekt«, SdW 10/2009, S. 14), war ein völlig neues Phänomen zu beobachten: Hier ge nügten minimale Änderungen der Fluordotie rung, um das Material schlagartig von einem Magneten in einen Supraleiter zu verwandeln. Je nach Dotierung kommt es zudem zu strukturellen Übergängen, bei LaO(1-x)F(x)FeAs ebenso wie bei CeOFeAs. Auch in den FeAsEbenen von CeOFeAs ist jedes Eisenatom von vier Arsenatomen umgeben, welche die Ecken eines Tetraeders besetzen. An diesem Beispiel zeigte das amerikanisch-chinesische Team, dass die Tetraeder bei schwacher Dotierung und niedrigen Temperaturen verbogen sind, diese Störung bei optimaler Dotierung aber vollständig verschwindet. Eine hohe tetrago nale Symmetrie könnte also Voraussetzung für die Supraleitfähigkeit der Pniktide sein. Im Fall der CuO2-Schichten der Kuprate spielt diese Symmetrie hingegen keine Rolle, hier kommt es allenfalls zu kleinen Abweichungen von der perfekt ebenen Struktur. Ein weiterer Unterschied zwischen den Materialien ist schließlich dieser: Kuprate im antiferromagnetischen Zustand sind Isola toren, während Pniktide als (nicht allzu gute) elektrische Leiter fungieren können. Die Sachlage bleibt aber kompliziert. All die bekannten Ähnlichkeiten und Unterschiede geben keine klare Antwort auf die Frage, auf welche Materialeigenschaften sich die Forscher bei ihrer Suche nach den Ursachen der Supra leitung konzentrieren sollten. Auf Ähnlichkei ten hinsichtlich des Antiferromagnetismus? Auf Unterschiede hinsichtlich der Leitfähigkeit? Oder auf die Symmetrie der Cooperpaare? Denn auch diese ist ein wichtiger Ansatz punkt. In BCS-Materialien besitzen die Coo perpaare eine so genannte sphärische Symme trie, haben also die Gestalt einer Kugel, die in SPEKTRUM DER WISSENSCHAFT · Dezember 2009
allen Richtungen gleich aussieht. Hier ist na türlich nicht mehr von Teilchen im engeren Sinn die Rede, stattdessen wird ein Cooper paar quantenmechanisch als Wellenpaket be schrieben. Die sphärische oder s-Wellen-Sym metrie ist analog zur perfekt symmetrischen Gestalt eines Wasserstoffatoms im Grundzu stand. (Beide umfassen zwei miteinander ver bundene Fermionen: zwei Elektronen im Fall eines Cooperpaars, ein Proton und ein Elek tron beim Wasserstoffatom.) Welche Art von Symmetrie die Cooper paare in den Kupraten aufweisen, war hinge gen lange kontrovers diskutiert worden. Erst nach vielen Jahren zeigten Experimente, dass sie einer d-Wellen-Symmetrie entspricht, kom biniert mit einem Beitrag von s-Wellen. Die d-Wellen-Symmetrie erinnert an ein vierblätt riges Kleeblatt mit Blättern zweier unter schiedlicher Farben, die sich abwechseln. Die Farben entsprechen dabei positiver bezie hungsweise negativer Ladung. Frühere Expe rimente an Pniktiden deuteten hingegen auf eine s-Wellen-Symmetrie hin. Dieser Befund ließ immerhin noch die Möglichkeit offen, dass diese Materialien sich in der Tat wie BCS-Supraleiter verhalten könnten. Wie sich im Dezember 2008 und im Januar 2009 aber herausstellte, besitzen die s-Wellen der Pnikti de keinen einheitlichen Ladungszustand, viel mehr stehen sich darin positive und negative Regionen gegenüber. Wieder einmal scheinen Pniktide und Kuprate also so viel Ähnlich keiten wie Unterschiede aufzuweisen. Derweil werden die Studien zu den Eisen pniktiden aber mit stürmischer Geschwindig keit fortgesetzt, schließlich steht den Experi mentatoren aus ihrer 20-jährigen Kupratfor schung ein ganzes Arsenal an Techniken zur Verfügung. Allerdings zeigen die Experimente bislang ein mindestens ebenso verwirrendes Bild wie im Fall der Kuprate. Zumal Hideo Hosono, mit dessen Entdeckung all diese Auf regungen begonnen hatten, die Angelegenheit im März um eine zusätzliche Kuriosität erwei terte. Strontium-Eisenarsenid (SrFe2As2), so be richtete der Japaner, wird nicht nur supralei tend, wenn man es mit Kobalt dotiert, sondern auch dann, wenn man die undotierte Verbin dung Wasserdampf aussetzt. Beim Vergleich beider Fälle fand er zudem Unterschiede, die ihn vermuten lassen, dass dabei jeweils unter schiedliche Supraleitungsmechanismen am Werk sind. Die Verwirrung hält also an. Nimmt man die Lektionen aus der Geschichte der Kuprat forschung ernst, wird man sogar folgern müs sen: Die Forscher werden auch in den kom menden Jahren auf mehr Rätsel stoßen als Antworten finden.
Kevin Hand
Zukunfts aussichten Forscher und Unternehmen investieren viel Arbeit, um die spröden Kuprate besser handhabbar zu machen. Sie hoffen, Kupratdrähte in Turbinen für Windkraftanla gen (Bild) oder Schiffsan trieben einsetzen zu können, so dass sich bei geringerem Platzbedarf mehr Leistung erzielen lässt. In den USA finden auch bereits Versuche mit mehrere hundert Meter langen Kupratkabeln statt, um innerhalb von Stromnet zen Energie zu übertragen. Langfristig vielverspre chender könnten indessen die Pniktide sein: Ihre mechanischen Eigenschaften sind besser für technische Anwendungen geeignet.
Graham P. Collins ist Redakteur bei »Scientific American«.
Hinks, D. G.: Iron Arsenide Superconductors: What Is the Glue? In: Nature Physics 5(6), S. 386 – 387, Juni 2009. Kamihara, Y. et al.: Iron-Based Layered Superconductor La[O1–xFx] FeAs (x = 0.05–0.12) with Tc = 26 K. In: Journal of the American Chemical Society 130(11), S. 3296 – 3297, 19. März 2008. Zaanen, J.: Condensed Matter Physics: The Pnictide Code. In: Nature 457, S. 546 – 547, 29. Januar 2009.
Weblinks zu diesem Thema finden Sie unter www.spektrum.de/artikel/ 1010643.
43
Epidemien
Neue Strategien gegen
Tuberkulose Die Pandemie greift weiter um sich, neuerdings mit Bakterienstämmen, die gegen alle verfügbaren Medikamente resistent sind. Um diese Entwicklung aufzuhalten, entwickeln Biologen jetzt völlig neue Behandlungsstrategien.
Von Clifton E. Barry III. und Maija S. Cheung
In Kürze r Unter den Infektionskrankheiten fordert die Tuberkulose nach Aids die meisten Todesopfer. Die Pandemie breitet sich weiter aus. r Der Erreger der Tuberkulose ist ein Bakterium. Noch sind die meisten Krankheitsfälle behandelbar. Jedoch sind Bakterienstämme mit Resistenzen gegen Medikamente der ersten und zweiten Therapielinie auf dem Vormarsch. r Neue Technologien ermöglichen den Wissenschaftlern, das Tuberkulosebakterium wesentlich detaillierter zu erforschen.
52
K
rankheiten wie Beulenpest, Pocken, Kinderlähmung oder Aids markieren geschichtliche Epochen. Sie verändern tief greifend das soziale Miteinander, geben Wissenschaft und Medizin die Themen vor und haben der Menschheit schon viele kluge Köpfe entrissen, die zu jung verstarben. Eine dieser Erkrankungen scheint die Menschheit schon seit Urzeiten heimzusuchen – die Tuberkulose (Tb). Fossilfunde zeigten, dass die Tb den Menschen schon seit mehr als einer halben Million Jahre heimsucht. Sie befällt Reiche wie Arme, Junge wie Alte, Unvorsichtige wie Vorsichtige – niemand ist vor ihr gefeit. Infizierte Menschen verbreiten die Tuberkulosebakterien beim Husten, Spucken, ja sogar beim Sprechen. Tuberkulose fordert unter den Infektionskrankheiten heute nach Aids weltweit die meisten Todesopfer. Jährlich sterben an der Epidemie zwei Millionen Menschen, und das, obwohl heutige Medikamente die meisten Patienten heilen könnten. Zahlreiche Erkrankte haben jedoch keinerlei Zugang zu einer wirksamen Therapie; und viele der Patienten, die
behandelt werden, brechen die langwierige Therapie vorzeitig ab. Hinzu kommt, dass sich das Tuberkulosebakterium schneller verändert, als neue Medikamente entwickelt werden können. So beobachten Wissenschaftler in den letzten Jahren eine bedenkliche Zunahme von Tuberkulosefällen mit Erregern, die gegen mehrere der zuerst eingesetzten Medikamente – der so genannten ersten Therapielinie – resistent sind. Noch weit mehr beunruhigt sie jedoch die Tatsache, dass sich inzwischen sogar Bakterienstämme verbreiten, die bereits gegen alle anderen Wirkstoffe unempfindlich sind. Die Krankheit hat besonders in den ärme ren Ländern verheerende Auswirkungen. Mit 90 Prozent der Erkrankungsfälle und 98 Prozent aller tuberkulosebedingten Todesfälle sind sie von der weltweit grassierenden Seuche am schwersten betroffen. Neben dem Leid und Elend, das Tuberkulose verursacht, schädigt sie auch die Wirtschaftskraft stark betroffener Staaten. Da 75 Prozent dieser Todesfälle in der Altersgruppe zwischen 15 und 54 Jahren auftreten, gehen den ärmsten Ländern jährlich etwa zwölf Milliarden Dollar verloren; das entspricht vier bis sieben Prozent des Bruttoinlandsprodukts. Des Weiteren zwingt SPEKTRUM DER WISSENSCHAFT · Dezember 2009
medizin & biologie
James Nachtwey / VII
die Krankheit diese Länder, Ressourcen aus anderen wichtigen Bereichen in das Gesundheitssystem umzuleiten. Doch auch die Bevölkerung der Industrienationen kann sich nicht in Sicherheit wiegen. Zwar sind die Fallzahlen hier derzeit relativ gering – das Blatt könnte sich aber rasch wenden, wenn hier einmal ein hochresistenter Stamm Fuß fasst. So düster die Gesamtsituation auch erscheinen mag, es gibt Grund zur Hoffnung. Neueste molekularbiologische Methoden versetzen Forscher in die Lage, die komplexen Wechselwirkungen des Tuberkulosebakteriums mit dem menschlichen Organismus mit höchster Genauigkeit zu untersuchen. Wir erwarten deshalb, dass sich damit zuverlässigere Diagnostika und neue Medikamente entwickeln lassen. Im Jahr 1882 entdeckte der deutsche Arzt Robert Koch den Erreger der Tuberkulose, das stäbchenförmige Mycobacterium tuberculosis (Mtb). Es existiert in zwei Zuständen: einer latenten (ruhenden) und einer aktiven Form. Bei der latenten Tuberkulose unterdrückt das Immunsystem die Vermehrung des Bakteriums und verhindert die Zerstörung des infizierten Gewebes. Patienten in diesem Stadium der Infektion zeigen keine Symptome und SPEKTRUM DER WISSENSCHAFT · Dezember 2009
sind auch nicht ansteckend. Die Infektion kann Jahre und Jahrzehnte andauern, ohne dass der betroffene Mensch Krankheitszeichen entwickelt. Bei 90 Prozent der Infizierten bleibt die Infektion zeitlebens latent. Bei den übrigen zehn Prozent bricht die Erkrankung irgendwann aus, besonders bei Menschen mit geschwächtem Immunsystem, wie Kleinkindern, HIV-Infizierten oder Patienten, die gerade eine Chemotherapie erhalten. Bei Menschen mit aktiver Tuberkulose unterläuft der Erreger die Abwehr des Immun systems, vermehrt sich stark und verbreitet sich im Körper, wobei er verschiedene Organe befällt. Als primär aerobes Bakterium bevorzugt Mtb ein sauerstoffgesättigtes Milieu, was seine besondere Affinität zur Lunge erklärt. Etwa 75 Prozent der Patienten mit aktiver Erkrankung leiden an einer Lungentuberkulose. Im Zuge ihrer Vermehrung zerstören die Bakterien das befallene Lungengewebe, so dass der Kranke Symptome wie Brustschmerzen und starken, teils blutigen Husten entwickelt. Doch auch andere Organe sind gefährdet, denn die aktive Tb kann praktisch jede Körperregion angreifen. Bei Kindern können die Tuberkelbakterien etwa ins zentrale Nerven system eindringen und eine Hirnhautentzün-
Die moderne Pest: Jedes Jahr sterben mindestens zwei Millionen Menschen an Tuberkulose, weitere acht Millionen infizieren sich neu. Hier ist ein Patient im indischen Mumbai zu sehen, der gerade gegen eine besonders resistente Form der Krankheit behandelt wird.
53
Epidemien
Mensch gegen Bakterium Vor über 500 000 Jahren 1882
1901
1921
1946
gelang es dem Tuber kuloseerreger erstmals, Menschen zu infizieren.
Albert Calmette und Camille Guérin entwickeln den BCG-Impfstoff. Später stellte sich heraus, dass er verlässlich nur vor schweren Verläufen der kindlichen Tb schützt.
Die BCG-Vakzine kommt auf den Markt.
Selman Waksman entwickelt Streptomyzin, das erste wirksame Antibiotikum gegen Tb.
Robert Koch entdeckt den Erreger der Tu berkulose, das Mycobacterium tuberculosis (Mtb).
rch
sea Re Ph
o ot
Corbis / The Gallery Collection Corbis / Michael Nicholson The Granger Collection
54
r
Bernhard
ke
dinger
➤ Thomas
r Pa
Rousseau
➤ Erwin Schrö-
d
Richelieu
➤ Jean-Jacques
i av
Chopin
➤ John Keats ➤ Ludwig XIII. ➤ Molière ➤ George Orwell ➤ Kardinal
/D
chow
➤ Frederic
rs
➤ Anne Brontë ➤ Anton Tsche-
he
darunter:
arc
Viele große Geister litten an Tuberkulose,
mit einem neuen tödli chen Erreger konfrontiert sein sollten, dem Aidsvirus HIV. Heute, ein halbes Jahrhundert nach der Einführung der ersten Tuberkulostatika, schätzt die Weltgesundheitsorganisation WHO, dass ein Drittel der Weltbevölkerung, also Milliarden Menschen, mit Mtb infiziert ist. Im Durchschnitt erkranken jedes Jahr acht Millionen Infektionsträger an einer aktiven Tuberkulose. Jeder Erkrankte infiziert wiederum jährlich 10 bis 15 weitere Menschen und sorgt so für den Fortbestand der Pandemie. Die Aussichten erscheinen noch düsterer, wenn man die gleichzeitig ansteigende Zahl der HIV-Infektionen bedenkt. Bei HIV-Trägern mit latenter Tuberkulose ist das Risiko, an einer aktiven Tuberkulose zu erkranken, 30- bis 50-fach erhöht, da ihr Immunsystem nicht in der Lage ist, die Tb-Bakterien in Schach zu halten. Tatsächlich sterben HIV-Infizierte am häufigsten an Tuberkulose – weltweit jeder dritte HIV-Patient, in afrikanischen Ländern mit schlechter Gesundheitsversorgung sogar jeder zweite. Doch auch solchen, die Tuberkulosemedikamente erhalten, geht es während der Therapie meist schlechter. Denn die gravierenden Wechselwirkungen zwischen antiviralen Medikamenten und Tuberkulosemitteln erzwingen häufig eine Unterbrechung der Behandlung, bis die Tuberkuloseerkrankung unter Kontrolle ist. Am meisten beunruhigt an der aktuellen Pandemie das wachsende Problem der Anti biotikaresistenz. Um zu verstehen, wie es dazu kommen konnte, muss man sich vor Augen führen, wie die Krankheit behandelt wird. Die heutige Standardtherapie wurde bereits in den 1960er Jahren eingeführt und umfasst vier Medikamente, die noch aus den 1950er Jahren stammen: Isoniazid, Ethambutol, Pyrazinamid und Rifampizin. Patienten, die sich an das verschriebene Behandlungsschema halten, nehmen insgesamt etwa 130 Medikamentendosen ein, im Idealfall unter Aufsicht durch medizinisch geschultes Personal. Diese ese
erühmte B TuberkuloseKranke
dung mit hohem Fieber und Kreislaufschock hervorrufen. Eine unbehandelte aktive Tuberkulose verläuft bei der Hälfte der Patienten tödlich. Todesursache ist meist die massive Zerstörung des Lungengewebes. Noch vor einem Jahrhundert existierte kein wirksames Medikament gegen die Krankheit. Um die Ansteckung einzudämmen, kasernierte man Tuberkulosekranke in Sanatorien. Das früher oft als »Schwindsucht« bezeichnete Leiden war weit verbreitet, selbst in Gegenden, wo es heute vergleichsweise selten ist, wie in Nordamerika oder Westeuropa. Frühe Erfolge im Kampf gegen die Tb erzielten Wissenschaftler 1921, als der erste Impfstoff auf den Markt gelangte, den die französischen Immunologen Albert Calmette und Camille Guérin entwickelt hatten. (Ursprünglich glaubte man, dieser Impfstoff schütze Kinder und Erwachsene gleichermaßen vor der Erkrankung. Später zeigte sich in Studien, dass der BCG-Impfstoff (Bacille Calmette-Guérin) tatsächlich nur schwere Verläufe der kindlichen Tuberkulose verlässlich verhindert.) Ein Vierteljahrhundert später entwickelte der amerikanische Mikrobiologe Selman Waksman das Streptomyzin. Dieses Antibiotikum verursacht zwar einige Nebenwirkungen, gab den Ärzten aber erstmals eine wirksame Therapie gegen Tuberkulose an die Hand. Auf Waksmans Entdeckung folgten in den 1950er Jahren mehrere neue Antibiotika, die zusätzlich zu dem relativ schwach wirksamen Streptomyzin gegeben wurden. Diese Neuentwicklungen beendeten die Ära der Sanatorien. In Ländern, die über eine gute Infrastruktur und ausreichende finanzielle Mittel verfügten, um Tuberkulose zu bekämpfen, gelang es, die Erkrankungsraten deutlich zu senken. In den 1970er Jahren glaubten einige Experten bereits, die Tb sei praktisch ausgerottet. In Wahrheit waren die schlimmsten Epidemien erst im Kommen, unter anderem begünstigt durch den rasch zunehmenden internationalen Reiseverkehr. Zu allem Übel traf es diejenigen am schlimmsten, die sich am wenigsten wehren konnten: die Einwohner der ärmsten Länder, die bald auch
P h oto R
ers / Science Sour
ce
Seit Jahrtausenden wird die Menschheit von der Tuberkulose heimgesucht. Diese Übersicht zeigt Stationen im Kampf gegen den Krankheitserreger.
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Medizin & Biologie
1960er Jahre
1970er Jahre
1981
Das heute noch übliche Therapieschema wird entwickelt: Vier Medikamente müssen über sechs bis neun Monate eingenommen werden.
Tuberkulose gilt weltweit als praktisch ausgerottet.
Wissenschaftler Das Genom von Mycoentdecken das HI-Virus. bacterium tuberculosis Die Virusträger sind wird sequenziert. besonders anfällig für Tuberkulose.
praktisch alle hochwirksamen Reservesubstanzen der so genannten zweiten Linie. Obwohl die XDR-Tb bislang nicht so häufig auftritt wie die MDR-Tb, könnte sie sich bald überall dort ausbreiten, wo diese Zweitlinientherapien im Einsatz sind. Bis Juni 2008 haben bereits 49 Länder Fälle von XDRTb an die WHO gemeldet. Tatsächlich dürfte die XDR-Tb deutlich weiter verbreitet sein, da die wenigsten Länder über Laboratorien verfügen, die sie diagnostizieren könnten. Niemand konnte ernsthaft annehmen, dass die Medikamente aus den 1950er Jahren im Kampf gegen die Tb auf Dauer erfolgreich sein würden. Da jedoch die Mehrzahl der Tuberkulosepatienten in den ärmsten Ländern der Erde leben, hatten Pharmariesen bisher wenig Interesse, größere Summen in die Entwicklung neuer Medikamente zu investieren. Auch heute noch herrscht bei den Konzernen die Auffassung vor, dass der Entwicklungsaufwand – pro Medikament 115 bis 240 Millionen Dollar, verbunden mit sieben bis zehn Jahren Forschungsarbeit – weit höher wäre als der zu erwartende Gewinn auf dem weltweiten Markt. Dennoch gibt es dank staatlicher Program me und des Engagements privater humanitärer Organisationen, wie der Bill-und-Melinda-Gates-Stiftung, zahlreiche Initiativen zur Entwicklung neuartiger Tuberkulostatika, die gegen resistente Stämme wirken und die »normale« Tuberkulose schneller heilen sollen. Durch diese Arbeiten befinden sich bereits einige aussichtsreiche Substanzen in der frühen klinischen Erprobung. Einer der neuen Wirkstoffe, genannt SQ109, hindert die gefährlichen Mykobakterien daran, eine Zellwand aufzubauen. Erste klinische Studien zur Sicherheit des neuen Medikaments sind schon abgeschlossen. Auch mit PA-824 liegt inzwischen ein weiterer Kandidat für ein künftiges Tuberkulosemedikament vor. Er greift den Erreger sowohl im Stadium der aktiven Teilung als auch bei langsamem Wachstum an. Damit verbinden Forscher die Hoffnung, die Subog
er
H
ar
ri
s
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
In KwaZulu/Natal, Südafrika, wird ein vielfach resistenter Mtb-Stamm entdeckt.
/R
Nach Angaben der WHO sind die Erreger bei fast fünf Prozent der jährlich etwa acht Mil lionen neuer Tuberkulosefälle bereits resistent gegen Isoniazid und Rifampizin, zwei der am häufigsten in der Ersttherapie eingesetzten Substanzen. Die meisten der Infektionen mit multiresistenten Tuberkulosebakterien (kurz: MDR-Tb) sind zwar behandelbar, allerdings nur mit ein- bis zweijähriger Gabe von Me dikamenten der zweiten Therapielinie, die schwere Nebenwirkungen verursachen können. Hinzu kommt, dass die Behandlung einer MDR-Tb bis zu 1400-mal teurer ist als die Standardtherapie. Da die meisten MDRTb-Fälle in den ärmeren Ländern auftreten, ist die teuere Therapie oft nicht durchführbar. Weltweit erhalten nur etwa zwei Prozent der Patienten eine geeignete Therapie, auch weil die MDR-Tb häufig gar nicht erkannt wird. Studien der vergangenen Jahre haben eine noch weit größere Bedrohung enthüllt: die extensiv resistente Tuberkulose (extensively drugresistant Tb oder XDR-Tb). Diese neue Epidemievariante machte im Jahr 2006 bei einem Ausbruch in KwaZulu/Natal, Südafrika, Schlagzeilen. Sie erwies sich als resistent gegen
2006
Die FDA (Food and Drug Administration) erteilt die Zulassung für einen verbesser ten diagnostischen Test.
rs
Aussichtsreiche Kandidaten
2005
P h oto R e s e a r c h e
Medikamentenkombination ist gegen die aktive Tuberkulose außerordentlich wirksam, wenn es sich um Erreger handelt, die überhaupt darauf reagieren und wenn der Patient die sechs- bis neunmonatige Therapie vollständig absolviert. Bricht der Patient jedoch die Behandlung vorzeitig ab, weil es ihm vielleicht besser geht oder die Medikamente fehlen, so können die Bakterien gegen die verwendeten Wirkstoffe resistent werden. Auch häufigeres Auslassen von Antibiotikadosen gibt den Bakterien die Gelegenheit, Resistenzen zu entwickeln. Hat sich erst einmal ein solcher Erregerstamm gebildet, kann der Patient ihn auf andere Menschen übertragen. (Dies ist der Grund, warum einige Gesundheitsbehörden die Auffassung vertreten, keine Behandlung sei besser als eine unvollständige.)
1998
Ernüchternde Fakten ➤ Ein Drittel der Welt bevölkerung ist mit dem Tuberkulosebakterium infiziert; jeder Zehnte erkrankt im Lauf seines Lebens an der aktiven Form.
➤ In vier von zehn Krankheitsfällen wird die Tuberkulose nicht richtig diagnostiziert und behandelt.
➤ Alle 20 Sekunden stirbt ein Mensch an dieser Infektion.
➤ In jährlich 490 000 Tb-Fällen erweisen sich die Erreger als resistent gegen die Tuberkulostatika der ersten Linie. In weiteren 40 000 Fällen ist der Bakterienstamm auch gegen Reservemedikamente resistent.
55
Ansteckung durch die Luft Erreger der Tuberkulose ist das Mycobacterium tuberculosis (Mtb). Die Infektion kann latent bleiben oder in eine aktive Verlaufsform übergehen. Wenn Patienten mit aktiver Tb husten, spucken oder sprechen, können sich andere Menschen durch Einatmen selbst weniger Bakterien anstecken. Die Mykobakterien erreichen besonders in der Lunge hohe Keimzahlen, Husten ist daher das häufigste Symptom einer Tuberkulose. Der Erreger kann jedoch auch andere Organe schädigen.
Gehirn
Lunge Makrophage
Alveolus
Mtb
Mtb liebt sauerstoffreiches Milieu und vermehrt sich daher bevorzugt in Lungenbläschen. Bei den meisten Menschen gelingt es dem Immunsys tem, die Tb-Bakterien in Schach zu halten. Dies erledigen Fresszellen (Makrophagen), die zum Infektionsherd wandern. Um den Infektionsherd bilden sie einen Wall und verhindern so die weitere Ausbreitung. Bei zehn Prozent der Infizierten gewinnt jedoch der Erreger die Oberhand, bricht durch und vermehrt sich weiter.
Niere
PET-CT Scan: Clifton E. Barry, iii, NIAID
Aufnahme einer Tb-Infektion der Lunge
Knochen
Illustrationen: Melissa Thomas
Vom Immunsystem kaum gebremst, zerstören die TbBakterien nun das Lungengewebe. Einige gelangen auch ins Blut und befallen andere Organe, zum Beispiel Gehirn, Nieren oder Knochen. Die betroffenen Organe werden schließlich so stark geschädigt, dass sie ihre Funktion einstellen und der Wirt stirbt.
Im Schützengraben
Neue Tb-Medikamente werden dringend gebraucht, aber die Gesundheitspolitiker werden nicht so lange warten können, bis diese verfügbar sind. Daher versucht die WHO mit der Initiative »Stop Tb Partnership«, die Ausbreitung der Pandemie zu bremsen: mit verbesserter Qualitätskontrolle in den Testlabors, besserer Unterstützung und Überwachung der Patienten, garantierter Versorgung mit Medikamenten sowie Ausbildung der Öffentlichkeit in der Betreuung. Ziel des Programms ist es, die Zahl der Tb-Todesfälle bis 2015 weltweit zu halbieren.
56
stanz könne die Therapiedauer signifikant verkürzen. Zurzeit laufen die ersten größeren Studien zur Wirksamkeit von PA-824 bei Tuberkulosepatienten. Leider stehen die Chancen, dass diese Substanzen jemals als Medikament auf den Markt kommen, denkbar schlecht. In der Vergangenheit erhielten weniger als zehn Prozent der Antibiotika, die erste klinische Studien durchliefen, hinterher auch eine Zulassung. Diese geringe Erfolgsrate liegt größtenteils an den veralteten Strategien, mit denen neue Antibio tika noch heute entwickelt werden: ➤ Identifiziere Enzyme, die für das Bakterium unentbehrlich sind und die kein Pendant im menschlichen Körper haben; ➤ durchforste große Bibliotheken chemischer Verbindungen nach einer Substanz, die ein solches Enzym stark hemmt; ➤ verändere schließlich den Wirkstoff so, dass er wichtige Eigenschaften von Arzneimitteln annimmt, wie etwa die Fähigkeit, vom Magen-Darm-Trakt in die Blutbahn zu gelangen. Doch selbst den großen Pharmakonzernen, Meistern in der Entwicklung von Arznei mitteln für unterschiedlichste Krankheiten, gelang es äußert selten, mit diesem Ansatz wirklich neue Antibiotika auf den Markt zu bringen. Gerade bei der Tuberkulose gab es unzählige Wirkstoffkandidaten, die letztlich versagten. Viele der entwickelten Substanzen
waren zweifellos hochspezifische und äußerst wirksame Hemmstoffe für Schlüsselenzyme der Mykobakterien. Doch bei Tests mit intakten Bakterienzellen versagten einige von ihnen, obwohl sie die isolierten Enzyme effektiv blockiert hatten. Andere wiederum töteten die Bakterien zwar erfolgreich im Reagenzglas (in vitro) ab, versagten jedoch später im Tierversuch. Die Tuberkulose ist vermutlich die Infektionskrankheit, bei der die Wirkung von Medikamenten in vitro und im lebenden Organismus am stärksten divergiert. In vielen Fällen wissen die Forscher nicht einmal, weshalb eine Substanz bei der Therapie versagt. Die Krux ist, dass Bakterien autonome Lebensformen sind – von der Evolution selektiert auf die Fähigkeit zur Anpassung und zur Reaktion auf schädliche äußere Einflüsse. Analog zur Konstruktion moderner Flugzeuge verfügen sie über redundante Stoffwech selwege, Störsicherungen und Notfallsysteme. Wie Jeff Blum als Wissenschaftler in Steven Spielbergs Kinofilm »Jurassic Park« sagt: »Das Leben findet einen Weg.« Solange wir die ganze Komplexität der Wechselwirkungen zwischen Tuberkulosebakterien und menschlichem Körper nicht ausreichend verstehen, wird es kaum neue wirksame Medikamente gegen die Krankheit geben. Daher ist es eine gute Nachricht, dass wir zumindest an dieser Front Fortschritte machen. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Betroffene Länder
Geimpft oder infiziert?
Die Umsetzung solcher Erkenntnisse in neue Strategien zur Tb-Behandlung ist dennoch alles andere als einfach. Immerhin gelang es Forschern anhand der Genomdaten kürzlich, neue Diagnosemethoden zu entwickeln. Die Diagnose einer Tuberkulose ist üblicherweise dadurch erschwert, dass weltweit etwa die Hälfte aller Kinder gegen Tb geimpft werden. Der Impfstoff enthält einen abgeschwächten Stamm des Tuberkuloseerregers, der selbst keine Krankheit hervorruft, aber beim Ge impften eine Immunreaktion auslöst. Leider kann der meistens zur Tuberkulosediagnose verwendete Test nicht zwischen einer Reaktion auf diese Impfung und der Immunantwort gegen das krank machende Bakterium unterscheiden. Das Testresultat sieht bei geimpften und infizierten Personen exakt gleich aus. Während der Sequenzierung des Mykobakteriumgenoms in Seattle war den Wissenschaftlern aufgefallen, dass dem Impfstamm ein großer DNA-Abschnitt fehlt. Kurze Zeit später zeigten Forscherteams vom Pasteur-Institut in Paris, dem Albert Einstein College of Medicine in New York sowie der University of Washington unabhängig voneinander, dass eben diese fehlenden Gene wesentlich an der Entstehung der Krankheit beteiligt sind. Der beim Impfstamm fehlende Genomabschnitt SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Die Tuberkulose ist in nahezu allen Ländern der Erde verbreitet, tritt aber am häufigsten in ärmeren Ländern auf. Die Vorkommen von Tuberkulosefällen, die von mehrfachresistenten Bakterienstämmen verursacht werden (MDR-Tb), häufen sich auf Grund unsachgemäßer Anwendung der Antibiotika. Noch bedrohlicher ist die extensiv resistente Tb (XDR-Tb), die sich kaum noch behandeln lässt und 2006 erstmals beobachtet wurde. Bis Juni 2008 meldeten bereits 49 Länder Fälle von XDR-Tb. Vermutlich tritt diese besonders gefährliche Variante häufiger auf als offiziell bekannt. Tb
dokumentierte Tuberkulosefälle pro 100 000 Einwohner keine Angaben 0 – 24 25 – 49 50 – 99 100 – 299 über 300
multiresistente Tuberkulose (MDR-Tb)
prozentualer Anteil der MDRTb unter allen neu aufgetretenen Tuberkulosefällen pro 100 000 Einwohner >6% 3 – 6 % <3% keine Angaben
extensiv resistente Tuberkulose (XDR-Tb)
Karten: Melissa Thomas, nach: Clifton E. Barry, iii, NIAID und WHO
Der Wendepunkt der Tuberkuloseforschung kam 1998 mit der Sequenzierung des Mtb-Genoms. An diesem Projekt war auch einer der Autoren (Barry) beteiligt. Die DNASequenzen des Tb-Erregers und verwandter Bakterien entpuppten sich für die Forschung als wahre Fundgrube. Die vielleicht wichtigste Erkenntnis: Wir hatten bisher überhaupt nur ein Drittel aller Enzyme und Reaktionen, die Tuberkulosebakterien im menschlichen Körper zum Überleben brauchen, in den In-vitroTests zur Medikamentenentwicklung erfasst. Wie wir lernten, kodiert Mtb mit einem Großteil seines Genoms Proteine, die Fette (Lipide) synthetisieren oder abbauen. Diese Proteine könnten interessante Angriffspunkte für neue Medikamente bieten. Die Genom analyse lieferte Hinweise darauf, dass das Bakterium, entgegen bisherigen Annahmen, auch völlig ohne Sauerstoff leben kann – eine Vermutung, die sich inzwischen experimentell bestätigen ließ. Unter anaeroben Bedingungen verlangsamt das Bakterium seinen Stoffwechsel und wird dadurch weit gehend unempfindlich gegen die bisher verfügbaren Antibiotika. Stoffwechselprozesse, die auch unter Sauerstoffmangel aktiv bleiben, bilden daher die vielversprechendsten Ansatzpunkte zur Verkürzung der Therapiedauer.
Länder mit bestätigten Fällen von XDR-Tb
57
Epidemien
Neue Wege – aussichtsreiche Behandlungsstrategien Alle Medikamente der ersten Linie, die zur Behandlung der Tuberkulose eingesetzt werden, stammen noch aus den 1950er Jahren. Die Therapie ist schwierig und dauert sechs bis neun Monate. Vorzeitige Therapieabbrüche und unregelmäßige Einnahme begünstig ten die Entstehung resistenter Bakterienstämme. Nun kommt es darauf an, Medikamente zu entwickeln, die einfacher einzunehmen sind, weniger kosten und den Tuberkuloseerreger an neuen Angriffspunkten treffen.
heute: Mit konventionellen Strategien der Medikamentenentwicklung ist es gelungen, einige potenziell wirksame Substanzen herzustellen.
