Methods o f MATRIX ALGEBRA Stanford Research Institute Menlo Park, California
1965
York
0 1965,
111
10003
United Kingdom Edition published by
W.l OF
65-19017
Foreword book, on
go
book
by
up
why up
FOREWORD
no up book
book, ;
Also,
on on on
on
on
by no
by
by ;
...
on
on on
u
=
Tv
T
by
book on
book
by
FOREWORD
by on
of
by upon do by body on
on on
book on
of
book from
through
FOREWORD
no go
1
book
PEASE
Symbols and Conventions A X
x*
A*
xT
AT
xt
At
x
x x
A.
A.
A.
p.
0
...”
E
xi
X -i
4, pp. pp. 49, 217.
A
B, (AB - BA), p. 279. [A,
xi
p. 305.
CHAPTER I
Vectors and Matrices by of
1. VECTORS
As
by
Definition.
A vector is a set of n numbers arranged in a de$nite
order. n
F,” components n
dimensionality
by
scalars.
1
2
I. VECTORS A N D MATRICES
F by on x = col(x, x2 ... xn)
(1’)
T transpose
As components,
box 1.
box
1.
3
VECTORS
El FIG. 1.
x1
A 2-port network.
x2 =
=
(?)
(3)
by no
by
by
e
=
(Ej,
i
=
e
w,
E’s
1’s
E,
#1 do go
#1
E, 1,
.
4
AND
on
x1 of the I
#1 by n,
N, (N by
(N -
n
vector
by
+') by
on up
1. on,
2.
5
on of
2
?
3 do
by
2. A D D I T I O N O F VECTORS A N D SCALAR MULTIPLICATION
Definition. The sum of two n-dimensional vectors x and y is the vector whose components are the sums of the components of x and y . That is, if
then x1 +Y1
(7)
F,
6
I . VECTORS AND MATRICES
no Definition. The product of a scalar a, in a field F , and a vector x, whose components are in F, is the vector whose components are a times the components of x. If
x =
(8)
then
a
F,
xi
1.
commutative
associative:
x+y=y+x x+(Y+z)=(x+y)+z
2.
S, F x
null vector 0,
S,, x+O=x
O=
3.
x
(I)
S,
negative, x
+ (-x)
=0
(-x)
7
3.
x
by
4.
associative:
(13)
a(bx) = (ab)x
5.
distributive (a
+ b)x = ax + bx
a(x
+ y)
= ax
+ ay
F,
6. l.x=x
7.
1, (15)
commutative:
ax
go
= xa
(16)
on go
per se,
do by 3. LINEAR VECTOR SPACES
Definition. A set S of n-dimensional vectors is a linear vector space over the field F if the sum of any two vectors in S is in the set and if the product of any vector in S times a scalar in F is in S .
8
I.
S,
y
x
p
a
F,
(ax
+ fly)
S.
F,
F, , F2. (ax
+ by)
a
b book,
p,
p
characteristic p ) .
p binary field, do
F F book,
4. DIMENSIONALITY A N D BASES
not
=
2,
4.
9
DIMENSIONALITY AND BASES
Definition. The set of k n-dimensional vectors x1 , xz , ..., xk are said to be linearly independent in the jield F if and only if there exists no set of scalars c1 , c2 , ..., ck of F , not all zero, such that ClX1
+
CZXZ
+ + "'
C/:X/c =
0
(17)
ci ci
S. Definition. A linear vector space S has the dimension k if S contains at least one set of k vectors, none of which are the null vector, that are linearly independent, but does not contain any set of I ) linearly independent vectors.
+
Definition. If S is R-dimensional, then a set of vectors in S , x1 , x2 , ..., xk that are linearly independent is called a basis f o r
S generated by linear envelope span
over thejield
k
k basis
y y
= CIXl
+ c2x2+ ." +
no
ci
y
xi
y
ci
xi, A
(18)
CkXk
xi xi
complete
10
I.
xi
y expansion
xi.
y on
n
k
n
k.
0 < k < n,
the whole space. proper subspace no
ux
subspace.
null space,
+ by + cz = 0
(19)
on
on linear mani-
fold
no on
5. L I N E A R H O M O G E N E O U S SYSTEMS-MATRICES
do
5.
11
LINEAR HOMOGENEOUS SYSTEMS-MATRICES
1.
1
x2, x2 .
by
x1
x2
x2.
on
do
As
box
1,
no
(21) by
x1
linear
x2
a,
f(ax2) = ax,
by
good
12
I . VECTORS A N D MATRICES
?
homogeneity.
x, #1
x,
x,
x1 1
x1 El I,
+ BIZ = CE, + nr,
=
AE,
A, B, E,
E,
I,.
I,. x, by maps
x, .
mapped onto
x, maps S , into
, Eq.
x,
onto S , .
.
x, S,
,
5.
y1
= %lJl
y2
=
E D,
4-a12x2 t
a,,%,
ym = %lXl
A, B,
13
LINEAR HOMOGENEOUS SYSTEMS-MATRICES
+ a2pxz 4 +
arn2X2
"'
"'
t n,,,x,1 a2pn
+ ... +
GITlxn
E a,, , do
?
do
E,
I,,
xl,
..., x, ,
any any do
any
matrix A
=
A
(c
B
D)
= (aii)
(26)
14
I . VECTORS A N D MATRICES
on
main diagonal
A.
aii . on
diagonal. on
by A
, u P 2 ,..., unn)
=
(27)
on
dimensionality
by
m x n
A A on
n
(x,
, ..., xn)
“ m by n”)
, ..., y J .
m
A A 2 x 2 A
B
A
B
A , B
...
on
by
2 x 2
x2
on
S,
x1
S, I
x1
x,
.
6.
15
PARTITIONED MATRICES
by
6. PARTITIONED MATRICES
on up
A
=
N
&I m x m
A
(m
M R N)
(s
+ n) x ( m + n).
R,
n x n m x n,
S n x m.
no
partitioned
A
A
A, A
quasidiagonal.
(29)
on
A
= quasidiag(A, , A ? ,
-*a,
AP)
V on
so
by no
(30)
16
I. VECTORS AND MATRICES
m x n m x 1 A
=
(xi xz
9
. *)
(31)
xn)
A,
xi on
A
A =
i"i YmT
on
A
7. ADDITION O F MATRICES A N D SCALAR MULTIPLICATION
Definition. The sum of A = ( a i j )and B = (bij)of the same dimensions is the matrix whose terms are the term-by-term sum of the terms of the separate matrices:
(33) Definition.
The product of A = ( a i j ) times a scalar a is the matrix
aA = ( a a i j ) : (34)
17
8.
do
by 8. MULTIPLICATION O F A MATRIX T I M E S A VECTOR
(24) (22) ?
1 maps
x2’sonto
xl’s.
xl”
x2
(22) (24)
operating on x2
y = 2x,
y
by
by
x
x,
xl,
y’s
x’s
by x1 = NIX,
(35)
x2. ?
y
=
AX
y
A by
by
x
by
18
VECTORS
MATRICES
x. y. no
by AX)
=
(orA)~= A((Yx)= AX)^
(40)
no
by
3’2
“.
= (XI
x2
XI?) x
“.
i:“ ::j n,,
yT
==
1:
a2n
’.’
= %,a,,
amn
(41)
xTAT
yT xT by yz
I;
+
x2a2.2
+ ”. +
by
by
w 4 n
(42)
(41) by on a,, 1s
, aZ2,
aji .
transposes
A
on m x n
n x m
n
m m
n
uij ,
(41)
8.
19
MATRIX MULTIPLICATION
x 1 x n
by
xT
n x 1
Eq. Eq. (37) Eq. (41)
AX)^ = x’A”
(43)
9. MATRIX MULTIPLICATION
by on on z.
y,
,to z
x.
x.
z product
y
=
AX
z
=
By
x.
20
I . VECTORS A N D MATRICES
p A B. 1
I, up
A
2, B.
of y
(47) (4), R R
(45)
2 by
(47),
x.
z z
(45)
=
By
=
B(Ax) = (BA)x
(47)
(48)
9.
21
MATRIX MULTIPLICATION
(BA),, B
A (BA)ij = Z b i k a k j
(52)
I,
BA B by
by
A
C
=
2 3 6 7 (4 5 ) ' (8 9)
BA 2.6+3.8
x
2.7+3.9 4.7+5*9
(4 . 6 + 5 * 8
=
=
n
(54)
Ii:
14 + 2 7 28 45)
+
xp
n x n
1.
2.
3.
+ B)C = AC + BC A(B + C) = AB + AC (A
A(BC) = (AB)C
=
36 41 (64 73)
nxp
22
I. VECTORS A N D MATRICES
4.
null matrix,
A, Q * A =A . Q = Q
5.
identity matrix,
A,
IA
=
A1
=
A
I
Eq. on 1 0 0 0 0 1 0 0
... =
(S,J
(55)
Sii Sj,
=
= 1
0
i#j .
z = j
.
Also,
10. 4N ALGEBRA
n x n algebra product relation, has
of * A ring
(b)
no
1 1.
23
COMMUTATIVITY
n x n
n x n
by
A
n2
n x n
B F n x n
cy
/3
(cuA + PB)
F,
F, of
A
B
AB.
associative algebra.
x(yz) # (xy)~.
n x n
of
1
Eij
A A
A
=
=
(aij)
r)~ijEij ii
on
Eij no
cu
C C ~ , ,=E0~ ~ ij
11. COMM UTATlVlTY
F
;i n x n (57)
24
I . VECTORS AND MATRICES
AB # BA. on
As
6.2+7.4 6.3+7.5 8.219.4 8.3+9.5
1
=
21.
40 53 (52 69)
never
do n x n commutative subspace
n x n n x n on
2 of
up no
As
12.
25
OF
A(B + C)
AB
AC,
(A + B).
As
(A
+ B)' = (A + B)(A + B) = A' + BA + AB + B2
(59)
no
BA
AB a
12. DIVISORS O F Z E R O
by 1 0 0 0 0 0 (0 O N 1 0 ) = (0 0)
by
nilpotent.
X). A
Ax
not
A
= 0,
x Ax
=
Axi
=0
0
any
xf
A
i,
A
26
I.
13. A M A T R I X AS A R E P R E S E N T A T I O N O F A N ABSTRACT OPERATOR
4
on
#I
1,
#2. abstract operator.
by arepresentation of the abstract operator. 1
El ABCD matrix
I, ,
E,
I,
E's
transmission matrix,
Eq. (4),
E-I basis.
on
I's
wave matrix
on
wave basis.
E
+ RI R.
E
-
RI
3,
"-i
-u1
FIG. 3.
s
Waves at the terminals
-:-I a 2-port network.
14.
Eq. on
27
OTHER PRODUCT RELATIONS
scattering matrix scattering basis.
E’s I’s. impedance matrix. admittance
E2,
representations ABCD
El
I,
E,
I1
I,
I, , El
abstract operator.
V. 14. O T H E R P R O D U C T R E L A T I O N S
2.
4.
28
AND
-
-
#2
I 1 J
S
(61)
on
on
S (61)
by
A,
v2
u2
A, A1
S S,
(62),
=
aid,
-
blcl ,
A,
=
a,d, - b,c,
(65)
(62),
star product of
S, ,
s
=
s, * s,
(66)
9
15.
29
T H E INVERSE OF A MATRIX
on
A
15. T H E I N V E R S E O F A M A T R I X
1. #2,
x1
x2 A:
x2
x1 =
x2 on xl. x2 =
A-l
inverse
A.
(68), x2 =
x1 =
=
=
=
=
x2, = M-1 =
I
1
(55). A-'
E,
I, y l , ...,y,
El
I,, m
n
n
x,
, ..., x,, ,
=
n. xl,
..., x, .
30
I . VECTORS A N D MATRICES
y l , ...,yn x l , ..., x , i f and
(23) only ;f a11
(A\=
a12
a1n
"'
: Qn1
: #O an2
'.'
(72)
ann
A.
Aij
A-l, by
+1
i
+j
by
ij
A-1
=
by A I. A-'
-1
i
+j
odd, by
(74)
Definition. A square matrix A is singular i f its determinant is zero. I t is nonsingular if its determinant is not zero.
Theorem. Given a nonsingular square matrix A, its inverse exists uniquely. Furthermore, its left inverse is the same as its right.
on on
16.
I aij I
31
RANK OF A MATRIX
I bij I
by
(54) A
B IABl = / A l . I B / by
(54).
(76), AB
A
B
AB.
Theorem. If A, B, C, etc., are n x n square matrices, all of which is the product are nonsingular, then the inverse of the product (ABC of the inverses in reverse order. a * * )
X
=
(ABC ...)X by A-l,
X
(77)
(ABC ...)-' =
I
by B-l,
by C-l,
... C-lB-lA-1
~.
(79)
16. RANK O F A MATRIX
n x n
A.
rank k x k,
A (n - k )
k
no
A
32
I . VECTORS A N D MATRICES
k x k
so
by
n x n
A
A
n. (n - k)
n,
17. GAUSS’S ALGORITHM3
15
A by
A,
Ax x,
(80)
=y
y.
Eq.
a,, = 0, x1 # 0.
a,, # 0 x1
(i # l ) ,
x,
(ail/all)
b’s
so y.‘
, z
= y2
-
yi’
by
a tlYl/all .
S A n algorithm is a procedure whereby a desired result can be obtained in a finite usually restricted, however, to procedures number of computable steps. The term that are practical for at least computer calculation.
17.
33
GAUSS’S ALGORITHM
b,,
x,
x’s
x2
b’s
b,, # 0.
x,
allXl
+ + hz,x, + hzsx, + ... + bznxn + ... +
i -n l $ 2
a13x3
”‘
1alrrXn = y1
c3nxn
c33x3
= yz’
,,
= y3
i“!;j !j(i)011
a12
a13
:::...
-
...
..
Xn
fnn
on on
A upper triangular.
x,
(83)
y.
x n = y F - 1 )if,n
do x,
fnn
# 0. xnP1,
on, u p
34
I . VECTORS AND MATRICES
do
on
y. A-l. y1
xi
AX^ i
1
n.
=
(84)
y+
A-l
xi. up
on do,
x
(85),
y. y; = y&”= 0.
do
A
on
A x
book.
y
18.
35
2-PORT NETWORKS
18. 2-PORT N E T W O R K S
by
5.
FIG.5.
Partition
a ladder network.
up
2. a
Ei
E, Ii = I , =
+ RI,
36
I. VECTORS A N D MATRICES
TABLE I
TRANSMISSION MATRIX OF BASIC2-PORT ELEMENTS ON Element
Matjx
Series impedance
i:,4)
Shunt admittance
Transmission line
cos p
i
jZsin p
-cp-
(isin p
cos
Characteristic impedance Z Electrical length p
cosh
Waveguide below cutoff Characteristic impedance jX Electrical length jr
r
-sinh
Transformer
M
1.
by
jX sinh
r
cosh
r
r
i
19.
37
EXAMPLE
2. on A B E, ( C D)( I ,
El
=
I1 =
+
AE, BIZ CE, $- DI, -
E,
=
1,
=
BC)
DE, - BI, -CE, AI,
+
I,
I,
1):
A
=
D.
3. A
I.
AB. (+{El*
+ E*I})
19. EXAMPLE
As 2,
B,
38 by
2,
=
2,.
by
Y,
Z,,
2, , 2, ,
Y
Exercises
1.
8,
2, ( c ) coI(1,
I,
3,
0,
2, 4, - I ,
2.
col(0, - 1 , 0,
1,
E, ?
on on x1 , x2 , ..., x, x1
+ + ..' + x,
=0
XI
+ x, + ... + x,
=
x2
1
,
39
EXERCISES
3. of
x
= C O ~ ( U 6, , C, a,
6, C, a, ...)
a, b, c, a, 6 , c
4.
S, ,
S,
sum
S,
S,
S,
S,,
S,
union
S, , S,
S, S,
intersection
.
S, , S, .
S, ?
5. A =
AB
I B I.
(';'
B = (1 - J
'j.), 1 -J
I AB I
BA.
'
-j
I BA I
IAI
6.
7. A = ( O0 1
8. A
=
(;
by
1)
1)
1 0 A=f
a
0 0
40
I . VECTORS AND MATRICES
9.
of 1
A=(:
10. 11.
1 -1 2 -3
-1
0 -1
: ; 1;)
Eq. (64)
Ya L
==C by
12.
a A=(-b
b a)
A (AB).
a
(a
of
+ jb).
B b
by semigroup have the group property.
of
a a
group,
a = 1, b
=
0.)
13.
A=(
AB # BA
-c
a f j b jd
+
a
-
jb
b,
b
41
EXERCISES
14.
An
A
by
Bn,
B n
n
(AB)" 15.
A
d
a
Pn
16.
= ad - bc
(n
+
17.
D
n.
x, dldx. x, x=,..., xn.
D
A, B, C,
n x n
(A
X
D on
+ B) Y
AX+BY=C BXtAY = D
X 2n x 2n
18.
A,
C,
M-1
D
=
Y. M,
n x n
(A - BD-'C)-' (B - AC-'D)-'
of
(D - CA-lB):'
(A -
42 19.
M
2n x 2n
n x n
D)
=
D
(Hint:
D
by
X
C
C H A P T E R II
The Inner Product no a priori
(3) 2 3
?
do
by topological space).
1. U N I T A R Y I N N E R P R O D U C T
(9
x =
xi7
x
3
no
A
by to
43
44
11. THE INNER PRODUCT
by 11 x 11
x”, no a
11 x 11
I xi 1
xi
xi
< E,
< E. by
by a.
a,
on
As
x
y
=
y,
by
x,
!I x (1 (3)
=
(x, X)l’Z
inner product
(4)
x
y.
Many authors use X x,Y,*. We prefer the form given above since it somewhat simplifies symbology that we shall introduce in the next section. The distinction is trivial, however, providing one is careful to note which form is being used.
1.
45
UNITARY I N N E R PRODUCT
()
Eq.
x x y
x
y, /3,
FIG. 1 .
(x,y)
a
y, #1
1.
x1 = x cos a,
y1 = y cos j3
x2 = x sin a:
y3 =y
(5 1
j3
The unitary inner product of two real vectors.
+ x2y2 = xy(cos
= xlyl
01
cos j3
+
01
j3)
= xy cos(O1 - j3)
(6)
(x, x on y,
y*,
y on x, y. on
x*.
x
by
unitary inner product relation unitary space U-space
v,
x
y by
Eq.
U,
.
46
11. THE INNER PRODUCT
(x,yj
cp
x
y
cp
As
Eq. (3). (x,x> 2 0
(9)
x
Also
<x, Y> =
(Y, x>*
(10)
(x, ay> = 4x9 Y>
u
x
x
u
v, (x,u
(x, au
+ v> = (x,u> + <x,v>
+ bv)
=
a(x, u)
+ b(x, v)
by
(1 1)
linear in the second
factor.
( 1 1)
(au
+ bv, x) = a*(u, x) + b*(v, by
x) antilinear
47
1.
scalar product inner product. CauchySchwartz inequality: Given the inner product relation of Eq. ( 3 ) , then for any
Theorem.
x and y
<
I(X>
y
x
f 0
# 0,
(ax
by
+ by):
+
(ax
+
=
+
+ +
a
b
30
by b =
a =
b*
=
=
(1 5 )
+
30
-
# 0,
2) Triangle inequality,
Theorem.
Given the inner product relation of Eq. ( 3 ) , then for any
x and y
+
+ (13)
+
+
=
< <
+
< a
+ + +
=
b
+ +
+
=
+ (16)
48
11. THE INNER PRODUCT
((x
I
pl
+ Y), (x + Y)> <
{<X> x)l’z
+ (Y. Y)1’2}2
(17)
I pl
pl‘
2. ALTERNATIVE REPRESENTATION O F U NITARY INNER PRODUCT
XT
=
(xl xg ... xn)
(18)
T Eq. (3) (x, y)
(19)
xi*yi = x*Ty
=
(t)
xt
= X*T =
(xl*
(‘11
‘12
‘13
= aZ1
a,,
...
u31
At
hermitian conjugate
...
(20)
x,*)
hermitian conjugate
xt
A
...
x2*
x.
’.’) (21)
A.
Eq. (3) (X,Y>
= xty
(23)
3.
GENERAL (PROPER)
49
INNER PRODUCT
on
xty,
3. G E N E R A L (PROPER) I N N E R P R O D U C T
(x, x>
(A)
(B)
(x, x) (x, x)
x =
0
x
=
0
(x, y)
y
(x, Y>
=
(x, ay
+ pz> = a(x, y) + p(x, z )
x,
(Y, x > *
44).
I). (3)
K I, xtKy
K
=
kij ,
(ytKx)*
8). (25)
50
11. THE INNER PRODUCT
on
i,j
x
y,
kij
K
=
=
k,*,
Kt
A square matrix K such that it equals its hermitian conjugate Kt) is called hermitian.
Definition.
(K
=
K
(x, x)
x. good
(A) by Definition. A square hermitian matrix K is positive definite if, for all x except the null vector,
xtKx > 0
(30)
It is positive semidefinite or nonnegative definite except the null vector,
xtKx
if, for all x
0
negative definite
(31)
negative semidefinite K all x,
definite. indefinite.
nonpositive
x (of
(24) K no
K
(24)
4.
51
EUCLIDEAN I N N E R PRODUCT
K proper
(23),
K K
by
=
a
I, metric on
on on
(9),
(1
Hilbert space.
s(x) = xtsx
=
z
xi*xjsij
(32)
i3
quadrat,icform
xi
. (St = S ) xi,
S s(x) hermitian quadratic form.
4. E U C L I D E A N I N N E R P R O D U C T
(3) <x,Y>
=
z i
xiyi
Y'X
z=
(33)
52
11. T H E INNER PRODUCT
En.
a
(24) (x, y)
(34)
= x%y
S ST = S ,
S
=
sii
(sii),
=
sii
.
S
x
(A’)
y
(34)
S,
x.
(x, x)
(x,x) (x, (D’) (x,
=
=
x
0
+ bz)
x) =
a<x,
=
0.
+ b<x,
2).
(D’)
(3) (24)
(33) (A)-(D),
As
(33), x, y,
(34)
(3) (34)
(24)
(A’)-(D’)
5. a
53
SKEW AXES
b
a
b. of Eq. (33)
Eqs. (3)
(33)
x+y = 2(a,a,
+ bib,)
x’y = 2(a,a,
-
b,b,)
K xTy,
K.) do
5. SKEW A X E S
K
x
a
2. on
x1
x2, a
6, a = XI
b
+ x2 cos y
= x,siny
FIG. 2. Skew axes in two-dimensional euclidean space.
54
PRODUCT
11.
x, 1 I"
by =
a2
+ b2 = xI2 + 2x,x,
cos 'p
+ xi2
c0s7
K = (cosy
1
K.
K
by
on by
by do. no
a
(3) no a priori no
priori.
do odd on
As
(3),
E-I
5.
55
SKEW AXES
by rotational
1
K = -1( 0 1 2 1 0
(37)
K
f, . by by fn = fo
parametric harmonics
fo ,
+ nfp ,
n
=
on
0, fn
... .
. by
En
In fn
e = col(... E-,
i
P
=
=
.
by
, E, , El , ...)
col( ...I-, , I , , 1, , ...)
diag( ... l/f-l, l/f,,
...)
56
11.
THE INNER PRODUCT
x
=
=
O P (P 0 )
(43)
by z,
s
=x
O P e t ~= x (et, it)(P O i
)( )
(44)
K,
by
6. ORTHOGONALITY
by Definition. Given an inner product relation defined by the metric K, two vectors x and y are orthogonal, or precisely, K-orthogonal, when
(x, y)
=
xtKy
=
0 q~ =
0,
q~ =
Definition. Given an inner product relation defined by the metric K, the set of vectors uiis said to be orthogonal,or better, K-orthogonal, when
(uiuj)
=
u,tKuj = 0
so that each pair of vectors is K-orthogonal.
i #j
(45)
6.
57
ORTHOGONALITY
n
K
ui . by
x
x
==
z
aiuj
I
x
n
n
ai .
n ai .
ui Eq. (46) n
K
ui
k
Eq. (46) by u,tK, n
1,
..., n
ul,.tKx = z a i u l . t K u j
(47)
I
(46).
i
on a, =
Eq. (46)
(u,.tKx)/(u,tKu,)
=
K. (48)
58
11. T H E INNER PRODUCT
(46)
7. NORMALIZATION
ui x
by ui by vi ,
by
a!i :
v,
v,tKv,
=
=
(50)
a,u,
a,*a,~,tKtl,
= 1 at I % , ~ K U , ,
. 2
a, = l / ( ~ , t K u , ) ' / ~
do
vi
Definition.
a vector x is
(51)
(52)
uitKui # 0
(53)
v , ~ K v ,=
Sij
. =J
1 i =j, 0 i # j. normalized-more K-normalized. orthonormal I<-orthonormal. Given an inner product relation defined by the metric K , if xtKx
=
1
(54)
Definition. Given an inner product relation defined by the metric K, a set of vectors ui is if
uitKuj = Sij
(55)
8.
