MULTIOBJECTIVE OPTIMIZATION I N WATER RESOURCES SYSTEMS
The Surrogate Worth Trade-off Method
DEVELOPMENTS I N WATER ...
59 downloads
394 Views
7MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
MULTIOBJECTIVE OPTIMIZATION I N WATER RESOURCES SYSTEMS
The Surrogate Worth Trade-off Method
DEVELOPMENTS I N WATER SCIENCE. 3 advisory editor VEN TE CHOW Professor o f Hydraulic Engineering Hydrosystems Laboratory Civil Engineering Building University of Illinois Urbana, Ill., U.S.A.
MULTI0BJECTIVE 0PTIMIZATI0N IN
WATER RESOURCES SYSTEMS The Surrogate Worth Trade-off Method YACOV Y. HAIMES Systems Engineering Department Case Institute of Technology Case Western Reserve University Cleveland, O h i o
WARREN A. HALL Civil Engineering Department Colorado State University F o r t Collins, Colorado
HERBERT T. FREEDMAN Systems Engineering Department University of Pennsylvania Philadelphia, Pennsylvania
ELSEVIER SCIENTIFIC PUBLISHING COMPANY AMSTERDAM
- O X E O R D - NEW YORK
1975
ELSEVIER SCIENTIFIC PUBLISHING COMPANY 335 Jan van Galenstraat P.O. Box 21 1, Amsterdam, The Netherlands
AMERICAN ELSEVIER PUBLISHING COMPANY, INC. 52 Vanderbilt Avenue New York, New York 10017
ISBN: 0-444-4131 3-8 Copyright 0 1975 b y Elsevier Scientific Publishing Company, Amsterdam All rights reserved. No part of this publication may b e reproduced, stored i n a retrieval system, or transmitted in any f o r m or b y any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Scientific Publishing Company, Jan van Galenstraat 335, Amsterdam Printed in Thp Netherlands
Pheljuce 1.arge s c a l e systems, and i n p a r t i c u l a r w a t e r a t e s p e c i a l problems w h i c h make g i e s qu'ite d i f f i c u l t and meaningless i f n o t
each o f
treated with
a c t u a l l y misleading.
from three important l a r g e number
the application o f
unless
w h i c h may make
First,
decision-makers and/or
decisions o r influence
t h e r e i s a l a r g e number o f
stem
there i s a
,
constituencies
decisions according
to his
Second, even f o r any one
non-commensurable o b j e c t i v e s t o
T h i r d , t h e r e i s a v e r y l a r g e elemen-t o f u n c e r t a i n t v T h i s element i s due t o tiis: i i i o k
i n v i r t u a l l y a l l water resources decisions. deoree o f
insight quite
H o s t o f -these d i f f i c u l t i e s
o m , but d i f f e r e n t , versions o f the desired goals. be o p t i r i i z e d .
o p t i m i z a t i o n methodolo-
considerable
c h a r a c t e r i s t i c s o f t h e s e systems.
o f quasi-independent
d e c i s i o n maker,
r e s o u r c e s systems, c r e -
irreversibility of
these decisions coupled
w i t h both hydrologic
u n c e r t a i n t y and i n a b i l i t y t o p r e d i c t t h e f u t u r e w i t h r e a s o n a b l e a c c u r a c y . The r e c e n t t r e n d
i n water resources
however, has been t o e l e v a t e
many o f t h e
and
other
real
non-commensurable
p a r i t y w i t h economic e f f i c i e n c y as c r i t e r i a f o r e x c e l l e n c e . o f a vector
world
problms,
objectives
to
This inclusion
o f o b j e c t i v e f u n c t i o n s i n t r o d u c e s a new dimension i n t h e f i e l d s
o f m o d e l i n g , m a t h e m a t i c a l programming and o p t i m a l c o n t r o l . sents a comprehensive s u r v e y o f t h e r n u l t i p l e o b j e c t i v e problems,
T h i s book r e p r e -
methods p r e s e n t l y a v a i l a b l e f o r s o l v i n g
and c o n c e n t r a t e s on a
new p o w e r f u l and o p e r a -
t i o n a l method, namely t h e S u r r o g a t e Worth T r a d e - o f f (SWT) Method.
T h i s met-
hod s i m p l i f i e s t h e i n t e r a c t i o n between d e c i s i o n - m a k e r s and systems a n a l y s t s , and enables them t o d e t e r m i n e a b e s t p o l i c y v i a a v e r y moderate i n t e r a c t i o n . The method
i s applicable t o s t a t i c
( o p t i m a l c o n t r o l ) systems. tional algorithms are poration o f
( m a t h e m a t i c a l programming)
and dynamic
T h e o r e t i c a l bases as w e l l as d e t a i l e d
d i s c u s s e d w i t h s e v e r a l example problems.
special properties o f
w a t e r r e s o u r c e s systems
computaThe i n c o r -
(e.g. r i s k
and
u n c e r t a i n t y ) i n t o a m u l t i o b j e c t i v e framework i s a n a l y z e d and a p p l i c a t i o n s o f t h e SWT
method a r e p r e s e n t e d .
I n particular, sensitivity, irreversibility
and o p t i m a l i t y a r e s t u d i e d i n d e t a i l
as m u l t i p l e o b j e c t i v e f u n c t i o n s .
The
a v a i l a b i l i t y of aqes a n d
o p er at i o n al methodologies such a s
enhances t h e systems modeling and
the SLIT method,
encour-
p a t t e r n of thinking in multiob-
j e c t i v e f u n c t io n terms.
Thus, more r e a l i s t i c analyses may r e s u l t by e lim inating t h e needs f o r a s i n g l e o b j e c t i v e formulation.
This book should s er v e c o l l e g e s t u de nts and profe ssors , p r a c t i c a l engineers, and managers involved i n t h e decision-making process of re a l world problems whether i n
water resources systems or o t h e r l a r g e s c a l e sys-
tems.
a p p l i c a t i o n include
P o s s i bl e a r e a s of
delivery,
conirnunication, urban and
transportation,
health c a r e
housing development, environmental
and
energy problems and mar,y o t h e r a r e a s , where noncommensurable o b j e c t i v e funct i o n s dominate t h e s e oroblems.
Yacov Y . Hairnes
lloveniber 1974
Warren A . Hall Herbert T . Freedman
Vi
Acknow Zedgments
The authors wish t o tnank
who have contributed t o t h i s book by t h e i r comments, c r i t i q u e , and suggestions. Amonq these individuals a r e Professor L . S. Lasdon (Case lJestern Reserve U n i v e r s i t y ) , Professor David Marks (MIT), Professor Jared Cohon (Johns Hopkins Univ e r s i t y ) , Professor Charles Howe (University of Colorado), and Dr. W. S c o t t Nainis (Arthur 0. L i t t l e , I n c . ) . Special thanks a r e due t o Prasanta Das who has d i l i q e n t l y proofread t h e f i n a l manuscript and t o Sue Reeves who typed the manuscript. Last and not l e a s t , we thank a l l t h e qraduate students i n t h e Hater Resources Proqram, Systems Enqineerinq Department, a t Case llestern Reserve University, who have o f f e r e d many comments and suqqestions durinq t h e preparation o f t h i s book. The cooperation of t h e American Geophysical Union, and t h e American Society of Civil Enqineers, by releasinq copyriqhted material t o be included i n t h e book, i s appreciated. a l l individuals
The preparation of the material i n t h i s book was
p a r t i a l l y supported
by t h e National Science Foundation, Research Applied t o National Proqram, under research p r o j e c t : "Mu1 t i level Approach f o r Deoional Resource P1 annino and Flanaqement", a r e due t o Dr. Richard Kolf project officers.
Grant Number
61-34026.
Needs Water
Special thanks
and t o Dr. Lawrence Tombauqh who
served
as
TABLE OF CONTENTS __ Page
Preface
V
v ii
Ac know1 edgements Table o f Contents
viii
L i s t o f Figures
xiii xiv
L i s t o f Tables
1.
2.
3.
Fundamentals i n M u l t i p l e O b j e c t i v e Problems
1
1.1
Introduction
1
1.2
H u l t i o b j e c t i v e s i n Water Resources Systems
2
1.3
Problem D e f i n i t i o n
4
1.4
T e r m i n o l o g y and Concept o f N o n - i n f e r i o r S o l u t i o n s
1.5
Overview o f Book
11
Footnotes
12
References
13
6
S o l u t i o n Methodologies f o r M u l t i p l e O b j e c t i v e Problems
15
2.1
Introduction
15
2.2
U t i l i t y Functions
15
2.3
I n d i f f e r e n c e Functions
16
2.4
L e x i c o g r a p h i c Approach
16
2.5
P a r a m e t r i c Approach
17
2.6
The F - C o n s t r a i n t Approach
19
2.7
Goal Programming
22
2.8
The Goal A t t a i n m e n t Method
25
2.9
A d a p t i v e Search Approach
27
2.10 I n t e r a c t i v e Approaches
28
2.11 O t h e r Approaches
28
Footnotes
29
References
30
The S u r r o g a t e Worth T r a d e - o f f Method
34
3.1
General Approach
34
3.2
The D e r i v a t i o n o f t h e T r a d e - o f f Rate F u n c t i o n
37
3.3
Computational Procedure f o r C o n s t r u c t i n g t h e
3.4
Trade-off Function
41
The S u r r o g a t e Worth F u n c t i o n
43
viii
CONTENTS
3.5 Computational Procedure for Finding the Preferred Solutions 3.5.1 Decision Space Surrogate Worth Function 3.5.2 A-Space Surrogate Worth Function 3.5.3 Objective Function Space Surrogate Worth Function 3.6 Geometric Interpretation of the SWT Method 3.7 Summary Footnotes References
ix
46 46 47 50 53 55 57 57
4. The SlJT Method for Static Two-Objective Problems 4.1 Computa tional Efficiencies 4.1.1 Limits on E~ 4.1.2 Trade-off and Worth Relationships 4.1.3 Reversion to the Decision Space 4.1.4 Regressions 4.1.5 Finding the Indifference Band 4.2 The Static Two-Objective E-Constraint (STE) Algorithm 4.2.1 The Algorithm 4.2.2 Sample Problem 4.3 The Multiplier Approach 4.3.1 Limitations of the Multiplier Approach 4.4 The Static Two-Objective Combined (STC) Algorithm 4.4.1 The Algorithm 4.4.2 Sample Problem 4.5 The Static Two-Objective Multiplier (STM) Algorithm 4.5.1 The Algorithm 4.5.2 Sample Problem 4.6 Summary Footnotes References
58 58 58 59 61 62 63 63 64 66 69 70 70 71 73 74 76 76 78 79 79
5. The SWT Method for Dynamic Two-Objective Problems 5.1 Introductory Analysis 5.2 Dynamic Problems in c-Constraint Form 5.3 Dynamic Two-Objective E-Constraint (DTE) Algorithm 5.3.1 The Algorithm 5.3.2 Sampl e Problem 5.4 Dynamic Two-Objective Combined (DTC) Algorithm 5.4.1 The Algorithm
81 82 82 84 a4 89
94
94
X
CONTENTS
__ Page
5.4.2 Sample Problem 5.5 Dynamic Two-Objective Multiplier (DTM) Algorithm 5.5.1 The Algorithm 5.5.2 Sample Problem 5.6 Summary Footnotes References
97 100 100 102 103 104 104
6. The SWT Method for Static n-Objective Problems 6.1 Surrogate Worth Functions 6.2 Preferred Solutions and Consistency 6.3 Computational Efficiencies 6.3.1 Limits on E . J 6.3.2 Reversion to the Decision Space 6.3.3 Multiple Regression 6.3.4 Finding the Indifference Band 6.4 The Static n-Objective &-Constraint (SNE) Algorithm 6.5 The Static n-Objective Multiplier (SNM) Algorithm 6.6 Summary Footnotes References
105 105 106 109 109 110 111 111 112 115 117 117 118
7. The 7.1 7.2 7.3 7.4
119 119 120 123 125 126 126
SLIT Method for Dynamic n-Objective Problems Introductory Analysis The Dynamic n-Objective &-Constraint (DNE) Algorithm The Dynamic n-Objective Multiplier (DNM) Algorithm Summary Footnotes References
8. Applications of the SWT Method t o Water Resources Problems 8.1 The Reid-Vemuri Example Problem
8.2 8.3 8.4 8.5 8.6 8.7 8.8
Solution to the Reid-Vemuri Problem Discussion of Results Stream Resource Allocation Problem Solution of Stream Resource Allocation Problem Discussion of Results Northern California Water System Solution of California Water System Mu1 tiobjective Problem
127 127 128 132 132 135
141 142 148
xi
CONTENTS
Footnotes References 9. Multiobjective Water Quality Models 9.1 Introduction 9.2 Water Quality Goals and Objectives 9.2.1 Primary Objectives 9.2.2 Secondary Objectives 9.3 General Problem Formulation 9.4 Formulation of an Example Problem 9.5 Application of the SWT Method to the Three Water Quality Objective Problem 9.6 Summary and Conclusions Footnotes References 10. Sensitivity, Stability, Risk and Irreversibility as Multiple Objectives 10.1 Introduction 10.2 System Characteristics Related to the Evaluation of Risk 10.2.1 Sensitivity 10.2.2 Responsivity 10.2.3 Sta bi 1 i t y 10.2.4 Irreversibil i ty 10.3 Sources of Uncertainties and Errors in Modeling 10.3.1 Model Topology (g1) 10.3.2 Model Parameters (ci2) 10.3.3 Model Scope (g3) 10.3.4 Data (q) 10.3.5 Optimization Techniques (%) 10.3.6 Human Subjectivity (%) 10.4 Formulation of Risk Objectives for Water Resources Systems 10.5 Measurement of Risk-Related Characteristics 10.6 Summary and Conclusions Footnotes References 11. Epilogue 11.1 Advantages of the SWT Method 11.2 Further Development of the SWT Method
154 154 156 156 156 156 158 158 161 165 167 168 168 170 170 171 172 174 175 175 176 177 178 178 179 179 181 185 186 188 188 189 189 190
CONTENTS
Author Index S u b j e c t Index
xii
192 194
LIST OF FIGURES
1-1
D e c i s i o n F u n c t i o n Spaces f o r Example 1
1-2
N o n - i n f e r i o r P o i n t s f o r Convex B i c r i t e r i o n Problem
10
2-1
P a r a m e t r i c Approach
20
2-2
D u a l i t y Gaps i n t h e P a r a m e t r i c Approach
20
2-3
€ - C o n s t r a i n t Approach
23
2-4
Goal A t t a i n m e n t Method
26
3-1
43
3-2
Regression F i t t i n g o f h . . v s . f . 1J J D e t e r m i n a t i o n o f t h e I n d i f f e r e n c e Band
48
3-3
h-Space Worth F u n c t i o n s f o r Non-Convex Problems
49
7
3-4
A-Space Worth F u n c t i o n s f o r L i n e a r Problems
51
3-5
Geometric I n t e r p r e t a t i o n o f Worth F u n c t i o n
54
3-6
R o l e o f SWT Method
56
4-1
Non-Continuous T r a d e - o f f Curve
60
4-2
Flowchart f o r S t a t i c Two-Objective €-Constraint Algorithm
65
4-3
F a i l u r e o f t h e M u l t i p l i e r Approach
71
4-4
F l o w c h a r t f o r S t a t i c T w o - O b j e c t i v e Combined A l g o r i t h m
72
4-5
Flowchart f o r S t a t i c Two-Objective M u l t i p l i e r Algorithm
77
5-1
F l o w c h a r t f o r Dynamic T w o - O b j e c t i v e c - C o n s t r a i n t A l g o r i t h m
a5
5-2
F l o w c h a r t f o r Dynamic T w o - O b j e c t i v e Combined A l g o r i t h m
95
5-3
F l o w c h a r t f o r Dynamic T w o - O b j e c t i v e M u l t i p l i e r A l g o r i t h m
101
6-1
Flowchart f o r S t a t i c n-Objective €-Constraint Algorithm
113
6-2
Flowchart f o r S t a t i c n-Objective M u l t i p l i e r Algorithm
116
7-1
F l o w c h a r t f o r Dynamic n - O b j e c t i v e € - C o n s t r a i n t A l g o r i t h m
121
7-2
F l o w c h a r t f o r Dynamic n - O b j e c t i v e M u l t i p l i e r A l g o r i t h m
124
8-1
A Two R e s e r v o i r System
143
9-1
ith Subsystem R e p r e s e n t a t i o n
158
10-1
S e n s i t i v i t y Band
173
V a r i a b l e Span o f C o n t r o l
1a7
10-2
xiii
LIST OF TABLES
4-1 4-2
Results of S t a t i c Two-Objective E-Constraint Problem, s t e p 5 OM Responses f o r S t a t i c Two-Objective &-Constraint Problem
4-3 4-4
DM Responses f o r S t a t i c Two-Objective Combined Problem
68 75 75
4-5
DM Responses f o r S t a t i c Two-Objective M u l t i p l i e r Problem
78
5-1
Results of t h e Dynamic Two-Objective €-Constraint Problem,
Results of S t a t i c Two-Objective Combined Problem, s t e p 4
68
92 93 99
step 5 DM Responses f o r Dynamic Two-Objective ELConstraint Problem Results o f Dynamic Two-Objective Combined Problem, s t e p 3 DM Responses f o r Dynamic Two-Objective Combined Problem OM ResDonses f o r DTM Problem
103
8-1
Non-Inferior Points and Decision-Maker Responses
130
8-2
136
8-3
Physical Constants f o r Stream Allocation Problem Non-Inferior Points and DM Responses f o r Stream
8-4 8-5 8-6
A 1 1 oca t i on Pro bl em Data f o r T r i n i t y River Subsystem Example Results f o r T r i n i t y River Subsystem Example Preferred Solutions f o r California Water Project Example
140 149 150
5-2 5-3
5-4 5-5
xiv
99
153
Chapter 1
FUNDAMENTALS IN MULTIPLE OBJECTIVE PROBLEMS
1.1
INTRODUCTION A recent
problems which
trend in
systems a n a l y s i s has
have more than
been the
one o b j e c t i v e func tion.
important i n t h e study of l a r g e s c a l e systems, where e r a l c o n f l i c t i n g and non-commensurable
c onside ra tion of This i s e s p e c i a l l y
t h e r e tend t o be sev-
objectives t h a t
the system modeler
can i d e n t i f y . For example, i n water resources planning, one wants t o maximize b o t h economic e f f i c i e n c y , which i s measured in monetary u n i t s , and environmental q u a l i t y ,
tion. ered,
which i s measured in
u n i t s of p o l l u t a n t concentra-
T r a d i t i o n a l l y , only one o b j e c t i v e (economic e f f i c i e n c y ) was consid-
or somehow
with t he o t h e r o b j e c t i v e s being included a s c o n s t r a i n t s ,
However, s o c i e t y i s placing
made cominensurate with t h e primary o b j e c t i v e .
an i n c r e a si n g importance on non-pecuniary o b j e c t i v e s which a r e d i f f i c u l t t o q u a n t i f y monetarily.
Multiple
objective analysis
has been
a pplie d t o a
wide v a r i e t y o f problems including t r a n s p o r t a t i o n , p r o j e c t s e l e c t i o n f o r research a c t i v i t i e s , economic production, the q u a l i t y of l i f e , managing an academic department, game theory, and many o t h e r s . A fundamental c h a r a c t e r i s t i c of decision
processes i s
the develop-
ment o f l o g i c a l bases f o r el i mi n at i n g from f u r t h e r c onside ra tion l a r g e numbers
of otherwise p o s s i b l e d e c i s i o n s ,
most d e s i r a b l e d eci s i o n i s
with reasonable
n o t i n ad v er t ently l o s t .
assurance t h a t the
The reduced
field o f
p o s s i b i l i t i e s can then be more e a s i l y analyzed by a de c ision maker i n orde r t o a r r i v e a t a f i n a l d eci s i o n . I f two o r more
o b j ect i v es a r e n o t commensurable, then t h e r e i s gen-
e r a l l y no s i n g l e optimum d eci s i o n .
Despite t h i s a s s e r t i o n , de c isions which
involve a p p a r en t l y non-commensurable o b j e c t i v e s a r e reached every day by A s u b s t a n t i a l percentage of the se individua ls a r e m i l l i o n s o f people. quite sure could be
they made t h e b e s t
d eci s i o n - - b e s t i n the sense t h a t no o t h e r
demonstrated as s u p e r i o r .
i s one of f i n di n g t h e
Thus i t would appear t h a t the problem
means o f reducing non-commensurable o b j e c t i v e s t o a n
a p p r o p r i a t e common denominator. Much of p r i ci n g theory
i n economics
is
devot-ed t o
t h i s que stion.
Physically non-commensurable q u a n t i t i e s which a r e traded in l a r g e numbers i n a " f r e e , " non-coercive market, appear t o have been r a t h e r well commens u r a t e d i n monetary u n i t s . This has encouraged development of s t r a t e g i e s I
2
MULl"'lOBJECT1 VE OPPIMIZATIOW IF1 WN'ER RMOUNCES SYSTEM5
t o c r e a t e , by law, t h e i n s t i t u t i o n a l equivalent of a market f o r t h e remaining non-commensurable objectives of water resources. "Pollution c e r t i f i c a t e s , e f f l u e n t charges, s c a r c i t y based p r i c i n g , " e t c . a r e examples of t h i s approach.' While very a t t r a c t i v e in some r e s p e c t s , i t i s c l e a r from other i n s t i t u t i o n a l l y managed markets t h a t these economic a r t i f i c e s in many ways
may be
f a r from
adequate t o
would in f a c t represent even
c r e a t e pseudo-market
the important o b j e c t i v e s
conditions which
t o any s a t i s f a c t o r y
degree. The reluctance of the p o l i t i c a l system t o adopt such pseudo-market i n s t i t u t i o n s , and t h e acceptance of d i r e c t p o l i t i c a l a l l o c a t i o n suggests t h a t f o r t h e immediate f u t u r e , a t l e a s t , i t will be necessary t o seek o t h e r a l t e r n a t i v e s f o r t r e a t i n g the non-commensurable o b j e c t i v e problem. Thus t h e development of mathematical techniques f o r the s o l u t i o n of multiple o b j e c t i v e problems i s q u i t e important. The purpose of t h i s book i s t o i n v e s t i g a t e computational procedures f o r the s o l u t i o n of multiple obj e c t i v e problems concentrating on t h e surrogate worth tradeoff (SWT) method. This chapter w i l l present the mathematical formulation of the genera l multiple o b j e c t i v e problem, and discuss the concepts and terminology i n herent t o such problems. 1.2
MULTIOBJECTIVES IN WATER RESOURCES SYSTEMS
Water resources systems c r e a t e special problems which make t h e app l i c a t i o n of c l a s s i c a l optimization methodologies q u i t e d i f f i c u l t a n d , u n l e s s t r e a t e d with considerable i n s i g h t , q u i t e meaningless i f not a c t u a l l y misleading. Most of these d i f f i c u l t i e s stem from t h r e e important characteri s t i c s of these systems. F i r s t , t h e r e i s a l a r g e number o f quasi-independent decision makers and/or c o n s t i t u e n c i e s , each of which may make o r influence decisions according t o t h e i r own, possibly d i f f e r e n t , versions of the desired goals. Second, even f o r any one decision maker, t h e r e i s a l a r g e number of non-commensurable o b j e c t i v e s t o be optimized. Third, t h e r e i s a very l a r g e element o f uncertainty and r i s k i n v i r t u a l l y a l l water resources d e c i s i o n s . This element i s due t o the high degree of i r r e v e r s i b i l i t y of these decisions coupled with both hydrologic uncertainty and i n a b i l i t y t o p r e d i c t the f u t u r e with reasonable accuracy. So long a s one o b j e c t i v e (e.g. economic e f f i c i e n c y ) dominates over a l l o t h e r s and a s i n g l e point of view ( e . g . n a t i o n a l ) can be a s s e r t e d as primary, t h e optimization can proceed along c l a s s i c a l l i n e s using e i t h e r
judgment o r mathematical d eci s i o n models a s d e s i r e d , where secondary obje c ti v e s a n d points of view can be taken i n t o account t h r o u g h judgment-based constraints. To a l i mi t ed e x t e n t t h e judgement-based c o n s t r a i n t s can be parameterized and/or s u b j ect ed t o a s e n s i t i v i t y a n a l y s i s . The r ecen t
trend i n water
r es o u rc e s, however,
has been t o e l e v a t e
many of t h e non-commensurable o b j e c t i v e s t o p a r i t y with economic e f f i c i e n c y a s c r i t e r i a f o r ex cel l en ce. Water resource p r o j e c t s a r e g en er ally jectives.
This f a c t
constructed t o se rve multiob-
i s i n h er en t i n the na ture
of almost
any l a r g e - s c a l e
project,
e . g . , r e s e r v o i r s , dams, aqueducts, t h e development of groundwater
systems,
and so o n .
water f o r i r r i g a t i o n ,
A large reservior
c re a te d by a high
municipal a n d i n d u s t r i a l needs,
and recreation f a c i l i t i e s ,
dam may supply
provide f o r f i s h i n g
improve navigation and flood control c a p a b i l i t -
i e s , generate h y d r o e l e c t r i c power, maintain s u i t a b l e water q u a l i t y f o r both
ground
and s u r f a c e
water recharge,
wat er ,
provide a b uffe r f o r d r o u g h t years and ground-
improve r e l a t e d land use
and prevent damages from runoff,
a n d enhance t h e regional development i n terms of a b e t t e r economy and qual-
i t y of l i f e .
I n regional planning of water a n d r e l a t e d land re sourc e s, t h e
simultaneous co n s i d er at i o n of more t h a n one p r o j e c t i s o f t e n e s s e n t i a l d u e t o t h e i n t e r a c t i o n s a n d coupling t h a t e x i s t among them.3 C l e a r l y , t h e p r o blem of mu1 t i p r o j e c t s - - mu l t i o b j ect i v es planning becomes t r u l y l a r g e s c a l e and complex. Probably one of t h e major reasons f o r the r e l a t i v e s c a r c i t y of mu1 t i o b j e c t i v e
formulations
and co n side ra tions
i n the 1 i t e r a t u r e , n o t
n e c e s s a r i l y l imi t ed t o water resources systems, i s t h a t u n t i l r e c e n t l y , a l most a l l t h e s o l u t i o n s t r a t e g i e s developed involved a s i n g l e o b j e c t i v e function.
Optimization techniques
and methodologies a r e viewed here as s o l -
t o t h e mathematical
ution s t r a t e g i e s t h a t a r e applied
o b j e c t i v e f u n ct i o n and a s e t of c o n s t r a i n t s . objective
f u n ct i o n s introduces
a new dimension in the f i e l d s of modeling,
mathematical programming, and optimal c o n t r o l , i c a l notion
model defined by a n
The inc lusion of a vector of
of a n optimal s o l u t i o n
e s p e c i a l l y sinc e t h e numer-
g en era lly w ill
not e x i s t f o r a ve c tor
optimization problem, as wi l l be discussed l a t e r . 4 I t i s important t o note, however,
t h a t both judgment
have one common
and mathematical models of de c ision processes
f e a t u r e i n t h a t they u t i l i z e a logic a l argument t o elimin-
a t e l a r g e numbers o f p o s s i b l e d eci s i o n s e t s from f u r t h e r contention f o r t h e " bes t " deci s i on. Some procedures which can accomplish c o n t e x t w i l l be explored i n t h i s book.
t h i s in t h e m ultiple -obje c tive
A number of s t u d i e s have been conducted which i n c l u d e m u l t i p l e obj e c t i v e s i n water resources planning. The Corps of E n g i n e e r s 5 used t h r e e o b j e c t i v e s ( n a t i o n a l income, r e g i o n a l development, and environmental q u a l -
i t y ) in their
study of
t h e North
s t u d i e d the
M i l l e r and Byers6
income f o r an a g r i c u l t u r a l a r e a . between net
Atlantic region
tradeoff
o f the
United S t a t e s .
between environmental q u a l i t y and
Cohon and Marks7 e v a l u a t e d
the t r a d e o f f
n a t i o n a l income and e q u i t y of r e g i o n a l income d i s t r i b u t i o n f o r
a developing c o u n t r y .
Major* took r e g i o n a l development i n t o a c c o u n t i n t r a -
ditional cost-benefit analysis.
O'Riordanq used the o b j e c t i v e s o f economic
growth, environmental q u a l i t y and s o c i a l w e l l - b e i n g f o r r i v e r b a s i n p l a n ning i n Canada. Monarchi e t a l l o p r e s e n t e d a s e q u e n t i a l t e c h n i q u e which should
e n a b l e t h e d e c i s i o n maker t o d e t e r m i n e a s a t i s f a c t o r y s o l u t i o n from
non-inferior points.
An a n a l y s i s of t h e a p p l i c a b i l i t y o f v a r i o u s m u l t i p l e r e s o u r c e s problems has been c a r r i e d o u t by
o b j e c t i v e techniques t o water Cohon.ll 1.3
PROBLEM DEFINITION For n o t a t i o n a l
convenience,
define t h e general vector optimization
t o be: Problem _ _ _ _ 1-1:
...,
m i n i f , ( Z ) , f2(xJ,
fn(xJl
X -
Subject t o
,
gk(L) 5 3 Where
xis
m
...,
n, are n
g,(x), k = 1,2,
...,
m, a r e m constraint functions
=
For s i m p l i c i t y i n n o t a t i o n , and :: 0 ) .
objective functions
I t can
equality constraints are not present.
t h a t each e q u a l i t y (3 0
...,
1,2,
1 -
constraints
1, 2,
=
an N - dimensional v e c t o r o f d e c i s i o n v a r i a b l e s . f.(x), i
be assumed
k
c o n s t r a i n t was r e p l a c e d
by two i n e q u a l i t y
T h u s , t h e r e i s no l o s s i n g e n e r a l i t y
by
s i d e r i n g t h e compact n o t a t i o n o f a system o f i n e q u a l i t y c o n s t r a i n t s . assumed
t h a t a l l functions
may be
nonlinear in
L.
Convexity o r
conIt is other
p r o p e r t i e s may be assumed when needed. lems N
,','
x
where
E
n.
Note t h a t in most re a l world prob-
This can be w r i t t e n more compactly in vector notation a s :
RN
R N i s t h e d eci s i o n v ect o r , f :
+
R n i s t h e o b j e c t i v e func tion
R" i s t h e c o n s t r a i n t v e c t o r , and 0 E Rm i s a vector whose v e c t o r , 9: R N elements a r e a l l zero. The meaning of minimizing a ve c tor w ill be disc uss-
ed in the next s e c t i o n .
The d e f i n i t i o n of
5
"
must a l s o be c l a r i f i e d f o r
"
v e c t o r s: Definition 1 : _____
...
all i = 1 , 2,
.
Rk where t h e s u b s c r i p t
For any two v e c t o r s ,
E
k,
R k and
z
E
s
and only i f yi r: z i f o r
if
i denotes t h e i t h element o f the
vector. the
The c o n s t r a i n t s decision vector
unique value
S
=
If(&)
[JET
~
f(x);
g(x) r: 0 determine a f e a s i b l e s e t T of values f o r = {x/g(&) 50). Each vector x E T determines a
x; T
thus t h e r e e x i s t s a s e t S of f e a s i b l e values f o r
T(x);
The mu l t i p l e o b j e c t i v e problem can be considered a s:
1.
Min
f(x)
MIN
f(x)
o r as s . t . f(&) 5 This d u a l i t y wi l l be presented l a t e r . these i d e a s :
EXAMPLE 1 : I
_
~
s
s.t. 5
E
7
useful f o r understanding the various solution methods
The following examples w ill serve t o i l l u s t r a t e some
of
6
0 I x2 I 5 ( o r g 3
=
x2 - 5
0 , g4
=
- x2 I 0)
For t h i s problem T ( t h e feasib.ie s e t f o r x_) and S ( t h e f e a s i b l e s e t f o r f(&)) a r e shown i n f i g u r e s 1-1-a and 1-1-b r e s p e c t i v e l y . 1.4
TERMINOLOGY A N D CONCEPT OF NON-INFERIOR SOLUTIONS
I t i s important here t o d ef i n e some of the terms used in multi-objective analysis. F i r s t , t h e d e f i n i t i o n of optimal i s d i f f e r e n t than f o r t h e case of a s i n g l e o b j e c t i v e f u n ct i o n : Definition 1-2:
An optimal s o l u t i o n i s one which a t t a i n s the minimum value of a l l of t h e o b j e c t i v e s simultaneously;
_f (-x )
s.t.
x
E
T i f and only i f
L* L*
i s an optimal solution t o the problem MIN T and
E
f(~*)I
f(x) f o r
all
Optimal s o l u t i o n s a r e a l s o known a s supe rior s o l u t i o n s . t h e r e i s no optimal the
minimum value
x
T. I n general
E
s o l u t i o n t o a mu l t i - obje c tive problem. of f l i s 0 which
I n example 1 , t h e minimum thus the se two minima cannot
occurs a t x1 = 0 ,
value of f 2 i s 0 which occurs a t x1 = x2 = 5; be a t t a i n e d simultaneously.
while
Let Ti be t h e s o l u t i o n t o min
fi(x)
X -
Subject t o
for all i = 1 , 2,
..., n
i . e . , f . i s t he global minimum o f t h e i t h o b j e c t i v e func tion while ignoring 1
a l l t h e o t h e r ( n - 1 ) o b j e c t i v e s . Looking a t t h i s in the func tiona l space, = i,,f ) where 7 . i s a s defined above, then f S means t h a t if
(r,,
.. .
n
1
-
no optimal s o l u t i o n e x i s t s . F o r example 1 , f=(O,O) which i s not in S a s can I n t h e following example t h e r e i s an optimal be seen from f i g u r e 1-1-b. solution :
7
T
x2
Figure 1-1-a.
Decision Space
f2
Figure 1-1-b. Figure 1 - 1 .
Functional Space
Decision and Functional Spaces f o r Example 1
8
EXAMPLE 2:
g2
=
- x2
s 0
The mininium value of each objective is zero and these can be attained simultaneously when x1 = x2 = 0. The optimal solution is x* = (0,C); f(x*)= (0,O). There has been some work done12 on determining when optimal solutions to a multiple objective problem will exist. Since, however, optimal solutions generally do not exist, one must be satisfied with obtaining noninferior solutions. The concept of non-inferior solutions, also known as Pareto optimum or efficient solutions, is basic to economics in general and particularly for competitive equilibrium. K ~ o p m a n s ' ~defined an efficient point for mu1 tiobjective functions in economics as follows: "A possible point in the commodity space is called efficient whenever an increase in one of its coordinates (the net output of one good) can be achieved only at the cost of a decrease in some other coordinate (the net output of another good)." Kuhn and Tucker'" extended the theory of nonlinear programming for one objective function to a vector minimization problem and introduced necessary and sufficient conditions for non-inferior solutions. A formal definition of a non-inferior solution is given below: Definition 1-3:
A non-inferior solution is one in which no decrease can be obtained in any of the objectives without causing a simultaneous increase in at least one of the other objectives; x* is a non-inferior solution to the problem MIN f(&) s.t. x E T if and only if there does not exist any 5 t T such that : f(&*) and f.(x) f.(x*) for some i = 1 , 2, ...,n. This 1 1 solution is obviously not unique. We define the non-inferior set as NI = {f(~)ls is a non-inferior solution]. In example 1, the solutions x2 = 5, 0 s x1 5 5 are all non-inferior
f(x)
solutions. I n t h e functional space ( f i g u r e 1 - 1 - b ) t h i s corresponds t o t h e l i n e f , = 5 - f,. I t has been shown15 t h a t a l l f ( l i ) ~ N I must l i e on t h e boundary of S .
This i s
obvious,
reduction could be achieved
s i n ce f o r any point
i n one o b j e c t i v e
in the i n t e r i o r , a
without changing
the others
by moving in a negative d i r e c t i o n p a r a l l e l t o t h a t a x i s a s f a r a s p o s s i b l e , t h a t i s , u n t i l a boundary i s reached. be in
the n o n - i n f er i o r s e t
s c r i b e d subsequently,
Necessary c onditions f o r a point t o
have been developed16;
however,
a r e in general
the
methods t o be de-
simpler t o use than d i r e c t
a p p l i c a t i o n of t h es e co n d i t i o n s i n determining the non-infe rior s e t .
I t i s easily verified
t h a t f o r any two convex f u n c t i o n s , t h e non-every point in the i n t e r v a l between t h e minima [ x l * , x2*] of t h e b i c r i t e r i o n problem depicted in Figure 1 - 2 , i s a n o n - i n f er i o r p o i n t . For nonconvex func tions, however, t h e noni n f e r i o r s e t may be non-connected. Since the n o n - i n f er i o r s e t i s on the boundary of S , i t forms a surf a c e in R n which can be described by T * ( f l , f 2 , . . . . f n ) = 0. This can be solved t o g e t f i * ( f l , ..., f i - l , f i + l ,...,f n ) c a l l e d the tra de -off func tions s i n c e they show how much t h e value of f i must change t o s t a y in the non-inf e r i o r s e t when t h e values of t h e o t h e r o b j e c t i v e s change. The r a t e of change of t h e t r ad eo f f f u n ct i o n with r e s p e c t t o f i a l s o forms useful funJ c t i o n s which a r e c a l l e d t h e t r ad eo f f r a t e func tions 1..; T i j ( f l , . . . , f i - l , i n f e r i o r s e t i s continuous.
fit,
,.., f n )
For example,
1J
a f 1. * / a f l.. Some a u t h o r s have modified t h e d e f i n i t i o n of a non-infe rior s o l u t i o n
t o exclude
=
those p o i n t s
where a f i r s t orde r improvement
in one o b j e c t i v e
can be made a t t h e expense of only a second orde r degradation i n another17; t h a t i s , t h e p o i n t s where any of t h e t r ade off r a t e func tions a r e e i t h e r zero or i n f i n i t e a r e n o t properly n o n - i n fe rior s o l u t i o n s . I n most c a s e s , t h e determination of t h e non-infe rior s e t i s n o t suff i c i e n t ; t h e systems a n a l y s t must choose one de c ision which i s by some definition "best".
Thus,
ad d i t i o n al c r i t e r i a
must be introduced t o d i s t i n -
guish t h e " b e s t " of t h e n o n - i n f er i o r s o l u t i o n s .
Although some authors re -
t a i n t h e term optimal f o r t h i s " b e s t " s o l u t i o n , the word
" pre fe rre d"
will
be used i n t h i s book t o avoid ambiguity. D e f i n i t i o n 1-% A p r e f e r r ed
s o l u t i o n i s a n o n - i n f erior
s o l u t i o n which i s chosen a s
the f i n a l d e c i s i o n t h r o u g h some ad d i t i o n al c r i t e r i a .
10
Figure 1 - 2 .
Non-Inferior Points for Convex Bicriterion Problem.
f ( x-)
For each value
s o c i e t y from f i ( x ) u n i t s
E
Rn t h e r e i s some b e n e f i t t h a t would accrue t o
of each o b j e c t i v e i = 1 , 2 ,
..., n .
This b e n e f i t
Since each o b j e c t i v e i s bei s c a l l e d t h e u t i l i t y f u n ct i o n ( u : Rn -f R 1 ) . ing minimized, i t must be t r u e t h a t i t i s p r e f e r a b l e t o have l e s s of each; thus t h e u t i l i t y objective.
f u n ct i o n i s monotonically decreasing with re spe c t t o each
U t i l i t y f u n ct i o n s a r e a l s o known a s soc ia l preference o r s o c i a l
welfare f u n c t i o n s . Consider t h e s u r f aces of equal u t i l i t y in R n ( u ( f ) e t y i s i n d i f f e r e n t between any p o i n t s on the se s u r f a c e s , c a l l e d s o c i a l i n d i f f e r e n c e or i s o - p r ef er enc e s u r f a c e s .
=
c o n s t a n t ) . Sociand thus they a r e
These w i l l be use-
f u l l a t e r i n f i n d i n g p r ef er r ed s o l u t i o n s . The p o i n t s where t h e s o c i a l i n d i f f e r e n c e surfa c e s a r e tangent t o t h e n o n - i n f e r i o r s e t a r e known as t h e i n d i f f e r e n c e b a n d . Definition 1 - 5 :
ior set
The i n d i f f e r e n c e band i s defined t o be t h e subse t o f t h e non-inferwhere t h e improvement of one o b j e c t i v e func tion i s e quiva le nt in
t h e mind of t h e d eci s i o n maker t o t h e necessary degradation of t h e o t h e r s . 1.5
OVERVIEW OF BOOK The next ch ap t er attempts t o give a comprehensive survey of t h e m u l -
t i p l e o b j e c t i v e problem and t h e various approaches and techniques a v a i l a b l e for the solution
o f such problems.
Chapter 3 w i l l
pre se nt s t i l l another
approach t o solving mu l t i p l e o b j e c t i v e problems - the surroga te worth tra de o f f (SWT) method18. which
Chapter 4 d es cr i b es
can be implemented
Three algorithms f o r
some computational
f o r two-objective
problems
efficiencies
in t h e SWT method.
implementing t h e SWT approach in s t a t i c two-objective
problems a r e presented;
one employing t h e € - c o n s t r a i n t approach in solving
m u l t i p l e o b j e c t i v e problems;
one using Lagrange m u l t i p l i e r s in a v a r i a t i o n
of t h e parametric approach,and one using a combination of the se two. Chapt e r 5 modifies t h e r e s u l t s of ch ap t er 4 i n orde r t o apply t h e SWT t o dynami c o p t i m i z a t i on problems ; included a r e t h r e e analogous a lgorithm s. Chapters 6 and 7 modify
t h e r e s u l t s of t h e previous two c ha pte rs t o encompass p r o b -
two o b j e c t i v e s ( f o r s t a t i c and dynamic c a se s, re spe c tt h e r e l a t i o n s h i p s between t h e various worth func1 , 2 , ... , n , j = 1 , 2 , ... , n , i # j . Chapter 8 a p p l i e s the
lems with more than ively), tions Wij,
and i n v e s t i g a t e i =
SWT method t o
t h r e e problems i n water resources. Chapter 9 a p p l i e s the
SWT
: ;Y
12
method
to
water qtiality
problems.
Chapter
10
discusses
the
incor-
p o r a t i o n of s e n s i t i v i t y , i r r e v e r s i b i l i t y and r i s k a s m u l t i p l e o b j e c t i v e s i n water resources systems. t h e book,
The f i n a l c h a p t e r summarizes the major themes o f
and i n d i c a t e s a r e a s where i t s implementation may prove f r u i t f u l .
FOOTNOTES 1.
D i s c u s s i o n s and examples of t h e s e s t r a t e g i e s can be found
i n Kneese
and Bower [1968], Hainies e t a1 [1972] and o t h e r s .
2.
The o r i g i n a l development can be found i n Hainies and Hall r19741.
3.
Multiproject analysis
i s d i s c u s s e d by many
e t a1 [1962], Howe arid E a s t e r 119711,
a u t h o r s i n c l u d i n g Maass
Hall and Dracup r19701, I s a r d
e t a1 [1972] and H a i i e s and Hall [1974].
4.
The f i r s t d i s c u s s i o n of a v e c t o r of o b j e c t i v e s i s i n K u h n and Tucker [ 19501 .
5.
See Carps of E n g i n e e r s 119721.
6.
See M i l l e r and Byers [1973].
7.
See Cohon and Marks [1973].
8.
See Major [1969].
9.
See O'Riordan [1973].
in.
See Monarchi e t a1 r19731.
11.
Cohon [1973] p r o v i d e s
c l a s s i f i c a t i o n s f o r the v a r i o u s t e c h n i q u e s a s
well a s s t u d y i n g t h e i r a p p l i c a b i l i t y t o w a t e r r e s o u r c e s problems.
12.
Athans and Geering [1973] p r o v i d e
necessary
and s u f f i c i e n t
condi-
t i o n s f o r t h e e x i s t e n c e of s u p e r i o r s o l u t i o n s . 13.
See Koopnians 119511.
14.
Again s e e Kuhn and Tucker [1950].
15.
A formal proof i s g i v e n i n Reid and C i t r o n r19711.
16.
D i f f e r e n t forms can be found i n and
17.
K u h n and Tucker [1950], C h u
[1970]
DaCunha and Polak r19671.
T h e most g e n e r a l d e f i n i t i o n
of p r o p e r
n o n - i n f e r i o r i t y i s given
B e o f f r i o n [1968]. Other d e f i n i t i o n s can be found i n K u h n and [1950] and K1 i n g e r [1964].
by
Tucker
13 18
The o r i g i n a l development can be found
in
Haimes and Hall 119741.
R E FEKEPJCES 1.
Athans, M . ,
and G e e r i n g , H .
P., "Necessary and S u f f i c i e n t C o n d i t i o n s
f o r D i f f e r e n t i a b l e Nonscalar-Valued F u n c t i o n s t o A t t a i n Extrema," IEEE T r a n s a c t i o n s , v o l . AC
-
18, no. 2 , 1973.
2.
C h u , K . C . , "On t h e N o n - i n f e r i o r S e t f o r Systems with Vector-Valued O b j e c t i v e F u n c t i o n s , " IEEE T r a n s a c t i o n s , v o l . AC-15, no. 5 , 1970.
3.
Cohon, J . L . ,
"An Assessment
of M u l t i o b j e c t i v e
Solution techniques
f o r River Basin P l a n n i n g P r o b l e m s , " Ph.D. D i s s e r t a t i o n , M . I . T . , 1973.
4.
Cohon, J . L . , and Marks, D . H . ,
" M u l t i o b j e c t i v e S c r e e n i n g Models and
Clater Resource I n v e s t m e n t " Water Resources R e s e a r c h , vol . 9 ,
no.
4 , 1973. 5.
Corps of E n g i n e e r s , "N.A.R. Water Resources S t u d y , " Appendix T,1972.
6.
DaCunha, N . O . , and P o l a k , E . ,
"Constrained
Minimization under Vec-
t o r Valued C r i t e r i a i n F i n i t e Dimensional
Spaces,"
Journal
of-
Math. A n a l . and Appl . , v o l . 1 9 , no. 1 , 1967. 7
I .
G e o f f r i o n , A . M., " P r o p e r E f f i c i e n c y and t h e Theory of Vector
Maxi-
m i z a t i o n , " Journal of Math. Anal. and Rppl-., v o l . 2 2 , no. 3 , 1 9 6 8 .
8.
Haimes, Y . Y . ,
9.
Haiines, Y . Y . ,
" H i e r a r c h i c a l Modeling f o r t h e Planning and Management of a T o t a l Regional Wdter Resources S y s t e m " P r e s e n t e d a t the IFAC Syniposiuni on Control of Water Resources Systems, I s r a e l , September 17 - 21, 1 9 7 3 . Also Automatica, J a n . 1975. and H a l l , W . A . ,
" M u l t i o b j e c t i v e s i n Water Resources
Systems A n a l y s i s : The S u r r o g a t e Worth T r a d e o f f Method," Water Resources Research.., v o l . 10, no. 4, 1974. 10.
Haimes, Y . Y . ,
Kaplan, 11. A . ,
and H u s a r , M . A . ,
"A
Multilevel
proach t o Determine Optimal T a x a t i o n f o r the Abatement
of
ApWater
P o l l u t i o n , " Water Resources R e s e a r c h , v o l . 8 , no. 4 , 1972. 11.
H a l l , W . A . , and J . A .
Dracup, Water Resources Systems E n g i n e e r i n g ,
PlcGraw-Hill Book Company,
12.
Howe, C . W . ,
N. Y . , 1970.
and K . Id. E a s t e r , I n t e r b a s i n T r a n s f e r s of Water,
Econ-
omics I s s t i e s and I m p a c t s , T h e John Hopkins Press, B a l t i m o r e , l 9 7 1 .
14
to Reqional Science, The M. 1.1. P r e ss, Cambridge, Massachusetts,l972.
13.
I s a r d , W . e t a l , Methods
of Reqional Anal.ysis;
an Introduc tion
14.
Klinger, A., "Vector Valued Performance C r i t e r i a , " I E E E Transactions,
v o l . AC - 9 , no. 1 , 1964. 15.
Kneese, A. V., and B . 1 . Bower,
m i n g Water Qua1it.y: E c z -
rjjcsLTechnoloqy, I n s t i t u t i o n s , The Johns Hopkins Pre ss, n o r e , Maryland, 1968. 16.
Kocpmans, T . C . , "Analysis of Production a s a n E f f i c i e n t Combination of A c t i v i t i e s , " A c t i v i t y Analysis of Production,
Cowles
s i o n Monograph 13, Edited by T . C . Koopmans, Wiley, N . Y . , 17.
Balti-
Commis1951.
A . W . Tucker, Nonlinear Programming, Proceedings on Mathematical S t a t i s t i c s and Proba b i l i-t y , pp. 481-492, University o f Ca lifornia P r e s s , Berkeley, Cal i f o r n i a , 1950.
Kuhn, H . W . ,
dnd
Second Berkeley Svm-m
18.
Maass, A . e t a l , Desiqn of Water-Resource Systems, Harvard Univers i t y P r e s s , Cambridge, Massachusetts, 1962.
19.
Major, D.C., "Benefit-Cost Ratios f o r Proje c ts in Multiple Objective Investment Programs," Water Resources Research, vol. 5 , no.6, 1969.
20.
M i l l e r , W . L., and D. M . Byers, "Development and Display of Multiple Objective P r o j ect Impacts," Water Resources Research, v o l . 9 , no. 1 . 1973.
21.
Monarchi, 0. G . ,
C.C.
K i s i e l , and L . Duckstein. " I n t e r a c t i v e Flulti-
o b j e c t i v e Programming i n Water Resources," LeG-, 22.
Water
Resources
Re-
vol . 8 , Nov. 4 , 1973.
O'Riordan, J . , " A n Approach t o Evaluation i n Multiple Objective River Basin P l an n i n g , " Canada Department o f Environment,Vancouver, B. C . , 1973.
23.
"On Non-inferior Performance Index Reild, R. W., and S . J . C i t r o n , ' Je c t o r s , " Journal o f Optimization Theory and A pplic a tions, vol. 7 , n o . 1 , 1971.
Chapter 2
SOLUTION METHODOLOGIES FOR MULTIPLE OBJECTIVE PROBLEMS 2.1
INTRODUCTION
two approaches t o t h e s o l u t i o n of problems with
There a r e b a s i c a l l y multiple objectives.
One can e i t h e r attempt t o find the pre fe rre d s o l u t i o n
d i r e c t l y , o r f i r s t g en er at e t h e n o n - i n f er ior s e t a n d then f i n d the
pre fe r-
A t h i r d school of thought i s t h a t the sys-
red s o l u t i o n from among t h e s e .
tems a n a l y s t should be concerned only with developing t h e non-infe rior s o l -
(DM)
u t i o n s; t h e d e ci s i o n maker
can then choose on his own which of the se
s o l u t i o n s t o implement'. I t seems l o g i c a l , however, t h a t t h e OM w i l l d e s i r e some s o r t of f u r t h e r a n a l y s i s t o f i n d t h e pre fe rre d solution: i f t h i s a n a l y s i s can be q u a n t i f i e d and systemized t o reduce t h e s u b j e c t i v i t y , then a more a c c u r at e (according t o the c r i t e r i a introduced) s o l u t i o n w i l l be f o u n d a n d s o c i e t y w i l l presumably be b e t t e r o f f . 2.2
UTILITY FUNCTIONS
The f i r s t type of d i r e c t approach i s t h e u t i l i t y func tion approach; t h i s assumes t h a t t h e u t i l i t y f u n c t i o n , u ( + ) , which can be used t o commens u r a t e t h e various o b j e c t i v e s with adequate accuracy, i s known.The r e d s o l u t i o n i s defined a s t h e one which maximizes s o c i e t y ' s can be found d i r e c t l y by s o l v i n g : MAX u(f(x)) s u b j e c t t o
x
Since t h e u t i l i t y i s o b j e c t i v e , t h e p r ef er r ed set2.
monotonically decreasing
s o l u t i o n wi l l be an
pre fe r-
utility; E T.
this
with re spe c t t o each
element of t h e
non-infe rior
The major drawback t o t h i s approach i s t h a t , in ge ne ra l, the u t i l i t y
function cannot be determined. Much work has been done in decision theory on how individual a n d s o c i e t a l u t i l i t y f u nc tions may be approximated3. Theo r e t i c a l l y , a d eci s i o n maker r e f l e c t s t h e d e s i r e s of his c o n s t i t u e n t s by some method
of aggregating
individual
preferences.
Many s t u d i e s assume
n additive u t i l i t i e s
(g(f) =
1
i=l
u i ( f i ) ) ; t h e im plic a tions of t h i s assumption
have been analyzed e x t e n s i v e l y 4 ; one imp1 i c a t i o n
i s t h a t the indifference
between f i and f . i s independent of t h e values of the o t h e r o b j e c t i v e s f o r J a l l i a n d j which i s g en er al l y u n r e a l i s t i c . The d e f i n i t i o n of pre fe rre d s o l u t i o n used
in t h i s u t i l i t y f u n ct i o n approach w ill be used again in some 15
o f t h e approaches t o be d e s c r i b e d subsequently.
2.3
INDIFFCRENCE FUNCTIONS t h a t indifference functions are easier t o
I t i s c j e r l e r a l l y conceded5
deteriiiine than
the actual u t i l i t y
d i n a l comparisons. prefers
to
I(%)t h a n
f t i n c t i o n s i n c e t h e y c a n be f o u n d b y o r -
f o r a d e c i s i o n maker
i t is easier
t o d e t e r m i n e i f he
i t i s t o d e t e r m i n e how much a d d i t i o n a l u t i l i t y
i s derived from I ( x l )
(as i m p l i e d i n t h e u t i l i t y approach).
w o r k has been done
using
ution.
Indifference functions
surate since they r e l a t e terms o f another. was known
Thus,
recent
i n d i f f e r e n c e curves t o f i n d t h e p r e f e r r e d solc a n be u s e d t o make t h e o b j e c t i v e s commen-
how much i n c r e m e n t s i n one o b j e c t i v e a r e w o r t h i n
Briskin6
assumed t h e f o r m o f t h e i n d i f f e r e n c e f u n c t i o n
( e x p o n e n t i a l ) f o r a t w o o b j e c t i v e ( m i n i m i z e t i m e and c o s t ) p r o b -
lem.
The c o n s t a n t s i n t h e e q u a t i o n a r e d e t e r m i n e d b y q u e s t i o n i n g t h e
find
several p o i n t s on t h e curve;
t h e n s i i b s t i t u t i n g f o r f,
DM t o
i n t e r m s o f f,
frorv t h e i n d i f f e r e n c e e q u a t i o n t h e p r e f e r r e d s o l u t i o n c a n b e f o u n d b y s o l v ing:
The p r o b l e m w i t h t h i s a p p r o a c h i s t h a t i t assumes t h e i n d i f f e r e n c e e q u a t i o n w i l l b e t h e same e v e r y w h e r e i n t h e t h e case.
f e a s i b l e space.
Another approach u s i n g i n d i f f e r e n c e
This i s generally
not
f u n c t i o n s i s t o f i n d where
drie o f t h e i n d i f f e r e n c e s u r f a c e s i s t a n g e n t t o t h e t r a d e o f f f u n c t i o n ;
this
w i l l g i b e t h e p r e f e r r e d s o l u t i o n i n t h e maximum u t i l i t y s e n s e .
2.4
L E X I C O G R A P H I C APPROACH The l e x i c o g r a p h i c a p p r o a c h 7 r e q u i r e s
i s d e f i n e d t o be
that the objectives
A preferred
i n o r d e r o f i m p o r t a n c e b y t h e DM.
be ranked
s o l u t i o n f o r t h i s approach
one w h i c h s i m u l t a n e o u s l y m i n i m i z e s as many o f t h e o b j e c t -
i v e s as p o s s i b l e , s t a r t i n g w i t h t h e m o s t i m p o r t a n t and g o i n g down t h e h i e r archy.
L e t fl(x)b e t h e
fl(x) s.t. 5
E
most i i n p o r t a n t
T i s solved f o r a l l subject t o
5
then t h e problem
possible solutions;
a l l s o l u t i o n s t o t h i s p r o b l e m yl.
f7(K) i s minimized
objective;
Then t h e n e x t E
y1
MIN
we c a l l t h e s e t o f
tnost i m p o r t a n t o b j e c t i v e
t o f i n d t h e s o l u t i o n s e t y2.
This
process i s repeated u n t i l a l l n o b j e c t i v e s have been considered. I f the s o l u t i o n s e t yi a t t h e i t h i t e r a t i o n has only one element, then t h i s w i l l be the s o l u t i o n t o t h e e n t i r e problem; t h e obje c tive s ranked l e s s important f i a r e ignored by t h i s method. The r a t i o n a l e f o r t h i s approach i s t h a t i n d i v i d u al s tend t o make d eci s i o n s i n t h i s manner5. This lexicograph-
than
i c d e f i n i t i o n of p r ef er r ed was used by McGrew and Haimes f o r t h e problem o f Note t h a t the solution w ill
j o i n t system i d e n t i f i c a t i o n and o p t i mi zat iong.
be very s e n s i t i v e t o t h e ranking by t h e DM, a n d thus t h e a n a l y s t should exe r c i s e caution
i n applying t h i s method
when two obje c tive s
a r e of nearly
equal importance. To i l l u s t r a t e
consider again example 1 from Chapter
t h i s approach,
1 , a n d assume t h a t t h e DM has decided t h a t f , i s the most important obje c ti v e . F i r s t , minimize f l = x1 s . t . 0 s x i :: 5 , 0 s x, :: 5 and ge t the s o l -
ution s e t y1 = i ( x l , x 2 ) / x 1 = 0 , 0 s x2 s 5;. Then, minimize f , = 10 - x I - x 2 , s . t . x1 = 0 , 0 L x2 L 5 . The s o l u t i o n i s x1 = 0 , x 2 = 5 , f , = 0 , f , = 5 ; t h i s i s t h e p r ef er r ed s o l u t i o n a n d i s shown a s point A in f i g u r e s 1 - 1 a and 1-1-b. 19
A v a r i a t i o n of t h i s method was proposed by blaltz ary o b j e c t i v e i s minimized, t h e second keeping
the f i r s t
o b j e c t i v e within
objective i s a certain DM).
( t h i s percentage i s determined by t h e
; a f t e r the prim-
minimized s u b j e c t
percentage
The t h i r d
to
of i t s optimum
objective
i s then
minimized keeping t h e f i r s t two within a c e r t a i n percentage o f the values found in t h e previous s t e p . This process i s repeated u n t i l a l l the o b j e c t ives have been considered.
This approach reduces t h e sens t i v i t y somewhat,
b u t t h e same caveat i s necessary. 2.5
PARAMETRIC APPROJCJ Assume t h a t t h e r e l a t i v e importance o f the n o b j e c t ves i s known a n d
c o n st a n t . ities.
From a u t i l i t y viewpoint
t h i s implies a d d i t i v e and l i n e a r u t i l -
Then t h e p r ef er r ed s o l u t i o n i s found by solving:
n
MIN
1
oi f i ( x )
i=l
where oi > 0 a r e
t h e weighting
importance of t h e
objectives
c o e f f i c i e n t s which (usually
t h e oi
are
determine the r e l a t i v e normalized
so t h a t
18
T o 1. = ] ) . For s i m p l i c i t y i n n o t a t i o n , l e t 0 re pre se nt t h e row ve c tor ( o l , 02, . . . , o ) , where t h e s u p e r s c r i p t T denotes t h e transpose ope ra tion. n I1
i=l
One drawback of t h i s approach, weight
t o be given t o
however, i s t h a t t h e proper r e l a t i v e
any o b j e c t i v e on t h i s s c a l e
i s usua lly a func tion
n o t only of t h e q u a n t i t y of t h a t o b j e c t i v e produced, b u t a l s o of t h e q u a n t i t i e s of a l l o t h e r o b j e c t i v e s t o be produced. Even monetary value i s s u b j e c t t o t h i s c r i t i c i s m : To most i n d i v i dua ls a second $1,000 i s not equa l l y a s important or valuable as t h e f i r s t , and t h e values of each usua lly depend heavily on t h e i n d i v i d u a l ' s at t ai n m e nt l e v e l s of o t h e r physical a n d social objectives.
A t least
i n t h eo r y ,
t h i s means t h a t
t h e method should r e q u i r e t h e
consensus of t h e ex p er t s on t h e " p r i c e " of each o b j e c t i v e f o r a l l possible combinations of l e v e l s
of o b j e c t i v e s a t t a i n e d .
This complexity
can
be
eliminated i f t h e d eci s i o n only adds o r s u b t r a c t s a ne gligibly small increment t o t h e t o t a l of any o b j e c t i v e . as a l l
the e x p er t s were f u l l y aware
I t could then be argued t h a t , so long of t h e s t a t u s quo,
t h e e r r o r due t o
considering t h e values of each investment of each o b j e c t i v e a s independent
quo should not be s e r i o u s .
Llhen dealing with national policy i s s u e s , how-
e v e r , e i t h e r t h e proposed o r expected changes in o b j e c t i v e l e v e l s a r e t r i -
o r t h e de c isions a r e intended t o produce major increments i n t h e various o b j e c t i v e s . I n t h e l a t t e r c a s e t h e problem of commensuration reappears with g r e a t s i g n i f i c a n c e . The parametric approach was used by Major1' in modifying cost-benef i t a n a l y s i s f o r water r es o u r ces planning. Although t h e assumption of known a n d c o n s t an t values f o r t h e r e l a t i v e importance of t h e obje c tive s i s g e n e r a l l y n o t accep t ab l e1 2 , t h i s method can be used t o ge ne ra te points i n t h e n o n - i n f e r io r s e t by u t i l i z i n g various values of 0;t h i s was f i r s t s u g gested by E v e r et t 1 3 f o r resource a l l o c a t i o n problems. For convex problems ( t h a t i s , when t h e t r ad eo f f f u n ct i o n i s convex), t h e parametric approach g e n e r a t e s the e n t i r e n o n - i n f er i o r s e t 1 4 . Reid and V e m ~ r i ' ~found t h e t r a d e o f f f u n c ti o n f; a s a f u n ct i o n of 0 when t h e o b j e c t i v e func tions a r e posynomials, b u t Reid and Citron16 found t h a t even simple systems ge ne ra ll y g i v e i n c r e d i b l y complex f u n ct i o n s f o r f;(g). Geoffrion" developed a parametric procedure f o r f i n d i n g t h e e n t i r e non-infe rior s e t f o r t h e c a se The paraof maximizing two concave f u n ct i o n s with concave c o n s t r a i n t s . metric approach has been used iii l i n e a r problems in developing a modified simplex method t o determine t h e e n t i r e non-infe rior s e t l s . Geoffrionl' * used t h e parametric method t o f i n d t h e n o n-infe rior de c ision ve c tor 5 a s a f u n c t i o n of ~1 f o r t h e two o b j e c t i v e cas e where CY = o1 a n d 1-a=02 . The v i a l ( i n which cas e t h e a n a l y s i s i s unimportant)
utility
function
(assumed k n o w n )
could then be found a s a func tion o f
a n d then maximized t o f i n d t h e p r ef er r ed s o l u t i o n .