MEDIKAMENT / SUBSTANZKLASSE
WIE SIE GEGEN Tb WIRKEN
ENTWICKLUNGSSTADIUM
Fluoroquinolone (bereits erfolgreich gegen andere Krankheiten)
Hemmung der DNA-Replikation
Phase-III-Studien (umfangreichste Wirksamkeitsstudien)
Nitroimidazol (PA824/OPC67683)
Hemmung der Zellwandsynthese und Zellatmung
Phase-II-Studien (Wirksamkeit)
Diarylchinolin (TMC207)
Hemmung der Synthese von ATP, dem Energieträger der Zellen
Phase-II-Studien
Oxazolidinon
Hemmung der Proteinsynthese
Phase-II-Studien
SQ109
Hemmung der Zellwandsynthese
Phase-I-Studien (Sicherheit)
bot somit eine Möglichkeit, die Diagnostik zu verbessern. Ein Test, der nur diese Region erfasst, kann endlich Geimpfte von Infizierten unterscheiden. Im Jahr 2005 erteilte die amerikanische Food and Drug Administration (FDA) die Zulassung für einen solchen Test. Seine Verlässlichkeit wurde in mehreren Studien nachgewiesen. Leider ist der Test noch sehr teuer, so dass er bisher nur in den reiche ren Ländern eingesetzt wird. Das Tb-Genom ist jedoch nicht die einzige Informationsquelle, mit deren Hilfe die Forscher mögliche Schwachstellen des Bakteriums finden können. Denn die Wissenschaftler sind heute in der Lage, alle möglichen Be-
standteile und Prozesse lebender Zellen in ihrer Gesamtheit darzustellen. So können sie sämtliche Proteine einer Zelle gleichzeitig untersuchen (man spricht von Proteomik), alle RNAs quantifizieren, die ein Bakterium herstellt (Transkriptomik) oder sämtliche Zwischen- und Endprodukte des Zellstoffwechsels identifizieren (Metabolomik). 58
Obwohl die Anwendung dieser Methoden auf die Tuberkulose noch in den Anfängen steckt, trägt sie bereits Früchte. Vergangenen November veröffentlichte Barry als Koautor im Fachblatt »Science« eine Studie, in der Tuberkulosebakterien mit PA-824 behandelt worden waren. Das bakterielle Transkriptom reagierte so, als seien die Zellen mit Kaliumzyanid vergiftet worden. Dies lieferte einen wichtigen Hinweis darauf, dass das Medi kament im Stoffwechsel des Tb-Bakteriums Stickstoffmonoxid (NO) freisetzt, ein Abwehrmolekül, das normalerweise aus Immunzellen des menschlichen Körpers stammt. Daher entwickeln wir derzeit Substanzen, die im Bakterium größere Mengen NO freisetzen als PA-824 und hoffen, dass sie dann entsprechend stärker wirken. Gleichzeitig versuchen andere Wissenschaftler, den dreidimensionalen Aufbau sämtlicher Proteine des Tuberkulosebakteriums vorherzusagen, man spricht von struktureller Genomik. Deren Resultate sollen einerseits dazu beitragen, die Funktion vieler noch unbekannter bakterieller Proteine aufzuklären. Andererseits könnten sie die Entwicklung von Medikamenten beschleunigen, die zielgerichtet bestimmte Proteine attackieren. Dieser Ansatz erscheint allen so aussichtsreich, dass sich inzwischen ein Konsortium von Institu ten aus 17 Ländern speziell der strukturellen Genomik von Mtb verschrieben hat. Bisher gelang es den Forschern, die Struktur von SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Medizin & Biologie
Derzeit versuchen Wissenschaftler das Tb-Bakterium noch genauer zu verstehen, indem sie sein gesamtes Genom und zahlreiche weitere Zellkomponenten analysieren. Diese Analysen liefern neue Erkenntnisse über die Mechanismen der Infektion im menschlichen Organismus und die therapeutisch nutzbaren Schwachstellen des Erregers. Mögliche Angriffspunkte für neue Medikamente: Hemmung der Synthese von ATP, dem Energieträger der Zelle; Hemmung der Synthese von Niacin; Stimulation der Synthese von Stickstoffmonoxid Wissenschaftler planen, das Bakterium komplett zu simulieren. Die Computersimulation soll sich idealerweise genauso verhalten wie das reale Bakterium im menschlichen Körper. Damit ließen sich die Reaktionen des Erregers auf neue Wirkstoffe viel zuverlässiger vorhersagen als bisher.
etwa einem Zehntel der beteiligten bakteriellen Proteine genauer zu bestimmen. Eine weitere »Omik«, die hier erwähnt werden sollte, ist die chemische Genomik. Dieser noch junge Wissenschaftszweig kehrt den konventionellen Prozess der Medikamentenentwicklung um.
Lieber verhindern als behandeln
Anstatt Hemmstoffe von Proteinen mit bekannter Funktion zu suchen, beginnen die Forscher mit einer Substanz, die eine gewünschte Wirkung zeigt, etwa die Vermehrung von Mtb im Labor einzuschränken. Dann suchen sie nach dem bakteriellen Enzym, das dieser Wirkstoff hemmt. Die Ausgangssubstanzen können synthetische Moleküle aus dem Chemielabor sein oder natürliche Substanzen aus Pflanzen, Mikroorganismen oder Tieren. Die Indikatorsubstanz dient nur dazu, Enzyme oder Prozesse zu identifizieren, die sich als Angriffspunkt eignen. Ist das gelungen, kann die gezielte Medikamentenentwicklung beginnen. Dieser Ansatz ist auch deswegen so interessant, weil wir uns damit die Errungenschaften der natürlichen Selektion im Kampf gegen die Tuberkulose zu Nutze machen. Noch bevor das Mtb und seine Vorläufer den Mensch als idealen Wirt entdeckten, besiedelten sie andere ökologische Nischen, in denen sie mit zahllosen anderen Bakterien im harten Wettstreit SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Melissa Thomas
Zukunft:
um Nahrung lagen. So durchliefen bakterielle Ökosysteme schon viele Runden natürlicher Selektion. In den meisten Fällen fanden an dere Mikroorganismen Mittel und Wege, die Mykobakterien in Schach zu halten, was sich an der Vielfalt von Bakterienarten in diesen Ökosystemen ablesen lässt. Vielleicht gelingt es den Forschern ja, das umfangreiche Waffenarsenal konkurrierender Mikroorganismen anzuzapfen. Dazu müssten wir mittels »Omiken« Abwehrmoleküle identifizieren, sie auf ihre tuberkulostatische Wirkung prüfen und schließlich den genauen Angriffspunkt in der Mykobakterienzelle iden tifizieren. Möglicherweise entdecken wir so völlig neue Medikamentenklassen. Wir könnten dann Substanzkombinatio nen einsetzen, die den gesamten Stoffwechsel des Krankheits erregers zum Erliegen bringen, statt nur einzelne Prozesse attackieren, für die das Bakterium möglicherweise eine Alternative findet. Will man alle Chancen der Omiken-Revolution aus schöpfen, benötigt man Informationstechnologien, die in der Lage sind, die gewonnene Datenflut sinnvoll auszuwerten. Aus der Entwicklung solcher Technologien ist längst ein neuer Wissenschaftszweig entstanden, die Bioinformatik. Nur mit ihrer Hilfe und mit Computersimulationen kann es den Forschern gelingen, eine weitere Hürde der Medikamentenentwicklung zu überwinden, nämlich das Phänomen der emergenten Merkmale. Damit sind Funktionen biologischer Systeme gemeint, welche sich nicht einfach aus den biochemischen Eigenschaften ihrer Komponenten vorhersagen lassen: Das Ganze ist oft mehr als die Summe seiner Teile. Natürlich ist es immer besser, Tb-Infektionen zu verhindern, als bereits Erkrankte zu behandeln. Daher arbeiten viele Forscher an einem Impfstoff, der zuverlässiger vor der Erkrankung schützt als die BCG-Vakzine. Einige Forscher versuchen, diesen Impfstoff weiter zu optimieren, andere entwickeln ganz neue Vakzinen. Im Moment basieren die Arbeiten vor allem noch auf Versuch und Irrtum. Denn wir wissen nicht, weshalb der BCG-Impfstoff so ineffektiv ist, noch können wir vorhersagen, womit wir Erfolg haben werden, so dass jeder Kandidat zuerst beim Menschen auf Wirksamkeit getestet werden muss. Nie war der Bedarf an besseren Diagnos tika, Medikamenten und Impfstoffe größer als heute. Enorme Herausforderungen liegen noch vor uns.
Clifton E. Barry III. leitet seit 1991 die Tuberkulose-Forschungsabteilung am National Institute of Allergy and Infectious Diseases (NIAID) der National Institutes of Health in Bethesda (US-Bundesstaat Maryland). Er verantwortet ein klinisches Studienprogramm in Südkorea, in dem Patienten behandelt werden, die an hochresistenter Tuberkulose erkrankt sind. Maija S. Cheung arbeitet ebenfalls am NIAID. Sie absolvierte das Middleburry College, Vermont, und studiert derzeit Public Health und Infektionskrankheiten.
Goozner, M.: Multidrug Resistant Tb in Russia. In: Scientific American digital, 28. August 2008. Online unter www.sciam.com/report. cfm?id=tuberculosis-in-russia. Kaufmann, S. H. E.: Neue Waffen gegen Tuberkulose. In: Jahresbericht der MPG 2008, S. 18 – 24. Ryan, F.: The Forgotten Plague. How the Battle against Tuberculosis Was Won – and Lost. Little, Brown & Company, London 1993. Singh, R. et al.: PA-824 Kills Nonreplicating Mycobacterium Tuberculosis by Intracellular NO Release. In: Science 322, S. 1392 –1395, 2008. Weitere Informationen über Tuberkulose: www.who.int/tb/en
Weblinks zu diesem Thema finden Sie unter www.spektrum.de/ artikel/1010644.
59
Neurobiologie
Sie glauben, dass Sie
?
tanzen können
Wie bewegen wir uns beim Tanz durch den Raum? Wie steuern wir die Schritte? Neuere bildgebende Analysen enthüllen die komplexen Vorgänge, die während des Tanzens im Gehirn ablaufen.
Von Steven Brown und Lawrence M. Parsons
In Kürze r Der Tanz ist eine grund legende Ausdrucksform des Menschen. Vermutlich hat sie sich neben der Musik als eine Möglichkeit entwickelt, Rhythmus zu erzeugen. r Tanzen erfordert beson dere geistige Fähigkeiten. Ein bestimmter Hirnbereich prozessiert Informationen über unsere Körperlage, die für jede Bewegung benötigt werden; ein weiteres Hirnareal fungiert als Zeitmesser. r Häufig setzen sich unsere Füße beim Klang von Musik instinktiv rhythmisch in Bewegung. Höhere Zentren des Hörsystems werden umgangen, und nur subkortikale Hirnregionen kommunizieren miteinander.
60
U
nser Rhythmusgefühl betrachten wir in der Regel als selbstver ständlich. Beim Klang von Musik klopfen wir mit den Füßen den Takt oder wiegen und schwingen hin und her. Dabei merken wir häufig gar nicht, dass wir uns bewegen. In der Evolution hat sich dieser Instinkt aber im Wesentlichen erst beim Menschen entwickelt. Kein anderes Säugetier und wahrscheinlich auch kein an deres Lebewesen besitzt vergleichbare Fähig keiten. Das Talent, uns unbewusst zu be wegen, stellt den Kern des Tanzens dar. Tan zen vereinigt Bewegung, Rhythmus und gestische Darbietung. Darüber hinaus ist es eine gruppendynamische Übung, bei der sich die Teilnehmer intensiv aufeinander einstel len müssen, um sich synchron durch Raum und Zeit zu bewegen. Für andere zwischen menschliche Kontakte ist dies zumeist nicht in der Weise erforderlich. Obwohl der Tanz eine grundlegende Aus drucksform des Menschen darstellt, haben sich Neurowissenschaftler für dieses Phäno men bisher wenig interessiert. Vor einiger Zeit allerdings haben Forscher bildgebende Verfah ren eingesetzt, um die Gehirne sowohl von
professionellen Tänzern als auch von Laien zu untersuchen. Dabei stellten sie folgende Fra gen: Wie bewegen sich Tänzer durch den Raum? Wie setzen sie ihre Schritte? Wie mer ken sich Menschen komplizierte Bewegungs abläufe? Die Resultate liefern einen faszinie renden Einblick in die komplexen Vorgänge, die im Gehirn ablaufen, wenn Menschen selbst einfachste Tanzschritte ausführen. Isolierte Bewegungen, wie die Drehung eines Gelenks oder das Klopfen mit dem Fin ger, haben Neurowissenschaftler bereits früher ausführlich untersucht. Aus diesen Arbeiten wissen wir, wie das Gehirn einfache Hand lungen anstößt. Schon allein, um auf einem Bein zu hüpfen, geschweige denn gleichzeitig noch den Kopf zu berühren, berechnet das sensomotorische System des Gehirns Daten bezüglich der räumlichen Wahrnehmung, des Gleichgewichts, der geplanten Bewegung, der Zeitmessung und anderer Dinge. Grob gesagt werden visuelle Informationen im hinteren Scheitellappen in Bewegungsbefehle umge wandelt. Die Befehle gelangen zu den so ge nannten motorischen Gebieten im prämoto rischen Kortex (prämotorische Rinde) und supplementären motorischen Arealen. Dann gehen sie zur primären motorischen Hirn rinde. Diese sendet Nervenimpulse über das Rückenmark an die Muskeln zur Steuerung SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Medizin & Biologie
Aurora Photos / Woody Welch
ihrer Kontraktion (siehe Kasten auf S. 62). Zeitgleich zu diesem Prozess laufen von den sensorischen Organen der Muskeln Nerven signale über das Rückenmark zur Großhirn rinde, um die genaue Position des Körpers in nerhalb des Raums zu übermitteln. Subkortikale, also unbewusste Erregungs kreisläufe des Kleinhirns und der Basalgang lien im Inneren des Gehirns helfen dabei mit, die motorischen Befehle zu aktualisieren und für die Feinabstimmung unserer Bewegungen zu sorgen. Trotz all dieses Wissens war bisher nicht bekannt, ob die beschriebenen neurona len Mechanismen genauso auch bei graziösen Bewegungen wie beispielsweise einer Pirouet te ablaufen.
Wie dreht man eine Pirouette?
Dieser Frage gingen wir nach. Zusammen mit unserem Kollegen Michael J. Martinez von der University of Texas in San Antonio unter suchten wir erstmals das Gehirn mit bildge benden Verfahren, während die Versuchsper sonen Tanzbewegungen ausführten. Als Test personen wählten wir Amateur-Tangotänzer. Mit Hilfe der Positronenemissionstomografie (PET) zeichneten wir die Hirnsignale von je fünf Männern und Frauen auf. Bei dieser Me thode misst man Unterschiede des Blutflusses, der sich als Folge variabler Hirnaktivität lau SPEKTRUM DER WISSENSCHAFT · Dezember 2009
fend verändert. Wird ein bestimmter Bereich stärker durchblutet, nehmen die Forscher an, dass dort auch mehr Nervenzellen aktiviert wurden. Unsere Versuchspersonen lagen flach in der Röhre des Scanners. Ihr Kopf war fixiert, sie konnten jedoch ihre Beine bewegen und die Füße an einer geneigten Oberfläche entlang schieben (siehe Kasten auf S. 63). Über Kopf hörer hörten die Probanden Tangomusik. Wir baten sie, zunächst im Rhythmus der Musik einen so genannten Box-Schritt auszuführen, der im argentinischen Tango auf den SalidaGrundschritt zurückgeht. Danach folgte ein Versuch, in dem die Tänzer zur Musik die Beinmuskeln zwar an- und entspannen, sie aber nicht tatsächlich bewegen sollten. Bei der Analyse subtrahierten wir diese Daten von den vorherigen, bei der die Testpersonen »richtig« getanzt hatten. Dadurch konnten wir die Hirnbereiche lokalisieren, welche beim Tanzen die Beine durch den Raum dirigieren, und dafür die spezifischen Bewegungsmuster erstellen. Wie erwartet, schieden durch dieses Ver fahren viele der grundlegenden motorischen Hirnareale bereits aus. Übrig blieb der Teil des Scheitellappens, der bei Menschen und Säuge tieren bei der räumlichen Wahrnehmung und der Orientierung eine besondere Rolle spielt.
Der Tanz ist eine der am stärks ten synchronisierten Bewe gungsformen des Menschen. Neurowissenschaftler wollen enträtseln, wie und vor allem warum wir tanzen.
Diesen Artikel können Sie als Audiodatei beziehen; siehe www.spektrum.de/audio
61
Neurobiologie
Aurora Photos / Peter McBride
Die Physiotherapeuten Gammon M. Earhart und Madeleine E. Hackney von der Washington University School of Medicine in St. Louis entdeckten 2007, wie Parkinsonpatienten durch Tangotanzen ihr Bewegungsvermögen verbessern können. Bei der Parkinsonkrankheit sterben in einer bestimmten subkortikalen Struktur, den Basalganglien, Nervenzellen ab. Das unterbricht bestimmte Informationswege zur motorischen Großhirnrinde. Als Folge leiden die Betroffenen unter Zittern und Unbeweg lichkeit und haben Schwierigkeiten, geplante Bewegungen auszuführen. Die Forscher fanden heraus, dass die Versuchspersonen nach 20 Tangostunden weniger oft in der Bewegung »einfroren«. Im Gegensatz zu Testpersonen, die stattdessen 20 konventionelle Gymnastikstunden absolviert hatten, zeigten die »Tangotänzer« eine bessere Gleichgewichtskontrolle. Darüber hinaus erreichten sie mehr Punkte beim so genannten Steh-auf-undGeh-Test, ein Maß für das Stolperrisiko einer Person.
62
[Die Grundlagen] Bewegungszentren des Gehirns Um Hirnbereiche zu identifizieren, die beim Tanzen beteiligt sind, hilft es, zunächst die Areale zu erkennen, die für sonstige willkürliche Bewegungen verantwortlich sind. Die Grafiken zeigen ein vereinfachtes Schema der zuständigen Nervenbahnen.
supplementärmotorische Hirnrinde
primäre motorische Hirnrinde Scheitellappen
Stirnlappen
Bewegungen werden im Stirnlappen geplant (links), wo die prämotorische Hirnrinde der äußeren Oberfläche (nicht sichtbar) und das supplementär-motorische Areal Signale auswerten (Pfeile), die aus anderen Regionen des Zentralnervensystems einlaufen. Dabei werden Informationen über die Raumposition des Körpers und die Erinnerung an frühere Bewegungsmuster verwendet. Anschließend kommunizieren die beiden Bereiche mit der primären motorischen Hirnrinde. Diese legt daraufhin fest, welche Muskelpartien wie stark kontrahieren müssen, und schickt die entsprechenden Befehle über das Rückenmark zu den Muskeln.
Hinterhauptslappen
Schläfenlappen Hirnstamm Rückenmark
zu den Muskeln Basalganglien Thalamus Die Feinabstimmung der Befehle (Grafik rechts) erfolgt, wenn die Muskeln Signale zurück an das Gehirn schicken. Das Kleinhirn benutzt die Informationen der Muskeln, um das Gleich gewicht aufrechtzuerhalten und laufend die Bewegungen unseres Körpers zeitlich und räumlich nachzujustieren. Zusätzlich empfangen die Basalganglien ständig sensorische Informationen aus der Großhirnrinde und senden sie anschließend über den Thalamus zu den motorischen Zentren.
Beim Tanzen erfahren wir den Raum haupt sächlich über den Bewegungssinn: Selbst mit geschlossenen Augen kennen wir immer die Lage des Rumpfes und unserer Gliedmaßen. Verantwortlich dafür sind die sensorischen Or gane unserer Muskeln. Sie übermitteln dem Gehirn die Drehung jedes Gelenks und die Spannung jedes einzelnen Muskels. Aus diesen Informationen erzeugt das Hirn eine struktu rierte Darstellung des Körpers. Mit unseren Experimenten konnten wir zeigen, dass dabei vor allem der Praecuneus stark aktiviert wird, ein bestimmter Bereich des Scheitellappens. Er liegt dicht neben der Kortexzone, welche die Bewegung der Beine koordiniert. Unserer An sicht nach enthält der Praecuneus eine kinäs thetische Karte, anhand derer jeder die Raum position seiner Körperteile erfasst, während er sich durch die Umgebung bewegt. Diese Hirn region ist daran beteiligt, den Weg aufzuzeich
Kleinhirn
nen, egal, ob man nun einen Walzer tanzt oder einfach nur eine gerade Linie entlanggeht. Die Sichtweise dabei ist körperbezogen oder auch »egozentrisch«. In weiteren Versuchen ließen wir unsere Testpersonen Tangoschritte ausführen, ohne ihnen Musik vorzuspielen. Anschließend ver glichen wir diese Ergebnisse mit den »rich tigen« Tanzaufnahmen. Diesmal wollten wir diejenigen Hirnbereiche ausschließen, die bei beiden Aufgaben aktiv waren. Dadurch hoff ten wir, Areale zu identifizieren, die verant wortlich dafür sind, die Bewegung auf die Musik abzustimmen, also Musik und Muskel bewegungen zu synchronisieren. Wiederum ließen sich durch diese Subtraktion fast alle motorischen Hirnareale eliminieren. Der we sentliche Unterschied zwischen beiden Ver suchsreihen lag im hinteren Wurm (Vermis), dem Teil des Kleinhirns, der die Signale vom SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Tami Tolpa
Aufreizender Tango
Medizin & Biologie gebnisse mit und ohne Musik stießen wir auf eine untergeordnete Struktur innerhalb des auditorischen Signalwegs, den mittleren Knie höcker (Corpus geniculatum mediale, kurz CGM). Die subkortikale Struktur leuchtete in unseren PET-Bildern nur bei den Tanzaufnah men mit Musik auf. Zunächst dachten wir, das läge eben am auditiven Reiz der Musik. Das konnten wir jedoch durch eine zweite Serie von Kontrollaufnahmen ausschließen. Hörten die Versuchspersonen lediglich Musik, ohne ihre Füße zu bewegen, beobachteten wir im mittleren Kniehöcker keine Änderung der Durchblutung.
Der unbewusste Weg zum Tanz
Wir folgerten, dass die Aktivität im CGM nicht bei einfachem Zuhören entsteht, son dern dass sie mit dem Synchronisieren von Musik und Bewegung zusammenhängt. Da raus entwickelten wir die Theorie des »unbe wussten Wegs«: Wird ein Höreindruck von den Nervenzellen direkt an den potenziellen Zeitgeber im Kleinhirn geleitet und umgeht er dabei höhere Hörzentren, bewegen sich die Menschen, ohne es zu merken.
[Versuchsaufbau] Raffinierte Beinarbeit Für die Analyse der Hirnareale, die das Tanzen steuern, wurden mehrere Ama- teur-Tangotänzer gebeten, sich flach in einen PET(Positronenemissionstomogra fie)-Scanner zu legen. Die Köpfe der Probanden waren fixiert, sie konnten Tangomusik über Kopfhörer hören und ihre Beine auf einer geneigten Oberfläche frei bewegen.
supplementärmotorische Hirnrinde
primärmotorische Hirnrinde
aktivierte Hirnbereiche bei alleiniger Muskelkontraktion ohne Beinbewegung
Person im Scanner: mit frdl. Gen. von Lawrence M. Parsons; Tango-Diagramm: Lucy Reading-Ikkanda
Praecuneus
Tangoschritte minus Muskelkontraktion
vorgegebene Tango schritte 4
5 3
6
2 1
L R
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Hirnscans aus: Steven Brown et al., The Neural Basis of Dance, in: Cerebral Cortex 2006, Bd. 16, Nr. 8
Rückenmark empfängt. Zwar war der hintere Wurm mit und ohne Musik aktiviert, jedoch in Anwesenheit von Musik deutlich stärker, als wenn die Tanzschritte allein selbstbe stimmt ausgeführt wurden. Trotz der Vorläufigkeit unserer Ergebnisse stützen sie doch unsere Hypothese, dass der hintere Wurm als Zeitmesser fungieren könn te. Darauf deuten auch andere Studien zu rhythmischem Klopfen mit den Fingern hin. Tatsächlich besitzt die besagte Region alle not wendigen Voraussetzungen eines guten neuro nalen Metronoms: Viele Eingangssignale des auditorischen, visuellen und somatosenso rischen Systems treffen hier ein. (Das ist not wendig, um die Bewegungen auf eine Vielzahl von verschiedenen Reizen wie Töne, Licht blitze oder Berührungen abstimmen zu kön nen.) Dieser Bereich bündelt Repräsentatio nen aller Bewegungen des Körpers. So kann sich die Aktivität der Nervenzellen unter schiedlichen Geschwindigkeiten anpassen. Unerwartet lieferte die zweite Versuchsrei he auch eine Erklärung für unsere natürliche Neigung, die Füße unbewusst im Takt mit der Musik zu bewegen. Beim Vergleich der Tester
In einem der Experimente wurde das Gehirn unter zwei verschiedenen Bedingungen gescannt. Einmal spannten die Versuchspersonen ihre Muskeln zwar im Rhythmus der Musik an, jedoch ohne die Beine tatsächlich zu bewegen. Zum anderen vollführten sie einen TangoGrundschritt, den Box-Schritt (kleines Bild links unten). Dann subtrahierten die Forscher die Hirnaktivität bei der reinen Muskelkontraktion (kleines Bild oben) von der Aktivität beim Tangotanzen. Übrig blieb ein leuchtender Bereich des Scheitellappens, fachlich Praecuneus genannt (kleines Bild unten).
63
Mit Ballet besser im Gleich gewicht? Roger W. Simmons der San Diego State University entdeckte, dass sich klassisch ausgebildete Balletttänzer nach dem Verlust des Gleichgewichts deutlich schneller wieder aufrichten als ungeübte Menschen. Ihre Muskeln und Nervenbahnen reagieren schneller auf die Störung.
Getty images / Nancy Brown
Neurobiologie
Während wir Tanzbewegungen verfolgen und erlernen, sind auch andere Teile des Ge hirns beteiligt. Beatriz Calvo-Merino und Pa trick Haggard vom University College Lon don und ihre Kollegen haben untersucht, ob bestimmte Hirnareale vor allem dann aktiviert werden, wenn Menschen bei einem Tanz zu sehen, den sie bereits selbst beherrschen. Sind also andere Gehirnbereiche beteiligt, wenn ein Balletttänzer sich einen Balletttanz anschaut, als wenn er zum Beispiel einer Capoeira-Dar bietung zusieht (einer afrobrasilianischen Kampfkunst in Form eines Tanzes, die zu Mu sik aufgeführt wird)? Um dies herauszufinden, führte die Ar beitsgruppe in London Versuche mit Ballett tänzern, Capoeira-Tänzern und Laien durch. Die Probanden schauten sich einen drei sekündigen lautlosen Videofilm einer Ballettoder einer Capoeira-Aufführung an. Gleich zeitig wurde ihre Hirnaktivität per Kernspin tomografie aufgezeichnet. Die britischen Forscher konnten zeigen, dass Fachkenntnis einen wesentlichen Einfluss auf die Aktivität der prämotorischen Großhirnrinde hat. Die
[Ergebnisse] Geistige Choreografie Folgende Hirnregionen übernehmen beim Tanzen Funktionen, die mehr sind als einfach Bewegungsabläufe.
Praecuneus
mittlerer Kniehöcker
hinterer Wurm
Dieser Teil des Kleinhirns empfängt Signale aus dem Rückenmark. Wahrscheinlich arbeitet er als Zeitgeber, indem er die Tanzschritte mit dem Rhythmus der Musik synchronisiert. Er erhöht seine Aktivität, sobald Tänzer sich zur Musik bewegen.
hinterer Wurm (Vermis)
Corpus geniculatum mediale (mittlerer Kniehöcker)
Als eine Station der Nervenbahnen unseres Hörsystems ist es für unsere Neigung verantwortlich, uns zur Musik unbewusst hin- und herzuwiegen oder mit den Füßen den Takt zu klopfen. Das ist der Kern unseres Instinkts zu tanzen. Diese Bewegungen werden unbewusst gesteuert, da der mittlere Kniehöcker die Signale direkt zum hinteren Wurm weiterleitet, ohne mit übergeordneten Hörzentren der Hirnrinde zu »sprechen«.
Praecuneus
Tami Tolpa
Der Praecuneus enthält eine Karte unseres Körpers mit der sensomotorischen Information aller Muskeln. Er ist daran beteiligt, den Weg des Tänzers von einer körperbezogenen oder egozentrischen Perspektive aus zu planen.
64
Nervenzellen wurden nur dann aktiviert, wenn die Versuchspersonen einem Tanz zusa hen, den sie auch selbst beherrschten. Andere Forschungsergebnisse liefern dafür eine mögliche Erklärung. Es gibt Hinweise, dass in der prämotorischen Hirnrinde so ge nannte Spiegelneurone vorkommen. Diese Nervenzellen feuern nicht nur, wenn wir eine bestimmte Handlung ausführen, sondern auch, wenn wir die gleiche Handlung bei je mand anderem beobachten. Den Spiegelneu ronen wird eine bedeutende Funktion zuge sprochen. Möglicherweise sind sie verantwort lich dafür, dass wir uns bestimmte Dinge vorstellen und dadurch Handlungen, aber auch Gefühle und Absichten anderer Men schen nachvollziehen können. In weiteren Experimenten untersuchten Calvo-Merino und ihre Kollegen, ob sich in der Hirnaktivität auch die geschlechtsspezi fische Rolle beim Tanzen widerspiegelt. Dazu betrachteten weibliche und männliche Ballett tänzer Videoaufnahmen von Frauen oder Männern, die lediglich ihre geschlechtsbezo genen Schritte tanzten. Auch in diesem Fall war die prämotorische Hirnaktivität immer dann am stärksten ausgeprägt, wenn Männer und Frauen jeweils die Tänzer ihres eigenen Geschlechts bei den rollenzugehörigen Schrit ten beobachteten.
Simulation im eigenen Geist
In der Tat lassen sich motorische Fähigkeiten nur dann neu erlernen, wenn man eine Bewe gung im Geist simulieren kann. Die Neurolo gen Emily S. Cross, Scott T. Grafton und Kol legen vom Dartmouth College (US-Bundes staat New Hampshire) untersuchten 2006, ob und wie sich die Aktivität der Spiegelneurone erhöht, wenn ein Mensch etwas Neues erlernt. Im Verlauf mehrerer Wochen studierten dazu einige Tänzer eine komplizierte Abfolge von Modern-Dance-Bewegungen ein. Wöchentlich zeichneten die Forscher KernspintomografieAufnahmen der Tänzer auf, bei denen diese jeweils einen fünf Sekunden dauernden Film sahen. Auf dem Video waren entweder die zu er lernenden Tanzschritte oder unbekannte Be wegungen zu sehen. Nach jeder Szene sollten die Tänzer beurteilen, wie gut sie die gezeigten Tanzschritte ihrer Ansicht nach selbst be herrschten. Das Ergebnis zeigte in Überein stimmung mit den Erkenntnissen von CalvoMerino und Kollegen, dass die neuronale Ak tivität der präfrontalen Rinde während des Trainings deutlich zunahm. Darüber hinaus korrelierte die Hirnaktivität mit der eigenen Einschätzung der Testpersonen: Je mehr sie davon überzeugt waren, die gezeigten Schritte SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Getty images / David McNew Corbis / Kevin Fleming
Aztekische »Danzantes« (Tän zer) in Mexiko-Stadt tragen so genannte »Chachayotes« (oben), Beinrasseln, die bei jedem Tanzschritt klappern. In vielen Kulturen befestigen Tänzer solche Objekte an ihrem Körper oder der Kleidung.
zu beherrschen, umso stärker war während des vorangegangenen Films auch die gemes sene Hirnaktivität. Die wesentliche Aussage dieser Studien: Während wir eine neue Bewegung erlernen, wird in unserem Gehirn nicht nur das direkte motorische System aktiviert, das die Muskeln kontrahiert. Tatsächlich benötigen wir eben falls ein neuronales System, das bereits er lernte Bewegungen des Körpers kennt und diese genau plant. Je perfekter wir ein be stimmtes motorisches Muster beherrschen, umso besser können wir es im Geist nachvoll ziehen und wahrscheinlich auch ausüben. Si mulieren wir den Ablauf eines Tanzes, stellen wir uns diesen Prozess nicht nur visuell vor, sondern beziehen auch – so zeigen es unsere Experimente – unsere Bewegungen im Voraus mit ein. Das löst auch die Frage: Warum tanzen Menschen überhaupt? Das ist bei diesem The ma für uns Neurowissenschaftler vielleicht das faszinierendste Problem. Tanz und Musik sind offensichtlich eng miteinander verknüpft. In vielen Beispielen werden beim Tanz auch Ge räusche oder Klänge erzeugt. So bestücken az tekische Tänzer aus Mexiko-Stadt ihre Knö chel mit Samen des Ayoyotl-Baums, den so genannten Chachayotes, die bei jedem Schritt klappern. Auch in anderen Kulturen tragen Menschen Dinge an ihrer Kleidung oder ih rem Körper, die beim Tanzen Geräusche ma chen: Zapfen, Kastagnetten oder Perlen. Darüber hinaus klatschen viele Tänzer während der Bewegung, schnippen mit den Fingern oder stampfen mit den Füßen. Daher vermuten wir, dass der Körper ursprünglich selbst als »Schlaginstrument« diente und die Menschen zunächst tanzten, um solche Töne zu erzeugen. Mit Tanz und Musik, insbeson dere der Musik mit Schlaginstrumenten, sind SPEKTRUM DER WISSENSCHAFT · Dezember 2009
insofern zwei komplementäre Möglichkeiten entstanden, Rhythmus hervorzubringen. Die ersten Perkussionsinstrumente waren womög lich, ähnlich wie die aztekischen Chachayotes, einfache Accessoires beim Tanz. Im Gegensatz zur Musik steckt im Tanz das Potenzial für anderes. Dabei konnten die Menschen schon immer etwas ausdrücken oder imitieren. Möglicherweise diente er ih nen ursprünglich auch als eine Art frühe Spra che. In der Tat ist der Tanz die Urform der Gebärdensprache. Bei unseren Bewegungs experimenten registrieren wir jedes Mal eine neuronale Aktivität im Bereich der rechten Großhirnhälfte, der dem Broca-Areal auf der linken Seite entspricht. Das Broca-Zentrum ist Teil des Stirnlappens und spielt beim Spre chen eine wichtige Rolle. Wie Forscher in den letzten Jahren ent deckten, enthält das Broca-Areal ebenfalls ei nen Bereich, in dem die Hände repräsentiert sind. Diese Entdeckung unterstützt die so ge nannte gestische Theorie der Sprachentste hung. Danach sollen Menschen zunächst mit Gesten miteinander kommuniziert haben, und daraus habe sich erst die Sprache entwi ckelt. Mit unseren Studien konnten wir je denfalls zeigen, dass Beinbewegungen einen Hirnbereich der rechten Großhirnhälfte akti vieren, der homolog zum Broca-Areal ist. Das belegt für uns die These, dass Tanz ursprüng lich als Kommunikationsform diente. Wir hoffen, dass künftige neurobildge bende Untersuchungen neues Licht auf das Tanzen und seine Entwicklung werfen wer den. Die Evolution des Tanzens ist eng mit der Entstehung von Sprache und Musik ver knüpft. Wir verstehen diese Ausdrucksform als eine Kombination zwischen der darstel lenden Fähigkeit der Sprache sowie der Rhythmik der Musik.
Steven Brown (links) arbeitet als Direktor des NeuroArts-Labors in der Abteilung für Psychologie, Neurowissenschaften und Verhaltensbiologie der kanadischen McMaster University. Er forscht vor allem über die neuronalen Grund lagen menschlicher Kommunikation wie Sprache, Musik, Gestik, Tanz und Gefühle. Lawrence M. Parsons ist Professor für Psychologie an der University of Sheffield in England. Er untersucht die neurowissenschaftlichen Grundlagen beim Klavierspiel, Singen, bei der Harmonielehre, beim Dirigieren, bei der Musikimprovisation sowie beim Tanz.
Brown, S. et al.: The Neural Basis of Human Dance. In: Cerebral Cortex 16(8), S. 1157 – 1167, 2006. Calvo-Merino, B. et al.: Action Observation and Acquired Motor Skills: An fMRI Study with Expert Dancers. In: Cerebral Cortex 15(8), S. 1243 – 1249, 2005. Calvo-Merino, B. et al.: Seeing or Doing? Influence of Visual and Motor Familiarity in Action Observation. In: Current Biology 16(19), S. 1905 – 1910, 2006.
Weblinks zu diesem Thema finden Sie unter www.spektrum.de/ artikel/1010646.
65
Kulturevolution
?
Kam die
Kultur aus Afrika Mehrere zehntausend Jahre früher als Europa erlebte der Süden Afrikas zweimal einen kulturellen Schub, der von modernem Verstand zeugte. Doch beide Kulturen gingen bald wieder unter.
Von Zenobia Jacobs und Richard G. Roberts
N In Kürze r
Über 30 000 Jahre früher als in Europa schufen Menschen im südlichen Afrika symbolische Gegenstände. Aber diese Kultur verschwand bald wieder. r
Erstmals wurden frühe südafrikanische Fundstellen konsistent datiert. Demnach erlebte die Region zwei vorübergehende kulturelle Blüten: eine kürzere vor rund 70 000, eine längere vor 65 000 Jahren.
r
Anscheinend bot jeweils eine relativ dichte Besiedlung mit weit reichenden intensiven Kontakten gute Voraussetzungen für den geistigen Fortschritt. Ein Bevölkerungsrückgang ließ die Kulturen wieder untergehen.
r
Gab ein solcher Kulturausbruch den Anlass dazu, dass sich der moderne Homo sapiens zu anderen Kontinenten aufmachte?
