MATLAB –––––––––––––––––––––––––––––––––––––––––––– Yaudl_ogbq_kdbo\uqbke_gbc _ckl\bl_evgh dZ`^uc klhe[_pbf__l h^...
51 downloads
514 Views
585KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
MATLAB –––––––––––––––––––––––––––––––––––––––––––– Yaudl_ogbq_kdbo\uqbke_gbc
Getting Started with MATLAB GZqZehjZ[hlukMATLAB
Kh^_j`Zgb_ <\_^_gb_....................................................................................................5 QlhlZdh_0$7/$%"................................................................................................ 5 Kbkl_fZ0$7/$%.................................................................................................... 5 H6LPXOLQN ................................................................................................................. 6
AZimkd0$7/$% .....................................................................................7 FZljbpubfZ]bq_kdb_d\Z^jZlu ......................................................8 <\h^fZljbp .............................................................................................................. 9 Hi_jZpbbkmffbjh\Zgbywe_f_glh\ljZgkihgbjh\Zgbyb^bZ]hgZebaZpbb fZljbpu................................................................................................................... 10 Bg^_dku................................................................................................................... 11 Hi_jZlhj^\h_lhqby ............................................................................................... 12 NmgdpbyPDJLF........................................................................................................ 13
I_j_f_ggu_ ............................................................................................................ 14 QbkeZ........................................................................................................................ 14 Hi_jZlhju............................................................................................................... 15 Nmgdpbb .................................................................................................................. 15
JZ[hlZkfZljbpZfb..............................................................................17 =_g_jbjh\Zgb_fZljbp........................................................................................... 17 AZ]jmadZfZljbp...................................................................................................... 17 FnZceu.................................................................................................................. 18 H[t_^bg_gb_........................................................................................................... 18 M^Ze_gb_kljhdbklhe[ph\ ................................................................................... 19
DhfZg^gh_hdgh.....................................................................................20 DhfZg^ZIRUPDW ....................................................................................................... 20 KhdjZs_gb_\uoh^guo^Zgguo ............................................................................ 21 >ebggu_dhfZg^gu_kljhdb.................................................................................. 21 J_^ZdlhjdhfZg^ghckljhdb .................................................................................. 21
=jZnbdZ ..................................................................................................23
Kha^Zgb_]jZnbdZ................................................................................................... 23 HdgZbah[jZ`_gbc.................................................................................................. 24 >h[Z\e_gb_djb\uogZkms_kl\mxsbc]jZnbd................................................... 25 Ih^]jZnbdb............................................................................................................. 25 Fgbfu_bdhfie_dkgu_^Zggu_........................................................................... 26 MijZ\e_gb_hkyfb .................................................................................................. 27 Ih^ibkbdhkyfbaZ]heh\db.................................................................................. 28 NmgdpbbPHVKbVXUIDFH ......................................................................................... 28
KijZ\dZbl_dmsZy^hdmf_glZpby....................................................31
DhfZg^ZKHOS ........................................................................................................... 31 HdghkijZ\db .......................................................................................................... 32 DhfZg^ZORRNIRU ...................................................................................................... 32 Help Desk................................................................................................................. 33 DhfZg^ZGRF ............................................................................................................ 33 I_qZlvl_dmsbokijZ\hqguokljZgbp .................................................................. 33 3
GZqZeh jZ[hlu k MATLAB K\yavk0DWK:RUNV ................................................................................................. 33
Kj_^Z0$7/$% .....................................................................................34 JZ[hq__ijhkljZgkl\h ............................................................................................ 34 DhfZg^ZVDYH........................................................................................................... 34 FZjrjmlihbkdZ..................................................................................................... 35 Hi_jZpbbgZ^^bkdh\ufbnZceZfb...................................................................... 35 DhfZg^ZGLDU\.......................................................................................................... 36 AZimkd\g_rgboijh]jZff .................................................................................... 36
Ih^jh[g__hfZljbpZobfZkkb\Zo.....................................................37 Ebg_cgZyZe]_[jZ ................................................................................................... 37 FZkkb\u .................................................................................................................. 40 Fgh]hf_jgu_^Zggu_ ............................................................................................ 41 KdZeyjgh_jZkrbj_gb_ .......................................................................................... 42 Eh]bq_kdZybg^_dkZpby.......................................................................................... 42 NmgdpbyILQG ........................................................................................................... 43
MijZ\e_gb_ihlhdZfb..........................................................................45 if ............................................................................................................................... 45 VZLWFKbFDVH ............................................................................................................ 46 for ............................................................................................................................. 47 while ......................................................................................................................... 47 break ......................................................................................................................... 48
>jm]b_kljmdlmju^Zgguo ..................................................................49 Fgh]hf_jgu_fZkkb\u .......................................................................................... 49 FZkkb\uyq__d ........................................................................................................ 50 Kbf\heubl_dkl..................................................................................................... 51 Kljmdlmju ............................................................................................................... 54
Kp_gZjbbbnmgdpbb............................................................................56 Kp_gZjbb ................................................................................................................. 56 Nmgdpbb .................................................................................................................. 57 =eh[Zevgu_i_j_f_ggu_........................................................................................ 58 DhfZg^ghnmgdpbhgZevgZy^\hckl\_gghklv...................................................... 59 NmgdpbyHYDO........................................................................................................... 60 <_dlhjbaZpby .......................................................................................................... 60 Ij_^\Zjbl_evgh_\u^_e_gb_................................................................................. 61 Nmgdpbyhlnmgdpbc.............................................................................................. 61
MijZ\ey_fZy]jZnbdZ .........................................................................63 =jZnbq_kdb_h[t_dlu ............................................................................................ 63 MijZ\e_gb_h[t_dlZfb .......................................................................................... 63 Nmgdpbbkha^Zgbyh[t_dlh\ ................................................................................. 64 K\hckl\Zh[t_dlZ.................................................................................................... 65 VHWbJHW .................................................................................................................... 65 =jZnbq_kdbcIhevah\Zl_evkdbcBgl_jn_ck*8, ............................................ 66 :gbfZpby ................................................................................................................ 67 Movie ....................................................................................................................... 68
>hiheg_gb_.............................................................................................70
4
<\_^_gb_
<\_^_gb_ QlhlZdh_MATLAB?
MATLAB – wlh \ukhdhijhba\h^bl_evguc yaud ^ey l_ogbq_kdbo jZkq_lh\ Hg \dexqZ_l\k_[y\uqbke_gby\bamZebaZpbxbijh]jZffbjh\Zgb_\m^h[ghckj_^_]^_aZ^Zqbbj_r_gby\ujZ`Zxlky\nhjf_ [ebadhcdfZl_fZlbq_kdhcLbibqgh_bkihevah\Zgb_0$7/$%±wlh •fZl_fZlbq_kdb_\uqbke_gby •kha^Zgb_Ze]hjblfh\ •fh^_ebjh\Zgb_ •ZgZeba^Zgguobkke_^h\Zgbyb\bamZebaZpby •gZmqgZybbg`_g_jgZy]jZnbdZ •jZajZ[hldZijbeh`_gbc\dexqZykha^Zgb_]jZnbq_kdh]hbgl_jn_ckZ 0$7/$%±wlh bgl_jZdlb\gZykbkl_fZ\dhlhjhchkgh\gufwe_f_glhf^Zgguo y\ey_lkyfZkkb\Wlhiha\hey_lj_rZlvjZaebqgu_aZ^Zqbk\yaZggu_kl_ogbq_kdbfb \uqbke_gbyfb hkh[_ggh \ dhlhjuo bkihevamxlky fZljbpu b \_dlhjZ \ g_kdhevdhjZa[uklj__q_fijbgZibkZgbbijh]jZffkbkihevah\Zgb_fkdZeyjguoyaudh\ijh]jZffbjh\ZgbylZdbodZdKbbebNhjljZg Keh\h MATLAB hagZqZ_l fZljbqgZyeZ[hjZlhjby(matrix laboratory). MATLAB [ue ki_pbZevgh gZibkZg ^ey h[_ki_q_gby e_]dh]h ^hklmiZ d /,13$&. b EISPACK, dhlhju_ ij_^klZ\eyxl kh[hc kh\j_f_ggu_ ijh]jZffgu_ kj_^kl\Z ^eyfZljbqguo\uqbke_gbc MATLAB jZa\b\Zeky \ l_q_gbb g_kdhevdbo e_l hjb_glbjmykv gZ jZaebqguo ihevah\Zl_e_c < mgb\_jkbl_lkdhc kj_^_ hg ij_^klZ\eye kh[hc klZg^Zjlguc bgkljmf_gl ^ey jZ[hlu \ jZaebqguo h[eZklyo fZl_fZlbdb fZrbghkljh_gbb b gZmdb < ijhfure_gghklb 0$7/$% ± wlh bgkljmf_gl ^ey \ukhdhijh^mdlb\guobkke_^h\ZgbcjZajZ[hlhdbZgZebaZ^Zgguo < 0$7/$% \Z`gZy jhev hl\h^blky ki_pbZebabjh\Zgguf ]jmiiZf ijh]jZff gZau\Z_fuo WRROER[HV Hgb hq_gv \Z`gu ^ey [hevrbgkl\Z ihevah\Zl_e_c 0$7/$%lZddZdiha\heyxlbamqZlvbijbf_gylvki_pbZebabjh\Zggu_f_lh^u 7RROER[HV ± wlh \k_klhjhggyy dhee_dpby nmgdpbc 0$7/$% FnZceh\ dhlhju_iha\heyxlj_rZlvqZklgu_deZkkuaZ^Zq. Toolboxesijbf_gyxlky^eyh[jZ[hldbkb]gZeh\kbkl_fdhgljheyg_cjhgguok_l_cg_q_ldhceh]bdb\wc\e_lh\ fh^_ebjh\Zgbybl^
Kbkl_fZMATLAB
Kbkl_fZMATLABkhklhblbaiylbhkgh\guoqZkl_c
Yaud 0$7/$%. WlhyaudfZljbpbfZkkb\h\\ukhdh]hmjh\gykmijZ\e_gb_fih-
lhdZfb nmgdpbyfb kljmdlmjZfb ^Zgguo \\h^hf\u\h^hf b hkh[_gghklyfb h[t_dlghhjb_glbjh\Zggh]h ijh]jZffbjh\Zgby Wlh iha\hey_l dZd ijh]jZffbjh\Zlv\g_[hevrhffZkrlZ[_^ey[ukljh]hkha^Zgbyq_jgh\uoijh]jZfflZd b\[hevrhf^eykha^Zgby[hevrbobkeh`guoijbeh`_gbc 5
GZqZeh jZ[hlu k MATLAB Kj_^Z 0$7/$%. WlhgZ[hjbgkljmf_glh\bijbkihkh[e_gbckdhlhjufbjZ[hlZ_l ihevah\Zl_ev beb ijh]jZffbkl 0$7/$% HgZ \dexqZ_l \ k_[y kj_^kl\Z ^ey mijZ\e_gbyi_j_f_ggufb\jZ[hq_fijhkljZgkl\_0$7/$%\\h^hfb\u\h^hf ^Zgguo Z lZd`_ kha^Zgby dhgljhey b hleZ^db 0nZceh\ b ijbeh`_gbc MATLAB. MijZ\ey_fZy ]jZnbdZ. Wlh ]jZnbq_kdZy kbkl_fZ 0$7/$% dhlhjZy \dexqZ_l \
k_[y dhfZg^u \ukhdh]h mjh\gy ^ey \bamZebaZpbb ^\mo b lj_of_jguo ^Zgguo h[jZ[hldb bah[jZ`_gbc ZgbfZpbb b beexkljbjh\Zgghc ]jZnbdb HgZ lZd`_ \dexqZ_l\k_[ydhfZg^ugbadh]h mjh\gyiha\heyxsb_iheghklvxj_^Zdlbjh\Zlv \g_rgbc \b^ ]jZnbdb lZd`_ dZd ijb kha^Zgbb =jZnbq_kdh]h Ihevah\Zl_evkdh]hBgl_jn_ckZ*8, ^ey0$7/$%ijbeh`_gbc
;b[ebhl_dZ fZl_fZlbq_kdbo nmgdpbc. Wlh h[rbjgZy dhee_dpby \uqbkebl_evguo
Ze]hjblfh\ hl we_f_glZjguo nmgdpbc lZdbo dZd kmffZ kbgmk dhkbgmk dhfie_dkgZyZjbnf_lbdZ^h[he__keh`guolZdbo dZd h[jZs_gb_ fZljbp gZoh`^_gb_kh[kl\_gguoagZq_gbcnmgdpbb;_kk_ey[ukljh_ij_h[jZah\Zgb_Nmjv_
Ijh]jZffguc bgl_jn_ck. Wlh[b[ebhl_dZdhlhjZyiha\hey_libkZlvijh]jZffugZ
KbbNhjljZg_dhlhju_ \aZbfh^_ckl\mxl k 0$7/$% HgZ \dexqZ_l kj_^kl\Z ^ey\uah\Zijh]jZffba0$7/$%^bgZfbq_kdZyk\yav \uau\Zy0$7/$%dZd \uqbkebl_evgucbgkljmf_glb^eyql_gbyaZibkb0$7nZceh\
H6LPXOLQN
6LPXOLQNkhimlkl\mxsZy0$7/$%ijh]jZffZwlhbgl_jZdlb\gZykbkl_fZ^ey fh^_ebjh\Zgbyg_ebg_cguo^bgZfbq_kdbokbkl_fHgZij_^klZ\ey_lkh[hckj_^mmijZ\ey_fmxfurvxdhlhjZyiha\hey_lfh^_ebjh\Zlvijhp_kkiml_fi_j_lZkdb\Zgby[ehdh\^bZ]jZffgZwdjZg_bbofZgbimeypb_c6LPXOLQNjZ[hlZ_lk ebg_cgufb g_ebg_cgufb g_ij_ju\gufb ^bkdj_lgufb fgh]hf_jgufb kbkl_fZfb %ORFNVHWV±wlh^hiheg_gbyd6LPXOLQNdhlhju_h[_ki_qb\Zxl[b[ebhl_db[ehdh\^eyki_pbZebabjh\Zgguoijbeh`_gbclZdbodZdk\yavh[jZ[hldZkb]gZeh\ wg_j]_lbq_kdb_kbkl_fu 5HDO7LPH:RUNVKRS±wlhijh]jZffZdhlhjZyiha\hey_l]_g_jbjh\ZlvKdh^ba [ehdh\ ^bZ]jZff b aZimkdZlv bo gZ \uiheg_gb_ gZ jZaebqguo kbkl_fZo j_Zevgh]h\j_f_gb
6
AZimkd 0$7/
%$AZimkd MATLAB WlZ dgb]Z ij_^gZagZq_gZ ^ey gZqZevgh]h hk\h_gby b bamq_gby 0$7/$% HgZ kh^_j`blg_dhlhjh_dhebq_kl\hijbf_jh\dhlhju_fh]ml[ulvaZims_gubhlke_`_gu\0$7/$% Qlh[u aZimklblv 0$7/$% gZ JK beb FZk ^\Z`^u s_edgbl_ gZ bdhgdm 0$7/$%>eyaZimkdZ\kbkl_f_81,;gZibrbl_matlab \kljhd_hi_jZpbhgghc kbkl_fu>ey\uoh^Zba0$7/$%g_h[oh^bfhgZ[jZlvquit\kljhd_0$7/$% ?keb\Zfg_h[oh^bfhihemqblv^hihegbl_evgmxbgnhjfZpbxgZ[_jbl_help \ kljhd_0$7/$%beb\u[_jbl_Help\f_gxgZ3&beb0DFFu[he__ih^jh[gh jZkkdZ`_f\Zfh[wlhfiha^g__
7
GZqZeh jZ[hlu k MATLAB
FZljbpubfZ]bq_kdb_d\Z^jZlu Emqrbc kihkh[ gZqZlv jZ[hlm k 0$7/$% ² wlh gZmqblvky h[jZsZlvky k fZljbpZfb<wlhc]eZ\_fuihdZ`_f\ZfdZdgZ^hwlh^_eZlv<0$7/$%fZljbpZ ± wlh ijyfhm]hevguc fZkkb\ qbk_e Hkh[h_ agZq_gb_ ijb^Z_lky fZljbpZf o dhlhju_ y\eyxlky kdZeyjZfb b fZljbpZf bf_xsbf h^bg klhe[_p beb h^gm kljhdm ² \_dlhjZf 0$7/$% bkihevam_l jZaebqgu_ kihkh[u ^ey ojZg_gby qbke_gguobg_qbke_gguo^Zgguoh^gZdh\gZqZe_emqr_\k_]hjZkkfZljb\Zlv \k_^Zggu_dZdfZljbpu0$7/$%hj]Zgbah\ZglZdqlh[u\k_hi_jZpbb\g_f [uebdZdfh`gh[he___kl_kl\_ggufb<lh\j_fydZd^jm]b_ijh]jZffgu_yaudbjZ[hlZxlkqbkeZfbdZdwe_f_glZfbyaudZ0$7/$%iha\hey_l\Zf[ukljhb e_]dhhi_jbjh\Zlvkp_eufbfZljbpZfb
8
FZljbpu b fZ]bq_kdb_ d\Z^jZlu Ohjhrbc ijbf_j fZljbpu dhlhjZy bkihevam_lky \h \k_c wlhc dgb]_ fh`gh gZclb gZ ]jZ\xj_ \j_f_g J_g_kkZgkZ om^h`gbdZ b ex[bl_eyfZl_fZlbdb:ev[j_olZ >xj_jZ Wlh bah[jZ`_gb_ kh^_j`bl fgh]h fZl_fZlbq_kdbo kbf\heh\ b _keb ohjhrh ijbkfhlj_lvkylh\\_jog_fijZ\hf m]em fh`gh aZf_lblv d\Z^jZlgmx fZljbpm Wlh fZljbpZ ba\_klgZdZdfZ]bq_kdbcd\Z^jZlb \h \j_f_gZ >xj_jZ kqblZehkv qlh hgZ h[eZ^Z_l fZ]bq_kdbfb k\hckl\ZfbHgZbgZkZfhf^_e_ h[eZ^Z_l aZf_qZl_evgufb k\hckl\Zfbklhysbfbbamq_gby
<\h^fZljbp
xj_jZdZdkibkdZwe_f_glh\xj_jZijhklhgZibrbl_ A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]
MATLABhlh[jZablfZljbpmdhlhjmxfu\\_eb A = 16 5 9 4
3 10 6 15
2 11 7 14
13 8 12 1
Wlhlhqghkhhl\_lkl\m_lqbkeZfgZ]jZ\xj_?kebfu\\_ebfZljbpmlhhgZZ\lhfZlbq_kdb aZihfbgZ_lky kj_^hc MATLAB B fu fh`_f d g_c e_]dh h[jZlblvky dZd d : K_cqZk dh]^Z fu bf__f : \ jZ[hq_f ijhkljZgkl\_ MATLAB,
9
GZqZeh jZ[hlu k MATLAB ihkfhljbf qlh ^_eZ_l _z lZdhc bgl_j_kghc Ihq_fm hgZ gZau\Z_lky fZ]bq_kdhc"
Hi_jZpbbkmffbjh\Zgbywe_f_glh\ljZgkihgbjh\Zgbyb^bZ]hgZebaZpbbfZljbpu
Z\Zcl_ijh\_jbf wlhbkihevamyMATLABI_j\h_ml\_j`^_gb_dhlhjh_fuijh\_jbf± sum(A)
MATLAB\u^Zklhl\_l ans = 34
34
34
34
Dh]^Z \uoh^gZy i_j_f_ggZy g_ hij_^_e_gZ MATLAB bkihevam_l i_j_f_ggmx ansdhjhldhhlanswer – hl\_l^eyojZg_gbyj_amevlZlh\\uqbke_gbyFuih^kqblZeb \_dlhjkljhdm kh^_j`Zsmx kmffm we_f_glh\ klhe[ph\ fZljbpu : >_ckl\bl_evgh dZ`^uc klhe[_pbf__l h^bgZdh\mx kmffm fZ]bq_kdmx kmffm jZ\gmx : dZd gZkq_l kmff \ kljhdZo" 0$7/$% ij_^ihqblZ_l jZ[hlZlv kh klhe[pZfb fZljbpulZdbfh[jZahfemqrbckihkh[ihemqblvkmffm\kljhdZo±wlhljZgkihgbjh\ZlvgZrmfZljbpmih^kqblZlvkmffm\klhe[pZoZihlhfljZgkihgbjh\Zlvj_amevlZlHi_jZpbyljZgkihgbjh\Zgbyh[hagZqZ_lkyZihkljhnhfbebh^bgZjghc dZ\uqdhc HgZ a_jdZevgh hlh[jZ`Z_l fZljbpm hlghkbl_evgh ]eZ\ghc ^bZ]hgZebbf_gy_lkljhdbgZklhe[puLZdbfh[jZahf A'
\uau\Z_l ans = 16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
:\ujZ`_gb_ sum(A')'
\uau\Z_lj_amevlZl\_dlhjklhe[_pkh^_j`Zsbckmffu\kljhdZo ans = 34 34 34 34
10
FZljbpu b fZ]bq_kdb_ d\Z^jZlu Kmffmwe_f_glh\gZ]eZ\ghc^bZ]hgZebfh`ghe_]dhihemqblvkihfhsvx nmgdpbbdiagdhlhjZy\u[bjZ_lwlm^bZ]hgZev diag(A) ans = 16 10 7 1
:nmgdpby sum(diag(A))
\uau\Z_l ans = 34
>jm]Zy ^bZ]hgZev gZau\Z_fZy Zglb^bZ]hgZevx g_ lZd \Z`gZ fZl_fZlbq_kdb ihwlhfmMATLAB g_bf__lki_pbZevghcnmgdpbb^eyg_zGhnmgdpbydhlhjZy \gZqZe_ ij_^iheZ]ZeZkv ^ey bkihevah\Zgby \ ]jZnbd_ fliplr a_jdZevgh hlh[jZ`Z_lfZljbpmke_\ZgZijZ\h sum(diag(fliplr(A))) ans = 34
LZdbfh[jZahffuijh\_jbebqlhfZljbpZgZ]jZ\xj_ >xj_jZ ^_ckl\bl_evgh fZ]bq_kdZy b gZmqbebkv bkihevah\Zlv g_dhlhju_ fZljbqgu_ hi_jZpbb MATLAB. < ihke_^mxsbo jZa^_eZo fu ijh^he`bf bkihevah\Zlv wlm fZljbpm ^ey^_fhgkljZpbb^hihegbl_evguo\hafh`ghkl_cMATLAB.