McGrew
01
Haimes20
and
used t h e parametric approach i t e r a t i v e l y t o converge t o t h e lexicographic p r e f e r r e d s o l u t i o n f o r t h e j o i n t i d e n t i f i c a t i o n and optimization problems. To i l l u s t r a t e t h e d i r e c t form of t h e parametric approach, consider again example 1 ,
and suppose t h e DM has decided t h a t o b j e c t i v e
times as important as o b j e c t i v e f , .
MIN
The s o l u t i o n t o t h i s
XI
+ 3(10 -
i s three
The problem then becomes: -
XI
problem i s x1
f2
=
30 -
~ 2 =)
5 , x2
2x1
5, f ,
=
=
-
3x2
5 , f,
0;
=
t h i s pre-
f e r r e d s o l u t i on i s shown as p o i n t B i n f i g u r e s 1-1-a a n d 1 - 1 - b . The parametric approach can be i n t e r p r e t e d geometrically a s follow s. The s e t L = c(x)igT = c } (where c i s a c o n s t a n t ) , de fine s a hyperplane2l .in R n with outward normal 0. The minimization o f 0T .f($ can be
-f(x)
-
t h i s hyperplane L with fixe d
viewed a s moving
2
in a negative d i r e c t i o n a s
f a r a s p o s s i b le keeping L f 7 S non-null.
This minimum w ill ge ne ra lly occur
where L i s tangent t o S ( b u t n o t always;
t h i s w ill
This i s depicted f o r t h e two o b j e c t i v e case
cause problems l a t e r ) . L
in f i g u r e 2 - 1 ;
is a
line
with slope - 02/Oi; t h e minimum f o r t h i s value of 0 occurs a t point A . For non-convex problems, when one t r i e s t o find t h e e n t i r e non-inferior set,
t h e problem of d u a l i t y gaps a r i s e s ; some points in t h e non-in-
f e r i o r s e t cannot be f i g u r e 2 - 2.
found f o r
any value of
The l i n e L which i s
tangent
0.
Consider
a t A with slope
t h e point A in
-
02/01
can be
moved f a r t h e r i n a negative d i r e c t i o n y n t i l i t i s tangent a t point B. t h e parametric
Thus
approach with t h i s value of o w i l l find points B and C , b u t
not p o i n t A. Geometrically speaking, p o i n t s i n the non-infe rior s e t which do not have a supporting hyperplane cannot be found by t h e parametric method. The
-
term d u a l i t y g a p comes from t h e f a c t t h a t t h e parametric problem MIN gT i s r e l a t e d t o t h e dual of t h e problem MIN f l ( x ) s . t . f . ( x ) $ y . j = 2 ,
f(x) 3,
..., n
J -
where t h e y . a r e c o n s t a n t s . J
J
These gaps can be explained in terms
of d u a l i t y t h e o r y 2 2 . 2.6
THE €-CONSTRAINT APPROACH The d i r e c t
form o f t h e € - c o n s t r a i n t
approach23 re quire s the DM
to
MULTIOBJECTIVE OPTIMIZATION IN WATER RESOlJRCES SYSTEMS
20
Figure 2-1
fl
Parametric Approach
I
0
f2
Figure 2-2
Duality Gaps i n t h e Parametric Approach
s p e c i f y t h e maximum a l l o w a b l e l e v e l s (c2, ives (f2,
...,f n ) ;
f3,
the preferred
c3,
...
E ~ f )o r t h e n - 1 o b j e c t -
s o l u t i o n i s t h e one which s o l v e s t h e
f o l l o w i n g problem:
s.t.
f .(x) 5 E. j = J J
... ,n
2, 3 ,
From a u t i l i t y v i e w p o i n t ,
any o b j e c t i v e c o u l d be chosen as f,.
O f course,
t h i s approach
says t h a t t h e b e n e f i t t o s o c i e t y
s t a n t as l o n g as t h e l e v e l f u l above t h i s l e v e l .
E.
f r o m o b j e c t i v e f . i s conJ i s n o t exceeded, b u t becomes i n f i n i t e l y harm-
J I n o t h e r words t h e u t i l i t y f u n c t i o n i s a d d i t i v e w i t h
.
I
- m ; f . > E . J J
T h i s approach can a l s o be roach i f
E
j
i n t e r p r e t e d i n terms o f t h e l e x i c o g r a p h i c appi s i n t e r p r e t e d as t h e s a t i s f a c t i o n l e v e l o f t h e jth o b j e c t i v e ,
and fl a s t h e l e a s t i m p o r t a n t o b j e c t i v e . Then t h e s e t yn-l o f s o l u t i o n s t o t h e n - l s t s t a g e would be i x l f . ( x ) s E ~ j, = 2 , 3 , ..., n, and E T;} J t h u s t h e E - c o n s t r a i n t approach c a n be i n t e r p r e t e d as t h e nth i t e r a t i o n i n t h e l e x i c o g r a p h i c approach.
x
The d e t e r m i n a t i o n
o f t h e maximum
l e v e l s as w e l l as t h e
assumption
a b o u t t h i s f o r m o f p r e f e r e n c e a r e o f t e n q u e s t i o n a b l e i n r e a l problems; howe v e r , t h i s method
can be used
t y p e s o f problems
by v a r y i n g t h e
t o generate
the non-inferior
values o f t h e
E.
J
,j = 2, 3,
set
for all
..., n .
Spe-
c i f i c methods f o r a c h i e v i n g t h i s w i l l be d e s c r i b e d i n l a t e r c h a p t e r s . approach has been used f o r t h e j o i n t
This
i d e n t i f i c a t i o n and o p t i m i z a t i o n p r o b -
l e m ~ ,and ~ ~ f o r w a t e r r e s o u r c e s problems w i t h l i n e a r o b j e c t i v e s and c o n s t r a i n t ~ ~ Haimes ~ . e t a126
prove t h a t t h i s
s o l u t i o n s f o r t h e two o b j e c t i v e cases.
approach does
give non-inferior
Pasternak and PassyZ7 used a com-
b i n a t i o n o f t h e p a r a m e t r i c and € - c o n s t r a i n t approaches t o f i n d t h e r e d (maAjmum programming
s o l u t i o n t o a non-convex, problem.
two o b j e c t i v e ,
Due t o t h e n o n - c o n v e x i t y ,
Prefer-
0-1 i n t e g e r
t h e parametric
approach
c o u l d n o t be used a l o n e , and t h i s mixed approach was f o u n d t o be more e f f i c i e n t t h a n u s i n g a s t r a i g h t & - c o n s t r a i n t approach.
22
MULTIOBJECTIVE OPPIMIZA TIOPJ Ifl WATER RESOURCES SYSTEMS
To i l l u s t r a t e t h e d i r e c t f o r m o f t h e € - c o n s t r a i n t approach, c o n s i d e r a g a i n example 1, and suppose t h a t t h e DM has d e c i d e d t h a t t h e maximum l e v e l s o c i e t y can t o l e r a t e o f f 2 i s 3 u n i t s . Min
The problem i s t h e n :
x1
The s o l u t i o n t o t h i s problem i s X I = 2, x2 = 5, f,
2, f, = 3.
=
This pre-
f e r r e d s o l u t i o n i s shown as p o i n t C i n f i g u r e s 1-1-a and 1-1-b. G e o m e t r i c a l l y , t h i s approach
adds a d d i t i o n a l
c o n s t r a i n t s which r e -
duce t h e f e a s i b l e d e c i s i o n space T, o r e q u i v a l e n t l y t h e f e a s i b l e f u n c t i o n a l
space S,
D e f i n e T.' J
1 5 ~ T . lf o r j = 2, 3, now
J
=
tzlf.(x) 5 J -
...,n
E
1 for j n S; ?I
=
and S' = S
2, 3,
..., n;
Sin...
then S '
nSi
j
. The
=
{f(x)
problem i s
M I N fl(x) s.t.
L(&)
&
S'
Each c o n s t r a i n t f . ( x ) E . d e f i n e s t h e h a l f - s p a c e i n Rnon t h e n e g a t i v e s i d e J J The i n t e r s e c t i o n o f a hyperplane perpendicular t o t h e f . a x i s a t f = J j 'j* o f a l l o f t h e s e h a l f - s p a c e s w i t h S g i v e s t h e new f e a s i b l e space S ' . This i s d e p i c t e d f o r t h e two o b j e c t i v e case the half-plane t o the l e f t o f the l i n e
i n f i g u r e 2-3: f2=E2.
s'
I
=
SAS2 where s ' i s
Note t h a t t h i s approach can
d e t e r m i n e t h e e n t i r e n u n - i n f e r i o r s e t even f o r non-convex problems.
2.7
GOAL PROGRAMMING The
goal programming method r e q u i r e s t h e DM t o s e t g o a l s
would l i k e each o b j e c t i v e t o a t t a i n . as t h e one w h i c h m i n i m i z e s vector o f
A
t h e d e v i a t i o n s from t h e s e t goals.
g o a l s s e t b y t h e DM f o r t h e
i c a l f o r m u l a t i o n o f the problem i s
t h a t he
p r e f e r r e d s o l u t i o n is then defined o b j e c t i v e s by
2;t h e n
Denote t h e t h e mathemat-
23
I
fi
*
f,
(€2)
0
Figure 2-3.
€2
€-Constraint Approach.
f2
24
Ml/LTTOEdECTl
s.t. 5 where 1 1 .
1I
denotes any
E
t'r
UPTlMrZATION I!/ WATER RFSOURCES SYSTEMS
T
.
Note that the goal vector f does not have
to be in the feasible set S; for example, in example 1 the goal vector could be f^ T= (0, 0). In fact, if the goal vector is in S, then this method may yield an inferior solution. This approach was developed by Charnes and Cooper29 for linear problems. Using the sum of the absolute values of the deviations as the norm, + they keep the problem lipear by defining vectors of slack variables y 3 0 + - + + and 1- 2 0 such that f(5)- f = Y -1 ; Yi (the ith component of y ) is then the over-attainment of the 'ti objective, and yi- (the i t h component o f y - ) is the under-attainment of the ith objective. The problem then becomes: MIN
n
1
+ yi + yi-
i=l s.t.
+ f(L) - f = Lv_
-
-
y
^T To illustrate this approach, consider again example 1 and assume _fl= + + + (0, 0). The problem is then MIN y1 + y 2 + Y, s.t. XI = Y1 10 - x1 + x 2 = y2 - y2 , 0 < x1 s 5, 0 s x2 6 5. Note that y1 was not necessary since f, = x 1 cannot go below 0 (fl cannot be under-attained). The soluution to this problem is that any point on the line fl + f, = 5 minimizes this objective and i s d preferred solution. A special case of this method is known as the mean square approach. This assumes that the ith component of the goal vector will be Ti, the minimum value of f.(x) s.t. 5 E T, and uses a least square norm. Salukva1 dze30 applied this method to optimal control problems; it can be shown3I that the solution to this problem is automatically in the non-inferior set. This approach eliminates the decision maker entirely and thus this definition of preferred solution will generally not maximize the benefit to society. In general, the problem with goal programming is that an equal importance is placed on each objective. If weighting factors are introduced to counteract this, then the problem of determining the weights for any I
25
SOLlJTlON ME'I'HODOL,OCIES
real problem arises. Just as in the parametric case, the non-inferior set can be generated by varying the weighting factors, but it can be shown32 that this method suffers from the same duality gap problem as the parametric approach when the problems are non-convex. 2.8
THE GOAL ATTAINMENT METHOD
A variant of the goal programming method is the goal attainment method33. In this approach, a vector o f weights g relating the relative under or over attainment of the desired goals must be determined by the DM in addition to the goal vector f. The preferred solution solves the prob1 em: MIN z
where z i s a scalar variable unrestricted in sign. This approach can also be used to generate the non-inferior set; using f a s in the mean square aps.t. x- E proach (the ith component of is T i , the minimum value o f fi(5) T), the entire non-inferior set can be found by varying g, even for nonn
1 wi = 1. This i=l approach has been successfully applied to static problems(economic dispatch in Power system control) and dynamic problems (the load-frequency control problem in regulator design). This approach is depicted for the two objective case in figure 2-4. g and f fix the direction of the vector f. + g z, and the minimum value of z occurs where this vector first intersects S. To illustrate the use of this method consider again example 1. Assume that the goal vector set by the DM is (0,0)T and that he decides the relative over-attainment o f f2 should be 1/3 the over-attainment o f f l . Then gT = ( . 7 5 , . 2 5 ) and the goal attainment problem becomes: convex problems.
Again g is generally normalized so that
Min z s.t.
XI
- .75 2 (0
26
S
n f2
F i g u r e 2-4.
Goal A t t a i n m e n t Method.
f2
27
The solution to this problem is z = 5, x 2 = 5, x1 = 15/4, f: 5/4. This is depicted as point D in figures 1-1-a and 1-1-b. 2.9
=
15/4, f2
=
ADAPTIVE SEARCH APPROACH
This approach34 is useful if one is only interested in determining non-inferior values. One starts with an initial non-inferior vector -0 x in the decision space; the ith component of % is found by solving:
MIN fi(x)
Then new solutions are generated with the following recursive formula:
where a. controls the step size, 2 is the Jacobian matrix of partial der1 illatives of the objectives with respect to the decision variables, ci controls the direction and +c controls the feasibility of the solution. Each new solution is then checkec for non-inferiority as follows; if any two of the gradients are o f opposite sign, or the point i s on the boundary of T, then it is a candidate for non-inferiority. After a large number of steps e . g . 1000) are completed, the candidates for non-inferiority are compared; those that are toc close together or inferior are e1iminated;the remaining ones should be a good approximation to the non-inferior set. At this point, a regression or interpolation can be used to determine an analytic equation; it is generally easier to accomplish this in the functional space. The drawbacks of this approach are that the computationaleffort can become immense when there are many decisions,and that no means of choosing a preferred solution from the non-inferior ones is presented.
28 2.10
MULTIOBeJECYfIVE OPTIMIZATION I N WATER RESOURCES SYSTEMS
INTERACTIVE APPROACHES
Much work has been
done r e c e n t l y i n i n t e r a c t i v e approaches t o f i n d -
ing preferred solutions;
i n these
f i n d the preferred solution step o f the
w i t h questions
search i n order
An i n t e r a c t i v e
methods a search
t o determine
approach developed
procedure
i s used t o
b e i n g asked o f t h e
DM a t each
a new e s t i m a t e o f t h e s o l u t i o n .
by G e o f f r i o n
and examined by
Feinberg
uses i n d i f f e r e n c e f u n c t i o n s t o d e t e r m i n e t h e maximum u t i l i t y p r e f e r r e d s o l -
tio on^^.
Since the s o c i a l
utility,
t h e normal t o t h i s s u r f a c e i s t h e d i r e c t i o n o f g r e a t e s t
indifference function
o f the u t i l i t y function. by
q u e s t i o n i n g t h e DM,
i s a surface o f constant
Thus one can p i c k some i n i t i a l p o i n t
x
increase E
T, and
t h e s o c i a l i n d i f f e r e n c e f u n c t i o n around t h i s p o i n t
can be found; t h e normal t o t h i s f u n c t i o n i s t h e d i r e c t i o n t o move i n p i c k f o r &.
i n g the n e x t approximation
The s t e p s i z e i s f o u n d
by c a l c u l a t i n g
f ( x ) f o r d i f f e r e n t s t e p s i z e s ( k e e p i n g & E T) and by q u e s t i o n i n g t h e DM t o f i n d t h e one he p r e f e r s most. T e r m i n a t i o n o c c u r s when t h e improvement between s t e p s i s l e s s t h a n some s p e c i f i e d v a l u e .
The a t t r i b u t e s o f t h i s app-
o f the u t i l i t y
r o a c h a r e t h a t no assumptions a b o u t t h e f o m
function
are
necessary, and t h a t t h e DM need o n l y c o n s i d e r r e l a t i v e preference^^^. 2.11
OTHER APPROACHES
There a r e a number o f lems which
can o n l y
those i s t o model
o t h e r approaches t o m u l t i p l e
be mentioned h e r e
t h e decision-making
o b j e c t i v e prob-
due t o space l i m i t a t i o n s . process i t s e l f 3 7 ,
One o f
using techniques
such as game t h e o r y t o d e t e r m i n e t h e p r e f e r r e d s o l u t i o n ; t h e s e models, however, t e n d t o bc c o m p u t a t i o n a l l y p r o h i b i t i v e . ered the m u l t i - o b j e c t i v e
O t h e r a u t h o r s 3 8 have c o n s i d -
problem f o r t h e case
where t h e r e a r e o n l y two o r
t h r e e n o n - i n f e r i o r p o i n t s f r o m w h i c h t h e p r e f e r r e d s o l u t i o n must be chosen, developing s p e c i a l i z e d techniques f o r these s i t u a t i o n s . i s t o generate a stronger
A n o t h e r approach39
partial ordering o f the non-inferior
solutions;
t h i s method a l l o w s f o r u n c e r t a i n t i e s on t h e P a r t o f t h e DM, b u t as a r e s u l t
w i l l o n l y e l i m i n a t e some o f t h e n o n - i n f e r i o r p o i n t s . lem i s d e c i s i o n
making under u n c e r t a i n t y .
Another t y p e o f p r o b -
Much work has been done i n t h e
area40, b u t t h i s goes beyond t h e scope o f t h i s t e x t .
29 FOOTNOTES
1.
T h i s was suggested by Zadeh [1963].
2.
T h i s was shown by G e o f f r i o n [1967];
3.
Many s t u d i e s i n economic t h e o r y
a l s o see d e f i n i t i o n 4.
have been d e v o t e d t o t h i s q u e s t i o n ;
see, f o r example, Arrow [1963] o r Bergson [1954]. 4.
See F i s h b u r n [1967],
5.
A good d i s c u s s i o n of t h i s q u e s t i o n can be f o u n d i n Arrow [1963].
6.
See B r i s k i n [1966].
o r Keeney [1972] among o t h e r s .
7.
T h i s was f i r s t i n t r o d u c e d by Georgescu-Roegen [1954].
8.
There i s a r e l a t i o n s h i p between t h e l e x i c o g r a p h i c approach and u t i l -
9.
See McGrew and Haimes [1974].
10.
See W a l t z [1967].
11.
M a j o r [1969] was
i t y t h e o r y ; see Robinson and Day [1972].
the f i r s t t o
use m u l t i p l e o b j e c t i v e
analysis f o r
problems i n w a t e r r e s o u r c e s p l a n n i n g . 12.
See t h e c r i t i c i s m o f Freeman and Haveman [1970] f o r example.
13.
See E v e r e t t [1963].
14.
T h i s i s proven b y G e o f f r i o n [1968].
15.
The problem t o w h i c h R e i d
and Vemuri [1971] a p p l y
their results i s
d i s c u s s e d f u r t h e r i n Chapter 8. 16.
See R e i d and C i t r o n [1971].
17.
See G e o f f r i o n [1966].
18.
Various authors
have proposed ways o f a c c o m p l i s h i n g t h i s .
and Zeleny [1973],
Sengupta [1972],
See Yu
and Evans and S t e u e r [1972].
19.
See G e o f f r i o n [1967].
20.
See McGrew and Haimes [1974].
21.
A h y p e r p l a n e i s t h e g e n e r a l i z a t i o n o f a p l a n e i n t o n dimensions;
a
one d i m e n s i o n a l h y p e r p l a n e i s a l i n e . 22.
F o r an e x p l a n a t i o n o f
d u a l i t y gaps
see Lasdon [1968]
o r Gembicki
23.
A good d e s c r i p t i o n o f t h i s approach can be found i n Hairnes [1973b].
24.
Applications t o the
[ 19731. j o i n t i d e n t i f i c a t i o n and o p t i m i z a t i o n problems
can be f o u n d i n Hairnes and
Wismer [1972] and Olagundoye and Hairnes
[ 19731, 25.
This technique
was used by
Byers [1973]. 26.
See Haimes e t a1 [1971].
Cohon and Marks
[1973] and M i l l e r and
30 27.
See P a s t e r n a k and Passy [1972].
28.
The g e n e r a l u s e o f
29.
The o r i g i n a l development o f goal programming i s g i v e n i n Charnes and
norms i s d i s c u s s e d by
Yu
Salukvadze [1974] and
and Lietniann [1974]. Cooper [1961]. 30.
See Salukvadze [1971].
31.
T h i s i s proven by Huang [1972].
32.
The proof can be found i n Gembicki [1973].
33.
The o r i g i n a l development
o f t h e goal a t t a i n m e n t method i s g i v e n
by
Genibi c k i [ 1 9731. approach i s g i v e n i n
34.
The o r i g i n a l development of the a d a p t i v e s e a r c h
35.
Beeson and Meisel [1971]. T h i s i n t e r a c t i v e approach i s d e s c r i b e d i n d e t a i l by G e o f f r i o n [1970] and F e i n b e r g [1972].
36.
Descriptions of
37.
A nuniber of t h e s e models a r e d e s c r i b e d i n Cohon [1973] and Cochrane
other interactive
[1971], F e i n b e r g [1972],
a p p r o a c h e s can be found
in
Roy
and Cohon [1973].
and Zeleny [1973]. some o t h e r s
38.
A good example i s by Maier-Rothe and S t a n k a r d [1970]; a r e d e s c r i b e d i n MacCrimmon [1972].
39.
T h i s approach i s d e s c r i b e d i n Roy [1971] and Cohon [1973].
40.
The g e n e r a l problem i s d e s c r i b e d i n R a i f f a [1968]; o t h e r models can be found i n Cochrane and Zeleny [1973].
REFERENCES 1.
Arrow, K. J . ,
S o c i a l Choice and I n d i v i d u a l V a l u e s ,
John Wiley and
2.
Beeson, R . M . and M e i s e l , W.S., "The O p t i m i z a t i o n o f Complex Systems
S o n s , N.Y., 1963.
w i t h Respect t o M u l t i p l e C r i t e r i a , " -__ and C y b e r n e t i c s
Proceedings:
Systems,
Man
Conference, Anaheim, C a l . , 1971.
4.
"On t h e Concept o f S o c i a l W e l f a r e , " Q u a r t e r l y J o u r n a l of Economics, vol . 6 8 , 1954. B r i s k i n , L . E . , "A Method of Unifying M u l t i p l e O b j e c t i v e F u n c t i o n s , "
5.
Charnes, A . , and Cooper, W . W . ,
3.
Bergson, A.,
~Management
S c i e n c e , v o l . 12B, no. 1 0 , 1966. Management Models and I n d u s t r i a l Ap-
P J i c a t i o n o f L i n e a r Programming, v o l . 1 ,
John Wiley
and Sons,
N.Y., 1961.
6.
Cochrane, J . L., and Z e l e n y , M . , W
l
e C r i t e r i a Decision
Making,
31 of South Carolina Press, Columbia, S.C., 1973. Cohon, J. L., and 0. H . Marks, "Multiobjective Screeninq Models U.
7.
8.
9.
10.
and Water Resource Investment," Water Resources Research, vol . 9, no. 4, 1973. Cohon, J. L., "An Assessment of Multiobjective Solution Techniques for River Basin Planning Problems," Ph.D. Dissertation, M. I. T. 1973. Evans, J.R. and Steuer, R.E., "Generating Efficient Extreme Points in Linear Multiple Objective Programming: Two Algorithms and Computing Experience," Presented at Seminar on Multiple Criteria Decision Making, U. of South Carolina, 1972. Everett, H., 1 1 1 , "Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources," Operations Research, vol. 1 1 , 1963. Feinberg, A., "An Experimental Investigation of an Interactive Approach for Multi-criterion Optimization with An Application to Academic Resource Allocation," Western Management Science Institute, Working paper no. 186, 1972. Fishburn, P. C., "Methods of Estimating Additive Utilities: Manaae_- Science, vol. 13, no. 7, 1967. ment Freeman, A. M., 111, and Haveman, R. H., "Benefit-Cost Analysis and Multiple Objectives: Current Issues in Water Resources Planning," Water Resource Research, vol. 6, no. 6 , 1970. Gembicki, F., "Vector Optimization for Control with Performance and Parameter Sensitivity Indices," Ph.D. Dissertation, Case Western Reserve University, 1973. Geoffrion, A . M., "Strictly Concave Parametric Programming," Management Science, vol. 13, no. 3, 1966. Geof f rion , A.M. "Sol vi ng Bi cri terion Mathemat ical Programs," tions Research, vol. 15, no. 1 , 1967. Geoffrion, A.M., "Proper Efficiency and the Theory of Vector Maximization," Journal of Math. Anal. and Appl., vol. 22, no. 3, 1 968. Geoffrion, A.M., "Vector Maximal Decomposition Programming," Western Management Science Institute, Working paper no. 164, 1970. Georgescu-Roegen, N., "Choice, Expectations, and Measurability," Quarterly Journal of Economics, vol. 64, 1954. Haimes, Y. Y., "Integrated System Identification and Optimization," _ _ I _
11.
12.
13.
14.
15. 16.
17.
18. 19.
20.
--
32
MULTIOBJECTIVE OPTIMTZAT TON TN WATER RESOURCES SYSTEMS i n C o n t r o l and Dynamic Systems: Advances i n Theory and A p p l i c a t i o n s , v o l . 10, Academic Press, I n c . , 1973 .
21.
Haimes, Y . Y . ,
Lasdon, L.S. and Wisner, D.A.,
"On a B i c r i t e r i o n F o r -
m u l a t i o n o f t h e Problems o f I n t e g r a t e d System I d e n t i f i c a t i o n and System O p t i m i z a t i o n , " 22.
Haimes, Y . Y.,
I E E E T r a n s a c t i o n s , v o l . SMC-1, 1971.
and Wismer, D. A.,
Combined Problem o f
" A Computational Approach t o t h e
O p t i m i z a t i o n and Parameter
Identification,"
Automatica, v o l . 8, 1973. 23.
Huang, S.C.,
"Note
on t h e
O b j e c t i v e Functions,"
Mean-Square S t r a t e g y f o r V e c t o r Valued
J o u r n a l of O p t i m i z a t i o n Theory and A p p l i c a -
t i o n s , v o l . 9, no. 5, 1972. 24.
Keeney, R. L.,
25.
Lasdon,L.S.
26.
MacCrirnmon,K.R.,
" M u l t i p l i c a t i v e U t i l i t y Functions," M1.T. Operation
Research Center, T e c h n i c a l R e p o r t no. 70, 1972. " D u a l i t y and Decomposition i n M a t h e m a t i c a l Programming"
I E E E T r a n s a c t i o n s , v o l . SSC-4, no. 2, 1968. "An Overview o f M u l t i p l e O b j e c t i v e D e c i s i o n Making"
Presented a t Seminar on M u l t i p l e C r i t e r i a D e c i s i o n Making,
U. o f
South C a r o l i n a , 1972. 27.
Maier-Rothe, C. and Stankard, M.F. J r . , "A L i n e a r Programming Approach t o Choosing Between M u l t i - o b j e c t i v e A l t e r n a t i v e s , "
presented
a t t h e 7 t h M a t h e m a t i c a l Programming Symposium, t h e Hague, 1970. 28.
M a j o r , D.C.
"Benefit-Cost Ratios f o r P r o j e c t s i n M u l t i p l e Objective
I n v e s t m e n t Programs," Water Resources Research,
v o l . 5,
no. 6,
1969. 29.
McGrew, D.R.,
"A P a r a m e t r i c S o l u t i o n t o t h e J o i n t
and Haimes, Y. Y . ,
System I d e n t i f i c a t i o n and O p t i m i z a t i o n Problem," -___ m i z a t i o q Theory and A p p l i c a t i o n s ,
30.
M i l l e r , W. L.,
and Byers, D.M.,
Journal o f Opti-
v o l . 13, no. 5, 1974.
"Development
and D i s p l a y o f M u l t i -
p l e O b j e c t i v e P r o j e c t Impacts," Water Resources Research, v o l . 9, no. 1, 1973. 31.
Olagundoye,
O., and Haimes, Y . Y.,
"The E p s i l o n - C o n s t r a i n t Approach
f o r S o l v i n g B i c r i t e r i o n Programs,"
SRC T e c h n i c a l Report.
CWRU,
1973. 32.
Pasternak, H.,
and Passy, Y . ,
t e r i o n Functions," 33.
R a i f f a , H.,
34.
Reid, R. W . ,
"Annual A c t i v i t y P l a n n i n g w i t h B i c r i -
Technion mimeograph s e r i e s no. 110, 1972.
D e c i s i o n A n a l y s i s , Addison-Wesley, and C i t r o n , S. J.,
Reading, Mass, 1968.
"On N o n - I n f e r i o r Performance Index
V e c t o r s , " J o u r n a l o f O p t i m i z a t i o n The0r.y and A p p l i c a t i o n s , v o l . 7 , no. 1, 1971.
35.
Reid, R.
W., and Vemuri, V . ,
"On t h e N o n - I n f e r i o r Index Approach t o
Large S c a l e Mu1 t i - C r i t e r i a Systems," J o u r n a l o f t h e F r a n k l i n I n s t i t u t e , v o l . 291, no. 4 , 1971. 36.
Robinson, S.M.,
and Day, R.H.,
"Economic D e c i s i o n s w i t h L
**
Utility"
S o c i a l Systems Research I n s t i t u t e , U . o f Wisconsin, Paper no.7227 1972. 37.
Roy, B.,
38.
Salukvadze, M . E .
"Problems and
Methods w i t h M u l t i p l e O b j e c t i v e F u n c t i o n s , "
Mathematical Programming, v o l . 1, no. 2, 1971. "Optimization o f Vector Functionals:
ming o f Optimal T r a j e c t o r i e s , "
Tbilisi,
The Program-
t r a n s l a t e d from
Avto-
m a t i k a i Telemekhanika, no. 8, 1971. 39.
Salukvadze, M . E .
"On t h e E x i s t e n c e o f S o l u t i o n s i n Problems o f Op-
t i m i z a t i o n under V e c t o r Valued C r i t e r i a , "
Journal
o f Optimiza-
t i o n Theory and A p p l i c a t i o n , v o l . 13, no. 2, 1974. 40.
Sengupta, S. S., Programmes,"
" P r o b a b i l i t i e s o f Optima i n M u l t i - O b j e c t i v e L i n e a r p r e s e n t e d a t Seminar on M u l t i p l e C r i t e r i a
Decision
Making a t U. o f South C a r o l i n a , 1972. 41.
Waltz, F.
M.,
Criteria," 42.
Yu, P.L.
"An E n g i n e e r i n g Approach: H i e r a r c h i c a l O p t i m i z a t i o n I E E E T r a n s a c t i o n s , v o l . AC-12, 1967.
and Leitmann, G . ,
"Compromise S o l u t i o n s , Domination S t r u c -
t u r e s , and S a l u k v a d z e ' s S o l u t i o n , " J o u r n a l o f O p t i m i z a t i o n Theory and A p p l i c a t i o n s , v o l . 13, no. 3, 1974. 43.
Yu, P. L . , and Zeleny, M., t h e L i n e a r Cases and a
"The S e t o f a l l Non-Dominated S o l u t i o n s i n Multi-Criteria
Simplex Method,"
U.
of
Rochester, Center f o r System Science, 1973. 44.
Zadeh, L. A . ,
" O p t i m a l i t y and Non-Scalar Valued Performance C r i t e r i a "
I E E E T r a n s a c t i o n s , v o l . AC-8,
no. 1, 1963.
Chaoter 3
THE SURROGATE WORTH TRADE-OFF METHOD TIi? S[i~?‘lOgCLtP k h f h i/rude-066 hje,tbd
recognizes t h a t
optimization
theory i s u s u al l y much more concerned with the r e l a t i v e value of a dditiona l increments o f t h e various
non-commensurable o b j e c t i v e s ,
o f each o b j e c t i v e f u n c t i o n ,
a t a given
value
Fur-
then i t i s w j t h t h e i r a bsolute va lue s.’
thermore, given any c u r r e n t s e t o f o b j e c t i v e
levels attained,
e a s i e r f o r t h e d eci s i o n makers t o a s s e s s the r e l a t i v e value of
it
i s much
the
tra de -
between any two
objectives t h a n I n a d d i t i o n , the optimiz a t i o n procedure can be developed so t h a t i t r e q u i r e s no more t h a n a n a s s essment of whether a n ad d i t i o n al q u a n t i t y o f one o b j e c t i v e i s worth more or l e s s than t h a t which may be l o s t from anothe r, given t h e l e v e l s o f each. The o r d i n a l approach can then be u t i l i z e d with much l e s s concern f o r the p o t e n t i a l d i s t o r t i o n s i n r e l a t i v e ev al u ations introduced by attempting t o com:nensurate t h e t o t a l value o f a l l o b j e c t i v e s concerned. Since t h e dimension of t h e d eci sion space N f o r most re a l world problenis i s g en er al l y higher than t h a t o f the functional space n ( N dec i s i o n s and n o b j e c t i v e s M >>n), a f u r t h e r s i m p l i f i c a t i o n i s t o e s t a b l i s h d e c i si o n s i n t h e functional sDace and then l a t e r transform t h i s information i n t o t h e d e c i si o n space. o f f o f marginal
i n cr eas es a n d
i t i s f o r them t o a s s e s s
3.1
decreases
t h e i r ab s o l u t e va lue s.
G E N E R A L APPROACH
The bas i c concept of t h e Surrogate Worth Trade-off method f o r
non-
commensurate m u l t i - o b j e c t i v e o p t i mi zat i o n w ill be explained through a simp l i f i e d exa:nple of commensurate mu l t i - o b j e c tive optim iz a tion. unconstrained, two o b j e c t i v e , one d eci s i o n v a r i a b l e
optimization
in which b o t h o b j e c t i v e s a r e measurable i n t h e same u n i t s , val ue. min f l ( x ) + f 2 ( x ) Applying t h e c l a s s i c a l c a l c u l u s o ptim iz a tion
34
Consider a n problem
e . g . , monetary
Thus d f l / d f 2
=
- 1
defines o p t i m a l i t y
s a r y and s u f f i c i e n t c o n d i t i o n s and t e s t s .
s u b j e c t t o t h e usual neces-
I t w i l l be
noted
i s the trade-off
ratio
trade-off r a t i o
a t o p t i m a l i t y m u s t e q u a l m i n u s one when
f u l l y coinmensurate u n i t s . small increment i n i s significant.
fl
that
between o b j e c t i v e one and o b j e c t i v e two, Note t h a t i t i s t h i s
dfl/df2 hence t h e
fl and f 2 a r e i n
r a t i o o f the value o f the
f2 t h a t
t o t h e value o f t h e r e s u l t i n g increment i n
E x c e p t t o t h e e x t e n t t h a t t h e s e i n c r e m e n t a l v a l u e s depend
fl and
upon t h e a t t a i n e d l e v e l o f b o t h o b j e c t i v e s , a b s o l u t e v a l u e s o f do n o t a p p e a r i n t h e o p t i m a l i t y e q u a t i o n .
The c o n c e r n i s f o r t h e
f2 relative
v a l u e o f t h e increments, g i v e n an a t t a i n e d l e v e l o f achievement o f b o t h obj e c t i v e s ( w h e t h e r o r n o t t h e y have t h e same u n i t s o f m e a s u r e m e n t ) .
fl and f 2 b e measured i n d i f f e r e n t u n i t s
Next l e t e.g.,
from a r i v e r - r e s e r v o i r
f i r m w a t e r and f i r m e n e r g y
t h i s case dfl/df2
o r dimensions,
operations.
In
d e f i n e s t h e t r a d e - o f f r a t i o T12. A t o p t i m a l i t y , t h e com-
m e n s u r a t e d v a l u e o f T12 m u s t e q u a l m i n u s one.
tion o f objectives
f, and f 2
of
f
2
are i n d i f -
the true
a t t h e known a t t a i n e d l e v e l s o f
.
(but
t o t h e t r u e ( b u t unknown) p e r
unknown) p e r u n i t w o r t h o f a n y i n c r e m e n t A f l u n i t worth o f any increment A f 2
S i n c e fl a n d
!di2 , t h e r a t i o
f e r e n t u n i t s l e t T12 be m u l t i p l i e d by
satisfac-
I f i t c o u l d be d e t e r m i n e d , t h i s r a t i o
Wi2
w o u l d b e t h e w o r t h c o e f f i c i e n t f o r t h e t r a d e - o f f T12. By d e f i n i t i o n , i n a non-commensurate p r o b l e m mined f o r a l l values o f e i t h e r space); otherwise t h e o b j e c t i v e s
x
W!.
c a n n o t be d e t e r -
1J
( d e c i s i o n space) o r fl and f 2 ( o b j e c t i v e c o u l d b e commensurated
and s t a n d a r d
op-
t i m i z a t i o n techniques applied. However, c o n s i d e r a " s u r r o g a t e w o r t h f u n c t i o n " W12, the following properties.
F i r s t , i t has a p o s i t i v e v a l u e
maker c o n s i d e r s t h a t t h e t r u e w o r t h of a f l of
Af2
.
i s greater
which r e s u l t s i n i n d i f f e r e n c e ;
assign t h e value o f zero
a b l e i n f o r m a t i o n , cannot determine whether t h e
o r d i n a l sense.
WI2
Afl
Using o r d i n a r y
In
i n c r e m e n t a l g a i n i n one obl o s s i n another.
and i m p l e m e n t a t i o n
Finally in
an
+5 r e p r e s e n t s a s t r o n g e r f e e l i n g t h a t
i s greater than
The s u r r o g a t e w o r t h f u n c t i o n i t s construction
i s true.
t o any d e c i s i o n
i s t h a t i t i s monotonically consistent
That i s , a value o f
the true worth o f
worth
t h a t i s , t h e d e c i s i o n maker, w i t h t h e a v a i l -
j e c t i v e i s o r i s n o t p r e f e r a b l e t o t h e necessary the t h i r d property o f
i f the decision
than t h e t r u e
Second, i t has a n e g a t i v e v a l u e i f t h e o p p o s i t e
combination these two p r o p e r t i e s
which possesses
Af2
t h a n does a v a l u e o f 1-3.
now has a l l t h e p r o p e r t i e s needed f o r i n finding the
preferred
slope i n t e r c e p t o r curve f i t t i n g procedures
solution
.
f o r successive
approximation, t h e zero of t h i s p a r t i c u l a r surroga te worth quickly found.
By d e f i n i t i o n of t h e
v a l e n t t o marginal l o s s equal
function can be
zero va lue , such a solution i s equi-
t o marginal
ga in, hence the followipg d e f i -
n i t i o n of a p r ef er r ed s o l u t i o n . Definition 3 - l : A p r ef er r ed s o l u t i o n i s defined t o be any non-infe rior f e a s i b l p s o l u t i o n which belongs t o t h e i n d i f f e r e n c e band. To sunimarize t h e concept behind t h e SWT method, function i s s u b s t i t u t e d f o r t h e t r u e
( b u t unknown)
surroga te
worth
worth function
which
J.
( i f k n o w n ) would commensurate cal t r a d e o f f r a t i o s
T..
1J
.
t h e numerator and denominator of t h e physiThe s u r r o g at e has the property of monotonicity
a n d a value of zero ( o r o t h e r
a r b i t r a r y number) whenever the value of
numerator of t h e t r a d e o f f r a t i o s
equals
t h e value
of t h e
the
denominator.
Thus when the s u r r o g at e worth f u n ct i o n has a value of z e ro, the corresponding s o l u t i o n i s within t h e band of i n d i f f e r e n c e and no o t h e r solution
can
be judged s u p er i o r t o i t . I n p r a c t i c e a l l t h a t i s required of t h e de c ision maker i s t o d e t e r mine whether o r not a n incremental gain i s worth the corresponding increment a l l o s s f o r any t r ad eo f f T . . , a n d i f n o t , which i s greater.Computationa1 1J e f f i c i e n c y i s gained i f he a l s o es t i mat es how f a r from equal (or i n d i s t i n g u i sh a b l e ) t h e worth of t h e proposed r e s u l t s a r e . Worth need be evaluated only in t h e r e l a t i v e s en s e, e . g . , whether
Af.
1
A f . in worth J
and
the
improvement between s u cces s i v e t r i a l s i s " l a r g e " o r " sm a ll" . The computational procedure may be executed in de c ision space,
in
o b j e c t i v e space o r in t r ad e- o f f r a t i o space. Since o b j e c t i v e s a r e normally f a r fewer i n number than d eci s i o n v a r i a b l e s , i t w ill usua lly be p r e f e r a b l e
t o work i n o b j e c t i v e or t r ad e- o f f r a t i o space.
Usually t h e number of
j e c t i v e s t o be considered simultaneously a r e of the orde r of
10 or
ob-
less,
while t h e number of d eci s i o n v a r i a b l e s may be of the orde r of a thousand. k i s r e s u l t s i n a decided computational advantage f o r the .use o f o b j e c t i v e space.
I t i s a l s o more r e d l i s t i c f o r i n t e r a c t i o n s with the de c ision maker.
He makes h i s judgement on t h e b as i s of one tra de -off r a t i o a t a time, given the corresponding l e v e l s of attainment of a l l of the o b j e c t i v e s . When t h e d eci s i o n v ect o r a r e t h r e e o r more non-commensurate s t i l l apply.
x
has a g r e a t many
components and t h e r e
o b j e c t i v e s t h e concepts described above
Methods wi l l be developed i n c ha pte rs s i x and seven f o r com-
puting t h e t r a d e- o f f r a t i o s s i g n i f i c a n t computational c o s t .
t o the a n a l y s i s with a
minimum of
The approach t o t h e computations in t h e general problem in subsequent s e c t i o n s
begins by f i n d i ng t h e
t i v e function s u b j e c t t o t h e ith
described
minimum value of each objec-
system of c o n s t r a i n t s .
The minimum of
the
o b j e c t i v e f u n ct i o n , ignoring a l l o t h e r ( n - 1 ) o b j e c t i v e s , i s determined
a s i n se c t i o n 1 . 4 and denoted by
F i . The next s t e p i s t o formulate the mul-
t i o b j e c t i v e problem i n t h e € - c o n s t r a i n t form ( a s discussed in se c tion 2 . 6 ) ; the rnaxinium t o l e r a b l e l e v e l s E . wi l l be r e l a t e d t o 7 . i n the next sec3
J
tion. By considering one o b j e c t i v e f u nc tion a s primary a n d a l l o t h e r s
as
c o n s t r a i n t s a t minimum s a t i s f i c i n g l e v e l s , t h e Lagrange m u l t i p l i e r s r e l a t e d
t o the o t h e r ( n - 1 ) o b j e c t i v e s wi l l be zero o r non-zero. If non-zero, p a r t i c u l a r c o n s t r a i n t does l i m i t t h e optimum. I t w ill be shown t h a t
that non-
zero Lagrange m u l t i p l i e r s correspond t o the non-infe rior s e t of s o l u t i o n s , while t h e zero Lagrange m u l t i p l i e r s correspond t o t h e i n f e r i o r s e t of solutions.
Furthermore, the s e t of non-zero Lagrange m u l t i p l i e r s re pre se nt t h e
s e t o f t r a d e -o f f r a t i o s between t h e p r i n cipa l o b j e c t i v e a n d each of thecons t r a i n i n q o b j e c t i v e s r e s p e c t i v e l y . C l ea rly, the se Lagrange m u 1 t i p 1 i e r s a r e f u n c t i o n s o f t h e optimal l ev el a t t a i n e d by t h e princ ipa l o b j e c t i v e function a s well a s of t h e l e v e l s of a l l o b j e c t i v e s s a t i s f i e d a s e q u a l i t y (binding) constraints.
Consequently, t h e s e Lagrange mu1 t i p l i e r s form
a
matrix
of
t r a d e - o f f r a t e f u n ct i o n s . 3.2
THE ~ ~ DERIVATION _ _ _ OF _ THE TRADE-OFF RATE FUhlCTIOJ
Given t h e mu l t i o b j ect i v e problem posed in problem 1-1, t h e t r a d e off r a t e f u n ct i o n between t h e i t h a n d j t h func tions denoted by T . . ( x ) i s 1J
defined a s follows:
where
or equivalently, T..
1J
The f u n ct i o n s T. . ( x ) have t h e property t h a t 1J -
-
38
Tij(x)
=
1
,
for i = j
and
Plore will be s a i d on t h e p r o p e r t i e s of t h e tra de -off r a t e func tions in sut)seqjent s e c t i o n s .
T..(x) 1J -
The d e r i v a t i o n and determination of t h e func tions
T . . ( x ) i s of primary importance i n t h e SWT method. The d i r e c t u t i l i z a t i o n 1J of eqiiation (1 ) however, i s c l e a r l y impractical and computationally prohibitive.
Thus, an a l t e r n a t i v e approach must be sought.
The
d u a l i t y awl Lagrange m u l t i p l i e r s as well as t h e t - c o n s t r a i n t
concept approach
of are
u t i l i z e d i n subsequent s e c t i o n s of t h i s book t o provide both the inform a tion needed and a b a s i s f o r co n s t r u ct i n g t h e t r ade -off r a t e m a trix.2 The following development shows t h a t t h e tra de -off r a t e func tions can be found from t h e values of t h e dual v a r i a b l e s a ssoc ia te d with t h e cons t r a i n t s i n a reformulated problem. Reformulate t h e system in problem 1-1 a s follow s: s u bje c t t o
min f l ( x ) X -
Problem 3-1:
f.(x) J --
, j = 2 , 3 , ..., n
tj
and gk(&
5 0
;
k = 1,2,
..., m
f . , the
minimum value
where
of
the
j t h o b j e c t i v e when a l l o t h e r o b j e c t i v e s a r e ignored ( s e e s e c t i o n 1 . 4 ) ,
Note t h a t
and
F .
J
i s defined i n terms of
J
t h a t t h e F . a r e t h e d e v i a t i o n s from t h i s minimum value. J
t h e value
t.
J
Thus i . re pre se nts J
i n t h e o b j e c t i v e space whose f . a x i s i s s h i f t e d t o i J
vdlues of F . wi l l be varied p ar amet r i cal l y in t h e process J t h e trade-off f u n c t i o n s . Form t he g en er al i zed Lagrangian, L , t o problem 3-1:
j '
of
The
c onstruc ting
where
k
tlk,
=
rn
n
1 , 2 , . . . , m , and
llj, j = 2,3,
...,
n
are
generalized
The s u b s c r i p t l j i n X denotes t h a t h i s t h e Lagrange
Lagrange r i u l t i p l i e r s .
m u l t i p l i e r associated ( i n t h e c - c o n s t r a i n t vector o p t i m i z a t i o n prob1em)with t h e f i r s t o b j e c t i v e and t h e jth c o n s t r a i n t . i
Ij
The
Lagrange
multiplier
w i l l be s u b s e q u e n t l y g e n e r a l i z e d t o be h . . a s s o c i a t e d w i t h t h e ithob1J
j e c t i v e f u n c t i o n and t h e jth c o n s t r a i n t . I n order t o l i m i t the derivation t h i s book, d e n o t e by
x
of
...,
N, w h i c h s a t i s f y t h e
Similarly, l e t
n be t h e s e t o f a l l
t h e s e t o f a l l xi,
Kuhn-Tucker c o n d i t i o n s i n problem 3-1.
t h e Kuhn-Tucker c o n d i t i o n s i n
i
=
1,2,
Lagrange m u l t i p l i e r s w h i c h s a t i s f y t h e Kuhn-Tucker c o n d i t i o n s . For s t a t i o n -
x,
A . ( k = 1,2, ..., m; j = 2,3, i J k , and 15 Tucker3 c o n d i t i o n s o f i n t e r e s t t o o u r a n a l y s i s a r e :
a r y values o f
h
1 j ( f J. ( -x ) -
lj C l e a r l y , equation
-
E.)
J
0 ,
0 , j
=
...,
2,3,
j =
(3a) holds o n l y i f
h
=
.
...,
...,
2,3,
n ) , t h e Kuhn
n
(3a)
n
(3b)
f . ( x ) - F . = 0, o r b o t h . J J j = 2,3, ..., n then t h e
= 0, o r
15 f o r any
Note, however t h a t i f f . ( x ) - E . < 0 J J = 0 . For t h e case where t h e jth c o n s t r a i n t i s i n a c t i v e corresponding h 1j ( n o t b i n d i n g ) , t h e c o r r e s p o n d i n g Lagrange M u l t i p l i e r ( d u a l v a r i a b l e o r shadow p r i c e ) i s i d e n t i c a l l y z e r o .
The s e t o f i n a c t i v e
s t r a i n t s associated w i t h a s p e c i f i c value o f {j : 5
=
E
x
Denote t h e s e t o f a c t i v e ( b i n d i n g value o f
by
r. J
A(
‘j
)
=
‘j
(non-binding)
w i l l be denoted by
I(
...,
n)
; f .J ( x-) - ‘j < 0 ; j = 2,3,
c o n s t r a i n t s associated w i t h
a
con-
) “j
specific
A(tj):
ij
: x ~ x ; f X- .) J
-
€ .
J
=
0 ;j
=
2,3,
...,
From e q u a t i o n ( 3 a ) , i t i s c l e a r t h a t a l l A . c o r r e s p o n d i n g t o 13 I n a d d i t i o n , a l l x . corresponding t o
nl
for jcI(c.) J f o r jcA(e.) 1J J J a r e n o n - n e g a t i v e and n o t n e c e s s a r i l y z e r o . Denote t h e s e h . by A . ( A ( F ~ ) ) . 1J 15
a r e i d e n t i c a l l y zero.
E.
J
E.
. ( A ( E . ) ) , j = 2 , 3 . . . , n i s of spe c ia l 1J J s i n c e i t i n d i c a t e s t h e marginal b e n e f i t ( c o s t ) of the o b j e c t i v e The value of
A
due t o a n ad d i t i o n al u n i t of i s derived'+:
fl($
Note, however, t h a t f o r y
.
E.
J
t
func tion
From equation ( 2 ) , t h e following
xl j
x and
interest
E
n, u k €
ci
, for all
j
and
k,
fl(x)
=
L
Also note t h a t f o r a l l
A l j ( A ( ~ j ) )f,. ( x ) = J these c o n s t r a i n t s a r e a c t i v e ) . Therefore:
cj
, j
= 2,3,
..., n
(since
C l e a r l y , t h i s equation can be generalized where the index of performance i s t h e i t h o b j e c t i v e function of problem 1 - 1 r a t h e r than the f i r s t one. t h i s case t h e index i should r ep l ace t h e index 1 in x yie lding X... I j 1J Accordingly: Aij(A(~j))
i
#
,j
-
=
afi ( 5 ) (4)
i,j = 1,2,
;
In
..., n
af. ( x ) Thus
T.. 1J
or
1 - can be found by c a l c u l a t i n g - A . . which i s af.(x)
1J
J -
obtainable from t h e o v er al l system Lagrangian a s w ill be discussed quently.
I t is
important
to
note
that
the tra de -off
A ~ ~ ( A ( L i~s ) ap ) p l i cab l e t o any noncommensurable func tions. l e t t h e u n i t s of f i ( x ) be $ , and t h e u n i t s of ( d i ss o l v e d oxygen).
f.(x) J -
be
subse-
rate
func tion For example ,
pounds
of
DO
Then the u n i t s o f A.. are $/DO.
Equation ( 4 ) i s v al i d
1J
for all
r a t i o i s v a l i d only when t h e j t h
A . .(A(€.)); i.e.,
the tra de -off 1J J c o n s t r a i n t i s a c t i v e ( b i n d i n g ) . I t can be
41 shown t h a t a d i r e c t correspondence e x i s t s between x . . A ( € . ) ) (A.. a s s o c i 1J J 1J a t e d with t h e a c t i v e c o n s t r a i n t s ) and t h e non-infe rior s e t t o problem 1 - 1 , A i j ( I ( ~ j ) ) ( A , . as s o ci at ed with t h e i n a c t ve c o n s t r a i n t s ) a n d 1J Consider t h e cas e where f o r some t . t h e corresponding J A . . i s zero, i . e . , h . . = ~ . . ( I ( E . ) ) Except . f o r t h e degenerate c a s e , t h i s 1J 1J 1J J means t h a t t h e r e i s no improvement in t h e o b j e c t i v e func tion f i ( x ) even a t
a n d between
the inferior s e t .
t h e expense of f u r t h e r degradation of t h e o b j e c t i v e f . ( x ) . This s o l u t i o n J c l e a r l y belongs t o t h e i n f e r i o r s e t . The degenerate c a se where theLagrange riiultiplier corresponding t o an a c t i v e c o n s t r a i n t i s zero has been s t u d i e d 5 . i s defined here The s o l u t i o n corresponding t o such ~ . . ( A ( E . )= ) 0 1J J t o be a s s o c i a ted with t h e i n f e r i o r s e t ; i . e . , degenerate s o l u t i o n s a r e considered a s i nf er i o r s o l u t i o n s . Consider next t h e cas e where f o r some
the corresponding A . . = J 1J 0 , i . e . , t h e r e i s a degradation i n t h e
This means t h a t A . . 1J j t h o b j e c t i v e f u n ct i o n f o r a n improvement in A ~ ~ ( Aj)). ( I
since
A,.
ior s e t .
1J
=
C .
the
ith
o b j e c t i v e func tion
df.(X) - --l-a f ,(iT . Thus. t h i s s o l u t i o n corresponds t o t h e non-inferJ -
I n sumrnary, s i n c e only t h e n o n - i n fe rior s o l u t i o n s a r e of i n t e r e s t , only > , . . ( A ( JJ
' j
))
;'
0
need be considered.
For s i m p l i c i t y in n o t a t i o n ,
l e t t e r A, i n d icat i n g a c t i v e c o n s t r a i n t , will be ).
dropped
and t h e
the
symbol
. . ( 'j ) w i l l be used h e r e a f t e r .
i j
The p o s s i b l e ex i s t en ce
of a d u a l i t y gap6
and i t s e f f e c t on
the
SNT method i s discussed i n ch ap t er 4. Note t h a t even i f a d u a l i t y g a p does e x i s t , t h e E- co n s t r ai n t method s t i l l ge ne ra te s a l l non-infe rior solu-
tions.
However, a given value of t h e t r ade -off r a t e func tion
X..
1J
, may
corresoond t o more than one n o n - i n f er i o r s o l u t i o n . 3.3
COMPUTATIONAL PROCEDURE FOR CONSTRUCTING THE TRADE-OFF FUNCTION I n t h i s s e c t i o n , a p o s s i b l e approach i s presented f o r ge ne ra ting
t h e t r a d e - o f f r a t i o s T . . = d f i / a f . b y c a l c u l a t i n g the Lagrange m u l t i p l i 1J J e r s X . . t o problem 3-1. F i r s t A 1 2 wi l l be found a s a func tion of E~ . 1J The system given by problem 3-1 i s solved f o r k values of r 2 , 1 2 K say 1 2 , t 2 , ..., t 2 , where a l l o t h e r E . , j = 3 , 4 , . . . , n a r e held J
f i x e d a t some l ev el k = 1,3,
...,
K,
~0
J
.
Of co u r s e,
only
the
positive
k
h12(t2)
,
a r e of i n t e r e s t (corresponding t o t h e non-infe rior solu-
K t i o n s ) . S i n c e t h e s e X12(c2)
are positive,
...,
( a c t i v e c c l n s t r a i n t s ) , f o r k = 1,2,
(k
=
...,
1,2,
tional value o f
K)
k
i t must be t h a t
K.
f2(x)
k
=
c2
k
each v a l u e o f f 2 ( $
Thus, f o r
where t h e c o n s t r a i n t s a r e a c t i v e , a c o r r e s p o n d i n g f u n c -
n12(fi(x)) ( k
=
...,
1,2,
K) i s generated. A t t h i s
a r e n r e s s i o n a n a l y s i s may be p e r f o r m e d i f d e s i r e d , t o y i e l d a
least
a r e s a p p r o x i m a t i o n t o t h e f u n c t i o n h 1 2 ( f 2 ( x ) ) ( f i g u r e 3-1 d e p i c t s a r a t i c f u n c t i o n f i t by r e g r e s s i o n ) . a functio,. o f the values o f s i t i v e t o these levels o f
,j
t.
J
,
t.
J
sququad-
N o t e , however, t h a t h 1 2 ( f 2 ( x ) ) i s a l s o =
3,4, ..., n.
I f t h e f u n c t i o n i s sen-
..., n , then a m u l t i p l e r e g r e s s i o n
j = 3,4,
I t w i l l b e shown i n C h a p t e r 4
a n a l . v s i s
stage
that often
the
t r a d e - o f f r a t e f u n c t i o n h . . need be c o n s t r u c t e d o n l y i n t h e v i c i n i t y o f t h e 1J i n d i - f f e r e : i c e band. I n t e r p o l a t i o n a n d c u r v e f i t t i n g p r o c e d u r e s c a n a l s o be u s e d t o a : p r o x i m a t e A . . n e a r t h e i n d i f f e r e n c e band. This 1J computati?nal e f f o r t involved i n t h e regression a n a l y s i s . Similarly, the trade-off r a t e function agairi t h e prime o b j e c t i v e f u n c t i o n i s f l ( x ) , K d i f f e r e n t values o f i ,
0
f 2 ,t 4 , . . . ,
=
2,3,
t.3\
c-; . This
, k
. . . , n,
=
and p r o b l e m 3 - 1 i s s o l v e d f o r with
i s repeated
a
fixed
1,2,
level
of
t o generate the trade-off
4,5, . . . , n. Once a l l t r a d e - o f f r a t e f u n c t i o n s
have k e n g e n e r a t e d , t h e p r i n c e o b j e c t i v e
and t h u s a l l t r a d e - o f f r a t e f u n c t i o n s X . . , i # j , j = 1J c a n be g e n e r a t e d . t o the
the
can be generated, where
1,2, ..., K ,
technique
for j =
r a t e f u n c t i o n s Xlj, Ilj, j
I.
minimizes
it11
s changed
,2,
. . . ,n
When a l l o f t h e f u n c t i o n s X . . h a v e been d e t e r m i n e d f o r a l l i, j = 1J into
. . . , n, i # j , i t i s sometimes d e s i r a b l e t o t r a n s f o r m t h e h . .
func':ions o f t h e d e c i s i o n v a r i a b l e s
x
1.l E
X.
T h i s t r a n s f o r m a t i o n e x i s t s and
c a n be shown t o b e u n i q u e w i t h c e r t a i n assumed p r o p e r t i e s o n t h e f . ( x ) and J , j = 1,2, ..., n . \..('.(x)) 1J J Exarnpl e : Assume t h a t f ( x )
i s q i v e n as l i n e a r f u n c t i o n o f
2-
f2(x)
and t h a t
h12(f2(x))
=
f
a 2 x 2 + a3
i s given as a qlradratic function o f f2(X):
X12(f2(x)) Then A 1 2
alx,
x:
=
blf2(x)
+
can be o b t a i n e d as a f u n c t i o n o f
b2(f2(x))2
x as
+
b3
follows:
43
Regression F i t t i n g of A . . ( f . ( x ) ) a s a function of f . ( X )
Figure 3-1.
1J
x 1 2( x )
+ c2x2 + c 3x 1 x 2
= C,Xl
~
(xl
+
J
'4'1
J -
-
2 +
'5'2
2 + C
6
x
T h e o r e t i c a l l y t h e following r e l a t i o n s should hold:
For computational advantage t h i s property can be used
t o check t h e consis-
tenc,y of t h e regression functions and t o ensure t h a t no e x c e s s i v e r e g r e s s i o n functiondl deviations occur. 3.4
THE SURROGATE WORTH FUNCTION Assume t h a t a p a r t i c u l a r value of t h e trade-off r a t i o
between two o b j e c t i v e s
fi(x)
and f . ( x ) J
--
A , . , i f j, ' J has been computed. If t h i s p a r t i -
44
i”
CP
1
- -
x
c u l a r value Nere by chance t h e p r ef er r ed s o l u t i o n , then t o t h e de c ision maker,
> . . u n i t s of f . ( x ) would be ex act ly equal in 1J
value
1 -
t o one u n i t of
The term p r ef er r ed s o l u t i o n was defined t o be any non-infe rior f e a s i b l e s o l u t i o n belonging t o a subset of the non-infe rior s e t - t h e f.(x-). J
-
indiffereiice band
where t h e worth of an improvement in one o b j e c t i v e i s
equivalent t o t h e corresponding degradation in a nothe r.