66
ach archäologischen Maßstäben gab die Blombos-Höhle an der Südküste Afrikas eine eher kleine Behausung ab. Die Grundfläche misst nur gut 50 Quadratmeter. Doch was die Forscher in 13 Kubikmeter Höhlenboden ausgruben, genügte, um unser Wissen von der Geschichte des menschlichen Geistes zu revolutionieren. So genanntes modernes Verhalten trat demnach wesentlich früher auf als bisher angenommen. Ein Team um den südafrikanischen Archäo logen Christopher Henshilwood vom African Heritage Research Institute in Kapstadt, der auch an der Universität Bergen (Norwegen) lehrt, entdeckte in den letzten 15 Jahren in der Blombos-Höhle Ockerbarren mit abstrakten Ritzmustern und winzige Schneckenhäuser, die alle an der gleichen Stelle ein kleines Loch aufweisen, als ob sie zu Ketten aufgezogen wurden (siehe Bilder S. 68). Diese Zeugnisse symbolischen Ausdrucks fertigten Menschen vor etwas über 70 000 Jahren (siehe auch SdW 12/2005, S. 38). Die frühesten vergleichbaren Artefakte aus Europa sind gerade halb so alt. Die Befunde, die Henshilwood vor einigen Jahren publizierte, passten so gar nicht zur herrschenden Lehrmeinung, wann und wo Menschen anfingen, Symbolik einzusetzen – diese ureigene menschliche Kompetenz. Fast 200 000 Jahre alte Knochenreste aus Äthiopien zeugen davon, dass der Homo sapiens bereits sehr viel früher moderne anatomische Merkmale besaß (siehe SdW 3/2003, S. 38). Anscheinend verstrichen aber nochmals 100 000 Jahre, bis auch modernes Denken aufkam, wie es uns eigen ist. Die Blombos-
Funde liefern viel Stoff zum Nachdenken. Was mag den Kulturdurchbruch veranlasst haben? Wie weit war das erste moderne Verhalten geografisch verbreitet? Trat es gleichzeitig noch anderswo in der südlichen Hälfte Afrikas auf? Des Weiteren wüssten die Anthropologen gern, ob abstraktes und symbolisches Denken daran Anteil hatte, dass der Homo sapiens schließlich die übrige Welt eroberte. In der Blombos-Höhle stießen die Ausgräber im selben Zeithorizont, der die symboli schen Artefakte enthielt, auch auf höchst aufschlussreiche Steinwerkzeuge. Sie entdeckten eine Anzahl sorgsam gearbeiteter, zweischneidiger flacher Spitzen, die wegen ihrer feinen Machart der so genannten Stillbay-Kultur – oder Stillbay-Industrie – zuzuweisen sind (mittleres Bild S. 68). Vermutlich dienten sie als Speerspitzen. Genau solche Steinspitzen hatte der südafrikanische Forscher Langham Dale (1826 – 1898) schon 1866 in einer Bucht südlich von Kapstadt entdeckt. Dass diese lanzettförmigen Artefakte von besonderer Fertigkeit ihrer Hersteller zeugen, erkannte später Astley J. H. Goodwin (1900 – 1959), der Vater der südafrikanischen Archäologie. Viele Forscher bewerten die Stillbay-Kultur inzwischen als eine Phase der so genannten Mittleren Steinzeit (Middle Stone Age) Afrikas mit weit entwickelter, innovativer Technologie (siehe Zeitleiste S. 70). In den Jahrtausenden davor waren die Werkzeuge lange nicht so ausgefeilt. Der Stillbay-Industrie folgte eine weitere hoch entwickelte Kultur: die so genannte Howieson’s-Poort-Industrie. Deren Steinklingen erhielten eine stumpfe Kante und wurden in Holzgriffe eingesetzt (Bild S. 69). Beide Kulturen gingen allerdings bald wieder unter (wichtige Fundorte in Südafrika verzeichnet die Karte S. 70). Vergleichbar anspruchsvolle SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Mensch & geist MEnsch & Geist
Werkzeuge tauchen in Afrika erst wieder in der Spätsteinzeit (dem Later Stone Age) auf, also mehrere zehntausend Jahre später – sowie in Europa im oberen Paläolithikum, also in der späten Altsteinzeit. Sicherlich verwendeten beide Kulturen die beschriebenen Geräte zur Jagd. So interessant der hohe technische Standard dieser Phasen für sich selbst ist – wirklich spannend sind jene Zeitabschnitte wegen der Artefakte mit Symbolgehalt, die an verschiedenen Orten des südlichen Afrika zusammen mit diesen Werkzeugindustrien gefunden wurden. Auch an der Westküste bei Klein Kliphuis kamen beispielsweise gravierte Ockersteine zu Tage. Von Diepkloof stammen Straußeneierschalen, die mit Netzmustern verziert sind. Bei Sibudu an der Ostküste nördlich von Durban entdeckten Forscher Knochenspitzen sowie ebenfalls perforierte Perlen aus Schneckenschalen (siehe
Karte S. 70). All das weist auf einen Fortschritt im geistigen Standard hin. Es gibt Hinweise, dass die menschliche Population damals wuchs und sich ausbreitete – möglicherweise dank mehr technischer Raffinesse und komplexerer sozialer Strukturen. Denn ungefähr in jenen Jahrtausenden schufen Menschen auch in Nordafrika und vermutlich im Osten des Kontinents ähnlich ausgefeilte Steingeräte und Schmuckperlen wie im Süden. Bisher gelang es allerdings nicht, das Alter all jener Fundorte jeweils genau genug einzugrenzen, um sie zeitlich zueinander in Bezug zu setzen. Wir wissen deshalb nicht wirklich, wann und wo modernes Verhalten zuerst auftrat und was den Hintergrund dafür bildete. Unbekannt ist auch, welche unmittelbaren Folgen es hatte. Zumindest eine Reihe wichtiger Fundstellen im südlichen Afrika haben wir nun mit
Die Menschen, die vor über 70 000 Jahren die Blombos-Höhle (rechts) an der Südküste Afrikas bewohnten, besaßen schon einen Verstand wie wir. Das zeigen symbolische Gegenstände, die sie anfertigten.
mit frdl. Gen. von Christopher Henshilwood, Institute for Human Evolution, University of the Witwatersrand
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
67
Kulturevolution
Fotos dieser Seite: mit frdl. Gen. von Christopher Henshilwood, Institute for Human Evolution, University of the Witwatersrand
10 mm
10 mm
Diese Artefakte aus der BlombosHöhle gehören zur so genannten Stillbay-Kultur, die sich von den Jahrtausenden davor und danach abhebt: hier ein Ockerbarren mit Ritzmuster, fein gearbeitete Spitzen und durchbohrte winzi ge Schneckenhäuser, die vermutlich zu Ketten aufgezogen wurden
5 mm
einem systematischen Verfahren präziser datiert. Demnach sieht es tatsächlich so aus, als hätte ein Bevölkerungswachstum die kulturellen Neuerungen vor rund 70 000 Jahren ausgelöst. Es könnte gut sein, dass dies ebenso die Migration des modernen Menschen aus Ostafrika in andere Kontinente anstieß, die vor etwa 60 000 Jahren einsetzte. Warum ist es oft so schwer, Fundorte chronologisch einzuordnen? Das Ergebnis von Altersbestimmungen kann im Einzelfall völlig verschieden ausfallen. Es hängt beispielsweise von der Messmethode ab, von den Geräten, der Eichung, dem Verfahren der Datenanalyse. Oft divergieren die Datierungen, wenn unter68
schiedliche Materialien geprüft werden. Doch sogar Proben von ein- und demselben Objekt liefern manchmal in zwei Labors verschiedene Ergebnisse, selbst beim gleichen Messverfahren. Auch die Stillbay- und Howieson’s-PoortIndustrien waren zeitlich nebulös. Trotz vieler Studien waren ihr Anfang und Ende bisher nicht wirklich klar. Forscher hatten schon oft versucht, die Ablagerungen an den einzelnen Ausgrabungsorten Südafrikas einander zeitlich zuzuordnen und auch deren absolutes Alter zu bestimmen. Das bekannteste Verfahren für solche Messungen dürfte die Radiokarbonmethode sein. Sie liefert, entsprechend kalibriert, das absolute Alter: Organismen nehmen unter anderem ra dioaktiven Kohlenstoff auf, dessen Anteil nach dem Tod langsam sinkt. Theoretisch reicht diese Messmethode 60 000 Jahre zurück, verlässlich ist sie allerdings meist nur für eine halb so lange Zeitspanne. Für älteres Material, aber auch für nichtorganisches, benötigt man deswegen andere Verfahren. Zu nennen sind etwa die Uranserien-Datierung von Kalzit-Formatio nen in Höhlen, die ElektronenspinresonanzTechnik bei Zahnschmelz, Thermolumineszenz bei Steinen von Feuerstellen oder die optisch stimulierte Lumineszenz (OSL) zur Datierung von Sedimenten, die vor der Ablagerung Sonnenlicht ausgesetzt waren. Sie alle wurden in den letzten 30 Jahren schon für südafrikanische Funde angewandt. Straußeneierschalen lassen sich überdies mit der so genannten Eiweißuhr (der Aminosäure-Razemisierung) chronologisch ordnen, da der Anteil linkshändiger, so genannter L-Aminosäuren allmählich abnimmt. Alle so gewonnenen Datierungen der verschiedenen Fundorte zusammen betrachtet, könnte die Stillbay-Kultur zwischen 50 000 und 130 000 Jahre alt sein, die Howieson’sPoort-Industrie zwischen 40 000 und 100 000 Jahre, also etwas jünger. Derart unscharfe Angaben waren viel zu grob, um zu erkennen, was damals tatsächlich geschah. Wie lange existierten die beiden Kulturen wirklich? Wir beschlossen, das Alter beider Industrien einmal für mehrere Orte einheitlich und syste matisch zu untersuchen – und zwar allein mit der OSL-Datierung, also mit optisch stimulierter Lumineszenz. Wir wollten nur eine Sorte Material vermessen, stets dieselben Geräte nehmen und immer auf die gleiche Weise vorgehen. Die Methode eignet sich für die fragliche Zeitspanne sehr gut, denn sie kann die gesamte afrikanische Mittlere Steinzeit erfassen. Ihre Genauigkeit erreicht fünf Prozent und wird noch präziser, wenn derselbe Experimentator alle Messungen durchführt. Auch die Übereinstimmung von mehreren Messun gen an derselben Probe steigt dann. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Mensch & geist
10 mm
Höhlen in Küste und Hinterland, Hochlagen und Wüste
Eine Gruppe um David Huntley von der Simon Fraser University in Burnaby (Kanada, British Columbia) entwickelte die OSL-Datierung 1985, damals insbesondere zur Altersbestimmung geologischer Sedimente. Vor etwa zehn Jahren wurde es möglich, Quarzkörner von nur einem zehntel Millimeter Durchmesser zu prüfen. Nun konnte man von jeder Probe hunderte Körnchen einzeln untersuchen und daraus eine Messstatistik erstellen, die anzeigte, ob die Einzelwerte gut übereinstimmten oder ob irgendwelche Störfaktoren vorlagen, etwa Verunreinigungen. Möchte man Anfang und Ende einer frühen Kultur ermitteln, genügt natürlich nicht die Datierung eines einzelnen Fundorts. Wir können nicht einfach voraussetzen, dass Menschen diesen Ort während der gesamten fraglichen Zeitspanne nutzten. Viele Grabungsstellen zusammengenommen liefern dafür besseren Aufschluss. Das sagt sich leicht, ist mitunter allerdings schwer zu erreichen. Gerade die Stillbay-Industrie bereitet da Schwierigkeiten. Von ihr kennen Forscher vom gesamten südlichen Afrika bisher nur eine Hand voll Vorkommen. Günstiger ist die Situation für die Howieson’s-Poort-Industrie. In dieser Region existieren rund 30 Grabungsstellen an den verschiedensten Orten, teils mit sicherer, teils mit vermuteter Zuordnung zu dieser Kultur. Die Fundorte liegen breit gestreut – im Landesinnern, an der Küste und im Küstenhinterland, in Hochlagen von Lesotho, in den Wüstengebieten Namibias und in subtropischen Gegenden. Alle befinden sich unter natürlichen Felsdächern oder in Höhlen. Die SPEKTRUM DER WISSENSCHAFT · Dezember 2009
mit frdl. Gen. von Marlize Lombard und Justin Pargeter, Institute for Human Evolution, University of the Witwatersrand
In unserem Fall machte diese Arbeit Ze nobia Jacobs. Sie fing im Jahr 2006 damit an. Was ist optisch stimulierte Lumineszenz? Quarzkristalle, die im Boden lagern, nehmen aus ionisierenden Strahlungsquellen ihrer Um gebung fortwährend Energie auf – hauptsächlich von Uran, Thorium, deren Zerfallsprodukten sowie radioaktiven Kaliumisotopen. Dadurch geraten Elektronen in Fehlstellen der Kristallstruktur. Im Labor werden diese mit Hilfe von blauem oder grünem Licht aus ihrer Falle befreit – was in der Natur durch Sonnenlicht geschieht. Damit lässt sich die Strahlungsdosis abschätzen, der das Quarzkörnchen seit der Ablagerung insgesamt ausgesetzt war. Durch Abgleich mit der Radio aktivität der Probe und der Umgebung kann man berechnen, wann die Quarzkristalle unter die Erde gelangten, also wie alt die entsprechende Fundschicht mit den darin liegenden Artefakten ist.
damaligen Jäger und Sammler nutzten sie als Lager. Spuren von Feuerstellen, Essensresten und Werkzeug erzählen von der damaligen Lebensweise. Die Ablagerungen der Blombos-Höhle hatte Jacobs zuvor schon datiert. Zusätzlich wählten wir zunächst elf Grabungsstätten aus, von denen sich zwei später als ungeeignet für unser Verfahren erwiesen. Die übrigen neun Orte verteilten sich über das Land. Sie sollten möglichst verschiedene Umweltverhältnisse repräsentieren, auch die damalige Bandbreite an Klimata. Ein paar der Fundorte enthielten Zeugnisse beider fraglichen Industrien, andere jeweils von einer (siehe Karte S. 70). Von den neun Stellen gewannen wir immerhin 54 verschiedene Proben für unsere Messungen. Nach deren Datierung konnten wir das erste und letzte Auftreten der Howieson’s-Poort-Industrie festlegen. Für die Stillbay-Industrie sind die Daten statistisch etwas unsicherer. Das Auffälligste: Beide Kulturen waren offenbar extrem kurzlebig. Sie traten plötzlich auf und verschwanden schon bald wieder – und zwar anscheinend im gesamten Gebiet von zwei Millionen Quadratkilometern und bei unterschiedlichen klimatischen und ökologischen Verhältnissen. Diese Konsistenz erlaubte es, unsere Daten in ein statistisches Modell einzuspeisen, das Rex Galbraith vom University College London entwickelt hat. Damit erfuhren wir, dass die Stillbay-Kultur nur ungefähr 1000 Jahre lang existierte: von
Die Howieson’s-Poort-Kultur folgte der Stillbay-Kultur Jahrtausende später – zwischen ihnen lag eine große zeitliche Lücke ohne nennenswerte geistige Zeugnisse. Diese Gerätschaften haben Marlize Lombard und Justin Pargeter von der University of the Witwatersrand (Johannesburg, Südafrika) nachgebaut.
Beide Kulturen waren extrem kurzlebig – und sie hielten im gesamten Gebiet gleich lang an
69
Kulturevolution
Rose Cottage Cave (RCC) Rose Cottage Cave (RCC) Ntloana Tsoana (NT) Ntloana Tsoana (NT)
Apollo 11 (AP) Apollo 11 (AP)
Klein Kliphuis (KKH) Klein Kliphuis (KKH) Diepkloof (DRS) Diepkloof (DRS)
Border-Höhle Sehonghong Border-Höhle (SEH) Sehonghong Sibudu (SIB) (SEH) Melikane (MLK) Melikane (MLK)
Sibudu (SIB) Umhlatuzana (UMH) Umhlatuzana (UMH)
Boomplaas (BPA) Boomplaas (BPA)
Blombos-Höhle nur Stillbay
Blombos-Höhle nur Howieson’s Poort nur Stillbay beide Kulturen nur Howieson’s Poort
Karte: Google Earth Pro / Spektrum der Wissenschaft
Die Karte zeigt einige wichtige Fundstellen der beiden untersuchten frühen Kulturen. Nach den neuen Zeitmessungen gab es zwei zeitlich völlig getrennte kulturelle Schübe, die sich beide über die gesamte Region erstreckten. (Die Abkürzungen für die Fundorte entsprechen denen in der Grafik S. 72)
Klasies River (KRM) Klasies River (KRM)
beide Kulturen
Zur Einteilung der Steinzeit Afrikas verwenden Forscher eigene Bezeichnungen. Auch differieren die Phasen in den einzelnen Regionen des Kontinents. So ging die Mittlere Steinzeit im Süden viel später zu Ende als in Ostafrika. Dort könnte die Späte Steinzeit schon vor etwa 50 000 Jahren eingesetzt haben.
vor etwa 72 000 bis vor 71 000 Jahren. Die Howieson’s-Poort-Industrie erschien rund 7000 Jahre später, vor etwa 65 000 Jahren. Sie hielt länger an – aber nach 5000 Jahren verschwand auch sie plötzlich (Grafik S. 72). Erst 3000 Jahre darauf tauchen wieder Zeugnisse mittelsteinzeitlicher Industrien auf. Alle jetzt folgenden Technologien zeigen jedoch ein deutlich geringeres kulturelles Niveau. Wie mag sich das erklären? Forscher machen für dergleichen gern Klimawechsel und damit verbundene Umweltveränderungen verantwortlich. Der letzte eiszeitliche Zyklus umfasst ungefähr die Zeit vor 130 000 bis vor 12 000 Jahren. Für den Süden Afrikas bedeutete das merkliche Temperaturund Niederschlagsschwankungen. Immerhin so viel steht fest: Die Howieson’s-Poort-In dustrie fiel in eine Phase der Klimaerwärmung. Dagegen lässt sich die Stillbay-Kultur nicht eindeutig zuordnen. Anscheinend waren die klimatischen Bedingungen während der beiden Perioden aber nicht die gleichen. Deswegen glauben wir nicht, dass die beiden Zeiten kultureller Innovation ähnlichen Umweltereignissen entsprangen oder aus ähnlichen äußeren Gründen zu Ende gingen. Einen Einfluss des Klimas darauf, wann welche der Höhlen bewohnt wurden, schließt das freilich nicht aus. Nach unseren Mes-
sungen nutzten die Menschen diese geschützten Orte vermutlich vor allem in wärmeren Phasen. Gegen einen reinen Klimaeinfluss spricht weiter, dass Anfang und Ende der genannten Industrien offenbar überall ziemlich gleichzeitig stattfanden – somit an Orten mit teils sicherlich recht verschiedenen Klimabedin gungen. Im Übrigen fielen mindestens zwei der drei noch folgenden mittelsteinzeitlichen Abschnitte in recht warme Phasen. Deren Steinwerkzeuge sind dennoch wieder viel gröber gearbeitet als vorher, und es fanden sich keine Anzeichen für Schmuck oder andere Symbolik mehr, auch keine Hinweise auf technische oder sonstige Neuerungen. Was sonst könnte die beiden frühen Schübe von Kreativität und Erfindungsgeist ausgelöst haben? Hierbei erscheinen Erkenntnisse aus genetischen Studien zur frühen Ausbreitung des modernen Menschen aufschlussreich. Vergleiche von bestimmten Erbgutabschnitten bei heutigen Bevölkerungen lassen frühere Wanderbewegungen erkennen (siehe SdW 9/2009, S. 58). Auch liefern sie Hin weise auf dezimierte Populationen, somit auf zeitweise geringe Individuenzahl in prähistorischer Zeit. Desgleichen erzählen sie, ob und wie lange eine bestimmte Menschengruppe von anderen genetisch isoliert war. Die so ge-
Steinzeitalter im südlichen Afrika
70
Frühe Steinzeit
Mittlere Steinzeit
Späte Steinzeit
2,5 Millionen bis 180 000 Jahre vor heute
180 000 bis 22 000 Jahre vor heute
22 000 bis 1500 Jahre vor heute
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Mensch & geist
Altersmessung an Quarzkörnern
nannten Mitochondrien, wichtige Zellorganellen, eignen sich hervorragend für solche Nachforschungen. Sie enthalten – außerhalb des Zellkerns – ebenfalls Erbgut, das allerdings nur die Mutter weitergibt. Die betrachteten DNA-Abschnitte mutieren in relativ gleichmäßiger Rate, so dass sich daran Stammbäume ablesen lassen.
Der erste Bevölkerungsschub
Solche genetischen Analysen sind nicht ganz einfach und werden teils heftig diskutiert. Trotzdem zeichnet sich zur Bevölkerungsentwicklung in den afrikanischen Regionen südlich der Sahara allmählich ein recht klares Bild ab. Eine neuere Untersuchung dazu stammt von Forschern um Quentin Atkinson von der University of Oxford. Das Team betrachtete vier Hauptlinien mitochondrialer DNA, die ursprünglich nur bei Menschen in Afrika vorkommen, genannt L0, L1, L2 und L3. Die jüngste dieser Linien ist L3 – und von ihr zweigen sich interessanterweise alle mitochondrialen Linien der übrigen Welt ab. Die Analyse der vier genannten Linien erbrachte Erstaunliches: Es zeigte sich nämlich, dass in den letzten 150 000 Jahren das erste ausgeprägte Bevölkerungswachstum irgendwann vor 86 000 bis 61 000 Jahren eingesetzt haben muss – und bemerkenswerterweise waren das Menschengruppen, die zu L3 gehörten. Keine der anderen urafrikanischen Linien erfuhr damals Ähnliches. Deren Angehörige nahmen erst vor maximal 20 000 Jahren deutlich an Zahl zu. Da hatten sich Untergruppen von der Linie L3 längst zu anderen Kontinenten aufgemacht. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Spiegel
Licht detektor
Linse
Linse
Spiegel
American Scientist, Stephanie Freese
Die Autoren bestimmten das Alter der süd afrikanischen Fundschichten mittels optisch stimulierter Lumineszenz (OSL). Bei diesem Verfahren macht man sich zu Nutze, dass ab gelagerte Quarzkörnchen ionisierender (radio aktiver) Strahlung von den sie umgebenden Sedimenten ausgesetzt sind. Einen Teil dieser Energie speichern sie in Form von Elektronen, die in kleinsten Defekten der Kristallstruktur hängen bleiben. Bei der OSL-Messung wird ein grüner Laserstrahl mit Linsen und beweg lichen Spiegeln auf die einzelnen Körnchen auf einer drehbaren Scheibe gelenkt, um die eingefangenen Elektronen zu stimulieren. Ein Detekor misst das Lumineszenzlicht. Die Zeit spanne seit der Ablagerung ergibt sich aus dem Vergleich mit der Radioaktivität von Pro be und umgebendem Material.
einzelne Quarzkörnchen
Klimabedingungen allein können dieses selektive Bevölkerungswachstum wohl nicht erklären. Zwar mag man zunächst versucht sein, es den damaligen gravierenden Umweltereignissen zuzuschreiben. Für Ostafrika wiesen Christopher Scholz und seine Kollegen von der Syracuse University (US-Bundesstaat New York) nach, dass das Klima dort vor rund 75 000 Jahren umschlug. Vorher hatte 60 000 Jahre lang starke Trockenheit vorgeherrscht. Jetzt wurde es insgesamt viel feuchter, auch stabilisierte sich das Klima nun. Etwa zeitgleich, vor ungefähr 74 000 Jahren, brach auf Sumatra der Vulkan Toba aus. Bis heute dürfte das die größte Vulkankatastrophe seit dem Auftritt der Gattung Homo gewesen sein. Manche Forscher vermuten, dass der Ausbruch weltweit einen so genannten vulkanischen Winter verursachte, der auch die Menschen dezimierte – was zu dem errechneten Bevölkerungswachstum allerdings nicht passt. Die These kann schon gar nicht erklären, wieso ausgerechnet nur eine der genetischen Linien aufblühte. Laut Atkinson und seinen Kollegen dürfte es damals zumindest noch weitere Ursachen dafür gegeben haben, dass einige Gruppen anwuchsen – und dass gerade sie sich bald danach über Afrika hinaus ausbreiteten. Nach Ansicht des Forscherteams könnten Mitglieder der L3-Linie über kulturelle Errungenschaften oder vielleicht komplexeres Verhalten verfügt haben, das ihnen im Vergleich zu anderen Menschen Vorteile verschaffte. Das mögen irgendwelche technischen Fertigkeiten gewesen sein, eine effektivere Versorgung mit benötigten Gütern oder möglicherweise ein
Nur eine urafrikanische Bevölkerungsgruppe vermehrte sich damals plötzlich stark
71
Kulturevolution
Liz Wadley, Institute for Human Evolution, University of the Witwatersrand
Rund 40 Kilometer nördlich von Durban an Südafrikas Ostküste liegt die Sibudu-Höhle. Sie wurde zunächst von Menschen der Stillbay-, später auch von Angehörigen der Howieson’sPoort-Kultur bewohnt.
140
AP
BPA
BC
120
100
anderer sozialer Zusammenhalt, besser ab gestimmte Gruppenprozesse oder geschickter koordinierte Kontakte mit anderen Gruppen. Wenn dem so war – zeitlich könnten unsere Altersbestimmungen zur Stillbay- und Howieson’s-Poort-Kultur in dieselbe Zeit fallen, in der Genetiker eine Bevölkerungszunahme vermuten. Man könnte weiter spekulieren, ob die kulturellen Neuerungen das Bevölkerungswachstum antrieben oder umgekehrt. Plausibler erscheint Letzteres. Denn wahrscheinlich stammt die Linie L3 ursprünglich aus Ostafrika und breitete sich von dort aus. In der Re gion herrscht bei (heutigen) Angehörigen dieser Linie eine viel größere genetische Vielfalt als im Süden. Genaueres zum Ablauf werden wir allerdings erst wissen, wenn die Ausbreitung dieser genetischen Gruppe noch eingehender untersucht ist. Wichtig ist auch, wie sich die Altersangaben zur Stillbay- und Howieson’s-Poort-Kultur, vor allem zu deren Beginn und Ende, in Datierungen von ostund nordafrikanischen Fundstellen einfügen werden, die von ähnlich hoch entwickelten Kulturen zeugen. Auf der anderen Seite lassen solche Erbgutanalysen erkennen, wann eine Bevölkerung von anderen Menschengruppen geografisch getrennt lebte, das heißt wann über eine längere Phase kein genetischer Austausch mit anderen Gruppen stattfand. Anscheinend geschah das bei Populationen im Afrika südlich der Sahara mehrmals. Die Linie L0 ist besonDRS ihrer Äste kommen KRM ders alt. Zwei am meisten bei den Khoisan-Völkern vor – zu denen unter anderem die Buschleute (San) Südwestafrikas zählen. Genetischen Untersuchungen zufolge wurden diese Völker vor über 90 000
Jahren von der übrigen Menschheit genetisch isoliert. Kontakte zu anderen Gruppen kamen offenbar erst mit der afrikanischen Späten Steinzeit wieder auf. Das stützt zugleich die Vermutung, dass die Khoisansprachen mit ihren charakteristischen Schnalz- und Klick lauten eigene uralte Wurzeln haben. Auch die Vorfahren der Pygmäen Äquatorialafrikas wurden offenbar vor mindestens 74 000 Jahren von anderen Menschen getrennt, wie die Geschichte der Linie L1 anzeigt. Ihre genetische Isolation hörte vor 40 000 Jahren wieder auf. Gern wüssten wir, ob die Linie L3 zwischendurch ebenfalls Isolationsphasen erfuhr – und zwar auch in der Phase vor 80 000 bis 60 000 Jahren, als in ihr an sich Wachstum vorherrschte. Wir halten es nicht für Zufall, dass die beschriebenen demografischen Phänomene zeitlich zu den Eckdaten der Stillbayund Howieson’s-Poort-Industrie passen.
Warum gingen sie unter?
Der Hintergrund für das plötzliche Erscheinen der Stillbay-Kultur könnte sehr wohl eine Bevölkerungszunahme gewesen sein – und diese Kultur verschwand sogleich wieder, als die Menschenzahl bald darauf zurückging. Damit sich eine neue Lebensart schlagartig weiträumig ausbreitet, ist ein dichtes Netz sozialer Kontakte vonnöten. Vielleicht wurden der Austausch von symbolischen Kulturgütern oder Fernhandel mit hochwertigen Ge140 rätschaften möglich, als sich manche BevölkeRCC rungsgruppen stark vermehrten und weit reichende Verbindungen knüpften. Die Phase 120 direkt nach der Stillbay-Industrie würde dann einen Bevölkerungsrückgang anzeigen, der die 100 Kontakte schwächte oder gar abreißen ließ.
80 Die präziseren Altersdaten
80
Alter in Jahrtausenden
80
Howieson’s-Poort-Kultur AP
DRS
KRM
Stillbay-Kultur NT
RCC
60
Westen 40
72
KKH
MLK
nächstjüngere Kultur
Die Abkürzungen in dieser Grafik stehen für Fundorte (siehe 60 Karte S. 70). Die Funde symbolischer Objekte aus der BlombosHöhle gehören zur Stillbay-Kultur. Artefakte sind ebenfalls 40 AP Diese BBC DRS rund 72 000 Jahre alt.
Süden
Osten
SIB
AP
DRS
SIB
American Scientist, Stephanie Freese
60den neuen OSL-Messungen waren die Stillbay- und die Nach Howieson’s-Poort-Kultur zeitlich klar voneinander getrennt – mit 40 einer Lücke von rund fünf Jahrtausenden. Die blauen Balken bezeichnen ihre jeweilige Dauer.
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Mensch & geist Richard Roberts, University of Wollongong
Die Felshöhlung Ntloana Tsoana mit Ablagerungen von der Howieson’s-Poort-Kultur befindet sich an einem Fluss im Hochland von Lesotho.
Verschiedene Ursachen für diesen Niedergang sind denkbar. So kühlte damals vermutlich das Klima ab. Das mag die Natur aus der Balance gebracht und auch die Versorgung der Menschen empfindlich gestört haben. Womöglich mussten sie nun sogar ihre Wohnstätten verlassen, andere Jagdgebiete suchen und sich neu orientieren. Darunter litten die weit ausgedehnten Kontakte. Der soziale und kulturelle Austausch beschränkte sich nun zwangsläufig auf einen kleineren Umkreis. Ein ähnliches Auf und Ab wäre für die Howieson’s-Poort-Industrie denkbar, nur dass diese länger bestand. Wiederum könnte ein starkes Bevölkerungswachstum ein Kommunikationsnetz über das südliche Afrika belebt haben. Diesmal hielt sich die Kultur modernen Denkens mehr als 5000 Jahre lang. Vor rund 60 000 Jahren ging sie ebenfalls unter. Erst 20 000 Jahre danach traten ähnlich ausgefeilte Steinwerkzeugtechniken wieder in Erscheinung. Auch damals scheint die Bevölkerung in Regionen südlich der Sahara angewachsen zu sein. Im Osten Afrikas ging in dieser Phase das Mittlere Steinzeitalter zu Ende. Im Süden dauerte es noch an. Viele Aspekte dieses Szenarios sind bisher hypothetisch. Das gezeichnete Bild ist allerdings mit Computersimulationen von Stephen Shennan vom University College in London vereinbar, die zeigen, dass kulturelle Neuerungen in größeren Populationen eher überdauern und weiten Anklang finden als in kleineren. Zudem breiten sich neue Ideen in Zeiten von Bevölkerungswachstum besser aus. Wenn Populationen schrumpfen oder isoliert SPEKTRUM DER WISSENSCHAFT · Dezember 2009
werden, gehen Errungenschaften leicht wieder verloren. Neuere Modelle besagen, dass es die Kontakte zusätzlich erschwert und ein neues Anwachsen der Menschenzahl behindert, wenn sich getrennte Populationen kulturell unterschiedlich entwickeln. Letztlich geht es darum, zu verstehen, unter welchen Bedingungen modernes Verhalten auftrat, und um die Frage, weswegen der moderne Homo sapiens erstmals Afrika verließ. Viele Fachrichtungen müssen mitarbeiten, um die Wissenslücken zu füllen und die entscheidenden Ereignisse zu beleuchten. Archäo logen und Ökologen, Genetiker und Linguisten, auch Klimaforscher sind gefragt. Insbesondere benötigen wir auf all diesen Gebieten möglichst verlässliche Datierungen für das gesamte Afrika, die sich aufeinander beziehen lassen. Bis dahin mögen die Forscher spekulieren: Entzündete sich modernes Denken in Ost afrika? Löste ein Geistesblitz in einer ihrer Gruppen, mutmaßlich Angehörigen der genetischen Linie L 3, einen ersten entscheidenden Kulturschub aus? Irgendeine geniale Idee könnte dann weitere Neuerungen angeregt ha ben, die letztlich den sozialen Zusammenhalt und die Nutzung von Ressourcen beförderten. Dank dessen vermehrten und verbreiteten sich jene Menschen rasch – das wiederum veranlasste weitere Entwicklungen. In naher Folge davon könnten in Südafrika die Stillbay- und die Howieson’s-Poort-Kultur aufgekommen sein. Vor allem bot die neue Art des Denkens und der Lebensführung vielleicht gute Voraus setzungen, um Afrika zu verlassen.
Zenobia Jacobs und Richard G. Roberts arbeiten an der University von Wollongong in New South Wales (Australien).
© American Scientist www.americanscientist.org
Atkinson, Q. D. et al. : Bayesian Coalescent Inference of Major Human Mitochondrial DNA Haplo group Expansions in Africa. In: Proceedings of the Royal Society of London B 276, S. 367 – 373, 2009. Henshilwood, C. S. et al.: Emer gence of Modern Human Behaviour: Middle Stone Age Engravings from South Africa. In: Science 295, S. 1278 – 1280, 15. Februar 2002. Jacobs, Z. et al.: Ages for the Middle Stone Age of Southern Africa: Implications for Human Behavior and Dispersal. In: Science 322, S. 733 – 735, 31. Oktober 2008. Wong, K.: Frühe Spuren des menschlichen Geistes. In: Spektrum der Wissenschaft, Dossier 3 /2007, S. 22 – 30.
Weblinks zu diesem Thema finden Sie unter www.spektrum.de/ artikel/1010647.
73
ESSAY: Anthropologie
Diesen Artikel können Sie als Audiodatei beziehen; siehe www.spektrum.de/audio
Führen
und Folgen
Die Rollenverteilung ist uralt: Manche Menschen schwingen sich zum Anführer auf – ihre Gefolgschaft ordnet sich unter. Erst aus evo lutionstheoretischer Perspektive lässt sich das ambivalente Verhältnis zwischen »Leader« und »Follower« richtig verstehen.
Von Mark van Vugt
W
ie gehen unsere Politiker mit der Wirtschaftskrise um? Wie reagieren sie auf den Klima wandel? Und wie auf die zahl losen anderen Probleme in unserer immer komplexer werdenden Welt? Gerade in schwie rigen Zeiten stellt sich die Frage verstärkt, was gute Führungspersönlichkeiten und Führungs stile ausmacht. Tatsächlich aber spielt sie in praktisch allen Aspekten unseres Lebens eine wichtige Rolle, und entsprechende Untersu chungen haben längst eine Fülle an Informa tionen geliefert, die zu ihrem Verständnis bei tragen. Doch ein wichtiger Punkt blieb bis vor Kurzem unberücksichtigt: Ein tieferes Verständnis von »Leadern« und »Followern«, von Anführern und Gefolgschaft, bedarf auch des Blicks in die ferne Vergangenheit.
Wenn wir verstehen, wie unsere Vorfahren im Lauf der Evolution die psychologischen Voraussetzungen erwarben, um die Rollen von Anführern und Gefolgschaft zu überneh men, erscheinen die dazugehörigen Verhal tensweisen in einem anderen Licht. Die evo lutionäre Perspektive verdeutlicht nämlich, welche wichtige Rolle die Geführten spielen und warum Führende und Geführte einander nicht unbedingt auf gleicher Augenhöhe be gegnen. Sie gibt auch Hinweise darauf, welche Art von Leader am besten für die Bewältigung bestimmter Aufgaben geeignet sein könnte. Sie erklärt sogar einige unserer scheinbar grundlosen Vorlieben etwa für groß gewach sene Anführer. Die Übernahme einer Führungsrolle ist im Wesentlichen eine Reaktion auf die Notwen digkeit, gemeinsam zu handeln. In Entschei dungssituationen liegt nahe, dass ein Gruppen
Wer führt? Seit dem Erscheinen der menschlichen Gattung vor rund 2,5 Millionen Jahren lassen sich drei Stadien ausmachen, in denen »Führung« zu je unterschiedlichen gesellschaftlichen Strukturen führte. Zeitalter
Gesellschaft
Gruppen größe
Führungsstruktur
Anführer
Verhältnis Anführer – Geführte
vor mehr als 2,5 Millionen Jahren
Vormenschen
klein
Situations- oder Dominanzhierarchie
Individuum / Alphamann / Alphafrau
demokratisch oder despotisch
1
vor 2,5 Millionen Jahren bis vor 13 000 Jahren
Gruppen, Klans, Stämme
Dutzende bis Hunderte
informell, situativ, prestigegestützt
Big Men, Anführer
egalitär und konsensorientiert
2
vor 13 000 Jahren bis vor 250 Jahren
Stammesfürstentümer, Königreiche, kriege rische Gesellschaften
Tausende
formalisiert, zentrali siert, erblich
Häuptlinge, Könige, Kriegsherren
hierarchisch und unilateral
3
vor 250 Jahren bis Nationen, Staaten, heute Unternehmen
Tausende bis Millionen
gegliedert, zentrali siert, demokratisch
Staatsoberhäupter, Politiker, Manager
hierarchisch, aber partizipativ
74
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Mensch & Geist
fotolia / Lumen Digital
mitglied die Initiative übernimmt und die an deren sich zum Folgen bereit erklären. Erhöht sich so die Überlebenswahrscheinlichkeit der Gruppe, dürften sich auf evolutionärem Weg psychologische Anpassungen zu Gunsten ent sprechender Rollenverteilungen herausbilden.