Bg^_dku
We_f_gl\kljhd_i bklhe[p_j fZljbpu:h[hagZqZ_lkyA(i,j). GZijbf_jA(4,2) ±wlhqbkeh\q_l\_jlhckljhd_b\lhjhfklhe[p_>eygZr_]hfZ]bq_kdh]hd\Z^jZlZA(4,2) LZdbfh[jZahffh`gh \uqbkeblv kmffm we_f_glh\ \ q_l\_jlhfklhe[p_fZljbpu:gZ[jZ\ A(1,4) + A(2,4) + A(3,4) + A(4,4)
ihemqbf ans = 34
H^gZdhwlhg_kZfucemqrbckihkh[kmffbjh\Zgbyhl^_evghckljhdb LZd`_\hafh`ghh[jZsZlvkydwe_f_glZffZljbpuq_j_ah^bgbg^_dkA(k)Wlh h[uqguc kihkh[ kkueZlvky gZ kljhdb b klhe[pu fZljbpu Gh _]h fh`gh bkihevah\Zlvlhevdhk^\mf_jgufbfZljbpZfb<wlhfkemqZ_fZkkb\jZkkfZljb\Z_lky dZd ^ebgguc \_dlhj knhjfbjh\Zgguc ba klhe[ph\ bkoh^ghc fZljbpu 11
GZqZeh jZ[hlu k MATLAB LZd ^ey gZr_]h fZ]bq_kdh]h d\Z^jZlZ A(8) ± wlh ^jm]hc kihkh[ kkueZlvky gZ agZq_gb_ojZgys__ky\A(4,2). ?keb\uiulZ_l_kvbkihevah\ZlvagZq_gb_we_f_glZ\g_fZljbpuMATLAB\u^Zklhrb[dm t=A(4,5) ???
Index exceeds matrix dimensions.
K^jm]hcklhjhgu_keb\ukhojZgy_l_agZq_gb_\g_fZljbpulhjZaf_jfZljbpum\_ebqb\Z_lky X=A; X(4,5) = 17 X = 16 5 9 4
3 10 6 15
2 11 7 14
13 8 12 1
0 0 0 17
Hi_jZlhj^\h_lhqby
>\h_lhqb_wlhh^bgbagZb[he__\Z`guohi_jZlhjh\MATLABHgijhy\ey_lky\jZaebqguonhjfZo
wlh\_dlhjkljhdZkh^_j`ZsZyp_eu_qbkeZhl^h 1
2
3
4
5
6
7
8
9
10
>eyihemq_gbyh[jZlgh]hbgl_j\ZeZhibr_fijbjZs_gb_GZijbf_j 100:-7:50
qlh^Z_l 100
93
86
79
72
65
58
51
beb 0:pi/4:pi
qlhijb\h^bld 0
0.7854
1.5708
2.3562
3.1416
Bg^_dkgh_\ujZ`_gb_\dexqZy^\h_lhqb_hlghkblkydqZklbfZljbpu A(1:k, j) wlhi_j\u_k we_f_glh\j]hklhe[pZfZljbpu:LZd sum(A(1:4,4))
12
FZljbpu b fZ]bq_kdb_ d\Z^jZlu
\uqbkey_lkmffmq_l\_jlhckljhdbGh_klvbemqrbckihkh[>\h_lhqb_kZfh ih k_[_ h[jZsZ_lky dh \k_f we_f_glZf \ kljhd_ b klhe[p_ fZljbpu Z keh\h end±dihke_^g_ckljhd_bebklhe[pmLZd sum(A(:,end))
\uqbkey_lkmffmwe_f_glh\\ihke_^g_fklhe[p_fZljbpu: ans = 34
Ihq_fmfZ]bq_kdZykmffZd\Z^jZlZojZ\gZ"?kebp_eu_qbkeZhl^h hlkhjlbjh\Zgu\q_luj_]jmiiukjZ\gufbkmffZfbwlZkmffZ^he`gZ[ulv sum(1:16)/4
dhlhjZydhg_qghjZ\gZ ans = 34
Nmgdpbymagic MATLABgZkZfhf^_e_h[eZ^Z_l\kljh_gghcnmgdpb_cdhlhjZykha^Z_lfZ]bq_kdbcd\Z^jZlihqlbex[h]hjZaf_jZG_ m^b\bl_evgh qlh wlZ nmgdpby gZau\Z_lkymagic. B=magic(4) B = 16 5 9 4
2 11 7 14
3 10 6 15
13 8 12 1
WlZfZljbpZihqlblZ`_fZljbpZqlhbgZ]jZ\xj_>xj_jZbhgZbf__l\k_l_ `_ fZ]bq_kdb_ k\hckl\Z ?^bgkl\_ggh_ hlebqb_ aZdexqZ_lky \ lhf qlh ^\Z kj_^gbo klhe[pZ ihf_gyebkv f_klZfb >ey lh]h qlh[u ij_h[jZah\Zlv B \ fZljbpm>xj_jZAi_j_klZ\bfbof_klZfb A=B(:,[1 3 2 4])
Wlh hagZqZ_l qlh ^ey dZ`^hc kljhdb fZljbpu B we_f_glu i_j_ibku\Zxlky \ ihjy^d_ A = 16 5 9 4
3 10 6 15
2 11 7 14
13 8 12 1
Ihq_fm >xj_j i_j_mihjy^hqbe klhe[pu ih kjZ\g_gbx k l_f qlh bkihevam_l MATLAB" ;_a khfg_gby hg ohl_e \dexqblv ^Zlm ]jZ\xju \ gb`gxx qZklvfZ]bq_kdh]hd\Z^jZlZ
13
GZqZeh jZ[hlu k MATLAB
I_j_f_ggu_
<MATLAB g_lg_h[oh^bfhklb\hij_^_e_gbblbiZi_j_f_gguobebjZaf_jghklbDh]^ZMATLAB \klj_qZ_lgh\h_bfyi_j_f_gghchgZ\lhfZlbq_kdbkha^Z_l i_j_f_ggmx b \u^_ey_l khhl\_lkl\mxsbc h[t_f iZfylb ?keb i_j_f_ggZy m`_kms_kl\m_lMATLAB baf_gy_l__khklZ\b_kebwlhg_h[oh^bfh\u^_ey_l ^hihegbl_evgmxiZfylvGZijbf_j num_students = 25 kha^Z_lfZljbpmokbf_g_fnum_students bkhojZgy_lagZq_gb_\___^bgkl\_gghfwe_f_gl_ Bf_gZ i_j_f_gguo khklhyl ba [md\ pbnj beb kbf\heh\ ih^q_jdb\Zgby MATLAB bkihevam_l lhevdh i_j\u_ kbf\he bf_gb i_j_f_gghc MATLAB qm\kl\bl_e_gdj_]bkljZfhgjZaebqZ_laZ]eZ\gu_ b kljhqgu_ [md\u Ihwlhfm A ba ±g_h^gZblZ`_i_j_f_ggZyQlh[um\b^_lvfZljbpmk\yaZggmxki_j_f_gghcijhklh\\_^bl_gZa\Zgb_i_j_f_gghc
QbkeZ
MATLAB bkihevam_lijbgylmx^_kylbqgmxkbkl_fmkqbke_gbykg_h[yaZl_evghc ^_kylbqghc lhqdhc b agZdZfb iexkfbgmk ^ey qbk_e GZmqgZy kbkl_fZ kqbke_gby bkihevam_l [md\m e ^ey hij_^_e_gby fgh`bl_ey kl_i_gb ^_kylb Fgbfu_ qbkeZ bkihevamxl i beb j dZd kmnnbdk G_dhlhju_ ijbf_ju ijZ\bevguoqbk_eijb\_^_gugb`_ 3 9.6397238 1i
-99 1.60210e-20 -3.14159j
0.0001 6.02252e23 3e5i
14
Hi_jZlhju
keh`_gb_ \uqblZgb_ mfgh`_gb_ ^_e_gb_ e_\h_^_e_gb_hibkZgh\jZa^_e_FZljbpubEbg_cgZy:e]_[jZ\dgb]_ "Using MATLAB") kl_i_gv dhfie_dkghkhijy`_ggh_ljZgkihgbjh\Zgb_ hij_^_e_gb_ihjy^dZ\uqbke_gby
Nmgdpbb
0$7/$% ij_^hklZ\ey_l [hevrh_ dhebq_kl\h we_f_glZjguo fZl_fZlbq_kdbo nmgdpbclZdbodZdabs, sqrt, exp, sin. ey\u\h^Z[he__keh`guofZl_fZlbq_kdbobfZljbqguonmgdpbcgZ[_jbl_ help specfun help elmat khhl\_lkl\_ggh G_dhlhju_ nmgdpbb lZdb_ dZd sqrt b sin \kljh_ggu_ Hgb y\eyxlky qZklvx 0$7/$%ihwlhfmhgbhq_gvwnn_dlb\gughbo\uqbkebl_evgu_^_lZebljm^gh^hklmigu<lh\j_fydZd^jm]b_nmgdpbblZdb_dZdgamma bsinhj_Zebah\Zgu\FnZceZoIhwlhfm\ufh`_l_e_]dhm\b^_lvbodh^b\kemqZ_g_h[oh^bfhklb^Z`_fh^bnbpbjh\Zlv_]h G_kdhevdhki_pbZevguonmgdpbcij_^hklZ\eyxlagZq_gbyqZklhbkihevam_fuo dhgklZgl pi i j eps realmin realmax Inf NaN
3.14159265… fgbfZy_^bgbpZ√-1 lh`_kZfh_qlhbi hlghkbl_evgZylhqghklvqbkeZkieZ\Zxs_clhqdhc-52 gZbf_gvr__qbkehkieZ\Zxs_clhqdhc-1022 gZb[hevr__qbkehkieZ\Zxs_clhqdhcε)21023 [_kdhg_qghklv g_qbkeh
15
GZqZeh jZ[hlu k MATLAB
;_kdhg_qghklvihy\ey_lkyijb^_e_gbbgZgmevbebijb\uiheg_gbbfZl_fZlbq_kdh]h\ujZ`_gbyijb\h^ys_]hdi_j_iheg_gbxl_dij_\ur_gbxrealmax. G_qbkehNaN ]_g_jbjm_lkyijb\uqbke_gbb\ujZ`_gbclbiZbebInf – Inf, dhlhju_g_bf_xlhij_^_e_ggh]hfZl_fZlbq_kdh]h agZq_gby Bf_gZnmgdpbcg_y\eyxlkyaZj_a_j\bjh\Zggufbihwlhfm\hafh`ghbaf_gylv boagZq_gbygZgh\u_gZijbf_j eps = 1.e-6 b ^Ze__ bkihevah\Zlv wlh agZq_gb_ \ ihke_^mxsbo \uqbke_gbyo GZqZevgh_ agZq_gb_fh`_l[ulv\hkklZgh\e_ghke_^mxsbfh[jZahf clear eps
16
JZ[hlZ k fZljbpZfb
JZ[hlZkfZljbpZfb WlhljZa^_ejZkkdZ`_l\ZfhjZaebqguokihkh[Zokha^ZgbyfZljbp
=_g_jbjh\Zgb_fZljbp
0$7/$%bf__lq_luj_nmgdpbbdhlhju_kha^Zxlhkgh\gu_fZljbpu \k_gmeb \k__^bgbpu jZ\ghf_jgh_jZkij_^_e_gb_kemqZcguowe_f_glh\ ghjfZevgh_jZkij_^_e_gb_kemqZcguowe_f_glh\
zeros ones rand randn
G_dhlhju_ijbf_ju Z = zeros(2,4) Z = 0 0
0 0
0 0
0 0
F = 5*ones(3,3) F = 5 5 5
5 5 5
5 5 5
N = fix(10*rand(1,10)) N = 9
2
6
4
8
7
4
0
8
4
R = randn(4,4) R = -0.4326 -1.6656 0.1253 0.2877
-1.1465 1.1909 1.1892 -0.0376
0.3273 0.1746 -0.1867 0.7258
-0.5883 2.1832 -0.1364 0.1139
AZ]jmadZfZljbp
DhfZg^Z load kqblu\Z_l ^\hbqgu_ nZceu kh^_j`Zsb_ fZljbpu kha^Zggu_ \ MATLAB jZg__bebl_dklh\u_nZceukh^_j`Zsb_qbke_ggu_^Zggu_L_dklh\u_nZceu^he`gu[ulvknhjfbjh\Zgu\\b^_ijyfhm]hevghclZ[ebpu qbk_e hl^_e_gguoijh[_eZfbkjZ\gufdhebq_kl\hfwe_f_glh\\dZ`^hckljhd_GZijbf_jkha^Z^bf\g_MATLAB l_dklh\hcnZcekh^_j`Zsbckljhdb 16.0 5.0 9.0 4.0
3.0 10.0 6.0 15.0
2.0 11.0 7.0 14.0
13.0 8.0 12.0 1.0
KhojZgbfwlhlnZceih^bf_g_fmagik.datLh]^ZdhfZg^Z
17
GZqZeh jZ[hlu k MATLAB
load magik.dat ijhqblZ_lwlhlnZcebkha^Zkli_j_f_ggmxmagikkh^_j`ZsmxgZrmfZljbpm
FnZceu
ey \uah\Z l_dklh\h]h j_^ZdlhjZ gZ JK beb Mac \u[_jbl_ Open bebNew ba f_gx File bebgZ`fbl_ khhl\_lkl\mxsmx dghidm gZ iZg_eb bgkljmf_glh\>eyh[jZs_gbydl_dklh\hfmj_^ZdlhjmgZUNIXbkihevamcl_kbf\he kjZamaZdhfZg^hcdhlhjmx\ubkihevam_l_\kljhd_hi_jZpbhgghckbkl_fu GZijbf_jkha^Z^bfnZce\dexqZxsbcke_^mxsb_kljhd A=[… 16.0 3.0 5.0 10.0 9.0 6.0 4.0 15.0
2.0 11.0 7.0 14.0
13.0 8.0 12.0 1.0 ];
KhojZgbf_]hih^bf_g_fmagik.m.Lh]^Z\ujZ`_gb_ magik ijhqblZ_lnZcebkha^Zkli_j_f_ggmx:kh^_j`Zsmxbkoh^gmxfZljbpm
H[t_^bg_gb_
H[t_^bg_gb_ ± wlh ijhp_kk kh_^bg_gby fZe_gvdbo fZljbp ^ey kha^Zgby [hevrbo NZdlbq_kdb \u kha^Zeb \Zrm i_j\mx fZljbpm h[t_^bg_gb_f _z hl^_evguo we_f_glh\ IZjZ d\Z^jZlguo kdh[hd ± wlh hi_jZlhj h[t_^bg_gby GZijbf_jgZqg_fkfZljbpu:fZ]bq_kdh]hd\Z^jZlZo bknhjfbjm_f B = [A A+32; A+48 A+16]
J_amevlZlhf[m^_lfZljbpZoihemqZ_fZykh_^bg_gb_fq_luj_oih^fZljbp B = 16 5 9 4 64 53 57 52
2 11 7 14 50 59 55 62
3 10 6 15 51 58 54 63
13 8 12 1 61 56 60 49
48 37 41 36 32 21 25 20
34 43 39 46 18 27 23 30
18
35 42 38 47 19 26 22 31
45 40 44 33 29 24 28 17
JZ[hlZ k fZljbpZfb WlhfZljbpZebrvgZiheh\bgmy\ey_lkyfZ]bq_kdhc?zwe_f_gluij_^klZ\eyxl kh[hc dhf[bgZpbx p_euo qbk_e hl ^h Z kmffu \ klhe[pZo lhqgh jZ\gu agZq_gbx^eyfZ]bq_kdh]hd\Z^jZlZo sum(B) ans = 260
260
260
260
260
260
260
260
H^gZdhkmffu\kljhdZowlhcfZljbpu( sum(B')' g_ \k_ h^bgZdh\u G_h[oh^bfhijh\_klb^hihegbl_evgu_hi_jZpbbqlh[uk^_eZlvwlm fZljbpm^_ckl\bl_evghfZ]bq_kdbfd\Z^jZlhfo
M^Ze_gb_kljhdbklhe[ph\
L_i_jvm^Zebf\lhjhcklhe[_pfZljbpuX. X(:,2) = []
WlZhi_jZpbybaf_gblOke_^mxsbfh[jZahf X = 16 5 9 4
3 10 6 15
13 8 12 1
?keb\u m^Zey_l_h^bgwe_f_glfZljbpulhj_amevlZl m`_ g_ [m^_l fZljbp_c LZd\ujZ`_gb_ X(1,2) = [] j_amevlZlhf\uqbke_gby\u^Zklhrb[dmH^gZdhbkihevah\Zgb_h^gh]hbg^_dkZ m^Zey_l hl^_evguc we_f_gl beb ihke_^h\Zl_evghklv we_f_glh\ b ij_h[jZam_l hklZ\rb_kywe_f_glu\\_dlhjkljhdmLZd X(2:2:10) = []
\u^Zklj_amevlZl X = 16
9
3
6
13
12
19
1
GZqZeh jZ[hlu k MATLAB
DhfZg^gh_hdgh >hkboihjfubkihevah\ZeblhevdhdhfZg^gmxkljhdmMATLABi_qZlZydhfZg^u b \ujZ`_gby b gZ[ex^Zy j_amevlZlu < wlhc ]eZ\_ hibkZgh g_kdhevdh kihkh[h\baf_g_gby\g_rg_]h\b^ZdhfZg^gh]hhdgZ?keb\ZrZkbkl_fZiha\hey_l \Zf \u[bjZlv rjbnl lh fu j_dhf_g^m_f bkihevah\Zlv rjbnlu k nbdkbjh\ZgghcrbjbghclZdb_dZdFixedsys beb Courier^eyh[_ki_q_gbyijZ\bevgh]hf_`kljhqgh]hbgl_j\ZeZ
DhfZg^ZIRUPDW
