Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
562 Roe W. Goodman
Nilpotent Lie Groups: Structure and Applications to Analysis
Springer-Verlag Berlin-Heidelberg • New York 1976
Author Roe William Goodman Department of Mathematics Rutgers The State University New Brunswick, N. J. 0 8 9 0 3 / U S A
Library of Congress Cataloging in Publication Data
Goodman, Roe. Nilpotent lie groups. (Lecture notes in mathematics ; 562) Bibliography: p. Includes index. i. Lie groups, Nilpotent. 2o Representetions of groups. 3° Differential equations~ Hypoelliptic. I. Title. II. Series: Lecture notes in mathematics (Berlin) ; 562. QA3. L28 no. 562 [QA387 ] 512'.55 76-30271
AMS Subject Classifications (1970): 44A25, 17B30, 22E25, 22E30, 22E45, 35H05, 32M15 ISBN 3-540-08055-4 Springer-Verlag Berlin • Heidelberg ' New York ISBN 0-38?-08055-4 Springer-Verlag New York • Heidelberg • Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin • Heidelberg 1976 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
Table o f Contents
Chapter I ,
Structure of nilpotent
L i e algebras and L i e groups . . . . . . . . . . . . . .
§ 1. D e r i v a t i o n s and automorphisms o f f i l t e r e d I.I
1
polynomial r i n g s
D i l a t i o n s and g r a d a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
1,2 Homogeneous norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
1.3 Vector f i e l d s
4
w i t h polynomial c o e f f i c i e n t s . . . . . . . . . . . . . . . . . . . . . . . .
1.4 L o c a l l y u n i p o t e n t automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
1.5 Transformation groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i0
1.6 F i n i t e dimensional r e p r e s e n t a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I0
1.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II
§ 2. B i r k h o f f embedding theorem 2,1 F i l t r a t i o n s
on n i l p o t e n t
Lie a l g e b r a s . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
2.2 A l g e b r a i c comparison o f a d d i t i v e and n i l p o t e n t group s t r u c t u r e s . . 13 2.3 F a i t h f u l
unipotent representations ...............................
16
§ 3. Comparison o f group s t r u c t u r e s 3.1 Norm comparison o f a d d i t i v e and n i l p o t e n t 3.2 A l g e b r a i c comparison o f f i l t e r e d 3.3 Norm comparison o f f i l t e r e d
structures .............
and graded s t r u c t u r e s . . . . . . . . . . .
and graded s t r u c t u r e s . . . . . . . . . . . . . . . .
17 19 27
Comments and references f o r Chapter I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
Chapter i i .
33
N i l p o t e n t L i e algebras as tangent spaces . . . . . . . . . . . . . . . . . . . . . . .
§ 1. T r a n s i t i v e L i e algebras o f v e c t o r i.I
fields
Geometric background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
1.2 P a r t i a l homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
1.3 L i f t i n g
38
theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
§ 2. Proof o f the L i f t i n g
Theorem
2.1 Basic L i e formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40
2.2 L e f t - i n v a r i a n t
42
vector fields
....................................
2.3 Formal s o l u t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
2.4 C~ s o l u t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46
iV
§3, Group germs generated by p a r t i a l isomorphisms 3.1 Exponential c o o r d i n a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
312 Comparison o f group germs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
§4. Examples from complex a n a l y s i s 4.1 Real hypersurfaces i n 4.2 Points o f type
~n+l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m ...............................................
53 55
4,3 Geometric c h a r a c t e r i s a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
4.4 Siegel domains and the Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . . . .
61
Comments and references f o r Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Chapter I I I .
67
S i n g u l a r i n t e g r a l s on spaces o f homogeneous type . . . . . . . . . . . . . .
§ 1. Analysis on v e c t o r spaces w i t h d i l a t i o n s 1.1 Homogeneous f u n c t i o n s and d i s t r i b u t i o n s
..........................
1.2 I n t e g r a l formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67 70
§ 2. Spaces o f homogeneous type 2,1 Distance f u n c t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
2.2 Homogeneous measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
2.3 L i p s c h i t z spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77
§ 3. S i n g u l a r i n t e g r a l o p e r a t o r s 3.1 S i n g u l a r kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78
3,2 Operators d e f i n e d by s i n g u l a r kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82
§ 4, Boundedness o f s i n g u l a r i n t e g r a l o p e r a t o r s 4.1 Almost orthogonal decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
85
4.2 Decompositions o f s i n g u l a r i n t e g r a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87
4.3 Lp
95
boundedness
( 1 < p < ~ ) ..................................
§ 5. Examples 5.1 Graded n i l p o t e n t groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5,2 F i l t e r e d n i l p o t e n t groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
96 99
5.3 Group germs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
101
5.4 Boundedness on Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
108
v
Comments and references f o r Chapter I I I
Chapter IV.
......................................
Applications ...................................................
114
117
§ 1. I n t e r t w i n i n g Operators 1 . 1 B r u h a t decomposition and i n t e g r a l formulas . . . . . . . . . . . . . . . . . . . . . . .
118
1.2 P r i n c i p a l
121
series .................................................
1.3 I n t e r t w i n i n g o p e r a t o r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
124
1.4 Boundedness o f i n t e r t w i n i n g o p e r a t o r s . . . . . . . . . . . . . . . . . . . . . . . . . . . .
128
1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
134
§ 2. Boundary values o f
H2
functions
2,1 Harmonic a n a l y s i s on the Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . .
138
2.2 Tangential Cauchy-Riemann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
142
2.3 P r o j e c t i o n onto
146
2.4 Szeg~ kernel f o r
H~(G)
as a s i n g u l a r i n t e g r a l o p e r a t o r . . . . . . . . . .
H2(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
§ 3. H y p o e l l i p t i c d i f f e r e n t i a l
operators
3.1 Fundamental s o l u t i o n s f o r homogeneous h y p o e l l i p t i c 3.2 P r i n c i p a l
151
parts of differential
operators .....
operators ........................
158 163
3.3 C o n s t r u c t i o n o f a p a r a m e t r i x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
166
3.4 Local r e g u l a r i t y
167
.................................................
Comments and references f o r Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
173
Appendix:
175
Generalized Jonqui6res Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.1
Root space decomposition o f
A.2
Maximal f i n i t e - d i m e n s i o n a l
A.3
Structure of
A.4
Birational
Der(P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
176 180
m ......................................................
185
transformations ...........................................
192
Comments and references f o r Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
201
Bibliography .................................................................
202
Subject index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
210
Preface
These notes are based on lectures given by the author
during the Winter
semester 1975/76 at the University of B i e l e f e l d . The goal of the lectures was to present some of the recent uses of n i l p o t e n t Lie groups in the representation theory of semi-simple Lie groups, complex analysis, and p a r t i a l d i f f e r e n t i a l equations. A complementary objective was to describe certain structural aspects of simply-connected n i l p o t e n t Lie groups from a " g l o b a l " point of view (as opposed to the convenient but often unenlightening induction-on-dimension treatment).
The unifying algebraic theme running through the notes is the use of filtrations;
indeed, n i l p o t e n t Lie algebras are characterized by the property of
admitting a p o s i t i v e , decreasing f i l t r a t i o n .
The basic a n a l y t i c tool is a
homogeneous norm, which replaces the usual Euclidean norm and gives a "noni s o t r o p i c " measurement of distances. One obtains a f i l t r a t i o n
on the algebra of
germs of C~ functions at a point by measuring the order of vanishing in terms of the homogeneous norm. This in turn induces a f i l t r a t i o n
on the Lie algebra of
vector f i e l d s and on the associative algebra of d i f f e r e n t i a l operators. To construct (approximate) inverses f o r certain d i f f e r e n t i a l operators, one uses integral operators whose order of s i n g u l a r i t y along the diagonal is measured via the homogeneous norm.
A recurring aspect of our constructions is the approximation of one algebraic structure by a simpler structure; e.g. a f i l t e r e d Lie algebra is approximated by the associated graded Lie algebra; a group germ generated by a Lie algebra of vector f i e l d s is approximated by the Lie group generated by a " p a r t i a l l y isomorphic" n i l p o t e n t Lie algebra. The "order of approximation" is s u f f i c i e n t l y good that results in analysis on the simpler structure can be transfered to corresponding results on the o r i g i n a l structure; e.g. convolution operators on a f i l t e r e d n i l p o t e n t group which are " s i n g u l a r at i n f i n i t y "
have the
Vlll
same LP-boundedness properties as operators on the corresponding graded group.
The notes are organized as follows: Chapter I studies n i l p o t e n t Lie algebras and groups viewed as l o c a l l y n i l p o t e n t derivations and l o c a l l y unipotent automorphisms o f f i l t e r e d polynomial rings. Comparisons, both algebraic and a n a l y t i c , are made between various n i l p o t e n t group structures. These constructions are continued in the Appendix, in the context of groups of b i r a t i o n a l transformations.
In Chapter I I we explore the p o s s i b i l i t y of approximating a f i n i t e l y generated ( i n f i n i t e - d i m e n s i o n a l ) Lie algebra of vector f i e l d s by a ( f i n i t e dimensional) graded n i l p o t e n t Lie algebra. This leads to the notion of " p a r t i a l homomorphism" of graded Lie algebras, and the problem of " l i f t i n g "
a partial
homomorphism. The prototype f o r t h i s s i t u a t i o n is the case of a homogeneous space f o r a group, where the " l i f t i n g "
is obtained by i d e n t i f y i n g functions on the
homogeneous space with functions on the group which are l e f t - i n v a r i a n t under the s t a b i l i t y subgroup of a f i x e d point. The main r e s u l t of t h i s chapter is that a s i m i l a r construction can be carried out r e l a t i v e to a p a r t i a l homomorphismwhich is " i n f i n i t e s i m a l l y t r a n s i t i v e " . In concrete terms, this means that i f one wants to study a set of vector f i e l d s on a manifold which have the property that t h e i r i t e r a t e d commutators span the tangent space at each point of the manifold, then f o r local questions i t suffices to consider the case in which the manifold is a n i l p o t e n t Lie group, and the vector f i e l d s are "approximately" l e f t i n v a r i a n t . We describe how vector f i e l d s of t h i s type arise in connection with real submanifolds of complex manifolds.
Chapter I I I is devoted to constructing a theory of " s i n g u l a r i n t e g r a l operators" which is s u f f i c i e n t l y general to include the "approximate convolution" operators associated with the " a p p r o x i m a t e l y - i n v a r i a n t " vector f i e l d s of the previous chapter. We prove the boundedness of these operators on
~,
I < p <~ ,
and study the i n t e r a c t i o n between the integral operators and the vector f i e l d s .
IX Chapter IV contains the applications to the representation theory of r e a l rank one semi-simple Lie groups, harmonic analysis on generalized upper h a l f planes, and r e g u l a r i t y properties of h y p o - e l l i p t i c d i f f e r e n t i a l operators associated with t r a n s i t i v e Lie algebras of vector f i e l d s .
I t is obvious from the comments and references at the end of each chapter that a large part of these notes is based on the work of E.M. Stein and his collaborators. We have t r i e d to make the notes as self-contained as possible, by g i v i n g complete proofs of almost a l l r e s u l t s .
In the comments and references an
attempt has been made to assign c r e d i t to the various results and proofs; we apologize in advance to authors whose work we have overlooked or miscredited.
The
author would l i k e to thank Prof. Horst Leptin f o r the i n v i t a t i o n to
v i s i t the U n i v e r s i t y of B i e l e f e l d and f o r his gracious h o s p i t a l i t y . To Prof. Leptin and his collegues in the mathematics department go many thanks f o r making the v i s i t s t i m u l a t i n g and enjoyable. Dr. Peter MUller-R~mer provided invaluable assistance in organizing the manuscript, and the splendid job of typing was done by Frau M~nkem~ller.
Much of the w r i t i n g of the manuscript was done while the author
was v i s i t i n g
at the I n s t i t u t des Hautes Etudes, Bures-sur-Yvette, France. The author thanks the I n s t i t u t f o r i t s h o s p i t a l i t y , and Rutgers U n i v e r s i t y f o r providing f i n a n c i a l support through i t s sabbatical leave program. Several sections of the manuscript are based on reseach supported by grants to the author from the National Science Foundation.
Bures-sur-Yvette May, 1976.
Notational Conventions
An attempt has been made to keep the notations
consistent from one chapter to the next; the reader's indulgence is requested f o r the lapses from uniformity which crop up. Each section is numbered s e r i a l l y , and generally contains at most one Lemma, Proposition, or Theorem. In subsequent sections the Theorem of usual, IN, ~ ,
JR, $
§ 3.3
of Chapter I , say, is called Theorem 1.3.3. As
denote the non-negative integers, integers, real numbers,
and complex numbers, respectively.
Chapter I
Structure of nilpotent
L i e alg.ebras and L i e flrou~&
§ 1. D e r i v a t i o n s and Automorphisms o f f i l t e r e d
In t h i s s e c t i o n we w i l l
polynomial r i n g s
c o n s t r u c t a class o f n i l p o t e n t
Lie groups. Every n i l p o t e n t
Lie algebra
Lie algebras and
and simply-connected Lie group can be
embedded in t h i s c l a s s . These "model" a l g e b r a s and groups can be presented e i t h e r as d e r i v a t i o n s and automorphisms o f a polynomial r i n g , o r d u a l l y as v e c t o r f i e l d s and n o n - l i n e a r t r a n s f o r m a t i o n s on a v e c t o r space. This d u a l i t y w i l l
be used in
passing from a l g e b r a i c t o a n a l y t i c p r o p e r t i e s o f the embedded algebras and groups.
1.1 D i l a t i o n s and Gradations. space, and l e t V .
P = P(V)
Let
V
be a f i n i t e - d i m e n s i o n a l
real v e c t o r
be the algebra o f r e a l - v a l u e d polynomial f u n c t i o n s on
We take as our basic datum a d i r e c t - s u m decomposition
V =
(We a l l o w the p o s s i b i l i t y p o s i t i o n , we d e f i n e a
r ~ ~ Vn n:l
that
Vn = 0
f o r some n .)
In terms o f t h i s decom-
one-parameter group of d i l a t i o n s
{6 t : t > o}
on
V
by
setting
6 t ( z Xn) : E tnxn
We then d e f i n e the space
Hn
(x n e Vn) .
o f homogeneous .polynomials o f w e i g h t
Hn = { f e P : f - ~ t = tn f }
F i x a basis
{x i : 1 < i < d}
be the dual basis f o r
Vm ~
If ~i = ~i
for
~ elN d
""~d
~d
V
by
'
such t h a t
x i e Vni ,
is a multi-exponent, write
'
n
w(~) = Z ni~ i
and l e t
{~i }
Since
~i e Hni ,
we have
~
P =
O b v i o u s l y HmHn~Hm~ n Note t h a t when
e Hw(~) .
Thus
z (~ Hn n>o
so the spaces
,
I < n < r ,
Hm g i v e a g r a d a t i o n on the a l g e b r a P-.
t h e r e are both l i n e a r
and n o n - l i n e a r
p o l y n o m i a l s in
Hn .
We w i l l
a l s o need the f i l t r a t i o n
{Pn }
on
P
o b t a i n e d by s e t t i n g
E Hk Pn = k
Evidently
= PO c__.P1 ~ P2 ~ ' " '
IR
~_] P n = P n>O
Pm " Pn ~Pm+n "
We s h a l l
call
Remark. filtration
Pn
Let
the space
o f polynom.i.a..Is.., o f w e i g h t
z Vk . F n = k>n
o f the v e c t o r space
q u e l y d e t e r m i n e d by
{F n} .
F
The subspaces
V .
= F±
CV:':
n+l
we d e f i n e
'
then F:,:1 ~F:,~ 2 ~ . . .
~ F , ~ r = V~':
P
F
and n
w i t h the sum taken o v e r a l l
= S F i
I
indices
are then a d e c r e a s i n g
We c l a i m t h a t the f i l t r a t i o n
Indeed, i f
mn
{F n}
~ n .
...
:'~ik
il+...+i
k ~ n .
{Pn }
is uni-
1.2 Homogeneous norms
The passage from a n a l y s i s on IRn
n i l p o t e n t Lie groups begins by using the d i l a t i o n group multiplication
by
t .
6t
to analysis on in place of s c a l a r
The next step is to replace the Euclidean norms by the
following functions: Definition x ,
A
dilation-homogeneous norm on
~ Ixl
such t h a t
(i)
Ixl ~ o
(ii)
[xl = 0 < ~ x = o
(iii)
l a t x i = t Ixl
The norm is smooth i f
it
for all
is
C~
t
>
0
away from
V
is a continuous f u n c t i o n
.
0 ,
and i t
is symmetric i f
I×I : E-×i. Example
Let
o < p < ~ ,
Ixlp = (zI~i(x)l Ixl~ =max
and l e t
{Ci }
be as in
1.1.
Then
p/n i I / p
)
lq(x)i
1/n i
i are symmetric homogeneous norms. I f a polynomial, so t h a t
Ixl
P
p
is d i v i s i b l e
by
2r!
,
then
(IXlp) p
is
is r e a l - a n a l y t i c away from zero in t h i s case.
In t h i s chapter we shall be using homogeneous norms to measure the rates o f growth or vanishing of f u n c t i o n s . The f o l l o w i n g simple facts w i l l I. If
Ixl
is any homogeneous norm, then there exists.
C> 0
be needed: such t h a t
C-1 lxl~ ~ Ixl ~ c t~1~ •
Hence a l l homogeneous norms are .equivalent. (The set hence
Ixl II.
f e Hn ,
IxI~ = 1
is compact and
is bounded above and below on t h i s s e t . ) If
f
is a polynomial, then
f e Hn if_~_f I f ( x ) l
then If(x)I
~ (maxlf(u)I)Ixl
luI=1
n
~ C'IxI n
(Indeed, i f
Conversely, write assumption letting
f = ~ fk
f o 6t = O(tn)
t ÷ 0
III.
If
then f o r e v e r y
we g e t
m
'
with
'
so l e t t i n g
fk = 0
is a
n > 0
f k e Hk .
for
t + ~
f o 6t = ~ tkfk
we g e t
fk = 0
for
.
But by
k > n ,
and
k < n o)
function
C~
Then
d e f i n e d on a n e i £ h b o r h o o d . . £ ~
t he.r..e.i ~ a u n i q u e p o l y n o m i a l
Pn e Pn
0
in
V ,
such t h a t
m(x) - Pn(X) J S C Ixl n+l for n
x
near
0 .
in t h e T a y l o r
(The p o l y n o m i a l series
1.3 V e c t o r f i e l d s
of
Pn
m .)
o f the a l g e b r a
the l i n e a r
functions,
any d e r i v a t i o n
I f we s e t
Pi = T ( ( i )
'
P . T
polynomial
may be i d e n t i f i e d
coefficients
on
Using the f i l t r a t i o n
Since
P
be t h e L i e
i s g e n e r a t e d by
I
restriction
and to
V
"
w i t h the L i e a l g e b r a o f v e c t o r
fields
with
V .
{Pn } ,
To d e t e r m i n e t h e s t r u c t u r e
of
we d e f i n e
n ,
the following
we w r i t e
Dx
for directional
. 4
Dn = {D x : x e Vn}
: ~
.
t:o
Then i t
Dn Hk ~ Hk_ n
subalgebra of
Der(P):
: XPnC_Pn_ 1 , Vn} .
x e V:
Dx f ( Y )
Denote by
Der(P)
i s d e t e r m i n e d by i t s
= {X e Der(P)
the d i r e c t i o n
Let
then
T = s Pi s / ~ ( i Der(P)
t h e sum o f t h e terms o f w e i g h t
with polynomial coefficients
algebra of derivations
Hence
is j u s t
f(y+tx)
.
i s immediate t h a t
derivative
in
From t h i s
it
is clear that
=
s Hk D n . o
Set r
~k = mZ=kHm-k Dm "
Then one e a s i l y
verifies
that
nj Hk GHk_ j
~-J' ~ Thus we have a g r a d a t i o n o f
~n-J +k • n : r
n =
s nk k=l
-
and
n
,
is obviously a finite-dimensional
Suppose now t h a t
~
nilpotent
Lie algebra.
i s an open neighborhood o f
be the a l g e b r a o f r e a l - v a l u e d
smooth f u n c t i o n s
of vanishing of functions
0
at
on
0
Q .
in
V .
We w i l l
Let
measure the r a t e
i n terms o f the homogeneous norm
Ix I
set Cm = { f e C : f ( x ) (For
m < o ,
set
C,m = Co~..
It
m
.C
n
~C -
=H n
near O} .
QC n
on
C:
,
m+n
f o l l o w s by the graded from o f T a y l o r ' s C
O(lxi m)
This d e f i n e s a f i l t r a t i o n
C = Co~C 1)... C
=
n+l
and
Dk Cn _~ Cn_ k
series that
if
co
C = CR (Q)
n > o ,
then
If
m ~ o,
Let we s h a l l
L : L(~) say t h a t
be the L i e a l g e b r a o f T
is of order
< k
T Cn_~Cn_ k
C~
at
0
vector
fields
on
.
If
TeL
if
a function
if
for all
n .
Set L
For e x a m p l e ,
Dk C Z L k
vanishes to order order
n-k
at
(b)
i s o f o r d e r < k a t O} .
This d e f i n i t i o n
" at
0 ,
formalizes
then i t s
the notion
derivatives
that
of "weight"
k
vanish to
0 .
Proposition (a)
n
= {T e L : T
k
The f o l l o w i n g
properties
hold:
L = L r D _ L r _ I ~_ " . . ~j
(c)
, Lk-]cLj+ k
For e v e r y
k > o ,
nk~L
k
and
Lk = ~-k 0 Lk_ 1
Proof (a)
.
Part
We can w r i t e (b)
L = CoPlg...OCoO r .
follows
from t h e d e f i n i t i o n
Hm Cn
Hence of
L Cn ~ Cn_ r .
Lk .
For part
This g i v e s
(c)
,
we have
Cn-k _~ Cm+n_ k
Taking
k-m = j
,
we g e t
nj By c o n s i d e r i n g
the action
Cn ~ Cn_ j of vector
. fields
on l i n e a r
functions,
we f i n d
that
r
Lk =
The d e c o m p o s i t i o n
~ 0 Cm_k Dm m=l
Cn = Hn 0 Cn+ I
then g i v e s
(c)
,
finishing
the p r o o f .
Associated to the f i l t e r e d
algebra
L = Lr~
Lr_ 1 ~ . . .
is the graded
algebra gr(L) =
r ~ (D (L k / Lk_z) k=l
The Lie algebra s t r u c t u r e on and
(T)j,
(S)k
gr(L)
is defined as f o l l o w s :
denote t h e i r cosets mod Lj_ I
E(T)j,
(S)~
=
and
From part
Corollary
gr(L)
respectively,
finite-dimensional (r = i)
,
value at
L
(c) =
of the Proposition we have
n 0 ,
the i n f i n i t e -
of a l l vector f i e l d s can be "approximated" by the
n i l p o t e n t Lie algebra
n .
When the gradation on
V
is t r i v i a l
t h i s approximation merely consists in replacing a vector f i e l d 0 .
For
r > 1 ,
question in chapter I I ,
Remark
V .
We w i l l
r e t u r n to t h i s approximation
i n connection w i t h subalgebras of
The gradation
by i t s
t h i s approximation is more s u b t l e , as i t d i s t i n g u i s h e s
among the various d i r e c t i o n s in
tions
then
c o n d i t i o n , and obviously s a t i s f i e s
This c o r o l l a r y can be viewed as the statement t h a t near dimensional Lie algebra
T e Lj , S e L k ,
(~,S])j+ k
This is w e l l - d e f i n e d by v i r t u e of the f i l t r a t i o n the Jacobi i d e n t i t y .
Lk_ 1
If
n = nl~.-.@nr
L .
can also be described using the d i l a -
6t : n_k = {T e n_ : T ( f o a t )
= t k (Tf)o6t}
This f o l l o w s immediately from the formula f o r "homogeneous of degree k"
as vector f i e l d s .
~k "
Thus the elements of
~k
are
1.4 L o c a l l y
unipotent
automorphisms
automorphisms o f t h e a l g e b r a
P
is clear
that
N
from
n
onto
If
X e n ,
Leibnitz'
this
conclude that
into
eX
Conversely,
X Pc-
eX : m . First
enX
n = m
v a n i s h e s on identically.
ex e N ,
formula asserts
X e n , f e P ,
define
of
X .
and the map
X~--~ ex
is a bijection
definition
i s a homomorphism. Since given
Fn-1 ' It
that
: Z (~) x k f x n - k g . k
the s e r i e s
m e N , Xf =
have
nilpotence
then
xn(fg)
Clearly
If
N .
Proof.
Substituting
Aut P
Xn f
sum, by the l o c a l
Theorem.
be the group o f a l l
P n G P n _ I , ¥n} .
i s a subgroup o f eXf= z ~
This i s a f i n i t e
Aut (P)
Set
N = { m e Aut P : ( r - I ) It
Let
~ n>l
( - 1 ) n+z
we p r o v e t h a t
e tX e Aut (P)
Hence f o r any
f,g
Z .
But t h i s
and r e a r r a n g i n g ,
eXe -X = I ,
it
follows
transformation
X
we
that on
eX e N . P by
(~ - l ) n f
n
power s e r i e s
o n l y remains t o p r o v e t h a t
> etX(fg)
eX(fg)
define a linear
and by t h e f o r m a l
t,
of
e P ,
X
for all
identity
t = el°g t
t e ~R .
Indeed, for
in
so i t
any
the function
a polynomial
we
is a derivation.
- (etXf)(etXg)
is clearly
,
t
,
must v a n i s h
n e2Z,
Thus X(fg) = ~
e tX ( f g ) t:o d
= dt
t=o(e
tX
f)(e
tX
g)
= (Xf)g + f (Xg) ,
The map for
N .
X~--~ e X
f u r n i s h e s g l o b a l " c a n o n i c a l c o o r d i n a t e s o f the f i r s t
Using t h i s map, we t r a n s f e r
v e c t o r space
n
to the group
N .
X,Y ~
restriction
kind"
the a n a l y t i c m a n i f o l d s t r u c t u r e o f the
If
X,Y e n
and
f e P ,
then the map
e X eY f
i s o b v i o u s l y a p o l y n o m i a l mapping on mined by t h e i r
Q.E.D.
to
n x n .
V* ~ P r
'
it
Since elements o f
N
are d e t e r -
f o l l o w s t h a t group m u l t i p l i c a t i o n
is
a p o l y n o m i a l map when expressed i n c a n o n i c a l c o o r d i n a t e s . Indeed, as i n the p r o o f o f the theorem, i f
Hence i f
we w r i t e
eX eY = eZ
then
Z = log (e X eY)
e
Z = X * Y ,
(~)
X ~ Y =
To d e t e r m i n e the e x p r e s s i o n f o r {X * Y ( ~ i ) } that
,
using
{X * Y ( ~ i ) }
(*)
.
n .
then Z (-l)n+l, n>L n X mY
Since t h i s
i~eX e Y - l ) n
as a v e c t o r f i e l d , s e r i e s is l o c a l l y
are p o l y n o m i a l f u n c t i o n s o f
s h a l l o b t a i n more e x p l i c i t
{X(~i)
we o n l y need c a l c u l a t e finite
, Y(~i)}
on .
P , (In
we f i n d § 2
i n f o r m a t i o n about these f u n c t i o n s using the
Campbell-Hausdorff formula to rewrite
(m)
i n terms o f L i e p o l y n o m i a l s . )
we
10
1.5 T r a n s f o r m a t i o n
groups
a group o f ( n o n - l i n e a r ) {Ci }
be a b a s i s f o r
Theorem
If
The group
analytic V~
a l s o has a dual p r e s e n t a t i o n
transformations
with
m e N ,
N
~i
of weight
of the vector
space
V .
as Let
ni
then t h e r e i s a t r a n s f o r m a t i o n
T : V ÷ V
of the
form (~)
~i(Tx)
with
qi e P n . - 1 '
=
such t h a t
~i(x)
~(f)(x)
+ qi(x)
,
= f(Tx)
.
C o n v e r s e l y , f o r any c h o i c e o f
3
qi e Pn.-i exists
'
formula
m e N
(~)
defines
isomorphism o f
V ,
and t h e r e
such t h a t ~(f)
Proof
an a n a l y t i c
Since
= f o T
m(~i ) = ~i
mod
,
for
Pn -1 '
all
f e P .
there exist
qi
so t h a t
1
m(~i ) = Ei + qi is clear
that
"
Define
is invertible, if
g i v e n any
such t h a t
same p r o o f as i n
that
with
qi e P n i _ l
shows t h a t -1
= e -X .
o f the m a n i f o l d
Aut (P) V ,
subgroup o f a l i n e a r
Xn(~)
,
,
P
there exists One has
m = e
X
Hence
V
i s g e n e r a t e d by
,
it
for
a u n i q u e homomorphism
(~ - I ) some
m e N .
Pn ~- Pn-1 '
X e n . Clearly
corresponding to
representations
so the
In p a r t i c u l a r , m(f) = f o T ,
-I m
,
so
we have
We have p r e s e n t e d the group
and as a subgroup o f t h e group o f a n a l y t i c
two i n f i n i t e - d i m e n s i o n a l
N
isomorphisms
g r o u p s . We may a l s o embed
N
as a
group.
Xn : N + GL (Pn)
o b t a i n e d by r e s t r i c t i o n for
Then s i n c e
Q.E.D.
1.6 F i n i t e - d i m e n s i o n a l as a subgroup o f
"
is the transformation
S o T = T o S = I ,
matrix
(m) .
m(~i ) = ~i + qi
§ 1.4
S : V + V
Let
by
m(f) = f o T .
Conversely, : P ÷ P
T
to relative
be t h e f i n i t e - d i m e n s i o n a l Pn
Since
,n(m) f = f
t o the d e c o m p o s i t i o n
representation mod P k - i
for
Pn = Ho ~ HI ~ ' " ~
of
N
f e Pk ' Hn '
the is
(il : ii
Xn(m) <-->
.
,
n
where
I k = identity
Theorem Proof P
If If
n > r ,
this
1.7 ExamPleS
and
n > r ,
implies that
1)
~{k "
If
Xn then
is faithful. R[V ~ = I .
V = V1 ,
2)
vector fields, If
V = V1 ' V2 ,
d e f i n e d as in
§ 1.3 ,
dim V I = dim V2 = i by
X = ~/ax
and
,
then
N
~t
maps
N
H : V~
(x,y)
Vm g e n e r a t e s
is scalar multiplication
translations and
~1 = Pl 8 V 1 P2
Y = x~/~y ,
and
~2 = P2 "
~-2
i s spanned by
by
~ = all
by elements o f
are c o o r d i n a t e f u n c t i o n s .
and
n ,
H2 = (V~)2 + V~
Heidenberg a l g e b r a in t h i s
t
,
constant-
V . If
~k
is
Suppose Then
@/ay = ~ , Y ]
hi
i s spanned .
Thus
case. As a t r a n s f o r m a t i o n
~
group
acts by
Ii The space
N = all
then
then and
the t h r e e - d i m e n s i o n a l IR2,
and
Since
m= I .
i s the usual space o f homogeneous p o l y n o m i a l s o f degree
coefficient
on
on
the r e p r e s e n t a t i o n
m e Ker (Rn)
as an a l g e b r a ,
Hn
transformation
P2
has b a s i s
t i e IR
÷x+tl ÷Y+t2x+t
i
3
, x , y , x
2
,
and the f a i t h f u l
onto matrices
\0
I
t2
0 0
10l 0
2tl) /
t i e IR
representation
~2
is
12 § 2.
2.1 F i l t r a t i o n s Lie algebra over
B i r k h o f f Embedding ' Theorem
on n i l p o t e n t Lie algebras
IR .
A positive filtration
~1 ~ 2 ~ 3
~ "'"
~ = ~1 '
g-n = 0
Let
F
of
for
n
~ g
be a f i n i t e - d i m e n s i o n a l is a chain o f subspaces
such t h a t
i Proposition
Proof
Set
g
i
~j
' g~]
~
is n i l p o t e n t
=~ ,
?+i
~j+k <--~ there e x i s t s a p o s i t i v e f i l t r a t i o n
= ~g
, ?],
central s e r i e s . By d e f i n i t i o n ,
g
large. Thus we must show t h a t
~_g_m , _gn ]
definition,
for all
n .
large
so t h a t
{gg}
~m+n .
For
Assume t h a t f o r some m i t [-gm+l , gn ]
: [ [_~ , ~ m ]
gn = 0
m= 1
is true f o r a l l
by i n d u c t i o n :
~ [~_ , ~m+n ] + ~ g m , g__n+l]
and g
is n i l p o t e n t ,
and i n d u c t i v e l y ,
(2)
Vn
so t h a t
~
F = {g_n}
-~n = Vn ~ g-n+l " ~ = V1 ~...@ Vr
where
r
ixl
and the spaces H n , Pn
,
Then
, [_g , g_n] ]
n
c_~
.
then
1
= ~1 '
Hence a n = 0
for
so n
large,
Q.E.D.
Fix a p o s i t i v e f i l t r a t i o n subspace
, [~_m , ? ] ] + [ ~
{g_~} is any p o s i t i v e f i l t r a t i o n ,
' ~1 ] ~g-~ '
n .
m+n+1 g
c
= [~1
n
, gg]
~ [g
2
for
t h i s is t r u e , by
by Jacobi:
Conversely, i f
~ .
is the descending
is n i l p o t e n t i f an o n l y i f
_c
of
is the length o f the f i l t r a t i o n .
on
~ .
For each
n ,
choose a l i n e a r
Then as a vector space, , Define d i l a t i o n s
o f polynomials on
g_ as in
~t ' § 1 ,
homogeneous norm r e l a t i v e to
13 t h i s decomposition. Denote by By the remark in
§ 1.1 ,
(Set
Vn = 0
the n i l p o t e n t group c o n s t r u c t e d in
the spaces
depend on the f i l t r a t i o n ,
Definition
N(F)
and hence the group
NIF) ,
only
and n o t on the choice o f complementary subspaces
The decomposition
for
Pn '
§ 1 .
n > r).
(~)
is a g r a d a t i o n o f
E q u i v a l e n t l y , the d i l a t i o n s
decomposition are automor~hisms o f the Lie algebra
~
6t
~
if
[Vj,V~
Lie algebra
~ ,
~Vj+ k
associated w i t h the
in t h i s case.
2.2 A l g e b r a i c comparison o f a.d.ditive and n i l p o t e n t . g r o u p s t r u c t u r e s the n i l p o t e n t
Vn .
we d e f i n e a L i e group s t r u c t u r e on
~
Given
by the
Campbell-Hausdorff f o r m u l a . Recall t h a t the formula asserts t h a t , e.g. i f one considers the algebra o f formal power s e r i e s in two non-commuting i n d e t e r m i n a n t s X, Y,
then
(~)
e X eY
=
eF(X, Y)
,
where
= x +
+ ½ :x,,:
+ 1 Ex,Ex,
i s a ( u n i v e r s a l ) formal L i e s e r i e s in
:
+1
E,,:,,x::+...
X,Y .
Write F(X,Y) = X + Y + T(X,Y) . By the i d e n t i t y
(~)
Now f o r series
x,y e g ,
~(X,Y) .
T : ~ x ~ g
one sees t h a t
,
Since with
define ~
T
has no terms in
$(x,y)
is nilpotent,
by s u b s t i t u t i o n
~(O,y) = T(x,O) = 0 .
structure to
~ .
group generated by
(~)
it
The s t r a i g h t x .
alone or in
Y
alone.
in the formal Lie
t h i s d e f i n e s a polynomial map
xy : x + y + ~ ( x , y ) By the formal i d e n t i t y
X
Set .
f o l l o w s t h a t t h i s composition gives a group line
Denote by
t~--+ tx , t e R , G the space
~
is the one-parameter
w i t h t h i s L i e group s t r u c t u r e .
14
To s t u d y t h e a l g e b r a i c comultiplication canonical
structure
on the a l g e b r a
identification
of
P
o f t h e map
T ,
we d u a l i z e
of polynomial functions
P @P
with the polynomial
on
to obtain
g .
functions
a
We make the
on
]@ ~ .
Then we can d e f i n e an a l g e b r a homomorphism
:P÷P@P u(f)(x,y) Similarly,
using the additive
= f(xy)
structure
. of
, we d e f i n e
4 :P ÷P@P A(f)(x,y)
= f(x+y)
We want t o compare t h e homomorphisms
The f i l t r a t i o n
{Pn }
of
P
Qn = (P @ P)n '
and
4 .
(If
induces c a n o n i c a l l y
(P ~ P)n : Write
~
.
• z
l+j
Proof
If
It
is clear
a linear
P®P
Since
u(f)
4
: O} .
+ mod Qn "
= A(f)
+ + Qm Qn-~Qm+n "
If
~ e~:~ ,
i s a homomorphism, t h i s
we c o n c l u d e t h a t
is a s u b a l g e b r a .
¢ e ~
any l i n e a r
Lemma
If
.
Then
the subspace o f
Thus we o n l y need v e r i f y
then
implies P
that
A(Pn)~Q
f o r which the
the theorem when
f
~(¢) = 4 ( ¢ ) + ~ o T •
But
T
is a Lie polynomial,
terms.
c(x,y)
by
,
function.
Let without
then
that
From t h e s e two p r o p e r t i e s theorem i s t r u e
on
~ = A.)
and l e t
f e Pn '
A(¢) = ~ @ i + i @ ~ .
a filtration
then
Pi @Pj
+ Qn = {h e Qn : h ( x , O ) = h ( O , y )
Theorem
~,g_~ = 0 ,
i s any L i e p o l y n o m i a l w i t h o u t
linear
t e r m s , then t h e r e
is
n •
15 +
exist polynomials
qk e Qk
and elements
c(x,y)
Proof o f Lemma Write are dual bases f o r
=
z k>2
qk ( x , y ) z k
x = z ~i(x)x i
g , g~ ,
with
such t h a t
z k e ~k
,
y = z ~i(Y)X i
x i e Vn. '
,
where
{x i }
, {~i }
~i e Vni
1
Then Ix,y] where
zij
= ~i,xj~
: s ~i(x)~j(y)
e g~i+n j
and
zij
since
~(~k) = 0
when
Remarks 1.
Let
T ,
k > n .
{~i }
The Lemma f o l l o w s by
~i @ Cj e Q~i+n j
i n d u c t i o n on the l e n g t h o f the commutators in A p p l y i n g the lemma to
,
c .
we see t h a t
if
~ e V~ ,
+
then
C o .T e Qn '
This proves the theorem.
be a basis f o r
o f the theorem is e q u i v a l e n t to the f o l l o w i n g
~:~ w i t h
~i e Vn. The statement i statement about the formula f o r xy
in canonical c o o r d i n a t e s :
Set
ai = ~i(x)
,
bi = ~i(y ) , ci = ~i(xY)
.
Then c i = a i + b i + q i ( a l . . . . . ai_ I , b I . . . . . bi_ 1) where it
qi e Q+ (Since qi ni depends o n l y on the a j , b j From t h i s formula i t
is i n v a r i a n t Jacobian
contains no terms in with
d e t e r m i n a n t is
on
~ ~ ~ ,
so t h a t relative
alone or
{bj}
alone,
f o r example, t h a t Euclidean measure on
translation
by elements o f
G ,
g
since the
i .
2. Suppose ~ = V1 ~---@ Vr (i + j = n) ,
{aj}
nj < n i .)
is c l e a r ,
under r i g h t and l e f t
,
Kn
is a g r a d a t i o n o f
g .
Set
Kn = s Hi ~ Hj
c o n s i s t s of the homogeneous p o l y n o m i a l s o f weight
to the d i l a t i o n s
(~t x
, ~ty ) .
Let
K~
n
be the same sum,
I@ but w i t h
i ~ 1 , j > 1
and
i + j = n .
u(f) Indeed,
at
= A(f)
Then
mod
K+ n '
VfeHn
is an automorphism in t h i s case, so
t h i s p r o p e r t y holds f o r l i n e a r f u n c t i o n s the same argument as before, with
f
,
and hence f o r a l l
r e g u l a r r e p r e s e n t a t i o n s of R(x) f ( y )
Thus
p o l y n o m i a l s , by
R, L : G ÷ Aut (P)
be the
P :
, L(x) f ( y )
= f(x'ly)
since the f u n c t i o n s in
. P
separate the
G .
Theorem filtration
R and
F of
Proof right at
Let
G on
= f(yx)
Both these r e p r e s e n t a t i o n s are f a i t h f u l , points of
.
+ replaced by Kn , K ÷n Qn ' Qn
2.3 Fa..ithful unipoten.t r e p r e s e n t a t i o n s r i g h t and l e f t
T ( a t x , 6 t y ) = 6t T ( x , y )
Let
L
map
G i n t o the group
N(F)
associated w i t h the
~ .
Px : P Q P ÷ P
be the homomorphism d e f i n e d by " e v a l u a t i o n on the
x": Px(F)(y) : F(y,x)
Then
RX
PX o ~
a d d i t i v e group o f + Now Qn w(~) ~ 1 ,
Also
.
~
on
x-~ Px o A P ,
is simply the r e g u l a r r e p r e s e n t a t i o n o f the
which c l e a r l y
is spanned by monomials
w(B) > 1 .
is in
C ~ ~
In p a r t i c u l a r ,
,with
w(m) <_ n-1 ,
Combining these f a c t s , we see t h a t when
feP
n ,
Rxf = Px u ( f ) = Px A ( f ) = f
mod
mod Pn-i
N(F)
Px (Q~)
.
w(~) + W(B) ~ n so t h a t
and
Px (Q~) ~ P n - 1
"
17 (we have used the theorem o f This proves t h a t be d e f i n e d by
Jf(x)
the inverse to
§ 2.2
t o pass from
Rx e N(F) .
= f(-x)
x
in
G).
Corollary 1
If
dR
.
To pass to l e f t
Then
Hence
JPn = Pn
L x e N(F) ,
= ~t
translation,
and
JRxJ = L x
let
J e Aut (P)
(Note t h a t
-x
is
Q.E.D.
i s the d i f f e r e n t i a l
dR(x) f ( y )
~ t o A) .
of
R:
f(y(tx)) t=o
then
dR
is a Lie a l g e b r a homomorphism from
Corollary 2
If
Un(X ) = R ( x ) I p n ,
unipotent representation of Un
is f a i t h f u l
when
Suppose
n = n.l Q...@ ~ r
to
Un
I f the f i l t r a t i o n
n .
is a finite-dimensional F
is o f l e n g t h
r ,
then
n ~ r .
Both these c o r o l l a r i e s Remark
G .
then
~
f o l l o w i m m e d i a t e l y from the theorem and
~ = V1 Q . . . Q Vr
be the g r a d a t i o n o f x e Vk ~
This is e a s i l y proved d i r e c t l y
is a ~ r a d a t i o n o f ~
defined in
g .
§ 1.3 .
§ 1.4 - 1.6 .
Let Then
dR(x) e . n k .
from the f a c t t h a t
case, using the remark a t the end o f
6t
is an automorphism in t h i s
§ 1.3 .
§ 3. Comparison o f group s t r u c t u r e s 3.1 Norm compar.iso.n o f a d d i t i v e and n i l p o t e . n t s t r u c t u r e s
In t h i s s e c t i o n
we want to convert the a l g e b r a i c i n f o r m a t i o n in Theorem 2.2 i n t o an e s t i m a t e f o r the d i f f e r e n c e between the a d d i t i v e and n i l p o t e n t group s t r u c t u r e s on the n i l p o t e n t L i e algebra on
~
~ .
Let F
be a f i l t r a t i o n
compatible w i t h the decomposition
on (~)
~ , in
and choose a homogeneous norm § 2.1 .
18 Theorem (t)
There i s a constant
C > 0
such t h a t
I x y - x - y I ~ C { I x l a l y l z-a + I x l a l y l a + i x l l - a l y l
r = length of filtration Proof
Since a l l
{~i }
with
Pie
i s a basis f o r
Q+ ni ,
by
w(~) + w(~) ~ n i
a = 1/r ,
homogeneous norms are e q u i v a l e n t , we may assume t h a t
V~
l~i(x) 1 with
~i(xy-x-y) where
where
F .
txl : max where
a} ,
~i e V~i
= pi(x,y)
Theorem 2.2 . and
1/n i
But
Then
, Pi
is a sum o f monomials
w(~) ~ 1, w(B) ~ 1 .
Since
i~(x)l
~(x)~(y)
~ Ixl w(~)
,
, we
thus have ipi(x,y)I where
1 ~ j,
k
and
~ c max { I x l J l y l k}
j + k ~ ni .
From t h i s we o b t a i n the estimate
I x y - x - y I < C max { [ x l J / n l y [ where the max is taken over a l l and
,
integers
j,k,n
k/n}
with
, j ~ 1, k ~ 1, 2 ~ n < r ,
j+k
IYl Z Ixl > 0
and
write IxlJ/nlylk/n
We may assume and f o r
j,k,n
r > 2 ,
= I~-~) j / n
since o t h e r w i s e
lyl(j+k)/n
~,_g_~ = 0
and
xy = x+y .
in the i n d i c a t e d range we have j/n
~ a ,
2a < ( j + k ) / n
~ i
Hence i x l J / n l y l k/n < (
max { l y l 2a
lyl}
Thus
a < 1/2,
19 Interchanging
x
Corollary
Ixl
y ,
we g e t e s t i m a t e
Suppose the f i l t r a t i o n
i s a homogeneous norm r e l a t i v e
(t,) where
and
Ixy-x-yl a = l/r,
F
(t)
comes from a g r a d a t i o n of
g__ ,
and
to the g r a d a t i o n . Then
~ C { I x l a l y l l - a + I x z Z - a l y [ a} ,
r = length o f
Proof of C o r o l l a r y
Let
F .
Ci ' Pi
be as in the p r o o f above. Since
at
is
an automorphism o f the L i e algebra in the graded case, we have ni Pi ( a t x ' ~t y) = t Hence
Pi
is a sum o f monomials
w(B) ~ i .
C(x)~B(y)
occur in the f i n a l
j + k = n .
w(~) + w(~) = n i ,
w(~) > I ,
Hence the term
The only d i f f e r e n c e between the f i l t e r e d
or
Ixlalyl a
does not
estimate.
these estimates is the behaviour near Ixl ~ ~ > 0
with
By the p r o o f j u s t g i v e n , t h i s leads to the same estimates as b e f o r e ,
but now w i t h the c o n s t r a i n t
Remark
Pi ( x , y )
lyl ~ E > 0 ,
x = O, y = 0 .
estimates
3.2 A l g e b r a i c comparison o f f i l t e r e d
(t)
and
o f the n i l p o t e n t algebra
p o t e n t Lie algebra
using
gr(g) :
F ,
As long as e i t h e r (tt)
are e q u i v a l e n t .
and graded s t r u c t u r e s
be a decreasing f i l t r a t i o n gr(~)
and the graded case in
as f o l l o w s :
~ .
Let
F = {g_~}
We c o n s t r u c t a graded n
Set
z @ (~n / ~n+l ) n>l
and d e f i n e + g-m+1 ' Y + g-~+l~ = ~ ' Y ] when
X e ~m' Y e ~n •
+ g-m+n+l '
The r i g h t - h a n d side o f t h i s formula o n l y depends on the
20 equivalence classes o f filtration into
X, Y mod g-m+1 '
g-~+l '
r e s p e c t i v e l y , by v i r t u e of the
c o n d i t i o n . Extending t h i s bracket o p e r a t i o n to a b i l i n e a r map o f gr(g)
gr(~) ,
we obtain a Lie algebra s t r u c t u r e
(skew-symmetry and the Jacobi
i d e n t i t y f o l l o w immediately from the corresponding i d e n t i t i e s
in
9) .