Frieden oder Krieg?
Im Fall des Menschen würden diese eine Rei he mentaler Mechanismen umfassen: von Pla nung, Kommunikation und Entscheidungs findung in der Gruppe bis hin zu Anerken nung von Kompetenzen, sozialem Lernen und Konfliktmanagement. Zwar werden diese Me chanismen in der Regel mit höher entwi ckelten Formen des schlussfolgernden Den kens assoziiert. Die kognitiven Voranpas sungen dürften sich aber schon lange vor dem Erscheinen des modernen Menschen entwi ckelt haben. Denn die Muster der Nahrungs suche vieler Insekten, die Schwarmbildung von Fischen und die Flugmuster von Vögeln legen nahe, dass auch Spezies ohne komplexe kogni tive Fähigkeiten Leadership und Followership entwickeln. Hier gilt vielleicht die einfache Re gel: Folge dem Ersten, der sich bewegt. Auch unsere engsten Verwandten, die Schimpansen, orientieren sich an Anführern, um das Umher ziehen der Gruppe zu koordinieren, Frieden zu bewahren oder Kämpfe auszutragen. Die Bei spiele aus dem Tierreich stützen die Vermu tung, dass sich Anpassungen zu Gunsten von Leader- und Followership tendenziell in sozi alen Spezies entwickeln. In der einzigartigen Evolutionsgeschichte des Menschen fanden sie vermutlich sogar in sehr hohem Maß statt. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
In dieser Zeit unterlag das Wesen von Lea dership auch einem Wandel durch veränderte kulturelle und soziale Rahmenbedingungen. In einer Publikation, die ich gemeinsam mit meinen Kollegen Robert B. Kaiser und Robert Hogan im Fachjournal »American Psycholo gist« veröffentlichte, unterschieden wir drei Stadien. Die erste und bei Weitem längste Phase erstreckte sich vom ersten Erscheinen der menschlichen Gattung vor etwa 2,5 Milli onen Jahren bis zum Ende der letzten Eiszeit vor etwa 13 000 Jahren. In dieser langen Zeit hat wahrscheinlich die natürliche Auslese die spezifisch menschliche Leadership-Psychologie geprägt, wie sie uns heute noch eigen ist. Vermutlich lebten unsere Vorfahren in jener Zeit in halb nomadischen Gruppen von Jägern und Sammlern, die 50 bis 150 meist miteinan der verwandte Individuen umfassten. Ihre Le bensweise glich wohl derjenigen der Jäger-undSammler-Völker unserer Tage, zu denen etwa die !Kung San in der Kalahari-Wüste oder die Yanomami-Indianer in der Amazonasregion gehören. Im Wesentlichen sind solche Grup pen egalitär strukturiert. Den besten Jägern und Kriegern oder den weisesten Alten kommt zwar die Rolle von Big Men zu, doch ist ihr Einfluss auf den Bereich begrenzt, in dem sie sich besonders ausgezeichnet haben, und muss ihnen von der Gruppe gewährt werden. Ko operation unter den Geführten könnte also den frühen Menschen erlaubt haben, sich über die bei anderen Primaten gefundenen Domi nanzhierarchien hinaus in Richtung einer viel flacheren, prestigegestützten Hierarchie mit de mokratischerem Führungsstil zu entwickeln.
Wer gibt den Weg vor? Und wer folgt? Um die Psychologie von Anführern und Gefolgschaft zu verstehen, müssen Forscher tief in die Evolutionsgeschichte zurückblicken. Das Foto zeigt Angehörige der afrikanischen !Kung San. Bis vor wenigen Jahrzehnten ähnelte die Lebensweise dieses Jäger-und-Sammler-Volks vermutlich noch der unserer Vorfahren vor Zehntausenden von Jahren.
75
ESSAY: Anthropologie
fotolia / Masahito K
Auch in der Tierwelt sind »Leader« und »Follower« zu beobachten. So initiieren etwa »Leitfische« die Bildung von Schwärmen.
Mit der Entwicklung der Landwirtschaft vor etwa 13 000 Jahren entstanden dann die ersten Niederlassungen. Die Bevölkerung wuchs rasch, und zum ersten Mal kam es zu einem Überschuss an verfügbaren Ressourcen. Um ihn zu verteilen, brauchten die Gemein schaften Anführer, die außerdem die zuneh menden Konflikte innerhalb von und zwischen Gruppen regeln sollten. So wuchs die Macht der Leader, aber auch die Möglichkeit des Machtmissbrauchs: Die Anführer konnten nun Ressourcen abschöpfen und mit ihrer Hilfe kulturelle Eliten schaffen. Umgekehrt schwan den die Möglichkeiten der Gefolgschaft, sich von ihren möglicherweise ausbeuterischen Anführern einfach abzuwenden. Resultat dieser Veränderungen war ein stärker formalisierter und autoritärer Führungsstil, der die Etablie
Gleichgewicht und Reproduktionserfolg
Judith
Um Erkenntnisse über soziale Verhaltensweisen wie Altruismus und Fairness zu gewinnen, greifen Forscher gern auf die Spieltheorie zurück. Gemeinsam mit dem Evolutionspsychologen Rob Kurzban von der University of Pennsylva nia und dem Wirtschaftswissenschaftler Edward Cartwright von der University of Kent passte ich diesen Ansatz im Jahr 2007 an, um auch das Phänomen Lea dership zu untersuchen. Wir entwarfen ein Spiel, das die Probleme und Chan cen unserer Vorfahren in Situationen widerspiegelt, in denen sie zur Koordina tion ihrer Anstrengungen gezwungen waren. Nehmen wir an, Patrick und Judith brauchen dringend Wasser. Sie können zu Wasserloch A gehen, was Patrick lieber tun würde. Denn er weiß, wie man am besten dorthin kommt. Oder sie gehen zu Wasserloch B, was Judith bevor zugen würde, weil der Weg für sie kürzer wäre. Beide betrachten ihre jeweilige Wahl als vorteilhaft für sich selbst, doch sie müssen gemeinsam gehen, um sich gegenseitig schützen zu können. Die möglichen Entscheidungskombinationen lassen sich als Matrix darstellen (siehe Tabelle). Spieler erhalten drei Punkte, wenn sie ihre Präferenz Patrick durchsetzen, andernfalls Wasserloch A Wasserloch B einen Punkt. Einigen sie Wasserloch A 1/3 0/0 sich nicht, erhalten beide null Punkte. In diesem Wasserloch B 0/0 3/1 vereinfachten Evolutions modell repräsentierten die Zahlenwerte in der Matrix den reproduktiven Erfolg der Akteure. Es lässt sich auf beliebige Gruppen und auf jede soziale Situation anwenden, die eine Vereinbarung erfordert. Müssen Menschen eine Entscheidung gleichzeitig treffen, einigen sich Zwei ergruppen allerdings eher selten, weil jede Person die für sie selbst günstigste Option auswählt. Spielen sie das Spiel jedoch nacheinander – wobei eine Per son die Führung übernimmt, indem sie sich zuerst bewegt oder eine Präferenz angibt –, dann koordinieren die meisten solcher Gruppen ihr Vorgehen. Dies bedeutet zwar letztendlich, dass der Geführte in der Regel nur einen relativ ge ringen Vorteil erzielt, doch zumindest ist das Problem gelöst. In der Sprache der Spieltheorie: Die Spieler gelangen zu einer gleichgewichtigen Lösung. Da die Evolution Gleichgewichte begünstigt und ein Gleichgewicht am ehesten dann erreicht wird, wenn eine Person die Führung übernimmt, entstanden die psychologischen Grundlagen des Führens und Folgens wahrscheinlich durch natürliche Auswahl – denn so konnten die ersten Menschen und andere soziale Lebewesen Koordinierungsprobleme vergleichbarer Art lösen.
76
rung von Häuptlingen und Königen erlaubte, aber auch Kriegsherren zugutekam, die sich Ressourcen gewaltsam aneignen wollten. Den Weg für die letzte Entwicklungsphase von Leadership ebnete schließlich die indus trielle Revolution vor etwa 250 Jahren. (Vor allem auf diese Phase bezieht sich auch der gegenwärtige wissenschaftliche Diskurs zum Thema Leadership, dessen Fokus meist auf wirtschaftlichen und politischen Zusammen hängen liegt.) Zu Beginn der Epoche war der gesellschaftliche Status der Geführten oft nicht viel höher als der von Sklaven. Zuneh mend aber erwarben Bürger und Arbeitneh mer größere Freiheiten, gegenüber den Herr schenden eine gewisse Unabhängigkeit zu be wahren. Das Kräftegleichgewicht verschob sich also wieder: Autoritäre Führungsstile un terlagen nun Einflüssen, die eher an egalitäre Strukturen früherer Zeiten erinnern.
Effiziente Friedenssicherer und Furcht erregende Feinde
Was können wir aus der Evolutionstheorie ler nen, um das Phänomen der Leadership in un serer Zeit besser zu verstehen? Möglicherweise sorgten die Lebensbedingungen unserer Vor fahren dafür, dass uns Präferenzen für be stimmte Eigenschaften von Führungspersön lichkeiten angeboren sind. Anführer sollten sowohl kompetent als auch gutherzig sein, denn solche Menschen sind eher als andere in der Lage, sich Ressourcen anzueignen, aber auch eher bereit, sie zu teilen. Wir neigen au ßerdem dazu, Menschen mit bestimmten kör perlichen Attributen zu bevorzugen. Viele Leadership-Theorien lassen die Bedeu tung scheinbar beliebiger Merkmale wie Grö ße, Alter, Gewicht und Gesundheit zwar außer Acht, doch aus evolutionärer Sicht spielen sie eine Rolle. So waren die Big Men der Vorzeit wahrscheinlich genau das, was diese Bezeich nung besagt: groß gewachsene Menschen, die sich auf Grund ihrer imposanten Statur als ef fizientere Friedenssicherer und furchterregen dere Feinde erwiesen. Selbst heute noch bevor zugen wir eher groß gewachsene Führungsper sönlichkeiten, wie Timothy A. Judge und Daniel M. Cable von der University of Florida im »Journal of Applied Psychology« darlegten. In Metastudien hatten sie statistische Belege für einen Zusammenhang zwischen berufli chem Erfolg und Körpergröße gefunden. In der Frühzeit des Menschen hatten sich die Ältesten wahrscheinlich spezielles Wissen angeeignet, und auch in der heutigen Welt werden ältere Führungspersönlichkeiten für Positionen bevorzugt, in denen ihr Wissen entscheidend ist, etwa für Leitungsfunktionen in öffentlichen Einrichtungen. In anderen Si SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Mensch & Geist tuationen kommt es hingegen auf Stärke und Durchhaltevermögen an, so dass die Ge führten in diesen Fällen Präferenzen für kör perlich fitte und gesunde Anführer entwi ckeln. Im Jahr 2006 habe ich im Fachjournal »Personality and Social Psychology Review« ausgeführt, dass Wähler möglicherweise aus diesem Grund eher jenen politischen Kandi daten den Vorzug geben, die körperlich fit und dynamisch wirken. Unsere Tendenz zur Bevorzugung männ licher Anführer könnte, auch wenn dies sehr umstritten ist, ebenfalls evolutionstheoretisch erklärbar sein. In Situationen, in denen Män ner und Frauen zusammenarbeiten, so zeigten Forscher um Amy Mezulis (damals an der University of Wisconsin), beanspruchen Män ner eine Führungsposition auch dann schnel
ler, wenn die Frauen qualifizierter sind. Ein Experiment, das ich mit Brian Spisak an der University of Kent durchgeführt habe, zeigt außerdem, dass sich Gruppen tendenziell nach einem männlichen Führer umsehen, so bald sie von einer anderen Gruppe bedroht werden – möglicherweise deshalb, weil in der Menschheitsgeschichte Konflikte zwischen Gruppen meist mit Gewalt gelöst wurden. Wir stellten aber auch fest, dass sich Frauen in gruppeninternen Konfliktsituationen als die bevorzugten und effizientesten Führungsper sönlichkeiten erwiesen. Bestätigt wird dies durch eine von Forschern an der britischen University of Stirling durchgeführte Untersu chung zum Wahlverhalten. Ihr zufolge neigten die Teilnehmer einer Studie, in der Präsiden tenwahlen simuliert wurden, in Kriegszeiten
Warum Unterordnung auch von Nutzen sein kann Die Betrachtung des Führens aus evolutionärer Perspektive wirft auch ein Licht auf diejenigen, die folgen – und damit auf die große Mehrheit der Menschen. Doch die Psychologie des Fol gens, die noch dazu das interessantere der beiden Phänomene ist, wird meist vernachlässigt. Tatsächlich beginnen wir erst zu verstehen, was einen guten »Follower« ausmacht und wie die Geführten ihre Führer beeinflussen können. Wichtig ist dabei die Frage nach der Motivation: Warum sollten Menschen zur Unterordnung bereit sein, wenn sie dies hinsichtlich Macht, Sta tus und Ressourcen be nachteiligt? Die Entscheidung zu folgen kann schlicht das Ergebnis einer rati onalen Abwägung sein: Übersteigt der Preis, den man für das Erlan gen eines höheren Sta tus zahlen muss, des sen Nutzen, kann durch die Entscheidung zu folgen Zeit und Energie freigesetzt und an an derer Stelle effizienter genutzt werden. Zudem können Geführte ihre Position gegenüber ih ren Führern verbes sern, indem sie sich zu sammentun. Für einen Geführten ist möglicherweise auch von Bedeutung, dass er sich selbst auf eine künftige Führungsrolle vorbereiten kann, indem er sich unterordnet und seinen Anfüh rer beobachtet. Und schließlich werden die Nachteile des Fol gens teilweise durch die Vorteile ausgeglichen, die mit der Zuge hörigkeit zu einer gut geführten Gruppe einhergehen. Natürliche Selektion auf Gruppenebene könnte also in der Lage sein, das Phänomen der Leadership erklären.
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Das Verhältnis zwischen Führern und Geführten ist grund sätzlich ambivalent, da immer die Gefahr besteht, dass Führer versuchen, Zwang auszuüben und die Geführten auszubeuten, oder dass die Geführten eine Verschwörung anzetteln, um ihre Führer abzusetzen. Wahrscheinlich führten diese Spannungen zu einem evolutionären Wettrüsten in Bezug auf Strategien, durch die sich die Oberhand gewinnen lässt. Forschungser gebnisse zeigen nichtsdestoweniger, dass Menschen in Situa tionen, die Anpassungsprobleme widerspiegeln – etwa im Fall interner Gruppenkon flikte oder äußerer Be drohungen –, umge hend reagieren, indem sie die Rollen von Füh rern und Geführten übernehmen. Nun gibt es aber auch Situationen, in de nen Führung gar nicht erforderlich ist, und mehr noch, in denen die Geführten sie sogar ab lehnen. Schon vor mehr als einem Jahrzehnt be legten dies Experimente von Alex Haslam, der heute an der britischen University of Exeter lehrt: In kleinen Grup pen mit engem Zusammenhalt etwa, in denen die Individuen oh nehin ähnliche Ziele verfolgen, wirkt sich ein Machtgefälle eher negativ aus. Das ist auch der Fall, wenn Menschen vorhersag bare Aufgaben erledigen müssen, die sie beherrschen, und rela tiv einfache oder routinemäßige Koordinierungsprobleme lösen sollen. Unternehmer und Politiker können daraus lernen, dass Menschen in der Regel mehr leisten, wenn sie sich selbst über lassen werden.
77
Spielen evolutionär ausgebildete Präferenzen auch in Wahlent scheidungen hinein? Truman, 33. US-Präsident, und Nixon wurden in kriegerischen Zeiten gewählt, Kennedy und Obama erzielten Wirkung durch ihre junge und dynamische Erscheinung.
Mark van Vugt ist evolutionärer Sozialpsychologe an der Freien Universität Amsterdam. Zuvor lehrte er an der britischen University of Kent. Dieser Artikel beruht auf der Publikation »Leadership, Follower ship, and Evolution: Some Lessons from the Past« (siehe Literaturhin weise), die er mit Robert Hogan und Robert B. Kaiser im »American Psychologist« veröffentlichte.
© New Scientist www.newscientist.com
Judge, T. A. et al.: The Effect of Physical Height on Workplace Success and Income. In: Journal of Applied Psychology 89(3), S. 428 – 441, Juni 2004. Little, A. C. et al.: Facial Appea rance Affects Voting Decisions. In: Evolution and Human Behavior 28(1), S. 18 – 27, Januar 2007. Van Vugt, M. et al.: Sex Differences in Leadership Emergence During Competitions within and between Groups. In: Psychological Science, 19(9), S. 854 – 858, 2008. Van Vugt, M. et al.: Leadership, Fol lowership, and Evolution: Some Lessons from the Past. In: American Psychologist 63(3), S. 182 – 196, April 2008. Van Vugt, M.: Evolutionary Origins of Leadership and Followership. In: Personality and Social Psychology Review 10(4), S. 354 – 371, 2006.
Weblinks zu diesem Thema finden Sie unter www.spektrum.de/ artikel/1010837.
78
whitehouse.gov
ESSAY: Anthropologie
zur Wahl eines Mannes, tendierten aber in Friedenszeiten eher zu einer Präsidentin. Konflikte zwischen Gruppen mögen Män ner im Verlauf der Menschheitsgeschichte zur Aneignung eines hierarchischen Führungsstils prädisponiert haben. Die Notwendigkeit sozi alen Zusammenhalts wiederum könnte dazu geführt haben, dass Frauen mit einem eher egalitären und gemeinschaftsorientierten Stil ausgestattet sind. Dessen Bedeutung wiede rum dürfte in einer immer stärker vernetzten Welt, wo es zunehmend auf zwischenmensch liche Kompetenzen und Beziehungsgeflechte ankommt, stetig wachsen. Dieser Gedanke führt zu einem oft über sehenen Aspekt von Leadership. Jede Art von Führung muss sich an der jeweiligen Situation messen lassen. Ob in Organisationen, Natio nen und Kulturen: Vielerorts entstanden un terschiedliche Führungsstile, die sich teilweise auf die Herausforderungen des jeweiligen äu ßeren und sozialen Umfelds zurückführen las sen. In Australien etwa, wo raue natürliche Bedingungen die Behörden dazu zwingen, eng mit den Bürgern zusammenzuarbeiten, ist ein starkes egalitäres Ethos zu beobachten. In Krisensituationen wie Kriegen oder Naturka tastrophen hingegen stellen sich die Geführ ten bereitwillig hinter die Entscheidungen eines einzigen autokratischen Individuums. So bevorzugen die US-Wähler in Kriegszeiten eher einen »Falken« als Präsidenten. All dies deutet darauf hin, dass Führen und Folgen nicht als starre Verhaltensweisen ange sehen werden können, sondern vielmehr als flexible Strategien, geprägt vom Wechselspiel zwischen alten evolutionären Zwängen und modernen umweltbedingten und kulturellen Anforderungen. Doch die Diskrepanz zwi schen modernen Führungsrollen und jener Art von Leadership, an die unsere Psychologie evo lutionär angepasst ist, kann sich als problema tisch erweisen. Die einstigen Jäger und Samm ler hätten sich je nach anstehendem Problem wohl unterschiedlichen Führern untergeord net. Heute hingegen besitzen oft einzelne Men schen die Zuständigkeit für sämtliche Bereiche eines Unternehmens, und nur wenige Füh rungspersönlichkeiten verfügen über das da für erforderliche Spektrum an Kompetenzen. In Umfragen geben auch regelmäßig zwi schen 60 und 70 Prozent der Beschäftigten an, die größte Belastung in ihrem Beruf rühre vom Umgang mit ihren unmittelbaren Vorge
setzten her. Teilweise könnte sich dies so er klären lassen: Während die Anführer unserer fernen Vorfahren ihre Macht aus der Zustim mung der Geführten ableiteten, werden die Führungskräfte moderner Organisationen in der Regel von ihren Vorgesetzten ernannt und sind nur diesen rechenschaftspflichtig. Unter gebene haben darum selten die Möglichkeit, das Verhalten ihrer Chefs zu sanktionieren. Mehr noch, unsere psychologischen Voraus setzungen sorgen dafür, dass wir uns am bes ten in kleineren Gruppen von eng miteinan der in Beziehung stehenden Individuen ent falten. Das erklärt vielleicht auch, warum viele Menschen großen Organisationen und deren Köpfen nichts abgewinnen können. Und schließlich existierten in den Gesellschaften der frühen Menschheitsgeschichte wohl nur minimale Statusunterschiede zwischen Führer und Geführten. Heute hingegen kann das Ge halt eines Vorstandsvorsitzenden das durch schnittliche Einkommen seiner Angestellten um den Faktor 100 oder mehr übertreffen.
Management nach dem Vorbild von Jägern und Sammlern?
Erfreulicherweise gibt die evolutionstheoretische Perspektive auch Hinweise auf effizientere Führungsstrategien. In letzter Zeit stieg das Interesse an shared leadership oder distributed leadership, an gemeinsamer oder verteilter Füh rung. Dabei werden Führungsaufgaben bei spielsweise situationsabhängig vergeben oder auf mehrere Personen aufgeteilt. Manche Or ganisationen stellten nämlich fest, dass Füh rungskräfte erfolgreicher sind, wenn sie Unter gebene in ihre Entscheidungsprozesse einbe ziehen. Unternehmen wie Toyota oder die britische Virgin Group gestalten und struktu rieren ihre Organisation daher eher nach dem Vorbild der Jäger-und-Sammler-Gemeinschaften. So delegieren sie etwa Entscheidungen an Manager, die weit unten in der Befehlskette angesiedelt sind und Einheiten von lediglich 50 bis 150 Mitgliedern vorstehen. Führungspersönlichkeiten können eigen nützige Individuen in engagierte Streiter für die gemeinsame Sache verwandeln, wenn sie das Aufeinander-angewiesen-Sein und gemein same Interessen, Werte und Zielsetzungen be tonen. Oft aber müssen wir uns Menschen un terordnen, deren Auftrag und Verhalten nicht den Erwartungen an Anführer entsprechen, die wir im Lauf der Evolution entwickelt haben. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Wissenschaft im Rückblick Hinterm Mond
Rundschau, 12. Jg., Heft 12, Dezember 1959, S. 467
Kunststoff im Körper »Es war schon immer der Wunsch vieler Chirurgen, Arterien durch röhrenförmige Kunststoffprothesen ersetzen zu können. Das Ziel wurde aber erst erreicht, als die Amerikaner Voorhees, Jaretzki und Blakemore auf den Gedanken kamen, derartige synthetische Prothesen porös, d. h. in gewissen Graden blutdurchlässig, herzustellen. Auf diese Weise kann nach der Überpflanzung und Freigabe der Blutpassage Blut in die Maschen des Kunststoffgewebes vordringen, dort gerinnen und die Wandung abdichten. Der Organismus durchwächst in der Folgezeit die ›Kunstarterie‹ mit Bindegewebszellen und Muskelfasern sowie mit feinsten Kapillargefäßen.« Die Umschau in Wissenschaft und Technik, 59. Jg., Heft 23, 1. Dezember 1959, S. 762
Heiße Rechnung »Die Temperatur der Sonne haben im Astrophysikalischen Observatorium zu Potsdam jetzt J. Schneider und J. Wilsing berechnet. Mittels eines besonderen Photometers, das mit einem großen Refraktor von 80 Zentimetern Linsen-
durchmesser verbunden war, wurden Intensitäten in den Spektren von 109 Sternen durch Vergleichung mit dem Licht einer elektrischen Glühlampe gemessen. Danach hat sich für die Oberflächentemperatur der Sonne die Höhe von 5130 Grad ergeben, während man bisher aus Pyrometermessungen einen Wert von 6000 Grad ableitete.« (Heutige Berechnungen ergaben eine Temperatur von 5505 Grad Celsius, die Red.) Central-Zeitung für Optik und Mechanik, 30. Jg., Nr. 23, Dezember 1909, S. 326
Säugen gegen Krebs? »Professor Dastre teilte der französischen Akademie der Wissenschaften eine interessante Arbeit zweier junger Krebsforscher aus Nancy, der Doktoren Cuenot und Mercier mit, die drei trächtigen weiblichen Tieren mit Erfolg Krebs einimpften. Nachdem der Krebs sich bei den drei Versuchstieren entwickelt hatte, warfen sie, allein sowie sie ihre Jungen zu säugen begannen, ging die Neubildung zurück, verschwand spurlos und ließ die Tiere gegen jede Krebsimpfung völlig immun.« Die Umschau, 13. Jg., Nr. 50,
Tausche Wärme gegen Elektrizität »Das umständliche Verfahren, Wärme erst mit Hilfe einer Dampfmaschine oder eines Verbrennungsmotors in mechanische Arbeit und diese dann mit Hilfe eines Generators in elektrische Energie zu verwandeln, hat schon immer den Wunsch nach einer unmittelbaren Umwandlung genährt. Nun gelang es, durch
Ausnützung der Eigenschaften gewisser Halbleiter neuartige Thermoelemente zu konstruieren, die 4 bis 5 % der anfallenden Wärme in elektrische Energie verwandeln, in extremen Fällen sogar bis 11 %. Eine vielleicht noch aussichtsreichere Entwicklung hat man aber mit dem thermionischen Umwandler begonnen. Hier wird die Wärme dazu benutzt, aus einem festen Leiter Elektronen freizusetzen, die dann durch ein Vakuum oder durch einen gasgefüllten Raum gegen ein Potential anlaufen bis zu einer Anode. So bestehen Pläne, die von Kernreaktoren gelieferte Wärme zu verwerten.« Kosmos, 55. Jg., Heft 12, Dezember 1959, S. 510
Spiel es noch einmal … »Edison hat mit der bekannten Zähigkeit, die ja den Amerikaner auszeichnet, unentwegt weiter gearbeitet, um die Diktier-Phonographen zu verbessern. Spricht man gegen die Membrane, so gerät dieselbe in Schwingungen, und der in der Mitte befindliche Edelsteinstift schneidet eine Furche (in eine Wachswalze, die Red.) proportional den Schallwellen, welche auf die Membrane wirkten. Angenommen, der Apparat hätte das Diktat eines Geschäftsbriefes aufgenommen, so ist man imstande, auch die Sprache nun beliebig oft sofort wieder zu hören. Die Membrane mit dem scharfen Edelsteinmesser wird zu diesem Zweck herumgedreht, und an deren Stelle kommt eine solche mit einem stumpfen Edelsteinstift. Wird nun der Apparat wiederum in Drehung versetzt, so fällt der stumpfe Stift und mit ihm die Membrane in jede Vertiefung, welche vorher das scharfe Messer geschnitten hatte, wodurch die auf der Membrane lastende Luft in Schwingungen (Schallwellen) versetzt wird.« Die Welt der Technik, Jg. 71, Nr. 24, Dezember 1909, S. 462 Modernste Büroausstattung: der edisonsche Diktier fonograf mit Wachswalze
11. Dezember 1909, S. 1044 SPEKTRUM DER WISSENSCHAFT · DEZEMBER 2009
79
Kürzungen werden nicht eigens kenntlich gemacht.
1959 fotografierte Lunik III erstmals Formationen der erdabgewandten Seite des Mondes wie das Mare Moskwa (2), den Ziolkowsky-Krater (4) und das Sowjet-Gebirge (7).
»Lunik III ist die erste Raumstation, die den Mond umkreist hat. Dabei wurde am 7. Oktober 4h 30’ (MEZ) die erdabgewandte Seite des Mondes photographiert. Zu dieser Zeit befand sich Lunik III 60 000 bis 70 000 km von der Mondoberfläche entfernt. Er stand so zwischen Mond und Sonne, daß die von der Erde abgewandte Seite des Mondes zu 70 % beleuchtet wurde. Die erdabgewandte Seite des Mondes ist viel monotoner als die erdzugewandte. Es gibt wenige Krater und weniger Kontraste auf ihr. Diese Informationen könnten wesentliche Aufschlüsse über den Mond in bezug auf seine Entstehung und auf die Beschaffenheit seiner Oberfläche geben.« Naturwissenschaftliche
ERDE3.0 Plan für eine
emissionsfreie Welt bis 2030 In Kürze r
Wind, Sonne und Wasser liefern an zugänglichen Standorten weit mehr als ausreichend Energie für die gesamte Erdbevölkerung.
r
Die Autoren haben einen Plan zur Umstellung des weltweiten Energiesystems auf regenerative Quellen bis 2030 entwickelt. Er sieht 3,8 Millionen Windturbinen, 90 000 große Solaranlagen, zahlreiche Erdwärme-, Wasser- und Gezeitenkraftwerke sowie Fotovoltaik module auf allen dafür geeigneten Dächern vor.
r
Schon im Jahr 2020 würde derart erzeugte Energie einschließlich ihres Transports zu den Verbrauchern weniger kosten als die veranschlagten 5,5 Eurocents pro Kilowattstunde bei herkömmlichen Kraftwerken.
r
Als größtes Hindernis erscheint der mangelnde politische Wille; allerdings könnte es auch bei einigen speziellen Rohstoffen wie Lithium für die Batterien von Elektrofahrzeugen Engpässe geben.
80
Wind, Wasser und Sonne könnten schon in 20 Jahren den gesamten Energiebedarf der Erde decken und fossile Brennstoffe komplett überflüssig machen. Hier erfahren Sie, wie das ginge.
Von Mark Z. Jacobson und Mark A. DeLucchi
D
iesen Monat treffen sich in Kopenhagen Staatsoberhäupter aus der ganzen Welt, um Zielvorgaben zur Verringerung des Ausstoßes von Treibhausgasen in den kommenden Jahrzehnten zu beschließen. Eine solche Reduktion lässt sich ohne deutliche Verlagerung des Gewichts von den fossilen Brennstoffen hin zu sauberen, erneuerbaren Energiequellen wohl kaum erreichen. Wenn die in Kopenhagen versammelten Politiker darauf vertrauen können, dass das machbar ist, ringen sie sich vielleicht zu einer historischen Übereinkunft durch. Wir möchten zeigen, dass dieses Vertrauen gerechtfertigt ist. Vor einem Jahr formulierte der einstige Vizepräsident der USA und Friedensnobelpreisträger, Al Gore, ein visionäres Ziel: Amerika innerhalb von zehn Jahren komplett auf kohlenstofffreien Strom umzustellen. Als wir zu prüfen begannen, ob das machbar wäre, hatten wir die Idee, uns einer noch größeren Herausforderung zu stellen. Wir wollten herausfinden, wie der weltweite Energiebedarf bis zum Jahr 2030 vollständig aus Wind, Wasser und Sonnenenergie gewonnen werden könnte. Hier präsentieren wir den von uns entwickelten Plan.
Erst unlängst klassifizierte eine Studie der Stanford University die verschiedenen Energiesysteme nach Umweltkriterien wie Auswirkungen auf Erderwärmung, Luftverschmutzung, Wasserversorgung, Landverbrauch oder Tierwelt. Kraftwerke auf der Basis von Wind, Wasser und Sonne (WWS) sowie Erdwärme schnitten am besten ab. Kernenergie, Kohle mit CO2-Abscheidung und Äthanol erwiesen sich als schlechtere Optionen, gefolgt von Erdgas und Öl. Die Untersuchung bestätigte außerdem, dass elektrisch oder mit Brennstoffzellen betriebene Fahrzeuge, wenn sie auf WWS-Basis wieder aufgeladen beziehungsweise betankt werden, die Luftverschmutzung im Transportsektor praktisch beseitigen. Unser Plan sieht deshalb Millionen Windturbinen, Erdwärme-, Wasser- und Gezeitenkraftwerke sowie Solaranlagen vor. Die Zahlen mögen hoch erscheinen, bedeuten aber keine unüberwindliche Hürde; die Menschheit hat schon Herausforderungen ähnlichen Kalibers gemeistert. So rüsteten die Vereinigten Staaten im Zweiten Weltkrieg Autofabriken um und produzierten damit 300 000 Flugzeuge; andere Länder steuerten weitere 486 000 bei. 1956 begannen die USA mit dem Bau der Interstate Highways. Das Netz dieser Autobahnen war nach 35 Jahren auf 47 000 Meilen (76 000 Kilometer) angewachsen und hatte Handel und Gesellschaft grundlegend verändert. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Ist ein Umbau der weltweiten Energiesys teme möglich? Lässt er sich in nur zwei Jahrzehnten bewerkstelligen? Die Antwort hängt davon ab, ob die nötigen Technologien zur Ver fügung stehen und wichtige Grundstoffe vorhanden sind. Aber auch wirtschaftliche und politische Faktoren gilt es zu berücksichtigen.
Aurora Photos / John Lee
& UMWELT ERDE &ERDE UMWELT
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Aurora Photos / Bills Heinsohn
Erneuerbare Energie lässt sich aus drei Quellen gewinnen: ➤ Wind und den von ihm hervorgerufenen Wellen, ➤ Wasser in Form von Wasserkraft, Gezeitenströmung und Erdwärme (wenn Wasser von heißem unterirdischem Gestein erwärmt wird) und ➤ Sonnenlicht, das entweder mittels Fotovoltaik direkt in Strom umgewandelt wird oder bei der Solarthermie dazu dient, eine Flüssigkeit zu erhitzen, die dann eine Turbine antreibt. Wir berücksichtigen nur Technologien, die heute schon im industriellen Maßstab nutzbar sind oder zumindest an der Schwelle dazu stehen, und keine, die es vielleicht erst in 20 oder 30 Jahren gibt. Um zu gewährleisten, dass unser Ener giesystem auch sauber ist, ziehen wir ausschließlich solche Quellen in Betracht, die auf jeder Stufe ihrer Nutzung – also auch bei der Konstruktion oder Stilllegung der benötigten Anlagen – nur minimale Mengen an Treib hausgasen oder Schadstoffen freisetzen. Dadurch scheidet Äthanol zum Beispiel aus; auch wenn er ökologisch noch so verträglich ist, verschmutzt er bei der Verbrennung in Motoren die Luft genauso wie Benzin, was dieselbe Sterblichkeitsrate bedingt. Kernenergie verursacht im Betrieb zwar keine Kohlendioxidemissionen, wohl aber beim Bau des Reaktors sowie bei der Anreicherung und dem Transport des Urans. Hinzu kommen die ungelöste Entsorgung der radioaktiven Abfälle und das Terrorismusrisiko. Zudem ist Kernkraft nicht erneuerbar. Dasselbe gilt für Kohle, auch wenn es sie noch reichlich gibt. Obwohl Kohlenstoffabscheidung und -speicherung in Kohlekraftwerken die Emission von Kohlendioxid verringern, erhöhen sie die Luftverschmutzung und verstärken die schädlichen Effekte von Abbau, Transport und Verarbeitung der Kohle; denn es muss mehr davon verbrannt werden, um die Energieverluste durch das Verfahren auszugleichen. Gemäß unserem Plan liefern Wind, Wasser und Sonnenlicht auch elektrische Energie für Heizungs- und Transportsysteme. Beide nut-
Corbis / Reuters / Ho
Nur saubere Technologien
zen bisher – mit Ausnahme des Schienenverkehrs – ganz überwiegend fossile Brennstoffe. Sie müssen jedoch auf eine neue Grundlage gestellt werden, wenn die Chance bestehen soll, den Klimawandel zu verlangsamen. Elektroöfen gibt es heute schon. Bei Fahrzeugen haben alle großen Hersteller inzwischen Proto typen entwickelt, die von Batterien oder Brennstoffzellen angetrieben werden. Wasserstoff aus der Elektrolyse (Spaltung) von Wasser mit WWS-Strom müsste künftig eine zentrale Rolle spielen. Er würde nicht nur in Brennstoffzellen Strom erzeugen, sondern auch das Kerosin als Treibstoff für Flugzeuge ersetzen und für Heizzwecke in der Industrie dienen.
Wind-, Wasser- und Solarkraft sind die Säulen eines nachhaltigen und umweltfreundlichen Energiesystems, das bis 2030 den kompletten weltweiten Energiebedarf decken könnte.