Since the a t t a i n e d
l e v e l s of a l l o b j e c t i v e s a r e known, i t should be r e l a t i v e l y simple t o
ans-
I s t h e given marginal change ( A . . ) in t h e i t h o b j e c t i v e 1J function ( f i ( x ) ) worth more or l e s s t h a n a one u n i t change in t h e j t h obj e c t i v e f u n c t io n ( f . ( x ) ) ? I f t h e f i r s t a l t e r n a t i v e i s believed t o be t r u e , J -then o b j e c t i v e f i ( x ) should be decreased a t t h e expense of f . ( x ) , a n d vic e J versa. I n e i t h e r cas e t h e d e s i r e i s t o l o c a t e the p a r t i c u l a r s e t of tra de off r a t i o s h . . which a r e simultaneously n eutra l t o t h i s que stion. 1J A s u r r o g at e worth f u n ct i o n W . . i # j ; j = 1 , 2 , . . . , n, can be TJ’ h.. e stim a ting t h e d e s i r a b i l i t y of defined a s a n y monotonic f u n ct i o n of 1J For example, t h e s c a l e could range from - 10 t o + l o , the t r a d e - o f f h . .. TJ with a -10 i n di cat i n g t h a t h . . marginal u n i t s of o b j e c t i v e i a r e muchless wer t h i s q u e s t i o n :
1J
d e s i r a b l e t h a n an ad d i t i o n al u n i t of j , a +10 i n d i c a t i n g t h e o p p o s i t e , a n d
a zero s i g n i f y i n g a n even t r a d e ( i . e . , belongs t o t h e i n d i f f e r e n c e band) A s i m i l a r s u r r o g at e worth f u n ct i o n can be defined f o r each tra de -off r a t i o . The preferred s o l u t i o n i s where t h e s e l e c t e d tra de -off r a t i o s make t h e s u r r o g a t e w o r t h fu n ct i o n s simultaneously equal t o 0 ( o r such othe r number a s may be designated a s t h e measure of an even t r a d e ) . In p r a c t i c e t h e r e wi l l u s u al l y be a band of i n d i f f e r e n c e o f a t t a i n e d o b j e c t i v e s near any p r ef er r ed s o l u t i o n thus i d e n t i f i e d . That i s , t h e r e w i l l be a range of values of
f i and
f. J
over which t h e
de c ision maker
would
i s worth more o r l e s s than Af. . BY 1 J approaching t h e zero using only t h e p o s i t i v e limb of t h e surroga te worth function one bound of t h e band of i n d i f f e r e n c e i s e s t a b l i s h e d . By approach-
n o t be prepared t o a s s e r t t h a t Af.
ing zero using only t h e negative limb, t h e opposite
bound
is
determined,
thus e s t a b l i s h i n g t h e band of i n d i f f e r e n c e . Any s u r r o g at e wcrth f u n ct i o n can be used so l o n g a s i t has a spe c if i e d value a t i n d i f f e r e n c e ( e . g . , zero) and i s monotonic. For example, function could a r b i t r a r i l y be assigned a value o f
+10
the
for the f i r s t t r i a l
non-inferior s o l u t i o n i f t h e worth of Afi
worth of
Afi
c’
Af. J
.
> Af., a n d a value of -10 i f t h e J By maintaining monotonic c onsiste nc y, the form of a
s a t i s f a c t o r y su r r o g at e worth f u n ct i o n can be determined b,y successive t r i a l s of non-inferior s o l u t i o n s .
I n particular,
e a r l i e r t r i a l s may be used
e s t i m a t e where t h e zero might be t o a c c e l e r a t e movement towards t h e
to
indif-
f e r e n c e band. I f t h e process were r e p e a t e d u s i n g d i f f e r e n t s t a r t i n g p o i n t s , o r i f
d i f f e r e n t p o s i t i v e ( o r n e g a t i v e ) v a l u e s were a s s i g n e d a t i n t e r m e d i a t e steps, d i f f e r e n t s u r r o g a t e w o r t h f u n c t i o n s would be g e n e r a t e d .
However, b y d e f i n i -
t i o n o f t h e z e r o o f t h e s e f u n c t i o n s , t h e same s o l u t i o n ( o r band o f i n d i f f e r e n c e ) would r e s u l t . The uniqueness o f t h e r e s u l t i n g band o f i n d i f f e r e n c e p e r i i i i t s a p p l i c a t i o n o f t h e s u r r o g a t e w o r t h method t o s i t u a t i o n s where t h e r e i s more t h a n I f a l l have t h e same s t a n d a r d s o f v a l u e , t h e samedeci-
one d e c i s i o n maker.
s i o n ( o r band o f i n d i f f e r e n c e ) g a t e f u n c t i o n s developed.
w i l l be d e t e r m i n e d r e g a r d l e s s o f t h e s u r r o -
I f the plural
d e c i s i o n makers
have
different
s t a n d a r d s o f v a l u e , as woiild n o r m a l l y be expected, t h e s u r r o g a t e w o r t h m e t h od has t h e p r o p e r t y o f d e f i n i n g t h e i n d i f f e r e n c e band a t any and a l l l e v e l s o f unanimity o r l a c k t h e r e o f .
The band o f i n d i f f e r e n c e f o r u n a n i m i t y would
be t h a t s e t o f d e c i s i o n s i n c l u d i n g a l l d e c i s i o n m a k e r s ‘ bands o f rence.
By d e f i n i n g n e s t e d i n t e r v a l s , each c o n t a i n i n g
one
less
indiffedecision
m a k e r ’ s band o f i n d i f f e r e n c e , bands o f i n d i f f e r e n c e f o r l e s s t h a n u n a m i n i o u s m a j o r i t i e s can be a p p r o x i m a t e d .
A p p r o x i n a t i o n stems f r o m t h e f a c t t h a t some
r u l e w i l l have t o be d e v i s e d t o d e t e r m i n e w h i c h band o f i n d i f f e r e n c e s h o u l d be d e l e t e d n e x t .
An o b v i o u s r u l e m i g h t be t o s p e c i f y t h a t c a n d i d a t e
which
would n a r r o w t h e g r o u p band o f i n d i f f e r e n c e by t h e g r e a t e s t amount. A l t e r n a t i v e l y , a s p e c i f i c d e c i s i o n c o u l d be “ d e f i n e d ” as p r e f e r r e d i f i t i s i n c l u ded i n t h e maximum number o f i n d i v i d u a l i n d i f f e r e n c e bands.
O f course, a l l
such r u l e s a r e somewhat a r b i t r a r y even when t h e y seem i n t u i t i v e l y r e a s o n a b l e o r appeal t o some l o g i c o f s o c i a l j u s t i c e .
1
I n summary, t h e s u r r o g a t e w o r t h f u n c t i o n
W..
1J
associated w i t h
the
ith and j t h o b j e c t i v e s can be d e f i n e d as any monotonic f u n c t i o n s a t i s f y i n g : ,’
=
w.. 1J
‘:
0 when X . . m a r g i n a l u n i t s o f fi(&) 1J
a r e p r e f e r r e d o v e r one
m a r g i n a l u n i t o f f . ( x ) , g i v e n t h e l e v e l o f achievement
J -
o f a1 1 t h e o b j e c t i v e s .
0 when 1.. m a r g i n a l u n i t s o f f i ( x ) 1J
a r e e q u i v a l e n t t o one
m a r g i n a l u n i t o f f . ( x ) , g i v e n t h e l e v e l o f achievement J -o f a1 1 t h e o b j e c t i v e s . 0
when A . . m a r g i n a l u n i t s o f f i ( $ 1J
a r e n o t p r e f e r r e d over
one m a r g i n a l u n i t o f f . ( x ) , g i v e n t h e l e v e l o f a c h i e v e -
.!-
inerit o f a l l t h e o b j e c t i v e s . I t i s important t o note here t h a t t h e d e c i s i o n maker(s) i s provided
with the t r a d e- o f f value ( v i a t h e t r ad e- o ff r a t e f u n c t i o n ) j e c t i v ? functions a t functions.
a
of any two
ob-
s t a t e d l ev el of attainment of a l l of the o b j e c t i v e
Furthermore, a l l t r ad e- o f f values generated from t h e
tra de -off
f u n c t i o n a r e as s o ci at ed with t h e n o n - i n f e rior s e t . Hence, i t i s e vide nt t h a t i t i s always p o s s i b l e t o g en er at e a s u r r o g a t e w o r t h func tion whichwill in t u r n determine t h e band of i n d i f f e r e n c e of
A..
(ifj, i,j
=
...,
1,2,
1J
n)
a n d thus t h e p r ef er r ed s o l u t i o n s t o t h e m ulti-obje c tive problem ( t h e compu-
t a t i o n a l procedure f o r f i n d i n g t h e o v er al l solution t o problem 3-1 from t h e su r r o g a t e worth f u n ct i o n s i s discussed i n t h e next s e c t i o n ) . The s p e c i f i c values of t h e s u r r o g ate w o r t h W . . assigned by
the
1J
DM
f o r each value of x . . a r e unimportant, needing only t o be monoton.ic in h . . 1J 1J and t o p a s s through zero a t i n d i f f e r e n c e . T h u s W . . a r e ordina l measures, 1J
compared t o t h e car d i n al measures required by t h e u t i l i t y func tion approach. F i n a l l y , i t i s important t o note t h a t t h e above a na lyse s areconducted in t h e f u nct i o n al space, f l ( x ) ,
, f n ( x ) , and not i n
the
de c ision
space, x l , . . . , x N . This i s of co u r s e, a c l e a r advantage s i n c e t y p i c a l l y n (one may have a hundred o r a thousand de c isions even with j u s t t h r e e
N
~
t o ten o b j e c t i v e f u n c t i o n s ) . 3.5
CXJMJUTATIONAL PROCEDURE FOR FINDING THE P R E F E R R E D SOLUTIONS The s u r r o g at e worth f u n ct i o n described i n t h e previous section
a ss i g n s a s c a l a r value (on a n o r d i n al s c a l e ) t o any non-infe rior
t o t h e m u l t i p l e o b j e c t i v e problem 1 - 1 .
solution
However, t h e r e a r e t h r e e
different
ways of s p e c i fy i n g a n o n - i n f er i o r s o l u t i o n - by i t s de c ision space coordina t e s , by i t s o b j e c t i v e f u n ct i o n space co o rdina te s, o r by i t s tra de -off r a t e values X. . a t t h e n o n - i n f er i o r p o i n t . 1J
Thus,
there a r e three possibilities
f o r t h e su r r o g at e worth f u n ct i o n W . . ( x . ) , b J . . ( f . ) o r W . . ( A . . ) . J 1J J 1J 1J 1J 3.5.1
Decision Space Surrogate Worth Function I n t h i s approach, t h e s u r r o g at e
worth
func tion i s
developed a s a
function of t h e d eci s i o n s x l . . . x N ; however, t h e r e a r e several reasons why t h i s i s g e n e r al l y n o t f e a s i b l e . F i r s t , t h e values of t h e de c isions a r e not DM , s i n c e he i s more
p a r t i c u l a r l y rel ev an t o r meaningful t o t h e
familiar
(and more d i r e c t l y concerned) with t h e o b j e c t i v e s and t h e i r tra de -off values. Second, t h e d e ci s i o n space i s g en er al l y more
complicated than
the
others
s i n c e t h e r e a r e u s u al l y many more d eci s i o ns than o b j e c t i v e s . Third, onemust r e s t r i c t t h e values of t h e d eci s i o n s t o n on-infe rior va lue s.
In t h e
func-
t i o n a l space t h i s can be e a s i l y done s i n c e any n-1 of t h e o b j e c t i v e s s p e c i f y a n o n - i n f e r i o r point v i a t h e t r ad e- o f f f u n c t i o n . d e c i si c n space, however
(see figure 1-1).
This i s impossible in t h e T h u s t h e problem of finding a
point where both s i ra bl e.
W..(x) = 1J
0 and x i s non-inferior makes this approach unde-
3.5.2 ?--Space Surrogate Worth Function In this approach, the surrogate worth function W . . is developed as 1J a function of A... In general, values of h . . for n-1 different j are re1J
1J
quired to specify a non-inferior point, but for the present, this approximation will be maintained. For several distinct values of 1 . . , the decision 1J tnaker is asked whether x . . units of fi(x) are more or less or equally p r e 1J A linear combination of the two answers ferred to one unit o f f.(x). J W . . ( A . . ) nearest zero can be made (see figure 3-2). Then the value of ~~
1J
1J
i . is . chosen such that W . . ( i . . ) = 0 on the line segment fitting the 1J 1J 1J two values of h . . . With this estimate X.., the corresponding W..(A..) is 1J 1J 1J 1J * requested and the process repeated until indifference is found at X . . . 1J Then the indifference band is assumed to exist within a neighborhood of A*... 1J Additional questions to the decision maker can be asked in the neighborhood * ofA.. to determine the approximate limits of the band of indifference. 1J * Having determine all x . . for i , j = 1,2, . . . , n , the following system 1J o f relations should be solved simultaneously in the decision space x: X..
=
1J
~
Problem 3-2:
~-
Solve:
hij(x)
=
A?. 1J
. i,j '
=
1,2, ..., n
such that This problem represents n2 -n equations with the constraints derived from the Kuhn-Tucker conditions that should be imposed on 5 ~ . Note that since normally N ':, n, the number of equations in problem 3-2, (n2 -n) may still be much smaller than N. The constraints on 5~ introduce additional inequalities which in turn limit the solution space to only feasible non-inferior solutions. A non-unique preferred (indifference) solution can be expected and is of course, accepted, as in any optimization problem with a single objective function. For the case where A . .(f.(x)) is constant over a given 1J J variation in f.(x), as may happen with linear objective functions, an elasJ The tradeticity tertn can be augmented to A.. for determining W . . ( A . . ) . 1J 1J 1J off rate funct.ion x . . can be replaced by the elasticity trade-off rate 1J function. ~
48
w 10
W -J
a
0 v)
sz- o n
a
0
- 10
F i g u r e 3-2.
A,. = -
'J
D e t e r m i n a t i o n o f t h e i n d i f f e r e n c e band
f.(x)
afi(x)
L ~
fi(x)
at-Jo
A l t e r n a t i v e e l a s t i c i t y f u n c t i o n s may b e c o n s t r u c t e d t o c i r c u m v e n t t h i s p r o b lem.
Other techniques a r e described i n t h e n e x t s e c t i o n . Although t h i s approach appears
suring that
x is
to
s u f f e r from t h e problem o f
in-
n o n - i n f e r i o r when r e v e r t i n g t o t h e d e c i s i o n space, a means
o f a v o i d i n g t h i s w i l l b e d i s c u s s e d i n s e c t i o n s 4 . 1 . 3 and 6 . 3 . 2
.
A
more
s e v e r e p r o b l e m , however, i s t h a t t h i s a p p r o a c h i s g u a r a n t e e d o n l y when t h e t r a d e - o f f f u n c t i o n i s c o n v e x and n o n - l i n e a r .
ii
! I
49
I /
f vs.f 2 1 I n such a case, i t i s o b v i o u s t h a t
C o n s i d e r t h e t w o o b j e c t i v e s t a t i c c a s e where t h e t r a d e - o f f i s non-convex as shown i n f i g u r e 3 - 3 - a . '12(f2)= -df,/df
2
i s n o t Q unique f u n c t i o n over t h e range o f values o f f2 i n
t h e n c n - i n f e r i o r r e g i o n (shown i n f i g u r e 3 - 3 - b ) .
(Note t h a t t h e t o t a l det-i-
v a t i v e i s p r e s e n t s i n c e t h e r e a r e o n l y two o b j e c t i v e s . ) longer a well defined function o f
x , ~ s, i n c e
Hence, w o r t h i s n o
f o r some v a l u e s o f
A12
there
w i l l be m o r e t h a n one c o r r e s p o n d i n g p o i n t ( f ,f ) on t h e t r a d e - o f f c u r v e , 1 2 and i n g e n e r a l , a d i f f e r e n t w o r t h w i l l b e a s s i g n e d t o e a c h p o i n t . Thus the w o r t h may a p p e a r as i n f i g u r e 3 - 3 - c .
O f c o u r s e , i n some c a s e s W12
i n d e p e n d e n t of fl a n d f 2 , so t h a t W12(X12) w i l l b e a w e l l d e f i n e d
may
( a s shown i n f i g u r e 3 - 3 - d ) .
f
,
XI2
0
f2
F i q u r e 3-3-a.
Tradeoff Function
0
f
F i g u r e 3-3-b.
*
T r a d e o f f Rate Function
WI 2
0
F i g u r e 3-3-c.
F i g u r e 3-3.
P o s s i b l e Worth Curve
F i g u r e 3-3-d.
P o s s i b l e Worth Curve
>,-Space W o r t h F u n c t i o n s f o r Non-Convex Problems
be
function
When w o r t h i s not a well defined f unc tion of A . . however, t h i s tends 1J t o cause two types of problems. F i r s t , i f t h e w o r t h i s found only a t c e r t a i n values o f x12 a n d a polynomial f i t i s attempted, t h e s o l u t i o n t o W 1 2 ( A 1 2 ) *= 0 w i l l probably be q u i t e d i f f e r e n t from t h e t r u e pre fe rre d tra de -off r a t e x12. Second,
assume t h a t enough information i s obtained in t h e f i r s t attempt
f i n d t h e a c t u a l shape of t h e
be coniputationally i n f e a s i b l e ) ; can be determined.
then t h e t r u e pre fe rre d tra de -off
However, t h e r e may be several points
curve which have t h e same s l o p e of t h e system model t o f i n d
to
multi-valued worth curve ( i n general t h i s w ill
*
on t h e
r a t e A* 12 tra de -off
Thus, when h 1 2 i s r e l a t e d back t o t h e p r ef er r ed d e c ision v e c t o r , the model w ill not -
be a b l e t o d i scer n which of t h es e p o i n t s i s the pre fe rre d s o l u t i o n . The o t h e r pathological cas e i s where X 12(f2) i s c onsta nt over a c e r t a i n i n t e r v a l ( s e e f i g u r e s 3-4-a and 3 - 4 - b). This always occurs i n l i n e a r problerns a n d sometimes in non-linear ones. Since X12 t h e r e will be several values of
i s again not one-to-one
t h e w o r t h corresponding
to
some values of
Furthermore, in t h e l i n e a r problem,
s i n c e h I 2 ( f 2 ) i s a l s o disc ontinux12. ous t h e r e a r e no values of t h e w o r t h f o r o t h e r values o f x (see figure *I2 3-4-c). Thus, i n c o r r e c t o r even i n f e a s i b l e r e s u l t s f o r A,2 may be found. E a r l i e r i n t h i s s e c t i o n , i t was suggested t o use a transformation 5 2 = f2 A12/fl t o circumvent t h e l i n e a r i t y o f h 1 2 ( f 2 ) . The r a t i o n a l e i s t o take t h e e l a s t i c i t y i n t o account; t h e r e a r e s t i l l two problems present w i t h t h i s approach, however: ( 1 ) A i 2 ( f 2 ) may s t i l l be discontinuous and thus the worth func tion w i l l a l s o be d i s co n t i n u o u s , aga'in with p o ssibly i n f e a s i b l e r e s u l t s ; note however t h a t i t may be p o s s i b l e t o circumvent t h i s problem b y some s o r t of re g r e s s i o n over t h e s e i n t e r v a l s s i n ce t h e d i s c o n t i n u i t i e s a r e bounded. I ( 2 ) The geometric i n t e r p r e t a t i o n i s now l o s t s i n c e A 1 2 i s no longer t h e negative o f t h e s l o p e of t h e t r ad e- o f f curve - and the d e f i n i t i o n of the p r e f e r r e d s o l u t i o n must be changed. Although t h e h-space approach appears t o have many drawbacks, 'it i s t h e s i m p l e s t f o r some problems. Algorithms using t h i s approach a r e included i n subsequent ch ap t er s . 3.5.3
Objective Function Space Surrogate Worth Function A simple means of surmounting t h es e d i f f i c u l t i e s i s t o
use
the ob-
j e c t i v e function space s u r r o g at e worth f u n c t i o n . This w ill be developed here f o r t h e two-objective cas e; t h e g e n e r a l i z a t i o n f o r n o b j e c t i v e s i s in c h a p t e r 6.
Note t h a t
provided
i n general t h e values of n-1 o f t h e o b j e c t i v e
are
51
f
,
0
0
f2
Figure 3-4-a.
Tradeoff Function
f2
Figure 3-4-b.
Tradeoff Rate Function
WI 2
0 -
Figure 3-4-c Figure 3-4.
P o s s i b l e Worth Curve
A-Space Worth Functions f o r Linear Problems
needed t o s p e c i f y a n o n - i n f er i o r p o i n t , so t h a t W . . w ill be
n-1 o f t h e f
..
1.I
a
func tion
of
J
For t he two-objective problem, t h e f i r s t segment of t h e SWT method provides t h e f u n ct i o n s f ; ( f 2 ) and t h e corresponding
X12(f2)
=
- df;/df2.
Using t h e same d e f i n i t i o n of worth a s p r eviously, t h e surroga te w o r t h t i o n W12 can be developed a s a f u n ct i o n o f f 2 d i r e c t l y , and W12(f2)= 0 The pre fe rre d tra de -off ved t o f i n d f f ( t h e p r ef er r ed value o f f 2 ) .
func-
solrate
52
j ; 2
c
J
is
12
( f * ) and t h e p r e f e r r e d v a l u e o f fl i s f;(f;) 2
For any value
f2
.
, t h e d e c i s i o n maker i s s t i l l a s k e d how
much
A ~ ~ ~ ( a: d ~d i )t i o n a l u n i t s o f f 1 a r e w o r t h r e l a t i v e t o one a d d i t i o n a l u n i t o f
* -
f 2 , g i v e n f 2 u n i t s o f f 2 and f l ( f 2 ) say, on t h e s c a l e f r o m
-
u n i t s o f fl
.
H i s r e l a t i v e assessment,
1 0 t o + 10, i s t h e v a l u e W 1 2 ( f 2 ) . By a s k i n g enough
q u e s t i o n s a t v a r i o u s v a l u e s o f f 2 , p o i n t s c a n b e g e n e r a t e d so t h a t t h e f u n c t i o n s Id
12
( f ) can be approximated ( e . g . ,
by r e g r e s s i o n ) .
2
Since f o r each v a l u e o f i n the non-inferior region (i.e.,
f2 Xl2
t h e r e i s o n l y one v a l u e o f X 1 2 and and fl a r e b o t h f u n c t i o n s o f f
t h o i i y h f 2 may n o t b e a f u n c t i o n o f h 1 2 ) ,
W12(f2)w i l l b e a u n i q u e
function
o f f 2 , even f o r t h e non-convex a n d l i n e a r c a s e s c a u s i n g t h e p r e v i o u s
culties. val.
fl
even diffi-
C o n s i d e r t h e c a s e where h 1 2 ( f 2 ) was c o n s t a n t o v e r a c e r t a i n i n t e r -
T h i s new a p p r o a c h
i m p l i c i t l y takes e l a s t i c i t y i n t o account since
can f i n d t h e w o r t h a t d i f f e r e n t v a l u e s o f i s constant.
one
i n t h e i n t e r v a l where h , 2 ( f 2 )
f2 A l s o n o t e t h a t t h i s a p p r o a c h a l l o w s t h e d e c i s i o n maker
terniine t h e actual e l a s t i c i t y r a t h e r than
t o de-
u s i n g a n y p r e c o n c e i v e d v a l u e such
as f2/fl. I n many p r o b l e m s , t h e r e may be more t h a n one s o l u t i o n t o W ( f )=O; 12 2 each o f t h e s e i s a p r e f e r r e d s o - l u t i o n ( t h e s o c i a l i n d i f f e r e n c e c u r v e i s t a n g e n t t o t h e t r a d e - o f f c u r v e a t m o r e t h a n o n e p o i n t ) and some o t h e r c r i t e r i o n i s n e c e s s a r y t o c h o o s e among them.
Furthermore, w i t h t h i s approach t h e t r a n s f o r m a t i o n t o
the decision
space c a n b e a c c o m p l i s h e d w i t h o u t w o r r y i n g a b o u t D o n - i n f e r i o r i t y . t i o n s t o W12(f2)
*
=
0 are t h e p r e f e r r e d values f2 .
r e d v e c t o r d e c i s i o n s &*, c a n b e o b t a i n e d
The s o l u -
Accordingly, the prefer-
by simply
solving
the
following
o p t i m i z a t i o n problem :
probl ?!!L3-3:
’-
inin f ( x ) ~x
This i s
j u s t a comnion p r o b l e m i n
same as p r o b l e m 3-1 w i t h x*
single objective optimization;
*
it i s
the
replaced by f.. I t s solution y i e l d s the desired 3 J Mote t h a t t h i s a l t e r n a f o r t h e t o t a l v e c t o r o p t i m i z a t i o n p r o b l e m 1-1. t
t i v e method a v o i d s t h e need o f r e p r e s e n t i n g
A.. 1.l
as a f u n c t i o n o f
x(
e.g.,
A . . ( x ) ) ,and consequently el i mi n at es t h e need of solving problem 3-2. 1J Thus i t can be seen t h a t t h e o b j e c t i v e function space i s ge ne ra lly the best domain f o r t h e s u r r o g at e w o r t h f unc tion. Algorithms u t i l i z i n g t h i s approach a r e presented in t h e following cha pte rs. 3.6
GEOMETRIC INTERPRETATION OF THE SWT METHOD The case of two
o b j e c t i v e f u n ct i o ns i s considered f i r s t ;
n
be l a t e r generalized t o
objectives.
t h i s w ill
The f i r s t segment of the SWTmethod
*
develops p o i n t s on t h e t r ad e- o f f curve f l ( f 2 ) and tra de -off r a t e curve X , 2 ( f 2 ) a t various values of f 2 . The d ecision maker i s then questioned t o determine t h e w o r t h corresponding t o various non-infe rior values of
f ; he
2
i s asked t o s p eci f y t h e r e l a t i v e worth ( o n a s c a l e of ( s a y ) t10 t o -10) of a d d i ti o n al u n i t s of f compared t o one a dditiona l u n i t of f2,give n 1 A12(f2) f T ( f 2 ) a n d 7, u n i t s of t h e two o b j e c t i v e s . His assessment of t h i s r e l a t i v e
(or
w o r t h i n d i c a t e s t h e divergence between t h e negative slope of the i n d i f f e r e n c e curve space.
(in)
and
A12,
Consider f i g u r e 3-5.
a t t h e p oint (f;(;2),;2)
The Social I ndiffe re nc e
his)
in t h e functional
(SI)
curves
re pre -
s e n t i n g equal preference a r e i n r e a l i t y u na va ila ble ; however, i t i s assumed t h a t t h e DM i s basing h i s d eci s i o n s on h i s s u b j e c t i v e ide a s of t h e i r form. The t r a d e - o f f curve T i s a l s o g en er al l y impossible t o determine completely; u s u a l l y only a f i n i t e number o f p o i n t s o n the curve w ill be known. A t point A, f o r example, t h e DM i s w i l l i n g t o accept only mA a d d i t i o n a l u n i t s of However h 1A2 > mA so t h a t when asked i f he t o g e t one u n i t l e s s of f
2'
w i l l i n g t o take
fl is
if2 ad d i t i o n al u n i t s of f l f o r one l e s s of f 2 h i s response
A will be "no", thus W 1 2 ( A 12 ) i f he i s w i l l i n g t o take
<
0.
A t p o i n t C , mc
>
Af2
so t h a t
when
asked
C ad d i t i o n al u n i t s of f l f o r one l e s s of f 2 , h i s
C response w i l l be " y e s " , o r Id 1 2 ( A 1 2 )
>
0.
A t point 6 , mB
=
B
A12
SO
t h a t when
asked i f he i s w i l l i n g t o t ak e on h B ad d itiona l u n i t s of f l f o r one l e s s o f 12 B f 2 , h i s response wi l l be i n d i f f e r e n c e , or W 1 2 ( h 1 2 ) = 0. Note t h a t t h e actual numerical value of t h e worth f u n ct i o n s r epre se nts only a r e l a t i v e s c a l i n g : 0 1 i f W ( A ) = +8 and 14 ( A ) = +7, a l l t h a t can be s a i d i s t h a t t h e d i f f e 12 12 12 12 rence between m a n d A 1 2 a t t h e point on t h e tra de -off curve c orre spondingto ho i s g r e a t e r than t h e d i f f e r e n c e between them a t t h e point corresponding 12 t o A ; ~ . These numerical values can be used, however, a s a f i r s t * e stim a te 1 1 . 0 e . g . , 17, i s seven times f a r t h e r from X12 than A,2 i s from X 1 2 . of
~ 7 ~ ;
MULTIOBJECTIVE OPTIMIZATION I N WATER RESOURCES SYSTEMS
54
A t point A, W,*
>
0
A t point 6, W12
=
0
A t point C , W12
i
0
S i s t h e f e a s i b l e s e t in t h e functional space
The thick boundary of S i s t h e trade-off function T S I a r e t h e social i n d i f f e r e n c e curves
a t A, t h e slope of T i s -
X 1A2 ,
t h e slope o f SI i s -m A
a t 6, t h e slope of T i s -
hB 12,
t h e slope of S I i s -m B
a t C , the slope of T i s -
hC 12,
the slope o f S I i s -m C
Figure 3-5.
Geometric I n t e r p r e t a t i o n o f Worth Function.
3.7
SUMMARY
The s u r r o g a t e w o r t h
trade-off
the p r e f e r r e d s o l u t i o n ( i . e . ,
method p r o v i d e s a means o f
finding
maximum u t i l i t y ) by d e t e r m i n i n g t h e p o i n t
tangency between t h e t r a d e - o f f f u n c t i o n and t h e s o c i a l i n d i f f e r e n c e
of
curve.
The t r a d e - o f f r a t e f u n c t i o n s e n a b l e t h e d e c i s i o n maker t o compare t h e s l o p e s o f t h e t r a d e - o f f f u n c t i o n and s o c i a l i n d i f f e r e n c e c u r v e a t v a r i o u s p o i n t s i n t h e f u n c t i o n a l space; t h e s e t r a d e - o f f r a t e f u n c t i o n s were f o u n d Lagrange m u l t i p l i e r s o f t h e
t o be
the
m u l t i p l e o b j e c t i v e problem i n € - c o n s t r a i n t form.
The s u r r o g a t e w o r t h f u n c t i o n a l l o w s i n t e r p o l a t i o n
o f the
DM's responses t o
f i n d the preferred solution. The SWT method can be viewed as an i n t e r m e d i a r y between t h e DM and t h e system response ( f i g u r e 3 - 6 ) , teraction.
The SWT
b o t h s i m p l i f y i n g and q u a n t i f y i n g t h e i r i n -
method i n i t i a l l y i n t e r a c t s w i t h t h e system t o d e t e r m i n e
t h e t r a d e - o f f and t r a d e - o f f r a t e f u n c t i o n s interacts assessment. found.
with the
among t h e o b j e c t i v e s .
DM by d e v e l o p i n g q u e s t i o n s o f r e l a t i v e
By a n a l y z i n g h i s o r d i n a l
It
worth
responses t h e p r e f e r r e d
for
then his
solution i s
T h i s s o l u t i o n ( v i a t h e SWT method) can t h e n be expressed i n terms o f
t h e d e c i s i o n v a r i a b l e s o f t h e system. i n t e r a c t i o n between t h e DM
There i s s t i l l c o n s i d e r a b l e p e r s o n a l s i n c e h i s response w i l l n o r m a l l y
and t h e system
r e f l e c t h i s knowledge o f t h e system and h i s e v a l u a t i o n o f t h e p r e f e r e n c e s o f his constituents. because many o f t h e
The SWT method, however, g r e a t l y s i m p l i f i e s t h e DM's t a s k n o n - i n f e r i o r s o l u t i o n s can be s y s t e m a t i c a l l y e l i m i n a t e d
based on (and f u l l y c o m p a t i b l e w i t h ) h i s knowledge and expressed p r e f e r e n c e s The advantages o f t h e SWT method a r e numerous.
The d e c i s i o n s r e q u i -
r e d by t h e DM a r e m i n i m a l ; he d e a l s o n l y w i t h t h e f u n c t i o n a l space ( w h i c h i s generally
much s m a l l e r ,
direct significance
e a s i e r t o work w i t h , and o f d i r e c t r a t h e r t h a n i n -
when compared t o t h e d e c i s i o n space),
and w i t h o r d i n a l
r e l a t i o n s h i p s between h i s v a l u e s ( r a t h e r t h a n a c t u a l v a l u e s ) . i s made c o n c e r n i n g t h e f o r m o f t h e u t i l i t y f u n c t i o n ; by t h e DM t o a p a r t i c u l a r t r a d e - o f f p r o p e r l y part o f his constituents.
O f course h i s
only that indifference
r e p r e s e n t s i n d i f f e r e n c e on t h e
v a l u e judgements a r e
s u b j e c t i v e , b u t he i s p r o v i d e d w i t h adequate
No assumption
information,
necessarily
and a
logical
framework, t o r a t i o n a l l y and s i m p l y assess and e v a l u a t e h i s p r e f e r e n c e s .
56
PHYSICAL SYSTEM
I
F i g u r e 3-6.
Role o f t h e SWT Method.
I 1
*'
I
57
I
FOOTNOTES 1.
The o r i g i n a l
development of t h i s method can be found
i n Haimes
and
Hall C19741.
2.
The c o n c e p t s of d u a l i t y and
Lagrange m u l t i p l i e r s a r e
discussed i n
E v e r e t t [1963], lasc'ori [1968] and o t h e r s , w h i l e the t - c o n s t r a i n t proach was d i s c u s s e d i n s e c t i o n 2 . 6 ( a l s o see Haimes [ I 9 7 3 3.
These a r e t h e n e c e s s a r y c o n d i t i o n s
ap-
I).
f o r s t a t i o n a r i t y and can be found
i n Kuhn and Tucker [1950] a s well a s i n most o p t i m i z a t i o n t e x t s .
4.
See l u e n b e r g e r [ 19731.
5.
For o t h e r r e s u l t s on t h e d e g e n e r a t e c a s e s e e Olagundoye [1971].
6.
Again s e e E v e r e t t [1963], l a s d o n [1968], o r Gembicki [1973].
REF E R EN C E S
1.
E v e r e t t , H.,
"Generalized lagrange M u l t i p l i e r s
Problerris of Optimum A l l o c a t i o n of R e s o u r c e s , "
Method
for
Solving
v,
v o l . 1 1 , p p . 399-417, 1963.
2.
Getiibicki, F.,
" V e c t o r O p t i m i z a t i o n f o r Control w i t h Performance
Pdrameter S e n s i t i v i t y I n d i c e s , " P h . D . D i s s e r t a t i o n ,
and
Case Western
Reserve U n i v e r s i t y , 1973. 3.
Hairiies, Y . Y . ,
"The I n t e g r a t e d System I d e n t i f i c a t i o n and O p t i m i z a t i o n , "
i n Advances i n Control Systems Theory and A p p l i c a t i o n s , Leondes, E d i t o r , Volume X , Academic P r e s s , N . Y .
4.
Hairiies, Y . Y . ,
and H a l l , W . A . ,
C.
T.
pp.435-518, 1973
" M u l t i o b j e c t i v e s i n Water
.
Resources
Systems A n a l y s i s : The S u r r o g a t e Worth T r a d e o f f Method," Water
Re-
s o u r c e s Research, v o l . 1 0 , no. 4 , pp. 615-624, 1974. 5.
6.
7.
K u h n , H . W . , and Tucker, A. \!. , " N o n l i n e a r Programming," i n Second B e r k e l e y Symposium on Mathematical S t a t i s t i c s and P r o b a b i l i t y , Uni v e r s i t y of C a l i f o r n i a P r e s s , B e r k e l e y , C a l i f o r n i a , 1950. l a s d o n , L.S., " D u a l i t y and Decomposition i n Mathematical Programming,' I E E E T r a n s a c t i o n s , v o l . SSC-4, no. 2 , 1968. Luenberger, D . G . ,
Introduction
t o l i n e a r and N o n l i n e a r Programming,
Addision-Wesley P u b l i s h i n g Company, I n c . , 1973.
8.
Olagundoye, 0. B . ,
" E f f i c i e n c y and t h e t - C o n s t r a i n t Approach f o r Mul-
t i - C r i t e r i o n System," M.S. T h e s i s , Systems E n g i n e e r i n g Department, Case Western Reserve U n i v e r s i t y , C l e v e l a n d , Ohio, 1971.
Chapter 4
THE SWT METHOD FOR STATIC TWO-OBJECTIVE PROBLEMS The o v e r a l l procedure f o r s o l v i n g m u l t i p l e o b j e c t i v e problems with t h e su r r o g a t e worth t r ad e- o f f method can be divided i n t o two segments. The f i r s t p a r t involves t h e development of function
i n o r d er t o
the information provided tion.
information
e d i f y t h e d eci s i o n maker. by t h e
DM's
about
the
choices t o f i n d t h e p r e f e r r e d s o l u -
algorithms presented i n t h i s book can be
The so l u t i o n
tra de -off
The second segment uses classified
according t o t h e approach used f o r each segment - E-c onstra int ( E ) , m ultip l i e r ( M ) , o r combined (C) appropriate - s t a t i c
- a n d t h e types of problems f o r which they a r e
( S ) o r dynamic ( D ) , two-objective ( T ) o r n-obje c tive
(N). c a se .
This c h ap t er wi l l p r es en t algorithms f o r t h e two-objective s t a t i c Innovations t o improve computational e f f i c i e n c y o f t h e SWT method
a r e d e t a i l e d . The a p p l i c a b i l i t y of each algorithm i s disc usse d, and sample problems a r e included t o i l l u s t r a t e t h e i r use. 4.1
COMPUTAT IOr.IAL EFFICIENCIES There a r e several improvements t h a t can be incorporated in t h e SWT
method f o r t h e two-objective cas e. n o n - i n f e r i o r region can be found i n f e r i o r p o i n ts
(non-binding
First, to
c2).
l es se n
maximum values f o r
t2
in
the
t h e e f f o r t wasted by finding
Secondly, i t w ill be shown t h a t once
W12(f2) has been found, W21 i s redundant, b u t i t can be used a s a c onsistency check. T h i r d , a simple method of re ve rting t o t h e de c ision space w i l l be presented.
F i n a l l y , i t wi l l be shown t h a t by using search te c hni-
ques and i n t e r p o l a t i o n s t h e e n t i r e SWT procedure can be accomplished without r e s o r t i n g t o r e g r e s s i o n s . 4.1.1
Limits on
c2
The maximum v al u e,
f21qAX, f o r
€2
i n t h e non-infe rior region i s
found by solving t h e following problem: Problem 4-1 : MIN
s.t. Theorem: value f o r
58
fl(x) E T
x
I f t h e s o l u t i o n v ect o r t o problem 4-1 i s i s f2(X*).
x*,
then t h e maximum
59
STA>''J(,' 'I'WO-OBdEC'I'IVE PROBLEMS
Proof: x
T
-~
E
must
x*
Since
T, f l ( x l )
3
be i n t h e
s o l v e s problem 4-1,
t h e n f o r any o t h e r f e a s i b l e v e c t o r
T h e r e f o r e any &l which a l s o g i v e s f 2 ( q ) > f2(&*)
f,(L*).
i n f e r i o r r e g i o n s i n c e a r e d u c t i o n can be o b t a i n e d i n b o t h
o b j e c t i v e s by u s i n g
x* .
Thus t h e l a r g e s t v a l u e t h a t f 2 can a t t a i n i n t h e
non-inferior region i s f ( x * ) . F o r t h e case where t h e s o l u t i o n v e c t o r x* 2 ~* t o problem 4-1 i s n o t u n i q u e , t h e minimum o f t h e v a l u e s f 2 ( K ) i s used as t h e maximum v a l u e f o r
F
2'
The minimum v a l u e f o r a l l the other objectives
.
c o n s t r a i n t w i l l always
c2
f2MIpJ
i t2
i s f o u n d as i n s e c t i o n
c2
When t h e n o n - i n f e r i o r s e t i s be
b i n d i n g f o r values o f
1 . 4 by i g n o r i n g continuous,
the
i n the interval
c2
< fZMAX . As an example o f t h e case where t h e c o n s t r a i n t i s n o t
b i n d i n g , consider. t h e f o l l o w i n g problem: MIN
fl
=
x
MIN
f2 =
x
s.t.
-3
<
x
<
3 x /3
3
The o b j e c t i v e s a r e shown i n f i g u r e
4-1-a;
t i o n a l space i s d e p i c t e d i n f i g u r e 4-1-b.
t h e f e a s i b l e s e t S i n t h e funcWhen t h e v a l u e
c2 =
0 (which
= -3 and fZlvlAX = 3 ) i s used, t h e s o l u t i o n w i l l be a t x = between fZMIN
f
2
=
every
-1, fl t2
=
- 2 / 3 so t h a t t h e c o n s t r a i n t i s n o t b i n d i n g .
i n t h e i n t e r v a l -1
E~
i
2
S
-
I n t h i s examp e
w i l l be n o n - b i n d i n g .
I n summary, when u s i n g t h e € - c o n s t r a i n t approach, l a r g e numbers o f i n f e r i o r solutions
can be a u t o m a t i c a l l y e l i m i n a t e d by f i n d i n g minimum and
maximum v a l u e s f o r
E ~ .
proach, t h e
I n a d d i t i o n , f o r each s o l u t i o n f o u n d by t h i s ap-
r 2 c o n s t r a i n t s h o u l d be checked t o i n s u r e t h a t i t i s b i n d i n g ;
i f n o t binding, then t h e s o l u t i o n i s i n f e r i o r .
4.1.2
T r a d e - o f f and Worth R e l a t i o n s h i p s The f i r s t segment o f t h e SWT method p r o v i d e s p o i n t s
i n t h e n o n - i n f e r i o r s e t , and t h e t r a d e - o f f r a t e
h12
-fT
= (fl,f2)
=-afl/af2If.
Simi-
l a r l y there i s a value o f t h e t r a d e - o f f r a t e h2, = - af2/afl
If .
Although
-
t h e p r e v i o u s c h a p t e r c o n s i d e r e d h 2 1 as a f u n c t i o n o f fl and h 1 2 a s a f u n c t i o n o f f2, i t i s o b v i o u s t h a t b o t h can be c o n s i d e r e d as a f u n c t i o n o f f 2 s i n c e i n t h e n o n - i n f e r i o r s e t fl i s a known f u n c t i o n o f f 2 ( t h a t i s f;(f2)
).
1
Then f o r any v a l u e o f f 2
,
iZ1(f2) = l/h12(f2)
.
Since
the
60
Figure 4-1-a. Objectives in Decision Space
Figure 4-1-b. Functional Space. Figure 4-1.
Non-Continuous Trade-off Curve.
Note: The feasible set S is the entire curve the non-inferior set is the thick portion.
( f ) are available, Azl(f2) can be f o u n d without re solving t h e "21 2 I t can now be seen t h a t t h e problern with f 2 a s t h e primary o b j e c t i v e . worth f u n c t i o n WZ1 can a l s o be considered a function. o f f 2 ; i t s values a r e
values
determined by asking t h e DM how much
hZ1(T2) a d d i t i o n a l u n i t s of f l , given f
worih in r e l a t i o n t o one a d d i t i o n a l u n i t of
* ^
f l ( f 2 ) u n i t s of f l .
2
f 2 are
u n i t s of f 2 a n d
I t w i l l be assumed t h a t the tra de -off r a t e X 1 2
is
a
good approximation t o t h e change which occurs in t h e non-infe rior value of f , when f 2 i s changed by one u n i t ; t h a t i s
I t w i l l be shown i n ch ap t er s i x t h a t i f s i n c e i n d i f f e r e n c e t o t r ad i n g
If2]
1
>>
W12(f2) =
0
and I f l /
>> \ A l 2 / .
then W Zl(f2) = 0,
a d d i t i o n a l u n i t s o f f l f o r one a d d i t i o n a l
u n i t of f 2 i s t h e same a s i n d i f f e r e n c e t o tra ding one u n i t of f l f o r l/A:2 u n i t s of f 2 .
Thus f i n d i n g WZl(f2) i s redundant.
a r e generally n o t
able to assess t h e i r
W2,(f2) can be found a t each value
However, de c ision makers
preferences a c c u r a t e l y .
f 2 a t which
W12
Since,
i s found simply
by
asking t h e DM one a d d i t i o n a l q u e s t i o n , i t may be useful t o use an averaged w o r t h f u n c t i o n W12(f2) =
1/2 (W12(f2) +
W
21
( f ) ) t o f i n d t h e pre fe rre d
2
solution. Reversion t o t h e D e c i s i o n a c e
4.1.3
The s o l u t i o n of W 1 2 ( f 2 ) = 0 i s t h e pre fe rre d value f; of o b j e c t i v e f2.
The p r e f er r ed d eci s i o n v ect o r
x*
can be found a s in s e c t i o n 3 . 5 . 3 by
solving Problem 4-2-: MIN
f,
(x)
f;
s . t . f 2 (x) s X E T
x*
t o problem 4-2 i s t h e same preI t w i l l now be shown t h a t t h e s o l u t i o n f e r r e d s o l u t i o n t h a t would be found by t h e method described in s e c t i o n 3 . 5 . 2 i f i t i s modified t o remove redundancy.
That
method i s t o
solve
simultaneously:
s.t.
x satisfies
X12(f2(X))
=
A21(fl(x))
=
t h e Kuhn-Tucker co n d i t i ons
However, x , ~ ( ~ ~ =( x1 /)h)Z l ( f , ( x ) ) whenever
*
= 1/hZl
i f t h e DM i s c o n s i s t e n t .
(x i s a non-infe rior p o i n t ) . x i s a non-infe rior p o i n t , a n d
T h u s t h e second equation i s
redun-
62
MULT I OBJECT W E OPTIMIZATION IPJ WATER RESOURCES SYSTEMS
d a n t and t h i s approach becomes: _______ Problem 4 - 3 :
Solve
h12(f2(x))
*
=
such t h a t & m e e t s t h e Kuhn-Tucker
A12
c o n d i t i o n s f o r problem 3-1. I f *.
Theorem: Proof:
s o l v e s problem 4-2,
Note t h a t t h e r e i s a v a l u e
slope o f t h e trade-off f u n c t i o n a t known; t h e n A* 12
A12(f;).
=
t h e n i t s o l v e s problem 4-3.
*
Alp
0 which i s t h e n e g a t i v e o f t h e
>
.
f;
Since t h e
Assume t h e f u n c t i o n constraint
f2($
*
*
A 1 2 ( f 2 ( x ) ) = x12 so
*
x
s o l v e s problem 4-3.
~
~i s (
f
~
)
s f i i s binding
*
f2(x )
( i t s n u l t i p l i e r i s h12 which i s g r e a t e r t h a n z e r o ) , t h e n
*
~
fi.
=
Thus
I n a d d i t i o n , %* a u t o m a t i c a l l y
s a t i s f i e s t h e Kuhn-Tucker c o n d i t i o n s s i n c e i t s o l v e s t h e m i n i m i z a t i o n p r o b lem 4 - 2 , which i s t h e same as problem 3-1 w i t h
*
r e p l a c e d by
c2
f p . Thus
t h i s r e v e r s i o n method which does n o t r e q u i r e knowing h 1 2 ( f 2 ) i n f u n c t i o n a l f o r m i s much s i m p l e r t o use. 4.1.4
Regressions The f i r s t segment o f t h e SWT method p r o v i d e s p o i n t s
i n t h e n o n - i n f e r i o r s e t , and t h e t r a d e - o f f r a t e at f .
h12 =
fT
(fl,f2)
=
- a f l / a f 2 evaluated
For each o f t h e s e p o i n t s , one v a l u e o f t h e w o r t h f u n c t i o n W12(f2)
can be found.
The method d e s c r i b e d i n s e c t i o n 3 . 5 . 2 needed
f u n c t i o n a l form i n order t o g e t
X12(x)which
check and i n r e v e r s i o n
d e c i s i o n space.
t o the
t h e r e i s no need f o r a c o n s i s t e n c y check on
~
~ i n(
However, i n many problems
A12
s i n c e t h e s e v a l u e s can be
found a c c u r a t e l y by s o l v i n g m i n i m i z a t i o n problem 3 t h e approach d e s c r i b e d i n t h e p r e v i o u s
~
i s used b o t h i n a c o n s i s t e n c y
-
1.
One can t h e n u s e
section f o r reverting t o the deci-
Thus one can a v o i d b o t h t h e X12(x) . A 1 2 ( f 2 ) and t h e problem o f t r a n s f o r m i n g t h a t i n t o
s i o n space w i t h o u t needing t o know
x12(x)
regression f o r
which f o r some problems
( s u c h as dynamic ones)
can g i v e a c o m p l i c a t e d o r
unusable r e s u l t . However, r e g r e s s i o n s t o f i n d h 1 2 as an a n a l y t i c f u n c t i o n o f f 2 can s t i l l be employed, i f d e s i r e d by t h e a n a l y s t . be s i m p l e r t o u s e t h e s e
F o r c e r t a i n problems i t may
f u n c t i o n s t o determine a d d i t i o n a l values a t which
t o q u e s t i o n t h e DM r a t h e r t h a n r e s o l v i n g t h e € - c o n s t r a i n t problem f o r each a d d i t i o n a l value. mate
A12(f2)
I n g e n e r a l , one would n o t e x p e c t t o be a b l e t o a p p r o x i -
by a s i m p l e p o l y n o m i a l
w i t h any r e a s o n a b l e degree o f accu-
r a c y b u t i n t e r p o l a t i o n s o r c u r v e f i t t i n g procedures o v e r
small
intervals
between known v a l u e s may be u s e f u l i n d e t e r m i n i n g a d d i t i o n a l v a l u e s ofAl2.
f
~
)
4.1.5
F i n d i n g t h e I n d i f f e r e n c e Band Once t h e n o n - i n f e r i o r s o l u t i o n s have been found,
t i o n e d t o f i n d o u t h i s assessments o f w o r t h .
t e r e s t i s where W12(f2) = 0, t h e f u n c t i o n a l f o r m o f found.
the
DFI i s ques-
Since t h e o n l y value o f W12(f2)
in-
need n o t
be
One approach t o f i n d i n g t h e v a l u e s o f f 2 f o r which 1d12(f2) = 0 i s I n t h i s approach, t h e DM i s asked
a type o f exhaustive search technique.
e q u a l l y spaced n o n - i n f e r i o r v a l u e s o f
t o assess t h e w o r t h a t k . . .f 2 , u n t i l bIl2 changes s i g n .
fp
,
f e r r e d v a l u e o f f 2 i s known t o be between t h e l a s t two t e s t e d v a l u e s . example, i f bIl2(f!)
,
e.g.
As soon a s W12 changes s i g n , t h e p r e -
f;
has a d i f f e r e n t s i g n t h a n kJ12(f;+l)
m v a l u e o f f 2 must be between f 2 and " ;f
.
For
then t h e p r e f e r r e d
The search p r o c e d u r e
can t h e n
be r e s t a r t e d w i t h a s m a l l e r i n c r e m e n t o v e r t h e i n t e r v a l (f!,f$i).
Due t o
t h e m o n o t o n i c i t y o f t h e s u r r o g a t e w o r t h f u n c t i o n , i f two d i f f e r e n t
values
f a r e p r e f e r r e d s o l u t i o n s , t h e n any v a l u e between them w i l l a l s o be a 2 p r e f e r r e d s o l u t i o n . Note t h a t even w i t h t h i s approach, n o t a l l o f t h e non-
of
i n f e r i o r v a l u e s need be t e s t e d . Another approach i s a t y p e o f g r a d i e n t approach o r Newton a p p r o x i m a t i o n method. Wl2(f;).
Two v a l u e s o f t h e w o r t h a r e found, e. g . ,
The n e x t v a l u e o f
t h r o u g h t h e two known v a l u e s h i t s
W12
Once a v a l u e o f f 2 i s f o u n d f o r w h i c h f e r e n c e band
i s determined
ferred solution.
=
0 .
and
W12(fg)
fp t r i e d i s t h e one where a s t r a i g h t
line
Mathematically
W12(f2) = 0, t h e r e s t o f t h e i n d i f -
by f i n d i n g t h e w o r t h a t v a l u e s n e a r t h i s p r e -
T h i s l a t t e r approach may r e q u i r e f e w e r q u e s t i o n s t o t h e
d e c i s i o n maker, b u t more c a l c u l a t i o n i s needed t o d e t e r m i n e w h i c h q u e s t i o n A l s o n o t e t h a t f o r t h e v a l u e o f f 2 a t which t h e DM s h o u l d b e q u e s -
t o ask.
t i o n e d ( f 2 ) , t h e t r a d e - o f f r a t i o may n o t have been f o u n d i n t h e f i r s t segment. f
2
One c o u l d t h e n e i t h e r r e s o l v e t h e o p t i m i z a t i o n problem 3-1 f o r
~1
2
o r regression
t e c h n i q u e s on known
trade-off ratio. when W12
Also
n o n - i n f e r i o r v a l u e s t o approximate t h e
note t h a t these
algorithms are equally applicable
i s c o n s i d e r e d as a f u n c t i o n o f A12;
t h e same e q u a t i o n s h o l d i f f 2
i s r e p l a c e d by h 1 2 .
4.2
=
t o f i n d t h e t r a d e - o f f r a t i o e x a c t l y , o r use c u r v e - f i t t i n g , i n t e r p o l a t i o n
T X L T A T I C TWO-OBJFCTIVE E-CONSTRAINT (STE) ALGORITHM A l g o r i t h m s w i l l now be p r e s e n t e d d e s c r i b i n g t h e c o m p u t a t i o n a l p r o -
cedures f o r s o l v i n g
All of
t w o - o b j e c t i v e p r o b l e m s w i t h t h e SWT method.
t h e s e a l g o r i t h m s assume t h a t t h e fererences; they could e a s i l y
DM i s a b l e t o a c c u r a t e l y a s s e s s h i s p r e -
be m o d i f i e d a s d e s c r i b e d i n
section 4.1.2
The first algorithm u s e s the F-con-
if this is an g n t e n a b l e assumption.
s t r a i n t approach b o t h f o r f i n d i n g t h e n o n - i n f e r i o r p o i n t s and f o r t i n g t o t h e d e c i s i o n space t o f i n d t h e p r e f e r r e d s o l u t i o n .
rever-
A flowchart o f
t h i s a l g o r i t h m i s p r o v i d e d i n f i g u r e 4-2. 4.2.1
Ih-e A l g o r i t h m Step 1:
F i n d t h e minimum v a l u e , fZMIN,f o r f
MIN
f2(5)
s.t.
x
E
2
by solving:
T
The s o l u t i o n t o t h i s p r o b l e m i f fZMIN. S t e p 2:
F i n d t h e maximum v a l u e , fZMAX, f o r f2 by s o l v i n g MIN
fl
s.t. 5
(x) i
T
*
*
I f t h e s o l u t i o n v e c t o r t o t h i s p r o b l e m i s 5 t h e n fZMAX i s f2(5 * i s iiiore t h a n one s o l u t i o n v e c t o r t h e n t h e minimum v a l u e o f
x
f2MAX
; if there
f2(x*)
is
'
Step 3:
Set t h e i n i t i a l value f o r
S t e p 4:
MIN
f,(&
s.t.
f (x) 5 2 -
c2 =
fZMAX
-
A where A > 0.
E2
x i T
-
G e n e r a l l y t h e Kuhn-Tucker c o n d i t i o n s c a n be u s e d t o s o l v e t h i s p r o b l e m . O f c o u r s e , a n y o p t i m i z a t i o n t e c h n i q u e w h i c h i s a p p r o p r i a t e c a n be u t i l i z e d . *
x*
Let f;(t2)
be t h e d e c i s i o n v e c t o r w h i c h s o l v e s t h i s p r o b l e m . =
f,(x*);
p l i e r f o r the
The s o l u t i o n i s
e a c h s o l u t i o n s h o u l d a l s o c o n t a i n h12, t h e L a g r a n g e m u l t i c2
constraint.
is
A l s o a c h e c k t o see i f t h e c o n s t r a i n t
b i n d i n g iiiust b e made a s p a r t o f t h i s s t e p . I f t h e c o n s t r a i n t i s b i n d i n g t h e n f 2
=
f 2 so t h a t t h e o u t p u t s o f t h i s s t e p a r e
value f2
and
*
fl(f2)
If the
F~
c o n s t r a i n t was b i n d i n g i n s t e p 4, t h e n s e t
- A ; otherwise set
E~
= f
If
r2
a t the
I f the constraint i s n o t binding then ignore these values.
= c2.
S t e p 5: t 2
A12(f2)
i s greater than
F*
=
(X*). 2 -~
fZMINt h e n r e t u r n t o s t e p 3; o t h e r w i s e
pro-
65
ue stion DeLi-i,
IQ-I fimin
5.t..
E
1,
M.,kcr
I T
' 7 1-1
21 iax
t
iiqure 4-2.
Flowchart f o r S t a t i c Two-Objective t-Constra int Algorithm.
66
MULTTOBJECTIVE O P T ~ ~ Z A T I OIW N WATER RESOURCES SYSTEMS
ceed t o s t e p 6. Step 6 : For each v a l u e
Develop t h e s u r r o g a t e w o r t h f u n c t i o n W12(f2) f 2 a t which t h e worth i s desired,
f o r h i s assessment o f how much
A12(i2)
ask t h e d e c i s i o n maker
additional units of objective
a r e w o r t h i n r e l a t i o n t o one a d d i t i o n a l u n i t o f o b j e c t i v e
* ^
u n i t s o f f 2 and f l ( f 2 )
units of f l .
as f o l l o w s :
f2
fl
, given
f2 H i s assessment can be made on a r e l a -
t i v e s c a l e o f say -10 t o + l o w i t h z e r o s i g n i f y i n g equal w o r t h ; t h i s a s s e s s ment i s t h e v a l u e o f bIl2
a t f 2 . The s e a r c h t e c h n i q u e s d e s c r i b e d i n s e c t i o n
4.3.5 a r e used t o d e t e r m i n e a t w h i c h v a l u e s o f f 2 t h e w o r t h s h o u l d b e f o u n d . Step 7 .
The p r e c e e d i n g
step i s repeated u n t i l t h e e n t i r e
indif-
f e r e n c e band i s f o u n d . Step 8.
Find t h e p r e f e r r e d d e c i s i o n vector
x^ by
solving:
MIN f l ( x )
< f;
s.t. f2(x)
X E T I n many problems t h e r e w i l l be more t h a n one s o l u t i o n
*
f 2 t o step 7.
In
t h a t case, t h e r e w i l l be more t h a n one p r e f e r r e d s o l u t i o n , and s t e p 8 must
*
be r e p e a t e d f o r each f 2 i n o r d e r t o f i n d a l l o f t h e
preferred
decisions
v e c t o r s ; some o t h e r c r i t e r i a must be i n t r o d u c e d t o d e c i d e among them. Step 9:
A sensitivity
analysis
c o u l d be p e r f o r m e d t o d e t e r m i n e
the p o s s i b l e e f f e c t s o f implementing t h e p r e f e r r e d s o l u t i o n . Step 10: 4.2.2
Stop - t h e s o l u t i o n i s r e a d y t o be implemented.
Sampl e P r o b l em The use o f t h i s a l g o r i t h m w i l l be i l l u s t r a t e d by s o l v i n g example 1
from chapter 1.
The problem i s : MIN
x1
MIN
10 -
s.t.
0
X1
-
x2
< x1 < 5
0 < x 2 < 5 Step 1 :
We f i n d fZMINby s o l v i n g : M I N 1 0 - x1 - X2 s.t.
0
X,
5
The s o l u t i o n t o t h i s
x1
problem i s a t
=
0,
0
< x2
5
5.
Since i t i s not
unique, take the one which g i v es t h e minimum value of f ( x ) 2 0 , x 2 = 5 with f 2 ( x ) = 5 . T h u s f 2 MA X= 5 . Step 3:
Let t i n g
Step 4:
Solve
A =
.5, s e t
which i s x1 =
4.5.
c2 =
MIN x1
s . t . 10 -
-
X1
X2
5
E2
0 < X l < 5 0<X2'5 The simDlex method can be used t o s o l v e t h i s f o r a l l of t h e values of
c2
Reformulating t h e s e equations in simplex format
mri S.t.
x1 X1
+ x 2 - S1 + R1
x1 + x2 + where For
s2 s3
5
=
5
S1,
S2,
S 3 a r e s l ack v a r i a b l e s and R1 i s
=
4.5
t h e f i n a l tableau i s
x l '
;
Z
1;
x2
s1
0
0
-1
0
-1
0
s2 x2
0
0
0
0
Thus t h e s o l u t i o n i s . 5 so the
=
10 -
=
1
1
f;(4.5)
=
l2 0
'2
he a r t i f i c i a l v a r i a b l e .
s3 -1
.5
-1
.5
: :I: :
. 5 ; s i n c e S1 and R1 both equal z e ro,
6 - c o n s t r a i n t i s binding a n d t h i s value i s a c c e pta ble .
The value
of
t h e Lagranqe m u l t i p l i e r i s t h e negative of t h e c o e f f i c i e n t under t h e sla c k v a r i a b l e corresponding t o t h e c 2 c o n s t r a i n t ; thus h12(4.5) S t e p 5:
Since t h e
t2
c o n s t r a i n t i s binding, s e t
= E~
1 .O. =
4.0 and go
back t o s t e p 3 . This i s repeated u n t i l t 2 = 0 i s r e a c h e d ; t h e r e s u l t s a r e summarized in t a b l e 4-1. Step 6 : The d eci s i o n maker i s questioned and assume h i s responses
a r e a s given i n t a b l e 4-2. The exhaustive
search type
algorithm
was used t o determine t h e
values of f 2 a t which t h e worth was found. Linear i n t e r p o l a t i o n was f o r those n o n -i n f er i o r values not found i n t a b l e 4 - 1 . Step 7 :
*
The i n d i f f e r e n c e band i s found t o be 2 . 0 s f 2
5
used
2.3.
TABLE 4 - 1 Results of S t a t i c Two-Objective € - C onstra int Problem (Ste p 5 )
52 ( f 2 )
f2
f;(f*)
4.5
0.5
1 .o
4.0
1.o
1 .o
3.5
1.5
1 .o
3.0
2.0
1.o
2.5
2.5
1 .o
2.0
3.0
1.o
1.5
3.5
1.o
1.o
4.0
1.o
0.5
4.5
1.o
TABLE 4 - 2
DM Responses f o r S t a t i c Two-objective F-Constraint Problem
*
f2
1'11 ( f 2 )
4.5 4.0
+ 10 + 8
3.5
+
7.5
3.0
+
4
2.5
+
I
+
0 0.5
-
1
2.0 2.4 2.3
0
1.9
Step 8: t 2
Find t h e p r ef er r ed d eci s i on ve c tor by solving s t e p 4 with
replaced by each
2.0, the result i s
*
f2
in the indifference band.
x;
=
3.0,
For example, f o r
*
f2
=
The preferred decision vector may not be unique. Also note that there tmay be more than one indifference solution or indifference bands, consequently, the associated preferred decision vectors will likely be different. Step 9: At this point a sensitivity analysis should be performed but such work is beyond the scope of this text. Step 10: :top. Notice that even though the trade-off function was linear, this alqorithm had no problems in finding preferred solutions. THE MULTIPLIER APPROACH One of the major problems with the i-constraint algorithm is that the minimizations required may be complicated to solve. One way tocircumvent this difficulty is to use the multiplier approach, a variation of the parametric method, to find the non-inferior points. Consider the following problem: Problem -4-4. ~. __ FlIN fl + A 1 2 f2 4.3
(x)
s.t.
x
E
(x)
T
This is equivalent to the parametric approach where h 1 2 = e2/el. It can be shown? that the solution vector to problem 4-4 solves the following problem: FlIN fl(x)
x*
s.t. f2(X)5 f2(&*) where A 1 2 is the Lagrange multiplier for the f2 constraint. Thus one can 0 and solve problem 4-4, finding the corresponding set the value of h 1 2 f*1 and f;(non-inferior values of the objectives) to be used in determining the worth function. This method avoids the necessity of finding the mini> 0 assures being in the mum and maximum values for c2 since setting non-inferior region; also the minimizations are simpler since there is one less constraint. It is possible for convex two-objective problems to determine a maximum value for in the non-inferior region. Since the trade-off function f;(f2) i s convex,
will be a monotonically decreasing function
of f2, so that the largest value of x12 will occur at the minimum value of f2 . Thus the following problem can be solved:
70
,VlJI,TIOB~JRC2'iVEOPTiMIZATION IiSi bJAYE3 RESOURCES SYSTEMS
s . t . f ( x ) :: 2 -
x
- t-
fzr.iIrj
T
where f2MI,4i s found as i n s e c t i o n 4 . 1 . 1 . ponding t o t h e f 2 c o n s t r a i n t i s 4.3.1
x
~
The Lagrange m u l t i p l i e r c o r r e s -
~
~
~
~
~
.