DhfZg^Z format mijZ\ey_l qbke_gguf nhjfZlhf agZq_gbc \u\h^bfuo MATLABWlZhi_jZpby\eby_llhevdhgZlhdZdqbkeZbah[jZ`ZxlkygZwdjZg_ ghg_\eby_lgZlhdZdbo\uqbkey_lbkhojZgy_lMATLABGb`_ij_^klZ\e_gu jZaebqgu_ nhjfZlu qbk_e bkihevam_fu_ ^ey hlh[jZ`_gby \_dlhjZ x k dhfihg_glZfbjZaebqguo\_ebqbg x = [4/3 1.2345e-6] format short 1.3333
0.0000
format short e 1.3333e+000
1.2345e-006
format short g 1.3333
1.2345e-006
format long 1.33333333333333
0.00000123450000
format long e 1.333333333333333e+000
1.234500000000000e-006
format long g 1.33333333333333
1.2345e-006
format bank 1.33
0.00
format rat 4/3
1/810045
format hex 3ff5555555555555
3eb4b6231abfd271
20
DhfZg^gh_ hdgh ?kebkZfuc[hevrhcwe_f_glfZljbpu[hevr_3bebkZfucfZe_gvdbcf_gvr_ -3, MATLAB ijbf_gy_l h[sbc fZkrlZ[guc dhwnnbpb_gl ^ey nhjfZlh\ short b long. <^h[Z\e_gb_ddhfZg^Zfformat, jZkkfhlj_gguf\ur_ format compact m[bjZ_lfgh]himkluoebgbcihy\eyxsbokygZ\uoh^_Wlhiha\hey_l\Zf\b^_lv [hevr_ bgnhjfZpbb gZ wdjZg_ ?keb \u ohlbl_ baf_gblv dhgljhev gZ^ nhjfZlhf\uoh^guo^Zgguobkihevamcl_nmgdpbbsprintf bfprintf.
KhdjZs_gb_\uoh^guo^Zgguo
?keb\ugZ[_j_l_\ujZ`_gb_bgZ`f_l_Return bebEnter, MATLABZ\lhfZlbq_kdb \u\_^_l j_amevlZl gZ wdjZg H^gZdh _keb \ dhgp_ kljhdb \u ihklZ\bl_ lhqdmkaZiylhcMATLABijh\_^_l\uqbke_gbyghg_hlh[jZablboWlhqZklh [u\Z_lgm`ghijbkha^Zgbb[hevrbofZljbpGZijbf_j A = magic(100);
>ebggu_dhfZg^gu_kljhdb
?keb\ujZ`_gb_g_mf_sZ_lkygZh^ghckljhd_bkihevamcl_ljh_lhqb_ZaZgbf Return beb Enter ^ey h[hagZq_gbylh]h qlh \ujZ`_gb_ ijh^he`Z_lky gZ ke_^mxs_ckljhd_GZijbf_j s = 1 –1/2 + 1/3 –1/4 + 1/5 – 1/6 + 1/7 ... -1/8 + 1/9 – 1/10 + 1/11 – 1/12;
Ijh[_eu\hdjm]agZdh\ g_h[yaZl_evgughmemqrZxlqblZ_fhklvl_dklZ
J_^ZdlhjdhfZg^ghckljhdb
JZaebqgu_ klj_edb b mijZ\eyxsb_ deZ\brb gZ \Zr_c deZ\bZlmj_ iha\heyxl \Zf\uau\Zlvj_^Zdlbjh\Zlvbfgh]hdjZlghbkihevah\ZlvdhfZg^ugZ[jZggu_ jZg__GZijbf_jij_^iheh`bfqlh\u^himklbebhrb[dmijb\\h^_ rho = (1 + sqt(5))/2
21
GZqZeh jZ[hlu k MATLAB ^mxsbo deZ\br ^hklmigu gZ \Zr_c fZrbg_ Fgh]b_ ba wlbo deZ\br [m^ml agZdhfuihevah\Zl_eyfj_^ZdlhjZEMACS.) ↑ ↓ ← → ctrl-→ ctrl-← home end esc del backspace
ctrl-p ctrl-n ctrl-b ctrl-f ctrl-r ctrl-l ctrl-a ctrl-e ctrl-u ctrl-d ctrl-h ctrl-k
\b`_gb_gZaZ^gZh^bgkbf\he >\b`_gb_\i_j_^gZh^bgkbf\he >\b`_gb_\ijZ\hgZh^ghkeh\h >\b`_gb_\e_\hgZh^ghkeh\h I_j_oh^gZgZqZehkljhdb I_j_oh^gZdhg_pkljhdb HqbkldZkljhdb M^Ze_gb_kbf\heZaZdmjkhjhf M^Ze_gb_kbf\heZi_j_^dmjkhjhf M^Ze_gb_^hdhgpZkljhdb
22
=jZnbdZ
=jZnbdZ MATLAB bf__lrbjhdb_\hafh`ghklb^ey]jZnbq_kdh]hbah[jZ`_gby\_dlhjh\ bfZljbpZlZd`_^eykha^Zgbydhff_glZjb_\bi_qZlb]jZnbdbWlZ]eZ\Zhibku\Z_l g_kdhevdh gZb[he__ \Z`guo ]jZnbq_kdbo nmgdpbc b ^Z_l ijbf_ju bo ijbf_g_gby
Kha^Zgb_]jZnbdZ
Nmgdpbyplot bf__ljZaebqgu_nhjfuk\yaZggu_k\oh^gufbiZjZf_ljZfbgZijbf_jplot(y)kha^Z_ldmkhqghebg_cguc]jZnbdaZ\bkbfhklbwe_f_glh\y hlbo bg^_dkh\ ?keb \u aZ^Z_l_ ^\Z \_dlhjZ \ dZq_kl\_ Zj]mf_glh\ plot(x,y) kha^Zkl ]jZnbdaZ\bkbfhklby hlx. GZijbf_j^eyihkljh_gby]jZnbdZagZq_gbcnmgdpbbsin hlgmey^hπk^_eZ_fke_^mxs__ t = 0:pi/100:2*pi; y = sin(t); plot(t,y)
23
GZqZeh jZ[hlu k MATLAB
kljhbl`_elucimgdlbjguc]jZnbdbihf_sZ_lfZjd_ju' + ' \dZ`^mxlhqdm ^Zgguo?keb\uhij_^_ey_l_lhevdhlbifZjd_jZghg_hij_^_ey_l_lbiklbey ebgbclhMATLAB\u\_^_llhevdhfZjd_ju
HdgZbah[jZ`_gbc
Nmgdpby plot Z\lhfZlbq_kdb hldju\Z_l gh\h_ hdgh bah[jZ`_gby ^Ze__ hdgh _keb^hwlh]h_]hg_[uehgZwdjZg_?keb`_hghkms_kl\m_llhplot bkihevam_l _]hih mfheqZgbx>eyhldjulbygh\h]hhdgZb\u[hjZ_]hih mfheqZgbxgZ[_jbl_ figure >eylh]hqlh[uk^_eZlvkms_kl\mxs_zhdghl_dmsbf
24
=jZnbdZ
figure(n) ]^_n ±wlhghf_j\aZ]heh\d_hdgZ<wlhfkemqZ_j_amevlZlu\k_oihke_^mxsbo dhfZg^[m^ml\u\h^blvky\wlhhdgh
>h[Z\e_gb_djb\uogZkms_kl\mxsbc]jZnbd
DhfZg^Zhold iha\hey_l^h[Z\eylvdjb\u_gZkms_kl\mxsbc]jZnbdDh]^Z\u gZ[bjZ_l_ hold on MATLABg_klbjZ_lkms_kl\mxsbc]jZnbdZ^h[Z\ey_l\g_]hgh\u_^Zggu_ baf_gyyhkb_kebwlhg_h[oh^bfhGZijbf_jke_^mxsbcwe_f_gldh^Z\gZqZe_ kha^Z_l dhglmjgu_ ebgbb nmgdpbb peaks Z aZl_f gZdeZ^u\Z_l ik_\^hp\_lghc ]jZnbdlhc`_nmgdpbb [x,y,z] = peaks; contour(x,y,z,20,'k') hold on pcolor(x,y,z) shading interp
DhfZg^Z hold on y\ey_lky ijbqbghc lh]h qlh ]jZnbd pcolor dhf[bgbjm_lky k ]jZnbdhfcontour\h^ghfhdg_
Ih^]jZnbdb
Nmgdpby subplot iha\hey_l \u\h^blv fgh`_kl\h ]jZnbdh\ \ h^ghf hdg_ beb jZki_qZlu\ZlvbogZh^ghfebkl_[mfZ]b subplot(m,n,p)
25
GZqZeh jZ[hlu k MATLAB
jZa[b\Z_l hdgh bah[jZ`_gbc gZ fZljbpm m gZ n ih^]jZnbdh\ b \u[bjZ_l puc ih^]jZnbdl_dmsbf=jZnbdbgmf_jmxlky\^hevi_j\h]h\\_jog_ckljhd_ihlhf \h \lhjhc b l^ GZijbf_j ^ey lh]h qlh[u ij_^klZ\blv ]jZnbq_kdb_ ^Zggu_\q_luj_ojZaguoih^h[eZklyohdgZg_h[oh^bfh\uihegblvke_^mxs__ t = 0:pi/10:2*pi; [X,Y,Z] = cylinder(4*cos(t)); subplot(2,2,1) mesh(X) subplot(2,2,2); mesh(Y) subplot(2,2,3); mesh(Z) subplot(2,2,4); mesh(X,Y,Z)
Fgbfu_bdhfie_dkgu_^Zggu_
?kebZj]mf_glnmgdpbbplot dhfie_dkgh_qbkehlhfgbfZyqZklvb]ghjbjm_lky aZ bkdexq_gb_f kemqZy dh]^Z dhfie_dkguc Zj]mf_gl h^bg >ey wlh]h ki_pbZevgh]h kemqZy ijhbkoh^bl ihkljh_gb_ ]jZnbdZ aZ\bkbfhklb j_Zevghc qZklb Zj]mf_glZhlfgbfhcIhwlhfm plot(Z) ]^_Z dhfie_dkguc\_dlhjbebfZljbpZwd\b\Ze_glgh plot(real(Z),imag(Z)) GZijbf_j t = 0:pi/10:2*pi; plot(exp(i*t),'-o')
hlh[jZabl ^\Z^pZlbklhjhggbc fgh]hm]hevgbd k fZe_gvdbfb djm`dZfb gZ \_jrbgZo
26
=jZnbdZ
MijZ\e_gb_hkyfb
Nmgdpbyaxis bf__lg_kdhevdh\hafh`ghkl_c^eygZkljhcdbfZkrlZ[Zhjb_glZpbbbdhwnnbpb_glZk`Zlby H[uqghMATLABgZoh^bl fZdkbfZevgh_ b fbgbfZevgh_ agZq_gb_ b \u[bjZ_l khhl\_lkl\mxsbcfZkrlZ[bfZjdblbjh\Zgb_hk_cNmgdpbyaxis aZf_gy_lagZq_gbyihmfheqZgbxij_^_evgufbagZq_gby\\h^bfufbihevah\Zl_e_f axis( [xmin xmax ymin ymax] ) < nmgdpbb axis fh`gh lZd`_ bkihevah\Zlv dexq_\u_ keh\Z ^ey mijZ\e_gby \g_rgbf\b^hfhk_cGZijbf_j axis square kha^Z_lx byhkbjZ\ghc^ebguZ axis equal kha^Z_lhl^_evgu_hlf_ldbijbjZs_gbc^eyx b y hk_ch^bgZdh\hc^ebguLZd nmgdpby plot(exp(i*t)) ke_^mxsZyeb[haZaxis squareeb[haZaxis equalij_\jZsZ_lh\Ze\ijZ\bevguc djm] axis auto \ha\jZsZ_lagZq_gbyihmfheqZgbxbi_j_oh^bl\Z\lhfZlbq_kdbcj_`bf axis on
27
GZqZeh jZ[hlu k MATLAB
\dexqZ_lh[hagZq_gbyhk_cbf_ldbijhf_`mlhqguo^_e_gbc axis off \udexqZ_lh[hagZq_gbyhk_cbf_ldbijhf_`mlhqguo^_e_gbc grid off \udexqZ_lk_ldmdhhj^bgZlZ grid on \dexqZ_l_zaZgh\h
Ih^ibkbdhkyfbaZ]heh\db
Nmgdpbb xlabel, ylabel, zlabel ^h[Z\eyxl ih^ibkb d khhl\_lkl\mxsbf hkyf nmgdpbytitle ^h[Z\ey_laZ]heh\hd\\_jogxxqZklvhdgZZnmgdpbytext\klZ\ey_ll_dkl\ex[h_f_klh]jZnbdZBkihevah\Zgb_TEX ij_^klZ\e_gbyiha\hey_l ijbf_gylv ]j_q_kdb_ [md\u fZl_fZlbq_kdb_ kbf\heu b jZaebqgu_ rjbnlu Ke_^mxsbcijbf_j^_fhgkljbjm_lwlm\hafh`ghklv t = -pi:pi/100:pi; y = sin(t); plot(t,y) axis([-pi pi -1 1]) xlabel( ' -\pi \leq \itt \leq \pi ' ) ylabel( ' sin(t) ' )
WLWOH =jZnbd nmgdpbb VLQ ?LW^Hlf_lvl_ g_q_lgmx kbff_ljbx`
text(-1
= j Z nb d nm g d p b b
VLQ
VLQW
Hlf_ lv l_ g _ q _ lg m x k b ff_ lj b x
π≤ W ≤ π
NmgdpbbPHVKbVXUIDFH
MATLAB hij_^_ey_l ih\_joghklv dZd z dhhj^bgZlu lhq_d gZ^ dhhj^bgZlghc k_ldhciehkdhklbx-y,bkihevamyijyfu_ebgbb^eykh_^bg_gbykhk_^gbolhq_d Nmgdpbbmesh bsurfacehlh[jZ`Zxlih\_joghklv\lj_obaf_j_gbyoIjbwlhf
28
=jZnbdZ
mesh kha^Z_ldZjdZkgmxih\_joghklv]^_p\_lgu_ebgbbkh_^bgyxllhevdhaZ^Zggu_ lhqdb Z nmgdpby surface \f_kl_ k ebgbyfb hlh[jZ`Z_l \ p\_l_ b kZfm ih\_joghklv
>eyhlh[jZ`_gbynmgdpbb^\moi_j_f_gguoz = f (x,y)kha^ZxlkyfZljbpuX b Y khklhysb_ ba ih\lhjyxsboky kljhd b klhe[ph\ khhl\_lkl\_ggh i_j_^ bkihevah\Zgb_fnmgdpbbAZl_fbkihevamxl wlb fZljbpu ^ey \uqbke_gbyb hlh[jZ`_gbynmgdpbbNmgdpbymeshgrid ij_h[jZam_lh[eZklvhij_^_e_gbyaZ^Zggmxq_j_ah^bg\_dlhjbeb^\Z\_dlhjZxby\fZljbpuXbY^eybkihevah\Zgbyijb\uqbke_gbbnmgdpbb^\moi_j_f_gguoKljhdbfZljbpuX ^m[ebjmxl \_dlhjxZklhe[puY±\_dlhjy. >ey\uqbke_gby^\mf_jghcnmgdpbbsinc , sin(r)/r, \h[eZklbx-y ihklmiZxlke_^mxsbfh[jZahf [X, Y] = meshgrid(-8:.5:8); R = sqrt(X.^2+Y.^2)+eps; Z = sin(R)./R; mesh(X,Y,Z)
<wlhfijbf_j_R ±wlhjZkkhygb_hlgZqZeZdhhj^bgZldhlhjhfmkhhl\_lkl\m_l p_gljfZljbpu>h[Z\e_gb_eps iha\hey_lba[_`Zlvg_hij_^_e_gghklb\gZqZe_dhhj^bgZl
Bah[jZ`_gby
>\mf_jgu_fZkkb\ufh]mlhlh[jZ`ZlvdZdbah[jZ`_gby]^_we_f_glufZkkb\Z hij_^_eyxlboyjdhklvbp\_lGZijbf_j load durer whos
29
GZqZeh jZ[hlu k MATLAB
ihdZ`_l qlh nZce durer.mat \ ^bj_dlhjbb demo khklhbl ba fZljbpu jZaf_jhf gZfZljbpuX bfZljbpujZaf_jhfgZfZljbpumap We_f_glu fZljbpuX ±wlhp_eu_qbkeZhl^hdhlhju_kem`Zlbg^bdZlhjZfb\p\_lghfhlh[jZ`_gbbPDSKe_^mxsb_kljhdb imag(X) colormap(map) axis image \hkijhba\h^yl]jZ\xjm>xj_jZihdZaZggmx\gZqZe_wlhcdgb]b
I_qZlv]jZnbdb
Hipby Print \ f_gx File b dhfZg^Z print i_qZlZxl ]jZnbdm MATLAB F_gx Print \uau\Z_l ^bZeh]h\h_ hdgh dhlhjh_ iha\hey_l \u[bjZlv h[sb_ klZg^Zjlgu_\ZjbZglui_qZlbDhfZg^Zprint h[_ki_qb\Z_l[hevrmx]b[dhklvijb\u\h^_\uoh^guo^Zgguobiha\hey_ldhgljhebjh\Zlvi_qZlvbaFnZceh\J_amevlZl fh`_l [ulv ihkeZg ijyfh gZ ijbgl_j \u[jZgguc ih mfheqZgbx beb khojZg_g\aZ^ZgghfnZce_
30
KijZ\dZ b l_dmsZy ^hdmf_glZpby
KijZ\dZbl_dmsZy^hdmf_glZpby ?klv g_kdhevdh kihkh[h\ ihemqblv l_dmsmx ^hdmf_glZpbx ih nmgdpbyf MATLAB. • DhfZg^Zhelp • HdghkijZ\db • MATLAB Help Desk • L_dmsb_kijZ\hqgu_kljZgbpu • K\yavkThe MathWorks, Inc.