81
ERDE3.0 Verfügbare erneuerbare Energie an zugänglichen Standorten Wasser 2 TW
Mehr als genug Energie
82
Wind 40 – 85 TW
bei Deckung aus herkömmlichen Quellen 16,9 TW
oder
bei Deckung mit Strom aus erneuerbaren Quellen 11,5 TW
Sonne 580 TW
Catalogtree.net
Nach Berechnungen der U. S. Energy Information Administration beträgt der weltweite Energieverbrauch heute in der Spitze 12,5 Billionen Watt oder Terawatt (TW). Die Behörde prognostiziert bis 2030 einen Anstieg auf 16,9 TW, weil Weltbevölkerung und Lebensstandard zunehmen werden. Dabei unterstellt sie einen Energiemix, in dem wie heute fossile Brennstoffe dominieren. Würde die Erde aber vollständig mit WWS-Energie versorgt und auch keine Biomasse verfeuert, ergäben sich erhebliche Einsparungen. Der weltweite Energiebedarf sänke auf 11,5 TW, und derjenige der USA betrüge 1,8 statt 2,8 TW. Der Grund dafür ist, dass Elektrizität in den meisten Fällen einen höheren Wirkungsgrad hat als jede andere Energieform. So wird im Auto maximal ein Fünftel der chemischen Energie im Benzin zum Antrieb des Fahrzeugs genutzt und der Rest als Wärme verschwendet. Ein Elektrofahrzeug setzt dagegen 75 bis 86 Prozent des Stroms in Bewegung um. Selbst wenn der Energiebedarf auf 16,9 TW steigen sollte, könnten Wind, Wasser und Sonne weit mehr als das liefern. Nach eingehenden Untersuchungen von uns und anderen Forschern beträgt allein die weltweit verfügbare Windenergie 1700 TW. Bei der Solarenergie sind es sogar 6500 TW. Natürlich lassen sich Wind und Sonne über dem Meer, im Hochgebirge und in Naturschutz gebieten nicht nutzen. Ohne diese Regionen und Areale mit geringem Windaufkommen, deren Erschließung nicht lohnt, bleiben aber immer noch zwischen 40 und 85 TW an Wind- und 580 TW an Sonnenenergie. Beides übersteigt den künftigen Energiebedarf der Erdbevölkerung bei Weitem. Derzeit erzeugen wir nur 0,02 TW an Wind- und 0,008 TW an Sonnenenergie. Beide Quellen besitzen also ein riesiges ungenutztes Potenzial. Die anderen WWS-Technologien könnten nur einen kleineren Beitrag leisten und für Flexibilität sorgen. Zum Beispiel wird der Einsatz der Wellenkraft dadurch beschränkt, dass sie aus praktischen Gründen nur in Küs tenregionen nutzbar ist. Erdwärmequellen wiederum liegen oft zu tief, um sich wirtschaftlich anzapfen zu lassen. Auch wenn die Wasserkraft heute noch alle anderen WWSEnergien in den Schatten stellt, ist es mangels geeigneter Standorte für große Stauseen nicht möglich, sie sehr viel stärker auszubauen.
Weltweiter Energiebedarf bis 2030
MW – Megawatt = 1 Million Watt GW – Gigawatt = 1 Milliarde Watt TW – Terawatt = 1 Billion Watt
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
ERDE & UMWELT
Zu installierende Leistung für die Versorgung der Welt mit erneuerbarer Energie
490 000
Wasserkraft 1,1 TW (9 Prozent Anteil)
Gezeitenturbinen – 1 MW* – < 1 Prozent vorhanden * Nennleistung einer Anlage
5350
Erdwärmekraftwerke – 100 MW – 2 Prozent vorhanden
900
Wasserkraftwerke – 1300 MW – 70 Prozent vorhanden
3 800 000
Windturbinen – 5 MW – 1 Prozent vorhanden
720 000
Windkraft 5,8 TW (51 Prozent Anteil)
Wellenkonverter – 0,75 MW – < 1 Prozent vorhanden
1700 000 000
Fotovoltaikanlagen auf Dächern* – 3 KW – < 1 Prozent vorhanden
*für ein normales Haus; auf Fabrikdächern hätten Dutzende solcher Anlagen Platz
49 000
Solarthermiekraftwerke – 300 MW – < 1 Prozent vorhanden
Solarkraft 4,6 TW (40 Prozent Anteil)
40 000
Fotovoltaikkraftwerke – 300 MW – < 1 Prozent vorhanden
Die Energie-Infrastruktur der Zukunft
An erneuerbarer Energie herrscht also kein Mangel. Aber wie erreicht man, dass sie 11,5 TW für die Welt im Jahr 2030 liefert? Welche neue Infrastruktur könnte das leisten? Wir haben uns für einen Technologiemix entschieden, bei dem Wasser nur ungefähr neun Prozent des Bedarfs deckt. Das geschieht mit 900 Wasserkraftwerken weltweit, von denen 70 Prozent schon existieren. Die Windkraft kommt für 51 Prozent des Bedarfs auf. Dazu müssen 3,8 Millionen Anlagen weltweit installiert werden, jede mit einer Kapazität von fünf Megawatt (MW). Das hört sich nach ungeheuer viel an, doch sei daran erinnert, dass derzeit Jahr für Jahr rund um den Globus 73 Millionen Automobile und Kleinlaster gebaut werden. Nur 0,8 Prozent der projektierten Windkraftanlagen sind derzeit in Betrieb. Rund 40 Prozent der benötigten Energie schließlich steuern Fotovoltaik und Solarthermie bei. Davon sollen 30 Prozent über Kleinanlagen auf den Dächern von Häusern und Bürogebäuden produziert werden. Daneben bräuchte man ungefähr 90000 Fotovoltaik- und Solarthermiekraftwerke mit einer durchschnittlichen Kapazität von 300 MW je Anlage. Die 3,8 Millionen Windturbinen würden insgesamt nur eine Fläche von knapp 50 Quadratkilometern einnehmen (das Stadtgebiet von Stuttgart ist mehr als viermal so groß). Zählt man den erforderlichen Abstand zwischen ihnen hinzu, dürften sie immer noch weniger als ein Prozent der Landfläche der Erde beanspruchen; der freie Raum zwischen den Turbinen ließe sich zudem für Landwirtschaft oder Viehhaltung nutzen. Offshore-Anlagen könnten den Platzbedarf weiter verringern. Fotovoltaik- und Solarthermiekraftwerke würden weniger als 0,33 Prozent der irdischen Landfläche benötigen. Getty images / Nicholas Eveleigh
Zur Erinnerung: Wenn wir an den fossilen Brennstoffen festhalten, steigt der Energiebedarf bis 2030 auf 16,9 TW. Dafür bräuchten wir 13 000 neue, große Kohlekraftwerke. Diese würden weit mehr Land beanspruchen als unser WWS-System, von den Bergwerken für den Abbau der benötigten Kohle ganz abgesehen. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
83
ERDE3.0 Durchschnittliche Abschaltzeiten für Instandhaltung und Reparaturen
Catalogtree.net
Tage im Jahr
Kohlekraftwerk 12,5 Prozent (46 Tage)
Windturbine 2 Prozent (7 Tage)
Die Frage der Zuverlässigkeit
In Sachen Zuverlässigkeit stehen Wind-, Solar- und Wasserkraft herkömmlichen Energiesystemen keineswegs nach
Eine neue Infrastruktur muss mindestens so zuverlässig Energie liefern wie die jetzige. WWS-Technologien brauchen da jedoch keinen Vergleich zu scheuen: Ihre Auszeiten sind sogar geringer als bei herkömmlichen Systemen. Kohlekraftwerke gehen wegen planmäßiger Wartungsarbeiten und notwendiger Reparaturen im Durchschnitt 12,5 Prozent des Jahres vom Netz. Bei modernen Windturbinen beträgt die Stillstandzeit dagegen nicht einmal zwei Prozent an Land und unter fünf Prozent auf See. Auch Fotovoltaik-Anlagen sind weniger als zwei Prozent des Jahres wegen Instandhaltung oder Ausfällen außer Betrieb. Zudem betrifft die Abschaltung eines einzelnen Wind-, Wasser- oder Solarkraftwerks nur einen kleinen Teil der Produktion. Wenn hingegen ein Kohle-, Kern- oder Erdgaskraftwerk vom Netz geht, bedeutet das einen großen Ausfall bei der Stromproduktion. Das Hauptproblem für WWS besteht darin, dass am Standort einer Anlage der Wind nicht immer weht und die Sonne nicht immer scheint. Daraus resultierende Unterbrechungen lassen sich aber durch ein geschicktes
Fotovoltaikanlage 2 Prozent (7 Tage)
Austarieren der Ressourcen abfangen. Zum Beispiel kann man eine Basisversorgung mit Erdwärme oder Gezeitenenergie sichern; nachts liefert der Wind, der dann meist stärker weht, den Löwenanteil und tagsüber die Sonne. Eine verlässliche Quelle wie die Wasserkraft, die sich schnell an- und abschalten lässt, gleicht Versorgungslücken aus oder deckt Bedarfsspitzen ab. Weil der Wind gewöhnlich bei schlechtem Wetter weht, wenn sich die Sonne nicht blicken lässt, und die Sonne in der Regel an ruhigen Tagen scheint, wenn sich kaum ein Lüftchen regt, sollten beide Energieformen kombiniert werden. Sinnvoll ist auch die Verbindung geografisch getrennter Kraftwerke, damit sie einander aushelfen können, wenn bei einem Flaute herrscht oder Wolken den Himmel bedecken. Desgleichen wäre der Bau von Systemen möglich, die Energie zu späterer Verwendung zwischenspeichern. In Wohnhäusern ließen sich intelligente Stromzähler installieren, über die zum Beispiel Elektrofahrzeuge automatisch aufgeladen werden, sobald die Stromentnahme aus dem Netz niedrig ist.
Als Beispiel für die mögliche komplette Umstellung auf Leistung in Gigawatt erneuerbare Energien zeigte 40 Graeme Hoste von der Stanford University kürzlich, wie sich Kalifornien im Jahr 2020 an ei- 20 nem typischen Julitag mit einer Kombination von vier Energie 5 arten zu 100 Prozent mit Strom 0 1 2 3 4 versorgen ließe. Die nötigen Uhrzeit Wasserkraftwerke existieren Erdwärme Wind heute schon.
84
Catalogtree.net
Sauberer Strom rund um die Uhr
5
6
7
8
Sonne
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Wasser
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Silber
Werkstoffe, bei denen es zu Engpässen kommen kann
Anwendung: alle Arten von Solarzellen Lösung: Verringerung des Gehalts und Recycling
Tellur Anwendung: Dünnschicht-Solarzellen Lösung: Optimierung anderer Solarzelltypen
Neodym Anwendung: Getriebe von Windturbinen Lösung: Entwicklung getriebeloser Turbinen
Silber Tellur
Platin
Neodym Indium Lithium Anwendung: Batterien von Elektrofahrzeugen Lösung: für leichte Wiederverwertbarkeit der Batterien sorgen
Anwendung: Brennstoffzellen für Fahrzeuge Lösung: für leichte Wiederverwertbarkeit der Brennstoffzellen sorgen
Anwendung: Dünnschicht-Solarzellen Lösung: Optimierung anderer Solarzelltypen
Platin Catalogtree.net
Indium Lithium
Reichen die Rohstoffe?
Die Dimensionen der WWS-Infrastruktur bilden also kein unüberwindliches Hindernis. Doch zu ihrer Errichtung braucht es Werkstoffe, und die könnten knapp werden oder Preismanipulationen unterliegen. Für die Millionen Windkraftanlagen gibt es ausreichend Stahl und Beton, zumal beide Stoffe vollständig wiederverwertbar sind. Am kritischsten erscheinen Seltenerdmetalle wie Neodym, das in den Getrieben der Turbinen verwendet wird. Sie sind zwar nicht wirklich knapp, doch liegen die meisten preiswerten Vorkommen in China, so dass der Westen statt von Öl aus dem Nahen eventuell von Me tallen aus dem Fernen Osten abhängig wird. Die Hersteller von Windkraftanlagen forschen jedoch bereits an Turbinen ohne Getriebe. Fotovoltaik-Zellen bestehen aus Silizium, Kadmiumtellurid oder Kupferindiumselenid und -sulfid. Begrenzte Vorkommen von Tellur und Indium könnten sich auf einige Typen von Dünnschicht-Solarzellen negativ auswirken, jedoch nicht auf alle; mit den anderen ließe sich die Lücke schließen. Zu einem Engpass für die Massenproduktion von Solarzellen führt möglicherweise auch das erforderliche Silber; doch sollte es möglich sein, den Anteil dieses Edelmetalls zu verringern. Außerdem ließen sich Materialprobleme durch die Wiederverwertung von Bestandteilen alter Zellen entschärfen. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Wenn Millionen von Elektrofahrzeugen gebaut werden, gibt es bei drei Komponenten möglicherweise Schwierigkeiten: Seltenerd metallen für die Elektromotoren, Lithium für die Batterien und Platin für die Brennstoffzellen. Mehr als die Hälfte der gewinnbaren Lithiumvorkommen weltweit befinden sich in Bolivien und Chile. Die Konzentration auf zwei Länder könnte, zusammen mit der schnell wachsenden Nachfrage, den Preis in die Höhe treiben. Schwerer noch wiegt die Behauptung der Beratungsfirma Meridian International Research in Martainville (Frankreich), dass es nicht annähernd genug wirtschaftlich gewinnbares Lithium für all die Batterien gebe, die bei einer Umstellung der weltweiten Autoflotte auf Elektrobetrieb gebraucht würden. Dem ließe sich durch Recycling begegnen; dafür müssen die Batterien allerdings für leichte Wiederverwertbarkeit ausgelegt sein – eine Problematik, der sich die Industrie durchaus bewusst ist. Auch der Einsatz von Platin über längere Zeit hinweg funktioniert nicht ohne Recycling; die derzeit verfügbaren Reserven, wenn man andere gebräuchliche Verwendungsarten in der Industrie berücksichtigt, würden zwar eine Jahresproduktion von 20 Millionen Fahrzeugen mit Brennstoffzellen erlauben, aber nur noch für knapp 100 Jahre.
Versorgungsschwierigkeiten bei knappen Rohstoffen wie Seltenerdmetallen, Lithium und Platin ließe sich mit Recycling begegnen
85
ERDE3.0 Billig wie Kohle
Der Mix aus WWS-Energien in unserem Plan kann demnach Wohnungen, Handel, Industrie und den Transportsektor zuverlässig versorgen. Doch ist das alles auch bezahlbar? Um das zu ermitteln, haben wir für jede Technologie errechnet, wie teuer es wäre, Strom damit zu erzeugen und zum Verbraucher zu bringen. Dabei wurden auf das Jahr umgerechnete Kosten für das benötigte Kapital und Land, für den Betrieb der Anlage und ihre Instandhaltung sowie für die Zwischenspeicherung des Stroms zur Überbrückung von Ausfallzeiten und für seine Übertragung im Leitungsnetz berücksichtigt. Wie sich zeigte, kosten Windenergie, Erdwärme und Wasserkraft heute schon durchweg weniger als sieben Dollar-Cent pro Kilowattstunde (¢/kWh), während Gezeiten- und Sonnenenergie teurer kommen (1 Dollar entspricht momentan etwa 1,5 Euro). Im Jahr 2020 sollten Wind-, Wellen- und Wasserkraft sogar bei höchstens 4 ¢/kWh liegen. Zum Vergleich: Die durchschnittlichen Kosten der Kosten der Erzeugung von Verteilung von erneuerbarer Energie in 2020 US-Cent pro Kilowattstunde (2007er Dollar)
10
9
8
heutige Kosten von fossiler und Kernenergie in den USA
7
6
5
4
3
Fotovoltaik 10
Solarthermie 8
Erdwärme 4 – 7
Wasserkraft 4
Wind < 4
Wellen 4
2
1
Catalogtree.net
86
konventionellen Energieerzeugung und -übertragung betrugen 2007 in den USA 7 ¢/kWh und dürften laut Schätzungen bis 2020 auf 8 ¢/kWh steigen. Windturbinen können also jetzt schon beim Strompreis mit neu errichteten Kohle- oder Erdgaskraftwerken mithalten. In Zukunft dürften sie die billigste Energie überhaupt liefern. Die geringen Kosten von Windstrom haben ihm sogar in den wenig umweltbewussten USA einen Boom beschert. Bei den Kraftwerken, die in den vergangenen drei Jahren neu errichtet wurden, rangiert Wind als Quelle an zweiter Position – hinter Erdgas und vor Kohle. Solarenergie ist zwar noch relativ teuer, aber auch sie sollte bis 2020 konkurrenzfähig sein. In einer ebenso umfassenden wie gründlichen Analyse kam Vasilis M. Fthenakis vom Brookhaven National Laboratory zu dem Schluss, dass die Kosten von Strom aus Fotovoltaik-Systemen innerhalb der nächsten zehn Jahre auf 10 ¢/kWh fallen könnten. Dabei sind die Starkstromfernübertragung und die Druckluftspeicherung von Energie aus Leis tungsspitzen zur Nachtnutzung mit einkal kuliert. Laut derselben Untersuchung wären 2020 auch Solarthermie-Kraftwerke, die ausreichend Wärme zur Stromerzeugung rund um die Uhr speichern können, in der Lage, von Frühling bis Herbst Elektrizität zum Preis von 10 ¢/kWh oder weniger zu liefern. In einer WWS-Welt werden alle motorisierten Fortbewegungsmittel von Batterien oder Brennstoffzellen angetrieben. Wie schneiden diese Elektromobile in Sachen Wirtschaftlichkeit gegenüber heutigen Fahrzeugen mit Verbrennungsmotoren ab? Einer von uns (DeLuc chi) hat zusammen mit Tim Lipman von der University of California in Berkeley einen detaillierten Vergleich angestellt. Demnach könn ten serienproduzierte Elektrofahrzeuge mit ausgereiften Lithium-Ionen- oder Nickel-Metallhydrid-Batterien, über ihre gesamte Lebensdauer (einschließlich eines nötigen Batteriewechsels) gerechnet, Kosten pro Kilometer erreichen, die geringer sind als die von herkömmlichen Autos, sofern der Benzinpreis über 35 Eurocent pro Liter liegt, was inzwischen sogar in den USA der Fall ist. Der Vergleich fällt noch wesentlich günstiger aus, wenn man auch die so genannten externen Kosten der Nutzung fossiler Brennstoffe berücksichtigt (den Geldwert der dadurch verursachten Schädigungen von Gesundheit, Umwelt und Klima). Für den Aufbau eines WWS-Systems, die Infrastruktur zur Verteilung des Stroms nicht mitgerechnet, wären schätzungsweise weltweit etwa 100 Billionen Dollar aufzuwenden, verSPEKTRUM DER WISSENSCHAFT · Dezember 2009
ERDE & UMWELT teilt über 20 Jahre. Dabei handelt es sich aber nicht um Geld, das Regierungen oder Konsumenten ausgeben müssen. Es sind Investitio nen, die sich durch den Verkauf von Strom und Energie amortisieren. Noch einmal: Das Festhalten an der traditionellen Energieerzeugung würde den Bedarf von 12,5 auf 16,9 TW erhöhen und tausende weitere Kraftwerke erforderlich machen, die um die zehn Billionen Dollar kosten dürften; hinzu kämen mehrere zehn Billionen Dollar für die Sicherheit sowie die Behebung von Gesundheits- und Umweltschäden. Für nicht viel mehr Geld, als der Erhalt und Ausbau des alten, überholten, schmutzigen und inef fizienten Energiesystems verschlingen würde, schenkt der WWS-Plan der Welt ein neues, sauberes und effizientes.
Der politische Wille
In 20 Jahren können sich die Kosten dieses Systems, wie unsere Analyse belegt, mit denen der traditionellen Energieerzeugung messen. Bis dahin sind einzelne Komponenten allerdings deutlich teurer. Das erfordert für eine gewisse Zeit eine Kombination aus WWSSubventionen und Kohlesteuern. Ein besonders wirksames Instrument zur Förderung nachhaltiger Technologien ist, den Energieversorgungsunternehmen vorzuschreiben, für ins Leitungsnetz eingespeisten Strom aus erneuerbaren Quellen eine Mindestvergütung zu zahlen, welche die Differenz zwischen den Erzeugungskosten und dem Großhandelspreis ausgleicht. In Deutschland ist das mit dem Erneuerbare-Energien-Gesetz aus dem Jahr 2000 geschehen. Es hat der Solarenergie einen kräftigen Schub gegeben und wurde inzwischen von 47 Staaten nachgeahmt. Die zusätzliche Einführung einer »absteigenden Auktion«, bei der das Recht zum Verkauf von Strom für das Versorgungsnetz an den niedrigsten Bieter geht, schafft parallel dazu beständige Anreize zur Kostensenkung bei den WWS-Entwicklern. Dadurch lässt sich die Mindestvergütung sukzessive absenken und kann schließlich völlig entfallen. Auch die Besteuerung fossiler Brennstoffe oder ihrer Verwendung als Ausgleich für die durch sie hervorgerufenen Umweltschäden erscheint sinnvoll und wird vielfach schon praktiziert. Zumindest aber sollten noch bestehende Subventionen für Energie aus solchen herkömmlichen Quellen – in den USA sind das etwa Steuervorteile für die Erkundung und Ausbeutung fossiler Brennstofflagerstätten –, abgeschafft werden, damit gleiche Bedingungen für alle herrschen. Dasselbe gilt für die Förderung von Alternativen, die weniger vorteilhaft als WWS sind – insbesondere Biobrennstoffe; SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Subventionen dafür verzögern nur den Einsatz sauberer Systeme. Natürlich wird die Lobby der traditionellen Energieversorger dafür kämpfen, dass deren Privilegien erhalten bleiben. Doch der Gesetzgeber muss einen Weg finden, dieser Einflussnahme zu widerstehen. WWS-Energie ist oft in entlegenen Gebieten am reichlichsten vorhanden; bei Solarstrom sind das Wüsten wie die Sahara und bei Windkraft ausgedehnte Ebenen wie die Great Plains in den USA. Von dort müssen große Strommengen über weite Entfernungen in die Verbrauchszentren – in der Regel Großstädte und industrielle Ballungsräume – transportiert werden. Das erfordert Investitionen in ein robustes Leitungssystem. Desgleichen muss ein intelligentes Stromnetz, das Erzeugern und Kunden zu allen Zeiten mehr Kontrolle und Flexilität beim Stromverbrauch gibt, dafür sorgen, dass sich der Energiebedarf in Stoßzeiten verringern lässt. Ein weltweites Energiesystem auf der Basis von Wind, Wasser und Sonne wäre ein enormer Gewinn für das Klima und käme auch der Umwelt – speziell der Luftreinheit und Wasserqualität – sowie der Versorgungssicherheit zugute. Wie wir gezeigt haben, sind die Hinder nisse primär politischer Natur. Eine Kombina tion aus Netzeinspeisungsvergütungen, Anreizen zur Kostensenkung bei den Erzeugern, Streichungen von Subventionen im fossilen Sektor sowie der Erweiterung und intelligenten Ausgestaltung des Stromnetzes sollte für eine schnelle Realisierung ausreichen. Natürlich ware die 1 : 1-Umsetzung unseres Plans sehr ehrgeizig und würde vielleicht mehr Entschlossenheit erfordern, als die Menschheit derzeit aufbringen mag. Als vernünftiges Ziel könnten die Länder der Erde aber immerhin anstreben, bis 2020 oder 2025 zumindest 25 Prozent ihrer Energieversorgung auf WWS umzustellen und dann in 40 bis 50 Jahren 100 Prozent zu erreichen. Auch das funktioniert freilich nur mit klaren politischen Vorgaben. Anderenfalls werden weiterhin viele überholte Technologien eingesetzt oder Alternativen ausprobiert, von denen sich die Energieversorger maximale Profite versprechen, während die Expertise der Wissenschaft unbeachtet bleibt. Vor zehn Jahren stand noch dahin, ob ein globales WWS-System technisch oder wirtschaftlich machbar wäre. Nachdem wir nun den Beweis dafür erbracht haben, hoffen wir, dass die Staatsoberhäupter der Welt einen Weg finden, diese Erkenntnis auch politisch umzusetzen. In Kopenhagen könnten sie damit anfangen, indem sie sich auf weit gesteckte Ziele zum Schutz des Klimas und zur Einführung erneuerbarer Energien einigen.
Mark Z. Jacobson (links) ist Professor für Umwelt- und Bauingenieurwesen an der Stanford University sowie Direktor des dortigen Atmosphere/Energy Program. Er entwickelt Computermodelle, mit denen sich die Auswirkungen von Energietechnologien auf Klima und Luft verschmutzung untersuchen lassen. Mark A. DeLucchi beschäftigt sich am Institute of Transportation Studies der University of California in Davis mit energetischen, wirtschaftlichen und Umweltanalysen fortgeschrittener, nachhaltiger Treibstoffe, Fahrzeuge und Transportsysteme.
Archer, C. L., Jacobson, M. Z.: Evaluation of Global Wind Power. In: Journal of Geophysical Research 110, D12110, 30. Juni, 2005. Fthenakis, V. et al.: The Technical, Geographical, and Economic Feasibility of Solar Energy to Supply the Energy Needs of the U.S. In: Energy Policy 37, S. 387 – 399, 2009. Jacobson, M. Z. : Review of Solutions to Global Warming, Air Pollution, and Energy Security. In: Energy and Environmental Science 2, S. 148 – 173, 2009. Pacala, S., Socolow, R.: Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. In: Science 305, S. 968 – 972, 2004. Sovacool, B. K., Watts, C.: Going Completely Renewable: Is It Possible (Let Alone Desirable)? In: The Electricity Journal 22(4), S. 95 – 111, 2009.
Weblinks zu diesem Thema finden Sie unter www.spektrum.de/ artikel/1010840.
87
ERDE3.0
Last Exit
Kommentar
Copenhagen Was der Klimagipfel in der dänischen Hauptstadt leisten muss Von Stefan Rahmstorf
D
er Versuch, die Erderwärmung zu stoppen, ist inzwischen zu einem verzweifelten Wettlauf gegen die Zeit geworden. Das verleiht dem Klimagipfel vom 7. bis 18. Dezember in Kopenhagen, bei dem es um ein Nachfolgeabkommen zum bald auslaufenden Kioto-Protokoll von 1997 geht, seine dramatische Bedeutung. Nicholas Stern von der London School of Economics, Autor eines berühmten Berichts zu den wirtschaftlichen Folgen des Klimawandels, hält die Zusam-
Wirkung des Emissionshandels
Pro-Kopf-Emissionspfade
12
10
Ländergruppe 1 Ländergruppe 2 Ländergruppe 3
8
ohne mit Emissions- Emissionshandel handel
6
4
2
0 2005
2010
2015
2020
2025
2030
Jahr
88
wbgu
Kohlendioxidemissionen in Tonnen pro Kopf und Jahr
Soll die Erderwärmung auf zwei Grad Celsius begrenzt bleiben, darf jeder Mensch im Durchschnitt nur noch 110 Tonnen Kohlendioxid aus fossilen Quellen freisetzen. Die Grafik zeigt die Entwicklung des Pro-Kopf-Austoßes mit und ohne Emissionshandel für drei Ländergruppen: solche mit einem Kohlendioxid ausstoß über 5,4, von 2,7 bis 5,4 und unter 2,7 Tonnen pro Kopf und Jahr. Die erste Gruppe umfasst im Wesentlichen die Industriestaaten, die zweite Schwellenländer wie China und die dritte Niedrigemissionsländer wie die meisten afrikanischen Staaten und Indien. Nationen mit hohem Pro-Kopf-Ausstoß werden ihr Budget schon bald ausgeschöpft haben. Mit Emissionshandel können sie jedoch Anteile aus Ländern der dritten Gruppe kaufen. Das Geld dient dort zum Aufbau klimafreundlicher Energiesysteme. Die farbigen Flächen zwischen den Kurven zeigen die gehandelten Mengen an Emissionzertifikaten.
2035
2040
2045
2050
menkunft für die wichtigste internationale Konferenz seit 1945. Kopenhagen dürfte die letzte Chance für die Menschheit sein, die globale Erwärmung noch auf zwei Grad Celsius zu begrenzen. Über dieses schon seit 1996 von der Europäischen Union vertretene Ziel sind sich Klimaforscher und Politiker inzwischen weltweit nahezu einig. Seit dem G8-Gipfel im Juli stehen auch die USA und die wichtigsten Schwellenländer wie China oder Brasilien dahinter. Insgesamt erkennen 133 Staaten mit rund 80 Prozent der Weltbevölkerung die Bedeutung der Zwei-GradLeitplanke an; viele fordern sogar 1,5 Grad. Weniger ist kaum noch zu schaffen. Um 0,8 Grad Celsius hat sich die Erde seit Beginn der Industrialisierung bereits erwärmt, und ein weiteres halbes Grad ist gewissermaßen »in der Pipeline«: Die Treibhausgase dafür befinden sich schon in der Luft; nur die thermi sche Trägheit der Ozeane verhindert bisher, dass sie sich unmittelbar in einem Temperatur anstieg niederschlagen. Wird in Asien künftig der kühlende Smog reduziert, ist sogar eine noch stärkere Erwärmung zu erwarten. Es gibt viele Gründe, warum ein Anstieg der globalen Durchschnittstemperatur um mehr als zwei Grad Celsius nicht zu verantworten ist. Einen der wichtigsten nennt der jüngste IPCC-Bericht. Demnach besteht bereits ab einer globalen Erwärmung um 1,9 Grad ein erhebliches Risiko, dass der grönländische Eisschild abschmilzt. Dabei kommt es zu einem fatalen Teufelskreis: Schrumpft die drei Kilometer dicke Eisdecke, gerät ihre Oberfläche in immer wärmere Luftschichten. Der einmal begonnene Schmelzprozess setzt sich so selbsttätig fort. An seinem Ende wäre der globale Meeresspiegel um rund sieben Meter gestiegen. Auf Grönland und der Antarktis zusammen liegt sogar genug Eis, um ihn um 65 Meter anzuheben. Wir können uns also nicht leisten, auch nur wenige Prozent des Polareises zu verlieren, wollen wir nicht etliche Inselstaaten und Küs tenstädte versenken. Als sich die Erde am Ende SPEKTRUM DER WISSENSCHAFT · Dezember 2009
ERDE & UMWELT
des letzten Glazials um rund fünf Grad Celsius erwärmte, verschwanden zwei Drittel des Eises, das damals große Teile Nordamerikas und Europas bedeckte, und der Meeresspiegel stieg um 120 Meter. Ist die Zwei-Grad-Leitplanke überhaupt noch zu halten? Geophysikalisch spricht nichts dagegen. Trotz der thermischen Trägheit der Ozeane ist es noch nicht zu spät, das Ziel zu erreichen. Auch natürliche Klimaschwankun gen dürften kein Hinderungsgrund sein: In den letzten Jahrtausenden waren sie stets deutlich kleiner als ein halbes Grad pro Jahrhundert. Technologisch und wirtschaftlich lautet die Antwort ebenfalls Ja. Noch können wir den Ausstoß an Treibhausgasen rechtzeitig herunterfahren. Die Technologien dazu sind größtenteils vorhanden, von den erneuerbaren Energien bis zu Passivhäusern und sehr sparsamen Endgeräten. Die ökonomischen Kosten der Umstellung liegen nach verschiedenen Studien wie dem schon erwähnten Stern-Report bei etwa einem Prozent des Bruttosozialprodukts. Stern vergleicht den Effekt auf die Verbraucher mit einer einprozentigen Erhöhung der Mehrwertsteuer. Die meisten Menschen würden das kaum bemerken. Wenn einige Kollegen bezweifeln, dass sich die Zwei-Grad-Leitplanke halten lässt, dann allein aus politischen Gründen. Hat unser politisches System die Kraft, eine solche gesellschaftliche Transformation umzusetzen? Genau darum geht es. Das notwendige Tempo ist dabei das größte Problem. Um die Erderwärmung mit einer Wahrscheinlichkeit von zwei Dritteln auf zwei Grad Celsius zu begrenzen, darf die Menschheit weltweit bis zum Jahr 2050 nur noch rund 750 Gigatonnen Kohlendioxid aus fossilen Quellen freisetzen. Beim aktuellen Ausstoß wäre dieses Budget in 25 Jahren ausgeschöpft. Deshalb muss die Trendwende von wachsenden zu sinkenden Emissionen bald geschafft sein. Verringern wir den Ausstoß ab sofort, reicht eine allmähliche globale Reduktion um jährlich zwei Prozent aus. Lassen wir die Emissionen dagegen noch bis 2020 im jetzigen Tempo wachsen, müssten wir sie dann binnen 20 Jahren auf null herunterfahren, um noch innerhalb des Budgets von 750 Gigatonnen zu bleiben. Das wäre ein teures und riskantes Crash-Programm. Was muss der Klimagipfel in Kopenhagen leisten? Erstens sollte die Zwei-Grad-Leitplanke völkerrechtlich festgeschrieben werden. Ohne klare Vereinbarung über das Ziel der Klimaschutzbemühungen wird man sich über deren Ausmaß und Tempo kaum einigen könSPEKTRUM DER WISSENSCHAFT · Dezember 2009
nen. Zweitens muss die Konferenz Emissionsreduktionen beschließen, die mit diesem Ziel auch vereinbar sind. Bei den bisher auf dem Tisch liegenden Vorschlägen ist das nicht der Fall. Drittens sind Nahziele bis 2020 festzu legen, welche die erforderliche Trendwende rasch herbeiführen. Die Verhandlungen stecken derzeit in einer Sackgasse, weil jedes Land seine Eigeninteressen in den Vordergrund stellt. Sie alle zu berücksichtigen macht einen wirksamen Klimaschutz unmöglich. Wenn über 100 Nationen nach dem Konsensprinzip um Emissionsreduktionen schachern und für sich selbst möglichst die geringsten Belastungen herausholen wollen, scheint ein Scheitern fast unausweichlich. Der Wissenschaftliche Beirat Globale Umweltveränderungen der Bundesregierung (WBGU), dessen Mitglied ich bin, hat deshalb einen ebenso einfachen wie radikalen Verteilungsschlüssel vorgeschlagen. Danach würde das Budget von 750 Gigatonnen Kohlendi oxid bis 2050 auf Pro-Kopf-Basis auf die Länder verteilt, die damit künftig haushalten müssten. Jedem Erdenbürger stünden dabei 110 Tonnen CO2 zu. Wir Deutschen hätten bei den jetzigen Emissionen von elf Tonnen pro Kopf und Jahr unser Budget schon in zehn Jahren verbraucht. Danach müssten wir von Niedrigemissionsländern Quote hinzukaufen. Eine derartige Regelung würde die schon bald »kohlenstoffinsolventen« Industriestaaten und die emissionsarmen Entwicklungsländer ganz von selbst zu Partnern machen. Auch für Indien, das bislang unter Hinweis auf seine niedrigen Pro-Kopf-Emissionen von 1,3 Tonnen pro Jahr jegliche Verpflichtungen ablehnt, wäre der Beitritt zu einem solchen Abkommen attraktiv – könnte es doch ohne Gefährdung seiner Wirtschaftsentwicklung rund ein Drittel seines CO2-Budgets an reiche Länder verkaufen und im Gegenzug mit deren Hilfe ein klimafreundliches Energiesystem aufbauen. Weltweit wäre ab sofort jede vergeudete Tonne Kohlendioxid eine Geldverschwendung, so dass ein globaler Anreiz zum Sparen entstünde. Bei CO2-Preisen von 10 bis 30 Euro pro Tonne ergäben sich Finanztransfers von 30 bis 90 Milliarden Euro jährlich in ärmere Länder. Die Zahlungen wären an die Bedingung geknüpft, dass die Empfänger die Gelder zum Klimaschutz einsetzen. Für die 1,5 Milliarden Menschen in den reichen Industriestaaten brächte dies nur eine Belastung von 20 bis 60 Euro pro Kopf und Jahr mit sich. Wenn uns dies die Vermeidung eines verheerenden Klimawandels nicht wert ist, dann können wir wahrlich alle Hoffnung fahren lassen.
Noch können wir den Ausstoß an Treibhausgasen rechtzeitig herunterfahren
Stefan Rahmstorf zählt zu den führenden deutschen Klimaforschern. Als promovierter Ozeanograf am Potsdam-Institut für Klimafolgenforschung war er Hauptautor des jüngsten IPCC-Berichts. Im Blog KlimaLounge von »Spektrum der Wissenschaft« äußert er sich regelmäßig zu aktuellen Klimafragen. Bei Cambridge University Press ist gerade das Buch »The Climate Crisis« von ihm und David Archer erschienen.
Meinshausen, M. et al.: Greenhouse-Gas Emission Targets for Limiting Global Warming to 2º C. In: Nature 458, S. 1158 – 1163, 2009. WBGU – Wissenschaftlicher Beirat Globale Umweltveränderungen: Kassensturz für den Weltklima vertrag – Der Budgetansatz. WBGU 2009. www.wbgu.de
Weblinks zu diesem Thema finden Sie unter www.spektrum.de/ artikel/1010842.
89
WISSENSCHAFT IM ALLTAG thermoskanne
Vorsicht, heiß ! Isoliergefäße trotzen scheinbar der Physik und halten Getränke im Winter warm, im Sommer kühl.