L i m i t a t i o n s of t h e M u l t i p l i e r Approach There a r e several
proach.
Although
inferior points,
problems t h a t can a r i s e with t h e m u l t i p l i e r ap-
a l l of t h e s o l u t i o n s not a l l of t h e
d u a l i t y g a p problem4
exists.
found by t h i s
approach a r e non-
n o n - i n f e rior points can be found whenthe Hopefully,
one would be a b l e
t o ge ne ra te
enougii p o i n t s t o a c c u r a t e l y determine t h e worth f u n c t i o n s ; any given p r o b lem would have t o be judged on i t s own merits a s t o whether or n o t t h e information generated by t h e m u l t i p l i e r approach i s adequate. A more s ev er e problem i s t h a t
in t h e m u l t i p l i e r approach does
not always correspond t o t h e ncgative
of t h e slope of t h e tra de -off func-
tion.
Consider t h e f e a s i b l e f u n ct i o n al space
S
shown i n f i g u r e 4-3.
If
t h e s l o p e of t h e t r ad e- o f f curve a t p o i n t A i s - h 102 then any l i n e L with slope - A l 2 where h l z 2 A 102 w i l l a l s o f i n d t h e same point A a t t h e minimum. I n t h i s c a s e , t h e values of
h12 >
0
do not correspond t o - d f l / d f 2 .
In
terms of d u a l i t y t h eo r y , any s p e c i f i c value h 102 may not n e c e s s a r i l y c o r r e s pond t o a s t a t i o n a r y p o i n t of t h e Lagrangian t o problem 3-1.
This occurs whenever t h e r e a r e d i s c o n t i n u i t i e s in t h e slope of the t r a d e - o f f f u n c t i o n a n d i s e s p e c i a l l y prominent i n l i n e a r problems. Thus i t i s a d v i s a b l e t o use such a n approach only f o r non-linear problems. In convex non-linear problems, t h i s e f f e c t appears only a t t h e end points of t h e n o n - i n f e r i or s e t ; f o r non-convex t r ad e -off f u n c t i o n s , i t can a l s o o c c u r where t h e d u a l i t y gaps s t a r t and end.
Since t h e s e ina c c ura c ie s a r e pre se nt
a t only a few p o i n t s i n non-linear problems, t h e accuracy of t h e s u r r o g a t e t o o g r e a t l y i f enough values were generated.
worth f u n c t i o n would not be a f f e c t e d 4.4
THE STATIC TWO-OBJECTIVE COMBINED (STC) ALGORITHM An algorithm wi l l now be presented using t h e m u l t i p l i e r approach
f o r t h e f i r s t segment of t h e s o l u t i o n procedure t o lower t h e computational e f f o r t s r e q u i r ed , while r e t a i n i n g t h e e - c o n s t r a i n t approach f o r t h e re ve rsion t o t h e d e ci s i o n space. f i g u r e 4-4.
A flowchart f o r t h i s algorithm i s provided in
71
S
0' Note:
f2
x12
> h
0 12
Both l i n e s f i n d p o i n t A a t t h e minimum. Figure 4-3.
4.4.1
F a i l u r e o f M u l t i p l i e r Approach.
The Algorjthm Step 1 : Find t h e maximum v al u e f o r h 1 2 by solving:
fl(x)
MIN
s . t . f2(x) < f2MIN
X E T
-
where f Z M I Ni s t h e s o l u t i o n t o
MIN f 2 ( x ) s . t .
p l i e r f o r the f 2 c o n s t r a i n t i s X12MAX. d i f f i c u l t one could s e t
XlZMAX
-
m
x
E
T.
The Lagrange m ulti-
I f t h i s s t e p i s computationally too
.
Step 2: S e l e c t an i n i t i a l value X l 2 such t h a t 0
< X12
< XlZMAX.
72
x* ,f I*
(i^, 12)
3
f 2*
IQuestion Decision Maker Does W,,(f,)
2
1
-1
= O?
s . t . f2(X) 5 f*
w S e n s i t i v i t y Analysis
Figure 4-4.
Flowchart f o r S t a t i c Two-Objective Combined Algorithm.
73
Step 3:
Solve s.t.
MIN f l ( $ + X 1 2
x
t
f2(x
T
* ^
x ) and f2(L) t o find fl(A12) The so l u t i o n vector x- i s s u b s t i t u t e d i n t o f ( ~-
*
dnd f 2 ( h 1 2 ) . These values a r e n o t n e c e s s a r i l y unique.
Step 4 :
I f enough information has been generated, g o on t o s t e p 5 ,
i f n o t , choose a new value of Step 5:
h12
>
0 and go back t o s t e p 3 .
Develop t h e s u r r o g at e w o r t h func tion W 1 2 a s follow s:
For each s e t o f values A 1 2 ,
* ^
*
A
f l ( h 1 2 ) , f 2 ( A 1 2 ) a t which t h e w o r t h i s d e s i r e d ,
ask t h e DM f o r h i s assessment of how much f
1
a dditiona l u n i t s o f o b j e c t i v e
* -
a r e worth i n r e l a t i o n t o one ad d i t i o n al u n i t of f 2 , given f2(X12) u n i t s
* ^
o f f 2 a n d f 1 ( A 1 2 ) u n i t s of f l .
* ^
f2(A12).
The search
His assessment i s then t h e value of W 1 2 a t
techniques described in s e c t i o n
4 . 3 . 5 a r e used
to
deterriiine a t which values of f 2 t h e w o r t h should be found. Step 6 :
The preceeding
s t e p i s repeated u n t i l t h e
ference band i s found. Step 7 :
Find t h e p r ef er r ed d eci s i on ve c tor MIrj
x*
entire indif-
by solving:
fl($
These l a s t two s t e p s a r e t h e same a s i n t h e € - c o n s t r a i n t approach. i f t h e r e i s more than one s o l u t i o n t o s t e p 6 , s t e p 7
*
Again,
must be repeated f o r
each of t h e se s o l u t i o n s f 2 i n o r d er t o f i n d a l l of t h e pre fe rre d solutions. Step 8:
A
sensitivity
a n a l y s i s could be performed t o
determine
t h e p o s s i b l e e f f e c t s of implementing t h e pre fe rre d s o l u t i o n . Step 9 : 4.4.2
Stop!
h_mple ProblemThe use of t h i s algorithm wi l l be i l l u s t r a t e d by applying i t t o t h e
following non-linear problem:
2
MIN
fl
=
x:
t
2 x2
MIN
f2
=
xl
t
3 x
2
where x1 a n d x 2 a r e unbounded. Step 1 :
Since f 2 i s unbounded
( f 2 M I N= -
m),
12MAX
cannot
be
determined.
.
Thus, s e t h12MAX = Step 2:
S e t h12
Step 3:
Solve
.
.5
=
2 2 M I N f ' = x1 + 2 x2
+ h12(x1 + 3 x2) . of' = 0
The n e c e s s a r y c o n d i t i o n f o r a minimum i s
(it
i s also sufficient
since f ' i s convex); thus 2 x1 + h 1 2 and Thus f o r h 1 2
=
.5,
Step 4:
+
x2
fi
fy(.5)
=
=
0
3 h12
=
or
x1
f (.5) 2
D i f f e r e n t values o f
-
5 212
o r x2 = - 3 h12/4
0
*
11/32,
=
h12
=
.
- 11/8.
a r e used i n s t e p
2,
and
the
r e s u l t s obtained a r e g i v e n i n t a b l e 4-3. Step 5:
The s u r r o g a t e
worth
function i s
developed,
and i t i s
assumed t h e DM's a s s e s s m e n t s a r e as g i v e n i n t a b l e 4 - 4 . Using t h e g r a d i e n t
f2
s h o u l d be made a t
=
algorithm
- 2 1/8
.
,
i t i s obvious t h a t t h e t h i r d
*
,Il=2 . 7 5 and f,
l i n e a r i n t e r p o l a t i o n f r o m t a b l e 4-3 t o be that for
f o r t h i s problem
f
*
. 1
neighboring
, a quadratic
f2 = - 2 1/8
Once
values
trial
The c o r r e s p o n d i n g t r a d e - o f f i s f o u n d b y =
55/64.
Note
i n t e r p o l a t i o n w o u l d b e more a c c u r a t e
i s found t o be a p r e f e r r e d s o l u t i o n
, other
are t r i e d t o determine t h e e x t e n t o f t h e i n d i f f e r e n c e
band S t e p 6:
The i n d i f f e r e n c e band i s f o u n d t o b e - 2 1 / 8
Step 7:
We f i n d
f o r each f
K'' b y
.
solving:
MIN
2 2 x1 + 2 x 2
8.t.
x
*
:: f 2 5 - 2
*
+ 3 x 2 :: f 2
1
i n t h e i n d i f f e r e n c e band. S i n c e t h e c o n s t r a i n t m u s t be b i n d i n g 2 * t h i s c a n b e s o l v e d b y s u b s t i t u t i n g x = f 2 - 3 x i n t o t h e o b j e c t i v e equa2 * 1 t i o n and u s i n g v f l = 0. F o r example, t h e p r e f e r r e d s o l u t i o n f o r f 2 = -2.0
*
i s f o u n d t o be x,
4.5
=
-4/ll,
*
x2
=
- 6/11 .
S t e p 8:
S e n s i t i v i t y a n a l y s i s c o u l d be performed here.
S t e p 9:
Stop!
THE STATIC TWO-OBJECTIVE MULTIPLIER (STM) ALGORITHM I n order t o
u s e t h e m u l t i p l i e r a p p r o a c h i n t h e second segment a l s o
( t o revert t o the decision
space i n f i n d i n g t h e p r e f e r r e d d e c i s i o n v e c t o r
75
R e s u l t s o f S t a t i c Two-Objective Combined Problem ( S t e p 4 )
0.5
11132
1.o
1 31%
-
2.0
5 112
- 5 112
3.0
12 3 / 8
- 8 1/4
4.0
22
-
5.0
35 518
- 13 314
137 112
- 27 112
10.0
Table
1 3/8
2 3/4
11
4 - 4
DM Responses f o r S t a t i c Two-Objective Combined Problem
- 1 3/8
+ 1.5
- 2 3/4
- 1.5
- 2 118
0
- 2
0
- 2 1/4
- 1
) , i t i s n e c e s s a r y t o know t h e p r e f e r r e d t r a d e - o f f r a t e hY2.
Since t h e
*
s o l u t i o n o f t h e surrogate worth f u n c t i o n gives t h e p r e f e r r e d value f2 , i t as a f u n c t i o n o f f 2 i n o r d e r t o f i n d AY2This
would be necessary t o know
c o u l d be done by p e r f o r m i n g a r e g r e s s i o n on t h e v a l u e s o f f p and h12 f o u n d i n step 3 o f t h e previous algorithm, b u t t h i s could introduce e r r o r s which may be s i z a b l e .
I n some cases, t h e v a l u e o f f
may be known as a f u n c t i o n o f
h12
2 i n the non-inferior region
d i r e c t l y f r o m t h e necessary c o n d i t i o n s
used i n s o l v i n g s t e p 3. F o r t h e s e problems one c o u l d t h e n f i n d t h e i n v e r s e multiplier
= h12(fl). F o r non-convex problems, u s i n g t h e 12 ( f 2 ) ; t h u s approach t o r e v e r t t o t h e d e c i s i o n space may cause some o f t h e
preferred
s o l u t i o n s t o be
function
h
missed due t o t h e p o s s i b i l i t y o f d u a l i t y gaps.
However, i f t h e o t h e r
a l g o r i t h m s p r o v e i m p o s s i b l e t o s o l v e , t h i s approach
can be used anyway t o
g e t one s o l u t i o n .
s t e p s 5 and 6 below.
Finding
Xl2(f2)
would r e p l a c e
76
'
This algorithm's
vc
.
5
SY
accuracy i s guaranteed o n l y f o r problems i n which f2 i s a one-to-one
t h e t r a d e - o f f f u n c t i o n i s n o n - l i n e a r and convex ( w h e r e function o f
h12
Lases, t h e d e v e l o p n i e n t o f t h e w o r t h f u n c t i o n guaranteed t o be v a l i d . trade-off rate
For these
over t h e range o f f2 i n t h e n o n - i n f e r i o r s e t ) .
*
x12
The s o l u t i o n o f
W12
WI2(xl2)
as a f u n c t i o n o f A12 =
is
0 gives the preferred
A
w h i c h c a n t h e n be u s e d i n a p a r a m e t r i c p r o c e d u r e .
f l o w c h a r t f o r t h i s algorithrri i s given i n f i g u r e 4-5. 4.5.1
The Algorith!! S t e p s 1 t h r o u g h 4 a r e t h e same as i n t h e S t a t i c
T w o - o b j e c t i v e Com-
b i t i e d a l g o r i t h m and w i l l n o t b e r e p e a t e d h e r e . S t e p 5:
D e v e l o p t h e s u r r o g a t e w o r t h f u n c t i o n W12(h12) a s
follows:
* -
* ^
F o r each s e t o f v a l u e s >,12, f ( > ) , f (A ) a t w h i c h t h e w o r t h i s d e s i r e d , 2 12 1 12 ask t h e DM f o r h i s assessment o f how much x12 a d d i t i o n a l u n i t s o f o b j e c t i v e f1 a r e w o r t h
i n r e l a t i o n t o one a d d i t i o n a l
unit o f objective
* ^
f 1 ( A 1 2 ) u n i t s o f fl.
u n i t s o f f 2 and
f2 g i v e n
H i s assessiiient i s t h e n t h e
The s e a r c h t e c h n i q u e s d e s c r i b e d i n s e c t i o n 4 . 3 . 5
v a l u e o f W12 a t h 1 2 .
are
u s e d t o d e t e r m i n e a t w h i c h v a l u e s o f x 1 2 t h e w o r t h s h o u l d be f o u n d . Step 6:
The
preceeding
sIep
is
repeated
until
the
entire
i n d i f f e r e n c e band i s f o u n d . Step 7 :
Find the preferred decision vector
x
by solving:
* MIN
fl(x)
s.t.
5
tl
+ h12
f2(&)
T
T h i s i s t h e same p r o b l e m a s s t e p 3 w i t h
replaced by
* A12;
thus l i t t l e
a d d i t i o n a l c a l c u l a t i o n i s needed. Step 8:
A sensitivity
a n a l y s i s c o u l d be performed here t o d e t e r -
iiiine t h e p o s s i b l e e f f e c t s o f i m p l e m e n t i n g t h e p r e f e r r e d s o l u t i o n . Step 9:
Stop!
4.5.2 % n p l e P r o b l e m C o n s i d e r t h e same p r o b l e m a s i n s e c t i o n 4 . 4 . 2 f 2 i s a one t o one f u n c t i o n o f
developed -
~
- 11
i
x1 = =
of
'12
i n the f i r s t
segment o f t h a t example
~ and~ x 2 / = 32 x 1 2 / 4 .
12
as f o l l o w s .
/4 f o r a n y v a l u e o f
( i n step 3)
S u b s t i t u t i n g back i n t o
x12
0.
I t c a n be shown t h a t
The n e c e s s a r y c o n d i t i o n s showed t h a t
f2(x) g i v e s
f2(A12)
Thus f 2 i s a o n e - t o - o n e f u n c t i o n
and t h e S t a t i c T w o - o b j e c t i v e M u l t i p l i e r a l g o r i t h m i s a p p r o p r i a t e .
S i n c e s t e p s 1 t h r o u g h 4 a r e t h e same a s i n s e c t i o n 4 . 4 . 2 ,
we c o n t i n u e w i t h
77
-
Yes Solve Min
s.t.
fl(x) + E
XT2f2(&)
T
. I
1
I S e n s i t i v i t y Analysis
F i g u r e 4-5.
Flowchart f o r S t a t i c Two-Objective M u l t i p l i e r Algorithm.
step 5. Step 5:
The s u r r o g at e worth f u n ct ion i s developed; assume t h a t t h e These a r e l i s t e d a s a
DM's assessments a r e t h e same as in s e c t i o n 4 . 4 . 2 . function cf A 1 2 i n t a b l e 4-5. Table 4 - 5
DM Responses f o r S t a t i c Two-Objective Mu1 t i p 1 i e r Problem A l2
W12% 2 )
0.5
+ 1.5
1.o
- 1.5
0.75
0
0.7
0
0.6
t l
0.8
- 1
The g r a d i en t search type algorithm was used t o determine t h e values of
Xl2
a t which t h e w o r t h was found.
Linear i n t e r p o l a t i o n was used f o r
those n o n - i n f e r i o r values n o t found i n t a b l e 4-3. * Step 6 : The i n d i f f e r e n c e band i s found t o be . 7 i X 1 2 Step 7 :
Solve
2
2
*
MIN x1 + 2 x 2 t X12(x1
t
3 x2).
*
Taking t h e g r a d i en t and s e t t i n g i t equal t o zero fo; values of t h e d eci s i o n v a r i a b l e s a r e found t o be
*
.
.75
$
x1
X12 =
=
-3/8,
. 7 5 , pre fe rre d
*
x2
=
-
9/16.
This can be repeated f o r o t h e r values of x 1 2 in t h e i n d i f f e r e n c e band. Thus approximately t h e same r e s u l t i s obtained with t h i s algorithm a s with t h e s t a t i c two-objective combined algorithm. 4.6
SUMMARY This c hap t er has presented some modification in computational method
from t h e version of t h e s u r r o g at e worth t r a de -off method described inc ha pt e r 3 t o make i t more g en er al l y a p p l i c a b l e and e a s i e r t o use. Three algorithms f o r implementing t h e SWT method
for the
static
two-objective c a se
were presented along with d i s cu s s i o n s of t h e i r a p p l i c a b i l i t y and simple examples of t h e i r use. The € - c o n s t r a i n t ( S T E ) algorithm i s a p p l i c a b l e t o The combined a l l problems b u t may be d i f f i c u l t computationally t o solve . (STC) algorithm can be applied t o non-linear problems with a probable savings i n t h e computation and only a s l i g h t l o s s of accuracy. The m ulti-
p l i e r (STM)
algorithm i s guaranteed only when t h e tra de -off
func tion
convex a n d n o n- l i n ear , b u t i s g e n e r a l l y t h e most e f f i c i e n t procedure.
is
O f course
, one should
keep i n mind t h a t i t i s d i f f i c u l t t o s t a t e
which algorithm i s b e s t f o r any given problem ; i t i s u p t o t h e a n a l y s t t o use h i s d i s c r e t i o n i n determining which one i s a ppropria te f o r h i s s p e c i f i c situation. The question of how well t h e mathematical equations in t h e o b j e c t i v e f u n c t i o n s r e p r es en t
society's true
objectives
is a
common
problem
in
modeling. For example, t o what e x t e n t does t h e number o f man-hours of usage adequately measure r e c r e a t i o n a l o b j e c t i v e s f o r a r e s e i v o i r ? These problems a r e not e x p l i c i t l y taken i n t o account in t h e SWT method; however, they can be somewhat ameliorated d u r i n g t h e process o f i n t e r a c t i n g w i t h t h e decision maker by i n s u r i n g t h a t he understands e x a c t l y what he i s deciding on.
I n general , one should e x e r c i s e
caution when using t h e SWT method
with o b j e c t i v e s f o r which measures a r e e i t h e r poorly defined o r mathematical equations u n av ai l ab l e. As i n a l l approaches t h e r e wi l l probably e x i s t c e r t a i n pathological For example, a n probleiiis in which none o f t h e algorithms a r e a p p l i c a b l e . i n a b i l i t y t o solve t h e Kuhn-Tucker co n d itions could lead t o t h e i n a b i l i t y
t o find
n o n -i n f er i o r
points.
Thus, one must be c a utious when
t h e s e algorithms t o perverse f u n ct i o n s .
The next
applying
chapter w ill apply t h e
SWT method t o dynamic problems. FOOTNOTES 1.
Note t h a t t h e
"
*
"
p r e f e r r ed values;
i s used t o denote both non-infe rior values a n d it
should
be c l e a r
from t h e
contex which i s
intended. 2.
See Wagner
[1969],
H i l l i e r a n d Lieberman
[1967],
Intriligator
3.
This was f i r s t proven by Ev er et t t-19631. Again see Ev er et t [1963], Lasdon [1968], or Gembicki [1973].
[1971], Taha [1971], o r any t e x t on optimization techniques. 4.
REFERENCES
~_I__.
1.
E v e r e t t , H . 111, "Generalized Lagrange M u l t i p l i e r Method f o r Solving Problems of O p t i m u m Allocation of Resources," Operations Research v o l . 1 1 , 1963.
2.
Gembicki, F . , "Vector Optimization f o r Control with Performance and Parameter S e n s i t i v i t y I n d i c e s , " P h . D . D i s s e r t a t i o n , Case Western Reserve Un i v er s i t y , 1963.
3.
H i l l i e r , F . S . and Lieberman, G . J . , Introduc tion
to
Operations Re-
4. 5. 6.
7.
search, Holden-Day, San Francisco, 1967. Intriligator, M.D., Mathematical Optimization and Economic Theory, Prentice-Hall Inc., Englewood Cliffs, N.J., 1971. Lasdon, L.S. ,"Duality and Decomposition in Mathematical Programming" _________ IEEE Transactions, vol. SSC-4, no. 2, 1968. Taha, H.A., Operations Research; An Introduction, The Macrnillan Company, N . Y . , 1971. blagner, H.M., Prjnciples of Operations Research with Applications to Managerial Decisions, Prentice Hall Inc., Englewood Cliffs, N. J., 1969.
Chapter 5 THE SWT METHOD FOR DYNAMIC TWO-OBJECTIVE PROBLEMS
The preceeding ch ap t er s have attempted t o solve problems where t h e o b j e c t i v e s a r e s t a t i c f u n ct i o n s of a v ec tor of de c ision v a r i a b l e s . This chapter will consider t h e a p p l i c a t i o n o f t h e SWT method t o dynamic systems ?/here t h e o b j e c t i v e s a r e
of the system a s well a s
f u n ct i o n s of t h e s t a t e
of t h e d e c i s i on ( c o n t r o l ) v a r i a b l e s , with both s t a t e s and de c isions time I t i s assumed t h a t t h e s t a t e of t h e systeni a t any time i s a dependent. known f u n c t i o n of time and t h e previous s t a t e s and d e c i s i o n s . The following notation w i 1 1 b
used:
Cn[O,tf]
i s the
s e t of a l l continuous func tions
from t h e closed i n t e r v a l [ o , t f ] i n t o Rn; x ( t ) i s t h e f i r s t d e r i v a t i v e of x with r e sp e c t t o t h e independent v a r i a b l e t .
I t wil
be assumed t h a t t h e
ith
o b j e c t i v e can be formulated a s
follows: +
where
x(t)t C P I O , t f ]
iIf
ai(x(t),u(t),t) dt,
=
1,2,
..., n
i s a v ect o r of s t a t e v a r i a b l e s , u ( t ) t - C r [ O , t f ]
vector of c o n t r o l v a r a b l e s , and dent v a r i a b l e
i
is a
tf i s t h e terminal value of t h e indepen-
which wi l l be considered
fixe d and the saine f o r a l l objec-
The i n t e g r a l term can be viewed a s summing the c o n t r i b u t i o n s ( a . )
tives.
t o t h e o b j e c t i v e a l l along t h e t r a j e c t o r y , while
(li
i s t h e c ontribution
t3
t h e o b j e c t i v e of t h e f i n a l s t a t e of t h e system. Note. however, t h a t form with
f i s c a l a r valued.
may be non-commensurable.
not a l l dynamic Droblems can be p u t i n t o t h i s
For example, t h e values of a i a t d i f f e r e n t t such a s t h e i n t e r e s t r a t e
Plultiplying f a c t o r s
a r e coniinonly used t o commensurate t h e values of g e n e r a l , however,
ai
a t different t
.
In
a i a t each t w o u l d be a d i f f e r e n t non-commensurable ob-
j e c t i v e a n d t he problem would become a n i n f i n i t e - o b j e c t i v e problem. There problems.
a r e various types of c o n s t r a i n t s which may a r i s e in dynamic
End p o i n t c o n s t r a i n t s of t h e form g ( x ( t f ) , t f ) : 0 w ill be inc lu-
ded i n t h i s formulation. be
P a t h c o n s t r a i n t s , such a s N(x(t),u(t),t)s 0 can
a i s o included in the following
s t r a i n t s o f t h i s form
development1 , b u t problems withcon-
tend t o be r a t h e r d i f f i c u l t t o a c ttia lly s o l v e ; f o r
t h e sake of c l a r i t y , they wi l l be avoided in t h i s formulation.
Also note
t h a t problems where tf i s a co n t r o l v a r i a b l e ( e . g . minimum time problems) 81
can be handled by modifying t h e necessary c onditions f o r a minimum. This ch ap t er wi l l show t h e r e l a t i o n s h i p between t h e s t a t i c and dynamic problems.
The dynamic problem wi l l be p u t i n t o
a n d t h e Lagrange m u l t i p l i e r s f o r t h es e c o n s t r a i n t s
r e p r e s e n t t h e elements of t h e t r ad e- o f f r a t e m a trix.
& - c o n s t r a i n t form
w ill be shown t o again Algorithms t h a t a r e
analogous t o t h e s t a t i c cas e wi l l be presented f o r the s o l u t i o n of two objective
dynamic problems,
including sample problems
to i l l u s t r a t e their
use.
5.1
INTRODUCTORY A P I A L Y S E The general m u l t i p l e
o b j e c t i v e dynamic
problem can be w r i t t e n in
vector n o t a t i o n a s :
where
E, a,
and 9 a r e t h e n-vectors whose elements
are f . , a i ,
The f e a s i b l e d eci s i o n space T
and
1
respectively .
$.,
wi ll be a subse t of
w i l l thus be complicated ( o r impossible)
t o work w ith.
again look a t t h e f e a s i b l e f u n ct i o n space
S
=
Cr[O,tf] and However, one can
{-f i g ( t ) =
v(x(t),u(t),t)
with ~ ( 0 a)s given and g ( x ( t f ) , t f ) s 0). Note t h a t S i s a subse t of R n . Since t h e s u r r o g at e worth t r ad e- o f f method ope ra te s prim a rily in t h e funct i o n a l space S , t h i s method wi l l be e a s i l y adaptable t o dynamic
problems.
The n o n - i n f e r i o r s e t wi l l again be on t h e boundary of S, and can be re pre sented by t h e t r ad e- o f f f u n c t i o n , with i t s slope represented by t h e t r a d e off r a t e functions. time and can t h e r e f o r e case.
These wi l l a l s o be s c a l a r valued a n d independent be determined
Thus t h e only d i f f e r e n c e
occurs i n t h e d eci s i o n space;
and u t i l i z e d just a s i n t h e
between t h e s t a t i c
t h e f u n ct i o na l space,
of
static
and dynamic problems S, i s i d e n t i c a l in
both c a s e s . 5.2
DYNAMIC PROBLEMS IN €-CONSTRAINT FORM _____
The two o b j e c t i v e dynamic form d i r e c t l y a s f o l l o ws :
problem
can be p u t i n t o
€-constraint
83
However, since the constraint in this form ing substitution is made. Define a new state variable y such y(Q) = 0 .
The problem then becomes:
Thus the constraint is now included as an end point constraint and can be solved by any o f the available methods.2 It will now be shown that the Lagrange multiplier for the E~ constraint (when it is binding) is the value o f the trade-off rate function at f, = C , . First form the Lagrangian:
where A is a scalar Lagrange multiplier for the E~ constraint, is an mvector o f multipliers for the end point constraints, q ( t ) i s a p-vector o f Lagrange multipliers (which are functions o f time) for the system equa-
v 2 ( t ) i s a s c a l a r Lagrange m u l t i p l i e r ( a l s o a func-
tion constraints, and
t i o n o f time) f o r t h e system equation able y .
I t can now be seen t h a t
c o n s t r a i n t s f o r t h e new s t a t e v a r i -
aL/aa2 =
- X .
As in t h e s t a t i c c a s e , only those values of
F2
points i n t h e n o n - i n f er i o r region wi l l be considered. s t r a i n t must be binding. ftf
a,(K(t),!(t),t)
dt
@z(K(tf)) =
f2
which correspond t o Thus, the
Again, when the optimum i s found,L =
f;.
=
t: con2 $ l ( ~ ( t f ) +)
Since t h e t - c o n s t r a i n t i s binding,
E~
=
JO
y(tf)
f
.
Thus A
=
- af*/af
f o r tlie c 2 c o n s t r a i n t i s r e a l l v X 1 2 ( c 2 ) , evaluated a t f 2 5.3
=
1
and t h e Lagrange m u l t i p l i e r 2 i . e . , t h e tra de -off r a t e func tion
'2 .
DVPlAPlIC TWO-OBJECTIVE c-CONSTRAINT (DTE) ALGORITHM This s e c t i o n wi l l p r es en t
algorithms de sc ribing t h e computational
procedures f o r solving m u l t i p l e o b j e c t i v e dynamic problems which a r e a n a l -
ogous t o t h e s t a t i c al g o r i t h ms . The f i r s t of the se uses t h e E-c onstra int approach f o r both f i n d i n g t h e n o n - i n f er i o r points a n d f o r r e v e r t i n g t o t h e d e c i si o n space t o f i n d t h e p r ef er r ed d eci sion v e c t o r . Note t h a t a l l o f t h e computational e f f i c i e n c i e s developed i n t h e func tiona l space in c ha pte r 4 will be a p p l i c a b l e t o dynamic problems. I n p a r t i c u l a r t h e use of 1d12 a s a f u n c t i o n of f z , t h e methods f o r f i n d i n g l i m i t s on f 2 , t h e avoidance of A r e g r e s s i o n s a n d t h e assumption of a c o n s i s t e n t DM w ill be u t i l i z e d . flowchart f o r t h i s algorithm i s presented i n f i g u r e 5-1. 5.3.1
-Algorithm Step 1 :
Find t h e minimum value f o r f 2 by solving:
The s o l u t i o n t o t h i s problem i s f Z M I N. St e p 2:
Find t h e maxinium v al u e f o r f 2 by solving:
85
Figure 5-1.
Flowchart f o r Dynamic Two-Objective & -Constra int Algorithm.
Continued next page.
MULTIOBJEC7’IVE OPTIMIZATION I N WATER RESOURCES SYSTEMS
No
Solve Min
I -
b l ( x (t,))
F i g u r e 5-1.
+
i n tf
Continued
al(x(t),E(t),t)dtl
87
O Y N A M f C TWO-OBJECTI VE PROBLEMS
If the state vector &*(t) then f2,qAX
$,(x*(t,))
=
0
::
!3(L(tf)'tf)
-
and control vector g*(t) a2(<(t),c(t),t)dt.
+
solve this problem, I f there is more than
one state vector x*(t) and control vector i*(t) solving this problem, then f Z M A Xis the minimum value o f
$,(x*(tf))
Step 3: Set the ini-tial value
E~
+
':j
=
fZMAX - a where A > 0 .
a2(c(t),<(t)
,t)dt.
Step 4: Solve the problem $l(x(tf))
MIN
j.:f
+
al(x(t),u(t),t)dt
s.t. i(t)
=
x(x(t),u(t),t);
~ ( 0 )given
dt)
=
a2(x(t),u(t),t);
Y(O)
s(x(tf)tf) .Y(tf)
+
5
=
o
o_
02(X(tf))
:: €2
The general approach to solving this problem is to define the Hamiltonian: H(x(t),u(t),t) = a,(x(t),u(t),t) +d(t)-x(&(t),!L(t),t) + v2(t) . The necessary conditions for a minimum then become functions are omitted for clarity): 1)
aH/au
=
0
(the arguments o f the
The
f i r s t six
find u(t),i(t) to find
conditions are solved
as i n any optimal c o n t r o l problem t o
and
x12.
y ( t ) i n terms o f
Assume t h a t t h e
12'
Then s u b s t i t u t i n g
t2. tions,
Condition 7
can then be used
c o n s t r a i n t i s b i n d i n g , o r y(t,)+$,(x(t,))=
E~
y ( t f ) and
i-(tf)
t h s e q u a t i o n can be s o l v e d f o r
found from t h e f i r s t s i x
i12. If the
t h a n z e r o , t h e n t h e second p a r t o f t h e c o n d i t i o n (Al2
value
>
0)
condi-
i12 i: l e s s i s v i o l a t e d and
t h e assump i o n o f a b i n d i n g c o n s t r a i n t was t h e r e f o r e i n c o r r e c t ; t h u s 0
and t h e c o n s t r a i n t i s n o n - b i n d i n g .
A12
t h e s o l u t i o n i s i n t h e i n f e r i o r r e g i o n , t h i s s o l u t i o n w i l l be i g n o r e d .
i,,i s
t 2 . The v a l u e
f:(f2),
then the value o f
Xl2
back i n t o
f2
=
i ( t ) and & ( t ) .
I f t h e c2 c o n s t r a i n t was b i n d i n g i n s t e p 4, t h e n
S t e p 5:
.
at
which corresponds t o t h e s o l u t i o n o f t h e minimiza-
t i o n problem, can be found by s u b s t i t u t i n g
A
A,2(f2)
If
solution
i s g r e a t e r t h a n z e r o , t h e n t h e a s s u m p t i o n was c o r r e c t and t h e i s i n the non-inferior region.
=
S i n c e a n o n - b i n d i n g c o n s t r a i n t means
E~
=
E~
-
O t h e r w i s e l o w e r r2 t o t h e v a l u e a t t a i n e d b y f 2 a t t h e s o l u t i o n t o s t e p
4 - set
f 2
=
y ( t f ) + d2(X(tf)),
step 4 w i t h the value changes c o n d i t i o n
7
=
where y ( t ) and i ( t ) a r e t h e v a l u e s f o u n d i n 0
substituted.
Note t h a t changing
r e t u r n t o s t e p 3; o t h e r w i s e c o n t i n u e
If
E~
i s g r e a t e r t h a n f2MIN
o n t o s t e p 6.
D e v e l o p t h e s u r r o g a t e w o r t h f u n c t i o n WI2(f2)
S t e p 6:
only
so l i t t l e e x t r a work i s
o f t h e necessary conditions,
r e q u i r e d t o o b t a i n more n o n - i n f e r i o r p o i n t s .
E~
e x a c t l y as i n
t h e s t a t i c case; r e c a l l t h a t t h i s can b e a c h i e v e d s i n c e f2 i s s c a l a r valued.
?,
a t w h i c h t h e w o r t h i s d e s i r e d , a s k t h e DM f o r h i s a s s e s s -
ment o f how much
A 1 2 ( f 2 ) a d d i t i o n a l u n i t s o f o b j e c t i v e fl a r e w o r t h i n r e -
F o r each v a l u e
l a t i o n t o one a d d i t i o n a l u n i t o f o b j e c t i v e *
f2, g i v e n
f2 u n i t s o f
f 2 and
A
fl(f2)
u n i t s o f fl.
-10 t o
+10
H i s a s s e s s m e n t i s made o n a n o r d i n a l s c a l e , s a y f r o m
w i t h z e r o s i g n i f y i n g e q u i v a l e n t w o r t h ; t h i s assessment i s
v a l u e o f W12 a t f p .
The s e a r c h t e c h n i q u e s d e s c r i b e d i n s e c t i o n 4 . 3 . 5
used t o determine a t which v a l u e s o f f2 t h e w o r t h should be found.
the are
Step 7: The preceeding step is repeated until the entire indifference band is found. * (t) and control Vectors Step 8: Find the preferred state vectors * * * u (t) by solving step 4 with E~ rep aced by f2 for each f2 in the indifference band:
x
Since the necessary conditions 1 through 6 are the same as in step 4, they * do not have to be resolved. A l s o the constraint must be binding since f2 must correspond to a non-inferior point. Thus, little extra computation i s * necessary to revert to the decision space. If there i s more than one f2 in step 7, then there is more than one preferred solution, and step 8 must be * repeated for each f2 in order to find all o f the preferred solutions; some other criteria must then be introduced to decide among them. Step 9: A sensitivity analysis could be performed to determine the possible effects of implementing the preferred solution. Step 10: Stop! In most real problems, it will be impossible to analytically solve the siniul taneous boundary value differential equations in the necessary conditions of steps 1 , 2, 4 and 8 . However, there are numerical approximation techniques available wh ch can often be used, e.g , quasilinearization, gradient methods, and ne ghboring extremal methods 3 5.3.2
Sample Problem The use of this algor thm will be illustrated w th the following ex-
ample: Example 5-1:
1
M I N x(1)
+
u2(t) dt 0
MIN
x(1)
1
(u(t) - 5)2 dt
t
0
s.t. ;c(t)
=
u(t)
;
x(0)
=
10
90 where
MULTIOBJECTIVE OPI'IMIZATION IN WATER RESOURCES SYSTEMS and
x
are
u
C1 [0,1].
F
F i n d f2MINby s o l v i n g :
Step 1 :
i'
x(1) +
MIN
-
5)
x(0)
=
(U
2
dt
JO
s . t . ic
u
=
;
10
H = (u - 5)
The H a m i l t o n i a n f o r t h i s problem i s
2
+
v u
The necessary c o n d i t i o n s a r e : 1)
aH
2)
c , = - - aH-
2 ( u - 5 ) + v =
-
au
-
0
ax
i
3)
x(0)
;
=
tion 1 giving
u(t)
1
=
10
v(t) = 1
.
9/2
=
v(1)
;
=
The second c o n d i t i o n i m p l i e s
0
w h i c h can be s u b s t i t u t e d i n t o c o n d i u ( t ) i s a c o n s t a n t , c o n d i t i o n 3 can be
Since
x ( t ) = 10 + 9 t / 2 .
easily integrated t o give
Thus t h e s o l u t i o n
to
this
problem i s fZMIN = 14.75. Step 2:
Find
MIN
fZMAX by s o l v i n g :
j1
+
x(1)
u2 d t
0
s.t.
i
=
; x(0)
u
The H a m i l t o n i a n f o r t h i s problem i s
H
10
=
= u
2
+ v u
.
The necessary c o n d i t i o n s a r e :
l )
aH au
2)
;
3)
i
2 u
=
= =
- aH ax
-
u
+ =
; x(0)
The second c o n d i t i o n i m p l i e s tion 1 giving 10 - t / 2 .
v
u ( t ) = - 1/2.
0
=
0
v(1)
; =
10
v(t)
=
1
=
1
w h i c h can be s u b s t i t u t e d i n t o c o n d i -
Condition 3 i s then i n t e g r a t e d t o g i v e x ( t )
These v a l u e s o f x ( t ) and u ( t ) a r e s u b s t i t u t e d i n t o f 2 =
x(1)
=
+
91
D Y N A M I C TWO-OBJECTIVE PHUBLEMS
Step 3:
S et t h e i n i t i a l value f o r
=
E~
39.0; f o r o t h e r i t e r a t i o n s
A will be 1 . 0 .
Step 4 :
Reformu a t e t h e problem in & - c o n s t r a i n t form:
MIN
fl
I
+
x(l
u2 d t
' 0
s.t.
i
=
u
;
y
=
(u
-
+
Y(1)
x(1)
x(0) 5f
=
10
y(0)
;
0
=
s €2 H
The Hamiltonian f o r t h i s problem i s
u2 + v
=
1
u +
v2(u - 5)
2
The necessary co n d i t i o n s a r e : 1)
aH
-
2u +
v1
2)
.jl
=
- -
-
3)
.j2
=
0
4)
i
=
u
5)
j
=
(u - 5)2
ax
0
2v2(u-5)
$1)
;
$1)
;
;
+
1
+
h12
=
x(0)
=
0
=
10
=
; y (0)
=
0
v l ( t ) = 1 + h 1 2 and v 2 ( t ) = h 1 2
Conditions 2 and 3 g i v e
.
S u b s t i t u t i o n i n t o co n d i t i o n 1 g i v es :
u(t)
=
-
(9 X l 2
1 ) / ( 2 + 2 h12)
I n t e g r a t i n g c o n d i t i o n s 4 and 5 g i v e s :
x(t) Y(t) Assume t h a t t h e
E~
= =
10
+ (9
(11
+
h12
Xl2)
2
- 1) t
/ ( 2 + 2 h12)
t /(2 + 2
h,2)2
c o n s t r a i n t i s binding s o t h a t :
Y(1)
+
x(1)
= E2
S u b s t i t u t i n g equations (2) and ( 3 ) i n t o ( 4 ) g i v e s : + (118 - 8 E ~ h) 1 2 + (159 - 4 (59-4 E ~ )
E
~
=)
0
For
t2
=
39.0 t h e s o l u t i o n i s
x~~
.0153; t h e n e g a t i v e r o o t f o r X 1 2 i s i g -
=
nored because t h i s would n o t meet t h e
X12
*
> 0 requirement.
f 1 ( 3 9 . 0 ) i s now
x 12 = .0153 i n t o t h e e x p r e s s i o n s f o r x ( t ) ( e q u a t i o n s ( 1 ) and ( 2 ) ) and s o l v i n g
found by s u b s t j t u t i n g
fl
=
x(1)
+
u2 dt;
the result i s fy(39.0)
and
u(t)
9.7557
=
JO
S t e p 5:
S i n c e t h e c o n s t r a i n t was b i n d i n g , s e t
E~
=
3 8 . 0 and go back
c2 = 1 4 . 0 ; t h e r e s u l t s
a r e summarized As a check xZ1 was found a t v a l u e s of f l c o r r e s p o n d i n g t o the v a l u e s i n column 2 of t a b l e 5-1; t h e e r r o r between A 1 2 and ' / A l 2 was l e s s t h a n .0001 i n a l l c a s e s . S t e p 6: The d e c i s i o n maker i s q u e s t i o n e d and i t i s assumed t h a t h i s t o s t e p 3.
This i s repeated u n t i l
i n t a b l e 5-1.
r e s p o n s e s a r e a s given i n t a b l e 5-2. The e x h a u s t i v e s e a r c h t y p e a l g o r i t h m was used t o d e t e r m i n e the v a l u e s of
f2
a t which t h e worth was found.
L i n e a r i n t e r p o l a t i o n was
used
t h o s e n o n - i n f e r i o r v a l u e s n o t found i n t a b l e 5-1. Table 5 - 1 R e s u l t s of Dynamic Two-Objective E - C o n s t r a i n t Problem ( S t e p 5 )
*
52 ( f 2 )
f2
fl (f2)
15.0
30.00
9.00
16.0
24.82
3.47
17.0
22.00
2.33
18.0
19.97
1.77
19.0
18.38
1.43
20.0
17.09
1.18
21 . o
16.00
1 .oo 0.86 0.74
22.0
15.07
23.0
14.28
24.0
13.59
0.64
25.0
12.98
0.56
26.0
12.46
0.49
27.0
12.00
0.43
28.0
11.60
0.37
29.0
11.25
0.32
30.0
10.95
0.28
for
93 Table 5-1 ( C o n t ’ d )
X12(f2)
f2
31 .O 32.0
10.69
0.24
10.47
0.20
33.0
10.28
0.17
34.0
10.13
0.14
35.0
10.00
0.11
36.0
9.90
0.08
37.0 38.0
9.83 9.78
39.0
9.76
0.06 0.04 0.02
Table 5
-
2
UM Responses f o r Dynamic Two-Objective € - C o n s t r a i n t Problem
S t e p 7: from t a b l e 5-2. c i s i o n maker. S t e p 8:
f2 15.0
W12(f2) - 7
16.0
- 6
17.0
- 5
18.0
- 4
19.0
- 2
20.0
- 0.5
21 . o
0
22.0
+ 0.5
20.5
- 0.5
21.5
f
0.5
=
21.0 a s can be seen
One p r e f e r r e d v a l u e i s
f
* 2
Note t h a t t h e i n d i f f e r e n c e band i s v e r y small f o r t h i s
hY2 =
s u b s t i t u t e d i n t o e q u a t i o n s ( 1 ) and ( 2 ) t o g e t the =
10
f
2t
de-
*
The v a l u e f 2 = 2 1 . 0 can be used d i r e c t l y i n p l a c e o f
e q u a t i o n ( 5 ) t o g e t the p r e f e r r e d t r a d e - o f f r a t e
x*(t)
directly
and p r e f e r r e d c o n t r o l v a r i a b l e
E~
in
t h i s i s then
1.O;
preferred s t a t e variable
u*(t)
v a l u e of o b j e c t i v e f l can a l s o be found t o be 1 6 . 0 .
=
2
.
The p r e f e r r e d
94
MUL7IOBJECTIVE OPTilvlIZATION IW WATER RESOURCES SYSTEMS
5.4
DYNAMIC TWO-OBJECTIVE COMBINED (DTC) ALGORITHFI
One o f t h e
m a j o r problems w i t h t h e
t-constraint algorithm i s
To l o w e r
t h e minimizations r e q u i r e d a r e o f t e n q u i t e complicated t o solve. the computational
e f f o r t s required,
m u l t i p l i e r approach f o r t h e f i r s t [-constraint space.
f '
If
t)
a l g o r i t h m i s developed
segment o f t h e
s o l u t i o n procedure;
the
approach v i l l s t i l l be used f o r t h e r e v e r s i o n t o t h e d e c i s i o n
x12
a,(x(t),u(t),t)i
dt
i s m i n i m i z e d s u b j e c t t o t h e same system c o n s t r a i n t s ,
=
x(x(t),u(t),t),x(fl)
g i v e n , and g ( x ( t f ) , t f )
Maximum v a l u e s f o r
setting
h12
>
0
t h e s t e p s o f f i n d i n g l i m i t s f o r c2 can be
guarantees a n o n - i n f e r i o r p o i n t , avoided.
s 0,t h e n t h i s i s e q u i v a -
= O ~ / A ~ .S i n c e
l e n t t o t h e p a r a m e t r i c approach w i t h
can be found, as i n t h e s t a t i c case, by
A12
p u t t i n g t h e problem i n c - c o n s t r a i n t f o r m and s o l v i n g i t w i t h f21,,I,.l
using the
J u s t as i n t h e s t a t i c case one can d e f i n e a new o b j e c t i v e :
+
-~ x(
an
that
E~
r e p l a c e d by
where fZMI,{i s f o u n d as i n t h e p r e v i o u s a l g o r i t h m ; t h e m u l t i p l i e r c o r -
r e s p o n d i n g t o t h e c2 c o n s t r a i n t i s t h e n x ~ ~ ~ , ,However, ~ ~ . it i s f e l t t h e need f o r
XlZHAX
computational
burden.
i s n o t l a r g e enough t o j u s t i f y t h e g r e a t l y If
A
~
i s n~ o t known, ~ , one ~c o u l d ~ keep
that
increased increasing
A , ~u n t i l two c o n s e c u t i v e v a l u e s g i v e t h e same n o n - i n f e r i o r p o i n t . S i n c e i t i n v o l v e s one l e s s c o n s t r a i n t , t h i s method s h o u l d t o s o l v e t h a n u s i n g t h e E - c o n s t r a i n t approach. proach a r e t h e same
as f o r t h e
be s i m p l e r
The l i m i t a t i o n s o f t h i s ap-
s t a t i c case; i t i s s u b j e c t t o i n a c c u r a c i e s
f o r problems where t h e t r a d e - o f f f u n c t i o n i s non-convex o r l i n e a r . same r e a s o n i n g as i n t h e s t a t i c case
(see s e c t i o n 4.3.1),
By t h e
t h e use o f t h i s
method i s n o t recommended f o r l i n e a r problems.
However, i t may be used i n
o t h e r cases w i t h h o p e f u l l y
A flowchart o f t h i s
small inaccuracies.
r i t h m i s p r o v i d e d i n f i g u r e 5-2. 5.4.1
The A l g o r i t h m
x12
Step 1 :
Set
Step 2:
S o l v e t h e f o l l o w i n g problem: PIIN
bl(x(tf))
=
h12
+
' O
i12+2(x(tf))
+ ~,,a,(x(t),u(t),t)i
dt
+
11'
ia,(x(t),u(t),t))
algo-
95
11 YN/IiMI I' 'I'WO-0RJKC''T T'JE PFOBLEMS
,
I-
x*(t), ~
-,
,*(t),fl*,
fZ*
Sensitivity Analysis
Figure 5-2. Flowchart for Dynamic Two-objective Combined Algorithm.
MULTIOHJECI'I V E OPT I N I Z A T I O N IPJ MAI'ER RESOURCES SYSTEMS
96
s.t. i(t)
=
x(x(t),u(t),t)
$l(X(tf).tf)
s
; X(O)
given
0
The general approach to solving this problem is to define the Hamiltonian: H(x(t),u(t),t)
=
+
al(r(t),u(t),t) vT -1
*
+
h12a2(x(t),g(t),t)
Y(x(t),u(t),t)
-
Again the arguments of the functions will be dropped for simplicity. necessary conditions for a minimum are:
3)
=
4)
$9
Y
= o
The
; ~ ( 0 )given ;
u
2
0
These are solved as in any optimal control problem to find i(t) and i(t) which can then be substitdted into the original objectives to find
For any value of A 1 2 there may be more than one solution x(t) and y(t); in * * that case there is more than one fl and f2 corresponding to the trade-off rate value Step 3: If it is felt that enough information has already been generated, then proceed to step 4. If not, chose a new value of h 1 2 0 and return to step 2. Step 4: Develop the surrogate worth function W12(f2). For each set * * * of values h I 2 , f1(h12), f2(h12! at which the worth i s desired, ask the DM for his assessment of how much h I 2 additional units of objective f, are * ^ worth in relation to one additional unit of f , given f2(h12) units of f2 2 * * and f 1 (A 12) units of fl. His assessment is then the value of W12 at f;(:12). The search techniques described in section 4.3.5 are used to determine at which values of f2 the worth should be found.
Step 5:
The p r e c e e d i n g
step i s repeated u n t i l t h e e n t i r e i n d i f f e -
rence band i s f o u n d . S t e p 6:
Find t h e preferred s t a t e vectors
x* ( t )
*
and c o n t r o l v e c t o r s
owing problem f o r each f 2 i n t h e i n d i f f e r e n c e band
ven
The c o n s t r a i n t w i l l be b i n d i n g s i n c e
*
f 2 must be i n t h e n o n - i n f e r i o r
s e t , so t h e i n e q u a l i t y c o n s t r a i n t can be r e p l a c e d by an e q u a l i t y .
T h i s can
be s o l v e d j u s t as i n t h e t - c o n s t r a i n t method by a p p l i c a t i o n o f t h e n e c e s s a r y
*
I f t h e r e i s more t h a n one f 2 i n s t e p 5, t h i s s t e p must be r e -
conditions.
peated f o r each
one i n o r d e r t o d e t e r m i n e a l l o f t h e p r e f e r r e d s o l u t i o n s .
T h i s r e v e r s i o n t o t h e d e c i s i o n space does add a g r e a t d e a l o f c o m p u t a t i o n a l complexity,
but t h e e n t i r e a l g o r i t h m i s s t i l l simpler computationally than
the [-constraint algorithm. Step 7 :
A sensitivity
a n a l y s i s can be p e r f o r m e d t o d e t e r m i n e
the
possible e f f e c t s o f implementing t h e p r e f e r r e d s o l u t i o n . Step 6: 5.4.2
Stop!
Sample Problem The use o f t h i s a l g o r i t h m w i l l be
i l l u s t r a t e d w i t h t h e same problem
as was used f o r t h e Dynamic Two O b j e c t i v e r - c o n s t r a i n t a l g o r i t h m i n s e c t i o n 5.3.2. Example 5 - 2 : I
MIN
f 2 = x(1)
+
(u(t)
-
5)’
dt
0
s.t.
i(t) x,u
Step 1 :
Set
x12
=
u(t)
c 1 [0,1]
E
=
1.0
; x(0)
=
10
MULT TOBcJECTIVE OPT iWMIZATION IN WAY'ER RESOIJRCES SYSTEMS
98 Step 2:
HIN ( 1 + h12) x ( 1 ) +
Solve
x
s.t.
u
=
; x(0)
1:
u2 + x12(u-5) =
2
dt
10
The H a m i l t o n i a n f o r t h i s problem i s H = u2 + h 1 2 ( u - 5 ) 2 + v1 u The necessary c o n d i t i o n s f o r a minimum a r e :
1)
aH
2)
+
=
-
3)
x
=
u
+
2u
-
au
aH ax
-
-
=
0
x(0)
;
Condition 2 implies u (t)
+ v1
2 Xl2(U-5) ;
Vl(l)
1 +
=
substituting into condition 1
hI2;
gives
Integrating condition 3 yields:
- 1 ) / ( 2 + 2A12).
( 9 AI2
x ( t ) = 10 + ( 9 A 1 2
x 12
1 +
=
10
=
vl(t)
0
=
- l ) t / ( 2 + 2 X12).
S u b s t i t u t i n g i n t o fl and f 2 y i e l d s : f;(A12)
=
(9 A12-1)2/(2+2 A12)2
f;(X12)
=
(11
For
= 1.0,
A12
-t
+
10
(gX12 - 1)/(2+2 X 1 2 )
+ A12) 2 / ( 2 + 2 Xl2)2 + 1 0 + fy(l.0)
16.0,
=
( 9 x 1 2 - 1 ) / ( 2 + 2 X12)
fi(l.0)
=
21.0
.
The problem i s s o l v e d f o r o t h e r v a l u e s o f
Step 3 :
A12
> 0 and t h e
r e s u l t s a r e summarized i n t a b l e 5 - 3 . Step 4:
-
The DM i s q u e s t i o n e d
i n t a b l e 5-4. Step 5: The r e s t value o f f
*
One p r e f e r r e d v a l u e i s f 2 = 21.0 as can be
o f the indifference 2
assume h i s responses a r e as
band
seen
S o l v e t h e problem:
mi
~ ( i )+
jl
s.t.
x
=
u
: x(0)
j
=
(U-5y
y(1)
+ x(1)
u2
The H a m i l t o n i a n f o r t h i s problem i s The necessary c o n d i t i o n s a r e :
dt 10
=
; y(0) $
directly.
c o u l d be f o u n d by q u e s t i o n i n g t h e D M a t
near 21.0.
Step 6:
given
=
0
21.0
H
=
u
2
+ v 1 u + v 2( u - 5 )
2
.
5 - 3
TABLE
R e s u l t s of Dynamic T w o - O b j e c t i v e Combined Problem ( S t e p 3 )
.25
10.75
30.75
.5
12.53
25.86
.75
14.34
22.91
1.o
16.00
21 .oo
2.5
22.50
16.79
5.0
27.11
15.44
7.5
29.21
15.10
10.0
30.41
14.96
TABLE 5 - 4
DM Responses f o r Dynamic T w o - O b j e c t i v e Combined Problem f2
bJl 2 ( f 2 )
14.96
- 10
15.10
- 6.5
15.44
- 6
16.79
- 5.5
21 .oo
0
22.91
t l
1)
;n* 3H
-
2 u + v1 + 2 y ( u - 5 )
2)
\i,
=
aH
3)
c2
=
0
4)
x
=
u
5)
j
=
(U-5)(
6)
y(1) + x(1)
0
-
ax
v2(l)
; ;
$1)
;
x(0)
0 1 + XI2
x12 10
; y(0) =
=
= =
=
=
0
21.0
These e q u a t i o n s can be s o l v e d as i n t h e example i n s e c t i o n 5.3.2. t i o n i s found t o be x * ( t )
=
10
+
2 t , u * ( t ) = 2, f *1
=
16.0, f;
=
The s o l u 21.0
.
T h i s s o l u t i o n method was much s i m p l e r t h a n t h e dynamic t w o - o b j e c t i v e s - c o n s t r a i n t method.
The l a t t e r
s o l u t i o n of a
required t h e
n o n - i n f e r i o r p o i n t found,
while t h i s
qua dra tic equation f o r each
approach required on1.y a d i r e c t sub-
s t i t u t i o n . The d i f f e r e n c e i n computational complexity i s even more pronounced f o r
more complicated problems.
f u n c t i o n i s convex and n o n - l i n ear , method.
Since in t h i s there
problem t h e
tra de -off
i s no l o s s of accuracy with t h i s
The r ev er s i o n t o t h e d eci s i o n space r e q u i r e s more e f f o r t with t h e
dynamic two-objective
combined algorithm,
b u t i t does not o f f s e t t h e gain
in t h e f i r s t segment. 5'5
DYFIAFIIC TWO-OBJECTIVE MULTIPLIER (DTII) ALGORITHA ~
I t is the decision
obvious t h a t t o use space would
t h e m u l t i p l i e r approach f o r re ve rsion t o
make t h e computation even e a s i e r .
*
In
orde r t o
accomplish t h i s , t h e p r ef er r ed t r ad e- o f f r a t e X 1 2 corresponding t o t h e pre-
*
I n some problems t h e non-infe rior value of f 2 may be known as an a n a l y t i c f u n ct i o n of x 1 2 from the necessary c onditions One could then in s t e p 2 of t h e dynamic two-objective combined a lgorithm . * * f i n d t h e i n v e rs e f u n ct i o n X1 2 ( f 2 ) a n d thus know X 1 2 = X 1 2 ( f 2 ) . I n o t h e r c a s e s , a r e g r es s i o n could be performed on t h e values of X 1 2 and f 2 found in s t e p 2, although t h i s may introduce l a r g e e r r o r s . For non-convex problems, using t h e m u l t i p l i e r method f o r r e v e r t i n g t o t h e de c ision space may a l s o cause some of t h e p r ef er r ed s o l u t i o n s t o be missed due t o t h e p o s s i b i l i t y of d u a l i t y gaps. However, i f t h e o t h e r methods prove t o be impossible t o s o l v e , t h i s approach may be used anyway, re pla c ing s t e p s 4 and 5 below. Thus, t h i s a l g o r i t h m ' s accuracy i s guaranteed only f o r problems with nonl i n e a r , convex t r ad e- o f f functions(when f 2 i s a one-to-one func tion of A 1 2 over t h e range of f 2 in t h e n o n - i n f er i o r s e t ) . For the se c a s e s , the be st * way of f i n d i n g X 1 2 i s t o use t h e approach of developing the worth W12 a s a f u n c t i o n of A 1 2 . The s o l u t i o n of W 1 2 ( h 1 2 ) = 0 gives t h e pre fe rre d tra de -off * rate X12. A flowchart of t h i s algorithm i s given in f i g u r e 5-3. f e r r e d value f 2 must be known.
5.5.1
The Algorithm Steps 1 through 3
a r e t h e same a s in t h e dynamic two-objective com-
bined algorithm a n d wi l l n o t be repeated he re . Step 4: of values
Develop t h e s u r r o g at e w o r t h func tion W 1 2 ( ? t , 2 ) .
* ^
A12, f l ( x 1 2 ) , f 2 ( X I 2 ) a t which the worth i s d e s i r e d , ask t h e DM
f o r h i s assessment of how much
h12
a d d i t i o n a l u n i t s of o b j e c t i v e *
w o r t h i n r e l a t i o n t o one a d d i t i o n a l u n i t of and
* ^
f l ( X 1 2 ) u n i t s of f l .
The search
For e a c h s e t
* -
f 2 given
fl
are
A
f2(X 12) u n i t s of f 2
His assessment i s then t h e value of W 1 2 a t X 1 2 .
techniques described
i n s e c t i o n 4.3.5 a r e used t o determine a t
v Sensitivit
Figure 5-3.
Anal s i s
Flowchart f o r Dynamic Two-Objective M u l t i p l i e r Algorithm.
102
MULTIOB,TECT TVE OPTIMIZATION TN WATER RESOlJRCES SYSTEMS
which values of Step 5:
x 1 2 t h e worth should be found. The preceeding
step i s
repeated u n t i l t h e e n t i r e i n d i f f e -
rence band i s found. Find t h e p r ef er r ed s t a t e ve c tors 5- t ) and c ontrol ve c tors solving t h e following problem f o r each h Y 2 in the indifference
Step 6:
u*(t) by band.
+1 ( x ( t f ) )+ t
+ 2 ( x ( t f1)
a,(x(t)
s.t. i(t)
+
11'
{a l ( x ( t
,u(t), t )1 d t
x ( L ( t ) , L ( t ) , t ) ; ~ ( 0 )given
=
*
thus t h e Note t h a t t h i s i s i d e n t i c a l t o s t e p 2 with h 1 2 replaced by necessary c o n di t i o n s need not be resolved a n d l i t t l e e x t r a computation i s necessary . Step 7 :
a n a l y s i s could be performed t o determine t h e
A sensitivity
p o s s i b l e e f f e c t s of implementing t h e p r ef erre d s o l u t i o n . Step G :
Stop!
This procedure i s by f a r t h e e a s i e s t t o s olve . 5.5.2
Sample Problem This algorithm wi l l be i l l u s t r a t e d with the same problem a s the pre-
vious two a l g o r i t h ms . 5-2 ( s e c t i o n
Since s t e p s
1 through 3 a r e t h e same a s in example
5 . 4 . 2 ) they wi l l not be repeated here.
Step 4: The s u r r o g a t e worth f u n ct i o n W 1 2 ( ~ , 2 ) i s developed a n d i t i s assumed t h a t t h e DM's assessments a r e t h e same a s given in example 5-2. These a r e given a s a f u n ct i o n of h 1 2 i n t a b l e 5-5.