59
GRAM-SCHMIDT PROCESS
ui
x
Eq. (49) x
=
z(uitKx)ui i
by
(A)
uitKui
mi
can mi need not
yi
by
ui . no
8. GRAM-SCHMIDT PROCESS
ui. on
by
Gram-Schmidt process.
u l ,u, ..., uk vi, do so. ul,
v, : v1
= 111
(57)
u, , ul v, = u2
+ a,,u
(58)
60
11. T H E INNER PRODUCT
ul
all vl,
v2
all
u3, v3
a22
v1
+
a22112
+
(62)
a21u1
v3
aZ1
vl.
v2
u2
(
- (u2u2j(ulu3))/D2
(66)
(
-
(67)
v2.
v1
= u3
v3 v3
u2
aZ1= %2
=
by
Q
~
a 3~ 2 ,a3, ,
vq
v 3 ,v 2 ,
v1 .
9.
61
A
D, = D, = D, = Gramians do
do.
orthogonalize by 9. THE NORM O F A VECTOR
Definition. If x is any vector in a given space, and if there exists a real scalar function of x,(1 x 11, such that
then 11 x 11 is said to be the norm of x.
(x,
()
62
11. T H E INNER PRODUCT
(A)
neighborhood.
of
normed vector spaces Banach spaces.'
Exercises
t
1.
K 2.
a , b, c,
d
by
+ =1 b2 + d2 = 1 a2
v
=
Au,
u
c2
v
VTV = U T U
?
* A normed vector space is a Banach space if it is complete-i.e., contains the limit of all sequences of vectors within it. Since a finitely dimensioned space, such as we are considering here, is always complete, a finite normed vector space is necessarily a Banach space.
63
EXERCISES
3.
y =
b, c)
4.
vl,v2,v3 (K = I), v1 , v2,vg
ul = v l , by ul ,u 2 ,u3 . 5.
K
by
6.
7.
2,
I , I , I); 1, 1 , 8.
1, --I,
1, 3,
I, -I)
Eq.
64
11. THE INNER PRODUCT
9.
n
10.
U
P,
S
S U
P.
U
S,
U
S
U
no
11.
by
I , -1); 2, j , 1, 1, I - j , I);
-
1)
+
I
12.
K
-
3
=
1,O)
(6) 1 -j ,
13. A
f(x) a
=
af(u)
3)
-
+ bf(v).
S,
u
b,
f(X)
w
S.
=
(w, x>
v
S, f ( a u
+ bv)
65
EXERCISES
S,
S ?)
S,
=
S,
x’ How
0. S, ,
w x,
=
S,
w
(w, w) S,
S, (w, x)
= f(w).
(w, x’)
?)
=
0.
=
on
?
CHAPTER 111
Eigenualues and Eigenuectors
by
1. BASIC CONCEPT
y
= AX
(1)
x
A
y. A S
n x n
A
x S,
A on
xi
by
AX^
(2)
= hixi
Xi
A
xi
Ai
eigenvector of A, eigenvalue.
vectors characteristic vectors eigenvectors teristic values.
66
proper values eigenvalues
proper charac-
1.
67
BASIC CONCEPT
i
OB
OB‘
by OB,
OB OB
OB’jOB
2, B,
D
0
B’,
OB OB‘IOB.
no do OD,
OB
OD.
D’,
68
111.
FIG. 2. Compression plus sheer strain.
u1 A,
A,.
u2,
v v
u
= UUl
+ bu,
(3) 1,
b
v,
u1
2,
1
on
u1
u2 b
a
x
2,
u2 on v v’ = X1uul
+ A,bu,
(4)
on
2.
69
CHARACTERISTIC OR ITERATIVE I M P E D A N C E
on on by on
3,
\'
\\ \ \
\
\
'\
\ \
\\ \
\
\
-X
B, B' FIG. 3. Pure sheer strain.
on 2. CHARACTERISTIC O R ITERATIVE IMPEDANCE
4,
on by 2,
#2
Z,,
70
111.
on
FIG.4.
#1 2,
E-Z basis.
2,.
by E,
=
Zc12
El
=
ZcIl
E-I
on
ABCD,
u
(6)
Eqs.
=
(?)
Eq. (7),
M( I,) = 12Mu=):( E,
= Ilu
(I,/12). E l , I , ,
tl
of
Eq. (8),
3. FORMAL DEVELOPMENT
3.
71
FORMAL DEVELOPMENT
Definition. Given an n x n square matrix A,the n-dimensional vector x is an eigenvector with eigenvalue X if and only if
AX = AX
(10)
A
x
X
(1
do: Theorem I . Given a linear vector space S over a jieid F that is algebraically complete, and a square matrix A whose components are in F, which maps S onto or into itself, then there exists in S a t least one vector that is an eigenvector of A with eigenvalue h in F . algebraically complete
(9+ A S
(Ax)
x S.
S,
72
111. EIGENVALUES A N D EICENVECTORS
S
by
invariant for A.
S. on Broueuer's f i x point theorem
4. D E T E R M I N A T I O N O F T H E EIGENVALUES
A
of (011
xl, x 2 , ..., x,
-
A)xl
+ alpvz + ... t-
n2,x1
+ (az2
anpyl
+
- A)x,
...
alnXn
( I I), =.O
+ ". + aznx, = 0
+ ... + ( a n n -A)xn
an2~2
=0
n
(13)
n
. x1 = x2 =
... = x,
X
n.
=
iA-AI/ = O
(14) (1 5) characteristic equation A. of A by
A
The theorem can be stated much more broadly than we have done. It applies, for example, to any bounded continuous operator linear or not, on a finite-dimensional space. Under certain circumstances it applies to infinitely dimensioned spaces.
5.
73
SINGULARITY
A
F,
F (1 5)
(14)
F. A
F. F
IA
- A1
I
=z
( ~ (h A , ) n ~ ( A- AJnz
..., A,
A1, A,,
1..
(A
(16)
- A/;)nk
n, , ..., np
of A,
F.
a
multiplicity
ni .
hi
n,
n. (13) x1 , ..., x,
(13), a x l , ax,,
hi,
..., a x ,
xl,
a.
axi . “1 do,
hi,
xi
xi
..., x,
axi
5. SINGULARITY
5),
by h A
=
0.
A
A
A
x
AX = 0 x
annihilated by A.
74
111.
6. L I N E A R I N D E P E N D E N C E
Eq.
A.
3)
Theorem 2. If xi are a set of vectors all of which are eigenvectors of A with the same eigenvalue A, then any linear combination of the xi is an eigenvector of A with eigenvalue A.
A. y
=
caixi 2
xi AX, = Axi
k
A by A
A
k
A
k-fold degeneracy
k resolve the degeneracy.
A, k 11,
A
8)
k
6.
75
LINEAR INDEPENDENCE
do
a priori,
are
do
can
Theorem 3. Eigenvectors of A having distinct eigenvalues are linearly independent.
by cl,
+
+ ... + c,,xI.= 0,
clxl czxz
c,
# 0, i
=
.,., ck 1,
..., K.
(19)
AX, = A,x, A, # A,
if i # j
x l ,..., xk A
A.
Eq.
(A
on Eq. ( 1 AX,
-
AX,
=
0
(A - AII)x, = Ax,
-
Alx,
=
(A,
(A
-
X1I)xl
1
cz(X,
-
X,)x,
(A C3(A3 -
Al)(A3
-
-
A,)x,
-
+ ... + c@I,
-
AII). i#
hl)x, # 0
-
A,)x,, = 0
-
A,)(&
(20)
&I),
+ ... +
C,.(A,
-
A,)xl, = 0
(21)
76
111.
xk
cli
7. SE MISI MPLIC I T Y
A
Lx
n
n n ni ,
hi
n x n ni
A
ni . ni
up
no
A
n
A
semisimple.
by on on by no
8. N O N S E M I S I M P L E MATRICES
77
8. mi > 1 .
hi
A mi.
hi, xi , (A
by (A
xi
-
XiI)xi = 0
AJ).
do
by
(A - &I), by (A chain
(A k (A
xi,l on
Xi,k
-
generalized eigenvectors by X1I)xi,l= 0
xi,2 generalized eigenvector of rank 2 ; generalized eigenvector of rank k . by
(A
- &I).
hi .
k
78
111.
no by (A
-
k,
k by (A
=
-
XiI)xiI;
xi,l by
(A
-
on no
(A
by
-
of of do
9. DEGENERACY IN A C H A I N
=0
(A (A - hI)x,
(A
Y1 =
-
=x
M)x~==
(27)
x1
+ ax, x3 + + bx,
y,
= x2
y3
=
yI; = XI;
+
+
bXk-2
+ ... +fx,
10.
79
EXAMPLES
a, b, ...,f
y , , y 2 , ..., y,
by by x l ,x 2 ,..., x, .
10. EXAMPLES
b !)
A = E
( 1 - X)3
=0
1
so
3.
A
a x)
(26) A-I=[
(A - 113
(29)
=
o
x 3 = ( J )1
80 by (A
111.
-
I)2
by (A - I)3 # 0.
3. XZ =
XI =
(A
-
I)x,
=
(A - I)x,
=
(8i,
(32)
ik!,
(1 5), A4
=0
4.
0
(A - AI)'
A
A
= A' = 0
2.
b #
2.
a # jc.
11.
81
n-SECTOR OF A FILTER
(x, , x3)
( x 2 ,xl)
Y2
= (ax2
+ fix*)
Y1
= (ax1
+ Bxs)
11. Z - S E C T I O N O F A FILTER
As
5
of
:+-
of
'/p La
%La
FIG.5. Pass band filter section.
L , by L , dx, l / L , by d x / L , , of
of
cos 'p (+sin
1
on
iZ '
1
'p
cos q3
E-I
by of
dx,
by
82
111.
=
z 2 =
wr2 = w,2
=
1
1 + -2I L2 - -w2L,C L, 2
L 2
c
- w2) _____
w+,2
(w2 - wr2)(w,2 -
w,2
wc
+ 4/L2C wco
< w < w, , < wc w > w , , Z
Z
wC
w
wc")
I/L,C
q w , = 00
no wc ,
2
m,
W,
(36),
of
Z go
of of
w
= w,,
M
L,
.
by
A x2 =
(y) ,
x1 = (A -
(39)
1
by x2 =
'
x1 = (A
+ S)X,
=
0 (4j/w,L,)
12.
83
CHARACTERISTIC EQUATION STRUCTURE
go
As by
2
As loss
5, 12. STRUCTURE O F T H E CHARACTERISTIC E Q U A T I O N
A
by Eq. (15), An (A,, A,, by
n,
by
n
jA-XII = n ( h i - X ) i=l
Eq. (42),
Am,
0
<m
< n,
(- 1 )"
(n - m)
4x 4
A
1A
-
XI 1
'4
= X1'd3X4
'3
= ' l h& 3
'2
=
'1
=
= '4
-
a3X
+ u&'
- ',A3
f + + + + + + A, + A, + + X1X!2X4
h1h3h4
'1'3
hd3
A3
'4
+ X4
'&3'4 '24
f
3'4'
..., Am ,
84
111.
1A
- A1
=
I
= p(h)
- u,-~X
z= U,
+ +( ***
-I)n-l~lhn-l
1.
0
-1
2-
A22
A21
-
dh -
0
0
A23
A24
A43
All
A44
-
0
0
0
-1
-
-
+
All
-
A21
,
A22 -
0 A42
4
3
A24
0
-1 A43
A44
-
+ (-1)”Xn
13.
85
A MATRIX
RANK
A by by by
A
(47),
A.
(49, A.
t21
+
2
1
2
(48) (46). (48). A. n x n
A
(44), of A. of
a,.
A.
A, A 13. RANK O F A MATRIX
A
(44),
K, K A
n x n
K. a,
by Pk, (n - k).
86
111. EIGENVALUES A N D EIGENVECTORS
A
a, d,
3. of
A
of
null space by 14. THE TRACE O F A MATRIX
of
of am,
of A
of A). of An-'.
a,,
of A, of A,
of A.
on
trace of A,
A: =
ZAii
=
Zhi
(49)
2
A
spur
or
A. A of
A
A, =
(50)
15.
87 by
01
linear functional
A.
15. RECIPROCAL VECTORS
on
so
adjoint vector space
dual space.
do reciprocal
ui,
wi w,tu,
Sij reciprocal vectors
(51)
= 6ij
so,
ui. no
so.
wl. w,tu,
=
1
WltUi
= 0,
w1
wli
i# 1 ui
uii
.
n n
ui
w;.
w1 .
wl";.,
wi .
88
111.
ui ( i f 1)
by (n -
u, w1 , wi so
so
w,tu,
=
1.
ci ZCiWi = i
Eq.
0
i
by ci* ~ C i * W i t U j= c,*&
= cj*
1
by
wi ui
wi
reciprocal basis. 16. RECIPROCAL EIGENVECTORS
ui by
A, wi ?
wi w,t(Auj)= wit(Xjuj)= XjSij
Auj:
= XJij
(witA)uj. Eq. (5 I ),
(witA)uj = (hiw;t)ui (witA - Xiw,t)uj = 0 uj
17.
wit
89 left-hand
A,
reciprocal eigenvector
ui . Atwi
= Ai*wi
wi
(53)
A.
At,
A.
wi
by
A ui
uiby A wi of
17. REClP ROCAL G E NERALlZE D EIG E NVECTO RS
A
p
A:
Au, = Au,
Au,
= Au,
...
Au, = Au,
+ u1 +
(54)
A ui
.
wi of w i( 1
wltAu,
= A,
wZ~AU,= A,
... WL-lAtlp-l = A,
w,~Au, = A
do
< i
Au,
w,~Au,= 1
w,+Au,
=
1
... w ~ - ~ A u=, 1 (55)
90
111.
w,tA w;-,A
= Aw,f
w,tA
+
= Awi-,
... = Awl+
+ w,?
A ~ w ,= A*w, A~w,-, = A*w,-,
+ + w2
W,
...
A ~ w ,= A*w,
w l ,..., w,,
W, t
(57)
p
ul , ..., ul, .
k
A At,
( p - k). Eq.
AX, = 0, AX, = x l ,
AX, = 0 AX, = x3
At,
in
ui
p, p,
wi
18.
w1 , w 2 ,wg ,
91
At,
w4
18. VARIATIONAL DESCRIPTION O F T H E EIGENVECTORS A N D EIGENVALUES
As on
x P(X) =
by
(xtAx)/(xtx)
(58)
(x~x)
(xtAx)
(x~x) x
=
p(x)
0.
Raleigh quotient.
p(x)
x ?
x 6x.
p(x
+ 6x) = p(x) no
x.
do
p(x) At
=
A A
92
111.
a
on A. P(x
=
+
+
+
(x Sx)+A(x Sx) (x Sx)t(x 6x) = P(X)
+
+
(59)
(59) (58), 6x
Sxt,
+
(x~x){(SX)~AXxtA(Sx)} = (xtAx){(Sx)tx
+ xt(6x)}
+ { x ~ A- P(X)X~} SX = 0
(Sx)t{Ax - P(X)X}
(60)
x
do
+
6x,
Sx.
(60) (Sx)t(Ax - P(X)X}
-
( x ~ A- P(X)X~}SX
=
0
(61)
(60) (Sx)t{Ax - P(X)X} 0 { x ~ A- P(x)x~}SX = 0 =z
AX - P(X)X
=
0
x ~ A -P(x)x~= 0
(63)
by A ~x P*(X)X
=0
(64)
(64)
(62) A
x
p(x),
At
p(x)
A
At
(64)
18.
93
VARIATIONAL DESCRIPTION
A
A
At. so
of all
A
xtAx x.
by
P(X) = (x~KAx)/(x~Kx)
K
(Kt
=
(65)
K),
(64),
K.
(K-’AtK)x
- P*(X)X = 0
(66)
A
(K-’AtK).
A, A
by
I x
(y, x)
x # 0,
I
y E.
A y,
p(x, y) x,
94
111. EIGENVALUES A N D EIGENVECTORS
x
p(x) A, A
=
A,
+ €A1,
E
x,
x2
A,, A
y, yz by x1 x2 . y,
y,
good
Exercises
1. A =
(;
a b O a b) c a
2. 0
0
3.
4.
A=(
0
95
EXERCISES
0
x.
no
A
? ?
you
5.
A. At. 6.
7.
A=
(
*
e
yy!:22)
%-1 “n
***
0 0
0 0 ai
a1 =
0, an # 0 ?
96
111. EIGENVALUES A N D EIGENVECTORS
8. If A
AX
n x n
=
XA
X
n x n
A
of of
A
9.
B
n x n
of (A
+ B)
A.
A, .
10. 0
0 1
1 0
...
0
0 -aT,-l
0 -anp2
0 0 01
... ...
-an-4
...
... ...
0 -anp3
7
1 --a,
n
n x n rational canonical form. on 11.
s
II
+
I
I
+
1{1
+
=
+ ...
s
I A
+
I
=
1
+ *..)
n x n =0
X. 12. If p(A)
B
A AB
A, =
0
n x n
A,
CHAPTER I V
Hermitian, Unitary, and Normal Matrices
by
by
no by
go
by
good
1. ADJOINT RELATION
97
98
IV. HERMITIAN, UNITARY, AND NORMAL MATRICES
adjoint,
on,
(x, y), functional,
A
y,
Ay, by
A#,
x
on
by of
by Definition. Given a linear vector space with an inner product relation dejined. If A is a matrix operator in this space, then A# is its adjoint i f (x,
for all x and y in the space.
Ay)
=
(A% y)
(1)
2.
A,
99
RULE OF COMBINATION
A# y,
x (A#x)ty = xtA#ty
A#
y
=
=
xtAy
(3)
(4)
At
Ay
(A#ty),
x
K: (5)
< x , Y >= xtKy
K y
x (A#x)tKy = xtA#tKy
A#
= xtKAy
(6)
(7)
= K-lAtK
by 2. RULE O F COMBINATION
by <x,ABY)
x =
<(AB)#x,Y)
=
=
(B#A#x, y)
(AB)# = B#A#
(ABy): (8)
(9)
100 At
(AB)t
=
BtAt
(10)
to
3. T H E BASIC TYPES
of Eq.
A,
by Eq. (4),
A Definition. If A is equal to its adjoint under the unitary inner product, then A is hermitian: A = At (11)
Definition. If A is the negative of its adjoint under the unitary inner product relation, A is skew-hermitian: At
=
-A
(12)
Definition. If the adjoint to A under the unitary inner product is equal to the reciprocal of A, then A is unitary: At =A-'
or
AAt = I = A t A
of
Definition. If A commutes with its adjoint under the unitary inner product, A is normal: AAt = AtA (14)
A
3.
101
BASIC TYPES
by (x, Y>
=y 'x
(15)
(T)
symmetric (atj = a j i ) .
A A
skew-symmetric.
AT orthogonal.
AT,
normal.
(xy): A, A#:
XtY
XTY
At
AT
of
A# = A# = AA# = A#=
A A-1 A#A -A
n x n
A
B (AB)t of
= BtAt = B-lA-1 = (AB)-'
C , ...} of
property),
(16)
group group
102 n x n n x n of
As
4. DECOMPOSITION INTO HERMITIAN COMPONENTS
A A, :
A,
+ At)
A,
=
&(A
A,
=
-j&(A - At)
A
A,
= A,
(17)
+ jA,
A,
A,
of A
jA, of
A
1 x
5. POLAR DECOMPOSITION
of
A,
U,
H,
H,
U, , A
= HIUl = U,H,
(21)
We At
= U tH t = U1
1
1
'Hl
6.
STRUCTURE
H,
103
NORMAL MATRICES
H, H,2
= HlU1U;lHl = AAt
(23)
H,2
= H2U;1U2H, = ATA
(24)
A, (AAt)t = AAt (AtA)t = AtA
H,
H,
H,
H, .
A
H, U,
= H;'A
(26)
U,
= AH;'
(27)
A H,
U, U, ,
(27)
Eq.
F Eq. H, # H,
6. STRUCTURE O F NORMAL MATRICES
So
a
U1#
104
IV. HERMITIAN, UNITARY, AND NORMAL MATRICES
by
Definition. Given an inner product relation and a subspace U , the orthogonal complement of U is the maximal subspace V , such that if x is anv nactor in V , then for all vectors y in U
(x, Y>
=0
(29)
V U.
(au
+ bv)
u
V
V,
v
V.
Theorem 1 . If the inner product relation is proper, a subspace U and its orthogonal complement V are disjoint-i.e. have no vector in common, except the null vector.
U
by
XI
, x2 , ..., xk .
U.
U
by (y, y)
V.
(y, xi) y
U
V
6.
105
STRUCTURE OF NORMAL MATRICES
Theorem 2. If U is a proper subspace and V its orthogonal complement under a proper inner product, then V is nonvoid.
U U. U, U,
projection on U ,
U,
V.
V A
U
A (Ax).
U
x
invariant
Theorem 3. If U is invariant for A, then V ,its orthogonal complement under a given inner product, is invariant f o r A#, the adjoint to A under the given inner product.
x
A, Ax
U
U, by
V.
y
A#y
U
(32)
U,
V.
A#.
V
Theorem 4. If, under a given proper innerproduct relation, A commutes with its adjoint A#, then A is semisimple and we can so choose its eigenvectors that they are orthogonal by pairs under the given inner product relation.
by
by by
n
A
1,
111, A
x1 : AX,
=h,~,
(33)
106
I V . H E R M I T I A N , U N I T A R Y , A N D N O R M A L MATRICES
A# cyclic subspace of A#. Y l = XI
yz = A#x,
...
yk
=
A#yk-,
= (A#)k-lX1
(34)
y1 , ..., y k , on y1 , ..., y,( ,
yk+,
yi .
yi . y, , ...,y, , 1,
S, A#
by Ahl
A
(36)
= plu,
S, A A
111,
u1 :
A#,
,
ul,
A,.
A#: A(A#)lJxl= AA#(A#)J’-’xl= A#A(A#)”-’x, -
x1
A,,
A
A#, ( A # ) ~ X ,
U, U,
A
A
p S, ul
(37)
... = (A#)”Axl = Al(A#)”xl
by
2,
A by u,, V, A A#.
A#.
A. by
3,
107
7. A# A, V ,
V,
x,, V,
A.
2,
by
V,, A#,
A#,
ul . u2 ul .
A
A#
U,, V, .
by
u2 ,
by
U, ,
ul, ...,u,
A
so
u2 .
x,
A,
u,
u1
x2 . A#.
A,
by of
A#.
V, V,
A, A#, A
A#,
u,+,
V/;,
u1 ..., uk uk
n
n
A
A#.
A,
A#, 7. T H E CONVERSE T H E O R E M
is
Theorem 5 . If the matrix A has a complete set of eigenvectors u, ,u2,...,u, which are orthogonal by pairs:
(ui,uj)
= 0,
i#j
(38)
then A is normal and AA#
by
= A#A
(39)
ui
A#.
y . = A#u. - A,* o t ui
(40)
108 do
yi
ui
of yi (uj , y i )
= (ti,
=
,A h i )
- I\i*(uj,u?)
(Auj ,ui) - Ai*(uj, ui)
= h,*(u, ,Ul) - h,*(u,, Ui) =
-
i=j
X,*)(U,,
Ui) = 0
(Xi*
by
(41) -
Xi*).
of
ui
Eq.
uj
y, on i,
yi
Ahi
ui
(42)
= Ai*ui
Xi*.
A#
x.
ui
x
, (43)
=zaiui 1
A#A~ =~
#
~
z
a
~
i
= A#
z
aiXiui
i
=
zai~i~i*ui 1
x
A exterior exterior
interior
on
u
~
8.
109
HERMITIAN MATRICES
interior
8. HERMITIAN MATRICES
by Theorem 6 .
If A is self-adjoint, its eigenvalues are real. x1 , x2,..., x,
:
AX^ (xi, Axj)
= Xj(xi, xj) == = &*(Xi
,
( A # x ~xj) ,
=
AX^, xj) (47)
Xj) = 0
(hi* - Xj)(Xi,
i
(46)
= hixi
Xj) =
0
=
hi*
hi
(49)
= hi
(48) 4 A A
110
IV. HERMITIAN, UNITARY, A N D NORMAL MATRICES
9. U N I T A R Y MATRICES
Theorem 7. if A is a matrix such that its adjoint equals its reciprocal, then its eigenvalues have unit modulus.
xl,x2,...,x,
AX^ , Axj)
==
Xi*Xj(xi, xj)
=
( x i , A#Axj)
-= (Xi
>
=
(xi, Ix,)
xi>
- 1 ) ( X i , Xi) = 0
i
==
(xixi)# 0 by
j,
hi i2
=
1,
10. GENERAL (PROPER) I N N E R P R O D U C T
of on on
<x,Y)
of
(52)
= xtKy
K
(x, x) x y
so
x K-orthogonal, (x, y)
=x
~ yK = o
x <x,AY) =
(53)
y (54)
10.