Von Katja Bammel
W
er seinen Glühwein auch bei klirrender Kälte schön heiß oder den Eistee im Sommer selbst nach Stunden noch gekühlt genießen möchte, füllt das Getränk in Thermoskanne oder -becher und trotzt damit, wohl ohne sich dessen bewusst zu sein, der physikalischen Beschaffenheit unserer Welt. Denn die strebt nach Ausgleich, wenn zwei Systeme verschiedener Temperatur in Kontakt kommen. Das kältere wird erwärmt, das andere abgekühlt, und mit der Zeit stellt sich eine mittlere Temperatur ein. Dass Wärme, genauer: thermische Energie, dabei immer nur von dem Ort hoher Temperatur abfließt und nicht umgekehrt, ist ein Naturgesetz, genannt der 2. Hauptsatz der Thermodynamik, das schon so manchen Traum vom Perpetuum mobile zerstört hat. Und so setzt auch der Thermosbecher auf dem Weihnachtsmarkt die Physik nicht außer Kraft. Alles, was er leisten kann, ist, diesen Ausgleichsvorgang zu verzögern. Ein dazu geeignetes Gefäß muss seinen Inhalt deshalb thermisch gut isolieren. Sein Material sollte beispielsweise Wärme schlecht leiten. Metalle wie Gold, Kupfer und Silber eignen sich deshalb weniger als etwa Kunststoff oder Glas. Davon kann sich jeder selbst überzeugen: Der heiße Tee oder Kaffee, in einer eleganten Silberkanne mit einer Wärmeleitfähigkeit von knapp 430 Watt pro Meter mal Kelvin gereicht, kühlt merklich schneller ab als der in einer Porzellankanne mit nur rund 1 W/mK. Noch besser schützt nur die Abwesenheit jeglichen Materials, also ein Vakuum! Aus diesem Grund besitzen gute Isoliergefäße eine »Vakuumschicht«. In der klassischen Ausführung ist sie Teil des Innengefäßes, eines doppelwandigen, evakuierten Glaskörpers, der über eine Gummidichtung mit dem Außengefäß verbunden ist. Die Qualität des Vakuums kann dabei bis zu 10 –14 Millibar erreichen (zum Vergleich: der mittlere Luftdruck auf Meereshöhe ist 1013,25 Millibar). In bruchsicheren Behältern für Wanderung und Sport wird zwar Edelstahl verwendet, doch auch hier gibt es ein Innenund ein Außengefäß, welche miteinander verschweißt sind und wo
der Zwischenraum evakuiert wurde. Dank dieser Konstruktion lässt sich das preisgünstige und stabile Metall trotz seiner guten Wärmeleitfähigkeit ebenfalls für Thermosflaschen verwenden. Doch Wärme wird nicht allein durch Leitung, sondern auch in Form von elektromagnetischer Strahlung abgegeben, die jeder Körper abhängig von seiner Temperatur emittiert – und das leider auch im Vakuum. Bei Thermoskannen mit gläsernem, also für diese Strahlung durchlässigem Innengefäß wird deshalb dessen Innenseite mit Silber beschichtet oder mit Aluminium bedampft – die Verspiegelung reflektiert die Wärme. Beim Edelstahl ist eine solche Beschichtung nicht erforderlich, da das Material undurchlässig für diese Form der elektromagnetischen Strahlung ist. Ein dritter Mechanismus des Wärmetransports ist die Konvek tion, ein Stofftransport, zu beobachten beispielsweise an der Wand eines Latte-macchiato-Glases (SdW-Dossier 2/2009, Wissenschaft im Alltag II, S. 70): Heiße Flüssigkeit kühlt dort ab und sinkt, so dass sich Milchschaum und Espresso vermischen. Ähnliches geschieht mit dem heißen Glühwein auf dem Weihnachtsmarkt, der seine Wärme an die über ihm liegende, kalte Luftschicht weiter reicht, die sich dadurch erwärmt, nach oben steigt und durch neue kühle Luft ersetzt wird. In der Thermoskanne verhindert die Vakuumschicht eine Konvektion zwischen Innen- und Außengefäß und sorgt dafür, dass das Getränk heiß oder kalt bleibt. All diese Tricks und Kniffe sorgen dafür, dass die Temperatur eines heißen Getränks, das mit 80 Grad Celsius in eine gut isolierende Thermoskanne gefüllt wird, erst nach 8 bis 14 Stunden auf etwa 60 Grad sinkt. Und umgekehrt halten sie die Sommerhitze vom Eistee fern, der dann auch noch lange nach dem Abfüllen erfrischt. Katja Bammel ist freie Wissenschaftsjournalistin und Mitarbeiterin im Redaktionsbüro science & more.
Heißer Kaffee in einer Tasse kühlt auf Grund von Wärmeleitung, Wärmestrahlung und Konvektion relativ schnell ab und nimmt die Temperatur seiner Umgebung an. Eine Thermoskanne, bei welcher der Zwischenraum zwischen äußerem und innerem Gefäß evakuiert ist und zusätzlich die mit der Flüssigkeit in Kontakt stehende Wand des Innengefäßes verspiegelt ist, hält die Flüssigkeit länger heiß beziehungsweise kalt.
90
SPEKTRUM DER WISSENSCHAFT · dezember 2009
& Computer Technik TECHNIK & Computer
Wussten Sie schon? moskanne – evakuiert ist. Die innere Glasröhre ist zum Vakuum hin mit dem Absorber beschichtet, der die Wärme zu einer Trägerflüssigkeit leitet. r Je schneller sich die Atome und Moleküle eines Körpers bewegen, desto höher ist seine Temperatur. Der absolute Nullpunkt von null Kelvin (minus 273,15 Grad Celsius) ist dann erreicht, wenn die Bewegungsenergie aller Teilchen gleich der so genannten Nullpunktenergie ist, die aus quantenmechanischen Gründen nicht unterschritten werden kann. Mit aufwändigen Verfahren werden heute in winzigen Proben wenige millionstel Kelvin erreicht. r Je größer die Oberfläche einer Thermoskanne, umso größer ist auch ihr Wärmeverlust. Da eine Kugel bei gleichem Volumen von allen Körpern die kleinste Oberfläche hat, bleibt der Kaffee in einem runden Modell länger warm.
Thermoskanne mit Silberbeschichtung
Spektrum der Wissenschaft / Meganim
r Der schottische Physiker und Chemiker James Dewar (1842 – 1923) erfand 1893 ein doppelwandiges und aus verspiegeltem Glas bestehendes Gefäß zur Lagerung und zum Transport von flüssigen Gasen, das ihm zu Ehren als Dewar-Gefäß bezeichnet wird und auf dessen Prinzip die heutigen Thermoskannen basieren. Zwei Jahre vorher beschrieb sein deutscher Kollege Adolf Ferdinand Weinhold bereits ein solches Transportgefäß, allerdings ohne eine Verspiegelung der Glasinnenseiten. r Ein Sonnenkollektor soll Wärme, die er einfängt, an die Heizung abgegeben und nicht wieder an die Umgebung verlieren. Um Verluste zu minimieren, wird der heute übliche Flachkollektor gut eingepackt, etwa in Mineralwolle. Die Glasabdeckung hält zudem Wärmestrahlung zurück. Bei den aufwändigen Röhrenkollektoren schiebt man zur besseren Isolierung zwei Glasröhren ineinander, deren Zwischenraum – wie bei der Ther-
Trinkbehälter
Außengefäßwan d (z. B. Kunststo ) Wärmetransport durch Konvektion Wärmeleitung Wärmestrahlung
Wärmeleitung
Glasgefäß mit Silberbeschichtung Wärmestrahlung Vakuum
heißes Getränk
SPEKTRUM DER WISSENSCHAFT · dezember 2009
heißes Getränk
91
Finanzmathematik
MathematiK und die Finanzkrise Es war nicht die Verwendung mathematischer Modelle an sich, die zahlreiche Banken in den Abgrund stürzte. Problematisch ist vielmehr, dass die Beteiligten häufig mit veralteten Modellen arbeiten und ihnen der nötige Sachverstand fehlt. Mathematische Modelle bleiben unentbehrlich für Finanzgeschäfte. Von Ernst Eberlein
D In Kürze r
Die Formel von Black und Scholes (1973) hat die Finanzwelt revolutioniert.
r
Sie basiert auf einem mathematischen Modell für das kollektive Verhalten der Wirtschaftssubjekte – für viele Banker heute noch gewöhnungsbedürftig.
r Diese Formel und das zugehörige Modell sind inzwischen als unzureichende Beschreibung der Realität erkannt. r
Neue Finanzprodukte erfordern Kompetenz im Umgang mit neuen Theorien; Mangel an dieser Kompetenz hat die Finanzkrise nicht ausgelöst, aber deren Folgen an einigen Stellen gewaltig verschärft.
92
ie aktuelle Finanzkrise mit ihren schwer wiegenden Auswirkungen auf die reale Wirtschaft hat schlagartig die Komplexität der modernen globalen Finanzwelt aufgezeigt. Wie konnte es kommen, dass Hypotheken darlehen, die in den USA vergeben wurden, deutsche Banken in so akute Gefahr brach ten, dass sie nur noch mit milliardenschweren staatlichen Hilfen vor dem Zusammenbruch gerettet werden konnten? Die Ursachen der Krise lassen sich mindes tens bis zum Beginn des Jahrtausends zurück verfolgen, nämlich dem Platzen der Internet blase. Reihenweise wurden in den Jahren 2000 und 2001 »Dotcom«-Firmen insolvent, deren Aktien kurz zuvor noch mit Hunderten von Millionen Euro an der Börse bewertet worden waren. In der Folge des Börsencrashs nahmen die Notenbanken die Zinsen zurück, um die Wirtschaft zu stimulieren. In dieser Phase des billigen Geldes blähte sich das Volumen nur schwach besicherter (subprime) Hypotheken in den USA auf. Die amerikanischen Hypothekenbanken ge währten Kreditnehmern, die weder über das nötige Einkommen noch über hinreichend Ka pital verfügten, Darlehen zu Konditionen, die den eingegangenen Risiken nicht entsprachen. Die Banken mussten also fürchten, insgesamt durch Kreditausfälle mehr Geld zu verlieren, als sie durch die in den Kreditzinsen enthaltene Risikovorsorge einnehmen konnten. Zwei Gründe für dieses widersinnig und selbstschä digend erscheinende Verhalten seien genannt: Zum einen wird ein großer Anteil der Dar lehen über Kreditvermittler vergeben. Deren
Interesse besteht primär an der Vermittlungs provision und nicht an einer das Risiko korrekt erfassenden Einschätzung des Kunden. Indem die Banken den Kreditvermittlern übermäßig vertrauten, kamen sie zu einer systematischen Unterschätzung des Kreditrisikos. Zum anderen ließ aber auch das Interesse der Banken selbst an einer sorgfältigen Prü fung der Kunden nach, da sie zunehmend von den modernen Möglichkeiten Gebrauch mach ten, die Risiken durch die so genannte Ver briefung (securitization) an auswärtige Investo ren in aller Welt weiterzuverkaufen. An sich ist das Verbriefen von Forderungen – nicht zu verwechseln mit »Verbriefen« im umgangssprachlichen Sinn von »eine Ga rantie oder Zusage abgeben« – eine bewährte Finanztransaktion. Sie setzt Eigenkapital frei, mit dem neues Geschäft finanziert werden kann. Allerdings verhalten sich deren moderne Formen »Collateralized Debt Obligation« (CDO) oder »Collateralized Loan Obligation« (CLO), die vor etwa 15 Jahren entwickelt wur den, zur klassischen Verbriefung wie eine Lu xuslimousine zu einem Kleinwagen der 1950er Jahre: Die Leistungsfähigkeit dieser Finanz instrumente ist um ein Vielfaches höher, ent sprechend gewaltig ist das Geschäftsvolumen angewachsen. Zugleich stellen die höheren Leistungen völlig neue Anforderungen an den Menschen am Steuer; und vor allem sind die Zeiten vorbei, in denen ein Amateur mit Aus sicht auf Erfolg an den Produkten herum schrauben konnte. Der Umgang mit ihnen er fordert ein hohes Maß an Fachkompetenz – neben den Fähigkeiten eines Bankers vor allem die von Mathematikern und Juristen. Das gilt für den Anbieter ebenso wie für den Erwerber – in der Regel eine Bank, die diese Form SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Technik & Computer
des Geschäfts an Stelle der klassischen Kredit vergabe wählt. Aus heutiger Sicht lässt der Gang der Ereignisse nur den Schluss zu, dass es den erwerbenden Instituten an der erforder lichen hohen Fachkompetenz mangelte. Nicht nur das; auch die Ratingagenturen, deren Geschäft die Einschätzung der Kredit würdigkeit ist, haben die Ausfallwahrschein lichkeit der neuen Produkte viel zu gering ein gestuft. Sonst hätten sie sich nicht genötigt gesehen, ihre Bewertungen (»Ratings«) im Verlauf der Krise binnen kurzer Zeit so dras tisch herabzusetzen. Ebenso wie ein Kreditvermittler unterliegt auch eine Ratingagentur einem Interessen konflikt, weil sie für ihre Tätigkeit von der Bank, die das Produkt strukturiert, bezahlt wird. Dieser Konflikt ist seit Langem bekannt und hätte die erwerbenden Institute dazu ver anlassen müssen, die Aussagen der Rating agenturen ebenso wie die Preisgestaltung der angebotenen Produkte durch Analysen im ei genen Haus zu überprüfen, vor allem wenn es um Transaktionen mit Milliardenvolumina geht, welche die gesamte Bank in Gefahr brin gen können. Zu diesem Zweck verwendeten jedoch etli che Institute – wenn überhaupt – mathema tische Modelle aus den 1980er und 1990er
Jahren, welche die Komplexität der erst in jüngster Zeit entstandenen Produkte gar nicht abbilden können. Auch der Mangel an zeitna hen und vollständigen Daten, mit denen die Modelle kalibriert werden können, führte zu Fehlbewertungen.
Die Blase platzt
Im Sommer 2007 wurden plötzlich die Ge fahren, die von der leichtfertigen Finanzie rung des US-Immobilienbooms ausgingen, offenbar, und die Banken erfassten die Konse quenzen, die sich aus der internationalen Ver flechtung dieser Finanzierung ergeben. Die Folge war ein weit gehender Vertrauensver lust, der das Interbankengeschäft abrupt zum Erliegen brachte (Kasten S. 94). Die risiko behafteten Papiere, die nun jeder möglichst rasch aus seinem Portfolio haben wollte, wa ren trotz ursprünglicher Bestnoten unverkäuf lich geworden. Massive Wertberichtigungen drückten jetzt auf die Bilanzen. Zudem ist es in einer solchen Illiquiditätsphase fast unmög lich, für diese Produkte überhaupt noch einen aktuellen Marktwert zu ermitteln. Welche Rolle spielt die Mathematik im modernen Bankgeschäft? Bis in die 1970er Jahre hatten auch Spitzeninstitute keine Ver wendung für Mathematiker. Für einen Banker
Abwärts: Die Geschwindigkeit, mit der während der Krise die Werte vieler Finanzprodukte absanken – bis hin zur Unver käuflichkeit –, schockierte auch hartgesottene Banker. DPA / ZUMA Press, y06
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
93
Finanzmathematik
Die Fieberkurve der Finanzkrise
Die neuen Finanz instrumente sind wie eine moderne Luxuslimousine im Verhältnis zu einem alten Kleinwagen: schneller, kom plizierter – und unter Umständen gefährlicher
94
240
160 120
1 Woche 1 Monat 3 Monate 6 Monate
80 40 0
– 40
Jan. 2007
Jul. 2007
genügte es, die Grundrechenarten zu beherr schen. An den Börsen wechselten im Wesent lichen Aktien und Anleihen den Besitzer. Ob wohl Optionen zwischen individuellen Par teien seit Hunderten von Jahren gehandelt werden, begann der börsenmäßige Handel mit Finanzoptionen erst 1973, und zwar am Chi cago Board Options Exchange (CBOE). Rasch kam die Finanzwelt auf den Ge schmack der vielfältig einsetzbaren Instru mente. Futures folgten, Swaps wurden erfun den. Heute ist die Vielfalt der Produkte, die börsenmäßig und außerhalb der Börse (over the counter, OTC) gehandelt werden, kaum mehr zu überblicken. Manche sind so exotisch wie ihre Namen: Digital, Quanto, Cliquet, Alto Plano oder Kilimandscharo. Dann er fasste die Innovationswelle auch die Kredit märkte. Mit Kreditderivaten wie Credit De fault Swaps (CDSs, Kreditausfallversicherun gen) lassen sich die Risiken der gewaltigen Kreditportfolios steuern. Einige Marksteine in der Entwicklung der Finanzmathematik seien erwähnt. Bereits 1900 präsentierte ein junger Mann namens Louis Bachelier (1870 – 1946) in Paris eine Disserta tion, in der er nicht nur das, was wir heute brownsche Bewegung nennen, als Modell für einen Aktienkurs einführte, sondern auch eine korrekte Bewertungsformel für Optionen an gab. So wie die Zickzackbewegung der Pollen körner, die der namensgebende schottische Bo taniker Robert Brown 1827 unter dem Mikro skop beobachtet hatte, durch viele kleine, voneinander unabhängige Stöße der umge benden Wassermoleküle verursacht wird, so sollte der Prozess, der den Kurs eines Wertpa piers treibt, als aus lauter kleinen »Preisstößen« bestehend modelliert werden, die umso sel
Jan. 2008
Jul. 2008
Jan. 2009
tener vorkommen, je größer sie sind. Genauer: Die Häufigkeit eine solchen Stoßes sollte mit seiner Größe x abfallen wie die gaußsche Ver teilung exp(–x2), also sehr schnell. Wissenschaftlich war Bachelier seiner Zeit um Jahrzehnte voraus und wurde deshalb nicht verstanden. Offensichtlich hatte da ein außergewöhnliches mathematisches Talent sein Thema im eigenen Elternhaus gefunden: Er entstammte einer Kaufmannsfamilie. Erst mit 57 Jahren wurde er nach einer Reihe ver geblicher Anläufe auf eine Professur in Besan çon berufen. Zu seinen Ehren nennt sich die internationale Vereinigung der Finanzmathe matiker »Bachelier Finance Society«.
Siegeszug der Black-Scholes-Theorie
Im Jahr 1952 veröffentlichte der amerikani sche Ökonom Harry Markowitz eine Portfolio selektionstheorie, die für ein gegebenes Risiko den Ertrag zu optimieren gestattet; dabei wird das Risiko eines bestimmten Wertpapiers durch die Varianz seines Kursverlaufs gemessen. Da für erhielt er 1990 den Wirtschaftsnobelpreis (Spektrum der Wissenschaft 12/1990, S. 30). Sein Fachkollege Paul Samuelson (Wirt schaftsnobelpreis 1970) führte 1959 als ver bessertes Modell für Aktienkurse die geome trische brownsche Bewegung ein: Nicht die Kurse selbst sind es, auf die der von Bachelier postulierte Prozess wirkt, sondern deren Loga rithmen. Das kommt der Realität schon nä her; insbesondere können die so modellierten Kurse keine negativen Werte annehmen. Basierend auf diesem Modell entwickelten Fischer Black und Myron Scholes 1973 ihre berühmte Optionspreistheorie, für die Scholes und Robert Merton 1997 den Nobelpreis er hielten (Black war 1995 verstorben). Die SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Ernst Eberlein, mit frdl. Gen. von H.-H. Kotz, Deutsche Bundesbank, Frankfurt a. M.
Zinsspread im Interbankenhandel 200
Basispunkte
Die Abbildung zeigt für verschiedene Anlagezeiträume (»Anlagehorizonte«) den Zinsspread, das ist die Differenz zwischen dem unbesicherten Euribor- und dem besicherten Eureposatz, im Interbankenhandel. Letzterer kann als Zinssatz für eine risikolose Anlage gelten. Der Spread ist also der Anteil des Zinssatzes, der als Risikokompensation bezahlt werden muss. In diesem Fall geht es um das Risiko, das international tätige Großbanken eingehen, indem sie einander Geld leihen. Unter normalen ökonomischen Bedingungen liegt dieser Spread in der Größenordnung von wenigen Basispunkten (1 Basispunkt entspricht 0,01 Prozent), weil die Wahrscheinlichkeit dafür, dass die verleihende Bank ihr Geld verlieren wird, als verschwindend gering eingestuft wird. Im Sommer 2007 erhöhte sich der Risikozuschlag dramatisch auf über 60 Basispunkte. Mit der Pleite von Lehman Brothers am 15. September 2008 erreichte er seinen bisherigen Höchststand bei 200 Basispunkten.
Black-Scholes-Theorie (Spektrum der Wissen schaft 12/1997, S. 24) war der eigentliche Startschuss für die Entwicklung der moder nen Finanzmathematik. Sie zeigte die Nütz lichkeit von mathematischen Modellen in ei ner Welt, in der bis dahin die Meinung »Prei se werden vom Markt gemacht« vorherrschte. Das trifft auch zu; nur ließen sich mit Hilfe des Modells plötzlich Preiszusammenhänge rational erklären, mit gravierenden Konse quenzen für die Beurteilung des Marktes. Nun konnten die Marktteilnehmer einschät zen, ob ein Preis, den der Markt gemacht hat te, realistisch war; und Geschäfte, vor denen sie wegen zu großer Unsicherheit über den Preis zurückgeschreckt waren, konnten jetzt zu Stande kommen. Ausgehend von der Black-Scholes-Theorie drang die Mathematik in immer neue Be reiche der Finanzwelt ein. In den 1980er Jah ren entwickelten einige große Banken die ers ten internen Risikomodelle. Als Maß für das Risiko eines Wertpapierportfolios setzte sich der »Value at Risk« (VaR) durch. Nachdem 1996 der Baseler Ausschuss für Bankenauf sicht, ein Gremium bei der Bank für Interna tionalen Zahlungsausgleich in Basel, seine
Verwendung empfahl, dient er inzwischen als maßgebliche Kenngröße, um die Eigenkapi talunterlegung der Banken festzulegen. Auf die Modellierung der Aktienmärkte folgten Modelle für die vom Volumen her noch bedeutenderen Zinsmärkte (fixed income markets). Schließlich erreichte die Entwicklung das historische Kerngeschäft der Banken, die Kre ditmärkte. In den 1990er Jahren hatte sich die Finanzmathematik als eigenständige Disziplin etabliert. Ein für das Risikomanagement zu ständiges Vorstandsmitglied einer erfolgreichen
Schulnoten für Schuldner Eine Ratingagentur (credit rating agency) bewertet die Kreditwürdigkeit eines Unternehmens (des »Schuldners«) auf einer Skala, die, den amerikanischen Schulnoten nachempfunden, von AAA (sehr gut) bis D (zahlungsunfähig) reicht. Da ein amerikanisches Unternehmen mindestens zwei externe Bewertungen
vorlegen muss, um überhaupt zum Kapitalmarkt zugelassen zu werden, und für diesen Zweck nur die Ratingagenturen S & P (»Standard & Poor’s«), Moody’s und Fitch zugelassen sind, beherrschen diese drei Unternehmen 95 Prozent des weltweiten Ratinggeschäfts.
S&P
Moody’s
Fitch
Bonitäts-Einstufung
AAA
Aaa
AAA
sehr gut höchste Bonität, praktisch kein Ausfallrisiko
AA+ AA AA–
Aa1 Aa2 Aa3
AA+ AA AA–
sehr gut bis gut hohe Zahlungswahrscheinlichkeit
A+ A A–
A1 A2 A3
A+ A A–
gut bis befriedigend angemessene Deckung von Zins und Tilgung, viele gute Investmentattribute, aber auch Elemente, die sich bei einer Veränderung der wirtschaftlichen Lage negativ auswirken können
BBB+ BBB BBB–
Baa1 Baa2 Baa3
BBB+ BBB BBB–
befriedigend angemessene Deckung von Zins und Tilgung, aber auch spekulative Charakteristika oder mangelnder Schutz gegen wirtschaftliche Veränderungen
BB+ BB BB –
Ba1 Ba2 Ba3
BB+ BB BB –
ausreichend sehr mäßige Deckung von Zins und Tilgung, auch in gutem wirtschaftlichem Umfeld
B+ B B –
B1 B2 B3
B+ B B –
mangelhaft geringe Sicherung von Zins und Tilgung
CCC CC C
Caa Ca C
CCC CC C
ungenügend niedrigste Qualität, geringster Anlegerschutz in akuter Gefahr eines Zahlungsverzugs (bei Moody’s auch bereits im Zahlungsverzug)
DDD DD D
Zahlungsunfähigkeit (bei Fitch mit unterschiedlicher Erwartung für die Rückzahlungsquoten: 100 – 90 %, 90 – 50 %, < 50 %)
SD/D
Investment Grade (Anleihen bester bis befriedigender Qualität) Speculative Grade (Anleihen geringerer Qualität)
Finanzmathematik US-Investmentbank antwortete vor einigen Jahren auf die Frage nach der Bedeutung der Modelle: »Ohne Modelle würde die Bank kei ne 15 Minuten überleben, trotzdem sind Er fahrung und Urteilsvermögen der Verantwort lichen der letztendlich entscheidende Faktor.« Durch Modelle lässt sich die Realität dank intelligenter Reduktion der Komplexität in überschaubarer Weise abbilden. Man benötigt Daten wie Aktienkursverläufe, Zinskurven und Ausfallwahrscheinlichkeiten auf der einen Seite und hochkarätige Mathematik auf der anderen Seite. Modelle gehen immer von ge wissen Annahmen aus. Ob diese im kon kreten Fall zu rechtfertigen sind, muss über
prüft werden. Innerhalb des einmal aufgestell ten Modells lassen sich dann Preise von Derivaten, Wahrscheinlichkeiten für mögliche zukünftige Kursentwicklungen, Risikokenn zahlen und vieles mehr ableiten. Diese Analyse nutzt die anspruchsvollsten Theorien der gegenwärtigen Mathematik, wie die allgemeine Theorie der stochastischen Pro zesse (Semimartingaltheorie), sowie hocheffi ziente numerische und statistische Verfahren. Manche Probleme führen tief in die reine Ma thematik. So gerät man zum Beispiel bei der Berechnung von Derivatpreisen unversehens an die Wiener-Hopf-Zerlegung analytischer Funktionen in der komplexen Ebene.
1000
simulierte Kurse
104
Siemens
DM
600
102
400
100
Bayernhypo Hoechst
200
98 96
0 0,0
0,2
0,4
0,6
0,8
1,0
0
Zeit
0,5 0,4 0,3 0,2 0,1 0
•• Häufigkeit von Kursschwankungen, • • linear … • • • • • • • • • • • • • • • ••• • • • • •• • • • ••• • •••• • • ••••••• • ••• •• • • • •••••••••••••••••• –4
96
–2
0
500
1000
1500
Handelstage, tägliche Schlusskurse von 1988 bis 1994
Das Bild links oben zeigt einige simulierte Kursverläufe einer fiktiven Aktie unter der Annahme, dass sie zum Zeitpunkt 0 den Wert 100 hat und ihr Kurs einer geometrischen brownschen Bewegung mit einer gewissen Aufwärtsdrift folgt. Nach einiger Zeit ist die anfängliche Gewissheit über den Kurs einer immer grö ßeren Ungewissheit gewichen. Diese wird durch die Kurve der Wahrscheinlichkeitsverteilung rechts im Bild ausgedrückt. Rechts oben zum Vergleich einige reale Kursverläufe. Die echten Aktien machen mehr große Sprünge als die simulierten. 0,6
BMW
800
106
Kurs
echte Kurse
2
4
Eine statistische Analyse bestätigt diese Beobachtung: Die am Aktienmarkt zu beobachtenden täglichen Kursschwankungen einer Aktie (links unten, blaue Punkte) verteilen sich nicht entsprechend einer gaußschen Normalverteilung: Rot eingezeichnet ist die Gaußkurve, die am besten zu den Daten passt! Eine verallgemeinerte hyperbolische Verteilung gibt die Daten weitaus besser wieder (grün). Der Unterschied wird noch wesentlich deutlicher, wenn man für die Verteilungsdichten ( y-Achse) einen logarithmischen Maßstab wählt (rechts unten). 6 4 2 0 –2 –4
••••••• •••••• •••••••••• ••••• •••• • • • • • • •••••• •••••• ••••• •••• ••••• • • • • • ••••• ••••••• • • • • • • ••• • • • • • • • • • • •••• • • •••• • • • • • • • ••••••••• • •• •••• ••• •• ••• •••••••• • • • • • •••• •• ••• ••••• • • • •• ••••••••• ••••••••• ••• ••• •••• ••• •• •• •• • •• • •• •• ••
… und logarithmisch
Spektrum der Wissenschaft, nach Ernst Eberlein
108
Ernst Eberlein
Von welcher Art ist die Zufallsbewegung der Börsenkurse?
–6 –8 –10
–5
0
5
10
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Technik & Computer
Hedging: Optionen verkaufen ohne Risiko
Betrachten wir für die Bewertung einer sol chen Option folgendes Modell: Der heutige Kurs der Aktie sei 100 Euro. Wir nehmen an, die Aktie könne bis zum Fälligkeitszeitpunkt T der Option mit Wahrscheinlichkeit 0,6 auf 130 Euro steigen und mit Wahrscheinlichkeit 0,4 auf 80 Euro fallen. Der allgemeine Zins satz für die Laufzeit der Option betrage 5 Pro zent. Ein Kunde möchte eine Option kaufen, die auf den Kauf von 100 Aktien zum Basis preis von 110 Euro lautet. Welchen Preis müs sen wir – die Bank – ihm dafür berechnen? Die Antwort ist: 953 Euro. Zusätzlich neh men wir einen Kredit in Höhe von 3047 Euro auf, kaufen für die Gesamtsumme von 4000 Euro 40 Aktien und behalten sie bis zum Fäl ligkeitszeitpunkt. Warum? Zum Fälligkeitszeitpunkt T gibt es zwei Möglichkeiten. Erstens, die Aktie ist auf 130 Euro gestiegen. Die Option ist dann 100·(130 – 110) = 2000 Euro wert. Dies ist auch der Wert unseres Portfolios aus 40 Ak tien und dem aufgenommenen Kredit, denn 40 · 130 = 5200 Euro, davon gehen 3200 Euro ab, die einschließlich Zinsen an die Bank zu bezahlen sind. Zweitens, die Aktie ist auf 80 Euro gefallen. Die Option ist dann wertlos. Auch das Portfolio hat in diesem Fall genau den Wert 0, nämlich 40 · 80 = 3200 Euro ab züglich der Bankschulden in derselben Höhe. Allgemein sind für die Berechnung des Optionspreises und des Portfolios, das wir uns für die Bedienung der Option zulegen müs sen, zwei Gleichungen mit zwei Unbekannten zu lösen. Bemerkenswerterweise gehen die Wahrscheinlichkeiten 0,6 und 0,4 für die bei den Schlusskurse an keiner Stelle in die Rech nung ein. Wir brauchen also keine Prognosen über die Zukunft anzustellen; schon dadurch, SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Opionspreisberechnung in mehreren Stufen
Spektrum der Wissenschaft, nach Ernst Eberlein
Ungeachtet der schwierigen Theorie kann man den Grundgedanken, der zur BlackScholes-Formel führt, an einem sehr einfachen Modell erklären. Die Formel gibt den Preis ei ner Kaufoption (»Call«) an. Diese gibt ihrem Inhaber das Recht, aber nicht die Pflicht, ein zu Grunde liegendes Gut (Aktien, Rohstoffe, …) an einem zukünftigen Termin T zu einem be stimmten Preis K, dem »Basispreis«, zu kaufen. Ist der Marktpreis ST zum Zeitpunkt T höher als K, dann hat die Option bei Fälligkeit den Wert ST – K, da der Inhaber der Option das Gut zum Preis K kaufen und am Markt zum Preis ST wieder verkaufen kann. Der Besitzer der Option erhält also die Auszahlung ST – K. Liegt der Marktpreis zum Zeitpunkt T unter K, so verfällt die Option wertlos, da ihr Besitzer nicht zum höheren Preis K kaufen wird.