*
One p r ef er r ed value h 1 2 i s 1 . 0 a s can be seen d i r e c t l y . The
Step 5:
r e s t of t h e i n d i f f e r e n c e band could be found by questioning t h e DM a t values of
x12
near 1 . 0 . Step 6: Solve t h e problem: 2 x(1 ) +
FlIN
s.t.
i
=
1;
{ u 2 + (u-5)')
u ; x(0)
=
dt
10
Since t h e necessary co n d i t i o n s a r e t h e same a s in s t e p 2 , t o give
x*(t)
=
10 + 2 t ,
u*(t)
=
2,
*
they can be used
f ; = 21.0, f l = 16.0.
I t i s obvious
103 TABLE
5 - 5
DM Responses f o r Dynamic T w o - O b j e c t i v e M u l t i p l i e r Problem
52 - 10
10.0
7.5
-
6.5
5.0 2.5
-
6
-
5.5
+
1
1 .o
0
.75
f r o m t h i s s i m p l e example t h a t t h e dynamic t w o - o b j e c t i v e m u l t i p l i e r a l g o r i t h m provides a g r e a t saving i n computational e f f o r t . 5.6
SUMMARY
This chapter
has demonstrated t h e a p p l i c a t i o n o f t h e s u r r o g a t e w o r t h
t r a d e - o f f method t o dynamic problems. the
SLIT
method f o r t h e dynamic
w i t h discussions The
o f t h e i r a p p l i c a b i l i t y and
t - c o n s t r a i n t (DTE)
d i f f i c u l t t o solve
a great
6-constraint
s i m p l e examples
but the reversion t o the decision
savings i n computational e f f o r t .
space in
i n t h e f i r s t segment may i n -
The m u l t i p l i e r a l g o r i t h m
(DTrl)
i s guaranteed but effects a
only great
Thus, i f t h e & - c o n s t r a i n t a l g o r i t h m p r o v e s
o r impossible t o solve,
despite i t s inaccuracies,
prob-
f o r t h e f i r s t seg-
t e c h n i o u e may s t i l l p r e s e n t d i f f i c u l t i e s ;
t h e t r a d e - o f f f u n c t i o n i s convex and n o n - l i n e a r , the multiplier
algorithm
may be
t o a t l e a s t g e t an a p p r o x i m a t e answer.
c h a p t e r w i l l c o n s i d e r t h e use o f t h e two o b j e c t i v e s .
o f t h e i r use.
t o a l l problems b u t may be
saving i n computation
o f t h e m u l t i p l i e r technique
troduce inaccuracies.
difficult
implementing
presented, along
The combined (DTC) a l g o r i t h m can be a p p l i e d t o
ment ( f i n d i n q n o n - i n f e r i o r p o i n t s )
when
for
case were
( t h i s d i f f i c u l t y i s even more s a l i e n t i n dynamic
n o n - l i n e a r problems w i t h
a d d i t i o n , t h e use
algorithms
algorithm i s applicable
lems t h a n i n s t a t i c ones ) .
which uses t h e
Three
two o b j e c t i v e
SNT
The
used, next
method i n problems w i t h more t h a n
104 FOOTNOTES 1.
The m o d i f i c a t i o n s n e c e s s a r y f o r s u c h c o n s t r a i n t s c a n be f o u n d i n a n y optimal control
t e x t such as
B r y s o n and Ho
[1969],
o r A t h a n s and
F a l b [1966].
2.
A g a i n see B r y s o n a n d Ho [1969] o r A t h a n s and F a l b [1966!.
3.
Ibid.
___ REFERENCES
1.
Athans,
M.
and F a l b , P.
L., O p t i m a l C o n t r o l ;
_______ T h e o r y and I t s A p p l i c a t i o n s , M c G r a w - H i l l ,
2.
B r y s o n , A . E.,
a n d Ho, Y . C . ,
Waltham, Mass.,
1969.
An I n t r o d u c t i o n t o t h e
N.
Y., 1966.
A p p l i e d O p t i m a l C o n t r o l , G i n n and Co.,
Chapter
6
THE SWT METHOD FOR STATIC n-OBJECTIVE PROBLEMS The previous ch ap t er s have considered t h e a p p l i c a t i o n of t h e SWT meof m u l t i p l e o b j e c t i v e problems with only two
t h o d t o t h e s p eci al c l a s s
jectives.
These approaches wi l l be generalized in t h i s a n d t h e next
t e r t o problems with function
W.. 1J
n
objectives.
The d e f i n i t i o n of t h e surroga te
and p r ef er r ed s o l u t i o n s wi ll be modified,
of a n a c c u r a t e d eci s i o n maker wi l l be s t u d i e d . c i e s found f o r two o b j e c t i v e
problems wi ll be
obchapworth
a n d t h e assumption
The computational e f f i c i e n extended t o the
n objective
c a s e , and algorithms f o r t h e s o l u t i o n of the se problems w ill be presented. LURROGATE WORTH FUNCTIONS
6.1
Consider t h e w o b j e c t i v e problem in c - c o n s t r a i n t form: ~
Probl ern 6-1.: ~
~
MIN
fl(&)
s.t.
f(r)
$
5
X L T
.-
where f t Rn-'
i s t h e v ect o r 1 ( f 2 , f 3 , . . . , f n ) T and
t
Rn-'
i s t h e ve c tor
( I ? ,f 3 , ..., t n )T . I f a l l t h e c o n s t r a i n t s a r e binding, then t h e solution * n-1 t o t h i s problem produces t h e values of /i and f l a t f = 5 , where $ E R i s t h e v e c t o r of Lagrange m u l t i p l i e r s
-1 (h12,
x13,
. . . , A ~ a~n d) ~ f; i s
the
a t f i x ed values of t h e othe r o b j e c t i v e s . It is * . and f l wi l l depend on a l l of the values f k , k = 15 T 2 , 3 , . . . , n and n o t j u s t f . ; thus each A . i s a func tion of 2 = ( f 2 , f 3 ,.., f n ) , J * 1J and t h e n o n - i n f er i o r value of f l , f l , i s a l s o a func tion of f. n o n - i n f e r i o r value of
fl
obvious t h a t f o r any j,
A
A t t h i s p o i n t , a review function i s a p p r o p r i a t e .
of t h e
d e f i n i t i o n of
t h e surroga te worth
The value of t h e s u r r o g ate worth func tion W . . i s t h e de c i1J sion maker's assessment of how much ( s ay on a s c a l e from - 10 t o f 10 with
D e f i n i t i o n 6-1:
-.
zero s i g n i f y i n g i n d i f f e r e n c e )
he p r e f e r s
f o r one marginal u n i t of
given t h e
,..., f corresponding t o
f., J
tra ding x . . marginal u n i t s of f i 1J values of a l l of t h e objectives
. . Note t h a t W . . i 0 means t h a t the DM does 1J 1J W.. < 0 means t h a t t h e DM p r e f e r s not t o make 1J such a trade, and W . . = 0 implies i n d i f f e r e n c e . 1J Since t h e remainder of t h i s book d e a l s only with finding t h e surro-
fl
n
A.
p r e f e r making such a t r a d e ,
105
g a t e worth, t h e word " w o r t h " wi l l a l s o be used t o mean surroga te worth. I n order t o a s s e s s t h e worth W . a t a given value f . f o r t h e j t h o b 1J * J j e c t i v e , t h e DM will need t o know t h e values h . and f l corresponding t o 1J f . . However, f o r any given f . t h e r e wi l l be many d i f f e r e n t values of ), . J * J 1J a n d f l , depending on t h e values of f k , k = 2 , 3 , ..., n , k f j , a n d thus t h e r e w i l l be many d i f f e r e n t values of t h e worth. The re fore , t h e w o r t h cannot be considered a s a f u n ct i o n of
f . al o n e; W . must a l s o be a func tion of f. The J 1J a t f i s t h e DM's assessment of how much A l j ( f ) a dditiona l u n i t s
value of W lj of f l a r e w o r t h in r e l a t i o n t o one ad d i t iona l u n i t of f ., given t h e i - l s t J * component of f u n i t s of o b j e c t i v e f i ( f o r i = 2 , 3 , . . . , n ) and f , ( f ) u n i t s of One could a l s o extend t h e approach o f s e c t i o n 3 . 5 . 2 of considering W . fl. 1J a s a f u n c t i o n oc h l j ; i n t h i s extension W . w ill be a func tion of A Just 1J -1 . as i n t h e two o b j e c t i v e c a s e , t h i s can only be done when A i s a one-to-1 one f u n c t i o n of f or e l s e t h e w o r t h a t some values o f Al w ill not be unique.
I t i s p o s s i b l e a s a f i r s t approximation t o consider W . . a s a func tion of f . 1J J alone i n o r d e r t o narrow down t h e range of t h e pre fe rre d s o l u t i o n . 5.2
P R_ E F_E R_R E_D_SOLUTIONS ~ _
AND CONSISTENCY
x.. of t h e t r ad e- o f f r a t e matrix ( t h e matrix of a l l x.. 1J 1J j = 1 , 2 , . . . , n , i # j ) can be considered a func tion of f; t h e f i r s t
Any element for i ,
segment of t h e SWT method would produce
X.. 1J
a s a func tion of ( f l , f 2 , . . , f i - l ,
f i + l , . . . , f n ) b u t s i n ce f l i s a f u n ct i o n of
x.. 1J
region, - afi/;>:. J
If
f 2 , f 3 , . . , f n i n t h e non-infe rior can be considered a f u n ct i o n o f ( f 2 , f 3 ,.., f n ) = f. Since i .=. 1J
, E u l e r ' s chain r u l e f o r p a r t i a l d e r i v a t i v e s
;iz / - dy
(ax = ay
az
-
ax
)
-.
can be used t o g et t h e following r e l a t i o n s h i p between t h e x . . : 1J
S i m i l a r l y , using t h e f a c t t h a t ax/ay X1J ..(f) ~
=
=
l / s , i t follows t h a t :
l / AJ1 . . (f)
(2)
The g e n er al i zat i o n of t h e previous s e c t i o n shows t h a t W . . i s a funct i o n of
( f l , f 2 ,... , f i - l ,
of f 2 , f 3 , . . . ,f n ,
1J
fitl,
. . . ,f n ) . However, sinc e f 1 i s a func tion
Ld.. can be considered a func tion of
E.
When t h e r e a r e
n
o b j e c t i v e s t h e r e are1:* - n worth f u n c t i o n s W . . (f),i = 1 , 2 , ... ,n, j = 1J 1 , 2 , . . . , n , i # j . Each value W . . ( f ) i n d i c a t e s t h e D M ' s assessment of "how 1J f a r " A . . ( f ) i s from t h e negative of t h e r a t e of change ( i n t h e d i r e c t i o n of 1J -
f . ) o f t h e s o c i a l i n d i f f e r e n c e surface, a t t h e p o i n t i n t h e f u n c t i o n a l J . T h i s i s i m p o s s i b l e t o d e p i c t g r a p h i c a l l y , b u t can be space (f;(z);E) viewed as t h e g e n e r a l i z a t i o n o f f i g u r e 3-3. The a c t u a l
numerical value o f
r e l a t i v e assessments,
b u t when
equal z e r o , t h e s o c i a l
the worth functions a r e again o n l y
a l l o f t h e worth
i n d i f f e r e n c e and
f u n c t i o n s simultaneously
trade-off
f u n c t i o n s a r e tangent.
Thus t h e f o l l o w i n g d e f i n i t i o n s can be made.
___-__ D e f i n i t i o n 6-2:
i s d e f i n e d as any n o n - i n f e r i o r p o i n t
A preferred solution
* *
. . .n,
( f ;f ) i n t h e f u n c t i o n a l space such t h a t a l l W . .(-f*) = 0 f o r i = l , Z , 1 -1J
-D~e _f i _n i_t i_o n_ 6 - 3 :
A
preferred decision vector
d e c i s i o n v e c t o r &* such t h a t f,(x*) The r e l a t i o n s h i p s
=
f:
and
is
defined
x(&*)
=
as any f e a s i b l e
?*.
f u n c t i o n s w i l l now be d e r i v e d .
between t h e w o r t h
There a r e two assumptions t h a t must be made.
The f i r s t i s t h a t t h e t r a d e -
o f f r a t e x . . i s a good d p p r o x i m a t i o n t o t h e change which would o c c u r i n t h e 1J n o n - i n f e r i o r v a l u e o f f . when f . i s changed by one u n i t and a l l t h e o t h e r 1 J o b j e c t i v e s are h e l d constant. I n g e n e r a l t h i s w i l l o n l y be e x a c t l y t r u e i n t h e l i m i t as t h e i n c r e m e n t s go t o zero, t i o n as l o n g as valid,
Ifi
and
1
b u t w i l l be t r u e as an
>> l A i j l .
approxima-
I f t h i s assumption
i s not
t h e n t h e q u e s t i o n s asked o f t h e DM s h o u l d be m o d i f i e d so t h a t he i s
comparing c A . .
1J
that
I f j / >> 1
CA..
u n i t s o f f . w i t h c u n i t s o f f . where c > o i s a number such J' t h e change w h i c h would o c c u r i n t h e
i s a good a p p r o x i m a t i o n t o
1J n o n - i n f e r i o r value o f
o b j e c t i v e s a r e held constant.
f . when
f . i s changed b y c u n i t s and a l l t h e o t h e r J Note t h a t i f c i s t o o s m a l l , t h e n c A . . w i l l
he i n d i s t i n g u i s h a b l e f r o m z e r o
t o t h e DM,
1
1J
and he w i l l be u n a b l e t o answer
the questions. The
second assumption
r a t e l y assess h i s p r e f e r e n c e s
i s t h a t t h e d e c i s i o n maker i s a b l e t o accui n t h e sense o f always
v a l u e s f o r t h e i n d i f f e r e n c e band. to
determine
ences.
how
well
i d e n t i f y i n g t h e same
An e x p e r i m e n t was performed by F e i n b e r g ?
decision
makers c o u l d assess
their prefer-
He found t h a t i n a t h r e e o b j e c t i v e problem (power, c o s t and economy
i n a u t o m o b i l e s e l e c t i o n ) , d e c i s i o n makers would t r a d e power f o r c o s t , f o r economy and economy f o r power is,
a t some p o i n t s .
cost
T h i s means t h a t t h e DM
i n r e a l i t y , i n d i f f e r e n t a t t h e s e p o i n t s and y e t i s u n a b l e t o r e c o g n i z e
this fact.
That i s ,
he i s a s s i g n i n g
w o r t h when he has no b a s i s f o r i t . must be c a r e f u l i n
positive or
A conclusion
negative values t o t h e i s t h a t i n p r a c t i c e , one
e x c l u d i n g f r o m t h e i n d i f f e r e n c e band v a l u e s whose w o r t h
functions a r e near zer o . If t h e DM i s unable t o accu r at el y a s s e s s h i s pre fe re nc e s, then t h e r e will g e n e r a l l y be no p o i n t a t which a l l of t h e W . .(f)= 0. Therefore, i t 1J will be assumed t h a t t h e DM i s reasonably a c c u r a t e . A n a l t e r n a t i v e i s d i s cussed a t t h e end of t h i s s e c t i o n . Theorem 6-1: __ Proof:
W . .(f) = 0 1J
ginal u n i t s of
fi
If W i j ( f )
0 then l d . . ( f )
=
0.
=
J1
means t h a t t h e r e i s a n equal preference f o r
A . (.):
mar-
f. J of t r ad i ng any c onsta nt m ultiple c
point
1J a t t h e non-infe rior
and one marginal u n i t of
Note t h a t t h e worth A. .(f) (f;(F);f-). 1J marginal u n i t s of f . f o r c marginal u n i t s of f . a t (fy(2);L)i s t h e same 1 J f o r any value of c f o r which t h e f i r s t assumption holds. Specifically, l e t c
then t h e r e i s an equal preference f o r one marginal u n i t of f i
1/Aij(f);
=
and l / h . .(f)marginal u n i t s of f . .
Using
J
1J
equation
(2)
i t i s found t h a t
t h e r e i s a n equal preference f o r one marginal u n i t of f i
and h . . ( f ) margiJ1 Then by t h e d e f i n i t i o n of W . . ( f ) , i t follows J1 -
*
-
nal u n i t s of f . a t ( f , ( f ) ; z ) . J t h a t Wji(+) = 0. Q.E.D. Unfortunately,
t h e r e i s no
simple r e l a t i o n s h i p
between the values
b I . . ( f ) , W . ( f ) and W . . ( f ) because of t h e f a c t t h a t the s c a l e s on which the 1J kJ 1J worth i s assessed a r e o r d i n al and thus two d i f f e r e n t values of t h e worth -
~~
cannot be added o r mu l t i p l i ed with any meaning.
However,
i t can s t i l l
be
shown t h a t n - 1 of t h e w o r t h f u n ct i o n s ( W . .(f), j = 1 , 2 , . . .n , j # i ) a r e 1J s u f f i c i e n t t o determine t h e p r ef er r ed s o l u t i o n s . The following relationships w i l l be used. Theorem 6-2: j f k
, then
W.
Jk
(f*)
Given =
f"
0.
*
such t h a t W . .(f) 1J
=
0 and
blik(f*)
=
0 where
*
-
W . .(f*)= 0 implies t h a t W..(f ) = 0 from theorem 6-1, so t h a t 1J J1 x t h e r e i s a n equal preference f o r h . . ( f ) marginal u n i t s of f . and one rnar-
Proof:
* *
*
ginal u n i t of f i a t ( f , ( f );f
?',-
; similarly
wik(?*)
=
o
J
implies
w k 1. (-f * )
=
0
so t h a t t h e r e i s an ?qua1 preference f o r
A . ( f * ) marginal u n i t s of f k and
one marginal u n i t of f i a t ( f l ( f ) ; f ) .
A c o n s i s t e n t DM y i e l d s
* *
*
kl -
an
equal
preference f o r h . . ( f * ) marginal u n i t s of f . and h k i ( f ' k ) marginal u n i t s o f f k . J1 J Thus, ~ . . ( f * ) / h ( f * ) car g i n al u n i t s o f f j and one marqinal u n i t of f k w ill be equaj\ypref!irred. Using equation ( 1 ) shows t h 3 t A . marginal u n i t s Jk of f i and one marginal u n i t of f k a r e e qua lly pre fe rre d a t the point (f;(f*);f*).
A t this
W . ( f * ) = 0. Q.E.D. Jk p o i n t t h e d e f i n i t i o n o f p re fe rre d s o l u t i o n can be modified.
Thus
Definition .. 6-4: A preferred solution is defined as any non-inferior point -* ) = 0 for j = 2 , 3 , (f;;f~*) in the functional space such that Idlj (f Note that the difference between definitions 6-2 and 6-4 is that in the forrner the property \&I. .(f*) = 0 must hold for all i , while in the latter it 1J need hold only for i = 1 . This new definition will be siloem to be equivalent to the previous one by the following theorem: ~~Theorem 6-3: Solving b l l j ( f ) = 0 simultaneously for j = 2,3, ..., n is equivalent to solving bl..(f) = 0 for i = 1,2, . . . , n, j = 1,2,..., n, j # i. 1J = 0 for all i and j, then it solves Proof: Obviously if f-* solves Hi;(!) the subset W,j(f) = 0 for j = 2,3: . . . , n. If f" solves W .(f) = 0 for j = 13 2 , 3 , ..., n, then by theorem 6-2, I,lij(f-*) = 0 for any i = 1,2 ,..., n , j= 2,3 , . . . , n, i # j, since Wli(f*) = c) and W . ( f * ) = 0. Also Wil(f*) = 0 for 13 any i = 2,3, n from the theorem 6-1. Therefore, all o f the ldij(f) = 9 for i = 1,2 ,...,n,j = 1,2, ...,n, i # j and the two problems are equivalent. ~
~
~
...,
Q.E.D.
If the DM is unable to accurately assess his preference then there will generally be no point at which all 0.i t i l e Hij(f) = 0. In this case, one could solve the sets o f n-1 simultaneous equations id. .(f)= 0 ; j = 1J 1 : 2 , . . . ,n, j f i separately for each i to get n different solutions and then dcfine the preferred solution f* as the average:
c;
f
*
~-
=
n ),
*
f./n. However, for the remainder of this book it will be assumed
-1
i =1 that tbe inaccuracies of the DH are negligible. 6.3 C OMP UTAT IONA L E F F I C I ENC I E S This section will attempt to extend the computational efficiencies devolored for the two objective case to n objective problem. Limits on the values for t . reversion to the decision space to find the preferred J' decisitn vector, and the use of regressions and search techniques will be studiec'. 5.3.1 Limits on t . J Unfortunately, when there are more than two objectives, it i s impossible to use the same approach as in the two-objective case to determine a rnaximuni value in the non-inferior region for the objectives f ., j=2,3,. . ,n. J Recall that when there were only two objectives, the maximum value of f2 was found by finding the solution &* to the problem mi fl(XI
s.t.
xc
T
110
~ ~ L ~ ’ I ~ B , J ~ OPTIMIZATTON T T v E I N WATER RESOURCES SYSTEMS
fZMAX = f 2 ( & * ) . Any value of y which gave f 2 ( K )
and setting
i nferi or since jectives,
f l ( x ) :: f l ( K * )
however, a value of
by d e f i n i t i o n of y*.
x which
gives
f2(y)
>
>
f2(& *) was
For t h r e e o r more obf2(K*) i s n o t neces-
s a r i l y i n f e r i o r s i n c e even though f l ( x ) :: f,(K*) i s s t i l l t r u e , f . ( x ) < f . ( x * ) J J,maximum may hold f o r some j g r e a t e r than 2 . T h u s f 2 ( 5 * ) i s no longer the
.
value f o r f 2 . problems.
However, t h e r e a r e ways of finding maximum values f o r c e r t a i n
I n many problems, tile c o n s t r a i n t s w ill determine a maximum
feas-
i b l e value f o r each o b j e c t i v e f . which can be viewed a s an upper bound f o r J I n o t h e r words, t h e f e a s i b l e s e t S i n t h e func tiona l space i s bounded in “j. 211 d i r e c t i o n s . I n o t h e r problems, one can determine a maximum value of any objective f .
a t f i x ed values of t h e o t h e r o b j e c t i v e s
J
fk, k
=
2,3,
...n ,
Fixing t h e values of t h es e n - 2 o b j e c t i v e s reduces t h e problem t o a
k # j.
two-di-
mensional one, so t h a t t h e maximum value of f . can be found by solving: J MIN
fl(y)
s . t . f k ( x ) 5 Ek X
k
=
2,3,
. . . ,n,
k # j
E T
x*
If t h e so l u t i on t o t h i s problem i s , and a l l of t h e E~ c o n s t r a i n t s a r e bindina, then t h e maximum value of f . a t t he se fixe d values of o t h e r objectives i s
*
J
f.(x ).
Note t h a t f o r d i f f e r e n t values of the o t h e r o b j e c t i v e s ,
J -
t h e r e i s no guarantee t h a t t h i s wi l l s t i l l be t h e maximum value of f . t h i s j’ problem would have t o be resolved w i t h t h e new E~ in orde r t o find the new maximum value f o r f . . I n a d d i t i o n , t h i s approach may prove q u i t e d i f f i c u l t J
t o imp1 ement. The minimum value f o r each o b j e c t i v e f . can s t i l l be determined. I t will be t h e so l u t i o n t o t h e problem
MIN
fj(x)
5.t.
x
E
J
T
Reversion t o t h e Decision Space
6.3.2
The reversion t o t h e d eci s i o n space can be performed analogously t o
*
y and pre fe rre d value f l of o b j e c t i v e f l can be found a s described in s e c t i o n 3 . 5 . 3 by s o l ving t h e following problem: Problem 6 - 2 : -_____ t h e two o b j e c t i v e cas e.
*
MIN
fl($
The p r ef er r ed d ec ision vector
111
f(x) ,< f"
s.t.
X
c T
The a l t e r n a t i v e approach i s as d e s c r i b e d i n s e c t i o n 3 . 5 . 2 , Problem 6-3:
namely:
Solve t h e n-1 s i m u l t a n e o u s e q u a t i o n s :
_ _ _ _ I _
*
I I ~ ( ~ ( =L &l ) ) such t h a t x m e e t s t h e Kuhn-Tucker c o n d i t i o n s f o r problem 6-1. Theorem 6-4: Any s o l u t i o n
x*
t o t h e problem 6-2 a l s o s o l v e s problem
6-3. P r o o f : Assume -~ f(x
) ::
*
Ll(L)
i s known. Then
/ly
= /Ll(f*).
Since a l l t h e
constraints
must be b i n d i n g ( t h e i r m u l t i p l i e r s a r e t h e components o f
a r e a l l g r e a t e r than zero),
then
f(x*) = ?*.
Thus
/11 (f(&*))
=
*
A1 which
$
so &*
would be found by problem 6-3. Again
x*
a u t o m a t i c a l l y s a t i s f i e s t h e Kuhn-Tucker c o n d i t i o n s s i n c e i t
s o l v e s t h e m i n i m i z a t i o n problem 6-2, w h i c h i s i d e n t i c a l t o problem 6-1 the s p e c i f i c value
g
*
=
.
for
Q.E.D.
Thus i t i s n o t necessary t o know Al(f)
i n f u n c t i o n a l form. Note t h a t
t h e approach o f s o l v i n g problem 6 - 2 i s g e n e r a l l y s i m p l e r . 6.3.3
M a t i p 1 e Regressions
*
and fl a r e now f u n c t i o n s o f f2,f 3,...,fn, i t i s generally 1j even more i m p e r a t i v e t h a n i n t h e two o b j e c t i v e case t o a v o i d t h e m u l t i p l e Since h
r e g r e s s i o n s w h i c h would be necessary t o f i n d t h e i r f u n c t i o n a l forms. t u n a t e l y by s o l v i n g problem 6-1 f o r any g i v e n v a l u e o f the values
&,(f)
and
worth f u n c t i o n s W s o l v i n g problem
(f), j
d i f f e r e n t v a l u e s o f each t h e f u n c t i o n a l forms. t o determine
=
for
5 which i s binding,
g a r e found and t h u s t h e v a l u e o f t h e 2 , 3 , ... n, a t f = 5 can be developed. Thus by
ff(L) a t
lj -
6-1
For-
q
=
d i f f e r e n t values o f
g which a r e b i n d i n g , q
j = 2,3,..., n, can be f o u n d w i t h o u t knowing
Wlj,
The o p t i o n o f f i n d i n g t h e f u n c t i o n a l forms i n o r d e r
more v a l u e s a t w h i c h t o ask
t h e DM
a d d i t i o n a l questions
is
s t i l l a v a i l a b l e , b u t t h e number o f p o i n t s n e c e s s a r y t o g e t an a c c u r a t e m u l t i p l e regression w i l l generally
be i n o r d i n a t e l y l a r g e and w i l l t h u s n o t be
included i n these algorithms. A l t e r n a t i v e l y ,
i n t e r p o l a t i o n o r curve f i t t i n g
t e c h n i q u e s can be used i n p l a c e of r e g r e s s i o n s . 6.3.4
r i n d i n g t h e I n d i f f e r e n c e Band The search t e c h n i q u e s f o r f i n d i n g t h e i n d i f f e r e n c e band d e s c r i b e d i n
c h a p t e r f o u r can be extended
t o t h e n - o b j e c t i v e case,
a l t h o u g h now
there
a r e n-1 w o r t h f u n c t i o n s which must s i m u l t a n e o u s l y equal z e r o . For t h e f i n d values
exhaustive search technique,
f o r the
n-1
one would q u e s t i o n t h e
w o r t h f u n c t i o n s a t e q u a l l y spaced p o i n t s
DM t o i n the
I f none of t h es e h a d a l l n - 1 worth func tions equal t o zero,
function space. then
c l o s e s t t o zero would be
o t h e r values near t h e ones
tried until the
i n d i f f e r e n c e b a n d i s found. Some e f f o r t can be saved by n o t t r y i n g a l l of t h e e q u a l l y spaced p o i n t s on t h e f i r s t pass. Rather, a s soon a s a point i s f o u n d where a l l of t h e worth f u n ct i o n s a r e near z e ro,
the search procedure
should be r e s t a r t e d with smaller increments from t h a t point. Again, i t may c u r v e - f i t t i n g o r re gre ssion t o known
be necessary t o apply i n t e r p o l a t i o n ,
n o n - i n f e r i o r values in o r d er t o have t h e information t o question t h e DM. A g r a d i en t approach
can a l s o be
used t o determine which func tion
space value t o t r y n ex t .
The g r ad i en t approach r e q u i r e s the e quiva le nt of information a b o u t d e r i v a t i v e s . Therefore, n-1 values of each of t h e n - 1 w o r t h f u n c t i o n s a r e required t o determine t h i s information f o r an
t o t r y next a f t e r f o 0
w (f; f1 = fo ~~
A2, f 3 ) ,
+
13
-
n-objec-
For example, in a t h r e e o b j e c t i v e problem, t o determine w h a t
t i v e problem.
=
(f;.f;.)', f;,
W12
f!
one must find + A3) a n d W13(f;.
(f: +
W12
fi +
A3).
A2, f i ) ,
Then
J--1(W,7(To),
This approach may a l s o r e q u i r e i n t e r p o l a t i o n s , c u r v e - f i t t i n g , o r r e gression when t h e
DM must be questioned a t non-infe rior values
the trade-off r a t i o s a r e n o t known. e n t approach
Both
a r e a l s o a p p l i c a b l e when t h e
for
which
t h e exhaustive search and gra diA-space surroga te w o r t h
func-
t i o n s a r e used by r ep l aci n g f . with A .. J 15 6.4
THE STATIC n-OBJECTIVE €-CONSTRAINT (SNE) ALGORITHM
Algorithms d es cr i b i n g t h e use of t he SWT method f o r n-obje c tive p r o b lems will now be presented.
The
f i r s t of the se uses t h e
6-c onstra int
ap-
proach b o t h f o r f i n d i n g t h e n o n - i n f er i o r points and f o r r e v e r t i n g t o t h e d e c i si o n space. The water resources problems in c ha pte r 8 w ill be solved by t h i s method a n d thus no example i s presented here. i n f i g u r e 6-1. Step 1 :
A flowchart i s Drovided
Find t h e minimum value of f . by solving: 3
MIN
fj(x)
113
T Set j
2
Question "cision s.t.
X-
E
Maker
T
j - l s tComponent o f f+,lin
1Lax Yes
find
i f possible
t Choose
c,,,
.>
g
>
fmin
I Sens i t i v i ty Ana1,ys i s
Yes
F i g u r e 6-1.
Flowchart f o r S t a t i c n-Objective c-Constraint Algorithm.
s.t.
x
E
T
The s o l u t i o n t o t h i s problem i s t h e repeated f o r a l l j
=
2,3,
j-lst
component of
fMIN;
this stepis
...,n.
I f p o s s i b l e t h e maximum v al u es , fqAx should be found here. Step 2: S e t t h e i n i t i a l values f o r Solve
Step 3:
MIN
f >
fMIN
fl(x)
s . t . f($ 5 X E T
*
x
Let fr(L)
=
be t h e d eci s i o n vector which s o l v es t h i s problem. The s o l u t i o n i s f , ( K * ) ; each s o l u t i o n should a l s o c onta in .,(.), t h e vector of La-
grange m u l t i p l i e r s f o r t h e c o n s t r a i n t s . binding then
If a l l of t h e
c constraints *
f so t h a t t h e outputs of t h i s s t e p a r e f l ( f ) a n d
=
I f any of t h e g c o n s t r a i n t s a r e not binding then
f
-. = i.
_n,(f)
ignore
are at
the se
values. Step 4 :
I f enough information
s t e p 5 ; otherwise s e l e c t new values of
has been generated then proceed t o
c>
hMIN and return
One
t o s t e p 3.
method of s e l e c t i n g new values i s t o s t a r t with very l a r g e values f o r r a n d decrease each f.(x) ~~
:
i.
J
by some number
A . i 0 each i t e r a t i o n i f t h e c o n s t r a i n t J i f t h i s c o n s t r a i n t i s not binding then s e t
'j i s binding;
"j
-
f.(X*). J --
DM i s p o s s i b l e on a re a l time b a s i s , then t h e
I f i n t e r a c t i o n with t h e
search techniques described i n
section 6.3.4
can be used in choosing new
values of i_ . Step 5 :
Develop t h e s u r r o g at e w o r t h func tions W 1 2 ( f )
follows: For each s e t of values d e s i r e d , ask t h e
c, k 1 ( f ) ,
and f;(f)
,. . . ,Wln(f)
a t which t h e worth
as is
DM f o r h i s assessment of how much h l j ( f ) a dditiona l u n i t s
o f objective f l a r e w o r t h
i n r e l a t i o n t o one a dditiona l u n i t of o b j e c t i v e
u n i t s of f l and t h e j - l s t component o f u n i t s of f . . H i s f . given f;(f) J J assessment on a s c a l e of -10 t o +10 with zero signifying equal preference i s the value W l j ( f ) . This i s repeated f o r a l l j = 2 , 3 , ..., n . Step 6:
Repeat s t e p 5 u n t i l a value
*
f i s found such t h a t a l l of
the worth f u n c t i o n s W . ( f * ) , j = 2 , 3 , . . . , n equal z e r o . Other values near * 1J f can be t r i e d t o determine t h e ex t en t of the i n d i f f e r e n c e band. Step 7 : The p r ef er r ed d eci s i o n v ector E* i s found by solving:
~
MIN
f,(?)
s.t.
f(x) I f*
c r T
*
If t h e r e i s more than one s o l u t i o n f t o s t e p 6 , then t h i s s t e p must be r e peated f o r each one i n order t o f i n d a l l o f t h e pre fe rre d s o l u t i o n s . Step 8 :
A s e n s i t i v i t y a n a l y s i s should be performed t o determine t h e
p o s s i b l e e f f e c t s of implementing t h e p r ef erre d s o l u t i o n . Step 9 : 6.5
Stop!
THE STATIC n-OBJECTIVE MULTIPLIER (SNM) ALGORITHM I n order t o determine t h e zeroes of t h e worth func tions and thus t h e
.____
preferred s o l u t i o n s , values f o r t h e
i t i s g en er al l y necessary
worth f u n c t i o n s ;
t o have a l a r g e number
thus a l a r g e number
minimizations i n t h e f i r s t segment a r e r equire d. proach g e n e r a l l y i s much more e f f i c i e n t than t h e generating n o n - i n f er i o r p o i n t s , problems d e s p i t e t h e p o s s i b l e
i t is
of s o l u t i o n s
Since t h e m u l t i p l i e r apE-c onstra int approach in
useful in
n-obje c tive
non-linear
i n accu r aci es caused by non-convexities
s e c t i o n 4 . 3 . 1 ) . For l i n e a r problems, t h e E-c onstra int approach w ill not too d i f f i c u l t due
t o t h e a v a i l a b i l i t y of t h e simplex method.
algorithm w i l l not be presented here; f i r s t t h r e e s t e p s of
it
t h i s algorithm
of
t o the
can be generated
by
(see be
The mixed using
the
followed by s t e p s 5 through 9 of the
- c o n s t r a i n t al g o r i t h m. Ilhen t h e r e a r e more than two o b j e c t i v e s , t h e r e i s no simple means of f i ndi ng ,iljMAX. For t h i s cas e i t i s assumed t h a t XljMAX = for j = t
2,3, ... n.
A flowchart of t h i s algorithm i s given in f i g u r e 6-2.
Step 1 :
Choose i n i t i a l values f o r
Step 2 :
Solve
MIN f l ( x ) + s.t.
x
E
-1
Al
>
0
.
f(x) -
1
The s o l u t i o n v ect o r &* i s s u b s t i t u t e d i n t o f l ( x ) and
f(x) t o
find f;(Al)and
E*(L, 1. Step 3 :
I f enough information has been generated, go on t o s t e p
i f n o t , choose a new value f o r Step 4:
A1
>
4;
0 and go back t o s t e p 2 .
Develop t h e s u r r o g a t e w o r t h func tions
as follows: For each s e t of values A1, f;(Al),f*(Al)
Wl2(A1) ,. . . , Wln(Ll) a t which t h e w o r t h
is
st
A ., which i s t h e j - 1 1J a d d i t i o n a l u n i t s of o b j e c t i v e f l a r e w o r t h in r e l a t i o n t o st one a d d i t i o n a l u n i t of o b j e c t i v e f . , given f;(Ll) u n i t s of f l and t h e j - 1 J component of f*(/i,) u n i t s of f . His assessment on a s c a l e of -10 t o +10 i s J' This s t e p i s repeated f o r a l l j = 2 , 3 , . . . , n . t h e value of W l j ( A l ) .
d e s i r e d , ask t h e DM f o r h i s assessment of how much
component of
116
t Solve ::in j f l ( x )
I
s.t.
.+
4;
- f(x)/ -
4
x
E
T
X*>fl*(AJ1 ,f*(h 1
Has enough information
"'O
k t i o o s e new
4
]
been aenerated?
u Sensitivity Analysis
Figure 6 - 2 .
Flowchart f o r S t a t i c n-Objective Multiplier Algorithm.
117
I 1’7’
rj-
*
j =
Step 5: Repeat s t e p 4 u n t i l Ly i s found such t h a t W . . ( A ) = 0 f o r * 1 J -1 2 , 3 , . . . n. Additional values near L, may be t r i e d t o determine t h e
e x t e n t of t h e i n d i f f e r e n c e band.
*
Find t h e p r ef er r ed d eci s i on ve c tor 5 by solving
Step 6 :
MIN
fl(x) + L1T* f(x) *
s.t. 5
t
T
Since t h i s i s t h e same problem a s s t e p 2 with
L1
replaced by
4; ,
little
a d d i t i o n a l computation wi l l be necessary. A s e n s i t i v i t y a n a l y s i s could be performed t o determine t h e Step 7 : p o s s i b l e e f f e c t s of implementing t h e p r ef e rre d s o l u t i o n . Step 8 : Stop! 6.6
SUMMARY This chapter has extended t h e algorithms of
chapter four f o r s t a t i c
n o b j e c t i v e problems. The W . a r e found t o be func tions of f 2 , f 3 , . . . , f n (or 15 A12,X,3, . . . , A l n ) and t h e p r ef er r ed s o l u tion i s defined t o be t h a t f o r which a l l of t h e addition,
Wlj,
j = 2,3,
...,
n
simultaneously equal
t h e use of t h e o t h er worth f u n c tions
W.
.,
1J
i
=
z e ro.
2,3, . . . ,n , j
In =
1 , 2 , . . . ,n , j # i , i s shown t o be redundant under c e r t a i n assumptions. The computational e f f i c i e n c i e s of avoiding r e g r e s s i o n s , finding maximum values using search techniques, and r ev e rsion t o the de c ision space devefor ‘j’ loped f o r two o b j e c t i v e problems were modified f o r the n-obje c tive c a se .
Two algorithms were presented; t h e c - c o n s t r a i n t approach i s useful f o r l i n e a r (and l i n e ar i zed ) p r o b l ems , b u t i n o t h e r problems may r e q u i r e too much coiiiputational e f f o r t in o r d er t o g en er at e enough values t o have v a l i d approximations t o t h e worth f u n ct i o n s . The m u l t i p l i e r approach i s subje c t t o inaccuracies
due t o non-convexities
in t h e trade-off f u n c t i o n s , b u t i s t o solve a s i t has n-1 fewer c o n s t r a i n t s . Mixed algorithms can a l s o be used a s a compromise between e f f i c i e n c y a n d accuracy. The next ch ap t er wi l l d i s cu s s t h e modifications necessary f o r dynamic n - o b j e c t i ve problems. g e n e r a l l y much simpler
FOOTNOTES 1.
This new
d e f i n i t i o n of
book . 2.
See Feinberg [1972].
f wi l l be used throughout t h e r e s t of t h e
118
MUL,TIOBdECTTVE OPTIMIZATION IN WATER HESOURCES SYSTEMS
REFERENCES
1.
Feinberg, A . , "An Experimental I n ve stiga tion o f an I n t e r a c t i v e Approach f o r M u l t i - c r i t e r i o n Optimization with An Application t o Academic Resource Al l o cat i o n , "
Western Management Science I n s t i -
t u t e , Working paper no. 186, 1972.
Chapter 7 THE SWT METHOD FOR DYNAMIC n-OBJECTIVE PROBLEMS This chapter i s both a m o d i f i c a t i o n e x t e n s i o n o f c h a p t e r 5.
o f t h e p r e v i o u s c h a p t e r and an
A n a l y s i s o f dynamic problems w i t h
more t h a n
two
...,@n)T
and
o b j e c t i v e s and a l g o r i t h m s f o r t h e i r s o l u t i o n s a r e p r e s e n t e d . INTRODUCTORY ANALYSIS _____
7.1
For n o t a t i o n a l convenience d e f i n e
a
t
R’-’
=
. . . , an)T.
(a2,a3,
d e f i n e d such t h a t $ ( t ) =
& ER”’
(@,,@,,
=
A v e c t o r o f new s t a t e v a r i a b l e s
a ( t~) , u ( t ) , t )
and y(0) =
f o l l o w i n g n o t a t i o n i s as d e f ned i n c h a p t e r 5.
0 ; the
y
F
is
R”’
remainder o f t h e
?he problem i n € - c o n s t r a i n t
f o r m t h e n becomes: _ Problem _ 7-1 _ : ~M I N
$, ( x ( t f )
s.t. i ( t ) A
t )
x(x(t),u(t),t)
=
a(x(t),u(t),t)
=
M t f ) ’ t f ) d t f )
+
; ~ ( 0 )g i v e n ;
y(0)
0
=
< 0s
p(x(t,))
g
Note t h a t a g a i n t h e o b j e c t i v e f u n c t i o n s a r e s c a l a r v a l u e d s i n c e t h e y
Also
a r e i n t e g r a l s over time.
n o t e t h a t problems where
tf
i s a control
v a r i a b l e ( e . g . minimum t i m e p r o b l e m s ) , as w e l l as t h o s e w i t h p a t h c o n s t r a i -
s
nts g(x(t)u(t),t)
0 can
a l s o be handled w i t h t h e a l g o r i t h m s d e s c r i b e d
in
t h i s c h a p t e r by m o d i f y i n g t h e n e c e s s a r y c o n d i t i o n s f o r a minimum.l Since t h e
f u n c t i o n a l space f o r
t h e f u n c t i o n a l space f o r c h a p t e r w h i c h was t h i s chapter.
...,
s t a t i c ones
conducted i n t h e
t h e dynamic problem i s t h e same
f u n c t i o n a l space w i l l be a p p l i c a b l e t o
I n review, t h e worth f u n c t i o n s M..,
n, i f j a r e f u n c t i o n s o f f2,f,,...,
preferred solution simultaneously.
* *
(fl;f
)
as
(Rn), a11 a n a l y s i s i n t h e p r e c e e d i n g
fn o
i s where a l l
i = 1,2,
1J r h 12,h13,
W .(f) =
1J
-
0
..., n,
...,
>ln,
j = 1,2,
and
f o r j = 2,3,
the
...,n
The two assumptions o f c h a p t e r 6 w i l l s t i l l be m a i n t a i n e d .
They a r e t h a t t h e t r a d e - o f f
r a t e i s a good a p p r o x i m a t i o n t o t h e change which
would o c c u r i n t h e n o n - i n f e r i o r v a l u e o f fi when f . i s changed by one u n i t , J and t h a t t h e DM i s a b l e t o a c c u r a t e l y assess h i s p r e f e r e n c e s . Then, t h e o rems 6-1 t h r o u g h 6-3 w i l l s t i l l h o l d .
The f o l l o w i n g
definition w i l l also
119
be made. Definitipn 7-1:
A p r ef er r ed control v ect or a n d a pre fe rre d s t a t e v e c t o r a r e
*
defined a s any f e a s i b l e control v ect o r u- ( t ) and
any f e a s i b l e s t a t e ve c tor
?* ( t ) such t h a t
The computational dynamic problems. f o r each
f. J
e f f i c i e n c i e s in c ha pte r 6
I n particular,
minimuin
a r e also applicable t o
( a n d sometimes maximum) values
can be found, a n d search techniques can be used t o f i n d where
or i n t e r p o l a t i o n s t o f i n d 1: a n d f l a t o t h e r values of f m a y be used t o avoid -1 I n a d d i t i o n , t h e pre fe rre d control and s t a t e vecresolving problem 7-1. t o r s can be found andlogously t o s e c t i o n 6 . 3 . 2 .
a l l of
7.2
t h e worth f u n ct i o n s
?HE DYNAMIC An
equal zer o .
n-OEJECTIVE
algorithm
*
c
Also,
multiple
-CONSTRAINT ( D N~E ) ALGORITHM _ _ _ -~
wi l l now be presented which uses t h e € - c o n s t r a i n t ap-
proach f o r b o t h
f i n d i n g t h e n o n - i n f er i o r
decision space.
A flowchart i s provided in f i g u r e 7-1.
Step 1 :
reverting t o the
J
repeated f o r a l l j =
points a n d f o r
Find t h e minimum value of f . by solving:
The s o l u t i o n t o t h i s problem i s t h e j - l s t j
re gre ssions
=
2,3, ..., n.
component of
t h i s step i s
I f p o s sible t h e maximum value of each f . , J
2 , 3 , . . . , n should be found a s described in s e c t i o n 6.3.1. Step 2:
Choose i n i t i a l values f o r 5
St e p 3 :
Solve problem
7-1.
> f
-#IN ' The s o l u t i o n i s
should a l s o c o n t ai n A 1 ( c ) , t h e v ect o r of Lagrange constraints.
I f a l l of t h e s e c o n t r a i n t s a r e binding,
f * ( t ) ; each s o l u t i o n 1 multipliers f o r the then
=
f so
that
= 5. I f any of t h e outputs of t h i s s t e p a r e f;(f) a n d L,(f) a t t h e value the c o n s t r a i n t s a r e n o t binding then ignore the se va lue s.
121
Choose
fmax
>
5
> f
.
Figure 7-1. Flowchart f o r Dynamic n-Objective €-Constraint Algorithm Continued next page.
i,2
t
1-
Are a l l : - C o n s t r a i n t s I Yes
Binding?
I
Q u e s t i o n D e c i s i o n Maker I
F i g u r e 7-1 Continued.
'lo
I
Step 4:
I f enough i n f o r m a t i o n has
been g e n e r a t e d ,
t h e n proceed
and r e t u r n t o s t e p 3 . t o s t e p 5; o t h e r w i s e s e l e c t new v a l u e s f o r 5 > f +II N Step 5: Develop t h e s u r r o g a t e w o r t h f u n c t i o n s V12(?), . . .,Ldln(f) as follows.
For each s e t o f v a l u e s
f. A l ( f ) ,
f;(f)
a t which t h e worth i s
s i r e d , a s k t h e DFI f o r h i s assessment o f how much hlj(f)
de-
additional units o f
o b j e c t i v e fl a r e w o r t h i n r e l a t i o n t o one a d d i t i o n a l
u n i t o f objective f . J' g i v e n f;(f) u n i t s o f fl and t h e j - l s tcomponent o f f u n i t s o f f . . H i s a s s J essment on a s c a l e o f -10 t o + l o i s t h e v a l u e W . ( f ) . T h i s i s r e p e a t e d f o r 1J a l l j = 2,3, ..., n . Repeat s t e p 5 u n t i l
Step 6: j = 2,3,
...,
n.
z* i s *f o u n d such t h a t W 15. ( f* )
A d d i t i o n a l v a l u e s near
e x t e n t o f t h e i n d i f f e r e n c e band. Step 7: u*(t)
0 for
=
-
f may be t r i e d t o d e t e r m i n e
Find t h e p r e f e r r e d s t a t e v e c t o r
by s o l v i n g problem 7-1 w i t h 5 r e p l a c e d by f*.
*
*
x
the
( t ) and c o n t r o l v e c t o r I f t h e r e i s more
than
f t o s t e p 6, t h e n t h i s s t e p must be r e p e a t e d f o r each one i n
one s o l u t i o n
order t o f i n d a l l o f t h e p r e f e r r e d s o l u t i o n s . S t e p 8: A s e n s i t i v i t y a n a l y s i s c o u l d be p e r f o r m e d h e r e t o d e t e r m i n e the p o s s i b l e e f f e c t s o f implementing t h e p r e f e r r e d s o l u t i o n . Step 9: 7.3
Stop!
THE DYNAMIC n-OBJECTIVE FIULTIPLIER (DNM) ALGORITHM J u s t as i n t h e s t a t i c case,
t i o n s induces
i n t h e f i r s t segment. computation
f i n d i n g t h e zeroes
a need f o r a l a r g e number o f
U s u a l l y t h e r i u l t i p l i e r approach
per s o l u t i o n than the
r a c i e s s h o u l d be s m a l l compared terpolation;
thus i t i s
o f t h e worth func-
solutions t o the minimizations r e q u i r e s much l e s s
& - c o n s t r a i n t apnroach,
w i t h the inaccuracies i n regression o r i n -
o f t e n best
f o r n o n - l i n e a r problems.
a l g o r i t h m f o r dynamic problems w i l l n o t be p r e s e n t e d here; r a t e d by u s i n g t h e f i r s t t h r e e
and i t s i n a c c u The
mixed
i t can be gene-
s t e p s o f t h i s a l g o r i t h n i f o l l o \ r e d by s t e p s 5
through 9 o f t h e previous a l g o r i t h m . A f l o w c h a r t o f t h i s a l g o r i t h m i s given i n f i g u r e 7-2.
Al
> 0
Step 1 :
Set i n i t i a l values f o r
Step 2:
S o l v e t h e f o l l o w i n g problem:
-
.
F i g u r e 7-2.
F l o w c h a r t f o r Dynamic n - O b j e c t i v e M u l t i p l i e r A l g o r i t h m
dE(tf)'tf) The so l u t i o n s t a t e v ect o r into
fl =
t
4
x*(t) a n d control ve c tor i * ( t ) a r e s u b s t i t u t e d
+ , ( 5 ( t f )+ ) [tf a , ( x ( t ) , u ( t ) , t ) d t
t o get f y ( L l ) and into
'0
Step 3 : I f enough information has been ge ne ra te d, proceed t o s t e p 4; otherwise choose a new value Step 4:
,
0
and r e t u r n t o s t e p 2 .
Develop t h e s u r r o g at e worth func tions
W
1 2 (1p' L ) , . . . , W l n ( L l )
For each s e t of values A f ;(Ll),E*(L1) a t which t h e worth i s -1 ' d e s i r e d , ask t h e DY f o r h i s assessment of how much A a d d i t i o n a l u n i t s of I j o b j e c t i v e f l a r e w o r t h i n r e l a t i o n t o one a dditiona l u n i t of f . given J f:(Jhl) u n i t s of f l and t h e j - l s t component of IT.hl) u n i t s of f . . His a s s J essnient on a s c a l e of -10 t o +I(? i s t h e value W l j ( A l ) . This s t e p i s repeated f o r a l l j = 2,3, . . . , n. * * Step 5 : Repeat s t e p 4 u n t i l A1 i s found such t h a t \dlj(!il) = 0 f o r * j = 2 , 3 , . . . , n. Additional values near L~ may be t r i e d t o determine the e x t e n t of t h e i n d i f f e r e n c e band. * Step 6: Find t h e p r ef er r ed s t a t e ve c tor 5 ( t ) and pre fe rre d control * * vector u ( t ) by solving t h e problem i n s t e p 2 with A, replaced by If * t h e r e was more than one p r ef er r ed s o l u t i o n in s t e p 5 , then t h i s s t e p i s repeated f o r each one i n o r d e r t o f i n d a l l of t h e pre fe rre d s o l u t i o n s . Step 7 : A s e n s i t i v i t y a n a l y s i s could be performed t o determine the p o s s i b l e e f f e c t s of implementing t h e p r ef erre d s o l u t i o n . Step 0: S t o p ! as follows.
7.4
S!IM/ARy This chapter has extended t h e algorithms of chapter 5 , and modified
t h e r e s u l t s of ch ap t er 6 f o r dynamic n - o bje c tive problems. The L-c onstra int approach i s useful f o r l i n e a r (and l i n e a r i z e d ) probleins, b u t in o t h e r problems may r e q u i r e too much computation i n orde r t o ge ne ra te enough values t o have v a l i d approximations t o t h e worth f u n c t i o n s . The m u 1 t i p l i e r approach i s subject
t o i naccu r aci es due t o non-convexities in t h e tra de -off f u n c t i o n s ,
b u t i s g e n e r a ll y
much simpler
Hixed algorithms
can a l s o be used
accuracy.
t o s o l v e a s i t has a s a compromise
n-1
less
constraints.
between e f f i c i e n c y and
126
MULTIOBJECTIVE OPTIMIZATION IN WATER RESOURCES SYSTEMS The n e x t c h a p t e r s w i l l p r o v i d e examples o f t h e use o f t h e SWT method
i n problems i n w a t e r r e s o u r c e p l a n n i n g .
FOOTNOTES 1.
A derivation problems
o f t h e necessary c o n d i t i o n s
can be f o u n d
i n Bryson and Ho
f o r a minimum i n dynamic [1969]
o r o t h e r books on
optimal c o n t r o l . RE F E R E N C E S
1.
Bryson, A . E . ,
and Ho, Y . C . ,
Waltham, Mass.,
1969.
A p p l i e d O p t i m a l C o n t r o l . Ginn and
Co.,
Chapter 8 APPLICATIONS OF THE SWT METHOD TO WATER RESOURCES PROBLEMS E R E I D - V E M U R I EXAMPLE PROBLEM
8.1
R e i d and V e m u r i l
introduced the
following
multiobjective function
problem i n w a t e r r e s o u r c e s p l a n n i n g : "
...
A dam o f f i n i t e h e i g h t impounds w a t e r i n t h e r e s e r v o i r
and t h a t w a t e r i s r e q u i r e d t o be r e l e a s e d f o r v a r i o u s p u r poses such as f l o o d c o n t r o l , i r r i g a t i o n , i n d u s t r i a l and u r b a n use, and power g e n e r a t i o n .
The r e s e r v o i r may a l s o be used
f o r f i s h and w i l d l i f e enhancement, r e c r e a t i o n , s a l i n i t y and p o l l u t i o n c o n t r o l , mandatory r e l e a s e s t o s a t i s f y r i p a r i a n r i g h t s o f downstream u s e r s and so f o r t h .
T h e problem i s
e s s e n t i a l l y one o f d e t e r m i n i n g t h e s t o r a g e c a p a c i t y o f t h e r e s e r v o i r so as t o maximize t h e n e t b e n e f i t s a c c r u e d . . . " There a r e two d e c i s i o n v a r i a b l e s : x1
=
x2
=
T o t a l man Iiours d e v o t e d t o b u i l d i n g t h e dam. Mean r a d i u s o f t h e l a k e impounded i n so:ie
fashion.
There a r e t h r e e o b j e c t i v e f u n c t i o n s : f.,(x1,x2)
=
Capital cost o f the project.
f2(x2)
=
The w a t e r l o s s ( v o l u m e l y e a r ) due t o e v a p o r a t i o n .
f3(x1.x2)
=
The t o t a l volume c a p a c i t y o f t h e r e s e r v o i r .
I n order t o
change t h e volume o b j e c t i v e t o a m i n i m i z a t i o n problem, t h e r e -
c i p r o c a l f u n c t i o n f ( x ,x ) was formed: 3 1 2
where
A l l d e c i s i o n s and o b j e c t i v e s a r e c o n s t r a i n e d t o be n o n - n e y a t i v e . t h i s problem
i s f a r from
representing a
Although
r e a l i s t i c w a t e r r e s o u r c e problem
( t h e r e a r e o n l y two d e c i s i o n v a r i a b l e s ) , i t was chosen because o f t h e gener a l i n t e r e s t t h a t R e i d and Vemuri had g e n e r a t e d b y t h e i r paper. 127
Reid a n d Veniuri were s a t i s f i e d with determining t i o n s via t h e i r proposed approach. non-inferior
solutions
non-infe rior
solu-
With t h e SldT method, not only t h e same
( i n a d d i t i o n t o o t h e r s ) can be ge ne ra te d, b u t a l s o
the t r a d e - o f f r a t e f u n c t i o n s and t h e
ultimate
pre fe rre d
solution
t o the
whole problem can be determined assuming t h e e xiste nc e of a de c ision maker. SOLUTIOFI T O T t l E R E I D - V E M U R I PROBLEM This s o l u t i o n procedure wi l l i l l u s t r a t e t h e approach of considering
8.2
t h e su r r o g a t e worth f u n ct i o n s a s f u n ct i o n s of the
.
=
1J
described in s e c t i o n
The f i r s t s t e p of t h e SWT method i s t o f i n d t h e minimum values
3.5.2.
each o b j e c t i v e f u n c t i o n .
x1
A..
f,
C l ear l y
=
0,
f2 =
0 a t x2
=
0 , and f 3
=
for 0 at
t - c o n s t r a i n t formulation i s now adopted t o ge ne ra te ,Il2 and
The
'13: Probleri 8-1 :
.0lXl
.02
(x,)
MIN
e
subject t o
1/2 x2
2
e
c
2
(x2) c2
- 0 . 0 0 5 ~ ~ -0.01 -2 (x,) x2 : r3
x1
,
0 ,
x2
0
.
+ ll3
(e
>,
Then t h e Lagrangian i s formed:
.01 x L
=
e
.02 l(xl)
2
x2 + x12 ( I / Z x2 -
-, 0 0 5 ~ ~ t2)
(x,)
- . 01
-2
x 2 -
t3)
The Kuhn-Tucker necessary co n d i t i o n s f o r a minimum a r e :
The above c o n d i t i o n s were solved f o r various values of c 2 and E~ (inc luding some of t h e values from Table 1 , Reid and Vemuri)' via the Newton-Raphson Method.
The r e s u l t s a r e presented i n Table 8-1. The f i r s t two columns of Table 8-1 a r e the s e l e c t e d values of
t 3
( o r e q u i v a l en t l y f 2 a n d f 3 ) .
c2
and
Columns t h r e e and four a r e t h e non-infer-
i o r values of t h e d eci s i o n v a r i a b l e s corresponding t o t h e chosen values f o r and C o l u m n f i v e i s t h e correspondinq non-infe rior value of objec$3. Columns s i x and seven a r e t h e t ra de -off r a t i o s . Note t h a t column tive f l .
/
129
::
h = -af / a f 13 s i n c e the d e c i s i o n maker
.
seven i s t h e r a t i o .-,ifl/2f3
i S
This i s required in
place of
x13
=
f a m i l i a r w i t h t h e volume Of t h e r e s e r -
v o i r , f ( x x ) , r a t h e r t h a n i t s r e c i p r o c a l f ( x x ) This t r a d e - o f f r a t i o 3 1' 2 3 1 ' 2 ' can be found a s f o l l o w s :
An a t t e m p t t o u s e m u l t i p l e r e g r e s s i o n a n a l y s i s f o r t h e c o n s t r u c t i o n of X 1 2 and ) 1 3 a s a n a l y t i c f u n c t i o n s of f 2 and f 3 u s i n g t h e w i d e band of n o n - i n f e r i o r p o i n t s ( s e e Table 8-1) r e s u l t e d i n c o r r e l a t i o n c o e f f i c i e n t o f o n l y .80. This i s
attributed to the
e x p o n e n t i a l n a t u r e of
the o b j e c t i v e f u n c t i o n s .
Consequently, t h e a l t e r n a t i v e approach o f a v o i d i n g r e g r e s s i o n s was a d o p t e d , where t h e d e c i s i o n maker o r o v i d e d t h e s u r r o g a t e worth v a l u e s I d l 2 and \)Il3, f o r t h o s e v a l u e s of
A 1 2 and h 1 3 , g i v e n i n Table 8 - 1 . The c o r r e s p o n d i n g f , , and f 3 can a l s o be found i n t h e t a b l e . I f i t i s n e c e s s a r y t o d e t e r m i n e t h e worth a t v a l u e s o f X 1 2 and A 1 3 n o t i n Table 8 - 1 , then i n t e r p o l a t i o n o r
f,,
m u l t i p l e r e q r e s s i o n n e a r t h e d e s i r e d v a l u e s can be u s e d . The v a l u e s of t h e s u r r o g a t e worth f u n c t i o n s g e n e r a t e d w i t h a " d e c i s i o n maker" a r e t a b u l a t e d i n columns 8 and 9 of T a b l e 8-1. than one s e t of
1J
c o r r e s p o n d i n g v a l u e s of I l 2 , Table 8-1,
Note t h a t more
t r a d e - o f f s r e s u l t e d i n an i n d i f f e r e n c e band, W . .
=
0.
The
x13, f l , f 2 , and f 3 can be r e a d d i r e c t l y from
rows 9 , 2 5 , 30, and 32.