GENERAL (PROPER) INNER PRODUCT
111
xtKAy
(55)
x
=
(A#x)tKy = x+A#tKy
y KA
K-adjoint
(56)
= A#tK
A A#
= K-'AtK
(57)
K
Definition.
A matrix A is K - n o r m a l AK-lAtK
Definition.
=
if it commutes with its K-adjoint:
A matrix A is K-hermitian A KA
(58)
K-lAtKA
if it equals its K-adjoint:
= K-lAtK
(59)
= AtK
Definition. A matrix A is K-skew-hermitian if A equals the negative of its-K-adjoint:
Definition.
A matrix A is K - u n i t a r y if its K-adjoint equals its
reciprocal: K-lAtK AtKA
(61)
= A-1
-
=K
(62)
Theorem 8. A K-normal matrix A iias a complete set of eigenvectors that can be chosen to be K-orthogonal in pairs, and conversely. Theorem 9. The eigenvalues of a K-hermitian matrix are real, and those of a K-unitary matrix are of unit magnitude.
on so.
112
IV. HERMITIAN, UNITARY, A N D NORMAL MATRICES
As to
K
of
Exercises
1.
a
a
b
2.
2
0
2,
3. (A,
+ jA,)
n x n
A,
A,
A
b,
113
A,
4.
AAt
AtA
A ?
A
A
K
5.
6.
A
7.
A
n x n
II Ax I1 x,
/3
01
(aA + @At)
II x II
=
=
I1 Atx I1
(x, X
Y 2
A ?
8.
A A
(A2 = A), (A2 = A
A
9.
10.
A
At
by
11. A B (AB + BA)
(AB - BA) A
B ?
A
12.
x 13.
A2x = 0, A
Ax
=
0.
B
B A-ABI = O
A
114
I V . HERMITIAN, UNITARY, A N D NORMAL MATRICES
by
p = - xtAx xtBx
p
T2= I
14. A
15. A
?
involution.
At
16.
A
A U
=
U
+ I)(A
-
I)-'
(U - I) A
A (Hint: (A + I) (U I). ?)
+
(A
=
(U - I)-'(U
Cuyley transforms
U
w = (z
(A
-
+ I)
I)-l
+
-
do (U - I)-l
CHAPTER V
Change o f Basis, Diagonalization, and the Jordan Canonical Form Jordan canonical form.
by
by
do
no
by similarity transformation.
change of basis.
1. CHANGE O F BASIS A N D SIMILARITY TRANSFORMATIONS
representation of the abstract vector. As
by
so 115
116
CHANGE OF BASIS, DIAGONALIZATION
by
A on by
? on
x
u.
S. x = su.
u
(1)
x
on on S
on S.
S,
S
u
= s-'x
(2)
y
= AX.
(3)
as
2.
117
EQUIVALENCE TRANSFORMATIONS
A on
by
(1). ? a
x
=
su,
(4)
y = sv
(3),
by S-l,
v = (S-'AS)u
A =
=AU
(5)
A'
S-lAS
(6)
A
(3) S similarity transformation.
by S
similar.
on good
A, A'
on
by no
A
S
A'
by a collineatory
transformation. 2. EQUIVALENCE TRANSFORMATIONS
x (3),
y,
118
CHANGE OF BASIS, DIAGONALIZATION
x
y
A
do do
by x
=
u
su,
=
s-lx
(7)
v = T-’y
y = Tv,
T
S
A equivalence transformation. equivaZent.l
3. CONGRUENT A N D CONJUNCTIVE TRANSFORMATIONS
of
A
B
by B
(’)
=
STAS
A
B
=
STAS
(9)
congruent.
by
B
(10)
conjunctive.
There is some variation in the literature on names for the various types of transformations and on their definitions. We are here following the usage of G. A. Korn M. Korn, “Mathematical Handbook for Scientists and Engineers,” McGraw-Hill, and New York, 1961.
4.
x
119
EXAMPLE
y,
K
by
(x, Y>
x
(1 1)
= xtKy
y,
x on y,
y. (6),
by
(6) (x, y) = (Su)tK(Sv)= uWKSV
(u,v)
x
(12)
(x, y)
y. (u, V)
K
K,
=~
=
K ’ v
(13)
StKS
by by on by
A
by
(3) (1 4. EXAMPLE
As
120
V. CHANGE OF BASIS, DIAGONALIZATION
111, Eq. (36), on
2
111,
-f)
M'
=
S-'MS
= (cos a,
=
a,
cos a, O
;
a,)
(18)
diag(ej7, e-je)
on
5,
11,
by
)
K = - 1( 0 1 2 1 0
K,
Eq. (15) MtKM
K',
=K
(14):
K
= StKS = Z
1 (0 -- 1
(20)
6.
121
INVARIANCE OF THE EIGENVALUES
parity
by on
on u wave basis. on by
5. GAUGE INVARIANCE
by by
by by
no
by
invariant
principle of gauge invariance.
6. INVARIANCE O F T H E EIGENVALUES UNDER A CHANGE O F BASIS
A by A:
x
AX = AX
122
CHANGE
BASIS, DIAGONALIZATION
(4),
A
(4)
by S-l,
u
=
A u =xu A'
Sx
(23) A.
on h
(4)
by
S
by
k
h on
x,
X
x,
2 AX, = AX,
A,
x2
:
+ x1
(24)
(4), XI
=
su, ,
A'u,
x2 =
= h,
+
su,
Ui
A, u,
x1 A'
u,
2
u, .
A' A A'.
7. INVARIANCE O F T H E TRACE
111,
tr A =
12,
Aii
8.
123
VARIATION OF THE EIGENVALUES
S, Bij =
B
z
(27)
(S-'),p4khShj
kh
S-l
z(s-l)iisik = &,
(28)
i
B
of
k 2
3.
8. VARIATION O F T H E EIGENVALUES UNDER A C O NJ UNCTlVE TRANSFORMATION
A of
K (x,x)
x.
K',
K K'
Kt
=
StKS
=
(StKS)t
z=
StKS
K'
=
=K
StKt(St)t
K,
124
CHANGE
BASIS, DIAGONALIZATION
by
K
S
Sylvester's law of inertia.
szgnature
K' on
K
parity matrix
wave basis. 9. DIAGONALIZATION
A. A
..., A,
A,,
x, , ..., x,
:
A
Aj
xi do by
s = (XI
x2
***
x,)
(33)
A,
S S
S by xk .
x1 , ..., x, S
. ?
S
A on
9. 111,
125
15,
wi
xi. witxi
wi
(34)
= Sij
. S. S
S-’
(33))
by
S-1
A by S, AS = A(xl
X,
x,)
by S-l,
= (A1xl
A,x,
**.
A,x,)
(37)
126
V. CHANGE OF BASIS, DIAGONALIZATION
of A, on
reduced to diagonal form. A.
A
A (33)
S-'AS by
S
(33) by S-l
(35),
S A, A,
S x1
=
A,,
(33)
x, w1
x2.
x,
w2, (38),
A
10. DIAGONALIZATION O F NORMAL MATRICES
xi 2
- 8.. 13
S (39)
(39)
3 -
(33)
xi
(34), S-l,
by
(39,
11.
127
THE HERMITIAN MATRIX
by
s:
s-1
=
S A
S
S A
by
=
S
, A,, ...)S-l
=
S
, A,, ...)St
(40)
by
K by
S
S by
11. CONJUNCTIVE TRANSFORMATION O F A HERM I T l A N MATRlX
K by K
K'by S hi
K'. K":
on
K
K'
K" = DtKD sgnAi
A,
=
=
--1 -
K"
K'
=
1
,
A,, ...)
Xi > 0 Ai
128
V. CHANGE OF BASIS, DIAGONALIZATION
K,
Krr
K”
(41 1
= DtStKSD = (SD)tK(SD)
by no
(41) on
K up on
... . 12. EXAMPLE
5,
11, on
O P \K = (P 0)
P = diag(..., l/f-,
Z = diag( ..., 2-, 2,
,
, ...)
2, , 2, ...)
(43)
(44)
as
fi.
z -z s=(I
I)
(45)
12.
P
129
EXAMPLE
Z
K' By
K" on
+ nfp
= f,,
up
n I
K"'
= (0
0 -1
) on
H " = (I 0) = I
.o
I
on
K"' s1 = utu
-
130
V. CHANGE OF BASIS, DIAGONALIZATION
Zi ui
vi K"
K
H"
13. POSITIVE DEFINITE HERMITIAN FORMS
11,
x
by S(X) =
xtKx
(47)
on s(x)
K
x
s(x) = xtS+-1K'S-'x = (S-'x)tK'(S-'x)
K'
S
y
=
(48)
S-'x y.
yi s ( Y ~ )= Xi
K
hi
Xi
K
(49)
K'.
14. yi yi
131
LAGRANGE’S METHOD
s
.
K
hi y
yi
h
hi
by
.
s
y
y, 14. LAGRANGE’S METHOD
K S(X) = xtKx
= 2xi*xikii ij
K kij
= k,*, ,
kii real
kll # 0.
s1
sl(x) xl. xl, x1 :
=
1
kll
2klikjlxixj* ij
by
132
CHANGE OF BASIS, DIAGONALIZATION
x1 x1
k,,
=
s(x)
xl*
sl(x)
xl*.
x1
xl*.
k,
0,
by
sl(x) si
.IC,
x,*.
no s(x)
kii
on
z
1 ,- -
klixi
(54)
i
y 2 ,y 3 ,
y1 ,
x1
yi .
K
by
K
on
on
kii
k,,
k,, # 0.
=
A,*, # 0.
sI2(x) x1
x2.
=
k,, = K,,
= 0.
2 kilxlxi* +
z
kjg2xi*
s12by
=
0
15.
133
CANONICAL FORM OF A NONSEMISIMPLE MATRIX
x1
s12
x2.
xl
x2 .
x1
x2
and
(57) x2
x1 ,
x1
x2.
s(x)
15. CANONICAL FORM O F A NONSEMISIMPLE MATRIX
We
As by = X1xl = h1x, =
so
x3
x1
+ x1 + X,
(59)
x2
3,
by
on.
wl,..., w, = 6ij
s=
9
x,
9 ...9
(60)
134
V. CHANGE OF BASIS, DIAGONALIZATION
by S
Jki(h,) hi
k, x k,
k, 1
etc.
16.
135
EXAMPLE
S of
ki of on upper Jordan block of order ki .
Jki(Xi) on
lower Jordan block.
S
Jordan canonical form
A.
16. EXAMPLE
As 0
1
A . ( a0
2j
IA
Ax
- A1
1
-2j
2x.
-f)
(67)
= (A2 - 4)2 = 0
us b - 2jc -2jd 2ja d 2jb
+
(68)
2. x=
2. =
0
= 2a = 2b = 2c = 2d
b, c, d )
136
V. CHANGE
BASIS, DIAGONALIZATION
j.
d
=jb
2a
+ b = -2jc b
by 2, =
2x2
+
x2 =
look b - 2jc -2jd 2ja d 2jb
+
= 2a = 2b = 2c = 2d
=
a = 1.
b,
d),
+1 +j d
2a
+ b = -2jc + 1 b = l c =ja
c =ja,
x2
0.
x1 . x1
=j b
17.
POWERS A N D POLYNOMIALS
/1
/2 1 7
=
A MATRIX
137
0
0 -20
y)
0 -2
x1 x2
xl, S,
x3 x2 x4
x4.
x3. A'.
so
A 17. POWERS A N D POLYNOMIALS O F A M A T R I X
so
by Theorem 1 . If we are given two matrices A and B, and change the basis of both by a given similarity transformation to A' and B', then (A'B') is the transformation of (AB).
138
V. CHANGE
BASIS, DIAGONALIZATION
AB, on by isomorphism.2
A B'
= =
SAS-' SBS-'
= (SAS-l)(SBS-')
AB'
SA(S-'S)BS-l = S(AB)S-'
=
AB. A,
D by S : D A =
S-'AS = SDS-' =
SDSp'SDS-1
==
SD2S-I
(73)
by Ak
A
=
SDkS-1
(74)
, A,, ..., An),
D
..., An2)
A,,
D2 = S
a, b,
S
S'
= (a,b),
S'
a', b',
S S
S' is homomorphic S'
(a',b').
A,
A',
n
is
B,C ,
C'
A'B'
=
(AB)'
a'
b
-
(a' b'),
b', (a,b ) isomoqVzic.
17.
139
POWERS A N D POLYNOMIALS OF A MATRIX
Dk =
Azk,
...,Ank)
(75)
D A,O, ..., Ano) 1, ..., 1) = I
Do = =
A0 = SD'JS-1 = SIs-1 = SS-'
(76) =1
m:
a
+ a,x + + a,x"
p ( x ) = a,
**.
A
+ a,A + a2A2+ + a,A"&
p(A) = a,I
* a *
S,
p(D)
+ a1S-'AS + azS-'A"S + + amS-'ArnS + + amDm
S-'p(A)S = u,S-'S = aoI a,D aZD2 =
+
+
***
**.
A (a0
PP)
+
a1h1
+ +
=
0
=
P(Xz),
arnAlrn a0
P(Ai),
.**,
+
a1Az
P(Am)))S-'
-**i
A
n! =
+ ... + amAZm
P(Am))
P(U,
P(A) =
0
k ! ( n - k)!
3
140
V. CHANGE OF BASIS, DIAGONALIZATION
by ij = XSij
Jij
ij
+
si+l.j
Jm
(Jm)ij
=
(J. .)
-0 =
m
if i < j < n
p-i+i
(84)
- 1
1.
+ 1). i Jm
p xp
>
-
1)
up p(x)
p(x)
= u,xm
+
+ +
am$m-l
*.*
a0
$'(x) = dp/dx
p " ( ~= ) d2p/dX2 J(A)
(k -
k x k,
m
( p - 1). (86)
18.
141
THE CAYLEY-HAMILTON THEOREM
18. T H E CAYLEY-HAMILTON THEOREM
Theorem 2. A n y matrix satisjies its own characteristic equation. That is, we consider the characteristic equation of A:
1A
hI I
-
= p(X)
0
(88)
1
where p(A) is the characteristic polynomial in A of A. Then it follows that
P(A) = 0
(89)
A
by
Eq.
p(h,)
= p(h,) =
*-.
p(A) A
(90)
= p(h,) = 0
A,
k
k.
-
P(4
by A,)k
=
p(h) - h,)*g(h)
(91)
k by
p’(A,), ...,pk-l( =
k x k. p { Jk(Ai)}
of
up
(k -
(k -
p(hi),
p(A),
Eq. (91) Eq. (87)
-
A
A Eq.
Eq. (89)
142 n x n
A An
by
A,
n-1 n x n
Ao = I.
n2
19. T H E M I N I M U M POLYNOMIAL
on by do.
of
A, p(x),
p(.) a,, a,,
= a,
+ a,. + + amx"
(92)
.*-
..., a,, p(A)
= u,I
p ( x ) annihilates
+ a,A + + umAm= 0 A.
x, a , ,
minimum polynomial of A.
A A.
~(x)
+(x)
+(x) ~(x),
x
e(x)
r(x)
of ~ ( x ) . A:
+(x) #(A) = B(A)y(A)
v(A)
r(A). r(x)
*(x).
+ r(A)
=0
r(A)
(95)
20.
143
EXAMPLES
A A,
i=l
ki A
A by
by
on distinct
no X
on
A.
distinct
A
p(A)
A,,
m,
up
(m, ( A - hl)ml.
?(A)
by
hi,
Xi.
mi,max
A
A by 20. EXAMPLES
As
111,
(33). h4 = 0, by
4. A2 = 0. ?(A)
=
X2.
2,
no
2 2.
111,
144
CHANGE
BASIS, DIAGONALIZATION
no
A
2. by A4 - 8A2
+ 161 = 0
by 21. SUMMARY
by
on on by by
up
S
145
EXERCISES
Exercises
1. 0
0 - j 0
8 8
A=(;
0 0
0 - j
?
2.
?
5,
3. 4.
I11
n x n
E 8 ;)
(. ..-
-d
--b
-c
-a
rational canonical form. on
on
by
n x n
n,
n,
n x n
5.
A-l A
A, 6.
X
x = (a . j b) IC
d
146
V. CHANGE OF BASIS, DIAGONALIZATION
a, b, c,
X, ( a d + bc),
d
Xn,n sin nO xn=x-sin 0
I
0 =
w = i(u
1 2(a
sin(n - 1)O sin o
+4
+ d), X,
U,(w)
= XU,(w) - Iu,-l(w)
Chebbyscheg polynomial n.
w
U,(w)
=
sin
w)jsin cos-l
w,
7.
8.
A T-lAtT
9.
B, At T-lBtT. AB
A Bt, T-lAT BA A B A
B by T-lBT (T by by
B
C H A P T E R VI
Functions o f a Matrix
f(x),
?
1. DIFFERENTIAL E a U A T l O N S
dx
_ -- -jRx dz
x
z.
no
z.)
t 147
148
VI. FUNCTIONS OF A. MATRIX
R
x
R
n x n
R
z,
(-j) by
S.
no As w:
dE _ - -juLI dz
dI _ dz
L
-
-juCE
C
L
C
z.
by no good by
E x=(;)
R
=w
2 x 2
m
Z
=
dxjdz
I:
2.
149
REDUCTION OF DEGREE
R
(I),
z
x(0)
=
0.
-jRz)
(4).
do
2. R E D U C T I O N OF DEGREE
(1)
R
z,
R
z,
d2u du dz2 - - A d z B u
v
A du -= v dz
-dv_- A v + B u dz
(9)
150
VI. FUNCTIONS OF A MATRIX
by
(1). 3. SERIES E X P A N S I O N
x: m
f(x) =
2
(10)
u,xn
n=O
of
A
Am
A m
A m.
A
on
J:
N,
(N
fN
N
f d A ) = C;4SJS-l)n n=O
=
S
(2
anJn)S-l
n=O
+
3.
151
SERIES EXPANSION
=
, A,, ...)
=
AZn, ...)
fN(A)= S
(z
unAln,
2unAZn,...)I S-’ ..*)>s-l
=
(14)
up
fN(A)
Xi A
***I
=
mi x mi
J,,,i(hi)
Jn
JtJAJ, ...>
=
J,,, ,
JZl(X,)
(15)
by
-+ 00,
k hi. f(x)
off(x)
152
OF A MATRIX
Eq. (1 Eq. Eq. x,, x,
f(x)
f(x) admissable for
by by f(A) =
S
Eq. .-.)>S-l
(16)
by
Eq. f(A)
JnijAi)}
f{Jm,(hl)), f{Jm,(hz)),
=S
**
.)>S-l
mi x mi
\ etc.
/
V.
(4)
4. TRANSMISSION LINE
Eq.
(17)
5.
153
SQUARE ROOT F U N C T I O N
R 0
R2 = (o
e-iRz
Be) = pZI
1
--
= I - jRz
--
(I
+
1
-
p z 2
+
+ j 31!B22R +
2!
(1 - 2!
= I cos Bz
=
2!
1
(19)
1 R2z2 j - R3z3 3!
= I - jRz .
=1
Eq. (3).
1 p4z4 - .:.) +-
4!
1
j-R
Pz
B
-jZ
pz
2
pz
Bz
R.
E(z) = -. E(0)
/3z
E(O) Z(z) = - j Z on
-
jZZ(0)
/3z
flz
+ Z(0) cos fk z
z =0
(21)
of z = 0.
z
e = -p
5. SQUARE ROOT FUNCTION
As
us
z
(22)
154
OF
5. H12= AAt
(23)
H,2
(24)
= AtA
H, ,
H,
of
H,,.
H12
H12
H,,
A x = 0.
of
H12
H,,
x, xtHlzx = x ~ A A ~=x (Atx)t(Atx) = yty
x
y
...,
A?,
A,, A,,
(25)
of H12
...
H12
H12= S{diag(X12,,A,,
...)} S-l
(26)
S{diag(A, , A,, ...)} S-l
(27)
H, H,
=
A, , A,,
S
...
H, go A,, A,,
of
... .
H,
H, H,
U2
A by
A
H,
H, U,
by
(26)
7.
155
EIGENVECTORS
no
A
IV,
H,
H, XII.
6. UNITARY MATRICES AS EXPONENTIALS
As
U
(28)
=
H a
IV)
U
hi
U
=
H
=
ejA2,
...)} S-l
(29)
H ,A 2 , ...)} S-l
(30)
H 10,
S-l
Ht
S
=
,A , , ...)}
=
, A , , ...)} S-l
=
=H
H
hi H
by
A
7. EIGENVECTORS
f(A), A. (4)
156
VI. FUNCTIONS OF A MATRIX
7)
A,
f(hi)
hi
8) f(A).
Theorem 1 . I f f ( x ) is an admissable function of a matrix A, and xiis an eigenvector of A with eigenvalue Xi , then xi is also an eigenvector o f f ( A ) , but with eigenvalue f (A,)..
A A
A f’(A)
A,
1 Theorem 2. If A and B are semisimple, and any eigenvector of A, regardless of how any degeneracies in A are resolved, is also an eigenvector of B, then B can be expressed as an admissable function of A.
A x1
B, A
x2
axl
B
+ /lx2
A,
B A
xi
A
B.
B
hi
/3.
a
Xi.
hi . pi.
pi,
h
pi
hi,
i = i.
A.
=
Xi.
8.
SPECTRUM xk
157
A MATRIX
k # i,
A.
i = k,
B xk
p(A)
A
by Eq.
Lagrange-Sylvester interpola-
tion polynomial
A
B.
A do
go
A, A Eqs.
p’(A,)
p(A,),
=
(dp(A)/dA)+,
p”(A,), ...,pm*-l( Ai).
8. SPECTRUM O F A MATRIX
Definition. If A is a semisimple operator whose distinct eigenvalues are A,, A,, ..., A,, and i f the values of a function f ( h ) are speciJied for h = h,, A = A,, ..., A = h k , then f (A) is said to be defined on the
spectrum of A.
A A A
158
VI. FUNCTIONS OF A MATRIX
Definition. If A is an operator whose distinct eigenvalues are h i , A, , ..., A, , and mi is the length the longest chain with eigenvalue Xi , then (A) is a function such that for all hi ,the set
have specified values, t h e n f ( A ) is said to be defined on the spectrum of A. (A)
g(A) do
A,
on
(35)
f(A)
f(A),
of on
(A)
A.
Eq. A.
on
A Theorem 3. Given a matrix A whose minimum polynomial is of rank m = Erni, there exists a unique polynomial of rank less than m which assumes a specifid nontrivial set of values on the spectrum of A. This polynomial is the Lagrange-Sylvester interpolation polynomial.
#(A), A.
on
~(h), A on m,
?(A)
+(A) #(A) = X
x(A) T(A)
r(A)
(M4
A
A. ~(h),
+ 44
(36)
r(A) m. on
of A, on
,y(A)y(A).
A.
9.
159
EXAMPLE
r(X)
m {r(h) - $(A)} on ~(h)
s(X),
on
m of m
9. EXAMPLE
B As
R,
Eq. (3).
=
e-jRz
(A
B
C D
) -jflx),
x1
x2
+ B = Ze-iBz C Z + D = e-3Bz
AZ
AZ - B
= ZejBz
CZ - D
= -&Bz
B,
D,
A B
=C
C D
=
-jZsinPz -(j/Z)sinPz
=
COSPZ
=
O S ~ Z
160
VI. FUNCTIONS OF A MATRIX
(32) by
of ?
10. C O MM UTATlV lT Y
A =
A
f(A), go
= f ( A ) ,f
(x) A
A A
A
A. Eqs. (17)
I I I.
A Theorem 4. If A and B are semisimple, then they commute if they have a complete set of eigenvectors in common.
if
and only
10.
161
COMMUTATIVITY
2
any
A
B
4
some
xi, y
on
y =
zaixi
Axi
= hixi
B x ~= pixi
AB
y,
=
BA by
A do S-lAS
S-'BS.
on on
A'
=
B
A',
quasidiag(X,I, , h,I, , ...)
=
S-lAS
(41)
hi.
I,
B' B'
=
S-lBS
=
quasidiag(B, , B, , ...)
Bi
Ic.