Wir wollen den Preis einer Kaufoption für eine Aktie bestimmen, die heute 100 Euro kostet. Die Option soll nach drei Zeitabschnitten (»Perioden«) fällig sein; der Basispreis betrage 100 Euro. Unsere Aktie steigt von einem Zeitpunkt zum nächsten mit Wahrscheinlichkeit 0,6 um 20 Prozent und fällt mit Wahrscheinlichkeit 0,4 um 20 Prozent. Schwarze Zahlen zeigen die verschiedenen möglichen Kurse, grüne Zahlen deren Wahrscheinlichkeiten. Der Zinssatz beträgt 4 Prozent. Der Preis für das Recht, sofort eine Aktie, deren Kurs S bekannt ist, zum Preis von 100 Euro zu kaufen, ist leicht zu berechnen: Er beträgt S – 100, falls S über 100 Euro liegt, und sonst 0. Damit sind die Preise für eine – natürlich nur theoretisch interessante – »Option mit Laufzeit null« bestimmt (rote Zahlen, letzte Spalte). Nach dem im Text erläuterten Verfahren berechnen wir nun den Preis, der zum vorletzten Zeitpunkt t2 für eine entsprechende Option zu bezahlen wäre. Das liefert uns die roten Zah172,80 len der vorletzten Spalte. In0,216 dem wir die Berechnung von 144 72,80 0,36 rechts nach links fortsetzen, 115,20 120 47,85 0,432 0,6 erhalten wir schließlich den 15,20 100 30,98 96 gesuchten Preis von 19,82 1 0,48 80 76,80 19,82 8,77 Euro pro Aktie. 0,4 0,288 Auch in diesem Modell 5,06 0 64 0,16 kann der Anbieter die Option 51,20 0 0,064 mit einem Portfolio aus han0 delbaren Papieren perfekt t1 t2 t0 t3=T nachbilden und damit sein eigenes Risiko ausschließen. Dieses »n-Perioden-Binomialmodell« und dessen Grenzwert, das Black-Scholes-Modell, sind allerdings im Wesentlichen die einzigen, bei denen das funktioniert. In der Praxis bleibt stets ein Restrisiko, das man nicht »hedgen« (unschädlich machen) kann.
dass wir uns das richtige Portfolio zulegen, kommen wir stets mit einer ausgeglichenen Bilanz aus dem Geschäft heraus. Hinter diesem Verfahren steckt das Prin zip, dass zwei Finanzpositionen, die zu einem zukünftigen Zeitpunkt denselben Wert haben werden, zwingend auch heute schon mit dem selben Wert angesetzt werden müssen. Wer das nicht tut, wird einem Arbitrage-Geschäft zum Opfer fallen: Irgendjemand findet sich, der die billigere Position kauft, die teurere ver kauft und die Differenz als risikolosen Ge winn einsteckt. In der Tat gibt es Hedgefonds, die systematisch mit Hilfe hochkarätiger Pro gramme nach Arbitrage-Möglichkeiten in den Finanzmärkten suchen, sie ausnutzen und da durch zum Verschwinden bringen. Natürlich ist die Annahme, der Aktienkurs könne am Ende nur zwei Werte annehmen und sei in der Zwischenzeit nicht beobacht bar, krass realitätsfern. Aber man kann das Verfahren von einer Zeitperiode auf n Perio den erweitern (im Kasten oben ist das für n = 3 dargestellt). Für n = 100 bekommt man schon brauchbare Preisverläufe. Lässt man n 97
Finanzmathematik gegen unendlich streben, gehen die Zweige des so entstandenen Baums in die Pfade der geometrischen brownschen Bewegung über. Dies ((Formel besagt ein1)) klassischer Grenzwertsatz der Wahrscheinlichkeitstheorie, der funktionale ((Formel 1)) zentrale Grenzwertsatz. Der Kurs der Aktie ist t gegeben durch dann zum Zeitpunkt σ2 St = S0 exp σXt + µ − σ 2 t St = S0 exp σXt + µ − 2 t 2 ((Formel 2)) oder als stochastische Differenzialgleichung ((Formel 2)) mit Anfangswert S0 geschrieben
Bis heute ist der Black-Scholes-Preis eine Richtgröße – trotz bekannter Schwächen
dSt = µSt dt + σSt dXt . dS = µSt dt + σSt dXt . Hierbei ist St0 der heutige Aktienkurs. Die Vo ((Formel 3))Parameter für die Schwan latilität s ist ein ((Formel kungsbreite des3)) Kurses. Der »Driftparameter«
m beschreibt eine Tendenz des� Kurses,√zu stei = S0 Φ(h) − e−rT KΦ�hund − σ(X√)T ist genCbeziehungsweise zu fallen, t t ≥ 0 −rT = SPreisprozess KΦ h(gewöhnliche, −σ T 0 Φ(h) − e treibende dieCden 4)) brownsche Bewegung. nicht((Formel geometrische) ((Formel 4)) Wenn ein Aktienkurs dem durch diese For meln bestimmten mathematischen Modell ge σ 2 √den horcht, liefert die Black-Scholes-Formel T σ √T /K) + r + h = ln(S 0 σ22 sie anwenden korrekten Preis eines Calls. Um T σ T /K) + r + h = ln(S 0 zu können, muss man einen 2Wert für die Vo latilität einsetzen (alle anderen Bestimmungs größen sind bekannt oder durch Marktbeob achtung zu ermitteln). In der Praxis verwen
det man dazu die »implizite Volatilität«: Man setzt die Marktpreise aus der jüngsten Zeit in die Black-Scholes-Gleichung ein und löst die se dann mit der Volatilität als der einzigen Unbekannten. Genauer: Die implizite Volati lität ist derjenige Wert für s, für den die Black-Scholes-Formel die aktuellen Markt preise am genauesten reproduziert. Der Black-Scholes-Preis ist bis heute eine Richtgröße geblieben, obwohl die Schwächen des Modells seit Langem bekannt sind und vielfältige Verbesserungen entwickelt wurden. Welches sind die Schwächen? Bei der geo metrischen brownschen Bewegung sind die Zuwächse des treibenden Prozesses (X t )t ≥ 0 normalverteilt. Die aus realen Kursdaten ge wonnenen empirischen Verteilungen weichen jedoch deutlich von der Normalverteilung ab (Kasten S. 96). Noch gravierendere Auswir kungen als die Abweichung im Zentrum ha ben die Abweichungen in den so genannten tails (den »Schwänzen« der Kurve), also bei den großen Kurssprüngen nach oben und nach unten. Dies sieht man wegen der gerin gen Häufigkeiten in diesem Bereich erst, wenn die Kurven mit einer logarithmischen Skala auf der y-Achse dargestellt werden. Aus der gaußschen Glockenkurve wird dann eine Parabel, nämlich bis auf eine Konstante
Risiko in Scheiben Die ursprüngliche Form einer collateral debt obligation ist der Cash CDO. Die Bank verkauft ein Portfolio, das aus von ihr ausgegebenen Krediten besteht, an eine eigens für diesen Zweck gegründete Gesellschaft (ein Special Purpose Vehicle, SPV). Diese refinanziert sich, indem sie Risikotranchen (»nach Risiko gestaffelte Scheiben«) des Portfolios an Investoren verkauft. Das bedeutet: Ein Investor, der zum Beispiel Teile der Tranche »junior mezzanine« (3 bis 6 Prozent) erwirbt, muss Verluste ausgleichen, sobald die Kreditausfälle im Portfolio mehr als drei Prozent des Volumens erreichen. Sowie sie sechs Prozent des Volumens betragen, ist das in »junior mezzanine« investierte Kapital vollständig aufgezehrt. Von da an tragen die Investoren der nächsthöheren Tranche die Verluste. Das Verlustrisiko ist also umso höher, je niedriger die Tranche ist. Mit Hilfe eines mathematischen Modells, das neben der durchschnittlichen Ausfallwahrscheinlichkeit für die Kredite im Portfolio vor allem deren Abhängigkeitsstruktur berücksichtigen muss (zum Beispiel in Gestalt der Korrelation r), lässt sich das Verlustrisiko für jede Tranche quantifizieren. Diese Berechnung ist Grundlage für ➤ die Bonität, welche die Ratingagenturen jeder Tranche zuschreiben, und ➤ den Kaufpreis der Tranche sowie die Höhe der Zinsen, die der Investor erhält. Die hohen Tranchen (im Beispiel oberhalb von 22 Prozent) sind so risikoarm und daher so gering verzinst, dass sie für den
98
1 1
Referenzportfolio Kredit 1 Kredit 2 ... ... ... Kredit N
CDO-Tranchen Zins und Tilgung
Zins und Tilgung SPV
Ausfall kompensation
Ausfall kompensation
12 – 22 % super-senior 9 – 22 % senior 6 – 9 % mezzanine 3 – 6 % junior mezzanine 0 – 3 % equity
Erwerber häufig uninteressant sind und die Bank sie nicht verkauft. Dagegen wird der Käufer einer niedrigen Tranche für das hohe Verlustrisiko mit entsprechend hohen Zinsen entschädigt. Während früher die Banken die Equitytranche für sich zu behalten pflegten – eine vertrauensbildende Maßnahme –, wird sie heute zuweilen mit Zinsen in der Größenordnung von 40 Prozent verkauft. Das ist für den Erwerber selbst dann ein Geschäft, wenn sein Kapital nach drei Jahren völlig aufgezehrt ist (mit dem Verlust des Kapitals enden auch die Zinszahlungen). Bei einem synthetischen CDO wird im Gegensatz zu einem Cash CDO das zu Grunde liegende Portfolio nicht verkauft. Die Parteien tauschen hier nur die vom Referenzportfolio generierten Zahlungsströme aus. So läuft die Tranche »junior mezzanine« eines synthetischen CDO auf eine Kreditausfallversicherung hinaus: Der Erwerber zahlt zunächst nichts und erhält regelmäßige Zahlungen dafür, dass er im Versicherungsfall alle Verluste ausgleicht, die zwischen 3 und 6 Prozent vom Gesamtvolumen des Referenzportfolios ausmachen.
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Die derzeitige Krise ist aus dem Kreditbereich erwachsen, einem in den Augen der Öffent lichkeit eher unspektakulären Bankensektor. Tatsächlich ist das Kreditrisiko das älteste und ureigenste Risiko im Finanzsektor. Der frü heste bekannte Gesetzestext überhaupt, der Kodex Hammurapi aus der Zeit um 1800 v. Chr., sieht bereits Strafen – bis zu vier Jahren Zwangsarbeit – für den Fall vor, dass jemand seine Schulden nicht zurückzahlt. Auch die frühesten Banken der Familien Bardi, Peruzzi und Acciaiulli, die zwischen 1300 und 1345 in Siena, Piacenza und später in Florenz ent standen, mussten erfahren, wie gefährlich es ist, anderen Geld zu leihen. Sie scheiterten sämtlich am Kreditrisiko. Die älteste heute noch bestehende Bank, die Monte dei Paschi di Siena, wurde 1472 gegründet. Mehr oder weniger schon vergessen sind die Verluste im dreistelligen Milliardenbereich im Zusammen hang mit dem Platzen der Internetblase. Banken müssen für das Risiko, das sie mit der Kreditgewährung übernehmen, kompen siert werden, das heißt, sie müssen einen Zu schlag (spread) zum risikolosen Zinssatz erhe ben, aus dem die Kreditausfälle gedeckt wer den können. Das Bild oben zeigt eine typische Staffelung der Zinskurven nach Risikoklasse des Kreditnehmers. Unter normalen Marktbe dingungen sind für einen längerfristigen Kre dit höhere Zinsen zu bezahlen, unter anderem SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Caa
15
B3
10
B2 B1 Ba3
5
Baa3 A1 Aaa
risikolose Anleihe
Zinskurven für verschiedene Ratingklassen
0 0
2
4
6
8
10
Laufzeit in Jahren
weil die Wahrscheinlichkeit für einen Ausfall innerhalb von zehn Jahren höher ist als inner halb von zwei Jahren. Die hier dargestellten Zinskurven verlaufen sehr flach. In manchen Marktphasen sind sie erheblich steiler, das heißt, die Zinsdifferenz zwischen kurzem und langem Ende ist viel größer. An den Zinskurven lässt sich auch grob er läutern, warum einige Banken aus dem öffent lichen Sektor in der Krise als Erste in Schwie rigkeiten kamen. Sie hatten große Beträge langfristig in CDO-Tranchen (siehe unten) in vestiert, die mit »AAA« geratet waren, tatsäch lich aber höhere Zinsen bezahlten, also solche, die einer niedrigeren Bonitätsklasse entspra chen. Diese Investments refinanzierten die In stitute am Kapitalmarkt am kurzen Ende – mit Dreimonats- bis herunter zu Eintagesgel dern – mit entsprechend günstigen Zinskon ditionen, die sie dank ihres eigenen hohen Ratings gewährt bekamen. DieAnlagestrategie brach mit dem Beginn der Liquiditäts- und Vertrauenskrise zusammen, da die kurzfristige, revolvierende Refinanzierung unmöglich wur de. Selbst eine so traditionsreiche und hoch
Für ein fiktives Portfolio aus einer großen Anzahl von Kre diten mit einer Ausfallwahr scheinlichkeit von 2 Prozent ist über dem Korrelationsparameter r aufgetragen, welcher Anteil eines CDOs mit welcher Bewer tung versehen werden kann. Für völlig voneinander unabhängige Kredite (r = 0) dürfen sich alle Tranchen bis auf die unterste praktisch sicher fühlen, für stark gekoppelte Risiken (r = 1) gar keine.
1
Spektrum der Wissenschaft, nach Ernst Eberlein
Opfer der Zinsschere
20
Prozent
f (x) = – x 2. Sie fällt in den tails viel schneller ab, als der Realität entspricht, mit der Folge, dass das Risiko großer Kurssprünge systema tisch unterschätzt wird. Ein deutlich besseres Modell bekommt man mit den verallgemeinerten hyperbo lischen Verteilungen. Sie fallen für große Zu wächse x im Wesentlichen nicht wie exp(– x 2), sondern wie exp(– |x|) ab. Gemeinsam mit Ulrich Keller habe ich 1995 die verallge meinerten hyperbolischen Verteilungen erst mals in Finanzmodellen verwendet. Die durch sie generierten stochastischen Prozesse sind zwar mathematisch um einiges anspruchs voller als die brownsche Bewegung; da sie aber mehr freie Parameter enthalten, sind sie weit aus flexibler und kommen daher, korrekt ad justiert, der Realität deutlich näher. Darüber hinaus leidet das Standardmodell unter einem weiteren Konstruktionsmangel: Es unterstellt, dass seine Parameter – der Zins satz, die Drift und die Volatilität – zeitlich konstant bleiben, zumindest für den Berech nungszeitraum, so als wären es unveränder liche Merkmale des jeweiligen Wertpapiers. Gerade in turbulenten Zeiten pflegen sich diese Parameter jedoch drastisch zu ändern.
Ernst Eberlein
Technik & Computer
Bonitätseinstufung für Tranchen in Abhängigkeit von der Korrelation 0,8
AAA < 0,12 %
5% ,4 <0 A BBB < 1,82 %
0,6
AA 1 % ,3 <0
0,4
0,2
B < 27,92 % 0
0
0,2
0,4
Korrelation ρ
0,6
BB < 11,23 % 0,8
1
99
Finanzmathematik
Ernst Eberlein ist Professor für Stochastik und Finanzmathematik an der Universität Freiburg. Er studierte Mathematik an den Universitäten Erlangen und Paris VI und wurde an der ETH Zürich habilitiert. Er ist einer der Gründer des Freiburger Zentrums für Datenanalyse und Modellbildung (FDM). Seine gegenwärtigen Forschungsinteressen sind die realistische Modellierung von Finanzmärkten, Risikomanagement und die Bewertung von Derivaten in den Aktien-, Devisen-, Zins- und Kreditmärkten.
Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities. In: Journal of Political Economy 81, S. 637–654, 1973. Eberlein, E. et al: Advanced Credit Portfolio Modeling and CDO Pricing. In: Jäger, W., Krebs, H.-J. (Hg.): Mathematics – Key Technology for the Future. Springer, Heidelberg 2008, S. 253 – 280. Eberlein, E., Keller, U.: Hyperbolic Distributions in Finance. In: Bernoulli 1, S. 281 – 299, 1995. Eberlein, E.: Application of Generalized Hyperbolic Lévy Motions to Finance. In: Barndorff-Nielsen, O. E. et al. (Hg.): Lévy Processes: Theory and Applications. Birkhäuser, Basel 2001, S. 319 – 337. Kotz, H.-H.: Die internationale Finanzkrise und ihre Folgen. In: Wirtschaftsdienst 5, S. 291 – 296, 2008. Kotz, H.-H.: Finanzstabilität und Liquidität: Der Geldmarkt als Kristallisationspunkt. In: Belke, A. et al. (Hg.): Wirtschaftspolitik im Zeichen europäischer Integration, RWI Schriften 83. Duncker & Humblot, Berlin 2009, S. 249 – 264.
Weblinks zu diesem Thema finden Sie unter www.spektrum.de/ artikel/1010843.
angesehene Bank wie Lehman Brothers schei terte an diesem Vertrauensverlust. Was sind CDO-Tranchen? Nehmen wir an, eine Bank hat 20000 Darlehen zu je 100000 Dollar ausgegeben. Die Risiken sind bunt gemischt und von außen kaum ein schätzbar. Das gesamte Portfolio im Volumen von 2 Milliarden Dollar würde der Bank nie mand abkaufen. Die Lösung ist die Verbrie fung. Man gründet eine Zweckgesellschaft, die dieses Portfolio übernimmt und in Risiko tranchen zerschneidet, die nach einem Was serfallprinzip bedient werden (Kasten S. 98). Die Zinseinkünfte aus dem Portfolio fließen zunächst in die oberste Tranche. Erst wenn diese voll befriedigt ist, kommt die nächstfol gende Tranche an die Reihe, und so weiter. Entsprechend werden die zwangsläufig auf tretenden Kreditausfälle zunächst vollständig von der untersten, der Equitytranche, aufge fangen, die typischerweise drei Prozent des Volumens ausmacht. Erst wenn die Verluste drei Prozent übersteigen, wird die nächste Tranche (»junior mezzanine«) in Anspruch ge nommen. Die Wahrscheinlichkeit, dass hö here Tranchen über die Laufzeit des CDOs von etwa zehn Jahren hinweg überhaupt Kre ditausfälle zu spüren bekommen, wird mit zu nehmender Höhe immer geringer.
Renditen für jeden Risikoappetit
Die Tranchen werden durch Ratingagenturen gemäß ihrer Verlustwahrscheinlichkeit einge stuft und mit Hilfe von Modellen bewertet. In dieser Form sind die Kredite für Investoren attraktiv, weil diese eine präzise ihren Risiko appetit befriedigende Tranche mit entspre chend hohen Renditen kaufen können. Für die Bestimmung dieses Risikos ist nicht nur die Ausfallwahrscheinlichkeit der einzelnen Kredite im Portfolio entscheidend, sondern vor allem der statistische Zusammenhang zwischen den Krediten. Leben die Kreditnehmer weit über das Land verstreut, so dass ihre Schicksale praktisch nichts miteinander zu tun haben, oder arbeiten sie alle im selben Großbetrieb und könnten die Raten fürs Eigenheim nicht mehr bezahlen, wenn dieser pleitegeht? Im einfachsten Fall eines gaußschen Port foliomodells lässt sich das mit dem Korrela tionsparameter r beschreiben. r = 0 entspricht der ersten Situation, r = 1 der zweiten: Fällt ein Kredit aus, tun dies auch alle anderen (Bild S. 99 unten). Im klassischen gaußschen Modell ist r für alle Tranchen und über alle Laufzeiten kons tant. Nun kann man aber die Korrelation nicht direkt beobachten, sondern muss sie, wie oben die Volatilität, aus den Marktpreisen erschließen. (Analog zur Black-Scholes-For
mel gibt es eine – kompliziertere – Formel, die aus den Daten eines CDO einschließlich der Korrelation die Preise für die einzelnen Tranchen berechnet.) Es zeigt sich aber, dass diese impliziten Korrelationen stark variieren. Dies heißt schlichtweg, dass das – von vielen verwendete – Standardmodell zu einfach ge strickt ist, um die Realität adäquat beschrei ben zu können. Auch hier kommt man nur mit einem anspruchsvolleren Modell weiter. In nicht allzu ferner Zukunft wird die Kri se überwunden und die Bankenlandschaft neu geordnet sein. Schon jetzt ist sichtbar, dass es Aufsteiger und Absteiger geben wird. Was sind die Konsequenzen? Die Krise zeigt, dass sich die Märkte nicht notwendigerweise selbst regulieren, wie im mer wieder behauptet wird. Weit gehende Marktfreiheit führt nicht zum erforderlichen verantwortungsvollen Handeln. Das Risiko management muss in Zukunft einen wesent lich höheren Stellenwert bekommen. Die tra ditionell hoch bezahlte Handelsabteilung der Banken produziert eben nicht nur Gewinne, sondern setzt die Unternehmen manchmal auch untragbaren Risiken aus. Dies muss sich in der Vergütungsstruktur ausdrücken, etwa durch Maluspunkte, welche die Bonuszah lungen vermindern, und durch Orientierung am Prinzip der Nachhaltigkeit. Ein CDO läuft typischerweise über zehn Jahre und pro duziert vielleicht erst nach fünf guten Jahren Verluste. Die heutigen Erfolgszahlungen bei Vertragsabschluss berücksichtigen dies nicht. Moderne Finanzprodukte können sicher einfacher und damit transparenter strukturiert werden; aber auch dann ist man gut beraten, sie nur mit der besten Technologie zu analy sieren und zu bewerten. Nachdem wir erlebt haben, dass ein korrektes Rating den Unter schied zwischen Gedeih und Verderb einer ganzen Bank oder sogar einer Volkswirtschaft ausmachen kann, müssen Ratingmethoden dringendst verbessert werden. Eine Randbe merkung hierzu: Über mehrere Jahre hinweg haben weder das Bundesministerium für Bil dung und Forschung (BMBF) noch die Deut sche Forschungsgemeinschaft (DFG) ein in novatives Forschungsprojekt zum Rating für förderungswürdig befunden. Insgesamt wird in der Zukunft mehr High tech-Expertise im Finanzsektor gefordert sein. Dies bedeutet mehr und anspruchsvollere Mathematik und entsprechende Investitionen in die Weiterentwicklung der Modelle. Aber: Der Mathematik die Verantwortung für die derzeitige Krise zuzuschieben ist unge fähr so widersinnig, als wollte man denjenigen, der die Formel E = m c 2 aufgestellt hat, für die Hiroschimabombe verantwortlich machen.
100 Auf den nächsten Seiten folgt einE SONDERPUBLIKATION von Spektrum der Wissenschaft und VDI-Nachrichten >>>>
REZENSIONEN
Mathematik
Eine Welt voller Symmetrien Ian Stewart beschreibt, wie das Problem der Lösbarkeit algebraischer Gleichungen neue physikalische Welten erschloss.
»D
er Mathematiker spielt ein Spiel, bei dem er selbst die Regeln erfindet, während der Physiker ein Spiel spielt, bei dem die Regeln von der Natur vorgegeben werden, doch im Lauf der Zeit wurde immer deutlicher, dass die Regeln, welche die Mathematiker interessant finden, dieselben sind, die auch die Natur gewählt hat.« So erklärte der britische Physik-Nobelpreisträger Paul Dirac (1902 – 1984) die Gemeinsamkeiten von Physik und Mathematik. Ian Stewart, Professor für Mathematik an der University of Warwick in Coventry, produktiver Sachbuchautor und langjähriger Verfasser der »Mathematischen Unterhaltungen« dieser Zeitschrift, belegt in seinem neuen Buch diese These an einem prominenten Beispie: den mathematischen Konzepten Symmetrie und Gruppe, die zu Fundamenten der modernen Physik wurden. Symmetrien sprechen unser Schönheitsempfinden an; sie finden sich in Architektur und Kunst, etwa in der maurischen Festung Alhambra in Granada oder in den Werken Maurits C. Eschers, ebenso wie in der Natur, zum Beispiel an dem Schmetterling, der auf dem Buchumschlag abgebildet ist. Stark abstrahiert, dient das Konzept der Symmetrie den Mathematikern, um die Frage nach der Lösbarkeit algebraischer Gleichungen zu beantworten. Der französische Mathematiker Évariste Galois (1811 – 1832) entwickelte kurz vor seinem tragischen Tod im Duell ein
Für den Betrachter aus der dritten Dimension ist die Drehung des zugeschnittenen Korkens eine sehr schlichte Symmetrietransforma tion. Für den Bewohner der Flachwelt, der nur den Schatten sieht, ist es die erstaun liche Verwandlung von Kreis zu Quadrat. SPEKTRUM DER WISSENSCHAFT · DEZember 2009
erfahren, mit dessen Hilfe sich entscheiden V lässt, ob die Lösungen einer Gleichung fünften Grades durch algebraische Ausdrücke darstellbar sind oder nicht. Vor Galois hatten sich bereits Genera tionen von Mathematikern mit dem Problem beschäftigt, wie Stewart in der ersten Hälfte seines Buchs berichtet. Schon die alten Babylonier konnten quadratische Gleichungen lösen; etliche Jahrhunderte verstrichen, bis der persische Mathematiker Omar Khayyam (um 1048 – 1123) zumindest geometrische Lösungen für kubische Gleichun gen mit Hilfe von Kegelschnitten konstruieren konnte. Zur Zeit der Renaissance fanden italienische Mathematiker rein algebraische Lösungen für Gleichungen dritten oder gar vierten Grades und stellten ihre Fähigkeiten in publikumswirksamen Wettbewerben zur Schau.
Schönheit als Prüfstein für die Wahrheit Den für Galois’ Werk zentralen Gruppenbegriff erklärt Stewart geometrisch am Beispiel eines gleichseitigen Dreiecks: Drehen wir es um 120 Grad, erscheint die Figur unverändert, ebenso, falls man das Dreieck um 240 Grad dreht oder es so geschickt umklappt, dass eine Ecke an ihrem Platz bleibt, während die beiden anderen ihre Plätze tauschen. Gemeinsam mit der Identität gibt es für ein gleichseitiges Dreieck insgesamt sechs derartige Transformationen, welche dessen Struktur unverändert lassen. Sie bilden die zugehörige Symmetriegruppe. An diesem Beispiel zeigt sich die besondere Stärke des Autors: Stewart schafft es, auch vermeintlich sperrige mathematische Konzepte anschaulich und gut nachvollziehbar zu vermitteln; Abbildungen (leider nur schwarz-weiß) erleichtern das Verständnis. Am meisten gefallen hat mir aber die spürbare Begeisterung, mit der Stewart uns die Welt von Mathematik und Physik nahebringt. Droht das Thema doch einmal allzu trocken zu werden, streut der Autor geschickt Geschichten aus dem Leben der beteiligten Mathematiker ein – alle nicht neu, aber immerhin aus neuer Perspektive erzählt. Nur die Übergänge zwischen den lo-
Ausschnitt aus einer Calabi-Yau-Mannigfal tigkeit, mannigfach projiziert: Diese Gestalt könnte die Raumzeit nach der Theorie der Supersymmetrie haben.
ckeren historischen Abstechern und den mathematischen Konzepten hätten etwas eleganter ausfallen können. Im zweiten Teil des Buchs stehen die Anwendungen von Symmetrie und Gruppentheorie in der Physik im Mittelpunkt. So erklärt Stewart das Konzept der Supersymmetrie mit dem Problem eines widerspens tigen Korkens, der in mehrere verschiedenartige Flaschenöffnungen passen soll (Bild links unten). Oder wie der Physik-Nobelpreisträger Eugene Paul Wigner (1902 – 1995) mit Hilfe der Gruppentheorie fundamentale Gesetze der Quantenmechanik aufstellte. Letztlich lehren den Autor die skizzierten Entwicklungen, dass »die wahre Stärke der Mathematik in der bemerkenswerten Fusion aus dem menschlichen Sinn für Muster (›Schönheit‹) mit der physikalischen Welt liegt, die sowohl ein Prüfstein der Wirklichkeit (›Wahrheit‹) als auch eine unerschöpfliche Quelle der Inspiration ist«. Insgesamt hebt sich »Die Macht der Symmetrie« wohltuend von all jenen Büchern ab, welche mit geradezu psychologischem Eifer die allenthalben grassierende Furcht vor der Mathematik analysieren und zu überwinden versuchen. Alles in allem ein sehr spannendes Buch, wie man es sich für die Mathematik häufiger wünscht. Christoph Marty Der Rezensent arbeitet als freier Wissenschaftsjournalist in Dortmund.
Ian Stewart Die Macht der Symmetrie Warum Schönheit Wahrheit ist Aus dem Englischen von Thomas Filk. Spektrum Akademischer Verlag, Heidelberg 2008. 304 Seiten, € 29,95
101
REZENSIONEN
Technik
Politik – der bessere Manager? Die Hauptaussage dieser Abhandlung ist langweilig; aber sie erzählt interessante Geschichten aus der heroischen Zeit der bundesdeutschen Forschungspolitik.
E
rfahren wir in diesem Buch, wie in den höchsten politischen Gremien die schicksalhaften Entscheidungen für die Zukunft der Wissenschaft getroffen werden? Irgendwie schon; aber der Untertitel »Studie zur Pfadabhängigkeit des technischen Fortschritts« macht klar, dass wir keine sensa tionellen Enthüllungen zu erwarten haben. Thomas Wieland, Biologe und Historiker am Zentralinstitut für Geschichte der Technik an der TU München, hat im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) eine sehr akademische Untersuchung durchgeführt; und wenn es nicht in der Einleitung ausführlich erläutert wäre, könnte man sich kaum ausmalen, worum es bei der »Pfadabhängigkeit« eigentlich geht. Paul A. David, emeritierter Professor des Stanford Institute for Economic Policy Re-
search, soll den Begriff Mitte der 1980er Jahre in die wirtschaftspolitische Theorie eingebracht haben. Von mehreren konkurrierenden technischen Prinzipien setze sich keineswegs mit Notwendigkeit das beste als Standard durch; vielmehr sei der Ausgang dieser Auseinandersetzung von der Konstellation der Akteure aus Politik, Wissenschaft und Wirtschaft abhängig. Wie das im Einzelnen ablaufe, das sei genau die Pfadabhängigkeit. Schon richtig, gewisse Entwicklungen sind unumkehrbar. Wir alle müssen mit den üblichen Computertastaturen leben, obgleich wir mit einer anderen Verteilung der Buchstaben auf die Tasten viel besser schreiben könnten. Das ist nicht sonderlich aufregend. Ebenso ernüchternd ist Wielands Eingeständnis, dass selbst wenn eine auf
Physik
Harte Kopfnüsse 100 physikalische Knobeleien fordern in Heinrich Hemmes Buch auch den geübten Leser heraus.
»P
hysik muss nicht öde sein« – das hat man uns schon in der Schule erzählt. Am Desinteresse der Schüler an diesem Fach hat das leider meist nichts geändert. Auch Heinrich Hemme lockt nun mit diesem Versprechen und verpackt seine Denksportaufgaben in kurze, amüsante Geschichten. Akteure wie Pippi Langstrumpf, Leichtmatrose Kuddel Daddeldu oder Gevatter Tod stoßen darin 100 physikalische und mathematische Rätsel an, begleitet von simplen Illustrationen. In vielen Fällen reichen Papier, Bleistift und sorgfältiges Nachdenken aus, um eine Lösung zu finden. In welche Richtung
102
biegt sich die Flamme einer Kerze, wenn sie auf der Gondel von Samuel Fergussons Heißluftballon montiert ist? Wie verhalten sich eine Fliege und Theos Lastwagen bei einem Frontalzusammenstoß auf der Autobahn? Andere Probleme haben es dagegen in sich. Wüssten Sie, um wie viel Prozent sich die Wärmeenergie von Frau Fleißigs Wohnzimmer erhöht, wenn die Temperatur darin von 10 auf 20 Grad Celsius steigt? Oder ob ein Fahrrad ohne Freilauf vor- oder rückwärts rollt, wenn man an dem Pedal nach hinten zieht (Bild)? Hemme, der als Professor an der Fachhochschule Aachen im Fachbereich Maschinenbau und Mechatronik lehrt, setzt zudem viele Fachbegriffe und Formeln voraus, auch wenn der Leser laut Vorwort ohne Taschenrechner und Formelsammlung auskommen soll. Die Formel für den Kreisumfang und »Kraft ist Masse mal Beschleunigung« hat man vielleicht noch im
Grund von Pfadabhängigkeiten etablierte Technik sich nachträglich als suboptimal herausstellt, dies in der Regel »kein Problem« darstellt. Konsequenzen für die staatliche Forschungs- und Technologiepolitik ergäben sich keine? Da kratzt sich der Nichtfachmann am Kopf. Wozu erforscht man dann überhaupt die Pfadabhängigkeit? Doch geben wir dem Autor die Chance, diese seltsame Theorie an Beispielen zu diskutieren: Kerntechnik, elektronische Datenverarbeitung und Biotechnologie. Das macht wiederum Spaß, findet man doch zunächst ein ganz hübsches Kapitel zur Geschichte der Forschungs- und Technologiepolitik in Deutschland. In Kurzform erzählt Wieland den Werdegang der drei Säulen deutscher Wissenschaft und Forschung: den Universitäten, Hochschulen und Akademien, der Industrieforschung vom Schlage Siemens, AEG oder Hoechst sowie den staatlich finanzierten Forschungseinrichtungen, wie man sie heute zum Beispiel in der Max-Planck-Gesellschaft und der Helmholtz-Gemeinschaft wiederfindet. Höchst lesenswert sind die Erörterungen zu den einzelnen Technologien. So kann
Kopf. Aber das hookesche Gesetz? Die Gleichung der Zykloide? Oder, für Frau Fleißigs Wohnzimmer, die allgemeine Gasgleichung? Wer Spaß an kniffligen Denksportaufgaben und genügend Ausdauer mitbringt, wird an der Vielfalt der Themen und Schwierigkeitsgrade sicherlich seine Freude haben. Wer allerdings kein Grundstudium in Physik oder vergleichbares Fachwissen vorweisen kann, mag schnell frustriert sein – auch wenn der Autor im Anhang jede Kopfnuss knackt. Als Einstieg in die spannende Welt der Physik eignet sich »Düsentrieb contra Einstein« nicht unbedingt – zu groß ist die Gefahr, dass man sich entgegen der eigentlichen Intention an unliebsame Schulstunden zurückerinnert fühlt. Maike Pollmann Die Rezensentin ist Diplomphysikerin und freie Wissenschaftsjournalistin in Heidelberg. Heinrich Hemme Düsentrieb contra Einstein 100 physikalische Kopfnüsse Rowohlt Taschenbuch Verlag, Reinbek 2008. 192 Seiten, € 8,95
SPEKTRUM DER WISSENSCHAFT · DEZember 2009
Die Hochschullandschaft, die Anwendungsferne der hehren Wissenschaft sowie die deutsche Kultur der generellen Skepsis behinderten zu lange die notwendige Generierung von Basiswissen sowie den notwendigen Wissenstransfer. Trotz immer neuer Programme sind bis heute die Probleme beim Technologietransfer aus den Instituten in die biotechnologische Produktion nicht überwunden. Es überrascht auch, bei einem Historiker Hochaktuelles, nämlich zur globalen Finanzund Wirtschaftskrise, zu lesen: »Trotz ihres grundsätzlichen Bekenntnisses zur freien Marktwirtschaft halten wohl alle westlichen Industrienationen staatliche Eingriffe in den Markt … für legitim«, weil sie glauben, dass »vorübergehende Koordination durch den Staat effizienter sein kann als die Koordination durch den Markt.« Gleichzeitig rudert Wieland zurück: Der technische Fortschritt sei nicht ganz ohne den Markt zu erreichen. Neben der oben angesprochenen Produk tion von Einzellereiweiß belegen das zwei Großprojekte, die in »heroischen Phasen« staatlicher Einflussnahme ins Leben gerufen wurden und als kapitale Fehlschläge endeten: der Schwerwasserreaktor und der Großrechner TR 440. Der Schwerwasserreaktor, der ab 1966 mit massiver finanzieller Hilfe durch das Atomministerium (den Vorläufer des BMBF) und den Freistaat Bayern von Siemens entwickelt wurde, konnte mit Natururan betrieben werden, wodurch man von Importen angereicherten Urans unabhängig geworden wäre. Deutschland wollte neben dem amerikanischen Leichtwasser- und dem britischen SPEKTRUM DER WISSENSCHAFT · DEZember 2009
Reinhard Löser Der Rezensent ist promovierter Physiker und habilitierter Volkswirt; er arbeitet als freier Journalist in Ebenhausen bei München.
?dj[hWaj_l[iB[hdif_[b pk7ijhedec_[kdZHWkc\W^hj WX'&@W^h[d
7X[dj[k[h _cM[bjWbb INFOProgramm gemäß § 14 JuSchG ^[hWki][][X[dled
_dAeef[hWj_edc_j
EN
G
Der Großrechner von AEG
Gas-Graphit-Reaktor über eine eigene Produktions- und Exportlinie verfügen. Doch der beginnende Siegeszug des Leichtwasserreaktors ließ sich nicht mehr aufhalten. Von 1965 an steckte das Bundesforschungsministerium immense Summen in die Entwicklung des TR 440, eines Großrechnerprojekts von AEG-Telefunken, um die Vorreiterrolle der USA, Großbritanniens und Frankreich zu brechen. Kinderkrankheiten zehrten den Vorschuss auf. Bis Mitte der 1970er Jahre wurden knapp 50 Einheiten an Universitäten und Großforschungseinrichtungen geliefert. Für die Weiterentwicklung der Rechner fehlte sowohl beim Staat als auch in der Industrie das Geld. Das Rennen machte IBM. So hinterlässt das Buch einen sehr gemischten Eindruck. Zur Pfadforschung selbst erscheint das Ergebnis dürr: Dass Pfade aus mehreren Möglichkeiten entstehen, kaum miteinander vergleichbar sind und von kulturellen Faktoren wie konkreten Akteuren abhängen, liest sich dröge und bietet nichts ernsthaft Neues. Aber an den Irrungen und Wirrungen der Forschungspolitik kann man sich mit Vergnügen sattlesen. Stets ist es dasselbe Spiel, wie Wissenschaft, unternehmerische Forschung und Entwicklung sowie Politik und Lobby einander die Bälle zuspielen. Dabei bestätigt der Autor en passant auch das, was man immer schon geahnt hat: »Das bundesdeutsche Innovationssystem tut sich schwer« mit neuen Technologien und der Umsetzung in wirtschaftlich erfolgreiche Innovationen. Das liege, auch darin möchte man Wieland zustimmen, an seiner Struktur, die sich seit über 100 Jahren trotz der mehrfachen gravierenden politischen Systembrüche kaum verändert hat und sich beharrlich jeglicher eigenen Innovation widersetzt. Insofern ist der (Über-)Mut des BMBF zu bewundern, das die Studie in Auftrag gab, ebenso wie der Mut von Thomas Wieland, der das ernüchternde Ergebnis der Öffentlichkeit preisgibt.
JU
man gut nachvollziehen, wie Deutschland den Start der modernen Biotechnologie verpasste. Jahrzehntelang war die Chemiein dustrie weltweit führend in der organischen Synthese und Pharmazie. Erfolgsverwöhnt ignorierte sie den starken internationalen Aufschwung der Gen-, Zell- und Proteintechniken, bis es zu spät war. Auch das politisch motivierte Programm zur Gewinnung von Eiweiß aus Methanol oder Erdöl als Tierfutter konnte nichts daran ändern. Bis heute hat sich das Verfahren vor allem aus ökonomischen Gründen nicht durchgesetzt. Den Befreiungsschlag suchte dann Hoechst 1981 mit der Gründung seines Instituts am Massachusetts General Hospital, dem Forschungskrankenhaus der Harvard Univer sity. Denn die Industrie brauchte dringend Input aus der Grundlagenforschung, der in Deutschland nicht zu bekommen war.
ive Lern t k a - CD er t In
DS
OF
TW
AR
EPR
EIS 2008
A B E N T E U E R
I M
W E LTA L L
Begleiten Sie in diesem Lernspiel den kleinen Außerirdischen Sparky in einem Raumschiff quer durch unser Sonnensystem. Hier heißt es verschiedene Missionen erfüllen, Aufgaben lösen und Rätsel knacken. Zusätzlich können Sie Ihr Wissen über das Universum und die Geschichte der Raumfahrt anhand von über 60 Lernmodulen in Form von Texten, Aufgaben, Schaubildern und Zeittafeln testen und vertiefen. Ab 10 Jahren; € 9,90 (zzgl. Versand) Schullizenz : € 98,– Systemvoraussetzungen: PC mit CD-Laufwerk, Microsoft Windows XP oder Vista
w w w. spek trum.com/spark y
Thomas Wieland Neue Technik auf alten Pfaden? Forschungs- und Technologiepolitik in der Bonner Republik Eine Studie zur Pfadabhängigkeit des technischen Fortschritts
in Kooperation mit
transcript, Bielefeld 2009. 289 Seiten, € 29,80
103
Wissenschaft aus erster Hand
REZENSIONEN
Medizin
Ist Gesundheitsvorsorge immer sinnvoll? Sport, Wellness, Diäten, Idealgewicht, Vitamine, Entschlackungskuren? Alles Unfug, sagt der »Ärztehasser«.