All s o l u t i o n s
corresponding t o t h e s e
rows a r e p r e f e r r e d ; t h e y a r e n o n - i n f e r i o r s o l u t i o n s which belong t o t h e i n d i f f e r e n c e band. The d e c i s i o n v a r i a b l e s c o r r e s p o n d i n g t o the above p r e f e r r e d s o l u t i o n s
The s i m p l e s t way i n t h i s example i s t o T h u s , f o r example, row 9 p r o v i d e s the f o l l o w i n g optimal dec i s i o n s and v a l u e s o f the o b j e c t i v e f u n c t i o n s : x1 = 1 7 2 . 9 5 ; x2 = 3 8 . 7 3 ; f l = 9374.98 ; can be o b t a i n e d i n s e v e r a l ways. use T a b l e 8 - 1 .
f2
=
750.00;
f3
=
3750.00
I n o t h e r problems, the methods f o r r e v e r t i n g t o t h e d e c i s i o n bed i n s e c t i o n 6 . 3 . 2 may be r e q u i r e d .
space descri-
TABLE
8-1
N O N - I N F E R I O R P O I N T S AND D E C I S I O ? I MAKER RESPONSES
f2
f3
x1
X
2
fl
x 12
'1 3
-
i"l 2
3
2.00
+ 8
+ 6
4.00
t 2
+ 2
~~
1
250.00
500.00
0.70
22.36
499.95
2.00
2
250.00
1 000. 00
128.91
22.36
2000.00
8.00
3
250.00
1750.00
239.59
22.36
61 24.45
24.50
- 7.30
- 2
- 2
4
250.00
2503.00
310.41
22.36
12499.99
50.00
-10.00
- 5
- 5
5
250.00
3750.00
391.04
22.36
281 24.09
112.49
-1 5 . 0 0
-1 0
6 7
250.00
5000.30
448.28
22.36
49984.46
199.88
-19.99
-1 0
750.00
1750.00
24.43
38.73
2041 .46
2.72
- 2.33
+ 7
8
750.00
2500.00
93.09
38.73
41 66.41
5.55
- 3.33
+ 4
-1 -1 t +
9
750.00
3750.00
172.95
38.73
9374.98
12.50
- 5.00
0
0
10
750.00
5000.00
229.91
38.73
16665.71
22.22
- 6.67
- 2
- 2
11
100.00
1750.00
421 .71
14.14
1531 0.72
153.09
-1 7 . 5 0
-1 0
-1 0
12
500.00
1750.00
102.65
31.62
3062.14
6.12
- 3.50
+ 4
+ 3
13
100.00
3750.00
573.53
14.14
70310.77
703.09
-37.50
-10
-1 0
14
500.00
3750.00
253.27
31.62
14060.19
28.12
- 7.50
- 3
- 3
15
1000.00
3750.00
116.19
44.72
7029.45
7.03
3.75
+ 3
+ 2
16
106.00
473.00
150.47
14.56
1055.33
9.96
-
17
33.40
150.00
151.74
8.17
336.83
10.08
0
0 5 3
4.46
0
+ 1
- 4.49
0
18
334.00
1500.00
151.74
25.85
3368.26
10.08
- 4.49
0
19
1060.00
4730.00
150.47
46.04
10553.25
9.96
- 4.46
0
20
31.60
316.00
310.41
7.95
1580.00
50.00
-10.00
- 5
+ + + -
1 l 1 5
21
3.34
150.00
6C9.47
2.58
3367.91
1008.25
-44.90
-1 0
-? 0
Non-Inferior P o i n t s and Cecision Maker Responses
T a b l e 8-1 ( C o n t ' d )
+
x13
f2
f3
22
59.50
841.00
379.22
10.91
5943.42
99.89
-14.13
-1 0
- 9
23
88.90
562.00
21 9 . 3 8
13.37
1776.34
19.9s
- 6.32
- 2
- 1
24
33.40
1500.00
609.47
8.17
33679.12
1008.25
-44.90
-1 0
-1 0
25
100.00
500.00
172.95
14.14
1250.00
12.50
-
0
26
100.00
1000.00
31C.41
14.14
5000.00
50.00
-10.00
- 5
27
100.00
5000.00
630.86
14.14
124971 . 6 5
1249.43
-49.98
-1 0
28
500.00
1000.00
0.70
31 .G2
999.89
2.00
- 2.00
0 - 5 -1 0 + 6 - 5
X
li
X
2
fl
2 ___
5.00
29
500.00
5000.00
310.41
31.62
24999.99
50.00
-10.00
+ 8 - 5
30
1000.00
5000.00
172.95
44.72
12499.97
12.50
- 5.00
0
0
31
100.00
2500.00
492.62
14.14
31 209.63
311.69
-24.95
-1 0
-1 0
32
500.00
2500.00
172.95
31.62
6249.99
12.50
-
0 + 7
+ 5
33
1000.00
2500.00
37.39
44.72
31 25.00
3.12
5.00
- 2.50
0
DISCUSSION OF RESULTS
8.3
I n g e n e r al , one may need ad d i t i o n al a n a l y s i s in the c a se where and
i s no row with both W 1 2
equal t o z e ro.
W13
there
I n t h i s case, a multiple
r e g r e s s i o n or i n t e r p o l a t i o n s can be conducted t o obta in ld12 and W 1 3 each a s a f u n c t i o n of
t o zero.
Xl2
and X 1 3
Then one
near values where t h e worth func tions a r e
would have t o
W 1 2 ( X 1 2 , ~ 1 3) = 0 and W13(A12,A13)
close t h e equations f o r
s o l v e simultaneously =
0 t o obta in e stim a te s
for
A;~
and
^* x13.
a m u l t i p l e r eg r es s i o n or i n t e r p o l a t i o n s can be conducted f o r f 2
Similarly,
and f 3 a s f u n ct i o n s of A 1 2 a n d h l 3 i n o r d e r t o provide t h e necessary i n f o r -
*
maiion t o t h e DM. F i n a l l y , one would s o l v e problem 8-1 f o r
*
and
t 3
=
* * - *
f3(A12,A13) a s described i n s e c t i o n 6 . 3 . 2 .
were avoided
i n t h i s example o f t h e cas e where
* ^*
f2(h12,x13)
These complications
s i n c e f o u r values were found
s u r r o g a t e worth f u n ct i o n s were zer o . lustration
E~ =
f o r which both
The next example w ill provide an i l -
no p r ef er r e d s o l u t i o n i s found in t h e t a b l e .
Note t h a t t h e worth f u n ct i o n s W 2 3 , W 2 1 , W 3 1 and b132 were not found s i n c e i t was assumed t h a t t h e DM i s a c c u r a t e l y as s essing his pre fe re nc e s. STREAM RESOURCE A L L O C A T I O N PROBLEM
8.4
This s e c t i o n wi l l demonstrate t h e use of the surroga te worth tra de off method i n another water resources problem. streani resources viewpoint3.
The problem
has been s t u d i ed ex t ensive ly from
The s t a t i c
n-objective
t h e a l l o c a t i o n of
-
the s i n g l e o b j e c t i v e
E - constra int algorithm described
in
Chapter 6 w i l l be used t o s o l v e t h i s a s a m u l t i p l e o b j e c t i v e problem.
For i l l u s t r a t i v e purposes, co n s i d er a physical system c o n s i s t i n g of a r e s e r v o i r upstream of a s e r i e s o f n municipal and i n d u s t r i a l use rs d i s charging i n t o t h e r i v e r . The r e s e r v o i r is used f o r water supply can a l s o be used f o r low flow augmentatidn ( r e l e a s i n g of water down-
and
stream t o d i l u t e w a s t e s ) . which
has t h e a b i l i t y
demand)
t o co n t r o l t h e amount of B . O . D .
discharged d a i l y
limitations);
W e assume t h e e x i s t e n c e of a regional a u t h o r i t y i n t o t h e stream
the regional a u t h o r i t y
( b i o l o g i c a l oxygen
by each user ( e . g . via e f f l u e n t
i s a l s o re sponsible
for
re gula ting
water re1 e a s e from t h e r e s e r v o i r . Thus t h e d eci s i o n maker f o r o u r problem i s t h e regiondl a uthorityw hic h determines t h e e f f l u e n t l i m i t a t i o n s ( X of tre a tm e nt) f o r each u s e r , and t h e amount of water t o be r el eas ed from t h e r e s e r v o i r f o r low flow augmentation. Define t h e d e ci s i o n v a r i a b l e s as f o l l o ws : c e n t treatment t o be used a t t h e mal).,
xi, i
=
1,2, ..., n , i s t h e per-
i t h treatment p l a n t (expressed a s a de c i-
and y i s t h e amount of water
( i n u n i t s of Fo where Fo i s t h e unaug-
mented i n i t i a l f l o w
i n t h e stream)
t o be r e l e a s e d f r o m
the reservoir for
f l o w augmentation. I t i s assumed t h a t t h e o b j e c t i v e s o f t h e DM a r e t h r e e f o l d .
1:
M i n i m i z e t h e t o t a l c o s t o f waste t r e a t m e n t i n t h e r e g i o n ( i t i s assumed
that the cost o f
r e l e a s i n g w a t e r f o r f l o w augmentation i s n e g l i g i b l e s i n c e
t h e dam i s a l r e a d y p r e s e n t ) .
The c o s t
f u n c t i o n s f o r each i n d i v i d u a l u s e r
as g i v e n by Hass w i l l be used f o r t h e Miami R i v e r . removed:
t h e p e r c e n t B.O.D. Costi
160.8 + 26.7qi
=
These a r e q u a d r a t i c i n
+
+ 255.7qi)
(640.7
(xi - .45)
2
where qi i s t h e t o t a l waste w a t e r l o a d g e n e r a t e d by t h e ith user i n m i l l i o n g a l l o n s p e r day.
Thus t h e t o t a l c o s t t o
t h e r e g i o n i s t h e sum o f t h e i n -
dividual costs: n
fl
=
)
1
i=l where 2:
= 160.8
txi
+
(X.
+ 26.7qi
Bi
xi
and
ai
Maximize t h e w a t e r i n
- .45) =
2
640.7 + 255.7qi
the reservoir available f o r
on e v a p o r a t i o n , r a i n f a l l , c a p a c i t y , e t c .
depends
This
S , t h e amount o f w a t e r a v a i l a b l e t o be r e l e a s e d
lumped i n t o one parameter ( i n u n i t s o f Fo)
water supply.
All o f these f a c t o r s a r e
f o r t h e p e r i o d being studied.
Then t h i s second o b j e c t i v e
becomes : Maximize 3:
Minimize the
o f the water
f2
=
S - y
p o l l u t i o n i n t h e stream.
i m m e d i a t e l y downstream
I t i s assumed t h a t t h e q u a l i t y
o f t h e f i n a l user
(point A i n figure
8 - 1 ) i s i m p o r t a n t t o t h e DM. For example, t h i s area may be used f o r r e c r e a t i o n a l purposes
so t h a t t h e q u a l i t y must
so t h a t t o a v o i d l e g a l problems t h e q u a l i t y
o f another j u r i s d i c t i o n a l area must be m a i n t a i n e d .
The measure o f q u a l i t y t o be used i s t h e c o n c e n t r a t i o n
o f d i s s o l v e d oxygen, D.O., The B.O.D.
basic
be m a i n t a i n e d , o r i t may be p a r t
i n milligrams per l i t e r .
Streeter-Phelps
discharged i n t o t h e r i v e r
e q u a t i o n 4 i s used t o r e l a t e t h e a m o u n t o f to
the
D.O.
l e v e l a t any
point i n the
stream. F o l l o w i n g t h e approach o f Hass, t h e r i v e r i s d i v i d e d i n t o n reaches ( t h e p o i n t where each u s e r d i s c h a r g e s h i s wastes d e f i n e s a new r e a c h ) . Then the
D.O. c o n c e n t r a t i o n a t p o i n t A i s : n D.O.
=
[
z i =1
aixi
+
b,y
+ (b,-cl)l/[(c2-b2)
-
b2y1
134
MUI,TIOBJEC”IVE OPTIMIZATION I N WATER RESOURCES SYSTEMS
-
c2
=
(Fn
w.
=
u n t r e a t e d B.O.D.
1
i R. = J
F0)q l o a d ( l b s / d a y ) o f t h e ith user
J
exp ( -
1
m= i
rmtm)
=
j c kmtm) m=i unaugmented r i v e r f l o w a t b e g i n n i n g o f r e a c h i ( c f / d a y )
=
i n i t i a l c o n c e n t r a t i o n o f D.O.
Si
=
saturation level f o r
r. J t. J
=
r e a e r a t i o n c o e f f i c i e n t i n reach j
=
time o f t r a v e l f o r reach j
k. J
=
deoxygenation c o e f f i c i e n t f o r reach j
q
=
conversion f a c t o r from l b s / c f t o m g / l i t e r
cT j
=
D.O.
K’j
=
Fi c
0
This i s b a s i c a l l y
exp ( -
i n stream ( m g / l i t e r )
O2 i n ith reach ( m g / l i t e r )
c o n t e n t ( l b s l d a y ) o f added f l o w i n r e a c h j
a restatement o f
e q u a t i o n A-14 o f t h e appendix o f Hass.
Thus c b j e c t i v e t h r e e becomes: n Maximize
[
c
aixi
+ bly
+
(b,-cl)]/[(c2-b2)
-
b2y]
i=l There a r e a l s o c o n s t r a i n t s on t h i s system. t h a t each u s e r employ
a t l e a s t primary treatment
Legal c o n s t r a i n t s r e q u i r e (assumed t o be 4 5 % ) , and
135
APPLTCAY'IONS TO WATER RESOURCES PROBLEMS
Thus
o v e r 99% t r e a t m e n t i s p r e s e n t l y p h y s i c a l l y i m p o s s i b l e .
s x 1.
.45
.99
5
for
...,
i = 1,2,
.
n
S i m i l a r l y , t h e amount o f f l o w augmentation must be between z e r o and t h e amount a v a i l a b l e (S
3.47) so t h a t 0
=
<
< 3.47
y
Introducing the transformation x i
=
xi
- .45 f o r each i, t h e o v e r a l l
p r o b l em becomes : n MIN
Problem 8-2:
fl
I "
' L
ai +
7:
=
i=1
6.X. 1 1
[(C2-b2) - b2Y1 s.t.
8-5.
SOLUTI0r.I
OF STREAM
0
< x 1.
o
s
y
.54
i
i
s
RESOURCE ALLOCATION PROBLEM
The f i r s t t a s k i s t o p u t problem 8-2 i n t o s t a n d a r d f o r m .
The second
and t h i r d o b j e c t i v e s a r e t r a n s f e r r e d i n t o m i n i m i z a t i o n s by u s i n g t h e f a c t that M I N f . = - MIN(- f . ) . Thus d e f i n e f; = - f 2 and f; = - f 3 ; the J J a l g o r i t h m can now be i n i t i a t e d . S t e p 1: The minimum v a l u e o f f; i s f o u n d by s o l v i n g MIN
y - S
s.t. 0
y 5
$
s
Using t h e v a l u e S = 3.47 f r o m Hass, fZMIN must equal -3.47 s i n c e t h e can a l s o be f o u n d .
This obviously occurs a t y
=
miniI
F o r t h i s problem
mum o b v i o u s l y o c c u r s a t y = 0.
t h e maximum v a l u e f o r f 2 3.47 and i s fZMAX = 0.
The minimum v a l u e o f f i i s f o u n d by s o l v i n g MIN
-
n
[
n
c a 1. x :1 + .45
i=l
c ai + bly + (bl-c1)]/[(c2-b2) i=l I
s.t. It i s
O s y s S ;
obvious t h a t t h e
level (f3)
O s x .1 s . 5 4
i=2,3
minimum v a l u e o f
,...,
This g i v e s t h e value
f3F,Ip4 = - 7.97.
n
f3 i s t h e p o i n t where t h e
i s maximum, w h i c h must o c c u r where each I
- b2y]
0.0.
x.' = .54 and y = 3.47. 1
o c c u r s where y = 0 S i m i l a r l y , f3MAX
I
and each x i
=
0 ; thus i t i s found t h a t f3MAX= -4.78.
Note t h a t the
values
a r e developed from t h e d a t a i n Hass; these
of tlie c o n s t a n t s a i , b l , b 2 , c 1 , c 2
Rewrite tlie problem -in t - c o n s t r a i n t form:
S t e p 2:
n MIN
( 9
tr.+(3.x.L
j:
1
i=l
s.t.
s
y -
1
1
:: c 2
n - [
I
n a.x.
1 1
i =1
f
c a i + bly + (bl-c,)l/[(c2-b2)-b2yl s
.45
i=l
o
. x i : .54 f o r
0
s
y
i
=
1,2,
..., n
< 3.47
TABLE 8-2 P h y s i c a l C o n s t a n t s f o r Stream A l l o c a t i o n Problem i
a. 1
qi
1
3331.84
45.2
2
342.96
4.7
3
1539.69
4.2
4
886.02
3.6
5
73 . 8 3 172.06
0.5 1.2
6
7
189.40
0.8
8
433.07
0.6
9
199.94
0.5
10
1913.91
3.2
11
1741.59
8.4
12
722.94
2.7
13
238.59
0.6
14
3633.82
12.1
5
2266.56
8.4
-1
bl b2
= =
7650.31 -971.27
c 1 c2
= =
1740.36 1930.14
t3
137 B r i n g i n g a l l o f t h e c o n s t a n t s o v e r t o t h e r i g h t hand s i d e g i v e s :
s.t.
.
s
o .
xl
y
i
1
: y
0
+
t2
for i
.54
I,Z,
=
...,
n
3.47
$
T h i s p r o b l e i i i c a n be e a s i l y s o l v e d b y q u a d r a t i c p r o g r a m m i n g ( f l P ) . ues of t h e c o n s t a n t s qi
8-2.
used i n f i n d i n g
A s t h e r i g h t hand s i d e o f t h e
f3
The v a l -
a n d B~ a r e a l s o g i v e n i n T a b l e
ai
inequality i s negative, i n order t o
u s e q u c d r a t i c p r o g r a m i n g t h e c o n s t r a i n t m u s t be changed t o n
n a.x i=l
+
( b l - b z F 3 ) ~ :: ( c l - b l )
- ( C 2 - b 2 ) c 3 - . 4 5 i=l 7 a 1.
Let
Q1
=
bl
- b
4,
=
s
+ f2
2'3 n
Q3
c1 - bl - (c2 - b 2 ) c 3
=
-
c a 1.
.45
i=l
The p r o b l e m t h e n becomes : P r o_ b l_ e m~ 8_- 3_: ~-
-
n
PIIN
'2
+
ai
B.X. 1 1
i=l
n ):
a.x. 1
i=1
1
f l i x
O
S t e p s 3 ,?, 4 :
<
Y
+
QIY ? Q3
s
.54
i 3.47
A q u a d r a t i c programming
upper bounding technique5
t o eliminate the
xi
s o l u t i o n procedure, u s i n g an
< .54 and
y:'
3.47
constr-
w L w m ~ E c m m OPTIMIZATION IW WATER RESOURCES SYSTEMS
138
a i n t s , was w r i t t e n a n d implemented on t h e GE 4060 computer. ved f o r 33 d i f f e r e n t values of
of which 30 were binding.
This was s o l The s o l u t i o n t o
t h e q u a d r a t i c programming problem includes t h e Lagrange m u l t i p l i e r s A3
f o r t h e c o n s t r a i n t s i n problem 8-3. Notice t h a t
+ ,ifl/"Q3
( t h e plus s i g n i s
"*
To f i n d
straint).
x12
X2
- afl/aQ2 and
corresponds t o a
h3
and =
2
con-
note t h a t -
=
Since Q, = S +
p r es en t because
=
E~
and
E~
=
f
2
2
=
- a f l . dQ2 . aQ2 d ~ 2 d f 2
=
- f 2 then h 1 2 = -
afl/af2
~
~
2'
~
i s negative ( i . e . , - a f l / a f 2 i s p o s i t i v e ) s i n c e
I t i s a p p r o p r i at e t h a t
i f t h e amount a v a i l a b l e f o r supply i n c r e a s e s , then t h e c o s t t o achieve t h e same q u a l i t y wi l l a l s o i n cr eas e ( s i n c e t h e flow augmentation w ill be l e s s , more treatment wi l l be r eq u i r ed
.
To f i n d
note t h a t
h13,
2f1 - afl/af3 = -
=
-
aQ1 di,
plow,
r3
= f
3
=
- f
so 2 = - 1; 3' df3
a l s o dQ3 = b2 - c 2 and d Q l / d s 3 dE3 ~
The only problem i s f i n d i n g afl/aQ1.
=
- b2.
Note t h a t t h e Lagrangian f o r problem
8-3 i s :
n 1= fl
+
six;
A2(y-Q2) - X 3 1=1
Since I= f Thus
h13
1
a t t h e optimum,
afl/aQ1
2 3. - X3(b2 - c 2 )
b X
=
=
+
4 1 Y - Q3
aL/aQl
=
- x3
y.
.
The f i r s t f i v e columns of Table 8-3 show t h e r e s u l t s o f t h e s e s t e p s . The u n i t s f o r
f 2 were changed from u n i t s of
Fo t o m i l l i o n cubic f e e t per
day a n d f o r X 1 2 from $ / u n i t s of Fo t o $ / million cubic f e e t per day. Step 5: The DM i s questioned and h i s responses a r e given i n t h e l a s t two columns o f
Table 8-3.
i n t h e water r es o u r ces group.
The DFI f o r t h i s problem was a graduate s t u d e n t In o r d er t o
impart an understanding of t h e
system f o r which he was making d e c i s i o n s , t h e o b j e c t i v e s were discussed and t h e upper Figure 8-1.
and lower
bounds f o r each o b j e c t i v e
were presented
along with
The d e s c r i p t i o n given was a s follow s:
"A p o ss i b l e o p er at i n g p o i n t f o r t h e system i s
f 2 m i l l i o n cubic f e e t
139
APPL ICATl ONS TO WATER RESOURCES PROBLEMS of water a v a i l a b l e
a D.O.
f o r supply,
l e ve l of f 3 mg/l a t point A in
the
A t t h i s p o i n t , would you be w i l l i n g t o pay in o r d er t o have 1 m i l l i o n more cubic f e e t of
stream, z n d a c o s t of f; $/day. an a d d i t i o n a l
$/day
-
water a v z i l a b l e ?
Rate your
wi l l i n g n es s on a s c a l e from -10
(totally un-
w i l l i n g ) t o t 1 0 ( t o t a l l y w i l l i n g ) with zero s i g n i f y i n g i n d i f f e r e n c e . l a r l y , r a t e your wi l l i n g n es s t o pay
Simi-
d o l l a r s per
day
l ev el 1 m g / l i t e r . "
t o r a i s e t h e D.O. The u n i t
- A13
an additiona l
increments f o r
f2
( 1 m i l l i o n cubic f e e t of w a te r) and f 3
( 1 m g / l i t e r ) were chosen t o be l a r g e enough so t h a t t h e DN would be a b l e t o perceive t h e d i f f e r e n c e . For example, t h e DM would probably c onside r t h e d i f f e r e n c e between 5 . 0 a n d 5.1 m g / l i t e r t o be n e g l i g i b l e and t h u s que stions about r a i s i n g t h e D . O .
l ev el by . 1 mg/l would have no s i g n i f i c a n c e .
same time, t h e u n i t i n c r m e n t s must
A t the
be small compared t o t h e a bsolute v a l -
ues of t h e o b j e c t i v e s , s i n c e A . = - Afl/Af. i s only t h e c a se i n t h e l i m i t , 15 J a s t h e increments go t o zer o . Thus, i f t h e u n i t increments a r e too l a r g e , X 1 2 i s n o t a good approximation t o t h e change - Afl/Af2 . I t i s f e l t that t h e values chosen f i t both c r i t e r i a . Step 6:
Since none of t h e n o n - i n f e rior values i n Table 8-3 had both
worth f u n c t i o n s equal t o z e r o , m u l t i p l e re gre ssions were performed t o approximate N 1 2 ( f 2 , f 3 ) and W1 3 ( f 2 , f 3 ) . Due t o t h e r e l a t i v e and s u b j e c t i v e n a t u r e of t h e D M ' s responses, good a s any.
The c o r r e l a t i o n These two
i t i s f e l t t h a t a l i n e a r approximation i s a s
The r e s u l t s of t h e r eg r es s i on were: W12(f2,f3)
2
47.55 - .34 f 2 - 4.94 f 3
W,3(f2,f3)
2
67.66 - .15 f 2
c o e f f i c i e n t s were
2
-
.721
9.88 f 3 and
R 2 = .868 r e s p e c t i v e l y .
equations were solved simultaneously t o
g i v e an e stim a te o f t h e
*
=
*
= 6.06. The corresponding tra de off r a 3 = -61.2a nd A;?= -1670 and t h e t i o s were found by i n t e r p o l a t i o n t o be corresponding n o n - i n f er i o r value of f l found by i n t e r p o l a t i o n i s f; = 5987.
p r e f e r r e d values
When t h e s e
f2
=
51.77 and f
R
values were given t o t h e
DM,
Note t h a t i n s t ead of i n t e r p o l a t i o n s ,
he assigned W12
=
0 and W13 = 0.
t h e problem i n s t e p 3 could have been
*
resolved t o f i n d t h e t r a d e - o f f r a t e s and n on-infe rior value of f l f o r f 2 and f;
. Step 7 :
The r ev er s i o n t o t h e d eci sion space i s performed by solving
t h e q u a d r a t i c programming problem i n s t e p 3 with and
f;.
*
The r e s u l t s g i v e
*
'*
xi
, i
=
E~
and
E~
replaced by f;
1,2, . . . ,n which must be transformed
back t o x i , and y . The p r ef er r ed s o l u t i o n i s :
TABLE
8-3
P i o n - i n f e r i o r P o i n t s and DFI Responses f o r Stream A1 l o c a t i o n Problem ~
f2
;
f 3____ _ _____ f
92
'13
+ 10
+ 10
+ 10 9
+ +
8
- 904
+
+
6
"1 3 A l2 ~-~
50.54
5.0
4994
-
0.67
-
12
40.43
5.5
4994
- 1.89
-
48
46.66
5.5
5073
-23.53
- 532
+
52.88
5.5
5287
-45.16
7
9
24.88
6.0
4995
- 2.43
-
+ 10
+ 10
31.10
6.0
5052
-1 5 . 9 2
- 58%
+
+
+
98
38.88
6.0
5242
-32.78
-1 075
46.66
6.0
5562
-49.64
-1 422
52.88
6.0
591 2
-63.13
-1 599
-
9
5
3
i - 4
0
+
3
5
-
3
+
3.89
6.5
5031
- 9.30
- 652
+ 10
15.55
6.5
521 9
-22.91
-1 41 2
+
7
3 0
23.33
6.5
5432
-31 . 9 8
-1791
+
5
-
1
31 . 1 0
6.5
571 6
-41.05
-2067
+
3
-
4
38.88
6.5
6070
-50.13
-2241
0
-
5
46.66
6.5 6.5
6496 6887
-59.20
52.88
-66.46
-231 2 -2295
-
5 9
- 10
3.89
7.0
6074
-31 . 9 7
-3521
-
1
-
4
-
5
- 10
15.55
7.0
6479
-37,49
-3630
+ 10 + 3
23.33
7.0
6785
-41 . 1 7
-3621
+
31.10
7.0
7120
-44.85
-3547
+
2
-
7
38.88
7.0
7483
-48.53
-3407
-
1
-
7
-3 202
-
4
- 10
4
46.66
7.0
7874
-52.21
52.88
7.0
8208
-55.15
-2991
- 10
- 10
3.89
7.5
8552
-24.93
-6390
+ 10
- 10
15.55
7.5
8849
-25.95
-5848
+
9
- 10
23.33
7.5
9053
-26.63
-5451
+
7
- 10
31.10
7.5
9263
-27.30
-5026
+
5
- 10
38.88
7.5
9478
-27.98
-4573
+ 1
- 10
46.66
7.5
9698
-28.66
-4092
-
3
- 10
52.88
7.5
9878
-29.21
-3687
-
7
- 10
141
Step 8 :
A t t h i s point
some s o r t of
s e n s i t i v i t y a n a l y s i s could be
however, such work i s beyond the scope of t h i s b o o k .
performed;
The only
check made was t o inform t h e DM of t h e r e s u l t s , and he f e l t t h a t i t did express h i s preferences f a i r l y a c c u r a t e l y .
8.6
DISCUSSION OF RESllLTS The s u r r o g a t e worth t r ad e- o f f method was discovered t o be e a s i l y im-
plementable f o r t h i s problem. a l r e a d y a v a i l a b l e from Hassl, abling t h e value of
The mathematical model f o r t h i s problem was t h e only change necessary being t h a t of
of t h a t model.
t o change. The f a c t t h a t t h e
imitting t h e use
o f q u ad r at i c programming
c.3
en-
This re quire d only s l i g h t modification problem was formulated i n a manner perg r e a t l y reduced
t h e programming
and debugging time. Quadratic programming uses t h e simplex method f o r which there a r e
many packages a v a i l a b l e ;
must be made a r e f o r
t h e only s p e c i f i c
m odific a tions t h a t
i n t e r f a c i n g t h e data, which did not r e q u i r e
e f f o r t t o implement in t h i s s i t u a t i o n .
too much
I n a d d i t i o n , t h e simplex technique
i s a very e f f i c i e n t procedure. T h i r t y d i f f e r e n t n o n - i n f er i o r p o i n t s were found using l e s s t h a n twent y minutes of computer time of t h e GE 4060 d i g i t a l computer (which i s equiv a l e n t t o approximately two o r t h r e e minutes on t h e Univac each n o n - i n f e r io r p o i n t took approximately t h i r t y a s did t h e t h r e e i n f e r i o r
(non-binding)
seconds of computer time
solutions.
t h e d e c i si o n maker r eq u i r ed l e s s than t h i r t y minutes, appeared t o be more than s u f f i c i e n t t o allow preferences.
1108 computer);
The i n t e r a c t i o n with b u t t h i s time period
him t o adequately express his
These p r ef er en ces were then used in a m u l t i p l e l i n e a r re gre s-
sion t o f i n d a n e s t i m a t e of t h e p r ef er r ed s o l u t i o n ;
again t h e r e a r e numer-
ous computer packages a v a i l a b l e t o perform re gre ssions so l i t t l e e f f o r t i s necessary. I n t e r p o l a t i o n s were used t o f i n d t h e corresponding tra de -off r a t e s a n d t h e DM was questioned a g a i n . The re ve rsion t o t h e de c ision space required only one more i t e r a t i o n of t h e q u a dra tic programming procedure. I n summary, t h e o v er al l
implecientation and
s o l u t i o n via t h e
SLIT method
was
142
M U I TIOBJECTIVE OPTTMIZATION IN CJATER IiESOURCES SYSTEMS
e a s i l y accomplished.
Despite t h e s i m p l i c i t y of t h e problem in t h i s example
i t i s a n approximation t o r eal
situations,
and thus
t h e surroga te
worth
t r a d e - o f f method appears t o have g r e a t p o t e n t i a l f o r use in re a l problems. NORTHERN C A L I F O R N J A WATER SYSTEM Another problem f o r which m u l t i p l e o b j e c t i v e a n a l y s i s i s a ppropria te
8.7
i s that
of r e s e r v o i r o p er at i o n s
b a si s.
A l a r g e s c a l e example
, j e c t i v e problem
i s the analysis
f o r water and energy
of t h e Northern C a l i f o r n i a
t h e monthly o p er at i o n s
economic r e t u r n s
from a
t o produce
multi r e s e r v o i r system
I n r e a l i t y there a r e
a s a sinGle ob-
of t h i s problem considered
which considered horizon.
on a month t o m o n t h
a t l e a s t three
firm
over a
water system7 water and power
50 ye a r
planning
o b j e c t i v e s which should be
considered i n t h e scheduling of r e s e r v o i r r e l e a s e s .
These a r e t h e
made a v a i l a b l e , water made a v a i l a b l e , and c o s t of ope ra tion.
energy
The C a l i f o r -
nia water systems a n a l y s i s attempted t o commensurate t h e s e o b j e c t i v e s , augmenting energy and water i n t o monetary terms by using t h e p r i c e f o r which However, in g e n e r a l , they could be sold a s a commensurating c o e f f i c i e n t . t h i s p r i c e would not be a co n s t an t b u t would depend on t h e amount of energy a n d water a v a i l a b l e as well as on time.
Rather than attempt a p r i c e evalu-
a t i o n o f a l l p o s s i b l e combinations of water and energy a t each of 600 time p e r i o d s, rnultiobjective a n a l y s i s can be used a s a much simpler approach. The system modeled here i s a s i m p l i f i c a t i o n of t h e T r i n i t y subsystem in t h e Northern C al i f o r n i a water system. system.
There a r e two r e s e r v o i r s in t h i s
The f i r s t r e l e a s e s water through a power p l a n t ; t h e second can r e -
l e a s e water e i t h e r f o r supply o r downstream t h r o u g h another power p l a n t and
t o t h e ocean. The s t o r a g e cap aci t y of t h e second r e s e r v o i r i s n e g l i g i b l e t o t h e f i r s t so t h a t i t s l ev el can be considered c onsta nt o n a I n o t h er words, a l l water coming i n t o t h e second (lower) monthly b a s i s . r e s e r v o i r in any period i s e i t h e r r el eas ed t o t h e r i v e r o r used f o r supply a n d a d d i t i o n a l energy ( s e e Figure 8 - 1 ) . For t h i s system, t h e r e a r e two d eci sions which must be made f o r each compared
planning period - namely l e a se s a r e denoted
t h e r e l e a s e s from t h e two r e s e r v o i r s .
xi and r i r e s p e c t i v e l y .
Note t h a t in r e a l i t y t h e s e v a l -
ues a r e t h e average r e l e a s e s f o r t h e i t h period. a r e considered,
These r e -
If te n
planning periods
a s in t h e following approximation, t h e r e a r e then 20 d e c i -
s i o n s. I t i s a l s o assumed t h a t t h e two r e s e r v o i r ope ra tions
are
not inde-
pendent.
I n ot h er words, t h e r e i s some agency re sponsible f o r t h e ove ra ll
operation
of t h e system
and t h i s agency
w ill determine
the releases
to
APl 'L1 CAT i O N S TO WA!l'l?l< KESOURCBS
PROBLEMS
5
143
optii,ially o p e r at e t h e system. There a r e two ways
energy o b j e c t i v e . The f i r s t t o t h e region i s t h e amount of energy which can be guaranteed during ap l an n i n g pe riod. Since i n d u s t r i a l concerns recognizes t h a t
of formulating t h e
what i s important
or p r i v a t e u t i l i t i e s u t i l i z i n g t h e energy w ill usua lly need t o recover l a r g e amounts of c a p i t a l over s u b s t a n t i a l periods of time t o make use of t h e energy, t h e r e must be some reasonable assurance t h a t the a n t i c i p a t e d level of energy wi l l be a v a i l a b l e a s planned. This "guaranteed" energy i s known a s "firin" energy. Additional energy above t h e guaranteed amount ( " d u m p " energy) i s useful i n t h a t i t can re pla c e o t h e r sources of energy f o r t h e i n d u s t r i e s when i t i s a v a i l a b l e , b u t i s somewhat l e s s valuable t h a n the guaranteed a m o u n t . I f E i i s t h e amount of energy generated by t h e system i n period i , then t h e firm energy can be w r i t t e n a s Firm Energy = Idin i E i i , o r M i n i a . E f ' t where t h e f r a c t i o n of t h e firm le ve l Ef i s a i and i s i i 1 possibly d i f f e r e n t f o r each i . Note t h a t in g e n e r a l , t h e u t i l i t y i s concerned with t h e amount of energy guaranteed per day r a t h e r t h a n per month, b u t f o r t h i s p a r t i c u l a r system energy c o n t r a c t s a r e in f a c t based on mont h l y demands during 'on peak' p er i o d s . Another approach i s t o ignore t h e d i f f e r e n c e between firm a n d dump enerLiy a n d assume t h a t t h e t o t a l amount of energy produced i s what i s of value t o t h e region r eg ar d l es s of when produced. This i s a s i m p l i f i c a t i o n which may o r niay not be j u s t i f i e d f o r any p a r t i c u l a r re gion. If i t i s j u s t i f i e d , t h e energy o u t p u t can be w r i t t e n a s Total Energy = 7: E. . i ' The energy E i wi l l now be r e l a t e d t o t h e d e c i s i o n s . Consider f i r s t t h e energy produced by a r e l e a s e of water from t h e f i r s t r e s e r v o i r through t h e power p l a n t . This energy would be proportional t o the amount of water r e l e a s e d , x i , and a l s o t o t h e l ev el of water in t h e r e s e r v o i r . The le ve l of t h e water in t h e r e s e r v o i r , h , i s a f u nc tion o f t h e volume of water s t o r e d , q . where g e n e r a l l y i t can be approximated by a func tion of the form h
=
q1'3. Other more p r e c i s e forms o r even a t a b u l a t i o n can be used. Note t h a t t h e s t o r a g e volume changes
over
time
and
i s dependent
on t h e inflows y i a n d t h e amount of water re le a se d each pe riod. Define qi t o be t h e s t o r a g e volume a t t h e beginning of period i . Note t h a t t h e amount of st o r a g e a t t h e end of period i i s equal t o t h e amount of s t o r a g e a t t h e The following equation i s used t o r e l a t e t h e beginning of period i + 1 . s t o r a g e volumes i n s u cces s i v e p er i o d s .
qi+1
where
=
q . - x. + y. 1
1
1
y i i s t h e inflow t o and
period i . A l t l i o u g h t h e inflow
-
e.
1
e i i s t h e evaporation from the r e s e r v o i r in
y i i s a s t o c h a s t i c parameter, t h e values of
yi will be assumed d e t e r m i n i s t i c and known, and w ill be based on c r i t i c a l period hydroloqic a n a l y s i s .
t h e worst sequence values f o r y i found
That is,
in a 50-year sample of hvdrologic records w ill be used.
Since t h i s " c r i t i -
c a l " period w i l l control t h e maximum f i r m o u t p u t f o r t h a t p a r t i c u l a r hydrog r a p h t h e r e s u l t s can be shown t o be i d e n t i c a l with the 10 period sequence.
The evaporation tional t o the
from t h e r e s e r v o i r in period s u r f ace a r e a .
This
i w ill in general be propor-
can usua lly be
approximated
by
e.
=
Since q changes between i and i + l , e i w ill vary over time. The average value
e 1. ,
over one period i can be approximated by
I n g e n e r a l , t h e evaporation r a t e , p . wi l l vary with t h e season . 1
Replacing
t h i s i n t h e s t a t e equation f o r q . gives 1
I t w i l l a l s o be assumed
'chat t h e i n i t i a l s t o r a g e in t h e r e s e r v o i r , q l ,
is
known Returning t o the average value o f t h e head energy.
c a l c u l a t i o n o f the head,
over t h e period must be Thus t h e average head, h , i s :
i t i s apparent
t h a t the
used in determining the
The energy o u t p u t from t h e f i r s t r e s e r v o i r can thus be w ritte n a s :
The energy o u t p u t from t h e second r e s e r v o i r i s much simpler t o c a lc u-
146
MULT IOHJECTIVE OPT [MIZATION I N WATER RESOURCES SYSTEMS
l a t e s i n c e t h e head i s co n s t an t due t o a t i o n i t w i l l be assumed
o t h e r than x i i s n e g l i g i b l e . culated as
E.
1
1
two energy o u t p u t s .
the maximum c a p a b i l i t y
I n addi-
The energy from t h i s r e s e r v o i r i s e a s i l y c a l -
Therefore t h e t o t a l energy
= yr..
the sum of t h e s e
c onsta nt s t o r a g e l e v e l .
t h a t evaporation i s n e g l i g i b l e and t h a t t h e inflow output of the system i s
I n r e a l i t y , t h e r e may be l i m i t s on of the power p l a n t s , b u t
o f energy output f o r each
t h e se a r e simple c o n s t r a i n t s which wi l l be ignored in t h i s a n a l y s i s . The o b j e c t i v e of water supply a l s o can be considered in two ways. The guaranteed "f i r m" water can be a s e p a r a t e o b j e c t i v e , o r the t o t a l water output over t h e t en period span can be t h e measure chosen.FromFigure 8-1 i t can be seen t h a t t h e amount a v a i l a b l e f o r water supply, iod i s W i
=
Wi,
in any per-
x. - r . . 1
1
The f i n a l o b j e c t i v e i s a c o s t f u n ct i on. I t w ill be assumed t h a t t h e c o s t of power generation a t each p l an t i s proportional t o t h e amount of water passing through t h e power p l a n t , a n d
t h a t t h e v a r i a b l e c o s t of water
suppiy ( l a r g e l y pumping energy f o r d i s t r i b u t i o n ) i s proportional t o the amThen t h e v a r i a b l e c o s t f o r t h e i t h period can be o u n t of water s u p p l i ed . written as C i = a i x i + bi ri + c . ( x . - r . ) = ( a . + c . ) x . + ( b . - c . ) r . 1 1 1 1 1 1 1 1 1 I n g e n e r a l , non-linear c o s t f u n ct i o n s may be more a p p r o p r i a t e b u t l i n e a r i t y
in t h i s i n st a nce
i s reasonable and wi l l be assumed f o r s i m p l i c i t y
without
l o s s of g e n e r a l i t y i n s o f a r a s m u l t i p l e o b j e c t i v e a n a l y s i s i s concerned. which must be considered f o r t h i s system i s
A final constraint
the m o u n t of s t o r a g e a t t h e end of any period cannot of t h e r e s e r v o i r and must be above t h e minimum voir operation,
(Qmin
I
qi+l
exceed
required f o r
t h e c a pa c ity proper r e s e r -
Qmax).
I
The t h r e e o b j e c t i v e o p t i mi zat i o n problem can be summarized a s Maximize firm energy:
Max [Min
1
{
l/3
7 (qi
+ q i + l ) x i + y r .1? ]
1
Maximize firm water:
Max [Min { x i - r i l l
Minimize c o s t :
Min [ z( ai + c i ) x i + ( b1- - c1. ) r .1] i
i
Subject t o
'13
q i +l
+6 2 qi+l
=
q. 1
D 2
2/3
q. - x. 1
1
+
y
i
i = 1,2,
...,
10.
that
147 The alternative formulation replaces the first two objectives by Maximize total energy
=
MAX
[c i
1
v3
Ib
(qi + qi+l) xi + yr.] . 1
xi - ri] . i Note that the cost objective does not change. To make this formulation more realistic, constraints requiring a minimum output of water and energy in each period could be included. Both of these problems are highly non-linear and are difficult to solve. When put into &-constraint form, the first formulation becomes: Maximize total water
=
MAX [X
4) x.1 - r.1 :: t 3 5) ri 3 0 i = 1,2,..., 10. (Note that xi 3 0 is not necessary as a constraint since this condition must be met for constraints 4 and 5 to hold.) With this formulation, there are 20 decision variables, one objective function, 10 equality constraints and 50 inequality constraints. The problem may be reformulated by using the equality constraints.
and substituting for x. The formulation becomes: Problem 8-4:
+
(bi - ci) ri 1 n
143
+ yi - r i > c3
...
(i
=
1,2,
(i
=
1 , 2 , . . . , 10)
)
10)
with bounds on t h e d eci s i o n v a r i a b l e s of 1)
Qmin
2)
ri
s qi+1 s Qma, >
0
The d e c i si o n v a r i a b l e s a r e r 1. and q 1. +1 f o r i q 1 i s a known c o n s t a n t . ) With t h i s formulation
t h e r e a r e 20
=
1,2,
...,
10. (Remember t h a t
bounded de c ision v a r i a b l e s , one
o b j e c t i v e f u n c t i o n , a n d 20 i n e q u a l i t y c o n s t r a i n t s . SOLUTION OF C A L I F O R N I A WATER SYSTEM MULTIOBJEEIVE PROBLEM
8.8
The formulation involving c o s t , t h r e e o b j e c t i v e s was System.
firm w a te r, solved on t h e
implemented and
and firm energy a s t h e Univac
1108 Computer
The values used f o r t h e co n s t an t s a r e l i s t e d in Table 8-4. Finding
t h e minimuin
a n d maximum values f o r
non-linear programming problem programming time,
c2
and
E~
r e q u i r e s t h e solution of a
w i t h minimax o b j e c t i v e s .
an approximate lower l i m i t of zero
In o r d e r t o save
i s used f o r b o t h ob-
The maximurn f o r f 2 i s taken as 300 MWH s i n c e no f e a s i b l e solut i o n could be found f o r any higher values. S i m i l a r l y , t h e maximurn f o r f i s 3 7500 AF. This approximation may lead t o some non-binding s o l u t i o n s (recogn i z a b l e by h = 0 ) which must then be d i s carde d. jectives.
The minimization i n problem 8-4 was solved f o r d i f f e r e n t values of and
t 3
c2
in t h e ranges defined i n t h e preceeding paragraph. These values were
chosen t o be approximately e q u i d i s t a n t
i n t h e f e a s i b l e region and a r e l i s -
ted i n t h e f i r s t two columns of Table 8-5.
Note t h a t t h e r e
rent constraints for
I n some c a s e s , only one w ill be
c2
in problem 8-4.
are
10 d i f f e -
binding, and t h e corresponding non-zero Lagrange m u l t i p l i e r i s the tra de -off ratio A12.
Should t h e r e be more than one non-zero m u l t i p l i e r , t h e one with value corresponds t o t h e most binding c o n s t r a i n t a n d
t h e l a r g e s t a b so l u t e
thus r e p r e s e n t s t h e t r ad e- o f f r a t i o .
I t i s important t o remember t h a t X 1 2
d e sc r i b e s t h e change i n t h e optimal value of f l d u e t o a n incremental change i n f only f o r small increments. This i s e s p e c i a l l y r e l e v a n t here sinc e a
2
l a r g e increment may cause
a d i f f e r e n t one of t h e ten c o n s t r a i n t s t o become
149 TABLE
8-4
D a t a f o r T r i n i t y R i v e r Subsystem Example
Y ( KAF 1
Period
a($/AF)
b(S/AF)
c($/AF)
1
18.0
3.00
2.00
0.60
2
22.5
3.00
2.00
0.70
3
25.0
5.00
2.50
0.60
4
30.0
3.00
2.00
0.50
5
27.5
2.50
1.50
0.50
6
15.0
2.00
1 .oo
0.40
7
10.0
1 .oo
0.50
0.30
8
10.0
1.50
1 .oo
0.40
9
15.0
2.50
2.00
0.50
10
17.0
4.00
2.50
0.60
(Y
=
200 FlWH/AF/Ft
p
=
.04 A F / A c r e
y
=
1500 MblH/AF
91
=
180 KAF
Qmin
=
100 KAF
=
400 KAF
Qmax
MU1,'T'IOBJECTIVE OPTIMIZATION IN WATER RESOURCES SYSTEMS
150
TABLE
___
8-5
R e s u l t s f o r T r i n i t y River Subsystem Example Computational Model
F i r s t run
f2
A l2
'1 3
'dl 2
1' 3 +lo
100
0
22
-.036
-3.6
+ 8
100
2.5
82
-.028
-5.6
+ 9
- 2
150
0
32
-.036
-3.6
+ 4
150
2.5
85
-.036
-4.6
+ 7
150
5.0
163
-.028
-5.6
+ 2
+lo - 1 - 5
-3.6
+ 2
+lO
200
0
43
-. 036
200
2.5
95
-.037
-3.6
0
0
-.028
-5.6
0 - 4
- 6 +10 - 7
200
Second run
f3
Decision Maker
250
5.0 0
165 54
-.036
-3.6
250
2.5
106
-.037
-3.6
250
5.0
166
-.028
-5.6
- 1 - 4
250
7.5
246
-.028
-5.6
- 3
-10
300
0
65
-.036
-3.5
-
+10
300
2.5
117
-.037
-3.6
- 7
- 1
6
0
300
5.0
170
-.036
-4.6
- 5
- 8
300
7.5
247
-.028
-5.6
- 4
-10
220
2.5
99
-.037
-3.6
0
0
180
2.5
91
200
3.0
106
-.037 -.037
-3.6 -3.6
+ 2 0
0 - 1
200
2.0
85
-.037
-3.6
0
+ 6
f;
are
$1000
f2
are
FIWH/period
f3
are
KAF/period
Note:
the units of
Preferred Solution
Preferred Solution
APl)l,/ I'AT7ON.7
151
7 ' 0 WATER HFSOUHCES PROBLEMS
-
af / af will be ne ga tive , sinc e a n i n c r e a s e 1 2 in c o s t ( f l ) w i l l y i e l d a n i n cr eas e i n firm energy ( f 2 ) . All of t h e above
binding. Note a l s o t h a t h 1 2 =
analysis also applies t o
x13
and
E~
.
The s o l u t i o n procedure u t i l i z e d
f o r problem 8-4
i s t h e generalized
A computer reduced g r a d i e n t ( G R G ) algorithm f o r non-1 ine a r optim iz a tion8. package i s a v a i l a b l e f o r t h e Univac 1108 Computer System. Seventeen values of
c2
and
were used as i n p u t , however one of them did not converge t o a
E~
so l u t i o n within solutions.
t h e time l i m i t of
seconds of computer time.
and four were i n f e r i o r
The r e s u l t s of t h i s computation provide t h e non-
f l a n d t h e trade-off r a t i o s h 1 2 and
i n f e r i o r value of each p a i r
twenty-seconds,
The s o l u t i o n s which did converge r e q u i r e d , on t h e average, four
( L ~ , L ~ ) .
x13
corresponding t o
Those r e s u l t s a r e l i s t e d in t h e middle t h r e e columns of
Table 8-5. The decision-maker ( D M ) was i n t er r oga te d with que stions analogous t o those used f o r t h e stream resource a l l o c a t i o n problem. For example, t h e question corresponding t o row 2 i n Table 8-5 "Given an ope ra ting polic y c o s t i n g $ 82,000 f o r t h e ten planning periods which guarantees 2500 a c re f e e t of firm water per period and 100 megawatt hours of firm power per peri o d , how w i l l i n g would you be t o spend an a dditiona l $2800 t o inc re a se t h e firm energy by 100 MWH/period? A t t h e same p o i n t , w h a t would your w i l l i n g ness be t o spending an ad d i t i o n al a c r e f e e t per period?"
$5600 t o inc re a se t h e firm water by 1000
The responses of t h e DM a r e l i s t e d in t h e l a s t
two
columns of t a b l e 8-5. One p r ef er r ed s o l u t i o n i s found i n t h i s t a b l e - namel y , f; = $95,000, f2f = 200 MWH/period, f i = 2500AF/period. Four o t h e r values of
t2
and
*
E~
*
near f 2 and f 3 were used in t h e GRG algorithm t o t r y t o
determine t h e e x t e n t of t h e i n d i f f e r e n c e band.
These computations a n d r e -
s u l t s a r e l i s t e d i n t h e l a s t f o u r rows of Table 8-5. I t can be seen t h a t t h e i n d i f f e r e n c e band extends approximately from 200 s f; s 220, f i 2.5, thus including values o t h e r
*
f 2 = 210, f
* 3
=
2.5
than those found from Table 8-5;
f o r example,
i s a l s o a p r ef er r ed s o l u t i o n .
Reversion t o t h e d eci s i o n space i s performed f o r values in t h e i n d i f f e r e n c e band, using t h e GRG program. Results f o r t h r e e e q u i d i s t a n t values i n t h e i n d i f f e r e n c e band a r e presented i n Table 8-5. Again t h e s u r r o g at e worth t r ad e- o f f method i s a b l e t o develop a solut i o n even though t h e mu l t i o b j ect i v e problem i s highly non-linear with 20 d e c i si o n s and 30 c o n s t r a i n t s a n d t h r e e o b j e c t i v e s (of which two a r e of t h e minimax f o r m a t ) . Although a r eal d eci s i o n maker was not u t i l i z e d , t h e SWT
inethod could have s o l u t i o n of t h e
found t h e i n d i f f e r e n c e band mu l t i o b j ect i v e problem
d i f f i c u l t p a r t of t h e procedure,
f o r solving
f o r any DM responses.
b u t the availability
non-linear probleiiis rendered
the Lagrange m u l t i p l i e r s f o r t h e
The
in E-c onstra int format i s the most of t h e GRG
t h i s s t e p simple.
package
I n addition,
€ - c o n s t r a i n t s a r e a utom a tic a lly output b y
the GRG. The a c t u al decision-maker f o r t h i s model of t h e T r i n i t y River subsystem would
of course
select a different
s e t of values
of water power and
c o s t t h a n was s el ect ed by t h e s u b s t i t u t e decision-maker used f o r t h i s example.
However, the number o f i t e r a t i o n s a n d t h e form of the c a l c u l a t i o n i s
e s s e n t i a l l y t he same. I t i s , of co u r s e, p o s s i b l e t o as s ign p r i c e s t o the energy a n d water produced a s was done by Hall and Shephardg. This procedure in e f f e c t , presumes t h a t a l l u n i t s of water a n d a l l u n i t s of energy a r e i n d i s t i n g u i s h a b l e i n value r e g a rd l es s of c o s t of production or l e v e l s of production.
cases t h i s i s approximately c o r r e c t , c o n t r a c t s s p e ci f y f i x ed p r i c e s iiiaker i s t h e monetary
I n some
p a r t i c u l a r l y when the power atid water
only i n t e r e s t of t h e de c ision of c o s t . I n most c i v i l systems,
a n d when the
r e t u r n i n excess
however, t h e l a t t e r i s n o t s t r i c t l y t r u e ,
even when
revenue a r e f i x ed i n advance of a n a l y s i s .
The s i m p l i c i t y of t h e SWT method
i s immediately apparent i f t h e
the prices
producing
"v al u e" of water and energy i s not based on
an a r b i t r a r y p r i c e b u t r a t h e r on t i i e i r impact on soc ia l goa ls.
Evaluating
a " p r i c e f o r a l l conbinations of wat er , energy and c o s t l e v e l s f o r the 600 m o n t h planning horizon would be a d i f f i c u l t t a s k . I n t h i s p a r t i c u l a r example i t i s p o s sible t o e stim a te t h e "cash value" of t h e marginal u n i t s of water and energy f o r t h e pre fe rre d s o l u t i o n s . Note
t h a t t h e product of t h e true-worth r a t i o times t h e tra de -off r a t i o must equ-1 a t o p t i m a l i t y . Since t h e DM co n s ide rs t h a t t h e pre fe rre d s o l u t i o n s he a t t a i n e d a r e o p t i mal , i s t h e marginal monetary p r i c e of M W H , i . e . , $37 per megawatt-hour a t t h e margin i n our example,and $3.60 per a c - f t . i s
al
t h e moneta$yvalue of water a t themargin f o r o u r DM.These a r e t h e average u n i t values and nothing can be deduced regarding the t o t a l vcllue of t h e water a n d power produced except
tion.
t h a t t h e i r sum exceeds the t o t a l c o s t of produc-
c, 0 W
a i
0
.->
in S
c,
.-0 3 7
0
Lo
i
m
.
h
*
N
.
N
N
r .
N
.
c r 7
m
w
r.r. N
m
m r . N
eh
h
m .
m
i
N
N N
N N
m N
m N
N d
h
N
m
N
r
m
m r.
L
.r
x
.r
m
.
N
m
.
a,
i
N
r.
N
r. .
t n . N
e
m
N
r
'-
r.
h
Lo N
W
N
r.
0 co
m
7
m M
r.
N
W N
W
m
r. r.
0) N
i
N
01 N
r.
a
co N
Lo
N
N co
W N
W N
r. N
N
.r
a, N
0
0 5J
0 05 N
5J
m
r. N
i
r.
m N
03
i
N
N
N
03
N
m
M N
M
m
c9
N W
m N
m
N N 00
Lo
co
m r.
co r. N
0 N
r .
m
m
N
m
m
N
N
r. N
m
i
r.
N
0
m
N
0
m
m
r
+
7
.r
cr
N
I1
m m
X
.r
m
m
m
N 03 N
m
N Lo
Lo
N
r.
N
N
e-
a
0,
r.
m
m
m
e-
co
N
r. N
N
W
e-
N Lo
cu
co
% co
N
c3 N
W
m 0 N
N
m
0
m
L
.r-
X
N
I1
Lo
I1
r
0
I1
m
h
.r
m
m 7
+
.r
i
5
N
Lo
N
I1
Lo
I1
0 0
m /I
*
0
m
F-
m
N
m
N
m
m m
d
m
Lo
m
m m
7-
e-
e-
co
.r
L
W r. 0
m
N h
m N
m
m 00 N
dLo
N 5J
0 N
co N
m m h
N
m N Lo N
Lo
co
N N
W
m
0 N
N
m m
7-
+
i
.r
U
I1
N
m I1
0 N N
N
153
154
MULTTOBJECTIVE' OP7'IMIZATJON TN WATER RESOiIRCES SYSTEMS
FOOTNOTES
1
This m u l t i o b j e c t i v e
problem
and Vemuri
t h e i r s o l u t i o n was
[1974];
i s described
i n R e i d and Vemuri [1971]
t o f i n d an a n a l y t i c f u n c t i o n
f o r the non-inferior set. 2.
Rows
16-24
Vemuri
i n T a b l e 8-1
[1971].
correspond t o t h e values
*
Note t h a t t h e i r
t a k e n f r o m Reid-
*
J1 corresponds t o f 2 , and J2 t o f
* 1
due t o t h e way t h e o b j e c t i v e s were d e f i n e d . 3.
Some o f t h e a u t h o r s who
4.
The
5.
A description
Haimes e t a1 [1972],
have s t u d i e d t h i s problem
are
Hass [1970],
and Liebman and Lynn [1966].
original formulation
o f t h i s equation
i s f o u n d i n S t r e e t e r and
Phelps [1925]. of
upper bounding
techniques
can be found
in
Taha
[1971]. 6. 7.
B o t h t h e d a t a and t h e b a s i c model a r e t a k e n f r o m Hass [1970]. See H a l l and Shephard [1967] o r H a l l and Dracup [1970] f o r a d e s c r i p t i o n o f t h e C a l i f o r n i a water
s u p p l y system and i t s
analysis i n
the
s i n g l e o b j e c t i v e format 8.
T h i s a l g o r i t h m i s d e s c r i b e d b y Lasdon e t a1 [1973]
9.
Again see H a l l and Shephard [1967].
REFERENCES
1.
Y., Kaplan,
Haimes, Y .
M. A . ,
and Husar, M.A.,
" A M u l t i l e v e l Approach
t o D e t e r m i n i n g Optimal T a x a t i o n f o r t h e Abatement o f Water tion,"
2.
~
H a l l , W. A . and Dracup, J . A.,
Water Resources Systems
McGraw-Hill Book Company, N.W., 3.
H a l l , W.A. and R.W. sources C e n t e r . Hass, J. E . ,
Engineering,
1970.
Shephard, "Optimum O p e r a t i o n s f o r P l a n n i n g o f a Com-
p l e x Water Resources System,"
4.
Pollu-
Water Resources Research, v o l . 8, no. 4, 1972.
U n i v e r s i t y o f C a l i f o r n i a Water
Re-
C o n t r i b u t i o n # l 2 2 , Los Angeles, 1967.
"Optimal T a x i n g
f o r t h e Abatement o f Water P o l l u t i o n , "
Water Resources Research, v o l . 6, no. 2, 1970.
5.
Lasdon, L. S . ,
Fox, R. L . , and Ratner, M W . ,
"Nonlinear
Using t h e G e n e r a l i z e d Reduced G r a d i e n t Method," serve U n i v e r s i t y ,
O p e r a t i o n s Research Department
Optimization
Case Western
Re-
T e c h n i c a l Memo-
randum no. 325, 1973. 6.
Liebman, J.C.,
an3 Lynn, W.R.,
"The Optimal A l l o c a t i o n o f Stream D i s -
s o l v e d Oxygen," Water Resources Research, v o l . 2, n o . 3, 1966.
APPL TI;11'IONS TO WATER RESOURCES PROBLEMS
7.
"On the N o n - i n f e r i o r Index Approach t o J o u r n a l o f the F r a n k l i n Ins t i t u t e , v o l . 291, no. 4 , 1971. S t r e e t e r , H.W., and P h e l p s , E . B . , "Study o f the P o l l u t i o n and Natural P u r i f i c a t i o n o f the Ohio R i v e r , " P u b l i c H e a l t h B u l l e t i n no. 146, 1925. Taha, H. A., O p e r a t i o n s Research: An I n t r o d u c t i o n , The Macmillan Company, N. Y., 1971. Vemuri, V . , " M u l t i p l e O j b e c t i v e O p t i m i z a t i o n i n Water Resource Syst e m s , " N a t e r Resources Research, v o l . 1 0 , no. 1 , 1974. Reid, R . W.,
and Vemuri, V . ,
Large S c a l e M u l t i - C r i t e r i a Systems,"
~~
8.
9. 10.
155
Chapter 9 MULTIOBJEC IVE WATER QUALITY MODELS
INLROJKCJIIbJ
9.1
I n a world where new c r s es continue t o overshadow previous ones a n d t h e attempted s o l u t i o n of one c r i s i s i s c e r t a i n t o a f f e c t previous c r i s e s a n d c r e a t e new ones,
where m u l t i p l e and
ofte n
noncommensurable goals a n d
o b j e c t i v e s ( o f t e n i n c o n f l i c t a n d competition with each o t h e r ) c h a r a c t e r i z e our society,
needed.
t o systems modeling
a cau t i o u s approach
and optim iz a tion i s
This sober and r e a l i s t i c approach should recognize t h e mutual in-
t,eractions among t h e various g o al s sion rilaker(s)
in analyzing t h e
and o b j e c t i v e s a n d should a i d t h e de c i-
trade-offs
among various
o b j e c t i v e s in a
q u a n t i t a t i v e way. A fundaiiiental and
almost axiomatic p r e r e q u i s i t e f o r the se models t o
be r e a l i s t i c , a n d thus be considered f o r a n ultim a te u t i l i z a t i o n by the dec i s i o n r!iaker(s), i s t h a t they be s u s c e p t i b l e t o m u l t i p l e o b j e c t i v e func tions in t h e i r noncoiTliliensurab~e forms and u n i t s . The second fundamental p r e r e q u i s i t e i s t h a t t h e r e should e x i s t solut i o n niethodologies which
a r e capable of
analyzing
and optimizing ( i n the
mind o f t h e decision maker(s) ) t h es e m u l t i p l e o b j e c t i v e s . The present lack of mathematical models with m u l t i p l e o b j e c t i v e funct i o n s can be a t t r i b u t e d p r i mar i l y t o t h e past lack of ope ra tiona l methodolog i e s capable of t i v e functions.
analyzing and optimizing The
m u l t i p l e noncommensurable objec-
Surrogate Worth Trade-off
methodology t h a t f u l f i l l s t h e
(SWT)
second p r e r e q u i s i t e .
Method i s one such
Systems engineers and
systems modelers can now move t o f u l f i l l t h e f i r s t p r e r e q u i s i t e f o r r e a l i s t i c models by co n s t r u ct i n g t h e proper m u l t i p l e o b j e c t i v e func tions.
9.2
!.YTER
QUALITY GOALS AND OBJECTIVES Two major c l a s s e s of water q u a l i t y o b j e c t i v e s may he i d e n t i f i e d . The
f i r s t c l a s s , primary o b j e c t i v e s , corresponds d i r e c t l y t o water q u a l i t y s t a n ddrds a n d thus depends upon t h e p a r t i c u l a r water r e s o u r c e ' s physic a l, chemic a l , a n d biological c h a r a c t e r i s t i c s . Secondary o b j e c t i v e s ,
t h e second c l a s s i f i c a t i o n , correspond b o t h t o
t h e impact of water q u a l i t y l ev el
on t h e u t i l i z a t i o n o f t h e water resource
a n d t o t h e impact o f water resource use on q u a l i t y .