A"
B" on T-'A'T
by
A"
=
= (ST)-lA(ST)
B"
= T-'B'T = (ST)-'B(ST)
(42)
162
FUNCTIONS
A MATRIX
=
, T, , ...)
T T
Ti
B,.
Ii , ...)
=
,
=
T,, T,,
...
=
A
T, , T, , ...
A'
A"
(ST)
(43)
...)
(44)
B, , B, , ...
B , , ..., A B
a
A on
A
B
11. F U N C T I O N A L RELATIONS
f(x)
A f(x), f(y).
+y)
1 1.
163
eX+Y
= eXeY
(45)
(x)
on by
x
x
providing
do
Theorem 5.
If A and B commute, then, for any positive integer n
(A
+ B)n = $ (3An-kBk k=O
where n! =
k!(n - k)!
n = 1.
(A
n.
+ BY+' = (A + B) 2 (3 k-0
by
A
(47)
164
k
+1
k,
+
2
"
(k - 1)
An-k+lBk
+ Bn+l
2 (" 1') so(" 1'1
= An+l
+
An-k+lBk
+ Bn+l
k= 1
n+l
=
+ 1,
n n
=
2
A
An+l-kBk
by
B do (46):
Theorem 6.
If A and B commute, then eA+B = eAeB
on on
go
k 0
=
n
n = (r r
+ s), n
go
0
03,
k
13. R
165
NOT CONSTANT
A
(48)
do
(4) 12. DERIVATIVE O F e-jR2, R CONSTANT
(4) x(O),
=
-jRe-iRz
(52)
6.
by
+ O(W)
e-jR*2 = I - jR 6z
O(Gz2)
Gz2
1
= lim -{ -jRGz 82-10
6Z
+ 0(6z2)}e-iR2
- -jRe-iRZ
(53) (4)
(52)
13. R NOT CONSTANT
R x(z) = exp (-j
s'
0
R dz) x(0)
(54)
on
166
+ 6z)
z.
by P(z
+ Sz) = d dz
- ep =
+ sz d P ( z ) + O(622) dz 1 {edP/d2Sz - I} 8 6z
81-0
- p deP p dz
dPjdz
J:R dz
R. z.
R
z,
R X.)
R on z R (54).
14. DERIVATIVE O F A P O W E R
of
z,
14.
DERIVATIVE
167
A POWER
by
U”,
n Theorem 7. If U and may be the same, then
V are two n x n matrix functions of x, which
d dU -dz ( U V ) = - Vdz +U-
dV dz
(57)
derivation.
d -(uv> = dz
+ 62)
1
62-0
V(z U(z V(z
dz
=
+ Gz)V(z + 6z) - U(z)V(z) 6z
+ 6x)
+ Sz) = U(z) + 6z U’(z) + ... + 6z) = V(z) + sz V(z) + ...
d
- (UV) =
U(z
6Z+O
1 {(U + 6z U‘)(V+ 6z V’) - UV) 6z
uv + U’V
d -uu” = u u + UU’ dz
only
2UU’, U
U‘.
(59)
U
n dun - - U’Un-1 + UU‘Un-2 +
dz
... + Un-lU‘
(60)
168
VI. FUNCTIONS OF A MATRIX
n
U‘,
nUn-lU’,
n
by
unu-n = 1 dun dz
+ un-dU-” dz
-u-n
= U’
=0
1 1 +(UU’ + U’U) + -(UW’ + UU’U + U’UZ)+ ... 2! 3!
U’
= U’
t
I
+ u + 21!u2+
15. EXAMPLE
by (54) by
Z 0 = fpdz 0
oz) o/z 0
rRdz=( 0 0
-*/
(62)
169
EXERCISES
R. X(2) =
cos
-IZcos
((-jjz)
B
by
(pz). 2,
on
z,
Exercises
1.
d2x dx u-+b-+cx=O dzL dz - d2x + - - + ( 1 -1- dx )=O n2 dz2 z d z 22 d2x dx 22 - - a(a (c) (9- 1) dz2 dz d2x dz2 (b - h2 COS’ Z)X = 0
+
+
+
d
dx
+
*.
&, (P &) + (4
=0
ddX d2x dx ~ + P ~ + q - dz + Y X = O 2. A
3.
=
(:
1 u)
A
=
=0
(54)
170
VI. FUNCTIONS OF A MATRIX
4.
(I
+ A)-'
=I -A
+ A2 - Ad +
?
* * a
of
B=( 5. =
0,
n x n nilpotent.
idempotent.
= =
I,
involution.
6.
X2+ &BX
+ XB)+ C = 0
?
X2+ 5X
+ 41 = 0
7.
3 = y 2 + *Y dz
+q by
1 du Y=-;&
on dY dz
-Y2+PY+Q ?
8. dM _ -- eZAM, dz
M(0) = I
171
EXERCISES
A
X(z)
9.
z
X(u u
+ v) = X(u)X(v) X(z)
w. --
dz
z,
- Ax@)
A (Hint: separately.) (Comment:
u
Polya's equation.
A
10.
X, = ?
n ?
w
CHAPTER VII
The Matricant
-dx(z) -
dz
-jRx(z)
S = -jR,
_-
dx - sx dz
R
S
z.
R on
z,
-
R
2
x(z) = exp(-jRz)x(O)
(2)
by
1. INTEGRAL MATRIX
by 172
R(z)
1.
a
173
INTEGRAL MATRIX
Rij
Lipschitz Condition. R..(z) is said to obey the Lipschitz condition a? if for any z and z’ in the gzven range, there exists a constant k such that
I R i j ( z )- Rij(z’)I < KI
z - z‘
I
(3)
Rij
R(z)
z
n
n x i ( z ) ( i = 1 , 2, ..., n).
xi(.):
X(z) X(2)
= (XI
x2
XI
.**
x,)
(4)
X(z)
by
X(z)
integral matrix
z.
[
X.
by
X I by
I-
dxkl
dz
dXi j -dz
-
& d dz
...
174
VII. THE MATRICANT
Rki,
IX I
dki
by
i -jl X
IX I
= exp
[- j
dz]
0
=
K
1
I X, I
(7)
Jacobi identity.
X(z)
z.
2. T H E MATRICANT
(5)
on zo
X(zo). X(zo) X(zo) =
X(z)
matricant
M(x, zo). Definition. If R(z) is a system matrix whose coeficients everywhere obey the Lipschitz condition, then zo) is the matricant of the system if zo) =
z,)
2.
175
THE MATRILANT
and 3,) =
I
no of
z.
R(z) zo
zo
x(zo),
z (10)
x ( 4 = M(z, zo)x(.o)
R
Eq. (1 1)
- zo)}
zo) =
Eq.
If M ( z , x ‘ ) is the matricant of a system with system
Theorem 1.
matrix R(z), then z”) =
M(z, z’
(12) x”,
z
M ( z ’ ,x ” ) M ( z , z’)
z‘.
x”).
Lemma 1.
then
If
and Y(z) are two integral matrices of agiven system,
Y ( . )
=
where C is some constant nonsingular matrix. Conversely, if X is an integral matrix, and any nonsingular matrix, then is an integral matrix.
Eq.(5) by
176
VII. THE MATRICANT
X
-
d X d {Y(Y-’X)} dz dz
--
Y
Y
Y
=
-j(RY)Y-lX
=
-1RX
=dY Y-’X
dz d
+Y
d
(Y-’X)
+ Y dz (Y-’X)
d + Y dz - (Y-lX)
X
-jRX. d dz
-(Y-’X) or
Y-’X
C X
=0
=
c
C
Y
C M ( z , z‘)C = M ( z , z”) z”)
z’)
z = z’,
z’)
C
= M(z’, z”)
M ( z ’ ,z) = { M ( z , z‘)}-’
3. MATRICANTS OF RELATED SYSTEMS z’)
(15)
4.
(R, M,(z, z’),
177
PEANO EXPANSION
+ R,).
M,(z, z‘) = M,(z, z’)P(z,z’)
M1
(17)
z = z‘,
P(z’,z’)
(18)
=I
z’)
z, aM1 - - -P aM0
az
az
=
-j(Ro
+ M,
-
-jR&l,P
+ Mo ap
+R P , P (43, + Rl).
M1
M, R, ,
4. P E A N O E X P A N S I O N
(9),
do
(M;’R,M,). R, on R,.
178
VII. THE MATRICANT
by
up Mo = I
dMi - - -jRMi-,
,
dz
0
zo =
M,
= I -j
1' 1' 1'
R ( z ' ) dz'
0
M,
= I -j
R ( z ' ) dz'
-
0
M,
=I
-
j
Mi(0) = I
1'
1 1 11"
2'
dz' R(z')
0
R( z") dz"
0 2'
R(z') dz' -
0
dz' R(z') 0
dz'
S
dz" R(z" )
=
R(z") dz"
0
dz"' R(z"')
-jR,
Mo = I
M,
=I
+ 1'S(z') dz' 0
M,
=I
+
S(z')M,(z') dz' 0
by M(z) = I
+ fS(z') dz' + 0
+
...
S(z') 0
S(z") dz' dz" 0
4.
179
PEANO EXPANSION
Theorem 2. If S ( z ) is continuous and single valued f o r all values of the real variable z, then the series given by Eq. (24) is absolutely and uniformly convergent in anyJinite range of z, and is equal to the matricant with zo = 0.
To
S ( z ) , +(z),
majorant z
z
{I
#(z) =X:?
(25)
S(z).
+(z)
$I(.).
S(z)
n x n
H
H (26)
H2 = nH +(z)
H
, ...
,
= (I
by Eq.
Mii I)
(27)
nonnegative
equal to B (A
< B)
A
A
B i Aii
S
less than or
< Bij < < (Cl(z)H.
(28)
(23),
S(z) dz
0
< 1+
c" # ( 4 H dz
J O
=I+Hs,
180
VII. THE MATRICANT
where
which is a nonnegative real function for all positive z that increases ) 0. monotonically from ~ ( 0 = mod M,
1‘
(mod S)(mod M,) dz
0
< I + I ’ $0 H ( I + T H ) ~ ~
from Eq. (26). Now, integrating by parts, we see that
J
In fact, we have generally
that
Hence,
(32) Suppose, generally, (33)
4.
mod M,,,
181
PEANO EXPANSION
(mod M,)(mod S) dz 0
rfl
i
=I+HC;-z
(34)
i!
i=l
(33)
by
Y
Mi
ij
(33) by
ij
(33).
(33)
Y -+ 00,
mod M
=I
+ -n1 H(ent - 1)
(35)
Mi, (354,
by
(24)
(24) by S
(24),
S
z
(24)
> 0. z < 0,
z.
S(z)
0 z
z
by
182
VII. THE MATRICANT
on
S(z)
star region
by
S(z) 0
z
bound on Corollary 1.
The i j coeficient of the matricant Mij is bounded by
I Mii 1
< Sii + n-1 (enp
11
(36)
on
of
H
$(z)
Corollary 2.
Eq.
Given a nonnegative matrix J such that J2
where
-
01
(37)
= aJ
is a positive real number, and a nonnegative function #(z) such that
the matricant of Eq.
is bounded by
5. ERROR O F APPROXIMATION
on z.
on by
M,(O)
=
I.
bound on
6.
BOUND ON THE DIFFERENCE
So,
183
by
P by P
= Mi'M
by MOP.
P dP- - {Mi1@ - S,)M,,}P,
dz
P(0) = I
(42)
1
P
< I + -n1 H(en"- 1)
(43)
{M;'(S - So)Mo}, {&-l(S - So)Mo}
y
2
P
6. B O U N D ON T H E DIFFERENCE
bound
on bound
dM _ - SM, dz
M(O),= I
_ dN - TN, dz
N(0) = I
-
J2
(44)
= aJ
(45)
184
VII. THE MATRICANT
and nonnegative real functions $ and 7 such that
< #J mod(T - S ) < qJ mod S
Define the integrals =
I’#dz,
= f q d z
K
0
0
for positive z. We also define the partial sums
M,
=I
+ I ’ S ( z ) dz 0
M,+,
=I
+
N,
=I
+ r T ( z ) dz
0
p b1
S(z)M, d z ,
0
modM, We assert that
Jz
(yk-l
D
-
k=l
k
~
~
k
6. This is true for p
=
mod(N,+l - Mp+l)<
BOUND O N THE DIFFERENCE
185
true for p , then from Eq. (51): "I (7J (I
z P
ak-l
+ J , __ k!
by shifting the value of k. Hence, Eq. (53) is established by induction. In the limit, as p -+ co,
- M)< J 2 __ k=l k! ak-l
mod"
{(K
+ v)k-
1 J{ea(K+P) - ap, =a e l 1
= - JeaP{ea" - 1 a
1
(57)
186
VII. THE MATRICANT
bound on of 7. A P P R O X I M A T E E X P A N S I O N
R z.
z by
k z
z
zo).
on z
z,
good good
3 on
As
< 1.
kz on E
-
I
Z
=
+ kz), 1/ Z
k -
kz)/Zo
8.
M,
= esp(-jR,z)
=
(Mi1R1M,) = k/3z
cos /32
( -(j/z,) -j
P=I--(
k
/3z
cos /32
2/32
(-(l/z)cos 2/32
K, P =I-jh/3/’(-;
187
INHOMOGENEOUS EQUATIONS
j s i n 2/32
Eq.
z : cos 2/32) d2 32 2/32
2/32 2/32
jz
z/Z)
jZ(cos a
a - a cos a )
4/3 -( j/Z)(cos ‘Y
+a
Eq.
a
+a a
-
-
a - 1) a cos a )
1
on z Kz.
k.
z,
8. INHOMOGENEOUS EQUATIONS
Eq. dx dz
-- -jRx
y
+ y(z)
z. x,,)
_dM - -jRM, dz
(59)
188
VII. THE MATRICANT
(58),
dM zu
du JU + M -dz = -.jRMu + M - = --J’RMu + y dz
(60),
z = zo ,
uo = x(z,,).
+
K(z, z‘)y(z‘)dz‘
= M(z, zo)x(zo)
20
K(z, z’)= M(z, z0)M-l(z’,zo) =
M(z, zo)M(zo, z’)
=
M(z, z‘)
(63) z’)
9. T H E MULTIPLICATIVE INTEGRAL O F VOLTERRA
multiplicative integral of Volterra.
by R(z) zo zo
z.
< z1 < z2 < ..* < z,
=z
Cauchy
189
9. (12),
1,
M(z, zo)
= M(zn 9
zn-J~Vzn-1,zn-2)
.**
M(z19 zo)
(64)
R(z) M(zi+l ,zi)= e - j R ( z i ) ( d z x )
(65)
A z ~= zi+l - zi
M(z,+, , zi)= I - jR(zi) A z i ~ ( zzo) , =
Axi multiplicative integral
(66)
n
{I - jR(zi) d z i )
(67)
0, { -jR(z)},
--t
zo) =
1'
{I - jR(z) dz}
ZO
R(z)
R(z)
derivative,
by
D,X, dX D,X(z) = --x-1 dz
X(z) R(z):
-ax - - -jRX dz
z
multiplicative
190
VII. THE MATRICANT
by Eq. (13),
D,
1,
of
{I -
dz} = X(z)X-'(z,)
{I -
dz} = dx {X(z)X-l(z,)}X(zo)X-l(z)
d
-
dX(z) X-l(z)
=
-jR(z)
dz
=
-jRX(z)X-l(z) (72)
--jR(x) up
on by
Exercises
1.
of
fi
Z
2.
3. A
by
191
EXERCISES
S
a
Cauchy - a)
=
4.
P'(I
+
csc-1dz)
=
+s
c [])I
c-1
20
C
5.
(b)
+ XD,(Y)X-'
D,(XY)
=
D,(X)
D,(XC)
==
DJ,
D,(CX)
= CD,(X)C-l,
D,(Xt)
= Xt(D,X)tXt-'
C C
(e) DZ(X-l) = -X-'(D,X)X
(f) D,(Xt-l)
=
-(DzX)t
6.
dN
__ =
dz
S?
-NS,
N(0) = I
192
VII. THE MATRICANT
7. Show that the solution of
dX dz
- AX + XB,
X(0)= XO
is given by
x = uxov where dU
-AU,
dV -
-
dx
dz
VB,
U(0) = I V(0) = I
Observe that this is true even if A and B are not constant.
CHAPTER Vlll
Decomposition Theorems and the Jordan Canonical Form up
decomposition decomposition
of
1. DECOMPOSITION
by Definition. A linear vector space S is said to be decomposed into two linear vector spaces S , and S , i f any vector in either S , or S , is also in there exists no vector in S except the null vector that is, simultaneously, a member of both S , and S , , and any vector in S can be expressed as the sum of a vector in S , and a vector in S , . The spaces S , and are said to be a decomposition of S. W e also say that S is the direct sum of S , and S , , and symbolize this relation by
s = s, 0s, 193
(1)
194 by
,
S
, ..., S ,
S, S
x,
,
+ x, ,
xl x
= x,‘
x
x,
S,
+ xi,
xl‘E s, , x2’E s,
(2)’
+ (x,
(3)
0 = (x, - XI’)
-
x,’)
(x, - xl’)= -(x 2’ -x2)
(xl- x,’) E S ,
(x,’ - x,) (x, - x,’)
(4)
. (x,’ - x,) S,
u
x
+
= x,‘
x2’
xl’= x, + u x2)= x2 - u
x by
x
uniquely x
E
= x,
“is
a
+
x2,
x, E s, , xp
s,
(8)
195
1.
Definition. W e say that the operator A decomposes the space S into S , and S , if S , and S , are a decomposition of S , and if they m e both invariant for A.
A x,, ..., xk A
x,, ..., x, on
xk,.,, ..., x,
A 0 A=(OIA,)
k x k
A,
(9)
( n - k x ( n - k).
A,
k
A
(k +
on
on by
S, ,
A
reduce
A. S
=
@
S, : x, , ..., xk ,
A xk+,, ..., x,
.
by
on
A
A,
k x k
A
on B
n,)
A, ( n - k) x ( n - k)
B
196
DECOMPOSITION THEOREMS
all
2. D E C O M P O S I T I O N INTO EIGENSUBSPACES on
S by A
A. A polynomial p ( x ) is said to annihilate a subspace S, = 0 . The polynomial of lowest degree that annihilates S, is called the minimum polynomial of A over S , . Definition.
for A $, for any vector x in S, ,p ( A ) x
I . If A has the minimum polynomial q ( A ) which is factorable into coprime polynomials t,hl(A), Theorem
(11)
V(h) = + 1 ( 4 + 2 ( 4
then A decomposes the whole space S into S, and S , :
s = s, 0s,
(12)
such that S , has the minimum polynomial +,(A) and S ,
+,
, K~(A)
K,(A)
+
Kl(X)+l(4
K2(4+2(4
=1
h by A:
+
kl(A)+l(A) K,(A)+Z(A) = 1 x
(13)
S +l(A)KlWX
+ +,(A)K,(A)X
=x
(14)
2.
197
x x = x1
+ x,
x,
x
(16)
x, . +l(A)XI = +l(A)+,(A)K,(A)X
= dA)K,(A)X = 0
(17)
+2(A)X2
= dA)Kl(A)X = 0
(18)
=
+,(A)+l(A)K,(A)X
+,(A)
so
.
+,(A)
S,
S, .
xo +,(A)%
xo
= +z(A)xo =
0
(19)
x
A xo = Kl(A)+l(A)XO
+ KZ(A)+Z(A)XO = 0
(20)
xo by A.
A,
S,
K,(A)
Ax, Ax,
A. +,(A)
A,
A.
(1
S,
so
.
+, by
. +,(A)
I+,
+,
.
by A.
I+,
O,(X)
S, :
x,
B,(A)x,
=0
x = x1
+ x,
(22)
198
x2
8,(A)
A,
A.
S,
(Clz(A)O,(A)x = 0,
all x
(25)
ES
of q ( A )
+,(A)
S, .
Corollary 1 . If the minimum polynomial set of coprime polynomials
dx> = (Cll(A)(C12(x)
***
of A is factorable into a
(26)
(Clk(’)
then S is decomposable into invariant subspaces s = s, 0s, @ ‘.’ 0s k is the minimum polynomial of
such that
.
Theorem 2. Given a subspace , which may be the whole space, that is invariant with respect to A, and which has the minimum polynomial there exists in Sia vector whose minimum polynomial is vi(A).[The minimum polynomial of a vector x with respect to A is the polynomial of lowest degree such that v(A)x = 0.1
Si (28)
vi(h) = { O i ( A ) } k i irreducible polynomial
F. 71 (A
-
hi). do
on
irreducible polynomial
(A
-
hi).
2.
199
x1 , xg , ..., xk
Si y
Si y =caixi
by Oi(A).
by yi(A)
by no
Oi(A).
by Oi(A) 1s
Lemma. If the minimum polynomials of two vectors x1 and x2 are the coprime polynomials +,(A), $I~(A), then the minimum polynomial of x = x1 x2 is +l(h)+Z(A).
+
x
A
by (+,+J
x:
K(A) K(A)x = K(A)x,
+ K(A)x, = 0 +,(A)
by $J~(A) A,
K(A)
x,.
+,(A)K(A) +,(A)
+g
K(A)
+,(A). .(A)
t,h2(A).
x
(+,I,Q.
x,
+,+,
200
Si,
xi
1
eigensubspaces.
2
do
3. CONGRUENCE A N D FACTOR SPACE Definition. T w o vectors x and y are said to be congruent modulo 3, where S is a subspace, if their difference is a vector in S. W e write
(34)
(35)
z Definition. Given a vector xo and a subspace S , we call the totality of vectors x such that
x = xo
a class or, where we want to be unambiguous, a class modulo S .
(36)
3.
20 1
CONGRUENCE A N D FACTOR SPACE
2.
x
= xo
S
(37)
x=xo+z, ax = ax0
ax z
axo
+ az =
(38)
ax0
+ z',
2'
s
S
(39) (40)
(41)
(ax)^ = a f
by ( )A of x
3
xo
x=xo+u,
S,
3
S
yo
y=yo+v,
x.+ Y = (xo
(u
y
U,VES
+ Yo) + (u + v)
(42)
(43)
(44)
+ v) (45) (46)
Definition. The totality of all classes modulo So is called a factor space of the whole space. If the whole space is S , we sometimes designate the factor space as (SjS,) or call it the factor space modulo So(sometimes called the quotient space.)
202
VIII. DECOMPOSITION THEOREMS
n,
S , x l ,x2,..., x k . x,+~,..., x, f,,, , ..., f,
So (n - k)
k,
So n - k. by
So. z
E
So,
Az.
= xomod S,,
x
(47)
x=xo+z,
AX = AX,
(48)
+ AZ = Axo+ Z'
'49)
So
z'
Ax = Ax,, mod
(50)
A2 = (AX)^
(51)
A on A &i
on x.
f
A,
2, no So
A, $'(A) +'(A)%= 0
(52)
f, +'(A)x = 0 mod
(53)
4. CYCLIC
203
SUBSPACES
$’(A)
x.
A. $‘(A)
x $(A)
So, $’(A),
x, $(A). 4. CYCLIC SUBSPACES
by A.
do
A.
S,
x
by x, Ax, A2x, ..., Ap-lx,
...
(54)
of
on
APx APx
- a,-,Ax -
= --a+
Ap+’x = -a,Ax - -a,Ax
-
-al( -a,x
(55)
- a,A”-lx
a,-,A2x - *.- - a,Apx a,-,A2x - - a,Ap-’x -
a,-,Ax -
A
(56)
- a,Ap-’x)
on
x
x, ..., Av-lx. x, Ax,
. * a ,
Ap-lx.
cyclic subspace generated by x. 6. by
x, Ax,
a * . ,
x,
p.
$(A)
Ap-lx
p
x, x.
$
x, Ax, *.., Ap-lx
S, .
204
VIII. DECOMPOSITION THEOREMS
S, y y
(57)
= X(A)x
( p - l),
X(X)
x
+(A)
x,
by x.
5. DECOMPOSITION INTO CYCLIC SUBSPACES
Theorem 3. The whole space can be decomposed into cyclic subspaces with progressively simpler minimum polynomials.
+,(A).
xl, A, +,(A):
by x1 ,
p
&(A). = n,
p
n
p
n. do
,S/S, .
n
+z(A)
-p .
+,(A).
u a,h2(A)u = 0 mod S ,
&
(60)
#,, +,(A)
=
$u94Y
(61)
5.
205
2,
ci
#,(A)
u u
#,(A)u S, ,
=
#,(A)u # 0,
.
u
#,
(57),
x1 ,
A
no
.
u
0,
S,
S,
S, S, .
P
#,(A)u
$,(A)u = P(A)Xl
by K(A),
(62)
by
K(A)P(A)x, = K(A)+~(A)u = $1(A)u = 0
#,(A)
by
(63)
x1
#,.