DhfZg^ZKHOS
DhfZg^Zhelp ±wlhkZfuchkgh\ghckihkh[hij_^_e_gbykbglZdkbkZbih\_^_gby hl^_evguo nmgdpbc BgnhjfZpby hlh[jZ`Z_lky ijyfh \ dhfZg^ghf hdg_ GZijbf_j help magic
\u^Zkl MAGIC Magic square. MAGIC(N) is an N-by-N matrix constructed from the integers 1 through N^2 with equal row, column, and diagonal sums. Produces valid magic squares for N = 1,3,4,5,...
AZf_qZgb_ MATLAB \l_dms_ckijZ\d_bkihevam_laZ]eZ\gu_[md\u^eynmgdpbcbi_j_f_gguo ^ey lh]h qlh[u \u^_eblv boba l_dklZ H^gZdh ijb gZ[hj_ bf_g nmgdpbc \k_]^Z bkihevamcl_ khhl\_lkl\mxsb_ kljhqgu_ [md\u lZd dZd MATLAB qm\kl\bl_e_gdj_]bkljZfZ\k_bf_gZnmgdpbbkljhqgu_
DhfZg^Z help HELP topics: matlab\general matlab\ops ...
-
General purpose commands. Operators and special characters.
31
GZqZeh jZ[hlu k MATLAB
HdghkijZ\db
Hdgh kijZ\db MATLAB ihy\ey_lky gZ PC beb Mac ihke_ \u[hjZ hipbb Help Window\f_gxHelp bebgZ`Zlb_fdghidb\hijhkZgZiZg_ebbgkljmf_glh\WlZ`_hi_jZpbyfh`_l[ulv\uiheg_gZijbgZ[hj_dhfZg^u helpwin >ey\u\h^ZhdgZkijZ\dbihhl^_evgufjZa^_eZfgZ[_jbl_ helpwin topic HdghkijZ\dbij_^hklZ\ey_l\ZflZdmx`_bgnhjfZpbxdZdbdhfZg^Zhelp, gh hdhgguc bgl_jn_ck h[_ki_qb\Z_l [he__ m^h[gmx k\yav k ^jm]bfb jZa^_eZfb kijZ\db
DhfZg^ZORRNIRU
DhfZg^Z lookfor iha\hey_l bkdZlvnmgdpbb ihdexq_\hfm keh\m HgZ ijhkfZljb\Z_l i_j\mx kljhdm l_dklZ kijZ\db gZau\Z_fmx kljhdhc H1 ^ey dZ`^hc nmgdpbb MATLAB b \ha\jZsZ_l kljhdb H1, kh^_j`Zsb_ aZ^Zggh_ dexq_\h_ keh\hGZijbf_jMATLABg_bf__lnmgdpbbkbf_g_finverseIhwlhfmhl\_l gZaZijhk help inverse
[m^_l inverse.m not found.
<lh\j_fydZd lookfor inverse
gZc^_l fgh`_kl\h kh]eZkh\Zgguo hl\_lh\ < aZ\bkbfhklb hl lh]h dZdb_ toolboxes \umklZgh\beb\uihemqbl_khhl\_lkl\mxsb_aZibkbGZijbf_j INVHILB Inverse Hilbert matrix. ACOS Inverse cosine. ACOSH Inverse hyperbolic cosine. ACOT Inverse cotangent. ACOTH Inverse hyperbolic cotangent. ACSC Inverse cosecant. ACSCH Inverse hyperbolic cosecant. ASEC Inverse secant. ASECH Inverse hyperbolic secant. ASIN Inverse sine. ASINH Inverse hyperbolic sine. ATAN Inverse tangent. ... >h[Z\e_gb_dexqZ±all \dhfZg^mlookfordZdgZijbf_j
32
KijZ\dZ b l_dmsZy ^hdmf_glZpby lookfor –all iha\hey_lbkdZlvdexq_\h_keh\h\h\k_oaZibkyokijZ\dbZg_lhevdh\kljhd_ H1.
Help Desk
MATLAB Help Desk h[_ki_qb\Z_l ^hklmi d rbjhdhfm ^bZiZahgm kijZ\hqghc bgnhjfZpbb ojZgys_cky gZ ^bkd_ beb gZ CD \Zr_c kbkl_fu ;hevrZy qZklv \Z`ghc ^hdmf_glZpbb bkihevam_l HTML (HyperText Markup Language) nhjfZl b^hklmigZq_j_a[jZma_juBgl_jg_llZdb_dZdNetscape bebMicrosoft Explorer. AZimklblv Help Desk fh`gh gZ Pc beb Mac \u[jZ\ hipbx Help Desk \ f_gx Help bebgZ\k_odhfivxl_jZoijhklhgZ[jZ\dhfZg^m helpdesk
DhfZg^ZGRF
?keb \u agZ_l_ bfy dhgdj_lghc nmgdpbb \u fh`_l_ h[jZlblvky d _z l_dms_c kijZ\hqghckljZgbp_ gZijyfmx GZijbf_j ^ey ihemq_gby kijZ\hqghc kljZgbpu^eynmgdpbbevalgZ[_jbl_ doc eval DhfZg^Zdoc kZfZaZimklbl\ZrWeb [jZma_j _keb hg _s_ g_ [ue aZims_g jZg__
I_qZlvl_dmsbokijZ\hqguokljZgbp
<_jkbbl_dmsbokijZ\hqguokljZgbpdZdb[hevrbgkl\h^hdmf_glZpbblZd`_ ^hklmigh\nhjfZl_PDF (Portable Document Format) q_j_aHelp DeskWlbkljZgbpu h[jZ[Zlu\Zxlky k ihfhsvx Adobe's Acrobat reader Hgb \hkijhba\h^yl \g_rgbc\b^kljZgbpihke_i_qZlbiheghklvxkrjbnlZfb]jZnbdhckaZ^Zgguf nhjfZlhf b jbkmgdZfb Wlh emqrbc kihkh[ ihemqblv i_qZlgu_ dhibb kijZ\hqguofZl_jbZeh\
K\yavk0DWK:RUNV
?keb\Zrdhfivxl_jih^dexq_g\Bgl_jg_lHelp Deskh[_ki_qb\Z_l\Zfk\yav k MathWorks ± ^hfhf MATLAB \u fh`_l_ bkihevah\Zlv we_dljhggmx ihqlm ^ey \hijhkh\ ij_^eh`_gbc b khh[s_gbc h \hafh`guo hrb[dZo
33
GZqZeh jZ[hlu k MATLAB
Kj_^Z0$7/$% Kj_^Z MATLAB \dexqZ_l \ k_[y dZd kh\hdmighklv i_j_f_gguo kha^Zgguo aZ \j_fyk_ZgkZjZ[hluMATLABlZdbgZ[hjnZceh\kh^_j`Zsboijh]jZffub ^Zggu_dhlhju_ijh^he`Zxlkms_kl\h\Zlvf_`^mk_ZgkZfbjZ[hlu
JZ[hq__ijhkljZgkl\h
JZ[hq__ ijhkljZgkl\h ± wlh h[eZklv iZfylb ^hklmigZy ba dhfZg^ghc kljhdb MATLAB>\_dhfZg^uwhobwhosihdZau\Zxll_dms__kh^_j`Zgb_jZ[hq_]h ijhkljZgkl\Z DhfZg^Z who \u^Z_l djZldbc kibkhd Z dhfZg^Z whos jZaf_j b bkihevam_fmxiZfylv Gb`_ ij_^klZ\e_g \u\h^ hkms_kl\e_gguc dhfZg^hc whos, gZ jZ[hq_f ijhkljZgkl\_ kh^_j`Zs_f j_amevlZlu ba g_dhlhjuo ijbf_jh\ wlhc dgb]b Hg ihdZau\Z_l jZaebqby \ kljmdlmj_ ^Zgguo MATLAB < dZq_kl\_ mijZ`g_gby ihijh[mcl_ gZclb k_]f_gl dh^Z dhlhjuc khhl\_lkl\m_l dZ`^hc ba gb`_ ijb\_^_gguoi_j_f_gguo whos Name
Size
Bytes Class
A D M S h n s v
4x4 5x3 10x1 1x3 1x11 1x1 1x5 2x5
128 120 3816 442 22 8 10 20
double array double array cell array struct array char array double array char array char array
Grand total is 471 elements using 4566 bytes. >ey m^Ze_gby \k_o kms_kl\mxsbo i_j_f_gguo ba jZ[hq_]h ijhkljZgkl\Z MATLAB\\_^bl_ clear
DhfZg^ZVDYH
DhfZg^Zsave khojZgy_lkh^_j`Zgb_jZ[hq_]hijhkljZgkl\Z\F:LnZce_dhlhjuc fh`_l [ulv ijhqblZg dhfZg^hc load \ ihke_^mxsbo k_ZgkZo jZ[hlu MATLABGZijbf_j save August17th khojZgy_lkh^_j`Zgb_\k_]hjZ[hq_]hijhkljZgkl\Z\nZce_August17th.mat?kebgm`gh\ufh`_l_khojZgblvlhevdhhij_^_e_ggu_i_j_f_ggu_mdZau\Zybo bf_gZihke_bf_gbnZceZ
34
Kj_^Z 0$7/$% H[uqgh i_j_f_ggu_ khojZgyxlky \ ^\hbqghf nhjfZl_ dhlhjuc fh`_l [ulv [ukljhblhqgh ijhqblZgMATLAB?keb`_\uohlbl_bkihevah\ZlvwlbnZceu\g_MATLAB\ufh`_l_mdZaZlv^jm]hcnhjfZl -ascii
Bkihevam_lagZqgucl_dklh\hcnhjfZl
-ascii -double
Bkihevam_lagZqgucl_dklh\hcnhjfZl
-ascii -double -tabs
JZa^_ey_lwe_f_glufZkkb\ZlZ[meypb_c
-v4
Kha^Z_lnZce^eyMATLAB 4.
-append
>h[Z\ey_l^Zggu_\kms_kl\mxsbcMATnZce
Dh]^Z\ukhojZgy_l_kh^_j`Zgb_jZ[hq_]hijhkljZgkl\Z\l_dklh\hfnZce_\u ^he`gu khojZgylv lhevdh h^gm i_j_f_ggmx \ ^Zgguc fhf_gl ?keb \u khojZgy_l_ [he__ h^ghc i_j_f_gghc MATLAB kha^Z_l l_dklh\hc nZce gh \u g_ kfh`_l_aZ]jmablv_]hh[jZlgh
FZjrjmlihbkdZ
MATLAB bkihevam_lfZjrjmlihbkdZ mihjy^hq_gguckibkhd^bj_dlhjbc^ey lh]hqlh[u hij_^_eblvdZd \uihegylv nmgdpbb dhlhju_ \u \uau\Z_l_ Dh]^Z \u \uau\Z_l_ klZg^Zjlgmx nmgdpbx MATLAB bkihegy_l i_j\uc FnZce gZ k\h_f imlb dhlhjuc bf__l aZ^Zggh_ bfy
Hi_jZpbbgZ^^bkdh\ufbnZceZfb
DhfZg^udir, type, delete b cdhkms_kl\eyxldhfie_dk]jmiih\uohi_jZpbhgguo kbkl_fguo dhfZg^ ^ey fZgbimeypbc gZ^ nZceZfb Gb`_ijb\_^_ggZy lZ[ebpZ ihdZau\Z_l dZd wlb dhfZg^u khhl\_lkl\mxl jZaebqguf hi_jZpbhgguf kbkl_fZf MATLAB dir type delete cd
MS-DOS dir type del, erase chdir
UNIX ls cat rm cd
VAX/VMS dir type delete set defalt
>ey[hevrbgkl\ZbawlbodhfZg^\ufh`_l_bkihevah\Zlvihegu_imlbrZ[ehgubmdZaZl_eb^bkdh\\h[uqghcnhjf_
35
GZqZeh jZ[hlu k MATLAB
DhfZg^ZGLDU\
DhfZg^Zdiarykha^Z_l^g_\gbdk_ZgkZMATLAB\^bkdh\hfnZce_eykha^ZgbynZceZih^bf_g_fdiarydhlhjuckh^_j`bl \k_dhfZg^udhlhju_\ubkihevam_l_\dexqZy\u\h^gZi_qZlvdjhf_]jZnbq_kdh]h\u\h^Z \\_^bl_ diary >eykhojZg_gbyk_ZgkZMATLAB\nZce_khij_^_e_ggufbf_g_fbkihevamcl_ diary filename IjbhklZgh\d_aZibkbk_ZgkZjZ[hlugZ[_jbl_ diary off
AZimkd\g_rgboijh]jZff
36
Ih^jh[g__ h fZljbpZo b fZkkb\Zo
Ih^jh[g__hfZljbpZobfZkkb\Zo Wlhl jZa^_e jZkkdZ`_l \Zf [hevr_ h jZ[hl_ k fZljbpZfb b fZkkb\Zfb m^_eyy hkh[h_\gbfZgb_ • Ebg_cghcZe]_[j_ • FZkkb\Zf • Fgh]hf_jguf^Zgguf
Ebg_cgZyZe]_[jZ
L_jfbgufZljbpZbfZkkb\qZklh g_ijZ\bevgh bkihevamxl dZd \aZbfhaZf_gy_fu_;he__lhqghfZljbpZ±wlh^\mf_jgucqbke_ggucfZkkb\bkihevam_fuc\ ebg_cguo ij_h[jZah\Zgbyo FZl_fZlbq_kdb_ hi_jZpbb hij_^_e_ggu_ gZ fZljbpZoy\eyxlkyh[t_dlhfebg_cghcZe]_[ju FZ]bq_kdbcd\Z^jZl>xj_jZ A = 16 5 9 4
3 10 6 15
2 11 7 14
13 8 12 1
bkihevam_lky \ g_dhlhjuo ijbf_jZo dhlhju_ iha\heyxl ihqm\kl\h\Zlv hi_jZpbbgZ^fZljbpZfb\ MATLAB h[Z\e_gb_fZljbpud_zljZgkihgbjh\Zgghc^Z_lkbff_ljbqgmx fZljbpm A + A' ans = 32 8 11 17
8 20 17 23
11 17 14 26
17 23 26 2
Kbf\hemfgh`_gby h[hagZqZ_lfZljbqgh_ijhba\_^_gb_\dexqZxs__\gmlj_gg__ ijhba\_^_gb_ f_`^m kljhdZfb b klhe[pZfb Mfgh`_gb_ fZljbpugZ _z ljZgkihgbjh\ZggmxlZd`_^Z_lkbff_ljbqgmxfZljbpm A'*A ans = 378 212 206 360
212 370 368 206
206 368 370 212
360 206 212 378
Hij_^_ebl_evwlhcqZklghcfZljbpuhdZau\Z_lkyjZ\gufgmexhagZqZyqlhwlZ fZljbpZy\ey_lkykbg]meyjghc d = det(A)
37
GZqZeh jZ[hlu k MATLAB d = 0
Ijb\_^_ggZy d kljhdZf klmi_gqZlZy nhjfZ fZljbpu : \u]ey^bl ke_^mxsbf h[jZahf R = rref(A) R = 1 0 0 0
0 1 0 0
0 0 1 0
1 -3 3 0
Ihkdhevdm aZ^ZggZy fZljbpZ y\ey_lky kbg]meyjghc lh hgZ g_ bf__l h[jZlghc ?keb\u\k_lZdbihiulZ_l_kv_zhij_^_eblv X = inv(A)
lhihemqbl_ij_^mij_`^_gb_ Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.175530e-017.