9.2.1
Primary ObjectivesThe Great Lakes llater Quality Agreement
between t h e U . S . and Canada
provides a l i s t i n g of primary o b j e c t i v e s and goals in water q u a l i t y 1 . These
156
o b j e c t i v e s a n d g o al s a r e presented and s p e c i f i e d in the Act e i t h e r i n ternis o f upper
o r lower c o n s t r a i n t s ( l e v e l s of achievement) o r in terms o f objec-
tives t o
be minimized
o r maximized.
The following i s a sample of
water
q u a l i t y goals and o b j ect i v es :
( Phenols and o t h er o b j ect i ona ble t a s t e and odor ni i n i iii i ze
mini''1ize
I
I I
producing substances Temperature change t h a t would adversely a f f e c t any
I
l o cal o r general use of t he water Mercury and o t h e r t o x i c heavy metals
iiinimize
\
minimize
I
I I
( P e r s i s t e n t pest control products a n d o t h e r
1
p e r s i s t e n t organic contaminants t h a t a r e toxic o r harmful t o h u m a n , animal, or a qua tic l i f e
1 I
{ 5 e t t l e a b l e and suspended m a t e r i a l s 1
rriiniiiiizc miniill-ire
{
minimize
{ R ad i o act i v i t y 1
O i l , petrochemicals, and immiscible substances
1
a n d goals i n terms o f upper and lower c o n s t r a i n t s : t o t a l col iforms : 1000 per 100 m i l l i l i t e r s
f e c a l c o l i f o r ms
,< 200 per 100 m i l l i l i t e r s
dissolved oxygen
6 . 0 mi l l grams per l i t e r
t o t a l dissolved s o l i d s
,<
Iron
: 0. 3 mi l l grains per l i t e r s 8.5
6.7
<
pH
200 mill grams per l i t e r
ower achievement a c t u a l l y corresponds I n most c a s e s , t h e upper o r t o u l t i m a t e des i r ed goals r ep r es en t i n g s h o r t , inte rm e dia te , o r l o n g term perspectives. Qu an t i t at i v e co n s i d er at i o n of the se goa ls 1s c o n s t r a i n t s within a formal model may, t h e r e f o r e , introduce a se ve re i n t r a c t a b i l i t y in t h e i r f u r t h e r a n a l y s i s , a s well a s a misre pre se nta tion of the re a l world t h a t i s being modeled. Two conclusions t h a t may be drawn from the above g o a l s a n d o b j e c t i v e s : ( i ) There e x i s t mu l t i p l e noncommensurable o b j e c t i v e s in water qua1 i t y co n t r o l and management. ( i i ) Objectives and g o al s included in a mathematical model a s c o n s t r a i n t s (such a s upper l i m i t o n coliforms o r lower l i m i t o n dissolved oxygen) will g e n e r a l l y ( a n d most l i k e l y ) lead t o s o l u t i o n s on t h e boundaries of those c o n s t r a i n t s . T h u s important information concerning t h e e f f e c t of re la xing one c o n s t r a i n t on t h e improvement o f another i s not r e a d i l y ava i 1able.
MUr,,TIOHJE(‘TI V E 0PTIMIZATIO.V IIL’ CU’ATER RESOURCES SYSTEMS
158
9.2.2 Secondary O b j e c t i v e s I n g e n e r a l , t h e secondary o b j e c t i v e s a r e n o t d e f i n e d as p r e c i s e l y o r q u a n t i t a t i v e l y as t h e p r i m a r y o b j e c t i v e s .
The
following
is a
sample o f
secondary o b j e c t i v e s : (i) (ii) (iii)
Reduction i n the l e v e l o f a l g a l growth Restoration o f year-round aerobic c o n d i t i o n s R e s t o r a t i o n o f t h e w a t e r body f o r t h e purpose o f swimming, f i s h i n g , and r e c r e a t i o n
(iv)
M i n i m i z a t i o n o f any h e a l t h hazards
C l e a r l y , a s y s t e m a t i c and q u a n t i t a t i v e methodology c a p a b l e o f a n a l y z i n g t h e t r a d e - o f f s among
a l l o b j e c t i v e s i s needed.
The S u r r o g a t e Worth T r a d e - o f f
(SWT) Method f i l l s t h i s need as w i l l be d i s c u s s e d s u b s e q u e n t l y . 9.3
GENERAL PROBLEM FORMULATION Most e x i s t i n g s i n g l e o b j e c t i v e models f o r
w a t e r q u a l i t y c o n t r o l and
management can be extended t o i n c l u d e m u l t i p l e o b j e c t i v e f u n c t i o n s .
As an
a s i n g l e o b j e c t i v e f u n c t i o n w a t e r q u a l i t y model2 w i l l be ex-
illustration,
tended t o t h e case o f m u l t i p l e o b j e c t i v e s . Given a system i n t o
w a t e r r e s o u r c e s system,
N subsystems
it i s
c o n v e n i e n t t o decompose t h e
(N reaches i n t h e case o f a r i v e r ) .
This allows
modeling and a n a l y s i s o f a l l o f t h e system i n p u t s and responses.
yi
Let the vector
l,2,,
. . ,N,
where U. = -1
be t h e i n p u t ( p o l l u t i o n ) t o t h e ith subsystem,i
1. iM
[U.11, Ui2,...,U.
=
The f i r s t element o f t h e v e c t o r
Ui, Uil, may r e p r e s e n t w a t e r q u a n t i t y and t h e Ui2,....U. may r e p r e s e n t iM d i f f e r e n t w a t e r q u a l i t y c h a r a c t e r i s t i c s ( e . g . , BOD, pH, t e m p e r a t u r e , t o t a l dissolved solids, e t c . ) .
4 S.
-1
F i g u r e 9.1
ithsubsystem r d p r e s e n t a t i o n
MlJL7'i OBcJh'C"71V E
159
WA TF'R QUAL i T Y MODELS
Let be t h e i n p u t v e c t o r coming i n t o t h e ith subsystem f r o m
W.
-1
o t h e r subsystems, subsystem g o i n g t o o t h e r be t h e o u t p u t v e c t o r o f t h e ith
V.
--1
subsystems, and subsystem, be t h e d e c i s i o n v e c t o r o f t h e ith
S.
-1
where
Wi,
vi,
Figure 1 ) .
and S . a r e o f t h e same dimension as -1
Clearly,
equal V . + S . . -1
Wi
t h e v e c t o r sum
vi
The subsystem O u t p u t s
-1
+
U., i . e . , M-dimension ( s e e
-1
lJi i s meaningless and Si a r e assumed t o be
and
does
not
represen-
t e d by t h e f o l l o w i n g f u n c t i o n s .
where -1 y.
=
bil,
Yi2,
...
-1 0.
=
[Oil,
oi2,
...
i
= 1 , 2,
)
YiM]
)
OiM]
..., N
A t p r e s e n t , n o t a l l components o f t h e f u n c t i o n s Y . and a . a r e known t o w a t e r -1
q u a l i t y experts.
-1
T h i s however c o n s t i t u t e s no l i m i t a t i o n t o t h e model, be-
cause whenever t h e f u n c t i o n a l r e l a t i o n s h i p o f any component o f LJi i s known, t h a t component can be i n s e r t e d and t h u s b e c o n s i d e r e d i n t h e a n a l y s i s . Natur a l l y , t h e presence o r absence o f a component o f LJi has a s t r o n g t h e model.
e f f e c t on
Many c u r r e n t m a t h e m a t i c a l models c o n s i d e r as components o f
o n l y BOD o r DO and assume t h e S t r e e t e r - P h e l p s f u n c t i o n a l r e l a t i o n s h i p 3 . i s evident,
however, t h a t t h e g r e a t e r
t h e number o f components o f
ci
U.
-1
It
that
a r e c o n s i d e r e d and a n a l y z e d , t h e m o r e a c c u r a t e and r e p r e s e n t a t i v e t h e mathem a t i c a l model becomes. Finally, l e t
G(U,
-
W, 5) 5
0
be k - d i m e n s i o n a l v e c t o r o f c o n s t r a i n t s .
The i n e q u a l i t y c o n s t r a i n t s i n c l u d e
e q u a l i t y c o n s t r a i n t s and r e p r e s e n t t h e p h y s i c a l , l e g a l , economic, and o t h e r system c o n s t r a i n t s . Note t h a t
u
=
[U -1
:. -2: u '
-
s
=
[S1
1
w
=
[W -1
:. w-2: '
__
-
:. $1
z2; ;
a r e auqirrented v e c t o r s . The s i n g l e c r i t e r i a optimization problem, e . g . , t h e minimization of 1 of treatinent c o s t f u n ct i o n s of each subsystem, F i ( U i , S . ) :
the sui:i F
-1
can be extended t o include o t h e r o b j e c t i v e s .
For example, l e t
be t h e j t k l o b j e c t i v e f u n ct i o n f o r t h e water resources system, e . g . : for j
=
1,
F1 i s t h e above c o s t f u n c t i o n , ( E q . 1 ) ;
for j
=
2,
F
for j
=
3,
F 3 may be t o t a l mercury a n d othe r toxic heavy metals;
for j
=
4, F4 may be t o t a l s e t t l e a b l e and suspended m a t e r i a l s ;
for j
=
5,
F
2 may be t o t a l phenols;
5 may be t o t a l o i l , petrochemicals, a n d immiscible
s u b s t an ces . C l e a r l y , t h e o v er al l o b j e c t i v e f u n ct i o n f o r the water re sourc e s system w ill g e n e r a l l y n o t be a simple summation of t h e va rious o b j e c t i v e s .
Also, note t l i a t t h e r e i s no discrepancy i n t h e f a c t t h a t t h e mth component of U., U i m , .-1 riia,y be m c x u r y co n cen t r at i o n and t h a t t h e j t h o b j e c t i v e func tion FJ i s a l s o r:ercury concentratioii. The o v er al l model f o r water q u a l i t y c ontrol and management can be written a s : S;isteni 9-1 : ninimize
{F
1
(LJ,S ) , . . . , ~ ~511 (1,
UlS b jec t t o t h e con s t r a i n t s
s 1 . 1
G(U-,W,S)
:'
0
Ceconposition and h l t i l e v e l Approach" can be applied f o r solving t h e overa l l problem
where t h e Surrogate ldorth
higher level c oo r d i n at o r .
Trade-off Method i s
The d i s cu s s i o n
of t h e
utilized a s
a
hie ra rc hic a l-m ultile ve l
approach i s beyond t h e scope of t h i s book. I n the
following
wi 1 1 be d i scu s sed .
section,
examples f o r
multiobjective
systems
9.4
FORMULATION PROBLEM .~~ ._ ~ .-~ O_F A N EXANPLE __.. ..____~ The following formulation i s an i n t e g r a t i o n and extension of several
s i n g l e o b j e c t i v e f u n ct i o n models.s I n t h e model discussed here, t h e ve c tors lJi,5 ,LIi, and l i (forthe a r e t h r e e dimensional v e c t o r s ; t h e elements of which a r e
i t h subsystem)
a s s o c i a t e d with b i o l o g i cal oxygen demand loa d,
thermal loa d, and a lga e con-
centration respectively. Models which a r e concerned with t h e e f f e c t o f biologic a l oxygen demand (c(03)load on t h e dissolved oxygen ( D O ) in t h e stream a r e s i m i l a r t o t h e The s i n g l e objec-
stream resource a l l o c a t i o n model described in Chapter 8 .
t i v e f u n c t i o n i s t h e t o t a l c o s t of wastewater treatment f o r a l l use rs along t h e stream. The streaiii i s segmented i n t o Pi r ea c he s, each of which i s a ssoc ia te d with u s e r s ( p o l l u t e r s ) who niay d i s ch ar g e organic wastes i n t o t h e stream. The S t r eet er - P h el p s r e l a t i o n 6 i s u t i l i z e d t o transform minimum d i s solved oxygen
standards f o r each
reach i n t o a s e t of
linear inequalities
r e l a t i n g upstream treatment l e v e l s t o downstream d e c i s i o n s . The c o n s t r a i n t s r e q u i r e t h a t the supply of a v a i l a b l e oxygen f o r the organic decomposition process i n each reach ( t h a t a v a i l a b l e above the quali t y standard requirement)
must be equal t o o r exceed t h e demand imposed by
BOD loads discharged i n t o t h a t reach and a l l reaches preceding i t .
Thus, f o r reach i i t i s r eq u i r ed t h a t d i l u l l ( l - s l l ) + d 1. 2 u 21 ( 1 - s Z 1 ) +
+ d.. u. (1 - s i l ) 11 11
where
u.
51
=
d..
=
e.
1
i
=
1,2,
...,
N
(2)
g r o s s b i o l o g i cal oxygen demand ( B O D ) load introduced in p u t ( 1 bs/day)
=
1J
s e.
a t t h e beginning of t h e j t h reach t h a t has a p o l l u t i n g
8 .
51
...
.
th f r a c t i o n of u . removed through treatment by t h e j 51 pol 1 u t e r . pounds of oxygen demanded by t h e decomposition of a pound o f BOD discharged by t h e j t h p o l l u t e r in reach i.
=
a m o u n t of d i s s o l v ed oxygen a v a i l a b l e f o r t h e decomposition process ( t o t a l a v a i l a b l e l e s s standard requirement) i n reach i pcr u n i t of flow.
I n a d d i t i o n , o t h e r r e s t r i c t i o n s on s . ' s r e q u i r e a t l e a s t primary treatment, 51
thus
0.45 : s .
51
s 0.99
j
=
1,2, ..., H
162
MUL7’IOU,JBC7 TVE OP?I?4IZATl ON IN WATER RESOURCES SYSTEMS
An o b j e c t i v e f u n ct i o n as s o ci at ed with t h i s model i s t o minimize --1 F (S1):
the
t o t a l c o s t of wastewater t r eat men t . -F1
Ilin
(S1)
‘jl where
s
=
-1 and
--1 f (sjl)
[Sll
I41
1 A
160.8 + 26.7 ’1. + €40.7 ( s . - 0.45) J 51
=
f
255.7 q . ( s . J 51 0.99
-
2
0.45) 2
:: s . s 51 q . i s t he p l an t s i z e i n mi l l i o n g a l l o n s per day.
\ / h e r e 0.45 and,
,szl ) . . . ) s
J
(3)
Hass derived equa-
t i o n ( 3 ) from F r an k el ’ s d a t a f o r t h e !!iami River in Ohio.7 The niodel presented by Foley, and Foley a n d tiaimes8 concerned i t s e l f with o t h e r water q u a l i t y s t an d ar d s i n a d d i t i o n t o DO. These were thermal pollution and algae. Let:
u.
52
raw load of energy introduced a t t h e beginning of t h e
=
j t h reach
sj2
=
v. 57
=
percentage of waste heat ( u . ) removed by cooling towers 52 temperature of water leaving t h e j t h reach t o t h e j + l S t reach
A s e t o i c o n s t r a i n t s on t h e thermal p o l l u t i o n can be introduced.
vj2
:: v j 2 (Max)
vj2
=
Vj2(Uj2’
Sj-1 , 2 ’ s j - 2 , 2 . .
. . ’S12’V02’t)
where v . (Max)
=
maximum temperature allowed
V
=
i n i t i a l temperature of flow e nte ring t h e f i r s t reach
=
time
52
02
t
Equation ( 4 ) can be r e w r i t t e n a s :
vj2
=
v 5. 2 ( w 5. 2 ’ u j 2 3 t ,
wj2
=
temperature of t h e water ente ring t h e j t h reach
where from t h e ( j - 1 ) reach a t time t .
MULT 1OHJECTIVE WATEII QUALITY MODELS
163
C r i t i c a l f l o w c o n d i t i o n s i m p l y d r o p p i n g t h e t i m e dependence i n t h e exponent i a l decay as g i v e n by Lesbosquetg. 2,
the decisions
I n a development s i m i l a r t o
equation
a r e r e l a t e d t o t h e t e m p e r a t u r e v . by t h e f o l l o w i n g 52
s.
52
equation :
where
'j2
=
b . kJ
=
j k c= l bkj u k 2 ( 1 - 5 k 2 ) ~ ~~
. Jv2 (Max),
j = 1,2,
...,
N
(5)
c o n s t a n t s r e l a t i n g t h e t r e a t m e n t o f t h e raw l o a d u
k2
t o a decrease i n t e m p e r a t u r e i n t h e jth r e a c h .
Note t h a t t h e u . a r e g i v e n i n u n i t s commensurable w i t h v . byassump52 52 t i o n , and t h a t t h e e n t i r e f l o w o f t h e r i v e r i s u t i l i z e d by t h e stream power p l a n t s ; o t h e r w i s e e q u a t i o n ( 5 ) must be m o d i f i e d . The c o s t f u n c t i o n must be m o d i f i e d i n t h e p r e s e n t c o n t e x t t o i n c l u d e the additional
where
f!(s. ) J 52
z2
=
cost associated
=
s? + c . J J 2 J
01.
rs12, s 2 2 ,
with
t h e removal
of
thermal
pollution,
'
... ,
'N2'
and 0 1 . and c . a r e c o s t c o e f f i c i e n t s o f t h e system. Since i t i s desired t o J J -1 m i n i m i z e t h e c o s t o f t r e a t m e n t o f t h e r m a l p o l l u t i o n , F (5,) can be added t o the cost function.
T h i s y i e l d s a new c o s t f u n c t i o n
F (513 -2 s )
=
I F1(Z1)
+
F1(5S)l
T h e r e f o r e , t h e f i r s t o b j e c t i v e f u n c t i o n ( i n commensurable d o l l a r s ) i s : Min
s s
1 F (Z1,
5,)
-1 '-2 subject t o the for
c o n s t r a i n t s discussed
thermal p o l l u t i o n
expresses
previously.
the desire t o
The o b j e c t i v e f u n c t i o n minimize t h e
temperature
change t h a t would a d v e r s e l y a f f e c t any l o c a l o r g e n e r a l u s e o f t h e w a t e r .
S i n c e 'J2 i s g i v e n as a f u n c t i o n o f
5,
( i n e q u a t i o n 5 ) t h e second ob-
j e c t i v e f u n c t i o n c a n be r e w r i t t e n as a f u n c t i o n o f
z2 o n l y :
..
164
.
The o b j e c t i v e f o r a l g a e c o n c e n t r a t i o n i s d e r i v e d a s f o l l o w s : Foil owi n q e a i 1 e y l
vj3
=
exp
(u,
a2 (
+1 0~. 1 6 v . ) 52
~
j
=
1,2, ..., N
(6)
where = a l g a e ( p h y t o p l a n k t o n ) c o n c e n t r a t i o n a t the end of t h e j t h r e a c h 53 and ' u ~ ,k = 1 , 2 , 3 a r e c o n s t a n t s c h a r a c t e r i s t i c t o t h e s t r e a m . In a p r e -
v.
liminary study,
these constants
v a l u e s of w a t e r d e p t h ,
are
determined
s o l a r i n t e n s i t y , and
t h a t a l g a e growth depends on
b.y the
assumed c r i t i c a l
nutrient concentration.
thermal l o a d removal
z2 v i a
tion ( 6 ) .
Note
the V . i n equa52
The o b j e c t i v e f u n c t i o n r e p r e s e n t s t h e d e s i r e t o minimize t h e maximum algae concentration for a l l reaches.
Thus
Max v . j = 1,2, ..., N j 53' To summarize, the o v e r a l l mathematical model i n c l u d e s t h r e e
F3(5,)
=
noncommensur-
a b l e o b j e c t i v e f u n c t i o n s , a s well a s s e v e r a l c o n s t r a i n t s : MIN
n
F1(S1,Z2) =
2 160.8 + 26.7 q . + 640.7 ( s . -.45) J 51
1
j=l
+ 255.7 q . ( s . - .45) ' J
MIN Subject t o
F
3
(z2) =
.45
0 s
i
31
Max v . 53 j
c
s. 51
'j2
2
+ a.s. + c. J 52 J
'
.99
1 .oo
j
=
1,2,
...,
N
j
=
1,2,
...,
N
9.5
A P P L I C A T I O N OF THE SWT METHOD TO THE T H R E E WATER QUALITY OBJECTIVE _PROBLEM _ __
The three o b j e c t i v e s defined in t h e previous s e c t i o n a r e t o be o p t i iiiized a s symbolically expressed by system 9-1, subject t o t h e e x i s t i n g physical constraints. I n order t o generate t h e trade-off f u n c t i o n s ,
A , . , t h e vector o p t i 1J mization problem i s r e w r i t t e n in the c - c o n s t r a i n t form a s follows:
s -2s -1' subject t o the constraints
where the v a r i a b l e s t . a r e r e l a t e d t o f . (the minimum of t h e j t h o b j e c t i v e J J function, while ignoring a l l o t h e r ( n - 1 ) o b j e c t i v e s ) a s follows: -
f. J
"j
where
6.
J
= = i'
min F~ -
f.
J 0
+ 6. J
The system's Lagrangian, L , i s :
where
i s a vector of Lagrange m u l t i p l i e r s .
The trade-off f u n c t i o n s A 1 2 and A13 a r e determined by solving equation ( 7 ) . A d e t a i l e d computational discussion on t h e construction of t h e trade-off functions was given in Chapter 3. Note t h a t the value of
i s the r a t i o of the
incremental gain in
o b j e c t i v e 1 ( c o s t minimization) t o t h e incremental l o s s i n o b j e c t i v e 2 (temperature) and a value of A 1 3 i s t h e trade-off r a t i o between c o s t and algae production. The A . . corresponding t o t h e binding c o n s t r a i n t s a r e 1J associated with t h e noninferior s o l u t i o n and thus a r e of i n t e r e s t , t h e s e 2 2 i . a. r e also positive. The term ( F - E ~ ) r e p r e s e n t s t h e amount by which F 1J
exceeds t h e t a r g e t a t t a i n e d level of temperature, E ~ . T h e Lagrange multi2- E( ~F) = 0 when equation ( 7 ) i s minimized i s t h e plier which makes A ~ ~ "shadow price" o r marginal trade-off value, expressed in d o l l a r c o s t per
166
MULTTOBJECTIVE OPTIMIZATION IN WATEE RESOURCES SYSTEMS
u n i t temperature increase. The L a g r a n g i a n i s s o l v e d f o r d i f f e r e n t v a l u e s o f ponding t o
each s o l u t i o n a r e
a minimum o f
c 2 , E ~ , h 1 2 , and
values o f
range, t h e t r a d e - o f f
By c h a n g i n g c 2 and
r a t e f u n c t i o n s X12(F
E~
and
E ~ .
Corres-
o b j e c t i v e f u n c t i o n 1, F1*,
1*
, E ~ , E ~ )and
E~
and
over a reasonable
X1:](F
1*
, E ~ , E ~ )
can
be computed. R e w r i t i n g t h e v e c t o r m i n i m i z a t i o n problem
posed i n t h e € - c o n s t r a i n t
f o r m where F2 i s t h e p r i m a r y o b j e c t i v e y i e l d s t h e same s o l u t i o n . The t r a d e o f f r a t e f u n c t i o n s xZ1 and xZ3 c o r r e s p o n d i n g t o t h e L a g r a n g i a n , L 2 , (where
L2
F
=
2
+ AZ1(F 1 and x13
are related t o
The above s t e p s c a n be an i n t e r a c t i o n
with the
t a k e n on a s t r i c t l y a n a l y t i c a l b a s i s w i t h o u t
decision-maker.
The f o l l o w i n g
steps i n v o l v e t h e
decision-maker. S e l e c t any s e t ( F temperature r i s e ,
1*
,
E ~ , c3)
as " o p t i m i z e d " a t t a i n e d l e v e l s o f c o s t ,
and a l g a e p r o d u c t i o n r e s u l t i n g
from t h e "optimal" d e c i -
s i o n determined by s o l v i n g e q u a t i o n (7). For t h i s s e t X 1 2 and A13 Begin w i t h
a r e known.
The d e c i s i o n - m a k e r i s asked whether o r n o t he would g i v e
A12.
up one u n i t o f t e m p e r a t u r e i n o r d e r t o g a i n
h12
units o f cost.
yes, he i s asked t o a s s i g n a n u m e r i c a l v a l u e between s t r o n g l y he would f e e l a b o u t t h a t t r a d e , senging a s t r o n g d r i v e t o
I f he says
0 and +10 t o show how
z e r o b e i n g i n d i f f e r e n t , 10 r e p r e -
g a i n c o s t a t t h e expense
o f temperature.
I f he
says no, t h e n he a s s i g n s a v a l u e between 0 and -10 t o r e p r e s e n t how s t r o n g l y he f e e l s toward t h e o p p o s i t e d i r e c t i o n o f t r a d i n g .
value corresponding t o e2and
E~
The s u r r o g a t e w o r t h
( a s s i g n e d by t h e d e c i s i o n - m a k e r ) i s denoted
by W 1 2 ( ~ 2 3c 3 ) . A t t h e same t i m e t h e d e c i s i o n - m a k e r i s asked h i s p r e f e r e n c e w i t h r e s -
He i s , o f c o u r s e , i n f o r m e d what t h e 1* a t t a i n e d l e v e l s o f c o s t , t e m p e r a t u r e , and a l g a e p r o d u c t i o n would be ( F , 1* c2, E ~ ) . Note t h a t F1* = F ( E ~ , F ~ hence ) t h e r e a r e r e a l l y o n l y two i n d e pect t o
i n e x a c t l y t h e same way.
A13
pendent v a r i a b l e s i n t h e o b j e c t i v e space. L e t us presume, f o r t h e sake o f i l l u s t r a t i o n , t h a t t h e d e c i s i o n - m a k e r gave a v a l u e o f +8 t o t h e surrogate worth o f f2
and
t3
are required.
<
E2'
E3
surrogate worth o f
a t other c2, s3.
and a v a l u e o f +3 t o t h e
T h i s i n d i c a t e s a decrease i n b o t h
The d e c i s i o n - m a k e r i s t h e n asked f o r t h e s u r r o g a t e 1* I I W ' ( E ~ , E ~ ) c,o r r e s p o n d i n g t o F ( E ~ , E ~ ) , and where I
worth value, E2
h12
<
F3.
1
Xi2,
Xi3,
The d e c i s i o n - m a k e r i s asked t o make a " c o n s i s t e n t "
esti-
167
!4UI,T IOBJEC'i'IVE WATER QUALITY MODELS
mate o f
W;,(E;,
I
and
E);
Since h i s past value o f
W13(€,,
,
I
E ~ ) .
That i s ,
W,;
and
W12
<
Wi3
< W13.
W12 was t8 he m i g h t say +4 i f he f e l t you had made
a c o n s i d e r a b l e improvement b u t he would s t i l l t r a d e t e m p e r a t u r e f o r c o s t r e He m i g h t say +1 i f he w a s n ' t q u i t e so empha-
duction rather emphatically.
I
tic.
S i m i l a r a n a l y s i s can be performed f o r W13. o f values o f t h e
W i t h t h e s e two s e t s and W13
s u r r o g a t e w o r t h f u n c t i o n s W12
i t i s n o w p o s s i b l e t o make a l i n e a r i n t e r p o l a t i o n ( o r e x t r a p o l a t i o n )
to f i n d the point
a t w h i c h b o t h W12 and W13 would equal z e r o i f t h e
(E~,E;)
s u r r o g a t e w o r t h f u n c t i o n s were l i n e a r .
This point,
0
0
i s t h e n used
(E,,E~),
as a t h i r d t r i a l v a l u e and t h e process r e p e a t e d u n t i l t h e d e c i s i o n - m a k e r i s u n a b l e t o say w i t h c e r t a i n t y whether he would t r a d e f u r t h e r o r n o t .
Such a
s i t u a t i o n corresponds t o
a z e r o o f t h e s u r r o g a t e w o r t h f u n c t i o n and t o t h e
value o f
f u n c t i o n which
t h e r e a l worth
c o s t r e d u c t i o n t o t h e worth
equates t h e w o r t h
o f the gain i n
o f t h e l o s s i n t e m p e r a t u r e c o n t r o l and t h a t o f
c o s t r e d u c t i o n t o algae c o n t r o l .
T h i s i s a p r e f e r r e d s o l u t i o n i n t h e sense
t h a t no knowledge e x i s t s by w h i c h t h e d e c i s i o n - m a k e r c o u l d a s s e r t a " b e t t e r " solution. By c a r e f u l l y a p p r o a c h i n g t h e z e r o o f t h e s u r r o g a t e w o r t h f u n c t i o n f r o m
the p o s i t i v e side only
(i.e.,
i n d i f f e r e n c e can be found. a
" r i g h t hand"
value o f
(c,,
t
bound can be d e t e r m i n e d . E
~
)
f o r both
band o f i n d i f f e r e n c e and any
W13,
W12 and
I f not, then t h e range
found.
v a l u e s ) a " l e f t hand" bound on t h e band o f
By r e p e a t i n g t h e process f r o m t h e n e g a t i v e s i d e
E~~
(E,,E~)
5
E~
I f b o t h bounds
a r e a t t h e same
t h e n a u n i q u e s o l u t i o n has been 5
E , ~
and
E~~
5
E~
:E~~ i s t h e
i n t h i s r a n g e i s as good as any o t h e r .
A l l d e c i s i o n s , S1 and S, p e r t a i n i n g t o any p r e f e r r e d s o l u t i o n a r e a l s o i m p l i e d f o r t h e band of i n d i f f e r e n c e and can be d i r e c t l y c a l c u l a t e d as d e s c r i b e d i n Chapter 6. 9.6
SUMMARY AND CONCLUSIONS The S u r r o g a t e Worth T r a d e - o f f Method i s p a r t i c u l a r l y u s e f u l f o r w a t e r
q u a l i t y problems
where c o s t ,
d i s s o l v e d oxygen, t e m p e r a t u r e , BOD, e t c . a r e
t h e measures o f g o a l s ,
b u t f o r w h i c h no r a t i o n a l p r o c e d u r e f o r commensura-
tion
i s available
i n common
"worths"
units
or likely
t o become
available.
The
o f t h e s e l e v e l s of g o a l a t t a i n m e n t a r e n o t u n i v e r s a l b u t a r e v e r y
s i t e sensitive.
T h i s p r o c e d u r e a v o i d s t h e problem o f a t t e m p t i n g t o d e t e r -
mine common u t i l i t y so
t h a t o p t i m i z a t i o n can be accomplished and, i n s t e a d ,
accomplishes a f u n c t i o n a l o p t i m i z a t i o n i n m u l t i p l e o b j e c t i v e space and t h e n e v a l u a t e s o n l y p a r i t y o f t r a d e - o f f i n t h i s o p t i m i z e d o b j e c t i v e space. For t h e p r o c e d u r e t o be s t r i c t l y c o r r e c t t h e measures o f t h e o b j e c t i v e s (DO, pH, e t c . )
must be e i t h e r t r u e measures o f t h e a c t u a l o b j e c t i v e s
o r be m o n o t o n i c a l l y r e l a t e d t o them. A good example o f a meabure which does n o t meet t h i s c r i t e r i a i s t h e use o f " v i s i t o r - d a y s ' ' a s a measure o f a n objective t o
maximize a r e c r e a t i o n a l o b j e c t i v e .
i n c r e a s e s the o b j e c t i v e i s enhanced,
O b v i o u s l y , a s t h i s index
b u t o n l y up t o some unknown l i m i t
s a t u r a t i o n p o i n t beyond which a d d i t i o n a l v i s i t o r recreational experience i n t o a nightmare.
or
d a y s can t u r n an e x p e c t e d
However, such "improper" i n d i c e s
by a n o m a l i e s i n d e c i s i o n - m a k e r r e s p o n s e s so t h a t no
will reveal themselves p r a c t i c a l hartii i s done.
3.
FOOTNOTES The e n t i r e l i s t can be found i n G r e a t Lakes I l a t e r Q u a l i t y [1972]. T h i s model i s d e s c r i b e d i n d e t a i l by Haimes [1971]. The d e r i v a t i o n o f t h i s r e l a t i o n s h i p can be found i n S t r e e t e r and
4.
T h e m u l t i l e v e l a p p r o a c h i s p r e s e n t e d i n Haimes 119731.
5.
The f o l l o w i n g m u l t i o b j e c t i v e model was p r e s e n t e d by Hairnes and Hall [1975]. Among the s i n g l e o b j e c t i v e w a t e r q u a l i t y models a r e t h o s e o f
1. 2.
Phelps 113251.
Haas 119701, HaimPs, Foley and Yu r19721, Haimes, Kaplan
and Husar
7.
r19721, Foley 119711 and Foley and Haimes [1973]. Again, s e e S t r e e t e r and P h e l p s [1925]. S e e Haas 119701 f o r t h e d e r i v a t i o n and Frankel 119651 f o r t h e d a t a .
8.
See Foley [1971! and Foley and Haimes 119731.
9.
T h i s r e l a t i o n s h i p was o r i g i n a l l y d e r i v e d by Lesbosquet [1946].
10.
The d e r i v a t i o n of t h i s e q u a t i o n i s p r e s e n t e d by B a i l e y [197O].
6.
References ______ 1. Bailey, T.E.,
" E s t u a r i n e Oxygen Resources-Phytosynthesis and Reaera-
t i o n " , J o u r n a l of t h e S a n i t a r y E n g i n e e r i n g D i v i s i o n , ASCE, v o l .
36,
no. SA2, P r o c . Paper 7215, A p r i l 1970, pp. 279-296. 2.
F o l e y , J . b l . , ~ l i r l t i l e v e lC o n t r o l of H a t e r O u a l i t y , H.S. T h e s i s , Case
3.
Western Reserve U n i v e r s i t y , C l e v e l a n d , Ohio, June 1971. F o l e y , J . I!.,and Y . Y . Haimes, " P l u l t i - l e v e l C o n t r o l of M u l t i - p o l l u t a n t System", ASCE J o u r n a l of the Environmental E n g i n e e r i n g Division v o l . 99, no. EE3, p p . 253-268, J u n e 1973.
4.
F r a n k e l , R . J . , "Llater Q u a l i t y Model f o r
Planagenient:
An Engineering-Economic
Domestic H a s t e ? i s n o s a l , P h . D . D i s s e r t a t i o n , U n i v e r s i t y
of C a l i f o r n i a , a t B e r k e l e y , C a l i f . , 1965. 5.
Great Lakes H a t e r Q u a l i t y ,
agreement
between the
United S t a t e s o f
America and Canada, s i g n e d a t Ottawa, A p r i l 1 5 , 1972.
6.
Hairnes, Y . Y . , and W . A . H a l l , " M u l t i o b j e c t i v e s i n Water Resources __ Water Systems A n a l y s i s : The S u r r o g a t e Worth T r a d e - o f f Method", Resources . . Research, v o l . 10, no. 4, August 1974, pp. 615-624.
~
7.
Haiiiies, Y . Y . ,
" M o d e l i n g and C o n t r o l o f t h e P o l l u t i o n o f Water Resour-
ces Systems Via M u l t i l e v e l Approach", Water Resources B u l l e t i n , v o l .
8.
7, no. 1, Feb. 1971, pp. 104-112. ~~i,,,,,,, y . y . , and H a l l , W . A., " A n a l y s i s o f
Multiple
Objectives
in
Water Q u a l i t y " , Presented a t t h e s p e c i a l ASCE Conference a t C o r n e l l U n i v e r s i t y , I t h a c a , N.Y.,
June 26-28,
1974. To
appear i n t h e J o u r -
n a l o f ASCE H y d r a u l i c D i v i s i o n , 1975.
9.
Haiiiies, Y . Y . ,
"Decomposition and M u l t i l e v e l Approach i n Modeling
Management o f Water Resources System", pp. 348-368, o f Large ~S c a l e Problems, ~
P u b l i s h i n g L o . , Amsterdam, 10.
Haiiiies, Y . Y . ,
Foley, J . W . ,
D . M. Hiiiinielblau,
and
Decomposition
E d i t o r , North Holland
1973. and
YU,
W.,"Computational
Results
for
Water P o l l u t i o n T a x a t i o n Using M u l t i l e v e l Approach," Water Resources ~
11.
G u l l e t i n , v o l . 8, no. 4, Aug. 1972, pp. 761-772.
Haimes, Y . Y . ,
Kaplan, M. A . ,
t o D e t e r m i n i n g Optimal
and Husar, M. A . ,
"A M u l t i l e v e l Approach
T a x a t i o n f o r t h e Abatement o f
Water P o l l u -
t i o n " , Water Resources Research, v o l . 8, no. 4, Aug. 1972, pp. 851860. 12.
Haas, J . E . ,
"Optimal T a x i n g f o r t h e Abatement o f Water P o l l u t i o n , "
w a t e r Resources Research, v o l . 6, no. 2, A p r i l 1970, pp. 353-365. 13.
Lesbosquet, M.,
"Cooling-Water B e n e f i t s f r o m I n c r e a s e d R i v e r Flows,"
Journal o f t h e
New England Water Works A s s o c i a t i o n ,
v o l . 60, June
1946, pp. 111-116. 14.
S t r e e t e r , H.W.,
and Phelps,
E.
B.,
"Study o f t h e P o l l u t i o n and
Natu-
r a l P u r i f i c a t i o n o f t h e Ohio R i v e r " , P u b l i c H e a l t h B u l l e t i n No. F e b r u a r y 1925.
Chapter 10 SENSITIVITY, STABILITY, RISK AND IRREVERSIBILITY AS MULTIPLE OBJECTIVES
1 0.1
I NTRODUCTI ON _ _ ~ _____ Water resources p r o i p c t s a r e planned,
ted and modified under While in
numerous
risks
general t h e tcrms r i s k
designed, c onstruc te d, opera-
and unc ontrolla ble
uncertainties.
and u n ce rta inty can denote t h e same t h i n a
( i t i s r i s k y because i t i s u n c e r t a i n )
i t i s useful f o r a n a l y t i c a l purposes
t o d e f i n e t h e se s e p a r a t e l y a s two d i s t i n c t concepts. Risk i s c ha ra c te riz e d of events following reasonably well known o r measurable p r o b a b i l i t i e s , even though t h e s p e c i f i c time o r s p a t i a l sequence o f occurence of events cannot be determined. I n water resources problems by a frequency d i s t r i b u t i o n
f o r example,
a common cause of
risk i s the
a ssoc ia te d
Past hydrological records
a r e u s u al l y a v a i l a b l e
probability distribution,
b u t any s p e c i f i c
hydrologic input.
t o reasonably
sequence of
define the
events i s l a r g e l y
c o n t r o l l e d by chance. I n c o n s t r a s t t o r i s k , unc e rta inty i s c h a r a c t e r i z e d b y t h e absence of any known reasonably v a l i d p r o b a b i l i t y d i s t r i b u t i o n of events.
The term r i s k i s assigned t o measurable chance c o n t r o l l e d f a c t o r s ,
while u n c e r t a i n t y a p p l i e s t o a l l o t h e r s .
In
water resources f o r example,
t h e r e a r e u n c e r t a i n t i e s as s o ci at ed with:
-
The growth of p o p u l at i o n , i n d u s t r y , a g r i c u l t u r e and
-
The projected c o s t of l a b o r , m a t e r i a l , and i n f l a t i o n . The assessment of f u t u r e advancement in e ngine e ring,
-
The p r o j ect ed b e n e f i t s as s o ci at ed with the p r o j e c t s .
urban a r e a s .
s c i e n ce, and technology.
In a d d i t i o n , t h e r e a r e important u n c e r t a i n t i e s and r i s k s introduced by both t h e system and man's attempts t o model i t . There a r e
many types of
r i s k and
unc e rta inty in
water re sourc e s,
most of them well known t o t h e p r a c t i t i o n e r s in t h e f i e l d . O f these, the one most important f o r t h e d eci s i o n process modeler i s t h d t r e l a t e d t o t h e An p r e c i si o n with which t h e co n t r o l v a r i a b l e s can in f a c t be c o n t r o l l e d . "optimal" s o l ut i o n i n t h e sense of minimizing t h e d i s t a n c e , time o r c o s t involved i n c r os s i n g a deep gorge might be t o c ross hand a n d hand on any convenient c a b l e such a s a high v o l t ag e e l e c t r i c a l conductor. For most of us, however, such a d eci s i o n would be unthinkable because we know t h a t we lack t h e necessary p r eci s i o n o f co n t r o l with r e s p e c t t o t h i s p a r t i c u l a r de170
:MJS 1 :i7 1 ViT Y, STA H I CITY, RXSK
A IVD I RREVERSIBIZITY
171
cision variable. While an extreme example, it does serve to illustrate that the classical concept of optimum (signifying best) is by itself inadequate - - the degree of control of the significant system responses must be also considered as a decision parameter for a great many water resource systems . To the extent that the effect of the lack of control can be characterized by a probability distribution, the corresponding uncertainty is reduced to risk, and in a few cases in water resources systems, but by no means all (or even most), risk can to some extent be allowed for by optimizing the mathematical expectation of the results. In fact, where mathematical expectation is a valid criteria for optimality, it can be shown that it is not always necessary to know the probability distribution in any great detail. If, on the other hand, the risk problem is characterized by infrequent decision, irreversibility, or both, optimization o f mathematical expectation may lead to very serious errors. Since these two characteristics tend to dominate the risk and uncertainty situations involved in water resources management, their proper consideration as separate noncommensurable objectives is essential in most water resources decision models. Other systems characteristics which may increase or mitigate the effects of risk and uncertainty are sensitivity, responsivity and stability. Modeling inaccuracies can be important also. The discussion in this chapter of these system and modeling characteristics is intended to stimulate the considerable amount of further research needed to evaluate their impact on risk and uncertainty as objective functions. Some proposals on how this might be done for the sensitivity characteristic are suggested. A better knowledge and understanding of these characteristics and their relationship to risk and uncertainty will permit these crucial factors to be properly incorporated into multiobjective analysis. 10.2 SYSTEM CHARACTERISTICS RELATED TO THE EVALUATION OF RISK Water resource systems have a number of characteristics associated with the stochastic nature of the system inputs, outputs, and states. Four of these characteristics are discussed here: Sensitivity. Responsivity Stability. Irreversi bil i ty. These are the major elements of prototype systems involved in the definition of risks as indices of performance. As an additional characteristic,
-
.
I72
the p r e c i si o n of t h e modpl rdtely.
Although i t i s
r ep r es en t i n g t h e system w ill be discussed separecognized t h a t t h e
current
state-of-the-art i n
systelris a n a l y s i s i s n o t y e t f u l l y capable of q u a n t i t a t i v e l y t r e a t i n g a l l of these c h a r a c t e r i s t i c s , i t i s e s s e n t i a l t h a t they be considered a s thoroughl y a s p o s s i b l e.
They a r e d e s c r i p t i v e l y defined a s follows:
S e n s j t j v j J i i s t h e systern c h a r a c t e r i s t i c r e l a t i n g t h e changes in t h e
system's index of performance ( o r o u t p u t ) t o expected v a r i a t i o n s in t h e dec i s i o n v a r i a b l e s , uncontrolled parameters, c o n s t r a i n t l e v e l s or t h e m ode l' s coefficients. Fe2ponsivi~Ly i s t h e system c h a r a c t e r i s t i c of being dynamically r e s ponsive t o changes ( i n cl u d i n g random v a r i a t i o n s ) in t h e de c isions over time. This measures
t h e a b i l i t y of t h e
s i g n i f i c a n t responses
of the
system t o
follow t h e changes i n a v a r i a b l e d eci s i o n in time and/or space. S t a b i l i t y - i s a system c h a r a c t e r i s t i c r e l a t e d t o t h e degree of v a r i a -
~ . .
tiori of t h e
mean
systern response
y i e l d s a n i n v a r i a n t inean response
t o fixed
decisions.
A
s t a b l e systeni
t o t h e mean value of a de c ision
set.
A
systerii may be s t a b l e a n d s t i l l have a n important random component. I r r - ~ y - e r - ~ j ~ b ~i sJ ya~ systeni c h a r a c t e r i s t i c r e l a t e d t o t h e degree of d i f f i c u l t y involved i n r e s t o r i n g previous s t a t e s o r c onditions once the systeiii has been a l t e r e d bya d eci s i o n ( i n cl u d ing t h e " de c ision" t o d o nothing). Some examples
of each of
t h e above
four c h a r a c t e r i s t i c s
w ill
be
given i n o r d e r t o c l a r i f y t h e concepts. 19.2.1 Sensi t i v i t y I t i s p o s s i b l e t o c o n s t r u c t hypothetical s i t u a t i o n s in which t h e det e r m i n i s t i c mathematical
optimum d eci s i o n would
be t h e worst possible u n -
l e s s t h e decision v a r i a b l e can be very p r e c i s e l y c o n t r o l l e d . i l l u s t r a t e s such a s i t u a t i o n in which i t i s presumed t h a t v a r i a b l e can be any value w i t h
Figure 10.1 t h e de c ision
x a n d t h a t x ma,y take on C' t he se l i m i t s . The d e t e r m i n i s t i c
c o n t r o l l e d only within l i m i t s , equal l i k e l i h o o d within
imathematical maximum i s obviously f a r from being the p r a c t i c a l optimum
de* I n t h i s contrived example, x 2 i s c l e a r l y a " b e t t e r " de c ision t h a n * x1 unless t h e d eci s i o n maker i s more i n t e r e s t e d in gambling than r i s k avoi-
cision. dance.
Even i f t h e example i s t r e a t e d by maximizing t h e mathematical expect a t i o n of f ( x ) , i t does n o t follow t h a t a r e s u l t i n g "optimum" a t x1 i s sup e r i o r t o x 2 . For t h i s t o be t r u e t h e ap propria te o b j e c t i v e must indeed be
o r minimization of t h e expected value of f ( x ) . This i s a major co n s i de ra tion. The "gamblers' r u i n " problem i s t h e c l a s s i c a l example where t h i s i s c l e a r l y not the 0 b j e c t i v e . l t h e rriaxiniization
seldom t r u e
where r i s k i s
173
A(x)
Figure 10-1 . Sensitivity Band
174
MlJI,l'TOHcJBC2'IVE OPTIMIZATION I!$ WATER RESOURCES SYSTEMS
As i n many p r a c t i c a l problems i n w a t e r r e s o u r c e s ,
t h e d e c i s i o n which maxi-
mizes t h e expected v a l u e o f t h e r e t u r n i n t h i s problem w i l l a l s o c o r r e s p o n d t o a maximization o f
the r i s k o f g e t t i n g
l i t t l e or
t h e r e a r e two noncommensurable o b j e c t i v e s i n t h i s
nothing.
In reality
case, avoidance o f r i s k
and g a i n i n g economic r e t u r n . The presumption t h a t
the objective
i s t h e m a x i m i z a t i o n o f expected
v a l u e i ?s i m p l y one p a r t i c u l a r method o f commensurating r i s k and r e t u r n . I t would appear t o be v a l i d i n t h o s e i n s t a n c e s where t h e number o f d e c i s i o n s t o be niade o v e r t i m e
and space i s l a r g e
enough t o i n s u r e
a high probability
t h a t such a r e t u r n w i l l i n f a c t be r e a l i z e d i n t h e l o n g r u n , d e s p i t e i n t e r m e d i a t e ups and downs.
The expected v a l u e as an i n d e x o f performance (ob-
j e c t i v e f u n c t i o n ) c l e a r l y does n o t a p p l y t o s i t u a t i o n s i n w h i c h o n l y a v e r y (and t h e i r consequences) w i l l be i n v o l v e d .
few d e c i s i o n s
i n any s i t u a t i o n where
the objective function i t s e l f
discontinuously a l t e r e d i n t o a
c o m p l e t e l y new f o r m f o r a l l v a l u e s o f x, i n
t h e e v e n t t h a t x chanced t o f a l l i n a p a r t i c u l a r sub-range. numbers o f s i t u a t i o n s i n tions are
Nor i s i t v a l i d
i s a u t o m a t i c a l l y and There a r e l a r g e
w a t e r r e s o u r c e s where one o r b o t h o f t h e s e excep-
a p p l i c a b l e and,
hence,
where t h e expected v a l u e
criterion for
r i s k and r e t u r n w i l l n o t r e p r e s e n t t h e o b j e c t i v e s o f t h e
commensuration o f r e a l system. 1 0 . 2 . 2 Respons iv it y
R e s p o n s i v i t y i s t h e c a p a b i l i t y o f t h e system t o respond i n a reasona b l e t i m e frame t o a v a r i a b l e ( c h a n q i n g ) d e c i s i o n .
I t i t generally related
t o " f r i c t i o n s " i n t h e system and d e l a y e d response.
One o f t h e most impor-
tant responsivity characteristics long lead time means o f
o f w a t e r and o t h e r
u s u a l l y r e q u i r e d t o observe a need,
m e e t i n g t h a t need,
t o develop a
c i v i l systems i s t h e t o conceive a p o s s i b l e
p r e l i m i n a r y plan,
t o obtain
a
basic p o l i c i t a l approval o f t h e p l a n d u r i n g a " p o l i t i c a l hassle period", t o complete t h e f i n a l d e s i g n , cision.
This i s
f o r t y o r f i f t y years. i s seldom
and t o c o n s t r u c t o r o t h e r w i s e implement t h e de-
o f t e n i n excess o f
Even f o r s m a l l , a l m o s t i n c o n s e q u e n t i a l problems
l e s s t h a n two y e a r s .
much more r a p i d r a t e ,
t w e n t y - y e a r s , and sometimes more t h a n
Since o b j e c t i v e s
can and do
it
change a t a
t h i s f o r m o f r e s p o n s i v i t y has become e x c e e d i n g l y i m -
p o r t a n t i n w a t e r r e s o u r c e s planning, There sources.
a r e many o t h e r f o r m s
A c l a s s i c example
channel aqueduct system,
o f responsivity occurring
i s time delay i n
down an open
Another i s t h e r e l a t e d p r o b l e m o f f l o o d r o u t i n g .
Yet a n o t h e r i s t h e a b i l i t y o f a "move" to
r o u t i n g water
i n water r e -
t y p e supplemental i r r i g a t i o n system
cover the e n t i r e f i e l d i n t h e f a c e o f drought.
The response of h y d r o -
175 e l e c t r i c systems t o
rapid f l u c t u a t i o n s in demanci i s an economica l y useful
responsivity of these systems. The response of water use t o p r i c e i s another very importan
el ement water resources systems. I n many instances involving the use of water, c o s t s which vary with t h e amount of water used a r e q u i t e small r e l a t i v e t o c o s t s which a r e i n s e n s i t i v e t o t h e volume of use ( l a r g e l y i r r e v e r s i b l e c a p i t a l investment). This may r e s u l t in a response delay of the order of magnitude of t h e economic l i f e of t h e investments involved.
of responsivity in
10.2.3 Stability S t a b i l i t y i s a measure of t h e r e s i s t a n c e t o non-decision o f t h e mean response of t h e system.
ponse of t h e system
mod f i c a t i o n
Frequently in water resources t h e r e s -
will vary appreciably even f o r
a fixed d e c i s on. If the e f f e c t of t h e v a r i a t i o n i s t o r e t u r n t h e system automatical y t o t h e "output" or o b j e c t i v e value represented by t h e d e c i s i o n , t h e decision system i s s t a b l e . I f , on t h e other hand, a u t o - c a t a l y t i c e f f e c t s cause t h e r e sponse t o move away from t h a t intended by t h e d e c i s i o n s , t h e decision system i s unstable. Many water resources and o t h e r c i v i l systems have hiqhly unstable decision systems.
One obvious example i s t h e flood control deci-
I t has been a s s e r t e d t h a t providing p a r t i a l flood c o n t r o l , sion system. commensurate with one s e t of predicted f u t u r e c o n d i t i o n s , has r e s u l t s in a t t r a c t i n g more economic a c t i v i t y i n t o t h e "protected" area - - making t h e o r i g i n a l decision f o r p a r t i a l control q u i t e improper f o r t h e a u t o c a t a l y t i c a l l y changed s i t u a t i o n . Transportation routing i s another c l a s s i c example. I n most instances water based r e c r e a t i o n has a l s o responded i n an unstable way. On the o t h e r hand, many O F the past e s t i m a t e s of f u t u r e water needs, made u p t o f i f t y years in advancc ( e . g . Mulholland's almost p e r f e c t timeframe estimate o f need f o r have proved
1600 c f s f o r Southern C a l i f o r n i a coastal a r e a ) 2
t o be remarkably uncanny,
suggesting t h a t highly s t a b l e s e l f -
f u l f i l l i n g e f f e c t s may be involved in these c a s e s . I r r e v e r s i bi 1 i t y I r r e v e r s i b i l i t y i s a measure of the d i f f i c u l t y in returning a system t o i t s o r i g i n a l s t a t e once a decision change has been made. Suicide i s an extreme example of an i r r e v e r s i b l e decision. I n o t h e r c a s e s , the decision 10.2.4
can be i s the
Humpty-Dumpty reversed b u t only a t l a r g e social o r economic c o s t . l i t e r a r y p e r s o n i f i c a t i o n o f t h i s very important o b j e c t i v e o f water
resource and many o t h e r c i v i l systems. Some decisions a r e completely i r r e v e r s i b l e b u t in a continuous sense. That i s ,
t h e s t a t e of t h e system,
S
, can be changed by a r b i t r a r i l y small
increlrlents over tiiire, t , or space in one d i r e c t i o n b u t i t can n o t be reversed.
blatheiiiatically,
t h i s form can
burn f o s s i l fuel b u t we cannot "unburn" i t . i r r e v e r s i b l e in
a S / a t t 0. We can Other de c isions a r e completely
be represented b y
I n some cases t h e i r r e v e r s i b i l i t y i s a
either direction.
!;latter of degree ( i . e . s o ci al a n d economic c o s t ) , e i t h e r continuous o r d i s A highway i s a n
continuous. b i l i t y " since
e x c e l l e n t example
i t can be removed or
of a v a r i a b l e " i r r e v e r s i -
expanded only a t
considerably g r e a t e r
c o s t t h a n i f t h e proper d eci s i o n had been made o r i g i n a l l y . 1 0 . 3 SOURCES- OL- U ~ J ~ - R ~ I J J ~AND _ ERRORS I rd MODELJH~A Not a l l of t h e u n c e r t a i n t i e s or r i s k s involved i n systems a n a l y s i s a r e as s o ci at ed with t h e system i t s e l f . certainty,
a l l too o f t en ignored in t h e
water
resources
A significant un-
quest f o r q u a n t i t a t i v e p r e d i c t i v e
i s t h a t r e l a t e d t o t h e degree t o which the various models used ac-
iiiodels,
t u a l l y r e p r e sen t t h e s i g n i f i c a n t behavior of the re a l system being modeled.
These
u n c e r t a i n t i e s can be
parameters,
introduced through
t h e model's topology,
a n d t h e d a t a c o l l e c t i o n and processing techniques.
its
Model u n -
c e r t a i n t i e s wi l l o f t e n be introduced through human e r r o r of both commission a n d oriiission.
An
irlatherriatical model
"optimized"
t h e s i g n i f i c a n t behavior f a c t t h a t some of t h e able o f
d eci s i o n s e t i s
t r u l y optimal only i f t h e t h a t de c ision s e t c l o s e l y re pre se nts The of t h e act u al system over time a n d space.
used t o g en er at e
socio-economic elements
r e a c ti n g co mp et i t i v el y o r
choice of d e c is i o n s e t only
of t h e re a l system a r e cap-
complenientarily t o t h e decision-maker's
emphasizes t h i s shortcoming of most mathemati-
cal models. I n f a c t , t h e r e a r e a c t u a l l y no c i v i l systems involving a s i n g l e decision-maker, d e s p i t e t h i s customary assumption in ootimal de c ision modeling. The necessary obtained
condition f o r reasonable
t h r o u g h o p t i mi zat i o n i s
u t i l i t y o f a n y de c ision
set
t h a t t h e important responses of t h e re a l
systern t o t h o s e d eci s i o n s a r e t h e same as those produced b y t h e mathematical !!lode1 w i t h i n a t o l e r a b l e e r r o r .
Since water resources
de c isions a r e very
i t niay be d i f f i c u l t t o e va lua te modeling e r r o r s , l e t
often made only once,
This s i o n i f i c a n t alone reduce them t o q u a n t i t a t i v e p r o b a b i l i t y measures. source of u n c er t ai n t y i s probably one of t h e major reasons f o r t h e slow and cautious adoption i n c i v i l systems of t h e products of re se a rc h, p a r t i c u l a r l y systems a n a l y s i s niodeling. any nraxiniization o r
The v a l i d i t y of
minimization problem depends
t h e accuracy with which
t h e optimal s o l u t i o n
x* t o
(among o t h e r t h i n g s ) on
t h e mathematical model re pre se nts the re a l system,
I n p a r t i c u l a r , t h i s accuracy depends on t he c l o s e n e s s t o t h e re a l system
of
177
the iiiodrl ' s i n p u t - o u t p u t crrors
relationships.
cdn be as s o ci at ed with t h e
The sources of u n c e r t a i n t i e s and
following s i x major c a t e g o r i e s of model
chardcteristics: ( i ) Model Topclogy - ( t x , ) ( i i ) Model Parameters ( i i i ) Model Scope o r Focus - ( y 3 ) (iv)
(v)
Data
(n
-
4
)
Optimization Technique
-
(F~)
( v i ) Human S u b j e c t i v i t y The above s i x c a t e g o r i e s a r e discussed h e r e a f t e r in some d e t a i l . 1 0.3 . 1
Mods! ._Topp_l ogy (9 ) Model t o p o l o g y r e f e r s t o t h e o r d e r ,
equdtions
degree a n d forin of the system of
For example, a dynamic system
which r ep r es en t t h e r eal system.
represented by a system o f d i f f e r e n t i a l equations (ordina ry or p a r t i a l ) ; d s t a t i c system might be represented by s e t s of a l g e b r a i c equa-
iriight be
t i o n s such a s polynomials, e t c . Consider f o r example, a groundwater
system o f both confined a n d u n -
I n o r d er t o model t h e dynamic response of t h e hydraulic
confined a q u i f e r s .
t o any f u t u r e demands (withdrawals or recharge) on t h e
head i n t h e a qu i f er
groundwater system, one may use a system of d i f f e r e n t i a l e qua tions. second o r d e r p a r t i a l
d i f f e r e n t i a l equations may
t h e confined a q u i f e r ,
be adequate
whereas nonlinear second orde r
Linear
f o r modeling
partial differential
equntions ( P D E ) might be needed f o r the unconfined a q u i f e r . Furthermore, a hoiiiogeneous a q u i f e r may be adequately modeled by a two-dimensional system, but a
s t r a t i f i e d a n d non-homogeneous one
dimensional
PDE,
etc.
Clearly,
topology over another i n t r o d u ces
o u g h t t o be modeled by a t h r e e a s e l e c t i o n o f one model
in each c a s e ,
a source of
uncertainties
and e r r o r s in
t h e accuracy o f t h e model's r e p r e s e n t a t i o n . Model topology i s tiiriization.
p a r t i c u l a r l y important in
de c ision m a k i n g f o r op-
Almost any f u n ct i o n al form can be used t o approximate t h e ab-
s o l u t e value of any cau s e- ef f ect r e l a t i o n s h i p .
However, optimal de c isions
concerned with the magnitude of the se func tions as with t h e i r d e r i v a t i v e s (or incremental r a t i o s ) . Thus a l i n e a r l e a s t squares r e -
are usually n o t as
gression model o f a
b a s i c a l l y n o n - l i n ear response,
because of t h e charac-
t e r i s t i c s o f l i n e a r system o p t i mi zat i o n , i s ver,y a p t t o s e l e c t " de c isions" a t point,s which i n f a c t have t h e g r e a t e s t e r r o r in t h e re pre se nta tion of
the true derivative. 10.3.2 Model Parameters
(q)
Once the model topology has been selected, the choice of model parameters (often called parameter identification, parameter estimation, system identification, model calibration, etc.) determines the accuracy with which the system model represents the real system. Consider the groundwater system discussed earlier. Once the customary system of parabolic partial differential equations is selected, the proper values of the coefficients need to be determined (e.g. storativity and transmissivity as functions of the spatial coordinates). This parameter estimation (identification) process introduces a source of uncertainties and errors in the accuracy of the calculated values of the parameters and in turn in the model itself. 10.3.3 Model Scope
(ECX)
Model scope refers to the type and level of resolution used in the model for the description o f the real system. Four major descriptions are identified in water resources systems. These are: (i) Temporal description. ( i i ) Physical-Hydrological description. ( i i i ) Political-Geographical description. (iv) Goal or Functional description. The above descriptions are discussed in some detail hereafter. The characteristic parameters of uncertainties and errors associated with the selection of the model scope is denoted by the set EX. In referring again to the ground water system, one may wish to study the behavior (response) of the system under planned development for short, intermediate and long-term planning horizons (temporal description). The groundwater system itself, which may consist of several aquifers, may be decomposed on the basis of the physical-hydrological characteristics or political-geographical boundaries. Finally, if the groundwater system is to be managed as part of a larger water resources system with concern for water quality, storage, recharge, and so on, then different decompositions may be more advantageous, such as goal description. Clearly, while these four descriptions have individual merits, each describes the system from a narrowed point of view. The system in totality may never be well-represented by any one description, and thus the selection of model's scope introduces yet another source of uncertainties and errors in the system's repre-
sentation.
Scope i s a
c o n t r o l l e d by many
p a r t i c u l a r l y important f a c t o r Even so,
what different objectives. a single
though
where t h e system i s
r e l a t i v e l y independent decision-makers, each with some"rational"
such systems
are
ofte n modeled
as
decision-maker was a t t h e helm, i . e . a s i f
a
s i n g l e point of view can be a s s e r t e d . 10.3.4
Ea&
(q)
Access t o
sufficient representative
da ta f o r
c a l i b r a t i o n , i d e n t i f i c a t i o n , t e s t i n g , Val i d a t i o n
model
constructions,
and hopefully implementa-
t i o n , i s obviously a very important element in systems a n a l y s i s . lack of e i t h e r accu r at e o r
Cle a rly a
s u f f i c i e n t data due t o t h e c o l l e c t i o n , a c q u i s i -
t i o n , processing, a n a l y s i s ,
etc.,
may cause s u b s t a n t i a l e r r o r s in t h e re-
sul t s . Consider again t h e
above groundwater system: t h e value of t h e
model
parameters determined through t h e i d e n t i f i c a t i o n procedure i s l i k e l y t o depend on t h e a v a i l a b l e d a t a .