#, ,
KP
= 4A)$z(A)Q(A)
(64)
#,
Q(A)x,
P = $28
(65)
+z(A)b - Q(A)xi) = 0
(66)
S, ~2
u (67)
= u - Q(A)x,
x,
by
#, ,
#, by q, .
by
x2
#,
x, , x2 = u
S,
#, , q2.
206 u
S,
x, .
+, .
,
S,
+, by
,Q I
y,.
+2,
$,
x, . by x, :
S, S,:
x , , A x , , A2x,, ..., A+-'x,
(65)
+, .
q
S,
co ,
+ c,Ax, + + cQ-,A"--'xZ
coxz
U(A)
+,
.
+ clA + + Ca-lAq-1)X2
=
(cJ
=
U(A)x,
S, , S,
no
..., cq--l
EE
S,
0
(69)
q
-
1.
x, ,
q.
S,
+ q = n, p + q < n,
p
S, @ S ,
:
Theorem 3'. Given a matrix A the whole space S can be decomposed into cyclic subspaces S , , S , , ..., S , with minimum polynomials #J,(A),+~(A), ..., &&(A), where +,(A) is the minimum polynomial of A, and +i(A) is a divisor of +i-l(')*
Corollary I . S is cyclic (with respect to A) if and only if the degree of the minimum polynomial of A is the same as the dimension of
S, $,(A)
n.
4.
207
CYCLIC SUBSPACES
x
S,
of x
n.
A
n,
n.
Corollary 2 . A cyclic space can be decomposed only into subspaces that are cyclic and whose minimum polynomials are coprime.
+(A)
n
m.
S
by m=n
S
S,
:
s = s, 0s2 S, +,(A)
S,
n2 ,
n,
of
+,(A),
m 2,
m,
S,
S,
+ < (n, +
(m,
m2)
.2)
+,
+(A) m
< m, + m2
+, m
m
=
(73)
= 12
d
+, , (74)
+,
+ m,) d (n, + n,)
(m,
=n
(75)
n. m, = n,
(76)
mz = n2
(77)
m = m,
+ m2
(78)
208
VIII. DECOMPOSITION THEOREMS
Corollary 3. S is indecomposable with respect to A i f it is cyclic and its minimum polynomial is a power of an irreducible polynomial.
Corollary 4. If S is indecomposable with respect to A, then it is cyclic and its minimum polynomial is a power of an irreducible polynomial.
3 1
Theorem 4. The whole space S can always be decomposed into subspaces S , , S , , ..., S, which are cyclic invariant subspaces with respect to A,
each subspace having a minimum polynomial which is a power of an irreducible polynomial. No further decomposition is possible.
S by
3 S
A go
A. no
6. THE JORDAN CANONICAL FORM
(A - hi). 4
A,
S
6.
209
THE JORDAN CANONICAL FORM
( A - hi)k*.
s = S,@S,@-..S, Ax E S , (A - AtI)A~x, =0
(79)
if x E S, if x, E S,
Si
xi
Si
by
S,: (x, , A x , , ..., Ak-'x,)
u1 = (A - AII)kl-l~l ti2 (A - A11)'1-2~1 1
...
Ukl = x1 tikl+1
= (A
-
u1 , ..., uk, u/c,+l . . * I Also, 3
XzI)k2-1~z
S, ,
uk,+kl
(A - A1I)ul = #1(A)x1 = 0 (A - A,I)uZ = (A - AiI)kl-l~l= tll
u1, uz , ..., u, w
S, .
(82)
210
VIII. DECOMPOSITION THEOREMS
A
A,
k, x k, , A, , ,
k, x k, ,
Ai
4
k, , k, ,
no
on
(79)
(A
-
A,)k,
x, (A
-
A,)k.
. S.
no
7.
INVARIANT POLYNOMIALS A N D ELEMENTARY DIVISORS
2 11
by by
111. 7. INVARIANT POLYNOMIALS A N D ELEMENTARY DIVISORS
A.
(A (A (n -
by do
by A.
by
of
A
D,(A).
(A -
Dn(h), Dn-l(X)*
Sl(A), Do(X)
=
1
(87)
D,(A),
1.
(A D,
by D,-l. on -
by
-
by
DkPl D,
.
...
{p,(A)}
A.
212
VIII. DECOMPOSITION THEOREMS
invariant polynomials A.
D,(X)
A.
n
H p , ( h ) = DJX) = 1 A - XI i=l
{p,(A)}
A.
{p,(X)} by invariant.
elementary divisors A.) (A
-
A.
pi(X).
XJk,
3' Theorem 3".
If A i s , a linear operator on the vector space S , then S
can be decomposed:
s = s, @ sz @ ." Sk
(91)
where Si is cyclic invariant subspace with the minimum polynomial +,(A), and where the set +,(A) coincides with the set of invariant polynomials of A. (other than
4 Theorem 4 . If A is a linear operator on the vector space S , and if S is decomposed in any manner into indecomposable invariant subspaces {S,} with minimum polynomials +,(A), then the set {+,(A)}is the set of elementary divisors of A.
213
EXERCISES
by
hi do
on
4’.
3“ 8. CONCLUSIONS
if
Exercises
1.
S, 1, 1, 0, do S , S,: S,:
1, 0, 0, 1, 1, 1,0, 1, 0,
S, 2.
-
S,
S, 0, 1, 0, 0, 2,0,
S , do n x n
A
214
VIII. DECOMPOSITION THEOREMS
S,
3.
S,
A. S,
S,
.
S, S,
S,
A.
S,
4. /O
+j
1
A ?
5. 0 el
=
,
e3 =
(a)
el mod e2
el mod(% e3) (c) col(1, 0, 1) mod e, (d) col(l,O, 1) mod el (f)
6.
by
col(l,O, 1) mod(e, , e3) col(l,O, 1) mod(e,, e,)
1
k) 0
e2 =
CHAPTER I X
The Improper Inner Product K
11,
5,
11, on
E
-
I by
s =
&!?*I
+ El")
(1)
)
K = -1(0
1 2 1 0
K.
f 4,
K
n
x
+ so 215
216
IX. T H E IMPROPER INNER PRODUCT
do
E,
I, (wo
+ nu,)
up
pump.
couple parametric network
by up.
wk W,
by
K=(w
Cf. J. M. Manley and H.
0)
(4)
Rowe, PYOC. IRE (Inst. Radio Engrs.) 44, 904 (1956).
1.
217
THE IMPROPER INNER PRODUCT
K.
K
& 1/uk.
1. T H E IMPROPER I N N E R P R O D U C T
(x,Y>
(6)
= xtKy
K x, x. (X,Y) = (Y,X)*. ( C ) (x, my Bz> = 4x9 Y>
(A)
(x, x)
+
+ B<x,z>
K by
(x, x),
x
K
K
f1
yi on (7)
Y = Z*iYi
K. ai
on
Eq. (8) yi .
218 by
by
s
no (1)
s
x
xtKx
=
0,
K
2. FAILURE O F CAUCHY-SCHWARTZ A N D TRIANGLE I NEQUALlTlES
by
(x, x>
= (YI
Y>
=0
I(%
(X,Y> = 1 y>I2
< (x, x> (Y,Y>
(12)
(13)
3.
219
ORTHOGONAL SETS OF VECTORS
Ah, (x+y,x+y) = 2
{(x
< (x, x)1/2+ (y, y)ll2
+ y, x + Y ) } ” ~
Also,
(15)
Eq.
I1 do do Definition. The vectors x and y are said to be orthogonal under the K-inner-product, or K-orthogonal, ;f
(x, y) = x+Ky = 0
(16)
by
hyperbolic, elliptic. on
3. O R T H O G O N A L SETS O F V E C T O R S
of
by
xi :
y y
=
2 aixi
(17)
of n
ai .
xi ai
If, (1
.
220
IX.
xi,
(x-j,
(18)
Xi) = or.&.. t 23
aij
aj
-j, x,~ (x- j , Y>
=
2 ai<x-j , xi>
aj = ( X - j ,
= apj
(19)
(20)
y)/aj
xi ,
y
up
4. PAIRWISE ORTHOGONALITY
K
( x i , xi)
=
xitKxi
xj ,
0. xi
K
=
(xj, xi)
= xjtKxi
Kxi
#0
(21)
xi. xi (xj , xi)
j
(-21,
4.
PAIRWISE ORTHOGONALITY
i.” j.”
“i
-
i
j,
i
i
-
22 1
j,
i. 217), ( x i ,xi) # 0.
by
Definition. The complete set of vectors ui is pairwise K-orthogonal, i j to each value of the index i there corresponds a unique value (-21 such that
(u-, , u,)
=U
Lp,
(22)
= $-jz,
where the ai are nonzero, possibly complex, numbers.
(4) of
i.
K
a’s a’s
K ai
i
-
a-1
- (x, ,x-,) = (x-, , x,)*
i, ai
(23)
= a,*
i - j # i.
a
a’s
y,
, x,)1/2
= XJX,
(Yj Yi) = Y3tKYi 7
=0
=X J a y
xjtKxi = (aj*)1/2(ai)1/2
-i
if
= ai/(lai 12)1/z
# i, j - i , (yi , yi) = 1.
(1
i
ai /2)1/2
-
(Y -i =
ai
-ai
-
i
(24)
ai
,
(yi , yi)
=
yi
do
ui =
i,
if j
>
Yj>
= YtiKYi = Qij
(25)
222
IX. THE IMPROPER INNER PRODUCT
maximally normalized,
yi
of
K
Eq.
x,tKx, = 2 xZ~KX,== -2 xltKx, = x2tKx1 = 0
1
of
2
N
2.
self-conjugate. 1 Y1
1
=
1
1
Y2 =
9
yltKyl = o1 = 1 yztKy2 == ~2 = -1 YltKY2
= YZtKYl = 0
of u 2 .
OL,
on 1
x1=
(j ) ?
1 x2
=
xltKx,
= x,~Kx, = 0
x,tKx, x,tKxl
= =
= a:
2j
= aI2
1 of
cross-conjugate.
-
2.
-
5.
223
ADJOINT OPERATOR
by
vi -yi
by
by do
+ )pi).
(25), y,
y,
u,tKu,
= u,tKu, = 0
u,tKu,
= u,+Ku, =
1
5. ADJOINT OPERATOR
do do Definition.
The matrix A# is the K-adjoint of A if, for all x and y
in the space (x, AY> =
Y>
(26), xtKAy
= (A#x)tKy = xtA#tKy
x
K.
y,
K
(26)
224
IX. T H E IMPROPER INNER PRODUCT
if
A
A
Definition.
AA# = A#A
AK-lAtK
=
if
A
Definition.
A = A#
KA
=
K-'AtK
= AtK
if
of
A
=
-A#
KA
=
-AtK
=
-K-lAtK
if
A
Definition.
(28)
K-lAtKA
of
by
X
A A =
1 X l2
b
0 (b
b =
1
b' a)
225
6.
A A by 6. O R T H O G O N A L I T Y A N D N O R M A L I T Y
by
A A
by
by
Theorem 1 . If A is K-normal and semisimple with discrete eigenvalues, then its eigenvectors are Kvorthogoaal by pairs.
AX, = Xixi A#Axi
= M#x, = hiA#x,
A#xi
A
hi
A#:
xi,
xi (xi, Axi)
=
(A#xj, xi)
= hi(xj , xi) = pj*(xj,
(hi - P j * ) ( X j ,
Xi) =
xi)
0
i
Eq. hi
(hi - pi*) = 0. (xj , xi) = 0
i i
i, i,
(xi, xi) = 0. xi
( x i ,xi) # 0, -j.
A
A#,
226
IX. THE IMPROPER INNER PRODUCT
A#
by A by =
p,i
xi*
(33)
Theorem 2 . If A is semisimple, and if it has a complete set of eigenvectors that are K-orthogonal, then A is K-normal.
xi
A.
by
by by 4. y i = A#xi - XZixi
(34)
yi yi -j, (x,
j>
yi)
=
(Ax,
==
(A2j -
j
9
xi) -
i<X-
j >
i)(x- j , xi>
i =j , yi
( h L j - h*,J i #j.
(xej, xi)
xi xi
xi)
yi
A#: A#xi = XCixi
A AA#xi
= :A
iAxi
= hi/\*
A#,
ixi
A#Axi = h,A#x., = XiA*,,xi
AA# = A#A
A 2
on
A
(35)
7.
227
K - H E R M I T I A N MATRICES
1
A by
by
A A#, A
of m,
k ( m - k)
m.
Theorem 3. If A is K-normal, then its eigenvectors and generalized eigenvectors can be chosen so that they are pairwise K-orthogonal.
2
on
7. K-HERMITIAN MATRICES
A on
A
?
K?
so,
K.
so,
Theorem 4. The eigenvalues of a K-hermitian matrix, where K may be indefinite, are either real or else occur in complex conjugate pairs. If the
228
IX. T H E IMPROPER INNER PRODUCT
matrix is not semisimple, the conjugacy relations must relate vectors in a chain or in chains of the same length in the opposite sequence of rank.
xi A, by AX, = hixi ei
0
1
+
(36)
~ i ~ i - 1
xi
on
A, (xi, AX^) = (Axj , xi) U x j xi) 9
+ ‘i(xj
9
xi-1) = Xj*(xj xi> 9
-i,
j
+ ~j(xj-1,xi)
(37)
on
xi
xi
i
-
=
AZi
(38)
hi hi,
hi* j
=
-(i
-
, Xi-&
‘,<X-(,-l)
ei =
1,
= L(i-l)(X-(i-l)-l
*
Xi>
xi
-i
i. on on
Theorem 5. If the eigenvalues of A are either real or else occur in conjugate pairs such that chains of the same length are associated with each of the complex conjugate pairs of eigenvalues, then there exists a K for which A is K-hermitian.
7.
229
K-HERMITIAN MATRICES
by
KA
(40)
= AtK
by
V, K'A'
= (StKS)(S-'AS) =
StKAS
= StAtKS
(42)
= (StA+St-')(S+KS) = A t K '
A' A
A
=
At
=
...)
mi x mi
J$Lhi*)
(43)
..a)
(44) hi*:
(44)
S do K
do
K,, , ...)
=
mi x mi
JLi
(46)
230
IX. THE IMPROPER INNER PRODUCT
K so
K
&,
by
A
K
mi = 1 so
A A,,
Jv,JAl), Jnb,(h2),so
A,*. A,
m, = ml = m
=
A,*.
K
=
(
:::j
0 K0 m, Kml
...
K,
by on A
K A
K
K on
K so on
so
5
A
K.
8. K-UNITARY MATRICES
4, Theorem 6. The eigenvalues of a K-unitary matrix are either of unit magnitude or else occur in pairs such that one is the complex conjugate of the reciprocal of the other:
AiXEj
=
1
(49)
If the matrix is not semisimple, the conjugacy relations relate vectors in a chain, or in chains of the same length, in opposite sequence of rank. by
on
5
4.
8.
23 1
K-UNITARY MATRICES
Theorem 7. If the eigenvalues of a matrix A are either of unit magnitude or else occur in pairs satisjying and such that chains of the same length can be conjugated, then there exists a K such that A is K-unitary.
5. (46)
AtKA
AtKA
(50)
=K
= (StAtSt-l)(StKS)(S-lAS) z
StAtUS
==
StKS
=K
A' A A
=
(51)
K-lAt-lK
A At-l
A.
0 J;-'(X)
0 0
0 0
= -p4
...
cL
cL3
**.
...
p = 1/X*
pi = X i .
Xi Xei
do
A-l.
do do by
V,
=
pi.
232
IX. THE IMPROPER INNER PRODUCT
i
xi
(JL-'(A)
- pI)xi = J;;l(A).
K
== (XI
v
xz v
--*,
(53)
xm)
JL-l(A)
Jm(p).
K
'
K (50), AtKtA = Kt
K
(49), Ka
Kt.
= eiaK
+ e-jaKt K
a.
Ka
(ejaTi
+
rli, e-jaqi*).
a
K K on
K 9. O R T H O G O N A L I Z A T I O N O F A SET O F VECTORS
K
xi
111,
wi w.tx. a 3 = 6.. a3
(54)
10.
23 3
K
RANGE OF
K xLiKxj
(55)
= ui6,j
xTiK
=u , ~ !
Kx,~
=~
i
~
i
of
w-~ W t k
x-~.
.
x-~
of
UkWk,
K. 17, of
of
A
At, of
10. RANGE O F K
K's by Theorem 8. If A is K-normal, K-hermitian, or K-unitary, and S is any nonsingular matrix which commutes with A, then A is also K'-normal, K'-hermitian, or K'-unitary, respectively, with
K
= KS
providing S is such that K' is hermitian.
(58)
234
IX. THE IMPROPER INNER PRODUCT
A
S,
S
S-'A
=
A,
S-I:
AS-'
so
AK-lAtK
= K-'A+KA
A(KS)p'At(KS) = AS-lK-lAtKS = S-'(AK-lAtK)S = S-'(K-'AtKA)S = (KS)-'At(KS)A
A
A so
KA
= AtK
(KS)A = KAS
A A
= At(KS)
so
AtKA AtKSA
A f(A)
=K
=
(AtKA)S = K S
A,
K f(x)
K,
K.
A
A
Kf(A), A.
on
a
A. A
on
K's.
on
Kl
=
(;
A)
E
I K-
-
(59)
11.
DETERMINATION
235
A METRIC
2.
Sz =
1 --{I E + zz 12 + 1 E - zz 12} 22
2
K
of 2, 11. D E T E R M I N A T I O N O F A M E T R I C
K on
of
K A (29)
K K
A
K A
236
IX. THE IMPROPER INNER PRODUCT
K
Eq. (4).
by
K, K,
by
a
do
K
a priori a.
by
no
Eq. (4). Eq. no
Eq. by Eqs.
231
EXERCISES
Exercises
K
A
1. 2.
\-1
+j
+
O /
A
/o 1 0 0 0 0 0
A.
A 3. x1 = col(l,O,j , 0) = col(1, 0, - j , 0) x3 = col(0, 1 , 0, j ) x4 = col(0, 1,0, -j) x2
-
1 1, (b) 1 - 1 , (c) 1-2, 1-4,
2 -2, 2-2, 3 -4 2 -3
3 -3, 3-3,
1
4-4,
u1 = u2 = u3 = u,, =
4-4,
u1=u2=+Iru3=u4=-l
4.
K=(q 8
n)
0 0 0 1
238
IX. THE IMPROPER INNER PRODUCT
col(1, 0, 0) -1, 0, - j ) ( c ) col(1, -j, - 1 , j ) col(1, 1, j , - j )
col(0, 1, 0, col(1, 0, - j , j ) col(1, 1,j ) col(j, 1 , 1,j)
K
5.
K
K
=
O P (P 0) 0.
P
K
P. Eqs.
(4).
of
do 6.
6.
CHAPTER X
The Dyad Expansion and Its Application
by
dyad
outer product
1. T H E O U T E R P R O D U C T O F TWO VECTORS
outer product
x xty.
xyt. x
y
1x 1 n x 1
n x 1 1 x n
y
xty, n x 1. xyt, on n x n.
1 x n
x
y. yt x. xyt
y 239
x
240
X. THE
xyt on
u.
(xyt)u = (ytu)x
(1)
ytu y
u, x
y, x
x. y u on y
(xyt)u x y xy' u
h
(xyt)u = xu
(2)
x,
u (n -
x
(ytx).
h y
x
y
y by (n -
2.
(yty)x.
K-DYADS
ui if j not 4 - 0,. = u. j--i
u,tKu, = 0
ui
(3)
=
j,
ui
4,
u,tKuj
K
3.
24 1
IDEMPOTENCY AND NILPOTENCY
K, Eij Eij
= u,u,uL~K
(4)
ui
-j
K (3). E
~
= ~ =
E
~
(5)
~
a,a,(~tj~~s)~,~t,~ (3),
EijEst= 0 =Eit
s
# j s =j
do
3. IDEMPOTENCY A N D NILPOTENCY
(4)
Eii . E:i
=(u~u~u~~K)(u~u~uL~K)
(7)
= aiuiuLiK = Eii
E, by
' A set to
Eii . Eii idempotent,
elements that have the group property but do not
a semigroup.
a gioup are said
242
X. T H E DYAD EXPANSION
i #j, EiiEij= ( u ~ u ~ u L ~ K ) ( u ~ u ~ u =L0~ K )
nilpotent,
f(x) = a,
+ a,x + ... = 2 anxn
(9)
n=O
f(kEii)
+ 2 PEYi = aOI+ {f(k) - a,}Eii
= aOI
i #j, f(kEij) = u,I
(10)
+ a,Eij
4. EXPANSION O F A N ARBITRARY MATRIX
Eij
ui n x n
A i3
by ufSnLK
by u,
i
=
rn
=
. n,
by on
4.
243
EXPANSION OF A N ARBITRARY MATRIX
A, of (aij)
A, ;
A
u,
am, = a,ut,,~h~u,= o =A,
(8),
m #n i f m = n
(16)
A
(am,) A
=
2 AiEii z
u, A,
u,-~ Au,
= XU,
+
amn = unu!imK(Aun
=A
~ n - 1
+
Un-1)
n = m
-
m =n -1
=0
(amn),
(=
A on
U,U~-~
on I =CEii i
by
k
EijEkh AB
=
2 ih
AB of
E,, .
=
(20)
aij6,h) Eih j
of
244
X. THE DYAD EXPANSION
5. F U N C T I O N S O F A M A T R I X
ui
A, f(A),
A, f(x)
A A2 = zXiAjEiiEjj= z X t E i i
(21)
ij
by An = zXinEii i
A,
on by
f(x)
A. 6.
EXAMPLE
on
2
-
R
7.
CONSTANT COEFFICIENT DIFFERENTIAL EQUATIONS
245
u1tKul = 1 u~~KuZ == -1 ultKu2 = u,~Ku, = 0
-
cos pz
(-(j,z)
pz
-jzcossin pz
7. DIFFERENTIAL EQUATIONS WITH CONSTANT CO EFFlCI E NTS
-dx(z) -
dz
-jRx(z),
x(0)
= x0
ui
R:
R
R
=
C~ijEij
(rij)
ui
x(x) X(.)
ui
=
2
on (26)
.i(Z)Ui
R
246
X. T H E DYAD EXPANSION
(24),
=
-j
=
-j
2 ripkuiUiUkjKUk ~ ~ ~ a ~ u ~ u ~ u ~
ui
uk
(27)
k:
R
A,, ...)
rij
z =
0
(26), xo =
Cyi(0)Ui
by ojuLiK, aj(0) = aiuLjKx,
R x(z) =
2 I
ui,
ai(0)
of
e-jAir
aiuLiKxOui
x,,,
8.
247
PERTURBATION THEORY, NONDEGENERATE CASE
up
R
on
up
rij yi
yi
-jhiz)
m
z
m
- i,
i
8. P E R T U R B A T I O N T H E O R Y , N O N D E G E N E R A T E CASE
As
by R
= R,
+ cR1
(35)
perturbation parameter.
E
R, E.
by do
k
up
R, R,
eR1 E.
?
248
X. T H E DYAD EXPANSION ti,
R, u, by
E
K
K
R,,
K
R
E.
K
R,, u, Eq. (3).
hi
R, 5),
on
up‘
Ru,’ = h,’~,’ ti,’
= u,
+
(38)
EV,
(39)
pp.
vp
vp :
tii
v,
R,
=
Eqs. (39)
aeiui
(40)
(38), E
R, . Riu,
E
+ Rev,
+
= P~U,
Xpvp
(42)
8.
249
PERTURBATION THEORY, NONDEGENERATE CASE
Eqs. (36),
Ro
(37)
R1,
Eq.
v,) Eijtlk
=u~u~uL~Ku~
=O
if K # j
K
= uiujui
(43) =j
ui Eq. (44)
+
u i ( u L i ~ ~ l u p )h i a p i = p p a p i
i
+ pa pi
(45)
=p,
p# = aiutiKR,u,
i # p,
(46)
Eq. (45) (47)
api = U i U f i K R 1 U p / ( h u - h i )
vp ,
Eq.
a p p, app
up
R, ,
app
up on
K-or-
250
X. THE DYAD EXPANSION
9. D E G E N E R A T E CASE
by (A,
Eq.
-
hi)
by
R, ,
u2
ul A:
R , u ~= XU, R,u,
= Au,
R,
no of A. A
do
R,
As
K
ui
so may so so a
of
ul
R, . of
E,
E
by ul
u2
u2
9.
25 1
DEGENERATE CASE
uz
ul
R, . w
+ atlz
= ti1
(49)
01
w‘ w’
=w
+
a , a1
wz, v1
w1
aP,
wl’
(50)
EV
wz’
v,
.