Hrb[dZhdjm]e_gbyij_iylkl\m_lZe]hjblfmh[jZs_gbyfZljbpuijbhij_^_e_gbb lhqghc kbg]meyjghklb Gh agZq_gb_ rcond dhlhjh_ mklZgZ\eb\Z_l mkeh\b_ hp_gdb^eyh[jZlghcfZljbpubf__lihjy^hdepshlghkbl_evghclhqghklbqbkeZkieZ\Zxs_clhqdhcihwlhfm\uqbke_gb_h[jZlghcfZljbpug_hq_gv`_eZl_evgh Bgl_j_kghgZclbkh[kl\_ggu_agZq_gbyfZ]bq_kdh]hd\Z^jZlZ e = eig(A) e = 34.0000 8.0000 -0.0000 -8.0000
H^ghbakh[kl\_gguoagZq_gbcjZ\ghgmexqlhy\ey_lkyke_^kl\b_fkbg]meyjghklb KZfh_ [hevrh_ kh[kl\_ggh_ agZq_gb_ jZ\gh fZ]bq_kdhc kmff_ Wlh ijhbkoh^blihlhfm qlh \_dlhj khklhysbc ba \k_o _^bgbp y\ey_lky kh[kl\_gguf\_dlhjhf v = ones(4,1) v = 1 1 1 1 A*v
38
Ih^jh[g__ h fZljbpZo b fZkkb\Zo ans = 34 34 34 34
Dh]^ZfZ]bq_kdbcd\Z^jZlbaf_jy_lky_]hfZ]bq_kdhckmffhc P = A/34
j_amevlZl [m^_l [bklhoZklbq_kdhc fZljbp_c m dhlhjhc kmffu \ kljhdZo b klhe[pZo\k_jZ\gu_^bgbpZf P = 0.4706 0.1471 0.2647 0.1176
0.0882 0.2941 0.1765 0.4412
0.0588 0.3235 0.2059 0.4118
0.3824 0.2353 0.3529 0.0294
LZdb_ fZljbpu ij_^klZ\eyxl kh[hc \_jhylghklv i_j_oh^Z \ FZjdh\kdhf ijhp_kk_Ih\lhjgu_\ha\_^_gbyfZljbpu\kl_i_gvy\eyxlkyih\lhjgufbrZ]Zfb \wlhfijhp_kk_>eygZr_]hijbf_jZiylZykl_i_gv P^5
jZ\gZ ans = 0.2507 0.2497 0.2500 0.2496
0.2495 0.2501 0.2498 0.2506
0.2494 0.2502 0.2499 0.2505
0.2504 0.2500 0.2503 0.2493
Bawlh]hke_^m_lqlh_kebk klj_fblkyd[_kdhg_qghklblh]^Z\k_we_f_glu\khckl_i_gb, Pk,klj_fylkyd¼. <aZdexq_gb_jZkkfhljbfdhwnnbpb_gluoZjZdl_jbklbq_kdh]hihebghfZ poly(A) ans = 1.0e+003 * 0.0010 -0.0340
-0.0640
2.1760
0.0000
Baq_]hke_^m_lqlhoZjZdl_jbklbq_kdbcihebghf det(A-λI) jZ\_g λ4 – 34λ3 – 64λ2 + 2176λ DhgklZglZ jZ\gZ gmex lZd dZd fZljbpZ y\ey_lky kbg]meyjghc Z dhwnnbpb_gl ijblj_lv_ckl_i_gbjZ\_glZddZdfZljbpZfZ]bq_kdZy
39
GZqZeh jZ[hlu k MATLAB
FZkkb\u
Dh]^Zfu\uoh^bfbafbjZebg_cghcZe]_[jufZljbpuklZgh\ylky^\mf_jgufb qbke_ggufb fZkkb\Zfb :jbnf_lbq_kdb_ hi_jZpbb gZ fZkkb\Zo ijhba\h^ylky ihwe_f_glghWlh hagZqZ_l qlh kmffbjh\Zgb_ b \uqblZgb_ y\eyxlky h^bgZdh\ufb hi_jZpbyfb ^ey fZljbp b fZkkb\h\ Z mfgh`_gb_ ^ey gbo jZaebqgh MATLABbkihevam_llhqdmbeb^_kylbqgmxlhqdmdZdqZklvaZibkb^eyhi_jZpbbmfgh`_gbyfZkkb\h\ Kibkhdhi_jZlhjh\\dexqZ_l\k_[y + .* ./ .\ .^ .'
kmffbjh\Zgb_ \uqblZgb_ ihwe_f_glgh_mfgh`_gb_ ihwe_f_glgh_^_e_gb_ ihwe_f_glgh_e_\h_^_e_gb_ ihwe_f_glgh_\ha\_^_gb_\kl_i_gv g_khijy`_ggh_fZljbqgh_ljZgkihgbjh\Zgb_
?keb fZ]bq_kdbc d\Z^jZl >xj_jZ mfgh`blv gZ k_[y ih ijZ\beZf mfgh`_gby fZkkb\h\ A.*A
j_amevlZlhf[m^_lfZkkb\kh^_j`Zsbcd\Z^jZlup_euoqbk_ehl ^h \ g_h[uqghfihjy^d_ ans = 256 25 81 16
9 100 36 225
4 121 49 196
169 64 144 1
Hi_jZpbb gZ^ fZkkb\Zfb ihe_agu ^ey kha^Zgby lZ[ebp Imklv n ± wlh \_dlhj klhe[_p n = (0:9)';
Lh]^Z pows = [n
n.^2
2.^n]
kha^Z_llZ[ebpmd\Z^jZlh\bkl_i_g_c^\hcdb pows = 0 1 2 3 4 5 6 7 8 9
0 1 4 9 16 25 36 49 64 81
1 2 4 8 16 32 64 128 256 512
40
Ih^jh[g__ h fZljbpZo b fZkkb\Zo
We_f_glZjgu_ fZl_fZlbq_kdb_ nmgdpbb jZ[hlZxl k fZkkb\Zfb ihwe_f_glgh LZd format short g x = (1:0.1:2)'; logs = [x log10(x)]
kha^Z_llZ[ebpmeh]Zjbnfh\ logs = 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0 0.041393 0.079181 0.11394 0.14613 0.17609 0.20412 0.23045 0.25527 0.27875 0.30103
Fgh]hf_jgu_^Zggu_ MATLABbkihevam_lf_lh^hjb_glZpbbklhe[ph\^eyfgh]hf_jguoklZlbklbq_kdbo ^Zgguo DZ`^uc klhe[_p \ gZ[hj_ ^Zgguo ij_^klZ\ey_l i_j_f_ggmx Z dZ`^ZykljhdZ±j_amevlZlugZ[ex^_gbcLZdbfh[jZahfwe_f_gli,j ±wlhih_ gZ[ex^_gb_jhci_j_f_gghc <dZq_kl\_ijbf_jZjZkkfhljbfgZ[hj^Zgguoklj_fyi_j_f_ggufb • qZklhlZk_j^_qguokhdjZs_gbc • \_k • qZkumijZ`g_gbcaZg_^_ex >ey iylb gZ[ex^_gbc j_amevlbjmxsbc fZkkb\ fh`_l \u]ey^_lv ke_^mxsbf h[jZahf D = 72 81 69 82 75
134 201 156 148 170
3.2 3.5 7.1 2.4 1.2
I_j\ZykljhdZkh^_j`blqZklhlmk_j^_qguokhdjZs_gbc\_kbqZkumijZ`g_gbc ^eyi_j\h]hiZpb_glZ\lhjZykljhdZkh^_j`blZgZeh]bqgu_^Zggu_^ey\lhjh]h b l^
41
GZqZeh jZ[hlu k MATLAB mu = 75.8
161.8
3.48
5.6303
25.499
2.2107
sigma =
Qlh[uihkfhlj_lvkibkhd\k_onmgdpbcMATLAB^eyZgZebaZ^ZgguogZ[_jbl_ help datafun ?keb\Zfgm`ghmagZlvhStatistics Toolbox\\_^bl_ help stats
KdZeyjgh_jZkrbj_gb_
FZljbpu b kdZeyju fh]ml dhf[bgbjh\Zlvky jZaebqgufb imlyfb GZijbf_j kdZeyj\uqblZ_lkybafZljbpuiml_f\uqblZgbybadZ`^h]hwe_f_glZKj_^g__ agZq_gb_we_f_glh\^eygZr_]hfZ]bq_kdh]hd\Z^jZlZjZ\ghihwlhfm B = A - 8.5
nhjfbjm_lfZljbpmmdhlhjhckmffu\klhe[pZojZ\gugmex B = 7.5 -3.5 0.5 -4.5
-5.5 1.5 -2.5 6.5
-6.5 2.5 -1.5 5.5
4.5 -0.5 3.5 -7.5
sum(B) ans = 0
0
0
0
Bkihevamy kdZeyjgh_ jZkrbj_gb_ MATLAB mdZau\Z_l aZ^Zgguc kdZeyj \k_f bg^_dkZf\^bZiZahg_GZijbf_j B(1:2,2:3)=0
h[gmey_lqZklvfZljbpuB B = 7.5 -3.5 0.5 -4.5
0 0 -2.5 6.5
0 0 -1.5 5.5
Eh]bq_kdZybg^_dkZpby
4.5 -0.5 3.5 -7.5
Eh]bq_kdb_\_dlhjZkha^Zggu_baeh]bq_kdbohi_jZlhjh\bhi_jZlhjh\kjZ\g_gbyfh]ml[ulvbkihevah\Zgu^eykkuedbgZih^fZkkb\uIj_^iheh`bfqlhX h[udgh\_ggZyfZljbpZbL fZljbpZlh]h`_jZaf_jZghkh^_j`ZsZyeh]bq_kdb_ hi_jZpbbLh]^ZX(L)aZ^Z_lwe_f_gluX\dhlhjuowe_f_gluL g_gme_\u_
42
Ih^jh[g__ h fZljbpZo b fZkkb\Zo Wlhl \b^ bg^_dkZpbb fh`_l [ulv hkms_kl\e_g aZ h^bg rZ] mdZaZgb_f eh]bq_kdhchi_jZpbblZdhcdZdbg^_dkZpby\ujZ`_gbyImklv\ubf__l_ ke_^mxsbc gZ[hj^Zgguo x = 2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8
NaN – wlh f_ldZ^eyg_^hklZxs_]hgZ[ex^_gbydZdgZijbf_jhrb[dZijbhl\_l_gZ\hijhkZgd_lu>eylh]hqlh[um[jZlv^Zggu_keh]bq_kdhcbg^_dkZpb_c bkihevamcl_ finite(x) dhlhjZy y\ey_lky bklbghc ^ey \k_o dhg_qguo qbke_gguoagZq_gbcbeh`vx^eyNaN b Inf. x = x(finite(x)) x = 2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8
K_cqZkhklZeZkvh^gZgZ[ex^Z_fZy\_ebqbgZaZf_lghhlebqZxsZykyhlhklZevguo ± wlh \u[jhk Ihke_^mxsb_ ^_ckl\by mkljZgyxl \u[jhku \ ^Zgghf kemqZ_ l_ we_f_glu ^ey dhlhjuo kj_^g_d\Z^jZlbqgh_ hldehg_gb_ [he__ q_f \ ljbjZaZmdehgy_lkyhlkj_^g_]h x = x(abs(x-mean(x)) <= 3*std(x)) x = 2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8
< dZq_kl\_ ^jm]h]h ijbf_jZ gZc^_f iheh`_gb_ ijhkluo qbk_e \ fZ]bq_kdhf d\Z^jZl_ >xj_jZ bkihevamy eh]bq_kdh_ bg^_dkbjh\Zgb_ b kdZeyjgh_ jZkrbj_gb_qlhh[gmeblv\k_g_ijhklu_qbkeZ A(~isprime(A))=0 A = 0 5 0 0
3 0 0 0
2 11 7 0
13 0 0 0
NmgdpbyILQG
Nmgdpbyfind hij_^_ey_lbg^_dkufZkkb\Zwe_f_glh\kaZ^Zggufbeh]bq_kdbfb mkeh\byfb < gZb[he__ ijhklhc nhjf_ find \ha\jZsZ_l \_dlhjklhe[_p bg^_dkh\LjZgkihgbjm_f_]h^eyihemq_gby\_dlhjZkljhdbGZijbf_j k = find(isprime(A))'
\u[bjZ_l iheh`_gby bkihevamy h^ghf_jgh_ bg^_dkbjh\Zgb_ ijhkluo qbk_e fZ]bq_kdh]hd\Z^jZlZ k = 2
5
9
10
11
13
IhdZ`_fwlbqbkeZdZd\_dlhjkljhdm\ihjy^d_hij_^_e_gghfnmgdpb_c
43
GZqZeh jZ[hlu k MATLAB
A(k) ans = 5
3
2
11
7
13
?keb \u bkihevam_l_ k dZd bg^_dk k e_\hc klhjhgu \ hi_jZlhj_ ijbk\Zb\Zgby lhfZljbqgZykljmdlmjZkhojZgy_lky A(k) = NaN A = 16 NaN 9 4
NaN 10 6 15
NaN NaN NaN 14
NaN 8 12 1
44
MijZ\e_gb_ ihlhdZfb
MijZ\e_gb_ihlhdZfb MATLAB bf__liylv\b^h\kljmdlmjmijZ\e_gbyihlhdZfb • • • • •
hi_jZlhjif hi_jZlhjswitch pbdeufor pbdeuwhile hi_jZlhjbreak
if
Hi_jZlhjif \uqbkey_leh]bq_kdh_\ujZ`_gb_b\uihegy_l]jmiimhi_jZlhjh\ _keb \ujZ`_gb_ bklbggh G_h[yaZl_evgu_ dexq_\u_ keh\Z elseif b else kem`Zl ^ey \uiheg_gby Zevl_jgZlb\guo ]jmii hi_jZlhjh\ Dexq_\h_ keh\h end dhlhjh_kh]eZkm_lkykifaZ\_jrZ_lihke_^gxx ]jmiim hi_jZlhjh\ LZdbf h[jZahf \k_]jmiiu hi_jZlhjh\ aZdexq_gu f_`^m q_luj_o dexq_\uo keh\ [_a bkihevah\Zgbynb]mjguobebh[uqguokdh[hd :e]hjblf0$7/$%^eykha^ZgbyfZ]bq_kdh]hd\Z^jZlZihjy^dZQ\dexqZ_lljb jZaguokemqZyQg_q_lgh_Qq_lgh_ghg_^_eblkygZbQq_lgh_b^_eblkygZ Gb`_ijb\_^_gijbf_jkhhl\_lkl\mxs_]hdh^Z if rem(n,2) ~= 0 M = odd_magic(n) elseif rem(n,4) ~= 0 M = single_even_magic(n) else M = double_even_magic(n) end < wlhf ijbf_j_ ljb kemqZy y\eyxlky \aZbfgh bkdexqZxsbfb gh _keb [u wlh [uehg_lZdlh\uihegyehkv[ui_j\h_bklbggh_mkeh\b_
45
GZqZeh jZ[hlu k MATLAB
>Ze__ijb\_^_g^jm]hcijbf_jdhlhjucbkke_^m_lwlhl\hijhk?kebAbB y\eyxlky kdZeyjZfb lh gb`_ijb\_^_ggZy ijh]jZffZ gbdh]^Z g_ ijb\_^_l d g_h`b^Zgghc kblmZpbb Gh ^ey [hevrbgkl\Z iZj bkihevam_fuo fZljbp \dexqZy gZrb fZ]bq_kdb_ d\Z^jZlu k i_j_klZ\e_ggufb klhe[pZfb gb h^gh ba mkeh\bc A > B, A < B beb A ==B g_ y\ey_lky bklbgguf ^ey \k_o we_f_glh\ b ihwlhfm \uihegy_lkykemqZcelse. if A > B ' greater ' elseif A < B ' less' elseif A == B ' equal ' else error ( ' G_ij_^\b^_ggZykblmZpby ' ) end G_dhlhju_nmgdpbbfh]ml[ulvihe_agu^eyfZljbqgh]hkjZ\g_gbyijbbkihevah\Zgbbkhi_jZlhjhfifgZijbf_j isequal isempty all any
VZLWFKbFDVH
Hi_jZlhjswitch \uihegy_l]jmiimhi_jZlhjh\[ZabjmykvgZagZq_gbbi_j_f_gghc beb \ujZ`_gby Dexq_\u_ keh\Z case b otherwise jZa^_eyxl wlb ]jmiiu
46
MijZ\e_gb_ ihlhdZfb kemqZb g_ \uihegyxlky LZdbf h[jZahf g_l g_h[oh^bfhklb \ bkihevah\Zgbb hi_jZlhjZbreak.