In t h i s section we want to make an a l g e b r a i c comparison between the Lie algebras
~
and
gr(~) . Pick a l i n e a r map m : g ÷ ~(X) : X + g-n+1
Then
,
if
gr g
such t h a t f o r a l l
X e g_n •
is a l i n e a r isomorphism, and we t r a n s f e r the Lie m u l t i p l i c a t i o n
to
gr(~)
from
by d e f i n i n g ~(x,y) : ~ ([~-Ix, -ly])
I f we denote property
g-n / -~n+l = Vn' gr(g_) = V ,
[~q, ~nl] ~g-m+n
then we see from the f i l t r a t i o n
t h a t the b i l i n e a r map u
can be w r i t t e n as a f i n i t e
sum of b i l i n e a r maps
(1)
P = ~o + P l + ' " + P r - 1
'
where Pk : Vm x Vn ÷ Vm+n+k (r = length of the f i l t r a t i o n ) . p l i c a t i o n on
In p a r t i c u l a r ,
St
on
x e Vn
is a b i l i n e a r map, d e f i n e
~t b ( x , y ) = a l / t The maps Pk
is skew symmetric.
V by
6t x = tnx,
b:VxV+V
is the Lie algebra m u l t i -
V defined above. Each o f the maps Uk
Define d i l a t i o n s
If
Po
b(~ t x, ~t y) "
are thus homogeneous of degree
k :
~ Pk = tk ~k " Thus
at u = Uo + t u l +" . "+ t r - 1 Ur_ 1
n ,
21 In p a r t i c u l a r , lim t+o
6t ~ = ~o "
Note t h a t f o r every
t # o ,
and the Lie a l g e b r a
(V, 6~ ~)
Thus
gr(g) When i s
6t u
is in the c l o s u r e gr(g)
defines a L i e algebra m u l t i p l i c a t i o n
is isomorphic to
choices are o f the form
above so t h a t ms ,
mIvn
where
map v
on
V
to
g ?
Uk = 0
Identity
(mod
from
g
V ,
map 6 t o m.
~ .
This w i l l
for
~ : V÷ V
I f we t r a n s f e r the Lie m u l t i p l i c a t i o n bilinear
v i a the l i n e a r
o f the isomorphism class o f
a c t u a l l y isomorphic
we can choose the map ~
~ ,
on
occur e x a c t l y when
k ~ 1 .
But the p o s s i b l e
i s l i n e a r and
k>nE Vk) . to
V
using
~m ,
we o b t a i n a
such t h a t
m ~ ( x , y ) = ~(mx, mY) • As b e f o r e , we decompose v
(2)
i n t o i t s homogeneous p a r t s :
~ = Vo + ~ I + ' " '+ U r - i
where
'
6~ ~k = tkuk "
We have
~o = ~o '
To compare
since t h i s gives the L i e m u l t i p l i c a t i o n (1)
and
(2) ,
we note t h a t
= I + ml + ' ' ' +
of
gr(~!
.
m can be w r i t t e n as
mr-1 '
where ~k : Vn ~ Vn+k Hence equating terms o f the same degree o f homogeneity ( r e l a t i v e the r e l a t i o n s (3)
Z m+n=p
~m~n(X,y) =
z ~k(~ix,~jy) i+j+k=p
,
to
6t)
gives
22 for
0 ~ p ~ r-1
can pick
~k
(mo = I d e n t i t y )
so t h a t
Vk = 0
.
for
In p a r t i c u l a r ,
= gr(~)
i f and o n l y i f we
k ~ 1 .
To express these equations in a more i n f o r m a t i v e way, we i n t r o d u c e the coboundary o p e r a t o r a s s o c i a t e d w i t h the L i e a l g e b r a space o f a l t e r n a t i n g ,
n-linear
maps from
V
to
gr(#)
V .
.
Let
cn(v,v)
be the
Define
: cn(v,v) ÷ cn+I(v,v) by the formula
a f ( x l . . . . . Xn+l) = i # j
(-1)i+J
f(~°(xi'xj)'
x l . . . . . xi . . . . . x j . . . . . Xn+l)
z ( - I ) i A ( x i ) f ( x I . . . . . x i . . . . . Xn+l) Here
xi
means to omit
i.e.
A ( x ) y = ~o(X,y)
condition
62 = 0 .
xi ,
.
A
is the a d j o i n t
The Jacobi i d e n t i t y
For
6f(xl,x2)
and
n = 1
representation of
gr(~)
for
Uo
is e q u i v a l e n t to the
the formula f o r
~f
becomes
= Uo(f(xl),
x 2) + U o ( X l , f ( x 2 ) )
- f(uo(Xl,X2)) Using t h i s ,
we o b t a i n from
Proposition
the f o l l o w i n g
The L i e algebras
e x i s t l i n e a r maps
mp on
(4) where
(3)
V ,
~
P
e C2(V,V)
gr g
mp : Vn ÷ Vn+ p ,
6rap = Up + Fp F
and
criterion:
,
are isomorphic
<--> There
such t h a t
1 <_ p <_ r-1
is d e f i n e d by
Fp(x,y) =
p-I z mk ~p-k ( x ' y ) k=l
- ~o(mkX'mp-k y)
(F z = O)
Remarks 1.
The set of equations
(4)
seems q u i t e i n t r a c t a b l e .
There is
,
23
additional satisfies
information a v a i l a b l e , h o w e v e r , which we have not used; namely, t h a t the Jacobi i d e n t i t y .
the i n t e r i o r ' ~roduct of
This can be expressed most n e a t l y by i n t r o d u c i n g
f , g e C2(V,V):
(f.g)(xl,x2,x3)
and is defined by
: f(g(xl,x2),x3)
+ f(g(x2,x3),Xl) The Jacobi i d e n t i t y
f - g e C3(V,V)
is then
~'u = 0 .
+ f(g(x3,xl),X2)
.
Using the decomposition
(1)
of
~
this
gives the equations
I
(5)
u o • uo = 0 Uo " ~I + ~i " Uo = 0 p-i -
,
u o • Up + Up • u o = kZ=l ~k
We have already noted the f i r s t
~p-k
of these equations. As f o r the o t h e r s , we c a l c u l a t e
that
u o " Up + Up " uo = -~Up Hence
uI
is a
2-cocycle
(~I
= O) ,
and the
Up
for
p > I
satisfy
p-1 aUp = kZ=l u k - Up_ k
We conclude t h a t necessary c o n d i t i o n s f o r s o l v i n g starting with
p = 1 ,
2. The f i l t r a t i o n ~F~ e H2(gr ~, A)
F
determines an i n t r i n s i c
(A = a d j o i n t representation of
remark
i
,
and
~1
Up + Fp
,?p ,
be zero.
cohomology class gr g__) .
Indeed by
(3) ,
= Uo(~lx,Y) + Uo(X,~ly) - ~lUo(X,y) = ~l(x,y)
uI
recursively for
are t h a t the cohomology classes of
Ul(x,y ) - ~l(x,y)
so t h a t
(4)
,
are representatives of the same cohomology class. By
t h i s class is the " f i r s t
o b s t r u c t i o n " to c o n s t r u c t i n g an isomorphism
24 between
g
and
gr(~)
Examples 1. isomorphic to to
~
in
I f the f i l t r a t i o n
g .
g ,
.
is of length
Indeed, in t h i s case
then
~ (a,b,c,d)
Xl,...,x 7
[Xl,Xn]
= 0 ,
then so i f
gr(g) VI
is
any complement
~J1,V~ ~g-~2 ' ~Vl'g-2~ = 0 .
2. Consider the f a m i l y algebras w i t h basis
~2'~
< 2 ,
o f seven-dimensional n i l p o t e n t Lie
and commutation r e l a t i o n s
~1'x7]
= Xn+ 1 ,
= 0
[x2,x3] = ax 5 + bx 6 + cx 7 )
[x2,x4] =
xz,x
with all
ax 6 + bx 7
:
7
Fx3,x4] :
d x7
o t h e r commutators obtained by skew-symmetry from t h i s t a b l e ( o r equal zero
i f they do not appear in the t a b l e ) . A s t r a i g h t f o r w a r d c a l c u l a t i o n shows t h a t Ad x i
is a d e r i v a t i o n o f t h i s algebra s t r u c t u r e ,
1 ~ i < 7 ,
and hence these
equations do d e f i n e a f o u r - p a r a m e t e r f a m i l y o f Lie a l g e b r a s . The descending c e n t r a l s e r i e s
g_n is given by
n ~_ = span {Xn+ 1 . . . . . x 7} when
2 < n ~ 6 .
Thus
~
is s i x - s t e p n i l p o t e n t .
o f the commutation r e l a t i o n s t h a t { n} .
But c l e a r l y
~ (0,0,0,0)
parameters are non-zero . when
~
W,
with
I t is obvious from the form
gr g ~ g (0,0,0,0) i s not isomorphic t o
,
r e ] a t i v e to the f i l t r a t i o n g (a,b,c,d)
when any o f the
Hence the descending c e n t r a l s e r i e s is graded only
is the s e m i - d i r e c t product o f
Lie algebra
,
ad x I
(Xl)
being the s h i f t
A more i n t e r e s t i n g f i l t r a t i o n
on
~
-~n = span {Xn,Xn+ 1 . . . . . x 7} ,
and a s i x - d i m e n s i o n a l commutative o p e r a t o r on
W.
is obtained by s e t t i n g
1 < n < 7
25
This f i l t r a t i o n
is o f l e n g t h seven, and i t
is obvious t h a t r e l a t i v e
to t h i s
filtration gr(g) = ~ (a,O,O,d) w i t h the parameters writing
Ix,y]
a
and
= ~(x,y),
d
,
arbitrary.
Letting
Vn = span (Xn)
we see t h a t the decomposition
(I)
of
~
,
and
i n t o a sum
o f homogeneous terms is given by
~o(Xl,Xn) = Xn+ 1
,
~o(Xl,X7) = 0
~o(X2,X3) = ax 5 ~o(X2,X4) = ax 6 ~o(X2,X5) = ( a - d ) x 7 ~o(X3,X4) =
dx 7
~1(x2,x3) = bx 6
,
~1(x2,x4) = bx 7
~ 2 ( x 2 ' x 3 ) = cx7
'
u3 = ' " =
u6 = 0
( A l l e n t r i e s not o b t a i n a b l e by skew-symmetry are z e r o ) . Let us examine e q u a t i o n homogeneous o f degree
p ,
(4)
o f the p r o p o s i t i o n in t h i s case. A map
is d e f i n e d by
~p Xn = a n Xn+ p where
an = 0
when
algebra structure
n > 7-p . ~o '
,
The coboundary o f
- mp(~o(Xi,Xj))
p = 1
relative
to the Lie
is thus the skew-symmetric mapping d e f i n e d by
a@p(Xi,Xj) : a i ~ o ( X i + p , x j )
When
~p ,
we c a l c u l a t e t h a t
+ ajuo(Xi,Xj+p)
~p
26
6@l(Xl,X2) = (a2-a3) x 4 aml(Xl,X3) = (aal+a3-a4) x 5 6ml(Xl,X4) = (aal+a4-a5) x 6 ~ml(Xl,X5) = ( ( a - d ) a l + a 5 - a 6 ) x 7 ~l(X2,X3)
= a(a3-as) x 6
6~1(x2,x4) = (da2+(a-d)a4-aa6) x 7
,
w i t h a l l o t h e r e n t r i e s not o b t a i n a b l e by skew symmetry equal zero. Hence the condition
6ml = ~I
i s e q u i v a l e n t to the s e t o f 6 l i n e a r equations
a2-a 3 = 0 a3-a 4 = -aa 1 a4-a 5 = -aa 1 a5-a 6 = (d-a) a 1 a(a3-a5) = b d(a2-a4) + a(a4-a6) = b
One c a l c u l a t e s t h a t t h i s inhomogeneous system has rank 5 , and o n l y i f e i t h e r if
a = 0
and
filtration
b = 0
b # 0 ,
(i.e.
Ul = O) ,
or else
then we cannot solve
Assume
a # 0 .
isomorphism between require solving
and
~mp = Up + Fp ,
when
to those j u s t made, we f i n d t h a t f o r while for
p = 2
the e x p l i c i t
~(a,O,O,d,)
(4)
a ~ 0
and
d # 0 ,
then
.
and the s o l u t i o n
~(a,b,c,d)
The h i g h e r - o r d e r .
d # 0 .
consistency c o n d i t i o n i s expressed by the equation that if
b # 0 .
obstructions
By c a l c u l a t i o n s s i m i l a r
these equations can always be s o l v e d ,
they can always be solved i f
form o f equation
hence the
o b s t r u c t i o n to d e f i n i n g an
p = 2,3,...,6 p > 2
In p a r t i c u l a r ,
~ and
~(O,b,c,d),
Then t h e r e i s no f i r s t - o r d e r ~(a,b,c,d)
a # 0 .
~ml = Ul
i s not e q u i v a l e n t to a g r a d a t i o n on
and is c o n s i s t e n t i f
If
ml '
d = 0 ,
we f i n d t h a t the
5b2 = 4ac .
~ g(a,O,O,d).
then using
Hence we conclude
27
Furthermore,
~ ( a , b , c , O ) ~ ~(a,O,O,O)
same a n a l y s i s shows t h a t
i f and o n l y i f
~(O,O,c,O) ~ ~ ( 0 , 0 , 0 , 0 )
F i n a l l y , the
i f and o n l y i f
is also obvious by i n s p e c t i o n o f the m u l t i p l i c a t i o n
3.3 Norm comparison o f f i l t e r e d
5b2 = 4ac .
c = 0 .
(This
t a b l e i n t h i s case).
and graded structures
Continuing the
n o t a t i o n o f the previous s e c t i o n , l e t us turn now to the question of a metric comparison between the group structures defined by l i n e a r map m : ~ + w i t h the subspace
xy
and
x,y
~
xy
V , xmy ,
group laws on
such t h a t
m(~n) .
the vector space write
gr(~)
V . and
gr(m) = I
g
as in
gr(~) .
§ 3.2 ,
corresponding to the Lie brackets
~
and i d e n t i f y
and
~0 "
We shall
r e s p e c t i v e l y , f o r the corresponding Campbell-Hausdorff
~ ~ xmy ,
[x I
on
is o f length
V .
are "asymptotic at i n f i n i t y "
the homogeneous norm, in the f o l l o w i n g sense (Recall t h a t filtration
Fix a
Thus we have two n i l p o t e n t Lie algebra structures on
Fix a dilation-homogeneous norm x,y
and
Then the maps
when measured by
~ = gr ~
i f the
~ 2) :
Theorem Assume the f i l t r a t i o n Then there is a constant
F
is o f length
r > 3 ,
and set
a = 1/r .
M so t h a t
Ixy-x*y[ ~ M ( I x l Z - 2 a l y l a + I x l a l y l a + I x l a l y [ 1-2a)
In p a r t i c u l a r ,
Proof
Ixy-xmy I ~ M ( I x l + l y I # -a
lim
Ixy-x*Yl
IxI+IYl ->~
Ixl+lyl
x,y e V
~i e Vni .
Thus
0
is given by a universal
s u f f i c e to compare the r e s u l t of e v a l u a t i n g a formal Lie p o l y -
Pick a basis and
Ixl + IYl ~ 1 .
Since the Campbell-Hausdorff m u l t i p l i c a t i o n
formula, i t w i l l nomial at
=
if
,
using the two Lie algebra structures on
{x i }
for
V and dual basis
We can w r i t e , by equation
(i)
{~i } of
for
§ 3.2 ,
V .
V* ,
with
xie
Vni
28
~ =
where
~0
+
B
,
B(Vm'Vn) ~g-m+n+l
Hence f o r the formal Lie element
c(x,y) = ~,~
(~)
~ ( x , y ) = ~o(X,y) + z ~ i ( x ) ~ j ( y )
where
zij
c , ,
= B(xi,xj)
l e t us w r i t e and w r i t e
c(x,y)
cm(x,y)
Then by equation
(m)
e_~ni+nj+ 1
we have
zij
More g e n e r a l l y , f o r any Lie polynomial
f o r the r e s u l t of s u b s t i t u t i o n using the Lie bracket f o r the r e s u l t of s u b s t i t u t i o n using the Lie bracket
Uo
and induction one sees t h a t
c ( x , y ) = cm(x,y) +
s qk ( x , y ) z k k>2 =
÷
where
qk e Qk and
the maps x , y
z k e g-k+1 ( n o t a t i o n of
~ ~ qk(x,y) zk .
As in the proof of Theorem lqk(x,Y)I where
11 i,j
§ 2.2). Thus i t s u f f i c e s to estimate
and
3.1 ,
! C max { I x l i l y l i+j < k .
we have the estimate j}
Since
,
z k e g~+ 1 ,
l q k ( x , y ) Zkl ! C max ( I x l i / n where the max is taken over
k+l < n < r ,
dominant term in t h i s estimate, we assume ixli/n
lylj/n
= (~)i/n
In the i n d i c a t e d range we have
~_)a
lyl j / n }
,
with
i,j
as before. To f i n d the
lyl ~ Ixl > 0 ,
and w r i t e
lyi(i+j)/n
i/n ! a
l q k ( x , y ) Zkl <_ C (
it follows that
and 2a ! ( i + j ) / n
(IYl 2a + lyl
l-a)
! 1-a .
Hence
29 Symmetrising t h i s estimate with respect to
x and y ,
we o b t a i n the f i r s t
estimate o f the theorem. To obtain the second estimate, we note t h a t
( I x l l y l ) a ~ (ixl + lyl) 2a IXl 1-2a l y l a
Since
a ~ I/3 ,
one has
_<
(Ixl + lyl) l-a
2a ~ 1-a ,
( I x l + l y l ) 2a < _ ( I x l + l y l ) 1-a
so t h a t f o r
Ixl + IYl ~ 1 ,
This gives the second estimate and completes
the proof of the theorem.
Corollary
Let
{a t }
group s t r u c t u r e
x*y
of
be the d i l a t i o n s associated with gr(~)
gr(~)
is obtained from the group s t r u c t u r e
Then the xy
of
by
x*y : lim t-~o
Proof we have
Set
al/t
((atx)(6ty))
x t = at x ' Yt = atY "
x*Y = ~ i / t
(xtmYt) "
IxmY - a l / t
Since
at
is an automorphism o f
gr(~)
,
Hence by the theorem
(xtYt)i
= t-1
IxtmYt - x t Y t l
M t -a ( I x l Z - 2 a l y l a + i x i a l y l l - 2 a ) + M t 2a-I I x l j y i . But
xmy = xy
if
a ~ 1/2 ,
so we may assume
Ixmy - a l / t when
t ÷ ~ ,
a ~ 1/3 .
Then t h i s estimate gives
( x t Y t ) I : 0 ( t -a)
proving the c o r o l l a r y .
Remarks 1.
This C o r o l l a r y makes more precise the statement above t h a t the
group structures defined by
~_ and
gr g_ are "asymptotic at i n f i n i t y " .
Namely,
30
to c a l c u l a t e
xmy ,
product
xt Yt
to
w i t h an e r r o r
xmy 2.
length
All r
'
we d i l a t e
and then s h r i n k O(t -a)
and
y
by
back w i t h
6t 51/t
,
t "
v e r y l a r g e , form
the
T h i s g i v e s an a p p r o x i m a t i o n
.
the estimates of this
of the filtration
x = O, y = 0 .
x
s e c t i o n are monotone i n . c r e a s i n g f u n c t i o n s
(a = l / r )
,
as long as we s t a y away from
of the
31 Comments and references f o r Chapter i
§ 1,1-1.2
The notion of "homogeneous norm" (=gauge) and d i l a t i o n s was
systematically developed in Knapp-Stein [ ~ ,
and then in Kor~nyi-V~gi [1]. We
have followed Kor~nyi-V~gi in requiring that the norm be homogeneous of degree one r e l a t i v e to d i l a t i o n s . For many applications the smoothness and symmetry of the norm are i r r e l e v a n t , so we have not included these conditions as part of the d e f i n i t i o n . (In many estimates, norms l i k e
§ 1.3
Ixl~
are the most convenient to use.)
The Lie algebra of vector f i e l d s with polynomial coefficients has
been studied, e.g. in Auslander-Brezin-Sacksteder [ I ] , Arnol'd [ 1 ] , and Goodman [6]. (cf. Appendix). The use of the homogeneous norm to define the order of vanishing of functions at a point is taken from Folland-Stein ~ ]
and Rothschild-Stein [ I ] ,
The Corollary appears to be new.
§ 2.1
One of the e a r l i e s t uses of the f i l t r a t i o n
given by the descending
central series of a n i l p o t e n t Lie algebra is in Birkhoff [1], where i t is extended to a f i l t r a t i o n
of the universal enveloping algebra by ideals
Jn
of f i n i t e
codimension. The process of using a f i l t r a t i o n
on ~
algebraic objects f u n c t o r i a l l y attached to
has been systematically developed
by Vergne [1] and Rauch [1], [2]. integral f i l t r a t i o n s ,
~
to define f i l t r a t i o n s on
In these notes we r e s t r i c t our attention to
because these suffice f o r the study of i t e r a t e d commutators
of vector f i e l d s . For the study of a r b i t r a r y positive f i l t r a t i o n s ,
cf. Goodman [6].
We also r e s t r i c t our attention to one-parameter groups of diagonalizable automorphism
{6t }.
For the case of an n-parameter commutative group of diagonalizable
automorphisms of a n i l p o t e n t Lie algebra, cf. Favre [1].
§ 2.2
The theory of free Lie algebras and the Campbell-Hausdorff formula
can be found, e.g. in Bourbaki [1], Hochschild [I~, and Jacobson [1].
32 § 2.3
The construction given here is the dual to the construction of
B i r k h o f f [ I ] . The l i n e a r dual space to the enveloping algebra of isomorphic to the formal power series functions on ~ a n n i h i l a t o r of the ideal degree
< n .
Jn+l
~
is canonically
(cf. Dixmier [23]),and the
of Birkhoff is the space
Pn of polynomials of
For the analogue of the B i r k h o f f construction in the case of a
solvable Lie algebra, cf. Reed [ I ] .
§ 3.1
The comparison theorem was proved in Goodman [6]. I t implies, in
p a r t i c u l a r , that
I xy[ ~ a ( I x l + IYl + b) ,
f o r some p o s i t i v e constants a and b .
Similar estimates were proved by Guivarc'h [ 1 ] , where i t is shown that there exists a norm of the type
IxI=
f o r which the constant
i f there is a smooth norm which s a t i s f i e s
a = 1 .
I xYl ~ Ixl + lyl + b .
We do not know See also
Jenkins [1].
§ 3.2
The main source f o r the results of t h i s section is the thesis of
Vergne [1]. (cf. Rauch [ ~ ,
[2] f o r f u r t h e r developments). For the general theory
of deformations of algebraic s t r u c t u r e s , c f . Nijenhuis-Richardson [ i ] ;
f o r Lie
algebra cohomology, cf. Jacobson [ I ] . An example of a n i l p o t e n t Lie algebra with every automorphism unipotent was given by Dyer [ I ] . This phenomenon was investigated f u r t h e r by M~ller-R~mer [ ~ ,
who showed that the 7 dimensional algebra
~ (0,I,0,i)
of Example 2 has t h i s property, but that every n i l p o t e n t Lie algebra of dimension < 6
admits d i l a t i n g automorphisms. The f a c t that the cohomology class of
almost always t r i v i a l nilpotent
~ ,
~1
is
in Example 2 contrasts with Dixmier's results [11: For any
one has
dim Hn(~,~) ~ 2
for
i ~ n < dim g - i . R.W. Johnson
[I] has studied the problem of constructing a gradation f o r the descending central series. § 3.3
The comparison theorem between the graded and f i l t e r e d group
structures was proved in
Goodman [6]. The Corollary is due to Auslander-Brezin-
Sacksteder E l i , in a s l i g h t l y d i f f e r e n t formulation.
Chapter I I
N i l p o t e n t Lie algebras as tangent spaces
§ 1.
T r a n s i t i v e Lie a l g e b r a # o f vector f i e l d s
1.1 Geometric background We denote by
~(M)
M w i l l be a real
the algebra of real-valued smooth functions on
TM the real tangent bundle to C=
In t h i s chapter
vector f i e l d s on
M .
If
M .
We l e t
x e M , TMx
L(M)
C~
manifold.
M , and by
be the Lie algebra of a l l real
w i l l denote the tangent space at
x .
In this chapter we want to construct a theory of manifolds "modeled on n i l p o t e n t Lie groups". The motivation f o r such a theory comesfrom several sources (see Chapter IV).
The basic geometric idea, however, is very simple. We would l i k e
to carry out in each vector space in a way that varies smoothly with
TMx
the constructions of Chapter I , and do t h i s
x .
This would mean putting the structure o f a
graded n i l p o t e n t Lie algebra on each tangent space algebra homomorphism from
T~x
to
L(M)
.
TMx , together with a Lie
(Here we are thinking of the group
manifold, on which each tangent space is isomorphic via t r a n s l a t i o n s to
g , and
acts as vector f i e l d s by the regular representation.) Thus t h i s construction would involve s p l i t t i n g each tangent space into a d i r e c t sum of subspaces, assigning a degree of homogeneity to each subspace and commutation r e l a t i o n s among the subspaces, respecting these degrees. We would then l i k e to use analysis on the n i l p o t e n t groups at each tangent space (convolution operators, e t c . ) to carry out local analysis on tangent spaces is t r i v i a l , groups of the vector spaces
M . When the s p l i t t i n g of the
so that the n i l p o t e n t groups are j u s t the a d d i t i v e TMx , t h i s is the essence of the "parametrix method",
which has been enormously developed and refined in recent years (the theory o f p s e u d o - d i f f e r e n t i a l operators and t h e i r symbolic calculus). Despite the f a c t that graded n i l p o t e n t Lie algebras e x i s t in great profusion, the problem of constructing a "bundle o f n i l p o t e n t structures" as posed above seems hopelessly overdetermined, at f i r s t
examination. To recast the problem into more
34 reasonable form, l e t us note the f o l l o w i n g : 1) on M
We want to avoid topological obstructions, so we are only working l o c a l l y
.
2)
For purposes of local analysis, i t is enough to model M on a
homoqeneous space f o r a n i l p o t e n t group, since functions on a homogeneous space can always be l i f t e d to the group
(This avoids the obvious problem of f i n d i n g a graded
n i l p o t e n t Lie algebra of the same dimension as 3)
Since we want a bundle s'~ructure, we should f i r s t
a f i x e d , graded n i l p o t e n t Lie algebra g . together with a map ~ : ~ ÷ 4)
M)
L(M)
~
choose a f i b e r , namely
The data should then be the algebra
Denote by
I t is unreasonable to require that
G the corresponding n i l p o t e n t group. ~
be an exact Lie algebra
homomorphism, since this is unstablle under small perturbations (see the example to f o l l o w ) . Instead, we should only require that 5) point
The condition
x e M,
~(~)x
(2)
~
be a " p a r t i a l homomorphism".
above, stated in terms of
~ ,
should be the f u l l tangent space at
is simply that at each x .
Now that we have relaxed the requirements on the data, there e x i s t many such pairs
(~,~) .
In f a c t , given any f i n i t e l y generated Lie subalgebra h
which is t r a n s i t i v e in the sense that (~,~)
h
--X
= TMx
for
x eM
L~)
we can construct
with the a d d i t i o n a l condition t h a t a set of generators f o r
a set of generators f o r
of
~
maps onto
h . (This follows from the existence of free n i l p o t e n t
algebras). Suppose now that we have a p a i r
(~,x)
satisfying
3), 4), 5) (the precise
d e f i n i t i o n o f " p a r t i a l homomorphism" w i l l be given in the next section). The next step, in viewing M as an "approximate" homogeneous space f o r functions from
G , is to l i f t
M to G . This is no problem, at least l o c a l l y . I d e n t i f y i n g
as manifolds as always, we can l i f t neighborhood ~ of 0
in
g
a function
by setting
f(u) = f(e~(U)x)
f on M to a function
G with f
on a
35
Here x
e ~(u)
is the l o c a l flow on
is a f i x e d p o i n t o f
(the map u + e~(U)x If
M generated by the vector f i e l d
~(u) , and
M . This defines a map W : f ÷ f , which is i n j e c t i v e is s u r j e c t i v e , by
~ were a f u l l
(5)).
Lie algebra homomorphism, then
and the r e g u l a r r e p r e s e n t a t i o n of
~ .
W would i n t e r t w i n e
Since we only assume t h a t
homomorphism, t h i s is not e x a c t l y true. The l i f t i n g
i
is a p a r t i a l
problem, whose s o l u t i o n forms
the core o f t h i s chapter, is to f i n d a p a r t i a l homomorphism A : g ÷ L(2) s a t i s f y i n g the t r a n s i t i v i t y
condition
(i)
A(Y)W : W~(Y)
(ii)
A(Y)
(5) , such t h a t
is " w e l l - a p p r o x i m a t e d " by the l e f t - i n v a r i a n t
vector f i e l d on Once the l i f t i n g
G determined by
Y .
problem is solved, we can use the i n t e r t w i n i n g map W to
t r a n s f e r problems concerning the a c t i o n of the vector f i e l d s about the "almost i n v a r i a n t " vector f i e l d s
theorem", we must make precise the
homomorphism" and the approximation involved in
1.2 P a r t i a l homomorphisms
to problems
^(Y) .
Before s t a t i n g and proving the " l i f t i n g notion of "partial
~(Y)
To motivate the d e f i n i t i o n ,
(ii)
above.
consider the f o l l o w i n g
example: Let line
X = @/@x ,
Y : x ~/@y ,
acting on IR2 . Away from the
x = 0 , t h i s p a i r of vector f i e l d s spans the tangent space. On the l i n e
the vector f i e l d generated by i f we set
Y
X and Y
Z = ~,Y~
vanishes. However, acts t r a n s i t i v e l y , , then
X,Y,Z
[X,Y~ = ~/~y , so the Lie algebra in the i n f i n i t e s i m a l
sense. Furthermore,
e x a c t l y span a n i l p o t e n t Lie algebra. I f
the Heisenberg Lie a l g e b r a , with basis
x = O,
~,n,~
satisfying
~,~]
= ~ ,
~
then the
is
36 map
x : ~ -~ X , n ÷ Y , ~ ÷ Z
vector fields
on
R2 , and
x
extends to an ( e x a c t ) homomorphism from
is a smooth f u n c t i o n w i t h still
algebra generated by
X and Y'
m(n)(o) # 0
Y ' - m(x) a/~y , where
Then the v e c t o r f i e l d s
is g e n e r i c a l l y n e i t h e r n i l p o t e n t nor f i n i t e for infinitely X,Y' and Z'
: ~ ÷ X , n ~ Y' , ~ ÷ Z'
L(IR 2) such t h a t
by
span the tangent space a t each p o i n t . However, the L i e
o n l y the subspace spanned by ~'
x ~/~y
m(o) = 0 , m ' ( o ) = 1 .
X,Y' and Z' -= EX,Y~
let
to
is transitive.
Suppose we p e r t u r b t h i s example by r e p l a c i n g
dimensional ( i f
~
, then
many
n) .
On the o t h e r hand, i t
is
which is g e o m e t r i c a l l y i m p o r t a n t . I f we extends to a l i n e a r map from
~'
~,'([~,~]) = ~(~),~'(n)]
(but in g e n e r a l ,
g
into
~'(~,~)
# [x'(~),x'(~) Let us t u r n to the general s i t u a t i o n .
Suppose
r
_g =
S ~ Vk k=1
,
~j,Vk~ GVj+ k
i s a graded n i l p o t e n t L i e a l g e b r a , and
Definition
A l i n e a r map
graded s t r u c t u r e o f
:
h =
the l i n e a r map
Example
L(M) ~
is a p a r t i a l
homomorphism ( r e l a t i v e
is surjective at
×1 . . . . . Xn e
generated by the
x e M if
L(M) g
on
M , we w i l l
say t h a t
~(~)x = TMx "
are g i v e n , and l e t
{×k } .
e x i s t s a canonical graded Lie a l g e b r a
~
be the Lie sub-
Then f o r every i n t e g e r of length
r
r ~ I , there
and a p a r t i a l
homomorphism
: g ÷ h , as f o l l o w s : Let
F
to the
j + k 2 r .
is the L i e algebra of v e c t o r f i e l d s
Suppose
L(M)
algebra o f
~ : g ÷ h
EX(x) , X(y~
x e Vj , y e Vk , and
When
is any L i e a l g e b r a .
g ) , if
x(Ex,y~) whenever
h
be the free Lie algebra on
n
generators
Y l . . . . . Yn ' and l e t
37
= F/F r + l nilpotent
, with
Yk = Yk + F r + l
L i e a l g e b r a on
Proposition Vk = span
of
n
generators
~ = V1 ~ . . . ~
k-fold
" Then by d e f i n i t i o n ,
Vr
is the free r-step
Y1 . . . . . Yn "
is graded, with
commutators o f
g
and
V 1 = span { Y I . . . . . Yn }
{ Y i } . There e x i s t s
a unique partial
homomorphism : ~ ÷ F
such t h a t
~(Yi ) = Yi
(Thus we can s p l i t
" 0 ,* F r + l ÷ F + g ÷ 0
t h e e x a c t sequence
by a p a r t i a l
homomor-
phism).
Proof
Let
{H a}
be a H a l l
basis for the algebra
L i e monomial whose l e n g t h we d e n o t e by that
Fn
i s t h e subspace o f
F = s ~ Fn , and
Set
n-fold
l~I
Let
H
Fn = span {H
Then
= n}
{yi } .
,
so
Then
.
{Ym : Iml _< r }
Vk = span {Y
is a formal
: Is[
commutators o f t h e g e n e r a t o r s
F r+1 = s{F n : n ~ r + i }
Ym = H (Y 1 . . . . . Yn) .
.
F . Each
is a basis for
_g , and
: I~I = k} .
Define p(Y)
Then Since
~(Vk) = F k {Yi }
for
generate
L e t us r e t u r n property
:
Ha
1 ! k < r , and i t g ,
p is clearly
now t o t h e v e c t o r
o f the f r e e L i e a l g e b r a
F ,
phism : F + h such t h a t
~(yi)
= Xi
,
follows unique.
fields
that
p
is a partial
homomorphism.
Q.E.D.
×1 . . . . . Xn e L(M)
there exists
.
By t h e u n i v e r s a l
a u n i q u e L i e a l g e b r a homomor-
38 Setting
~ = ~ o ~ , we thus o b t a i n a p a r t i a l
homomorphism
: g÷h such that
x(yi)
In terms o f the Hall b a s i s , in
H
C~
= Xi x
i s simply the r e s u l t o f " s u b s t i t u t i n g
Xi f o r Y'"l
: ;~(Y ) = H (X 1 . . . . . Xn) •
Hence
~
has the a d d i t i o n a l p r o p e r t y t h a t ~(Vk) = span o f k - f o l d commutators o f {X i }
In p a r t i c u l a r , < r
suppose t h a t the
Xi
t o g e t h e r w i t h commutators o f the
s u f f i c e to span the tangent space a t
1.3
Lifting
Lie algebra
~
Theorem
into
x
in
Then
homomorphism
, and assume t h a t
Lemma There e x i s t s an open set around
x e M.
Fix a p a r t i a l
L(M)
.
~
~
around
~
~
Xi
of length
is s u r j e c t i v e a t
from a graded n i l p o t e n t
is s u r j e c t i v e a t some p o i n t
0
in
x .
g , and an open set
x e M.
M'
M , such t h a t the map
u ÷ eX(U)x i s a submersion from
Notation
If
be denoted by
~
X
onto
M' .
is a vector field,
t + e tX .
By d e f i n i t i o n ,
then the l o c a l f l o w generated by
X will
the induced a c t i o n on f u n c t i o n s is given
by
(~)
d
TC
f(etXy)
=
(Xf)
Proof o f Lemma The f l o w
(etXy)
u ÷ eX(U)x
exists for
fundamental e x i s t e n c e theorem f o r o r d i n a r y d i f f e r e n t i a l
u
near
0
in
~
by the
equations. The d i f f e r e n t i a l
39
o f t h i s mapping at
u = 0
is the map u ÷ ~(U)x. The i m p l i c i t
theorem thus gives the existence of such an oper set Now f i x the p o i n t
x
,
H by
and replace
function
~ .
H'
(i.e.
drop the prime). We
d e f i n e the i n t e r t w i n i n g o p e r a t o r
w (~)
c~(~l)÷ c~(~)
:
Wf(u) = f(eX(U)x) .
Let
dR : ~ ÷
L(~)
(we give
be the r i g h t r e g u l a r r e p r e s e n t a t i o n
g
the group
s t r u c t u r e determined by the Campbell-Hausdorff f o r m u l a ) :
dR(y) The l i f t i n g dR(y) .
:
It:o
theorem asserts t h a t
(u.ty)
W "approximately"
intertwines
~(y)
(The choice o f r i g h t instead of l e f t actions is d i c t a t e d by d e f i n i t i o n
and (m)).
To make t h i s p r e c i s e , l e t
= V1 ~ - . . ~ Vr be the decomposition o f of
~
~
as a graded Lie algebra. Viewing t h i s as a decomposition
as a vector space, we apply the constructions o f Chapter I , § 1.3:
Let
c = c~(~)
C = { f e C : f ( u ) = O([u[ m) m where
lul is a homogeneous norm on
f i e l d s o f order
g .
Let L
near
O}
= L(~) , and l e t
Lk
be the vector
< k at 0 .
With these p r e l i m i n a r y notions e s t a b l i s h e d , we can now s t a t e the central r e s u l t o f t h i s chapter: L i f t i n g Theorem
If
~
is a p a r t i a l homomorphism from the graded Lie algebra
i n t o the Lie algebra o f vector f i e l d s on a m a n i f o l d , which is s u r j e c t i v e at some point
x
,
then there e x i s t s a neighborhood
~ of 0
in
~
and a
40 l i n e a r map A : g ÷
L(~)
,
such t h a t (i)
W~(Y)
(ii)
A(Y)
(iii)
A
Furthermore, i f
~
=
A(Y)W
=
dR(Y)
r-step
chosen to be a p a r t i a l
homomorphism.
Remark
A
t h a t the map Y ÷ A(Y)o
§ 2. 2.1 Let
(II)
lifting
of
0
n i l p o t e n t Lie algebra, then
~ .
Note t h a t c o n d i t i o n
Proof of the L i f t i n g Let
e X E(X)Y
=
eX V
= ~d
t=O t-O _
eX+tB(X)Y
Here E(X) = I_~_D ~-D
~!-1 k
=
z
Dk
k>O
and B(X) = 0 z ~ 1-e -D = k>O "
(b k = B e r n o u l l i numbers).
(iii)
implies
to the tangent space at O.
× and Y be elements o f an a s s o c i a t i v e algebra.
D(T) = XT-TX .
e X+tY
g
A can be
Theorem
o f formal s e r i e s :
~
(Y e Vk)
is a l i n e a r isomorphism from
Basic Lie formulae
d
(I)
a
D = ad X be the d e r i v a t i o n
identities
mod Lk_ 1
is s u r j e c t i v e at
is the free
We s h a l l c a l l
(Y e ~)
b k Dk
Then one has the f o l l o w i n g
41 The meaning of
( I ) and ( I I )
is that the corresponding graded i d e n t i t i e s ,
obtained by equating terms of the same degree in (I)'
I
(II)'
n'i xny •
Here
~
~(Xny) =
=
(-1)k
z 1 k+m=n k!m!
Since
xmDk(y)
bk
o(xmDk(y))
(I) ,
i (xny + x n - l y x + . . . + y x n ) n+~
B(X) = E(X) -1 note t h a t
i t is clear that
R = L-D ,
is l e f t m u l t i p l i c a t i o n by ~(xny) = ~ ,1
X .
where
Also
(I)
is equivalent to
LD = DL .
Hence
, Xi (L-D)J(Y) ?~ l+j=n
=~
>: ~ j<_n k<_j
= n!
S (-1)k k+m:n T ~ -
z j=k
=
(-l)kxn-kDk(y)
xmDk(y)
~k+l j
We shall also need the i d e n t i t y d
d-T t=O
eX+tY+tZ
d
:~-C
I
eX+tY + d_~ I t=O
In graded terms t h i s is simply the i d e n t i t y (III)'
~(xn(y+z)) = ~(xny) + ~(xnz)
(II)
R is r i g h t m u l t i p l i c a t i o n by
where we have used the basic binomial i d e n t i t y
(III)
n :
is the symmetrisation operator:
~(xny) =
prove
z k+m=n
X , are v a l i d f o r a l l
eX+tZ t=O
To
X and L
42
2.2
Left-invariant
j u s t proved w i l l Let
n
vector fields
Our f i r s t
be to c a l c u l a t e an e x p l i c i t
a p p l i c a t i o n of the formulae
formula f o r
dR(Y)
,
Y e
be the Lie algebra o f § 1.1.3 associated w i t h the graded v e c t o r space
Let
u e g
Then the
~ .
"Bernoulli operator"
B(u)
adu 1_e-a--~-d-~
d e f i n e s a l i n e a r t r a n s f o r m a t i o n on
g
(which is a polynomial f u n c t i o n o f
u ,
by
the n i l p o t e n c e o f adu) . Lemma I f
(~)
v e ~ ,
dR(v)f(u)
Remark
Formula
i s the d i r e c t i o n a l
f e Ca(Q) ,
u e Q ,
then
d d--~t=O f ( u + t B ( u l v )
=
.
(=~=) asserts t h a t a t the p o i n t
d e r i v a t i v e in the d i r e c t i o n
u
Since
dR
Set
X = dR(u)
,
Y = dR(v) .
X,Y e n ,
f
is a polynomial
by Theorem 1.2.3 .
is a L i e algebra homomorphism, we have dR(B(u)v)
Now view
Then
the v e c t o r f i e l d
B(u)v .
Proof o f Lemma I t s u f f i c e s to prove the Lemma when function.
,
G as embedded in
=
B(X)Y
N = exp ~ ,
v i a the r i g h t r e g u l a r r e p r e s e n t a t i o n .
Then f(uv)
=
(eYf)(u)
=
eXeYf(o)
Hence dR(v)f(u)
= ~t
t=O eXetYf(o)
: eXyf(0) d =-aT
t=O eX+tB(X)Y f(O)
dR(v)
43
= y t - d It=O f ( u + t B ( u ) v )
(Note t h a t by the l o c a l n i l p o t e n c e of n
,
a l l series here are f i n i t e
when f
is
a polynomial.)
Remark The formula
(~)
l e a s t , and gives the e x p l i c i t
is v a l i d in any Lie group, when formula f o r l e f t - i n v a r i a n t
u
is near
0
at
vector f i e l d s in exponential
coordinates. The proof is the same as above, but now working in the pseudogroup of germs of a n a l y t i c t r a n s f o r m a t i o n s , instead o f the group
2.3 the f i r s t around
Formal s o l u t i o n step w i l l
u = 0
Let
Y e ~ , and set
Zmn '
where
C~(~)
will
vanishes to order
An e q u a l i t y
simply mean t h a t f o r every
-
By d e f i n i t i o n
mn eC n
(~n e Cn)
= s ~n
e
Given
f e C~(H) , WXf(u)
For t h i s purpose, i t s u f f i c e s to carry out a l l c a l c u l a t i b n s in
(as measured by the homogeneous norm) .
~
X = ~(Y) .
be to c a l c u l a t e the asymptotic expansion of the f u n c t i o n
the algebra o f formal series
for
N .
m
z mk e Cm+1 k<m
of the f l o w generated by a vector f i e l d ,
dtd
t=O Wf(tu) = ( ~ ( u ) f ) ( x )
I t e r a t i n g t h i s , we obtain the formal expansion Wf(u) :
s ~ n>O
x(u) n f ( x )
we have
> n at 0
44 Thus we can w r i t e
W = e k(u)
basic Lie formula
(II)
(a)
in the sense of asympotic expansions. Hence by the
,
wx : ~
exp ~(u) + tB(~(u))~ t=O
(This formula means t h a t to c a l c u l a t e the Taylor series of identities
(II)'
Du = ad x(u) .
to express
~(u)nx
Similar "finite"
in terms of
interpretations
WXf we can use the
a(~(u)mD~(X))
,
where
can be given to the formulas which
follow.) Since if
~
Y e Vk ,
is only a p a r t i a l
homomorphism ,
B(~(u))X : X(B(u)Y) +
of the
However,
then we f i n d t h a t
(b)
where each
B(k(u))X # x(B(u)Y) .
Z
E w(~)+k>r
is a vector f i e l d on
~(Yi) ,
and
{~i }
~(u)Z
M corresponding to a commutator of weight >r
is a graded basis f o r
converges in the asymptotic sense, since
B(u)Y
g__='=
Notice t h a t t h i s expansion
is a polynomial f u n c t i o n of
u .
Let us w r i t e t h i s as B(k(u))X : X(B(u)Y) ~ Ty(u)
S u b s t i t u t i n g t h i s in
(a)
By Lemma 11,2.2
and the formula
t h i s and the Lie formula
,
we get
(I)
,
W = e x(u) ,
the f i r s t
term is
dR(Y)W .
Using
we thus have
WX = dR(Y)W + WE(~(u)) Ty(U)
Suppose
Y e Vk ,
and consider the " e r r o r term"
This is a formal sum of terms field
(III)
It=O exp ~,(u+tB(u)Y) + --~-t It= 0 exp ~ ( u ) + t T y ( u ~
WX = T t
(c)
and using the Lie formula
on
M .
~(u)
From the s u r j e c t i v i t y
T
,
with
E(x(u)) Ty(u)
w(~) > r-k
and
T
in
(c) .
a vector
hypothesis, we conclude t h a t there e x i s t s a
45 neighborhood of
x in M on which every vector f i e l d
combination, with c o e f f i c i e n t s in Hence by s h r i n k i n g ~(u)
~ ~(Z) ,
with
H ,
C~(M) ,
we can w r i t e
can be expressed as a l i n e a r
of vector f i e l d s
E(~(u)) Ty(U)
w(~) > r - k , ~ e C~(H) ,
and
{~(Z)
: Z e g} .
as a series of terms Z e~ .
Applying the operator
W to such a term, we o b t a i n a term w ~ (z)
where
,
¢(u) = ~m(u) W~(u) e Cw(m) .
Let
{Yi : 1 ~ i < d}
be a basis f o r
]
,
and the foregoing a n a l y s i s , we can f i n d f u n c t i o n s d
(d)
W ~(Yi) = dR(Yi)W +
s s n>l j = l
with
Yi e Vni
~!~) e Cn 13
By formula
(c)
such t h a t
~!~) W ~(Yj) lJ
This series converges in the asymptotic sense. Furthermore, we know t h a t n <_ r-n i --> @I]) = 0
To w r i t e t h i s formula in more compact form, introduce the column vectors X = (x(Yi))
,
Y = (dR(Yi))
and the matrices
Define (d)'
W × = (W ~(Yi) ) .
Then
(d)
WX = Y W +
To complete the formal
becomes S ~n W X n~l
s o l u t i o n , we introduce the m a t r i x
series converges in the asymptotic sense, and Hence the geometric series T=
~ Sn n>l
S
S = E ~n "
vanishes to order
This
~ 1 a t u=O .
46
converges in the a s y m p t o t i c sense. Since ÷
(d)'
can be w r i t t e n
as
÷
(I-S) W X = Y W , ÷
(e)
solution
÷
C~
solution
in terms o f
To pass from the formal a s y m p t o t i c expansion
C=
vector fields,
Given a formal power s e r i e s , as i t s T a y l o r s e r i e s a t are
C~
f u n c t i o n s on
u = 0 .
equation
0 o ~ ,
C~
function
such t h a t
T~ = T
(e)
to a
theorem o f E. B o r e l :
having the given s e r i e s
Hence t h e r e e x i s t s a m a t r i x
By the d e f i n i t i o n
(e)
we i n v o k e a c l a s s i c a l
there exists a
T~ ,
whose e n t r i e s
in the sense o f formal T a y l o r s e r i e s
of asymptotic equality,
we can conclude from
that
(t)
W X = (I + T) Y W
where
c
at
follows that
W X = (I+T) Y W •
2.4
at
it
co
_-- #'Ic n n
mod C
is the space o f f u n c t i o n s v a n i s h i n g to i n f i t e
order
u=O.