(40), (Ro
+
ERl)(U1+
auz
+
EV) =
(A
+
+ auz +
EP)(U~
w
E
R,
(51)
EV)
A.
Rl(u1
+
+ ROV
0 ~ ~ 2 )
= Av
+ ~ ( u+i auz)
(52)
(41)
u, ,
ul
a , ~ t l+~a ~( T l ~1 l~=t l ~ ~ l ~ 2 u Z ~ t+Zaa2ut2KRluz ~ ~ l ~=laP
(54) (55)
a p.
p OL.
(55) of
252
X. THE DYAD EXPANSION
w’s
u2. up
a
a.
uL,KRlu,
v do
w1
wl.
R
(24),
(53),
01
p
B2 - 4AC
= {alUtlKRltil - u~u:&R,u,}~
+
(56)
E,
pl p1
p2
p2
up’
ul’
on
Eq.
R, ,
R1, by
al
a2
by on by
K
10. APPROXIMATE MATRICANT
253
11.
R do
(34),
by
R, + E R ~ ,
R up
R, R
R,
R
K.
R,
by
R1,
E
E,
(34) z, z.
R (34)
k
R
(k - 1)
z
z z
R, R, by R1
R. (34)
z.
by on z, good 11. CONCLUSION
254
X. THE DYAD EXPANSION
(24),
K.
by
no
E.
Ro
E
so
R,
R, K
do
on
Exercises
1.
x;
0 0 0 1
K=(;
XI =
1, 0, j , O),
xg =
1,0, j )
x2 =
1,0, -j,
x4 =
1 , 0, - j )
xl,x2,x3, 1, - 1, j , -j,
x4
255
EXERCISES
Ax,
= jxl
,
Ax, = -jx,
Ax,
= jx,
+ xl,
Ax, = -jx4
+ x3
Ax,
=jxl,
Ax, = -jx,
+ x4
Ax, = jxz
+ x1 ,
Ax, = -jx4
Ax,
= jx,
,
Ax,
= jx,
Ax,
= jx,
+ x, ,
Ax,
=
2.
-jx,
x 51 :).
0 1
Ro=(:
+ x,
0 0
0 0 0 0 0 0 0 0 1 o)
0 0 0 0
0 0 - 1 0 b
R
= R,
+ ER,
R
E
E,
K=(i;8
0 1 0 0
R (a)
a = 5, b
=
u = 3,
=2
b
6
( c ) a = 2, b = I 2
on
E
R,
256
X . T H E D Y A D EXPANSION
by
J . Appl. Phys. 31 2028-2036 3.
n x n
n (Comment:
Eij
n2 (Caution:
3,
4. bv
dX dz
S
1
-
Z-LX
sx,
X(0) = I
a
S K
5.
E
uvtK.
EX = y
x
y
y
u.
by x
= LXV/(V~KV)
a?
a
6.
by (uvt, xyt)
= (v, X X Y , u>
11,
4, 7.
A
K A
=I
+UV~K
AX = y ?
?
257
EXERCISES
(Hint: x
+ U V ~ K X= y
by vtK,
(vtKx).
x.)
k 8.
Eij
K,
(4).
A on
on
aij \
?
C H A P T E R XI
Projectors projectors. of
on
of
on
xy
z
do
on
by
on
P
idempotent
P2 = P).
1. D E F I N I T I O N O F A PROJECTOR
S
S, x
S,.
S
S, 258
decomposed
x, + x, ,
S,
S,
x1
1.
S, S,
.
x,
S,
S,
no disjoint.
of S,
S,
S of S ,
259
DEFINITION OF A PROJECTOR
,
S,
S, ,
S
direct sum
s = s,0s, Definition.
S into S , and S , so that
Given a decomposition x
= XI
+ x, ,
(1)
x1 E s, , x, E s,
(2)
for any x E S , the operator P that carries x into x, is called the projector on S, along S, .
on S,
P
/
3
Y' ,
/
/
1
/
s
/
FIG. 1.
The projection
on S , ,
x
x
y'
A projector is a linear homogeneous operator. x Px
a
y
,
u on s along y and y'
of
S, is Theorem I .
on S, .
u
1
= x, = x,
F
+ x2,
x1 E s,, x, E s,
on
260
XI. PROJECTORS
s, + Yz , Yl s, x + Y = (x1 + + (x2 + P(x + Y) = x1 + y, = px + 4r
Y
= Yl
E
7
Y2 E
31)
Y2)
Px = 0.
x
k x k,
P
on
K 2. IDEMPOTENCY Theorem 2. A linear operator P is a projector idempotent-i. e., P2 = P
on Px
S,
and only
if
it is
x
= x1
x,
S, pzx
.
if
,
(x, + 0).
= PX, = XI = Px
x pz
=p
S,
x, Px,
= x,
(3)
Px2 = 0
(4)
x,
S,
2. S,
.
26 1
IDEMPOTENCY
u
S, ,
Pu
=u
Pu
=0
S,
S, ,
u
S,
S,
x. x
= Px
+ (I - P)x
XI = Px,
x,
x2
= (I - P)x
S,
Px, = P2x x,
= Px = x,
S,
Px, = (P- P”x
x
= x,
+ x, , S,
= Px - Px = 0
XI E
s, ,
x, E s,
S, .
Corollary 1 . If P is the projector on S , along S , , where S = S, @ S, , then P is semisimple with only the eigenvalues 1 and 0, and S, is spanned by the eigenvectors with unit eigenvalue, S, by the eigenvectors with zero eigenvalue.
Eqs. (3) S,
(4)
S,.
Corollary 2. If P is the projector on S, along S, , then (I - P)is the projector on S, along S, .
262
XI. PROJECTORS
3. COMBINATIONS O F PROJECTORS
on
.
on Theorem 3.
(P,
+ P,) is a projector if and only if P,P,
= P,P, = 0
If so, then it is the projector on R,
along
@
n
.
n
intersection of
and .)
+ (P,
+ P,)" = + PIP, + P,P, + P," = P, + P, PI2
P,P,
+ P,P,
=0
(5)
(6)
,
by
P,P,
+ P,P,P,
=0
by P,P,P,
+ P,P, = 0
PIP, - P2P, = 0
(6), PIP, = P,P,
=0
+ P,) (51, (P,
+ P,)
(7) '
+ P,I2
= P,
+ P,
3.
P
=
P,
by P,
263
COMBINATIONS OF PROJECTORS
+ P,
z
P,
+ x, + y2
z = x1 =
x1 E Rl
y11
Rz
XZ
9
,
y1 E
9
Y,
N,
E N2
P, or
z z
Pz
Pz = (P,+ P2)z= P,z + P,z = Pl(X1 + YJ P,(% Yz)
=
= x1
+
+
+
x2
z z
z,
=
.
+ x, , Pz = P,z + PZZ
=
,
R,
x,
+ Yl) + PdX2 + YZ) PIX, + P,xz
= Pl(X1 =
= x1
+
x2
=z
,
z
+ R, .
z
, so P1Z= P,z = z =0 z = P,z = P1Pzz
P,P,
=
R,
0 by R
N, nN, .
z
= Rl
N, N, nN, ,
Pz = P,z by P,
0R2 Pz
=
(P,
+ PZZ = 0
P, ,
P,2z+ P1P,Z= P1Z= 0
+ P2)z = 0.
Pz
=
z
0,
264
XI.
P2P1z+ P,2z= P,z = 0
P,P, = P,P,
=;’
z
0.
N2,
N,
N , nN,
.
(P,- P,) is a projector if and only if
Theorem 4.
P,P, = P,P, = P,
If so, then R
=
R , n N , and N
=
N , 0R, .
- P2j
I - (P,- P,) = (I- P,)+ P, 3,
P,(I - P,) = (I - P,)P, = 0
I
-P =
I
-
(P,- P,) = (I - P,)+ N,
R
.
by
(I - PI),
3, Rl :
= R,nN,
(I (I -
N,
3
by
Nl N
P
Theorem 5.
=
=R,@N,
P,P,is a projector if P,P, = P,P,
If so, then R
=
R, n R , and N
N
=
N,
(9)
+ N, . N,
N,,
do =
P12=
N, do
=
N,,
P, =
,
3.
COMBINATIONS OF PROJECTORS
265
Eq.
Pa= (P,P,)(P,P,)= P,P,2P, = (PIP,)P, = (P,P,)P,= P2P,= P,P, = P
P
Eq. (9) z R,so z = Pz
P,z = P,Pz = P,",Z z
R, .
.
R, ,
R,
if z
P,P,z = z
=
P,z = z = P,z 2 = P,z = P,P,z R
=
=
Pz
R,nH,
N,
z
Pz = P,P,z = 0 N, .
P,z
P,z
.
N,
z z = P2z
+ (I
-
z N, .
(I - Pz)z N, if z
N,
z=
Pz = z
z
.
P,)z N, N
+ Z, , N, , PZPIZ, + P,P2z2= 0 2, E
N. N
=
N,
+N,
P,z
2, E N ,
N , . Also,
266
XI. PROJECTORS
4. INVARIANT SUBSPACES
of
A Theorem 6.
If S , is invariant with respect to A, then PAP
(10)
= AP
.
for every projector onto S,
S,
s = s,@ s, P
S, x = x,
+ x, ,
S.
S, XI
.
s, ,
x2
s,
by Px PAPx
= P(Ax,) = Ax,
A,so
S,
= x1
S,.
Ax,
PAPx
= AX, = APx
x, PAP
Theorem 7.
= AP
If, for some projector P onto a subspace S , along S , , PAP
= AP
then S , is invariant for A.
s = s,@ s, P
S,
S, S, ,
x
x
PAX = PAPx
Ax
S, . a
S,
=
.
Px,
= APx = AX
A.
267
5.
Theorem 8 . If S = S , @ S, , then A decomposes the whole space into the invariant subspaces S, and S , if and only if
PA
= AP
.
where P is the projector onto S, along
by S
x1 Ax,
Ax,
0S, .
=
= APx, = PAX,
S,,
S, ,
x, PAX, = APx,
Ax,
.
S,
S, ,
=0
A
A
by
6
S,
PAP
S2
= AP
6
(I
(I - P)A(I - P) = A(I A - P A - AP + P A P
PA
-
- P):
P)
= A - AP
= AP
5. EIGENSUBSPACES
x
SAA
(A - h I ) k ~ =0
k
eigensubspace of
by A.
x
SAA,
(1 1)
A.
k
A (Ax).
A.
268
XI. PROJECTORS
of
of
no
of
on
Pi
of
ZAjitA, @ Sy. of Pi
SP
on
by
hi.
of
by of
Pipj = 0
3, (Pi SAi
i# j
(14
+ Pi)
SAi.
&Pi Z P I=I *
R
of
6. SEMISIMPLE M A T R I C E S
A A
=
chipi
xi
hi ,
Axj = ZXiPixj i
We
{Pi}
on
Eq.
=h
j ~ j
6.
269
SEMISIMPLE MATRICES
by An = z A i n P i .7
f(x) A), f(A)
=
zf(hi)Pi
(15)
z
d ~ M ( z= ) -jRM,
M(0) = I
R
(14) on
(16) on
Pi, z.
R z. M(Z) = x m i ( z ) P i
(17)
3) for all i
mi(0) = 1
Pi
=
-j C h i m i p i i
by P, ,
(18) m,
=
=
2
I
hi dzl
-j 0
1
hi dzl P i
-j 0
(18)
270
XI. PROJECTORS
7. N O N S E M I S I M P L E M A T R I C E S
A
A on
Pi by
Hi
Hi
hi,
hi, by
hi . A
=
z(hiPi
+ Hi)
z
Hi
Pi
Pi2 = P i Pipj = 0, #j PiHj = HjPi = 0, i # .j PiHi == Hi = Hipi Hik = 0, k 3 ki
ki
hi.
A'
+ H&P, + HJ = 2 (X,2Pi + 2hiHi + H:)
=
z(X,Pi ij
2
by
H$i = 0. f(x)
hi. off(x),
8.
27 1
DETERMINATION OF P , , A SEMISIMPLE
8. D E T E R M I N A T I O N OF P i , A SEMISIMPLE
A
P,
on
~ ( h ) A.
A
?(A)
A,
.
A,
O,(A) O,,(A)
by i#n
OJA)
P, :
x,
P,
h, # A,,
Pnx, = x,.
P,x, x,
A on
by
on
A on A,,
272
XI. PROJECTORS
9. A NOT SEMISIMPLE
A
Pi,
by
A = (A - Al)2(A
A
= hipi
- A,)2
+ 4P2 + HI + H,
as
A - A11 = (A2 - A,)P, A - A21 = (A1 - A,)P1
+ HI + H,
+ HI + H2 ,
by HI H2
= (A - A1I)Pl = (A - A,I)P2
H12 = H2, = 0,
+ 2(A2 - A1)HZ - A,)”P, + 2(A1 - AZ)H1
(A - &I)’’ = (A2 - A1)2P,
(A - 41)” = (A,
H, (A (A -
*(A,
(28),
= 2(A2 - Al){A - *(Al
* 2 ( 4 - &){A - *(A1
+ h2)
+ A2)I}P, + A,)I}P, {A - +(A,
A,
(28),
(29)
+ X,)I}
H, . by on
Hi by
10.
273
10. T H E RESOLVANT
A
F(X) = (XI - A)-'
(30)
resolvant.
F(A) A.
$
1 277j
- F(A) dA
F(A), F(h) F(h),
Eq.
A
(A - hi)-'Pi
F(X) =
A
Eq.
F(X) =
/(A
-
&-'Pi + (A
- hi)-2Hi
+ (A - hi)-3H: + ...
a
=
'f
P.- -. ' - 277J
a
hi
I
Pi.
F(A) dA
hi.
+ P,).
Hi
Eq. Hi
= (A - XJ)Pi
Xi)(XI - A)-, dh
(32)
(33)
274
XI. PROJECTORS
Pi
F(h).
on
11. ORTHOGO NALlTY
1. 1,
u on x
x,
(x, y )
on x.
(x, y’), xl’
K
by x,’ x.
( u - x,’)
on 1, -
t), 12
I,
= x2 - t 2
by u, ,
(3by u, ,S, S,
S, ,
1 1.
275
ORTHOGONALITY
S, . S, .
S, on
S, S, :
P,P,
=
0.
of
by K-adjoint projectors, Pi#,
by pi# = K-lPitK
(34)
Pi# Hi# i
Pi.
Hi :
A
(35)
= K-'HitK
K (4) Pi# = P-i Hi# hi*
A A#
= =
z
(hipi
= H-i =
+ Hi)# =
z(h-iP-i
(36)
-2
+X i )
z
(hi*Pi#
+ Hi#)
=A
(34) Pf-2 =
Pi#.
Pi#Pj# = K-l(P,P,)tK
(34)
(35)
=0
i#j
276
XI. PROJECTORS
A Eq.
12. CONCLUSIONS
X
on
Exercises
M
1.
M
N,
1, 1,
1, - 1,
N
1 , 0,
N
M 1,
0,
M 0,
1, 1, j , 1, j , j ) ; 1, j , 0 ) ; 1, 0, j , -j).
M
2.
A
u
N
2,
v
=I
+U V ~ K
N
277
EXERCISES
A
A
k
I
A
+ ulv1tK + + u ~ v ~ + K
=I
vitKuj = 0 i #j.
7.)
X, 3.
P
Q A
= PAP
=
I
- P,
+ PAQ + QAP + QAQ
A B B’ AA+BC’ (C D)(C’ D’) = C A DC‘
(
4.
P,
+
AB’+BD‘ CB’ DD’
+
P,
(PI+ Pz-PIP,)
U
5.
)
involution
U2= I.
U=2P-I n 6.
x
n
x
n
n
P
P
P 5)
(2P - I) ? 7.
?
?
5.)
8.
(I + UP)
P (I u =
+ P)-1 = I - OLP 1+a ?
by
278 9.
XI. PROJECTORS
P,, P, , PI
+ P, + P,
=1
PIP,=P2P,=PIP,=P,P, =P,P, =P,P,
=0
CHAPTER XI1
Singular and Rectangular Operators u,
v, u
= TV
(1)
T T
by
T-l.
T
no
u u u
,;
2,
,; +
+
+
u = a X v
(i x )
”v
.;
“a V,
2.
“v
”u
i.
U, V
= j[RU] = j(RU
V
-
R
UR)
U.’
T = j[R, 1 We shall use square brackets, [
, 1,
[A, B]
AB
219
-
n x n (4)
to denote the commutator 1
(3)
BA
280
XII. SINGULAR A N D RECTANGULAR OPERATORS
V
U
R
R, A
R,
dR -- = j [ R ,A] dz
A
(5)
R(z) (5) of x .
A A
(5),
[R,1.
dR/dz (1) n x m, n < m,
m
n
u v. m,
u
m-
on
n
> m,
on
v,
1. ABSTRACT FORMULATION
by Definition. The domain S , of an operator such that the operation of T is defined.
T is the subspace of vectors
1.
28 1
ABSTRACT FORMULATION
do
no
do by
u. Definition. The range S, of an operator T is the subspace spanned by the vectors obtained by T operating on any vector in its domain. W e can express this formally by writing
or by saying that the range of
T is T operating on its domain.
T
by
Definition. The null space S , of an operator T is the subspace of its domain such that T operating on any vector in S , vanishes:
Tx = O
if xisin S ,
T
T
by
Definition. A set of h e a d y independent vectors x, , ..., xk are called progenitors of the range of T if the set Tx,, Tx,, ..., Tx,form a basis for the range of T.
Tx,,..., Tx, (a)
k
k
x, , ..., xk c, -&xi
T Tx,
=0
(7)
282
XII. SINGULAR A N D RECTANGULAR OPERATORS
on
u
v.
u,
by
C,
v, S,. 2. SEMISIMPLE T
xi
S
xi
S., S,
S,
Pi on
do
rn
T
=
CXiPi
(9)
i-1
hi .
m
u
=
TV = ~ & P , V i=l
2.
SEMISIMPLE
283
T
Pk
by
k
Eq.
v
Eq. m
v
=
Z+PiU
+ vg
i=l
v,
m
= 2 ( l/hi)Piu,
(11')
S,
i=l
of Eq.
(I - P,)
P, S, 8,
Eq.
V(h) = h
on
1)
n'
(A -
hi . V(X) = h{l - q x ) }
O(h)
(13)
~(h).
284
X I I . SINGULAR A N D RECTA.NGULAR OPERATORS
q(T) = 0 T
= T{I
-
TB(T)}
= O(T)T'
T
O(T). O(T)T {O(T)T}' = B(T){B(T)T'} = B(T)T
T,
on -
O(T)T}
(15)
T.
on
v
T
x:
on u = TV = T'x
(16)
by O(T)
(14),
B(T)u = B(T)T%= TX = v
(17)
(I).
T, by
v = B(T)u y
+ {I - B(T)T}y
u
v 3. EXAMPLE
T
by
-3
a
x
-I
ff
4
=a
x
-I
-3
-
3
+
*
on (18)
T
+
ZyPi.
+ + +
(a x v ) = a(a * v ) - v(a a)
3.
285
EXAMPLE
2,
% v = --a
+
+
v
- a)
+ + +
x
./(-a
= --a
+
x
= --a
+
x
+ ./-a2
+ k-a+
+
./a2
k
0
so
-a,
-av
(z x )
on T
=
(
0
--a,
+-a9 =0 -a2
= -ax2
_-
'
-a,)
0
a,
Ta
A3
-av
0
a, --av
a2
=
+
0.
-ay2
+
T3=T
0 1
B(T) = - -T -a2
(2 x ).
1 (:
2 86
XII. SINGULAR A N D RECTANGULAR OPERATORS
(3) 4. NOT SEMISIMPLE
may
STo,
3), h c p
Eq. by by
on
S,
S,
S,
proper
by
T#:
T#,
T#u = T#Tv
(Th) (T#T)
S
=
0 x
T
(19)
u
(T#T)# = T#T
(20)
s = sys)
(21)
T#T, Sx,
v by S ,
4. v
287
= O(T#T)T#u, T.
u
on
T,
mod S ,
T#u
Definition. Given an inner product relation and a subspace S, , then S , is the orthogonal complement of S, iJ for any x in S, , and any y in S, (x,Y> = 0
Theorem. If the given inner product relation is a proper one, then a subspace S, and its orthogonal complement S , is a decomposition of the whole space.
. S, no
S,
u
,u, ,
v: u=u,+v
(v, v)
= (u - U 1 , U - Ul)
ul u on
, by
- u,,)
u, . u,
= uo
+ ciw
>0
,
(23)
u,
.
,
u,
(v, v)
288
XII. SINGULAR A N D RECTANGULAR OPERATORS
w
S,
w (u - u,)
a
u, (u
-
uo - orw,u - uo - aw) = (u - uo ,u
-
uo) - or*(W,u - uo)
- 4 u - uo , w)
3 (u
S, ,
+ I a I2(w,w)
- 110 9 u - UO)
a,
(w,w) # 0. -Kw,u - uo)12 2 0 (w,w> (w,u - uo>= 0
u
- u,
w
S,
.
u
u u
+ (u - uo)
(u - uo) S , .
uoE S ,
Theorem.
= uo
If u
of
w u
of
T, of
ifu
T.
(u,W)
to
u
w,
v.
= (Tv, W) =
(v, T#w)
T#w
w
by
T#
T
u
Tv,
(v, T#w)= 0,
K T#w = 0,
w.
u of
(u,w)
=0
(28)
5.
T#w = 0. u
u
Ty,
-
u,
=
+
= u1
289
EXAMPLE
T
S,
112,
u1 E s, ,
u2 E
S,
s, T,
x
u2
y (U - 111,
Ty)
=
(T#(u - uI), y)
==
0
y T#(u - ~
u
-
u, u
u1
-
S,
u
-
ul
u
(29)
u
(u,u - Ul) = (u - u, , u - Ul)
ul
0
1 = )
+ (Ul , u - Ul)
u1 = u2
S,
(u -u] , u -ul)
=0
u
-
=0
. (30)
u
T
u,.
u
T, on u
by
T#
T#. u.
5. EXAMPLE
T n x n
0 1 0 ...
'
0 0 0 0 0 0
.*.
290
X I I . SINGULAR A N D RECTANGULAR OPERATORS
u=(
0 0 0
T~u =
.**
1 0
('i m
TtT v
=
diag(0, 1, I ,
Ttu,
...,
S, :
by on
6. CONCLUSIONS
T
u = Tv or
u
29 1
EXERCISES
by
Exercises
1.
0
-j
-j 0
-1 j
-1
-1
1
A=(-!
-J
( 1; ) 1
Ax
=
2j - 1
2.
a,
AX = U
(a)
a
= col(1,
-1, -j,j)
a = col(1, 1 , - j , j )
(c) a = col(1 + j , 1 - j , 1 - j , -1
-j)
(d) a.= col(1, 1 - j , -j, 1 - j ) 3. (Caution:
UV~,
?
292
XII. SINGULAR A N D RECTANGULAR OPERATORS
5,
4.
=
uvtK,
K
EX = y x
y
y
5.
Px ?
=a
?
u.
CHAPTER Xlll
The Commutator Operator dW - -- [S,w] = sw - ws dz
S z.
by dx _ - sx dz
x
K,
S W
x
(3)
= xytK
(2),
y dz
do
= @ytK
dz
=
+x
K
SxytK - xytKS
=
=
SxytK
+xyWK
[S, w]
(4)
W’s,
W
293
294
XIII. THE COMMUTATOR OPERATOR
W
.
(l), dM _ -- SM, dz
S
M(0) = I
(5)
z,
W,
W (6), by
W,
W. (5),
S
S
by dSdz
[A,Sl
(7)
A A
Lie book.
1.
295
LIE GROUPS
1. LIE GROUPS
3)
(A, B,...) 1.
I
2.
X
3.
X-l,
not distinct jinite dimensionality.
X
x = X(ff,, a l ,..., a,<
so
A
..., ffk)
(8)
so
a l ,..., ak ,
X X
by do
296
XIII. THE COMMUTATOR OPERATOR
global-i.e., local Lie
continuous n x n
As
of n x n of
n x nI
X
X-' GL(n)
general linear group
n x n
SL(n) unimodular group. n x n unitary group.
special linear group),
U(n), n x n
n x n
51 O(3)
O(n).
by
rejection-rotation
of
up
A do
representation
of
2.
297
INFINITESIMAL TRANSFORMATIONS OF A LIE GROUP
faithful
A
As by 1 .
AB =
=
C
by
1,
GL(n) n.
by realization
by
14. realization
2. I N F I N I T E S I M A L T R A N S F O R M A T I O N S O F A L I E G R O U P
X(0, 0,...,0) = I
(9)
..., ak ,
X
al,
X aX/aa,,
a1 =
= ak =
0.