for
Pbdefor ih\lhjy_l]jmiimhi_jZlhjh\nbdkbjh\Zggh_ij_^hij_^_e_ggh_qbkeh jZaDexq_\h_keh\hend hq_jqb\Z_ll_ehpbdeZ for n = 3:32 r(n) = rank(magic(n)); end r LhqdZ k aZiylhc ihke_ \ujZ`_gby \ l_e_ pbdeZ ij_^hl\jZsZ_l ih\lhj_gby \u\h^Zj_amevlZlh\gZwdjZgZr ihke_pbdeZ\u\h^blhdhgqZl_evgucj_amevlZl Ohjhrbfklbe_fy\eyxlkyhlklmiuijbbkihevah\Zgbbpbdeh\^eyemqr_cqblZ_fhklbhkh[_gghdh]^Zhgb\eh`_ggu_ for i = 1:m for j = 1:n H(i,j) = 1/(i+j); end end
while
Pbde while ih\lhjy_l ]jmiim hi_jZlhjh\ hij_^_e_ggh_ qbkeh jZa ihdZ \uihegy_lkyeh]bq_kdh_ mkeh\b_Dexq_\h_keh\hend hq_jqb\Z_lbkihevam_fu_hi_jZlhju Gb`_ ijb\_^_gZ ihegZy ijh]jZffZ beexkljbjmxsZy jZ[hlm hi_jZlhjh\ while, if, else benddhlhjZybkihevam_lf_lh^^_e_gbyhlj_adZihiheZf^eygZoh`^_gbygme_cihebghfZ a = 0; fa = -Inf; b = 3; fb = Inf; while b-a > eps*b x = (a+b)/2; fx = x^3-2*x-5; if sign(fx) == sign(fa) a = x; fa = fx; else b = x; fb = fx; end end x
J_amevlZlhf[m^_ldhj_gvihebghfZx3-2x-5 x = 2.09455148154233
47
GZqZeh jZ[hlu k MATLAB >ey hi_jZlhjZ while \_jgu l_ `_ ij_^hkl_j_`_gby hlghkbl_evgh fZljbqgh]h kjZ\g_gbyqlhb^eyhi_jZlhjZif, dhlhju_h[km`^ZebkvjZg__
break
Hi_jZlhj break iha\hey_l ^hkjhqgh \uoh^blv ba pbdeh\ for beb while eps*b x = (a+b)/2; fx = x^3-2*x-5; if fx ==0 break elseif sign(fx) == sign(fa) a = x; fa = fx; else b = x; fb = fx; end end x
48
>jm]b_ kljmdlmju ^Zgguo
>jm]b_kljmdlmju^Zgguo Wlhl jZa^_e ihagZdhfbl \Zk k g_dhlhjufb kljmdlmjZfb ^Zgguo \ MATLAB, \dexqZy • • • •
Fgh]hf_jgu_fZkkb\u FZkkb\uyq__d Kbf\heubl_dkl Kljmdlmju
Fgh]hf_jgu_fZkkb\u
Fgh]hf_jgu_fZkkb\u\MATLABwlhfZkkb\u[he__q_fk^\mfybg^_dkZfb Hgb fh]ml [ulv kha^Zgu \uah\hf nmgdpbc zeros, ones, rand beb randn k [he__ q_f^\mfyZj]mf_glZfbGZijbf_j R = randn(3,4,5) kha^Z_l oo fZkkb\ k ghjfZevgh jZkij_^_e_ggufb kemqZcgufb we_f_glZfb Lj_of_jgu_ fZkkb\u fh]ml ij_^klZ\eylv lj_of_jgu_ nbabq_kdb_ ^Zggu_ gZijbf_jl_fi_jZlmjm\dhfgZl_J_amevlZlij_^klZ\ey_lkyihke_^h\Zl_evghklvx fZljbp A(k) beb aZ\bkys_c hl \j_f_gb fZljbp_c A(t) < wlbo kemqZyo we_f_gl (i,j NhcfZljbpubebtkhch[hagZqZ_lkyA(i,j,k). <_jkbbfZ]bq_kdh]hd\Z^jZlZMATLABb>xj_jZhlebqZxlkyi_j_klZ\e_ggufb klhe[pZfbHi_jZlhj p = perms(1:4);
]_g_jbjm_l i_j_klZgh\dbqbk_ehl^hN-Zyi_j_klZgh\dZ±wlh\_dlhj kljhdZp(k,:)Lh]^Z A = magic(4); M = zeros(4,4,24); for k = 1:24 M(:,:,k) = A(:,p(k,:)); end
ojZgblihke_^h\Zl_evghklv fZ]bq_kdbo d\Z^jZlh\ \ lj_of_jghf fZkkb\_ M. JZaf_jM jZ\_g size(M) ans = 4
4
24
HdZau\Z_lkyqlhZyfZljbpZ\wlhcihke_^h\Zl_evghklb±fZljbpZ>xj_jZ M(:,:,22)
49
GZqZeh jZ[hlu k MATLAB ans = 16 5 9 4
3 10 6 15
2 11 7 14
13 8 12 1
Nmgdpby sum(M,d) \uqbkey_lkmffubaf_gyybg^_dkdLZd sum(M,1)
- wlhoofZkkb\kh^_j`Zsbcdhibb\_dlhjZkljhdb 34
34
34
34
: sum(M,2)
y\ey_lkyfZkkb\hfookh^_j`Zsbfdhibb\_dlhjZklhe[pZ 34 34 34 34
BgZdhg_p S = sum(M,3)
^h[Z\ey_l fZljbpu \ ihke_^h\Zl_evghklv J_amevlZl bf__l jZaf_jghklv ooihwlhfmhg\u]ey^bldZdfZkkb\o S = 204 204 204 204
204 204 204 204
204 204 204 204
204 204 204 204
FZkkb\uyq__d
FZkkb\uyq__d\MATLAB – wlhfgh]hf_jgu_fZkkb\uwe_f_gludhlhjuoy\eyxlky dhibyfb ^jm]bo fZkkb\h\ FZkkb\ yq__d imkluo fZljbp fh`_l [ulv kha^Zgkbkihevah\Zgb_fnmgdpbbcellGh[he__qZklhhgbkha^Zxlkyiml_faZdexq_gby jZaghh[jZaghc ]jmiiu h[t_dlh\ \ djm]eu_ kdh[db Djm]eu_ kdh[db lZd`_bkihevamxlkykbg^_dkZfb^eyihemq_gby^hklmiZdkh^_j`ZgbxjZaebqguoyq__dGZijbf_j C = { A sum(A) prod(prod(A)) }
^Z_l fZkkb\ yq__d o Wlb ljb de_ldb kh^_j`Zl fZ]bq_kdbc d\Z^jZl \_dlhj kljhdmkkmffZfb\klhe[pZobijhba\_^_gb__]hwe_f_glh\?kebhlh[jZablvC gZwdjZg_lh\um\b^bl_ke_^mxs__ 50
>jm]b_ kljmdlmju ^Zgguo
C = [4x4 double]
[1x4 double]
[2.0923e+013]
Wlhijhbkoh^blihlhfmqlhi_j\u_^\_yq_cdbkebrdhf[hevrb_^ey\u\h^Z\ wlhf h]jZgbq_gghf ijhkljZgkl\_ Z lj_lvy yq_cdZ kh^_j`bl lhevdh hl^_evgh_ qbkehb^eyg_]h_klvg_h[oh^bfZyh[eZklv\u\h^Z Hq_gv\Z`ghaZihfgblv^\Z\Z`guofhf_glZI_j\h_^eyihemq_gby kh^_j`Zgbyh^ghcyq_cdbbkihevamcl_bg^_dk\djm]euokdh[dZoGZijbf_jC{1} \ha\jZsZ_lfZ]bq_kdbcd\Z^jZlZC{3} – 16!
kha^Z_l ihke_^h\Zl_evghklv fZ]bq_kdbo d\Z^jZlh\ \ hij_^_e_gghc ihke_^h\Zl_evghklb M = [ [2x2 [3x3 [4x4 [5x5 [6x6 [7x7 [8x8
1] double] double] double] double] double] double] double]
Kbf\heubl_dkl
<\_^bl_l_dkl\MATLABbkihevamyh^bgZjgu_dZ\uqdbGZijbf_j s = 'Hello'
J_amevlZlhfg_[m^_ly\eylvkyqbke_ggZyfZljbpZbebfZkkb\dhlhju_fujZkkfZljb\ZebjZg__Wlh[m^_lkbf\hevgucfZkkb\o
51
GZqZeh jZ[hlu k MATLAB ij_h[jZam_lfZkkb\kbf\heh\\qbkeh\mxfZljbpmkh^_j`Zsmxij_^klZ\e_gb_ kieZ\Zxs_clhqdhcASCII dh^Z^eydZ`^h]hkbf\heZJ_amevlZlhf[m^_l a = 72
101
108
108
111
:\ujZ`_gb_ s = char(a) hkms_kl\ey_lh[jZlgh_ij_\jZs_gb_ Ij_h[jZah\Zgb_ qbk_e \ kbf\heu ^_eZ_l \hafh`guf ijbkmlkl\b_ jZaebqguo rjbnlh\ gZ \Zr_f dhfivxl_j_ I_qZlZ_fu_ kbf\heu \ ASCII dh^_ ij_^klZ\eyxlky p_eufb qbkeZfb hl ^h P_eu_ qbkeZ f_gvr_ ij_^klZ\eyxl g_i_qZlZ_fu_ kbf\heu Wlb qbkeZ jZkiheh`_gu \ khhl\_lkl\mxs_f fZkkb\_ o F = reshape(32:127,16,6)';
I_qZlZ_fu_kbf\heu\jZkrbj_gghfASCII gZ[hj_ij_^klZ\e_guF+128Dh]^Z wlb qbkeZ bgl_jij_lbjmxlky dZd kbf\heu j_amevlZl aZ\bkbl hl lh]h dZdhc rjbnl\^Zggucfhf_glbkihevam_lkyGZ[_jbl_ke_^mxs__ char(F) char(F+128)
bihlhf ihbaf_gycl_ rjbnlu \ dhfZg^ghf hdg_ MATLAB Gb`_ ij_^klZ\e_g h^bgbaijbf_jh\lh]hqlhfh`_lihemqblvky ans = !"#$%&'()*+,-./ 0123456789:;<=>? @ABCDEFGHIJKLMNO PQRSTUVWXYZ[\]^_ `abcdefghijklmno pqrstuvwxyz{|}~• ans =
83¼æ,/©¤2
°±1¶·z}ª0~
:;<=>?@ABCDEFGHI JKLMNOPQRSTUVWXY Z[\]^_`abcdefghi jklmnopqrstuvwxy Kh_^bg_gb_ d\Z^jZlgufb kdh[dZfb dhgdZl_gbjm_l l_dklh\u_ i_j_f_ggu_ \f_kl_\[hevrmxkljhdm h = [s, ' world']
h[t_^bgy_lkljhdbih]hjbahglZebb^Z_l h = Hello world
52
>jm]b_ kljmdlmju ^Zgguo Hi_jZlhj v = [s; 'world']
h[t_^bgy_lkljhdb\_jlbdZevqlhijb\h^bld v = Hello world
AZf_lvl_qlhi_j_^kbf\hehfw \i_j_f_gghchg_h[oh^bfhihklZ\blvijh[_e Zh[Zkeh\Z\i_j_f_gghcv^he`gu[ulvjZ\ghc^ebguJ_amevlbjmxsb_fZkkb\uy\eyxlkykgh\ZfZkkb\Zfbkbf\heh\i_j_f_ggZyh – 1o11Zi_j_f_ggZyv – o ?klv ^\Z kihkh[Z qlh[u mijZ\eylv ]jmiihc l_dklZ kh^_j`Zs_c kljhdb jZaghc ^ebgu nhjfbjh\Zlv aZiheg_gguc fZkkb\ kbf\heh\ beb de_lhqguc fZkkb\ kljhd Nmgdpby char ijbgbfZ_l ex[h_ qbkeh kljhd ^h[Z\ey_l ijh[_eu \ dZ`^mx kljhdm qlh[u \k_ hgb [ueb jZ\ghc ^ebgu b nhjfbjm_l fZkkb\ kljhd k kbf\hevghckljhdhc\dZ`^hckljhd_GZijbf_j S = char('A' , 'rolling' , 'stone' , 'gathers' , 'momentum.')
\u^Z_l S = A rolling stone gathers momentum.
Ijbkmlkl\m_l^hklZlhqgh_dhebq_kl\hijh[_eh\\i_j\uoq_luj_okljhdZoqlh[u\k_kljhdb[uebjZ\ghc^ebgu>jm]hckihkh[±wlhkhojZgblvl_dkl\fZkkb\_yq__d C = {'A' ; 'rolling' ; 'stone' ; 'gathers' ; 'momentum.'
}
[m^_lfZkkb\yq__do C = 'A' 'rolling' 'stone' 'gathers' 'momentum.'