The space .
C
is i n v a r i a n t
under a r b i t r a r y
(This is not t r u e o f the spaces
m a t i o n s . ) By the i m p l i c i t intertwining such t h a t
operator
W C (M )
Cn ,
C~
changes o f c o o r d i n a t e s on
even w i t h r e s p e c t t o l i n e a r
transfor-
f u n c t i o n theorem we can d e s c r i b e the range o f the
W as f o l l o w s :
There are c o o r d i n a t e s
(t I ..... td)
c o n s i s t s o f the f u n c t i o n s depending on the f i r s t
for
m coordinates
(m = dim M). ÷
Set
÷
Zo = ( I + 7 ) Y .
Then e q u a t i o n
(t)
t o g e t h e r w i t h the above d e s c r i p t i o n ÷
of the range of C~
W implies t h a t t h e r e e x i s t column v e c t o r s
such t h a t ÷
÷
m ÷
W X = Z° W + k=lZ Fk ~Tk
W
Fk
of f u n c t i o n s in
4?
Replace
Z°
by
Z = Z° + ~ F k ( B / ~ t k )
(~) If
w x
{Z i }
.
Then
= z w
are the components o f
Z ,
then the assumption t h a t
is a partial
x
homomorphism t o g e t h e r w i t h t h i s i n t e r t w i n i n g p r o p e r t y i m p l i e s t h a t
(:H:~) if
~i, zj-] w = w ~'([Yi,Yj~)
n i + n j _< r .
We s h a l l
construct
the d e s i r e d l i f t i n g
c e r t a i n commutators o f t h e
Zi .
( ~ )
:
Zi
A
Let us f i r s t
dR(Yi)
mod
by using c e r t a i n
o f the
Zi
and
observe that Ln._1 1 -9
Indeed, we o n l y need to v e r i f y t h i s f o r the formal s o l u t i o n t h i s p r o p e r t y o n l y depends on the T a y l o r expansions a t o f the
Zi .
But
T
is a s e r i e s o f terms
(I+T) Y ,
u = 0
Tml .- ~mk
since
of the c o e f f i c i e n t s
k > 1 ,
and one can
write
( ~ m l " ' " ~mk
with
mij e Ck(r_ni+l ) ,
p r o p e r t y o f the at
0 ,
~!~))
as i s e a s i l y
.
shows t h a t
g
i s the f r e e ,
then we d e f i n e Y l . . . . . Yn '
A
(TY)i
~ij
verified
is of order
r-step nilpotent
as f o l l o w s :
as in
= z
i
Since the v e c t o r f i e l d s
this
If
Y)
§ 1.2 .
Let
F
dR(Yj)
'
by i n d u c t i o n
( u s i n g the v a n i s h i n g
dR(Yj)
of order
~ ni - 1
at
are all 0 .
Lie algebra with generators
be the f r e e L i e a l g e b r a on
By the u n i v e r s a l
property of
< r
F ,
n
Y1 . . . . . Yn '
generators
there exists
a
unique Lie a l g e b r a homomorphism r
such t h a t
F(yi)
: F
= Zi
,
+
L(~)
1 ~ i ~ n .
Let
~ : g+
F be the p a r t i a l
homomorphism
48 of Proposition
1.2 ,
and d e f i n e
A = r o u .
Then
A
is obviously a partial
homomorphism. Note t h a t in terms o f a h a l l b a s i s , one has
A(H~(Y I . . . . . Yn )) = H~(Z 1 . . . . . Zn) , I t f o l l o w s from
(~)
and
(~)
that
A
]~I ~ r
satisfies
properties
(i)
and
(ii)
o f the Theorem. When ~ define
A
i s not the f r e e , r - s t e p n i l p o t e n t L i e a l g e b r a , then we cannot
merely by s p e c i f y i n g the v e c t o r f i e l d s
generators f o r
~ .
A
to
by l i n e a r i t y
properties
(i)
In t h i s case, we set ~ .
and
immediate consequence o f p r o p e r t y 1.1.3.
vector fields o f § 1.1.3 for
in
L0
(~)
1 ~ i < d ,
and
(~)
that
and extend A
vanish a t
A
is surjective at
(ii)
We know t h a t a t 0 .
0 .
and the s t r u c t u r e o f 0 ,
dR(Y) 0 = Dy ,
Hence i f
But t h i s is an L k , g i v e n by
by Lemma I I . 2 . 2 .
n = nI 0 . . . 0 ~ r
associated w i t h the d i r e c t sum decomposition
A(Y)o = Dy 0
But by the s t r u c t u r e o f equations
(T)
~j
,
mod
we have
is in t r i a n g u l a r
njlo
~ = V1 0 . . . 0 Vr ,
Z -J1n
Hence the system o f
form, which i m p l i e s t h a t
dim A(g)o = dim
This completes the p r o o f o f the l i f t i n g
theorem.
A l l the
i s the Lie algebra
Y e Vn
(T)
satisfies
of the Theorem.
I t only remains to v e r i f y t h a t
Proposition
A(Yi) : Z i ,
I t then f o l l o w s from
(ii)
corresponding to a set o f
then
49
§ 3..G..roup germs g..e..nerated by p a r t i a l
3.1 E x p o n e n t i a l length
r ,
coordinates.
Let
~
isomor.phisms
be a graded n i l p o t e n t
Lie algebra of
and l e t
: g + L(M) be a p a r t i a l
homomorphism. We s h a l l
assume t h a t
for
x e M ,
t h e map
u ~(U)x is a linear isomorphism from
~
We define the exponential
onto
TM x .
map at each point
x e M
by
eXPx(U ) = e ~ ( U ) x . The map
eXPx
is a diffeomorphism
o n t o an open n e i g h b o r h o o d o f Lipschitz fix
constants
xo e M ,
for
x .
from some open n e i g h b o r h o o d The s i z e o f t h i s
the coefficients
we can f i n d
a neighborhood
of
of zero in
n e i g h b o r h o o d depends on
of the vector M°
~
xo
fields
X(u)
and a f i x e d
. gcg
Thus i f
we
such
that i)
if
x e Ho ,
eXPx(Q) 2)
~
t h e map
then
eXPx
is a diffeomorphism
,
~ ,
and
Mo
x , u ~-+ eXPx(U )
is
C®
from
We now c o n s i d e r t h e " g r o u p germ" c o n s i s t i n g {mu : u e ~}
on
Mo
x ~
to
M
of the transformations
where
~u(X) = eXPx(U ) • Pick an open s u b s e t
no
compactly contained in
U,V e ~o ~ X e M 0 --> e x ( u ) e ~ ( v )
Given
x e Mo ,
it then follows by conditions
~ ,
such t h a t
x e Mo
I) and 2)
above that there exists
50 a
map
C°°
F
: Q x Q ~ o o
x
such t h a t e x(v) Furthermore,
t h e map
In the s p e c i a l
x,u,v case
e ~(u)
x = exp x ( F x ( u , v ) )
--+ Fx(U,V )
H = G , on
G ,
i s smooth.
x = identity,
of
~
as v e c t o r f i e l d s
then
on
g
d e f i n e d by t h e C a m p e l l - H a u s d o r f f
3.2 Comparison o f group germs. nilpotent
group s t r u c t u r e s
on
g
Fx
and
x = regular
is the nilpotent
representation
group m u l t i p l i c a t i o n
formula.
The comparison between t h e a d d i t i v e
in
§ 1.3.1
and
extends to the present situation,
as f o l l o w s : Theorem exists
Let
a constant
a : i/r c
,
and l e t
all
u,v e ~
Proof the s e r i e s
Fix
o
and
F(u,v)
~ C(lu[alvl
x e H
x e Ho ,
There
z-a + I v l a l u l l - a )
o
and w r i t e
F = Fx ,
i ~(F(u,v))n = z n--F.
in t h e a s y m p t o t i c sense, f o r ,
g .
exp = eXPx
Since
F(O,O) = 0 ,
expansion
f(exp F(u,v)) is valid
be a homogeneous norm on
such t h a t
IFx(U,V)-U-V! for
lul
any
f(x)
f e C~(M) .
But by d e f i n i t i o n
of
we a l s o have an a s y m p o t i c e x p a n s i o n f(exp
F(u,v))
= ~ ~ i
~(u) m ~ ( v ) n f ( x )
Hence t h e s e two a s y m p t o t i c e x p a n s i o n s must a g r e e . We c o n c l u d e t h a t
the v e c t o r
51 field
~ ( F ( u , v ) ) has an asymptotic expansion given by the power series f o r log (e x(u) e x ( v ) )
(where
log T =
s n>o
(-l)n n+z
(T-I) n
.
is the formal series inverse to the exponential
series) . By Dynkin's e x p l i c a t i o n o f the Campbell-Hausdorff formula, we know t h a t the formal series log (eXeY) = X + Y + . . . in the non-commuting indeterminants e n t i r e l y in terms o f
X,Y
rearrangement in the case
X,Y
can be rearranged to be e x p r e s s i b l e
and i t e r a t e d commutators of X = ~(u) ,
Y = ~(v)
X and Y .
Applying t h i s
and using the f a c t t h a t
p a r t i a l homomorphism, we conclude t h a t the asymptotic expansion o f
~
is a
X(F(u,v))
has the form ~(F(u,v))
Here
uv
= ~(uv) + R ( u , v )
is the n i l p o t e n t group product on
g ,
and the remainder
R is the sum
o f terms p(u,v)
where
p
{X }
,
is homogeneous o f t o t a l degree
is the image under
surjectivity in the
~ x
of
~ ,
all
~
n > r
in
o f a graded basis f o r
the commutators o f
C~(M) - module spanned by the
{X } . )
F(u,v)
= uv +
S
~ .
Since
~
,
m e C~(M) ,
and
(Because of the
~(u) , ~(v)
map, t h i s implies t h a t the asymptotic expansion of (~)
(u,v)
which occur in
R are
is an i n j e c t i v e l i n e a r
F(u,v)
is of the form
Fn(U,V ) ,
n>r
where
Fn
is a homogeneous polynomial of t o t a l degree
n
in
(u,v)
( r e l a t i v e to
the graded s t r u c t u r e on ~). To o b t a i n the estimate o f the theorem, we r e c a l l from C o r o l l a r y 1.3.1 t h a t
52
this
estimate is satisfied
to estimate
F(u,v)
by t h e d i f f e r e n c e
- uv,
We n o t e t h a t
as
u and v
uv - u - v .
Hence we o n l y need
range o v e r the bounded s e t
Fn(O,V) = Fn(U,O ) = 0 .
o
Hence
n-i
[IFn(U,v)ll <_ C z
[ulklv[ n-k
k=l
A l s o , on compact subsets o f
g
we have
[wl ~ c I~II a where
a = I/r
estimates to
and (X)
,
,
]]']I denotes a E u c l i d e a n norm on we conclude t h a t f o r
lF(u,v)
- uv[ ~ C
g .
A p p l y i n g these two
u , v e £o '
max
(]ul ak Ivl aj)
k+j=r+l l
To m a j o r i z e the r i g h t
side,
]ul ak Ivl aj
assume t h a t
~ Iv]
ilvl;
lul
~ Clul 1-a
on
Then
Ivl1+a
f o r any
u,v e ~
o
,
IF(u,v) - uv[ ~ C(lul a Ivl + lul Since
.
=/lull <-
Hence we g e t the e s t i m a t e ,
lul
n° ,
this
Iv] a)
completes t h e p r o o f o f t h e theorem.
In t h e course o f p r o v i n g t h e theorem, we a l s o e s t a b l i s h e d comparsion between the group germ
Corollary let
a = 1/r
Let
uv
F
and t h e n i l p o t e n t
be the n i l p o t e n t
(r = length of g)
.
group s t r u c t u r e
group m u l t i p l i c a t i o n
There e x i s t s
a constant
IFx(U,V) - uvl ~ C(lul a ivl + lul Iv[ a)
the following
C
on
~ ,
such t h a t
on
and
g :
53 for all
u,v e ~o
and
In p a r t i c u l a r ,
x e Me
IFx(U,V) - uvl ! C(Iul + Ivb l+a
so t h a t
Remark map
lim
[Fx(U'V)-UVl
l u l + l v l ÷o
lul+Ivl
-0
The c o r o l l a r y shows t h a t the map
u,v ÷ uv
to order greater then one at
u,v ÷ Fx(U,V)
(0,0)
.
is tangent to the
In t h i s s i t u a t i o n we have
perturbed the graded n i l p o t e n t s t r u c t u r e by adding " h i g h e r order" terms. Compare this result with
Theorem 1.3.3 ,
which treated the p e r t u r b a t i o n by "lower order"
terms.
§ 4. Examples from complex anal#sis
4.1 Real hypersurfaces in
{n+l
Some i n t e r e s t i n g examples o f t r a n s i t i v e Lie
algebras o f vector f i e l d s a r i s e in connection with "analysis on the boundary" of domains in
¢n+1
(n ~ i )
.
Here one finds a simple geometric r e l a t i o n between
the "holomorphic flatness" o f the boundary and the length o f the n i l p o t e n t Lie algebras which occur. Let
M c ¢ n+1
be a r e a l ,
C~
M is l o c a l l y definable as the set function with e.g. t h a t
df # 0 .
submanifold of real dimension { f = o} ,
where
U
is open
the algebra of complex-valued C~ functions on
T e
is a r e a l - v a l u e d
C~
in
{n+l .
M ,
and l e t
Denote by
C~(M,C)
= Der(C~(M,C))
denote the Lie algebra o f vector f i e l d s on For any
f
Thus
A l l our considerations w i l l be l o c a l , so we may assume,
M = {f = o}~ U ,
L{(M)
where
2n+I .
Lc(M) , ~
M w i t h c o e f f i c i e n t s in
w i l l denote the conjugate vector f i e l d
T ( f ) = T(~) ,
c~(M,¢)
.
54
and
we d e f i n e Let
A
Re T = ( I / 2 ) ( T + T ) ,
Im T = ( 1 / 2 i ) ( T - ~ )
.
be the algebra o f holomorphic functions on the ambient space
The i n c l u s i o n
map M c { n + l
induces the r e s t r i c t i o n
~n+l
map
A ÷ C~(M,¢) . We d e f i n e the hp.tomorphic vector f i e l d s
on
M to be those vector f i e l d s which
a n n i h i l a t e the a n t i - h o l o m o r p h i c f u n c t i o n s : LI'O(M) = {X e L$(M) : X ~ = 0 f o r a l l f e A} .
S i m i l a r l y , the anti-holomQrphic vector f i e l d s a n n i h i l a t e the holomorphic f u n c t i o n s : LO'I(M) = {X e L£(M) : X f = 0 f o r a l l f e A} .
Clearly L I , 0 = LO, 1
The f o l l o w i n g p r o p e r t i e s also hold: Proposition
LI ' 0
and
L0 ' I
L1 ' 0 ~
At each p o i n t
p e M ,
are Lie subalgebras o f
L~(M) ,
with
L0'1 = 0 .
dim~ ( L l ' O ) p
=
n ,
so t h a t
(L I ' 0 + LO'l)p
is a 2n-dimensional complex subspace o f the c o m p l e x i f i e d tangent space
Proof
I t is c l e a r from the d e f i n i t i o n
subalgebras o f
L$(M)
.
If
X e L1'0
n
L0 ' I
that ,
L 1'0
then
and
dim{ ( L l ' O ) p .
L0'1~ are Lie
X a n n i h i l a t e s the real and
imaginary parts o f the complex coordinate f u n c t i o n s , and hence remains to c a l c u l a t e
T~Mp .
X : 0 .
It
55
I f the e q u a t i o n p e r f o r m i n g an a f f i n e
f = 0
defines
transformation
M near on
p ,
{n+l
,
with
df # 0 ,
we can assume
p = o
then a f t e r and
d f p = dZn+ 1 + dZ-n+1
where
{z k}
are the complex c o o r d i n a t e s on
(~n+l .
L e t us c a l l
Zn+ 1 = w .
Then
the v e c t o r f i e l d s
Lk = fw ~-~k - f z k !~W
are t a n g e n t to
M ,
since
1<
'
k < n -
'
Lk f = 0 ,
Here
where
zk = xk + iy k .
Evidently
L k e LI ' 0
(Lk)p
by the above n o r m a l i z a t i o n
of
f .
p
and a t
P ,
'
This shows t h a t
d i m $ ( L l ' O ) p >_ n
We must have e q u a l i t y ,
,
d
however, because
2 d i m ~ ( L l ' O ) p = dim~(L 1 ' 0 + L O ' l ) p
_< dim T{Mp = 2n+l
.
This completes the p r o o f o f the p r o p o s i t i o n .
4.2 P o i n t s o f type m
By P r o p o s i t i o n
p a r t s o f the h o l o m o r p h i c v e c t o r f i e l d s o f the
2n+1
on
d i m e n s i o n a l t a n g e n t space t o
4 . 1 , we see t h a t the r e a l and i m a g i n a r y M M
span a
2n
d i m e n s i o n a l subspace
a t each p o i n t .
The q u e s t i o n o f
56
i n t e r e s t now i s to determine whether the missing d i r e c t i o n t a k i n g i t e r a t e d commutators o f these v e c t o r f i e l d s .
It
can be o b t a i n e d by
is t e c h n i c a l l y s i m p l e r
and more n a t u r a l t o work in the c o m p l e x i f i e d tangent space to
M .
Then i t
becomes a question o f examining i t e r a t e d commutators o f holomorphic and a n t i holomorphic v e c t o r f i e l d s
Definition C~(M,$))
on
M .
For each i n t e g e r
of vector fields
m~ 1 ,
let
generated by Lie brackets of l e n g t h
holomorphic and a n t i - h o l o m o r p h i c v e c t o r f i e l d s type
Lm be the module (over
on
M .
~ m o f the
A point
p e M ~s of
m if
(Lm+l) p =TcM p
and
(Lm) p # T6Mp .
(If
We s h a l l say t h a t s
<
m
.
o f type
Then i f < m .
p
no such
m exists,
p e M is o f type
is o f type
m ,
p
< m if
(L1) p
it
type.)
is o f type
s
f o r some
i t has a neighborhood c o n s i s t i n g o f p o i n t s
Note t h a t L I = L1, 0 + LO, 1
so
is of i n f i n i t e
,
is never the e n t i r e tangent space. Hence
p
is o f type
~ I ,
n e c e s s a r i l y . The n o t i o n o f type is o b v i o u s l y i n v a r i a n t under holomorphic changes o f l o c a l c o o r d i n a t e s in the ambient space
Proposition
Suppose
holomorphic v e c t o r f i e l d s free
m + I - step
YI . . . . . Yn "
such t h a t
p e M
on
~n+l
i s o f type
M which span
m <
Let
Z 1 . . . . . Zn
L 1'0
at
p ,
real n i l p o t e n t Lie algebra on
2n
generators
Then t h e r e e x i s t s a p a r t i a l
~ ( X j ) = Re Z j ,
homomorphism
~ ( Y j ) = Im Zj , x(~)p = T Mp
and
and l e t
g
be be the
X1 . . . . Xn,
57 Proof. assumption,
A l l t h a t needs to be v e r i f i e d {Re Z j }
and
{Im Z j }
span
is the s u r j e c t i v i t y
LI
(as a
C~(M,C) module)
By i n d u c t i o n we see t h a t t h e i r commutators o f l e n g t h Since
p
i s o f type
thus the f u l l
m ,
the span over
R
~ r
span
near
Lr
p .
around
o f commutators o f l e n g t h
~ m+l
p . is
tangent space.
4.3 Geometric c h a r a c t e r i s a t i o n .
The type o f a p o i n t
by the degree o f "holomorphic f l a t n e s s " of
Theorem
c o n d i t i o n . By
A point
p e M
is o f type
p e M is determined
M at
p ,
m< ~
i f and only i f
p l e x submanifold o f codimension one tangent to
M at
in the f o l l o w i n g way:
p
to o r d e r
codimension one complex submanifold tangent to a h i g h e r o r d e r a t
there is a comm ,
but no
p .
As a p r e l i m i n a r y to proving the theorem, we make an a f f i n e change o f c o o r d i n a t e s so t h a t
p = o
and the f u n c t i o n
f
d e f i n i n g the boundary is given
by f=w+w+m where
(z I . . . . . Zn,W )
write
z = (z I . . . . . Zn)
,
are l o c a l holomorphic c o o r d i n a t e s and
d~o = 0 .
and fj
= afl@zj ,
f~ = ~ f l @ ~
fw = ~fl~w
,
fw = ~fl~w
Lk = fw ~
- fk Tff
The v e c t o r f i e l d s
and t h e i r conjugates thus span
L1
T = f~ ~-
around
fw
p .
,
l < k < n
,
The v e c t o r f i e l d
We w i l l
58 together with The type of
L 1 spans the e n t i r e complexified tangent space to p
is the smallest integer
t~ around
m such that
Tp e (Lm+l) p
With the local coordinates around vector f i e l d
(~)
X around
p
chosen as above, we can w r i t e any
as
_• + d ~
X=c
p
+ nz a i ~ + b i i=l az i ~T.I --7
In p a r t i c u l a r ,
f o r the vector f i e l d
a
i
:
6ij
X = [ L j , Lk] ,
we calculate that
( f k fww - fw few )
bi = -6ik ( f j fww - - fw f j ~ ) c
= ( f ~ f j ~ - f~ f j ~ )
d
= -(fw f j ~ -
f j few )
Furthermore, under the action of
ad L. , J
the c o e f f i c i e n t s
of
X transform as
follows:
~ ai
÷ ~
1 c
÷ ~
Using these formulae:
-
6 i j {Cfww + dfw~ +
+ Cfjw + d f j ~ +
i t is a straightforward
of i t e r a t e d commutators of the vector f i e l d s
Lemma i
Suppose
n
z k=l
n ak bk s fwk + fw~ } k=l
ak
fj k
+ bk
fj~
induction to establish the form Lk' Lk :
X is a sum Of Lie monomials of length
m> 2
in the
59
vector fields
1 < k < n} .
{ L k ' Lk ;
1) The c o e f f i c i e n t s
a],bl,c,d
Then
i n the e x p r e s s i o n (~)
are sums o f terms o f
t h e form ± D1(f) D2(f)
where each
Di
d I + d2 + . . . +
to
z,z
form
to
D(f)
,
to o r d e r
di
(1 ~ d i ~ m) ,
and
dm = 2m-i . a i or b i
and a t o t a l
3) Each such term i n relative
Dm(f)
is a d i f f e r e n t i a t i o n
2) Each such term in relative
...
z,7 ,
m-i
, where
D
From Lemma 1, i t
of
involves differentiation
m
c or d
times r e l a t i v e
to
w,w ,
is a d i f f e r e n t i a t i o n
is c l e a r t h a t i f H
at
p
in
a total
of
m times
and c o n t a i n s a f a c t o r o f t h e
z,z
only of order
< m .
t h e r e e x i s t s a complex, codimension one
to o r d e r
(Lm) p #
o f m-1 times
w,w
involves differentiation
times r e l a t i v e
submanifold t a n g e n t t o
to
a total
m ,
then
T6Mp
Indeed, i n t h i s case we can make a p r e l i m i n a r y change o f c o o r d i n a t e s so t h a t the hyperplane
{w = o}
means t h a t
D(f) = o
at
o
By p a r t
3)
o f lemma 1 t h i s
order
< m.
coefficients
o f any
is tangent to when
H D
X e Lm vanish a t
to order
m
at
p = o .
is any d i f f e r e n t i a t i o n i m p l i e s t h a t the
p .
in ~/~w
This s i m p l y z,z and
only of ~/~w
This proves t h a t the t y p e o f
p
is
a t l e a s t as b i g as the maximal o r d e r o f tangency o f complex codimension one submanifolds.
To e s t i m a t e the t y p e o f
p
from above, we f i r s t
use the fomulas above
and an i n d u c t i o n argument t o prove the f o l l o w i n g :
Lemma 2. IJI + IKI = m .
Let
J, K eLNn
be g i v e n , w i t h
Then t h e r e e x i s t s a v e c t o r f i e l d
IJl
>_ I , X
IKI >_ I ,
as in
and
Lemma I ,
such t h a t
60
c =
where
R
some
is a sum o f terms o f the form
Di
is a differentiation
With t h i s type m < ~ {w=o}
K f
(z = (z I . . . . . Zn)
m .
---
,
Dm(f) ,
only of order
and i n each such term
~ m-1 .
the p r o o f o f the theorem. Suppose
p
is o f
By a h o l o m o r p h i c change o f c o o r d i n a t e s we can arrange t h a t H
(~)Jf(p)
Pm
z,~
lemma we can f i n i s h
is tangent to
where
in
D1(f)
+ R
at
p ,
= o
and
,
as above) .
IJl<
m
Indeed, i t
suffices
to r e p l a c e
w by w' = w + pm(Z),
is the h o l o m o r p h i c p a r t o f the T a y l o r p o l y n o m i a l f o r
(Since
Pm(O) = o ,
the f u n c t i o n s
h o l o m o r p h i c c o o r d i n a t e s around
p .)
z I . . . . . z n, w'
still
f(z,o)
of
degree
form l o c a l
We are assuming t h a t i f
k ~ m ,
then
(Lk) p # T6Mp By Lemma 2,
this
implies
inductively
f
for all this
J,K
with
that
= o
IJ I + IKI <_ m .
Together w i t h the above n o r m a l i z a t i o n o f
shows t h a t the complex h y p e r p l a n e
{w=o}
is t a n g e n t to
H
to o r d e r
f
> m .
This completes the p r o o f o f the theorem.
Remarks 1.
Suppose the p o i n t
p e H
shows t h a t t h e r e are h o l o m o r p h i c c o o r d i n a t e s so t h a t the T a y l o r s e r i e s f o r (t)
f(z,w)
f
= W + w+
is o f t y p e
m < =
The p r o o f above
w and z = (z I . . . . . Zn)
is o f the form ~ [aI+l~I=r CaB Za
~
+..-
around
p
,
61
Here
r = m + I
llw [I2
+
,
and the n e g l e c t e d terms are o f t h e o r d e r
Hwll llzll+
Ikll2r+1
This approximation
for
f
Furthermore, fits
naturally
the constants into
CaB
the g e n e r a l
are n o t a l l
zero.
framework o f homogeneous
norms. Namely, we d e f i n e i(z,w)I
llzl12=
where
germs o f
S 7iz i
i~II 2
,
C~ f u n c t i o n s
Then the e r r o r equality
= (llzll 2 r + Ilw!12) 1 / 2 r
at
term i n
modulo
C
r+l
p
and we d e f i n e
as in
(t)
is
§ 1.3,
a filtration
relative
O(1~,w) l r + l )
,
to this
i.e.
{C k}
on t h e
homogeneous norm.
equation
(t)
i s an
"
2. By t h e remarks j u s t approximation"
= ~w ,
,
made, we see t h a t
t o the m a n i f o l d
w + ~ +
M
at a point
i s the r e a l - a l g e b r a i c
s
of type
m
,
the "first
hypersurface
z ~ yB = 0
i l+iBl=r ( r = m + 1) , {Cij}
where
and
is a non-zero Hermitian matrix.
of coordinates
C. = 0 J
4.4
C B = CBm . In t h i s
In p a r t i c u l a r ,
or
Siegel
= w + w
+ z Cj llzjll 2 + . . .
_+ 1 .
Domains and the H e i s e n b e r g group
L e t us c o n s i d e r
i n more d e t a i l
H : {(z,w)
: Im(w) :
the example o f t h e h y p e r s u r f a c e Ilzll 2
z e sn
is the boundary o f t h e domain D = {(z,w):
Im(w)>
llzll 2}
,
when
case we can make a l i n e a r
so t h a t f(z,w)
where
{CAB} # o ,
w e ~}
m = 1 , change
82 which is a
Siegel domain o f type I I
.
By the foregoing a n a l y s i s
H
is the
simplest example o f a "complex-convex" manifold of real codimension one. (Observe t h a t the complex hyperplane D
lies strictly
H
is tangent to
is the zero set of the f u n c t i o n ,
w - w - 2i IIz[I2 ,
1 < j ~ n
span the holomorphic tangent space everywhere on
{Lj
0 ,
and
0 .)
the vector f i e l d s
,
M
,
and mutually commute.
commutation r e l a t i o n s are [Lj
where
to order one at
D and blows up e x a c t l y at the boundary p o i n t
Lj = ~ - ~ + 2i ~j ~ J
The n o n t r i v i a l
H
on one side o f t h i s hyperplane. As a consequence, the f u n c t i o n
i/w is holomorphic in Since
{w = o}
, Lk] = 6jk N
N = -2i ( ~ +
~)
[-j : I ~ j < n}
.
,
This shows t h a t the complex Lie algebra generated by
is isomorphic to the complex
(2n+l) - dimensional
Heisenberg algebra. As a basis f o r the real form o f t h i s algebra, we take
.FXj = Re(Lj) = ~1 ~-~~ + xj ~-~ ~ + yj
Yj
where
=
zj = xj + i y j
Im(Lj) =
2I ~yj ~
, w = s + it
Yj Tt
+
xj
in terms o f real coordinates. Thus
I
{Xj,Yj,Z
; 1 ~ j ~ n}
span the real tangent space to
H at each p o i n t , and
s a t i s f y the Heisenberg commutation r e l a t i o n s [Xj,Y~
: 6jk Z
( a l l o t h e r commutators being zero). Let
g
be the real Heisenberg algebra of dimension
n i l p o t e n t Lie group pbtained from
~
2n+l ,
and
G the
as usual by the Campbell-Hausdorff formula.
63 Since
is t w o - s t e p n i l p o t e n t ,
UV = U +
Pick c o o r d i n a t e s
the group s t r u c t u r e
V + - Zi
[u,v]
is
u,v e
= (C 1 . . . . . ~n) , n = (n I . . . . . nn)
for
and
g
so t h a t
the map n
~ , n , ~ ) = j=lZ (Cj Xj + nj Y j ) + ~ Z
i s a L i e a l g e b r a isomorphism from {Xj,
Y j , Z}.
For
u e g ,
where
~.n = s ~ j n j
•
on
from the p o i n t
0
write g
u = (~,n,~)
= (o,o
in
with initial
¢n+1 .
The i n t e g r a l
!zj
(*)
we f i n d
dyj d~
'
~.y+n.x+~,
conditions
T = 1 ,
of
= (~%',n+n',
- ~"~)
G
,
d-c
-
is
~+~' + ½ (~'~' - ~ ' - n ) ) .
: ~ (~j - inj)
2).
~(~,n,~)
,
starting
0
equations
= _ 1 ~- nj
-
g-x-n.y
xj = yj = s = t = 0 . t h a t the p o i n t
,
curre
the system o f o r d i n a r y d i f f e r e n t i a l
=
Thus in these c o o r d i -
the f l o w g e n e r a t e d by the v e c t o r f i e l d
~dxj _ i I d--~-- - ~- ~j
setting
, ~.n'
Hence the group s t r u c t u r e
• ~-~ e T ~ ( ~ ' n ' ~ ) satisfies
,
are
, (~',n',~'~
(~,n,~) ( ~ ' , n ' , ~ ' ) Let us c a l c u l a t e
onto the L i e a l g e b r a spanned by
we s h a l l
nates the commutation r e l a t i o n s [(~,n,~)
~
S o l v i n g these e q u a t i o n s and
e~ ( ~ ' n ' ~ )
. 0 e H
has c o o r d i n a t e s
64
This shows t h a t the map u~-+ eX(U).o The i n t e r t w i n i n g operator
is a diffeomorphism from
W : C~(M) + C~(G)
defined by
Wf(u) = f ( e ~ ( U ) . o ) can be expressed in these coordinates as Wf(~,n,~) = f ( z I . . . . . Zn,W) , where
z I . . . . . Zn,W are given by
(m)
G onto
M
65 Comments and references f o r Chapter I I
§ 1.1
The i n s p i r a t i o n f o r t h i s section was the work of Folland-Stein B ]
and Rothschild-Stein [ I ] . We have t r i e d here to recast these constructions i n t o a more geometric form, emphasizing the analogies with the case of a homogeneous space. For f u r t h e r d i f f e r e n t i a l - g e o m e t r i c aspects of t h i s s i t u a t i o n , cf. Tanaka
[2]. § 1.2
The notion of " p a r t i a l homomorphism" was introduced by Rothschild-
Stein [1] f o r the case of the free n i l p o t e n t Lie algebras. For information about free Lie algebras and P.Hall bases, cf. Bourbaki [ i ] .
§ 1.3 Stein [ ~ ,
The " L i f t i n g Theorem" was f i r s t
stated and proved by Rothschild-
from a d i f f e r e n t point of view and by somewhat d i f f e r e n t methods (the
problem of "adding variables" to make vector f i e l d s "free up to step r . " ) The present treatment is taken from Goodman [71 .
§ 2.1-2.2
The basic formula f o r the d i f f e r e n t i a l of the exponential
mapping can be found in Helgason [1]. The formal inverse to t h i s formula, i n v o l v i n g the "Bernoulli operator," also appears in Berezin B ] ,
§ 2.3-2.4
Goodman [31 , and Conze [1].
One can reverse the order of construction here, and obtain
the a p r i o r i existence of the vector f i e l d s
{Z i }
by the i m p l i c i t function
theorem. This was pointed out to the author by P. Cartier. The formal series solution then serves to calculate the Taylor expansion of the c o e f f i c i e n t s of the
{Z i }
,
and the l i f t i n g
A
is constructed from the
Zi
as in the t e x t , cf.
Goodman [7]. This procedure has the advantage of being applicable in any category where the i m p l i c i t function theorem applies, e.g. analytic.
Ca ,
real a n a l y t i c , or complex
66
§ 3.1-3.2
Theorem 3.2 is i m p l i c i t in the paper of Rothschild-Stein [1],
The presentation here is taken from Goodman [7].
§ 4
The results and proofs here are taken from Kohn [3] and Bloom-
Graham [ 1 ] , who also obtain s i m i l a r results f o r surfaces of codimension
k > 1
which are in "general p o s i t i o n " . For the c l a s s i f i c a t i o n of the i n v a r i a n t s of real hypersurfaces under holomorphic coordinate transformations, cf. Chern-Moser
[11
Chapter I I I
S i n g u l a r i n t e g r a l s on spaces of homogeneous type In t h i s chapter we shall construct a general theory of " s i n g u l a r i n t e g r a l operators" on a class of l o c a l l y compact spaces of "homogeneous t y p e . " Such a space
X will
have a "distance f u n c t i o n "
c o n d i t i o n t h a t the b a l l s of radius
p
and a measure
~
r e l a t e d by the
R have measure of the order
RQ ,
where
Q
is a p o s i t i v e number (the "homogeneous dimension" of the space). The distance function
p
is required to s a t i s f y a c e r t a i n L i p s c h i t z - c o n t i n u i t y c o n d i t i o n ,
which serves as a replacement f o r the t r i a n g l e i n e q u a l i t y . The operators we shall study are of the form T f ( x ) = PV f K ( x , y ) f ( y ) d~(y) , X where
K is a kernel which is s i n g u l a r along the diagonal
v a l u e ) . The major r e s u l t of t h i s chapter is t h a t when
(PV = p r i n c i p a l
K satisfies certain
homogeneity c o n d i t i o n s , mean-value c o n d i t i o n s , and smoothness c o n d i t i o n s , then T
defines a bounded o p e r a t o r on
L2 (X , dp) .
This is a g e n e r a l i z a t i o n of the
Calderon-Zygmund theory of s i n g u l a r i n t e g r a l o p e r a t o r s , which applies both to n i l p o t e n t Lie groups and to the group germs studied in Chapter I I . To make t h i s connection, we begin, as in Chapter I , with some basic d i f f e r e n t i a l
and i n t e g r a l
calculus on graded vector spaces w i t h d i l a t i o n s and homogeneous norms.
§ 1. Analysis on vector spaces w i t h d i l a t i o n s
1.1. Homogeneous functions and d i s t r i b u t i o n s .
Let
dimensional vector space, with a direct-sum decomposition V =
r z ~ V n=l n
V
be a r e a l , f i n i t e -
88
D e f i n e the d i l a t i o n s
{6 t
Lebesgue measure on
V
: t > o}
by
dx .
on
V
as i n
Q = s n dim (Vn)
dimension of
V .
A function
(If f
.
We s h a l l
V = V1 ,
on
V
will
refer then
g
on
V
will
f e Cc (V)
.
measure
dx
defines
g
on
V
to the i n t e g e r
( t > o)
integrable
the d i s t r i b u t i o n
g ( x ) dx
Q
as the homogeneous
be c a l l e d
homogeneous o f degree
if
f o r m u l a above shows t h a t
which i s homogeneous o f degree
which i s homogeneous o f degree
is homogeneous o f degree
{xR. : 1 < i < d}
u (u e C)
a distribution function
if
~ (~ e ~) ,
.
For e x a m p l e , t h e i n t e g r a t i o n
is a locally
Fix a basis
,
be c a l l e d homogeneous o f degree
t Q = t - u for all
dx
formula
Q = dim V).
f o ~t = t u f A distribution
§ 1 . 1 , and d e n o t e
We then have the i n t e g r a t i o n
LQ I f ( ~ t x) dx = ~ f ( x ) V V where
Ch I ,
for
V
u ,
the
El .
If
then
~ .
such t h a t
xR, e V n . ,
and l e t
{~i }
1
be t h e dual b a s i s f o r
V* .
Write
l[~fll~ : sup { I D i f ( x ) l Here
Ixl
Lemma. of degree
Suppose ~ .
: Ixl
1 < i ~ d}
is a
- f(y)[
~ M Ix-yl
Proof.
f
If
V .
CI
function
a constant
~ M l]vfl~
(Here g
= i,
and d e f i n e
.
Then we have the f o l l o w i n g
version of
homogeneous f u n c t i o n s .
There e x i s t s
If(x) Ixl
'
i s any homogeneous norm on
t h e m e a n - v a l u e theorem f o r
when
Di = ~ / ~ i -
on
M ,
Ixl ~-I
V ~ {o}
which is homogeneous
independent of
ix-yl
f
,
such t h a t
,
~ = Re ~) .
is a function
on
V ~ {o}
which i s homogeneous o f degree
u,
69 then
Ig(x)l ~ 1loll lxl ~ , where
llgIl~ : sup { I g ( x ) l
estimate for y(t)
f(x)
= x+t (y-x)
- ni .
: Ixl
- f(y) ,
: I}
,
and
z = Re u •
o b t a i n e d by i n t e g r a t i n g
0 < t ~ I .
df
We observe t h a t
Dif
Let us a p p l y t h i s along the path
i s homogeneous o f degree
Hence If( x ) " f(Y)I
~
sup s l D i f ( Y ( t ) ) I I ~ i ( x - y ) [ O~t~l M l[vfll® { sup z i y ( t ) [ x - n i O~t~l
p r o v i d e d the path To Itx[
t o the
y
does not pass through
0
0 < t < i
,
where
Ixl ~ K ( l ~ ( t ) [
IY(t)[~ so t h a t i f
Ixl
~ 2K I x - y l (2K) - I
In p a r t i c u l a r ,
the path
¥
]x+Yl S K
Ixl + I Y l )
and
Hence
+ Ix-yl)
+ Ix-yl) ,
K2(ixl ,
K ~ 1 .
,
(M = max ll~ill~ ) .
c o n t i n u e these e s t i m a t e s , we note t h a t
~ K l x I when
Ix-y[ ni}
then Ixl
~ iY(t)l
~ 2Kmlxl
does n o t pass through
i ¥ ( t ) l X-hi
Ix-ylni
• 0 ,
L Co i x l ~ - n i
and
I x - y l ni
! C1 Ixl ^ I x - y l ,
provided
Ixl
L 2K I x - y l
depending o n l y on
Corollary. it
is Lipschitz
,
K , X ,
since and
ni ~ 1 . ni .
CO and
C1
are c o n s t a n t s
This proves the Lemma.
Suppose the homogeneous norm continuous:
Ilxl - l y [ l
Here
~ c Ix-yl
ixl
is
C1
on
V ~ {o}
.
Then
70 1.2 I n t e g [ a l formulas. Suppose
Ix[
is a homogeneous norm on
V .
Then
we have the f o l l o w i n g i n t e g r a t i o n f o r m u l a :
a ~ i xB I |
where
C
Ixl -Q dx
=
C log (B/A)
i s a constant independent o f
dimension o f
A,B ,
,
and
Q
is the homogeneous
V .
To prove t h i s f o r m u l a , set
f(t)
=
I
Ixl -Q dx
( t ~ 1) .
1~Ixi~t Because the measure
Ixl -Q dx
is i n v a r i a n t under d i l a t i o n s ,
we f i n d t h a t f o r
s,t ~ I , f(st) In p a r t i c u l a r , 0 < t < I , R+
= f(s) + f(t)
this implies that then
f
.
f(1) = 0 .
I f we d e f i n e
f(t)
= -f(1/t)
i s a continuous homomorphism from the m u l t i p l i c a t i v e
to the a d d i t i v e group ~ .
Hence
More g e n e r a l l y , suppose t h a t
f(t)
= C log t
,
, group
as a s s e r t e d .
i s any continuous f u n c t i o n on
which i s homogeneous o f degree zero. Then there e x i s t s a constant
V ~ {o} m(m)
such
that I f([xl) V f o r any
f
m ( x ) I x l -Q dx = m(m) I f ( t ) R+
e L 1 (IR+ ; t -1 d t ) .
function of
LA,~
(IR+= ( 0 , ~ ) )
.
t -1 d t
(The case
f = characteristic
i s proved as above, and the general case f o l l o w s by dominated
convergence.) We s h a l l c a l l
m(m)
the mean-value o f
m .
The map ~ -~ m(~)
is a
continuous l i n e a r f u n c t i o n a l on the space o f continuous f u n c t i o n s homogeneous o f degree
0 ,
relative
to the norm
m(~) log R =
I
I~LxI~R
llmll~ •
Indeed, we have, f o r
m(x) Ix[ -q dx ,
R > i ,
71
so t h a t
lm(~)l
log R 2
114L
f
Ixl -q dx
12]xl~R and hence
(We n o r m a l i z e the measure
dx
on
V
by the c o n d i t i o n
m(1) = 1 .)
§ 2. Spaces o f homogeneous t y p e
2.1
Distance f u n c t i o n s
Let
X
be a l o c a l l y
compact H a u s d o r f f space.
Suppose
p : x× We s h a l l
call
p
x+[o,~)
.
a d i s t a n c e f u n c t i o n on
X
p r o v i d e d the f o l l o w i n g c o n d i t i o n s are
satisfied:
I)
p(x,y)
# 0 if
2)
p(x,y)
= p(y,x)
3)
The sets
x # y , and p ( x , x )
{y : p(x,y)
~ r},
for
basis f o r the neighborhoods o f
4)
There e x i s t s c o n s t a n t s [p(x,y)
We s h a l l c a l l
p(x,y)
c a l l e d the exponent o f that
- p(x,z)l
C > 0
r > 0 ,
are compact and are a
x and
~ C p(y,z) a ~(x,y)
the d i s t a n c e between
p .
= 0
0 < a < I
such t h a t
+ p ( y , z ~ 1-a
x and y .
The number a w i l l
Note t h a t a i s r e q u i r e d to be s t r i c t l y
positive,
be so
1 - a < 1 . Examples I .
dilations
6t .
Let Let
V I'I
be a graded r e a l v e c t o r space as in
§ 1.1 ,
be a smooth, symmetric homogeneous norm on
with V ,
and
72
p(x,y) = Ix'YI.
set
Then by C o r o l l a r y
Ip(x,y) Thus
4)
- p(x,z)I
is satisfied
with
2. More g e n e r a l l y , Lie algebra
V
! C [ x - y - x+z I = [Y-Zl
a = 1 .
let
X
e(x,y)
The o t h e r p r o p e r t i e s
I'I
(as a L i e a l g e b r a ) .
on
= log ( x - l y )
V
,
structure
on
map).
is clear that conditions
4) V
It
in this
as n o t e d . Then
Corollary
1.3.1
a = i/r,
function
u = x-ly
e(x,y)
p(x,y)
le(x,y)l
=
(If
,
we d e f i n e the group
,
1) - 3)
are s a t i s f i e d .
v = x-lz
= u, e ( x , z )
,
w = y-lz
= v, e(y,z)
,
= w .
is the i d e n t i t y
To e s t a b l i s h and i d e n t i f y
But
estimate ×
v = uw ,
with
so by
we have
IV-U-Wl
where
Take a smooth,
using the C a m p b e l l - H a u s d o r f f f o r m u l a , then log
case, s e t
L i e group whose
as in example 1, and d e f i n e
where log i s the i n v e r s e to the e x p o n e n t i a l map V
are obviously verified.
be any s i m p l y connected n i l p o t e n t
admits a g r a d a t i o n
symmetric homogeneous norm
1.1 ,
~ C ( l u l a l w l l - a + l u l l - a l w l a) ,
r = length
o f the g r a d a t i o n on
V .
Further,
f o r any norm
one has
lu-vl ~ K(lu-v+wl + I w l ) . By c o n s i d e r i n g the cases
[u I ~ Iw[
and
lul
! lwl
separately,
we see t h a t t h i s
g i v e s the e s t i m a t e
lU-Vl ! C {luil-alwl a + lwl} (Note t h a t we may assume
a ~ 1/2 ,
commutative and
lul
other properties
are o b v i o u s .
3.
Let
X
= Iluli.)
be a p a r t i a l
s i n c e the case
By C o r o l l a r y
a = I
means
X
1.1, this gives condition
homomorphism from a graded n i l p o t e n t
is 4) .
The
Lie a l g e b r a
V
73 i n t o the Lie a l g e b r a o f v e c t o r f i e l d s Assume t h a t f o r from to
V H
x e M ,
the map
u --+ ~(U)x
o n t o t h e t a n g e n t space a t
be d e f i n e d as in
§ 11.3.
on a m a n i f o l d
x .
M ,
as in Chapter I I .
is a linear
isomorphism
L e t the e x p o n e n t i a l map from
The analogue o f the map
V
x , y ÷ log ( x ' l y )
considered in the p r e v i o u s example is the map
e :H defined implicitly
o
×H
÷V
o
by the i d e n t i t y
exp x ( e ( x , y ) ) Here in
Jqo c
g
is a s u f f i c i e n t l y
X = Ho, p ( x , y )
s i n c e t h e maps condition
eXPx ,
4)
= Io(x,y)l x e Ho ,
w i t h the a d d i t i v e
4. Suppose filtration
it
V
Then are a l l
p
obviously satisfies
as
group o f
X
II.3.2
to compare the group germ generated by
is any s i m p l y - c o n n e c t e d n i l p o t e n t
= Ilog(x-ly)l
satisfies
of
4)
~.
V .
on t h e L i e a l g e b r a
p(x,y)
1) - 3) ,
d i f f e o m o r p h i s m s . The v e r i f i c a t i o n
V
of
X ,
L i e group. L e t
,
as in example 2. Then
in e v e r y subset where
F
be a
and put a graded v e c t o r space s t r u c t u r e
by choosing complementary subspaces t o the f i l t r a t i o n ,
C = C(~). lul
xe e g ,
i s made by e x a c t l y t h e same argument as in the preceding example,
but t h i s t i m e using Theorem
Let
small neighborhood o f a g i v e n p o i n t
§ 11.3.1.
Set
on
= y .
p
as in Chapter I .
satisfies
p(x,y) ~ ~ > 0 ,
1) - 3) ,
and
with a constant
Indeed, using the same n o t a t i o n as in example 2 above, we have
= p(x,y)
estimate for
~ e .
Hence by Theorem 1 . 3 . 1
Iv-u-wl
Remarks 1.
Remark 1 . 3 . 1 , we get the same
as in t h e graded case.
Suppose
p
i s a d i s t a n c e f u n c t i o n on
mean-geometric mean i n e q u a l i t y Ip(x,y)
and
- p(x,z)l
we have ! K~(x,y)
+ p(y,z~
.