An i n s u f f i c i e n t number of sampling s i t e s , the
number of samples, and sampling accuracy (w ithin each s p a t i a l l o c a t i o n ) may introduce s i q n i f i c a n t sources of u n c e r t a i n t i e s and e r r o r s in t h e system model. 1 0 . 3 . 5 Optimization Techniques
(%)
Once t h e mathematical model
has been c onstruc te d and i t s
parameters
i d e n t i f i e d , t he s e l e c t i o n and a p p l i c a t i o n of s u i t a b l e optimization methodol o g i e s ( s o l u t i o n s t r a t e g i e s ) introduces anothe r source of u n c e r t a i n t i e s and e r r o r s i n t h e s o l u t i o n derived from t h e system
I n t h e groundwater
model.
system discussed e a r l i e r , t h e s e l e c t i o n of t h e method of numerical i n t e g r a t i o n of t h e system of
PDE with t h e as s o ci a te d grid s i z e , boundary and i n i -
t i a l conditions,
computer s t o r a g e c a p a c i t y and accuracy,
duce sources of
u n c e r t a i n t i e s and e r r o r s in t h e s o l u t i o n .
ample, c o n s i d e r a
nonlinear o b j e c t i v e f u nc tion
A s another ex-
with a nonlinear system of
i n e q u a l i t y c o n s t r a i n t s r ep r es en t i n g t h e behavior of ply system.
e t c . , a l l intro-
a power and water sup-
I f t h e o p t i mi zat i o n method a pplie d f o r solving t h i s system i s
t h e simplex method racy of t h e s o l u t i o n
( v i a l i n e a r i z a t i o n of t h e system model), then t h e accuobtained may be q u estiona ble .
This
particularly i s
t r u e f o r highly nonlinear systems.
I t i s important t o note t h a t t h e s e l e c t i o n of the optim iz a tion nique g e n e r a l l y co i n ci d es (or should) sequently, t h e model
with t h e model's c o n s t r u c t i o n .
any exchange between t h e s o p h i s t i c a t i o n and t h e accuracy
(or approximation)
tech-
Con-
( o r simp1 i f i c a t i o n ) of
o f t h e solution
should be
made a t an e a r l i e r s t a g e o f t h e s y s t e m ' s a n a l y s i s . 10.3.6
Human S u b j e c t i v i t y
(%)
Human s u b j e c t i v i t y s t r o n g l y i n f l u e n c e s t h e outcome o f ses i n w a t e r r e s o u r c e s ( a s w e l l as i n o t h e r a r e a s ) .
systems a n a l y -
Human s u b j e c t i v i t y may
include: (i) (ii) ( i ii)
The background, t r a i n i n g and e x p e r i e n c e o f t h e a n a l y s t ( s ) , Personal p r e f e r e n c e and s e l f - i n t e r e s t ,
and
Proficiency.
C l e a r l y , human s u b j e c t i v i t y can i n f l u e n c e a l l o f t h e o t h e r f i v e m a j o r c a t e g o r i e s o f model c h a r a c t e r i s t i c s .
A c i v i l engineer, a l l addressing
a h y d r o l o g i s t o r a systems e n g i n e e r ,
t h e problem o f p l a n n i n g
development and
p r e d i c t i n g t h e waterhead
f o r example,
f o r t h e above
ground w a t e r system
response t o
w i t h d r a w a l s and r e -
charges, may each c o n c e i v e a d i f f e r e n t approach o r methodology. W h i l e human s u b j e c t i v i t y plays a 'cry important r o l e categories o f
: ! i u d ~ lc h a r a c t e r i s t i c s ,
u n c e r t a i n t i e s and e r r o r s available i n t h i s respect. e f f e c t r e l a t i o n s h i p s here,
i n t h e s e l e c t i o n o f a l l t h e major
each o f w h i c h
i n t h e system model,
i n t r o d u c e s sources o f
no q u a n t i t a t i v e a n a l y s i s i s
R a t h e r t h a n a t t e m p t t o q u a n t i f y such cause and t h e importance o f
each c h a r a c t e r i s t i c i s i n d i -
c a t e d and a framework f o r t h e i r a n a l y s i s i s suggested. I n a n a l y z i n g t h e sources
o f u n c e r t a i n t i e s and e r r o r s
as t h e y a f f e c t
s e n s i t i v i t y , s t a b i l i t y , i r r e v e r s i b i l i t y and u l t i m a t e l y o p t i m a l i t y , t h e system's analyst
may have a v a i l a b l e
the following
knowledge
a b o u t t h e aug-
mented v e c t o r ~ ' 1: (a)
A complete knowledge o f g i s a v a i l a b l e namely,
(b)
i s a deterministic variable.
The v e c t o r g i s a s t o c h a s t i c v a r i a b l e b u t an e s t i m a t e o f i t s probability distribution function i s available.
(c)
The v e c t o r 5 i s a s t o c h a s t i c v a r i a b l e where no knowledge i s a v a i l a b l e on t h e p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n .
I t i s assumed t h a t
can be 01.
constructed r e l a t i n g s e n s i t i v i t y ,
Furthermore,
t h e knowledge of any e v e n t ,
some a n a l y t i c a l
functions
s t a b i l i t y and i r r e v e r s i b i l i t y t o
depending on w h i c h element o f
i s under c o n s i d e r a t i o n ,
i t s mean and v a r i a n c e can v a r y between
noncommensurable o b j e c t i v e f u n c t i o n s
( a ) and
(c).
In
w i l l r e s u l t regardless o f
E.
The S u r r o g a t e M o r t h T r a d e - o f f (SWT) Method
u t i l i z e d t o solve t h i s
problem o f n o n c o m e n s u r a b i l i t y among m u l t i -
t h e degree of knowledge o f can be
f o r any g i v e n system
objective functions.
:;6".Si 7 ' 1 I/! T'Y, S'l7lL?rl,l!!Y, RISK
10.4
181
AND .L?REVERSIBILITY
-____ FORMULATION OF R I S K OBJECTIVES FOR WATER RESOURCE SYSTEMS
There p r o b a b l y i s o b j e c t i v e s i n general,
no s t a n d a r d approach given t h e almost
t o the specification o f r i s k
i n f i n i t e possible
number o f com-
b i n a t i o n s o f system-modeling c h a r a c t e r i s t i c s d i s c u s s e d i n s e c t i o n 10.3.
To
a l a r g e e x t e n t , each case may have t o be t r e a t e d de novo t o a s s u r e t h a t t h e m o d e l i n g e r r o r s i n t r o d u c e d by s t a n d a r d i z e d approaches do n o t i n t r o d u c e more u n c e r t a i n t y t h a n t h e r i s k element b e i n g a n a l y z e d . The b a s i c q u e s t i o n i s : v o i r going dry. of failing to
R i s k o f what?
I t may be t h e r i s k o f a r e s e r -
I n e x a c t l y t h e same p h y s i c a l s i t u a t i o n , meet a minimum
water"or " f i r m energy'.
i t may be t h e r i s k
prescribed level o f service,
such as
"firm
T h i r d l y , i t may be t h e r i s k o f d i v e r g e n c e f r o m t h e
prescribed level
o f service.
simultaneously.
The f i r s t two would c o n s t i t u t e d i s c r e t e u n i t s o f t h e r i s k
ob.jective v e c t o r .
I n fact,
The l a t t e r c o n s t i t u t e s an
f i n i t e s e t o f components between For example,
a l l t h r e e r i s k elements may e x i s t o b j e c t i v e v e c t o r w i t h an i n -
z e r o and t h e p r e s c r i b e d l e v e l o f s e r v i c e .
i t may be d e s i r a b l e t o
know t h e r i s k o f f a i l i n g by 500 c u b i c
and b y 1500 c f s , and i t may be j u s t as d e s i r a b l e t o
f e e t p e r second
(cfs) know t h e r i s k a s s o c i a t e d w i t h 1000 c f s o r any o t h e r p o i n t .
however,
t h i s continuous vector
number o f d i s c r e t e p o i n t s p o i n t s e s t i m a t e d by
o f objectives
(e.9.
0, 500, 1000, 1500)
interpolation or
I n most
can be modeled
curve f i t t i n g i f
cases,
a t a small
and t h e i n t e r m e d i a t e the
corresponding
r i s k and o p t i m a l p o l i c i e s a r e r e l a t i v e l y i n s e n s i t i v e . For example, l e t
F ( x ) be t h e e x p e c t e d n e t economic b e n e f i t o f s e l e c -
t i n g a l e v e l o f s e r v i c e s o f x. ble while
I t i s d e s i r e d t o s e t F ( x ) as h i g h as p o s s i -
r e s e r v o i r ( o f t o t a l c a p a c i t y f) ) max w i l l n o t be s u f f i c i e n t t o p r o v i d e minimum
minimizing the r i s k t h a t the
and t h e s t o c h a s t i c i n f l o w
y(t)
l e v e l o f s e r v i c e a t a l l times w i t h i n t h e next n time periods. haps t h e s i m p l e s t f o r m
o f t h e r i s k problem,
This i s per-
b u t i t serves t o i l l u s t r a t e a
number o f i m p o r t a n t c h a r a c t e r i s t i c s w h i c h must be c a r e f u l l y c o n s i d e r e d . Proceeding w i t h t h i s
simple formulation,
a knowledge o f t h e s t a t i s -
t i c a l c h a r a c t e r i s t i c s o f t h e h y d r o l o g y a l l o w s development o f a l a r g e number o f " e q u a l l y l i k e l y " h y d r o g r a p h i c sequences o f n t i m e p e r i o d s each. d a y ' s r e s e r v o i r l e v e l be
qo u n i t s , and qi
Let to-
be t h e s t o r a g e a t t i m e p e r i o d i;
t h e w a t e r r e l e a s e a t t i m e p e r i o d i, ri, w i l l be l i m i t e d by t h e w a t e r i n f l o w a t p e r i o d i, yi,
as w e l l as t h e maximum c a p a c i t y o f t h e r e s e r v o i r ,
(Imax.
Any s p e c i f i e d f e a s i b l e r e l e a s e p o l i c y x, s h o u l d s a t i s f y t h e c o n s t r a i n t : i n f l o w - a v a i q a b l e s t o r a g e space ,< x
. For
time
p e r i o d i:
The actual r e s e r v o i r r e l e a s e s
r.
1
might then be e s t a b l i s h e d
f o r the
policy x . r.
=
x
r.
=
v. -
1
y 1. - (pmax -
if 1
(Omax
- oii)
s x
Oil
if
Yi + q i
$
yi + q i
xi
>
y. + q < x i i ( o r any o t h e r ) f i x e d decision r u l e ,
r . = y. + qi 1
1
Using t h i s
if
t h e s e t of equally l i k e l y
x a t least hydrooraphs can be used t o determine t h e p r o b a b i l i t y t h a t r i n period time horizon. I n t h i s way t h e p r o b a b i l i t y o f f a i l u r e
once i n any
t o meet minimum s e r v i c e l e v e l s a t l e a s t once i n n time periods i s calcul a t e d as a function of s e r v i c e l e v e l . If t h i s q u a n t i t y i s desiqnated as
P,(x),
then the vector optimization problem i s
max
[1 - P n ( x ) , F ( x ) ]
X
Subject t o :
c o n s t r a i n t s on input hydrology, c o n s t r a i n t on r e s e r v o i r c a p a c i t y , and non-negative c o n s t r a i n t s on i n i t i a l
Since
P n ( x ) and
r e s e r v o i r conditions. F ( x ) a r e fundamentally d i f f e r e n t
quantities,
this
i s a vector optimizationof noncommensurable functions and i t can be t r e a t e d using t h e Surrogate Worth Trade-of-F Nethod. Note t h a t t h e optimum policy a n d acceptable r i s k l e v e l s will depend on t h e i n i t i a l storage level chosen, hence t h i s represents a family of optimizations. There a r e several o t h e r r e p r e s e n t a t i o n s of t h e r i s k element of t h i s problem. For example, the r i s k o b j e c t i v e can be defined a s t h e p r o b a b i l i t y t h a t t,he decision level x will not r e s u l t in a f a i l u r e w i t h i n n time p e r i ods ( n = 1,2,3,
..., N ) . I n t h i s case a p r o b a b i l i t y d i s t r i b u t i o n can be gene-
rated f o r P n ( x ) f o r each level of x considered. optimization problems of the form max [ I - P n ( x ) , f ( x ) ]
The r e s u l t i s a family of
n
=
1,2,
...,
N
Subject t o c o n s t r a i n t s a s before. Once again Method.
t h e problem can
be t r e a t e d using t h e Surrogate Worth Trade-off
A t t h i s point most readers will have probably wondered why we did n o t simply determine t h e p r o b a b i l i t y of f a i l u r e , a s s e s s a n approqriate economic penalty function a n d proceed t o maximize t h e mathematical expectation of t h e r e s u l t i n g s i n g l e economic o b j e c t i v e . This i s a very v a l i d question
a n d i n c e r t a i n circumstances
logy t o follow.
i t would
be t h e c o r r e c t de c ision model topo-
The v a l i d i t y of t h i s approach,
s k i l l a n d accuracy of
however, depends upon the
co n s t r u ct i n g t h e penalty func tion f o r dropping below
a d e l i v e r y of x i n any time period. I n f a c t , t h i s i s what t h e Surrogate Worth Trade-off Method does, except t h a t inste a d of attempting t o e va lua te t h e penalty ( a very s u b j e c t i v e mat t er i n r i s k c a s e s ) , a t t e n t i o n i s focused on t h e simpler question whether t h e decision-maker i s w i l l i n g to a c c e pt a s p e c i f i c (computable) i n cr eas e i n r i s k i n orde r t o obta in a s p e c i f i c (computable)
i n c r eas e i n h i s b e n e f i t .
r e a l l y necessary t o
As was shown in
know t h e answer t o t h e
Chapter 3 ,
i t is not
l a t t e r question i n an a b s o l u t e
q u a n t i t a t i v e sense, b u t r a t h e r only i n t h e ordina l (rank o r d e r ) o r q u a l i t a t i v e sense of one being of g r e a t e r v al u e t h a n t h e o t h e r . A penalty func tion on t h e o t h e r hand must be numerically a c c u r a t e over a l l possible values of x , otherwise t h e d e r i v a t i v e s on which optim iz a tion u s u a l l y r e s t s may be badly i n e r r o r . If t h e proper p en al t y f unc tion can be a c c u r a t e l y determined, both methods should lead t o i d e n t i c a l r e s u l t s . The v a l i d i t y of using a penalty f u nc tion and optimizing mathematical e x p e c t a t i o n i s open t o s e r i o u s question in a number of counts in problems involving water resource systems. To be v a l i d t h e process must in f a c t e l i m i n a t e t h e b a s i s f o r a r es i d u al r i s k o b j e c t i v e , and t h i s w ill be Two major types of problems p o s s i b l e only i f c e r t a i n co n d i t i o n s a r e met. a r e discussed below: i n t h e f i r s t t y p e, t h e decision-maker must expect t o have a l a r g e number of a p p l i c a t i o n s of t h e d e c i s i o n , l a r g e enough so t h a t h i s a c t u a l experience with t h e d eci s i o n can reasonably be expected t o be an adequate unbiased sample of t h e corresponding p r o b a b i l i t y d i s t r i b u t i o n s . A decision-maker who o n l y g e t s one t r i a l with i t s corresponding r e s u l t , i s n o t r e a d i l y consoled by t h e mathematical expe c ta tion. tle s t i l l m u s t consider s e p a r a t e l y wh et h er t h e r i s k i s worth t h e gain. .Anyone would be w i l l i n g t o make a s e r i e s of 1,000,000 b et s of $1 . O O each on t h e black numbers on t h e r o u l e t t e t a b l e i f he were paid even money f o r t h e two green house numbers a s well a s t h e black. However, very few would bet $1,000,000 with one and only one bet allowable u n d e r e x a c t l y t h e same circumstances. The mathematical expectancy i s e x a c t l y t h e same, b u t t h e r e l a t i v e d e s i r a b i l i t y i s obviously q u i t e d i f f e r e n t . I n a d d i ti o n t o t h e requirement t h a t an adequate number o f experiences a r e p o s s i b l e , t h e mathematical ex pe c ta tion must a l s o be r e l a t e d t o o t h e r r i s k producing components of t h e system such a s i r r e v e r s i b i l i t y , s t a For example, firm power c o n t r a c t s in t h e Central b i l i t y and r e s p o n s i v i t y . Valley p r o j e c t of C al i f o r n i a r e q u i r e t h e le ve l of firm power c ontra c te d t o
MULTiOBJECTiVE OP'I'iMi ZA TIOW i N WA!l%'R HFSOURCES SYSTEMS
104 drop t o the
l o w e s t power o u t p u t a c t u a l l y d e l i v e r e d ,
f a l l s below t h e " f i r m " c o n t r a c t l e v e l . t h e economic
whenever power o u t p u t
This constitutes a d i s c o n t i n u i t y i n
objective function i t s e l f ,
and
mathematical expectation
as
n o r m a l l y d e f i n e d i s t h u s n o t adequate f o r t h e r i s k element concerned. The t y p e o f
risk-return
problem d e s c r i b e d above i s e s s e n t i a l l y
one
o f r i s k produced by t h e s e n s i t i v i t y o f t h e parameters d e s c r i b i n g t h e system.
A
second t y p e o f r i s k problem i s t h a t produced by s e n s i t i v i t y t o t h e
decision.
T h i s t y p e o c c u r s whenever
t h e d e c i s i o n v a r i a b l e c a n n o t be p r e -
c i s e l y c o n t r o l l e d b u t v a r i e s about t h e d e c i s i o n p o i n t , responding variance i n output.
r e s u l t i n g i m a cor-
i f t h e proper
Once a g a i n ,
conditions are
met and an a p p r o p r i a t e p e n a l t y f u n c t i o n c a n be d e t e r m i n e d o v e r t h e r a n g e o f variance, i t i s appropriate
t o optimize
settinq the decision variable t o i t s
t h e mathematical
expectation
of
I f these c o n d i t i o n s a r e
mean v a l u e .
n o t met, t h e p r o b l e m a g a i n becomes a m u l t i o b j e c t i v e o p t i m i z a t i o n . On o c c a s i o n , i t may be v e r y d i f f i c u l t t o assess t h e r i s k o t h e r t h a n q u a l i t a t i v e o r judgmental
terms.
p e r se
in
However, knowing t h a t r i s k i s
r e l a t e d t o s e n s i t i v i t y w i l l p e r m i t a m u l t i o b j e c t i v e a n a l y s i s i n v o l v i n g sens i t i v i t y and r e t u r n ,
where s e n s i t i v i t y s u b s t i t u t e s
To do
for risk.
so,
t h i s r e q u i r e s u s i n q a d e f i n i t i o n o f s e n s i t i v i t y which r e f l e c t s these q u a l i t a t i v e and judgmental f a c t o r s . the variation u f
t h e d e c i s i o n a b o u t i t s s e l e c t e d v a l u e x m a y n o t be
( o r r e a d i l y determinable), control " that x
y e t i t may
be p o s s i b l e t o
known
e s t i m a t e a "Span o f
i n c l u d i n g t h e most l i k e l y s i g n i f i c a n t v a r i a t i o n i n x .
xC
may be a f u n c t i o n o f
C
F o r example, a p r o b a b i l i t y d i s t r i b u t i o n o f
x since the a b i l i t y t o control
Note
x may depend on
i t s magnitude. An i n t e r e s t i n g problem
i n sensitivity
s t r u c t i o n sequencing problem4.
arises
i n t h e optimal
The methodology developed
con-
t h e r e determines
t h e o p t i m a l o r d e r o f c o n s t r u c t i o n f o r N w a t e r s u p p l y p r o j e c t s , each
having
a s p e c i f i c f i x e d c a p a c i t y o f Qi.
demand
Any g i v e n e s t i m a t e o f
the
future
f o r s e r v i c e r e s u l t s i n some s p e c i f i c o r d e r o f c o n s t r u c t i o n , depending on t h e t i m e p a t t e r n o f t h i s demand.
However, t h e l a t t e r i s an u n c e r t a i n t y u s u a l l y
o b t a i n e d by e x t r a p o l a t i o n processes which, w h i l e sometimes v a l i d f o r periods i n t o t h e f u t u r e , creases. quirement)
become much more
I f i t i s presumed t h a t
an e q u a l l y l i k e l y
f u n c t i o n can be e s t i m a t e d f o r a
o f past trends
f u t u r e demand ( o r r e -
s h o r t t i m e p e r i o d on t h e b a s i s
( e s t i m a t i n g t h e mean and s t a n d a r d
from past variances),
short
u n r e l i a b l e as t h e t i m e span i n -
deviation
of
the error
i t i s p o s s i b l e t o g e n e r a t e a number o f p o s s i b l e f u t -
u r e demand f u n c t i o n s by methods s i m i l a r t o t h o s e used t o q e n e r a t e s i m u l a t e d h y d r o l o g i c sequences.
I n t h e absence o f any o t h e r knowledge we can a s s e r t
185 t h a t t h e s e a r e b e s t p o s s i b l e e s t i m a t e s o f a number o f "equa 1Y 1 k e l y " f u t u r e demands. Using such a s e t o f e q u a l l y l i k e l y f u t u r e demand f u n c i o n s ma1 sequence o f p r o j e c t c o n s t r u c t i o n f o r puted.
the opti-
each s i m u l a t e d f u g r e can be com-
I f they a r e e q u a l l y l i k e l y , i t i s p o s s i b l e t o determine t h e frequ-
ency w i t h
which any p a r t i c u l a r
p r o j e c t would
be
constructed f i r s t .
The
rank o r d e r o f t h i s f r e q u e n c y r e p r e s e n t s a n u m e r i c a l measure o f t h e s e n s i t i v i t y o f t h e supply-use
system t o t h e
i n i t i a l project
decision
under t h e
c o n d i t i o n s o f demand u n c e r t a i n t y .
10.5
MEASUREMENT OF RISK-RELATED CHARACTERISTICS I n s e c t i o n 2,
four risk-related
systems were i d e n t i f i e d
characteristics
and d e f i n e d i n
o f water resources
a d e s c r i p t i v e sense.
However, i n
order t o incorporate these c h a r a c t e r i s t i c s i n t o d e c i s i o n analysis, q u a n t i t a t i v e measures w i l l
be r e q u i r e d f o r each,
and none i s p r e s e n t l y a v a i l a b l e .
The purpose o f t h i s s e c t i o n i s t o e x p l o r e i n a t e n t a t i v e way some p o t e n t i a l measures o f
sensitivity leaving
q u a n t i t a t i v e expression o f r e s p o n s i v i t y
,
s t a b i l i t y and i r r e v e r s i b i l i t y f o r f u t u r e d i s c u s s i o n . I n t h i s discussion
t h e measurement
of sensitivity
i s approached
from t h e p o i n t o f v i e w o f r i s k and u n c e r t a i n t y r a t h e r t h a n f r o m t h a t o f i t s more a b s t r a c t m a t h e m a t i c a l c o n n o t a t i o n . However, i t w i l l be u s e f u l t o b e g i n with the latter. Let the various causative factors
o f r i s k and u n c e r t a i n t y
i n t o t h e m o d e l i n g a n a l y s i s be i d e n t i f i e d by a1 , ral definition,
one measure o f
systems o u t p u t ,
objective,
sensitivity
a2,.
. . ,an.
i s the r a t e o f
o r decision w i t h respect t o
w e l l as t h e r a t e a t w h i c h t h i s r a t e i t s e l f i s c h a n g i n g .
entering
From i t s genechange o f any
t h e f a c t o r s a . as J Thus a v e c t o r mea-
s u r e o f t h e s e n s i t i v i t y o f systems o u t p u t s yi a t a p o i n t c o u l d be expressed as :
sy
=
where I n any
~
practica
-
11
denotes a norm ( t h e l e a s t squares as an example).
application only
ew terms o f t h i s v e c t o r o f
the f i r s t
d e r i v a t i v e s would be s i g n i f i c a n t . S i m i l a r expressions fi(x,s),
and f o r t h e
can be
written
for
*
" o p t i m a l " p o l i c y v e c t o r xi.
the
system
There a r e a l s o s e n s i t i -
v i t i e s o f each o f t h e above w i t h r e s p e c t t o each o t h e r , i . e . , t i v e may be s e n s i t i v e t o
objectives system o b j e c -
r i s k s o r u n c e r t a i n t i e s , t o t h e system o u t p u t
yi,
186
M U I ~ ~ ~ ~ D B ~ J E CGY TP VTEI M ~ Z ~ ~ TIII T ~ MWER O~J
o r t o t h e d e c i s i o n p o l i cy
*
A m m u ~ cSYSTEMS ~s
A s i m i l a r d e f i n i t i o n can be made with r e s p ect t o any o r a l l components o f the c o n s t r a i n t vector g(x,~). Once a s e n s i t i v i t y norm i s d ef i n ed , t h e systems a n a l y s t may seek t o minimize t h i s norm, along with minimizing t h e ove ra ll system o b j e c t i v e s f i ( L , g ) . This c l e 3 r l y lends i t s e l f t o noncommensurable ve c tor minimization problems where t h ? s u r r o g at e worth t r ad e- o f f method can be applied f o r i t s s o l u t i o n . The "span of c o n t r o l " ma,y have an important influe nc e on t h e s e l e c t i o n of t h e proper norm f o r t h e model's s e n s i t i v i t y . Consider Figure 10.2 where t h ? graph i s Given of t h r e e f u n ct i o ns denoted b y Case I , 11, and 111, * a l l of which possess t h e same maximum a t a . C l e a r l y , each of t h e t h r e e f u n c t i o n s has a d i f f e r e n t s e n s i t i v i t y t o a. Accordingly, a d i f f e r e n t norm based on af, '?f, aa
or
aaZ
111 r e s p e c t i v e l y .
a3f
-aa3
x.
1
and v i c e v e rsa .
advantageous in Cases I , 11, and
may prove t o be
Note t h a t t h e span of control of Case I , f o r example, i s
much w i d x t h a n t h a t of Case I 1 or Case 111. Unfortunately t h e use of v ar i o u s o rde rs of d e r i v a t i v e s a s a
measure
o f s e n s i t i v i t y has t h e s er i o u s f a i l i n g of beinq v a l i d only within t h e imme-
d i a t e neighborhood of t h e decisioned p o i n t and objective f i .
x r and i t s a ssoc ia te d o u t p u t y 1.
However t h e r i s k or u nc e rta inty f a c t o r a i may cause t h e
actual x i , yi and/or f . t o d ev i at e s u b s t a n t i a l l y from t h e decisioned values 1 x y , yi and/or f ? . A n i r r i g a t o r may "decide" t o apply 3 inches of water a t 1 a n i r r i g a t i o n b u t h i s a b i l i t y t o control t h a t de c ision a t e x a c t l y 3 inches leaves much t o be d e s i r e d .
His act u al i r r i g a t i o n may be anywhere from two t o f o u r inches with corresponding v a r i a t i o n s in o u t p u t ( s o i 1 m o i s t u r e a v a i l -
a b i l i t y ) or o b j e c t i v e s ( p r o f i t on t h e c r o p ) . 10.6
S U I U A R Y AND CONCLUSIONS
In t h i s
chapter a number o f
c e r t a i n t y have
been t e n t a t i v e l y
q u es t i ons a ssoc ia te d with r i s k explored f o r t h e
purpose of
and u n -
stim ula tinq
f u r t h e r a n a l y s i s and research i n t o t h e q u a n t i f i c a t i o n s of the se f a c t o r s f o r use i n m u l t i - o b j ect i v e o p t i mi zat i o n a n a l y s i s .
A g r e a t many problems e x i s t
i n water resources s,ystems and o t h e r c i v i l s,ystems involving resources in which avoidance of objective. formulated
r i s k and u n cer t ai n t y
If suitable
a r e o f t e n in f a c t
q u a n t i t a t i v e measures of
t h e dominating
the se o b j e c t i v e s can be
then t h e s u r r o g at e worth t r ad e-off method can be used t o d e t e r -
mine t h e optimal
or a t l e a s t
s u p er i o r
combinations of r i s k
and
various
forms of r e t u r n . Direct situations.
measures of Example of
r i s k t o be
avoided
can be defined
hydrologic r i s k q u a n t i f i c a t i o n
in certain
( t o be minimized)
187
I ai
F i g u r e 10.2
a
V a r i a b l e Span o f C o n t r o l
were developed as an example o f t r e a t i n g r i s k due t o chance c o n t r o l l e d nond e c i s i o n e d i n p u t s o r system parameters. More complex r i s k and u n c e r t a i n t y s i t u a t i o n s d e v e l o p when cannot be made w i t h
decisions
p r e c i s i o n c o n t r o l b u t r a t h e r w i l l vary about t h e d e c i -
s i o n v a l u e s i n some random o r q u a s i random manner. When t h e number o f r e p e titions of may be
that decision i s
meaningless
t o the
a l s o s m a l l so t h a t decision-maker,
mathematical expectations
an i m p o r t a n t
formof r i s k i s
introduced. Such i m p r e c i s i o n
o f control
may
introduce
t h r o u g h s e v e r a l systems c h a r a c t e r i s t i c s . were i d e n t i f i e d and
d e s c r i p t i v e l y defined:
risk
or
uncertainty
Four such system c h a r a c t e r i s t i c s sensitivity,
responsivity,
s t a b i l i t y and i r r e v e r s i b i l i t y . I n a d d i t i o n s e v e r a l t y p e s o f m o d e l i n g e r r o r s were i d e n t i f i e d w h i c h can l e a d t o i m p r e c i s e contro1,imprecisepredictionsof
188
MULTTOAJECTTVE OP7'IMIZATTON IIJ WLTlL? RESOURCES SYSTEMS
t h e r e a l response o r b o t h , hence h a v i n g a c c e n t u a t e r i s k and u n c e r t a i n t y . Because t h e y
equivalent a b i l i t y t o
a r e somewhat s i n g u l a r l y r e l a t e d
t o the
create
or
s p e c i f i c sys-
tems concerned, g e n e r a l i z a t i o n s on r e s p o n s i v i t y , s t a b i l i t y and i r r e v e r s i b i l i t y a r e n o t d i s c u s s e d i n t h i s more g e n e r a l d i s c u s s i o n .
o t h e r hand would appear t o
be amenable t o more g e n e r a l i z e d q u a n t i f i c a t i o n s Each o f t h e above measures i s u s e f u l
as d i s c u s s e d i n t h e p r e v i o u s s e c t i o n . under
successively
S e n s i t i v i t y on t h e
more g e n e r a l c i r c u m s t a n c e s
ranging
f r o m systems con-
t r o l l a b l e w i t h i n c l o s e l i m i t s t o t h o s e w h i c h can be o n l y a p p r o x i m a t e l y cont r o l l e d w i t h i n broad l i m i t s . T h i s somewhat
preliminary analysis
q u a n t i t a t i v e measures o f r i s k can be be o p t i m i z e d i n a
and d i s c u s s i o n
indicates
that
d e f i n e d and u t i l i z e d as o b j e c t i v e s t o
multi-objective control.
I n some i n s t a n c e s even u n c e r -
t a i n t y (no p r o b a b i l i t y d i s t r i b u t i o n d a t a ) can be t r e a t e d a d e q u a t e l y . An i n d i c a t i o n , however, i s n o t an accomplished f a c t and much i n s i g h t and a n a l y s i s
\Jill
be r e q u i r e d t o q u a n t i f y
i n common w a t e r r e s o u r c e s systems multi-objective decision o v e r r i d i n g importance
the major r i s k f a c t o r s i n v o l v e d
adequately t o
analysis.
allow t h e i r inclusions i n
Because o f t h e s i n g u T a r and sometimes
o f t h i s issue
i t i s hoped t h a t t h i s d i s c u s s i o n w i l l
s t i m u l a t e t h a t i n s i g h t and a n a l y s i s .
FOOTNOTES 1.
The
g a m b l e r ' s r u i n problem
i s d e s c r i b e d b y H a l l and Dracup, [1970].
2.
These e s t i m a t e s a r e d e s c r i b e d by Nadeau, [1950].
3.
The development o f
4.
The o p t i m a l
t h e d e s c r i p t i o n s f o r water resources
systems can
be found i n Haimes and Macko, [1973]. c o n s t r u c t i o n sequencing
problem
i s solved
by B u t c h e r ,
and W. A. H a l l ,
"Dynamic
Proqramming
Haimes and H a l l [1969]. References 1.
B u t c h e r , W. S . ,
Y . Y . Haimes,
f o r t h e Optimal Sequencing o f Water Supply P r o j e c t , " Water ces Research, v o l . 5, no. 6, p. 1196,
J . A. Dracup,
2.
H a l l , W. A. and
3.
Nadeau, R. A.,
4.
Haimes Y . Y . and D. Macko,
McGraw-Hill Book Co.,
Resour-
1969.
Water Resources Systems E n g i n e e r i n g ,
New York, 1970.
The Water Seekers,
Doubleday and Company, I n c . ,
Flew
York, 1950. ces Management",
" H i e r a r c h i c a l S t r u c t u r e s i n Water Resour-
IEEE-Systems, Man, and C y b e r n e t i c s , v o l . SMC-3,
no. 4, pp. 396-402, 1973.
Chapter 11 EPILOGUE T h i s c h a p t e r summarizes t h e c h a r a c t e r i s t i c s
and
advantages o f
the
SWT method and i n d i c a t e s f u r t h e r e x t e n s i o n s o f t h e method. M u l t i p l e o b j e c t i v e p l a n n i n g and d e c i s i o n making i s a n i m p o r t a n t p r o b lem f o r most c i v i l systems.
The v a r i o u s o b j e c t i v e s i n v o l v e d g e n e r a l l y can-
n o t be r e p r e s e n t e d i n common u n i t s , h e n c e t o f i n d t h e b e s t p o l i c y , t h e d e c i s i o n maker must make a m e n t a l a n a l y s i s o f t h e t r a d e - o f f s
that
might
be
achieved. The SWT method combines t h e s e same mental processes w i t h mathemat i c a l a n a l y s i s i n a p r o c e d u r e w h i c h p r o v i d e s a c o n v e r g i n g s y s t e m a t i c approach.
The m a t h e m a t i c a l a n a l y s i s a p p l i e s o n l y t o t h e q u a n t i t a t i v e f u n c t i o n s .
High p r e c i s i o n f u n c t i o n s
a r e n o t d i l u t e d by
low p r e c i s i o n f u n c t i o n s since
each i s a s e p a r a t e and d i s t i n c t v e c t o r t h r o u g h o u t . respond o n l y
t o h i s sense o f
The d e c i s i o n - m a k e r need
satisfaction o f levels o f objective attained
"AA" v s . " A B " t r a d e - o f f p o s s i b i l i -
and h i s sense o f d e s i r a b i l i t y o f s i m p l e
T h i s i s e x a c t l y what a d e c i s i o n - m a k e r always does or a t l e a s t t r i e s
ties. t o do.
The a n a l y s i s assumes
t h a t those
are the best trades
possible a t
t h a t l e v e l o f a t t a i n m e n t , where s u b - o p t i m a l c o m b i n a t i o n s a r e n o t p r e s e n t e d . Thus t h e SWT method models a process v e r y s i m i l a r t o t h e r e a l d e c i s i o n p r o cess where a s i n g l e d e c i s i o n - m a k e r i s i n v o l v e d , y e t
it substantially
re-
duces t h e number o f c o m b i n a t i o n s o f l e v e l s o f o b j e c t i v e s a t t a i n e d t h a t need be c o n s i d e r e d . 11.1
ADVANTAGES OF THE SWT METHOD The m a j o r
c h a r a c t e r i s t i c s and
advantages
o f the
surrogate worth
t r a d e - o f f method a r e : (i)
Non-commensurable o b j e c t i v e f u n c t i o n s can be handled qua n t it a t iv e l y .
(ii)
The s u r r o g a t e w o r t h f u n c t i o n s , which r e l a t e t h e d e c i s i o n maker's preferences t o t h e n o n - i n f e r i o r s o l u t i o n s through t h e t r a d e - o f f f u n c t i o n s , can be c o n s t r u c t e d i n t h e f u n c t i o n a l space and o n l y l a t e r be t r a n s f o r m e d i n t o t h e d e c i s i o n space.
(iii)
The d e c i s i o n - m a k e r i n t e r a c t s w i t h t h e m a t h e m a t i c a l model a t a g e n e r a l and a v e r y moderate l e v e l .
He makes d e c i -
s i o n s on h i s s u b j e c t i v e p r e f e r e n c e i n t h e f u n c t i o n a l space (more f a m i l i a r and m e a n i n g f u l t o him) r a t h e r t h a n i n t h e d e c i s i o n space.
This i s p a r t i c u l a r l y important since the
d i m e n s i o n a l i t y o f t h e d e c i s i o n space i s g e n e r a l l y much
189
190
MULTIOBJECTIVE OPTIPIZATIOW I!] WATER RESOURCES SYSTEMS
l a r g e r t h a n t h e d i m e n s i o n a l i t y o f t h e f u n c t i o n a l space. (iv)
The SWT method p r o v i d e s t h e d e c i s i o n maker w i t h a d d i t i o n a l q u a n t i t a t i v e i n f o r m a t i o n on t h e n o n - i n f e r i o r ( P a r e t o optimum) space.
I n particular, the trade-off functions
afi
(A,. = ij
~
af,
,i#
j , i , j = 1,2
,..., n ) ,
which a r e t h e
J
s l o p e s o f t h e n o n - i n f e r i o r c u r v e s i n t h e f u n c t i o n a l space, a r e o f s i g n i f i c a n t i m p o r t a n c e t o t h e d e c i s i o n - m a k e r by p r o v i d i n g t h e r e l a t i v e t r a d e - o f f s a t anv l e v e l o f o b j e c t i v e achievement between a n y two o b j e c t i v e f u n c t i o n s . (v)
Computational f e a s i b i l i t y and t r a c t a b i l i t y have been demonstrated t h r o u g h t h e s o l u t i o n o f s e v e r a l example problems.
(vi)
The a p p l i c a b i l i t y o f m u l t i o b j e c t i v e a n a l y s i s v i a t h e s u r r o g a t e w o r t h t r a d e - o f f method t o s e v e r a l problems in
water
resources planning--water q u a l i t y mainten-
ance, r e s e r v o i r o p e r a t i o n and c o n s t r u c t i o n , e t c . - -
has
been demonstrated. (vii)
The a v a i l a b i l i t y o f o p e r a t i o n a l m e t h o d o l o g i e s , such as t h e SWT method, encourages and enhances t h e systems m o d e l i n g and p a t t e r n o f t h i n k i n g i n m u l t i o b j e c t i v e f u n c t i o n a l terms.
Thus more r e a l i s t i c a n a l y s e s may r e s u l t
by e l i m i n a t i n g t h e need f o r a s i n g l e o b j e c t i v e f u n c t i o n f o r mu 1a t ion .
71.2
FURTHER DEVELOPMENT OF SWT METHOD W h i l e t h e SWT methodcan be u t i l i z e d t o advantage i n most m u l t i o b j e c -
t i v e o p t i m i z a t i o n problems
t h e r e i s s t i l l a number
o f a r e a s i n w h i c h sub-
s t a n t i a l improvement i n e f f e c t i v e n e s s s h o u l d be p o s s i b l e . One o f t h e i m p l i c i t assumptions i n t h e development o f t h e SWT method i s that there i s
a s i n g l e q u a n t i t a t i v e value
DM's assessment o f p r e f e r e n c e . tems,
w h i c h can be a s s i g n e d as t h e
I n most r e a l problems i n v o l v i n g c i v i l s y s -
t h e r e i s a number o f d e c i s i o n - m a k e r s who w i l l have d i v e r s e o p i n i o n s ,
hence t h e r e can be s e v e r a l such q u a n t i t a t i v e v a l u e s . cussed b r i e f l y i n s e c t i o n 3 . 4 .
T h i s problem was d i s -
With f u r t h e r refinements,
the
application
t o m u l t i o b j e c t i v e o p t i m i z a t i o n i n v o l v i n g m u l t i p l e d e c i s i o n - m a k e r s s h o u l d be feasible. I n addition,
r e f i n e m e n t s may be u s e f u l f o r d e t e r m i n i n g t h e t y p e s o f
q u e s t i o n s t o ask d e c i s i o n - m a k e r s .
The r e q u i r e m e n t
that
t h e increment
of
191
each o b j e c t i v e be smal , must be c o u n t e r - b a l a n c e d i t must s t i l l be l a r g e enough f o r
the
by t h e r e q u i r e m e n t t h a t
DM t o be a b l e t o p e r c e i v e t h e d i f f e -
rences. Thus f a r , a me hod f o r d e t e r m i n i n g t h e optimum s i z e o f t h e s e i n c r e ments f o r a l l problems has n o t been found.
G u i d e l i n e s t o improve t h e con-
d e c i s i o n - m a k e r s w i l l a l s o a i d i n a p p l y i n g t h e SWT
s i s t e n c y and a c c u r a c y of method t o r e a l problems.
The s e n s i t i v i t y a n a l y s e s
rithms o f chapters t h r e e through s i x should
suggested i n t h e a l g o -
a l s o be u t i l i z e d when a p p l i c a -
t i o n s t o r e a l problems a r e c o n s i d e r e d . One o f t h e advantages o f t h e SWT method i s t h a t a l m o s t any a l g o r i t h m f o r d e t e r m i n i n g n o n - i n f e r i o r p o i n t s can be i n c o r p o r a t e d i n t o t h e procedure,
so t h a t as
new and improved a l g o r i t h m s a r e developed, t h e SWT approach can
be c o n s t a n t l y updated. h.. = 1J
is a
- afi/8f.
The o n l y
requirement i s
that the trade-off rates
must be d e t e r m i n a b l e as p a r t o f t h e s o l u t i o n .
J T h i s book has c o n s i d e r e d o n l y d e t e r m i n i s t i c problems;
l a r g e amount o f work on
however, t h e r e
d e c i s i o n t h e o r y f o r problems w i t h s t o c h a s t i c
d e c i s i o n s , o b j e c t i v e s and c o n s t r a i n t s .
A d a p t i n g t h e SWT approach t o t h e s e
problems would i n c r e a s e i t s u s e f u l n e s s .
I n p a r t i c u l a r , t h e SWT method can
t r e a t s i g n i f i c a n t f a c t o r s o f r i s k and u n c e r t a i n t y as o b j e c t i v e s . The dynamic
problems i n t h i s
book c o n s i d e r e d o n l y o b j e c t i v e s which
were presumed n o t t o change w i t h t i m e , ( e . g . method c o u l d be
pendent-- where t h e v a l u e tant (fi(t)
i n t e g r a l s over t i m e ) .
The SWT
extended t o dynamic problems whose o b j e c t i v e s a r e t i m e deo f some f u n c t i o n a t each p o i n t i n t i m e i s impor-
= Li(x(t),u(t),t)
f o r i = 1,2,
..., n ) o r w h e r e
t h e i n t e g r a l up t o t
t h a t p o i n t i s i m p o r t a n t o v e r t h e e n t i r e t r a j e c t o r y ( f i ( t ) = i L . ( x ( s ) , u ( s ) , s ) ds 0 ' ..., n ) . For example such problems may a r i s e i n l o n g - t e r m p l a n -
f o r i = i,2,
n i n g problems where t h e c a p i t a l c o s t as w e l l as t h e o p e r a t i o n s , maintenance and replacement c o s t i s i m p o r t a n t . Problems o f t h i s f o r m w i l l r e q u i r e g r e a t m o d i f i c a t i o n s i n c e t h e t r a d e - o f f r a t e s x.. and t h e w o r t h f u n c t i o n s W . . w i l l 1J
1J
a l s o be f u n c t i o n s o f t i m e . a p p l i c a t i o n i s t o use t h e s u r r o g a t e w o r t h t r a d e - o f f
Another a r e a of method as a c o o r d i n a t o r models i n m u l t i l e v e l
i n m u l t i l e v e l h i e r a r c h i c a l models.
models o f t e n have
S i n c e t h e sub-
noncommensurable and competing ob-
j e c t i v e s , a c o o r d i n a t i n g a n a l y s i s w h i c h can h a n d l e m u l t i p l e o b j e c t i v e p r o b lems i s u s e f u l . Finally,
the
most
i m p o r t a n t a p p l i c a t i o n i s t o implement t h e
method i n problems w i t h r e a l d e c i s i o n - m a k e r s .
SWT
AUTHOR I N D E X
Arrow, K . J .
28, 107
F e i n b e r g , A.
15, 16
Athans, PI. 8, 81, 83, 89
Fishburn, P.C.
B a i l e y , T.E.
164
Foley, J.W.
Beeson, R.M.
27
Fox, R.L.
15
161, 162 150
Bergson, A . 15
F r a n k e l , R.J.
Bower, B.T.
Freeman, A.M.
I11
Geering, H.P.
8
2
B r i s k i n , L.E.
16 81, 83, 89, 119
Bryson, A.E. B u t c h e r , W.S. Bvers, D.M. Charnes,
A.
Chu, K.C.
162
19, 25, 41, 70
Gembicki, F. G e o f f r i o n , A.M.
184
18
9, 15, 18, 28
4, 21
Georgescu-Roegen,
24
Haimes, Y.Y.
N.
16
2, 3, 11, 17, 19, 21,
34, 38, 131, 158, 160, 161, 162,
9
178, 184 C i t r o n , S.J.
9, 18
Cochrane, J . L .
Haas, J.E.
131, 140, 161, 162
Hall,, W.A.
2, 11, 34, 141, 151, 172,
28
4, 21, 28
Cohon, J . L .
184 Cooner, W . W .
24
Corps o f Engineers Day, R.H.
Havernan, R.H.
18
H i l l i e r , F.S.
64
4
17
Ho, Y . C . DaCunha, N.D.
81, 33, 89, 119
9 Howe, C.W.
Dracup, J.A. D u c k s t e i n , L. E a s t e r , K.W.
3
3, 141, 172 Huang, S.C.
24
Husar, H . A .
2, 161
4 3 I n t r i l i g a t o r , M.D.
Evans, J . R .
64
18 I s a r d , W.
3
E v e r e t t , H. 111 18, 38, 41, 69, 70 F a l b , P.L.
192
Kaplan, M.A.
2, 161
Keeney, R.L.
15, 131
81, 83, 89
193
AUTHOR INDEX Phelps, E.B.
4
K i s i e l , C.C. K l i n g e r , A.
Polak, E.
9
Kneese, A.V. Koopmans, T . C .
Kuhn, H.W.
6 2 , 6 4 , 79, 111 1 9 , 21, 3 8 , 41, 7 0 ,
163
Lieberman, G.J.
Lietmann, G .
64
Robinson, S.M. Rov, B.
28
40
131
28
Taha, H.A.
Maier-Rothe, C.
Veinuri, V .
1 3 2 , 1 5 9 , 161 18
1 8 , 1 2 7 , 128
28
W a l t z , F.M.
Major, D.C.
4
Idismer, D.A.
Marks, D . H .
4 , 21
Yu, P . L .
17, 19
Yu, W.
P l e i s e l , W.S.
27
Zadeh, L . A .
M i l l e r , W.L.
4 , 21
Zeleny, M .
Monarchi, D.G.
4 175
01agundo,ye, 0.
21, 41 4
21 21
64 17 21
1 8 , 24
McGrew, D . R .
P a s t e r n a k , H.
28
6 4 , 136
Wagner, H . M .
178
O'Riordan, J.
18
T u c k e r , A.W. 3 , 8 , 9 , 3 9 , 47, 6 1 , 6 2 , 6 4 , 7 9 , 111
3
Nadeau, R.A.
24
S t a n k a r d , M.F., J r .
Steuer, R.E.
MacCrimmon, K . R .
P a s s y , U.
17
S t r e e t e r , H.W.
24
Luenberger, D.G.
Placko, D.
9, 18, 127, 128
S e n g u p t a , S.S.
131
Liebman, C . C .
Maass, A .
R e i d , R.W.
150
S a l u k v a d z e , M.E.
Lebosquet, M .
Lynn, W.R.
28
R a t n e r , M.W.
8
3, 8, 9 , 3 9 , 47, 6 1 ,
Lasdon, L.S. 150
9
Raiffa, H.
2
1 5 9 , 161
161 15 1 8 , 28
SUBJECT INDEX
Adaptive Search
Cost-Benefit Analysis
27
Allocation of resources Aqueducts Aquifer
2 , 18
Curve f i t t i n g
181
3, 174 Dams
177, 1 7 8
Auto-catalytic e f f e c t s
175
3
Decision maker
( e n t i r e book)
Decision making B i c r i t e r i o n Problems
BOD
4 , 18
9, 10, 11
161
-
( e n t i r e book)
i n groups models of
45 28
under u n c e r t a i n t y
28
Causative f a c t o r s o f r i s k and uncertainty 185
Decision space 5-7, 2 2 , 27, 34-36, 46-48, 58-62, 74, 8 2 , 84, 89, 94, 97, 100, 107, 110, 112, 117, 120
Central Val 1 ey p r o j e c t
Decomposition
183
Chain Rule for p a r t i a l derivat i v e s 106 Combined algorithms 94-100, 104
70-74,
Commensuration; value c r i t e r i o n of Consistency
174
Control v a r i a b l e s 81, 87, 89, 93, 97, 102, 119-125 125
139 194
184
Di f f e r e n t i a1 equations
-
system of
177
D i f f e r e n t i a l equations ( p a r a b o l i c )
-
129,
system of
178
Dissolved oxygen (DO) 40, 161 D i s t r i b u t i o n of income ( r e g i o n a l ) Drought
Convexity 4 , 9-10, 18-21, 25, 48-50, 70, 75-76, 78, 94, 100, 103, 115, 125 Correlation c o e f f i c i e n t
Demand functions
D i f f e r e n t i a l equations ( p a r t i a l ) - system of 177
43, 61-62, 84
Control vector
100
4
174
Duality gaps
Dump energy
19, 25, 41, 70, 75, 100 144
Dy nam i c n- o b j ec t iv e €-cons t r a i n t (DNE) a1 gor i thm 120-1 23
195
SIJBJECT INDEX
Dynamic n - o b j e c t i v e mu1 t i p 1 i e r (DNM) a1 g o r i thm 123-1 25
E f f l u e n t charges
Dynamic 2 - o b j e c t i v e combined
End p o i n t c o n s t r a i n t s
81, 83
Environmental q u a l i t y
1, 3-4, 12
(DTC) a l g o r i t h m 94-97 Example
2
E l a s t i c i t y Functions
47-48,
50, 52
97-1 00 E r r o r sources i n modeling
176-177
Dynamic 2 - o b j e c t i v e E - c o n s t r a i n t (DTE) a l g o r i t h m Example
84-89
89-94
Exhaustive search
Dynamic 2 - o b j e c t i v e mu1 t i p l i e r (DTM) a1 g o r i thm 100-1 02 Exarnpl e
Euler's chain r u l e
102-1 03
63-69
84-94, 99, 103, 112-1159 117, 120-123
63, 68, 92, 111-
112 E x p e c t a t i o n (mathematical)
171, 183
184
E x t r a pol a t i on
E-constraint algorithms
106
F e a s i b l e d e c i s i o n space 34-36, 46-48,
5-7, 22, 27,
58-62, 74, 82, 84,
89, 94, 97, 100, 107, 110, 112,
E - c o n s t r a i n t method 11, 19, 21 -23, 37-42, 58-74, 82-94, 105, 112-1159
117, 120 F i r m energy 35, 144, 181 - water 35, 181
117, 120-123, 125 Flood c o n t r o l E - c o n s t r a i n t form 128, 147
3, 175
82, 105, F u n c t i o n space
5-7,
19-20, 22-27,
34, 36, 46, 49-55, 59-60,
cj:
l i m i t s on
109
70-71, 82, 84, 107, 109-110, 119
Economic c o m p e t i t i v e equilibrium 8 cost
efficiency growth
Game t h e o r y
1, 28
175 Goal a t t a i n m e n t program
1-3
Goal programming
4
p r i c i n g theory production
1, 2, 18
G r a d i e n t search
22, 24-25 63, 78, 112
1 Ground water systems
E f f i c i e n t solutions
6-9,
94, 100, 105-
109, 112, 119-120, 129, 165
3, 178
18,
21-22, 25, 27, 41, 46-49, 52, 58-63, 69-70, 78, 82, 84, 88-89,
25-27
128,
Guaranteed energy
Hamiltonian
144
87, 90-91, 96, 98
Human S u b j e c t i v i t y i n Water resources modeling
180
MULTIOBJECTIVE OP!TIMIZATION I N WATER RESOURCES SYSTEMS
196 H y d r o e l e c t r i c systems
174, 179
Hydrographic s e q u e n c e s Hydrologic sequences tlydrology
180 183
1 3 8 , 165
19, 22
Identification
Lagrangian 166
(see systems
I n d i c e s of performance
171
I n d i f f e r e n c e band 1 1 , 36, 44-48, 63, 6 6 , 68, 73-74, 7 8 , 8 9 , 97, 1 0 2 , 111-114, 1 1 7 , 1 2 3 , 125, 1 2 9 , 151
11, 16
1
rlarginal u n i t
Mean
1 8 0 , 183
Mean s q u a r e approach 24
I n t e r a c t i v e methods
28
Miami R i v e r
I n t e g e r programming
21
M i n i m u m Time problems
I n t e r p o l a t i o n 27, 47-48, 58, 6 2 , 6 8 , 74, 78, 92, 111112, 139, 131 I r r e v e r s i b i l i t y 170, 172, 175176, 185, 187, 188 Irrigation
3 , 1 7 4 , 186
1 , 3 , 55-56,
79
3 7 , 41, 88,
81
165
1 0 5 , 106, 1 0 7 , 152
Mathematical modeling
81
16-17, 1 9 ,
L i n e a r problems 1 8 , 2 4 , 4 7 , 50-52, 66-70, 9 4 , 115, 125
Marginal t r a d e - o f f v a l u e
11
I n f i n i t e o b j e c t i v e problem
Jntwest rate
1-3
Lexicographic approaches 21
Ma nag eme n t
Indifference functions 28, 53-55, 107 Inferior solutions 110
39-40, 7 0 , 8 3 , 128, 1 6 5 ,
Large s c a l e problems
identification)
I n d i f f e r e n c e hand d e f i n i t i o n of
3 9 , 4 7 , 61-62,
Lagranqe m u l t i p l i e r s 1 1 , 37-43, 55, 64, 69-71, 82-84, 105, 1 1 4 , i z n ,
2
Hyperplanes
Muhn Tucker c o n d i t i o n s 64, 7 9 , 1 1 1 , 1 2 8
162
Model Topol ogy
81-82
176-1 77
calibration
178
data collection
1 7 6 , 179
d a t a p r o c e s s i n g 1 7 6 , 179 parameters 178 s c o p e 178 M u l t i l e v e l approach
160
F l u l t i o b j e c t i v e w a t e r q u a l i t y models ,lacobian m a t r i x
27, 712
156 g e n e r a l problem f o r m u l a t i o n 158-1 60
SUBJECT I N D E X
197 N o r t h e r n C a l i f o r n i a w a t e r system
M u l t i o b j e c t i v e w a t e r qua1 i t y models example Multiple objectives regressions
142-1 48
161-164 ( e n t i r e book)
solution
148-154
42, 111, 139 O b j e c t i v e f u n c t i o n space
M u l t i p l i e r algorithms
74-78,
(see
f u n c t i o n s space)
100-1 03, 115-1 17, 123-1 25, Optimal c o n s t r u c t i o n sequence problem approach
69-70, 94, 100,
184
103, 115-117, 123-125 Optimal Control M u n i c i p a l and i n d u s t r i a l w a t e r use
( s e e dynamic o p t i -
m ization)
3
solutions
1, 3, 6-8
definition N-objective algorithms
Optimal p o l i c y v e c t o r
11 9-1 25 Naviqation
fi
105-1 17, Optimal s o l u t i o n
3
validity N e i g h b o r i n g e x t e r n a l methods
185
170, 171
176
89 Optimization technique
Newton a p p r o x i m a t i o n method
Optimum d e c i s i o n
78, 112 Newton Raphson method
128 (all
over t e x t )
6-9,
18,
109, 112, 119-120, 128, 129, 165
81, 119
Penalty function
183
Pollution certificates Power q e n e r a t i o n
2
3
Preferred control vector
definition of
120
8
necessary c o n d i t i o n s
Non-linearity
Path c o n s t r a i n t s
69-70, 78, 82,
34, 88-89, 94, 100, 105-
proper
( s e e non-
i n f e r i o r solutions)
25, 27, 41, 46-49,
52, 58-63,
11, 17-20, 25,
69, 94 Pareto-optimal s o l u t i o n s
82, 97, 106
Non-inferior solutions 21-22,
172, 176
P a r a m e t r i c approach
Noncommensurable o b j e c t i v e s
Non-inferior set
178
63,
8-9
Preferred decision vector
107, 114,
117
9 4, 50, 70-78,
103, 115, 123
100,
Preferred solutions 44-45,
9, 15-28, 35-36,
66, 68, 73-78, 89, 93,
97-98, 100-102, 107-110, 115, Norms
24, 185, 186
117, 120-125 definition
9
MULTIOBJECTIVE OPTIMIZATION IN WATEr7 RESOURCES SYSTEMS
198
Preferred s t a t e vector
Probabi 1 it y d i s t r i b u t i o n s
74, 76, 89, 97, 102, 115, 117, 125, 141, 184, 185
183
P r o j e c t s e l e c t i o n f o r research
1
Proper non-i n f e r i o r s o l u t i o n s (see n o n - i n f e r i o r s o l u t i o n s ) P r o t o t y p e systems
Simplex method Slack v a r i a b l e s
18, 67 24, 67
Social i n d i f f e r e n c e functions
171
-cost functions
137
(see u t i l i t y
functions)
1, 3
-preference functions -welfare functions
Social indifference surface
2, 18
Recreational use o f water resources projects
3, 79, 168, 174 3, 4
Reqional development Reqressions
27, 42-43,
Soil moisture
Span of c o n t r o l
50, 58,
mization 187
Reservoirs
127
128-132
3, 35, 79
171, 185
187, 188
172, 173-1 74,
187, 188
170, 172, 175, 185,
Ql, 83, 87, 89, 93,
97, inz, 119-125
algorithm
112-115, 132
S t a t i c n - o b j e c t i v e m u l t i p l i e r (SNM) 11 5-1 17
St a t i c two-o b j e c t i ve combi ned (STC) alqorithm
70-74
S t a t i c t w o - o b j e c t i v e € - C o n s t r a i n t (STE)
R i sk-re1 a t e d c h a r a c t e r i s t i c s
measurement
State variables
a1 g o r i thm
R e s p o n s i v i t y i n mu1 t i o b j e c t i v e optimization
186
S t a t i c n - o b j e c t i v e e - c o n s t r a i n t (SNE)
R e s p o n s i b i l i t y as a system characteristic
125
S t a b i l i t y i n mu1 t i o b j e c t i v e o p t i -
117, 120, 123 Reid-Vemuri example problem
107
186
Solution state vector
62, 75, 84, 100, 109, 112,
solution
(see u t i l i t y
functions)
172
Resource a l l o c a t i o n
(see
u t i l i t y functions)
Q u a s i l i n e a r i z a t i o n 89 Random v a r i a t i o n s
11, 16
28, 53-55, 107
Q u a d r a t i c proqramming Ouality o f l i f e
3, 12, 66, 72-
S e n s i t i v i t y analysis
123, 125
185
Risks i n water resource systems 2, 12, 170, 181-185, 187
algorithm
63-69
S t a t i c t w o - o b j e c t i v e M u l t i p l i e r (STM) algorithm
74-79
Stochastic i n f l o w
181
199
SUBJECT INDEX
S t o r a t i v i ty
Three w a t e r qua1 it y o b j e c t i v e
178
p r o b l em
Stream r e s o u r c e a1 l o c a t i o n problem
58-63,
135-142
S t r e e t e r - P h e l ps e q u a t i o n
133,
(see o p t i m a l
S u r r o g a t e Worth F u n c t i o n s 43-55,
58-63,
88-91,
inn,
24,
66-69, 73-78
114, 115, 123,
125 S u r r o g a t e Worth T r a d e - o f f Method 132, 165, 182, 186
- f o r dynamic n - o b j e c t i v e p r o b l ems
75, 82-84,
81-103
9, 35-55,
93, 96, 100,
106-107, 119
Trade-off r a t i o s
36, 46-51,
112
(see t r a d e - o f f
r a t e functions) Transmi ss i v it y
1 78
Transportation
1, 175
Treatment c o s t f u n c t i o n T r i n i t y subsystem
160
142, 149, 150
Two-objective algorithms
119-1 26
- f o r dynamic t w o - o b j e c t i v e problems
Trade-off r a t e f u n c t i o n s
T r a d e - o f f r a t i o space
solutions)
34-62,
70-71, 82, 107, 117
59-63,
159, 161 Superior s o l u t i o n s
9, 16, 18, 49-55,
Trade-off functions
132-135
solution
165-1 68
63-79, 81-
103 Two r e s e r v o i r system
143
-for s t a t i c n-objective problems
105-117
U n c e r t a i n t y and e r r o r i n s o l u t i o n
- f o r s t a t i c two-objective problems
63-69
179, 180, 186 U n c e r t a i n t y i n w a t e r r e s o u r c e systems
System d e s c r i p t i o n i n w a t e r
2, 12, 170
r e s o u r c e s (see Model scope) -goal o r f u n c t i o n a l des c r i p t i o n ( s e e Model scope)
U n s t a b l e d e c i s i o n system Utility functions
175
11, 15-19, 21, 28,
46
-pol i t i c a l - g e o g r a p h i c a l d e s c r i p t i o n ( s e e Model scope)
- p hy s ica 1 -hydro 1og ica 1 d escription
(see Model scope)
-temporal d e s c r i p t i o n
(see
Variance
180
Vector o p t i m i z a t i o n
Model scope) Systems I d e n t i f i c a t i o n
17, 19,
21, 177 Thermal p o l l u t i o n
Water need
175
Water q u a l i t y 162, 163
(see m u l t i p l e
objective optimization)
Water r e c h a r g e
178 178
200
MULTIOBJECTDE OPTIMIZATION I N WATER RESOURCES SYSTEMS
Water r e l e a s e policy Water resource systems Water s t o r a q e Worth functions
181 1-4, 79
178 (see Surroqate
Worth f u n c t i o n s )