GZqZeh jZ[hlu k MATLAB
Kljmdlmju
Kljmdlmju±wlhfgh]hf_jgu_fZkkb\uMATLABkwe_f_glZfb^hklmiddhlhjufhkms_kl\ey_lkyq_j_aiheyGZijbf_j S.name = 'Ed Plum'; S.score = 83; S.grade = 'B+';
kha^Z_lkdZeyjgmxkljmdlmjmklj_fyiheyfb S = name: 'Ed Plum' score: 83 grade: 'B+'
DZdb\kz\MATLABkljmdlmjuy\eyxlkyfZkkb\Zfbihwlhfm\u fh`_l_^h[Z\eylv\gbowe_f_glu<wlhfkemqZ_dZ`^ucwe_f_glfZkkb\Zy\ey_lkykljmdlmjhckg_kdhevdbfbiheyfbIheyfh]ml^h[Z\eylvkyeb[hihh^ghfm S(2).name = 'Toni Miller'; S(2).score = 91; S(2).grade = 'A-' ;
eb[hiheghklvx S(3) = struct( 'name', 'Jerry Garcia', . . . 'score', 70, 'grade', 'C' )
K_cqZk kljmdlmjZ klZeZ ^hklZlhqghc [hevrhc ihwlhfm i_qZlZ_lky ebrv _z k\h^dZ S = 1x3 struct array with fields: name score grade
?klvg_kdhevdhkihkh[h\i_j_ljZgkebjh\Zlv jZaebqgu_ ihey \ ^jm]b_ fZkkb\u MATLAB
54
>jm]b_ kljmdlmju ^Zgguo [S.score] lh`_kZfh_qlh [S(1).score, S(2).score, S(3).score]
j_amevlZlhf[m^_lqbke_gguc\_dlhjkljhdZkh^_j`Zsbc\k_kq_lZscore) ans = 83
91
70
:gZeh]bqgh S.name ijhklhijbk\Zb\Z_lbf_gZnames ihh^ghfmi_j_f_gghcansH^gZdhaZdexq_gb_wlh]h\ujZ`_gby\djm]eu_kdh[db {S.name}
kha^Z_lfZkkb\yq__dokh^_j`Zsbcljbbf_gbnames) ans = 'Ed Plum'
'Toni Miller'
'Jerry Garcia'
Bnmgdpby char(S.name)
klj_fyZj]mf_glZfbkha^Z_lfZkkb\kbf\heh\baiheyname. ans = Ed Plum Toni Miller Jerry Garcia
55
GZqZeh jZ[hlu k MATLAB
Kp_gZjbbbnmgdpbb MATLAB ± wlh fhsguc yaud ijh]jZffbjh\Zgby lZd`_ dZd b bgl_jZdlb\gZy \uqbkebl_evgZykj_^ZNZceudhlhju_kh^_j`Zldh^gZyaud_MATLAB, gZau\ZxlkyFnZceZfbeywlh]h\Zfg_h[oh^bfh ^h[Z\blvbofZjrjmlihbkdZMATLAB. ?keb \u ih\lhjy_l_ bfy nmgdpbb lh MATLAB \uau\Zxl lhevdh lm dhlhjZy \klj_qZ_lkyi_j\hc Qlh[u m\b^_lv kh^_j`Zgb_ FnZceZ gZijbf_j myfunction.m g_h[oh^bfh gZ[jZlv type myfunction
Kp_gZjbb
Dh^Z \u \uau\Z_l_ kp_gZjbc MATLAB ijhklh \uau\Z_l dhfZg^u kh^_j`Zsb_ky\nZce_Kp_gZjbbfh]mlhi_jbjh\Zlvkms_kl\mxsbfb^Zggufb\jZ[hq_fijhkljZgkl\_bebhgbfh]ml kZfbkha^Z\Zlvwlb^Zggu_Ohlykp_gZjbbg_ \ha\jZsZxlagZq_gbc\k_i_j_f_ggu_dhlhju_hgbkha^ZxlhklZxlky\jZ[hq_f ijhkljZgkl\_ ^ey bkihevah\Zgby \ ihke_^mxsbo \uqbke_gbyo < ^h[Z\e_gb_dkdZaZgghfmkp_gZjbbfh]mlhkms_kl\eylv]jZnbq_kdbc\u\h^bkihevamy lZdb_nmgdpbbdZdplot. <dZq_kl\_ijbf_jZkha^Z^bfnZcemagicrank.mdhlhjuckh^_j`blwlbdhfZg^uMATLAB: % Investigate the rank of magic squares r = zeros(1,32); for n = 3:32 r(n) = rank(magic(n)); end r bar(r)
56
Kp_gZjbb b nmgdpbb
<\h^kljhdb magicrank.m ih\e_q_laZkh[hcbkiheg_gb_dhfZg^\uqbke_gb_jZg]Zi_j\uofZ]bq_kdbo d\Z^jZlh\ b hlh[jZ`_gby klhe[bdh\hc ^bZ]jZffu j_amevlZlh\ Ihke_ ihegh]h \uiheg_gbynZceZi_j_f_ggu_nbrhklZxlky\jZ[hq_fijhkljZgkl\_
Nmgdpbb
Nmgdpbb ± wlh FnZceu dhlhju_ fh]ml bf_lv \oh^gu_ b \uoh^gu_ \ha\jZsZlvBfyFnZceZbnmgdpbb^he`gh[ulvh^gbfbl_f`_NmgdpbbjZ[hlZxlki_j_f_ggufb\ij_^_eZobokh[kl\_ggh]hjZ[hq_]hijhkljZgkl\Zhl^_e_ggh]h hl jZ[hq_]h ijhkljZgkl\Z k dhlhjuf \u hi_jbjm_l_ \ dhfZg^ghc kljhd_ MATLAB. Ohjhrbfijbf_jhfy\ey_lkynmgdpbbrankFnZcerank.m gZoh^blky\^bj_dlhjbb toolbox/matlab/matfun
Copyright (c) 1984-98 by The MathWorks, Inc. $Revision: 5.7 $ $Date: 1997/11/21 23:38:49 $
57
GZqZeh jZ[hlu k MATLAB s = svd(A); if nargin==1 tol = max(size(A)') * max(s) * eps; end r = sum(s > tol);
I_j\ZykljhdZnmgdpbbFnZceZgZqbgZ_lkykhkeh\Zfunction. A^_kvijhbkoh^bl aZ^Zgb_ bf_gb kh kibkdhf Zj]mf_glh\ < gZr_f kemqZ_ bkihevam_lky ^h ^\mo \oh^guoZj]mf_glh\bh^bg\uoh^ghc Ke_^mxsb_g_kdhevdhkljhd^hi_j\hcimklhcbeb\uihegy_fhckljhdby\eyxlky dhff_glZjbyfb dhlhju_ ij_^hklZ\eyxl kijZ\hqgmx bgnhjfZpbx Wlb kljhdb[m^ml\u\_^_gugZwdjZg_keb\ugZ[_j_l_ help rank I_j\Zy kljhdZkijZ\hqgh]h l_dklZ ± wlh H1 kljhdZ dhlhjmx MATLAB hlh[jZ`Z_lijbbkihevah\ZgbbdhfZg^ulookfor bebijbaZijhk_ help ih\k_c^bj_dlhjbb HklZevgh_kh^_j`Zgb_nZceZkhklZ\ey_lbkihegy_fucdh^MATLABI_j_f_ggZysij_^klZ\e_ggZy\l_e_nmgdpbblZd`_dZdbi_j_f_ggu_\i_j\hckljhd_ r, Ab tol\k_y\eyxlkyehdZevgufbHgbhl^_e_guhl^jm]boi_j_f_gguo\jZ[hq_fijhkljZgkl\_MATLAB. Wlhl ijbf_j ihdZau\Z_l \Z`gmx hkh[_gghklv nmgdpbc MATLAB dhlhjZy h[uqgh g_ \kl_qZ_lky \ ^jm]bo yaudZo ijh]jZfbjh\Zgby i_j_f_ggh_ qbkeh Zj]mf_glh\ Nmgdpby rank fh`_l [ulv bkihevah\ZgZ \ g_kdhevdbo jZaebqguo nhjfZo rank(A) r = rank(A) r = rank(A, 1.e-6) Fgh]b_nmgdpbbMATLABjZ[hlZxllZdbfh[jZahf?kebg_l\uoh^gh]hZj]mf_glZ lh j_amevlZl khojZgy_lky \ i_j_f_gghc ans ?keb g_l \lhjh]h \oh^gh]h Zj]mf_glZ lh nmgdpby \uqbkey_l agZq_gb_ ih mfheqZgbx
=eh[Zevgu_i_j_f_ggu_
?keb \u ohlbl_ qlh[u [he__ h^ghc nmgdpbb bkihevah\Zeb hl^_evgmx dhibx i_j_f_gghcijhklhh[ty\bl__zdZdglobal \h\k_onmgdpbyo>_eZcl_lh`_kZfh_\dhfZg^ghckljhd__keb\uohlbl_qlh[uhkgh\gh_jZ[hq__ijhkljZgkl\h ihemqbeh^hklmidi_j_f_gghcHij_^_e_gb_global ^he`gh [ulv ^h kZfhc i_j_f_gghc bkihevam_fhc \ nmgdpbb Ohly wlh g_ h[yaZl_evgh bkihevah\Zgb_ [hevrbo[md\^eybf_gb]eh[Zevghci_j_f_gghcihfh`_lhlebqblvbohl^jm]boi_j_f_gguoGZijbf_jkha^Z^bfFnZcefalling.m:
58
Kp_gZjbb b nmgdpbb function h = falling(t) global GRAVITY h = ½*GRAVITY*t.^2; AZl_f\\_^_fke_^mxsb_kljhdb global GRAVITY GRAVITY = 32; y = falling((0: .1: 5)' ); LZdbf h[jZahf kljhdb hij_^_e_gby GRAVITY \ dhfZg^ghc kljhd_ ^_eZxl _z ^hklmighc \gmljb nmgdpbb
DhfZg^ghnmgdpbhgZevgZy^\hckl\_gghklv Ijbf_judhfZg^MATLAB±wlh load help Fgh]b_ dhfZg^u bf_xl mijZ\eyxsbc iZjZf_lj dhlhjuc hij_^_ey_l ihke_^mxs__^_ckl\b_ load August17.dat help magic type rank >jm]hcf_lh^bkihevah\ZgbydhfZg^guoiZjZf_ljh\± wlh kha^Zgb_ kljhdb Zj]mf_glh\nmgdpbc load( 'August17.dat' ) help( 'magic' ) type( 'rank' ) Wlhb_klvdhfZg^ghnmgdpbhgZevgZy^\hckl\_gghklvEx[ZydhfZg^ZlbiZ command argument lZd`_fh`_l[ulvi_j_ibkZgZ\nmgdpbhgZevghcnhjf_ command( 'argument' ) Ij_bfms_kl\h nmgdpbhgZevgh]h ih^oh^Z ijhy\ey_lky dh]^Z kljhdZ Zj]mf_glZ kha^Z_lkybahl^_evguoqZkl_cKe_^mxsbcijbf_jh[jZ[Zlu\Z_lfgh]hqbke_ggu_ nZceu k ^Zggufb August1.dat, August2.dat b l^ Hg bkihevam_l nmgdpbx int2strdhlhjZyij_h[jZam_lp_eu_qbkeZ\kljhdmkbf\heh\^eykha^Zgbybf_gb nZceZ
59
GZqZeh jZ[hlu k MATLAB
for d = 1:31 s = [ 'August' int2str(n) '.dat'] load(s) % H[jZ[hldZkh^_j`Zgbyd-]hnZceZ end
NmgdpbyHYDO
Nmgdpby eval jZ[hlZ_l k l_dklh\ufb i_j_f_ggufb ^ey \uqbke_gby b j_ZebaZpbbl_dklh\uokljhd eval(s) bkihevam_lbgl_jij_lZlhjMATLAB^ey\uqbke_gbyb\uiheg_gby\ujZ`_gby, kh^_j`Zs_]hky\l_dklh\hckljhd_s. Ijbf_jbaij_^u^ms_]hjZa^_eZfh`_l[ulvlZd`_j_Zebah\Zgke_^mxsbfh[jZahfohlywlh[m^_lf_g__wnn_dlb\ghldbkihevam_lkyihegucbgl_jij_lZlhjZg_\uah\nmgdpbb for d = 1:31 s = [ 'load August' int2char(n) '.dat' ] eval(s) % H[jZ[hldZkh^_j`Zgbyd-]hnZceZ end
<_dlhjbaZpby
Qlh[u^h[blvkyfZdkbfZevghckdhjhklb\g_MATLABhq_gv\Z`gh\_dlhjbah\u\Zlv Ze]hjblf \ FnZceZo LZf ]^_ ^jm]b_ yaudb ijh]jZffbjh\Zgby fh]ml bkihevah\Zlvpbdeufor bebdo, MATLABfh`_lijbf_gylv\_dlhjgu_bebfZljbqgu_hi_jZpbbIjhklufijbf_jhfy\ey_lkykha^Zgb_lZ[ebpueh]Zjbnfh\ x=0 for k = 1:1001 y(k) = log10(x); x = x + .01; end (Hiulgu_ ihevah\Zl_eb MATLAB ex[yl ]h\hjblv @bagv kebrdhf dhjhldZ qlh[uljZlblv\j_fygZaZibkvpbdeh\) :\_dlhjbah\ZggZy\_jkbywlh]hdh^Z\u]ey^blke_^mxsbfh[jZahf x = 0: .10:10; y = log10(x); >ey[he__keh`guoijh]jZff\hafh`ghklb\_dlhjbaZpbbg_lZdhq_\b^guH^gZdh dh]^Z \Z`gZ kdhjhklv \u ^he`gu \k_]^Z bkdZlv kihkh[u \_dlhjbaZpbb \Zr_]hZe]hjblfZ
60
Kp_gZjbb b nmgdpbb
Ij_^\Zjbl_evgh_\u^_e_gb_
?keb\ug_fh`_l_\_dlhjbah\ZlvqZklvdh^Z\ufh`_l_aZklZ\blv\Zrpbdefor jZ[hlZlv[uklj__>eywlh]hgm`ghij_^\Zjbl_evgh\u^_eblv\_dlhjZbebfZkkb\u\dhlhjuo[m^mlojZgblvky\uoh^gu_j_amevlZluGZijbf_jke_^mxsbc dh^bkihevam_lnmgdpbyzeros ^eyij_^\Zjbl_evgh]h\u^_e_gby\_dlhjZkha^Z\Z_fh]h\pbde_forWlhiha\hey_lpbdemfor jZ[hlZlvaZf_lgh[uklj__ r = zeros(32,1) for n = 1:32 r(n) = rank(magic(n)); end ;_a ij_^\Zjbl_evgh]h \u^_e_gby \ ij_^u^ms_f ijbf_j_ bgl_jij_lZlhj MATLAB m\_ebqb\Z_l\_dlhjr ihh^ghfmwe_f_glmdZ`^ucjZa\gmljb pbdeZ Ij_^\Zjbl_evgh_\u^_e_gb_\_dlhjZ mkljZgy_lwlh^_ckl\b_bj_amevlZl ihemqZ_lky[uklj__
Nmgdpbyhlnmgdpbc
DeZkk nmgdpbc gZau\Z_fuc nmgdpby hl nmgdpbc jZ[hlZ_l k g_ebg_cgufb nmgdpbyfb kdZeyjguo i_j_f_gguo Lh _klv h^gZ nmgdpby jZ[hlZ_l k ^jm]hc . Nmgdpbbhlnmgdpbc\dexqZxl\k_[y • • • •
GZoh`^_gbygmey HilbfbaZpby Bgl_]jbjh\Zgb_ H[udgh\_ggu_^bnn_j_gpbZevgu_mjZ\g_gby
MATLAB ij_^klZ\ey_lg_ebg_cgu_nmgdpbbq_j_aFnZceuGZijbf_jgb`_ ijb\_^_gZmijhs_ggZy\_jkbynmgdpbbhumps ba^bj_dlhjbbmatlab/demos function y = humps(x) y = 1. / ( (x - .3). ^2 + .01) + 1. / ( (x - .9) .^2 + .04) - 6;
AZl_fihkljhbf]jZnbd plot(x,y)
61
GZqZeh jZ[hlu k MATLAB
GZ ]jZnbd_ \b^gh qlh wlZ nmgdpby bf__l ehdZevguc fbgbfmf hdheh x=0.6. Nmgdpbyfmins gZc^_lfbgbfmful_l_agZq_gbyx\dhlhjuonmgdpby^hklb]Z_lk\h_]hfbgbfmfZI_j\ufZj]mf_glhffmins y\ey_lkybfynmgdpbbfbgbfmfdhlhjhcbs_lkyZ\lhjuf±ijb[eb`_ggh_iheh`_gb_fbgbfmfZ p = fmins( 'humps', .5) p = 0.6370
Qlh[ugZclbagZq_gb_nmgdpbb\fbgbfmf_ humps(p) ans = 11.2528
Ki_pbZebklubkihevamxll_jfbgud\Z^jZlmjZbbgl_]jbjh\Zgb_ qlh[u jZaebqZlv qbke_ggmx ZiijhdkbfZpbx hij_^_e_gguo bgl_]jZeh\ b qbke_ggh_ bgl_]jbjh\Zgb_ h[udgh\_gguo ^bnn_j_gpbZevguo mjZ\g_gbc quad b quad8 ±wlh ih^ijh]jZffuMATLABih\uqbke_gbxd\Z^jZlmju Q = quad8( 'humps', 0, 1)
\uqbkey_liehsZ^vih^djb\hcgZ]jZnbd_b\u^Z_l Q = 29.8583
<aZdexq_gb_gZ]jZnbd_\b^ghqlhaZ^ZggZynmgdpbyg_bf__lgme_cgZwlhf bgl_j\Ze_Ihwlhfm_kebfuihiulZ_fkyhlukdZlvgmev z = fzero( 'humps', .5)
lhfugZc^_f_]h\g_gZr_]hbgl_j\ZeZ z = -0.1316
62
MijZ\ey_fZy ]jZnbdZ
MijZ\ey_fZy]jZnbdZ MATLABij_^hklZ\ey_ldhfie_dknmgdpbcgbadh]hmjh\gydhlhju_iha\heyxl kha^Z\Zlv b h[jZ[Zlu\Zlv ebgbb ih\_joghklb b ^jm]b_ ]jZnbq_kdb_ h[t_dlu WlZkbkl_fZgZau\Z_lkymijZ\ey_fZy]jZnbdZHandle Graphics®).
=jZnbq_kdb_h[t_dlu
=jZnbq_kdb_h[t_dlu±wlh[Zabkgu_we_f_glukbkl_fumijZ\ey_fhc]jZnbdb\ MATLABHgbknhjfbjh\Zgu\^_j_\hkljmdlmjghcb_jZjobbWlbfhljZ`Z_lky k\yav ]jZnbq_kdbo h[t_dlh\ GZijbf_j h[t_dlu Line (ebgby) gm`^Zxlky \ h[t_dlZoAxes (hkb)dZd\kbkl_f_hlkq_lZ<k\hxhq_j_^vh[t_dluAxes kms_kl\mxllhevdhkh[t_dlZfbFigure. ?klvh^bggZ^pZlv\b^h\h[t_dlh\mijZ\ey_fhc]jZnbdb • H[t_dlu Root y\eyxlky \_jrbghc b_jZjobb Hgb khhl\_lkl\mxl wdjZgm dhfivxl_jZMATLABZ\lhfZlbq_kdbbokha^Z_l\gZqZe_k_ZgkZjZ[hlu • H[t_dluFigure±wlhhdgZgZwdjZg_djhf_dhfZg^gh]hhdgZ • H[t_dluUicontrol ±wlhihevah\Zl_evkdh_mijZ\e_gb_bgl_jn_ckhfDh]^Z ihevah\Zl_ev Zdlb\bjm_l h[t_dl \uau\Z_lky khhl\_lkl\mxsZy nmgdpby Hgb \dexqZxl\k_[ypushbutton, radio button bslider. • H[t_dlu Axes hij_^_eyxl h[eZklv \ hdg_ Figure b hjb_glZpbx ^hq_jgbo h[t_dlh\\wlhch[eZklb • H[t_dlu Uimenu ij_^klZ\eyxl kh[hc f_gx ihevah\Zl_evkdh]h bgl_jn_ckZdhlhjh_jZkiheh`_gh\\_jog_cqZklbhdgZFigure. • H[t_dluImage – wlh^\mf_jgu_h[t_dludhlhju_\u\h^blMATLAB, bkihevamywe_f_gluijyfhm]hevgh]hfZkkb\ZdZdbg^_dku\iZeblj_ • H[t_dluLine y\eyxlkyhkgh\gufb]jZnbq_kdbfb[Zabkgufbwe_f_glZfb ^ey[hevrbgkl\Z^\mf_jguo]jZnbdh\ • H[t_dlu Surface ± wlh lj_of_jgh_ ij_^klZ\e_gb_ ^Zgguo fZljbpu kha^Zggh_iml_f]jZnbq_kdh]hhlh[jZ`_gby^ZgguodZd\ukhlgZ^iehkdhklvxxy. • H[t_dluText – wlhkljhdbkbf\heh\ • H[t_dluLight hij_^_eyxlbklhqgbdk\_lZ^_ckl\mxsbcgZ\k_h[t_dlu\ ij_^_eZoAxes.