X .
By the a r i t h m e t i c
74 In p a r t i c u l a r , p ( x , z ) ~ 2K ~ ( x , y ) so t h a t
p
satisfies
2. Condition compared to implies that
z
,
a weak form o f the t r i a n g l e
4)
p(x,y)
+ p(y,z~
on
,
p
i.e.
will y
be used in s i t u a t i o n s where
is close to
is also f a r from
inequality.
x
z
but f a r from
x .
and t h a t the d i f f e r e n c e
i s o f s m a l l e r o r d e r o f magnitude than the d i s t a n c e require
p(y,z)
p(x,y)
is small
In t h i s case 4)
ip(x,y)
(recall
- p(x,z)l
t h a t we
a > o) .
3. In a l l
the examples
2) - 4)
above the number
i n t e g e r equal to the l e n g t h o f the g r a d a t i o n on the weaker e s t i m a t e
4)
V .
r = 1/a
is a p o s i t i v e
The l o n g e r the g r a d a t i o n ,
becomes, in terms o f the comparison o f distances described
in the previous remark.
2.2 Homogeneous measures p o s i t i v e Radon measure on relative
X .
Let
X, p
be as in
We s h a l l say t h a t
to the d i s t a n c e f u n c t i o n
p ,
§ 2.1. ~
Suppose
u
is o f homogeneous t y p e ,
i f t h e r e e x i s t constants
C, Q > 0
that (~)
S p ( x , y ) -Q d~(y) ~ C log (B/A) A~p(x,y)~B
for all
x e X ,
Lemma
(i) (ii)
(iii)
and a l l
Assume
u
0 < A < B .
satisfies
(~) .
Let
m> 0 ,
is a
0 < A < B .
~ ( { y : p ( x , y ) ~ B}) ~ CBQ f p ( x , y ) -Q+~ du(y) <_ (C/m) B~ p(x,y)_
.
Then
such
75
Here the c o n s t a n t
Proof.
C
is independent o f
We e s t i m a t e the i n t e g r a l s
o f the r e g i o n o f i n t e g r a t i o n k e ~
~,A,B .
by the c l a s s i c a l
into concentric shells.
method o f decomposition
Take
R < 1 ,
and f o r
define. S k = {Y : BRk+l < p ( x , y )
Then by
~ BRk} .
(m) ,
I
p ( x , y ) -Q+e d u ( y ) ~ CB~ Rk~ log ( I / R )
.
Sk
S
p ( x , y ) -Q-~ dB(y) _< CB-~ R- ( k + l ) ~
log ( l / R )
.
Sk
Now the spheres r > o
and any
= Q
{x : p ( x , y )
y e X .
= r}
have
In p a r t i c u l a r ,
~-measure z e r o , by
~({x})
= 0
for every
(m), x .
f o r any
Hence t a k i n g
i n the e s t i m a t e s above, we have oo
p({y
: p(x,y)
~ B})
z U(Sk) k=o ClBQ
where
C1
i s independent o f
To prove
(iii)
,
B .
we choose
The same argument g i v e s n
so t h a t
(ii)
BRn+l < A ~ BRn .
e s t i m a t e s above g i v e s R" ( k + l ) ~ n k=o
p ( x , y ) - q - ~ d~(y) ~ CB-~ log ( l / R ) A~p(x y)2B
C log (I/R) ~RA)-~ _ B-~ i - R~
<_ Letting
R~ 1 ,
we o b t a i n
(iii)
,
Q.E.D.
ERA)
-
. Then the
76 Remark
I f we l e t
~ ÷ o
We s h a l l
c a l l the t r i p l e
in
(iii)
(X,p ,~)
,
we regain e s t i m a t e
satisfying
the above c o n d i t i o n s a space
o f hgmogeneous t y p e , and we s h a l l r e f e r to the number dimension o f
( X , p , ~ ) . (In a l l
from the Lemma t h a t
A + 0
or
R has measure
dimension has a geometric j u s t i f i c a t i o n . c o n t e x t , we w i l l
write
Examples 1.
X .
X ,
as in
Identifying
In t h i s case i t (~).)
< CRQ ,
by t r a n s l a t i o n - i n v a r i a n c e
.
Examples
V
for
Hence
u .
V
(X,p,~) satisfies X×X
(X,p,~)
is c l e a r from the
be Haar
by the e x p o n e n t i a l map,
S ivl -Q dv , A
f o l l o w s from the i n t e g r a l formula of in the Lemma become e q u a l i t i e s V
in t h i s case,
is a L i e - a l g e b r a
but not graded, as a L i e a l g e b r a , then
i s o f homogeneous type "near i n f i n i t y " , 4)
~
in
§ 2.1
when
in the sense t h a t
(x,y)
p
only
is away from the diagonal in
. 2.
Let
X,O
be as in
§ 2.1 , Example 3. Take f o r
which in l o c a l c o o r d i n a t e s has smooth, s t r i c t l y Lebesgue measure. For ×
~
is a space o f homogeneous t y p e , in the sense j u s t
i s only f i l t e r e d ,
condition
(i)
Then
by the same i n t e g r a t i o n f o r m u l a . I f the g r a d a t i o n on
V
is c l e a r
so t h i s use o f the term
I , 2 o r 4. Let
X w i t h i t s Lie algebra
Furthermore, the i n e q u a l i t i e s
defined. If
be an
Note t h a t by p a r t
When the choice o f
§ 2.1 ,
S p ( x , y ) -Q d~(y) = A~p(x,y)~B
g r a d a t i o n , then
will
be a simply-connected n i I p o t e n t L i e group,
we can take Lebesgue measure on
§ 1.2 .
(m)
d~(y) = dy .
Let
p(x,y) = flog (x-ly)I measUre on
B-+ =
Q is u n i q u e l y determined by
o f the Lemma a b a l l o f radius
Q as the homogeneous
the a p p l i c a t i o n s the e s t i m a t e
asymptotic e q u a l i t y when e i t h e r
(m) .
x e × ,
onto an open, r e l a t i v e l y
t h i s mapping i s o f the form
the map y
compact subset ~(x,u)du ,
,
any measure on
positive density relative ~ e(x,y)
U of V .
where
u
du
×
to
is a diffeomorphism from The image o f
d~
under
i s Lebesgue measure on
V
77 and
m is a bounded, p o s i t i v e ,
smooth f u n c t i o n on
Hence we have the
X × U .
i n t e g r a l formula
f f(Io(x,y)l) X
d~(y) = f f ( [ u l ) U
v a l i d f o r any Borel f u n c t i o n this implies that Q
~
and
f
on
IR+ .
~(x,u)du ,
By the i n t e g r a l formulas o f
p(x,y) = le(x,y)I
condition
(*)
i s the homogeneous dimension o f the graded n i l p o t e n t a l g e b r a
V .
2.3 L i p s c h i t z spaces complex-valued f u n c t i o n order
~
if
f
on
(X,~,~) X
t h e r e is a constant if(x)
for all
Let
x,y e X .
- f(y)[
Set
A(B) = { f
: I[flI~ < ~} .
Banach algebra r e l a t i v e
a uniform L i p s c h i t z c o n d i t i o n o f
~ C p(x,y) B B >0
we d e f i n e
+ sup { p ( x , y ) -B I f ( x ) x~Y
It
where
such t h a t
In g e n e r a l , f o r any
I l f l l # = sup I f ( x ) l x
,
be a space o f homogeneous type. A
satisfies C
satisfy
§ 1.2
- f(Y)I}
•
is a standard e x e r c i s e to v e r i f y
to the norm
IIfI[#
isa
that
Let
Ac(~ ) = { f e A(B) : Supp(f) is compact} .
Then by axiom
3)
f o r the d i s t a n c e f u n c t i o n , we see t h a t
space o f continuous f u n c t i o n s vanishing a t i n f i n i t y Lemma Co(X )
when
Proof.
Let a be the exponent o f
(X,p,~)
.
on Then
Ac(B ) ~ C o ( X ) ,
the
X . Ac(~ )
i s dense in
o < B < a .
Let
~ e C~ (IR)
and the l o c a l compactness o f
and set X ,
f(y)
= ~(p(x,y))
the f u n c t i o n
f
will
.
By axiom
3)
for
be compactly supported.
78 Since
m i s smooth, we o b t a i n from axiom If(y)
This shows t h a t of
X
verifies
if
- f(z)l
Hence the f u n c t i o n s in
(Note t h a t
Ac(a ) ~ Ac(B))
.
Ac(~ )
separate the p o i n t s
As remarked above, one e a s i l y
that
IIfgII~ <_ [LfEI6 Ilgl[ 6 so t h a t
the e s t i m a t e
~ C ~ ( y , z ) a ~ ( x , y ) 1-a + p ( y , z ~
f e A (a) .
o < 6 ~ a
4)
Ac(£ )
is a self-adjoint
,
subalgebra o f
Co(X ) .
The Stone-Weierstrass
theorem thus gives the asserted d e n s i t y statement.
Corollary
If
o < £ < a ,
the space
Ac(6 )
i s dense in
Lp(X,du)
for
l
§ 3.
Singulariiiintegral
3.1 S i n g u l a r k e r n e l s . homogeneous dimension diagonal in
X × X ,
Let
X,p,~)
Q and exponent
operators
be a space o f homogeneous type, w i t h
a .
Let
D = {(x,x)
: x e X}
be the
and assume t h a t K:XxX~D÷¢
i s a continuous f u n c t i o n .
Define
K="(x,y) = K ( y , x ) c (c = complex conjugate)
Definition. C, M, R > 1
F=K:
K
is a s i n g u l a r kernel on
X
if
there e x i s t constants
such t h a t the f o l l o w i n g e s t i m a t e s are s a t i s f i e d
by
F = K and
79
(I)
IF(x,Y)I
(II)
If
£ C p ( x , y ) -Q
I F (A,x) =
then f o r a l l
I
f F ( x , y ) dy , A£p(x,y)£AR x e X ,
[IF(A,x) I £ C A
(III)
If
p(y,z)
Ir(y,z)
We s h a l l c a l l condition ,
IF(A,x ) = 0
and
~ M p(x,z)
-
(I) (Ill)
,
,
if
A < R
,
if
A > R
then
(y,x)i ' <- c ~ ( y , z ) ]
P'Y'z'-Q~
the ~omio9eneity c o n d i t i o n the smoothness c o n d i t i o n
s i n g u l a r k e r n e l s , which w i l l
, .
(II)
the mean-value
Before g i v i n g examples o f
e x p l a i n the t e r m i n o l o g y , we r e c a s t these estimates
from the p o i n t o f view o f f u n c t i o n a l
analysis.
Namely, we
fix
M, R > i
and
d e f i n e the f o l l o w i n g norms: [[K[[,I
sup
p(x,y) Q [K(x,y)l
=
sup
A- I
IIKIIIII =
sup
[IK[]II
p(y,z) Q iK(y,z)
the suprema being taken over in the case o f
I IK(A,x)I
IIKIIII I , p ( y , z )
x,y,z,A
such t h a t
~ M p(x,z)
- K(y,x)l
x #y,
x # z, 0 < A <_ R ,
and
.
Define the space KM, R ( X , p , u )
= {K : K and Ks: s a t i s f y
I,II,III
We norm t h i s space by s e t t i n g
!IKHM,R = I[K[[ + [[K~[I ,
[[KI[ = [[K[[I + [IKI[ll + IIKI[ll I .
Then i t
where
is s t r a i g h t f o r w a r d
a Banach space in t h i s norm. For example, c o n d i t i o n
f o r some C} .
III
to v e r i f y for
K
that and
K
KM,R
is
implies
80
that
K
i s c o n t i n u o u s on
X x X ~ D .
norm on any compact s u b s e t o f functionals
K i
Examples nilpotent
X x X ~ D ,
> I K (A,x)
mean-value condition
A l s o the norm
[IKII I
and hence a l s o d o m i n a t e s t h e
Thus t h e c o n t i n u i t y
are p r e s e r v e d u n d e r l i m i t s
of
K
and t h e v a n i s h i n g
i n the norm
C o n s i d e r two c l a s s e s o f examples from
group case (example i ) ,
dominates t h e sup
§ 2.2
IIKIM,R
,
namely t h e graded
o r the group germ case (example 2 ) .
cases we have a graded v e c t o r space
V
o f homogeneous dimension
In both
Q
and a
Q
be t h e
mapping 0 : X×X÷V
,
such t h a t p(x,y) where
I'I
~
V .
We o b t a i n
on
V ~ {o}
dilations
on
V .
~
(V)
Give t h i s
sup { I k ( x ) i
Let
k e r n e l s as f o l l o w s :
t o be t h e space o f
which are homogeneous o f degree
x ,
relative
CI
to the
space t h e norm
[[ktt~ + flvklL
ilklL=
V .
a class of singular
be a complex number, and d e f i n e
functions
where
,
i s a smooth, s y m m e t r i c homogeneous norm on
homogeneous d i m e n s i o n o f
Let
ie(x,y)l
=
: ix
,
= 1} ,
as i n
§ 1.1.
Then
K~(V)
i s a Banach
space.
Lemma
Suppose
r = exp ( 2 ~ / i s l ) Then t h e r e e x i s t s continuous this
from
~ = -Q + i s
,
with
a real
number. Set
. an
M > o
K~(V)
into
and an i n t e g e r KM, R
(X,p,~)
map i s c o n t i n u o u s from the subspace
zero i n t o
s # o
KM, R ( X , p , ~ )
for all
n ~ 1 ,
with
K°Q (V)
sufficiently
large
so t h a t
map
R = rn of functions R .
k
When
~--~ k o e ~ = -Q ,
with mean-value
is
81
Proof
Let
k e Kx(V)
,
and s e t
IK(x,y
and hence
<
(II
,
i s homogeneous o f degree z e r o . R = exp ( 2 ~ n / I s l )
,
Then
we o b s e r v e t h a t
the function
[x] -~ k ( x )
formula of
§ 1.2,
= ~(x) if
then
k ( x ) dx
m(m) = o
.
llklI~ # ( x , y ) -Q ,
Hence by the i n t e g r a l
A
= k(e(x,y))
IIklL
ii~I I
To check c o n d i t i o n
K(x,y)
R ,
=
AR m(~) ~
t -1+is
m(~)~ is
(R i s - l ) / ( i s ~
Ris = 1 ,
so t h i s
dt
vanishes.
.
In case
s = o ,
then
by a s s u m p t i o n .
In t h e n i l p o t e n t
group case t h e t r a n s l a t i o n
invariance
gives the
of
formula
I K (A,x)
=
S k ( u ) du = 0 A
In t h e group germ c a s e , we can w r i t e
I K (A,x)
=
By t h e compact s u p p o r t o f sufficiently
large.
k(u)
S
E~(x,u) - ~ ( x , o £
When
m , A < R
this
vanishes for
we can e s t i m a t e
A > R = rn ~(x,u)
bound IIK(A,x)I
} l u l -Q+I du ~ C llkll ~ A
< C A [Ikil~ This g i v e s t h e e s t i m a t e
du
A
for
IIKIIII
.
if
- m(x,o)
n
is
and g e t t h e
82
By Lemma 1.1, we have the e s t i m a t e iK(y,z) - K(y,x)i when
p(y,z) ~ C le(y,z)
from t h i s i n e q u a l i t y , le(y,z) (cf
- e(y,x)I
we r e c a l l
- o(y,x)[
§ 2.1, Examples) .
or graded n i l p o t e n t o f an a r b i t r a r y
~ C Ilvkli ~ I o ( y , z ) - e ( y , x ) I p ( y , z ) -Q-1 , .
In o r d e r to o b t a i n e s t i m a t e
for
K
that
~ C p(x,z) a D(x,z)
+ p(y,z~Z-a
This e s t i m a t e i s v a l i d f o r any
group case.
nilpotent
(III)
(It
group.)
is v a l i d f o r
But now i f
x,y,z
in the group germ
p(x,y) ~ ~ > o
p(y,z) # M p(x,z)
in the case ,
then
le(y,z) - e ( y , x ) l ~ C M-1 [M + ~ Z - a p ( y , z ) . Since when
l-a < 1 ,
we can choose
p(y,z) ~ M p(x,z)
,
M so l a r g e t h a t
M- I
the above e s t i m a t e f o r
[M + ~ l - a
< C-2 .
IK(y,z) - K(y,x)l
Then
applies,
and we get
IIKIIII I ~ c llvkLI~ (Here of
a
k.)
i s the exponent o f Since
p ,
o(y,x) = -e(x,y)
in I I I ,
,
and the choice o f
the same estimates hold f o r
M i s independent K~ .
This
completes the p r o o f o f the Lemma.
3.2 Operators defined by s i n g u l a r kernels singular kernel. use a l i m i t i n g
K ~ KM, R (X,p,t~)
In o r d e r to d e f i n e an i n t e g r a l o p e r a t o r w i t h kernel
process. Given Km,n f ( x )
The i n t e g r a l
Let
=
m < n e2~ ,
K ,
we must
we d e f i n e the t r u n c a t e d o p e r a t o r
f K(x,y) f(y) Rm
dy
converges a b s o l u t e l y f o r any bounded, measurable f u n c t i o n
IIKm,nfll~ <- Cm,n IlflL I1KIII
be a
f
,
and
83
IIflI=
(Here This
= sup
estimate,
If(x)l
A(~)
Theorem
o < ~ <_ a
Kf
.
Letting
is a slight
was d e f i n e d i n
If
d e f i n e d in the p r e v i o u s s e c t i o n . )
use, s i n c e
l o g (R n-m)
The n e x t r e s u l t
(The space
ILK111 was
f p ( x , y ) -Q dy , Rm~p(x,y)2R n
i s o f the o r d e r
information.
and
however, i s o f l i t t l e
Cm, n =
and t h i s
,
=
m + -~
or
n ÷ +~
improvement o v e r t h i s
g i v e s no
crude e s t i m a t e .
§ 2.3):
and
f e Ac (B)
I im
K
m~n
m-~-m
,
then
f
n÷+oo
exists
in
Lp
for
1 < p ~ ~ ,
and
<_ Cp ~(Supp(f)) IIKI[ Ilfll B
IIKflIL P where
Cp
is a constant independent of
Proof
We s h a l l
K and f
.
write
Then
Km = Kin, 1
,
m < 0
Kn = K1, n
,
n >_ 1
Km, n = Km + Kn
,
and we s h a l l
investigate
each summand
separately.
Let
(II)
on
mm = Km I K
,
where
1
is the function
we see t h a t
Ii~mII~ < R IIKIIII and lim
~m(X) : m(x)
,
identically
1 .
By c o n d i t i o n
84 e x i s t s u n i f o r m l y in
X
,
I] [L
with
<-- R
IIKI]zI
.
We may w r i t e Kmf(X ) =
Hence i f
f K(x,y) Rm~p(x,y)~R
m < n < 0 ,
I Kmf(X)"
!f(y)
- f(x)l
dy + ~m(X)f(x)
.
we have
Knf(X)]
<
llKI]i IlfllB
Y
p ( x , y ) "Q+B dy
Rm
+ l lK(Rm-n,x)
I
CR(m-n)a(llKlll
by Lemma 2.2.
m< 0 .
+ [IKIIiz)[IflI B
,
This shows t h a t
e x i s t s u n i f o r m l y in in
Ilfll B
lim
Kmf(X ) : K f ( x )
x .
If
f
Hence t h i s l i m i t
To e s t i m a t e
Knf ,
is compactly supported,
e x i s t s in a l l
Lp
Kmf ,
uniformly
norms, I < p ~
we use the Schwarz i n e q u a l i t y
IKmf(x) - Knf(x)l_
so is
to o b t a i n ,
if
O<m
,
f p ( x , y ) -2Q dy} I / 2 Rm<_p(x ,y)<_Rn
< C R-Qm IIKIII llfllL2 ,
by Lerm~a 2.2.
This shows t h a t l i m Knf(x) = K~f(x) n-~
e x i s t s u n i f o r m l y in
x .
To show t h a t t h i s l i m i t kernel
K(x,y)
,
e x i s t s in
Lp, I < p < ~ ,
t r u n c a t e d in the region
p(x,y)
< R ,
we observe t h a t the is in
Lp
relative
to
X~
85 for fixed
y ,
and v i c e - v e r s a .
Let
g e Lq ,
where
1/p + 1/q = 1 .
Then by
H~Iders i n e q u a l i t y , 1
llgHLq
I K(x,y) g(x) dx I < C IlK~III p(x,y)~R - P
where Cp
=
[ p ( x , y ) -pQ dx p(x,y)~R
by Lemma 2.2, since f
p > 1 .
<
(Here we have used c o n d i t i o n
I
for
Km.)
Thus i f
is compactly supported, then < Knf'g > =
f f n K(x,y)f(y)g(x) y~ Supp(f) R~p(x,y)~R
dx dy .
By the estimate above, we have i < Knf,g > I <_ Cp p(Supp(f))IIK~'~III llfl~ ligllLq
where the constant IIKnfIIL
Cp
is independent of
<_ Cp ~(Supp(f))
K,f,g
.
,
This shows t h a t
[IKII Elf[I= ,
P and completes the proof of the theorem.
§ 4. Boundedness of s i n g u l a r i n t e g r a l operators 4.1 Almost orthogonal decompositions and denote by Tm w i l l
B(H)
Let
H be a complex H i l b e r t space,
the algebra of bounded operators on
H .
If
T e B(H) ,
denote the operator a d j o i n t to T: (Tx,y)
We denote by
lITII
=
(x,T~y)
the operator norm of
r e l a t i o n s between the norm and the
, T ,
x,y e H . and we r e c a l l the fundamental
m-algebra s t r u c t u r e on
B(H):
then
86
[iT[[
=
IIT*TII 1/2
:
lira II(T"T) n [[1/2n . rl-~oo
(The f i r s t
e q u a l i t y Is immediate from the d e f i n i t i o n o f
i n e q u a l i t y . The second e q u a l i t y
T'~ and the Schwarz
f o l l o w s from the s e l f - a d j o i n t n e s s of
T¢=T and
the spectral theorem.) Suppose now t h a t t h a t the
{T k}
such t h a t
j,k e Z .
(Set
For example, i f then
it
(¢:)
Tkl I
~ e Z 1 (E)
when
z re(k)) . keZZ
is a f a m i l y of mutually orthogonal p r o j e c t i o n s on j # k ,
is s a t i s f i e d with
and
m = 26
IIPjP~II = llPjll
=
1
zPj
Furthermore, converges in
because of the o r t h o g o n a l i t y , even though each term has norm 1. The next
theorem generalizes t h i s geometric property to the case of almost orthogonal f a m i l i e s of operators. Theorem (~':).
H ,
In t h i s case
.
(6 = Kronecker d e l t a ) .
is a basic f a c t in H i l b e r t space geometry t h a t the series
B(H) ,
say
<_ re(j-k) 2
IlmtlZ1 =
{Pk }
PjP~ = P~Pk = 0
estimate
We w i l l
and
IIT~ Tkl * ]]Tj
for all
H .
are almost orth,o~enal i f there e x i s t s a f u n c t i o n
m> o
(:'~)
{Tk}ke2Z is a f a m i l y o f operators on
If
Jc7/
Suppose
{T k}
is a f i n i t e Sj
=
is a f a m i l y o f operators on
H which s a t i s f i e s
subset, l e t ~ keJ
T k
Then iISjil <- II~!IZl
and hence the p a r t i a l sums Sj
•
are u n i f o r m l y bounded in
B(H) .
87 Corollary:
If
lim
........
then
Sjx ~ Sx exists for
x
in a dense subspace of
H ,
Iji~
S e B(H)
and
Ilsll ~ i~llZl
Proof of Theorem
We shall estimate
This is bounded by the
"~"H(SjSj)nlE.
sum of terms IIT:~I J1 Ti2 Tj2 where
i k ' Jk e J .
submultiplicative
Tin Tjn
Grouping the factors
'
i k ' Jk
together and using the
property of the norm, we obtain from m(il-J 1
)2
(4)
the estimate
~ (i2-J2)2 . . . ~(in-Jn )2
for such a term. Grouping the factors
Jk' ik+l
together, we s i m i l a r l y obtain the
estimate ~(0) ~ ( J l - i 2 ) 2 for the same term. (Note that
• .
- ~(Jn_l-in )2
~
(0)
IITjll = II~II = IIT~ Tjll 1/2 ~ ~(0).)
Taking the
geometric mean of these two estimates, we see that the term is bounded by the product ~(0) ~ ( i l - J 1) ~ ( j z - i 2 ) We may now sum this over all
""
~(jn_Z-in)
i k ' Jk e J .
~ (in-J n) •
This gives the estimate
tt(ssj)nll (J) (o)tl II Taking the ilsjll
2n-th
root and l e t t i n g
n ~ ~ ,
we obtain the stated inequality for
•
4.2 Decompositions of singular integrals geneous type, and l e t
Let
K be a singular kernel on
(X,p,u)
be a space of homo-
X in the sense of
§ 3.1.
88 We want to use the Theorem of the preceding paragraph to e s t a b l i s h t h a t the operator defined by
K
is bounded on
L 2 (X, du).
For t h i s we shall decompose
K i n t o a sum of almost orthogonal operators. Let the constants
M,R > 1
be such t h a t
K e KM, R (X,p,u)-
For
j e Z ,
define I K ( x , y ) , i f Rj ~ p ( x , y ) ~ Rj + l Kj ( x , y ) =
L o
,
otherwise
and set Tjf(x) for
:
f e L2 (X, d~) .
L2(X, du). {Tj}j~ °
f K j ( x , y ) f ( y ) dy Let
IIAII
,
denote the operator norm of an operator
A on
Then we have the f o l l o w i n g estimate which shows that the two f a m i l i e s and
{Tj}
are both almost orthogonal.
(This separation of
j > o
j~o and
j ~ 0 corresponds to the two s i n g u l a r i t i e s
of
K :
the p o i n t at i n f i n i t y
and the d i a g o n a l . ) Lemma
There is a constant
C ,
independent of
K ,
such t h a t when
j,Z
have the same sign, then
[ETj T~I] + IIT~ TZl] 2 CR-ajj-zl (The norm
HKHM,R was defined in
Proof.
If
A
IIKLI2 R
§ 3.1.
Here
a
is the exponent of
is an i n t e g r a l operator w i t h kernel
A(x,y),
(X,p,~).)
then by the
Schwarz i n e q u a l i t y one has the pointwise estimate I A f ( x ) l 2 <_ ( I I A ( x , z ) I d z )
IIA(x,y)IIf(Y)I
2 dy o
I n t e g r a t i n g t h i s estimate, we f i n d t h a t (*)
llAI1 < [sup f I A ( x , y ) idy~ I / 2 ~ u p f I A ( x , y ) I d x ~ 1/2 x y Let us apply t h i s estimate to
Tj .
By c o n d i t i o n
(I)
on
K ,
we have
89
I
lITjll <_ iIKi]I
p ( x , y ) -Q dy
RJ
<_ (c log R) [[Klit , where
C is independent of
bounded, and i t w i l l N.
(N w i l l
K .
Thus the operators
{Tj}
are a l l uniformly
s u f f i c e to prove the lemma when l j - l l
~ N ,
f o r any fixed
be chosen in the course of the proof and w i l l depend on
the distance function
p
,
but the choice w i l l
M,R ,
and
be independent of
K e KM,R ( X , p , ~ ) . ) The operator
TjT#
is an i n t e g r a l operator with kernel
Gjz(x,y) = ~ K j ( x , z ) K l ( y , z ) c dz.
Since both
K and
K
estimates we obtain f o r
are assumed to s a t i s f y IITj T~I1 w i l l
to e s t i m a t e the r i g h t side of
(~)
(I),
(II),
also apply to
when
(111)
IIT~ T l l I .
of
§ 3.1 ,
the
Thus i t is enough
A(x,y) = GjZ (x,y) .
We shall e s t a b l i s h the i n e q u a l i t i e s
I sup
K .
(x,y)Idy
if
I ~ j
sup IIGjl (x,y)Idx < CRa(z-j) llKII~,R , Y
if
j ~l
provided t h a t of
flGjl
ilKll~,R ,
X
j,l
~
CRa ( j ' l )
are of the same sign and
lj-ll
~ N ,
where
Once t h i s is done, we observe t h a t Gjl ( x , y ) : G/j ( y , x ) c
Hence (m*)
I
implies that i f
jl
~ 0
and
lj-ll
sup flGjz (x,y)tdy < CR-alj-sl IIKIIMZR Syp ./'tGjl
(x,y)ldx < CR-alj-zl
IlKll2 R
~ N ,
then
N is independent
90 Using t h i s in
(m),
To prove
we w i l l
(~m) ,
Suppose f i r s t
that
E = {(y,z)
obtain the estimate of the lemma.
we consider the cases
Z > j .
Fix
x ,
and
j ~ Z
separately.
and set
: Rj ~ p ( x , z ) ~ Rj + l
A l l estimates take place on
I ~ j
,
RZ ~ p ( y , z ) L RZ+l} .
E .
We w i l l make a three-term collapsing sum estimate of the left-hand side of
(mm) ,
of
§ 3.1
corresponding roughly to the three conditions on the kernels
GjZ ( x , y ) = f
K and K~ .
Kj(x,z)
+ ~(y,x) + Kz(y,x
(I),
(II),
(III)
Namely, we w r i t e
~Kz(y,z ) - K ( y , x ~ c dz
- Kz(y,x~C f K j ( x , z ) dz
)c
f K j ( x , z ) dz
Thus we have f I G j z ( x , y ) I d y 5 ~f I K j ( x , z ) I I K ( y , z ) + ff E
- K ( y , x ) I d y dz
IKj(x,z)IIK(y,x)
- Kz(y,x)Idy dz
+ I f K j ( x , z ) dz I f I K z ( y , x ) i dy
(Note t h a t
Kz(y,z ) = K(y,z)
I I , 12 , 13 ,
13
is the simplest to estimate. Indeed, by
I IKz(y,x)I dy <_ IIKIII (II)
Call the terms in t h i s sum
r e s p e c t i v e l y . We shall estimate each term separately.
The term
and by
when (y,z) e E.)
(C log R) ,
,
I f K j ( x , z ) dz I <_ llKllll "
I
CRaj
,
if
J ~Z 0
0
,
if
j>O
(I)
,
91
Thus i f and 1
j > 0 ,
then
11 = 0 ,
while if
j ~ 0 ,
then
1 < 0
also, since
are assumed to have the same s i g n . Hence in any case we g e t the e s t i m a t e
13 <_ C R a ( j - l )
To e s t i m a t e
12 ,
n o t e t h a t the i n t e g r a n d i s zero when
RZ < p ( x , y )
F u r t h e r m o r e , when
IIKII I IIKHII •
< RZ+l
(y,z)
e E ,
then by axiom
4)
on the d i s t a n c e f u n c t i o n we
have Ip(x,y)
- p(z,y)l
~ C p(x,z) a [o(x,z) CRl + a j + ( l - a ) Z
+ p(y,z~l-a
EI+RJ-/]
< CR/+a(J -Z)
since
j-1
< 0 .
Here
C
is a constant independent of
J+ = {y : ( y , z ) then t h i s
e E f o r some z, and p ( x , y )
.
I f we w r i t e
~ RZ+1} ,
l a s t e s t i m a t e shows t h a t J+c
Similarly,
j,l
if
{y : RZ+l < _ p ( x , y )
<_ RZ+l
~
+ CRa ( j - / ) ]
} .
we w r i t e J_ = {y : ( y , z )
e E f o r some z , and p ( x , y )
< RZ} ,
then the same e s t i m a t e shows t h a t J_c{y
We now choose
: RZE1 - C R a ( j - l ~ < p ( x , y ) < RZ} .
N so t h a t CR-aN
and we require t h a t
lj-ll
<_ i / 2 ,
>_ N .
Then we can estimate
12
as f o l l o w s : Write
j
92 12 =
f f
IKj(x,z)l[K(y,x)l
/(y,z)eEL
dy dz .
LyeJ+vJ_] By condition
(1)
on the kernel
12 _
IIKII~
K ,
we thus have
RJ<_P(x,z)
J
By the homogeneity condition f o r the measure u and J_ ,
c : CRa ( j - / )
< I/2
0 <_ c < 1/2 , To e s t i m a t e
kernel
K .
If
.
¢I+ci ~T:T-~J
'
But
¢1+cl L.-i--:TEj < 3c
log if
J+
this gives the estimate
12 <_ c IKII 1 log where
and the above estimates f o r
,
so t h i s gives the d e s i r e d estimate f o r 11 , (y,z)
12 .
we must use the smoothness c o n d i t i o n e E ,
(III)
on the
then
p(X,Z) < Rj-£+1 p(y,z) . We now impose the additional requirement on N that RN'I
>_
M
,
where M is the constant in condition
(Ill)
.
Then i f
l-j
we have a
IK(y,z)-
K(y,x)I
<_ !IK!III I ( ~ )
p(Y,Z) -Q
< [IKIIII I Ra ( j - / ) + a
p ( y , z )-Q .
_
Thus II = U
IKj(x'z)IIK(Y'Z)
- K(y'x)I
dy dz
> N and
(y,z) e E ,
93
<- IIKIIIII Ra(J-/) E SSlKj(x'z)I
C NKIIII I IIKll I
Ra ( j - Z )
This completes the estimates in the case For the case
j ~ I
,
P(Y'z)-Q dy dz
I > j .
we simply interchange the roles of
x
and
y
in the
above argument, i . e . we w r i t e Gjl(x,y ) = S~j(x,z)
- K(x,y~
K l ( y , z ) C dz
+ [K(x,y) - Kj(x,y~
S Kl(Y,z)C dz
+ K j ( x , y ) } K / ( y , z ) c dz
,
and make the analogous estimates. This completes the proof of the lemma.
Remarks 1.
Suppose the kernel
K a c t u a l l y has mean value zero , i n . t h e
sense t h a t S K(x,y) dy : 0 A~p(x,y)~AR f o r some R > 1
12 = 13 = 0
and a l l
A > 0 .
,
Suppose the same also holds f o r
K
Then
in the above argument, and gjl(x,y)
= f~Kj(x,z)
- K(x,y~
Kz(y,z) c dz
The geometric basis f o r the e n t i r e lemma is then t h a t on the set
E where the
i n t e g r a t i o n takes place, the r a t i o of the distances admits the bound
~ The smoothness c o n d i t i o n terms of t h i s r a t i o . estimate f o r 2.
~ Rj-£+1 (III)
for
K ,
on the other hand, is expressed in
This explains the appearance of the q u a n t i t y
j-I
in the
[ITj T~I .
I f we r e s t r i c t e d our a t t e n t i o n to kernels w i t h mean value zero, in the
94
sense of the preceding remark, then i t would be s u f f i c i e n t measure
~
to know t h a t the
satisfied ~({y : p ( x , y ) ~ R}) ~ CRQ
f o r some constant
C and a l l
x,R .
Indeed, in t h i s case we would have the
estimate S p ( x , y ) "Q d~(y) ~ C(B/A) Q A~p(x,y)~B and the estimate of the i n t e g r a l estimate on the i n t e g r a l of
11
t h i s q u a n t i t y as
A -7 B
in the proof above only needed t h i s l a s t
o ( x , y ) -Q .
c o n d i t i o n , however, we must replace
,
In order to perturb the mean-value-zero
(B/A) Q by
Log (B/A) .
The vanishing o f
then compensates f o r the non-zero mean-value.
3. For the case o f kernels with mean-value zero, axiom
4)
on the distance
f u n c t i o n is not needed in the proof o f the lemma. This only entered i n t o the estimation of
12 .
95 4.3
~p
Boundedeness
neous type, and l e t in
§ 3.1 ,
KM,R (X,p,~)
w i t h norm
IK~M,R .
Theorem 3.2 we know t h a t by
K)
(1 <..~ }o...~.)
be a space o f homoge-
If
K e KM,R is a s i n g u l a r k e r n e l , then by
K defines a
"principal-value"
Ac(~ )
into
operator (also denoted
Lp(X,u) ,
for
o < ~ ~ a
and
We can now strenthen t h i s r e s u l t , as f o l l o w s :
Theorem
The operator
K maps Lp
More p r e c i s e l y , there e x i s t s a constant
(~'=)
HKfHLp <_
for
(X,p,~)
be the Banach space of s i n g u l a r kernels defined
mapping the L i p s c h i t z space
I < p < = .
Let
1
continuously into
Cp ,
independent of
Lp , K ,
for
1 < p <
such t h a t
Cp JJKJJM, R nfJJLp ,
. By Lemma 4.2 and C o r o l l a r y 4.1, we know t h a t
(~)
holds when
p = 2 . Define the truncated kernel K~(x'Y) = l J ( x ' Y ) ' ,
otherwise i f ~ <_ p ( x, , y ) . < 1/~
Then we claim t h a t there e x i s t constants
,
M and C ,
K and
such that
(*~)
f p(x,z)~Mp(y,z)
JK ( x , y ) - K ( x , z ) I
dx ~ C IIKIJ .
Indeed, i f we c a l c u l a t e the same i n t e g r a l K
independent of
,
and use the smoothness c o n d i t i o n ( I I I )
on
f o r the kernel K ,
K instead of
we obtain the m a j o r i z a t i o n
IIKjl p ( y , z ) a p ( x , z ) ~ # p ( y , z ) P(x'Y)-Q-a dx .
This in turn is majorized by C IIKJl by part ( i i i )
of Lemma 2.2 .
to estimate the e r r o r involved in replacing
K
because of the i n e q u a l i t y
+ P(Z.Y)]
vanishes when
p(x,y)
and
p(x,y) ~ K~(x,z) p(x,z)
by
K in ,
(*m) .
Thus we only need Note t h a t
the integrand i n
are outside an i n t e r v a l
(C-I~, C~- I )
(~) ,
where
96
C > 1 (I)
i s a c o n s t a n t depending o n l y on
on
K ,
K and M .
we can thus bound t h e e r r o r
2 IIKII
I AuB E
From t h e h o m o g e n e i t y c o n d i t i o n
by
p ( x , y ) -Q dx , E
where A
= { x : C- I
g
B
s _< p ( x , y )
= { x : £-1 ~ p ( x , y )
< ~} S C~ - 1 }
By t h e d e f i n i t i o n
o f a homogeneous measure, t h i s
independently of
£ .
With
(*)
This p r o v e s
for
p = 2
.
integral
i s bounded by
(*m)
and
(*m)
established,
the proof for
f o l l o w s from a " c o v e r i n g lemma", which p r o v e s t h a t t h e o p e r a t o r s type
(1,1)
,
uniformly
in
£ ,
and from t h e M a r c i n k i e w i c z
which p r o v e s t h a t t h e o p e r a t o r s < C IIKIJ . range
KE a r e bounded on
Since t h e same i s t r u e f o r
2 < p < ~
f o l l o w s by d u a l i t y
§ 5
5.1
K~
Graded n i l p o t e n t
(resp.
K°Q)
homogeneous o f degree real
s # o
Lemma 3.1
(resp. and
£
a r e o f weak
interpolation
theorem,
Lp ,
1 < p < 2 ,
K~ ,
t h e boundedness i n t h e
s
w i t h norm
( c f . Comments and r e f e r e n c e s ) .
groups 6t
Let
be a g r a d e d , s i m p l y - c o n n e c t e d
nil-
and smooth, s y m m e t r i c homogeneous norm
Ixj
be t h e space o f ~ = -Q + i s
,
CI with
Theorem 4 . 3
,
a bounded o p e r a t o r
K
G
functions
-Q
G ~ {e}
G ,
From
the kernel
= k(x-ly)
Lp(G)
,
1 < p < ~ ,
when
k
.
which a r e
with mean-value zero).
we c o n c l u d e t h a t
on
in
Q = homogeneous dimension o f
homogeneous o f degree
K(x,y)
defines
the o p e r a t o r s
K
1 < p < 2
Examples
potent Lie group, with dilations Let
C1 IIKII,
is a function
and
97 in
K~ or
K°Q .
Evidently
Under d i l a t i o n s ,
K commutes with l e f t
K transforms by K(~o~t)
t -is
=
In p a r t i c u l a r , when k e K°Q ,
(K~)o~
then
t
•
K commutes w i t h d i l a t i o n s .
For the a p p l i c a t i o n s to group representations in Chapter IV, i t w i l l important to know t h a t f o r homogeneous kernels o f degree mean-value o f the kernel is not o n l y a s u f f i c i e n t , f o r boundedness on kernel
k
G .
t r a n s l a t i o n by elements of
L2(G )
-Q ,
be
the vanishing
but also a necessary c o n d i t i o n ,
of a s i n g u l a r convolution o p e r a t o r . Since any such
can be w r i t t e n as
k(x) = ko(X) + c l x l -Q , where
ko
has mean-value zero, i t s u f f i c e s to consider the p a r t i c u l a r kernel
Ixl -Q
Theorem G ~ {e} .
Let
~
be any d i s t r i b u t i o n on
Then convolution by
bounded o p e r a t o r on
Proof
~
(defined on
G such t h a t C~(G))
~ = Ixl -Q
on
does not extend to a
L2(G ) .
(Sketch)
be " r e g u l a r i z e d " at
e
Since
Ix[ -Q
is not i n t e g r a b l e at
to give a d i s t r i b u t i o n .
x = e ,
i t must
One such r e g u l a r i z a t i o n is
e v i d e n t l y the d i s t r i b u t i o n
(~)
< T'~ > = ~ I (~1 e { ~)( x}) " [ x
If - T
u
is any o t h e r d i s t r i b u t i o n
is a f i n i t e
6t ,
convolution o p e r a t o r on {e}
was bounded on
I
such t h a t
~(x) dx
o
~ = ixl -Q
away from
e ,
l i n e a r combination o f d e r i v a t i v e s o f the d e l t a f u n c t i o n at
Using the d i l a t i o n s
f u n c t i o n at
~+ id^x,
it L2(G )
is simple to show t h a t i f then
p - T
p
Thus i t
e .
defined a bounded
would be a m u l t i p l e of the d e l t a
(no d e r i v a t i v e s could occur). This in turn would imply t h a t L2 .
then
is enough to show t h a t convolution by
T
is not
T
98 bounded on
L2 . T ,
To prove the unboundedness o f o f the f u n c t i o n control
I x l -Q
either
o v e r the s i n g u l a r i t y
Take a f u n c t i o n
f e Ca(G) f(x)
By the i n t e g r a t i o n
e ,
=
the n o n - i n t e g r a b i l i t y
Since we have a l r e a d y gained some
i s e a s i e r t o use the s i n g u l a r i t y
f > o
and
Ixl) -I
[xl ~ 2 .
when
we have
F u r t h e r m o r e , by the mean value theorem, i f
l lxl-
at
dx ! C1 + C2 ~ dt 2 t(log t) 2
But we know from C o r o l l a r i e s
1/a
it
§ 1.2 ,
If( u) - f(v)i
where
or at
such t h a t
formula of
I [f(x)l 2
f e L2(G ) .
at
e
= Ix[ -Q/2 ( l o g
G
Thus
at
we may e x p l o i t
! C(Iul-
Ivl)Ivl
lUl ~ IVl
,
then
-(Q+2)/2
1 . 3 . 1 and 111.1.1 t h a t
IxwLE ~ c [xy-xl < C (Ixy-x-yL
+ IYl)
< C (Ixll-alyl
a + { x l a l y l 1-a + l Y l )
i s the l e n g t h o f the f i l t r a t i o n
on
G .
It follows
from these e s t i m a t e s
that If(xy)
,
- f ( x ) l 2 ! C Ixl -Q-2a j y l 2a
whenever
Ixl ~ A IYl
following
e s t i m a t e f o r the
IYI < i .
and
llRyf - f[Ik2
if
IYI <- i ,
this
modulus o f c o n t i n u i t y
L2
(~)
Integrating
!
where
of right
C lYl a ,
Ryf(X) = f ( x y )
inequality,
.
we g e t the
translations
on
f
:
99 To show t h a t r i g h t convolution by in
(m) .
T
is unbounded, w r i t e
T=o+p
,
as
Then
f ~'~ ~ : ly{
dy
lyl Q so i t is evident from
(mm) that
f * o e L2(G) .
On the other hand,
•
f ~ p(x) = IY ~1 f(xy)
dy
LylQ But by the estimates above, i f
IYl ~ ~Ixl Hence i f
Ixl ~ I/~ ,
~ > o
is small, then
---> IxYI ~ ~ Ixl
then since
f > o ,
f m p(x) 7 l ~ l y l ~ i x l
we have
f(xy)
dy
!yl Q
> C ixl "Q/2 (log I x l ) - I I~ Ixl i > C ixl -Q/2 by the i n t e g r a t i o n formula of
dy lyl e
,
§ 1.2 . This makes i t
clear that
f m p ~ L2(G) ,
and proves the theorem.
Remark
In the proof j u s t o u t l i n e d , we used
f e C~(G)
which does not
have compact support. To make the proof complete, one must show t h a t there is a sequence o f t r u n c a t i o n s { f n ma}
is bounded in
fn of f , L2
but
{fn m p}
done using the same estimates ( c f .
5.2 and l e t
F
smooth and compactly supported, such t h a t is unbounded in
L2 .
This can be
comments and references).
F i l t e r e d n i l p o t e n t 9roups be any p o s i t i v e f i l t r a t i o n
Let on
g_ ,
g
be a r e a l , n i l p o t e n t Lie a l g e b r a , as in
§ 1.2.1 .
Let
{6t }
and
10o Ixl
be d i l a t i o n s
the f i l t r a t i o n
and a homogeneous norm, r e s p e c t i v e l y , which are compatible w i t h
F ,
as in
§ 1.3.1 .
(Thus
dt
is not an exact Lie algebra
automorphism, i n g e n e r a l . )
Denote by
G the v e c t o r space
g
w i t h Lie group
s t r u c t u r e given by the Campbell-Hausdorff f o r m u l a . In
§ 1.3.3
we found t h a t near i n f i n i t y ,
the group s t r u c t u r e o f
G was
asymptotic t o the group s t r u c t u r e associated w i t h the graded L i e algebra Thus we might expect t h a t the r e s u l t s o f § 5.1
should also be v a l i d on
provided we deal w i t h kernels which are o n l y s i n g u l a r infinity. of
g
This i s the content o f the next theorem.
relative
Let
k
be a l o c a l l y
and homogeneous o f degree assume a l s o t h a t
k
G ,
not i n t e g r a b l e ) a t
(Q = homogeneous dimension
Proof
-Q + i s
i n t e g r a b l e f u n c t i o n on
on a neighborhood
f~
f mk
i s bounded on
of infinity.
Lp(G) ,
The o p e r a t o r in question has kernel
boundedness on
(If
p(x,y) = Ix-lyl
.
Since
k
j,l
K(x,y) = k(y-lx)
.
To prove
§ 4.2, relative
i s assumed to be l o c a l l y
l a r g e and p o s i t i v e ( n o t a t i o n as in
Going back to Example 4 and Remark 2 o f Remarks I , 3 of § 4.2 ,
§ 4.2)
§ 2.1 ,
s = o , Then the
i s only necessary in t h i s case to e s t i m a t e the norm o f the o p e r a t o r s for
C1
1 < p < ~ .
L2 , we use the method o f decomposition in
distance function
G which is
has mean-value zero on a neighborhood o f i n f i n i t y . )
convolution operator
T~T/
.
to the given f i l t r a t i o n . )
Theorem
it
(i.e.
gr(g)
to the
integrable, TjT~_
and
. Lemma 3.1 ,
we f i n d t h a t the p r o o f o f Lemma 4.2 is s t i l l
and v a l i d in
t h i s c o n t e x t . The e s s e n t i a l p o i n t i s t h a t the estimates o f Lemma 4.2 o n l y i n v o l v e K(x,z)
,
K(x,y)
and
K(y,z)
for
Rj ~ p ( x , z ) < _ Rj + l When
j and I
i s also l a r g e
are s u f f i c i e n t l y
x,y,z ,
such t h a t
R1 ~ p ( y , z ) < _ RZ+I .
l a r g e , then these i n e q u a l i t i e s
(§ 2 . 1 , Remark 2 ) , and hence
as in the graded n i l p o t e n t case. This proves
p
and L2
K satisfy
imply t h a t
p(x,y)
the same estimates
boundedness. Boundedness on
Lp ,
101
1 < p < ~ , f o l l o w s as in Theorem 4.3 .