298
XIII. THE COMMUTATOR OPERATOR
by
S
zo)
zo .
z
zo) zo ,
S. zo ,
z
=I
+ z a i X i + .*.
(12)
( z - zo).
a,
(1 1)
z
= z,,
,
ai
S S
S(z) a,.
S(z)
by
Xi. S a1 = a2 =
by on S ( z ) .
S(z)
= ak = 0.
3.
299
ROLE OF THE COMMUTATOR
3. ROLE O F T H E COMMUTATOR
M
N
by
aii
Pii
on
#Iij Qii N
M
N
M-lN-lMN.
300
XIII. THE COMMUTATOR OPERATOR
(17),
i
by
j.
do
of =I
M-lN-lMN
+ 2 y,Xi + *..
(19)
&
ai
of
[Xi , Xj] =
2 CfjX,
(20)
k
ctj
by
structure constants
cFj
4. LIE ALGEBRAS
algebra
A(BC) = (AB)C
associative algebra. linear b
(aA + bB)
5.
301
THE PRODUCT RELATION
B, by [aA
+ bB, C] = a[A, C] + b[B, C]
(21)
b
u
(22)
[A,Bl = -[B,Al
(B)
[A, [B, Cll
+ [B, [C, A11 + [C, [A, Bl1 = 0
(23)
(24)
[A, A] = 0
[A, [B, Cll - [[A, Bl, Cl
= [[C, A17
(25)
BI
5. T H E PRODUCT RELATION
;x (G x 5)+; x (5x"u) +; x 6 X Z ) ++ + =;(; * 5 )-;(; * G) + w(w * u ) - u(v -+-3
-3
w)
+ u(w -3-3
-3
-++
-
-3
w) - w(w u )
=0
302
THE COMMUTATOR OPERATOR
by by
[A, B] [A, B]
= AB
-
BA
AB [A, [B, Cll
+ [B, [C, A11 + [C, [A, Bl1 = A(BC - CB) - (BC - CB)A
+ B(CA AC) - (CA - AC)B + C(AB - BA) - (AB - BA)C = 0 -
(26)
n x n n x n
full linear algebra of order n. not
L(2).
K
2 ;( ’
bg
-
y
(a
cf
= (c(e - h ) - ( a
-
= AX
d)g
-
d)f - b(e - h) cf - bg
1
6.
K-SKEW-HERMITIAN
0
-c
c
0
o
c
b
-a+d -b
4 x 4
303
ALGEBRA
"i
-C
0
~5'~).
no n x n
L(n), n x n
a
n x n n x n
An--l,
go on on
by go
by embedded
6. K-SKEW-HERMITIAN ALGEBRA
by s = xtKx
(27)
304
XIII. THE COMMUTATOR OPERATOR
K
R
S
= $3
(27)
S do do
A
+ AtK = 0,
+ [A, BltK
K[A, Bl
KB
=
-
-AtKB
(28)
+ (AB BA)tK KBA + BtAtK - AtBtK + BtKA - BtKA + AtKB = 0
= K(AB - BA) = KAB
+ BtK = 0
-
[A, B]
S = -jR S
of
z,
K (27)
of
7. T H E Ad OPERATOR
L
A, by
(29)
7.
305
THE A d OPERATOR
, A, by AdAX
(30)
=
X adjoint operator.
adjoint,
11.
D
derivation.
{A, B} D{A, B)
= {DA, B)
Ad,(BC) = [A, BC]
+ {A, DB)
(31)
= ABC - BCA
=ABC-BAC+BAC-BCA = [A, BIC
+ B[A,
= (Ad,B)C
+ B(Ad,C)
(32)
inner derivation,
by
L
X AdAdAB =
[Ad, , Ad,]
L. = Ad,
Ad, - Ad, Ad,
Eq. AdAd~6X= [ A ~ A BXI, =
=
-[X, [A,B]]
[[A, Bl, XI =
[A, [B, XI]
+ [B; [x, A11
(33)
(21),
306
X I I I . THE COMMUTATOR OPERATOR
=
[A, [B,Xll - [B,[A, XI]
=
(Ad, Ad, - Ad, Ad,)X
8. LINEARITY
Ad,(aX)
=u
(34)
Ad,X
a
all
1 of
111.
Xi
hi Ad,&
=
[A, Xi]
(35)
= Xixi
n x n
4,
(Ad,)%
= Ad,(Ad,X)
(A~A)= ~ XAd,(Ad.~'X) (Ad,)nX = Ad,(Ad:-'X)
=
[A, [A, XI]
=
[A, [A, [A, XIII
(36)
9.
307
EIGENVALUES A N D EIGENVECTORS
(Ad,)OX
=X
A
X.
:
of
semisimple
Xi n x n
A AdAXi Ad,&
Xi,Xi,,Xi,,...
= hiXi
+ xi = &xiz + xil
(37)
= hixi1
AdA&,
hi m i ,
hi mi.
body do
on An-’
of
on 9. EIGENVALUES A N D EIGENVECTORS
of
A
A?
308
XIII. THE COMMUTATOR OPERATOR
A, ui
=
.
(Xi - Aj).
Wij W,
by
at least,
Wit. A
ui
hi : Aui
= X,U~
vi
111,
V.tU.
= 8.. 13
vitA
= hivit
a
3
= uivjt
= Auivjt - uivitA = (hi- hj)uivit = (Xi -
A
Wij A
.
16,
9.
EIGENVALUES A N D EIGENVECTORS
Au,
= Au,
Au,
= Au,
309
+ til
111,
17,
2, VltU, = v,tu, = VltUZ = v*tul
x, =
(WI1 + WZz)
=0
w21
x, = Ad,& XI
1
=
= AdAX, =
w1,- wzz
(40)
-2W1,
3
.
310
XIII. THE COMMUTATOR OPERATOR
10. T H E EQUATION U
= Ad,V
u = Ad,V V,
(41)
U. Y
(7),
A A. A
V,
A,
of
A
no
2. no of A.
0
X
(36) by B(Ad,)U
= o(Ad,)
AdA2X
= Ad,X =
V
v ,
A, A
4 of
10. THE
31 1
U = Ad,V
11,
3.
111,
A
B (A, B)
= tr(AtB)
(43)
A.
=
C (A,zBji)
= (B,
A)*
(45)
X
(x,Ad,Y) (X, AdAY) = =
=
(Ad,#X, Y)
Y (47)
Xt(AY - YA) XtAY -
XtYA
(48)
312
XIII. THE COMMUTATOR OPERATOR
of
by
not,
=
=
=
(50)
Eq. (48) =
-
=
-
=
-
(51)
=
A
Eq.
, we
V.
Eq. (41) 11. T H E KILLING FORM
on form
Killing
scalar product of Cartan.
of no
(53)
=
by
of
Eq. go
B) = k
(54)
12.
T H E EXPONENTIAL
313
Ads
on (54)
11. go
12. T H E E X P O N E N T I A L O F AdS
dW - = AdsW dz
S
=
(55)
So, W
=
(56)
AdsJW,
on
z
S, by LSX RsX
=
sx
=XS
on n x n
314
XIII. THE COMMUTATOR OPERATOR
=
=
(60)
11, -
=
(61)
(62)
=
=
-zS0)
=
(63)
S = So,
= =
(64)
=
13. SIMPLE NONUNIFORMITY
(2),
by
simple
S
nonuniformity by
A. A can A
S
dS/dz
A.
A, by
s=
(65)
So = S(O), -=
dz
-
13.
315
SIMPLE NONUNIFORMITY
w = ezAdAX Eq. ezAdA
dX AdAX + ezAdA__ dz
= (ezAdAS,)(ezA3AX)- (ezAdAX)(eZAdAs,) = ezAdA(Ads,X)
by Eq. S
X =
(69)
Ad(s,-A,)X,
Eq. W = =
Ada)
Ad,so-A))&
A~A)
Ad(s,-~))Wo
=
-
-
Eq. x =
-
Eq. (5) -
=
go
Eq.
Eq.
S A
Eq.
dA -
dz
B
(72)
-
(73)
on.
316
THE COMMUTATOR OPERATOR
S S
on
14. T H E E X P O N E N T I A L L Y TAPERED TRANSMISSION L I N E
by
-JP.
S
Z d Sdz - -jPK(-l,z
K
=
0
z/z A.
zc - (BIZ) = 0 A-D=K
A
=
=
0
K
15.
317
K
Z
= eKZZO
x = 0.
2,
K
zA
z ( S o - A) by
1 K yz - -
ez(S,-A)
2Y
=
-j B - Z, Y
yz
yz
?/2 + 2 - I
2 4K
K
=
0,
15. CONCLUSIONS
on
by on
,
,
LA.
+ -2 Y1 K
yz yz
318
XIII. THE COMMUTATOR OPERATOR
by simple nonby
uniformity.
Exercises
1.
Xi,
pi
Ad&
A
(a)
=
0 1 ( I o)
A
= pixi
(c)
=
2.
A
=
[ 8,
~(x),
by (AdA)X
X.
=0
~(x)
U. 3. A=
c a 0 2 0
.
4.
by
M=(
0
case
319
EXERCISES
5. 6.
i] ( ; ) [ P A ,Dn-*B]
Dn[A,B ] =
k=O
eD[A,B ]
=
[eDA,eDB]
eD on
(64) Leibniz' rule.) 7.
s= a, b, 8,
(
0
j b cos 8
j b cos 8 b sin 8 0 0
u cos 8
-jw
0 -ju sin 0 -jusine 0 -b sin 8 0
z.
w
1
X, , X, , X, S = X,
cos B
+ X,sin 8 + WX,
X, , X, , X, by x l f =1 ~ c 0( -1o), l
x i = -1 c (O 2
j
),
j 0
X 3 ' = -1 ( i 2 0
S'
c
K' S
X,',X,',X,' dW - -- [S,W dz
by X, , X, , X, ,
Wo
-dW' - [S',W ] dz
0) -j
S on
K
320
XIII. THE COMMUTATOR OPERATOR
8. Solve for the matricant by the methods of this chapter, when
/3 and y being real constants.
CHAPTER X I V
The Direct Product and Kronecker Sum direct product Kronecker sum
book. do 1. T H E DIRECT P R O D U C T
on by
u
y,
x
'1 '1 by
u by k 5
y,
5
k,
v by 1,
x by k
by k. 32 1
y by 1,
3 22
T H E DIRECT PRODUCT AND KRONECKER SUM
4x 4 Eqs. XlYl
+ B,u,)(A2v1 + B2v2) = A,A,(u,v,) + A,B2(u,v,) + B,A,(u,v,) + B1B2u2v2 = (A1u1
A, Eq. product
A,
(4)
(6)
by A, . direct product Kronecker
x A,
(7)
A, A, A
p
= (aij),
B
= (bij)
q
(tj)
by
6.. 13 = x . y3. E
3
Tii
upon = UiVi
(10)
2.
JUSTIFICATION OF “PRODUCT”
323
2. JUSTIFICATION O F 44PRODUCT*’
A.
(A+B) X C = A X C + B XC A x (B + C )
=A
A x (B X C)
x B +A
= (A X
XC
B) X C
(13) (14)
(15)
C.
o=oxo I=IxI
(A X B)(C X D)
{(A x B)(C x D))ii.mn =
= (AC) X
(BD)
2~ x B ) ~ ~ , ~ x~ HD)rs.mn) (c TS
= {(AC)irnH(BD)+n}
= {(AC) x
AB=C,
(BD)lij,mn
MN=P
(16)
324
XIV. T H E DIRECT PRODUCT AND KRONECKER SUM
C
N,
n x n
(A X M)(B X N)
= (AB) X
m x m,
(MN) = C X P
(18)
=
x
Eq. /I,
01,
(B x N),
x
y
N
=
=
B x
N,
C
a/? = y
B
Eq.
(C x Eq.
(A X M)(B X N)(C X P)... = (ABC...) X (MNP...)
B,C,...
N,
n x n
...
(19)
m x m.
3. T H E PRODUCT OF MATRICANTS A N D THE KRONECKER SUM
sum,
up
? by dM dz
-
dN -dz
-jm,
M(z,)
= I,
-jBN,
N(z,)
= I,,
xN d
dz (M
x N) = =
dM dN (x) x N + M x (x) -j(AM) X N
- jM X
(BN)
(21)
4.
d
- (M X
dz
N)
=
-j(AM) X (1,N) - j(1,M) X (BN)
=
-j(A X I,)(M X N) -j(I,
=
-j(A X I,
Eq.
+ I,
X B)(M X N)
=A X
=
(22)
I, +I, X B
z1= z 2 ,
N
X B)(M X N)
x N) C: C
x
325
GROUP THEORETIC SIGNIFICANCE
(23)
(M x N)
z,
Im+, Eq. (22)
Eq. (23).
B. N, Kronecker sum
Eq. (23)
B.
4. G R O U P THEORETIC SIGNIFICANCE
by
by
326
XIV. T H E DIRECT PRODUCT AND KRONECKER S U M
do by
A n x n S by S' =
=
n 0,),
n x n A
by
S by
S'
N
N
(20).
by
zo ,
x
S",
by
zo ,
0,
z
M N
= I,
= I,
+ €A + EB B
A
E
(14),
(MX N) = (I, = I, -
+ €A) X (I, + EB) X I, + E{A X I, + I,
I,+,
+ €{A X + In
Im
X
X
B} + E'A X B
B}
(25)
E.
zo ,
x N) by
5. EXPONENTIATION
by
N.
5.
327
exponentiating
ec = eA
x
x
= (AI,)
=
=
=
(27)
x
x on
C,
C
+C +
ec =
1 2 1 ~ 2
x eB = =
+
Bo =
Ao = eA
eB
1 + ++ .-Ix 1 - + + 21! + ..-I 2!
1,
~2
22
x
r=O s=O
Y
=
k
=p -
k
p
s
k.
k
B p,
328
XIV. T H E DIRECT PRODUCT A N D KRONECKER
6. EIGENVECTORS A N D EIGENVALUES O F THE DIRECT PRODUCT
by
A n
m,
(;i) Eq. (32) (A x B)u(”’) = ( X r p s ) ~ ( r * s )
(34)
A x
t1(+l8)
A d r ) m yes), A x A x of
A
A
Arp8. n
(mn)
A x
~
(
~
A
1
~
)
8.
329
NECESSARY CONDITION
A x
A x
A
7. EIGENVECTORS A N D EIGENVALUES O F T H E KRONECKER SUM
(23)
Cij.kh
+
= Aik6jh
6ikBjh
aij
i
=j ,
B
A
A hh
C ~ ( 7 . s=) (A X 1 + 1 X B)u(T,s)= (4 ~
(
~
9
~
+ p8)u(r*s) of
)
A
of
A A A
8. NECESSARY C O N D I T I O N
C (24), P,
A A
C
(35)
(24)
3 30
i
=
pk
XIV. THE DIRECT PRODUCT AND KRONECKER SUM
1, ..., mn. p i ,i = 1,
qi ,
hi , i = 1, ..., m,
..., n,
Aj
qi
*
q, , q z , q 3 , q 4 .
4x 4 A,
A,
pz
p,
4 + Pl = 711 A, 4-k = 7 2 4 + P2 = 713 A2
+
P2
= 714
on
on
71
q i do
- 712 - 713
+
73 =
0
no
A
B. q i do
no
on of
z,
33 1
9.
z.
by book. 9. MIXED INVERSES
As
X AX+XBt=C
(36)
on
A
Bt, by
C A,
Bt
=
0,
A = 0. A B
B
Ct
(36) (36)
on B
B
X
(36)
by
z(Ax1
Bt.
(37)
+ 1 x B*)ij,khXkh
= cij
kh
X,,
n x n
Cii no
(A x I
n2 x n2
(Xi
+ pi*)
(A x I Xi
+ I x B*)
A
pi
+ I x B*) B.
332
h,
AND
+ ps* = 0.
C,
Eq. (36)
B
no
A. Eq. (36)
by
(AX + XBt). AX = AX BY =PLY xyt A(xyt)
A
+ (XYW(A + p*)xyt =
Bt,
10. SUMMARY
book,
As
Eq. (36).
(AX + XBt),
Exercises
1.
A
n x n (A x B)-l = A-’ X B-’
(b) x B) = B) (c) A X B = I ImJB In
B
m x m
333
EXERCISES
2. (A X I
3.
-
I x A). (A x
A
4. 1 0
1 -1
(A x
c=(o 1)’ (C x
5.
D=(-2
1)
(16)
0 1 A=(l
o),
O ab) B = (a/b 0
A (A x
x
A ?
‘1
6.
6 4 3 2
A = ( 83 2 6 4
4 1 8 2
7.
b)
1 0 1 0
8;
A=(; 0 1 0 0
2 x 2 ?
8.
AX
X,
+ XBt = C
334 9.
XIV. T H E DIRECT PRODUCT A N D KRONECKER S U M
tl
v
by u
uluz , uZ2) u12u2, u1u2, uZ3)
=
AV v1v2 , uZ2)?
A l zl,
,
v12v2, v1vz2, vZ3)?
AL2I = A x A, n x n
CHAPTER X V
Periodic Systems
on
1. REDUCIBILITY IN T H E SENSE O F L Y A P U N O V
n x n
z.
dx - dz
X(0) # 0
-jRX,
X
n
R(z)
X(0) =
X(z) 335
(2)
336
PERIODIC SYSTEMS
by x
= L(z)y
(3)
x = L(z)Y
(4)
n x n
Lyupunov
bound.
reducible in
sense
ofLyupunov
A (4)
y
= e-iAz
X
= L(z)e-iAz
good
(7)
do
2. PERIODIC SYSTEMS
R(z)
I, R(z z,
+ 2 ) = R(z)
x
(9)
2. (2),
z by ( z
+ I):
-jR(z)X(z
=
+ 1)
X(z + I )
C
337
PERIODIC SYSTEMS
(10)
1
Eq.
X(z): X(z
+ 1 ) = X(z)C
C
(11)
A
c = e-iAl
(12)
so c z l l
= e-iAz
C(z+Z)ll= e-jA(z+l)
~
e-jAze-jAl
- e-jAzc
by
CzIi
(13)
C
X(z).
L(z) = X ( Z ) C - ~= / ~X(z)eiAz L(z
(14)
+ 1) = X(z + l)ejA(z+fl) = X(z)CC-lej*Z =
z.
(15)
L(z)
L(z),so
X(z)
= L(z)e-iAz
(16)
R(z),
A
338 so
XV. PERIODIC SYSTEMS
L
* dz
= j(LA - RL)
(5).
A,
(18)
L so U
u = LV L (2)
(19)
X by X,
U
dV - -L-l- dL L-qJ dz dz =
(-L-l
=
-jAV
+ L-'
(14). dU
dz
dz dL -jL-'RL)V (20)
X,
L,
-jAz)
A 3. F O R M O F T H E F L O Q U E T FACTORS
on
K
R(z)
K-
+ I) (1
C
= M(z)-'M(z
+I)
(21)
5.
339
THE FLOQUET MODES
N
M (M-'N)tK(M-'N)
= NtMt-'KM-'N
= NtKN = K
C
A,
K
= Mt-lKM-l = Lt-l
(12),
exp[-jAtz]K exp[jAz]L-l
= Lt-lKL-1
(22)
L-l,
R
4. DETERMINATION FROM THE MATRICANT
z
=
0, L(0) = I
(23)
M(1) = L(l)e-jAl = e-jA1
(24)
A,
-jAz).
no
5. THE FLOQUET MODES
of A,
of
A u ~= Piui
X(Z'(0)
= ui
x ( ~ ) ( z= ) M(z)ui = L(z)e-jAzui = e-'flvz{L(z)ui}
(25).
(26)
340
XV. PERIODIC SYSTEMS
Floquet mode ui 1.
L(z) Lui ,
Eq.
x(s)(nl) = e-%inlU,
(27)
6. SPACE HARMONICS
L(z)
1,
z
L,
=
I1
1
L(z)eiznnz'l dz
0
Eq. x(i)(z) = e-j~,z
2
~ ~ ~ - j z n n z / l U ~
n
up),
harmonics,
@'.
K, A
/Ii by
space
A. on
pi
7.
34 1
ORTHOGONALITY RELATIONS
pi 2r/l
(31).
uy)
do,
pjn).
7. O R T H O G O N A L I T Y RELATIONS
R,
A, ui
u ~ ~ K u= , ~oiSij,
ui
= *1
(33)
(26), ~ ( ~ ) t K x ( -= j )expb/3,*z] exp[ -~/3-~z]u~tLtKLu,~ = expL(fii* - /3,j)z]uitKu,j = eXp[j(B-i
-
- 0.8.. I
L
(34)
13
pi* = {x(i)}
x.
K (34),
(32)
2 e ~ p ~ / 3 ~ ( ~ ) z ] uexp[ : ~ )-$FJuK) tK n,m
=
2expU(/3,"i)
-
/3q)z]~:~)tKuL?)
n,m
= 0 1. 8$3. .
i
(35)
=j
ujn)
ui
~UY)~KU =F ui ~ n
(37)
342
XV. PERIODIC SYSTEMS
A, A do
,81n) R(z)
Pi.
by
=
1
1, 1
R,
=
-j
2
dz
8.
343
EXAMPLE
n,
by
(31),
pim) + 2mll = &m+n)
=
(41)
CRnpnLuim) m
or
(42) !(Rnpm - rB(im’8n,mI)!= 0
(43)
n
m
N x N on
R(z) N x N
(43)
N x N (43) (43) by
(42) by
8. EXAMPLE
0
R=(
(44)
K=I fl
y
13, by
8.)
344
XV. PERIODIC
R
=
R(z) = Rle-jSz
+ R-lej@z
+
=
27r/t3,
(42) R1u;-' - /9;~3 R_,U;+'
i
0
pi
n.
(45),
u;O) # 0. = pl"'p;-"
Sl"' of
=
by
&p
up). by R,
by
y2
(45)
=
p(p- 8)
& l/pS.+4y2) /3,
R-,
8.
8.
8(8,
-
345
EXAMPLE
8,
y2
P-)
8. n-mode operation.)
8,
Eq.
u:’
k+ n = 1,
Eq.
ui1)
Eq.
c1
n
Eq.
= 2,
Eq. c2 =
c1 =
0.
0.
8-
Eq. (32), x + ( 4 = k+
i
(B+ + B)
346
PERIODIC
R
Eq. ( I ) (49).
/3-
/3+
(44),
9. CONCLUSIONS
Eq. (44) do
R
Exercises
1.
L
3,
As
LtKL
=H
H
R
2.
A
3.
on
R
=
-.a)
?
4.
R,
by
/3
K
=
(dZ/dz)/Z
347
EXERCISES
?
by
_ -5.
R = (a a, 6,
/3
Eq. (47).
-
0 2b
PIo).
=
a
+ 2b 0
Bz
up
/?z
1
CHAPTER X V I
Application to Electromagnetic Theory
by of
A
do
x,
1. CARTESIAN SYSTEM
E E = ( 2 )
H,D,
J.
A,
do A
=
(-a/ayalaz
o
alax
348
-apx o
Q-
1.
349
CARTESIAN
by
E.
d, V,
E.
apz)
6’ = ( a p x
(3)
E,S’E,
6‘
T. ajax =
k;2)
(4)
(ST)
6. 6. (ST), T.
cpST
A Cijk
eijk =
0
,
ijk 123,
-
1
ijk
odd
on
AS A6 6’A
S’A
=0
(5)
0
(6)
E
of
by A’
= 66‘
-
6‘61
(7)
350
APPLICATION TO ELECTROMAGNETIC THEORY
x
x)
=
-
V2.
16’61.
2. MAXWELL’S E Q U A T I O N S
AH
==
+ -D at
J
(8)
d E = --B
at
6‘D = p S’B = 0
D
+ P = EE
= eOE
B =poH
+M
= pH
no E
p
J
E
p
p
AH
=j
AE
==
w~E
-j~pH
S‘E = 0 6‘H = 0
(14)
3.
MAGNETIC HERTZIAN VECTOR POTENTIAL
35 1
p
E
by
d
5)
on A2E = =
-
(14):
6’6)E
-jwpoAH
= w2p0q,E
(18)
+w
~ ~ ~=E0 ~ ) E
(19)
+w
~ ~ ~= E 0~ ) H
(20)
3. MAGNETIC HERTZIAN VECTOR POTENTIAL
n,,, E = -j w An,
(21)
by H
= W2pEnh
+
S$hh
(22)
J *!,I
5) 6(6’nh
- $hh)
=
+
W2pE)nh
$hh
+ W 2 p € ) n h= 0
(24)
(22), H
=
-6’6nh+ 66’nh= A2nh
(25)
352
TO
(6),
by
(23). (25)
by
nh, (24).
4. ELECTRIC HERTZIAN VECTOR POTENTIAL
He.