W
erner Bartens, bekannt geworden durch seinen Bestseller »Ärztehasserbuch«, hat nach seinem Studium der Medizin, Geschichte und Germanistik an Universitätskliniken und in der medizinischen Forschung gearbeitet. Seit 1997 ist er als Journalist und Buchautor tätig, seit 2008 leitet er das Wissenschaftsressort der »Süddeutschen Zeitung«. Als begehrter Gesprächspartner zum Thema Gesundheitssystem tritt er in zahlreichen Talkshows auf. Bartens ist ein überzeugter Vertreter der »evidenzbasierten Medizin«, die nur solche Therapieverfahren anerkennt, deren Nutzen in kontrollierten, klinischen Studien eindeutig nachgewiesen wurde. Für die medizinische Vorsorge bedeutet das: Nur solche Maßnahmen oder Früherkennungsuntersuchungen sind sinnvoll, die dem Patienten nachweislich ein gesünderes und längeres Leben bringen. Gerade das sei aber häufig nicht der Fall. Im Gegenteil: Die frühere Diagnose tue oft nichts weiter, als die Sorgen »vor-«zuverlegen, den Patienten also früher krank zu machen. Dies lässt sich für das PSA-Screening (eine Blutuntersuchung) zur Früherkennung von Prostatakrebs in der Tat nachweisen. Gleichermaßen zweifelt Bartens an dem Nutzen von flächendeckenden Mammografien zur Früherkennung von Brustkrebs. Der Autor will mit seinen Darlegungen nicht generell jegliche Vorsorge verteufeln, sondern erreichen, dass Ärzte ihre Patienten über den Nutzen und die Risiken besser aufklären. Der Patient muss wissen, dass ein falsch negativer Befund (Diagnose gesund, obwohl Patient krank) ihn in trügerischer Sicherheit wiegen und ein falsch positiver Befund (Diagnose krank, obwohl Patient gesund) zu unnötigen invasiven Diagnose- und Therapiemaßnahmen führen kann. Nur so kann der Patient entscheiden, ob er die Früherkennungsuntersuchung durchführen lassen will. Das ist sicher nicht zu beanstanden. Gleichwohl wird es einem niedergelassenen Arzt schwerfallen, dem einzelnen Menschen, der ihm gegenübersitzt, von einer Vorsorgeuntersuchung abzuraten, die vielleicht sein Leben um Jahre verlängert.
104
Bartens nennt das ein Geschäft mit der Angst. Anstatt primär davon auszugehen, dass ein symptomloser Mensch schlicht gesund sei, sähen Vorsorgefanatiker nur ein unvollkommenes, potenziell krankes Wesen, das dauernder Überprüfung und Bearbeitung bedürfe. Nicht zuletzt auf das Betreiben der Pharmaindustrie hin werde dieses Bild in der Öffentlichkeit aufrechterhalten. Was die medikamentöse Prophylaxe von Herzinfarkt oder Wechseljahresbeschwerden angeht, kann der Autor einen Punkt für die evidenzbasierte Medizin verbuchen. Erhöhte Blutfettwerte sind ein Risiko für den Herzinfarkt. Deren aggressive Senkung durch Medikamente (»Lipidsenker«) mindert bei den behandelten Patienten zwar die Gefäßveränderungen, nicht aber das Auftreten von Herzinfarkten oder Angina-pectorisAnfällen. Die vorbeugende Hormonersatztherapie der Frau in den Wechseljahren lindert zwar Beschwerden wie Hitzewallun gen oder Stimmungsschwankungen, führt aber nachweislich zu einem Anstieg von Gefäßerkrankungen und Brustkrebs.
Tücken der evidenzbasierten Medizin Neben der Krebsvorsorge und den genannten prophylaktischen Bemühungen nimmt der Autor auch viele als präventive Maßnahmen dargestellte Verhaltensweisen unter die Lupe: Sport, Wellness, Diäten, Idealgewicht, Vitamine, Entschlackungskuren. Bartens erklärt das alles für medizinisch unsinnig und beruft sich dabei auf Ergebnisse wissenschaftlicher Studien. Schade nur, dass es kein Literaturverzeichnis gibt, anhand dessen man sich ein eigenes Bild machen könnte. Ansatz und Beweggründe der evidenzbasierten Medizin sind ja eigentlich richtig. Aber so wie sie praktiziert wird, lässt sie das Psychische als medizinisch wirksamen und nutzbaren Faktor völlig außer Acht. Sie will sich frei machen von jeglichem »Hokuspokus«. Forschungsergebnisse in der Psychoneurobiologie und -immunologie zeigen aber eindeutig, dass die Psyche auf den Gehirnstoffwechsel und die Abwehrlage des
Organismus einwirken und damit den gesamten Körper beeinflussen kann. Es gibt Studien, die erkennen lassen, dass der Heilungserfolg oftmals nicht ganz ohne »Hokuspokus« abläuft. Warum geht eigentlich der Autor davon aus, dass die Gesundheit eines Menschen durch einen falsch positiven Befund negativ, nicht aber durch den viel häufigeren richtig negativen Befund (Diagnose gesund, Patient gesund) positiv beeinflusst wird? Es gibt keine Studien, die untersuchen, welchen Nutzen solche im üblichen Sinn positiven Befunde für die Gesundheit des Menschen haben. Nach den geltenden Kriterien wäre aber auch ein korrektes Studiendesign gar nicht möglich, da es zu viele Störfaktoren gäbe, welche die Ergebnisse beeinflussen könnten. Kaum einer würde das Risiko eingehen wollen, viel Geld für groß angelegte, kontrollierte, randomisierte Doppelblindstudien auszugeben, wenn die Ergebnisse nachher anfechtbar wären. Die Interpretation solcher Studienergebnisse und die Schlussfolgerungen daraus können im Übrigen selbst unter Wissenschaftlern sehr unterschiedlich ausfallen. Durch die evidenzbasierte Medizin und ihre Leitlinien wird jede Individualität in der Arzt-Patient-Beziehung wegrationalisiert. Merkwürdigerweise erklärt der Autor in seinen anderen Büchern genau diese Beziehung für dringend verbesserungsbedürftig, ein Anliegen, das er selbst durch sein neues Werk konterkariert. Dem Buch ist deutlich anzumerken, dass es aus mehreren bereits veröffentlichten Artikeln zusammengeschustert wurde. Bestimmte Thesen werden gebetsmühlenartig wiederholt. Uninteressant ist es dennoch nicht, es lässt sich gut lesen und regt durchaus zum Nachdenken an. Ein echtes Manko ist der fehlende Literaturnachweis, denn hier und da möchte man sich als interessierter Leser gerne eingehender informieren. Wer sich auf so viele wissenschaftliche Studien beruft, sollte seine Quellen auch nachvollziehbar angeben. Tanja Neuvians Die Rezensentin hat in Medizin und Tiermedizin promoviert und arbeitet als freie Medizinjournalistin in Ladenburg. Werner Bartens Vorsicht Vorsorge! Wenn Prävention nutzlos oder gefährlich wird Suhrkamp, Frankfurt am Main 2008. 194 Seiten, € 7,50
SPEKTRUM DER WISSENSCHAFT · DEZember 2009
SAMMELK ASSETTE Mathematik
Mit einem Blatt Papier zum Mond Spiele mit einfachen Hilfsmitteln vermitteln unversehens elementare und weniger elementare Mathematik.
B
ei diesen »mathematischen Experimenten« geht es nicht um Fragen an die Natur im Sinn der Physik, auch nicht darum, gewisse noch unbekannte Sachverhalte in einer abstrakten Welt durch Probieren in Erfahrung zu bringen. Vielmehr ist es wie mit den Experimentierkästen für Kinder: Was man aus ihnen lernen kann, ist nicht neu; aber Selbstausprobieren regt zur Kreativität an, hilft dem Vorstellungsvermögen auf, gibt Anlass zum Staunen und macht mehr Spaß als Bücherlesen. Das wissen Al brecht Beutelspacher, Gründer und Chef des »Mathematikmuseums zum Anfassen« in Gießen, und Marcus Wagner, der bei Beutelspacher gelernt hat, bevor er wissen-
schaftlicher und pädagogischer Leiter im Dynamikum Science Center in Pirmasens wurde, aus ihrer täglichen Arbeit. Als Hilfsmittel reichen meistens Papier, Schere und Zubehör. Wie faltet man aus einem Rechteck ein Dreieck oder aus einem Papierstreifen ein Fünfeck (Bild oben)? Wie komme ich vom Dreieck zum Sechseck oder vom Quadrat zum Achteck? Hinter den Faltanleitungen verbirgt sich Mathematik. Um vom Rechteck zum gleichseitigen Dreieck zu kommen, muss man einen rechten Winkel des Rechtecks dreiteilen, damit durch Differenzbildung der Winkel des gleichseitigen Dreiecks von 60 Grad entsteht. In weiteren Kapiteln wie »Kurven«, »Zwischen zweiter und dritter Dimension«, »Reflexionen« und »Geheimnisvolles« werden die Anleitungen und Erklärungen ein wenig komplizierter und die Ergebnisse immer faszinierender. Während die ersten Expe rimente eher geeignet sind, Kinder an einfaches mathematisches Denken heranzu Alle rezensierten Bücher können Sie in unserem Science-Shop bestellen direkt bei: www.science-shop.de per E-Mail:
[email protected] telefonisch: 06221 9126-841 per Fax: 06221 9126-869
SPEKTRUM DER WISSENSCHAFT · DEZember 2009
führen, können die späteren durchaus auch Erwachsene das Staunen lehren. Dazu gehören Versuche mit dem so genannten Möbiusband und der Anschein der Unendlichkeit, der durch eine Konstruktion mit Spiegeln zu erzeugen ist. Und wie oft muss man ein DINA4-Blatt zur Hälfte falten, bis der so erzeugte Papierstapel bis zum Mond reicht? Andere Basteleien ergeben eine Laterne, einen Fußball, ein Puzzle oder eine Anleitung zum Verschlüsseln von Nachrichten (Bild oben: Schreibe die Nachricht zeilenweise auf den auf die Rolle gewickelten Streifen). Außerdem sind am Ende eines Experiments meist spannende Zusatzinformationen zu finden. Welche Art der Verschlüsselung hatte Cäsar verwendet? Wer waren Kepler und Leibniz? Und für Wissbegierige, die noch mehr verstehen und wissen wollen, gibt es genügend Literaturverweise. Ist es ein Buch für Kinder oder für Erwachsene? An einer Stelle erklärt es, wie man mit dem Kopierer vergrößert, an anderer setzt es das Rechnen mit Winkeln in nEcken voraus. Am besten ist es wohl für Kinder und Eltern zusammen geeignet: Die Kleinen lehren die Großen das Staunen und die Großen die Kleinen das Verstehen. Sich darauf einzulassen ist nicht nur didaktisch wertvoll, sondern gibt die Möglichkeit, sich unbeschwert und kreativ der sonst so unbeliebten Mathematik zu nähern. Roland Pilous Der Rezensent studiert Mathematik und Philosophie an der Freien Universität Berlin. Dort beschäftigt er sich vornehmlich mit den Grundlagen der topologischen Räume.
Die Sammelkassette von Spektrum bietet Platz für 12 bis 15 Hefte. Sie können darin alle Ihre Spektrumhefte und Sonderhefte aufbewahren. Die stabile Sammelkassette ist aus schwarzem Kunststoff. Wenn Sie den Sammelordner regelmäßig beziehen wollen, so können Sie ihn über eine Standig Order zum Preis von € 9,– (inkl. Inlandsversand) bestellen.
www.spektrum.com/sammeln
Albrecht Beutelspacher, Marcus Wagner Wie man durch eine Postkarte steigt und andere spannende mathematische Experimente Herder, Freiburg 2008. 159 Seiten, € 14,90
Spektrum der Wissenschaft Verlagsgesellschaft mbH | Slevogtstraße 3–5 | 69126 Heidelberg | Tel.: 06221 9126-743 | Fax: 06221 9126-751 | service@ spektrum.com
105
Wissenschaft aus erster Hand
Wissenschaft & Karriere
»Es läuft auf eine immense Komplexität hinaus«
REALTECH AG
Biografie Rudolf Caspary geboren 1963 in Hanau 1987 Abschluss des Physikstudiums an der Technischen Hochschule Darmstadt als Diplomingenieur 1992 Promotion zur Supraleitung magne tischer Werkstoffe; im gleichen Jahr Einstieg bei der SAP AG in Walldorf als Software entwickler 1995 Entwicklungsleiter Datenbank- Management 1999 Entwicklungsleiter für die internatio nale Adaption der SAP-Software an die IBM-Rechnerarchitektur AS/400 (heute iSeries) 2000 G eschäftsführer der damaligen Realtech System Consulting GmbH 2004 Vorstand der Realtech AG für den Geschäftsbereich Softwareprodukte
106
Der Festkörperphysiker Dr. Rudolf Caspary ist als Vorstand Technologie für den Geschäftsbereich Softwareprodukte der Realtech AG im badischen Walldorf verantwortlich. Im Fokus des Unternehmens steht der sichere und optimierte Betrieb von Computer- und Kommunikationsstrukturen, angefangen beim Netzwerk bis hin zu großen SAP-Systemlandschaften.
Spektrum der Wissenschaft: Dr. Caspary, Realtech nutzt einen Gebäudekomplex in einem vom deutschen SoftwareGiganten SAP geprägten Industriegebiet. Ist das ein Ausdruck enger Vernetzung? Dr. Rudolf Caspary: Die Entwicklung von Softwarelösungen auf der Basis von SAP-Programmen bildet einen wichtigen Teil unserer Arbeit. 1994 wurde Realtech als Beratungsunternehmen für SAP-Sys teme gegründet. Im heutigen Geschäftsbereich Softwareprodukte erfassen wir aber inzwischen jede Art von IT-gebundenem Geschäftsprozess, und zwar in der ganzen Tiefe: von der Applikation durch alle darunterliegenden Schichten, selbst bis hin zu Übertragungswegen und Protokollen. Spektrum: Das klingt recht abstrakt. Können Sie uns dafür ein konkretes Beispiel nennen? Caspary: Eines unserer Hauptthemen in meinem Geschäftsbereich ist die Vernetzung und die Unterstützung komplexer Softwareverbundsysteme. Das ist ein weites Feld und kann ein Warenlager betreffen, eine Fertigungsstraße oder, als ganz aktuelles Beispiel, die Kommunikationsinfrastruktur der Bundeswehr beim Einsatz in Afghanistan. Spektrum: Die Realtech ist in Kundus vertreten?
Caspary: Nicht personell, doch unsere Produkte überwachen beispielsweise den Betrieb des Richtfunknetzes. Spektrum: Konnten Sie dabei auf vorhandene IT zurückgreifen? Caspary: Nein, eine solche Infrastruktur entsteht praktisch aus dem Nichts. Leitungen mussten verlegt, Antennen aufgestellt und Satellitenverbindungen aufgebaut werden. Ein Teil der Netzwerkkomponenten ist mobil, man spricht hier von »verlegefähigen Netzen«. Es fallen zudem ganz unterschiedliche Daten an: Texte, Sprache, Videos, Kartenmaterial und anderes mehr. Obendrein muss das Netz ungemein flexibel sein. Fällt ein Segment aus, sei es durch kriegerische Gewalt oder durch klimatische Bedingungen, springen andere ein und werden automatisch vom Systemmanagement erkannt. Per Satellit ist das gesamte Netzwerk mit dem Leitstand in Deutschland verbunden, der IT-Administrator muss also nicht vor Ort sein. Spektrum: Sie haben über Supraleitung promoviert. Ist das nicht Welten entfernt von Ihrer heutigen Tätigkeit? Caspary: Eines war immer klar: Mir ging es nie um reinen Erkenntnisgewinn, sondern darum, etwas herzustellen, was von einem Kunden wertgeschätzt wird. Deshalb studierte und promovierte ich SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Das Unternehmen
Realtech AG / Corbis RF
an der Technischen Hochschule Darmstadt zum Dr. Dipl. Ing. Mein Wunschziel war zunächst die Batterieentwicklung, insbesondere für den Einsatz in Elektrofahrzeugen. Doch als ich promoviert war, wurde diese Forschung gerade ziemlich zurückgefahren. Bei der SAP konnte ich dann meine Ausbildung im abstrakten, modularen Denken und in der ingenieurmäßigen Umsetzung von Konzepten einbringen. Spektrum: Ist es nicht dennoch weit weniger spannend, Programme zu entwickeln, als die Supraleitung zu erkunden? Caspary: So ein Standardprogrammpaket der SAP umfasst gut und gerne 500 Module, das sind mehrere Millionen Zeilen Programmkode. Selbst wenn ein Kunde dieses Paket unverändert verwenden könnte – und das ist heutzutage praktisch nie der Fall –, gibt es ein paar tausend Parameter einzustellen, um das Gesamtverhalten der Software zu justieren. Das läuft auf eine immense Komplexität hinaus. Nehmen Sie an, mehrere Arbeitsgruppen greifen auf das gleiche Modul zu. Eine ist mit dessen Leistung unzufrieden, und der Administrator stellt einen Parameter neu ein. Diese Veränderung kann sich in einem so komplexen System an anderen Stellen für andere Nutzer nachteilig auswirken. SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Spektrum: Wie versuchen Sie so etwas in den Griff zu bekommen? Caspary: Wir schicken beispielsweise Sonden in das System, die Reaktionen auf eine Parameteränderung an vielen Punkten registrieren. Wir setzen auch Expertensysteme ein, um Fehlerursachen und Wechselwirkungen zu erkennen. Änderungen gehören in der IT zum Alltag. Systeme werden umkonfiguriert, neue Programme eingespielt. Mangelnde Steuerung und Transparenz der Abläufe sind da fatal. Wenn jener Administrator, der einen Parameter neu einstellt, um einer Gruppe zu helfen, diesen Vorgang weder gut plant noch gut dokumentiert, hat sein Kollege von der nächsten Schicht ein Problem, wenn das System nicht mehr rund läuft. Aber auch klassische Aufgaben wie die Überwachung von CPU-Leistung, Hauptspeicherauslas tung und Festplattenplatz sind Themen, die unsere Kunden täglich beschäftigen. Spektrum: Sind Speicherkapazitäten inzwischen nicht preiswert geworden? Caspary: In Gigabyte und Terabyte gemessen ist das richtig. Doch die Durchsatzrate, also wie schnell gespeicherte Daten wieder zur Verfügung stehen, kann professionelle Lösungen schnell sehr teuer werden lassen. Wenn beispielsweise ein Unternehmen von einem anderen
Die Realtech AG bietet Beratung und Software für alle IT-gestützten Geschäftsprozesse einer Wertschöpfungskette. Der Teilbereich Realtech Consulting GmbH unterstützt Firmen beim Einsatz von SAPProdukten, während die Realtech Software Products GmbH insbesondere Werkzeuge zur Fehlerfrüherkennung und Analyse komplexer IT-Landschaften entwickelt (im Bild: Konfiguration von Plattenlaufwerken eines Rechenzentrums ). Der in Walldorf bei Heidelberg ansässige Konzern wurde 1994 gegründet und ist seit 1999 an der deutschen Börse notiert. Im Geschäftsjahr 2008 erzielte er mit weltweit 721 Mitarbeitern einen Umsatz von 70,8 Millionen Euro.
aufgekauft wird, wächst plötzlich der Bedarf an Datenspeichern in der neuen IT-Zentrale. Klemmt es dann, weil am Datendurchsatz unwissentlich gespart wurde, kann es sein, dass das eigentliche Problem lange nicht erkannt wird, da die Gesamtstruktur so komplex ist. Spektrum: Und wenn Sie zwischendurch einmal die Komplexität reduzieren wollen, dann betrachten Sie die Skulpturen in Ihrem Büro? Caspary: (schmunzelt) Die mache ich sogar selbst, Bildhauerei ist ein Hobby von mir. Leider bleibt nicht viel Zeit dafür. So ein Projekt – ich betrachte auch eine Skulptur als Projekt – benötigt schon mal zwei Jahre. Spektrum: In dieser Zeit kommen wie viele neue Releases der Realtech-Software auf den Markt? Caspary: Bei den heutigen Innovationszyklen pro Jahr etwa ein Haupt-Release für jedes Produkt unserer TheGuard!Produktfamilie und viele unterjährige Anpassungen an die dynamisch wechselnde Infrastruktur. Dies ist einer der spannenden Aspekte unserer Arbeit: dass wir ständig mit den neuesten IT-Technologien in Kontakt kommen. Das Interview führte Klaus-Dieter Linsmeier, Redakteur bei »Spektrum der Wissenschaft«.
107
stellenanzeigen print Inserat spektrum
30.10.2009
12:35 Uhr
Seite 1
Doing Work That
Matters.
A Career at Baxter in Austria.
Baxter is a global, diversified health care company applying innovative science to develop specialty therapeutics and medical products that save and sustain patients’ lives. Baxter’s BioScience division develops and manufactures plasma-based and recombinant proteins to treat hemophilia and other bleeding disorders; plasma-based therapies to treat immune deficiencies, alpha 1-antitrypsin deficiency, burns and shock, and other chronic and acute blood-related conditions; products for regenerative medicine, such as biosurgery products and technology used in adult stem-cell collection; and vaccines. BioScience has concentrated its R&D activities in Austria; it is the country’s largest pharmaceutical research organization with more than 900 employees in two major R&D centres in Vienna and in Orth. Baxter in Austria is staffing for new projects attracting top talents from all over the world. People who have a desire to learn, grow and innovate can find purpose and satisfaction at Baxter, and make a contribution to a greater good. Discover how you can join Baxter in Austria and work in an innovative and exciting place while helping make a meaningful difference for millions of people around the world - www.baxter.at.
b
Outstanding talents wanted!
Academy
www.BioRN-Academy.org
Supported by:
108
Academy Partners:
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
www.spektrum.com/naturejobs
Fotos: Bierstedt/DLR
FORSCHUNG SCHAFFT WIRKUNG
TALENTE GESUCHT Ein umfassendes Talentmanagement ist ein wesentliches Element der Helmholtz-Kultur. Wir fördern den wissenschaftlichen Nachwuchs und bieten unseren Mitarbeiterinnen und Mitarbeitern vielfältige Gelegenheiten, ihre Talente weiter zu entfalten. Eine hochmoderne Infrastruktur und familiengerechte
Arbeitsbedingungen runden das attraktive Angebot der Helmholtz-Gemeinschaft ab. Weitere Informationen: www.helmholtz.de/talentfoerderung Alle Stellen auf einem Blick: www.helmholtz.de/jobs
Die Helmholtz-Gemeinschaft ist mit 28.000 Mitarbeiterinnen und Mitarbeitern in 16 Forschungszentren und einem Jahresbudget von 2,8 Mrd. Euro die größte Wissenschaftsorganisation Deutschlands.
Cologne International Graduate School From Embryo to old Age, Development, Health and Disease 8 Fellowships 3-year Ph.D. programme starting fall 2010 The University of Cologne has a long-standing tradition and world-wide reputation for top-level molecular biological research. Beginning in Fall 2010 the Research School in Biology „From embryo to old age: the cell biology and genetics of health and disease“ will be offering a high-level Ph.D. programme for students with excellent qualications. The participating research groups use microbial, plant and animal model systems to investigate cell biological and genetic mechanisms whose perturbation during the life cycle of an organism results in disease. The three-year programme starts with a six-month rotation and course period, followed by a PhD project in one of the participating groups. Seminars and training courses complement the research work. Comprehensive support is provided throughout the programme. The programme language is English. Accepted students will receive a laptop computer and 500 EUR to get started in Cologne. No tuition fees are charged. Eight competitive three-year fellowships (initially 1000 EUR, then 1400 EUR per month) are available. We invite you to apply to the IGSDHD in Cologne, the exciting city in the heart of Europe. To obtain further information please visit our website at: http://www.uni-koeln.de/bio-graduateschool/ Submission deadline for complete applications is April 15, 2010 Contact: Dr. Isabell Witt, IGSDHD, Zülpicher Strasse 47, D-50674 Cologne, Phone: +49(0)221 470 1683, Fax: +49(0) 470 1632,
[email protected]
IGSDHD_FromEmbyoToOldAge.indd 1
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
11/5/09 1:25:48 PM
109
stellenanzeigen
International PhD Programme
MOLECULAR CELL BIOLOGY — 20
fully-funded PhD-Positions —
The Max Delbrück Center for Molecular Medicine (MDC) in Berlin Buch is a national research institute of the Helmholtz-Association, the largest research organization in Germany. Jointly with the Humboldt University zu Berlin (HU), we invite applicants with a MSc-Degree or Diplom in Molecular or Cell Biology (or related field) to join our basic and clinical research groups with major focus on: ● Hypertension, Vascular & Kidney Diseases ● Heart Disease, Metabolic Diseases ● Cancer & Leukemia, Tumor Immunology ● Function & Dysfunction of the Nervous System ● Bioinformatics & Systems Biology Our 200 international PhD students benefit from structured PhD training in a supportive environment, travel grants for external courses, summer schools,conference attendance, annual PhD retreats etc.
Apply by 1st January 2010
www.mdc-berlin.de/phd 110
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
www.spektrum.com/naturejobs
Helmholtz International Graduate School for Infection Research A three-year PhD program, starting in October 2010 We invite highly motivated applicants PhD Students will have the unique opportunity to undertake a PhD within an electrifying atmosphere with the focus on Infection Biology and related elds (Immunology, Microbiology, Virology, Cell Biology, Chemical Biology and Natural Product Research, Structural Biology, Bioinformatics, Systems Biology, Molecular Biology, Mammalian Genetics). As well as working on a three-year research project PhD Students also attend lectures and seminars, laboratory and soft-skill courses, congresses, symposia and summer schools. The program is well supported by a network of supervisors; PhD students will nish the program as highly qualied scientists competitive for the job market. The three-year program is taught in English. For information about the program please visit the following web site: www.hzigradschool.de
We expect ¾ ¾ ¾
A Master`s degree (or equivalent) Active interest in one or more of the above elds Written and spoken English skills and previous laboratory experience
Application ¾
Applicants are required to complete the online application form under: http://online-application.helmholtz-hzi.de
Deadline for Application ¾
January 31st, 2010
Since the Helmholtz Graduate School supports a gender balance, women are explicitly encouraged to apply. Further information on the Helmholtz Centre for Infection Research is to be found under: www.helmholtz-hzi.de. The Helmholtz International Graduate School is supported by the Helmholtz Association of German Research Centres. The Helmholtz International Graduate School is a joint action of the institutes/universities: ¾ ¾ ¾ ¾
Helmholtz Centre for Infection Research, Braunschweig (HZI) Technical University of Braunschweig (TU-BS) Hannover Medical School (MHH) University of Veterinary Medicine Hannover (TiHo)
HelmholtzIntl_InfectionResearch.indd 1
10/30/09 9:48:12 AM
Discovering Nature’s Secrets and the Molecular Basis of Life
Heidelbergs Forschungsnetzwerk, um zelluläre Netzwerke besser zu verstehen Unser Netzwerk Wir nutzen unser Wissen aus den Lebenswissenschaften – Biologie, Medizin – sowie Chemie, Physik und Scientific Computing. Daran beteiligen sich Forscher/innen vom DKFZ, EMBL, MPI-MF und der Universität Heidelberg. Unser Cluster Interdisziplinäre Zusammenarbeit ist erfolgreich, um komplexe Vorgänge zwischen und innerhalb von zellulären Netzwerken zu verstehen, dabei interessiert uns besonders die Dynamik und systemische Steuerung.
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
Unsere Technik Sehen: mit modernster Mikroskopie Zählen: Analytik und Mathematische Simulation Verstehen: Interdisziplinäre Auswertung. Interesse? Exzellenzcluster CellNetworks Im Neuenheimer Feld 267 D-69120 Heidelberg
[email protected] www.cellnetworks.uni-hd.de
111
stellenanzeigen
Städte mit 30 % weniger Energieverbrauch? Sind Sie offen für fremde Kulturen und internationale Arbeitsmöglichkeiten? Sind Sie auf Menschen neugierig und behandeln sie mit Respekt? Nehmen Sie Dinge in die Hand und übernehmen gerne Verantwortung? Dann bewerben Sie sich auf www.abb.de/karriere. ABB ist ein weltweit führender Konzern der Energie- und Automationsindustrie. Unsere Innovationen helfen den Kunden, ihre Leistung zu verbessern und die Umweltbelastung zu reduzieren.
Sicher.
Karriere in Instituten der Leibniz-Gemeinschaft www.leibniz-gemeinschaft.de Forschungszentrum Borstel - Leibniz-Zentrum für Medizin und Biowissenschaften: Postdoc-Position in der Laborgruppe Entzündung und Regeneration zum 01.03.2010 für 3 Jahre (vorbehaltlich der Mittelfreigabe). In dem konkreten Projekt soll die toxikologische Wirkung von gezielt in ihren physiko-chemischen Eigenschaften veränderten Kohlenstoff-Nanopartikeln auf Atemwegsepithelien in einem neuartigen Gewebekultur-Modell definiert werden. www.fz-borstel.de -> Jobs & Karriere Leibniz Institute for Arteriosclerosis Research at the University of Muenster: Post-Doctoral Research Position - The position is for 2 years to work in the Department “Genetic epidemiology of vascular diseases” (P.I. Monika Stoll) at the Leibniz Institute for Arteriosclerosis Research at the University of Muenster, Germany. The position will include working with data from Genome Wide Association studies (GWAS) and other high-throughput data generated by the in house Illumina Core facility (microarray data, next generation sequencing data). The initial project is flexible, depending on the candidate, but it must contribute to the analysis of genomic data related to cardiovascular disorders, especially arteriosclerosis. http://www.lifa-muenster.de/fileadmin/redaktion/dokumente/Stellenausschreibung_LIFA-Stoll_Postdoc.pdf Institut für Wissensmedien, Tübingen: Im Rahmen des WissenschaftsCampus Tübingen „Bildung in Informationsumwelten“ sowie der „Leibniz Graduate School for Knowledge Media Research“ vergeben wir mehrere Promotionsstellen bzw. Promotionsstipendien. Weitere Informationen finden Sie unter: www.iwm-kmrc.de/www/stellenangebote The Leibniz-Institut für innovative Mikroelektronik - IHP performs research and development in the fields of silicon-based systems, highestfrequency integrated circuits, and technologies for wireless and broadband communication and is seeking Graduates and Postdocs in Electrical Engineering, Computer Science and Physics. For further information please check our website: www.ihp-microelectronics.com/jobs ILS – Institut für Landes- und Stadtentwicklungsforschung gGmbH, Dortmund: Wissenschaftliche Mitarbeiterin/Wissenschaftlicher Mitarbeiter für das Forschungsfeld „Metropolisierung“ (40 Wochenstunden) http://www.ils-forschung.de -> Aktuelles -> Stellenangebote The Centre for European Economic Research (ZEW) Mannheim, Germany, is one of the leading scientific economic research institutes in Germany. The ZEW is currently offering several researcher positions (postgraduates and postdocs) for its various research units. Please find further information about the ZEW and the job offers at http://www.zew.de/en. The Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, invites highly motivated scientists to apply for the recently established IGB Fellowship Program in Freshwater Science. IGB offers up to 5 fellowships for PhD students, Postdocs, or Senior Scientists for 6 - 24 months each. Application deadline: 31.12.2009. For more information: www.igb-berlin.de Das Wissenschaftszentrum Berlin für Sozialforschung schreibt demnächst folgende Stellen aus: • Post-Doc (für 5 Jahre) in der Abteilung „Verhalten auf Märkten“ • Wissenschaftlich-administrative Referentin oder Referent (zunächst für 2 Jahre) im Präsidialbereich des WZB Näheres unter: http://www.wzb.eu/aktuell/jobs/ Leibniz-Institut für Ostseeforschung Warnemünde: Postdoc für drei Jahre in der Abteilung Physikalische Ozeanographie und Messtechnik. Zur Durchführung und Auswertung von Experimenten mit einem 3-dimensionalen Ökosystemmodell der Ostsee. Dabei wird auf ein existierendes Modellsystem zurückgegriffen, das für die spezielle Aufgabenstellung adaptiert werden muss. Die vorgesehenen Experimente beziehen sich auf die Veränderung der Antriebsdaten infolge der erwarteten Klimaänderung. Voraussetzung: HS-Abschluss in Ozeanographie, Physik, Mathematik o.ä., Promotion, Erfahrungen in numerischer Modellierung. E-Mail:
[email protected] The German Primate Center - Leibniz Institute for Primate Research, Göttingen, together with its partner institutions in Göttingen, Oldenburg and Tübingen offers PhD and Postdoctoral positions in system neuroscience (www.dpz.eu/index.php?id=157&L=1 and www.dpz.eu/ index.php?id=607), PhD fellowships in Integrative Neurosensory Sciences (www.neurosenses.de) and PhD fellowships in the Leibniz Graduate School for Primate Neurobiology (www.dpz.eu/akn/neuroprim).
112
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
www.spektrum.com/naturejobs
Mit Engagement in die Zukunft. Wachsen Sie mit uns zusammen! Mit Naturwissenschaften an die Spitze! Starten Sie mit uns im Direkteinstieg im Traineeprogramm als Werkstudent/in als Praktikant/in oder schreiben Sie Ihre Abschlussarbeit mit sanofi-aventis in Deutschland. sanofi-aventis ist ein weltweit führendes pharmazeutisches Unternehmen, das mit Niederlassungen in über 100 Ländern für die ständige Verbesserung von Gesundheit und Lebensqualität der Menschen arbeitet.
AVS 903 09 019a
Unsere Kernbereiche: • Herz-Kreislauf / Thrombose • Stoffwechsel / Diabetes • Krebs • Innere Medizin • Zentrales Nervensystem • Impfstoffe
In Deutschland arbeiten 10.000 Menschen in der Forschung und Entwicklung neuer Medikamente, produzieren Wirkstoffe, fertigen und vermarkten Arzneimittel für Millionen Menschen weltweit. sanofi-aventis steht als vertrauensvoller Partner für den medizinischen Fortschritt. Finden auch Sie die passende Herausforderung bei uns. Aktuelle Stellenanzeigen und die Möglichkeit für Ihre Initiativbewerbung finden Sie unter
www.sanofi-aventis.de/karriere
Besuchen Sie uns im Internet www.sanofi-aventis.de
av217396_4ImageAnz_019a.indd 1
29.10.2009 14:25:14 Uhr
Spektrum der Wissenschaft and Naturejobs have joined forces. Now, with Naturejobs, you can place your jobs, courses, announcements and events in Spektrum as well as Nature, extending your reach among scientists, academics and students in Germany, Austria and Switzerland. For more information, please contact Naturejobs: Hildi Rowland T: +44 (0)20 7014 4084 E:
[email protected]
Kerstin Vincze T: +44 (0)20 7843 4970 E:
[email protected]
www.naturejobs.com
21925-01 Half page ad for Naturejobs in Spektrum.indd 1
SPEKTRUM DER WISSENSCHAFT · Dezember 2009
3/11/09 13:55:45
113
Heft Januar 2010 ab 22. Dezember im Handel
Splashlight
Im Januar-Heft 2010
Vorschau
Mit Pillen zum Turbo-Gehirn? Klarer denken können, sich besser erinnern, kreativer sein, länger wach bleiben – das und noch mehr wünschen sich viele. Welche Mittel dafür gibt es und was bewirken sie im Kopf? Verändern sie womöglich unsere Per sönlichkeit?
Extreme Ereignisse
Wenn Planeten ihre Lufthülle verlieren
Alfred T. Kamajian
Weitere Themen im Januar
Ständig gehen der Erde, dem Mars und der Venus Teile ihrer Gashüllen verloren – ein Prozess mit gravierenden Folgen. Die Erde könnte dadurch einmal ähnlich aus sehen wie die Venus
Krisen und Katastrophen zuverlässig vorherzusagen ist der Traum jedes Wissenschaftlers. Wir berichten, wie es um die Kunst der Prognose bedrohlicher Entwicklungen steht
Wie das Kind zur Sprache kommt
Möchten Sie stets über die Themen und Autoren eines neuen Hefts auf dem Laufenden sein? Wir informieren Sie gern per E-Mail – damit Sie nichts verpassen! Kostenfreie Registrierung unter: www.spektrum.com/newsletter
114
Pat Rawlings, SAIC
Die Neurolinguistin Angela Friederici im Gespräch: Was passiert im Gehirn, wenn wir Sprache erlernen?
Elektrische Raketen Für Weltraummissionen in das äußere Sonnensystem sind konventionelle Raketentreibstoffe ungeeignet. Beginnt nun das Zeitalter der Ionen- und Plasmatriebwerke?
Supraleitung / Tuberkulose / Neurobiologie des Tanzens / Steinzeitkultur in Afrika / Emissionsfreie Welt / Finanzmodelle / Nackte Singularitäten
SPEKTRUM DER WISSENSCHAFT
12/09