5.3
Group germs
potent Lie algebra
V
Let
x e H ,
v
from
isomorphism from
§ II.3.1
that
be a p a r t i a l
homomorphism from a graded n i l -
i n t o the L i e a l g e b r a o f
We assume t h a t f o r a l l
is a linear
~
H
C= v e c t o r f i e l d s
on a m a n i f o l d
M
the map
~
~(v) x
V
o n t o the t a n g e n t space t o
can be covered by open sets
M
X ,
at
x .
We know
f o r which the map
e :XxX÷V defined implicitly
by the i d e n t i t y ex ( e ( x ' y ) )
x = y ,
1)
e
C=
2)
For each
e x i s t s and s a t i s f i e s
is
; x ,
the p a r t i a l
maps
y ~-~ e ( x , y )
are diffeomorphisms o f Let
p(x,y) = lo(x,y)l
,
nates has smooth, s t r i c t l y (X,p,p)
positive
~
u
e
is near
satisfies
density relative
the i d e n t i t i e s
e(x,y) : -e(y,x)
4)
0(x,eX(U)x)
so t h a t
:
X
V .
which in l o c a l c o o r d i -
t o Lebesgue measure. Then
§ 2.1 Example 3, and § 2.2 Example 2 ) .
3)
0 in V ,
o n t o an open subset o f
be any measure on
i s a space o f homogeneous t y p e ( c f .
Note t h a t the map
provided
and l e t
X
;
u ,
e1(U)x e X .
.
102 In o r d e r t o a n a l y s e the i n t e r p l a y fields
on
X ,
m i s a f u n c t i o n on
defined for e C~(X) , a function
on
V
and v e c t o r
we i n t r o d u c e the n o t a t i o n ~(x;u) = ~(e1(U)x)
if
between v e c t o r f i e l d s
x e X then
H .
and
u
~(x;u)
f on V ,
,
We t a k e
X
sufficiently
small so t h a t
l y i n g i n a f i x e d neighborhood is
C~
on
and d e f i n e
X × ~ .
~ o f 0 in V .
In p a r t i c u l a r ,
m(x) = f ( e ( y , x ) )
,
for
m(x;u) If
i f we s t a r t
y
fixed,
is
with
then by 4) we
have
~(y;u) = f(u)
Recall from the l i f t i n g then t h e r e i s a v e c t o r f i e l d
.
theorem o f Chapter I I t h a t i f T
x~w
on ~
( ~ ( w ) ~ ) ( x ; u ) = dR(w) m(x;u) + TX, w m(x;u)
(If)
Tx, w
Here
dR
§ 11.2.2) Tx, w
denotes the r i g h t ,
and
< m-1
vector field dR(w) .
holds, i.e.
x(w)
(IZl)
if
V
The p o i n t o f the l i f t i n g
theorem i n t h i s
i n the e x p o n e n t i a l c o o r d i n a t e s centered a t
~
i s o f t h e form
~(x) = f(e(y,x))
(cf.
the v e c t o r f i e l d
is " w e l l - a p p r o x i m a t e d " by the l e f t - i n v a r i a n t
In p a r t i c u l a r ,
from (4) and ( I )
u=o .
Note t h a t in t h e p r e s e n t s i t u a t i o n
is u n i q u e l y d e f i n e d by p r o p e r t y ( I ) .
case is t h a t ( I I )
at
r e g u l a r r e p r e s e n t a t i o n o f the L i e a l g e b r a
m e Ca(M) .
x e X ,
such t h a t
(1)
is o f o r d e r
w e Vm and
x ,
the
vector field ,
then we o b t a i n
the r e l a t i o n
(~(W)~)(X) : ( d R ( w ) f ) ( o ( y , x ) ) With these p r e l i m i n a r i e s
settled,
+ Ty,wf(O(y,x))
.
we now c o n s i d e r o p e r a t o r s on
X
o f the
form
K~(x) = I m(Y) K ( x , y , X where
K(x,y,u)
is a f u n c t i o n on
8(y,x))
X x X × V ,
du(y)
,
smooth i n
x
and
y ,
and having
103 a prescribed singularity
in
u
at
superposition of multiplication
u = o .
Such an o p e r a t o r can be viewed as a
o p e r a t o r s and " a p p r o x i m a t e " r i g h t - c o n v o l u t i o n e(y,x) = y-lx)
o p e r a t o r s (Recall t h a t in the group case,
.
The classes o f kernels
we s h a l l consider are the f o l l o w i n g : Definition
1.
A function
f o r every p o s i t i v e i n t e g e r
K(x,y) =
K on
X×X
i s a kernel o f type
s 7 o
if
m we can w r i t e N E ai(x) i=I
k i ( e ( Y , X ) ) b i ( Y ) + Em(x,y) ,
where (a)
The f u n c t i o n s a i ,
b i e C~(X) ;
(b)
The f u n c t i o n s k i ( u )
homogeneous o f degree s = 0 (c) (Here m ,
and
~
= -Q)
C~ on V ~ { o } , and
mi ~ s - Q ( w i t h mean-value zero i f ;
The remainder term
Q = homogeneous dimension o f
are
V .
Em e C~(XxX) . The number
N
is allowed to vary w i t h
of course.)
Theorem 1
If
K
is a kernel o f type
A m(x) = f K(x,y) m(y) d~(y) X initially
d e f i n e d on
l
Cc(X ) ,
(The i n t e g r a l
Proof
then the o p e r a t o r
,
extends to a continuous o p e r a t o r on
Lp(X) ,
i s taken in the p r i n c i p a l - v a l u e sense when
s > o ,
~ C p ( x , y ) -Q+s
this inequality
and Lemma 2 . 2 , gives the estimates
,
for
s = o.)
We e v i d e n t l y have IK(x,y)I
In the case
s > o ,
t o g e t h e r w i t h the compact support o f
104 I sup x
f IK(x,y)l X
d~(y) <
sup y
f IK(x,y)l X
du(x) <
i
Using H~Ider's i n e q u a l i t y , 1 5 P < ~
one then shows e a s i l y t h a t
( c f . p r o o f o f Lemma 4 . 2 , f o r the case
A
is bounded on
p = 2).
The case
Lp ,
s = o
follows
from Lemma 3.1 and Theorem 4.3 .
D e f i n i t i o n 2. is o f type
s ,
A linear operator
s > o ,
A
mapping
C~(X)
i n t o f u n c t i o n s on
X
if
A m(x) : f K ( x , y ) m(y) d~(y) , X where
K
is a kernel of type
s .
If
s = o ,
we say
A
is o f type
0
if
A m(x) = PV f K ( x , y ) m(y) du(y) + a ( x ) m(x) , X where
K
i s a kernel o f type
0
and
By Theorem 1, an o p e r a t o r t o r from
Lp(X)
differential
to
o p e r a t o r on
distribution
D(Af)
Remarks 1. into
Lp(X) ,
C~(X) .
for
X with
on
× .
If
A
Indeed, suppose
J ( x , v ) dv
o f type
I < p < ~
J
C~ f u n c t i o n o f
x .
o f a kernel o f type
If
C~ c o e f f i c i e n t s ,
m e C~(X) .
extends to a continuous operaf e Lp(X)
and
D
then
will
denote the
DAf
s > o ,
then
A
is a
maps C~(X)
Then we can w r i t e
m(y) d~(y) = I k(v) m ( x ; - v ) J ( x , v ) dv ,
i s the image o f the measure
By assumption,
s > o
is an o p e r a t o r o f type
i k(0(y,x))
where
A
a e C#(X) .
d~(y)
under the map y ~-~ 0 ( y , x )
.
is a smooth f u n c t i o n , so the r i g h t side o f t h i s formula is a The a s s e r t i o n f o l l o w s from t h i s c a l c u l a t i o n and the d e f i n i t i o n s ,
105
2. The space o f o p e r a t o r s o f type multiplication 3. I f
by
C'(X)
,
f e C~(Xx~)
K(x,y) f ( x , 0 ( y , x ) )
s e r i e s in
i s i n v a r i a n t under l e f t
and r i g h t
and also under t r a n s p o s i t i o n . and vanishes t o o r d e r
by the homogeneous norm on then
s
V ,
cf. § I.I.3)
is a kernel o f type
,
m > o and i f
s+m
at K
u = o
(as measured
is a kernel o f type
(Expand
f(x,u)
in a T a y l o r
u .)
To t r e a t the i n t e r a c t i o n between o p e r a t o r s defined by kernels o f type and d i f f e r e n t i a l
3.
which is spanned over
DO(X)m be the module o f d i f f e r e n t i a l
Let C'(X)
by
x(w I ) wi e V
s
operators on X we i n t r o d u c e the f o l l o w i n g f i l t r a t i o n :
Definition
where
s ,
o p e r a t o r s on
and the o p e r a t o r s o f the form
1
~(w k) ,
...
is homogeneous o f degree
ni ,
and
n I + . . . + nk ~ m .
We s h a l l X-degree ~ m .
r e f e r to elements o f
operators of
These modules are i n v a r i a n t under t r a n s p o s i t i o n ( r e l a t i v e
p a i r i n g given by i n t e g r a t i o n over
Theorem 2 m< s ,
DO(A)m as d i f f e r e n t i a l
If
A
to the
M .)
is an o p e r a t o r o f type
then t h e r e e x i s t o p e r a t o r s
AI and A2
s > o ,
o f type
and
s - m ,
D e DO(X)m
5
with
such t h a t
[AA ~ = A 1 Dm for all
~ e Cc(X ) .
Proof A
A2~
I t is o b v i o u s l y s u f f i c i e n t
an o p e r a t o r w i t h kernel
homogeneous o f degree
m ,
to c o n s i d e r the case
K(x,y) = a(x) k(e(y,x)) and
k
is a
b(y)
Ca f u n c t i o n on
,
D = X(w)
where V ~ {o}
w e V ,
and is
homogeneous
106
o f degree
s - Q .
Denote by the function
K(1 )
the function
x r-+ k ( e ( y , x ) )
(m)
.
K(I ) (x,y)
o b t a i n e d by a p p l y i n g t h e
By f o r m u l a
(III)
= dR(w) k ( e ( y , x ) )
Since t h e v e c t o r f i e l d
D
to
we can w r i t e
+ Ty,w k ( e ( y , x ) )
is of order
Ty,w on
vector field
.
< m - I
,
it
can be
e x p r e s s e d as a sum o f terms o f t h e form
a(y,u) where
a
is a
v e V
i s homogeneous o f degree
Ty,w k(u)
C~ f u n c t i o n
a
,
which vanishes to o r d e r n .
(cf.
> n - m + I -
Chapter I ,
§ 1.3).
at
u = o ,
and
Hence the f u n c t i o n
i s a sum o f terms
a(y,u) with
Dv
as above and
expansion in s - m + i
u ,
kI
kl(U ) ,
homogeneous o f degree
we f i n d
t h a t the f u n c t i o n
s - n - Q .
Ty,w k ( o ( y , x ) )
Taking the T a y l o r i s a kernel o f t y p e
.
To a n a l y s e the l e a d i n g term
in
(m) ,
set
F = dR(w) k
where t h e d e r i v a t i v e s the distribution s - m - Q .
If
a r e taken i n t h e d i s t r i b u t i o n
k(u) du . s > m ,
f(u)
It
follows
Then as a d i s t r i b u t i o n ,
F
is
k
with
homogeneous o f degree
the pointwise derivative
= ~ t t= 0
i s a homogeneous f u n c t i o n
sense by i d e n t i f y i n g
k(u(tw))
o f degree
u ~ 0
s - m - Q ,
that the distribution
F = f(u)
,
du
and hence i s l o c a l l y
integrable.
107 in t h i s
case.
In the case We c l a i m t h a t
(~)
f
s = m ,
the f u n c t i o n
f(u)
is homogeneous o f degree
-Q .
has mean-value z e r o , and t h a t F = PV(f) + Ca ,
where
C
we f i r s t
is a c o n s t a n t , and
a
i s the d e l t a f u n c t i o n a t
choose the c o n s t a n t
0 .
so t h a t the mean-value o f
To prove t h i s ,
g(u) : f(u)
-
~lul -Q
is z e r o . The d i s t r i b u t i o n
G
=
F
-
PV(g)
is then homogeneous o f degree
-Q ,
mlul -Q But t h i s
implies that
and d e r i v a t i v e s
G
linear
o f the d e l t a f u n c t i o n ,
luI 1
however,
T
f
C # 0 .
Hence
G
where
lul
T
Iol]
I
m
lul Q
~(o)
i s n o t homogeneous o f degree
a(x) f(e(y,x))
ax
lul du
lU >1
t r a n s f o r m s by
The f o r e g o i n g a n a l y s i s thus proves t h a t
where
BT
is the d i s t r i b u t i o n
has mean-value z e r o , and by homogeneity we o b t a i n
modulo o p e r a t o r s o f t y p e
c o i n c i d e s w i t h the f u n c t i o n
c o m b i n a t i o n o f the d i s t r i b u t i o n
< T,~oa t > = < T,~ > + C l o g ( t ) with
0
du .
is a finite
< Under d i l a t i o n s ,
and away from
b(y)
s - m+ 1
i s the d e l t a f u n c t i o n a t
DA
-Q
unless
B = 0 .
Thus
(**) is an o p e r a t o r w i t h k e r n e l
, (plus a term
C a ( x ) b(y) a x ( y )
when
x) .
Taking t r a n s p o s e s , we o b t a i n the same c o n c l u s i o n f o r
AD ,
Q.E.D.
s = m ,
108 5.4
Boundedness on Sobolev spaces
In t h i s section we want to e s t a b l i s h
the smoothing p r o p e r t i e s o f the class of i n t e g r a l operators o f type
s
introduced
in the previous s e c t i o n . For t h i s purpose we introduce the f o l l o w i n g class o f "Sobolev spaces." t h a t the set
We continue the assumptions and n o t a t i o n o f
X has compact closure in
neighborhood o f
w
I I I = I~11 + . . . +
If
l~nI
{w }
for
Definition
I
with
S~(X) III
V ,
I = { a l . . . . . an}
is smooth on a
If
~ m .
and denote by
I < p < =
(D1f
~ .) .
the degree of
i s an o r d e r e d c o l l e c t i o n
and
of indices,
set
m is a non-negative i n t e g e r , then the f e LP(x)
is the d i s t r i b u t i o n
Dlf e LP(x)
for all
d e r i v a t i v e , using the dual~ty defined
=
l i~<m
IIDIfI[Lp(X)
As an immediate consequence o f Theorems 1 and 2 o f If
such t h a t
Set
Ilfllp,m Theorem i
la[
~(w n)
consists of a l l functions
by the measure
u
and d e f i n e
DI = ~(w 1) . . .
space
and the measure
and assume
X .
Pick a graded basis homogeneity of
M ,
§ 5.3 ,
A
is an o p e r a t o r of type
§ 5.3 , m, m a
we have non-negative i n t e g e r ,
then A : L P ( x ) + SmP(X) continuously, for
l
We would l i k e to extend t h i s r e s u l t , and show t h a t S~
continuously i n t o
S~+m f o r a l l
k .
For t h i s we w i l l
A
o f type
m maps
need the f o l l o w i n g
commutation formula: Theorem 2
Assume t h a t the graded Lie algebra
elements o f degree one. Let
A
V
is generated by i t s
be an i n t e g r a l o p e r a t o r o f type
s > o
on
X and
109
let
D e DO(~)m .
operators
Then t h e r e e x i s t
Di e DO(X)m
operators
Ai
of type
s
and d i f f e r e n t i a l
such t h a t n
DA =
Theorem 2 w i l l
follow
does n o t r e q u i r e t h a t this
result,
% A i Di i=l
V
we choose a graded b a s i s
Theorem 2'
type
Let
V
A
is
As
of type
{w }
s + l~i
more general
result,
which
elements o f degree one. To s t a t e for
V
as above. Assume t h a t the
r .
be an i n t e g r a l
be homogeneous o f degree s ,
from the f o l l o w i n g
be g e n e r a t e d by i t s
l e n g t h o f t h e g r a d a t i o n on
w e V
easily
m .
operator of type
Then t h e r e e x i s t
- m ,
and
R
integral
of type
s
s > o
on
X
operators
s + r - m + i
and l e t Ao
,
of
such
that
X(w) A = A X(w) + Ao +
E
A
l~i>m
Remark ~(w ) e DO(X)r involving
R
Suppose for all
m = 1 . ~ ,
it
with
Theorem 2 f o r t h e case
As ,
and
x(w)
V ,
is o f t y p e
in t h i s
0
then
case.
x(ws)
the s p e c i a l
case i n which
is the left-invariant
i s the sum o f p r o d u c t s o f
So suppose
k
we can compose
case f o l l o w s
i s homogeneous o f degree
s .
Isl
I~I
- I
of
This gives
by i n d u c t i o n .
idea of the proof,
is exactly
vector field
t h a t the terms
I f we a l s o assume t h a t the
the essential A
Since
§ 5.3
an o p e r a t o r o f t y p e
The g e n e r a l
To c l a r i f y
s + r .
from Theorem 2 o f
and o b t a i n
m = 1 .
P r o o f o f Theorem 2'
V ,
A
x(w ) .
s
o f degree one. By Theorem 2 o f § 5.3 ,
these v e c t o r f i e l d s
consider first
R
follows
can be absorbed in
elements o f degree one g e n e r a t e vector fields
Then
x(ws) + z R s
let
us
a c o n v o l u t i o n o p e r a t o r on
dR(w) .
s - Q ,
and
m e C;(V)
.
Since
110 we are d e f i n i n g the group s t r u c t u r e on the formula f o r the a d j o i n t (~)
V
using the Campbell-Hausdorf f o r m u l a ,
representation of
V
becomes
vwv -1 = ead(v)w
Thus we can w r i t e (m m k)(uw) : ~ m(uwv "1) k(v) dv V = f ~(uv -1 ead(v)w) k(v) dv . V Replacing
w
by
(~)
tw
in t h i s formula and d i f f e r e n t i a t i n g
dR(w)(m mk)(u) = f ~ ( u v - l , v ) V
at
t = o ,
we f i n d t h a t
k(v) dv ,
where ~ ( u , v ) : dR(ead(v)w) ~(u) .
We can expand ead(v)w = w + z pc(v) w
where
p~
are polynomial f u n c t i o n s on
the automorphism
6t
to the i d e n t i t y
p~(~t v) = t l~l-m p~(v) Since
p~
i~I ~ m .
is a polynomial and
,
V
(We f i x
(~),
w
in t h i s argument). Applying
we f i n d t h a t
.
p~(o) = 0 ,
this implies that
p~ = o
for
Thus the f u n c t i o n s ks(v ) = p~(v) k(v)
are homogeneous o f degree
(~)
as
s + [~[ - m - Q .
Using them, we can w r i t e formula
111 dR(w)(m :'= k) : (dR(w)m) :'= k +
~
I~i>m
( d R ( w ) m ) :~, k s
This is the d e s i r e d commutation formula i n t h i s s p e c i a l case. To t r e a t the general case, we need formulas s i m i l a r to Consider f i r s t
(~) v
the analogue o f the a d j o i n t r e p r e s e n t a t i o n . For
near
0 in V ,
X given by
we have a l o c a l one-parameter group o f l o c a l diffeomorphisms o f t
(~)
and
~-+ e ~(v) e t~(w) e - ~ ( v )
Denote the g e n e r a t o r o f t h i s group by
E(v,w) :
E(v,w) ~(x) = T t t=o ~ ( e - ~ ( v ) e t a ( w ) e~(v) x) ,
for field
m e C~(X) . on
It
X which depends smoothly on
Lemma functions
If
f
on
1)
2)
i s c l e a r from the d e f i n i t i o n
w e V X × ~
v ,
when v
is homogeneous of degree
functions
v ,--+ f
E(v,w)
is a
v a r i e s in
Q .
m ,
C~ v e c t o r
then there e x i s t
C~
such t h a t
E(v,w) = x(ead(v)w) + z f ( - , v )
the
that
(x,v)
Proof o f the Lemma:
vanish
to order
x(w ) ;
r
- m + 1
at
v = o
.
S t a r t i n g w i t h the formal i d e n t i t y
e X Y e-X = eadX Y , (adX(y) = XY-YX) ,
one employs the same s o r t o f argument t h a t was used in the
p r o o f o f Theorem 3.2 o f Chapter I f .
The d e t a i l s are l e f t
Completion o f p r o o f o f theorem: degree § 5.3 ,
s-Q
Let
k e C~(V~{o})
(and w i t h vanishing mean-value, in case
given
m e C#(X) ,
we can w r i t e
to the reader.
s=o) .
be homogeneous o f Then by Remark I in
112
(~)'
/ k(e(y,x)) X
~(y) d~(y) = I m ( x ; - v ) k(v) J ( x , v ) dv.
I f we apply the v e c t o r f i e l d will
z(w)
to the r i g h t s i d e , the d i f f e n t i a t i o n s
o n l y c o n t r i b u t e an o p e r a t o r o f type
z(w) ~ ( x ; - v ) =
s .
By d e f i n i t i o n ,
on
one has
~ t t=o ~ ( e - Z ( v ) etZ(W)x)
= (E(v,w)m)(e-~(V)x) .
Using the Lemma above and the formula f o r
~(w) ~ ( x ; - v ) =
exp(ad v) w ,
we f i n d t h a t
(~(w)~)(x;-v) +
z
p~ ( v ) ( x ( w ) ~ ) ( x ; - v )
]~l>m +~f
C~
C~
S u b s t i t u t i n g t h i s in Am o f type
(~)'
s + l~I - m ,
,
(x,v)(~(w)~)(x;-v)
we see t h a t the terms i n v o l v i n g
by
pm give o p e r a t o r s
as in the case o f an exact c o n v o l u t i o n o p e r a t o r . The
a d d i t i o n a l terms i n v o l v i n g the f u n c t i o n s s + r - m+ i ,
.
Remark 3
in
§ 5.3 .
f
contribute operators
R
o f type
This proves Theorem 2' in the general
case.
Corollary
Assume t h a t the Lie algebra
o f degree one. Let
A
V
i s generated by i t s elements
be an i n t e g r a l o p e r a t o r o f type
s > o
on
× ,
with
s
an i n t e g e r . Then
A : s~(x) ~ S~+s(X) continuously, for Proof
1 < p < ~
Let
as a sum o f products
and
D e DO(~)m+s DID 2 ,
with
o f t h i s s e c t i o n and Theorem 2 o f
m = 0,1,2,--. By the g e n e r a t i n g c o n d i t i o n , we can w r i t e D e DO(~)s § 5.3 ,
and
D2 e DO(~)m .
we f i n d t h a t
D
Using Theorem 2
113
DA = z Ai Di ,
with
Ai
operators of type
and t h e i r transposes
map C~(X)
equation is v a l i d not only on then
Af e Lp(X)
0
and
Die DO(~)m .
into itself, C~(X) ,
Ai ( D i f )
This completes the proof.
derivative
•
Ai ,
Di
i t f o l l o w s t h a t t h i s operator
but also on
and the d i s t r i b u t i o n
Since the operators
S~(X) . D(Af)
Thus i f
is the
Lp
f e S~(X) , function
114 Comments and references f o r Chapter I I I
§ 1.1
See Folland ~ ] and Folland-Stein [ ~ for further information about
homogeneous functions and d i s t r i b u t i o n s . The proof of Lemma I . I is adapted from KorAnyi-V~gi [ i ] .
§ 1.2
These integral formulas appear in Knapp-Stein [ I ] . A d i f f e r e n t i a l -
geometric construction of the fibering of Lebesgue measure by the "spheres" { I x l = r}
is given in Cotlar-Sandosky ~ ] .
§ 2.1-2.2
The presentation here is a synthesis of the treatments in
Koranyi-Vagi ~ i ] , Knapp-Stein [ i ] , Folland-Stein [ i ] and Rothschild-Stein [1]. In p a r t i c u l a r , Kor~nyi-V~gi were the f i r s t
to emphasize the role played by the
"Lipschitz-condition" 4) on the distance function. The map e in was introduced by Folland-Stein ~ ] .
§ 2.1, Example 3
The v e r i f i c a t i o n that the associated
distance
function s a t i s f i e s axiom 4 was done by Rothschild-Stein [1]; cf. Goodman [7]. I f (X, p, ~) is a space of homogeneous type, in the sense of § 2.2, then i t also s a t i s f i e s the axioms of Chapter I I I of Coiffman-Weiss [1], by v i r t u e of Lemma 2.2. The additional conditionsthat we have imposed which are not used by Coiffman-Weiss are the Lipschitz condition (4) on the distance function, and the logarithmic estimate (~) r e l a t i n g the measure and the distance function. In return, we are able to prove Lp-boundedness of singular integral operators, while they must assume an a-priori
L2 estimate (or prove
L2
boundedness via harmonic analysis, in
applications).
§ 2.3
This is adapted from Kor~nyi-Wgi
§ 3.1
The same references as in
[1].
§ 2.1-2.2. Our goal in this axiomatic
formulation is to isolate the a p r i o r i information necessary for proving boundedness of singular i n t e g r a l s . For example, Lemma 3.1 can be generalized to include kernels of the form
k(x, e ( x , y ) ) ,
where
k(x,v)
is
C1 on
X x (W{o})
and
115 homogeneous of degree
-Q
in
v ,
with vanishing mean-value. Kernels of this sort
n a t u r a l l y occur in the generalizations of the results of Chapter IV, § 3 concerning h y p o e l l i p t i c operators (cf. Rothschild-Stein [1]).
§ 3.2
This is adapted from Knapp-Stein [ ~ .
§ 4.1
The results of t h i s section go back to Cotlar, in connection with
estimates f o r the classical H i l b e r t transform, cf. Knapp-Stein [11 and CoiffmanWeiss [ ~ ,
Chapter VI.
§ 4.2
These estimates are taken from Knapp-Stein [1], Folland-Stein [ ~
and Rothschild-Stein [ I ] , but adapted to the present axiomatic formulation.
§ 4.3 estimate
(~)
§ 5.1
For the proof of and
L2
Lp
boundedness,
1 < p < 2 as a consequence of
boundedness, cf. Coiffman-Weiss [ i I , Chapter I I I .
These results are due to Knapp-Stein [11 . The proof of the "un-
boundedness" theorem given here is taken from Goodman [5]. Strichartz [~ has studied singular integrals via the (additive) Fourier transform on certain n i l potent groups.
§ 5.2
These results are new. I t would be interesting to extend the
comparsion theorem in with kernels
k(y - I x)
§ 3.3 and
to the graded structure, and
§ 5.3
of Chapter I to a comparison between the operators k(y - I m x) , k
where
~ means m u l t i p l i c a t i o n r e l a t i v e
s a t i s f i e s the conditions of Theorem 5.2.
The results here are taken from Folland-Stein [1] and Rothschild-
Stein [ I I , reformulated in the context of Chapter I I .
§ 5.4
The d e f i n i t i o n of the chain of Sobolev spaces is adapted from
Folland-Stein [ ~ ,
Folland [21, and Rothschild-Stein ~1]. Theorem 2' is stated by
116 Rothschild-Stein. The proof here, based on the a d j o i n t representation,is new, as is the Lemma. The Corollary was proved by Folland [2] in the context of a " s t r a t i f i e d " n i l p o t e n t group (a graded group generated by i t s elements of degree one). For comparisons between these Sobolev spaces and the usual Sobolev spaces, and f o r the corresponding L i p s c h i t z spaces, cf. Folland-Stein ~1], Folland [2], and RothschildStein [ 9 . In t h i s chapter we have r e s t r i c t e d a t t e n t i o n to operators on scalar-valued f u n c t i o n s , to minimize the notational burden. Everything works equally well f o r functions with values in a H i l b e r t space, and operator-valued kernels. This generalization w i l l be used in Chapter IV, § I , without f u r t h e r mention (cf. Knapp-Stein [ 1 ] ) .
Chapter IV
Applications
In t h i s chapter we apply the results of the previous chapters to three areas of analysis. The f i r s t
is the study of i r r e d u c i b i l i t y
and equivalences among
p r i n c i p a l series representations f o r real-rank one semi-simple Lie groups. In the so-called "non-compact p i c t u r e " , these representations act on
L2(V ) ,
V a nil-
potent group. The " i n t e r t w i n i n g i n t e g r a l s " are s i n g u l a r i n t e g r a l operators on
V
of the type studied in Chapter I I I . The second a p p l i c a t i o n is the use of non-commutative harmonic analysis on the Heisenberg group to study the Hardy space The orthogonal projection onto the space of
H2 L2
on a Siegel domain of type I I . boundary values of
H2
functions
is a singular integral operator, and we calculate i t s operator-valued Fourier transform. (In t h i s case the boundedness of t h i s operator on using the Plancherel theorem f o r the Heisenberg group.)
L2
can be proved
The Szeg~ kernel, which
reproduces a holomorphic function from i t s boundary values, is calculated using the Fourier inversion formula on the Heisenberggroup. The goal of the t h i r d section is to establish precise r e g u l a r i t y properties f o r certain h y p o e l l i p t i c d i f f e r e n t i a l operators associated with t r a n s i t i v e Lie algebras of vector f i e l d s . This involves using the f u l l machinery of Chapte~ I I and I I I .
The basic idea, however, is quite simple. Using the l i f t i n g
theorem, one
reduces the problem to the consideration of "approximately i n v a r i a n t " operators on a graded n i l p o t e n t group. The corresponding "exactly i n v a r i a n t " operators, which are required to be s u i t a b l y homogeneous under d i l a t i o n s , have homogeneous fundamental s o l u t i o n s . Approximate fundamental solutions f o r the o r i g i n a l operators are then constructed using the group germ generated by the vector f i e l d s and the homogeneous fundamental s o l u t i o n s . The r e s u l t i n g i n t e g r a l operators are of the type studied in Chapter I I I .
The boundedness of these operators on various function
spaces y i e l d s the desired r e g u l a r i t y properties of the o r i g i n a l d i f f e r e n t i a l operators.
118
§ 1.
Intertwinin9 operators
Let
G
be a semi-simple
c e n t e r . The lwasawa decomposition o f
G
is
1.1 Bruhat decomposition and i n t e g r a l L i e group w i t h f i n i t e
formulas
G = KAN ,
where
N
is n i l p o t e n t ,
A ~IR Z
a maximal compact subgroup o f shall
restrict
i s a v e c t o r group n o r m a l i z i n g G .
The i n t e g e r
our a t t e n t i o n to the case
Z
I = I .
e i t h e r commutative o r t w o - s t e p n i l p o t e n t ,
i s the r e a l In t h i s
and the a c t i o n o f
N ,
and
rank o f
on
We
G .
case the group Ad(A)
is
K
N
N
is
will
f u r n i s h a group o f d i l a t i o n s .
Let
M and
r e s p e c t i v e l y . Then
M'
denote the c e n t r a l i z e r
M normalizes
N ,
and the n o r m a l i z e r of
A in K ,
and
B = MAN
i s a closed subgroup o f
G .
Assuming t h a t r e a l - r a n k
(G) = 1 ,
one knows t h a t
(M'/M) = 2 .
Pick
w e M'
with
w ~ M .
waw
Then -1
=a
w2 e M , -I
,
and
aeA
wMw-I=M
We d e f i n e
V = w N w- I
.
Thus
V
is a n i l p o t e n t group isomorphic to
N ,
and
w B w- I = MAV .
The map from the product m a n i f o l d diffeomorphism onto an open subset o f The Bruhat decomposition a s s e r t s
that
u
to
G given by
( b , v ) ~-~ bv
is a
G whose complement has Haar measure zero.
cosets:
G= ( B w B )
B × V
B
G
i s the d i s j o i n t
union o f
B
double
119
Multiplying
on t h e r i g h t
by
G :
Thus i f
g e G
and
n e N ,
v e V
such t h a t
w ,
we can w r i t e
(BV) ~ (Bw)
g ~ Bw ,
this
decomposition
as
.
then there exist
meM,
unique elements
aeA,
g = man v
We s h a l l g~-+ a(g)
write ,
m = m(g) g~-+ v(g)
,
a = a(g)
,
v = v(g)
.
a r e smooth f r o m t h e open s e t
respectively.
Example
Let
G = SL(2~R).
We may t a k e
K:
: (~ elR L-sin e cos
A=
Then
M = {±I}
,
a"
:a>o
and we can t a k e
We have
B =
Given
a-
: a elR ~ { o }
Then t h e maps BV
onto
g ~ - + m(g)
M , A , V
,
120
we have
g e BV <--> d # o ,
and in t h i s case
a(g) = I dl-1
m(g) = sgn(d) I ,
o
°1]
v(g) =
Id
If01
Note t h a t Bw =
-I
:
a,b elR ,
a # o
In terms of the Bruhat decomposition, we have the f o l l o w i n g i n t e g r a l formulas:
Lemma
Let
dm, da, dn, dv
denote Haar measures on
M, A, N, V r e s p e c t i -
vely ( a l l these groups are unimodular). Then (i)
left
~ f l f(man) MAN
Haar i n t e g r a l on (ii)
where
d/b
dm da dn
is a
B = MAN; fB
denotes l e f t
f ( b man) dlb = ~(a) IB f ( b ) d/b , Haar measure on
B ,
and
~(a) = Bet (Ad(a)l~)
(iii)
fB iV
Haar i n t e g r a l on Proof p r o p e r t i e s of
(i)
isa
f ( b v ) dzb dv
G . f o l l o w s immediately from the n o r m a l i z a t i o n and commutation
M, A, N .
To prove
Lebesgue measure on the Lie algebra det (Ad ml~ ) = det (Ad n i l ) = 1 ,
(ii) n
,
recall
t h a t via the exponential map,
serves as Haar measure f o r
we obtain
(ii)
from
(i)
N .
Since
and the change of
Lebesgue measure under l i n e a r transformations. The proof of
(iii)
requires a reversal of p o i n t of view. We s t a r t w i t h a
121
Haar measure direct
dg
on
G ,
p r o d u c t group
and we use
B × V .
l(f)
(f
dg
on the
Namely, we c o n s i d e r t h e i n t e g r a l
: IG f ( b ( g ) ,
continuous w i t h compact s u p p o r t on
g e BV ,
t o d e f i n e a Haar i n t e g r a l
v(g))
dg .
B x V.)
Here
g = b(g) v(g)
for
and we note t h a t
b I gv I = b(blg ) v(gv 1) •
Hence I ( f ) by
is i n v a r i a n t under l e f t t r a n s l a t i o n s by
V on
dzb dv ,
B × V .
Since
V
G ~ BV
: I I f(b,v) BV
B × V
is
dzb dv .
i s o f Haar measure z e r o , t h i s proves
1.2 P r i n c ! p a l
irreducible
I.
(iii)
We c o n t i n u e to assume t h a t
series.
L i e group o f r e a l - r a n k unitary
is unimodular, the l e f t Haar measure on
so by uniqueness o f Haar measure, we must have l(f)
Since
B and r i g h t t r a n s l a t i o n s
Let
B = MAN
representations
.
G
is a semi-simple
as in
§ 1,1.
The f i n i t e - d i m e n s i o n a l
of
are a l l
o f t h e form
B
x(man) = ~(a) o(m) , where
~
is a u n i t a r y c h a r a c t e r o f
sentation of vectors for
M . y
is non-trivial
representation
denote by
H(~)
is an i r r e d u c i b l e
and
unitary repre-
(This f o l l o w s from E n g e l ' s theorem: the space o f
r e p r e s e n t a t i o n space.) cible
A
and i n v a r i a n t
under
C o n v e r s e l y , any such p a i r y
of
the H i l b e r t
B
"f
(~,~)
hence i s the whole d e t e r m i n e s an i r r e d u -
by t h i s f o r m u l a . We w r i t e
space on which
Consider now the u n i t a r y
B ,
representation
= Ind (~) . B+G
~ ,
N-fixed
and hence
y = (~,~), y ,
acts.
and
122 By d e f i n i t i o n ,
~
a c t s on t h e H i l b e r t
T
f such t h a t
where
for all
man e B
and
x e G ,
(ii)
IV Iif(y)II 2 dy ~ IlfIl 2 <
i s Haar measure on
translations
To v e r i f y
on
V
and
~ ( a ) = Det ( A d ( a ) l ~ ) ,
.
The a c t i o n
= f(xg)
e v e r y w h e r e on
V ,
g e G ,
Example
,
If
ay+c x = ~ . .
We n o t e t h a t
One c a l c u l a t e s
,
y ~-~ v ( y g )
y ~-+ v ( y g - I )
dy = fV f ( v ( y g ) )
G = SL(2,R)
g :
y = -d/b
t h e map
has i n v e r s e
fV f ( y )
,
then
b = o ,
~(a) = 2
a(yg) =
,
.
,
result
which i s d e f i n e d a l m o s t
Also
u(a(yg))
dy .
and
v(yg) =
The t r a n s f o r m a t i o n (If
G
.
~ i s a u n i t a r y r e p r e s e n t a t i o n , we need t h e f o l l o w i n g T the decomposition x = m(x) a ( x ) n ( x ) v ( x ) ) : For any
of
H :
that
Lemma
except
Borel f u n c t i o n s
: G ÷ H(o)
~y(g) f(x)
where
of all
f(man x) = ~ ( a ) 1/2 ~(a) o(m) f ( x )
i s by r i g h t
y =
H Y
(i)
dy
(Recall
space
i.e. if
,
y ~-~ x if
is defined for all
g e MAV ,
it
y eiR
is defined for all
y.)
a =
IbT,-1 el IbY +d
which agrees w i t h t h e f o r m u l a i n t h e lemma.
Hence
u(a(yg))
= (by+d) -2 = ~d
fay+c~ k~j,
t23 Proof of lemma.
By d e f i n i t i o n ,
the element
v(x)
is characterised by the
property x e B v(x)
Hence i f u = v(yg) , gives v(ug - I ) = y .
then
y e Bug -I
,
so
ug -1 e By .
To prove the i n t e g r a l formula, we i n f l a t e performing an i n t e g r a t i o n over support in
BV ,
B .
Thus i f
Since
y e V ,
the i n t e g r a l from
f
V to
this
G ,
by
is continuous with compact
then IB IV f ( b v ( y g ) ) u(a(yg)) dzb dy = IB IV f ( b n -1 a(yg) - I m- I yg) ~(a(yg)) dlb dy ,
where
m,n
are the components of
yg
in
M, N .
By part
(ii)
of lemma 1.1,
t h i s i n t e g r a l equals IB IV f(byg) dzb dy . By part
(iii)
of the same lemma, the r i g h t t r a n s l a t i o n by
integral invariant. desired formula. Corollary
S p e c i a l i z i n g to the case
If
f e Hy ,
g e G ,
f(bv) = fl(b)
then
g
leaves the
f2(v)
II~ ( g ) f l l = IIfll .
,
we obtain the
Hence
~(g)~
is
unitary. Proof property
(i)
For of
y e V , f
write
yg = ma(yg) n v(yg) .
and the u n i t a r i t y
of
~, { ,
Then by transformation
we have
llf(yg)Ii 2 : u ( a ( y g ) ) I I f ( v ( y g ) ) I I 2 . I n t e g r a t i n g over The f a m i l y
V and using the lemma, we see t h a t {~x,~ : ~ e A, ~ ~ M}
~ (g)
is u n i t a r y ,
of u n i t a r y representations of
c a l l e d the u n i t a r y p r i n c i p a l s.eries of representations.
Q.E.D.
G is
124 1.3
Intertwining operators
we have d e f i n e d a mapping representations of
G ,
¥ = (~,~) ~-~ ~ Y
where
unitary representations of covering map" from
By means o f the p r i n c i p a l s e r i e s ,
A
Mx A
A
and
and
M .
M'/M ,
A x M to the set o f u n i t a r y
M denote the spaces o f i r r e d u c i b l e This map can be viewed as a " r a m i f i e d
onto a subset o f
covering i s the Weyl greup
from
G .
The "monodromy group" o f t h i s
and the a c t i o n o f the Weyl group is given
by c e r t a i n s i n g u l a r i n t e g r a l o p e r a t o r s on the n i l p o t e n t group In more d e t a i l , f o r the n o n - t r i v i a l on
M× A
we note f i r s t element o f
that if
M'/M ,
w e M'
V .
is a fixed representative
then we can d e f i n e an a c t i o n o f
M'/M
by s e t t i n g ( w - x ) ( a ) = X(w-law) w.~(m)
If
¥ = (~,o)
,
write
o(w'Imw) .
w-¥ = (w-y, w-o) .
Then by general r e s u l t s o f Bruhat,
one knows t h a t
(i)
~
=
~
Y
(ii)
If
Combining
(i)
~-~ ~y
carries
, <---> T'
w.y # y , and
(ii)
Mx A
,
or
¥' = w.y
then
~ T
is i r r e d u c i b l e .
we see t h a t on the s e t
into
c a t i o n p o i n t s " are the p o i n t s follows that
Y
=
Y
x = 1
if
G
Since
( w . ~ ) ( a ) = ~(a -1)
is a r a m i f i c a t i o n p o i n t . We s h a l l
theory o f s i n g u l a r i n t e g r a l o p e r a t o r s developed in Chapter I I I (a) ~y
to
c o n s t r u c t the u n i t a r y o p e r a t o r g i v i n g equivalence between and
(b) y=W.T
~w.y
when
x # w-y
determine the r e d u c i b i l i t y
the map
and i s a two-sheeted c o v e r i n g . The " r a m i f i -
{~ : w y = y} .
y = (~,a)
{¥ : w y # ¥}
;
or irreducibility
of
T
when
,
it
use the
125 From an i n t u i t i v e is the f o l l o w i n g Assume
p o i n t o f view, perhaps the most n a t u r a l s t a r t i n g
formal c h a n g e - o f - v a r i a b l e s argument:
f e H , Y
and d e f i n e
A(y) f ( x )
If
point
b = man e B ,
then f o r
= fV f(Yw-Zx) dy .
y e V we have
f(yw-lbx)
= f(ym w a w nw w - l x ) = ~(aW)I/2 ~(a w) a(mw) f(yZ nw w - l x ) ,
where we w r i t e
xg = g - l n g
,
and
Hence assuming t h a t the i n t e g r a l A(y) f ( b x )
z = mw aw .
But
aw = a -1
and
nw e V .
converges, we have = ~(a)-l/2(w.y)(b) = ~(a)i/2(w.y)(b)
Here we have used the f a c t t h a t f o r
IV f(yZ n w w - i x ) dy a(y) f ( x )
.
z = mw aw ,
IV f ( y Z ) dy = IV f ( y a-z) dy
= u(a) IV f ( y ) I t f o l l o w s from the above c a l c u l a t i o n
dy .
t h a t in a formal sense,
A(y) : Hy ÷ Hw. Y Obviously
A(y)
commutes w i t h r i g h t
To i n v e s t i g a t e to r e w r i t e
A(y)f
translations
by elements o f
the convergence o f the i n t e g r a l
as a c o n v o l u t i o n i n t e g r a l yw - I = m(yw - I )
on
V .
a(yw -1) n v(yw - I )
A(y)f
,
G .
we use lemma 1.2
Namely, we w r i t e .
126 Then f o r
f e H , Y
we have f ( y w - l x ) = ~(yw-1) 1/2 ¥(yw - I ) f(v(yw-Z)x)
where we have w r i t t e n
~(yw -1) = u ( a ( y w - l ) )
Introduce the notation
y--g= v(yg) .
y : (~)
g-1
,
¥(yw - I ) = x(a(yw-1)) o(m(yw-1)) .
Then by lemma 1.2,
(y e v)
and IV m(y-g-) dy : IV m(y) ~ ( ( y g - l ) g ) - I
f o r any integrable function in the i n t e g r a l defining
m on
A(¥) ,
V and
g e G .
dy ,
Using t h i s change of variables
we have the formal convolution i n t e g r a l
A(¥) f ( x ) = IV ~ ( ~ w - Z i I/2 y ( ~ w -1) f ( y x ) dy .
We can s i m p l i f y t h i s l a s t expression by noting that i f a ( ~ w-1 )
=
m ( ~ w-1)
= m(yw) -1
a(yw -1 )
= a(yw)
a(yw) -1
These i d e n t i t i e s f o l l o w from the inclusions y ~ w -1 e m(yw) - I a(yw) -1 N y and yw Thus i f
K
-1
is defined on
e yw M V by
K (y) = u(yw) I / 2 ¥(yw) - I
then the operator
A(~)
is f o r m a l l y expressible as
A(~) f ( x ) = IV K¥(y) f ( y x ) dy
y e V ,
then
127 Lemma
The f u n c t i o n
K T
is
Ca
on
V ~ {e}
Furthermore,
Ky(y a) = ~(a) - I ~(a) 2 K (y)
I
Ky(y - I )
(Here
ya = a - l y a Proof
If
decomposition, C~
away from
aw : wa
,
and
y e V
y = (~,o).) and
y w e BV . e .
To e s t a b l i s h -1
,
for
: K ¥ ( y ) m ~(w2) *
y # e ,
then
Thus the maps
y w ¢ Bw . y~-~ m(yw)
This g i v e s the smoothness o f the t r a n s f o r m a t i o n a e A .
Hence by the Bruhat and
y ~-~ a(yw)
are
K T
properties
of
K , T
we r e c a l l
that
Hence
y aw = a-lyw
a-I e
m(yw)a -2 a(yw) NV
so t h a t
a a-2 a ( y w) = a(yw) This g i v e s the t r a n s ~ r m a t i o n
law under
Y ~.~ya
y w e m(yw) a(yw) NV
.
Since
,
we have y -1 w e w VN m(yw) -1 a( y w ) - I w But
w V = N w ,
so t h a t y
-I
w e [w m(yw) -1 w~ a(yw) NV
This shows t h a t (y 1 w)
=
a(yw)
(y-i
=
w m(yw) - I w
Ii
w)
which g i v e s the t r a n s f o r m a t i o n since
y
is unitary.)
law under
y ~-~ y
-1
(Note t h a t
T(y) -1 = ¥(y)m
128 Example
When G = SL(2,1~ ,
a
aand
M = {l,e}
,
Y = ~
~'
where
the characters of
,
~ ( - I ) = -1 .
w : I
I'
i
o,]
a(yw) =
If
y+ = ( 4 , 1 ) ,
y_ = (~,~)
,
If
then
so t h a t
;, e i I R
A are given by,
IY
Yw = I~
,
1~ 1 y~ '
m(yw) = sgn(y) I
are the corresponding representations of
B ,
then
t h i s c a l c u l a t i o n shows that K
(y)
=
¥+
lyl -l+x
Ky_(y) = s g n ( y ) l y l -I+~
Note that u(yw) -1/2 : ]y[ .
1.4 Boundedness of i n t e r t w i n i n g operators results of Chapter I I I
to the kernels
We shall now apply the
K . I d e n t i f y V with i t s Lie algebra Y by the exponential map. Since real-rank (G) = 1 , i t follows from the properties of root systems that V = V1 0 V2 A = {a(t)
,
: t e IR+}
I29 such t h a t
ya(t)
We define d i l a t i o n s
{itY 2y
=
{6 t , t > o}
, ,
on
y e V1 y e V2
V
by
6t Y = y a ( t )
The homogeneous dimension
Q of
V
is then
Q = dim (VI) + 2 dim (V2) Let
~(a) = Det (Ad(a)In)
,
and set
IYl = ~(YW) -1/(2Q)
Lemma lyml : lyl
Proof
•
[y[ I~I
is a smooth, symmetric = ly1-1
for
y e v ,
6t-homogeneous norm on
V ,
and
me M .