MijZ\e_gb_h[t_dlZfb
DZ`^uc hl^_evguc ]jZnbq_kdbc h[t_dl bf__l k\hc mgbdZevguc b^_glbnbdZlhjgZau\Z_fuchandlefZgbimeylhj dhlhjucMATLAB ijbk\Zb\Z_lh[t_dlm ijb kha^Zgbb G_dhlhju_ ]jZnbdb gZijbf_j k g_kdhevdbfb djb\ufb khklhyl ba fgh]bo h[t_dlh\dZ`^uc ba dhlhjuo bf__l k\hc kh[kl\_gguc b^_glbnbdZlhjhandle Q_fiulZlvkyijhqblZlvbokwdjZgZbih\lhjgh\\h^blv\um\b^bl_qlh\k_]^Zemqr_ojZgblvagZq_gb_\i_j_f_gghcbbkihevah\Zlv_]hihg_h[oh^bfhklb B^_glbnbdZlhjh[t_dlZroot \k_]^ZgmevB^_glbnbdZlhjfigure ±wlhp_eh_qbkeh dhlhjh_ ih mfheqZgbx hlh[jZ`Z_lky \ aZ]heh\d_ hdgZ B^_glbnbdZlhju ^jm]bo h[t_dlh\ y\eyxlky qbkeZ k ieZ\Zxs_c lhqdhc dhlhju_ kh^_j`Zl bg-
63
GZqZeh jZ[hlu k MATLAB nhjfZpbxbkihevam_fmxMATLABGZijbf_j_kebA –wlhfZ]bq_kdbcd\Z^jZl>xj_jZlh h = plot(A)
kha^Zklebg_cguc]jZnbdkq_lujvfyebgbyfb^eydZ`^h]hklhe[pZ:ZlZd`_ \ha\jZlbl\_dlhjb^_glbnbdZlhjlZdhcdZd h = 3.0022 1.0038 4.0020 5.0016
>Zggu_qbke_ggu_agZq_gbyy\eyxlkyg_kms_kl\_ggufbbfh]mlbaf_gylvkyhl h^ghckbkl_fud^jm]hcDZdb_[uqbkeZg_[ueb\Z`gufy\ey_lkylhqlhh(1) –wlhb^_glbnbdZlhji_j\hcdjb\hcgZ]jZnbd_h(2) – \lhjhcbl^ MATLABbf__lg_kdhevdhnmgdpbc^eyihemq_gby^hklmiZdqZklhbkihevam_fufh[t_dlZf gcf gca gco ey m^Ze_gby h[t_dlZ kem`bl nmgdpby delete bkihevamxsZy b^_glbnbdZlhj h[t_dlZ\dZq_kl\_Zj]mf_glZGZijbf_jm^Zebfl_dmsb_hkbaxes Z\f_kl_k gbfbb\k_^hq_jgb_h[t_dlu delete(gca)
Nmgdpbbkha^Zgbyh[t_dlh\
64
MijZ\ey_fZy ]jZnbdZ
K\hckl\Zh[t_dlZ
6X
0R
7X
:H
7K
)U
6D
GD\V±wlhfZkkb\kbf\heh\kh^_j`ZsbckhdjZs_gby^g_cg_^_ebZtemp ±wlh qbke_gguc fZkkb\ k lbibqghc l_fi_jZlmjhc Hdgh bah[jZ`_gbc kha^Z_lky ihke_\uah\Zfigure [_aZj]mf_glh\l_khagZq_gbyfbih mfheqZgbxHkbkms_kl\mxl \gmljb figure b bf_xl aZ^Zgguc ^bZiZahg ih y b aZ^Zggu_ f_ldb ^ey ijbjZs_gbcihxEbgbbkms_kl\mxl\gmljbhk_cbbf_xl aZ^Zggu_ agZq_gby ^ey^ZgguoihxbyLjbb^_glbnbdZlhjZh[t_dlh\f, abh khojZg_gu^ey^Zevg_cr_]hbkihevah\Zgby
VHWbJHW
K\hckl\Z h[t_dlZ aZ^Zxlky h[jZs_gb_f d g_fm ihke_ _]h kha^Zgby >ey wlh]h bkihevamcl_b^_glbnbdZlhj\ha\jZsZ_fuckha^Z\Z_fhcnmgdpb_c Nmgdpby set iha\hey_l mklZgZ\eb\Zlv k\hckl\Z h[t_dlh\ mdZaZgb_f b^_glbnbdZlhjZh[t_dlZbkh\hdmighklbiZjgZa\Zgb_k\hckl\ZagZq_gb_<dZq_kl\_mijZ`g_gbybaf_gbfp\_lbrbjbgmebgbbbaij_^u^ms_]hijbf_jZ set( h , 'Color' , [0 .8 .8] , 'LineWidth' , 3)
>eylh]hqlh[um\b^_lvkibkhd\k_o^hklmiguok\hckl\aZ^Zggh]hh[t_dlZ\uah\_l_set kb^_glbnbdZlhjhfh[t_dlZ
65
GZqZeh jZ[hlu k MATLAB
set(h) Color EraseMode: [ {normal} | background | xor | none ] LineStyle: [ {-} | -- | : | -. | none ] LineWidth Marker: [ + | o | * | . | x | square | diamond | v | ^ | > | < | pentagram | hexagram | {none} ] MarkerSize . . . XData YData Zdata . . . .
Qlh[u\u\_klbkibkhd\k_ol_dmsbomklZgh\e_gguok\hckl\aZ^Zggh]hh[t_dlZ \uah\_l_get kb^_glbnbdZlhjhfh[t_dlZ get(h) Color = [0 0.8 0.8] EraseMode = normal LineStyle = LineWidth = [3] Marker = none MarkerSize = [6] . . . XData = [ (1 by 7) double array] YData = [ (1 by 7) double array] ZData = [] . . .
>eyaZijhkZagZq_gbyhl^_evgh]hk\hckl\Zbkihevamcl_get kbf_g_fk\hckl\Z get(h , 'Color') ans = 0
0.8000
0.8000
H[t_dlu axes bf_xl fgh]h ^_lZevguo k\hckl\ ^ey \k_]h ]jZnbdZ GZijbf_j aZ]heh\hdtitle. t = get(a , 'title' ); set(t , 'String' , 'Temperature' , 'FontAngle' , 'oblique') Nmgdpbytitle h[_ki_qb\Z_l^jm]hcbgl_jn_ckdwlbf`_k\hckl\Zf
=jZnbq_kdbcIhevah\Zl_evkdbcBgl_jn_ck(GUI)
Gb`_ijb\_^_gijbf_jbeexkljbjmxsbcbkihevah\Zgb_mijZ\ey_fhc]jZnbdb (Handle Graphics ^eykha^Zgbyihevah\Zl_evkdh]hbgl_jn_ckZ b = uicontrol( 'Style' , 'pushbutton' , . . . 'Units' , 'normalized' , . . . 'Position' , [.5 .5 .2 .1] , . . .
66
MijZ\ey_fZy ]jZnbdZ 'String' , 'click here' ); kha^Z_l pushbutton \ p_glj_ hdgZ bah[jZ`_gby figure b \ha\jZsZ_l b^_glbnbdZlhjgh\h]hh[t_dlZH^gZdhihdZgZ`Zlb_gZwlmdghidmgbdq_fmg_ijb\h^bl s = ' set(b , ' 'Position' ' , [.8*rand .9*rand .2 .1]) '; kha^Z_l kljhdm kh^_j`Zsmx dhfZg^m dhlhjZy f_gy_l iheh`_gb_ dghidb Ih\lhjgh_bkihevah\Zgb_ eval(s) [m^_li_j_^\b]Zlvdghidm\kemqZcgu_f_klZHdhgqZl_evgh set(b , 'Callback' , s) mklZgh\bl s \ dZq_kl\_ h[jZ[hldb gZ`Zlby dghidb Ihwlhfm dZ`^uc jZa dh]^Z \u_zgZ`bfZ_l_hgZi_j_f_sZ_lkygZgh\h_f_klh
:gbfZpby
MATLAB ij_^hklZ\ey_l g_kdhevdh kihkh[h\ ^ey kha^Zgby ^\b]Zxs_cky ZgbfZpbhgghc ]jZnbdb Bkihevah\Zgb_ k\hckl\Z EraseMode ij_^gZagZq_gh ^ey ^ebgghcihke_^h\Zl_evghklbijhkluo]jZnbdh\]^_baf_g_gb_hldZ^jZddZ^jm fbgbfZevghGb`_ij_^klZ\e_gijbf_jfh^_ebjmxsbc[jhmgh\kdh_^\b`_gb_ Hij_^_ebfdhebq_kl\hlhq_d n = 20;
L_fi_jZlmjmbebkdhjhklvdZd s = .02;
Emqrb_ agZq_gby wlbo iZjZf_ljh\ aZ\bkyl hl kdhjhklb \Zr_c fZrbgu K]_g_jbjm_fn kemqZcguolhq_dkdhhj^bgZlZfb(x,y) f_`^m½ b½. x = rand(n,1)-0.5; y = rand(n,1)-0.5;
Hlh[jZabf lhqdb \ d\Z^jZl_ kh klhjhgZfb \ ij_^_eZo hl ± ^h KhojZgbf b^_glbnbdZlhj^ey\_dlhjZlhq_dbmklZgh\bfk\hckl\hEraseMode jZ\gufxor. WlhmdZ`_l]jZnbq_kdhckbkl_f_MATLABg_i_j_jbkh\u\Zlv\_kv]jZnbddh]^Zbaf_gy_lkydhhj^bgZlZh^ghclhqdbZ\hkklZgZ\eb\Zlvp\_lnhgZ\hdj_klghklblhqdbbkihevamyhi_jZpbxbkdexqZxs_]hBEB h = plot(x , y , ' . ' ); axis([-1 1 -1 1]) axis square grid off set(h , 'EraseMode' , 'xor' , 'MarkerSize' , 18 );
67
GZqZeh jZ[hlu k MATLAB
while 1 x = x + s*randn(n,1); y = y + s*randn(n,1); set(h, 'Xdata' , x , 'Ydata' , y) end
Kdhevdhgm`gh\j_f_gbqlh[uh^gZbalhq_d\ureZaZij_^_eud\Z^jZlZ"Q_j_adZdh_\j_fy\k_lhqdbhdZ`mlky\g_d\Z^jZlZ"
Movie
?keb\um\_ebqb\Z_l_qbkehlhq_d\[jhmgh\kdhf^\b`_gbbgZijbf_jn = 300, lh \ wlhf kemqZ_ ^\b`_gb_ g_ [m^_l hq_gv ih^\b`guf lZd dZd ihlj_[m_lky kebrdhf fgh]h \j_f_gb gZ dZ`^hf rZ]_ KlZgh\blky [he__ wnn_dlb\guf khojZgblvhij_^_e_ggh_qbkehdZ^jh\dZdbitmap bijhb]ju\ZlvbodZddbgh
L_i_jv\u^_ebf^hklZlhqghiZfylb^eykhojZg_gbygZr_]hnbevfZ M = moviein(nframes);
68
MijZ\ey_fZy ]jZnbdZ Wlh mklZgh\bl [hevrmx fZljbpm k nframes klhe[pZfb DZ`^uc klhe[_p ^hklZlhqgh^ebggucqlh[ukhojZgblvh^bgdZ^jIhegh_dhebq_kl\hlj_[m_fhciZfylb ijhihjpbhgZevgh dhebq_kl\m dZ^jh\ b h[eZklb l_dmsbo hk_c gh hgZ g_ aZ\bkblhlkeh`ghklbhl^_evguo]jZnbdh\>eydZ^jh\bhk_cihmfheqZgbx g_h[oh^bfh hdheh f_]Z[Zcl iZfylb < gZr_f ijbf_j_ bkihevamxlky d\Z^jZlgu_hkbdhlhju_g_fgh]hf_gvr_ihwlhfmlj_[m_lkyhdhehf_]Z[Zcl K]_g_jbjm_fihemq_ggucnbevfbbkihevamygetframekhojZgbfdZ`^ucdZ^j for k = 1:nframes x = x + s*rand(n,1); y = y + s*rand(n,1); set(h , 'XData' , x , 'YData' , y) M(: , k) = getframe; end L_i_jvijhb]jZ_fnbevf jZa movie(30)
69
GZqZeh jZ[hlu k MATLAB
>hiheg_gb_ Qlh[u m\b^_lv ^hihegbl_evgu_ ijbf_ju MATLAB \u[_jbl_ Examples and Demos baf_gxbebgZ[_jbl_ demo \dhfZg^ghc kljhd_ MATLAB ey[he__^_lZevgh]hh[tykg_gbyhl^_evguol_faZljhgmluo\wlhcdgb]_h[jZsZcl_kvdke_^mxs_cebl_jZlmj_ MATLAB Installation Guide hibku\Z_l dZd mklZgh\blv MATLAB gZ \Zrm ieZlnhjfm Using MATLABij_^klZ\ey_l[he__]em[hdbcfZl_jbZeihyaudmMATLAB, jZ[hq_ckj_^_bfZl_fZlbq_kdbfl_fZf Using MATLAB Graphicshibku\Z_lbkihevah\Zgb_]jZnbdbbbgkljmf_glh\^ey\bamZebaZpbbMATLAB. MATLAB Application Program Interface Guide h[tykgy_l dZd ibkZlv ijh]jZffugZKbbNhjljZg_dhlhju_\aZbfh^_ckl\mxlkMATLAB. MATLAB 5.1 New Features Guide ij_^hklZ\ey_lihe_agmxbgnhjfZpbx^ey i_j_oh^ZhlMATLABodMATLAB 5.1. MATLAB Toolboxes ±wlh]jmiiuFnZceh\dhlhju_jZkrbjyxl\hafh`ghklb MATLAB\jZaebqguol_ogbq_kdboh[eZklyo>hklmiguhl^_evgu_jmdh\h^kl\Z ihdZ`^hcbagbo
70
>hiheg_gb_ G_cjhggu_k_lb MjZ\g_gby\qZklguoijhba\h^guo Ijh_dlbjh\Zgb_jh[Zklguokbkl_fkh[jZlghck\yavx Jh[Zklgh_mijZ\e_gb_ H[jZ[hldZkb]gZeh\ Fh^_ebjh\Zgb_Simulink) KieZcgu KlZlbklbdZ Kbf\hevgZyfZl_fZlbdZ B^_glbnbdZpbykbkl_f <wc\e_lu >ey ihemq_gby ihke_^g_c bgnhjfZpbb h MATLAB b ^jm]bo ijh^mdlZo MathWorks h[jZsZcl_kvd http://www.mathworks.com
bbkihevamcl_\ZrInternet New reader ^ey^hklmiZd]jmii_gh\hkl_c comp.soft-sys.matlab Dgb]b h MATLAB \uimkdZxl jZaebqgu_ ba^Zgby ;jhrxjZ haZ]eZ\e_ggZy MATLAB-Based Books,fh`_l[ulvihemq_gZhldhfiZgbbMathWorksZihke_^gbckibkhd^hklmi_ggZWebkZcl_ ?keb \u ijhqblZeb \kx wlm dgb]m b aZimklbeb \k_ ijbf_ju iha^jZ\ey_f \u gZqZebjZ[hlmkMATLAB ijhklh\_ebdhe_igh?keb\uijhimklbebg_dhlhju_ jZa^_eu beb g_ ihijh[h\Zeb hl^_evgu_ ijbf_ju fu kh\_lm_f \Zf ihljZlblv _s_g_fgh]h\j_f_gbgZbamq_gb_Getting Started<ex[hfkemqZ_^h[jhih`Zeh\Zlv\fbjMATLAB !
71
GZqZeh jZ[hlu k MATLAB
Ij_^f_lgucmdZaZl_ev C
F
W
case, 46
D
while, 47 who, 34 whos, 34
fZjrjml ihbkdZ fZkkb\u ]_g_jbjh\Zgb_ k ihfhsvx nmgdpbc b hi_jZlhjh\ 17 aZ]jmadZ ba \g_rgbo nZceh\ bf_gZ i_j_f_gguo f_lh^ hjb_glZpbb klhe[ph\ fgh]hf_jgu_ h[t_^bg_gb_ kbkl_fZ kqbke_gby ^ey we_f_glh\ kha^Zgb_ \ F nZceZo we_f_glu yq_cdZ fZljbpZ fZljbpu \\h^ fgh]hf_jgu_ fZkkb\u F nZceu ^ey kha^Zgby fZkkb\h\
diag, 11 doc, 33
: ZgbfZpby
E eval, 60
;
[b[ebhl_dZ fZl_fZlbq_kdbo nmgdpbc
F for, 47
H help, 31
I if, 45
<
\\h^ fZljbp \_dlhjbaZpby \ujZ`_gby \uqbke_gb_ \uoh^gu_ ^Zggu_ khdjZs_gb_ nhjfZlbjh\Zgb_
=
L lookfor, 32
M magic, 13 MATLAB [b[ebhl_dZ fZl_fZlbq_kdbo nmgdpbc bklhjby h[ahj ijh]jZffguc bgl_jn_ck
6 jZ[hqZy kj_^Z mijZ\ey_fZy ]jZnbdZ yaud
mesh, 28 movie, 69
P plot, 23
S save, 34 Simulink, 6 subplot, 25 sum, 10 surface, 28 switch, 46
H
]eh[Zevgu_ i_j_f_ggu_ ]jZnbdZ ]jZnbq_kdb_ h[t_dlu ^\mf_jgZy i_qZlv k\hckl\Z ]jZnbq_kdbo h[t_dlh\ mijZ\ey_fZy ]jZnbq_kdb_ h[t_dlu
h[t_^bg_gb_ fZkkb\h\ hi_jZlhj ^\h_lhqby hi_jZlhju hi_jZpbb gZ^ nZceZfb hkb hlh[jZ`_gb_ dhfie_dkguo ^Zgguo fZljbp
I
>
i_j_f_ggu_ ]eh[Zevgu_ i_qZlv ]jZnbdb l_dmsbo kijZ\hqguo kljZgbp ih^]jZnbdb ihbkd l_dms_c kijZ\db 33 ihlhdb ij_^\Zjbl_evgh_ \u^_e_gb_
^ebggu_ kljhdb \\h^Z
A
aZ]jmadZ fZkkb\h\ aZimkd \g_rgbo ijh]jZff
36
B
61
bah[jZ`_gby bg^_dku
J
D
jZ[hq__ ijhkljZgkl\h bkihevam_fZy iZfylv kh^_j`Zgb_ j_^Zdlhj dhfZg^ghc kljhdb
de_lhqgu_ fZkkb\u Kf
fZkkb\u yq__d
21
E
eh]bq_kdb_ \_dlhjZ
72
Ij_^f_lguc mdZaZl_ev K
kha^Zgb_ ihevah\Zl_evkdh]h bgl_jn_ckZ kijZ\dZ kljmdlmju kp_gZjbb
lhqdZ k aZiylhc ^ey khdjZs_gby \u\h^bfuo ^Zgguo ljZgkihgbjh\Zgb_
N
nbevfu nhjfZl \uoh^guo ^Zgguo 20 nmgdpbb nmgdpby hl nmgdpbc
L
l_dkl
M
m^Ze_gb_ we_f_glh\ fZkkb\Z 19 mijZ\ey_fZy ]jZnbdZ
73
Q
qbkeZ
GZqZeh jZ[hlu k MATLAB I_j_\h^kZg]ebckdh]hDhgxr_gdh<< Dhgxr_gdh
74