H E
=jwc
All,
= w2qJIe
-
4,)=
*,
=
(26)
+ + w%p)IIe
(28)
6'n,
(29)
+ w%p)II, = 0 (29)
(30), E
=
+ 66 ll, = A2'II,
As
p
(31)
(30).
IIe
E
(30)
5.
353
CHANGE OF BASIS
E,
p,
u.
3)
(8)
p
by
do no 5. CHANGE O F BASIS
0 = tan-’(y/x) Y
=
(2+ y
y
z = z
We
.. (32) =
SE S
4)
6
(1 5)
E=SE
R=SH d
(33)
2
2 = sos-’
(34)
354
XVI. APPLICATION TO ELECTROMAGNETIC THEORY
(14).
on
6'
by
6
A2
=
8 = S6
(36)
8s'
(37)
-
Sd' 8S-l S
=
I.
6'6 S
S
S-'
S
8' 8. S8'8S-1
by
S8'8S-l.
6'6
(Ss'dS-1
(30)
+
W"€)rIr,
II, .
=0
(24),
(38)
6.
355
POLARIZATION COORDINATES
6. POLARIZATION COORDINATES
of
polarization
by z
E,
E, .
Eq. (39), - = - - ax ar, a ~ ax ,
++-dr,av
a ay
356
XVI. APPLICATION T O ELECTROMAGNETIC THEORY
Eqs. (34)-(36)
i($) a
(45)
S
(6). Eq.
(20), (24),
(30).
Eq. (39), r
eje = cos
0
= d x 2 + y2 =
+j
0
= (x
d
E
+ jy)/r =
(47)
(48)
Fn(r, 8, 2)
7.
357
CONCLUSIONS
2,
(46), on F, S’SF,
= -(y2
+ Bz)FrL
(51)
7. CONCLUSIONS
(2), do. on by do on
358
XVI. APPLICATION T O ELECTROMAGNETIC THEORY
do,
Exercises
1.
Eq. by
2.
x =Y
0
p
y
0
p
=Y =
S
cos
e
Eq. (33)
s= 3.
A , 8,
4.
A , 8,
i
0
by 0
cp
p
cos
0
cp
p
8' 8'
5.
v = pv - ZI + t - (Vp) + v x (pt) = x t )+ x + v (t x ); = ;- (V x +u ) - +u * x v) (I$)
6.
(z .V)
(;V
V ( t * G)
v x (t x ); 7.
do
a ) ?
= =
tx
-
Eqs. (5)-(7) by
x );
+ (Z
-$
*
-
+ v' x (V x t ) + ;( t )+ - ); *
by
*
V)t
CHAPTER X V l l
Sturm-Liouuille Systems d ( p -) dz
p , q,
- qf - hYf = 0
dz
r
(a, b),
z,
f(z) z =a
z = b.
z z
p
of q = 0.
Y
of
As
N (a,b) z, = a
+ nh (n = 0,1, ..., N ) ,
a = z,, , b = zx , h = ( b -
by z,,
, h
by
(N + 359
a)/N.
360
XVII. STURM-LIOUVILLE SYSTEMS
-+
00.
on bound on
N on
x,
+ 00,
1. A P P R O X I M A T I O N IN A FINITELY D I M E N S I O N E D VECTOR SPACE
x,
on
n = 1, 2,
...,
n
=
by z.
x.
X
p, q,
Y
upon x
f(z).
by
f(x) by
0
1.
36 1
FINITELY DIMENSIONED VECTOR SPACE
do on
x,
.
n
zn
==
2 dn
(4)
1
d,
.
d,
+
= f(zn)
t dn+lf’(Zn>
f(zn+l)
= f(zn
f(zn-1)
= f(zn - dn) = f ( z n ) - &f’(zn>
dn+l)
f(zn) =
(6)
(7)
f n
n n
d,+,
(5)
=
1
=
fo
N,
fN+l d,
= x1
-
xo
by
f , = f N = 0,
f,’
1
=f2/d,
fl’ = d,u - 2 -fd
f N ’ = -fN-,/dN.
362
XVII. STURM-LIOUVILLE SYSTEMS
where dN+lis taken as appropriate to the boundary condition. We write T
>
fl f 2
fN-1
_- 1 dN+l
f N
1
I
which can be written as
f+' = D+f where
1
=( F ) ( - a i i 7t1
Similarly, from Eq.
+
8i.j-l)
we have 1
fl' = -dl f1
f;
1
=
-(f* -fJ 4 1
fN' =
which we write as -
1 -
d,( f N - f N - l )
0
0
fl f 2
f,
fN
I
\ I
(14)
363
2.
DD+PDf - Qf
-
hRf
D-PD+f - Qf
- hRf = 0
=0
by R-l, Hf
(18)
= hf
H
= R-'(D+PD- - Q)
H
= R-'(D-PD+ - Q)
D-
H. 2. MODIFIED STURM-LIOUVILLE E Q U A T I O N
by g
= p1My1I4f
(21)
Y
w. w
V(w)
w
364
XVII. STURM-LIOUVILLE SYSTEMS
D+D-
d2/dw2
D-D, w, (w7‘ =
1 + h) = gn + hgn’ + 2! h2&’ +
gn+1
=
gn-l
= g(w, - h) = gn - hg,’
(
-
D,
=
h2 I
+ --2!1
h2,”
by 2 1 1 - 2
0 1
-!
A -;
0 0
-2
. Hg
H = D,
= Ag
+ diag(Vl , V, , ...) v,-2 1 0
1 v,-2 1
0 1
v3-2
+
)
(26)
3.
365
THE CHARACTERISTIC EQUATION OF H
no (24).
by 3. T H E CHARACTERISTIC EQUATION O F
H
by
lv1i2-h v z - 2 - x
0 1
I
Vn-2-h
(29)
n x n.
k x k
n -K
by on
V1-2-h
1 pk(h)
1
v2- 2 - h
=(vk-2 vt-,
V1-2-X
-2
1 v*-2-x
!
= ( vk
I
I
-2 -
-pk-2 p,
=
v, - 2 - x
p 2 = (V, - 2
- h)(VZ- 2
-
-
1
V , 's
-h
366
XVII. STURM-LIOUVILLE SYSTEMS
(30)
Jucobi matrix V k
(30) do
V, do by 4. STURM CHAINS V k
p,(h)
p,(X) n,
chain h
pk(h)
=
0,
(a
pk+l(h)
< h < b)
k,
pk-l(h)
k,
po(X)
p,(X),
no
p,;(h)
(30)
by
by
Po(4
k pk(h)
k.
2
pk+l(h)
(30),
h,
p,(h) (30),
A.
p’s Pk
=
=1
pk-l(h)
=
0
h,
A.
pk-2
R(x) (a,b), I s R(h), - co
h
0
n(u) n.
R(x)
+ co,
+ co a
b, pk(a)
k
- 00,
4.
367
STURM CHAINS
pk(h)
pn-Jpn p, pi
b
piPl i # n,
n(b),
i
pnPl(b) > 0,
=
p,(b)
n,
+
0
-
b
by
n(b)
by
p71-l
by
p, , pk(h) pk(A) n(a) = 0. As h +
n(b)
+
up
(30),
by
h -+ - 00,
$),(A)
00,
k
b
odd.
P,~(A)
pn-l/pn P,-~
n. -n.
p,
on
k
n n
k
0 odd,
pk ,
pk-1 .
pk pkPl
A,
$1 n(a)
A
n(b)
V(x) n
(n -
n. V(x)
368
XVII. STURM-LIOUVILLE SYSTEMS
5. R E C U R S I O N FORMULA
(30),
on good
xn = anxn-i
+
n.
b,
a,
(33)
bnxn-z
do do Yn
(34)
= Xn-1
(33) x n = anxn-1
(34)
+
(35)
bnYn-1
(35)
P, = P,
P by
(n -
P,
(36) n. a,
n.
b,
(36) x,
n
.
yn by
odd t i n = Pnpn-1un-2
(38)
5.
369
RECURSION FORMULA
P,P,-, P,
a,,
b,
. (36),
by x,
on x,
x,-,
y , by on n.
1).
XV,
(34),
As Yn = knxn-1
k,
(36)
bn = kanan-,
k
k,
b, ,
a,
.
a,
(33), x, = anxnPl
nna,
=
+ kanan-,xn-,
P,
x,
(44) W,
= wn-1
+ kwn-2 P,
(43).
3 70
XVII.
do
do
Exercises
n x n
n
1.
Jn =
a, b, Jn
c
. (Hint:
3
J, .
(Hint:
a
( I 1)
dt
2.
d,
D, ?
R,
3. R4
+ aR3 + bR2 + CR+ dI = 0 Rn.
(Hint:
R” = fnR3 + gnR2+ h,R
f, , g, , h, , k,
+ k,I
n a =
b
= c =
0, d
=
-1.
CHAPTER X V l l l
Markoff Matrices and Probability Theory
body do up, by
Markofprocess do
by
by
by
N(t). 37 1
372
XVIII. MARKOFF MATRICES AND ‘PROBABILITY THEORY
+ $No
t
=
$N(t)
+ 1).
t,
0, go
Problem of the Gambler’s Ruin.
?
1.
Markoff
random walk
373
STATE VECTOR
drunkard’s walk
1. S T A T E V E C T O R
up
(M
$0
+1
$M
$1
$M, $(M
on,
-
$0. no
on
no
pure state. do
$N
p N,
mixed state.
374
x
probability vector.
on
61.
11 ax 11
=
0111
x 11.
go by
!I x t- y II
= I/ x II
+ II Y II
(3)
2. TRANSITION O R MARKOFF M A T R I X
$n.
$m
pmn
pm,
up
.
m n.
P,~, #m,
by #n
2.
375
TRANSITION OR MARKOFF MATRIX
P,,~,
transition probability
n
m. $n.
do x, $n
pmnx, .
$m ym
$m
(4)
by m by y
= Px
transition
(5)
M a r k 0 8 matrix. s
by x(s).
xk x(s
xk ,
x(s
+
+
P.
There is some confusion in the literature as to just what is called a Markoff matrix. Sometimes pmnis taken as the probability that state m arose from state n, and the Markoff matrix is the matrix of these probability terms. In this case, each row must be a probability vector, since state m must have arisen from some state.
316
XVIII. MARKOFF MATRICES A N D PROBABILITY THEORY
3. EIGENVECTORS O F A MARKOFF MATRIX
xi x(s) x(s)
Eq. ( 5 )
= xi
PXi = xixi x(s
x(s
+ x(s
x(s)
+ 1)
(7)
+ 1) = xixi hi
P no
$M
..., 0)
(8)
xz = col(O,O, ...)0, 1 )
(9)
x1
= col(l,O, 0,
on by
x3,..., x,
up
on ~ ( 0= )
2 i
U a. Xa. - alX1
+ uzx, +
***
(10)
3.
377
m x(m)
=
Cui~imxi
11 x(m) 11 11 xiII
=
1
m.
Xi # 1
=0
(13)
hi 1 hi I > 1,
xi
A’s
m
of x(m)
x(m)
P
I hi I
<1 x1
x 3 , ...,x,,
m+m
(14)
for all X i
x2 Eq.
x(m)
x ( m ) = ulxl
+ u2x2 $M
u2 ,
on
a,,
of
378
XVIII. MARKOFF MATRICES A N D PROBABILITY THEORY
x1
x2,
by
(xl- x2),
(2x1- x2)
by by x1 =
(4 x2 .
I A2 I
x1 =
x2
1,
4. R E C I P R O C A L E I G E N V E C T O R S
yi yi-fxj= Sii
(19)
5.
379
NONNEGATIVE A N D POSITIVE MATRICES
y It p x3. -- A.3Yi tx.3 -- h.6.. = xi 3 1 3 y,tP
= piyit
Ptyi
= pi*yi
yi y.tpx. a E z p EYE . .tx. 1 = xiy,txi pi = hi .
P
P of
Pt.
5. N O N N E G A T I V E A N D POSITIVE MATRICES
A 30.
of
do
reducible
reducible reducible
A
C
irreducible.
380 by
T do
by by Theorem. A n irreducible nonnegative matrix always has a positive real eigenvalue A that has multiplicity one. The magnitudes of all other eigenvalues do not exceed A. T o A there corresponds a reciprocal eigenvector that can be normalized to have coordinates that are all real and positive. Furthermore, if the matrix has k eigenvalues, A, , A, , ..., Akp1 , all of magnitude A, then these eigenvalues are all distinct and are roots of
Likewise, all other eigenvalues are simple and occur in sets that are similarly related. I f k > 1, then the matrix can, by a permutation, be put into the f o r m
where the 0’s along the main diagonal are scalars or square matrices.
on no
$0
x
38 1
EXERCISES
1 x 1
(23) on
(n n x 1
x (n -
A A,
by A,
do do
6. CONCLUSIONS
on
do do on
Exercises
$200 $400.
1.
on
p $200 on
$400 ?
$100
(p >
?
$50 ?
?
( p < 8) ?
382
XVIII. MARKOFF MATRICES A N D PROBABILITY THEORY
2.
l b O O O
f !H
A=
'be..
l)
O c a b O O
O
c
a
O
a, b, c
a+b+c=l
P
3.
Q X = a P + ( l -u)Q
0
< < 1.
Q
4.
PQ.
u
5.
uvT, v A
(1 x1 11
Al =
A,, A,, 1, 11 x2 11 = (1 xg I(
=
1
x1 , x2 , ..., x, ,
..., A,, =
.*.= 11 x, 11
=
0,
A
CHAPTER XIX
Stabilitv
by
of
t ?
x(t) = 0,
stable.
x(t) unstable.
x(t)
x(t)
by
admissable. of by
do no
by by
of
x(0). z z
z
383
384
STABILITY
P P
P x ( t ) = exp(Pt)x(O)
(2)
100 do
1. THE BASIC THEOREM FOR STABILITY
Theorem. A system described by Eq. with P constant is stable for all initial conditions if and only if all the eigenvalues of P have negative real parts-i.e., are in the left-hand plane of A.
r(t>= s w S
(3)
(1)
_ du - (S-1PS)u = P’u dt
P P‘
by
(4)
S
P u(t)
M’(t), go
= diag(eAlt,eAzt, ...)u(0) = M(t)u(O)
(5)
1.
THE BASIC THEOREM FOR STABILITY
(4) A 1 0 0
O h 1 0
PI=(.
...
O
385
)
p!. = za pr!, z.+ l = 1
p! . = 0 t.3
(4) U(t) = M(t)u(O)
1
t
0 1 0 0
=o
t2/2! t3/3! t t2/2! 1 t
*")
(7)
j < i
(7')
j
=O
(8)
by
(PM),, .
(5). n t
h
tneat
386
XIX. STABILITY
Definition. P is said to be stable, or a stability matrix if all of its eigenvalues have negative real parts.
2. ROUTH-HURWITZ METHOD
P, P n
h
n
ak = 0 6,
a,
=0
k > 8.
k > *(n
- 1)
b,
p(h)
no Hurwitz matrix
H=
n x n
2.
387
ROUTH-HURWITZ METHOD
by
a,/b,
(bo/co) Routh matrix R :
R
=
b, b2 ...
b, 0
i
c0
C,
0 0 do
...
Theorem. The number of roots of Eq. in the right-hand plane-i.e., with positive real part-is equal to the number of changes of sign in the sequence a, bo do 9
9
9
9
---
Theorem. A polynomial, Eq. (9) has all of its eigenvalues in the lefthand plane-i.e., with negative real part-if all of the terms a , , b, , c, , ... are nonzero and have the same sign.
b, , c, , d o , by regular
by
E
no (A2
+h +
+ h - 1) = A4 + u3 + 2 0
0
0 1
1 - 1
H=(i
A2 -
1
=0
388
XIX. STABILITY
1, 2,
1, 2,
-1
of of A4
+
a 3
- h2 -
u- 3 =
(A2
+ h - 3)(h2 + h + 1) = 0
2-2
co 2-2
0
0
0
2-2
0
0
0 a-3
2 -2
(+
=
0
0 -2
O
O
+ - - -).
+ 6/a -3
B
B,
0.
co = E 2 -2
0
1, 2, c
0
0
0 0
+ b / B , -3 (+ + + + -).
-2
0
0 -2 0 0
+ 6/a -3
4.
CRITERION OF LIENARD A N D CHIPART
389
on do by
3. H U R W I T Z D E T E R M I N A N T S
dk,
k
n): A,
= b,
A,
=
Ai>O,
bo bl b, a, U , a2 10 b, b,l
i
4. C R I T E R I O N O F L I E N A R D A N D C H I P A R T
h3
+ h2 + h + 6 = + 2)(Xz - h + 3) = 0 =
-2
and &l j-jfi)
(14)
390
XIX. STABILITY
by
Theorem. All of the roots of Eq. (1 5 ) have negative real parts i f and only i f one of the following four conditions is true (if one is true all are true):
I-
%-2k+?
I1.
%-2k+2
111. a, a,
> 0, > 0,
> 0, > 0,
a,-,,-, an--2k-l
> 0, > 0,
A,,-, > 0, A,, > 0, A 2 k - l > 0, A,, > 0,
no
on 5. LYAPUNOV’S SECOND METHOD
by
< k < n/2 1 < k < n/2 1 < k < n/2 1
(17)
5.
39 1
Lyapunov function s
by (18)
s = xtLx
x
x
=
0,
s
t
ds -
dx dxt Lx + XtL dt dt = xt(PtL + LP)x = X ~ M X
dt
M Mt
= (LP
= LP
(1%
+ PtL
(20)
+ PtL)t = PtL + LP = M
(21)
dsldt
xo ,
s s
s(t)
so.
x
>
=
0.
s
s(x) s
0,
so
x
go
s
-
so.
x
go
= 0.
x
111, xtx
=
bound x(t)
xtLx >X,>O xtx
L
A,
xtMx xtx
M.
pm
< /L , , , X<~XPm -S
ds = X ~ M X dt
Am
k,
=
-Pmlhm > 0
=
-k,s
392
XIX. STABILITY
<
+
t
M
03.
P dL/dt, t?
M
(20)
bound
e-*mts,,
bound (23)
pvr ,
(25). s(x).
up
s(t)
L, s(x).
no
As s(x)
reduced energy As by
W,
0, p, 7,
K
on p, 7,
s = XtX
L=I
K
6.
393
A
'
M=LP+PtL=2
p, 7,
'")
-7
-/.L7-K2>0
/.L-7
If
(-jK
K
on
< -%,
/.L - 7 E,
- K 2 . 2 60
6,
P 6. A METRIC AS L Y A P U N O V MATRIX
K. K
(20),
M,
K xtKx
M
= KP
PI = *(P P, = +(P
+PtK
+ K-lPtK) - K-lPtK)
P,
P,
KP1
-
PItK
=0
KP,
+ P,tK
=0
P
= P,
+ P, (28),
M
= KP,
+ P,tK
= 2KP,
394
XIX. STABILITY
KP, K
proper
P,
KP, , (xtKx)
P,
7. CONCLUSIONS
P no
so
on
on no
Exercises
on a, b,
1. x4
c,
d
+ ax3 + bx2 + cx + d = 0
395
EXERCISES
2. (a)
x3 X*
a
+ ax2 + x + a = 0 + + ( b + 1) x2 + ax + b = 0 (1x3
b x2
+ 1.
on
3.
do
=
a
b
(;
3
by
References and Recommended Texts
Chapter I-VIII
11,
The Theory of Matrices, 1959,
by
book. Introduction to Matrix Analysis, book
1960.
book
Linear Algebra and Group Theory, by 1961.
book
Principles and Techniques of Applied Mathematics, 1956. on 1952,
.
Linear Algebra and Matrix Theory, good 3%
REFERENCES A N D RECOMMENDED TEXTS
397
Finite Dimensional Vector Spaces, 1958. book
1960,
Coupled Mode and Parametric Electronics, on book Introduction to Quantum Mechanics, 1960. good
1
Quantum Mechanics 1961 1962.
2,
by
Computational Methods of Linear Algebra, 1959,
V. C.
by on
on Chapter I X
Proc. I.R.E. 49, 32,
Appl. Phys. 31, 33, by
1151,
Phys. Rev. 123 Phys. Rev. 123,
by
Relativity: The Special Theory, 1960. Chapter X
Methods of Theoretical Physics, 1953.
398
REFERENCES A N D RECOMMENDED TEXTS
loc. cit. loc. cit., Chapter X I
loc cit. loc. cit. Chapter XI1
loc. cit., by Spectrum 1,
by Chapter X l l l
loc. cit. Group Theory and Its Application to the Quantum 1959. Mechanics of Atomic Spectra, Lie Algebras, 1962. Continuous Groups of Transformations, 1961. The Structure of Semisimple Lie Algebras, by 1958, 203673. The Classical Groups, Their Invariants and Representations, 1946.
Chapter XIV
loc. cit. loc. cit.
399 Chapter XV Zoc. cit. Proc. IEEE 51,
Chapter XVI
by
J. Appl. Phys. 31, Chapter XVll on Zoc. cit.,
Methods of Mathematical Physics, 1953. Zoc. cit. Matrix Iterative Analysis, 1962. Chapter XVlll loc. cit.
Zoc. cit. Chapter X I X on Zoc.
cit.,
with Applications,
Zoc.
cit.,
Stability by Liapunov’s Direct Method 1961.
SUBJECT INDEX 4
66 66
26 S, 200
5 98, 223 305 87 152 305
2 62 279 307
64 9
22
200 1 18
23, 300 302 294, 301
221
1 18 71 45, 46 142
196 198
216 56 5 5 , 215 296
73 46
222 62
349
4, 116 26
298 82 106, 203
9 88 27 26, 121
356 193, 258 102
163
50
72 135
68 74
96 293 167, 305
366 188 47 218 191
148 14 389 31
141 114 77 78 90
1 72 69
9 322
40 1
SUBJECT INDEX
349
193 349
61 21 2
101, 295 296 40, 101
25 280 4 40
373 87
356 100
240 109
E , , 52 fijk
, 349 200, 267 66, 67 306 A, 156 73 73 66, 67 306 74 A, 77 75 88 4 21 2 219 1 18
352 351 51 343 138 386 389 21 9 13, 260 241
50 47 61 47 298 188
242 on on
23 10, 57
305
44,217
327
52
108
217 49
201 45
1
173 174 109 262 212
8 340 338
51 380
105
64
32 30
372 27, 121 32 77
231 31 114, 277 198
90
GL(n), 296
138
403 69
173 391 301,305 174
366 135, 210 152
336 179 5 5 , 128, 216
140 139 135,
1
312 11, 124 241
12, 17 375 371 174 bound on
188
178 bound on, 182 1 1 1, 224 233
K
185
13 27
I 1 1, 224
K
26 188
233
58
72
64 56, 219, 221 58
102 293 14
58, 233 11 11
14 1 18 50, 100
224
224
48
K
233 56 322 325 327
386 114, 277 22 27 173 30, 173 114, 277 366, 370
L ( n ) , 302
1 1 1, 224
336 3 19
14
44
375 179
294 300
19, 21 16 17 25, 242 179, 379 50 100
301 390
11 9 10 7 9 46
22 101
404
SUBJECT INDEX
121, 124 15 128
50
379 102
148 16
3
379
61 50
100
15 195 379
222 10 86, 281
26 387 16
O(n), 296
27 76 117 30
305 97, 110, 223 by, 195 349 113, 260 113, 242 102
100 101 of, 157 386 52, 101 148 375 26 18 33 100 33 26
64,104, 287 56 by by 58 239 55
222
55
350
130
51
21 6 295 124, 127
233 233 142 196 198 S , 202
380 247 70 6
345
n
331 189 189
171 142
73 62 69 n
113, 242
a
196 198 72 307 212 198 139
405
SUBJECT INDEX
142 S , 202
296 26
196 198
4 74 50
130 379 138 85 374
4
273 4 22 55
387 387
99 322
2 100
100
85
19, 21
16 17
6
28
47, 312 281
96 282
222
on 287 259 275 on on
105
40, 241 76 39 124
T,284
T,284
117 16
50
64
66 66
73 218 216
SL(74, 296 62
51 201
193 21 9 52
91 373
51 62
281
86 281 282
96 297
72
88 87
43 45 340 218
9 379
336 195
157 86 55
124126 by 126, 127
28 386 383, 386
406
SUBJECT INDEX
148 100
371 300
155
366 367
110 383, 386
10
24 106, 203 193 262 72, 105
1 4 of, 5 200 222 148
124 250 148
66 48 44, 217 56, 219 9
380 43 86
6 122 1
56 374
18
127
17 6
375 148, 153, 159, 168,
87 222
3
17, 346
5
187
47, 312 18
2
2 47
189
219 124
U(n),296
v,
I
45
351