As in the proof of Lemma lu3, we c a l c u l a t e t h a t when t > o
,
a((6tY)W) = a ( t ) 2 a(yw) Hence
16tYl = u ( a ( t ) ) - I / Q [Yi
But
N = Ad(w) V ,
so f o r
a e A
one has
Det (Ad(a)IN) = D e t Ad(a)Iv] - 1
Since
Det A d ( a ( t ) ) I V = t Q , 16ty I = t IYl ,
The f u n c t i o n JyJ
y ~-+ a(yw)
The M-invariance o f the transformation
t > o
is smooth on
is a smooth, symmetric norm on IY!
y~-~y~ ,
t h i s shows t h a t
V ~ {e} ,
and
a(yw) = a ( y - l w )
Thus
V .
f o l l o w s from the i d e n t i t y we have
a(ymw) = a(yw). For
13o (~)w and hence
e
a ( ~ ) w = a(yw) - I
Suppose
y(ma(t))
.
M a(yw) -1NV , Thus
= t ~/2 q(m) ,
then by lemma 1.3 one sees t h a t to the d i l a t i o n s
operator
A(y)
!~I
~t '
a
= lyl -I where
,
Q.E.D.
~ e i R .
If
~y(y) = y(wy) -1 ,
is homogeneous of degree
T
Furthermore, the kernel
K
X with respect
f o r the i n t e r t w i n i n g
is given by Ky(y) = ~ ( y ) l y l
and i s homogeneous o f degree
-Q
-Q+~ .
Recall t h a t the c a l c u l a t i o n s i n v o l v i n g
A(y)
in
vergence problems. I t is e v i d e n t from t h i s formula f o r
§ 1.3 KY
ignoved any con-
that
A(y)
is
f o r m a l l y a s i n g u l a r i n t e g r a l o p e r a t o r o f the type t r e a t e d in Chapter I I I .
The
homogeneity and smoothness c o n d i t i o n s are s a t i s f i e d
The
by
K T
f o r any
~ .
mean-value c o n d i t i o n , however, is not always s a t i s f i e d . Theorem (a) the i n t e g r a l o f
Suppose t h a t KY
over
wy # ~ .
{A < lyl < AR}
Then t h e r e e x i s t s
R > I
such t h a t
is zero f o r a l l
A > 0 .
The
operator A(y) f ( x )
= P.V. fV Ky(y) f ( y x ) dy
i s a non-zero bounded o p e r a t o r from tations
and
~
(b)
~y
to
wy = y .
A(~)
is a unitary operator.
Then the r e p r e s e n t a t i o n
the mean-value o f the f u n c t i o n
splits
Hwy which i n t e r t w i n e s the represen-
Some s c a l a r m u l t i p l e o f
Suppose t h a t
and only i f case
~w~
H
y~-~ t r
~ Y (~(w)~yw))
is r e d u c i b l e i f i s zero. In t h i s
as the d i r e c t sum o f two i n e q u i v a l e n t i r r e d u c i b l e
representations.
The p r o j e c t i o n o p e r a t o r g i v i n g the decomposition is a l i n e a r combination o f and the o p e r a t o r Remarks 1.
I
~(w) A(y) . In p a r t
we may d e f i n e an o p e r a t o r
(b) , o(w)
we are using the f a c t t h a t when which extends the r e p r e s e n t a t i o n
wy = ~ , ~
from
then
131
M to
M'
Indeed, by assumption t h e r e e x i s t s
a unitary
operator
T O on
H(~)
such t h a t o(w-lmw) = T o l ~(w) TO Since
w2 e M ,
is a scalar.
one f i n d s t h a t
T 2 o(w2) -1 o
Thus we can choose T=
e ie T
e elR
commutes w i t h
o(m)
and hence
such t h a t
o
satisfies T 2 = ~(w 2)
We set
~(w) : T . 2.
When wy -- ~ ,
a u n i t a r y map from
H Y
to
P r o o f o f theorem the kernel
~
then
~ = o ,
Hw. ~
and the o p e r a t o r sending
which i n t e r t w i n e s
~
~"
and
Y ~-~ ym ,
m e M .
is
W'T
We begin by d e t e r m i n i n g the t r a n s f o r m a t i o n
under the automorphisms
f ÷ o(w)-lf
properties
of
Note t h a t
y m w = m-1 yw mw Hence the M-component o f
ym w
is
m-1 mI mw ,
where
mI
i s the M-component o f
yw. We a l r e a d y c a l c u l a t e d in Lemma 1.4 t h a t a ( y m w) = a(yw)
Hence we o b t a i n the f o r m u l a ~
Since
IYl = lyml
a shell
Det ( A d ( m ) I v ) = i
{a ~ IYl < b}
T
~Y (y) o(m)
,
we may i n t e g r a t e
and o b t a i n the r e l a t i o n
T
(¢=) where
and
(ym) : ( w . o ) ( m - l )
= (w-~)(m -1) T
= mean-value of the f u n c t i o n
~(m)
,
lyl -x a.((y) .
this
formula over
132 Suppose now t h a t there is an
R > I
w¥ # y .
If
~ # o
L2(V) . w-~
If
and
K and
~ = o ,
o ,
by
also a p p l i e s , and
K~ .
then
(~) , A(y)
Hence
A(~)
w~ # o .
of
e x i s t s as a bounded o p e r a t o r on
Since the mean-value
T intertwines T in t h i s case. Thus Lemma I l l . 3 . 1
we must have
T = o T e x i s t s as a bounded o p e r a t o r on
The r e p r e s e n t a t i o n space o f L2(V) ~ H(~) ,
integral
e i IR,then by Lemma I I I . 3 . 1
K over {A ~ lyl ~ AR} is zero T f o r any A > o . By Lemma 1.3, the a d j o i n t kernel K (y-1)m also s a t i s f i e s t h i s T c o n d i t i o n , f o r the same value of R . The smoothness and homogeneity c o n d i t i o n s
are s a t i s f i e d by
such t h a t the
and
via the map f ~
~
and
¥
flY "
~ W'y
can be i d e n t i f i e d with
(This is the s o - c a l l e d "non-compact
p i c t u r e " f o r the r e p r e s e n t a t i o n . ) In t h i s r e a l i s a t i o n , r i g h t t r a n s l a t i o n s , and the subgroup
L2(V) ~ H(a) .
the subgroup
V
acts by
MA acts by
(ma) f ( y ) = v(a) 1/2 y(ma) f(yma) T The element
w
acts by
¥ Since
(w) f(y) = u(yw) I/2 ¥(yw) f ( ~ )
G = (MAV)LW (MAV w V) , I t is obvious t h a t
A(y)
these formulas determine
T
commutes w i t h r i g h t t r a n s l a t i o n s by
V .
By
Lemma 1.3 and the c a l c u l a t i o n above we f i n d t h a t (~) Suppose
Ky (y) ~(ma) = ~(a)(w-y)(ma) Ky (yma) f e
C ~c
(V) @ H(o)
Then
A(y)f
is given by the a b s o l u t e l y conver-
gent i n t e g r a l A(¥) f ( x ) : fV K since
Ky
has
integral
(y) [ f ( y x )
- f(x)]
zero over the f a m i l y of s h e l l s
Using equation (mm) and the i n t e g r a t i o n formula fV f(yma) v(a) dy = fV f(Y) dy
,
dy
,
{Rn < _ IYl < _ Rn+l} •
133 we v e r i f y e a s i l y t h a t i f
g e MAV, then
A(y) Rx(g) f ( x ) The p r o o f t h a t ceptual v e r i f i c a t i o n g i v e n , but take
A(y)
: ~W.y (g) A(T) f ( x )
intertwines
R (w) is more d e l i c a t e . The most conY seems t o be to r e t u r n to the formula f o r A(y) as o r i g i n a l l y
Re x > o .
converges a b s o l u t e l y f o r
Then one proves t h a t the i n t e g r a l d e f i n i n g
f
in
H" , Y
A(y)
now
where
H= : { f e C ' ( G , H ( ~ ) ) ; f(man g) = ~(a) I / 2 y ( m a ) f ( g ) } Y
.
The same change o f v a r i a b l e argument shows t h a t A(y)
and
A(y)
A(y)
: H~ + H~ ~/ w-y
,
commutes w i t h r i g h t t r a n s l a t i o n s by
G .
One proves t h a t as
Re X ~ o ,
converges to the s i n g u l a r i n t e g r a l o p e r a t o r c o n s t r u c t e d above. For d e t a i l s
we r e f e r to the l i t e r a t u r e To f i n i s h cited earlier, A ( y ) * A(y) utes w i t h
c i t e d a t the end o f the c h a p t e r .
the p r o o f o f p a r t ( a ) , we r e c a l l t h a t by the r e s u l t s o f Bruhat
~ is i r r e d u c i b l e i f w.y # T • Hence T must be a non-zero m u l t i p l e o f the i d e n t i t y o p e r a t o r , since i t comm-
~
the r e p r e s e n t a t i o n
Similary,
A(y) A(y) *
Thus w i t h a s u i t a b l e n o r m a l i z a t i o n , In p a r t
(b) ,
the r e p r e s e n t a t i o n
w.y = T ~
to
M'
i s a m u l t i p l e o f the i d e n t i t y
A(T)
implies that
operator.
becomes u n i t a r y . x = o
and
as noted in remark I .
w.o = o .
We extend
Then the c a l c u l a t i o n at
the beginning o f the p r o o f shows t h a t (o(w) T ) = o { m ) - l ( o ( w ) T ) o(m) where
T
i s the mean-value o f the m a t r i x f u n c t i o n
is a scalar m u l t i p l e o f T = o ¥
if
and o n l y i f
I ,
since
o
y ~-+ o(yw) .
Hence o ( w ) T
i s i r r e d u c i b l e . We conclude t h a t
the mean-value o f the f u n c t i o n
y ~-+ t r
,
(o(w) o(yw))
134
is zero Suppose t h i s mean-value i s z e r o . The argument above shows t h a t bounded o p e r a t o r from operator
~(w) A(y)
with
(cf.
~ Y
H¥
to
Hw¥ which i n t e r t w i n e s
~y
and
~wy .
A(y)
is a
The
i s then a bounded o p e r a t o r from
H to H which commutes Y Y remark 2 above). On the o t h e r hand, the r e s u l t s o f Bruhat i m p l y
t h a t the o r d e r o f the Weyl group ( t w o , in t h i s case) always m a j o r i z e s the number of irreducible on
components o f
~ Since o(w) A(~) is not the i d e n t i t y o p e r a t o r Y we conclude t h a t every i n t e r t w i n i n g o p e r a t o r is a l i n e a r
L2(V) ~ H(o) ,
combination o f
~(w) A(y)
and
I ,
and the i n t e r t w i n i n g
dimensional (and hence commutative). Thus
~ Y
splits
as
ring for
~ i s twoY ~+ @ ~- , where ~± are Y Y Y
i r r e d u c i b l e and i n e q u i v a l e n t . I t o n l y remains to v e r i f y t h a t i f the i n t e r t w i n i n g
c
Q
i s n o t z e r o , then
ring for
twining operator and away from
the mean value o f
{e}
~ is trivial. By the r e s u l t s o f Bruhat, any i n t e r Y i s e x p r e s s i b l e as l e f t c o n v o l u t i o n by a d i s t r i b u t i o n on V ,
T
this distribution
is the f u n c t i o n
is a c o n s t a n t . By the "unboundedness" Theorem
bounded o p e r a t o r unless
y ~-* c~(w)o(yw) ,
III.
c = o o This i m p l i e s t h a t
5.1 ,
T
T
where
cannot be a
is a m u l t i p l e o f
I ,
Q,E.D.
1.5 Examples Theorem 1.4. Suppose f i r s t either trivial
o r else
c o n d i t i o n is s a t i s f i e d
Thus
A = ~-IA(E)
Let us i l l u s t r a t e that
y = ~ ,
G = SL(2,R) . where
the r e d u c i b i l i t y Then
c ( ± l ) = ±I .
w-~ = ~
criterion means t h a t
The mean-value zero
o n l y in the second case, and we have in t h i s case
i s the c l a s s i c a l H i l b e r t A f(x)
= P.V. Z
transform:
f f(t) dt t-x
of y
is
135 A f t e r Fourier transformation so
A2 = - I .
A becomes m u l t i p l i c a t i o n by the function
The spectral decomposition of
where H2(IR) are the Paley-Wiener spaces of
A
i sgn(~),
is given by
L2
functions holomorphic in the upper
(lower) half plane, with sup 7 If( x ± iY)I 2 dy < y>o -~ The representation
~
in the non-compact picture is g i v e n by
E
~ (g) f ( x ) = (bx+d) - I f rax+cl ~x--x~-~J b if
g =
.
under
g) .
'
I t is evident from the above description that Theorem 1.4 asserts that the r e s t r i c t i o n
of
~
H±2
are i n v a r i a n t
to
H±2
is i r r e -
ducible. As an other example, consider the group
G~SL(3,~)
which leaves i n v a r i a n t
the Hermitian form z 2 z 2 + 2 Re(z I z~) where
(z 1, z 2, z3) e ~3.
,
(This group is conjugate to the group
leaves i n v a r i a n t the form
z~ Z l +
z:2 z 2 - z 3 z 3.)
The subgroups
t h i s case are the f o l l o w i n g ( a l l blank matrix e n t r i e s are zeros):
I i°
M :
me =
A :
ar = ~
N :
exp
L~° |
e -2ie
1
zo
ei
1
r -I]
i zt 1 0
,
e e IR
'
r>o
,
z e (~, t e IR
SU(2,1)
which
M, A, N, V
in
136
V:
ze¢,teR t
z=',
For t h e Weyl group r e p r e s e n t a t i v e ,
It
is then a straightforward
a(vw)
and
v~ ,
when
matrix,
t
,
where
z~':
(z:':z+it)
whose d i a g o n ~ e n t r i e s
z='~
that
then g i v e
( v w ) u -1 m(vw)
a(vw) = a r ,
where
r = 2 1 z m z + i t I -1
m(vw) = m0 ,
where
e = arg~(zmz+it~
-~=
v(~,~)
2iz = z,z-it
The a d j o i n t
action
of
Ad(ar) r > o ,
function
A
on
v(z,t)
,
where
,
T = -
V
i s an upper
and
a(vw).)
One
4t z~z-itl 2
i s g l v e n by
= v(rz,
r2t)
,
and t h e homogeneous d i m e n s i o n o f
~(ar) = r 4 ,
v = v(z,t)
V
is
Q = 4 .
and hence t h e homogeneous norm on
Iv I = u ( v w ) - 1 / 8 = !
Here
m(vw)
that
l
when
,
to determine the matrices
i s u n i q u e l y d e t e r m i n e d by t h e p r o p e r t y
triangular finds
calculation
v = v(z,t)
t/2
(u = v~
we t a k e
Izmz+itl I/2
V
The m o d u l a r
i s g i v e n by
137 The group
M = U (1)
in this
c a s e , and
on(me) = e - i n e
The a c t i o n o f
w
on
M
is trivial.
M consists of all
representations
n e
Let
Kn(V ) = ~(vw) 1/2 On(VW)
-1
veV
By the f o r m u l a s above we can w r i t e
%(v) Kn(V ) = c n tvt where %(v)
= (z*z+!t)
n
v = v(z,t)
,
Iz'~z+itl n
and
cn
i s a non-zero c o n s t a n t .
by the c h a r a c t e r Theorem Proof.
Denote by
~n
the r e p r e s e n t a t i o n
of
G
induced
ma --+ On(m ) . ~n
is reducible
We s h a l l
n # o .
For t h i s
dinates,
we can express
<---> n
show t h a t the mean-value o f
p u r p o s e , we w r i t e
Qn(V)
Thus the mean-value o f
i s even and n o n - z e r o .
b
~n
i e inO
z'ez+it = re i e .
n
(i eineds)-~ o
,
o
which vanishes p r e c i s e l y
for
n
even ,
n # o ,
<--> n
i s even,
Then using c y l i n d r i c a l
i s given by the i n t e g r a l
de
i s zero
Q.E.D.
coor-
138
§ 2
2.1
BpuRdary values o f
H2
functions
Harmonic analysis on the Heisenber 9 9roup
domain o f type I I " introduced in Chapter I I , acts simply t r a n s i t i v e l y F o u r i e r a n a l y s i s on Hardy class
G ,
on the boundary
parametrize
D .
G
Using the (non-commutative).
r e c a l l the basic facts concerning harmonic a n a l y s i s on G as IRn × Rn x ~ ,
X e IR ~ {o} ,
G acting on
L 2 ( £ n)
g = ((,q,¢)
as in
,
G .
We
§ 11.4.4, with m u l t i p l i c a t i o n
= (~+~',n+n',~+~'+ ½ ( ~ ' n ' - ~ " n ) )
•
there is an i r r e d u c i b l e u n i t a r y r e p r e s e n t a t i o n
~
of
by 1 f ( x ) = e i~(~+q'x+ ~ q'~) f(x+~)
~(g)
Given
The Heisenberg group
we shall study the boundary values of functions in the
(~,n,¢)(~',n',~')
where
M of
D be the "Siegel
H2(D) .
We f i r s t
For every
§ 4.4.
Let
and
m e LI(G) ,
x-y = ~ xiY i
,
( x , y e IRn) .
we d e f i n e the o p e r a t o r
#(x)
on
L2(£p)
by the
operator-valued integral @(x) = ~ X(g):~ re(g) dg G Here
dg
is Haar measure on
G (=Lebesgue measure on IR2n+l
in the above
c o o r d i n a t e s ) . The Plancherel formula is J im(g)l 2 dg = I G IR where
]]TI]~S : t r (TmT)
lle(~)l]~sdu(x)
is the square o f the H i l b e r t - S c h m i d t norm, and the
Pl ancherel measure d~(~) = c n lXt n d~ ,
with
c n = (2~) -n'1
and
d~
Lebesgue measure on IR .
I f we define
L2(G)
to
t39 X ~-~ T(~) on IR
be the H i l b e r t space o f a l l measurable, o p e r a t o r - v a l u e d f u n c t i o n s such t h a t
[ IIT(x)ll~s d~(x) <
(where
T(~)
is an o p e r a t o r on
u n i t a r y map from Let
p
L2(G)
onto
L~IRn)) ,
then the map
~ ~-+ ~
extends to a
L2(G) .
be the r i g h t r e g u l a r r e p r e s e n t a t i o n o f
G on
L2(G) :
p(g) ~(X) = ~(xg) The F o u r i e r transform o f valued f u n c t i o n
~(g)
p(g)
is then l e f t m u l t i p l i c a t i o n
by the o p e r a t o r -
:
(p(g)~)~(~)
= ~(g)
~(~) .
To study the " t a n g e n t i a l Cauchy-Riemann" equations s a t i s f i e d by the boundary values o f holomorphic f u n c t i o n s , we shall need to extend presentation o f the Lie algebra o f (any Lie group) of
C=
~
of
G .
G on a H i l b e r t space
vectors f o r
~
If
x
H(~) ,
p
to a re-
is any u n i t a r y r e p r e s e n t a t i o n we define the subspace
H~(~)
by
H=(~) = {v e H(~) : g ~-+ ~(g)v This is a dense subspace o f
H(~) .
Given
is a
Ca f u n c t i o n }
v e H=(,)
and
X e ~ ,
we d e f i n e
~ (X) v = ~ t t= ° ~(exp t X) v
Then
~ (X) : H=(x) + H=(~) ,
homomorphism from
~
and the map
to operators on
X ~-~ R (X)
H=(z) .
is a Lie algebra
Hence i t extends uniquely to an
a s s o c i a t i v e algebra homomorphism from the c o m p l e x i f i e d universal enveloping algebra
U(~)
also denote by Give
i n t o the algebra o f l i n e a r transformations o f
H~(~) ,
~
H=(~)
the topology defined by the f a m i l y of semi-norms
which we
140
v ~- II~(T)vll, as
T
ranges over
U(~) .
Then
H~(~)
is a Fr#chet space. We denote by
the space o f continuous c o n j u g a t e - l i n e a r f u n c t i o n a l s on H~(~) ~ H ( ~ )
H=(~) .
H'~(~)
The i n c l u s i o n
and the canonical isomorphism between a H i l b e r t space and i t s
a n t i - d u a l then provide an i n c l u s i o n o f
H(~)
into
H-~(~) :
U(~)
such t h a t
H~(~) ~ H(~) ~H-=(~) . Let
T ~
T
be the canonical i n v o l u t i o n on
By taking a d j o i n t s , we o b t a i n a r e p r e s e n t a t i o n The u n i t a r i t y of
~
implies that
~ (X)
X ~-+ ~_~(X)
X = -X of
g
for
x e g.
H-~(~)
on
.
is skew-symmetric, and hence
(~®(T)u,v) = (U, ~_~(T*)v) if
u e H~(~),
v e H-=(~) ,
In the case Ha(p)
x = p
consists o f a l l
left-invariant
is the r i g h t r e g u l a r r e p r e s e n t a t i o n o f functions
m on
G such t h a t
differential
operators
T
G .
G of the form
differential
C~
on
~ Tif i ,
operators on
o f the Heisenberg group, decreasing
T e U(g) .
C~
a l l d i s t r i b u t i o n s on left-invariant
and
H-~(~ ~)
where
G (finite
H~(~ ~) = S ( ~ n ) ,
f u n c t i o n s , and
The space fie
G ,
the space
T m e L2(G) H-=(p) L2(G)
and
for all
consists o f Ti
are
sum). For the representations
the Schwartz space o f r a p i d l y -
is the space o f tempered d i s t r i b u t i o n s
on ~n .
Let
m e H~(p) .
(*) (a.e.
Then the F o u r i e r transform
~(~) : H(~ ~] ÷ H~(~ ~) [d~).
Furthermore, f o r every
is the o p e r a t o r - v a l u e d f u n c t i o n
T e U(g) ,
~ ~-+ ~ ( T )
formula,
(**)
@ is a smoothing o p e r a t o r :
f II~(T) ~(x)ll~s
tR
d~(x) <
@(~) ,
the F o u r i e r transform of and by the Plancherel
p (T)~o
141 Conversely, any measurable operator f i e l d for all
T e U(g)
@ which s a t i s f i e s
is the F o u r i e r transform of a f u n c t i o n
To o b t a i n the SzegU kernel f o r F o u r i e r i n v e r s i o n formula f o r
G .
H2(D) ,
If
A
(*)
and
(~*)
m e H~(p) .
we shall need the (non-commutative)
is a bounded operator on a H i l b e r t
space, denote i t s absolute value by IAI = (A~A) 1/2
IAI
Then
is a non-negative s e l f - a d j o i n t
is H i l b e r t - S c h m i d t ,
{e n}
A
is nuclear i f
IAI 1/2
i.e.. z ( i A I e n, e n)
if
operator, and
< ~
,
is an orthonormal basis. In t h i s case t r ( A ) = z(Ae n, en)
is defined independently of the choice of basis. Define ~-~ A(~)
LI(G)
from
to be the space of a l l measurable, operator-valued f u n c t i o n s
IR to
L2(IR n) IIAIIz
= S
such t h a t tr(IA(x)l)
dp(~)
<
R
This is a Banach space in the norm Given
A e LI(G) ,
function
m on
(~)
(*m*)
n u l l f u n c t i o n s , as always). A
to be the
G given by
This defines a map from
and
(identifying
we define the inverse F o u r i e r transform of
~(g) = S t r ( ~ ( g ) IR
@(~) = A(~)
~AI1
a.e..
LI(G)
A(~)
into
d~(~)
C(G) .
I f i t happens t h a t
For example, i f we s t a r t w i t h
holds w i t h
m e H~(p) ,
q~ e
then
L2(G) ,
r# e El(G) ,
A(X) = @(X) . (For proofs of the assertions of t h i s
s e c t i o n , see the notes and references at the end o f the Chapter.)
then
142 2.2
Tangential
Chauchy-Riemann e q u a t i o n s
D = {(z,w): in
(~n+l ,
Im w >
§ 11.4.4.
The complex v e c t o r f i e l d s
are t a n g e n t t o Thus, i f
H f
!
1 < k < n
~w
~z k
~n+1
and span the a n t i - h o l o m o r p h i c is a function
t a n g e n t space a t each p o i n t o f
which i s h o l o m o r p h i c on a neighborhood o f
M
in
then
(,)
L-k f = o
These are the " t a n g e n t i a l Recall the l i f t i n g
on
M
where
x
map
W carrying
p
of
We know t h a t
functions
g .
If
(Xk = Re(Lk)
'
{ P k ' Qk : 1 < k ~ n}
Yk = Im(Lk)
as i n
P(Ak) Wf = o ,
where Ak = Pk " i Qk
on
M
to
functions
on
G :
,
W intertwines
X(Pk ) = Xk "
(tt)
1 <_ k < n
i s the L i e a l g e b r a homomorphism from
§ 11.4.4 .
tation
,
Cauchy-Riemann e q u a t i o n s . "
Wf(u) = f ( e ~ ( U ) . o )
in
w e ¢}
: Im(w) = IIzll 2} ,
Lk =--~-~~ i z k
M .
z e cn ,
,
w i t h boundary M = {(z,w)
as in
llzll2
Consider the domain
g k
to vector fields and the r i g h t
on
M
defined
regular represen-
are the elements o f
g
such t h a t
X(Qk ) : Yk
§ 11.4.4)
,
then e q u a t i o n s
1 < k £ n
,
(t)
become
148 Suppose now we s t a r t w i t h a f u n c t i o n (~)
~(Ak) m = o
Here
p = ~_~ ;
i.e.,
,
m e L2(G) , i <_ k < n
we consider these as equations in the space
introduced in the previous paragraph. By d e f i n i t i o n , e H~(~) ,
(~(A~) ~,m) = o
(The usual t e s t - f u n c t i o n as saying t h a t
Theorem
(~)
space
t h i s means t h a t f o r a l l
Cc(G )
Suppose
m e L2(G) .
a.e.
for
(ii)
Range @(~) ~ V ~
function Proof
Then
satisfies
~(~) = o
V~
i _< k < n
is dense in
#
(i)
where
,
H~(~
holds in the usual d i s t r i b u t i o n
the Fourier transform
~(Ak)~ ~
H-~(p)
one has
(~)'
<~
and consider the eguations
so t h i s is the same
sense.)
m satisfies
the equations
(~)
the conditions ~ < o ;
a.e.
for
~ > o
is the one-dimensional subspace of exp [- ~ llxll2]
,
,
L2(IRn)
spanned by the
(the "vacuum s t a t e " )
By the r e s u l t s of the previous s e c t i o n , the F o u r i e r transform of
is
~1(Ak)~(x)
.
Hence
(~(A k) ~, ~) : I t r ( ~ ( A ~ ) IR We claim f i r s t
t h a t equations
(~)
Range
(~)
; (A) ; (>,):':)d~(>.)
are e q u i v a l e n t to
^
for
i < k < n =
and
m(~) i a.e.
Range
~ .
I t is immediate from the Plancherel formula t h a t converse f o l l o w s from the existence of " s u f f i c i e n t l y ~(~) .
Specifically,
if
f e L2(IR n)
and
(~)
implies
(~) .
The
many" operators of the form
h e Cc(IR ) ,
then the operator-
144 valued f u n c t i o n ~-+ h(x)
g~f
is the F o u r i e r transform of some rank one on sation of
L2(IR n) H~(p)
a c t i n g by
(Here
v ~-~ ( v , f ) g . )
g ~ f
is the operator of
This f o l l o w s from the c h a r a c t e r i -
given in the previous paragraph, since the elements of
act in the representations coefficients.
e H~(p)
xx
as d i f f e r e n t i a l
With t h i s choice of
~ ,
operators w i t h polynomial
we have
~ ( A ~ ) ; (X) ; (X)* = h ( X ) ( ~ ( A ~ ) g ) £
Hence by the Plancherel formula,
(~)
U(£)
(;(X)f)
.
implies t h a t
/ h(~)(,X(A~)g,~ ; (X)f) dp(X) = o R
f o r a l l such of
h ,
f , g, h
(Recall t h a t
i ~ k < n
~ (A k) •
~(X)f) = o
and a l l
To i n v e s t i g a t e
f e L2(IRn),
(~),
By the a r b i t r a r i n e s s
on
a.e. (X)
g e S (IRn),
we need the e x p l i c i t
Going back to the formulas f o r x~(Pk) = ~
acting
.
t h i s is e q u i v a l e n t to the conditions (~(A~)g,
for
tr(g ~ f ) = (g,f))
S (IRn),
Ak = -Pk-iQk ,
where
'
~®(Qk) = i x x k
{x k}
Ak) = - aXk + Xxk Ak = Pk - iQk '
~(Ak)
=
~
+ Xxk
,
we have
(~).
form of the operators we c a l c u l a t e t h a t
,
are the coordinate
t h i s gives the formula
For the operator
~
which is p r e c i s e l y
functions
on
IRn .
Since
145 Case 1:
If
~ < o ,
l a t e d by
~(A~)
.
+ ~x k, - ~x3k + ~x~ = 2% I
contains the f u n c t i o n s
~k
p(x)
Range
---> ~(~) = o If
when
~ > o ,
is a n n i h i l a t e d by
p
L2(IR n) ,
the f u n c t i o n
~1(Ak) .
Ciioirollary
Hence i t
(i)
v~ and
(ii)
L2(G) .
space commutes w i t h l e f t
translation.
P~
=
v~
Hence
On the o t h e r hand, p(x) v ~ ( x ) ,
(~
is
of the Theorem, and completes the proof.
m e L2(G)
which s a t i s f y
I < _ k < n
,
If
~ e L2(G) ,
P onto t h i s sub-
then the F o u r i e r transform
where
I'0 ~
,
if
~ < o
is the f u n c t i o n
expF-
,
~-ilxll]2
and
W~ Z is one-dimensional
The orthogonal p r o j e c t i o n
c(~) v~ ~ v~ Here
S (IRn),
W~ contains the functions
p(o) = o .
The space o f f u n c t i o n s
Px ~(~) ,
W~
in
in t h i s case. This shows t h a t
is a closed subspace o f
is
~llxll 2) is
is orthogonal to
P(Ak) m = o ,
P ~
is an a r b i t r a r y polynomial.
as is well-known, so t h a t
vx(x) = exp{-
is any polynomial such t h a t
e q u i v a l e n t to c o n d i t i o n s
p
x < o .
and is spanned by the f u n c t i o n
of
and is a n n i h i -
,
where
the same argument as in Case 1 shows t h a t where
S (IR~ ,
~ (Ak)
exp(~llxl~),
This set of f u n c t i o n s is dense in
Case 2:
is in
i n d u c t i v e l y t h a t the subspace
W~ :
(~)
expI~llxll2)
Using the commutation r e l a t i o n s
~k
one v e r i f i e s
the f u n c t i o n
)~ >
,
0
and
c(x)=
EIvxl[-2 = (~/~)n/2 .
146 Proof:
This follows immediately from the Plancherel theorem and the theorem
j u s t proved. Definition functions
Let
m e L2(G)
Remark
Define
H~(G) ~
be the closed subspace of
which s a t i s f y L2(H)
on M via the map u ~
L2(G)
consisting of a l l
(~).
by transporting the Haar measure on
e~(u) • 0 .
If
H~(H)
G to a measure
is the subspace of functions in
L2(M) which s a t i s f y the tangential Cauchy-Riemann equations
(~)
(in the d i s t r i -
bution sense), then
where
W is the l i f t i n g
§ 11.4.4.
map from functions on H to functions on
(In this notation,
2.3
as in
b = boundary.
Projection onto
P : L2(G) + HE(G )-
G ,
H~G_(_~_ #S a slngular integral operator
be the projection operator in Corollary 2.2.
we want to use the Fourier inversion formula on
G (§2.1)
Let
In this section
to show that
P is a
l i n e a r combination of the i d e n t i t y operator and a singular integral operator of the type studied in Chapter I I I . To i l l u s t r a t e the method, we f i r s t classical Paley-Wiener space Fourier transform
f(~)
H~(IR) ,
vanishes f o r
orthogonal projection, then for
consider the analogous problem f o r the consisting of functions x ~ o .
If
P+ : L2(IR) ~ H~(IR)
eo
d~ o
£->0 £>0
!i
e -~(~+ix) d~t
~(x) dx
whose
is the
m e C#(~R) we can w r i t e , by the classical
Fourier inversion formula, 1
f e L2(IR)
147
=
,,II dx +ix
lira
~-~o c>o To w r i t e t h i s l i m i t
as a s i n g u l a r i n t e g r a l , we observe t h a t f o r any f i x e d
1 R dx i ~ l i m T ~ £ ~+ix = ~
dx 1 x-~+l : ~ -
R > o ,
'
~>0
independent of
R .
change of v a r i a b l e
(Write the i n t e g r a l x ÷ cx.)
Since
1 P+~(o) = l i m Tl~ f
as an i n t e g r a l over
[o,R]
and make the
m has compact support, we thus can w r i t e
c÷ix
-
dx
+ "2"1
~(0)
c>O
: ~_T~II 9(x)-m(O)x dx + ½ 9(0)
But the f u n c t i o n
x
-1
has mean-value zero, so t h i s l a s t equation can also be
w r i t t e n as P+~(o) = ~ I
lim ~0
Finally,
~
using the t r a n s l a t i o n - i n v a r i a n c e
P+ = ½ [I-iA] where
A
.9~.(.x.l. dx + ~1 9(0) • x
I X~> E
is the c l a s s i c a l
P+ ,
we conclude t h a t
,
H i l b e r t transform ( c f . § 1.5).
Coming back to the Heisenberg group we f i r s t
of
G and the p r o j e c t i o n
P onto
H~(G)
observe t h a t by the (non-commutative) Fourier i n v e r s i o n formula and
C o r o l l a r y 2.2, co
P~(e) = I t r ( P x ~(X)) d~(X)
,
0
if and
~ e C~c (G) o Here
d~(x) = c n Ix I n dx
is the Plancherel measure f o r
G ,
148 PL ~(~) =c(~)(vk @ v~) ~(X) ^
=c(x) v~ ~ ~(x)* v x v~(x) = exp[- Tx
where
ilxli2]
and
,
c(x) = (X/~) n/2
Hence
t r (Px #(~)) = c(~)(~(X) Vx , v~)
= C(X) ~ m(X)(~(g-l)
VX' v~) dg .
G Next, from the e x p l i c i t
form of the representations
T:x
in
§ 2.1,
routine c a l c u l a t i o n shows that (~(g)
v~, v~) = c(~) -1 exp[ix~ - ¼ (II~l~ + llnII2)~ ,
where the coordinates of
g
P~ as the i t e r a t e d i n t e g r a l
are
(¢,n,¢)
,
as in
§ 2.1.
Thus we can w r i t e
(non-absolutely convergent)
co
(*)
P~(e) = ~ (f e -xT(g) e(g) dg] dp(~) o G
,
where
x(g) if
= ~- (ll~II 2 + llnll 2) - ic
g : (C,n,c) To interchange the order of i n t e g r a t i o n in
factor
exp(-E~) ,
E > o ,
(m) ,
we introduce a convergence
so t h a t
Pm(e) = lim f (7 e-~(c+T(g)) d~(~)] dg . c÷O G 0 E>O
Using the formula f o r the Plancherel measure to evaluate the inner i n t e g r a l , we obtain the formula (me)
P~(e) : lim c f ~(g) dg ~+o G (~+x(g)) n+l E>O
'
149 c = n I ( 2 ~ ) -n-1
where
I t remains to rewrite
and
(~)
considered i n Chapter I I i o
~ e C~c (G)
as a p r i n c i p a l - v a l u e
For d i l a t i o n s
on
i n t e g r a l o f the type
G we take the one-parameter
group o f automorphisms whose a c t i o n in canonical c o o r d i n a t e s i s
~t (~'~'~) : ( t ~ ' t n ' t 2 ~ ) when
t > o ,
The function
'
T introduced above is then homogeneous of degree 2 :
~(~tg ) = t2~(g) . We d e f i n e a homogeneous norm on
G by s e t t i n g
Igl = I T ( g ) l 1/2
= [2 + 4-2(1i~112 + ii~i12)211/4 -1
This norm i s smooth and symmetric, (Recall t h a t
g
The homogeneous dimension o f
and the f u n c t i o n
G
is
Q = 2n+2 ,
has c o o r d i n a t e s
(-~,-n,-~),)
K(g) = T(g) - n - I
i s homogeneous o f degree -Q .
Obviously
K(g-Z) ~ = K(g)
so
K
is
C co
on
G ~ {e}
°
Also
,
i s Hermitian symmetric.
Lemma. Proof
K has mean-value z e r o . Introduce " c y l i n d r i c a l "
p = ( I / 4 ) ( I I ~ I I 2 + llnl[2) .
c o o r d i n a t e s on
,
dm i s the measure on the u n i t sphere in
constant.
G by s e t t i n g
The change o f measure is then
d~ dn d~ = c p n - i d~ do d~ where
K
In these c o o r d i n a t e s , we have
R2n ,
and
c
is a p o s i t i v e
150 K(g) dg : c f f ( p - i ~ ) -n-1 pn-1 do d~ E
a~Ig ~b where
E clR 2
is the h a l f annulus a
4
<~
2
+
p2
<_
b4
,
p>O
Changing to p o l a r coordinates in the
b 2c f a
Writing
,
p%
plane, we get the i n t e g r a l
)n-i
dr de} T "
{ i e i ( n + l ) e (cos e o
cos e = ~1 (e I'e + e - i e )
and using the binomial expansion, we f i n d t h a t
the integrand is a sum of even harmonics e x p ( 2 i k o ) , 1 < k ~ n, i n t e g r a t e s to zero over
[o, 3
,
and hence i t
Q.E.D.
We can now s t a t e the main r e s u l t of t h i s s e c t i o n . Let us denote by
K the
s i n g u l a r convolution o p e r a t o r K m(x) = P.V. } m(xy) K(y) dy . G By the lemma j u s t proved and the r e s u l t s o f Chapter I I I , to a bounded o p e r a t o r on Theorem
we know t h a t
K extends
L2(G) .
The p r o j e c t i o n
P onto
H~(G)
is a l i n e a r combination
of
K and
the i d e n t i t y o p e r a t o r . Proof express
Since
P ~(e)
P
and
in terms of
the same c y l i n d r i c a l lim
K commute with l e f t K m(e)
and
translations, it
~(e) ,
for
is enough to
~ e C~ (G) .
By using
coordinates as in the lemma, we f i n d t h a t
! ,,,,dg
~+o Ig1_R ~+=~g~jn+1
a
~>0
e x i s t s and is independent of o~
e Cc (G) ,
R .
we thus o b t a i n from
Since
(~-m(e))K
(~'=:'=) the equation
is an i n t e g r a b l e f u n c t i o n i f
151
Pm(eJ = c f (m(g) - m(e)) K(g) dg + a m(e) . G But is
K
has mean-value z e r o , so the f i r s t
cKm(e) .
,
For the t h r e e - d i m e n s i o n a l
i s the i n t e r t w i n i n g
tation
equation
the p r o o f .
Remark K
side of this
This shows t h a t P = cK + a l
finishing
term on the r i g h t
~2
of
{(z,w)
=
(n=1)
,
the o p e r a t o r
a s s o c i a t e d w i t h the r e p r e s e n -
.
Szeg~ kernel f o r
D
§ 1.5
o p e r a t o r s t u d i e d in
SU(2,1)
2.4
Heisenberg group
H2(D)
: z e ~n
be the Siegel domain o f t y p e I I
Let
,
,
w e ~
,
i n t r o d u c e d in
Im(w) > Izll 2}
§ II.
4.4 .
(z,w) e D ,
If
we
can w r i t e ( z , w ) = ( z , wo + i t ) where
Im w o = llzll 2
f
D ,
on
and
The Hardy space
(:'~)
Thus the p o i n t
we d e f i n e the f u n c t i o n ft(Z,Wo)
functions
t > o .
f
H2(D)
on
D
ft
= f(z,w ° + it)
on
Given a f u n c t i o n
(Z,Wo) e M .
M by
,
t > o
i s then d e f i n e d to be the space o f a l l
holomorphic
such t h a t
sup I I f t ( m ) l 2 dm t>o M
Recall t h a t the measure group ( E q u i v a l e n t l y ,
,
dm
<
i s the image o f Haar measure on the
we can p a r a m e t r i z e
M by
IRn x]R n × R
Heisenberg
v i a the
152
map
(z,w) ~-+ (Re z, Im z, Re w) In t h i s section we w i l l
to show t h a t :
(i)
and use Lebesgue measure in the parameters.)
use the Fourier a n a l y s i s on the Heisenberg group
the boundary values of f u n c t i o n s in
space
H~(M)
already studied;
H2(D)
is a H i l b e r t space, and the mapping from
is an isomorphism onto
(ii)
H~(M) ;
To i l l u s t r a t e plane
function
f
in
¢ .
side of
(*)
,
to i t s boundary f u n c t i o n f
can be recovered from
formula.
Starting with
Im z > o
f
the f u n c t i o n
the method, we f i r s t
{Im z > o } c
comprise the
w i t h norm given by the l e f t
(iii)
i t s boundary values by an i n t e g r a l
H2(D)
consider the c l a s s i c a l m e H~(]R) ,
case o f the h a l f -
we obtain a holomorphic
by the Fourier i n v e r s i o n formula:
,, 1 f ei~Z 2~£~j f ( z ) =~-~z d~
,
Im z > o
0
(Recall t h a t
~(~) = o
for
~ ~ o .)
I f we define
is the inverse F o u r i e r transform of the f u n c t i o n
ft(x)
= f(x+it)
e x p ( - t ~ ) #(~) ,
,
then
ft
so t h a t by
the Plancherel theorem,
t>oSUp llftllL2(~R)= IImlIL2(IR). In p a r t i c u l a r , ft ÷ m in
L2
the set of f u n c t i o n s as
t + o .
{ft}t>o
is bounded in
L2(IR ) ,
Conversely, given a holomorphic f u n c t i o n
upper h a l f - p l a n e w i t h the property t h a t the set
{ft}t>o
f t ÷ m as
t + o .
Finally,
to represent
f
is bounded in
we can use a weak-compactness argument to obtain a boundary f u n c t i o n such t h a t
and
f
in terms of
in the L2(IR),
2 m e H+(IR) , ~
instead
^
of
m ,
we i n v e r t the order of i n t e g r a t i o n
now, since
Im z > o) f(z)
=
(no convergence f a c t o r is needed
to get the formula ~1
~
f ( f e i ~ ( z - x ) d~} m(x) dx
--~0
=TTTI
dx
153 The f u n c t i o n
(2~i) -1 (x-z) -1
kernel expressing
f(z)
is the Szeg~ kernel in t h i s case (the reproducing
in terms o f the boundary values o f
We now return to the space
H2(D) ,
r e p l a c i n g F o u r i e r analysis on IR Heisenberg group
G .
g
and carry out a s i m i l a r a n a l y s i s ,
Recall t h a t from § I I . 4.4 the map from
G t6
H
is given
+ ttntt2)
1 z j ( g ) : g (~j - i n j )
when
.
by (non-commutative) F o u r i e r analysis on the
in coordinates by i w(g) : c + ; (tl~ll 2
(**)
f)
has canonical coordinates
,
(~,n,~) elR n x IR x IR .
We shall w r i t e
z(g) = ( z l ( g ) . . . . . Zn(g)) e cn , and i f
z , z ' e cn , z.z'
we set =
Note t h a t as a real
n ~
j=l
C=
z.z[
JJ
manifold,
g , t ~ - ~ (z(g) where
g e G and The f i r s t
,
D is isomorphic to
w(g) + i t )
G x IR+ via the map
,
t > o
step in the a n a l y s i s is to show t h a t by a n a l y t i c c o n t i n u a t i o n o f
the F o u r i e r i n v e r s i o n formula f o r
G ,
we can synthesize f u n c t i o n s in
s t a r t i n g from the F o u r i e r transforms o f f u n c t i o n s in
H~(M) .
H2(D) ,
For t h i s , we
need the f o l l o w i n g consequence o f Theorem 2.2: Lemma
The F o u r i e r transform of the space
valued f u n c t i o n
~-+
v~. R wx ,
where
v~, w e L2(IRn)
(i)
v~(x) : exp [- T llx
(ii)
w~ = o
(iii)
the f u n c t i o n
and
if
2 G) Hb(
consists o f a l l o p e r a t o r satisfy
x < o ~, x ~ - + w x ( x )
is measurable on IR+ × IRn
154
I I lw~(x)l 2 o IRn
(Here
~n/2 dx d~
v ~ w denotes the operator on If
m e H~(G)
and
#(x) = v~ @ wx ,
H i l b e r t space isomorphism from dv = c ~n/2 dX dx
L2(~Rn)
H~(G)
<
given by
then the map
onto
(v ~ w)(u) = (u,w) v m ~-+wx
L2(IR+× IRn ,'
(dX = Lebesgue measure on
~) ,
.)
defines a where
IR, dx = Lebesgue measure on
£n
c = constant). Proof of Lemma
Conditions
(i)
Theorem 2.2. To v e r i f y c o n d i t i o n norm of the operator
vx @ wx
and
(iii) is
,
(ii)
are d i r e c t consequence of
we observe t h a t the H i l b e r t - S c h m i d t
[Ivx[ I llw~II .
Hence by the Plancherel
formul a,
G
Im(g)12 dg = c n 7 llv~[]2 o
= c [ I
llwxll2 n dx
[W~(X)12 n/2
dx d~ ,
o IRn since
Nvxil2 = (~/~)n/2
.
(Here
c = n/2
Cn ,
where
c n = (2~) -n-1 .)
Together
w i t h the Plancherel theorem, t h i s proves the Lemma. The main r e s u l t o f t h i s section is the f o l l o w i n g Plancherel measure f o r
Theorem
Suppose
(d~ : Cnl>,Ind~,
is the
G) :
m e H~(G) .
Then f o r every
t > o ,
the operator-valued
function Ft(~ ) : e-~t ~(~) is in
(~f) then
LI(G).
I f the f u n c t i o n f(z(g),
f
w(g) + i t )
is defined on the Siegel domain = [ tr(~(g) o
f e H2(D)
and
Ft(~))
d~(~) ,
D by
155
sup IIftI[L2(H) : II~ IIL2(G) t>o Furthermore,
Wft ~ ~
in
L2(G )
as t ~ o
. ^
Proof
By the Lemma j u s t proved, we can w r i t e tr(~(g)
( i n n e r product in
L2(IRn))
#(~)) = ( ~ ( g ) .
m(~) = v~ ~ w~ ,
and hence
v~, w )
Using the e x p l i c i t
form of the r e p r e s e n t a t i o n
we c a l c u l a t e t h a t (~(g)
V~, W~) : e i~w-~z'z I
e
T
w~-~-Tdx
,
[Rn
where
w = w(g)
and
z = z(g)
are defined by
the integrand on the r i g h t side o f The trace norm o f the o p e r a t o r
IIFtll I
(~)
This makes i t evident t h a t
is a holomorphic f u n c t i o n on
Ft(x )
D .
is given by
= e -Xt IIv>ll l~v~II = e ->,t II#(~)i12 2
I t f o l l o w s by the Plancherel theorem t h a t formly in
(~m) .
g e G and u n i f o r m l y f o r
t
(~)
is a b s o l u t e l y convergent, u n i -
in compact subsets o f
(o,~) .
Hence
f
is the l i m i t of holomorphic f u n c t i o n s , u n i f o r m l y on compact subsets of
f
is holomorphic. C l e a r l y
form is of
e -~t ~(~) .
L2(M ) ,
Remark in
H2(D) ,
H2(D)
and
Wft
is the
L2
Hence by the Plancherel theorem
Wft -~ m in
L2(G )
as
t~o
ft
{ft }
is a bounded subset
Q.E.D.
H~(G)
to functions
via the F o u r i e r i n v e r s i o n formula. To see t h a t we o b t a i n a l l o f If
f e H2(D) ,
then f o r each
s a t i s f i e s the t a n g e n t i a l Cauchy-Riemann equations (since
holomorphic). Hence closed subspace o f such t h a t
,
so
G whose F o u r i e r t r a n s -
By the Theorem, we can pass from f u n c t i o n s in
in t h i s way, we can argue as f o l l o w s :
t > o ,
f u n c t i o n on
D ,
{Wf t}
is a bounded subset of
L2(G ) ,
there is an element
H~(G) .
Since
f
H~(G)
is is a
~ e H~(G) and a subsequence
tk
156 Wftk ÷ m
On the other hand, since
f
weakly
is holomorphic, the Cauchy-Riemann equations give
the r e l a t i o n ~ Wf t = i ~~ Wft Taking Fourier transforms, we conclude that ^
~
(Wft)
^
= -X (Wft)
and hence (Wft)^(~)
= e - x t ~(x)
The proof of the Theorem then shows that We conclude our study of the space terms of the boundary values of e H~(G) ,
we w r i t e
f ,
f
is obtained from
H2(D)
by r e w r i t i n g
eliminating
~(~) = v~ Q w~ , w~ = c(~) ~^ ( ~ ) *
@ by formula
(~). (~)
the Fourier transform.
in Given
by the Lemma. Then
v~ ,
where
c~ = llv~l1-2
Hence we can w r i t e tr(~(g)
#(~)) = c ( ~ ) ( ~ ( g ) v ~ ,
#(~)mv~)
= c(~)(#(~)~(g)v~,
,
vx)
= C(~) I ( ~ ( # - I g ) v ~ ' V~) ~(y) d# . G (The last step is
a-priori
true i f
m also is in
have the formula c(~)(~(g)v~, Hence formula
(~)
v~) = e i~w(g)
of the Theorem can be w r i t t e n as
LI(G). )
But from
§ 2.3 we
157
f(z(g),
w ( g ) + i t ) = c n !~ expE-~t+i~w(y-ig)]
= n!c
(This l a s t i n t e g r a l and
m e L2(G) ,
earlier
m(7)~n d¥ dx
I [ t - i w ( y - l g ) ] -n-1 m(~) d~ . n G
is e a s i l y seen to be a b s o l u t e l y convergent, f o r any
so by Fubini and dominated convergence t h i s j u s t i f i e s
t > o the
steps. )
To w r i t e t h i s formula i n terms o f the holomorphic coordinates on the ambient space
$n+l ,
we c a l c u l a t e t h a t w(-f-lg) = w(g) - w - ~ -
2i z(g) • z - ~
Hence i f we denote the boundary values of
f
on
,
M by
f
a l s o , then we have
the i n t e g r a l formula f ( z , w ) = dn f [ w - w ' - 2 i z . T ~ - n ' l M where
(z ' ,w')
are the coordinates on
Thus the Szeg~ kernel f o r the space S ( p , p ' ) = dn ~ - w ' - 2 i where
p = (z,w) e D and
M ,
H2(D)
e M
dm
,
dn = (-1) n + l n !
and
is the f u n c t i o n
z.z-'] -n-1
p' : ( z ' , w ' )
f(z',w')
,
(2~i) -n-1
158
§ 3
3,1
D
operator (with
C~ c o e f f i c i e n t s )
is said to be h T p o e l l i p t i c
equation
operaitoirs
Fundamental s o l u t i o n s f o r homogeneous h y p q e l l i p t i c
be a d i f f e r e n t i a l that
Hypoelliptic differential
Df = g
on a
C~
i f every d i s t r i b u t i o n
operators
manifold
solution
Let
H f
Recall
to the
satisfies Sing Supp(f) = Sing Supp(g) .
Here
Sing Supp(f)
denotes the siingular support o f
the open set on which
f
is a
f
,
i.e.
the complement o f
C~ f u n c t i o n .
From the p o i n t o f view o f a n a l y s i s on n i l p o t e n t groups, one o f the most. i n t e r e s t i n g examples i s an o p e r a t o r o f the form D=X where
Xo, X I , . . . X n
theorem o f
o
+
n z j=l
X~ , J
are real v e c t o r f i e l d s
on a m a n i f o l d
M .
L. H~rmander t h a t such an o p e r a t o r is h y p o e l l i p t i c
algebra generated by
Xo, X1 . . . . ,X n
This is p r e c i s e l y the i n f i n i t e s i m a l
I t i s a fundamental p r o v i d e d the Lie
spans the tangent space a t each p o i n t o f transitivity
H .
hypothesis t h a t was the s t a r t i n g
p o i n t o f our c o n s t r u c t i o n s in Chapter I I . The f i r s t transitive
step i n our a n a l y s i s o f h y p o e l l i p t i c
L i e algebras o f v e c t o r f i e . l d s w i l l
operators associated with
be to study the corresponding
o p e r a t o r s on a graded n i l p o t e n t group. In f a c t ,
it
s t r u c t u r e and the hypothesis o f h y p o e l l i p t i c i t y
t h a t we need at f i r s t .
Assume § 1.1.1 .
V
is o n l y the graded v e c t o r space
is a r e a l , graded v e c t o r space w i t h d i l a t i o n s
An o p e r a t o r
D on C~(V)
will
D(~o~t) = t~(D~) o B t
{a t } ,
be c a l l e d homoqeneous o f degreie
as in ~
if
159
for all
~ ~ C~(V) .
Theorem
Suppose
homogeneous o f degree Assume t h a t
D
DK = 6 .
~ ,
and i t s
unique d i s t r i b u t i o n
is a
with
K
on
V
d e f i n e d by a f u n c t i o n
supported at
k(x)
{o}
There e x i s t s
are both h y p o e l l i p t i c .
and the c o n d i t i o n which i s
k
DKo = 6
C~
is locally
On t h e subspace
away from
distribution
analysis,
define distributions
~ e Cc(U)
.
If
K
is
and homogeneous o f
> - Q .)
of
D
and i t s
transpose,
imply that
< a}
o f z e r o , which s a t i s f i e s
C~ f u n c t i o n
U) ,
U Ht
Ko
and t o c o n s t r u c t
Of c o u r s e ,
is invariant ,
0 < t 2 1
K
the topology coincide.
Ko ,
i s homogeneous o f degree
on
< Ht , for
~ - Q and s a t i s f i e s
Ko , d e f i n e d on some
t o p o l o g y and t h e
K = Ko - Ho
Since t h e s e t
a
and t h a t no d i s t r i b u t i o n
N = {~ ~ C~(U) : D~ = O} ,
homogeneity p r o p e r t i e s ,
h o(X ) dx
V .
Then t h e r e e x i s t s
imply that
0
integrable,
The i d e a o f t h e p r o o f i s to t a k e the d i s t r i b u t i o n
distribution
which i s
U ;
distribution
particular
~ > o
The h y p o e l l i p t i c i t y
functional
U = {Ixl
on
V
O) .
a distribution
neighborhood
2)
at
(Sketch)
t o g e t h e r w i t h some g e n e r a l
i)
Dt
can be homogeneous o f degree
P r o o f o f Theorem
o p e r a t o r on
which i s homogeneous o f degree
,
(Note t h a t
differential
0 < ~ < Q = homogeneous dimension o f
Hypoellipticity
~ - Q .
C~
transpose
(6 = d e l t a f u n c t i o n
Remark
degree
D
which a p r i o r i
ho ~ N
such t h a t t h e
a - Q (H o
also satisfies
under d i l a t i o n s
{6 t
has no
being t h e DK = 6 .
: 0 < t < I}
,
we can
by
~ > = < KO, ~ > - t - a < Ko, ~ ° ~ 1 / t > , were homogeneous o f degree
~ - Q ,
then
Ht
would be
160 zero.
In any e v e n t , the assumption t h a t
the f a c t t h a t the d e l t a f u n c t i o n
D
i s homogeneous o f degree
i s homogeneous o f degree
-Q ,
~ ,
and
imply that
DHt = a - 6 = 0 . Hence by h y p o e l l i p t i c i t y
of
D ,
Ht
i s o f the form
h t ( x ) dx ,
We want to show t h a t ko(X ) dx ,
l i m h t e x i s t s . Away from O, Ko t+o k o e C~(U~{o}) . The f o r m u l a above f o r Ht
where
with
h t e C~(U)
i s given as can be w r i t t e n
in
p o i n t w i s e terms as
h t ( x ) = ko(X ) - tQ-~ k o ( 6 t x ) , for
x e U ~ {o}
and
o < t < I .
Hence
hs(X ) - hr(X ) = r Q-~ ko(~rX ) - sQ-~ ko(6sX )
= r Q-~ h s / r
if
o < s ~ r < 1 .
Taking
(Since
h t e C~(U) ,
s = r 2 , we o b t a i n the r e c u r s i v e
(6rX)
this
this
relation,
(*)
where
2n-i s k=o
t ~ - ~ Ht
and hence by p r o p e r t y (relative
derivatives
•
r k(Q-~) h r ( a k x) , r
2n
The mapping
C~(U)
x = o.)
we f i n d t h a t
hr ( x ) = n
rn = r
f o r m u l a a l s o holds a t
relation
hr2(X) = r Q-~ h r ( a r X ) + h r ( X )
Iterating
,
2)
is evidently
above the
t~-*
ht
(0,1)
C~(U) .
Hence i f
In p a r t i c u l a r , c < a ,
then
into
D'(U
i s c o n t i n u o u s from ( 0 , I )
t o the t o p o l o g y o f u n i f o r m convergence o f f u n c t i o n s
on compact subsets o f U) .
compact subset o f
map
c o n t i n u o u s from
and t h e i r
{h t : # ~ t ~ ½}
is a
, into
181
sup
Ixl~ 1/4~t~1/2
lht(x) l = C
2n But i f
o < s < 1/4 ,
1/4 } r < 1 / 2 .
By
we can w r i t e (~)
this
sup l h s ( X ) l ]xI~s
Since
~ < Q ,
the serles
sup
for
some i n t e g e r
n
and
g i v e s t h e bound
< C -
z rk(Q-~) k~o
on t h e r i g h t
Iht(x)l
c o n v e r g e s , and we o b t a i n
a u n i f o r m bound
< c
ixi~ E o
Using t h i s
s = r
-
u n i f o r m bound, we f i n d
from the equation for
hs - hr
that
the
by d e f i n i t i o n
of
limit
ho(X ) :
exists,
uniformly
lim hr(X ) r÷o
on compact s u b s e t s o f
U .
Hence t h e l i m i t
Ho = l i m H r r+o
exists
as a d i s t r i b u t i o n .
If m0 ,
we d e f i n e
K = Ko - Ho ,
then
DK = 6 .
Furthermore,
we have
< K, ~ >
f r o m which i t whole p o i n t
is clear
that
=
l i m r -~ ro.~
K
o f t h e argument j u s t
is
<
K mo61 o' /r
>
homogeneous o f d e g r e e
g i v e n was t o p r o v e t h a t
the equation
< K, ~ > = t m < K, ~o~ t > ,
~ - Q this
on
limit
U .
(The
exists.)
Using
162
we e x t e n d
K
u n i q u e l y to a d i s t r i b u t i o n
The uniqueness o f
K
C~ f u n c t i o n s
t h e r e are no
Examples 1.
is clear
on
V
on
V ,
homogeneous o f degree
from t h e h y p o e l l i p t i c i t y
of
which a r e homogeneous o f degree
The most c l a s s i c a l
D ,
m - Q .
since
~ - Q < 0 .
case o f t h e theorem i s t h e L a p l a c e
operator
n =
)2
z
(~/~x i
i=1 on
V = IRn ,
The f u n c t i o n
n > 2 , where the d i l a t i o n s k(x)
in t h i s
llxll
c2 log
[Ixll ,
< Q
,
i s t h e E u c l i d e a n norm.
(When
n = 2
the fundamental
solution
is
which is n o t homogeneous. This shows the n e c e s s i t y o f t h e c o n d i t i o n
in t h e t h e o r e m . )
2.
Another classical
hypoelliptic
A - ~/~x o where
scalar multiplication.
case i s
o n IIxl[ 2-n where
are o r d i n a r y
A
so t h a t
IRn .
Here t h e d i l a t i o n s
(Xo,X 1 . . . . . Xn) = ( t 2 x o, t x I . . . . . t Xn)
Q = n + 2 .
k(x)
In t h i s
i
3. Laplacian
a r e g i v e n by
,
case
c n x o n / 2 exp [-llx[l / 4 x o] ÷2 0
where we have w r i t t e n
IRn+l
,
i s t h e L a p l a c e o p e r a t o r on
6t
o p e r a t o r i s t h e h e a t o p e r a t o r on
12112 = x~
+...+
,
xo > o
~
XO < 0
:,
X2n .
On the H e i s e n b e r g group o f dimension
2n + I
,
t a k e the " s u b e l l i p t i c "
163
A
where
IX i ,
n~> X~ i=l ]
Y~ = 6 i j Z
Q = 2n + 2 , norm
=
+
Y~ I
,
as usual. The fundamental s o l u t i o n f o r
is
Cn n i x i 2 -x
j u s t as in the Euclidean case, f o r a s u i t a b l e choice of homogeneous
Ixl
The corresponding "heat o p e r a t o r " - a/sx o + A
by H~rmander's theorem, as is i t s transpose
4.
A
a/~x
is also h y p o e l l i p t i c ,
+ A .
o
Example 3 can be generalized to any graded n i l p o t e n t group with the
property t h a t the elements of degree one generate
the Lie algebra. Take f o r
A A act
the sum of the squares o f the elements of degree one in some basis, and l e t via the r e g u l a r r e p r e s e n t a t i o n .
3.2
P r i n c i p a l parts of d i f f e r e n t i a l
operators
Let
V
be a graded
n i l p o t e n t Lie algebra. Assume t h a t x
: v
+
L(M)
is a p a r t i a l homomorphism from manifold
H .
Let the spaces
V
i n t o the Lie algebra o f
D0(X)m
of d i f f e r e n t i a l
be defined as in D e f i n i t i o n 3, § 111.5.3 . possibility
operators of
T(V6)
be the tensor algebra over
VC
V extend to automorphisms of T(V6) =
where
T(m)(v~)
(T(m)(v~)
and
m .
V)
The d i l a t i o n s
T(V@) and define a grading
are the elements o f homogeneous degree
ni ,
x-degree
s @ T(~)(V~) m>o
is spanned over
is o f degree
A of
(the f r e e a s s o c i a t i v e non-
commutative algebra generated by the c o m p l e x i f i c a t i o n o f on
x-degree ~ m
In t h i s section we want to explore the
o f assigning a " p r i n c i p a l p a r t " to an operator
Let
{6t }
C~ vector f i e l d s on a
¢
by the formal monomials
n l + . - - + n k = m .)
algebra, the l i n e a r map x
m ,
r e l a t i v e to
VlQ...~v k ,
where
{~t } . vi e V
By the universal property of the tensor
extends uniquely to an algebra homomorphism
164 X : T(V¢) where
÷
O(M)
,
D(M) denotes the algebra of d i f f e r e n t i a l operators with
on H .
Evidently
C~ c o e f f i c i e n t s
x(T(m)(v~)) c DO(X)m .
Definition:
If
A has p r i n c i p a l part
A e DO(X)m , and
~(P)
P e T(m)(v¢) ,
then we shall say that
if
X(P) - A e DO(X)m_l
Remarks
This d e f i n i t i o n is somewhat ad hoc ,
vious short comings. The f i r s t
and suffers from two ob-
is that the p r i n c i p a l part, i f i t e x i s t s , is not
uniquely determined. One could t r y to remedy this by defining the p r i n c i p a l part as an element of the quotient
DO(X)m / DO(X)m_l ,
but this seems quite u n t r a c t i b l e .
The second, more serious, l i m i t a t i o n is that the p r i n c i p a l part a homogeneous polynomial in the vector f i e l d s
X(v)
with constant d o e f f i c i e n t s .
More generally, one would l i k e to allow c o e f f i c i e n t s from with the classical theory of e l l i p t i c
is required to be
C~(M) ,
in analogy
operators. To prove r e g u l a r i t y theorems f o r
such operators, one would need to strengthen the results of
§ 3.1
to obtain
fundamental solutions depending smoothly on parameters. The class of operators in Chapter I I I ,
§ 5.3
would have to be s i m i l a r l y generalized. This can be done in
some cases, but f o r the present exposition we shall ignore such generalizations. Suppose now that operator
x(P)
A e DO(X)m has a p r i n c i p a l part
X(P) .
To the
there corresponds a l e f t - i n v a r i a n t d i f f e r e n t i a l operator on
homogeneous of degree
m.
Namely, the operator
dR(P) ,
P under the extension of the r i g h t regular representation o f the tensor algebra. Of course,
dR(P)
which is the image of dR to a representation
is uniquely determined by the image of
P in the universal enveloping algebra of the Lie algebra
V .
(Recall that the
universal enveloping algebra is canonically isomorphic to the quotient of modulo the ideal generated by the elements
V ,
uQv - v@u - [u,v]
,
with
T(V)
u,v e V .)
165 Let local
p
be a measure on
coordinate
system.
If
M
w i t h smooth, nowhere v a n i s h i n g
~, ~ e CT(H ) ,
< ~,~ > : f m(x) { ( x ) Define the operator
At
m, ~ e CT(H ) .
such t h a t
v t = -v
Lemma part
X(P t )
for
If
d#(x)
by t h e i d e n t i t y
Let
p ÷ pt
A e D0(X)m
a v e C~(H) .
part
Xi
r-step
+ av
this
n ~ i=l
of
T(V{)
x(P)
,
then
At
has p r i n c i p a l
nilpotent x
,
p r o v e s t h e Lemma.
n x i=l
o f t h e form
on
M
and
ai,
b e C~(M) .
L i e a l g e b r a on g e n e r a t o r s by
x(wi)
and the p r i n c i p a l
P =
one sees t h a t
2 Xi + a i Xi + b
are v e c t o r f i e l d s
homomorphism
A e D0(X)2 ,
Iterating
by p a r t s ,
C o n s i d e r an o p e r a t o r
A =
partial
has p r i n c i p a l
Using an i n t e g r a t i o n
Example
free,
be t h e unique a n t i - a u t o m o r p h i s m
v e V .
x(v) t : -x(v)
where the
,
.
Proof
where
i n any
set
< A~,~ > : < ~, At ~ >
for all
density
= Xi
part of
wi @ wi
(cf. A
w I . . . . . wn ,
Chapter II, is
X(P)
Take f o r
,
§ 1.2, where
V
the
and d e f i n e t h e Example). Then
166 In case
r = 1 ,
For any
r ,
If the then
Xi
the o p e r a t o r
the o p e r a t o r and t h e i r
~(P)
dR(P)
is a l i n e a r
isomorphism from
same n o t a t i o n s as i n
Suppose
(Here
.
V
§§ 111.5.3
A e DO(~)m
span the t a n g e n t spaces on
V, M, ~
Let
M ,
be as in
§ 3.2 .
We
~(v) x
onto the t a n g e n t space a t without further
is a d i f f e n t i a l
i)
O<m
2)
the o p e r a t o r s
dR(P)
Q = homogeneous dimension o f
R2
by H~rmander's theorem.
the map
which is homogeneous o f degree
RI ,
r
V ,
x .
We adopt here the
comment.
o p e r a t o r on
Jq which has p r i n c i p a l
We make the f o l l o w i n g assumption on the c o r r e s p o n d i n g o p e r a t o r
Theorem and
~+
on
f o r the same reason.
x e M ,
V
dR(P) ,
is hypoelliptic
C o n s t r u c t i o n o f a par a m e t r i x
assume f u r t h e r m o r e t h a t f o r
I(P)
is the o r d i n a r y Laplace o p e r a t o r on IRn .
commutators up t o l e n g t h
is also hypoelliptic,
3.3
part
dR(P)
Given
of type 1
m on
and
V :
dR(P t )
are h y p o e l l i p t i c
on
V .
V .)
a e C#(X) ,
there exist operators
A 1, A2
of type
m
such t h a t
A1 = a I + R1
A 2 A = a I + R2
Proof by Theorem 3.1 .
Let
kI
be the fundamental s o l u t i o n
Pick a f u n c t i o n
b e C~(X)
so t h a t
and s e t Kl(X,y) : a(x) k I (e(y,x))
b(y)
f o r the o p e r a t o r b = 1
dR(P)
given
on the s u p p o r t o f
a ,
167
Then
K1
i s a kernel
of type
By the r e s u l t s o f follows:
If
~
m ,
§ 3.2 ,
and we l e t
Ty
i s a f u n c t i o n on
f = kI ,
is a differential
X
o f t h e form
o p e r a t o r on
we see t h a t the f i r s t
a
and
~(P)x K I ( x ' Y )
"
on
AI
o f Theorem 2 o f
operator
At
equation,
~(x) = f(o(y,x))
+ (Tyf)(e(y,x))
of order
~ m - 1
,
as
then
, at
v = 0 .
Taking
formula gives a delta function, Hultiplying
kI
and
by the t r u n c a t i o n
§ 111.5.3 .
This proves the f i r s t
the h y p o t h e s e s , by Lemma 3.2 .
R
e q u a t i o n . The
This g i v e s t h e second
Q.E.D.
Suppose the L i e a l g e b r a
degree one. Assume t h a t
f e LP(x)
g e S~(X) .
Proof
Then
Given
is g e n e r a t e d by i t s
elements o f
,
a f e S~+m(X)
a ,
V
satisfies
Af=g
I ,
§ 111.5.3
The same is t r u e f o r the a c t i o n o f the l o w e r o r d e r term
also satisfies
Corollary
where
.
of
b o n l y c o n t r i b u t e s a n o t h e r k e r n e l o f t y p e I i n the c a l c u l a t i o n
of
by v i r t u e
~
term o f t h i s
the second term gives a k e r n e l o f type i functions
be the c o r r e s p o n d i n g o p e r a t o r .
we can e x t e n d f o r m u l a ( I I I )
(X(P)m)(x) = ( d R ( P ) f ) ( e ( y , x ) ) where
A1
for every function
we c o n s t r u c t o p e r a t o r s
A
a e C#(X) .
of type
m and
T
of type
such t h a t
AA=aI+T
Then by C o r o l l a r y 111.5.4 , Iterating
t h i s argument
§ 3.4
we have
T f e Sp .
Hence
a f e S~.
k + m times proves the C o r o l l a r y .
Local r e g u l a r i t y
now we o n l y assume t h a t
P m and A g e Sk+
We c o n t i n u e i n the same c o n t e x t as
§ 3.3 ,
but
168 : V
is a transitive
partial
point of
Let the spaces
M .)
be d e f i n e d as i n
S~,loc (H'l)m
L(M)
homomorphism ( s u r j e c t i v e onto the tangent space a t each DO(X)m o f d i f f e r e n t i a l
§ 111.5.3 ,
Definition
÷
If
Definition
1 < p < ~
consists of all
and
operators of
x-degree 2 m
3 .
m is a non-negative i n t e g e r , then
distributions
f
on
M such t h a t
DO(l) m f CL~oc(M)
(i.e.
if
vi e V
are o f degree
ni
,
and
n1+..-+n k 2 m ,
then the d i s t r i b u t i o n
derivative
l(v I) ...
Remark
l ( V k ) f e L~oc(M ) . )
I t i s c l e a r from the formula f o r the transpose of a vecto~ f i e l d
that this definition
is independent o f the choice o f measure
In o r d e r to apply the r e s u l t s o f to know how the spaces
Sp m,loc
§ 3.3
~
on
M .
to the present c o n t e x t , we need
behave under l i f t i n g s
of transitive
partial
homomorphisms. Fix a point
xo e M ,
w : c~(M)~ where M ,
~
is a sufficiently
and r e c a l l the l i f t i n g
c~(~)
map
,
small open set around
0
in
V .
For any f u n c t i o n on
let Wf(v) : f(eX(V)xo )
Let
A : V ÷ L(~)
f e L#oc(M) ,
be a l i f t i n g
define
Wf
of
~
as c o n s t r u c t e d in Chapter I I
to be the d i s t r i b u t i o n
Wf(v) dv
on
~ .
.
For
169
Lemma I .
There is an open set
P
:
C~(~) + C~(Mo)
y
:
v÷c=(a)
Ho
around
xo ,
a s u r j e c t i v e l i n e a r map
and a l i n e a r map ,
such t h a t (1)
< Wf, ~ > = < f , Pm >
(2)
~(v)
P~
=
Here
f e L#oc(H), ~ e C#(~)
over
~
and
H ,
Remark
P(A(v)
m + y(V)m)
and the p a i r i n g in
(i)
is given by i n t e g r a t i o n
respectively.
Recall t h a t in the case t h a t
W is the map l i f t i n g
~
is an exact homomorphism, then
functions from a homogeneous space to the group, The o p e r a t o r
P is " i n t e g r a t i o n over the cosets" in t h i s case, and is a standard tool in harmonic a n a l y s i s .
Proof of Lemma 1. coordinates given in is a f u n c t i o n o f and view
x' If
We use the d e s c r i p t i o n of the range of
§ 11.2.4 :
There are coordinates
x' = (x I . . . . . Xm)
only
as g i v i n g coordinates on f e L#oc(H )
and
(m = dim H) .
{xj} Set
on
W in local ~
so t h a t
x" = (Xm+I . . . . . Xn) ,
g o.
m e C#(~) ,
then w i t h t h i s i d e n t i f i c a t i o n
we can
write < Wf' ~ > = H
Here J>O
dx'
and
dx"
f(x')
~(x~x") J(x~x") dx' dx"
denote Lebesgue measure in the respective coordinates, and
is a s u i t a b l e change of measure f a c t o r . Thus i f we define P~(x') = f ~(x',x") J(x',x") dx"
,
Wf
170 then c o n d i t i o n (1) i s o b v i o u s l y s a t i s f i e d . t a k i n g f u n c t i o n s o f the form To v e r i f y
The s u r j e c t i v i t y
of
P
i s e v i d e n t on
m l ( X ' ) ~2(x") .
( 2 ) , we express the v e c t o r f i e l d s
z(v)
and
A(v)
in these
coordinates in the form
~(v) : a ( x ' )
~/~x'
A(v) : a ( x ' )
~/~x' + b ( x ' , x " )
(such an expression is e q u i v a l e n t to the r e l a t i o n by p a r t s in the i n t e g r a l
for
P(A(V)~)
,
~l~x"
A(v) W = W ~ ( v ) )
we o b t a i n r e l a t i o n
.
Integrating
(2), finishing
the
proof. If on
f
is a distribution
Q by formula ( I ) .
Then
on
on
d e n s i t y f a c t o r s in the measures on and
A(V)
Q , H
since and
Q ,
on
is surjective.
the i n t e r t w i n i n g
A~o i n j e c t i v e l y Because o f the r e l a t i o n between
a v e C=(~o )
Let
f
be a d i s t r i b u t i o n
f e
Proof f
g a L~oc(Mo)
on
and
M° .
Then
f
The Lemma i s c l e a r l y true when ~(v) f
are both l o c a l l y
in
m= o , Lp .
~ ) ~ ~ Cc(
°
~(v) P~ > : < g, P~ > Using r e l a t i o n
(3)
by d e f i n i t i o n
of
Wf .
Then t h e r e is a f u n c t i o n
such t h a t < f,
for all
P
as a d i s t r i b u t i o n
W z(v) = (A(v) + av)
Lemma 2
Suppose
Wf
now becomes
(3) where
we now d e f i n e
W maps the space o f d i s t r i b u t i o n s
i n t o the space o f d i s t r i b u t i o n s
~(v)
H O
we f i n d t h a t
171
< W f , A(V)~ > : < W g - a v, ~ > which shows t h a t implication
~
A(v)W f e L~oc(~ ) .
t h e r e is a f u n c t i o n
f e k~oc(Mo)
G e L~oc(Q )
< f, ~ e C#(~) .
taking
m o f the form < f, g e L~oc(Ho) .
A(v)W f e L~oc(~ ) ,
m l ( X ' ) m2(x") ,
P
~(v)~ > = < g,~ > ,
if
homomorphism from
§ 1.2).
V
"principal
part"
A
~(P) ,
where
g e S~,loc(H,~ ) ~
Proof point
xo
Then i f ,
it
P
A
follows that
The r e s u l t i s l o c a l ,
satisfies
on
of
~
~ .
Theorem" o f
which is also a
This allows us to t r a n s f e r
o p e r a t o r on
operators
satisfies
H ,
.
V):
such t h a t
dR(P)
the equation
f e S~+m,loc(M,~ ) ~
A
has a
m ,
0 < m< Q .
and
dR(P t )
Af=g , (Here
are
where i < p < ~ .)
so we may work in a neighborhood o f a f i x e d
Theorem can be a p p l i e d . Since
t e n t Lie a l g e b r a , there e x i s t s a p a r t i a l Thus
A
V
g e n e r a t o r s , w i t h i t s standard
is homogeneous o f degree
differential
f e L~oc(H )
on which the L i f t i n g
n
(Q=homogeneous dimension o f
be a d i f f e r e n t i a l
Assume t h a t the l e f t - i n v a r i a n t hypoelliptic.
and
,
In t h i s case the " L i f t i n g
to v e c t o r f i e l d s
the r e s u l t s o f § 3.3, as f o l l o w s
Let
~ e C~(Ho)
to the main r e s u l t o f t h i s s e c t i o n . Assume now t h a t
Chapter I I ,
Theorem
(x',x")
By i n d u c t i o n t h i s f i n i s h e s the p r o o f .
Chapter I I asserts t h a t there e x i s t s a l i f t i n g partial
in l o c a l c o o r d i n a t e s
we f i n d by H~Ider's i n e q u a l i t y t h a t
r - s t e p n i l p o t e n t Lie algebra on
(cf.
then (3) shows t h a t
such t h a t
Using the formula f o r
We turn f i n a l l y
gradation
and
~(v) P~ > = < G,~ >
for all
is the f r e e ,
t h i s argument gives the
.
Conversely, i f
where
Iterating
,
V
is a free nilpo-
homomorphism A which is a l i f t i n g
the hypotheses o f § 3.3 .
of
~.
172
By r e l a t i o n : Wf
satisfies
(3)
o f t h i s s e c t i o n , we f i n d t h a t the d i s t r i b u t i o n
an equation o f the form Df = g
where
g = Wg ,
and
D
,
is an o p e r a t o r w i t h p r i n c i p a l
part
A(P) .
By Lemma 2
and the C o r o l l a r y to the Theorem o f § 3.3, we conclude t h a t
e S~+m,loc(~,A ) •
Hence
f e S~+m,loc(H,x ) ,
ExamI ] ~
Let
A
Q.E.D.
be the o p e r a t o r considered in the example at the end
o f § 3.2, and assume t h a t the v e c t o r f i e l d s commutators up to l e n g t h Assume also t h a t e i t h e r n > 2 ,
A .
n
dim H > 2 ,
generators s a t i s f i e s
For example, i f
and t h e i r
s u f f i c e to span the tangent space a t each p o i n t o f o r else
and the homogeneous dimension
algebra on to
r
{X i : 1 ~ i < n}
Q of the f r e e ,
Q> 2 ,
f e L~oc(M )
dim H = 2
and
r > 1 .
Then
r-step nilpotent Lie
so the theorem j u s t proved a p p l i e s
i s such t h a t
Af e L~oc(H ) ,
then we can
conclude t h a t
Xif
also, for nilpotent
i < i, j ~ n .
,
X i X j f e L~oc(H)
Note t h a t t h i s r e s u l t i n v o l v e s no e x p l i c i t
groups o r s i n g u l a r i n t e g r a l o p e r a t o r s .
mention o f
M.
173 Comments and references for Chapter IV
§ 1
We have largely followed Knapp-Stein [1], to which we refer the reader
for more examples and references. The l i t e r a t u r e on intertwining operators for semi-simple groups is extensive. For the basic analytic properties of the " i n t e r twining i n t e g r a l " , cf. Kunze-Stein LFI] and Schiffmann [1]. For recent developments, we c i t e Johnson-Wallach [1], Helgason [2], Knapp-Stein ~ ] ,
[3]. See also Stain's
survey t a l k LF1], Wallach [1], and Warner [ I ] .
§ 2.1
The use of non-commutative Fourier analysis on the Heisenberg group
to study the space
H2(D)
was f i r s t
done by Ogden and V~gi [1], who consider the
general "Siegel domain of type I I " . For a survey of the unitary representation theory of nilpotent groups, cf. Moore [1]. The Ca regularity theory is treated; e.g. in Goodman [1], [2],
§ 2.2 of
[4], Poulsen [1], and Cartier [1], ~ ] .
The Theorem is due to Ogden-V~gi [1]. Our proof, using the behaviour
Ca vectors under direct integral decomposition, is s l i g h t l y d i f f e r e n t .
"tangential Cauchy-Riemann equations" can be written more i n t r i n s i c a l l y of the operator
The
in terms
~b ; cf. Folland-Kohn [1].
§ 2.3
The Theorem is due to Kor~nyi-V~gi LFI]; cf. Kor~nyi-V~gi-Welland [ i ] .
§ 2.4
For the general theory of the Szeg~ kernel of a domain, cf.
Gindikin [I] and Stein [2]. For the Szeg~J kernel in the case of Siegel domains, cf. Kor~nyi [ i ] . The construction of the Szeg~J kernel given here, using the Fourier analysis on the Heisenberg group, avoids the problem of proving a priori that functions in
H2(D)
have a boundary integral representation. For connections
between Szeg~J kernels and representations of semi-simple groups, cf. Knapp L1].
§ 3.1
For the h y p o e l l i p t i c i t y
of second-order operators, cf. H~rmander ~ ]
174 and Kohn [ ~ ,
[2]. The Theorem and i t s proof are taken from Folland [2]. The
results from functional analysis cited in the proof can be found in TrOves [1], § 52. The heat equation, r e l a t i v e to the s u b e l l i p t i c Laplacian in examples 3 and 4, has been studied by Hulanicki [ i ] , Folland [2], and J6rgensen [1]. The fundamental solution for the s u b e l l i p t i c Laplacian on the Heisenberg group was calculated by Folland [ i ] .
Gaveau [ ~
has used stochastic integrals to calculate fundamental
solutions on two-step nilpotent groups. Rockland [I] has shown that on the Heisenberg group, a homogeneous, l e f t - i n v a r i a n t d i f f e r e n t i a l operator is h y p o e l l i p t i c , provided i t s image in every n o n - t r i v i a l irreducible unitary representation has a bounded inverse. See Gru~in [1], ~ ] for examples of h y p o e l l i p t i c operators with polynomial c o e f f i c i e n t s .
§ 3.2
For the relations between tensor algebras, universal enveloping
algebras, and l e f t - i n v a r i a n t d i f f e r e n t i a l operators on a Lie group, cf. Helgason [ i ] . The study of operators whose principal part is a polynomial in the vector fields
~(v)
with variable coefficients has been treated, in special cases, by
Rothschild-Stein [1].
§§ 3.3-3.4
These results are due to Rothschild-Stein [ ~ ,
extending s i m i l a r
results of Folland-Stein ~ ] . The proofs given here are somewhat d i f f e r e n t , since we have again t r i e d to emphasize the s i m i l a r i t y with the case of functions on a homogeneous space, as in Chapter I I . For the classical e l l i p t i c
r e g u l a r i t y theory we refer to Bers-John-Schechter
LI]. For applications of the r e g u l a r i t y results here to the study of the
~b
operator, we refer to Folland-Stein ~ ] and Rothschild-Stein [1]. For e l l i p t i c r e g u l a r i t y in the context of unitary representation theory, cf. Goodman [4].
Appendix Generalized Jonqui#res Groups
In Chapter I we r e s t r i c t e d our a t t e n t i o n to the group of automorphisms of the ring
P of polynomial functions, and we embedded every simply-connected n i l p o t e n t
Lie group as a subgroup of such a group. For geometric reasons i t is desirable to consider a larger group, namely the group of automorphisms of the f i e l d of r a t i o n a l functions (the Cremona group). In this appendix we want to construct certain ( f i n i t e dimensional) Lie subgroups of the Cremona group, extending the constructions of
§ 1.1.
In f a c t , the construction works over any f i e l d of
c h a r a c t e r i s t i c zero. We w i l l assume in these notes that the c o e f f i c i e n t f i e l d is the complex numbers, however, since we have systematically avoided any mention of algebraic groups up to t h i s point. The f i r s t
step in t h i s analysis is to replace the one-parameter d i l a t i o n
group on the vector space
V by an
n-parameter d i l a t i o n group
The generators of this group span a commutative subalgebra a d j o i n t action of In
§ A.1
h on
Der(P)
(n = dim V).
h c Der(P) ,
and the
is diagonalizable.
we study the vector f i e l d s with polynomial c o e f f i c i e n t s which are
eigenvectors f o r
ad(h) .
dimensional subalgebras of t h e i r structure in
§ A.3 .
In
§ A.2 ,
Der(P) ,
we construct a family of maximal f i n i t e each of which contains
h ,
and determine
(The n i l p o t e n t algebras studied in Chapter I occur
as subalgebras of these maximal algebras.)
In order to achieve
maximality, we
have to include vector f i e l d s which generate b i r a t i o n a l (but not everywheredefined) transformations of
V .
In
§ A.4
we construct groups of b i r a t i o n a l
transformations corresponding to these maximal subalgebras.
176
A.1
Let
P
Root space d e c o m p o s i t i o n o f Der(P)
be the a l g e b r a o f p o l y n o m i a l f u n c t i o n s
complex v e c t o r space V~ ,
1 < i < d .
Fix a basis
{x i }
Thus the monomials
the v e c t o r f i e l d s = Der(P)
V .
{~a~ i
(~i = Dx i )
for
on a f i n i t e - d i m e n s i o n a l V
and dual basis
{ a : a e INd}
: a e ~ d , 1 < i < d}
{~i }
for
P ,
and
are a basis for
are a b a s i s f o r the L i e a l g e b r a
"
Consider the commutative s u b a l g e b r a
The a c t i o n o f
h
on
=
span { ~ i ~ i
P
is d i a g o n a l i z a b l e .
Hi ~a
=
Hence i f
we d e f i n e l i n e a r
and s e t
M = {Ua : a e ~d}
:
1 < i < d}
Indeed, i f we w r i t e
Hi = ~ i ~ i
,
then
ai ~a
functions ,
Sa '
a e INd ,
on
_h by
~a ( H i ) = ai
then
P
=
z H
(~ e M)
ff
: {f e P : H f = p(H)f
where
Thus
dim H
= i
,
and
H
has b a s i s
The a c t i o n o f
adh
on
g
(a
(H e £ ) } if
.
p = ~_
can a l s o be d i a g o n a l i z e d .
Indeed, we have the
commutation r e l a t i o n s
(I)
Bali , ~j~j]
(6ij
= Kronecker d e l t a ) .
~a,i
(Hj) = 6ij
- aj
,
_9. =
Hence i f and s e t
Z gx
=
(6ij
- aj)
~a~ i
we d e f i n e the l i n e a r L = {~a,i
functions
: 1 <_ i _< d, a e ~d}
(~, e L) ,
~a,i ,
then
on
h
by
177 where ~_~ = {X e_g
:
From the Jacobi i d e n t i t y
IX,HI
= ~(H)X}
and the formula
H(Xf) : XHf + D , ~ f
,
we o b t a i n
~
is
the r e l a t i o n s
(2)
[g-K ' - g ~ ]
g-K+~
~
~ H _~ H_x (Define
H
= 0 ,
~
= 0
I t is e v i d e n t t h a t itself,
so t h a t
h
if
~ ~ M or
h = ~o
~ ~ L.)
and t h a t the n o r m a l i z e r of
is a Cartan subalgebra o f
g .
h
in
The r o o t spaces
gx ,
~ # 0 ,
are o f two b a s i c types:
dim
Proposition
If
(I)
For a l l
i ,
g~=
d
(II)
There i s an index
and
~
~ e L ,
In case
= H_~ . i
such t h a t
i # j
.
(I)
,
there are (II),
vector fields
~aa i
Definition
(I)
the p r o p o s i t i o n .
(i)
choices o f
are a l l
We w i l l
call
linearly
write
while
dim~
that a e INd
satisfies
if
elementary
if
i s a non-
(I) or (II).
and
i
so t h a t
a,i
.
The corresponding
independent and span
~ < 0
x(Hj)
= 1 .
~ e L
t h e r e is a unique choice o f
positive integer for all We w i l l
d
~(Hi) = 1 ,
In t h i s case
I t i s c l e a r from formula
w h i l e in case
(II)
i s a n o n - p o s i t i v e i n t e g e r . In t h i s case
~(Hi)
positive integer for all Proof
then one o f the f o l l o w i n g s i t u a t i o n s occurs:
~ # 0
and
~
,
~(Hi)
x = Xa,i
'
Q.E.D.
is a non-
i . ~ e L
it
satisfies
condition
(II)
of
178
Remarks
The d i c h o t o m y d e s c r i b e d
geometric properties
1.
Suppose
Furthermore,
of the vector fields
~ = ~a,i
since
is independent of
i n the p r o p o s i t i o n
~(Hi) ~i
is elementary. = i
'
in
,
this
so t h a t
g~ ,
Then
forces
is r e f l e c t e d
in the
as f o l l o w s :
~
has b a s i s
ai = 0 .
X~ = ~a~ i
.
~a
Hence t h e f u n c t i o n
t h e f l o w g e n e r a t e d by
X~
is
I ~i ÷ ~i + tCa ~j÷~j We s h a l l
P
call
this
, j~i
an e l e m e n t a r y f l o w ,
as e l e m e n t a r y automorphisms.
and r e f e r
t o the induced automorphfsms o f
(More g e n e r a l l y ,
an automorphism o f
P
defined
by S
~i ÷ c~i + f ( ~ l . . . . . ~j ÷ ~j
where
f 2.
,
j ~ i
i s a p o l y n o m i a l and Suppose
x = 0 .
~i-1' ,
c # 0 ,
Then
~i+1 . . . . . ~d )
is called
g-o = ~ '
a Jonqui#res
transformation.)
and the v e c t o r f i e l d
z c i Hi
generates
the f l o w
Ci ÷ ~i exp(tci) 3.
Suppose
x < 0
automorphism o f
P .
and
~ 0 .
ai = -~(Hi)
and
X e ~
To see t h i s ,
,
X # 0 .
use t h e f a c t
Then f o r any
b elN d ,
Then that
X
does n o t g e n e r a t e an
X = ~aH ,
one c ~ I c u l a t e s
where easily
H e g-o that
Xn (~b) = Cn ~na + b
where
c n = B(H)(B(H)
linear
forms on
that
corresponding
-B(H) / m(H) ~ ~ .
not act locally define
h
+ m(H))-,.(B(H) to
+ (n-1)m(H)) a , b e INd .
This c h o i c e makes
nilpotently
on
an automorphism o f
P .
P ,
.
Here
m,B e M
are t h e
But we can always p i c k
cn # 0
and the f o r m a l
for
all
series
n .
Hence
z(i/N!)× n
b
so
X
does
does n o t
179
4.
When ~ < 0 ,
it
is p o s s i b l e f o r c e r t a i n vector f i e l d s in
~X
generate automorphisms o f l a r g e r algebras o f f u n c t i o n s than the algebra
to P .
The
simplest example, perhaps, is obtained by taking
X = CaH as above and r e q u i r i n g
that
The c a l c u l a t i o n above then
H be orthogonal to
~ ,
i.e.
~(H) = 0 .
shows t h a t z(Z/n!)xn~b = ~b exp [B(H)~ a] .
Hence
X generates an automorphism o f the algebra o f e n t i r e functions
series with i n f i n i t e 5.
radius of convergence) in t h i s case.
When the local f l o w defined by
X e~
is r a t i o n a l ,
a one-parameter group of automorphisms o f the f i e l d example, l e t
(= power
× = ¢i H ,
then
X
generates
R of r a t i o n a l f u n c t i o n s . For
where
H = z ciH i The local f l o w generated by
,
X
cI
= i
is obtained by s o l v i n g the system of d i f f e r e n t i a l
equations
i
x~ ( t ) = C k X l ( t ) x k ( t )
x k (o)
~k
One f i n d s t h a t -c k x k ( t ) = ~k ( l - t ~ l ) Hence i f
ck e Z
,
then the map
~k ÷ Xk
is r a t i o n a l f o r each
r a t i o n a l inverse -c k ~k = Xk ( l + t X l ) Hence
exp t X
is defined f o r a l l
t
as an automorphism o f
R .
t ,
with
180
A.2
Maximal f i n i t e - d i m e n s i o n a l
su b a l g e b r a s .
Having s t u d i e d v a r i o u s o n e - p a r a m e t e r groups o f automorphisms generated by v e c t o r fields
in the r o o t spaces
g~ ,
we t u r n t o the problem o f f i n d i n g
finite-dimen-
s i o n a l L i e groups o f automorphisms o f the p o l y n o m i a l a l g e b r a , o r o f the a l g e b r a of rational
functions.
subalgebras
m
As a f i r s t
s t e p , we s h a l l
o f the L i e a l g e b r a
~
look for finite
dimensional
which are maximal i n the f o l l o w i n g
two
senses: (i)
m ~h
(2)
m
We w i l l
,
so t h a t rank (m) = dim V .
is n o t c o n t a i n e d in any l a r g e r f i n i t e - d i m e n s i o n a l c o n s t r u c t an i n f i n i t e
Choose an element
H e ~
where the
ni
are p o s i t i v e
g
integral
(H i = ~ i ~ / ~ i
i n t e g e r s and
)
in the sense t h a t
,
nI = 1 .
By permuting the basis
Hi
we a r r a n g e t h a t 1 . . . n. .I. where
1 ~ q ~ d
nq
i s a d m i t t e d . Then
<
nq+ 1 H
_ < - - . <_ n d = r
,
g e n e r a t e s the o n e - p a r a m e t e r group o f
linear transformations ni at x i = t Let
V = VI Q---Q Vr
xi
Let
Vk = span {~i
hyperplane in taking all
~m .
,
(t # 0).
be the a s s o c i a t e d d e c o m p o s i t i o n o f
Vk = span {x i : ni = k} We s h a l l
.
f a m i l y o f such maximal a l g e b r a s as f o l l o w s :
which i s p o s i t i v e
H = ~ niH i
subalgebra o f
V ,
where
: n i = k}
be the dual space. The element construct a finite-dimensional
the r o o t spaces on o r above t h i s
H
also defines a
algebra
hyperplane, together with
dimensional r o o t spaces l y i n g one step below the h y p e r p l a n e .
~
by q
one-
,
181 In more d e t a i l ,
define
k_ = E {~_~ : < ~,H > = k}
I~ Theorem Der(P)
{~H : ~ e V}~=
m = n
+
z n_k k>o
i s a maximal f i n i t e - d i m e n s i o n a l
subalgebra of
.
Proof
Since
[_g_~, g_.~] _~ g__~+ ,
I n k, n j ] Furthermore,
H(~i) = n i
g
,
it
is clear that
nk+ j
so t h a t
n
c
n_l •
Hence ~_,nk~ To show t h a t
m
G
nk_ I
i s a L i e a l g e b r a , we must prove t h a t
In-, n ] c We note f i r s t (~jH)
with
nka k = n i for all
k
that nj
=
[h, n_~ 1
.
If
with
This vanishes unless since
Since
nk
n__
~ # 0 ,
i s the sum o f the r o o t spaces
then
is increasing
We c a l c u l a t e
~jH] = ~ i j
i = j,
g_~ has b a s i s in
k ,
this
~a~ i
,
forces
where ak = 0
the commutator to be
~aH
and in t h i s case
H ( ~ j ) = ~j , [n_,n_]
Each space
,
since
~a = ~k
f o r some
k
between
n. = 1 . J
The f a c t t h a t
This shows t h a t
n_ ,
g_~c ~
nk > ni .
[~a~ i ,
1 and q ,
~
ai = 0 .
and
n_
m ~k
1 < j <_ q ,
gives
: 0 .
is a Lie subalgebra of is certainly
Der(P).
finite-dimensional.
Indeed,
~k
for
k > o
is
182
spanned by t h e e l e m e n t a r y v e c t o r f i e l d s
s njaj For each
(k,
i)
equation.
Furthermore,
(aa i
with
ai = 0
and
number o f
a e INd
satisfying
= ni - k .
t h e r e are o n l y a f i n i t e since
ni ~ r
,
we have no s o l u t i o n s
if
this
k > r .
This
shows t h a t nk=O,
k>r, that
and completes the p r o o f
It
subalgebra
h ,
m .
Y ~ m ,
it
then
would be t h e sum o f i t s
X and Y
X = ~i H .
< ~, H > = -1 .
subalgebra of
intersections
g
~ .
which
is maximal, i t
suffices
w i t h the r o o t spaces
t o show t h a t i f
do n o t g e n e r a t e a f i n i t e - d i m e n s i o n a l
Since If
~
Y ~ m ,
X and Y
would thus have t o have in
algebra containing
Since any such s u b a l g e b r a would a l s o c o n t a i n t h e Cartan
Hence t o prove t h a t
where
is a finite-dimensional
remains t o show t h a t t h e r e i s no f i n i t e - d i m e n s i o n a l
properly contains
g~
m
we have
< ~, H >
~ - I
f o r some
n ,
but
Lie subalgebra of .
Also
generated a finite-dimensional
(adX) n (Y) = 0
Y e g~
X e ~
,
g , where
L i e a l g e b r a , we
since this
element l i e s
~+nu Since
g~+n
~m
f o r any
we need o n l y p r o v e t h e f o l l o w i n g
n ~ 1 ,
lemma
to c o m p l e t e the p r o o f o f t h e theorem:
Lemma
If
Proof.
There are two cases to c o n s i d e r .
vector field, calculate
Y e ~
then
Y ~ m
Y ~ m ,
then
means t h a t
~X,~
If
# 0 ,
Y = ~a~ i
where
X = ~i H .
i s an e l e m e n t a r y
z nka k = n i + m where
m > 0 .
We
t h e commutator [Y,X]
which i s c l e a r l y Y = ~az ,
but
~a H
: 6ii
not zero.
where
[y,~
If
Z = z CkH k
:
~a
- m ~l~a~i Y
,
i s n o t an e l e m e n t a r y v e c t o r f i e l d ,
and
(ClH _ bZ)
a # 0 .
,
In t h i s
case
then
183
where
b = z akn k .
This commutator can vanish o n l y i f
t h i s would i m p l y tha~
c I # 0 ( s i n c e b # O) ,
o n l y p o s s i b l e when t h e r e e x i s t s In t h i s
case we would have
Remark
( t # O)
on
n:
j ~ q
Y e m ,
The element
xi + t nix i
a
H
and hence
such t h a t
b = I .
aj = I
In p a r t i c u l a r , But t h i s
and
ak = 0 ,
is k # j
p r o v i n g the lemma.
generates the o n e - p a r a m e t e r group o f d i l a t i o n s
~R
z
ClH = bZ .
(= span~ { x i } )
~k
.
The s u b a l g e b r a
cm
k>l i s the c o m p l e x i f i c a t i o n was s t u d i e d in Example HI = xB x
§ 1.3 Let
and
o f the a l g e b r a a s s o c i a t e d w i t h t h i s d i l a t i o n o f Chapter I .
n = 2 ,
H2 = y~y
(X(H1), x(H2) )
and w r i t e Identify
in the p l a n e . Then {(1,-n),
(-m,1),
x = ~1 '
the r o o t s L
Y = ~2 "
X e L
consists of all
(-m,-n)
:
y
(-m,1)
:
xm~y
(-m,-n)
:
xm+lyn~ x ,
n ~ 1 ,
the a l g e b r a d e f i n e d by as f o l l o w s
(cf.
n
(l,-n)
H
h
has b a s i s point
points
: m,n e IN} . vector fields:
x
set
xmyn+l~y .
H = H1 + nH2 = x~ x + ny~y ,
as in the theorem. Then the r o o t s o f
Fig I ) : Roots
n = 1:
Then
w i t h the i n t e g r a l
The c o r r e s p o n d i n g r o o t spaces are spanned by the f o l l o w i n g
Fix an i n t e g e r
group which
Root
Vectors
I (-1,0) ,
(1,0)
xH ,
~x
(-1,1)
,
(i,-i)
X~y ,
Y~x
(0,-1) ,
(0,1)
yH ,
~y
and l e t h
on
m m
be are
.
184 n=3
n=2
n=l
" ""
x
3h - x\ h ~ -xh - -
.
o = elementary r o o t spaces
.
.
•
.
xy2h
h
•
y2h
\
xO~x
~
o,,2~ ~ J~x
• = non-elementary root spaces 0
y3h_
0
Fig 1
Root spaces f o r
Der(P)
(P = polynomial algebra in two v a r i a b l e s )
Y2~ x
"
185
(-I,0)
,
(1,0)
(-k,l)
,
o~k~n
xH
,
~x
n > I:
Note t h a t One v e r i f i e s
When
in the case
that
n = 1 ,
m = s/(3)
n > 1 ,
m
xk~y , o~k~n
the n e g a t i v e o f e v e r y r o o t
in this
case
is the semi-direct
:
(cf.
§ A.3)
is again a root.
.
sum o f
(xH) ~ h ~ (~x)
and = span { x k ~ y :
Here
~
i s t h e sum o f
is also a root.
h
and the r o o t spaces
One v e r i f i e s
the
sl(2)
is not a root. via the
The i d e a l ~
(n+l)
ad(H2) = - I
~
~
A.3
(cf.
Structure Der P
in
H
functions
on
such t h a t
-~
,
xH, ~ x '
and
h+H1,
i s the sum o f t h e r o o t spaces
m~
irreducible
that
ad(r)
of
s/(2)
representation
gl(1)
factor
such t h a t acts on ,
u
while
.
Let
m
be the maximal f i n i t e - d i m e n s i o n a l
§ A . 2 , d e f i n e d by a c h o i c e o f
,
1 = n I <_ n 2 <_ . . .
H e h ,
where
<_ n d = r .
determines a decomposition
: n i = k}) V .
~
the
of m
V = V1 (~-.-(~ V r (V k = span { x i
those
while
§ A.3)
H = ~ niH i This choice of
for
i s c o m m u t a t i v e , and one c a l c u l a t e s
- dimensional
on
subalgebra of
~ g/(1)
p a r t spanned by
spanned by H2 .
m~
that
r = sl(2)
with
o~k~n} .
,
, and d e t e r m i n e s a g r a d a t i o n
{H n}
o f the p o l y n o m i a l
is
186
We have Hn = Z HX
Since
hcm
,
(< H,X > = n)
we have a r o o t - s p a c e
m = h + ~ mX
where
mx = m v ~ _ x
h .
'
and
By t h e c o n s t r u c t i o n
,
decomposition
(X e A)
A = A(H)
is a finite
m ,
is evident
of
it
A = {X e L : < H,X > >_ O} t W { - ~ j
where
xj(Hi)
= ~ij
and
m
q = dim VI
=_g}<
We w a n t t o s e p a r a t e Lie algebra.
For this
it
m
if
.
s e t o f non - z e r o l i n e a r that
: i < j
>
< q}
,
0
a semi-direct
is natural
f or ms on
In p a r t i c u l a r ,
< H,X >
into
.
sum o f a r e d u c t i v e
and a n i l p o t e n t
to examine the set
Ar = A ~ ( - A ) .
Since
< H,X > ~ -1
,
every root
in
Ar
Consider first
the case
Lemma 1.
~o = h_+ E {-gx : X e A r
Set
where t h e i s o m o r p h i s m i s d e f i n e d decomposition
Proof = ni
< H,X > = 0
or ~ 1 .
< H,X > = 0 :
r r ~ s ~ gZ (Vk) -o k=l
z njaj
must s a t i s f y
and
< H,X > = O} .
Then
,
by t h e a c t i o n
of
g# (V k)
on
~x
has b a s i s
P
i n d u c e d by t h e
V = z Vk .
If and
< H,X > = 0 , ai = 0 .
If
X ~ 0 ,
then
-x e A
also,
and hence ~a = ~j
(n i = n j )
.
this
forces
~a
~a~ i
,
where
t o be l i n e a r ,
187
The v e c t o r f i e l d s ~o
{~iaj
: n i = n j = k}
is t h e sum o f t h e s e s u b a l g e b r a s ,
N e x t , we o b s e r v e t h a t
span t h e L i e a l g e b r a o f
gZ(Vk)
,. and
Q.E.D.
the commutative subalgebra
n__+= P l = {Dx : x e V 1} is isomorphic to
VI
as an
~
module. The c o n t r a g r e d i e n t
module i s i s o m o r p h i c t o
n_=VlH
Lemma 2
Set
r = h + z mx
(x e Ar)
Then r = n_ @ r o @ n
+
One has the commutation r e l a t i o n s
I
=
=0
In, = Proof.
It
is clear
r o o t s spaces o f t h e dient
h-module,
with
x e Ar
it
< H,X > = + i
from t h e remarks above t h a t with
must t h e r e f o r e .
< H,~ > = -1 .
n_
Since
i s t h e sum o f t h e n+
is the contragre-
be t h e sum o f the r o o t spaces o f t h e
This e x h a u s t s t h e p o s s i b i l i t i e s
for
X e Ar .
x e Ar
Hence
r = n_ @~o @~+
Using t h e d e s c r i p t i o n relations. x e V1
and
In p a r t i c u l a r , ~ e VI
,
of
-[o i n lemma 1, we e a s i l y
we n o t e t h a t
[D x , ~
we have
F-Dx , ~H] = < x , ~ > H + ~Dx
Remark
= Dx
One e a s i l y
verifies
that
e
h
(q = dim V1) :
verify if
t h e commutation
x e VI .
Hence f o r
188
L ~ sZ(q+l) and hence
~
A e gZ(V1),
is reductive. x e VI ,
Dx - ~H - z a i j
e gZ(V2)
(View
~ e V~ .
sZ(q+l)
Such a m a t r i x
~i @j - t r ( A ) H
,
To c o m p l e t e o u r a n a l y s i s
if
gZ(Vr)
~...@
(aij)
as the m a t r i c e s
(~ _ErA )
,
where
corresponds to the vector field is the matrix of
of the Lie algebra
Au = A ~ Ar
,
m ,
A
on
VI
.)
we s e t
,
and d e f i n e =
Z
~
XeA u Since
< H,k > ~ 0
for all
U
=
x e Au ,
Z -~k k>o
--
we have
'
where ~k = :C {g_~ : ,1 e Au
It
is clear
from lemma 2
and t h e d e s c r i p t i o n
of
~1 Thus i t
that n+ ,
=
Lemma 3
Define
~k = ~k
if
< H,~ > = k}
k > 2
Furthermore,
.
by
§ 1.3
we see t h a t
{X e ~1 : X
remains t o d e s c r i b e
and
vanishes at
O}
~o •
H° = 0 o
Hm ° = z HjH k
and
( j + k = m , j<m, k<m)
Then u 0 : {X e Der(P)
Proof
Denote by
w
: X HmC_ H°m f o r a l l
the set of vector
fields
X
m}
such t h a t
X Hm c H° -
for all
m .
is obviously
a Lie algebra.
Since
m
189
Hk = { f
it
is clear that
under
adh , Let
Hk
o Hk
and
,
are invariant
under
~ .
Hence
w
is invariant
and i s thus t h e sum o f r o o t spaces.
X = ~aa i
be a r o o t v e c t o r in
w .
to the gradation
{H n}
degree z e r o , r e l a t i v e
E njaj We c l a i m t h a t would have
e P : Hf = k f }
aj = 0
~a = ~j
Conversely,
,
if
then we c l a i m t h a t
Since ,
is a vector field
of
we have
= ni
for all
j
and thus
such t h a t
n i =nj
X~ i = ~j ~ H°ni
X = ~a~ i
is a vector field
njaj
,
= ni
X e w .
~a e
X
aj = 0
Indeed, it
if
,
.
Indeed i f
not,
then we
a contradiction.
such t h a t
n i = nj
is clear that
, in this
case
H° ni
so t h a t
X HmcH°
H
ni
-
m-n i
But we see from t h e d e f i n i t i o n
that
H°n Hm~H ° m+n T h i s proves t h a t
Finally, is not a root,
if
X e w
~
i s any r o o t o f
h
then by t h e p r o o f o f lemma i
E nia j T h i s proves t h a t
~
= ni
= w ,
We can now combine a l l
,
such t h a t
on
aj = 0
g~
for
has b a s i s
< H,~ > = 0 , ~a@i
,
where
n i = nj
Q.E.D.
t h e p i e c e s and o b t a i n t h e s t r u c t u r e
of
m:
and
-X
190 Theorem
Let
Ar = A n ( - A )
A
and
be the non-zero r o o t s of
Au = A ~ Ar ,
m= r Q u
( v e c t o r space d i r e c t sum) ,
~
is a r e d u c t i v e subalgebra o f
(ii)
u
is a n i l p o t e n t
ideal of
m
(iii)
~
acts l o c a l l y n i l p o t e n t l y
on
We have
u = u
a t z e r o , since
~_ui, u ~ ~ i + j
by v e c t o r f i e l d s field
r
~r °
and
with
~a
~k = ~k
when
non-linear .
k ~ 2
[ • o~ ' But
~o
vanishes i s spanned
The b r a c k e t w i t h any v e c t o r
thus vanishes a t zero. To v e r i f y t h a t
--O
+ ~I +"'+
- - O
i s a Lie a l g e b r a , we only need check t h a t
~a~ i ,
into
P .
(ii) u
A
m
a l r e a d y proved (lemma 2 and remark).
To v e r i f y t h a t
Divide
and
(i)
--
m .
(~ e Ar)
(i)
Proof.
on
and s e t
r : h + z m~
Then
h
and
~o
u
i s an i d e a l , we f i r s t
given in lemmas 1 and 3
~-ro' Uk] ~ k
By homogeneity,
Recall t h a t coefficients,
'
~___+,Uk~~-~k+l "
check c e r t a i n cases w i t h
k = 0,1,2
n + = D1 .
we see t h a t
~-+'
make i t
Since
for
~k =
uo]
k ~ 2 ,
vanishes a t
0 ,
in
u
--O
A.2
have n o n - l i n e a r
and hence
-CUl
= 0
we only need
.
Since the v e c t o r f i e l d s ~n+,Uo]
Uo~
clear that
1 <_ k < r
The c a l c u l a t i o n made i n the p r o o f o f Theorem
~ -,
observe t h a t the d e s c r i p t i o n s o f
shows t h a t
191 Furthermore,
n__ = V~ ~ ,
It follows that order at
0 .
~_, ~]
so the vector f i e l d s in vanishes at
and t h a t
This shows, by the d e s c r i p t i o n s o f
This completes the proof t h a t (iii)
0 ,
Let
u
u
--0
have q u a d r a t i c c o e f f i c i e n t s . ~_, ~ and ~ i
vanishes to second above, t h a t
is an ideal
Pm = ~ Hk (k ~ m)
the decomposition
~-
be
V = V1 @...~ Vr ,
the f i l t r a t i o n
on
P associated w i t h
We s h a l l prove t h a t
um (Pm) : 0 Consider f i r s t
the a c t i o n o f
uo .
By lemma 3
we o b t a i n
1
~o (Hm) ~_z where the sum is over a l l ~ o (H1) = 0 ,
HkI" -. Hkl+ I
k I . . . . . k/+ 1
,
such t h a t
~
< m and
E ki = m .
Since
it follows that m
% (H m) : o Next, we have ~k
with
Pm~Pm_k ,
so t h a t
kI kr ~1 " ' " ~r
PmCPm-k
k = k1+---+k r
F i n a l l y , the commutation r e l a t i o n s
~_ui , uj~ c u i +j
show t h a t i t s u f f i c e s to consider ordered products k kI kr ~o ° Ul " ' " Ur Pm "
ko + k I + - - - + k r >_ m .
with
Since on
Pr
V~P r ,
By the above
t h i s is zero.
we o b t a i n , in p a r t i c u l a r ,
by n i l p o t e n t t r a n s f o r m a t i o n s . Hence ~
f i n i s h e s the p r o o f o f
(ii)
and
(iii)
.
a faithful
r e p r e s e n t a t i o n of
is a n i l p o t e n t Lie algebra. This
192
A.4
Birational
rational
f u n c t i o n s on
We s h a l l
denote by
~(~) = ~
where
V ,
Aut(R)
i.e.
If
~1 . . . . .
~(~1 . . . . . ~n )" generators
~n
the q u o t i e n t f i e l d
and automorphism
m.)
Aut(P)
,
for
for
A transformation
Fi
functions into R
(we view
R
R = Rat(V)
V
,
and
be the f i e l d
o f the i n t e g r a l R
functions
There i s a n a t u r a l
f,g e P .
t h e n we can i d e n t i f y
R with
is determined by i t s
function
in
n
variables.
a c t i o n on the
C o n v e r s e l y , given r a t i o n a l
then these e q u a t i o n s d e f i n e a unique homomorphism ~)
This homomorphism w i l l
GI . . . . . Gn
m
Aut(R)
.
are c a l l e d b i r a t i o n a l
be the L i e a l g e b r a c o n s t r u c t e d i n
o f a p o s i t i v e i n t e g r a l element
Aut(R)
Now the group
m of R
be an ,
i.e.
find
such t h a t
Ci = G i ( m ( ~ l ) . . . . . m(~n ))
Let
inclusion
: F i ( ~ I . . . . . ~n ) ,
as an a l g e b r a o v e r
Hence the elements o f
P .
(We r e q u i r e t h a t
automorphism p r e c i s e l y when we can s o l v e these e q u a t i o n s r a t i o n a l l y rational
domain
of
and can be expressed as
is a rational F1 . . . . . Fn ,
Aut(R)
m e Aut(R)
~(~i) where
c
m e Aut(P)
is a basis
CI . . . . . ~n '
Let
the group o f automorphisms o f
f o r any s c a l a r
m ( f / g ) = mf/~g ,
Transformations
Aut(R)
H e h .
§ 2 ,
" transformations relative
to a choice
We would l i k e to " e x p o n e n t i a t e "
m
i s n o t a L i e g r o u p , in any r e a s o n a b l e sense.
in
193 For example, as we noted in
§ A.I
,
a derivation of
R ( o r P)
n e c e s s a r i l y generate a one-parameter group o f automorphisms o f i s no f u n c t o r mapping Lie subalgebras o f d e r i v a t i o n s o f Aut(R).
For the a l g e b r a
m ,
m which are e i g e n v e c t o r s f o r whose r o o t s
~
R
Thus t h e r e
however, we a l r e a d y know t h a t the v e c t o r f i e l d s ad h
generate r a t i o n a l
reasonable to expect t h a t everY element of R .
R .
to Lie subgroups o f
flows ( i n f a c t ,
are non-negative generate polynomial f l o w s ) .
o f automorphisms o f
does not
~
those is
generates a one-parameter group
We s h a l l v e r i f y t h i s by an e x p l i c i t
the i n f o r m a t i o n about the s t r u c t u r e o f
Hence i t
in
m obtained in
c o n s t r u c t i o n , using
§ A.3.
Recall t h a t by Theorem A.3, m : n- ~ ro ~ n+ ~ u If
Xeu
,
then
eX
is d e f i n e d as an automorphism o f the polynomial a l g e b r a .
We set U = {e x : X e u} By the p r o o f o f Theorem 1 . 1 . 4 , i t t h a t the
map X ÷ e X
f o l l o w s (using the l o c a l n i l p o t e n c y o f
is a bijection
from
a complex, simply-connected n i l p o t e n t Let
N+
~x ~-~ Px
N_
=
f(v+x)
,
defines a bijection
to the v e c t o r group Let
Lie group on
be the group o f t r a n s f o r m a t i o n s pxf(V)
The map
u to U ,
~ on P)
and aefines the s t r u c t u r e o f U .
{Px : x e V1} ,
where
f e R from
~+
to
N+ ,
and
N+
is isomorphic
VI .
be the group o f t r a n s f o r m a t i o n s
{~
: ~ e V1} ,
where
~
is
determined from i t s a c t i o n on the l i n e a r f u n c t i o n s by the formulas
~(~) The map
~H ~-+ ~_~
= ~(I+~) -k
,
defines a bijection
isomorphic t o the v e c t o r group
VI .
~ e V~ from
n_
onto
N_ ,
and
N_
is
(Note t h a t the f l o w generated by the v e c t o r
194 field
CH
is
°-t~
'
and
o~
is a b i r a t i o n a l
To c o n s t r u c t the subgroup first
corresponding to the subalgebra
~o '
our
impulse, based on lemma A . 3 . 1 , would be to take the d i r e c t product o f the
groups on
Ro
t r a n s f o r m a t i o n , by Remark A . 1 . 5 . )
GL(Vk) ,
V .
w i t h the a c t i o n on f u n c t i o n s being induced by the l i n e a r a c t i o n
This guess i s indeed c o r r e c t f o r
action of Let A e GL(Vk)
GL(VI) Gk ,
must be " t w i s t e d "
k ~ 2 ,
(cf.
However, f o r
For the case
on the subspaces
k = i
,
k = 1
the
remark a f t e r lemma A . 3 . 2 ) .
be the group o f automorphisms
a c t i n g as the i d e n t i t y
Gk = GL(Vk) .
k ~ 2 .
we l e t
GI
f ~ - + foA - 1 , w i t h
Vj , j ~ k .
Thus
be the group o f automorphisms
whose a c t i o n on l i n e a r f u n c t i o n s is (m)
when
~ ~-~ (det A) -k ~oA"1
~ e V~ .
the subspaces
Here Vk ,
A e GL(V1) , k > 1 .
D
i s the f i n i t e
k>2
such t h a t
view
GL(Vl) and
and
A
,
c e n t r a l subgroup
Vk ~ O} .
is extended to act as the i d e n t i t y on
Thus
G1 = GL(VI)/D where
,
(Here
{ml : ~q+l = i and k q
q = dim Vl)
D as subgroups o f
.
SL(q+I,C)
A i:01
It will
: I for all
be convenient to
via the embedding
,
A e GL(V1)
(det A)-
Now define
be the subgroup of that
( d i r e c t product as groups) ,
R° = GI x G2 x . . . x Gr Aut(R)
G is isomorphic to
generated by r/D ,
where
N F
,
GL(Vk) ,
Furthermore, the groups
k ~ 2 , N±
and
GI ,
and
N+ .
N+ .
We s h a l l show
GL(Vr) ,
(q = dim Vl) -
we a l r e a d y have an isomorphism w i t h Gk ,
t o c o n s t r u c t an isomorphism between N_ ,
and
i s the d i r e c t product
F : SL(q+I,$) x GL(V2) . . . . . For each f a c t o r
Ro ,
and l e t
k > 2
Gk .
m u t u a l l y commute. Thus we o n l y need
SL(q+I,$)/D
and the group generated by
195
We s h a l l v i e w
as t h e m a t r i c e s i n b l o c k form
?1 = S L ( q + l , $ )
det(g) = I
where
x e V1 , ~ e V~ , A e End(V1)
can be e x p r e s s e d
in t e r m s o f t h i s
,
and
,
The c o n d i t i o n
~, e ~,
det(g) = 1
d e c o m p o s i t i o n as
X d e t A - < ~, a d j ( A ) x > = 1 , where
adj A
is the " a d j u g a t e " o f
A
(transposed cofactor matrix).
= adj(a) (Recall t h a t SL(q+I,$)
AA = AA = ( d e t A) I . )
Write
.
We can imbed the v e c t o r groups
VI ,
V~
into
as t h e subgroups
V+ =
,
X e
0
Thus
V+ _
are commutative subgroups o f
Theorem 1. r e s t r i c t i o n to
,
which are n o r m a l i z e d by
There i s a unique homomorphism
from
to
The k e r n e l o f
D .
~
is
GL(Vk)
is the homomorphism o n t o
On the basis o f t h e p r e v i o u s d i s c u s s i o n , on
?
onto
GL(V1) .
G whose
V+_ is
and whose r e s t r i c t i o n
Proof
sI
define
~
FI .
Consider the subset o f
On t h i s
set we have the unique f a c t o r i s a t i o n
£1
where
Gk
d e f i n e d above.
the o n l y problem is to det A # 0
in
(mm) .
196
CA X ~\, 'k{< x] Hence i f
~
exists,
it
{A ~ L~
(9)
/ =
if
I\~A-1
i s g i v e n on t h i s
s e t by
x~ x> = ~~A-I
~(A) PA-Ix
Since the subgroups uniquely,
0\i i/A i] <0
I
V±
and
GL(VI)
such a homomorphism e x i s t s .
i s the o n l y p o i n t a t which we w i l l suffices,
f o r the e x i s t e n c e o f
phism from
I' I
to
The a d j o i n t A- I
,
for
Given
Aut(R)
action of
x e VI ,
w i t h the a d j o i n t
~ ,
GL(V1)
(If
x,~
are near
on
(?)
Px ~
Both s i d e s o f their
action
= ~
(?)
on a l i n e a r
Px ~
then
~A-1
V+ _
is
this
determines
(~)
be
$) ,
defines a local
it homomor-
x ~ - * ( d e t A)Ax ,
-1
~ ~-. ( d e t A)
shows. Since t h i s
agrees
reduces the problem t o the f o l l o w i n g :
we form the p r o d u c t
/A
A
x\
transformation
~(A)
function
sending
is invertible.).
y + y + < ~,y > x .
We must show t h a t in t h i s
case
PA-lx
are automorphisms o f C e Vk .
R , We f i n d
so i t
suffices
that
(~) : (~ + < ~,x >)(1 + < ~,x > + ~ ) - k
On the o t h e r hand, we have
(~)
is simply-connected (this
as a m a t r i x c a c u l a t i o n
i s the l i n e a r 0 ,
to show t h a t
G1 on N+ ,
x e V1, ~ e VT,
A = I + x ~ ~
rI
formula
.
~ e V~ ,
action of
Since
rI ,
need t h a t the s c a l a r f i e l d
01
where
generate
to c a l c u l a t e
197
o A_I x ( A ) p - I (~) : ~A-1 + < ~,Ax > ~A - I + < ~,Ax > A x (~A + d e t A) k
But
det(l
+ x @ ~) = 1 + < C,x > , A- I
< ~ , x > # -1 ,
we can w r i t e
= I - (1 + < ~,x >)-1 x @
= ( d e t A) A - I
= ( 1 + < C,x >) I - x @
Using these f o r m u l a s , we e a s i l y of
and i f
verify
(?)
,
and hence e s t a b l i s h
the e x i s t e n c e
~ . Obviously
normal
Ker ~ c r I ,
subgroup.
Remark
If
This
and hence
implies
that
g =~
Ker ~ c {~I
Ker{~)
e rI
= D,
: q+l
= I}
,
since
it is a
Q.E.D.
,
then the calculation made in the proof of theorem 1 shows that
~(g)¢
= CA -1 + < ¢,Ax > ~A - I
+ < ¢,Ax >
(CA + d e t A) k
if
C e Vk .
(Here
A
i s e x t e n d e d to be
This f o r m u l a remains meaningful recall
that if
det A = 0 ,
I
on
even when
then the c o n d i t i o n
Vk
A
for
k > 1 ,
is singular. det g = I
by d e f i n i t i o n . )
To see t h i s ,
forces
< ~,Ax > = -1
In p a r t i c u l a r ,
~A # 0 ,
so the d e n o m i n a t o r o f
(~)
i s never i d e n t i c a l l y
For the n u m e r a t o r , we w r i t e
~A - I + < ~,Ax > ~A - I
If
~ e V~
with
k > i
,
To examine t h e b e h a v i o r on
then VI
= ( d e t A ) - I ( ~ A + < ~,Ax > ~A)
< ¢,Ax > = 0 ,
pick a basis
and {x i}
~A -1 = ~ , for
VI
by d e f i n i t i o n . and dual b a s i s
zero.
198 {~i }
for
V1 .
Using t h e c o n d i t i o n
~i # + < ~ i '
det g = 1 ,
we c a l c u l a t e
t h a t when
~ = ~i
Ax > cA = ~ ( d e t A) Ci # + E m/(g)~/
,
where ~l(g ) =
~ j,k
<
~j,x
> det
> < ~,x k
cji
cz
j k Here
[cij ]
classical
i s the c o f a c t o r
fact
determinants"
in determinant
it
A
proof,
~/(g)
(~)
= 0 .
on
~ ,
of
u
m ,
det
(~)
But i t
is a
the "compound
by
det A .
rank A < 1 ~
i s an i r r e d u c i b l e
(For a
all
2x2
polynomial,
is everywhere regular ~
from
V_GIV +
to
£
on
rI
.
is in fact
o f a group o f automorphisms c o r r e s p o n d i n g
we o n l y need t o put t o g e t h e r G
Aut(R)
normalises
U ,
and
the groups
G ~ U = {1}
.
and we v e r i f y
easily
determined in
nilpotence
u of
To p r o v e t h a t
G
and
Hence
t o the
U , as f o l l o w s :
M = G U
is a
.
From t h e p r o o f o f Theorem A . 3 , we see t h a t
The passage from local
that
are d i v i s i b l e
det A = 0 ~
Since
basis.
.
Theorem 2
Proof
that
to this
formulas")
~l
the extension of
To c o m p l e t e o u r c o n s t r u c t i o n
subgroup o f
relative
("Jacobi's
t h e n u m e r a t o r in
continuation,
Lie algebra
A
ml ")
This shows t h a t
g i v e n by
theory
use the f a c t
vanish ~
must thus d i v i d e
By a n a l y t i c
of
a p p e a r i n g i n the f o r m u l a f o r
non-computational minors of
matrix
ClkJ
that
Lemma A . 3 . 3 to u
U on
follows
Ad(N+) we f i n d
stabilises that
directly
Ad(Ro)
ad(~±) ~ .
acts n i l p o t e n t l y
By the s t r u c t u r e
also stabilises
from t h e s e c a l c u l a t i o n s
u .
and t h e
P
G ~ U = {1}
,
we o b s e r v e f i r s t
one has G ~ U~RoN+U
.
that
since
GnUcAut(P)
,
'
199 (In formula
(~)
above, i f
~ # 0
then
Tc(g)c
is not a polynomial f u n c t i o n on
V.) Set n+ + u
T = N+U o
From lemmas 2 and 3 of the previous s e c t i o n we see t h a t
is a nilpotent
L i e algebra which acts l o c a l l y n i l p o t e n t l y
on
£ .
Hence
T = exp (n+ + u) On the o t h e r hand, we e v i d e n t l y have
n_+ + u = U_o + n _ l +n_2 + . . . +
I f we d e f i n e the spaces in
n_r
H° o f n o n - l i n e a r homogeneous polynomials o f degree m
m as
lemma 3, and s e t
Qm = H° m + Pm-I
,
m > I
then we can d e s c r i b e the Lie algebra
,
~+ + u
as
~+ + ~ = {X e Der(P) : X Pm ~Qm (cf.
lemma A.3.3
and
c h a r a c t e r i s e the group
§ 1.1.3) T
.
Ro
E x p o n e n t i a t i n g t h i s d e s c r i p t i o n , we thus can
as
T = {~ e Aut(P) Now the group
f o r a l l m} .
: ( m - l ) Pm ~ Qm f o r a l l m} .
acts l i n e a r l y
ant. The above d e s c r i p t i o n o f
T
on
V
,
l e a v i n g each subspace
Vk
invari-
makes i t e v i d e n t t h a t
Ro/n T = {1} . Finally, ~+ + ~
we have onto
Example
T .
N+h U = {1}
because the e x p o n e n t i a l map i s a b i j e c t i o n
This completes the p r o o f .
Let us r e t u r n t o the examples
and employ the same n o t a t i o n . The a l g e b r a integer (View
n . x,y
from
When n = I ,
then
(dim V = 2)
a t the end o f
§ A.2 ,
m i s determined by a choice o f p o s i t i v e
M = SL(3) ,
as inhomogeneous c o o r d i n a t e s f o r
acting projectively
~2.)
on
{x,y}
.
200
When
n > 1 ,
then
M = G U ,
where
G = SL(2) x GL(1) Here
Col
$
e G
acts by t h e b i r a t i o n a l
transformation
(b + d x ) ( a + cx) - I CoY (a + cx) -n
The group
U
consists
÷
(c i e ~) .
The group
of all
transformations
y + c I x +...+
M
cn xn
is the classical
" J o n q u i ~ r e s group o f o r d e r
n ."
Comments and references f o r Appendix
The study of f i n i t e - d i m e n s i o n a l Lie subgroups of the ( i n f i n i t e - d i m e n s i o n a l ) group of b i r a t i o n a l transformations of an a f f i n e space has a long h i s t o r y ; cf. Fano [ i ] .
The classical "Jonqui~res groups" in two variables occurred in the
c l a s s i f i c a t i o n by Enriques of a l l f i n i t e - d i m e n s i o n a l groups of b i r a t i o n a l transformations in two variables. They were studied in more d e t a i l by Mohrmann [1] and Godeaux [1], and "automorphic functions" on these groups were considered by Myrberg [1]; cf. the survey a r t i c l e by Coble [ I ] . In recent years the subject has been g r e a t l y extended by Demazure [1] and Vinberg [ i ] .
The algebras
and groups we construct here f u r n i s h a class of examples
f o r Demazure~ general theory of "Enriques systems". Several of our proofs are special cases of his general methods. Since there exists no c l a s s i f i c a t i o n of Enriques systems, as contrasted to the c l a s s i f i c a t i o n of root systems f o r semisimple algebras, i t is perhaps useful to have such examples constructed e x p l i c i t l y . The fact that the Lie algebras
m are maximal seems to be new. The subalgebra
of vector f i e l d s homogeneous of degree zero has appeared also in Arnol'd [ i ] ,
~o in
connection with the c l a s s i f i c a t i o n of normal forms f o r smooth functions at a critical Pedoe [ i ] ,
point. For "Jacobi's formulas", used in the Remark in Chap. 2, § 8 .
§ 4 ,
cf. Hodge-
Bibliography
L. Auslander, J. Brezin, and R. Sacksteder [I]
A method in metric diophantine approximation, J. D i f f e r e n t i a l Geometry 6(1972), 479-496.
V . l . Arnol'd [~
C r i t i c a l points of smooth functions and t h e i r normal forms, Uspekhi Math. Nauk 30(1975), 3-66.
F.A. Berezin [I]
Some remarks on the associative envelopes of Lie algebras, Funkt. Analiz i ego P r i l . 1(1967), 1-14.
L. Bers, F. John, and M. Schechter [1]
Partial d i f f e r e n t i a l equations, in Lectures in Applied Mathematics Vol. I I I ,
Interscience, New York, 1964.
G. Birkhoff [~
Representability of Lie algebras and Lie groups by matrices, Annals of Math. 38(1937), 526-532.
N. Bourbaki [~
El~ments de math~matique XXXIV, Groupes et alg~bres de Lie, Hermann, Paris, 1968.
T. Bloom and I. Graham
[i]
A geometric characterisation of points of type m on real submanifolds of ~n , J. D i f f e r e n t i a l Geometry (to appear).
P. Cartier F1]
Quantum mechanical commutation relations and theta functions, in Algebraic Groups and discontinuous subgroups, Amer. Math. Soc., 1966, 361-383.
[2]
Vecteurs d i f f ~ r e n t i a b l e s dans les repr6sentations unitaires des groupes de Lie, S~minaire Bourbaki 27(1974/75), NQ 454.
203
S.S. Chern and J. Moser [~
Real hypersurfaces in complex manifolds,Acta Math. 133(1974), 219-272.
A.B. Coble [~
Cremona transformations and applications to algebra, geometry, and modular functions, Bull. Amer. Math. Soc, 28(1922), 329-364.
R. Coiffman and G. Weiss [i]
Analyse Harmonique Non-Corm~utative sur Certains Espaces Homogenes, Lecture Notes in Mathematics 242, Springer-Verlag, 1971.
N. Conze [1]
Alg~bres d'op~rateurs differentials et quotients des alg@bres enveloppantes, Bull. Soc. Math. France 102(1974), 379-415.
M. Cotlar and C. Sadosky [i]
On Quasi-homogeneous Bessel Potential Operators, in Singular Integral s , Amer. Math. Soc., 1966, 275-287.
M. Demazure
[1]
Sous-groupes alg~briques de rang maximum du group de Cremona, Ann. Scient. Ec. Norm. Sup.(4), t.3(1970), 507-588. (cf. Sem. Bourbaki, 1971/72, Expos~ 413)
J. Dixmier [I]
Cohomologie des alg@bres de Lie nilpotentes, Acta Scientiarum Mathematicarum 16(1955), 246-250.
[2]
Alg~bres enveloppantes, Paris, Gauthier-Villars, 1974 (Cahiers scientifiques 37).
J. Dyer
F1]
A nilpotent Lie algebra with nilpotent automorphism group, Bull. Amer. Math. Soc. 76(1970), 52-56.
G. Fano
[1]
Kontinuierliche Geometrische Gruppen, Encyclopaedie der Math. Wiss. 1111, Geometrie, 4b, § 21-22.
204 G. Favre [I]
Syst#mes de poids sur une alg@bre nilpotente, Manuscripta Math. 9(1973), 53-90.
G.B. Folland [17
[2]
A fundamental solution for a s u b e l l i p t i c operator, Bull. Amer. Math. Soc. 79(1973), 373-376. Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv f~r matematik 13(1975), 161-208.
G.B. Folland and J.J. Kohn [I]
The Neumann Problem for the Cauchy_-Riemann complex, Ann. of Math. Studies ~ 7 5 , Princeton Univ. Press, Princeton, N.J., 1972.
G.B. Folland and E.M. Stein El]
Estimates for the ~b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math, 27(1974), 429-522.
B. Gaveau [I]
Solutions fondamentales, representations, et estim~es sous-elliptiques pour les groupes nilpotent d'ordre 2, C.R. Acad. Sc. Paris 282(1976), A 563-566.
S.G. Gindikin [~
Analysis in homogeneous domains, Russian Math. Surveys 19(1964), 1-90.
L. Godeaux
[1]
Les transformations birationnelles du planMem, des Sc. Math. ××II, GauthierV i l l a r s , Paris, 1927.
[2]
Sur les transformations b i r a t i o n e l l e s de Jonqui@res de l'~space, Acad. roy. Belgique, 1922.
Goodman, R. [~
One-parameter groups generated by operators in an enveloping algebra, J. Functional Analysis 6(1970), 218-236.
[2]
Complex Fourier analysis on nilpotent Lie groups, Trans. Amer. Math. Soc. 160(1971), 373-391.
205 [3]
Differential
operators of i n f i n i t e
order on a Lie group I I ,
Indiana Univ. Math. J. 21(1971), 383-409. [4]
Some regularity theorems for operators in an enveloping algebra, J. D i f f e r e n t i a l Equations 10(1971), 448-470.
[5~
On the boundedness and unboundedness of certain convolution operators on nilpotent Lie groups, Proc. Amer. Math. Soc. 39(1973), 409-413.
F6]
F i l t r a t i o n s and asymptotic automorphisms on nilpotent Lie groups, J. D i f f e r e n t i a l Geometry (to appear).
[7]
L i f t i n g vector f i e l d s to nilpotent Lie groups, (to appear).
V.V. Gru~in [1]
E2]
On a class of hypoelliptic operators, Mat. Sbornik 83 (125) (1970), 456-473 (=Math. USSR Sbornik 12(1970), 458-476). Hypoelliptic d i f f e r e n t i a l
equations and pseudodifferential
operators
with operator-valued symbols, Mat. Sbornik 88 (130) (1972), 504-521 (=Math. USSR Sbornik 17(1972), 497-514). Y. Guivarc'h [0
Croissance polynomiale et p~riodes des fonctions harmoniques, Bull. Soc. Math. France 101(1973), 333-379.
S. Helgason
[~
Differential
Geometry and Symmetric Spaces, Academic Press, New York, 1962.
[2]
A duality for symmetric spaces with applications to group representations, Advances in Math. 5(1970), 1-154.
G. Hochschild [0
The Structure of Lie Groups, Holden-Day, San Francisco, 1965.
W.V.D. Hodge and D. Pedoe
[1]
Methods of Algebraic Geometry, I, Cambridge University Press, 1968.
L. H~rmander [1]
Hypoelliptic second-order d i f f e r e n t i a l 147-171.
equations, Acta Math. 119(1968),
206 A. Hulanicki [i]
Commutative subalgebra of LI(G) associated with a subelliptic operator on a Lie group, Bull. Amer. Math. Soc. 81(1975), 121-124.
N. Jacobson [~
Lie Al~ebras, Interscience, New York, 1962.
J. Jenkins [~
Dilations, gauges, and growth in nilpotent Lie groups, preprint, June, 1975.
K. Johnson and N. Wallach [~
Composition series and intertwining operators for the spherical principal series, Bull. Amer. Math. Soc. 78(1972), 1053-1059.
R.W. Johnson [~
Homogeneous Lie algebras and expanding automorphisms, preprint, 1974.
P. J~rgensen [~
Representations of d i f f e r e n t i a l operators on a Lie group, J. Functional Analysis 20(1975), 105-135.
A.W. Knapp [~
A Szeg5 kernel for discrete series, Proc. Inter. Cong. Math. Vancouver (1974), VoI. 2, 99-104.
A.W. Knapp and E.M. Stein ~i]
Intertwining operators for semisimple groups, Annals of Math. (2) 93 (1971), 489-578.
[2]
Singular integrals and the principal series I I I , Proc. Nat. Acad. Sc. USA 71(1974), 4622-4624
[3]
Singular integrals and the principal series IV, USA 72(1975), 2459-2461.
Proc. Nat. Acad. Sci.
J.J. Kohn [~
Pseudo-differential operators and h y p o e l l i p t i c i t y , Equations, Amer. Math. Soc. (1973), 61-70.
in Partial Differential
207
[2]
Integration of complex vector f i e l d s , Bull. Amer. Math. Soc. 78(1972), I-Iio Boundary behaviour of ~ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6(1972), 523-542.
A. Kor~nyi [I]
The Poisson integral for generalized half-planes and bounded symmetric domains, Annals of Math (2) 82(1965), 332-350.
A. Kor~nyi and S. V~gi [1]
Singular integrals in homogeneous spaces and some problems in classical analysis, Ann. Scuola Norm. Sup. Pisa, Classe di Scienze 25(1971), 575-648.
A. Kor~nyi, S. V~gi, and G. Welland [1]
Remarks on the Cauchy integral and the conjugate function in generalized half-planes, J. Math. and Mech, 19(1970), 1069-1081.
R. Kunze and E.M. Stein [~
Uniformly bounded representations I I I , Amer. J. of Math. 89(1967), 385-442.
H. Mohrmann
Eli
Ober die automorphe Kollineationsgruppe des rationalen Normalkegels n-ter Ordnung, Rendic. del Circolo Mat. di Palermo 31(1911), 170-200.
C.C. Moore [~
Representations of solvable and nilpotent groups and harmonic analysis on nil and solvmanifolds, in Harmonic Analysis on Homogeneous Spaces, Amer. Math. Soc. (1972), 3-44.
P. MUller-R~mer [1]
Kontrahierende Erweiterungen und kontrahierbare Gruppen, J.f.d. Reine und Angewandte Mathematik 283/284 1976) 238-264.
P.J. Myrber [~
Ober die automorphen Funktionen bei einer Klasse Jonqui~resscher Gruppen zweier Ver~nderlichen, Math, Z e i t s c h r i f t 21(1924), 224-253.
208 A. Nijenhuis and R.W. Richardson, Jr. [i]
Deformations of algebraic structures, Bull. Amer. Math. Soc. 70(1964), 406-411.
R.D. Ogden and S. V~gi
[1]
Harmonic analysis and H2
functions on Siegel domains of type I I ,
Proc. Nat. Acad. Sci. USA 69(1972), 11-14. N.S. Poulsen
[i]
C~ vectors and intertwining b i l i n e a r forms for representations of Lie groups, J. Functional Analysis 9(1972), 87-120.
G. Rauch [I]
Variation d'alg~bres de Lie r~solubles, C.R. Acad. Sci. Paris 269(1969), A 685-687.
[2]
Variations d'alg#bres de Lie, Pub. Math. Univ. Paris XI (Orsay), N2 32, 1973.
B. Reed
Representations of solvable Lie algebras, Michigan Math. J. 16(1969), 227-233. C. Rockland [i]
H y p o e l l i p t i c i t y on the Heisenberg group-representation theoretic c r i t e r i a (preprint).
L.P. Rothschild and E.M. Stein [I]
Hypoelliptic d i f f e r e n t i a l operators and nilpotent groups, Acta Math. (to appear).
G. Schiffmann ~]
Int~grales d'entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99(1971), 3-72.
E.M. Stein [ i ] "Some problems in harmonic analysis suggested by symmetric spaces and semi-simple Lie groups," Actes du Congr~s International des Math~maticiens, Nice, 1970, Tom. i , pp. 173-189.
209 [2]
Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, Princeton Univ. Press, 1972.
R.S. Strichartz [~
Singular integrals on nilpotent Lie groups, Proc. Amer. Math. Soc. 53(1975), 367-374.
N. Tanaka
[1]
On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. 10(1970), 1-82.
[2]
A differential-geometric study on strongly pseudo-convex manifolds, Lectures in Math. ~ 9 , Dept. of Math., Kyoto Univ., 1975.
F. Tr6ves [i]
Topological Vector Spaces, Distributions, and Kernels, New York, Academic Press, 1967.
M. Vergne [~
Cohomologie des alg~bres de Lie nilpotentes; application 6 l'~tude de la vari~t~ des alg~bres de Lie nilpotentes, Bull. Soc. Math. France 98(1970), 81-116.
E.B. Vinberg [~
Algebraic groups of transformations of maximal rank, Math. Sbornik 88 (130) (1972), 493-503. (=Math. USSRSbornik 17(1972), 487-496).
N.R. Wallach [1]
Harmonic Analysis on Homogen~egus Spaces, Marcel Dekker, New York, 1973.
G. Warner ~
Harmonic Analysis of Semi-Simple Lie Groups, Springer-Verlag, Berlin, 1972.
Subject Index almost orthogonal o p e r a t o r s automorphisms o f polynomials Bernoulli operator birational transformation boundary values Bruhat decomposition Campbell-Hausdorff formula canonical coordinates coboundary o p e r a t o r comultiplication Cremona group C~ v e c t o r dilations distance function
85 8 42 192 154 118 13,51 9 22 14 175 139 1 71
elementary r o o t .......... automorphism e x p o n e n t i a l map
177 178 49
faithful representation filtration: polynomials .......... Lie algebra .......... C~ f u n c t i o n s .......... d i f f . Operators free n i l p o t e n t Lie algebra fundamental s o l u t i o n
16 2 12 5 105 36 159
g r a d a t i o n : Lie algebra ......... polynomials ......... v e c t o r space Hall basis Hardy space Heisenberg algebra .......... group homogeneous: b i l i n e a r map ........... diff. operator ........... dimension ........... distribution ........... function ........... norm ........... polynomial ........... vector field hypersurface hypoelliptic diff. operator
5,13 2 I 37 151 11 63 20 158 68,76 68 68 3 1 7 53 158
infinitesimal transitivity intertwining integral
158 125
Jonqui~res group .......... transformation
200 178
kernel o f type
103
s
length o f f i l t r a t i o n l i f t i n g theorem Lipschitz condition
12 39 77
maximal subalgebras mean value measure o f homogeneous type
180 7O 74
o p e r a t o r o f type s order of vector field
104 6
parametrix p a r t i a l homomorphism Plancherel formula principal part of diff. operator principal series representation ......... irreducibility criterion 2 p r o j e c t i o n Hb
166 36 138 164 123 130
real rank r o o t spaces
118 177
Siegel domain s i n g u l a r kernel Sobolev spaces space o f homogeneous type s u b e l l i p t i c Laplacian Szeg~ kernel
146
61 78 108,168 76 162 157
t a n g e n t i a l Cauchy-Riemann equations t r a n s i t i v e p a r t i a l homomorphism transpose o f d i f f . o p e r a t o r
142 168 165
unboundedness o f s i n g u l a r i n t e g r a l s
97
vector fields: ............. .............
4 54 54
polynomial c o e f f i c i e n t s holomorphic anti-holomorphic